forked from OSSInnovation/mindspore
update document of NMSWithMask
This commit is contained in:
parent
ddf75da542
commit
9d2de1596f
|
@ -3747,8 +3747,14 @@ class Asin(PrimitiveWithInfer):
|
|||
|
||||
|
||||
class NMSWithMask(PrimitiveWithInfer):
|
||||
"""
|
||||
Selects some bounding boxes in descending order of score.
|
||||
r"""
|
||||
When object detection problem is performed in the computer vision field, object detection algorithm generates
|
||||
a plurality of bounding boxes. Selects some bounding boxes in descending order of score. Use the box with the
|
||||
highest score calculate the overlap between other boxes and the current box, and delete the box based on a
|
||||
certain threshold(IOU). The IOU is as follows,
|
||||
|
||||
.. math::
|
||||
\text{IOU} = \frac{\text{Area of Overlap}}{\text{Area of Union}}
|
||||
|
||||
Args:
|
||||
iou_threshold (float): Specifies the threshold of overlap boxes with respect to
|
||||
|
@ -3781,7 +3787,7 @@ class NMSWithMask(PrimitiveWithInfer):
|
|||
|
||||
Examples:
|
||||
>>> bbox = np.array([[100.0, 100.0, 50.0, 68.0, 0.63], [150.0, 75.0, 165.0, 115.0, 0.55],
|
||||
[12.0, 190.0, 288.0, 200.0, 0.9], [28.0, 130.0, 106.0, 172.0, 0.3]])
|
||||
... [12.0, 190.0, 288.0, 200.0, 0.9], [28.0, 130.0, 106.0, 172.0, 0.3]])
|
||||
>>> bbox[:, 2] += bbox[:, 0]
|
||||
>>> bbox[:, 3] += bbox[:, 1]
|
||||
>>> inputs = Tensor(bbox, mindspore.float32)
|
||||
|
|
|
@ -4439,7 +4439,7 @@ class FusedSparseAdam(PrimitiveWithInfer):
|
|||
>>> epsilon = Tensor(1e-8, mstype.float32)
|
||||
>>> gradient = Tensor(np.random.rand(2, 1, 2), mstype.float32)
|
||||
>>> indices = Tensor([0, 1], mstype.int32)
|
||||
>>> net(beta1_power, beta2_power, lr, beta1, beta2, epsilon, gradient, indices)
|
||||
>>> output = net(beta1_power, beta2_power, lr, beta1, beta2, epsilon, gradient, indices)
|
||||
>>> print(net.var.asnumpy())
|
||||
[[[0.9996963 0.9996977 ]]
|
||||
[[0.99970144 0.9996992 ]]
|
||||
|
@ -4587,7 +4587,7 @@ class FusedSparseLazyAdam(PrimitiveWithInfer):
|
|||
>>> epsilon = Tensor(1e-8, mstype.float32)
|
||||
>>> gradient = Tensor(np.random.rand(2, 1, 2), mstype.float32)
|
||||
>>> indices = Tensor([0, 1], mstype.int32)
|
||||
>>> net(beta1_power, beta2_power, lr, beta1, beta2, epsilon, gradient, indices)
|
||||
>>> output = net(beta1_power, beta2_power, lr, beta1, beta2, epsilon, gradient, indices)
|
||||
>>> print(net.var.asnumpy())
|
||||
[[[0.9996866 0.9997078]]
|
||||
[[0.9997037 0.9996869]]
|
||||
|
|
|
@ -270,10 +270,10 @@ class PrimitiveWithCheck(Primitive):
|
|||
... pass
|
||||
... def check_shape(self, input_x):
|
||||
... validator.check_int(len(input_x), 1, Rel.GE, 'input_x rank', self.name)
|
||||
>>>
|
||||
...
|
||||
... def check_dtype(self, input_x):
|
||||
... validator.check_subclass("input_x", input_x, mstype.tensor, self.name)
|
||||
>>>
|
||||
...
|
||||
>>> # init a Primitive obj
|
||||
>>> add = Flatten()
|
||||
"""
|
||||
|
@ -348,13 +348,13 @@ class PrimitiveWithInfer(Primitive):
|
|||
... @prim_attr_register
|
||||
... def __init__(self):
|
||||
... pass
|
||||
>>>
|
||||
...
|
||||
... def infer_shape(self, x, y):
|
||||
... return x # output shape same as first input 'x'
|
||||
>>>
|
||||
...
|
||||
... def infer_dtype(self, x, y):
|
||||
... return x # output type same as first input 'x'
|
||||
>>>
|
||||
...
|
||||
>>> # init a Primitive obj
|
||||
>>> add = Add()
|
||||
"""
|
||||
|
|
Loading…
Reference in New Issue