forked from OSSInnovation/mindspore
85 lines
3.7 KiB
Python
Executable File
85 lines
3.7 KiB
Python
Executable File
# Copyright 2020 Huawei Technologies Co., Ltd
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
# ============================================================================
|
|
"""Warpctc training"""
|
|
import os
|
|
import math as m
|
|
import random
|
|
import argparse
|
|
import numpy as np
|
|
import mindspore.nn as nn
|
|
from mindspore import context
|
|
from mindspore import dataset as de
|
|
from mindspore.train.model import Model, ParallelMode
|
|
from mindspore.nn.wrap import WithLossCell
|
|
from mindspore.train.callback import TimeMonitor, LossMonitor, CheckpointConfig, ModelCheckpoint
|
|
from mindspore.communication.management import init
|
|
|
|
from src.loss import CTCLoss
|
|
from src.config import config as cf
|
|
from src.dataset import create_dataset
|
|
from src.warpctc import StackedRNN
|
|
from src.warpctc_for_train import TrainOneStepCellWithGradClip
|
|
from src.lr_schedule import get_lr
|
|
|
|
random.seed(1)
|
|
np.random.seed(1)
|
|
de.config.set_seed(1)
|
|
|
|
parser = argparse.ArgumentParser(description="Warpctc training")
|
|
parser.add_argument("--run_distribute", type=bool, default=False, help="Run distribute, default is false.")
|
|
parser.add_argument('--device_num', type=int, default=1, help='Device num, default is 1.')
|
|
parser.add_argument('--dataset_path', type=str, default=None, help='Dataset path, default is None')
|
|
args_opt = parser.parse_args()
|
|
|
|
device_id = int(os.getenv('DEVICE_ID'))
|
|
context.set_context(mode=context.GRAPH_MODE,
|
|
device_target="Ascend",
|
|
save_graphs=False,
|
|
device_id=device_id)
|
|
|
|
if __name__ == '__main__':
|
|
if args_opt.run_distribute:
|
|
context.reset_auto_parallel_context()
|
|
context.set_auto_parallel_context(device_num=args_opt.device_num,
|
|
parallel_mode=ParallelMode.DATA_PARALLEL,
|
|
mirror_mean=True)
|
|
init()
|
|
max_captcha_digits = cf.max_captcha_digits
|
|
input_size = m.ceil(cf.captcha_height / 64) * 64 * 3
|
|
# create dataset
|
|
dataset = create_dataset(dataset_path=args_opt.dataset_path, repeat_num=cf.epoch_size, batch_size=cf.batch_size)
|
|
step_size = dataset.get_dataset_size()
|
|
# define lr
|
|
lr_init = cf.learning_rate if not args_opt.run_distribute else cf.learning_rate * args_opt.device_num
|
|
lr = get_lr(cf.epoch_size, step_size, lr_init)
|
|
# define loss
|
|
loss = CTCLoss(max_sequence_length=cf.captcha_width, max_label_length=max_captcha_digits, batch_size=cf.batch_size)
|
|
# define net
|
|
net = StackedRNN(input_size=input_size, batch_size=cf.batch_size, hidden_size=cf.hidden_size)
|
|
# define opt
|
|
opt = nn.SGD(params=net.trainable_params(), learning_rate=lr, momentum=cf.momentum)
|
|
net = WithLossCell(net, loss)
|
|
net = TrainOneStepCellWithGradClip(net, opt).set_train()
|
|
# define model
|
|
model = Model(net)
|
|
# define callbacks
|
|
callbacks = [LossMonitor(), TimeMonitor(data_size=step_size)]
|
|
if cf.save_checkpoint:
|
|
config_ck = CheckpointConfig(save_checkpoint_steps=cf.save_checkpoint_steps,
|
|
keep_checkpoint_max=cf.keep_checkpoint_max)
|
|
ckpt_cb = ModelCheckpoint(prefix="waptctc", directory=cf.save_checkpoint_path, config=config_ck)
|
|
callbacks.append(ckpt_cb)
|
|
model.train(cf.epoch_size, dataset, callbacks=callbacks)
|