forked from OSSInnovation/mindspore
162 lines
5.4 KiB
Python
162 lines
5.4 KiB
Python
# Copyright 2020 Huawei Technologies Co., Ltd
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
# ============================================================================
|
|
"""
|
|
This test is used to monitor some features of MindArmour.
|
|
"""
|
|
import numpy as np
|
|
import pytest
|
|
|
|
import mindspore.nn as nn
|
|
from mindspore import context, Tensor
|
|
from mindspore.nn import Cell, WithLossCell, TrainOneStepCell
|
|
from mindspore.nn.optim.momentum import Momentum
|
|
from mindspore.common.initializer import TruncatedNormal
|
|
from mindspore.ops.composite import GradOperation
|
|
|
|
|
|
def weight_variable():
|
|
"""weight initial"""
|
|
return TruncatedNormal(0.02)
|
|
|
|
|
|
def conv(in_channels, out_channels, kernel_size, stride=1, padding=0):
|
|
"""weight initial for conv layer"""
|
|
weight = weight_variable()
|
|
return nn.Conv2d(in_channels, out_channels,
|
|
kernel_size=kernel_size, stride=stride, padding=padding,
|
|
weight_init=weight, has_bias=False, pad_mode="valid")
|
|
|
|
|
|
def fc_with_initialize(input_channels, out_channels):
|
|
"""weight initial for fc layer"""
|
|
weight = weight_variable()
|
|
bias = weight_variable()
|
|
return nn.Dense(input_channels, out_channels, weight, bias)
|
|
|
|
|
|
class LeNet(nn.Cell):
|
|
"""
|
|
Lenet network
|
|
Args:
|
|
num_class (int): Num classes, Default: 10.
|
|
Returns:
|
|
Tensor, output tensor
|
|
Examples:
|
|
>>> LeNet(num_class=10)
|
|
"""
|
|
|
|
def __init__(self, num_class=10):
|
|
super(LeNet, self).__init__()
|
|
self.conv1 = conv(1, 6, 5)
|
|
self.conv2 = conv(6, 16, 5)
|
|
self.fc1 = fc_with_initialize(16 * 5 * 5, 120)
|
|
self.fc2 = fc_with_initialize(120, 84)
|
|
self.fc3 = fc_with_initialize(84, 10)
|
|
self.relu = nn.ReLU()
|
|
self.max_pool2d = nn.MaxPool2d(kernel_size=2, stride=2)
|
|
self.flatten = nn.Flatten()
|
|
|
|
def construct(self, x):
|
|
x = self.conv1(x)
|
|
x = self.relu(x)
|
|
x = self.max_pool2d(x)
|
|
x = self.conv2(x)
|
|
x = self.relu(x)
|
|
x = self.max_pool2d(x)
|
|
x = self.flatten(x)
|
|
x = self.fc1(x)
|
|
x = self.relu(x)
|
|
x = self.fc2(x)
|
|
x = self.relu(x)
|
|
x = self.fc3(x)
|
|
return x
|
|
|
|
|
|
class GradWithSens(Cell):
|
|
def __init__(self, network):
|
|
super(GradWithSens, self).__init__()
|
|
self.grad = GradOperation(get_all=False,
|
|
sens_param=True)
|
|
self.network = network
|
|
|
|
def construct(self, inputs, weight):
|
|
gout = self.grad(self.network)(inputs, weight)
|
|
return gout
|
|
|
|
|
|
class GradWrapWithLoss(Cell):
|
|
def __init__(self, network):
|
|
super(GradWrapWithLoss, self).__init__()
|
|
self._grad_all = GradOperation(get_all=True,
|
|
sens_param=False)
|
|
self._network = network
|
|
|
|
def construct(self, inputs, labels):
|
|
gout = self._grad_all(self._network)(inputs, labels)
|
|
return gout[0]
|
|
|
|
|
|
@pytest.mark.level0
|
|
@pytest.mark.platform_arm_ascend_training
|
|
@pytest.mark.platform_x86_ascend_training
|
|
@pytest.mark.env_onecard
|
|
def test_grad_values_and_infer_shape():
|
|
context.set_context(mode=context.PYNATIVE_MODE, device_target="Ascend")
|
|
inputs_np = np.random.rand(32, 1, 32, 32).astype(np.float32)
|
|
sens = np.ones((inputs_np.shape[0], 10)).astype(np.float32)
|
|
inputs_np_2 = np.random.rand(64, 1, 32, 32).astype(np.float32)
|
|
|
|
net = LeNet()
|
|
grad_all = GradWithSens(net)
|
|
|
|
grad_out = grad_all(Tensor(inputs_np), Tensor(sens)).asnumpy()
|
|
out_shape = net(Tensor(inputs_np_2)).asnumpy().shape
|
|
assert np.any(grad_out != 0), 'grad result can not be all zeros'
|
|
assert out_shape == (64, 10), 'output shape should be (64, 10)'
|
|
|
|
|
|
@pytest.mark.level0
|
|
@pytest.mark.platform_arm_ascend_training
|
|
@pytest.mark.platform_x86_ascend_training
|
|
@pytest.mark.env_onecard
|
|
def test_multi_grads():
|
|
context.set_context(mode=context.PYNATIVE_MODE, device_target="Ascend")
|
|
sparse = False
|
|
inputs_np = np.random.rand(32, 1, 32, 32).astype(np.float32)
|
|
labels_np = np.random.randint(10, size=32).astype(np.int32)
|
|
inputs_np_2 = np.random.rand(64, 1, 32, 32).astype(np.float32)
|
|
labels_np_2 = np.random.randint(10, size=64).astype(np.int32)
|
|
if not sparse:
|
|
labels_np = np.eye(10)[labels_np].astype(np.float32)
|
|
labels_np_2 = np.eye(10)[labels_np_2].astype(np.float32)
|
|
|
|
net = LeNet()
|
|
|
|
# grad operation
|
|
loss_fn = nn.SoftmaxCrossEntropyWithLogits(sparse=sparse)
|
|
with_loss_cell = WithLossCell(net, loss_fn)
|
|
grad_all = GradWrapWithLoss(with_loss_cell)
|
|
grad_out = grad_all(Tensor(inputs_np), Tensor(labels_np)).asnumpy()
|
|
assert np.any(grad_out != 0), 'grad result can not be all zeros'
|
|
|
|
# train-one-step operation
|
|
loss_fn = nn.SoftmaxCrossEntropyWithLogits(sparse=sparse)
|
|
optimizer = Momentum(filter(lambda x: x.requires_grad, net.get_parameters()),
|
|
0.01, 0.9)
|
|
loss_net = WithLossCell(net, loss_fn)
|
|
train_net = TrainOneStepCell(loss_net, optimizer)
|
|
train_net.set_train()
|
|
train_net(Tensor(inputs_np_2), Tensor(labels_np_2))
|