forked from OSSInnovation/mindspore
add argmax npu for net enhance update
This commit is contained in:
parent
34f5141bf2
commit
9ebd2dd044
|
@ -0,0 +1,76 @@
|
|||
/**
|
||||
* Copyright 2021 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#include "src/runtime/kernel/npu/argmax_npu.h"
|
||||
#include <memory>
|
||||
#include "include/graph/op/all_ops.h"
|
||||
#include "src/kernel_registry.h"
|
||||
#include "src/runtime/agent/npu/npu_converter_utils.h"
|
||||
|
||||
using mindspore::kernel::KERNEL_ARCH::kNPU;
|
||||
using mindspore::lite::KernelRegistrar;
|
||||
using mindspore::schema::PrimitiveType_ArgMaxFusion;
|
||||
|
||||
namespace mindspore::kernel {
|
||||
int ArgmaxNPUKernel::IsSupport(const std::vector<lite::Tensor *> &inputs, const std::vector<lite::Tensor *> &outputs,
|
||||
OpParameter *opParameter) {
|
||||
return RET_OK;
|
||||
}
|
||||
|
||||
int ArgmaxNPUKernel::SetNPUInputs(const std::vector<lite::Tensor *> &inputs, const std::vector<lite::Tensor *> &outputs,
|
||||
const std::vector<ge::Operator *> &npu_inputs) {
|
||||
op_ = new (std::nothrow) hiai::op::ArgMaxExt2(name_);
|
||||
if (op_ == nullptr) {
|
||||
MS_LOG(ERROR) << "New argmax npu operator for " << name_ << " failed.";
|
||||
return RET_ERROR;
|
||||
}
|
||||
op_->set_input_x(*npu_inputs[0]);
|
||||
auto axis_const_ = new (std::nothrow) hiai::op::Const(name_ + "_axis");
|
||||
if (axis_const_ == nullptr) {
|
||||
MS_LOG(ERROR) << "New weight const failed.";
|
||||
return RET_ERROR;
|
||||
}
|
||||
ge::TensorDesc tensor_desc(ge::Shape({1}), ge::FORMAT_NCHW, ge::DT_INT32);
|
||||
std::shared_ptr<ge::Tensor> ge_tensor =
|
||||
std::make_shared<ge::Tensor>(tensor_desc, reinterpret_cast<const uint8_t *>(&(param_->axis_)), sizeof(int));
|
||||
if (ge_tensor == nullptr) {
|
||||
MS_LOG(ERROR) << "new ge_tensor failed.";
|
||||
return RET_ERROR;
|
||||
}
|
||||
axis_const_->set_attr_value(ge_tensor);
|
||||
op_->set_input_axis(*axis_const_);
|
||||
op_->set_attr_keep_dims(param_->keep_dims_);
|
||||
op_->set_attr_outmaxval(param_->out_value_);
|
||||
op_->set_attr_topk(param_->topk_);
|
||||
|
||||
return RET_OK;
|
||||
}
|
||||
|
||||
ge::Operator *mindspore::kernel::ArgmaxNPUKernel::GetNPUOp() { return op_; }
|
||||
|
||||
ArgmaxNPUKernel::~ArgmaxNPUKernel() {
|
||||
if (op_ != nullptr) {
|
||||
delete op_;
|
||||
op_ = nullptr;
|
||||
}
|
||||
if (axis_const_ != nullptr) {
|
||||
delete axis_const_;
|
||||
axis_const_ = nullptr;
|
||||
}
|
||||
}
|
||||
|
||||
REG_KERNEL(kNPU, kNumberTypeFloat32, PrimitiveType_ArgMaxFusion, NPUKernelCreator<ArgmaxNPUKernel>)
|
||||
} // namespace mindspore::kernel
|
|
@ -0,0 +1,48 @@
|
|||
/**
|
||||
* Copyright 2021 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#ifndef MINDSPORE_LITE_SRC_RUNTIME_KERNEL_NPU_ARGMAX_NPU_H_
|
||||
#define MINDSPORE_LITE_SRC_RUNTIME_KERNEL_NPU_ARGMAX_NPU_H_
|
||||
|
||||
#include <vector>
|
||||
#include "include/graph/op/all_ops.h"
|
||||
#include "include/graph/compatible/all_ops.h"
|
||||
#include "src/runtime/kernel/npu/npu_kernel.h"
|
||||
#include "nnacl/arg_min_max_parameter.h"
|
||||
|
||||
namespace mindspore::kernel {
|
||||
class ArgmaxNPUKernel : public NPUKernel {
|
||||
public:
|
||||
ArgmaxNPUKernel(OpParameter *parameter, const std::vector<lite::Tensor *> &inputs,
|
||||
const std::vector<lite::Tensor *> &outputs, const lite::InnerContext *ctx)
|
||||
: NPUKernel(parameter, inputs, outputs, ctx) {
|
||||
param_ = reinterpret_cast<ArgMinMaxParameter *>(parameter);
|
||||
}
|
||||
~ArgmaxNPUKernel() override;
|
||||
|
||||
int IsSupport(const std::vector<lite::Tensor *> &inputs, const std::vector<lite::Tensor *> &outputs,
|
||||
OpParameter *opParameter) override;
|
||||
int SetNPUInputs(const std::vector<lite::Tensor *> &inputs, const std::vector<lite::Tensor *> &outputs,
|
||||
const std::vector<ge::Operator *> &npu_inputs) override;
|
||||
ge::Operator *GetNPUOp() override;
|
||||
|
||||
private:
|
||||
hiai::op::ArgMaxExt2 *op_ = nullptr;
|
||||
hiai::op::Const *axis_const_ = nullptr;
|
||||
ArgMinMaxParameter *param_;
|
||||
};
|
||||
} // namespace mindspore::kernel
|
||||
#endif // MINDSPORE_LITE_SRC_RUNTIME_KERNEL_NPU_ARGMAX_NPU_H_
|
|
@ -26,10 +26,17 @@ using mindspore::schema::PrimitiveType_Reshape;
|
|||
namespace mindspore::kernel {
|
||||
int ReshapeNPUKernel::IsSupport(const std::vector<lite::Tensor *> &inputs, const std::vector<lite::Tensor *> &outputs,
|
||||
OpParameter *opParameter) {
|
||||
if (reshape_param_->shape_dim_ == 0) {
|
||||
MS_LOG(ERROR) << "Npu reshape op only supports const shape.";
|
||||
if (inputs.size() == 1 && reshape_param_->shape_dim_ == 0) {
|
||||
MS_LOG(WARNING) << "Npu reshape op only supports const shape.";
|
||||
return RET_ERROR;
|
||||
}
|
||||
if (inputs.size() > 1) {
|
||||
auto shape_tensor = inputs.at(1);
|
||||
if (!shape_tensor->IsConst()) {
|
||||
MS_LOG(WARNING) << "Npu reshape op only supports const shape.";
|
||||
return RET_ERROR;
|
||||
}
|
||||
}
|
||||
return RET_OK;
|
||||
}
|
||||
|
||||
|
|
|
@ -81,3 +81,4 @@ posenet_mobilenet_float_075_1_default_1.tflite 395
|
|||
nasnet_mobile.tflite 1
|
||||
ml_video_edit_art_generate.onnx 0.5
|
||||
ml_video_edit_art_transfer.onnx 3 3
|
||||
ml_video_edit_enhance_update.onnx 0.5
|
||||
|
|
|
@ -72,3 +72,4 @@ mtk_face_features_v2.onnx;1,256,192,3
|
|||
mtk_face_recognition_v3.onnx
|
||||
mtk_face_recognition_v2.onnx
|
||||
ml_2012_ocr_detection.onnx
|
||||
ml_video_edit_enhance_update.onnx
|
||||
|
|
|
@ -246,7 +246,7 @@ void ConvTransformFusion::CalNewWeightTensor(const CNodePtr &conv_node, const te
|
|||
int kernel_num, const float *trans_scale) const {
|
||||
MS_ASSERT(weight_data != nullptr);
|
||||
MS_ASSERT(trans_scale != nullptr);
|
||||
if (weight_tensor->shape().size() != 4) {
|
||||
if (weight_tensor->shape().size() > 4) {
|
||||
MS_LOG(ERROR) << "weight tensor shape error";
|
||||
return;
|
||||
}
|
||||
|
|
Loading…
Reference in New Issue