forked from OSSInnovation/mindspore
92 lines
4.1 KiB
Python
92 lines
4.1 KiB
Python
# Copyright 2020 Huawei Technologies Co., Ltd
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
# ============================================================================
|
|
"""train_criteo."""
|
|
import os
|
|
import sys
|
|
import argparse
|
|
|
|
from mindspore import context, ParallelMode
|
|
from mindspore.communication.management import init
|
|
from mindspore.train.model import Model
|
|
from mindspore.train.callback import ModelCheckpoint, CheckpointConfig, TimeMonitor
|
|
|
|
from src.deepfm import ModelBuilder, AUCMetric
|
|
from src.config import DataConfig, ModelConfig, TrainConfig
|
|
from src.dataset import create_dataset, DataType
|
|
from src.callback import EvalCallBack, LossCallBack
|
|
|
|
sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
|
|
parser = argparse.ArgumentParser(description='CTR Prediction')
|
|
parser.add_argument('--dataset_path', type=str, default=None, help='Dataset path')
|
|
parser.add_argument('--ckpt_path', type=str, default=None, help='Checkpoint path')
|
|
parser.add_argument('--eval_file_name', type=str, default="./auc.log", help='eval file path')
|
|
parser.add_argument('--loss_file_name', type=str, default="./loss.log", help='loss file path')
|
|
parser.add_argument('--do_eval', type=bool, default=True, help='Do evaluation or not.')
|
|
|
|
args_opt, _ = parser.parse_known_args()
|
|
device_id = int(os.getenv('DEVICE_ID'))
|
|
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend", device_id=device_id)
|
|
|
|
|
|
if __name__ == '__main__':
|
|
data_config = DataConfig()
|
|
model_config = ModelConfig()
|
|
train_config = TrainConfig()
|
|
|
|
rank_size = int(os.environ.get("RANK_SIZE", 1))
|
|
if rank_size > 1:
|
|
context.reset_auto_parallel_context()
|
|
context.set_auto_parallel_context(parallel_mode=ParallelMode.DATA_PARALLEL, mirror_mean=True)
|
|
init()
|
|
rank_id = int(os.environ.get('RANK_ID'))
|
|
else:
|
|
rank_size = None
|
|
rank_id = None
|
|
|
|
ds_train = create_dataset(args_opt.dataset_path,
|
|
train_mode=True,
|
|
epochs=train_config.train_epochs,
|
|
batch_size=train_config.batch_size,
|
|
data_type=DataType(data_config.data_format),
|
|
rank_size=rank_size,
|
|
rank_id=rank_id)
|
|
|
|
model_builder = ModelBuilder(ModelConfig, TrainConfig)
|
|
train_net, eval_net = model_builder.get_train_eval_net()
|
|
auc_metric = AUCMetric()
|
|
model = Model(train_net, eval_network=eval_net, metrics={"auc": auc_metric})
|
|
|
|
time_callback = TimeMonitor(data_size=ds_train.get_dataset_size())
|
|
loss_callback = LossCallBack(loss_file_path=args_opt.loss_file_name)
|
|
callback_list = [time_callback, loss_callback]
|
|
|
|
if train_config.save_checkpoint:
|
|
config_ck = CheckpointConfig(save_checkpoint_steps=train_config.save_checkpoint_steps,
|
|
keep_checkpoint_max=train_config.keep_checkpoint_max)
|
|
ckpt_cb = ModelCheckpoint(prefix=train_config.ckpt_file_name_prefix,
|
|
directory=args_opt.ckpt_path,
|
|
config=config_ck)
|
|
callback_list.append(ckpt_cb)
|
|
|
|
if args_opt.do_eval:
|
|
ds_eval = create_dataset(args_opt.dataset_path, train_mode=False,
|
|
epochs=train_config.train_epochs,
|
|
batch_size=train_config.batch_size,
|
|
data_type=DataType(data_config.data_format))
|
|
eval_callback = EvalCallBack(model, ds_eval, auc_metric,
|
|
eval_file_path=args_opt.eval_file_name)
|
|
callback_list.append(eval_callback)
|
|
model.train(train_config.train_epochs, ds_train, callbacks=callback_list)
|