mindspore-ci-bot
bd5a8b42ac
Merge pull request !6724 from TuDouNi/master |
||
---|---|---|
.. | ||
scripts | ||
src | ||
README.md | ||
eval.py | ||
mindspore_hub_conf.py | ||
train.py |
README.md
SSD Description
SSD discretizes the output space of bounding boxes into a set of default boxes over different aspect ratios and scales per feature map location. At prediction time, the network generates scores for the presence of each object category in each default box and produces adjustments to the box to better match the object shape.Additionally, the network combines predictions from multiple feature maps with different resolutions to naturally handle objects of various sizes.
Paper: Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian Szegedy, Scott Reed, Cheng-Yang Fu, Alexander C. Berg.European Conference on Computer Vision (ECCV), 2016 (In press).
Model Architecture
The SSD approach is based on a feed-forward convolutional network that produces a fixed-size collection of bounding boxes and scores for the presence of object class instances in those boxes, followed by a non-maximum suppression step to produce the final detections. The early network layers are based on a standard architecture used for high quality image classification, which is called the base network. Then add auxiliary structure to the network to produce detections.
Dataset
Dataset used: COCO2017
- Dataset size:19G
- Train:18G,118000 images
- Val:1G,5000 images
- Annotations:241M,instances,captions,person_keypoints etc
- Data format:image and json files
- Note:Data will be processed in dataset.py
Environment Requirements
-
Hardware(Ascend/GPU)
- Prepare hardware environment with Ascend or GPU processor. If you want to try Ascend, please send the application form to ascend@huawei.com. Once approved, you can get the resources.
-
Framework
-
For more information, please check the resources below:
-
Install MindSpore.
-
Download the dataset COCO2017.
-
We use COCO2017 as training dataset in this example by default, and you can also use your own datasets.
-
If coco dataset is used. Select dataset to coco when run script. Install Cython and pycocotool, and you can also install mmcv to process data.
pip install Cython pip install pycocotools
And change the COCO_ROOT and other settings you need in
config.py
. The directory structure is as follows:. └─cocodataset ├─annotations ├─instance_train2017.json └─instance_val2017.json ├─val2017 └─train2017
-
If your own dataset is used. Select dataset to other when run script. Organize the dataset infomation into a TXT file, each row in the file is as follows:
train2017/0000001.jpg 0,259,401,459,7 35,28,324,201,2 0,30,59,80,2
Each row is an image annotation which split by space, the first column is a relative path of image, the others are box and class infomations of the format [xmin,ymin,xmax,ymax,class]. We read image from an image path joined by the
IMAGE_DIR
(dataset directory) and the relative path inANNO_PATH
(the TXT file path),IMAGE_DIR
andANNO_PATH
are setting inconfig.py
.
-
Quick Start
After installing MindSpore via the official website, you can start training and evaluation on Ascend as follows:
# single npu training on Ascend
python train.py
# distributed training on Ascend
sh run_distribute_train_ghostnet.sh [DEVICE_NUM] [EPOCH_SIZE] [LR] [DATASET] [RANK_TABLE_FILE]
# run eval on Ascend
python eval.py --device_id 0 --dataset coco --checkpoint_path LOG4/ssd-500_458.ckpt
Script Description
Script and Sample Code
├── ssd_ghostnet
├── README.md ## readme file of ssd_ghostnet
├── scripts
└─ run_distribute_train_ghostnet.sh ## shell script for distributed on ascend
├── src
├─ box_util.py ## bbox utils
├─ coco_eval.py ## coco metrics utils
├─ config_ghostnet_13x.py ## total config
├─ dataset.py ## create dataset and process dataset
├─ init_params.py ## parameters utils
├─ lr_schedule.py ## learning ratio generator
└─ ssd_ghostnet.py ## ssd architecture
├── eval.py ## eval scripts
├── train.py ## train scripts
├── mindspore_hub_conf.py # export model for hub
Script Parameters
Major parameters in train.py and config_ghostnet_13x.py as follows:
"device_num": 1 # Use device nums
"lr": 0.05 # Learning rate init value
"dataset": coco # Dataset name
"epoch_size": 500 # Epoch size
"batch_size": 32 # Batch size of input tensor
"pre_trained": None # Pretrained checkpoint file path
"pre_trained_epoch_size": 0 # Pretrained epoch size
"save_checkpoint_epochs": 10 # The epoch interval between two checkpoints. By default, the checkpoint will be saved per 10 epochs
"loss_scale": 1024 # Loss scale
"class_num": 81 # Dataset class number
"image_shape": [300, 300] # Image height and width used as input to the model
"mindrecord_dir": "/data/MindRecord_COCO" # MindRecord path
"coco_root": "/data/coco2017" # COCO2017 dataset path
"voc_root": "" # VOC original dataset path
"image_dir": "" # Other dataset image path, if coco or voc used, it will be useless
"anno_path": "" # Other dataset annotation path, if coco or voc used, it will be useless
Training Process
Training on Ascend
To train the model, run train.py
. If the mindrecord_dir
is empty, it will generate mindrecord files by coco_root
(coco dataset) or iamge_dir
and anno_path
(own dataset). Note if mindrecord_dir isn't empty, it will use mindrecord_dir instead of raw images.
- Distribute mode
sh run_distribute_train_ghostnet.sh [DEVICE_NUM] [EPOCH_SIZE] [LR] [DATASET] [RANK_TABLE_FILE] [PRE_TRAINED](optional) [PRE_TRAINED_EPOCH_SIZE](optional)
We need five or seven parameters for this scripts.
-
DEVICE_NUM
: the device number for distributed train. -
EPOCH_NUM
: epoch num for distributed train. -
LR
: learning rate init value for distributed train. -
DATASET
:the dataset mode for distributed train. -
RANK_TABLE_FILE :
the path of rank_table.json, it is better to use absolute path. -
PRE_TRAINED :
the path of pretrained checkpoint file, it is better to use absolute path. -
PRE_TRAINED_EPOCH_SIZE :
the epoch num of pretrained.Training result will be stored in the current path, whose folder name begins with "LOG". Under this, you can find checkpoint file together with result like the followings in LOG4/log.txt.
Evaluation Process
Evaluation on Ascend
python eval.py --device_id 0 --dataset coco --checkpoint_path LOG4/ssd-500_458.ckpt
Model Description
Performance
Evaluation Performance
Parameters | Ascend |
---|---|
Model Version | SSD ghostnet |
Resource | Ascend 910 ;CPU 2.60GHz,192cores;Memory,755G |
MindSpore Version | 0.7.0 |
Dataset | COCO2017 |
Training Parameters | epoch = 500, batch_size = 32 |
Optimizer | Momentum |
Loss Function | Sigmoid Cross Entropy,SmoothL1Loss |
Total time | 8pcs: 12hours |
Inference Performance
Parameters | Ascend |
---|---|
Model Version | SSD ghostnet |
Resource | Ascend 910 |
Uploaded Date | 09/08/2020 (month/day/year) |
MindSpore Version | 0.7.0 |
Dataset | COCO2017 |
batch_size | 1 |
outputs | mAP |
Accuracy | IoU=0.50: 24.1% |
Model for inference | 55M(.ckpt file) |