delete PK40X256VLQ100 branch.

git-svn-id: https://rt-thread.googlecode.com/svn/trunk@2081 bbd45198-f89e-11dd-88c7-29a3b14d5316
This commit is contained in:
bernard.xiong@gmail.com 2012-04-16 05:04:30 +00:00
parent ffbbf82474
commit 090553f768
25 changed files with 0 additions and 15591 deletions

View File

@ -1,98 +0,0 @@
/*
* File : app.c
* This file is part of RT-Thread RTOS
* COPYRIGHT (C) 2006, RT-Thread Development Team
*
* The license and distribution terms for this file may be
* found in the file LICENSE in this distribution or at
* http://www.rt-thread.org/license/LICENSE
*
* Change Logs:
* Date Author Notes
* 2011-08-06 Magicoe first release
*
*/
/**
* @addtogroup PK40X256LVQ100
*/
/*@{*/
#include <rtthread.h>
#include "tc_comm.h"
#include "SLCD_Driver.h"
/*
* This is an example for delay thread
*/
static struct rt_thread thread;
static char thread_stack[THREAD_STACK_SIZE];
static void thread_entry(void* parameter)
{
rt_tick_t tick;
rt_uint8_t *dispchar[4] = {"INITED",
"TICK10",
"TICK15",
" EXIT "};
rt_kprintf("thread inited ok\n");
SLCD_PrintString(dispchar[0], 0);
tick = rt_tick_get();
rt_kprintf("thread tick %d\n", tick);
rt_kprintf("thread delay 10 tick\n");
rt_thread_delay(1000);
if (rt_tick_get() - tick > 1000)
{
tc_done(TC_STAT_FAILED);
return;
}
SLCD_PrintString(dispchar[1], 0);
tick = rt_tick_get();
rt_kprintf("thread delay 15 tick\n");
rt_thread_delay(1500);
if (rt_tick_get() - tick > 1500)
{
tc_done(TC_STAT_FAILED);
return;
}
SLCD_PrintString(dispchar[2], 0);
rt_thread_delay(1000);
rt_kprintf("thread exit\n");
SLCD_PrintString(dispchar[3], 0);
tc_done(TC_STAT_PASSED);
}
rt_err_t thread_delay_init()
{
rt_err_t result;
result = rt_thread_init(&thread,
"test",
thread_entry, RT_NULL,
&thread_stack[0], sizeof(thread_stack),
THREAD_PRIORITY, 10);
if (result == RT_EOK)
rt_thread_startup(&thread);
else
tc_stat(TC_STAT_END | TC_STAT_FAILED);
return result;
}
int rt_application_init()
{
thread_delay_init();
return 0;
}
/*@}*/

View File

@ -1,73 +0,0 @@
/*
* File : board.c
* This file is part of RT-Thread RTOS
* COPYRIGHT (C) 2006, RT-Thread Develop Team
*
* The license and distribution terms for this file may be
* found in the file LICENSE in this distribution or at
* http://www.rt-thread.org/license/LICENSE
*
* Change Logs:
* Date Author Notes
* 2010-01-25 Bernard first version
* 2011-08-06 Magicoe PK40X256VLQ100 version
*/
#include <rtthread.h>
#include <rthw.h>
#include "board.h"
#include "uart.h"
#include "PK40X256VLQ100.h"
#include "core_cm4.h"
#include "SLCD_Driver.h"
/**
* @addtogroup PK40X256VLQ100
*/
/*@{*/
/**
* This is the timer interrupt service routine.
*/
void rt_hw_timer_handler()
{
/* enter interrupt */
rt_interrupt_enter();
rt_tick_increase();
/* leave interrupt */
rt_interrupt_leave();
}
/**
* This function will initial sam7s64 board.
*/
void rt_hw_board_init()
{
rt_uint8_t *dispchar = {"RTINIT"};
/* Get Core Clock Frequency */
SystemCoreClockUpdate(); /* Get Core Clock Frequency */
/* init systick */
SysTick_Config( SystemCoreClock/1000 ); /* Generate interrupt each 1 ms */
SLCD_Configuration();
SLCD_SegmentsAllOff ();
SLCD_PrintString(dispchar, 0);
/* set pend exception priority */
// NVIC_SetPriority(PendSV_IRQn, (1<<__NVIC_PRIO_BITS) - 1);
#ifdef RT_USING_UART
/* init hardware UART device */
rt_hw_uart_init();
#endif
#ifdef RT_USING_CONSOLE
/* set console device */
rt_console_set_device("uart0");
#endif
SLCD_PrintString(dispchar, 0);
}
/*@}*/

View File

@ -1,20 +0,0 @@
/*
* File : board.h
* This file is part of RT-Thread RTOS
* COPYRIGHT (C) 2006, RT-Thread Develop Team
*
* The license and distribution terms for this file may be
* found in the file LICENSE in this distribution or at
* http://www.rt-thread.org/license/LICENSE
*
* Change Logs:
* Date Author Notes
* 2010-01-25 Bernard first version
*/
#ifndef __BOARD_H__
#define __BOARD_H__
void rt_hw_board_init(void);
#endif

View File

@ -1,475 +0,0 @@
const int8_t Font_35x8[] = {
/* Space ' ' */
0,0,0,0,0,
0,0,0,0,0,
0,0,0,0,0,
0,0,0,0,0,
0,0,0,0,0,
0,0,0,0,0,
0,0,0,0,0,
/* '!' */
0,0,1,0,0,
0,0,1,0,0,
0,0,1,0,0,
0,0,1,0,0,
0,0,0,0,0,
0,0,0,0,0,
0,0,1,0,0,
/* '"' not defined */
0,0,0,0,0,
0,0,0,0,0,
0,0,0,0,0,
0,0,0,0,0,
0,0,0,0,0,
0,0,0,0,0,
0,0,0,0,0,
/* '#' not defined */
0,0,0,0,0,
0,0,0,0,0,
0,0,0,0,0,
0,0,0,0,0,
0,0,0,0,0,
0,0,0,0,0,
0,0,0,0,0,
/* '$' not defined */
0,0,0,0,0,
0,0,0,0,0,
0,0,0,0,0,
0,0,0,0,0,
0,0,0,0,0,
0,0,0,0,0,
0,0,0,0,0,
/* '%' not defined */
0,0,0,0,0,
0,0,0,0,0,
0,0,0,0,0,
0,0,0,0,0,
0,0,0,0,0,
0,0,0,0,0,
0,0,0,0,0,
/* '&' not defined */
0,0,0,0,0,
0,0,0,0,0,
0,0,0,0,0,
0,0,0,0,0,
0,0,0,0,0,
0,0,0,0,0,
0,0,0,0,0,
/* ''' not defined */
0,0,0,0,0,
0,0,0,0,0,
0,0,0,0,0,
0,0,0,0,0,
0,0,0,0,0,
0,0,0,0,0,
0,0,0,0,0,
/* '(' not defined */
0,0,0,0,0,
0,0,0,0,0,
0,0,0,0,0,
0,0,0,0,0,
0,0,0,0,0,
0,0,0,0,0,
0,0,0,0,0,
/* ')' not defined */
0,0,0,0,0,
0,0,0,0,0,
0,0,0,0,0,
0,0,0,0,0,
0,0,0,0,0,
0,0,0,0,0,
0,0,0,0,0,
/* '*' not defined */
0,0,0,0,0,
0,0,0,0,0,
0,0,0,0,0,
0,0,0,0,0,
0,0,0,0,0,
0,0,0,0,0,
0,0,0,0,0,
/* '+' not defined */
0,0,0,0,0,
0,0,0,0,0,
0,0,0,0,0,
0,0,0,0,0,
0,0,0,0,0,
0,0,0,0,0,
0,0,0,0,0,
/* ',' not defined */
0,0,0,0,0,
0,0,0,0,0,
0,0,0,0,0,
0,0,0,0,0,
0,0,0,0,0,
0,0,0,0,0,
0,0,0,0,0,
/* '-' not defined */
0,0,0,0,0,
0,0,0,0,0,
0,0,0,0,0,
0,0,0,0,0,
0,0,0,0,0,
0,0,0,0,0,
0,0,0,0,0,
/* '.' not defined */
0,0,0,0,0,
0,0,0,0,0,
0,0,0,0,0,
0,0,0,0,0,
0,0,0,0,0,
0,0,0,0,0,
0,0,0,0,0,
/* '/' not defined */
0,0,0,0,0,
0,0,0,0,0,
0,0,0,0,0,
0,0,0,0,0,
0,0,0,0,0,
0,0,0,0,0,
0,0,0,0,0,
/* '0' */
0,1,1,1,0,
1,0,0,0,1,
1,0,0,1,1,
1,0,1,0,1,
1,1,0,0,1,
1,0,0,0,1,
0,1,1,1,0,
/* '1' */
0,0,1,0,0,
0,1,1,0,0,
0,0,1,0,0,
0,0,1,0,0,
0,0,1,0,0,
0,0,1,0,0,
0,1,1,1,0,
/* '2' */
0,1,1,1,0,
1,0,0,0,1,
0,0,0,0,1,
0,0,0,1,0,
0,0,1,0,0,
0,1,0,0,0,
1,1,1,1,1,
/* '3' */
1,1,1,1,1,
0,0,0,1,0,
0,0,1,0,0,
0,0,0,1,0,
0,0,0,0,1,
1,0,0,0,1,
0,1,1,1,0,
/* '4' */
0,0,0,1,0,
0,0,1,1,0,
0,1,0,1,0,
1,0,0,1,0,
1,1,1,1,1,
0,0,0,1,0,
0,0,0,1,0,
/* '5' */
1,1,1,1,1,
1,0,0,0,0,
1,1,1,1,0,
0,0,0,0,1,
0,0,0,0,1,
1,0,0,0,1,
0,1,1,1,0,
/* '6' */
0,0,1,1,0,
0,1,0,0,0,
1,0,0,0,0,
1,1,1,1,0,
1,0,0,0,1,
1,0,0,0,1,
0,1,1,1,0,
/* '7' */
1,1,1,1,1,
0,0,0,0,1,
0,0,0,1,0,
0,0,1,0,0,
0,1,0,0,0,
0,1,0,0,0,
0,1,0,0,0,
/* '8' */
0,1,1,1,0,
1,0,0,0,1,
1,0,0,0,1,
0,1,1,1,0,
1,0,0,0,1,
1,0,0,0,1,
0,1,1,1,0,
/* '9' */
0,1,1,1,0,
1,0,0,0,1,
1,0,0,0,1,
0,1,1,1,1,
0,0,0,0,1,
0,0,0,1,0,
0,1,1,0,0,
/* ':' */
0,0,0,0,0,
0,0,1,0,0,
0,0,1,0,0,
0,0,0,0,0,
0,0,1,0,0,
0,0,1,0,0,
0,0,0,0,0,
/* ';' not defined */
0,0,0,0,0,
0,0,0,0,0,
0,0,0,0,0,
0,0,0,0,0,
0,0,0,0,0,
0,0,0,0,0,
0,0,0,0,0,
/* '<' */
0,0,0,0,1,
0,0,0,1,0,
0,0,1,0,0,
0,1,0,0,0,
0,0,1,0,0,
0,0,0,1,0,
0,0,0,0,1,
/* '=' not defined */
0,0,0,0,0,
0,0,0,0,0,
0,1,1,1,0,
0,0,0,0,0,
0,0,0,0,0,
0,0,0,0,0,
0,0,0,0,0,
/* '>' */
0,1,0,0,0,
0,0,1,0,0,
0,0,0,1,0,
0,0,0,0,1,
0,0,0,1,0,
0,0,1,0,0,
0,1,0,0,0,
/* '?'not defined */
0,0,0,0,0,
0,0,0,0,0,
0,0,0,0,0,
0,0,0,0,0,
0,0,0,0,0,
0,0,0,0,0,
0,0,0,0,0,
/* '@' not defined */
0,0,0,0,0,
0,0,0,0,0,
0,0,0,0,0,
0,0,0,0,0,
0,0,0,0,0,
0,0,0,0,0,
0,0,0,0,0,
/* 'A' */
0,1,1,1,0,
1,0,0,0,1,
1,0,0,0,1,
1,0,0,0,1,
1,1,1,1,1,
1,0,0,0,1,
1,0,0,0,1,
/* 'B' */
1,1,1,1,0,
1,0,0,0,1,
1,0,0,0,1,
1,1,1,1,0,
1,0,0,0,1,
1,0,0,0,1,
1,1,1,1,0,
/* 'C' */
0,1,1,1,0,
1,0,0,0,1,
1,0,0,0,0,
1,0,0,0,0,
1,0,0,0,0,
1,0,0,0,1,
0,1,1,1,0,
/* 'D' */
1,1,1,0,0,
1,0,0,1,0,
1,0,0,0,1,
1,0,0,0,1,
1,0,0,0,1,
1,0,0,1,0,
1,1,1,0,0,
/* 'E' */
1,1,1,1,1,
1,0,0,0,0,
1,0,0,0,0,
1,1,1,1,0,
1,0,0,0,0,
1,0,0,0,0,
1,1,1,1,1,
/* 'F' */
1,1,1,1,1,
1,0,0,0,0,
1,0,0,0,0,
1,1,1,1,0,
1,0,0,0,0,
1,0,0,0,0,
1,0,0,0,0,
/* 'G' */
0,1,1,1,0,
1,0,0,0,1,
1,0,0,0,0,
1,0,1,1,1,
1,0,0,0,1,
1,0,0,0,1,
0,1,1,1,1,
/* 'H' */
1,0,0,0,1,
1,0,0,0,1,
1,0,0,0,1,
1,1,1,1,1,
1,0,0,0,1,
1,0,0,0,1,
1,0,0,0,1,
/* 'I' */
0,1,1,1,0,
0,0,1,0,0,
0,0,1,0,0,
0,0,1,0,0,
0,0,1,0,0,
0,0,1,0,0,
0,1,1,1,0,
/* 'J' */
0,0,1,1,1,
0,0,0,1,0,
0,0,0,1,0,
0,0,0,1,0,
0,0,0,1,0,
1,0,0,1,0,
0,1,1,0,0,
/* 'K' */
1,0,0,0,1,
1,0,0,1,0,
1,0,1,0,0,
1,1,0,0,0,
1,0,1,0,0,
1,0,0,1,0,
1,0,0,0,1,
/* 'L' */
1,0,0,0,0,
1,0,0,0,0,
1,0,0,0,0,
1,0,0,0,0,
1,0,0,0,0,
1,0,0,0,0,
1,1,1,1,1,
/* 'M' */
1,0,0,0,1,
1,1,0,1,1,
1,0,1,0,1,
1,0,1,0,1,
1,0,0,0,1,
1,0,0,0,1,
1,0,0,0,1,
/* 'N' */
1,0,0,0,1,
1,0,0,0,1,
1,1,0,0,1,
1,0,1,0,1,
1,0,0,1,1,
1,0,0,0,1,
1,0,0,0,1,
/* 'O' */
0,1,1,1,0,
1,0,0,0,1,
1,0,0,0,1,
1,0,0,0,1,
1,0,0,0,1,
1,0,0,0,1,
0,1,1,1,0,
/* 'P' */
1,1,1,1,0,
1,0,0,0,1,
1,0,0,0,1,
1,1,1,1,0,
1,0,0,0,0,
1,0,0,0,0,
1,0,0,0,0,
/* 'Q' */
0,1,1,1,0,
1,0,0,0,1,
1,0,0,0,1,
1,0,0,0,1,
1,0,1,0,1,
1,0,0,1,0,
0,1,1,0,1,
/* 'R' */
1,1,1,1,0,
1,0,0,0,1,
1,0,0,0,1,
1,1,1,1,0,
1,0,1,0,0,
1,0,0,1,0,
1,0,0,0,1,
/* 'S' */
0,1,1,1,1,
1,0,0,0,0,
1,0,0,0,0,
0,1,1,1,0,
0,0,0,0,1,
0,0,0,0,1,
1,1,1,1,0,
/* 'T' */
1,1,1,1,1,
0,0,1,0,0,
0,0,1,0,0,
0,0,1,0,0,
0,0,1,0,0,
0,0,1,0,0,
0,0,1,0,0,
/* 'U' */
1,0,0,0,1,
1,0,0,0,1,
1,0,0,0,1,
1,0,0,0,1,
1,0,0,0,1,
1,0,0,0,1,
0,1,1,1,0,
/* 'V' */
1,0,0,0,1,
1,0,0,0,1,
1,0,0,0,1,
1,0,0,0,1,
1,0,0,0,1,
0,1,0,1,0,
0,0,1,0,0,
/* 'W' */
1,0,0,0,1,
1,0,0,0,1,
1,0,0,0,1,
1,0,1,0,1,
1,0,1,0,1,
1,0,1,0,1,
0,1,0,1,0,
/* 'X' */
1,0,0,0,1,
1,0,0,0,1,
0,1,0,1,0,
0,0,1,0,0,
0,1,0,1,0,
1,0,0,0,1,
1,0,0,0,1,
/* 'Y' */
1,0,0,0,1,
1,0,0,0,1,
1,0,0,0,1,
0,1,0,1,0,
0,0,1,0,0,
0,0,1,0,0,
0,0,1,0,0,
/* 'Z' */
1,1,1,1,1,
0,0,0,0,1,
0,0,0,1,0,
0,0,1,0,0,
0,1,0,0,0,
1,0,0,0,0,
1,1,1,1,1,
};

View File

@ -1,367 +0,0 @@
/**************************************************************************//**
* @file SLCD_Driver.c
* @brief MK40X256VMD100 Segment LCD Low Level Driver (306 Segments)
* @version V0.01
* @date 13. May 2011
*
* @note
* Copyright (C) 2011 ARM Limited. All rights reserved.
*
* @par
* ARM Limited (ARM) is supplying this software for use with Cortex-M
* processor based microcontrollers. This file can be freely distributed
* within development tools that are supporting such ARM based processors.
*
* @par
* THIS SOFTWARE IS PROVIDED "AS IS". NO WARRANTIES, WHETHER EXPRESS, IMPLIED
* OR STATUTORY, INCLUDING, BUT NOT LIMITED TO, IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE APPLY TO THIS SOFTWARE.
* ARM SHALL NOT, IN ANY CIRCUMSTANCES, BE LIABLE FOR SPECIAL, INCIDENTAL, OR
* CONSEQUENTIAL DAMAGES, FOR ANY REASON WHATSOEVER.
*
******************************************************************************/
#include <PK40X256VLQ100.H>
#include <string.h>
#include "rtdef.h"
#include "Font_35x8.h"
#include "SLCD_Driver.h"
const uint8_t WFShiftTable[] = /*Front Plane 0 - 38*/
{
0,
8,
16,
24,
0,
8,
16,
24,
0,
8,
16,
24,
0,
8,
16,
24,
0,
8,
16,
24,
0,
8,
16,
24,
0,
8,
16,
24,
0,
8,
16,
24,
0,
8,
16,
24,
0,
8,
16,
};
/*******************************************************************************
* SLCD controller Initialization *
* Parameter: None
* Return: *
*******************************************************************************/
void SLCD_Configuration (void)
{
MCG->C1 |= MCG_C1_IRCLKEN_MASK; /* Enable IRCLK */
SIM->SCGC5 |= (SIM_SCGC5_PORTB_MASK /* Enable Port B,C,D Clock */
| SIM_SCGC5_PORTC_MASK
| SIM_SCGC5_PORTD_MASK );
SIM->SCGC3 |= SIM_SCGC3_SLCD_MASK; /* Enable SLCD Clock */
LCD->GCR = 0; /* Disable SLCD module */
LCD->PEN[0] = 0xFFFFFFFE; /* Enable SLCD pins 1-31 */
LCD->PEN[1] = 0x0000FFFF; /* Enable SLCD pins 32-47 */
LCD->BPEN[1] = 0x0000FF00; /* SLCD Backplane Assignment: Pin 38 - 46 */
LCD->BPEN[0] = 0;
LCD->WF[0] = 0; /* Clear SLCD */
LCD->WF[1] = 0;
LCD->WF[2] = 0;
LCD->WF[3] = 0;
LCD->WF[4] = 0;
LCD->WF[5] = 0;
LCD->WF[6] = 0;
LCD->WF[7] = 0;
LCD->WF[8] = 0;
LCD->WF[9] = 0;
LCD->WF[10] = 0x08040201; /* SLCD Backplane Phase Assignment */
LCD->WF[11] = 0x80402010;
LCD->GCR |= LCD_GCR_VSUPPLY(1); /* Drive VLL3 from VDD */
LCD->GCR |= LCD_GCR_CPSEL_MASK; /* LCD charge pump is selected */
LCD->GCR |= LCD_GCR_DUTY(7); /* Use 8 BP */
LCD->GCR |= LCD_GCR_SOURCE_MASK; /* LCD clock source : alternate clock */
LCD->GCR |= LCD_GCR_LCLK(4); /* LCD clock prescaler: 4 */
LCD->GCR |= LCD_GCR_LCDEN_MASK; /* Enable LCD module */
}
/*******************************************************************************
* SLCD All Segments Off
* Parameter: None
* Return: *
*******************************************************************************/
void SLCD_SegmentsAllOff (void)
{
LCD->WF[0] = 0;
LCD->WF[1] = 0;
LCD->WF[2] = 0;
LCD->WF[3] = 0;
LCD->WF[4] = 0;
LCD->WF[5] = 0;
LCD->WF[6] = 0;
LCD->WF[7] = 0;
LCD->WF[8] = 0;
LCD->WF[9] = 0;
}
/*******************************************************************************
* SLCD All Segments On
* Parameter: None
* Return: *
*******************************************************************************/
void SLCD_SegmentsAllOn(void)
{
LCD->WF[0] = 0xFFFFFF00;
LCD->WF[1] = 0xFFFFFFFF;
LCD->WF[2] = 0xFFFFFFFF;
LCD->WF[3] = 0xFFFFFFFF;
LCD->WF[4] = 0xFFFFFFFF;
LCD->WF[5] = 0xFFFFFFFF;
LCD->WF[6] = 0xFFFFFFFF;
LCD->WF[7] = 0xFFFFFFFF;
LCD->WF[8] = 0xFFFFFFFF;
LCD->WF[9] = 0xFFFFFFFF;
}
/*******************************************************************************
* SLCD Draw One ASCII character
* Parameter: in (ASCII character), fploc (Front Plane Location)
* Return: *
*******************************************************************************/
void SLCD_DrawChar(uint8_t in, uint8_t fploc)
{
int nCol, nRow;
uint8_t bploc = 0;
uint8_t value = 0;
in -= 0x20;
for (nRow = 0; nRow < (CHAR_SIZE_ROW); nRow++) {
for (nCol = 0; nCol < CHAR_SIZE_COLUMN; nCol++) {
value = Font_35x8[in*CHAR_SIZE + nRow*CHAR_SIZE_COLUMN + nCol];
if (value == 0) {
LCD->WF[(fploc + 2)/4] &= ~(1 << (bploc + WFShiftTable[fploc + 2]));
}
else {
LCD->WF[(fploc + 2)/4] |= (1 << (bploc + WFShiftTable[fploc + 2]));
}
fploc++;
}
bploc++;
fploc -= CHAR_SIZE_COLUMN;
}
}
/*******************************************************************************
* SLCD Print String
* Parameter: srcStr (Source String) , sPos (Front Plane Location)
* Return: *
*******************************************************************************/
void SLCD_PrintString (uint8_t * srcStr, uint8_t sPos)
{
uint8_t offset = sPos;
while (*srcStr)
{
SLCD_DrawChar(*srcStr++,offset);
offset += CHAR_SIZE_SEGMENT;
}
}
/*******************************************************************************
* SLCD Print String2
* Parameter: srcStr (Source String) , sPos (Front Plane Location)
* Return: *
*******************************************************************************/
void SLCD_PrintString2 (uint8_t * srcStr, uint8_t sPos)
{
uint8_t offset = sPos;
while (*srcStr)
{
SLCD_DrawChar(*srcStr++,offset);
offset += CHAR_SIZE_SEGMENT;
}
}
/*******************************************************************************
* JLink Sign Segment On
* Parameter: None
* Return: *
*******************************************************************************/
void SLCD_RadioSighOn (void)
{
LCD->WF[0] |= (1 << (BP_0 + 8)); /*FrontPlane: LCD_P1. BackPlane: 0*/
}
/*******************************************************************************
* JLink Sign Segment On
* Parameter: None
* Return: *
*******************************************************************************/
void SLCD_USBSighOn (void)
{
LCD->WF[0] |= (1 << (BP_1 + 8)); /*FrontPlane: LCD_P1. BackPlane: 1*/
}
/*******************************************************************************
* JLink Sign Segment On
* Parameter: None
* Return: *
*******************************************************************************/
void SLCD_ClockSighOn (void)
{
LCD->WF[0] |= (1 << (BP_3 + 8)); /*FrontPlane: LCD_P1. BackPlane: 3*/
}
/*******************************************************************************
* Freescale Logo Segment On
* Parameter: None
* Return: *
*******************************************************************************/
void SLCD_FreescaleLogoOn (void)
{
LCD->WF[0] |= (1 << (BP_4 + 8)); /*FrontPlane: LCD_P1. BackPlane: 4*/
}
/*******************************************************************************
* JLink Sign Segment On
* Parameter: None
* Return: *
*******************************************************************************/
void SLCD_JLinkSignOn (void)
{
LCD->WF[0] |= (1 << (BP_5 + 8)); /*FrontPlane: LCD_P1. BackPlane: 5*/
}
/*******************************************************************************
* JLink Sign Segment On
* Parameter: None
* Return: *
*******************************************************************************/
void SLCD_BatterySignOn (int level)
{
LCD->WF[0] |= (1 << (BP_6 + 8)); /*FrontPlane: LCD_P1. BackPlane: 6*/
if(level == 0)
{
LCD->WF[0] &= ~(1 << (BP_7 + 8 )); /*FrontPlane: LCD_P1. BackPlane: 0*/
LCD->WF[9] &= ~(1 << (BP_6 + 24)); /*BackPlane:*/
LCD->WF[9] &= ~(1 << (BP_7 + 24));/*BackPlane:*/
}
if(level == 1)
{
LCD->WF[0] &= ~(1 << (BP_7 + 8)); /*FrontPlane: LCD_P1. BackPlane: 0*/
LCD->WF[9] &= ~(1 << (BP_6 + 24)); /*BackPlane:*/
LCD->WF[9] |= (1 << (BP_7 + 24)); /*BackPlane:*/
}
if(level == 2)
{
LCD->WF[0] &= ~(1 << (BP_7 + 8)); /*FrontPlane: LCD_P1. BackPlane: 0*/
LCD->WF[9] |= (1 << (BP_6 + 24)); /*BackPlane:*/
LCD->WF[9] |= (1 << (BP_7 + 24)); /*BackPlane:*/
}
if(level == 3)
{
LCD->WF[0] |= (1 << (BP_7 + 8)); /*FrontPlane: LCD_P1. BackPlane: 6*/
LCD->WF[9] |= (1 << (BP_6 + 24)); /*BackPlane:*/
LCD->WF[9] |= (1 << (BP_7 + 24)); /*BackPlane:*/
}
}
/*******************************************************************************
* JLink Sign Segment On
* Parameter: None
* Return: *
*******************************************************************************/
void SLCD_RadioSighOff (void)
{
LCD->WF[0] &= ~(1 << (BP_0 + 8)); /*FrontPlane: LCD_P1. BackPlane: 0*/
}
/*******************************************************************************
* JLink Sign Segment On
* Parameter: None
* Return: *
*******************************************************************************/
void SLCD_USBSighOff (void)
{
LCD->WF[0] &= ~(1 << (BP_1 + 8)); /*FrontPlane: LCD_P1. BackPlane: 1*/
}
/*******************************************************************************
* JLink Sign Segment On
* Parameter: None
* Return: *
*******************************************************************************/
void SLCD_ClockSighOff (void)
{
LCD->WF[0] &= ~(1 << (BP_3 + 8)); /*FrontPlane: LCD_P1. BackPlane: 3*/
}
/*******************************************************************************
* Freescale Logo Segment Off
* Parameter: None
* Return: *
*******************************************************************************/
void SLCD_FreescaleLogoOff (void)
{
LCD->WF[0] &= ~(1 << (BP_4 + 8)); /*FrontPlane: LCD_P1. BackPlane: 4*/
}
/*******************************************************************************
* JLink Sign Segment Off
* Parameter: None
* Return: *
*******************************************************************************/
void SLCD_JLinkSignOff (void)
{
LCD->WF[0] &= ~(1 << (BP_5 + 8)); /*FrontPlane: LCD_P1. BackPlane: 5*/
}
/*******************************************************************************
* JLink Sign Segment Off
* Parameter: None
* Return: *
*******************************************************************************/
void SLCD_BatterySignOff (void)
{
LCD->WF[0] &= ~(1 << (BP_6 + 8)); /*FrontPlane: LCD_P1. BackPlane: 5*/
LCD->WF[0] &= ~(1 << (BP_7 + 8)); /*FrontPlane: LCD_P1. BackPlane: 7*/
LCD->WF[9] &= ~(1 << (BP_6 + 24)); /*BackPlane:*/
LCD->WF[9] &= ~(1 << (BP_7 + 24)); /*BackPlane:*/
}
// end file ----------------------------------------------------------------------------

View File

@ -1,69 +0,0 @@
/**************************************************************************//**
* @file SLCD_Driver.h
* @brief SLCD Low Level Driver function prototypes and defines
* @version V0.01
* @date 13. May 2011
*
* @note
* Copyright (C) 2011 ARM Limited. All rights reserved.
*
* @par
* ARM Limited (ARM) is supplying this software for use with Cortex-M
* processor based microcontrollers. This file can be freely distributed
* within development tools that are supporting such ARM based processors.
*
* @par
* THIS SOFTWARE IS PROVIDED "AS IS". NO WARRANTIES, WHETHER EXPRESS, IMPLIED
* OR STATUTORY, INCLUDING, BUT NOT LIMITED TO, IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE APPLY TO THIS SOFTWARE.
* ARM SHALL NOT, IN ANY CIRCUMSTANCES, BE LIABLE FOR SPECIAL, INCIDENTAL, OR
* CONSEQUENTIAL DAMAGES, FOR ANY REASON WHATSOEVER.
*
******************************************************************************/
#ifndef _SLCD_DRIVER_H
#define _SLCD_DRIVER_H
#define CHAR_SIZE_COLUMN 5
#define CHAR_SIZE_ROW 7
#define CHAR_SIZE_SEGMENT 6
#define CHAR_SIZE 35
typedef enum
{
BP_0 = 0,
BP_1,
BP_2,
BP_3,
BP_4,
BP_5,
BP_6,
BP_7
} BackPlaneNumber;
extern void SLCD_Configuration (void);
extern void SLCD_SegmentsAllOff(void);
extern void SLCD_SegmentsAllOn(void);
extern void SLCD_DrawChar(rt_uint8_t in, rt_uint8_t fploc);
extern void SLCD_PrintString (rt_uint8_t * srcStr, rt_uint8_t sPos);
extern void SLCD_RadioSighOn(void);
extern void SLCD_USBSighOn(void);
extern void SLCD_FreescaleLogoOn(void);
extern void SLCD_JLinkSignOn(void);
extern void SLCD_ClockSighOn(void);
extern void SLCD_BatterySignOn(int level);
extern void SLCD_RadioSighOff(void);
extern void SLCD_USBSighOff(void);
extern void SLCD_FreescaleLogoOff(void);
extern void SLCD_JLinkSignOff(void);
extern void SLCD_ClockSighOff(void);
extern void SLCD_BatterySignOff(void);
#endif /* _SLCD_DRIVER_H */

View File

@ -1,67 +0,0 @@
/* RT-Thread config file */
#ifndef __RTTHREAD_CFG_H__
#define __RTTHREAD_CFG_H__
/* RT_NAME_MAX*/
#define RT_NAME_MAX 4
/* RT_ALIGN_SIZE*/
#define RT_ALIGN_SIZE 4
/* PRIORITY_MAX*/
#define RT_THREAD_PRIORITY_MAX 8
/* Tick per Second*/
#define RT_TICK_PER_SECOND 100
/* SECTION: RT_DEBUG */
/* Thread Debug*/
/* #define RT_THREAD_DEBUG */
/* Using Hook*/
/* #define RT_USING_HOOK */
/* SECTION: IPC */
/* Using Semaphore*/
#define RT_USING_SEMAPHORE
/* Using Mutex*/
/* #define RT_USING_MUTEX */
/* Using Event*/
/* #define RT_USING_EVENT */
/* Using MailBox*/
#define RT_USING_MAILBOX
/* Using Message Queue*/
/* #define RT_USING_MESSAGEQUEUE */
/* SECTION: Memory Management */
/* Using Memory Pool Management*/
/* #define RT_USING_MEMPOOL */
/* Using Dynamic Heap Management*/
/* #define RT_USING_HEAP */
/* Using Small MM*/
#define RT_USING_SMALL_MEM
#define RT_USING_TINY_SIZE
/* SECTION: Device System */
/* Using Device System */
//#define RT_USING_DEVICE
/* buffer size for UART reception */
//#define RT_UART_RX_BUFFER_SIZE 64
/* Using UART */
//#define RT_USING_UART
/* SECTION: Console options */
/* use console for rt_kprintf */
//#define RT_USING_CONSOLE
/* the buffer size of console */
//#define RT_CONSOLEBUF_SIZE 80
#endif

View File

@ -1,116 +0,0 @@
/*
* File : startup.c
* This file is part of RT-Thread RTOS
* COPYRIGHT (C) 2006, RT-Thread Develop Team
*
* The license and distribution terms for this file may be
* found in the file LICENSE in this distribution or at
* http://www.rt-thread.org/license/LICENSE
*
* Change Logs:
* Date Author Notes
* 2010-01-25 Bernard first version
*/
#include <rthw.h>
#include <rtthread.h>
#include "board.h"
#ifdef RT_USING_UART
#include "uart.h"
#endif
/**
* @addtogroup sam7s
*/
/*@{*/
#ifdef __CC_ARM
extern int Image$$RW_IRAM1$$ZI$$Limit;
#endif
#ifdef __GNUC__
extern unsigned char __bss_start;
extern unsigned char __bss_end;
#endif
extern void rt_hw_interrupt_init(void);
extern int rt_application_init(void);
#ifdef RT_USING_DEVICE
extern rt_err_t rt_hw_serial_init(void);
#endif
/**
* This function will startup RT-Thread RTOS.
*/
void rtthread_startup(void)
{
/* init kernel object */
rt_system_object_init();
/* init board */
rt_hw_board_init();
rt_show_version();
/* init tick */
rt_system_tick_init();
/* init timer system */
rt_system_timer_init();
#ifdef RT_USING_HEAP
#ifdef __CC_ARM
rt_system_heap_init((void*)&Image$$RW_IRAM1$$ZI$$Limit, (void*)0x204000);
#elif __ICCARM__
rt_system_heap_init(__segment_end("HEAP"), (void*)0x204000);
#else
rt_system_heap_init((void*)&__bss_end, (void*)0x204000);
#endif
#endif
/* init scheduler system */
rt_system_scheduler_init();
#ifdef RT_USING_HOOK /* if the hook is used */
/* set idle thread hook */
rt_thread_idle_sethook(rt_hw_led_flash);
#endif
#ifdef RT_USING_DEVICE
/* init all device */
rt_device_init_all();
#endif
/* init application */
rt_application_init();
#ifdef RT_USING_FINSH
/* init finsh */
finsh_system_init();
finsh_set_device("uart1");
#endif
/* init idle thread */
rt_thread_idle_init();
/* start scheduler */
rt_system_scheduler_start();
/* never reach here */
return ;
}
int main (void)
{
rt_uint32_t UNUSED level;
/* disable interrupt first */
level = rt_hw_interrupt_disable();
/* invoke rtthread_startup */
rtthread_startup();
while(1);
return 0;
}
/*@}*/

View File

@ -1,295 +0,0 @@
/****************************************************************************
* $Id:: uart.c 3736 2010-06-24 02:07:03Z usb00423 $
* Project: NXP LPC122x UART example
*
* Description:
* This file contains UART code example which include UART
* initialization, UART interrupt handler, and related APIs for
* UART access.
*
****************************************************************************
* Software that is described herein is for illustrative purposes only
* which provides customers with programming information regarding the
* products. This software is supplied "AS IS" without any warranties.
* NXP Semiconductors assumes no responsibility or liability for the
* use of the software, conveys no license or title under any patent,
* copyright, or mask work right to the product. NXP Semiconductors
* reserves the right to make changes in the software without
* notification. NXP Semiconductors also make no representation or
* warranty that such application will be suitable for the specified
* use without further testing or modification.
****************************************************************************/
#include <rthw.h>
#include <rtthread.h>
#include <CMSIS/LPC122x.h>
#include "uart.h"
#define IER_RBR 0x01
#define IER_THRE 0x02
#define IER_RLS 0x04
#define IIR_PEND 0x01
#define IIR_RLS 0x03
#define IIR_RDA 0x02
#define IIR_CTI 0x06
#define IIR_THRE 0x01
#define LSR_RDR 0x01
#define LSR_OE 0x02
#define LSR_PE 0x04
#define LSR_FE 0x08
#define LSR_BI 0x10
#define LSR_THRE 0x20
#define LSR_TEMT 0x40
#define LSR_RXFE 0x80
/**
* @addtogroup LPC11xx
*/
/*@{*/
#if defined(RT_USING_UART) && defined(RT_USING_DEVICE)
#define UART_BAUDRATE 115200
struct rt_uart_lpc
{
struct rt_device parent;
/* buffer for reception */
rt_uint8_t read_index, save_index;
rt_uint8_t rx_buffer[RT_UART_RX_BUFFER_SIZE];
}uart_device;
void UART0_IRQHandler(void)
{
rt_ubase_t level, iir;
struct rt_uart_lpc* uart = &uart_device;
/* read IIR and clear it */
iir = LPC_UART0->IIR;
iir >>= 0x01; /* skip pending bit in IIR */
iir &= 0x07; /* check bit 1~3, interrupt identification */
if (iir == IIR_RDA) /* Receive Line Status */
{
/* If no error on RLS, normal ready, save into the data buffer. */
/* Note: read RBR will clear the interrupt */
uart->rx_buffer[uart->save_index] = LPC_UART0->RBR;
level = rt_hw_interrupt_disable();
uart->save_index ++;
if (uart->save_index >= RT_UART_RX_BUFFER_SIZE)
uart->save_index = 0;
rt_hw_interrupt_enable(level);
/* invoke callback */
if(uart->parent.rx_indicate != RT_NULL)
{
rt_size_t length;
if (uart->read_index > uart->save_index)
length = RT_UART_RX_BUFFER_SIZE - uart->read_index + uart->save_index;
else
length = uart->save_index - uart->read_index;
uart->parent.rx_indicate(&uart->parent, length);
}
}
return;
}
/*****************************************************************************
** Function name: rt_uart_init
** Descriptions:
** parameters: dev
** Returned value: None
*****************************************************************************/
static rt_err_t rt_uart_init(rt_device_t dev)
{
rt_uint32_t Fdiv;
rt_uint32_t regVal;
NVIC_DisableIRQ(UART0_IRQn);
/* Init UART Hardware */
LPC_IOCON->PIO0_1 &= ~0x07; /* UART I/O config */
LPC_IOCON->PIO0_1 |= 0x02; /* UART RXD */
LPC_IOCON->PIO0_2 &= ~0x07;
LPC_IOCON->PIO0_2 |= 0x02; /* UART TXD */
/* Enable UART clock */
LPC_SYSCON->PRESETCTRL |= (0x1<<2);
LPC_SYSCON->SYSAHBCLKCTRL |= (0x1<<12);
LPC_SYSCON->UART0CLKDIV = 0x1; /* divided by 1 */
LPC_UART0->LCR = 0x83; /* 8 bits, no Parity, 1 Stop bit */
regVal = LPC_SYSCON->UART0CLKDIV;
Fdiv = ((SystemAHBFrequency/regVal)/16)/UART_BAUDRATE ; /*baud rate */
LPC_UART0->DLM = Fdiv / 256;
LPC_UART0->DLL = Fdiv % 256;
LPC_UART0->LCR = 0x03; /* DLAB = 0 */
LPC_UART0->FCR = 0x07; /* Enable and reset TX and RX FIFO. */
/* Read to clear the line status. */
regVal = LPC_UART0->LSR;
/* Ensure a clean start, no data in either TX or RX FIFO. */
while ( LPC_UART0->LSR & (LSR_THRE|LSR_TEMT) != (LSR_THRE|LSR_TEMT) );
while ( LPC_UART0->LSR & LSR_RDR )
{
regVal = LPC_UART0->RBR; /* Dump data from RX FIFO */
}
/* Enable the UART Interrupt */
NVIC_EnableIRQ(UART0_IRQn);
LPC_UART0->IER = IER_RBR | IER_THRE | IER_RLS; /* Enable UART interrupt */
return RT_EOK;
}
static rt_err_t rt_uart_open(rt_device_t dev, rt_uint16_t oflag)
{
RT_ASSERT(dev != RT_NULL);
if(dev->flag & RT_DEVICE_FLAG_INT_RX)
{
/* Enable the UART Interrupt */
NVIC_EnableIRQ(UART0_IRQn);
}
return RT_EOK;
}
static rt_err_t rt_uart_close(rt_device_t dev)
{
RT_ASSERT(dev != RT_NULL);
if (dev->flag & RT_DEVICE_FLAG_INT_RX)
{
/* Disable the UART Interrupt */
NVIC_DisableIRQ(UART0_IRQn);
}
return RT_EOK;
}
static rt_size_t rt_uart_read(rt_device_t dev, rt_off_t pos, void* buffer, rt_size_t size)
{
rt_uint8_t* ptr;
struct rt_uart_lpc *uart = (struct rt_uart_lpc*)dev;
RT_ASSERT(uart != RT_NULL);
/* point to buffer */
ptr = (rt_uint8_t*) buffer;
if (dev->flag & RT_DEVICE_FLAG_INT_RX)
{
while (size)
{
/* interrupt receive */
rt_base_t level;
/* disable interrupt */
level = rt_hw_interrupt_disable();
if (uart->read_index != uart->save_index)
{
*ptr = uart->rx_buffer[uart->read_index];
uart->read_index ++;
if (uart->read_index >= RT_UART_RX_BUFFER_SIZE)
uart->read_index = 0;
}
else
{
/* no data in rx buffer */
/* enable interrupt */
rt_hw_interrupt_enable(level);
break;
}
/* enable interrupt */
rt_hw_interrupt_enable(level);
ptr ++;
size --;
}
return (rt_uint32_t)ptr - (rt_uint32_t)buffer;
}
return 0;
}
static rt_size_t rt_uart_write(rt_device_t dev, rt_off_t pos, const void* buffer, rt_size_t size)
{
char *ptr;
ptr = (char*)buffer;
if (dev->flag & RT_DEVICE_FLAG_STREAM)
{
/* stream mode */
while (size)
{
if (*ptr == '\n')
{
/* THRE status, contain valid data */
while ( !(LPC_UART0->LSR & LSR_THRE) );
/* write data */
LPC_UART0->THR = '\r';
}
/* THRE status, contain valid data */
while ( !(LPC_UART0->LSR & LSR_THRE) );
/* write data */
LPC_UART0->THR = *ptr;
ptr ++;
size --;
}
}
else
{
while ( size != 0 )
{
/* THRE status, contain valid data */
while ( !(LPC_UART0->LSR & LSR_THRE) );
/* write data */
LPC_UART0->THR = *ptr;
ptr++;
size--;
}
}
return (rt_size_t) ptr - (rt_size_t) buffer;
}
void rt_hw_uart_init(void)
{
struct rt_uart_lpc* uart;
/* get uart device */
uart = &uart_device;
/* device initialization */
uart->parent.type = RT_Device_Class_Char;
rt_memset(uart->rx_buffer, 0, sizeof(uart->rx_buffer));
uart->read_index = uart->save_index = 0;
/* device interface */
uart->parent.init = rt_uart_init;
uart->parent.open = rt_uart_open;
uart->parent.close = rt_uart_close;
uart->parent.read = rt_uart_read;
uart->parent.write = rt_uart_write;
uart->parent.control = RT_NULL;
uart->parent.user_data = RT_NULL;
rt_device_register(&uart->parent,
"uart", RT_DEVICE_FLAG_RDWR | RT_DEVICE_FLAG_STREAM | RT_DEVICE_FLAG_INT_RX);
}
#endif
/******************************************************************************
** End Of File
******************************************************************************/

View File

@ -1,6 +0,0 @@
#ifndef __UART_H__
#define __UART_H__
void rt_hw_uart_init(void);
#endif

File diff suppressed because it is too large Load Diff

View File

@ -1,176 +0,0 @@
;/*
; * File : context_rvds.S
; * This file is part of RT-Thread RTOS
; * COPYRIGHT (C) 2009, RT-Thread Development Team
; *
; * The license and distribution terms for this file may be
; * found in the file LICENSE in this distribution or at
; * http://www.rt-thread.org/license/LICENSE
; *
; * Change Logs:
; * Date Author Notes
; * 2009-01-17 Bernard first version
; * 2010-02-04 Magicoe Edit for LPC17xx Series
; * 2010-08-06 Magicoe Amended for PK40X256VLQ100
; */
;/**
; * @addtogroup PK40X256VLQ100
; */
;/*@{*/
NVIC_INT_CTRL EQU 0xE000ED04 ; interrupt control state register
NVIC_SYSPRI2 EQU 0xE000ED20 ; system priority register (3)
NVIC_PENDSV_PRI EQU 0x00FF0000 ; PendSV priority value (lowest)
NVIC_PENDSVSET EQU 0x10000000 ; value to trigger PendSV exception
AREA |.text|, CODE, READONLY, ALIGN=2
THUMB
REQUIRE8
PRESERVE8
IMPORT rt_thread_switch_interrupt_flag
IMPORT rt_interrupt_from_thread
IMPORT rt_interrupt_to_thread
;/*
; * rt_base_t rt_hw_interrupt_disable();
; */
rt_hw_interrupt_disable PROC
EXPORT rt_hw_interrupt_disable
MRS r0, PRIMASK
CPSID I
BX LR
ENDP
;/*
; * void rt_hw_interrupt_enable(rt_base_t level);
; */
rt_hw_interrupt_enable PROC
EXPORT rt_hw_interrupt_enable
MSR PRIMASK, r0
BX LR
ENDP
;/*
; * void rt_hw_context_switch(rt_uint32 from, rt_uint32 to);
; * r0 --> from
; * r1 --> to
; */
rt_hw_context_switch_interrupt
EXPORT rt_hw_context_switch_interrupt
rt_hw_context_switch PROC
EXPORT rt_hw_context_switch
; set rt_thread_switch_interrupt_flag to 1
LDR r2, =rt_thread_switch_interrupt_flag
LDR r3, [r2]
CMP r3, #1
BEQ _reswitch
MOV r3, #1
STR r3, [r2]
LDR r2, =rt_interrupt_from_thread ; set rt_interrupt_from_thread
STR r0, [r2]
_reswitch
LDR r2, =rt_interrupt_to_thread ; set rt_interrupt_to_thread
STR r1, [r2]
LDR r0, =NVIC_INT_CTRL ; trigger the PendSV exception (causes context switch)
LDR r1, =NVIC_PENDSVSET
STR r1, [r0]
BX LR
ENDP
; r0 --> swith from thread stack
; r1 --> swith to thread stack
; psr, pc, lr, r12, r3, r2, r1, r0 are pushed into [from] stack
rt_hw_pend_sv PROC
EXPORT rt_hw_pend_sv
; disable interrupt to protect context switch
MRS r2, PRIMASK
CPSID I
; get rt_thread_switch_interrupt_flag
LDR r0, =rt_thread_switch_interrupt_flag
LDR r1, [r0]
CBZ r1, pendsv_exit ; pendsv already handled
; clear rt_thread_switch_interrupt_flag to 0
MOV r1, #0x00
STR r1, [r0]
LDR r0, =rt_interrupt_from_thread
LDR r1, [r0]
CBZ r1, swtich_to_thread ; skip register save at the first time
MRS r1, psp ; get from thread stack pointer
STMFD r1!, {r4 - r11} ; push r4 - r11 register
LDR r0, [r0]
STR r1, [r0] ; update from thread stack pointer
swtich_to_thread
LDR r1, =rt_interrupt_to_thread
LDR r1, [r1]
LDR r1, [r1] ; load thread stack pointer
LDMFD r1!, {r4 - r11} ; pop r4 - r11 register
MSR psp, r1 ; update stack pointer
pendsv_exit
; restore interrupt
MSR PRIMASK, r2
ORR lr, lr, #0x04
BX lr
ENDP
;/*
; * void rt_hw_context_switch_to(rt_uint32 to);
; * r0 --> to
; * this fucntion is used to perform the first thread switch
; */
rt_hw_context_switch_to PROC
EXPORT rt_hw_context_switch_to
; set to thread
LDR r1, =rt_interrupt_to_thread
STR r0, [r1]
; set from thread to 0
LDR r1, =rt_interrupt_from_thread
MOV r0, #0x0
STR r0, [r1]
; set interrupt flag to 1
LDR r1, =rt_thread_switch_interrupt_flag
MOV r0, #1
STR r0, [r1]
; set the PendSV exception priority
LDR r0, =NVIC_SYSPRI2
LDR r1, =NVIC_PENDSV_PRI
LDR.W R2, [r0,#0x00] ; read
ORR r1,r1,r2 ; modify
STR r1, [r0] ; write-bak
; trigger the PendSV exception (causes context switch)
LDR r0, =NVIC_INT_CTRL
LDR r1, =NVIC_PENDSVSET
STR r1, [r0]
; enable interrupts at processor level
CPSIE I
; never reach here!
ENDP
; compatible with old version
rt_hw_interrupt_thread_switch PROC
EXPORT rt_hw_interrupt_thread_switch
BX lr
NOP
ENDP
END

File diff suppressed because it is too large Load Diff

View File

@ -1,706 +0,0 @@
/**************************************************************************//**
* @file core_cm4_simd.h
* @brief CMSIS Cortex-M4 SIMD Header File
* @version V2.01
* @date 06. December 2010
*
* @note
* Copyright (C) 2010 ARM Limited. All rights reserved.
*
* @par
* ARM Limited (ARM) is supplying this software for use with Cortex-M
* processor based microcontrollers. This file can be freely distributed
* within development tools that are supporting such ARM based processors.
*
* @par
* THIS SOFTWARE IS PROVIDED "AS IS". NO WARRANTIES, WHETHER EXPRESS, IMPLIED
* OR STATUTORY, INCLUDING, BUT NOT LIMITED TO, IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE APPLY TO THIS SOFTWARE.
* ARM SHALL NOT, IN ANY CIRCUMSTANCES, BE LIABLE FOR SPECIAL, INCIDENTAL, OR
* CONSEQUENTIAL DAMAGES, FOR ANY REASON WHATSOEVER.
*
******************************************************************************/
#ifndef __CORE_CM4_SIMD_H__
#define __CORE_CM4_SIMD_H__
#ifdef __cplusplus
extern "C" {
#endif
/*******************************************************************************
* Hardware Abstraction Layer
******************************************************************************/
/* ################### Compiler specific Intrinsics ########################### */
/** \defgroup CMSIS_SIMD_intrinsics CMSIS SIMD Intrinsics
Access to dedicated SIMD instructions
@{
*/
#if defined ( __CC_ARM ) /*------------------RealView Compiler -----------------*/
/* ARM armcc specific functions */
/*------ CM4 SOMD Intrinsics -----------------------------------------------------*/
#define __SADD8 __sadd8
#define __QADD8 __qadd8
#define __SHADD8 __shadd8
#define __UADD8 __uadd8
#define __UQADD8 __uqadd8
#define __UHADD8 __uhadd8
#define __SSUB8 __ssub8
#define __QSUB8 __qsub8
#define __SHSUB8 __shsub8
#define __USUB8 __usub8
#define __UQSUB8 __uqsub8
#define __UHSUB8 __uhsub8
#define __SADD16 __sadd16
#define __QADD16 __qadd16
#define __SHADD16 __shadd16
#define __UADD16 __uadd16
#define __UQADD16 __uqadd16
#define __UHADD16 __uhadd16
#define __SSUB16 __ssub16
#define __QSUB16 __qsub16
#define __SHSUB16 __shsub16
#define __USUB16 __usub16
#define __UQSUB16 __uqsub16
#define __UHSUB16 __uhsub16
#define __SASX __sasx
#define __QASX __qasx
#define __SHASX __shasx
#define __UASX __uasx
#define __UQASX __uqasx
#define __UHASX __uhasx
#define __SSAX __ssax
#define __QSAX __qsax
#define __SHSAX __shsax
#define __USAX __usax
#define __UQSAX __uqsax
#define __UHSAX __uhsax
#define __USAD8 __usad8
#define __USADA8 __usada8
#define __SSAT16 __ssat16
#define __USAT16 __usat16
#define __UXTB16 __uxtb16
#define __UXTAB16 __uxtab16
#define __SXTB16 __sxtb16
#define __SXTAB16 __sxtab16
#define __SMUAD __smuad
#define __SMUADX __smuadx
#define __SMLAD __smlad
#define __SMLADX __smladx
#define __SMLALD __smlald
#define __SMLALDX __smlaldx
#define __SMUSD __smusd
#define __SMUSDX __smusdx
#define __SMLSD __smlsd
#define __SMLSDX __smlsdx
#define __SMLSLD __smlsld
#define __SMLSLDX __smlsldx
#define __SEL __sel
#define __QADD __qadd
#define __QSUB __qsub
#define __PKHBT(ARG1,ARG2,ARG3) ( ((((uint32_t)(ARG1)) ) & 0x0000FFFFUL) | \
((((uint32_t)(ARG2)) << (ARG3)) & 0xFFFF0000UL) )
#define __PKHTB(ARG1,ARG2,ARG3) ( ((((uint32_t)(ARG1)) ) & 0xFFFF0000UL) | \
((((uint32_t)(ARG2)) >> (ARG3)) & 0x0000FFFFUL) )
/*-- End CM4 SIMD Intrinsics -----------------------------------------------------*/
#elif (defined (__ICCARM__)) /*------------------ ICC Compiler -------------------*/
/* IAR iccarm specific functions */
#include <intrinsics.h> /* IAR Intrinsics */
#pragma diag_suppress=Pe940
/*------ CM4 SIMDDSP Intrinsics -----------------------------------------------------*/
/* intrinsic __SADD8 see intrinsics.h */
/* intrinsic __QADD8 see intrinsics.h */
/* intrinsic __SHADD8 see intrinsics.h */
/* intrinsic __UADD8 see intrinsics.h */
/* intrinsic __UQADD8 see intrinsics.h */
/* intrinsic __UHADD8 see intrinsics.h */
/* intrinsic __SSUB8 see intrinsics.h */
/* intrinsic __QSUB8 see intrinsics.h */
/* intrinsic __SHSUB8 see intrinsics.h */
/* intrinsic __USUB8 see intrinsics.h */
/* intrinsic __UQSUB8 see intrinsics.h */
/* intrinsic __UHSUB8 see intrinsics.h */
/* intrinsic __SADD16 see intrinsics.h */
/* intrinsic __QADD16 see intrinsics.h */
/* intrinsic __SHADD16 see intrinsics.h */
/* intrinsic __UADD16 see intrinsics.h */
/* intrinsic __UQADD16 see intrinsics.h */
/* intrinsic __UHADD16 see intrinsics.h */
/* intrinsic __SSUB16 see intrinsics.h */
/* intrinsic __QSUB16 see intrinsics.h */
/* intrinsic __SHSUB16 see intrinsics.h */
/* intrinsic __USUB16 see intrinsics.h */
/* intrinsic __UQSUB16 see intrinsics.h */
/* intrinsic __UHSUB16 see intrinsics.h */
/* intrinsic __SASX see intrinsics.h */
/* intrinsic __QASX see intrinsics.h */
/* intrinsic __SHASX see intrinsics.h */
/* intrinsic __UASX see intrinsics.h */
/* intrinsic __UQASX see intrinsics.h */
/* intrinsic __UHASX see intrinsics.h */
/* intrinsic __SSAX see intrinsics.h */
/* intrinsic __QSAX see intrinsics.h */
/* intrinsic __SHSAX see intrinsics.h */
/* intrinsic __USAX see intrinsics.h */
/* intrinsic __UQSAX see intrinsics.h */
/* intrinsic __UHSAX see intrinsics.h */
/* intrinsic __USAD8 see intrinsics.h */
/* intrinsic __USADA8 see intrinsics.h */
/* intrinsic __SSAT16 see intrinsics.h */
/* intrinsic __USAT16 see intrinsics.h */
/* intrinsic __UXTB16 see intrinsics.h */
/* intrinsic __SXTB16 see intrinsics.h */
/* intrinsic __UXTAB16 see intrinsics.h */
/* intrinsic __SXTAB16 see intrinsics.h */
/* intrinsic __SMUAD see intrinsics.h */
/* intrinsic __SMUADX see intrinsics.h */
/* intrinsic __SMLAD see intrinsics.h */
/* intrinsic __SMLADX see intrinsics.h */
/* intrinsic __SMLALD see intrinsics.h */
/* intrinsic __SMLALDX see intrinsics.h */
/* intrinsic __SMUSD see intrinsics.h */
/* intrinsic __SMUSDX see intrinsics.h */
/* intrinsic __SMLSD see intrinsics.h */
/* intrinsic __SMLSDX see intrinsics.h */
/* intrinsic __SMLSLD see intrinsics.h */
/* intrinsic __SMLSLDX see intrinsics.h */
/* intrinsic __SEL see intrinsics.h */
/* intrinsic __QADD see intrinsics.h */
/* intrinsic __QSUB see intrinsics.h */
/* intrinsic __PKHBT see intrinsics.h */
/* intrinsic __PKHTB see intrinsics.h */
/*-- End CM4 SIMD Intrinsics -----------------------------------------------------*/
#pragma diag_default=Pe940
#elif (defined (__GNUC__)) /*------------------ GNU Compiler ---------------------*/
/* GNU gcc specific functions */
/*------ CM4 SIMD Intrinsics -----------------------------------------------------*/
__attribute__( ( always_inline ) ) static __INLINE uint32_t __SADD8(uint32_t op1, uint32_t op2)
{
uint32_t result;
__ASM volatile ("sadd8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
return(result);
}
__attribute__( ( always_inline ) ) static __INLINE uint32_t __QADD8(uint32_t op1, uint32_t op2)
{
uint32_t result;
__ASM volatile ("qadd8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
return(result);
}
__attribute__( ( always_inline ) ) static __INLINE uint32_t __SHADD8(uint32_t op1, uint32_t op2)
{
uint32_t result;
__ASM volatile ("shadd8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
return(result);
}
__attribute__( ( always_inline ) ) static __INLINE uint32_t __UADD8(uint32_t op1, uint32_t op2)
{
uint32_t result;
__ASM volatile ("uadd8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
return(result);
}
__attribute__( ( always_inline ) ) static __INLINE uint32_t __UQADD8(uint32_t op1, uint32_t op2)
{
uint32_t result;
__ASM volatile ("uqadd8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
return(result);
}
__attribute__( ( always_inline ) ) static __INLINE uint32_t __UHADD8(uint32_t op1, uint32_t op2)
{
uint32_t result;
__ASM volatile ("uhadd8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
return(result);
}
__attribute__( ( always_inline ) ) static __INLINE uint32_t __SSUB8(uint32_t op1, uint32_t op2)
{
uint32_t result;
__ASM volatile ("ssub8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
return(result);
}
__attribute__( ( always_inline ) ) static __INLINE uint32_t __QSUB8(uint32_t op1, uint32_t op2)
{
uint32_t result;
__ASM volatile ("qsub8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
return(result);
}
__attribute__( ( always_inline ) ) static __INLINE uint32_t __SHSUB8(uint32_t op1, uint32_t op2)
{
uint32_t result;
__ASM volatile ("shsub8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
return(result);
}
__attribute__( ( always_inline ) ) static __INLINE uint32_t __USUB8(uint32_t op1, uint32_t op2)
{
uint32_t result;
__ASM volatile ("usub8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
return(result);
}
__attribute__( ( always_inline ) ) static __INLINE uint32_t __UQSUB8(uint32_t op1, uint32_t op2)
{
uint32_t result;
__ASM volatile ("uqsub8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
return(result);
}
__attribute__( ( always_inline ) ) static __INLINE uint32_t __UHSUB8(uint32_t op1, uint32_t op2)
{
uint32_t result;
__ASM volatile ("uhsub8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
return(result);
}
__attribute__( ( always_inline ) ) static __INLINE uint32_t __SADD16(uint32_t op1, uint32_t op2)
{
uint32_t result;
__ASM volatile ("sadd16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
return(result);
}
__attribute__( ( always_inline ) ) static __INLINE uint32_t __QADD16(uint32_t op1, uint32_t op2)
{
uint32_t result;
__ASM volatile ("qadd16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
return(result);
}
__attribute__( ( always_inline ) ) static __INLINE uint32_t __SHADD16(uint32_t op1, uint32_t op2)
{
uint32_t result;
__ASM volatile ("shadd16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
return(result);
}
__attribute__( ( always_inline ) ) static __INLINE uint32_t __UADD16(uint32_t op1, uint32_t op2)
{
uint32_t result;
__ASM volatile ("uadd16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
return(result);
}
__attribute__( ( always_inline ) ) static __INLINE uint32_t __UQADD16(uint32_t op1, uint32_t op2)
{
uint32_t result;
__ASM volatile ("uqadd16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
return(result);
}
__attribute__( ( always_inline ) ) static __INLINE uint32_t __UHADD16(uint32_t op1, uint32_t op2)
{
uint32_t result;
__ASM volatile ("uhadd16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
return(result);
}
__attribute__( ( always_inline ) ) static __INLINE uint32_t __SSUB16(uint32_t op1, uint32_t op2)
{
uint32_t result;
__ASM volatile ("ssub16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
return(result);
}
__attribute__( ( always_inline ) ) static __INLINE uint32_t __QSUB16(uint32_t op1, uint32_t op2)
{
uint32_t result;
__ASM volatile ("qsub16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
return(result);
}
__attribute__( ( always_inline ) ) static __INLINE uint32_t __SHSUB16(uint32_t op1, uint32_t op2)
{
uint32_t result;
__ASM volatile ("shsub16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
return(result);
}
__attribute__( ( always_inline ) ) static __INLINE uint32_t __USUB16(uint32_t op1, uint32_t op2)
{
uint32_t result;
__ASM volatile ("usub16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
return(result);
}
__attribute__( ( always_inline ) ) static __INLINE uint32_t __UQSUB16(uint32_t op1, uint32_t op2)
{
uint32_t result;
__ASM volatile ("uqsub16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
return(result);
}
__attribute__( ( always_inline ) ) static __INLINE uint32_t __UHSUB16(uint32_t op1, uint32_t op2)
{
uint32_t result;
__ASM volatile ("uhsub16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
return(result);
}
__attribute__( ( always_inline ) ) static __INLINE uint32_t __SASX(uint32_t op1, uint32_t op2)
{
uint32_t result;
__ASM volatile ("sasx %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
return(result);
}
__attribute__( ( always_inline ) ) static __INLINE uint32_t __QASX(uint32_t op1, uint32_t op2)
{
uint32_t result;
__ASM volatile ("qasx %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
return(result);
}
__attribute__( ( always_inline ) ) static __INLINE uint32_t __SHASX(uint32_t op1, uint32_t op2)
{
uint32_t result;
__ASM volatile ("shasx %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
return(result);
}
__attribute__( ( always_inline ) ) static __INLINE uint32_t __UASX(uint32_t op1, uint32_t op2)
{
uint32_t result;
__ASM volatile ("uasx %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
return(result);
}
__attribute__( ( always_inline ) ) static __INLINE uint32_t __UQASX(uint32_t op1, uint32_t op2)
{
uint32_t result;
__ASM volatile ("uqasx %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
return(result);
}
__attribute__( ( always_inline ) ) static __INLINE uint32_t __UHASX(uint32_t op1, uint32_t op2)
{
uint32_t result;
__ASM volatile ("uhasx %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
return(result);
}
__attribute__( ( always_inline ) ) static __INLINE uint32_t __SSAX(uint32_t op1, uint32_t op2)
{
uint32_t result;
__ASM volatile ("ssax %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
return(result);
}
__attribute__( ( always_inline ) ) static __INLINE uint32_t __QSAX(uint32_t op1, uint32_t op2)
{
uint32_t result;
__ASM volatile ("qsax %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
return(result);
}
__attribute__( ( always_inline ) ) static __INLINE uint32_t __SHSAX(uint32_t op1, uint32_t op2)
{
uint32_t result;
__ASM volatile ("shsax %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
return(result);
}
__attribute__( ( always_inline ) ) static __INLINE uint32_t __USAX(uint32_t op1, uint32_t op2)
{
uint32_t result;
__ASM volatile ("usax %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
return(result);
}
__attribute__( ( always_inline ) ) static __INLINE uint32_t __UQSAX(uint32_t op1, uint32_t op2)
{
uint32_t result;
__ASM volatile ("uqsax %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
return(result);
}
__attribute__( ( always_inline ) ) static __INLINE uint32_t __UHSAX(uint32_t op1, uint32_t op2)
{
uint32_t result;
__ASM volatile ("uhsax %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
return(result);
}
__attribute__( ( always_inline ) ) static __INLINE uint32_t __USAD8(uint32_t op1, uint32_t op2)
{
uint32_t result;
__ASM volatile ("usad8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
return(result);
}
__attribute__( ( always_inline ) ) static __INLINE uint32_t __USADA8(uint32_t op1, uint32_t op2, uint32_t op3)
{
uint32_t result;
__ASM volatile ("usada8 %0, %1, %2, %3" : "=r" (result) : "r" (op1), "r" (op2), "r" (op3) );
return(result);
}
#define __SSAT16(ARG1,ARG2) \
({ \
uint32_t __RES, __ARG1 = (ARG1); \
__ASM ("ssat16 %0, %1, %2" : "=r" (__RES) : "I" (ARG2), "r" (__ARG1) ); \
__RES; \
})
#define __USAT16(ARG1,ARG2) \
({ \
uint32_t __RES, __ARG1 = (ARG1); \
__ASM ("usat16 %0, %1, %2" : "=r" (__RES) : "I" (ARG2), "r" (__ARG1) ); \
__RES; \
})
__attribute__( ( always_inline ) ) static __INLINE uint32_t __UXTB16(uint32_t op1)
{
uint32_t result;
__ASM volatile ("uxtb16 %0, %1" : "=r" (result) : "r" (op1));
return(result);
}
__attribute__( ( always_inline ) ) static __INLINE uint32_t __UXTAB16(uint32_t op1, uint32_t op2)
{
uint32_t result;
__ASM volatile ("uxtab16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
return(result);
}
__attribute__( ( always_inline ) ) static __INLINE uint32_t __SXTB16(uint32_t op1)
{
uint32_t result;
__ASM volatile ("sxtb16 %0, %1" : "=r" (result) : "r" (op1));
return(result);
}
__attribute__( ( always_inline ) ) static __INLINE uint32_t __SXTAB16(uint32_t op1, uint32_t op2)
{
uint32_t result;
__ASM volatile ("sxtab16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
return(result);
}
__attribute__( ( always_inline ) ) static __INLINE uint32_t __SMUAD (uint32_t op1, uint32_t op2)
{
uint32_t result;
__ASM volatile ("smuad %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
return(result);
}
__attribute__( ( always_inline ) ) static __INLINE uint32_t __SMUADX (uint32_t op1, uint32_t op2)
{
uint32_t result;
__ASM volatile ("smuadx %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
return(result);
}
__attribute__( ( always_inline ) ) static __INLINE uint32_t __SMLAD (uint32_t op1, uint32_t op2, uint32_t op3)
{
uint32_t result;
__ASM volatile ("smlad %0, %1, %2, %3" : "=r" (result) : "r" (op1), "r" (op2), "r" (op3) );
return(result);
}
__attribute__( ( always_inline ) ) static __INLINE uint32_t __SMLADX (uint32_t op1, uint32_t op2, uint32_t op3)
{
uint32_t result;
__ASM volatile ("smladx %0, %1, %2, %3" : "=r" (result) : "r" (op1), "r" (op2), "r" (op3) );
return(result);
}
#define __SMLALD(ARG1,ARG2,ARG3) \
({ \
uint32_t __ARG1 = (ARG1), __ARG2 = (ARG2), __ARG3_H = (uint32_t)((uint64_t)(ARG3) >> 32), __ARG3_L = (uint32_t)((uint64_t)(ARG3) & 0xFFFFFFFFUL); \
__ASM volatile ("smlald %0, %1, %2, %3" : "=r" (__ARG3_L), "=r" (__ARG3_H) : "r" (__ARG1), "r" (__ARG2), "0" (__ARG3_L), "1" (__ARG3_H) ); \
(uint64_t)(((uint64_t)__ARG3_H << 32) | __ARG3_L); \
})
#define __SMLALDX(ARG1,ARG2,ARG3) \
({ \
uint32_t __ARG1 = (ARG1), __ARG2 = (ARG2), __ARG3_H = (uint32_t)((uint64_t)(ARG3) >> 32), __ARG3_L = (uint32_t)((uint64_t)(ARG3) & 0xFFFFFFFFUL); \
__ASM volatile ("smlaldx %0, %1, %2, %3" : "=r" (__ARG3_L), "=r" (__ARG3_H) : "r" (__ARG1), "r" (__ARG2), "0" (__ARG3_L), "1" (__ARG3_H) ); \
(uint64_t)(((uint64_t)__ARG3_H << 32) | __ARG3_L); \
})
__attribute__( ( always_inline ) ) static __INLINE uint32_t __SMUSD (uint32_t op1, uint32_t op2)
{
uint32_t result;
__ASM volatile ("smusd %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
return(result);
}
__attribute__( ( always_inline ) ) static __INLINE uint32_t __SMUSDX (uint32_t op1, uint32_t op2)
{
uint32_t result;
__ASM volatile ("smusdx %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
return(result);
}
__attribute__( ( always_inline ) ) static __INLINE uint32_t __SMLSD (uint32_t op1, uint32_t op2, uint32_t op3)
{
uint32_t result;
__ASM volatile ("smlsd %0, %1, %2, %3" : "=r" (result) : "r" (op1), "r" (op2), "r" (op3) );
return(result);
}
__attribute__( ( always_inline ) ) static __INLINE uint32_t __SMLSDX (uint32_t op1, uint32_t op2, uint32_t op3)
{
uint32_t result;
__ASM volatile ("smlsdx %0, %1, %2, %3" : "=r" (result) : "r" (op1), "r" (op2), "r" (op3) );
return(result);
}
#define __SMLSLD(ARG1,ARG2,ARG3) \
({ \
uint32_t __ARG1 = (ARG1), __ARG2 = (ARG2), __ARG3_H = (uint32_t)((ARG3) >> 32), __ARG3_L = (uint32_t)((ARG3) & 0xFFFFFFFFUL); \
__ASM volatile ("smlsld %0, %1, %2, %3" : "=r" (__ARG3_L), "=r" (__ARG3_H) : "r" (__ARG1), "r" (__ARG2), "0" (__ARG3_L), "1" (__ARG3_H) ); \
(uint64_t)(((uint64_t)__ARG3_H << 32) | __ARG3_L); \
})
#define __SMLSLDX(ARG1,ARG2,ARG3) \
({ \
uint32_t __ARG1 = (ARG1), __ARG2 = (ARG2), __ARG3_H = (uint32_t)((ARG3) >> 32), __ARG3_L = (uint32_t)((ARG3) & 0xFFFFFFFFUL); \
__ASM volatile ("smlsldx %0, %1, %2, %3" : "=r" (__ARG3_L), "=r" (__ARG3_H) : "r" (__ARG1), "r" (__ARG2), "0" (__ARG3_L), "1" (__ARG3_H) ); \
(uint64_t)(((uint64_t)__ARG3_H << 32) | __ARG3_L); \
})
__attribute__( ( always_inline ) ) static __INLINE uint32_t __SEL (uint32_t op1, uint32_t op2)
{
uint32_t result;
__ASM volatile ("sel %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
return(result);
}
__attribute__( ( always_inline ) ) static __INLINE uint32_t __QADD(uint32_t op1, uint32_t op2)
{
uint32_t result;
__ASM volatile ("qadd %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
return(result);
}
__attribute__( ( always_inline ) ) static __INLINE uint32_t __QSUB(uint32_t op1, uint32_t op2)
{
uint32_t result;
__ASM volatile ("qsub %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
return(result);
}
#define __PKHBT(ARG1,ARG2,ARG3) \
({ \
uint32_t __RES, __ARG1 = (ARG1), __ARG2 = (ARG2); \
__ASM ("pkhbt %0, %1, %2, lsl %3" : "=r" (__RES) : "r" (__ARG1), "r" (__ARG2), "I" (ARG3) ); \
__RES; \
})
#define __PKHTB(ARG1,ARG2,ARG3) \
({ \
uint32_t __RES, __ARG1 = (ARG1), __ARG2 = (ARG2); \
if (ARG3 == 0) \
__ASM ("pkhtb %0, %1, %2" : "=r" (__RES) : "r" (__ARG1), "r" (__ARG2) ); \
else \
__ASM ("pkhtb %0, %1, %2, asr %3" : "=r" (__RES) : "r" (__ARG1), "r" (__ARG2), "I" (ARG3) ); \
__RES; \
})
/*-- End CM4 SIMD Intrinsics -----------------------------------------------------*/
#elif (defined (__TASKING__)) /*------------------ TASKING Compiler --------------*/
/* TASKING carm specific functions */
/*------ CM4 SIMD Intrinsics -----------------------------------------------------*/
/* not yet supported */
/*-- End CM4 SIMD Intrinsics -----------------------------------------------------*/
#endif
/*@} end of group CMSIS_SIMD_intrinsics */
#ifdef __cplusplus
}
#endif
#endif /* __CORE_CM4_SIMD_H__ */

View File

@ -1,664 +0,0 @@
/**************************************************************************//**
* @file core_cmFunc.h
* @brief CMSIS Cortex-M Core Function Access Header File
* @version V2.03
* @date 07. April 2011
*
* @note
* Copyright (C) 2009-2011 ARM Limited. All rights reserved.
*
* @par
* ARM Limited (ARM) is supplying this software for use with Cortex-M
* processor based microcontrollers. This file can be freely distributed
* within development tools that are supporting such ARM based processors.
*
* @par
* THIS SOFTWARE IS PROVIDED "AS IS". NO WARRANTIES, WHETHER EXPRESS, IMPLIED
* OR STATUTORY, INCLUDING, BUT NOT LIMITED TO, IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE APPLY TO THIS SOFTWARE.
* ARM SHALL NOT, IN ANY CIRCUMSTANCES, BE LIABLE FOR SPECIAL, INCIDENTAL, OR
* CONSEQUENTIAL DAMAGES, FOR ANY REASON WHATSOEVER.
*
******************************************************************************/
#ifndef __CORE_CMFUNC_H__
#define __CORE_CMFUNC_H__
/* ########################### Core Function Access ########################### */
/** \ingroup CMSIS_Core_FunctionInterface
\defgroup CMSIS_Core_RegAccFunctions CMSIS Core Register Access Functions
@{
*/
#if defined ( __CC_ARM ) /*------------------ RealView Compiler ----------------*/
/* ARM armcc specific functions */
/* intrinsic void __enable_irq(); */
/* intrinsic void __disable_irq(); */
/** \brief Get Control Register
This function returns the content of the Control Register.
\return Control Register value
*/
#if (__ARMCC_VERSION < 400000)
extern uint32_t __get_CONTROL(void);
#else /* (__ARMCC_VERSION >= 400000) */
static __INLINE uint32_t __get_CONTROL(void)
{
register uint32_t __regControl __ASM("control");
return(__regControl);
}
#endif /* __ARMCC_VERSION */
/** \brief Set Control Register
This function writes the given value to the Control Register.
\param [in] control Control Register value to set
*/
#if (__ARMCC_VERSION < 400000)
extern void __set_CONTROL(uint32_t control);
#else /* (__ARMCC_VERSION >= 400000) */
static __INLINE void __set_CONTROL(uint32_t control)
{
register uint32_t __regControl __ASM("control");
__regControl = control;
}
#endif /* __ARMCC_VERSION */
/** \brief Get ISPR Register
This function returns the content of the ISPR Register.
\return ISPR Register value
*/
#if (__ARMCC_VERSION < 400000)
extern uint32_t __get_IPSR(void);
#else /* (__ARMCC_VERSION >= 400000) */
static __INLINE uint32_t __get_IPSR(void)
{
register uint32_t __regIPSR __ASM("ipsr");
return(__regIPSR);
}
#endif /* __ARMCC_VERSION */
/** \brief Get APSR Register
This function returns the content of the APSR Register.
\return APSR Register value
*/
#if (__ARMCC_VERSION < 400000)
extern uint32_t __get_APSR(void);
#else /* (__ARMCC_VERSION >= 400000) */
static __INLINE uint32_t __get_APSR(void)
{
register uint32_t __regAPSR __ASM("apsr");
return(__regAPSR);
}
#endif /* __ARMCC_VERSION */
/** \brief Get xPSR Register
This function returns the content of the xPSR Register.
\return xPSR Register value
*/
#if (__ARMCC_VERSION < 400000)
extern uint32_t __get_xPSR(void);
#else /* (__ARMCC_VERSION >= 400000) */
static __INLINE uint32_t __get_xPSR(void)
{
register uint32_t __regXPSR __ASM("xpsr");
return(__regXPSR);
}
#endif /* __ARMCC_VERSION */
/** \brief Get Process Stack Pointer
This function returns the current value of the Process Stack Pointer (PSP).
\return PSP Register value
*/
#if (__ARMCC_VERSION < 400000)
extern uint32_t __get_PSP(void);
#else /* (__ARMCC_VERSION >= 400000) */
static __INLINE uint32_t __get_PSP(void)
{
register uint32_t __regProcessStackPointer __ASM("psp");
return(__regProcessStackPointer);
}
#endif /* __ARMCC_VERSION */
/** \brief Set Process Stack Pointer
This function assigns the given value to the Process Stack Pointer (PSP).
\param [in] topOfProcStack Process Stack Pointer value to set
*/
#if (__ARMCC_VERSION < 400000)
extern void __set_PSP(uint32_t topOfProcStack);
#else /* (__ARMCC_VERSION >= 400000) */
static __INLINE void __set_PSP(uint32_t topOfProcStack)
{
register uint32_t __regProcessStackPointer __ASM("psp");
__regProcessStackPointer = topOfProcStack;
}
#endif /* __ARMCC_VERSION */
/** \brief Get Main Stack Pointer
This function returns the current value of the Main Stack Pointer (MSP).
\return MSP Register value
*/
#if (__ARMCC_VERSION < 400000)
extern uint32_t __get_MSP(void);
#else /* (__ARMCC_VERSION >= 400000) */
static __INLINE uint32_t __get_MSP(void)
{
register uint32_t __regMainStackPointer __ASM("msp");
return(__regMainStackPointer);
}
#endif /* __ARMCC_VERSION */
/** \brief Set Main Stack Pointer
This function assigns the given value to the Main Stack Pointer (MSP).
\param [in] topOfMainStack Main Stack Pointer value to set
*/
#if (__ARMCC_VERSION < 400000)
extern void __set_MSP(uint32_t topOfMainStack);
#else /* (__ARMCC_VERSION >= 400000) */
static __INLINE void __set_MSP(uint32_t topOfMainStack)
{
register uint32_t __regMainStackPointer __ASM("msp");
__regMainStackPointer = topOfMainStack;
}
#endif /* __ARMCC_VERSION */
/** \brief Get Priority Mask
This function returns the current state of the priority mask bit from the Priority Mask Register.
\return Priority Mask value
*/
#if (__ARMCC_VERSION < 400000)
extern uint32_t __get_PRIMASK(void);
#else /* (__ARMCC_VERSION >= 400000) */
static __INLINE uint32_t __get_PRIMASK(void)
{
register uint32_t __regPriMask __ASM("primask");
return(__regPriMask);
}
#endif /* __ARMCC_VERSION */
/** \brief Set Priority Mask
This function assigns the given value to the Priority Mask Register.
\param [in] priMask Priority Mask
*/
#if (__ARMCC_VERSION < 400000)
extern void __set_PRIMASK(uint32_t priMask);
#else /* (__ARMCC_VERSION >= 400000) */
static __INLINE void __set_PRIMASK(uint32_t priMask)
{
register uint32_t __regPriMask __ASM("primask");
__regPriMask = (priMask);
}
#endif /* __ARMCC_VERSION */
#if (__CORTEX_M >= 0x03)
/** \brief Enable FIQ
This function enables FIQ interrupts by clearing the F-bit in the CPSR.
Can only be executed in Privileged modes.
*/
#define __enable_fault_irq __enable_fiq
/** \brief Disable FIQ
This function disables FIQ interrupts by setting the F-bit in the CPSR.
Can only be executed in Privileged modes.
*/
#define __disable_fault_irq __disable_fiq
/** \brief Get Base Priority
This function returns the current value of the Base Priority register.
\return Base Priority register value
*/
#if (__ARMCC_VERSION < 400000)
extern uint32_t __get_BASEPRI(void);
#else /* (__ARMCC_VERSION >= 400000) */
static __INLINE uint32_t __get_BASEPRI(void)
{
register uint32_t __regBasePri __ASM("basepri");
return(__regBasePri);
}
#endif /* __ARMCC_VERSION */
/** \brief Set Base Priority
This function assigns the given value to the Base Priority register.
\param [in] basePri Base Priority value to set
*/
#if (__ARMCC_VERSION < 400000)
extern void __set_BASEPRI(uint32_t basePri);
#else /* (__ARMCC_VERSION >= 400000) */
static __INLINE void __set_BASEPRI(uint32_t basePri)
{
register uint32_t __regBasePri __ASM("basepri");
__regBasePri = (basePri & 0xff);
}
#endif /* __ARMCC_VERSION */
/** \brief Get Fault Mask
This function returns the current value of the Fault Mask register.
\return Fault Mask register value
*/
#if (__ARMCC_VERSION < 400000)
extern uint32_t __get_FAULTMASK(void);
#else /* (__ARMCC_VERSION >= 400000) */
static __INLINE uint32_t __get_FAULTMASK(void)
{
register uint32_t __regFaultMask __ASM("faultmask");
return(__regFaultMask);
}
#endif /* __ARMCC_VERSION */
/** \brief Set Fault Mask
This function assigns the given value to the Fault Mask register.
\param [in] faultMask Fault Mask value to set
*/
#if (__ARMCC_VERSION < 400000)
extern void __set_FAULTMASK(uint32_t faultMask);
#else /* (__ARMCC_VERSION >= 400000) */
static __INLINE void __set_FAULTMASK(uint32_t faultMask)
{
register uint32_t __regFaultMask __ASM("faultmask");
__regFaultMask = (faultMask & 1);
}
#endif /* __ARMCC_VERSION */
#endif /* (__CORTEX_M >= 0x03) */
#if (__CORTEX_M == 0x04)
/** \brief Get FPSCR
This function returns the current value of the Floating Point Status/Control register.
\return Floating Point Status/Control register value
*/
static __INLINE uint32_t __get_FPSCR(void)
{
#if (__FPU_PRESENT == 1)
register uint32_t __regfpscr __ASM("fpscr");
return(__regfpscr);
#else
return(0);
#endif
}
/** \brief Set FPSCR
This function assigns the given value to the Floating Point Status/Control register.
\param [in] fpscr Floating Point Status/Control value to set
*/
static __INLINE void __set_FPSCR(uint32_t fpscr)
{
#if (__FPU_PRESENT == 1)
register uint32_t __regfpscr __ASM("fpscr");
__regfpscr = (fpscr);
#endif
}
#endif /* (__CORTEX_M == 0x04) */
#elif (defined (__ICCARM__)) /*---------------- ICC Compiler ---------------------*/
/* IAR iccarm specific functions */
#include <cmsis_iar.h>
#elif (defined (__GNUC__)) /*------------------ GNU Compiler ---------------------*/
/* GNU gcc specific functions */
/** \brief Enable IRQ Interrupts
This function enables IRQ interrupts by clearing the I-bit in the CPSR.
Can only be executed in Privileged modes.
*/
__attribute__( ( always_inline ) ) static __INLINE void __enable_irq(void)
{
__ASM volatile ("cpsie i");
}
/** \brief Disable IRQ Interrupts
This function disables IRQ interrupts by setting the I-bit in the CPSR.
Can only be executed in Privileged modes.
*/
__attribute__( ( always_inline ) ) static __INLINE void __disable_irq(void)
{
__ASM volatile ("cpsid i");
}
/** \brief Get Control Register
This function returns the content of the Control Register.
\return Control Register value
*/
__attribute__( ( always_inline ) ) static __INLINE uint32_t __get_CONTROL(void)
{
uint32_t result;
__ASM volatile ("MRS %0, control" : "=r" (result) );
return(result);
}
/** \brief Set Control Register
This function writes the given value to the Control Register.
\param [in] control Control Register value to set
*/
__attribute__( ( always_inline ) ) static __INLINE void __set_CONTROL(uint32_t control)
{
__ASM volatile ("MSR control, %0" : : "r" (control) );
}
/** \brief Get ISPR Register
This function returns the content of the ISPR Register.
\return ISPR Register value
*/
__attribute__( ( always_inline ) ) static __INLINE uint32_t __get_IPSR(void)
{
uint32_t result;
__ASM volatile ("MRS %0, ipsr" : "=r" (result) );
return(result);
}
/** \brief Get APSR Register
This function returns the content of the APSR Register.
\return APSR Register value
*/
__attribute__( ( always_inline ) ) static __INLINE uint32_t __get_APSR(void)
{
uint32_t result;
__ASM volatile ("MRS %0, apsr" : "=r" (result) );
return(result);
}
/** \brief Get xPSR Register
This function returns the content of the xPSR Register.
\return xPSR Register value
*/
__attribute__( ( always_inline ) ) static __INLINE uint32_t __get_xPSR(void)
{
uint32_t result;
__ASM volatile ("MRS %0, xpsr" : "=r" (result) );
return(result);
}
/** \brief Get Process Stack Pointer
This function returns the current value of the Process Stack Pointer (PSP).
\return PSP Register value
*/
__attribute__( ( always_inline ) ) static __INLINE uint32_t __get_PSP(void)
{
register uint32_t result;
__ASM volatile ("MRS %0, psp\n" : "=r" (result) );
return(result);
}
/** \brief Set Process Stack Pointer
This function assigns the given value to the Process Stack Pointer (PSP).
\param [in] topOfProcStack Process Stack Pointer value to set
*/
__attribute__( ( always_inline ) ) static __INLINE void __set_PSP(uint32_t topOfProcStack)
{
__ASM volatile ("MSR psp, %0\n" : : "r" (topOfProcStack) );
}
/** \brief Get Main Stack Pointer
This function returns the current value of the Main Stack Pointer (MSP).
\return MSP Register value
*/
__attribute__( ( always_inline ) ) static __INLINE uint32_t __get_MSP(void)
{
register uint32_t result;
__ASM volatile ("MRS %0, msp\n" : "=r" (result) );
return(result);
}
/** \brief Set Main Stack Pointer
This function assigns the given value to the Main Stack Pointer (MSP).
\param [in] topOfMainStack Main Stack Pointer value to set
*/
__attribute__( ( always_inline ) ) static __INLINE void __set_MSP(uint32_t topOfMainStack)
{
__ASM volatile ("MSR msp, %0\n" : : "r" (topOfMainStack) );
}
/** \brief Get Priority Mask
This function returns the current state of the priority mask bit from the Priority Mask Register.
\return Priority Mask value
*/
__attribute__( ( always_inline ) ) static __INLINE uint32_t __get_PRIMASK(void)
{
uint32_t result;
__ASM volatile ("MRS %0, primask" : "=r" (result) );
return(result);
}
/** \brief Set Priority Mask
This function assigns the given value to the Priority Mask Register.
\param [in] priMask Priority Mask
*/
__attribute__( ( always_inline ) ) static __INLINE void __set_PRIMASK(uint32_t priMask)
{
__ASM volatile ("MSR primask, %0" : : "r" (priMask) );
}
#if (__CORTEX_M >= 0x03)
/** \brief Enable FIQ
This function enables FIQ interrupts by clearing the F-bit in the CPSR.
Can only be executed in Privileged modes.
*/
__attribute__( ( always_inline ) ) static __INLINE void __enable_fault_irq(void)
{
__ASM volatile ("cpsie f");
}
/** \brief Disable FIQ
This function disables FIQ interrupts by setting the F-bit in the CPSR.
Can only be executed in Privileged modes.
*/
__attribute__( ( always_inline ) ) static __INLINE void __disable_fault_irq(void)
{
__ASM volatile ("cpsid f");
}
/** \brief Get Base Priority
This function returns the current value of the Base Priority register.
\return Base Priority register value
*/
__attribute__( ( always_inline ) ) static __INLINE uint32_t __get_BASEPRI(void)
{
uint32_t result;
__ASM volatile ("MRS %0, basepri_max" : "=r" (result) );
return(result);
}
/** \brief Set Base Priority
This function assigns the given value to the Base Priority register.
\param [in] basePri Base Priority value to set
*/
__attribute__( ( always_inline ) ) static __INLINE void __set_BASEPRI(uint32_t value)
{
__ASM volatile ("MSR basepri, %0" : : "r" (value) );
}
/** \brief Get Fault Mask
This function returns the current value of the Fault Mask register.
\return Fault Mask register value
*/
__attribute__( ( always_inline ) ) static __INLINE uint32_t __get_FAULTMASK(void)
{
uint32_t result;
__ASM volatile ("MRS %0, faultmask" : "=r" (result) );
return(result);
}
/** \brief Set Fault Mask
This function assigns the given value to the Fault Mask register.
\param [in] faultMask Fault Mask value to set
*/
__attribute__( ( always_inline ) ) static __INLINE void __set_FAULTMASK(uint32_t faultMask)
{
__ASM volatile ("MSR faultmask, %0" : : "r" (faultMask) );
}
#endif /* (__CORTEX_M >= 0x03) */
#if (__CORTEX_M == 0x04)
/** \brief Get FPSCR
This function returns the current value of the Floating Point Status/Control register.
\return Floating Point Status/Control register value
*/
__attribute__( ( always_inline ) ) static __INLINE uint32_t __get_FPSCR(void)
{
#if (__FPU_PRESENT == 1)
uint32_t result;
__ASM volatile ("MRS %0, fpscr" : "=r" (result) );
return(result);
#else
return(0);
#endif
}
/** \brief Set FPSCR
This function assigns the given value to the Floating Point Status/Control register.
\param [in] fpscr Floating Point Status/Control value to set
*/
__attribute__( ( always_inline ) ) static __INLINE void __set_FPSCR(uint32_t fpscr)
{
#if (__FPU_PRESENT == 1)
__ASM volatile ("MSR fpscr, %0" : : "r" (fpscr) );
#endif
}
#endif /* (__CORTEX_M == 0x04) */
#elif (defined (__TASKING__)) /*--------------- TASKING Compiler -----------------*/
/* TASKING carm specific functions */
/*
* The CMSIS functions have been implemented as intrinsics in the compiler.
* Please use "carm -?i" to get an up to date list of all instrinsics,
* Including the CMSIS ones.
*/
#endif
/*@} end of CMSIS_Core_RegAccFunctions */
#endif /* __CORE_CMFUNC_H__ */

View File

@ -1,592 +0,0 @@
/**************************************************************************//**
* @file core_cmInstr.h
* @brief CMSIS Cortex-M Core Instruction Access Header File
* @version V2.03
* @date 07. April 2011
*
* @note
* Copyright (C) 2009-2011 ARM Limited. All rights reserved.
*
* @par
* ARM Limited (ARM) is supplying this software for use with Cortex-M
* processor based microcontrollers. This file can be freely distributed
* within development tools that are supporting such ARM based processors.
*
* @par
* THIS SOFTWARE IS PROVIDED "AS IS". NO WARRANTIES, WHETHER EXPRESS, IMPLIED
* OR STATUTORY, INCLUDING, BUT NOT LIMITED TO, IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE APPLY TO THIS SOFTWARE.
* ARM SHALL NOT, IN ANY CIRCUMSTANCES, BE LIABLE FOR SPECIAL, INCIDENTAL, OR
* CONSEQUENTIAL DAMAGES, FOR ANY REASON WHATSOEVER.
*
******************************************************************************/
#ifndef __CORE_CMINSTR_H__
#define __CORE_CMINSTR_H__
/* ########################## Core Instruction Access ######################### */
/** \defgroup CMSIS_Core_InstructionInterface CMSIS Core Instruction Interface
Access to dedicated instructions
@{
*/
#if defined ( __CC_ARM ) /*------------------ RealView Compiler ----------------*/
/* ARM armcc specific functions */
/** \brief No Operation
No Operation does nothing. This instruction can be used for code alignment purposes.
*/
#define __NOP __nop
/** \brief Wait For Interrupt
Wait For Interrupt is a hint instruction that suspends execution
until one of a number of events occurs.
*/
#define __WFI __wfi
/** \brief Wait For Event
Wait For Event is a hint instruction that permits the processor to enter
a low-power state until one of a number of events occurs.
*/
#define __WFE __wfe
/** \brief Send Event
Send Event is a hint instruction. It causes an event to be signaled to the CPU.
*/
#define __SEV __sev
/** \brief Instruction Synchronization Barrier
Instruction Synchronization Barrier flushes the pipeline in the processor,
so that all instructions following the ISB are fetched from cache or
memory, after the instruction has been completed.
*/
#define __ISB() __isb(0xF)
/** \brief Data Synchronization Barrier
This function acts as a special kind of Data Memory Barrier.
It completes when all explicit memory accesses before this instruction complete.
*/
#define __DSB() __dsb(0xF)
/** \brief Data Memory Barrier
This function ensures the apparent order of the explicit memory operations before
and after the instruction, without ensuring their completion.
*/
#define __DMB() __dmb(0xF)
/** \brief Reverse byte order (32 bit)
This function reverses the byte order in integer value.
\param [in] value Value to reverse
\return Reversed value
*/
#define __REV __rev
/** \brief Reverse byte order (16 bit)
This function reverses the byte order in two unsigned short values.
\param [in] value Value to reverse
\return Reversed value
*/
#if (__ARMCC_VERSION < 400677)
extern uint32_t __REV16(uint32_t value);
#else /* (__ARMCC_VERSION >= 400677) */
static __INLINE __ASM uint32_t __REV16(uint32_t value)
{
rev16 r0, r0
bx lr
}
#endif /* __ARMCC_VERSION */
/** \brief Reverse byte order in signed short value
This function reverses the byte order in a signed short value with sign extension to integer.
\param [in] value Value to reverse
\return Reversed value
*/
#if (__ARMCC_VERSION < 400677)
extern int32_t __REVSH(int32_t value);
#else /* (__ARMCC_VERSION >= 400677) */
static __INLINE __ASM int32_t __REVSH(int32_t value)
{
revsh r0, r0
bx lr
}
#endif /* __ARMCC_VERSION */
#if (__CORTEX_M >= 0x03)
/** \brief Reverse bit order of value
This function reverses the bit order of the given value.
\param [in] value Value to reverse
\return Reversed value
*/
#define __RBIT __rbit
/** \brief LDR Exclusive (8 bit)
This function performs a exclusive LDR command for 8 bit value.
\param [in] ptr Pointer to data
\return value of type uint8_t at (*ptr)
*/
#define __LDREXB(ptr) ((uint8_t ) __ldrex(ptr))
/** \brief LDR Exclusive (16 bit)
This function performs a exclusive LDR command for 16 bit values.
\param [in] ptr Pointer to data
\return value of type uint16_t at (*ptr)
*/
#define __LDREXH(ptr) ((uint16_t) __ldrex(ptr))
/** \brief LDR Exclusive (32 bit)
This function performs a exclusive LDR command for 32 bit values.
\param [in] ptr Pointer to data
\return value of type uint32_t at (*ptr)
*/
#define __LDREXW(ptr) ((uint32_t ) __ldrex(ptr))
/** \brief STR Exclusive (8 bit)
This function performs a exclusive STR command for 8 bit values.
\param [in] value Value to store
\param [in] ptr Pointer to location
\return 0 Function succeeded
\return 1 Function failed
*/
#define __STREXB(value, ptr) __strex(value, ptr)
/** \brief STR Exclusive (16 bit)
This function performs a exclusive STR command for 16 bit values.
\param [in] value Value to store
\param [in] ptr Pointer to location
\return 0 Function succeeded
\return 1 Function failed
*/
#define __STREXH(value, ptr) __strex(value, ptr)
/** \brief STR Exclusive (32 bit)
This function performs a exclusive STR command for 32 bit values.
\param [in] value Value to store
\param [in] ptr Pointer to location
\return 0 Function succeeded
\return 1 Function failed
*/
#define __STREXW(value, ptr) __strex(value, ptr)
/** \brief Remove the exclusive lock
This function removes the exclusive lock which is created by LDREX.
*/
#if (__ARMCC_VERSION < 400000)
extern void __CLREX(void);
#else /* (__ARMCC_VERSION >= 400000) */
#define __CLREX __clrex
#endif /* __ARMCC_VERSION */
/** \brief Signed Saturate
This function saturates a signed value.
\param [in] value Value to be saturated
\param [in] sat Bit position to saturate to (1..32)
\return Saturated value
*/
#define __SSAT __ssat
/** \brief Unsigned Saturate
This function saturates an unsigned value.
\param [in] value Value to be saturated
\param [in] sat Bit position to saturate to (0..31)
\return Saturated value
*/
#define __USAT __usat
/** \brief Count leading zeros
This function counts the number of leading zeros of a data value.
\param [in] value Value to count the leading zeros
\return number of leading zeros in value
*/
#define __CLZ __clz
#endif /* (__CORTEX_M >= 0x03) */
#elif (defined (__ICCARM__)) /*---------------- ICC Compiler ---------------------*/
/* IAR iccarm specific functions */
#include <cmsis_iar.h>
#elif (defined (__GNUC__)) /*------------------ GNU Compiler ---------------------*/
/* GNU gcc specific functions */
/** \brief No Operation
No Operation does nothing. This instruction can be used for code alignment purposes.
*/
__attribute__( ( always_inline ) ) static __INLINE void __NOP(void)
{
__ASM volatile ("nop");
}
/** \brief Wait For Interrupt
Wait For Interrupt is a hint instruction that suspends execution
until one of a number of events occurs.
*/
__attribute__( ( always_inline ) ) static __INLINE void __WFI(void)
{
__ASM volatile ("wfi");
}
/** \brief Wait For Event
Wait For Event is a hint instruction that permits the processor to enter
a low-power state until one of a number of events occurs.
*/
__attribute__( ( always_inline ) ) static __INLINE void __WFE(void)
{
__ASM volatile ("wfe");
}
/** \brief Send Event
Send Event is a hint instruction. It causes an event to be signaled to the CPU.
*/
__attribute__( ( always_inline ) ) static __INLINE void __SEV(void)
{
__ASM volatile ("sev");
}
/** \brief Instruction Synchronization Barrier
Instruction Synchronization Barrier flushes the pipeline in the processor,
so that all instructions following the ISB are fetched from cache or
memory, after the instruction has been completed.
*/
__attribute__( ( always_inline ) ) static __INLINE void __ISB(void)
{
__ASM volatile ("isb");
}
/** \brief Data Synchronization Barrier
This function acts as a special kind of Data Memory Barrier.
It completes when all explicit memory accesses before this instruction complete.
*/
__attribute__( ( always_inline ) ) static __INLINE void __DSB(void)
{
__ASM volatile ("dsb");
}
/** \brief Data Memory Barrier
This function ensures the apparent order of the explicit memory operations before
and after the instruction, without ensuring their completion.
*/
__attribute__( ( always_inline ) ) static __INLINE void __DMB(void)
{
__ASM volatile ("dmb");
}
/** \brief Reverse byte order (32 bit)
This function reverses the byte order in integer value.
\param [in] value Value to reverse
\return Reversed value
*/
__attribute__( ( always_inline ) ) static __INLINE uint32_t __REV(uint32_t value)
{
uint32_t result;
__ASM volatile ("rev %0, %1" : "=r" (result) : "r" (value) );
return(result);
}
/** \brief Reverse byte order (16 bit)
This function reverses the byte order in two unsigned short values.
\param [in] value Value to reverse
\return Reversed value
*/
__attribute__( ( always_inline ) ) static __INLINE uint32_t __REV16(uint32_t value)
{
uint32_t result;
__ASM volatile ("rev16 %0, %1" : "=r" (result) : "r" (value) );
return(result);
}
/** \brief Reverse byte order in signed short value
This function reverses the byte order in a signed short value with sign extension to integer.
\param [in] value Value to reverse
\return Reversed value
*/
__attribute__( ( always_inline ) ) static __INLINE int32_t __REVSH(int32_t value)
{
uint32_t result;
__ASM volatile ("revsh %0, %1" : "=r" (result) : "r" (value) );
return(result);
}
#if (__CORTEX_M >= 0x03)
/** \brief Reverse bit order of value
This function reverses the bit order of the given value.
\param [in] value Value to reverse
\return Reversed value
*/
__attribute__( ( always_inline ) ) static __INLINE uint32_t __RBIT(uint32_t value)
{
uint32_t result;
__ASM volatile ("rbit %0, %1" : "=r" (result) : "r" (value) );
return(result);
}
/** \brief LDR Exclusive (8 bit)
This function performs a exclusive LDR command for 8 bit value.
\param [in] ptr Pointer to data
\return value of type uint8_t at (*ptr)
*/
__attribute__( ( always_inline ) ) static __INLINE uint8_t __LDREXB(volatile uint8_t *addr)
{
uint8_t result;
__ASM volatile ("ldrexb %0, [%1]" : "=r" (result) : "r" (addr) );
return(result);
}
/** \brief LDR Exclusive (16 bit)
This function performs a exclusive LDR command for 16 bit values.
\param [in] ptr Pointer to data
\return value of type uint16_t at (*ptr)
*/
__attribute__( ( always_inline ) ) static __INLINE uint16_t __LDREXH(volatile uint16_t *addr)
{
uint16_t result;
__ASM volatile ("ldrexh %0, [%1]" : "=r" (result) : "r" (addr) );
return(result);
}
/** \brief LDR Exclusive (32 bit)
This function performs a exclusive LDR command for 32 bit values.
\param [in] ptr Pointer to data
\return value of type uint32_t at (*ptr)
*/
__attribute__( ( always_inline ) ) static __INLINE uint32_t __LDREXW(volatile uint32_t *addr)
{
uint32_t result;
__ASM volatile ("ldrex %0, [%1]" : "=r" (result) : "r" (addr) );
return(result);
}
/** \brief STR Exclusive (8 bit)
This function performs a exclusive STR command for 8 bit values.
\param [in] value Value to store
\param [in] ptr Pointer to location
\return 0 Function succeeded
\return 1 Function failed
*/
__attribute__( ( always_inline ) ) static __INLINE uint32_t __STREXB(uint8_t value, volatile uint8_t *addr)
{
uint32_t result;
__ASM volatile ("strexb %0, %2, [%1]" : "=r" (result) : "r" (addr), "r" (value) );
return(result);
}
/** \brief STR Exclusive (16 bit)
This function performs a exclusive STR command for 16 bit values.
\param [in] value Value to store
\param [in] ptr Pointer to location
\return 0 Function succeeded
\return 1 Function failed
*/
__attribute__( ( always_inline ) ) static __INLINE uint32_t __STREXH(uint16_t value, volatile uint16_t *addr)
{
uint32_t result;
__ASM volatile ("strexh %0, %2, [%1]" : "=r" (result) : "r" (addr), "r" (value) );
return(result);
}
/** \brief STR Exclusive (32 bit)
This function performs a exclusive STR command for 32 bit values.
\param [in] value Value to store
\param [in] ptr Pointer to location
\return 0 Function succeeded
\return 1 Function failed
*/
__attribute__( ( always_inline ) ) static __INLINE uint32_t __STREXW(uint32_t value, volatile uint32_t *addr)
{
uint32_t result;
__ASM volatile ("strex %0, %2, [%1]" : "=r" (result) : "r" (addr), "r" (value) );
return(result);
}
/** \brief Remove the exclusive lock
This function removes the exclusive lock which is created by LDREX.
*/
__attribute__( ( always_inline ) ) static __INLINE void __CLREX(void)
{
__ASM volatile ("clrex");
}
/** \brief Signed Saturate
This function saturates a signed value.
\param [in] value Value to be saturated
\param [in] sat Bit position to saturate to (1..32)
\return Saturated value
*/
#define __SSAT(ARG1,ARG2) \
({ \
uint32_t __RES, __ARG1 = (ARG1); \
__ASM ("ssat %0, %1, %2" : "=r" (__RES) : "I" (ARG2), "r" (__ARG1) ); \
__RES; \
})
/** \brief Unsigned Saturate
This function saturates an unsigned value.
\param [in] value Value to be saturated
\param [in] sat Bit position to saturate to (0..31)
\return Saturated value
*/
#define __USAT(ARG1,ARG2) \
({ \
uint32_t __RES, __ARG1 = (ARG1); \
__ASM ("usat %0, %1, %2" : "=r" (__RES) : "I" (ARG2), "r" (__ARG1) ); \
__RES; \
})
/** \brief Count leading zeros
This function counts the number of leading zeros of a data value.
\param [in] value Value to count the leading zeros
\return number of leading zeros in value
*/
__attribute__( ( always_inline ) ) static __INLINE uint8_t __CLZ(uint32_t value)
{
uint8_t result;
__ASM volatile ("clz %0, %1" : "=r" (result) : "r" (value) );
return(result);
}
#endif /* (__CORTEX_M >= 0x03) */
#elif (defined (__TASKING__)) /*--------------- TASKING Compiler -----------------*/
/* TASKING carm specific functions */
/*
* The CMSIS functions have been implemented as intrinsics in the compiler.
* Please use "carm -?i" to get an up to date list of all intrinsics,
* Including the CMSIS ones.
*/
#endif
/*@}*/ /* end of group CMSIS_Core_InstructionInterface */
#endif /* __CORE_CMINSTR_H__ */

View File

@ -1,44 +0,0 @@
/*
* File : cpu.c
* This file is part of RT-Thread RTOS
* COPYRIGHT (C) 2009, RT-Thread Development Team
*
* The license and distribution terms for this file may be
* found in the file LICENSE in this distribution or at
* http://www.rt-thread.org/license/LICENSE
*
* Change Logs:
* Date Author Notes
* 2009-01-05 Bernard first version
* 2010-02-04 Magicoe Edit for LPC17xx Series
* 2011-08-06 Magicoe Manded for PK40X256VLQ100
*/
#include <rtthread.h>
/**
* @addtogroup PK40X256VLQ100
*/
/*@{*/
/**
* reset cpu by dog's time-out
*
*/
void rt_hw_cpu_reset()
{
/*NOTREACHED*/
}
/**
* shutdown CPU
*
*/
void rt_hw_cpu_shutdown()
{
rt_kprintf("shutdown...\n");
RT_ASSERT(0);
}
/*@}*/

View File

@ -1,47 +0,0 @@
/*
* File : fault.c
* This file is part of RT-Thread RTOS
* COPYRIGHT (C) 2009, RT-Thread Development Team
*
* The license and distribution terms for this file may be
* found in the file LICENSE in this distribution or at
* http://www.rt-thread.org/license/LICENSE
*
* Change Logs:
* Date Author Notes
* 2009-01-05 Bernard first version
*/
#include <rtthread.h>
struct stack_contex
{
rt_uint32_t r0;
rt_uint32_t r1;
rt_uint32_t r2;
rt_uint32_t r3;
rt_uint32_t r12;
rt_uint32_t lr;
rt_uint32_t pc;
rt_uint32_t psr;
};
extern void rt_hw_interrupt_thread_switch(void);
extern void list_thread(void);
extern rt_thread_t rt_current_thread;
void rt_hw_hard_fault_exception(struct stack_contex* contex)
{
rt_kprintf("psr: 0x%08x\n", contex->psr);
rt_kprintf(" pc: 0x%08x\n", contex->pc);
rt_kprintf(" lr: 0x%08x\n", contex->lr);
rt_kprintf("r12: 0x%08x\n", contex->r12);
rt_kprintf("r03: 0x%08x\n", contex->r3);
rt_kprintf("r02: 0x%08x\n", contex->r2);
rt_kprintf("r01: 0x%08x\n", contex->r1);
rt_kprintf("r00: 0x%08x\n", contex->r0);
rt_kprintf("hard fault on thread: %s\n", rt_current_thread->name);
#ifdef RT_USING_FINSH
list_thread();
#endif
while (1);
}

View File

@ -1,35 +0,0 @@
;/*
; * File : fault_rvds.S
; * This file is part of RT-Thread RTOS
; * COPYRIGHT (C) 2006, RT-Thread Development Team
; *
; * The license and distribution terms for this file may be
; * found in the file LICENSE in this distribution or at
; * http://www.rt-thread.org/license/LICENSE
; *
; * Change Logs:
; * Date Author Notes
; * 2009-01-17 Bernard first version
; */
AREA |.text|, CODE, READONLY, ALIGN=2
THUMB
REQUIRE8
PRESERVE8
IMPORT rt_hw_hard_fault_exception
rt_hw_hard_fault PROC
EXPORT rt_hw_hard_fault
; get current context
MRS r0, psp ; get fault thread stack pointer
PUSH {lr}
BL rt_hw_hard_fault_exception
POP {lr}
ORR lr, lr, #0x04
BX lr
ENDP
END

View File

@ -1,21 +0,0 @@
/*
* File : interrupt.c
* This file is part of RT-Thread RTOS
* COPYRIGHT (C) 2009, RT-Thread Development Team
*
* The license and distribution terms for this file may be
* found in the file LICENSE in this distribution or at
* http://www.rt-thread.org/license/LICENSE
*
* Change Logs:
* Date Author Notes
* 2009-01-05 Bernard first version
*/
#include <rtthread.h>
/* exception and interrupt handler table */
rt_uint32_t rt_interrupt_from_thread, rt_interrupt_to_thread;
rt_uint32_t rt_thread_switch_interrupt_flag;
/*@}*/

View File

@ -1,61 +0,0 @@
/*
* File : stack.c
* This file is part of RT-Thread RTOS
* COPYRIGHT (C) 2009, RT-Thread Development Team
*
* The license and distribution terms for this file may be
* found in the file LICENSE in this distribution or at
* http://www.rt-thread.org/license/LICENSE
*
* Change Logs:
* Date Author Notes
* 2006-08-23 Bernard the first version
* 2010-02-04 Magicoe Edit for LPC17xx Series
* 2011-08-06 Magicoe Manded for PK40X256VLQ100
*/
#include <rtthread.h>
/**
* @addtogroup PK40X256VLQ100
*/
/*@{*/
/**
* This function will initialize thread stack
*
* @param tentry the entry of thread
* @param parameter the parameter of entry
* @param stack_addr the beginning stack address
* @param texit the function will be called when thread exit
*
* @return stack address
*/
rt_uint8_t *rt_hw_stack_init(void *tentry, void *parameter,
rt_uint8_t *stack_addr, void *texit)
{
unsigned long *stk;
stk = (unsigned long *)stack_addr;
*(stk) = 0x01000000L; /* PSR */
*(--stk) = (unsigned long)tentry; /* entry point, pc */
*(--stk) = (unsigned long)texit; /* lr */
*(--stk) = 0; /* r12 */
*(--stk) = 0; /* r3 */
*(--stk) = 0; /* r2 */
*(--stk) = 0; /* r1 */
*(--stk) = (unsigned long)parameter; /* r0 : argument */
*(--stk) = 0; /* r11 */
*(--stk) = 0; /* r10 */
*(--stk) = 0; /* r9 */
*(--stk) = 0; /* r8 */
*(--stk) = 0; /* r7 */
*(--stk) = 0; /* r6 */
*(--stk) = 0; /* r5 */
*(--stk) = 0; /* r4 */
/* return task's current stack address */
return (rt_uint8_t *)stk;
}
/*@}*/

View File

@ -1,652 +0,0 @@
; /*
; * File : start_rvds.s
; * This file is part of RT-Thread RTOS
; * COPYRIGHT (C) 2009, RT-Thread Development Team
; *
; * The license and distribution terms for this file may be
; * found in the file LICENSE in this distribution or at
; * http://www.rt-thread.org/license/LICENSE
; *
; * Change Logs:
; * Date Author Notes
; * 2009-09-23 Bernard first implementation
; * 2010-02-04 Magicoe Edit for LPC17xx Series
; * 2011-08-06 Magicoe Edit for PK40X256VLQ100
; */
;/*****************************************************************************
; * @file: startup_MK40N512MD100.s
; * @purpose: CMSIS Cortex-M4 Core Device Startup File for the
; * MK40N512MD100
; * @version: 1.6
; * @date: 2011-1-14
; *
; * Copyright: 1997 - 2011 Freescale Semiconductor, Inc. All Rights Reserved.
;*
; *------- <<< Use Configuration Wizard in Context Menu >>> ------------------
; *
; *****************************************************************************/
; <h> Stack Configuration
; <o> Stack Size (in Bytes) <0x0-0xFFFFFFFF:8>
; </h>
Stack_Size EQU 0x00001000
AREA STACK, NOINIT, READWRITE, ALIGN=3
Stack_Mem SPACE Stack_Size
__initial_sp
; <h> Heap Configuration
; <o> Heap Size (in Bytes) <0x0-0xFFFFFFFF:8>
; </h>
Heap_Size EQU 0x00001000
AREA HEAP, NOINIT, READWRITE, ALIGN=3
__heap_base
Heap_Mem SPACE Heap_Size
__heap_limit
PRESERVE8
THUMB
IMPORT rt_hw_hard_fault
IMPORT rt_hw_pend_sv
IMPORT rt_hw_timer_handler
; Vector Table Mapped to Address 0 at Reset
AREA RESET, DATA, READONLY
EXPORT __Vectors
EXPORT __Vectors_End
EXPORT __Vectors_Size
__Vectors DCD __initial_sp ; Top of Stack
DCD Reset_Handler ; Reset Handler
DCD NMI_Handler ; NMI Handler
DCD rt_hw_hard_fault ; Hard Fault Handler
DCD MemManage_Handler ; MPU Fault Handler
DCD BusFault_Handler ; Bus Fault Handler
DCD UsageFault_Handler ; Usage Fault Handler
DCD 0 ; Reserved
DCD 0 ; Reserved
DCD 0 ; Reserved
DCD 0 ; Reserved
DCD SVC_Handler ; SVCall Handler
DCD DebugMon_Handler ; Debug Monitor Handler
DCD 0 ; Reserved
DCD rt_hw_pend_sv ; PendSV Handler
DCD rt_hw_timer_handler ; SysTick Handler
; External Interrupts
DCD DMA0_IRQHandler ; DMA Channel 0 Transfer Complete
DCD DMA1_IRQHandler ; DMA Channel 1 Transfer Complete
DCD DMA2_IRQHandler ; DMA Channel 2 Transfer Complete
DCD DMA3_IRQHandler ; DMA Channel 3 Transfer Complete
DCD DMA4_IRQHandler ; DMA Channel 4 Transfer Complete
DCD DMA5_IRQHandler ; DMA Channel 5 Transfer Complete
DCD DMA6_IRQHandler ; DMA Channel 6 Transfer Complete
DCD DMA7_IRQHandler ; DMA Channel 7 Transfer Complete
DCD DMA8_IRQHandler ; DMA Channel 8 Transfer Complete
DCD DMA9_IRQHandler ; DMA Channel 9 Transfer Complete
DCD DMA10_IRQHandler ; DMA Channel 10 Transfer Complete
DCD DMA11_IRQHandler ; DMA Channel 11 Transfer Complete
DCD DMA12_IRQHandler ; DMA Channel 12 Transfer Complete
DCD DMA13_IRQHandler ; DMA Channel 13 Transfer Complete
DCD DMA14_IRQHandler ; DMA Channel 14 Transfer Complete
DCD DMA15_IRQHandler ; DMA Channel 15 Transfer Complete
DCD DMA_Error_IRQHandler ; DMA Error Interrupt
DCD MCM_IRQHandler ; Normal Interrupt
DCD FTFL_IRQHandler ; FTFL Interrupt
DCD Read_Collision_IRQHandler ; Read Collision Interrupt
DCD LVD_LVW_IRQHandler ; Low Voltage Detect, Low Voltage Warning
DCD LLW_IRQHandler ; Low Leakage Wakeup
DCD Watchdog_IRQHandler ; WDOG Interrupt
DCD Reserved39_IRQHandler ; Reserved interrupt 39
DCD I2C0_IRQHandler ; I2C0 interrupt
DCD I2C1_IRQHandler ; I2C1 interrupt
DCD SPI0_IRQHandler ; SPI0 Interrupt
DCD SPI1_IRQHandler ; SPI1 Interrupt
DCD SPI2_IRQHandler ; SPI2 Interrupt
DCD CAN0_ORed_Message_buffer_IRQHandler ; CAN0 OR'd Message Buffers Interrupt
DCD CAN0_Bus_Off_IRQHandler ; CAN0 Bus Off Interrupt
DCD CAN0_Error_IRQHandler ; CAN0 Error Interrupt
DCD CAN0_Tx_Warning_IRQHandler ; CAN0 Tx Warning Interrupt
DCD CAN0_Rx_Warning_IRQHandler ; CAN0 Rx Warning Interrupt
DCD CAN0_Wake_Up_IRQHandler ; CAN0 Wake Up Interrupt
DCD Reserved51_IRQHandler ; Reserved interrupt 51
DCD Reserved52_IRQHandler ; Reserved interrupt 52
DCD CAN1_ORed_Message_buffer_IRQHandler ; CAN1 OR'd Message Buffers Interrupt
DCD CAN1_Bus_Off_IRQHandler ; CAN1 Bus Off Interrupt
DCD CAN1_Error_IRQHandler ; CAN1 Error Interrupt
DCD CAN1_Tx_Warning_IRQHandler ; CAN1 Tx Warning Interrupt
DCD CAN1_Rx_Warning_IRQHandler ; CAN1 Rx Warning Interrupt
DCD CAN1_Wake_Up_IRQHandler ; CAN1 Wake Up Interrupt
DCD Reserved59_IRQHandler ; Reserved interrupt 59
DCD Reserved60_IRQHandler ; Reserved interrupt 60
DCD UART0_RX_TX_IRQHandler ; UART0 Receive/Transmit interrupt
DCD UART0_ERR_IRQHandler ; UART0 Error interrupt
DCD UART1_RX_TX_IRQHandler ; UART1 Receive/Transmit interrupt
DCD UART1_ERR_IRQHandler ; UART1 Error interrupt
DCD UART2_RX_TX_IRQHandler ; UART2 Receive/Transmit interrupt
DCD UART2_ERR_IRQHandler ; UART2 Error interrupt
DCD UART3_RX_TX_IRQHandler ; UART3 Receive/Transmit interrupt
DCD UART3_ERR_IRQHandler ; UART3 Error interrupt
DCD UART4_RX_TX_IRQHandler ; UART4 Receive/Transmit interrupt
DCD UART4_ERR_IRQHandler ; UART4 Error interrupt
DCD UART5_RX_TX_IRQHandler ; UART5 Receive/Transmit interrupt
DCD UART5_ERR_IRQHandler ; UART5 Error interrupt
DCD ADC0_IRQHandler ; ADC0 interrupt
DCD ADC1_IRQHandler ; ADC1 interrupt
DCD CMP0_IRQHandler ; CMP0 interrupt
DCD CMP1_IRQHandler ; CMP1 interrupt
DCD CMP2_IRQHandler ; CMP2 interrupt
DCD FTM0_IRQHandler ; FTM0 fault, overflow and channels interrupt
DCD FTM1_IRQHandler ; FTM1 fault, overflow and channels interrupt
DCD FTM2_IRQHandler ; FTM2 fault, overflow and channels interrupt
DCD CMT_IRQHandler ; CMT interrupt
DCD RTC_IRQHandler ; RTC interrupt
DCD Reserved83_IRQHandler ; Reserved interrupt 83
DCD PIT0_IRQHandler ; PIT timer channel 0 interrupt
DCD PIT1_IRQHandler ; PIT timer channel 1 interrupt
DCD PIT2_IRQHandler ; PIT timer channel 2 interrupt
DCD PIT3_IRQHandler ; PIT timer channel 3 interrupt
DCD PDB0_IRQHandler ; PDB0 Interrupt
DCD USB0_IRQHandler ; USB0 interrupt
DCD USBDCD_IRQHandler ; USBDCD Interrupt
DCD Reserved91_IRQHandler ; Reserved interrupt 91
DCD Reserved92_IRQHandler ; Reserved interrupt 92
DCD Reserved93_IRQHandler ; Reserved interrupt 93
DCD Reserved94_IRQHandler ; Reserved interrupt 94
DCD I2S0_IRQHandler ; I2S0 Interrupt
DCD SDHC_IRQHandler ; SDHC Interrupt
DCD DAC0_IRQHandler ; DAC0 interrupt
DCD DAC1_IRQHandler ; DAC1 interrupt
DCD TSI0_IRQHandler ; TSI0 Interrupt
DCD MCG_IRQHandler ; MCG Interrupt
DCD LPTimer_IRQHandler ; LPTimer interrupt
DCD LCD_IRQHandler ; Segment LCD Interrupt
DCD PORTA_IRQHandler ; Port A interrupt
DCD PORTB_IRQHandler ; Port B interrupt
DCD PORTC_IRQHandler ; Port C interrupt
DCD PORTD_IRQHandler ; Port D interrupt
DCD PORTE_IRQHandler ; Port E interrupt
DCD Reserved108_IRQHandler ; Reserved interrupt 108
DCD Reserved109_IRQHandler ; Reserved interrupt 109
DCD Reserved110_IRQHandler ; Reserved interrupt 110
DCD Reserved111_IRQHandler ; Reserved interrupt 111
DCD Reserved112_IRQHandler ; Reserved interrupt 112
DCD Reserved113_IRQHandler ; Reserved interrupt 113
DCD Reserved114_IRQHandler ; Reserved interrupt 114
DCD Reserved115_IRQHandler ; Reserved interrupt 115
DCD Reserved116_IRQHandler ; Reserved interrupt 116
DCD Reserved117_IRQHandler ; Reserved interrupt 117
DCD Reserved118_IRQHandler ; Reserved interrupt 118
DCD Reserved119_IRQHandler ; Reserved interrupt 119
__Vectors_End
__Vectors_Size EQU __Vectors_End - __Vectors
; <h> Flash Configuration
; <i> 16-byte flash configuration field that stores default protection settings (loaded on reset)
; <i> and security information that allows the MCU to restrict acces to the FTFL module.
; <h> Backdoor Comparison Key
; <o0> Backdoor Key 0 <0x0-0xFF:2>
; <o1> Backdoor Key 1 <0x0-0xFF:2>
; <o2> Backdoor Key 2 <0x0-0xFF:2>
; <o3> Backdoor Key 3 <0x0-0xFF:2>
; <o4> Backdoor Key 4 <0x0-0xFF:2>
; <o5> Backdoor Key 5 <0x0-0xFF:2>
; <o6> Backdoor Key 6 <0x0-0xFF:2>
; <o7> Backdoor Key 7 <0x0-0xFF:2>
BackDoorK0 EQU 0xFF
BackDoorK1 EQU 0xFF
BackDoorK2 EQU 0xFF
BackDoorK3 EQU 0xFF
BackDoorK4 EQU 0xFF
BackDoorK5 EQU 0xFF
BackDoorK6 EQU 0xFF
BackDoorK7 EQU 0xFF
; </h>
; <h> Program flash protection bytes (FPROT)
; <i> Each program flash region can be protected from program and erase operation by setting the associated PROT bit.
; <i> Each bit protects a 1/32 region of the program flash memory.
; <h> FPROT0
; <i> Program flash protection bytes
; <i> 1/32 - 8/32 region
; <o.0> FPROT0.0
; <o.1> FPROT0.1
; <o.2> FPROT0.2
; <o.3> FPROT0.3
; <o.4> FPROT0.4
; <o.5> FPROT0.5
; <o.6> FPROT0.6
; <o.7> FPROT0.7
nFPROT0 EQU 0x00
FPROT0 EQU nFPROT0:EOR:0xFF
; </h>
; <h> FPROT1
; <i> Program Flash Region Protect Register 1
; <i> 9/32 - 16/32 region
; <o.0> FPROT1.0
; <o.1> FPROT1.1
; <o.2> FPROT1.2
; <o.3> FPROT1.3
; <o.4> FPROT1.4
; <o.5> FPROT1.5
; <o.6> FPROT1.6
; <o.7> FPROT1.7
nFPROT1 EQU 0x00
FPROT1 EQU nFPROT1:EOR:0xFF
; </h>
; <h> FPROT2
; <i> Program Flash Region Protect Register 2
; <i> 17/32 - 24/32 region
; <o.0> FPROT2.0
; <o.1> FPROT2.1
; <o.2> FPROT2.2
; <o.3> FPROT2.3
; <o.4> FPROT2.4
; <o.5> FPROT2.5
; <o.6> FPROT2.6
; <o.7> FPROT2.7
nFPROT2 EQU 0x00
FPROT2 EQU nFPROT2:EOR:0xFF
; </h>
; <h> FPROT3
; <i> Program Flash Region Protect Register 3
; <i> 25/32 - 32/32 region
; <o.0> FPROT3.0
; <o.1> FPROT3.1
; <o.2> FPROT3.2
; <o.3> FPROT3.3
; <o.4> FPROT3.4
; <o.5> FPROT3.5
; <o.6> FPROT3.6
; <o.7> FPROT3.7
nFPROT3 EQU 0x00
FPROT3 EQU nFPROT3:EOR:0xFF
; </h>
; </h>
; <h> Data flash protection byte (FDPROT)
; <i> Each bit protects a 1/8 region of the data flash memory.
; <i> (Program flash only devices: Reserved)
; <o.0> FDPROT.0
; <o.1> FDPROT.1
; <o.2> FDPROT.2
; <o.3> FDPROT.3
; <o.4> FDPROT.4
; <o.5> FDPROT.5
; <o.6> FDPROT.6
; <o.7> FDPROT.7
nFDPROT EQU 0x00
FDPROT EQU nFDPROT:EOR:0xFF
; </h>
; <h> EEPROM protection byte (FEPROT)
; <i> FlexNVM devices: Each bit protects a 1/8 region of the EEPROM.
; <i> (Program flash only devices: Reserved)
; <o.0> FEPROT.0
; <o.1> FEPROT.1
; <o.2> FEPROT.2
; <o.3> FEPROT.3
; <o.4> FEPROT.4
; <o.5> FEPROT.5
; <o.6> FEPROT.6
; <o.7> FEPROT.7
nFEPROT EQU 0x00
FEPROT EQU nFEPROT:EOR:0xFF
; </h>
; <h> Flash nonvolatile option byte (FOPT)
; <i> Allows the user to customize the operation of the MCU at boot time.
; <o.0> LPBOOT
; <0=> Low-power boot
; <1=> normal boot
; <o.1> EZPORT_DIS
; <0=> EzPort operation is enabled
; <1=> EzPort operation is disabled
FOPT EQU 0xFF
; </h>
; <h> Flash security byte (FSEC)
; <i> WARNING: If SEC field is configured as "MCU security status is secure" and MEEN field is configured as "Mass erase is disabled",
; <i> MCU's security status cannot be set back to unsecure state since Mass erase via the debugger is blocked !!!
; <o.0..1> SEC
; <2=> MCU security status is unsecure
; <3=> MCU security status is secure
; <i> Flash Security
; <i> This bits define the security state of the MCU.
; <o.2..3> FSLACC
; <2=> Freescale factory access denied
; <3=> Freescale factory access granted
; <i> Freescale Failure Analysis Access Code
; <i> This bits define the security state of the MCU.
; <o.4..5> MEEN
; <2=> Mass erase is disabled
; <3=> Mass erase is enabled
; <i> Mass Erase Enable Bits
; <i> Enables and disables mass erase capability of the FTFL module
; <o.6..7> KEYEN
; <2=> Backdoor key access enabled
; <3=> Backdoor key access disabled
; <i> Backdoor key Security Enable
; <i> These bits enable and disable backdoor key access to the FTFL module.
FSEC EQU 0xFE
; </h>
; </h>
IF :LNOT::DEF:RAM_TARGET
AREA |.ARM.__at_0x400|, CODE, READONLY
DCB BackDoorK0, BackDoorK1, BackDoorK2, BackDoorK3
DCB BackDoorK4, BackDoorK5, BackDoorK6, BackDoorK7
DCB FPROT0, FPROT1, FPROT2, FPROT3
DCB FSEC, FOPT, FEPROT, FDPROT
ENDIF
AREA |.text|, CODE, READONLY
; Reset Handler
Reset_Handler PROC
EXPORT Reset_Handler [WEAK]
IMPORT SystemInit
IMPORT __main
LDR R0, =SystemInit
BLX R0
LDR R0, =__main
BX R0
ENDP
; Dummy Exception Handlers (infinite loops which can be modified)
NMI_Handler PROC
EXPORT NMI_Handler [WEAK]
B .
ENDP
HardFault_Handler\
PROC
EXPORT HardFault_Handler [WEAK]
B .
ENDP
MemManage_Handler\
PROC
EXPORT MemManage_Handler [WEAK]
B .
ENDP
BusFault_Handler\
PROC
EXPORT BusFault_Handler [WEAK]
B .
ENDP
UsageFault_Handler\
PROC
EXPORT UsageFault_Handler [WEAK]
B .
ENDP
SVC_Handler PROC
EXPORT SVC_Handler [WEAK]
B .
ENDP
DebugMon_Handler\
PROC
EXPORT DebugMon_Handler [WEAK]
B .
ENDP
PendSV_Handler PROC
EXPORT PendSV_Handler [WEAK]
B .
ENDP
SysTick_Handler PROC
EXPORT SysTick_Handler [WEAK]
B .
ENDP
Default_Handler PROC
EXPORT DMA0_IRQHandler [WEAK]
EXPORT DMA1_IRQHandler [WEAK]
EXPORT DMA2_IRQHandler [WEAK]
EXPORT DMA3_IRQHandler [WEAK]
EXPORT DMA4_IRQHandler [WEAK]
EXPORT DMA5_IRQHandler [WEAK]
EXPORT DMA6_IRQHandler [WEAK]
EXPORT DMA7_IRQHandler [WEAK]
EXPORT DMA8_IRQHandler [WEAK]
EXPORT DMA9_IRQHandler [WEAK]
EXPORT DMA10_IRQHandler [WEAK]
EXPORT DMA11_IRQHandler [WEAK]
EXPORT DMA12_IRQHandler [WEAK]
EXPORT DMA13_IRQHandler [WEAK]
EXPORT DMA14_IRQHandler [WEAK]
EXPORT DMA15_IRQHandler [WEAK]
EXPORT DMA_Error_IRQHandler [WEAK]
EXPORT MCM_IRQHandler [WEAK]
EXPORT FTFL_IRQHandler [WEAK]
EXPORT Read_Collision_IRQHandler [WEAK]
EXPORT LVD_LVW_IRQHandler [WEAK]
EXPORT LLW_IRQHandler [WEAK]
EXPORT Watchdog_IRQHandler [WEAK]
EXPORT Reserved39_IRQHandler [WEAK]
EXPORT I2C0_IRQHandler [WEAK]
EXPORT I2C1_IRQHandler [WEAK]
EXPORT SPI0_IRQHandler [WEAK]
EXPORT SPI1_IRQHandler [WEAK]
EXPORT SPI2_IRQHandler [WEAK]
EXPORT CAN0_ORed_Message_buffer_IRQHandler [WEAK]
EXPORT CAN0_Bus_Off_IRQHandler [WEAK]
EXPORT CAN0_Error_IRQHandler [WEAK]
EXPORT CAN0_Tx_Warning_IRQHandler [WEAK]
EXPORT CAN0_Rx_Warning_IRQHandler [WEAK]
EXPORT CAN0_Wake_Up_IRQHandler [WEAK]
EXPORT Reserved51_IRQHandler [WEAK]
EXPORT Reserved52_IRQHandler [WEAK]
EXPORT CAN1_ORed_Message_buffer_IRQHandler [WEAK]
EXPORT CAN1_Bus_Off_IRQHandler [WEAK]
EXPORT CAN1_Error_IRQHandler [WEAK]
EXPORT CAN1_Tx_Warning_IRQHandler [WEAK]
EXPORT CAN1_Rx_Warning_IRQHandler [WEAK]
EXPORT CAN1_Wake_Up_IRQHandler [WEAK]
EXPORT Reserved59_IRQHandler [WEAK]
EXPORT Reserved60_IRQHandler [WEAK]
EXPORT UART0_RX_TX_IRQHandler [WEAK]
EXPORT UART0_ERR_IRQHandler [WEAK]
EXPORT UART1_RX_TX_IRQHandler [WEAK]
EXPORT UART1_ERR_IRQHandler [WEAK]
EXPORT UART2_RX_TX_IRQHandler [WEAK]
EXPORT UART2_ERR_IRQHandler [WEAK]
EXPORT UART3_RX_TX_IRQHandler [WEAK]
EXPORT UART3_ERR_IRQHandler [WEAK]
EXPORT UART4_RX_TX_IRQHandler [WEAK]
EXPORT UART4_ERR_IRQHandler [WEAK]
EXPORT UART5_RX_TX_IRQHandler [WEAK]
EXPORT UART5_ERR_IRQHandler [WEAK]
EXPORT ADC0_IRQHandler [WEAK]
EXPORT ADC1_IRQHandler [WEAK]
EXPORT CMP0_IRQHandler [WEAK]
EXPORT CMP1_IRQHandler [WEAK]
EXPORT CMP2_IRQHandler [WEAK]
EXPORT FTM0_IRQHandler [WEAK]
EXPORT FTM1_IRQHandler [WEAK]
EXPORT FTM2_IRQHandler [WEAK]
EXPORT CMT_IRQHandler [WEAK]
EXPORT RTC_IRQHandler [WEAK]
EXPORT Reserved83_IRQHandler [WEAK]
EXPORT PIT0_IRQHandler [WEAK]
EXPORT PIT1_IRQHandler [WEAK]
EXPORT PIT2_IRQHandler [WEAK]
EXPORT PIT3_IRQHandler [WEAK]
EXPORT PDB0_IRQHandler [WEAK]
EXPORT USB0_IRQHandler [WEAK]
EXPORT USBDCD_IRQHandler [WEAK]
EXPORT Reserved91_IRQHandler [WEAK]
EXPORT Reserved92_IRQHandler [WEAK]
EXPORT Reserved93_IRQHandler [WEAK]
EXPORT Reserved94_IRQHandler [WEAK]
EXPORT I2S0_IRQHandler [WEAK]
EXPORT SDHC_IRQHandler [WEAK]
EXPORT DAC0_IRQHandler [WEAK]
EXPORT DAC1_IRQHandler [WEAK]
EXPORT TSI0_IRQHandler [WEAK]
EXPORT MCG_IRQHandler [WEAK]
EXPORT LPTimer_IRQHandler [WEAK]
EXPORT LCD_IRQHandler [WEAK]
EXPORT PORTA_IRQHandler [WEAK]
EXPORT PORTB_IRQHandler [WEAK]
EXPORT PORTC_IRQHandler [WEAK]
EXPORT PORTD_IRQHandler [WEAK]
EXPORT PORTE_IRQHandler [WEAK]
EXPORT Reserved108_IRQHandler [WEAK]
EXPORT Reserved109_IRQHandler [WEAK]
EXPORT Reserved110_IRQHandler [WEAK]
EXPORT Reserved111_IRQHandler [WEAK]
EXPORT Reserved112_IRQHandler [WEAK]
EXPORT Reserved113_IRQHandler [WEAK]
EXPORT Reserved114_IRQHandler [WEAK]
EXPORT Reserved115_IRQHandler [WEAK]
EXPORT Reserved116_IRQHandler [WEAK]
EXPORT Reserved117_IRQHandler [WEAK]
EXPORT Reserved118_IRQHandler [WEAK]
EXPORT Reserved119_IRQHandler [WEAK]
DMA0_IRQHandler
DMA1_IRQHandler
DMA2_IRQHandler
DMA3_IRQHandler
DMA4_IRQHandler
DMA5_IRQHandler
DMA6_IRQHandler
DMA7_IRQHandler
DMA8_IRQHandler
DMA9_IRQHandler
DMA10_IRQHandler
DMA11_IRQHandler
DMA12_IRQHandler
DMA13_IRQHandler
DMA14_IRQHandler
DMA15_IRQHandler
DMA_Error_IRQHandler
MCM_IRQHandler
FTFL_IRQHandler
Read_Collision_IRQHandler
LVD_LVW_IRQHandler
LLW_IRQHandler
Watchdog_IRQHandler
Reserved39_IRQHandler
I2C0_IRQHandler
I2C1_IRQHandler
SPI0_IRQHandler
SPI1_IRQHandler
SPI2_IRQHandler
CAN0_ORed_Message_buffer_IRQHandler
CAN0_Bus_Off_IRQHandler
CAN0_Error_IRQHandler
CAN0_Tx_Warning_IRQHandler
CAN0_Rx_Warning_IRQHandler
CAN0_Wake_Up_IRQHandler
Reserved51_IRQHandler
Reserved52_IRQHandler
CAN1_ORed_Message_buffer_IRQHandler
CAN1_Bus_Off_IRQHandler
CAN1_Error_IRQHandler
CAN1_Tx_Warning_IRQHandler
CAN1_Rx_Warning_IRQHandler
CAN1_Wake_Up_IRQHandler
Reserved59_IRQHandler
Reserved60_IRQHandler
UART0_RX_TX_IRQHandler
UART0_ERR_IRQHandler
UART1_RX_TX_IRQHandler
UART1_ERR_IRQHandler
UART2_RX_TX_IRQHandler
UART2_ERR_IRQHandler
UART3_RX_TX_IRQHandler
UART3_ERR_IRQHandler
UART4_RX_TX_IRQHandler
UART4_ERR_IRQHandler
UART5_RX_TX_IRQHandler
UART5_ERR_IRQHandler
ADC0_IRQHandler
ADC1_IRQHandler
CMP0_IRQHandler
CMP1_IRQHandler
CMP2_IRQHandler
FTM0_IRQHandler
FTM1_IRQHandler
FTM2_IRQHandler
CMT_IRQHandler
RTC_IRQHandler
Reserved83_IRQHandler
PIT0_IRQHandler
PIT1_IRQHandler
PIT2_IRQHandler
PIT3_IRQHandler
PDB0_IRQHandler
USB0_IRQHandler
USBDCD_IRQHandler
Reserved91_IRQHandler
Reserved92_IRQHandler
Reserved93_IRQHandler
Reserved94_IRQHandler
I2S0_IRQHandler
SDHC_IRQHandler
DAC0_IRQHandler
DAC1_IRQHandler
TSI0_IRQHandler
MCG_IRQHandler
LPTimer_IRQHandler
LCD_IRQHandler
PORTA_IRQHandler
PORTB_IRQHandler
PORTC_IRQHandler
PORTD_IRQHandler
PORTE_IRQHandler
Reserved108_IRQHandler
Reserved109_IRQHandler
Reserved110_IRQHandler
Reserved111_IRQHandler
Reserved112_IRQHandler
Reserved113_IRQHandler
Reserved114_IRQHandler
Reserved115_IRQHandler
Reserved116_IRQHandler
Reserved117_IRQHandler
Reserved118_IRQHandler
Reserved119_IRQHandler
B .
ENDP
ALIGN
; User Initial Stack & Heap
IF :DEF:__MICROLIB
EXPORT __initial_sp
EXPORT __heap_base
EXPORT __heap_limit
ELSE
IMPORT __use_two_region_memory
EXPORT __user_initial_stackheap
__user_initial_stackheap
LDR R0, = Heap_Mem
LDR R1, =(Stack_Mem + Stack_Size)
LDR R2, = (Heap_Mem + Heap_Size)
LDR R3, = Stack_Mem
BX LR
ALIGN
ENDIF
END

View File

@ -1,309 +0,0 @@
/*
** ###################################################################
** Processor: PK40X256VLQ100
** Compilers: ARM Compiler
** Freescale C/C++ for Embedded ARM
** GNU ARM C Compiler
** IAR ANSI C/C++ Compiler for ARM
** Reference manual: K40P144M100SF2RM, Rev. 3, 4 Nov 2010
** Version: rev. 1.6, 2011-01-14
**
** Abstract:
** Provides a system configuration function and a global variable that contains the system frequency.
** It configures the device and initializes the oscillator (PLL) that is part of the microcontroller device.
**
** Copyright: 2011 Freescale Semiconductor, Inc. All Rights Reserved.
**
** http: www.freescale.com
** mail: support@freescale.com
**
** Revisions:
** - rev. 0.1 (2010-09-29)
** Initial version
** - rev. 1.0 (2010-10-15)
** First public version
** - rev. 1.1 (2010-10-27)
** Registers updated according to the new reference manual revision - Rev. 2, 15 Oct 2010
** ADC - Peripheral register PGA bit definition has been fixed, bits PGALP, PGACHP removed.
** CAN - Peripheral register MCR bit definition has been fixed, bit WAKSRC removed.
** CRC - Peripheral register layout structure has been extended with 8/16-bit access to shadow registers.
** CMP - Peripheral base address macro renamed from HSCMPx_BASE to CMPx_BASE.
** CMP - Peripheral base pointer macro renamed from HSCMPx to CMPx.
** DMA - Peripheral base address macro renamed from eDMA_BASE to DMA_BASE.
** DMA - Peripheral base pointer macro renamed from eDMA to DMA.
** GPIO - Port Output Enable Register (POER) has been renamed to Port Data Direction Register (PDDR), all POER related macros fixed to PDDR.
** LCD - Peripheral base address macro renamed from SLCD_BASE to LCD_BASE.
** LCD - Peripheral base pointer macro renamed from SLCD to LCD.
** PDB - Peripheral register layout structure has been extended for Channel n and DAC n register array access (#MTWX44115).
** RFSYS - System regfile registers have been added (#MTWX43999)
** RFVBAT - VBAT regfile registers have been added (#MTWX43999)
** RTC - Peripheral register CR bit definition has been fixed, bit OTE removed.
** TSI - Peripheral registers STATUS, SCANC bit definition have been fixed, bit groups CAPTRM, DELVOL and AMCLKDIV added.
** USB - Peripheral base address macro renamed from USBOTG0_BASE to USB0_BASE.
** USB - Peripheral base pointer macro renamed from USBOTG0 to USB0.
** VREF - Peripheral register TRM removed.
** - rev. 1.2 (2010-11-11)
** Registers updated according to the new reference manual revision - Rev. 3, 4 Nov 2010
** CAN - Individual Matching Element Update (IMEU) feature has been removed.
** CAN - Peripheral register layout structure has been fixed, registers IMEUR, LRFR have been removed.
** CAN - Peripheral register CTRL2 bit definition has been fixed, bits IMEUMASK, LOSTRMMSK, LOSTRLMSK, IMEUEN have been removed.
** CAN - Peripheral register ESR2 bit definition has been fixed, bits IMEUF, LOSTRMF, LOSTRLF have been removed.
** NV - Fixed offset address of BACKKEYx, FPROTx registers.
** TSI - Peripheral register layout structure has been fixed, register WUCNTR has been removed.
** - rev. 1.3 (2010-11-19)
** CAN - Support for CAN0_IMEU_IRQn, CAN0_Lost_Rx_IRQn interrupts has been removed.
** CAN - Support for CAN1_IMEU_IRQn, CAN1_Lost_Rx_IRQn interrupts has been removed.
** - rev. 1.4 (2010-11-30)
** EWM - Peripheral base address EWM_BASE definition has been fixed from 0x4005F000u to 0x40061000u (#MTWX44776).
** - rev. 1.5 (2010-12-17)
** AIPS0, AIPS1 - Fixed offset of PACRE-PACRP registers (#MTWX45259).
** - rev. 1.6 (2011-01-14)
** Added BITBAND_REG() macro to provide access to register bits using bit band region.
**
** ###################################################################
*/
/*! \file MK40N512MD100 */
/*! \version 1.6 */
/*! \date 2011-01-14 */
/*! \brief Device specific configuration file for MK40N512MD100 (implementation file) */
/*! \detailed Provides a system configuration function and a global variable that contains the system frequency.
It configures the device and initializes the oscillator (PLL) that is part of the microcontroller device. */
#include <stdint.h>
#include "PK40X256VLQ100.h"
#define DISABLE_WDOG 1
#define CLOCK_SETUP 1
/* Predefined clock setups
0 ... Multipurpose Clock Generator (MCG) in FLL Engaged Internal (FEI) mode
Core clock/Bus clock derived from an internal clock source 32.768kHz
Core clock = 47.97MHz, BusClock = 47.97MHz
1 ... Multipurpose Clock Generator (MCG) in PLL Engaged External (PEE} mode
Clock derived from and external crystal 8MHz
Core clock = 24MHz, BusClock = 24MHz
2 ... Multipurpose Clock Generator (MCG) in Bypassed Low Power External (BLPE) mode
Core clock/Bus clock derived directly from external crystal with no multiplication
Core clock = 4MHz, BusClock = 4MHz
*/
/*----------------------------------------------------------------------------
Define clock source values
*----------------------------------------------------------------------------*/
#if (CLOCK_SETUP == 0)
#define CPU_XTAL_CLK_HZ 4000000u /* Value of the external crystal or oscillator clock frequency in Hz */
#define CPU_XTAL32k_CLK_HZ 32768u /* Value of the external 32k crystal or oscillator clock frequency in Hz */
#define CPU_INT_SLOW_CLK_HZ 32768u /* Value of the slow internal oscillator clock frequency in Hz */
#define CPU_INT_FAST_CLK_HZ 4000000u /* Value of the fast internal oscillator clock frequency in Hz */
#define DEFAULT_SYSTEM_CLOCK 47972352u /* Default System clock value */
#elif (CLOCK_SETUP == 1)
#define CPU_XTAL_CLK_HZ 4000000u /* Value of the external crystal or oscillator clock frequency in Hz */
#define CPU_XTAL32k_CLK_HZ 32768u /* Value of the external 32k crystal or oscillator clock frequency in Hz */
#define CPU_INT_SLOW_CLK_HZ 32768u /* Value of the slow internal oscillator clock frequency in Hz */
#define CPU_INT_FAST_CLK_HZ 4000000u /* Value of the fast internal oscillator clock frequency in Hz */
#define DEFAULT_SYSTEM_CLOCK 24000000u /* Default System clock value */
#elif (CLOCK_SETUP == 2)
#define CPU_XTAL_CLK_HZ 4000000u /* Value of the external crystal or oscillator clock frequency in Hz */
#define CPU_XTAL32k_CLK_HZ 32768u /* Value of the external 32k crystal or oscillator clock frequency in Hz */
#define CPU_INT_SLOW_CLK_HZ 32768u /* Value of the slow internal oscillator clock frequency in Hz */
#define CPU_INT_FAST_CLK_HZ 4000000u /* Value of the fast internal oscillator clock frequency in Hz */
#define DEFAULT_SYSTEM_CLOCK 4000000u /* Default System clock value */
#endif /* (CLOCK_SETUP == 2) */
/* ----------------------------------------------------------------------------
-- Core clock
---------------------------------------------------------------------------- */
uint32_t SystemCoreClock = DEFAULT_SYSTEM_CLOCK;
/* ----------------------------------------------------------------------------
-- SystemInit()
---------------------------------------------------------------------------- */
void SystemInit (void) {
#if (DISABLE_WDOG)
/* Disable the WDOG module */
/* WDOG_UNLOCK: WDOGUNLOCK=0xC520 */
WDOG->UNLOCK = (uint16_t)0xC520u; /* Key 1 */
/* WDOG_UNLOCK : WDOGUNLOCK=0xD928 */
WDOG->UNLOCK = (uint16_t)0xD928u; /* Key 2 */
/* WDOG_STCTRLH: ??=0,DISTESTWDOG=0,BYTESEL=0,TESTSEL=0,TESTWDOG=0,??=0,STNDBYEN=1,WAITEN=1,STOPEN=1,DBGEN=0,ALLOWUPDATE=1,WINEN=0,IRQRSTEN=0,CLKSRC=1,WDOGEN=0 */
WDOG->STCTRLH = (uint16_t)0x01D2u;
#endif /* (DISABLE_WDOG) */
/* System clock initialization */
#if (CLOCK_SETUP == 0)
/* Switch to FEI Mode */
/* MCG->C1: CLKS=0,FRDIV=0,IREFS=1,IRCLKEN=1,IREFSTEN=0 */
MCG->C1 = (uint8_t)0x06u;
/* MCG->C2: ??=0,??=0,RANGE=0,HGO=0,EREFS=0,LP=0,IRCS=0 */
MCG->C2 = (uint8_t)0x00u;
/* MCG_C4: DMX32=1,DRST_DRS=1 */
MCG->C4 = (uint8_t)((MCG->C4 & (uint8_t)~(uint8_t)0x40u) | (uint8_t)0xA0u);
/* MCG->C5: ??=0,PLLCLKEN=0,PLLSTEN=0,PRDIV=0 */
MCG->C5 = (uint8_t)0x00u;
/* MCG->C6: LOLIE=0,PLLS=0,CME=0,VDIV=0 */
MCG->C6 = (uint8_t)0x00u;
while((MCG->S & MCG_S_IREFST_MASK) == 0u) { /* Check that the source of the FLL reference clock is the internal reference clock. */
}
while((MCG->S & 0x0Cu) != 0x00u) { /* Wait until output of the FLL is selected */
}
/* SIM->CLKDIV1: OUTDIV1=0,OUTDIV2=0,OUTDIV3=1,OUTDIV4=1,??=0,??=0,??=0,??=0,??=0,??=0,??=0,??=0,??=0,??=0,??=0,??=0,??=0,??=0,??=0,??=0 */
SIM->CLKDIV1 = (uint32_t)0x00110000u; /* Update system prescalers */
#elif (CLOCK_SETUP == 1)
/* Switch to FBE Mode */
/* OSC->CR: ERCLKEN=0,??=0,EREFSTEN=0,??=0,SC2P=0,SC4P=0,SC8P=0,SC16P=0 */
OSC->CR = (uint8_t)0x00u;
/* SIM->SOPT2: MCGCLKSEL=0 */
SIM->SOPT2 &= (uint8_t)~(uint8_t)0x01u;
/* MCG->C2: ??=0,??=0,RANGE=2,HGO=0,EREFS=1,LP=0,IRCS=0 */
MCG->C2 = (uint8_t)0x24u;
/* MCG->C1: CLKS=2,FRDIV=3,IREFS=0,IRCLKEN=1,IREFSTEN=0 */
MCG->C1 = (uint8_t)0x9Au;
/* MCG->C4: DMX32=0,DRST_DRS=0 */
MCG->C4 &= (uint8_t)~(uint8_t)0xE0u;
/* MCG->C5: ??=0,PLLCLKEN=0,PLLSTEN=0,PRDIV=3 */
MCG->C5 = (uint8_t)0x03u;
/* MCG->C5: PLLCLKEN=1 */
MCG->C5 |= (uint8_t)0x40u; /* Enable the PLL */
/* MCG->C6: LOLIE=0,PLLS=0,CME=0,VDIV=0 */
MCG->C6 = (uint8_t)0x00u;
while((MCG->S & MCG_S_OSCINIT_MASK) == 0u) { /* Check that the oscillator is running */
}
while((MCG->S & MCG_S_IREFST_MASK) != 0u) { /* Check that the source of the FLL reference clock is the external reference clock. */
}
while((MCG->S & 0x0Cu) != 0x08u) { /* Wait until external reference clock is selected as MCG output */
}
/* Switch to PBE Mode */
/* MCG->C1: CLKS=2,FRDIV=0,IREFS=0,IRCLKEN=1,IREFSTEN=0 */
MCG->C1 = (uint8_t)0x82u;
/* MCG->C6: LOLIE=0,PLLS=1,CME=0,VDIV=0 */
MCG->C6 = (uint8_t)0x40u;
/* Switch to PEE Mode */
/* MCG->C1: CLKS=0,FRDIV=0,IREFS=0,IRCLKEN=1,IREFSTEN=0 */
MCG->C1 = (uint8_t)0x02u;
/* MCG->C5: ??=0,PLLCLKEN=0,PLLSTEN=0,PRDIV=3 */
MCG->C5 = (uint8_t)0x03u;
/* MCG->C6: LOLIE=0,PLLS=1,CME=0,VDIV=0 */
MCG->C6 = (uint8_t)0x40u;
while((MCG->S & 0x0Cu) != 0x0Cu) { /* Wait until output of the PLL is selected */
}
while((MCG->S & MCG_S_LOCK_MASK) == 0u) { /* Wait until locked */
}
/* SIM->CLKDIV1: OUTDIV1=0,OUTDIV2=0,OUTDIV3=1,OUTDIV4=1,??=0,??=0,??=0,??=0,??=0,??=0,??=0,??=0,??=0,??=0,??=0,??=0,??=0,??=0,??=0,??=0 */
SIM->CLKDIV1 = (uint32_t)0x00110000u; /* Update system prescalers */
#elif (CLOCK_SETUP == 2)
/* Switch to FBE Mode */
/* OSC->CR: ERCLKEN=0,??=0,EREFSTEN=0,??=0,SC2P=0,SC4P=0,SC8P=0,SC16P=0 */
OSC->CR = (uint8_t)0x00u;
/* SIM->SOPT2: MCGCLKSEL=0 */
SIM->SOPT2 &= (uint8_t)~(uint8_t)0x01u;
/* MCG->C2: ??=0,??=0,RANGE=2,HGO=0,EREFS=1,LP=0,IRCS=0 */
MCG->C2 = (uint8_t)0x24u;
/* MCG->C1: CLKS=2,FRDIV=3,IREFS=0,IRCLKEN=1,IREFSTEN=0 */
MCG->C1 = (uint8_t)0x9Au;
/* MCG->C4: DMX32=0,DRST_DRS=0 */
MCG->C4 &= (uint8_t)~(uint8_t)0xE0u;
/* MCG->C5: ??=0,PLLCLKEN=0,PLLSTEN=0,PRDIV=0 */
MCG->C5 = (uint8_t)0x00u;
/* MCG->C6: LOLIE=0,PLLS=0,CME=0,VDIV=0 */
MCG->C6 = (uint8_t)0x00u;
while((MCG->S & MCG_S_OSCINIT_MASK) == 0u) { /* Check that the oscillator is running */
}
while((MCG->S & MCG_S_IREFST_MASK) != 0u) { /* Check that the source of the FLL reference clock is the external reference clock. */
}
while((MCG->S & 0x0CU) != 0x08u) { /* Wait until external reference clock is selected as MCG output */
}
/* Switch to BLPE Mode */
/* MCG->C2: ??=0,??=0,RANGE=2,HGO=0,EREFS=1,LP=0,IRCS=0 */
MCG->C2 = (uint8_t)0x24u;
/* SIM_CLKDIV1: OUTDIV1=0,OUTDIV2=0,OUTDIV3=1,OUTDIV4=1,??=0,??=0,??=0,??=0,??=0,??=0,??=0,??=0,??=0,??=0,??=0,??=0,??=0,??=0,??=0,??=0 */
SIM->CLKDIV1 = (uint32_t)0x00110000u; /* Update system prescalers */
#endif /* (CLOCK_SETUP == 2) */
}
/* ----------------------------------------------------------------------------
-- SystemCoreClockUpdate()
---------------------------------------------------------------------------- */
void SystemCoreClockUpdate (void) {
uint32_t MCGOUTClock; /* Variable to store output clock frequency of the MCG module */
uint8_t Divider;
if ((MCG->C1 & MCG_C1_CLKS_MASK) == 0x0u) {
/* Output of FLL or PLL is selected */
if ((MCG->C6 & MCG_C6_PLLS_MASK) == 0x0u) {
/* FLL is selected */
if ((MCG->C1 & MCG_C1_IREFS_MASK) == 0x0u) {
/* External reference clock is selected */
if ((SIM->SOPT2 & SIM_SOPT2_MCGCLKSEL_MASK) == 0x0u) {
MCGOUTClock = CPU_XTAL_CLK_HZ; /* System oscillator drives MCG clock */
} else { /* (!((SIM->SOPT2 & SIM_SOPT2_MCGCLKSEL_MASK) == 0x0u)) */
MCGOUTClock = CPU_XTAL32k_CLK_HZ; /* RTC 32 kHz oscillator drives MCG clock */
} /* (!((SIM->SOPT2 & SIM_SOPT2_MCGCLKSEL_MASK) == 0x0u)) */
Divider = (uint8_t)(1u << ((MCG->C1 & MCG_C1_FRDIV_MASK) >> MCG_C1_FRDIV_SHIFT));
MCGOUTClock = (MCGOUTClock / Divider); /* Calculate the divided FLL reference clock */
if ((MCG->C2 & MCG_C2_RANGE_MASK) != 0x0u) {
MCGOUTClock /= 32u; /* If high range is enabled, additional 32 divider is active */
} /* ((MCG->C2 & MCG_C2_RANGE_MASK) != 0x0u) */
} else { /* (!((MCG->C1 & MCG_C1_IREFS_MASK) == 0x0u)) */
MCGOUTClock = CPU_INT_SLOW_CLK_HZ; /* The slow internal reference clock is selected */
} /* (!((MCG->C1 & MCG_C1_IREFS_MASK) == 0x0u)) */
/* Select correct multiplier to calculate the MCG output clock */
switch (MCG->C4 & (MCG_C4_DMX32_MASK | MCG_C4_DRST_DRS_MASK)) {
case 0x0u:
MCGOUTClock *= 640u;
break;
case 0x20u:
MCGOUTClock *= 1280u;
break;
case 0x40u:
MCGOUTClock *= 1920u;
break;
case 0x60u:
MCGOUTClock *= 2560u;
break;
case 0x80u:
MCGOUTClock *= 732u;
break;
case 0xA0u:
MCGOUTClock *= 1464u;
break;
case 0xC0u:
MCGOUTClock *= 2197u;
break;
case 0xE0u:
MCGOUTClock *= 2929u;
break;
default:
break;
}
} else { /* (!((MCG->C6 & MCG_C6_PLLS_MASK) == 0x0u)) */
/* PLL is selected */
Divider = (1u + (MCG->C5 & MCG_C5_PRDIV_MASK));
MCGOUTClock = (uint32_t)(CPU_XTAL_CLK_HZ / Divider); /* Calculate the PLL reference clock */
Divider = ((MCG->C6 & MCG_C6_VDIV_MASK) + 24u);
MCGOUTClock *= Divider; /* Calculate the MCG output clock */
} /* (!((MCG->C6 & MCG_C6_PLLS_MASK) == 0x0u)) */
} else if ((MCG->C1 & MCG_C1_CLKS_MASK) == 0x40u) {
/* Internal reference clock is selected */
if ((MCG->C2 & MCG_C2_IRCS_MASK) == 0x0u) {
MCGOUTClock = CPU_INT_SLOW_CLK_HZ; /* Slow internal reference clock selected */
} else { /* (!((MCG->C2 & MCG_C2_IRCS_MASK) == 0x0u)) */
MCGOUTClock = CPU_INT_FAST_CLK_HZ; /* Fast internal reference clock selected */
} /* (!((MCG->C2 & MCG_C2_IRCS_MASK) == 0x0u)) */
} else if ((MCG->C1 & MCG_C1_CLKS_MASK) == 0x80u) {
/* External reference clock is selected */
if ((SIM->SOPT2 & SIM_SOPT2_MCGCLKSEL_MASK) == 0x0u) {
MCGOUTClock = CPU_XTAL_CLK_HZ; /* System oscillator drives MCG clock */
} else { /* (!((SIM->SOPT2 & SIM_SOPT2_MCGCLKSEL_MASK) == 0x0u)) */
MCGOUTClock = CPU_XTAL32k_CLK_HZ; /* RTC 32 kHz oscillator drives MCG clock */
} /* (!((SIM->SOPT2 & SIM_SOPT2_MCGCLKSEL_MASK) == 0x0u)) */
} else { /* (!((MCG->C1 & MCG_C1_CLKS_MASK) == 0x80u)) */
/* Reserved value */
return;
} /* (!((MCG->C1 & MCG_C1_CLKS_MASK) == 0x80u)) */
SystemCoreClock = (MCGOUTClock / (1u + ((SIM->CLKDIV1 & SIM_CLKDIV1_OUTDIV1_MASK) >> SIM_CLKDIV1_OUTDIV1_SHIFT)));
}

View File

@ -1,104 +0,0 @@
/*
** ###################################################################
** Processor: PK40X256VLQ100
** Compilers: ARM Compiler
** Freescale C/C++ for Embedded ARM
** GNU ARM C Compiler
** IAR ANSI C/C++ Compiler for ARM
** Reference manual: K40P144M100SF2RM, Rev. 3, 4 Nov 2010
** Version: rev. 1.6, 2011-01-14
**
** Abstract:
** Provides a system configuration function and a global variable that contains the system frequency.
** It configures the device and initializes the oscillator (PLL) that is part of the microcontroller device.
**
** Copyright: 2011 Freescale Semiconductor, Inc. All Rights Reserved.
**
** http: www.freescale.com
** mail: support@freescale.com
**
** Revisions:
** - rev. 0.1 (2010-09-29)
** Initial version
** - rev. 1.0 (2010-10-15)
** First public version
** - rev. 1.1 (2010-10-27)
** Registers updated according to the new reference manual revision - Rev. 2, 15 Oct 2010
** ADC - Peripheral register PGA bit definition has been fixed, bits PGALP, PGACHP removed.
** CAN - Peripheral register MCR bit definition has been fixed, bit WAKSRC removed.
** CRC - Peripheral register layout structure has been extended with 8/16-bit access to shadow registers.
** CMP - Peripheral base address macro renamed from HSCMPx_BASE to CMPx_BASE.
** CMP - Peripheral base pointer macro renamed from HSCMPx to CMPx.
** DMA - Peripheral base address macro renamed from eDMA_BASE to DMA_BASE.
** DMA - Peripheral base pointer macro renamed from eDMA to DMA.
** GPIO - Port Output Enable Register (POER) has been renamed to Port Data Direction Register (PDDR), all POER related macros fixed to PDDR.
** LCD - Peripheral base address macro renamed from SLCD_BASE to LCD_BASE.
** LCD - Peripheral base pointer macro renamed from SLCD to LCD.
** PDB - Peripheral register layout structure has been extended for Channel n and DAC n register array access (#MTWX44115).
** RFSYS - System regfile registers have been added (#MTWX43999)
** RFVBAT - VBAT regfile registers have been added (#MTWX43999)
** RTC - Peripheral register CR bit definition has been fixed, bit OTE removed.
** TSI - Peripheral registers STATUS, SCANC bit definition have been fixed, bit groups CAPTRM, DELVOL and AMCLKDIV added.
** USB - Peripheral base address macro renamed from USBOTG0_BASE to USB0_BASE.
** USB - Peripheral base pointer macro renamed from USBOTG0 to USB0.
** VREF - Peripheral register TRM removed.
** - rev. 1.2 (2010-11-11)
** Registers updated according to the new reference manual revision - Rev. 3, 4 Nov 2010
** CAN - Individual Matching Element Update (IMEU) feature has been removed.
** CAN - Peripheral register layout structure has been fixed, registers IMEUR, LRFR have been removed.
** CAN - Peripheral register CTRL2 bit definition has been fixed, bits IMEUMASK, LOSTRMMSK, LOSTRLMSK, IMEUEN have been removed.
** CAN - Peripheral register ESR2 bit definition has been fixed, bits IMEUF, LOSTRMF, LOSTRLF have been removed.
** NV - Fixed offset address of BACKKEYx, FPROTx registers.
** TSI - Peripheral register layout structure has been fixed, register WUCNTR has been removed.
** - rev. 1.3 (2010-11-19)
** CAN - Support for CAN0_IMEU_IRQn, CAN0_Lost_Rx_IRQn interrupts has been removed.
** CAN - Support for CAN1_IMEU_IRQn, CAN1_Lost_Rx_IRQn interrupts has been removed.
** - rev. 1.4 (2010-11-30)
** EWM - Peripheral base address EWM_BASE definition has been fixed from 0x4005F000u to 0x40061000u (#MTWX44776).
** - rev. 1.5 (2010-12-17)
** AIPS0, AIPS1 - Fixed offset of PACRE-PACRP registers (#MTWX45259).
** - rev. 1.6 (2011-01-14)
** Added BITBAND_REG() macro to provide access to register bits using bit band region.
**
** ###################################################################
*/
/*! \file PK40X256VLQ100 */
/*! \version 1.6 */
/*! \date 2011-01-14 */
/*! \brief Device specific configuration file for PK40X256VLQ100 (header file) */
/*! \detailed Provides a system configuration function and a global variable that contains the system frequency.
It configures the device and initializes the oscillator (PLL) that is part of the microcontroller device. */
#ifndef SYSTEM_PK40X256VLQ100_H_
#define SYSTEM_PK40X256VLQ100_H_ /*!< Symbol preventing repeated inclusion */
#ifdef __cplusplus
extern "C" {
#endif
#include <stdint.h>
/*! \brief System clock frequency (core clock)
\detailed The system clock frequency supplied to the SysTick timer and the processor core clock.
This variable can be used by the user application to setup the SysTick timer or configure other parameters.
It may also be used by debugger to query the frequency of the debug timer or configure the trace clock speed.
SystemCoreClock is initialized with a correct predefined value. */
extern uint32_t SystemCoreClock;
/*! \brief Setup the microcontroller system.
\detailed Typically this function configures the oscillator (PLL) that is part of the microcontroller device.
For systems with variable clock speed it also updates the variable SystemCoreClock.
SystemInit is called from startup_device file. */
void SystemInit (void);
/*! \brief Updates the SystemCoreClock variable.
\detailed It must be called whenever the core clock is changed during program execution.
SystemCoreClockUpdate() evaluates the clock register settings and calculates the current core clock. */
void SystemCoreClockUpdate (void);
#ifdef __cplusplus
}
#endif
#endif /* #if !defined(SYSTEM_PK40X256VLQ100_H_) */