mindir_suffix

This commit is contained in:
bai-yangfan 2020-12-02 11:02:30 +08:00
parent 51d885815a
commit c46c4dffe4
26 changed files with 34 additions and 34 deletions

View File

@ -26,7 +26,7 @@ context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
parser = argparse.ArgumentParser(description='CNNCTC_export')
parser.add_argument('--ckpt_file', type=str, default='./ckpts/cnn_ctc.ckpt', help='CNN&CTC ckpt file.')
parser.add_argument('--output_file', type=str, default='cnn_ctc.air', help='CNN&CTC output air name.')
parser.add_argument('--output_file', type=str, default='cnn_ctc', help='CNN&CTC output air name.')
args_opt = parser.parse_args()
if __name__ == '__main__':

View File

@ -39,4 +39,4 @@ if __name__ == '__main__':
# load the parameter into net
load_param_into_net(network, param_dict)
input_data = np.random.uniform(0.0, 1.0, size=[32, 3, 513, 513]).astype(np.float32)
export(network, Tensor(input_data), file_name=args.model+'-300_11.air', file_format='AIR')
export(network, Tensor(input_data), file_name=args.model+'-300_11', file_format='AIR')

View File

@ -33,8 +33,8 @@ cifar_cfg = edict({
'device_id': 0,
'keep_checkpoint_max': 10,
'checkpoint_path': './train_googlenet_cifar10-125_390.ckpt',
'onnx_filename': 'googlenet.onnx',
'air_filename': 'googlenet.air'
'onnx_filename': 'googlenet',
'air_filename': 'googlenet'
})
imagenet_cfg = edict({
@ -54,8 +54,8 @@ imagenet_cfg = edict({
'device_id': 0,
'keep_checkpoint_max': 10,
'checkpoint_path': None,
'onnx_filename': 'googlenet.onnx',
'air_filename': 'googlenet.air',
'onnx_filename': 'googlenet',
'air_filename': 'googlenet',
# optimizer and lr related
'lr_scheduler': 'exponential',

View File

@ -26,7 +26,7 @@ from src.inception_v3 import InceptionV3
parser = argparse.ArgumentParser(description='inceptionv3 export')
parser.add_argument('--ckpt_file', type=str, required=True, help='inceptionv3 ckpt file.')
parser.add_argument('--output_file', type=str, default='inceptionv3.air', help='inceptionv3 output air name.')
parser.add_argument('--output_file', type=str, default='inceptionv3', help='inceptionv3 output air name.')
parser.add_argument('--file_format', type=str, choices=["AIR", "ONNX", "MINDIR"], default='AIR', help='file format')
parser.add_argument('--width', type=int, default=299, help='input width')
parser.add_argument('--height', type=int, default=299, help='input height')

View File

@ -29,5 +29,5 @@ mnist_cfg = edict({
'image_width': 32,
'save_checkpoint_steps': 1875,
'keep_checkpoint_max': 10,
'air_name': "lenet.air",
'air_name': "lenet",
})

View File

@ -54,4 +54,4 @@ if __name__ == "__main__":
# export network
inputs = Tensor(np.ones([1, 1, cfg.image_height, cfg.image_width]), mindspore.float32)
export(network, inputs, file_name="lenet_quant.mindir", file_format='MINDIR', quant_mode='AUTO')
export(network, inputs, file_name="lenet_quant", file_format='MINDIR', quant_mode='AUTO')

View File

@ -42,7 +42,7 @@ def set_config(args):
"platform": args.platform,
"activation": "Softmax",
"export_format": "MINDIR",
"export_file": "mobilenetv2.mindir"
"export_file": "mobilenetv2"
})
config_gpu = ed({
"num_classes": 1000,
@ -66,7 +66,7 @@ def set_config(args):
"run_distribute": args.run_distribute,
"activation": "Softmax",
"export_format": "MINDIR",
"export_file": "mobilenetv2.mindir"
"export_file": "mobilenetv2"
})
config_ascend = ed({
"num_classes": 1000,
@ -93,7 +93,7 @@ def set_config(args):
"run_distribute": int(os.getenv('RANK_SIZE', '1')) > 1.,
"activation": "Softmax",
"export_format": "MINDIR",
"export_file": "mobilenetv2.mindir"
"export_file": "mobilenetv2"
})
config = ed({"CPU": config_cpu,
"GPU": config_gpu,

View File

@ -51,5 +51,5 @@ if __name__ == '__main__':
# export network
print("============== Starting export ==============")
inputs = Tensor(np.ones([1, 3, cfg.image_height, cfg.image_width]), mindspore.float32)
export(network, inputs, file_name="mobilenet_quant.mindir", file_format='MINDIR', quant_mode='AUTO')
export(network, inputs, file_name="mobilenet_quant", file_format='MINDIR', quant_mode='AUTO')
print("============== End export ==============")

View File

@ -34,5 +34,5 @@ config_gpu = ed({
"keep_checkpoint_max": 500,
"save_checkpoint_path": "./checkpoint",
"export_format": "MINDIR",
"export_file": "mobilenetv3.mindir"
"export_file": "mobilenetv3"
})

View File

@ -51,6 +51,6 @@ nasnet_a_mobile_config_gpu = edict({
"loss_scale": 1,
### onnx&air Config
'onnx_filename': 'nasnet_a_mobile.onnx',
'air_filename': 'nasnet_a_mobile.air'
'onnx_filename': 'nasnet_a_mobile',
'air_filename': 'nasnet_a_mobile'
})

View File

@ -41,4 +41,4 @@ if __name__ == '__main__':
load_param_into_net(net, param_dict)
inputs = np.random.uniform(0.0, 1.0, size=[1, 3, 224, 224]).astype(np.float32)
export(net, Tensor(inputs), file_name='resnet-42_5004.air', file_format='AIR')
export(net, Tensor(inputs), file_name='resnet-42_5004', file_format='AIR')

View File

@ -44,5 +44,5 @@ config = ed({
"rank": 0,
"group_size": 1,
"export_format": "MINDIR",
"export_file": "resnext50.mindir"
"export_file": "resnext50"
})

View File

@ -39,8 +39,8 @@ if __name__ == '__main__':
else:
num_classes = 1000
onnx_filename = args_opt.net + '_' + args_opt.dataset + '.onnx'
air_filename = args_opt.net + '_' + args_opt.dataset + '.air'
onnx_filename = args_opt.net + '_' + args_opt.dataset
air_filename = args_opt.net + '_' + args_opt.dataset
net = squeezenet(num_classes=num_classes)

View File

@ -26,7 +26,7 @@ parser = argparse.ArgumentParser(description='SSD export')
parser.add_argument("--device_id", type=int, default=0, help="Device id")
parser.add_argument("--batch_size", type=int, default=1, help="batch size")
parser.add_argument("--ckpt_file", type=str, required=True, help="Checkpoint file path.")
parser.add_argument("--file_name", type=str, default="ssd.air", help="output file name.")
parser.add_argument("--file_name", type=str, default="ssd", help="output file name.")
parser.add_argument('--file_format', type=str, choices=["AIR", "ONNX", "MINDIR"], default='AIR', help='file format')
args = parser.parse_args()

View File

@ -23,7 +23,7 @@ from src.unet.unet_model import UNet
parser = argparse.ArgumentParser(description='Export ckpt to air')
parser.add_argument('--ckpt_file', type=str, default="ckpt_unet_medical_adam-1_600.ckpt",
help='The path of input ckpt file')
parser.add_argument('--air_file', type=str, default="unet_medical_adam-1_600.air", help='The path of output air file')
parser.add_argument('--air_file', type=str, default="unet_medical_adam-1_600", help='The path of output air file')
args = parser.parse_args()
net = UNet(n_channels=1, n_classes=2)

View File

@ -27,7 +27,7 @@ context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
parser = argparse.ArgumentParser(description='VGG16 export')
parser.add_argument('--dataset', type=str, choices=["cifar10", "imagenet2012"], default="cifar10", help='ckpt file')
parser.add_argument('--ckpt_file', type=str, required=True, help='vgg16 ckpt file.')
parser.add_argument('--output_file', type=str, default='vgg16.air', help='vgg16 output air name.')
parser.add_argument('--output_file', type=str, default='vgg16', help='vgg16 output air name.')
parser.add_argument('--file_format', type=str, choices=["AIR", "ONNX", "MINDIR"], default='AIR', help='file format')
args = parser.parse_args()

View File

@ -26,7 +26,7 @@ parser = argparse.ArgumentParser(description='yolov3_darknet53 export')
parser.add_argument("--device_id", type=int, default=0, help="Device id")
parser.add_argument("--batch_size", type=int, default=1, help="batch size")
parser.add_argument("--ckpt_file", type=str, required=True, help="Checkpoint file path.")
parser.add_argument("--file_name", type=str, default="yolov3_darknet53.air", help="output file name.")
parser.add_argument("--file_name", type=str, default="yolov3_darknet53", help="output file name.")
parser.add_argument('--file_format', type=str, choices=["AIR", "ONNX", "MINDIR"], default='AIR', help='file format')
args = parser.parse_args()

View File

@ -27,7 +27,7 @@ parser = argparse.ArgumentParser(description='yolov3_darknet53_quant export')
parser.add_argument("--device_id", type=int, default=0, help="Device id")
parser.add_argument("--batch_size", type=int, default=1, help="batch size")
parser.add_argument("--ckpt_file", type=str, required=True, help="Checkpoint file path.")
parser.add_argument("--file_name", type=str, default="yolov3_darknet53_quant.mindir", help="output file name.")
parser.add_argument("--file_name", type=str, default="yolov3_darknet53_quant", help="output file name.")
parser.add_argument('--file_format', type=str, choices=["AIR", "ONNX", "MINDIR"], default='MINDIR', help='file format')
args = parser.parse_args()

View File

@ -26,7 +26,7 @@ parser = argparse.ArgumentParser(description='yolov3_resnet18 export')
parser.add_argument("--device_id", type=int, default=0, help="Device id")
parser.add_argument("--batch_size", type=int, default=1, help="batch size")
parser.add_argument("--ckpt_file", type=str, required=True, help="Checkpoint file path.")
parser.add_argument("--file_name", type=str, default="yolov3_resnet18.air", help="output file name.")
parser.add_argument("--file_name", type=str, default="yolov3_resnet18", help="output file name.")
parser.add_argument('--file_format', type=str, choices=["AIR", "ONNX", "MINDIR"], default='AIR', help='file format')
args = parser.parse_args()

View File

@ -26,7 +26,7 @@ parser.add_argument("--device_id", type=int, default=0, help="Device id")
parser.add_argument("--batch_size", type=int, default=1, help="batch size")
parser.add_argument("--testing_shape", type=int, default=608, help="test shape")
parser.add_argument("--ckpt_file", type=str, required=True, help="Checkpoint file path.")
parser.add_argument("--file_name", type=str, default="yolov4.air", help="output file name.")
parser.add_argument("--file_name", type=str, default="yolov4", help="output file name.")
parser.add_argument('--file_format', type=str, choices=["AIR", "ONNX", "MINDIR"], default='AIR', help='file format')
args = parser.parse_args()

View File

@ -34,7 +34,7 @@ parser.add_argument('--downstream_task', type=str, choices=["NER", "CLS", "SQUAD
parser.add_argument('--num_class', type=int, default=41, help='The number of class, default is 41.')
parser.add_argument('--label_file_path', type=str, default="", help='label file path, used in clue benchmark.')
parser.add_argument('--ckpt_file', type=str, required=True, help='Bert ckpt file.')
parser.add_argument('--output_file', type=str, default='Bert.air', help='bert output air name.')
parser.add_argument('--output_file', type=str, default='Bert', help='bert output air name.')
parser.add_argument('--file_format', type=str, choices=["AIR", "ONNX", "MINDIR"], default='AIR', help='file format')
args = parser.parse_args()

View File

@ -26,7 +26,7 @@ from src.tinybert_model import BertModelCLS
parser = argparse.ArgumentParser(description='tinybert task distill')
parser.add_argument('--ckpt_file', type=str, required=True, help='tinybert ckpt file.')
parser.add_argument('--output_file', type=str, default='tinybert.air', help='tinybert output air name.')
parser.add_argument('--output_file', type=str, default='tinybert', help='tinybert output air name.')
parser.add_argument('--task_name', type=str, default='SST-2', choices=['SST-2', 'QNLI', 'MNLI'], help='task name')
args = parser.parse_args()

View File

@ -56,5 +56,5 @@ if __name__ == '__main__':
ids = Tensor(np.ones([widedeep_config.eval_batch_size, widedeep_config.field_size]).astype(np.int32))
wts = Tensor(np.ones([widedeep_config.eval_batch_size, widedeep_config.field_size]).astype(np.float32))
input_tensor_list = [ids, wts]
export(net, *input_tensor_list, file_name='wide_and_deep.onnx', file_format="ONNX")
export(net, *input_tensor_list, file_name='wide_and_deep.air', file_format="AIR")
export(net, *input_tensor_list, file_name='wide_and_deep', file_format="ONNX")
export(net, *input_tensor_list, file_name='wide_and_deep', file_format="AIR")

View File

@ -35,7 +35,7 @@ def export_net():
y = np.ones([2, 2]).astype(np.float32)
add = Net()
output = add(Tensor(x), Tensor(y))
export(add, Tensor(x), Tensor(y), file_name='tensor_add.mindir', file_format='MINDIR')
export(add, Tensor(x), Tensor(y), file_name='tensor_add', file_format='MINDIR')
print(x)
print(y)
print(output.asnumpy())

View File

@ -147,7 +147,7 @@ def export_lenet():
# export network
inputs = Tensor(np.ones([1, 1, cfg.image_height, cfg.image_width]), mstype.float32)
export(network, inputs, file_name="lenet_quant.mindir", file_format='MINDIR', quant_mode='AUTO')
export(network, inputs, file_name="lenet_quant", file_format='MINDIR', quant_mode='AUTO')
@pytest.mark.level0

View File

@ -331,7 +331,7 @@ def test_export():
def test_mindir_export():
net = MYNET()
input_data = Tensor(np.random.randint(0, 255, [1, 3, 224, 224]).astype(np.float32))
export(net, input_data, file_name="./me_binary_export.mindir", file_format="MINDIR")
export(net, input_data, file_name="./me_binary_export", file_format="MINDIR")
class PrintNet(nn.Cell):