forked from OSSInnovation/mindspore
!6683 googlenet readme support imagnet
Merge pull request !6683 from caojian05/ms_master_googlenet_readme_support_imagenet
This commit is contained in:
commit
b637fb4554
|
@ -50,6 +50,13 @@ Dataset used: [CIFAR-10](<http://www.cs.toronto.edu/~kriz/cifar.html>)
|
|||
- Data format:binary files
|
||||
- Note:Data will be processed in src/dataset.py
|
||||
|
||||
Dataset used can refer to paper.
|
||||
|
||||
- Dataset size: 125G, 1250k colorful images in 1000 classes
|
||||
- Train: 120G, 1200k images
|
||||
- Test: 5G, 50k images
|
||||
- Data format: RGB images.
|
||||
- Note: Data will be processed in src/dataset.py
|
||||
|
||||
# [Features](#contents)
|
||||
|
||||
|
@ -116,6 +123,7 @@ After installing MindSpore via the official website, you can start training and
|
|||
```
|
||||
|
||||
|
||||
We use CIFAR-10 dataset by default. Your can also pass `$dataset_type` to the scripts so that select different datasets. For more details, please refer the specify script.
|
||||
|
||||
|
||||
# [Script Description](#contents)
|
||||
|
@ -167,6 +175,7 @@ Parameters for both training and evaluation can be set in config.py
|
|||
'geir_filename': 'googlenet.geir' # file name of the geir model used in export.py
|
||||
```
|
||||
|
||||
For more configuration details, please refer the script `config.py`.
|
||||
|
||||
## [Training Process](#contents)
|
||||
|
||||
|
@ -297,6 +306,7 @@ Parameters for both training and evaluation can be set in config.py
|
|||
|
||||
### Evaluation Performance
|
||||
|
||||
#### GoogleNet on CIFAR-10
|
||||
| Parameters | Ascend | GPU |
|
||||
| -------------------------- | ----------------------------------------------------------- | ---------------------- |
|
||||
| Model Version | Inception V1 | Inception V1 |
|
||||
|
@ -305,7 +315,7 @@ Parameters for both training and evaluation can be set in config.py
|
|||
| MindSpore Version | 0.7.0-alpha | 0.6.0-alpha |
|
||||
| Dataset | CIFAR-10 | CIFAR-10 |
|
||||
| Training Parameters | epoch=125, steps=390, batch_size = 128, lr=0.1 | epoch=125, steps=390, batch_size=128, lr=0.1 |
|
||||
| Optimizer | SGD | SGD |
|
||||
| Optimizer | Momentum | Momentum |
|
||||
| Loss Function | Softmax Cross Entropy | Softmax Cross Entropy |
|
||||
| outputs | probability | probobility |
|
||||
| Loss | 0.0016 | 0.0016 |
|
||||
|
@ -316,9 +326,29 @@ Parameters for both training and evaluation can be set in config.py
|
|||
| Model for inference | 21.50M (.onnx file), 21.60M(.air file) | |
|
||||
| Scripts | [googlenet script](https://gitee.com/mindspore/mindspore/tree/r0.7/model_zoo/official/cv/googlenet) | [googlenet script](https://gitee.com/mindspore/mindspore/tree/r0.6/model_zoo/official/cv/googlenet) |
|
||||
|
||||
#### GoogleNet on 1200k images
|
||||
| Parameters | Ascend |
|
||||
| -------------------------- | ----------------------------------------------------------- |
|
||||
| Model Version | Inception V1 |
|
||||
| Resource | Ascend 910, CPU 2.60GHz, 56cores, Memory 314G |
|
||||
| uploaded Date | 09/20/2020 (month/day/year) |
|
||||
| MindSpore Version | 0.7.0-alpha |
|
||||
| Dataset | 1200k images |
|
||||
| Training Parameters | epoch=300, steps=5000, batch_size=256, lr=0.1 |
|
||||
| Optimizer | Momentum |
|
||||
| Loss Function | Softmax Cross Entropy |
|
||||
| outputs | probability |
|
||||
| Loss | 2.0 |
|
||||
| Speed | 1pc: 152 ms/step; 8pcs: 171 ms/step |
|
||||
| Total time | 8pcs: 8.8 hours |
|
||||
| Parameters (M) | 13.0 |
|
||||
| Checkpoint for Fine tuning | 52M (.ckpt file) |
|
||||
| Scripts | [googlenet script](https://gitee.com/mindspore/mindspore/tree/r0.7/model_zoo/official/cv/googlenet) |
|
||||
|
||||
|
||||
### Inference Performance
|
||||
|
||||
#### GoogleNet on CIFAR-10
|
||||
| Parameters | Ascend | GPU |
|
||||
| ------------------- | --------------------------- | --------------------------- |
|
||||
| Model Version | Inception V1 | Inception V1 |
|
||||
|
@ -331,6 +361,18 @@ Parameters for both training and evaluation can be set in config.py
|
|||
| Accuracy | 1pc: 93.4%; 8pcs: 92.17% | 1pc: 93%, 8pcs: 92.89% |
|
||||
| Model for inference | 21.50M (.onnx file) | |
|
||||
|
||||
#### GoogleNet on 1200k images
|
||||
| Parameters | Ascend |
|
||||
| ------------------- | --------------------------- |
|
||||
| Model Version | Inception V1 |
|
||||
| Resource | Ascend 910 |
|
||||
| Uploaded Date | 09/20/2020 (month/day/year) |
|
||||
| MindSpore Version | 0.7.0-alpha |
|
||||
| Dataset | 1200k images |
|
||||
| batch_size | 256 |
|
||||
| outputs | probability |
|
||||
| Accuracy | 8pcs: 71.81% |
|
||||
|
||||
## [How to use](#contents)
|
||||
### Inference
|
||||
|
||||
|
|
Loading…
Reference in New Issue