forked from OSSInnovation/mindspore
Fix pylint warnings in mindspore st test module
This commit is contained in:
parent
ca3aa6071a
commit
ba43dbc148
|
@ -11,6 +11,7 @@
|
|||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
|
||||
import os
|
||||
import pytest
|
||||
|
@ -26,6 +27,7 @@ device_num = 2
|
|||
device_id = int(os.getenv('DEVICE_ID'))
|
||||
rank_id = 0
|
||||
|
||||
|
||||
def setup_module():
|
||||
global device_num
|
||||
global rank_id
|
||||
|
@ -42,9 +44,11 @@ def setup_module():
|
|||
context.set_auto_parallel_context(device_num=device_num,
|
||||
global_rank=rank_id)
|
||||
|
||||
|
||||
def teardown_module():
|
||||
distributedTool.release()
|
||||
|
||||
|
||||
class Onehot(Cell):
|
||||
def __init__(self, axis=-1, depth=1, on_value=1.0, off_value=0.0, strategy=None):
|
||||
super(Onehot, self).__init__()
|
||||
|
@ -56,25 +60,26 @@ class Onehot(Cell):
|
|||
self.on_value = Tensor(on_value, ms.float32)
|
||||
self.off_value = Tensor(off_value, ms.float32)
|
||||
self.transpose = P.Transpose().set_strategy(strategy=trans_stra)
|
||||
self.sub = P.Sub().set_strategy(strategy=((1,1),(1,1)))
|
||||
self.sub = P.Sub().set_strategy(strategy=((1, 1), (1, 1)))
|
||||
|
||||
def construct(self, input, indices):
|
||||
x = self.onehot(indices, self.depth, self.on_value, self.off_value)
|
||||
x = self.transpose(x, (1,0))
|
||||
x = self.transpose(x, (1, 0))
|
||||
x = self.sub(input, x)
|
||||
return x
|
||||
|
||||
|
||||
class DataGenerator():
|
||||
def get_parallel_blocks(self, input_, strategy):
|
||||
blocks = [input_]
|
||||
i = 0
|
||||
for stra in strategy:
|
||||
temp = []
|
||||
while len(blocks)>0:
|
||||
while len(blocks) > 0:
|
||||
block = blocks.pop(0)
|
||||
temp.extend(np.split(block, stra, axis=i))
|
||||
blocks.extend(temp)
|
||||
i+=1
|
||||
i += 1
|
||||
return blocks
|
||||
|
||||
def generate_data(self, shape):
|
||||
|
@ -93,32 +98,33 @@ class DataGenerator():
|
|||
stra = [1]*len(shape)
|
||||
stra[0] = device_num
|
||||
datas = self.get_parallel_blocks(data, stra)
|
||||
return Tensor(data),Tensor(datas[rank_id])
|
||||
return Tensor(data), Tensor(datas[rank_id])
|
||||
|
||||
|
||||
class OneHotFactory:
|
||||
def __init__(self, batch_size, classes, on_value=1.0, off_value=0.0, axis=None, strategy=None):
|
||||
dataGen = DataGenerator()
|
||||
self.input_full, self.input_part = dataGen.input_data((classes, batch_size))
|
||||
self.label_full, self.label_part = dataGen.label_data((batch_size,),classes)
|
||||
self.label_full, self.label_part = dataGen.label_data((batch_size,), classes)
|
||||
self.depth = classes
|
||||
self.on_value = on_value
|
||||
self.off_value = off_value
|
||||
self.axis = axis
|
||||
self.strategy = strategy
|
||||
|
||||
|
||||
def forward_mindspore_single_impl(self):
|
||||
net = Onehot(axis=self.axis,
|
||||
depth=self.depth,
|
||||
on_value=self.on_value,
|
||||
net = Onehot(axis=self.axis,
|
||||
depth=self.depth,
|
||||
on_value=self.on_value,
|
||||
off_value=self.off_value)
|
||||
out = net(self.input_full, self.label_full)
|
||||
return out
|
||||
|
||||
|
||||
def forward_mindspore_parallel_impl(self):
|
||||
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel")
|
||||
net = Onehot(axis=self.axis,
|
||||
depth=self.depth,
|
||||
on_value=self.on_value,
|
||||
net = Onehot(axis=self.axis,
|
||||
depth=self.depth,
|
||||
on_value=self.on_value,
|
||||
off_value=self.off_value, strategy=self.strategy)
|
||||
out = net.compile_and_run(self.input_full, self.label_full)
|
||||
return out
|
||||
|
@ -137,7 +143,7 @@ def test_reid_onehot_forward_int32_128_depth1024_model_parallel():
|
|||
on_value=1.000000,
|
||||
off_value=0.000000,
|
||||
axis=-1,
|
||||
strategy=((1,device_num),(),()))
|
||||
strategy=((1, device_num), (), ()))
|
||||
fact.forward_cmp()
|
||||
|
||||
|
||||
|
@ -147,5 +153,5 @@ def test_reid_onehot_forward_int32_1024_depth128_model_parallel():
|
|||
on_value=1.000000,
|
||||
off_value=0.000000,
|
||||
axis=-1,
|
||||
strategy=((1,device_num),(),()))
|
||||
strategy=((1, device_num), (), ()))
|
||||
fact.forward_cmp()
|
||||
|
|
|
@ -11,6 +11,7 @@
|
|||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
|
||||
import os
|
||||
import pytest
|
||||
|
@ -31,7 +32,7 @@ from mindspore.nn.optim.momentum import Momentum
|
|||
from mindspore.train.callback import Callback
|
||||
|
||||
np.set_printoptions(threshold=np.inf)
|
||||
device_num=2
|
||||
device_num = 2
|
||||
device_id = int(os.getenv('DEVICE_ID'))
|
||||
rank_id = 0
|
||||
embed = 128
|
||||
|
@ -39,6 +40,7 @@ classes = 32
|
|||
batch_size = 32*2
|
||||
MatmulParamShape = (classes, embed)
|
||||
|
||||
|
||||
def setup_module():
|
||||
global device_num
|
||||
global rank_id
|
||||
|
@ -55,26 +57,28 @@ def setup_module():
|
|||
context.set_auto_parallel_context(device_num=device_num,
|
||||
global_rank=device_id)
|
||||
|
||||
|
||||
def teardown_module():
|
||||
distributedTool.release()
|
||||
|
||||
|
||||
class DataGenerator():
|
||||
def get_parallel_blocks(self, input_, strategy):
|
||||
blocks = [input_]
|
||||
i = 0
|
||||
for stra in strategy:
|
||||
temp = []
|
||||
while len(blocks)>0:
|
||||
while len(blocks) > 0:
|
||||
block = blocks.pop(0)
|
||||
temp.extend(np.split(block, stra, axis=i))
|
||||
blocks.extend(temp)
|
||||
i+=1
|
||||
i += 1
|
||||
return blocks
|
||||
|
||||
def generate_data(self, shape):
|
||||
size = np.cumprod(shape)[-1]
|
||||
num_range = min(size, 1000)
|
||||
data = (np.arange(0, size)%num_range)/num_range
|
||||
data = (np.arange(0, size) % num_range)/num_range
|
||||
data = np.reshape(data, shape)
|
||||
return data
|
||||
|
||||
|
@ -83,14 +87,15 @@ class DataGenerator():
|
|||
stra = [1]*len(shape)
|
||||
stra[0] = device_num
|
||||
datas = self.get_parallel_blocks(data, stra)
|
||||
return Tensor(data), Tensor(datas[rank_id])
|
||||
return Tensor(data), Tensor(datas[rank_id])
|
||||
|
||||
def label_data(self, shape, embed):
|
||||
data = (self.generate_data(shape)*(embed-1)).astype(np.int32)
|
||||
stra = [1]*len(shape)
|
||||
stra[0] = device_num
|
||||
datas = self.get_parallel_blocks(data, stra)
|
||||
return Tensor(data),Tensor(datas[rank_id])
|
||||
return Tensor(data), Tensor(datas[rank_id])
|
||||
|
||||
|
||||
class Dataset():
|
||||
def __init__(self, predict, label, length=1, input_num=2):
|
||||
|
@ -121,15 +126,18 @@ class Dataset():
|
|||
def get_repeat_count(self):
|
||||
return self.length
|
||||
|
||||
|
||||
class ModelCallback(Callback):
|
||||
def __init__(self):
|
||||
super(ModelCallback, self).__init__()
|
||||
self.loss_list = []
|
||||
|
||||
def epoch_end(self, run_context, *args):
|
||||
cb_params = run_context.original_args()
|
||||
result = cb_params.net_outputs
|
||||
self.loss_list.append(result.asnumpy().mean())
|
||||
|
||||
|
||||
class SoftmaxCrossEntropyExpand(Cell):
|
||||
def __init__(self, sparse=False, stra_list=[]):
|
||||
super(SoftmaxCrossEntropyExpand, self).__init__()
|
||||
|
@ -164,22 +172,25 @@ class SoftmaxCrossEntropyExpand(Cell):
|
|||
loss = self.reduce_mean(loss, -1)
|
||||
return loss
|
||||
|
||||
|
||||
class MatmulNet(Cell):
|
||||
def __init__(self, matmul_stra = None, loss_stra_list=[]):
|
||||
def __init__(self, matmul_stra=None, loss_stra_list=[]):
|
||||
super(MatmulNet, self).__init__()
|
||||
self.matmul = P.MatMul(transpose_b=True).set_strategy(strategy=matmul_stra)
|
||||
self.loss = SoftmaxCrossEntropyExpand(sparse=True, stra_list=loss_stra_list)
|
||||
self.weight = Parameter(Tensor(np.ones(MatmulParamShape), dtype=ms.float32), name="weight")
|
||||
self.weight = Parameter(Tensor(np.ones(MatmulParamShape), dtype=ms.float32), name="weight")
|
||||
|
||||
def construct(self, x, label):
|
||||
loss_input = self.matmul(x, self.weight)
|
||||
out = self.loss(loss_input, label)
|
||||
return out
|
||||
|
||||
|
||||
class LossFactory():
|
||||
def __init__(self):
|
||||
dataGen = DataGenerator()
|
||||
self.input_full, self.input_part = dataGen.input_data((batch_size, embed))
|
||||
self.label_full, self.label_part = dataGen.label_data((batch_size,),embed)
|
||||
self.label_full, self.label_part = dataGen.label_data((batch_size,), embed)
|
||||
|
||||
def single_matmul_trains(self):
|
||||
single_callback = ModelCallback()
|
||||
|
@ -196,32 +207,33 @@ class LossFactory():
|
|||
parallel_callback = ModelCallback()
|
||||
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel")
|
||||
net = MatmulNet()
|
||||
optimizer = Momentum(net.trainable_params(), learning_rate=0.1, momentum=0.9)
|
||||
optimizer = Momentum(net.trainable_params(), learning_rate=0.1, momentum=0.9)
|
||||
model = Model(net, optimizer=optimizer)
|
||||
epoch_size = 6
|
||||
dataset = Dataset(self.input_part, self.label_part)
|
||||
model.train(epoch_size, dataset, callbacks=parallel_callback, dataset_sink_mode=False)
|
||||
loss_value = np.array(parallel_callback.loss_list)
|
||||
return loss_value
|
||||
|
||||
|
||||
def model_parallel_matmul_trains(self):
|
||||
parallel_callback = ModelCallback()
|
||||
matmul_stra = ((1,1),(device_num,1))
|
||||
reduce_max_stra = ((1,device_num),)
|
||||
sub_stra = ((1,device_num),(1,1))
|
||||
exp_stra = ((1,device_num),)
|
||||
reduce_sum_stra = ((1,device_num),)
|
||||
div_stra = ((1,device_num),(1,1))
|
||||
log_stra = ((1,device_num),)
|
||||
mul_stra = ((1,device_num),(1,device_num))
|
||||
sum_cross_entropy_stra = ((1,device_num),)
|
||||
mul2_stra = ((),(device_num,))
|
||||
matmul_stra = ((1, 1), (device_num, 1))
|
||||
reduce_max_stra = ((1, device_num),)
|
||||
sub_stra = ((1, device_num), (1, 1))
|
||||
exp_stra = ((1, device_num),)
|
||||
reduce_sum_stra = ((1, device_num),)
|
||||
div_stra = ((1, device_num), (1, 1))
|
||||
log_stra = ((1, device_num),)
|
||||
mul_stra = ((1, device_num), (1, device_num))
|
||||
sum_cross_entropy_stra = ((1, device_num),)
|
||||
mul2_stra = ((), (device_num,))
|
||||
reduce_mean_stra = ((device_num,),)
|
||||
onehot_stra = ((1,device_num),(),())
|
||||
loss_stra_list = [exp_stra, reduce_sum_stra, onehot_stra, div_stra, log_stra, sum_cross_entropy_stra, mul_stra, mul2_stra, reduce_mean_stra, reduce_max_stra, sub_stra]
|
||||
onehot_stra = ((1, device_num), (), ())
|
||||
loss_stra_list = [exp_stra, reduce_sum_stra, onehot_stra, div_stra, log_stra,
|
||||
sum_cross_entropy_stra, mul_stra, mul2_stra, reduce_mean_stra, reduce_max_stra, sub_stra]
|
||||
context.set_auto_parallel_context(parallel_mode="auto_parallel")
|
||||
net = MatmulNet(matmul_stra = matmul_stra, loss_stra_list = loss_stra_list)
|
||||
optimizer = Momentum(net.trainable_params(), learning_rate=0.1, momentum=0.9)
|
||||
net = MatmulNet(matmul_stra=matmul_stra, loss_stra_list=loss_stra_list)
|
||||
optimizer = Momentum(net.trainable_params(), learning_rate=0.1, momentum=0.9)
|
||||
model = Model(net, optimizer=optimizer)
|
||||
epoch_size = 6
|
||||
dataset = Dataset(self.input_part, self.label_part)
|
||||
|
@ -231,21 +243,22 @@ class LossFactory():
|
|||
|
||||
def mix_parallel_matmul_trains(self):
|
||||
parallel_callback = ModelCallback()
|
||||
matmul_stra = ((device_num,1),(1,1))
|
||||
reduce_max_stra = ((1,device_num),)
|
||||
sub_stra = ((device_num,1),(device_num,1))
|
||||
exp_stra = ((1,device_num),)
|
||||
reduce_sum_stra = ((1,device_num),)
|
||||
div_stra = ((1,device_num),(1,1))
|
||||
log_stra = ((1,device_num),)
|
||||
mul_stra = ((1,device_num),(1,device_num))
|
||||
sum_cross_entropy_stra = ((1,device_num),)
|
||||
mul2_stra = ((),(device_num,))
|
||||
matmul_stra = ((device_num, 1), (1, 1))
|
||||
reduce_max_stra = ((1, device_num),)
|
||||
sub_stra = ((device_num, 1), (device_num, 1))
|
||||
exp_stra = ((1, device_num),)
|
||||
reduce_sum_stra = ((1, device_num),)
|
||||
div_stra = ((1, device_num), (1, 1))
|
||||
log_stra = ((1, device_num),)
|
||||
mul_stra = ((1, device_num), (1, device_num))
|
||||
sum_cross_entropy_stra = ((1, device_num),)
|
||||
mul2_stra = ((), (device_num,))
|
||||
reduce_mean_stra = ((device_num,),)
|
||||
onehot_stra = ((1,device_num),(),())
|
||||
loss_stra_list = [exp_stra, reduce_sum_stra, onehot_stra, div_stra, log_stra, sum_cross_entropy_stra, mul_stra, mul2_stra, reduce_mean_stra, reduce_max_stra, sub_stra]
|
||||
onehot_stra = ((1, device_num), (), ())
|
||||
loss_stra_list = [exp_stra, reduce_sum_stra, onehot_stra, div_stra, log_stra,
|
||||
sum_cross_entropy_stra, mul_stra, mul2_stra, reduce_mean_stra, reduce_max_stra, sub_stra]
|
||||
context.set_auto_parallel_context(parallel_mode="auto_parallel")
|
||||
net = MatmulNet(matmul_stra = matmul_stra, loss_stra_list = loss_stra_list)
|
||||
net = MatmulNet(matmul_stra=matmul_stra, loss_stra_list=loss_stra_list)
|
||||
optimizer = Momentum(net.trainable_params(), learning_rate=0.1, momentum=0.9)
|
||||
model = Model(net, optimizer=optimizer)
|
||||
epoch_size = 6
|
||||
|
@ -254,6 +267,7 @@ class LossFactory():
|
|||
loss_value = np.array(parallel_callback.loss_list)
|
||||
return loss_value
|
||||
|
||||
|
||||
def test_all_trains():
|
||||
loss_factory = LossFactory()
|
||||
context.reset_auto_parallel_context()
|
||||
|
|
|
@ -12,10 +12,10 @@
|
|||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
|
||||
import os
|
||||
import pytest
|
||||
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_ascend_training
|
||||
@pytest.mark.platform_arm_ascend_training
|
||||
|
@ -23,4 +23,4 @@ import pytest
|
|||
def test_expand_loss():
|
||||
sh_path = os.path.split(os.path.realpath(__file__))[0]
|
||||
ret = os.system(f"sh {sh_path}/run_auto_parallel_loss_expand.sh")
|
||||
assert(ret==0)
|
||||
assert(ret == 0)
|
||||
|
|
|
@ -16,6 +16,7 @@
|
|||
import os
|
||||
import pytest
|
||||
|
||||
|
||||
def test_expand_loss():
|
||||
ret = os.system("sh run_onehot_model_parallel.sh")
|
||||
assert(ret==0)
|
||||
assert(ret == 0)
|
||||
|
|
|
@ -11,10 +11,12 @@
|
|||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
|
||||
import os
|
||||
import numpy as np
|
||||
import pytest
|
||||
from numpy import allclose
|
||||
import mindspore.context as context
|
||||
import mindspore.nn as nn
|
||||
import mindspore.common.dtype as mstype
|
||||
from mindspore import Tensor
|
||||
|
@ -22,21 +24,21 @@ from mindspore.ops import operations as P
|
|||
from mindspore.nn.optim.momentum import Momentum
|
||||
from mindspore.common.initializer import One
|
||||
from mindspore.train.model import Model, ParallelMode
|
||||
from mindspore import context
|
||||
import os
|
||||
from mindspore.communication.management import init
|
||||
import mindspore.ops.functional as F
|
||||
from mindspore.nn.loss.loss import _Loss
|
||||
from mindspore.train.callback import Callback
|
||||
from mindspore.parallel import set_algo_parameters
|
||||
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
|
||||
context.set_context(enable_hccl=True)
|
||||
context.set_context(enable_task_sink=True,device_id=int(os.getenv('DEVICE_ID')))
|
||||
context.set_context(enable_task_sink=True, device_id=int(os.getenv('DEVICE_ID')))
|
||||
context.set_context(enable_ir_fusion=True)
|
||||
context.set_context(enable_loop_sink=False)
|
||||
init()
|
||||
context.set_auto_parallel_context(mirror_mean=True, parallel_mode=ParallelMode.AUTO_PARALLEL)
|
||||
|
||||
|
||||
def weight_variable(shape, factor=0.1):
|
||||
return One()
|
||||
|
||||
|
@ -52,6 +54,7 @@ def _conv1x1(in_channels, out_channels, stride=1, padding=0, pad_mode='same'):
|
|||
return nn.Conv2d(in_channels, out_channels,
|
||||
kernel_size=1, stride=stride, padding=padding, pad_mode=pad_mode, weight_init=init_value)
|
||||
|
||||
|
||||
def _conv7x7(in_channels, out_channels, stride=1, padding=0, pad_mode='same'):
|
||||
init_value = weight_variable((out_channels, in_channels, 7, 7))
|
||||
return nn.Conv2d(in_channels, out_channels,
|
||||
|
@ -63,6 +66,7 @@ def _fused_bn(channels, momentum=0.9):
|
|||
init_bias = weight_variable((channels,))
|
||||
return nn.BatchNorm2d(channels, momentum=momentum)
|
||||
|
||||
|
||||
class BasicBlock(nn.Cell):
|
||||
expansion = 1
|
||||
|
||||
|
@ -172,7 +176,7 @@ class ResNet(nn.Cell):
|
|||
layer_nums,
|
||||
in_channels,
|
||||
out_channels,
|
||||
strides=[1,2,2,2],
|
||||
strides=[1, 2, 2, 2],
|
||||
num_classes=100):
|
||||
super(ResNet, self).__init__()
|
||||
|
||||
|
@ -292,17 +296,19 @@ class SoftmaxCrossEntropyExpand(_Loss):
|
|||
|
||||
rank_id = int(os.environ["RANK_ID"])
|
||||
device_num = int(os.environ["RANK_SIZE"])
|
||||
|
||||
|
||||
class DataGenerator():
|
||||
def get_parallel_blocks(self, input_, strategy):
|
||||
blocks = [input_]
|
||||
i = 0
|
||||
for stra in strategy:
|
||||
temp = []
|
||||
while len(blocks)>0:
|
||||
while len(blocks) > 0:
|
||||
block = blocks.pop(0)
|
||||
temp.extend(np.split(block, stra, axis=i))
|
||||
blocks.extend(temp)
|
||||
i+=1
|
||||
i += 1
|
||||
return blocks
|
||||
|
||||
def generate_data(self, shape):
|
||||
|
@ -321,7 +327,7 @@ class DataGenerator():
|
|||
stra = [1]*len(shape)
|
||||
stra[0] = device_num
|
||||
datas = self.get_parallel_blocks(data, stra)
|
||||
return Tensor(data),Tensor(datas[rank_id])
|
||||
return Tensor(data), Tensor(datas[rank_id])
|
||||
|
||||
|
||||
class Dataset():
|
||||
|
@ -359,6 +365,7 @@ class ModelCallback(Callback):
|
|||
def __init__(self):
|
||||
super(ModelCallback, self).__init__()
|
||||
self.loss_list = []
|
||||
|
||||
def epoch_end(self, run_context, *args):
|
||||
cb_params = run_context.original_args()
|
||||
result = cb_params.net_outputs
|
||||
|
@ -382,7 +389,7 @@ def test_train_feed(num_classes=8192):
|
|||
model.train(5, dataset, dataset_sink_mode=False, callbacks=parallel_callback)
|
||||
loss_value = np.array(parallel_callback.loss_list)
|
||||
expect_out = [9.010913, 8.855984, 8.56246, 8.146317, 7.624489]
|
||||
assert allclose(loss_value, expect_out, 0.0001, 0.0001)
|
||||
assert np.allclose(loss_value, expect_out, 0.0001, 0.0001)
|
||||
|
||||
|
||||
@pytest.mark.level0
|
||||
|
@ -402,4 +409,4 @@ def test_train_feed2(num_classes=1001):
|
|||
model.train(5, dataset, dataset_sink_mode=False, callbacks=parallel_callback)
|
||||
loss_value = np.array(parallel_callback.loss_list)
|
||||
expect_out = [6.908755, 6.8358116, 6.6986914, 6.506859, 6.2708097]
|
||||
assert allclose(loss_value, expect_out, 0.0001, 0.0001)
|
||||
assert np.allclose(loss_value, expect_out, 0.0001, 0.0001)
|
||||
|
|
|
@ -13,12 +13,12 @@
|
|||
# limitations under the License.
|
||||
# ============================================================================
|
||||
import numpy as np
|
||||
from mindspore.common.tensor import Tensor
|
||||
from mindspore.common import dtype as mstype
|
||||
import mindspore.context as context
|
||||
from mindspore.ops import operations as P
|
||||
import mindspore.nn as nn
|
||||
from mindspore.common import ms_function
|
||||
from mindspore import Tensor, ms_function
|
||||
from mindspore.common import dtype as mstype
|
||||
from mindspore.ops import operations as P
|
||||
|
||||
|
||||
@ms_function
|
||||
def t1_while(x, y, z):
|
||||
|
@ -28,8 +28,9 @@ def t1_while(x, y, z):
|
|||
x = x + 3
|
||||
return x
|
||||
|
||||
|
||||
def test_net():
|
||||
context.set_context(mode=context.GRAPH_MODE,device_target="Ascend")
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
|
||||
context.set_context(enable_task_sink=True)
|
||||
c1 = Tensor([2], mstype.int32)
|
||||
c2 = Tensor([14], mstype.int32)
|
||||
|
@ -38,5 +39,6 @@ def test_net():
|
|||
ret = t1_while(c1, c2, c3)
|
||||
assert (ret == expect)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
test_net()
|
||||
test_net()
|
||||
|
|
|
@ -12,17 +12,16 @@
|
|||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
from mindspore import Tensor
|
||||
from mindspore.ops import operations as P
|
||||
import mindspore.nn as nn
|
||||
from mindspore.common.api import ms_function
|
||||
import mindspore.common.dtype as mstype
|
||||
import numpy as np
|
||||
import mindspore.context as context
|
||||
from mindspore.common.initializer import initializer
|
||||
from mindspore.common.parameter import Parameter
|
||||
import mindspore.nn as nn
|
||||
import mindspore.common.dtype as mstype
|
||||
from mindspore import Tensor, ms_function
|
||||
from mindspore.ops import operations as P
|
||||
|
||||
context.set_context(mode=context.GRAPH_MODE, device_id=5, device_target="Ascend")
|
||||
#context.set_context(enable_task_sink=True)
|
||||
|
||||
|
||||
class Net(nn.Cell):
|
||||
def __init__(self):
|
||||
super(Net, self).__init__()
|
||||
|
@ -35,17 +34,14 @@ class Net(nn.Cell):
|
|||
def construct(self, x, y):
|
||||
x = self.cast(x, mstype.float16)
|
||||
y = self.cast(y, mstype.float16)
|
||||
#x = self.softmax(x)
|
||||
x = self.add(x, y)
|
||||
#x = self.relu(x)
|
||||
x = self.relu(x)
|
||||
#x = self.softmax(x)
|
||||
x = self.reduce_mean(x)
|
||||
return x
|
||||
|
||||
|
||||
def test_net():
|
||||
x = np.random.randn(32, 10).astype(np.float32)
|
||||
relu = Net()
|
||||
output = relu(Tensor(x), Tensor(x))
|
||||
print(x)
|
||||
print(output.asnumpy())
|
||||
|
|
|
@ -13,15 +13,13 @@
|
|||
# limitations under the License.
|
||||
# ============================================================================
|
||||
import numpy as np
|
||||
import mindspore.context as context
|
||||
import mindspore.nn as nn
|
||||
from mindspore import Tensor, Parameter, Model, ms_function
|
||||
from mindspore.ops import operations as P
|
||||
from mindspore.common.initializer import initializer
|
||||
from mindspore import Tensor, Parameter, Model
|
||||
from mindspore.nn.loss import SoftmaxCrossEntropyWithLogits
|
||||
from mindspore.nn.optim import Momentum
|
||||
from mindspore.common.api import ms_function
|
||||
import mindspore.nn as wrap
|
||||
import mindspore.context as context
|
||||
|
||||
context.set_context(device_target="Ascend", enable_task_sink=True)
|
||||
|
||||
|
@ -35,6 +33,7 @@ class MsWrapper(nn.Cell):
|
|||
def __init__(self, network):
|
||||
super(MsWrapper, self).__init__(auto_prefix=False)
|
||||
self._network = network
|
||||
|
||||
@ms_function
|
||||
def construct(self, *args):
|
||||
return self._network(*args)
|
||||
|
@ -42,16 +41,16 @@ class MsWrapper(nn.Cell):
|
|||
|
||||
def me_train_tensor(net, input_np, label_np, epoch_size=2):
|
||||
loss = SoftmaxCrossEntropyWithLogits(is_grad=False, sparse=True)
|
||||
opt = nn.Momentum(Tensor(np.array([0.1])), Tensor(np.array([0.9])), filter(lambda x: x.requires_grad, net.get_parameters()))
|
||||
opt = nn.Momentum(Tensor(np.array([0.1])), Tensor(np.array([0.9])),
|
||||
filter(lambda x: x.requires_grad, net.get_parameters()))
|
||||
context.set_context(mode=context.GRAPH_MODE)
|
||||
Model(net, loss, opt)
|
||||
_network = wrap.WithLossCell(net, loss)
|
||||
_train_net = MsWrapper(wrap.TrainOneStepCell(_network, opt))
|
||||
_network = nn.WithLossCell(net, loss)
|
||||
_train_net = MsWrapper(nn.TrainOneStepCell(_network, opt))
|
||||
_train_net.set_train()
|
||||
for epoch in range(0, epoch_size):
|
||||
print(f"epoch %d"%(epoch))
|
||||
print(f"epoch %d" % (epoch))
|
||||
output = _train_net(Tensor(input_np), Tensor(label_np))
|
||||
print("********output***********")
|
||||
print(output.asnumpy())
|
||||
|
||||
|
||||
|
@ -60,9 +59,9 @@ def test_conv_bn_add_relu_fusion():
|
|||
def __init__(self):
|
||||
super(Net, self).__init__()
|
||||
self.conv = nn.Conv2d(input_channel, output_channel,
|
||||
kernel_size=1, stride=1, padding=0, has_bias=False, pad_mode="same")
|
||||
kernel_size=1, stride=1, padding=0, has_bias=False, pad_mode="same")
|
||||
self.conv1 = nn.Conv2d(input_channel, output_channel,
|
||||
kernel_size=1, stride=1, padding=0, has_bias=False, pad_mode="same")
|
||||
kernel_size=1, stride=1, padding=0, has_bias=False, pad_mode="same")
|
||||
self.bn = nn.BatchNorm2d(output_channel, momentum=0.1, eps=0.0001)
|
||||
self.add = P.TensorAdd()
|
||||
self.relu = P.ReLU()
|
||||
|
@ -91,7 +90,7 @@ def test_conv_bn_relu_fusion():
|
|||
def __init__(self):
|
||||
super(Net, self).__init__()
|
||||
self.conv = nn.Conv2d(input_channel, output_channel,
|
||||
kernel_size=1, stride=1, padding=0, has_bias=False, pad_mode="same")
|
||||
kernel_size=1, stride=1, padding=0, has_bias=False, pad_mode="same")
|
||||
self.bn = nn.BatchNorm2d(output_channel, momentum=0.1, eps=0.0001)
|
||||
self.relu = P.ReLU()
|
||||
self.mean = P.ReduceMean(keep_dims=True)
|
||||
|
@ -118,7 +117,7 @@ def test_conv_bn_fusion():
|
|||
def __init__(self):
|
||||
super(Net, self).__init__()
|
||||
self.conv = nn.Conv2d(input_channel, output_channel,
|
||||
kernel_size=1, stride=1, padding=0, has_bias=False, pad_mode="same")
|
||||
kernel_size=1, stride=1, padding=0, has_bias=False, pad_mode="same")
|
||||
self.bn = nn.BatchNorm2d(output_channel, momentum=0.1, eps=0.0001)
|
||||
self.mean = P.ReduceMean(keep_dims=True)
|
||||
self.reshape = P.Reshape()
|
||||
|
|
|
@ -13,16 +13,15 @@
|
|||
# limitations under the License.
|
||||
# ============================================================================
|
||||
import pytest
|
||||
from mindspore import Tensor
|
||||
from mindspore.ops import operations as P
|
||||
import mindspore.nn as nn
|
||||
from mindspore.common.api import ms_function
|
||||
import mindspore.common.dtype as mstype
|
||||
import numpy as np
|
||||
import mindspore.context as context
|
||||
from mindspore.common.initializer import initializer
|
||||
from mindspore.common.parameter import Parameter
|
||||
import mindspore.nn as nn
|
||||
from mindspore import Tensor
|
||||
from mindspore.ops import operations as P
|
||||
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
|
||||
|
||||
|
||||
class Net(nn.Cell):
|
||||
def __init__(self):
|
||||
super(Net, self).__init__()
|
||||
|
@ -35,6 +34,7 @@ class Net(nn.Cell):
|
|||
x = self.relu(x)
|
||||
return x
|
||||
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_arm_ascend_training
|
||||
@pytest.mark.platform_x86_ascend_training
|
||||
|
@ -43,5 +43,4 @@ def test_net():
|
|||
x = np.random.randn(32, 10).astype(np.float32)
|
||||
relu_relu = Net()
|
||||
output = relu_relu(Tensor(x))
|
||||
print(x)
|
||||
print(output.asnumpy())
|
||||
|
|
|
@ -13,16 +13,15 @@
|
|||
# limitations under the License.
|
||||
# ============================================================================
|
||||
import pytest
|
||||
from mindspore import Tensor
|
||||
from mindspore.ops import operations as P
|
||||
import mindspore.nn as nn
|
||||
from mindspore.common.api import ms_function
|
||||
import mindspore.common.dtype as mstype
|
||||
import numpy as np
|
||||
import mindspore.context as context
|
||||
from mindspore.common.initializer import initializer
|
||||
from mindspore.common.parameter import Parameter
|
||||
import mindspore.nn as nn
|
||||
from mindspore import Tensor
|
||||
from mindspore.ops import operations as P
|
||||
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
|
||||
|
||||
|
||||
class Net(nn.Cell):
|
||||
def __init__(self):
|
||||
super(Net, self).__init__()
|
||||
|
@ -41,6 +40,7 @@ class Net(nn.Cell):
|
|||
x = self.relu(x)
|
||||
return x
|
||||
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_arm_ascend_training
|
||||
@pytest.mark.platform_x86_ascend_training
|
||||
|
@ -50,5 +50,4 @@ def test_net():
|
|||
y = np.random.randn(10).astype(np.float32)
|
||||
net = Net()
|
||||
output = net(Tensor(x), Tensor(y))
|
||||
print(x)
|
||||
print(output.asnumpy())
|
||||
print(output.asnumpy())
|
||||
|
|
|
@ -12,15 +12,14 @@
|
|||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
from mindspore import Tensor
|
||||
from mindspore.ops import operations as P
|
||||
import mindspore.nn as nn
|
||||
import mindspore.common.dtype as mstype
|
||||
import numpy as np
|
||||
import mindspore.context as context
|
||||
from mindspore.common.parameter import Parameter
|
||||
import mindspore.nn as nn
|
||||
from mindspore import Tensor
|
||||
from mindspore.ops import operations as P
|
||||
|
||||
context.set_context(mode=context.GRAPH_MODE, device_id=4, device_target="Ascend")
|
||||
#context.set_context(enable_task_sink=True)
|
||||
|
||||
|
||||
class Net(nn.Cell):
|
||||
def __init__(self):
|
||||
|
@ -39,6 +38,7 @@ class Net(nn.Cell):
|
|||
z = self.add(z1, z2)
|
||||
return z
|
||||
|
||||
|
||||
def test_net():
|
||||
x = np.random.randn(32, 10).astype(np.float32)
|
||||
y = np.random.randn(32, 10).astype(np.float32)
|
||||
|
@ -46,6 +46,4 @@ def test_net():
|
|||
h = np.random.randn(10).astype(np.float32)
|
||||
relu_relu = Net()
|
||||
output = relu_relu(Tensor(x), Tensor(y), Tensor(k), Tensor(h))
|
||||
print(x)
|
||||
print(output.asnumpy())
|
||||
|
||||
|
|
|
@ -13,17 +13,16 @@
|
|||
# limitations under the License.
|
||||
# ============================================================================
|
||||
import pytest
|
||||
import numpy as np
|
||||
import mindspore.context as context
|
||||
import mindspore.nn as nn
|
||||
from mindspore import Tensor
|
||||
from mindspore.ops import operations as P
|
||||
from mindspore.ops.operations import _grad_ops as G
|
||||
import mindspore.nn as nn
|
||||
from mindspore.common.api import ms_function
|
||||
import mindspore.common.dtype as mstype
|
||||
import numpy as np
|
||||
import mindspore.context as context
|
||||
from mindspore.common.initializer import initializer
|
||||
from mindspore.common.parameter import Parameter
|
||||
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
|
||||
|
||||
|
||||
class Net(nn.Cell):
|
||||
def __init__(self):
|
||||
super(Net, self).__init__()
|
||||
|
@ -41,6 +40,7 @@ class Net(nn.Cell):
|
|||
x = self.relu(x)
|
||||
return x
|
||||
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_arm_ascend_training
|
||||
@pytest.mark.platform_x86_ascend_training
|
||||
|
@ -49,5 +49,4 @@ def test_net():
|
|||
x = np.random.randn(32, 10).astype(np.float32)
|
||||
net = Net()
|
||||
output = net(Tensor(x))
|
||||
print(x)
|
||||
print(output.asnumpy())
|
||||
print(output.asnumpy())
|
||||
|
|
|
@ -14,6 +14,7 @@
|
|||
# ============================================================================
|
||||
import os
|
||||
import filecmp
|
||||
|
||||
curr_path = os.path.abspath(os.curdir)
|
||||
file_memreuse = curr_path + "/mem_reuse_check/memreuse.ir"
|
||||
file_normal = curr_path + "/mem_reuse_check/normal_mem.ir"
|
||||
|
@ -23,5 +24,3 @@ checker = os.path.exists(file_normal)
|
|||
assert (checker, True)
|
||||
checker = filecmp.cmp(file_memreuse, file_normal)
|
||||
assert (checker, True)
|
||||
|
||||
|
||||
|
|
|
@ -19,6 +19,7 @@ from mindspore.ops import operations as P
|
|||
from mindspore.common.initializer import initializer
|
||||
from mindspore.common import dtype as mstype
|
||||
|
||||
|
||||
def weight_variable(shape):
|
||||
return initializer('XavierUniform', shape=shape, dtype=mstype.float32)
|
||||
|
||||
|
@ -297,4 +298,3 @@ class ResNet(nn.Cell):
|
|||
|
||||
def resnet50(batch_size, num_classes):
|
||||
return ResNet(ResidualBlock, [3, 4, 6, 3], num_classes, batch_size)
|
||||
|
||||
|
|
|
@ -12,16 +12,17 @@
|
|||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
import mindspore.nn as nn
|
||||
from mindspore import Tensor
|
||||
from mindspore.ops import operations as P
|
||||
from mindspore.nn.optim.momentum import Momentum
|
||||
from mindspore.train.model import Model, ParallelMode
|
||||
from mindspore import context
|
||||
import mindspore.common.dtype as mstype
|
||||
import argparse
|
||||
import os
|
||||
import numpy as np
|
||||
import mindspore.ops.functional as F
|
||||
import mindspore.context as context
|
||||
import mindspore.nn as nn
|
||||
import mindspore.common.dtype as mstype
|
||||
from mindspore import Tensor
|
||||
from mindspore.ops import operations as P
|
||||
from mindspore.ops import functional as F
|
||||
from mindspore.nn.optim.momentum import Momentum
|
||||
from mindspore.train.model import Model, ParallelMode
|
||||
from mindspore.train.callback import ModelCheckpoint, CheckpointConfig, LossMonitor
|
||||
from mindspore.train.serialization import load_checkpoint, load_param_into_net
|
||||
import mindspore.dataset as de
|
||||
|
@ -30,11 +31,11 @@ import mindspore.dataset.transforms.vision.c_transforms as vision
|
|||
from mindspore.communication.management import init
|
||||
from resnet import resnet50
|
||||
import random
|
||||
|
||||
random.seed(1)
|
||||
np.random.seed(1)
|
||||
de.config.set_seed(1)
|
||||
|
||||
import argparse
|
||||
parser = argparse.ArgumentParser(description='Image classification')
|
||||
parser.add_argument('--run_distribute', type=bool, default=False, help='Run distribute')
|
||||
parser.add_argument('--device_num', type=int, default=1, help='Device num.')
|
||||
|
@ -47,9 +48,9 @@ parser.add_argument('--checkpoint_path', type=str, default=None, help='Checkpoin
|
|||
parser.add_argument('--dataset_path', type=str, default="/var/log/npu/datasets/cifar", help='Dataset path')
|
||||
args_opt = parser.parse_args()
|
||||
|
||||
device_id=int(os.getenv('DEVICE_ID'))
|
||||
device_id = int(os.getenv('DEVICE_ID'))
|
||||
|
||||
data_home=args_opt.dataset_path
|
||||
data_home = args_opt.dataset_path
|
||||
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
|
||||
context.set_context(enable_task_sink=True, device_id=device_id)
|
||||
|
@ -64,8 +65,8 @@ def create_dataset(repeat_num=1, training=True):
|
|||
ds = de.Cifar10Dataset(data_dir)
|
||||
|
||||
if args_opt.run_distribute:
|
||||
rank_id=int(os.getenv('RANK_ID'))
|
||||
rank_size=int(os.getenv('RANK_SIZE'))
|
||||
rank_id = int(os.getenv('RANK_ID'))
|
||||
rank_size = int(os.getenv('RANK_SIZE'))
|
||||
ds = de.Cifar10Dataset(data_dir, num_shards=rank_size, shard_id=rank_id)
|
||||
|
||||
resize_height = 224
|
||||
|
@ -74,9 +75,9 @@ def create_dataset(repeat_num=1, training=True):
|
|||
shift = 0.0
|
||||
|
||||
# define map operations
|
||||
random_crop_op = vision.RandomCrop((32, 32), (4, 4, 4, 4)) # padding_mode default CONSTANT
|
||||
random_crop_op = vision.RandomCrop((32, 32), (4, 4, 4, 4)) # padding_mode default CONSTANT
|
||||
random_horizontal_op = vision.RandomHorizontalFlip()
|
||||
resize_op = vision.Resize((resize_height, resize_width)) # interpolation default BILINEAR
|
||||
resize_op = vision.Resize((resize_height, resize_width)) # interpolation default BILINEAR
|
||||
rescale_op = vision.Rescale(rescale, shift)
|
||||
normalize_op = vision.Normalize((0.4465, 0.4822, 0.4914), (0.2010, 0.1994, 0.2023))
|
||||
changeswap_op = vision.HWC2CHW()
|
||||
|
|
|
@ -12,16 +12,17 @@
|
|||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
import mindspore.nn as nn
|
||||
from mindspore import Tensor
|
||||
from mindspore.ops import operations as P
|
||||
from mindspore.nn.optim.momentum import Momentum
|
||||
from mindspore.train.model import Model, ParallelMode
|
||||
from mindspore import context
|
||||
import mindspore.common.dtype as mstype
|
||||
import argparse
|
||||
import os
|
||||
import numpy as np
|
||||
import mindspore.ops.functional as F
|
||||
import mindspore.context as context
|
||||
import mindspore.nn as nn
|
||||
import mindspore.common.dtype as mstype
|
||||
from mindspore import Tensor
|
||||
from mindspore.ops import operations as P
|
||||
from mindspore.ops import functional as F
|
||||
from mindspore.nn.optim.momentum import Momentum
|
||||
from mindspore.train.model import Model, ParallelMode
|
||||
from mindspore.train.callback import ModelCheckpoint, CheckpointConfig, LossMonitor
|
||||
from mindspore.train.serialization import load_checkpoint, load_param_into_net
|
||||
import mindspore.dataset as de
|
||||
|
@ -35,7 +36,6 @@ random.seed(1)
|
|||
np.random.seed(1)
|
||||
de.config.set_seed(1)
|
||||
|
||||
import argparse
|
||||
|
||||
parser = argparse.ArgumentParser(description='Image classification')
|
||||
parser.add_argument('--run_distribute', type=bool, default=False, help='Run distribute')
|
||||
|
|
|
@ -15,6 +15,7 @@
|
|||
import os
|
||||
import pytest
|
||||
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_gpu_training
|
||||
@pytest.mark.env_single
|
||||
|
@ -22,6 +23,7 @@ def test_nccl_lenet():
|
|||
return_code = os.system("mpirun -n 8 pytest -s test_nccl_lenet.py")
|
||||
assert(return_code == 0)
|
||||
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_gpu_training
|
||||
@pytest.mark.env_single
|
||||
|
@ -29,6 +31,7 @@ def test_nccl_all_reduce_op():
|
|||
return_code = os.system("mpirun -n 8 pytest -s test_nccl_all_reduce_op.py")
|
||||
assert(return_code == 0)
|
||||
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_gpu_training
|
||||
@pytest.mark.env_single
|
||||
|
@ -36,6 +39,7 @@ def test_nccl_all_gather_op():
|
|||
return_code = os.system("mpirun -n 8 pytest -s test_nccl_all_gather_op.py")
|
||||
assert(return_code == 0)
|
||||
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_gpu_training
|
||||
@pytest.mark.env_single
|
||||
|
|
|
@ -12,23 +12,25 @@
|
|||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
from mindspore import Tensor
|
||||
from mindspore.ops import operations as P
|
||||
import mindspore.nn as nn
|
||||
import numpy as np
|
||||
import mindspore.context as context
|
||||
import mindspore.nn as nn
|
||||
from mindspore import Tensor
|
||||
from mindspore.ops import operations as P
|
||||
from mindspore.common.initializer import initializer
|
||||
from mindspore.common.parameter import Parameter
|
||||
from mindspore.communication.management import init, NCCL_WORLD_COMM_GROUP, get_rank, get_group_size
|
||||
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target='GPU')
|
||||
|
||||
init('nccl')
|
||||
rank = get_rank()
|
||||
size = get_group_size()
|
||||
x = np.ones([1,1,3,3]).astype(np.float32) * 0.01 * (rank + 1)
|
||||
x = np.ones([1, 1, 3, 3]).astype(np.float32) * 0.01 * (rank + 1)
|
||||
|
||||
|
||||
class Net(nn.Cell):
|
||||
def __init__( self):
|
||||
def __init__(self):
|
||||
super(Net, self).__init__()
|
||||
self.all_gather = P.AllGather(group=NCCL_WORLD_COMM_GROUP)
|
||||
self.x = Parameter(initializer(Tensor(x), x.shape), name='x')
|
||||
|
@ -36,6 +38,7 @@ class Net(nn.Cell):
|
|||
def construct(self):
|
||||
return self.all_gather(self.x)
|
||||
|
||||
|
||||
def test_AllGather():
|
||||
all_gather = Net()
|
||||
output = all_gather()
|
||||
|
|
|
@ -12,23 +12,25 @@
|
|||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
from mindspore import Tensor
|
||||
from mindspore.ops import operations as P
|
||||
import mindspore.nn as nn
|
||||
import numpy as np
|
||||
import mindspore.context as context
|
||||
import mindspore.nn as nn
|
||||
from mindspore import Tensor
|
||||
from mindspore.ops import operations as P
|
||||
from mindspore.common.initializer import initializer
|
||||
from mindspore.common.parameter import Parameter
|
||||
from mindspore.communication.management import init, NCCL_WORLD_COMM_GROUP, get_rank, get_group_size
|
||||
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target='GPU')
|
||||
|
||||
init('nccl')
|
||||
rank = get_rank()
|
||||
size = get_group_size()
|
||||
x = np.ones([3,1,3,3]).astype(np.float32) * 0.01 * (rank + 1)
|
||||
x = np.ones([3, 1, 3, 3]).astype(np.float32) * 0.01 * (rank + 1)
|
||||
|
||||
|
||||
class Net(nn.Cell):
|
||||
def __init__( self):
|
||||
def __init__(self):
|
||||
super(Net, self).__init__()
|
||||
self.x1 = Parameter(initializer(Tensor(x), x.shape), name='x1')
|
||||
self.x2 = Parameter(initializer(Tensor(x), x.shape), name='x2')
|
||||
|
@ -47,6 +49,7 @@ class Net(nn.Cell):
|
|||
self.all_reduce2(self.x2),
|
||||
self.all_reduce3(self.x3))
|
||||
|
||||
|
||||
def test_AllReduce():
|
||||
all_reduce = Net()
|
||||
output = all_reduce()
|
||||
|
@ -58,16 +61,16 @@ def test_AllReduce():
|
|||
diff0 = output[0].asnumpy() - expect0
|
||||
error0 = np.ones(shape=expect0.shape) * 1.0e-5
|
||||
assert np.all(diff0 < error0)
|
||||
assert (output[0].shape() == expect0.shape)
|
||||
assert output[0].shape() == expect0.shape
|
||||
|
||||
expect1 = expect0
|
||||
diff1 = output[1].asnumpy() - expect1
|
||||
error1 = np.ones(shape=expect1.shape) * 1.0e-5
|
||||
assert np.all(diff1 < error1)
|
||||
assert (output[1].shape() == expect1.shape)
|
||||
assert output[1].shape() == expect1.shape
|
||||
|
||||
expect2 = expect1
|
||||
diff2 = output[2].asnumpy() - expect2
|
||||
error2 = np.ones(shape=expect2.shape) * 1.0e-5
|
||||
assert np.all(diff2 < error2)
|
||||
assert (output[2].shape() == expect2.shape)
|
||||
assert output[2].shape() == expect2.shape
|
||||
|
|
|
@ -12,16 +12,15 @@
|
|||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
import numpy as np
|
||||
from mindspore.nn import Dense
|
||||
import mindspore.nn as nn
|
||||
import datetime
|
||||
import numpy as np
|
||||
import mindspore.context as context
|
||||
from mindspore.communication.management import init, NCCL_WORLD_COMM_GROUP, get_rank, get_group_size
|
||||
import mindspore.nn as nn
|
||||
from mindspore import Tensor
|
||||
from mindspore.nn.optim import Momentum
|
||||
from mindspore.nn import TrainOneStepCell, WithLossCell
|
||||
from mindspore.ops import operations as P
|
||||
from mindspore.common.tensor import Tensor
|
||||
from mindspore.communication.management import init, get_rank, get_group_size
|
||||
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
|
||||
init('nccl')
|
||||
|
@ -31,6 +30,7 @@ total = 5000
|
|||
batch_size = 32
|
||||
mini_batch = total // batch_size
|
||||
|
||||
|
||||
class LeNet(nn.Cell):
|
||||
def __init__(self):
|
||||
super(LeNet, self).__init__()
|
||||
|
@ -43,15 +43,15 @@ class LeNet(nn.Cell):
|
|||
self.conv2 = nn.Conv2d(6, 16, (5, 5), weight_init=weight2, pad_mode='valid', stride=1, padding=0)
|
||||
self.pool = nn.MaxPool2d(kernel_size=2, stride=2, pad_mode="valid")
|
||||
self.reshape = P.Reshape()
|
||||
|
||||
|
||||
weight1 = Tensor(np.ones([120, 400]).astype(np.float32) * 0.01)
|
||||
self.fc1 = Dense(400, 120, weight_init=weight1)
|
||||
|
||||
self.fc1 = nn.Dense(400, 120, weight_init=weight1)
|
||||
|
||||
weight2 = Tensor(np.ones([84, 120]).astype(np.float32) * 0.01)
|
||||
self.fc2 = Dense(120, 84, weight_init=weight2)
|
||||
|
||||
self.fc2 = nn.Dense(120, 84, weight_init=weight2)
|
||||
|
||||
weight3 = Tensor(np.ones([10, 84]).astype(np.float32) * 0.01)
|
||||
self.fc3 = Dense(84, 10, weight_init=weight3)
|
||||
self.fc3 = nn.Dense(84, 10, weight_init=weight3)
|
||||
|
||||
def construct(self, input_x):
|
||||
output = self.conv1(input_x)
|
||||
|
@ -66,6 +66,7 @@ class LeNet(nn.Cell):
|
|||
output = self.fc3(output)
|
||||
return output
|
||||
|
||||
|
||||
def test_lenet_nccl():
|
||||
net = LeNet()
|
||||
net.set_train()
|
||||
|
|
|
@ -12,11 +12,11 @@
|
|||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
from mindspore import Tensor
|
||||
from mindspore.ops import operations as P
|
||||
import mindspore.nn as nn
|
||||
import numpy as np
|
||||
import mindspore.context as context
|
||||
import mindspore.nn as nn
|
||||
from mindspore import Tensor
|
||||
from mindspore.ops import operations as P
|
||||
from mindspore.common.initializer import initializer
|
||||
from mindspore.common.parameter import Parameter
|
||||
from mindspore.communication.management import init, NCCL_WORLD_COMM_GROUP, get_rank, get_group_size
|
||||
|
@ -27,8 +27,9 @@ rank = get_rank()
|
|||
size = get_group_size()
|
||||
x = np.ones([size, 1, 3, 3]).astype(np.float32) * 0.01 * (rank + 1)
|
||||
|
||||
|
||||
class Net(nn.Cell):
|
||||
def __init__( self):
|
||||
def __init__(self):
|
||||
super(Net, self).__init__()
|
||||
self.x = Parameter(initializer(Tensor(x), x.shape), name='x')
|
||||
|
||||
|
@ -46,6 +47,7 @@ class Net(nn.Cell):
|
|||
self.reduce_scatter2(self.x),
|
||||
self.reduce_scatter3(self.x))
|
||||
|
||||
|
||||
def test_ReduceScatter():
|
||||
reduce_scatter = Net()
|
||||
output = reduce_scatter()
|
||||
|
@ -53,7 +55,7 @@ def test_ReduceScatter():
|
|||
sum = np.ones([size, 1, 3, 3]).astype(np.float32) * 0
|
||||
for i in range(size):
|
||||
sum += np.ones([size, 1, 3, 3]).astype(np.float32) * 0.01 * (i + 1)
|
||||
expect0 = sum[rank : rank + 1]
|
||||
expect0 = sum[rank: rank + 1]
|
||||
diff0 = output[0].asnumpy() - expect0
|
||||
error0 = np.ones(shape=expect0.shape) * 1.0e-5
|
||||
assert np.all(diff0 < error0)
|
||||
|
|
|
@ -16,6 +16,7 @@ import mindspore.nn as nn
|
|||
from mindspore.ops import operations as P
|
||||
from mindspore.nn import Dense
|
||||
|
||||
|
||||
class AlexNet(nn.Cell):
|
||||
def __init__(self, num_classes=10):
|
||||
super(AlexNet, self).__init__()
|
||||
|
|
|
@ -18,21 +18,22 @@
|
|||
import os
|
||||
import pytest
|
||||
import numpy as np
|
||||
from numpy import allclose
|
||||
import mindspore.context as context
|
||||
import mindspore.common.dtype as mstype
|
||||
import mindspore.dataset.engine.datasets as de
|
||||
import mindspore.dataset.transforms.c_transforms as C
|
||||
from mindspore import context
|
||||
from mindspore.common.tensor import Tensor
|
||||
from mindspore import Tensor
|
||||
from mindspore.train.model import Model
|
||||
from mindspore.train.callback import Callback
|
||||
from mindspore.model_zoo.Bert_NEZHA import BertConfig, BertNetworkWithLoss, BertTrainOneStepCell
|
||||
from mindspore.nn.optim import Momentum
|
||||
from mindspore import log as logger
|
||||
|
||||
_current_dir = os.path.dirname(os.path.realpath(__file__))
|
||||
DATA_DIR = ["/home/workspace/mindspore_dataset/bert/example/examples.tfrecord"]
|
||||
SCHEMA_DIR = "/home/workspace/mindspore_dataset/bert/example/datasetSchema.json"
|
||||
|
||||
|
||||
def get_config(version='base', batch_size=1):
|
||||
"""get config"""
|
||||
if version == 'base':
|
||||
|
@ -99,13 +100,14 @@ def get_config(version='base', batch_size=1):
|
|||
bert_config = BertConfig(batch_size=batch_size)
|
||||
return bert_config
|
||||
|
||||
|
||||
def me_de_train_dataset():
|
||||
"""test me de train dataset"""
|
||||
# apply repeat operations
|
||||
repeat_count = 1
|
||||
ds = de.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["input_ids", "input_mask", "segment_ids",
|
||||
"next_sentence_labels", "masked_lm_positions",
|
||||
"masked_lm_ids", "masked_lm_weights"], shuffle=False)
|
||||
"next_sentence_labels", "masked_lm_positions",
|
||||
"masked_lm_ids", "masked_lm_weights"], shuffle=False)
|
||||
type_cast_op = C.TypeCast(mstype.int32)
|
||||
ds = ds.map(input_columns="masked_lm_ids", operations=type_cast_op)
|
||||
ds = ds.map(input_columns="masked_lm_positions", operations=type_cast_op)
|
||||
|
@ -137,6 +139,7 @@ class ModelCallback(Callback):
|
|||
self.loss_list.append(cb_params.net_outputs.asnumpy()[0])
|
||||
logger.info("epoch: {}, outputs are {}".format(cb_params.cur_epoch_num, str(cb_params.net_outputs)))
|
||||
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_arm_ascend_training
|
||||
@pytest.mark.platform_x86_ascend_training
|
||||
|
@ -180,7 +183,8 @@ def test_bert_tdt():
|
|||
expect_out = [12.19179, 11.965041, 11.969687, 11.97815, 11.969171, 12.603289, 12.165594,
|
||||
12.824818, 12.38842, 12.604046]
|
||||
logger.info("expected loss value output: {}".format(expect_out))
|
||||
assert allclose(loss_value, expect_out, 0.00001, 0.00001)
|
||||
assert np.allclose(loss_value, expect_out, 0.00001, 0.00001)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
test_bert_tdt()
|
||||
|
|
|
@ -14,9 +14,10 @@
|
|||
# ============================================================================
|
||||
import numpy as np
|
||||
import mindspore.nn as nn
|
||||
from mindspore import Tensor
|
||||
from mindspore.ops import operations as P
|
||||
from mindspore.nn import Dense
|
||||
from mindspore import Tensor
|
||||
|
||||
|
||||
class LeNet(nn.Cell):
|
||||
def __init__(self):
|
||||
|
|
|
@ -13,9 +13,10 @@
|
|||
# limitations under the License.
|
||||
# ============================================================================
|
||||
import numpy as np
|
||||
from mindspore.common.tensor import Tensor
|
||||
import mindspore.nn as nn
|
||||
import mindspore.ops.operations as P
|
||||
from mindspore import Tensor
|
||||
from mindspore.ops import operations as P
|
||||
|
||||
|
||||
def weight_variable(shape):
|
||||
ones = np.ones(shape).astype(np.float32)
|
||||
|
@ -37,7 +38,7 @@ def conv3x3(in_channels, out_channels, stride=1, padding=0):
|
|||
weight_shape = (out_channels, in_channels, 3, 3)
|
||||
weight = weight_variable(weight_shape)
|
||||
return nn.Conv2d(in_channels, out_channels,
|
||||
kernel_size=3, stride=stride, padding=padding, weight_init=weight, has_bias=False, pad_mode="same")
|
||||
kernel_size=3, stride=stride, padding=padding, weight_init=weight, has_bias=False, pad_mode="same")
|
||||
|
||||
|
||||
def conv1x1(in_channels, out_channels, stride=1, padding=0):
|
||||
|
@ -45,7 +46,7 @@ def conv1x1(in_channels, out_channels, stride=1, padding=0):
|
|||
weight_shape = (out_channels, in_channels, 1, 1)
|
||||
weight = weight_variable(weight_shape)
|
||||
return nn.Conv2d(in_channels, out_channels,
|
||||
kernel_size=1, stride=stride, padding=padding, weight_init=weight, has_bias=False, pad_mode="same")
|
||||
kernel_size=1, stride=stride, padding=padding, weight_init=weight, has_bias=False, pad_mode="same")
|
||||
|
||||
|
||||
def conv7x7(in_channels, out_channels, stride=1, padding=0):
|
||||
|
@ -53,7 +54,7 @@ def conv7x7(in_channels, out_channels, stride=1, padding=0):
|
|||
weight_shape = (out_channels, in_channels, 7, 7)
|
||||
weight = weight_variable(weight_shape)
|
||||
return nn.Conv2d(in_channels, out_channels,
|
||||
kernel_size=7, stride=stride, padding=padding, weight_init=weight, has_bias=False, pad_mode="same")
|
||||
kernel_size=7, stride=stride, padding=padding, weight_init=weight, has_bias=False, pad_mode="same")
|
||||
|
||||
|
||||
def bn_with_initialize(out_channels):
|
||||
|
@ -63,7 +64,7 @@ def bn_with_initialize(out_channels):
|
|||
beta = weight_variable_0(shape)
|
||||
gamma = weight_variable_1(shape)
|
||||
bn = nn.BatchNorm2d(out_channels, momentum=0.1, eps=0.0001, gamma_init=gamma,
|
||||
beta_init=beta, moving_mean_init=mean, moving_var_init=var)
|
||||
beta_init=beta, moving_mean_init=mean, moving_var_init=var)
|
||||
return bn
|
||||
|
||||
|
||||
|
@ -74,7 +75,7 @@ def bn_with_initialize_last(out_channels):
|
|||
beta = weight_variable_0(shape)
|
||||
gamma = weight_variable_0(shape)
|
||||
bn = nn.BatchNorm2d(out_channels, momentum=0.1, eps=0.0001, gamma_init=gamma,
|
||||
beta_init=beta, moving_mean_init=mean, moving_var_init=var)
|
||||
beta_init=beta, moving_mean_init=mean, moving_var_init=var)
|
||||
return bn
|
||||
|
||||
|
||||
|
@ -294,6 +295,6 @@ class ResNet(nn.Cell):
|
|||
x = self.fc(x)
|
||||
return x
|
||||
|
||||
|
||||
def resnet50(batch_size, num_classes):
|
||||
return ResNet(ResidualBlock, [3, 4, 6, 3], num_classes, batch_size)
|
||||
|
||||
|
|
|
@ -13,13 +13,15 @@
|
|||
# limitations under the License.
|
||||
# ============================================================================
|
||||
import pytest
|
||||
from mindspore.nn import TrainOneStepCell, WithLossCell
|
||||
import mindspore.context as context
|
||||
from mindspore.nn.optim import Momentum
|
||||
import numpy as np
|
||||
import mindspore.context as context
|
||||
import mindspore.nn as nn
|
||||
from mindspore.ops import operations as P
|
||||
from mindspore import Tensor
|
||||
from mindspore.nn import TrainOneStepCell, WithLossCell
|
||||
from mindspore.nn.optim import Momentum
|
||||
from mindspore.ops import operations as P
|
||||
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target="CPU")
|
||||
|
||||
|
||||
class LeNet(nn.Cell):
|
||||
|
@ -52,9 +54,6 @@ class LeNet(nn.Cell):
|
|||
return output
|
||||
|
||||
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target="CPU")
|
||||
|
||||
|
||||
def train(net, data, label):
|
||||
learning_rate = 0.01
|
||||
momentum = 0.9
|
||||
|
|
|
@ -19,15 +19,17 @@ from __future__ import print_function
|
|||
|
||||
import pytest
|
||||
import numpy as np
|
||||
import mindspore.context as context
|
||||
import mindspore.nn as nn
|
||||
from mindspore import Tensor
|
||||
from mindspore.nn.optim import Momentum
|
||||
from mindspore.ops import operations as P
|
||||
from mindspore.nn import TrainOneStepCell, WithLossCell
|
||||
from mindspore import Tensor
|
||||
from mindspore.common.initializer import initializer
|
||||
import mindspore.context as context
|
||||
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
|
||||
|
||||
|
||||
class AlexNet(nn.Cell):
|
||||
def __init__(self, num_classes=10):
|
||||
super(AlexNet, self).__init__()
|
||||
|
@ -66,6 +68,7 @@ class AlexNet(nn.Cell):
|
|||
x = self.fc3(x)
|
||||
return x
|
||||
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_gpu_training
|
||||
@pytest.mark.env_onecard
|
||||
|
@ -73,14 +76,14 @@ def test_trainTensor(num_classes=10, epoch=15, batch_size=32):
|
|||
net = AlexNet(num_classes)
|
||||
lr = 0.1
|
||||
momentum = 0.9
|
||||
optimizer = Momentum(filter(lambda x: x.requires_grad, net.get_parameters()), lr, momentum, weight_decay = 0.0001)
|
||||
optimizer = Momentum(filter(lambda x: x.requires_grad, net.get_parameters()), lr, momentum, weight_decay=0.0001)
|
||||
criterion = nn.SoftmaxCrossEntropyWithLogits(is_grad=False, sparse=True)
|
||||
net_with_criterion = WithLossCell(net, criterion)
|
||||
train_network = TrainOneStepCell(net_with_criterion, optimizer)
|
||||
train_network.set_train()
|
||||
losses=[]
|
||||
losses = []
|
||||
for i in range(0, epoch):
|
||||
data = Tensor(np.ones([batch_size, 3 ,227, 227]).astype(np.float32) * 0.01)
|
||||
data = Tensor(np.ones([batch_size, 3, 227, 227]).astype(np.float32) * 0.01)
|
||||
label = Tensor(np.ones([batch_size]).astype(np.int32))
|
||||
loss = train_network(data, label)
|
||||
losses.append(loss)
|
||||
|
|
|
@ -16,16 +16,19 @@
|
|||
import pytest
|
||||
import numpy as np
|
||||
import mindspore.nn as nn
|
||||
import mindspore.context as context
|
||||
from mindspore import Tensor
|
||||
from mindspore.nn.optim import Momentum
|
||||
from mindspore.ops import operations as P
|
||||
from mindspore.nn import TrainOneStepCell, WithLossCell
|
||||
from mindspore.nn import Dense
|
||||
from mindspore import Tensor
|
||||
from mindspore.common.initializer import initializer
|
||||
from mindspore.common import dtype as mstype
|
||||
import mindspore.context as context
|
||||
|
||||
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
|
||||
|
||||
|
||||
class LeNet(nn.Cell):
|
||||
def __init__(self):
|
||||
super(LeNet, self).__init__()
|
||||
|
@ -65,6 +68,7 @@ def multisteplr(total_steps, gap, base_lr=0.9, gamma=0.1, dtype=mstype.float32):
|
|||
lr.append(lr_)
|
||||
return Tensor(np.array(lr), dtype)
|
||||
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_gpu_training
|
||||
@pytest.mark.env_onecard
|
||||
|
@ -81,7 +85,7 @@ def test_train_lenet():
|
|||
train_network.set_train()
|
||||
losses = []
|
||||
for i in range(epoch):
|
||||
data = Tensor(np.ones([net.batch_size, 3 ,32, 32]).astype(np.float32) * 0.01)
|
||||
data = Tensor(np.ones([net.batch_size, 3, 32, 32]).astype(np.float32) * 0.01)
|
||||
label = Tensor(np.ones([net.batch_size]).astype(np.int32))
|
||||
loss = train_network(data, label)
|
||||
losses.append(loss)
|
||||
|
|
|
@ -15,18 +15,20 @@
|
|||
|
||||
import pytest
|
||||
import numpy as np
|
||||
import mindspore.context as context
|
||||
import mindspore.nn as nn
|
||||
from mindspore import Tensor
|
||||
from mindspore.nn.optim import Momentum
|
||||
from mindspore.ops import operations as P
|
||||
from mindspore.nn import TrainOneStepCell, WithLossCell
|
||||
from mindspore.nn import Dense
|
||||
from mindspore import Tensor
|
||||
from mindspore.common.initializer import initializer
|
||||
from mindspore.common.parameter import Parameter
|
||||
import mindspore.context as context
|
||||
import mindspore.nn as nn
|
||||
|
||||
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
|
||||
|
||||
|
||||
def InitialLstmWeight(input_size, hidden_size, num_layers, bidirectional, has_bias=False):
|
||||
num_directions = 1
|
||||
if bidirectional:
|
||||
|
@ -56,6 +58,7 @@ def InitialLstmWeight(input_size, hidden_size, num_layers, bidirectional, has_bi
|
|||
|
||||
return h, c, w
|
||||
|
||||
|
||||
class SentimentNet(nn.Cell):
|
||||
def __init__(self, vocab_size, embed_size, num_hiddens, num_layers,
|
||||
bidirectional, weight, labels, batch_size):
|
||||
|
@ -99,6 +102,7 @@ class SentimentNet(nn.Cell):
|
|||
outputs = self.decoder(encoding)
|
||||
return outputs
|
||||
|
||||
|
||||
batch_size = 64
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_gpu_training
|
||||
|
@ -130,7 +134,7 @@ def test_LSTM():
|
|||
train_network.set_train()
|
||||
|
||||
train_features = Tensor(np.ones([64, max_len]).astype(np.int32))
|
||||
train_labels = Tensor(np.ones([64,]).astype(np.int32)[0:64])
|
||||
train_labels = Tensor(np.ones([64, ]).astype(np.int32)[0:64])
|
||||
losses = []
|
||||
for epoch in range(num_epochs):
|
||||
loss = train_network(train_features, train_labels)
|
||||
|
|
|
@ -19,36 +19,34 @@ from __future__ import print_function
|
|||
|
||||
import pytest
|
||||
import numpy as np
|
||||
|
||||
import mindspore.context as context
|
||||
import mindspore.nn as nn
|
||||
from mindspore import Tensor
|
||||
from mindspore.nn.cell import Cell
|
||||
from mindspore.nn.layer.conv import Conv2d
|
||||
from mindspore.nn.layer.basic import Flatten
|
||||
from mindspore.nn.layer.normalization import BatchNorm2d
|
||||
from mindspore.nn.layer.pooling import MaxPool2d
|
||||
from mindspore.ops.operations import TensorAdd
|
||||
import mindspore.nn as nn
|
||||
|
||||
from mindspore.nn.optim import Momentum
|
||||
from mindspore.ops import operations as P
|
||||
from mindspore.nn import TrainOneStepCell, WithLossCell
|
||||
from mindspore.nn import Dense
|
||||
from mindspore import Tensor
|
||||
from mindspore.common.initializer import initializer
|
||||
|
||||
import mindspore.context as context
|
||||
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
|
||||
|
||||
|
||||
def random_normal_init(shape, mean=0.0, stddev=0.01, seed=None):
|
||||
init_value = np.ones(shape).astype(np.float32) * 0.01
|
||||
return Tensor(init_value)
|
||||
|
||||
|
||||
def variance_scaling_raw(shape):
|
||||
variance_scaling_value = np.ones(shape).astype(np.float32) * 0.01
|
||||
return Tensor(variance_scaling_value)
|
||||
|
||||
|
||||
|
||||
def weight_variable_0(shape):
|
||||
zeros = np.zeros(shape).astype(np.float32)
|
||||
return Tensor(zeros)
|
||||
|
@ -323,6 +321,7 @@ class ResNet(Cell):
|
|||
def resnet50(num_classes):
|
||||
return ResNet(ResidualBlock, [3, 4, 6, 3], num_classes)
|
||||
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_gpu_training
|
||||
@pytest.mark.env_onecard
|
||||
|
@ -335,9 +334,9 @@ def test_trainTensor(num_classes=10, epoch=8, batch_size=1):
|
|||
net_with_criterion = WithLossCell(net, criterion)
|
||||
train_network = TrainOneStepCell(net_with_criterion, optimizer) # optimizer
|
||||
train_network.set_train()
|
||||
losses=[]
|
||||
losses = []
|
||||
for i in range(0, epoch):
|
||||
data = Tensor(np.ones([batch_size, 3 ,224, 224]).astype(np.float32) * 0.01)
|
||||
data = Tensor(np.ones([batch_size, 3, 224, 224]).astype(np.float32) * 0.01)
|
||||
label = Tensor(np.ones([batch_size]).astype(np.int32))
|
||||
loss = train_network(data, label)
|
||||
losses.append(loss)
|
||||
|
|
|
@ -13,25 +13,27 @@
|
|||
# limitations under the License.
|
||||
# ============================================================================
|
||||
"""
|
||||
Function:
|
||||
Function:
|
||||
test network
|
||||
Usage:
|
||||
Usage:
|
||||
python test_network_main.py --net lenet --target Ascend
|
||||
"""
|
||||
import os
|
||||
import time
|
||||
import numpy as np
|
||||
import argparse
|
||||
import mindspore.nn as nn
|
||||
from mindspore.common.tensor import Tensor
|
||||
from mindspore.nn import TrainOneStepCell, WithLossCell
|
||||
import mindspore.context as context
|
||||
import mindspore.nn as nn
|
||||
from mindspore import Tensor
|
||||
from mindspore.nn import TrainOneStepCell, WithLossCell
|
||||
from mindspore.nn.optim import Momentum
|
||||
from models.lenet import LeNet
|
||||
from models.resnetv1_5 import resnet50
|
||||
from models.alexnet import AlexNet
|
||||
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
|
||||
|
||||
|
||||
def train(net, data, label):
|
||||
learning_rate = 0.01
|
||||
momentum = 0.9
|
||||
|
@ -42,29 +44,31 @@ def train(net, data, label):
|
|||
train_network = TrainOneStepCell(net_with_criterion, optimizer) # optimizer
|
||||
train_network.set_train()
|
||||
res = train_network(data, label)
|
||||
print("+++++++++Loss+++++++++++++")
|
||||
print(res)
|
||||
print("+++++++++++++++++++++++++++")
|
||||
assert res
|
||||
|
||||
|
||||
def test_resnet50():
|
||||
data = Tensor(np.ones([32, 3 ,224, 224]).astype(np.float32) * 0.01)
|
||||
data = Tensor(np.ones([32, 3, 224, 224]).astype(np.float32) * 0.01)
|
||||
label = Tensor(np.ones([32]).astype(np.int32))
|
||||
net = resnet50(32, 10)
|
||||
train(net, data, label)
|
||||
|
||||
|
||||
def test_lenet():
|
||||
data = Tensor(np.ones([32, 1 ,32, 32]).astype(np.float32) * 0.01)
|
||||
data = Tensor(np.ones([32, 1, 32, 32]).astype(np.float32) * 0.01)
|
||||
label = Tensor(np.ones([32]).astype(np.int32))
|
||||
net = LeNet()
|
||||
train(net, data, label)
|
||||
|
||||
|
||||
def test_alexnet():
|
||||
data = Tensor(np.ones([32, 3 ,227, 227]).astype(np.float32) * 0.01)
|
||||
data = Tensor(np.ones([32, 3, 227, 227]).astype(np.float32) * 0.01)
|
||||
label = Tensor(np.ones([32]).astype(np.int32))
|
||||
net = AlexNet()
|
||||
train(net, data, label)
|
||||
|
||||
|
||||
parser = argparse.ArgumentParser(description='MindSpore Testing Network')
|
||||
parser.add_argument('--net', default='resnet50', type=str, help='net name')
|
||||
parser.add_argument('--device', default='Ascend', type=str, help='device target')
|
||||
|
|
|
@ -14,7 +14,8 @@
|
|||
# ============================================================================
|
||||
import pytest
|
||||
import numpy as np
|
||||
import time, math
|
||||
import time
|
||||
import math
|
||||
import mindspore.nn as nn
|
||||
from mindspore import context, Tensor, ParameterTuple
|
||||
from mindspore.ops import operations as P
|
||||
|
@ -28,6 +29,7 @@ from mindspore.nn.optim import Momentum
|
|||
|
||||
np.random.seed(1)
|
||||
|
||||
|
||||
def weight_variable():
|
||||
"""weight initial"""
|
||||
return TruncatedNormal(0.02)
|
||||
|
@ -58,6 +60,7 @@ class LeNet(nn.Cell):
|
|||
Examples:
|
||||
>>> LeNet(num_class=10)
|
||||
"""
|
||||
|
||||
def __init__(self, num_class=10):
|
||||
super(LeNet, self).__init__()
|
||||
self.num_class = num_class
|
||||
|
@ -91,6 +94,7 @@ class CrossEntropyLoss(nn.Cell):
|
|||
"""
|
||||
Define loss for network
|
||||
"""
|
||||
|
||||
def __init__(self):
|
||||
super(CrossEntropyLoss, self).__init__()
|
||||
self.cross_entropy = P.SoftmaxCrossEntropyWithLogits()
|
||||
|
@ -111,6 +115,7 @@ class GradWrap(nn.Cell):
|
|||
"""
|
||||
GradWrap definition
|
||||
"""
|
||||
|
||||
def __init__(self, network):
|
||||
super(GradWrap, self).__init__()
|
||||
self.network = network
|
||||
|
@ -154,4 +159,3 @@ def test_ascend_pynative_lenet():
|
|||
|
||||
print("======epoch: ", epoch, " loss: ", loss_output.asnumpy(), " cost time: ", cost_time)
|
||||
assert(loss_output.asnumpy() < 0.1)
|
||||
|
|
@ -33,10 +33,12 @@ SUMMARY_DIR = CUR_DIR + "/test_temp_summary_event_file/"
|
|||
|
||||
context.set_context(device_target="Ascend")
|
||||
|
||||
|
||||
class MsWrapper(nn.Cell):
|
||||
def __init__(self, network):
|
||||
super(MsWrapper, self).__init__(auto_prefix=False)
|
||||
self._network = network
|
||||
|
||||
@ms_function
|
||||
def construct(self, *args):
|
||||
return self._network(*args)
|
||||
|
@ -45,14 +47,15 @@ class MsWrapper(nn.Cell):
|
|||
def me_train_tensor(net, input_np, label_np, epoch_size=2):
|
||||
context.set_context(mode=context.GRAPH_MODE)
|
||||
loss = SoftmaxCrossEntropyWithLogits(is_grad=False, sparse=True)
|
||||
opt = ApplyMomentum(Tensor(np.array([0.1])), Tensor(np.array([0.9])), filter(lambda x: x.requires_grad, net.get_parameters()))
|
||||
opt = ApplyMomentum(Tensor(np.array([0.1])), Tensor(np.array([0.9])),
|
||||
filter(lambda x: x.requires_grad, net.get_parameters()))
|
||||
Model(net, loss, opt)
|
||||
_network = wrap.WithLossCell(net, loss)
|
||||
_train_net = MsWrapper(wrap.TrainOneStepCell(_network, opt))
|
||||
_train_net.set_train()
|
||||
summary_writer = SummaryRecord(SUMMARY_DIR, file_suffix="_MS_GRAPH", network=_train_net)
|
||||
for epoch in range(0, epoch_size):
|
||||
print(f"epoch %d"%(epoch))
|
||||
print(f"epoch %d" % (epoch))
|
||||
output = _train_net(Tensor(input_np), Tensor(label_np))
|
||||
summary_writer.record(i)
|
||||
print("********output***********")
|
||||
|
|
|
@ -108,6 +108,6 @@ def me_scalar_summary(steps, tag=None, value=None):
|
|||
def test_scalarsummary_scalar1_step10_summaryrecord1():
|
||||
clean_environment_file(SUMMARY_DIR_ME_TEMP)
|
||||
output_dict = me_scalar_summary(10)
|
||||
print("test_scalarsummary_scalar1_step10_summaryrecord1 \n",output_dict)
|
||||
print("test_scalarsummary_scalar1_step10_summaryrecord1 \n", output_dict)
|
||||
save_summary_events_file(SUMMARY_DIR_ME_TEMP, SUMMARY_DIR_ME)
|
||||
clean_environment_file(SUMMARY_DIR_ME)
|
||||
|
|
|
@ -24,12 +24,13 @@ import mindspore.nn as nn
|
|||
from mindspore import context
|
||||
|
||||
from mindspore.train.serialization import save, load, save_checkpoint, load_checkpoint,\
|
||||
load_param_into_net, _exec_save_checkpoint,\
|
||||
_check_filedir_or_create, _chg_model_file_name_if_same_exist, \
|
||||
_read_file_last_line, context, export
|
||||
load_param_into_net, _exec_save_checkpoint,\
|
||||
_check_filedir_or_create, _chg_model_file_name_if_same_exist, \
|
||||
_read_file_last_line, context, export
|
||||
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend",
|
||||
enable_task_sink=True, enable_loop_sink=True, enable_ir_fusion=True)
|
||||
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend",
|
||||
enable_task_sink=True,enable_loop_sink=True,enable_ir_fusion=True)
|
||||
|
||||
def test_resnet50_export(batch_size=1, num_classes=5):
|
||||
context.set_context(enable_ir_fusion=False)
|
||||
|
|
|
@ -19,6 +19,7 @@ from mindspore.ops import operations as P
|
|||
from mindspore.common.initializer import initializer
|
||||
from mindspore.common import dtype as mstype
|
||||
|
||||
|
||||
def weight_variable(shape):
|
||||
return initializer('XavierUniform', shape=shape, dtype=mstype.float32)
|
||||
|
||||
|
@ -297,4 +298,3 @@ class ResNet(nn.Cell):
|
|||
|
||||
def resnet50(batch_size, num_classes):
|
||||
return ResNet(ResidualBlock, [3, 4, 6, 3], num_classes, batch_size)
|
||||
|
||||
|
|
|
@ -12,6 +12,7 @@
|
|||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
import argparse
|
||||
import mindspore.nn as nn
|
||||
from mindspore import Tensor
|
||||
from mindspore.ops import operations as P
|
||||
|
@ -35,7 +36,6 @@ random.seed(1)
|
|||
np.random.seed(1)
|
||||
ds.config.set_seed(1)
|
||||
|
||||
import argparse
|
||||
parser = argparse.ArgumentParser(description='Image classification')
|
||||
parser.add_argument('--run_distribute', type=bool, default=False, help='Run distribute')
|
||||
parser.add_argument('--device_num', type=int, default=1, help='Device num.')
|
||||
|
@ -48,15 +48,16 @@ parser.add_argument('--checkpoint_path', type=str, default=None, help='Checkpoin
|
|||
parser.add_argument('--dataset_path', type=str, default="/var/log/npu/datasets/cifar", help='Dataset path')
|
||||
args_opt = parser.parse_args()
|
||||
|
||||
device_id=int(os.getenv('DEVICE_ID'))
|
||||
device_id = int(os.getenv('DEVICE_ID'))
|
||||
|
||||
data_home=args_opt.dataset_path
|
||||
data_home = args_opt.dataset_path
|
||||
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
|
||||
context.set_context(enable_task_sink=True, device_id=device_id)
|
||||
context.set_context(enable_loop_sink=True)
|
||||
context.set_context(enable_mem_reuse=True)
|
||||
|
||||
|
||||
def create_dataset(repeat_num=1, training=True):
|
||||
data_dir = data_home + "/cifar-10-batches-bin"
|
||||
if not training:
|
||||
|
@ -64,8 +65,8 @@ def create_dataset(repeat_num=1, training=True):
|
|||
data_set = ds.Cifar10Dataset(data_dir)
|
||||
|
||||
if args_opt.run_distribute:
|
||||
rank_id=int(os.getenv('RANK_ID'))
|
||||
rank_size=int(os.getenv('RANK_SIZE'))
|
||||
rank_id = int(os.getenv('RANK_ID'))
|
||||
rank_size = int(os.getenv('RANK_SIZE'))
|
||||
data_set = ds.Cifar10Dataset(data_dir, num_shards=rank_size, shard_id=rank_id)
|
||||
|
||||
resize_height = 224
|
||||
|
@ -74,9 +75,9 @@ def create_dataset(repeat_num=1, training=True):
|
|||
shift = 0.0
|
||||
|
||||
# define map operations
|
||||
random_crop_op = vision.RandomCrop((32, 32), (4, 4, 4, 4)) # padding_mode default CONSTANT
|
||||
random_crop_op = vision.RandomCrop((32, 32), (4, 4, 4, 4)) # padding_mode default CONSTANT
|
||||
random_horizontal_op = vision.RandomHorizontalFlip()
|
||||
resize_op = vision.Resize((resize_height, resize_width)) # interpolation default BILINEAR
|
||||
resize_op = vision.Resize((resize_height, resize_width)) # interpolation default BILINEAR
|
||||
rescale_op = vision.Rescale(rescale, shift)
|
||||
normalize_op = vision.Normalize((0.4465, 0.4822, 0.4914), (0.2010, 0.1994, 0.2023))
|
||||
changeswap_op = vision.HWC2CHW()
|
||||
|
@ -103,6 +104,7 @@ def create_dataset(repeat_num=1, training=True):
|
|||
|
||||
return data_set
|
||||
|
||||
|
||||
class CrossEntropyLoss(nn.Cell):
|
||||
def __init__(self):
|
||||
super(CrossEntropyLoss, self).__init__()
|
||||
|
|
|
@ -112,6 +112,7 @@ class CrossEntropyLoss(nn.Cell):
|
|||
loss = self.mean(loss, (-1,))
|
||||
return loss
|
||||
|
||||
|
||||
class LossGet(Callback):
|
||||
def __init__(self, per_print_times=1):
|
||||
super(LossGet, self).__init__()
|
||||
|
@ -143,6 +144,7 @@ class LossGet(Callback):
|
|||
def get_loss(self):
|
||||
return self._loss
|
||||
|
||||
|
||||
def train_process(q, device_id, epoch_size, num_classes, device_num, batch_size, enable_hccl):
|
||||
os.system("mkdir " + str(device_id))
|
||||
os.chdir(str(device_id))
|
||||
|
|
Loading…
Reference in New Issue