forked from OSSInnovation/mindspore
Add matmul biasadd fusion pass
This commit is contained in:
parent
930a1fb0a8
commit
468dbc3557
|
@ -43,6 +43,7 @@
|
|||
#include "pre_activate/ascend/ir_fusion/momentum_lossscale_fusion.h"
|
||||
#include "pre_activate/ascend/ir_fusion/mul_add_fusion.h"
|
||||
#include "pre_activate/ascend/ir_fusion/mul_addn_fusion.h"
|
||||
#include "pre_activate/ascend/ir_fusion/matmul_biasadd_fusion.h"
|
||||
#include "pre_activate/ascend/format_type/insert_trans_op.h"
|
||||
#include "pre_activate/pass/getitem_tuple.h"
|
||||
#include "pre_activate/pass/optimize_dependence.h"
|
||||
|
@ -173,6 +174,7 @@ void AscendBackendIRFusionOptimization(const std::shared_ptr<session::KernelGrap
|
|||
ir_fusion_pm->AddPass(std::make_shared<MomentumLossscaleFusion>());
|
||||
ir_fusion_pm->AddPass(std::make_shared<MulAddFusion>());
|
||||
ir_fusion_pm->AddPass(std::make_shared<MulAddNFusion>());
|
||||
ir_fusion_pm->AddPass(std::make_shared<MatmulBiasaddFusion>());
|
||||
ir_fusion_pm->AddPass(std::make_shared<GetitemTuple>());
|
||||
ir_fusion_pm->AddPass(std::make_shared<TransposeTransDataFusion>());
|
||||
}
|
||||
|
|
|
@ -0,0 +1,51 @@
|
|||
/**
|
||||
* Copyright 2020 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
#include "pre_activate/ascend/ir_fusion/matmul_biasadd_fusion.h"
|
||||
#include <memory>
|
||||
#include "pre_activate/common/helper.h"
|
||||
#include "session/anf_runtime_algorithm.h"
|
||||
#include "utils/utils.h"
|
||||
|
||||
namespace mindspore {
|
||||
namespace opt {
|
||||
namespace {
|
||||
constexpr size_t kMatMulInputIndex = 1;
|
||||
constexpr size_t kBiasInputIndex = 2;
|
||||
} // namespace
|
||||
|
||||
const BaseRef MatmulBiasaddFusion::DefinePattern() const {
|
||||
VarPtr X0 = std::make_shared<Var>();
|
||||
VarPtr X1 = std::make_shared<Var>();
|
||||
VarPtr X2 = std::make_shared<Var>();
|
||||
const auto prim_bias_add = std::make_shared<Primitive>(kBiasAddOpName);
|
||||
return VectorRef({prim_bias_add, VectorRef({prim::kPrimMatMul, X0, X1}), X2});
|
||||
}
|
||||
|
||||
const AnfNodePtr MatmulBiasaddFusion::Process(const FuncGraphPtr &, const AnfNodePtr &node, const EquivPtr &) const {
|
||||
MS_EXCEPTION_IF_NULL(node);
|
||||
auto cnode = node->cast<CNodePtr>();
|
||||
MS_EXCEPTION_IF_NULL(cnode);
|
||||
CheckCNodeInputSize(cnode, kBiasAddInputNum);
|
||||
AnfNodePtr matmul = cnode->input(kMatMulInputIndex);
|
||||
MS_EXCEPTION_IF_NULL(matmul);
|
||||
auto matmul_cnode = matmul->cast<CNodePtr>();
|
||||
MS_EXCEPTION_IF_NULL(matmul_cnode);
|
||||
matmul_cnode->add_input(cnode->input(kBiasInputIndex));
|
||||
AnfAlgo::SetNodeAttr(kAttrHasBias, MakeValue(true), matmul);
|
||||
return matmul;
|
||||
}
|
||||
} // namespace opt
|
||||
} // namespace mindspore
|
|
@ -0,0 +1,34 @@
|
|||
/**
|
||||
* Copyright 2020 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
#ifndef MINDSPORE_CCSRC_PRE_ACTIVATE_ASCEND_IR_FUSION_MATMUL_BIASADD_FUSION_H_
|
||||
#define MINDSPORE_CCSRC_PRE_ACTIVATE_ASCEND_IR_FUSION_MATMUL_BIASADD_FUSION_H_
|
||||
|
||||
#include "pre_activate/common/optimizer.h"
|
||||
|
||||
namespace mindspore {
|
||||
namespace opt {
|
||||
class MatmulBiasaddFusion : public PatternProcessPass {
|
||||
public:
|
||||
explicit MatmulBiasaddFusion(bool multigraph = true) : PatternProcessPass("matmul_biasadd_fusion", multigraph) {}
|
||||
|
||||
~MatmulBiasaddFusion() override = default;
|
||||
const BaseRef DefinePattern() const override;
|
||||
const AnfNodePtr Process(const FuncGraphPtr &, const AnfNodePtr &, const EquivPtr &) const override;
|
||||
};
|
||||
} // namespace opt
|
||||
} // namespace mindspore
|
||||
|
||||
#endif // MINDSPORE_CCSRC_PRE_ACTIVATE_ASCEND_IR_FUSION_MATMUL_BIASADD_FUSION_H_
|
|
@ -84,6 +84,7 @@ constexpr size_t kLayerNormGradInputNum = 6;
|
|||
constexpr size_t kAdamApplyOneOutputNum = 3;
|
||||
constexpr size_t kBackendTransDataInputNum = 2;
|
||||
constexpr size_t kApplyMomentumInputNum = 6;
|
||||
constexpr size_t kBiasAddInputNum = 3;
|
||||
|
||||
enum FusedBatchNormInput {
|
||||
kX = 1,
|
||||
|
|
|
@ -110,6 +110,7 @@ constexpr auto kResizeNearestNeighborGrad = "ResizeNearestNeighborGrad";
|
|||
constexpr auto kFusedMulAddOpName = "FusedMulAdd";
|
||||
constexpr auto kFusedMulAddNOpName = "FusedMulAddN";
|
||||
constexpr auto kFusedMulApplyMomentumOpName = "FusedMulApplyMomentum";
|
||||
constexpr auto kBiasAddOpName = "BiasAdd";
|
||||
|
||||
// attr key name
|
||||
constexpr auto kAttrInputNames = "input_names";
|
||||
|
@ -140,6 +141,7 @@ constexpr auto kAttrDynInput = "dynamic";
|
|||
constexpr auto kAttrDynInputSizes = "dyn_input_sizes";
|
||||
constexpr auto kAttrSrcFormat = "src_format";
|
||||
constexpr auto kAttrOutputUsedNum = "output_used_num";
|
||||
constexpr auto kAttrHasBias = "has_bias";
|
||||
|
||||
// attr value
|
||||
constexpr auto kValueTargetSwitch = "target_switch";
|
||||
|
|
|
@ -0,0 +1,56 @@
|
|||
/**
|
||||
* Copyright 2020 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#include "pre_activate/ascend/ir_fusion/matmul_biasadd_fusion.h"
|
||||
#include "common/backend_common_test.h"
|
||||
#include "common/py_func_graph_fetcher.h"
|
||||
|
||||
namespace mindspore {
|
||||
namespace opt {
|
||||
class TestHWMatmulBiasaddFusion : public BackendCommon {
|
||||
public:
|
||||
TestHWMatmulBiasaddFusion() : get_py_fun_("gtest_input.pre_activate.matmul_biasadd_fusion_test", true) {}
|
||||
~TestHWMatmulBiasaddFusion() override = default;
|
||||
|
||||
UT::PyFuncGraphFetcher get_py_fun_;
|
||||
};
|
||||
|
||||
TEST_F(TestHWMatmulBiasaddFusion, test_matmul_biasadd_fusion) {
|
||||
FuncGraphPtr g = get_py_fun_.CallAndParseRet("test_matmul_biasadd_fusion", "before");
|
||||
EXPECT_NE(g, nullptr);
|
||||
std::vector<int> shpx{1, 3};
|
||||
auto x_abstract = std::make_shared<abstract::AbstractTensor>(kFloat32, shpx);
|
||||
std::vector<int> shpy{3, 4};
|
||||
auto y_abstract = std::make_shared<abstract::AbstractTensor>(kFloat32, shpy);
|
||||
std::vector<int> shp_bias{4};
|
||||
auto bias_abstract = std::make_shared<abstract::AbstractTensor>(kFloat32, shp_bias);
|
||||
AbstractBasePtrList args_spec_list;
|
||||
args_spec_list.push_back(x_abstract);
|
||||
args_spec_list.push_back(y_abstract);
|
||||
args_spec_list.push_back(bias_abstract);
|
||||
auto kg = GetKernelGraph(g, args_spec_list);
|
||||
|
||||
auto optimizer = std::make_shared<opt::GraphOptimizer>();
|
||||
auto pm = std::make_shared<opt::PassManager>();
|
||||
pm->AddPass(std::make_shared<opt::MatmulBiasaddFusion>());
|
||||
optimizer->AddPassManager(pm);
|
||||
FuncGraphPtr new_graph = optimizer->Optimize(kg);
|
||||
|
||||
FuncGraphPtr g_after = get_py_fun_.CallAndParseRet("test_matmul_biasadd_fusion", "after");
|
||||
EXPECT_TRUE(CheckEqualGraph(g_after, new_graph));
|
||||
}
|
||||
} // namespace opt
|
||||
} // namespace mindspore
|
|
@ -0,0 +1,46 @@
|
|||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
from mindspore.ops import operations as P
|
||||
from mindspore.ops import Primitive
|
||||
|
||||
MatMul = P.MatMul()
|
||||
BiasAdd = P.BiasAdd()
|
||||
make_tuple = Primitive('make_tuple')
|
||||
|
||||
class FnDict:
|
||||
def __init__(self):
|
||||
self.fnDict = {}
|
||||
|
||||
def __call__(self, fn):
|
||||
self.fnDict[fn.__name__] = fn
|
||||
|
||||
def __getitem__(self, name):
|
||||
return self.fnDict[name]
|
||||
|
||||
|
||||
def test_matmul_biasadd_fusion(tag):
|
||||
fns = FnDict()
|
||||
|
||||
@fns
|
||||
def before(input0, input1, input2):
|
||||
matmul = MatMul(input0, input1)
|
||||
biasadd = BiasAdd(matmul, input2)
|
||||
return biasadd
|
||||
|
||||
@fns
|
||||
def after(input0, input1, input2):
|
||||
return make_tuple(MatMul(input0, input1, input2))
|
||||
|
||||
return fns[tag]
|
Loading…
Reference in New Issue