seL4-L4.verified/lib/CutMon.thy

83 lines
3.0 KiB
Plaintext

(*
* Copyright 2023, Proofcraft Pty Ltd
* Copyright 2020, Data61, CSIRO (ABN 41 687 119 230)
*
* SPDX-License-Identifier: BSD-2-Clause
*)
(* The cutMon predicate and supporting lemmas.
"cutMon P f" executes f when P is true, otherwise fails. Cuts off uninteresting executions. *)
theory CutMon
imports
Monads.Nondet_Empty_Fail
Monads.Nondet_VCG
begin
definition
cutMon :: "('s \<Rightarrow> bool) \<Rightarrow> ('s, 'a) nondet_monad \<Rightarrow> ('s, 'a) nondet_monad" where
"cutMon P f \<equiv> \<lambda>s. if P s then f s else fail s"
lemma cutMon_walk_bind:
"cutMon ((=) s) (f >>= g) =
(cutMon ((=) s) f >>= (\<lambda>rv. cutMon (\<lambda>s'. (rv, s') \<in> fst (f s)) (g rv)))"
apply (rule ext, simp add: cutMon_def bind_def fail_def)
apply (auto simp: split_def)
done
lemma cutMon_walk_bindE:
"cutMon ((=) s) (f >>=E g) =
(cutMon ((=) s) f >>=E (\<lambda>rv. cutMon (\<lambda>s'. (Inr rv, s') \<in> fst (f s)) (g rv)))"
apply (simp add: bindE_def cutMon_walk_bind)
apply (rule bind_cong, rule refl)
apply (simp add: cutMon_def lift_def fail_def split: if_split_asm)
apply (clarsimp split: sum.split)
done
lemma cutMon_walk_if:
"cutMon ((=) s) (if P then f else g) = (if P then cutMon ((=) s) f else cutMon ((=) s) g)"
by (simp add: cutMon_def)
lemma cutMon_valid_drop:
"\<lbrace>P\<rbrace> f \<lbrace>Q\<rbrace> \<Longrightarrow> \<lbrace>P\<rbrace> cutMon R f \<lbrace>Q\<rbrace>"
by (simp add: cutMon_def valid_def fail_def)
lemma cutMon_validE_drop:
"\<lbrace>P\<rbrace> f \<lbrace>Q\<rbrace>,\<lbrace>E\<rbrace> \<Longrightarrow> \<lbrace>P\<rbrace> cutMon R f \<lbrace>Q\<rbrace>,\<lbrace>E\<rbrace>"
by (simp add: validE_def cutMon_valid_drop)
lemma snd_cutMon:
"snd (cutMon P f s) = (P s \<longrightarrow> snd (f s))"
by (simp add: cutMon_def fail_def split: if_split)
lemma cutMon_assert_opt:
"cutMon P (gets_the f >>= g) = gets_the (\<lambda>s. if P s then f s else None) >>= g"
by (simp add: cutMon_def gets_the_def exec_gets
bind_assoc fun_eq_iff assert_opt_def
split: if_split)
(* empty_fail: *)
lemma empty_fail_use_cutMon:
"\<lbrakk> \<And>s. empty_fail (cutMon ((=) s) f) \<rbrakk> \<Longrightarrow> empty_fail f"
by (fastforce simp add: empty_fail_def cutMon_def split: if_split_asm)
lemma empty_fail_drop_cutMon:
"empty_fail f \<Longrightarrow> empty_fail (cutMon P f)"
by (simp add: empty_fail_def fail_def cutMon_def split: if_split)
lemma empty_fail_cutMon:
"\<lbrakk> \<And>s. P s \<Longrightarrow> empty_fail (cutMon ((=) s) f) \<rbrakk> \<Longrightarrow> empty_fail (cutMon P f)"
by (fastforce simp: empty_fail_def cutMon_def fail_def split: if_split_asm)
lemmas empty_fail_cutMon_intros =
cutMon_walk_bind[THEN arg_cong[where f=empty_fail], THEN iffD2,
OF empty_fail_bind, OF _ empty_fail_cutMon]
cutMon_walk_bindE[THEN arg_cong[where f=empty_fail], THEN iffD2,
OF empty_fail_bindE, OF _ empty_fail_cutMon]
cutMon_walk_if[THEN arg_cong[where f=empty_fail], THEN iffD2,
OF empty_fail_If]
end