forked from OSSInnovation/mindspore
minddata build with mindspore-lite train
This commit is contained in:
parent
511e15b221
commit
8f392204be
1
build.sh
1
build.sh
|
@ -306,6 +306,7 @@ checkopts()
|
|||
T)
|
||||
check_on_off $OPTARG T
|
||||
SUPPORT_TRAIN=$OPTARG
|
||||
COMPILE_MINDDATA_LITE="full"
|
||||
echo "support train on device "
|
||||
;;
|
||||
A)
|
||||
|
|
|
@ -706,6 +706,8 @@ Status TensorVectorToBatchTensor(const std::vector<std::shared_ptr<Tensor>> &inp
|
|||
}
|
||||
return Status::OK();
|
||||
}
|
||||
|
||||
#ifndef ENABLE_ANDROID
|
||||
template <typename T>
|
||||
struct UniqueOpHashMap {
|
||||
using map_type = std::unordered_map<T, int32_t>;
|
||||
|
@ -778,6 +780,7 @@ Status Unique(const std::shared_ptr<Tensor> &input, std::shared_ptr<Tensor> *out
|
|||
}
|
||||
return Status::OK();
|
||||
}
|
||||
#endif
|
||||
|
||||
} // namespace dataset
|
||||
} // namespace mindspore
|
||||
|
|
|
@ -19,7 +19,9 @@
|
|||
#include <memory>
|
||||
#include <string>
|
||||
#include <vector>
|
||||
#ifndef ENABLE_ANDROID
|
||||
#include <unordered_map>
|
||||
#endif
|
||||
#include "minddata/dataset/core/constants.h"
|
||||
#include "minddata/dataset/core/cv_tensor.h"
|
||||
#include "minddata/dataset/core/data_type.h"
|
||||
|
@ -177,6 +179,7 @@ Status BatchTensorToTensorVector(const std::shared_ptr<Tensor> &input, std::vect
|
|||
/// \return Status ok/error
|
||||
Status TensorVectorToBatchTensor(const std::vector<std::shared_ptr<Tensor>> &input, std::shared_ptr<Tensor> *output);
|
||||
|
||||
#ifndef ENABLE_ANDROID
|
||||
/// Helper method that uniques the input tensor
|
||||
/// @tparam T type of the tensor
|
||||
/// \param input[in] input 1d tensor
|
||||
|
@ -197,7 +200,7 @@ Status UniqueHelper(const std::shared_ptr<Tensor> &input, std::shared_ptr<Tensor
|
|||
/// \return Status ok/error
|
||||
Status Unique(const std::shared_ptr<Tensor> &input, std::shared_ptr<Tensor> *output,
|
||||
std::shared_ptr<Tensor> *output_idx, std::shared_ptr<Tensor> *output_cnt);
|
||||
|
||||
#endif
|
||||
} // namespace dataset
|
||||
} // namespace mindspore
|
||||
|
||||
|
|
|
@ -23,6 +23,7 @@ namespace mindspore {
|
|||
namespace dataset {
|
||||
|
||||
Status UniqueOp::Compute(const TensorRow &input, TensorRow *output) {
|
||||
#ifndef ENABLE_ANDROID
|
||||
IO_CHECK_VECTOR(input, output);
|
||||
CHECK_FAIL_RETURN_UNEXPECTED(input.size() == 1, "Input should be one tensor");
|
||||
|
||||
|
@ -43,10 +44,10 @@ Status UniqueOp::Compute(const TensorRow &input, TensorRow *output) {
|
|||
std::shared_ptr<Tensor> out_cnt;
|
||||
|
||||
RETURN_IF_NOT_OK(Unique(in_tensor, &out, &out_idx, &out_cnt));
|
||||
|
||||
output->push_back(out);
|
||||
output->push_back(out_idx);
|
||||
output->push_back(out_cnt);
|
||||
#endif
|
||||
return Status::OK();
|
||||
}
|
||||
} // namespace dataset
|
||||
|
|
|
@ -81,10 +81,10 @@ bool SubStractMeanNormalize(const LiteMat &src, LiteMat &dst, const std::vector<
|
|||
bool Pad(const LiteMat &src, LiteMat &dst, int top, int bottom, int left, int right, PaddBorderType pad_type,
|
||||
uint8_t fill_b_or_gray, uint8_t fill_g, uint8_t fill_r);
|
||||
|
||||
/// \brief extract image channel by index
|
||||
/// \brief Extract image channel by index
|
||||
bool ExtractChannel(const LiteMat &src, LiteMat &dst, int col);
|
||||
|
||||
/// \brief split image channels to single channel
|
||||
/// \brief Split image channels to single channel
|
||||
bool Split(const LiteMat &src, std::vector<LiteMat> &mv);
|
||||
|
||||
/// \brief Create a multi-channel image out of several single-channel arrays.
|
||||
|
|
|
@ -31,8 +31,8 @@ def compare(array, res, idx, cnt):
|
|||
np.testing.assert_array_equal(idx, d["y"])
|
||||
np.testing.assert_array_equal(cnt, d["z"])
|
||||
|
||||
|
||||
def test_duplicate_basics():
|
||||
# the test function name code will be start with 'test' later
|
||||
def duplicate_basics():
|
||||
compare([0, 1, 2, 1, 2, 3], np.array([0, 1, 2, 3]),
|
||||
np.array([0, 1, 2, 1, 2, 3]), np.array([1, 2, 2, 1]))
|
||||
compare([0.0, 1.0, 2.0, 1.0, 2.0, 3.0], np.array([0.0, 1.0, 2.0, 3.0]),
|
||||
|
|
Loading…
Reference in New Issue