forked from OSSInnovation/mindspore
!13522 Change initializer of embedding table in bert.
From: @c_34 Reviewed-by: @wuxuejian,@linqingke Signed-off-by: @linqingke
This commit is contained in:
commit
255d8e50da
|
@ -317,8 +317,9 @@ You can train your own model based on either pretrained classification model or
|
|||
|
||||
1. Convert your own dataset to COCO or VOC style. Otherwise you have to add your own data preprocess code.
|
||||
2. Change config.py according to your own dataset, especially the `num_classes`.
|
||||
3. Set argument `filter_weight` to `True` while calling `train.py`, this will filter the final detection box weight from the pretrained model.
|
||||
4. Build your own bash scripts using new config and arguments for further convenient.
|
||||
3. Prepare a pretrained checkpoint. You can load the pretrained checkpoint by `pre_trained` argument. Transfer training means a new training job, so just keep `pre_trained_epoch_size` same as default value `0`.
|
||||
4. Set argument `filter_weight` to `True` while calling `train.py`, this will filter the final detection box weight from the pretrained model.
|
||||
5. Build your own bash scripts using new config and arguments for further convenient.
|
||||
|
||||
### [Evaluation Process](#contents)
|
||||
|
||||
|
|
|
@ -599,7 +599,7 @@ class BertTrainAccumulationAllReducePostWithLossScaleCell(nn.Cell):
|
|||
scaling_sens = sens
|
||||
# alloc status and clear should be right before gradoperation
|
||||
init = self.alloc_status()
|
||||
init = F.depend(loss, init)
|
||||
init = F.depend(init, loss)
|
||||
clear_status = self.clear_status(init)
|
||||
scaling_sens = F.depend(scaling_sens, clear_status)
|
||||
# update accumulation parameters
|
||||
|
|
|
@ -804,7 +804,8 @@ class BertModel(nn.Cell):
|
|||
self.bert_embedding_lookup = nn.Embedding(
|
||||
vocab_size=config.vocab_size,
|
||||
embedding_size=self.embedding_size,
|
||||
use_one_hot=use_one_hot_embeddings)
|
||||
use_one_hot=use_one_hot_embeddings,
|
||||
embedding_table=TruncatedNormal(config.initializer_range))
|
||||
|
||||
self.bert_embedding_postprocessor = EmbeddingPostprocessor(
|
||||
embedding_size=self.embedding_size,
|
||||
|
|
|
@ -36,9 +36,9 @@ cfg = edict({
|
|||
'warmup_steps': 10000,
|
||||
}),
|
||||
'Lamb': edict({
|
||||
'learning_rate': 3e-5,
|
||||
'learning_rate': 3e-4,
|
||||
'end_learning_rate': 0.0,
|
||||
'power': 5.0,
|
||||
'power': 2.0,
|
||||
'warmup_steps': 10000,
|
||||
'weight_decay': 0.01,
|
||||
'decay_filter': lambda x: 'layernorm' not in x.name.lower() and 'bias' not in x.name.lower(),
|
||||
|
|
Loading…
Reference in New Issue