forked from OSSInnovation/mindspore
clean pylint
This commit is contained in:
parent
85e686e0b3
commit
86d197dfeb
|
@ -244,8 +244,8 @@ def check_supported(input_x1, input_x2, bias=None, output_y={}, trans_a=False, t
|
|||
|
||||
return True
|
||||
|
||||
|
||||
# pylint: disable=locally-disabled,too-many-arguments, too-many-locals, too-many-statements
|
||||
# pylint: disable=locally-disabled,too-many-arguments, too-many-locals, too-many-statements,
|
||||
# pylint: disable=inconsistent-return-statements
|
||||
# @util.check_input_type(dict, dict, (dict, NoneType), dict, bool, bool, str)
|
||||
@op_info_register(matmul_cube_dense_left_op_info)
|
||||
def CusMatMulCubeDenseLeft(input_x1, input_x2, bias=None, output_y={}, trans_a=False, trans_b=False,
|
||||
|
|
|
@ -40,6 +40,7 @@ matmul_cube_dense_right_op_info = TBERegOp("CusMatMulCubeDenseRight") \
|
|||
.get_op_info()
|
||||
|
||||
|
||||
# pylint: disable=inconsistent-return-statements
|
||||
@op_info_register(matmul_cube_dense_right_op_info)
|
||||
def CusMatMulCubeDenseRight(input_x1, input_x2, input_x3, bias=None, output_y={}, trans_a=False, trans_b=False,
|
||||
kernel_name="matmulcube"):
|
||||
|
|
|
@ -31,6 +31,8 @@ from .transformer_model import TransformerModel
|
|||
GRADIENT_CLIP_TYPE = 1
|
||||
GRADIENT_CLIP_VALUE = 5.0
|
||||
|
||||
|
||||
# pylint: disable=consider-using-in
|
||||
class ClipGradients(nn.Cell):
|
||||
"""
|
||||
Clip gradients.
|
||||
|
@ -48,11 +50,12 @@ class ClipGradients(nn.Cell):
|
|||
self.clip_by_norm = nn.ClipByNorm()
|
||||
self.cast = P.Cast()
|
||||
self.dtype = P.DType()
|
||||
|
||||
def construct(self,
|
||||
grads,
|
||||
clip_type,
|
||||
clip_value):
|
||||
#return grads
|
||||
# return grads
|
||||
if clip_type != 0 and clip_type != 1:
|
||||
return grads
|
||||
|
||||
|
@ -83,8 +86,8 @@ class TransformerTrainingLoss(nn.Cell):
|
|||
super(TransformerTrainingLoss, self).__init__(auto_prefix=False)
|
||||
self.vocab_size = config.vocab_size
|
||||
self.onehot = P.OneHot()
|
||||
self.on_value = Tensor(float(1-config.label_smoothing), mstype.float32)
|
||||
self.off_value = Tensor(config.label_smoothing/float(self.vocab_size-1), mstype.float32)
|
||||
self.on_value = Tensor(float(1 - config.label_smoothing), mstype.float32)
|
||||
self.off_value = Tensor(config.label_smoothing / float(self.vocab_size - 1), mstype.float32)
|
||||
self.reduce_sum = P.ReduceSum()
|
||||
self.reduce_mean = P.ReduceMean()
|
||||
self.reshape = P.Reshape()
|
||||
|
@ -92,7 +95,7 @@ class TransformerTrainingLoss(nn.Cell):
|
|||
self.flatten = P.Flatten()
|
||||
self.neg = P.Neg()
|
||||
self.cast = P.Cast()
|
||||
self.flat_shape = (config.batch_size*config.seq_length,)
|
||||
self.flat_shape = (config.batch_size * config.seq_length,)
|
||||
|
||||
def construct(self, prediction_scores, label_ids, label_weights):
|
||||
"""Defines the computation performed."""
|
||||
|
@ -217,10 +220,12 @@ class TransformerTrainOneStepCell(nn.Cell):
|
|||
grad_scale = C.MultitypeFuncGraph("grad_scale")
|
||||
reciprocal = P.Reciprocal()
|
||||
|
||||
|
||||
@grad_scale.register("Tensor", "Tensor")
|
||||
def tensor_grad_scale(scale, grad):
|
||||
return grad * F.cast(reciprocal(scale), F.dtype(grad))
|
||||
|
||||
|
||||
class TransformerTrainOneStepWithLossScaleCell(nn.Cell):
|
||||
"""
|
||||
Encapsulation class of Transformer network training.
|
||||
|
|
|
@ -34,6 +34,9 @@ GRADIENT_CLIP_VALUE = 1.0
|
|||
|
||||
_nn_clip_by_norm = nn.ClipByNorm()
|
||||
clip_grad = C.MultitypeFuncGraph("clip_grad")
|
||||
|
||||
|
||||
# pylint: disable=consider-using-in
|
||||
@clip_grad.register("Number", "Number", "Tensor")
|
||||
def _clip_grad(clip_type, clip_value, grad):
|
||||
"""
|
||||
|
@ -57,6 +60,7 @@ def _clip_grad(clip_type, clip_value, grad):
|
|||
new_grad = _nn_clip_by_norm(grad, F.cast(F.tuple_to_array((clip_value,)), dt))
|
||||
return new_grad
|
||||
|
||||
|
||||
class GetMaskedLMOutput(nn.Cell):
|
||||
"""
|
||||
Get masked lm output.
|
||||
|
@ -377,6 +381,7 @@ class BertTrainOneStepWithLossScaleCell(nn.Cell):
|
|||
self.loss_scale = Parameter(Tensor(scale_update_cell.get_loss_scale(), dtype=mstype.float32),
|
||||
name="loss_scale")
|
||||
self.add_flags(has_effect=True)
|
||||
|
||||
def construct(self,
|
||||
input_ids,
|
||||
input_mask,
|
||||
|
|
|
@ -15,14 +15,15 @@
|
|||
|
||||
"""Test bert submodules."""
|
||||
|
||||
import numpy as np
|
||||
import os
|
||||
|
||||
from mindspore import Tensor
|
||||
from mindspore import nn, context
|
||||
import numpy as np
|
||||
from mindspore.model_zoo.Bert_NEZHA import EmbeddingLookup, GetMaskedLMOutput, \
|
||||
BertConfig, BertPreTraining, BertNetworkWithLoss
|
||||
from mindspore.model_zoo.Bert_NEZHA.bert_model import BertModel
|
||||
|
||||
from mindspore import Tensor
|
||||
from mindspore import nn, context
|
||||
from ..mindspore_test import mindspore_test
|
||||
from ..pipeline.forward.compile_forward import pipeline_for_compile_forward_anf_graph_for_case_by_case_config, \
|
||||
pipeline_for_compile_forward_ge_graph_for_case_by_case_config
|
||||
|
|
|
@ -15,9 +15,10 @@
|
|||
|
||||
"""Component that Check if the function raises the expected Exception."""
|
||||
|
||||
import pytest
|
||||
import sys
|
||||
|
||||
import pytest
|
||||
|
||||
from ...components.icomponent import IExectorComponent
|
||||
from ...utils import keyword
|
||||
|
||||
|
|
|
@ -16,9 +16,10 @@
|
|||
"""Implementation of Numerical gradients checking."""
|
||||
# pylint: disable=missing-docstring
|
||||
|
||||
from typing import Callable, List, Any
|
||||
|
||||
import mindspore._c_expression as _c_expression
|
||||
import numpy as np
|
||||
from typing import Callable, List, Any
|
||||
|
||||
from mindspore import ParameterTuple
|
||||
from mindspore import Tensor
|
||||
|
|
|
@ -15,9 +15,10 @@
|
|||
|
||||
"""Dataset utils."""
|
||||
|
||||
import numpy as np
|
||||
import random
|
||||
|
||||
import numpy as np
|
||||
|
||||
from mindspore import Tensor
|
||||
|
||||
|
||||
|
|
|
@ -24,8 +24,7 @@ from mindspore.ops import operations as P
|
|||
from mindspore.ops._grad.grad_base import bprop_getters
|
||||
from mindspore.ops.primitive import prim_attr_register, PrimitiveWithInfer
|
||||
|
||||
logging.basicConfig(level=logging.DEBUG, format=
|
||||
'[%(levelname)s] %(asctime)s %(pathname)s:%(lineno)d %(message)s')
|
||||
logging.basicConfig(level=logging.DEBUG, format='[%(levelname)s] %(asctime)s %(pathname)s:%(lineno)d %(message)s')
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
|
|
|
@ -14,9 +14,8 @@
|
|||
# ============================================================================
|
||||
|
||||
"""Other utils."""
|
||||
|
||||
import mindspore._c_expression as _c_expression
|
||||
import numpy as np
|
||||
import mindspore._c_expression as _c_expression
|
||||
|
||||
from mindspore.common.tensor import Tensor
|
||||
|
||||
|
|
|
@ -34,6 +34,9 @@ GRADIENT_CLIP_VALUE = 1.0
|
|||
|
||||
_nn_clip_by_norm = nn.ClipByNorm()
|
||||
clip_grad = C.MultitypeFuncGraph("clip_grad")
|
||||
|
||||
|
||||
# pylint: disable=consider-using-in
|
||||
@clip_grad.register("Number", "Number", "Tensor")
|
||||
def _clip_grad(clip_type, clip_value, grad):
|
||||
"""
|
||||
|
@ -57,6 +60,7 @@ def _clip_grad(clip_type, clip_value, grad):
|
|||
new_grad = _nn_clip_by_norm(grad, F.cast(F.tuple_to_array((clip_value,)), dt))
|
||||
return new_grad
|
||||
|
||||
|
||||
class GetMaskedLMOutput(nn.Cell):
|
||||
"""
|
||||
Get masked lm output.
|
||||
|
@ -377,6 +381,7 @@ class BertTrainOneStepWithLossScaleCell(nn.Cell):
|
|||
self.loss_scale = Parameter(Tensor(scale_update_cell.get_loss_scale(), dtype=mstype.float32),
|
||||
name="loss_scale")
|
||||
self.add_flags(has_effect=True)
|
||||
|
||||
def construct(self,
|
||||
input_ids,
|
||||
input_mask,
|
||||
|
|
|
@ -23,35 +23,41 @@ from mindspore.ops import functional as F, composite as C
|
|||
import mindspore.context as context
|
||||
import pytest
|
||||
|
||||
|
||||
class TensorIntAutoCast(nn.Cell):
|
||||
def __init__(self,):
|
||||
def __init__(self, ):
|
||||
super(TensorIntAutoCast, self).__init__()
|
||||
self.i = 2
|
||||
|
||||
def construct(self, t):
|
||||
z = F.tensor_mul(t, self.i)
|
||||
return z
|
||||
|
||||
|
||||
class TensorFPAutoCast(nn.Cell):
|
||||
def __init__(self,):
|
||||
def __init__(self, ):
|
||||
super(TensorFPAutoCast, self).__init__()
|
||||
self.f = 1.2
|
||||
|
||||
def construct(self, t):
|
||||
z = F.tensor_mul(t, self.f)
|
||||
return z
|
||||
|
||||
|
||||
class TensorBoolAutoCast(nn.Cell):
|
||||
def __init__(self,):
|
||||
def __init__(self, ):
|
||||
super(TensorBoolAutoCast, self).__init__()
|
||||
self.f = True
|
||||
|
||||
def construct(self, t):
|
||||
z = F.tensor_mul(t, self.f)
|
||||
return z
|
||||
|
||||
|
||||
class TensorAutoCast(nn.Cell):
|
||||
def __init__(self,):
|
||||
def __init__(self, ):
|
||||
super(TensorAutoCast, self).__init__()
|
||||
|
||||
def construct(self, t1, t2):
|
||||
z = F.tensor_mul(t1, t2)
|
||||
return z
|
||||
|
@ -68,7 +74,7 @@ def test_tensor_auto_cast():
|
|||
t_fp16 = Tensor(np.ones([2, 1, 2, 2]), mstype.float16)
|
||||
t_fp32 = Tensor(np.ones([2, 1, 2, 2]), mstype.float32)
|
||||
t_fp64 = Tensor(np.ones([2, 1, 2, 2]), mstype.float64)
|
||||
net = TensorAutoCast()
|
||||
net = TensorAutoCast()
|
||||
rs = net(t_uint8, t_int8)
|
||||
assert rs.dtype() == mstype.int16
|
||||
rs = net(t_uint8, t_int16)
|
||||
|
@ -96,7 +102,7 @@ def test_tensor_auto_cast():
|
|||
assert rs.dtype() == mstype.float64
|
||||
rs = net(t_fp32, t_fp64)
|
||||
assert rs.dtype() == mstype.float64
|
||||
|
||||
|
||||
rs = net(t_uint8, t_fp16)
|
||||
assert rs.dtype() == mstype.float16
|
||||
rs = net(t_uint8, t_fp32)
|
||||
|
@ -210,7 +216,6 @@ def test_tensor_auto_cast():
|
|||
with pytest.raises(TypeError):
|
||||
net(t_uint64, t_fp64)
|
||||
|
||||
|
||||
with pytest.raises(TypeError):
|
||||
tfp(t_uint16)
|
||||
with pytest.raises(TypeError):
|
||||
|
|
|
@ -21,6 +21,7 @@ import mindspore.common.dtype as mstype
|
|||
from mindspore import Tensor
|
||||
from mindspore.ops import operations as P
|
||||
from mindspore import context
|
||||
|
||||
context.set_context(mode=context.GRAPH_MODE, save_graphs=True)
|
||||
|
||||
|
||||
|
@ -29,14 +30,16 @@ def test_cast_op_attr():
|
|||
def __init__(self):
|
||||
super(CastNet, self).__init__()
|
||||
self.cast = P.Cast()
|
||||
|
||||
def construct(self, x, t):
|
||||
return self.cast(x, t)
|
||||
|
||||
|
||||
class CastTypeTest(nn.Cell):
|
||||
def __init__(self, net):
|
||||
super(CastTypeTest, self).__init__()
|
||||
self.net = net
|
||||
self.cast = P.Cast()
|
||||
|
||||
def construct(self, x, y, z):
|
||||
cast_op = self.cast
|
||||
t1 = cast_op(x, mstype.float32)
|
||||
|
@ -46,6 +49,7 @@ def test_cast_op_attr():
|
|||
t4 = cast_net(y, mstype.int32)
|
||||
t5 = cast_net(z, mstype.float16)
|
||||
return (t1, t2, t3, t4, t5)
|
||||
|
||||
net = CastTypeTest(CastNet())
|
||||
t1 = Tensor(np.ones([1, 16, 1, 1918]).astype(np.int32))
|
||||
t2 = Tensor(np.ones([1, 16, 1, 3840]).astype(np.float32))
|
||||
|
|
|
@ -142,4 +142,6 @@ def test_transpose():
|
|||
assert (output[1].asnumpy() == expect1).all()
|
||||
assert (output[2].asnumpy() == expect2).all()
|
||||
assert (output[3].asnumpy() == expect3).all()
|
||||
test_transpose()
|
||||
|
||||
|
||||
test_transpose()
|
||||
|
|
|
@ -1043,6 +1043,7 @@ def test_print_tuple_wrapper(tag):
|
|||
return fns[tag]
|
||||
|
||||
|
||||
# pylint: disable=unnecessary-semicolon
|
||||
def test_constant_duplicate_mul(tag):
|
||||
fns = FnDict()
|
||||
Mul = Primitive('Mul');
|
||||
|
|
|
@ -152,7 +152,7 @@ def test_dict_set_item():
|
|||
|
||||
x = Tensor(np.ones([2, 2, 3], np.float32))
|
||||
net = DictSetNet()
|
||||
out = net(x)
|
||||
_ = net(x)
|
||||
|
||||
|
||||
# if the dictionary item does not exist, create a new one
|
||||
|
@ -168,4 +168,4 @@ def test_dict_set_item_create_new():
|
|||
return my_dict
|
||||
x = Tensor(np.ones([2, 2, 3], np.float32))
|
||||
net = DictSetNet()
|
||||
out = net(x)
|
||||
_ = net(x)
|
||||
|
|
|
@ -81,31 +81,3 @@ def test_hypermap_func_const():
|
|||
|
||||
net = NetMap()
|
||||
assert net() == (8, 12, 16)
|
||||
|
||||
|
||||
"""
|
||||
def test_hypermap_func_variable():
|
||||
class NetMap(Cell):
|
||||
def __init__(self):
|
||||
super(NetMap, self).__init__()
|
||||
|
||||
def double(self, x):
|
||||
return 2 * x
|
||||
|
||||
def triple(self, x):
|
||||
return 3 * x
|
||||
|
||||
def square(self, x):
|
||||
return x * x
|
||||
|
||||
def construct(self, x):
|
||||
_list = [self.double, self.triple, self.square]
|
||||
return map(lambda f: f(x), _list)
|
||||
|
||||
x = Tensor(np.ones([3, 2, 3], np.float32))
|
||||
net = NetMap()
|
||||
|
||||
with pytest.raises(RuntimeError) as ex:
|
||||
net(x)
|
||||
assert "HyperMap don't support Closure with free variable yet" in str(ex.value)
|
||||
"""
|
||||
|
|
|
@ -133,7 +133,7 @@ def test_list_append_2():
|
|||
|
||||
|
||||
class ListOperate(nn.Cell):
|
||||
def __init__(self, ):
|
||||
def __init__(self,):
|
||||
super(ListOperate, self).__init__()
|
||||
|
||||
def construct(self, t, l):
|
||||
|
@ -153,7 +153,7 @@ class ListOperate(nn.Cell):
|
|||
|
||||
|
||||
class InListNet(nn.Cell):
|
||||
def __init__(self, ):
|
||||
def __init__(self,):
|
||||
super(InListNet, self).__init__()
|
||||
self.list_ = [1, 2, 3, 4, 5, "ok"]
|
||||
|
||||
|
|
|
@ -53,7 +53,7 @@ class NestTupleGraphNet(nn.Cell):
|
|||
|
||||
|
||||
class InTupleNet(nn.Cell):
|
||||
def __init__(self, ):
|
||||
def __init__(self,):
|
||||
super(InTupleNet, self).__init__()
|
||||
self.tuple_ = (1, 2, 3, 4, 5, "ok")
|
||||
|
||||
|
|
|
@ -99,4 +99,4 @@ def test_assignadd_scalar_cast():
|
|||
net = AssignAddNet()
|
||||
x = Tensor(np.ones([1]).astype(np.int64) * 102)
|
||||
# _executor.compile(net, 1)
|
||||
result = net(x)
|
||||
_ = net(x)
|
||||
|
|
|
@ -429,9 +429,9 @@ def test_tensor_dtype_np_int64():
|
|||
|
||||
def test_tensor_dtype_fp32_to_bool():
|
||||
with pytest.raises(RuntimeError):
|
||||
input = np.random.randn(2, 3, 4, 5).astype(np.float32)
|
||||
input = ms.Tensor(input)
|
||||
input_me = ms.Tensor(input, dtype=ms.bool_)
|
||||
input_ = np.random.randn(2, 3, 4, 5).astype(np.float32)
|
||||
input_ = ms.Tensor(input_)
|
||||
_ = ms.Tensor(input_, dtype=ms.bool_)
|
||||
|
||||
|
||||
def test_tensor_operation():
|
||||
|
|
|
@ -41,10 +41,10 @@ class Func(nn.Cell):
|
|||
|
||||
def construct(self, x, y):
|
||||
init = self.alloc_status()
|
||||
sum = add(x, y)
|
||||
sum_ = add(x, y)
|
||||
product = mul1(x, y)
|
||||
flag = self.get_status(init)
|
||||
out = add2(sum, product)
|
||||
out = add2(sum_, product)
|
||||
clear = self.clear_status(flag)
|
||||
out = F.depend(out, clear)
|
||||
return out
|
||||
|
@ -88,7 +88,7 @@ def test_sens():
|
|||
sens = Tensor(np.ones([3, 3]).astype(np.float32))
|
||||
net = Net()
|
||||
net.add_flags(has_effect=True)
|
||||
out = net(x, y, sens)
|
||||
_ = net(x, y, sens)
|
||||
|
||||
|
||||
class Net_hyper(nn.Cell):
|
||||
|
@ -119,7 +119,7 @@ def test_hyper_add():
|
|||
sens = Tensor(np.ones([3, 3]).astype(np.float32))
|
||||
net = Net_hyper()
|
||||
net.add_flags(has_effect=True)
|
||||
out = net(x, y, sens)
|
||||
_ = net(x, y, sens)
|
||||
|
||||
|
||||
def test_keep_order_io_effect_exception_return_dtype():
|
||||
|
|
|
@ -148,9 +148,6 @@ def test_cast():
|
|||
_executor.compile(net, x)
|
||||
|
||||
|
||||
"""test grad of PReLU, which cause AddN(generated by grad) fail"""
|
||||
|
||||
|
||||
class IRBlockZ(nn.Cell):
|
||||
def __init__(self, inplanes, planes):
|
||||
super(IRBlockZ, self).__init__()
|
||||
|
|
|
@ -46,6 +46,7 @@ class MaxNet(nn.Cell):
|
|||
kernel_size,
|
||||
stride=None,
|
||||
padding=0):
|
||||
_ = padding
|
||||
super(MaxNet, self).__init__()
|
||||
self.maxpool = nn.MaxPool2d(kernel_size,
|
||||
stride)
|
||||
|
@ -73,5 +74,5 @@ class Avg1dNet(nn.Cell):
|
|||
|
||||
def test_avg1d():
|
||||
net = Avg1dNet(6, 1)
|
||||
input = Tensor(np.random.randint(0, 255, [1, 3, 6]).astype(np.float32))
|
||||
_executor.compile(net, input)
|
||||
input_ = Tensor(np.random.randint(0, 255, [1, 3, 6]).astype(np.float32))
|
||||
_executor.compile(net, input_)
|
||||
|
|
|
@ -52,19 +52,19 @@ def test_compile_psnr_grayscale():
|
|||
def test_psnr_max_val_negative():
|
||||
max_val = -1
|
||||
with pytest.raises(ValueError):
|
||||
net = PSNRNet(max_val)
|
||||
_ = PSNRNet(max_val)
|
||||
|
||||
|
||||
def test_psnr_max_val_bool():
|
||||
max_val = True
|
||||
with pytest.raises(TypeError):
|
||||
net = PSNRNet(max_val)
|
||||
_ = PSNRNet(max_val)
|
||||
|
||||
|
||||
def test_psnr_max_val_zero():
|
||||
max_val = 0
|
||||
with pytest.raises(ValueError):
|
||||
net = PSNRNet(max_val)
|
||||
_ = PSNRNet(max_val)
|
||||
|
||||
|
||||
def test_psnr_different_shape():
|
||||
|
|
|
@ -51,59 +51,59 @@ def test_compile_grayscale():
|
|||
def test_ssim_max_val_negative():
|
||||
max_val = -1
|
||||
with pytest.raises(ValueError):
|
||||
net = SSIMNet(max_val)
|
||||
_ = SSIMNet(max_val)
|
||||
|
||||
|
||||
def test_ssim_max_val_bool():
|
||||
max_val = True
|
||||
with pytest.raises(TypeError):
|
||||
net = SSIMNet(max_val)
|
||||
_ = SSIMNet(max_val)
|
||||
|
||||
|
||||
def test_ssim_max_val_zero():
|
||||
max_val = 0
|
||||
with pytest.raises(ValueError):
|
||||
net = SSIMNet(max_val)
|
||||
_ = SSIMNet(max_val)
|
||||
|
||||
|
||||
def test_ssim_filter_size_float():
|
||||
with pytest.raises(TypeError):
|
||||
net = SSIMNet(filter_size=1.1)
|
||||
_ = SSIMNet(filter_size=1.1)
|
||||
|
||||
|
||||
def test_ssim_filter_size_zero():
|
||||
with pytest.raises(ValueError):
|
||||
net = SSIMNet(filter_size=0)
|
||||
_ = SSIMNet(filter_size=0)
|
||||
|
||||
|
||||
def test_ssim_filter_sigma_zero():
|
||||
with pytest.raises(ValueError):
|
||||
net = SSIMNet(filter_sigma=0.0)
|
||||
_ = SSIMNet(filter_sigma=0.0)
|
||||
|
||||
|
||||
def test_ssim_filter_sigma_negative():
|
||||
with pytest.raises(ValueError):
|
||||
net = SSIMNet(filter_sigma=-0.1)
|
||||
_ = SSIMNet(filter_sigma=-0.1)
|
||||
|
||||
|
||||
def test_ssim_k1_k2_wrong_value():
|
||||
with pytest.raises(ValueError):
|
||||
net = SSIMNet(k1=1.1)
|
||||
_ = SSIMNet(k1=1.1)
|
||||
with pytest.raises(ValueError):
|
||||
net = SSIMNet(k1=1.0)
|
||||
_ = SSIMNet(k1=1.0)
|
||||
with pytest.raises(ValueError):
|
||||
net = SSIMNet(k1=0.0)
|
||||
_ = SSIMNet(k1=0.0)
|
||||
with pytest.raises(ValueError):
|
||||
net = SSIMNet(k1=-1.0)
|
||||
_ = SSIMNet(k1=-1.0)
|
||||
|
||||
with pytest.raises(ValueError):
|
||||
net = SSIMNet(k2=1.1)
|
||||
_ = SSIMNet(k2=1.1)
|
||||
with pytest.raises(ValueError):
|
||||
net = SSIMNet(k2=1.0)
|
||||
_ = SSIMNet(k2=1.0)
|
||||
with pytest.raises(ValueError):
|
||||
net = SSIMNet(k2=0.0)
|
||||
_ = SSIMNet(k2=0.0)
|
||||
with pytest.raises(ValueError):
|
||||
net = SSIMNet(k2=-1.0)
|
||||
_ = SSIMNet(k2=-1.0)
|
||||
|
||||
|
||||
def test_ssim_different_shape():
|
||||
|
|
|
@ -64,13 +64,13 @@ class BatchNormTester(nn.Cell):
|
|||
|
||||
def test_batchnorm_train_onnx_export():
|
||||
"test onnx export interface does not modify trainable flag of a network"
|
||||
input = Tensor(np.ones([1, 3, 32, 32]).astype(np.float32) * 0.01)
|
||||
input_ = Tensor(np.ones([1, 3, 32, 32]).astype(np.float32) * 0.01)
|
||||
net = BatchNormTester(3)
|
||||
net.set_train()
|
||||
if not net.training:
|
||||
raise ValueError('netowrk is not in training mode')
|
||||
onnx_file = 'batch_norm.onnx'
|
||||
export(net, input, file_name=onnx_file, file_format='ONNX')
|
||||
export(net, input_, file_name=onnx_file, file_format='ONNX')
|
||||
|
||||
if not net.training:
|
||||
raise ValueError('netowrk is not in training mode')
|
||||
|
@ -172,6 +172,7 @@ net_cfgs = [
|
|||
|
||||
|
||||
def get_id(cfg):
|
||||
_ = cfg
|
||||
return list(map(lambda x: x[0], net_cfgs))
|
||||
|
||||
|
||||
|
|
|
@ -28,7 +28,7 @@ from ....mindspore_test_framework.pipeline.forward.compile_forward \
|
|||
|
||||
|
||||
class AssignAddNet(nn.Cell):
|
||||
def __init__(self,):
|
||||
def __init__(self, ):
|
||||
super(AssignAddNet, self).__init__()
|
||||
self.op = P.AssignAdd()
|
||||
self.inputdata = Parameter(Tensor(np.zeros([1]).astype(np.bool_), mstype.bool_), name="assign_add1")
|
||||
|
@ -39,7 +39,7 @@ class AssignAddNet(nn.Cell):
|
|||
|
||||
|
||||
class AssignSubNet(nn.Cell):
|
||||
def __init__(self,):
|
||||
def __init__(self, ):
|
||||
super(AssignSubNet, self).__init__()
|
||||
self.op = P.AssignSub()
|
||||
self.inputdata = Parameter(Tensor(np.zeros([1]).astype(np.bool_), mstype.bool_), name="assign_sub1")
|
||||
|
@ -635,7 +635,7 @@ test_case_math_ops = [
|
|||
'skip': ['backward']}),
|
||||
# type of x and y not match
|
||||
('Greater1', {
|
||||
'block': P.Greater(),
|
||||
'block': P.Greater(),
|
||||
'desc_inputs': [Tensor(np.ones([3, 4]).astype(np.int32)), Tensor(np.ones([3, 4]).astype(np.float32))],
|
||||
'skip': ['backward']}),
|
||||
# type of x and y not match
|
||||
|
@ -660,6 +660,7 @@ test_case_math_ops = [
|
|||
'skip': ['backward']}),
|
||||
]
|
||||
|
||||
|
||||
@mindspore_test(pipeline_for_compile_forward_ge_graph_for_case_by_case_config_exception)
|
||||
def test_check_exception():
|
||||
return raise_set
|
||||
|
|
|
@ -21,21 +21,25 @@ import mindspore.context as context
|
|||
from mindspore import Tensor
|
||||
from mindspore.ops import functional as F
|
||||
from mindspore.ops import prim_attr_register, PrimitiveWithInfer
|
||||
|
||||
context.set_context(mode=context.GRAPH_MODE, save_graphs=True)
|
||||
|
||||
|
||||
class FakeOp(PrimitiveWithInfer):
|
||||
@prim_attr_register
|
||||
def __init__(self):
|
||||
""""""
|
||||
|
||||
def infer_shape(self, x, y):
|
||||
self.second_shape = y
|
||||
self.add_prim_attr("second_shape", y)
|
||||
return x
|
||||
|
||||
|
||||
def infer_dtype(self, x, y):
|
||||
return x
|
||||
|
||||
# test the normal case that should generate independent primitive because of different
|
||||
|
||||
# test the normal case that should generate independent primitive because of different
|
||||
# generated attributes after inference
|
||||
def test_conv2d_same_primitive():
|
||||
class Conv2DSameNet(nn.Cell):
|
||||
|
@ -43,15 +47,18 @@ def test_conv2d_same_primitive():
|
|||
super(Conv2DSameNet, self).__init__()
|
||||
self.conv1 = nn.Conv2d(16, 64, (1, 41), (1, 4), "same", 0, 1, has_bias=True)
|
||||
self.conv2 = nn.Conv2d(16, 64, (1, 41), (1, 4), "same", 0, 1, has_bias=True)
|
||||
|
||||
def construct(self, x, y):
|
||||
r1 = self.conv1(x)
|
||||
r2 = self.conv2(y)
|
||||
return (r1, r2)
|
||||
|
||||
t1 = Tensor(np.ones([1, 16, 1, 1918]).astype(np.float32))
|
||||
t2 = Tensor(np.ones([1, 16, 1, 3840]).astype(np.float32))
|
||||
net = Conv2DSameNet()
|
||||
net(t1, t2)
|
||||
|
||||
|
||||
# test cell as high order argument
|
||||
# The graph with free variables used as argument is not supported yet
|
||||
# because of the limit of inference specialize system
|
||||
|
@ -59,18 +66,22 @@ def Xtest_conv2d_op_with_arg():
|
|||
class Conv2dNet(nn.Cell):
|
||||
def __init__(self):
|
||||
super(Conv2dNet, self).__init__()
|
||||
|
||||
def construct(self, op, x):
|
||||
return op(x)
|
||||
|
||||
class OpsNet(nn.Cell):
|
||||
def __init__(self, net):
|
||||
super(OpsNet, self).__init__()
|
||||
self.opnet = net
|
||||
self.conv2 = nn.Conv2d(16, 64, (1, 41), (1, 4), "same", 0, 1, has_bias=True)
|
||||
|
||||
def construct(self, x, y):
|
||||
conv_op = self.conv2
|
||||
a = self.opnet(conv_op, x)
|
||||
b = self.opnet(conv_op, y)
|
||||
return (a, b)
|
||||
|
||||
t1 = Tensor(np.ones([1, 16, 1, 1918]).astype(np.float32))
|
||||
t2 = Tensor(np.ones([1, 16, 1, 3840]).astype(np.float32))
|
||||
net = OpsNet(Conv2dNet())
|
||||
|
@ -82,23 +93,29 @@ def test_conv2d_op_with_arg():
|
|||
def __init__(self):
|
||||
super(FackOpNet, self).__init__()
|
||||
self.op = FakeOp()
|
||||
|
||||
def construct(self, x, y):
|
||||
return self.op(x, y)
|
||||
|
||||
class OpNet(nn.Cell):
|
||||
def __init__(self):
|
||||
super(OpNet, self).__init__()
|
||||
|
||||
def construct(self, op, x, y):
|
||||
return op(x, y)
|
||||
|
||||
class OpsNet(nn.Cell):
|
||||
def __init__(self, net):
|
||||
super(OpsNet, self).__init__()
|
||||
self.opnet = net
|
||||
self.op = FackOpNet()
|
||||
|
||||
def construct(self, x, y):
|
||||
op = self.op
|
||||
a = self.opnet(op, x, y)
|
||||
b = self.opnet(op, y, x)
|
||||
return (a, b)
|
||||
|
||||
t1 = Tensor(np.ones([1, 16, 1, 1918]).astype(np.float32))
|
||||
t2 = Tensor(np.ones([1, 16, 1, 3840]).astype(np.float32))
|
||||
net = OpsNet(OpNet())
|
||||
|
@ -110,63 +127,77 @@ def test_conv2d_op_with_arg_same_input():
|
|||
def __init__(self):
|
||||
super(FackOpNet, self).__init__()
|
||||
self.op = FakeOp()
|
||||
|
||||
def construct(self, x, y):
|
||||
return self.op(x, y)
|
||||
|
||||
class OpNet(nn.Cell):
|
||||
def __init__(self):
|
||||
super(OpNet, self).__init__()
|
||||
|
||||
def construct(self, op, x, y):
|
||||
return op(x, y)
|
||||
|
||||
class OpsNet(nn.Cell):
|
||||
def __init__(self, net):
|
||||
super(OpsNet, self).__init__()
|
||||
self.opnet = net
|
||||
self.op = FackOpNet()
|
||||
|
||||
def construct(self, x, y):
|
||||
op = self.op
|
||||
a = self.opnet(op, x, x)
|
||||
b = self.opnet(op, y, x)
|
||||
return (a, b)
|
||||
|
||||
t1 = Tensor(np.ones([1, 16, 1, 1918]).astype(np.float32))
|
||||
t2 = Tensor(np.ones([1, 16, 1, 3840]).astype(np.float32))
|
||||
net = OpsNet(OpNet())
|
||||
net(t1, t2)
|
||||
|
||||
|
||||
# test op with partial
|
||||
def test_op_as_partial():
|
||||
class OpAsPartial(nn.Cell):
|
||||
def __init__(self):
|
||||
super(OpAsPartial, self).__init__()
|
||||
self.op = FakeOp()
|
||||
|
||||
def construct(self, x, y, z):
|
||||
partial_op = F.partial(self.op, x)
|
||||
a = partial_op(y)
|
||||
b = partial_op(z)
|
||||
return a, b
|
||||
|
||||
t1 = Tensor(np.ones([1, 16, 1, 1918]).astype(np.float32))
|
||||
t2 = Tensor(np.ones([1, 16, 1, 3840]).astype(np.float32))
|
||||
t3 = Tensor(np.ones([1, 16, 1, 1234]).astype(np.float32))
|
||||
net = OpAsPartial()
|
||||
net(t1, t2, t3)
|
||||
|
||||
|
||||
# test op with partial
|
||||
def test_op_as_partial_inside():
|
||||
class OpAsPartial(nn.Cell):
|
||||
def __init__(self):
|
||||
super(OpAsPartial, self).__init__()
|
||||
self.op = FakeOp()
|
||||
|
||||
def construct(self, x, y, z):
|
||||
partial_op = F.partial(self.op, x)
|
||||
a = partial_op(y)
|
||||
b = partial_op(z)
|
||||
return a, b
|
||||
|
||||
class OuterNet(nn.Cell):
|
||||
def __init__(self):
|
||||
super(OuterNet, self).__init__()
|
||||
self.net = OpAsPartial()
|
||||
|
||||
def construct(self, x, y, z):
|
||||
a, b = self.net(x, y, z)
|
||||
return a, b
|
||||
|
||||
t1 = Tensor(np.ones([1, 16, 1, 1918]).astype(np.float32))
|
||||
t2 = Tensor(np.ones([1, 16, 1, 3840]).astype(np.float32))
|
||||
t3 = Tensor(np.ones([1, 16, 1, 1234]).astype(np.float32))
|
||||
|
@ -180,12 +211,14 @@ def test_op_as_partial_independent():
|
|||
def __init__(self):
|
||||
super(OpAsPartial, self).__init__()
|
||||
self.op = FakeOp()
|
||||
|
||||
def construct(self, x, y, z):
|
||||
partial_op1 = F.partial(self.op, x)
|
||||
a = partial_op1(y)
|
||||
partial_op2 = F.partial(self.op, x)
|
||||
b = partial_op2(z)
|
||||
return a, b
|
||||
|
||||
t1 = Tensor(np.ones([1, 16, 1, 1918]).astype(np.float32))
|
||||
t2 = Tensor(np.ones([1, 16, 1, 3840]).astype(np.float32))
|
||||
t3 = Tensor(np.ones([1, 16, 1, 1234]).astype(np.float32))
|
||||
|
@ -198,6 +231,7 @@ def test_nest_partial():
|
|||
def __init__(self):
|
||||
super(NestPartial, self).__init__()
|
||||
self.op = FakeOp()
|
||||
|
||||
def construct(self, x, y, z):
|
||||
partial_op1 = F.partial(self.op)
|
||||
partial_op2 = F.partial(partial_op1, x)
|
||||
|
@ -206,54 +240,65 @@ def test_nest_partial():
|
|||
partial_op4 = F.partial(partial_op3, x)
|
||||
b = partial_op4(z)
|
||||
return a, b
|
||||
|
||||
t1 = Tensor(np.ones([1, 16, 1, 1918]).astype(np.float32))
|
||||
t2 = Tensor(np.ones([1, 16, 1, 3840]).astype(np.float32))
|
||||
t3 = Tensor(np.ones([1, 16, 1, 1234]).astype(np.float32))
|
||||
net = NestPartial()
|
||||
net(t1, t2, t3)
|
||||
|
||||
|
||||
|
||||
# high order argument
|
||||
# op and op args as network arguments
|
||||
def test_op_with_arg_as_input():
|
||||
class WithOpArgNet(nn.Cell):
|
||||
def __init__(self):
|
||||
super(WithOpArgNet, self).__init__()
|
||||
|
||||
def construct(self, op, x, y):
|
||||
return op(x, y)
|
||||
|
||||
class OpsNet(nn.Cell):
|
||||
def __init__(self, net):
|
||||
super(OpsNet, self).__init__()
|
||||
self.opnet = net
|
||||
self.op = FakeOp()
|
||||
|
||||
def construct(self, x, y, z):
|
||||
op = self.op
|
||||
a = self.opnet(op, x, z)
|
||||
b = self.opnet(op, x, y)
|
||||
return (a, b)
|
||||
|
||||
t1 = Tensor(np.ones([1, 16, 1, 1918]).astype(np.float32))
|
||||
t2 = Tensor(np.ones([1, 16, 1, 3840]).astype(np.float32))
|
||||
t3 = Tensor(np.ones([1, 16, 1, 1234]).astype(np.float32))
|
||||
net = OpsNet(WithOpArgNet())
|
||||
net(t1, t2, t3)
|
||||
|
||||
|
||||
# The partial application used as argument is not supported yet
|
||||
# because of the limit of inference specialize system
|
||||
def Xtest_partial_as_arg():
|
||||
class PartialArgNet(nn.Cell):
|
||||
def __init__(self):
|
||||
super(PartialArgNet, self).__init__()
|
||||
|
||||
def construct(self, partial_op, y):
|
||||
return partial_op(y)
|
||||
|
||||
class OpsNet(nn.Cell):
|
||||
def __init__(self, net):
|
||||
super(OpsNet, self).__init__()
|
||||
self.partial_net = net
|
||||
self.op = FakeOp()
|
||||
|
||||
def construct(self, x, y, z):
|
||||
partial_op = F.partial(self.op, x)
|
||||
a = self.partial_net(partial_op, z)
|
||||
b = self.partial_net(partial_op, y)
|
||||
return (a, b)
|
||||
|
||||
t1 = Tensor(np.ones([1, 16, 1, 1918]).astype(np.float32))
|
||||
t2 = Tensor(np.ones([1, 16, 1, 3840]).astype(np.float32))
|
||||
t3 = Tensor(np.ones([1, 16, 1, 1234]).astype(np.float32))
|
||||
|
|
|
@ -32,6 +32,7 @@ from ....mindspore_test_framework.pipeline.forward.verify_exception \
|
|||
logging.basicConfig(level=logging.WARNING)
|
||||
|
||||
|
||||
# pylint: disable=abstract-method
|
||||
class NetMissConstruct(nn.Cell):
|
||||
""" NetMissConstruct definition """
|
||||
|
||||
|
@ -46,7 +47,6 @@ class NetMissConstruct(nn.Cell):
|
|||
self.max_pool2d = nn.MaxPool2d(kernel_size=2)
|
||||
self.flatten = P.Flatten()
|
||||
|
||||
# pylint: disable=abstract-method
|
||||
# TestCase: Mis-spelled 'construct' to 'construtc'
|
||||
def construtc(self, x):
|
||||
x = self.max_pool2d(self.relu(self.conv1(x)))
|
||||
|
|
|
@ -44,7 +44,7 @@ class MockNeg(PrimitiveWithInfer):
|
|||
|
||||
def infer_dtype(self, input_x):
|
||||
raise TypeError("InferError")
|
||||
return input_x
|
||||
# return input_x
|
||||
|
||||
|
||||
class MockSub(PrimitiveWithInfer):
|
||||
|
@ -79,8 +79,8 @@ class Net(nn.Cell):
|
|||
self.matmul = P.MatMul()
|
||||
self.add = P.TensorAdd()
|
||||
|
||||
def construct(self, input):
|
||||
output = self.add(self.matmul(input, self.weight), self.bias)
|
||||
def construct(self, input_):
|
||||
output = self.add(self.matmul(input_, self.weight), self.bias)
|
||||
return output
|
||||
|
||||
|
||||
|
@ -93,9 +93,9 @@ class NetFP16(nn.Cell):
|
|||
self.add = P.TensorAdd()
|
||||
self.cast = P.Cast()
|
||||
|
||||
def construct(self, input):
|
||||
def construct(self, input_):
|
||||
output = self.cast(
|
||||
self.add(self.matmul(self.cast(input, mstype.float16), self.cast(self.weight, mstype.float16)),
|
||||
self.add(self.matmul(self.cast(input_, mstype.float16), self.cast(self.weight, mstype.float16)),
|
||||
self.cast(self.bias, mstype.float16)), mstype.float32)
|
||||
return output
|
||||
|
||||
|
|
|
@ -42,10 +42,10 @@ class MindDataSet(MindData):
|
|||
if self._size < self._iter_num:
|
||||
raise StopIteration
|
||||
self._iter_num += 1
|
||||
next = []
|
||||
for shape, type in zip(self._output_shapes, self._np_types):
|
||||
next.append(Tensor(np.ones(shape).astype(type)))
|
||||
return tuple(next)
|
||||
lst = []
|
||||
for shape_, type_ in zip(self._output_shapes, self._np_types):
|
||||
lst.append(Tensor(np.ones(shape_).astype(type_)))
|
||||
return tuple(lst)
|
||||
|
||||
|
||||
class Net(nn.Cell):
|
||||
|
@ -56,8 +56,8 @@ class Net(nn.Cell):
|
|||
self.matmul = P.MatMul()
|
||||
self.add = P.TensorAdd()
|
||||
|
||||
def construct(self, input):
|
||||
output = self.add(self.matmul(input, self.weight), self.bias)
|
||||
def construct(self, input_):
|
||||
output = self.add(self.matmul(input_, self.weight), self.bias)
|
||||
return output
|
||||
|
||||
|
||||
|
@ -70,9 +70,9 @@ class NetFP16(nn.Cell):
|
|||
self.add = P.TensorAdd()
|
||||
self.cast = P.Cast()
|
||||
|
||||
def construct(self, input):
|
||||
def construct(self, input_):
|
||||
output = self.cast(
|
||||
self.add(self.matmul(self.cast(input, mstype.float16), self.cast(self.weight, mstype.float16)),
|
||||
self.add(self.matmul(self.cast(input_, mstype.float16), self.cast(self.weight, mstype.float16)),
|
||||
self.cast(self.bias, mstype.float16)), mstype.float32)
|
||||
return output
|
||||
|
||||
|
|
|
@ -97,8 +97,8 @@ def test_all_to_all():
|
|||
print(strategys)
|
||||
expect_dict = {'Default/network-_VirtualDatasetCell/_backbone-WithLossCell/_loss_fn-SoftmaxCrossEntropyWithLogits'
|
||||
'/SoftmaxCrossEntropyWithLogits-op3': [[8, 1], [8, 1]],
|
||||
'Default/network-_VirtualDatasetCell/_backbone-WithLossCell/_loss_fn-SoftmaxCrossEntropyWithLogits/OneHot-op4': [
|
||||
[8, 1], [], []],
|
||||
'Default/network-_VirtualDatasetCell/_backbone-WithLossCell/_loss_fn-SoftmaxCrossEntropyWithLogits/'
|
||||
'OneHot-op4': [[8, 1], [], []],
|
||||
'Default/network-_VirtualDatasetCell/_backbone-WithLossCell/_backbone-AllToAllNet/Transpose-op1': [
|
||||
[8, 1]],
|
||||
'Default/network-_VirtualDatasetCell/_backbone-WithLossCell/_backbone-AllToAllNet/MatMul-op0': [
|
||||
|
|
|
@ -170,4 +170,4 @@ def test_matmul_forward_reduce_scatter_transpose():
|
|||
x = Tensor(np.ones([128, 32]), dtype=ms.float32)
|
||||
y = Tensor(np.ones([64, 32]), dtype=ms.float32)
|
||||
b = Tensor(np.ones([128, 64]), dtype=ms.float32)
|
||||
compile_net(net, x, y, b)
|
||||
compile_net(net, x, y, b)
|
||||
|
|
|
@ -280,4 +280,4 @@ def test_mixed_precision_const_parameter():
|
|||
x = Tensor(np.ones((1, 3, 28, 28), np.float32))
|
||||
y = Tensor(np.ones((1, 3, 14, 14), np.float32))
|
||||
z = Tensor(np.ones((1, 3, 28, 28), np.float32))
|
||||
out = net(x, y, z)
|
||||
_ = net(x, y, z)
|
||||
|
|
|
@ -39,7 +39,7 @@ def test_net_vargs_expand():
|
|||
y = Tensor(np.random.normal(0, 1, [3, 4, 5]).astype(np.float32))
|
||||
sens = Tensor(np.random.normal(0, 1, [3, 4, 5]).astype(np.float32))
|
||||
net = AddNet()
|
||||
out = C.grad_all_with_sens(net, net.trainable_params())(x, y, sens)
|
||||
_ = C.grad_all_with_sens(net, net.trainable_params())(x, y, sens)
|
||||
|
||||
|
||||
class VarNet(Cell):
|
||||
|
@ -111,7 +111,7 @@ def test_all_var_args_grad_with_sens():
|
|||
sens = Tensor(1.0, dtype=mstype.float32)
|
||||
net = VarNet(SecondNet())
|
||||
grad_net = GradNet(net)
|
||||
out = grad_net(x, y, sens)
|
||||
_ = grad_net(x, y, sens)
|
||||
|
||||
|
||||
def test_grad_list_var_args():
|
||||
|
@ -128,7 +128,7 @@ def test_grad_list_var_args():
|
|||
y = Tensor(np.ones([3, 4, 5]), dtype=mstype.float32)
|
||||
net = VarNet(SecondNet())
|
||||
grad_net = GradNet(net)
|
||||
out = grad_net(x, y)
|
||||
_ = grad_net(x, y)
|
||||
|
||||
|
||||
def test_grad_all_var_args():
|
||||
|
@ -145,7 +145,7 @@ def test_grad_all_var_args():
|
|||
y = Tensor(np.ones([3, 4, 5]), dtype=mstype.float32)
|
||||
net = VarNet(SecondNet())
|
||||
grad_net = GradNet(net)
|
||||
out = grad_net(x, y)
|
||||
_ = grad_net(x, y)
|
||||
|
||||
|
||||
def test_grad_all_var_args_with_sens():
|
||||
|
@ -163,7 +163,7 @@ def test_grad_all_var_args_with_sens():
|
|||
sens = Tensor(1.0, dtype=mstype.float32)
|
||||
net = VarNet(SecondNet())
|
||||
grad_net = GradNet(net)
|
||||
out = grad_net(x, y, sens)
|
||||
_ = grad_net(x, y, sens)
|
||||
|
||||
|
||||
def test_grad_var_args_with_sens():
|
||||
|
@ -181,7 +181,7 @@ def test_grad_var_args_with_sens():
|
|||
sens = Tensor(1.0, dtype=mstype.float32)
|
||||
net = VarNet(SecondNet())
|
||||
grad_net = GradNet(net)
|
||||
out = grad_net(x, y, sens)
|
||||
_ = grad_net(x, y, sens)
|
||||
|
||||
|
||||
def test_var_args_grad():
|
||||
|
@ -219,7 +219,7 @@ def test_var_args_grad():
|
|||
sens = Tensor(1.0, dtype=mstype.float32)
|
||||
net = VarNet(SecondNet())
|
||||
grad_net = GradNet(net)
|
||||
out = grad_net(x, y, sens)
|
||||
_ = grad_net(x, y, sens)
|
||||
|
||||
|
||||
def test_var_args_positional():
|
||||
|
@ -253,7 +253,7 @@ def test_var_args_positional():
|
|||
y = Tensor(np.ones([3, 4, 5]), dtype=mstype.float32)
|
||||
net = VarNet(SecondNet())
|
||||
grad_net = GradNet(net)
|
||||
out = grad_net(x, y)
|
||||
_ = grad_net(x, y)
|
||||
|
||||
|
||||
def test_grad_within_if_else():
|
||||
|
@ -271,7 +271,7 @@ def test_grad_within_if_else():
|
|||
|
||||
x = Tensor(np.ones([3, 4, 5]), dtype=mstype.float32)
|
||||
y = Tensor(np.ones([3, 4, 5]), dtype=mstype.float32)
|
||||
sens = Tensor(1.0, dtype=mstype.float32)
|
||||
_ = Tensor(1.0, dtype=mstype.float32)
|
||||
net = VarNet(SecondNet())
|
||||
grad_net = GradNet(net)
|
||||
out = grad_net(x, y)
|
||||
|
@ -316,10 +316,10 @@ def test_grad_for_concat():
|
|||
net = Concat(axis=self.axis)
|
||||
grad_net = GradNet(net)
|
||||
grad_net.set_train()
|
||||
input_grad = grad_net(*inputs, Tensor(self.out_grad_np))
|
||||
_ = grad_net(*inputs, Tensor(self.out_grad_np))
|
||||
|
||||
def grad_cmp(self):
|
||||
input_grad_mindspore = self.grad_mindspore_impl()
|
||||
self.grad_mindspore_impl()
|
||||
|
||||
fact = ConcatFactory(input_shape=(
|
||||
(2, 184320, 1), (2, 46080, 1), (2, 11520, 1), (2, 2880, 1), (2, 720, 1)), axis=1)
|
||||
|
|
|
@ -84,7 +84,7 @@ class for_loop_with_cont_break(Cell):
|
|||
if i > 5:
|
||||
x *= 3
|
||||
break
|
||||
x *= 2
|
||||
# x *= 2
|
||||
x = x * 2
|
||||
pass
|
||||
return x
|
||||
|
|
|
@ -123,6 +123,7 @@ def sub(x, y):
|
|||
return x - y
|
||||
|
||||
|
||||
# pylint: disable=using-constant-test
|
||||
@ms_function
|
||||
def if_always_true(x):
|
||||
""" if_always_true """
|
||||
|
@ -870,6 +871,7 @@ def test_grad_refactor_14():
|
|||
assert C.grad_all(grad_refactor_14)(2, 3) == (3, 9)
|
||||
|
||||
|
||||
# pylint: disable=using-constant-test
|
||||
class IfDeferInline(nn.Cell):
|
||||
def __init__(self, mul_size):
|
||||
super().__init__()
|
||||
|
|
|
@ -1,12 +1,10 @@
|
|||
import numpy as np
|
||||
import mindspore.nn as nn
|
||||
import mindspore.ops.operations as P
|
||||
from mindspore import context
|
||||
from mindspore.ops import composite as C
|
||||
from mindspore.common import dtype as mstype
|
||||
from mindspore import context, Tensor, ParameterTuple
|
||||
from mindspore.common.initializer import TruncatedNormal
|
||||
from mindspore.nn import Dense, WithLossCell, SoftmaxCrossEntropyWithLogits, Momentum
|
||||
from mindspore.nn import WithLossCell, Momentum
|
||||
|
||||
context.set_context(mode=context.PYNATIVE_MODE, device_target="GPU")
|
||||
|
||||
|
@ -18,25 +16,28 @@ def conv(in_channels, out_channels, kernel_size, stride=1, padding=0):
|
|||
kernel_size=kernel_size, stride=stride, padding=padding,
|
||||
weight_init=weight, has_bias=False, pad_mode="valid")
|
||||
|
||||
|
||||
def fc_with_initialize(input_channels, out_channels):
|
||||
"""weight initial for fc layer"""
|
||||
weight = weight_variable()
|
||||
bias = weight_variable()
|
||||
return nn.Dense(input_channels, out_channels, weight, bias)
|
||||
|
||||
|
||||
def weight_variable():
|
||||
"""weight initial"""
|
||||
return TruncatedNormal(0.02)
|
||||
|
||||
|
||||
def cell_hook_function(cell_id, grad_input, grad_output):
|
||||
print(cell_id)
|
||||
assert(grad_output[0].asnumpy().shape == (32, 6, 14, 14))
|
||||
assert(grad_input[0].asnumpy().shape == (32, 16, 10, 10))
|
||||
assert (grad_output[0].asnumpy().shape == (32, 6, 14, 14))
|
||||
assert (grad_input[0].asnumpy().shape == (32, 16, 10, 10))
|
||||
|
||||
|
||||
def var_hook_function(grad_out):
|
||||
print("grad:", grad_out)
|
||||
assert(grad_out[0].asnumpy().shape == (32, 120))
|
||||
assert (grad_out[0].asnumpy().shape == (32, 120))
|
||||
|
||||
|
||||
class LeNet5(nn.Cell):
|
||||
|
@ -82,7 +83,7 @@ class LeNet5(nn.Cell):
|
|||
x = self.fc3(x)
|
||||
return x
|
||||
|
||||
|
||||
|
||||
class GradWrap(nn.Cell):
|
||||
""" GradWrap definition """
|
||||
def __init__(self, network):
|
||||
|
@ -94,6 +95,7 @@ class GradWrap(nn.Cell):
|
|||
weights = self.weights
|
||||
return C.GradOperation('get_by_list', get_by_list=True)(self.network, weights)(x, label)
|
||||
|
||||
|
||||
def test_hook():
|
||||
net = LeNet5()
|
||||
optimizer = Momentum(filter(lambda x: x.requires_grad, net.get_parameters()), 0.1, 0.9)
|
||||
|
@ -101,7 +103,7 @@ def test_hook():
|
|||
net_with_criterion = WithLossCell(net, criterion)
|
||||
train_network = GradWrap(net_with_criterion)
|
||||
train_network.set_train()
|
||||
|
||||
|
||||
input_data = Tensor(np.ones([net.batch_size, 1, 32, 32]).astype(np.float32) * 0.01)
|
||||
label = Tensor(np.ones([net.batch_size, net.num_class]).astype(np.float32))
|
||||
output = net(Tensor(input_data))
|
||||
|
@ -111,8 +113,6 @@ def test_hook():
|
|||
print(loss_output.asnumpy().shape)
|
||||
|
||||
|
||||
|
||||
|
||||
class MulAdd(nn.Cell):
|
||||
def __init__(self):
|
||||
super(MulAdd, self).__init__()
|
||||
|
@ -121,12 +121,13 @@ class MulAdd(nn.Cell):
|
|||
return 2 * x + y
|
||||
|
||||
def bprop(self, x, y, out, dout):
|
||||
assert(x == 1)
|
||||
assert(y == 2)
|
||||
assert(out == 4)
|
||||
assert(dout == 1)
|
||||
assert (x == 1)
|
||||
assert (y == 2)
|
||||
assert (out == 4)
|
||||
assert (dout == 1)
|
||||
return 3 * dout, 2 * y
|
||||
|
||||
|
||||
def test_custom_bprop():
|
||||
mul_add = MulAdd()
|
||||
mul_add.bprop_debug = True
|
||||
|
|
|
@ -18,10 +18,9 @@ import pytest
|
|||
|
||||
import mindspore.common.dtype as mstype
|
||||
import mindspore.nn as nn
|
||||
from mindspore import Parameter, ParameterTuple, Tensor
|
||||
from mindspore import Parameter, ParameterTuple
|
||||
from mindspore import Tensor
|
||||
from mindspore import context
|
||||
from mindspore import context
|
||||
from mindspore.common.api import ms_function
|
||||
from mindspore.ops import composite as C
|
||||
from mindspore.ops import operations as P
|
||||
|
|
|
@ -60,6 +60,7 @@ class InvertedResidual(nn.Cell):
|
|||
class MobileNetV2(nn.Cell):
|
||||
def __init__(self, num_class=1000, input_size=224, width_mul=1.):
|
||||
super(MobileNetV2, self).__init__()
|
||||
_ = input_size
|
||||
block = InvertedResidual
|
||||
input_channel = 32
|
||||
last_channel = 1280
|
||||
|
|
|
@ -68,6 +68,7 @@ class InvertedResidual(nn.Cell):
|
|||
class MobileNetV2(nn.Cell):
|
||||
def __init__(self, num_class=1000, input_size=224, width_mul=1.):
|
||||
super(MobileNetV2, self).__init__()
|
||||
_ = input_size
|
||||
block = InvertedResidual
|
||||
input_channel = 32
|
||||
last_channel = 1280
|
||||
|
|
|
@ -63,33 +63,3 @@ class LeNet5(nn.Cell):
|
|||
x = self.fc2(x)
|
||||
x = self.fc3(x)
|
||||
return x
|
||||
|
||||
"""
|
||||
def test_qat_lenet():
|
||||
net = LeNet5()
|
||||
net = qat.convert_quant_network(
|
||||
net, quant_delay=0, bn_fold=False, freeze_bn=10000, weight_bits=8, act_bits=8)
|
||||
|
||||
|
||||
def test_qat_mobile():
|
||||
net = MobileNetV2()
|
||||
img = Tensor(np.ones((1, 3, 224, 224)).astype(np.float32))
|
||||
net = qat.convert_quant_network(
|
||||
net, quant_delay=0, bn_fold=False, freeze_bn=10000, weight_bits=8, act_bits=8)
|
||||
net(img)
|
||||
|
||||
|
||||
def test_qat_mobile_train():
|
||||
net = MobileNetV2(num_class=10)
|
||||
img = Tensor(np.ones((1, 3, 224, 224)).astype(np.float32))
|
||||
label = Tensor(np.ones((1, 10)).astype(np.float32))
|
||||
net = qat.convert_quant_network(
|
||||
net, quant_delay=0, bn_fold=False, freeze_bn=10000, weight_bits=8, act_bits=8)
|
||||
|
||||
loss = nn.SoftmaxCrossEntropyWithLogits(reduction='mean')
|
||||
optimizer = nn.Momentum(net.trainable_params(),
|
||||
learning_rate=0.1, momentum=0.9)
|
||||
net = nn.WithLossCell(net, loss)
|
||||
net = nn.TrainOneStepCell(net, optimizer)
|
||||
net(img, label)
|
||||
"""
|
|
@ -13,9 +13,10 @@
|
|||
# limitations under the License.
|
||||
# ============================================================================
|
||||
"""Summary reader."""
|
||||
import mindspore.train.summary_pb2 as summary_pb2
|
||||
import struct
|
||||
|
||||
import mindspore.train.summary_pb2 as summary_pb2
|
||||
|
||||
_HEADER_SIZE = 8
|
||||
_HEADER_CRC_SIZE = 4
|
||||
_DATA_CRC_SIZE = 4
|
||||
|
|
|
@ -25,6 +25,7 @@ from ....dataset_mock import MindData
|
|||
|
||||
|
||||
def setup_module(module):
|
||||
_ = module
|
||||
context.set_context(mode=context.GRAPH_MODE)
|
||||
|
||||
|
||||
|
@ -56,7 +57,7 @@ def test_amp_o0():
|
|||
|
||||
optimizer = nn.Momentum(net.trainable_params(), learning_rate=0.1, momentum=0.9)
|
||||
train_network = amp.build_train_network(net, optimizer, level="O0")
|
||||
output = train_network(inputs, label)
|
||||
_ = train_network(inputs, label)
|
||||
|
||||
|
||||
def test_amp_o2():
|
||||
|
@ -66,7 +67,7 @@ def test_amp_o2():
|
|||
|
||||
optimizer = nn.Momentum(net.trainable_params(), learning_rate=0.1, momentum=0.9)
|
||||
train_network = amp.build_train_network(net, optimizer, level="O2")
|
||||
output = train_network(inputs, label)
|
||||
_ = train_network(inputs, label)
|
||||
|
||||
|
||||
def test_amp_o2_loss():
|
||||
|
@ -76,7 +77,7 @@ def test_amp_o2_loss():
|
|||
loss = nn.MSELoss()
|
||||
optimizer = nn.Momentum(net.trainable_params(), learning_rate=0.1, momentum=0.9)
|
||||
train_network = amp.build_train_network(net, optimizer, loss, level="O2")
|
||||
output = train_network(inputs, label)
|
||||
_ = train_network(inputs, label)
|
||||
|
||||
|
||||
def test_amp_o0_loss():
|
||||
|
@ -86,7 +87,7 @@ def test_amp_o0_loss():
|
|||
loss = nn.MSELoss()
|
||||
optimizer = nn.Momentum(net.trainable_params(), learning_rate=0.1, momentum=0.9)
|
||||
train_network = amp.build_train_network(net, optimizer, loss)
|
||||
output = train_network(inputs, label)
|
||||
_ = train_network(inputs, label)
|
||||
|
||||
|
||||
class MindDataSet(MindData):
|
||||
|
@ -100,10 +101,10 @@ class MindDataSet(MindData):
|
|||
if self._size < self._iter_num:
|
||||
raise StopIteration
|
||||
self._iter_num += 1
|
||||
next = []
|
||||
for shape, type in zip(self._output_shapes, self._np_types):
|
||||
next.append(Tensor(np.ones(shape).astype(type)))
|
||||
return tuple(next)
|
||||
lst = []
|
||||
for shape_, type_ in zip(self._output_shapes, self._np_types):
|
||||
lst.append(Tensor(np.ones(shape_).astype(type_)))
|
||||
return tuple(lst)
|
||||
|
||||
|
||||
def test_compile_model_train_O0():
|
||||
|
|
|
@ -151,7 +151,7 @@ def test_eval():
|
|||
with pytest.raises(ValueError):
|
||||
model2.eval(dataset)
|
||||
|
||||
net3 = LossNet()
|
||||
_ = LossNet()
|
||||
model3 = Model(net2, eval_network=net2, metrics={"loss"})
|
||||
with pytest.raises(ValueError):
|
||||
model3.eval(dataset)
|
||||
|
|
|
@ -15,6 +15,7 @@
|
|||
"""test callback function."""
|
||||
import os
|
||||
import stat
|
||||
|
||||
import numpy as np
|
||||
import pytest
|
||||
|
||||
|
@ -283,14 +284,14 @@ def test_build_callbacks():
|
|||
|
||||
callbacks = [ck_obj, loss_cb_1, 'Error', None]
|
||||
with pytest.raises(TypeError):
|
||||
callback_list = _build_callbacks(callbacks)
|
||||
_ = _build_callbacks(callbacks)
|
||||
|
||||
|
||||
def test_RunContext():
|
||||
"""Test RunContext."""
|
||||
context_err = 666
|
||||
with pytest.raises(TypeError):
|
||||
context = RunContext(context_err)
|
||||
_ = RunContext(context_err)
|
||||
|
||||
cb_params = _InternalCallbackParam()
|
||||
cb_params.member1 = 1
|
||||
|
|
|
@ -223,6 +223,7 @@ def vm_impl_avg_pool_grad(self):
|
|||
return vm_impl
|
||||
|
||||
|
||||
# pylint: disable=function-redefined
|
||||
@vm_impl_getters.register(G.FusedBatchNormGrad)
|
||||
def vm_impl_fused_batch_norm_grad(self):
|
||||
"""Generate vm_impl function for FusedBatchNormGrad"""
|
||||
|
@ -239,6 +240,7 @@ def vm_impl_fused_batch_norm_grad(self):
|
|||
return vm_impl
|
||||
|
||||
|
||||
# pylint: disable=function-redefined
|
||||
@vm_impl_getters.register(G.BatchNormGrad)
|
||||
def vm_impl_fused_batch_norm_grad(self):
|
||||
"""Generate vm_impl function for BatchNormGrad"""
|
||||
|
|
Loading…
Reference in New Issue