step1代码

This commit is contained in:
马天姿 2020-07-08 02:04:58 +08:00
parent ab96b618fd
commit a3fe77e5b3
1 changed files with 53 additions and 0 deletions

View File

@ -0,0 +1,53 @@
import mindspore.nn as nn
from mindspore.common.initializer import TruncatedNormal
def weight_variable():
"""
weight initial
"""
return TruncatedNormal(0.02)
def conv(in_channels, out_channels, kernel_size, stride=1, padding=0):
"""
conv layer weight initial
"""
weight = weight_variable()
return nn.Conv2d(in_channels, out_channels,
kernel_size=kernel_size, stride=stride, padding=padding,
weight_init=weight, has_bias=False, pad_mode="valid")
def fc_with_initialize(input_channels, out_channels):
"""
fc layer weight initial
"""
# 请在此添加代码完成本关任务
# **********Begin*********#
##提示:完成初始化代码
# **********End**********#
class LeNet5(nn.Cell):
"""
Lenet network structure
"""
#define the operator required
def __init__(self):
super(LeNet5, self).__init__()
self.conv1 = conv(1, 6, 5)
self.conv2 = conv(6, 16, 5)
self.fc1 = fc_with_initialize(16 * 5 * 5, 120)
self.fc2 = fc_with_initialize(120, 84)
self.fc3 = fc_with_initialize(84, 10)
self.relu = nn.ReLU()
self.max_pool2d = nn.MaxPool2d(kernel_size=2, stride=2)
self.flatten = nn.Flatten()
#use the preceding operators to construct networks
def construct(self, x):
# 请在此添加代码完成本关任务
# **********Begin*********#
##提示:根据教程内容完成网络定义即可
# **********End**********#
return x