!6084 MSLITE errorcode return and add reduce parser for caffe,lsh_projection for tflite,fix bugs

Merge pull request !6084 from 徐安越/master
This commit is contained in:
mindspore-ci-bot 2020-09-14 20:22:08 +08:00 committed by Gitee
commit 93e6bb9aca
31 changed files with 575 additions and 150 deletions

View File

@ -687,7 +687,6 @@ build_lite()
if [[ "X$COMPILE_LITE" = "Xon" ]]; then
build_lite
exit
else
build_mindspore
fi

View File

@ -202,6 +202,7 @@ union PrimitiveType {
NegGrad,
LogGrad,
BatchToSpaceND,
LshProjection,
}
enum QuantType: int {

View File

@ -120,6 +120,12 @@ enum PaddingMode : byte {
MODE_RESERVED = 3
}
enum LshProjectionType : byte {
UNKNOWN = 0,
SPARSE = 1,
DENSE = 2
}
table Pad {
paddings: [int];
paddingMode: PaddingMode;
@ -661,7 +667,8 @@ enum ReduceMode : byte {
ReduceMin = 2,
ReduceProd = 3,
ReduceSum = 4,
ReduceSumSquare = 5
ReduceSumSquare = 5,
ReduceASum = 6
}
table Reduce {
@ -785,7 +792,7 @@ table FloorMod {
table L2Norm {
axis: [int];
epsilon: float;
activationType: ActivationType;
activationType: ActivationType = 0;
}
table LogicalAnd {
@ -937,3 +944,7 @@ table BlackBox {
size : int;
address : [ubyte];
}
table LshProjection {
type : LshProjectionType;
}

View File

@ -106,7 +106,7 @@ int AnfExporter::ConvertQuantParam(const std::unique_ptr<schema::MetaGraphT> &me
if (i >= dst_node->inputIndex.size()) {
MS_LOG(ERROR) << "node: " << dst_node->name << " input has " << input_quant_params.size()
<< " quant_params; but only " << dst_node->inputIndex.size() << " input";
break;
return RET_PARAM_INVALID;
}
auto activate_index = dst_node->inputIndex[i];
auto tensor_input = meta_graph->allTensors[activate_index].get();
@ -170,7 +170,7 @@ void AnfExporter::SetGraphInputIndex(const std::unique_ptr<schema::MetaGraphT> &
}
}
void AnfExporter::SetGraphoutputIndex(const CNodePtr &cnode, const std::unique_ptr<schema::MetaGraphT> &meta_graphT,
int AnfExporter::SetGraphoutputIndex(const CNodePtr &cnode, const std::unique_ptr<schema::MetaGraphT> &meta_graphT,
schema::CNodeT *return_node) {
MS_ASSERT(nullptr != meta_graph);
MS_ASSERT(nullptr != return_node);
@ -178,31 +178,34 @@ void AnfExporter::SetGraphoutputIndex(const CNodePtr &cnode, const std::unique_p
auto input_node = cnode->input(i);
if (input_node == nullptr) {
MS_LOG(ERROR) << "output node is nullptr";
return;
return RET_NULL_PTR;
} else if (input_node->isa<CNode>()) {
auto ret = ConvertInputCNode(input_node, return_node);
if (ret != RET_OK) {
MS_LOG(ERROR) << "obtain outputs failed";
return;
return ret;
}
} else {
MS_LOG(ERROR) << "the node " << input_node->fullname_with_scope().c_str() << "is not output node";
return;
return RET_ERROR;
}
}
for (size_t i = 0; i < return_node->inputIndex.size(); ++i) {
meta_graphT->outputIndex.push_back(return_node->inputIndex[i]);
}
return RET_OK;
}
schema::MetaGraphT *AnfExporter::Export(const FuncGraphPtr &func_graph, bool keep_graph) {
auto cnodes = func_graph->GetOrderedCnodes();
auto meta_graphT = std::make_unique<schema::MetaGraphT>();
int ret = RET_OK;
for (const auto &cnode : cnodes) {
auto primitive_c = GetValueNode<std::shared_ptr<PrimitiveC>>(cnode->input(0));
if (primitive_c == nullptr) {
MS_LOG(ERROR) << "primitive_c is nullptr";
return nullptr;
ret = RET_MEMORY_FAILED;
break;
}
if (primitive_c->Type() == schema::PrimitiveType_TupleGetItem ||
primitive_c->Type() == schema::PrimitiveType_MakeTuple ||
@ -216,32 +219,41 @@ schema::MetaGraphT *AnfExporter::Export(const FuncGraphPtr &func_graph, bool kee
auto node = std::make_unique<schema::CNodeT>();
if (node == nullptr) {
MS_LOG(ERROR) << "object failed to be constructed";
return nullptr;
ret = RET_MEMORY_FAILED;
break;
}
if (primT->value.type == schema::PrimitiveType_Return) {
node->name = "return_node";
SetGraphoutputIndex(cnode, meta_graphT, node.get());
ret = SetGraphoutputIndex(cnode, meta_graphT, node.get());
if (ret != RET_OK) {
MS_LOG(ERROR) << "SetOpOutputN failed";
break;
}
continue;
}
node->nodeType = schema::NodeType_CNode;
node->name = cnode->fullname_with_scope();
node->primitive = std::unique_ptr<schema::PrimitiveT>(primT);
auto ret = SetOpInputNode(cnode, meta_graphT, node.get());
ret = SetOpInputNode(cnode, meta_graphT, node.get());
if (ret != RET_OK) {
MS_LOG(ERROR) << "SetOpInputNode failed";
return nullptr;
break;
}
SetOpOutputNode(cnode, meta_graphT, node.get());
ret = ConvertQuantParam(meta_graphT, primitive_c, node);
if (ret != RET_OK) {
MS_LOG(ERROR) << "ConvertQuantParam failed";
return nullptr;
break;
}
if (!keep_graph) {
primitive_c->ClearPrimitiveT();
}
meta_graphT->nodes.emplace_back(std::move(node));
}
if (ret != RET_OK) {
ReturnCode::GetSingleReturnCode()->UpdateReturnCode(ret);
return nullptr;
}
// set graph input tensors
SetGraphInputIndex(meta_graphT);
return meta_graphT.release();
@ -297,11 +309,11 @@ int AnfExporter::ConvertInputParameter(const std::shared_ptr<AnfNode> input_anod
auto abstractBase = paramNode->abstract();
if (abstractBase == nullptr) {
MS_LOG(ERROR) << "Abstract of parameter is nullptr, " << paramNode->name();
return RET_ERROR;
return RET_PARAM_INVALID;
}
if (!utils::isa<abstract::AbstractTensorPtr>(abstractBase)) {
MS_LOG(ERROR) << "Abstract of parameter should be anstract tensor, " << paramNode->name();
return RET_ERROR;
return RET_INPUT_TENSOR_ERROR;
}
auto abstractTensor = utils::cast<abstract::AbstractTensorPtr>(abstractBase);
auto typePtr = abstractTensor->element()->GetTypeTrack();
@ -309,7 +321,7 @@ int AnfExporter::ConvertInputParameter(const std::shared_ptr<AnfNode> input_anod
paramTensor->dataType = typePtr->type_id();
if (!utils::isa<abstract::ShapePtr>(abstractTensor->BuildShape())) {
MS_LOG(ERROR) << "Shape of Abstract of parameter should be ShapePtr, " << paramNode->name();
return RET_ERROR;
return RET_PARAM_INVALID;
}
paramTensor->dims = utils::cast<abstract::ShapePtr>(abstractTensor->BuildShape())->shape();
auto paramValue = std::dynamic_pointer_cast<ParamValueLite>(paramNode->default_param());
@ -431,13 +443,13 @@ int AnfExporter::SetOpInputNode(const CNodePtr &cnode, const std::unique_ptr<sch
auto ret = ConvertInputCNode(input_node, fb_node);
if (ret != RET_OK) {
MS_LOG(ERROR) << "ConvertInputCNode failed";
return RET_ERROR;
return ret;
}
} else if (input_node->isa<Parameter>()) {
auto ret = ConvertInputParameter(input_node, meta_graphT, fb_node);
if (ret != RET_OK) {
MS_LOG(ERROR) << "ConvertInputParameter failed";
return RET_ERROR;
return ret;
}
if (!input_node->cast<ParameterPtr>()->has_default()) {
is_graph_input = true;

View File

@ -24,6 +24,7 @@
#include "schema/inner/model_generated.h"
#include "src/ops/primitive_c.h"
#include "ir/func_graph.h"
#include "tools/converter/return_code.h"
namespace mindspore::lite {
class AnfExporter {
@ -45,7 +46,7 @@ class AnfExporter {
int ConvertInputValueNode(std::shared_ptr<AnfNode> input_anode,
const std::unique_ptr<schema::MetaGraphT> &meta_graphT, schema::CNodeT *output_cnode);
void SetGraphInputIndex(const std::unique_ptr<schema::MetaGraphT> &meta_graphT);
void SetGraphoutputIndex(const CNodePtr &cnode, const std::unique_ptr<schema::MetaGraphT> &meta_graphT,
int SetGraphoutputIndex(const CNodePtr &cnode, const std::unique_ptr<schema::MetaGraphT> &meta_graphT,
schema::CNodeT *return_node);
bool IsPrimitiveCNode(const AnfNodePtr &node, schema::PrimitiveType type);
int ConvertQuantParam(const std::unique_ptr<schema::MetaGraphT> &meta_graph,

View File

@ -54,7 +54,7 @@ int AnfImporterFromMetaGraphT::ConverterConstTensor() {
char *tensor_data = new (std::nothrow) char[size];
if (tensor_data == nullptr) {
MS_LOG(ERROR) << "new char[] failed";
return RET_ERROR;
return RET_MEMORY_FAILED;
}
std::memcpy(tensor_data, tensor->data.data(), size);
param_value->set_tensor_addr(tensor_data);
@ -128,7 +128,7 @@ int AnfImporterFromMetaGraphT::ConvertAbstract(const std::unique_ptr<schema::CNo
auto tuple_get_item_prim_ptr = GetTupleGetItemPrim();
if (tuple_get_item_prim_ptr == nullptr) {
MS_LOG(ERROR) << "GetTupleGetItemPrim return nullptr";
return RET_ERROR;
return RET_NULL_PTR;
}
auto tuple_get_item_prim = NewValueNode(tuple_get_item_prim_ptr);
auto get_item_value = NewValueNode(MakeValue<int>(i));
@ -153,16 +153,16 @@ int AnfImporterFromMetaGraphT::ConverterCNode() {
auto node = GetNode(j);
if (nullptr == node) {
MS_LOG(ERROR) << "Can't find input node.";
return RET_ERROR;
return RET_NOT_FIND_OP;
}
op_inputs.push_back(node);
}
auto new_cnode = func_graph_->NewCNode(op_inputs);
new_cnode->set_fullname_with_scope(cNode->name);
auto ret = ConvertAbstract(cNode, new_cnode);
if (ret != RET_OK) {
auto status = ConvertAbstract(cNode, new_cnode);
if (status != RET_OK) {
MS_LOG(ERROR) << "ConvertAbstract failed.";
return RET_ERROR;
return status;
}
}
return RET_OK;
@ -176,7 +176,7 @@ int AnfImporterFromMetaGraphT::AddReturnCNode() {
auto make_tuple_prim_ptr = GetMakeTuplePrim();
if (make_tuple_prim_ptr == nullptr) {
MS_LOG(ERROR) << "GetMakeTuplePrim return nullptr";
return RET_ERROR;
return RET_NULL_PTR;
}
auto make_tuple_prim = NewValueNode(make_tuple_prim_ptr);
make_tuple_inputs.emplace_back(make_tuple_prim);
@ -184,7 +184,7 @@ int AnfImporterFromMetaGraphT::AddReturnCNode() {
auto cNode = GetNode(tensor_id);
if (nullptr == cNode) {
MS_LOG(ERROR) << "Can't find input node.";
return RET_ERROR;
return RET_NOT_FIND_OP;
}
make_tuple_inputs.emplace_back(cNode);
}
@ -195,7 +195,7 @@ int AnfImporterFromMetaGraphT::AddReturnCNode() {
auto return_prim_ptr = GetReturnPrim();
if (return_prim_ptr == nullptr) {
MS_LOG(ERROR) << "GetReturnPrim return nullptr";
return RET_ERROR;
return RET_NULL_PTR;
}
auto value_node = NewValueNode(return_prim_ptr);
op_inputs.emplace_back(value_node);
@ -207,14 +207,14 @@ int AnfImporterFromMetaGraphT::AddReturnCNode() {
auto return_prim_ptr = GetReturnPrim();
if (return_prim_ptr == nullptr) {
MS_LOG(ERROR) << "GetReturnPrim return nullptr";
return RET_ERROR;
return RET_NULL_PTR;
}
auto value_node = NewValueNode(return_prim_ptr);
std::vector<AnfNodePtr> op_inputs{value_node};
auto cnode = GetNode(meta_graph_->outputIndex.front());
if (nullptr == cnode) {
MS_LOG(ERROR) << "Can't find input node.";
return RET_ERROR;
return RET_NOT_FIND_OP;
}
op_inputs.emplace_back(cnode);
auto return_cnode = func_graph_->NewCNode(op_inputs);

View File

@ -201,23 +201,23 @@ PARSE_ONNXATTR_IN_SCALAR_FORM(int32, bool)
PARSE_ONNXATTR_IN_SCALAR_FORM(int64, int64)
PARSE_ONNXATTR_IN_SCALAR_FORM(uint64, uint64)
bool AnfImporterFromProtobuf::BuildParameterForFuncGraph(const ParameterPtr &node,
int AnfImporterFromProtobuf::BuildParameterForFuncGraph(const ParameterPtr &node,
const onnx::ValueInfoProto &value_proto) {
MS_EXCEPTION_IF_NULL(node);
if (!value_proto.has_type() || !value_proto.has_name()) {
MS_LOG(ERROR) << "onnx ValueInfoProto has no type or name! ";
return false;
return RET_PARAM_INVALID;
}
node->set_name(value_proto.name());
const auto &type_proto = value_proto.type();
if (!type_proto.has_tensor_type()) {
MS_LOG(ERROR) << "onnx TypeProto has no tesor_type! ";
return false;
return RET_PARAM_INVALID;
}
const onnx::TypeProto_Tensor &tensor_typeproto = type_proto.tensor_type();
if (!tensor_typeproto.has_elem_type() || !tensor_typeproto.has_shape()) {
MS_LOG(ERROR) << "onnx TypeProto_Tensor has no elem_type or shape! ";
return false;
return RET_INPUT_TENSOR_ERROR;
}
const onnx::TensorShapeProto &tensor_shape = tensor_typeproto.shape();
std::vector<int> shape;
@ -227,7 +227,7 @@ bool AnfImporterFromProtobuf::BuildParameterForFuncGraph(const ParameterPtr &nod
if (kDefaultValueSwitchMap.find(tensor_typeproto.elem_type()) == kDefaultValueSwitchMap.end()) {
MS_LOG(ERROR) << "onnx TypeProto_Tensor elem_type is not support yet!";
return false;
return RET_PARAM_INVALID;
}
auto type_ptr = TypeIdToType(kDefaultValueSwitchMap[tensor_typeproto.elem_type()]);
@ -248,7 +248,7 @@ bool AnfImporterFromProtobuf::BuildParameterForFuncGraph(const ParameterPtr &nod
MS_LOG(ERROR) << "memcpy_s error";
delete tensor_data_buf;
delete tensor_info;
return false;
return RET_MEMORY_FAILED;
}
ParamValueLitePtr param_value = std::make_shared<ParamValueLite>();
@ -261,10 +261,10 @@ bool AnfImporterFromProtobuf::BuildParameterForFuncGraph(const ParameterPtr &nod
delete tensor_info;
}
anfnode_build_map_[value_proto.name()] = node;
return true;
return RET_OK;
}
bool AnfImporterFromProtobuf::ImportParametersForGraph(const FuncGraphPtr &outputFuncGraph,
int AnfImporterFromProtobuf::ImportParametersForGraph(const FuncGraphPtr &outputFuncGraph,
const onnx::GraphProto &importProto) {
MS_EXCEPTION_IF_NULL(outputFuncGraph);
MS_LOG(INFO) << "Parameters had default paramerer size is: " << importProto.initializer_size();
@ -273,20 +273,22 @@ bool AnfImporterFromProtobuf::ImportParametersForGraph(const FuncGraphPtr &outpu
const onnx::TensorProto &initializer_proto = importProto.initializer(i);
if (!initializer_proto.has_name()) {
MS_LOG(ERROR) << "initializer vector of onnx GraphProto has no name at index: " << i;
return false;
return RET_PARAM_INVALID;
}
default_para_map_[initializer_proto.name()] = initializer_proto;
}
int status = RET_OK;
MS_LOG(INFO) << "all parameters size: " << importProto.input_size();
for (int i = 0; i < importProto.input_size(); ++i) {
const onnx::ValueInfoProto &input_proto = importProto.input(i);
if (!BuildParameterForFuncGraph(outputFuncGraph->add_parameter(), input_proto)) {
status = BuildParameterForFuncGraph(outputFuncGraph->add_parameter(), input_proto);
if (status != RET_OK) {
MS_LOG(ERROR) << "Build parameter for funcgraph fail at index: " << i;
return false;
break;
}
}
return true;
return status;
}
bool AnfImporterFromProtobuf::ObtainCNodeAttrInTypeForm(const PrimitivePtr &prim, const std::string &attr_name,
@ -662,7 +664,7 @@ bool AnfImporterFromProtobuf::BuildReturnForFuncGraph(const FuncGraphPtr &output
return true;
}
bool AnfImporterFromProtobuf::ImportNodesForGraph(const FuncGraphPtr &outputFuncGraph,
int AnfImporterFromProtobuf::ImportNodesForGraph(const FuncGraphPtr &outputFuncGraph,
const onnx::GraphProto &importProto,
const schema::QuantType &quantType) {
MS_EXCEPTION_IF_NULL(outputFuncGraph);
@ -674,22 +676,25 @@ bool AnfImporterFromProtobuf::ImportNodesForGraph(const FuncGraphPtr &outputFunc
if (node_type == kConstantValueNode) {
if (!BuildValueNodeForFuncGraph(node_proto)) {
MS_LOG(ERROR) << "Build ValueNode for funcgraph fail at index: : " << i;
return false;
return RET_ERROR;
}
continue;
}
cnode_ptr = BuildCNodeForFuncGraph(outputFuncGraph, node_proto, quantType);
if (cnode_ptr == nullptr) {
MS_LOG(ERROR) << "Build CNode for funcgraph fail at index: : " << i;
return false;
return RET_NULL_PTR;
}
}
BuildReturnForFuncGraph(outputFuncGraph, importProto, cnode_ptr);
return true;
if (!BuildReturnForFuncGraph(outputFuncGraph, importProto, cnode_ptr)) {
MS_LOG(ERROR) << "Build ReturnNode for funcgraph failed";
return RET_ERROR;
}
return RET_OK;
}
bool AnfImporterFromProtobuf::BuildFuncGraph(const FuncGraphPtr &outputFuncGraph, const onnx::GraphProto &importProto,
int AnfImporterFromProtobuf::BuildFuncGraph(const FuncGraphPtr &outputFuncGraph, const onnx::GraphProto &importProto,
const schema::QuantType &quantType) {
MS_EXCEPTION_IF_NULL(outputFuncGraph);
GraphDebugInfoPtr debug_info_ptr = outputFuncGraph->debug_info();
@ -697,47 +702,51 @@ bool AnfImporterFromProtobuf::BuildFuncGraph(const FuncGraphPtr &outputFuncGraph
if (importProto.has_name()) {
debug_info_ptr->set_name(importProto.name());
} else {
MS_LOG(ERROR) << "FuncGraph under converting has not name!";
MS_LOG(INFO) << "FuncGraph under converting has not name!";
}
if (!ImportParametersForGraph(outputFuncGraph, importProto)) {
return false;
auto status = ImportParametersForGraph(outputFuncGraph, importProto);
if (status != RET_OK) {
return status;
}
return ImportNodesForGraph(outputFuncGraph, importProto, quantType);
}
bool AnfImporterFromProtobuf::ParseModelConfigureInfo(const onnx::ModelProto &model_proto) {
int AnfImporterFromProtobuf::ParseModelConfigureInfo(const onnx::ModelProto &model_proto) {
if (!model_proto.has_producer_name()) {
MS_LOG(ERROR) << "Parse model producer name from pb file failed!";
return false;
return RET_GRAPH_FILE_ERR;
}
producer_name_ = model_proto.producer_name();
if (!model_proto.has_model_version()) {
MS_LOG(ERROR) << "Parse model producer version from pb file failed!";
return false;
return RET_GRAPH_FILE_ERR;
}
model_version_ = model_proto.model_version();
if (!model_proto.has_ir_version()) {
MS_LOG(ERROR) << "Parse model version from pb file failed!";
return false;
return RET_GRAPH_FILE_ERR;
}
ir_version_ = model_proto.ir_version();
return true;
return RET_OK;
}
int AnfImporterFromProtobuf::Import(const schema::QuantType &quantType) {
FuncGraphPtr dstGraph = std::make_shared<mindspore::FuncGraph>();
MS_EXCEPTION_IF_NULL(dstGraph);
if (!ParseModelConfigureInfo(*onnx_model_)) {
int status = ParseModelConfigureInfo(*onnx_model_);
if (status != RET_OK) {
MS_LOG(ERROR) << "Parse configuration info for pb file failed!";
return status;
}
const onnx::GraphProto &graphBuild = onnx_model_->graph();
if (!BuildFuncGraph(dstGraph, graphBuild, quantType)) {
status = BuildFuncGraph(dstGraph, graphBuild, quantType);
if (status != RET_OK) {
MS_LOG(ERROR) << "Build funcgraph failed!";
func_graph_ = nullptr;
return RET_ERROR;
return status;
}
func_graph_ = dstGraph;
MS_LOG(INFO) << "Parse pb to build FuncGraph Success!";

View File

@ -45,13 +45,13 @@ class AnfImporterFromProtobuf : public AnfImporter {
int ConverterConstTensor() override { return RET_ERROR; };
int ConverterCNode() override { return RET_ERROR; };
int AddReturnCNode() override { return RET_ERROR; };
bool ParseModelConfigureInfo(const onnx::ModelProto &model_proto);
bool BuildFuncGraph(const FuncGraphPtr &outputFuncGraph, const onnx::GraphProto &importProto,
int ParseModelConfigureInfo(const onnx::ModelProto &model_proto);
int BuildFuncGraph(const FuncGraphPtr &outputFuncGraph, const onnx::GraphProto &importProto,
const schema::QuantType &quantType);
bool ImportParametersForGraph(const FuncGraphPtr &outputFuncGraph, const onnx::GraphProto &importProto);
bool ImportNodesForGraph(const FuncGraphPtr &outputFuncGraph, const onnx::GraphProto &importProto,
int ImportParametersForGraph(const FuncGraphPtr &outputFuncGraph, const onnx::GraphProto &importProto);
int ImportNodesForGraph(const FuncGraphPtr &outputFuncGraph, const onnx::GraphProto &importProto,
const schema::QuantType &quantType);
bool BuildParameterForFuncGraph(const ParameterPtr &node, const onnx::ValueInfoProto &value_proto);
int BuildParameterForFuncGraph(const ParameterPtr &node, const onnx::ValueInfoProto &value_proto);
CNodePtr BuildCNodeForFuncGraph(const FuncGraphPtr &outputFuncGraph, const onnx::NodeProto &node_proto,
const schema::QuantType &quantType);
bool BuildReturnForFuncGraph(const FuncGraphPtr &outputFuncGraph, const onnx::GraphProto &importProto,

View File

@ -61,25 +61,31 @@ FuncGraphPtr AnfTransform::Transform(const FuncGraphPtr &old_graph, const conver
pm->AddPass(std::make_shared<opt::ConstFoldPass>());
optimizer->AddPassManager(pm);
FuncGraphPtr new_graph = optimizer->Optimize(old_graph);
if (new_graph == nullptr) {
ReturnCode::GetSingleReturnCode()->UpdateReturnCode(RET_NULL_PTR);
return nullptr;
}
// quant
if (config != nullptr) {
if (config->quantType == schema::QuantType_PostTraining) {
this->mQuantizer = std::make_unique<quant::PostTrainingQuantizer>(new_graph, config->configFile, 8);
if (mQuantizer == nullptr) {
MS_LOG(ERROR) << "New PostTrainingQuantizer failed";
ReturnCode::GetSingleReturnCode()->UpdateReturnCode(RET_MEMORY_FAILED);
return nullptr;
}
} else if (config->quantType == schema::QuantType_WeightQuant) {
auto bitNum = static_cast<size_t>(std::stoull(config->bitNum));
if (bitNum != quant::UINT8_QUANTIZATION) {
MS_LOG(ERROR) << "Current Only Support 8 bit weight quant";
ReturnCode::GetSingleReturnCode()->UpdateReturnCode(RET_ERROR);
return nullptr;
}
this->mQuantizer = std::make_unique<quant::WeightQuantizer>(
new_graph, config->quantSize, config->convWeightQuantChannelThreshold, config->bitNum);
if (mQuantizer == nullptr) {
MS_LOG(ERROR) << "New WeightQuantizer failed";
ReturnCode::GetSingleReturnCode()->UpdateReturnCode(RET_MEMORY_FAILED);
return nullptr;
}
}
@ -89,6 +95,7 @@ FuncGraphPtr AnfTransform::Transform(const FuncGraphPtr &old_graph, const conver
auto status = mQuantizer->DoQuantize(new_graph);
if (status != RET_OK) {
MS_LOG(ERROR) << "Quant failed " << status;
ReturnCode::GetSingleReturnCode()->UpdateReturnCode(status);
return nullptr;
}
if (config->quantType == schema::QuantType_PostTraining) {
@ -97,6 +104,7 @@ FuncGraphPtr AnfTransform::Transform(const FuncGraphPtr &old_graph, const conver
status = quant_cast.Run(new_graph);
if (status != RET_OK) {
MS_LOG(ERROR) << "add QuantCast error";
ReturnCode::GetSingleReturnCode()->UpdateReturnCode(status);
return nullptr;
}
}

View File

@ -23,6 +23,7 @@
#include "tools/converter/converter_flags.h"
#include "ir/anf.h"
#include "tools/converter/quantizer/quantizer.h"
#include "tools/converter/return_code.h"
namespace mindspore {
namespace lite {

View File

@ -66,6 +66,8 @@ MetaGraphT *Converter::Convert(const converter::Flags *flag) {
if (flag->fmk == converter::FmkType_MS) {
MS_ASSERT(nullptr != modelImporter);
modelImporter->Import(flag->quantType);
int status = modelImporter->Import(flag->quantType);
ReturnCode::GetSingleReturnCode()->UpdateReturnCode(status);
graph = modelImporter->GetResult();
} else {
MS_ASSERT(nullptr != modelParser);
@ -94,8 +96,9 @@ MetaGraphT *Converter::Convert(const converter::Flags *flag) {
transform->SetGraphDef(meta_graph);
transform->CreateQuantizer(flag);
auto status = transform->Transform(*flag);
if (status != 0) {
if (status != RET_OK) {
MS_LOG(ERROR) << "Transform meta graph failed " << status;
ReturnCode::GetSingleReturnCode()->UpdateReturnCode(status);
return nullptr;
}
@ -106,15 +109,16 @@ int RunConverter(int argc, const char **argv) {
std::unique_ptr<converter::Flags> flags(new (std::nothrow) converter::Flags);
if (flags == nullptr) {
MS_LOG(ERROR) << "new flags error ";
return RET_ERROR;
return RET_MEMORY_FAILED;
}
auto status = flags->Init(argc, argv);
if (status == RET_SUCCESS_EXIT) {
return 0;
return status;
}
if (status != 0) {
MS_LOG(ERROR) << "converter::Flags Init failed: " << status;
return 1;
std::cout << "CONVERTER::FLAGS INIT FAILED" << std::endl;
return status;
}
// Load graph
std::string modelName = flags->modelFile.substr(flags->modelFile.find_last_of(DELIM_SLASH) + 1);
@ -147,9 +151,11 @@ int RunConverter(int argc, const char **argv) {
return 1;
}
}
status = ReturnCode::GetSingleReturnCode()->GetReturnCode();
if (fb_graph == nullptr) {
MS_LOG(ERROR) << "Convert model return nullptr";
return 1;
std::cout << "CONVERT RESULT: FAILED!" << std::endl;
return status;
}
// save graph to file
@ -158,13 +164,14 @@ int RunConverter(int argc, const char **argv) {
status = storage.Save(*fb_graph, flags->outputFile);
if (status != 0) {
MS_LOG(ERROR) << "Save graph failed";
return 1;
std::cout << "SAVE GRAPH FAILED!" << std::endl;
return RET_ERROR;
}
delete fb_graph;
MS_LOG(INFO) << "CONVERT RESULT: SUCCESS!";
return 0;
std::cout << "CONVERT RESULT: SUCCESS!" << std::endl;
return RET_OK;
}
} // namespace lite
} // namespace mindspore

View File

@ -25,6 +25,7 @@
#include "tools/anf_importer/anf_importer.h"
#include "tools/converter/converter_flags.h"
#include "tools/converter/anf_transform.h"
#include "tools/converter/return_code.h"
namespace mindspore {
namespace lite {

View File

@ -120,6 +120,7 @@ int GraphDefTransform::Transform(const converter::Flags &ctx) {
status = mQuantizer->DetermineNodeQuantType();
if (status != RET_OK) {
MS_LOG(ERROR) << "DetermineNodeQuant failed";
return status;
}
}
}
@ -142,7 +143,7 @@ int GraphDefTransform::Transform(const converter::Flags &ctx) {
auto formatTransPass = new (std::nothrow) FormatTransPass();
if (formatTransPass == nullptr) {
MS_LOG(ERROR) << "new formatTransPass failed";
return RET_ERROR;
return RET_MEMORY_FAILED;
}
formatTransPass->SetQuantType(ctx.quantType);
formatTransPass->SetFmk(ctx.fmk);
@ -154,7 +155,7 @@ int GraphDefTransform::Transform(const converter::Flags &ctx) {
formatTransOptimizer.AddPass(new (std::nothrow) FormatTransFusionPass());
formatTransOptimizer.AddPass(new (std::nothrow) IsolatedNodeRemovePass());
status = formatTransOptimizer.Run(graphDefT);
if (status != RET_OK && status != RET_NO_CHANGE && status != RET_INFER_ERR) {
if (status != RET_OK && status != RET_NO_CHANGE && status != RET_INFER_INVALID) {
MS_LOG(ERROR) << "Run formatTransOptimizer graphPasses Failed";
return status;
}
@ -196,7 +197,7 @@ int GraphDefTransform::Transform(const converter::Flags &ctx) {
auto dTypeTransPass = new (std::nothrow) DTypeTransPass();
if (dTypeTransPass == nullptr) {
MS_LOG(ERROR) << "new dTypeTransPass failed";
return RET_ERROR;
return RET_MEMORY_FAILED;
}
dTypeTransPass->SetInputDataDType(ctx.inputInferenceType);
dTypeTransPass->SetOutputDataDType(ctx.inferenceType);

View File

@ -117,6 +117,13 @@ STATUS InferShapePass::Run(MetaGraphT *graph) {
if (ret == RET_INFER_INVALID) {
MS_LOG(INFO) << "InferShape shouldn't be done before runtime, name: " << node->name
<< ", type: " << schema::EnumNamePrimitiveType(node->primitive->value.type) << "flag set to false.";
for (auto input_tensor : input_tensors) {
delete input_tensor;
}
for (auto output_tensor : output_tensors) {
delete output_tensor;
}
return RET_INFER_INVALID;
} else if (ret != RET_OK) {
MS_LOG(WARNING) << "InferShape failed, name: " << node->name
<< ", type: " << schema::EnumNamePrimitiveType(node->primitive->value.type);

View File

@ -22,7 +22,7 @@
#include "schema/inner/model_generated.h"
#include "tools/anf_importer/import_from_meta_graphT.h"
#include "ir/anf.h"
#include "include/errorcode.h"
#include "tools/converter/return_code.h"
namespace mindspore::lite {
using namespace schema;
@ -35,8 +35,12 @@ class ModelParser {
FuncGraphPtr Parse(const std::string &modelFile, const std::string &weightFile,
const QuantType &quantType = QuantType_QUANT_NONE) {
auto *meta_graph = ParseToFb(modelFile, weightFile, quantType);
if (meta_graph == nullptr) {
MS_LOG(ERROR) << "parse model to fb failed";
return nullptr;
}
auto func_graph = this->Fb2Anf(meta_graph);
delete (meta_graph);
delete(meta_graph);
return func_graph;
}
@ -48,9 +52,10 @@ class ModelParser {
MS_EXCEPTION_IF_NULL(meta_graph);
auto func_graph = std::make_shared<FuncGraph>();
AnfImporterFromMetaGraphT importer(meta_graph, func_graph);
auto ret = importer.Import();
if (RET_OK != ret) {
MS_LOG(ERROR) << "Import anf_graph from meta_graphT failed, ret: " << ret;
auto status = importer.Import();
if (RET_OK != status) {
MS_LOG(ERROR) << "Import anf_graph from meta_graphT failed, ret: " << status;
ReturnCode::GetSingleReturnCode()->UpdateReturnCode(status);
return nullptr;
}
return func_graph;

View File

@ -52,7 +52,7 @@ STATUS Optimizer::Run(schema::MetaGraphT *graphDefT) {
for (auto &opDef : graphDefT->nodes) {
for (auto pass : this->nodePasses) {
status = pass->Run(new GraphNode(graphDefT, opDef.get()));
if (status != RET_OK && status != RET_NO_CHANGE && status != RET_INFER_ERR) {
if (status != RET_OK && status != RET_NO_CHANGE && status != RET_INFER_INVALID) {
MS_LOG(ERROR) << "Run NodePass failed";
return status;
} else {
@ -65,7 +65,7 @@ STATUS Optimizer::Run(schema::MetaGraphT *graphDefT) {
for (auto pass : this->graphPasses) {
status = pass->Run(graphDefT);
if (status != RET_OK && status != RET_NO_CHANGE && status != RET_INFER_ERR) {
if (status != RET_OK && status != RET_NO_CHANGE && status != RET_INFER_INVALID) {
MS_LOG(ERROR) << "Run GraphPass failed";
return status;
} else {

View File

@ -31,4 +31,5 @@ add_library(caffe_parser_mid OBJECT
${CMAKE_CURRENT_SOURCE_DIR}/caffe_tanh_parser.cc
${CMAKE_CURRENT_SOURCE_DIR}/caffe_exp_parser.cc
${CMAKE_CURRENT_SOURCE_DIR}/caffe_slice_parser.cc
${CMAKE_CURRENT_SOURCE_DIR}/caffe_reduce_parser.cc
)

View File

@ -38,7 +38,16 @@ STATUS CaffeArgMaxParser::Parse(const caffe::LayerParameter &proto, const caffe:
return RET_NULL_PTR;
}
// set default params
attr->outMaxValue = false;
attr->topK = 1;
const caffe::ArgMaxParameter argmaxParam = proto.argmax_param();
if (argmaxParam.has_out_max_val()) {
attr->outMaxValue = argmaxParam.out_max_val();
}
if (argmaxParam.has_top_k()) {
attr->topK = argmaxParam.top_k();
}
int32_t axisType;
int32_t axis = 0;
if (!argmaxParam.has_axis()) {
@ -46,15 +55,9 @@ STATUS CaffeArgMaxParser::Parse(const caffe::LayerParameter &proto, const caffe:
} else {
axisType = 1;
axis = (int64_t)argmaxParam.axis();
if (axis == -1) {
MS_LOG(ERROR) << "axis with -1 may lead to calculation errors when input less than 4 dims.";
return RET_ERROR;
}
}
attr->axis = axis;
attr->axisType = axisType;
attr->outMaxValue = argmaxParam.out_max_val();
attr->topK = argmaxParam.top_k();
attr->keepDims = true;
op->name = proto.name();

View File

@ -33,18 +33,23 @@ const std::set<std::string> CaffeModelParser::skipedLayerType = {"Dropout"};
schema::MetaGraphT *CaffeModelParser::ParseToFb(const std::string &modelFile, const std::string &weightFile,
const QuantType &quantType) {
if (ValidateFileStr(modelFile, ".prototxt") != RET_OK) {
int status = ValidateFileStr(modelFile, ".prototxt");
if (status != RET_OK) {
MS_LOG(ERROR) << "INPUT ILLEGAL: modelFile must be *.prototxt";
ReturnCode::GetSingleReturnCode()->UpdateReturnCode(status);
return nullptr;
}
if (weightFile.empty()) {
MS_LOG(ERROR) << "INPUT MISSING: weightFile is necessary";
ReturnCode::GetSingleReturnCode()->UpdateReturnCode(RET_GRAPH_FILE_ERR);
return nullptr;
}
if (ValidateFileStr(weightFile, ".caffemodel") != RET_OK) {
status = ValidateFileStr(weightFile, ".caffemodel");
if (status != RET_OK) {
MS_LOG(ERROR) << "INPUT ILLEGAL: weightFile must be *.caffemodel";
ReturnCode::GetSingleReturnCode()->UpdateReturnCode(status);
return nullptr;
}
@ -52,33 +57,40 @@ schema::MetaGraphT *CaffeModelParser::ParseToFb(const std::string &modelFile, co
TensorCache tensorCache;
caffe::NetParameter proto;
if (ReadProtoFromText((const char *)modelFile.c_str(), &proto) != RET_OK) {
status = ReadProtoFromText((const char *)modelFile.c_str(), &proto);
if (status != RET_OK) {
MS_LOG(ERROR) << "Read prototxt file failed, model path: " << modelFile;
ReturnCode::GetSingleReturnCode()->UpdateReturnCode(status);
return nullptr;
}
metaGraph->name = proto.name();
caffe::NetParameter weight;
if (ReadProtoFromBinaryFile((const char *)weightFile.c_str(), &weight) != RET_OK) {
status = ReadProtoFromBinaryFile((const char *)weightFile.c_str(), &weight);
if (status != RET_OK) {
MS_LOG(ERROR) << "Read caffemodel file failed, model path: " << weightFile;
ReturnCode::GetSingleReturnCode()->UpdateReturnCode(status);
return nullptr;
}
auto status = GetModelInput(proto, &tensorCache);
status = GetModelInput(proto, &tensorCache);
if (status != RET_OK) {
MS_LOG(ERROR) << "GetModelInput failed " << status;
ReturnCode::GetSingleReturnCode()->UpdateReturnCode(status);
return nullptr;
}
status = ParseLayer(proto, weight, &tensorCache, metaGraph.get());
if (status != RET_OK) {
MS_LOG(ERROR) << "ParseLayer failed " << status;
ReturnCode::GetSingleReturnCode()->UpdateReturnCode(status);
return nullptr;
}
status = SetGraphTensorIndex(proto, &tensorCache, metaGraph.get());
if (status != RET_OK) {
MS_LOG(ERROR) << "Set inputTensor index and outputTensor index for graph failed!";
ReturnCode::GetSingleReturnCode()->UpdateReturnCode(status);
return nullptr;
}
metaGraph->name = GetModelName(modelFile);
@ -148,7 +160,12 @@ STATUS CaffeModelParser::SetGraphTensorIndex(const caffe::NetParameter &proto, T
}
for (auto iter : caffeInspector.GetGraphOutput()) {
int index = tensorCache->FindTensor(iter);
int index = -1;
if (splitLayer.find(iter) != splitLayer.end()) {
index = tensorCache->FindTensor(splitLayer.find(iter)->second);
} else {
index = tensorCache->FindTensor(iter);
}
if (index >= 0) {
subGraphDef->outputIndex.emplace_back(index);
} else {
@ -199,26 +216,28 @@ STATUS CaffeModelParser::ParseLayer(const caffe::NetParameter &proto, const caff
op->name = layer.name();
if (layer.type() == "Split") {
splitLayer.emplace(layer.name(), layer.bottom(0));
for (int j = 0; j < layer.top_size(); ++j) {
splitLayer.emplace(layer.top(j), layer.bottom(0));
}
continue;
}
auto status = SetOpInputIdx(layer, op.get(), tensorCache);
if (status != RET_OK) {
MS_LOG(ERROR) << "Set Op " << layer.name() << " Input Index Failed!";
return RET_ERROR;
return status;
}
auto nodeParser = CaffeNodeParserRegistry::GetInstance()->GetNodeParser(layer.type().c_str());
if (nodeParser == nullptr) {
MS_LOG(ERROR) << "Don't support type " << layer.type() << ". for caffe op " << layer.name();
return RET_ERROR;
return RET_NULL_PTR;
}
std::vector<schema::TensorT *> weightVec;
status = nodeParser->Parse(layer, layerP, op.get(), &weightVec);
if (status != RET_OK) {
MS_LOG(ERROR) << "Parse weight for " << layer.name() << " Failed!";
return RET_ERROR;
return status;
}
SetWeightTensor(weightVec, op.get(), tensorCache);
@ -226,7 +245,7 @@ STATUS CaffeModelParser::ParseLayer(const caffe::NetParameter &proto, const caff
status = SetOpOutputIdx(layer, op.get(), tensorCache);
if (status != RET_OK) {
MS_LOG(ERROR) << "Set Op " << layer.name() << " Output Index Failed!";
return RET_ERROR;
return status;
}
// op->fmkType = FmkType_CAFFE;

View File

@ -0,0 +1,81 @@
/**
* Copyright 2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "tools/converter/parser/caffe/caffe_reduce_parser.h"
#include <memory>
#include <vector>
namespace mindspore {
namespace lite {
STATUS CaffeReduceParser::Parse(const caffe::LayerParameter &proto,
const caffe::LayerParameter &weight,
schema::CNodeT *op,
std::vector<schema::TensorT *> *weightVec) {
MS_LOG(DEBUG) << "parse CaffeReduceParser";
if (op == nullptr) {
MS_LOG(ERROR) << "op is null";
return RET_NULL_PTR;
}
op->primitive = std::make_unique<schema::PrimitiveT>();
if (op->primitive == nullptr) {
MS_LOG(ERROR) << "op->primitive is null";
return RET_NULL_PTR;
}
std::unique_ptr<schema::ReduceT> attr = std::make_unique<schema::ReduceT>();
if (attr == nullptr) {
MS_LOG(ERROR) << "new op failed";
return RET_NULL_PTR;
}
const caffe::ReductionParameter reduce_param = proto.reduction_param();
if (reduce_param.has_operation()) {
switch (reduce_param.operation()) {
case caffe::ReductionParameter_ReductionOp_MEAN:
attr->mode = schema::ReduceMode_ReduceMean;
break;
case caffe::ReductionParameter_ReductionOp_SUM:
attr->mode = schema::ReduceMode_ReduceSum;
break;
case caffe::ReductionParameter_ReductionOp_SUMSQ:
attr->mode = schema::ReduceMode_ReduceSumSquare;
break;
case caffe::ReductionParameter_ReductionOp_ASUM:
attr->mode = schema::ReduceMode_ReduceASum;
default:
MS_LOG(ERROR) << "reduce parse params fail, unsupported opration: " << reduce_param.operation();
return RET_ERROR;
}
} else {
attr->mode = schema::ReduceMode_ReduceSum;
}
if (reduce_param.has_axis()) {
attr->axes = std::vector(1, reduce_param.axis());
} else {
attr->axes = std::vector(1, 0);
}
attr->reduceToEnd = true;
attr->keepDims = false;
op->name = proto.name();
op->primitive->value.type = schema::PrimitiveType_Reduce;
op->primitive->value.value = attr.release();
return RET_OK;
}
CaffeNodeRegistrar g_caffeReduceParser("Reduction", new CaffeReduceParser());
} // namespace lite
} // namespace mindspore

View File

@ -0,0 +1,39 @@
/**
* Copyright 2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef MINDSPORE_LITE_TOOLS_CONVERTER_PARSER_CAFFE_CAFFE_REDUCE_PARSER_H
#define MINDSPORE_LITE_TOOLS_CONVERTER_PARSER_CAFFE_CAFFE_REDUCE_PARSER_H
#include <vector>
#include "tools/converter/parser/caffe/caffe_node_parser.h"
#include "tools/converter/parser/caffe/caffe_node_parser_registry.h"
namespace mindspore {
namespace lite {
class CaffeReduceParser : public CaffeNodeParser {
public:
CaffeReduceParser() : CaffeNodeParser("reduce") {}
STATUS Parse(const caffe::LayerParameter &proto,
const caffe::LayerParameter &weight,
schema::CNodeT *op,
std::vector<schema::TensorT *> *weightVec) override;
};
} // namespace lite
} // namespace mindspore
#endif // MINDSPORE_LITE_TOOLS_CONVERTER_PARSER_CAFFE_CAFFE_REDUCE_PARSER_H

View File

@ -548,8 +548,15 @@ STATUS OnnxTanhParser::Parse(const onnx::GraphProto &onnx_graph, const onnx::Nod
return RET_NULL_PTR;
}
MS_LOG(ERROR) << "mslite don't support tanh now";
return RET_ERROR;
std::unique_ptr<schema::ActivationT> attr = std::make_unique<schema::ActivationT>();
if (attr == nullptr) {
MS_LOG(ERROR) << "new op failed";
return RET_NULL_PTR;
}
attr->type = schema::ActivationType_TANH;
op->primitive->value.type = schema::PrimitiveType_Activation;
op->primitive->value.value = attr.release();
return RET_OK;
}
OnnxNodeRegistrar g_onnxAddParser("Add", new OnnxAddParser());

View File

@ -458,14 +458,18 @@ void OnnxModelParser::FindGraphInputAndConst(const onnx::GraphProto &onnx_graph)
schema::MetaGraphT *OnnxModelParser::ParseToFb(const std::string &modelFile, const std::string &weightFile,
const QuantType &quantType) {
if (ValidateFileStr(modelFile, ".onnx") != RET_OK) {
int status = ValidateFileStr(modelFile, ".onnx");
if (status != RET_OK) {
MS_LOG(ERROR) << "Input illegal: modelFile must be *.onnx";
ReturnCode::GetSingleReturnCode()->UpdateReturnCode(status);
return nullptr;
}
onnx::ModelProto onnx_model;
if (ReadProtoFromBinaryFile((const char *)modelFile.c_str(), &onnx_model) != RET_OK) {
status = ReadProtoFromBinaryFile((const char *)modelFile.c_str(), &onnx_model);
if (status != RET_OK) {
MS_LOG(ERROR) << "Read onnx model file failed, model path: " << modelFile;
ReturnCode::GetSingleReturnCode()->UpdateReturnCode(status);
return nullptr;
}
const onnx::GraphProto &onnx_graph = onnx_model.graph();
@ -475,19 +479,25 @@ schema::MetaGraphT *OnnxModelParser::ParseToFb(const std::string &modelFile, con
// find out input names and const names
FindGraphInputAndConst(onnx_graph);
// set const tensor
if (SetGraphConstTensor(onnx_graph, &tensor_cache)) {
status = SetGraphConstTensor(onnx_graph, &tensor_cache);
if (status != RET_OK) {
MS_LOG(ERROR) << "SetGraphConstTensor failed";
ReturnCode::GetSingleReturnCode()->UpdateReturnCode(status);
return nullptr;
}
auto dst_graph = std::make_unique<schema::MetaGraphT>();
// init onnx model graph input tensor
if (SetGraphInputTensor(onnx_graph, dst_graph.get(), &tensor_cache)) {
status = SetGraphInputTensor(onnx_graph, dst_graph.get(), &tensor_cache);
if (status != RET_OK) {
MS_LOG(ERROR) << "SetGraphInputTensor failed";
ReturnCode::GetSingleReturnCode()->UpdateReturnCode(status);
return nullptr;
}
// init onnx model graph output tensor
if (SetGraphOutputTensor(onnx_graph, dst_graph.get(), &tensor_cache)) {
status = SetGraphOutputTensor(onnx_graph, dst_graph.get(), &tensor_cache);
if (status != RET_OK) {
MS_LOG(ERROR) << "SetGraphOutputTensor failed";
ReturnCode::GetSingleReturnCode()->UpdateReturnCode(status);
return nullptr;
}
// init op node input/output tensor, and dst_op attr
@ -499,9 +509,10 @@ schema::MetaGraphT *OnnxModelParser::ParseToFb(const std::string &modelFile, con
ParseOnnxGemmNode(onnx_graph, onnx_node, dst_graph.get(), &tensor_cache);
continue;
} else if (onnx_node.op_type() == "Int8GivenIntTensorFill" || onnx_node.op_type() == "Int8GivenTensorFill") {
auto status = ParseOnnxGivenFillNode(onnx_node, &tensor_cache);
status = ParseOnnxGivenFillNode(onnx_node, &tensor_cache);
if (status != RET_OK) {
MS_LOG(ERROR) << "ParseOnnxGivenFillNode failed: " << status;
ReturnCode::GetSingleReturnCode()->UpdateReturnCode(status);
return nullptr;
}
continue;
@ -509,9 +520,10 @@ schema::MetaGraphT *OnnxModelParser::ParseToFb(const std::string &modelFile, con
std::unique_ptr<schema::CNodeT> dst_op = std::make_unique<schema::CNodeT>();
std::unique_ptr<schema::TensorT> dst_tensor = std::make_unique<schema::TensorT>();
auto status = ParseOnnxNodeToDstOp(onnx_graph, onnx_node, dst_op.get(), dst_tensor.get(), &tensor_cache);
status = ParseOnnxNodeToDstOp(onnx_graph, onnx_node, dst_op.get(), dst_tensor.get(), &tensor_cache);
if (status != RET_OK) {
MS_LOG(ERROR) << "parse node " << onnx_node.op_type() << " failed";
ReturnCode::GetSingleReturnCode()->UpdateReturnCode(status);
return nullptr;
}
dst_graph->nodes.emplace_back(std::move(dst_op));

View File

@ -42,11 +42,29 @@ STATUS OnnxReshapeParser::Parse(const onnx::GraphProto &onnx_graph, const onnx::
attr->format = schema::Format_NCHW;
std::vector<int64_t> shape;
shape.clear();
for (const auto &onnx_node_attr : onnx_node.attribute()) {
const auto &attribute_name = onnx_node_attr.name();
if (attribute_name == "shape") {
for (int i = 0; i < onnx_node_attr.ints_size(); ++i) {
shape.push_back(static_cast<int64_t>(onnx_node_attr.ints(i)));
if (onnx_node.input_size() != 2) {
for (const auto &onnx_node_attr : onnx_node.attribute()) {
const auto &attribute_name = onnx_node_attr.name();
if (attribute_name == "shape") {
for (int i = 0; i < onnx_node_attr.ints_size(); ++i) {
shape.push_back(static_cast<int64_t>(onnx_node_attr.ints(i)));
}
}
}
} else {
onnx::TensorProto input_shape;
const auto &shape_name = onnx_node.input(1);
for (const auto &it : onnx_graph.initializer()) {
if (it.name() == shape_name) {
input_shape = it;
break;
}
}
if (input_shape.int64_data_size() == 0) {
MS_LOG(WARNING) << "shape maybe from another op other than const initializer";
} else {
for (int i = 0; i < input_shape.int64_data_size(); ++i) {
shape.push_back(input_shape.int64_data(i));
}
}
}

View File

@ -43,26 +43,10 @@ STATUS TfliteL2NormParser::Parse(const std::unique_ptr<tflite::OperatorT> &tflit
MS_LOG(ERROR) << "new op failed";
return RET_NULL_PTR;
}
if (tflite_op->inputs.empty()) {
MS_LOG(ERROR) << "the input is null";
return RET_NULL_PTR;
}
auto data_index = tflite_op->inputs[0];
const auto &data_tensor = tflite_tensors[data_index];
if (data_tensor == nullptr) {
MS_LOG(ERROR) << "the input tensor is null";
return RET_NULL_PTR;
}
auto ndim = data_tensor->shape.size();
std::vector<int32_t> axis;
axis.reserve(ndim);
for (size_t i = 0; i < ndim; i++) {
axis.emplace_back(i);
}
attr->axis = axis;
attr->epsilon = 0.0f;
const auto &tflite_attr = tflite_op->builtin_options.AsL2NormOptions();
attr->axis = {-1};
attr->epsilon = 1e-6f;
attr->activationType = GetActivationFunctionType(tflite_attr->fused_activation_function);
op->primitive->value.type = schema::PrimitiveType_L2Norm;
op->primitive->value.value = attr.release();

View File

@ -0,0 +1,74 @@
/**
* Copyright 2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "tools/converter/parser/tflite/tflite_lsh_projection_parser.h"
#include <vector>
#include <memory>
#include <map>
namespace mindspore {
namespace lite {
STATUS TfliteLshProjectionParser::Parse(const std::unique_ptr<tflite::OperatorT> &tflite_op,
const std::vector<std::unique_ptr<tflite::TensorT>> &tflite_tensors,
const std::vector<std::unique_ptr<tflite::BufferT>> &tflite_model_buffer,
schema::CNodeT *op,
std::vector<int32_t> *tensors_id,
std::vector<schema::Format> *tensors_format,
std::map<int, int> *tensors_id_map) {
MS_LOG(DEBUG) << "parse TfliteLshProjectionParser";
if (op == nullptr) {
MS_LOG(ERROR) << "op is null";
return RET_NULL_PTR;
}
op->primitive = std::make_unique<schema::PrimitiveT>();
if (op->primitive == nullptr) {
MS_LOG(ERROR) << "op->primitive is null";
return RET_NULL_PTR;
}
std::unique_ptr<schema::LshProjectionT> attr = std::make_unique<schema::LshProjectionT>();
if (attr == nullptr) {
MS_LOG(ERROR) << "new op failed";
return RET_NULL_PTR;
}
const auto &tflite_attr = tflite_op->builtin_options.AsLSHProjectionOptions();
switch (tflite_attr->type) {
case tflite::LSHProjectionType_SPARSE:
attr->type = schema::LshProjectionType_SPARSE;
break;
case tflite::LSHProjectionType_DENSE:
attr->type = schema::LshProjectionType_DENSE;
break;
default:
attr->type = schema::LshProjectionType_UNKNOWN;
}
op->primitive->value.type = schema::PrimitiveType_LshProjection;
op->primitive->value.value = attr.release();
for (size_t i = 0; i < tflite_op->inputs.size(); ++i) {
AddOpInput(op, tensors_id, tensors_format, tensors_id_map,
tflite_op->inputs[i], tensors_id->size(), tflite_tensors.size(), schema::Format_NHWC);
}
AddOpOutput(op, tensors_id, tensors_format, tensors_id_map,
tflite_op->outputs[0], tensors_id->size(), tflite_tensors.size(), schema::Format_NHWC);
return RET_OK;
}
TfliteNodeRegister g_tfliteLshProjectionParser("LshProjection", new TfliteLshProjectionParser());
} // namespace lite
} // namespace mindspore

View File

@ -0,0 +1,44 @@
/**
* Copyright 2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef MINDSPORE_LITE_TOOLS_CONVERTER_PARSER_TFLITE_LSH_PROJECTION_PARSER_H
#define MINDSPORE_LITE_TOOLS_CONVERTER_PARSER_TFLITE_LSH_PROJECTION_PARSER_H
#include <memory>
#include <vector>
#include <map>
#include "tools/converter/parser/tflite/tflite_node_parser.h"
#include "tools/converter/parser/tflite/tflite_node_parser_registry.h"
namespace mindspore {
namespace lite {
class TfliteLshProjectionParser : public TfliteNodeParser {
public:
TfliteLshProjectionParser() : TfliteNodeParser("LshProjection") {}
STATUS Parse(const std::unique_ptr<tflite::OperatorT> &tflite_op,
const std::vector<std::unique_ptr<tflite::TensorT>> &tflite_tensors,
const std::vector<std::unique_ptr<tflite::BufferT>> &tflite_model_buffer,
schema::CNodeT *op,
std::vector<int32_t> *tensors_id,
std::vector<schema::Format> *tensors_format,
std::map<int, int> *tensors_id_map) override;
};
} // namespace lite
} // namespace mindspore
#endif // MINDSPORE_LITE_TOOLS_CONVERTER_PARSER_TFLITE_LSH_PROJECTION_PARSER_H

View File

@ -56,11 +56,11 @@ STATUS TfliteModelParser::CopyConstTensorData(const std::vector<std::unique_ptr<
if (memcpy_s(tensor->data.data(), tensor->data.size(), tflite_model_buffer[buffer_idx]->data.data(),
tflite_model_buffer[buffer_idx]->data.size())) {
MS_LOG(ERROR) << "memcpy tensor data failed";
return RET_ERROR;
return RET_MEMORY_FAILED;
}
} else {
MS_LOG(ERROR) << "src tensor data is empty";
return RET_ERROR;
return RET_INPUT_TENSOR_ERROR;
}
return RET_OK;
}
@ -77,7 +77,8 @@ void TfliteModelParser::SetTensorQuantParam(const std::unique_ptr<tflite::Tensor
}
// change quant param min to 0 to fit ms-lite ops
if (tensor->dataType == TypeId::kNumberTypeInt8) {
if (GetTfliteDataType(tflite_tensor->type) == TypeId::kNumberTypeUInt8
&& tensor->dataType == TypeId::kNumberTypeInt8) {
quant_param->zeroPoint = quant_param->zeroPoint - 128;
}
@ -114,12 +115,13 @@ STATUS TfliteModelParser::ConvertOp(const std::unique_ptr<tflite::ModelT> &tflit
auto node_parser = TfliteNodeParserRegistry::GetInstance()->GetNodeParser(op_type);
if (node_parser == nullptr) {
MS_LOG(ERROR) << "cannot find node parser, opType: " << op_type.c_str();
return RET_NULL_PTR;
return RET_NOT_FIND_OP;
}
if (node_parser->Parse(tflite_op, tflite_subgraph->tensors, tflite_model->buffers, op.get(), &tensorsId,
&tensorsFormat, &tensorsIdMap) != RET_OK) {
int status = node_parser->Parse(tflite_op, tflite_subgraph->tensors, tflite_model->buffers, op.get(), &tensorsId,
&tensorsFormat, &tensorsIdMap);
if (status != RET_OK) {
MS_LOG(ERROR) << "node " << op_type.c_str() << " parser failed";
return RET_ERROR;
return status;
}
sub_graph->nodes.emplace_back(op.release());
@ -158,7 +160,11 @@ STATUS TfliteModelParser::ConvertTensor(const std::unique_ptr<tflite::SubGraphT>
auto &tensor_buffer = tflite_model_buffer.at(tflite_tensor->buffer);
auto isConst = (!tensor_buffer->data.empty());
if (isConst) {
CopyConstTensorData(tflite_model_buffer, tflite_tensor.get(), tensor.get());
int status = CopyConstTensorData(tflite_model_buffer, tflite_tensor.get(), tensor.get());
if (status != RET_OK) {
MS_LOG(ERROR) << "obtain const tensor failed";
return status;
}
} else if (quantType == QuantType_AwareTraining && tensor->dataType == TypeId::kNumberTypeUInt8) {
// set in/out tensor to int8 to fit ms-lite op
tensor->dataType = TypeId::kNumberTypeInt8;
@ -204,6 +210,9 @@ STATUS TfliteModelParser::GetGraphInfo(const std::unique_ptr<tflite::SubGraphT>
auto iter = tensorsIdMap.find(id);
if (iter != tensorsIdMap.end()) {
graph_inputs.push_back(iter->second);
} else {
MS_LOG(ERROR) << "get graph input failed";
return RET_INPUT_TENSOR_ERROR;
}
}
sub_graph->inputIndex.assign(graph_inputs.begin(), graph_inputs.end());
@ -220,6 +229,9 @@ STATUS TfliteModelParser::GetGraphInfo(const std::unique_ptr<tflite::SubGraphT>
auto iter = tensorsIdMap.find(id);
if (iter != tensorsIdMap.end()) {
graph_outputs.push_back(iter->second);
} else {
MS_LOG(ERROR) << "get graph output failed";
return RET_INPUT_TENSOR_ERROR;
}
}
sub_graph->outputIndex.assign(graph_outputs.begin(), graph_outputs.end());
@ -306,11 +318,13 @@ schema::MetaGraphT *TfliteModelParser::ParseToFb(const std::string &model_file,
auto tflite_model = ReadTfliteModel(model_file.c_str());
if (tflite_model == nullptr) {
MS_LOG(ERROR) << "read tflite model failed";
ReturnCode::GetSingleReturnCode()->UpdateReturnCode(RET_GRAPH_FILE_ERR);
return nullptr;
}
if (tflite_model->subgraphs.size() != 1) {
MS_LOG(ERROR) << "read tflite model subgraphs failed";
ReturnCode::GetSingleReturnCode()->UpdateReturnCode(RET_GRAPH_FILE_ERR);
return nullptr;
}
const auto &tflite_subgraph = tflite_model->subgraphs[0];
@ -318,31 +332,40 @@ schema::MetaGraphT *TfliteModelParser::ParseToFb(const std::string &model_file,
auto meta_graph = std::make_unique<schema::MetaGraphT>();
if (meta_graph == nullptr) {
MS_LOG(ERROR) << "new meta graph failed";
ReturnCode::GetSingleReturnCode()->UpdateReturnCode(RET_MEMORY_FAILED);
return nullptr;
}
meta_graph->name = "MS_model converted by TF-Lite";
quantType = quant_type;
// convert op
if (ConvertOp(tflite_model, tflite_subgraph, quant_type, meta_graph.get()) != RET_OK) {
int status = ConvertOp(tflite_model, tflite_subgraph, quant_type, meta_graph.get());
if (status != RET_OK) {
MS_LOG(ERROR) << "parse op failed.";
ReturnCode::GetSingleReturnCode()->UpdateReturnCode(status);
return nullptr;
}
// convert tensor
if (ConvertTensor(tflite_subgraph, tflite_model->buffers, meta_graph.get()) != RET_OK) {
status = ConvertTensor(tflite_subgraph, tflite_model->buffers, meta_graph.get());
if (status != RET_OK) {
MS_LOG(ERROR) << "convert tensor failed";
ReturnCode::GetSingleReturnCode()->UpdateReturnCode(status);
return nullptr;
}
// set graph input/output
if (GetGraphInfo(tflite_subgraph, meta_graph.get()) != RET_OK) {
status = GetGraphInfo(tflite_subgraph, meta_graph.get());
if (status != RET_OK) {
MS_LOG(ERROR) << "convert tensors failed";
ReturnCode::GetSingleReturnCode()->UpdateReturnCode(status);
return nullptr;
}
// update for depthwiseConv
if (ConvertGroupDepthwiseOp(meta_graph.get()) != RET_OK) {
status = ConvertGroupDepthwiseOp(meta_graph.get());
if (status != RET_OK) {
MS_LOG(ERROR) << "convert group depthwise conv failed";
ReturnCode::GetSingleReturnCode()->UpdateReturnCode(status);
return nullptr;
}

View File

@ -0,0 +1,47 @@
/**
* Copyright 2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef LITE_RETURN_CODE_H
#define LITE_RETURN_CODE_H
#include "include/errorcode.h"
namespace mindspore {
namespace lite {
class ReturnCode {
public:
~ReturnCode() {}
static ReturnCode *GetSingleReturnCode() {
static ReturnCode returnCode;
return &returnCode;
}
void UpdateReturnCode(STATUS status) {
if (statusCode == RET_OK) {
statusCode = status;
}
}
STATUS GetReturnCode() {
return statusCode;
}
private:
ReturnCode() { statusCode = RET_OK; }
int statusCode;
};
} // namespace lite
} // namespace mindspore
#endif // LITE_RETURN_CODE_H

View File

@ -79,7 +79,7 @@ int Get_Kenrnel_nums(const CNodePtr &conv_node) {
return 0;
}
}
void GenConvNewBias(const FuncGraphPtr &func_graph, const CNodePtr &conv_node, const CNodePtr &bias_node) {
int GenConvNewBias(const FuncGraphPtr &func_graph, const CNodePtr &conv_node, const CNodePtr &bias_node) {
AnfNodePtr conv_bias_node = nullptr;
AnfNodePtr conv_weight_node = nullptr;
if (conv_node->inputs().size() == kConvNoBiasLen) {
@ -93,11 +93,12 @@ void GenConvNewBias(const FuncGraphPtr &func_graph, const CNodePtr &conv_node, c
auto kernel_nums = Get_Kenrnel_nums(conv_node);
if (kernel_nums <= 0) {
MS_LOG(EXCEPTION) << "kernel num less than 0";
return lite::RET_INVALID_OP_ATTR;
}
auto add_bias_data = new (std::nothrow) float[kernel_nums];
if (add_bias_data == nullptr) {
MS_LOG(ERROR) << "tensor_data is nullptr";
return;
return lite::RET_MEMORY_FAILED;
}
auto bias_add_weight = bias_node->input(kAddWEIGHTINDEX);
CheckIfNodeIsParam(bias_add_weight);
@ -112,6 +113,7 @@ void GenConvNewBias(const FuncGraphPtr &func_graph, const CNodePtr &conv_node, c
} else {
if (EOK != memcpy_s(add_bias_data, kernel_nums * sizeof(float), add_weight_data, kernel_nums * sizeof(float))) {
MS_LOG(EXCEPTION) << "memset_s conv_bias_data failed";
return lite::RET_MEMORY_FAILED;
}
}
if (conv_bias_node != nullptr) {
@ -120,6 +122,7 @@ void GenConvNewBias(const FuncGraphPtr &func_graph, const CNodePtr &conv_node, c
auto conv_bias_tensor = std::dynamic_pointer_cast<ParamValueLite>(conv_bias_param);
if (conv_bias_tensor->tensor_shape().empty() || conv_bias_tensor->tensor_shape()[0] != kernel_nums) {
MS_LOG(EXCEPTION) << "conv_bias_node shape error";
return lite::RET_INVALID_OP_ATTR;
}
auto conv_bias_data = reinterpret_cast<float *>(conv_bias_tensor->tensor_addr());
for (int i = 0; i < kernel_nums; i++) {
@ -133,6 +136,7 @@ void GenConvNewBias(const FuncGraphPtr &func_graph, const CNodePtr &conv_node, c
conv_new_bias->set_name(conv_node->fullname_with_scope() + "_bias");
conv_node->add_input(conv_new_bias);
}
return lite::RET_OK;
}
} // namespace
const BaseRef ConvBiasaddFusion::DefinePattern() const {
@ -159,7 +163,11 @@ const AnfNodePtr ConvBiasaddFusion::Process(const FuncGraphPtr &func_graph, cons
}
auto conv_node = conv_node_anf->cast<CNodePtr>();
CheckIfCNodeIsNull(conv_node);
GenConvNewBias(func_graph, conv_node, add_node);
int ret = GenConvNewBias(func_graph, conv_node, add_node);
if (ret != lite::RET_OK) {
lite::ReturnCode::GetSingleReturnCode()->UpdateReturnCode(ret);
return nullptr;
}
auto primitive_c = GetValueNode<std::shared_ptr<lite::PrimitiveC>>(conv_node->input(0));
MS_ASSERT(primitive_c != nullptr);
auto type = primitive_c->Type();
@ -180,6 +188,7 @@ const AnfNodePtr ConvBiasaddFusion::Process(const FuncGraphPtr &func_graph, cons
primc->SetHasBias(true);
} else {
MS_LOG(ERROR) << "Unsupported opType, " << type;
lite::ReturnCode::GetSingleReturnCode()->UpdateReturnCode(ret);
return nullptr;
}
return conv_node;

View File

@ -18,6 +18,7 @@
#define MINDSPORE_LITE_SRC_PASS_FUSION_CONV_BIASADD_FUSION_H_
#include "backend/optimizer/common/optimizer.h"
#include "tools/converter/return_code.h"
namespace mindspore {
namespace opt {