forked from OSSInnovation/mindspore
!6838 wide&deep export file for 310 predict
Merge pull request !6838 from yao_yf/wide_and_deep_export
This commit is contained in:
commit
18625a860c
|
@ -112,6 +112,7 @@ python eval.py --data_path=./data/mindrecord --data_type=mindrecord
|
|||
├── train_and_eval_parameter_server.py
|
||||
├── train_and_eval.py
|
||||
└── train.py
|
||||
└── export.py
|
||||
```
|
||||
|
||||
## [Script Parameters](#contents)
|
||||
|
|
|
@ -0,0 +1,60 @@
|
|||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
"""
|
||||
##############export checkpoint file into air and onnx models#################
|
||||
"""
|
||||
import numpy as np
|
||||
|
||||
from mindspore import Tensor, nn
|
||||
from mindspore.ops import operations as P
|
||||
from mindspore.train.serialization import load_checkpoint, load_param_into_net, export
|
||||
|
||||
from src.wide_and_deep import WideDeepModel
|
||||
from src.config import WideDeepConfig
|
||||
|
||||
class PredictWithSigmoid(nn.Cell):
|
||||
"""
|
||||
PredictWithSigmoid
|
||||
"""
|
||||
def __init__(self, network):
|
||||
super(PredictWithSigmoid, self).__init__()
|
||||
self.network = network
|
||||
self.sigmoid = P.Sigmoid()
|
||||
|
||||
def construct(self, batch_ids, batch_wts):
|
||||
logits, _, = self.network(batch_ids, batch_wts)
|
||||
pred_probs = self.sigmoid(logits)
|
||||
return pred_probs
|
||||
|
||||
def get_WideDeep_net(config):
|
||||
"""
|
||||
Get network of wide&deep predict model.
|
||||
"""
|
||||
WideDeep_net = WideDeepModel(config)
|
||||
eval_net = PredictWithSigmoid(WideDeep_net)
|
||||
return eval_net
|
||||
|
||||
if __name__ == '__main__':
|
||||
widedeep_config = WideDeepConfig()
|
||||
widedeep_config.argparse_init()
|
||||
ckpt_path = widedeep_config.ckpt_path
|
||||
net = get_WideDeep_net(widedeep_config)
|
||||
param_dict = load_checkpoint(ckpt_path)
|
||||
load_param_into_net(net, param_dict)
|
||||
ids = Tensor(np.ones([widedeep_config.eval_batch_size, widedeep_config.field_size]).astype(np.int32))
|
||||
wts = Tensor(np.ones([widedeep_config.eval_batch_size, widedeep_config.field_size]).astype(np.float32))
|
||||
input_tensor_list = [ids, wts]
|
||||
export(net, *input_tensor_list, file_name='wide_and_deep.onnx', file_format="ONNX")
|
||||
export(net, *input_tensor_list, file_name='wide_and_deep.air', file_format="AIR")
|
Loading…
Reference in New Issue