!6048 SoftmaxCrossEntropyWithLogic api adapt

Merge pull request !6048 from caojian05/ms_master_googlenet_api_adapt
This commit is contained in:
mindspore-ci-bot 2020-09-12 14:55:33 +08:00 committed by Gitee
commit f577192591
3 changed files with 46 additions and 6 deletions

View File

@ -29,6 +29,7 @@ from src.config import cifar_cfg, imagenet_cfg
from src.dataset import create_dataset_cifar10, create_dataset_imagenet
from src.googlenet import GoogleNet
from src.CrossEntropySmooth import CrossEntropySmooth
set_seed(1)
@ -43,7 +44,7 @@ if __name__ == '__main__':
if args_opt.dataset_name == 'cifar10':
cfg = cifar_cfg
dataset = create_dataset_cifar10(cfg.data_path, 1, False)
loss = nn.SoftmaxCrossEntropyWithLogits(sparse=True, reduction='mean', is_grad=False)
loss = nn.SoftmaxCrossEntropyWithLogits(sparse=True, reduction='mean')
net = GoogleNet(num_classes=cfg.num_classes)
opt = Momentum(filter(lambda x: x.requires_grad, net.get_parameters()), 0.01, cfg.momentum,
weight_decay=cfg.weight_decay)
@ -54,8 +55,8 @@ if __name__ == '__main__':
dataset = create_dataset_imagenet(cfg.val_data_path, 1, False)
if not cfg.use_label_smooth:
cfg.label_smooth_factor = 0.0
loss = nn.SoftmaxCrossEntropyWithLogits(sparse=True, reduction="mean",
smooth_factor=cfg.label_smooth_factor, num_classes=cfg.num_classes)
loss = CrossEntropySmooth(sparse=True, reduction="mean",
smooth_factor=cfg.label_smooth_factor, num_classes=cfg.num_classes)
net = GoogleNet(num_classes=cfg.num_classes)
model = Model(net, loss_fn=loss, metrics={'top_1_accuracy', 'top_5_accuracy'})

View File

@ -0,0 +1,38 @@
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""define loss function for network"""
import mindspore.nn as nn
from mindspore import Tensor
from mindspore.common import dtype as mstype
from mindspore.nn.loss.loss import _Loss
from mindspore.ops import functional as F
from mindspore.ops import operations as P
class CrossEntropySmooth(_Loss):
"""CrossEntropy"""
def __init__(self, sparse=True, reduction='mean', smooth_factor=0., num_classes=1000):
super(CrossEntropySmooth, self).__init__()
self.onehot = P.OneHot()
self.sparse = sparse
self.on_value = Tensor(1.0 - smooth_factor, mstype.float32)
self.off_value = Tensor(1.0 * smooth_factor / (num_classes - 1), mstype.float32)
self.ce = nn.SoftmaxCrossEntropyWithLogits(reduction=reduction)
def construct(self, logit, label):
if self.sparse:
label = self.onehot(label, F.shape(logit)[1], self.on_value, self.off_value)
loss = self.ce(logit, label)
return loss

View File

@ -36,6 +36,7 @@ from mindspore.common import set_seed
from src.config import cifar_cfg, imagenet_cfg
from src.dataset import create_dataset_cifar10, create_dataset_imagenet
from src.googlenet import GoogleNet
from src.CrossEntropySmooth import CrossEntropySmooth
set_seed(1)
@ -148,7 +149,7 @@ if __name__ == '__main__':
learning_rate=Tensor(lr),
momentum=cfg.momentum,
weight_decay=cfg.weight_decay)
loss = nn.SoftmaxCrossEntropyWithLogits(sparse=True, reduction='mean', is_grad=False)
loss = nn.SoftmaxCrossEntropyWithLogits(sparse=True, reduction='mean')
elif args_opt.dataset_name == 'imagenet':
lr = lr_steps_imagenet(cfg, batch_num)
@ -188,8 +189,8 @@ if __name__ == '__main__':
loss_scale=cfg.loss_scale)
if not cfg.use_label_smooth:
cfg.label_smooth_factor = 0.0
loss = nn.SoftmaxCrossEntropyWithLogits(sparse=True, reduction="mean",
smooth_factor=cfg.label_smooth_factor, num_classes=cfg.num_classes)
loss = CrossEntropySmooth(sparse=True, reduction="mean",
smooth_factor=cfg.label_smooth_factor, num_classes=cfg.num_classes)
if cfg.is_dynamic_loss_scale == 1:
loss_scale_manager = DynamicLossScaleManager(init_loss_scale=65536, scale_factor=2, scale_window=2000)