!3451 C++ API: Reorder alphabetically

Merge pull request !3451 from cathwong/ckw_c_api_alpha_order_code
This commit is contained in:
mindspore-ci-bot 2020-07-25 06:38:53 +08:00 committed by Gitee
commit 8f10a84753
3 changed files with 560 additions and 538 deletions

View File

@ -17,12 +17,14 @@
#include <fstream>
#include "minddata/dataset/include/datasets.h"
#include "minddata/dataset/include/transforms.h"
#include "minddata/dataset/include/samplers.h"
#include "minddata/dataset/include/transforms.h"
#include "minddata/dataset/engine/dataset_iterator.h"
// Source dataset headers (in alphabetical order)
#include "minddata/dataset/engine/datasetops/source/cifar_op.h"
#include "minddata/dataset/engine/datasetops/source/image_folder_op.h"
#include "minddata/dataset/engine/datasetops/source/mnist_op.h"
#include "minddata/dataset/engine/datasetops/source/cifar_op.h"
// Dataset operator headers (in alphabetical order)
#include "minddata/dataset/engine/datasetops/batch_op.h"
#include "minddata/dataset/engine/datasetops/map_op.h"
#include "minddata/dataset/engine/datasetops/repeat_op.h"
@ -31,6 +33,7 @@
#include "minddata/dataset/engine/datasetops/project_op.h"
#include "minddata/dataset/engine/datasetops/zip_op.h"
#include "minddata/dataset/engine/datasetops/rename_op.h"
// Sampler headers (in alphabetical order)
#include "minddata/dataset/engine/datasetops/source/sampler/sampler.h"
#include "minddata/dataset/engine/datasetops/source/sampler/random_sampler.h"
@ -79,6 +82,18 @@ Dataset::Dataset() {
connector_que_size_ = cfg->op_connector_size();
}
// FUNCTIONS TO CREATE DATASETS FOR LEAF-NODE DATASETS
// (In alphabetical order)
// Function to create a Cifar10Dataset.
std::shared_ptr<Cifar10Dataset> Cifar10(const std::string &dataset_dir, int32_t num_samples,
std::shared_ptr<SamplerObj> sampler) {
auto ds = std::make_shared<Cifar10Dataset>(dataset_dir, num_samples, sampler);
// Call derived class validation method.
return ds->ValidateParams() ? ds : nullptr;
}
// Function to create a ImageFolderDataset.
std::shared_ptr<ImageFolderDataset> ImageFolder(std::string dataset_dir, bool decode,
std::shared_ptr<SamplerObj> sampler, std::set<std::string> extensions,
@ -101,14 +116,8 @@ std::shared_ptr<MnistDataset> Mnist(std::string dataset_dir, std::shared_ptr<Sam
return ds->ValidateParams() ? ds : nullptr;
}
// Function to create a Cifar10Dataset.
std::shared_ptr<Cifar10Dataset> Cifar10(const std::string &dataset_dir, int32_t num_samples,
std::shared_ptr<SamplerObj> sampler) {
auto ds = std::make_shared<Cifar10Dataset>(dataset_dir, num_samples, sampler);
// Call derived class validation method.
return ds->ValidateParams() ? ds : nullptr;
}
// FUNCTIONS TO CREATE DATASETS FOR DATASET OPS
// (In alphabetical order)
// Function to create a Batch dataset
std::shared_ptr<BatchDataset> Dataset::Batch(int32_t batch_size, bool drop_remainder) {
@ -127,14 +136,12 @@ std::shared_ptr<BatchDataset> Dataset::Batch(int32_t batch_size, bool drop_remai
return ds;
}
// Function to create Repeat dataset.
std::shared_ptr<Dataset> Dataset::Repeat(int32_t count) {
// Workaround for repeat == 1, do not inject repeat.
if (count == 1) {
return shared_from_this();
}
auto ds = std::make_shared<RepeatDataset>(count);
// Function to create a Map dataset.
std::shared_ptr<MapDataset> Dataset::Map(std::vector<std::shared_ptr<TensorOperation>> operations,
std::vector<std::string> input_columns,
std::vector<std::string> output_columns,
const std::vector<std::string> &project_columns) {
auto ds = std::make_shared<MapDataset>(operations, input_columns, output_columns, project_columns);
if (!ds->ValidateParams()) {
return nullptr;
@ -145,12 +152,41 @@ std::shared_ptr<Dataset> Dataset::Repeat(int32_t count) {
return ds;
}
// Function to create a Map dataset.
std::shared_ptr<MapDataset> Dataset::Map(std::vector<std::shared_ptr<TensorOperation>> operations,
std::vector<std::string> input_columns,
std::vector<std::string> output_columns,
const std::vector<std::string> &project_columns) {
auto ds = std::make_shared<MapDataset>(operations, input_columns, output_columns, project_columns);
// Function to create a ProjectDataset.
std::shared_ptr<ProjectDataset> Dataset::Project(const std::vector<std::string> &columns) {
auto ds = std::make_shared<ProjectDataset>(columns);
// Call derived class validation method.
if (!ds->ValidateParams()) {
return nullptr;
}
ds->children.push_back(shared_from_this());
return ds;
}
// Function to create a RenameDataset.
std::shared_ptr<RenameDataset> Dataset::Rename(const std::vector<std::string> &input_columns,
const std::vector<std::string> &output_columns) {
auto ds = std::make_shared<RenameDataset>(input_columns, output_columns);
// Call derived class validation method.
if (!ds->ValidateParams()) {
return nullptr;
}
ds->children.push_back(shared_from_this());
return ds;
}
// Function to create Repeat dataset.
std::shared_ptr<Dataset> Dataset::Repeat(int32_t count) {
// Workaround for repeat == 1, do not inject repeat.
if (count == 1) {
return shared_from_this();
}
auto ds = std::make_shared<RepeatDataset>(count);
if (!ds->ValidateParams()) {
return nullptr;
@ -189,33 +225,6 @@ std::shared_ptr<SkipDataset> Dataset::Skip(int32_t count) {
return ds;
}
// Function to create a ProjectDataset.
std::shared_ptr<ProjectDataset> Dataset::Project(const std::vector<std::string> &columns) {
auto ds = std::make_shared<ProjectDataset>(columns);
// Call derived class validation method.
if (!ds->ValidateParams()) {
return nullptr;
}
ds->children.push_back(shared_from_this());
return ds;
}
// Function to create a RenameDataset.
std::shared_ptr<RenameDataset> Dataset::Rename(const std::vector<std::string> &input_columns,
const std::vector<std::string> &output_columns) {
auto ds = std::make_shared<RenameDataset>(input_columns, output_columns);
// Call derived class validation method.
if (!ds->ValidateParams()) {
return nullptr;
}
ds->children.push_back(shared_from_this());
return ds;
}
// Function to create a Zip dataset
std::shared_ptr<ZipDataset> Dataset::Zip(const std::vector<std::shared_ptr<Dataset>> &datasets) {
// Default values
@ -231,6 +240,9 @@ std::shared_ptr<ZipDataset> Dataset::Zip(const std::vector<std::shared_ptr<Datas
return ds;
}
// OTHER FUNCTIONS
// (In alphabetical order)
// Helper function to create default RandomSampler.
std::shared_ptr<SamplerObj> CreateDefaultSampler() {
const int32_t num_samples = 0; // 0 means to sample all ids.
@ -240,6 +252,48 @@ std::shared_ptr<SamplerObj> CreateDefaultSampler() {
/* ####################################### Derived Dataset classes ################################# */
// DERIVED DATASET CLASSES LEAF-NODE DATASETS
// (In alphabetical order)
// Constructor for Cifar10Dataset
Cifar10Dataset::Cifar10Dataset(const std::string &dataset_dir, int32_t num_samples, std::shared_ptr<SamplerObj> sampler)
: dataset_dir_(dataset_dir), num_samples_(num_samples), sampler_(sampler) {}
bool Cifar10Dataset::ValidateParams() {
if (dataset_dir_.empty()) {
MS_LOG(ERROR) << "No dataset path is specified.";
return false;
}
if (num_samples_ < 0) {
MS_LOG(ERROR) << "Number of samples cannot be negative";
return false;
}
return true;
}
// Function to build CifarOp
std::vector<std::shared_ptr<DatasetOp>> Cifar10Dataset::Build() {
// A vector containing shared pointer to the Dataset Ops that this object will create
std::vector<std::shared_ptr<DatasetOp>> node_ops;
// If user does not specify Sampler, create a default sampler based on the shuffle variable.
if (sampler_ == nullptr) {
sampler_ = CreateDefaultSampler();
}
// Do internal Schema generation.
auto schema = std::make_unique<DataSchema>();
RETURN_EMPTY_IF_ERROR(schema->AddColumn(ColDescriptor("image", DataType(DataType::DE_UINT8), TensorImpl::kCv, 1)));
TensorShape scalar = TensorShape::CreateScalar();
RETURN_EMPTY_IF_ERROR(
schema->AddColumn(ColDescriptor("label", DataType(DataType::DE_UINT32), TensorImpl::kFlexible, 0, &scalar)));
node_ops.push_back(std::make_shared<CifarOp>(CifarOp::CifarType::kCifar10, num_workers_, rows_per_buffer_,
dataset_dir_, connector_que_size_, std::move(schema),
std::move(sampler_->Build())));
return node_ops;
}
ImageFolderDataset::ImageFolderDataset(std::string dataset_dir, bool decode, std::shared_ptr<SamplerObj> sampler,
bool recursive, std::set<std::string> extensions,
std::map<std::string, int32_t> class_indexing)
@ -315,6 +369,9 @@ std::vector<std::shared_ptr<DatasetOp>> MnistDataset::Build() {
return node_ops;
}
// DERIVED DATASET CLASSES LEAF-NODE DATASETS
// (In alphabetical order)
BatchDataset::BatchDataset(int32_t batch_size, bool drop_remainder, bool pad, std::vector<std::string> cols_to_map,
std::map<std::string, std::pair<TensorShape, std::shared_ptr<Tensor>>> pad_map)
: batch_size_(batch_size),
@ -347,24 +404,6 @@ bool BatchDataset::ValidateParams() {
return true;
}
RepeatDataset::RepeatDataset(uint32_t count) : repeat_count_(count) {}
std::vector<std::shared_ptr<DatasetOp>> RepeatDataset::Build() {
// A vector containing shared pointer to the Dataset Ops that this object will create
std::vector<std::shared_ptr<DatasetOp>> node_ops;
node_ops.push_back(std::make_shared<RepeatOp>(repeat_count_));
return node_ops;
}
bool RepeatDataset::ValidateParams() {
if (repeat_count_ <= 0) {
MS_LOG(ERROR) << "Repeat: Repeat count cannot be negative";
return false;
}
return true;
}
MapDataset::MapDataset(std::vector<std::shared_ptr<TensorOperation>> operations, std::vector<std::string> input_columns,
std::vector<std::string> output_columns, const std::vector<std::string> &project_columns)
: operations_(operations),
@ -409,6 +448,69 @@ bool MapDataset::ValidateParams() {
return true;
}
// Function to build ProjectOp
ProjectDataset::ProjectDataset(const std::vector<std::string> &columns) : columns_(columns) {}
bool ProjectDataset::ValidateParams() {
if (columns_.empty()) {
MS_LOG(ERROR) << "No columns are specified.";
return false;
}
return true;
}
std::vector<std::shared_ptr<DatasetOp>> ProjectDataset::Build() {
// A vector containing shared pointer to the Dataset Ops that this object will create
std::vector<std::shared_ptr<DatasetOp>> node_ops;
node_ops.push_back(std::make_shared<ProjectOp>(columns_));
return node_ops;
}
// Function to build RenameOp
RenameDataset::RenameDataset(const std::vector<std::string> &input_columns,
const std::vector<std::string> &output_columns)
: input_columns_(input_columns), output_columns_(output_columns) {}
bool RenameDataset::ValidateParams() {
if (input_columns_.empty() || output_columns_.empty()) {
MS_LOG(ERROR) << "input and output columns must be specified";
return false;
}
if (input_columns_.size() != output_columns_.size()) {
MS_LOG(ERROR) << "input and output columns must be the same size";
return false;
}
return true;
}
std::vector<std::shared_ptr<DatasetOp>> RenameDataset::Build() {
// A vector containing shared pointer to the Dataset Ops that this object will create
std::vector<std::shared_ptr<DatasetOp>> node_ops;
node_ops.push_back(std::make_shared<RenameOp>(input_columns_, output_columns_, connector_que_size_));
return node_ops;
}
RepeatDataset::RepeatDataset(uint32_t count) : repeat_count_(count) {}
std::vector<std::shared_ptr<DatasetOp>> RepeatDataset::Build() {
// A vector containing shared pointer to the Dataset Ops that this object will create
std::vector<std::shared_ptr<DatasetOp>> node_ops;
node_ops.push_back(std::make_shared<RepeatOp>(repeat_count_));
return node_ops;
}
bool RepeatDataset::ValidateParams() {
if (repeat_count_ <= 0) {
MS_LOG(ERROR) << "Repeat: Repeat count cannot be negative";
return false;
}
return true;
}
// Constructor for ShuffleDataset
ShuffleDataset::ShuffleDataset(int32_t shuffle_size, bool reset_every_epoch)
: shuffle_size_(shuffle_size), shuffle_seed_(GetSeed()), reset_every_epoch_(reset_every_epoch) {}
@ -455,64 +557,6 @@ bool SkipDataset::ValidateParams() {
return true;
}
// Constructor for Cifar10Dataset
Cifar10Dataset::Cifar10Dataset(const std::string &dataset_dir, int32_t num_samples, std::shared_ptr<SamplerObj> sampler)
: dataset_dir_(dataset_dir), num_samples_(num_samples), sampler_(sampler) {}
bool Cifar10Dataset::ValidateParams() {
if (dataset_dir_.empty()) {
MS_LOG(ERROR) << "No dataset path is specified.";
return false;
}
if (num_samples_ < 0) {
MS_LOG(ERROR) << "Number of samples cannot be negative";
return false;
}
return true;
}
// Function to build CifarOp
std::vector<std::shared_ptr<DatasetOp>> Cifar10Dataset::Build() {
// A vector containing shared pointer to the Dataset Ops that this object will create
std::vector<std::shared_ptr<DatasetOp>> node_ops;
// If user does not specify Sampler, create a default sampler based on the shuffle variable.
if (sampler_ == nullptr) {
sampler_ = CreateDefaultSampler();
}
// Do internal Schema generation.
auto schema = std::make_unique<DataSchema>();
RETURN_EMPTY_IF_ERROR(schema->AddColumn(ColDescriptor("image", DataType(DataType::DE_UINT8), TensorImpl::kCv, 1)));
TensorShape scalar = TensorShape::CreateScalar();
RETURN_EMPTY_IF_ERROR(
schema->AddColumn(ColDescriptor("label", DataType(DataType::DE_UINT32), TensorImpl::kFlexible, 0, &scalar)));
node_ops.push_back(std::make_shared<CifarOp>(CifarOp::CifarType::kCifar10, num_workers_, rows_per_buffer_,
dataset_dir_, connector_que_size_, std::move(schema),
std::move(sampler_->Build())));
return node_ops;
}
// Function to build ProjectOp
ProjectDataset::ProjectDataset(const std::vector<std::string> &columns) : columns_(columns) {}
bool ProjectDataset::ValidateParams() {
if (columns_.empty()) {
MS_LOG(ERROR) << "No columns are specified.";
return false;
}
return true;
}
std::vector<std::shared_ptr<DatasetOp>> ProjectDataset::Build() {
// A vector containing shared pointer to the Dataset Ops that this object will create
std::vector<std::shared_ptr<DatasetOp>> node_ops;
node_ops.push_back(std::make_shared<ProjectOp>(columns_));
return node_ops;
}
// Function to build ZipOp
ZipDataset::ZipDataset() {}
@ -526,31 +570,6 @@ std::vector<std::shared_ptr<DatasetOp>> ZipDataset::Build() {
return node_ops;
}
// Function to build RenameOp
RenameDataset::RenameDataset(const std::vector<std::string> &input_columns,
const std::vector<std::string> &output_columns)
: input_columns_(input_columns), output_columns_(output_columns) {}
bool RenameDataset::ValidateParams() {
if (input_columns_.empty() || output_columns_.empty()) {
MS_LOG(ERROR) << "input and output columns must be specified";
return false;
}
if (input_columns_.size() != output_columns_.size()) {
MS_LOG(ERROR) << "input and output columns must be the same size";
return false;
}
return true;
}
std::vector<std::shared_ptr<DatasetOp>> RenameDataset::Build() {
// A vector containing shared pointer to the Dataset Ops that this object will create
std::vector<std::shared_ptr<DatasetOp>> node_ops;
node_ops.push_back(std::make_shared<RenameOp>(input_columns_, output_columns_, connector_que_size_));
return node_ops;
}
} // namespace api
} // namespace dataset
} // namespace mindspore

View File

@ -16,18 +16,19 @@
#include "minddata/dataset/include/transforms.h"
#include "minddata/dataset/kernels/image/image_utils.h"
#include "minddata/dataset/kernels/image/normalize_op.h"
#include "minddata/dataset/kernels/image/decode_op.h"
#include "minddata/dataset/kernels/image/resize_op.h"
#include "minddata/dataset/kernels/image/random_crop_op.h"
#include "minddata/dataset/kernels/image/center_crop_op.h"
#include "minddata/dataset/kernels/image/uniform_aug_op.h"
#include "minddata/dataset/kernels/image/random_horizontal_flip_op.h"
#include "minddata/dataset/kernels/image/random_vertical_flip_op.h"
#include "minddata/dataset/kernels/image/random_rotation_op.h"
#include "minddata/dataset/kernels/image/cut_out_op.h"
#include "minddata/dataset/kernels/image/random_color_adjust_op.h"
#include "minddata/dataset/kernels/image/decode_op.h"
#include "minddata/dataset/kernels/image/normalize_op.h"
#include "minddata/dataset/kernels/image/pad_op.h"
#include "minddata/dataset/kernels/image/random_color_adjust_op.h"
#include "minddata/dataset/kernels/image/random_crop_op.h"
#include "minddata/dataset/kernels/image/random_horizontal_flip_op.h"
#include "minddata/dataset/kernels/image/random_rotation_op.h"
#include "minddata/dataset/kernels/image/random_vertical_flip_op.h"
#include "minddata/dataset/kernels/image/resize_op.h"
#include "minddata/dataset/kernels/image/uniform_aug_op.h"
namespace mindspore {
namespace dataset {
@ -38,9 +39,19 @@ TensorOperation::TensorOperation() {}
// Transform operations for computer vision.
namespace vision {
// Function to create NormalizeOperation.
std::shared_ptr<NormalizeOperation> Normalize(std::vector<float> mean, std::vector<float> std) {
auto op = std::make_shared<NormalizeOperation>(mean, std);
// Function to create CenterCropOperation.
std::shared_ptr<CenterCropOperation> CenterCrop(std::vector<int32_t> size) {
auto op = std::make_shared<CenterCropOperation>(size);
// Input validation
if (!op->ValidateParams()) {
return nullptr;
}
return op;
}
// Function to create CutOutOp.
std::shared_ptr<CutOutOperation> CutOut(int32_t length, int32_t num_patches) {
auto op = std::make_shared<CutOutOperation>(length, num_patches);
// Input validation
if (!op->ValidateParams()) {
return nullptr;
@ -58,73 +69,9 @@ std::shared_ptr<DecodeOperation> Decode(bool rgb) {
return op;
}
// Function to create ResizeOperation.
std::shared_ptr<ResizeOperation> Resize(std::vector<int32_t> size, InterpolationMode interpolation) {
auto op = std::make_shared<ResizeOperation>(size, interpolation);
// Input validation
if (!op->ValidateParams()) {
return nullptr;
}
return op;
}
// Function to create RandomCropOperation.
std::shared_ptr<RandomCropOperation> RandomCrop(std::vector<int32_t> size, std::vector<int32_t> padding,
bool pad_if_needed, std::vector<uint8_t> fill_value) {
auto op = std::make_shared<RandomCropOperation>(size, padding, pad_if_needed, fill_value);
// Input validation
if (!op->ValidateParams()) {
return nullptr;
}
return op;
}
// Function to create CenterCropOperation.
std::shared_ptr<CenterCropOperation> CenterCrop(std::vector<int32_t> size) {
auto op = std::make_shared<CenterCropOperation>(size);
// Input validation
if (!op->ValidateParams()) {
return nullptr;
}
return op;
}
// Function to create UniformAugOperation.
std::shared_ptr<UniformAugOperation> UniformAugment(std::vector<std::shared_ptr<TensorOperation>> transforms,
int32_t num_ops) {
auto op = std::make_shared<UniformAugOperation>(transforms, num_ops);
// Input validation
if (!op->ValidateParams()) {
return nullptr;
}
return op;
}
// Function to create RandomHorizontalFlipOperation.
std::shared_ptr<RandomHorizontalFlipOperation> RandomHorizontalFlip(float prob) {
auto op = std::make_shared<RandomHorizontalFlipOperation>(prob);
// Input validation
if (!op->ValidateParams()) {
return nullptr;
}
return op;
}
// Function to create RandomVerticalFlipOperation.
std::shared_ptr<RandomVerticalFlipOperation> RandomVerticalFlip(float prob) {
auto op = std::make_shared<RandomVerticalFlipOperation>(prob);
// Input validation
if (!op->ValidateParams()) {
return nullptr;
}
return op;
}
// Function to create RandomRotationOperation.
std::shared_ptr<RandomRotationOperation> RandomRotation(std::vector<float> degrees, InterpolationMode resample,
bool expand, std::vector<float> center,
std::vector<uint8_t> fill_value) {
auto op = std::make_shared<RandomRotationOperation>(degrees, resample, expand, center, fill_value);
// Function to create NormalizeOperation.
std::shared_ptr<NormalizeOperation> Normalize(std::vector<float> mean, std::vector<float> std) {
auto op = std::make_shared<NormalizeOperation>(mean, std);
// Input validation
if (!op->ValidateParams()) {
return nullptr;
@ -143,16 +90,6 @@ std::shared_ptr<PadOperation> Pad(std::vector<int32_t> padding, std::vector<uint
return op;
}
// Function to create CutOutOp.
std::shared_ptr<CutOutOperation> CutOut(int32_t length, int32_t num_patches) {
auto op = std::make_shared<CutOutOperation>(length, num_patches);
// Input validation
if (!op->ValidateParams()) {
return nullptr;
}
return op;
}
// Function to create RandomColorAdjustOperation.
std::shared_ptr<RandomColorAdjustOperation> RandomColorAdjust(std::vector<float> brightness,
std::vector<float> contrast,
@ -165,106 +102,72 @@ std::shared_ptr<RandomColorAdjustOperation> RandomColorAdjust(std::vector<float>
return op;
}
// Function to create RandomCropOperation.
std::shared_ptr<RandomCropOperation> RandomCrop(std::vector<int32_t> size, std::vector<int32_t> padding,
bool pad_if_needed, std::vector<uint8_t> fill_value) {
auto op = std::make_shared<RandomCropOperation>(size, padding, pad_if_needed, fill_value);
// Input validation
if (!op->ValidateParams()) {
return nullptr;
}
return op;
}
// Function to create RandomHorizontalFlipOperation.
std::shared_ptr<RandomHorizontalFlipOperation> RandomHorizontalFlip(float prob) {
auto op = std::make_shared<RandomHorizontalFlipOperation>(prob);
// Input validation
if (!op->ValidateParams()) {
return nullptr;
}
return op;
}
// Function to create RandomRotationOperation.
std::shared_ptr<RandomRotationOperation> RandomRotation(std::vector<float> degrees, InterpolationMode resample,
bool expand, std::vector<float> center,
std::vector<uint8_t> fill_value) {
auto op = std::make_shared<RandomRotationOperation>(degrees, resample, expand, center, fill_value);
// Input validation
if (!op->ValidateParams()) {
return nullptr;
}
return op;
}
// Function to create RandomVerticalFlipOperation.
std::shared_ptr<RandomVerticalFlipOperation> RandomVerticalFlip(float prob) {
auto op = std::make_shared<RandomVerticalFlipOperation>(prob);
// Input validation
if (!op->ValidateParams()) {
return nullptr;
}
return op;
}
// Function to create ResizeOperation.
std::shared_ptr<ResizeOperation> Resize(std::vector<int32_t> size, InterpolationMode interpolation) {
auto op = std::make_shared<ResizeOperation>(size, interpolation);
// Input validation
if (!op->ValidateParams()) {
return nullptr;
}
return op;
}
// Function to create UniformAugOperation.
std::shared_ptr<UniformAugOperation> UniformAugment(std::vector<std::shared_ptr<TensorOperation>> transforms,
int32_t num_ops) {
auto op = std::make_shared<UniformAugOperation>(transforms, num_ops);
// Input validation
if (!op->ValidateParams()) {
return nullptr;
}
return op;
}
/* ####################################### Derived TensorOperation classes ################################# */
// NormalizeOperation
NormalizeOperation::NormalizeOperation(std::vector<float> mean, std::vector<float> std) : mean_(mean), std_(std) {}
bool NormalizeOperation::ValidateParams() {
if (mean_.size() != 3) {
MS_LOG(ERROR) << "Normalize: mean vector has incorrect size: " << mean_.size();
return false;
}
if (std_.size() != 3) {
MS_LOG(ERROR) << "Normalize: std vector has incorrect size: " << std_.size();
return false;
}
return true;
}
std::shared_ptr<TensorOp> NormalizeOperation::Build() {
return std::make_shared<NormalizeOp>(mean_[0], mean_[1], mean_[2], std_[0], std_[1], std_[2]);
}
// DecodeOperation
DecodeOperation::DecodeOperation(bool rgb) : rgb_(rgb) {}
bool DecodeOperation::ValidateParams() { return true; }
std::shared_ptr<TensorOp> DecodeOperation::Build() { return std::make_shared<DecodeOp>(rgb_); }
// ResizeOperation
ResizeOperation::ResizeOperation(std::vector<int32_t> size, InterpolationMode interpolation)
: size_(size), interpolation_(interpolation) {}
bool ResizeOperation::ValidateParams() {
if (size_.empty() || size_.size() > 2) {
MS_LOG(ERROR) << "Resize: size vector has incorrect size: " << size_.size();
return false;
}
return true;
}
std::shared_ptr<TensorOp> ResizeOperation::Build() {
int32_t height = size_[0];
int32_t width = 0;
// User specified the width value.
if (size_.size() == 2) {
width = size_[1];
}
return std::make_shared<ResizeOp>(height, width, interpolation_);
}
// RandomCropOperation
RandomCropOperation::RandomCropOperation(std::vector<int32_t> size, std::vector<int32_t> padding, bool pad_if_needed,
std::vector<uint8_t> fill_value)
: size_(size), padding_(padding), pad_if_needed_(pad_if_needed), fill_value_(fill_value) {}
bool RandomCropOperation::ValidateParams() {
if (size_.empty() || size_.size() > 2) {
MS_LOG(ERROR) << "RandomCrop: size vector has incorrect size: " << size_.size();
return false;
}
if (padding_.empty() || padding_.size() != 4) {
MS_LOG(ERROR) << "RandomCrop: padding vector has incorrect size: padding.size()";
return false;
}
if (fill_value_.empty() || fill_value_.size() != 3) {
MS_LOG(ERROR) << "RandomCrop: fill_value vector has incorrect size: fill_value.size()";
return false;
}
return true;
}
std::shared_ptr<TensorOp> RandomCropOperation::Build() {
int32_t crop_height = size_[0];
int32_t crop_width = 0;
int32_t pad_top = padding_[0];
int32_t pad_bottom = padding_[1];
int32_t pad_left = padding_[2];
int32_t pad_right = padding_[3];
uint8_t fill_r = fill_value_[0];
uint8_t fill_g = fill_value_[1];
uint8_t fill_b = fill_value_[2];
// User has specified the crop_width value.
if (size_.size() == 2) {
crop_width = size_[1];
}
auto tensor_op = std::make_shared<RandomCropOp>(crop_height, crop_width, pad_top, pad_bottom, pad_left, pad_right,
BorderType::kConstant, pad_if_needed_, fill_r, fill_g, fill_b);
return tensor_op;
}
// CenterCropOperation
CenterCropOperation::CenterCropOperation(std::vector<int32_t> size) : size_(size) {}
@ -289,73 +192,54 @@ std::shared_ptr<TensorOp> CenterCropOperation::Build() {
return tensor_op;
}
// UniformAugOperation
UniformAugOperation::UniformAugOperation(std::vector<std::shared_ptr<TensorOperation>> transforms, int32_t num_ops)
: transforms_(transforms), num_ops_(num_ops) {}
// CutOutOperation
CutOutOperation::CutOutOperation(int32_t length, int32_t num_patches) : length_(length), num_patches_(num_patches) {}
bool UniformAugOperation::ValidateParams() { return true; }
std::shared_ptr<TensorOp> UniformAugOperation::Build() {
std::vector<std::shared_ptr<TensorOp>> tensor_ops;
(void)std::transform(transforms_.begin(), transforms_.end(), std::back_inserter(tensor_ops),
[](std::shared_ptr<TensorOperation> op) -> std::shared_ptr<TensorOp> { return op->Build(); });
std::shared_ptr<UniformAugOp> tensor_op = std::make_shared<UniformAugOp>(tensor_ops, num_ops_);
return tensor_op;
}
// RandomHorizontalFlipOperation
RandomHorizontalFlipOperation::RandomHorizontalFlipOperation(float probability) : probability_(probability) {}
bool RandomHorizontalFlipOperation::ValidateParams() { return true; }
std::shared_ptr<TensorOp> RandomHorizontalFlipOperation::Build() {
std::shared_ptr<RandomHorizontalFlipOp> tensor_op = std::make_shared<RandomHorizontalFlipOp>(probability_);
return tensor_op;
}
// RandomVerticalFlipOperation
RandomVerticalFlipOperation::RandomVerticalFlipOperation(float probability) : probability_(probability) {}
bool RandomVerticalFlipOperation::ValidateParams() { return true; }
std::shared_ptr<TensorOp> RandomVerticalFlipOperation::Build() {
std::shared_ptr<RandomVerticalFlipOp> tensor_op = std::make_shared<RandomVerticalFlipOp>(probability_);
return tensor_op;
}
// Function to create RandomRotationOperation.
RandomRotationOperation::RandomRotationOperation(std::vector<float> degrees, InterpolationMode interpolation_mode,
bool expand, std::vector<float> center,
std::vector<uint8_t> fill_value)
: degrees_(degrees),
interpolation_mode_(interpolation_mode),
expand_(expand),
center_(center),
fill_value_(fill_value) {}
bool RandomRotationOperation::ValidateParams() {
if (degrees_.empty() || degrees_.size() != 2) {
MS_LOG(ERROR) << "RandomRotation: degrees vector has incorrect size: degrees.size()";
bool CutOutOperation::ValidateParams() {
if (length_ < 0) {
MS_LOG(ERROR) << "CutOut: length cannot be negative";
return false;
}
if (center_.empty() || center_.size() != 2) {
MS_LOG(ERROR) << "RandomRotation: center vector has incorrect size: center.size()";
return false;
}
if (fill_value_.empty() || fill_value_.size() != 3) {
MS_LOG(ERROR) << "RandomRotation: fill_value vector has incorrect size: fill_value.size()";
if (num_patches_ < 0) {
MS_LOG(ERROR) << "CutOut: number of patches cannot be negative";
return false;
}
return true;
}
std::shared_ptr<TensorOp> RandomRotationOperation::Build() {
std::shared_ptr<RandomRotationOp> tensor_op =
std::make_shared<RandomRotationOp>(degrees_[0], degrees_[1], center_[0], center_[1], interpolation_mode_, expand_,
fill_value_[0], fill_value_[1], fill_value_[2]);
std::shared_ptr<TensorOp> CutOutOperation::Build() {
std::shared_ptr<CutOutOp> tensor_op = std::make_shared<CutOutOp>(length_, length_, num_patches_, false, 0, 0, 0);
return tensor_op;
}
// DecodeOperation
DecodeOperation::DecodeOperation(bool rgb) : rgb_(rgb) {}
bool DecodeOperation::ValidateParams() { return true; }
std::shared_ptr<TensorOp> DecodeOperation::Build() { return std::make_shared<DecodeOp>(rgb_); }
// NormalizeOperation
NormalizeOperation::NormalizeOperation(std::vector<float> mean, std::vector<float> std) : mean_(mean), std_(std) {}
bool NormalizeOperation::ValidateParams() {
if (mean_.size() != 3) {
MS_LOG(ERROR) << "Normalize: mean vector has incorrect size: " << mean_.size();
return false;
}
if (std_.size() != 3) {
MS_LOG(ERROR) << "Normalize: std vector has incorrect size: " << std_.size();
return false;
}
return true;
}
std::shared_ptr<TensorOp> NormalizeOperation::Build() {
return std::make_shared<NormalizeOp>(mean_[0], mean_[1], mean_[2], std_[0], std_[1], std_[2]);
}
// PadOperation
PadOperation::PadOperation(std::vector<int32_t> padding, std::vector<uint8_t> fill_value, BorderType padding_mode)
: padding_(padding), fill_value_(fill_value), padding_mode_(padding_mode) {}
@ -411,26 +295,6 @@ std::shared_ptr<TensorOp> PadOperation::Build() {
return tensor_op;
}
// CutOutOperation
CutOutOperation::CutOutOperation(int32_t length, int32_t num_patches) : length_(length), num_patches_(num_patches) {}
bool CutOutOperation::ValidateParams() {
if (length_ < 0) {
MS_LOG(ERROR) << "CutOut: length cannot be negative";
return false;
}
if (num_patches_ < 0) {
MS_LOG(ERROR) << "CutOut: number of patches cannot be negative";
return false;
}
return true;
}
std::shared_ptr<TensorOp> CutOutOperation::Build() {
std::shared_ptr<CutOutOp> tensor_op = std::make_shared<CutOutOp>(length_, length_, num_patches_, false, 0, 0, 0);
return tensor_op;
}
// RandomColorAdjustOperation.
RandomColorAdjustOperation::RandomColorAdjustOperation(std::vector<float> brightness, std::vector<float> contrast,
std::vector<float> saturation, std::vector<float> hue)
@ -485,6 +349,143 @@ std::shared_ptr<TensorOp> RandomColorAdjustOperation::Build() {
return tensor_op;
}
// RandomCropOperation
RandomCropOperation::RandomCropOperation(std::vector<int32_t> size, std::vector<int32_t> padding, bool pad_if_needed,
std::vector<uint8_t> fill_value)
: size_(size), padding_(padding), pad_if_needed_(pad_if_needed), fill_value_(fill_value) {}
bool RandomCropOperation::ValidateParams() {
if (size_.empty() || size_.size() > 2) {
MS_LOG(ERROR) << "RandomCrop: size vector has incorrect size: " << size_.size();
return false;
}
if (padding_.empty() || padding_.size() != 4) {
MS_LOG(ERROR) << "RandomCrop: padding vector has incorrect size: padding.size()";
return false;
}
if (fill_value_.empty() || fill_value_.size() != 3) {
MS_LOG(ERROR) << "RandomCrop: fill_value vector has incorrect size: fill_value.size()";
return false;
}
return true;
}
std::shared_ptr<TensorOp> RandomCropOperation::Build() {
int32_t crop_height = size_[0];
int32_t crop_width = 0;
int32_t pad_top = padding_[0];
int32_t pad_bottom = padding_[1];
int32_t pad_left = padding_[2];
int32_t pad_right = padding_[3];
uint8_t fill_r = fill_value_[0];
uint8_t fill_g = fill_value_[1];
uint8_t fill_b = fill_value_[2];
// User has specified the crop_width value.
if (size_.size() == 2) {
crop_width = size_[1];
}
auto tensor_op = std::make_shared<RandomCropOp>(crop_height, crop_width, pad_top, pad_bottom, pad_left, pad_right,
BorderType::kConstant, pad_if_needed_, fill_r, fill_g, fill_b);
return tensor_op;
}
// RandomHorizontalFlipOperation
RandomHorizontalFlipOperation::RandomHorizontalFlipOperation(float probability) : probability_(probability) {}
bool RandomHorizontalFlipOperation::ValidateParams() { return true; }
std::shared_ptr<TensorOp> RandomHorizontalFlipOperation::Build() {
std::shared_ptr<RandomHorizontalFlipOp> tensor_op = std::make_shared<RandomHorizontalFlipOp>(probability_);
return tensor_op;
}
// Function to create RandomRotationOperation.
RandomRotationOperation::RandomRotationOperation(std::vector<float> degrees, InterpolationMode interpolation_mode,
bool expand, std::vector<float> center,
std::vector<uint8_t> fill_value)
: degrees_(degrees),
interpolation_mode_(interpolation_mode),
expand_(expand),
center_(center),
fill_value_(fill_value) {}
bool RandomRotationOperation::ValidateParams() {
if (degrees_.empty() || degrees_.size() != 2) {
MS_LOG(ERROR) << "RandomRotation: degrees vector has incorrect size: degrees.size()";
return false;
}
if (center_.empty() || center_.size() != 2) {
MS_LOG(ERROR) << "RandomRotation: center vector has incorrect size: center.size()";
return false;
}
if (fill_value_.empty() || fill_value_.size() != 3) {
MS_LOG(ERROR) << "RandomRotation: fill_value vector has incorrect size: fill_value.size()";
return false;
}
return true;
}
std::shared_ptr<TensorOp> RandomRotationOperation::Build() {
std::shared_ptr<RandomRotationOp> tensor_op =
std::make_shared<RandomRotationOp>(degrees_[0], degrees_[1], center_[0], center_[1], interpolation_mode_, expand_,
fill_value_[0], fill_value_[1], fill_value_[2]);
return tensor_op;
}
// RandomVerticalFlipOperation
RandomVerticalFlipOperation::RandomVerticalFlipOperation(float probability) : probability_(probability) {}
bool RandomVerticalFlipOperation::ValidateParams() { return true; }
std::shared_ptr<TensorOp> RandomVerticalFlipOperation::Build() {
std::shared_ptr<RandomVerticalFlipOp> tensor_op = std::make_shared<RandomVerticalFlipOp>(probability_);
return tensor_op;
}
// ResizeOperation
ResizeOperation::ResizeOperation(std::vector<int32_t> size, InterpolationMode interpolation)
: size_(size), interpolation_(interpolation) {}
bool ResizeOperation::ValidateParams() {
if (size_.empty() || size_.size() > 2) {
MS_LOG(ERROR) << "Resize: size vector has incorrect size: " << size_.size();
return false;
}
return true;
}
std::shared_ptr<TensorOp> ResizeOperation::Build() {
int32_t height = size_[0];
int32_t width = 0;
// User specified the width value.
if (size_.size() == 2) {
width = size_[1];
}
return std::make_shared<ResizeOp>(height, width, interpolation_);
}
// UniformAugOperation
UniformAugOperation::UniformAugOperation(std::vector<std::shared_ptr<TensorOperation>> transforms, int32_t num_ops)
: transforms_(transforms), num_ops_(num_ops) {}
bool UniformAugOperation::ValidateParams() { return true; }
std::shared_ptr<TensorOp> UniformAugOperation::Build() {
std::vector<std::shared_ptr<TensorOp>> tensor_ops;
(void)std::transform(transforms_.begin(), transforms_.end(), std::back_inserter(tensor_ops),
[](std::shared_ptr<TensorOperation> op) -> std::shared_ptr<TensorOp> { return op->Build(); });
std::shared_ptr<UniformAugOp> tensor_op = std::make_shared<UniformAugOp>(tensor_ops, num_ops_);
return tensor_op;
}
} // namespace vision
} // namespace api
} // namespace dataset

View File

@ -40,17 +40,29 @@ namespace api {
class TensorOperation;
class SamplerObj;
// Datasets classes (in alphabetical order)
class Cifar10Dataset;
class ImageFolderDataset;
class MnistDataset;
// Dataset Op classes (in alphabetical order)
class BatchDataset;
class RepeatDataset;
class MapDataset;
class ProjectDataset;
class RenameDataset;
class RepeatDataset;
class ShuffleDataset;
class SkipDataset;
class Cifar10Dataset;
class ProjectDataset;
class ZipDataset;
class RenameDataset;
/// \brief Function to create a Cifar10 Dataset
/// \notes The generated dataset has two columns ['image', 'label']
/// \param[in] dataset_dir Path to the root directory that contains the dataset
/// \param[in] num_samples The number of images to be included in the dataset
/// \param[in] sampler Object used to choose samples from the dataset. If sampler is `nullptr`, A `RandomSampler`
/// will be used to randomly iterate the entire dataset
/// \return Shared pointer to the current Dataset
std::shared_ptr<Cifar10Dataset> Cifar10(const std::string &dataset_dir, int32_t num_samples,
std::shared_ptr<SamplerObj> sampler);
/// \brief Function to create an ImageFolderDataset
/// \notes A source dataset that reads images from a tree of directories
@ -76,16 +88,6 @@ std::shared_ptr<ImageFolderDataset> ImageFolder(std::string dataset_dir, bool de
/// \return Shared pointer to the current MnistDataset
std::shared_ptr<MnistDataset> Mnist(std::string dataset_dir, std::shared_ptr<SamplerObj> sampler = nullptr);
/// \brief Function to create a Cifar10 Dataset
/// \notes The generated dataset has two columns ['image', 'label']
/// \param[in] dataset_dir Path to the root directory that contains the dataset
/// \param[in] num_samples The number of images to be included in the dataset
/// \param[in] sampler Object used to choose samples from the dataset. If sampler is `nullptr`, A `RandomSampler`
/// will be used to randomly iterate the entire dataset
/// \return Shared pointer to the current Dataset
std::shared_ptr<Cifar10Dataset> Cifar10(const std::string &dataset_dir, int32_t num_samples,
std::shared_ptr<SamplerObj> sampler);
/// \class Dataset datasets.h
/// \brief A base class to represent a dataset in the data pipeline.
class Dataset : public std::enable_shared_from_this<Dataset> {
@ -128,14 +130,6 @@ class Dataset : public std::enable_shared_from_this<Dataset> {
/// \return Shared pointer to the current BatchDataset
std::shared_ptr<BatchDataset> Batch(int32_t batch_size, bool drop_remainder = false);
/// \brief Function to create a RepeatDataset
/// \notes Repeats this dataset count times. Repeat indefinitely if count is -1
/// \param[in] count Number of times the dataset should be repeated
/// \return Shared pointer to the current Dataset
/// \note Repeat will return shared pointer to `Dataset` instead of `RepeatDataset`
/// due to a limitation in the current implementation
std::shared_ptr<Dataset> Repeat(int32_t count = -1);
/// \brief Function to create a MapDataset
/// \notes Applies each operation in operations to this dataset
/// \param[in] operations Vector of operations to be applied on the dataset. Operations are
@ -156,6 +150,28 @@ class Dataset : public std::enable_shared_from_this<Dataset> {
std::vector<std::string> output_columns = {},
const std::vector<std::string> &project_columns = {});
/// \brief Function to create a Project Dataset
/// \notes Applies project to the dataset
/// \param[in] columns The name of columns to project
/// \return Shared pointer to the current Dataset
std::shared_ptr<ProjectDataset> Project(const std::vector<std::string> &columns);
/// \brief Function to create a Rename Dataset
/// \notes Renames the columns in the input dataset
/// \param[in] input_columns List of the input columns to rename
/// \param[in] output_columns List of the output columns
/// \return Shared pointer to the current Dataset
std::shared_ptr<RenameDataset> Rename(const std::vector<std::string> &input_columns,
const std::vector<std::string> &output_columns);
/// \brief Function to create a RepeatDataset
/// \notes Repeats this dataset count times. Repeat indefinitely if count is -1
/// \param[in] count Number of times the dataset should be repeated
/// \return Shared pointer to the current Dataset
/// \note Repeat will return shared pointer to `Dataset` instead of `RepeatDataset`
/// due to a limitation in the current implementation
std::shared_ptr<Dataset> Repeat(int32_t count = -1);
/// \brief Function to create a Shuffle Dataset
/// \notes Randomly shuffles the rows of this dataset
/// \param[in] buffer_size The size of the buffer (must be larger than 1) for shuffling
@ -168,26 +184,12 @@ class Dataset : public std::enable_shared_from_this<Dataset> {
/// \return Shared pointer to the current SkipDataset
std::shared_ptr<SkipDataset> Skip(int32_t count);
/// \brief Function to create a Project Dataset
/// \notes Applies project to the dataset
/// \param[in] columns The name of columns to project
/// \return Shared pointer to the current Dataset
std::shared_ptr<ProjectDataset> Project(const std::vector<std::string> &columns);
/// \brief Function to create a Zip Dataset
/// \notes Applies zip to the dataset
/// \param[in] datasets A list of shared pointer to the datasets that we want to zip
/// \return Shared pointer to the current Dataset
std::shared_ptr<ZipDataset> Zip(const std::vector<std::shared_ptr<Dataset>> &datasets);
/// \brief Function to create a Rename Dataset
/// \notes Renames the columns in the input dataset
/// \param[in] input_columns List of the input columns to rename
/// \param[in] output_columns List of the output columns
/// \return Shared pointer to the current Dataset
std::shared_ptr<RenameDataset> Rename(const std::vector<std::string> &input_columns,
const std::vector<std::string> &output_columns);
protected:
std::vector<std::shared_ptr<Dataset>> children;
std::shared_ptr<Dataset> parent;
@ -199,6 +201,28 @@ class Dataset : public std::enable_shared_from_this<Dataset> {
/* ####################################### Derived Dataset classes ################################# */
class Cifar10Dataset : public Dataset {
public:
/// \brief Constructor
Cifar10Dataset(const std::string &dataset_dir, int32_t num_samples, std::shared_ptr<SamplerObj> sampler);
/// \brief Destructor
~Cifar10Dataset() = default;
/// \brief a base class override function to create the required runtime dataset op objects for this class
/// \return The list of shared pointers to the newly created DatasetOps
std::vector<std::shared_ptr<DatasetOp>> Build() override;
/// \brief Parameters validation
/// \return bool true if all the params are valid
bool ValidateParams() override;
private:
std::string dataset_dir_;
int32_t num_samples_;
std::shared_ptr<SamplerObj> sampler_;
};
/// \class ImageFolderDataset
/// \brief A Dataset derived class to represent ImageFolder dataset
class ImageFolderDataset : public Dataset {
@ -273,6 +297,71 @@ class BatchDataset : public Dataset {
std::map<std::string, std::pair<TensorShape, std::shared_ptr<Tensor>>> pad_map_;
};
class MapDataset : public Dataset {
public:
/// \brief Constructor
MapDataset(std::vector<std::shared_ptr<TensorOperation>> operations, std::vector<std::string> input_columns = {},
std::vector<std::string> output_columns = {}, const std::vector<std::string> &columns = {});
/// \brief Destructor
~MapDataset() = default;
/// \brief a base class override function to create the required runtime dataset op objects for this class
/// \return The list of shared pointers to the newly created DatasetOps
std::vector<std::shared_ptr<DatasetOp>> Build() override;
/// \brief Parameters validation
/// \return bool true if all the params are valid
bool ValidateParams() override;
private:
std::vector<std::shared_ptr<TensorOperation>> operations_;
std::vector<std::string> input_columns_;
std::vector<std::string> output_columns_;
std::vector<std::string> project_columns_;
};
class ProjectDataset : public Dataset {
public:
/// \brief Constructor
explicit ProjectDataset(const std::vector<std::string> &columns);
/// \brief Destructor
~ProjectDataset() = default;
/// \brief a base class override function to create the required runtime dataset op objects for this class
/// \return The list of shared pointers to the newly created DatasetOps
std::vector<std::shared_ptr<DatasetOp>> Build() override;
/// \brief Parameters validation
/// \return bool true if all the params are valid
bool ValidateParams() override;
private:
std::vector<std::string> columns_;
};
class RenameDataset : public Dataset {
public:
/// \brief Constructor
explicit RenameDataset(const std::vector<std::string> &input_columns, const std::vector<std::string> &output_columns);
/// \brief Destructor
~RenameDataset() = default;
/// \brief a base class override function to create the required runtime dataset op objects for this class
/// \return The list of shared pointers to the newly created DatasetOps
std::vector<std::shared_ptr<DatasetOp>> Build() override;
/// \brief Parameters validation
/// \return bool true if all the params are valid
bool ValidateParams() override;
private:
std::vector<std::string> input_columns_;
std::vector<std::string> output_columns_;
};
class RepeatDataset : public Dataset {
public:
/// \brief Constructor
@ -329,72 +418,6 @@ class SkipDataset : public Dataset {
int32_t skip_count_;
};
class MapDataset : public Dataset {
public:
/// \brief Constructor
MapDataset(std::vector<std::shared_ptr<TensorOperation>> operations, std::vector<std::string> input_columns = {},
std::vector<std::string> output_columns = {}, const std::vector<std::string> &columns = {});
/// \brief Destructor
~MapDataset() = default;
/// \brief a base class override function to create the required runtime dataset op objects for this class
/// \return The list of shared pointers to the newly created DatasetOps
std::vector<std::shared_ptr<DatasetOp>> Build() override;
/// \brief Parameters validation
/// \return bool true if all the params are valid
bool ValidateParams() override;
private:
std::vector<std::shared_ptr<TensorOperation>> operations_;
std::vector<std::string> input_columns_;
std::vector<std::string> output_columns_;
std::vector<std::string> project_columns_;
};
class Cifar10Dataset : public Dataset {
public:
/// \brief Constructor
Cifar10Dataset(const std::string &dataset_dir, int32_t num_samples, std::shared_ptr<SamplerObj> sampler);
/// \brief Destructor
~Cifar10Dataset() = default;
/// \brief a base class override function to create the required runtime dataset op objects for this class
/// \return The list of shared pointers to the newly created DatasetOps
std::vector<std::shared_ptr<DatasetOp>> Build() override;
/// \brief Parameters validation
/// \return bool true if all the params are valid
bool ValidateParams() override;
private:
std::string dataset_dir_;
int32_t num_samples_;
std::shared_ptr<SamplerObj> sampler_;
};
class ProjectDataset : public Dataset {
public:
/// \brief Constructor
explicit ProjectDataset(const std::vector<std::string> &columns);
/// \brief Destructor
~ProjectDataset() = default;
/// \brief a base class override function to create the required runtime dataset op objects for this class
/// \return The list of shared pointers to the newly created DatasetOps
std::vector<std::shared_ptr<DatasetOp>> Build() override;
/// \brief Parameters validation
/// \return bool true if all the params are valid
bool ValidateParams() override;
private:
std::vector<std::string> columns_;
};
class ZipDataset : public Dataset {
public:
/// \brief Constructor
@ -412,27 +435,6 @@ class ZipDataset : public Dataset {
bool ValidateParams() override;
};
class RenameDataset : public Dataset {
public:
/// \brief Constructor
explicit RenameDataset(const std::vector<std::string> &input_columns, const std::vector<std::string> &output_columns);
/// \brief Destructor
~RenameDataset() = default;
/// \brief a base class override function to create the required runtime dataset op objects for this class
/// \return The list of shared pointers to the newly created DatasetOps
std::vector<std::shared_ptr<DatasetOp>> Build() override;
/// \brief Parameters validation
/// \return bool true if all the params are valid
bool ValidateParams() override;
private:
std::vector<std::string> input_columns_;
std::vector<std::string> output_columns_;
};
} // namespace api
} // namespace dataset
} // namespace mindspore