forked from OSSInnovation/mindspore
!6048 SoftmaxCrossEntropyWithLogic api adapt
Merge pull request !6048 from caojian05/ms_master_googlenet_api_adapt
This commit is contained in:
commit
f577192591
|
@ -29,6 +29,7 @@ from src.config import cifar_cfg, imagenet_cfg
|
||||||
from src.dataset import create_dataset_cifar10, create_dataset_imagenet
|
from src.dataset import create_dataset_cifar10, create_dataset_imagenet
|
||||||
|
|
||||||
from src.googlenet import GoogleNet
|
from src.googlenet import GoogleNet
|
||||||
|
from src.CrossEntropySmooth import CrossEntropySmooth
|
||||||
|
|
||||||
set_seed(1)
|
set_seed(1)
|
||||||
|
|
||||||
|
@ -43,7 +44,7 @@ if __name__ == '__main__':
|
||||||
if args_opt.dataset_name == 'cifar10':
|
if args_opt.dataset_name == 'cifar10':
|
||||||
cfg = cifar_cfg
|
cfg = cifar_cfg
|
||||||
dataset = create_dataset_cifar10(cfg.data_path, 1, False)
|
dataset = create_dataset_cifar10(cfg.data_path, 1, False)
|
||||||
loss = nn.SoftmaxCrossEntropyWithLogits(sparse=True, reduction='mean', is_grad=False)
|
loss = nn.SoftmaxCrossEntropyWithLogits(sparse=True, reduction='mean')
|
||||||
net = GoogleNet(num_classes=cfg.num_classes)
|
net = GoogleNet(num_classes=cfg.num_classes)
|
||||||
opt = Momentum(filter(lambda x: x.requires_grad, net.get_parameters()), 0.01, cfg.momentum,
|
opt = Momentum(filter(lambda x: x.requires_grad, net.get_parameters()), 0.01, cfg.momentum,
|
||||||
weight_decay=cfg.weight_decay)
|
weight_decay=cfg.weight_decay)
|
||||||
|
@ -54,8 +55,8 @@ if __name__ == '__main__':
|
||||||
dataset = create_dataset_imagenet(cfg.val_data_path, 1, False)
|
dataset = create_dataset_imagenet(cfg.val_data_path, 1, False)
|
||||||
if not cfg.use_label_smooth:
|
if not cfg.use_label_smooth:
|
||||||
cfg.label_smooth_factor = 0.0
|
cfg.label_smooth_factor = 0.0
|
||||||
loss = nn.SoftmaxCrossEntropyWithLogits(sparse=True, reduction="mean",
|
loss = CrossEntropySmooth(sparse=True, reduction="mean",
|
||||||
smooth_factor=cfg.label_smooth_factor, num_classes=cfg.num_classes)
|
smooth_factor=cfg.label_smooth_factor, num_classes=cfg.num_classes)
|
||||||
net = GoogleNet(num_classes=cfg.num_classes)
|
net = GoogleNet(num_classes=cfg.num_classes)
|
||||||
model = Model(net, loss_fn=loss, metrics={'top_1_accuracy', 'top_5_accuracy'})
|
model = Model(net, loss_fn=loss, metrics={'top_1_accuracy', 'top_5_accuracy'})
|
||||||
|
|
||||||
|
|
|
@ -0,0 +1,38 @@
|
||||||
|
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
# ============================================================================
|
||||||
|
"""define loss function for network"""
|
||||||
|
import mindspore.nn as nn
|
||||||
|
from mindspore import Tensor
|
||||||
|
from mindspore.common import dtype as mstype
|
||||||
|
from mindspore.nn.loss.loss import _Loss
|
||||||
|
from mindspore.ops import functional as F
|
||||||
|
from mindspore.ops import operations as P
|
||||||
|
|
||||||
|
|
||||||
|
class CrossEntropySmooth(_Loss):
|
||||||
|
"""CrossEntropy"""
|
||||||
|
def __init__(self, sparse=True, reduction='mean', smooth_factor=0., num_classes=1000):
|
||||||
|
super(CrossEntropySmooth, self).__init__()
|
||||||
|
self.onehot = P.OneHot()
|
||||||
|
self.sparse = sparse
|
||||||
|
self.on_value = Tensor(1.0 - smooth_factor, mstype.float32)
|
||||||
|
self.off_value = Tensor(1.0 * smooth_factor / (num_classes - 1), mstype.float32)
|
||||||
|
self.ce = nn.SoftmaxCrossEntropyWithLogits(reduction=reduction)
|
||||||
|
|
||||||
|
def construct(self, logit, label):
|
||||||
|
if self.sparse:
|
||||||
|
label = self.onehot(label, F.shape(logit)[1], self.on_value, self.off_value)
|
||||||
|
loss = self.ce(logit, label)
|
||||||
|
return loss
|
|
@ -36,6 +36,7 @@ from mindspore.common import set_seed
|
||||||
from src.config import cifar_cfg, imagenet_cfg
|
from src.config import cifar_cfg, imagenet_cfg
|
||||||
from src.dataset import create_dataset_cifar10, create_dataset_imagenet
|
from src.dataset import create_dataset_cifar10, create_dataset_imagenet
|
||||||
from src.googlenet import GoogleNet
|
from src.googlenet import GoogleNet
|
||||||
|
from src.CrossEntropySmooth import CrossEntropySmooth
|
||||||
|
|
||||||
set_seed(1)
|
set_seed(1)
|
||||||
|
|
||||||
|
@ -148,7 +149,7 @@ if __name__ == '__main__':
|
||||||
learning_rate=Tensor(lr),
|
learning_rate=Tensor(lr),
|
||||||
momentum=cfg.momentum,
|
momentum=cfg.momentum,
|
||||||
weight_decay=cfg.weight_decay)
|
weight_decay=cfg.weight_decay)
|
||||||
loss = nn.SoftmaxCrossEntropyWithLogits(sparse=True, reduction='mean', is_grad=False)
|
loss = nn.SoftmaxCrossEntropyWithLogits(sparse=True, reduction='mean')
|
||||||
|
|
||||||
elif args_opt.dataset_name == 'imagenet':
|
elif args_opt.dataset_name == 'imagenet':
|
||||||
lr = lr_steps_imagenet(cfg, batch_num)
|
lr = lr_steps_imagenet(cfg, batch_num)
|
||||||
|
@ -188,8 +189,8 @@ if __name__ == '__main__':
|
||||||
loss_scale=cfg.loss_scale)
|
loss_scale=cfg.loss_scale)
|
||||||
if not cfg.use_label_smooth:
|
if not cfg.use_label_smooth:
|
||||||
cfg.label_smooth_factor = 0.0
|
cfg.label_smooth_factor = 0.0
|
||||||
loss = nn.SoftmaxCrossEntropyWithLogits(sparse=True, reduction="mean",
|
loss = CrossEntropySmooth(sparse=True, reduction="mean",
|
||||||
smooth_factor=cfg.label_smooth_factor, num_classes=cfg.num_classes)
|
smooth_factor=cfg.label_smooth_factor, num_classes=cfg.num_classes)
|
||||||
|
|
||||||
if cfg.is_dynamic_loss_scale == 1:
|
if cfg.is_dynamic_loss_scale == 1:
|
||||||
loss_scale_manager = DynamicLossScaleManager(init_loss_scale=65536, scale_factor=2, scale_window=2000)
|
loss_scale_manager = DynamicLossScaleManager(init_loss_scale=65536, scale_factor=2, scale_window=2000)
|
||||||
|
|
Loading…
Reference in New Issue