serving st

This commit is contained in:
hexia 2020-08-06 15:03:41 +08:00
parent 12102ae3e2
commit 7f514a07e8
6 changed files with 330 additions and 0 deletions

View File

View File

@ -0,0 +1,98 @@
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
import random
import grpc
import numpy as np
import ms_service_pb2
import ms_service_pb2_grpc
import mindspore.dataset as de
from mindspore import Tensor, context
from mindspore import log as logger
from tests.st.networks.models.bert.src.bert_model import BertModel
from .generate_model import AddNet, bert_net_cfg
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
random.seed(1)
np.random.seed(1)
de.config.set_seed(1)
def test_add():
channel = grpc.insecure_channel('localhost:5500')
stub = ms_service_pb2_grpc.MSServiceStub(channel)
request = ms_service_pb2.PredictRequest()
x = request.data.add()
x.tensor_shape.dims.extend([4])
x.tensor_type = ms_service_pb2.MS_FLOAT32
x.data = (np.ones([4]).astype(np.float32)).tobytes()
y = request.data.add()
y.tensor_shape.dims.extend([4])
y.tensor_type = ms_service_pb2.MS_FLOAT32
y.data = (np.ones([4]).astype(np.float32)).tobytes()
result = stub.Predict(request)
result_np = np.frombuffer(result.result[0].data, dtype=np.float32).reshape(result.result[0].tensor_shape.dims)
print("ms client received: ")
print(result_np)
net = AddNet()
net_out = net(Tensor(np.ones([4]).astype(np.float32)), Tensor(np.ones([4]).astype(np.float32)))
print("add net out: ")
print(net_out)
assert np.allclose(net_out.asnumpy(), result_np, 0.001, 0.001, equal_nan=True)
def test_bert():
MAX_MESSAGE_LENGTH = 0x7fffffff
input_ids = np.random.randint(0, 1000, size=(2, 32), dtype=np.int32)
segment_ids = np.zeros((2, 32), dtype=np.int32)
input_mask = np.zeros((2, 32), dtype=np.int32)
channel = grpc.insecure_channel('localhost:5500', options=[('grpc.max_send_message_length', MAX_MESSAGE_LENGTH),
('grpc.max_receive_message_length', MAX_MESSAGE_LENGTH)])
stub = ms_service_pb2_grpc.MSServiceStub(channel)
request = ms_service_pb2.PredictRequest()
x = request.data.add()
x.tensor_shape.dims.extend([2, 32])
x.tensor_type = ms_service_pb2.MS_INT32
x.data = input_ids.tobytes()
y = request.data.add()
y.tensor_shape.dims.extend([2, 32])
y.tensor_type = ms_service_pb2.MS_INT32
y.data = segment_ids.tobytes()
z = request.data.add()
z.tensor_shape.dims.extend([2, 32])
z.tensor_type = ms_service_pb2.MS_INT32
z.data = input_mask.tobytes()
result = stub.Predict(request)
result_np = np.frombuffer(result.result[0].data, dtype=np.float32).reshape(result.result[0].tensor_shape.dims)
print("ms client received: ")
print(result_np)
net = BertModel(bert_net_cfg, False)
bert_out = net(Tensor(input_ids), Tensor(segment_ids), Tensor(input_mask))
print("bert out: ")
print(bert_out)
bert_out_size = len(bert_out)
for i in range(bert_out_size):
result_np = np.frombuffer(result.result[i].data, dtype=np.float32).reshape(result.result[i].tensor_shape.dims)
logger.info("i:{}, result_np:{}, bert_out:{}".
format(i, result.result[i].tensor_shape.dims, bert_out[i].asnumpy().shape))
assert np.allclose(bert_out[i].asnumpy(), result_np, 0.001, 0.001, equal_nan=True)

View File

@ -0,0 +1,76 @@
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
import random
import numpy as np
import mindspore.nn as nn
import mindspore.common.dtype as mstype
import mindspore.dataset as de
from mindspore import Tensor, context
from mindspore.ops import operations as P
from mindspore.train.serialization import export
from tests.st.networks.models.bert.src.bert_model import BertModel, BertConfig
bert_net_cfg = BertConfig(
batch_size=2,
seq_length=32,
vocab_size=21128,
hidden_size=768,
num_hidden_layers=12,
num_attention_heads=12,
intermediate_size=3072,
hidden_act="gelu",
hidden_dropout_prob=0.1,
attention_probs_dropout_prob=0.1,
max_position_embeddings=512,
type_vocab_size=2,
initializer_range=0.02,
use_relative_positions=False,
input_mask_from_dataset=True,
token_type_ids_from_dataset=True,
dtype=mstype.float32,
compute_type=mstype.float16
)
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
random.seed(1)
np.random.seed(1)
de.config.set_seed(1)
class AddNet(nn.Cell):
def __init__(self):
super(AddNet, self).__init__()
self.add = P.TensorAdd()
def construct(self, x_, y_):
return self.add(x_, y_)
def export_add_model():
net = AddNet()
x = np.ones(4).astype(np.float32)
y = np.ones(4).astype(np.float32)
export(net, Tensor(x), Tensor(y), file_name='add.pb', file_format='BINARY')
def export_bert_model():
net = BertModel(bert_net_cfg, False)
input_ids = np.random.randint(0, 1000, size=(2, 32), dtype=np.int32)
segment_ids = np.zeros((2, 32), dtype=np.int32)
input_mask = np.zeros((2, 32), dtype=np.int32)
export(net, Tensor(input_ids), Tensor(segment_ids), Tensor(input_mask), file_name='bert.pb', file_format='BINARY')
if __name__ == '__main__':
export_add_model()
export_bert_model()

117
tests/st/serving/serving.sh Normal file
View File

@ -0,0 +1,117 @@
#!/bin/bash
export GLOG_v=1
export DEVICE_ID=1
MINDSPORE_INSTALL_PATH=$1
CURRPATH=$(cd $(dirname $0); pwd)
CURRUSER=$(whoami)
PROJECT_PATH=${CURRPATH}/../../../
ENV_DEVICE_ID=$DEVICE_ID
echo "MINDSPORE_INSTALL_PATH:" ${MINDSPORE_INSTALL_PATH}
echo "CURRPATH:" ${CURRPATH}
echo "CURRUSER:" ${CURRUSER}
echo "PROJECT_PATH:" ${PROJECT_PATH}
echo "ENV_DEVICE_ID:" ${ENV_DEVICE_ID}
MODEL_PATH=${CURRPATH}/model
export LD_LIBRARY_PATH=${MINDSPORE_INSTALL_PATH}/lib:/usr/local/python/python375/lib/:${LD_LIBRARY_PATH}
export PYTHONPATH=${MINDSPORE_INSTALL_PATH}/../:${PYTHONPATH}
echo "LD_LIBRARY_PATH: " ${LD_LIBRARY_PATH}
echo "PYTHONPATH: " ${PYTHONPATH}
echo "-------------show MINDSPORE_INSTALL_PATH----------------"
ls -l ${MINDSPORE_INSTALL_PATH}
echo "------------------show /usr/lib64/----------------------"
ls -l /usr/local/python/python375/lib/
clean_pid()
{
ps aux | grep 'ms_serving' | grep ${CURRUSER} | grep -v grep | awk '{print $2}' | xargs kill -15
if [ $? -ne 0 ]
then
echo "clean pip failed"
fi
sleep 6
}
prepare_model()
{
echo "### begin to generate mode for serving test ###"
python3 generate_model.py &> generate_model_serving.log
echo "### end to generate mode for serving test ###"
result=`ls -l | grep -E '*pb' | grep -v ".log" | wc -l`
if [ ${result} -ne 2 ]
then
cat generate_model_serving.log
echo "### generate model for serving test failed ###" && exit 1
clean_pid
fi
rm -rf model
mkdir model
mv *.pb ${CURRPATH}/model
cp ${MINDSPORE_INSTALL_PATH}/ms_serving ./
}
start_service()
{
${CURRPATH}/ms_serving --port=$1 --model_path=${MODEL_PATH} --model_name=$2 --device_id=$3 > $2_service.log 2>&1 &
if [ $? -ne 0 ]
then
echo "$2 faile to start."
fi
result=`grep -E 'MS Serving listening on 0.0.0.0:5500|MS Serving listening on 0.0.0.0:5501' $2_service.log | wc -l`
count=0
while [[ ${result} -ne 1 && ${count} -lt 150 ]]
do
sleep 1
count=$(($count+1))
result=`grep -E 'MS Serving listening on 0.0.0.0:5500|MS Serving listening on 0.0.0.0:5501' $2_service.log | wc -l`
done
if [ ${count} -eq 150 ]
then
clean_pid
cat $2_service.log
echo "start serving service failed!" && exit 1
fi
echo "### start serving service end ###"
}
pytest_serving()
{
unset http_proxy https_proxy
CLIENT_DEVICE_ID=$((${ENV_DEVICE_ID}+1))
export DEVICE_ID=${CLIENT_DEVICE_ID}
local test_client_name=$1
echo "### $1 client start ###"
python3 -m pytest -v -s client_example.py::${test_client_name} > ${test_client_name}_client.log 2>&1
if [ $? -ne 0 ]
then
clean_pid
cat ${test_client_name}_client.log
echo "client $1 faile to start."
fi
echo "### $1 client end ###"
}
test_add_model()
{
start_service 5500 add.pb ${ENV_DEVICE_ID}
pytest_serving test_add
clean_pid
}
test_bert_model()
{
start_service 5500 bert.pb ${ENV_DEVICE_ID}
pytest_serving test_bert
clean_pid
}
echo "-----serving start-----"
rm -rf ms_serving *.log *.pb *.dat ${CURRPATH}/model ${CURRPATH}/kernel_meta
prepare_model
test_add_model
test_bert_model

View File

@ -0,0 +1,39 @@
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
import os
import sys
import pytest
import numpy as np
@pytest.mark.level0
@pytest.mark.platform_arm_ascend_training
@pytest.mark.env_single
def test_serving():
"""test_serving"""
sh_path = os.path.split(os.path.realpath(__file__))[0]
python_path_folders = []
for python_path in sys.path:
if os.path.isdir(python_path):
python_path_folders += [python_path]
folders = []
for folder in python_path_folders:
folders += [os.path.join(folder, x) for x in os.listdir(folder) \
if os.path.isdir(os.path.join(folder, x)) and '/site-packages/mindspore' in os.path.join(folder, x)]
ret = os.system(f"sh {sh_path}/serving.sh {folders[0].split('mindspore', 1)[0] + 'mindspore'}")
assert np.allclose(ret, 0, 0.0001, 0.0001)
if __name__ == '__main__':
test_serving()