mirror of https://github.com/microsoft/autogen.git
Docstr update (#460)
* parallel tuning docstr * update n_concurrent_trials docstr * n_jobs default * parallel tuning in tune docstr
This commit is contained in:
parent
393106d531
commit
05f9065ade
|
@ -482,7 +482,8 @@ class AutoML(BaseEstimator):
|
|||
task: A string of the task type, e.g.,
|
||||
'classification', 'regression', 'ts_forecast', 'rank',
|
||||
'seq-classification', 'seq-regression', 'summarization'.
|
||||
n_jobs: An integer of the number of threads for training.
|
||||
n_jobs: An integer of the number of threads for training | default=-1.
|
||||
Use all available resources when n_jobs == -1.
|
||||
log_file_name: A string of the log file name | default="". To disable logging,
|
||||
set it to be an empty string "".
|
||||
estimator_list: A list of strings for estimator names, or 'auto'
|
||||
|
@ -562,8 +563,9 @@ class AutoML(BaseEstimator):
|
|||
|
||||
seed: int or None, default=None | The random seed for hpo.
|
||||
n_concurrent_trials: [Experimental] int, default=1 | The number of
|
||||
concurrent trials. For n_concurrent_trials > 1, installation of
|
||||
ray is required: `pip install flaml[ray]`.
|
||||
concurrent trials. When n_concurrent_trials > 1, flaml performes
|
||||
[parallel tuning](https://microsoft.github.io/FLAML/docs/Use-Cases/Task-Oriented-AutoML#parallel-tuning)
|
||||
and installation of ray is required: `pip install flaml[ray]`.
|
||||
keep_search_state: boolean, default=False | Whether to keep data needed
|
||||
for model search after fit(). By default the state is deleted for
|
||||
space saving.
|
||||
|
@ -1365,8 +1367,8 @@ class AutoML(BaseEstimator):
|
|||
groups: None or array-like | Group labels (with matching length to
|
||||
y_train) or groups counts (with sum equal to length of y_train)
|
||||
for training data.
|
||||
n_jobs: An integer of the number of threads for training. Use all
|
||||
available resources when n_jobs == -1.
|
||||
n_jobs: An integer of the number of threads for training | default=-1.
|
||||
Use all available resources when n_jobs == -1.
|
||||
train_best: A boolean of whether to train the best config in the
|
||||
time budget; if false, train the last config in the budget.
|
||||
train_full: A boolean of whether to train on the full data. If true,
|
||||
|
@ -1827,7 +1829,8 @@ class AutoML(BaseEstimator):
|
|||
task: A string of the task type, e.g.,
|
||||
'classification', 'regression', 'ts_forecast', 'rank',
|
||||
'seq-classification', 'seq-regression', 'summarization'
|
||||
n_jobs: An integer of the number of threads for training.
|
||||
n_jobs: An integer of the number of threads for training | default=-1.
|
||||
Use all available resources when n_jobs == -1.
|
||||
log_file_name: A string of the log file name | default="". To disable logging,
|
||||
set it to be an empty string "".
|
||||
estimator_list: A list of strings for estimator names, or 'auto'
|
||||
|
@ -1920,8 +1923,9 @@ class AutoML(BaseEstimator):
|
|||
|
||||
seed: int or None, default=None | The random seed for hpo.
|
||||
n_concurrent_trials: [Experimental] int, default=1 | The number of
|
||||
concurrent trials. For n_concurrent_trials > 1, installation of
|
||||
ray is required: `pip install flaml[ray]`.
|
||||
concurrent trials. When n_concurrent_trials > 1, flaml performes
|
||||
[parallel tuning](https://microsoft.github.io/FLAML/docs/Use-Cases/Task-Oriented-AutoML#parallel-tuning)
|
||||
and installation of ray is required: `pip install flaml[ray]`.
|
||||
keep_search_state: boolean, default=False | Whether to keep data needed
|
||||
for model search after fit(). By default the state is deleted for
|
||||
space saving.
|
||||
|
|
|
@ -256,7 +256,9 @@ def run(
|
|||
used; or a local dir to save the tuning log.
|
||||
num_samples: An integer of the number of configs to try. Defaults to 1.
|
||||
resources_per_trial: A dictionary of the hardware resources to allocate
|
||||
per trial, e.g., `{'cpu': 1}`. Only valid when using ray backend.
|
||||
per trial, e.g., `{'cpu': 1}`. It is only valid when using ray backend
|
||||
(by setting 'use_ray = True'). It shall be used when you need to do
|
||||
[parallel tuning](https://microsoft.github.io/FLAML/docs/Use-Cases/Tune-User-Defined-Function#parallel-tuning).
|
||||
config_constraints: A list of config constraints to be satisfied.
|
||||
e.g., ```config_constraints = [(mem_size, '<=', 1024**3)]```
|
||||
|
||||
|
|
Loading…
Reference in New Issue