!57 Add parallel operators for Neg and BatchMatMul

Merge pull request !57 from yangzhenzhang/master
This commit is contained in:
mindspore-ci-bot 2020-04-01 15:23:46 +08:00 committed by Gitee
commit 22a9c00bcd
7 changed files with 198 additions and 0 deletions

View File

@ -123,6 +123,8 @@ REGISTER(ReLUInfo);
REGISTER(GatherV2Info);
REGISTER(SqrtInfo);
REGISTER(GetNextInfo);
REGISTER(NegInfo);
REGISTER(BatchMatMulInfo);
} // namespace parallel
} // namespace mindspore

View File

@ -167,6 +167,13 @@ class SqrtInfo : public ActivationOther {
: ActivationOther(name, inputs_shape, outputs_shape, attrs) {}
~SqrtInfo() override = default;
};
class NegInfo : public ActivationOther {
public:
NegInfo(const std::string& name, const Shapes& inputs_shape, const Shapes& outputs_shape, const PrimitiveAttrs& attrs)
: ActivationOther(name, inputs_shape, outputs_shape, attrs) {}
~NegInfo() override = default;
};
} // namespace parallel
} // namespace mindspore
#endif // MINDSPORE_CCSRC_OPTIMIZER_OPS_INFO_PARALLEL_ACTIVATION_INFO_H_

View File

@ -87,6 +87,14 @@ class MatMulInfo : public MatMul {
: MatMul(name, inputs_shape, outputs_shape, attrs) {}
~MatMulInfo() override = default;
};
class BatchMatMulInfo : public MatMul {
public:
BatchMatMulInfo(const std::string& name, const Shapes& inputs_shape, const Shapes& outputs_shape,
const PrimitiveAttrs& attrs)
: MatMul(name, inputs_shape, outputs_shape, attrs) {}
~BatchMatMulInfo() override = default;
};
} // namespace parallel
} // namespace mindspore
#endif // MINDSPORE_CCSRC_PARALLEL_OPS_INFO_MATMUL_INFO_H_

View File

@ -188,6 +188,8 @@ constexpr char SQRT[] = "Sqrt";
constexpr char ASSIGN[] = "Assign";
constexpr char GET_NEXT[] = "GetNext";
constexpr char SQUEEZE[] = "Squeeze";
constexpr char Neg[] = "Neg";
constexpr char BATCH_MATMUL[] = "BatchMatMul";
// Parallel don't care
constexpr char TUPLE_GETITEM[] = "tuple_getitem";

View File

@ -101,6 +101,8 @@ std::vector<std::string> splittable_op_ = {MATMUL,
SQRT,
GET_NEXT,
CAST,
Neg,
BATCH_MATMUL,
SQUEEZE};
std::vector<std::string> elementwise_op_ = {ACTIVATION, GELU, TANH, SOFTMAX, LOG_SOFTMAX, RELU, SQRT,

View File

@ -0,0 +1,93 @@
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import numpy as np
import mindspore as ms
from mindspore import context, Tensor, Parameter
from mindspore.nn import Cell, TrainOneStepCell, Momentum
from mindspore.ops import operations as P
from mindspore.common.api import _executor
class Net(Cell):
def __init__(self, mul_weight, batch_matmul_weight, transpose_b=False, strategy1=None, strategy2=None):
super().__init__()
self.mul = P.Mul().set_strategy(strategy1)
self.batch_matmul = P.BatchMatMul(transpose_b=transpose_b).set_strategy(strategy2)
self.mul_weight = Parameter(mul_weight, "w1")
self.batch_matmul_weight = Parameter(batch_matmul_weight, "w2")
def construct(self, x, b):
out = self.mul(x, self.mul_weight)
out = self.batch_matmul(out, self.batch_matmul_weight)
return out
_x = Tensor(np.ones([128, 64, 32]), dtype=ms.float32)
_w1 = Tensor(np.ones([128, 64, 32]), dtype=ms.float32)
_w2 = Tensor(np.ones([128, 32, 32]), dtype=ms.float32)
_b = Tensor(np.ones([128, 64, 16]), dtype=ms.float32)
def compile(net):
optimizer = Momentum(net.trainable_params(), learning_rate=0.1, momentum=0.9)
train_net = TrainOneStepCell(net, optimizer)
_executor.compile(train_net, _x, _b)
context.reset_auto_parallel_context()
def test_batch_matmul_data_parallel():
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=16, global_rank=0)
strategy1 = ((16, 1, 1), (16, 1, 1))
strategy2 = ((16, 1, 1), (16, 1, 1))
net = Net(_w1, _w2, False, strategy1, strategy2)
compile(net)
def test_batch_matmul_model_parallel():
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=16, global_rank=0)
strategy1 = ((1, 1, 1), (1, 1, 1))
strategy2 = ((1, 1, 1), (1, 1, 16))
net = Net(_w1, _w2, False, strategy1, strategy2)
compile(net)
def test_batch_matmul_hybrid_parallel():
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=16, global_rank=0)
strategy1 = ((2, 2, 2), (2, 2, 2))
strategy2 = ((2, 2, 2), (2, 2, 2))
net = Net(_w1, _w2, False, strategy1, strategy2)
compile(net)
def test_batch_matmul_auto_parallel():
context.set_auto_parallel_context(parallel_mode="auto_parallel", device_num=16, global_rank=0)
net = Net(_w1, _w2, False)
compile(net)
def test_batch_matmul_repeat_calc():
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=16, global_rank=0)
strategy1 = ((2, 2, 4), (2, 2, 4))
strategy2 = ((1, 2, 2), (1, 2, 2))
net = Net(_w1, _w2, False, strategy1, strategy2)
compile(net)
def test_batch_matmul_transpose_b():
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=16, global_rank=0)
strategy1 = ((2, 2, 4), (2, 2, 4))
strategy2 = ((1, 2, 2), (1, 2, 2))
net = Net(_w1, _w2, True, strategy1, strategy2)
compile(net)

View File

@ -0,0 +1,84 @@
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import numpy as np
import mindspore as ms
from mindspore import context, Tensor, Parameter
from mindspore.nn import Cell, TrainOneStepCell, Momentum
from mindspore.ops import operations as P
from mindspore.common.api import _executor
class Net(Cell):
def __init__(self, mul_weight, strategy1=None, strategy2=None):
super().__init__()
self.mul = P.Mul().set_strategy(strategy1)
self.neg = P.Neg().set_strategy(strategy2)
self.mul_weight = Parameter(mul_weight, "w1")
def construct(self, x, b):
out = self.mul(x, self.mul_weight)
out = self.neg(out)
return out
_x = Tensor(np.ones([128, 64, 32]), dtype=ms.float32)
_w1 = Tensor(np.ones([128, 64, 32]), dtype=ms.float32)
_b = Tensor(np.ones([128, 64, 32]), dtype=ms.float32)
def compile(net):
optimizer = Momentum(net.trainable_params(), learning_rate=0.1, momentum=0.9)
train_net = TrainOneStepCell(net, optimizer)
_executor.compile(train_net, _x, _b)
context.reset_auto_parallel_context()
def test_neg_data_parallel():
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=16, global_rank=0)
strategy1 = ((16, 1, 1), (16, 1, 1))
strategy2 = ((16, 1, 1), )
net = Net(_w1, strategy1, strategy2)
compile(net)
def test_neg_model_parallel():
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=16, global_rank=0)
strategy1 = ((1, 1, 16), (1, 1, 16))
strategy2 = ((1, 1, 16), )
net = Net(_w1, strategy1, strategy2)
compile(net)
def test_neg_hybrid_parallel():
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=16, global_rank=0)
strategy1 = ((2, 2, 4), (2, 2, 4))
strategy2 = ((2, 2, 4), )
net = Net(_w1, strategy1, strategy2)
compile(net)
def test_neg_auto_parallel():
context.set_auto_parallel_context(parallel_mode="auto_parallel", device_num=16, global_rank=0)
net = Net(_w1)
compile(net)
def test_neg_repeat_calc():
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=16, global_rank=0)
strategy1 = ((2, 2, 4), (2, 2, 4))
strategy2 = ((1, 2, 2), )
net = Net(_w1, strategy1, strategy2)
compile(net)