!6600 Update the convention that random seed works.

Merge pull request !6600 from peixu_ren/custom_bijector
This commit is contained in:
mindspore-ci-bot 2020-09-21 09:59:55 +08:00 committed by Gitee
commit 467ed2ccd0
4 changed files with 103 additions and 35 deletions

View File

@ -18,7 +18,7 @@ from .api import ms_function
from .dtype import *
from .parameter import Parameter, ParameterTuple
from .tensor import MetaTensor, Tensor, RowTensor, SparseTensor
from .seed import set_seed, get_seed
from .seed import set_seed, get_seed, _truncate_seed, _update_seeds, _get_op_seed
__all__ = dtype.__all__
@ -27,5 +27,5 @@ __all__.extend([
'ms_function', # api
'Parameter', 'ParameterTuple', # parameter
"dtype",
"set_seed", "get_seed" # random seed
"set_seed", "get_seed", '_truncate_seed', '_update_seeds', '_get_op_seed' # random seed
])

View File

@ -16,8 +16,13 @@
import numpy as np
import mindspore.dataset as de
# constants
_MAXINT32 = 2**31 - 1
keyConstant = [3528531795, 2654435769, 3449720151, 3144134277]
# set global RNG seed
_GLOBAL_SEED = None
_KERNEL_SEED = {}
def set_seed(seed):
"""
@ -45,6 +50,7 @@ def set_seed(seed):
raise ValueError("The seed must be greater or equal to 0.")
np.random.seed(seed)
de.config.set_seed(seed)
_reset_op_seed()
global _GLOBAL_SEED
_GLOBAL_SEED = seed
@ -54,3 +60,51 @@ def get_seed():
Get global random seed.
"""
return _GLOBAL_SEED
def _truncate_seed(seed):
"""
Truncate the seed with MAXINT32.
Args:
seed (int): The seed to be truncated.
"""
return seed % _MAXINT32 # Truncate to fit into 32-bit integer
def _update_seeds(op_seed, kernel_name):
"""
Update the seed every time when a random op is called.
Args:
seed (int): The op-seed to be updated.
kernel_name (string): The random op kernel.
"""
global _GLOBAL_SEED
global _KERNEL_SEED
if _GLOBAL_SEED is not None:
_GLOBAL_SEED += keyConstant[1] + keyConstant[3] * (2**8)
if op_seed is not None:
_KERNEL_SEED[(kernel_name, op_seed)] = _KERNEL_SEED[(kernel_name, op_seed)] + (keyConstant[0] ^ keyConstant[2])
def _get_op_seed(op_seed, kernel_name):
"""
Get op seed which is relating to the specific kernel.
If the seed does not exist, add it into the kernel's dictionary.
Args:
seed (int): The op-seed to be updated.
kernel_name (string): The random op kernel.
"""
if ((kernel_name, op_seed) not in _KERNEL_SEED) or (_KERNEL_SEED[(kernel_name, op_seed)] == -1):
_KERNEL_SEED[(kernel_name, op_seed)] = op_seed
_KERNEL_SEED[(kernel_name, op_seed)] = 0
return _KERNEL_SEED[(kernel_name, op_seed)]
def _reset_op_seed():
"""
Reset op seeds in the kernel's dictionary.
"""
for key in _KERNEL_SEED:
_KERNEL_SEED[key] = -1

View File

@ -71,7 +71,7 @@ def check_int_positive(arg_name, arg_value, op_name):
@constexpr
def check_non_negative(arg_name, arg_value, op_name):
def check_int_non_negative(arg_name, arg_value, op_name):
"""Int type judgment."""
if isinstance(arg_value, int):
if arg_value >= 0:

View File

@ -21,27 +21,45 @@ from ..primitive import constexpr
from .multitype_ops import _constexpr_utils as const_utils
from ...common import dtype as mstype
from ...common import get_seed as get_global_seed
from ...common import _truncate_seed, _update_seeds, _get_op_seed
@constexpr
def get_seed():
def get_seed(op_seed, kernel_name):
"""
Get the graph-level seed.
Graph-level seed is used as a global variable, that can be used in different ops in case op-level seed is not set.
If op-level seed is 0, use graph-level seed; if graph-level seed is also 0, the system would generate a
random seed.
Note:
For each seed, either op-seed or graph-seed, a random sequence will be generated relating to this seed.
So, the state of the seed regarding to this op should be recorded.
A simple illustration should be:
If a random op is called twice within one program, the two results should be different:
print(C.uniform((1, 4), seed=1)) # generates 'A1'
print(C.uniform((1, 4), seed=1)) # generates 'A2'
If the same program runs again, it repeat the results:
print(C.uniform((1, 4), seed=1)) # generates 'A1'
print(C.uniform((1, 4), seed=1)) # generates 'A2'
Returns:
Interger. The current graph-level seed.
Examples:
>>> C.get_seed()
>>> C.get_seed(seed, 'normal')
"""
global_seed = get_global_seed()
if global_seed is None:
return 0
return global_seed
global_seed = 0
if op_seed is None:
temp_seed = _get_op_seed(0, kernel_name)
else:
temp_seed = _get_op_seed(op_seed, kernel_name)
seeds = _truncate_seed(global_seed), _truncate_seed(temp_seed)
_update_seeds(op_seed, kernel_name)
return seeds
def normal(shape, mean, stddev, seed=0):
def normal(shape, mean, stddev, seed=None):
"""
Generates random numbers according to the Normal (or Gaussian) random number distribution.
@ -52,7 +70,7 @@ def normal(shape, mean, stddev, seed=0):
stddev (Tensor): The deviation σ distribution parameter. It should be greater than 0.
with float32 data type.
seed (int): Seed is used as entropy source for the Random number engines to generate pseudo-random numbers.
must be non-negative. Default: 0.
must be non-negative. Default: None, which will be treated as 0.
Returns:
Tensor. The shape should be equal to the broadcasted shape between the input `shape` and shapes
@ -69,15 +87,14 @@ def normal(shape, mean, stddev, seed=0):
stddev_dtype = F.dtype(stddev)
const_utils.check_tensors_dtype_same(mean_dtype, mstype.float32, "normal")
const_utils.check_tensors_dtype_same(stddev_dtype, mstype.float32, "normal")
const_utils.check_non_negative("seed", seed, "normal")
seed1 = get_seed()
seed2 = seed
seed1, seed2 = get_seed(seed, "normal")
const_utils.check_int_non_negative("seed", seed2, "normal")
stdnormal = P.StandardNormal(seed1, seed2)
random_normal = stdnormal(shape)
value = random_normal * stddev + mean
return value
def laplace(shape, mean, lambda_param, seed=0):
def laplace(shape, mean, lambda_param, seed=None):
r"""
Generates random numbers according to the Laplace random number distribution.
It is defined as:
@ -92,7 +109,7 @@ def laplace(shape, mean, lambda_param, seed=0):
lambda_param (Tensor): The parameter used for controling the variance of this random distribution. The
variance of Laplace distribution is equal to twice the square of lambda_param. With float32 data type.
seed (int): Seed is used as entropy source for Random number engines generating pseudo-random numbers.
Default: 0.
Default: None, which will be treated as 0.
Returns:
Tensor. The shape should be the broadcasted shape of Input "shape" and shapes of mean and lambda_param.
@ -108,14 +125,14 @@ def laplace(shape, mean, lambda_param, seed=0):
lambda_param_dtype = F.dtype(lambda_param)
const_utils.check_tensors_dtype_same(mean_dtype, mstype.float32, "laplace")
const_utils.check_tensors_dtype_same(lambda_param_dtype, mstype.float32, "laplace")
seed1 = get_seed()
seed2 = seed
seed1, seed2 = get_seed(seed, "laplace")
const_utils.check_int_non_negative("seed", seed2, "laplace")
stdlaplace = P.StandardLaplace(seed1, seed2)
rnd = stdlaplace(shape)
value = rnd * lambda_param + mean
return value
def uniform(shape, minval, maxval, seed=0, dtype=mstype.float32):
def uniform(shape, minval, maxval, seed=None, dtype=mstype.float32):
"""
Generates random numbers according to the Uniform random number distribution.
@ -131,7 +148,7 @@ def uniform(shape, minval, maxval, seed=0, dtype=mstype.float32):
It defines the maximum possible generated value, with int32 or float32 data type.
If dtype is int32, only one number is allowed.
seed (int): Seed is used as entropy source for the random number engines to generate pseudo-random numbers,
must be non-negative. Default: 0.
must be non-negative. Default: None, which will be treated as 0.
dtype (mindspore.dtype): type of the Uniform distribution. If it is int32, it generates numbers from discrete
uniform distribution; if it is float32, it generates numbers from continuous uniform distribution. It only
supports these two data types. Default: mstype.float32.
@ -159,9 +176,8 @@ def uniform(shape, minval, maxval, seed=0, dtype=mstype.float32):
const_utils.check_valid_type(dtype, [mstype.int32, mstype.float32], 'uniform')
const_utils.check_tensors_dtype_same(minval_dtype, dtype, "uniform")
const_utils.check_tensors_dtype_same(maxval_dtype, dtype, "uniform")
const_utils.check_non_negative("seed", seed, "uniform")
seed1 = get_seed()
seed2 = seed
seed1, seed2 = get_seed(seed, "uniform")
const_utils.check_int_non_negative("seed", seed2, "uniform")
if const_utils.is_same_type(dtype, mstype.int32):
random_uniform = P.UniformInt(seed1, seed2)
value = random_uniform(shape, minval, maxval)
@ -171,7 +187,7 @@ def uniform(shape, minval, maxval, seed=0, dtype=mstype.float32):
value = random_uniform * (maxval - minval) + minval
return value
def gamma(shape, alpha, beta, seed=0):
def gamma(shape, alpha, beta, seed=None):
"""
Generates random numbers according to the Gamma random number distribution.
@ -180,7 +196,7 @@ def gamma(shape, alpha, beta, seed=0):
alpha (Tensor): The alpha α distribution parameter. It should be greater than 0 with float32 data type.
beta (Tensor): The beta β distribution parameter. It should be greater than 0 with float32 data type.
seed (int): Seed is used as entropy source for the random number engines to generate
pseudo-random numbers, must be non-negative. Default: 0.
pseudo-random numbers, must be non-negative. Default: None, which will be treated as 0.
Returns:
Tensor. The shape should be equal to the broadcasted shape between the input "shape" and shapes
@ -193,14 +209,13 @@ def gamma(shape, alpha, beta, seed=0):
>>> beta = Tensor(1.0, mstype.float32)
>>> output = C.gamma(shape, alpha, beta, seed=5)
"""
const_utils.check_non_negative("seed", seed, "gamma")
seed1 = get_seed()
seed2 = seed
seed1, seed2 = get_seed(seed, "gamma")
const_utils.check_int_non_negative("seed", seed2, "gamma")
random_gamma = P.Gamma(seed1, seed2)
value = random_gamma(shape, alpha, beta)
return value
def poisson(shape, mean, seed=0):
def poisson(shape, mean, seed=None):
"""
Generates random numbers according to the Poisson random number distribution.
@ -208,7 +223,7 @@ def poisson(shape, mean, seed=0):
shape (tuple): The shape of random tensor to be generated.
mean (Tensor): The mean μ distribution parameter. It should be greater than 0 with float32 data type.
seed (int): Seed is used as entropy source for the random number engines to generate pseudo-random numbers
and must be non-negative. Default: 0.
and must be non-negative. Default: None, which will be treated as 0.
Returns:
Tensor. The shape should be equal to the broadcasted shape between the input "shape" and shapes of `mean`.
@ -219,9 +234,8 @@ def poisson(shape, mean, seed=0):
>>> mean = Tensor(1.0, mstype.float32)
>>> output = C.poisson(shape, mean, seed=5)
"""
const_utils.check_non_negative("seed", seed, "poisson")
seed1 = get_seed()
seed2 = seed
seed1, seed2 = get_seed(seed, "poisson")
const_utils.check_int_non_negative("seed", seed2, "poisson")
random_poisson = P.Poisson(seed1, seed2)
value = random_poisson(shape, mean)
return value