seL4-L4.verified/lib/List_Lib.thy

67 lines
2.4 KiB
Plaintext

(*
* Copyright 2020, Data61, CSIRO (ABN 41 687 119 230)
*
* SPDX-License-Identifier: BSD-2-Clause
*)
chapter "List Manipulation Functions"
theory List_Lib
imports Main
begin
definition list_replace :: "'a list \<Rightarrow> 'a \<Rightarrow> 'a \<Rightarrow> 'a list" where
"list_replace list a b \<equiv> map (\<lambda>x. if x = a then b else x) list"
primrec list_replace_list :: "'a list \<Rightarrow> 'a \<Rightarrow> 'a list \<Rightarrow> 'a list" where
"list_replace_list [] a list' = []" |
"list_replace_list (x # xs) a list' = (if x = a then list' @ xs
else x # list_replace_list xs a list')"
definition list_swap :: "'a list \<Rightarrow> 'a \<Rightarrow> 'a \<Rightarrow> 'a list" where
"list_swap list a b \<equiv> map (\<lambda>x. if x = a then b else if x = b then a else x) list"
primrec list_insert_after :: "'a list \<Rightarrow> 'a \<Rightarrow> 'a \<Rightarrow> 'a list" where
"list_insert_after [] a b = []" |
"list_insert_after (x # xs) a b = (if x = a then x # b # xs
else x # list_insert_after xs a b)"
\<comment> \<open>Inserts the value new immediately before the first occurence of a (if any) in the list\<close>
primrec list_insert_before :: "'a list \<Rightarrow> 'a \<Rightarrow> 'a \<Rightarrow> 'a list" where
"list_insert_before [] a new = []" |
"list_insert_before (x # xs) a new = (if x = a then new # x # xs
else x # list_insert_before xs a new)"
primrec list_remove :: "'a list \<Rightarrow> 'a \<Rightarrow> 'a list" where
"list_remove [] a = []" |
"list_remove (x # xs) a = (if x = a then (list_remove xs a)
else x # (list_remove xs a))"
fun after_in_list :: "'a list \<Rightarrow> 'a \<Rightarrow> 'a option" where
"after_in_list [] a = None" |
"after_in_list [x] a = None" |
"after_in_list (x # y # xs) a = (if a = x then Some y else after_in_list (y # xs) a)"
lemma zip_take1:
"zip (take n xs) ys = take n (zip xs ys)"
apply (induct xs arbitrary: n ys)
apply simp_all
apply (case_tac n, simp_all)
apply (case_tac ys, simp_all)
done
lemma zip_take2:
"zip xs (take n ys) = take n (zip xs ys)"
apply (induct xs arbitrary: n ys)
apply simp_all
apply (case_tac n, simp_all)
apply (case_tac ys, simp_all)
done
lemmas zip_take = zip_take1 zip_take2
lemma replicate_append: "replicate n x @ (x # xs) = replicate (n + 1) x @ xs"
by (induct n, simp+)
end