forked from OSSInnovation/mindspore
!1402 for second order codes
Merge pull request !1402 from zongha/master
This commit is contained in:
commit
aeffccb7f8
|
@ -1,126 +0,0 @@
|
|||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
"""learning rate generator"""
|
||||
import math
|
||||
|
||||
import numpy as np
|
||||
|
||||
|
||||
def linear_warmup_lr(current_step, warmup_steps, base_lr, init_lr):
|
||||
"""linear_warmup_lr"""
|
||||
lr_inc = (float(base_lr) - float(init_lr)) / float(warmup_steps)
|
||||
lr = float(init_lr) + lr_inc * current_step
|
||||
return lr
|
||||
|
||||
|
||||
def cosine_annealing_lr(lr, steps_per_epoch, warmup_epochs, max_epoch, T_max, eta_min=0, num_periods=0.5):
|
||||
"""linear_warmup_lr"""
|
||||
base_lr = lr
|
||||
warmup_init_lr = 0
|
||||
total_steps = int(max_epoch * steps_per_epoch)
|
||||
warmup_steps = int(warmup_epochs * steps_per_epoch)
|
||||
decay_steps = total_steps - warmup_steps
|
||||
lr_each_step = []
|
||||
for i in range(total_steps):
|
||||
if i < warmup_steps:
|
||||
lr = linear_warmup_lr(i + 1, warmup_steps, base_lr, warmup_init_lr)
|
||||
else:
|
||||
# linear_decay = (total_steps - i) / decay_steps
|
||||
cosine_decay = 0.5 * (1 + math.cos(math.pi * i / decay_steps))
|
||||
decayed = cosine_decay
|
||||
lr = base_lr * decayed
|
||||
lr_each_step.append(lr)
|
||||
return np.array(lr_each_step).astype(np.float32)
|
||||
|
||||
|
||||
def warmup_cosine_annealing_lr(lr, steps_per_epoch, warmup_epochs, max_epoch, T_max, eta_min=0, num_periods=0.5):
|
||||
"""warmup_cosine_annealing_lr"""
|
||||
base_lr = lr
|
||||
warmup_init_lr = 0
|
||||
total_steps = int(max_epoch * steps_per_epoch * 0.99)
|
||||
warmup_steps = int(warmup_epochs * steps_per_epoch)
|
||||
decay_steps = total_steps - warmup_steps
|
||||
lr_each_step = []
|
||||
for i in range(total_steps):
|
||||
if i < warmup_steps:
|
||||
lr = linear_warmup_lr(i + 1, warmup_steps, base_lr, warmup_init_lr)
|
||||
else:
|
||||
linear_decay = (total_steps - i) / decay_steps
|
||||
cosine_decay = 0.5 * (1 + math.cos(math.pi * 2 * num_periods * i / decay_steps))
|
||||
decayed = linear_decay * cosine_decay
|
||||
lr = base_lr * decayed + 0.000005
|
||||
lr_each_step.append(lr)
|
||||
return np.array(lr_each_step).astype(np.float32)
|
||||
|
||||
|
||||
def get_lr(global_step, lr_init, lr_end, lr_max, warmup_epochs, total_epochs, steps_per_epoch, lr_decay_mode):
|
||||
"""
|
||||
generate learning rate array
|
||||
|
||||
Args:
|
||||
global_step(int): total steps of the training
|
||||
lr_init(float): init learning rate
|
||||
lr_end(float): end learning rate
|
||||
lr_max(float): max learning rate
|
||||
warmup_epochs(int): number of warmup epochs
|
||||
total_epochs(int): total epoch of training
|
||||
steps_per_epoch(int): steps of one epoch
|
||||
lr_decay_mode(string): learning rate decay mode, including steps, poly or default
|
||||
|
||||
Returns:
|
||||
np.array, learning rate array
|
||||
"""
|
||||
lr_each_step = []
|
||||
total_steps = steps_per_epoch * total_epochs
|
||||
warmup_steps = steps_per_epoch * warmup_epochs
|
||||
if lr_decay_mode == 'steps':
|
||||
decay_epoch_index = [0.3 * total_steps, 0.6 * total_steps, 0.8 * total_steps]
|
||||
for i in range(total_steps):
|
||||
if i < decay_epoch_index[0]:
|
||||
lr = lr_max
|
||||
elif i < decay_epoch_index[1]:
|
||||
lr = lr_max * 0.1
|
||||
elif i < decay_epoch_index[2]:
|
||||
lr = lr_max * 0.01
|
||||
else:
|
||||
lr = lr_max * 0.001
|
||||
lr_each_step.append(lr)
|
||||
elif lr_decay_mode == 'poly':
|
||||
if warmup_steps != 0:
|
||||
inc_each_step = (float(lr_max) - float(lr_init)) / float(warmup_steps)
|
||||
else:
|
||||
inc_each_step = 0
|
||||
for i in range(total_steps):
|
||||
if i < warmup_steps:
|
||||
lr = float(lr_init) + inc_each_step * float(i)
|
||||
else:
|
||||
base = (1.0 - (float(i) - float(warmup_steps)) / (float(total_steps) - float(warmup_steps)))
|
||||
lr = float(lr_max) * base * base
|
||||
if lr < 0.0:
|
||||
lr = 0.0
|
||||
lr_each_step.append(lr)
|
||||
else:
|
||||
for i in range(total_steps):
|
||||
if i < warmup_steps:
|
||||
lr = lr_init + (lr_max - lr_init) * i / warmup_steps
|
||||
else:
|
||||
lr = lr_max - (lr_max - lr_end) * (i - warmup_steps) / (total_steps - warmup_steps)
|
||||
lr_each_step.append(lr)
|
||||
|
||||
current_step = global_step
|
||||
lr_each_step = np.array(lr_each_step).astype(np.float32)
|
||||
learning_rate = lr_each_step[current_step:]
|
||||
|
||||
return learning_rate
|
|
@ -13,12 +13,10 @@
|
|||
# limitations under the License.
|
||||
# ============================================================================
|
||||
"""Dataset help for minddata dataset"""
|
||||
from mindspore import context
|
||||
from mindspore._checkparam import check_bool
|
||||
from mindspore.nn.wrap import GetNextSingleOp
|
||||
from mindspore.parallel._utils import _get_device_num, _get_global_rank, _get_parallel_mode
|
||||
from mindspore.train._utils import _exec_datagraph, _get_types_and_shapes, _to_tensor, \
|
||||
_construct_tensor_list, _to_full_shapes, _to_full_tensor
|
||||
from mindspore.parallel._utils import _get_device_num, _get_parallel_mode
|
||||
from mindspore.train._utils import _exec_datagraph, _get_types_and_shapes, \
|
||||
_to_full_shapes
|
||||
from mindspore.train.parallel_utils import ParallelMode
|
||||
|
||||
|
||||
|
@ -42,19 +40,9 @@ class DatasetHelper:
|
|||
>>> outputs = network(*inputs)
|
||||
"""
|
||||
|
||||
def __init__(self, dataset, first_order_iter=0, dataset_sink_mode=True):
|
||||
def __init__(self, dataset, dataset_sink_mode=True, iter_first_order=0):
|
||||
check_bool(dataset_sink_mode)
|
||||
|
||||
iterclass = _DatasetIterGE
|
||||
if not dataset_sink_mode:
|
||||
iterclass = _DatasetIterFeed
|
||||
elif not context.get_context("enable_ge"):
|
||||
if context.get_context("enable_loop_sink"):
|
||||
iterclass = _DatasetIterMSLoopSink
|
||||
else:
|
||||
iterclass = _DatasetIterMS
|
||||
|
||||
self.iter = iterclass(dataset, first_order_iter)
|
||||
self.iter = _DatasetIterMSLoopSink(dataset, iter_first_order)
|
||||
|
||||
def __iter__(self):
|
||||
return self.iter.__iter__()
|
||||
|
@ -85,12 +73,6 @@ class _DatasetIter:
|
|||
self.dataset = dataset
|
||||
dataset_types, dataset_shapes = _get_types_and_shapes(dataset)
|
||||
self.dataset_types, self.dataset_shapes = dataset_types, dataset_shapes
|
||||
# for self._parallel_mode equal to semi_auto_parallel or auto_parallel, use a complete tensor to
|
||||
# compile, and slice tensor to run. The batch dimension of tensors for compile is device_number
|
||||
# times the batch dimension of tensors for run
|
||||
if _get_parallel_mode() in (ParallelMode.SEMI_AUTO_PARALLEL, ParallelMode.AUTO_PARALLEL):
|
||||
device_num = _get_device_num()
|
||||
self.dataset_shapes = _to_full_shapes(dataset_shapes, device_num)
|
||||
|
||||
def __iter__(self):
|
||||
self.ind = 0
|
||||
|
@ -109,83 +91,28 @@ class _DatasetIter:
|
|||
loop_count = 1
|
||||
if hasattr(dataset, '__loop_size__'):
|
||||
loop_size = dataset.__loop_size__
|
||||
if dataset.get_dataset_size() % loop_size != 0:
|
||||
raise ValueError(f'Dataset size {dataset.get_dataset_size()} and '
|
||||
f'loop_size {loop_size} are not matched.')
|
||||
loop_count = int(dataset.get_dataset_size() / loop_size)
|
||||
return loop_count
|
||||
|
||||
|
||||
class _DatasetIterMSLoopSink(_DatasetIter):
|
||||
"""Iter for context (enable_loop_sink=True)"""
|
||||
"""Iter for context (device_target=Ascend)"""
|
||||
|
||||
def __init__(self, dataset, first_order_iter):
|
||||
def __init__(self, dataset, iter_first_order):
|
||||
super(_DatasetIterMSLoopSink, self).__init__(dataset)
|
||||
# self.loop_count = self.get_loop_count(dataset)
|
||||
loop_size = dataset.__loop_size__ + first_order_iter
|
||||
loop_size = dataset.__loop_size__ + iter_first_order
|
||||
self.loop_count = int(dataset.get_dataset_size() / loop_size) * 2
|
||||
# for self._parallel_mode equal to semi_auto_parallel or auto_parallel, use a complete tensor to
|
||||
# compile, and slice tensor to run. The batch dimension of tensors for compile is device_number
|
||||
# times the batch dimension of tensors for run. Now only support LoopSink.
|
||||
if _get_parallel_mode() in (ParallelMode.SEMI_AUTO_PARALLEL, ParallelMode.AUTO_PARALLEL):
|
||||
device_num = _get_device_num()
|
||||
self.dataset_shapes = _to_full_shapes(self.dataset_shapes, device_num)
|
||||
|
||||
def op():
|
||||
return tuple()
|
||||
|
||||
self.op = op
|
||||
|
||||
|
||||
class _DatasetIterMS(_DatasetIter):
|
||||
"""Iter for context (enable_loop_sink=False)"""
|
||||
|
||||
def __init__(self, dataset, first_order_order):
|
||||
super(_DatasetIterMS, self).__init__(dataset)
|
||||
self.loop_count = dataset.get_dataset_size()
|
||||
self.loop_size = 1
|
||||
queue_name = dataset.__ME_INITED__
|
||||
self.op = GetNextSingleOp(self.dataset_types, self.dataset_shapes, queue_name)
|
||||
|
||||
|
||||
class _DatasetIterGE(_DatasetIter):
|
||||
"""Iter for ge"""
|
||||
|
||||
def __init__(self, dataset):
|
||||
super(_DatasetIterGE, self).__init__(dataset)
|
||||
self.loop_count = self.get_loop_count(dataset)
|
||||
parallel_mode = _get_parallel_mode()
|
||||
self.need_to_full = parallel_mode in (ParallelMode.SEMI_AUTO_PARALLEL, ParallelMode.AUTO_PARALLEL)
|
||||
batch_expand_num = 1
|
||||
if self.need_to_full:
|
||||
batch_expand_num = _get_device_num()
|
||||
tensor_list_run = _construct_tensor_list(self.dataset_types, self.dataset_shapes, batch_expand_num)
|
||||
|
||||
def op():
|
||||
return tensor_list_run
|
||||
|
||||
self.op = op
|
||||
|
||||
|
||||
class _DatasetIterFeed:
|
||||
"""Iter for feed data"""
|
||||
|
||||
def __init__(self, dataset, first_order_order):
|
||||
self.dataset = dataset
|
||||
self.device_num = _get_device_num()
|
||||
self.global_rank = _get_global_rank()
|
||||
self.repeat_count = dataset.get_repeat_count()
|
||||
self.repeat_ind = 0
|
||||
self.loop_count = dataset.get_dataset_size()
|
||||
self.ind = 0
|
||||
|
||||
parallel_mode = context.get_auto_parallel_context("parallel_mode")
|
||||
self.need_to_full = parallel_mode in (ParallelMode.SEMI_AUTO_PARALLEL, ParallelMode.AUTO_PARALLEL)
|
||||
|
||||
def __iter__(self):
|
||||
if self.repeat_ind % self.repeat_count == 0:
|
||||
self.iter = self.dataset.__iter__()
|
||||
|
||||
self.repeat_ind += 1
|
||||
self.ind = 0
|
||||
return self
|
||||
|
||||
def __next__(self):
|
||||
if self.ind >= self.loop_count:
|
||||
raise StopIteration()
|
||||
self.ind += 1
|
||||
data = self.iter.__next__()
|
||||
if self.need_to_full:
|
||||
return _to_full_tensor(data, self.device_num, self.global_rank)
|
||||
return _to_tensor(data)
|
||||
|
|
|
@ -13,8 +13,11 @@
|
|||
# limitations under the License.
|
||||
# ============================================================================
|
||||
"""Model."""
|
||||
|
||||
import numpy as np
|
||||
from mindspore import context
|
||||
from mindspore import log as logger
|
||||
from mindspore import nn
|
||||
from mindspore._c_expression import init_exec_dataset
|
||||
from mindspore._checkparam import check_input_data, check_output_data, check_int_positive, check_bool
|
||||
from mindspore.common import dtype as mstype
|
||||
|
@ -28,9 +31,9 @@ from mindspore.parallel._utils import _get_parallel_mode, _get_device_num, _get_
|
|||
from mindspore.train import amp
|
||||
from mindspore.train.callback import _InternalCallbackParam, RunContext, _build_callbacks
|
||||
from mindspore.train.parallel_utils import ParallelMode
|
||||
import mindspore.nn as nn
|
||||
from second_order.dataset_helper import DatasetHelper
|
||||
import numpy as np
|
||||
|
||||
from model.dataset_helper import DatasetHelper
|
||||
|
||||
|
||||
def _convert_type(types):
|
||||
"""
|
||||
|
@ -69,7 +72,8 @@ def _exec_datagraph(exec_dataset, dataset_size, phase='dataset'):
|
|||
dataset_types,
|
||||
dataset_shapes,
|
||||
input_indexs,
|
||||
phase=phase)
|
||||
phase=phase,
|
||||
need_run=False)
|
||||
|
||||
|
||||
class Model:
|
||||
|
@ -123,7 +127,7 @@ class Model:
|
|||
>>> return out
|
||||
>>>
|
||||
>>> net = Net()
|
||||
>>> loss = nn.SoftmaxCrossEntropyWithLogits()
|
||||
>>> loss = nn.SoftmaxCrossEntropyWithLogits(is_grad=False, sparse=True)
|
||||
>>> optim = Momentum(params=net.trainable_params(), learning_rate=0.1, momentum=0.9)
|
||||
>>> model = Model(net, loss_fn=loss, optimizer=optim, metrics=None)
|
||||
>>> dataset = get_dataset()
|
||||
|
@ -131,29 +135,35 @@ class Model:
|
|||
"""
|
||||
|
||||
def __init__(self, network, loss_fn=None, optimizer=None, metrics=None, eval_network=None,
|
||||
eval_indexes=None, amp_level="O0", frequency=278, **kwargs):
|
||||
eval_indexes=None, amp_level="O0", frequency=278, stop_epoch=100, **kwargs):
|
||||
self._network = network
|
||||
self._loss_fn = loss_fn
|
||||
self._optimizer = optimizer
|
||||
self._loss_scale_manager = None
|
||||
self._loss_scale_manager_set = False
|
||||
self._keep_bn_fp32 = True
|
||||
self._frequency = frequency
|
||||
self._check_kwargs(kwargs)
|
||||
self._amp_level = amp_level
|
||||
self._process_amp_args(kwargs)
|
||||
self._parallel_mode = _get_parallel_mode()
|
||||
self._device_number = _get_device_num()
|
||||
self._global_rank = _get_global_rank()
|
||||
self._parameter_broadcast = _get_parameter_broadcast()
|
||||
self._frequency = frequency
|
||||
self._stop_epoch = stop_epoch
|
||||
|
||||
self._train_network = self._build_train_network()
|
||||
self._build_eval_network(metrics, eval_network, eval_indexes)
|
||||
self._build_predict_network()
|
||||
|
||||
def _process_amp_args(self, kwargs):
|
||||
if self._amp_level == "O0":
|
||||
self._keep_bn_fp32 = False
|
||||
if 'keep_batchnorm_fp32' in kwargs:
|
||||
self._keep_bn_fp32 = kwargs['keep_batchnorm_fp32']
|
||||
if 'loss_scale_manager' in kwargs:
|
||||
self._loss_scale_manager = kwargs['loss_scale_manager']
|
||||
self._loss_scale_manager_set = True
|
||||
self._amp_level = amp_level
|
||||
self._parallel_mode = _get_parallel_mode()
|
||||
self._device_number = _get_device_num()
|
||||
self._global_rank = _get_global_rank()
|
||||
self._parameter_broadcast = _get_parameter_broadcast()
|
||||
|
||||
self._train_network = self._build_train_network()
|
||||
self._build_eval_network(metrics, eval_network, eval_indexes)
|
||||
self._build_predict_network()
|
||||
|
||||
def _check_kwargs(self, kwargs):
|
||||
for arg in kwargs:
|
||||
|
@ -180,6 +190,9 @@ class Model:
|
|||
elif self._loss_fn:
|
||||
network = nn.WithLossCell(network, self._loss_fn)
|
||||
# If need to check if loss_fn is not None, but optimizer is None
|
||||
|
||||
if self._parallel_mode in (ParallelMode.SEMI_AUTO_PARALLEL, ParallelMode.AUTO_PARALLEL):
|
||||
network.set_auto_parallel()
|
||||
return network
|
||||
|
||||
def _build_eval_network(self, metrics, eval_network, eval_indexes):
|
||||
|
@ -198,14 +211,18 @@ class Model:
|
|||
else:
|
||||
if self._loss_fn is None:
|
||||
raise ValueError("loss_fn can not be None.")
|
||||
self._eval_network = nn.WithEvalCell(self._network, self._loss_fn)
|
||||
self._eval_network = nn.WithEvalCell(self._network, self._loss_fn, self._amp_level == "O2")
|
||||
self._eval_indexes = [0, 1, 2]
|
||||
|
||||
if self._parallel_mode in (ParallelMode.SEMI_AUTO_PARALLEL, ParallelMode.AUTO_PARALLEL):
|
||||
self._eval_network.set_auto_parallel()
|
||||
|
||||
def _build_predict_network(self):
|
||||
"""Build the network for prediction."""
|
||||
self._predict_network = self._network
|
||||
if self._parallel_mode in (ParallelMode.SEMI_AUTO_PARALLEL, ParallelMode.AUTO_PARALLEL):
|
||||
self._predict_network = _VirtualDatasetCell(self._network)
|
||||
self._predict_network.set_auto_parallel()
|
||||
|
||||
def _clear_metrics(self):
|
||||
"""Clear metrics local values."""
|
||||
|
@ -246,6 +263,94 @@ class Model:
|
|||
scaling_sens /= self._device_number
|
||||
return scaling_sens
|
||||
|
||||
def _exec_preprocess(self, network, is_train, phase, dataset, dataset_sink_mode, iter_first_order):
|
||||
"""Initializes dataset."""
|
||||
need_wrap = False
|
||||
if dataset_sink_mode:
|
||||
# remove later to deal with loop sink
|
||||
if not hasattr(dataset, '__ME_INITED__') and context.get_context("device_target") == "Ascend" \
|
||||
and not context.get_context("enable_ge"):
|
||||
need_wrap = True
|
||||
|
||||
if not is_train:
|
||||
dataset.__loop_size__ = 1
|
||||
|
||||
dataset_helper = DatasetHelper(dataset, dataset_sink_mode, iter_first_order)
|
||||
|
||||
# remove later to deal with loop sink
|
||||
if need_wrap:
|
||||
network = nn.DataWrapper(network, *(dataset_helper.types_shapes()), dataset.__ME_INITED__)
|
||||
network.set_train(is_train)
|
||||
network.phase = phase
|
||||
|
||||
return dataset_helper, network
|
||||
|
||||
def init(self, train_dataset=None, valid_dataset=None):
|
||||
"""
|
||||
Initializes compute graphs and data graphs with sink mode.
|
||||
|
||||
Note:
|
||||
Pre-init process only supports `GRAPH_MODE` and `Ascend` target currently.
|
||||
|
||||
Args:
|
||||
train_dataset (Dataset): A training dataset iterator. If define `train_dataset`, training graphs will be
|
||||
initialized. Default: None.
|
||||
valid_dataset (Dataset): A evaluating dataset iterator. If define `valid_dataset`, evaluation graphs will
|
||||
be initialized, and `metrics` in `Model` can not be None. Default: None.
|
||||
|
||||
Examples:
|
||||
>>> train_dataset = get_train_dataset()
|
||||
>>> valid_dataset = get_valid_dataset()
|
||||
>>> net = Net()
|
||||
>>> loss = nn.SoftmaxCrossEntropyWithLogits(is_grad=False, sparse=True)
|
||||
>>> optim = Momentum(params=net.trainable_params(), learning_rate=0.1, momentum=0.9)
|
||||
>>> model = Model(net, loss_fn=loss, optimizer=optim, metrics={'acc'})
|
||||
>>> model.init(train_dataset, valid_dataset)
|
||||
>>> model.train(2, train_dataset)
|
||||
>>> model.eval(valid_dataset)
|
||||
"""
|
||||
if context.get_context("mode") != context.GRAPH_MODE or context.get_context("device_target") != "Ascend":
|
||||
raise RuntimeError('Pre-init process only supports GRAPH MODE and Ascend target currently.')
|
||||
|
||||
if not train_dataset and not valid_dataset:
|
||||
raise ValueError('Both train_dataset and valid_dataset can not be None or empty.')
|
||||
|
||||
_device_number_check(self._parallel_mode, self._device_number)
|
||||
|
||||
if train_dataset:
|
||||
_parameter_broadcast_check(self._parallel_mode, self._parameter_broadcast)
|
||||
self._train_network.set_train()
|
||||
self._train_network.phase = 'train'
|
||||
|
||||
if self._parameter_broadcast:
|
||||
self._train_network.set_broadcast_flag()
|
||||
|
||||
train_dataset_helper, train_network = self._exec_preprocess(self._train_network,
|
||||
is_train=True,
|
||||
phase='train',
|
||||
dataset=train_dataset,
|
||||
dataset_sink_mode=True)
|
||||
self._train_network = train_network
|
||||
for inputs in train_dataset_helper:
|
||||
self._train_network.compile(*inputs)
|
||||
break
|
||||
|
||||
if valid_dataset:
|
||||
if not self._metric_fns:
|
||||
raise RuntimeError('If define `valid_dataset`, metric fn can not be None or empty.')
|
||||
|
||||
self._eval_network.set_train(False)
|
||||
self._eval_network.phase = 'eval'
|
||||
valid_dataset_helper, eval_network = self._exec_preprocess(self._eval_network,
|
||||
is_train=False,
|
||||
phase='eval',
|
||||
dataset=valid_dataset,
|
||||
dataset_sink_mode=True)
|
||||
self._eval_network = eval_network
|
||||
for inputs in valid_dataset_helper:
|
||||
self._eval_network.compile(*inputs)
|
||||
break
|
||||
|
||||
def _train(self, epoch, train_dataset, callbacks=None, dataset_sink_mode=True):
|
||||
"""
|
||||
Training.
|
||||
|
@ -306,32 +411,27 @@ class Model:
|
|||
list_callback (_ListCallback): Executor of callback list. Default: None.
|
||||
cb_params (_InternalCallbackParam): Callback parameters. Default: None.
|
||||
"""
|
||||
# remove later to deal with loop sink
|
||||
iter_first_order = 277
|
||||
iter_first_order = self._frequency - 1
|
||||
iter_second_order = 1
|
||||
train_dataset.__loop_size__ = iter_second_order
|
||||
need_wrap = False
|
||||
if not hasattr(train_dataset, '__ME_INITED__') and context.get_context("enable_loop_sink") \
|
||||
and not context.get_context("enable_ge"):
|
||||
need_wrap = True
|
||||
|
||||
dataset_helper = DatasetHelper(train_dataset, iter_first_order)
|
||||
# remove later to deal with loop sink
|
||||
if need_wrap:
|
||||
self._train_network = nn.DataWrapper(self._train_network, *(dataset_helper.types_shapes()),
|
||||
train_dataset.__ME_INITED__)
|
||||
cb_params.train_network = self._train_network
|
||||
self._train_network.set_train()
|
||||
|
||||
dataset_helper, train_network = self._exec_preprocess(self._train_network,
|
||||
is_train=True,
|
||||
phase='train',
|
||||
dataset=train_dataset,
|
||||
dataset_sink_mode=True,
|
||||
iter_first_order=iter_first_order)
|
||||
self._train_network = train_network
|
||||
cb_params.train_network = self._train_network
|
||||
cb_params.cur_step_num = 0
|
||||
|
||||
loop_size = dataset_helper.loop_size()
|
||||
run_context = RunContext(cb_params)
|
||||
list_callback.begin(run_context)
|
||||
|
||||
# used to stop training for early stop, such as stopAtTIme or stopATStep
|
||||
should_stop = False
|
||||
has_do_train1_dataset = False
|
||||
checkpoint_branch_one = True
|
||||
has_do_dataset_init = False
|
||||
switch_branch_one = True
|
||||
for i in range(epoch):
|
||||
cb_params.cur_epoch_num = i + 1
|
||||
list_callback.epoch_begin(run_context)
|
||||
|
@ -339,18 +439,18 @@ class Model:
|
|||
# for data sink dataset_helper only iter once, other wise iter epoch_size times.
|
||||
for inputs in dataset_helper:
|
||||
list_callback.step_begin(run_context)
|
||||
if checkpoint_branch_one:
|
||||
if switch_branch_one:
|
||||
cb_params.cur_step_num += loop_size
|
||||
self._train_network.set_second_order(True)
|
||||
self._train_network.add_flags_recursive(thor=True)
|
||||
self._train_network.phase = 'train0'
|
||||
else:
|
||||
cb_params.cur_step_num += iter_first_order
|
||||
self._train_network.set_second_order(False)
|
||||
self._train_network.add_flags_recursive(thor=False)
|
||||
self._train_network.phase = 'train1'
|
||||
if not has_do_train1_dataset:
|
||||
if not has_do_dataset_init:
|
||||
_exec_datagraph(train_dataset, iter_first_order, phase='train1_dataset')
|
||||
has_do_train1_dataset = True
|
||||
checkpoint_branch_one = not checkpoint_branch_one
|
||||
has_do_dataset_init = True
|
||||
switch_branch_one = not switch_branch_one
|
||||
outputs = self._train_network(*inputs)
|
||||
cb_params.net_outputs = outputs
|
||||
list_callback.step_end(run_context)
|
||||
|
@ -376,17 +476,21 @@ class Model:
|
|||
list_callback (_ListCallback): Executor of callback list. Default: None.
|
||||
cb_params (_InternalCallbackParam): Callback parameters. Default: None.
|
||||
"""
|
||||
dataset_helper = DatasetHelper(train_dataset, dataset_sink_mode=False)
|
||||
dataset_helper, _ = self._exec_preprocess(self._train_network,
|
||||
is_train=True,
|
||||
phase='train',
|
||||
dataset=train_dataset,
|
||||
dataset_sink_mode=False)
|
||||
cb_params.cur_step_num = 0
|
||||
run_context = RunContext(cb_params)
|
||||
_callback_wrapper(list_callback, run_context, "begin")
|
||||
list_callback.begin(run_context)
|
||||
# used to stop training for early stop, such as stopAtTIme or stopATStep
|
||||
should_stop = False
|
||||
|
||||
for i in range(epoch):
|
||||
cb_params.cur_epoch_num = i + 1
|
||||
|
||||
_callback_wrapper(list_callback, run_context, "epoch_begin")
|
||||
list_callback.epoch_begin(run_context)
|
||||
|
||||
for next_element in dataset_helper:
|
||||
len_element = len(next_element)
|
||||
|
@ -394,7 +498,7 @@ class Model:
|
|||
raise ValueError("when loss_fn is not None, train_dataset should"
|
||||
"return two elements, but got {}".format(len_element))
|
||||
cb_params.cur_step_num += 1
|
||||
_callback_wrapper(list_callback, run_context, "step_begin")
|
||||
list_callback.step_begin(run_context)
|
||||
|
||||
overflow = False
|
||||
if self._loss_scale_manager and self._loss_scale_manager.get_drop_overflow_update():
|
||||
|
@ -408,19 +512,19 @@ class Model:
|
|||
overflow = np.all(overflow.asnumpy())
|
||||
self._loss_scale_manager.update_loss_scale(overflow)
|
||||
|
||||
_callback_wrapper(list_callback, run_context, "step_end")
|
||||
list_callback.step_end(run_context)
|
||||
should_stop = should_stop or run_context.get_stop_requested()
|
||||
if should_stop:
|
||||
break
|
||||
|
||||
train_dataset.reset()
|
||||
|
||||
_callback_wrapper(list_callback, run_context, "epoch_end")
|
||||
list_callback.epoch_end(run_context)
|
||||
should_stop = should_stop or run_context.get_stop_requested()
|
||||
if should_stop:
|
||||
break
|
||||
|
||||
_callback_wrapper(list_callback, run_context, "end")
|
||||
list_callback.end(run_context)
|
||||
|
||||
def train(self, epoch, train_dataset, callbacks=None, dataset_sink_mode=True):
|
||||
"""
|
||||
|
@ -452,7 +556,7 @@ class Model:
|
|||
Examples:
|
||||
>>> dataset = get_dataset()
|
||||
>>> net = Net()
|
||||
>>> loss = nn.SoftmaxCrossEntropyWithLogits()
|
||||
>>> loss = nn.SoftmaxCrossEntropyWithLogits(is_grad=False, sparse=True)
|
||||
>>> loss_scale_manager = FixedLossScaleManager()
|
||||
>>> optim = Momentum(params=net.trainable_params(), learning_rate=0.1, momentum=0.9)
|
||||
>>> model = Model(net, loss_fn=loss, optimizer=optim, metrics=None, loss_scale_manager=loss_scale_manager)
|
||||
|
@ -465,9 +569,6 @@ class Model:
|
|||
_device_number_check(self._parallel_mode, self._device_number)
|
||||
_parameter_broadcast_check(self._parallel_mode, self._parameter_broadcast)
|
||||
|
||||
if context.get_context("device_target") in ["CPU", "GPU"] and context.get_context("enable_loop_sink"):
|
||||
raise ValueError("CPU and GPU can't support loop sink, please set enable_loop_sink=False.")
|
||||
|
||||
self._train(epoch,
|
||||
train_dataset,
|
||||
callbacks=callbacks,
|
||||
|
@ -485,25 +586,15 @@ class Model:
|
|||
Returns:
|
||||
Dict, returns the loss value & metrics values for the model in test mode.
|
||||
"""
|
||||
_device_number_check(self._parallel_mode, self._device_number)
|
||||
|
||||
run_context = RunContext(cb_params)
|
||||
|
||||
# remove later to deal with loop sink
|
||||
need_wrap = False
|
||||
if not hasattr(valid_dataset, '__ME_INITED__') and context.get_context("enable_loop_sink") \
|
||||
and not context.get_context("enable_ge"):
|
||||
need_wrap = True
|
||||
|
||||
valid_dataset.__loop_size__ = 1
|
||||
dataset_helper = DatasetHelper(valid_dataset)
|
||||
|
||||
# remove later to deal with loop sink
|
||||
if need_wrap:
|
||||
self._eval_network = nn.DataWrapper(self._eval_network, *(dataset_helper.types_shapes()),
|
||||
valid_dataset.__ME_INITED__)
|
||||
self._eval_network.set_train(mode=False)
|
||||
self._eval_network.phase = 'eval'
|
||||
dataset_helper, eval_network = self._exec_preprocess(self._eval_network,
|
||||
is_train=False,
|
||||
phase='eval',
|
||||
dataset=valid_dataset,
|
||||
dataset_sink_mode=True)
|
||||
self._eval_network = eval_network
|
||||
cb_params.eval_network = self._eval_network
|
||||
list_callback.begin(run_context)
|
||||
|
||||
for inputs in dataset_helper:
|
||||
|
@ -537,7 +628,11 @@ class Model:
|
|||
run_context = RunContext(cb_params)
|
||||
list_callback.begin(run_context)
|
||||
|
||||
dataset_helper = DatasetHelper(valid_dataset, dataset_sink_mode=False)
|
||||
dataset_helper, _ = self._exec_preprocess(self._eval_network,
|
||||
is_train=False,
|
||||
phase='eval',
|
||||
dataset=valid_dataset,
|
||||
dataset_sink_mode=False)
|
||||
for next_element in dataset_helper:
|
||||
cb_params.cur_step_num += 1
|
||||
list_callback.step_begin(run_context)
|
||||
|
@ -574,11 +669,12 @@ class Model:
|
|||
Examples:
|
||||
>>> dataset = get_dataset()
|
||||
>>> net = Net()
|
||||
>>> loss = nn.SoftmaxCrossEntropyWithLogits()
|
||||
>>> loss = nn.SoftmaxCrossEntropyWithLogits(is_grad=False, sparse=True)
|
||||
>>> model = Model(net, loss_fn=loss, optimizer=None, metrics={'acc'})
|
||||
>>> model.eval(dataset)
|
||||
"""
|
||||
check_bool(dataset_sink_mode)
|
||||
_device_number_check(self._parallel_mode, self._device_number)
|
||||
if not self._metric_fns:
|
||||
raise ValueError("metric fn can not be None or empty.")
|
||||
|
||||
|
|
|
@ -14,22 +14,24 @@
|
|||
# ============================================================================
|
||||
"""ResNet."""
|
||||
import math
|
||||
|
||||
import mindspore.nn as nn
|
||||
import numpy as np
|
||||
import mindspore.nn as nn
|
||||
from mindspore.common.tensor import Tensor
|
||||
from mindspore.ops import operations as P
|
||||
from second_order.thor_layer import Conv2d_Thor, Dense_Thor
|
||||
|
||||
from model.thor_layer import Conv2d_Thor, Dense_Thor
|
||||
|
||||
|
||||
def calculate_gain(nonlinearity, param=None):
|
||||
"""calculate_gain"""
|
||||
linear_fns = ['linear', 'conv1d', 'conv2d', 'conv3d', 'conv_transpose1d', 'conv_transpose2d', 'conv_transpose3d']
|
||||
res = 0
|
||||
if nonlinearity in linear_fns or nonlinearity == 'sigmoid':
|
||||
return 1
|
||||
res = 1
|
||||
elif nonlinearity == 'tanh':
|
||||
return 5.0 / 3
|
||||
res = 5.0 / 3
|
||||
elif nonlinearity == 'relu':
|
||||
return math.sqrt(2.0)
|
||||
res = math.sqrt(2.0)
|
||||
elif nonlinearity == 'leaky_relu':
|
||||
if param is None:
|
||||
negative_slope = 0.01
|
||||
|
@ -38,16 +40,17 @@ def calculate_gain(nonlinearity, param=None):
|
|||
negative_slope = param
|
||||
else:
|
||||
raise ValueError("negative_slope {} not a valid number".format(param))
|
||||
return math.sqrt(2.0 / (1 + negative_slope ** 2))
|
||||
res = math.sqrt(2.0 / (1 + negative_slope ** 2))
|
||||
else:
|
||||
raise ValueError("Unsupported nonlinearity {}".format(nonlinearity))
|
||||
return res
|
||||
|
||||
|
||||
def _calculate_fan_in_and_fan_out(tensor):
|
||||
"""_calculate_fan_in_and_fan_out"""
|
||||
dimensions = len(tensor)
|
||||
if dimensions < 2:
|
||||
raise ValueError("Fan in and fan out can not be computed for tensor with fewer than 2 dimensions")
|
||||
|
||||
if dimensions == 2: # Linear
|
||||
fan_in = tensor[1]
|
||||
fan_out = tensor[0]
|
||||
|
@ -67,7 +70,6 @@ def _calculate_correct_fan(tensor, mode):
|
|||
valid_modes = ['fan_in', 'fan_out']
|
||||
if mode not in valid_modes:
|
||||
raise ValueError("Mode {} not supported, please use one of {}".format(mode, valid_modes))
|
||||
|
||||
fan_in, fan_out = _calculate_fan_in_and_fan_out(tensor)
|
||||
return fan_in if mode == 'fan_in' else fan_out
|
||||
|
||||
|
@ -93,8 +95,6 @@ def _conv3x3(in_channel, out_channel, stride=1, damping=0.03, loss_scale=1, freq
|
|||
return Conv2d_Thor(in_channel, out_channel,
|
||||
kernel_size=3, stride=stride, padding=0, pad_mode='same', weight_init=weight,
|
||||
damping=damping, loss_scale=loss_scale, frequency=frequency)
|
||||
# return nn.Conv2d(in_channel, out_channel,
|
||||
# kernel_size=3, stride=stride, padding=0, pad_mode='same', weight_init=weight)
|
||||
|
||||
|
||||
def _conv1x1(in_channel, out_channel, stride=1, damping=0.03, loss_scale=1, frequency=278):
|
||||
|
@ -125,7 +125,7 @@ def _bn_last(channel):
|
|||
|
||||
def _fc(in_channel, out_channel, damping, loss_scale, frequency):
|
||||
weight_shape = (out_channel, in_channel)
|
||||
weight = Tensor(kaiming_uniform(weight_shape, a=math.sqrt(5))
|
||||
weight = Tensor(kaiming_uniform(weight_shape, a=math.sqrt(5)))
|
||||
return Dense_Thor(in_channel, out_channel, has_bias=False, weight_init=weight,
|
||||
bias_init=0, damping=damping, loss_scale=loss_scale, frequency=frequency)
|
||||
|
||||
|
@ -133,15 +133,15 @@ def _fc(in_channel, out_channel, damping, loss_scale, frequency):
|
|||
class ResidualBlock(nn.Cell):
|
||||
"""
|
||||
ResNet V1 residual block definition.
|
||||
|
||||
|
||||
Args:
|
||||
in_channel (int): Input channel.
|
||||
out_channel (int): Output channel.
|
||||
stride (int): Stride size for the first convolutional layer. Default: 1.
|
||||
|
||||
|
||||
Returns:
|
||||
Tensor, output tensor.
|
||||
|
||||
|
||||
Examples:
|
||||
>>> ResidualBlock(3, 256, stride=2)
|
||||
"""
|
||||
|
@ -210,7 +210,7 @@ class ResidualBlock(nn.Cell):
|
|||
class ResNet(nn.Cell):
|
||||
"""
|
||||
ResNet architecture.
|
||||
|
||||
|
||||
Args:
|
||||
block (Cell): Block for network.
|
||||
layer_nums (list): Numbers of block in different layers.
|
||||
|
@ -220,7 +220,7 @@ class ResNet(nn.Cell):
|
|||
num_classes (int): The number of classes that the training images are belonging to.
|
||||
Returns:
|
||||
Tensor, output tensor.
|
||||
|
||||
|
||||
Examples:
|
||||
>>> ResNet(ResidualBlock,
|
||||
>>> [3, 4, 6, 3],
|
||||
|
@ -290,17 +290,17 @@ class ResNet(nn.Cell):
|
|||
damping, loss_scale, frequency):
|
||||
"""
|
||||
Make stage network of ResNet.
|
||||
|
||||
|
||||
Args:
|
||||
block (Cell): Resnet block.
|
||||
layer_num (int): Layer number.
|
||||
in_channel (int): Input channel.
|
||||
out_channel (int): Output channel.
|
||||
stride (int): Stride size for the first convolutional layer.
|
||||
|
||||
|
||||
Returns:
|
||||
SequentialCell, the output layer.
|
||||
|
||||
|
||||
Examples:
|
||||
>>> _make_layer(ResidualBlock, 3, 128, 256, 2)
|
||||
"""
|
||||
|
@ -321,7 +321,7 @@ class ResNet(nn.Cell):
|
|||
x = self.conv1(x)
|
||||
x = self.bn1(x)
|
||||
x = self.relu(x)
|
||||
c1, argmax = self.maxpool(x)
|
||||
c1, _ = self.maxpool(x)
|
||||
|
||||
c2 = self.layer1(c1)
|
||||
c3 = self.layer2(c2)
|
||||
|
@ -338,13 +338,13 @@ class ResNet(nn.Cell):
|
|||
def resnet50(class_num=10, damping=0.03, loss_scale=1, frequency=278):
|
||||
"""
|
||||
Get ResNet50 neural network.
|
||||
|
||||
|
||||
Args:
|
||||
class_num (int): Class number.
|
||||
|
||||
|
||||
Returns:
|
||||
Cell, cell instance of ResNet50 neural network.
|
||||
|
||||
|
||||
Examples:
|
||||
>>> net = resnet50(10)
|
||||
"""
|
||||
|
|
|
@ -51,6 +51,6 @@ do
|
|||
echo "start training for rank $RANK_ID, device $DEVICE_ID"
|
||||
|
||||
env > env.log
|
||||
python train_0517_1.py --do_train=True --run_distribute=True --device_num=$DEVICE_NUM --dataset_path=$2 > log 2>&1 &
|
||||
python train.py --do_train=True --run_distribute=True --device_num=$DEVICE_NUM --dataset_path=$2 > log 2>&1 &
|
||||
cd ..
|
||||
done
|
|
@ -17,7 +17,6 @@ import argparse
|
|||
import os
|
||||
import random
|
||||
|
||||
import mindspore.dataset.engine as de
|
||||
from mindspore import Tensor
|
||||
from mindspore import context
|
||||
from mindspore.communication.management import init
|
||||
|
@ -25,19 +24,17 @@ from mindspore.parallel._auto_parallel_context import auto_parallel_context
|
|||
from mindspore.train.callback import ModelCheckpoint, CheckpointConfig, LossMonitor, TimeMonitor
|
||||
from mindspore.train.loss_scale_manager import FixedLossScaleManager
|
||||
from mindspore.train.model import ParallelMode
|
||||
from second_order.model_second_order import Model
|
||||
from second_order.resnet import resnet50
|
||||
from second_order.thor import THOR
|
||||
from model.model_thor import Model
|
||||
from model.resnet import resnet50
|
||||
from model.thor import THOR
|
||||
|
||||
import numpy as np
|
||||
from config_imagenet import config
|
||||
from config import config
|
||||
from crossentropy import CrossEntropy
|
||||
from dataset_imagenet import create_dataset
|
||||
from lr_generator import warmup_cosine_annealing_lr
|
||||
|
||||
random.seed(1)
|
||||
np.random.seed(1)
|
||||
de.config.set_seed(1)
|
||||
|
||||
parser = argparse.ArgumentParser(description='Image classification')
|
||||
parser.add_argument('--run_distribute', type=bool, default=False, help='Run distribute')
|
||||
|
@ -50,29 +47,29 @@ args_opt = parser.parse_args()
|
|||
device_id = int(os.getenv('DEVICE_ID'))
|
||||
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend", save_graphs=True, device_id=device_id)
|
||||
context.set_context(enable_task_sink=True)
|
||||
context.set_context(enable_loop_sink=True)
|
||||
context.set_context(enable_mem_reuse=True)
|
||||
|
||||
|
||||
def get_second_order_lr(global_step, lr_init, decay, total_epochs, steps_per_epoch):
|
||||
"""get_second_order_lr"""
|
||||
def get_model_lr(global_step, lr_init, decay, total_epochs, steps_per_epoch):
|
||||
"""get_model_lr"""
|
||||
lr_each_step = []
|
||||
total_steps = steps_per_epoch * total_epochs
|
||||
for i in range(total_steps):
|
||||
epoch = (i + 1) / steps_per_epoch
|
||||
base = (1.0 - float(epoch) / total_epochs) ** decay
|
||||
lr_local = lr_init * base
|
||||
if epoch >= 39:
|
||||
lr_local = lr_local * 0.5
|
||||
if epoch >= 40:
|
||||
lr_local = lr_local * 0.5
|
||||
lr_each_step.append(lr_local)
|
||||
current_step = global_step
|
||||
lr_each_step = np.array(lr_each_step).astype(np.float32)
|
||||
print("learning_rate_is=====", lr_each_step)
|
||||
learning_rate = lr_each_step[current_step:]
|
||||
return learning_rate
|
||||
|
||||
|
||||
def get_second_order_damping(global_step, damping_init, decay_rate, total_epochs, steps_per_epoch):
|
||||
"""get_second_order_damping"""
|
||||
def get_model_damping(global_step, damping_init, decay_rate, total_epochs, steps_per_epoch):
|
||||
"""get_model_damping"""
|
||||
damping_each_step = []
|
||||
total_steps = steps_per_epoch * total_epochs
|
||||
for step in range(total_steps):
|
||||
|
@ -83,26 +80,23 @@ def get_second_order_damping(global_step, damping_init, decay_rate, total_epochs
|
|||
current_step = global_step
|
||||
damping_each_step = np.array(damping_each_step).astype(np.float32)
|
||||
damping_now = damping_each_step[current_step:]
|
||||
print("damping_is=========", damping_now)
|
||||
return damping_now
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
if args_opt.do_eval:
|
||||
print("eval")
|
||||
else:
|
||||
if args_opt.run_distribute:
|
||||
context.set_auto_parallel_context(device_num=args_opt.device_num, parallel_mode=ParallelMode.DATA_PARALLEL,
|
||||
mirror_mean=True, parameter_broadcast=True)
|
||||
auto_parallel_context().set_all_reduce_fusion_split_indices([80], "hccl_world_groupsum1")
|
||||
auto_parallel_context().set_all_reduce_fusion_split_indices([27], "hccl_world_groupsum3")
|
||||
auto_parallel_context().set_all_reduce_fusion_split_indices([27], "hccl_world_groupsum4")
|
||||
init()
|
||||
else:
|
||||
print(" ")
|
||||
if not args_opt.do_eval and args_opt.run_distribute:
|
||||
context.set_auto_parallel_context(device_num=args_opt.device_num, parallel_mode=ParallelMode.DATA_PARALLEL,
|
||||
mirror_mean=True, parameter_broadcast=True)
|
||||
auto_parallel_context().set_all_reduce_fusion_split_indices([107], "hccl_world_groupsum1")
|
||||
auto_parallel_context().set_all_reduce_fusion_split_indices([27], "hccl_world_groupsum2")
|
||||
auto_parallel_context().set_all_reduce_fusion_split_indices([27], "hccl_world_groupsum3")
|
||||
auto_parallel_context().set_all_reduce_fusion_split_indices([27], "hccl_world_groupsum4")
|
||||
auto_parallel_context().set_all_reduce_fusion_split_indices([27], "hccl_world_groupsum5")
|
||||
|
||||
init()
|
||||
|
||||
epoch_size = config.epoch_size
|
||||
damping = get_second_order_damping(0, 0.03, 0.87, 50, 5004)
|
||||
damping = get_model_damping(0, 0.03, 0.87, 50, 5004)
|
||||
net = resnet50(class_num=config.class_num, damping=damping, loss_scale=config.loss_scale,
|
||||
frequency=config.frequency)
|
||||
|
||||
|
@ -115,17 +109,12 @@ if __name__ == '__main__':
|
|||
step_size = dataset.get_dataset_size()
|
||||
|
||||
loss_scale = FixedLossScaleManager(config.loss_scale, drop_overflow_update=False)
|
||||
lr = Tensor(warmup_cosine_annealing_lr(0.035,
|
||||
step_size,
|
||||
config.warmup_epochs,
|
||||
50,
|
||||
config.T_max,
|
||||
config.eta_min))
|
||||
opt = THOR(filter(lambda x: x.requires_grad, net.get_parameters()), lr,
|
||||
config.momentum, damping, config.frequency,
|
||||
lr = Tensor(get_model_lr(0, 0.05, 6, 70, 5004))
|
||||
opt = THOR(filter(lambda x: x.requires_grad, net.get_parameters()), lr, config.momentum,
|
||||
filter(lambda x: 'matrix_A' in x.name, net.get_parameters()),
|
||||
filter(lambda x: 'matrix_G' in x.name, net.get_parameters()),
|
||||
filter(lambda x: 'spatial_norm' in x.name, net.get_parameters()),
|
||||
filter(lambda x: 'A_inv_max' in x.name, net.get_parameters()),
|
||||
filter(lambda x: 'G_inv_max' in x.name, net.get_parameters()),
|
||||
config.weight_decay, config.loss_scale)
|
||||
|
||||
model = Model(net, loss_fn=loss, optimizer=opt, amp_level='O2', loss_scale_manager=loss_scale,
|
||||
|
|
|
@ -0,0 +1,76 @@
|
|||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
"""batch_matmul_impl"""
|
||||
from mindspore.ops.op_info_register import op_info_register
|
||||
|
||||
|
||||
@op_info_register("""{
|
||||
"op_name": "CusBatchMatMul",
|
||||
"imply_type": "TBE",
|
||||
"fusion_type": "OPAQUE",
|
||||
"async_flag": false,
|
||||
"binfile_name": "batchmatmul.so",
|
||||
"compute_cost": 10,
|
||||
"kernel_name": "CusBatchMatMul",
|
||||
"partial_flag": true,
|
||||
"attr": [
|
||||
],
|
||||
"inputs": [
|
||||
{
|
||||
"index": 0,
|
||||
"dtype": [
|
||||
"float32"
|
||||
],
|
||||
"format": [
|
||||
"DefaultFormat"
|
||||
],
|
||||
"name": "x1",
|
||||
"need_compile": false,
|
||||
"param_type": "required",
|
||||
"shape": "all"
|
||||
},
|
||||
{
|
||||
"index": 1,
|
||||
"dtype": [
|
||||
"float32"
|
||||
],
|
||||
"format": [
|
||||
"DefaultFormat"
|
||||
],
|
||||
"name": "x2",
|
||||
"need_compile": false,
|
||||
"param_type": "required",
|
||||
"shape": "all"
|
||||
}
|
||||
],
|
||||
"outputs": [
|
||||
{
|
||||
"index": 0,
|
||||
"dtype": [
|
||||
"float32"
|
||||
],
|
||||
"format": [
|
||||
"DefaultFormat"
|
||||
],
|
||||
"name": "y",
|
||||
"need_compile": false,
|
||||
"param_type": "required",
|
||||
"shape": "all"
|
||||
}
|
||||
]
|
||||
}""")
|
||||
def CusBatchMatMul(input_x1, input_x2, output, transpose_a=False, transpose_b=True, kernel_name="batchmatmul"):
|
||||
"""CusBatchMatMul"""
|
||||
return
|
|
@ -0,0 +1,64 @@
|
|||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
"""CusCholeskyTrsm"""
|
||||
from mindspore.ops.op_info_register import op_info_register
|
||||
|
||||
|
||||
@op_info_register("""{
|
||||
"op_name": "CusCholeskyTrsm",
|
||||
"imply_type": "TBE",
|
||||
"fusion_type": "OPAQUE",
|
||||
"async_flag": false,
|
||||
"binfile_name": "choleskytrsm.so",
|
||||
"compute_cost": 10,
|
||||
"kernel_name": "CusCholeskyTrsm",
|
||||
"partial_flag": true,
|
||||
"attr": [
|
||||
|
||||
],
|
||||
"inputs": [
|
||||
{
|
||||
"index": 0,
|
||||
"dtype": [
|
||||
"float32"
|
||||
],
|
||||
"format": [
|
||||
"DefaultFormat"
|
||||
],
|
||||
"name": "x1",
|
||||
"need_compile": false,
|
||||
"param_type": "required",
|
||||
"shape": "all"
|
||||
}
|
||||
],
|
||||
"outputs": [
|
||||
{
|
||||
"index": 0,
|
||||
"dtype": [
|
||||
"float32"
|
||||
],
|
||||
"format": [
|
||||
"DefaultFormat"
|
||||
],
|
||||
"name": "y",
|
||||
"need_compile": false,
|
||||
"param_type": "required",
|
||||
"shape": "all"
|
||||
}
|
||||
]
|
||||
}""")
|
||||
def CusCholeskyTrsm(input_x, output, kernel_name):
|
||||
"""CusCholeskyTrsm"""
|
||||
return
|
|
@ -0,0 +1,69 @@
|
|||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
"""CusFusedAbsMax1"""
|
||||
from mindspore.ops.op_info_register import op_info_register
|
||||
|
||||
|
||||
@op_info_register("""{
|
||||
"op_name": "CusFusedAbsMax1",
|
||||
"imply_type": "TBE",
|
||||
"fusion_type": "OPAQUE",
|
||||
"async_flag": false,
|
||||
"binfile_name": "fusedabsmax1.so",
|
||||
"compute_cost": 10,
|
||||
"kernel_name": "CusFusedAbsMax1",
|
||||
"partial_flag": true,
|
||||
"attr": [
|
||||
{
|
||||
"name": "origin_shape",
|
||||
"param_type": "required",
|
||||
"type": "listInt",
|
||||
"value": "all"
|
||||
}
|
||||
],
|
||||
"inputs": [
|
||||
{
|
||||
"index": 0,
|
||||
"dtype": [
|
||||
"float32"
|
||||
],
|
||||
"format": [
|
||||
"DefaultFormat"
|
||||
],
|
||||
"name": "x1",
|
||||
"need_compile": false,
|
||||
"param_type": "required",
|
||||
"shape": "all"
|
||||
}
|
||||
],
|
||||
"outputs": [
|
||||
{
|
||||
"index": 0,
|
||||
"dtype": [
|
||||
"float32"
|
||||
],
|
||||
"format": [
|
||||
"DefaultFormat"
|
||||
],
|
||||
"name": "y",
|
||||
"need_compile": false,
|
||||
"param_type": "required",
|
||||
"shape": "all"
|
||||
}
|
||||
]
|
||||
}""")
|
||||
def CusFusedAbsMax1(input_x, output, origin_shape=None, kernel_name="fused_abs_max1"):
|
||||
"""CusFusedAbsMax1"""
|
||||
return
|
|
@ -0,0 +1,87 @@
|
|||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
"""CusImg2ColNC1HWC0"""
|
||||
from mindspore.ops.op_info_register import op_info_register
|
||||
|
||||
|
||||
@op_info_register("""{
|
||||
"op_name": "CusImg2ColNC1HWC0",
|
||||
"imply_type": "TBE",
|
||||
"fusion_type": "OPAQUE",
|
||||
"async_flag": false,
|
||||
"binfile_name": "img2colnc1hwc0.so",
|
||||
"compute_cost": 10,
|
||||
"kernel_name": "CusImg2ColNC1HWC0",
|
||||
"partial_flag": true,
|
||||
"attr": [
|
||||
{
|
||||
"name": "ksizes",
|
||||
"param_type": "required",
|
||||
"type": "listInt",
|
||||
"value": "all"
|
||||
},
|
||||
{
|
||||
"name": "strides",
|
||||
"param_type": "required",
|
||||
"type": "listInt",
|
||||
"value": "all"
|
||||
},
|
||||
{
|
||||
"name": "dilates",
|
||||
"param_type": "required",
|
||||
"type": "listInt",
|
||||
"value": "all"
|
||||
},
|
||||
{
|
||||
"name": "padding",
|
||||
"param_type": "required",
|
||||
"type": "str",
|
||||
"value": "all"
|
||||
}
|
||||
],
|
||||
"inputs": [
|
||||
{
|
||||
"index": 0,
|
||||
"dtype": [
|
||||
"float16"
|
||||
],
|
||||
"format": [
|
||||
"NC1HWC0"
|
||||
],
|
||||
"name": "x1",
|
||||
"need_compile": false,
|
||||
"param_type": "required",
|
||||
"shape": "all"
|
||||
}
|
||||
],
|
||||
"outputs": [
|
||||
{
|
||||
"index": 0,
|
||||
"dtype": [
|
||||
"float16"
|
||||
],
|
||||
"format": [
|
||||
"FRACTAL_NZ"
|
||||
],
|
||||
"name": "y",
|
||||
"need_compile": false,
|
||||
"param_type": "required",
|
||||
"shape": "all"
|
||||
}
|
||||
]
|
||||
}""")
|
||||
def CusImg2ColNC1HWC0(input_x, output, ksizes, strides, dilates, padding, kernel_name="img2col"):
|
||||
"""CusImg2ColNC1HWC0"""
|
||||
return
|
|
@ -0,0 +1,101 @@
|
|||
# -*- coding:utf-8 -*-
|
||||
"""
|
||||
copyright 2020 Huawei Technologies Co., Ltd
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License == distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License.
|
||||
|
||||
matmul
|
||||
"""
|
||||
from __future__ import absolute_import
|
||||
|
||||
from mindspore.ops.op_info_register import op_info_register
|
||||
from topi.cce import util
|
||||
|
||||
# General limitation of the size for input shape: 2**31
|
||||
SHAPE_SIZE_LIMIT = 2147483648
|
||||
NoneType = type(None)
|
||||
|
||||
|
||||
@op_info_register("""{
|
||||
"op_name": "CusMatMulCubeDenseLeft",
|
||||
"imply_type": "TBE",
|
||||
"fusion_type": "OPAQUE",
|
||||
"async_flag": false,
|
||||
"binfile_name": "matmulcubedenseleft.so",
|
||||
"compute_cost": 10,
|
||||
"kernel_name": "CusMatMulCubeDenseLeft",
|
||||
"partial_flag": true,
|
||||
"attr": [
|
||||
],
|
||||
"inputs": [
|
||||
{
|
||||
"index": 0,
|
||||
"dtype": [
|
||||
"float16"
|
||||
],
|
||||
"format": [
|
||||
"DefaultFormat"
|
||||
],
|
||||
"name": "x1",
|
||||
"need_compile": false,
|
||||
"param_type": "required",
|
||||
"shape": "all"
|
||||
},
|
||||
{
|
||||
"index": 1,
|
||||
"dtype": [
|
||||
"float16"
|
||||
],
|
||||
"format": [
|
||||
"FRACTAL_NZ"
|
||||
],
|
||||
"name": "x2",
|
||||
"need_compile": false,
|
||||
"param_type": "required",
|
||||
"shape": "all"
|
||||
},
|
||||
{
|
||||
"index": 2,
|
||||
"dtype": [
|
||||
"float16"
|
||||
],
|
||||
"format": [
|
||||
"DefaultFormat"
|
||||
],
|
||||
"name": "x3",
|
||||
"need_compile": false,
|
||||
"param_type": "optional",
|
||||
"shape": "all"
|
||||
}
|
||||
],
|
||||
"outputs": [
|
||||
{
|
||||
"index": 0,
|
||||
"dtype": [
|
||||
"float16"
|
||||
],
|
||||
"format": [
|
||||
"FRACTAL_NZ"
|
||||
],
|
||||
"name": "y",
|
||||
"need_compile": false,
|
||||
"param_type": "required",
|
||||
"shape": "all"
|
||||
}
|
||||
]
|
||||
}""")
|
||||
@util.check_input_type(dict, dict, (dict, NoneType), dict, bool, bool, str)
|
||||
def CusMatMulCubeDenseLeft(input_x1, input_x2, bias=None, output_y={}, trans_a=False, trans_b=False,
|
||||
kernel_name="matmulcube"):
|
||||
"""CusMatMulCubeDenseLeft"""
|
||||
return
|
|
@ -0,0 +1,102 @@
|
|||
# -*- coding:utf-8 -*-
|
||||
"""
|
||||
copyright 2020 Huawei Technologies Co., Ltd
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License == distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License.
|
||||
|
||||
matmul
|
||||
"""
|
||||
from __future__ import absolute_import
|
||||
|
||||
from mindspore.ops.op_info_register import op_info_register
|
||||
from topi.cce import util
|
||||
|
||||
# General limitation of the size for input shape: 2**31
|
||||
SHAPE_SIZE_LIMIT = 2147483648
|
||||
NoneType = type(None)
|
||||
|
||||
|
||||
@op_info_register("""{
|
||||
"op_name": "CusMatMulCubeFraczLeftCast",
|
||||
"imply_type": "TBE",
|
||||
"fusion_type": "OPAQUE",
|
||||
"async_flag": false,
|
||||
"binfile_name": "matmulcubefraczleftcast.so",
|
||||
"compute_cost": 10,
|
||||
"kernel_name": "CusMatMulCubeFraczLeftCast",
|
||||
"partial_flag": true,
|
||||
"attr": [
|
||||
],
|
||||
"inputs": [
|
||||
{
|
||||
"index": 0,
|
||||
"dtype": [
|
||||
"float16"
|
||||
],
|
||||
"format": [
|
||||
"DefaultFormat"
|
||||
],
|
||||
"name": "x1",
|
||||
"need_compile": false,
|
||||
"param_type": "required",
|
||||
"shape": "all"
|
||||
},
|
||||
{
|
||||
"index": 1,
|
||||
"dtype": [
|
||||
"float32"
|
||||
],
|
||||
"format": [
|
||||
"FracZ"
|
||||
],
|
||||
"name": "x2",
|
||||
"need_compile": false,
|
||||
"param_type": "required",
|
||||
"shape": "all"
|
||||
},
|
||||
{
|
||||
"index": 2,
|
||||
"dtype": [
|
||||
"float16"
|
||||
],
|
||||
"format": [
|
||||
"DefaultFormat"
|
||||
],
|
||||
"name": "x3",
|
||||
"need_compile": false,
|
||||
"param_type": "optional",
|
||||
"shape": "all"
|
||||
}
|
||||
],
|
||||
"outputs": [
|
||||
{
|
||||
"index": 0,
|
||||
"dtype": [
|
||||
"float16"
|
||||
],
|
||||
"format": [
|
||||
"FracZ"
|
||||
],
|
||||
"name": "y",
|
||||
"need_compile": false,
|
||||
"param_type": "required",
|
||||
"shape": "all"
|
||||
}
|
||||
]
|
||||
}""")
|
||||
# pylint: disable=locally-disabled,too-many-arguments, too-many-locals, too-many-statements
|
||||
@util.check_input_type(dict, dict, (dict, NoneType), dict, bool, bool, str)
|
||||
def CusMatMulCubeFraczLeftCast(input_x1, input_x2, bias=None, output_y={}, trans_a=False, trans_b=False,
|
||||
kernel_name="CusMatMulCubeFraczLeftCast"):
|
||||
"""CusMatMulCubeFraczLeftCast"""
|
||||
return
|
|
@ -0,0 +1,113 @@
|
|||
#!/usr/bin/env python
|
||||
# -*- coding:utf-8 -*-
|
||||
"""
|
||||
copyright 2020 Huawei Technologies Co., Ltd
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License == distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License.
|
||||
|
||||
matmul
|
||||
"""
|
||||
from __future__ import absolute_import
|
||||
|
||||
from mindspore.ops.op_info_register import op_info_register
|
||||
|
||||
# General limitation of the size for input shape: 2**31
|
||||
SHAPE_SIZE_LIMIT = 2147483648
|
||||
NoneType = type(None)
|
||||
|
||||
|
||||
@op_info_register("""{
|
||||
"op_name": "CusMatMulCubeFraczRightMul",
|
||||
"imply_type": "TBE",
|
||||
"fusion_type": "OPAQUE",
|
||||
"async_flag": false,
|
||||
"binfile_name": "matmulcubefraczrightmul.so",
|
||||
"compute_cost": 10,
|
||||
"kernel_name": "CusMatMulCubeFraczRightMul",
|
||||
"partial_flag": true,
|
||||
"attr": [
|
||||
],
|
||||
"inputs": [
|
||||
{
|
||||
"index": 0,
|
||||
"dtype": [
|
||||
"float16"
|
||||
],
|
||||
"format": [
|
||||
"FracZ"
|
||||
],
|
||||
"name": "x1",
|
||||
"need_compile": false,
|
||||
"param_type": "required",
|
||||
"shape": "all"
|
||||
},
|
||||
{
|
||||
"index": 1,
|
||||
"dtype": [
|
||||
"float16"
|
||||
],
|
||||
"format": [
|
||||
"DefaultFormat"
|
||||
],
|
||||
"name": "x2",
|
||||
"need_compile": false,
|
||||
"param_type": "required",
|
||||
"shape": "all"
|
||||
},
|
||||
{
|
||||
"index": 2,
|
||||
"dtype": [
|
||||
"float32"
|
||||
],
|
||||
"format": [
|
||||
"DefaultFormat"
|
||||
],
|
||||
"name": "x3",
|
||||
"need_compile": false,
|
||||
"param_type": "required",
|
||||
"shape": "all"
|
||||
},
|
||||
{
|
||||
"index": 3,
|
||||
"dtype": [
|
||||
"float16"
|
||||
],
|
||||
"format": [
|
||||
"DefaultFormat"
|
||||
],
|
||||
"name": "x4",
|
||||
"need_compile": false,
|
||||
"param_type": "optional",
|
||||
"shape": "all"
|
||||
}
|
||||
],
|
||||
"outputs": [
|
||||
{
|
||||
"index": 0,
|
||||
"dtype": [
|
||||
"float32"
|
||||
],
|
||||
"format": [
|
||||
"FracZ"
|
||||
],
|
||||
"name": "y",
|
||||
"need_compile": false,
|
||||
"param_type": "required",
|
||||
"shape": "all"
|
||||
}
|
||||
]
|
||||
}""")
|
||||
def CusMatMulCubeFraczRightMul(input_x1, input_x2, input_x3, bias=None, output_y={}, trans_a=False, trans_b=False,
|
||||
kernel_name="matmulcube"):
|
||||
"""CusMatMulCubeFraczRightMul"""
|
||||
return
|
|
@ -0,0 +1,114 @@
|
|||
#!/usr/bin/env python
|
||||
# -*- coding:utf-8 -*-
|
||||
"""
|
||||
copyright 2020 Huawei Technologies Co., Ltd
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License == distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License.
|
||||
|
||||
matmul
|
||||
"""
|
||||
from __future__ import absolute_import
|
||||
|
||||
from mindspore.ops.op_info_register import op_info_register
|
||||
from topi.cce import util
|
||||
|
||||
# General limitation of the size for input shape: 2**31
|
||||
SHAPE_SIZE_LIMIT = 2147483648
|
||||
NoneType = type(None)
|
||||
|
||||
|
||||
@op_info_register("""{
|
||||
"op_name": "CusMatMulCube",
|
||||
"imply_type": "TBE",
|
||||
"fusion_type": "OPAQUE",
|
||||
"async_flag": false,
|
||||
"binfile_name": "matmulcube.so",
|
||||
"compute_cost": 10,
|
||||
"kernel_name": "CusMatMulCube",
|
||||
"partial_flag": true,
|
||||
"attr": [
|
||||
{
|
||||
"name": "transpose_a",
|
||||
"param_type": "required",
|
||||
"type": "bool",
|
||||
"value": "all"
|
||||
},
|
||||
{
|
||||
"name": "transpose_b",
|
||||
"param_type": "required",
|
||||
"type": "bool",
|
||||
"value": "all"
|
||||
}
|
||||
],
|
||||
"inputs": [
|
||||
{
|
||||
"index": 0,
|
||||
"dtype": [
|
||||
"float16"
|
||||
],
|
||||
"format": [
|
||||
"FRACTAL_NZ"
|
||||
],
|
||||
"name": "x1",
|
||||
"need_compile": false,
|
||||
"param_type": "required",
|
||||
"shape": "all"
|
||||
},
|
||||
{
|
||||
"index": 1,
|
||||
"dtype": [
|
||||
"float16"
|
||||
],
|
||||
"format": [
|
||||
"FRACTAL_NZ"
|
||||
],
|
||||
"name": "x2",
|
||||
"need_compile": false,
|
||||
"param_type": "required",
|
||||
"shape": "all"
|
||||
},
|
||||
{
|
||||
"index": 2,
|
||||
"dtype": [
|
||||
"float16"
|
||||
],
|
||||
"format": [
|
||||
"DefaultFormat"
|
||||
],
|
||||
"name": "x3",
|
||||
"need_compile": false,
|
||||
"param_type": "optional",
|
||||
"shape": "all"
|
||||
}
|
||||
],
|
||||
"outputs": [
|
||||
{
|
||||
"index": 0,
|
||||
"dtype": [
|
||||
"float32"
|
||||
],
|
||||
"format": [
|
||||
"FRACTAL_NZ"
|
||||
],
|
||||
"name": "y",
|
||||
"need_compile": false,
|
||||
"param_type": "required",
|
||||
"shape": "all"
|
||||
}
|
||||
]
|
||||
}""")
|
||||
# pylint: disable=locally-disabled,too-many-arguments, too-many-locals, too-many-statements
|
||||
@util.check_input_type(dict, dict, (dict, NoneType), dict, bool, bool, str)
|
||||
def CusMatMulCube(input_x1, input_x2, bias=None, output_y={}, trans_a=False, trans_b=False, kernel_name="matmulcube"):
|
||||
"""CusMatMulCube"""
|
||||
return
|
|
@ -0,0 +1,63 @@
|
|||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
"""CusMatrixCombine"""
|
||||
from mindspore.ops.op_info_register import op_info_register
|
||||
|
||||
|
||||
@op_info_register("""{
|
||||
"op_name": "CusMatrixCombine",
|
||||
"imply_type": "TBE",
|
||||
"fusion_type": "OPAQUE",
|
||||
"async_flag": false,
|
||||
"binfile_name": "matrixcombine.so",
|
||||
"compute_cost": 10,
|
||||
"kernel_name": "CusMatrixCombine",
|
||||
"partial_flag": true,
|
||||
"attr": [
|
||||
],
|
||||
"inputs": [
|
||||
{
|
||||
"index": 0,
|
||||
"dtype": [
|
||||
"float32"
|
||||
],
|
||||
"format": [
|
||||
"DefaultFormat"
|
||||
],
|
||||
"name": "x1",
|
||||
"need_compile": false,
|
||||
"param_type": "required",
|
||||
"shape": "all"
|
||||
}
|
||||
],
|
||||
"outputs": [
|
||||
{
|
||||
"index": 0,
|
||||
"dtype": [
|
||||
"float32"
|
||||
],
|
||||
"format": [
|
||||
"DefaultFormat"
|
||||
],
|
||||
"name": "y",
|
||||
"need_compile": false,
|
||||
"param_type": "required",
|
||||
"shape": "all"
|
||||
}
|
||||
]
|
||||
}""")
|
||||
def CusMatrixCombine(input_x, output, kernel_name="matrix_combine"):
|
||||
"""CusMatrixCombine"""
|
||||
return
|
|
@ -0,0 +1,63 @@
|
|||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
"""CusTranspose02314"""
|
||||
from mindspore.ops.op_info_register import op_info_register
|
||||
|
||||
|
||||
@op_info_register("""{
|
||||
"op_name": "CusTranspose02314",
|
||||
"imply_type": "TBE",
|
||||
"fusion_type": "OPAQUE",
|
||||
"async_flag": false,
|
||||
"binfile_name": "transpose02314.so",
|
||||
"compute_cost": 10,
|
||||
"kernel_name": "CusTranspose02314",
|
||||
"partial_flag": true,
|
||||
"attr": [
|
||||
],
|
||||
"inputs": [
|
||||
{
|
||||
"index": 0,
|
||||
"dtype": [
|
||||
"float16"
|
||||
],
|
||||
"format": [
|
||||
"NC1HWC0"
|
||||
],
|
||||
"name": "x1",
|
||||
"need_compile": false,
|
||||
"param_type": "required",
|
||||
"shape": "all"
|
||||
}
|
||||
],
|
||||
"outputs": [
|
||||
{
|
||||
"index": 0,
|
||||
"dtype": [
|
||||
"float16"
|
||||
],
|
||||
"format": [
|
||||
"DefaultFormat"
|
||||
],
|
||||
"name": "y",
|
||||
"need_compile": false,
|
||||
"param_type": "required",
|
||||
"shape": "all"
|
||||
}
|
||||
]
|
||||
}""")
|
||||
def CusTranspose02314(input_x, output, kernel_name="transpose021354"):
|
||||
"""CusTranspose02314"""
|
||||
return
|
|
@ -0,0 +1,248 @@
|
|||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
"""thor_ops"""
|
||||
import mindspore as ms
|
||||
from mindspore.ops import prim_attr_register, PrimitiveWithInfer
|
||||
from mindspore.ops.composite import multitype_ops as C
|
||||
|
||||
|
||||
class CusBatchMatMul(PrimitiveWithInfer):
|
||||
"""CusMatMulCube definition"""
|
||||
|
||||
@prim_attr_register
|
||||
def __init__(self):
|
||||
"""init CusMatMulCube"""
|
||||
self.init_prim_io_names(inputs=['x1', 'x2'], outputs=['y'])
|
||||
|
||||
def get_bprop(self):
|
||||
def bprop(x1, x2, out, dout):
|
||||
return (C.zeros_like(x1), C.zeros_like(x2))
|
||||
|
||||
return bprop
|
||||
|
||||
def infer_shape(self, data1_shape, data2_shape):
|
||||
return data1_shape
|
||||
|
||||
def infer_dtype(self, data1_dtype, data2_dtype):
|
||||
return data1_dtype
|
||||
|
||||
|
||||
class CusCholeskyTrsm(PrimitiveWithInfer):
|
||||
"""CusCholeskyTrsm definition"""
|
||||
|
||||
@prim_attr_register
|
||||
def __init__(self):
|
||||
"""init CusCholeskyTrsm"""
|
||||
self.init_prim_io_names(inputs=['x1'], outputs=['y'])
|
||||
|
||||
def infer_shape(self, data1_shape):
|
||||
ll = []
|
||||
m, _ = data1_shape
|
||||
if m >= 128:
|
||||
ll = [m // 128, 128, 128]
|
||||
else:
|
||||
ll = [1, 64, 64]
|
||||
return ll
|
||||
|
||||
def infer_dtype(self, data1_dtype):
|
||||
return data1_dtype
|
||||
|
||||
|
||||
class CusFusedAbsMax1(PrimitiveWithInfer):
|
||||
"""CusCholeskyTrsm definition"""
|
||||
|
||||
@prim_attr_register
|
||||
def __init__(self, origin_shape=[-1, -1]):
|
||||
"""init CusCholeskyTrsm"""
|
||||
self.init_prim_io_names(inputs=['x1'], outputs=['y'])
|
||||
self.origin_shape = origin_shape
|
||||
|
||||
def get_bprop(self):
|
||||
def bprop(x, out, dout):
|
||||
return (C.zeros_like(x),)
|
||||
|
||||
return bprop
|
||||
|
||||
def infer_shape(self, data1_shape):
|
||||
ll = []
|
||||
if len(data1_shape) == 2:
|
||||
ll = [1,]
|
||||
else:
|
||||
ll = [32, 64]
|
||||
return ll
|
||||
|
||||
def infer_dtype(self, data1_dtype):
|
||||
return data1_dtype
|
||||
|
||||
|
||||
class CusImg2Col(PrimitiveWithInfer):
|
||||
"""CusImg2Col definition"""
|
||||
|
||||
@prim_attr_register
|
||||
def __init__(self, ksizes, strides, dilates=(1, 1, 1, 1), mode="NC1HWC0"):
|
||||
"""init CusImg2Col"""
|
||||
self.init_prim_io_names(inputs=['x1'], outputs=['y'])
|
||||
self.ksizes = ksizes
|
||||
self.strides = strides
|
||||
self.dilates = dilates
|
||||
self.mode = mode
|
||||
|
||||
def get_bprop(self):
|
||||
def bprop(x, out, dout):
|
||||
return (C.zeros_like(x),)
|
||||
|
||||
return bprop
|
||||
|
||||
def infer_shape(self, data1_shape):
|
||||
bs, c, h, w = data1_shape
|
||||
_, stride_h, stride_w, _ = self.strides
|
||||
_, k_w, k_h, _ = self.ksizes
|
||||
# assert m == n
|
||||
c0 = 16
|
||||
c1 = c // 16
|
||||
if c1 == 0:
|
||||
c1 = 1
|
||||
shape = [bs * int(h // stride_h) * int(w // stride_w), k_w * k_h * c1 * c0]
|
||||
return shape
|
||||
|
||||
def infer_dtype(self, data1_dtype):
|
||||
return data1_dtype
|
||||
|
||||
|
||||
class CusMatMulCubeDenseLeft(PrimitiveWithInfer):
|
||||
"""CusMatMulCube definition"""
|
||||
|
||||
@prim_attr_register
|
||||
def __init__(self):
|
||||
"""init CusMatMulCube"""
|
||||
self.init_prim_io_names(inputs=['x1', 'x2'], outputs=['y'])
|
||||
|
||||
def get_bprop(self):
|
||||
def bprop(x1, x2, out, dout):
|
||||
return (C.zeros_like(x1), C.zeros_like(x2))
|
||||
|
||||
return bprop
|
||||
|
||||
def infer_shape(self, data1_shape, data2_shape):
|
||||
return data2_shape
|
||||
|
||||
def infer_dtype(self, data1_dtype, data2_dtype):
|
||||
return ms.common.dtype.tensor_type(getattr(ms, "float16"))
|
||||
|
||||
|
||||
class CusMatMulCubeFraczRightMul(PrimitiveWithInfer):
|
||||
"""CusMatMulCubeFraczRightMul definition"""
|
||||
|
||||
@prim_attr_register
|
||||
def __init__(self):
|
||||
"""init CusMatMulCubeFraczRightMul"""
|
||||
self.init_prim_io_names(inputs=['x1', 'x2', 'x3'], outputs=['y'])
|
||||
|
||||
def get_bprop(self):
|
||||
def bprop(x1, x2, x3, out, dout):
|
||||
return (C.zeros_like(x1), C.zeros_like(x2), C.zeros_like(x3))
|
||||
|
||||
return bprop
|
||||
|
||||
def infer_shape(self, data1_shape, data2_shape, data3_shape):
|
||||
return data1_shape
|
||||
|
||||
def infer_dtype(self, data1_dtype, data2_dtype, data3_dtype):
|
||||
return ms.common.dtype.tensor_type(getattr(ms, "float32"))
|
||||
|
||||
|
||||
class CusMatMulCube(PrimitiveWithInfer):
|
||||
"""CusMatMulCube definition"""
|
||||
|
||||
@prim_attr_register
|
||||
def __init__(self, transpose_a=False, transpose_b=False):
|
||||
"""init CusMatMulCube"""
|
||||
self.init_prim_io_names(inputs=['x1', 'x2'], outputs=['y'])
|
||||
self.transpose_a = transpose_a
|
||||
self.transpose_b = transpose_b
|
||||
|
||||
def get_bprop(self):
|
||||
def bprop(x1, x2, out, dout):
|
||||
return (C.zeros_like(x1), C.zeros_like(x2))
|
||||
|
||||
return bprop
|
||||
|
||||
def infer_shape(self, data1_shape, data2_shape):
|
||||
# shape = [1, data1_shape[1], data2_shape[2], 16, 16]
|
||||
# return shape
|
||||
if self.transpose_a:
|
||||
k1, m = data1_shape
|
||||
else:
|
||||
m, k1 = data1_shape
|
||||
if self.transpose_b:
|
||||
n, k2 = data2_shape
|
||||
else:
|
||||
k2, n = data2_shape
|
||||
assert k1 == k2
|
||||
shape = [m, n]
|
||||
return shape
|
||||
|
||||
def infer_dtype(self, data1_dtype, data2_dtype):
|
||||
return ms.common.dtype.tensor_type(getattr(ms, "float32"))
|
||||
|
||||
|
||||
class CusMatrixCombine(PrimitiveWithInfer):
|
||||
"""CusMatMulCube definition"""
|
||||
|
||||
@prim_attr_register
|
||||
def __init__(self):
|
||||
"""init CusMatMulCube"""
|
||||
self.init_prim_io_names(inputs=['x'], outputs=['y'])
|
||||
|
||||
def get_bprop(self):
|
||||
def bprop(x, out, dout):
|
||||
return (C.zeros_like(x),)
|
||||
|
||||
return bprop
|
||||
|
||||
def infer_shape(self, data_shape):
|
||||
a, b, c = data_shape
|
||||
shape = [a * b, a * c]
|
||||
|
||||
return shape
|
||||
|
||||
def infer_dtype(self, data_dtype):
|
||||
return data_dtype
|
||||
|
||||
|
||||
class CusTranspose02314(PrimitiveWithInfer):
|
||||
"""CusTranspose02314 definition"""
|
||||
|
||||
@prim_attr_register
|
||||
def __init__(self):
|
||||
"""init CusTranspose02314"""
|
||||
self.init_prim_io_names(inputs=['x1'], outputs=['y'])
|
||||
|
||||
def get_bprop(self):
|
||||
def bprop(x, out, dout):
|
||||
return (C.zeros_like(x),)
|
||||
|
||||
return bprop
|
||||
|
||||
def infer_shape(self, data1_shape):
|
||||
assert len(data1_shape) == 4
|
||||
n, c, h, w = data1_shape
|
||||
c0 = 16
|
||||
c1 = c // 16
|
||||
shape = (n * h * w, c1 * c0)
|
||||
return shape
|
||||
|
||||
def infer_dtype(self, data1_dtype):
|
||||
return data1_dtype
|
Loading…
Reference in New Issue