!2782 New control sink testcase

Merge pull request !2782 from zhoufeng/control-sink-test
This commit is contained in:
mindspore-ci-bot 2020-07-01 16:46:31 +08:00 committed by Gitee
commit f18329eaa5
1 changed files with 189 additions and 0 deletions

View File

@ -0,0 +1,189 @@
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
""" test_ascend_control_sink """
import pytest
import numpy as np
import mindspore.context as context
import mindspore.nn as nn
from mindspore.ops import operations as op
from mindspore.common import dtype as mstype
from mindspore.common.tensor import Tensor
from mindspore.common.parameter import Parameter
from mindspore.common.initializer import initializer
class ControlSimpleIf(nn.Cell):
def __init__(self):
super().__init__()
self.addn = op.AddN()
def construct(self, x, y, z, input1, input2):
addn1 = self.addn([input1, input1, input1])
addn2 = self.addn([input2, input2, input2])
addn11 = self.addn([addn1, addn1, addn1])
addn22 = self.addn([addn2, addn2, addn2])
cond1 = x > y
cond2 = y > z
# dodge pylint
if cond1 and cond2:
out = self.addn([addn11, addn11])
else:
out = self.addn([addn22, addn22])
out_me = self.addn([out, input1])
return out_me
class ControlSimpleIfWithAssign(nn.Cell):
def __init__(self, input_shape):
super().__init__()
self.addn = op.AddN()
self.assign = op.Assign()
self.input_data = Parameter(initializer(1, input_shape, mstype.float32), name="var")
def construct(self, x, y, input_data):
if x > y:
out = self.addn([input_data, input_data, input_data])
else:
out = self.assign(self.input_data, input_data)
return out
class ControlIfinIf(nn.Cell):
def __init__(self):
super().__init__()
def construct(self, x, y):
if x > y:
x = x + 1
if y < 0:
y = y + 1
else:
y = y + 2
else:
x = x + 2
x = x + y
return x
class ControlIfbyIfbyIf(nn.Cell):
def __init__(self):
super().__init__()
self.addn = op.AddN()
def construct(self, x, y, cond1, cond2, input_data):
tri_in = self.addn([input_data, input_data, input_data])
if x > y:
addn_1 = self.addn([tri_in, tri_in])
else:
addn_1 = self.addn([tri_in, tri_in, tri_in])
if cond1:
addn_2 = self.addn([addn_1, addn_1])
else:
addn_2 = self.addn([addn_1, addn_1, addn_1])
if cond2:
out = self.addn([addn_2, addn_2, addn_2])
else:
out = self.addn([addn_2, addn_2])
return out
class ControlMixedWhileIf(nn.Cell):
def __init__(self):
super().__init__()
def construct(self, x, y):
y = y + 4
while x < y:
if 2 * x < y:
x = x + 1
else:
x = x + 2
x = x + 3
return x
@pytest.mark.level0
@pytest.mark.platform_arm_ascend_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.env_onecard
def test_simple_if():
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
x = np.array(3).astype(np.float32)
y = np.array(2).astype(np.float32)
z = np.array(3).astype(np.float32)
input_shape = (127, 7, 53, 31)
input1 = np.random.randn(*input_shape).astype(np.float32)
input2 = np.random.randn(*input_shape).astype(np.float32)
net = ControlSimpleIf()
output = net(Tensor(x), Tensor(y), Tensor(z), Tensor(input1), Tensor(input2))
expect = input2 * 3 * 3 * 2 + input1
assert np.allclose(expect, output.asnumpy(), 0.0001, 0.0001)
@pytest.mark.level0
@pytest.mark.platform_arm_ascend_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.env_onecard
def test_simple_if_with_assign():
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
x = np.array(0).astype(np.float32)
y = np.array(1).astype(np.float32)
input_shape = (127, 7, 53, 31)
input_data = np.random.randn(*input_shape).astype(np.float32)
net = ControlSimpleIfWithAssign(input_shape)
output = net(Tensor(x), Tensor(y), Tensor(input_data))
expect = input_data
assert np.allclose(expect, output.asnumpy(), 0.0001, 0.0001)
@pytest.mark.level0
@pytest.mark.platform_arm_ascend_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.env_onecard
def test_if_in_if():
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
x = np.array(2.345678).astype(np.float32)
y = np.array(1.234567).astype(np.float32)
net = ControlIfinIf()
output = net(Tensor(x), Tensor(y))
expect = x + y + 3
assert np.allclose(expect, output.asnumpy(), 0.0001, 0.0001)
@pytest.mark.level0
@pytest.mark.platform_arm_ascend_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.env_onecard
def test_if_by_if_by_if():
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
x = np.array(2.345678).astype(np.float32)
y = np.array(1.234567).astype(np.float32)
cond1 = np.array(True).astype(np.bool)
cond2 = np.array(False).astype(np.bool)
input_shape = (127, 7, 53, 31)
input_data = np.random.randn(*input_shape).astype(np.float32)
net = ControlIfbyIfbyIf()
output = net(Tensor(x), Tensor(y), Tensor(cond1), Tensor(cond2), Tensor(input_data))
expect = input_data * 3 * 2 * 2 * 2
assert np.allclose(expect, output.asnumpy(), 0.0001, 0.0001)
@pytest.mark.level0
@pytest.mark.platform_arm_ascend_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.env_onecard
def test_mixed_while_if():
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
x = np.array(2).astype(np.int32)
y = np.array(14).astype(np.int32)
net = ControlMixedWhileIf()
output = net(Tensor(x), Tensor(y))
expect = np.array(22).astype(np.int32)
assert np.allclose(expect, output.asnumpy(), 0.0001, 0.0001)