diff --git a/tests/st/networks/models/bert/__init__.py b/tests/st/networks/models/bert/__init__.py new file mode 100644 index 0000000000..e69de29bb2 diff --git a/tests/st/serving/__init__.py b/tests/st/serving/__init__.py new file mode 100644 index 0000000000..e69de29bb2 diff --git a/tests/st/serving/client_example.py b/tests/st/serving/client_example.py new file mode 100644 index 0000000000..ae203aea39 --- /dev/null +++ b/tests/st/serving/client_example.py @@ -0,0 +1,98 @@ +# Copyright 2020 Huawei Technologies Co., Ltd +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +# ============================================================================ + +import random +import grpc +import numpy as np +import ms_service_pb2 +import ms_service_pb2_grpc +import mindspore.dataset as de +from mindspore import Tensor, context +from mindspore import log as logger +from tests.st.networks.models.bert.src.bert_model import BertModel +from .generate_model import AddNet, bert_net_cfg + +context.set_context(mode=context.GRAPH_MODE, device_target="Ascend") + +random.seed(1) +np.random.seed(1) +de.config.set_seed(1) + +def test_add(): + channel = grpc.insecure_channel('localhost:5500') + stub = ms_service_pb2_grpc.MSServiceStub(channel) + request = ms_service_pb2.PredictRequest() + + x = request.data.add() + x.tensor_shape.dims.extend([4]) + x.tensor_type = ms_service_pb2.MS_FLOAT32 + x.data = (np.ones([4]).astype(np.float32)).tobytes() + + y = request.data.add() + y.tensor_shape.dims.extend([4]) + y.tensor_type = ms_service_pb2.MS_FLOAT32 + y.data = (np.ones([4]).astype(np.float32)).tobytes() + + result = stub.Predict(request) + result_np = np.frombuffer(result.result[0].data, dtype=np.float32).reshape(result.result[0].tensor_shape.dims) + print("ms client received: ") + print(result_np) + + net = AddNet() + net_out = net(Tensor(np.ones([4]).astype(np.float32)), Tensor(np.ones([4]).astype(np.float32))) + print("add net out: ") + print(net_out) + assert np.allclose(net_out.asnumpy(), result_np, 0.001, 0.001, equal_nan=True) + +def test_bert(): + MAX_MESSAGE_LENGTH = 0x7fffffff + input_ids = np.random.randint(0, 1000, size=(2, 32), dtype=np.int32) + segment_ids = np.zeros((2, 32), dtype=np.int32) + input_mask = np.zeros((2, 32), dtype=np.int32) + channel = grpc.insecure_channel('localhost:5500', options=[('grpc.max_send_message_length', MAX_MESSAGE_LENGTH), + ('grpc.max_receive_message_length', MAX_MESSAGE_LENGTH)]) + stub = ms_service_pb2_grpc.MSServiceStub(channel) + request = ms_service_pb2.PredictRequest() + + x = request.data.add() + x.tensor_shape.dims.extend([2, 32]) + x.tensor_type = ms_service_pb2.MS_INT32 + x.data = input_ids.tobytes() + + y = request.data.add() + y.tensor_shape.dims.extend([2, 32]) + y.tensor_type = ms_service_pb2.MS_INT32 + y.data = segment_ids.tobytes() + + z = request.data.add() + z.tensor_shape.dims.extend([2, 32]) + z.tensor_type = ms_service_pb2.MS_INT32 + z.data = input_mask.tobytes() + + result = stub.Predict(request) + result_np = np.frombuffer(result.result[0].data, dtype=np.float32).reshape(result.result[0].tensor_shape.dims) + print("ms client received: ") + print(result_np) + + net = BertModel(bert_net_cfg, False) + bert_out = net(Tensor(input_ids), Tensor(segment_ids), Tensor(input_mask)) + print("bert out: ") + print(bert_out) + bert_out_size = len(bert_out) + for i in range(bert_out_size): + result_np = np.frombuffer(result.result[i].data, dtype=np.float32).reshape(result.result[i].tensor_shape.dims) + logger.info("i:{}, result_np:{}, bert_out:{}". + format(i, result.result[i].tensor_shape.dims, bert_out[i].asnumpy().shape)) + assert np.allclose(bert_out[i].asnumpy(), result_np, 0.001, 0.001, equal_nan=True) diff --git a/tests/st/serving/generate_model.py b/tests/st/serving/generate_model.py new file mode 100644 index 0000000000..f7d47392f6 --- /dev/null +++ b/tests/st/serving/generate_model.py @@ -0,0 +1,76 @@ +# Copyright 2020 Huawei Technologies Co., Ltd +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +# ============================================================================ + +import random +import numpy as np +import mindspore.nn as nn +import mindspore.common.dtype as mstype +import mindspore.dataset as de +from mindspore import Tensor, context +from mindspore.ops import operations as P +from mindspore.train.serialization import export +from tests.st.networks.models.bert.src.bert_model import BertModel, BertConfig + +bert_net_cfg = BertConfig( + batch_size=2, + seq_length=32, + vocab_size=21128, + hidden_size=768, + num_hidden_layers=12, + num_attention_heads=12, + intermediate_size=3072, + hidden_act="gelu", + hidden_dropout_prob=0.1, + attention_probs_dropout_prob=0.1, + max_position_embeddings=512, + type_vocab_size=2, + initializer_range=0.02, + use_relative_positions=False, + input_mask_from_dataset=True, + token_type_ids_from_dataset=True, + dtype=mstype.float32, + compute_type=mstype.float16 +) + +context.set_context(mode=context.GRAPH_MODE, device_target="Ascend") + +random.seed(1) +np.random.seed(1) +de.config.set_seed(1) + +class AddNet(nn.Cell): + def __init__(self): + super(AddNet, self).__init__() + self.add = P.TensorAdd() + + def construct(self, x_, y_): + return self.add(x_, y_) + +def export_add_model(): + net = AddNet() + x = np.ones(4).astype(np.float32) + y = np.ones(4).astype(np.float32) + export(net, Tensor(x), Tensor(y), file_name='add.pb', file_format='BINARY') + +def export_bert_model(): + net = BertModel(bert_net_cfg, False) + input_ids = np.random.randint(0, 1000, size=(2, 32), dtype=np.int32) + segment_ids = np.zeros((2, 32), dtype=np.int32) + input_mask = np.zeros((2, 32), dtype=np.int32) + export(net, Tensor(input_ids), Tensor(segment_ids), Tensor(input_mask), file_name='bert.pb', file_format='BINARY') + +if __name__ == '__main__': + export_add_model() + export_bert_model() diff --git a/tests/st/serving/serving.sh b/tests/st/serving/serving.sh new file mode 100644 index 0000000000..dd40293062 --- /dev/null +++ b/tests/st/serving/serving.sh @@ -0,0 +1,117 @@ +#!/bin/bash + +export GLOG_v=1 +export DEVICE_ID=1 + +MINDSPORE_INSTALL_PATH=$1 +CURRPATH=$(cd $(dirname $0); pwd) +CURRUSER=$(whoami) +PROJECT_PATH=${CURRPATH}/../../../ +ENV_DEVICE_ID=$DEVICE_ID +echo "MINDSPORE_INSTALL_PATH:" ${MINDSPORE_INSTALL_PATH} +echo "CURRPATH:" ${CURRPATH} +echo "CURRUSER:" ${CURRUSER} +echo "PROJECT_PATH:" ${PROJECT_PATH} +echo "ENV_DEVICE_ID:" ${ENV_DEVICE_ID} + +MODEL_PATH=${CURRPATH}/model +export LD_LIBRARY_PATH=${MINDSPORE_INSTALL_PATH}/lib:/usr/local/python/python375/lib/:${LD_LIBRARY_PATH} +export PYTHONPATH=${MINDSPORE_INSTALL_PATH}/../:${PYTHONPATH} + +echo "LD_LIBRARY_PATH: " ${LD_LIBRARY_PATH} +echo "PYTHONPATH: " ${PYTHONPATH} +echo "-------------show MINDSPORE_INSTALL_PATH----------------" +ls -l ${MINDSPORE_INSTALL_PATH} +echo "------------------show /usr/lib64/----------------------" +ls -l /usr/local/python/python375/lib/ + +clean_pid() +{ + ps aux | grep 'ms_serving' | grep ${CURRUSER} | grep -v grep | awk '{print $2}' | xargs kill -15 + if [ $? -ne 0 ] + then + echo "clean pip failed" + fi + sleep 6 +} + +prepare_model() +{ + echo "### begin to generate mode for serving test ###" + python3 generate_model.py &> generate_model_serving.log + echo "### end to generate mode for serving test ###" + result=`ls -l | grep -E '*pb' | grep -v ".log" | wc -l` + if [ ${result} -ne 2 ] + then + cat generate_model_serving.log + echo "### generate model for serving test failed ###" && exit 1 + clean_pid + fi + rm -rf model + mkdir model + mv *.pb ${CURRPATH}/model + cp ${MINDSPORE_INSTALL_PATH}/ms_serving ./ +} + +start_service() +{ + ${CURRPATH}/ms_serving --port=$1 --model_path=${MODEL_PATH} --model_name=$2 --device_id=$3 > $2_service.log 2>&1 & + if [ $? -ne 0 ] + then + echo "$2 faile to start." + fi + + result=`grep -E 'MS Serving listening on 0.0.0.0:5500|MS Serving listening on 0.0.0.0:5501' $2_service.log | wc -l` + count=0 + while [[ ${result} -ne 1 && ${count} -lt 150 ]] + do + sleep 1 + count=$(($count+1)) + result=`grep -E 'MS Serving listening on 0.0.0.0:5500|MS Serving listening on 0.0.0.0:5501' $2_service.log | wc -l` + done + + if [ ${count} -eq 150 ] + then + clean_pid + cat $2_service.log + echo "start serving service failed!" && exit 1 + fi + echo "### start serving service end ###" +} + +pytest_serving() +{ + unset http_proxy https_proxy + CLIENT_DEVICE_ID=$((${ENV_DEVICE_ID}+1)) + export DEVICE_ID=${CLIENT_DEVICE_ID} + local test_client_name=$1 + echo "### $1 client start ###" + python3 -m pytest -v -s client_example.py::${test_client_name} > ${test_client_name}_client.log 2>&1 + if [ $? -ne 0 ] + then + clean_pid + cat ${test_client_name}_client.log + echo "client $1 faile to start." + fi + echo "### $1 client end ###" +} + +test_add_model() +{ + start_service 5500 add.pb ${ENV_DEVICE_ID} + pytest_serving test_add + clean_pid +} + +test_bert_model() +{ + start_service 5500 bert.pb ${ENV_DEVICE_ID} + pytest_serving test_bert + clean_pid +} + +echo "-----serving start-----" +rm -rf ms_serving *.log *.pb *.dat ${CURRPATH}/model ${CURRPATH}/kernel_meta +prepare_model +test_add_model +test_bert_model diff --git a/tests/st/serving/test_serving.py b/tests/st/serving/test_serving.py new file mode 100644 index 0000000000..be94610ae5 --- /dev/null +++ b/tests/st/serving/test_serving.py @@ -0,0 +1,39 @@ +# Copyright 2020 Huawei Technologies Co., Ltd +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +# ============================================================================ + +import os +import sys +import pytest +import numpy as np + +@pytest.mark.level0 +@pytest.mark.platform_arm_ascend_training +@pytest.mark.env_single +def test_serving(): + """test_serving""" + sh_path = os.path.split(os.path.realpath(__file__))[0] + python_path_folders = [] + for python_path in sys.path: + if os.path.isdir(python_path): + python_path_folders += [python_path] + folders = [] + for folder in python_path_folders: + folders += [os.path.join(folder, x) for x in os.listdir(folder) \ + if os.path.isdir(os.path.join(folder, x)) and '/site-packages/mindspore' in os.path.join(folder, x)] + ret = os.system(f"sh {sh_path}/serving.sh {folders[0].split('mindspore', 1)[0] + 'mindspore'}") + assert np.allclose(ret, 0, 0.0001, 0.0001) + +if __name__ == '__main__': + test_serving()