forked from OSSInnovation/mindspore
!6089 Extend watchpoint support in debugger to all tensor types
Merge pull request !6089 from HarshvardhanGupta/add-more-dtypes-wp
This commit is contained in:
commit
f16ad7aa27
|
@ -58,13 +58,14 @@ void DebugServices::RemoveWatchpoint(unsigned int id) {
|
|||
watchpoint_table.erase(id);
|
||||
}
|
||||
|
||||
DebugServices::tensor_stats DebugServices::SummarizeTensor(const float *start, unsigned int n, bool need_min_max,
|
||||
template <typename T>
|
||||
DebugServices::tensor_stats DebugServices::SummarizeTensor(const T *start, unsigned int n, bool need_min_max,
|
||||
bool need_mean_sd) {
|
||||
tensor_stats stats;
|
||||
for (unsigned int i = 0; i < n; ++i) {
|
||||
float val = start[i];
|
||||
stats.has_nan = stats.has_nan || isnan(val);
|
||||
stats.has_inf = stats.has_inf || isinf(val);
|
||||
auto val = static_cast<double>(start[i]);
|
||||
stats.has_nan = stats.has_nan || std::isnan(val);
|
||||
stats.has_inf = stats.has_inf || std::isinf(val);
|
||||
if (stats.has_inf && stats.has_nan) {
|
||||
// other statistics don't make sense in this case
|
||||
break;
|
||||
|
@ -76,9 +77,7 @@ DebugServices::tensor_stats DebugServices::SummarizeTensor(const float *start, u
|
|||
}
|
||||
|
||||
if (need_mean_sd) {
|
||||
// for mean and sd calculation see
|
||||
// https://en.wikipedia.org/wiki/Algorithms_for_calculating_variance#Welford's_online_algorithm
|
||||
float delta = val - stats.mean;
|
||||
double delta = val - stats.mean;
|
||||
stats.mean += delta / (i + 1);
|
||||
stats.m2 += delta * (val - stats.mean);
|
||||
}
|
||||
|
@ -109,13 +108,7 @@ void DebugServices::CheckWatchpoints(std::vector<std::string> *name, std::vector
|
|||
bool inf_nan_enabled = false;
|
||||
for (auto w_table_item : watchpoint_table) {
|
||||
auto wp = std::get<1>(w_table_item);
|
||||
|
||||
// if (!wp.conditions.condition_list[IS_OVERFLOW].enabled) {
|
||||
if (wp.condition.type != IS_OVERFLOW) {
|
||||
// only overflow condition supports all data types
|
||||
if (tensor_dtype != kNumberTypeFloat && tensor_dtype != kNumberTypeFloat32) continue;
|
||||
}
|
||||
|
||||
if (wp.condition.type != IS_OVERFLOW && tensor_dtype == kNumberTypeBool) continue;
|
||||
if (wp.IsNodeIncluded(tensor_name_no_slot)) {
|
||||
min_max_enabled |= wp.min_max_enabled();
|
||||
mean_sd_enabled |= wp.mean_sd_enabled();
|
||||
|
@ -124,11 +117,70 @@ void DebugServices::CheckWatchpoints(std::vector<std::string> *name, std::vector
|
|||
}
|
||||
}
|
||||
tensor_stats stats;
|
||||
|
||||
uint num_elements = tensor_ptr->DataSize();
|
||||
if (min_max_enabled || mean_sd_enabled || inf_nan_enabled) {
|
||||
auto *start_addr = reinterpret_cast<float *>(tensor_ptr->data_c());
|
||||
unsigned int num_elements = (tensor_ptr->data().nbytes()) / sizeof(float);
|
||||
stats = SummarizeTensor(start_addr, num_elements, min_max_enabled, mean_sd_enabled);
|
||||
switch (tensor_dtype) {
|
||||
case kNumberTypeUInt8: {
|
||||
auto start_addr = reinterpret_cast<uint8_t *>(tensor_ptr->data_c());
|
||||
stats = SummarizeTensor(start_addr, num_elements, min_max_enabled, mean_sd_enabled);
|
||||
break;
|
||||
}
|
||||
case kNumberTypeInt8: {
|
||||
auto start_addr = reinterpret_cast<int8_t *>(tensor_ptr->data_c());
|
||||
stats = SummarizeTensor(start_addr, num_elements, min_max_enabled, mean_sd_enabled);
|
||||
break;
|
||||
}
|
||||
case kNumberTypeUInt16: {
|
||||
auto start_addr = reinterpret_cast<uint16_t *>(tensor_ptr->data_c());
|
||||
stats = SummarizeTensor(start_addr, num_elements, min_max_enabled, mean_sd_enabled);
|
||||
break;
|
||||
}
|
||||
case kNumberTypeInt16: {
|
||||
auto start_addr = reinterpret_cast<int16_t *>(tensor_ptr->data_c());
|
||||
stats = SummarizeTensor(start_addr, num_elements, min_max_enabled, mean_sd_enabled);
|
||||
break;
|
||||
}
|
||||
case kNumberTypeUInt32: {
|
||||
auto start_addr = reinterpret_cast<uint32_t *>(tensor_ptr->data_c());
|
||||
stats = SummarizeTensor(start_addr, num_elements, min_max_enabled, mean_sd_enabled);
|
||||
break;
|
||||
}
|
||||
case kNumberTypeInt32:
|
||||
case kNumberTypeInt: {
|
||||
auto start_addr = reinterpret_cast<int32_t *>(tensor_ptr->data_c());
|
||||
stats = SummarizeTensor(start_addr, num_elements, min_max_enabled, mean_sd_enabled);
|
||||
break;
|
||||
}
|
||||
case kNumberTypeUInt64: {
|
||||
auto start_addr = reinterpret_cast<uint64_t *>(tensor_ptr->data_c());
|
||||
stats = SummarizeTensor(start_addr, num_elements, min_max_enabled, mean_sd_enabled);
|
||||
break;
|
||||
}
|
||||
case kNumberTypeInt64: {
|
||||
auto start_addr = reinterpret_cast<int64_t *>(tensor_ptr->data_c());
|
||||
stats = SummarizeTensor(start_addr, num_elements, min_max_enabled, mean_sd_enabled);
|
||||
break;
|
||||
}
|
||||
case kNumberTypeFloat16: {
|
||||
auto start_addr = reinterpret_cast<float16 *>(tensor_ptr->data_c());
|
||||
stats = SummarizeTensor(start_addr, num_elements, min_max_enabled, mean_sd_enabled);
|
||||
break;
|
||||
}
|
||||
case kNumberTypeFloat32:
|
||||
case kNumberTypeFloat: {
|
||||
auto start_addr = reinterpret_cast<float *>(tensor_ptr->data_c());
|
||||
stats = SummarizeTensor(start_addr, num_elements, min_max_enabled, mean_sd_enabled);
|
||||
break;
|
||||
}
|
||||
case kNumberTypeFloat64: {
|
||||
auto start_addr = reinterpret_cast<double *>(tensor_ptr->data_c());
|
||||
stats = SummarizeTensor(start_addr, num_elements, min_max_enabled, mean_sd_enabled);
|
||||
break;
|
||||
}
|
||||
default:
|
||||
MS_LOG(INFO) << "Unsupported tensor type";
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
for (auto &it : watchpoints_to_check_table) {
|
||||
|
|
|
@ -93,26 +93,26 @@ class DebugServices {
|
|||
} watchpoint_t;
|
||||
|
||||
struct tensor_stats {
|
||||
float min = std::numeric_limits<float>::max();
|
||||
float max = std::numeric_limits<float>::lowest();
|
||||
double min = std::numeric_limits<double>::max();
|
||||
double max = std::numeric_limits<double>::lowest();
|
||||
bool has_inf = false;
|
||||
bool has_nan = false;
|
||||
unsigned int n = 0;
|
||||
float mean = 0.0;
|
||||
float m2 = 0.0;
|
||||
double mean = 0.0;
|
||||
double m2 = 0.0;
|
||||
|
||||
float statLookup(CONDITION_TYPE type) const {
|
||||
double statLookup(CONDITION_TYPE type) const {
|
||||
if (type == MAX_GT || type == MAX_LT) return max;
|
||||
if (type == MIN_GT || type == MIN_LT) return min;
|
||||
if (type == MAX_MIN_GT || type == MAX_MIN_LT) return (max - min);
|
||||
if (type == MEAN_GT || type == MEAN_LT) return mean;
|
||||
if (type == SD_GT || type == SD_LT) return getStandardDeviation();
|
||||
return std::numeric_limits<float>::quiet_NaN();
|
||||
return std::numeric_limits<double>::quiet_NaN();
|
||||
}
|
||||
|
||||
float getMean() const { return mean; }
|
||||
double getMean() const { return mean; }
|
||||
|
||||
float getVariance() const {
|
||||
double getVariance() const {
|
||||
if (n > 1) {
|
||||
return m2 / (n - 1);
|
||||
} else {
|
||||
|
@ -120,7 +120,7 @@ class DebugServices {
|
|||
}
|
||||
}
|
||||
|
||||
float getStandardDeviation() const { return sqrt(getVariance()); }
|
||||
double getStandardDeviation() const { return sqrt(getVariance()); }
|
||||
};
|
||||
|
||||
void AddWatchpoint(unsigned int id, unsigned int watch_condition, float parameter,
|
||||
|
@ -152,7 +152,8 @@ class DebugServices {
|
|||
|
||||
TensorLoader *tensor_loader_;
|
||||
|
||||
static tensor_stats SummarizeTensor(const float *start, unsigned int n, bool need_min_max, bool need_mean_sd);
|
||||
template <typename T>
|
||||
static tensor_stats SummarizeTensor(const T *start, unsigned int n, bool need_min_max, bool need_mean_sd);
|
||||
};
|
||||
} // namespace mindspore
|
||||
|
||||
|
|
Loading…
Reference in New Issue