seL4-L4.verified/lib/Corres_Adjust_Preconds.thy

188 lines
6.9 KiB
Plaintext

(*
* Copyright 2020, Data61, CSIRO (ABN 41 687 119 230)
*
* SPDX-License-Identifier: BSD-2-Clause
*)
theory Corres_Adjust_Preconds
imports
"Corres_UL"
begin
text \<open>
Gadget for adjusting preconditions in a corres rule or similar.
Probably only useful for predicates with two or more related
preconditions, such as corres.
Used to do some_corres_rule[adj_corres some_intro_rule],
given e.g. some_intro_rule: @{prop "(s, t) \<in> sr \<Longrightarrow> P s \<Longrightarrow> Q t"}
Will apply this rule to solve @{prop "Q t"} components in either
precondition or any sub-conjunct, and will then try to put the
assumptions @{prop "P s"}, @{prop "(s, t) \<in> sr"} into the right
places. The premises of the rule can be in any given order.
Concrete example at the bottom.
\<close>
named_theorems corres_adjust_precond_structures
locale corres_adjust_preconds begin
text \<open>Worker predicates. Broadly speaking, a goal
of the form "preconds ?A ?B ?C ?D ==> P" expects to
establish P by instantiating ?A, or failing that ?B,
etc.
A goal of the form finalise_preconds A exists to
make sure that schematic conjuncts of A are resolved
to True.\<close>
definition
preconds :: "bool \<Rightarrow> bool \<Rightarrow> bool \<Rightarrow> bool \<Rightarrow> bool"
where
"preconds A B C D = (A \<and> B \<and> C \<and> D)"
definition
finalise_preconds :: "bool \<Rightarrow> bool"
where
"finalise_preconds A = True"
text \<open>Use a precond directly to establish goal.\<close>
lemma consume_preconds:
"preconds A True True True \<Longrightarrow> A"
"preconds True B True True \<Longrightarrow> B"
"preconds True True C True \<Longrightarrow> C"
"preconds True True True D \<Longrightarrow> D"
by (simp_all add: preconds_def)
lemmas consume_preconds_True = consume_preconds(1)[where A=True]
text \<open>For use as a drule, split a set of schematic preconds
to give two sets that can be instantiated separately.\<close>
lemma split_preconds_left:
"preconds (A \<and> A') (B \<and> B') (C \<and> C') (D \<and> D') \<Longrightarrow> preconds A B C D"
"preconds (A \<and> A') (B \<and> B') (C \<and> C') True \<Longrightarrow> preconds A B C True"
"preconds (A \<and> A') (B \<and> B') True True \<Longrightarrow> preconds A B True True"
"preconds (A \<and> A') True True True \<Longrightarrow> preconds A True True True"
by (simp_all add: preconds_def)
lemma split_preconds_right:
"preconds (A \<and> A') (B \<and> B') (C \<and> C') (D \<and> D') \<Longrightarrow> preconds A' B' C' D'"
"preconds (A \<and> A') (B \<and> B') (C \<and> C') True \<Longrightarrow> preconds A' B' C' True"
"preconds (A \<and> A') (B \<and> B') True True \<Longrightarrow> preconds A' B' True True"
"preconds (A \<and> A') True True True \<Longrightarrow> preconds A' True True True"
by (simp_all add: preconds_def)
text \<open>For use as an erule. Initiate the precond process,
creating a finalise goal to be solved later.\<close>
lemma preconds_goal_initiate:
"preconds A B C D \<Longrightarrow> (preconds A B C D \<Longrightarrow> Q)
\<Longrightarrow> finalise_preconds (A \<and> B \<and> C \<and> D) \<Longrightarrow> Q"
by simp
text \<open>Finalise preconds, trying to replace conjuncts with
True if they are not yet instantiated.\<close>
lemma finalise_preconds:
"finalise_preconds True"
"finalise_preconds A \<Longrightarrow> finalise_preconds B \<Longrightarrow> finalise_preconds (A \<and> B)"
"finalise_preconds X"
by (simp_all add: finalise_preconds_def)
text \<open>Shape of the whole process for application to regular corres goals.\<close>
lemma corres_adjust_pre:
"corres_underlying R nf nf' rs P Q f f'
\<Longrightarrow> (\<And>s s'. (s, s') \<in> R \<Longrightarrow> preconds (P1 s) (Q1 s') True True \<Longrightarrow> P s)
\<Longrightarrow> (\<And>s s'. (s, s') \<in> R \<Longrightarrow> preconds (Q2 s') (P2 s) True True \<Longrightarrow> Q s')
\<Longrightarrow> corres_underlying R nf nf' rs (\<lambda>s. P1 s \<and> P2 s) (\<lambda>s'. Q1 s' \<and> Q2 s') f f'"
apply (erule stronger_corres_guard_imp)
apply (simp add: preconds_def)+
done
ML \<open>
structure Corres_Adjust_Preconds = struct
val def_intros = @{thms conjI pred_conjI}
(* apply an intro rule, splitting preconds assumptions to
provide unique assumptions for each goal. *)
fun intro_split ctxt intros i =
((resolve_tac ctxt intros
THEN_ALL_NEW (TRY o assume_tac ctxt))
THEN_ALL_NEW (fn j => (EVERY (replicate (j - i) (dresolve_tac ctxt @{thms split_preconds_left} j)))
THEN dresolve_tac ctxt @{thms split_preconds_right} j)) i
fun handle_preconds ctxt intros =
TRY o (eresolve_tac ctxt [@{thm preconds_goal_initiate}]
THEN' REPEAT_ALL_NEW (eresolve_tac ctxt @{thms consume_preconds_True}
ORELSE' intro_split ctxt (intros @ def_intros)
ORELSE' eresolve_tac ctxt @{thms consume_preconds})
THEN' REPEAT_ALL_NEW (resolve_tac ctxt @{thms finalise_preconds})
)
fun mk_adj_preconds ctxt intros rule = let
val xs = [rule] RL (Named_Theorems.get ctxt @{named_theorems corres_adjust_precond_structures})
val x = case xs of
[] => raise THM ("no unifier with corres_adjust_precond_structures", 1, [rule])
| xs => hd xs
in x
|> ALLGOALS (handle_preconds ctxt intros)
|> Seq.hd
|> Simplifier.simplify (clear_simpset ctxt addsimps @{thms conj_assoc simp_thms(21-22)})
end
val setup =
Attrib.setup @{binding "adj_corres"}
((Attrib.thms -- Args.context)
>> (fn (intros, ctxt) => Thm.rule_attribute [] (K (mk_adj_preconds ctxt intros))))
"use argument theorems to adjust a corres theorem."
end
\<close>
end
declare corres_adjust_preconds.corres_adjust_pre[corres_adjust_precond_structures]
setup Corres_Adjust_Preconds.setup
experiment begin
definition
test_sr :: "(nat \<times> nat) set"
where
"test_sr = {(x, y). y = 2 * x}"
lemma test_corres:
"corres_underlying test_sr nf nf' dc (\<lambda>x. x < 40) (\<lambda>y. y < 30 \<and> y = 6)
(modify (\<lambda>x. x + 2)) (modify (\<lambda>y. 10))"
by (simp add: corres_underlying_def simpler_modify_def test_sr_def)
lemma test_adj_precond:
"(x, y) \<in> test_sr \<Longrightarrow> x = 3 \<Longrightarrow> y = 6"
by (simp add: test_sr_def)
ML \<open>
Corres_Adjust_Preconds.mk_adj_preconds @{context} [@{thm test_adj_precond}] @{thm test_corres}
\<close>
lemma foo_adj_corres:
"corres_underlying test_sr nf nf' dc (\<lambda>s. s < 40 \<and> s = 3) (\<lambda>s'. s' < 30) (modify (\<lambda>x. x + 2))
(modify (\<lambda>y. 10))"
by (rule test_corres[adj_corres test_adj_precond])
text \<open>A more general demo of what it does.\<close>
lemma
assumes my_corres: "corres_underlying my_sr nf nf' rvrel P Q a c"
assumes my_adj: "\<And>s s'. (s,s') \<in> my_sr \<Longrightarrow> P s \<Longrightarrow> Q s'"
shows "corres_underlying my_sr nf nf' rvrel (\<lambda>s. P s \<and> P s) (\<lambda>s'. True) a c"
apply (rule my_corres[adj_corres my_adj])
done
end
end