!6838 wide&deep export file for 310 predict

Merge pull request !6838 from yao_yf/wide_and_deep_export
This commit is contained in:
mindspore-ci-bot 2020-09-27 17:22:00 +08:00 committed by Gitee
commit 18625a860c
2 changed files with 61 additions and 0 deletions

View File

@ -112,6 +112,7 @@ python eval.py --data_path=./data/mindrecord --data_type=mindrecord
├── train_and_eval_parameter_server.py
├── train_and_eval.py
└── train.py
└── export.py
```
## [Script Parameters](#contents)

View File

@ -0,0 +1,60 @@
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""
##############export checkpoint file into air and onnx models#################
"""
import numpy as np
from mindspore import Tensor, nn
from mindspore.ops import operations as P
from mindspore.train.serialization import load_checkpoint, load_param_into_net, export
from src.wide_and_deep import WideDeepModel
from src.config import WideDeepConfig
class PredictWithSigmoid(nn.Cell):
"""
PredictWithSigmoid
"""
def __init__(self, network):
super(PredictWithSigmoid, self).__init__()
self.network = network
self.sigmoid = P.Sigmoid()
def construct(self, batch_ids, batch_wts):
logits, _, = self.network(batch_ids, batch_wts)
pred_probs = self.sigmoid(logits)
return pred_probs
def get_WideDeep_net(config):
"""
Get network of wide&deep predict model.
"""
WideDeep_net = WideDeepModel(config)
eval_net = PredictWithSigmoid(WideDeep_net)
return eval_net
if __name__ == '__main__':
widedeep_config = WideDeepConfig()
widedeep_config.argparse_init()
ckpt_path = widedeep_config.ckpt_path
net = get_WideDeep_net(widedeep_config)
param_dict = load_checkpoint(ckpt_path)
load_param_into_net(net, param_dict)
ids = Tensor(np.ones([widedeep_config.eval_batch_size, widedeep_config.field_size]).astype(np.int32))
wts = Tensor(np.ones([widedeep_config.eval_batch_size, widedeep_config.field_size]).astype(np.float32))
input_tensor_list = [ids, wts]
export(net, *input_tensor_list, file_name='wide_and_deep.onnx', file_format="ONNX")
export(net, *input_tensor_list, file_name='wide_and_deep.air', file_format="AIR")