forked from OSSInnovation/mindspore
!2514 add bert support for glue task
Merge pull request !2514 from yoonlee666/gelu2
This commit is contained in:
commit
7b5b4837ff
|
@ -89,7 +89,7 @@ config.py:
|
|||
optimizer optimizer used in the network: AdamWerigtDecayDynamicLR | Lamb | Momentum, default is "Lamb"
|
||||
|
||||
finetune_config.py:
|
||||
task task type: NER | SQUAD | OTHERS
|
||||
task task type: SeqLabeling | Regression | Classification | COLA | SQUAD
|
||||
num_labels number of labels to do classification
|
||||
data_file dataset file to load: PATH, default is "/your/path/train.tfrecord"
|
||||
schema_file dataset schema file to load: PATH, default is "/your/path/schema.json"
|
||||
|
@ -101,7 +101,7 @@ finetune_config.py:
|
|||
optimizer optimizer used in fine-tune network: AdamWeigtDecayDynamicLR | Lamb | Momentum, default is "Lamb"
|
||||
|
||||
evaluation_config.py:
|
||||
task task type: NER | SQUAD | OTHERS
|
||||
task task type: SeqLabeling | Regression | Classification | COLA
|
||||
num_labels number of labels to do classsification
|
||||
data_file dataset file to load: PATH, default is "/your/path/evaluation.tfrecord"
|
||||
schema_file dataset schema file to load: PATH, default is "/your/path/schema.json"
|
||||
|
|
|
@ -19,6 +19,7 @@ Bert evaluation script.
|
|||
|
||||
import os
|
||||
import argparse
|
||||
import math
|
||||
import numpy as np
|
||||
import mindspore.common.dtype as mstype
|
||||
from mindspore import context
|
||||
|
@ -29,19 +30,24 @@ import mindspore.dataset.transforms.c_transforms as C
|
|||
from mindspore.train.model import Model
|
||||
from mindspore.train.serialization import load_checkpoint, load_param_into_net
|
||||
from src.evaluation_config import cfg, bert_net_cfg
|
||||
from src.utils import BertNER, BertCLS
|
||||
from src.utils import BertNER, BertCLS, BertReg
|
||||
from src.CRF import postprocess
|
||||
from src.cluener_evaluation import submit
|
||||
from src.finetune_config import tag_to_index
|
||||
|
||||
|
||||
class Accuracy():
|
||||
'''
|
||||
"""
|
||||
calculate accuracy
|
||||
'''
|
||||
"""
|
||||
def __init__(self):
|
||||
self.acc_num = 0
|
||||
self.total_num = 0
|
||||
|
||||
def update(self, logits, labels):
|
||||
"""
|
||||
Update accuracy
|
||||
"""
|
||||
labels = labels.asnumpy()
|
||||
labels = np.reshape(labels, -1)
|
||||
logits = logits.asnumpy()
|
||||
|
@ -50,18 +56,20 @@ class Accuracy():
|
|||
self.total_num += len(labels)
|
||||
print("=========================accuracy is ", self.acc_num / self.total_num)
|
||||
|
||||
|
||||
class F1():
|
||||
'''
|
||||
"""
|
||||
calculate F1 score
|
||||
'''
|
||||
"""
|
||||
def __init__(self):
|
||||
self.TP = 0
|
||||
self.FP = 0
|
||||
self.FN = 0
|
||||
|
||||
def update(self, logits, labels):
|
||||
'''
|
||||
"""
|
||||
update F1 score
|
||||
'''
|
||||
"""
|
||||
labels = labels.asnumpy()
|
||||
labels = np.reshape(labels, -1)
|
||||
if cfg.use_crf:
|
||||
|
@ -80,10 +88,76 @@ class F1():
|
|||
self.FP += np.sum(pos_eva&(~pos_label))
|
||||
self.FN += np.sum((~pos_eva)&pos_label)
|
||||
|
||||
|
||||
class MCC():
|
||||
"""
|
||||
Calculate Matthews Correlation Coefficient.
|
||||
"""
|
||||
def __init__(self):
|
||||
self.TP = 0
|
||||
self.FP = 0
|
||||
self.FN = 0
|
||||
self.TN = 0
|
||||
|
||||
def update(self, logits, labels):
|
||||
"""
|
||||
Update MCC score
|
||||
"""
|
||||
labels = labels.asnumpy()
|
||||
labels = np.reshape(labels, -1)
|
||||
labels = labels.astype(np.bool)
|
||||
logits = logits.asnumpy()
|
||||
logit_id = np.argmax(logits, axis=-1)
|
||||
logit_id = np.reshape(logit_id, -1)
|
||||
logit_id = logit_id.astype(np.bool)
|
||||
ornot = logit_id ^ labels
|
||||
|
||||
self.TP += (~ornot & labels).sum()
|
||||
self.FP += (ornot & ~labels).sum()
|
||||
self.FN += (ornot & labels).sum()
|
||||
self.TN += (~ornot & ~labels).sum()
|
||||
|
||||
|
||||
class Spearman_Correlation():
|
||||
"""
|
||||
calculate Spearman Correlation coefficient
|
||||
"""
|
||||
def __init__(self):
|
||||
self.label = []
|
||||
self.logit = []
|
||||
|
||||
def update(self, logits, labels):
|
||||
"""
|
||||
Update Spearman Correlation
|
||||
"""
|
||||
labels = labels.asnumpy()
|
||||
labels = np.reshape(labels, -1)
|
||||
logits = logits.asnumpy()
|
||||
logits = np.reshape(logits, -1)
|
||||
self.label.append(labels)
|
||||
self.logit.append(logits)
|
||||
|
||||
def cal(self):
|
||||
"""
|
||||
Calculate Spearman Correlation
|
||||
"""
|
||||
label = np.concatenate(self.label)
|
||||
logit = np.concatenate(self.logit)
|
||||
sort_label = label.argsort()[::-1]
|
||||
sort_logit = logit.argsort()[::-1]
|
||||
n = len(label)
|
||||
d_acc = 0
|
||||
for i in range(n):
|
||||
d = np.where(sort_label == i)[0] - np.where(sort_logit == i)[0]
|
||||
d_acc += d**2
|
||||
ps = 1 - 6*d_acc/n/(n**2-1)
|
||||
return ps
|
||||
|
||||
|
||||
def get_dataset(batch_size=1, repeat_count=1, distribute_file=''):
|
||||
'''
|
||||
"""
|
||||
get dataset
|
||||
'''
|
||||
"""
|
||||
_ = distribute_file
|
||||
|
||||
ds = de.TFRecordDataset([cfg.data_file], cfg.schema_file, columns_list=["input_ids", "input_mask",
|
||||
|
@ -92,7 +166,11 @@ def get_dataset(batch_size=1, repeat_count=1, distribute_file=''):
|
|||
ds = ds.map(input_columns="segment_ids", operations=type_cast_op)
|
||||
ds = ds.map(input_columns="input_mask", operations=type_cast_op)
|
||||
ds = ds.map(input_columns="input_ids", operations=type_cast_op)
|
||||
ds = ds.map(input_columns="label_ids", operations=type_cast_op)
|
||||
if cfg.task == "Regression":
|
||||
type_cast_op_float = C.TypeCast(mstype.float32)
|
||||
ds = ds.map(input_columns="label_ids", operations=type_cast_op_float)
|
||||
else:
|
||||
ds = ds.map(input_columns="label_ids", operations=type_cast_op)
|
||||
ds = ds.repeat(repeat_count)
|
||||
|
||||
# apply shuffle operation
|
||||
|
@ -103,10 +181,11 @@ def get_dataset(batch_size=1, repeat_count=1, distribute_file=''):
|
|||
ds = ds.batch(batch_size, drop_remainder=True)
|
||||
return ds
|
||||
|
||||
|
||||
def bert_predict(Evaluation):
|
||||
'''
|
||||
"""
|
||||
prediction function
|
||||
'''
|
||||
"""
|
||||
target = args_opt.device_target
|
||||
if target == "Ascend":
|
||||
devid = int(os.getenv('DEVICE_ID'))
|
||||
|
@ -131,15 +210,33 @@ def bert_predict(Evaluation):
|
|||
return model, dataset
|
||||
|
||||
def test_eval():
|
||||
'''
|
||||
"""
|
||||
evaluation function
|
||||
'''
|
||||
task_type = BertNER if cfg.task == "NER" else BertCLS
|
||||
"""
|
||||
if cfg.task == "SeqLabeling":
|
||||
task_type = BertNER
|
||||
elif cfg.task == "Regression":
|
||||
task_type = BertReg
|
||||
elif cfg.task == "Classification":
|
||||
task_type = BertCLS
|
||||
elif cfg.task == "COLA":
|
||||
task_type = BertCLS
|
||||
else:
|
||||
raise ValueError("Task not supported.")
|
||||
model, dataset = bert_predict(task_type)
|
||||
|
||||
if cfg.clue_benchmark:
|
||||
submit(model, cfg.data_file, bert_net_cfg.seq_length)
|
||||
else:
|
||||
callback = F1() if cfg.task == "NER" else Accuracy()
|
||||
if cfg.task == "SeqLabeling":
|
||||
callback = F1()
|
||||
elif cfg.task == "COLA":
|
||||
callback = MCC()
|
||||
elif cfg.task == "Regression":
|
||||
callback = Spearman_Correlation()
|
||||
else:
|
||||
callback = Accuracy()
|
||||
|
||||
columns_list = ["input_ids", "input_mask", "segment_ids", "label_ids"]
|
||||
for data in dataset.create_dict_iterator():
|
||||
input_data = []
|
||||
|
@ -149,10 +246,19 @@ def test_eval():
|
|||
logits = model.predict(input_ids, input_mask, token_type_id, label_ids)
|
||||
callback.update(logits, label_ids)
|
||||
print("==============================================================")
|
||||
if cfg.task == "NER":
|
||||
if cfg.task == "SeqLabeling":
|
||||
print("Precision {:.6f} ".format(callback.TP / (callback.TP + callback.FP)))
|
||||
print("Recall {:.6f} ".format(callback.TP / (callback.TP + callback.FN)))
|
||||
print("F1 {:.6f} ".format(2*callback.TP / (2*callback.TP + callback.FP + callback.FN)))
|
||||
elif cfg.task == "COLA":
|
||||
TP = callback.TP
|
||||
TN = callback.TN
|
||||
FP = callback.FP
|
||||
FN = callback.FN
|
||||
mcc = (TP*TN-FP*FN)/math.sqrt((TP+FP)*(TP+FN)*(TN+FP)*(TN+FN))
|
||||
print("MCC: {:.6f}".format(mcc))
|
||||
elif cfg.task == "Regression":
|
||||
print("Spearman Correlation is {:.6f}".format(callback.cal()[0]))
|
||||
else:
|
||||
print("acc_num {} , total_num {}, accuracy {:.6f}".format(callback.acc_num, callback.total_num,
|
||||
callback.acc_num / callback.total_num))
|
||||
|
|
|
@ -13,13 +13,13 @@
|
|||
# limitations under the License.
|
||||
# ============================================================================
|
||||
|
||||
'''
|
||||
"""
|
||||
Bert finetune script.
|
||||
'''
|
||||
"""
|
||||
|
||||
import os
|
||||
import argparse
|
||||
from src.utils import BertFinetuneCell, BertCLS, BertNER, BertSquad, BertSquadCell
|
||||
from src.utils import BertFinetuneCell, BertCLS, BertNER, BertSquad, BertSquadCell, BertReg
|
||||
from src.finetune_config import cfg, bert_net_cfg, tag_to_index
|
||||
import mindspore.common.dtype as mstype
|
||||
from mindspore import context
|
||||
|
@ -34,14 +34,14 @@ from mindspore.train.callback import CheckpointConfig, ModelCheckpoint
|
|||
from mindspore.train.serialization import load_checkpoint, load_param_into_net
|
||||
|
||||
class LossCallBack(Callback):
|
||||
'''
|
||||
"""
|
||||
Monitor the loss in training.
|
||||
If the loss is NAN or INF, terminate training.
|
||||
Note:
|
||||
If per_print_times is 0, do not print loss.
|
||||
Args:
|
||||
per_print_times (int): Print loss every times. Default: 1.
|
||||
'''
|
||||
"""
|
||||
def __init__(self, per_print_times=1):
|
||||
super(LossCallBack, self).__init__()
|
||||
if not isinstance(per_print_times, int) or per_print_times < 0:
|
||||
|
@ -56,16 +56,20 @@ class LossCallBack(Callback):
|
|||
f.write("\n")
|
||||
|
||||
def get_dataset(batch_size=1, repeat_count=1, distribute_file=''):
|
||||
'''
|
||||
"""
|
||||
get dataset
|
||||
'''
|
||||
"""
|
||||
ds = de.TFRecordDataset([cfg.data_file], cfg.schema_file, columns_list=["input_ids", "input_mask",
|
||||
"segment_ids", "label_ids"])
|
||||
type_cast_op = C.TypeCast(mstype.int32)
|
||||
ds = ds.map(input_columns="segment_ids", operations=type_cast_op)
|
||||
ds = ds.map(input_columns="input_mask", operations=type_cast_op)
|
||||
ds = ds.map(input_columns="input_ids", operations=type_cast_op)
|
||||
ds = ds.map(input_columns="label_ids", operations=type_cast_op)
|
||||
if cfg.task == "Regression":
|
||||
type_cast_op_float = C.TypeCast(mstype.float32)
|
||||
ds = ds.map(input_columns="label_ids", operations=type_cast_op_float)
|
||||
else:
|
||||
ds = ds.map(input_columns="label_ids", operations=type_cast_op)
|
||||
ds = ds.repeat(repeat_count)
|
||||
|
||||
# apply shuffle operation
|
||||
|
@ -77,9 +81,9 @@ def get_dataset(batch_size=1, repeat_count=1, distribute_file=''):
|
|||
return ds
|
||||
|
||||
def get_squad_dataset(batch_size=1, repeat_count=1, distribute_file=''):
|
||||
'''
|
||||
"""
|
||||
get SQuAD dataset
|
||||
'''
|
||||
"""
|
||||
ds = de.TFRecordDataset([cfg.data_file], cfg.schema_file, columns_list=["input_ids", "input_mask", "segment_ids",
|
||||
"start_positions", "end_positions",
|
||||
"unique_ids", "is_impossible"])
|
||||
|
@ -97,9 +101,9 @@ def get_squad_dataset(batch_size=1, repeat_count=1, distribute_file=''):
|
|||
return ds
|
||||
|
||||
def test_train():
|
||||
'''
|
||||
"""
|
||||
finetune function
|
||||
'''
|
||||
"""
|
||||
target = args_opt.device_target
|
||||
if target == "Ascend":
|
||||
devid = int(os.getenv('DEVICE_ID'))
|
||||
|
@ -113,7 +117,7 @@ def test_train():
|
|||
raise Exception("Target error, GPU or Ascend is supported.")
|
||||
#BertCLSTrain for classification
|
||||
#BertNERTrain for sequence labeling
|
||||
if cfg.task == 'NER':
|
||||
if cfg.task == 'SeqLabeling':
|
||||
if cfg.use_crf:
|
||||
netwithloss = BertNER(bert_net_cfg, True, num_labels=len(tag_to_index), use_crf=True,
|
||||
tag_to_index=tag_to_index, dropout_prob=0.1)
|
||||
|
@ -121,8 +125,12 @@ def test_train():
|
|||
netwithloss = BertNER(bert_net_cfg, True, num_labels=cfg.num_labels, dropout_prob=0.1)
|
||||
elif cfg.task == 'SQUAD':
|
||||
netwithloss = BertSquad(bert_net_cfg, True, 2, dropout_prob=0.1)
|
||||
else:
|
||||
elif cfg.task == 'Regression':
|
||||
netwithloss = BertReg(bert_net_cfg, True, num_labels=cfg.num_labels, dropout_prob=0.1)
|
||||
elif cfg.task == 'Classification':
|
||||
netwithloss = BertCLS(bert_net_cfg, True, num_labels=cfg.num_labels, dropout_prob=0.1)
|
||||
else:
|
||||
raise Exception("Target error, GPU or Ascend is supported.")
|
||||
if cfg.task == 'SQUAD':
|
||||
dataset = get_squad_dataset(bert_net_cfg.batch_size, cfg.epoch_num)
|
||||
else:
|
||||
|
|
|
@ -13,9 +13,9 @@
|
|||
# limitations under the License.
|
||||
# ============================================================================
|
||||
|
||||
'''
|
||||
"""
|
||||
Functional Cells used in Bert finetune and evaluation.
|
||||
'''
|
||||
"""
|
||||
|
||||
import mindspore.nn as nn
|
||||
from mindspore.common.initializer import TruncatedNormal
|
||||
|
@ -245,6 +245,32 @@ class BertSquadCell(nn.Cell):
|
|||
ret = (loss, cond)
|
||||
return F.depend(ret, succ)
|
||||
|
||||
|
||||
class BertRegressionModel(nn.Cell):
|
||||
"""
|
||||
Bert finetune model for regression task
|
||||
"""
|
||||
def __init__(self, config, is_training, num_labels=2, dropout_prob=0.0, use_one_hot_embeddings=False):
|
||||
super(BertRegressionModel, self).__init__()
|
||||
self.bert = BertModel(config, is_training, use_one_hot_embeddings)
|
||||
self.cast = P.Cast()
|
||||
self.weight_init = TruncatedNormal(config.initializer_range)
|
||||
self.log_softmax = P.LogSoftmax(axis=-1)
|
||||
self.dtype = config.dtype
|
||||
self.num_labels = num_labels
|
||||
self.dropout = nn.Dropout(1 - dropout_prob)
|
||||
self.dense_1 = nn.Dense(config.hidden_size, 1, weight_init=self.weight_init,
|
||||
has_bias=True).to_float(mstype.float16)
|
||||
|
||||
def construct(self, input_ids, input_mask, token_type_id):
|
||||
_, pooled_output, _ = self.bert(input_ids, token_type_id, input_mask)
|
||||
cls = self.cast(pooled_output, self.dtype)
|
||||
cls = self.dropout(cls)
|
||||
logits = self.dense_1(cls)
|
||||
logits = self.cast(logits, self.dtype)
|
||||
return logits
|
||||
|
||||
|
||||
class BertCLSModel(nn.Cell):
|
||||
"""
|
||||
This class is responsible for classification task evaluation, i.e. XNLI(num_labels=3),
|
||||
|
@ -274,9 +300,9 @@ class BertCLSModel(nn.Cell):
|
|||
return log_probs
|
||||
|
||||
class BertSquadModel(nn.Cell):
|
||||
'''
|
||||
This class is responsible for SQuAD
|
||||
'''
|
||||
"""
|
||||
Bert finetune model for SQuAD v1.1 task
|
||||
"""
|
||||
def __init__(self, config, is_training, num_labels=2, dropout_prob=0.0, use_one_hot_embeddings=False):
|
||||
super(BertSquadModel, self).__init__()
|
||||
self.bert = BertModel(config, is_training, use_one_hot_embeddings)
|
||||
|
@ -401,9 +427,9 @@ class BertNER(nn.Cell):
|
|||
return loss
|
||||
|
||||
class BertSquad(nn.Cell):
|
||||
'''
|
||||
"""
|
||||
Train interface for SQuAD finetuning task.
|
||||
'''
|
||||
"""
|
||||
def __init__(self, config, is_training, num_labels=2, dropout_prob=0.0, use_one_hot_embeddings=False):
|
||||
super(BertSquad, self).__init__()
|
||||
self.bert = BertSquadModel(config, is_training, num_labels, dropout_prob, use_one_hot_embeddings)
|
||||
|
@ -432,3 +458,24 @@ class BertSquad(nn.Cell):
|
|||
end_logits = self.squeeze(logits[:, :, 1:2])
|
||||
total_loss = (unique_id, start_logits, end_logits)
|
||||
return total_loss
|
||||
|
||||
|
||||
class BertReg(nn.Cell):
|
||||
"""
|
||||
Bert finetune model with loss for regression task
|
||||
"""
|
||||
def __init__(self, config, is_training, num_labels=2, dropout_prob=0.0, use_one_hot_embeddings=False):
|
||||
super(BertReg, self).__init__()
|
||||
self.bert = BertRegressionModel(config, is_training, num_labels, dropout_prob, use_one_hot_embeddings)
|
||||
self.loss = nn.MSELoss()
|
||||
self.is_training = is_training
|
||||
self.sigmoid = P.Sigmoid()
|
||||
self.cast = P.Cast()
|
||||
self.mul = P.Mul()
|
||||
def construct(self, input_ids, input_mask, token_type_id, labels):
|
||||
logits = self.bert(input_ids, input_mask, token_type_id)
|
||||
if self.is_training:
|
||||
loss = self.loss(logits, labels)
|
||||
else:
|
||||
loss = logits
|
||||
return loss
|
||||
|
|
Loading…
Reference in New Issue