forked from OSSInnovation/mindspore
!335 Refactor Gamma and Poisson ops
Merge pull request !335 from peixu_ren/custom_aicpu
This commit is contained in:
commit
12935b2527
|
@ -27,7 +27,7 @@ from .clip_ops import clip_by_value
|
|||
from .multitype_ops.add_impl import hyper_add
|
||||
from .multitype_ops.ones_like_impl import ones_like
|
||||
from .multitype_ops.zeros_like_impl import zeros_like
|
||||
from .random_ops import set_seed, normal, multinomial, uniform
|
||||
from .random_ops import set_seed, normal, uniform, gamma, poisson, multinomial
|
||||
|
||||
|
||||
__all__ = [
|
||||
|
@ -49,7 +49,9 @@ __all__ = [
|
|||
'ones_like',
|
||||
'zip_operation',
|
||||
'set_seed',
|
||||
'uniform',
|
||||
'normal',
|
||||
'uniform',
|
||||
'gamma',
|
||||
'poisson',
|
||||
'multinomial',
|
||||
'clip_by_value',]
|
||||
|
|
|
@ -66,7 +66,6 @@ def get_seed():
|
|||
def normal(shape, mean, stddev, seed=0):
|
||||
"""
|
||||
Generates random numbers according to the Normal (or Gaussian) random number distribution.
|
||||
It is defined as:
|
||||
|
||||
Args:
|
||||
shape (tuple): The shape of random tensor to be generated.
|
||||
|
@ -84,7 +83,6 @@ def normal(shape, mean, stddev, seed=0):
|
|||
>>> shape = (4, 16)
|
||||
>>> mean = Tensor(1.0, mstype.float32)
|
||||
>>> stddev = Tensor(1.0, mstype.float32)
|
||||
>>> C.set_seed(10)
|
||||
>>> output = C.normal(shape, mean, stddev, seed=5)
|
||||
"""
|
||||
mean_dtype = F.dtype(mean)
|
||||
|
@ -148,8 +146,7 @@ def multinomial(inputs, num_sample=None, replacement=True, seed=0):
|
|||
|
||||
def uniform(shape, a, b, seed=0, dtype=mstype.float32):
|
||||
"""
|
||||
Generates random numbers according to the Uniform (or Gaussian) random number distribution.
|
||||
It is defined as:
|
||||
Generates random numbers according to the Uniform random number distribution.
|
||||
|
||||
Args:
|
||||
shape (tuple): The shape of random tensor to be generated.
|
||||
|
@ -170,7 +167,6 @@ def uniform(shape, a, b, seed=0, dtype=mstype.float32):
|
|||
>>> shape = (4, 16)
|
||||
>>> a = Tensor(1.0, mstype.float32)
|
||||
>>> b = Tensor(1.0, mstype.float32)
|
||||
>>> C.set_seed(10)
|
||||
>>> output = C.uniform(shape, a, b, seed=5)
|
||||
"""
|
||||
a_dtype = F.dtype(a)
|
||||
|
@ -187,3 +183,61 @@ def uniform(shape, a, b, seed=0, dtype=mstype.float32):
|
|||
rnd = uniform_real(shape)
|
||||
value = rnd * (b - a) + a
|
||||
return value
|
||||
|
||||
def gamma(shape, alpha, beta, seed=0):
|
||||
"""
|
||||
Generates random numbers according to the Gamma random number distribution.
|
||||
|
||||
Args:
|
||||
shape (tuple): The shape of random tensor to be generated.
|
||||
alpha (Tensor): The alpha α distribution parameter. With float32 data type.
|
||||
beta (Tensor): The beta β distribution parameter. With float32 data type.
|
||||
seed (int): Seed is used as entropy source for Random number engines generating pseudo-random numbers.
|
||||
Default: 0.
|
||||
|
||||
Returns:
|
||||
Tensor. The shape should be the broadcasted shape of Input "shape" and shapes of alpha and beta.
|
||||
The dtype is float32.
|
||||
|
||||
Examples:
|
||||
>>> shape = (4, 16)
|
||||
>>> alpha = Tensor(1.0, mstype.float32)
|
||||
>>> beta = Tensor(1.0, mstype.float32)
|
||||
>>> output = C.gamma(shape, alpha, beta, seed=5)
|
||||
"""
|
||||
alpha_dtype = F.dtype(alpha)
|
||||
beta_dtype = F.dtype(beta)
|
||||
const_utils.check_tensors_dtype_same(alpha_dtype, mstype.float32, "gamma")
|
||||
const_utils.check_tensors_dtype_same(beta_dtype, mstype.float32, "gamma")
|
||||
seed1 = get_seed()
|
||||
seed2 = seed
|
||||
gamma = P.Gamma(seed1, seed2)
|
||||
value = gamma(shape, alpha, beta)
|
||||
return value
|
||||
|
||||
def poisson(shape, mean, seed=0):
|
||||
"""
|
||||
Generates random numbers according to the Poisson random number distribution.
|
||||
|
||||
Args:
|
||||
shape (tuple): The shape of random tensor to be generated.
|
||||
mean (Tensor): The mean μ distribution parameter. With float32 data type.
|
||||
seed (int): Seed is used as entropy source for Random number engines generating pseudo-random numbers.
|
||||
Default: 0.
|
||||
|
||||
Returns:
|
||||
Tensor. The shape should be the broadcasted shape of Input "shape" and shapes of mean.
|
||||
The dtype is float32.
|
||||
|
||||
Examples:
|
||||
>>> shape = (4, 16)
|
||||
>>> mean = Tensor(1.0, mstype.float32)
|
||||
>>> output = C.poisson(shape, mean, seed=5)
|
||||
"""
|
||||
mean_dtype = F.dtype(mean)
|
||||
const_utils.check_tensors_dtype_same(mean_dtype, mstype.float32, "poisson")
|
||||
seed1 = get_seed()
|
||||
seed2 = seed
|
||||
poisson = P.Poisson(seed1, seed2)
|
||||
value = poisson(shape, mean)
|
||||
return value
|
||||
|
|
|
@ -0,0 +1,56 @@
|
|||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
import numpy as np
|
||||
|
||||
import mindspore.context as context
|
||||
import mindspore.nn as nn
|
||||
from mindspore import Tensor
|
||||
from mindspore.common import dtype as mstype
|
||||
from mindspore.ops import composite as C
|
||||
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
|
||||
|
||||
|
||||
class Net(nn.Cell):
|
||||
def __init__(self, shape, seed=0):
|
||||
super(Net, self).__init__()
|
||||
self.shape = shape
|
||||
self.seed = seed
|
||||
|
||||
def construct(self, alpha, beta):
|
||||
C.set_seed(20)
|
||||
return C.gamma(self.shape, alpha, beta, self.seed)
|
||||
|
||||
|
||||
def test_net_1D():
|
||||
seed = 10
|
||||
shape = (3, 2, 4)
|
||||
alpha = 1.0
|
||||
beta = 1.0
|
||||
net = Net(shape, seed)
|
||||
talpha, tbeta = Tensor(alpha, mstype.float32), Tensor(beta, mstype.float32)
|
||||
output = net(talpha, tbeta)
|
||||
assert output.shape == (3, 2, 4)
|
||||
|
||||
|
||||
def test_net_ND():
|
||||
seed = 10
|
||||
shape = (3, 1, 2)
|
||||
alpha = np.array([[[1], [2]], [[3], [4]], [[5], [6]]]).astype(np.float32)
|
||||
beta = np.array([1.0]).astype(np.float32)
|
||||
net = Net(shape, seed)
|
||||
talpha, tbeta = Tensor(alpha, mstype.float32), Tensor(beta, mstype.float32)
|
||||
output = net(talpha, tbeta)
|
||||
assert output.shape == (3, 2, 2)
|
|
@ -12,9 +12,7 @@
|
|||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
|
||||
import numpy as np
|
||||
import pytest
|
||||
|
||||
import mindspore.context as context
|
||||
import mindspore.nn as nn
|
||||
|
@ -56,4 +54,3 @@ def test_net_ND():
|
|||
tmean, tstddev = Tensor(mean, mstype.float32), Tensor(stddev, mstype.float32)
|
||||
output = net(tmean, tstddev)
|
||||
assert output.shape == (3, 2, 2)
|
||||
|
|
@ -0,0 +1,54 @@
|
|||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
import numpy as np
|
||||
|
||||
import mindspore.context as context
|
||||
import mindspore.nn as nn
|
||||
from mindspore import Tensor
|
||||
from mindspore.common import dtype as mstype
|
||||
from mindspore.ops import composite as C
|
||||
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
|
||||
|
||||
|
||||
class Net(nn.Cell):
|
||||
def __init__(self, shape, seed=0):
|
||||
super(Net, self).__init__()
|
||||
self.shape = shape
|
||||
self.seed = seed
|
||||
|
||||
def construct(self, mean):
|
||||
C.set_seed(20)
|
||||
return C.poisson(self.shape, mean, self.seed)
|
||||
|
||||
|
||||
def test_net_1D():
|
||||
seed = 10
|
||||
shape = (3, 2, 4)
|
||||
mean = 1.0
|
||||
net = Net(shape, seed)
|
||||
tmean = Tensor(mean, mstype.float32)
|
||||
output = net(tmean)
|
||||
assert output.shape == (3, 2, 4)
|
||||
|
||||
|
||||
def test_net_ND():
|
||||
seed = 10
|
||||
shape = (3, 1, 2)
|
||||
mean = np.array([[[1], [2]], [[3], [4]], [[5], [6]]]).astype(np.float32)
|
||||
net = Net(shape, seed)
|
||||
tmean = Tensor(mean, mstype.float32)
|
||||
output = net(tmean)
|
||||
assert output.shape == (3, 2, 2)
|
|
@ -12,7 +12,6 @@
|
|||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
|
||||
import numpy as np
|
||||
|
||||
import mindspore.context as context
|
|
@ -592,22 +592,22 @@ class LaplaceNet(nn.Cell):
|
|||
class GammaNet(nn.Cell):
|
||||
def __init__(self, shape=None, seed=0):
|
||||
super(GammaNet, self).__init__()
|
||||
self.gamma = P.Gamma(seed=seed)
|
||||
self.shape = shape
|
||||
self.seed = seed
|
||||
|
||||
def construct(self, alpha, beta):
|
||||
out = self.gamma(self.shape, alpha, beta)
|
||||
out = C.gamma(self.shape, alpha, beta, self.seed)
|
||||
return out
|
||||
|
||||
|
||||
class PoissonNet(nn.Cell):
|
||||
def __init__(self, shape=None, seed=0):
|
||||
super(PoissonNet, self).__init__()
|
||||
self.poisson = P.Poisson(seed=seed)
|
||||
self.shape = shape
|
||||
self.seed = seed
|
||||
|
||||
def construct(self, mean):
|
||||
out = self.poisson(self.shape, mean)
|
||||
out = C.poisson(self.shape, mean, self.seed)
|
||||
return out
|
||||
|
||||
|
||||
|
|
Loading…
Reference in New Issue