2020-08-31 20:01:51 +08:00
|
|
|
# Copyright 2020 Huawei Technologies Co., Ltd
|
|
|
|
#
|
|
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
|
# you may not use this file except in compliance with the License.
|
|
|
|
# You may obtain a copy of the License at
|
|
|
|
#
|
|
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
#
|
|
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
|
# See the License for the specific language governing permissions and
|
|
|
|
# limitations under the License.
|
|
|
|
# ============================================================================
|
|
|
|
|
2020-09-16 16:02:18 +08:00
|
|
|
import pytest
|
|
|
|
import numpy as np
|
2020-08-31 20:01:51 +08:00
|
|
|
import mindspore as ms
|
|
|
|
from mindspore.nn import ReLU
|
|
|
|
from mindspore.nn import Cell
|
|
|
|
from mindspore.common.tensor import Tensor
|
|
|
|
from mindspore.ops import operations as P
|
|
|
|
|
|
|
|
@pytest.mark.level0
|
|
|
|
@pytest.mark.platform_arm_ascend_training
|
|
|
|
@pytest.mark.platform_x86_ascend_training
|
|
|
|
@pytest.mark.env_onecard
|
|
|
|
def test_parser_tensor_assign_slice():
|
|
|
|
class Net(Cell):
|
|
|
|
def __init__(self, U):
|
|
|
|
super(Net, self).__init__()
|
|
|
|
self.relu = ReLU()
|
|
|
|
self.U = U
|
|
|
|
|
|
|
|
def construct(self, x):
|
|
|
|
x = self.relu(x)
|
|
|
|
x[..., :2] = U
|
|
|
|
return x
|
|
|
|
|
|
|
|
input_np_x = np.random.rand(4, 4, 4)
|
|
|
|
input_me_x = Tensor(input_np_x, ms.float32)
|
|
|
|
U = 1.0
|
|
|
|
|
|
|
|
net = Net(U)
|
|
|
|
out_me = net(input_me_x)
|
|
|
|
input_np_x[..., :2] = U
|
|
|
|
|
|
|
|
assert np.allclose(out_me.asnumpy(), input_np_x, rtol=0.01, atol=0.01)
|
|
|
|
|
|
|
|
def test_parser_tensor_assign_slice_002():
|
|
|
|
class Net(Cell):
|
|
|
|
def __init__(self, U):
|
|
|
|
super(Net, self).__init__()
|
|
|
|
self.relu = ReLU()
|
|
|
|
self.U = U
|
|
|
|
|
|
|
|
def construct(self, x):
|
|
|
|
x = self.relu(x)
|
|
|
|
x[::, :, :1] = self.U
|
|
|
|
return x
|
|
|
|
|
|
|
|
input_np_x = np.random.rand(4, 4, 4)
|
|
|
|
input_me_x = Tensor(input_np_x, ms.float32)
|
|
|
|
U = 1.0
|
|
|
|
|
|
|
|
net = Net(U)
|
|
|
|
out_me = net(input_me_x)
|
|
|
|
input_np_x[::, :, :1] = U
|
|
|
|
|
|
|
|
assert np.allclose(out_me.asnumpy(), input_np_x, rtol=0.01, atol=0.01)
|
|
|
|
|
|
|
|
@pytest.mark.level0
|
|
|
|
@pytest.mark.platform_arm_ascend_training
|
|
|
|
@pytest.mark.platform_x86_ascend_training
|
|
|
|
@pytest.mark.env_onecard
|
|
|
|
def test_parser_tensor_assign_bool():
|
|
|
|
class Net(Cell):
|
|
|
|
def __init__(self, U):
|
|
|
|
super(Net, self).__init__()
|
|
|
|
self.relu = ReLU()
|
|
|
|
self.U = U
|
|
|
|
|
|
|
|
def construct(self, x, tensorB):
|
|
|
|
x = self.relu(x)
|
|
|
|
x[tensorB] = self.U
|
|
|
|
return x
|
|
|
|
|
|
|
|
input_np_x = np.random.rand(4, 4, 4)
|
|
|
|
input_me_x = Tensor(input_np_x, ms.float32)
|
|
|
|
numpy_B = np.random.randn(4, 4, 4) > 0
|
|
|
|
tensor_B = Tensor(numpy_B)
|
|
|
|
U = np.array([1])
|
|
|
|
net = Net(Tensor(U))
|
|
|
|
|
|
|
|
out_me = net(input_me_x, tensor_B)
|
|
|
|
input_np_x[numpy_B] = U
|
|
|
|
|
|
|
|
assert np.allclose(out_me.asnumpy(), input_np_x, rtol=0.01, atol=0.01)
|
|
|
|
|
|
|
|
def test_parser_tensor_assign_bool_002():
|
|
|
|
class Net(Cell):
|
|
|
|
def __init__(self, U):
|
|
|
|
super(Net, self).__init__()
|
|
|
|
self.relu = ReLU()
|
|
|
|
self.U = U
|
|
|
|
self.fill = P.Fill()
|
|
|
|
|
|
|
|
def construct(self, x, tensorB):
|
|
|
|
x = self.relu(x)
|
|
|
|
x[tensorB] = self.U
|
|
|
|
return x
|
|
|
|
|
|
|
|
input_np_x = np.random.rand(2, 2, 2)
|
|
|
|
input_me_x = Tensor(input_np_x, ms.float32)
|
|
|
|
numpy_B = np.random.randn(2, 2, 2) > 0
|
|
|
|
tensor_B = Tensor(numpy_B)
|
|
|
|
U = 1
|
|
|
|
|
|
|
|
net = Net(U)
|
|
|
|
out_me = net(input_me_x, tensor_B)
|
|
|
|
input_np_x[numpy_B] = U
|
|
|
|
assert np.allclose(out_me.asnumpy(), input_np_x, rtol=0.01, atol=0.01)
|