diff --git a/translations/.gitkeep b/translations/.gitkeep new file mode 100644 index 0000000000..bb3c19261b --- /dev/null +++ b/translations/.gitkeep @@ -0,0 +1 @@ +Empty file so Git preserves this folder. diff --git a/translations/ja/api/migration-guides/_toc.json b/translations/ja/api/migration-guides/_toc.json deleted file mode 100644 index def59a0ce9..0000000000 --- a/translations/ja/api/migration-guides/_toc.json +++ /dev/null @@ -1,44 +0,0 @@ -{ - "title": "Migration guides", - "collapsed": true, - "children": [ - { - "title": "Introduction", - "url": "/api/migration-guides" - }, - { - "title": "Migrate to Qiskit Runtime", - "children": [ - { - "title": "How to migrate", - "url": "/api/migration-guides/qiskit-runtime" - }, - { - "title": "Examples", - "url": "/api/migration-guides/qiskit-runtime-examples" - }, - { - "title": "qiskit_ibm_provider to qiskit_ibm_runtime", - "url": "/api/migration-guides/qiskit-runtime-from-provider" - } - ] - }, - { - "title": "Qiskit 0.44 changes", - "children": [ - { - "title": "QuantumInstance deprecation", - "url": "/api/migration-guides/qiskit-quantum-instance" - }, - { - "title": "qiskit.algorithms new interface", - "url": "/api/migration-guides/qiskit-algorithms-module" - }, - { - "title": "qiskit.opflow deprecation", - "url": "/api/migration-guides/qiskit-opflow-module" - } - ] - } - ] -} diff --git a/translations/ja/api/migration-guides/index.mdx b/translations/ja/api/migration-guides/index.mdx deleted file mode 100644 index 85f5b2d90a..0000000000 --- a/translations/ja/api/migration-guides/index.mdx +++ /dev/null @@ -1,17 +0,0 @@ ---- -title: Introduction -description: Migrate to using the newest from Qiskit and Qiskit Runtime ---- - -# Introduction - -We've prepared various migration guides to help you more effectively use Qiskit and Qiskit Runtime: - -- Migrate to Qiskit Runtime - - [How to migrate](./qiskit-runtime) - - [Examples](./qiskit-runtime-examples) - - [Migrate `backend.run()` from `qiskit_ibm_provider` to `qiskit_ibm_runtime`](./qiskit-runtime-from-provider) -- Qiskit 0.44 changes - - [`qiskit.algorithms` new interface](./qiskit-algorithms-module) - - [`qiskit.opflow` deprecation](./qiskit-opflow-module) - - [`QuantumIntance` deprecation](./qiskit-quantum-instance) diff --git a/translations/ja/api/migration-guides/qiskit-1.0.mdx b/translations/ja/api/migration-guides/qiskit-1.0.mdx deleted file mode 100644 index 674bb89ab5..0000000000 --- a/translations/ja/api/migration-guides/qiskit-1.0.mdx +++ /dev/null @@ -1,684 +0,0 @@ ---- -title: Qiskit 1.0 installation and packaging changes -description: Adapt to changes in installing and depending on Qiskit 1.0 ---- - -# Qiskit 1.0 packaging changes - -Qiskit 1.0 uses a different packaging structure than previous Qiskit versions and might cause problems in environments that use packages that are not ready for Qiskit 1.0. - - -Do not try to upgrade an existing Python virtual environment to Qiskit 1.0 in-place. - - -This guide is divided into the following sections. You only need to review the sections that are relevant to you. - -- Users should read the [For users](#for-users) section. -- If you develop or maintain a package that depends on Qiskit, read the [For developers](#for-developers) section. -- If you are interested, review the [What is changing and why it changed](#why-did-this-happen) section. -- If you encounter problems installing or importing Qiskit 1.0, review the [Troubleshooting](#troubleshooting) section. - - -## For users - -You must start a new virtual environment to install Qiskit 1.0. -It is very tricky and error-prone to upgrade an existing installation in-place to Qiskit 1.0. - - -The examples in this section use the `venv` module that is part of the Python standard library. -If you use a different tool, such as `virtualenv` or `conda`, consult its documentation for help. - -For Linux and macOS commands, a bash-like syntax is used. -PowerShell is used for Windows commands. - - - - -### Create the new environment - -1. Create a new virtual environment, using your preferred version of Python 3.8 or later. Use any path you choose in place of `/path/to/qiskit-1.0-venv`. - - ```` - - - ```bash - python3 -m venv /path/to/qiskit-1.0-venv - ``` - - - - ```bash - python3 -m venv /path/to/qiskit-1.0-venv - ``` - - - - ```powershell - python3 -m venv C:\path\to\qiskit-1.0-venv - ``` - - - ```` - - -2. Activate the environment. - -```` - - - ```bash - source /path/to/qiskit-1.0-venv/bin/activate - ``` - - - - ```bash - source /path/to/qiskit-1.0-venv/bin/activate - ``` - - - - ```powershell - C:\path\to\qiskit-1.0-venv\Scripts\activate.ps1 - ``` - - -```` - -3. Install packages as desired. - You should do this by using only one `pip install` command with all the dependencies on it. - - ```bash - pip install 'qiskit>=1' - ``` - - You can optionally include additional packages by including them as arguments. For example: - - ```bash - pip install 'qiskit>=1' jupyterlab pandas matplotlib - ``` - - Qiskit 1.0 includes breaking changes, so several packages are marked as not-yet-compatible with it. Therefore, you might see errors from `pip` until new versions of those packages are released. Old versions of packages might also depend on the legacy `qiskit-terra` package. Such packages might not return errors when running this command, but might raise an error when running `import qiskit`. You should not install any packages that depend directly on `qiskit-terra`. - - - One way to require `pip` to forbid `qiskit-terra` from individual `install` commands is to use [a constraints file](https://pip.pypa.io/en/stable/user_guide/#constraints-files) that requires that `qiskit-terra` is set to an impossible version. - For example, a constraints file that includes the line `qiskit-terra>=1.0` will mean that if a dependency attempts to install `qiskit-terra`, no published versions will match the requirements. - - We have provided such a file in a GitHub Gist at , which you can use like this: - - ```bash - pip install -c https://qisk.it/1-0-constraints qiskit [other packages] - ``` - - If a package requires `qiskit-terra`, you will see [a resolution failure](#pip-resolution-impossible). - - - - - Do not install packages that are incompatible with Qiskit 1.0 on this virtual environment. If you need to use such packages, install them in a separate virtual environment with Qiskit 0.45 or 0.46. - - - If you have an existing environment, you can use [`pipdeptree`](https://github.com/tox-dev/pipdeptree/blob/main/README.md#pipdeptree) to query the requirements of your installed packages to see if they require `qiskit<1`. For any that require `qiskit<1`, check for updates that make it compatible with Qiskit 1.0. - - If you encounter issues, consult the [troubleshooting](#troubleshooting) section, or ask on [Qiskit Slack](https://qisk.it/join-slack). If you think there is a bug, you can [create an issue against Qiskit](https://github.com/Qiskit/qiskit/issues/new/choose). - -4. If you are not planning to use the environment immediately, use the `deactivate` command to leave it. - - -### Use the new environment - -Each time you start a new command line session, you must "activate" the environment by running the `activate` command: - -```` - - - ```bash - source /path/to/qiskit-1.0-venv/bin/activate - ``` - - - - ```bash - source /path/to/qiskit-1.0-venv/bin/activate - ``` - - - - ```powershell - C:\path\to\qiskit-1.0-venv\Scripts\activate.ps1 - ``` - - -```` - - -## For developers - -If you maintain a package that depends on Qiskit, use this information to learn how to correctly express your compatibility and test against Qiskit 1.0. - -### Recommendations for requirements - -We recommend that your package requires `qiskit>=0.45,<1` (or other appropriate lower bound) if you are not certain whether the package is compatible with Qiskit 1.0. -This is [the same recommendation being made for NumPy 2.0 compatibility.](https://github.com/numpy/numpy/issues/24300) - -A Qiskit 1.0 release candidate, version 1.0.0rc1, will be released on 1 February 2024. -You should test your package against this, and as soon as possible, release a new (compatible) version of your package with its upper requirement unpinned. - -### Recommendations for testing against Qiskit 1.0 - -These recommendations apply to testing proactively against the Qiskit `main` branch, and to testing against the 1.0.0rc1 (and later, if applicable) release candidate. - -We do not recommend initially branch-protecting on CI success against the Qiskit `main` branch because Qiskit changes could prevent you from merging PRs. -After the release of Qiskit release candidates, and after all of your package's dependencies support Qiskit 1.0, we _do_ recommend branch-protecting on success against the latest release candidate, to ensure that the package remains compatible with Qiskit 1.0. - -If neither your package, nor any of its transitive dependencies, has a requirement pin on `qiskit<1`, you should create a testing virtual environment as you normally would, in a single `pip install` command, and directly specify `qiskit==1.0.0rc1` or `qiskit==git+https://github.com/Qiskit/qiskit.git@main` as appropriate. -This is the most reliable way to ensure that you have a completely valid environment. - -If the only component of your package's dependency graph that has a requirement pin on `qiskit<1` is your own package, you might want to have your CI suite first temporarily patch your requirements file to allow Qiskit 1.0, and then install the environment in a single step as before. -Alternatively, use the following rules for general-purpose environment upgrades, but switch to single-environment resolution as soon as feasible. - -If at least one of your transitive dependencies does not yet have a release version that allows Qiskit 1.0 support, you must make manual changes. -There are several strategies to try, in approximate order of preference (most preferable to least): - -- Install the problematic dependency from its own `main` branch, if its development version has relaxed the pin, so you can build the test environment in a single step. -- Exclude the use of that dependency from the test environment, if possible. -- Create a test environment in the same way you would normally, and then manually override it to use Qiskit 1.0. - -#### Manually upgrade an existing environment - - -This process deliberately creates an invalid environment. Therefore, any test using it is less valid. Tests might appear to pass, but this does not guarantee that the package is compatible with Qiskit 1.0. This could happen because the environment is not self-consistent and could contain files that do not exist in a valid environment, or the behavior of an overridden package might change with Qiskit 1.0. - - - -If one of your dependencies pins `qiskit<1` even on their development branch, it might not work in any way with Qiskit 1.0, and if your tests cannot run because of this, you might have to wait for them (or work with them) to become compatible. - - -To upgrade an environment in situ, follow these steps: - -1. Create an environment as usual, ensuring that there are no packages that extend the `qiskit` or `qiskit.providers` namespace installed. - -2. Uninstall both `qiskit` and `qiskit-terra` to make sure that neither is present: - -```bash -pip uninstall --yes qiskit qiskit-terra -``` - - At this point, the environment's `site-packages` should not contain a `qiskit` directory. You don't need to verify this on every CI run, but if you are debugging a script locally, follow these steps to verify: - -1. Run the follwing command from within the `python` of the virtual environment: - -```` -```python -import site -print(site.getsitepackages()) -``` -```` - -2. Verify that those directories do not contain a `qiskit` directory. If they do, you likely have namespace-extending packages installed, and you should find these and remove the dependency. - -3. Install the target version of Qiskit 1.0 with one of these commands: - -- After the desired release candidate has been published: - ```bash - pip install 'qiskit==1.0.0rc1' - ``` -- For a `main`-branch dependency (or substitute whatever `git` revision identifier you prefer after the `@`). - ```bash - pip install 'git+https://github.com/Qiskit/qiskit.git@main' - ``` - -You now have an environment that Qiskit allows you to test in. If `import qiskit` results in an `ImportError`, or if you are struggling to find your dependencies, see the advice in the section about the [invalid-environment protections](#qiskit-1.0-import-error) in Qiskit. - -#### Sample manual GitHub Actions workflows - -The following workflows set up a scheduled job to run overnight. This job sets up a testing environment for Qiskit 1.0 and runs `pytest` (or whatever test steps you need). - -For a package that has no transitive dependencies `qiskit<1`: - -```yaml -on: - schedule: - - cron: '0 3 * * *' -jobs: - test_main: - name: Test Qiskit main - runs-on: ubuntu-latest - steps: - - uses: actions/checkout@v4 - - uses: actions/setup-python@v5 - with: - python-version: '3.10' - - name: Create environment - run: | - set -e - # First ensure the standard tools are up-to-date. - python -m pip install --upgrade pip wheel setuptools - # Note that this resolves everything in a single command. - # If it fails, at least one package likely requires `qiskit<1`. - python -m pip install --upgrade \ - -c constraints.txt \ - -r requirements-dev.txt \ - . \ - 'git+https://github.com/Qiskit/qiskit.git@main' - - name: Run tests - run: pytest -``` - -For a package that has unavoidable transitive dependencies that pin `qiskit<1`, build an invalid environment: - -```yaml -on: - schedule: - - cron: '0 3 * * *' -jobs: - test_main: - name: Test Qiskit main - runs-on: ubuntu-latest - steps: - - uses: actions/checkout@v4 - - uses: actions/setup-python@v5 - with: - python-version: '3.10' - - name: Create environment - run: | - set -e - python -m pip install --upgrade pip wheel setuptools - # Install the regular test environment. - python -m pip install --upgrade \ - -c constraints.txt \ - -r requirements-dev.txt \ - . - # Uninstall `qiskit` and `qiskit-terra`. - python -m pip uninstall --yes qiskit qiskit-terra - # Install the new version of Qiskit - python -m pip install 'git+https://github.com/Qiskit/qiskit.git@main' - - name: Run tests - run: pytest -``` - -#### Sample `tox` configuration - -The following are examples of `tox.ini` sections to build a testing environment for Qiskit 1.0 and run `pytest` (or whatever test steps you need). - -If nothing prevents Qiskit 1.0 from being installed in a valid environment: - -```ini -[tox] -minversion = 4.0.0 - -# This environment section should set up your regular test build. -# We'll extend it after, and this one is just an example. -[testenv] -install_command = pip install -c {toxinidir}/constraints.txt -U {opts} {packages} -deps = - -r{toxinidir}/requirements-dev.txt -commands = - pytest - -# This is an override environment to install Qiskit main. -# We're assuming that you have a requirement like `qiskit>=0.45` -# in your packages metadata requirements. -[testenv:qiskit-main] -# Inherit the base dependencies, and add the additional requirement. -deps = - [{testenv}deps] - git+https://github.com/Qiskit/qiskit@main -# All other options, like the `commands` section, are inherited from `testenv`. -``` - -If your package or a transitive dependency has an unavoidable pin on `qiskit<1`, we recommend doing this testing using the manual environment construction as in the above section, because `tox` introduces several complexities by being more strict about environment isolation and installation order. -This is correct behavior by `tox` (we shouldn't construct an invalid environment), but because we already know we're building an invalid environment, these checks get in the way. - -```ini -[tox] -minversion = 4.0.0 - -# This environment section should set up your regular test build. -# We'll extend it later. This is just an example. -[testenv] -install_command = pip install -c {toxinidir}/constraints.txt -U {opts} {packages} -deps = - -r{toxinidir}/requirements-dev.txt -commands = - pytest - -[testenv:qiskit-main] -# Set a sequence of commands to run in the environment after everything has been installed, -# but before the main test suite. -commands_pre = - pip uninstall --yes qiskit qiskit-terra - pip install 'git+https://github.com/Qiskit/qiskit@main' -# All other sections, like the dependencies and the 'commands' section are inherited. -``` - - -## Why these changes happened - -This section contains detailed information about pre-1.0 Qiskit packaging and why we made the breaking packaging change. - -We know that the change is inconvenient, but this restores Qiskit to the simple package structure that most Python packages use, which will be easier for users, developers, and library authors after the Qiskit 1.0 transition is complete. - - -This section uses some Python-packaging jargon to better explain what was happening. -The following words have special meanings: - -- _module_: A single Python file. - -- _package_: A directory containing an `__init__.py` and other files or packages that Python can read. - This is the actual code as installed on your system, and is what executes when you run `import something`. - Python considers any directory that is on the search path to be something you can import (and will import many additional items). - - This is not the same object that you `pip install` (which is a _distribution_), but typically what you `pip install` and what you `import` have the same name. - -- _submodule_, _subpackage_: These are imprecise terms, but are commonly used. - The _sub_ part means "contained inside a package". - A submodule is a module and a subpackage is a package, but they are part of a larger package. - -- _namespace package_: A package that can have submodules or subpackages installed into it by other _distributions_. - Critically, no one distribution contributing to a namespace package necessarily owns all the installed files, so it can be tricky to completely uninstall - or upgrade one. - -- _distribution_: The compressed Python files, data files, and metadata that are downloaded when you run `pip install something`. - Often, a distribution contains exactly one package and the metadata about how to install it (its requirements and so on), but this is not required. - A distribution can contain zero or more modules or packages. - - If you are familiar with "package managers" outside the context of Python, such as `apt` from Debian/Ubuntu or Homebrew on macOS, then what they call a "package", Python calls a distribution, and there is no exact match for what Python calls a package. - - Most sources talking about Python packaging use the term _package_ to mean both distributions and packages, and you must refer to the context to understand what is meant. - In general, if you `import` it, the source means "package", and if you `pip install` it, the source means "distribution". - -- _search path_: When trying to `import something`, Python searches a predefined list of places for a module or package called `something`. - The list of places is the _search path_. - You can see and modify the search path in `sys.path`. - -- _requirement_: A distribution contains information on other distributions it depends on when installed. - Any other distribution that is necessary is a _requirement_, and the package manager (usually `pip` or `conda`) should ensure that all requirements are installed with compatible versions. - -Python is highly dynamic, and many complexities can arise; for example, it's possible that a module or package does not correspond to files on disk, or that they are compiled extensions. -The search path is not only a search over directories, but for this discussion, only files on disk are relevant. -Further complications aren't necessary to understand the problems described in this section, so you can use the model described above. - - - -### The old Qiskit structure - -Historically, Qiskit was comprised of many Python distributions: `qiskit-terra`, the compiler core; `qiskit-aer`, the high-performance simulator; the original IBM Quantum provider; and several now-obsolete packages providing particular exploratory algorithmic or experiment-running features. -For user ease, we also provided a Python distribution called `qiskit`, which contained no code of its own, but caused all the other components to be installed. -We called this the _metapackage_, by analogy to similar concepts in other package managers. -The code of the core of Qiskit lived in `qiskit-terra`, which owned the root of the Python package `qiskit`. In other words, `qiskit-terra` controlled what happened when you ran `import qiskit`. -Until Qiskit 1.0, the `qiskit` package was a namespace package and contained a second namespace package at `qiskit.providers`. - -This organization caused us and our users quite a few problems. - -For example, downstream libraries that depended on Qiskit often only actually needed the compiler core, and did not require the rest of the large ecosystem that came with `pip install qiskit`. -They would therefore correctly specify their requirement as `qiskit-terra`. -However, when people tried to uninstall Qiskit by running `pip uninstall qiskit`, `pip` encountered problems: - -- `pip` does not remove distributions that are now unused. So `pip uninstall qiskit` did almost nothing; there was no code in the distribution, so no code was removed. -- Even if it were to remove code, many downstream distributions would remain installed because they depended on `qiskit-terra`. -- Even if `qiskit-terra` was uninstalled, it might still leave an importable `qiskit` directory with no usable code, because it was a namespace package. - -When installing or upgrading distributions with a `pip install` command, `pip` also does not take into account previous requirement resolutions. -Because there were two packages, upgrading a package that required `qiskit-terra` to be upgraded caused an invalid environment; `pip` upgraded `qiskit-terra` but left `qiskit` untouched. -It issued a warning on this and all subsequent `pip install` commands, but because nothing appeared broken, users typically ignored the warning, and `pip` did not raise an error status or forbid operations. - -Over time, we removed elements from the `qiskit` metapackage until, starting with Qiskit 0.44, only `qiskit-terra` remains. -Of these components, `qiskit-aer` still exists and is actively updated, but it is now installed as a separate distribution. - -Similarly, we ever more strongly discouraged other libraries from using the namespace hooks. -We removed the last Qiskit use of the hooks in non-obsolete packages with the release of Qiskit Aer 0.11 and its new `qiskit_aer` Python package, although until Qiskit 1.0 we also forced the namespace path `qiskit.providers.aer` to work. -Starting with Qiskit 1.0, we have removed the ability for packages to extend any `qiskit` namespace. Thus, `pip uninstall` on the correct distribution in a valid environment now works as expected. - -### The new Qiskit structure - -Starting with version 1.0, Qiskit comprises a single distribution, called `qiskit`, which installs one single package, also called `qiskit`, which owns all the code contained in its directory. -This is the normal structure of Python code, and is the simplest and least error-prone structure. - -The `qiskit-terra` distribution on PyPI will never be updated to version 1.0 or beyond; it is entirely superseded by `qiskit`. -The name `qiskit-terra` is no longer involved in the installation. -However, the `qiskit-terra` package is not being removed from PyPI, and we will leave its most recent version in a working state, so old scientific code and legacy packages can more easily continue to use it. - -Unfortunately, because of the metapackage legacy and deficiencies in `pip` as a package manager, it is not possible for us to make a completely smooth upgrade path for users to Qiskit 1.0, especially while some packages depend on earlier versions of Qiskit, and some require only Qiskit 1.0+. -These problems will lessen as more of the ecosystem migrates to Qiskit 1.0. - - -We will not make similar breaking packaging changes in the future. -This is a one-time event, at the release of Qiskit 1.0, specifically so that our packaging story will be as easy as possible in the future. - - - -## Troubleshooting - -The packaging changes around Qiskit 1.0 are tricky, and Python's standard tool `pip` is not rich enough in some ways for us to communicate the changes in the distribution structures to it, which unfortunately might cause issues for users. -We have tried to make Qiskit fail quickly and loudly if it detects an invalid environment, without false positives. -We understand that users might find it annoying to get the error message, but in our experience, it's much better to be aware of the problem right away than for things to appear to be working on the surface, only to fail in subtle ways in the future. - -This section contains packaging errors that you might see, and describes how to resolve them. - -Most of these problems are not unique to Qiskit, so the advice is likely relevant, even if the problematic parts are not related to Qiskit. - -### `import qiskit` says "ModuleNotFoundError: No module named 'qiskit'" - -Python cannot find your Qiskit installation. - -If you definitely installed Qiskit, then you probably do not have the correct virtual environment activated. -See the [section on activating a virtual environment](#activating-a-venv) for instructions. - -If you are using Jupyter and see this, ensure that Jupyter is installed into the same virtual environment as Qiskit. -Exit Jupyter, activate the Qiskit virtual environment on the command line, run `pip install jupyterlab` (or whichever notebook interface you use), then reopen Jupyter. - -### `import qiskit` succeeds, but trying to do anything returns "AttributeError: module 'qiskit' has no attribute '...'" - -This likely means that your environment had an old version of Qiskit in it alongside a package that extended its namespace (such as old versions of Qiskit Aer, or the long-obsolete Qiskit IBMQ Provider), and then Qiskit was uninstalled. -The easiest thing to do is to start a new virtual environment, and only install recent, non-obsolete packages into it. - -If you have just started a new virtual environment, or you're sure that legacy packages are not the problem, make sure that your current working directory (the directory your shell session was in when you launched Python / Jupyter) does not contain a folder called `qiskit`. -Python's default rules search the current working directory very early in the search path when trying to `import` a module, so a directory with a duplicate name can cause import problems. - - -### `pip` refuses to install some packages together - -After running a `pip install` command with many items on it, you might see an error such as: - -```text -ERROR: Cannot install qiskit-dynamics==0.4.4 and qiskit==1.0.0 because these package versions have conflicting dependencies. - -The conflict is caused by: - The user requested qiskit==1.0.0 - qiskit-dynamics 0.4.4 depends on qiskit<1.0 - -To fix this you could try to: -1. loosen the range of package versions you've specified -2. remove package versions to allow pip attempt to solve the dependency conflict - -ERROR: ResolutionImpossible: for help visit https://pip.pypa.io/en/latest/topics/dependency-resolution/#dealing-with-dependency-conflicts -``` - -This describes a true resolution conflict; there is no valid way to install all of these distributions at the same time. - -In the context of Qiskit 1.0, this is likely because one of the distributions you are trying to install contains a requirement like `qiskit<1.0`. -This means that the developers of that distribution have marked it as not (yet) compatible with Qiskit 1.0. - -You can (politely) ask those developers when they will release a new version of their package that is compatible with Qiskit 1.0, but first check that they have no open issue or pull request already asking for this wherever they accept comments. -Be mindful that this takes time; please give the developers a month or so to prepare new versions of their distributions! -Until then, you cannot install that distribution alongside Qiskit 1.0. -To continue using that distribution, create a new virtual environment and use Qiskit 0.45 or 0.46 (or whichever version it supports) alongside that other package. - - -If you get this error, **do not** try to build the environment by calling `pip install` several times. -Those commands will probably not fail, but you will have created an invalid environment. -You would likely then see some of the other error messages described in this section. - - -You can also read [the documentation from the Python packaging authority about conflict resolution](https://pip.pypa.io/en/latest/topics/dependency-resolution/#dealing-with-dependency-conflicts). - -### `pip` succeeds but prints errors after running `pip install` commands - -You might see an error in the output of `pip`, such as the following: - -```text -ERROR: pip's dependency resolver does not currently take into account all the packages that are installed. This behavior is the source of the following dependency conflicts. -some-distribution 0.4.4 requires qiskit>=0.44,<1, but you have qiskit 1.0.0 which is incompatible. -``` - -The top line usually appears verbatim (as of `pip` 23.3), but second line changes depending on the exact problem, and there may be several lines like it. -`pip` is likely to then indicate that it did whatever you wanted successfully, despite the error message. - -This means that the environment is in conflict and you cannot be sure that it will work correctly. -To solve the problem, examine the list of messages from `pip` and determine if you need all of the packages that have conflicting requirements. -Sometimes there will be true conflicts between dependencies; you might need multiple virtual environments to separate out dependencies that have incompatible requirements. - -The safest choice is to begin a new virtual environment (or more than one, if there are true conflicts), then delete the one in conflict. - -When setting up virtual environments, run only one `pip install` command that includes all the dependencies you need. -This is the most reliable way for `pip` to find a properly resolved environment with no conflicts. -If you keep having problems with conflicts after setting up environments, avoid running any further `pip install` or `pip uninstall` commands; `pip` does not guarantee to keep the environment coherent on subsequent commands. - - -If you are concerned about working with multiple virtual environments, rest assured that Python development and use often involve several virtual environments. It's common and good practice to create new ones to work on separate projects. -When you're done with a virtual environment, you can simply delete its directory; there is no reason to keep multiple environments permanently. - - - -### `import qiskit` raises `ImportError` - -When running `import qiskit`, you might see an error such as: - -> ImportError: Qiskit is installed in an invalid environment that has both Qiskit 1.0+ and an earlier version. -> You should create a new virtual environment, and ensure that you do not mix dependencies between Qiskit pre-1.0 and post-1.0. -> Any packages that depend on 'qiskit-terra' are not compatible with Qiskit 1.0 and will need to be updated. -> Qiskit unfortunately cannot enforce this requirement during environment resolution. - - -You might have run a completely valid `pip install` command, following all the recommendations in this guide, and still see this error message. -This is not your fault, but the error message is still correct, and Qiskit cannot safely load. - - -The error means that Qiskit is installed in an invalid environment that includes both Qiskit 1.0 and an earlier version. -This is characterized by the `qiskit-terra` distribution being installed alongside Qiskit 1.0. -You can check what distributions are installed by running `pip list`, but you cannot fix this by simply uninstalling `qiskit-terra`. - -Unfortunately, `qiskit>=1.0` and `qiskit-terra` are conflicting distributions, and cannot both be installed together. -Even more unfortunately, _we cannot communicate this conflict to `pip`_ because of limitations in its metadata system. - -This error most frequently arises in one of two situations: - -- You ran something like `pip install 'qiskit>=1' something-else`, and `something-else` has a requirement on `qiskit-terra`. -- You tried to run `pip install -U qiskit` in an existing environment. - -In both of these cases, there is no guarantee that `pip` will return a helpful message to you. - - -One way to require `pip` to forbid `qiskit-terra` from individual `install` commands is to use [a constraints file](https://pip.pypa.io/en/stable/user_guide/#constraints-files) that requires that `qiskit-terra` is set to an impossible version. -For example, a constraints file that includes the line `qiskit-terra>=1.0` will mean that if a dependency attempts to install `qiskit-terra`, no published versions will match the requirements. - -We have provided such a file in a GitHub Gist at , which you can use like this: - -```bash -pip install -c https://qisk.it/1-0-constraints qiskit [other packages] -``` - -If a package requires `qiskit-terra`, you will see [a resolution failure](#pip-resolution-impossible). - - - - -#### Create a working environment for Qiskit 1.0 - -No matter how this happened, it is much easier to make a new virtual environment. - -First, we need to find out which packages are introducing a dependency on `qiskit-terra`. -Using the broken environment, install `pipdeptree` from PyPI. This is a tool for generating dependency graphs: - -```bash -pip install pipdeptree -``` - -Ask it which packages are introducing dependencies on `qiskit-terra` and `qiskit` (these are two separate commands): - -```bash -pipdeptree --reverse --package qiskit-terra -``` - -```bash -pipdeptree --reverse --package qiskit -``` - -The outputs might look something like: - -```text -qiskit-terra==0.45.2 -└── qiskit-dynamics==0.4.2 [requires: qiskit-terra>=0.23.0] -``` - -```text -qiskit==1.0.0 -├── qiskit-aer==0.13.2 [requires: qiskit>=0.45.0] -└── qiskit-ibm-provider==0.8.0 [requires: qiskit>=0.45.0] -``` - -In the above example, we have two distributions that have declared themselves compatible with Qiskit 1.0 (`qiskit-aer` and `qiskit-ibm-provider`), and one that still has a dependency on `qiskit-terra`. - - -This example is a flat dependency structure. -You might see a much deeper tree than this. -The packages that are directly dependent on `qiskit-terra` (lowest indentation) are most likely to be the problematic ones, but one farther down the tree could be problematic if it depends on a specific old version of some other package that has already been updated. - - -Seeing a dependency on `qiskit-terra` can mean one of a few things: - -- The dependent is an old package, and will not be updated to support Qiskit 1.0. - - In this case, there is no chance of using the package with Qiskit 1.0, and you will need to continue using a previous version of Qiskit. - Typically this is characterized by the dependent being at its latest version (assuming the environment is new, and you didn't pin it lower) and having a direct requirement on `qiskit-terra`. - -- The dependent is a package that is actively maintained, but does not yet support Qiskit 1.0. - - In this case, you will need to wait for the developers to release a compatible version - please be patient! - Typically this is characterized by the installed distribution _not_ being at its latest version, even though your installation command did not specify a version. - You can check the latest release version of the distribution by finding its page on https://pypi.org/. - - `pip` likely searched old versions of the package until it found one (possibly from months or years ago) that depended only on `qiskit-terra`. - - This is what has happened in the example above. At the time this document was created, `qiskit-dynamics==0.4.4` was the latest release version. - -If you constructed this environment out of several `pip install` commands (such as if the environment is old and has been updated), first try to install all of your packages by using a single `pip install` command when you build a new environment. -If the problem persists, at least one of the packages you want likely does not support Qiskit 1.0 yet, and `pip` is finding an old version that it believes will work because it doesn't know about the `qiskit>=1`/`qiskit-terra` conflict. - -Instead, use the `pipdeptree` commands to identify which dependencies do not yet support Qiskit 1.0. -Exclude any packages that do not yet support Qiskit 1.0 when constructing a Qiskit 1.0 environment, or continue to use a prior version of Qiskit. -See [Create the new environment](#creating-a-venv) for instructions. - - -The example in this section was generated before Qiskit 1.0 was released. - -The "old" distribution in question (`qiskit-dynamics`) was behaving correctly; it was not known to support Qiskit 1.0 yet, so it marked that in its requirements. -It's not possible to backdate requirements changes to previously released versions, and `pip` will search arbitrarily far back to locate something that works when building an environment. - - - - -#### Create a working environment for Qiskit 0.45 or 0.46 - -If you have a broken environment after trying to install Qiskit 0.45 or 0.46, the most likely situation is that `pip` installed Qiskit 1.0 because it tried to pick the latest versions of packages, even though it was not required. -The easiest way to fix this is to create a new virtual environment, then run a single `pip install` command that has all the packages you need, plus an explicit `'qiskit<1'` entry. -If `pip` successfully resolves this dependency graph, you should have a working virtual environment. -If at least one distribution requires Qiskit 1.0 or greater, `pip` should give you an error message explaining this, which looks like the one in [the section on failed resolutions](#pip-resolution-impossible). - -You can also use the `pipdeptree` commands listed in [Create a working environment for Qiskit 1.0](#debug-venv-for-1.0) from within the broken environment to determine which distributions have an explicit requirement on `qiskit>=1`. - -#### I'm a developer, my environments are definitely right, and I'm still getting the error - -First: you must be _absolutely_ certain that your environments are correct. -The test that Qiskit uses to determine a broken environment is quite robust; specifically, it queries `importlib.metadata` for distribution information on installed packages and checks the version numbers returned. -The Qiskit 1.0 side of the test also checks for sentinel files that were present in old Qiskit versions and not Qiskit 1.0. - -If you are a Qiskit developer, it's possible that you have old `qiskit.egg-info` or `qiskit-terra.egg-info` (or `*.dist-info`) directories present on your meta path (see `sys.meta_path`), left over from old editable installations. -In particular, check your working directory for any `*.egg-info` and `*.dist-info` directories. -If they're in the root of one of your checked out repositories, you can delete them. The worst that can happen is you might need to `pip install -e .` again, and even that is unlikely, because these are typically just part of the `setuptools` build process that doesn't get cleaned up. - -If the above information does not help you and you are 100% sure that your environment is sound (or you are deliberately trying to test a broken environment): - -1. [Create an issue in Qiskit](https://github.com/Qiskit/qiskit/issues/new/choose) explaining how this happened and why you are sure the environment is correct so we can fix it. -2. You can suppress the exception by setting the environment variable `QISKIT_SUPPRESS_1_0_IMPORT_ERROR=1`. diff --git a/translations/ja/api/migration-guides/qiskit-algorithms-module.mdx b/translations/ja/api/migration-guides/qiskit-algorithms-module.mdx deleted file mode 100644 index bb8bcb1f52..0000000000 --- a/translations/ja/api/migration-guides/qiskit-algorithms-module.mdx +++ /dev/null @@ -1,849 +0,0 @@ ---- -title: qiskit.algorithms migration guide -description: Use the new interface for `qiskit.algorithms` ---- - -# Algorithms migration guide - - In Qiskit 0.44 and later releases, the `qiskit.algorithms` module has been superseded by a new standalone library, `qiskit_algorithms`, - available on [GitHub](https://github.com/qiskit-community/qiskit-algorithms) and - [PyPi](https://pypi.org/project/qiskit-algorithms). The `qiskit.algorithms` module was migrated to a - separate package in order to clarify the purpose of Qiskit and make a distinction between the tools and libraries built on top of it. - - If your code used `qiskit.algorithms`, follow these steps: - -1. Check your code for any uses of the `qiskit.algorithms` module. If you are, follow this guide to - migrate to the primitives-based implementation. -2. After updating your code, run `pip install qiskit-algorithms` and update your imports from - `qiskit.algorithms` to `qiskit_algorithms`. - -## Background - -The [`qiskit.algorithms`](../qiskit/0.44/algorithms) module was originally built on top of the [`qiskit.opflow`](../qiskit/0.44/opflow) library and the -[`qiskit.utils.QuantumInstance`](../qiskit/0.44/qiskit.utils.QuantumInstance) utility. The development of the [`qiskit.primitives`](../qiskit/primitives) -introduced a higher-level execution paradigm, with the `Estimator` for computing expectation values for observables, and `Sampler` for executing circuits and returning probability distributions. These tools allowed the [`qiskit.algorithms`](../qiskit/0.44/algorithms) module to be refactored, after which, -[`qiskit.opflow`](../qiskit/0.44/opflow) and [`qiskit.utils.QuantumInstance`](../qiskit/0.44/qiskit.utils.QuantumInstance) were deprecated. - - - The transition away from [`qiskit.opflow`](../qiskit/0.44/opflow) affects the classes that algorithms use as part of the problem - setup. Most [`qiskit.opflow`](../qiskit/0.44/opflow) dependencies have a direct [`qiskit.quantum_info`](../qiskit/quantum_info) - replacement. One common example is the class [`qiskit.opflow.primitive_ops.PauliSumOp`](../qiskit/0.44/qiskit.opflow.primitive_ops.PauliSumOp), used to define Hamiltonians - (for example, to plug into VQE), which can be replaced by [`qiskit.quantum_info.SparsePauliOp`](../qiskit/qiskit.quantum_info.SparsePauliOp). - For information to migrate other [`qiskit.opflow`](../qiskit/0.44/opflow) objects, refer to the [Opflow migration guide](./qiskit-opflow-module). - - -For further background and detailed migration steps, see these guides: - -- [Opflow migration guide](./qiskit-opflow-module) -- [QuantumInstance migration guide](./qiskit-quantum-instance) - -## What has changed - -The [`qiskit.algorithms`](../qiskit/0.44/algorithms) module has been fully refactored to use the [`qiskit.primitives`](../qiskit/primitives), for circuit execution, instead of the [`qiskit.utils.QuantumInstance`](../qiskit/0.44/qiskit.utils.QuantumInstance), which is now deprecated. - -There have been three types of refactoring: - -1. Algorithms that were refactored in a new location to support [`qiskit.primitives`](../qiskit/primitives). These algorithms have the same - class names as the [`qiskit.utils.QuantumInstance`](../qiskit/0.44/qiskit.utils.QuantumInstance)-based ones but are in a new subpackage. - - - Be careful with import paths. The legacy algorithms can still be imported from - [`qiskit.algorithms`](../qiskit/0.44/algorithms). Until the legacy imports are removed, this convenience import is not available - for the refactored algorithms. Thus, to import the refactored algorithms you must specify the full import path. For example, `from qiskit.algorithms.eigensolvers import VQD`. - - -- [Minimum Eigensolvers](#minimum-eigensolvers) -- [Eigensolvers](#eigensolvers) -- [Time Evolvers](#time-evolvers) - -2. Algorithms that were refactored in-place (same namespace) to support both [`qiskit.utils.QuantumInstance`](../qiskit/0.44/qiskit.utils.QuantumInstance) and - [`qiskit.primitives`](../qiskit/primitives). In the future, [`qiskit.utils.QuantumInstance`](../qiskit/0.44/qiskit.utils.QuantumInstance) will be removed. - -- [Amplitude Amplifiers](#amplitude-amplifiers) -- [Amplitude Estimators](#amplitude-estimators) -- [Phase Estimators](#phase-estimators) - -3. Algorithms that were deprecated and are now removed entirely from [`qiskit.algorithms`](../qiskit/0.44/algorithms). These are algorithms that do not serve - as building blocks for applications and are only valueable for education, as described in the following tutorials: - -- [Linear Solvers (HHL)](https://github.com/Qiskit/textbook/blob/main/notebooks/ch-applications/hhl_tutorial.ipynb) , -- [Factorizers (Shor)](https://github.com/Qiskit/textbook/blob/main/notebooks/ch-algorithms/shor.ipynb) - -This migration guide focuses on the algorithms with migration alternatives within -[`qiskit.algorithms`](../qiskit/0.44/algorithms), that is, refactoring types 1 and 2. - -## How to choose a primitive configuration for your algorithm - -The classes in -[`qiskit.algorithms`](../qiskit/0.44/algorithms) are initialized with any implementation of [`qiskit.primitives.BaseSampler`](../qiskit/qiskit.primitives.BaseSampler) or [`qiskit.primitives.BaseEstimator`](../qiskit/qiskit.primitives.BaseEstimator). - -Once you know which primitive you want to use, choose the primitive implementation that meets your needs. For example: - -- For quick prototyping, use the reference implementations of primitives included in Qiskit: [`qiskit.primitives.Sampler`](../qiskit/qiskit.primitives.Sampler) and [`qiskit.primitives.Estimator`](../qiskit/qiskit.primitives.Estimator). - -- For finer algorithm tuning, use a local simulator such as the primitive implementation in Aer: [`qiskit_aer.primitives.Sampler`](https://qiskit.org/ecosystem/aer/stubs/qiskit_aer.primitives.Sampler.html) and [`qiskit_aer.primitives.Estimator`](https://qiskit.org/ecosystem/aer/stubs/qiskit_aer.primitives.Estimator.html). - -- For running on quantum hardware choose from these options: - - - Access services with native primitive implementations, such as the IBM Qiskit Runtime service by using [`qiskit_ibm_runtime.Sampler`](../qiskit-ibm-runtime/qiskit_ibm_runtime.Sampler) and [`qiskit_ibm_runtime.Estimator`.](../qiskit-ibm-runtime/qiskit_ibm_runtime.Estimator) - - Wrap any system with `Backend` primitives ([`qiskit.primitives.BackendSampler`](../qiskit/qiskit.primitives.BackendSampler) and [`qiskit.primitives.BackendEstimator`](../qiskit/qiskit.primitives.BackendEstimator)). These wrappers implement a primitive interface on top of a backend that only supports `backend.run()`. - -For detailed information and examples, particularly on the use of the `Backend` primitives, refer to -the [QuantumInstance migration guide](./qiskit-quantum-instance). - -This guide describes these common configurations for algorithms that determine which primitive import to use: - -- Running an algorithm with a statevector simulator when you want the ideal outcome without shot noise. For example, using the [`qiskit.opflow`](../qiskit/0.44/opflow) legacy - [`qiskit.opflow.expectations.MatrixExpectation`](../qiskit/0.44/qiskit.opflow.expectations.MatrixExpectation): - - - -- Reference Primitives with default configuration. See [QAOA](https://github.com/Qiskit/qiskit-tutorials/blob/master/tutorials/algorithms/05_qaoa.ipynb) for an example. - -```python -from qiskit.primitives import Sampler, Estimator -``` - -- Aer Primitives with statevector simulator. See [QAOA](https://github.com/Qiskit/qiskit-tutorials/blob/master/tutorials/algorithms/05_qaoa.ipynb) for an example. - -```python -from qiskit_aer.primitives import Sampler, Estimator - -sampler = Sampler(backend_options={"method": "statevector"}) -estimator = Estimator(backend_options={"method": "statevector"}) -``` - -- Running an algorithm using a simulator or device with shot noise. For example, using the [`qiskit.opflow`](../qiskit/0.44/opflow) legacy [`qiskit.opflow.expectations.PauliExpectation`](../qiskit/0.44/qiskit.opflow.expectations.PauliExpectation): - - - -- Reference primitives with shots. See the [VQE](#vqe) examples. - -```python -from qiskit.primitives import Sampler, Estimator - -sampler = Sampler(options={"shots": 100}) -estimator = Estimator(options={"shots": 100}) - -# or... -sampler = Sampler() -job = sampler.run(circuits, shots=100) - -estimator = Estimator() -job = estimator.run(circuits, observables, shots=100) -``` - -- Aer primitives with default configuration. See the [VQE](#vqe) examples. - -```python -from qiskit_aer.primitives import Sampler, Estimator -``` - -- IBM Qiskit Runtime primitives with default configuration. See [VQD](https://github.com/Qiskit/qiskit-tutorials/blob/master/tutorials/algorithms/04_vqd.ipynb) for an example. - -```python -from qiskit_ibm_runtime import Sampler, Estimator -``` - -- Running an algorithm on an Aer simulator using a custom instruction. For example, using the [`qiskit.opflow`](../qiskit/0.44/opflow) legacy - [`qiskit.opflow.expectations.AerPauliExpectation`](../qiskit/0.44/qiskit.opflow.expectations.AerPauliExpectation). - - - -- Aer Primitives with `shots=None`, `approximation=True`. See [TrotterQRTE](#trotterqrte) for examples. - -```python -from qiskit_aer.primitives import Sampler, Estimator - -sampler = Sampler(run_options={"approximation": True, "shots": None}) -estimator = Estimator(run_options={"approximation": True, "shots": None}) -``` - - -## Minimum Eigensolvers - -The minimum eigensolver algorithms were refactored in a new location. -Instead of a [`qiskit.utils.QuantumInstance`](../qiskit/0.44/qiskit.utils.QuantumInstance), [`qiskit.algorithms.minimum_eigensolvers`](../qiskit/0.44/qiskit.algorithms.minimum_eigensolvers) are now initialized -by using an instance of the [`qiskit.primitives.Sampler`](../qiskit/qiskit.primitives.Sampler) or [`qiskit.primitives.Estimator`](../qiskit/qiskit.primitives.Estimator) primitive, depending -on the algorithm. The legacy classes can still be found in `qiskit.algorithms.minimum_eigen_solvers`. - - - For the [`qiskit.algorithms.minimum_eigensolvers`](../qiskit/0.44/qiskit.algorithms.minimum_eigensolvers) classes, depending on the import path, - you will access either the primitive-based or the quantum-instance-based implementation. You have to be careful, because the class name does not change. - -- Old import (QuantumInstance-based): `from qiskit.algorithms import VQE, QAOA, NumPyMinimumEigensolver` -- New import (Primitives-based): `from qiskit.algorithms.minimum_eigensolvers import VQE, SamplingVQE, QAOA, NumPyMinimumEigensolver` - - -### VQE - -The legacy `qiskit.algorithms.minimum_eigen_solvers.VQE` class has now been split according to the use case: - -- For general-purpose Hamiltonians, use the Estimator-based [`qiskit.algorithms.minimum_eigensolvers.VQE`](../qiskit/0.44/qiskit.algorithms.minimum_eigensolvers.VQE) - class. -- If you have a diagonal Hamiltonian and want the algorithm to return a sampling of the state, use - the new Sampler-based [`qiskit.algorithms.minimum_eigensolvers.SamplingVQE`](../qiskit/0.44/qiskit.algorithms.minimum_eigensolvers.SamplingVQE) algorithm. Previously, this was done by using the legacy `qiskit.algorithms.minimum_eigen_solvers.VQE` with - [`qiskit.opflow.expectations.CVaRExpectation`](../qiskit/0.44/qiskit.opflow.expectations.CVaRExpectation). - - - In addition to taking in an [`qiskit.primitives.Estimator`](../qiskit/qiskit.primitives.Estimator) instance instead of a [`qiskit.utils.QuantumInstance`](../qiskit/0.44/qiskit.utils.QuantumInstance), - the new [`qiskit.algorithms.minimum_eigensolvers.VQE`](../qiskit/0.44/qiskit.algorithms.minimum_eigensolvers.VQE) signature has undergone the following changes: - -- The `expectation` and `include_custom` parameters have been removed, as this functionality is now - defined at the `Estimator` level. -- The `gradient` parameter now takes in an instance of a primitive-based gradient class from - [`qiskit.algorithms.gradients`](../qiskit/0.44/qiskit.algorithms.gradients) instead of the legacy [`qiskit.opflow.gradients.Gradient`](../qiskit/0.44/qiskit.opflow.gradients.Gradient) class. -- The `max_evals_grouped` parameter has been removed, as it can be set directly on the optimizer class. -- The `estimator`, `ansatz` and `optimizer` are the only parameters that can be defined positionally - (and in this order). All others have become keyword-only arguments. - - - - The new [`qiskit.algorithms.minimum_eigensolvers.VQEResult`](../qiskit/0.44/qiskit.algorithms.minimum_eigensolvers.VQEResult) class does not include the state, as - this output was only useful in the case of diagonal operators. However, it is available as part of the new - [`qiskit.algorithms.minimum_eigensolvers.SamplingVQE`](../qiskit/0.44/qiskit.algorithms.minimum_eigensolvers.SamplingVQE) [`qiskit.algorithms.minimum_eigensolvers.SamplingVQEResult`](../qiskit/0.44/qiskit.algorithms.minimum_eigensolvers.SamplingVQEResult). - - -#### VQE examples - -**[Legacy] Using QuantumInstance:** - -```python -from qiskit.algorithms import VQE -from qiskit.algorithms.optimizers import SPSA -from qiskit.circuit.library import TwoLocal -from qiskit.opflow import PauliSumOp -from qiskit.utils import QuantumInstance -from qiskit_aer import AerSimulator - -ansatz = TwoLocal(2, 'ry', 'cz') -opt = SPSA(maxiter=50) - -# shot-based simulation -backend = AerSimulator() -qi = QuantumInstance(backend=backend, shots=2048, seed_simulator=42) -vqe = VQE(ansatz, optimizer=opt, quantum_instance=qi) - -hamiltonian = PauliSumOp.from_list([("XX", 1), ("XY", 1)]) -result = vqe.compute_minimum_eigenvalue(hamiltonian) - -print(result.eigenvalue) -``` - -```python -(-0.9775390625+0j) -``` - -**[Updated] Using primitives:** - -```python -from qiskit.algorithms.minimum_eigensolvers import VQE # new import!!! -from qiskit.algorithms.optimizers import SPSA -from qiskit.circuit.library import TwoLocal -from qiskit.quantum_info import SparsePauliOp -from qiskit.primitives import Estimator -from qiskit_aer.primitives import Estimator as AerEstimator - -ansatz = TwoLocal(2, 'ry', 'cz') -opt = SPSA(maxiter=50) - -# shot-based simulation -estimator = Estimator(options={"shots": 2048}) -vqe = VQE(estimator, ansatz, opt) - -# another option -aer_estimator = AerEstimator(run_options={"shots": 2048, "seed": 42}) -vqe = VQE(aer_estimator, ansatz, opt) - -hamiltonian = SparsePauliOp.from_list([("XX", 1), ("XY", 1)]) -result = vqe.compute_minimum_eigenvalue(hamiltonian) - -print(result.eigenvalue) -``` - -```python --0.986328125 -``` - -#### VQE applying CVaR (SamplingVQE) example - -**[Legacy] Using QuantumInstance:** - -```python -from qiskit.algorithms import VQE -from qiskit.algorithms.optimizers import SLSQP -from qiskit.circuit.library import TwoLocal -from qiskit.opflow import PauliSumOp, CVaRExpectation -from qiskit.utils import QuantumInstance -from qiskit_aer import AerSimulator - -ansatz = TwoLocal(2, 'ry', 'cz') -opt = SLSQP(maxiter=50) - -# shot-based simulation -backend = AerSimulator() -qi = QuantumInstance(backend=backend, shots=2048) -expectation = CVaRExpectation(alpha=0.2) -vqe = VQE(ansatz, optimizer=opt, expectation=expectation, quantum_instance=qi) - -# diagonal Hamiltonian -hamiltonian = PauliSumOp.from_list([("ZZ",1), ("IZ", -0.5), ("II", 0.12)]) -result = vqe.compute_minimum_eigenvalue(hamiltonian) - -print(result.eigenvalue.real) -``` - -```python --1.38 -``` - -**[Updated] Using primitives:** - -```python -from qiskit.algorithms.minimum_eigensolvers import SamplingVQE # new import!!! -from qiskit.algorithms.optimizers import SPSA -from qiskit.circuit.library import TwoLocal -from qiskit.quantum_info import SparsePauliOp -from qiskit.primitives import Sampler -from qiskit_aer.primitives import Sampler as AerSampler - -ansatz = TwoLocal(2, 'ry', 'cz') -opt = SPSA(maxiter=50) - -# shot-based simulation -sampler = Sampler(options={"shots": 2048}) -vqe = SamplingVQE(sampler, ansatz, opt, aggregation=0.2) - -# another option -aer_sampler = AerSampler(run_options={"shots": 2048, "seed": 42}) -vqe = SamplingVQE(aer_sampler, ansatz, opt, aggregation=0.2) - -# diagonal Hamiltonian -hamiltonian = SparsePauliOp.from_list([("ZZ",1), ("IZ", -0.5), ("II", 0.12)]) -result = vqe.compute_minimum_eigenvalue(hamiltonian) - -print(result.eigenvalue.real) -``` - -```python --1.38 -``` - -For complete code examples, see the following updated tutorials: - -- [VQE introduction](https://github.com/Qiskit/qiskit-tutorials/blob/master/tutorials/algorithms/01_algorithms_introduction.ipynb) -- [VQE, callback, gradients, initial point](https://github.com/Qiskit/qiskit-tutorials/blob/master/tutorials/algorithms/02_vqe_advanced_options.ipynb) -- [VQE with Aer primitives](https://github.com/Qiskit/qiskit-tutorials/blob/master/tutorials/algorithms/03_vqe_simulation_with_noise.ipynb) - -### QAOA - -The new QAOA only supports diagonal operators. This is because the legacy `qiskit.algorithms.minimum_eigen_solvers.QAOA` class extended -`qiskit.algorithms.minimum_eigen_solvers.VQE`, but now, [`qiskit.algorithms.minimum_eigensolvers.QAOA`](../qiskit/0.44/qiskit.algorithms.minimum_eigensolvers.QAOA) -extends [`qiskit.algorithms.minimum_eigensolvers.SamplingVQE`](../qiskit/0.44/qiskit.algorithms.minimum_eigensolvers.SamplingVQE). - - - In addition to taking in a [`qiskit.primitives.Sampler`](../qiskit/qiskit.primitives.Sampler) instance instead of a [`qiskit.utils.QuantumInstance`](../qiskit/0.44/qiskit.utils.QuantumInstance), - the new [`qiskit.algorithms.minimum_eigensolvers.QAOA`](../qiskit/0.44/qiskit.algorithms.minimum_eigensolvers.QAOA) signature has undergone the following changes: - -- The `expectation` and `include_custom` parameters have been removed and the `aggregation` - parameter has been added. This was previously defined through a custom `expectation` parameter. -- The `gradient` parameter now takes in an instance of a primitive-based gradient class from - [`qiskit.algorithms.gradients`](../qiskit/0.44/qiskit.algorithms.gradients) instead of the legacy [`qiskit.opflow.gradients.Gradient`](../qiskit/0.44/qiskit.opflow.gradients.Gradient) class. -- The `max_evals_grouped` parameter has been removed, as it can be set directly on the optimizer class. -- The `sampler` and `optimizer` parameters are the only parameters that can be defined positionally - (and in this order). All others have become keyword-only arguments. - - - - If you want to run QAOA on a non-diagonal operator, use the [`qiskit.circuit.library.QAOAAnsatz`](../qiskit/qiskit.circuit.library.QAOAAnsatz) with - [`qiskit.algorithms.minimum_eigensolvers.VQE`](../qiskit/0.44/qiskit.algorithms.minimum_eigensolvers.VQE), but there will be no state result. - If your application requires the final probability distribution, instantiate a `Sampler` - and run it with the optimal circuit after [`qiskit.algorithms.minimum_eigensolvers.VQE`](../qiskit/0.44/qiskit.algorithms.minimum_eigensolvers.VQE). - - -#### QAOA example - -**[Legacy] Using QuantumInstance:** - -```python - -from qiskit.algorithms import QAOA -from qiskit.algorithms.optimizers import COBYLA -from qiskit.opflow import PauliSumOp -from qiskit.utils import QuantumInstance -from qiskit_aer import AerSimulator - -# exact statevector simulation -backend = AerSimulator() -qi = QuantumInstance(backend=backend, shots=None, - seed_simulator = 42, seed_transpiler = 42, - backend_options={"method": "statevector"}) - -optimizer = COBYLA() -qaoa = QAOA(optimizer=optimizer, reps=2, quantum_instance=qi) - -# diagonal operator -qubit_op = PauliSumOp.from_list([("ZIII", 1),("IZII", 1), ("IIIZ", 1), ("IIZI", 1)]) -result = qaoa.compute_minimum_eigenvalue(qubit_op) - -print(result.eigenvalue.real) -``` - -```python --4.0 -``` - -**[Updated] Using primitives:** - -```python -from qiskit.algorithms.minimum_eigensolvers import QAOA -from qiskit.algorithms.optimizers import COBYLA -from qiskit.quantum_info import SparsePauliOp -from qiskit.primitives import Sampler -from qiskit_aer.primitives import Sampler as AerSampler - -# exact statevector simulation -sampler = Sampler() - -# another option -sampler = AerSampler(backend_options={"method": "statevector"}, - run_options={"shots": None, "seed": 42}) - -optimizer = COBYLA() -qaoa = QAOA(sampler, optimizer, reps=2) - -# diagonal operator -qubit_op = SparsePauliOp.from_list([("ZIII", 1),("IZII", 1), ("IIIZ", 1), ("IIZI", 1)]) -result = qaoa.compute_minimum_eigenvalue(qubit_op) - -print(result.eigenvalue) -``` - -```python --3.999999832366272 -``` - -For complete code examples, see the updated [QAOA tutorial.](https://github.com/Qiskit/qiskit-tutorials/blob/master/tutorials/algorithms/05_qaoa.ipynb) - -### NumPyMinimumEigensolver - -Because this is a classical solver, the workflow has not changed between the old and new implementation. -However, the import has changed from `qiskit.algorithms.minimum_eigen_solvers.NumPyMinimumEigensolver` -to [`qiskit.algorithms.minimum_eigensolvers.NumPyMinimumEigensolver`](../qiskit/0.44/qiskit.algorithms.minimum_eigensolvers.NumPyMinimumEigensolver) to conform to the new interfaces -and result classes. - -#### NumPyMinimumEigensolver example - -**[Legacy] Using QuantumInstance:** - -```python - -from qiskit.algorithms import NumPyMinimumEigensolver -from qiskit.opflow import PauliSumOp - -solver = NumPyMinimumEigensolver() - -hamiltonian = PauliSumOp.from_list([("XX", 1), ("XY", 1)]) -result = solver.compute_minimum_eigenvalue(hamiltonian) - -print(result.eigenvalue) -``` - -```python --1.4142135623730958 -``` - -**[Updated] Using primitives:** - -```python -from qiskit.algorithms.minimum_eigensolvers import NumPyMinimumEigensolver -from qiskit.quantum_info import SparsePauliOp - -solver = NumPyMinimumEigensolver() - -hamiltonian = SparsePauliOp.from_list([("XX", 1), ("XY", 1)]) -result = solver.compute_minimum_eigenvalue(hamiltonian) - -print(result.eigenvalue) -``` - -```python --1.414213562373095 -``` - -For complete code examples, see the updated [VQE, callback, gradients, initial point tutorial.](https://github.com/Qiskit/qiskit-tutorials/blob/master/tutorials/algorithms/02_vqe_advanced_options.ipynb) - - -## Eigensolvers - -The eigensolver algorithms were refactored in a new location. Instead of using -[`qiskit.utils.QuantumInstance`](../qiskit/0.44/qiskit.utils.QuantumInstance), [`qiskit.algorithms.eigensolvers`](../qiskit/0.44/qiskit.algorithms.eigensolvers) are now initialized -using an instance of the [`qiskit.primitives.Sampler`](../qiskit/qiskit.primitives.Sampler) or [`qiskit.primitives.Estimator`](../qiskit/qiskit.primitives.Estimator) primitive, or -a primitive-based subroutine, depending on the algorithm. The legacy classes can still be found -in `qiskit.algorithms.eigen_solvers`. - - - For the [`qiskit.algorithms.eigensolvers`](../qiskit/0.44/qiskit.algorithms.eigensolvers) classes, depending on the import path, - you will access either the primitive-based or the QuantumInstance-based -implementation. You have to be careful, because the class name is the same. - -- Old import path (QuantumInstance): `from qiskit.algorithms import VQD, NumPyEigensolver` -- New import path (primitives): `from qiskit.algorithms.eigensolvers import VQD, NumPyEigensolver` - - -### VQD - -The new [`qiskit.algorithms.eigensolvers.VQD`](../qiskit/0.44/qiskit.algorithms.eigensolvers.VQD) class is initialized with an instance of the -[`qiskit.primitives.Estimator`](../qiskit/qiskit.primitives.Estimator) primitive instead of a [`qiskit.utils.QuantumInstance`](../qiskit/0.44/qiskit.utils.QuantumInstance). -It also takes an instance of a state fidelity class from mod:`qiskit.algorithms.state_fidelities`, -such as the [`qiskit.primitives.Sampler`](../qiskit/qiskit.primitives.Sampler)-based [`qiskit.algorithms.state_fidelities.ComputeUncompute`](../qiskit/0.44/qiskit.algorithms.state_fidelities.ComputeUncompute). - - - In addition to taking in a [`qiskit.primitives.Estimator`](../qiskit/qiskit.primitives.Estimator) instance instead of a [`qiskit.utils.QuantumInstance`](../qiskit/0.44/qiskit.utils.QuantumInstance), - the new [`qiskit.algorithms.eigensolvers.VQD`](../qiskit/0.44/qiskit.algorithms.eigensolvers.VQD) signature has undergone the following changes: - -- The `expectation` and `include_custom` parameters have been removed, as this functionality is now - defined at the `Estimator` level. -- The custom `fidelity` parameter has been added and the custom `gradient` parameter has - been removed because current classes in [`qiskit.algorithms.gradients`](../qiskit/0.44/qiskit.algorithms.gradients) cannot use state fidelity - gradients. -- The `max_evals_grouped` parameter has been removed because it can be set directly on the `optimizer` class. -- The `estimator`, `fidelity`, `ansatz` and `optimizer` parameters are the only parameters that can be defined positionally - (and in this order). All others have become keyword-only arguments. - - - - Similar to VQE, the new [`qiskit.algorithms.eigensolvers.VQDResult`](../qiskit/0.44/qiskit.algorithms.eigensolvers.VQDResult) class does not include - the state. If your application requires the final probability distribution, instantiate - a `Sampler` and run it with the optimal circuit for the desired excited state - after running [`qiskit.algorithms.eigensolvers.VQD`](../qiskit/0.44/qiskit.algorithms.eigensolvers.VQD). - - -#### VQD Example - -**[Legacy] Using QuantumInstance:** - -```python -from qiskit import IBMQ -from qiskit.algorithms import VQD -from qiskit.algorithms.optimizers import SLSQP -from qiskit.circuit.library import TwoLocal -from qiskit.opflow import PauliSumOp -from qiskit.utils import QuantumInstance - -ansatz = TwoLocal(3, rotation_blocks=["ry", "rz"], entanglement_blocks="cz", reps=1) -optimizer = SLSQP(maxiter=10) -hamiltonian = PauliSumOp.from_list([("XXZ", 1), ("XYI", 1)]) - -# example executing in cloud simulator -provider = IBMQ.load_account() -backend = provider.get_backend("ibmq_qasm_simulator") -qi = QuantumInstance(backend=backend) - -vqd = VQD(ansatz, k=3, optimizer=optimizer, quantum_instance=qi) -result = vqd.compute_eigenvalues(operator=hamiltonian) - -print(result.eigenvalues) -``` - -```python -[ 0.01765114+0.0e+00j -0.58507654+0.0e+00j -0.15003642-2.8e-17j] -``` - -**[Updated] Using primitives:** - -```python -from qiskit_ibm_runtime import Sampler, Estimator, QiskitRuntimeService, Session -from qiskit.algorithms.eigensolvers import VQD -from qiskit.algorithms.optimizers import SLSQP -from qiskit.algorithms.state_fidelities import ComputeUncompute -from qiskit.circuit.library import TwoLocal -from qiskit.quantum_info import SparsePauliOp - -ansatz = TwoLocal(3, rotation_blocks=["ry", "rz"], entanglement_blocks="cz", reps=1) -optimizer = SLSQP(maxiter=10) -hamiltonian = SparsePauliOp.from_list([("XXZ", 1), ("XYI", 1)]) - -# example executing in cloud simulator -service = QiskitRuntimeService(channel="ibm_quantum") -backend = service.backend("ibmq_qasm_simulator") - -with Session(service=service, backend=backend) as session: - estimator = Estimator() - sampler = Sampler() - fidelity = ComputeUncompute(sampler) - vqd = VQD(estimator, fidelity, ansatz, optimizer, k=3) - result = vqd.compute_eigenvalues(operator=hamiltonian) - -print(result.eigenvalues) -``` - -```python -[ 0.01765114+0.0e+00j -0.58507654+0.0e+00j -0.15003642-2.8e-17j] -``` - -For complete code examples, see the updated [VQD tutorial.](https://github.com/Qiskit/qiskit-tutorials/blob/master/tutorials/algorithms/04_vqd.ipynb) - -### NumPyEigensolver - -Similarly to its minimum eigensolver counterpart, because this is a classical solver, the workflow has not changed -between the old and new implementation. -However, the import has changed from `qiskit.algorithms.eigen_solvers.NumPyEigensolver` -to [`qiskit.algorithms.eigensolvers.NumPyEigensolver`](../qiskit/0.44/qiskit.algorithms.eigensolvers.NumPyEigensolver) to conform to the new interfaces and result classes. - -#### NumPyEigensolver Example - -**[Legacy]\:** - -```python - -from qiskit.algorithms import NumPyEigensolver -from qiskit.opflow import PauliSumOp - -solver = NumPyEigensolver(k=2) - -hamiltonian = PauliSumOp.from_list([("XX", 1), ("XY", 1)]) -result = solver.compute_eigenvalues(hamiltonian) - -print(result.eigenvalues) -``` - -```python -[-1.41421356 -1.41421356] -``` - -**[Updated]\:** - -```python -from qiskit.algorithms.eigensolvers import NumPyEigensolver -from qiskit.quantum_info import SparsePauliOp - -solver = NumPyEigensolver(k=2) - -hamiltonian = SparsePauliOp.from_list([("XX", 1), ("XY", 1)]) -result = solver.compute_eigenvalues(hamiltonian) - -print(result.eigenvalues) -``` - -```python -[-1.41421356 -1.41421356] -``` - - -## Time Evolvers - -The time evolvers were refactored in a new location. -Instead of using a [`qiskit.utils.QuantumInstance`](../qiskit/0.44/qiskit.utils.QuantumInstance), `qiskit.algorithms.time_evolvers` are now initialized -using a [`qiskit.primitives.Estimator`](../qiskit/qiskit.primitives.Estimator) primitive instance. The legacy classes can still be found -in `qiskit.algorithms.evolvers`. - -In addition to the migration, the module has been substantially expanded to include Variational Quantum Time Evolution -(`qiskit.algorithms.time_evolvers.VarQTE`) solvers. - -### TrotterQRTE - - - For the `TrotterQRTE` class, depending on the import path, - you will access either the primitive-based or the QuantumInstance-based - implementation. You have to be careful because the class name did not change. - -- Old import path (QuantumInstance): `from qiskit.algorithms import TrotterQRTE` -- New import path (Primitives): `from qiskit.algorithms.time_evolvers import TrotterQRTE` - - - - In addition to taking in a [`qiskit.primitives.Estimator`](../qiskit/qiskit.primitives.Estimator) instance instead of a [`qiskit.utils.QuantumInstance`](../qiskit/qiskit.utils.QuantumInstance), - the new [`qiskit.algorithms.eigensolvers.VQD`](../qiskit/0.44/qiskit.algorithms.eigensolvers.VQD) signature has undergone the following changes: - -- The `expectation` parameter has been removed, as this functionality is now - defined at the `Estimator` level. -- The `num_timesteps` parameter has been added so you can define how many steps to divide the full evolution time in to. - - -#### TrotterQRTE Example - -**[Legacy] Using QuantumInstance:** - -```python -from qiskit.algorithms import EvolutionProblem, TrotterQRTE -from qiskit.circuit import QuantumCircuit -from qiskit.opflow import PauliSumOp, AerPauliExpectation -from qiskit.utils import QuantumInstance -from qiskit_aer import AerSimulator - -operator = PauliSumOp.from_list([("X", 1),("Z", 1)]) -initial_state = QuantumCircuit(1) # zero -time = 1 -evolution_problem = EvolutionProblem(operator, 1, initial_state) - -# Aer simulator using custom instruction -backend = AerSimulator() -quantum_instance = QuantumInstance(backend=backend) -expectation = AerPauliExpectation() - -# LieTrotter with 1 rep -trotter_qrte = TrotterQRTE(expectation=expectation, quantum_instance=quantum_instance) -evolved_state = trotter_qrte.evolve(evolution_problem).evolved_state - -print(evolved_state) -``` - -```text -CircuitStateFn( - ┌─────────────────────┐ -q: ┤ exp(-it (X + Z))(1) ├ - └─────────────────────┘ -) -``` - -**[Updated] Using primitives:** - -```python -from qiskit.algorithms.time_evolvers import TimeEvolutionProblem, TrotterQRTE # note new import!!! -from qiskit.circuit import QuantumCircuit -from qiskit.quantum_info import SparsePauliOp -from qiskit_aer.primitives import Estimator as AerEstimator - -operator = SparsePauliOp.from_list([("X", 1),("Z", 1)]) -initial_state = QuantumCircuit(1) # zero -time = 1 -evolution_problem = TimeEvolutionProblem(operator, 1, initial_state) - -# Aer simulator using custom instruction -estimator = AerEstimator(run_options={"approximation": True, "shots": None}) - -# LieTrotter with 1 rep -trotter_qrte = TrotterQRTE(estimator=estimator) -evolved_state = trotter_qrte.evolve(evolution_problem).evolved_state - -print(evolved_state.decompose()) -``` - -```text - ┌───────────┐┌───────────┐ -q: ┤ exp(it X) ├┤ exp(it Z) ├ - └───────────┘└───────────┘ -``` - - -## Amplitude amplifiers - -The amplitude amplifier algorithms were refactored in-place. -Instead of a [`qiskit.utils.QuantumInstance`](../qiskit/0.44/qiskit.utils.QuantumInstance), `qiskit.algorithms.amplitude_amplifiers` are now initialized -using an instance of any `Sampler` primitive. That is, [`qiskit.primitives.Sampler`](../qiskit/qiskit.primitives.Sampler). - - - The full `qiskit.algorithms.amplitude_amplifiers` module has been refactored in place. Therefore, you don't need to - change import paths. - - -### Grover example - -**[Legacy] Using QuantumInstance:** - -```python - -from qiskit.algorithms import Grover -from qiskit.utils import QuantumInstance - -qi = QuantumInstance(backend=backend) -grover = Grover(quantum_instance=qi) -``` - -**[Updated] Using primitives:** - -```python -from qiskit.algorithms import Grover -from qiskit.primitives import Sampler - -grover = Grover(sampler=Sampler()) -``` - -For complete code examples, see the following updated tutorials: - -- [Amplitude Amplification and Grover](https://github.com/Qiskit/qiskit-tutorials/blob/master/tutorials/algorithms/06_grover.ipynb) -- [Grover Examples](https://github.com/Qiskit/qiskit-tutorials/blob/master/tutorials/algorithms/07_grover_examples.ipynb) - - -## Amplitude estimators - -Similarly to the amplitude amplifiers, the amplitude estimators were refactored in-place. -Instead of a [`qiskit.utils.QuantumInstance`](../qiskit/0.44/qiskit.utils.QuantumInstance), `qiskit.algorithms.amplitude_estimators` are now initialized -using an instance of any `Sampler` primitive. That is, [`qiskit.primitives.Sampler`](../qiskit/qiskit.primitives.Sampler). - - - The full `qiskit.algorithms.amplitude_estimators` module has been refactored in place. You do not need to - change import paths. - - -### IAE example - -**[Legacy] Using QuantumInstance:** - -```python -from qiskit.algorithms import IterativeAmplitudeEstimation -from qiskit.utils import QuantumInstance - -qi = QuantumInstance(backend=backend) -iae = IterativeAmplitudeEstimation( - epsilon_target=0.01, # target accuracy - alpha=0.05, # width of the confidence interval - quantum_instance=qi -) -``` - -**[Updated] Using primitives:** - -```python -from qiskit.algorithms import IterativeAmplitudeEstimation -from qiskit.primitives import Sampler - -iae = IterativeAmplitudeEstimation( - epsilon_target=0.01, # target accuracy - alpha=0.05, # width of the confidence interval - sampler=Sampler() -) -``` - -For a complete code example, see the updated [Amplitude Estimation tutorial.](https://qiskit.org/ecosystem/finance/tutorials/00_amplitude_estimation.html) - - -## Phase estimators - -The phase estimators were refactored in-place. -Instead of a [`qiskit.utils.QuantumInstance`](../qiskit/0.44/qiskit.utils.QuantumInstance), `qiskit.algorithms.phase_estimators` are now initialized by -using an instance of any `Sampler` primitive. That is, [`qiskit.primitives.Sampler`](../qiskit/qiskit.primitives.Sampler). - - - The full `qiskit.algorithms.phase_estimators` module has been refactored in place. Therefore, you do not need to change import paths. - - -### IPE example - -**[Legacy] Using QuantumInstance:** - -```python -from qiskit.algorithms import IterativePhaseEstimation -from qiskit.utils import QuantumInstance - -qi = QuantumInstance(backend=backend) -ipe = IterativePhaseEstimation( - num_iterations=num_iter, - quantum_instance=qi -) -``` - -**[Updated] Using primitives:** - -```python -from qiskit.algorithms import IterativePhaseEstimation -from qiskit.primitives import Sampler - -ipe = IterativePhaseEstimation( - num_iterations=num_iter, - sampler=Sampler() -) -``` - -For a complete code examples, see the updated [Iterative phase estimation tutorial.](https://github.com/Qiskit/qiskit-tutorials/blob/master/tutorials/algorithms/09_IQPE.ipynb) diff --git a/translations/ja/api/migration-guides/qiskit-opflow-module.mdx b/translations/ja/api/migration-guides/qiskit-opflow-module.mdx deleted file mode 100644 index 7f952eaeed..0000000000 --- a/translations/ja/api/migration-guides/qiskit-opflow-module.mdx +++ /dev/null @@ -1,1364 +0,0 @@ ---- -title: qiskit.opflow migration guide -description: Stop using the deprecated `qiskit.opflow` module ---- - -# Opflow migration guide - -The new [`qiskit.primitives`](../qiskit/primitives), in combination with the [`qiskit.quantum_info`](../qiskit/quantum_info) module, have superseded -functionality of [`qiskit.opflow`](../qiskit/0.44/opflow), which is being deprecated. - -This migration guide contains instructions and code examples to migrate code that uses -the [`qiskit.opflow`](../qiskit/0.44/opflow) module to the [`qiskit.primitives`](../qiskit/primitives) and [`qiskit.quantum_info`](../qiskit/quantum_info) modules. - - - The [`qiskit.opflow`](../qiskit/0.44/opflow) module was tightly coupled to the [`qiskit.utils.QuantumInstance`](../qiskit/0.44/qiskit.utils.QuantumInstance) class, which - is also being deprecated. For information about migrating the [`qiskit.utils.QuantumInstance`](../qiskit/0.44/qiskit.utils.QuantumInstance), see - the [Quantum instance migration guide.](./qiskit-quantum-instance) - - - - - Most references to the [`qiskit.primitives.Sampler`](../qiskit/qiskit.primitives.Sampler) or [`qiskit.primitives.Estimator`](../qiskit/qiskit.primitives.Estimator) in this guide - can be replaced with instances of any primitive implementation. For example Aer primitives ([`qiskit_aer.primitives.Sampler`](https://qiskit.org/ecosystem/aer/stubs/qiskit_aer.primitives.Sampler.html)/[`qiskit_aer.primitives.Estimator`](https://qiskit.org/ecosystem/aer/stubs/qiskit_aer.primitives.Estimator.html)) or the IBM Qiskit Runtime primitives ([`qiskit_ibm_runtime.Sampler`](../qiskit-ibm-runtime/qiskit_ibm_runtime.Sampler)/[`qiskit_ibm_runtime.Estimator`](../qiskit-ibm-runtime/qiskit_ibm_runtime.Estimator)). - Specific systems can be wrapped with ([`qiskit.primitives.BackendSampler`](../qiskit/qiskit.primitives.BackendSampler), [`qiskit.primitives.BackendEstimator`](../qiskit/qiskit.primitives.BackendEstimator)) to also present primitive-compatible interfaces. - - Certain classes, such as the - [`qiskit.opflow.expectations.AerPauliExpectation`](../qiskit/0.44/qiskit.opflow.expectations.AerPauliExpectation), can only be replaced by a specific primitive instance - (in this case, [`qiskit_aer.primitives.Estimator`](https://qiskit.org/ecosystem/aer/stubs/qiskit_aer.primitives.Estimator.html)), or require a specific option configuration. - If this is the case, it will be explicitly indicated in the corresponding section. - - - -## Background - -The [`qiskit.opflow`](../qiskit/0.44/opflow) module was originally introduced as a layer between circuits and algorithms, a series of building blocks -for quantum algorithm research and development. - -The release of the [`qiskit.primitives`](../qiskit/primitives) introduced a new paradigm for interacting with systems. Instead of -preparing a circuit to execute with a `backend.run()` type of method, algorithms can leverage the [`qiskit.primitives.Sampler`](../qiskit/qiskit.primitives.Sampler) and -[`qiskit.primitives.Estimator`](../qiskit/qiskit.primitives.Estimator) primitives, send parametrized circuits and observables, and directly receive quasi-probability distributions or -expectation values (respectively). This workflow simplifies the pre-processing and post-processing steps -that previously relied on this module; allowing us to move away from [`qiskit.opflow`](../qiskit/0.44/opflow) -and find new paths for developing algorithms based on the [`qiskit.primitives`](../qiskit/primitives) interface and -the [`qiskit.quantum_info`](../qiskit/quantum_info) module. - -This guide describes the opflow submodules and provides either a direct alternative -(for example, using [`qiskit.quantum_info`](../qiskit/quantum_info)), or an explanation of how to replace their functionality in algorithms. - -The functional equivalency can be roughly summarized as follows: - -| Opflow Module | Alternative | -| ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ | ------------------------------------------------------------------------- | -| Operators ([`qiskit.opflow.OperatorBase`](../qiskit/0.44/qiskit.opflow.OperatorBase), [`Operator Globals`](#operator-globals), [`qiskit.opflow.primitive_ops`](../qiskit/0.44/qiskit.opflow.primitive_ops), [`qiskit.opflow.list_ops`](../qiskit/0.44/qiskit.opflow.list_ops)) | `qiskit.quantum_info` [`Operators`](../qiskit/quantum_info#operators) | -| [`qiskit.opflow.state_fns`](../qiskit/0.44/qiskit.opflow.state_fns) | `qiskit.quantum_info` [`States`](../qiskit/quantum_info#states) | -| [`qiskit.opflow.converters`](../qiskit/0.44/qiskit.opflow.converters) | [`qiskit.primitives`](../qiskit/primitives) | -| [`qiskit.opflow.evolutions`](../qiskit/0.44/qiskit.opflow.evolutions) | `qiskit.synthesis` [`Evolution`](../qiskit/synthesis#evolution-synthesis) | -| [`qiskit.opflow.expectations`](../qiskit/0.44/qiskit.opflow.expectations) | [`qiskit.primitives.Estimator`](../qiskit/qiskit.primitives.Estimator) | -| [`qiskit.opflow.gradients`](../qiskit/0.44/qiskit.opflow.gradients) | [`qiskit.algorithms.gradients`](../qiskit/qiskit.algorithms.gradients) | - -## Operator base class - -The [`qiskit.opflow.OperatorBase`](../qiskit/0.44/qiskit.opflow.OperatorBase) abstract class can be replaced with `qiskit.quantum_info.BaseOperator`, -keeping in mind that `qiskit.quantum_info.BaseOperator` is more generic than its opflow counterpart. - -| Opflow | Alternative | -| ------------------------------------------------------------------------- | ---------------------------------- | -| [`qiskit.opflow.OperatorBase`](../qiskit/0.44/qiskit.opflow.OperatorBase) | `qiskit.quantum_info.BaseOperator` | - - - Despite the similar class names, [`qiskit.opflow.OperatorBase`](../qiskit/0.44/qiskit.opflow.OperatorBase) and - `qiskit.quantum_info.BaseOperator` are not completely equivalent, and the transition - should be handled with care. Namely: - -- [`qiskit.opflow.OperatorBase`](../qiskit/0.44/qiskit.opflow.OperatorBase) implements a broader algebra mixin. Some operator overloads that were - commonly used in [`qiskit.opflow`](../qiskit/0.44/opflow) (for example `~` for `.adjoint()`) are not defined for - `qiskit.quantum_info.BaseOperator`. You might want to check the specific - [`qiskit.quantum_info`](../qiskit/quantum_info) subclass instead. - -- [`qiskit.opflow.OperatorBase`](../qiskit/0.44/qiskit.opflow.OperatorBase) also implements methods such as `.to_matrix()` or `.to_spmatrix()`, - which are only found in some of the `qiskit.quantum_info.BaseOperator` subclasses. - - See the [`qiskit.opflow.OperatorBase`](../qiskit/0.44/qiskit.opflow.OperatorBase) and [`qiskit.quantum_info.BaseOperator`](../qiskit/quantum_info#quantum-information) API references - for more information. - - - -## Operator globals - -Opflow provided shortcuts to define common single qubit states, operators, and non-parametrized gates in the -[`operator_globals`](../qiskit/0.44/opflow#operator-globals) module. - -These were mainly used for didactic purposes or quick prototyping and can easily be replaced by their corresponding -[`qiskit.quantum_info`](../qiskit/quantum_info) class: [`qiskit.quantum_info.Pauli`](../qiskit/qiskit.quantum_info.Pauli), [`qiskit.quantum_info.Clifford`](../qiskit/qiskit.quantum_info.Clifford) or -[`qiskit.quantum_info.Statevector`](../qiskit/qiskit.quantum_info.Statevector). - -### 1-qubit paulis - -The 1-qubit paulis were commonly used for algorithm testing, as they could be combined to create more complex operators -(for example, `0.39 * (I ^ Z) + 0.5 * (X ^ X)`). -These operations implicitly created operators of type [`qiskit.opflow.primitive_ops.PauliSumOp`](../qiskit/0.44/qiskit.opflow.primitive_ops.PauliSumOp), and can be replaced by -directly creating a corresponding [`qiskit.quantum_info.SparsePauliOp`](../qiskit/qiskit.quantum_info.SparsePauliOp), as shown in the following examples. - -| Opflow | Alternative | -| -------------------------------------------------------------------------- | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | -| `qiskit.opflow.X`, `qiskit.opflow.Y`, `qiskit.opflow.Z`, `qiskit.opflow.I` | [`qiskit.quantum_info.Pauli`](../qiskit/qiskit.quantum_info.Pauli) For direct compatibility with classes in [`qiskit.algorithms`](../qiskit/0.44/algorithms), wrap in [`qiskit.quantum_info.SparsePauliOp`](../qiskit/qiskit.quantum_info.SparsePauliOp). | - -#### Example 1: Define the XX operator - -Opflow: - -```python -from qiskit.opflow import X - -operator = X ^ X -print(repr(operator)) -``` - -```python -PauliOp(Pauli('XX'), coeff=1.0) -``` - -Alternative: - -```python -from qiskit.quantum_info import Pauli, SparsePauliOp - -operator = Pauli('XX') - -# equivalent to: -X = Pauli('X') -operator = X ^ X -print("As Pauli Op: ", repr(operator)) - -# another alternative is: -operator = SparsePauliOp('XX') -print("As Sparse Pauli Op: ", repr(operator)) -``` - -```text -As Pauli Op: Pauli('XX') -As Sparse Pauli Op: SparsePauliOp(['XX'], - coeffs=[1.+0.j]) -``` - -#### Example 2: Define a more complex operator - -Opflow: - -```python -from qiskit.opflow import I, X, Z, PauliSumOp - -operator = 0.39 * (I ^ Z ^ I) + 0.5 * (I ^ X ^ X) - -# equivalent to: -operator = PauliSumOp.from_list([("IZI", 0.39), ("IXX", 0.5)]) - -print(repr(operator)) -``` - -```python -PauliSumOp(SparsePauliOp(['IZI', 'IXX'], - coeffs=[0.39+0.j, 0.5 +0.j]), coeff=1.0) -``` - -Alternative: - -```python -from qiskit.quantum_info import SparsePauliOp - -operator = SparsePauliOp(["IZI", "IXX"], coeffs = [0.39, 0.5]) - -# equivalent to: -operator = SparsePauliOp.from_list([("IZI", 0.39), ("IXX", 0.5)]) - -# equivalent to: -operator = SparsePauliOp.from_sparse_list([("Z", [1], 0.39), ("XX", [0,1], 0.5)], num_qubits = 3) - -print(repr(operator)) -``` - -```python -SparsePauliOp(['IZI', 'IXX'], - coeffs=[0.39+0.j, 0.5 +0.j]) -``` - -### Common non-parametrized gates (Clifford) - -| Opflow | Alternative | -| --------------------------------------------------------------------------------------------------------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | -| `qiskit.opflow.CX`, `qiskit.opflow.S`, `qiskit.opflow.H`, `qiskit.opflow.T`, `qiskit.opflow.CZ`, `qiskit.opflow.Swap` | Append corresponding gate to [`qiskit.circuit.QuantumCircuit`](../qiskit/qiskit.circuit.QuantumCircuit). If necessary, a [`qiskit.quantum_info.Operator`](../qiskit/qiskit.quantum_info.Operator) can be directly constructed from quantum circuits. Another alternative is to wrap the circuit in [`qiskit.quantum_info.Clifford`](../qiskit/qiskit.quantum_info.Clifford) and call `Clifford.to_operator()` Constructing [`qiskit.quantum_info`](../qiskit/quantum_info) operators from circuits is not efficient, as it is a dense operation and scales exponentially with the size of the circuit. | - -#### Example 1: Define the HH operator - -Opflow: - -```python -from qiskit.opflow import H - -operator = H ^ H -print(operator) -``` - -```text - ┌───┐ -q_0: ┤ H ├ - ├───┤ -q_1: ┤ H ├ - └───┘ -``` - -Alternative: - -```python -from qiskit import QuantumCircuit -from qiskit.quantum_info import Clifford, Operator - -qc = QuantumCircuit(2) -qc.h(0) -qc.h(1) -print(qc) -``` - -```text - ┌───┐ -q_0: ┤ H ├ - ├───┤ -q_1: ┤ H ├ - └───┘ -``` - -To turn this circuit into an operator, you can do the following: - -```python -operator = Clifford(qc).to_operator() - -# or, directly -operator = Operator(qc) - -print(operator) -``` - -```python -Operator([[ 0.5+0.j, 0.5+0.j, 0.5+0.j, 0.5+0.j], - [ 0.5+0.j, -0.5+0.j, 0.5+0.j, -0.5+0.j], - [ 0.5+0.j, 0.5+0.j, -0.5+0.j, -0.5+0.j], - [ 0.5+0.j, -0.5+0.j, -0.5+0.j, 0.5+0.j]], - input_dims=(2, 2), output_dims=(2, 2)) -``` - -### 1-qubit states - -| Opflow | Alternative | -| -------------------------------------------------------------------------------------- | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | -| `qiskit.opflow.Zero`, `qiskit.opflow.One`, `qiskit.opflow.Plus`, `qiskit.opflow.Minus` | [`qiskit.quantum_info.Statevector`](../qiskit/qiskit.quantum_info.Statevector) or [`qiskit.circuit.QuantumCircuit`](../qiskit/qiskit.circuit.QuantumCircuit), depending on the use case. To efficiently simulate stabilizer states, [`qiskit.quantum_info`](../qiskit/quantum_info) includes a [`qiskit.quantum_info.StabilizerState`](../qiskit/qiskit.quantum_info.StabilizerState) class. See the [`qiskit.quantum_info.StabilizerState`](../qiskit/qiskit.quantum_info.StabilizerState) API reference for more information. | - -#### Example 1: Stabilizer states - -Opflow: - -```python -from qiskit.opflow import Zero, One, Plus, Minus - -# Zero, One, Plus, Minus are all stabilizer states -state1 = Zero ^ One -state2 = Plus ^ Minus - -print("State 1: ", state1) -print("State 2: ", state2) -``` - -```text -State 1: DictStateFn({'01': 1}) -State 2: CircuitStateFn( - ┌───┐┌───┐ -q_0: ┤ X ├┤ H ├ - ├───┤└───┘ -q_1: ┤ H ├───── - └───┘ -) -``` - -Alternative: - -```python -from qiskit import QuantumCircuit -from qiskit.quantum_info import StabilizerState, Statevector - -qc_zero = QuantumCircuit(1) -qc_one = qc_zero.copy() -qc_one.x(0) -state1 = Statevector(qc_zero) ^ Statevector(qc_one) -print("State 1: ", state1) - -qc_plus = qc_zero.copy() -qc_plus.h(0) -qc_minus = qc_one.copy() -qc_minus.h(0) -state2 = StabilizerState(qc_plus) ^ StabilizerState(qc_minus) -print("State 2: ", state2) -``` - -```text -State 1: Statevector([0.+0.j, 1.+0.j, 0.+0.j, 0.+0.j], - dims=(2, 2)) -State 2: StabilizerState(StabilizerTable: ['-IX', '+XI']) -``` - -## Primitive and List Ops - -Most of the workflows that previously relied on components from [`qiskit.opflow.primitive_ops`](../qiskit/0.44/qiskit.opflow.primitive_ops) and -[`qiskit.opflow.list_ops`](../qiskit/0.44/qiskit.opflow.list_ops) can now leverage elements from [`qiskit.quantum_info`](../qiskit/quantum_info) -operators instead. -Some of these classes do not require a one-to-one replacement because they were created to interface with other -opflow components. - -### Primitive Ops - -[`qiskit.opflow.primitive_ops.PrimitiveOp`](../qiskit/0.44/qiskit.opflow.primitive_ops.PrimitiveOp) is the [`qiskit.opflow.primitive_ops`](../qiskit/0.44/qiskit.opflow.primitive_ops) module's base class. -It also acts as a factory to instantiate a corresponding sub-class, depending on the computational primitive used -to initialize it. - - - Interpreting [`qiskit.opflow.primitive_ops.PrimitiveOp`](../qiskit/0.44/qiskit.opflow.primitive_ops.PrimitiveOp) as a factory class: - -| Class passed to [`qiskit.opflow.primitive_ops.PrimitiveOp`](../qiskit/0.44/qiskit.opflow.primitive_ops.PrimitiveOp) | Subclass returned | -| ------------------------------------------------------------------------------------------------------------------------------------------------ | ----------------------------------------------------------------------------------------------- | -| [`qiskit.quantum_info.Pauli`](../qiskit/qiskit.quantum_info.Pauli) | [`qiskit.opflow.primitive_ops.PauliOp`](../qiskit/0.44/qiskit.opflow.primitive_ops.PauliOp) | -| [`qiskit.circuit.Instruction`](../qiskit/qiskit.circuit.Instruction), [`qiskit.circuit.QuantumCircuit`](../qiskit/qiskit.circuit.QuantumCircuit) | [`qiskit.opflow.primitive_ops.CircuitOp`](../qiskit/0.44/qiskit.opflow.primitive_ops.CircuitOp) | -| `list`, `np.ndarray`, `scipy.sparse.spmatrix`, [`qiskit.quantum_info.Operator`](../qiskit/qiskit.quantum_info.Operator) | [`qiskit.opflow.primitive_ops.MatrixOp`](../qiskit/0.44/qiskit.opflow.primitive_ops.MatrixOp) | - - - -When migrating opflow code, it is important to look for alternatives to replace the specific subclasses that -are used within the original code: - -| Opflow | Alternative | -| --------------------------------------------------------------------------------------------------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | -| [`qiskit.opflow.primitive_ops.PrimitiveOp`](../qiskit/0.44/qiskit.opflow.primitive_ops.PrimitiveOp) | As mentioned previously, this class is used to generate an instance of one of the classes below, so there is no direct replacement. | -| [`qiskit.opflow.primitive_ops.CircuitOp`](../qiskit/0.44/qiskit.opflow.primitive_ops.CircuitOp) | [`qiskit.circuit.QuantumCircuit`](../qiskit/qiskit.circuit.QuantumCircuit) | -| [`qiskit.opflow.primitive_ops.MatrixOp`](../qiskit/0.44/qiskit.opflow.primitive_ops.MatrixOp) | [`qiskit.quantum_info.Operator`](../qiskit/qiskit.quantum_info.Operator) | -| [`qiskit.opflow.primitive_ops.PauliOp`](../qiskit/0.44/qiskit.opflow.primitive_ops.PauliOp) | [`qiskit.quantum_info.Pauli`](../qiskit/qiskit.quantum_info.Pauli). For direct compatibility with classes in [`qiskit.algorithms`](../qiskit/0.44/algorithms), wrap in [`qiskit.quantum_info.SparsePauliOp`](../qiskit/qiskit.quantum_info.SparsePauliOp). | -| [`qiskit.opflow.primitive_ops.PauliSumOp`](../qiskit/0.44/qiskit.opflow.primitive_ops.PauliSumOp) | [`qiskit.quantum_info.SparsePauliOp`](../qiskit/qiskit.quantum_info.SparsePauliOp). See example [below](#example-pauli-sum-op). | -| [`qiskit.opflow.primitive_ops.TaperedPauliSumOp`](../qiskit/0.44/qiskit.opflow.primitive_ops.TaperedPauliSumOp) | This class was used to combine a [`qiskit.opflow.primitive_ops.PauliSumOp`](../qiskit/0.44/qiskit.opflow.primitive_ops.PauliSumOp) with its identified symmetries in one object. This functionality is not currently used in any workflow, and has been deprecated without replacement. See [`qiskit.quantum_info.analysis.Z2Symmetries`](../qiskit/qiskit.quantum_info.Z2Symmetries) example for updated workflow. | -| [`qiskit.opflow.primitive_ops.Z2Symmetries`](../qiskit/0.44/qiskit.opflow.primitive_ops.Z2Symmetries) | [`qiskit.quantum_info.analysis.Z2Symmetries`](../qiskit/qiskit.quantum_info.Z2Symmetries). See example [below](#example-z2-sym). | - - - -#### Example 1: `PauliSumOp` - -Opflow: - -```python -from qiskit.opflow import PauliSumOp -from qiskit.quantum_info import SparsePauliOp, Pauli - -qubit_op = PauliSumOp(SparsePauliOp(Pauli("XYZY"), coeffs=[2]), coeff=-3j) -print(repr(qubit_op)) -``` - -```python -PauliSumOp(SparsePauliOp(['XYZY'], - coeffs=[2.+0.j]), coeff=(-0-3j)) -``` - -Alternative: - -```python -from qiskit.quantum_info import SparsePauliOp, Pauli - -qubit_op = SparsePauliOp(Pauli("XYZY"), coeffs=[-6j]) -print(repr(qubit_op)) -``` - -```python -SparsePauliOp(['XYZY'], - coeffs=[0.-6.j]) -``` - - - -#### Example 2: `Z2Symmetries` and `TaperedPauliSumOp` - -Opflow: - -```python -from qiskit.opflow import PauliSumOp, Z2Symmetries, TaperedPauliSumOp - -qubit_op = PauliSumOp.from_list( - [ - ("II", -1.0537076071291125), - ("IZ", 0.393983679438514), - ("ZI", -0.39398367943851387), - ("ZZ", -0.01123658523318205), - ("XX", 0.1812888082114961), - ] -) -z2_symmetries = Z2Symmetries.find_Z2_symmetries(qubit_op) -print(z2_symmetries) - -tapered_op = z2_symmetries.taper(qubit_op) -print("Tapered Op from Z2 symmetries: ", tapered_op) - -# can be represented as: -tapered_op = TaperedPauliSumOp(qubit_op.primitive, z2_symmetries) -print("Tapered PauliSumOp: ", tapered_op) -``` - -```text -Z2 symmetries: -Symmetries: -ZZ -Single-Qubit Pauli X: -IX -Cliffords: -0.7071067811865475 * ZZ -+ 0.7071067811865475 * IX -Qubit index: -[0] -Tapering values: - - Possible values: [1], [-1] -Tapered Op from Z2 symmetries: ListOp([ - -1.0649441923622942 * I - + 0.18128880821149604 * X, - -1.0424710218959303 * I - - 0.7879673588770277 * Z - - 0.18128880821149604 * X -]) -Tapered PauliSumOp: -1.0537076071291125 * II -+ 0.393983679438514 * IZ -- 0.39398367943851387 * ZI -- 0.01123658523318205 * ZZ -+ 0.1812888082114961 * XX -``` - -Alternative: - -```python -from qiskit.quantum_info import SparsePauliOp -from qiskit.quantum_info.analysis import Z2Symmetries - -qubit_op = SparsePauliOp.from_list( - [ - ("II", -1.0537076071291125), - ("IZ", 0.393983679438514), - ("ZI", -0.39398367943851387), - ("ZZ", -0.01123658523318205), - ("XX", 0.1812888082114961), - ] -) -z2_symmetries = Z2Symmetries.find_z2_symmetries(qubit_op) -print(z2_symmetries) - -tapered_op = z2_symmetries.taper(qubit_op) -print("Tapered Op from Z2 symmetries: ", tapered_op) -``` - -```text -Z2 symmetries: -Symmetries: -ZZ -Single-Qubit Pauli X: -IX -Cliffords: -SparsePauliOp(['ZZ', 'IX'], - coeffs=[0.70710678+0.j, 0.70710678+0.j]) -Qubit index: -[0] -Tapering values: - - Possible values: [1], [-1] -Tapered Op from Z2 symmetries: [SparsePauliOp(['I', 'X'], - coeffs=[-1.06494419+0.j, 0.18128881+0.j]), SparsePauliOp(['I', 'Z', 'X'], - coeffs=[-1.04247102+0.j, -0.78796736+0.j, -0.18128881+0.j])] -``` - -### ListOps - -The [`qiskit.opflow.list_ops`](../qiskit/0.44/qiskit.opflow.list_ops) module contained classes for manipulating lists of [`qiskit.opflow.primitive_ops`](../qiskit/0.44/qiskit.opflow.primitive_ops) -or [`qiskit.opflow.state_fns`](../qiskit/0.44/qiskit.opflow.state_fns). The [`qiskit.quantum_info`](../qiskit/quantum_info) alternatives for this functionality are -[`qiskit.quantum_info.PauliList`](../qiskit/qiskit.quantum_info.PauliList) and [`qiskit.quantum_info.SparsePauliOp`](../qiskit/qiskit.quantum_info.SparsePauliOp) (for sums of [`qiskit.quantum_info.Pauli`](../qiskit/qiskit.quantum_info.Pauli)s). - -| Opflow | Alternative | -| --------------------------------------------------------------------------------------- | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | -| [`qiskit.opflow.list_ops.ListOp`](../qiskit/0.44/qiskit.opflow.list_ops.ListOp) | No direct replacement. This is the base class for operator lists. In general, these could be replaced with a Python `list`s. For [`qiskit.quantum_info.Pauli`](../qiskit/qiskit.quantum_info.Pauli) operators, there are a few alternatives, depending on the use case. One alternative is [`qiskit.quantum_info.PauliList`](../qiskit/qiskit.quantum_info.PauliList). | -| [`qiskit.opflow.list_ops.ComposedOp`](../qiskit/0.44/qiskit.opflow.list_ops.ComposedOp) | No direct replacement. Current workflows do not require composing states and operators within one object (no lazy evaluation). | -| [`qiskit.opflow.list_ops.SummedOp`](../qiskit/0.44/qiskit.opflow.list_ops.SummedOp) | No direct replacement. For [`qiskit.quantum_info.Pauli`](../qiskit/qiskit.quantum_info.Pauli) operators, use [`qiskit.quantum_info.SparsePauliOp`](../qiskit/qiskit.quantum_info.SparsePauliOp). | -| [`qiskit.opflow.list_ops.TensoredOp`](../qiskit/0.44/qiskit.opflow.list_ops.TensoredOp) | No direct replacement. For [`qiskit.quantum_info.Pauli`](../qiskit/qiskit.quantum_info.Pauli) operators, use [`qiskit.quantum_info.SparsePauliOp`](../qiskit/qiskit.quantum_info.SparsePauliOp). | - -## State functions - -The [`qiskit.opflow.state_fns`](../qiskit/0.44/qiskit.opflow.state_fns) module can generally be replaced by subclasses of the [`qiskit.quantum_info`](../qiskit/quantum_info) -`qiskit.quantum_info.states.quantum_state.QuantumState`. - -Similar to [`qiskit.opflow.primitive_ops.PrimitiveOp`](../qiskit/0.44/qiskit.opflow.primitive_ops.PrimitiveOp), [`qiskit.opflow.state_fns.StateFn`](../qiskit/0.44/qiskit.opflow.state_fns.StateFn) -acts as a factory to create the corresponding subclass depending on the computational primitive used to initialize it. - - - Interpreting [`qiskit.opflow.state_fns.StateFn`](../qiskit/0.44/qiskit.opflow.state_fns.StateFn) as a factory class: - -| Class passed to [`qiskit.opflow.state_fns.StateFn`](../qiskit/0.44/qiskit.opflow.state_fns.StateFn) | Subclass returned | -| ------------------------------------------------------------------------------------------------------------------------------------------------ | --------------------------------------------------------------------------------------------------- | -| `str`, `dict`, [`qiskit.result.Result`](../qiskit/qiskit.result.Result) | [`qiskit.opflow.state_fns.DictStateFn`](../qiskit/0.44/qiskit.opflow.state_fns.DictStateFn) | -| `list`, `np.ndarray`, [`qiskit.quantum_info.Statevector`](../qiskit/qiskit.quantum_info.Statevector) | [`qiskit.opflow.state_fns.VectorStateFn`](../qiskit/0.44/qiskit.opflow.state_fns.VectorStateFn) | -| [`qiskit.circuit.QuantumCircuit`](../qiskit/qiskit.circuit.QuantumCircuit), [`qiskit.circuit.Instruction`](../qiskit/qiskit.circuit.Instruction) | [`qiskit.opflow.state_fns.CircuitStateFn`](../qiskit/0.44/qiskit.opflow.state_fns.CircuitStateFn) | -| [`qiskit.opflow.OperatorBase`](../qiskit/0.44/qiskit.opflow.OperatorBase) | [`qiskit.opflow.state_fns.OperatorStateFn`](../qiskit/0.44/qiskit.opflow.state_fns.OperatorStateFn) | - - - -Examine references to [`qiskit.opflow.state_fns.StateFn`](../qiskit/0.44/qiskit.opflow.state_fns.StateFn) in opflow code to identify the subclass that is being used, then find an alternative. - -| Opflow | Alternative | -| ----------------------------------------------------------------------------------------------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | -| [`qiskit.opflow.state_fns.StateFn`](../qiskit/0.44/qiskit.opflow.state_fns.StateFn) | In most cases, [`qiskit.quantum_info.Statevector`](../qiskit/qiskit.quantum_info.Statevector). However, remember that [`qiskit.opflow.state_fns.StateFn`](../qiskit/0.44/qiskit.opflow.state_fns.StateFn) is a factory class. | -| [`qiskit.opflow.state_fns.CircuitStateFn`](../qiskit/0.44/qiskit.opflow.state_fns.CircuitStateFn) | [`qiskit.quantum_info.Statevector`](../qiskit/qiskit.quantum_info.Statevector) | -| [`qiskit.opflow.state_fns.DictStateFn`](../qiskit/0.44/qiskit.opflow.state_fns.DictStateFn) | This class was used to store efficient representations of sparse measurement results. The [`qiskit.primitives.Sampler`](../qiskit/qiskit.primitives.Sampler) now returns the measurements as an instance of [`qiskit.result.QuasiDistribution`](../qiskit/qiskit.result.QuasiDistribution). See the example in [`Converters`](#converters). | -| [`qiskit.opflow.state_fns.VectorStateFn`](../qiskit/0.44/qiskit.opflow.state_fns.VectorStateFn) | This class can be replaced with [`qiskit.quantum_info.Statevector`](../qiskit/qiskit.quantum_info.Statevector) or [`qiskit.quantum_info.StabilizerState`](../qiskit/qiskit.quantum_info.StabilizerState), for Clifford-based vectors. | -| [`qiskit.opflow.state_fns.SparseVectorStateFn`](../qiskit/0.44/qiskit.opflow.state_fns.SparseVectorStateFn) | No direct replacement. This class was used for sparse statevector representations. | -| [`qiskit.opflow.state_fns.OperatorStateFn`](../qiskit/0.44/qiskit.opflow.state_fns.OperatorStateFn) | No direct replacement. This class was used to represent measurements against operators. | -| [`qiskit.opflow.state_fns.CVaRMeasurement`](../qiskit/0.44/qiskit.opflow.state_fns.CVaRMeasurement) | Used in [`qiskit.opflow.expectations.CVaRExpectation`](../qiskit/0.44/qiskit.opflow.expectations.CVaRExpectation). This function is now covered by [`qiskit.algorithms.minimum_eigensolvers.SamplingVQE`](../qiskit/qiskit.algorithms.minimum_eigensolvers.SamplingVQE). See the example in [`Expectations`](#expectations). | - -### Example 1: Apply an operator to a state - -Opflow: - -```python - -from qiskit.opflow import StateFn, X, Y -from qiskit import QuantumCircuit - -qc = QuantumCircuit(2) -qc.x(0) -qc.z(1) -op = X ^ Y -state = StateFn(qc) - -comp = ~op @ state -eval = comp.eval() - -print(state) -print(comp) -print(repr(eval)) -``` - -```text -CircuitStateFn( - ┌───┐ -q_0: ┤ X ├ - ├───┤ -q_1: ┤ Z ├ - └───┘ -) -CircuitStateFn( - ┌───┐┌────────────┐ -q_0: ┤ X ├┤0 ├ - ├───┤│ Pauli(XY) │ -q_1: ┤ Z ├┤1 ├ - └───┘└────────────┘ -) -VectorStateFn(Statevector([ 0.0e+00+0.j, 0.0e+00+0.j, -6.1e-17-1.j, 0.0e+00+0.j], - dims=(2, 2)), coeff=1.0, is_measurement=False) -``` - -Alternative: - -```python -from qiskit import QuantumCircuit -from qiskit.quantum_info import SparsePauliOp, Statevector - -qc = QuantumCircuit(2) -qc.x(0) -qc.z(1) -op = SparsePauliOp("XY") -state = Statevector(qc) - -eval = state.evolve(op) - -print(state) -print(eval) -``` - -```python -Statevector([0.+0.j, 1.+0.j, 0.+0.j, 0.+0.j], - dims=(2, 2)) -Statevector([0.+0.j, 0.+0.j, 0.-1.j, 0.+0.j], - dims=(2, 2)) -``` - -See more examples in [Expectations](#expectations) and [Converters](#converters). - -## Converters - -The role of the [`qiskit.opflow.converters`](../qiskit/0.44/qiskit.opflow.converters) submodule was to convert the operators into other opflow operator classes: -([`qiskit.opflow.converters.TwoQubitReduction`](../qiskit/0.44/qiskit.opflow.converters.TwoQubitReduction), [`qiskit.opflow.converters.PauliBasisChange`](../qiskit/0.44/qiskit.opflow.converters.PauliBasisChange), and so on). -The [`qiskit.opflow.converters.CircuitSampler`](../qiskit/0.44/qiskit.opflow.converters.CircuitSampler) traversed an operator and outputted -approximations of its state functions using a quantum system. -This functionality has been replaced by the [`qiskit.primitives`](../qiskit/primitives). - -| Opflow | Alternative | -| --------------------------------------------------------------------------------------------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ | -| [`qiskit.opflow.converters.CircuitSampler`](../qiskit/0.44/qiskit.opflow.converters.CircuitSampler) | [`qiskit.primitives.Sampler`](../qiskit/qiskit.primitives.Sampler) or [`qiskit.primitives.Estimator`](../qiskit/qiskit.primitives.Estimator) if used with [`qiskit.opflow.expectations`](../qiskit/0.44/qiskit.opflow.expectations). See examples [below](#example-convert-state). | -| [`qiskit.opflow.converters.AbelianGrouper`](../qiskit/0.44/qiskit.opflow.converters.AbelianGrouper) | This class allowed a sum a of Pauli operators to be grouped. Similar functionality can be achieved through the [`qiskit.quantum_info.SparsePauliOp.group_commuting`](../qiskit/qiskit.quantum_info.SparsePauliOp#group_commuting) method of [`qiskit.quantum_info.SparsePauliOp`](../qiskit/qiskit.quantum_info.SparsePauliOp). However, this is not a one-to-one replacement, as you can see in the example [below](#example-commuting). | -| [`qiskit.opflow.converters.DictToCircuitSum`](../qiskit/0.44/qiskit.opflow.converters.DictToCircuitSum) | No direct replacement. This class was used to convert from [`qiskit.opflow.state_fns.DictStateFn`](../qiskit/0.44/qiskit.opflow.state_fns.DictStateFn) or [`qiskit.opflow.state_fns.VectorStateFn`](../qiskit/0.44/qiskit.opflow.state_fns.VectorStateFn) to an equivalent [`qiskit.opflow.state_fns.CircuitStateFn`](../qiskit/0.44/qiskit.opflow.state_fns.CircuitStateFn). | -| [`qiskit.opflow.converters.PauliBasisChange`](../qiskit/0.44/qiskit.opflow.converters.PauliBasisChange) | No direct replacement. This class was used for changing Paulis into other bases. | -| [`qiskit.opflow.converters.TwoQubitReduction`](../qiskit/0.44/qiskit.opflow.converters.TwoQubitReduction) | No direct replacement. This class implements a chemistry-specific reduction for the `ParityMapper` class in [Qiskit Nature](https://qiskit.org/ecosystem/nature/). The general symmetry logic this mapper depends on has been refactored to other classes in [`qiskit.quantum_info`](../qiskit/quantum_info), so this specific [`qiskit.opflow`](../qiskit/0.44/opflow) implementation is no longer necessary. | - - - -### Example 1: `CircuitSampler` for sampling parametrized circuits - -Opflow: - -```python -from qiskit.circuit import QuantumCircuit, Parameter -from qiskit.opflow import ListOp, StateFn, CircuitSampler -from qiskit_aer import AerSimulator - -x, y = Parameter("x"), Parameter("y") - -circuit1 = QuantumCircuit(1) -circuit1.p(0.2, 0) -circuit2 = QuantumCircuit(1) -circuit2.p(x, 0) -circuit3 = QuantumCircuit(1) -circuit3.p(y, 0) - -bindings = {x: -0.4, y: 0.4} -listop = ListOp([StateFn(circuit) for circuit in [circuit1, circuit2, circuit3]]) - -sampler = CircuitSampler(AerSimulator()) -sampled = sampler.convert(listop, params=bindings).eval() - -for s in sampled: - print(s) -``` - -```text -SparseVectorStateFn( (0, 0) 1.0) -SparseVectorStateFn( (0, 0) 1.0) -SparseVectorStateFn( (0, 0) 1.0) -``` - -Alternative: - -```python -from qiskit.circuit import QuantumCircuit, Parameter -from qiskit.primitives import Sampler - -x, y = Parameter("x"), Parameter("y") - -circuit1 = QuantumCircuit(1) -circuit1.p(0.2, 0) -circuit1.measure_all() # Sampler primitive requires measurement readout -circuit2 = QuantumCircuit(1) -circuit2.p(x, 0) -circuit2.measure_all() -circuit3 = QuantumCircuit(1) -circuit3.p(y, 0) -circuit3.measure_all() - -circuits = [circuit1, circuit2, circuit3] -param_values = [[], [-0.4], [0.4]] - -sampler = Sampler() -sampled = sampler.run(circuits, param_values).result().quasi_dists - -print(sampled) -``` - -```python -[{0: 1.0}, {0: 1.0}, {0: 1.0}] -``` - -### Example 2: `CircuitSampler` for computing expectation values - -Opflow: - -```python -from qiskit import QuantumCircuit -from qiskit.opflow import X, Z, StateFn, CircuitStateFn, CircuitSampler -from qiskit_aer import AerSimulator - -qc = QuantumCircuit(1) -qc.h(0) -state = CircuitStateFn(qc) -hamiltonian = X + Z - -expr = StateFn(hamiltonian, is_measurement=True).compose(state) -backend = AerSimulator(method="statevector") -sampler = CircuitSampler(backend) -expectation = sampler.convert(expr) -expectation_value = expectation.eval().real - -print(expectation_value) -``` - -```python -1.0000000000000002 -``` - -Alternative: - -```python -from qiskit import QuantumCircuit -from qiskit.primitives import Estimator -from qiskit.quantum_info import SparsePauliOp - -state = QuantumCircuit(1) -state.h(0) -hamiltonian = SparsePauliOp.from_list([('X', 1), ('Z',1)]) - -estimator = Estimator() -expectation_value = estimator.run(state, hamiltonian).result().values.real - -print(expectation_value) -``` - -```python -[1.] -``` - - - -### Example 3: `AbelianGrouper` for grouping operators - -Opflow: - -```python -from qiskit.opflow import PauliSumOp, AbelianGrouper - -op = PauliSumOp.from_list([("XX", 2), ("YY", 1), ("IZ",2j), ("ZZ",1j)]) - -grouped_sum = AbelianGrouper.group_subops(op) - -print(repr(grouped_sum)) -``` - -```python -SummedOp([PauliSumOp(SparsePauliOp(['XX'], - coeffs=[2.+0.j]), coeff=1.0), PauliSumOp(SparsePauliOp(['YY'], - coeffs=[1.+0.j]), coeff=1.0), PauliSumOp(SparsePauliOp(['IZ', 'ZZ'], - coeffs=[0.+2.j, 0.+1.j]), coeff=1.0)], coeff=1.0, abelian=False) -``` - -Alternative: - -```python -from qiskit.quantum_info import SparsePauliOp - -op = SparsePauliOp.from_list([("XX", 2), ("YY", 1), ("IZ",2j), ("ZZ",1j)]) - -grouped = op.group_commuting() -grouped_sum = op.group_commuting(qubit_wise=True) - -print(repr(grouped)) -print(repr(grouped_sum)) -``` - -```text -[SparsePauliOp(['IZ', 'ZZ'], - coeffs=[0.+2.j, 0.+1.j]), SparsePauliOp(['XX', 'YY'], - coeffs=[2.+0.j, 1.+0.j])] -[SparsePauliOp(['XX'], - coeffs=[2.+0.j]), SparsePauliOp(['YY'], - coeffs=[1.+0.j]), SparsePauliOp(['IZ', 'ZZ'], - coeffs=[0.+2.j, 0.+1.j])] -``` - -## Evolutions - -The [`qiskit.opflow.evolutions`](../qiskit/0.44/qiskit.opflow.evolutions) submodule was created to provide building blocks for Hamiltonian simulation algorithms, -including methods for Trotterization. The original opflow workflow for Hamiltonian simulation did not allow for -delayed synthesis of the gates or efficient transpilation of the circuits, so this functionality was migrated to the -`qiskit.synthesis` [Evolution Synthesis](../qiskit/synthesis#evolution-synthesis) module. - - - The [`qiskit.opflow.evolutions.PauliTrotterEvolution`](../qiskit/0.44/qiskit.opflow.evolutions.PauliTrotterEvolution) class computes evolutions for exponentiated - sums of Paulis by converting to the Z basis, rotating with an RZ, changing back, and Trotterizing. - When calling `.convert()`, the class follows a recursive strategy that involves creating - [`qiskit.opflow.evolutions.EvolvedOp`](../qiskit/0.44/qiskit.opflow.evolutions.EvolvedOp) placeholders for the operators, - constructing [`qiskit.circuit.library.PauliEvolutionGate`s](../qiskit/qiskit.circuit.library.PauliEvolutionGate) out of the operator primitives, and supplying one of - the desired synthesis methods to perform the Trotterization. The methods can be specified by using a - `string`, which is then inputted into a [`qiskit.opflow.evolutions.TrotterizationFactory`](../qiskit/0.44/qiskit.opflow.evolutions.TrotterizationFactory), - or by supplying a method instance of [`qiskit.opflow.evolutions.Trotter`](../qiskit/0.44/qiskit.opflow.evolutions.Trotter), - [`qiskit.opflow.evolutions.Suzuki`](../qiskit/0.44/qiskit.opflow.evolutions.Suzuki) or [`qiskit.opflow.evolutions.QDrift`](../qiskit/0.44/qiskit.opflow.evolutions.QDrift). - - The Trotterization methods that extend [`qiskit.opflow.evolutions.TrotterizationBase`](../qiskit/0.44/qiskit.opflow.evolutions.TrotterizationBase) were migrated to - [`qiskit.synthesis`](../qiskit/synthesis) - and now extend the [`qiskit.synthesis.ProductFormula`](../qiskit/qiskit.synthesis.ProductFormula) base class. They no longer contain a `.convert()` method for - standalone use, but are designed to be plugged into the [`qiskit.circuit.library.PauliEvolutionGate`](../qiskit/qiskit.circuit.library.PauliEvolutionGate) and called by using `.synthesize()`. - In this context, the job of the [`qiskit.opflow.evolutions.PauliTrotterEvolution`](../qiskit/0.44/qiskit.opflow.evolutions.PauliTrotterEvolution) class can now be handled directly by the algorithms, for example, [`qiskit.algorithms.time_evolvers.trotterization.TrotterQRTE`](../qiskit/qiskit.algorithms.time_evolvers.trotterization.TrotterQRTE). - - Similarly, the [`qiskit.opflow.evolutions.MatrixEvolution`](../qiskit/0.44/qiskit.opflow.evolutions.MatrixEvolution) class performs evolution by classical matrix exponentiation, - constructing a circuit with [`qiskit.extensions.UnitaryGate`s](../qiskit/0.44/qiskit.extensions.UnitaryGate) or [`qiskit.extensions.HamiltonianGate`s](../qiskit/0.44/qiskit.extensions.HamiltonianGate) that contain the exponentiation of the operator. - This class is no longer necessary, as the [`qiskit.extensions.HamiltonianGate`s](../qiskit/0.44/qiskit.extensions.HamiltonianGate) can be directly handled by the algorithms. - - - -### Trotterizations - -| Opflow | Alternative | -| ----------------------------------------------------------------------------------------------------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------ | -| [`qiskit.opflow.evolutions.TrotterizationFactory`](../qiskit/0.44/qiskit.opflow.evolutions.TrotterizationFactory) | No direct replacement. This class was used to create instances of one of the classes listed below. | -| [`qiskit.opflow.evolutions.Trotter`](../qiskit/0.44/qiskit.opflow.evolutions.Trotter) | [`qiskit.synthesis.SuzukiTrotter`](../qiskit/qiskit.synthesis.SuzukiTrotter) or [`qiskit.synthesis.LieTrotter`](../qiskit/qiskit.synthesis.LieTrotter) | -| [`qiskit.opflow.evolutions.Suzuki`](../qiskit/0.44/qiskit.opflow.evolutions.Suzuki) | [`qiskit.synthesis.SuzukiTrotter`](../qiskit/qiskit.synthesis.SuzukiTrotter) | -| [`qiskit.opflow.evolutions.QDrift`](../qiskit/0.44/qiskit.opflow.evolutions.QDrift) | [`qiskit.synthesis.QDrift`](../qiskit/qiskit.synthesis.QDrift) | - -### Other evolution classes - -| Opflow | Alternative | -| ----------------------------------------------------------------------------------------------------------------- | -------------------------------------------------------------------------------------------------- | -| [`qiskit.opflow.evolutions.EvolutionFactory`](../qiskit/0.44/qiskit.opflow.evolutions.EvolutionFactory) | No direct replacement. This class was used to create instances of one of the classes listed below. | -| [`qiskit.opflow.evolutions.EvolvedOp`](../qiskit/0.44/qiskit.opflow.evolutions.EvolvedOp) | No direct replacement. The workflow no longer requires a specific operator for evolutions. | -| [`qiskit.opflow.evolutions.MatrixEvolution`](../qiskit/0.44/qiskit.opflow.evolutions.MatrixEvolution) | [`qiskit.extensions.HamiltonianGate`](../qiskit/0.44/qiskit.extensions.HamiltonianGate) | -| [`qiskit.opflow.evolutions.PauliTrotterEvolution`](../qiskit/0.44/qiskit.opflow.evolutions.PauliTrotterEvolution) | [`qiskit.circuit.library.PauliEvolutionGate`](../qiskit/qiskit.circuit.library.PauliEvolutionGate) | - -#### Example 1: Trotter evolution - -Opflow: - -```python -from qiskit.opflow import Trotter, PauliTrotterEvolution, PauliSumOp - -hamiltonian = PauliSumOp.from_list([('X', 1), ('Z',1)]) -evolution = PauliTrotterEvolution(trotter_mode=Trotter(), reps=2) -evol_result = evolution.convert(hamiltonian.exp_i()) -evolved_state = evol_result.to_circuit() - -print(evolved_state) -``` - -```text - ┌─────────────────────┐ -q: ┤ exp(-it (X + Z))(1) ├ - └─────────────────────┘ -``` - -Alternative: - -```python -from qiskit import QuantumCircuit -from qiskit.quantum_info import SparsePauliOp -from qiskit.circuit.library import PauliEvolutionGate -from qiskit.synthesis import SuzukiTrotter - -hamiltonian = SparsePauliOp.from_list([('X', 1), ('Z',1)]) -evol_gate = PauliEvolutionGate(hamiltonian, time=1, synthesis=SuzukiTrotter(reps=2)) -evolved_state = QuantumCircuit(1) -evolved_state.append(evol_gate, [0]) - -print(evolved_state) -``` - -```text - ┌─────────────────────┐ -q: ┤ exp(-it (X + Z))(1) ├ - └─────────────────────┘ -``` - -#### Example 2: Evolution with time-dependent Hamiltonian - -Opflow: - -```python -from qiskit.opflow import Trotter, PauliTrotterEvolution, PauliSumOp -from qiskit.circuit import Parameter - -time = Parameter('t') -hamiltonian = PauliSumOp.from_list([('X', 1), ('Y',1)]) -evolution = PauliTrotterEvolution(trotter_mode=Trotter(), reps=1) -evol_result = evolution.convert((time * hamiltonian).exp_i()) -evolved_state = evol_result.to_circuit() - -print(evolved_state) -``` - -```text - ┌─────────────────────────┐ -q: ┤ exp(-it (X + Y))(1.0*t) ├ - └─────────────────────────┘ -``` - -Alternative: - -```python -from qiskit.quantum_info import SparsePauliOp -from qiskit.synthesis import LieTrotter -from qiskit.circuit.library import PauliEvolutionGate -from qiskit import QuantumCircuit -from qiskit.circuit import Parameter - -time = Parameter('t') -hamiltonian = SparsePauliOp.from_list([('X', 1), ('Y',1)]) -evol_gate = PauliEvolutionGate(hamiltonian, time=time, synthesis=LieTrotter()) -evolved_state = QuantumCircuit(1) -evolved_state.append(evol_gate, [0]) - -print(evolved_state) -``` - -```text - ┌─────────────────────┐ -q: ┤ exp(-it (X + Y))(t) ├ - └─────────────────────┘ - -``` - -#### Example 3: Matrix evolution - -Opflow: - -```python -from qiskit.opflow import MatrixEvolution, MatrixOp - -hamiltonian = MatrixOp([[0, 1], [1, 0]]) -evolution = MatrixEvolution() -evol_result = evolution.convert(hamiltonian.exp_i()) -evolved_state = evol_result.to_circuit() - -print(evolved_state.decompose().decompose()) -``` - -```X - ┌────────────────┐ -q: ┤ U3(2,-π/2,π/2) ├ - └────────────────┘ -``` - -Alternative: - -```python -from qiskit.quantum_info import SparsePauliOp -from qiskit.extensions import HamiltonianGate -from qiskit import QuantumCircuit - -evol_gate = HamiltonianGate([[0, 1], [1, 0]], 1) -evolved_state = QuantumCircuit(1) -evolved_state.append(evol_gate, [0]) - -print(evolved_state.decompose().decompose()) -``` - -```text - ┌────────────────┐ -q: ┤ U3(2,-π/2,π/2) ├ - └────────────────┘ -``` - -## Expectations - -Expectations are converters that enable an observable's expectation value to be computed with respect to some state function. -This function can now be found in the [`qiskit.primitives.Estimator`](../qiskit/qiskit.primitives.Estimator) primitive. Remember that there -are different `Estimator` implementations, as noted [previously.](#attention_primitives) - -### Algorithm-Agnostic Expectations - -| Opflow | Alternative | -| ----------------------------------------------------------------------------------------------------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | -| [`qiskit.opflow.expectations.ExpectationFactory`](../qiskit/0.44/qiskit.opflow.expectations.ExpectationFactory) | No direct replacement. This class was used to create instances of one of the classes listed below. | -| [`qiskit.opflow.expectations.AerPauliExpectation`](../qiskit/0.44/qiskit.opflow.expectations.AerPauliExpectation) | Use [`qiskit_aer.primitives.Estimator`](https://qiskit.org/ecosystem/aer/stubs/qiskit_aer.primitives.Estimator.html) with `approximation=True`, and then `shots=None` as `run_options`. See example below. | -| [`qiskit.opflow.expectations.MatrixExpectation`](../qiskit/0.44/qiskit.opflow.expectations.MatrixExpectation) | Use [`qiskit.primitives.Estimator`](../qiskit/qiskit.primitives.Estimator) primitive. If no shots are set, it performs an exact Statevector calculation. See example below. | -| [`qiskit.opflow.expectations.PauliExpectation`](../qiskit/0.44/qiskit.opflow.expectations.PauliExpectation) | Use any Estimator primitive. For [`qiskit.primitives.Estimator`](../qiskit/qiskit.primitives.Estimator), set `shots!=None` for a shotbased simulation. For [`qiskit_aer.primitives.Estimator`](https://qiskit.org/ecosystem/aer/stubs/qiskit_aer.primitives.Estimator.html), this is the default. | - -#### Example 1: Aer Pauli expectation - -Opflow: - -```python -from qiskit.opflow import X, Minus, StateFn, AerPauliExpectation, CircuitSampler -from qiskit.utils import QuantumInstance -from qiskit_aer import AerSimulator - -backend = AerSimulator() -q_instance = QuantumInstance(backend) - -sampler = CircuitSampler(q_instance, attach_results=True) -expectation = AerPauliExpectation() - -state = Minus -operator = 1j * X - -converted_meas = expectation.convert(StateFn(operator, is_measurement=True) @ state) -expectation_value = sampler.convert(converted_meas).eval() - -print(expectation_value) -``` - -```python --1j -``` - -Alternative: - -```python -from qiskit.quantum_info import SparsePauliOp -from qiskit import QuantumCircuit -from qiskit_aer.primitives import Estimator - -estimator = Estimator(approximation=True, run_options={"shots": None}) - -op = SparsePauliOp.from_list([("X", 1j)]) -states_op = QuantumCircuit(1) -states_op.x(0) -states_op.h(0) - -expectation_value = estimator.run(states_op, op).result().values - -print(expectation_value) -``` - -```python -[0.-1.j] -``` - -#### Example 2: Matrix expectation - -Opflow: - -```python -from qiskit.opflow import X, H, I, MatrixExpectation, ListOp, StateFn -from qiskit.utils import QuantumInstance -from qiskit_aer import AerSimulator - -backend = AerSimulator(method='statevector') -q_instance = QuantumInstance(backend) -sampler = CircuitSampler(q_instance, attach_results=True) -expect = MatrixExpectation() - -mixed_ops = ListOp([X.to_matrix_op(), H]) -converted_meas = expect.convert(~StateFn(mixed_ops)) - -plus_mean = converted_meas @ Plus -values_plus = sampler.convert(plus_mean).eval() - -print(values_plus) -``` - -```python -[(1+0j), (0.7071067811865476+0j)] -``` - -Alternative: - -```python -from qiskit.primitives import Estimator -from qiskit.quantum_info import SparsePauliOp -from qiskit.quantum_info import Clifford - -X = SparsePauliOp("X") - -qc = QuantumCircuit(1) -qc.h(0) -H = Clifford(qc).to_operator() - -plus = QuantumCircuit(1) -plus.h(0) - -estimator = Estimator() -values_plus = estimator.run([plus, plus], [X, H]).result().values - -print(values_plus) -``` - -```text -[1. 0.70710678] -``` - -### CVaRExpectation - -| Opflow | Alternative | -| --------------------------------------------------------------------------------------------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------- | -| [`qiskit.opflow.expectations.CVaRExpectation`](../qiskit/0.44/qiskit.opflow.expectations.CVaRExpectation) | Functionality migrated into new VQE algorithm: [`qiskit.algorithms.minimum_eigensolvers.SamplingVQE`](../qiskit/qiskit.algorithms.minimum_eigensolvers.SamplingVQE) | - -#### Example 1: VQE with CVaR - -Opflow: - -```python -from qiskit.opflow import CVaRExpectation, PauliSumOp - -from qiskit.algorithms import VQE -from qiskit.algorithms.optimizers import SLSQP -from qiskit.circuit.library import TwoLocal -from qiskit_aer import AerSimulator - -backend = AerSimulator(method="statevector") -ansatz = TwoLocal(2, 'ry', 'cz') -op = PauliSumOp.from_list([('ZZ',1), ('IZ',1), ('II',1)]) -alpha = 0.2 -cvar_expectation = CVaRExpectation(alpha=alpha) -opt = SLSQP(maxiter=1000) -vqe = VQE(ansatz, expectation=cvar_expectation, optimizer=opt, quantum_instance=backend) -result = vqe.compute_minimum_eigenvalue(op) - -print(result.eigenvalue) -``` - -```python -(-1+0j) -``` - -Alternative: - -```python -from qiskit.quantum_info import SparsePauliOp - -from qiskit.algorithms.minimum_eigensolvers import SamplingVQE -from qiskit.algorithms.optimizers import SLSQP -from qiskit.circuit.library import TwoLocal -from qiskit.primitives import Sampler - -ansatz = TwoLocal(2, 'ry', 'cz') -op = SparsePauliOp.from_list([('ZZ',1), ('IZ',1), ('II',1)]) -opt = SLSQP(maxiter=1000) -alpha = 0.2 -vqe = SamplingVQE(Sampler(), ansatz, opt, aggregation=alpha) -result = vqe.compute_minimum_eigenvalue(op) - -print(result.eigenvalue) -``` - -```python --1.0 -``` - -## Gradients - -The opflow [`qiskit.opflow.gradients`](../qiskit/0.44/qiskit.opflow.gradients) framework has been replaced by the [`qiskit.algorithms.gradients`](../qiskit/qiskit.algorithms.gradients) -module. The new gradients are **primitive-based subroutines** commonly used by algorithms and applications, which -can also be run standalone. For this reason, they now reside under [`qiskit.algorithms`](../qiskit/0.44/algorithms). - -The former gradient framework contained base classes, converters, and derivatives. The "derivatives" -followed a factory design pattern, where different methods could be provided by using string identifiers -to each of these classes. The new gradient framework contains two main families of subroutines: -**Gradients** and **QGT/QFI**. The **Gradients** can either be Sampler or Estimator based, while the current -**QGT/QFI** implementations are Estimator based. - -This leads to a change in the workflow: - -**Previous workflow** - -```python -from qiskit.opflow import Gradient - -grad = Gradient(method="param_shift") - -# task based on expectation value computations + gradients -``` - -**New workflow** - -We now explicitly import the desired class, depending on the target primitive (Sampler or Estimator) and target method: - -```python -from qiskit.algorithms.gradients import ParamShiftEstimatorGradient -from qiskit.primitives import Estimator - -grad = ParamShiftEstimatorGradient(Estimator()) - -# task based on expectation value computations + gradients -``` - -This works similarly for the QFI class: - -**Previous workflow** - -```python -from qiskit.opflow import QFI - -qfi = QFI(method="lin_comb_full") - -# task based on expectation value computations + QFI -``` - -**New workflow** - -There is a generic QFI implementation that can be initialized with different QGT (Quantum Gradient Tensor) -implementations: - -```python -from qiskit.algorithms.gradients import LinCombQGT, QFI -from qiskit.primitives import Estimator - -qgt = LinCombQGT(Estimator()) -qfi = QFI(qgt) - -# task based on expectation value computations + QFI -``` - - - Here is a quick guide for migrating the most common gradient settings. All new gradient - imports follow the format: - -```python -from qiskit.algorithms.gradients import MethodPrimitiveGradient, QFI -``` - - Gradients: - -| Opflow | Alternative | -| -------------------------------- | -------------------------------------------------------------------------------------------------- | -| `Gradient(method="lin_comb")` | `LinCombEstimatorGradient(estimator=estimator)` or `LinCombSamplerGradient(sampler=sampler)` | -| `Gradient(method="param_shift")` | `ParamShiftEstimatorGradient(estimator=estimator)` or `ParamShiftSamplerGradient(sampler=sampler)` | -| `Gradient(method="fin_diff")` | `FiniteDiffEstimatorGradient(estimator=estimator)` or `ParamShiftSamplerGradient(sampler=sampler)` | - - QFI/QGT: - -| Opflow | Alternative | -| ----------------------------- | ----------------------------- | -| `QFI(method="lin_comb_full")` | `qgt=LinCombQGT(Estimator())` | - - - -Other auxiliary classes in the legacy gradient framework have been deprecated. Here is the complete migration -list: - -| Opflow | Alternative | -| --------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | --------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | -| [`qiskit.opflow.gradients.DerivativeBase`](../qiskit/0.44/qiskit.opflow.gradients.DerivativeBase) | No replacement. This was the base class for the gradient, hessian, and QFI base classes. | -| [`qiskit.opflow.gradients.GradientBase`](../qiskit/0.44/qiskit.opflow.gradients.GradientBase) and [`qiskit.opflow.gradients.Gradient`](../qiskit/0.44/qiskit.opflow.gradients.Gradient) | [`qiskit.algorithms.gradients.BaseSamplerGradient`](../qiskit/qiskit.algorithms.gradients.BaseSamplerGradient) or [`qiskit.algorithms.gradients.BaseEstimatorGradient`](../qiskit/qiskit.algorithms.gradients.BaseEstimatorGradient), and specific subclasses per method, as explained above. | -| [`qiskit.opflow.gradients.HessianBase`](../qiskit/0.44/qiskit.opflow.gradients.HessianBase) and [`qiskit.opflow.gradients.Hessian`](../qiskit/0.44/qiskit.opflow.gradients.Hessian) | No replacement. The new gradient framework does not work with hessians as independent objects. | -| [`qiskit.opflow.gradients.QFIBase`](../qiskit/0.44/qiskit.opflow.gradients.QFIBase) and [`qiskit.opflow.gradients.QFI`](../qiskit/0.44/qiskit.opflow.gradients.QFI) | The new [`qiskit.algorithms.gradients.QFI`](../qiskit/qiskit.algorithms.gradients.QFI) class extends QGT, so the corresponding base class is [`qiskit.algorithms.gradients.BaseQGT`](../qiskit/qiskit.algorithms.gradients.BaseQGT) | -| [`qiskit.opflow.gradients.CircuitGradient`](../qiskit/0.44/qiskit.opflow.gradients.CircuitGradient) | No replacement. This class was used to convert between circuit and gradient [`qiskit.opflow.primitive_ops.PrimitiveOp`](../qiskit/0.44/qiskit.opflow.primitive_ops.PrimitiveOp) and this functionality is no longer necessary. | -| [`qiskit.opflow.gradients.CircuitQFI`](../qiskit/0.44/qiskit.opflow.gradients.CircuitQFI) | No replacement. This class was used to convert between circuit and QFI [`qiskit.opflow.primitive_ops.PrimitiveOp`](../qiskit/0.44/qiskit.opflow.primitive_ops.PrimitiveOp) and this functionality is no longer necessary. | -| [`qiskit.opflow.gradients.NaturalGradient`](../qiskit/0.44/qiskit.opflow.gradients.NaturalGradient) | No replacement. The same functionality can be achieved with the QFI module. | - -### Example 1: Finite differences batched gradient - -Opflow: - -```python -from qiskit.circuit import Parameter, QuantumCircuit -from qiskit.opflow import Gradient, X, Z, StateFn, CircuitStateFn -import numpy as np - -ham = 0.5 * X - 1 * Z - -a = Parameter("a") -b = Parameter("b") -c = Parameter("c") -params = [a,b,c] - -qc = QuantumCircuit(1) -qc.h(0) -qc.u(a, b, c, 0) -qc.h(0) - -op = ~StateFn(ham) @ CircuitStateFn(primitive=qc, coeff=1.0) - -# the gradient class acted similarly opflow converters, -# with a .convert() step and an .eval() step -state_grad = Gradient(grad_method="param_shift").convert(operator=op, params=params) - -# the old workflow did not allow for batched evaluation of parameter values -values_dict = [{a: np.pi / 4, b: 0, c: 0}, {a: np.pi / 4, b: np.pi / 4, c: np.pi / 4}] -gradients = [] -for i, value_dict in enumerate(values_dict): - gradients.append(state_grad.assign_parameters(value_dict).eval()) - -print(gradients) -``` - -```python -[[(0.35355339059327356+0j), (-1.182555756156289e-16+0j), (-1.6675e-16+0j)], [(0.10355339059327384+0j), (0.8535533905932734+0j), (1.103553390593273+0j)]] -``` - -Alternative: - -```python -from qiskit.circuit import Parameter, QuantumCircuit -from qiskit.primitives import Estimator -from qiskit.algorithms.gradients import ParamShiftEstimatorGradient -from qiskit.quantum_info import SparsePauliOp -import numpy as np - -ham = SparsePauliOp.from_list([("X", 0.5), ("Z", -1)]) - -a = Parameter("a") -b = Parameter("b") -c = Parameter("c") - -qc = QuantumCircuit(1) -qc.h(0) -qc.u(a, b, c, 0) -qc.h(0) - -estimator = Estimator() -gradient = ParamShiftEstimatorGradient(estimator) - -# The new workflow follows an interface close to that of the primitives. -param_list = [[np.pi / 4, 0, 0], [np.pi / 4, np.pi / 4, np.pi / 4]] - -# For batched evaluations, the number of circuits must match the -# number of parameter value sets. -gradients = gradient.run([qc] * 2, [ham] * 2, param_list).result().gradients - -print(gradients) -``` - -```python -[array([ 3.53553391e-01, 0.00000000e+00, -1.80411242e-16]), array([0.10355339, 0.85355339, 1.10355339])] -``` - -### Example 2: QFI - -Opflow: - -```python -from qiskit.circuit import Parameter, QuantumCircuit -from qiskit.opflow import QFI, CircuitStateFn -import numpy as np - -# Create the circuit. -a, b = Parameter("a"), Parameter("b") -qc = QuantumCircuit(1) -qc.h(0) -qc.rz(a, 0) -qc.rx(b, 0) - -# Convert the circuit to a QFI object. -op = CircuitStateFn(qc) -qfi = QFI(qfi_method="lin_comb_full").convert(operator=op) - -# Bind parameters and evaluate. -values_dict = {a: np.pi / 4, b: 0.1} -qfi = qfi.bind_parameters(values_dict).eval() - -print(qfi) -``` - -```python -[[ 1.00000000e+00+0.j -3.63575685e-16+0.j] - [-3.63575685e-16+0.j 5.00000000e-01+0.j]] -``` - -Alternative: - -```python -from qiskit.circuit import Parameter, QuantumCircuit -from qiskit.primitives import Estimator -from qiskit.algorithms.gradients import LinCombQGT, QFI -import numpy as np - -# Create the circuit. -a, b = Parameter("a"), Parameter("b") -qc = QuantumCircuit(1) -qc.h(0) -qc.rz(a, 0) -qc.rx(b, 0) - -# Initialize QFI. -estimator = Estimator() -qgt = LinCombQGT(estimator) -qfi = QFI(qgt) - -# Evaluate -values_list = [[np.pi / 4, 0.1]] -qfi = qfi.run(qc, values_list).result().qfis - -print(qfi) -``` - -```python -[array([[ 1.00000000e+00, -1.50274614e-16], - [-1.50274614e-16, 5.00000000e-01]])] -``` diff --git a/translations/ja/api/migration-guides/qiskit-quantum-instance.mdx b/translations/ja/api/migration-guides/qiskit-quantum-instance.mdx deleted file mode 100644 index 51a59690aa..0000000000 --- a/translations/ja/api/migration-guides/qiskit-quantum-instance.mdx +++ /dev/null @@ -1,589 +0,0 @@ ---- -title: QuantumInstance migration guide -description: Stop using the deprecated Qiskit `QuantumInstance` class ---- - -# QuantumInstance migration guide - -The [`qiskit.utils.QuantumInstance`](../qiskit/0.44/qiskit.utils.QuantumInstance) is a utility class that allows the joint -configuration of the circuit transpilation and execution steps, and provides functions -at a higher level of abstraction for a more convenient integration with algorithms. -These include measurement error mitigation, splitting and combining execution to -conform to job limits, -and ensuring reliable circuit execution with additional job management tools. - -The [`qiskit.utils.QuantumInstance`](../qiskit/0.44/qiskit.utils.QuantumInstance) class is being deprecated for several reasons: - -- The functionality of [`qiskit.utils.QuantumInstance.execute`](../qiskit/0.44/qiskit.utils.QuantumInstance#execute) has been delegated to the different implementations of the [`qiskit.primitives`](../qiskit/primitives) base classes. -- With the direct implementation of transpilation at the primitives level, the algorithms no longer need to manage that aspect of execution, and thus [`qiskit.utils.QuantumInstance.transpile`](../qiskit/0.44/qiskit.utils.QuantumInstance#transpile) is no longer required by the workflow. If desired, custom transpilation routines can still be performed at the user level through the [`qiskit.transpiler`](../qiskit/transpiler) module (see the table below). - -The following table summarizes the migration alternatives for the [`qiskit.utils.QuantumInstance`](../qiskit/0.44/qiskit.utils.QuantumInstance) class: - -| QuantumInstance method | Alternative | -| ------------------------------------------------------------------------------------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------ | -| [`qiskit.utils.QuantumInstance.execute`](../qiskit/0.44/qiskit.utils.QuantumInstance#execute) | [`qiskit.primitives.Sampler.run`](../qiskit/qiskit.primitives.Sampler#run) or [`qiskit.primitives.Estimator.run`](../qiskit/qiskit.primitives.Estimator#run) | -| [`qiskit.utils.QuantumInstance.transpile`](../qiskit/0.44/qiskit.utils.QuantumInstance#transpile) | [`qiskit.compiler.transpile`](../qiskit/compiler#qiskit.compiler.transpile) | -| [`qiskit.utils.QuantumInstance.assemble`](../qiskit/0.44/qiskit.utils.QuantumInstance#assemble) | [`qiskit.compiler.assemble`](../qiskit/compiler#qiskit.compiler.assemble) | - -The remainder of this guide focused on the [`qiskit.utils.QuantumInstance.execute`](../qiskit/0.44/qiskit.utils.QuantumInstance#execute) to -[`qiskit.primitives`](../qiskit/primitives) migration path. - - - **Background on the Qiskit primitives** - - The Qiskit primitives are algorithmic abstractions that encapsulate system or simulator access for easy integration into algorithm workflows. - - There are two types of primitives: Sampler and Estimator. - - Qiskit provides reference implementations in [`qiskit.primitives.Sampler`](../qiskit/qiskit.primitives.Sampler) and [`qiskit.primitives.Estimator`](../qiskit/qiskit.primitives.Estimator). Additionally, - [`qiskit.primitives.BackendSampler`](../qiskit/qiskit.primitives.BackendSampler) and [`qiskit.primitives.BackendEstimator`](../qiskit/qiskit.primitives.BackendEstimator) are - wrappers for `backend.run()` that follow the primitives interface. - - Providers can implement these primitives as subclasses of [`qiskit.primitives.BaseSampler`](../qiskit/qiskit.primitives.BaseSampler) and [`qiskit.primitives.BaseEstimator`](../qiskit/qiskit.primitives.BaseEstimator), respectively. - IBM Qiskit Runtime ([`qiskit_ibm_runtime`](../qiskit-ibm-runtime/qiskit_ibm_runtime.QiskitRuntimeService)) and Aer ([`qiskit_aer.primitives`](https://qiskit.org/ecosystem/aer/apidocs/aer_primitives.html)) are examples of native implementations of primitives. - - This guide uses the following naming convention: - -- _Primitives_ - Any Sampler or Estimator implementation using base classes [`qiskit.primitives.BackendSampler`](../qiskit/qiskit.primitives.BackendSampler) and a [`qiskit.primitives.BackendEstimator`](../qiskit/qiskit.primitives.BackendEstimator). -- _Reference primitives_ - [`qiskit.primitives.Sampler`](../qiskit/qiskit.primitives.Sampler) and [`qiskit.primitives.Estimator`](../qiskit/qiskit.primitives.Estimator) are reference implementations that come with Qiskit. -- _Aer primitives_ - The [Aer](https://qiskit.org/ecosystem/aer) primitive implementations [`qiskit_aer.primitives.Sampler`](https://qiskit.org/ecosystem/aer/stubs/qiskit_aer.primitives.Sampler.html) and [`qiskit_aer.primitives.Estimator`](https://qiskit.org/ecosystem/aer/stubs/qiskit_aer.primitives.Estimator.html). -- _Qiskit Runtime primitives_ - The IBM Qiskit Runtime primitive implementations [`qiskit_ibm_runtime.Sampler`](../qiskit-ibm-runtime/qiskit_ibm_runtime.Sampler) and [`qiskit_ibm_runtime.Estimator`](../qiskit-ibm-runtime/qiskit_ibm_runtime.Estimator). -- _`Backend` primitives_ - Instances of [`qiskit.primitives.BackendSampler`](../qiskit/qiskit.primitives.BackendSampler) and [`qiskit.primitives.BackendEstimator`](../qiskit/qiskit.primitives.BackendEstimator). These allow any system to implement primitive interfaces. - - - -## Choose the right primitive for your task - -The [`qiskit.utils.QuantumInstance`](../qiskit/0.44/qiskit.utils.QuantumInstance) was designed to be an abstraction of transpile and run. -It took inspiration from [`qiskit.execute_function.execute`](../qiskit/execute#qiskit.execute_function.execute) but retained configuration information that could be set -at the algorithm level to save the user from defining the same parameters for every transpile or execute call. - -The [`qiskit.primitives`](../qiskit/primitives) classes share some of these features, but unlike the [`qiskit.utils.QuantumInstance`](../qiskit/0.44/qiskit.utils.QuantumInstance), -there are multiple primitive classes, and each is optimized for a specific -purpose. Selecting the right primitive (`Sampler` or `Estimator`) requires some knowledge about -**what** it is expected to do and **where** or **how** it is expected to run. - - - Primitives are also **algorithmic** abstractions with defined tasks: - -- The `Estimator` takes in circuits and observables and returns **expectation values**. -- The `Sampler` takes in circuits, measures them, and returns their **quasi-probability distributions**. - - -To determine which primitive to use instead of [`qiskit.utils.QuantumInstance`](../qiskit/0.44/qiskit.utils.QuantumInstance), you should ask -yourself two questions: - -1. What is the minimal unit of information used by your algorithm? - - If it uses an expectation value, you need an `Estimator`. - - If it uses a probability distribution (from sampleing the devicd), you need a `Sampler` - -2. How do you want to run your circuits? - - This question is not new. In the legacy algorithm workflow, you would set up a - [`qiskit.utils.QuantumInstance`](../qiskit/0.44/qiskit.utils.QuantumInstance) with either a real system from a provider, or a simulator. - For this migration, this "system selection" process is translated to **where** do you import your primitives from: - - - Using **local** statevector simulators for quick prototyping: **Reference primitives** - - Using **local** noisy simulations for finer algorithm tuning: **Aer primitives** - - Accessing **runtime-enabled systems** (or cloud simulators): **Qiskit Runtime primitives** - - Accessing **non runtime-enabled systems** : **`Backend` primitives** - -Arguably, the `Sampler` is the closest primitive to [`qiskit.utils.QuantumInstance`](../qiskit/0.44/qiskit.utils.QuantumInstance), as they -both execute circuits and provide a result. However, with the [`qiskit.utils.QuantumInstance`](../qiskit/0.44/qiskit.utils.QuantumInstance), -the result data was system-dependent (it could be a counts `dict`, a `numpy.array` for -statevector simulations, and so on), while `Sampler` normalizes its `SamplerResult` to -return a [`qiskit.result.QuasiDistribution`](../qiskit/qiskit.result.QuasiDistribution) object with the resulting quasi-probability distribution. - -The `Estimator` provides a specific abstraction for the expectation value calculation that can replace - [`qiskit.utils.QuantumInstance`](../qiskit/0.44/qiskit.utils.QuantumInstance) as well as the associated pre- and post-processing steps, usually performed -with an additional library such as [`qiskit.opflow`](../qiskit/0.44/opflow). - -## Choose the right primitive for your settings - -Certain [`qiskit.utils.QuantumInstance`](../qiskit/0.44/qiskit.utils.QuantumInstance) features are only available in certain primitive implementations. -The following table summarizes the most common [`qiskit.utils.QuantumInstance`](../qiskit/0.44/qiskit.utils.QuantumInstance) settings and which -primitives expose a similar setting through their interface: - - - In some cases, a setting might not be exposed through the interface, but there might be an alternative path to make - it work. This is the case for custom transpiler passes, which cannot be set through the primitives interface, - but pre-transpiled circuits can be sent if you specify the option `skip_transpilation=True`. For more information, - refer to the API reference or source code of the desired primitive implementation. - - -| QuantumInstance | Reference Primitives | Aer Primitives | Qiskit Runtime Primitives | `Backend` Primitives | -| ----------------------------------------------------------------------------------------------------- | -------------------- | -------------- | --------------------------------- | ------------------------------------- | -| Select `backend` | No | No | Yes | Yes | -| Set `shots` | Yes | Yes | Yes | Yes | -| Simulator settings: `basis_gates`, `coupling_map`, `initial_layout`, `noise_model`, `backend_options` | No | Yes | Yes | No (inferred from internal `backend`) | -| Transpiler settings: `seed_transpiler`, `optimization_level` | No | No | Yes (via `options`) (\*) | Yes (via `.set_transpile_options()`) | -| Set unbound `pass_manager` | No | No | No (but can `skip_transpilation`) | No (but can `skip_transpilation`) | -| Set `bound_pass_manager` | No | No | No | Yes | -| Set `backend_options`: common ones were `memory` and `meas_level` | No | No | No (only `qubit_layout`) | No | -| Measurement error mitigation: `measurement_error_mitigation_cls`, `cals_matrix_refresh_period`, | No | No | Sampler default > M3 (\*) | No | -| Job management: `job_callback`, `max_job_retries`, `timeout`, `wait` | Does not apply | Does not apply | Sessions, callback (\*\*) | No | - -(\*) For more information on error mitigation and setting options on Qiskit Runtime Primitives, see -[Advanced Runtime Options](../../run/advanced-runtime-options). - -(\*\*) For more information on Runtime sessions, see [About Sessions](../../run/sessions). - -## Code examples - -### Example 1: Circuit sampling with local simulation - -**QuantumInstance** - -The only option for local simulations using the quantum instance was using an Aer simulator. -If no simulation method is specified, the Aer simulator defaults to an exact simulation -(statevector/stabilizer), if shots are specified, it adds shot noise. -Note that `QuantumInstance.execute()` returned the counts in hexadecimal format. - -```python -from qiskit import QuantumCircuit -from qiskit_aer import AerSimulator -from qiskit.utils import QuantumInstance - -circuit = QuantumCircuit(2) -circuit.x(0) -circuit.x(1) -circuit.measure_all() - -simulator = AerSimulator() -qi = QuantumInstance(backend=simulator, shots=200) -result = qi.execute(circuit).results[0] -data = result.data -counts = data.counts - -print("Counts: ", counts) -print("Data: ", data) -print("Result: ", result) -``` - -```text -Counts: {'0x3': 200} -Data: ExperimentResultData(counts={'0x3': 200}) -Result: ExperimentResult(shots=200, success=True, meas_level=2, data=ExperimentResultData(counts={'0x3': 200}), header=QobjExperimentHeader(clbit_labels=[['meas', 0], ['meas', 1]], creg_sizes=[['meas', 2]], global_phase=0.0, memory_slots=2, metadata={}, n_qubits=2, name='circuit-99', qreg_sizes=[['q', 2]], qubit_labels=[['q', 0], ['q', 1]]), status=DONE, seed_simulator=2846213898, metadata={'parallel_state_update': 16, 'parallel_shots': 1, 'sample_measure_time': 0.00025145, 'noise': 'ideal', 'batched_shots_optimization': False, 'remapped_qubits': False, 'device': 'CPU', 'active_input_qubits': [0, 1], 'measure_sampling': True, 'num_clbits': 2, 'input_qubit_map': [[1, 1], [0, 0]], 'num_qubits': 2, 'method': 'stabilizer', 'fusion': {'enabled': False}}, time_taken=0.000672166) -``` - -**Primitives** - -The primitives offer two alternatives for local simulation, one with the Reference primitives -and one with the Aer primitives. As mentioned above, the closest alternative to `QuantumInstance.execute()` -for sampling is the Sampler primitive. - -**a. Reference primitives** - -Basic simulation implemented using the [`qiskit.quantum_info`](../qiskit/quantum_info) module. If shots are -specified, the results include shot noise. Note that -the resulting quasi-probability distribution does not use bitstrings, but integers to identify the states. - -```python -from qiskit import QuantumCircuit -from qiskit.primitives import Sampler - -circuit = QuantumCircuit(2) -circuit.x(0) -circuit.x(1) -circuit.measure_all() - -sampler = Sampler() -result = sampler.run(circuit, shots=200).result() -quasi_dists = result.quasi_dists - -print("Quasi-dists: ", quasi_dists) -print("Result: ", result) -``` - -```text -Quasi-dists: [{3: 1.0}] -Result: SamplerResult(quasi_dists=[{3: 1.0}], metadata=[{'shots': 200}]) -``` - -**b. Aer primitives** - -This method uses Aer simulation following the statevector method. This is a closer replacement of the -[`qiskit.utils.QuantumInstance`](../qiskit/0.44/qiskit.utils.QuantumInstance) -example, as they are access the same simulator. Note that -the resulting quasi-probability distribution does not use bitstrings but integers to identify the states. - - - The [`qiskit.result.QuasiDistribution`](../qiskit/qiskit.result.QuasiDistribution) class that is returned as part of the [`qiskit.primitives.SamplerResult`](../qiskit/qiskit.primitives.SamplerResult) - exposes two methods to convert the result keys from integer to binary strings / hexadecimal: - -``` -- [`qiskit.result.QuasiDistribution.binary_probabilities`](../qiskit/qiskit.result.QuasiDistribution#binary_probabilities) -- [`qiskit.result.QuasiDistribution.hex_probabilities`](../qiskit/qiskit.result.QuasiDistribution#hex_probabilities) -``` - - - -```python -from qiskit import QuantumCircuit -from qiskit_aer.primitives import Sampler - -circuit = QuantumCircuit(2) -circuit.x(0) -circuit.x(1) -circuit.measure_all() - -# If a noise model is provided, the Aer primitives -# perform an exact (statevector) simulation -sampler = Sampler() -result = sampler.run(circuit, shots=200).result() -quasi_dists = result.quasi_dists -# convert keys to binary bitstrings -binary_dist = quasi_dists[0].binary_probabilities() - -print("Quasi-dists: ", quasi_dists) -print("Result: ", result) -print("Binary quasi-dist: ", binary_dist) -``` - -```text -Quasi-dists: [{3: 1.0}] -Result: SamplerResult(quasi_dists=[{3: 1.0}], metadata=[{'shots': 200, 'simulator_metadata': {'parallel_state_update': 16, 'parallel_shots': 1, 'sample_measure_time': 9.016e-05, 'noise': 'ideal', 'batched_shots_optimization': False, 'remapped_qubits': False, 'device': 'CPU', 'active_input_qubits': [0, 1], 'measure_sampling': True, 'num_clbits': 2, 'input_qubit_map': [[1, 1], [0, 0]], 'num_qubits': 2, 'method': 'statevector', 'fusion': {'applied': False, 'max_fused_qubits': 5, 'threshold': 14, 'enabled': True}}}]) -Binary quasi-dist: {'11': 1.0} -``` - -### Example 2: Expectation value calculation with local noisy simulation - -While this example does not include a direct call to `QuantumInstance.execute()`, it shows -how to migrate from a [`qiskit.utils.QuantumInstance`](../qiskit/0.44/qiskit.utils.QuantumInstance)-based to a [`qiskit.primitives`](../qiskit/primitives)-based -workflow. - -**QuantumInstance** - -The most common use case for computing expectation values with the Quantum Instance was as in combination with the -[`qiskit.opflow`](../qiskit/0.44/opflow) library. You can see more information in the [opflow migration guide](./qiskit-opflow-module). - -```python -from qiskit import QuantumCircuit -from qiskit.opflow import StateFn, PauliSumOp, PauliExpectation, CircuitSampler -from qiskit.utils import QuantumInstance -from qiskit_aer import AerSimulator -from qiskit_aer.noise import NoiseModel -from qiskit_ibm_provider import IBMProvider - -# Define problem using opflow -op = PauliSumOp.from_list([("XY",1)]) -qc = QuantumCircuit(2) -qc.x(0) -qc.x(1) - -state = StateFn(qc) -measurable_expression = StateFn(op, is_measurement=True).compose(state) -expectation = PauliExpectation().convert(measurable_expression) - -# Define QuantumInstance with a noisy simulator -provider = IBMProvider() -device = provider.get_backend("ibmq_manila") -noise_model = NoiseModel.from_backend(device) -coupling_map = device.configuration().coupling_map - -backend = AerSimulator() -qi = QuantumInstance(backend=backend, shots=1024, - seed_simulator=42, seed_transpiler=42, - coupling_map=coupling_map, noise_model=noise_model) - -# Run -sampler = CircuitSampler(qi).convert(expectation) -expectation_value = sampler.eval().real - -print(expectation_value) -``` - -```text --0.04687500000000008 -``` - -**Primitives** - -The primitives allow the combination of the opflow and QuantumInstance functionality in a single `Estimator`. -In this case, for local noisy simulation, this will be the Aer estimator. - -```python -from qiskit import QuantumCircuit -from qiskit.quantum_info import SparsePauliOp -from qiskit_aer.noise import NoiseModel -from qiskit_aer.primitives import Estimator -from qiskit_ibm_provider import IBMProvider - -# Define problem -op = SparsePauliOp("XY") -qc = QuantumCircuit(2) -qc.x(0) -qc.x(1) - -# Define Aer Estimator with noisy simulator -device = provider.get_backend("ibmq_manila") -noise_model = NoiseModel.from_backend(device) -coupling_map = device.configuration().coupling_map - -# If a noise model is provided, the Aer primitives -# perform a "qasm" simulation -estimator = Estimator( - backend_options={ # method chosen automatically to match options - "coupling_map": coupling_map, - "noise_model": noise_model, - }, - run_options={"seed": 42, "shots": 1024}, - transpile_options={"seed_transpiler": 42}, - ) - -# Run -expectation_value = estimator.run(qc, op).result().values - -print(expectation_value) -``` - -```python -[-0.04101562] -``` - -### Example 3: Circuit sampling on IBM system with error mitigation - -**QuantumInstance** - -The `QuantumInstance` interface allowed configuring measurement error mitigation settings such as the method, the -matrix refresh period, or the mitigation pattern. This configuration is no longer available in the primitives -interface. - -```python -from qiskit import QuantumCircuit -from qiskit.utils import QuantumInstance -from qiskit.utils.mitigation import CompleteMeasFitter -from qiskit_ibm_provider import IBMProvider - -circuit = QuantumCircuit(2) -circuit.x(0) -circuit.x(1) -circuit.measure_all() - -provider = IBMProvider() -backend = provider.get_backend("ibmq_montreal") - -qi = QuantumInstance( - backend=backend, - shots=4000, - measurement_error_mitigation_cls=CompleteMeasFitter, - cals_matrix_refresh_period=0, -) - -result = qi.execute(circuit).results[0].data -print(result) -``` - -```python -ExperimentResultData(counts={'11': 4000}) -``` - -**Primitives** - -The Qiskit Runtime primitives offer a suite of error mitigation methods that can be easily turned on with the -`resilience_level` option. These are, however, not configurable. The sampler's `resilience_level=1` -is the closest alternative to the QuantumInstance measurement error mitigation implementation, but this -is not a one-to-one replacement. - -For more information about the error mitigation options in the Qiskit Runtime primitives, see [Configure Error Mitigation](../../run/configure-error-mitigation). - -```python -from qiskit import QuantumCircuit -from qiskit_ibm_runtime import QiskitRuntimeService, Sampler, Options - -circuit = QuantumCircuit(2) -circuit.x(0) -circuit.x(1) -circuit.measure_all() - -service = QiskitRuntimeService(channel="ibm_quantum") -backend = service.backend("ibmq_montreal") - -options = Options(resilience_level = 1) # 1 = measurement error mitigation -sampler = Sampler(session=backend, options=options) - -# Run -result = sampler.run(circuit, shots=4000).result() -quasi_dists = result.quasi_dists - -print("Quasi dists: ", quasi_dists) -``` - -```text -Quasi dists: [{2: 0.0008492371522941081, 3: 0.9968874384378738, 0: -0.0003921227905920063, - 1: 0.002655447200424097}] -``` - -### Example 4: Circuit sampling with custom bound and unbound pass managers - -Transpilation management is different between `QuantumInstance` and the primitives. - -QuantumInstance allowed you to: - -- Define bound and unbound pass managers that were called during `.execute()`. -- Explicitly call its `.transpile()` method with a specific pass manager. - -QuantumInstance **did not** manage parameter bindings on parametrized quantum circuits. Therefore, if a `bound_pass_manager` was set, the circuit sent to `QuantumInstance.execute()` could - not have any free parameters. - -When using the primitives: - -- You cannot explicitly access their transpilation routine. -- The mechanism to apply custom transpilation passes to the Aer, Runtime, and `Backend` primitives is to pre-transpile - locally and set `skip_transpilation=True` in the corresponding primitive. -- The only primitives that accept a custom **bound** transpiler pass manager are instances of [`qiskit.primitives.BackendSampler`](../qiskit/qiskit.primitives.BackendSampler) or [`qiskit.primitives.BackendEstimator`](../qiskit/qiskit.primitives.BackendEstimator). - If a `bound_pass_manager` is defined, the `skip_transpilation=True` option does **not** skip this bound pass. - - - Care is needed when setting `skip_transpilation=True` with the Estimator primitive. - Since operator and circuit size need to match for the Estimator, if the custom transpilation changes - the circuit size, the operator must be adapted before sending it - to the Estimator, as there is no mechanism to identify the active qubits it should consider. - - -Note that the primitives do handle parameter bindings, so that even if a `bound_pass_manager` is defined in a -[`qiskit.primitives.BackendSampler`](../qiskit/qiskit.primitives.BackendSampler) or [`qiskit.primitives.BackendEstimator`](../qiskit/qiskit.primitives.BackendEstimator), you do not have to manually assign parameters as expected in the QuantumInstance workflow. - -The two-stage transpilation was added to the `QuantumInstance` to allow running pulse-efficient transpilation passes with the [`qiskit.opflow.converters.CircuitSampler`](../qiskit/0.44/qiskit.opflow.converters.CircuitSampler) class. The following -example shows how to migrate this use case, where the `QuantumInstance.execute()` method is called by the [`qiskit.opflow.converters.CircuitSampler`](../qiskit/0.44/qiskit.opflow.converters.CircuitSampler) code. - -**QuantumInstance** - -```python -from qiskit.circuit.library.standard_gates.equivalence_library import StandardEquivalenceLibrary as std_eqlib -from qiskit.circuit.library import RealAmplitudes -from qiskit.opflow import CircuitSampler, StateFn -from qiskit.providers.fake_provider import FakeBelem -from qiskit.transpiler import PassManager, PassManagerConfig, CouplingMap -from qiskit.transpiler.preset_passmanagers import level_1_pass_manager -from qiskit.transpiler.passes import ( - Collect2qBlocks, ConsolidateBlocks, Optimize1qGatesDecomposition, - RZXCalibrationBuilderNoEcho, UnrollCustomDefinitions, BasisTranslator -) -from qiskit.transpiler.passes.optimization.echo_rzx_weyl_decomposition import EchoRZXWeylDecomposition -from qiskit.utils import QuantumInstance - -# Define backend -backend = FakeBelem() - -# Build the pass manager for the parameterized circuit -rzx_basis = ['rzx', 'rz', 'x', 'sx'] -coupling_map = CouplingMap(backend.configuration().coupling_map) -config = PassManagerConfig(basis_gates=rzx_basis, coupling_map=coupling_map) -pre = level_1_pass_manager(config) -inst_map = backend.defaults().instruction_schedule_map - -# Build a pass manager for the CX decomposition (works only on bound circuits) -post = PassManager([ - # Consolidate consecutive two-qubit operations. - Collect2qBlocks(), - ConsolidateBlocks(basis_gates=['rz', 'sx', 'x', 'rxx']), - - # Rewrite circuit in terms of Weyl-decomposed echoed RZX gates. - EchoRZXWeylDecomposition(inst_map), - - # Attach scaled CR pulse schedules to the RZX gates. - RZXCalibrationBuilderNoEcho(inst_map), - - # Simplify single-qubit gates. - UnrollCustomDefinitions(std_eqlib, rzx_basis), - BasisTranslator(std_eqlib, rzx_basis), - Optimize1qGatesDecomposition(rzx_basis), -]) - -# Instantiate qi -quantum_instance = QuantumInstance(backend, pass_manager=pre, bound_pass_manager=post) - -# Define parametrized circuit and parameter values -qc = RealAmplitudes(2) -print(qc.decompose()) -param_dict = {p: 0.5 for p in qc.parameters} - -# Instantiate CircuitSampler -sampler = CircuitSampler(quantum_instance) - -# Run -quasi_dists = sampler.convert(StateFn(qc), params=param_dict).sample() -print("Quasi-dists: ", quasi_dists) -``` - -```text - ┌──────────┐ ┌──────────┐ ┌──────────┐ ┌──────────┐ -q_0: ┤ Ry(θ[0]) ├──■──┤ Ry(θ[2]) ├──■──┤ Ry(θ[4]) ├──■──┤ Ry(θ[6]) ├ - ├──────────┤┌─┴─┐├──────────┤┌─┴─┐├──────────┤┌─┴─┐├──────────┤ -q_1: ┤ Ry(θ[1]) ├┤ X ├┤ Ry(θ[3]) ├┤ X ├┤ Ry(θ[5]) ├┤ X ├┤ Ry(θ[7]) ├ - └──────────┘└───┘└──────────┘└───┘└──────────┘└───┘└──────────┘ -Quasi-dists: {'11': 0.443359375, '10': 0.21875, '01': 0.189453125, '00': 0.1484375} -``` - -**Primitives** - -Let's see how the workflow changes with the `Backend` Sampler: - -```python -from qiskit.circuit.library.standard_gates.equivalence_library import StandardEquivalenceLibrary as std_eqlib -from qiskit.circuit.library import RealAmplitudes -from qiskit.primitives import BackendSampler -from qiskit.providers.fake_provider import FakeBelem -from qiskit.transpiler import PassManager, PassManagerConfig, CouplingMap -from qiskit.transpiler.preset_passmanagers import level_1_pass_manager -from qiskit.transpiler.passes import ( - Collect2qBlocks, ConsolidateBlocks, Optimize1qGatesDecomposition, - RZXCalibrationBuilderNoEcho, UnrollCustomDefinitions, BasisTranslator -) -from qiskit.transpiler.passes.optimization.echo_rzx_weyl_decomposition import EchoRZXWeylDecomposition - -# Define backend -backend = FakeBelem() - -# Build the pass manager for the parameterized circuit -rzx_basis = ['rzx', 'rz', 'x', 'sx'] -coupling_map = CouplingMap(backend.configuration().coupling_map) -config = PassManagerConfig(basis_gates=rzx_basis, coupling_map=coupling_map) -pre = level_1_pass_manager(config) - -# Build a pass manager for the CX decomposition (works only on bound circuits) -inst_map = backend.defaults().instruction_schedule_map -post = PassManager([ - # Consolidate consecutive two-qubit operations. - Collect2qBlocks(), - ConsolidateBlocks(basis_gates=['rz', 'sx', 'x', 'rxx']), - - # Rewrite circuit in terms of Weyl-decomposed echoed RZX gates. - EchoRZXWeylDecomposition(inst_map), - - # Attach scaled CR pulse schedules to the RZX gates. - RZXCalibrationBuilderNoEcho(inst_map), - - # Simplify single-qubit gates. - UnrollCustomDefinitions(std_eqlib, rzx_basis), - BasisTranslator(std_eqlib, rzx_basis), - Optimize1qGatesDecomposition(rzx_basis), -]) - -# Define parametrized circuit and parameter values -qc = RealAmplitudes(2) -qc.measure_all() # add measurements! -print(qc.decompose()) - -# Instantiate backend sampler with skip_transpilation -sampler = BackendSampler(backend=backend, skip_transpilation=True, bound_pass_manager=post) - -# Run unbound transpiler pass -transpiled_circuit = pre.run(qc) - -# Run sampler -quasi_dists = sampler.run(transpiled_circuit, [[0.5] * len(qc.parameters)]).result().quasi_dists -print("Quasi-dists: ", quasi_dists) -``` - -```text - ┌──────────┐ ┌──────────┐ ┌──────────┐ ┌──────────┐ ░ ┌─┐ - q_0: ┤ Ry(θ[0]) ├──■──┤ Ry(θ[2]) ├──■──┤ Ry(θ[4]) ├──■──┤ Ry(θ[6]) ├─░─┤M├─── - ├──────────┤┌─┴─┐├──────────┤┌─┴─┐├──────────┤┌─┴─┐├──────────┤ ░ └╥┘┌─┐ - q_1: ┤ Ry(θ[1]) ├┤ X ├┤ Ry(θ[3]) ├┤ X ├┤ Ry(θ[5]) ├┤ X ├┤ Ry(θ[7]) ├─░──╫─┤M├ - └──────────┘└───┘└──────────┘└───┘└──────────┘└───┘└──────────┘ ░ ║ └╥┘ -meas: 2/═══════════════════════════════════════════════════════════════════╩══╩═ - 0 1 -Quasi-dists: [{1: 0.18359375, 2: 0.2333984375, 0: 0.1748046875, 3: 0.408203125}] -``` diff --git a/translations/ja/api/migration-guides/qiskit-runtime-examples.mdx b/translations/ja/api/migration-guides/qiskit-runtime-examples.mdx deleted file mode 100644 index 806324755c..0000000000 --- a/translations/ja/api/migration-guides/qiskit-runtime-examples.mdx +++ /dev/null @@ -1,674 +0,0 @@ ---- -title: Qiskit Runtime migration examples -description: Examples of migrating from using backend.run to using Qiskit Runtime primitives ---- - -# Migration examples - -Follow these examples to design a Qiskit Runtime algorithm. - - -## Use Estimator to design an algorithm - -The Estimator primitive is used to design an algorithm that calculates -expectation values. - -### Background - -The role of the `Estimator` primitive is two-fold: it acts as an **entry point** to quantum devices or simulators, replacing the `Backend` -interface (commonly referred to as `backend.run()`). Additionally, it is -an **algorithmic abstraction** for expectation value calculations, so -you don't have to manually construct the final expectation circuit. -This results in a considerable reduction of the code complexity and a -more compact algorithm design. - - - **Backend.run() model:** In this model, you accessed real systems and remote simulators using the `qiskit-ibmq-provider` module (now migrated to `qiskit-ibm-provider`). To run **local** simulations, you could import a specific simulator from `qiskit-aer`. All of them followed the `backend.run()` interface. - -```` -
-Code example for `qiskit-ibmq-provider` & `backend.run()` - -``` python -from qiskit import IBMQ - -# Select provider -provider = IBMQ.get_provider(hub="ibm-q", group="open", project="main") - -# Get backend -backend = provider.get_backend("ibmq_qasm_simulator") # cloud simulator - -# Run -result = backend.run(expectation_circuits) -``` -
- -
-Code example for `qiskit-aer` & `backend.run()` - -``` python -from qiskit_aer import AerSimulator # former import: from qiskit import Aer - -# Get local simulator backend -backend = AerSimulator() - -# Run -result = backend.run(expectation_circuits) -``` -
- -**Primitives model:** Access real systems and remote simulators through the `qiskit-ibm-runtime` **primitives** (`Sampler` and `Estimator`). To run **local** simulations, you can import specific local primitives from `qiskit_aer.primitives` and `qiskit.primitives`. All of them follow the `BaseSampler` and `BaseEstimator` interfaces, but **only the Runtime primitives offer access to the Runtime service, sessions, and built-in error mitigation**. - -
-Code example for Runtime Estimator - -``` python -from qiskit_ibm_runtime import QiskitRuntimeService, Estimator - -# Define service -service = QiskitRuntimeService() - -# Get backend -backend = service.backend("ibmq_qasm_simulator") # cloud simulator - -# Define Estimator -# (see tutorials for more information about sessions) -estimator = Estimator(session=backend) - -# Run Expectation value calculation -result = estimator.run(circuits, observables).result() -``` -
- -
-Code example for Aer Estimator - -``` python -from qiskit_aer import Estimator - -# Get local simulator Estimator -estimator = Estimator() - -# Run expectation value calculation -result = estimator.run(circuits, observables).result() -``` - -
-```` - -
- -If your code previously calculated expectation values using -`backend.run()`, you most likely used the `qiskit.opflow` module to -handle operators and state functions. To support this scenario, the -following migration example shows how to replace the (`qiskit.opflow` & `backend.run()`) workflow with an Estimator-based workflow. - -### End-to-end example - -#### 1. Problem definition - -We want to compute the expectation value of a quantum state (circuit) -with respect to a certain operator. In this example, we are using the H2 -molecule and an arbitrary circuit as the quantum state: - -```python -from qiskit import QuantumCircuit -from qiskit.quantum_info import SparsePauliOp - -# Step 1: Define operator -op = SparsePauliOp.from_list( - [ - ("II", -1.052373245772859), - ("IZ", 0.39793742484318045), - ("ZI", -0.39793742484318045), - ("ZZ", -0.01128010425623538), - ("XX", 0.18093119978423156), - ] -) - -# Step 2: Define quantum state -state = QuantumCircuit(2) -state.x(0) -state.x(1) -``` - - -##### 1.a. Legacy: Convert problem to opflow - -`qiskit.opflow` provided its own classes to represent both operators -and quantum states, so the problem defined above would be wrapped as: - -```python -from qiskit.opflow import CircuitStateFn, PauliSumOp - -opflow_op = PauliSumOp(op) -opflow_state = CircuitStateFn(state) -``` - -This step is no longer necessary when using the primitives. - - - For instructions to migrate from `qiskit.opflow`, see the [Opflow migration guide](./qiskit-opflow-module). - - -#### 2. Calculate expectation values on real device or cloud simulator - -##### 2.a. Legacy: Use opflow & backend.run() - -The legacy workflow required many steps to compute an expectation value: - - - Replace `ibmq_qasm_simulator` with your device name to see the complete workflow for a real device. - - -```python -from qiskit.opflow import StateFn, PauliExpectation, CircuitSampler -from qiskit import IBMQ - -# Define the state to sample -measurable_expression = StateFn(opflow_op, is_measurement=True).compose(opflow_state) - -# Convert to expectation value calculation object -expectation = PauliExpectation().convert(measurable_expression) - -# Define provider and backend -provider = IBMQ.get_provider(hub="ibm-q", group="open", project="main") -backend = provider.get_backend("ibmq_qasm_simulator") - -# Inject backend into circuit sampler -sampler = CircuitSampler(backend).convert(expectation) - -# Evaluate -expectation_value = sampler.eval().real -``` - -```python ->>> print("expectation: ", expectation_value) -expectation: -1.065734058826613 -``` - -##### 2.b. Updated: Use the Estimator Runtime primitive - -The `Estimator` simplifies the user-side syntax, making it a more -convenient tool for algorithm design. - - - Replace `ibmq_qasm_simulator` with your device name to see the complete workflow for a real device. - - -```python -from qiskit_ibm_runtime import QiskitRuntimeService, Estimator - -service = QiskitRuntimeService() -backend = service.backend("ibmq_qasm_simulator") - -estimator = Estimator(session=backend) - -expectation_value = estimator.run(state, op).result().values -``` - -Note that the Estimator returns a list of values, as it can perform batched evaluations. - -```python ->>> print("expectation: ", expectation_value) -expectation: [-1.06329149] -``` - -The `Estimator` Runtime primitive offers a series of features and tuning -options that do not have a legacy alternative to migrate from, but can -help improve your performance and results. For more information, refer -to the following: - -- [Setting execution options - topic](../../run/advanced-runtime-options) -- [Primitive execution options API - reference](../qiskit-ibm-runtime/qiskit_ibm_runtime.options.Options) -- [How to run a session - topic](../../run/run-jobs-in-session) - -#### 3. Other execution alternatives (non-Runtime) - -This section describes how to use non-Runtime primitives to test an -algorithm using local simulation. Let's assume that we want to solve -the problem defined above with a local state vector simulation. - - -##### 3.a. Legacy: Using the Qiskit Aer simulator - -```python -from qiskit.opflow import StateFn, PauliExpectation, CircuitSampler -from qiskit_aer import AerSimulator - -# Define the state to sample -measurable_expression = StateFn(opflow_op, is_measurement=True).compose(opflow_state) - -# Convert to expectation value calculation object -expectation = PauliExpectation().convert(measurable_expression) - -# Define statevector simulator -simulator = AerSimulator(method="statevector", shots=100) - -# Inject backend into circuit sampler -circuit_sampler = CircuitSampler(simulator).convert(expectation) - -# Evaluate -expectation_value = circuit_sampler.eval().real -``` - -```python ->>> print("expectation: ", expectation_value) -expectation: -1.0636533500290943 -``` - -##### 3.b. Updated: Use the Reference Estimator or Aer Estimator primitive - -The reference `Estimator` lets you perform either an exact or a -shot-based noisy simulation based on the `Statevector` class in the -`qiskit.quantum_info` module. - -```python -from qiskit.primitives import Estimator - -estimator = Estimator() - -expectation_value = estimator.run(state, op).result().values - -# for shot-based simulation: -expectation_value = estimator.run(state, op, shots=100).result().values -``` - -```python ->>> print("expectation: ", expectation_value) -expectation: [-1.03134297] -``` - -You can still access the Aer Simulator through its dedicated -`Estimator`. This can be handy for performing simulations with noise -models. In this example, the simulation method has been updated to match -the result from [3.a](#3a). - -```python -from qiskit_aer.primitives import Estimator # import change - -estimator = Estimator(run_options= {"method": "statevector"}) - -expectation_value = estimator.run(state, op, shots=100).result().values -``` - -```python ->>> print("expectation: ", expectation_value) -expectation: [-1.06365335] -``` - -For more information on using the Aer primitives, see the [VQE tutorial](https://github.com/Qiskit/qiskit-tutorials/blob/master/tutorials/algorithms/03_vqe_simulation_with_noise.ipynb). - -For more information about running noisy simulations with the **Runtime primitives**, see the [Noisy simulators in Qiskit Runtime](../../verify/using-ibm-quantum-simulators) topic. - - -## Use Sampler to design an algorithm - -The Sampler primitive is used to design an algorithm that samples -circuits and extracts probability distributions. - -### Background - -The role of the `Sampler` primitive is two-fold: it acts as an **entry -point** to quantum devices or simulators, replacing `backend.run()`. -Additionally, it is an **algorithmic abstraction** to extract -probability distributions from measurement counts. - -Both `Sampler` and `backend.run()` take in circuits as inputs. The main -difference is the format of the output: `backend.run()` outputs -**counts**, while `Sampler` processes those counts and outputs the -**quasi-probability distribution** associated with them. - - - **Backend.run() model:** In this model, you used the `qiskit-ibmq-provider` (now migrated to `qiskit-ibm-provider`) module to access real systems and remote simulators. To run **local** simulations, you could import a specific simulator from `qiskit-aer`. All of them followed the `backend.run()` interface. - -```` -
-Code example with `qiskit-ibmq-provider` and `backend.run()` - -``` python -from qiskit import IBMQ - -# Select provider -provider = IBMQ.load_account() - -# Get backend -backend = provider.get_backend("ibmq_qasm_simulator") # Use the cloud simulator - -# Run -result = backend.run(circuits) -``` -
- -
-Code example for `qiskit-aer` & `backend.run()` - -``` python -from qiskit_aer import AerSimulator # former import: from qiskit import Aer - -# Get local simulator backend -backend = AerSimulator() - -# Run -result = backend.run(circuits) -``` -
- -**Primitives model:** Access real systems and remote simulators through the `qiskit-ibm-runtime` Sampler and Estimator *primitives*. To run **local** simulations, import specific local primitives from `qiskit_aer.primitives` and `qiskit.primitives`. All of them follow the `BaseSampler` and `BaseEstimator` interfaces, but **only the Runtime primitives offer access to the Runtime service, sessions, and built-in error mitigation**. - -
-Code example for Runtime Sampler - -``` python -from qiskit_ibm_runtime import QiskitRuntimeService, Sampler - -# Define service -service = QiskitRuntimeService() - -# Get backend -backend = service.backend("ibmq_qasm_simulator") # Use a cloud simulator - -# Define Sampler -# (see tutorials more more info on sessions) -sampler = Sampler(session=backend) - -# Run Quasi-Probability calculation -result = sampler.run(circuits).result() -``` -
- -
-Code example for Aer Sampler - -``` python -from qiskit_aer import Sampler - -# Get local simulator Sampler -sampler = Sampler() - -# Run Quasi-Probability calculation -result = sampler.run(circuits).result() -``` -
-```` - -
- -Next, we will show an end-to-end example of sampling a circuit: first, -with `backend.run()`, then by using the `Sampler`. - -## End-to-end example - -### 1. Problem definition - -We want to find the probability (or quasi-probability) distribution -associated with a quantum state: - - - Important: If you want to use the `Sampler` primitive, the circuit **must contain measurements**. - - -```python -from qiskit import QuantumCircuit - -circuit = QuantumCircuit(4) -circuit.h(range(2)) -circuit.cx(0,1) -circuit.measure_all() # measurement! -``` - -### 2. Calculate probability distribution on a real device or cloud simulator - -#### 2.a. Legacy: Use backend.run() - -The required steps to reach our goal with `backend.run()` are: - -1. Run circuits -2. Get counts from the result object -3. Use the counts and shots to calculate the probability distribution - -First, we run the circuit in a cloud simulator and output the result -object: - - - Replace `ibmq_qasm_simulator` with your device name to see the complete workflow for a real device. - - -```python -from qiskit import IBMQ - -# Define provider and backend -provider = IBMQ.load_account() -backend = provider.get_backend("ibmq_qasm_simulator") - -# Run -result = backend.run(circuit, shots=1024).result() -``` - -```python ->>> print("result: ", result) -result: Result(backend_name='ibmq_qasm_simulator', backend_version='0.11.0', -qobj_id='65bb8a73-cced-40c1-995a-8961cc2badc4', job_id='63fc95612751d57b6639f777', -success=True, results=[ExperimentResult(shots=1024, success=True, meas_level=2, -data=ExperimentResultData(counts={'0x0': 255, '0x1': 258, '0x2': 243, '0x3': 268}), -header=QobjExperimentHeader(clbit_labels=[['meas', 0], ['meas', 1], ['meas', 2], ['meas', 3]], -creg_sizes=[['meas', 4]], global_phase=0.0, memory_slots=4, metadata={}, n_qubits=4, -name='circuit-930', qreg_sizes=[['q', 4]], qubit_labels=[['q', 0], ['q', 1], ['q', 2], ['q', 3]]), -status=DONE, metadata={'active_input_qubits': [0, 1, 2, 3], 'batched_shots_optimization': False, -'device': 'CPU', 'fusion': {'enabled': False}, 'input_qubit_map': [[3, 3], [2, 2], [1, 1], [0, 0]], -'measure_sampling': True, 'method': 'stabilizer', 'noise': 'ideal', 'num_clbits': 4, 'num_qubits': 4, -'parallel_shots': 1, 'parallel_state_update': 16, 'remapped_qubits': False, -'sample_measure_time': 0.001001096}, seed_simulator=2191402198, time_taken=0.002996865)], -date=2023-02-27 12:35:00.203255+01:00, status=COMPLETED, header=QobjHeader(backend_name='ibmq_qasm_simulator', -backend_version='0.1.547'), metadata={'max_gpu_memory_mb': 0, 'max_memory_mb': 386782, 'mpi_rank': 0, -'num_mpi_processes': 1, 'num_processes_per_experiments': 1, 'omp_enabled': True, 'parallel_experiments': 1, -'time_taken': 0.003215252, 'time_taken_execute': 0.00303248, 'time_taken_load_qobj': 0.000169435}, -time_taken=0.003215252, client_version={'qiskit': '0.39.5'}) -``` - -Now we get the probability distribution from the output: - -```python -counts = result.get_counts(circuit) -quasi_dists = {} -for key,count in counts.items(): - quasi_dists[key] = count/1024 -``` - -```python ->>> print("counts: ", counts) ->>> print("quasi_dists: ", quasi_dists) -counts: {'0000': 255, '0001': 258, '0010': 243, '0011': 268} -quasi_dists: {'0000': 0.2490234375, '0001': 0.251953125, '0010': 0.2373046875, '0011': 0.26171875} -``` - -#### 2.b. Updated: Use the Sampler runtime primitive - -While the user-side syntax of the `Sampler` is very similar to -`backend.run()`, notice that the workflow is now simplified, as the -quasi-probability distribution is returned **directly** (no need to -perform post-processing), together with some key metadata. - - - Replace `ibmq_qasm_simulator` with your device name to see the complete workflow for a real device. - - -```python -from qiskit_ibm_runtime import QiskitRuntimeService, Sampler - -service = QiskitRuntimeService(channel="ibm_quantum") -backend = service.backend("ibmq_qasm_simulator") - -sampler = Sampler(session=backend) - -result = sampler.run(circuit, shots=1024).result() -quasi_dists = result.quasi_dists -``` - -```python ->>> print("result: ", result) ->>> print("quasi_dists: ", quasi_dists) -result: SamplerResult(quasi_dists=[{0: 0.2802734375, 1: 0.2509765625, 2: 0.232421875, 3: 0.236328125}], -metadata=[{'header_metadata': {}, 'shots': 1024, 'readout_mitigation_overhead': 1.0, -'readout_mitigation_time': 0.03801989182829857}]) -quasi_dists: [{0: 0.2802734375, 1: 0.2509765625, 2: 0.232421875, 3: 0.236328125}] -``` - - - Be careful with the output format. With `Sampler`, the states are no longer represented by bit strings, for example, `"11"`, but by integers, for example, `3`. To convert the `Sampler` output to bit strings, you can use the `QuasiDistribution.binary_probabilities()` method, as shown below. - - -```python ->>> # convert the output to bit strings ->>> binary_quasi_dist = quasi_dists[0].binary_probabilities() ->>> print("binary_quasi_dist: ", binary_quasi_dist) -binary_quasi_dist: {'0000': 0.2802734375, '0001': 0.2509765625, '0010': 0.232421875, '0011': 0.236328125} -``` - -The `Sampler` Runtime primitive offers several features and tuning -options that do not have a legacy alternative to migrate from, but can -help improve your performance and results. For more information, refer -to the following: - -- [Error mitigation tutorial](https://learning.quantum.ibm.com/tutorial/error-suppression-and-error-mitigation-with-qiskit-runtime) -- [Setting execution options topic](../../run/advanced-runtime-options) -- [How to run a session topic](../../run/run-jobs-in-session) - -### 3. Other execution alternatives (non-Runtime) - -The following migration paths use non-Runtime primitives to use local -simulation to test an algorithm. Let's assume that we want to use a -local state vector simulation to solve the problem defined above. - -#### 3.a. Legacy: Use the Qiskit Aer simulator - -```python -from qiskit_aer import AerSimulator - -# Define the statevector simulator -simulator = AerSimulator(method="statevector") - -# Run and get counts -result = simulator.run(circuit, shots=1024).result() -``` - -```python ->>> print("result: ", result) -result: Result(backend_name='aer_simulator_statevector', backend_version='0.11.2', -qobj_id='e51e51bc-96d8-4e10-aa4e-15ee6264f4a0', job_id='c603daa7-2c03-488c-8c75-8c6ea0381bbc', -success=True, results=[ExperimentResult(shots=1024, success=True, meas_level=2, -data=ExperimentResultData(counts={'0x2': 236, '0x0': 276, '0x3': 262, '0x1': 250}), -header=QobjExperimentHeader(clbit_labels=[['meas', 0], ['meas', 1], ['meas', 2], ['meas', 3]], -creg_sizes=[['meas', 4]], global_phase=0.0, memory_slots=4, metadata={}, n_qubits=4, name='circuit-930', -qreg_sizes=[['q', 4]], qubit_labels=[['q', 0], ['q', 1], ['q', 2], ['q', 3]]), status=DONE, -seed_simulator=3531074553, metadata={'parallel_state_update': 16, 'parallel_shots': 1, -'sample_measure_time': 0.000405246, 'noise': 'ideal', 'batched_shots_optimization': False, -'remapped_qubits': False, 'device': 'CPU', 'active_input_qubits': [0, 1, 2, 3], 'measure_sampling': True, -'num_clbits': 4, 'input_qubit_map': [[3, 3], [2, 2], [1, 1], [0, 0]], 'num_qubits': 4, 'method': 'statevector', -'fusion': {'applied': False, 'max_fused_qubits': 5, 'threshold': 14, 'enabled': True}}, time_taken=0.001981756)], -date=2023-02-27T12:38:18.580995, status=COMPLETED, header=QobjHeader(backend_name='aer_simulator_statevector', -backend_version='0.11.2'), metadata={'mpi_rank': 0, 'num_mpi_processes': 1, 'num_processes_per_experiments': 1, -'time_taken': 0.002216379, 'max_gpu_memory_mb': 0, 'time_taken_execute': 0.002005713, 'max_memory_mb': 65536, -'time_taken_load_qobj': 0.000200642, 'parallel_experiments': 1, 'omp_enabled': True}, -time_taken=0.0025920867919921875) -``` - -Now let's get the probability distribution from the output: - -```python -counts = result.get_counts(circuit) -quasi_dists = {} -for key,count in counts.items(): - quasi_dists[key] = count/1024 -``` - -```python ->>> print("counts: ", counts) ->>> print("quasi_dists: ", quasi_dists) -counts: {'0010': 236, '0000': 276, '0011': 262, '0001': 250} -quasi_dists: {'0010': 0.23046875, '0000': 0.26953125, '0011': 0.255859375, '0001': 0.244140625} -``` - -#### 3.b. Updated: Use the Reference Sampler or Aer Sampler primitive - -The reference `Sampler` lets you perform an exact or a shot-based noisy -simulation based on the `Statevector` class in the `qiskit.quantum_info` -module. - -```python -from qiskit.primitives import Sampler - -sampler = Sampler() - -result = sampler.run(circuit).result() -quasi_dists = result.quasi_dists -``` - -```python ->>> print("result: ", result) ->>> print("quasi_dists: ", quasi_dists) -result: SamplerResult(quasi_dists=[{0: 0.249999999999, 1: 0.249999999999, -2: 0.249999999999, 3: 0.249999999999}], metadata=[{}]) -quasi_dists: [{0: 0.249999999999, 1: 0.249999999999, 2: 0.249999999999, -3: 0.249999999999}] -``` - -If shots are specified, this primitive outputs a shot-based simulation -(no longer exact): - -```python -from qiskit.primitives import Sampler - -sampler = Sampler() - -result = sampler.run(circuit, shots=1024).result() -quasi_dists = result.quasi_dists -``` - -```python ->>> print("result: ", result) ->>> print("quasi_dists: ", quasi_dists) -result: SamplerResult(quasi_dists=[{0: 0.2490234375, 1: 0.2578125, -2: 0.2431640625, 3: 0.25}], metadata=[{'shots': 1024}]) -quasi_dists: [{0: 0.2490234375, 1: 0.2578125, 2: 0.2431640625, 3: 0.25}] -``` - -You can still access the Aer simulator through its dedicated `Sampler`. -This can be handy for performing simulations with noise models. In this -example, the simulation method has been updated to match the result from -3.a. - -```python -from qiskit_aer.primitives import Sampler as AerSampler # import change! - -sampler = AerSampler(run_options= {"method": "statevector"}) - -result = sampler.run(circuit, shots=1024).result() -quasi_dists = result.quasi_dists -``` - -```python ->>> print("result: ", result) ->>> print("quasi_dists: ", quasi_dists) -result: SamplerResult(quasi_dists=[{1: 0.2802734375, 2: 0.2412109375, 0: 0.2392578125, -3: 0.2392578125}], metadata=[{'shots': 1024, 'simulator_metadata': -{'parallel_state_update': 16, 'parallel_shots': 1, 'sample_measure_time': 0.000409608, -'noise': 'ideal', 'batched_shots_optimization': False, 'remapped_qubits': False, -'device': 'CPU', 'active_input_qubits': [0, 1, 2, 3], 'measure_sampling': True, -'num_clbits': 4, 'input_qubit_map': [[3, 3], [2, 2], [1, 1], [0, 0]], 'num_qubits': 4, -'method': 'statevector', 'fusion': {'applied': False, 'max_fused_qubits': 5, -'threshold': 14, 'enabled': True}}}]) -quasi_dists: [{1: 0.2802734375, 2: 0.2412109375, 0: 0.2392578125, 3: 0.2392578125}] -``` - -```python ->>> # Convert the output to bit strings ->>> binary_quasi_dist = quasi_dists[0].binary_probabilities() ->>> print("binary_quasi_dist: ", binary_quasi_dist) -binary_quasi_dist: {'0001': 0.2802734375, '0010': 0.2412109375, '0000': 0.2392578125, '0011': 0.2392578125} -``` - -For more information, see [Noisy simulators in Qiskit Runtime](../../verify/using-ibm-quantum-simulators). diff --git a/translations/ja/api/migration-guides/qiskit-runtime-from-provider.mdx b/translations/ja/api/migration-guides/qiskit-runtime-from-provider.mdx deleted file mode 100644 index 626e234277..0000000000 --- a/translations/ja/api/migration-guides/qiskit-runtime-from-provider.mdx +++ /dev/null @@ -1,102 +0,0 @@ ---- -title: Migrate from qiskit_ibm_provider to qiskit_ibm_runtime -description: How to migrate `backend.run()` from Qiskit IBM Provider to Qiskit IBM Runtime ---- - -# Migrate `backend.run()` from `qiskit_ibm_provider` to `qiskit_ibm_runtime` - -The Qiskit Runtime interface includes two packages: -Qiskit IBM Provider (the [`qiskit_ibm_provider`](../qiskit-ibm-provider) package) and -Qiskit IBM Runtime (the [`qiskit_ibm_runtime`](../qiskit-ibm-runtime) package). Until now, -primitives (`Sampler` and `Estimator`) -were run in Runtime. Custom circuits that were manually transpiled and used `IBMBackend.run()` -were run in Provider. - -In the `qiskit-ibm-runtime` 0.15 release, we added support for running custom circuits using `IBMBackend.run()` in Runtime, -so users can run all programs through Runtime. - -This guide describes how to migrate code that implemented `IBMBackend.run()` -using Qiskit IBM Provider to use Qiskit IBM Runtime instead. - -**Example 1: Straightforward execution of IBMBackend.run()** - -```python -from qiskit import * -from qiskit.compiler import transpile, assemble - -circuit = QuantumCircuit(2, 2) -circuit.h(0) -circuit.cx(0, 1) -circuit.measure_all() -``` - -In Provider, the code is: - -```python -from qiskit_ibm_provider import IBMProvider - -provider = IBMProvider() -backend = provider.get_backend("ibmq_qasm_simulator") -transpiled_circuit = transpile(circuit, backend=backend) -job = backend.run(transpiled_circuit) -print(job.result()) -``` - -In Runtime, the code is: - -```python -from qiskit_ibm_runtime import QiskitRuntimeService - -service = QiskitRuntimeService(channel="ibm_quantum") -backend = service.backend("ibmq_qasm_simulator") -transpiled_circuit = transpile(circuit, backend=backend) -job = backend.run(transpiled_circuit) -print(job.result()) -``` - -**Example 2: Execution of backend.run() within a session:** - -This section of code is identical in Provider and in Runtime. - -```python -with backend.open_session() as session: - job1 = backend.run(transpiled_circuit) - job2 = backend.run(transpiled_circuit) - print(job1.session_id) - print(job2.session_id) -backend.cancel_session() -``` - -Sessions are implemented differently in `IBMBackend` than when using primitives. -Therefore, we cannot run a primitive and use backend.run() within a single session. If you specify both, one will be run outside of the session. - -**Example 3: Primitive session containing backend.run:** - -In this example, `sampler` is run within session, but `backend` is run independently -of the session. - -```python -from qiskit_ibm_runtime import Session, Sampler - -with Session(backend=backend) as session: - sampler = Sampler(session=session) - job1 = sampler.run(transpiled_circuit) - job2 = backend.run(transpiled_circuit) # runs outside the session - print(job1.session_id) - print(job2.session_id) # is None -``` - -**Example 4: `Backend` session containing Sampler:** - -In this example, `backend` is run within a session, but `sampler` is run independently -of the session. - -```python -with backend.open_session() as session: - sampler = Sampler(backend=backend) - job1 = sampler.run(transpiled_circuit) # runs outside the session - job2 = backend.run(transpiled_circuit) - session_id = session.session_id - print(job1.session_id) # is None - print(job2.session_id) -``` diff --git a/translations/ja/api/migration-guides/qiskit-runtime.mdx b/translations/ja/api/migration-guides/qiskit-runtime.mdx deleted file mode 100644 index a7076f9130..0000000000 --- a/translations/ja/api/migration-guides/qiskit-runtime.mdx +++ /dev/null @@ -1,404 +0,0 @@ ---- -title: Migrate to using Qiskit Runtime primitives -description: Migrate from using backend.run to using Qiskit Runtime primitives -in_page_toc_max_heading_level: 2 ---- - - -# Migrate to using Qiskit Runtime primitives - -This guide describes key patterns of behavior and use cases with code -examples to help you migrate code from the legacy `qiskit-ibmq-provider` -package to use the Qiskit Runtime primitives. - -## Overview - -There are two methods for accessing IBM Quantum systems. First, the `qiskit-ibm-provider` package provides the `backend.run()` interface, allowing direct access to IBM Quantum systems with no pre- or post-processing involved. This level of access is suitable for those users who want **precise control** over circuit execution and result processing. This level of access is needed for those at the level of kernel developer who are looking to develop, for example, circuit optimization routines or error mitigation techniques, or who want to characterize quantum systems. - -In contrast, Qiskit Runtime is designed to **streamline algorithm and application construction** by removing the need for users to understand technical hardware and low-level software details. Advanced processing techniques for error suppression and mitigation are automatically applied, giving users high-fidelity results without the burden of having to code these routines themselves. Sessions within Qiskit Runtime allow users to run iterative algorithm circuits back to back, or batch collections of circuits without having to re-queue each job. This results in more efficient quantum processor use and reduces the time users spend running complex computations. - -backend.run is required for running dynamic circuits. - -Primitives are the recommended tool to write quantum algorithms, as they -encapsulate common device queries seen in application packages and allow -for managed performance through the Qiskit Runtime service. However, if -your algorithm requires more granular information, such as pre-shot -measurements, the primitives might not provide the desired abstraction -level. - -The Qiskit Runtime primitives implement the reference `Sampler` and -`Estimator` interfaces found in -[qiskit.primitives](../qiskit/primitives). -These interfaces let you switch between primitive implementations with -minimal code changes. Different primitive implementations can be found -in the `qiskit`, `qiskit_aer`, and `qiskit_ibm_runtime` libraries. Each -implementation serves a specific purpose: - -- The primitives in `qiskit` can perform local state vector - simulations - useful for quickly prototyping algorithms. -- The primitives in `qiskit_aer` give access to the local Aer - simulators for tasks such as noisy simulation. -- The primitives in `qiskit_ibm_runtime` provide access to cloud - simulators and real hardware through the Qiskit Runtime service. - They include exclusive features such as built-in circuit - optimization and error mitigation support. - - - The **only primitives that provide access to the Qiskit Runtime service** are those imported from `qiskit_ibm_runtime` (Qiskit Runtime Primitives). - - -When migrating, the key to writing an equivalent algorithm using -primitives is to first identify what is the minimal unit of information -your algorithm is based on: - -- If it uses an **expectation value**, you will need an `Estimator`. -- If it uses a **probability distribution** (from sampling the device), you will need a `Sampler`. - -After determining which primitive to use, identify where the algorithm -accesses the system. Look for the call to `backend.run()`. Next, you -will replace this call with the respective primitive call, as shown in -the following examples. - -This guide is for algorithm developers who need to refactor algorithms to use primitives instead of `backend.run()`. See examples here: - -``` -- [Update code that performs circuit sampling](qiskit-runtime-examples#sampler-algorithm) -- [Update code that calculates expectation values](qiskit-runtime-examples#estimator-algorithm) -``` - -The following topics are use cases with code migration examples: - -- [Update parameter values while running](#parm-circ) -- [Algorithm tuning options (shots, transpilation, error mitigation)](../../run/advanced-runtime-options) - -## FAQs - -Users might have the following questions when planning to migrate their -code to Qiskit Runtime: - -
-How do the Qiskit Runtime primitives differ from backend.run? - -There are two methods for accessing IBM Quantum systems. First, the qiskit-ibm-provider package provides the backend.run() interface, allowing direct access to IBM Quantum systems with no pre- or post-processing involved. This level of access is suitable for those users who want precise control over circuit execution and result processing. This level of access is needed for those looking to work at the level Kernel developer developing, for example, circuit optimization routines, error mitigation techniques, or characterizing quantum systems. - -In contrast, Qiskit Runtime is designed to streamline algorithm and application construction by removing the need for users to understand technical hardware and low-level software details. Advanced processing techniques for error suppression and mitigation are automatically applied, giving users high-fidelity results without the burden of having to code these routines themselves. The inclusion of sessions within Qiskit Runtime allows users to run iterative algorithm circuits back to back, or batch collections of circuits without having to re-queue each job. This results in more efficient quantum processor utilization and reduces the total amount of time users spend running complex computations. - -
- -
-Which channel should I use? - -After deciding to use Qiskit Runtime primitives, the user must determine -whether to access Qiskit Runtime through IBM Cloud or IBM Quantum -Platform. Some information that might help you decide includes: - -- The available plans: - - Qiskit Runtime is available in both the Open (free access) or Premium (contract-based paid access) plan on IBM Quantum Platform. See [IBM Quantum access plans](https://www.ibm.com/quantum/access-plans) for details. - - Qiskit Runtime is accessible through the Lite (free access) or Standard (pay-as-you-go access) plan in IBM Cloud. See [Qiskit Runtime plans](https://cloud.ibm.com/docs/quantum-computing?topic=quantum-computing-plans) on IBM Cloud for details. -- The use case requirements: - - IBM Quantum Platform offers a visual circuit composer (Quantum Composer) and a Jupyter Notebook environment (Quantum Lab). - - IBM Cloud offers a cloud native service that is ideal if users need to integrate quantum capabilities with other cloud services. - -
- -
-How do I set up my channel? - -After deciding which channel to use to interact with Qiskit Runtime, you -can get set up on either platform by following the steps in [Install and set up.](../../start/install) - -
- -
-Should I modify the Qiskit Terra algorithms? - -As of v0.22, [Qiskit Terra algorithms](https://github.com/Qiskit/qiskit/tree/stable/0.46/qiskit/algorithms) use Qiskit Runtime primitives. Thus, there is no need for users to -modify amplitude estimators or any other Qiskit Terra algorithms. - -
- -
-Which primitive should I use? - -When choosing which primitive to use, you first need to understand -whether the algorithm uses a **quasi-probability distribution** sampled -from a quantum state (a list of quasi-probabilities), or an -**expectation value** of a certain observable with respect to a -quantum state (a real number). - -A probability distribution is often of interest in optimization problems -that return a classical bit string, encoding a certain solution to a -problem at hand. In these cases, you might be interested in finding a -bit string that corresponds to a ket value with the largest probability -of being measured from a quantum state, for example. - -An expectation value of an observable could be the target quantity in -scenarios where knowing a quantum state is not relevant. This often -occurs in optimization problems or chemistry applications. For example, -when trying to discover the extremal energy of a system. - -
- -## Migrate setup from qiskit-ibmq-provider - -This guide describes how to migrate code from the legacy IBMQ provider -`qiskit-ibmq-provider` package to use Qiskit Runtime -`qiskit-ibm-runtime`. This guide includes instructions to -migrate legacy runtime programs to the new syntax. However, the ability -to use custom uploaded programs has been deprecated and has been replaced with Quantum Serverless patterns. For instructions to migrate, see [Converting from Qiskit Runtime Programs.](https://qiskit-extensions.github.io/quantum-serverless/migration/migration_from_qiskit_runtime_programs.html) - -### Changes in Class name and location - -The classes related to Qiskit Runtime that used to be included in -`qiskit-ibmq-provider` are now part of `qiskit-ibm-runtime`. Before, the -provider used to populate the `qiskit.providers.ibmq.runtime` namespace -with objects for Qiskit Runtime. These now live in the -`qiskit_ibm_runtime` module. - -The module from which the classes are imported has changed. The -following table contains example access patterns in -`qiskit.providers.ibmq.runtime` and their new form in -`qiskit_ibm_runtime`: - -| class in qiskit-ibmq-provider | class in qiskit-ibm-runtime | Notes | -| ------------------------------------------------ | ----------------------------------------- | -------------------------------------------------------------------------------------------------------------------- | -| qiskit.providers.ibmq.runtime.IBMRuntimeService | qiskit_ibm_runtime.QiskitRuntimeService | IBMRuntimeService class was removed from qiskit-ibm-runtime 0.6 and replaced by the new class in qiskit-ibm-runtime. | -| qiskit.providers.ibmq.runtime.RuntimeJob | qiskit_ibm_runtime.RuntimeJob | | -| qiskit.providers.ibmq.runtime.RuntimeProgram | qiskit_ibm_runtime.RuntimeProgram | | -| qiskit.providers.ibmq.runtime.UserMessenger | qiskit_ibm_runtime.program.UserMessenger | New location: qiskit_ibm_runtime.program | -| qiskit.providers.ibmq.runtime.ProgramBackend | qiskit_ibm_runtime.program.ProgramBackend | New location: qiskit_ibm_runtime.program | -| qiskit.providers.ibmq.runtime.ResultDecoder | qiskit_ibm_runtime.program.ResultDecoder | New location: qiskit_ibm_runtime.program | -| qiskit.providers.ibmq.runtime.RuntimeEncoder | qiskit_ibm_runtime.RuntimeEncoder | | -| qiskit.providers.ibmq.runtime.RuntimeDecoder | qiskit_ibm_runtime.RuntimeDecoder | | -| qiskit.providers.ibmq.runtime.ParameterNamespace | qiskit_ibm_runtime.ParameterNamespace | | -| qiskit.providers.ibmq.runtime.RuntimeOptions | qiskit_ibm_runtime.RuntimeOptions | | - -### Import path - -The import path has changed as follows: - -**Legacy** - -```python -from qiskit import IBMQ -``` - -**Updated** - -```python -from qiskit_ibm_runtime import QiskitRuntimeService -``` - -### Save accounts - -Use the updated code to work save accounts. - -**Legacy** - -```python -IBMQ.save_account("", overwrite=True) -``` - -**Updated** - -The new syntax accepts credentials for -Qiskit Runtime on IBM Cloud or IBM Quantum Platform. For more -information on retrieving account credentials, see [Install and set up](../../start/install). - -```python -# IBM Cloud channel - -QiskitRuntimeService.save_account(channel="ibm_cloud", token="", instance="", overwrite=True) - -# IBM Quantum channel; set to default - -QiskitRuntimeService.save_account(channel="ibm_quantum", token="", overwrite=True, default=true) -``` - -Additionally, you can now name your saved credentials and load the credentials by name. - -```python -# Save different accounts for open and premium access - -QiskitRuntimeService.save_account(channel="ibm_quantum", token="", instance="h1/g1/p1", name="premium") -QiskitRuntimeService.save_account(channel="ibm_quantum", token="", instance="h2/g2/p2", name="open") - -# Load the "open" credentials - -service = QiskitRuntimeService(name="open") -``` - -### Load accounts - -Use the updated code to load accounts. - -**Legacy** - -```python -IBMQ.load_account() -``` - -**Updated** - -The new syntax combines the functionality from `load_account()` and -`get_provider()` in one statement. The `channel` input parameter is -optional. If multiple accounts have been saved in one device and no -`channel` is provided, the default is `"ibm_cloud"`. - -```python -# To access saved credentials for the IBM cloud channel -service = QiskitRuntimeService(channel="ibm_cloud") - -# To access saved credentials for the IBM quantum channel -service = QiskitRuntimeService(channel="ibm_quantum") -``` - -### Channel selection (get a provider) - -Use the updated code to select a channel. - -**Legacy** - -```python -provider = IBMQ.get_provider(project="my_project", group="my_group", hub="my_hub") -``` - -**Updated** - -The new syntax combines the functionality from `load_account()` and -`get_provider()` in one statement. When using the `ibm_quantum` channel, -the `hub`, `group`, and `project` are specified through the new -`instance` keyword. - -```python -# To access saved credentials for the IBM quantum channel and select an instance -service = QiskitRuntimeService(channel="ibm_quantum", instance="my_hub/my_group/my_project") -``` - -### Get the system or simulator - -Use the updated code to view systems and simulators. - -**Legacy** - -```python -provider = IBMQ.get_provider(hub="h1", group="g1", project="p1") -backend = provider.get_backend("ibm_backend") -``` - -**Updated** - -```python -# You can specify the instance in service.backend() instead of initializing a new service -backend = service.backend("ibm_backend", instance="h1/g1/p1") -``` - -### Upload, view, or delete custom prototype programs - -This function has been replaced with Quantum Serverless patterns. For instructions to migrate, see [Converting from Qiskit Runtime Programs.](https://qiskit-extensions.github.io/quantum-serverless/migration/migration_from_qiskit_runtime_programs.html) - - -## Parametrized circuits with primitives - -Parametrized circuits are a commonly used tool for quantum algorithm -design. Because `backend.run()` did not accept parametrized -circuits, the parameter binding step had to be integrated in the -algorithm workflow. The primitives can perform the parameter binding -step internally, which results in a simplification of the algorithm-side -logic. - -The following example summarizes the new workflow for managing -parametrized circuits. - -### Example - -Let's define a parametrized circuit: - -```python -from qiskit.circuit import QuantumCircuit, ParameterVector - -n = 3 -thetas = ParameterVector('θ',n) - -qc = QuantumCircuit(n, 1) -qc.h(0) - -for i in range(n-1): - qc.cx(i, i+1) - -for i,t in enumerate(thetas): - qc.rz(t, i) - -for i in reversed(range(n-1)): - qc.cx(i, i+1) - -qc.h(0) -qc.measure(0, 0) - -qc.draw() -``` - -We want to assign the following parameter values to the circuit: - -```python -import numpy as np -theta_values = [np.pi/2, np.pi/2, np.pi/2] -``` - -### Legacy - -Previously, the parameter values had to be bound to their respective -circuit parameters prior to calling `backend.run()`. - -```python -from qiskit import Aer - -bound_circuit = qc.bind_parameters(theta_values) -bound_circuit.draw() - -backend = Aer.get_backend('aer_simulator') -job = backend.run(bound_circuit) -counts = job.result().get_counts() -print(counts) -``` - -### Primitives - -Now, the primitives take in parametrized circuits directly, together -with the parameter values, and the parameter assignment operation can be -performed more efficiently on the server side of the primitive. - -This feature is particularly interesting when working with iterative -algorithms because the parametrized circuit remains unchanged between -calls while the parameter values change. The primitives can transpile -once and then cache the unbound circuit, using classical resources more -efficiently. Moreover, only the updated parameters are transferred to -the cloud, saving additional bandwidth. - -```python -from qiskit.primitives import Sampler - -sampler = Sampler() -job = sampler.run(qc, theta_values) -result = job.result().quasi_dists -print(result) -``` - -## Algorithm tuning - -One of the advantages of the primitives is that they abstract away the -circuit execution setup so that algorithm developers can focus on the -pure algorithmic components. However, sometimes, to get the most out of -an algorithm, you might want to tune certain primitive options. For details, see [Advanced runtime options](../../run/advanced-runtime-options). - -## Next steps - - - - Review some [migration examples](qiskit-runtime-examples). - - [Get started with Estimator.](../../run/primitives-get-started#start-estimator) - - [Get started with Sampler.](../../run/primitives-get-started#start-sampler) - - Explore [sessions.](../../run/sessions) - - [Run a primitive in a session.](../../run/run-jobs-in-session) - - Experiment with the [Submit pre-transpiled circuits tutorial.](https://learning.quantum.ibm.com/tutorial/submitting-user-transpiled-circuits-using-primitives) - - diff --git a/translations/ja/build/_toc.json b/translations/ja/build/_toc.json deleted file mode 100644 index 712f206cc8..0000000000 --- a/translations/ja/build/_toc.json +++ /dev/null @@ -1,86 +0,0 @@ -{ - "title": "構築", - "collapsed": true, - "children": [ - { - "title": "はじめに", - "url": "/build" - }, - { - "title": "Qiskit による回路の構築", - "children": [ - { - "title": "回路ライブラリー", - "url": "/build/circuit-library" - }, - { - "title": "回路の構築", - "url": "/build/circuit-construction" - }, - { - "title": "回路の可視化", - "url": "/build/circuit-visualization" - }, - { - "title": "古典的なフィードフォワードと制御フロー", - "url": "/build/classical-feedforward-and-control-flow" - }, - { - "title": "ユニタリー演算子の合成", - "url": "/build/unitary-synthesis" - }, - { - "title": "Qiskit でのビット順序", - "url": "/build/bit-ordering" - } - ] - }, - { - "title": "Qiskit による演算子の構築", - "children": [ - { - "title": "演算子モジュールの概要", - "url": "/build/operators-overview" - }, - { - "title": "パウリ基底での観測量の指定", - "url": "/build/specify-observables-pauli" - } - ] - }, - { - "title": "その他の回路構築ツール", - "children": [ - { - "title": "パルススケジュール", - "url": "/build/pulse" - }, - { - "title": "OpenQASM", - "children": [ - { - "title": "OpenQASM の導入", - "url": "/build/introduction-to-qasm" - }, - { - "title": "OpenQASM 2 と Qiskit", - "url": "/build/interoperate-qiskit-qasm2" - }, - { - "title": "OpenQASM 3 と Qiskit", - "url": "/build/interoperate-qiskit-qasm3" - }, - { - "title": "OpenQASM 3 特徴テーブル", - "url": "/build/qasm-feature-table" - }, - { - "title": "OpenQASM 3.x ライブ仕様", - "url": "https://openqasm.com/" - } - ] - } - ] - } - ] -} diff --git a/translations/ja/build/bit-ordering.mdx b/translations/ja/build/bit-ordering.mdx deleted file mode 100644 index 9207286021..0000000000 --- a/translations/ja/build/bit-ordering.mdx +++ /dev/null @@ -1,167 +0,0 @@ ---- -title: Qiskit でのビット順序 -description: Qiskit の順序付け規則とその規則を選択した理由について学習します ---- - -# Qiskit でのビット順序 - -$n$ ビット(または量子ビット)のセットがある場合、通常、各ビットに $0 -\\rightarrow n-1$ とラベル付けします。 それぞれのソフトウェアやリソースは、コンピューターメモリー内と画面上に表示されるときにこれらのビットをどのように順序付けるかを選択する必要があります。 - -## Qiskit の規則 - -様々なシナリオで Qiskit がビットをどのように順序付けるかを説明します。 - -### 量子回路 - -`QuantumCircuit` クラスは、リスト(`QuantumCircuit.qubits`)に量子ビットを格納しています。 このリストの量子ビットのインデックスが -量子ビットのラベルとなります。 - -```python -from qiskit import QuantumCircuit -qc = QuantumCircuit(2) -qc.qubits[0] # qubit "0" -``` - -``` -Qubit(QuantumRegister(2, 'q'), 0) -``` - -### 回路図 - -回路図では、量子ビット $0$ が最上位の量子ビットであり、量子ビット $n$ が最下位の量子ビットです。 これは `QuantumCircuit.draw` の `reverse_bits` 引数で変更できます([Qiskit での順序の変更](#change-ordering-in-qiskit)をご覧ください)。 - -```python -qc.x(1) -qc.draw() -``` - -``` -q_0: ───── - ┌───┐ -q_1: ┤ X ├ - └───┘ -``` - -### 整数 - -ビットを数値として解釈する場合、ビット $0$ は最下位ビット、ビット $n$ は最上位ビットとなります。 各ビットには値 $2^\\text{label}$ があるため、 -コーディングの際に役立ちます(ラベルは `QuantumCircuit.qubits` -の量子ビットのインデックス)。 例えば、次の回路の実行は、ビット $0$ が `0`、 -ビット $1$ が `1` となります。 これは 10 進整数 `2`(確率 `1.0` で測定)として解釈されます。 - -```python -from qiskit.primitives import Sampler -qc.measure_all() -Sampler().run(qc).result().quasi_dists[0] -``` - -``` -{2: 1.0} -``` - -### 文字列 - -ビット(または量子ビット)のリストを文字列として表示または解釈する場合、ビット $n$ は左端のビット、$0$ は右端のビットとなります。 これは通常、最上位の桁を左に数字を書くためであり、Qiskit ではビット $n$ が最上位ビットとして解釈されるためです。 - -例えば、次のセルは、単一量子ビット状態の文字列から `Statevector` -を定義しています。 この場合、量子ビット $0$ は状態 $|{+}\\rangle$ であり、 -量子ビット $1$ は 状態 $|0\\rangle$ にあります。 - -```python -from qiskit.quantum_info import Statevector -sv = Statevector.from_label("0+") -sv.probabilities_dict() -``` - -``` -{'00': 0.4999999999999999, '01': 0.4999999999999999} -``` - -左端のビットがビット $0$ であることを期待するにもかかわらず、通常はビット $n$ を表すため、これはたまにビットの文字列を解釈する際に混乱を招くことがあります。 - -### 状態ベクトル行列 - -状態ベクトルを複素数のリスト(振幅)として表す場合、Qiskit はこれらの振幅を、インデックス $x$ の振幅が計算基底状態 $|x\\rangle$ を表すように順序付けます。 - -```python -print(sv[1]) # amplitude of state |01> -print(sv[2]) # amplitude of state |10> -``` - -``` -(0.7071067811865475+0j) -0j -``` - -### ゲート - -Qiskit の各ゲートは、独自の方法で量子ビットのリストを解釈できますが、制御ゲートは通常 `(制御, ターゲット)` の規則に従います。 - -例えば、次のセルは、量子ビット $0$ が制御で量子ビット $1$ がターゲット -であり制御Xゲートを追加します。 - -```python -from qiskit import QuantumCircuit -qc = QuantumCircuit(2) -qc.cx(0, 1) -qc.draw() -``` - -``` -q_0: ──■── - ┌─┴─┐ -q_1: ┤ X ├ - └───┘ -``` - -Qiskit のこれまでに述べたすべての規則に従うと、この CX-gate は変換 $|01\\rangle \\leftrightarrow |11\\rangle$ を実行するため、以下の行列を持ちます。 - -$$ -\\begin{pmatrix} - 1 & 0 & 0 & 0 \\ - 0 & 0 & 0 & 1 \\ - 0 & 0 & 1 & 0 \\ - 0 & 1 & 0 & 0 \\ -\\end{pmatrix} -$$ - -## Qiskit での順序の変更 - -量子ビットを使って逆順で回路を描画するには(量子ビット $0$ を下)、`reverse_bits` 引数を使用します。 これは生成された図のみに影響し、回路には影響しないため、X-gate はそのまま量子ビット $0$ に対して動作します。 - -```python -from qiskit import QuantumCircuit -qc = QuantumCircuit(2) -qc.x(0) -qc.draw(reverse_bits=True) -``` - -``` -q_1: ───── - ┌───┐ -q_0: ┤ X ├ - └───┘ -``` - -`reverse_bits` メソッドを使って、量子ビットのラベルが反転した状態で新しい回路を返すことができます(元の回路は変更されません)。 - -```python -qc.reverse_bits().draw() -``` - -``` -q_0: ───── - ┌───┐ -q_1: ┤ X ├ - └───┘ -``` - -この新しい回路では、X-gate は量子ビット $1$ に対して動作することに注意してください。 - -## 次のステップ - - - - [Grover's Algorithm(グローバーのアルゴリズム)](https://learning.quantum.ibm.com/tutorial/grovers-algorithm)チュートリアルで、回路の使用例をご覧ください。 - - [QuantumCircuit API](/api/qiskit/qiskit.circuit.QuantumCircuit#quantumcircuit) リファレンスを詳しくご覧ください。 - diff --git a/translations/ja/build/circuit-construction.ipynb b/translations/ja/build/circuit-construction.ipynb deleted file mode 100644 index d55140cd41..0000000000 --- a/translations/ja/build/circuit-construction.ipynb +++ /dev/null @@ -1,482 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "id": "bc54d7bc-b2d8-4b30-9b0b-05689e07a463", - "metadata": {}, - "source": [ - "# 回路の構築" - ] - }, - { - "cell_type": "markdown", - "id": "c50d8e43-ae82-4e41-8d17-a37332d1bf6d", - "metadata": {}, - "source": [ - "このページでは、Qiskit の [`QuantumCircuit`](/api/qiskit/qiskit.circuit.QuantumCircuit) クラスを詳しく説明します。これには、量子回路の作成に使用できるより高度なメソッドもいくつか含まれています。" - ] - }, - { - "cell_type": "markdown", - "id": "2664d407-aa95-43a3-9101-d3ad58c2df58", - "metadata": {}, - "source": [ - "## 量子回路とは?\n", - "\n", - "単純な量子回路は、量子ビットとその量子ビットに作用する命令リストの集合です。 実演すると、以下のセルは、2 つの新しい量子ビットで新しい回路を作成し、次に回路の [`qubits`](/api/qiskit/qiskit.circuit.QuantumCircuit#qubits) 属性を表示しています。" - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "id": "b410d397-b67d-4f31-90cf-9c1c34c157c5", - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "[Qubit(QuantumRegister(2, 'q'), 0), Qubit(QuantumRegister(2, 'q'), 1)]" - ] - }, - "execution_count": 1, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "from qiskit import QuantumCircuit\n", - "\n", - "qc = QuantumCircuit(2)\n", - "qc.qubits" - ] - }, - { - "cell_type": "markdown", - "id": "f5c95cb2-a94f-48f3-b2a6-8ec6c25da5cd", - "metadata": {}, - "source": [ - "回路に命令を追加すると、命令は回路の [`data`](/api/qiskit/qiskit.circuit.QuantumCircuit#data) 属性に追加されます。 以下のセル出力は、`data` がそれぞれに `operation` 属性と `qubits` 属性を持つ [`CircuitInstruction`](/api/qiskit/qiskit.circuit.CircuitInstruction) オブジェクトのリストであることを示しています。" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "id": "f7b5573c-b2b2-4cbf-ba55-c53c9221ce71", - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "[CircuitInstruction(operation=Instruction(name='x', num_qubits=1, num_clbits=0, params=[]), qubits=(Qubit(QuantumRegister(2, 'q'), 0),), clbits=())]" - ] - }, - "execution_count": 2, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "qc.x(0) # Add X-gate to qubit 0\n", - "qc.data" - ] - }, - { - "cell_type": "markdown", - "id": "17a82d8a-b717-44b8-b3f8-ce89e2588261", - "metadata": {}, - "source": [ - "情報を表示する最も簡単な方法は、[`draw`](/api/qiskit/qiskit.circuit.QuantumCircuit#draw) メソッドです。これは回路の可視化を返します。 量子回路のさまざまな表示方法について、[回路の可視化](/build/circuit-visualization)をご覧ください。" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "id": "43a57258-3e33-4071-8a48-2bf127c8a5be", - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAALAAAACuCAYAAACWa4e1AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAKL0lEQVR4nO3df0zU9x3H8eed2oKKrSddzw5/QAELyI9NpGJbVwxm6fwRk8XY1ind7PxjQ1nGvD8Wt9k2DWG6ZXGmjSZtXbOMsLR/zEKT/UMzKbEMQm2pYKlMjCCXeoqKV1xlfPdHUxYG/jrgzvfX1+M/7vO97/eteXL3ve/B4XEcx0HEKG+sBxAZDwUspilgMU0Bi2kKWExTwGKaAhbTFLCYpoDFNAUspilgMU0Bi2kKWExTwGKaAhbTFLCYpoDFNAUspilgMU0Bi2kKWExTwGKaAhbTFLCYpoDFNAUspilgMU0Bi2kKWExTwGKaAhbTFLCYpoDFNAUspilgMU0Bi2kKWEybGusBZDTHcfhiYDDWY9yW6fFT8Xg8UT+uAr4DfTEwyMxlb8Z6jNty5YMtzJg+LerH1SmEmKaAxTQFLKYpYDFNAYtpClhMU8BimgIW0xSwmKaAxTQFLKYpYDFNAYtprg84FAoRCARITU0lLi6OefPmUVZWRjgcZuvWrXg8Hvbv3x/rMSVCrg742LFjZGdns2fPHoLBIJmZmVy7do19+/axceNG2tvbAcjLy4vtoJPo5R1LcD7eyg/Xp425/t5r3+Nq83Nkpc6O8mQTw7UBh0Ih1q5dSzAYpLy8nN7eXlpaWggGg1RWVlJbW0tTUxMej4ecnJxYjztpdr/yIa2fXeD3v3iUbz44fcTaz36QxZNL5/KbV1o4frIvRhOOj2sD3rFjB93d3ZSWlrJ3714SEhKG1wKBALm5uQwODrJw4UJmzZoVw0kn17XBIUp2HWFG/DRe2/3E8O3pC+/j5e35fPDx5+w51BrDCcfHlQG3t7dTXV1NYmIiFRUVY26zZMkSAHJzc0fcfurUKdatW0dCQgKzZ89my5YtnD9/ftJnnkwftp+n4rWP+O5jSfz4+4vwej28+fIKPB4o2XWEoSEn1iNGzJW/UlRVVcXQ0BCbNm1i5syZY24THx8PjAy4v7+foqIifD4fVVVVDAwMEAgEWLNmDQ0NDXi9dr/fXzr4IeuenM/e8gLyHpnDo9nf4Od7GunouhTr0cbFlQHX1dUBUFRUdN1turu7gZEBHzx4kJ6eHo4cOcL8+fMBSEpKYvny5Rw+fJj169dP3tCTbHDQoWTXEZqq1vGTjRnUtwT5w58/ifVY4+bKgE+fPg3AggULxlwfHBykoaEBGBlwTU0Njz/++HC8AIWFhaSkpPDOO+9EHHB+fj7BYPCWtx9iGvh2RXSsG7l05Uv+/eV/uGfaFN6tP4MzgWcOaenpeLkW0X39fj/Nzc0R3deVAYfDYQAGBgbGXK+uriYUCpGQkEBycvLw7W1tbWzYsGHU9llZWbS1tUU8TzAYpKen59bv4LkHfBEf7rreePEJ7pk2hbbOPnZty+Ovfz/Fv7r7J2TfvWfPgvPlhOzrdrgyYL/fT19fHy0tLRQWFo5Y6+3tZefOnQDk5OSM+CyDvr4+7r///lH78/l8fPrpp+Oa53YMMY3eiI82tu3PZlJU8BC/3NfM3947TUv1el5/8Qme/NG7E7L/uQ89NK5H4Ei5MuDi4mLa29uprKxk1apVpKenA9DU1MTmzZsJhUJA9N7AuN2nx/AX1yb0cyFS58+ioiyff7aeo/L1jxkactj9agsVZUvZ/mwmf/xL5M8uX/uso0OfCzFRAoEAc+bM4cyZM2RlZZGdnU1aWhoFBQWkpKSwcuVKYPQltNmzZ3Px4sVR+7tw4QI+3yQ8p0eBxwOHXlrBFK+Hkl3/GL5k9ts3Wmn65BwVZfmkJCXcZC93LlcGnJSURH19PatXryYuLo6uri58Ph8HDhygtraWjo4OYHTAGRkZY57rtrW1kZGREZXZJ1p5STaPfetBfv1KCydO/e+S2dCQw3O/OsLUKV5ef/GJG+zhzubKgOGrGGtqaujv76e/v5/Gxka2bdtGOBymq6sLr9fL4sWLR9xnzZo1vP/++8OX2AAaGxvp7Oxk7dq10f4njNsjyffx0k+/zdGPPud3fxp9yayt8yK7X23hO/lz2f5sZgwmHD+P40zkxZQ7X2NjI8uWLWPRokWcOHFixNrly5fJzs4mMTGRF154gatXrxIIBHjggQc4evRo1N7ImOhz4GjQZ6NFSWvrV+/7///pA8CsWbOoq6tj7ty5PP300zz//PMsX76cmpoa0+/CuZkrr0LcyI0CBnj44YepqamJ5kgyDnfdw8rNAhZb7rpH4K9/TkLc4a57BBZ3UcBimgIW0xSwmKaAxTQFLKYpYDFNAYtpClhMU8BimgIW0+66nwe2QH/s+9YpYDFNpxBimgIW0xSwmKaAxTQFLKYpYDFNAYtpClhMU8BimgIW0xSwmKaAxTQFLKYpYDFNAYtpClhMU8BimgIW0xSwmKaAxTQFLKYpYDFNAYtpClhMU8BimgIW0xSwmKaAxTQFLKYpYDFNAYtpClhMuysCDoVCBAIBUlNTiYuLY968eZSVlREOh9m6dSsej4f9+/fHekyJwNRYDzDZjh07xlNPPUUwGGTGjBlkZmZy9uxZ9u3bR2dnJxcuXAAgLy8vtoNKZBwXO3funJOUlOQATnl5uXP58uXhtcrKSgdwpk6d6ng8HufSpUsxnFQi5eqAn3nmGQdwSktLx1zPzc11ACc5OTnKk8lEce05cHt7O9XV1SQmJlJRUTHmNkuWLAEgNzd3+Lbu7m5KS0spKCjg3nvvjclf3pFb59qAq6qqGBoaYtOmTcycOXPMbeLj44GRAZ88eZK3334bv9/P0qVLozKrRM61AdfV1QFQVFR03W26u7uBkQGvWLGC3t5eDh8+THFx8eQOKePm2qsQp0+fBmDBggVjrg8ODtLQ0ACMDNjrnfjv6fz8fILB4ITv1y38fj/Nzc0R3de1AYfDYQAGBgbGXK+uriYUCpGQkEBycvKkzhIMBunp6ZnUY9ytXBuw3++nr6+PlpYWCgsLR6z19vayc+dOAHJycib9hZrf75/U/Vs3nv8f1wZcXFxMe3s7lZWVrFq1ivT0dACamprYvHkzoVAIiM4bGJE+PcrNufZFXCAQYM6cOZw5c4asrCyys7NJS0ujoKCAlJQUVq5cCYw8/xV7XBtwUlIS9fX1rF69mri4OLq6uvD5fBw4cIDa2lo6OjoABWyda08hADIyMqipqRl1+5UrV+jq6sLr9bJ48eIYTCYTxdUBX8/x48dxHIf09HSmT58+av2tt94CoK2tbcTXCxcuJD8/P3qDyk3dlQG3trYC1z992LBhw5hfl5SUcOjQoUmdTW6PAh6D4zjRHEfGwbUv4m7kZgGLHR5HDzdi2F35CCzuoYDFNAUspilgMU0Bi2kKWExTwGKaAhbTFLCYpoDFNAUspilgMU0Bi2kKWExTwGKaAhbTFLCYpoDFNAUspilgMU0Bi2kKWExTwGKaAhbTFLCYpoDFNAUspilgMU0Bi2kKWExTwGKaAhbTFLCYpoDFNAUspilgMU0Bi2kKWEz7L2LdDKR2vuO9AAAAAElFTkSuQmCC", - "text/plain": [ - "
" - ] - }, - "execution_count": 3, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "qc.draw(\"mpl\")" - ] - }, - { - "cell_type": "markdown", - "id": "ab5f4bc9-7d7c-4ee7-b1bc-70a313b4fe29", - "metadata": {}, - "source": [ - "回路命令オブジェクトには、より基本的な命令の観点から命令を記述する \"定義\" 回路が含まれます。 例えば、[X ゲート](/api/qiskit/qiskit.circuit.library.XGate)は、より一般的な単一量子ビットゲートである [U3 ゲート](/api/qiskit/qiskit.circuit.library.U3Gate)の特定のケースとして定義されています。" - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "id": "653e2427-e301-4d2f-84de-1959185ace8e", - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAKIAAABuCAYAAACk2MjUAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAHP0lEQVR4nO3dfUxV9x3H8fdFkQe9tDw03vrEg0CKCpjojHbaqpEsxNhaXdwW59rMpfujCk2sbH8sWbMmM2yaTkeTuSXdH3U1LC5tNmlamzkXte2GITp0LFgqKA933QVW5ILKlbM/2uFcLxQuD+fr8fP6i3DOub+v8Z177uWek+tzHMdBxGVxbg8gAgpRjFCIYoJCFBMUopigEMUEhSgmKEQxQSGKCQpRTFCIYoJCFBMUopigEMUEhSgmKEQxQSGKCQpRTFCIYoJCFBMUopigEMUEhSgmKEQxQSGKCQpRTFCIYoJCFBMUopigEMUEhSgmKEQxQSGKCQpRTFCIYoJCFBMUopgw3e0BvMxxHCL9N90eY0ymJyXg8/mmft0pX/E+Eum/yW8WftPtMcZke9MR4pMTp3xdnZrFBIUoJihEMUEhigkKUUxQiGKCQhQTFKJBudvW8kzHMXK3rY26fda8h3im4xirf/bc1A42iRSimKAQxQSFKCYoRDFBIYoJngsxFApRUVFBbm4uiYmJzJ8/n/LycsLhMDt37sTn81FVVeX2mPJ/PHUZ2Pnz5yktLSUYDDJz5kwWLVpEe3s7hw4doqmpia6uLgCWLl3q7qATxHGcoZ9X7vsO80uWE5+SzEBvPy3H3+fcS0cYHIi4OOHoeeYZMRQKsWnTJoLBIHv27KGjo4O6ujqCwSCVlZXU1NRQW1uLz+ejqKjI7XFHFLlxC4BpSQlRt09P/vT3tz/bD6Dh12/zxppyXs//Fr/f8AKpi7IoKtsy+cNOEM+EWFZWRmtrK7t27WL//v34/f6hbRUVFRQXFxOJRMjKyiIlJcXFSb9Y79WPAXgwb27U7Q/kzQPg+mf7AXzS2HrnanCfD2fQwZ/z8OQOOoE8EWJDQwPV1dVkZGSwb9++qPssW7YMgOLi4qkcLSad9R/R2/Yvsjd/maTZqXdti4ufTsG3S3EGB7l24txd2wp3bWb7h6/xjYuvkrY4k7//8vhUjj0unniNePToUQYHB9m+fTuzZs2Kuk9SUhJwb4To3B7kg+/9inWv7uXJkwe4/PpJrrcESXzoQbKfeJTURxZw4eDv6Glqv+u4+qo3qa96kwfy5pKzZQ39H3e79C8YO0+EePLkSQDWrVs37D6tra3AvREiQOsf63jriR9Q+Nxmcrc9TkKqn0jfTTovXuHUswdo/sP7wx77yeU2ui61sObnZbzz1Renbuhx8ESILS0tAGRmZkbdHolEOHv2LDC+EJcvX04wGBz1/vFOHD9kRczrdV5o4tSzB2I6Ni5+GikxvEbMz8tnwDcY05qBQIBz58598Y5ReCLEcDgMQH9/f9Tt1dXVhEIh/H4/2dnZMa8TDAZpa2sb9f4zfNNgdszLjVq8P5nM0hVcffuv3OrpI7Ugk+Lnt9J+6sKYH6u9o51bzu1JmHJknggxEAjQ3d1NXV0dq1atumtbR0cHe/fuBaCoqGhc9+wGAoEx7R/vxEFsTy5j4zjkbH2ML734NHEzpnMj1EPLW3/h/E+rx/xQcx6eM65nxFh5IsQNGzbQ0NBAZWUlJSUl5OfnA1BbW8uOHTsIhULA+P+QPdbTzkDfjSm5r3mgt58TX/vRhDxW4+VG3dccq4qKCtLT07l27RqLFy+msLCQvLw8VqxYQU5ODuvXrwfunTcq9yNPhDhv3jxOnz7Nxo0bSUxMpLm5mbS0NA4fPkxNTQ2NjY2AQrTME6dmgIKCAo4f//wfcHt7e2lubiYuLo4lS5a4MJmMhieeEUdy6dIlHMchLy+P5ORkt8eRYXg+xPr6ekCnZesUopjgmdeIw/FSiP7sAGsO7iYhzc/A9T7OlFfx78ZWt8eaEJ4P8b+fQ3vBoz/5Lo1H3uXD354ic+NKVh/cxfHS77s91oTwfIgWzUhJ5sk/vcy0xBn0tYeIS4jHv2A2Tcf+zHsv/CLqMYnpKaQXL+TE118CoKXmA1b+eCf+rADXm4f//DuWtdygEF1wq6ePj944zUD4Bn97+Rhz1hZTVLZlxDBmzs2g/5/dOLfvfPzW2xZi5tyMEUOMZS03eP7NilVpS7Lpqr8CQHrRQrouXvHEWrFSiC5JW5w1FER6UQ6d9SPHEW4LkTQ7Fd+0O/9ls+ZmEG4LTfhablCILkgOpIHj0Bf89K7CtIJMuv9xFYDVh3azoPTz1zDe6Oyhq/4KC7c+BkDmxpWEO7qGTsvDHTfSWpYoRBekLcm+6/R4qyfMI09/BYCM4hzC7Z1Rj3uv4jD5O0p46swhCnc/xZnnXxnaNtxxI61lic/535tjZUKN9TKwhPQUHn+lfOid8WQfF41bX2+hECfRVF2POJH0PStyX1OIYoJCFBP0GnES6UshR08higk6NYsJClFMUIhigkIUExSimKAQxQSFKCYoRDFBIYoJClFMUIhigkIUExSimKAQxQSFKCYoRDFBIYoJClFMUIhigkIUExSimKAQxQSFKCYoRDFBIYoJ/wEMO01TTmRMJQAAAABJRU5ErkJggg==", - "text/plain": [ - "
" - ] - }, - "execution_count": 4, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "# Draw definition circuit of 0th instruction in `qc`\n", - "qc.data[0].operation.definition.draw(\"mpl\")" - ] - }, - { - "attachments": {}, - "cell_type": "markdown", - "id": "ee893af1-db43-449f-bfc4-8f636bd98546", - "metadata": {}, - "source": [ - "命令と回路はいずれもビットと量子ビットの演算を記述するという点で似ていますが、目的が異なります。\n", - "\n", - "- 命令は固定として扱われ、そのメソッドは通常新しい命令を返します(元のオブジェクトを変更せずに)。\n", - "- 回路は多数のコードに対して構築されるように設計されており、[`QuantumCircuit`](/api/qiskit/qiskit.circuit.QuantumCircuit) メソッドは既存のオブジェクトを変更することがよくあります。\n", - "\n", - "このページの残りの部分では、量子回路の操作方法を説明します。" - ] - }, - { - "cell_type": "markdown", - "id": "ff4f08f3-48eb-454c-9647-2af505bf79bc", - "metadata": {}, - "source": [ - "## 回路の構築\n", - "\n", - "[`QuantumCircuit.h`](/api/qiskit/qiskit.circuit.QuantumCircuit#h) や [`QuantumCircuit.cx`](/api/qiskit/qiskit.circuit.QuantumCircuit#cx) などのメソッドは、回路に特定の命令を追加します。 より一般的に命令を回路に追加するには、[`append`](/api/qiskit/qiskit.circuit.QuantumCircuit#append) メソッドを使用します。 これは、命令と命令を適用する量子ビットのリストを取ります。 サポートされている命令のリストについては、[回路ライブラリー API ドキュメント](/api/qiskit/circuit_library)をご覧ください。" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "id": "66813cae-9841-47ea-96b7-8fd7b82e9759", - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAKIAAABuCAYAAACk2MjUAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAEgElEQVR4nO3dz0vbdxzH8VfSssYf8VBdl4mu1dmw2poIisPDGDo9uOJp0EspPbijWJiYP6CXLtBT6cXjTpKeBjNXWRHZIBIEcVJBiGj1y/iiF611RL87bbA27TRav+98eT6Ofj/x8z48+X4S9Yshz/M8AT4L+z0AIBEijCBEmECIMIEQYQIhwgRChAmECBMIESYQIkwgRJhAiDCBEGECIcIEQoQJhAgTCBEmECJMIESYQIgwgRBhAiHCBEKECYQIEwgRJhAiTCBEmECIMIEQYQIhwgRChAmECBMIESYQIkwgRJhAiDCBEGHCRb8HCDLP86SDA7/HOJlLlxQKhc59W0L8kA4OVLxz3+8pTuTis5+kSOTc9+VohgmECBMIESYQIkwgRJhAiDCBEGECIcIEQoQJhAgTCBEmECJMIESYELgQXddVKpVSW1ubIpGImpub9eDBA+3t7WlkZEShUEhPnz71e0y8IVB/BrawsKChoSE5jqOamhq1t7drc3NTT5480erqqra3tyVJnZ2d/g56Qs/dPzX426/6sT2hHz7/ouSaj355pm+vfKqfv/zqnKc7G4G5I7quq+HhYTmOo/HxcW1tbSmfz8txHKXTaWWzWeVyOYVCISUSCb/HxRsCE+LY2Jg2NjY0Ojqqx48fKxqN/nstlUopmUyqWCzq2rVrqqur83FSlBKIEJeXl5XJZNTQ0KBHjx6VXNPV1SVJSiaT5zkajikQ7xGnpqZ0dHSku3fvqra2tuSaqqoqSZUd4qvDQ7mV9gzMMQUixJmZGUlSX1/fO9dsbGxIquwQH75Y0sMXS36P8UEEIsS1tTVJ0tWrV0teLxaLmpubk3S6ELu7u+U4zrHXV4XD+qOzt+z93vT9Z636rrG55LWh35+fyR7xeFz7R0dlvTYWi2l+fr6s1wYixL29PUnS/v5+yeuZTEau6yoajaqlpaXsfRzH0cuXL4+9vvrCBamz7O3e0lZbq28+/uTsvmEJm5ubenV4+EH3KCUQIcZiMe3s7Cifz6u39793oK2tLU1MTEiSEonEqZ7ZjcViJ1pfFa68z4KNjY2nuiOWKxAhDgwMaHl5Wel0WoODg4rH45KkXC6ne/fuyXVdSaf/QfZJjx3v9euKe655ZWVFIZ5rLk8qlVJ9fb3W19d18+ZNdXR06Pr16+rp6VFra6v6+/slVfYHlaALRIhNTU2anZ3V7du3FYlEVCgUdPnyZU1OTiqbzWplZUUSIVoWiKNZkm7cuKHp6em3vr67u6tCoaBwOKxbt275MBmOIzAhvsvS0pI8z1M8Hld1dbXf45Tl64Yr+mv4znvX/N916wJxNL/P4uKiJI5l6wgRJhAiTAj8e8R/fg8N2wJ/R0RlIESYQIgwgRBhAiHCBEKECYQIEwgRJhAiTCBEmECIMCHkeZ7n9xBBxT+FPD5ChAkczTCBEGECIcIEQoQJhAgTCBEmECJMIESYQIgwgRBhAiHCBEKECYQIEwgRJhAiTCBEmECIMIEQYQIhwgRChAmECBMIESYQIkwgRJhAiDDhb1+BCUFmootuAAAAAElFTkSuQmCC", - "text/plain": [ - "
" - ] - }, - "execution_count": 5, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "from qiskit.circuit.library import HGate\n", - "\n", - "qc = QuantumCircuit(1)\n", - "qc.append(\n", - " HGate(), # New HGate instruction\n", - " [0] # Apply to qubit 0\n", - ")\n", - "qc.draw(\"mpl\")" - ] - }, - { - "cell_type": "markdown", - "id": "bbdbef08-07c0-4fb0-ab3e-ed6efb7a3dc3", - "metadata": {}, - "source": [ - "2 つの回路を結合するには、[`compose`](/api/qiskit/qiskit.circuit.QuantumCircuit#compose) メソッドを使用します。 これは、別の [`QuantumCircuit`](/api/qiskit/qiskit.circuit.QuantumCircuit) とオプションの量子ビットマッピングのリストを受け入れます。\n", - "\n", - "\n", - " [`compose`](/api/qiskit/qiskit.circuit.QuantumCircuit#compose) メソッドは、新しい回路を返し、それが作用するどの回路も**変更しません**。 [`compose`](/api/qiskit/qiskit.circuit.QuantumCircuit#compose) メソッドを呼び出している回路を変更するには、引数 `inplace=True` を使用します。\n", - "" - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "id": "29152dfa-2275-4bc4-aadb-82185b9e0e86", - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAALAAAAEvCAYAAADl8Et8AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAU7UlEQVR4nO3df1TUdb7H8ecgJqCQItZgIKKIAvLjXhCj33i0m2u63dOWbmTurlt7dsXYlsv0y2613Y1DerfWPHWsY3Xb3Tj0496zhnXrbLSJ3DK4rGVKoias/JitCUxENHC+949O3GUdSAZmps/wepzTH8zn+/3OW86zL1++DIPNsiwLEUOFBHoAkZFQwGI0BSxGU8BiNAUsRlPAYjQFLEZTwGI0BSxGU8BiNAUsRlPAYjQFLEZTwGI0BSxGU8BiNAUsRlPAYjQFLEZTwGI0BSxGU8BiNAUsRlPAYjQFLEZTwGI0BSxGU8BiNAUsRlPAYjQFLEZTwGI0BSxGU8BiNAUsRlPAYjQFLEYLDfQA4pllWZzs6Qv0GOcsIjwUm83m9+dVwN9SJ3v6mHTx84Ee45ydeO8WJkaM9/vz6hJCjKaAxWgKWIymgMVoCliMpoDFaApYjKaAxWgKWIymgMVoCliMpoDFaApYjDYmAna5XDgcDpKSkggLCyM+Pp6ioiK6u7tZu3YtNpuNLVu2BHpM8ULQB7xnzx7S09PZuHEjTqeT1NRUent72bx5MytXrqShoQGArKyswA7qI7+6PRvrw7X88Lo5Htff3vYdTtX9gLSkKX6ebHQEdcAul4vly5fjdDopLi6mvb2d+vp6nE4nZWVl7Nixg9raWmw2GxkZGYEe1yceeOLP7D3Ywa//ZSEXXRgxYO3nN6dx1YJY7n+inn2HOgM04cgEdcC33347LS0tFBYWsmnTJiIjI/vXHA4HmZmZ9PX1MXPmTKKiogI4qe/09rlZs2EnE8PHs+2By/sfT555Pr9an8N7H37Kxuf2BnDCkQnagBsaGqioqCAmJobS0lKP22RnZwOQmZk54PEjR46wYsUKIiMjmTJlCrfccguff/65z2f2lT83fE7ptg/4p0vjuPX6uYSE2Hj+V1dgs8GaDTtxu61Aj+i1oP2VovLyctxuNwUFBUyaNMnjNuHh4cDAgLu6usjPzyc6Opry8nJ6enpwOBxce+211NTUEBJi5v/zDz31Z1ZcNYNNxblkzZvKwvQL+MXG3TQ2fRHo0UYkaAOuqqoCID8/f9BtWlpagIEBP/XUU7S2trJz505mzJgBQFxcHJdccgnbt2/nuuuu893QPtTXZ7Fmw05qy1fws5UpVNc7eex3HwV6rBEL2oCbm5sBSEhI8Lje19dHTU0NMDDgyspKLrvssv54AfLy8pg1axavvvqqVwHn5OTgdDqHtY+b8RC9YdjPNZQvTnzJ6S/PcN74cbxWfRRrFK8c5iQnE0Kv1/vb7Xbq6uqGvV/QBtzd3Q1AT0+Px/WKigpcLheRkZEkJib2P75//35uuOGGs7ZPS0tj//79Xs3idDppbW0d3k628yDaq6cb1LO/vJzzxo9j/+FONtyWxYtvHOGTlq5ROXZ7WxtYX47KsYYjaAO22+10dnZSX19PXl7egLX29nZKSkoAyMjIGPB+Bp2dnUyePPms40VHR3PgwAGvZxkuN+Np9+rZPFt/Uyr5udO5Z3Mdf3i7mfqK63jml5dz1Y9eG5Xjx06fPuIzsDeCNuDFixfT0NBAWVkZS5YsITk5GYDa2lpWr16Ny+UC/PMDDG++NHaf7B2194VImhFFaVEO7+/9jLJnPsTttnjgyXpKixaw/qZUHn/Bu68sf+tgY6PeF2I0ORwOpk6dytGjR0lLSyM9PZ05c+aQm5vLrFmzWLRoEXD2LbQpU6Zw7Nixs47X0dFBdPQof033A5sNnnvoCsaF2Fiz4Z3+W2aPPLuX2o8+o7Qoh1lxkd9wlG+voA04Li6O6upqli1bRlhYGE1NTURHR7N161Z27NhBY2MjcHbAKSkpHq919+/fT0pKil9mH03Fa9K59B8u5F+fqOfjI/9/y8zttvjBfTsJHRfCM7+8fIgjfLsFbcDwVYyVlZV0dXXR1dXF7t27ue222+ju7qapqYmQkBDmz58/YJ9rr72WXbt29d9iA9i9ezeHDx9m+fLl/v4njMi8xPN5aN0/8u4Hn/Lv/3H2LbP9h4/xwJP1XJkTy/qbUgMw4cjZLGs0b6aYYffu3Vx88cXMnTuXjz/+eMDa8ePHSU9PJyYmhgcffJBTp07hcDiYNm0a7777rt9+kDGa18D+oPdG86O9e7/62f/fXz4AREVFUVVVRWxsLKtWreLHP/4xl1xyCZWVlcb+FC6YBe1diKEMFTDA7Nmzqays9OdI4qUxeUr5poDFHGPyDPz16yTEfGPyDCzBQwGL0RSwGE0Bi9EUsBhNAYvRFLAYTQGL0RSwGE0Bi9EUsBhtTL4e2AT6Y9/nRgGL0XQJIUZTwGI0BSxGU8BiNAUsRlPAYjQFLEZTwGI0BSxGU8BiNAUsRlPAYjQFLEZTwGI0BSxGU8BiNAUsRlPAYrQx+f7AJrAsi76e04Ee45yFhk8IyO/EKeBvqb6e0/x+9s2BHuOcFRz+HeMjwvz+vLqEEKMpYDGaAhajKWAxmgIWoylgMZoCFqMpYDGaAhajKWAxmgIWoylgMdqYCNjlcuFwOEhKSiIsLIz4+HiKioro7u5m7dq12Gw2tmzZEugxxQtBH/CePXtIT09n48aNOJ1OUlNT6e3tZfPmzaxcuZKGhgYAsrKyAjuoj1z1dDG3tFRwQe48j+sX5M7jlpYKrnq62M+TjY6gDtjlcrF8+XKcTifFxcW0t7dTX1+P0+mkrKyMHTt2UFtbi81mIyMjI9Dj+sS7dz3N6Y4uLntsHaHhEwasjQs/j8seW8fpji7evfOpAE04MkEd8O23305LSwuFhYVs2rSJyMjI/jWHw0FmZiZ9fX3MnDmTqKioAE7qO6c/P867jq1EJcaSfd/qAWs5995MVGIs/1OyldMdXQGacGSCNuCGhgYqKiqIiYmhtLTU4zbZ2dkAZGZm9j/2dfC5ublMmBCY3zIYbX/571oOvfQO89ZcTexl6QDY89KY98NrOPTinzj6Rm2AJ/Re0AZcXl6O2+2moKCASZMmedwmPDwcGBjwoUOHeOWVV7Db7SxYsMAvs/rD+xu2cbK9g0sf/RnhF07h0kd/xsn2DnZveCbQo41I0AZcVVUFQH5+/qDbtLS0AAMDvuKKK2hvb2f79u0sXrzYt0P60ZfHT1JT/CST4qbx3bc2MSl+Grt+8QS9XScDPdqIBG3Azc3NACQkJHhc7+vro6amBhgYcEhI0H5KaHvnAw789k3Cpp5P4+//SPvODwM90ogF7S91dnd3A9DT0+NxvaKiApfLRWRkJImJiT6dJScnB6fTOax9xlsh3E/uqM/yWV0jc1dfzWd1jaN63OQ5yfTa3F7vb7fbqaurG/Z+QRuw3W6ns7OT+vp68vLyBqy1t7dTUlICQEZGhs+/UXM6nbS2tg5rn/Ns4+BCHw3kA23tbXxpnfH78wZtwIsXL6ahoYGysjKWLFlCcnIyALW1taxevRqXywX45wcYdrt92PuMt0LA+xOa302PnT7iM7A3gjZgh8PBCy+8wNGjR0lLS2PevHmcOnWKQ4cOsXTpUmbOnMkbb7wx4PrXV7z50th78pRR7wvReLBR7wsxmuLi4qiurmbZsmWEhYXR1NREdHQ0W7duZceOHTQ2fnUN6I+AxXeC9gwMkJKSQmVl5VmPnzhxgqamJkJCQpg/f34AJpPREtQBD2bfvn1YlkVycjIRERFnrb/88ssA7N+/f8DHM2fOJCcnx3+D+sChF//EoRf/FOgxRs2YDHjv3r3A4JcPN9xwg8eP16xZw3PPPefT2WR4FLAHlmX5cxwZgaD9Jm4o3xSwmGNMnoG/fp2EmG9MnoEleChgMZoCFqMpYDGaAhajKWAxmgIWoylgMZoCFqMpYDGaAhajKWAxms3Sawe/lfTHvs+NAhaj6RJCjKaAxWgKWIymgMVoCliMpoDFaApYjKaAxWgKWIymgMVoCliMpoDFaApYjKaAxWgKWIymgMVoCliMpoDFaApYjKaAxWgKWIymgMVoCliMpoDFaApYjKaAxWgKWIymgMVoCliMpoDFaApYjKaAxWhjImCXy4XD4SApKYmwsDDi4+MpKiqiu7ubtWvXYrPZ2LJlS6DHFC+EBnoAX9uzZw9Lly7F6XQyceJEUlNTaWtrY/PmzRw+fJiOjg4AsrKyAjuoeMcKYp999pkVFxdnAVZxcbF1/Pjx/rWysjILsEJDQy2bzWZ98cUXAZxUvBXUAX//+9+3AKuwsNDjemZmpgVYiYmJfp5MRkvQXgM3NDRQUVFBTEwMpaWlHrfJzs4GIDMzs/+xl19+meuvv56EhAQiIiKYN28e9957LydOnPDL3DI8QRtweXk5brebgoICJk2a5HGb8PBwYGDAmzZtYty4cTz88MO8/vrr/PSnP+XJJ5/kmmuuwe12+2V2OXdB+01cVVUVAPn5+YNu09LSAgwM+NVXX2XatGn9H1955ZVMmzaNgoICdu3axRVXXOGjicUbQRtwc3MzAAkJCR7X+/r6qKmpAQYG/Lfxfi0nJweA1tZWr2bJycnB6XR6te9YYbfbqaurG/Z+QRtwd3c3AD09PR7XKyoqcLlcREZGkpiYOOSx3n77bQBSUlK8msXpdHodvwwtaAO22+10dnZSX19PXl7egLX29nZKSkoAyMjIGPJPpLa2tnLfffdxzTXXeH2v2G63e7XfWOL15yjQt0F8Zf369RZgxcfHWwcOHOh//P3337fmzp1rjR8/3gKsdevWDXqMrq4uKzs727roooustrY2f4wtwxS0dyEcDgdTp07l6NGjpKWlkZ6ezpw5c8jNzWXWrFksWrQIGHj9+7d6enpYvnw5R44c4c033yQ2Ntaf48s5CtqA4+LiqK6uZtmyZYSFhdHU1ER0dDRbt25lx44dNDY2Ap4D7u3t5Xvf+x51dXW8/vrrpKam+nt8OUdj8q/VnzhxgqioKGw2G11dXURERPSvud1uVq1axfbt23nttdf6z9Ty7RS038QNZd++fViWRXJy8oB4AdatW8dLL73EXXfdRUREBO+9917/2uzZsz3eZpMACvA1eEA8/fTTFmDdeOONZ60lJCRYgMf/nn32Wf8PK0Mak2fgvXv3Ap6vf5uamvw8jYxE0H4TN5ShAhazjMlv4iR4jMkzsAQPBSxGU8BiNAUsRlPAYjQFLEZTwGI0BSxGU8BiNAUsRlPAYjQFLEZTwGI0BSxGU8BiNAUsRlPAYjQFLEZTwGI0BSxGU8BiNAUsRlPAYjQFLEZTwGI0BSxGU8BiNAUsRlPAYjQFLEYbk29wbQLLglNnAj3FuQsbB0P8uT2fUcDfUqfOwOWvBXqKc1f9HQgPQE26hBCjKWAxmgIWoylgMZoCFqMpYDGaAhajKWAxmgIWoylgMZoCFqMpYDGaAhajjYmAXS4XDoeDpKQkwsLCiI+Pp6ioiO7ubtauXYvNZmPLli2BHlO8EPQvp9yzZw9Lly7F6XQyceJEUlNTaWtrY/PmzRw+fJiOjg4AsrKyAjuoj/zvd8/tRbrJ//Y2kelX+XYYHwjqgF0uF8uXL8fpdFJcXMz9999PZGQkAI888gh33nknoaGh2Gw2MjIyAjytb8y847eDrp12fkJ7+f2ERsUQdtFcP041emyWZVmBHsJXbrrpJsrLyyksLOTxxx8/az0rK4sPPviAxMREPvnkkwBMOLiePt++oN19+iQfO/Lo+cs+5jz4JlEZi0Z0PL2gfZQ1NDRQUVFBTEwMpaWlHrfJzs4GIDMzs/+x6upqFi9eTGxsLBMmTCAuLo6VK1fS0NDgl7n9pWnzj+hp+pC4NWUjjjeQgvYSory8HLfbTUFBAZMmTfK4TXh4ODAw4M7OTtLT0/nJT37CBRdcQEtLC6WlpeTl5fHRRx8RFxfnl/l9yfmfG+ncVcGUy1Zy4XXFgR5nRII24KqqKgDy8/MH3aalpQUYGPCKFStYsWLFgO0WLFjA3LlzeeWVVygqKvLBtP5zfM8faf3t3YQnpJOwflugxxmxoA24ubkZgISEBI/rfX191NTUAAMD9mTq1KkAhIZ69+nKycnB6XQOax/beeFc+NhBr55vMKf/2sQnm1YxLjyS2Xf/F+PCJo7asZOT52B92eP1/na7nbq6umHvF7QBd3d3A9DT4/mTWlFRgcvlIjIyksTExLPWz5w5g9vtprm5mbvvvhu73c6NN97o1SxOp5PW1tZh7RMyIYILvXo2z9ynT3K49J85091J0oZKJsTOHsWjQ1tbG+7TJ0f1mOciaAO22+10dnZSX19PXl7egLX29nZKSkoAyMjIwObhDQ2uvPLK/jN0UlISVVVVTJs2zetZhst2XrhXzzWY5i230nNkD9MLHuL87KWjemyA6dOnj/gM7I2gDXjx4sU0NDRQVlbGkiVLSE5OBqC2tpbVq1fjcrmAwX+AsW3bNo4dO8aRI0fYuHEjV199NTU1NcyYMWPYs3jzpXE0b6P99Q+/pmPnC5y/8LvYb7h3dA76dxobD+o22mhyOBxMnTqVo0ePkpaWRnp6OnPmzCE3N5dZs2axaNFXt44Gu/6dO3cuCxcuZNWqVbz11lt0dXXxyCOP+POfMCq6PnybluccTLhoLok/f97jVxuTBe0ZOC4ujurqakpKSnjnnXdoamoiNTWVrVu3cuuttzJ79lfXgN/0DRzA5MmTSUpK4tChQ74ee1T1drTzycYbwX2GKXnXc+z97YNuGz4zg4iZ5v00MmgDBkhJSaGysvKsx0+cOEFTUxMhISHMnz//G4/z6aefcuDAARYuXOiLMX3mVOsB+o5/dankfPnhIbeNXXW/AjbFvn37sCyL5ORkIiIiBqzdfPPNJCUlkZWVxeTJkzl48CCPPvoooaGh3HHHHQGa2DuR6VeR/YegfaUAMEYD3rt3L+D58uHiiy/m+eef5ze/+Q2nTp0iPj6e/Px87rnnnkHvKUvgKOC/U1hYSGFhob9HEi8F7V2IoQwVsJhlTJ6Bv36dhJhvTJ6BJXgoYDGaAhajKWAxmgIWoylgMZoCFqMpYDGaAhajKWAxmgIWowX1W0uZTH/s+9woYDGaLiHEaApYjKaAxWgKWIymgMVoCliMpoDFaApYjKaAxWgKWIymgMVoCliMpoDFaApYjKaAxWgKWIymgMVoCliMpoDFaApYjKaAxWgKWIymgMVoCliMpoDFaP8Hhcx4ty6sm5cAAAAASUVORK5CYII=", - "text/plain": [ - "
" - ] - }, - "execution_count": 6, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "qc_a = QuantumCircuit(4)\n", - "qc_a.x(0)\n", - "\n", - "qc_b = QuantumCircuit(2, name=\"qc_b\")\n", - "qc_b.y(0)\n", - "qc_b.z(1)\n", - "\n", - "# compose qubits (0, 1) of qc_a to qubits (1, 3) of qc_b respectively\n", - "combined = qc_a.compose(qc_b, qubits=[1, 3])\n", - "combined.draw(\"mpl\")" - ] - }, - { - "cell_type": "markdown", - "id": "d4529506-8397-4208-9cfd-31e1a1978741", - "metadata": {}, - "source": [ - "回路をまとめておくために、回路を命令にコンパイルすることも可能です。 [`to_instruction`](/api/qiskit/qiskit.circuit.QuantumCircuit#to_instruction) メソッドを使って回路を命令に変換してから、他の命令と同様にこれを別の回路にアペンドできます。 以下のセルに描画される回路は、機能的には、前のセルに描画された回路と同じです。" - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "id": "81b682dd-45cb-4492-809e-d9e8ebbf5600", - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAPEAAAEvCAYAAACUiCfiAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAY+ElEQVR4nO3df1yUdb738degKKCQIeZgiKA4BsiPk4hipdHibhzDbU+/3NCstXbveyPdvb3lbJ1a+/FoiXLPnvV4Og/3PPpxemxx2OzsnUHl3ie6lagMbsI1JVESE5jJJrAAQUHm/qNb1gnUnAWG78X7+Zde32vm+oz18rrmB6PN4/F4EBFjBfh7ABH56yhiEcMpYhHDKWIRwyliEcMpYhHDKWIRwyliEcMpYhHDKWIRwyliEcMpYhHDKWIRwyliEcMpYhHDKWIRwyliEcMpYhHDKWIRwyliEcMpYhHDKWIRwyliEcMpYhHDKWIRwyliEcMpYhHDKWIRwyliEcMpYhHDKWIRwyliEcMpYhHDKWIRwyliEcMpYhHDKWIRw4319wAyMnk8Hk509vh7jIsSEjwWm83m7zGGnSKWAZ3o7GHiwhf8PcZFaX//DiaEBPp7jGGny2kRwyliEcMpYhHDKWIRwyliEcMpYhHDKWIRwyliEcMpYhHDKWIRwyliEcMpYhHDKWIRw42KiN1uN/n5+cTFxREUFMT06dNZt24dHR0drFmzBpvNxpYtW/w9pohPLB9xTU0NSUlJPPXUU7hcLhISEuju7mbz5s3cdttt1NbWApCamurfQS3q8bXz8Px5DXfdOHvA9bef+Vu6qu4kMe7SYZ7MOiwdsdvtJicnB5fLxfr163E6nVRXV+NyuSgsLKS0tJTKykpsNhvJycn+HteSHn76Q/YebOEf/+cCLp8a4rX2s5WJXDs/ko1PV7PvUKufJjSfpSNeu3YtjY2N5OXlsWnTJkJDQ/vW8vPzSUlJoaenh5iYGMLCwvw4qXV19/Sy+sFdTAgO5JmHr+nb7oi5hMfvS+P9Px/jqef3+nFC81k24traWoqLi4mIiKCgoGDAfebNmwdASkqK1/bDhw+zfPlyQkNDufTSS7njjjv44osvhnxmq/qw9gsKntnD966K4p6b5hAQYOOFxxdjs8HqB3fR2+vx94hGs+zX8xQVFdHb20tubi4TJ04ccJ/g4GDAO+K2tjYyMzMJDw+nqKiIzs5O8vPzueGGG6ioqCAgwLJ/7w2px373IcuvjWbT+nRSr5jMgqTL+B9P7aau4Ut/j2Y8y0ZcVlYGQGZm5jn3aWxsBLwj/t3vfkdTUxO7du0iOjoagKioKBYtWsT27du58cYbh25oC+vp8bD6wV1UFi3np7fFU17t4p9+/5G/x7IEy0Z85MgRAGbMmDHgek9PDxUVFYB3xCUlJVx99dV9AQNkZGQwc+ZMXnvtNZ8iTktLw+VyXfTt/KmXQAh/cFDv88v2U5w8dZpxgWN4vfwonkG+ip7tcBBA9+De6TCx2+1UVVX5dFvLRtzR0QFAZ2fngOvFxcW43W5CQ0OJjY3t275//35uueWWfvsnJiayf/9+n2ZxuVw0NTX5dFu/sY2D8MG9y+cevYZxgWPYX9/Kgz9O5Q87DvNJY9ug3b+zuRk8pwbt/kxh2Yjtdjutra1UV1eTkZHhteZ0OtmwYQMAycnJXt9V3NrayqRJk/rdX3h4OAcOHPB5FtP0EohzEO/vvtsTyEyfxgObq3j17SNUF9/Is49ew7U/en3QjhE5bZrRZ2JfWTbirKwsamtrKSwsZOnSpTgcDgAqKytZtWoVbrcbGJ4Pefh6meRPHSe6B+17p+OiwyhYl8YHez+n8Nk/09vr4eF/raZg3Xzuuz2Bf37JtyucbzpYV6fvnbaS/Px8Jk+ezNGjR0lMTCQpKYnZs2eTnp7OzJkzue6664D+by9deumlHD9+vN/9tbS0EB4+yNeXo4DNBs8/tpgxATZWP7iz7+2kJ5/bS+VHn1OwLo2ZUaEXuBc5H8tGHBUVRXl5OcuWLSMoKIiGhgbCw8PZunUrpaWl1NXVAf0jjo+PH/C57/79+4mPjx+W2a1k/eokrvqbqfzy6Wo+PvyXt5N6ez3c+dAuxo4J4NlHrznPPciFWDZi+DrIkpIS2traaGtrY/fu3fz4xz+mo6ODhoYGAgICmDt3rtdtbrjhBt55552+t58Adu/eTX19PTk5OcP9EIx2RewlPHbvlby35xi//vf+byftrz/Ow/9azZK0SO67PcEPE1qDzeMZ7Bf6R77du3ezcOFC5syZw8cff+y19tVXX5GUlERERASPPPIIXV1d5OfnM2XKFN57771R82GPwXxOPFz0bzGNInv3fv1Z3W9eSgOEhYVRVlZGZGQkK1as4O6772bRokWUlJSMmoDFLJZ9dfp8zhcxwKxZsygpKRnOkUR8NipPLReKWMQko/JMfOZz1SJWMCrPxCJWoohFDKeIRQyniEUMp4hFDKeIRQyniEUMp4hFDKeIRQyniEUMp4hFDDcqf55YLszj8XCis8ffY1yUkOCxXl96OFooYhHD6XJaxHCKWMRwiljEcIpYxHCKWMRwiljEcIpYxHCKWMRwiljEcIpYxHCKWMRwiljEcIpYxHCKWMRwiljEcIpYxHCKWMRwiljEcKPy3yce7TweDz2dJ/09xrAbGzzekt/BpYhHoZ7Ok7w4a6W/xxh2ufW/JzAkyN9jDDpdTosYThGLGE4RixhOEYsYThGLGE4RixhOEYsYThGLGE4RixhOEYsYThGLGE4RixhuVETsdrvJz88nLi6OoKAgpk+fzrp16+jo6GDNmjXYbDa2bNni7zFFfGL5n2KqqakhOzsbl8vFhAkTSEhIoLm5mc2bN1NfX09LSwsAqamp/h10pLHZSLhnGXNWLWVi1BS6vviKw6+9S82TxaPyxxhHMkufid1uNzk5ObhcLtavX4/T6aS6uhqXy0VhYSGlpaVUVlZis9lITk7297gjSvqjd5L+yJ0cr2vk/QefpaHkPRLW/C3feeEXYMGfyTWZpc/Ea9eupbGxkby8PDZt2uS1lp+fz0svvcSePXuIjY0lLCzMT1OOPJMcUcT/KJuG0vf5P3f/5c+t7dNjLHx8DbE3XsXhP77jxwnlbJY9E9fW1lJcXExERAQFBQUD7jNv3jwAUlJS+radiT49PZ3x4635TRAXEvuDq7EFBLD/30q9th988b/oPtHFrJsW+2kyGYhlIy4qKqK3t5fc3FwmTpw44D7BwcGAd8SHDh3ilVdewW63M3/+/GGZdaSJSI2j9/Rp3B8e9Np++mQ3LR81EJE6y0+TyUAsG3FZWRkAmZmZ59ynsbER8I548eLFOJ1Otm/fTlZW1tAOOUKFTL2Uky1t9J7q6bd2wtVC0ORLCAi09DMxo1g24iNHjgAwY8aMAdd7enqoqKgAvCMOCLDsH8m3NiZ4PKdPdQ+4dvrk19vHBo8bzpHkPCz712lHRwcAnZ2dA64XFxfjdrsJDQ0lNjZ2SGdJS0vD5XIN6TEuRqAngI2kn3P9dOdJAidcMuDamPGBAPR0nhqS2YaSY7aDbluvv8cYkN1up6qqyqfbWjZiu91Oa2sr1dXVZGRkeK05nU42bNgAQHJy8pC/eOVyuWhqahrSY1yMcbYxMPXc6yc+a+USRxQB48b2u6QOsYfT9cWX9Hb3v9Qe6ZqdzZzynPb3GIPOshFnZWVRW1tLYWEhS5cuxeFwAFBZWcmqVatwu93A8HzIw263D/kxLkagJwDOc0Jy1xzi8mtTifib2RzbXdu3fcz4QMLnxvDZ+7XnvvEINi1y2og+E/vKshGfeR/46NGjJCYmcsUVV9DV1cWhQ4fIzs4mJiaGHTt2eD0fHiq+XiYNle4TXef93unDr75L8tq/I+GeZV4Rz87NIjAkiE/+c9dwjDno6g7W6XunTRIVFUV5eTnLli0jKCiIhoYGwsPD2bp1K6WlpdTV1QEMS8SmOf7xp3z83JvELFtI5jMbmH37d0jbeAfpD6/G9e4+PvlPfdBjJLHsmRggPj6ekpKSftvb29tpaGggICCAuXPn+mGyke+DXz5P+9HPcazMIuo7V9LV8hW1z77Bh08Wg8fj7/HkLJaO+Fz27duHx+PB4XAQEhLSb33btm0A7N+/3+v3MTExpKWlDd+gfuTp7WXf1tfYt/U1f48iFzAqI967dy9w7kvpW265ZcDfr169mueff35IZxO5WIp4AB5dLopBLPvC1vlcKGIRk4zKM/GZz1WLWMGoPBOLWIkiFjGcIhYxnCIWMZwiFjGcIhYxnCIWMZwiFjGcIhYxnCIWMZwiFjGcIhYxnCIWMZwiFjGcIhYxnCIWMZwiFjGcIhYxnCIWMZwiFjGcIhYxnCIWMZwiFjGcIhYxnCIWMZwiFjGcIhYxnCIWMZwiFjGcIhYxnCIWMZwiFjGcIhYxnCIWMZwiFjGcIhYxnCIWMZwiFjGcIhYxnCIWMZwiFjGcIhYxnCIWMZwiFjGcIhYxnCIWY93p3MbV/3Svv8fwu1ERsdvtJj8/n7i4OIKCgpg+fTrr1q2jo6ODNWvWYLPZ2LJli7/HFPHJWH8PMNRqamrIzs7G5XIxYcIEEhISaG5uZvPmzdTX19PS0gJAamqqfwcV8ZGlz8Rut5ucnBxcLhfr16/H6XRSXV2Ny+WisLCQ0tJSKisrsdlsJCcn+3tcEZ9Y+ky8du1aGhsbycvLY9OmTV5r+fn5vPTSS+zZs4fY2FjCwsL8NKX5QqZNZv7G1Vx+bQrYbHz23n4++OVzfO/ljbQf/Zw3b9rotb99USKJ/305U650EBgynhOfteKs+Ij/+/jvOdnSdtHHj7wmiSv//odcmjCD7rYTHN7+LtUFRfSc6BqshziiWTbi2tpaiouLiYiIoKCgYMB95s2bx549e0hJSenbtm3bNoqKiqiqquLzzz8nOjqam266ifvvv5+JEycO1/jGGBcWQvYfH2XCtAgOvPAnjtc1Ys9I4HuvPMzYoHH99nesWkrGE/dwwtnCgRd20N7oZuLlEUxfOo8JkZMvOuLwpJnMuGEhdS++xaGXdxJ51VwS7l7GpDnR/Om2R8HjGayHOmJZNuKioiJ6e3vJzc09Z3zBwcEAXhFv2rSJ6OhofvWrXxEVFUVNTQ2PPPIIO3fuZNeuXQQEWPoZyEWbe++NhEZP5Z2f/QuHit8G4MC/7yD90TtJuOcGoLFv35DIcBY89iO+PNTE6zn/wKmvTvStffjkf4DNdtHHD0+YQdldhXz6ZuVfjv3YXSTcvYzY5Ys4/GrFX/cADWDZiMvKygDIzMw85z6NjV//D3Z2xK+99hpTpkzp+/2SJUuYMmUKubm5vPPOOyxevHiIJjZT9PXz6TzWSv3LO722793yv/5/xH8Rk7OIMeMDqfn1y14B9/HhrPnloaa+gPuO/c9/JOHuZURnpytikx05cgSAGTNmDLje09NDRcXX/4HPjvjsgM9IS0sDoKmpyadZ0tLScLlcPt12KAR6AthI+qDcV2j0VNx76vH09npt7zx2nJPH2722hcXaAWj56PCgHBvg+MHGftvOHDt0xlSv7Y7ZDrptvf32HwnsdjtVVVU+3dayEXd0dADQ2dk54HpxcTFut5vQ0FBiY2PPe19vv/31ZWJ8fLxPs7hcLp//AhgK42xjYOqF97OaZmczpzyn/T3GoLNsxHa7ndbWVqqrq8nIyPBaczqdbNiwAYDk5GRs53ku1tTUxEMPPcT111/v83vJdrvdp9sNlUBPAAzSCant088Ii7VjCwjwOhsHXzaJ8ZO8X4v46hMnAOGJMX2//mtNmh3Vb9uZYzcf+cxr+7TIaSP6TOwry0aclZVFbW0thYWFLF26FIfDAUBlZSWrVq3C7XYD5/+QR3t7O9///vcZN24czz77rM+z+HqZNFS6T3Tx4qyVg3Jfn+6oJPm+v2PWLUv6XtgCSMq7sd++DSXvMe8fVpKy/laa3q6hu33gq6SLcUnc5URfP9/refGZY3/65gde+9YdrCMwJOivPuZIY9mIz7wPfPToURITE7niiivo6uri0KFDZGdnExMTw44dO7yeD5+ts7OTnJwcDh8+THl5OZGRkcP8CMzw0b+8yswfXMOiTf+NyckzOX7gKPZFiUxJc9D1xZde+55wtvDBL59jYcHdfP/tf6T+5Z20N35OiD2c6OvnU/Hzp2nZ13BRx2/Zf4Rrtqyl7sW3+OoTJ5FXzSUmJwPXu/s4/Oq7g/hIRy7Lvl8SFRVFeXk5y5YtIygoiIaGBsLDw9m6dSulpaXU1dUBDBhxd3c3N998M1VVVbzxxhskJCQM9/jGOPVlB2/c+BCfvvkBs25ZwrwHVzI2eDw7bnqYnhMn++1/4IU/8b9vf5yv6puJX5PNwsfXEHfrtXzx50/oaHZf9PFb9n5C2V1PclnaHOZvvIOpC+OpfeZ1/uuOglHxHjGAzeMZJY/0LO3t7YSFhWGz2WhrayMkJKRvrbe3lxUrVrB9+3Zef/11rrvuOj9OOjQG83L6fG7+4OkBP7HlL7n1v9fltFXs27cPj8eDw+HwChjg3nvv5eWXX+YXv/gFISEhvP/++31rs2bNGvAtKBF/GpUR7927Fxj4UvqNN94A4IknnuCJJ57wWnvuuee48847h3y+0Wz85LALfiquu6Nr1Hwu+ttQxN/Q0NAwzNPI2XLeeIKJ0y877z41m/5Aza//MEwTjXyKWIbMtvSfXvRtdt37W8YM8IMTZ2v7xvu/o92ojPjM56pl5DlWecDfIxjHsm8xiYwWiljEcIpYxHCKWMRwiljEcIpYxHCKWMRwiljEcIpYxHCKWMRwiljEcIpYxHCKWMRwiljEcIpYxHCKWMRwiljEcIpYxHCKWMRwiljEcIpYxHCKWMRwiljEcIpYxHCKWMRwiljEcIpYxHCKWMRwiljEcIpYxHCKWMRwiljEcIpYxHCKWMRwiljEcIpYxHCKWMRwiljEcIpYxHCKWMRwiljEcIpYxHCKWMRwiljEcIpYxHCjImK3201+fj5xcXEEBQUxffp01q1bR0dHB2vWrMFms7FlyxZ/jynik7H+HmCo1dTUkJ2djcvlYsKECSQkJNDc3MzmzZupr6+npaUFgNTUVP8OOsIk3fcDJifNZHLyTEJnTKX96DG2pf/U32PJACx9Jna73eTk5OByuVi/fj1Op5Pq6mpcLheFhYWUlpZSWVmJzWYjOTnZ3+OOKPMeyMV+1VzaGlycbG3z9zhyHpaOeO3atTQ2NpKXl8emTZsIDQ3tW8vPzyclJYWenh5iYmIICwvz46Qjz7YFP+U/Eu/iTyse48Rnrf4eR87DshHX1tZSXFxMREQEBQUFA+4zb948AFJSUvq2lZeXk5WVRWRkJOPHjycqKorbbruN2traYZl7pGj/9Ji/R5BvybLPiYuKiujt7SU3N5eJEycOuE9wcDDgHXFraytJSUn85Cc/4bLLLqOxsZGCggIyMjL46KOPiIqKGpb5Rb4ty0ZcVlYGQGZm5jn3aWxsBLwjXr58OcuXL/fab/78+cyZM4dXXnmFdevWDcG0Ir6zbMRHjhwBYMaMGQOu9/T0UFFRAXhHPJDJkycDMHasb39caWlpuFwun247FAI9AWwk3d9jDDvHbAfdtl5/jzEgu91OVVWVT7e1bMQdHR0AdHZ2DrheXFyM2+0mNDSU2NjYfuunT5+mt7eXI0eOcP/992O327n11lt9msXlctHU1OTTbYfCONsYmOrvKYZfs7OZU57T/h5j0Fk2YrvdTmtrK9XV1WRkZHitOZ1ONmzYAEBycjI2m63f7ZcsWdJ3po6Li6OsrIwpU6b4PMtIEugJgJF5QhpS0yKnjegzsa8sG3FWVha1tbUUFhaydOlSHA4HAJWVlaxatQq32w2c+0MezzzzDMePH+fw4cM89dRTfPe736WiooLo6OiLnsXXy6Sh0n2iixdnrfT3GMOu7mAdgSFB/h5j0Fn2Lab8/HwmT57M0aNHSUxMJCkpidmzZ5Oens7MmTO57rrrgHM/H54zZw4LFixgxYoVvPXWW7S1tfHkk08O50MQ+VYseyaOioqivLycDRs2sHPnThoaGkhISGDr1q3cc889zJo1C7jwi1oAkyZNIi4ujkOHDg312CPGzJsXMzHq66cPQZPDCAgcS/LPbgKgvfFzPtm2y5/jyVksGzFAfHw8JSUl/ba3t7fT0NBAQEAAc+fOveD9HDt2jAMHDrBgwYKhGHNEcvzwO9gXJXptu/LvfwiA6919ingEsXTE57Jv3z48Hg8Oh4OQkBCvtZUrVxIXF0dqaiqTJk3i4MGD/OY3v2Hs2LH8/Oc/99PEw+/Nmzb6ewT5lkZlxHv37gUGvpReuHAhL7zwAr/97W/p6upi+vTpZGZm8sADD5zzPWcRf1LE35CXl0deXt5wjyTiM8u+On0+54tYxDSj8kx85nPVIlYwKs/EIlaiiEUMp4hFDKeIRQyniEUMp4hFDKeIRQyniEUMp4hFDKeIRQyniEUMZ/N4PB5/DyHDy+Px0NN50t9jDLuxweMH/FJE0yliEcPpclrEcIpYxHCKWMRwiljEcIpYxHCKWMRwiljEcIpYxHCKWMRwiljEcIpYxHCKWMRwiljEcIpYxHCKWMRwiljEcIpYxHCKWMRwiljEcIpYxHCKWMRwiljEcIpYxHCKWMRwiljEcP8PELpos2Sw43IAAAAASUVORK5CYII=", - "text/plain": [ - "
" - ] - }, - "execution_count": 7, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "inst = qc_b.to_instruction()\n", - "qc_a.append(inst, [1, 3])\n", - "qc_a.draw(\"mpl\")" - ] - }, - { - "cell_type": "markdown", - "id": "6e81c46b-a2d2-430e-9d3d-73e5030e3548", - "metadata": {}, - "source": [ - "回路がユニタリーである場合は、[`to_gate`](/api/qiskit/qiskit.circuit.QuantumCircuit#to_gate) メソッドを使ってこれを [`Gate`](/api/qiskit/qiskit.circuit.Gate) に変換できます。 [`Gate`](/api/qiskit/qiskit.circuit.Gate) オブジェクトは、量子制御を追加する [`control`](/api/qiskit/qiskit.circuit.Gate#control) メソッドなど、いくつかの追加特徴を持つ特定のタイプの命令です。" - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "id": "ed362e64-d6a4-4dfd-a5cf-5e6bdc7a81b5", - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXIAAAEvCAYAAABYNEogAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAchElEQVR4nO3df1zV9f338edBUEAhU8yj4Q8EMUGQEn/Q+jEbVpRa+5qrTa0253ZtkWyXN+jHavbjthHOfduc2/ey6+rHupZelG0rtXLXskuRsnAM5w/yB4p5gJOdwAKEBM+5/vAm6wzUgZzzOe8Pj/s/W5/P55zzwtubh5/z4cPR4fP5fAIAGCvM6gEAABeHkAOA4Qg5ABiOkAOA4Qg5ABiOkAOA4Qg5ABiOkAOA4Qg5ABiOkAOA4Qg5ABiOkAOA4Qg5ABiOkAOA4Qg5ABiOkAOA4Qg5ABiOkAOA4Qg5ABiOkAOA4Qg5ABiOkAOA4Qg5ABiOkAOA4Qg5ABiOkAOA4Qg5ABiOkAOA4Qg5ABiOkAOA4Qg5ABiOkAOA4Qg5ABiOkAOA4Qg5ABiOkAOA4Qg5ABgu3OoBEJp8Pp9OtrRbPUa3REeFy+FwWD0GEHSEHF062dKuQTNetHqMbmnacbcGRkdYPQYQdFxaAQDDEXIAMBwhBwDDEXIAMBwhBwDDEXIAMBwhBwDDEXIAMBwhBwDDEXIAMBwhBwDDEXIAMBwhBwDD9YmQezweFRQUKCkpSZGRkRo1apTy8vLU3NysxYsXy+FwaPXq1VaPCdhee+sptdY36vSpNqtHsRXbf4xtRUWFcnJy5Ha7NXDgQKWkpKi2tlarVq1SVVWV6uvrJUkZGRnWDmpTP1s6RQ9/N0Pf+ek2Pf/ng532v/PsLcqafJmm3PWa9h5qsGBCBFr7yS905LXt+vCFzfr0H4c7tg+fPlET7r1JY26Zrn79+fjhi+Hw+Xw+q4cIFI/HoyuvvFIul0vLli3T8uXLFRMTI0lasWKFHnjgAYWHh+v06dM6ceKEYmNjLZ44dDSfbOuVzyOPCA/T34pv06jhAzVp3h9V8/HJjn0/Wpiqpwtm6MFflanouX9c9GvxeeSh59N/HNZf7y5Uy8fn/ks6dtwIZf/hYcUmjAjiZPZi60srS5culcvlUm5urlauXNkRcUkqKCjQ5MmT1d7errFjxxLxAGlr9+qeR7ZpYFSEnn3s2o7tyWMv0c/uz9SOfxzXL17YbeGECJT6fdV6647l5424JH1+uE5v3v6omo59EqTJ7Me2Ia+srFRxcbHi4uJUWFjY5TFTpkyRJE2ePNlv+5EjRzR37lzFxMTo0ksv1d13361PP/004DPb1d8rP1Xhs7t001fitWTeBIWFOfTiz66TwyHd88g2eb22fVPYZ/l8Pm37wa/U1tjybx3fcvyESv/7bwM8lX3ZNuTr1q2T1+vVggULNGjQoC6PiYqKkuQf8sbGRs2cOVMul0vr1q3TM888o5KSEs2ePVterzcos9vRk8/8XRUffqqVy6bpNw9laXraZfrJb/6mA9WfWT0aAsD97l6dOODq1mPqtu/p9mNwhm1DvmXLFknSzJkzz3mMy3Vm0Xw55M8884xqamr05z//WbNnz9b8+fO1du1a7dixQ6+//npgh7ax9naf7nlkmyIH9NMP75yoknK3fvWHPVaPhQDZ/7//0sPH/d9enqRvsO1dK0ePHpUkjRkzpsv97e3tKi0tleQf8o0bN+qaa67R6NGjO7ZlZWVp3Lhx2rBhg26//fZuz5KZmSm3293tx1nJqwhpyCO9+pyfNZ3SF6dOq39EP71Rcky9/WP28cnJChO3tYWC3NPpciq624/b8L9e0rznHw3ARKHP6XRq586dPXqsbUPe3NwsSWpp6foaXXFxsTwej2JiYpSQkNCxfd++fZo/f36n41NTU7Vv374ezeJ2u1VTU9Ojx1rG0V8a0rtP+fwT16p/RD/tq2rQI9/L0Mubj+iwq7HXnr+utlbyneq158NFiEvtUV3aT7Wppt6w75UQYNuQO51ONTQ0qLy8XFlZWX776urqlJ+fL0lKT0+Xw+Ho2NfQ0KDBgwd3er4hQ4Zo//79PZ7FNF5FqK4Xn+/+b6Vo5rSRenjVTr32zlGVF9+u5564Vl/9zhu99hojRo7kjDxEnDrds8ed7h+myy+/vHeHMcTFdMK2Ic/OzlZlZaWKioo0a9YsJScnS5LKysq0aNEieTweScH5RaCevl2yUm/dRy5JSaNjVZiXqQ92f6Ki5/4hr9enx/6rXIV5U3X/t1L0m7U9e6fzrw4eOMB95CFi7//YoLLHf9/tx/3gd0/qF1+/JgAT2Zttf9hZUFCgoUOH6tixY0pNTVVaWprGjx+vadOmady4cbrhhhskdb718NJLL9WJEyc6PV99fb2GDOnlaw19gMMhvfDkdeoX5tA9j2ztuNVwxfO7VbbnExXmZWpcfMwFngWmSbrzq+o3oHt/qUbGXaIxt0wP0ET2ZtuQx8fHq6SkRLfeeqsiIyNVXV2tIUOGaM2aNdq0aZMOHDggqXPIJ06c2OW18H379mnixIlBmd1Olt2Tpq9cOVw//V25Pjzyz1sNvV6f7n10m8L7hem5J649zzPARAMujdGk3Nu79Zgr8+/sdvxxhm1DLp2J8saNG9XY2KjGxka9//77+t73vqfm5mZVV1crLCxMkyZN8nvM7NmztX379o5bEyXp/fffV1VVlebMmRPsL8FoVyRcoifvu0rv7TquX/6+862G+6pO6LH/Ktf1mSN0/7dSLJgQgZSx7BtKXjjr3zp28rL5mnD3jQGeyL5s/Vkr5/L+++9rxowZmjBhgj788EO/fZ9//rnS0tIUFxenxx9/XK2trSooKNCwYcP03nvvKSzM1n/3dejNa+TBwmethB6fz6eDL/1Ve9ds1GeHOt+NMmRSgtLu/7oS5l5twXT2Ydsfdp7P7t1nPtvjXy+rSFJsbKy2bNmivLw83XXXXQoPD9fs2bP19NNP95mIA73F4XAoeeEsjV+QLXfpHm359gq1NbUoYlCUbix+VHFXjve7aww9Q8i7kJiYqI0bNwZzJMDWHA6HRlyTpoiYqDMhj4nSsKuSrR7LNvrkKeaFQg4AJumTZ+RnP4cFAOygT56RA4CdEHIAMBwhBwDDEXIAMBwhBwDDEXIAMBwhBwDDEXIAMBwhBwDDEXIAMBwhBwDD9cnPWsGFRUeFq2nH3VaP0S3RUSxn9E2sfHTJ4XDwjzQAhuDSCgAYjpADgOEIOQAYjpADgOEIOQAYjpADgOEIOQAYjpADgOEIOQAYjpADgOEIOQAYjpADgOEIOQAYjpADgOEIOQAYjpADgOEIOQAYjpADgOH4p976IJ/Pp/aWL6weI+jCowbI4XBYPUZIsGoN+Ly+jv9tO9ka9Ne36xpw+Hw+n9VDILjaTrbqpcSFVo8RdAuq/qCI6EirxwgJrAF74dIKABiOkAOA4Qg5ABiOkAOA4Qg5ABiOkAOA4Qg5ABiOkAOA4Qg5ABiOkAOA4Qg5ABiOkAOA4fpEyD0ejwoKCpSUlKTIyEiNGjVKeXl5am5u1uLFi+VwOLR69WqrxwSAHrH9x9hWVFQoJydHbrdbAwcOVEpKimpra7Vq1SpVVVWpvr5ekpSRkWHtoKHG4VDKkls1YdEsDYofptZPP9eRDe+qYkVxn/wI3D6JNWAMW5+RezwezZkzR263W8uWLVNdXZ3Ky8vldrtVVFSkTZs2qaysTA6HQ+np6VaPG1KmPXGvpj1+r04ccGnHI8+peuN7Sll8i7724oOSDT/PGZ2xBsxh6zPypUuXyuVyKTc3VytXrvTbV1BQoLVr12rXrl1KSEhQbGysRVOGnsHJ8Zr4nRxVb9qh//fdf/65NX50XDN+tlgJt39FR/603cIJEWisAbPY9oy8srJSxcXFiouLU2FhYZfHTJkyRZI0efLkjm1nwz9t2jQNGGDPf03kQhK+fo0cYWHa9z83+W0/+NJf1XayVYnzrrNoMgQLa8Astg35unXr5PV6tWDBAg0aNKjLY6KioiT5h/zQoUN69dVX5XQ6NXXq1KDMGmriMpLkPX1anr8f9Nt++os21e+pVlxGokWTIVhYA2axbci3bNkiSZo5c+Y5j3G5XJL8Q37dddeprq5Or7/+urKzswM7ZIiKHn6pvqhvlPdUe6d9J931ihx6icIibH1Vrs9jDZjFtiE/evSoJGnMmDFd7m9vb1dpaakk/5CHhdn2j+Tf1i9qgE6fauty3+kvzmwPj+ofzJEQZKwBs9j2r9Tm5mZJUktLS5f7i4uL5fF4FBMTo4SEhIDOkpmZKbfbHdDX6I4IX5iWa9o5959u+UIRAy/pcl+/ARGSpPaWUwGZLZCSxyerzeG1eoyQwBoIPU6nUzt37uzRY20bcqfTqYaGBpWXlysrK8tvX11dnfLz8yVJ6enpAf+BptvtVk1NTUBfozv6O/pJw8+9/+THDbokOV5h/cM7vbWOdg5R66efydvW+S13qKutq9Up32mrxwgJrAF7sW3Is7OzVVlZqaKiIs2aNUvJycmSpLKyMi1atEgej0dScH4RyOl0Bvw1uiPCFyad56TEU3FIl381Q3FXjtfx9ys7tvcbEKEhk8bq4x2V535wCBs5YmTIno0FG2sg9FxMJ2wb8rP3iR87dkypqam64oor1NraqkOHDiknJ0djx47V5s2b/a6PB0pP3y4FStvJVr2UuPCc+4+89q7Sl/6HUpbc6vdNPH5BtiKiI3X4j9uCMWavO3DwgCKiI60eIySwBuzFtiGPj49XSUmJ8vPztXXrVlVXVyslJUVr1qzRkiVLlJh45vapYITcNCc+/EgfPv+WJi6+RTOfzZfr7XJdMv5ypSy+Re539+rwH/lFELtjDZjFtiGXpIkTJ2rjxo2dtjc1Nam6ulphYWGaNGmSBZOFvg9++oKajn2i5IXZiv/aVWqt/1yVz72pv68olnw+q8dDELAGzGHrkJ/L3r175fP5lJycrOjo6E77169fL0nat2+f33+PHTtWmZmZwRvUQj6vV3vXbNDeNRusHgUWYQ2Yo0+GfPfu3ZLOfVll/vz5Xf73PffcoxdeeCGgswFAdxHyLvh42wjAIH3y1xgvFHIAMEmfPCM/+zksAGAHffKMHADshJADgOEIOQAYjpADgOEIOQAYjpADgOEIOQAYjpADgOEIOQAYjpADgOEIOQAYjpADgOEIOQAYjpADgOEIOQAYjpADgOEIOQAYjpADgOEIOQAYjpADgOEIOQAYjpADgOEIOQAYjpADgOEIOQAYjpADgOEIOQAYjpADgOEIOQAYjpADgOEIOQAYjpADgOEIOQAYjpADgOEIOQAYjpADgOEIOQAYjpADgOEIOQAYjpADgOEIOQAYjpADgOEIOQAYjpADgOEIOQAYjpDDWPfWrdc1v7rP6jFgIdbAGX0i5B6PRwUFBUpKSlJkZKRGjRqlvLw8NTc3a/HixXI4HFq9erXVYwJAj4RbPUCgVVRUKCcnR263WwMHDlRKSopqa2u1atUqVVVVqb6+XpKUkZFh7aAA0EO2PiP3eDyaM2eO3G63li1bprq6OpWXl8vtdquoqEibNm1SWVmZHA6H0tPTrR4XAHrE1mfkS5culcvlUm5urlauXOm3r6CgQGvXrtWuXbuUkJCg2NhYi6Y0X/TIoZq6/B5d/tXJksOhj9/bpw9++rxuemW5mo59orfmLfc73nl1qlJ/MFfDrkpWRPQAnfy4QXWle/S3n/1BX9Q3dvv1R1ybpqse+KYuTRmjtsaTOvL6uyovXKf2k6299SXiAlgD1rJtyCsrK1VcXKy4uDgVFhZ2ecyUKVO0a9cuTZ48uWPb+vXrtW7dOu3cuVOffPKJRo8erXnz5umhhx7SoEGDgjW+MfrHRivnT09o4Mg47X/xLzpxwCVnVopuevUxhUf273R88qJZynpqiU7W1Wv/i5vV5PJo0OVxGjVrigaOGNrtb+IhaeM0ZvYMHXjpbR16ZatGfGWSUr57qwZPGK2/3PmE5PP11peKc2ANWM+2IV+3bp28Xq8WLFhwzgBHRUVJkl/IV65cqdGjR+vnP/+54uPjVVFRoccff1xbt27Vtm3bFBZm66tR3TbpvtsVM3q4tv/otzpU/I4kaf/vN2vaE/cqZclsSa6OY6NHDNH0J7+jzw7V6I05P9Gpz0927Pv7iv8jORzdfv0hKWO05dtF+uitsn++9pPfVsp3b1XC3Kt15LXSi/sCcUGsAevZtkpbtmyRJM2cOfOcx7hcZxbYl0O+YcMGvfzyy1qwYIGuv/565eXlafXq1SotLdX27dsDO7SBRt88VS3HG1T1yla/7btX/7nTsWPnXK1+AyJU8ctX/L6BO/TgzOmzQzUd38Adr/2bP52ZLWdat58P3ccasJ5tz8iPHj0qSRozZkyX+9vb21VaeuZv6i+HfNiwYZ2OzczMlCTV1NT0aJbMzEy53e4ePTYQInxhWq7eWeAxo4fLs6tKPq/Xb3vL8RP64kST37bYBKckqX7PkV55bUk6cdDVadvZ144ZM9xve/L4ZLU5vJ2O74tYA6HH6XRq586dPXqsbUPe3NwsSWppaelyf3FxsTwej2JiYpSQkHDe53rnnTNvFydOnNijWdxud4//EgiE/o5+0vALH2c3tXW1OuU7bfUYIYE1YC+2DbnT6VRDQ4PKy8uVlZXlt6+urk75+fmSpPT0dDnOc12upqZGjz76qG6++eYe32vudDp79LhAifCFSb10UtL40ceKTXDKERbmd0YWddlgDRjs/7OJzw/XSZKGpI7t+P8Xa/D4+E7bzr527dGP/baPHDEyZM/Ggo01EHouphO2DXl2drYqKytVVFSkWbNmKTk5WZJUVlamRYsWyePxSDr/LwI1NTXptttuU//+/fXcc8/1eJaevl0KlLaTrXopcWGvPNdHm8uUfv9/KHH+9R0/6JKktNzbOx1bvfE9TfnJQk1e9g3VvFOhtqau3y11xyVJl2v0zVP9rpGefe2P3vrA79gDBw8oIjryol/TDlgD9mLbkJ+9T/zYsWNKTU3VFVdcodbWVh06dEg5OTkaO3asNm/e7Hd9/MtaWlo0Z84cHTlyRCUlJRoxYkSQvwIz7Pntaxr39Wt19cr/pqHp43Ri/zE5r07VsMxktX76md+xJ+vq9cFPn9eMwu/qtnf+U1WvbFWT6xNFO4do9M1TVfrj36l+b3W3Xr9+31Fdu3qpDrz0tj4/XKcRX5mksXOy5H53r4689m4vfqU4F9aA9Wwb8vj4eJWUlCg/P19bt25VdXW1UlJStGbNGi1ZskSJiYmS1GXI29radMcdd2jnzp16++23lZKSEuzxjXHqs2a9efujmvrYPUqcf70k6eP39mnzvMd00yvLOx2//8W/qPHox5r0g7mauDhH/fpHnPllkO271Vzr6fbr1+8+rLLHXtBVD35LExbNUltTiyqffUN/K1zbJ+4fDgWsAes5fL4+8pV+SVNTk2JjY+VwONTY2Kjo6OiOfV6vV3fddZdef/11vfHGG7rhhhssnDQwevNt9fnc8cHvuvytPqssqPqDLd9W9wRrwF5se0Z+Pnv37pXP51NycrJfxCXpvvvu0yuvvKIHH3xQ0dHR2rFjR8e+xMTELm9PBAAr9cmQ7969W1LXl1XefPNNSdJTTz2lp556ym/f888/r3vvvTfg8/VlA4bGXvC3Z9uaW/vMZ2j0RayB7iPk/6K6ujrI0+DL5rz5lAaNuuy8x1SsfFkVv3w5SBMh2FgD3UfIETDrp/2w24/Zdt+v1a+LD1r6ssZ/uTcYoYs1EBx9MuRnP4cFoed42X6rR4DFWAPdZ9sPzQKAvoKQA4DhCDkAGI6QA4DhCDkAGI6QA4DhCDkAGI6QA4DhCDkAGI6QA4DhCDkAGI6QA4DhCDkAGI6QA4DhCDkAGI6QA4DhCDkAGI6QA4DhCDkAGI6QA4DhCDkAGI6QA4DhCDkAGI6QA4DhCDkAGI6QA4DhCDkAGI6QA4DhCDkAGI6QA4DhCDkAGI6QA4DhCDkAGI6QA4DhCDkAGI6QA4DhCDkAGI6QA4DhCDkAGI6QA4DhCDkAGI6QA4DhCDkAGI6QA4DhCDkAGK5PhNzj8aigoEBJSUmKjIzUqFGjlJeXp+bmZi1evFgOh0OrV6+2ekwA6JFwqwcItIqKCuXk5MjtdmvgwIFKSUlRbW2tVq1apaqqKtXX10uSMjIyrB00xKTd/3UNTRunoenjFDNmuJqOHdf6aT+0eiwEEWvAHLYOucfj0Zw5c+R2u7Vs2TItX75cMTExkqQVK1bogQceUHh4uBwOh9LT0y2eNrRMeXiBWusbVb/7sPrHRls9DizAGjCHrUO+dOlSuVwu5ebmauXKlX77CgoKtHbtWu3atUsJCQmKjY21aMrQtH76D9X00XFJ0m3v/KciBkZaPBGCjTVgDtteI6+srFRxcbHi4uJUWFjY5TFTpkyRJE2ePLljW0lJibKzszVixAgNGDBA8fHxuvPOO1VZWRmUuUPF2W9g9F2sAXPY9ox83bp18nq9WrBggQYNGtTlMVFRUZL8Q97Q0KC0tDR9//vf12WXXSaXy6XCwkJlZWVpz549io+PD8r8APDvsm3It2zZIkmaOXPmOY9xuVyS/EM+d+5czZ071++4qVOnasKECXr11VeVl5cXgGkBoOdsG/KjR49KksaMGdPl/vb2dpWWlkryD3lXhg4dKkkKD+/ZH1dmZqbcbnePHhsIEb4wLdc0q8cIuuTxyWpzeK0eIySwBkKP0+nUzp07e/RY24a8ublZktTS0tLl/uLiYnk8HsXExCghIaHT/tOnT8vr9ero0aN66KGH5HQ69Y1vfKNHs7jdbtXU1PTosYHQ39FPGm71FMFXW1erU77TVo8RElgD9mLbkDudTjU0NKi8vFxZWVl+++rq6pSfny9JSk9Pl8Ph6PT466+/vuOMPSkpSVu2bNGwYcN6PEsoifCFSaF5UhJQI0eMDNmzsWBjDYSei+mEbUOenZ2tyspKFRUVadasWUpOTpYklZWVadGiRfJ4PJLO/YtAzz77rE6cOKEjR47oF7/4hW688UaVlpZq9OjR3Z6lp2+XAqXtZKteSlxo9RhBd+DgAUVEcwudxBqwG9veflhQUKChQ4fq2LFjSk1NVVpamsaPH69p06Zp3LhxuuGGGySd+/r4hAkTNH36dN111116++231djYqBUrVgTzSwCAf4ttz8jj4+NVUlKi/Px8bd26VdXV1UpJSdGaNWu0ZMkSJSYmSrrwDzolafDgwUpKStKhQ4cCPXbIGHfHdRoUf+ZSUuTQWIVFhCv9R/MkSU2uT3R4/TYrx0MQsAbMYduQS9LEiRO1cePGTtubmppUXV2tsLAwTZo06YLPc/z4ce3fv1/Tp08PxJghKfmbX5Pz6lS/bVc98E1JkvvdvXwT9wGsAXPYOuTnsnfvXvl8PiUnJys62v8zJBYuXKikpCRlZGRo8ODBOnjwoJ5++mmFh4frxz/+sUUTB99b85ZbPQIsxhowR58M+e7duyV1fVllxowZevHFF/XrX/9ara2tGjVqlGbOnKmHH374nPekA4CVCPm/yM3NVW5ubrBHAoAes+1dK+dzvpADgGn65Bn52c9hAQA76JNn5ABgJ4QcAAxHyAHAcIQcAAxHyAHAcIQcAAxHyAHAcIQcAAxHyAHAcIQcAAxHyAHAcA6fz+ezeggEl8/nU3vLF1aPEXThUQO6/Ie2+yLWgL0QcgAwHJdWAMBwhBwADEfIAcBwhBwADEfIAcBwhBwADEfIAcBwhBwADEfIAcBwhBwADEfIAcBwhBwADEfIAcBwhBwADEfIAcBwhBwADEfIAcBwhBwADEfIAcBwhBwADEfIAcBwhBwADEfIAcBwhBwADEfIAcBw/x+gYC4xvlB8ZAAAAABJRU5ErkJggg==", - "text/plain": [ - "
" - ] - }, - "execution_count": 8, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "gate = qc_b.to_gate().control()\n", - "qc_a.append(gate, [0, 1, 3])\n", - "qc_a.draw(\"mpl\")" - ] - }, - { - "cell_type": "markdown", - "id": "ae850362-84eb-4998-a2cf-a93a1be4ac2a", - "metadata": {}, - "source": [ - "何が起きているかを確認するには、[`decompose`](/api/qiskit/qiskit.circuit.QuantumCircuit#decompose) メソッドを使って各命令をその定義に展開できます。\n", - "\n", - "\n", - " [`decompose`](/api/qiskit/qiskit.circuit.QuantumCircuit#decompose) メソッドは、新しい回路を返し、それが作用する回路を**変更しません**。\n", - "" - ] - }, - { - "cell_type": "code", - "execution_count": 9, - "id": "3c0633db-929b-4428-a888-7a3d493bd6dd", - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAbIAAAEvCAYAAAAgi0SBAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAlcUlEQVR4nO3de1xUdf4/8NdwHS6DCpiDooBcFBSwRJTS1MJW8lZZaot2WTfbVpRac6pf26/L7makfi3X3bK2y367EKa1q6BlRZaaGUoYKYqSkAMz2gDG/TLMfP8wqclBmXFmDp8zr+fj0cOYz/mcz5u58JpzzuecozCbzWYQEREJykPqAoiIiC4Hg4yIiITGICMiIqExyIiISGgMMiIiEhqDjIiIhMYgIyIioTHIiIhIaAwyIiISGoOMiIiExiAjIiKhMciIiEhoDDIiIhIag4yIiITGICMiIqExyIiISGgMMiIiEhqDjIiIhMYgIyIioTHIiIhIaAwyIiISGoOMiIiExiAjIiKhMciIiEhoDDIiIhIag4yIiITGICMiIqExyIiISGgMMiIiEhqDjIiIhMYgIyIioTHIiIhIaAwyIiISGoOMiIiExiAjIiKhMciIiEhoDDIiIhKal9QFkHVmsxnG1napy+g1Lz9fKBQKqcsgIjfEIOujjK3teCt6odRl9FpmxZvw9ldKXQYRuSHuWiQiIqExyIiISGgMMiIiEhqDjIiIhMYgIyIioTHIiIhIaAwyIiISGoNMRmLmTcFdus2ImTfFantg+EDcpduMic8tdW1hREROxCAjIiKhMciIiEhoDDIiIhIag4yIiITGICMiIqG5RZAZDAZoNBrExMRAqVRi6NChyM7ORnNzMxYvXgyFQoENGzZIXSbJnNlsRkdjC9p/bIbZZJK6HLfU2WlC7dk2tLYZpS6FHEj2t3EpKSlBRkYG9Ho9AgICkJCQgJqaGqxfvx4VFRWoq6sDAIwZM0baQl3IbDZ3//+EVb/H0Gkp8A7yR2dTK6ry9+HAX96EqZMfdEdpqNTj2P/uxIl3CtFe3wTg3P3bht8yCSPu+g1CRkdJXKG8dXWZUPD5KfwzrwwfflHd/Xj88P744/x4LJoZg34qHwkrpMsl6y0yg8GAWbNmQa/XY8WKFdDpdCguLoZer0dOTg4KCgpQVFQEhUKBpKQkqcu9bMa2DgCAp5+v1XYv/3OPd/20HACUvfYB3p+Ujbfj7sDW9AcxICESSctvcX6xbsBsNuOb57fgvauX4fALW7tDDDh3v7nytz7Gtmkr8cXKjTAZuySsVL5qzjQj9bdbMSf7Y4sQA4Cy785i2ap9iJyeh0+/qpGoQnIEWQfZ8uXLodVqkZWVhTVr1kClUnW3aTQaJCcnw2g0IjIyEkFBQRJW6hhN358BAPSPHWK1vV9sOACg8aflAODHcu3Pd6JWKGA2maEaHubcQt1EydpNKH4mF/jFFrA15W9+hD33/8NiS5kun6G+DVMWb0dxWe1Flzvb2IHp932Izw/oXFQZOZpsg6ysrAx5eXkIDQ3FqlWrrC4zduxYAEBycrLF4ydPnsTs2bOhUqkwYMAA3HHHHaitvfiHoS+oLf0OTdU/IOqma+A3aIBFm4e3F+J/lwGzyYRTOw9YtCVm3YTME2/g9m9fRfCoCBx5Kd+VZcvSmYPlOLT23V4v/92Wz/Hdlt1OrMj9ZOd8ieNVDb1atqPThHkrP0VHJ7eMRSTbY2S5ubkwmUzIzMxEYGCg1WX8/PwAWAZZY2Mjpk6diuDgYOTm5qK1tRUajQYzZ87E3r174eHRd7Pf3GXClw+9jKmvrsScwrU4/nYhGqv0UA7sj6jZV2PAyGE49PwWNFRY7kYp3fAflG74D/rFDsHwWyah9Uy9RL+BfBx97QPb+/z7A0Tfeq0TqnE/ekML3t150qY+p2tb8d7HlViQEe2kqshZZBtkhYWFAICpU6f2uIxWqwVgGWQvvfQSqqur8fnnn2PYsGEAgPDwcFx99dXYunUrbrrpJucV7QDaT4qxffafkbj0JsTMmwzfASoYW9pR++1J7FqyFpXb9vXY98fj1ag7XIVJf1+OD299wnVFy0x7fSMqt31hc78fDpSj7kglghMiHV+Um3n9v8fRabR9ZuiL7x5lkAlItkFWVVUFAIiIiLDabjQasXfvXgCWQZafn4+JEyd2hxgApKWlYfjw4di2bZtdQZaSkgK9Xm9TH2+zBx5Hqs1jAUDtoQrsWrLWrr4e3p4IsuMYWVxsHDoVnFIOAEPMAbjPlGhX38z0OSj16Pu7sfu6uoBbAN/kSy/4K7u/OoHw8HAnVESXolarceDAgUsvaIVsg6y5uRkA0NraarU9Ly8PBoMBKpUKUVE/T38+cuQIbrvttguWHzVqFI4cOWJXLXq9HtXV1Zde8Bd8FJ7AILuG6zVvlT8iMlLx/QdfoaOhBQPiI5B8/1zU7Dpk87pqdDXoMPP4AgD4e4cAIfb1baw/i+o2294rZMXQDsD65N2LMpk9bf6skvRkG2RqtRr19fUoLi5GWlqaRZtOp8PKlSsBAElJSVAoFN1t9fX16N+//wXrCw4OxrFjx+yuxVbeZg/A2Rs4ZjOGz70W4564Ex4+XmgzNKBq+36UrM6zeVWDwwZzi+wn/mYlYALMMEMBxaU7/IJPsApDFNZnnVLvnVWa0WxHP0+0Qj2Ez78U7Pk7eZ5sgyw9PR1lZWXIycnBtGnTEBcXBwAoKirCokWLYDAYALjmRGh7Npc7W9rwVvRCJ1TzizGaWrFz/lMOWVf58XJ4+ysdsi7Rmc1m/Hfqn3D22Cmb+vn0D8TOgwe7z/cj+xXur8H19+ywud+K309GzgMrnVAROVPfnYJ3mTQaDUJCQnDq1CmMGjUKiYmJiI2NRWpqKoYPH47rrrsOwIVT7wcMGICzZ89esL66ujoEBwe7onQSnEKhwMi7p9vcL3b+VIaYg0xNDcPIqH429VEogHtvG+mkisiZZBtk4eHh2L17N2bMmAGlUonKykoEBwdj48aNKCgoQHl5OYALgyw+Pt7qsbAjR44gPj7eJbWT+KJvvbb7BPTeUIb2Q8I9M5xYkXtRKBR4enmKTX2W3DoSw8PFvzCCO5JtkAHnQik/Px+NjY1obGzE/v37sWTJEjQ3N6OyshIeHh4YPXq0RZ+ZM2diz5493VPzAWD//v2oqKjArFmzXP0rkKC8A/ww7a1HoYq89H5/3wEqpL/xCAKGhLqgMvdx8/WR2PD/0qDoxWHKW66PxN8fTrv0gtQnKcxueF2c/fv3Y8KECRgxYgSOHj1q0dbQ0IDExESEhobiySefRFtbGzQaDQYOHIh9+/a57IRoVxwjc6TMijd5jMyKNsOP+HrNJlRs/gzG5jaLNg8fL0TOmIAxK+cjKIqXBXOWD/Zo8beXS7Dn69MXtEUODkTW7Qm4f+EoeHrK+nu9rMl2ssfFlJaWArhwtyIABAUFobCwENnZ2ViwYAG8vLwwc+ZMrFu3rk9f1YP6JmVoP6Q9cw/GPpqJym378NXjr8HY1AbvIH/csvfv8Au17TgO2W76xHBMnxiOQ8dqsX23Fk//qwRNLUaE9PPFiYLbGGAywCCzIjo6Gvn5vN4gOY6Pyh9xv70eJWvyzgVZgJIh5mLJI0KQPCIE/3jnCJpajFD6ejLEZIJB5gZUUWpMen4ZfINV6GxswZ7sDThbrr10RyIiAbhlkJ2/DqO7uPrZe1H+5kc4sWkXImZMwMTns5Cf8bDUZREROYRbBpmofIL8MefTdfBU+qClxgAPX2+ohg1CxebP8MWDL1rtowwJQkhyNHYu+AsAoKrgS0x4ejFUkWo0VvZ8/Ud7xiIikgKDTCAdDS347v3d6GxuwzfrNmPwlGQkLb/losESMCQUrafrYe76+fJRTdUGBAwJvWiQ2TMWEZEUeKRTMMGjo1BXeu4+SyFJ0aj71rZ7LvXVsYiI7MUgE0zwqMjuQAlJGo7a0ouHS3O1AX6DBkDxi9lZgUNC0VxtcPhYRERSYJAJxF8dDJjNaNHXAQCC4yNQf/R7AMDE9cswLOPC+5e11TagrvQkoueeu/NwxIwJaNbVde9W7KnfxcYiIupLGGQCCR4dZbF7r6OhGSPv/A0AIDR5OJprrN+Q8QvNRsQtmoab96xH4rKbsef+f3S39dTvYmMREfUlnOwhEO3HB6H9+GD3z+en0PuGBKFFV4faQxVW+zVU1GD7rEcvePxi/Xoai4ior+EWmQy01zZ0T693RT8ior6EQUZEREJjkBERkdAYZEREJDRO9uijvPx8kVnxptRl9JqXn6/UJRCRm2KQ9VEKhYI3qiQi6gXuWiQiIqExyIiISGgMMiIiEhqDjIiIhMYgIyIioTHIiIhIaAwyIiISGoOMiIiExiAjIiKhMciIiEhoDDIiIhIag4yIiITGICMiIqExyIiISGgMMiIiEhqDjIiIhMYgIyIioTHIiIhIaF5SF0DWmc1mGFvbpS6j17z8fKFQKKQuw0JffA7NJnP3v50tbRJXY6kvvoZEvcEg66OMre14K3qh1GX0WmbFm/D2V0pdhoW+/By2nq7vc7X1xdeQqDe4a5GIiITGICMiIqExyIiISGgMMiIiEhqDjIiIhMYgIyIioTHIiIhIaAwyIieKmTcFd+k2I2beFKvtgeEDcZduMyY+t9S1hRHJCIOMiIiExiAjIiKhMciIiEhoDDIiIhKaWwSZwWCARqNBTEwMlEolhg4diuzsbDQ3N2Px4sVQKBTYsGGD1GUSEZEdZB9kJSUlSExMxOrVq6HX65GQkIDOzk6sX78e8+fPR1lZGQBgzJgx0hbqJFNeXoE7tHm4InWk1fYrUkfiDm0epry8wsWVERE5hqyDzGAwYNasWdDr9VixYgV0Oh2Ki4uh1+uRk5ODgoICFBUVQaFQICkpSepynWLfwy+jva4RE59bCi8/X4s2Tz8fTHxuKdrrGrHvoZckqpCAc/dOIyL7yDrIli9fDq1Wi6ysLKxZswYqlaq7TaPRIDk5GUajEZGRkQgKCpKwUudpr23APs1GBEWFYexjiyzaUh5diKCoMHyxciPa6xolqlDejG0dAADPX32JOM/L/9zjXT8tR0S2k22QlZWVIS8vD6GhoVi1apXVZcaOHQsASE5O7n7sfPClpqbC11ced8z9/oMinHj3M4y88waETUwEAKjTRmHk3dNxYtMunPqwSOIK5avp+zMAgP6xQ6y294sNBwA0/rQcEdlOtkGWm5sLk8mEzMxMBAYGWl3Gz88PgGWQnThxAlu2bIFarca4ceNcUqsrfPXnV9Ciq8M16/4Iv0EDcM26P6JFV4f9f35V6tJkrbb0OzRV/4Com66B36ABFm0e3l6I/10GzCYTTu08IFGFROKTbZAVFhYCAKZOndrjMlqtFoBlkF177bXQ6XTYunUr0tPTnVukC3U0tGDvihcQGD4Qcz5Zg8ChA7HnT/9EZ2OL1KXJmrnLhC8fehneKn/MKVyLsY8uRNzCdCQ9cCtm7XwW6qtH4Zu/v4+GihqpSyUSlpfUBThLVVUVACAiIsJqu9FoxN69ewFYBpmHh2yzHTWfHcKxN3ZixKIbcOyNndB9/o3UJbkF7SfF2D77z0hcehNi5k2G7wAVjC3tqP32JHYtWYvKbfukLpFIaLINsubmZgBAa2ur1fa8vDwYDAaoVCpERUU5tZaUlBTo9Xqb+nibPfA4Uh1eyw8HyjFi0Q344UC5Q9cbFxuHToXJoeu8XM56Du1Re6gCu5aslbqMi+qLr6Ez6Pr/CfDoB51eh/DwcKnLoZ+o1WocOGDfLnbZBplarUZ9fT2Ki4uRlpZm0abT6bBy5UoAQFJSktMndOj1elRXV9vUx0fhCQxyUkFOUKOrQYe5S+oyLIj2HEqtL76GTqHqAjwAU1eXzZ9L6ptkG2Tp6ekoKytDTk4Opk2bhri4OABAUVERFi1aBIPBAMA1J0Kr1Wqb+3ibPQCBvhwPDhvc577Ni/YcSq0vvobOoPP0hAmAh6cnwoZYn01KrmfP38nzZBtkGo0Gb7/9Nk6dOoVRo0Zh5MiRaGtrw4kTJ5CRkYHIyEh8+OGHFsfHnMWezeXOlja8Fb3QCdU4R/nxcnj7K6Uuw4Joz6HU+uJr6Azh6bmoPtOCMHUYtN9qpS6HHEC2MxvCw8Oxe/duzJgxA0qlEpWVlQgODsbGjRtRUFCA8vJzx4hcEWREROQ8st0iA4D4+Hjk5+df8HhTUxMqKyvh4eGB0aNHS1AZERE5iqyDrCeHDx+G2WxGXFwc/P39L2jfvHkzAODIkSMWP0dGRiIlJcV1hTrBiU27cGLTLqnLICJyGLcMstLSUgA971a87bbbrP5855134vXXX3dqbUREZBsGmRW8EjkRkTgYZESXKWLGBISnXwXf/oHoFxuOrrYOtBl+xL6HX0ZjpW0nwve0/rBJiSh6/HVMfvEBu8ZQRakx6fll8A1WobOxBXuyN+BsOWfskTy4ZZCdvw4jkSMMu3E8Krd+AVOnEdWFXwMARt49HdesvQ8fzH3cIeuveHcXAODYGx/ZNcbVz96L8jc/wolNuxAxYwImPp+F/IyHL7s2or7ALYOM3JNPkD/mfLoOnkoftNQY4OHrDdWwQajY/Bm+ePBFu/oovDwxaNwI7MneALPx56ti/FB8HKPvm33ZNf16/edDzJYxlCFBCEmOxs4FfwEAVBV8iQlPL4YqUu2QLUYiqTHIyG10NLTgu/d3o7O5Dd+s24zBU5KRtPyWHkOsN33CrhmNM0XHLEIMABJ+fyO+78V93uxdvy1jBAwJRevpepi7fr5qR1O1AQFDQhlkJAuyPSGayJrg0VGoKz0JAAhJikbdtycvq8+w6eNQteMri+UTl98CVaQaB59+67JrsrZ+e8YgkjMGGbmV4FGR3UERkjQctaW9CLKL9Bk8ZYzF7r5Rf5iNiBvH4+PMv6GrteOya/r1+u0Zo7naAL9BA6Dw/PnjHjgkFM3Vhl7VR9TXMcjIbfirgwGzGS36OgBAcHwE6o9+DwCYuH4ZhmVceMuXi/UJvTIWPx6vhrGlDQCQcO9MRN18DXbOfwodDZY3LHXE+u0do622AXWlJxE991oA52ZBNuvquFuRZINBRm4jeHSUxW67joZmjLzzNwCA0OThaK6ptalPREYqvv/g3G4//7BgpD5xF3yCAjB98xOY/dFqzChY1d3vctd/OWMAwBeajYhbNA0371mPxGU3Y8/9/7jIM0UkFk72ILeh/fggtB8f7P75/PRz35AgtOjqUHuootd9ACD8hhR8+NPU9xZdHV4Pu9XquI5Y/+WMAQANFTXYPutRq21EolOYeRmLPkm0W5BkVrzZ524BItpzKLW++Bo6w/nbuAy5wh/aj2+XuhxyAO5aJCIioTHIiIhIaAwyIiISGoOMiIiExlmLfZSXny8yK96Uuoxe8/LzlbqEC4j2HEqtL76GRL3BIOujFAqFW8wgcyY+h0TugbsWiYhIaAwyIiISGoOMiIiExiAjIiKhMciIiEhoDDIiIhIag4yIiITGICMiIqExyIiISGgMMiIiEhqDjIiIhMYgIyIioTHIiIhIaAwyIiISGoOMiIiExiAjIiKhMciIiEhoDDIiIhIag4yIiITGICMiIqExyIiISGgMMiIiEhqDjIiIhMYgIyIioTHIiIhIaAwyIiISGoOMiIiExiAjIiKhMciIiEhoDDIiIhIag4yIiITGICMiIqG5RZAZDAZoNBrExMRAqVRi6NChyM7ORnNzMxYvXgyFQoENGzZIXSYREdnBS+oCnK2kpAQZGRnQ6/UICAhAQkICampqsH79elRUVKCurg4AMGbMGGkLJSIiu8h6i8xgMGDWrFnQ6/VYsWIFdDodiouLodfrkZOTg4KCAhQVFUGhUCApKUnqcomIyA6yDrLly5dDq9UiKysLa9asgUql6m7TaDRITk6G0WhEZGQkgoKCJKyUiIjsJdsgKysrQ15eHkJDQ7Fq1Sqry4wdOxYAkJyc3P3Y5s2bMXfuXERERMDf3x8jR47Eo48+iqamJpfUTUREtpFtkOXm5sJkMiEzMxOBgYFWl/Hz8wNgGWRr1qyBp6cnnn76aezYsQP33XcfXnjhBUyfPh0mk8kltRMRUe/JdrJHYWEhAGDq1Kk9LqPVagFYBtm2bdswcODA7p8nT56MgQMHIjMzE3v27MG1117rpIqJiMgesg2yqqoqAEBERITVdqPRiL179wKwDLJfhth5KSkpAIDq6mq7aklJSYFer7erLxE5lq7/nwCPftDpdQgPD5e6HPqJWq3GgQMH7Oor2yBrbm4GALS2tlptz8vLg8FggEqlQlRU1EXX9emnnwIA4uPj7apFr9fbHYJE5GCqLsADMHV18XMpE7INMrVajfr6ehQXFyMtLc2iTafTYeXKlQCApKQkKBSKHtdTXV2Nxx57DNOnT7f7XDO1Wm1XPyJyPJ2nJ0wAPDw9ETZkiNTl0E8u5++kbIMsPT0dZWVlyMnJwbRp0xAXFwcAKCoqwqJFi2AwGABc/ETopqYmzJkzBz4+Pnj11VftrsXezWUicrzw9FxUn2lBmDoM2m+1UpdDDiDbWYsajQYhISE4deoURo0ahcTERMTGxiI1NRXDhw/HddddB8Dy+Ngvtba2YtasWTh58iR27tyJsLAwV5ZPRES9JNsgCw8Px+7duzFjxgwolUpUVlYiODgYGzduREFBAcrLywFYD7LOzk7ceuutOHDgAHbs2IGEhARXl09ERL0k212LwLnJGfn5+Rc83tTUhMrKSnh4eGD06NEWbefPPfvkk0+wfft2pKamuqpcIiKyg6yDrCeHDx+G2WxGXFwc/P39LdqWLl2Kd999Fw8//DD8/f3x5ZdfdrdFR0dbnZ5PRETSke2uxYspLS0FYH234o4dOwAAzzzzDNLS0iz+KygocGmdRER0aW65RXaxIKusrHRxNUREdDm4RUZEREJzyy2y89dhJCIi8bnlFhkREckHg4yIiITGICMiIqExyIiISGgMMiIiEhqDjIiIhMYgIyIioTHIiIhIaAwyIiISGoOMiIiExiAjIiKhMciIiEhoDDIiIhIag4yIiITGICMiIqExyIiISGgMMiIiEhqDjIiIhMYgIyIioTHIiIhIaAwyIiISGoOMiIiExiAjIiKhMciIiEhoDDIiIhIag4yIiITGICMiIqExyIiISGgMMiIiEhqDjIiIhOYldQFkndkMtHVJXUXvKT0BhULqKhzHbDYD7e1Sl2EbX18o5PQiuDm+B3uPQdZHtXUBk7ZLXUXv7b4R8JPTu6m9HcZ5d0pdhU28Nv0bUCqlLoMche/BXuOuRSIiEhqDjIiIhMYgIyIioTHIiIhIaAwyIiISmpzmmRERWTCbzag+3YKDZQYcPGJAVU0T6n48N6X9bGMH3th2HFfFh2JkVD94evJ7vagYZEQkO80tnXh7ewX+uakMJUfrrC/TasQdj34OABgU4od75o7AkltHYKg60JWlkgPwKwgRyYbJZMY/3jmCIdPewZKn9vYYYr92urYVf32pBJHTN2HJk3vwY2OHkyslR2KQEZEsfKdtwPX37EDW0/vsDiKTyYyXtxzD6Fvew4d7tQ6ukJyFQUZEwvuq9AeMu30rdhXpHLI+7elmTL/vQ2zIPeKQ9ZFz8RgZEQmt+IgB0+7dgYamToeve9mqfQCArNsTHL5uchxukRGRsH6oa0XGHz90Soidt2zVPu5m7OMYZEQkrKVP78OZujab+hTlzsapjxagKHd2r/v8/glOAOnL3CLIDAYDNBoNYmJioFQqMXToUGRnZ6O5uRmLFy+GQqHAhg0bpC6TiGyw5aOTeHfnSZv7qUP9ET4oAOpQ/1730Z5uxoNr99s8FrmG7I+RlZSUICMjA3q9HgEBAUhISEBNTQ3Wr1+PiooK1NWdm547ZswYaQt1koNzendvoLi/fgpV4hTnFuOGPjOcwbR9u/BMQhL+FD3S6jI+2zbhxivC8J/xk1xcnbjMZjOefPFrl4756n+O47F7r8SwMLHOM3OH96Csg8xgMGDWrFnQ6/VYsWIFHn/8cahUKgDAs88+i4ceegheXl5QKBRISkqSuFrniHzgjR7b2vXfQZf7OLyCQqEcMsKFVRFdnr1fn0bp8XqXjmkymfHS5qP467IUl45LlybrIFu+fDm0Wi2ysrKwZs0aizaNRoO3334bhw4dQlRUFIKCgiSq0rlCpiy0+ripvQVHNWmAhyeiVubBOzjMxZUR2e/Fd49KMu6/3ivHE/ddBS8vtzgqIwzZvhplZWXIy8tDaGgoVq1aZXWZsWPHAgCSk5O7H9u9ezfS09MRFhYGX19fhIeHY/78+SgrK3NJ3a5Suf53aK38BuF35iAo6TqpyyGyyacOOl/MVqdrW3H05FlJxqaeyXaLLDc3FyaTCZmZmQgMtL5P28/PD4BlkNXX1yMxMRH33nsvrrjiCmi1WqxatQppaWn49ttvER4e7pL6nUn/3mrU78nDgInzMeimFVKX4xZaurpgaG+XugxZ0BtaUHOmRbLxDx6pxejYYMnGt5ec34OyDbLCwkIAwNSpU3tcRqs9d27IL4Ns9uzZmD3bclruuHHjMGLECGzZsgXZ2dlOqNZ1Gko+RvUbj8AvIhERy16Ruhy38dSxw3jq2GGpy5CFr8tqJR3/YJkBd86JlbQGe8j5PSjbIKuqqgIAREREWG03Go3Yu3cvAMsgsyYkJAQA4OVl39OVkpICvV5vUx+Fjx8GPXfcrvF60n66Et+tWQBPPxWiH3kfnsoAh607Li4W5o5Wh61Pan4eHjgyJs1h6/v9sOGYO3io1baMLz9zyBhxcXFoNZkcsq6+rMUnGQi8xWpbUe7sS06rV4f6df976qMFPS6nN7Rg3O1bL3j8X6+9g/c23GZDxfZxt/egWq3GgQMH7Oor2yBrbm4GALS2Wv/jmpeXB4PBAJVKhaioqAvau7q6YDKZUFVVhUceeQRqtRrz5s2zqxa9Xo/q6mqb+nj4+mOQXaNZZ2pvQcWqm9HVXI+YP+fDNyzagWsHampqYGqXbnePo/l7egJjHLe+mMBAXD/Qka/ohWpqatDS1eXUMfqEAVFADzPgz58j1htenh69XvaXWts6bP4824Pvwd6TbZCp1WrU19ejuLgYaWmW32p0Oh1WrlwJAEhKSoJCceG5VpMnT+7eYouJiUFhYSEGDhxody22Uvj42TVWT6o23IPWkyUYnPkX9Bub4dB1A8DgwYNlt0UmmsGDB7vJFpkKPU281xsu/WVKHeoHL08PGLtM0Bt6fs/2tC4/pTeChwzpTamXxd3eg/b8nTxPtkGWnp6OsrIy5OTkYNq0aYiLiwMAFBUVYdGiRTAYDAB6PhH6lVdewdmzZ3Hy5EmsXr0aN9xwA/bu3Ythw4bZXIs9m8utRmDSdpu7WXX6v/+Dus/fRr/xc6C+7VHHrPRXysuPw09G7yZzWxuM8+6UugyblJeXQ6FUSl2G031+QIfJv7P+4bC2K/DXTn20AOGDAqA3tGLotHdsHv+BpXfgb8vX29zPVnwP9p54kd9LGo0GISEhOHXqFEaNGoXExETExsYiNTUVw4cPx3XXnZty3tPxsREjRmD8+PFYsGABPvnkEzQ2NuLZZ5915a/gEI3ffArt6xr4DhmBqPv/1+rWJ5FIrowPgZRv47EJodINTlbJ6Du0pfDwcOzevRsrV67EZ599hsrKSiQkJGDjxo245557EB197hjRpSZ6AED//v0RExODEydOOLtsh+qs0+G71fMAUxcGpM3F2a96/rbqF5kE/0h5Xt2E5EUV4IO4iH44VvmjJOOPTQiRZFzqmWyDDADi4+ORn59/weNNTU2orKyEh4cHRo8efcn1nDlzBseOHcP48eOdUabTtFUfg7Hh3C5U/eanL7ps2ILHGWQkjFmTh+FYZanLx02MHSDctRbdgayDrCeHDx+G2WxGXFwc/P0tp+ouXLgQMTExGDNmDPr374/jx49j3bp18PLywgMPPCBRxfZRJU7B2P+apS7DrU0OvQIdsy4+2/VS7XShP8wbiTX/dn2Q3TcvXrjd8+7wHpTtMbKLKS099wGwtltxwoQJ2L59O+6++25kZGRg9erVmDRpEkpKShATE+PqUonIiuihQZh+jWuvshPo742FMx172go5hltukV0syLKyspCVleXqkojIRs/cn4KP91fDaHTNXoenll4FVYCPS8Yi23CLjIiElDwiBI8tudIlY11z5SAs/22CS8Yi27nlFtn56zASkdgeWZyMHXtO4ctvfuh1n/MnOvfm5GkA6K/ywWtPTYKnp1t+7xeCWwYZEcmDt7cH8jfcgKmLt/f6Rpu9OWn6vAA/L2z/5w2Ijehnb4nkAvyKQURCC+mvxKev3IgJSfZdQq7n9frik5czkJbs3OsT0uVjkBGR8EL6K/H5azPx5B+vgpfX5U+Pv/n6CBx+fy7GJ13hgOrI2RhkRCQL3t4e+P9/uBIHcufgN1fbd1HfhOj+yM2Zgi3/cz0GhTj2wt3kPDxGRkSykjwiBB+8OB0nvm/AC5vKkP/ZKZRX9Xw5q0EhfpgyTo0/3BaPySlq4U54JgYZEclUzLAgrH1wPNY+OB4/Nnbg66O1qKppQntnF7y9PBDaX4mr4kMw+Ap/hpfgGGREJHv9VD6YMi5M6jLISXiMjIiIhMYgIyIioTHIiIhIaAwyIiISmsJsNvOGVX2Q2Qy0dUldRe8pPSHp7ecdzWw2A+3tUpdhG19fzr6TEb4He49BRkREQuOuRSIiEhqDjIiIhMYgIyIioTHIiIhIaAwyIiISGoOMiIiExiAjIiKhMciIiEhoDDIiIhIag4yIiITGICMiIqExyIiISGgMMiIiEhqDjIiIhMYgIyIioTHIiIhIaAwyIiISGoOMiIiExiAjIiKhMciIiEhoDDIiIhIag4yIiITGICMiIqExyIiISGgMMiIiEtr/ASMnFrTUJr09AAAAAElFTkSuQmCC", - "text/plain": [ - "
" - ] - }, - "execution_count": 9, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "qc_a.decompose().draw(\"mpl\")" - ] - }, - { - "cell_type": "markdown", - "id": "649fc3fd-caf1-45f1-ad8e-3b5d26ca859b", - "metadata": {}, - "source": [ - "## パラメーター化された回路\n", - "\n", - "多くの near-term 量子アルゴリズムでは、1 つの量子回路の多数のバリエーションを実行します。 大規模な回路を構築して最適化するには計算コストがかかるため、Qiskit は**パラメーター化された**回路をサポートしています。 これらの回路には未定義のパラメーターがあり、その値は回路を実行する直前まで定義する必要がありません。 このため、回路の構築と最適化をメインプログラムループの外に移動することができます。 以下のセルはパラメーター化された回路を作成して表示します。" - ] - }, - { - "cell_type": "code", - "execution_count": 10, - "id": "a580552c-d585-4047-99f0-32aafd06e4f3", - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAOMAAABuCAYAAADVoKRKAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAJdklEQVR4nO3ceXCU9R3H8fduEnKQBEgQkpQk5EICOVBIFFE5BiqHgNdgpxHF0rFaKbQV4oEjWscysR41gyNWWztTj0mb0o4SVGoDFic4BgMSnZQjGiDHDiyJhNzZ7PYPIJom4dgN7C/L5/XnPs/+nu8/b56HJ/s8FpfL5UJEvM7q7QFE5BTFKGIIxShiCMUoYgjFKGIIxShiCMUoYgjFKGIIxShiCMUoYgjFKGIIxShiCMUoYgjFKGIIxShiCMUoYgjFKGIIxShiCMUoYgjFKGIIxShiCMUoYgjFKGIIxShiCMUoYgjFKGIIxShiCMUoYgjFKGIIxShiCMUoYgjFKGIIxShiCMUoYgjFKGIIxShiCMUoYgh/bw9wOXK5XDha2709xmXPPzgQi8Xi7TG6KUYvcLS281bSXd4e47KXU/kmASFB3h6jmy5TRQyhGEUMoRhFDKEYRQyhGEUMoRhFDKEYRQyhGOWckpfMYFldIclLZvS5PXTMFSyrK+T63z94aQfzMYpRxBCKUcQQilHEEIpRxBCKUcQQPhej3W4nNzeX5ORkgoKCiI2NZdWqVTQ3N7N8+XIsFgsbNmzw9pgivfjUI1R79uxh3rx52Gw2hg4dyoQJE6itrSU/P5/Kykrq6+sBmDRpkncH9VEul8vbIwxqPnNmtNvtLFy4EJvNxkMPPURdXR1lZWXYbDby8vIoKiqitLQUi8VCRkaGt8cdVBxtHQD4BQf2ud0/5NTnXaf3E/f4TIwrV66kurqaFStW8NxzzxEWFta9LTc3l8zMTBwOB2PHjiU8PNyLkw4+TYePAjA85Qd9bh+WMgaAk6f3E/f4RIwVFRUUFBQwcuRI1q9f3+c+kydPBiAzM/NSjuYTjpd/TVPNMRJumUbw6BE9tlkD/En9yTxcTidHtu7y0oS+wSf+z/jOO+/gdDrJyckhNDS0z32Cg4MBxegOV5eTTx9+jZl/WsPi4uc58HYxJw/ZCLpiOAmLrmPE+Di+eOnvNFbWenvUQc0nYiwuLgZg5syZ/e5TXV0NKEZ3Vf+7jC2LHif9wVtIXjKdwBFhOFraOf7lN2y/73mq3tvp7REHPYvLB26BxcbGUl1dze7du/u8U+pwOIiOjsZut1NZWUliYqJbx5kyZQo2m83DaSHAZWWdM9vjdcQzT1k/o9PiHNA1o6Ki2LXLvct1nzgzNjc3A9Da2trn9oKCAux2O2FhYSQkJLh9HJvNRk1NjdvfP2OIxQ9Ge7yMeKi2rpYOV5e3x+jmEzFGRUXR0NBAWVkZU6dO7bGtrq6ONWvWAJCRkeHRezKjoqI8mvOMAJcVBvYfZHFDTHTMRTkzussnYpw9ezYVFRXk5eUxZ84cxo0bB0BpaSlLly7FbrcDnv+x393Lj//X2dKm96YaYP+B/Xpv6kDLzc0lMjKSI0eOMHHiRNLT00lJSSE7O5vExERmzZoF6OaNmM0nYhwzZgw7duxgwYIFBAUFUVVVRUREBK+++ipFRUXs378fUIxiNp+4TAVITU1l8+bNvT5vamqiqqoKq9VKWlqaFyYTOT8+cWY8m6+++gqXy0VKSgohISHeHkekXz4fY3l5OaBLVDGfz1ym9udyj3FZXSFvX3k3HY0tXp0jfsG1RN+QTum6PzN9468YljKGrrYO2uwn2PnIa5ys8vzHFPELrmXM7KsJHB56Uda/2BSjXBJx86+h8m/bAdj3l39RU7wbgPH3zmXa8w/wwe3rBuQYVe+W4Ox0XJT1Lzafj/HM71YHixteXsWwpBisAf4019op+fUrtB77lmV1hXy+/m3i5mYRFBnOFy8UcrBgGwCxN2UxeW0Ozg4HNdv2kPLjWWy+6WGaqo/1Wj8yM4kpj99FQFgIFquVvfmbOLTZ89+VDgkPYfG2F/ELGkJLrR1rYABhcaOpLPyYnY+8xuisK/lk1QZcjq7uUACOlR0g7YFFHq1fsnojFn+/Hse40PVN4PMxDjafPfEG7ccbAUhfcQuTVi9h58N/AMDZ3knR/EcZlhzDze/nUVn4MYHDQ5n2ws95f/FaThysJfnOmQRF9P285pDwEK773f18dNcztB79lsCIMBZufZZju/bRYqv3aO6Oxha+/scOOpvb2PtiITEzMslYeRslqzcSMz2To6X7ekRyxoSfzufwh6UerQ8QPS2tz2Oc7/omUIyGSbz1epLumI5fYAB+gQG015/s3vb1ph0AnDhYi9PRRfCo4USmJ9JQcYgTB089vnTwr9uZmndfn2tfMeVKwuJHMeettT0+D0+KOWuM8997hvDE6D63vTtnDS21xwGISEug4vUtAERmJFH/5TcAxM3N4tD7n/X6bvrK2wgbG0XJkqf6Pfb39bd+f8e40PW9TTEaZFT2eFKXz2fLzY/RdryR2B9O4ao1d3Zv72r/7rUWLqcTq5/fBa1vsVj4dl81WxatPffO37Nl4fntHzFxbHcgkRmJHDl9RoqZMYldT7/ZY9+J9y8ifv41bF3yFF2t5/e6jv7W7+sY7qzvbT7/p43BZMiwoTiaWmlvaMIa4M+4pXPO+Z1jn+9nRGo84UkxACTdcSN+gQF97nt01z5C40YRfUN692cRE8diDfDn+vxfEDfP/ce6QqIiwOXqPsNGpMbT8N/DjLwqhRMHanC0tHXvO+FnN5Nw6zS23vmbXnd5+5ujv/WBXsc42/om05nRIDXb9pB0+43c+slLtDc0UbtjL0OjIs76nbbjjZSsfoVZb+TibO+k9j976WxqpaOxude+HSea+Wjpb8l64m6y1t2DNcCP5ho7xfc+y8jMRCr+uMXt2SPSEnpcNnY0NjP+nptorz/J4Q++u3wMiY4g+8llNFbZmFv4JABdHQ6KFjwK0O8c/a1fsnoj8fOyu49xrvVN5hMPFw82A/3Uhv/QIBzNp84KcXOzuPqxHP554y/P+/uBkeFMf3kVW3/09IDNdMbi7S/y4e3raDt9U+pizHEhx/i+nMo3jXpqQzF6wUDHmL7yNhIWXYfFz0rnyVY+Xfs69eXfnPuLlznTYtRlqg8oz99Eef4mb48hHtINHBFDKEYRQyhGEUPoBo4XuFwuHK3t3h7jsucfHOjRC8oGmmIUMYQuU0UMoRhFDKEYRQyhGEUMoRhFDKEYRQyhGEUMoRhFDKEYRQyhGEUMoRhFDKEYRQyhGEUMoRhFDKEYRQyhGEUMoRhFDKEYRQyhGEUMoRhFDKEYRQyhGEUMoRhFDKEYRQyhGEUM8T8pQUbfZRvZlgAAAABJRU5ErkJggg==", - "text/plain": [ - "
" - ] - }, - "execution_count": 10, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "from qiskit.circuit import Parameter\n", - "angle = Parameter(\"angle\") # undefined number\n", - "\n", - "# Create and optimize circuit once\n", - "qc = QuantumCircuit(1)\n", - "qc.rx(angle, 0)\n", - "\n", - "from qiskit.transpiler.preset_passmanagers import generate_preset_pass_manager\n", - "qc = generate_preset_pass_manager(3, basis_gates=['u', 'cx']).run(qc)\n", - "\n", - "qc.draw(\"mpl\")" - ] - }, - { - "cell_type": "markdown", - "id": "a174600b-8f4a-47ca-aa4c-cd16dcbecb7c", - "metadata": {}, - "source": [ - "以下のセルはこの回路の多数のバリエーションを作成し、その内の 1 つを表示します。" - ] - }, - { - "cell_type": "code", - "execution_count": 11, - "id": "85af6231-921a-4130-99d3-f6998f761df8", - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAOMAAABuCAYAAADVoKRKAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAHv0lEQVR4nO3cfUxV9x3H8fdFlGeqQONFQQHB+YDgpqVa3apGM5GptSZuiTNzc1nXVGWJlTXZEuuazbBpXI1NatrsLzfD4rKkFdfajLlobFMMulnDhqOi8nDXXnBFnsQLZ3/YYUnxYfeq53tPP6//4Jz7O99/3pxzL/ccn+M4DiLiuhi3BxCRmxSjiBGKUcQIxShihGIUMUIxihihGEWMUIwiRihGESMUo4gRilHECMUoYoRiFDFCMYoYoRhFjFCMIkYoRhEjFKOIEYpRxAjFKGKEYhQxQjGKGKEYRYxQjCJGKEYRIxSjiBGKUcQIxShihGIUMUIxihihGEWMUIwiRihGESMUo4gRilHECMUoYoRiFDEi1u0B5N44jkOo97rbY5gVmxCHz+dze4yIKMYoEeq9zm+nfNvtMcxa33iQ0Ynxbo8REV2mihihGEWMUIwiRihGESMUo4gRilHECMUoYoRilLvKX7eIjW2HyV+3aMTtyVmPsrHtMAt//dzDHcxjFKOIEYpRxAjFKGKEYhQxQjGKGOG5GIPBIBUVFeTn5xMfH092djbl5eV0d3ezadMmfD4f+/fvd3tMkc/x1C1UZ8+epbS0lEAgQFJSEjNmzKC1tZV9+/bR2NhIR0cHALNnz3Z3UI9yHMftEaKaZ86MwWCQlStXEggE2LZtG21tbdTV1REIBKisrKS6upra2lp8Ph9FRUVujxtVQn39AIxKiBtxe2zizd8PfLqfhMczMW7dupXm5mY2b97M7t27SUlJGdpWUVFBcXExoVCInJwcUlNTXZw0+nRd/giAsQUTR9z+SEEWANc+3U/C44kY6+vrqaqqIiMjg127do24z5w5cwAoLi5+mKN5Qvu5D+lq+ZjcpxaQMH7csG0xo2OZ/r1SnMFBrhw77dKE3uCJ94yHDh1icHCQ9evXk5ycPOI+CQkJgGIMhzMwyHs/fo3Fv9nO6po9XPhdDdcuBYh/dCy5q55g3LRJ/O3lP9DZ2Or2qFHNEzHW1NQAsHjx4tvu09zcDCjGcDX/uY6jq37KrOeeIn/dk8SNSyHUc532Dy5y/Ad7aHrzXbdHjHo+xwMfgWVnZ9Pc3MyZM2dG/KQ0FAqRmZlJMBiksbGRvLy8sI4zd+5cAoFAhNOGZ7QTw47BEleOHQ12xrzPDd+g22Pg9/s5fTq8y3VPnBm7u7sB6O3tHXF7VVUVwWCQlJQUcnNzwz5OIBCgpaUl7NdHYoxvFIx35dBRobWtlX5nwO0xIuKJGP1+P1evXqWuro758+cP29bW1sb27dsBKCoqiujZmn6/P6I5IzHaiQH3//CbNSFzgpkzY7g8EePSpUupr6+nsrKSZcuWMXXqVABqa2vZsGEDwWAQiPyf/eFeftwPN3r69NzUO2i40KDnplpQUVFBeno6V65cYebMmcyaNYuCggJKSkrIy8tjyZIlgD68Eds8EWNWVhYnTpygrKyM+Ph4mpqaSEtL48CBA1RXV9PQ0AAoRrHNE5epANOnT+fIkSOf+31XVxdNTU3ExMRQWFjowmQi98YTZ8Y7OX/+PI7jUFBQQGJiotvjiNyW52M8d+4coEtUsU8xihjhmfeMt+P1GFNy/Xz15S3EpaVw41oPJ8v385+G5ody7Mll88ha+hXixibzSEEWA3399AU/4d0XXuNaU+TfVHrQ61vj+Rj/971Vr3ril8/QcPAd/vX740wum8fClzdzpPSFh3LsSSsep+mNUwzeCNFScwaAad9dzoI9z/LW2h3m17fG8zF6WXx6KunFUzj2rZcAuFT9HvN+sYmUHH/EZ44xqYms/steRsWPoac1SEzcaFImjafx8F859fyr+GJHMf6xL3GyfD9O6NbX0D6uu0Dhs6tcXz8aKcYoljQxg95/X8UZuPU1sK6WIEkTMyKOsb+zhw//eIIb3X38fe9hJiwqpmjr05x6/lUAMhcU8lHtP4eFAjDj+yu4/Hat6+tHI8X4BbXizZ+Tmpc54rY3lm2np7WdtMJc6l8/CkB60RQ6Prg4tM+k5Y9x6U/vD3vdrK1Pk5Lj59S6nfc0w4NeP9ooxijW3RIkYfw4fKNihs6OyRMz6G4J3vW1R1f+5K77pM3MGQokvSiPK585I01YNJvTLx0c+nnmD1cxecXjHFu3k4Hee3sWzoNeP9p4/l8bXtbX3knHuYtMWfs14Oanj91tHUOXqAv3bWFSaXj3QCb608Bx6AncfKJe2vTJXP3HZQAyvlzAJxdaCPX0ATDjmW+Qu2YBx775M/o7e4atc7sZ7tf6XqIYo9ypigNM3bCMNSf3MWvLGk7+6JWhbRnFeXS3toe1blph7rDLxv7ObqZ95+sATC4t4fJbNy8hEzPTKHlxI2NSk1h++EVWvfMryqpvPYfodjPcr/W9xBN3+n8R/L+3UMWlp/LkK+VDn7TeT6uP7+XttTvoa+98IDPc6/qftb7xYNTfQqUYo4TuZ7wzL8Soy1QRIxSjiBGKUcQIvWeMEo7jEOq97vYYZsUmxEX0sDELFKOIEbpMFTFCMYoYoRhFjFCMIkYoRhEjFKOIEYpRxAjFKGKEYhQxQjGKGKEYRYxQjCJGKEYRIxSjiBGKUcQIxShihGIUMUIxihihGEWMUIwiRihGESMUo4gRilHECMUoYoRiFDHivw22t2h/21LHAAAAAElFTkSuQmCC", - "text/plain": [ - "
" - ] - }, - "execution_count": 11, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "circuits = []\n", - "for value in range(100):\n", - " circuits.append(\n", - " qc.assign_parameters({ angle: value })\n", - " )\n", - "\n", - "circuits[0].draw(\"mpl\")" - ] - }, - { - "cell_type": "markdown", - "id": "ede2ff7c-5e68-4458-87b3-887b5b027ee1", - "metadata": {}, - "source": [ - "回路の未定義のパラメーターのリストは `parameters` 属性にあります。" - ] - }, - { - "cell_type": "code", - "execution_count": 12, - "id": "0990b840-f8c4-4416-b2b5-9861173a9471", - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "ParameterView([Parameter(angle)])" - ] - }, - "execution_count": 12, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "qc.parameters" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## 次のステップ\n", - "\n", - "\n", - " - near-term 量子アルゴリズムについて学習するには、[変分アルゴリズムのデザイン](https://learning.quantum.ibm.com/course/variational-algorithm-design)コースを受講してください。\n", - " - [Grover's Algorithm(グローバーのアルゴリズム)](https://learning.quantum.ibm.com/tutorial/grovers-algorithm)チュートリアルで、回路の使用例をご覧ください。\n", - " - [Explore gates and circuits with the Quantum Composer(Quantum Composer によるゲートと回路の探索)](https://learning.quantum.ibm.com/tutorial/explore-gates-and-circuits-with-the-quantum-composer)チュートリアルで、単純な回路を操作します。\n", - "" - ] - } - ], - "metadata": { - "description": "How to create and manipulate circuits in Qiskit", - "kernelspec": { - "display_name": "Python 3 (ipykernel)", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.11.4" - }, - "title": "Construct circuits" - }, - "nbformat": 4, - "nbformat_minor": 5 -} \ No newline at end of file diff --git a/translations/ja/build/circuit-library.ipynb b/translations/ja/build/circuit-library.ipynb deleted file mode 100644 index 530f2c3037..0000000000 --- a/translations/ja/build/circuit-library.ipynb +++ /dev/null @@ -1,468 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "id": "aea62c4c-1e42-4472-9f1d-e52783e81fc6", - "metadata": {}, - "source": [ - "# 回路ライブラリ" - ] - }, - { - "attachments": {}, - "cell_type": "markdown", - "id": "6f257ff9-15c4-48d8-9503-7f0ab16a91b2", - "metadata": {}, - "source": [ - "Qiskit には、独自のプログラムでビルディングブロックとして使用できる一般的な回路のライブラリーが含まれています。 事前定義済みの回路を使用することで、調査、コードの記述、およびデバッグにかかる時間を節約できます。 ライブラリーには、量子コンピューティングで人気のある回路、古典的にシミュレートするのが難しい回路、および量子ハードウェアのベンチマーキングに役立つ回路が含まれています。\n", - "\n", - "このページには、ライブラリーが提供する様々な回路カテゴリーがリストされています。 回路の全リストについては、[回路ライブラリー API ドキュメント](/api/qiskit/circuit_library)をご覧ください。" - ] - }, - { - "cell_type": "markdown", - "id": "f1d7c8c9-1b4d-45e1-9cd5-c5d76c2e25ab", - "metadata": {}, - "source": [ - "## N-ローカル回路\n", - "\n", - "これらの回路は、単一量子ビットの回転ゲートの層と複数量子ビットのもつれゲートの層を交互にします。\n", - "\n", - "この回路ファミリーは、広範な量子状態を生成できるため、変分量子アルゴリズムで一般的です。 変分アルゴリズムは、ゲートパラメーターを調整して、特定のプロパティを持つ状態(最適化問題への最適な解決策を表す状態など)を検出します。 この目的のためにライブラリー内の多くの回路は**パラメーター化**されているため、固定値なしで定義することが可能です。\n", - "\n", - "以下のコードセルは、もつれゲートが 2 量子ビットゲートである `TwoLocal` 回路をインポートします。 この回路は、パラメーター化された単一量子ビットゲートのブロックをインターリーブし、続いて 2 量子ビットのもつれブロックをインターリーブします。 以下のコードは、単一量子ビットの RX ゲートと 2 量子ビットの CZ ゲートを持つ 3 量子ビット回路を作成します。" - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "id": "3ccaeb1b-03c6-4dfa-9000-e48db2516303", - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA7UAAADuCAYAAADm+CCcAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAABB6ElEQVR4nO3dd2AUZf4G8Gc2PZu2SUglgZAEQpUq4qlgoSiCClJOREWKKBYsYD09ET0PLNz5O5QmVYqCeCpFFBERASUkoSYkQEhIL7spm7q78/sjRyAmwM66bWafzz932Z3Bb2DfZ9/vzDszQqWuTAQRERERERGRDKkcXQARERERERGRpdjUEhERERERkWyxqSUiIiIiIiLZYlNLREREREREssWmloiIiIiIiGSLTS0RERERERHJFptaIiIiIiIiki02tURERERERCRbbGqJiIiIiIhIttjUEhERERERkWyxqSUiIiIiIiLZYlNLREREREREssWmloiIiIiIiGSLTS0RERERERHJFptaIiIiIiIiki02tURERERERCRbbGqJiIiIiIhIttjUEhERERERkWyxqSUiIiIiIiLZYlNLREREREREssWmloiIiIiIiGSLTS0RERERERHJFptaIiIiIiIiki02tURERERERCRbbGqJiIiIiIhIttjUEhERERERkWyxqSUiIiIiIiLZYlNLREREREREssWmloiIiIiIiGSLTS0RERERERHJFptaIiIiIiIiki02tURERERERCRbbGqJiIiIiIhIttjUEhERERERkWyxqSUiIiIiIiLZYlNLREREREREssWmloiIiIiIiGTL3dEFUNtEUURNo+joMszm6yFAEARHl0EKIrcxAHAcEFkTM4CImANkLja1TqqmUUTkwnRHl2G2gjlJUHtyAJP1yG0MABwHRNbEDCAi5gCZi8uPiYiIiIiISLbY1BIREREREZFssaklIiIiIiIi2WJTS0RERERERLLFppaIiIiIiIhki00tERERERERyRabWiIiIiIiIpItPqdWQQZ3CsRPM3u2eK263ojTpbVYe6QYH+3Ph9HkoOKI7IBjgIiYA0SujRngmtjUKtD6lGJsT9dCEIAIf0881DcMH47qhK5hvnhsS5ajyyOyOY4BImIOELk2ZoBrYVOrQEfy9PgspaT558W/FiB9Tj9MGxCOV3dmo1RvcGB1RLbHMUBEzAEi18YMcC28ptYF1DSacDCnCiqVgPgQH0eXQ2R3HANExBwgcm3MAGVjU+si4kO8AQDlNY0OroTIMTgGiIg5QOTamAHKxeXHCuTrqUKIr3vzNQQzb4hA32g/HMqpQmZpnaPLI7I5jgEiYg4QuTZmgGtxiaa2vFyLZcuX47tdP6CwsBDBwcEYPmwonn9uNubNfxubN3+J1//2Gh6aPMnRpVrFvGEdMG9YhxavbTlWillbzzioIscSRRG/5tbgi+OVKNIb4CYAnYI9Mfm6ICSGeDm6PLvIr2zEmjQdTpXUo85gQrCPG0Z3CcCwBD+4qQRHl2d1HAP0R9paIz47qsPh/FrUNpoQ4OWG2zupcW/XAHi7K3/RkkkUsfusHl+dqkRZjQGebgI6h3rh4d4axAR6OLo8m2AO0OVEUcRvebXYeKwChdVNc4EOQR6YfJ0GSe1cYy5QXG3AmjQtjhfVo9ZgQpC3G0Z29sddnf3hzrkAyZzim9qTJ09h6vQZKCkpha+vLxIS4lFcXILVa9YiJycHuooKAEC3rkkOrtR6lhwswBdHS+HhpkLPCF+8OKQ92gd6oc5w6f7lnm4CjjzTG+tTS/DOjxeaX185PhHhfh6469OTjijd6n44U41XdxfhVEl9q/cWHSjDrXFqfDAiEvHBng6ozvbKagx4fmch/pteCaPY8r3PjlYgNtADr9zSDg/0CnJIfbbCMUAX1Taa8OruInyWpkOtoeUg2HS8Ai//UISnB4Zg9qAQCILyJnUAsOVkBd7cU4xs3R+X21Xhvf2luCvRHx+MiECEv7KaW+YAXfTLeT1e+r4IR4tan5376FA5bu7gi/eHRyq2udXWGjF3VyG+PFmBxj88ymbDsQpE+bvjxZvaYUpfjWMKtBFmgGtR9OHp8nItZsx8AiUlpZj66BT8+svP+PqrL3Hw132YO+d57PlpL44dOw5BENAlqYujy7WazNI67M6qwM4MLRbuzcOoVScxoL0fPhmT0LxNg1HEQ5tO45XbYtArUg0AuKd7MEZ1DcbUzcq4zfkXJyowblNOmw3tRXvO6XHHqnM4Uay8ZSiFVY24fVU2vjzVuqG9KKeiETO/ycf7+0vtW5yNcQwQAOgbTBi9/jyWJ2tbNbQXldUY8caeYjy1rQCieIWBImOLfyvDlK15bTS0TUwi8O3pKtyxOhs5FQ12rs62mAMEAN9mVOKe9efbbGgv2ne+BkPXnMOR/Fo7VmYfZTUGjFibjU3HWze0F+VXGfDMjgLM21Ns3+JsjBngWhTd1L41/20UFhZi8oOT8PJLc+Hnp25+b8b0aeialASDwYD20dHw9/NzYKW2deB8FdYeKcbE3u0wqIN/8+tH8vR4b28e1kzojOhATywdm4BZX51BQaX8JzaH82ox8+u8KzZzlyurNeL+jTmoqDPavjA7MYkiJnyei7Na8/4t3/ypGF+dqrRxVY7jimOAgFnf5uPQBfMmqWvSdPjwQJmNK7Kv77Kq8NL3RWZtm1PRiHGbctFoTmjKFHPA9ZworsOjX+VdsZm7XEWdCeM25SjqMS+iKGLS5gtXPbh/ufd+LcVnR3W2LcqBmAHKptimNivrDLZt3wGNRoMXnn+2zW269+gGAEj6w1na3NwLmDHzCVzXpx/69h+IF+a8CK1Wa/Oabemt3bkwGMVW1xbM350Lg0lEyjN9sOdMBTalKeOM3b8Plpr1JXZRXpUBG45V2K4gO/v+TDVSCqWdfX5vf6kiz1Rd5GpjwNVlltXjS4kHav59sKzFsjS5k7oC41RJPb49XWWjapwDc8C1fHSoDHVXWKXRlpIaI1an6mxXkJ3tz6nBr7k1kvZ5b38pTJwLMANkSLFN7bfbtsFkMuGe0XdDrVa3uY23V9NtvZOSLl1PW12tx4MPPYzCwkJ8+MF7mP/WmzicnIzpjz0Ok0m+k50zZXXYmFaCOxKDcFPHgObXDSYRv56vRDs/D6z83bwj+s6uoKoR32RIn5gtTy5XTFO3PFn6QZijRXX4LU95S68ucqUxQJaNgfJaI7YqZMXCsaI6HDTzLPXllieX26Aa58EccB1lNQZsOSF9PH96RAujyXXnAmfKG7A3W2+DapwDM0C5FNvUHjhwCAAwcODAK25TWNj0oe162ZnajZs+R1FRMT5Z/H+47dZbcdedI/DB+wuRmpqG3bt/tG3RNvb2j7kwmkTMGx7b/NpNHQPwSP8wfLQ/H/+6p5Mi7gK655zerGXHf3S6rAE5FfJ/bpkoith9ttqifb8/Y9l+cuEqY4CAH1x8DPxg4e+x73yNos5Wt4U54Br259Sg3oLJQG5lIzJKzVuu6+xcPQevhBmgTEKlrkwZh6P+4KZbbkVhYSG+/upLdOvWtdX7BoMBg/5yC7RaLX78YRdiY2MAAJMmPwwA+Gzt6hbb33r7MAwcOADvvvO25FrmzH0ZWp1O0j4GwR1fxj4u+b8lhdpThbRn++CDn/Px8cEC7J3ZE4cvVOO5b85J/rPG5HwMd9E5rkPJ9O+FlODBFu07NH8DNI3yXnLyZz47iZWp6KPdZ+WKLCO3MQA41zhwdV9HP4o697ZX6VxNZE02bi75xgYV2dfRoEFID+xv0b6jc5fD2+T4VRv2yABAud+Fru6cuit+D73Don1vK9yM0PoCK1dkXyKALzo8ZdG+cdUnMKDMOU7kcC7gWjRBQVi44B8W7avYR/rU1jZ9IdfVt31d4bbtO6DVaqFWqxET07759aysM7hzxPBW2ycmJiAry7LnWml1OpSXS1vSZVR5ALHX3u7PeP/uOJwrr8fiA03B/cimTKQ+2xtbj5dh3zlpS3a0Wi3cTM5xlrMOOiDYsn312hKIDfK+flqEYPFnp7GmSvJn1VbkNgYA5xoHrk6IqAcsaGqN9XqnGQN/RqNHJRBo2b6V5cWocYLPsT0yAFDud6GrqzXpgFDL9tXrSqGqlX8OqGIaYVJJf1SXoabaaXKQcwEyl2Kb2tDQUFRUVODEiZPo26dPi/eKi4vxzwULAQBJXbq0eDZhZWUlAgL88UdBgYE4d86yIzaaoCDJ+xgE2/7TjOiiwYTr2qHXhynNr50tr8NL289j5fhE9PogBTUS7rSk0Wic5qiUm0c1TgGAKAISnjvpZaxBpJ8b3CztiJ2Ipr4IWq9wyftFqyoRHOwcv7/cxgDgXOPA1YUaSpHrJf2zHAGt04yBP6PBrRJnAMk5GNBQjnZB/nCGJ/baOgMAZX8XujpPdz2OA5LHgIepHtG+Itx95J8DIQ1FKPFuf+0N/yBKpXOaHORcwLVY0jNdpNjlx/Peehtr1q5DZGQk1qxagbi4OADA0aPH8MKcF5F74QIaGxvx4KQH8Pc3/ta8X9fuvTB92qN47tnZLf68uS++jJTUVHz/3Q671K9vMCFyYbpd/lvWUDAnCWpP57n+YPiacziQK2353As3huL1W8NsVJF9rUvT4Ylv8yXtE+3vjmNPJsJd5QzTWfmNAcD5xoEr+zVHjxFrz0vax8tNQPrTiQjxlf/xXpMoou/HZ8x+rNdFC4dF4LEBzjGZZQbQnzVmw3n8cFbaTY8eHxCMfw6LsFFF9vXlyQo8sjVP0j4hvm5IfyoRXk5yTSlzgMyl2L/x6dOnQhMUhIKCAtw5cjTuuns0bh86HGPuH4+YmPa44YamG0j98XE+AQEBqKxsfedcXUUFAgMtXMtFdvfE9SGStvd2F/BI3yDbFOMAY7oFIEztJmmfxwYEO01DS/RnDYrxRZ8Ib0n7TOwZqIiGFgBUgoDHJTanQd4qTOzJ7zlSDqlzAQ8VMK2fxkbV2N/dXQIQEyBt+fHUvhqnaWiJpFDspzYyIgIb1q/DrUMGw8vLE3l5eQgKDML8eW9i+bIlyD6XDQDoetnjfAAgPr4Tss60vnY2K+sMEuLj7VE6WcE9SQF4aqB5EzqVACy/JxqxgZ42rsp+fD1U2DguFmoP85rU0V388dRAaV/+RM5MEASsGdseEX7mNan9orzx7lBlnJ25aHp/Dcb3MK9J9XITsGFcDAK9pR0MI3Jmd8T74aWbzbuwVgDwn7ujkBjiZdui7MjTTcDG8THw9zJvun9HJzVevKmdjasisg3FNrUAkJAQj2VLP0FaSjLSUpKxZfMmTJw4HjU1NbiQlweVSoXOnRNb7HPbrUOQnHwEBYWFza+lpqUhJycHt906xK71058z//Zw/G1wO3i6XbmxC/F1w8ZxMRidFHDFbeSqf7QPtk/uiA6BVz5KqxKajsquvK893HiWlhSmQ5Anvn+4I64Lv/oZ27s7++PrBzoobrmYShCwZFQUZl0fjKvEIKL93fHtgx3wl1jpN9YicnYv39wO79wRDm/3Kw+CIG8V1oxtj4k9g+xXmJ30DPfGroc6Ij74ygfuBQCTegViw7gYeFwtLIicmGKvqb2a1LQ03D9uIjrFxWHXd9tbvFdVXY2Rd4+GRqPBM08/ifr6BixY8B6Cg4PxxecboFLZZ9Ijt2sInPn6gbIaA9al6fD58QocK7707Lmlo6Nwb9cAxT+LzGgSsSurGiuOaLHrsmfPvfCXUEzpo0HMVZpeR5LbGACcexy4MlEU8WtuDZYla/HlyUt3spzRX4OpfTXo2k7aMmU5yq9sxKpULb46VYX0y57BuW5se9zV2d8pLz1gBpA1aWuNWH9Mh03HKpBaeOnJGIvvjsLYbgHw8VD2v5tJFLH7rB4rksuxPfPSXGD2oBBM6aNBnMY5V6sxB8hcLvk3npFxGkDr62kBwN/PD2vXrEJYu3aY/ewLeOXVv6FP3z5YuvRjuzW0ZF0hvu54ZlAo9k+Px8V5m0oAJvYMUnxDCwBuKgF3dvbH5omxLX7/14eEOW1DS2RNgiDgL7FqrLqvfYsx8N7wSJdoaAEgKsADr9wSht8ea5mDo5MCnLKhJbI2jY8bZl0fgp+ndmoxBh68LkjxDS3QtHJjaLwfNo5vOReYd1u40za0RFIo444YEp0+nQkASPrD9bQXdYiNxbKln9izJCIiIiIiIrKASza1GaebztR2beNMrZz1ilRj2dgE+Hu54byuHpM3ZqB7uBo7pnZDRkkthi07gRJ9I3w8VFgxLhED2vvBJAKv7MzGlmNlAIAFIztiQq9QHMnT4741pxz8GxFJY+4YmD+8A0Z3C4ZRbLr64t09F7AprRQAxwCRnJmbAQDw+KAIPHVjFAwmESYRGPh/qag3iMwAIpkzNwcSQr2x+N54hPl5wl0FzNudi8//NxeYfXMUZg2KRHWDEX0WpTr2FyKzuGRTu27NKkeXYBOrxidiyueZSCvQY0r/cLw3Mg4rDxcjo6S2xYB8YXA06g0mJC5IRkeNFw49dR32nKlAeY0Bc7dl40RhDe7tzjvhkvyYOwYW7r2A175reoZpVIAnTr3QFz9k6lDGMUAka+ZmwOhuwZjUJww3/CcNlXVGhKrd0WhsOsjFDCCSN3NzYNX4zlh5uAgrfitCqNodh5/ujV/OVSK/sgGL9uUjJU+PRaPjHPeLkCTKv4jARfSOUqO6wYi0gqaHjK9OLsLobiFt3vl3Qq9QfHKw6e7O2dp6/HSmAvf14Jc3yZuUMVBRZ2z+/35ebhCEpuuNiEi+pGTAnMHRePP7HFT+LwtK9QaYXO62mUTKIyUHrotUY3u6FkBTBqQV6DHhOvMeAUXOxyXP1CpRXLA3ekaokTK7d/Nrvp4qRLfx7NVYjRfOay/d+S9bW4/YIOU8l41ck5QxAABP/SUSs26MRPtAL0zbnNm8JJGI5ElKBnQL90X/9n54Y2gsvNwFrEkuxkf7C+xYLRHZgpQcSM6rxoN92mHh3jzEBXvhxg4ByC6vb7UdyQObWgU5lFOFEStONP9c/PpAB1ZDZH9SxsBH+wvw0f4C9IpUY93Ezth1WofyGoM9yiQiGzE3A9xVAuKCvXHLx0eh8XHH3pk9cba8DttOae1VKhHZiLk58PCm03j/7jikzO6N89p67M7SwcAlG7LF5ccKcbasrsXZVn8vN6g9VciraGi1bY62Hh00lx5j0VHjhRwdj0yRvEkZA5c7WqBHXmUDhnQKtHWJRGRDkr4HdfXYkFoCk9j0LPPtGVrcEOtvz3KJyAak5MB5bT3uX5uOPotSce/qUwj0dseJohp7lktWxKZWIdIK9Gg0ibgjMQgA8MSgSGxKK0WDsfURpy+OlWHmDREAmhraIfGB+Op4mT3LJbI6KWOga5hP8//vFOyNPlFqnCzmFxmRnEnJgPUpJRjRRQMA8HZXYUinQKTl6+1ZLhHZgJQcCPPzwMXbaQzrHIRuYT5Yn1Jix2rJmrj8WEEmbcjAyvGJ+Pi+eGSV1eHBDRnoEaFutd3Cny7g0/GJyHqxH4wm4MmvzqKMyy5JAcwdAwtGxiFO44VGkwiDScSTX51BenGtAyomImsyNwM+2JeHJWMScOL5vhBFEVuOl2HzMR7cJVICc3NgVLdgvDSkPYyiiPzKBtz16UnUGUwOqJisgU2tghwvrMGAf6ddc7uaRhMmfpZhh4qI7MvcMTBq5Uk7VENE9mZuBtQbRDzyeaYdKiIiezM3B1b81vQ4H1IGLj9WuAajCSG+HkiZ3Rvt1B7X3H7ByI54+bb20NbyzC0pA8cAkWtjBhCR1ByYfXMUFt8Xj1I9c0AueKZW4Q6cr0LsO7+bvf3cbdmYuy3bdgUR2RnHAJFrYwYQkdQcWLQvH4v25duwIrI2nqklIiIiIiIi2WJTS0RERERERLLF5cdOytdDQMGcJEeXYTZfD8HRJZDCyG0MABwHRNbEDCAi5gCZi02tkxIEAWpPDgpyXRwDRK6NGUBEzAEyF5cfExERERERkWyxqSUiIiIiIiLZYlNLREREREREssWmloiIiIiIiGSLTS0RERERERHJFptaIiIiIiIiki02tURERERERCRbbGqJiIiIiIhIttjUEhERERERkWyxqSUiIiIiIiLZYlNLREREREREssWmloiIiIiIiGSLTS0RERERERHJFptaIiIiIiIiki02tURERERERCRbbGqJiIiIiIhIttjUEhERERERkWy5O7oAapsoiqhpFB1dhtl8PQQIguDoMogUQ24ZADAHiKxNbjnADCCyLrllAOC4HGBT66RqGkVELkx3dBlmK5iTBLUnv8iIrEVuGQAwB4isTW45wAwgsi65ZQDguBzg8mMiIiIiIiKSLTa1REREREREJFtsaomIiIiIiEi22NQSERERERGRbLGpJSIiIiIiItliU0tERERERESyxaaWiIiIiIiIZItNLREREREREcmWu6MLIOsZ3CkQP83s2eK16nojTpfWYu2RYny0Px9Gk4OKIyK7YA4QuTZmABG5Yg6wqVWg9SnF2J6uhSAAEf6eeKhvGD4c1Qldw3zx2JYsR5dHRHbAHCBybcwAInKlHGBTq0BH8vT4LKWk+efFvxYgfU4/TBsQjld3ZqNUb3BgdURkD8wBItfGDCAiV8oBXlPrAmoaTTiYUwWVSkB8iI+jyyEiB2AOELk2ZgARKTkH2NS6iPgQbwBAeU2jgyshIkdhDhC5NmYAESk1B1xi+XF5uRbLli/Hd7t+QGFhIYKDgzF82FA8/9xszJv/NjZv/hKv/+01PDR5kqNLtQpfTxVCfN2b18/PvCECfaP9cCinCpmldY4uzyFMoogj+XUQxaafL/4vuY7aRhN+z6tFZb0RPh4q9AjzRrifciOQOdBaid7QIgP0DSaoPXls15VkldfjTHkDjCYgVO2GfpE+cFMJji7LJpgBrYmiiJQCzgVcWb2haS6gqzPC212Fbu28EBXg4eiybMaVckC5M7r/OXnyFKZOn4GSklL4+voiISEexcUlWL1mLXJycqCrqAAAdOua5OBKrWfesA6YN6xDi9e2HCvFrK1nHFSR41TWG7E6RYcVR7Q4q21ofl0EMHzNOUzrF4yx3QKgEpQ5qSEgp6IBS34vx9o0HXR1l271564CRnUJwMwBwRgU4+vACm2DOXDJ73k1+OT3cnx1qhIX57AigKR/n8ZfewVh5oBgdNJ4OrJEsiFRFPHf9CosTy7Hz+drWrzXIdADj/bV4JE+Gmh83BxUoW0wAy7RN5iwJk2LFclanC5rORe4beU5TOunwfgegXBX6AEOAvIqG7EsuRxrUnUorTE2v+4mAHd19sdj/YNxS0e1Ayu0DVfKAUU3teXlWsyY+QRKSkox9dEpeOrJWfDza/rALl22HAsWvg93d3cIgoAuSV0cXK31LDlYgC+OlsLDTYWeEb54cUh7tA/0Qp3h0oTe003AkWd6Y31qCd758ULz6yvHJyLczwN3fXrSEaVb1YXKRozdmINTJfVtvn8gtxYHcvPwdXollt0TDW93nrFRml/O6zHxi1xU1re+b73BBGw9VYmtpyrx5q1hePbGUAdUaDvMgSaf/F6OF3cVoq0TMhX1JnzyvwMe68a2x+2d/OxeH9lWo1HEE9/mY9PxijbfP1/RiDf2FGNNmg5fToxFnIIObjADmhRVGzBuUw5SC9s+K3U4vxaH82ux9VQlVo9pD18PzgWU5ve8GozflIuyWmOr94wi8E1GFb7JqMLcm0Lx6i3tICjoRIcr5YCiR+5b899GYWEhJj84CS+/NLe5oQWAGdOnoWtSEgwGA9pHR8PfTzmTmczSOuzOqsDODC0W7s3DqFUnMaC9Hz4Zk9C8TYNRxEObTuOV22LQK7Lp7+We7sEY1TUYUzfL/xbf2loj7ttw/ooN7eX+m16Fmd/kw8R1SIpytLAO4z5vu6H9ozf2FGPJ7+V2qMp+mAPAujQd5l6hob2cvsGEv36Ri9/yaq6xJcmJKIqYvaPgig3t5c6UN+DeDecVdSdQZgBQ3WDC/Ruv3NBe7rusajy69QKMJs4FlCS9pB5jNua02dD+0YJfSrHoQJkdqrIfV8oBxTa1WVlnsG37Dmg0Grzw/LNtbtO9RzcAQNJlZ2kLCgvx9zffwpix49G1ey8kdO5ql3pt6cD5Kqw9UoyJvdthUAf/5teP5Onx3t48rJnQGdGBnlg6NgGzvjqDgsqGq/xp8vB/h8qQUWr+7/HlyUr8dE5vw4rI3l76vhD6BvOfLP63H4tQbsaXnly5Wg5UN5jw4q5Cs7evM4iY853525Pz+y2vFmvTdGZvf07biA8OlNquIAdztQwAgGWHy5FWZP51g9szq7Ejs8qGFZG9vba7CBV15s8F3tpbjMIqZd1A6XJKzgHFNrXfbtsGk8mEe0bfDbW67TXy3l5Nd/9KSrp0Pe358zn4btcuhLYLRa+ePe1Sqz28tTsXBqPYal39/N25MJhEpDzTB3vOVGBTmvy/0BuMIlanaiXvtzxZ+j7knE6V1OGXHGln3eoMItYf1dmmICfhSjnw+fEKVEk4qAEAKQV1SM6vtVFFZG/LLMj0dWk61DRK+9zIiStlgNEk4tMj0j8DlnxuyDll6xrw/ZlqSfsYTMDqVJ1tCnISSs0BxTa1Bw4cAgAMHDjwitsUFhYBALpedqb2+gH9cWD/Piz9ZDFuvHGQbYu0ozNlddiYVoI7EoNwU8eA5tcNJhG/nq9EOz8PrPy9yIEVWs/us9Uo1ks/47Y9s0rRZ+pcyfqj115u2PZ+OusW4mRcKQc+s/DfUumfAVehbzDhq1OVkvfT1ZkUfabOlTJgf04NzldIP+O255weeZXKPVPnSjYeq7jm5SdtsfT7Qy6UmgOKvVFUXn4+ACA6KqrN9w0GA5KPHAHQ8kytSmX9Pn/O3Jeh1ekk7WMQ3IHYx61ax9s/5uKvvdth3vBY3LbkOADgpo4BeKR/GD7an49/3dMJvT9MbXHxuLlmPfUM3EXnuBYpy68HEHKr5P1MIvDYC68jsFFZ11ZezhQ7CxBUMJlMmDbDup8vZ3IgdDig7ix5v4yCCqf5e7FFBgCukwPHo6cA7tLvlbBtXzIqvtxmg4qchyvkQLV7ABqiH7Zo3w8/3YQdlSlWrsgynAtYLludBIQOtWjfJ195GyEN8pvUm8sVMgAAfg++DfDvLnm/HG0dps54HM5wuyhXmwtogoKwcME/LNpXsU1tbW3TErK6+ravpdi2fQe0Wi3UajViYtrbtBatTofycmmNklHlAcRK++/sPVsBYe4vV3w/vbgW7i/tb/5Z7anCqgmJeGn7eXx8sAB7Z/bEO3d2wHPfnJP2Hwag1WrhZnKOI5s1qhogxLJ9KyoqYKxTblN7+WdK6mdSThr86wEL7swviqLT/L1YkgEAc+AiU6Rlqy4aGxqc5jNgMy6QA7WeRiDawn1rapzm74VzAcvpxWrAwpvaV1ZWQKhxjs+ATbhABgBAg7oO8L/2dn90cS7gDE0t5wLmU2xTGxoaioqKCpw4cRJ9+/Rp8V5xcTH+uWAhACCpSxeb37pbExQkeR+DYPt/mvfvjsO58nosPlAAAHhkUyZSn+2NrcfLsO+ctGVbGo3GaY7O1nlZdj2UIJoQ7ucOL99gK1fknIKDlft7Brk1wJJj7GqT3mn+XuyRAYByc8DPVIN6BEreL1BV7zSfAXtQ6u9qENyhEo0wCdKfPRvqaXSavxfOBSxn8LJg4akoAoKAcLUbfL2d4zNga87yWbeFIPdG5Fmwn9pYjRAn+XtxtbmAJT3TRUKlrkyR9y6f99bbWLN2HSIjI7Fm1QrExcUBAI4ePYYX5ryI3AsX0NjYiAcnPYC/v/G3Nv+Mf/37//DR//0HWadP2bN0AE3XA0UuTLfZnz+iiwYbHuiCXh+mIFd36bE3TwyKxHO3RKHXBymSbpZRMCcJak/nuES70Sii20eZKJL4aIbRXfyx7v4YG1XlHILeOQmTCKgEQPdKN0eXYzMZpfUYsET6g8X/MTQcs6638DS/ldk6AwBl58CqFC2e3l4geb+9j8ahT6SPDSpyHq6SAzO+zsPGY9Kur9f4uCH9qUT4OMmzSjkXsJxJFNF7cRayddLOGN3eSY2tf+1w7Q1lzFUy4LyuAb3+kyX5utq/DW6HOTe1s0lNUnEuYD7nSB4bmD59KjRBQSgoKMCdI0fjrrtH4/ahwzHm/vGIiWmPG25ouoHU5Y/zcSU7M7TQvHGwxYcXABYfKEDCP5NlffdHDzcBj/QJkrzftH4a6xdDDtEl1Au3dPCVtI+Pu4AHegbZpiAnpeQcGNc9EAFe0r7i+kV5K76hdSWWZPrk64KcpqG1ByVngEoQMLWv9M/A9H7OcYaO/rwOQZ4YniDt3goeKuCh3q41H1RKDig2uSMjIrBh/TrcOmQwvLw8kZeXh6DAIMyf9yaWL1uC7HPZAICul90kipTjyYEh6NbOy+ztx/cIxOCOFlyESU7r3aER8JNwpPAfQyOg8ZG+VJGck9pThYXDI8ze3tdDwHvDI21YEdnbgCgfTJFwgDM+2BPPDnKOlRpkHdP6BaNPpLfZ24/u4i+5CSLn9vYd4ZK+2/9+azjC/RR7daaiKbapBYCEhHgsW/oJ0lKSkZaSjC2bN2HixPGoqanBhbw8qFQqdO6c6OgyyQYCvd2w9a+x6BF27cZ2bLcA/GdkpM2vrSb76hHujS8nxpr1ZfbOHeF41IIj+uTc/tozCB+OiIDqGkPb30uFTeNj0S+KZ2mVRBAEvD8iEg/2Crrmtp1DPPHfB2IR4svJrJKoPVXYMiEWfc1obO/u7I9l90TD7VqBQbKSGOKFrRNj0c732nOB1wa3w5MDeaZerlwyvTOzsiCKIuI6doSPT+tJzI6d3wEAss6cafFz++ho9OzZw36F0p8S6e+BXQ/HYV2aDsuTy3G6rKHF+7d08MW0fsEYneQPFRtaRbohxhe/TuuE5cnlWJ2qQ2lNyzviju8RiBn9Nbg+WtpSZZKPqf2C0TfKB0sOl2PLiUrUGy9dXaXxccPk64IwvZ8GHYI8HVgl2Yq7SsB/7o7EyM7+WHakHD+e1bd4v5PGE9P6aTD5uiAEenOlhhKFqt2xY3JHrD+qw7JkLU6WtFxieWOML6b202BM1wA2tArVN8oH+6d1wvIjWqxO0bW658qYrgGY0V+DG2O5Yk/OXLKpzcg4DeDK19M+9fTsNn8ec9+9WPBPy56dRI7h56nCzAHBeKy/BmmFdSjSG+CuEtAxyBPxwZzEuoLoAA+8cWs4Xrq5HY4U1GHEmmyIAAQAy++x8JkfJCt9In3wyahovH17OE4U10PfaEKglwp9In1c6vpJVyUIAkZ28cfILv7I1jXguv/dOEYAcOTxeB7UdAE+HipM7ReMR/tqcLy4HgVVjXBTCYgN9EBiiPmXKpF8Rfh74LXBYZh7UzukFNRi2OpLc4FVY2z7aE+yD5dsak+fzgQAJF3helpH3O2YbEsQBPTmDWBcmpe7CoNifCEIzU9tIBcT4uuOWzq65Nce/U/HIM8WGcCG1rUIgoCe4d7oGW7+dbakLJ5uAga251xAiVzy2z3jdNOZ2q4Ku/Nxr0g1lo1NgL+XG87r6jF5Ywa6h6uxY2o3ZJTUYtiyEyjRN2JK/3A8e3MUuob54oVt5/CvX/Kb/4wFIztiQq9QHMnT4741bO6J5MTcDLgoKcwHyU/3xtJDhXj2fw9Yn31zFGYNikR1gxF9FqU66DchIkuZmwNfPtQVccGXzlL2ilDj3jWn8M3JcuYAkcxYowfw8VBhxbhEDGjvB5MIvLIzG1uOlQGQR3/gkk3tujWrHF2CTawan4gpn2cirUCPKf3D8d7IOKw8XIyMktoWX0rJedUY/1k6Xr619TNZ527LxonCGtzbnXeAJJIbczMAaLrWcOnYBGw9Udbi9UX78pGSp8ei0XF2rJyIrMXcHBhz2cS0X3s/7JzaHTsztACYA0RyY40e4IXB0ag3mJC4IBkdNV449NR12HOmAuU1Bln0B7yYSCF6R6lR3WBEWkHTTTBWJxdhdLcQeLq1XldxtECP9OJamESpj6MmImclJQMA4PU7YvDF0VJkltbZs0wisiGpOXDR1AHhWHekGI1GzguI5MZaPcCEXqH45GAhACBbW4+fzlTgvh7O28T+kUueqVWiuGBv9IxQI2V27+bXfD1ViA7kzZCIXIGUDLg+xg+DOgRg6LLjeGNorB2rJCJbsmQu4O2uwl97t8PNHx+1Q4VEZG3W6gFiNV44r710oDtbW4/YIPncSI1NrYIcyqnCiBUnmn8ufn2gA6shInszJwN8PFRYfF8C7l/rnNfEENGfI3UucH+vEJwuqcXxwhpbl0ZENsIegE2tYpwtq2txNMXfyw1qTxXyKhqushcRKYW5GRAf4o3YIC/seawnACDIxx0qAdD4uOORzzPtWjMRWZclc4GpAyKw4vcie5RHRDZgrR4gR1uPDhpvFFY13VCyo8YLuzJ11izVpnhNrUKkFejRaBJxR2IQAOCJQZHYlFaKBl4fQ+QSzM2A44U1CJt3CHHvHkbcu4ex6Jd8fPp7ERtaIgWQOheID/FG//Z+2JBaYscqiciarNUDfHGsDDNviADQ1NAOiQ/EV8fLrrGX82BTqyCTNmTgH3d2QObcfhgSH4g52861ud3D/cKQ+8oAjOsVir8PjUXuKwPQO0pt52qJyNrMzQAiUi4pOfDogHBsOVaKqnqjHSskImuzRg+w8KcL8PFQIevFfvhuWg88+dVZlNUY7Plr/ClcfqwgxwtrMODfadfcbnVyMVYnF9uhIiKyJ3Mz4HJvfp9jo2qIyBGk5MCrO8/buBoisgdr9AA1jSZM/CzD2qXZDc/UKlyD0YQQXw+kzO6NdmqPa26/YGRHvHxbe2hr5XNkhoiuTGoGzL45Covvi0epnhlApBTMASLXI3XcX40c+gOeqVW4A+erEPvO72ZvP3dbNuZuy7ZdQURkV1IzYNG+fCzal2/DiojI3pgDRK5H6ri/Gjn0BzxTS0RERERERLLFppaIiIiIiIhki8uPnZSvh4CCOUmOLsNsvh6Co0sgUhS5ZQDAHCCyNrnlADOAyLrklgGA43KATa2TEgQBak9+ORC5KmYAETEHiFwbM8B8XH5MREREREREssWmloiIiIiIiGSLTS0RERERERHJFptaIiIiIiIiki02tURERERERCRbbGqJiIiIiIhIttjUEhERERERkWyxqSUiIiIiIiLZYlNLREREREREssWmloiIiIiIiGSLTS0RERERERHJFptaIiIiIiIiki02tURERERERCRbbGqJiIiIiIhIttjUEhERERERkWyxqSUiIiIiIiLZYlNLREREREREsuXu6AKobaIooqZRdHQZZvP1ECAIgqPLIFIMuWUAwBwgsja55QAzgMi65JYBgONygE2tk6ppFBG5MN3RZZitYE4S1J78IiOyFrllAMAcILI2ueUAM4DIuuSWAYDjcoDLj4mIiIiIiEi22NQSERERERGRbLGpJSIiIiIiItliU0tERERERESyxaaWiIiIiIiIZItNLREREREREckWm1oiIiIiIiKSLTa1REREREREJFvuji6ArGdwp0D8NLNni9eq6404XVqLtUeK8dH+fBhNDiqOiOyCOUDk2pgBROSKOcCmVoHWpxRje7oWggBE+Hviob5h+HBUJ3QN88VjW7IcXR4R2QFzgMi1MQOIyJVygE2tAh3J0+OzlJLmnxf/WoD0Of0wbUA4Xt2ZjVK9wYHVEZE9MAeIXBszgIhcKQd4Ta0LqGk04WBOFVQqAfEhPo4uh4gcgDlA5NqYAUSk5BxgU+si4kO8AQDlNY0OroSIHIU5QOTamAFEpNQc4PJjBfL1VCHE1715/fzMGyLQN9oPh3KqkFla5+jyiMgOmANEro0ZQESulAMu0dSWl2uxbPlyfLfrBxQWFiI4OBjDhw3F88/Nxrz5b2Pz5i/x+t9ew0OTJzm6VKuYN6wD5g3r0OK1LcdKMWvrGQdVRI7UaBSxPbMKnx7RwiQ2vWYSgb/tLsKjfTWI03g6tkA7OFVSh2XJWuzKqm7xd/D9mWrc3kkNlSA4tkAbYA7Q5XIrGrHyiBZb0ytbjIEtJyswqksAPN2UNwYuV2cwYeupSqxKaZmD7/xcjCl9NIj093BsgTbADKDLGU0ivsuqxvLk8hZj4KXvCzG1rwaJIV6OLdAOMsvqsTxZix2ZVS3+DnacrsKwBD+4qZSXg66UA4pvak+ePIWp02egpKQUvr6+SEiIR3FxCVavWYucnBzoKioAAN26Jjm4UutZcrAAXxwthYebCj0jfPHikPZoH+iFOsOle3d7ugk48kxvrE8twTs/Xmh+feX4RIT7eeCuT086onSyssN5tXjoy1xcqGx9I4B/HSzDvw+W4eHeQXhvRKQiJ7X6BhNmfpOH/6ZXtfn+2I056BziifX3x6BzqLK+0JkDBAAGk4iXvy/CsssmspebsjUPEX5FWHVfNG6MVdu/QDvYfbYa0/6bh7IaY6v33t1XioW/lOLpG0Lwxq1hijrAxQygi44W1uHBLbnI1rVebrr4t3Is/q0cE3oE4qORkfB2V96ViXUGE57cVoDPj1e0+f6EL3IRp/HAZ2Nj0CPc287V2ZYr5YDyPrmXKS/XYsbMJ1BSUoqpj07Br7/8jK+/+hIHf92HuXOex56f9uLYseMQBAFdkro4ulyrySytw+6sCuzM0GLh3jyMWnUSA9r74ZMxCc3bNBhFPLTpNF65LQa9IpsmMvd0D8aorsGYullZt/h2VYcu1GDkuuw2G9qLRACrUnV4aEsujG3NeGWsttGE+zacv2JDe9HpsgYMXZONjNJ6O1VmH8wBMokipv83D0sOt93QXlRYbcDo9Tn4OVtvv+LsZEdmFe7fmNNmQ3uRUQQ+PFCG2dsLIIrKyUFmAAFAWmEtRqzNbrOhvdym4xWY8HkuGozKGQNA02d8wue5V2xoLzqnbcTwtdk4WqisJbmulAOKbmrfmv82CgsLMfnBSXj5pbnw87t0FHrG9GnompQEg8GA9tHR8Pfzc2CltnXgfBXWHinGxN7tMKiDf/PrR/L0eG9vHtZM6IzoQE8sHZuAWV+dQUFlgwOrJWuoaTThgc25qDWY9+W0PbMaiw6U2bgq+3r9x2IcvFBr1rbaWiMe2JwLk4ImtH/EHHA9Sw6XY8vJSrO2bTCKmLQlF7q6Kzd/clNUbcCUrRdg7hx9VaoO649efeIrZ8wA19NgFDHx81xUN5iuvTGAPef0eHdfybU3lJF3fi7GnnPmHbCrqjfhr1/kolFhjf3llJwDim1qs7LOYNv2HdBoNHjh+Wfb3KZ7j24AgKTLztLu2PkdZj35NG4Zcht69OqDYcPvwvsfLIJeL+8j2G/tzoXBKLZaVz9/dy4MJhEpz/TBnjMV2JRW6qAKyZo2n6hAiV7a5HTp4XLFBHlFnRHr0rSS9sksa8APZ6ptVJFzYA64DpMo4pPfyyXtU1FnwoZjOtsU5ACrU7WoaZSWaR//Xq6os7V/xAxwLV+nVyKvStpzSD89om2xNFXOahtN+PSItLlAbmUjvj199RVecqfUHFBsU/vttm0wmUy4Z/TdUKvbvk7I26tp3XxS0qXraZev+BQqNzc8/9yzWLF8CR54YCLWb9iIR6fOgMkk30F+pqwOG9NKcEdiEG7qGND8usEk4tfzlWjn54GVvxc5sEKypuXJ0kIcAAqqDdiRqYwg33isAnqJk1nAsr83OWEOuI4fz+pxTiv9cQ3Lk7WKaOqMJhErJU5mAeBoUR1+yzNvhYccMQNciyXfaeW1Rmw9Zd4KD2f35clK6Oqkz92XJ0s7ICg3Ss0Bxd4o6sCBQwCAgQMHXnGbwsKmf7Cul52pXbrkY4QEBzf/PPD66xEcHIznnp+Dw8nJuH7AAMm1zJn7MrQ6naR9DII7EPu45P/W1bz9Yy7+2rsd5g2PxW1LjgMAbuoYgEf6h+Gj/fn41z2d0PvDVIuO0M166hm4i9KOBpJtmCAgtcOTFu07/9Ov8LXugJUrsr/fQu4A/LpK3u+n9CJMm/EPG1QknS0yAGAOuIqTAf0BzSDJ+2WWNeCRmc/AQ5T38wtr3dTIa/+oRfvO/XA1EquOWrkiy3AuQH/GoZiZgEr6nb3fW7cdu7X7bFCRfR3RDAYCekne78A5HabNsP73ryVcbS6gCQrCwgWWzcMU29Tm5ecDAKKjotp832AwIPnIEQAtz9Re3tBe1LNHdwBAUVGxRbVodTqUl0s76mNUeQCx0v47e89WQJj7yxXfTy+uhftL+5t/VnuqsGpCIl7afh4fHyzA3pk98c6dHfDcN+ek/YcBaLVauJnkPQlSCqPKA+hw7e3aoq83Sv6sOqOaAMtWVTQK7k7z+1uSAQBzgJpUe1neWJRWVMPLIO9Lbmo8RaC9ZftW1TXKOgeYAQQ03QjS2MGyR1XpG0xOMwb+DL2fZfcIMAgeKCsvhzPcC51zAfMptqmtrW1aPlRX3/ZdzLZt3wGtVgu1Wo2YmKt/8x089BsAIL5TJ4tq0QQFSd7HINj+n+b9u+Nwrrweiw8UAAAe2ZSJ1Gd7Y+vxMuw7J23piUaj4dFZJyECEEQjRMFN8r7+ngKC2ziwIzdqC4ePl9jgNL+/PTIAYA4oVYCX5VcXhQX4wg3yfsSVr8ryx3IEeLm5VA4wA5TLw1SPRpX0seznAacZA3+Gn4WPn/Y01bd5kssRXG0uYEnPdJFQqSuT/8UzbRh+5904c+YM3nj9NUx+cFKL94qLi3HvmPtRXFyCfn37YtPGz6745xQWFmH0vWPQo3t3fLpiqa3LbqZvMCFyYbrN/vwRXTTY8EAX9PowBbm6S48yeWJQJJ67JQq9PkhBTaP5Z7sK5iRB7anYS7RlZ8LnOdiRKf2mR7sf6YgB0b42qMi+vkmvxKQtF6694R882keDRXdF2qAi6WydAQBzQMlOFNdh0LKzkvcb3NEX30zqaP2CHGDwp2eRUiDt8RwCgLRZCegY5GmboiTiXID+jClbL5h9B/TLfTOpAwZ3lP9zq388W417N+RI3m98j0AsvyfaBhVJx7mA+RSbPH+5selaoqXLVuDcuUunzo8ePYYHJz8CrVYHAOjaNamt3QEAer0eM5+YBQ8PD7z7j/k2rdfedmZooXnjYIsPLwAsPlCAhH8mS/rwkvOZ1k/6EcbeEd7oH+Vjg2rs787O/ojyl350c2o/jQ2qcV7MAeXqHuaNG2OkH6CyJDuc1XQLfpdhCX5O09DaAzNA2aZb8J2WGOKJWzrI/+A2AAyJUyM+WPp4tuTvTc6UkgOKbWqnT58KTVAQCgoKcOfI0bjr7tG4fehwjLl/PGJi2uOGG5puIHX543wuV1dXhxkzn8CFCxewauVyhIWF2bN8oj/l9k5q9IuStvxuzl9CIQjOcAXJn+euEvD8jaGS9rkz0Q89wy1fskjkbJ7/S6ika8K6h3nhrkT/a28oE2O7BaCTxvwJrZsAPCcxN4ic2aAYX9wssUFV0lxAJQh44S/SxvTgjr64PloZB/hdjWKb2siICGxYvw63DhkMLy9P5OXlISgwCPPnvYnly5Yg+1w2AKBrUusztY2NjXjyqWdw/PhxrFi2FIkJCXaunujPUQkCNo2LRWKIeRO6+beHYVRSwLU3lJFp/TR4cqB5Z2r6RXk7zVIjImsZGu+HhcMjzNq2Y5AHNk+IhYebMiazAODjocKWibFmrdpQCcB/7o7CIAvObhM5K0EQsHZsDHqEmXdd7Us3h2JizyDbFmVnk3oFYe5N5jW2PcO8sGZMjGKaelej2BtFAUBCQjyWLf2k1et6vR4X8vKgUqnQuXNii/dMJhOee2Eufj1wECuWLcF110m/FTiRMwjzc8f3D8dh7q5CbD1ZgbZWj8RpPPDa4DCM6x5o/wJtTBAEvH17ODoGeeL9/aUoqG590wIfdwEP9ArC/NvDeR0YKdKM/sEI93PHm3uKkVXe0Op9NwEYnRSA94ZHoJ2ld1hzYvHBntj9SBxe+K4QOzKrYGrjLiJd23lh3m1hGJ6gnLPURBcF+7hhx+SOePn7InxxogL1xtaDIDbQAy/d3A4PXhdk/wLt4LXBYYgN9MA/95Uit7L1XXm93ASM7xGIfwwNR4CX9JtsknNQ3jeYGTKzsiCKIuI6doSPT8slBn9/cx527NiJx2ZMh7ePN1JSU5vfi42NdZq7oRGZI9jHDcvvicY7t4dj3VEdTpbUo95gQrCPG0Z1CcBtndRQKfiIpCAImNE/GFP6aLAjswrfZVWjos4IX08VrovwxgM9g6Dx4RcYKds9SQEY3cUfe7P1+G96FUprDPB0E9Al1AuTrwtCpL+FtwiViegAD2wYF4PcikasTdMiq7wBBqOIULU77u8WgEExvjwzQ4oW6O2GxaOi8NbtYfjsqA7HiupRZzAhyNsNd3X2x7B4P7iplD0GHuqtwaReQdiVVY3tmVXQ1Rnh7a5Cz3AvTOoVhBBfl2yJFMUl/wUzMk4DaPt62r0/Nz1sesnSZViydFmL9/757jsYO+Y+2xdIZGVhfu4ufa2Yh5uA0UkBGK2wJdZE5hIEAUPi/DAkzs/RpThMTKAHXrmF98cg1xXi646nb3DduYCbSsCdnf1xZ2euylAil2xqT5/OBAAktXE97d49u+1dDhEREREREVnIJZvajNNNZ2q7XuHOx3LVK1KNZWMT4O/lhvO6ekzemIHu4WrsmNoNGSW1GLbsBEr0jXh7RAeM6RGCeoOIRpMJr+48j12ndQCA2TdHYdagSFQ3GNFnUapDfx8iksbcDFg5PhFDE4NQom+6tuj7TB3mbssGACwY2RETeoXiSJ4e96055cDfhogsYW4OJIR6Y+nYBGh83OHtrsK2dC3mbDsHUeRcgEhuzB33U/qH49mbo9A1zBcvbDuHf/2S3/xnXO09OcwNXLKpXbdmlaNLsIlV4xMx5fNMpBXoMaV/ON4bGYeVh4uRUVLb4ktp37lKvPVDLuoMJvSKVOPnmT0RNf831DSasGhfPlLy9Fg0Os5xvwgRWcTcDACAhXvzWnxhXTR3WzZOFNbg3u4hdqqaiKzJ3BxYeFccth4vw0f7C+DlLuD3p3pjdxcNdqRrORcgkhlzx31yXjXGf5aOl2+NafVnXO09OcwNeLtPhegdpUZ1gxFpBXoAwOrkIozuFgLPNh7PsDNDizpD061wjxXqIQhAOz9l3yiESOmkZAARKZOUHBABBHo3ndvw8VDBw01AQWXrO2QTkXOTMu6PFuiRXlwLk9j6LthXe08OXPJMrRLFBXujZ4QaKbN7N7/m66lCdODVn1M6pX84zpbX4by23sYVEpEtSc2AZ26KwqMDwpGjq8drO883fxkSkXxJyYHZX5/FN1O64fFBEdD4uOOtH3KRms8cIJIbS3sApWFTqyCHcqowYsWJ5p+LXx941e1vSwjEG3fEYOjyE1fdjojkwdwMeHXneRRUNUAUgXu7h2DH1O5IXHAY+oY2HmZMRLJibg48MSgSG1JL8O6eC2in9sCex3rg9wvV+CFTZ6dKichapPYASsTlxwpxtqwOsUFezT/7e7lB7alCXkXbS4lu6RSAleMSMWrVKZwuqbVXmURkI1IyIL+yqaEFgK9OlKGy3oAu7XxabUdE8iIlB2bdGInVycUAgBJ9I7ZnaDGkU6DdaiUi65DaAygVm1qFSCvQo9Ek4o7EIABNR2A3pZWiwdh6XfzNcQFYO6Ez7ll9Cke55JBIEaRkwOVLkgbG+iPE1wNZZXX2KpWIbERKDpwtr8OIzhoAgK+HCrfGB+J4EecERHIjZdwrGZcfK8ikDRlYOT4RH98Xj6yyOjy4IQM9ItSttlsxLhFe7iqsHJ/Y/NrkjadxvLDGnuUSkZWZmwGrxndGuJ8HjKKI2kYTxq1LR2Wd0QEVE5G1mZsDD286jf+7Nx7P3BQFTzcBX58sx8bUUgdUTER/ltnjvl8Y5g/vAI2vO+7tHoIXbonGqFUnkZqvv+p7csCmVkGOF9ZgwL/Trrld5wXJdqiGiOzN3AwYuuy4HaohIkcwNwdS8/W4afFRO1RERLZm7rhfnVzcfNmBlPfkgMuPFa7BaEKIrwdSZvdGO/W1H9sz++YoLL4vHqV6gx2qIyJbk5oBC0Z2xMu3tYe2lhlApBScCxC5Hqnj/mrkMDcQKnVlrrXgWib0DSZELkx3dBlmK5iTBLUnj5EQWYvcMgBgDhBZm9xygBlAZF1yywDAcTnA5CEiIiIiIiLZ4plaJyWKImoa5fNP4+shQBAER5dBpBhyywCAOUBkbXLLAWYAkXXJLQMAx+UAm1oiIiIiIiKSLS4/JiIiIiIiItliU0tERERERESyxaaWiIiIiIiIZItNLREREREREckWm1oiIiIiIiKSLTa1REREREREJFtsaomIiIiIiEi22NQSERERERGRbLGpJSIiIiIiItliU0tERERERESyxaaWiIiIiIiIZItNLREREREREckWm1oiIiIiIiKSLTa1REREREREJFtsaomIiIiIiEi22NQSERERERGRbLGpJSIiIiIiItliU0tERERERESyxaaWiIiIiIiIZItNLREREREREckWm1oiIiIiIiKSLTa1REREREREJFtsaomIiIiIiEi22NQSERERERGRbLGpJSIiIiIiItn6f56qH5OsV3rBAAAAAElFTkSuQmCC", - "text/plain": [ - "
" - ] - }, - "execution_count": 1, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "from qiskit.circuit.library import TwoLocal\n", - "two_local = TwoLocal(3, 'rx', 'cz')\n", - "two_local.decompose().draw('mpl')" - ] - }, - { - "cell_type": "markdown", - "id": "e32e031b-3218-4c1c-af7c-b40ad6c82100", - "metadata": {}, - "source": [ - "`parameters` 属性から回路のパラメーターのリストのようなオブジェクトを取得できます。" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "id": "d503e1c8-0ccd-4868-a5dc-4806d00ab54b", - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "ParameterView([ParameterVectorElement(θ[0]), ParameterVectorElement(θ[1]), ParameterVectorElement(θ[2]), ParameterVectorElement(θ[3]), ParameterVectorElement(θ[4]), ParameterVectorElement(θ[5]), ParameterVectorElement(θ[6]), ParameterVectorElement(θ[7]), ParameterVectorElement(θ[8]), ParameterVectorElement(θ[9]), ParameterVectorElement(θ[10]), ParameterVectorElement(θ[11])])" - ] - }, - "execution_count": 2, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "two_local.parameters" - ] - }, - { - "cell_type": "markdown", - "id": "555aca2a-a754-4372-8846-22ee4773ece1", - "metadata": {}, - "source": [ - "また、これを使用して、`{ Parameter: number }` の形式の辞書で実際の値にこれらのパラメーターを代入することもできます。 これを示すために、以下のコードセルでは、回路の各パラメーターを `0` に代入します。" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "id": "89227b48-12b2-4b1b-9680-55a7fce88a2b", - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA7UAAADuCAYAAADm+CCcAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAAA4F0lEQVR4nO3dd3wUdf7H8fdsKumb0AIkdAgKSBXxPBUbVrwDRc52KkXOclZsVzyx3CmWu5+/86SoCKigAp4FbFjOU7DQkRoEEkJC2qbXze7vD36USJBszJaZeT3/8cHuDH5I9vve72fmOzNGWUmRVwAAAAAAmJAj2AUAAAAAANBSNLUAAAAAANOiqQUAAAAAmBZNLQAAAADAtGhqAQAAAACmRVMLAAAAADAtmloAAAAAgGnR1AIAAAAATIumFgAAAABgWjS1AAAAAADToqkFAAAAAJgWTS0AAAAAwLRoagEAAAAApkVTCwAAAAAwLZpaAAAAAIBp0dQCAAAAAEyLphYAAAAAYFo0tQAAAAAA06KpBQAAAACYFk0tAAAAAMC0aGoBAAAAAKZFUwsAAAAAMC2aWgAAAACAadHUAgAAAABMi6YWAAAAAGBaNLUAAAAAANOiqQUAAAAAmBZNLQAAAADAtGhqAQAAAACmRVMLAAAAADAtmloAAAAAgGnR1AIAAAAATIumFgAAAABgWjS1AAAAAADToqkFAAAAAJgWTS0AAAAAwLRoagEAAAAAphUe7ALQNK/Xq6p6b7DLaLaYCEOGYQS7DFiI2caAxDgAWhMZAIAcQHPR1IaoqnqvUmdsDXYZzZY7LUOxkQxgtB6zjQGJcQC0JjIAADmA5mL5MQAAAADAtGhqAQAAAACmRVMLAAAAADAtmloAAAAAgGnR1AIAAAAATIumFgAAAABgWjS1AAAAAADT4jm1FnJGj0R9NnVAo9cqahu0vbBa89fk69kv96nBE6TigABgDAAgBwB7IwPsiabWgl5dm69lW10yDKljfKSuHdJez1zSQ/3ax+jGxZnBLg/wO8YAAHIAsDcywF5oai1oTU6lXllbcOjPz32Vq63ThmrS8A76w/u7VVjpDmJ1gP8xBgCQA4C9kQH2wjW1NlBV79GqrHI5HIZ6prQJdjlAwDEGAJADgL2RAdZGU2sTPVOiJUnFVfVBrgQIDsYAAHIAsDcywLpYfmxBMZEOpcSEH7qGYOopHTWkc5y+zirXjsKaYJcH+B1jAAA5ANgbGWAvtmhqi4tdmj1njj748GPl5eUpOTlZo887V3fdebumP/Ko3nxzif78pz/q2muuCnaprWL6eV01/byujV5bvLFQNy/dGaSKgsvr9eqr7Cq9salM+yvdCjOkHsmRuuakJPVOiQp2eQGxr6xe89aXaEtBrWrcHiW3CdOYvgk6r1ecwhxGsMtrdYwB/JirukGvbCjRd/uqVV3vUUJUmM7uEatf9UtQdLj1Fy15vF6t+KFSb20pU1GVW5Fhhvq0jdJvBzmVlhgR7PL8ghzAkbxer77JqdbCjaXKqzgwF+iaFKFrTnIqo5095gL5FW7NW+/Spv21qnZ7lBQdpov6xOvCPvEKZy4Ak7N8U7t58xZNnDxFBQWFiomJUa9ePZWfX6CX581XVlaWSkpLJUkn9MsIcqWtZ+aqXL2xoVARYQ4N6Bije8/soi6JUapxH75/eWSYoTW3DdKr6wr02Cd7D73+0vje6hAXoQtf3ByM0lvdxzsr9IcV+7WloPao9/6+skijusfq6fNT1TM5MgjV+V9RlVt3vZ+nf28tU4O38XuvbChVemKEHji9na4cmBSU+vyFMYCDqus9+sOK/XplfYmq3Y0HwaJNpbr/4/36/YgU3T4yRYZhvUmdJC3eXKqHPs3X7pIfL7cr15NfFurC3vF6+vyO6hhvreaWHMBB/91Tqfs+2q8N+48+O/fs18X6ZdcYPTU61bLNrau6Qfd8mKclm0tV/6NH2by2sVSd4sN172ntdP0QZ3AK9BMywF4sfXi6uNilKVNvUkFBoSbecL2++u9/9PZbS7Tqqy90z7S79Olnn2vjxk0yDEN9M/oGu9xWs6OwRisyS/X+NpdmfJ6jS+Zu1vAucXp+bK9D29Q1eHXtou164Kw0DUyNlSRdemKyLumXrIlvWuM25298X6rLF2U12dAe9OmuSp0zd5e+z7feMpS88nqdPXe3lmw5uqE9KKu0XlPf2aenviwMbHF+xhiAJFXWeTTm1T2as9p1VEN7UFFVgx78NF+3vpcrr/cYA8XEnvumSNcvzWmioT3A45Xe3V6uc17erazSugBX51/kACTp3W1luvTVPU02tAd9sadK587bpTX7qgNYWWAUVbl1/vzdWrTp6Ib2oH3lbt22PFfTP80PbHF+RgbYi6Wb2ocfeVR5eXm65uqrdP999yguLvbQe1MmT1K/jAy53W516dxZ8XFxQazUv1buKdf8NfmaMKidRnaNP/T6mpxKPfl5juZd0UedEyM1a1wv3fzWTuWWmX9i811Otaa+nXPMZu5IRdUNumxhlkprGvxfWIB4vF5d8Xq2fnA173f50Gf5emtLmZ+rCh47jgFIN7+7T1/vbd4kdd76Ej2zssjPFQXWB5nluu+j/c3aNqu0XpcvylZ9c0LTpMgB+/k+v0Y3vJVzzGbuSKU1Hl2+KMtSj3nxer266s29P3lw/0hPflWoVzaU+LeoICIDrM2yTW1m5k69t2y5nE6n7r7rjia3ObH/CZKkjB+dpc3O3qspU2/SSYOHasiwEbp72r1yuVx+r9mfHl6RLXeD96hrCx5ZkS23x6u1tw3WpztLtWi9Nc7Y/c+qwmZ9iR2UU+7WaxtL/VdQgH20s0Jr83w7+/zkl4WWPFN1kN3GgN3tKKrVEh8P1PzPqqJGy9LMztcVGFsKavXu9nI/VRMayAF7efbrItUcY5VGUwqqGvTyuhL/FRRgX2ZV6avsKp/2efLLQnmYC5ABJmTZpvbd996Tx+PRpWMuVmxsbJPbREcduK13Rsbh62krKip19bW/VV5enp55+kk98vBD+m71ak2+8XfyeMw72dlZVKOF6wt0Tu8kndYt4dDrbo9XX+0pU7u4CL30bfOO6Ie63PJ6vbPN94nZnNXFlmnq5qz2/SDMhv01+ibHekuvDrLTGEDLxkBxdYOWWmTFwsb9NVrVzLPUR5qzutgP1YQOcsA+iqrcWvy97+P5xTUuNXjsOxfYWVynz3dX+qGa0EAGWJdlm9qVK7+WJI0YMeKY2+TlHfjQ9jviTO3CRa9r//58Pf/c/+qsUaN04QXn6+mnZmjduvVaseIT/xbtZ49+kq0Gj1fTR6cfeu20bgm6blh7PfvlPv3j0h6WuAvop7sqm7Xs+Me2F9Upq9T8zy3zer1a8UNFi/b9aGfL9jMLu4wBSB/bfAx83MJ/xxd7qix1trop5IA9fJlVpdoWTAayy+q1rbB5y3VDnd1z8FjIAGsyykqKrHE46kdOO32U8vLy9PZbS3TCCf2Oet/tdmvkL06Xy+XSJx9/qPT0NEnSVdf8VpL0yvyXG20/6uzzNGLEcP3tsUd9rmXaPffLVVLi0z5uI1xL0n/n8//LF7GRDq2/Y7Ce/s8+/WtVrj6fOkDf7a3Qne/s8vnvGpv1L4V7Q+M6lB3xA7U2+YwW7XvuvtfkrDf3kpOf89npXbZOg11ftHJFLWO2MSCF1jiwu7c736Ca8KZX6fyU1Krd+mXBO36oKLA2JI3U1sRhLdp3TPYcRXuCv2ojEBkgWfe70O52xfbTt23PadG+Z+W9qba1ua1cUWB5Jb3R9dYW7du94nsNLwqNEznMBezFmZSkGU/8tUX7WvaRPtXVB76Qa2qbvq7wvWXL5XK5FBsbq7S0Lodez8zcqQvOH33U9r1791JmZsuea+UqKVFxsW9LuhocEVL68bf7OZ66uLt2FdfquZUHgvu6RTu07o5BWrqpSF/s8m3JjsvlUpgnNM5y1qhESm7ZvpWuAnnrzH39tFdGiz879VXlPn9W/cVsY0AKrXFgd0bHWqkFTW1DbWXIjIGfoz6iTEps2b5lxfmqCoHPcSAyQLLud6HdVXtKpLYt27eypFCOavPngCOtXh6H74/qcldVhEwOMhdAc1m2qW3btq1KS0v1/febNWTw4Ebv5efn6/EnZkiSMvr2bfRswrKyMiUkxOvHkhITtWtXy47YOJOSfN7Hbfj3V3N+X6euOKmdBj6z9tBrPxTX6L5le/TS+N4a+PRaVflwpyWn0xkyR6XCIiq0RZK8XsmH505GNVQpNS5MYS3tiEOIs3a/XFEdfN6vs6NMycmh8e832xiQQmsc2F1bd6Gyo3z/LHeUK2TGwM9RF1amnZLPOZhQV6x2SfEKhSf2+jsDJGt/F9pdZHilNkk+j4EIT606x3gV3sb8OZBSt18F0V2Ov+GPdHKUhEwOMhewl5b0TAdZdvnx9Icf1bz5C5Samqp5c19Q9+7dJUkbNmzU3dPuVfbevaqvr9fVV12pvzz4p0P79TtxoCZPukF33nF7o7/vnnvv19p16/TRB8sDUn9lnUepM7YG5P/VGnKnZSg2MnSuPxg9b5dWZvu2fO7uU9vqz6Pa+6miwFqwvkQ3vbvPp306x4dr4y29Fe4Ihems+caAFHrjwM6+yqrU+fP3+LRPVJihrb/vrZQY8x/v9Xi9GvKvnc1+rNdBM87rqBuHh8ZklgzAzzX2tT36+Affbnr0u+HJevy8jn6qKLCWbC7VdUtzfNonJSZMW2/tragQuaaUHEBzWfYnPnnyRDmTkpSbm6sLLhqjCy8eo7PPHa2xl41XWloXnXLKgRtI/fhxPgkJCSorO/rOuSWlpUpMbOFaLgTcTSen+LR9dLih64Yk+aeYIBh7QoLax4b5tM+Nw5NDpqEFfq6RaTEa3DHap30mDEi0REMrSQ7D0O98bE6Toh2aMIDvOViHr3OBCIc0aajTT9UE3sV9E5SW4Nvy44lDnCHT0AK+sOynNrVjR7326gKNOvMMRUVFKicnR0mJSXpk+kOaM3umdu/aLUnqd8TjfCSpZ88eytx59LWzmZk71atnz0CUjlZwaUaCbh3RvAmdw5DmXNpZ6YmRfq4qcGIiHFp4ebpiI5rXpI7pG69bR/j25Q+EMsMwNG9cF3WMa16TOrRTtP52rjXOzhw0eZhT4/s3r0mNCjP02uVpSoz27WAYEMrO6Rmn+37ZvAtrDUn/vLiTeqdE+beoAIoMM7RwfJrio5o33T+nR6zuPa2dn6sC/MOyTa0k9erVU7NnPa/1a1dr/drVWvzmIk2YMF5VVVXam5Mjh8OhPn16N9rnrFFnavXqNcrNyzv02rr165WVlaWzRp0Z0Prx8zxydgf96Yx2igw7dmOXEhOmhZenaUxGwjG3Mathndto2TXd1DXx2EdpHcaBo7Iv/bqLwjhLC4vpmhSpj37bTSd1+Okzthf3idfbV3a13HIxh2Fo5iWddPPJyfqJGFTn+HC9e3VX/SLd9xtrAaHu/l+202PndFB0+LEHQVK0Q/PGddGEAUmBKyxABnSI1ofXdlPP5GMfuDckXTUwUa9dnqaInwoLIIRZ9pran7Ju/XpddvkE9ejeXR9+sKzRe+UVFbro4jFyOp267fe3qLa2Tk888aSSk5P1xuuvyeEIzKTHbNcQhPL1A0VVbi1YX6LXN5VqY/7hZ8/NGtNJv+qXYPlnkTV4vPows0IvrHHpwyOePXf3L9rq+sFOpf1E0xtMZhsDUmiPAzvzer36KrtKs1e7tGTz4TtZThnm1MQhTvVr59syZTPaV1avuetcemtLubYe8QzOBeO66MI+8SF56QEZgNbkqm7QqxtLtGhjqdblHX4yxnMXd9K4ExLUJsLavzeP16sVP1TqhdXFWrbj8Fzg9pEpun6wU92doblajRxAc9nyJ75t23ZJR19PK0nxcXGaP2+u2rdrp9vvuFsP/OFPGjxksGbN+lfAGlq0rpSYcN02sq2+nNxTB+dtDkOaMCDJ8g2tJIU5DF3QJ15vTkhv9O//85ntQ7ahBVqTYRj6RXqs5v66S6Mx8OToVFs0tJLUKSFCD5zeXt/c2DgHx2QkhGRDC7Q2Z5sw3Xxyiv4zsUejMXD1SUmWb2ilAys3zu0Zp4XjG88Fpp/VIWQbWsAX1rgjho+2b98hScr40fW0B3VNT9fsWc8HsqSA6NU2Wi+P76O2sREqrXHrutd3aPP+qmCXBQQMYwCwNzIAADlgTdY/NNWEbdsPnKnt18SZWiubObaXZn2dp74zVuvxz/Zq7vjex98JsBDGAGBvZAAAcsCabNnULpg3V5nbt2jUqDODXEngtIuN0LAucVqwNl+StHhjkdKSotQzxR5L7wDGAGBvZAAAcsC6bNnU2lFaUqRyy+vU4Dn8WparVulJ1rl1PfBTGAOAvZEBAMgB66KpBQAAAACYFk2tTWSX1Ck1PlJhR/zG051RyiqpPfZOgIUwBgB7IwMAkAPWRVNrEwWV9VqTU6mrB7eXJI0bkKK9pbXaWVRznD0Ba2AMAPZGBgAgB6zLlo/0sasbl2Rq7vjeeuCsNJXVunX96zuCXRIQUIwBwN7IAADkgDXR1NrI9oJqnfrPDcEuAwgaxgBgb2QAAHLAmlh+DAAAAAAwLZpaAAAAAIBp0dQCAAAAAEyLphYAAAAAYFo0tQAAAAAA0+LuxyEqJsJQ7rSMYJfRbDERRrBLgMWYbQxIjAOgNZEBAMgBNBdNbYgyDEOxkQwK2BdjALA3MgAAOYDmYvkxAAAAAMC0aGoBAAAAAKZFUwsAAAAAMC2aWgAAAACAadHUAgAAAABMi6YWAAAAAGBaNLUAAAAAANOiqQUAAAAAmBZNLQAAAADAtGhqAQAAAACmRVMLAAAAADAtmloAAAAAgGnR1AIAAAAATIumFgAAAABgWjS1AAAAAADToqkFAAAAAJgWTS0AAAAAwLTCg10Amub1elVV7w12Gc0WE2HIMIxglwFYhtkyQCIHgNZmthwgA4DWZbYMkIKXAzS1Iaqq3qvUGVuDXUaz5U7LUGwkX2RAazFbBkjkANDazJYDZADQusyWAVLwcoDlxwAAAAAA06KpBQAAAACYFk0tAAAAAMC0aGoBAAAAAKZFUwsAAAAAMC2aWgAAAACAadHUAgAAAABMi6YWAAAAAGBa4cEuAK3njB6J+mzqgEavVdQ2aHthteavydezX+5TgydIxQEICHIAsDcyAIAdc4Cm1oJeXZuvZVtdMgypY3ykrh3SXs9c0kP92sfoxsWZwS4PQACQA4C9kQEA7JQDNLUWtCanUq+sLTj05+e+ytXWaUM1aXgH/eH93SqsdAexOgCBQA4A9kYGALBTDnBNrQ1U1Xu0KqtcDoehniltgl0OgCAgBwB7IwMAWDkHaGptomdKtCSpuKo+yJUACBZyALA3MgCAVXPAFsuPi4tdmj1njj748GPl5eUpOTlZo887V3fdebumP/Ko3nxzif78pz/q2muuCnaprSIm0qGUmPBD6+enntJRQzrH6euscu0orAl2eUHh8Xq1Zl+NvN4Dfz74X9hHdb1H3+ZUq6y2QW0iHOrfPlod4qwbgeTA0Qoq3Y0yoLLOo9hIju3aSWZxrXYW16nBI7WNDdPQ1DYKcxjBLssvyICjeb1erc1lLmBnte4Dc4GSmgZFhzt0QrsodUqICHZZfmOnHLDujO7/bd68RRMnT1FBQaFiYmLUq1dP5ecX6OV585WVlaWS0lJJ0gn9MoJcaeuZfl5XTT+va6PXFm8s1M1LdwapouApq23Qy2tL9MIal35w1R163Stp9LxdmjQ0WeNOSJDDsOakBlJWaZ1mflus+etLVFJz+FZ/4Q7pkr4Jmjo8WSPTYoJYoX+QA4d9m1Ol578t1ltbynRwDuuVlPE/2/WbgUmaOjxZPZyRwSwRfuT1evXvreWas7pY/9lT1ei9rokRumGIU9cNdsrZJixIFfoHGXBYZZ1H89a79MJql7YXNZ4LnPXSLk0a6tT4/okKt+gBDkg5ZfWavbpY89aVqLCq4dDrYYZ0YZ943TgsWad3iw1ihf5hpxywdFNbXOzSlKk3qaCgUBNvuF633nKz4uIOfGBnzZ6jJ2Y8pfDwcBmGob4ZfYNcbeuZuSpXb2woVESYQwM6xujeM7uoS2KUatyHJ/SRYYbW3DZIr64r0GOf7D30+kvje6tDXIQufHFzMEpvVXvL6jVuYZa2FNQ2+f7K7GqtzM7R21vLNPvSzooO54yN1fx3T6UmvJGtstqj71vv9khLt5Rp6ZYyPTSqve44tW0QKvQfcuCA578t1r0f5qmpEzKltR49//8HPBaM66Kze8QFvD74V32DVze9u0+LNpU2+f6e0no9+Gm+5q0v0ZIJ6epuoYMbZMAB+yvcunxRltblNX1W6rt91fpuX7WWbinTy2O7KCaCuYDVfJtTpfGLslVU3XDUew1e6Z1t5XpnW7nuOa2t/nB6OxkWOtFhpxyw9Mh9+JFHlZeXp2uuvkr333fPoYZWkqZMnqR+GRlyu93q0rmz4uOsM5nZUVijFZmlen+bSzM+z9ElczdreJc4PT+216Ft6hq8unbRdj1wVpoGph74uVx6YrIu6ZesiW+a/xbfruoG/fq1PcdsaI/0763lmvrOPnlYh2QpG/JqdPnrTTe0P/bgp/ma+W1xAKoKHHJAWrC+RPcco6E9UmWdR795I1vf5FQdZ0uYidfr1e3Lc4/Z0B5pZ3GdfvXaHkvdCZQMkCrqPLps4bEb2iN9kFmhG5buVYOHuYCVbC2o1diFWU02tD/2xH8L9feVRQGoKnDslAOWbWozM3fqvWXL5XQ6dfdddzS5zYn9T5AkZRxxljY3L09/eehhjR03Xv1OHKheffoFpF5/WrmnXPPX5GvCoHYa2TX+0Otrcir15Oc5mndFH3VOjNSscb1081s7lVtW9xN/mzn879dF2lbY/H/Hks1l+mxXpR8rQqDd91GeKuua/2TxP32yX8XN+NIzK7vlQEWdR/d+mNfs7WvcXk37oPnbI/R9k1Ot+etLmr39Lle9nl5Z6L+CgsxuGSBJs78r1vr9zb9ucNmOCi3fUe7HihBof1yxX6U1zZ8LPPx5vvLKrXUDpSNZOQcs29S++9578ng8unTMxYqNbXqNfHTUgbt/ZWQcvp52z54sffDhh2rbrq0GDhgQkFoD4eEV2XI3eI9aV//Iimy5PV6tvW2wPt1ZqkXrzf+FXtfg1cvrXD7vN2e17/sgNG0pqNF/s3w761bj9urVDSX+KShE2CkHXt9UqnIfDmpI0trcGq3eV+2nihBos1uQ6QvWl6iq3rfPjZnYKQMaPF69uMb3z0BLPjcITbtL6vTRzgqf9nF7pJfXlfinoBBh1RywbFO7cuXXkqQRI0Ycc5u8vP2SpH5HnKk9efgwrfzyC816/jmdeupI/xYZQDuLarRwfYHO6Z2k07olHHrd7fHqqz1lahcXoZe+3R/EClvPih8qlF/p+xm3ZTvKLX2mzk5e3XD85YZN71fSuoWEGDvlwCst/F1a/TNgF5V1Hr21pczn/UpqPJY+U2enDPgyq0p7Sn0/4/bprkrllFn3TJ2dLNxYetzLT5rS0u8Ps7BqDlj2RlE5+/ZJkjp36tTk+263W6vXrJHU+Eytw9H6ff60e+6Xq6TEp33cRriU/rtWrePRT7L1m0HtNH10us6auUmSdFq3BF03rL2e/XKf/nFpDw16Zl2ji8eb6+Zbb1O4NzSuRcqM6y+ljPJ5P49XuvHuPyux3lrXVh7Jk36zZDjk8Xg0aUrrfr5Cycq2o6XYPj7vty23NGR+Lv7IAMk+ObCp8/VSuO/3Snjvi9UqXfKeHyoKHXbIgYrwBNV1/m2L9n3mxUVaXra2lStqGeYCLbc7NkNqe26L9r3lgUeVUme+SX1z2SEDJOnb5LOk+BN93i/LVaOJU36nULhdlN3mAs6kJM144q8t2teyTW119YElZDW1TV9L8d6y5XK5XIqNjVVaWhe/1uIqKVFxsW+NUoMjQkr37f/z+Q+lMu757zHf35pfrfD7vjz059hIh+Ze0Vv3Ldujf63K1edTB+ixC7rqznd2+fY/luRyuRTmCY0jm1WOKimlZfuWlpaqoca6Te2RnylfP5NmUhdfK7Xgzvxerzdkfi4tyQCJHDjIk9qyVRf1dXUh8xnwGxvkQHVkg9S5hftWVYXMz4W5QMtVeiukFt7UvqysVEZVaHwG/MIGGSBJdbE1Uvzxt/uxg3OBUGhqmQs0n2Wb2rZt26q0tFTff79ZQwYPbvRefn6+Hn9ihiQpo29fv9+625mU5PM+bsP/v5qnLu6uXcW1em5lriTpukU7tO6OQVq6qUhf7PJt2ZbT6QyZo7M1US27HsrwetQhLlxRMcmtXFFoSk627r8zKaxOLTnGHuupDJmfSyAyQLJuDsR5qlSrRJ/3S3TUhsxnIBCs+m91G+FyeBvkMXx/9mzbyIaQ+bkwF2g5d1QLFp56vZJhqENsmGKiQ+Mz4G+h8ln3h6TweuW0YL/YhgqlhMjPxW5zgZb0TAcZZSVFlrx3+fSHH9W8+QuUmpqqeXNfUPfu3SVJGzZs1N3T7lX23r2qr6/X1Vddqb88+Kcm/45//M//6tn//acyt28JZOmSDlwPlDpjq9/+/vP7OvXalX018Jm1yi45/Nibm0am6s7TO2ng02t9ullG7rQMxUaGxiXa9Q1enfDsDu338dEMY/rGa8FlaX6qKjQkPbZZHq/kMKSSB04Idjl+s62wVsNn+v5g8b+e20E3n9zC0/ytzN8ZIFk7B+auden3y3J93u/zG7prcGobP1QUOuySA1PeztHCjb5dX+9sE6att/ZWmxB5VilzgZbzeL0a9Fymdpf4dsbo7B6xWvqbrsff0MTskgF7Suo08J+ZPl9X+6cz2mnaae38UpOvmAs0X2gkjx9MnjxRzqQk5ebm6oKLxujCi8fo7HNHa+xl45WW1kWnnHLgBlJHPs7HTt7f5pLzwVWNPryS9NzKXPV6fLWp7/4YEWbousFJPu83aaiz9YtBUPRtG6XTu8b4tE+bcENXDkjyT0Ehyso5cPmJiUqI8u0rbminaMs3tHbSkky/5qSkkGloA8HKGeAwDE0c4vtnYPLQ0DhDh5+va1KkRvfy7d4KEQ7p2kH2mg9aJQcsm9ypHTvqtVcXaNSZZygqKlI5OTlKSkzSI9Mf0pzZM7V7125JUr8jbhIF67hlRIpOaBfV7O3H90/UGd1acBEmQtbfzu2oOB+OFP713I5ytvF9qSJCU2ykQzNGd2z29jERhp4cnerHihBowzu10fU+HODsmRypO0aGxkoNtI5JQ5M1ODW62duP6RvvcxOE0PboOR18+m7/y6gO6hBn2aszLc2yTa0k9erVU7NnPa/1a1dr/drVWvzmIk2YMF5VVVXam5Mjh8OhPn16B7tM+EFidJiW/iZd/dsfv7Edd0KC/nlRqt+vrUZg9e8QrSUT0pv1ZfbYOR10QwuO6CO0/WZAkp45v6Mcxxna8VEOLRqfrqGdOEtrJYZh6KnzU3X1wKTjbtsnJVL/vjJdKTFMZq0kNtKhxVeka0gzGtuL+8Rr9qWdFXa8wICp9E6J0tIJ6WoXc/y5wB/PaKdbRnCm3qxsmd47MjPl9XrVvVs3tWlz9CRm+fsfSJIyd+5s9OcunTtrwID+gSsUP0tqfIQ+/G13LVhfojmri7W9qK7R+6d3jdGkockakxEvBw2tJZ2SFqOvJvXQnNXFenldiQqrGt8Rd3z/RE0Z5tTJnX1bqgzzmDg0WUM6tdHM74q1+Psy1TYcvrrK2SZM15yUpMlDneqaFBnEKuEv4Q5D/7w4VRf1idfsNcX65IfKRu/3cEZq0lCnrjkpSYnRrNSworax4Vp+TTe9uqFEs1e7tLmg8RLLU9NiNHGoU2P7JdDQWtSQTm305aQemrPGpZfXlhx1z5Wx/RI0ZZhTp6azYs/MbNnUbtu2XdKxr6e99fe3N/nnsb/+lZ54vGXPTkJwxEU6NHV4sm4c5tT6vBrtr3Qr3GGoW1KkeiYzibWDzgkRenBUB933y3Zak1uj8+ftlleSIWnOpS185gdMZXBqGz1/SWc9enYHfZ9fq8p6jxKjHBqc2sZW10/alWEYuqhvvC7qG6/dJXU66f9vHGNIWvO7nhzUtIE2EQ5NHJqsG4Y4tSm/Vrnl9QpzGEpPjFDvlOZfqgTz6hgfoT+e0V73nNZOa3Ordd7Lh+cCc8f699GeCAxbNrXbt++QJGUc43raYNztOBB6tY3Wy+P7qG1shEpr3Lru9R3avL8q2GUFhGEYGsQNYGwtKtyhkWkxMoxDT22wHTtngCSlxITr9G62/NrD/+uWFNkoA+zY0No5BwzD0IAO0RrQofnX2cJaIsMMjejCXMCKGWDLQ9Tbth84U9vPZnc+njm2l2Z9nae+M1br8c/2au54ricG7IQMAEAOAPZm1QywZVO7YN5cZW7folGjzgxyJYHTLjZCw7rEacHafEnS4o1FSkuKUs8UjlYCdkAGACAHAHuzcgbYsqm1o7SkSOWW16nhiEdNZblqlZ7EtSSAHZABAMgBwN6snAE0tQAAAAAA06KptYnskjqlxkcq7IjfeLozSlkltcfeCYBlkAEAyAHA3qycATS1NlFQWa81OZW6enB7SdK4ASnaW1qrnUU1Qa4MQCCQAQDIAcDerJwBPNvARm5ckqm543vrgbPSVFbr1vWv7wh2SQACiAwAQA4A9mbVDKCptZHtBdU69Z8bgl0GgCAhAwCQA4C9WTUDWH4MAAAAADAtmloAAAAAgGnR1AIAAAAATIumFgAAAABgWjS1AAAAAADT4u7HISomwlDutIxgl9FsMRFGsEsALMVsGSCRA0BrM1sOkAFA6zJbBkjBywGa2hBlGIZiI/lyAOyKDABADgD2RgY0H8uPAQAAAACmRVMLAAAAADAtmloAAAAAgGnR1AIAAAAATIumFgAAAABgWjS1AAAAAADToqkFAAAAAJgWTS0AAAAAwLRoagEAAAAApkVTCwAAAAAwLZpaAAAAAIBp0dQCAAAAAEyLphYAAAAAYFo0tQAAAAAA06KpBQAAAACYFk0tAAAAAMC0aGoBAAAAAKYVHuwC0DSv16uqem+wy2i2mAhDhmEEuwzAMsyWARI5ALQ2s+UAGQC0LrNlgBS8HKCpDVFV9V6lztga7DKaLXdahmIj+SIDWovZMkAiB4DWZrYcIAOA1mW2DJCClwMsPwYAAAAAmBZNLQAAAADAtGhqAQAAAACmRVMLAAAAADAtmloAAAAAgGnR1AIAAAAATIumFgAAAABgWjS1AAAAAADTCg92AWg9Z/RI1GdTBzR6raK2QdsLqzV/Tb6e/XKfGjxBKg5AQJADgL2RAQDsmAM0tRb06tp8LdvqkmFIHeMjde2Q9nrmkh7q1z5GNy7ODHZ5AAKAHADsjQwAYKccoKm1oDU5lXplbcGhPz/3Va62ThuqScM76A/v71ZhpTuI1QEIBHIAsDcyAICdcoBram2gqt6jVVnlcjgM9UxpE+xyAAQBOQDYGxkAwMo5QFNrEz1ToiVJxVX1Qa4EQLCQA4C9kQEArJoDLD+2oJhIh1Jiwg+tn596SkcN6Rynr7PKtaOwJtjlAQgAcgCwNzIAgJ1ywBZNbXGxS7PnzNEHH36svLw8JScna/R55+quO2/X9Ece1ZtvLtGf//RHXXvNVcEutVVMP6+rpp/XtdFrizcW6ualO4NUEYKpvsGrZTvK9eIalzzeA695vNKfVuzXDUOc6u6MDG6BAbCloEazV7v0YWZFo5/BRzsrdHaPWDkMI7gF+gE5gCNll9brpTUuLd1a1mgMLN5cqkv6JigyzHpj4Eg1bo+WbinT3LWNc/Cx/+Tr+sFOpcZHBLdAPyADcKQGj1cfZFZozuriRmPgvo/yNHGIU71TooJbYADsKKrVnNUuLd9R3uhnsHx7uc7rFacwh/Vy0E45YPmmdvPmLZo4eYoKCgoVExOjXr16Kj+/QC/Pm6+srCyVlJZKkk7olxHkSlvPzFW5emNDoSLCHBrQMUb3ntlFXRKjVOM+fO/uyDBDa24bpFfXFeixT/Yeev2l8b3VIS5CF764ORilo5V9l1Ota5dka2/Z0TcC+MeqIv3PqiL9dlCSnjw/1ZKT2so6j6a+k6N/by1v8v1xC7PUJyVSr16Wpj5trfWFTg5Aktwer+7/aL9mHzGRPdL1S3PUMW6/5v66s05Njw18gQGw4ocKTfp3joqqGo56729fFGrGfwv1+1NS9OCo9pY6wEUG4KANeTW6enG2dpccvdz0uW+K9dw3xbqif6KevShV0eHWuzKxxu3RLe/l6vVNpU2+f8Ub2erujNAr49LUv0N0gKvzLzvlgPU+uUcoLnZpytSbVFBQqIk3XK+v/vsfvf3WEq366gvdM+0uffrZ59q4cZMMw1DfjL7BLrfV7Cis0YrMUr2/zaUZn+fokrmbNbxLnJ4f2+vQNnUNXl27aLseOCtNA1MPTGQuPTFZl/RL1sQ3rXWLb7v6em+VLlqwu8mG9iCvpLnrSnTt4mw1NDXjNbHqeo9+/dqeYza0B20vqtO583ZrW2FtgCoLDHIAHq9Xk/+do5nfNd3QHpRX4daYV7P0n92VgSsuQJbvKNdlC7OabGgPavBKz6ws0u3LcuX1WicHyQBI0vq8ap0/f3eTDe2RFm0q1RWvZ6uuwTpjQDrwGb/i9exjNrQH7XLVa/T83dqQZ60luXbKAUs3tQ8/8qjy8vJ0zdVX6f777lFc3OGj0FMmT1K/jAy53W516dxZ8XFxQazUv1buKdf8NfmaMKidRnaNP/T6mpxKPfl5juZd0UedEyM1a1wv3fzWTuWW1QWxWrSGqnqPrnwzW9Xu5n05LdtRob+vLPJzVYH150/ytWpvdbO2dVU36Mo3s+Wx0IT2x8gB+5n5XbEWby5r1rZ1DV5dtThbJTXHbv7MZn+FW9cv3avmztHnrivRqxt+euJrZmSA/dQ1eDXh9WxV1HmOv7GkT3dV6m9fFBx/QxN57D/5+nRX8w7Yldd69Js3slVvscb+SFbOAcs2tZmZO/XesuVyOp26+647mtzmxP4nSJIyjjhLu/z9D3TzLb/X6Weepf4DB+u80Rfqqaf/rspKcx/BfnhFttwN3qPW1T+yIltuj1drbxusT3eWatH6wiBViNb05velKqj0bXI667tiywR5aU2DFqx3+bTPjqI6fbyzwk8VhQZywD48Xq+e/7bYp31Kazx6bWOJfwoKgpfXuVRV71um/evbYkudrf0xMsBe3t5appxy355D+uIaV6OlqWZWXe/Ri2t8mwtkl9Xr3e0/vcLL7KyaA5Ztat997z15PB5dOuZixcY2fZ1QdNSBdfMZGYevp53zwotyhIXprjvv0AtzZurKKyfo1dcW6oaJU+TxmHeQ7yyq0cL1BTqnd5JO65Zw6HW3x6uv9pSpXVyEXvp2fxArRGuas9q3EJek3Aq3lu+wRpAv3FiqSh8ns1LLfm5mQg7Yxyc/VGqXy/fHNcxZ7bJEU9fg8eolHyezkrRhf42+yWneCg8zIgPspSXfacXVDVq6pXkrPELdks1lKqnxfe4+Z7VvBwTNxqo5YNkbRa1c+bUkacSIEcfcJi/vwC+s3xFnamfN/JdSkpMP/XnEyScrOTlZd941Td+tXq2Thw/3uZZp99wvV0mJT/u4jXAp/Xc+/79+yqOfZOs3g9pp+uh0nTVzkyTptG4Jum5Yez375T7949IeGvTMuhYdobv51tsU7vXtaCD8wyND67re0qJ9H3nxLb1dsrKVKwq8b1LOkeL6+bzfZ1v3a9KUv/qhIt/5IwMkcsAuNicMk5wjfd5vR1Gdrpt6myK85n5+YXVYrHK63NCife955mX1Lt/QyhW1DHMB/Bxfp02VHL7f2fvJBcu0wvWFHyoKrDXOM6SEgT7vt3JXiSZNaf3v35aw21zAmZSkGU+0bB5m2aY2Z98+SVLnTp2afN/tdmv1mjWSGp+pPbKhPWhA/xMlSfv357eoFldJiYqLfTvq0+CIkNJ9+/98/kOpjHv+e8z3t+ZXK/y+Lw/9OTbSoblX9NZ9y/boX6ty9fnUAXrsgq66851dvv2PJblcLoV5zD0JsooGR4TU9fjbNaWytsHnz2ooqkpo2aqKeiM8ZP79LckAiRzAARVRLW8sCksrFOU29yU3VZFeqUvL9i2vqTd1DpABkA7cCLKha8seVVVZ5wmZMfBzVMa17B4BbiNCRcXFCoV7oTMXaD7LNrXV1QeWD9XUNn0Xs/eWLZfL5VJsbKzS0n76m2/V199Iknr26NGiWpxJST7v4zb8/6t56uLu2lVcq+dW5kqSrlu0Q+vuGKSlm4r0xS7flp44nU6OzoYIryTD2yCvEebzvvGRhpKbOLBjNrEtHD5R3rqQ+fcHIgMkcsCqEqJafnVR+4QYhcncj7iKcbT8sRwJUWG2ygEywLoiPLWqd/g+luMiFDJj4OeIa+HjpyM9tU2e5AoGu80FWtIzHWSUlRSZ/+KZJoy+4GLt3LlTD/75j7rm6qsavZefn69fjb1M+fkFGjpkiBYtfOWYf09e3n6N+dVY9T/xRL34wix/l31IZZ1HqTO2+u3vP7+vU69d2VcDn1mr7JLDjzK5aWSq7jy9kwY+vVZV9c0/25U7LUOxkZa9RNt0rng9S8t3+H7ToxXXddPwzjF+qCiw3tlapqsW7z3+hj9yw2Cn/n5hqh8q8p2/M0AiB6zs+/wajZz9g8/7ndEtRu9c1a31CwqCM178QWtzfXs8hyFp/c291C0p0j9F+Yi5AH6O65fubfYd0I/0zlVddUY38z+3+pMfKvSr17J83m98/0TNubSzHyryHXOB5rNs8vzi1APXEs2a/YJ27Tp86nzDho26+prr5HKVSJL69ctoandJUmVlpabedLMiIiL0t78+4td6A+39bS45H1zV6MMrSc+tzFWvx1f79OFF6Jk01PcjjIM6RmtYpzZ+qCbwLugTr07xvh/dnDjU6YdqQhc5YF0nto/WqWm+H6BqSXaEqskt+Lec1ysuZBraQCADrG1yC77TeqdE6vSu5j+4LUlndo9Vz2Tfx3NLfm5mZpUcsGxTO3nyRDmTkpSbm6sLLhqjCy8eo7PPHa2xl41XWloXnXLKgRtIHfk4nyPV1NRoytSbtHfvXs19aY7at28fyPKBn+XsHrEa2sm35XfTftFWhhEKV5D8fOEOQ3ed2tanfS7oHacBHVq+ZBEINXf9oq1P14Sd2D5KF/aOP/6GJjHuhAT1cDZ/QhtmSHf6mBtAKBuZFqNf+tigWmku4DAM3f0L38b0Gd1idHJnaxzgtxvLNrWpHTvqtVcXaNSZZygqKlI5OTlKSkzSI9Mf0pzZM7V7125JUr+Mo8/U1tfX65Zbb9OmTZv0wuxZ6t2rV4CrB34eh2Fo0eXp6p3SvAndI2e31yUZCcff0EQmDXXqlhHNO1MztFN0yCw1AlrLuT3jNGN0x2Zt2y0pQm9eka6IMGtMZiWpTYRDiyekN2vVhsOQ/nlxJ41swdltIFQZhqH549LUv33zrqu975dtNWFAkn+LCrCrBibpntOa19gOaB+leWPTLNPU241lbxQlSb169dTsWc8f9XplZaX25uTI4XCoT5/ejd7zeDy68+579NXKVXph9kyddJLvtwIHQkH7uHB99NvuuufDPC3dXKqmVo90d0boj2e01+UnJga+QD8zDEOPnt1B3ZIi9dSXhcqtOPqmBW3CDV05MEmPnN2B68BgSVOGJatDXLge+jRfmcV1R70fZkhjMhL05OiOatfSO6yFsJ7JkVpxXXfd/UGelu8ol6eJu4j0axel6We11+he1jlLDRyU3CZMy6/ppvs/2q83vi9VbcPRgyA9MUL3/bKdrj4pKfAFBsAfz2iv9MQIPf5FobLLjr4rb1SYofH9E/XXczsoIcr3m2wiNFjvG6wZdmRmyuv1qnu3bmrTpvESg788NF3Ll7+vG6dMVnSbaK1dt+7Qe+np6SFzNzSgOZLbhGnOpZ312NkdtGBDiTYX1KrW7VFymzBd0jdBZ/WIlcPCRyQNw9CUYcm6frBTy3eU64PMCpXWNCgm0qGTOkbrygFJcrbhCwzWdmlGgsb0jdfnuyv1763lKqxyKzLMUN+2UbrmpCSlxrfwFqEm0TkhQq9dnqbs0nrNX+9SZnGd3A1etY0N12UnJGhkWgxnZmBpidFheu6STnr47PZ6ZUOJNu6vVY3bo6ToMF3YJ17n9YxTmMPaY+DaQU5dNTBJH2ZWaNmOcpXUNCg63KEBHaJ01cAkpcTYsiWyFFv+Brdt2y6p6etpP//PgYdNz5w1WzNnzW703uN/e0zjxv7a/wUCrax9XLitrxWLCDM0JiNBYyy2xBpoLsMwdGb3OJ3ZPS7YpQRNWmKEHjid+2PAvlJiwvX7U+w7FwhzGLqgT7wu6MOqDCuyZVO7ffsOSVJGE9fTfv7pikCXEzC92kbr5fF91DY2QqU1bl33+g5t3l8V7LIABAgZAIAcAOzNqhlgy4vItm0/cKa23zHufGxVM8f20qyv89R3xmo9/tlezR3f+/g7AbAMMgAAOQDYm1UzwJZN7YJ5c5W5fYtGjTozyJUETrvYCA3rEqcFa/MlSYs3FiktKUo9U3iECWAHZAAAcgCwNytngC2bWjtKS4pUbnmdGo64A26Wq1bpSc27zTsAcyMDAJADgL1ZOQNoagEAAAAApkVTaxPZJXVKjY9U2BG/8XRnlLJKaoNXFICAIQMAkAOAvVk5A2hqbaKgsl5rcip19eADjzMYNyBFe0trtbOoJsiVAQgEMgAAOQDYm5UzwJaP9LGrG5dkau743nrgrDSV1bp1/es7gl0SgAAiAwCQA4C9WTUDaGptZHtBtU7954ZglwEgSMgAAOQAYG9WzQCWHwMAAAAATIumFgAAAABgWjS1AAAAAADToqkFAAAAAJiWUVZS5A12ETia1+tVVb15fjUxEYYMwwh2GYBlmC0DJHIAaG1mywEyAGhdZssAKXg5QFMLAAAAADAtlh8DAAAAAEyLphYAAAAAYFo0tQAAAAAA06KpBQAAAACYFk0tAAAAAMC0aGoBAAAAAKZFUwsAAAAAMC2aWgAAAACAadHUAgAAAABMi6YWAAAAAGBaNLUAAAAAANOiqQUAAAAAmBZNLQAAAADAtGhqAQAAAACmRVMLAAAAADAtmloAAAAAgGnR1AIAAAAATIumFgAAAABgWjS1AAAAAADToqkFAAAAAJgWTS0AAAAAwLRoagEAAAAApkVTCwAAAAAwLZpaAAAAAIBp0dQCAAAAAEzr/wAlWi4F/jaVFwAAAABJRU5ErkJggg==", - "text/plain": [ - "
" - ] - }, - "execution_count": 3, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "bound_circuit = two_local.assign_parameters({ p: 0 for p in two_local.parameters})\n", - "bound_circuit.decompose().draw('mpl')" - ] - }, - { - "cell_type": "markdown", - "id": "78772993-d0da-4651-9211-706e86a59432", - "metadata": {}, - "source": [ - "詳細については、回路ライブラリー API ドキュメントの [N-ローカルゲート](/api/qiskit/circuit_library#n-local-circuits) をご覧になるか、[変分アルゴリズムのデザインコース](https://learning.quantum.ibm.com/course/variational-algorithm-design)を受講してください。" - ] - }, - { - "cell_type": "markdown", - "id": "3e463081-bce9-4ee2-9046-97659e9ac847", - "metadata": {}, - "source": [ - "## データ符号化回路\n", - "\n", - "これらのパラメーター化された回路は、量子機械学習アルゴリズムによる処理のためにデータを量子状態に符号化します。 Qiskit では、以下のような回路がサポートされています。\n", - " - 振幅エンコーディング。各数値を基底状態の振幅に符号化します。 これは単一の状態に $2^n$ 個の数値を格納できますが、実装にはコストがかかります。\n", - " - 基底エンコーディング。対応する基底状態 $|k\\rangle$ を準備することにより、整数 $k$ を符号化します。\n", - " - 角度エンコーディング。パラメーター化された回路で、データの各数値を回転角度として設定します。\n", - "\n", - "最適なアプローチはアプリケーションの仕様によって異なりますが、 現在の量子コンピューターでは、ほとんどの場合、`ZZFeatureMap` などの角度エンコーディング回路を使用します。" - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "id": "cf8b1efc-57b3-4681-8e6a-d5b8406d092d", - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAATEAAADuCAYAAABRejAmAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAgDElEQVR4nO3deXwU9f3H8dfmTjZANgfkhhxAgoCc4kUVFazV4q21ghURpB71xGLVVlGrglrPtoAHIl6o1J+AgPfVInITTCCHkJCQezch97X7+yMSibuJIQSS2byfjwd/ZOY7M5/JJm8+853JrulgWakDERGD8ujuAkREjoZCTEQMTSEmIoamEBMRQ1OIiYihKcRExNAUYiJiaAoxETE0hZiIGJpCTEQMTSEmIoamEBMRQ1OIiYihKcRExNAUYiJiaAoxETE0hZiIGJpCTEQMTSEmIoamEBMRQ1OIiYihKcRExNAUYiJiaAoxETE0hZiIGJpCTEQMTSEmIoamEBMRQ1OIiYihKcRExNAUYiJiaAoxETE0hZiIGJpCTEQMTSEmIoamEBMRQ1OIiYiheXV3AXLkHA4H1Q2O7i5DeqEAbxMmk6m7y2hFIWZA1Q0OIhbu7u4ypBfKn5uE2adnhZguJ0XE0BRiImJoCjERMTSFmIgYmkJMRAxNISYihqYQExFDU4iJiKEpxETE0BRiImJoCjERMTSFmIgYmkJMRAytV4SY1Wrj8QULOeuccxk2/ERO/9UkHnr471RXVzPvL/eSOCSZZa+93t1likgnuP1b8aSmpjFz1myKi0sICAggMTGBoqJiXl32Gjk5OZSVlwMwLDmpmyvtWiYT3Hp6JDdMCGeQxY/iqgZW7Czhr+uzqW6wd3d5Il3GrUPMarUxe86NFBeXMPO6Gdxy800EBpoBWLzkRRYsfBIvLy9MJhNDk4Z2c7Vd6x+/jefW0yNZmVLCk1/lkdw/gD+dFsHoSDPnLNmFQ++pKG7CrUPsoYcfoaCggOnTruaeeXe3Wjd71vWsWrWGtN27iYmOpk9gYDdV2fWGDQjgllMjeC+lhMte++nNE/daa3nuogR+d2IYb24v7sYKRbqO286JZWZmsebDtVgsFu6683aXY04YPgyApJ91Yfv35zJ7zo2cOHosY8ZN4K65f8Zmsx3zmrvKVaNC8fAw8fTXB1otX/JdAVX1TUwbE9ZNlYl0PbcNsdVr1mC327lw6gWYzWaXY/x8/QBISvppPqyysopp1/yBgoIC/vHUEzz80INs3rKFWTf8EbvdGHNJ46P70GR38N3+ilbL6xodbD9QxfjoPt1UmUjXc9vLyQ0bNgIwYcKENscUFBQCkHxYJ/bW2ysoLCzizddfIzIyEoDw8AFcceXv+fTTz5g8+ZxjWHXXiOzrQ0lVA/VNzhNfeeV1nDaoL96eJhpcrBcxGrcNsbwDzZdSUT8G0c81NjayZetWoHUn9vkXXzB27JiWAAMYM3o0MTExfPr5550Ksbl334OtrOyIt2tLo8kLYv/Y5voAHw/qGl13jbWNzcEV4O1BeVNTl9UkvcNNt9yKl6Oxy/drCQpi4YJHO7Wt24ZYTU0NALV1tS7Xr/lwLTabDbPZTExMdMvyzMwszvv1uU7jBw9OJDMzq1O12MrKsFqtndrWlSYPb4hte311vZ3+gd4u1/l5NX9SjR6zkM6w2Wx42hu6u4xW3DbEQkNDKS8v5/vvUxkzenSrdUVFRTy+YCEASUOHtvocvYMHD9K3r/OcUVC/fuzdu7dTtViCgjq1XVsaTe2/bAcO1jNsQAA+nianS8qofr4UVzboUlI6xWKxHLNOrLPcNsROO/UUsrKyWLzkJU4/7VTi4uIA2Lkz5ce7jWUAJB+Hh1w72ya3parezsp2PndyU24F5w61cFJMH77Zd7Blua+XiVGRZr76obxL65He44XnnsHs07PuB/asarrQrFkzsQQFkZ+fz3nnT+U3F0zl7MnncsllVxATE83JJzdP+P/88Yq+ffty8GCF0/7Kysvp16/fcan9aL29owS73cFtE1vPB846KRyzjyevb9MzYuI+3DbEIsLDefON5Uw68wx8fX3Iy8sjqF8QD89/kBeXLGLf3n0AJCe17sQSEuLJzHKe+8rMzCIxIeF4lH7UdhVU88KGfC4dEcp705OYedIAnrggjqd+G8cXWeW8oQddxY247eUkQGJiAksW/9tpeVVVFbl5eXh4eDBkyOBW686adCZPPvU0+QUFRISHA7B9xw5ycnKYd/ddx6PsLnHbBz+wz1bH7AkDOD85mJKqBp77bz5//Shbf3IkbsV0sKy01/1Ib9+xg8su/x3xcXF8tP7DVusqKis5/4KpWCwWbv3TzdTV1bNgwRMEBwfzzoo38fDo/ua1qt5ORDtzYiLHSv7cJM2J9QR79qQDzvNhAH0CA3lt2VL6h4Vx2+138Zd772f0mNEsXvyvHhFgItKaW19OtiU9PQNo/ZDr4QbGxrq8DBWRnqdXthZ70ps7sWQ3e/sdkd6oV3Ziy5ct7e4SRKSL9MpOTETch0JMRAxNISYihqYQExFDU4iJiKEpxETE0BRiImJoCjERMTSFmIgYmkJMRAxNISYihqYQExFDU4iJiKEpxETE0BRiImJoCjERMTSFmIgYmkJMRAxNISYihqYQExFDU4iJiKEpxETE0BRiImJoCjERMTSFmIgYmkJMRAxNISYihqYQExFDU4iJiKEpxETE0BRiImJoCjERMTSFmIgYmkJMRAxNISYihqYQExFDU4iJiKEpxETE0BRiImJoCjERMTSFmIgYmkJMRAzNq7sLkJ7FseD0Do07898pPDA5ljMT+v3i2Ac+zuHBj3MA+PyGEW1us26PjfNe+r7jxR6hEyPMXDQ8hKWbC8m21R2z4xyJV64YzLXjBgAw7tntbMmtdBpz28RI/vHbeACufTudV7cUHdcaezqFmLQy7c09ba6LD/Fj/pSBFFc2sKe4mkc+28+L3xW4HOvr5cFTF8TRx9eT/+072GpdbYOd69/NcNrmwMH6oyv+F4yKNPPA5Fi+yCrvMSF2SE1DEzPG9XcZYjPGDaCmoQl/b89uqKznU4hJK69vK3a53N/bgw03nUhjk4MrX99NQUUDBRVlbe5nyWWJ9PP34q8fZfNxRutxjXZHm8cxskBfTyrrmjq17X92lXLVqDDuWLWX+iZHy/Jx0YGMjDDz+rYirh7dv6tKdSu9IsSsVhtLXnyR9R99QkFBAcHBwZw7ZTJ33nEb8x9+hHffXclf77+Pa6Zf3d2l9lgvXz6YEyPN3Ll6L59nlbc7ds7J4Vx/UjgfpJby0Cf7O3W88D7e/PWcWM5PshDex4eS6gZWp9m4b102xVUNLeMi+vpw56+iODuxHwOD/PD39uAHay2vbinkiS/zsP+YB3+bHMsDk2MB+GLOiJbtl24uZMaKjJb1gx7d5NSl7Z03jn22OiYtSmlZ5lhwOks3F/La1iIenBzLqMhANudWtowZGx3IvWfFMDGuL318Pdlnq2XZliIe/yKXJrvz+b6yuYjfj+7PRcNDWLGjpGX5jHEDKKqsZ3Wa1SnETCa4Z1I05w6xMCTMn2B/Lwoq6lmz28Z967OxVje2jB1o8WXfPeN54OMc9hRXc8+kGIaE+lNUWc/Lm4t4+NMcl3UZgduHWGpqGjNnzaa4uISAgAASExMoKirm1WWvkZOTQ1l58y/ksOSkbq60a82bFM2YqEDGRgUSH+LHPmstcY9t7tS+7jojit+NCuOt7cU89VVeu2NPHdiHZ6bGs6e4mulvpbc5LiTA+UfPVtOI3QExQb5suGkkPp4evLSpgKzSWhJD/PnjKeFMSujHuGe3c7C2ueMZGR7AJcND+M+uUrJKC/H2NPHroRYe/00c8cF+zFmZBcDKlBIi+nhzw8kRPPLpftKKqgHIKq3t1PcEmrukS0eEsGRjYat5qt8kWVh5TTKZJTU8+VUe1upGThnYh/lTBjIqMpArlu922te2vEq25VVy3bgBLSHm62XiqlFhvLK5kIbDurNDfDxNzD0jmvdSSvi/VCtV9U2Mjw5k5vgBnD6oL2Of3e603dRhwcQHR/LC//IpqKhn6rBgHpgcy8AgX657x/kS3wjcOsSsVhuz59xIcXEJM6+bwS0330RgoBmAxUteZMHCJ/Hy8sJkMjE0aWg3V9u1Hj1vEKVVDWzNqyTIv/NzKWcn9uPRXw9iZ34VM3/hhzyirw/vTk+mrsnOxa+mtQTNzwX6elLywMlOy5MWbmFPcQ3PXRiPt6eJ0c9sI6/8p3myd1JK+PamE7l9YlTLjYIvfzhI/M/C+ZlvDrDsyiFcf1I4D3ycQ0FFAykF1WzIruCGkyP4OKOML39ov5vsiOHhZs5ZnMKnmT/ty9fLxEuXD2ZjTgVnLU5p6W4WbyxgR34V//htPGfE93N5/Jc3FfL01Hii+vmQV17PJcNDsQR48fKmQpL6+zuNr2t0EPHQd9Q2/tRCLQL+l13BS5cP5qITQnhnZ0mrbU6MMDP+ue1sy6sC4Pn/5bPymmRmjB/Aoo0FbMypOOrvy/Hm1o9YPPTwIxQUFDB92tXcM+/ulgADmD3repKTkmhsbCQ6Koo+gYHdWGnXi39sE6EPbmTKi993esJ8oMWXt65OoqKuiYtfTaO6oe3rDW9PE+9NTyKirw/Xvp1BWlFNm2NrGpo4Z3GK07+csjr6+nlyQXIwH6RaqW2wExLg1fJvn7WWzNIapgwOatnX4b/A3p4mLP7NY9en2/D0MDEuuk+nzr0jth+obBVgAJMHN1/+vrK5kCA/r1b1f7jbBsCUIUEu9tY8H9nQ5OAPY5svG2eM6893ORV8X1jdZg2Hzt/DBP38PAkJ8OKzzDIAJsQ6n/vHGWUtAXbIgi9yAbj4hJBfPukeyG07sczMLNZ8uBaLxcJdd97ucswJw4eRtns3SYd1YfkFBSxatISdO1NI272bhoYGMtPTjlfZXWav9ejuvvl7e/Cfa5Kx+HtxwSup/GBt/7Lr+YsSOGVgXx79bD8rd5W2O7bJjtMv/yHDwwPx9DBx/UnN82quZJX+FJCeHjDvzBiuGdufxBA/PDxMrcZa/I/dj3h6sXNQJ//YMb1yxZA2txsQ6O1yua2mkQ9SS7l23ACWby3mrMQgbn4/q90aLh8Zyp2/imJ0pBkfr9Y9iatzP3QZfbjUH5fFh/i1e6yeym1DbPWaNdjtdi6cegFms9nlGD/f5hctKemn+bDs7BzWf/QRI0aMYKT3CLZs3Xpc6u1pllyWyOioQO5bl826PbZ2x86aMIDZE8JZv8fGveuzj+q4hyLotS1FvLql0OWYmsM6wqcuiOdPp0fy1vZiHvlsP0WVDTQ02RkTFciC8+P4Waa1yeFwnnM6xKuNnbjqTE0/Dr1r9V62H3B+XALaf5Tk5U2FrDsxjCWXJVLfZOfN7W3fxb14eAgrpiWxMaeCWz/4gf3lddQ22PH0MLH++uEdPnejc9sQ27BhIwATJkxoc0xBQfMvSfJhndhJ48ex4b9fA/DMs8/3yhC7fWIkV4/uz/u7Snnks/bvLk6I7cNzFybwQ2ktV72xh3ayoEMyS2ux2x34eJna7NYON31Mf778oZyr3mj9fFtiqPMcUnulHbqTFxzg1erupK+XiYi+PmR28AZARknzuKr6pg7V/3MfZZSxv6yOKUMsvL6tiPI25hWh+dxrGpqYtCilVbAPDXM+90OS+wc4LRv247IfjuImR3dy2xDLO3AAgKjISJfrGxsbWwLq8E7Mw6Prpwnn3n0PtrKyLttfo8kLYv/YZfs73JkJ/Vjwmzh2F1Vzzdtt312E5sui96Yn0WR3cMmyNGw1je2O7whrdSMf7rFxyfAQJsT2cTnRHGr2oqSq+VhNDgc/bzgCvD24faLz637oGa5gF3dG00uaLw3PSQxqNWd0+8QoPI+gpVm/x0ZhRT3zJkXz9o4Sp++Jn5cHXp6mNp8nczjgpvezGBMVyMqUEpdjDmmyO3A4cOq47js7ps1tJg8OYnSUudU53n1mNADvf9/+NADATbfcipfj6F/nn7MEBbFwwaOd2tZtQ6ympvmHsrbO9f8uaz5ci81mw2w2ExMTfUxrsZWVYbVau2x/TR7eENtlu2sR3sebFVcn4eVp4r2UUqYOC25z7M78Kv55cQJR/XxZmVLC8PAAhoc7/y8PUFjZwCc/e+C1PX9cmck3N47kqzkjWLa1iG15VXiYmudsLhwWwrKtRS13J99NKWHOyRG8dfVQPskoY0CgD9eNH0BpdYPTfjflVtJkd3DvWTFY/L2oqm9ir7WW7/ZX8klGGbuLqpk/ZSAhAd7stdVy+qC+nBzbh+JK5321pbrBzjVvp/P+H5LZM3csL28qJLO0hiB/L5LC/LlkeCgXL0tr9+7oqlQrq1J/+efl3ZQSLhsZymezm79P3p4mLjohhADvtv8j3pFfxWezR/DC//LJr6jnwmHBTB5iYdmWIr7twJ1Jm82Gp73j34/jwW1DLDQ0lPLycr7/PpUxo0e3WldUVMTjCxYCkDR0KCbTsZ08sAQFden+Gk3H5mUbGhZA2I+Tzve28785NP895OlxzX8DecmIUC4ZEdrm2C+yyo8oxHLL6xn7zHb+PCmaC4eFMG10f2ob7ewvq2NVmpUVO36aJ7pj1V4q6pq4YmQoFw4LYX95HYs3FrApt4JPZ49otd/9ZXVc904Gfz4zmn9dnICPlwdLNxfy3f4M7A6YujSVZy9M4JbTIqhvcvBRuo0z/p3Cf28c2eHaAT5KL2P8szuYNymaaWPCCDN7Y6tpJKu0lqe+zmNnftUv76QD3t5RQh/fDG6fGMUT58dhq2lkVZqVeR/uw/qg8yMsAB+kWlsedh0a5k9RZQPzP8np8EPJFovlmHVinWU6WFZ6lLMYPdP8hx5h2WvLiYiIYNnSl4iLiwNg584U7pr7Z/bn5tLQ0MC0q3/PA3+73+U+nnn2eZ57/oUed3eyqt5OxELnBybbknLHaAJ9PDv9sKsY3+FP7B/qYjsjf24SZp+e9WSW23Zis2bNZNWq1eTn53Pe+VOJj4+jrq6O7OwczvjVRKKio/j6629aPV4hIsbjtiEWER7Om28s5/EFC/lu0yby8vJITEhk1vyZXHnl5Zx19hQAkpPc68+NDpk2JoyBQc2PkISZvfHx9ODes5ovEbPLalm+1f3+AFt6J7cNMYDExASWLP630/Kqqipy8/Lw8PBgyJDB3VDZsTdzfLjT+3Y9/OuBQPMclUJM3IVbh1hbMjIzcTgcxA0ahL+/8zM1a9etByAzK6vV19FRUYwYMfz4FXoUDn/HBZFsWx2mu7/p7jKOiV4ZYnv2ND//1NZ82C1/us3l15dcfBELHu/csywicmz0yhBLT29+N4akNubDetrdSBFpW8+6V3qc7Elv7sSSdWdSxPB6ZSe2fNnS7i5BRLpIr+zERMR9KMRExNAUYiJiaAoxETE0hZiIGJpCTEQMTSEmIoamEBMRQ1OIiYihKcRExNAUYiJiaAoxETE0hZiIGJpCTEQMTSEmIobWK99PTHqmxFA/Xr1iCKFmb8prG7l2RQaphdVO4yYl9OOx8wYR6OuJw+FgzW4b89buw9GBT1A9P9nCE+fH4elhIiW/imtXZFBR19Tm+DCzNyl3jGZDdgUXL+vYO/7ee1YMM8b3B+Ct7SXctz7b5bjxMYE8OzUeXy8P/Lw8eGVzIQu/zOvQMeQn6sSkx1h0SSKLNxYwdOEWHv8il6VXuP4kKltNI797YzcnPLmVsc9u59SBfbhmTP9f3L/Zx4OXLhvMRa+mMWTBFg4crOf+c9r/pPNFlyayOs3a4XOYGNeXq0aFMvKpbQx7YivnDg3iN0kWl2MXX5rI3z/PZcwz2zntnzu564wokvs7f3CNtE8hJj1CmNmbcdGBLN9WBMB7KaXEBPmSEOLnNHb7gSr2WusAqGt0sP1AFYOCncf93HlDLWw7UMWe4hoA/rkhn6tODGtz/HXjB7DXWsvXew92+DyuPDGU17YWU91gp77JwcubCrlqlOtjOBwQ5Nd8MWT28aC+0YG1urHDx5JmCjHpEWKCfMivqKfJ/tOyHFsdsUG+7W43INCby0aGdqhbirX4kW2rbfl6n62OiL4+eLr4LRhk8WXOyeHcu871pWCbxwjyI7us9THaOocZKzJ46NxYsu8ZR/rdY/nLumwKKxuO6HiiOTExsD6+nqyaMYwFX+SyJbeyS/f98hWDufn9LGob7b88uJPmTYrmnrXZvLm9mLhgX76cM5LNuRWkFdUcs2O6I4WY9Aj7y+qJ6NPcFR3qxmItvuSU1bkcH+jrybqZJ/B/31v5x9cHOnSMHFstkwcHtXw9yOJL/sHW3R9AXz9PRoabefvqpJZjBXh78Mms4ZyzZFf7xyirZWDQT5e2g9o4h5AALy4eHsJVb+wBYK+1jm9zKjhtUF+F2BHS5aT0CMVVDWzNq2La6OYJ+ktHhJBbXkdWaa3TWLOPB+tmnsC6dBuPfLbfaX3aXWOI7OvjtHxdehljoswMDWuePL/xlAje2lHsNO5gbROhD24k7rHNxD22mbtW7+Wj9LKWABsfE8gns1x/Evw7O0uZPiaMAG8PfDxNXDd+gMtj2GoaqapvYlJCP6A51CbEBLKrwPlurLRPnZj0GDeszGTpFYP5y1kxHKxrZMaKjJZ1Sy5L5INUK6tSrdx6eiQnxQRi9vHgkuEhALyzs4S/f5ZLmNmbkABvlxPklXVNXP9uJu//IRkvDxO7Cqr5w4r0lvXbbhvFb15OJf9gfbt1DrL4UdPGZeaXP5Tz9s4SUu4YA8DbO4pZk2YDYGx0IPOnxHL+y6nYHXDF8t0sPD8OLw8T3p4mnv7mAN/mVBzZN00wHSwr7cDTNdKTVNXbiVi4u7vL6JEuGxHC0LAAlx1aV3n+onje3F7Cf/d1/K6lu8ifm4TZp2ddwKkTE7fybkopUHpMj3Hz+z8c0/3LkelZkSoicoQUYiJiaAoxETE0hZiIGJpCTEQMTSEmIoamEBMRQ1OIiYihKcRExNAUYiJiaAoxETE0hZiIGJpCTEQMTSEmIoamEBMRQ1OIiYihKcRExNAUYiJiaAoxETE0hZiIGJpCTEQMrVd82pHVamPJiy+y/qNPKCgoIDg4mHOnTObOO25j/sOP8O67K/nr/fdxzfSru7vULjE41I9pY/ozZXAQCSH++HmbyCqt5Z2dJTz99QGqG1x/ZqKIEbl9iKWmpjFz1myKi0sICAggMTGBoqJiXl32Gjk5OZSVlwMwLDmpmyvtOteNH8BNp0bwQaqV17cV02B3MCmhH4/8ehBXjAzj5Od3UNvGh7+KGI1bh5jVamP2nBspLi5h5nUzuOXmmwgMNAOweMmLLFj4JF5eXphMJoYmDe3marvOuymlPPp5Lgdrm1qWLfq2gIySGu47O5aZJw3ghf/ld2OFIl3HrefEHnr4EQoKCpg+7WrumXd3S4ABzJ51PclJSTQ2NhIdFUWfwMBurLRrbcmtbBVgh7y9owSA4eEBx7skkWPGbTuxzMws1ny4FovFwl133u5yzAnDh5G2ezdJh3Vha9etZ/XqNaTs2oXVaiMyIoJzz53CnBtmYTabXe7HKKL7+QJQWNHQzZWIdB23DbHVa9Zgt9u5cOoFbYaPn68fAElJP82HvfjSy0RGRnLnHbcTHj6AtLTdPPf8P/nuu028+cZreHgYs3n1MMH9Z8fQ0GTnje3F3V2OSJdx2xDbsGEjABMmTGhzTEFBIQDJh3Viixf9i5Dg4JavJ5x0EsHBwdxx51w2b9nCSePHH3Etc+++B1tZ2RFv15ZGkxfE/vGItnl6ajynDurLPWv3kV5c02W1SO9y0y234uVo7PL9WoKCWLjg0U5t67YhlnfgAABRkZEu1zc2NrJl61agdSd2eIAdMmL4CQAUFhZ1qhZbWRlWq7VT27rS5OENsR0fP39KLLecFsmib/N57PPcLqtDeh+bzYanvWdNR7htiNXUNHcbtXW1Ltev+XAtNpsNs9lMTEx0u/v6duN3ACTEx3eqFktQUKe2a0ujqeMv298mx3L/ObG8vKmQOSuzurQO6X0sFssx68Q6y21DLDQ0lPLycr7/PpUxo0e3WldUVMTjCxYCkDR0KCaTqc39FBQU8o+nn+VXEycybFhyp2rpbJvclqp6OysX7v7FcX+bHMsDk2NZurmQ69/N6NIapHd64blnMPv0rHnhnlVNFzrt1FMAWLzkJfbu3duyfOfOFKZNvxabrQyA5HYecq2qqmLOjTfh7e3NY48+fEzr7Wr3nxPDA5NjWbaliOveycDh6O6KRI4Nt+3EZs2ayapVq8nPz+e886cSHx9HXV0d2dk5nPGriURFR/H119+0erzicLW1tcyecyO5ubm8+cZy+vfvf5zPoPNuPCWC+VMGkm2r5ZOMMn4/KqzV+sLKBj7JKOue4kS6mNuGWER4OG++sZzHFyzku02byMvLIzEhkVnzZ3LllZdz1tlTAEhOcu7EGhoauPmWW9m1axfLlr7C4MTE413+URkf0/zg7kCLH8t+N8Rp/RdZ5QoxcRumg2Wlve5Co6qqilFjxmMymdixbTP+/v4t6+x2O7fefieffvoZLy1ZxCmnnNyNlbpWVW8nogNzYiJdLX9uUo+bE3PbTqw9GZmZOBwO4gYNahVgAA88OJ+1a9dxw+xZ+Pn7sW379pZ1sbGxLh/BEJHu0ytDbM+edACX82FffvU1AIsWL2HR4iWt1j3+2N+59JKLj32BItJhvTLE0tObHzdIcjEf9uXnnx7vckTkKPSsi9vjZE96cyeW7EZvvyPSW/XKTmz5sqXdXYKIdJFe2YmJiPtQiImIoSnERMTQFGIiYmgKMRExNIWYiBiaQkxEDE0hJiKGphATEUNTiImIofXK9xMzOofDQXWDXjY5/gK8Te1+JkV36JV/O2l0JpMJs0/P+kES6S66nBQRQ1OIiYihKcRExNAUYiJiaAoxETE0hZiIGJpCTEQMTSEmIoamEBMRQ1OIiYihKcRExNAUYiJiaAoxETE0hZiIGJpCTEQMTSEmIoamEBMRQ1OIiYihKcRExNAUYiJiaAoxETE0hZiIGJpCTEQMTSEmIoamEBMRQ/t/xh5pFJp87fEAAAAASUVORK5CYII=", - "text/plain": [ - "
" - ] - }, - "execution_count": 4, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "from qiskit.circuit.library import ZZFeatureMap\n", - "\n", - "features = [0.2, 0.4, 0.8]\n", - "feature_map = ZZFeatureMap(feature_dimension=len(features))\n", - "\n", - "encoded = feature_map.assign_parameters(features)\n", - "encoded.draw('mpl')" - ] - }, - { - "cell_type": "markdown", - "id": "031bf004-ca80-4cc0-b153-2cd5cd778386", - "metadata": {}, - "source": [ - "回路ライブラリー API ドキュメントの[データの符号化回路](/api/qiskit/circuit_library#data-encoding-circuits)をご覧ください。" - ] - }, - { - "cell_type": "markdown", - "id": "5c5d2735-ef6a-48db-8382-9dc03c9af20a", - "metadata": {}, - "source": [ - "## 時間発展回路\n", - "\n", - "これらの回路は、時間によって発展する量子状態をシミュレートします。 時間発展回路を使用すると、システム内の熱伝達や位相遷移などの物理的な効果を調べることができます。 時間発展回路は、化学波動関数(ユニタリー結合クラスターのトライアル状態など)や、最適化問題に使用する QAOA アルゴリズムの基本的なビルディングブロックでもあります。" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "id": "834794df-86e9-4bea-8efa-5380499e359b", - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAbIAAADuCAYAAABcSIIkAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAe2ElEQVR4nO3daXiTVd4G8DtpupC0tCndN7pBUwSkKJSlKouACuKGIkJ9R7GIIIOyODgMoyIM0oqDoqNQHLVsrsyMiggqMIKDgmwt0J2l0DZdaNLSdEuavB8ChdJ0L01Pev+uiw885zxP/t1y5yxPIinTXjKBiIhIUFJrF0BERNQeDDIiIhIag4yIiITGICMiIqExyIiISGgMMiIiEhqDjIiIhMYgIyIioTHIiIhIaAwyIiISGoOMiIiExiAjIiKhMciIiEhoDDIiIhIag4yIiITGICMiIqExyIiISGgMMiIiEhqDjIiIhMYgIyIioTHIiIhIaAwyIiISGoOMiIiExiAjIiKhMciIiEhoDDIiIhIag4yIiITGICMiIqExyIiISGgMMiIiEhqDjIiIhMYgIyIioTHIiIhIaAwyIiISGoOMiIiExiAjIiKhMciIiEhoMmsXQHSzmUwmVOhN1i6DqEuS20sgkUisXUa7MMjI5lXoTfBNSLN2GURdUv5iFRQOYgcZpxaJiEhoDDIiIhIag4yIiITGICMiIqExyIiISGgMMiIiEhqDjIiIhMYgIyIioTHIiIhIaAwyIiISGoOMiIiExiAjIiKhMciIiEho3SLISko0WB2fgDF3T0C//rci5s7ReH3F31BRUYElf16K8L6RSNq0xdplEhFRG9j8x7icPp2KmXGzUFRUDLlcjvDwMBQWFuGTpE3IycmBtrQUANAvUmXlSslaJBJgfowfno32QbDSCUU6PT5PLsZfd51Hhd5o7fKIqBk2HWQlJRrMmj0HRUXFmPn0U5j3/Fw4OysAABsSNyI+YQ1kMhkkEgkiVBFWrpas5e/3h2J+jB+2pxRjzc+5iPSS448jfRHlp8DdiSdh4mdyEnVpNh1kr69YCbVajdgZ0/Hykpfqtc2KewbffLMDqWlpCAwIgIuzs5WqJGvq5y3HvBG++CqlGFM2XfvwzbMlVVj3YBgev9UT244XWbFCImqOza6RZWVlY8d3O6FUKrFo4YsW+9zSvx8AQHXDaOzChYuYNXsObo26DYNvj8aixX+CRqO56TVT55s2yANSqQRr9+fVO554SA1dTS1mDPa0UmVE1FI2G2Tf7tgBo9GIByZPgkKhsNjHydEJAKBSXVsfKy/XYcaT/we1Wo2/v/UmVrz+Gn4/cgRxzz4Ho5HrJbZmSIALao0mHLpwud7xaoMJx/N0GBLgYqXKiKilbHZq8eDB3wAA0dHRjfZRqwsAAJHXjcg+/exzFBQUYtuWTfDz8wMA+Ph447GpT+Cnn/Zg3Li7b2LV1Nn8ejqgWKdHTW3DhbDc0mqMDO4JezsJ9BbaiahrsNkgy80zTxX5XwmjGxkMBhw5ehRA/RHZ3n37cNttg+tCDAAGR0UhMDAQP+3d26YgW/zSy9Bota0+jzqGQSIDgp6z2CZ3kKLaYHmkXWUwh5fcXorS2tqbVh+RNc2dNx8yk8HaZUDp5oaE+FVtOtdmg6yyshIAUFVdZbF9x3c7odFooFAoEBgYUHc8Kysb994zoUH/Pn3CkZWV3aZaNFotSkpK2nQutV+t1B4IstxWUWOEl7O9xTYnmcTch1vwyYZpNBrYGfXWLqNdbDbIPDw8UFpailOnTmNwVFS9tsLCQqyOTwAAqCIiIJFI6trKysrQs2fDdRE3V1ecPXu2TbUo3dzadB51DIOk8V/zvLIa9POWw8FO0mB60d/VEUXlek4rkk1TKpVdZkTWVjYbZCNHDEd2djY2JH6ImJEjEBISAgBITk65sgtRCwCI7IQbods6XKaOoasxYntCmsW2wxcvY0KEEkMDXXDgXFndcUeZBIP8FPj5TGlnlUlkFe+texsKB7H3/YldfRPi4mZC6eaG/Px83DtxMu6bNBljx03Aw1MeQ2BgAIYNM28CuXHrfc+ePVFWdrnB9bSlpXB1de2U2qnzfHaiGEajCS/cUX8tNW6oDxQOdthyjPeQEXV1Nhtkvj4+2LZ1M0aPuguOjg7Izc2Fm6sbVix/DRsT1+Pc2XMAgEhV/RFZWFgosrIbroVlZWUjPCysM0qnTnRSXYH3DubjkQEe+CpWhZlDvfHmpBC8dX8I9mWXYitvhibq8mx2ahEAwsPDkLjhgwbHdTodLubmQiqVom/fPvXaxowehTVvrUW+Wg1fHx8AwPETJ5CTk4MlLy3qjLKpk73w9Rmc01RjVrQ3Jka6o1inx7pf8vHX3ef59lREApCUaS91uz/V4ydOYMqjjyM0JAS7d31Xr+1yeTkmTpoMpVKJ+X98HtXVNYiPfxPu7u744vNtkEptdhBrs3Q1Rvg2skZG1N3lL1ZxjUxE6ekZABqujwGAi7MzNiV9DC9PT7zw4iL8eekyRA2OwoYN7zPEiIi6IJueWmxMRkYmgPo3Ql+vd1CQxSlJIiLqerrlECM9wzwii+RHtxARCa9bjsg2J31s7RKIiKiDdMsRGRER2Q4GGRERCY1BRkREQmOQERGR0BhkREQkNAYZEREJjUFGRERCY5AREZHQGGRERCQ0BhkREQmNQUZEREJjkBERkdAYZEREJDQGGRERCY1BRkREQmOQERGR0BhkREQkNAYZEREJjUFGRERCY5AREZHQGGRERCQ0BhkREQmNQUZEREJjkBERkdAYZEREJDQGGRERCY1BRkREQmOQERGR0BhkREQkNAYZEREJTWbtAsgyk8kEQ421q2g5mQMgkUisXQYRdUMMsi7KUANsWVhq7TJabPoaV9g7WrsKIuqOOLVIRERCY5AREZHQGGRERCQ0BhkREQmNQUZEREJjkBERkdAYZEREJDQGGRERCY1BRkREQmOQEdmIeyKU0K8aiQjPHi3qf3bJ7dj77IAOeWxHmQRnl9yOFRN6d8j1qHHezvbQrRiOJ2/zalWbLeNbVBHZADspsGZSCLYcK0R6UWWbrzM/xg/aSgM+OVLYqvMW3OEPtx4yvPnzxbpje58dgFFhrs2e++oPOXjthxy8Mi4Ir44Larb/vuxSjF6fAgB159z+znEcuVjeqpo7wt5nB+D2AGe4LDsIALgr1BX7ZrfsxYHkpQMAAFN8TIv6j/ogBf89U4qCcj0++FWNlRN644vkYlTqjXV9mmqzZQwyIhvw6EAP9POWY9rW9BafE5FwBKYbjr0Q44dzmupWBZmTTIrFdwXgo98LoK2srTu+cs8FbDyktniOo0yKtyaFwMXRDv87VwYA2J5SjKzixkN40V3+GOTnjAPnuu57kKYWVmDGtsZ/BhMj3TFtkCcOnL32NTTVP7SXE5aP742icj3Siyrqjr/zSx5eiPHDU7d74x8H8+ud01SbrWKQEdmAOcN9cSJPh+R8XYvPqam9Mcba5okoTyjlMiTdEH4/ZmobPSdxSjhce8jw193n8cOVfinqCqSoKyz2nx7liUF+zvghQ4NXdud0SN3AtRHd1dFRexWW67HlWJHFNpVXD/zjoTDklVVjyqa0uuON9e9hL8XBubfCUGvC1C1pUF/W17Wd11Rj/7kyPDvMp0FYNdVmq7rFGllJiQar4xMw5u4J6Nf/VsTcORqvr/gbKioqsOTPSxHeNxJJm7ZYu0wSlIOdBC+PDsDJBVGoXDkCmteG4es/9MMgP0VdH39XBxS/Eo2UBVFwktX/s9s8rS9q3xiJseHXpuFM8TH46LE+GBvuioNzB0K3Yjjylw3F2smhUDjUP9/b2R53hLjiu7SSVtV94xqZKT4Gwe5OGBXmClN8TN2/3sqmP9bg0YEeyC+rwfG8loXo7GE+eGaoD74+fQmv/3ih2f6D/BTY8Eg4zpVU4fGt6TB2TP52qp5Odvj3/0XCUSbFI0lpKCjXN3vOPx/tg1v9FPjTznPYm91wFLozTYOBvgqLa6JNtdkimx+RnT6diplxs1BUVAy5XI7w8DAUFhbhk6RNyMnJgbbU/AvSL1Jl5UpvDn+VEx5e6ocD2y7h2HeWp2TmbQrF2WM6fPtWQSdX1zUsGR2Awf7OuM3fGaG9nHCupAohb/zeonNlUgm+f+YWjOjdE5uOFuLd/+XD1UmGuGhv/DJnIO78IAVHLpYjt7QGT32Ria//0A9rJ4dg9vZsAMBTt3tjepQXVu25gJ+y6v98Bvs7Y8oADyQeUiPpaCFGh7lhfowf+nvLMW7jSZiuPKHfdWUd6tCF9q0RzdiWjr/fH4pinR4r91wLmKImnnSlEmBksAv2ZLVsum9Ebxe8PTkU6UUViP00o9n+veQy/OvJSADAQ0mpKKkwtOhxuprNj0cgwlOO2duz8GvO5Wb7L7rLH48P8sSnx4vw1s+5FvsczDFPyY4Kc22wLtpUmy2y6SArKdFg1uw5KCoqxsynn8K85+fC2dn8KnlD4kbEJ6yBTCaDRCJBhCrCytWStay6NxiXdHoczS2HWw+7Vp37/EhfjA5zw4SNJ7E7Q1t3/B8H83FyQRTenBhStzHhm9MleOdAHv4Y44cfMrU4qa7AugdDcfB8GZbtPt/g2gN9FXjwk9P4zynzSOv9g2qsnRyK+TF+eGygBz47UQwA6OclBwBkX2rfE9aWY0VYMaE3CpqYHrtRkJsjXBxlyL5U1Wxf354O+DI2EtW1Rjz0SSrKqmqb7C+VAJ/PUCHY3Qmxn6a3eMTX1bw2Pgj393PHh4fUWP+r5TXD640Nd8Wqe4KRnK/DzC8yG+139Xt+i7e8VW22yKanFl9fsRJqtRqxM6bj5SUv1YUYAMyKewaRKhUMBgMC/P3h4uxsxUrJmkLfOAyP137D+I2nkFfWuo/lnhHlhdSCChy5WI5eclndPwc7CX7I1CImuGe9qcTFO87iaG45Eh/pgy9jVdDXmjBtazpqLWwuSyusqAuxq97Yax4pPdS/V90xT4U9AKCksvNHK57OVx67mZGSvZ0EX8Wq4NvTAX/4LBOphc2HbsLEEIwJd8M7B/Kw+WjLgrUpDnaSej+jXnIZ5Pbmn82Nx1v7gqYxk/u54y9jAnEo5zLm/Cu72f69lY74dLoKl6tr8dAnqahoYtfhJZ35e+515WfQ0jZbZLMjsqysbOz4bieUSiUWLXzRYp9b+vdDaloaVNeNxvLVaqxfn4jk5BSkpqVBr9cjKyO1s8omKzhbUt3mcyO9ekDuYIfiV4c12sdDIcPFUnNA1lwJrlMLBqO/jwJPbE3HeY3lx7f0ZK++rIemwoBQd6e6Y6Yrew8lN/S1t5PAvUf9P/HymlroajpuS/bV6U3JjQ9+g3cfDMPw3j2xas8FbD95qdnrThvkiQV3+uPnM6VY+O3ZDqjUfM2Pp/a12Hbjz68108uNifDsgaSpfVFcoccjm1Kb3VzTw16Kfz0ZCWUPGSZ9dBpnSpoe5V79npssXLapNltks0H27Y4dMBqNeGDyJCgUCot9nBzNTwYq1bX1sfPnc7Br924MGDAAA+0H4MjRo51S780mc5DAydmmB+BWIZEAyfk6LPjmTKN9inT115gmqpSQ2ZmfaaL8Fdh2vH2jjaIrr77d5fZ1gQkAI3r3bHBP09V7tjrK1a/NXd74U0lctDdmRftgV7oGS3c1nEK90UBfBRKnhOOithqPbk6DoYN2d+zK0ODuDSn1jj15mzeevM2rwfH23n/l4miHfz0ZCbmDFA8kptb7uTQmcUo4ovyd8Zfvz+P7dE2z/a9+z2/8/WquzRbZbJAdPPgbACA6OrrRPmq1eXND5HUjsqFDbsfBX/YDAN5+512bCbJhj7hj2CPu1i7D5mQWV8FTYY892aUtevU72F+BVfcGY3eGBsU6PRbe4Y8fMrR1W9CvF+nVcMeZj4s9lHIZzmRee7V+Um1eO+rj4VRv+/2J/PIGT9DNvcpvbWRc0FajtNKAPh6Wd8dFB7lg3QNhOHOpCtO2pjf7PVL2MG/ukEklmLI5DYUt2N3XUurLeqgv19+UEhNi3ihz40ab9kqa2heR3nK8+M0Z/PdM89d+8Q4/TI/ywr9PXqq30aYp4b3M3/OTFm5ZaKrNFtlskOXm5QEA/P38LLYbDIa6kLp+RCaVdvyoZfFLL0Oj1bbqHCnsMcJheYfVcHJPGbIOWV4sf3CJb7uvP3fefBjRNV/9GSQyIOi5m3LtpCOFeHNSCBbc4Y81FnaXeTnb1z0ZKxyk+HS6CppKA2I/zUCl3ojoIBckPd4XA9861uDVs8pLjgduca+3TvanUQEAgH+fujY9d/WJcliQC75KuXZcW1nb6ifo8uraJkdXNzKagP3nyhAd6NKgzdvZHl/FqlBrNOHhpFRomlnDk0qAT6dHILSXE579Kgu/tWB3X1e07O5APNi/F7YeK8Ta/XnN9h8V5or4+0KQVliBJz9rfifnVcOCzN9zS0HZVNuN5s6bD5nJ+rtBlW5uSIhf1aZzbTbIKivN6wtV1ZZfge74bic0Gg0UCgUCAwNuai0arRYlJa27x8dO4gB4d1wN2gI9Lpy6edtwNRoNak2t2yjRWWql9kDz73zUJm8fyMO4Pm54c1IIxoS7Yk9WKcqqDQhyc8TYcDdUGYwYs/4kAOD9h8IR5u6Eez48VRdu07am48BzA/HJ1D6475+n6107OV+HzY9HIPGQGpnFlRgd5oZHB3pgX3Zp3Y5FACjWGbA3W4v7VO5YvONcu76eX3MuY+YQbywfH4TUwkoYTSZ8c7qkyU0HXyQXY1KkO4YEOuPwdbcAfBmrgr+rI7anFKO/jxz9fSzvoCso1+PHTC1eGx+E8X2VSC2ogK6mFtOjPBt9zJbuquxs4/q44dW7g1BRU4t9Z0qb/Bp+yNSad2ZOV0FmJ8FXKZcwuV/jsybJ+bp6N4zfp1IiOV9ncXt9U2030mg0sDN2zRehLWWzQebh4YHS0lKcOnUag6Oi6rUVFhZidXwCAEAVEQFJcyvV7aR0c2v1OVKItdtIqVR27RHZzbq20YSJH53CnOG+iB3shdfGmxMzr6wGhy5cxie/m9/tInawF2Jv88LqvRfrTSMevlCOpbvOI2FiCBbc6V/vnqGjueVY8M0ZrLwnGLOH+aCsqhbrfsnDn78/32CK7v2Danw+Q4XB/goczW37NvWl35+Hu1yGuSN84eYkg1QqQfCqw41uSAGAz04U4a1JIYgd7FUvyK5O2z08wAMPD/Bo9Px92aX4MVOLmGBz/0hvOTZPa/p2mK4aZCOCe0IqlUDuYIcNj/Rpsu+oD8zTvld3fi4dG9hk/1d/yEGK2ry+2VvpiJjgnpj3n4Zrs021WaJUKrvMiKytJGXaSza5r2X56yuRtGkzfH19kfTxhwgJCQEAJCenYNHiP+HCxYvQ6/WYMf0JvPrKMovXePudd7Hu3fessmtRX23CloXtn7fvrBuip69xhb3jzX1B0Fa6GiN8E9Ka7wggZUEUnB3s2r1jrb1M8TH4+PcCPPV54/cRXU8qAU68GIXjeboW3Wjc0f40KgAvjw5AyBu/NzuFSO331v0heHSAB/omHGmwMaWpNkvyF6savFuMaMSuvglxcTOhdHNDfn4+7p04GfdNmoyx4ybg4SmPITAwAMOGmTeBqHgjNNkAowlY9O1ZTBvkCZWFTSI329oDudBUGrDoLv9Of+zuxsfFHrOH+WDprvMNgqqpNltms1OLvj4+2LZ1M1bHJ+DQ4cPIzc1FeFg44pbPxNSpj2LM2PEAgEiVbb41FbXcjMGe6O1mvhXDU2EPBzsplo4xT/Oc11Z1yM24nWFXhhayJb9Y5bGrDSarj2K7C/VlPeRLD7a6zZbZbJABQHh4GBI3fNDguE6nw8XcXEilUvTt2/Q8Ntm+mUN8Gnxu1op7zB8QuS+7VJggI+qubDrIGpOZlQWTyYSQ4GD06GHhnaO/3wUAyMrOrvf/AH9/DBjQv/MK7QC5aVVYF9v0om9z7bbu6nshdiUd9bEiRN1Btwyy9HTzYnhj62Pz/viCxf8//NCDiF/dtvsciIjo5uiWQZaRYd4JpmpkfYzvrUhEJA6b3bXYlPQM84gskjsWiYiE1y1HZJuTPrZ2CURE1EG65YiMiIhsB4OMiIiExiAjIiKhMciIiEhoDDIiIhIag4yIiITGICMiIqExyIiISGgMMiIiEhqDjIiIhMYgIyIioXXL91oUgcwBmL7GtfmOXYTMwdoVEFF3xSDroiQSCewdrV0FEVHXx6lFIiISGoOMiIiExiAjIqt7e3Iozi65Hab4GNzqq7B2OSQYBhkRWd2XKcWIeT8Z50qqrF0KCYibPYjI6vafLbN2CSQwjsiIiEhoDDIiIhIag4yIiITGICMiIqFxswcRWd0HD4dhosodPi4O2PXMLbhcXYs+8UesXRYJgkFGRFY3e3s2gGxrl0GC4tQiEREJjUFGRERCY5AREZHQGGRERCQ0BhkREQmNQUZEREJjkBERkdAYZEREJDQGGRERCY1BRkREQmOQERGR0BhkREQkNAYZEREJjUFGRERCY5AREZHQGGRERCQ0BhkREQmNQUZEREJjkBERkdAYZEREJDQGGRERCY1BRkREQpNZu4DOUFKiQeLGjdi1+0eo1Wq4u7tjwvhxWLjgBSxfsRJffrkdf132FzwZO93apVIn6+PhhBmDvTC+jxvCevWAk70E2Zeq8EVyMdbuz0OF3mjtEomoGTYfZKdPp2Jm3CwUFRVDLpcjPDwMhYVF+CRpE3JycqAtLQUA9ItUWblSsoanh3hj7ghffH26BFuOFUFvNGF0mCtW3hOMxwZ6Yti7J1BlYJgRdWU2HWQlJRrMmj0HRUXFmPn0U5j3/Fw4OysAABsSNyI+YQ1kMhkkEgkiVBFWrpas4cuUS1i19yLKqmrrjq3/VY3M4kr8ZWwQZg71xnv/y7dihUTUHJteI3t9xUqo1WrEzpiOl5e8VBdiADAr7hlEqlQwGAwI8PeHi7OzFSslazlysbxeiF312YliAEB/H3lnl0RErWSzI7KsrGzs+G4nlEolFi180WKfW/r3Q2paGlTXjcZ2fr8L3367AyknT6KkRAM/X19MmDAes5+Ng0KhsHgdsj0Bro4AgILLeitXQkTNsdkg+3bHDhiNRjwweVKjAeTk6AQAUKmurY9t/PCf8PPzw8IFL8LHxxupqWlY9+4/cOjQYWzbuglSqU0PYgmAVAIsGxsIfa0RW48XWbscImqGzQbZwYO/AQCio6Mb7aNWFwAAIq8bkW1Y/z56ubvX/T966FC4u7tjwcLF+P3IEQwdMqTVtSx+6WVotNpWn0cdwyCRAUHPtbj/2smhGBHcEy/vPIeMosqbWBmR9c2dNx8yk8HaZUDp5oaE+FVtOtdmgyw3Lw8A4O/nZ7HdYDDgyNGjAOqPyK4PsasG9L8FAFBQUNimWjRaLUpKStp0LrVfrdQeCGpZ3+XjgzBvpB/W/5qPN/ZevLmFEXUBGo0Gdkaxp9BtNsgqK82vpKuqqyy27/huJzQaDRQKBQIDA5q81q+/HQIAhIWGtqkWpZtbm86jjmGQtOzX/JVxQVh2dxD+ebgAs7dn3+SqiLoGpVLZZUZkbWWzQebh4YHS0lKcOnUag6Oi6rUVFhZidXwCAEAVEQGJRNLoddTqAvx97Tu484470K9fZJtqaetwmTqGrsaI7QlpTfZ5ZVwQXh0XhI9/L8AzX2Z2UmVE1vfeurehcBB77V/s6pswcsRwAMCGxA9x9uzZuuPJySmYEfsHaDRaAEBkEzdC63Q6zJ4zF/b29nhj1YqbWi9Zz7K7A/HquCAkHSnE019kwmSydkVE1Bo2OyKLi5uJb775Fvn5+bh34mSEhoaguroa58/n4K4774B/gD/27z9Qb+v99aqqqjBr9hxcvHgR27ZuhpeXVyd/BdQZ5gz3xfLxvXFeU4UfM7V4YpBnvfaCcj1+zNRapzgiahGbDTJfHx9s27oZq+MTcOjwYeTm5iI8LBxxy2di6tRHMWbseABApKrhiEyv1+P5efNx8uRJJH38EfqEh3d2+dRJhgSab4TvrXRC0uN9G7Tvyy5lkBF1cZIy7aVuN5Gi0+kwaPAQSCQSnDj2O3r06FHXZjQaMf/Fhfjppz34MHE9hg8fZsVKqSPoaozwbWaNjKi7yl+sEn6NzGZHZE3JzMqCyWRCSHBwvRADgFdfW46dO7/Hs7Pi4NTDCceOH69rCwoKsrg9n4iIrKdbBll6egYAWFwf++/P+wEA6zckYv2GxHptq9/4Gx55+KGbXyAREbVYtwyyjAzz9mqVhfWx/+79qbPLISKidhB7YrSN0jPMI7JIfnQLEZHwuuWIbHPSx9YugYiIOki3HJEREZHtYJAREZHQGGRERCQ0BhkREQmNQUZEREJjkBERkdAYZEREJDQGGRERCY1BRkREQmOQERGR0Lrl55FR92IymVCh5685kSVyewkkEom1y2iXbvlei9S9SCQSKBzE/kMlosZxapGIiITGICMiIqExyIiISGgMMiIiEhqDjIiIhMYgIyIioTHIiIhIaAwyIiISGoOMiIiExiAjIiKhMciIiEhoDDIiIhIag4yIiITGICMiIqExyIiISGgMMiIiEhqDjIiIhMYgIyIioTHIiIhIaAwyIiISGoOMiIiExiAjIiKhMciIiEhoDDIiIhIag4yIiIT2//xXla2SGxZyAAAAAElFTkSuQmCC", - "text/plain": [ - "
" - ] - }, - "execution_count": 5, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "from qiskit.circuit.library import PauliEvolutionGate\n", - "from qiskit.circuit import QuantumCircuit\n", - "from qiskit.quantum_info import SparsePauliOp\n", - "\n", - "\n", - "# Prepare an initial state with a Hamadard on the middle qubit\n", - "state = QuantumCircuit(3)\n", - "state.h(1)\n", - "\n", - "hamiltonian = SparsePauliOp([\"ZZI\", \"IZZ\"])\n", - "evolution = PauliEvolutionGate(hamiltonian, time=1)\n", - "\n", - "# Evolve state by appending the evolution gate\n", - "state.compose(evolution, inplace=True)\n", - "\n", - "state.draw('mpl')" - ] - }, - { - "cell_type": "markdown", - "id": "e2dad12f-535a-4f42-8ac4-dbfcfb5533cc", - "metadata": {}, - "source": [ - "[`PauliEvolutionGate` API ドキュメント](/api/qiskit/qiskit.circuit.library.PauliEvolutionGate)をお読みください。" - ] - }, - { - "cell_type": "markdown", - "id": "0cf7122d-c3fe-41a6-936c-b3770b33f0f1", - "metadata": {}, - "source": [ - "## ベンチマーキングと複雑性理論回路\n", - "\n", - "ベンチマーキング回路では、ハードウェアが実際にどの程度機能しているかを知ることができます。複雑性理論回路は、解決しようとしている問題がどの程度困難であるかを理解するのに役立ちます。\n", - "\n", - "例えば、「量子ボリューム」ベンチマークは、量子コンピューターがどの程度正確にランダム量子回路の種類を実行するかを測定します。 量子コンピューターのスコアは、量子コンピューターが確実に実行できる回路のサイズに応じて高まります。 これには、量子ビット数、命令忠実度、量子ビット連結性、ソフトウェアスタックトランスパイルと事後処理の結果など、コンピューターのあらゆる側面が考慮されます。 量子ボリュームについての詳細は、原典の[量子ボリュームに関する論文](https://arxiv.org/abs/1811.12926)をご覧ください。\n", - "\n", - "以下のコードは、Qiskit で構築された、4 量子ビットで実行する量子ボリューム回路の例を示します(`su4_` ブロックはランダム化された 2 量子ビットゲートです)。" - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "id": "9629a507-8191-409e-b895-fd0833c8fcd7", - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA3UAAAEvCAYAAADihOiYAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAABGuUlEQVR4nO3deWAU9f3/8dduNtcmISfkvsMNQsJ9eIAoKtZaS9UWaFUEsRXRetdfPVEUqvWsVbRVUam2+FUooOKBUi8OuU8TjkDu+yTn5vdHILBsAAlJNrP7fPzTMjM7+4b5+Jl57XzmM6by0qImAQAAAAAMyezsAgAAAAAAbUeoAwAAAAADI9QBAAAAgIER6gAAAADAwAh1AAAAAGBghDoAAAAAMDBCHQAAAAAYGKEOAAAAAAyMUAcAAAAABkaoAwAAAAADI9QBAAAAgIER6gAAAADAwAh1AAAAAGBghDoAAAAAMDBCHQAAAAAYGKEOAAAAAAyMUAcAAAAABkaoAwAAAAADI9QBAAAAgIER6gAAAADAwAh1AAAAAGBghDoAAAAAMDBCHQAAAAAYGKEOAAAAAAyMUAcAAAAABkaoAwAAAAADI9QBAAAAgIER6gAAAADAwAh1AAAAAGBghDoAAAAAMDBCHQAAAAAYGKEOAAAAAAyMUAcAAAAABkaoAwAAAAADI9QBAAAAgIER6gAAAADAwAh1AAAAAGBgFmcXgJ+uqalJ1fVNzi7D7Vk9TTKZTM4uA26KfsD5nN0H0Aacz5ltgOPfNTi7HwBORKgzkOr6JkUu2OXsMtxezl195OdFRw7noB9wPmf3AbQB53NmG+D4dw3O7geAEzH8EgAAAAAMjFAHAAAAAAZGqAMAAAAAAyPUAQAAAICBEeoAAAAAwMAIdQAAAABgYIQ6AAAAADAwQh0AAAAAGBihDgAAAAAMjFAHAAAAAAZGqAMAAAAAAyPUAQAAAICBEeoAAAAAwMDcItQVF5foyfkLNH7CRPUbMEhjzxunR+c+rurqat37p/uV0quv3lz0trPLBAAAAIAzZnF2AR1tx46dmj5jpgoKCmW1WpWSkqz8/AK98eYiZWZmqrSsTJLUr28fJ1faPkwmac7YKN00IkIJwT4qqKrXe1sK9cDHB1Rdb3N2eQA62L3jYpQW7a8h0f5KCvXR/uIaJT6x3tlloRNxHgBtAHA/Lh3qiotLNHPW71VQUKjpN1yv2bf8Qf7+fpKkVxa+qvkLnpLFYpHJZFLvPr2dXG37+OvPkjRnbJTe31qop77KUt8eVt06JlKpUX6asHCbmpqcXSGAjjTv0gQVVdXrh6xKBfl6OLscOAHnAdAGAPfj0qHu0bmPKTc3V9OmTtF9995tt27mjBu1bNly7dy1S7ExMQrw93dSle2nX7hVs0dHasnWQk1etKtl+b7iGj1/ZbKuHdRdizcVOLFCAB0t6Yl12ldcK0na+sdU+XsR7NwJ5wHQBgD35LLP1KWnZ2j5ipUKDg7WnXfc3uo2/Qf0kyT1OeEu3cGDhzRz1u81KHWI0oaO0J133aOSkpIOr/ls/XpwmMxmk55Zk223fOHaXFXVNWpqWncnVQagsxwNdHBPnAdAGwDck8uGuv8uXy6bzaafX3G5/Pz8Wt3Gx9tHktSnz7Hn6SorqzT1t79Tbm6u/vr0XzT30Ye1fsMGzbjpZtlsXXsc+rCYADXamrT2YIXd8tqGJm3KrtKwmAAnVQYA6AycB0AbANyTyw6//Pbb7yVJI0aMOOk2ubl5kqS+x92p+9e77ykvL1+L316kqKgoSVJERLiuvuY3+uyzz3XRRRM6sOqzE9XNS4VV9aprdBwsn1VWqzEJ3eTpYVJ9K+sBAMbHeQC0AcA9uWyoy8puHnYQfSSYnaihoUEbfvhBkv2dui9Wr9aQIWktgU6S0lJTFRsbq8+++KJNoe6uu+9TSWnpGX/OoWaTRYq7+aTrrV5m1Ta0fjexpqG587Z6mlXW2HjWtbizP8yeI0tTg7PLgJs6XT+AjufsPuBUbYDzQOdwZhvgWqBrcHY/ANcUHBSkBfPntemzLhvqDh8+LEmqqa1pdf3yFStVUlIiPz8/xcbGtCxPT8/QpZdMdNi+Z88UpadntKmWktJSFRcXt+mzx2s0e0pxJ19fXWdTD3/PVtf5WEzN2zCV8VkrKSmRh63e2WXATZ2uH0DHc3YfcKo2wHmgczizDXAt0DU4ux8ATuSyoS4sLExlZWXavn2H0lJT7dbl5+fryfkLJEl9eveWyWRqWVdeXq5u3RzHmwcFBmrfvn1tqiU4KKhNnztRg+nUhyu7vE79wq3y8jA5DLuIDvRWQWU9wy3aQXBwML/OwWlO1w+g4zm7DzhVG+A80Dmc2Qa4FuganN0PwDWdTWZw2auDMaNHKSMjQ68sfE1jx4xWYmKiJGnLlq1HZrMslST17YSXjrf1NuqJqupsen/BrpOuX3eoQhN7B2t4bID+t7+8Zbm3xaTBUX76am9Zu9Th7l58/ln5ebnsHEPo4k7XD6DjObsPOFUb4DzQOZzZBrgW6Bqc3Q8AJ3LZ1jhjxnQFBwUpJydHl066QpddfoUuvGiirpp8tWJjYzRyZPMEKie+zqBbt24qL69w2F9pWZkCAwM7pfa2endzoWy2Jt12rv1zhDOGR8jPy0Nvb+S9NADgyjgPgDYAuCeXvVMXGRGhxe+8pSfnL9DadeuUlZWllOQUzXhkuq655lcaf+HFkqS+fezv1CUnJyk9w/HZufT0DA0fNrRTam+rbbnVevHbHM0eE6Ul0/poxe4S9e1h1a1jIrU6o0zv8LJRwOVNTeuu+KDm17V09/OUl4dZ94+PlSQdKK3RWz/QD7gyzgOgDQDuyWVDnSSlpCRr4St/d1heVVWlQ1lZMpvN6tWrp9268eMu0FNPP6Oc3FxFRkRIkjZt3qzMzEzde/ednVH2Wblt6V7tL6nVzBHhmtQ3RIVV9Xr+6xw98MkBNTGEHnB504dF6IJk+1EFcy+JlyStzigj1LkBzgOgDQDux6VD3cn8mJ6upqYmJSYkyNfX127dNddcrTcXvaVZN/9Bc269RbW1dZo//y8adM45mjDhQidV/NPZmqSnv8rS019lObsUAE4w7uWtzi4BTsZ5ALQBwP247DN1p7J79x5Jjs/TSVKAv78Wvfm6enTvrttuv1N/uv/PSk1L1SuvvCSz2S3/uQAAAAB0YW55p27Pnh8l2b90/HjxcXGtDtsEAAAAgK7GLW897d7TfKeubyt36gAAAADASNzyTt1bb77u7BIAAAAAoF245Z06AAAAAHAVhDoAAAAAMDBCHQAAAAAYGKEOAAAAAAyMUAcAAAAABkaoAwAAAAADI9QBAAAAgIER6gAAAADAwAh1AAAAAGBghDoAAAAAMDBCHQAAAAAYGKEOAAAAAAyMUAcAAAAABkaoAwAAAAADszi7AACA6xoYYdWGOYPl6WHW5EU7tWRr0RnvY0LPIP1yYKiGRPtrYISffDzNuuDvW/Xl3jKHbSMCPHXL6CgNifHXkGh/dff31Ovr83T9ez+2uu+ZIyJ0XlI3DYn2V88wX3mYTTLd/b8zrhEn1x5t4J9X99R1Q8NbXXfiPlOj/fSbwd01PiVIicE+kqT0osP65/o8Lfw+Tw22ppZtvS0mTUvrocv7hmhQpJ/CAzyVU16v7w9W6JFPM7Ur//AZ1woAzkCoAwB0CJNJWji5p2oabPL0aPvAkCmp3fWbwd21La9aO/OrlRrtf9Jte3e36v4LY5VZUqN1hyp0WZ+QU+77vnExCvWzaGNWlfy8PBQb5N3mOuGovdrAUVMX73ZYtvZgpd2f7z4/RhN6BumD7UVa+H2uPMwmXd43RH/7RYp+3i9Ul7y2vWXbhGAfLZzcU2v2lem1dXnKLq9TUoiPbh4VoasGNG+7OsPxxwMA6GoIdQCADjF7dJT6h1s1/8tDeuTi+Dbv5/6PDuimJemqa2zSHedFnzLUbciqVPeHv1NhVYNCrRYVPjTylPu+4OWtyiytVVOTtOz6foS6dtZebeCotzcWnHab57/O1nXv7VFtw7E7ci9+k6NF1/bS1LQemtQ3WMt3lkiSCqrqNfivG7U5p+qE78nXxttStWBSgoY9t/ms6waAjsYzdQDgxrwtJj14UZx23ZWmqrmjVPLwSG25PVXzJyVIkuKDvdU0f6wevCjO4bMPXhSnpvljFR/sGIRiAr0095I4PbQqU5kltWdVY3Z5neoam06/oaTK2kYVVjX85H0fKGkOdO7MCG3geAHeHjKZTr7+mwMVdoHuqHc3F0qSBoT7tSwrrm5wCHSStDP/sLblVtttCwBdGXfqAMCNvXhlsqYPj9Ab6/P09IFsWcwm9Qzz0fjkoLPa70tXpWhvUa2e+V+Wpqb2aJ9i0SGM1AbKHhmpbj4W1TbY9NXeMv2/jw84DL88mZhAL0lSXmXdabc1maTIbp4/aVsA6AoIdQDgxn4xIFQrdhXrupNMJNIWVw8K02W9gzXmb1vUaGu33aKDGKEN5FbU6emvsrQhq1JVdY0aFOmn28ZGa83N5+iyf2zXZ+mnfu7Nz8usu86PUenhBn24vfi03zdrZISiunnrkU8zz754AOgEhDoAcGNlNY3qH25V/3CrtudVn/X+gnw99OwVSVq4NlffZVa0Q4XoaEZoA/etPGD35w+3F+udTQXadFuqXroqRb3mbzjpZ80m6a1reysp1Ee/fmeXSg6fenjuqPgAPX15kjZlV+rxzw+2S/0A0NF4pg4A3NhtS/cq2NeibXekKf2eIVo4OUVX9As55TNLp7JgUqJMku5dub89y0QHMmobSC+s0XubC9UzzFc9w3xa3cZkkv7xq566ckCo/rRyv/61qfCU+0yL9tPy6/sru7xOk/6xo9Vn8wCgKyLUAYAbW7qjWAnz1mvq4t36PL1MF6YE6cPr+mn1TQPl6WE65SQilhPOIKnRfrphaLhe+CZHoVZPJYf6KDnURz38PSVJEQFeSg71kZdHG9MCOoSR28D+khpJUpifp8M6k0l6dXJP/W5ouB5alal5Xxw65b5So/20asYAldU0aNzLW5VdzvN0AIyD4ZcA4OZKDjfo7Y0FLdPFP3Fpgu4ZF6Of9wvRR3tKJUkhvo6ni6QQ+7sjcUHeMptNenRivB6d6Dh9/QtXJkuShj63SRsO/bTJLdA5jNoGeob5SpLyKurtlh8NdDcMC9ejn2bq4VWnfjYuNdpPn84YoIraRo078poLADASQh0AuCmzqXl6+LKaRrvlG7ObL7ZDrJ6qrG1UTnmdxqcE2m2TGOKtK/uH2i1be7BSkxftdPieC5ICdcuYKP3ly0P6LrNCGUWH2/lvgrYyQhuweprV2NTkMBRycJSffnVOmHbkVWtvcY3duoW/TNENw8L12GcH9cAnpw50g6P8tOrGAao8Euj2t+PrFwCgsxDqAMBNBXh7KOfPw7V0R7E2ZlUpv7JeiSHeunlUpIqr67VsZ/MsgS98k63HLknQyun99cH2IkV189KskRHallut4XEBLfvLKa/Tkq1FDt/j7+UhSfous6LV9aczMMKqK/o1h4cxCc3fNy2tu8YmdJMkPf9NtsqPCyX3j4+VJFm9mscGnhPp17Lsq31lWrOvvGXby/uGaFBk87vIUkJ97D5fWtOgF7/JOeN6jcQIbaBnmG/L9/5YeFhVdTYNivTTDcPC1Whr0swl6XbbL5iUoOnDI7Qpu1I786s1JbW73fqMopqWCVzigry1asYABfta9NzX2Rod302jT7jB+H/bilRdzzSuALo2Qh0AuKnqepueWZOtC1OCNCElSP7eHsopr9PSHcWa98VB5Rx5pujJ1YcU6GPRtLQeuiApUDvyqzX93+kaEuNvd0HfUdKi/TX3Evsr7enDI1r+/1sb8+1C3YnbpkX7Ky3aX5L00KpMu1D3y4Ghum5ouN32Rz+/v7jG5UOdEdpAbkWdPv2xVOOSAzUltbt8Pc3KKa/Tu5sLNO+LQ9pdYH/Xb2hMcz2Do/z11q97O+zv9fV5LaEuMcSn5Xm8hy92HC4qSQnz1ukAd+8AdHGm8tIipnYyiKo6myIX7HJ2GW4v564+8vNijiE4B/2A8zm7D6ANOJ8z2wDHv2twdj8AnIjWCAAAAAAGxvBLAECnC/OzyOM0L0KrrGtUVR3PMrkq2gAAtB9CHQCg062bPVgJIa2/MPqoh1adfip6GBdtAADaD6EOMJCmpiZV1/MYrLNZPU0yneYOA05tyuLd8vU89RMAJ05TD9dCGwDahmuBrqGrXQsQ6gADqa5v4gH5LqD5Afmu05Eb0TcHKpxdApyMNgC0DdcCXUNXuxZgohQAAAAAMDBCHQAAAAAYGKEOAAAAAAyMUAcAAAAABkaoAwAAAAADI9QBAAAAgIER6gAAAADAwAh1AAAAAGBghDoAAAAAMDBCHQAAAAAYGKEOAAAAAAyMUAcAAAAABuYWoa64uERPzl+g8RMmqt+AQRp73jg9OvdxVVdX694/3a+UXn315qK3nV0mAAAAAJwxi7ML6Gg7duzU9BkzVVBQKKvVqpSUZOXnF+iNNxcpMzNTpWVlkqR+ffs4uVLXNDDCqg1zBsvTw6zJi3ZqydaiM97HvEvjdV5ioFLCfBToY1F+Zb0251TpL19m6cu9ZQ7bh1otuvuCGF3RL0RxQd4qr23UjrxqPfu/bC3dUeyw/a8Hd9ctoyPVq7uvvC0mZZbU6t0thXpmTbYqahvb9Pd2pnvHxSgt2l9Dov2VFOqj/cU1SnxivbPLQicymaQ5Y6N004gIJQT7qKCqXu9tKdQDHx9Qdb3N2eWhg9EHoKtxxrXA8SICPLXjjiEKtlp053/36amvsk65/ROXJuiecTGqrG1UwJ+/PeNauwLOA+7HpUNdcXGJZs76vQoKCjX9hus1+5Y/yN/fT5L0ysJXNX/BU7JYLDKZTOrdp7eTq3U9JpO0cHJP1TTY5OnR9pvCI+O6aUtulZZsK1JJdYMiAjw1Na2HVs8aqGn/2q23fiho2dbX06xv/jBIsUFeWvh9nrbkVinE16Lrhobrw+v66eb30/X373Jbtp87MV73Xxirz34s1cOrMlVva9IFSYF65OJ4XdY7WKNe3HJW/wbOMO/SBBVV1euHrEoF+Xo4uxw4wV9/lqQ5Y6P0/tZCPfVVlvr2sOrWMZFKjfLThIXb1NTk7ArRkegD0JU441rgRM//PFmWn/ifwqBIP/3xvChV1DbIJFOb63U2zgPux6VD3aNzH1Nubq6mTZ2i++69227dzBk3atmy5dq5a5diY2IU4O/vpCpd1+zRUeofbtX8Lw/pkYvj27yfcS9vdVj23NfZyrhnqO4bF2vXkf+8f4h6dffVnA/36rmvs1uWv/J9rg7dP1w3jYxoCXUeZum2c6O04VClLnr1WAf38ne5arA1aWpaDw2K9NPmnKo21+4MSU+s077iWknS1j+myt+Lizp30i/cqtmjI7Vka6EmL9rVsnxfcY2evzJZ1w7qrsWbTn7xA+OjD0BX4oxrgeP9rF+IfjEgVPeu3K8FkxJP+R1mk7RwcopW7i5RN2+LhsYY89qQ84B7ctln6tLTM7R8xUoFBwfrzjtub3Wb/gP6SZL6HHeXLic3Vw89/Kiu+uXV6tv/HKX06tsp9TqLt8WkBy+K06670lQ1d5RKHh6pLbenav6kBElSfLC3muaP1YMXxTl89sGL4tQ0f6zig70d1sUEemnuJXF6aFWmMktq273uqjqbiqobFOxr/7tEN+/mP2eX239nWU2jquoaVVV3bMiBp9ksX4tZuRV1Dr9YZZfXNX9PvfGGXx69mIN7+vXgMJnNJj2zJttu+cK1uaqqa9TUtO5OqgydhT4AZ8rVrgWO8vf20ItXJuulb3O07mDlafd369io5kD0wd72LrVTcR5wTy57p+6/y5fLZrPp51dcLj8/v1a38fH2kST16XPseboDBzL18SefaODAgTrHc6A2/PBDp9TrLC9emazpwyP0xvo8PX0gWxazST3DfDQ+Oeis9vvSVSnaW1SrZ/6XpampPdql1lCrRWaTSZHdvDRjeLj6hVv12tpcu20+zyhVfaNN8y5NUFW9TVtyqhTsa9Ht50YryNeixz4/2LJtTYNNX+0r1yW9g3X3BdFasrVIDUeGX/5+VKQWbchXemFNu9QOdJZhMQFqtDVp7cEKu+W1DU3alF2lYTEBTqoMQFflatcCR827JF4eZun+jw8oNerUd93igrz16MXxenhVpjJLjf3DCOcB9+Syoe7bb7+XJI0YMeKk2+Tm5kmS+h53p274sKH69us1kqRnn3vB5UPdLwaEasWuYl333o/tts+rB4Xpst7BGvO3LWpsp2dx/bzMKnxoZMufq+sa9fJ3Ofrjsn1226UX1uiat3fr2SuStOKG/i3LcyvqNP7lrfrmgH0HN2Xxbr1+dU89eVminryseViGzdakxz4/qAc+yWyf4oFOFNXNS4VV9aprdHxgIqusVmMSusnTw6T6VtYDcE+udi0gSSPiAnTzqEj9ZvFuldecftTNS1cla29xjZ5ec+pJVIyA84B7ctlQl5XdfMs5Oiqq1fUNDQ0tge34O3Vms8uOSG1VWU2j+odb1T/cqu151We9vyBfDz17RZIWrs3Vd5kVp//AT3S43qYJr2yVxWxSfLCPpqR2l7+3h6xeZodZnEoPN2hLTpVeXZurTdlVig700h3nRevD6/rpwle2actxz8jVNti0r6RWb6zP08rdJZKkXw4M058nxKmmwabHPz/Ubn8HoDNYvcyqbWj9CqqmofkEbvU0q6zReEOLAXQMV7sWsJhNWvjLFK36sVTvbS487X6vHRymS3oFa+xL7RdAnYnzgHty2VB3+PBhSVJNbevD55avWKmSkhL5+fkpNjamQ2u56+77VFJaetb7aTBZpLibz76g49y2dK8WXdtL2+5IU0bRYX2RUaZlO4q1bGdxm2ZGWjApUSZJ967c36512pqkz9KPTVn86tpcrZ41UJ/PHKi0ZzepwdZc7MW9grTihv6a9I/t+nhPacv2728t0q67hujFK5N07kvND1sfnSnzh6xK/fqd3S3bvru5UIt/01uPXByv/2wt0p6Cw3a1/GH2HFmaGtr17/dTdUQbwJnrym2gus6mHv6era7zsTTP5MZ01mfHmcdfoh/oCrpyH9AWrnYtcM8FMUoJ89GVb+w87T6DfS165mdJem1dnr498NMDaFduA5wHOkdHtIHgoCAtmD+vTZ912VAXFhamsrIybd++Q2mpqXbr8vPz9eT8BZKkPr17y2Tq2ClrS0pLVVzs+H60M9Vo9pQcn1E+K0t3FCth3npd1idY5ycFakLPIN04PEJf7S077ZS3lhNuaqZG++mGoeF6cFWmQq2eCrU2dyhHO5aIAC8lh/roYGltq0MCzoStSXp7Y4H+flWKzkvqps+PdPL3XBCjqrpGu0AnSXmV9Vqzr1yX9g5uGXIweWCYenX31X2tnHT+vaVQ1w7urrEJ3RxCXUlJiTxs9WdVf1t1RBvAmevKbSC7vE79wq3y8jA5/HcWHeitgsp6htycJWcef4l+oCvoyn1AW7jStUBEgKfuvzBGb2zIl8kkJYc2z58QHeglqfmZvORQH+WU16m63qYHL4qTn5eHFq7NbdlWav7h9+jnaxtsOlRWZ/fdXbkNcB7oHM4+F5zIZUPdmNGjlJGRoVcWvqaxY0YrMbH5eaktW7bqzrvuUUlJqSSpbye8dDw4KKhd9tNg6pjDVXK4QW9vLNDbG5untz360s2f9wvRR0fCUUgrM0slhfjY/TkuyFtms0mPTozXoxMdpy1+4cpkSdLQ5zZpw6HTz0J1Or6eZofaogO9ZD5JSLeYJYuHSWbTsW0lycPsuL3Fw3TkM47rgoODnfvrHJyuK7eBdYcqNLF3sIbHBuh/+8tblntbTBoc5aevTvOSXpyeM4+/RD/QFXTlPqCtXOVaINzfS76eHpo1MlKzRkY6bH/f+FjdNz625SXo8UHe8vf20NrZg1vdf/o9Q7Utt0oDn95ot7wrtwHOA52jI9rA2WQGlz0zzJgxXcuW/Vc5OTm6dNIVSkpKVG1trQ4cyNT5552r6JhorVnzP7vXGXSUtt5GPVFVnU3vL9h1+g1/IrNJCvD2UNkJDxBvzG7uZEOsnqqsbVROeZ3GpwTabZMY4q0r+4faLVt7sFKTFzkOdbggKVC3jInSX748pO8yK5RRdNhhm5MJ8vVQVZ3N4Rclq6dZ04eFH5nd6dhJYUfeYfXubtWvzgnTv7ccG0efEOyt85ICtSWnSrVHxpPvOPLcwO+G9LDb9ugyqbljPNGLzz8rPy/nPHvZ3m0AbdOV28C7mwv1p3Gxuu3cKLuT+YzhEfLz8mi5YEPbOfP4S/QDXUFX7gPOlKtdC+wrqWn1+/uHW/XwxfF6Y32elu0sbhlq+eTqQ3prY77D9g9fFKekUB9N+9ceh38bqWu3Ac4DncPZ54ITuWyoi4yI0OJ33tKT8xdo7bp1ysrKUkpyimY8Ml3XXPMrjb/wYklS3z4df6euqwrw9lDOn4dr6Y5ibcyqUn5lvRJDvHXzqEgVV9dr2c7mIaMvfJOtxy5J0Mrp/fXB9iJFdfPSrJER2pZbreFxx6bFzSmv05KtRQ7fc/TFt99lVrS6/lTOTwrUy1elaMnWIqUXHVZFbaMSQ3w0La2HYoO8m999c9zUw49/flCX9A7SW9f20gVJgdqUU6mYQG/dPDJSPhaz/vTR/pZt/7uzWN9nVmhS3xB9OWug3t/WXNtVA0J1XlKg3ttcoI1ZxnrxuCRNTeuu+KDmX067+3nKy8Os+8fHSpIOlNac9AWtcA3bcqv14rc5mj0mSkum9dGK3SXq28OqW8dEanVGmd7hhbMujz4AZ8LVrgXKaxpb3X9hVfMdla251XbrTzaRyy2joxQfrDOutSvgPOCeXDbUSVJKSrIWvvJ3h+VVVVU6lJUls9msXr16OqGyrqG63qZn1mTrwpQgTUgJkr+3h3LK67R0R7HmfXFQOUdewP3k6kMK9LFoWloPXZAUqB351Zr+73QNifG368g7wtacai3bWawLkgM1JbW7rF5mFVU3aN3BSs16P10rdpXYbb/+UKVGv7hF94+P1S8HhmrmiAhV1Dbq+4MVeuKLQ/ryuCEHtiZpwsJtum9cjK4aEKonL0tQU5P0Y+Fh3b18n2GnNZ4+LEIXJNv/mjr3kuYhMKszyrigcwO3Ld2r/SW1mjkiXJP6hqiwql7Pf52jBz450KZJD2As9AE4E654LQDOA+7IVF5a5HaHdtPmzZr8q2uVlJioTz5e4bB+5UcfS5JWrPxIK1d+pOefe0aSFBMdrYEDB3RmqXaq6myKZMiN0+Xc1cepQy5oA85HG3Bvzjz+Em2gK6APAG0Azj4XnMil79SdzO7deyTppM/Tzb71tlb/fNUvrtT8J9vn+TgAAAAAaA9uGer27PlRkv1Lx4+Xvuf07zXB2Qnzs8jjNK+SqKxrVFUd71EBAMAVcS0AtB+3DHW79zTfqevbCTNfonXrZg9WwgnTIJ/ooVWZenhVZidVBAAAOhPXAkD7cctQ99abrzu7BLc3ZfHulnfLnMze4ppOqgYAAHQ2rgWA9uOWoQ7O982B1qcQBgAA7oFrAaD9dJ0pWwAAAAAAZ4xQBwAAAAAGRqgDAAAAAAMj1AEAAACAgRHqAAAAAMDACHUAAAAAYGCEOgAAAAAwMEIdAAAAABgYoQ4AAAAADIxQBwAAAAAGRqgDAAAAAAOzOLsAAMBPZ/U0KeeuPs4uw61ZPU1O/37agHM5uw0AwIkIdQBgICaTSX5eXFC6M9oAAOBEDL8EAAAAAAMj1AEAAACAgRHqAAAAAMDACHUAAAAAYGCEOgAAAAAwMEIdAAAAABgYoQ4AAAAADIxQBwAAAAAGRqgDAAAAAAMj1AEAAACAgRHqAAAAAMDACHUAAAAAYGCEOgAAAAAwMEIdAAAAABgYoQ4AAAAADIxQBwAAAAAGRqgDAAAAAAOzOLsAAMDZa2pqUnV9k7PLcDlWT5NMJpOzy7DDsXa+rtguALg3Qh0AuIDq+iZFLtjl7DJcTs5dfeTn1bUu3jnWztcV2wUA98bwSwAAAAAwMEIdAAAAABgYoQ4AAAAADIxQBwAAAAAGRqgDAAAAAAMj1AEAAACAgRHqAAAAAMDACHUAAAAAYGCEOgAAAAAwMEIdAAAAABgYoQ4AAAAADIxQBwAAAAAGRqgDAAAAAAOzOLuAzlBcXKKFr76qjz/5VLm5uQoJCdHEiy/SHX+8TY/MfUz/+c/7euDP/0+/nTbF2aWetXvHxSgt2l9Dov2VFOqj/cU1SnxivbPLghsbGGHVhjmD5elh1uRFO7Vka9EZfd7bYtK0tB66vG+IBkX6KTzAUznl9fr+YIUe+TRTu/IP223/z6t76rqh4Sfd34+Fh9Vr/ga7ZcNj/fXYJQkaEeevpibpmwMVunfFfm3OqTqjWrs6k0maMzZKN42IUEKwjwqq6vXelkI98PEBVdfbnF0e2gnHGVwLoKs522uBoy7pHaw7z4tW/wirArw9dKisVst2FGvBl1nKr6y327abj4fmTozXVQNCFWr1VEbRYb3wTY7+/l1uq/sO9rXoT+NjdGX/UMUEequitlHb8qr0wMeZ+t/+8jbV25lcPtTt2LFT02fMVEFBoaxWq1JSkpWfX6A33lykzMxMlZaVSZL69e3j5Erbx7xLE1RUVa8fsioV5Ovh7HLg5kwmaeHknqppsMnTo20DAxKCfbRwck+t2Vem19blKbu8TkkhPrp5VISuGhCqS17brtUZZS3bv/xdrj79sdRhP+NTgnTDsHAt21Fst3xEXIBW3zRQWeW1euCTTEnSLaMjteb3AzX6xS3allvdprq7or/+LElzxkbp/a2FeuqrLPXtYdWtYyKVGuWnCQu3qanJ2RWiPXCcwbUAupL2uBaQpBuHh2vh5J5af6hCT64+pKq6Rg2LCdBtY6N11YAwDXz6h5Yfrjw9TFp14wClRvvp+a9ztDO/Wpf2DtZLV6UoPMBLD6/KtNt3XJC3Vs8aKH8vD722Lld7CmoU6OuhcyL8FB3odVZ//87i0qGuuLhEM2f9XgUFhZp+w/Wafcsf5O/vJ0l6ZeGrmr/gKVksFplMJvXu09vJ1baPpCfWaV9xrSRp6x9T5e9FZw7nmT06Sv3DrZr/5SE9cnF8m/ZRUFWvwX/d6HDX7O2N+dp4W6oWTErQsOc2tyz/LrNC32VWOOxnWloPSdJr6/Lslj93RZLqGm0676Wtyi6vkyS9t7lQO+9M01OXJ2riq9vbVHdX0y/cqtmjI7Vka6EmL9rVsnxfcY2evzJZ1w7qrsWbCpxYIdoDxxkS1wLoWtrjWkCS7jw/WtnltRr7ty2qbWj+dWrh93nKq6zT/7swThf1CtKH25t/uL1xeLiGxwVo9gcZeuGbHEnSq2vz9J9pffSncTH657o8ZZbWtuz7rV/3ksVs0jl//UG5FfWOX24ALv1M3aNzH1Nubq6mTZ2i++69uyXQSdLMGTeqb58+amhoUEx0tAL8/Z1Yafs52okDP5W3xaQHL4rTrrvSVDV3lEoeHqktt6dq/qQESVJ8sLea5o/VgxfFOXz2wYvi1DR/rOKDvR3WxQR6ae4lcXpoVaYyS9reLourG1odBrkz/7C25VZrQLhfK5+yFxfkrQk9g/TtgXLtyDt25y051EfD4wL07y2FLYFOkrLL6/TvLYWakBKkcH/PNtfelfx6cJjMZpOeWZNtt3zh2lxV1TVqalp3J1WG9sRxhsS1AM5cV78WkKRu3haVVDe0BLqjjp6/q+qODS//zeDuqqpr1MK19kMtn1mTLS+LWdcMCmtZdm5iN52bGKj5qw8pt6JeFrNJvp7Gi0gue6cuPT1Dy1esVHBwsO684/ZWt+k/oJ927tqlPsfdpVv50cf673+Xa+u2bSouLlFUZKQmTrxYs26aIT+/0188Akbz4pXJmj48Qm+sz9PTB7JlMZvUM8xH45ODzmq/L12Vor1FtXrmf1mamtqjfYo9jskkRXbzVF5l3Wm3vX5YuDzMJr261v4u3bDY5h9zvm3lzt53mRWaPjxCQ2L8tWJXSfsU7UTDYgLUaGvS2oP2f9fahiZtyq7SsJgAJ1WG9sRxBtAWRrgW+HhPia4bGq6/XJ6oV9fmqrK2UcNiA/TnC+O0OqNMn6eXSmq+PkiL9tcPWZUOAXDtwQrZbE0aFnusL7ysT7AkKbO0Vkuv66dLewfL4mHSnoLDeuTTTL290RijG1w21P13+XLZbDb9/IrLTxrGfLx9JEl9+hx7nu7V1/6hqKgo3fHH2xUREa6dO3fp+Rf+prVr12nxO4tkNhsvuQOn8osBoVqxq1jXvfdju+3z6kFhuqx3sMb8bYsaO2hehlkjIxTVzVuPfJp5yu1MJun6oT1UUdugdzfbd8xR3Zp/VcwqcwyGWUd++TPKWPrTiermpcKqetU1Oj5QlVVWqzEJ3eTpYVJ9K+thHBxnAG1hhGuBOUv3yupp1pwxUbrjvOiW5f9Yl6eblqTLdqRbC/a1yOrl0XIeP15dY5MKq+sV3e3Yub13d6skaeHkFP1YWKPfvbdHXh4m3XFetN76dW95epj0+vr8s/8LdDCXDXXffvu9JGnEiBEn3SY3t/lX+77H3al75eWXFBoS0vLnEcOHKyQkRH+84y6t37BBw4cN66CKAecoq2lU/3Cr+odbtT3v7CcFCfL10LNXJGnh2txWn21rD6PiA/T05UnalF2pxz8/eMptL+oZpPhgH726NtduaIYkWY8Mr6htcDzb1Bx52Nrq6RrPoli9zK3+PSWp5sgvmVZPs8oaGzuzLLQzjjOAtjDCtUB9Y5MyS2v1f9uLtGxHsarrGzWxV7BuGBauRluTZi5Jl3T8ub31H69q6m2yeh27SRPg3Xyer6ht1LiXt7b86PXB9iLtvWeYHr8kQW9syO/yk0y5bKjLym5+niA6KqrV9Q0NDdrwww+S7O/UHR/ojho4oL8kKS+vbSn9rrvvU0lpaZs+e7wGk0WKu/ms94Oz84fZc2RpanDKd3dEG7ht6V4turaXtt2Rpoyiw/oio0zLdhRr2c7iNnVgCyYlyiTp3pX727XOo9Ki/bT8+v7KLq/TpH/sOGmnfdT0Yc2vNzhx6KWkllmyvC2Od+B9jpwUqusdL36d2QZO5nRto7rOph4neT7Qx2Jq3obp7h0Y7VhznDuHq50HcOZcrQ109WsBk0n6aHp/WcwmjfnblpblS7YWqai6XveOi9W7mwv0WXrZced2U6v78vE0q7rsWD94+Mj2izcV2I1iKD3cqKU7ivS7oeHq3d3X4RVKHdEGgoOCtGD+vDZ91mVD3eHDzf/wNbU1ra5fvmKlSkpK5Ofnp9jYmFPu67vv10qSkpOS2lRLSWmpiouLT7/haTSaPSXH51PRyUpKSuRhc87MSB3RBpbuKFbCvPW6rE+wzk8K1ISeQbpxeIS+2lt22unPT8xCqdF+umFouB5clalQq6dCrc0Xl0cvMiMCvJQc6qODpbWtDg87ndRoP62aMUBlNQ0a9/JWu8lNWhNitejn/UO1NadK37fyS2F2efND260NsTw6NKO1oZnObAMnc7q2kV1ep37hVnl5mBz+7aMDvVVQWc+QvFYY7VhznDuHq50HcOZcrQ109WuBsQnddF5SoO747z6Hdf/eUqh7x8Xq/KRAfZZeppLDDaqua7QbYnmUl4dJYVZPfVl+7L1zh8qarwVam/Uyp6L5GiDY1zEydbXzg8uGurCwMJWVlWn79h1KS021W5efn68n5y+QJPXp3VsmU+tJXmoeovnXZ57Teeeeq379+rapluCgoDZ97kQNJpc9XIYSHBzs3F/nOkDJ4Qa9vbGg5WHgJy5N0D3jYvTzfiH6aE+pJCmklQ4tKcTH7s9xQd4ym016dGK8Hp3oOG3xC1cmS5KGPrdJGw5VnlGNqdF++nTGgJbhEcdPRXwyvx3SQ94Ws8NrDI5ad7C5hlFxAXrthDt5I+MCZLM1tVqnM9vAyZyubaw7VKGJvYM1PDbA7iWq3haTBkf56au9Zaf4tPsy2rHmOHcOVzwP4My4YhvoytcCR3989Wjlkt1iNtn9b1OT9ENWpVKj/R1+4BoeGyCz2aT1h4790Lv2YIVuHhWpmFZ+4I0JbH72/sQXm0sd0wbOJjO4bM8wZvQoZWRk6JWFr2nsmNFKTEyUJG3ZslV33nWPSkpKJUl9T/HS8aqqKs36/R/k6empJ+bNbXMtbb2N6lBPnU3vL9h1+g3RoV58/ln5eTlnwpz2bgNmU/NY8rIa+yGGG7ObO9kQq6cqaxuVU16n8SmBdtskhnjryv6hdsvWHqzU5EU7Hb7ngqRA3TImSn/58pC+y6xQRtFhh21OZXCUn1bdOECVRwLd/p84LfL0YeGqbbBp0Q+tD53OKKrRuoMV+tU5YfrzJ5nKOXLnL7Kbl351Tpg+zyhTXisduTPbwMmcrm28u7lQfxoXq9vOjbK72J8xPEJ+Xh6Gmd2rsxntWHOcO4crnQfQNq7UBoxwLbAjr3nbKak99Nc12WqwHQtq1w1tfsxi3XEBcfGmQo1NDNTMEREt76mTpNvOjVJ9o03vbi5sWfbB9iI9W9Ogqak9NPezgy3P30cEeOrK/qHaXVCtjCLHkX9d7fzgsqFuxozpWrbsv8rJydGlk65QUlKiamtrdeBAps4/71xFx0RrzZr/2b3O4Hg1NTWaOev3OnTokBa/85Z69Gj/Kdk7wtS07ooPav7FpLufp7w8zLp/fKwk6UBpjd76gRM6jgnw9lDOn4dr6Y5ibcyqUn5lvRJDvHXzqEgVV9dr2c7mYcMvfJOtxy5J0Mrp/fXB9iJFdfPSrJER2pZbreFxx6YFzimv05KtRQ7fc/TFt99lVrS6/lTigry1asYABfta9NzX2Rod302jT/jh7/+2FTk8JzQ81l8DIvz07uYCFVef/Je0OUv36oubBmrNzQP1/NfNHf/sMZEym0ytDvMwqm251Xrx2xzNHhOlJdP6aMXuEvXtYdWtYyK1OqNM7/BCapfAcYbEtQDOjBGuBbbkVOk/Wwo1+Zwwrb91sN7amK/qOpsm9g7SFf1C9e2Bcn24/dg+F67N1fXDeujpnyUqIcRHO/OrdVnvYF01MEyPfpqpA8f9OFx6uFF3Lt+nV37ZU9/dMkj/WJcnLw+zbh4VIS8Pk2Z/sPeManUWlw11kRERWvzOW3py/gKtXbdOWVlZSklO0YxHpuuaa36l8RdeLEnq28fxTl19fb1umT1H27Zt05uv/1M9U1I6u/w2mz4sQhck2/+KMveS5ivg1RlldOSwU11v0zNrsnVhSpAmpATJ39tDOeV1WrqjWPO+ONhy5+rJ1YcU6GPRtLQeuiApUDvyqzX93+kaEuNv15F3hMQQH4X5NY/Df/hix2EckpQwb51dBy1J04dHSGp9gpTjfXugQhf8favmTozX3InxalKTvtlfoV+9tUtbWnnpuZHdtnSv9pfUauaIcE3qG6LCqno9/3WOHvjkQJef1Qs/HccZXAvgTBjhWkCSfrN4t9YerNCU1B565OI4mU0mHSip1eOfH9Rjnx3UcTfvVN/YpAmvbNPcifH69eAwhVo9lVFUo1s+yNCLx925O2rh93kqrGrQ3edH69GJ8bI1NenbAxX6zTu79c2BjpnJu72ZykuL3K6Lr6qq0uC0YTKZTNq8cb18fX1b1tlsNs25/Q599tnnem3hyxo1aqQTK7VXVWdTJEMunC7nrj5OHXJBG3A+Z7aBk6FtdAyONVrDeQC0AXS184PL3qk7lR/T09XU1KTEhAS7QCdJDz38iFau/Eg3zZwhH18fbdy0qWVdXFxcq688AAAAAABncctQt3v3Hklq9Xm6L79aI0l6+ZWFevmVhXbrnnzicf3yql90fIGAGwjzs8jjFDPPSlJlXaPDC8MBAIBr4Fqg/bhlqNuz50dJ9i8dP+rLLz7r7HIAt7Ru9mAlnDAN8okeWpWph1dldlJFAACgM3Et0H7cMtTt3tN8p67vSWa+BNDxpizeLV/PU49F31vsOIUwAABwDVwLtB+3DHVvvfm6s0sA3J5RZpMCAAAdg2uB9tN1pmwBAAAAAJwxQh0AAAAAGBihDgAAAAAMjFAHAAAAAAZGqAMAAAAAAyPUAQAAAICBEeoAAAAAwMAIdQAAAABgYIQ6AAAAADAwQh0AAAAAGBihDgAAAAAMzOLsAvDTWT1Nyrmrj7PLcHtWT5OzSwAAuCmuBboGrgXQ1RDqDMRkMsnPi04EAAB3xbUAgNYQ6gAAnW5ghFUb5gyWp4dZkxft1JKtRWe8j3mXxuu8xEClhPko0Mei/Mp6bc6p0l++zNKXe8sctk8K8dEjE+M0ISVIQb4WHSyt1dsbCzTvi4OqbWhqj78WWtEex1qSLukdrDvPi1b/CKsCvD10qKxWy3YUa8GXWcqvrG/ZLiLAU7eMjtKQGH8NifZXd39Pvb4+T9e/96PDPn83pIdev6bXKb83eu5aZZfXtalmAOgshDoAQKcymaSFk3uqpsEmT4+2P9o9Mq6btuRWacm2IpVUNygiwFNT03po9ayBmvav3Xrrh4KWbXt399W3fxgki4f04jc52ldcq1HxAfrzhbEaERegS1/b3h5/NZygvY71jcPDtXByT60/VKEnVx9SVV2jhsUE6Lax0bpqQJgGPv2DquttkqTe3a26/8JYZZbUaN2hCl3WJ+Sk+/1qX5mmLt7tsDyym5cWTErUD1mVBDoAhkCoAwB0qtmjo9Q/3Kr5Xx7SIxfHt3k/417e6rDsua+zlXHPUN03LtYu1D1xaYICfTw09qUt+vZAhSTple9ztbvgsOZdmqApqd319sYCh/3h7LTXsb7z/Ghll9dq7N+2tNxVXfh9nvIq6/T/LozTRb2C9OH2YknShqxKdX/4OxVWNSjUalHhQyNPut99xbXaV+x43O8dFyNJem1tXptrBoDOxOyXAAAH3haTHrwoTrvuSlPV3FEqeXikttyeqvmTEiRJ8cHeapo/Vg9eFOfw2QcvilPT/LGKD/Z2WBcT6KW5l8TpoVWZyiypbfe6q+psKqpuULCv/W+W45IDtafwcEugO+r19c0X7dcPDW/3WozCCMe6m7dFJdUNDsNkj95Fq6qztSyrrG1UYVXDWX3fDcPCVV3XqLc35p/VfgCgs3CnDgDg4MUrkzV9eITeWJ+npw9ky2I2qWeYj8YnB53Vfl+6KkV7i2r1zP+yNDW1R7vUGmq1yGwyKbKbl2YMD1e/cKteW5trt423xdwyPO94R5cNj/Nvl1qMyAjH+uM9JbpuaLj+cnmiXl2bq8raRg2LDdCfL4zT6owyfZ5eelb7P975SYHqGearRRvyVVbT2G77BYCORKgDADj4xYBQrdhVrOtamVyira4eFKbLegdrzN+2qNExX7WJn5fZbnhddV2jXv4uR39cts9uu+151eoX7qtwf0/lHTepxrjkQElSgLdFwb4WlRw+uzs8RmSEYz1n6V5ZPc2aMyZKd5wX3bL8H+vydNOSdNnacZ6b6cOa79q+ui73NFsCQNdBqAMAOCiraVT/cKv6h1u1Pa/6rPcX5OuhZ69I0sK1ufous+L0H/iJDtfbNOGVrbKYTYoP9tGU1O7y9/aQ1cv+ztxTX2Xpnd/01ofX9dPdK/Zpf3GtRsQF6NkrklTXYJOXxSyrl1klh9utNMMwwrGub2xSZmmt/m97kZbtKFZ1faMm9grWDcPC1Whr0swl6e3yPYE+HvrlwFD9WHhYX+0tb5d9AkBnINQBABzctnSvFl3bS9vuSFNG0WF9kVGmZTuKtWxnsZracFdkwaREmSTdu3J/u9Zpa5I+Sz/2+oJX1+Zq9ayB+nzmQKU9u0kNR27hLN5UoFCrRY9OjNeXs86RJNU22PT45wc1qU+IhscFqNxNh9p19WNtMkkfTe8vi9mkMX/b0rJ8ydYiFVXX695xsXp3c4FdO2ir36R2l9XLgwlSABgOE6UAABws3VGshHnrNXXxbn2eXqYLU4L04XX9tPqmgfL0MJ3yYt9ywpklNdpPNwwN1wvf5CjU6qnkUB8lh/qoh7+nJCkiwEvJoT7y8jj7FyrbmqS3NxZoYKSfzkvqZrfuhW9yFP7I9xr63CaNeXGzwh/5Xo98elAJId7KLq9VRa17hrqufqzHJnTTeUmBWrLN8f12/95SKKn5Obj2MH1YhOobbS0T6ACAUXCnDgDQqpLDDXp7Y0HLVP9PXJqge8bF6Of9QvTRnlJJUoiv42kkKcTH7s9xQd4ym016dGK8Hp3oOK39C1cmS5KGPrdJGw5VnnXdvp7mk9ZW19hk9x1DYvzVw99Lr6517+enuvKxjg70kiS1lgMtZpPd/56NQZF+GhLjrw+2Fdk9dwkARkCoAwDYMZukAG8Ph5n/NmY3X4SHWD1VWduonPI6jU+xv0OSGOKtK/uH2i1be7BSkxftdPieC5ICdcuYKP3ly0P6LrNCGUU//YG2IF8PVdXZVN9ofxvJ6mnW9CPPWa09eOrQ4G0x6ZmfJaqm3qa/fJn1k7/blRjhWO/Ia952SmoP/XVNdsuQWkm67sirKNa1w48BNw5v3tdr67hLB8B4CHUAADsB3h7K+fNwLd1RrI1ZVcqvrFdiiLduHhWp4up6LdvZ/JLnF77J1mOXJGjl9P76YHuRorp5adbICG3LrdbwuICW/eWU12nJVsehc/5eHpKk7zIrWl1/KucnBerlq1K0ZGuR0osOq6K2UYkhPpqW1kOxQd7N70YrPfZutH7hVr1+dU/9d2exDpXVKdzfU78b2kPJIb66/t97tLvADWdIkTGO9ZacKv1nS6EmnxOm9bcO1lsb81VdZ9PE3kG6ol+ovj1Qrg+32+/z/vGxkiSrV/Nd23Mi/VqWfbWvTGv22U+C4m0xaUpqD2WV1WrFruIzqg8AugJCHQDATnW9Tc+sydaFKUGakBIkf28P5ZTXaemOYs374qByjrzw+cnVhxToY9G0tB66IClQO/KrNf3f6RoS4293od8RtuZUa9nOYl2QHKgpqd1l9TKrqLpB6w5Watb76Vqxq8Ru+8Kqeh0qq9OM4RHq4e+psppGrdlXpmn/2qN1p7mj58qMcKwl6TeLd2vtwQpNSe2hRy6Ok9lk0oGSWj3++UE99tlBh1cazL3EfuhnWrS/0qKb30X40KpMh1B31YAwBVst+ttnOe36egQA6Cym8tIiui/AIKrqbIpcsMvZZbi9nLv6yM+ra80zRdvoGBxrtKYrtgu4D/qArqGr9QNdpxIAAAAAwBlj+CUAoMsI87PIw3TqmQwr6xpVVWc75Tbo+jjWANB+CHUAgC5j3ezBSjhhmvwTPbQqUw+vyuykitBRONYA0H4IdQCALmPK4t0t75k7mb3FNZ1UDToSxxoA2g+hDgDQZXxzoMLZJaCTcKwBoP0wUQoAAAAAGBihDgAAAAAMjFAHAAAAAAZGqAMAAAAAAyPUAQAAAICBEeoAAAAAwMAIdQAAAABgYIQ6AAAAADAwQh0AAAAAGBihDgAAAAAMjFAHAAAAAAZGqAMAAAAAAyPUAQAAAICBuUWoKy4u0ZPzF2j8hInqN2CQxp43To/OfVzV1dW690/3K6VXX7256G1nlwkAAAAAZ8zi7AI62o4dOzV9xkwVFBTKarUqJSVZ+fkFeuPNRcrMzFRpWZkkqV/fPk6uFGgfJpM0Z2yUbhoRoYRgHxVU1eu9LYV64OMDqq63Obs8OMm942KUFu2vIdH+Sgr10f7iGiU+sd7ZZaEDcKwB0A+4H5cOdcXFJZo56/cqKCjU9Buu1+xb/iB/fz9J0isLX9X8BU/JYrHIZDKpd5/eTq4WaB9//VmS5oyN0vtbC/XUV1nq28OqW8dEKjXKTxMWblNTk7MrhDPMuzRBRVX1+iGrUkG+Hs4uBx2IYw2AfsD9uHSoe3TuY8rNzdW0qVN03713262bOeNGLVu2XDt37VJsTIwC/P2dVCXQfvqFWzV7dKSWbC3U5EW7WpbvK67R81cm69pB3bV4U4ETK4SzJD2xTvuKayVJW/+YKn8vTvKuimMNgH7A/bjsM3Xp6RlavmKlgoODdecdt7e6Tf8B/SRJfY67S7du3Xr99nfXa9SYc9W3/zkac+4FunXO7UpPz+iUuoGz8evBYTKbTXpmTbbd8oVrc1VV16ipad2dVBmc7ejJHa6PYw2AfsD9uOyduv8uXy6bzaafX3G5/Pz8Wt3Gx9tHktSnz7Hn6crKy9Wrdy9de+01Cg0NUW5unv7+8iv61TW/1orlSxUZEdEp9QNtMSwmQI22Jq09WGG3vLahSZuyqzQsJsBJlQEAAKCjuGyo+/bb7yVJI0aMOOk2ubl5kqS+x92pm3DheE24cLzdducMHKCLJl6mjz/+RNf97rcdUC3QPqK6eamwql51jY4PzmWV1WpMQjd5ephU38p6AAAAGJPLhrqs7ObhZ9FRUa2ub2ho0IYffpBkf6euNUFBQZIkD4+2jUe+6+77VFJa2qbPAsdrMFmkuJtPut7qZVZtQ+szXNY0NAc5q6dZZY2NHVKfu/jD7DmyNDU4uww7p2sbaBuONVrTFdsF3Ad9QNfQEf1AcFCQFsyf16bPumyoO3z4sCSppram1fXLV6xUSUmJ/Pz8FBsb47C+sbFRNptNWdnZ+stTf1X37mG67LJL21RLSWmpiouL2/RZ4HiNZk8p7uTrq+ts6uHv2eo6H4upeRtea3DWSkpK5GGrd3YZdk7XNtA2HGu0piu2C7gP+oCuoav1Ay4b6sLCwlRWVqbt23coLTXVbl1+fr6enL9AktSnd2+ZTCaHz/9mym9b7uTFx8dp0RuvKzQkpE21BB+50wecrQbTqf+TzS6vU79wq7w8TA5DMKMDvVVQWc/Qy3YQHBzc5X6lP13bQNtwrNGartgu4D7oA7qGjugHziYzuGyrGDN6lDIyMvTKwtc0dsxoJSYmSpK2bNmqO++6RyUlpZKkvid56fi8x+eqvKJchw4e0sLX/qHrbrhR7/3rbUWdZDjnqbT1Nipwoqo6m95fsOuk69cdqtDE3sEaHhug/+0vb1nubTFpcJSfvtpb1hllurwXn39Wfl5da/Lg07UNtA3HGq3piu0C7oM+oGvoav1A16mknc2YMV3BQUHKycnRpZOu0GWXX6ELL5qoqyZfrdjYGI0c2TyBSp+TvHQ8KSlRgwcN0uWXT9KiN/6pqqoqvbLwtc78KwBn7N3NhbLZmnTbufY/PswYHiE/Lw+9vZF31AEAALgal71TFxkRocXvvKUn5y/Q2nXrlJWVpZTkFM14ZLquueZXGn/hxZKkvqeZJEWSunXrpvj4OB3IzOzosoGzsi23Wi9+m6PZY6K0ZFofrdhdor49rLp1TKRWZ5TpHV487rampnVXfFDza1y6+3nKy8Os+8fHSpIOlNborR9oG66CYw2AfsD9uGyok6SUlGQtfOXvDsurqqp0KCtLZrNZvXr1PO1+ioqKtG/fPg0655yOKBNoV7ct3av9JbWaOSJck/qGqLCqXs9/naMHPjmgJh6nc1vTh0XoguRAu2VzL4mXJK3OKOME70I41gDoB9yPS4e6k/kxPV1NTU1KTEiQr6+v3bo/3nm34uPi1K9vHwV066b9+/frn6+/KQ8Pi66//ndOqhj46WxN0tNfZenpr7KcXQq6kHEvb3V2CegkHGsA9APuxy1D3e7deyS1/jzd4EGD9MEHH+qNNxeptrZWkZERGjlihG6eNVPR0dGdXSoAAAAAnJJbhro9e36U1PpLx387bYp+O21KZ5cEAAAAAG3isrNfnsruPc136vqeZOZLAAAAADAKt7xT99abrzu7BAAAAABoF255pw4AAAAAXAWhDgAAAAAMjFAHAAAAAAZGqAMAAAAAAyPUAQAAAICBEeoAAAAAwMAIdQAAAABgYIQ6AAAAADAwQh0AAAAAGBihDgAAAAAMjFAHAAAAAAZmKi8tanJ2EQB+mqamJlXX85+ss1k9TTKZTM4uww5to2NwrNGartgu4D7oA7qGrtYPEOoAAAAAwMAYfgkAAAAABkaoAwAAAAADI9QBAAAAgIER6gAAAADAwAh1AAAAAGBghDoAAAAAMDBCHQAAAAAYGKEOAAAAAAyMUAcAAAAABkaoAwAAAAADI9QBAAAAgIER6gAAAADAwAh1AAAAAGBghDoAAAAAMDBCHQAAAAAYGKEOAAAAAAyMUAcAAAAABkaoAwAAAAADI9QBAAAAgIER6gAAAADAwAh1AAAAAGBghDoAAAAAMDBCHQAAAAAYGKEOAAAAAAyMUAcAAAAABvb/AZO62Ub024EFAAAAAElFTkSuQmCC", - "text/plain": [ - "
" - ] - }, - "execution_count": 6, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "from qiskit.circuit.library import QuantumVolume\n", - "QuantumVolume(4).decompose().draw('mpl')" - ] - }, - { - "attachments": {}, - "cell_type": "markdown", - "id": "908e4b4a-5edf-4390-82a0-e755050c2a37", - "metadata": {}, - "source": [ - "回路ライブラリーには、IQP(Instantaneous Quantum Polynominal)回路など、古典的にシミュレートするのが困難だと考えられている回路も含まれています。 これらの回路は、特定の対角ゲート(計算基底)をアダマールゲートのブロック間に挟みます。\n", - "\n", - "他には、グローバーのアルゴリズムに使用する `GroverOperator` や、フーリエチェック問題の `FourierChecking` 回路などが含まれます。 これらの回路については、回路ライブラリー API ドキュメントの[特定の量子回路](/api/qiskit/circuit_library#particular-quantum-circuits)をご覧ください。" - ] - }, - { - "cell_type": "markdown", - "id": "58b1a7b8-c173-4de8-957a-ca5d58332073", - "metadata": {}, - "source": [ - "## 算術回路\n", - "\n", - "算術演算は、整数の加算やビット単位演算などの古典的な関数です。 これらは、金融アプリケーションの振幅推定のアルゴリズムや、方程式の線形システムを解決する HHL アルゴリズムなどのアルゴリズムに役立てられます。\n", - "\n", - "例として、\"ripple-carry\" 回路を使用して 3 ビットの数値を 2 つ加算するインプレース加算(`CDKMRippleCarryAdder`)を試してみましょう。 この加算器は 2 つの数値(\"A\" と \"B\")を追加して、結果を B を保持したレジスターに書き込みます。 以下の例では、A=2、B=3 とします。" - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "id": "77555a5a-a81c-47b8-a9ae-3015d84adcf5", - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAocAAAJxCAYAAAAw3xjmAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAABsxklEQVR4nO3dd3RU1d7G8WcymfQKpAKhhBZ6C6iAgBR7w4aKjSoiYr92uL4qAhZUEAHB3pWroiJSrSAd6QQIPQnpCenJzPtHyJGQBDKTMgG+n7Vccur8ziSZPNn77H1MGWnJNgEAAACSXJxdAAAAAOoOwiEAAAAMhEMAAAAYCIcAAAAwEA4BAABgIBwCAADAQDgEAACAgXAIAAAAA+EQAAAABsIhAAAADIRDAAAAGAiHAAAAMBAOAQAAYCAcAgAAwEA4BAAAgIFwCAAAAAPhEAAAAAbCIQAAAAyEQwAAABgIhwAAADAQDgEAAGAgHAIAAMBAOAQAAICBcAgAAAAD4RAAAAAGwiEAAAAMhEMAAAAYCIcAAAAwEA4BAABgIBwCAADAQDgEAACAgXAIAAAAA+EQAAAABsIhAAAADIRDAAAAGAiHAAAAMBAOAQAAYHB1dgFATbDZbMousDm7DADVyMtikslkcnYZwDmPcIhzUnaBTWHTdjq7DADVKO6xNvJ2IxwCNY1uZQAAABgIhwAAADAQDgEAAGAgHAIAAMBAOAQAAICBcAgAAAAD4RAAAAAGwiEAAAAMhEMAAAAYCIcAAAAwEA6ryGazqXPXaLVoFaXklBRnlwMAAFAlhMMqOnLkqI4fP66goAaqX6+es8sBAACoEldnF3C2Oxp3VM2bNVPnzp2cXQoAAECVEQ6rqEd0tH5Z/JOzywAAAKgWhEOct0wmaULvcI3pGaqmgR5KzCrQl/8k6bnFB5RdYHV2eQAAOAXhsBxWq1WLf1mi775bqH+2/KPU1DQFBgaoefPmGjjgEt1261C5ublJkvr2H6AjR45q8aIfFRnZ3DjHBRf1UVJSklYuX6qMjAzNm/+eVq/+WxmZmWrapInGjB6pq6660lmXCEmvX91cE3qHa8GWJL362xFFBXvpgV5h6hLurYFzt8pmc3aFAADUPsLhKZKTkzV+wkNas2atJCk8PExto6KUmJSo1av/1qZNm3XHsNslSRkZGTpy5Kg8PT3VrFlT4xxJSUlKSkqSj4+PlixdqpenTFNAQIDCw8KUl5+nHTt36sGHH5V/QID69O7ljMs877UN8dL4i8L0zZYk3fjRTmN9bEqu3rouUkM7BemzTYlOrBAAAOcgHJ4kOztbI0aN0dat29SjR7See+ZptWnT2ti+OyZGixf/IrPZLEnavqM4VLRq1VIuLv8O/N6xc5ckKS8vT2/NeFuvvTJVV1xxuUwmk/Ly8nT/Aw9qxYqV+uqrrwmHTnJr5wZycTFp+u9HS62fuyZeL1/RVMO6Eg4BAOcnwuFJJr88VVu3blP3bt30/vx3ja7jEq1atlSrli2N5Z07i8Nh26ioUvuVrC8sLNTrr05T374XG9vc3d11+61DtWLFSh05WjqYoPZEN/JVkdWmNYcyS63PK7Rp09EsRTfydVJlAAA4F/McnrB37z59+dXXcnNz02uvTi0TDMuz40TL4cmti9K/LYeXXXZpqWBYoqCgQJLk5+dX1bLhoHA/NyVlFSi/qOyNhUfS8xTkY5HFbHJCZQAAOBcthycs/OEHFRUV6frrrlV4eHiljinpVo6KalNqfUnL4ZVXXF7ucftiYyVJzZo2dajWxx5/UqlpaQ4de74oNLlKEWMr3O7l5qK8wvJHJOcWFgdGL4uL0ouKaqQ+APYbN36CXG2Fzi4DOCsEBgRo2tTJDh1LODzhz79WSVK5LX3lKSgo0J49e+Ti4qI2rf9tOczLz9e+fcXhr2eP6HKP3VFBqKys1LQ0pfCovtMqcrFIERVvz863KtjHUu42D9fiFkOmswHqltTUVJmtBc4uAzjnEQ5PiIuLlyQ1btyoUvvv3btPBQUFatq0iby8vIz1e/bsUWFhocLDwxQYGFjusdu375DkeDgMDAhw6LjzSaHp9N/aRzPy1TbES25mU5mu5Yb+7ko8XqCCcrqcAThPYGAgLYdAJVUlKxAOT8jJyZEk5eXmVWr/HTtKAt6pg1GK7zdsG9W23OOys7O1/8ABWSyWUoNb7OFoM/H5JCvfqgXTdla4fe3hTF3aOlA9Gvvqj/0Zxnp3V5M6h3vrt33ptVEmADvMfOsNebtxqzxQ0/gpOyEsNFSStGHjxkrtXzLoJKpNm1PWnxjB3DaqzDGStHPXLlmtVkU2b16pQS+oGV9sTpLVatODfUrfXzqqR6i83cz6ZCPT2AAAzk+EwxMGDRooSXp71mz9/sefpbbFxyfo7VmztX//fmOdcd/gKSOVjZbDCsJhSZdyRdtRO7bGZ2vmqjjd0KGBvrmjjUb0CNErVzXTa1c308q96fqUOQ4BAOcpupVPGDniHi1fsULbtm3XPcNHKiiogcJCw5SWnq5Dhw7JZDLp7rvuMPYvGZFctlv59C2HVb3fENXnwe/3aX9qnkb3DNGVUfWUlFWgt/6M03O/HODReQCA8xbh8ARvb299/unHeu/9D7Ro0WLF7t+vzMwYBTVooEEDB2jw4EHGwJO4+HilpqUpMDBQoaEhxjni4uOVlpauwBOPyivP9gruVUTts9qk1347otd+O+LsUgAAqDNMGWnJtJHgnJOVb1XYaQakADj7xD3WhgEpQC3gpwwAAAAGwiEAAAAMhEMAAAAYCIcAAAAwEA4BAABgIBwCAADAQDgEAACAgXAIAAAAA+EQAAAABsIhAAAADIRDAAAAGAiHAAAAMBAOAQAAYCAcAgAAwEA4BAAAgIFwCAAAAAPhEAAAAAbCIQAAAAyEQwAAABgIhwAAADAQDgEAAGAgHAIAAMBAOAQAAICBcAgAAAAD4RAAAAAGwiEAAAAMhEMAAAAYCIcAAAAwEA4BAABgIBwCAADAQDgEAACAgXAIAAAAA+EQAAAABsIhAAAADK7OLgC1w2azKbvA5uwy7OJlMclkMjm7DAAAziuEw/NEdoFNYdN2OrsMu8Q91kbeboRDAABqE93KAAAAMBAOAQAAYCAcAgAAwEA4BAAAgIFwCAAAAAPhEAAAAAbCIQAAAAyEQwAAABgIhwAAADAQDgEAAGAgHAIAAMBAOAQAAICBcAgAAACDq7MLONscPnxEi37+WX+tWq39+w8oKSlJNptNTZs00VVXXanh99wlNzc3Z5dpN5NJmtA7XGN6hqppoIcSswr05T9Jem7xAWUXWJ1dXo14on8jdW3oo24NfdS8vof2p+Sq2cvrnF0WAABORTi004y339bXXy+Ql5eXgoOD1LJFCyWnJGvnrl3auWuXtmzZopkz3nR2mXZ7/ermmtA7XAu2JOnV344oKthLD/QKU5dwbw2cu1U2m7MrrH6TL2+q5KwCbThyXAGeZmeXAwBAnUA4tFOfXr007Pbb1K5tW5lMJmP9li1bNWrMWC3+ZYl27dqt1q1bObFK+7QN8dL4i8L0zZYk3fjRTmN9bEqu3rouUkM7BemzTYlOrLBmNH95rWJT8iRJWx7uIh83AiIAANxzaKcrr7xC7du1KxUMJalDh/bqddGFkqSYmBhnlOawWzs3kIuLSdN/P1pq/dw18crKL9KwrkFOqqxmlQRDAADwL1oO7ZSXn69ly5ZrzZq1Onz4sLKysmS1Fve5xuzZI0myWCzG/ocOHdb/vfiS/v77b5nNrrqkfz89/dQTCgwMdEb55Ypu5Ksiq01rDmWWWp9XaNOmo1mKbuTrpMoAAEBtIxza4a+/Vuk/Tz6tuLi40+7XuHFjSdLx41kadudd8vf31+uvvaLc3DxNnfaKRo0Zqy8//1QuLnWj4Tbcz01JWQXKLyp7Y+GR9Dz1auoni9mkgnK2AwCAcwvhsJI2bd6sEaPGqLCwUDfdeIOuueZqtWrVUv5+fnJ1ddXevft06eVXytXVVZEtIiVJn3/xpRISjumzTz5SeHi4JCk0NEQ333Kbli1brkGDBjrzkgxebi7KKyx/RHJuYXEg9LK4KL2oqDbLAgAATkA4rKRXXn1dBQUFeuzRhzVm9Kgy21es/FWS1CIyUu4nprJZsXKlunXragRDSerapYsaN26sZStWOBwOH3v8SaWmpdl1TKHJVYoYW+627Hyrgn0s5W7zcC2+t9IZ09mMGz9BrrZCh4493fUCODtV5TMBON8EBgRo2tTJDh1LOKyEoqIirV1bPP/djTcMKbPdarXq+4ULJUlt20YZ6/fs2avLL7u0zP4tW7bQnj17Ha4nNS1NKSkpdh1T5GKRIsrfdjQjX21DvORmNpXpWm7o767E4wVO6VJOTU2V2Vrg0LGnu14AZ6eqfCYAqDzCYSVk5+So6ESXal5e2RGu8+a/p+3bd0gqHQ4zMjLk51d2MEeAv79iY2MdricwIMDuYwpNFX+p1x7O1KWtA9Wjsa/+2J9hrHd3NalzuLd+25fuSJlVFhgYWLWWQwDnlKp8JgDnG0eyQgl+g1aCr4+PQkJClJCQoLdnzdZ/Jz0ns9ms/Px8ffDhR3p9+ptydXVVYWFhqXBYUxxpJs7Kt2rBtJ3lbvtic5Ke6t9YD/YJLxUOR/UIlbebWZ9sdM4chzPfekPebo4N2jnd9QI4O1XlMwFA5REOK+m+sWM0cdLz+vyLL7V02XKFhYZq/4EDys3N1cTnntHESc/LZDIpKurfcOjn56eMjMwy50pLT5e/v39tln9aW+OzNXNVnMb3Ctc3d7TRT7tSjSekrNybrk/PwQmwJWlY1yA1CfCQJAV5W+RmdtHTlxSPND+QlquPN5yb1w0AwOkQDivp9ttuldls1rvz5uvIkaMyu7iof/9+GjNqpKxWq4qKihQRESFfHx/jmMjI5tqzt+y9hXv27FWP6O61V3wlPPj9Pu1PzdPoniG6MqqekrIK9NafcXrulwPn5KPzJGlEdKj6RZYO6S9c1kSStHJvOuEQAHBeIhzaYegtN2voLTeXu23P7h1l1l3Sv59efW264uLjFRYaKql4SpyDBw/qiccfrclS7Wa1Sa/9dkSv/XbE2aXUmv6ztzi7BAAA6hxu3qhBt9xys4KCGujeseO0fMUKLfp5sR566FF16thRAwcOcHZ5AAAAZRAOa5Cvj48++vB9BQcF6cGHHtVTTz+rLl27aM6cWXXm6SgAAAAno1u5hjWJiNDcOe84uwwAAIBKofkKAAAABsIhAAAADIRDAAAAGAiHAAAAMBAOAQAAYCAcAgAAwEA4BAAAgIFwCAAAAAPhEAAAAAbCIQAAAAyEQwAAABgIhwAAADAQDgEAAGAgHAIAAMBAOAQAAICBcAgAAAAD4RAAAAAGwiEAAAAMhEMAAAAYCIcAAAAwEA4BAABgIBwCAADAQDgEAACAgXAIAAAAA+EQAAAABsIhAAAADIRDAAAAGAiHAAAAMBAOAQAAYCAcAgAAwEA4BAAAgIFwCAAAAAPhEAAAAAbCIQAAAAyEQwAAABgIhwAAADAQDgEAAGAgHAIAAMBAOAQAAICBcAgAAAAD4RAAAAAGwiEAAAAMhEM4ZMWYDloxpoPDx4+5IFRFL/dSqK+lGqsCAABVRTiEU3y/PUWSdHXbek6uBAAAnIxwCKeIy8jXusPHdV27+s4uBQAAnIRwCKf5dluyLokMkLcb34YAANQV/FZGtVr7QCdtf6SrsfzVsDZKntTTWH7r2uayTe0tfw+zvtueIg+Liy5rHeiMUgEAQDlcnV0A6oYn+jdS14Y+6tbQR83re2h/Sq6avbzOrnOYXaR2IV76dluKsa5LQ29tjssyljuHeys2JVfpuUVKz81WTFKOrmtXX99sSa62a6mMlg08NKxrsAa3DFBkfU95WEzam5yrr/5J0vTfjyq7wFqr9QAAUFcQDh1w+PARLfr5Z/21arX27z+gpKQk2Ww2NW3SRFdddaWG33OX3NzcnF2mXSZf3lTJWQXacOS4AjzNDp2jdZCXPC1mbTp6XJLk625Ws0APY/CJJHUM89bSmDRj+bttyRoeHSKzi1RUi3lseHSIxl0Upu+3p+iTjYkqsNrUP9JfL17WVDd3DNIFMzYrt5CACAA4/xAOHTDj7bf19dcL5OXlpeDgILVs0ULJKcnauWuXdu7apS1btmjmjDedXaZdmr+8VrEpeZKkLQ93kY+b/QGxc7i3JGnT0eKWwk5h3nJxMRnLzet5yM/DVZtOakn8bluKHu3bSBc389eKvelVvYxK+3pLsiavOKyM3CJj3ezV8YpJytEzAyI0okeIZv4VV2v1AABQVxAOHdCnVy8Nu/02tWvbViaTyVi/ZctWjRozVot/WaJdu3ardetWTqzSPiXBsCo6hZUOhyVhceOR46WWS7ZLUpHNJkkyu/z7PtaG9YePl7v+i81JemZAhNqHetVqPQAA1BUMSHHAlVdeofbt2pUKhpLUoUN79broQklSTEyMM0pzqk5h3orLyNex4wWSisNgboFVO47lFG8/JSxK0nXt6istp1Ara7HV8HQa+btLkhIyC5xcCQAAzkHLoQPy8vO1bNlyrVmzVocPH1ZWVpas1uIWsJg9eyRJFkvxkz/i4uM1e/Zc/fPPFu3YuVMFBQXas3uH02qvSa2CPHU0I99Y7hzuo+3HslV44r25vHWgDqbm6nD6v/tc266eftqZYuzjTC4m6dkBjVVQZNWnmxKdXQ4AAE5BOLTTX3+t0n+efFpxcae/H61x48aSpAMHDmrxL7+oQ4cO6mjpoPUbNtRGmU7h6mJSfa/ib6mSkcslIWtQywBFN/bV5OWHjP3bBHuqdZCXnvvloFPqPdX0a5rroqZ+enLRfu1OzHF2OQAAOAXh0A6bNm/WiFFjVFhYqJtuvEHXXHO1WrVqKX8/P7m6umrv3n269PIr5erqqsgWkZKkHtHdterP3yVJb7w5o1rC4WOPP6nUtDS7jik0uUoRY6v82qezYm+67uwWrHeGRGppTJo8LC5KyynUQ33CNXFghHYlZmvyisPG/te2ra+8QqsW7Uwt93zjxk+Qq63QoVrsvd7nB0dofK9wzV4dp5dPqhFA3VGVzwTgfBMYEKBpUyc7dCzh0A6vvPq6CgoK9NijD2vM6FFltq9Y+askqUVkpNxPTGXj4lL9t3WmpqUpJSXlzDuepMjFIkVUeymlPLxwn0J8LBpzQZjGXBBWvO7ihsopKNK7axI0aclBZeb9Ozr42nb1tGJveql1J0tNTZXZ6ti9f/Zc78RBEXp2YITmr03QvQv2OvR6AGpeVT4TAFQe4bCSioqKtHZt8aTQN94wpMx2q9Wq7xculCS1bRtVo7UEBgTYfUyhqea/1MnZhbps3jY1r+ehmddHanDLAA1+d6v+2J+hvMLS9xSG+FjUs7Gvxn1bcRgLDAysWsthJUwcFKFJgyL0/roEjfz6/BtEBJxNqvKZAJxvHMkKJQiHlZSdk6OiouIWrry8stO+zJv/nrZvLx5oUtPh0JFm4qx8qxZM21kD1ZS1LyVXbmaT9qXkatme8kchX9OuniTpu+0Vt4DOfOsNh5+7XJnrfXZgY00aFKEP1x/T8K9iZHP+mBgAp1GVzwQAlUc4rCRfHx+FhIQoISFBb8+arf9Oek5ms1n5+fn64MOP9Pr0N+Xq6qrCwsIaD4c1YVjXIDUJ8JAkBXlb5GZ20dOXnBhUk5arjzfYN3q3U5j3aSe1nr82QR+sO6b8IucksvsuDNPzg5voQGqulsak6bbOQaW2JxwvKPUkFwAAzheEQzvcN3aMJk56Xp9/8aWWLluusNBQ7T9wQLm5uZr43DOaOOl5mUwmRUWdfeFwRHSo+kX6l1r3wmVNJEkr96bbFQ4b+rupvrel1GTXpyqySkVyXlNddGMfSVKTQA99OLTsZOUr96YTDgEA5yXCoR1uv+1Wmc1mvTtvvo4cOSqzi4v69++nMaNGymq1qqioSBEREfL18XF2qXbrP3tLte1/JD1fpsf/qGpJNeqeL2N0z5fcYwgAwKkIh3YaesvNGnrLzeVuO1cntwYAAOcPwmEtWPTzYknSnr17Sy03athQHTq0d1pdAAAApyIc1oLxDzxY7vKQ66/T1CmOTVAJAABQEwiHtYDuZgAAcLZgwigAAAAYCIcAAAAwEA4BAABgIBwCAADAQDgEAACAgXAIAAAAA+EQAAAABsIhAAAADIRDAAAAGAiHAAAAMBAOAQAAYCAcAgAAwEA4BAAAgIFwCAAAAAPhEAAAAAZXZxeAs59tam9ticvSfxbt1/I9afr8tjZqG+KlnAKrjh3P19j/7dXe5FxJ0vIx7dUpzFvPLz2kN/446uTKAQDAqQiHqBZ9Zv2j9NwiubuaNGdNvBbtTJUkjbsoTO/e2FL9Z2+RJF0ye6veu7mlM0sFAACnQbcyqlVeoc0IhpK0+mCmmga6O7EiAABgD8IhatSEXuH6bnuKs8sAAACVRLcyasyT/RupRQMPDZiz1dmlAACASiIcokY8cnFDDelQXwPnbFVOgdXZ5QAAgEqiWxnV7qE+4bq1c5AGzd2q9NwiZ5cDAADsQMshqlVDfze9dnVz7U3O0YoxHSQVD1K5YMZmJ1cGAAAqg3CIanUkPV+mx/9wdhkAAMBBdCujyuIz8/XrvR11eZvAM+67fEx79W3ur6x8upsBAKiLaDlElYX935pK73vJbEYuAwBQl9FyCAAAAAPhEAAAAAbCIQAAAAyEQwAAABgIhwAAADAQDgEAAGAgHAIAAMBAOAQAAICBcAgAAAAD4RAAAAAGwiEAAAAMhEMAAAAYCIcAAAAwEA4BAABgIBwCAADAQDgEAACAgXAIAAAAA+EQAAAABsIhAAAADIRDAAAAGAiHAAAAMLg6u4Cz0eHDR7To55/116rV2r//gJKSkmSz2dS0SRNdddWVGn7PXXJzc3N2mXZp2cBDw7oGa3DLAEXW95SHxaS9ybn66p8kTf/9qLILrM4usVq1CvLUcwMbq2u4j8L93GQxm3QwLU8/7UzVtF8PKz6zwNklAgDgFIRDB8x4+219/fUCeXl5KTg4SC1btFBySrJ27tqlnbt2acuWLZo5401nl2mX4dEhGndRmL7fnqJPNiaqwGpT/0h/vXhZU93cMUgXzNis3MJzJyA28ndTmK+b/rctWYfT81RotalDqLdG9wzV0M4N1Pn1TUrMIiACAM4/hEMH9OnVS8Nuv03t2raVyWQy1m/ZslWjxozV4l+WaNeu3WrdupUTq7TP11uSNXnFYWXkFhnrZq+OV0xSjp4ZEKERPUI08684J1ZYvZbvSdfyPell1v+2L11f3RGlu7sHa9qvR5xQGQAAzsU9hw648sor1L5du1LBUJI6dGivXhddKEmKiYlxRmkOW3/4eKlgWOKLzUmSpPahXrVdklMcSMuTJAV68ncTAOD8xG9AB+Tl52vZsuVas2atDh8+rKysLFmtNklSzJ49kiSLxSJJWvTzYv3ww4/asnWrUlJSFR4WpksvHax7x4ySt7e3066hshr5u0uSEs7Re/DcXU3ycTPLw+KitsFemnJFU0nSTztTnVsYAABOQji0019/rdJ/nnxacXGn72Jt3LixJOndefMVHh6uRx5+SKGhIdqxY6femvG21qxZq88+/UguLnW38dbFJD07oLEKiqz6dFOis8upESN7hGrGdZHGcmxKrm7/bJf+2J/hxKoAAHAewqEdNm3erBGjxqiwsFA33XiDrrnmarVq1VL+fn5ydXXV3r37dOnlV8rV1VWRLYoDx5zZs1S/Xj3jHD179FC9evX08COPad369eoRHW13HY89/qRS09LsOqbQ5CpFjLXrmOnXNNdFTf305KL92p2YY9ex1WHc+AlytRU6dGxlr/fbbcnaeSxbPu5mdQn30TVt66mBl8Wh1wRQs6rymQCcbwIDAjRt6mSHjiUc2uGVV19XQUGBHnv0YY0ZParM9hUrf5UktYiMlPuJqWxODoYlOrRvJ0lKSDjmUB2paWlKSUmx65giF4sUUfn9nx8cofG9wjV7dZxeXnHYzgqrR2pqqsxWx7qzK3u9R9LzdSQ9X5L03bYUfbMlSWsf6CwvNxenXTeA8lXlMwFA5REOK6moqEhr166TJN14w5Ay261Wq75fuFCS1LZt1GnPtfrvNZKkyObNHaolMCDA7mMKTZX/Uk8cFKFnB0Zo/toE3btgr92vVV0CAwOr1nLogC3x2dp45LjuuzCMcAjUMVX5TADON45khRKEw0rKzslRUVHxaN68vLwy2+fNf0/bt++QdPpwGB+foNenv6mL+/Q5Y4isiCPNxFn5Vi2YtvOM+00cFKFJgyL0/roEjfzauSOuZ771hrzdHLsns7LXWx5Pi1n1vPjRAOqaqnwmAKg8fsoqydfHRyEhIZKkt2fNNoJifn6+5r47T69Pf1OursWBoqLQl5WVpXvvGyeLxaKXJ79QO4Xb4dmBjTVpUIQ+XH9Mw7+Kkc3m7IpqTohP+fcV9ov0V/tQL60+kFnLFQEAUDfQPGKH+8aO0cRJz+vzL77U0mXLFRYaqv0HDig3N1cTn3tGEyc9L5PJpKiosuEwNzdXo++9T4cPH9Znn36s4OBgJ1xBxe67MEzPD26iA6m5WhqTpts6B5XannC8QEtj0pxTXA2YNaSFwnwtWr43XQdS8+Th6qJujXw0tFMDZeYV6ZEfYp1dIgAATkE4tMPtt90qs9msd+fN15EjR2V2cVH//v00ZtRIWa1WFRUVKSIiQr4+PqWOKygo0P3jJ2jr1q368P331LJFC6fUfzrRjYtrbhLooQ+Hln2yy8q96edUOPxsU6Lu7BasO7oGK8jbIptsOpCap9l/x2var0d0KK3srQMAAJwPTBlpyedw56HzWa1WTXjoES1btlzz5s7WhRde4JQ6svKtCnPwHjxniXusTZXuOTzbrhfA6VXlMwFA5dFyWMMm/fd5LVr0s8aMHiUPTw9t3LTJ2BYREVHuVDcAAADOQjisYb/+9rskafacuZo9Z26pbVNefkk3DLneGWUBAACUi3BYw35dsczZJQAAAFQaN28AAADAQDgEAACAgXAIAAAAA+EQAAAABsIhAAAADIRDAAAAGAiHAAAAMBAOAQAAYCAcAgAAwEA4BAAAgIFwCAAAAAPhEAAAAAZXZxeA2uFlMSnusTbOLsMuXhaTs0sAAOC8Qzg8T5hMJnm7EbYAAMDp0a0MoEqaBLrLNrW3Jg6KqLXXtE3trfdubllrr3cumzgoQrapvdUk0P2M+zrjaw2g9tFyCFSRp8VFo3uG6oYO9dUuxEu+7malZBdq/ZHj+nJzkj7eeExF1uJ9V4zpoH6R/sax2flFSsst1PaEHC3fk6b5axOUcLygzGvEPtFdx/OL1OG1jaXW+7qb9cM9bXVxc3/956dYTV15RE0C3bX/yWhJ0g87UnT1e9vLnM/VxaSjz/RQkI9F+1Ny1ezldca2925uqbu7hxjLRVabkrML9PfB45qy8rD+3J9RpferLunWyEf3XxSmi5v5K8zPIqtNik3J1dKYNL2zOl67EnOcXWKlfH57a93SKUjLYtI0cO5WZ5cD4CxHOASqILK+h34c3latg7y0ZHeqJq84rKSsAgX7WDSwRYDev6WV2oZ46T8/7TeOyS2wauTXMZIkN7OLQnwt6tXUT88PbqIn+jfS6G/26IvNSWd87Qberlo8sr06hXlr1NcxendNQqntOQVFuqxVoEJ9LYrPLB04r2lbT0E+FuUUFFV4/nsX7NHxvCK5mV3ULtRLo3uG6LLW7TVgzlb9HvtvQDyQmiePp/5UodVWmbesznhuYGNNHBihpOwCfboxUduPZcvFZFK7EC/d0ilI918UrsBJq3U8r+L3qC6o5+Wq69rV156kHPWP9FeTQHcdSM1zdlkAzmKEQ8BBHq4u+uGetmpez0NDPtyh/21NLrV96soj6t7IR9GNfUqtL7Ta9MnGxDLnax/qpZ+Gt9NHQ1vpUFqe/jqQWeFrN/J305JR7dWsnodu/XSXvvqnbJj8YUeqrmtXT3d0Dda0X4+U2jY8OkSbj2bJ7CL5uJnLfY2v/0lScnahsfzrvnR9f3dbPda3kX6PLd0amVd4dgXDe7qH6L+Dm2j5njRd/+EOZeSWDoCP/7hfEwc1VnXepevt5qKsfGu523zczQ6H0GFdgmVxMemWT3Zq1bhOuqd7iCYtOViVUmtdVa4fQPUjHAIOGtkjRG2CvfTyikNlgmGJdYePa93h45U639b4bN3z5W4tHd1B/x3cRIMq6B5s2cBDS0a1VwNvi655f7t+2Z1W7n4Jmfn6aWeq7ukeUiochvpadGmrQD36Y6xG9ggp99jyLItJM17/ZCXd2JOWHNR/T4SSk9ftSszWk/0bq1UDTx07nq/5647phWUHja526d+u7KD/rtarVzXXlW0C5WFx0eoDmXrsp1htPJJVqRoHtPDX4/0aqUdjX3m4umh3Uo7eXhWn2avjjX0sZpNevKyJMvMKdcsnO8sEQ0nKLbTqyUUHjGUfd7P+06+hBrUMVGR9D/m6m3UoLU9fb0nS80sPKafg34vp29xfK+/toLu/2C1vN7PGXRSmyPoemrzisN5fl2C8LzuOZevxvo3UNsRTX2xOUnpukSb0DlfLqeu0Jym3VD2hvhYdeqqHPtxwTCO+iim1bUSPEK3cl64NR7L0w44U3d09WP9delC2U/K6yST9p18jje4ZqjBfN+1JztHkFYcrfC97NfXTlCuaqmtDb2XkFumrf5L0zknv46nuvSBUI3uEKirYU1abtPZwpp5fekgr96Yb+5z8fXHq9d/zZUyF5wZQuxiQAjjoxo4NJElz/q74F6a9lu1J1/6UXPVt7icvS9kfz05h3vp9bEf5ubtq0NytFQbDEvPXJigqxEsXRPga6+7qFqIim00fbzhmV22R9YtDYcpJrYlnck3bepp1fQst3J6ix36M1a7EHE0aFKG5N5Q/mOTnEe0V5mvRpCUHNf33o+reyEe/3ttB7UK8zvhao3qG6JeR7eXjZtaLyw/p4R/2aW9yrt4Z0kJTr2xq7NerqZ/C/Nz0v60pSsqq3LU09HPTyB6hWnc4U/+39JAeXhirDUeO6/G+jfS/O6PKPebBPuF6on8jfb45UeO/26u/D/7bEnxdu3qadX2kft6Vqge+26dFu1I198T30fDuZQP7Xd1C5Go26d01pb/XujfyUccwb32wvvhr+f76Y2oS6KGBLQLKnOO1q5pp8uVNdTAtT4//FKtvtyVr5nWRuqZtvTL79mjso6Wj2qtVA09NWXlEk1ccVvdGPvpwaKtyr/Wjoa0047pI7UnO0eM/7dfEJQfl7+GqJSPb6+pyzl/e9QOoO2g5BBzUPsRL6TmFik2p3vu7/onPUtN6Hmpe30Nb47ON9WG+blp5bwflFFjV951/tOWkbRX5cWeK4jPzdU90iFafCCf3RAdr4faUUl3G5annVfzx4ObqorbBnnr1quaSpI83Vj5UdgrzVvRbm4yWvxl/xWnBnVG6JzpEs/+OLxWYJOlAaq5u+Ginsbxga5LWju+sV65qpsvnbavwdUJ9LXrzmkh9vjlRt3+221g/a1W8pl/TXA/3aahZq+IUm5Kn9ieC5qajlWvRlaR9Kblq/OLaUvdVvr0qTs8PztGzAyMU3dhHaw+VPl9EgLvaTNugxKx/7/csGRHcLsRLHV/fqJ3HSg94+Wt/hu7qHqxnFh/QybdwDo8O0faEbK065VaD4dEhOp5XpG+2FN9WsGhnqo4dz9eIHiFacqKlV5JaBXnqgV7hWhaTpsHvbjXOvWBrstaN71zmel+/urlcTFKvtzcr5kQr5tur4vTH2I5l9r2uXX0N6xqs0d/EaO7f/973+sYfR7T6/k5645rmWrg9pdQxFV0/gLqBlkPAQX4eZmXWwH1SJd2cfu6l7wX0djPLz92s1JzCMgNMKlJklT7acEy3dGwgD1cXXdTEV62DvDR/XcIZj939eHclTbpAR5/poaWjO6hJoLse/SFWs1ZVvqV0SUxamS7hqSuLuzKvb1e/zP5TT7k3csORLC2JSdPAFgHydqv44+rGDg3kYXHRvLUJqu/lWuq/hduTZXYxaWDLAEnFXzdJyrDja1dQZDOCodlFCvA0q76Xq5buSZMk9WzsW+aYD9cfKxUMT/bjjtRyg9Gcv+MV7ueuK9r829rWp5mfWgV5at7a0l8zD1cX3do5SN9sSTLuZSy5n/XatvUV6Pnv3/7Xtq0nFxeTXvv9SKnQufHE+3uyIG+LLmrqp++2pxjBsOQ9eP2P0l8fSRrWNUgZuYX6dmtKqfc9wMNVC7enqFk9jzK3IlR0/QDqBloOAQdl5BbJ1738wRxVUVF42ZOco5l/xWnmdZFaeW8H9Z+9RcfKmfbmVO+tTdBjfRvphg711T/SX0fS87S4Et14Qz7coYzcQvm6u+q6dvU0rGuwPFzt+3tyx7GyrZvbT6xrXt+jzLaK9r+0daCaBHpoe0L5raVRwcWtgctGd6iwlhAfN0n/hm97v3ZjLwzVvReEqV2Il8wupYeqBHqV/SjdnVRx+Klo2xebkzT9muYaER2iH3YUt7aNiA5RXqFVH64vHQ5v7FhfAZ6u+nVfhtHlL0m/7cvQQ30aaljXIL31Z5ykf9/r8gJZyftb4t99y/laJJQ9PirYS34erjo2sWeF1xvi41YqaJ7uvQHgfIRDwEFbE7LVt7m/mtVzr9au5Y6h3sovtGpfcm6Zbe+sjpdN0tvXRWrlmOKAWN68iCfbcSxHqw9kaNxFYWof6qUZf8apMrPO/LYv3eh6/nZbsnIKrXrhsiZaf+S4fq5j94iZTmS1Oz7fpbiM/HL32ZdS/H5uPREwu4T7lLtfeR7qE67Xrm6uxbtS9eafR3U0I1/5hVY19HfXB7e0koup7Ljm7ApGJktSdkH523ILrfp4wzGNuSBUwT4W5RRYdWPHBvp+e9n7I0dEh0qS5lcwGfjw6BAjHNYkk6Rjx/N126e7Ktxna0Lp1uOKrh9A3UA4BBz0zZYk9W3ur5E9QvX0zwfOfEAlDGjhr6b1PLRkd2qFv0Bnr46X1WbTO9e3MFoQz9TNPH9dguacGARSmS7l8jy5aL9u6Rik165qpl92p1YqYJa06J2s7Yl15YXfqGCvMvchtg32UmGRTQdSy+5fIuZES1RSVqGW7UmvcD9J+nN/huIy8nVdu3qq5+VaqQE2d3QNVmxKri6fv63UKOBLWwWc8Vh7zfk7Xvf3Ctdd3YKVnlskbzez5p0yEKV5PQ9d3MxPH284pm+3lR0pP6BFgMZeGKauDb214UiW8V63CfY0QnKJtqd8jWJTSvYt52sX4llmXUxyjloF1dPqg5kVTtUD4OzCPYeAg95dk6Cdx7L16MUNyx3xKUldG3pr7IWhlTpf+1AvvXdzKxUUWfXcL6efp27u3wkas2CPWjXw1IoxHRTm53ba/T/flKRJSw7qge/2lpkmpbLScor05p9HFRXipVs7B1XqmEEtA9SloXepdY/3ayRJ5Yaax/s2LLXcpaG3BrYM0LI9aacNHl/+k6TcAqv+Oyii3K5vPw+z3MzFrXsFRTY9/fMB+Xm46ovb28innO5ld9fi6W5Kup6LbDbZbCo176HZRXqif+MKa3LUlvhs/X0wU8OjQzQiOkQHUnP1yyn3BQ6PDjHuIfxmS3KZ/6acuK9zeHTxyOfvt6fIarXp4T4NdXKPeMn7e7Jjxwu06kCGrm1br9S9ghazSQ/1Lv31kYrvrTS7mDT58qblXk+wj8X+NwGAU9FyCDgop8Cqq97brh+Ht9V3d7fV4l2pWhKTpuTsAgV5W9Q/0l+XtgrU1F9LzyXn6mLS7V2Kw5XFbFKIj5t6NfXT5a0DlV1QpNs/222MLD6dd9ckyCZpzpAWWjGmvfrP3lphl2pmXpExB2FVvPHHUT3UJ1zPDmyszzYlnrH1cHNclpaP7qCZf8UpLjNf17atp0GtAvXh+mPlXmOTQA8tHtlO329PUZivm+6/KEw5BVY99mPsaV/nSHq+xv5vj969saV2PNpVH204pgNpeQrytqhDqJeua1dfbV/dYDw55L11CWoc4KaJAyO05/Fu+nRTorYnFD8hJSrYUzd1bKBgH4sxD+DX/yTr5SuaatGIdlqwNVl+7mbd1iVIBUU1M/n3nL/jNe+m4pbeSUtKz1noYpLu7l7cklnR/I8HUvO07nCmbuscrEd+KJ5CaOaqOI3vFa7lYzromy1JCvax6P6LwrU5LktdG5buYn94YaxW3ttBf97XSTNXxSktp1BDOzWQq7ls9/k3W5I1f22CxvcKV9eGPvphR4qSsgrUyN9dFzbxVYv6noqcsq7McQDqLsIhUAV7k3PVZfomjbkgVDe0r6+nL2ksH3cXpWQXat3h47rry9369JSnoXhYXPTxra0lFT9KLzWnUNsTsvXsLwf0XgXPVq7IvDUJstmkuTe00K/3dlC/d7ZU6/WdKjWnUDP/itOTlzTWsK7B+nD96ae1+X57ijEJdusgTx07XqDnlx7U/y09VO7+l83bqteuaq7/DoqQp8VFqw9m6rEfYys1bc/7645pd2KOHu3bSGMuCFWAh6uSsgu0KzFHz/5yUPGZpYPz80sP6cedqRp/UZiua1dfYy8Ik9Vm097kXH2xOUmzVscZT+2Y9uthmUzFg0PeuKa54jPz9cXmJL23LkE7Hu1WyXev8j7flKjXrmomH3ez3jtllPJlrQPV0N9dr/5WduTwyb7ZkqzJlzfVkPYN9NmmRE34fp/iM/M1umeopl3ZTDFJORr37V61bOBZJhyuPpipQXO36uXLm+qJfo2Unluor7ckadaqeG19pGuZ1xrxVYxW7E3T6J6herJ/I7mZXRSfma8NR47ryZ/3V/n9AFC7TBlpyWfXc6+ASsjKtyps2s4z74gaUd5TU06n5Akppsf/qIXq6j43s0lxz/bQ2kPHddlp5nc838Q91ua0UxoBqB78lAFAHXN7l2DV87JU69N3AKCy6FYGgDriqqh6ahLorkmDIrQtPqvcQTsAUNMIhwBQR7x1bXOF+7lp/ZHjGvn1nkpNFwQA1Y17Ds8TNptN2QVn15fay2KSqZzJhSuDew6Bc09V7zm02WzKzj7z4Ka6xMvLy+HPQcBRtByeJ7ILbGddWCr+RcCHIoDqkZ2drbCGEc4uwy5xRw7K29v7zDsC1YgBKQAAADAQDgEAAGAgHAIAAMBAOAQAAICBcAgAAAAD4RAAAAAGwiEAAAAMhEMAAAAYCIcAAAAwEA4BAABgIBw6ILrnRWrRKkpx8fHOLgUAcJZyc3NTdHS0s8sAyuDZynaKi49XamqqAgL8FRYa6uxyAAC1KDg4WIMGDVK3bt3UrVs3RUREyN3dXQUFBTp27Jg2bNig9evXa8WKFYqJianwPG5ublqwYIEGDBiga665RkuWLKnFqwBOj3Bopx07dkiSWrdu7eRKAAC1pXfv3rrvvvt0ww03yM3Nrdx9IiIi1L17d2N52bJlmjVrlr777jsVFhYa60uC4ZVXXilJ+vTTT9WsWTMdP368Zi8CqCTCoZ127NgpSWpzjoVDk0ma0DtcY3qGqmmghxKzCvTlP0l6bvEBZRdYnV1erfC0uGjrw13VvL6HZvx5VOO/2+fskgA4WWhoqN555x1de+215W5PTExUTk6OLBaLQkJC5OLy791aAwYM0IABA7Rp0ybdfffd2rx5c5lgmJWVpRtuuIFgiDqFcGinHTt3SZLatDm3wuHrVzfXhN7hWrAlSa/+dkRRwV56oFeYuoR7a+DcrbLZnF1hzXt+cISCfPiRAFDspptu0jvvvKN69eoZ6xITEzV//nwtX75c69evV3JysrHN29tbnTt3Vq9evTRixAi1atVKktS5c2etXbtWL730krp3714qGF5xxRX67bffavfCgDPgN6GdSrqV27RurQ0bN2ru3Hlat36DcnJyFBXVRg+Mv199evdycpX2aRvipfEXhembLUm68aOdxvrYlFy9dV2khnYK0mebEp1YYc3r0tBbD/ZuqMd/itVrVzd3djkAnGz8+PF68803jeVjx47p8ccf12effab8/Pxyj8nKytKff/6pP//8U9OmTdPAgQP16quvqkOHDrJYLJo4cWKpfQmGqKsYrWyHrKwsHTx4SGazWX+tWqWhtw7Tho2bFHpiYMrGjZs0YuRoLV223MmV2ufWzg3k4mLS9N+Pllo/d028svKLNKxrkJMqqx0uJmnuDS318+5ULdiafOYDAJzTRo8eXSoYfvHFF2rbtq0++OCDCoPhqWw2m5YsWaLu3bvrpZdeku2k7peCggKCIeo0wqEddu7cZfyAvz3rHU1+6QX99cevWvjdAq368zdddOEFslqtevGll0t9ENR10Y18VWS1ac2hzFLr8wpt2nQ0S9GNfJ1UWe14qE9DtQn21P3f7nV2KQCcrHv37nr77beN5eeff15Dhw4t1X1sr06dOslkMhnLFotFUVFRVaoTqEmEQzvs2Fnc5VpUVKRpU17WDUOul9lsliT5+vrqpRdfkIuLiw4dOqTY2P1OrNQ+4X5uSsoqUH5R2UB7JD1PQT4WWcymco48+zUNdNd/B0fo+aUHdSA1z9nlAHAid3d3vf/++8bn+iuvvFKqK9hepw4+yc3NNbZNmzZNTZo0qVrBQA0hHNqhZKRy34v7aPDgQWW2N2rUUCEhIZKkhIQEY/2hQ4c1+t771KlLN3Xt3lOPPvYfpaam1k7RleDl5qK8wvJHJOcWFgdGL8u5+a3yzpAW2pecq9d+O3rmnQGc05544gm1a9dOkrR+/Xo9+eSTDp+rvFHJl156qebMmSOpuEHhnXfeqXrRQA1gQIodSsLhbbfdWuE+Pj7ekiQvLy9J0vHjWRp2513y9/fX66+9otzcPE2d9opGjRmrLz//tNS0B5X12ONPKjUtza5jCk2uUsTYcrdl51sV7GMpd5uHa3GLoTOmsxk3foJcbYVn3rEcp7veErd3CdKglgG6+J0tKrSePbcBAOerqnwmSCo11+CpPDw8NH78eElSfn6+7r777tPufzrlBcOSeww3btyoyy67TBEREbrsssvUrl07bdu2rcJzjRv/oFxd+VUN+wUGBGja1MkOHct3XCUVFRVpd0yMXFxc1LNHjwr3OXo0TpIUHh4mSfr8iy+VkHBMn33ykcLDwyVJoaEhuvmW27Rs2XINGjTQ7lpS09KUkpJiX/0uFimi/G1HM/LVNsRLbmZTma7lhv7uSjxeoIJyupxrWmpqqszWAoeOPd31SpKb2aTXrm6mn3alKj4zX5H1PSRJDf2LJ7f193BVZH0PJWUVKD23yKEaAFSvqnwmSMWf0RW56aabVL9+fUnFA1C2bt3q0GucLhhKUmZmpqZOnaoZM2ZIksaOHav777+/wvOlpqYa3dxAbSEcVtK+2Fjl5uaqfv36RuvgqTZt2qysrCy1bNlCQUHFI3xXrFypbt26GsFQkrp26aLGjRtr2YoVDoXDwIAAu48pNFX8pV57OFOXtg5Uj8a++mN/hrHe3dWkzuHe+m1fut2vVx0CAwOr1nJ4Gp4WFwX7uOmqqHq6Kqpeme13dAvWHd2C9egPsXr1tyMO1QCgelXlM0E6fcvhiBEjjH+fPCDFHmcKhiU++ugjTZkyRd7e3rrzzjv14IMPVlhbYGAgLYdwiCNZoQTfcZW088Tk1wUFFf/V+ulnn0uSrr7qKmPdnj17dflll5bZt2XLFtqzx7HRsY40E2flW7Vg2s5yt32xOUlP9W+sB/uElwqHo3qEytvNrE82OmeOw5lvvSFvN8fudTzd9ZZsv/GjHWXWB3lbNGtICy3amaJ5axP0T1yWQ68PoPpV5TNBKg5rCxYsKLPebDYrOjpakrRv3z6tXr3a7nNXNhhKUkZGhhYuXKihQ4fK19dX7dq10+bNm8s978y3psvbu/wGCaCmEA4rqWTy64yMDMXGxqpZs2altq9Zu1bfL/xBgQEBuvOOYcb6jIwM+fmVnQomwN9fsbGxNVt0JW2Nz9bMVXEa3ytc39zRRj/tSjWekLJyb7o+PQcnwC602vTNlrJTUzQJdJck7U3OLXc7gHNPVFSUcZ/42rVr7T7enmBYYu3atRo6dKgkqVu3bhWGQ8AZzs0hqDVg+4nBKBaLRRMnPa/MzH/nBFy6bLnuG1d8I/OUKS9V2O1clz34/T498kOs2oV6aeZ1kRraqYHe+jNOV7237bx4dB6A81fHjh2Nf2/YsMGuYx0JhlLxaOgSnTp1sus1gZpGy2EllXQrT5r4rJ59bpJ6X9xPkc0jdSwxUfHx8XJxcdFzzz6tS/r3L3Wcn5+fMjIyy5wvLT1d/v7+tVJ7ZVht0mu/HdFr5/n9dQdS82R6/A9nlwGgFvn5+Rn/jo+Pr/RxjgZDqfR0Zye/PlAXEA4rITExUUlJSQoI8NctN9+k4KAgvTXjbe2OiZGnp6cuHTxIY0aPUseOHcocGxnZXHv2lr23cM+eveoR3b02ygcAnMYHH3yghQsXytPTU4mJlb+Npn79+saTTux9VvLevXvVqlUr5ebmKiMj48wHALWIcFgJQUFB2rP738EL/fv3U//+/Sp17CX9++nV16YrLj5eYSeewbxp82YdPHhQTzz+aDVXCgCwV05Ojo4csb/XJC4uTv369dMPP/yg8ePH2/Ws5IKCAsXExNj9mkBtIBzWsFtuuVkffvSx7h07ThMeuF95efmaOvUVderYUQMHDnB2eQCAKjh06JC6dOkiq7X2HxQA1BQGpNQwXx8fffTh+woOCtKDDz2qp55+Vl26dtGcObMcejoKAKBuIRjiXEPLYS1oEhGhuXN4hiYAAKj7aLoCAACAgXAIAAAAA+EQAAAABsIhAAAADIRDAAAAGAiHAAAAMBAOAQAAYCAcAgAAwEA4BAAAgIFwCAAAAAPhEAAAAAaerQwAOC94eXkp7sjBajvfuPEPKjU1VYGBgZr51vQyy9XBy8urWs4D2INwCAA4L5hMJnl7e1fb+VxdXWU2m+Xq6ipvb+8yy8DZim5lAAAAGAiHAAAAMBAOAQAAYCAcAgAAwEA4BAAAgIFwCAAAAAPhEAAAAAbCIQAAAAyEQwAAABgIhwAAADAQDgEAAGAgHAIAAMBAOAQAAICBcAgAAAAD4RAAAAAGwiEAAAAMhEMAAAAYXJ1dAAAAqHk2m03Z2dnOLsMuXl5eMplMzi7jvEM4BADgPJCdna2whhHOLsMucUcOytvb29llnHfoVgYAAICBcAgAAAAD4RAAAAAGwiEAAAAMhEMAAAAYCIcAAAAwEA4BAABgIBwCAADAQDgEAACAgXAIh6wY00ErxnRw+PgxF4Sq6OVeCvW1VGNVAACgqgiHDojueZFatIpSXHy8s0s5a32/PUWSdHXbek6uBADgLC4uxJC6iGcr2ykuPl6pqakKCPBXWGios8s5a8Vl5Gvd4eO6rl19zf07wdnlAADsEB4erm7duqldu3by9vaWzWZTVlaWtm3bpnXr1im+Eo0njRo10qJFi/Twww9ryZIltVA1KotwaKcdO3ZIklq3bu3kSs5+325L1nMDI+Tt5qKsfKuzywEAnEaTJk00ZswY3XHHHWrUqNFp9z106JA++OADzZkzR4cOHSqzvVGjRlqxYoVatGih77//XpdffrlWrlxZQ5XDXoRDO+3YsVOS1OYcC4dP9G+krg191K2hj5rX99D+lFw1e3md3edZ+0AneVvMavvqBknSV8Pa6JIW/qo/6W9J0lvXNtf9vcIV8Nwqfbc9RS9d3lSXtQ7UN1uSq/V6KsM2tXe564/nFcn32VW1XA0A1E2NGjXS9OnTdf3111e6G7hx48Z65pln9OSTT+qbb77Rgw8+qLi4OON8JcFQKg6Su3fvrrH6YT/CoZ127NwlSWrT5twKh5Mvb6rkrAJtOHJcAZ5mh85hdpHahXjp220pxrouDb21OS7LWO4c7q3YlFyl5xYpPTdbMUk5uq5dfaeEQ0n6bV+65vxduvujwGpzSi0AUNcMHz5cr732mvz9/Y11+fn5+v3337V27Vpt3LhRycnFn98NGjRQly5dFB0drT59+shischsNuvmm2/WoEGD9OCDD2r58uWlgmFMTIz69euno0ePOuX6UD7CoZ1KupXbtG6tDRs3au7ceVq3foNycnIUFdVGD4y/X31693JylfZr/vJaxabkSZK2PNxFPm72B8TWQV7ytJi16ehxSZKvu1nNAj2MwSeS1DHMW0tj0ozl77Yla3h0iMwuUpETepb3peTqk42Jtf/CAFCHmc1mvfvuu7r77ruNdXFxcZoxY4bmzZunhITy7xX/4osvJElhYWEaOXKkxo0bp5CQEAUGBuqDDz5Qenq6ETQJhnUXw4TskJWVpYMHD8lsNuuvVas09NZh2rBxk0JPDEzZuHGTRowcraXLlju5UvuVBMOq6BzuLUnadLS4pbBTmLdcXEzGcvN6HvLzcNWmk1oSv9uWonpeFl3czL/sCWuJxWyStxs/CgAgFY8g/vjjj0sFw/fee09t27bVSy+9VGEwPFlcXJz+7//+T1FRUfroo4+M9QTDswO/Ee2wc+cu2WzFXY5vz3pHk196QX/98asWfrdAq/78TRddeIGsVqtefOllY7/zSaew0uGwJCxuPHK81HLJdkkqOvE+mV1MtVbnyW7s0EDZL1yk4y9cpITneujNa5vLz8OxbnUAOBe8/PLLGjp0qCQpLy9PN910k4YPH660tDS7z5WamqqnnnqqzOjlRYsWEQzrMMKhHXbsLB6MUlRUpGlTXtYNQ66X2VwcJHx9ffXSiy/IxcVFhw4dUmzsfidW6hydwrwVl5GvY8cLJBWHwdwCq3YcyynefkpYlKTr2tVXWk6hVu5Nr/V6/z6YqUlLDurGj3fozs93a/medI3vFa7fx3akJRHAeal379565JFHJEkFBQUaMmSIvv76a4fPVzL4pKSHraThZNy4cerRo0fVC0aN4DegHUpGKve9uI8GDx5UZnujRg0VEhIiSUaze1x8vCb99/805IabFdWuo1q0iqq9gmtZqyBPHc3IN5Y7h/to+7FsFZ4Y4HF560AdTM3V4fR/97m2XT39tDPF2Kc2XTBjs1797Yi+25aijzYc062f7tJTi/arY5i3JvQOr/V6AMCZPD09NX/+fGNE8hNPPKGffvrJ4fOdOio5JiZGU6ZMkVR8T+P7778vd3f3qheOaseAFDuUhMPbbru1wn18fIpbx7y8vCRJBw4c1OJfflGHDh3U0dJB6zdsqHIdjz3+pFLtbN4vNLlKEWOr/Nqn4+piUn2v4m+pkpHLn24qHuwxqGWAohv7avLyf+e7ahPsqdZBXnrul4Plnm/c+AlytRU6VIuj1zvt1yOaOChCV7app5eWH3botQHUjKp8JtSE1NRU4/8jR48ts1zXFBae/r2755571LJlS0nSX3/9penTpzv8WuUFw379+ikhIUEDBgxQdHS0oqKiNGzYMM2bN6/C84wb/6BcXYkqjggMCNC0qZMdOpZ3vJKKioq0OyZGLi4u6llBU3hRUZGOHi2exyk8PEyS1CO6u1b9+bsk6Y03Z1RLOExNS1NKSsqZdzy5NheLFFHllz6tFXvTdWe3YL0zJFJLY9LkYXFRWk6hHuoTrokDI7QrMVuTV/wbuK5tW195hVYt2pla7vlSU1NlthY4VIuj11toteloRr4aePPMZ6CuqcpnQk2y2WylPpNPXa4rioqKTrv9vvvuK/Vvq9WxKSQqCoYl9xiOGzdOa9asMf59unCYmppq3L6F2kM4rKR9sbHKzc1V/fr1jdbBU23atFlZWVlq2bKFgoKCJNXMcyMDAwLsPqbQVPNf6ocX7lOIj0VjLgjTmAuKw/HDFzdUTkGR3l2ToElLDioz798Pp2vb1dOKveml1p0sMDCwai2HDnB3NamRv5tWH8x06HgANacqnwk1ITU1VTabTSaTSYGBgWWW65rTtRz26dNH7dq1kyT9/vvv2rx5s0OvcaZgKElr167VmjVr1KNHD3Xp0kU9e/bU33//Xe75AgMDaTl0kCNZoQTveCXtPDH5dUFBxX+1fvrZ55Kkq6+6qkZrcaSZOCvfqgXTdtZANf9Kzi7UZfO2qXk9D828PlKDWwZo8Ltb9cf+DOUVlr6nMMTHop6NfTXu270Vnm/mW284PDDkTNdbz8tVKdllPyj/79ImsphdtHB73furHzjfVeUzoSaMHD1WKSkpCgwM1LtzZpVZrmuysrK0YMGCcrddeumlxr/nzJnj0PkrEwxPfo2SASmDBw+uMBzOfGu6vL3Lb5BBzSEcVlLJ5NcZGRmKjY1Vs2bNSm1fs3atvl/4gwIDAnTnHcOcUWKVDOsapCYBHpKkIG+L3MwuevqSxpKkA2m5+nhD5SeK3peSKzezSftScrVsT/mjkK9pV0+S9J2TQtgzAxrrgghfrdibroNpefJxM+uKNoG6pEWAVh/I0Ft/xjmlLgBwhm7duhn//vXXX+0+3p5geOprnPzaqBsIh5W0/cRgFIvFoomTntfMGW/K19dXkrR02XI98eRTkqQpU16qsNu5LhsRHap+kaUnon7hsiaSpJV70+0Kh1LxtDYrTjM9zfy1Cfpg3THlFzlnPsiVe9PVNthLd3ULVn0vi4psNsUk5eipRfv12u9HyrR0AsC5rGvXrpKkxMREHTp06Ax7l2ZvMJSkvXv3Gk9L6d69u+OFo0YQDiuppFt50sRn9exzk9T74n6KbB6pY4mJio+Pl4uLi5579mld0r+/kyt1TP/ZW6rtXA393VTf21JqsutTFVmlIjkvgH2/PaXUY/0A4HxlNpsVHBwsSdq9e7ddxzoSDKXiQTu7d+9WdHS0wsLCHCscNYZwWAmJiYlKSkpSQIC/brn5JgUHBemtGW9rd0yMPD09dengQRozepQ6duzg7FJrzenC5JH0fJke/6MWqwEAOMpkMunpp5+Wh4eHDh+2bwqvefPm2R0MS7z33nv6+eeflZOTI5PJdF4+WayuIhxWQlBQkPbs3mEs9+/fT/3793NOMQAAVKPCwkK99NJLDh07atQorVixQkVFRXY/K3nWrLo3aAfFCIe1YNHPiyVJe/buLbXcqGFDdejQ3ml1AQBQFQcPHlS/fv1OzPPLs5LPFYTDWjD+gQfLXR5y/XWaOsWx2csBAKgL7B3AgrqPcFgLTu6SBgAAqMvqzmyiAAAAcDrCIQAAAAyEQwAAABgIhwAAADAQDgEAAGAgHAIAAMBAOAQAAICBcAgAAAAD4RAAAAAGwiEAAAAMhEMAAAAYeLYyAADnAS8vL8UdOVht5xs3/kGlpqYqMDBQM9+aXma5Onh5eVXLeWAfwiEAAOcBk8kkb2/vajufq6urzGazXF1d5e3tXWYZZy+6lQEAAGAgHAIAAMBAtzKqzDa1t7bEZek/i/Zr0c5ULR7ZTqG+brLabMrMK9ID3+3TpqNZkqTlY9qrU5i3nl96SG/8cdTJlQMAgFMRDlEt+sz6R+m5RZKkmz/eafz7unb19f7NrdR5+kZJ0iWzt+q9m1s6rU4AAHB6dCuj2pUEQ0ny9zDLJpsTqwEAAPag5RA14oNbWql/pL8k6Yr525xcDQAAqCzCIWrEXV/sliTd2S1YU65oqivnb3dyRQAAoDLoVkaN+nD9MfWP9Fc9L/4OAQDgbEA4RLXy9zArzM/NWL62XT0lZxUqJbvQiVUBAIDKojkH1crfw1VfDWsjT4uLrDYpMatAV71HlzIAAGcLwiGq1cG0PPWcsdnZZQAAAAfRrYwqi8/M16/3dtTlbQLPuO/yMe3Vt7m/svKLzrgvAACofbQcosrC/m9Npfe9ZPbWGqwEAABUFS2HAAAAMBAOAQAAYCAcAgAAwEA4BAAAgIFwCAAAAAOjlQEAwDnPZrMpOzvb2WXYxcvLSyaTqdZfl3AIAADOednZ2QprGOHsMuwSd+SgvL29a/116VYGAACAgXAIAAAAA+EQAAAABsIhAAAADIRDAAAAGAiHAAAAMBAOAQAAYCAcAgAAwEA4BAAAgIFwCAAAAAPh0AHRPS9Si1ZRiouPd3YpAADASby9vRUREaHIyEg1atRIFovFruP79u2rQYMG1VB1juPZynaKi49XamqqAgL8FRYa6uxyAABALfHx8dGtt96qfv36qVu3bmrdunWp7Xl5efrnn3+0YcMGLVy4UIsWLZLVai33XH379tVPP/0kFxcXXXPNNVqyZEltXEKlEA7ttGPHDkkq8w0BAADOTU2aNNEjjzyiu+66S35+fhXu5+7urujoaEVHR2vMmDGKjY3VO++8o5kzZyorK8vYryQYenl5SZJGjhxJODyb7dixU5LU5hwLhy0beGhY12ANbhmgyPqe8rCYtDc5V1/9k6Tpvx9VdkH5f/mc7QI9XfXUJY10Xbv6auTvrsy8Im1NyNJziw/qj/0Zzi4PAOBEJpNJY8eO1ZQpU+Tj41NqW25urv755x/FxsaqoKBAnp6eatu2rVq3bi0Xl+K79po1a6YpU6ZozJgxGj58uH799dcywXDhwoW64447av3aTodwaKcdO3dJktq0ObfC4fDoEI27KEzfb0/RJxsTVWC1qX+kv168rKlu7hikC2ZsVm7huRUQIwLctfLeDvJxM2ve2njtTsyVv6dZHUO91dDfzdnlAQCcKDAwUF9//bUuueQSY11WVpY++eQTzZ8/X+vXr1dhYWGZ43x8fNS/f3/de++9uuyyy+Ti4qLmzZtr5cqV+uKLL3T11VeXCoY33nij8vPza+26KoNwaKeSbuU2rVtrw8aNmjt3ntat36CcnBxFRbXRA+PvV5/evZxcpf2+3pKsySsOKyO3yFg3e3W8YpJy9MyACI3oEaKZf8U5scLq9/GtreTqYlLH1zcoPrPA2eUAAOqIoKAgLVu2TB06dDDWvf3223rqqaeUnp5+2mOPHz+uhQsXauHChWrVqpXmzp2riy++WJJ0yy23GPvV1WAoMVrZLllZWTp48JDMZrP+WrVKQ28dpg0bNyn0xMCUjRs3acTI0Vq6bLmTK7Xf+sPHSwXDEl9sTpIktQ/1qu2SalSfZn7q08xfU1ceVnxmgVxdTPK08OMAAOc7Hx8f/fzzz0YwjI+P14ABAzRu3LgzBsNT7d69W/369dOMGTNks9mM9fv376+zwVAiHNpl585dxhf37VnvaPJLL+ivP37Vwu8WaNWfv+miCy+Q1WrViy+9XOqb4GzWyN9dkpRwjrWsXdEmUJJ0MC1P39/dVjkvXqTsFy/Srse66fYuQU6uDgDgLFOnTlXXrl0lSYcOHVLv3r21fLnjjT4XX3yxhg8fLpPJZKxr2rSprrrqqirXWlMIh3bYsbN4MEpRUZGmTXlZNwy5XmazWZLk6+url158QS4uLjp06JBiY/c7sdLq4WKSnh3QWAVFVn26KdHZ5VSr1kHFLaFzb2yhel6uuuvL3brny93KL7Lq41tb6+7uwU6uEABQ2y655BKNHTtWUnH38ODBg7V3716Hz3fq4JNNmzYZ22bNmqUGDRpUqd6aQji0Q8lI5b4X99HgwWUnrWzUqKFCQkIkSQkJCZKkRT8v1rj7H9DF/S5R+45dNPjSK/Tqa9NLDWmvq6Zf01wXNfXTc78c1O7EHGeXU6183YtDfWZekfrP3qJPNybq/XXH1GfWP0rNLtRLlzXVSX/kAQDOcS4uLpo9e7ax/J///Ec7TzQKOaK8Uck9e/bU//73P0lScHCwXnzxxaoVXUNMGWnJ50b/Zy0YcsPN+mfLFs1+520NuKR/uftcfuXVionZo2+++kKdOnXUDTfdovDwcA0ccIlCQ0O0Y8dOvTXjbbWIjNRnn35kDHe3x2OPP6nUtDS7jik0uWpBxNhK7//84Ag9OzBCs1fH6d4Fjv/VVBVDDs6Sq63sSLDKONP1fn93W13dtp5eWHZQzy4+WGrb+ze31F3dQxT1ynrtPHZuhWLgbFaVz4SakJqaKpvNJpPJpMDAwDLL57qz7foLCwu1YMGCCrdfccUV+vHHHyVJv//+u/r27evwLWLlBcOSewxDQkK0a9cu+fv7KycnR+Hh4Uqr4Hf6kCFD5Orq2NjhwIAATZs62aFjGa1cSUVFRdodEyMXFxf17NGjwn2OHi0e0RseHiZJmjN7lurXq2fs07NHD9WrV08PP/KY1q1frx7R0XbXkpqWppSUFPvqd7FIEZXbd+Kg4mA4f22C04KhVPzBY7Y6dq/jma73cHqeJJU7Sjkus/gG4UBPfjyAuqQqnwk1yWazlfpMPnX5XHe2XH9RUdlBlye77777jH9PnTq1RoKhVNyz+P7772vChAny9PTU3XffrenTp5d7rtTUVOP2tdrEb79K2hcbq9zcXNWvX18+Pt7l7rNp02ZlZWWpZcsWCgoqHtRwcjAs0aF9O0lSQsIxh2oJDAiw+5hCU+W+1BMHRWjSoAi9vy5BI7+Osft1qlNgYGCVWg5PZ82hTI29MEyNypnPsGQQzrHjde+XEHA+q8pnQk0421rOqtvZdv3lzUlYIiAgQJdffrmk4pHEP/30k0OvcaZgWGLWrFmaMGGCJOm2226rMBwGBgZWqeXQUYTDStp5YvLrgoKKA8Onn30uSbr6DCOQVv+9RpIU2by5Q7U40kyclW/Vgmmnv3fi2YGNNWlQhD5cf0zDv4qRswdcz3zrDXm7OXZb7Jmu99ttyXojt1DDugTrhWWHlJVfPMF3qK9F17Wrr12J2dqbnOvQawOoGVX5TKgJI0ePVUpKigIDA/XunFllls91Z9v1Z2VlVdit3LVrV+M2r4ULF1b4POTTqWwwlKRdu3Zpx44dioqKUseOHWWxWMrNFzPfmi5v7/IbpGoS4bCSSia/zsjIUGxsrJo1a1Zq+5q1a/X9wh8UGBCgO+8YVuF54uMT9Pr0N3Vxnz5q2zaqRmu2x30Xhun5wU10IDVXS2PSdFvn0tO5JBwv0NKYNOcUVwPScor06I+xmnNDS62+v5Pmr02Qm9lFYy8MlZvZpPHf7nN2iQCAWtKtWzfj3+vXr7f7eHuC4cmvExUVJXd3d7Vv314bN260v/AaQjispO0nRipbLBZNnPS8Zs54U76+vpKkpcuW64knn5IkTZnyUoXdzllZWbr3vnGyWCx6efILtVN4JUU3Ln5mZJNAD304tFWZ7Sv3pp9T4VCS5v6doKSsQj3et6H+79ImstpsWnUgU7d9ukt/Hch0dnkAgFrSpk0b49+bN2+261hHgqFUPK3NsGHFjUlRUVGEw7NRSbfypInP6tnnJqn3xf0U2TxSxxITFR8fLxcXFz337NO6pH/5o5hzc3M1+t77dPjwYX326ccKDq5b8+jd82WM7vnSufcYOsP/tibrf1uTnV0GAMCJ0tLSdODAAXl6eio5ufK/E3r37u1QMJSKB6bExcUpNze3zj0phXBYCYmJiUpKSlJAgL9uufkmBQcF6a0Zb2t3TIw8PT116eBBGjN6lDp27FDu8QUFBbp//ARt3bpVH77/nlq2aFHLVwAAACryyCOP6JFHHrH7uAMHDig+Pl7Nmze3+1nJH3/8sT7++GO7X7M2EA4rISgoSHt27zCW+/fvp/79+1XqWKvVqocffVx/rVqteXNnq1OnjjVQIQAAqG2HDh1Sv3799MQTT+ihhx6qcy2AjiIc1rBJ/31eixb9rDGjR8nD00MbT3p0TkRERLlT3QAAgLPDoUOHNG7cOGeXUa0IhzXs199+lyTNnjNXs+fMLbVtyssv6YYh1zujLAAAgHIRDmvYryuWObsEAACASqs7s4kCAADA6QiHAAAAMBAOAQAAYCAcAgAAwEA4BAAAgIFwCAAAAAPhEAAAAAbCIQAAAAyEQwAAABgIhwAAADAQDgEAAGDg2crnCS+LSXGPtXF2GXbxspicXQIA4Bzh5eWluCMHq+1848Y/qNTUVAUGBmrmW9PLLFcHLy+vajmPvQiH5wmTySRvN8IWAOD8ZDKZ5O3tXW3nc3V1ldlslqurq7y9vcssn83oVgYAAICBcAgAAAAD4RAAAAAGwiEAAAAMhEMAAAAYCIcAAAAwEA4BAABgIBwCAADAQDgEAACAgXAIAAAAA+EQAAAABsIhAAAADIRDAAAAGAiHAAAAMBAOAQAAYCAcAgAAwEA4BAAAgIFwCAAAAAPhEAAAAAbCIQAAAAyEQwAAABgIhwAAADAQDgEAAGAgHAIAAMBAOAQAAICBcAgAAAAD4RAAAAAGwiEAAAAMhEMAAAAYCIcAAAAwuDq7gPPFu/PmKysrW8PvuUu+vr7OLgcAAKBctBzWgszMTE2Z+ormvjtPXl5ezi4HAACgQrQc1oKt27bLZrOpdatWMpvNzi4HkiYOitCkQREVbi8ossrtyb9qsSIAAOoGwmEt2LZtuySpbdsoJ1eCEgu2JGlPUk6Z9R3DvPV4v0ZauD3FCVUBAOB850w4tFqtWvzLEn333UL9s+UfpaamKTAwQM2bN9fAAZfotluHys3Nzdg/KytLn3z6mRYtWqwDBw8qLy9PkZHNNfSWm3Xr0FtkMplKnf/w4SPqd8lABQU10Ko/fy+3hmuvv0Hbtm3X559+rO7du+nnxb/o/vETjO2fff6FPvv8C2P54Yce1H1jx1TzO4HK2BKfrS3x2WXW92nmJ0matzahtksCAKBOOCfCYXJyssZPeEhr1qyVJIWHh6ltVJQSkxK1evXf2rRps+4Ydrux/44dO3Xf/Q/o0KFD8vDwULOmTZV5PFM7duzUcxP/q02bNmvqlMmlXmP79hOtf1Hlt/4VFBRo9+4YmUwmtWnTRpKUk52tbl27auu2bcrLy1PbtlHy9PA0junatUu1vg+oGi+Li4Z2CtKhtDz9vCvV2eUAAOAUZ304zM7O1ohRY7R16zb16BGt5555Wm3atDa2746J0eLFvxj3+h06dFj3jBilpKQk3X3XHZrwwHhj9PDqv9do1Oh7teB/32rQwAEaNGigcZ7tO3ZIkqIqCIcxMXtUUFCgxo0by8fHW5J0/fXX6dprr1GnLt0lSR9/+L78/Pyq/01AtbipYwP5e7rqzT+PympzdjUAADjHWT9aefLLU7V16zZ179ZN789/t1QwlKRWLVtq/P3jjOX/PPmUkpKSdM/dd+mZp58qNa3MBT176Naht0iSfvjxp1Ln2b5jp6SK7xvcZrQstim1PjZ2v3JyctSwYTjBsI4b0SNEVqtN8+lSBgCcx87qcLh37z59+dXXcnNz02uvTi11T2F51qxdqzVr1srPz08PPfhAufu0a9dWUvE9hifbvr245fDU8FeiZNDJqeF0R0mLYxsGo9RlrYI81aeZv5bvTdf+1DxnlwMAgNOc1d3KC3/4QUVFRbr+umsVHh5+xv1//HGRJOmGIddXON+gxWKRJLm5/xs0U1NTFR8fL29vbzVp0qTc40q6nUvuN/x3fXGLY1QFodIRjz3+pFLT0qrtfOeiQpOrFDG20vuPiA6RJL27Jr6mSgJQRePGT5CrrdDZZRhSU1ON/48cPbbM8rmO66/b1x8YEKBpUyefecdynNXh8M+/VkmS+va9uFL7b9i4SZJ00YUXVLhPQkJxl2LDk8JmSathm9aty4xilopHSu/cuUtS2ZbFHTt3lru+KlLT0pSSwlQrp1PkYpEqnsawFLOLdGe3YCVlFeh/W5NrtjAADktNTZXZWuDsMsqw2WylPpNPXT7Xcf3n3vWf1eEwLq64ladx40aV2r8k+IWFhVW4z/oNGyWVHklsBLwK7jfctHmzsrOz5efnp4YNG5batsNoOay+buXAgIBqO9e5qtBU+W/tq6PqK9TXTdN/P6L8IkaiAHVVYGBgnWs5tNlsMplMCgwMLLN8ruP66/b1VyUrnNXhMCeneBLjvNzK3SNmsxX/4s/OKTu/nSQdO3ZMy5evkKurqy4dPMhYv2fPXklSy5Ytyj1u4cIfJZW93zApKUlJSUny8/NTo0YNyzvUIY42E59PsvKtWjBtZ6X2HdGjuEuZuQ2Bum3mW2/I263u3Co/cvRYpaSkKDAwUO/OmVVm+VzH9Z+71193fsocEBYaKknasHFjpfZv0qS4n7Fk8MjJrFarnp34X+Xn5+vGG4aofv36xraMjAxJKrdLecOGjcbE1lGn3G+4LzZWktSsadNK1YfaF+bnpstaBervg5naWs6k2AAAnG/O6nBYMg/h27Nm6/c//iy1LT4+QW/Pmq39+/cb6664/DJJ0py58xSzZ4+x/tixYxo/4SEtW7ZcLVpE6vHHHil1rpKu4i++/Mq44dRqtWrx4l80Zuw4YxDLqS2HXp5eJ2qJV3Y2waMuurtbsFzNJgaiAABwwlndrTxyxD1avmKFtm3brnuGj1RQUAOFhYYpLT1dhw4dkslk0t133WHsP+z22/Tz4l+0YcNGXXX1dWoSESGLm0V79+5TYWGhOrRvr7fffqvMfIQ3DLleH338ibZu3abeF/dXo4YNlZScrMzMTD04Ybz+9+13io3dX2ZEcsuWLRQeHqajR+N0cb9L1LRpU5ldzLr22qt1261Da+U9wulNXnFYk1ccdnYZAADUGWd1y6G3t7c+//RjPfzQBEW1aaPMzOPaHRMjm9WqQQMHaOqUyaWmrHFzc9MH783T/ePGqnHjRjp0+LCOJRxTl86d9Px/J+rLLz41uqpP1qZNa82d8446dewos9mstPR0XXjhBfr8s481Yvg9OnDgoFxdXdWyZctSx7m7u2veu3M0cMAAubpatHnzP1q/YUOF0+gAAAA421ndcihJnp6eum/svbpv7L2V3v/BCQ/owQnlT4JdkT69e6lP717lbtu9c1uFx7Vs0ULvzJph12sBAAA4y1ndcggAAIDqRTgEAACAgXAIAAAAA+EQAAAABsIhAAAADIRDAAAAGAiHAAAAMBAOAQAAYCAcAgAAwEA4BAAAgIFwCAAAAAPhEAAAAAbCIQAAAAyEQwAAABhcnV0AUBO8LCbFPdbG2WUAqEZeFpOzSwDOC4RDnJNMJpO83fhFAgCAvehWBgAAgIFwCAAAAAPhEAAAAAbCIQAAAAyEQwAAABgIhwAAADAQDgEAAGAgHAIAAMBAOAQAAICBcAgAAAAD4RAAAAAGwiEAAAAMhEMAAAAYCIcAAAAwEA4BAABgIBwCAADAQDgEAACAgXAIAAAAA+EQAAAABsIhAAAADIRDAAAAGAiH56j/ffudrr3+BnXt3lPtOnTWpZddqXnz35fNZnN2aQCACqxc+auuvuZ6RbXrqL79B2je/PedXVKtWrN2rcaMHaeL+12iFq2iNPPtWc4uqdbMfXeebrx5qLp276ku3XrolqG369fffndKLa5OeVXUuPr16+v++8aqWbNmcnNz07p16zXxv8/LbHbR3Xfd6ezyAACn2LJlq+69736NGH6PXn/tFW3+5x89+9wkeXp66LZbhzq7vFqRnZWtFpGRuuaqK/XCS5OdXU6tWrXqb914wxB17NBBnp4e+vKrrzV6zFh9+vGH6tata63WQjg8R13cp3ep5YiIxlqydKn+/nsN4RAA6qD5772vDh3a67FHH5YktWgRqZiYPZo9Z+55Ew779eurfv36SpKmvvKqk6upXfPnzSm1/J/HH9Nvv/+hxb8sqfVwSLfyecBms2nz5n+0fsNGXXBBT2eXAwAox/oNG8r8YX9xn946cuSo4uLjnVQVnMVqter48ePy8vKs9dem5fAclpmZqV59+qmgoEBWq1Xj779Pd915h7PLAoCzSuz+/UpPSy+zvqCgwPj/pk2byyyXsLhZ1K5t2zO+TmJikoIaBJVa1yCoQfG2Y4kKCw11+BqqIiMjQ/v2xZZZX9nrl6TIyOby9fWt+WJryNat21RYWFhqnT3XHxgYqCZNIux6zVnvzFZGRqZuueXmKlTuGMLhOczb21vff7dAuTm52rBxo1559XUFBwfr5ptudHZpAHDWyMnO0f+9OLnCAX2ZmZl6/oWXKly+5647KxUO6ypPT0998OHHOnDwYLnbz3T9zZs30+QXX6jxOmvS7pg9+viTT8vddqbrd3Ex6cUXnrfr9T7+5FPNemeOZs+a6ZQ/CuhWPoe5uLioaZMmatOmtW67dahGjRyh115/w9llAcBZpW3bKF17zdUOHdu+fTtdeeXlldo3KKiBEpMSS61LTkou3hYcVN4htcJisWjCA/fL1dX+9iSLxaIJ4++XxXJ2t0Vde83VimrTxqFjbxgyRK1btar0/u/Om68pU1/R7Fkz1avXRQ69ZlURDs8jNptVeXl5zi4DAM46tw692e5uQS8vT40fd59cXCr3q7Zb1676/Y8/S6377fff1bBhuNO6lEs0bdpEtw61v3vzjmG3qXHjRjVQUe0ym100fvx98vDwsOu4yObNddONQyq9//Q33tRbM2bq3bnvOC0YSoTDc9b0N97Sn3/+pYMHD2nfvlh9/sWXmj3nXQ25/jpnlwYAZx2LxaIHHxhvV+vZqJEjFHTinsHKuOfuu/TPP1v06mvTtXfvPi1Y8K0+/OgTjRk9ypGSq901V1+ttlGVbz3r2KG9rrj8MrteIysrS9u379D27TtUUFCgxMQkbd++Q/sPHLC33GoXGhKi4ffcVen93dwsmvDAuEp/z7zw4kua++58vTJ1ipo3a6bExEQlJiYqMzPT0ZIdZspIS2ZW5GqWefy4Zs2arcW//KK4uHj5+vqqe7euunfMaHXo0L5WanjhpclavnylEhIS5O7ursaNG+nGG4botluHymw210oNAHCu+fa7hfrwo4/PuN+FF/TUo488JJPJZNf5V6xYWRwO9+1TUFAD3XXnnRox/G4Hq61+CQnH9NAjjyk3N/e0+3l5eWn6a9PUoEHlw7Ekrf57jYbdUTaA9egRrU8//tCuc9UEm82ml6e8orXr1p1x3xH33F3pWwokqUWrqHLXD7n+Ok2dUrtzPhIOq1lycrJuuuU2HTx4UO7u7mrRIlLHjh1TYmKSXF1dNf31V3XZpYOdXSYAwAFFRVZN/O/z2r59R4X7BAYGavpr087q0bmns2z5Cs18+53T7jPhgfvV9+I+tVRR7UpLT9eDDz2qjIyMCvfp2LGDnnvmqUrfUlDXnJ1V12FPPPm0Dh48qE6dOuq3lcv03f++0R+/rdRDDz6gwsJCPfb4E4qPT3B2mQAAB5jNLnrg/vvk6Vnx3HPjxo45Z4OhJF3Sv596RHevcPtFF11YZr7Gc0mAv7/uu3d0hdu9vb11/7ixZ20wlAiH1Wrr1m1asfLX4hbC115V/fr1JUlms1nj7hurCy7oqZycHL07f76TK/3XmjVr9fz/vaicnNN3EQAAigUHB1fY1XvppYPUtWuX2i2olplMJt1772j5+/uX2RYYGKgxo0ba3Z1+tunRI1oDLulf7rbRo0aowYnf/2crwmElFBUV6X/ffqe77hmh6J4XKapdR/Xpe4nuGTFKX3z5lYqKiiRJPy/+RZJ04YUXlDs665abbyre7+dfaq/407DZbPriy69VWFgoT0/7RmABwPmsf7++6tkjutS6sLAw3XXHMCdVVLsC/P1139gxZdbfP+5e+fr6OKGi2jf8nrsUEhxcal2viy5Un969nFRR9SEcnkHm8eO6654ReuzxJ/Tnn3/JzWJRVJs2slqt+uOPP/X0M88pKytLkrRpc/GM6N0reAZiybMR4+Pj68SjkNauXafY/fuZFBsA7GQymXTvmNEKCChuPXNxcdGE8ePsnurkbBbdvZsGDrjEWL7s0sHq0rmz8wqqZZ6enhp//31GK2m9eoEaPWqkk6uqHoTDM3jyqWe0evXfCg0N1Ucfvq8///hVC775Un/+vlKr/vxNDz/0oDFMPTZ2vyQpIqL8ubDCQkNlsVgkSftP7OssJa2G7du1Vfv27ZxaCwCcjfz9/XTfvcWtZzcMuV6tWrV0ckW1756771RIcLDCw8N05x23O7ucWte2bZSuu/YaSdL99409Z1pNGa18Glu3btN1Q26Uq6urvv/2G7U6wwznHTp1VU5Ojua9O6fCUVo9L+yt5ORkzXjrDYdHLT/2+JNKTUtz6NgSBfn5yjx+XH6+vnI9EVgBAPbLzc2Vu7v7OX+fXUUKCgpkMpkceoLKucBmsykvL6/OtRoHBgRo2lTHpsA5P7+SlbRk6VJJUr++fc8YDCUZTx9xO03YcnNzk6QzzhF1OqlpaUpJSXH4+JNlOGFyTQA412RnZzu7BDjZufQ9QDg8jT179kqSunTpVKn93d3dlZOTo/yCggr3yc/Pl6Qq/YURGBDg8LESrYYAAJzrqpIVCIencfz4cUmq9HxVfn5+ysnJqXBiTJvNZmzz9/NzuC5Hm4lLanj0sSfUpEmEnv/vRIfPAwAAzk2Ew9Pw8Sm+sbSyzzVs1qypEhISdPDgwXK3x8XHq+BEq2LTZk0drqsq9xye3Go4cvRYh2sAAAB1F/cc1pCWLVto8S9LtHHj5krt36ljR61e/bfWrd9Q7vb1J9aHhIQoLDTU4bqq455D7jUEAADlIRyexqBBAzVj5iz9+ttvitmzRy1btDjt/pddOliz58zVqlWrdejQ4TITYX/x5VeSpMsvq9qzlR29j4B7DQEAOD9U5Z5DprI5gwcmPKSfFv2s8PAwTZv6snr26GFsS0pK0ldfL9Bddw6Tl5eXJGn4iNH67fff1blzJ82eNVP169eX1WrVrHdm6/Xpb8rDw0NLfllUpZZDR5Tca+jt7cW9hgAAoEKEwzPIPH5c944dp7//XiOpuEs4JDhYxxITlZCQIJvNpg3r/pbfiQEmiYmJunno7Tp06JA8PDwUGdlciYmJOnYsUa6urnr1lam68orLa/061qxZq5envqLnJz3HpNcAAKBChMNKKCoq0oL/fatvv/teO3fuUnZ2toKCGqhFZAtdfvmlGnL9dTKbzcb+mZmZenvWO1r8y1LFx8fLx8dH3bp20dh7x6hjxw61Xj+thgAAoLIIh+eBoqIi/fzzL2oe2UxRbdo4uxwAAFCHEQ4BAABgcHF2AQAAAKg7CIcAAAAwEA4BAABgIBwCAADAQDgEAACAgXAIAAAAA+EQAAAABsIhAAAADIRDAAAAGAiHAAAAMBAOAQAAYCAcAgAAwEA4BAAAgIFwCAAAAAPhEAAAAAbCIQAAAAyEQwAAABgIhwAAADAQDgEAAGAgHAIAAMBAOAQAAICBcAgAAAAD4RAAAAAGwiEAAAAMhEMAAAAYCIcAAAAwEA4BAABgIBwCAADAQDgEAACAgXAIAAAAA+EQAAAABsIhAAAADIRDAAAAGAiHAAAAMBAOAQAAYCAcAgAAwEA4BAAAgIFwCAAAAAPhEAAAAAbCIQAAAAz/Dx56U2t3kpwrAAAAAElFTkSuQmCC", - "text/plain": [ - "
" - ] - }, - "execution_count": 7, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "from qiskit.circuit.library import CDKMRippleCarryAdder\n", - "adder = CDKMRippleCarryAdder(3) # Adder of 3-bit numbers\n", - "\n", - "from qiskit import QuantumCircuit, QuantumRegister, ClassicalRegister\n", - "\n", - "# Create the number A=2\n", - "reg_a = QuantumRegister(3, 'a')\n", - "number_a = QuantumCircuit(reg_a)\n", - "number_a.initialize(2) # Number 2; |010>\n", - "\n", - "# Create the number B=3\n", - "reg_b = QuantumRegister(3, 'b')\n", - "number_b = QuantumCircuit(reg_b)\n", - "number_b.initialize(3) # Number 3; |011>\n", - "\n", - "# Create a circuit to hold everything, including a classical register for\n", - "# the result\n", - "reg_result = ClassicalRegister(3)\n", - "circuit = QuantumCircuit(*adder.qregs, reg_result)\n", - "\n", - "# Compose number initializers with the adder. Adder stores the result to\n", - "# register B, so we'll measure those qubits.\n", - "circuit = circuit.compose(number_a, qubits=reg_a).compose(number_b, qubits=reg_b).compose(adder)\n", - "circuit.measure(reg_b, reg_result)\n", - "circuit.draw('mpl')" - ] - }, - { - "cell_type": "markdown", - "id": "e8a8deee-ad46-42cd-844e-51d5541c3f65", - "metadata": {}, - "source": [ - "回路をシミュレートすると、`5`(確率 `1.0`)を出力することがわかります。" - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "id": "ede21ca4-0358-4c83-9af5-63a1c67ae3cb", - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "{5: 1.0}" - ] - }, - "execution_count": 8, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "from qiskit.primitives import Sampler\n", - "\n", - "result = Sampler().run(circuit).result()\n", - "result.quasi_dists[0]" - ] - }, - { - "cell_type": "markdown", - "id": "cbd99d49-eb5c-4cd5-bac2-528497b8405e", - "metadata": {}, - "source": [ - "回路ライブラリー API ドキュメントの[算術回路](/api/qiskit/circuit_library#arithmetic-circuits)をご覧ください。" - ] - }, - { - "cell_type": "markdown", - "id": "ee5a64f5-1316-4217-a443-f09cb6d35c19", - "metadata": {}, - "source": [ - "## ゲート\n", - "\n", - "回路ライブラリーには標準の量子ゲートも含まれています。 より基本的なゲート(`UGate` など)もありますが、通常は単一ゲートと 2 量子ビットゲートから構築する必要のある複数量子ビットゲートもあります。 インポートされたゲートを回路に追加するには、`append` メソッドを使用します。最初の引数はゲート、次の引数はゲートを適用する量子ビットのリストです。\n", - "\n", - "例えば、以下のコードセルは、アダマールゲートと複数制御 X ゲートで 1 つの回路を作成します。" - ] - }, - { - "cell_type": "code", - "execution_count": 9, - "id": "a846a845-7ac5-4c92-b124-d2b90a773ba2", - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAPEAAAEvCAYAAACUiCfiAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAZ30lEQVR4nO3de3RU9b338feeBAIkkAupBsItEGECKIIXEBAB9VABUdHSHm99FKFW8YIiBex5ThXUQyja0/acIwSPGPBS2+dZPZVA9amitS6qlagoUDARDASGhGSSYBICM3s/f6QikQSSYfZMfpPPa60uF9m3byXv7D179kSrpqrCQUSM5Yn2ACJydhSxiOEUsYjhFLGI4RSxiOEUsYjhFLGI4RSxiOEUsYjhFLGI4RSxiOEUsYjhFLGI4RSxiOEUsYjhFLGI4RSxiOEUsYjhFLGI4RSxiOEUsYjhFLGI4RSxiOEUsYjhFLGI4RSxiOEUsYjhFLGI4RSxiOEUsYjhFLGI4RSxiOEUsYjhFLGI4RSxiOEUsYjhFLGI4eKjPYA0z3EcAseiPUXrxXcGy7KiPUaHpIjbqcAxePHh6miP0Wq3rEymU0K0p+iYdDktYjhFLGI4RSxiOEUsYjhFLGI4RSxiOEUsYjhFLGI4RSxiOEUsYjhFLGI4RSxiOEUsYrgOEXFlpZ/luSuYfNUUhg4fwfgJk1i67Enq6upYtORRsgfnkL/uxWiPKS5z7CBO/RGchlocx4n2OGET8x9F3LFjJ7PnzKW8/DDdunUjO3sQZWXlvJC/jpKSEqqqGz/uNzTHG+VJ3ZHp7cLMR3vzl5cr+Ghj8x9tvG/dQPZ8VMuGpw9FeLrIcA7swi58DWfn25z4kHa3ZKwR1+AZOR0r+Zyozne2Yjriyko/c+++h/Lyw8y+8w7um3cvSUmJAKzOW0PuipXEx8djWRZDvEOiPK2EmxM4hr3xGZztb566sK4aZ8srBP/6Kp4rf4TnkhsiP2CYxPTl9NJlT+Dz+bjt1ltYvGjhiYAB5s65ixyvl0AgQJ/MTLonJUVxUgk3xw5i/89TzQfcdEXsP/0X9vu/i8xgLojZiIuKiinYuInU1FQWPDy/2XWGDR8KgPdbZ+F9+/Yz9+57GDHyIkZdPJoFj/wEv9/v+swSPs7Hm3B2v9fq9e23VuOU73FxIvfEbMQbCgqwbZvrZkwnMTGx2XW6JHQBwOv95vXwV1/VcuvtP8Tn8/HM0z9n2dLH+HDrVub86MfYth2R2d0Q39miS5Kn2f/FGsdxsAv/0Obt7MINLkzjvph9Tbxly/sAjB49usV1fL7GGzk5J52JX/nNqxw6VMbLL66jd+/eAGRknMus79/Mm2++xdVXX+Xi1O4Zc2MaY25Mi/YYkVG6A8r3tnkz57M/4Uy6C6tz1/DP5KKYjbj0wAEAMv8R4rcFAgG2FhYCTc/Em99+m4suGnUiYIBRI0fSt29f3ty8OaSIH1m4GH9VVZu28dCJsZ0fb/OxWvLZWzUUfVDb7LLrF/U66/3fe98D2Bw/6/2Ew/juNdyaHsKGx+r56fx5HDreOewznUlqSgorcp8KaduYjbi+vh6Aow1Hm11esHETfr+fxMRE+vbtc+LrRUXFXPPdKaesf9552RQVFYc0i7+qisrKyjZtE2d1hnNDOlyzqg4dZ9/2+vDt8Fv8fj9Bp338jt2GuOb/zlujrqaKynqzsjBr2jZIT0+nurqa7dt3MGrkyCbLysrKWJ67AgDvkCFNfl9yTU0NPXp0P2V/KcnJ7NkT2o2P1JSUNm/joVNIx4qW1NTUdnMmdrocAdr2A8txwLLAk5RGWtfIZxHK98jXYjbicWMvo7i4mNV5zzF+3FiysrIA2Lbt03/cba4CICcCD3mEcpl0vMEx6vdO/8ev/p1OCe3jl8c7R78i+Ot/huMNrd7GsoDMoaxc/AvX5nJL7N2a/Ic5c2aTmpLCwYMHuWbaDKZOn8GVV09h5k2z6Nu3D2PGNN7w+vbbSz169KCm5sgp+6uqriY5OTkis8vZsbokYQ2b3ObtPKOmuzCN+2I24l4ZGbz80nomTbyChITOlJaWkpKcwrLHH2NN3ir27tkLQI636Zl40KCBFBWf+tq3qKiY7EGDIjG6hIFn9CxIaMMDPOdmY3knuDeQi2L2chogO3sQeaufPeXrtbW17C8txePxMHjweU2WTZ40kZVP/4KDPh+9MjIA+PiTTygpKWHRwgWRGFvCwErLJO57jxP87b9AQ/N35U9I70/crKVY8ZG/Kx0OVk1VRex8nKOVPv7kE2763g8YmJXFG69vbLLsyFdfMW36DFJTU3ng/nk0NBwjN/fnpKWl8dtXX8bjiczFi2mviRv/W0zt4zXxyZzDJdjv5jc+vWUHmy5MSMQ6/2o8l9+O1cXcx25j+kzckl27dgOnvh4G6J6UxLr8tSxb9iQPzl9AXFwckyZN5NEliyIWsISPld6PuBt+inOkAufvf8b+81o4Vg9dkoi790XjHuxoToeMePfuz4GmD3mcrH+/fs1ehou5rO49sS65Afv93zZG3KlLTAQMMXxj63R27W48E+fo44cSAzrkmXh9/tpojyASNh3yTCwSSxSxiOEUsYjhFLGI4RSxiOEUsYjhFLGI4RSxiOEUsYjhFLGI4RSxiOE65LPTJojv3PgZXVMY+nn6mKCI2ynLsuiUEO0pxAS6nBYxnCIWMZwiFjGcIhYxnCIWMZwiFjGcIhYxnCIWMZwiFjGcIhYxnCIWMZwiFjGcIhYxnCIWMZwiFjGcIhYxnCIWMZwiFjGcIhYxnCIWMZwiFjGcIhYxnCIWMZwiFjGcIhYxnCIWMZwiFjGcIhYxnCIWMZwiFjGcIhYxnCIWMVyHiLiy0s/y3BVMvmoKQ4ePYPyESSxd9iR1dXUsWvIo2YNzyF/3YrTHFAlJfLQHcNuOHTuZPWcu5eWH6datG9nZgygrK+eF/HWUlJRQVV0NwNAcb5QnFbc4jgP7PsXesRnqaxq/2FCLU7Efq2ef6A4XBlZNVYUT7SHcUlnpZ8b1M/H5fMy+8w7um3cvSUmJAKzOW0PuipXEx8cTDAYp3PoB3ZOSojyxhJv9xYfYb66Cw182u9waMArPlPuw0jIjPFn4xPTl9NJlT+Dz+bjt1ltYvGjhiYAB5s65ixyvl0AgQJ/MTAUcg+ztm7Ff/WmLAQM4ewsJ5j+IU7YngpOFV8xGXFRUTMHGTaSmprLg4fnNrjNs+FAAvN4hJ7520OfjZ48tZeaNs8gZdgHZg3MiMq+El3Pg79gbVoBjn3nl+mqCrz6Kc7TW/cFcELMRbygowLZtrpsxncTExGbX6ZLQBQCv95vXw19+WcLrb7xB+nfSueD88yMyq4Sf/f5vwQ60foMjh3E++3/uDeSimI14y5b3ARg9enSL6/h8hwDIOelMfOklF7PlvXdZ/ex/MnbsZe4OKa5wjlTg7HqvzdvZha813gQzTMxGXHrgAACZvXs3uzwQCLC1sBBoeib2eGL2X0mH4ewtbN1l9LdV7IPqQ+EfyGUx+xZTfX09AEcbjja7vGDjJvx+P4mJifTt6+7bDI8sXIy/qsrVY8g3Jvao5gc9Q9v2sZ8uYf+xhPAO1AqpKSmsyH0qpG1jNuL09HSqq6vZvn0Ho0aObLKsrKyM5bkrAPAOGYJlWa7O4q+qorKy0tVjyDf8VgOEGPEhfw2VDXHhHchlMRvxuLGXUVxczOq85xg/bixZWVkAbNv2KQse+Ql+fxUAORF4yCM1JcX1Y8g3yuMbgDocB9ry87kmGIedmE5aors/1JtzNt8jMRvxnDmzee21DRw8eJBrps1g4MAsGhoa+PLLEq6YcDmZfTJ5992/NHl7yS2hXiZJ6ALrHsLa/1mbtkm+fBarrrjDpYncE7N3cXplZPDyS+uZNPEKEhI6U1paSkpyCssef4w1eavYu2cvADlePW4ZizyX3NC2DeI747lwqjvDuCxmz8QA2dmDyFv97Clfr62tZX9pKR6Ph8GDz4vCZOI2j/dynEtvwvngd2de2fLgmbEIK/lc9wdzQUxH3JLPi4pwHIesAQPo2rXrKcs3/fF1AIqKi5v8uU9mJuefPzxyg8pZ8Uyeg9MlCfu99RBs4cGPrsl4pi/Ak93y8wTtXYeMeNeu3QAtvh6+7/4Hm/3zzBuuJ3e5Xt+awrIsrHE3Y42chrPtdeztb0H5HnAciIvHM/UhLO8ErPjO0R71rHTIiHfv/hxo+pDHyYp274zkOOIyq1sy1phZeMbMIvDrm+HIYeiWgmf4VdEeLSxi9sbW6eza3XgmzonAnWkRt3XIM/H6/LXRHkEkbDrkmVgklihiEcMpYhHDKWIRwyliEcMpYhHDKWIRwyliEcMpYhHDKWIRwyliEcMpYhHDKWIRwyliEcMpYhHDKWIRwyliEcMpYhHDKWIRwyliEcMpYhHDKWIRwyliEcMpYhHDKWIRwyliEcMpYhHDKWIRwyliEcMpYhHDKWIRwyliEcMpYhHDKWIRwyliEcMpYhHDKWIRwyliEcMpYhHDKWIRwyliEcMpYhHDKWIRwyliEcMpYhHDKWIRw3WIiCsr/SzPXcHkq6YwdPgIxk+YxNJlT1JXV8eiJY+SPTiH/HUvRntMcZHj2DgH/g6BhsYvBAPRHSiM4qM9gNt27NjJ7DlzKS8/TLdu3cjOHkRZWTkv5K+jpKSEqupqAIbmeKM8qbjBaajF+XgT9kcbwH/gmwV1VQTWPYRn1LVYQ6/Assw9n1k1VRVOtIdwS2WlnxnXz8Tn8zH7zju4b969JCUlArA6bw25K1YSHx9PMBikcOsHdE9KivLEEk5OTRnB3zwKh7887XrWkPF4ZizCiu8cocnCy9wfP62wdNkT+Hw+brv1FhYvWngiYIC5c+4ix+slEAjQJzNTAccYp/4IwVeWnDFgAGfXX7A3rMBx7AhMFn4xG3FRUTEFGzeRmprKgofnN7vOsOFDAfB6h5z42qY/vs698+5nwsTJDL9gJP80ZSorn/4FtbW1EZlbwsP+4P9ARUmr13d2voOz9yMXJ3JPzL4m3lBQgG3bXDdjOomJic2u0yWhCwBe7zevh9c899/07t2bhx+aT0bGuezc+Xd+9ev/5IMP/sbLL63D44nZn3sxwwkex/lkU9u3K3wNsi5yYSJ3xWzEW7a8D8Do0aNbXMfnOwRAzkln4tWr/oueaWkn/jz60ktJS0vjoYcf4cOtW7n0kktcmljCxfliK9T6277d53/Fqa/B6trDhancE7MRlx5ovBOZ2bt3s8sDgQBbCwuBpmfikwP+2vnDhwFw6FBZSLM8snAx/qqqkLaVtpvQvZqb00PY0LH51wUPcuB4QthnOpPUlBRW5D4V0rYxG3F9fT0ARxuONru8YOMm/H4/iYmJ9O3b57T7+uv7HwAwaODAkGbxV1VRWVkZ0rbSdrWeBgglYqCquobKo3HhHchlMRtxeno61dXVbN++g1EjRzZZVlZWxvLcFQB4hwzBsqwW9+PzHeKZX/ySCZdfztChOSHNkpqSEtJ2EpqGhFqgrs3bBR0gKY20bpGP+Gy+R2I24nFjL6O4uJjVec8xftxYsrKyANi27VMWPPIT/P4qAHJO85BHbW0td99zL506deLfnloW8iyhXiZJaJxggOB/3Aq1bbv6ifeO55dL/rdLU7knZm+1zpkzm9SUFA4ePMg102YwdfoMrrx6CjNvmkXfvn0YM6bxhtfJby+d7OjRo8y9+x7279/P2ufXcM4550RyfDkLVlw81oVT277dqGtdmMZ9MRtxr4wMXn5pPZMmXkFCQmdKS0tJSU5h2eOPsSZvFXv37AUgx3vqmfj48ePMu+8BPvvsM57LW8152dkRnl7OlufSG+E7A1q9vjVsMlb/C12bx00x/dhlS2pra7lw1CVYlsUnH31I165dTyyzbZsH5j/Mm2++xXN5q7jssjFRnFTOhnOkguCrj0LZF6ddz8qZiGf6AmMfu4zZ18Sn83lREY7jkDVgQJOAAX722ONs2vRHfjR3Dl26duGjjz8+saxfv37NvgUl7ZPVvSdxtz2Ds+117MLXoGJf0+X9R2CNuhZryHijPwDRISPetWs30Pzr4Xf+/C4Aq1bnsWp1XpNly//tSW6ceYP7A0rYWJ27Yl18PdZF18GhIoKvLIb6GkhMJe7mFdEeLyw6ZMS7d38ONH3I42vvbH4z0uNIBFiWBRnnwdeXzB6z3gs+HXOvIc7Crt2NZ+KcFu5Mi5ikQ56J1+evjfYIImHTIc/EIrFEEYsYThGLGE4RixhOEYsYThGLGE4RixhOEYsYThGLGE4RixhOEYsYThGLGE4RixhOEYsYThGLGE4RixhOEYsYThGLGE4RixhOEYsYThGLGE4RixhOEYsYThGLGE4RixhOEYsYThGLGE4RixhOEYsYThGLGE4RixhOEYsYThGLGE4RixhOEYsYThGLGE4RixguPtoDiLjJqT+Cc6gIfJ/jVOyD+prGBUe/wt76B6yM8+CcgVidEqI76FmwaqoqnGgPIRJOjh3E+eJDnK1/wPniQ+AM3+LxCVjDJuEZdW1j1IZRxBJT7D2F2H/8JVQdCGl7q/8IPN99ECstM8yTuUcRS0xwGuqwN+fhfFRw9juLT8Az8U6si6/Dstr/bSNFLMZzav0Ef7MEDhWHdb/WsCvxTHsYK6593zpq/z9mRE7Dqash+NLCsAcM4Gx/E/u1XBw7GPZ9h5MiFmM5jo39+6Vw+Ev3jrHzbex317m2/3Bo39cJIqfhbH0N58tP2rRN93n5eLr3xD5SwZFf396642x5BWfwWKxeg0MZ03Ud4kxcWelnee4KJl81haHDRzB+wiSWLnuSuro6Fi15lOzBOeSvezHaY0obOFUHsd9e0+btPN174kk+F0/3nm04mE2w4Oc4weNtPl4kxPyZeMeOncyeM5fy8sN069aN7OxBlJWV80L+OkpKSqiqrgZgaI43ypNKW9jv/w6ON0TugOV7cXa9hzV0YuSO2UoxHXFlpZ+5d99DeflhZt95B/fNu5ekpEQAVuetIXfFSuLj47EsiyHeIVGeVlrLaajD+exPET+uXfgannYYcUxfTi9d9gQ+n4/bbr2FxYsWnggYYO6cu8jxegkEAvTJzKR7UlIUJ5W2cHZshmP1kT/wvk9xDpdE/rhnELMRFxUVU7BxE6mpqSx4eH6z6wwbPhQA70ln4b/97UNu/+EdXDbucnKGXcC4yydy/wPzKSoK/1sYEpq23swK67FLonfslsTs5fSGggJs2+a6GdNJTExsdp0uCV0A8Hq/eT1cXVPD4CGD+cEPvk/Pnmn4fId4dtVqvvf9f2ZjwR/olZERkfmlZY7v8w557JbEbMRbtrwPwOjRo1tcx+c7BEDOSWfiq66czFVXTm6y3gXnD+fqKVN5/fU3+F8/bN3bEuIOp6EW/KXRO74ijpzSA40PwGf27t3s8kAgwNbCQqDpmbg5KSkpAMTFxYU0yyMLF+OvqgppW2mqZ/xxnujb8vKv3wduidU9/cQ/kxe3/Jx1S+8jV5buZcncH7d+4FZKTUlhRe5TIW0bsxHX1zfe+DjacLTZ5QUbN+H3+0lMTKRv3z6nLA8Gg9i2TemBA/x85TN85zvpTJ16TUiz+KuqqKysDGlbaSohIQinifjr94HPxPLEYbVivVP279jt7u8yZiNOT0+nurqa7dt3MGrkyCbLysrKWJ67AgDvkCFYlnXK9jffcvuJM3X//v1Y98JaeqalhTRL6j/O5HL2EuOPAzUtLrePVJx2e6t7OpYnrvEzx0cOt3k/QSuOtBC/D07nbL5HYvZTTI8vfYL8devp1asX+WufIysrC4Bt2z5lwSM/Yd/+/Rw/fpxbb7mZn/3rv5yy/Rdf7KHmSA379+0n77n/pqKikldfeZHeLVyeS2Q4gWMEV14PdiCk7ZMXF+BJPhe7+hDVT01r+w76Dif+1qdDOrZbYvYtpjlzZpOaksLBgwe5ZtoMpk6fwZVXT2HmTbPo27cPY8Y03vDytvCQx8CBWVw4YgTTp09j3QvPU1tby+q85yL5f0GaYcV3hnMGRO/47fA3f8RsxL0yMnj5pfVMmngFCQmdKS0tJSU5hWWPP8aavFXs3bMXgJwz3NQC6NGjB/379+PLkvb3Rn9HFM2Q2mPEMfuaGCA7exB5q5895eu1tbXsLy3F4/EwePCZ/1IqKirYs2cPIy64wI0xpY2s7DE4H2+K/IE98VhZF0X+uGcQ0xG35POiIhzHIWvAALp27dpk2UMLFtK/Xz+G5njp3qMHe/fu5fm1+cTFxXPHHT+M0sRyMmvQpdDjHKgpi+xxvZdjJaZG9Jit0SEj3rVrN9D86+ELR4zg97//H17IX0dDQwO9emUwZvRofnz3XDIzzfnlabHM8sThGTkN+53nI3pcz6jpET1ea3XIiHfvbnzqprmHPG6/7RZuv+2WSI8kbWRddB18vBGqD0XmeIPHQZ/hETlWW8Xsja3T2bW78Uyco48fGstK6IZn6kOROViX7ni+e3+zzxO0Bx3yTLw+f220R5Aw8AwYiXPJTJy//d9Wb/P1QxxneiikyXGueaBdvhb+Wsw+7CEdg2MHG38j5Y7Nruzf80/z8Fw0w5V9h0uHvJyW2GF54vBcuxDrwqnh3jGea+a3+4BBZ2KJIfbOP2O//iuorz67HZ0zkLhpC7AyssMzmMsUscQUp9aP/c7zONvfgsCxtm3cLQXPxddhjZmFFdfJnQFdoIglJjn1NTjb3sDesRnK9rT8gYnOXbF6e7Eu+C7WkHGNz2YbRhFLzHMCxxp/5WzFPgg0gGVB50Ssc7IgLdOI/2ja6ShiEcOZ/SNIRBSxiOkUsYjhFLGI4RSxiOEUsYjhFLGI4RSxiOEUsYjhFLGI4RSxiOEUsYjhFLGI4RSxiOEUsYjhFLGI4RSxiOEUsYjhFLGI4RSxiOEUsYjhFLGI4RSxiOEUsYjhFLGI4RSxiOEUsYjhFLGI4RSxiOEUsYjhFLGI4f4/zMJgv1YwI08AAAAASUVORK5CYII=", - "text/plain": [ - "
" - ] - }, - "execution_count": 9, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "from qiskit import QuantumCircuit\n", - "from qiskit.circuit.library import HGate, MCXGate\n", - "mcx_gate = MCXGate(3)\n", - "hadamard_gate = HGate()\n", - "\n", - "qc = QuantumCircuit(4)\n", - "qc.append(hadamard_gate, [0])\n", - "qc.append(mcx_gate, [0,1,2,3])\n", - "qc.draw('mpl')" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "回路ライブラリー API ドキュメントの[ゲート](/api/qiskit/circuit_library#standard-gates)をご覧ください。" - ] - }, - { - "cell_type": "markdown", - "id": "9a900a84-c52f-4a03-b3e9-87c71fa93e88", - "metadata": {}, - "source": [ - "## 次のステップ\n", - "\n", - "\n", - " - [回路の構築](circuit-construction)のトピックで回路を作成するための高度な方法を学習します。\n", - " - [Grover's Algorithm(グローバーのアルゴリズム)](https://learning.quantum.ibm.com/tutorial/grovers-algorithm)チュートリアルで、回路の使用例をご覧ください。\n", - " - [回路ライブラリー API](/api/qiskit/circuit_library) リファレンスをご覧ください。\n", - "\n", - "\n" - ] - } - ], - "metadata": { - "description": "Read more about out-of-the-box circuits provided by the Qiskit circuit library, including N-local, time-evolution and data-encoding circuits", - "kernelspec": { - "display_name": "Python 3", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3" - }, - "title": "Circuit library" - }, - "nbformat": 4, - "nbformat_minor": 5 -} \ No newline at end of file diff --git a/translations/ja/build/circuit-visualization.ipynb b/translations/ja/build/circuit-visualization.ipynb deleted file mode 100644 index 93930b2dd8..0000000000 --- a/translations/ja/build/circuit-visualization.ipynb +++ /dev/null @@ -1,1479 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# 回路の可視化" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "可視化は、量子回路を操作する際に役立ちます。 以下で、回路の描画、実行したジョブからのデータのプロット、量子コンピューターの状態の確認など、Qiskit が提供するオプションをご覧ください。" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "from qiskit import QuantumCircuit, ClassicalRegister, QuantumRegister" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## 量子回路の描画\n", - "\n", - "回路の描画は、`QuantumCircuit` オブジェクトによってネイティブにサポートされています。 回路で `print()` を呼び出すか、オブジェクトで `draw()` メソッドを呼び出すと、 ASCII アートバージョンの回路図がレンダリングされます。" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "# Build a quantum circuit\n", - "circuit = QuantumCircuit(3, 3)\n", - "\n", - "circuit.x(1)\n", - "circuit.h(range(3))\n", - "circuit.cx(0, 1)\n", - "circuit.measure(range(3), range(3));" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - " ┌───┐ ┌─┐ \n", - "q_0: ┤ H ├───────■──┤M├───\n", - " ├───┤┌───┐┌─┴─┐└╥┘┌─┐\n", - "q_1: ┤ X ├┤ H ├┤ X ├─╫─┤M├\n", - " ├───┤└┬─┬┘└───┘ ║ └╥┘\n", - "q_2: ┤ H ├─┤M├───────╫──╫─\n", - " └───┘ └╥┘ ║ ║ \n", - "c: 3/═══════╩════════╩══╩═\n", - " 2 0 1 \n" - ] - } - ], - "source": [ - "print(circuit)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
     ┌───┐          ┌─┐   \n",
-              "q_0: ┤ H ├───────■──┤M├───\n",
-              "     ├───┤┌───┐┌─┴─┐└╥┘┌─┐\n",
-              "q_1: ┤ X ├┤ H ├┤ X ├─╫─┤M├\n",
-              "     ├───┤└┬─┬┘└───┘ ║ └╥┘\n",
-              "q_2: ┤ H ├─┤M├───────╫──╫─\n",
-              "     └───┘ └╥┘       ║  ║ \n",
-              "c: 3/═══════╩════════╩══╩═\n",
-              "            2        0  1 
" - ], - "text/plain": [ - " ┌───┐ ┌─┐ \n", - "q_0: ┤ H ├───────■──┤M├───\n", - " ├───┤┌───┐┌─┴─┐└╥┘┌─┐\n", - "q_1: ┤ X ├┤ H ├┤ X ├─╫─┤M├\n", - " ├───┤└┬─┬┘└───┘ ║ └╥┘\n", - "q_2: ┤ H ├─┤M├───────╫──╫─\n", - " └───┘ └╥┘ ║ ║ \n", - "c: 3/═══════╩════════╩══╩═\n", - " 2 0 1 " - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "circuit.draw()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### 代替レンダラー\n", - "\n", - "テキスト出力は、回路を開発中にすぐに出力を確認するのに役立ちますが、柔軟性はあまりありません。 量子回路に使用できる代替出力レンダラーが 2 つあります。 [matplotlib](https://matplotlib.org/) を使用するものと、[qcircuit パッケージ](https://github.com/CQuIC/qcircuit)を活用する [LaTeX](https://www.latex-project.org/) を使用するものです。 これらは、draw() メソッドの `output` kwarg に対して `mpl` と `latex` の値で指定できます。\n", - "\n", - "\n", - " OSX ユーザーは、[mactex パッケージ](https://www.tug.org/mactex/)から必要な LaTeX パッケージを取得できます。\n", - "" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAbIAAAEvCAYAAAAgi0SBAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAAAshklEQVR4nO3deVxU9f7H8dfMsDkI7gmKiChuuF1FvaZJmuaemZre3Cq7/my5mZWYt9vPevzKcslu672WW1fT6GZZuVVeMk1LU8NMNJdyAcGkLAREYGZ+f5BcEVBmHGY44/v5ePiAs33PZ2qY95xzvt9zTA6Hw4GIiIhBmb1dgIiIyNVQkImIiKEpyERExNAUZCIiYmgKMhERMTQFmYiIGJqCTEREDE1BJiIihqYgExERQ1OQiYiIoSnIRETE0BRkIiJiaAoyERExNAWZiIgYmoJMREQMTUEmIiKGpiATERFDU5CJiIihKchERMTQFGQiImJoCjIRETE0BZmIiBiagkxERAxNQSYiIoamIBMREUNTkImIiKEpyERExNAUZCIiYmgKMhERMTQFmYiIGJqCTEREDE1BJiIihqYgExERQ1OQiYiIoSnIRETE0BRkIiJiaAoyERExND9vFyBlczgg3+btKiouwAImk7erEF/icDjIzc31dhlOsVqtmPSH4HEKsioq3wbTE71dRcXNHgWBejeJG+Xm5lK9enVvl+GU7OxsgoODvV3GNUenFkVExNAUZCIiYmgKMhERMTQFmYiIGJqCTEREDE1BJiIihqYgExERQ1OQiYiIoSnIRETE0BRkIiJiaAoyEZEKMpv1kVkV6e54IuLTLBYLLVu2JC4ujsjISIKCgigoKCAzM5Pdu3eTnJxcoZsTjxw5kunTp9OvXz9+/vlnD1QuFaUgExGf1KtXL+677z4GDhyI1Wotdz2bzcbXX3/NP//5TxITE8nLyyu1zsiRI1mxYgV+fn4kJSVxww03kJWVVZnlixOuiePkzMxMEhISaNasGUFBQTRq1IgpU6aQk5PDxIkTMZlMvPLKK94uU6RSORxwvhByzoPN7u1qKk///v1JSUkhKSmJESNGXDbEoOiI7Y9//CNLly4lNTWVhIQELBZL8fKLQwxgx44dnD17tlJfgzjH54/IkpOTGTBgABkZGQQHB9O6dWtOnjzJSy+9xJEjR/jll18A6NChg3cLrSSpKZtYNasXPf40l06DHi1znRfHmojqMIihj67xcHXiCdl5sP0IbDsMP2cXzTOboE0EdI+B5mG+8Sy5GjVqMH/+fO6+++4S80+dOsXnn3/Orl27SElJITc3F39/f6KioujUqRPdu3endevWANSpU4fZs2czfPhw7rrrLmJjY0uE2MKFC5k0aRIOh8Pjr0/K59NBlpmZyZAhQ8jIyOCRRx5h5syZhISEADBnzhymT5+On58fJpOJdu3aeblaEffbcxyWb4OCSx7SanfAtyeK/sXUh7t6gjXAOzW6Q1RUFJ9++inNmjUrnrd161ZefPFFVq9eTUFBwWW379q1K/fffz933HEHFouFLl268M0332CxWIqPzhRiVZdPn1p88MEHSU1N5YEHHmDevHnFIQaQkJBA+/btKSwsJCoqitDQUC9WKuJ+e47D0i2lQ+xSh07BP5OKTjsaUePGjdm8eXNxiGVlZXHPPffQo0cP/v3vf18xxAC2b9/O+PHj6d69O/v37wcgICBAIWYQPhtk+/fvJzExkbp16/Lss8+WuU6nTp0AaN++fYn5P/74I7fccgshISHUqlWL8ePHq5eSGErOeXhrG1T0Y/f4z7Dh20otqVJYrVY+/vhjGjVqBBT93bdt25ZFixa51N727dt5+umnsdv/exHRZrOxYMEChVgV5rNBtnLlSux2O2PGjCn3cenVqlUDSgbZ2bNn6dWrF6mpqaxcuZLXX3+dLVu2MHjw4BJvbqMpzM/l3NnMMv+J79nxA+Rf4UjsUtuPQL7Bjsqee+45WrRoAcCBAweIj4/n+PHjLrc3cuRI3nzzzRLjxSwWC0uWLCEgwMDnXn2cz14jS0pKAoq64JYnNTUVKBlkr7/+OmlpaWzevJnIyEgAIiIiuP766/nwww+59dZbK6/oSvTVqpl8tWqmt8sQD9l2yPltcvMh+Th0iXZ/PZWhZ8+e/OUvfwEgNzeXIUOGcPr0aZfbu7R34uLFi+nQoQMdO3akTZs2zJw5k8cff9wttYt7+WyQHTt2DCg6f16WwsJCtm7dCpQMsjVr1tCjR4/iEAPo1q0b0dHRfPTRRy4FWVxcHBkZGU5tY/GvxrCnXfg0KkebXpOI6TqyzGXvP9f3qttvHhODreDcVbcjV89k9mP4s0dd2nbms6+xd/0s9xbkoiudAXnmmWeKf//rX//K4cOHXd7XpSF24ZpYmzZt2LlzJwEBATzyyCPMnz//spcZYmJidPcPF4WFhbFz506XtvXZIMvJyQHg3LmyP1wTExPJzMwkJCSEJk2aFM9PSUlh5MjSH/ixsbGkpKS4VEtGRgZpaWlObeMXePmxL86qGRZDZJs+bm3zYifTT1J4/sp3R5DKdzXvndy8fKffq97Qtm1bevToART9zb788ssut1VeiDkcDvbu3curr77K1KlTCQwM5K677mLevHnltpWenu5yHeI6nw2ysLAwzpw5w+7du+nWrVuJZenp6UybNg2Adu3aYbpoEM2ZM2eoWbNmqfZq167N999/73ItzrL4V3NpX97SILyBjsiqEFtBHhb/IKe38zfl07Bhw0qoyHl2u73cYJg8eXLx76+++qrL168vF2IXvPbaa0ydOhWAe++9l+eff77cjh/h4eE6InORK5+TF/hskPXp04f9+/cze/Zs+vbtS/PmzQH4+uuvGTduHJmZRZ0cPDEQ2pXD5fOFMD2xEoqpJAcPHSLQZ99NxrN8K+w86sJ2LycQViPB7fW4Iicnp9yOWv369QOKzrgsW7bMpfYrEmIAhw8fZuPGjfTp04fo6GiaNm1a7mnMQ4cOERwc7FI94jqf/eqQkJBAnTp1OHHiBLGxsbRt25aYmBi6dOlCdHQ0vXv3Bkp3va9Vqxa//vprqfZ++eUXateu7YnSRa5ajxbObxNTH8JquL8Wd6tZsyZNmzYFYPfu3S7dLqqiIXbB559/Xvz7hWE7UnX4bJBFRESwZcsWBg0aRFBQEEePHqV27dosWLCAtWvXcvDgQaB0kLVq1arMa2EpKSm0atXKI7WLXK3GdYpuQVVRFjMMMMjNbTp27Fj8+65du5ze3tkQu3Q/cXFxTu9TKpfPBhkUhdKaNWs4e/YsZ8+eZfv27UyaNImcnByOHj2K2WymTZs2JbYZPHgwX3zxRXHXfCgaJHnkyBGGDBni6Zcg4hKTCcZ1h2b1r7yuxQzjrofo6yq/Lndo0KBB8e8XvpBWlCshdul+wsPDndqnVD6T4xocrr59+3b++Mc/0qJFCw4cOFBiWVZWFm3btqVu3bo89dRT5OXlkZCQQL169fjyyy89diHXaNfIZo9C18iqoEIbbNxXNK4sq/TTSWgRDv3aVM0QK+8aWdu2bbn11lsJCgrigw8+YMeOHRVqr0GDBhw5coSgoKJOMM7cdqpGjRrMmDGDc+fOsWfPHlavXl3metnZ2bpG5gXX5EfP3r17gdKnFQFCQ0NJSkpiypQpjB49Gj8/PwYPHswLL7yg3khiOH4W6N8O+sTCd2mw8suiL0lBfvDIAKhnwFuM7t27t/hv2BknT57krrvuYvny5SxZssSpeyf+9ttvPPbYY07vUzxDQVaGpk2bsmaNHmkivsPPAh0i4f2dRUEW6G/MELtab7/9Nj/++CM7duzQvRN9iIJMRK4p27dv93YJ4mbXZJBduA+jiIgYny76iIiIoSnIRETE0BRkIiJiaAoyERExNAWZiIgYmoJMREQMTUEmIiKGpiATERFDU5CJiIihKchERMTQFGQiImJo1+S9Fo0gwFL0jC+jCLB4uwLxNVarlezsbLe1N3fB22Tl5BIabGXa/4wuNe0OVqvVLe2IcxRkVZTJpAdVyrXNZDK59SGVAYFBBBTYCAgMIjg4uNS0GJdOLYqIiKEpyERExNAUZCIiYmgKMhERMTQFmYiIGJqCTEREDE1BJiIihqYgExERQ1OQiYiIoSnIRETE0BRkIiJiaAoyERExNAWZiIgYmoJMREQMTUEmIiKGpiATERFDU5CJiIihKchERMTQ/LxdgJTN4XCQa7d5u4wKs5otmEwmt7XncEC+cV4+AAEWcON/ArnGORwOcnNzvV2GU6xWq1s/BypKQVZF5dpt1Er61NtlVNiZ3n0Jtrjv7ZRvg+mJbmvOI2aPgkD9RYmb5ObmUr16dW+X4ZTs7GyCg4M9vl+dWhQREUNTkImIiKEpyERExNAUZCIiYmgKMhEfZ3fA6Sz45hicLyyal18Ih05BXoF3axNxB/WxEvFBNjvsS4MvD8OPp0sH1rkCeHVj0e/1QqBdI7g+BuoYq5OcCKAgE/Epdgd8cRCSUuDXCg5BOn0W/pNStE3rhnBLR6gfWrl1iriTgkzER5w+Cyu/hB9Ou7a9g6KjuIMZMLA9xLcAsy4+iAEoyER8wL40WLoFCtxwN5QCG3ywGw6chLt7QqD/1bcpUpn0fUvE4L49AYs+d0+IXez7DPhn0n87iIhUVQoyEQM7mglvflF0bawy/JgJb24puvelGF+9evVo0qQJ0dHRXHfddU5vP3XqVOrUqVMJlV0dnVoUMaj8QnhrW1EPxYp6uD+EVoOsczB/Q8W2STkJ2w5D9xjX6hTvadq0KePGjaNr16507NixVHhlZmaye/duduzYwfLly/n+++/Lbev555/n4YcfZsKECdx00038/PPPlV1+hV0TR2SZmZkkJCTQrFkzgoKCaNSoEVOmTCEnJ4eJEydiMpl45ZVXvF2miFPW7Snq4OGM0GpQ01r00xkf7oafs53bRrynX79+rF+/nsOHDzNz5kz69+9f5hFY3bp1ufnmm/nb3/7GgQMH2LhxI4MHDy613oUQA2jbti3x8fGV/hqc4fNBlpycTNu2bZk7dy4ZGRm0bt2agoICXnrpJUaNGsX+/fsB6NChg3cLrSS2xUspuHkg9g2flFrmcDgofHQ6BYNuwfHjUc8X5wGpKZt4cayJXWvnlbvOi2NNfDCv9B9vVXYmBz4v/8uz250vhI/3em5/4po6deqwYsUKNmzYQP/+/UssO336NJ988glvvfUWb731Fhs2bODUqVMl1rnpppv46KOPePfdd4uD7+IQs9vt3HPPPbz33nueeUEV5NOnFjMzMxkyZAgZGRk88sgjzJw5k5CQEADmzJnD9OnT8fPzw2Qy0a5dOy9XWznM48Zg/2o7tgVvYOrUEVO9usXL7O+txvHtXsx334mpSZT3ihSnbTvk+etW3xyDoR0hONCz+5WKiY+PJzExkfr16xfP++GHH/jHP/7BO++8w/Hjx8vcLiIighEjRnDvvffSvHlzAIYPH058fDybN2/mtttuA/4bYkuWLKn8F+Mknz4ie/DBB0lNTeWBBx5g3rx5xSEGkJCQQPv27SksLCQqKorQUN8cAWry98dv2iOQl4dt/t+L5ztOpGJf+i9MLVtgHjncewWK0wpt8OURz++3wAbbvbBfubIBAwawYcOG4hD75ZdfGD9+PM2aNWPevHnlhhhAamoqf//732nZsiWjRo3i9OmigYh169Y1RIiBDwfZ/v37SUxMpG7dujz77LNlrtOpUycA2rdvXzzvQvB16dKFwMBArzzt1N1MMc0wj74dx67d2Neux2GzYZszDxwOLNMewWSxeLtEccKJXyA7zzv7Tjnpnf1K+bp3786qVasICgoC4OOPPyY2NpZly5bhcOKw3eFw8M4779C6dWuOHDlSYv78+fOrbIiBDwfZypUrsdvtjBkzptynrFarVnTF++IgO3z4MKtWrSIsLIzOnTt7pFZPMI/5E0RHY3tjIfZX/4nj+4OY7xyPqVGEt0vziML8XM6dzSzzn9Gc+MV7+079pfK6+ovzQkNDWbFiRfFnWWJiIoMHDyYjI8PlNmfMmEHTpk2Lp00mE2PHjqV27dpXXW9l8dlrZElJSQD06tWr3HVSU1OBkkHWs2dP0tPTAXjyySfZunVrJVbpOSY/P/ymPUzhXx7CvmYtpjaxmG+71dtlecxXq2by1aqZ3i7DLbwZZHkF8PNZqOebZ+INZ+7cuURGRgLw2WefMXbsWAoLXR/BfmnHju+++4527doRFhbGSy+9xNixY91St7v5bJAdO3YMgMaNG5e5vLCwsDikLg4ysy/fXC44GPz9obAQU+c4TL78Wi/RptckYrqOLHPZ+8/19XA1V+fXHO/u/0yugqwq6NKlC5MmTQLg7Nmz3HnnnW4NsXvuuYcNGzbw3XffUbt2bcaMGcOiRYv47LPP3FK/O/lskOXkFP21nzt3rszliYmJZGZmEhISQpMmTSq1lri4OKcP9R0BAbDgVbfV4HA4sD3/AhQWQGQj7CvexhzfE1ODcLe03zymOab8fLe0BWDxr8awpw+5rb2aYTFEtunjtvbK0jwmBltB2e83d7rx3vepG1X2ae8LA57LExr0359PDrv8fsobNH3HmPFkfJ9UwWqrjmF3PURw9VDSM9KJiIgoNV3V2O2XH+n+wAMPFP8+Y8aMy3bouJKyQuzCNbGHH36YpUuXFu/zckEWExPj8sFAWFgYO3fudGlbnw2ysLAwzpw5w+7du+nWrVuJZenp6UybNg2Adu3aVXqHjoyMDNLS0pzbKCgQd96r1b76Qxx7vsV81wTM3f5I4f1/wfb8C1jmzXbL6z+ZfhLyzruh0iJ+gVa3teUpJ9NPUni+gs9OuQrncssfmXxhwPOVmM0VW68sP5066fz7uQqw22zFP9PS0kpNG0m9evW4/fbbAfj5559ZuHChy21dLsQA3nrrLZ555hkaNmzI0KFDiYiIKL4sc6kLl2U8zWeDrE+fPuzfv5/Zs2fTt2/f4vERX3/9NePGjSMzs+givycGQoeFhTm9jSMgABefxlG6rbQ07IuXYmrRHPPtIzBZLJjHjsG+5E3sqz/EMmzoVe+jQXgDtx+RGU2D8AYeOSIzFZZ/bjHrCrsPDSoKMbsdsq7Q87G8tkKqmWnYsOEVqqx6zL/3zjVbLDRs2LDUdFVjt9vLDYZhw4YRGFg0oG/RokWcP+/al8grhRgUXYZ5/fXXeeqpp7BYLIwcOZIXXnihzPbCw8Ov6ojMVT4bZAkJCaxYsYITJ04QGxtLy5YtycvL4/DhwwwYMICoqCg+/vjjEtfHKosrh8s5tkJqJX161ft22O3Y5s4Hux3LtIeLu9qbbx+BY+s27IuXYu7a5apPMR48dJBgi/veTucLYXqi25rziIOHDhHogb+ojftgTXLZy650/8QnhxUdiWXlwZPvO79vPzPs+eoT/Aw4YmPWq2+RlZ1DeFg4qamppaarmpycnHJ7XF/co/qDDz5wqf2KhNjF+3jqqaeAoksl5Tl06BDBwcEu1XM1fPZqf0REBFu2bGHQoEEEBQVx9OhRateuzYIFC1i7di0HDx4E8EiQeZP93fdwpOzHPGEspt97NwGYLBYsjz4Mdhu2519waryJeFcjL/aCblALQ4aYr7kwBtZms5GcnOz09s6EGMC+ffvIy8srse+qxGePyABatWrFmjVrSs3Pzs7m6NGjmM1m2rRp44XKPMNx/Dj2N5dhatUS8/DbSi03RTV2+ylGqXyN64K/xf3PH6uIZvWvvI5UvpYtWwJFR0C5uc5dl3U2xKDo9OJ3331HXFwcLVq0wGw2X7Eziif5dJCVZ9++fTgcDpo3b47VWvqK97vvvgtASkpKiemoqKjLHlZXNabISPzXXv60g+VPo7D8aZSHKvK8iNY3MmX55Y82r7S8qgnyh05R8JWHbxdlAq5v5tl9StlSU1OpVq0aR48edWq7OXPmOB1iFxw7doywsDDy8vIIDAwst0e4N1yTQbZ3b9FtvMs7rThy5MgypydMmFDcDVXEm7o393yQtWwAdUOuvJ5Uvgud15y1a9cubDYbJpPJ6XsnjhgxwqV9eoKCrAy6XiRVXaPa0CYCvvNQHwUTcLPvnoW/ZiQmFvWgslqtVfreic5SkIkY1MjOcOQnOOe+UQ/lim8JTepV/n6k8l0IM19yTQbZhfswihhZDSsMj4Pl2yq+zYWxYVcab3ax60JhoL7zSRV2TQaZiK+IawKnz1b86c1XGmd2qRrV4H96QYA+KaQK09tTxOD6twWzCdZ/6952awfDvTdBnbLH5IpUGQoyEYMzmaBfWwivCe/scM9DN9tHwojOEBJ09W2JVDYFmYiPaNcIouvB+7tg91Fwpe9taDUY1gn+UPbTj0SqJAWZiA+pHgTjuhd1zth2qGisWU4F7ifbrD70iIG2jcDiszeuE1+lIBPxQXWqw5A/wKD28NNZOPEzpJ4p6qpvsxfd4qpuSNF4tIjaEBzo7YpFXKcgE/FhZjOE1Sj6V/ajOEWMTycRRETE0BRkIiJiaAoyERExNAWZiIgYmoJMREQMTb0Wqyir2cKZ3n29XUaFWc0Wt7YXYIHZBnveZ4B7/xPINc5qtZKdne229uYueJusnFxCg61M+5/RpabdoawHFXuCgqyKMplMBFuu3f89JhMEXrsvX6ToMyA42G3tBQQGEVBgIyAwiODg4FLTRqZTiyIiYmgKMhERMTQFmYiIGJqCTEREDE1BJiIihqYgExERQ1OQiYiIoSnIRETE0BRkIiJiaAoyERExNAWZiIgYmoJMREQMTUEmIiKGpiATERFDU5CJiIihKchERMTQFGQiImJoegZvFeVwQL7N21VUXICl6KnO7uJwOMjNzXVfgx5gtVoxufM/gohUiIKsisq3wfREb1dRcbNHQaAb3025ublUr17dfQ16QHZ2tuEfGS9iRDq1KCIihqYgExERQ1OQiYiIoSnIRETE0BRkIiJiaAoyERExNAWZiIgYmoJMREQMTUEmIiKGpiATERFDU5CJVFBkZKS3SxCRMuhei+LTWrZsSVxcHJ06daJly5ZYrVbsdjtZWVl8++237Nq1i+3bt5Oenn7ZdkaOHMny5cuZPHkyS5Ys8VD1IlIRCjLxOcHBwdxxxx3cd999dOjQodz1brnlFgDsdjsbNmzgtddeY/369djt9hLrjRw5khUrVuDn58fChQs5dOgQX3zxRWW+BBFxwjVxajEzM5OEhASaNWtGUFAQjRo1YsqUKeTk5DBx4kRMJhOvvPKKt8usFKkpm3hxrIlda+eVu86LY018MG+wB6uqPGPHjuX48eO8/vrrlw2xi5nNZgYOHMiaNWvYu3cvXbt2LV52cYgBLF68mK1bt1ZG6SLiIp8/IktOTmbAgAFkZGQQHBxM69atOXnyJC+99BJHjhzhl19+Aajwh55UTfXr1+eNN95gyJAhJeZ/9dVXfPDBB+zatYs9e/bw66+/YjKZCAsLo2PHjnTu3Jk//elPREVFAdC6dWu2bt3KvHnz2LNnD//617+KQ2zhwoVMmjQJh8Ph6ZcnIpfh00GWmZnJkCFDyMjI4JFHHmHmzJmEhIQAMGfOHKZPn46fnx8mk4l27dp5uVpxVZMmTdi4cSPR0dHF89555x1mz57N7t27y9zm2LFjHDt2jPfff5+//e1v9O/fnyeffJLOnTtjsViYPn06drsds7nopIVCTKTq8ulTiw8++CCpqak88MADzJs3rzjEABISEmjfvj2FhYVERUURGhrqxUrFVY0aNWLTpk3FIZaRkcGtt97KqFGjyg2xS9ntdtatW0e3bt2YMWMGBQUFAMUhtnjxYoWYSBXms0G2f/9+EhMTqVu3Ls8++2yZ63Tq1AmA9u3bF8979913GT58OI0bN8ZqtdKyZUsef/xxsrOzPVJ3ZSnMz+Xc2cwy/xmVn58fq1evLu4Wv2/fPjp27MgHH3zgUns2m40jR45gMplKzD937pxCTKQK89lTiytXrsRutzNmzBiqV69e5jrVqlUDSgbZvHnziIyMZNasWURERJCcnMxTTz3F559/zubNm4u/pRvNV6tm8tWqmd4uw61mzJhBx44dATh06BC9e/fmp59+crm9Szt2FBYW4ufnx/3338+qVav47LPP3FK3iLiXzwZZUlISAL169Sp3ndTUVKBkkH300UfUq1eveDo+Pp569eoxZswYvvjiC3r27FlJFVeuNr0mEdN1ZJnL3n+ur4eruXqxsbE88cQTQFHgjB492q0htnDhQr799lteeuklABYtWkRsbCznzp27+uJFxK18NsiOHTsGQOPGjctcXlhYWNyN+uIguzjELoiLiwMgLS3NpVri4uLIyMhwahuLfzWGPX3Ipf2VpWZYDJFt+ritvUs1j4nBVuC+D/lLx3Jd6tFHH8Xf3x+A5557rsLXw8pSVohNmjQJgOHDhxMfH0+TJk0YPXr0ZQdDx8TEGPaI/Vow7K6HCK4eSnpGOhEREaWmfV1Vf/1hYWHs3LnTpW19NshycnIAyv0GnZiYSGZmJiEhITRp0uSybV04pdSqVSuXasnIyHA6BP0CrS7ty1tOpp+k8HyuR/ZVu3ZtRo8eDcCZM2eYNWuWy22VF2IXroklJCSwfft2AO67777LBtmV7g4i3mW32Yp/pqWllZr2db78+n02yMLCwjhz5gy7d++mW7duJZalp6czbdo0ANq1a1fq4v7F0tLSeOKJJ+jfv7/LY83CwsKc3sbiX82lfXlLg/AGbj8iKy8Yxo4dS1BQEABLlixx+XTflUIMYMeOHezcuZO4uDji4uLo0KEDycnJZbYXHh6uI7IqzGyxFP9s2LBhqWlfV9Vfvyufkxf4bJD16dOH/fv3M3v2bPr27Uvz5s0B+Prrrxk3bhyZmUW99S4XTtnZ2QwdOpSAgAAWL17sci2uHC6fL4TpiS7v0uMOHjpEoBvfTTk5OeV20rnhhhuKf1+6dKlL7VckxC7ex4XTyzfccEO5QXbo0CGCg4Ndqkcq36xX3yIrO4fwsHBSU1NLTfs6X379Pvv1MSEhgTp16nDixAliY2Np27YtMTExdOnShejoaHr37g2UvD52sXPnzjFkyBB+/PFHPvnkE8LDwz1ZvlzGhWET2dnZ7Nu3z+ntnQkxKLo7yKX7FpGqw2eDLCIigi1btjBo0CCCgoI4evQotWvXZsGCBaxdu5aDBw8CZQdZQUEBI0aMYOfOnaxfv57WrVt7unwpR82aNYuvaX7zzTdX7BRyKWdDDGDv3r3k5+cDFHf3F5Gqw2dPLUJR54w1a9aUmp+dnc3Ro0cxm820adOmxLILY8/+85//sG7dOrp06eKpcitFROsbmbL88oN5r7S8KqlVq1bx7ydOnHBqW1dCDCA/P5+ffvqJiIiIEvsXkarBp4OsPPv27cPhcNC8eXOs1pK9A++//37+/e9/89hjj2G1WkucVmratGmZ3fPFc9LT0+nZsydBQUGcPn26wtuZTCYeeughl28APH78eMxms+Hv8CLii67JINu7dy9Q9mnF9evXA0Vjk5577rkSy5YsWcKdd95Z6fVJ+fLy8tiyZYvT2zkcDgYOHMinn37Knj17nL53ou7qIVJ1KcgucfToUQ9XI57y22+/0bt3b3JycnTvRBEfoiCTa4pODYr4nmsyyC7ch1FERIzPZ7vfi4jItUFBJiIihqYgExERQ1OQiYiIoSnIRETE0BRkIiJiaAoyERExNAWZiIgYmoJMREQMTUEmIiKGpiATERFDuybvtWgEARaYPcrbVVRcgMW97VmtVrfe4HfugrfJysklNNjKtP8ZXWraHS59tp2IeIaCrIoymSDwGv6/YzKZCA4Odlt7AYFBBBTYCAgMIjg4uNS0iBiXTi2KiIihKchERMTQFGQiImJoCjIRETE0BZmIiBiagkxERAxNQSYiIoamIBMREUNTkImIiKEpyERExNAUZCIiYmgKMhERMTQFmYiIGJqCTEREDE1BJiIihqYgExERQ1OQiYiIoSnIRETE0BRkIiJiaAoyERExNAWZiIgYmoKsCli2bBmdOnWiVq1aVKtWjVatWjF//nwcDoe3S5NyzJ07l27dulGrVi1q1qxJjx492LBhg7fLEg9bt24dHTp0IDAwkKioKObPn+/tkjxq8+bNDB06lMaNG2MymXj66ae9UoefV/YqJVx33XU88cQTtGjRgsDAQLZs2cJ9992HxWJhypQp3i5PypCUlMTdd99N586dsVqtLFy4kMGDB/P555/TvXt3b5cnHrBz506GDh3Ko48+ysqVK9m+fTuTJ0/GarUyefJkb5fnEdnZ2bRu3Zo77riDhx56yGt1KMiqgH79+pWYjo6OZvXq1WzatElBVkWtX7++xPScOXPYsGED7733noLsGjF//nw6d+7Ms88+C0CrVq3Yt28fzz333DUTZAMHDmTgwIEATJ8+3Wt16NRiFeNwONixYwdbt26lV69e3i5HKshut5OVlUVwcLC3SxEP2bp1K/379y8xr3///hw7dozU1FQvVXVt0hFZFfHbb7/RsGFD8vPzsdvtzJw5kwcffNDbZRnOb1nZnPr511LzC2224p8Hf0wtNX2xqIb1CQjwd2q/s2bN4tdff2XSpEmuFS5uk3H6F7Kyc0vNr+h7wGI2Ex0Zjslkuux+0tPTCQsLKzHvwnR6ejoRERFX9TpclXsuj9SMzFLznfkbaFC/DtWt1Sq/WDdRkFURISEhJCcnk5uby7Zt25gxYwYNGjRg4sSJ3i7NUPwD/Hl33edkZeeUuTz3XB6L31lX7nSL6EbERDV0ap+vvfYas2bN4sMPP/Tah5f8V0FBIUv/vR57OZ2lrvQe6NezM00bN6j0OitLYEAAH2/eQVoZYQZXfv3169bigQnDKr1Od9KpxSrCbDbTrFkz2rVrx+TJk0lISODxxx/3dlmGYw0KZOSgeJe3HT4g/orfxC82b948pk2bxocffkifPn1c2q+4V6MG19Hr+j+4tG3jhvWJ79q+QuuGh4eTkZFRYt6pU6eKl3mLxWJm1ODe+PlZnN/WbGbU4F74+xnrGEdBVkXZ7Xby8vK8XYYhxURFcH2nNk5vN6zfDYRWt1Z4/f/93//lqaeeYt26dQqxKqZ3t45EhNVzapsAfz9uH9QLs7liH4vdu3fn448/LjFvw4YNNG7c2OtH5tfVqcmAG7s6vV3fG+JoUL9uJVRUuRRkVcDMmTPZuHEjP/zwA99//z1vvPEGs2fPZsKECd4uzbAGxHehXu2aFV7/D7ExtG0ZXeH1H3roIebOncuyZcto0aIFGRkZZGRk8Ntvv7lQrbhb0VFJL/ydOCoZ3LsbdWqFVnj9qVOnsmPHDh5//HEOHDjAm2++ycsvv8xjjz3mSslu161jLM0aV/w0eeOG9enZpZ1T+8jOziY5OZnk5GTy8/PJyMggOTmZw4cPO1vuVTE5NOrW66ZOncpHH31EWloaQUFBREdHc/fddzN58mQsFudPD0iR1PTTvLZ8NXb75d/iNUKCmTpxJEGBARVuu7zTjxMmTGDp0qXOlCmVaNuu7/hw47YrrteyaSQThvdz6rQywNq1a/nrX//KgQMHCAsLY8qUKTz88MOulut2v2Vl88Lid8k7n3/Z9QIC/Jly13Dq1Kx4kANs2rSpzN7V8fHxbNq0yam2roaCTHzaf7bu5tMvdl52nT+PHmzoi/tSPrvDwZJ31nPoaPnd4YOrBfHQxBGEBFf8tLKRJKcc5u2Pki67zvD+PencvqWHKnI/nVo0mBPpP5Gbd97bZRjGjd060Cj8unKX94hrqxDzYWaTiRED46kWFFjuOsP63+CzIQbQoXUz2rdqWu7yVs0iiWvXwoMVuZ+CzEAKbTaWv/8ps/+xguNpp7xdjiEU98LyL90L67o6tegX39kLVYkn1QgJ5tabe5S5rFOb5rRp3sTDFXne0L7dy+zIFGwN4rb+PZ0+pVrVKMguYbPZWLZsGTfffDP16tUjMDCQyMhI+vfvz8KFC7H9PojQG3bt/Z7fzuYQEOBP+HV1vFaH0dStXYNBvf5YYp7FbGbUEON1MxbXtG/VtNRRSc3Q6gzpc72XKvIsa7UgRg68sdT82/r39ImjUQXZRbKysujbty/jx4/n008/JSAggPbt22O32/nkk0/485//zNmzZ71SW6HNRtK2bwC4sWuHMo8wpHxdO7SiRXSj4uk+PTrR0IDdjMV1Q2/uQWj1oluImYDbB/dyqoOP0cU0iaBbx9ji6bi2LYiNifJeQW6kILvIxIkT+eyzz4iIiCApKYm0tDR27NhBamoq6enpPPPMM/j7O3frIne5cDQWUt1KFwNflPUWk8nE8AHxWIMCnRr0Kr7j4sHyN3RpR3Qj7w1a9pYBN3alXu0a1KoRwuCbunm7HLdRr8Xf7dq1i7i4OPz8/Pjmm29o08b5AbXlefnN9zibfe4qWnBwNuccDoeDoMAAArwUpr6goLAQi9lc4UGv4nvyCwrw9/Mz/HUhV9lsNhyAXxUb2hNSvRp/mXCbS9vq/NTvVq9eDcCgQYPcGmIAZ7PPlXvvP2flnc+/4pgQEbk8/Q35FgXZ71JSUgDo1s39h9sh1a/mLtI6GhMR33c1n5MKst9lZWUBUKNGDbe37erhMsD25P28//EWQqpbSZg0Wp08REQuoU/F34WGFt2apTLulef6NbKiozEoejTF3NcT3VuYiEgVoWtkbhAbG8t7773Hl19+6fa23XGNTNfGRETKpiD73bBhw/i///s/1q1bR0pKCq1bt3Zb266d+9W1MRG5dlzNNTJ1v7/IqFGjeOedd4iMjORf//oX8fH/fUDjqVOnWLx4MQ8++CDBwcGVXouujYmIVIyC7CJZWVkMHTq0+PEDDRs2pEGDBqSnp5OWlobD4eDMmTPUrFmzUusotNmY93oiv2ZlM+Sm6+ke597hACIivkSjQi8SGhrKxo0bWbRoETfeeCO5ubns2bMHs9lMv379WLRoESEhIZVex669B/k1K1t38RARqQAdkVVB3+w7xPpNO4jv2l5HYyIiV6Agq6IKCgsxYcLPiUe1i4hcixRkIiJiaLpGJiIihqYgExERQ1OQiYiIoSnIRETE0BRkIiJiaAoyERExNAWZiIgYmoJMREQMTUEmIiKGpiATERFDU5CJiIihKchERMTQFGQiImJoCjIRETE0BZmIiBiagkxERAxNQSYiIoamIBMREUNTkImIiKEpyERExNAUZCIiYmgKMhERMTQFmYiIGJqCTEREDE1BJiIihqYgExERQ1OQiYiIoSnIRETE0BRkIiJiaAoyERExNAWZiIgYmoJMREQMTUEmIiKGpiATERFDU5CJiIihKchERMTQFGQiImJoCjIRETE0BZmIiBja/wNRRLyFgECPoAAAAABJRU5ErkJggg==", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "# Matplotlib drawing\n", - "circuit.draw(output='mpl')" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAVcAAACECAIAAACrjv96AAAdJUlEQVR4nO2deVQT1x7HL3lDookCChJAgQCCD0hdqqCCSlqVqsXa8jSA76mt4rFa6tGCTx4eXOqCinrUFnl1f+KCWBX3ykEQWYqguACCCERkCxI22bKQzPtjelIKIYSQZGaS+/mDk7m59/6+3Jn55e7XCEVRAIFoGWNj466uLp2ZQxBEIpHozBzZMYJeAKIDjIx0+qTp2BzZQfAWoA7a+GGBvx4Qg4WUXqCrq0vjnt7IyEizGUIgZIGCtwAIRE2qqqqSk5PxVqEPQC8AISsbN27My8vDW4U+QMpOFG30/cD+JK2i8eLNzs7mcrnFxcV0Ol0H5vQbUvYLKKS1tfX9+/dUKpVCoaAoKpVKURRlsVjt7e21tbU0Gg1r+UulUqlU6ujoiLdeiPqgKBoWFhYVFaXQBUAGyp8tAhRFKysrxWIxdin/QBb4fP6lS5dWrlw5ZswYNze32NjYlJQUAIBAIIiPj1+zZo2tra2zs3NMTExSUhLeYiGD4vLlyx0dHUFBQXgL0RdQFEVRNCMjw8/P78yZM9u2bXvw4MHatWuTk5PRASIUCmfOnBkSEjLQhANFLrs3T548AQD4+fn1CC8uLgYAcDgcNfKEDB4NFq9IJHJyclL+fMK7OSAQAMC1a9fCw8MzMjIsLS0BAAEBAdevXz9w4MBAHUpLS8vjx4+bmpo06aUGyJAhQ+R/VQmHkI6jR4+y2ezZs2fjLUR/QPh8/jfffBMTE4O5AAAAnU739PTEWlxPnjz57bffGAyGu7u7r6+v8rwsLS15PN7w4cO1rhqiHRoaGhobG8eOHUvY2RNNTU3R0dGpqal4C9ErKJGRkTKZbMmSJfKg9PR0Hx8fAEBeXt6+ffvCw8M3btyYmZkZFRXVb3Y2NjbQC5CRV69eTZ8+3cLCwsXFZdSoUWfPnsVbkWJ+/PHHJUuWuLm54S1Ev7Cxsfn888/lLYTKykoAQFJSEoqiHh4e8taXUCg0NTVtaWnBp+HyV0Dfrb6CggIAwOLFi3uEv337FgAwb948NfLUe2pra0eOHNnjwThz5owGTWikeMvKyiwsLPh8vm7MGQ5ITU1NSEiI/N6npKQgCOLl5dXc3PzkyRMnJycsnEajmZqaJiUlLV68WPuuabDk5OQsW7ase0hbWxteYojP7t27GxsbewSGhYWtWLECr6ZBV1dXa2trS0vL0KFDaTSamZkZAODf//53aGgok8nERZIegwAAnJ2d5dfJyckeHh4MBiMnJwdF0e7jsXQ6nc/nK8+uqamJTqfTaDTl0RwcHLAfZy3h6ekZFxfXPaSioiIxMVF5Kt0/8QiC6HK97YBoaGigUHQ3tVQsFmdkZKSlpWVnZ5eUlNTU1DAYDDMzs87Ozs7OTqlUam1tXVNT4+Pj8+bNm+5PbF8Yzt0cpF0Wi4Ww2ezm5mbsOjU1NT4+PjQ0FAAgEonAX4tSJpO1tLQoya6hocHe3t7V1TU3N1e5YR6Pp7ZooLUbjBrqbLN58+bdv3+/d7hAIDA3N9eICSW37Pnz58ePH79y5crYsWM/+eST9evXu7q62tvb/+1vf5PHaWlp4XA4QUFBeXl5UVFR1tbW//rXv1atWmViYtJXtgZ7N9UAOX36dGhoqLm5eWlpqUwmk0gkHA4HAICVb3cf09LSorznj06nOzo6urq6alkzRMP4+fn19gJeXl6acgF9kZubu3Xr1oKCgnXr1j19+tTOzq6vmL/99puRkdEvv/xCoVBkMtmjR49Onjy5e/fu4ODgiIgIJb4AohIoigqFwvz8fJFIdO7cOQRBWltbURQViURDhgx58eKFvAuBRqOlp6fj033xVwDsHdQoUqm0xzCwhYVFUVGRBk30KN7GxsbVq1fb2NicPHlSJBIpTysSicaOHdt7mtC7d++Cg4Otra3PnTun3BxEORQAAI1GY7PZVCr14cOHkydPHjZsGACASqUGBATI12zxeDwWi+Xp6alDBwXRERQK5d69ez///DMAYPr06Rs2bCgsLPz73/+uJXOZmZmTJk0aMmRIUVHRqlWrqFSq8vhHjx51d3fvPU3I1tb2xIkTt27dio6ODgwMlDdsIQNG7g+kUqm9vX1YWJg8pKmp6bPPPrt+/XpGRoa/vz/WX0gEQN+ePjMzEwDg6+vbI/zFixcAgOnTp6uRp+GgvUKQ53zq1CkrK6vbt2+rmLCxsdHS0rKwsFBJnM7OzpCQEFdXVx6P18McRBX+KKytW7dyOBxjY2N3d/cffvhB/nVXV1dubu6jR4+wZgJBUHiPnz59unz5cg8PD1NTUwsLi8DAwMjISBRFCwoKVqxYMW3aNFNT0xEjRnC53E2bNqmYp6GhbS9w4MABR0fHkpIS1RNu2LDhu+++UyXmTz/9NHr06OrqahTezQHyxzLsrq4uBPljlXH3z8QE7i+gJbRXCFjOp0+fnj9/vrW1tYqpysvLp06dWlBQoOIcgdzcXDabPXToUHg3BwQpCwt6AS2hbS8w0FTr1q2ztbX9z3/+oxtzBgspCwt6AS1BNC/Q3Nw8fPjw7hMHtGrOYCFlYUEvoCWI5gXIYo7swN1HIRBDB3oBCMTQIfRYQF8gCKLxpQQEHxaBQLQHKR99eJQY6dCG41ZuTme29ADYiQL5E+J0qnVXQhxV+grsF4BADB3oBSAQQwd6AQjE0IGdKBBIT4yNjXW5dxiCIPh2eJPSC2jjJmnwThBcHqRfurq6dDzTUWe2FEJKL6CNm6TBO0FweRBID2C/AASiC7q6uoqKivBWoRjoBSAQXfDzzz9v374dbxWKIWWLAKIN6uvrAQAvX750cnJiMBh4y9Ermpub9+7d++DBA7yFKAbWBQwdgUAQERHh7Ozs5uZmZGS0aNEiKyurGTNmHD9+nLAnppCOnTt3+vv7u7u74y1EMX/OzURRtKqqislkYnvCisXifjeHxQuFU0o7Ozurq6upVCp2oo5YLDYxMbGwsAAAVFRUdHV1GRsboygqFottbW17H2GuwWmqCrNqbW19//49Jg9FUalUiqIoi8Vqb2+vra2l0WhY/59UKpVKpY6OjtqT150LFy5s2LAhKCgoODh4/PjxmBWJRJKamnrw4MHKysorV67g8uziO4NYsxZ5PJ6Hh0dBQYGVlZUOzKkDtv1gRkaGn5/fmTNntm3b9uDBg7Vr1/be/r1fhELhzJkzQ0JCBppwoABFe0tWVlZGRkZiR6oAALy8vOT/QnR0tKmpKQDA09MzLCxM4XGXCvPUoLySkpKdO3fOmTMHADB8+PDNmzefOnUKRdG3b9/u3Llz/vz5AIAhQ4Zs2rQpNjZWq/Lk7N+/38nJqaCgoC8rFy5csLS0zMrK0rjpfumuRBv/u+rWBw+Xy921a5fOzKkBQFH06tWrzs7OdXV1WBCXyzU2Nm5vbx9oXnV1dVQqlc1ma1hjL5SUmlQqxd6oHkfurlmzJjw8XL08NSjvyZMnAAA/P78e4cXFxQAADoejA3kYt27dsrOzq6mpUW7l3r17o0ePrq2t1az1ftEbL5CdnT1mzBjlbxP+XqC2ttbExCQuLk4e9PXXX3t7e8sva2trd+/erWJ21dXVHz580LDGXigvtcrKSlNT05EjR8qf3bdv33K53MHkqSl5BDk6SSgUOjg4pKWlqWIlPDw8ODhYg9ZVQW+8wIwZM86ePaszc+oBgoODhw0bJhQK5UFOTk4REREoiv7+++9btmxZvnw5i8XCT6EC+i21kydPAgC++OILFEVlMtk//vEPbJv6weSpEXkE8QLnz59XaEuhlebm5hEjRsirirpBP7zAlStXJkyYgPUB6cCc2lDu3r3r4+MjP2u8qqqqrKwMa11PmzZt165d/v7+mumB0CGrVq3y9fW9efPm+fPnjx075u/vb2Njg7coAnHjxo2goCAVI5uamn722Wd37tzRqiT9QywWR0REHDhwQJcHwKsHpaamxtvbW36dkpKCIIiXlxeOmjTCiRMnhg8fvn79+pycnKVLl+Ith1gUFBQM6MhJrItbe3r0kpiYmHHjxmH9wQQHAQA4OzvLr5OTkz08PNSeNNLU1ESn0+U1i75wcHDA6sDaw87OLjo6+ttvv21tbVUxic7m6ufk5Cxbtqx7SFtbW7+pNCuvrwPmFVoxMzPr6Og4dOiQBgX0i5GREYIg2JwFAi6j6OjoyMrK+v3334uLi8vLywUCQVtbG5VKpVKpNjY2tra2N27c+OWXX1QccR/MPygvJfVgsVgIm82WH/aampoaHx8fGhqqXnYNDQ329vaurq65ubnKY/J4PPVMYKhYZK2trY6OjtevX798+XJAQEC/8VHNzRdQHsHT0zMuLq57SEVFRWJiovJUmpIHAHBxcblz505374/R18D14cOHy8rKfvrpJ00J6Bfc5wv09ZVYLE5MTDx//nxqaurEiRNnzJgxf/58JycnS0tLBoMhFoslEklVVdWePXtYLNbBgwdDQkL8/Pz++c9/+vr6KslWx/9gD5DTp0+Hhoaam5uXlpbKZDKJRCIfch8odDrd0dGxrx8ZHfPq1avCwsKUlBQ2mx0SEvLpp5+OGjUKb1FEwcXFJT8/v7cX6IvCwsIJEyZoVRLx6ejoOHbs2OHDh93c3JYtW3bx4sVhw4YpjEmhUPLy8vLz862srPh8/q+//hoREbFx48awsLAVK1aocdSS1kFRVCgU5ufni0Sic+fOIQjS43jixMRE0o0RSCQSPz8/gUCAomhsbCwAAI4UdufYsWNLly5V0YpIJGIymfJDwXUDINgYwdWrV+3t7blc7vPnz/tNrnCaUEpKio+Pz8SJEx89etSvOR3zF/MrV66cOnVqjxjXrl2zs7PToaT+6bfUduzYcePGDeyzTCb75JNPAABXr14dTJ4akUcQL9DU1MRkMgsLC1Wxcvjw4YULF2rQuioQxwu0tLQEBQWx2eze0ysUonyaUEJCwujRozdv3iwWixWaw4U/zUulUnt7+7CwMHlIUVHR1q1bZ8+ebWZmFhoaeujQITwUKkB5qeXl5a1atap7SHl5OYPBYDKZWO1AjTw1JY8gXgBF0djY2EmTJrW1tSm38uLFC0tLy6KiIs1a7xeCeIHXr1+PHTt23bp1nZ2dKqbtd5pQfX39woULvb295U8jUbzA1q1bORyOsbGxu7v7Dz/8gK+mflFSauXl5S4uLklJST3Cd+zYgb1+2EZAA8pTg/IyMzMBAL6+vj3CX7x4AQCYPn26GnmqzapVq3x8fOrr6/uygv2sJSQkaNx0vxDBC+Tk5FhbW58+fVr1hCpOE5LJZOHh4ePGjauqqkKJ4wUkEok8qPtnYqKw1K5cuTJ79uyRI0cyGIxRo0Z1r//v379/zJgxJiYmJiYmHh4egYGBvSts2vYCT58+Xb58uYeHh6mpqYWFRWBgYGRkJIqiBQUFK1asmDZtmqmp6YgRI7hc7qZNm1TMc5BIpdItW7bY2NjExsZinUFyK+/evduwYYOlpeWdO3c0blcViOAFoqKibt26pXoqsVjs7Ozc+xeoLy5evPjmzRuUAF4A7yWNakHwk8sJLq8Hz5492759e1pa2vjx43NycmbOnCkQCKqrq5cuXbplyxa8BlZwHylUw2JsbOzt27fVmGSJ+8pi6AU0nyfB5SmktbX12bNn2dnZTCbT3d190qRJ+A5okdELlJSUDBs2TI256tALqAPBXzOCyyMFZPQCZDHXG6Kvc4BAINoGegEIxNAh5R7ECIJofHmJBk+8J7g8CKQHhtXahJAF2C+gS+AvDATSE23U5pSb05kthcC6AISI4FsXGCjkUtsb2DsIgRg60AtAIIYO7BfQDMbGxro8zwtBEIlEojNzEP2GlF5AG6/cIN8rbKmiBvUoh4D78EHICym9gDZeOfheQQwW2C9AaEQiEd4SIPoP9ALE5fr161wuF28VEP2HlC0CQ0AikWzevDkmJgZvIRD9B9YFCAp2ss3cuXPxFgLRf/6c54SiaFVVFZPJxI5SUfFMFVxQOD2rtbX1/fv3VCqVQqGgKIrt/cZisdrb22tra2k0Gtb/J5VKpVKpo6OjKnkOUpLaNDc3jxs3LiUlxd3dXQfmCAi5ZuORS21v/qgLZGZmfvHFFw8ePNizZ09KSsq6devS09MHmpdIJJo1a9b333+vaZEqwefzL126tHLlyjFjxri5ucXGxqakpAAABAJBfHz8mjVrbG1tnZ2dY2JikpKScFGoOtghsX25AAhEw6AoevXqVWdnZ/nR1Fwu19jYuK8N1ZVQV1dHpVLZbPZAEw4U0PdujU+ePAEA+Pn59QgvLi4GAHA4HDXyHKSkgVJeXm5hYVFbW6sbc8QE4Lr76EAhl9reIHw+/5tvvomJibG0tMT8Ap1O9/T0pNPpAIC7d+9mZWV1dHTMmjVr0aJFygfVLS0teTze8OHDteez+mXIkCHyv6qEE5Dw8PANGzZYWVnhLQRiKCCRkZEymWzJkiXyoPT0dOxsz6ioKDc3t507dzY2Nvr7+yckJFy8eFF5dmpsvQjpzuPHj7Oyss6cOYO3EIgBQbl7966Pj4/8rPGqqqqysjIOh9PV1XXq1KnRo0cbGRmZm5tHR0dfunTp5cuX+MrVe8LCwnbt2oVVxCAQ3UCpqanx9vaWX6ekpCAI4uXlhSDIzJkz5dtRW1hYAABqa2vxkWkY/Prrr62trcuWLcNbCMSwQAAA3U+wTk5O9vDwYDAYAIDu9dJ79+4xmczu/kIhTU1NdDpdXrPoCwcHB+xkPi2Rk5PT411qa2vrN5UOlhI0NTXl5OQUFRWVlZU1NTW1t7cbGxvTaDQrKyt7e/t9+/bFxsZSKCpN4tCGWgRBdLkyUjlGRkZyPcRf5YGj2kHeNRaLhbDZ7ObmZuw6NTU1Pj4+NDS0R7yysrJDhw7dvn27rwPbMRoaGuzt7V1dXXNzc5Ub5vF4aosGKpSyp6dnXFxc95CKiorExETlqdDBzRdQ8m15efmFCxeuX79eVlY2ZcoUNzc3FxcXc3NzOp0ukUgkEkl1dfXFixfb2toCAwOnTJmyZMmSxYsXM5lMLaklPuQagSeX2t4gp0+fDg0NNTc3Ly0tlclkEomEw+F0j1FZWblu3bqbN2/2O3xNp9MdHR1dXV21qJdspKWl7du3Ly8vj8vlHj16dNq0aQo3mWtubj5w4EBGRoaDg0Nqaurly5e3bt3q5+cXFhb20Ucf6V42xLBAUVQoFObn54tEonPnziEIgh1ciVFRUbF69erGxkYURUtLS58/f47DaGYvAPGOBu+dvKSkZN68eePGjTt16pRIJFKePDQ09Ntvv+0e0tTUtHfvXisrq+DgYD6fr1m1xAeQagSeXGp7QwEA0Gg0NptNpVIfPnw4efJkebW/oqJi/fr1QUFBr169evTo0eHDh4cOHap7P0U6UBQ9ePCgt7e3r69vQUHBypUrlc/F5vF4//vf/7Zt29Y90MzMbPPmzcXFxWZmZhMmTLh27ZqWVUMMGLk/kEql9vb2YWFh2KVQKGSxWN1jUqlUbHsP3AEErgu0tLQsWLDAy8uroqJCxbRcLnfXrl1KIjx+/Hjs2LEhISHy8h+kWuIDSPXrSi61vfmjO3rbtm2zZ8+uqam5d+8e1jtIo9F4PF73qCKRCN9zbFWhpaUFAPDhwweF4dhf7cHn8zkcjqOjY1pamp2dnSpJsGlCGzduVBLH09MzLy/vzZs3X331VUdHh4bEQiB/8Ed/ZldXl7zXqvtnYqKwGzYvL+/IkSNFRUUlJSXGxsZz5sxxdnb+8ccfCwsLo6OjX79+XVRURKFQ5s6da29vv3//flXyHKiktWvX2traRkREqJ5w5syZwcHBK1as6DcmtuPA0qVLp0yZQsaO6AFBrl53cqntDfkUA0IeDa5e8mvXru3cufPp06cqzhEYpDkSQa73ilxqewN3GcGToUOHHj9+fKAuAALRLOTzW0CP6gJkMad7yPXrSi61vYG/QhCIoQO9AARi6EAvAIEYOoQeEewLbRwvT/DBUQhEe5Dy0SfgQZ3acEzKzenMFkTvgQ+TZhioYyJ7rzJEn4D9AhCIoQO9AARi6EAvAIEYOtALQCCGDvQCEIihA70ABGLoEN0L3Lt3r7W1FW8VEIg+Q2gvgKJoWFgY8feiVxGZTLZ9+3YlUwNQFN2+fbtMJtOlKuJArvIhl1rlENoLpKenf/zxx8oPQSARFArlw4cPUVFRfUXYs2dPa2urwW43QK7yIZfaftDCXoYaIzg4+P79+3ir0CRisXjGjBkPHz4EvfarTE1NnTFjhlgsxk8d/pCrfMilVgnE9QKdnZ2urq4E2fVYg1RUVLDZ7B7PDZ/PZ7PZ7969w1EYQSBX+ZBLbV+o6gXevHmTmppaV1enVTXdSUhICA0N1Zk5XXL79u2hQ4fKZDLsksVizZkz586dO/iqIg7kKh9yqVVI/42WtLQ0Dw+PlJQUAEBsbGxkZGRfHR4ikWjWrFnff//9YFspAAAA4uLili9frpGsiMbnn38eEBBw584d7PLIkSO2trYLFizAVxVxIFf5kEutYpQ7ibS0NARB8vLysMvExEQGg5GcnKwwcl1dHZVKZbPZg3dO9fX1kydPHnw+hOX169fe3t7YZy8vr5KSEnz1EA1ylQ+51PamHy/g7u7e/Tyf5OTkiRMnFhcX9xW/urr6w4cP/VrtceqR9iD4OnyinfJCtOIiWvkoBy+1g7xrLBZLmReorKwEAODSOJ82bVp1dbXu7eqSly9fzp07d86cOS9fvsRbCxEhV/mQS20PlHmR0tJSAICVldVgPI0avH792sTExMbGRsd2dcxHH30kFAopFAo8m1wh5CofcqntgTIv4OzsDADAagS6JC4ubtmyZTo2igsHDhzQm5mR2oBc5UMutd3pZ6+r8ePHm5mZPXr0SB4iFovv37+/cOFChfGbmprodDqNRlNbEIqi48ePz87OZjAYamcCgUAGgPIGQ3Z2NoIgd+/elYccPXo0NzdXYWSBQMBgMKZMmdJvOwT2DmIQTR7UMxjwUjv43sF+0k+dOjUjI+O7777LzMzERgfc3d2nTJmiMDKdTnd0dHR1de3XMI/H6+ur1atXBwQEzJkzp0f448ePi4qKZDJZWVnZl19+6eHh0a8VCASiCqrufltXV9fc3Ozi4qLVlo9IJPr444/z8/N7r8GYN29eeHg4h8O5fPnykSNHsrKytCcDAjEoVK1LMJlMJpOpVSkAgJs3b/r5+SlchnXp0iVTU1MAQHJy8qJFi7StBAIxHIi17FHJ6MCIESPKysq2bdvW0NCwcuVKHQuDQPQYAp2HIRAIFixYkJOTozxaRkaGv79/aWmpiYmJboRBIPoNgeoC8fHxgYGBCr8SCASjR48WCoUAAHt7+/r6+oaGBt2qg0D0FgKNxNy+ffvs2bMKvxo5cuSCBQtu3rxpbm7+3//+d8eOHQ4ODrpVB4HoLQRqEXz48EF5Jb+tre3NmzcsFmvEiBE6U6UNMjMzs7Ky6uvrKyoqwsPDJ02ahLciYsHn8xMSEqysrOrr6xcuXGhnZ4e3ImXweLz09PQTJ04kJCRYW1vjLUctVF1wANEQUql00qRJHR0dKIpmZ2czmUypVIq3KGLh6+uLrSUTCASffvop3nL6oaampra2ls1mv337Fm8takKgfgEDgUKhfP3119h8L2tra4FA0NnZibcoAtHY2Jibm4utJTM3Ny8tLa2qqsJblDKsra11v+JOs0AvgAPr1683NjYGAOzdu3f79u1wxUR3qquruzcMzczMCO4F9AAC9Q4aFDKZbMeOHbNmzeprWMRgGTZsWFtbm/yyra1Nb7aiJyywLoAD7e3te/fuXb58eUBAwP79+7ERUAiGg4MDg8EQi8UAAGxLT1VWpkAGA4HGCAwEiUQyderUZ8+eYZcuLi6vX7/GVxLRSEpKysnJ+eqrr+7evevs7Pzll1/irUgZeXl5Dx48OHToUFBQ0PTp05csWYK3ogHzfzrtVoM6Q5p7AAAAAElFTkSuQmCC", - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "# Latex drawing\n", - "circuit.draw(output='latex')" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### circuit.draw() からの出力の制御\n", - "\n", - "デフォルトでは、`draw()` メソッドはレンダリングされたイメージをオブジェクトとして返すため、何も出力しません。 返される正確なクラスは指定された出力に応じ、'text'`(デフォルト)は `TextDrawer` オブジェクト、`'mpl'` は `matplotlib.Figure` オブジェクト、`latex` は `PIL.Image` オブジェクトを返します。 これらの戻り型によって、ドロワーからのレンダリングされた出力を編集したり、直接操作したりすることが可能となります。 \n", - "\n", - "Jupyter ノートブックはこれらの戻り値の型を理解して適切にレンダリングすることができますが、Jupyter の外部で実行すると、これは自動的には機能しません。 ただし、`draw()` メソッドには出力を表示または保存するオプションの引数があります。 `filename` kwarg が指定されている場合、これはレンダリングされた出力を保存するパスを取ります。 または、`mpl` または `latex` 出力を使用している場合には、`interactive` kwarg を利用して、新しいウィンドウにイメージを開くことができます(これはノートブック内から常に機能するとは限りません)。" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### 出力のカスタマイズ\n", - "\n", - "出力によっては、回路図をカスタマイズするオプションもあります。\n", - "\n", - "#### バリアーのプロット無効化とビット順序の反転\n", - "最初の 2 つのオプションは、3 つすべてのバックエンドで共有されています。 これらのオプションでは、ビット順序とバリアーを描画するかの両方を構成でき、 それぞれ `reverse_bits` kwarg と `plot_barriers` kwarg で設定可能です。 以下の例はどの出力レンダラーでも動作しますが、ここでは簡潔に `mpl` が使用されています。" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "# Draw a new circuit with barriers and more registers\n", - "\n", - "q_a = QuantumRegister(3, name='qa')\n", - "q_b = QuantumRegister(5, name='qb')\n", - "c_a = ClassicalRegister(3)\n", - "c_b = ClassicalRegister(5)\n", - "\n", - "circuit = QuantumCircuit(q_a, q_b, c_a, c_b)\n", - "\n", - "circuit.x(q_a[1])\n", - "circuit.x(q_b[1])\n", - "circuit.x(q_b[2])\n", - "circuit.x(q_b[4])\n", - "circuit.barrier()\n", - "circuit.h(q_a)\n", - "circuit.barrier(q_a)\n", - "circuit.h(q_b)\n", - "circuit.cswap(q_b[0], q_b[1], q_b[2])\n", - "circuit.cswap(q_b[2], q_b[3], q_b[4])\n", - "circuit.cswap(q_b[3], q_b[4], q_b[0])\n", - "circuit.barrier(q_b)\n", - "circuit.measure(q_a, c_a)\n", - "circuit.measure(q_b, c_b);" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABEQAAAKxCAYAAABaCnmzAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAACr+0lEQVR4nOzdeXhTZd7/8U+SbjRQsKylLVRKUSirbKP4U1FQdgYVQVEH9wEXHkTK+KijjrgUUMcFRhSRcURFhcdhQNARGHAQZC9Li1AsS0qrVAS7QJckvz9qI6UtJiXtaU/er+vq1SY5y/eQk3Dnk/vct8XtdrsFAAAAAAAQQKxGFwAAAAAAAFDbCEQAAAAAAEDAIRABAAAAAAABh0AEAAAAAAAEHAIRAAAAAAAQcAhEAAAAAABAwCEQAQAAAAAAAYdABAAAAAAABBwCEQAAAAAAEHAIRAAAAAAAQMAhEAEAAAAAAAGHQAQAAAAAAAQcAhEAAAAAABBwCEQAAAAAAEDAIRABAAAAAAABh0AEAAAAAAAEHAIRAAAAAAAQcAhEAAAAAABAwCEQAQAAAAAAAYdABAAAAAAABBwCEQAAAAAAEHAIRAAAAAAAQMAhEAEAAAAAAAGHQAQAAAAAAAQcAhEAAAAAABBwCEQAAAAAAEDAIRABAAAAAAABh0AEAAAAAAAEnCCjCwCMsnfvXq+X/eGHH/TRRx/ppptuUosWLbxe7+KLL65OaagFvjz/UvXOAZ5/AAAAoO6ihwjghWPHjmn27Nk6duyY0aXAIJwDAAAAgLkQiAAAAAAAgIBDIAIAAAAAAAIOgQgAAAAAAAg4BCKAFxo3bqzhw4ercePGRpcCg3AOAAAAAOZicbvdbqOLAIzg6ywj1cEsI3UXzz8AAAAQ2OghAnihsLBQhw4dUmFhodGlwCCcAwAAAIC5EIgAXkhPT9egQYOUnp5udCkwCOcAAAAAYC5BRhcAwL/cbqnIaXQV3guxSRaL0VXATNxutwoKCowuwyfh4eGy8EIAAACoVQQigMkUOaVpi4yuwnvJY6RQ3ongRwUFBWrYsKHRZfgkLy9Pdrvd6DIAAAACCpfMAAAAAACAgEMgAgAAAAAAAg4d1QEvJCYmKi0tzegyYCDOAQAAAMBc6CECAAAAAAACDoEI4IWMjAyNHTtWGRkZRpcCg3AOAAAAAOZCIAJ4oaCgQCkpKfVuKk/4D+cAAAAAYC4EIgAAAAAAIOAQiAAAAAAAgIBDIAIAAAAAAAIOgQjghejoaCUnJys6OtroUmAQzgEAAADAXAhEAC80adJEI0aMUJMmTYwuBQbhHEB1Wa1WxcfHG10GAAAAzhJkdAFAfXD8+HGtWLFCgwcPVmRkpNHlwACcA4GlQYMGuuyyy9SzZ0/17NlTsbGxCg0NVXFxsX744Qdt27ZNW7du1fr163X8+PEqt2O1WrVgwQINGzZMAwYM0LZt22rxKAAAAHAuBCKAF7KysjR9+nR1796dD8MBinMgMHTo0EF//OMfdccdd5yzN9Dw4cMlSYWFhfr44481e/Zsbdy4sdwyZWHIbbfdJkn67LPP1K5dO6ZuBgAAqCMC4pKZnJwcJSUlqX379goLC1NsbKwmTZqk/Px83XXXXbJYLHr99dfLrXPw4EHNnDlTgwYNUnx8vOx2u8LDw9WtWze98MILKioqMuhoAAD+1qhRI73xxhv69ttvNXny5ErDkOLi4gr3hYaG6tZbb9WGDRu0cuVKxcbGSqoYhhQXF+vee+8lDAEAAKhDTN9DZMeOHRo8eLCys7Nlt9vVqVMnHT16VK+++qoOHDjg6ercvXv3cus988wzmj9/vux2u1q3bq3ExET98MMP2rlzp3bu3KnNmzdr8eLFBhwRUPMcqf/R4uf66/KbZ6rn0EcqXeaVWy2K6z5UIx9ZVsvVAf7Vv39/vfPOO2rbtq3nvlOnTumjjz7S6tWrtXXrVu3du1dOp1MWi0VxcXHq2bOn+vXrp9tuu01NmzaVJF133XXavXu3Jk+erKuuuqpcGHLjjTdq6dKlhhwfAAAAKmfqQCQnJ0fDhw9Xdna2pkyZoieffFKNGjWSJM2YMUPTpk1TUFCQLBaLunbtWm7da6+9Vvfff7969Oghi8XiuX/Lli0aNmyYlixZol27dqlLly61ekwAAP+55ZZb9Pe//11BQaX/Hebl5emZZ57RW2+9pZ9++qnC8m63WxkZGcrIyNAnn3yiRx99VDfddJOeffZZxcTEKCIiQm+//bZnecIQAACAusvUl8w89NBDcjgceuCBBzRr1ixPGCJJSUlJ6tatm0pKShQXF6eIiIhy644ZM0aXXHJJuTBEknr16qWBAwdKkvbs2VPzB4E6wW63q1+/frLb7UaXAoNwDpjP6NGj9Y9//MMThqxatUqdO3fWjBkzKg1DKnP69Gm9++676ty5s955551yjzmdTsIQAACAOsy0PUTS0tK0aNEiNWvWTM8//3yly/Ts2VMpKSnq1q1bhccKCwu1dOlSrV27VhkZGcrNzZXL5ZL0axASEhJSbp2MjAxNmjRJa9asUVBQkIYPH66XX37Z050a9VdcXJzmzZtndBkwEOeAuXTq1En/+Mc/ZLWWfi/wxhtvaOLEiXK73dXaXm5uridYKWOz2Sr8PwEAAIC6w7SByAcffCCXy6Vx48apYcOGlS7ToEEDSaoQiKxatUp33HGHjhw5cs59tGvXzvN3bm6u+vfvr8jISH3wwQc6deqUkpKSNGzYMK1fv97T6Eb95HQ6derUKTVo0EA2m83ocmpNSVGBTuXmGF1GnRCo54AZ2Ww2LViwQKGhoZKk+fPna8KECdXe3tkDqDqdTs85Mnv2bP3nP/9RTg6vIwAAgLrGtJ/SV69eLal0sLyqOBwOSeUDkW+++UZDhgyRw+HQXXfdpdWrV+uHH35QcXGx3G630tLSJElBQUHq2LGjZ70333xTmZmZ+vTTTzVs2DCNHj1a77//vjZu3Eh3aRPYu3evevfurb179xpdSq3auPhJvTmheaU/gSZQzwEzevjhh9W7d29Jpb0JJ06cWO1tVTabzPXXX68lS5ZIklq0aKFXXnnl/IsGAACA35m2h8ihQ4ckqdysAWcqKSnR+vXrJZUPRB599FEVFRXphRde0LRp0yqst3z5ckml3a3Lvl2UpGXLlunyyy9XmzZtPPddeumlateunf71r3/p97//vc/H0KtXL2VnZ/u8Hrwzfvx4r5fNysqSJH322Wfavn271+stWLDAx6rOny24gUZN3++XbXXuf68S+o6u9LH/e2GgX/bRISFBzuJTftmWL3x5/qXqnQNGPP+Q5/LGygQHB+vhhx+WVNqTY/z48SosLKzWfioLQ8rGDNm4caOuvPJKNW3aVGPHjtVjjz2mgwcPVrmthIQEehICAABUQ6tWrbRly5ZqrWvaQCQ/P19S6dSJlVm0aJFycnLUqFEjXXjhhZJKG8fr1q2TJN1xxx0V1nG5XFq4cKEkqUePHuUeS01N1ejRFT84JiYmKjU1tVrHkJ2drczMzGqti99WUFDg9bKnT5/2/PZlPSOev6DQcL9tq0mrBLXpPMBv26vM0ayjKin0/t/UX3x5HqXqnQO8fuueUaNGqVWrVpKkJUuWaNOmTdXazrnCEEn64Ycf9NJLL+nZZ5+V1WrVfffdp0cffbTK7ZUFbgAAAKg9pg1EWrVqpZ9++knbtm3TpZdeWu6xrKwsTZ06VZLUtWtXz0wy+fn5cjqdkn798HOmF1980fPN8NmByE8//aQmTZpUWCcyMlLffvtttY8BNSc83PvgICwszPPbl/Wio6N9rut82YIb1Po+z0frqNaG9BDx5XmUqncOGPH8ozS8ripguOeeezx/z549u1rb/60wpMy8efP05JNPKiQkRHfddZcee+yxKnuvREVF0UMEAACgGs7nc7NpA5EBAwYoLS1NycnJGjhwoDp06CBJ2rx5s2677TbPAHfdu3f3rBMREaHo6GhlZmbq2Wef1Zw5c2Sz2VRUVKRXXnlFTzzxhIKCglRSUlIhEKkJ1e32A+/4MhbEnj17NH/+fA0ZMkSJiYlerzd9+vTqlHZeCkukaYtqfbfVtm//foUa8E7k61gg1TkHjHj+URpuVzaYttVq9QTkhw4d0tq1a33etrdhiFTaS2TFihUaOXKkmjdvroSEhCoD8v379zOlMwAAQC0z7ddRSUlJatq0qY4cOaLExER16dJFCQkJ6tOnj9q1a6err75aUsUZZh577DFJpYOkRkdHq3fv3mrRooUee+wxvfbaa3K73bJYLOWCFEm64IILdOLEiQp1HD9+XJGRkTVyjKg9HTp00Pr16z3BGgIP50D9d/HFF3tCh+pcKuNLGFLmzP307NnT530CAACg5pg2EImJidFXX32loUOHKiwsTAcPHlRkZKTmzp2r5cuXa9++fZIqBiITJkzQm2++qYSEBB0/flxHjx7VsGHDtHXrVvXp00dOp1Pt2rVTREREufU6duxY6Vghqamp5WajQf0UHBysyMhIBQcHG10KDMI5UP+dGWRv3brVp3WrE4acvZ+zg3QAAAAYy7SBiFQaUixbtky5ubnKzc3VN998o3vvvVf5+fk6ePCgrFarOnfuXGG9e+65R/v27VNRUZEyMzP13nvvqUuXLurWrZvcbrfS09MrrDNs2DD997//9UzlK5VO4XvgwAENHz68Ro8TNe/w4cOaOHGiDh8+bHQpMAjnQP135jhPvgx4W90w5Oz9XHDBBd4XCwAAgBpn2jFEzmXPnj1yu93q0KGDzwMrVuXee+/Va6+9ppEjR+rpp5/W6dOnlZSUpD59+mjkyJF+2QeMk5ubqzVr1uj+++83upRaEdPpKk16z33OZX7rcbMJtHPAjD766CNt2rRJDRo08Gmw69jYWA0aNEiSb2GIJH333Xe68sordfr0aWaSAQAAqGMCMhDZtWuXpIqXy5yPiIgIrV69WpMmTdLYsWMVFBSkYcOG6eWXX2bmAACoA3JycjwDavvi0KFDuvrqq7Vy5UpNnDjR6zBEKp3euWw6dwAAANQtBCJ+FB8fr2XLlvl1mwAA4+3evVvt27evdEp2AAAA1E8B2XWhpgIRAIB5EYYAAACYS0D2EFm9erXRJaCeadmypaZNm6aWLVsaXQoMwjkAAAAAmEtABiKAr5o1a6bx48cbXQYMxDkAAAAAmEtAXjID+OrkyZNauXKlTp48aXQpMAjnAAAAAGAuBCKAFxwOhyZPniyHw2F0KTAI5wAAAABgLgQiAAAAAAAg4BCIAAAAAACAgEMgAgAAAAAAAg6BCOCFsLAwdezYUWFhYUaXAoNwDgAAAADmwrS7gBfi4+O1ZMkSo8uAgTgHAAAAAHOhhwgAAAAAAAg4BCKAF1JTU9W1a1elpqYaXQoMwjkAAAAAmAuBCOAFt9ut4uJiud1uo0uBQTgHAAAAAHNhDBHAZEJsUvIYo6vwXojN6ApgNuHh4crLy/Pb9mbO/VA/5xcowh6uqfeNrXDbH8LDw/2yHQAAAHiPQAQwGYtFCuWVjQBmsVhkt9v9tr2Q0DCFFDsVEhomu91e4TYAAADqJy6ZAQAAAAAAAYfvkQEvxMfHa+nSpYqNjTW6FBiEcwAAAAAwFwIRwAthYWFKSEgwugwYiHMAAAAAMBcumQG8kJmZqccff1yZmZlGlwKDcA4AAAAA5kIgAnjhxIkTWrx4sU6cOGF0KTAI5wAAAABgLgQiAAAAAAAg4BCIAAAAAACAgEMgAgAAAAAAAg6BCOAFq9Wq3r17y2rlJROoOAcAAAAAc6FlD3jB5XJp8+bNcrlcRpcCg3AOAAAAAOZCIAIAAAAAAAIOgQgAAAAAAAg4BCIAAAAAACDgEIgAXmjcuLGGDx+uxo0bG10KDMI5AAAAAJhLkNEFAPVBTEyMZsyYYXQZMBDnAAAAAGAu9BABvFBYWKhDhw6psLDQ6FJgEM4BAAAAwFwIRAAvpKena9CgQUpPTze6FBiEcwAAAAAwFy6ZMRm3260Cl9PoMnwSbrXJYrEYXYZpuN1SUT06BUJsEk8/4D9ut1sFBQVGl+GT8PBw/h8AAAC1jkDEZApcTl2w+t9Gl+GTn64eKLuNU9FfipzStEVGV+G95DFSKE8/4DcFBQVq2LCh0WX4JC8vT3a73egyAABAgOGSGQAAAAAAEHAIRAAAAAAAQMChozrghcTERKWlpRldBgzEOQAAAACYCz1EAAAAAABAwCEQAbyQkZGhsWPHKiMjw+hSYBDOAQAAAMBcCEQALxQUFCglJaXeTWUJ/+EcAAAAAMyFQAQAAAAAAAQcAhEAAAAAABBwCEQAAAAAAEDAIRABvBAdHa3k5GRFR0cbXQoMwjkAAAAAmEuQ0QUA9UGTJk00YsQIo8uAgTgHAAAAAHMhEAG8cPz4ca1YsUKDBw9WZGSk0eXAAJwDCEShoaHq2rWrOnXqpIYNG8rtdisvL0+7d+/Wrl27VFxc/JvbiIyM1Mcff6ypU6dq27ZttVA1AACAdwhEAC9kZWVp+vTp6t69Ox+GAxTnAAJF48aN9Yc//EG33XabunXrpuDg4EqXKyoq0vbt2/X3v/9d7733nnJzcyssExkZqVWrVql79+768ssvNWDAAEIRAABQZwTEGCI5OTlKSkpS+/btFRYWptjYWE2aNEn5+fm66667ZLFY9Prrr5db5+DBg5o5c6YGDRqk+Ph42e12hYeHq1u3bnrhhRdUVFRk0NEAAOB/TZo00euvv66jR4/qlVdeUa9evaoMQyQpJCREffv21Zw5c5SZmamXXnpJjRo18jx+ZhgiSadOnao0NAEAADCK6XuI7NixQ4MHD1Z2drbsdrs6deqko0eP6tVXX9WBAwd0/PhxSfI02Mo888wzmj9/vux2u1q3bq3ExET98MMP2rlzp3bu3KnNmzdr8eLFBhxR7XDOXyDXhx/J9vD/yDro2nKPud1uOaf+Se60NAW9/qosF8YZUyRqjCP1P1r8XH9dfvNM9Rz6SKXLvHKrRXHdh2rkI8tquToA/jZkyBC9+eabFQYN3r17t7Zu3art27frxx9/lCQ1b95cPXr0UK9evdSxY0dJUqNGjTR58mRdf/31uuuuu7R9+/ZyYcjRo0d11VVXaf/+/bV6XAAAAOdi6kAkJydHw4cPV3Z2tqZMmaInn3zS8+3VjBkzNG3aNAUFBclisahr167l1r322mt1//33q0ePHrJYLJ77t2zZomHDhmnJkiXatWuXunTpUqvHVFust42Ta+M3cs59S5ael8jSvJnnMdeST+XeuUvWO8cThgBAPZecnKykpCTP7dzcXL3zzjv629/+pr17955z3S5dumjChAm6/fbbZbfb1bZtW3355ZfKzs5Wq1atJBGGAACAusvUl8w89NBDcjgceuCBBzRr1qxyXXmTkpLUrVs3lZSUKC4uThEREeXWHTNmjC655JJyYYgk9erVSwMHDpQk7dmzp+YPwiCW4GAFTZ0inT4t50t/9dzvPuKQa8G7slx8kayjbzCuwFpmt9vVr18/2e12o0uBQTgHYEavv/56uTDks88+U8eOHTVp0qTfDEMkadeuXZo4caI6d+6s1atXe+4nDAEAAPWBaXuIpKWladGiRWrWrJmef/75Spfp2bOnUlJS1K1btwqPFRYWaunSpVq7dq0yMjKUm5srl8sl6dcgJCQkxLO8w+HQCy+8oE2bNiklJUVFRUVyu901cGS1x5LQXtaxN8m18AO5lq+QZdC1cs6YJbndsk2dIovNZnSJtSYuLk7z5s0zugwYiHMAZvO///u/uv/++yVJLpdLDz74oObMmVOtbR08eFA33XSTdu7cqdatW3vunz9/PmEIAACos0wbiHzwwQdyuVwaN26cGjZsWOkyDRo0kKQKgciqVat0xx136MiRI+fcR7t27Tx/p6ena/Hixerdu7dCQkK0fv368zyCusE67ma5Nnwj51vzZD3wndzf7pP13rtliY0xurRa5XQ6derUKTVo0EC2AAqCSooKdCo3x+gy6oRAPQdgTj169NDTTz8tqTQMuf3227Vw4cJqby8yMlJffvlluTBEkh555BG99957+vbbb8+rXgAAgJpg2ktmyrru9u/fv8plHA6HpPKByDfffKMhQ4bI4XDorrvu0urVq/XDDz+ouLhYbrdbaWlpkqSgoCDPYHKSdMUVVygrK0tLly7VgAEDauKQDGEJClLQ1IelomK5li2XpXOirNf/3uiyat3evXvVu3dvr7qQm8nGxU/qzQnNK/0JNIF6DsB8goOD9c477ygoqPQ7kWeeeea8w5CzB1CdP3++JCksLEzvvPOOrFbTNjcAAEA9ZtoeIocOHZIktW3bttLHS0pKPL04zgxEHn30URUVFemFF17QtGnTKqy3fPlySVKnTp0UGhrqub8mGnu9evVSdna2T+u4Q0KkubP9W4jdLgUHSyUlsvTuJYufj7VDQgdZDJjGePz48V4vm5WVJan0+vrt27d7vd6CBQt8rOr82YIbaNR0/3RR79z/XiX0HV3pY//3wkC/7KNDQoKcxaf8si1f+PL8S9U7B4x4/uF/o+74H9kbRigrO0sxMTEVbtc1ZZd3VuW2227z/L+3Y8cOPfvss9XeV2VhyFVXXaUjR46oX79+uuiii3TppZfqxhtv1EcffVTldhISEghNAABAtbRq1Upbtmyp1rqmDUTy8/MlSadOVf5Ba9GiRcrJyVGjRo104YUXSirtEr9u3TpJ0h133FFhHZfL5fkWrUePHjVRdjnZ2dnKzMz0baWwUAX7sQa32y3niy9LJcVSm1i53v9Q1iuvkKV1lN/2cTTrqHS60G/b81ZBQYHXy54+fdrz25f1fH7+/CAoNNxv22rSKkFtOtdsj6ejWUdVUuj9v6m/+PI8StU7B4x4/uF/LqfT8zszM7PC7fqmbNwQSZowYYKKi4urtZ2qwpCyMUMeeOAB/fvf//bs51yBSFngCAAAUJtMG4i0atVKP/30k7Zt26ZLL7203GNZWVmaOnWqJKlr166emWTy8/Pl/KWhW/bh50wvvvii55vh2ghEykbp94U7JETH/FiD69OlcqfslPWOP8h66e9Ucv+Dcr74smyzkivMwFNdraNaG9JDJDzc++AgLCzM89uX9aKjo32u63zZghvU+j7PR+uo1ob0EPHleZSqdw4Y8fzD/6y/jBljtdkUHR1d4XZd43K5qgwY+vTpo0suuUSStGnTJm3cuLFa+/itMESSvvzyS6Wlpaljx4666qqrlJiYWOXsbFFRUfQQAQAA1VKdz81lTBuIDBgwQGlpaUpOTtbAgQPVoUMHSdLmzZt12223KSendKDIssacJEVERCg6OlqZmZl69tlnNWfOHNlsNhUVFemVV17RE088oaCgIJWUlNRKIFKdbj/5zhJdsPrfftm/OzNTrvkLZLmog6w33SiLzSbrrePkeufvcn26VLZRI/2yn33798luq/1T0ZexIPbs2aP58+dryJAhSkxM9Hq96dOnV6e081JYIk1bVOu7rbZ9+/cr1IB3Il/HAqnOOWDE8w//e272Qv2cl6+oVlFyOBwVbtc1+fn5VQ4mPmzYMM/fc+fOrdb2vQlDyrzxxht65ZVXJElDhgypMhDZv38/U1oDAIBaZ9qvY5KSktS0aVMdOXJEiYmJ6tKlixISEtSnTx+1a9dOV199taSKM8w89thjkqQ333xT0dHR6t27t1q0aKHHHntMr732mtxutywWS7kgxYzcLpecM1+SXC7Zpj7smWLXetONsnRIkGv+ArmPBk4X5w4dOmj9+vWeYA2Bh3MAZtCzZ0/P36tWrfJ5fV/CEOnXAc7P3jcAAEBdYNpAJCYmRl999ZWGDh2qsLAwHTx4UJGRkZo7d66WL1+uffv2SaoYiEyYMEFvvvmmEhISdPz4cR09elTDhg3T1q1b1adPHzmdTrVr104RERFGHFatcX2yRO7UNFn/cKssbdp47rfYbLI98rDkcsr54styu90GVll7goODFRkZqeBgf47QgvqEcwBmUBZK/Pjjj57Bx73laxgiSWlpaZ4xd3r16lW9ogEAAGqIaQMRSerYsaOWLVum3Nxc5ebm6ptvvtG9996r/Px8HTx4UFarVZ07d66w3j333KN9+/apqKhImZmZeu+999SlSxd169ZNbrdb6enpBhxN7XEfPizX3/8hS8eLZb3h+gqPW+LaynrrOLl37Zbr06UGVFj7Dh8+rIkTJ+rw4cNGlwKDcA6gvgsJCVHLli0lyTOFvLeqE4ZIpYOVl30BERsb63vRAAAANci0Y4icy549e+R2u9WhQwefB1Y8l08++USSlJqaWu52XFxcvfpmzNKmjYKX//Ocy9huHiPbzWNqqSLj5ebmas2aNeVmZzCzmE5XadJ75+7981uPm02gnQMwH4vFotdff11hYWE+B/sffvihz2FImU8//VRbtmypctY3AAAAowRkILJr1y5JFS+XOV+jR4+u9PYf/vAHLViwwK/7AgDAF4WFhXrwwQerte6UKVO0atUqFRcX+xSGSNLTTz9drX0CAADUNAIRPwqU8TQAAIFl165duvrqq1VYWOhTGAIAAFCXEYgAAIDftHv3bqNLAAAA8KuADETOnAYQ8EbLli01bdo0z4CECDycAwAAAIC5BGQgAviqWbNmGj9+vNFlwECcAwAAAIC5mHraXcBfTp48qZUrV+rkyZNGlwKDcA4AAAAA5kIgAnjB4XBo8uTJcjgcRpcCg3AOAAAAAOZCIAIAAAAAAAIOgQgAAAAAAAg4BCIAAAAAACDgEIgAXggLC1PHjh0VFhZmdCkwCOcAAAAAYC5Muwt4IT4+XkuWLDG6DBiIcwAAAAAwF3qIAAAAAACAgEMgAnghNTVVXbt2VWpqqtGlwCCcAwAAAIC5EIgAXnC73SouLpbb7Ta6FBiEcwAAAAAwF8YQMZlwq00/XT3Q6DJ8Em61GV2CqYTYpOQxRlfhvRCefsCvwsPDlZeX57ftzZz7oX7OL1CEPVxT7xtb4bY/hIeH+2U7AAAAviAQMRmLxSK7jac1kFksUiinABCwLBaL7Ha737YXEhqmkGKnQkLDZLfbK9wGAACor7hkBgAAAAAABBy+Rwa8EB8fr6VLlyo2NtboUmAQzgEAAADAXAhEAC+EhYUpISHB6DJgIM4BAAAAwFy4ZAbwQmZmph5//HFlZmYaXQoMwjkAAAAAmAuBCOCFEydOaPHixTpx4oTRpcAgnAMAAACAuRCIAAAAAACAgEMgAgAAAAAAAg6BCAAAAAAACDgEIoAXmjVrpnvuuUfNmjUzuhQYhHMAAAAAMBcCEcALFotFISEhslgsRpcCg3AOAAAAAOZCIAJ44dixY5o9e7aOHTtmdCkwCOcAAAAAYC4EIgAAAAAAIOAQiAAAAAAAgIBDIAIAAAAAAAIOgQjghcaNG2v48OFq3Lix0aXAIJwDAAAAgLkEGV0AUB/ExMRoxowZRpcBA3EOAAAAAOZCDxHAC4WFhTp06JAKCwuNLgUG4RwAAAAAzIVABPBCenq6Bg0apPT0dKNLgUE4BwAAAABz4ZIZwGTcbqnIaXQV3guxSRaL0VUAMAu3262CggKjy/BJeHi4LLwRAgBQ6whEAJMpckrTFhldhfeSx0ihvBMB8JOCggI1bNjQ6DJ8kpeXJ7vdbnQZAAAEHC6ZAQAAAAAAAYdABAAAAAAABBw6qgNeSExMVFpamtFlwECcAwAAAIC50EMEAAAAAAAEHAIRwAsZGRkaO3asMjIyjC4FBuEcAAAAAMyFQATwQkFBgVJSUurdVI7wH84BAAAAwFwIRAAAAAAAQMAhEAEAAAAAAAGHQAQAAAAAAAQcAhHAC9HR0UpOTlZ0dLTRpcAgnAMAAACAuQQZXQBQHzRp0kQjRowwugwYiHMACGzBwcEKDg5WYWGhnE6nT+v26NFDFotF27Ztq6HqAABAddBDBPDC8ePHtXDhQh0/ftzoUmAQzgEgcNhsNg0fPlwvvvii1qxZo5MnT6qoqEj5+fkqKSmRw+HQP//5T/35z39Wjx49zrmtHj166Msvv9SXX36pSy65pJaOAAAAeINABPBCVlaWpk+frqysLKNLgUE4BwDza9q0qR577DFlZGRo6dKlevjhh3XVVVcpIiKi3HLR0dEaMWKEnn76aW3btk1ff/21br31VtlstnLLlYUhkZGRuuCCC/Tkk0/W5uEAAIDfEBCBSE5OjpKSktS+fXuFhYUpNjZWkyZNUn5+vu666y5ZLBa9/vrr5dY5ePCgZs6cqUGDBik+Pl52u13h4eHq1q2bXnjhBRUVFRl0NEDNc6T+R6/catHW5bOqXOaVWy3656xhtVgVANScG2+8UWlpaZo+fbpiY2PLPXb48GGtW7dOq1at0oYNG3TixIlyj1966aX6xz/+oa+//lqdOnWSVD4MkaSvvvpKt9xyS60cCwAA8I7pxxDZsWOHBg8erOzsbNntdnXq1ElHjx7Vq6++qgMHDni6v3fv3r3ces8884zmz58vu92u1q1bKzExUT/88IN27typnTt3avPmzVq8eLEBRwQAAPwlPDxc8+fP15gxYzz3uVwuLVu2TPPnz9fXX3+tY8eOlVvHYrGoXbt2GjBggCZMmKBu3bpJkvr06aNt27bp9ddf1x133FEuDBk8eLDy8/Nr78AAAMBvMnUPkZycHA0fPlzZ2dmaMmWKsrKytG3bNmVnZys5OVnLly/X5s2bZbFY1LVr13LrXnvttdq6datyc3O1b98+bdq0SQcPHtTmzZvVsmVLLVmyRLt27TLoyAAAwPlq1KiRvvjii3JhyJIlS9SuXTuNHDlS//znPyuEIZLkdrt14MABzZ07V927d9dVV12ltLQ0SVJoaKimTJlCGAIAQD1g6kDkoYceksPh0AMPPKBZs2apUaNGnseSkpLUrVs3lZSUKC4ursL1wWPGjNEll1wii8VS7v5evXpp4MCBkqQ9e/bU/EGgTrDb7erXr5/sdrvRpcAgnAOAuYSGhmrp0qXq16+fJOnkyZMaO3asbrjhBh06dMinba1du1Y9evTQ3//+93L3Hzp0iDAEAIA6zLSXzKSlpWnRokVq1qyZnn/++UqX6dmzp1JSUjxdXc9UWFiopUuXau3atcrIyFBubq5cLpekX4OQkJAQz/KffPKJPvjgA23ZskXHjh1TmzZtdMMNN+jRRx9Vw4YNa+AIUZvi4uI0b948o8uodSVFBTqVm2N0GXVCoJ4DgFk9/fTTuuqqqyRJP/74owYMGKAdO3ZUe3udOnXS8OHDy93Xtm1b9e7dW//5z3+qXygAAKgxpg1EPvjgA7lcLo0bN67KQKJBgwaSVCEQWbVqle644w4dOXLknPto166d5+9Zs2apTZs2eu655xQTE6MdO3bo6aef1tq1a7Vu3TpZrabujGN6TqdTp06dUoMGDSrMImBmGxc/qY2LmRVBCtxzADCjvn376pFHHpFU+gXI4MGDzysMOXsA1YyMDF144YWSpPnz56tLly70EgEAoA4ybSCyevVqSVL//v2rXMbhcEgqH4h88803GjJkiIqLi3XXXXdp3Lhx6ty5sy644AIFBQVp79696tixo4KCgtSxY0fPev/617/UvHlzz+0rr7xSzZs317hx4/Tf//5XV1xxhb8PEbVo7969uvHGG/XJJ58oMTHR6HJqTef+9yqh7+hKH/u/FwbWcjXGCtRzADAbi8Wit956yxNsPvXUU9q8eXO1t1fZbDJDhgzRsmXLdOWVV+rCCy/Uk08+qaSkJL/UDwAA/Me0gUjZ9b9t27at9PGSkhKtX79eUvlA5NFHH1VRUZFeeOEFTZs2rcJ6y5cvl1TaNTY0NNRz/5lhSJlevXpJkjIzM6t1DL169VJ2dna11sVvGz9+vNfLZmVlSZI+++wzbd++3ev1FixY4GNV588W3ECjpu/3y7aatEpQm84D/LKtqnRISJCz+FSN7qMyvjz/UvXOASOef/jfqDv+R/aGEcrKzlJMTEyF22ZX346/7PLWqlx99dXq0qWLJGnr1q2aOXNmtfdVWRhSNmbInXfeqd27d6tBgwa655579NRTT6mgoKDS7SQkJNCTFACAamrVqpW2bNlSrXVNG4iUdU09daryD1qLFi1STk6OGjVq5OnW6nQ6tW7dOknSHXfcUWEdl8ulhQsXSiptBP2WNWvWSFK5niS+yM7OrnaYgt9WVcO0MqdPn/b89mU9I56/oNDwWt/n+TiadVQlhd7/m/qLL8+jVL1zgNevObicTs/vzMzMCrfNzmzHP3HiRM/fzz//vJy/HI+vzhWGSNJ3332nDz74QHfeeaeaNGmim2++WW+//Xal2yoLXAEAQO0ybSDSqlUr/fTTT9q2bZsuvfTSco9lZWVp6tSpkqSuXbt6ZpLJz8/3NIzKPvyc6cUXX/R8M/xbgUhmZqaeeOIJDRo0SN27d6/2MaDmhId7HxyEhYV5fvuyXnR0tM91nS9bcINa3+f5aB3V2pAeIr48j1L1zgEjnn/4n/WXSyusNpuio6Mr3Da7+nb8LperyoAhIiJCI0aMkCQdPXpU//znP6u1j98KQ8rMmTNHd955pyTptttuqzIQiYqKoocIAADVdD6fm00biAwYMEBpaWlKTk7WwIED1aFDB0nS5s2bddtttyknp3TmjDPDioiICEVHRyszM1PPPvus5syZI5vNpqKiIr3yyit64oknFBQUpJKSknMGInl5eRo5cqRCQkI0f/78ah9Ddbv9wDt79+71etk9e/Zo/vz5GjJkiE/jR0yfPr06pZ2XwhJp2qJa32217du/X6EGvBP58vxL1TsHjHj+4X/PzV6on/PyFdUqSg6Ho8Jts6tvx5+fn1/lYOqXXHKJgoJK33A+/fRTlZSU+Lx9b8MQqfSSnLIBVnv16iWr1VrpJT379+9nSm8AAAxg2q8jkpKS1LRpUx05ckSJiYnq0qWLEhIS1KdPH7Vr105XX321pIozzDz22GOSpDfffFPR0dHq3bu3WrRooccee0yvvfaa3G63LBZLlb0+Tp06peHDhysjI0NffPGFoqKiavQ4UTs6dOig9evXe4I1BB7OAaD+69mzp+fv6nzp4EsYUmbr1q2SJLvdrosuusjnfQIAgJpj2kAkJiZGX331lYYOHaqwsDAdPHhQkZGRmjt3rpYvX659+/ZJqhiITJgwQW+++aYSEhJ0/PhxHT16VMOGDdPWrVvVp08fOZ1OtWvXThERERX2WVxcrBtvvFFbtmzRihUr1KlTp1o5VtS84OBgRUZGKjg42OhSYBDOAaD+O7N3ly8DZEvVC0PO3g8zVAEAULeY9pIZqXQw02XLllW4Py8vTwcPHpTValXnzp0rPH7PPffonnvuqXSbbre70vtdLpfGjRunVatW6bPPPlOfPn3Or3jUKYcPH9YLL7ygP/3pT2rTpo3R5dS4mE5XadJ7lZ/rZX7rcbMJtHMAMCOr1aqioiKFhIToxx9/9Hq96oYhkjz7OX36tEJCQqpXOAAAqBGm7SFyLnv27JHb7VZCQoLPAytW5f7779fHH3+syZMnKzw8XBs3bvT8HDt2zC/7gHFyc3O1Zs0a5ebmGl0KDMI5ANR/48ePV2hoqGw2m44cOeL1eiUlJZ5B130JQyTprbfektVqVYMGDfT+++9Xq24AAFAzAjIQ2bVrl6SKl8ucjxUrVkiSXnjhBV166aXlfpYvX+63/QAAgPNT2cCm57Jr1y5dc801WrJkiU9hSNm+qupdCgAAjGXqS2aqUhOByMGDB/22LQAAULfs2rVLN9xwg9FlAAAAP6KHCAAAAAAACDgB2UNk9erVRpeAeqZly5aaNm2aWrZsaXQpMAjnAAAAAGAuARmIAL5q1qyZxo8fb3QZMBDnAAAAAGAuAXnJDOCrkydPauXKlTp58qTRpcAgnAMAAACAuRCIAF5wOByaPHmyHA6H0aXAIJwDAAAAgLkQiAAAAAAAgIBDIAIAAAAAAAIOgQgAAAAAAAg4BCKAF8LCwtSxY0eFhYUZXQoMwjkAAAAAmAvT7gJeiI+P15IlS4wuAwbiHAAAAADMhR4iAAAAAAAg4BCIAF5ITU1V165dlZqaanQpMAjnAAAAAGAuBCKAF9xut4qLi+V2u40uBQbhHAAAAADMhTFEAJMJsUnJY4yuwnshNqMrAGAm4eHhysvL89v2Zs79UD/nFyjCHq6p942tcNsfwsPD/bIdAADgGwIRwGQsFimUVzaAAGWxWGS32/22vZDQMIUUOxUSGia73V7hNgAAqL+4ZAYAAAAAAAQcvkcGvBAfH6+lS5cqNjbW6FJgEM4BAAAAwFwIRAAvhIWFKSEhwegyYCDOAQAAAMBcuGQG8EJmZqYef/xxZWZmGl0KDMI5AAAAAJgLgQjghRMnTmjx4sU6ceKE0aXAIJwDAAAAgLkQiAAAAAAAgIBDIAIAAAAAAAIOgQgAAAAAAAg4zDIDeMFqtap3796yWskQzeLiiy/2afnGjRvrySef1GWXXaaoqKgaqgoAUJv27t3r9bI//PCDPvroI910001q0aKF1+v5+v8NAKD28OkO8ILL5dLmzZvlcrmMLgUGiYqK0lNPPUUYAgAB6tixY5o9e7aOHTtmdCkAAD8hEAEAAAAAAAGHQAQAAAAAAAQcAhEAAAAAABBwCEQALzRu3FjDhw9X48aNjS4FAAAYgLYAAJgPs8wAXoiJidGMGTOMLgMAABiEtgAAmA89RAAvFBYW6tChQyosLDS6FAAAYADaAgBgPgQigBfS09M1aNAgpaenG10KAAAwAG0BADAfLpkBTMbtloqcRlfhvRCbZLEYXQUAAObhdrtVUFBgdBleCw8Pl4XGAAADEIgAJlPklKYtMroK7yWPkUJ5JwIAwG8KCgrUsGFDo8vwWl5enux2u9FlAAhAXDIDAAAAAAACDoEIAAAAAAAIOHRUB7yQmJiotLQ0o8sAAAAGoS0AAOZDDxEAAAAAABBwCEQAL2RkZGjs2LHKyMgwuhQAAGAA2gIAYD4EIoAXCgoKlJKSUq+msAMAAP5DWwAAzIdABAAAAAAABBwCEQAAAAAAEHAIRAAAAAAAQMAhEAG8EB0dreTkZEVHRxtdCgAAMABtAQAwHwKRKjRv3lwWi0UOh8PoUlAHNGnSRCNGjFCTJk2MLgUAgBpRfPr81ne7pJIi/9RSF9EWqD6LxaKIiAijywCACoKMLqAucjgcysnJUWRkpGJiYowuB3XA8ePHtWLFCg0ePFiRkZFGlwMAgF9l7pLS10k9bpQiWvq+vtsl7VkpFfwo9RgtBYf5v0ajBWJbID4+Xr169VLPnj0VFRWlkJAQFRUVKSsrS1u3btWWLVt04MCBc27DYrHob3/7m373u9/pmmuu0Y8//lhL1QPAbyMQqcSOHTskSV27djW2ENQZWVlZmj59urp37x4wjSAAQGD4IV1K+7z07+0flwYavoQiZWFIdmrp7R1LpF43SxaL/2s1UqC0BZo2bao77rhDf/zjHxUfH/+byx84cEBvvPGG3nnnnQphR1kYct9990mSPv/8c/Xt21dOp7NGagcAX3HJTCUIRACc6dRJ6WSW9PP3UvEpo6sBAP+KbCM1bl36d/Hp0lDk5++9W/fsMMRildr2Nl8YEghCQkL07LPPyuFwaObMmV6FIVJpL5KZM2fK4XBo+vTpCgkJkVQxDHE6nZo5cyZhCIA6hR4ilUhJSZEkdevWzeBKAGM4Uv+jxc/11+U3z1TPoY9Uuswrt1oU132oRj6yrJarqx3OEun7byXHDunnrF/vt1illhdJMd2lJoyrB8AEgkJKL5XZ/ol08uivochv9RSpLAzpMlxqkVA7dcN/evbsqQULFqhz587l7v/yyy+1bt06bd26Vfv379fp06cVFhamhIQE9ezZU1deeaWuueYaSVJYWJgee+wxjRgxQnfccYfuueeecmHIuHHjtGjRolo/NgA4F9P3EMnJyVFSUpLat2+vsLAwxcbGatKkScrPz9ddd90li8Wi119/vdw6Z/YQ2bBhg0aNGqXmzZsrPDxcl112mb744gsDjgRAbSnKl7Z+KKWuKB+GSKUfALLTpC0fSPvXSm63MTUCgD+VhSLe9hQhDDGPkSNHav369Z4wpKioSH/961+VkJCggQMH6plnntFnn32m/fv368iRI9q/f78+++wzPfPMMxowYIASEhL017/+VUVFpSPqdunSRRs3biQMAVAvmDoQ2bFjh7p06aKZM2cqOztbnTp1UnFxsV599VWNGTNGaWlpkqTu3bt71snLy9OBAwdks9m0atUqXX755fr66689g6tu2LBBgwcP1tKlS404JBjEbrerX79+stvtRpeCGlZSJG37RPo5+7eXPbRZOvBVzdcEALXB21AkUMMQM7YFhg8frk8++UShoaGSpG3btqlXr16aPHmy0tPTvdpGenq6Jk+erF69emnbtm2SpKCg0k7ohCEA6jrTBiI5OTkaPny4srOzNWXKFGVlZWnbtm3Kzs5WcnKyli9frs2bN8tisZQbKyQlJUXuX77ynT59ut5++20dPXpU27dvV1ZWlq655hq5XC5NnjzZsxzMLy4uTvPmzVNcXJzRpaCGHfxGyjvmw/KbpNwfaq4eAKhNvxWKBGoYIpmvLZCYmKiPPvrIE168++676tu3r3bt2lWt7e3evVtbt24td5/T6az29gCgNpg2EHnooYfkcDj0wAMPaNasWWrUqJHnsaSkJHXr1k0lJSWKi4srNy962fghTqdT7777rsaPHy+bzSZJaty4sebNmyer1arvvvtO+/btq92DgmGcTqfy8vICbiCwkqICncrNqfTHjFxO6Wg12m2OHX4vBQAMU2Uokh24YYhkrraAzWbTO++8o7Cw0vmRFy5cqPHjx6ukpKRa2ysbQPWee+6RJLlcLkmlA7UuWLDA05YGgLrGlIFIWlqaFi1apGbNmun555+vdJmePXtKqjhwatn4IYMHD9aoUaMqrBcXF6fo6NKRFDMzMz33Z2RkaMSIEWrUqJEuuOAC3X777cyzbiJ79+5V7969tXfvXqNLqVUbFz+pNyc0r/THjHK+k4oKfF8vK1VyFvu/HgAwSmWhyOYPAjcMkczVFnjkkUfUu3dvSVJqaqruuuuuavd8rmw2mT/84Q+eS9N79+6tRx6pfIB2ADCaKWeZ+eCDD+RyuTRu3Dg1bNiw0mUaNGggqepAZMKECVVuv6xHSdm2c3Nz1b9/f0VGRuqDDz7QqVOnlJSUpGHDhmn9+vWyWquXO/Xq1UvZ2V4MZIBqGT9+vNfLZmWVjqz52Wefafv27V6vt2DBAh+rOn+24AYaNX2/X7bVuf+9Sug7utLH/u+FgX7ZR4eEBDnryFy2gy65V2Ov+LPP67lKpB5d++h47tEaqApGG3XH/8jeMEJZ2VmKiYmpcNvsOP7APv6wYLumjFqohNa95P6lY4Tb7dar/7xb21763Nji/MCsbYGyHhqVadCggZKSkiSVhhfjx49XYWFhtfZTWRhSNmbIvn379PXXX8tmsykpKUmvvPKKTp8+Xel2EhISqt1eBoBWrVppy5Yt1VrXlIHI6tWrJUn9+/evchmHwyGpfCDidDq1e/duWa1WXXXVVZWu53Q6dfjwYUlSmzZtJElvvvmmMjMztW7dOs99MTExuuyyy7R06VL9/ve/r9ZxZGdnl+uFAv8qKPC+K0DZf+CnT5/2aT0jnr+g0HC/batJqwS16TzAb9urzNGsoyoprEa3jBqQm5BX7XWPfX9M2T/xejUj1y/d411OpzIzMyvcNjuOP7CP32qx6sj3+5TQule5+1PTtynzaP0/frO2Bc5lzJgxioyMlFR6qczmzZurtZ1zhSGStGnTJi1cuFC33367IiMjNWbMGP3973+vdFtlYRMA1DZTBiKHDh2SJLVt27bSx0tKSrR+/XpJ5QORb7/9VqdOnVKLFi3KjTlypo0bNyo3N1eJiYlq1aqVJGnZsmW6/PLLPWGIJF166aVq166d/vWvf1U7ECnbPmpGeLj3wUHZNbZhYWE+rVd2eVVtsgU3qPV9no/WUa3rTA8Rt61635A5XSWyNw5RdHjtP9+oedZfrn232myKjo6ucNvsOP7APX6Lxaq7B76kfp1ulFTaM8RischisWjWH1drxpKxOnxsj8FVnh+ztgVcLleVIcMf//hHz9+zZ8+u1vZ/KwwpM2fOHN1+++2e/VYViERFRdFDBEC1nc/nZlMGIvn5+ZKkU6cq/5C1aNEi5eTkqFGjRrrwwgs995cNqFo2j3pl3njjDUnSLbfc4rkvNTVVo0dXvKwgMTFRqampvh/AL6rb7Qfe8eUa4D179mj+/PkaMmSIEhMTvV5v+vTp1SntvBSWSNPq0ex2+/bvV2gdeScqKZS+esP38UCiLgpSesa3NVMUDPfc7IX6OS9fUa2i5HA4Ktw2O44/MI+/stlk5LJ4Hm/Y4AI9f9fn6jFaimhpTI3+YNa2QH5+fqWXjdvtds/YIbt379amTZt83ra3YYgkffPNN9qzZ48SExPVu3dvhYeHV9q7Zv/+/aaazhhA/WHKKLYsISqbC/1MWVlZmjp1qiSpa9euslh+/c+9bPyQEydOVDqDzLp167Rw4UI1bdpUDz74oOf+n376SU2aNKmwfGRkpI4fP34+h4I6okOHDlq/fr06dOhgdCmoQUGhUqtOvq8X08P/tQCAUaqaWleW8sudPSWv2ZmhLdCjRw9PT4yvv/7a5/V9CUPKlO3HZrOpe/fuvhcNADXIlIHIgAGlYx4kJyeXCzY2b96s/v37KyendMrQs9+UywKR4OBgTZw4USdPnvQ8tnTpUs+sMwsWLKjykhqYU3BwsCIjIxUcHGx0KahhF/aVQnz4kqp5gnRBbM3VAwC1qaow5OzZZCpMyRsAoYgZ2gKXXHKJ529feyJXJww5ez9n7h8A6gJTBiJJSUlq2rSpjhw5osTERHXp0kUJCQnq06eP2rVrp6uvvlpSxRlmyi6ZmTNnjtasWaOYmBj16dNHsbGxGjlypE6cOKHXXntNw4YNK7feBRdcoBMnTlSo4/jx455Bq1C/HT58WBMnTvQMqAvzCouQLrlRCq18gqpymrWTOg+RLJbfXhYA6jpvwxBZKk7JGwihiBnaAs2aNfP8ffDgQa/Xq24YIkkZGRmev5s3b+59sQBQC0wZiMTExOirr77S0KFDFRYWpoMHDyoyMlJz587V8uXLPb1GzgxEsrOz9f333ysyMlJ33323li5dqo4dO2r37t06ffq0rr/+em3cuFH3339/hf117Nix0rFCUlNT1bFjx5o7UNSa3NxcrVmzRrm5uUaXUitiOl2lSe+51XPoI1UuM+k9t0Y+sqwWq6o9DZtLfW6V2vaSgsMqebyZdPFAqevvJVv9/aIQADy8DkN+ERQSeKGIGdoCH330kW655Rbdeeed2r17t9fr9e7dW3fffbck38IQqXSskjvvvFO33HKLPv7442rVDQA1pY4MZeh/HTt21LJlFT+s5eXl6eDBg7JarercubPn/latWsntdntuDx06VEOHDvVqX8OGDdP//u//yuFwKCYmRlLpIFIHDhzQzJkzz/NIABghtKGUcJXUrp90/LC057PSQVeDG0h9/0CvEADm4WsYUqYsFNn+iXTy6K+hSH0faNXMdu/e7VMQUmbTpk269dZbtWDBAv3hD3/wOgyRSsfve+edd3zeJwDUBlP2EDmXPXv2yO12KyEhwacp087l3nvvVVRUlEaOHKlly5bpk08+0c0336w+ffpo5MiRftkHAGPYgqXm8b/2BLHaCEMAmMv33/oehpSprKdI6krpjO+YYBIffvih4uPjfQpDAKCuC7hAZNeuXZIqjh9yPiIiIrR69WpFRUVp7Nixuvvuu3XZZZdp2bJlzKkOAADqtJYXS216+h6GlDkzFAltKHUdQXBsVpmZmUaXAAB+ZdpLZqpSE4GIJMXHx1d6iQ7MoWXLlpo2bZpatqQPMADAXCyW0ksEozpLjao55mVZKFJcIDVo4s/q6g7aAgBgPgQigBeaNWum8ePHG10GAAA1wmKpfhhSJiik9MesaAsAgPkE3PUcq1evltvt9nrAVECSTp48qZUrV+rkyZNGlwIAAAxAWwAAzCfgAhGgOhwOhyZPniyHw2F0KQAAwAC0BQDAfAhEAAAAAABAwCEQAQAAAAAAAYdABAAAAAAABBwCEcALYWFh6tixo8LCwowuBQAAGIC2AACYT8BNuwtUR3x8vJYsWWJ0GQAAwCC0BQDAfOghAgAAAAAAAg6BCOCF1NRUde3aVampqUaXAgAADEBbAADMh0AE8ILb7VZxcbHcbrfRpQAAAAPQFgAA82EMEcBkQmxS8hijq/BeiM3oCgAAMJfw8HDl5eX5ZVsz536on/MLFGEP19T7xlZ53/kIDw8/720AQHUQiAAmY7FIobyyAQAIWBaLRXa73S/bCgkNU0ixUyGhYZ5tVnYfANRHXDIDAAAAAAACDt8jA16Ij4/X0qVLFRsba3QpAADAALQFAMB8CEQAL4SFhSkhIcHoMgAAgEFoCwCA+XDJDOCFzMxMPf7448rMzDS6FAAAYADaAgBgPgQigBdOnDihxYsX68SJE0aXAgAADEBbAADMh0AEAAAAAAAEHAIRAAAAAAAQcAhEAAAAAABAwCEQAbxgtVrVu3dvWa28ZAAACES0BQDAfHhHB7zgcrm0efNmuVwuo0sBAAAGoC0AAOZDIAIAAAAAAAIOgQgAAAAAAAg4BCIAAAAAACDgEIgAXmjcuLGGDx+uxo0bG10KAAAwAG0BADCfIKMLAOqDmJgYzZgxw+gyAACAQWgLAID50EME8EJhYaEOHTqkwsJCo0sBAAAGoC0AAOZDIAJ4IT09XYMGDVJ6errRpQAAAAPQFgAA8yEQAQAAAAAAAYcxREzG7XarwOU0ugyfhFttslgsRpdhGm63VFSPToEQm8TTDwAA/MXtdqugoMDoMnwSHh5OexgwAIGIyRS4nLpg9b+NLsMnP109UHYbp6K/FDmlaYuMrsJ7yWOkUJ5+AADgJwUFBWrYsKHRZfgkLy9Pdrvd6DKAgMMlMwAAAAAAIODwvSzghcTERKWlpRldBgAAMAhtAQAwH3qIAAAAAACAgEMgAnghIyNDY8eOVUZGhtGlAAAAA9AWAADzIRABvFBQUKCUlJR6N2I5AADwD9oCAGA+BCIAAAAAACDgEIgAAAAAAICAQyACAAAAAAACDoEI4IXo6GglJycrOjra6FIAAIABaAsAgPkEGV0AUB80adJEI0aMMLoMAABgENoCAGA+9BA5h+bNm8tiscjhcBhdCgx2/PhxLVy4UMePHze6FNSAogIpdaVUUlj9bZw8KqWvk9xu/9UFAKg7aAsErhYtWuj//b//p2uvvVYDBw5U3759ZbfbvV4/IiJCb7/9tpo2bVqDVQKoDnqIVMHhcCgnJ0eRkZGKiYkxuhwYLCsrS9OnT1f37t0VGRlpdDnwo6ICaetHUn6OlP+j1ONGKSjUt22cPCpt+0RyFknOEqlDf8liqZl6AQDGoC0QOIKCgjRq1CjdfPPN6tWrl2JjYyss43K59O2332rDhg2aP3++1q9fX+m2IiIi9MUXX6hv377q2bOnrrnmGv344481fQgAvEQPkSrs2LFDktS1a1djCwFQo4ryS38k6WSWtP0T33qKnBmGSKWhitvp/zoBAEDNatCggZ544gkdPnxYH330kUaNGlVpGCJJVqtVHTt21J133qn//ve/SklJ0W233VZumTPDEElq3bq1WrZsWePHAcB7BCJVCPRAxDl/gYqvHSLXyi8qPOZ2u1XyyDQVDx0hd8bB2i8ONc6R+h+9cqtFW5fPqnKZV2616J+zhtViVTWjYXPpkpuk4Aalt30JRc4OQyLbSt1+L1npewcAQL1y2WWXaceOHfrLX/6iqKgoz/0///yz/vOf/+iVV17R008/rb/85S968803tWXLFhUVFXmW69q1q959912tXLlSsbGxFcKQY8eO6eqrr1ZqamqtHxuAqtFsr0JKSookqVu3bgZXYgzrbePk2viNnHPfkqXnJbI0b+Z5zLXkU7l37pL1zvGyXBhnXJGAnzT6JRTZ9pFUfOrXUORcl89UFYbYgmutbAAA4AePPfaY/vKXv8hqLf2uuKSkRJ9++qn+9re/ac2aNXJXMUBYaGiobrzxRk2cOFGXXXaZJOm6667T7t27lZWVpYsuukjSr2HI7t27a+eAAHgtIHqI5OTkKCkpSe3bt1dYWJhiY2M1adIk5efn66677pLFYtHrr79ebp0ze4hs2LBBo0aNUvPmzRUeHq7LLrtMX3xRseeEmViCgxU0dYp0+rScL/3Vc7/7iEOuBe/KcvFFso6+wbgCa5ndble/fv18GkAL9UsjH3qKEIYAQOChLWBOycnJmj59uicM2bBhgzp37qzRo0dr9erVVYYhklRYWKiFCxeqX79+Gjx4sGcihoiICMIQoJ4wfSCyY8cOdenSRTNnzlR2drY6deqk4uJivfrqqxozZozS0tIkSd27d/esk5eXpwMHDshms2nVqlW6/PLL9fXXX3sGV92wYYMGDx6spUuXGnFItcaS0F7WsTfJvXWbXMtXyO10yjljluR2yzZ1iiw2m9El1pq4uDjNmzdPcXFxRpeCGuRNKOJyEoYAQCCiLWA+U6dOVVJSkuf2Y489pssvv1zffvutz9tauXKlLrvssnKzELndbiUlJRGGAHWYqQORnJwcDR8+XNnZ2ZoyZYqysrK0bds2ZWdnKzk5WcuXL9fmzZtlsVjKjRWSkpLiSYOnT5+ut99+W0ePHtX27duVlZWla665Ri6XS5MnTz5namwG1nE3S+3ayfnWPLlmvyH3t/tkHX+7LLGBNfOO0+lUXl6enM7AGi2zpKhAp3JzKv0xq6pCkbKXevEpwhAACESB2hYwqx49eui5557z3L733nv13HPPyeVyVWt7ERER+vjjj8vNQGSxWPTUU0+pUaNG510vgJph6kDkoYceksPh0AMPPKBZs2aVezNKSkpSt27dVFJSori4OEVERHgeKxs/xOl06t1339X48eNl+6U3ROPGjTVv3jxZrVZ999132rdvX+0eVC2zBAUpaOrDUlGxXMuWy9I5Udbrf290WbVu79696t27t/bu3Wt0KbVq4+In9eaE5pX+mFlloUhxQfllCEMAILAEalvAjIKDg7VgwQIFBZUOpzh9+nS99dZb1d5eZQOofvPNN5Kktm3baubMmedfNIAaYdpBVdPS0rRo0SI1a9ZMzz//fKXL9OzZUykpKRUGTi0bP2Tw4MEaNWpUhfXi4uIUHR2tI0eOKDMzUxdddJEcDodeeOEFbdq0SSkpKSoqKjrv3iO9evVSdna2T+u4Q0KkubPPa78V2O1ScLBUUiJL716yWP2bo3VI6CDLGaN015bx48d7vWxWVpYk6bPPPtP27du9Xm/BggU+VnX+bMENNGr6fr9sq3P/e5XQd3Slj/3fCwP9so8OCQlyFp/yy7b8LaZZR027YZEaNYjUmS/n3YfW6dXX71TR5NPGFYdaM+qO/5G9YYSysrMUExNT4bbZcfyBffxnmv/QIVmtNrmcTsXEtDW6HL8wa1vAnyo75+v66+C3enncd999nt7hZTPLVFdVs8nk5eVp165datiwoe677z7NmTNHO3furHI7CQkJnnFMAPimVatW2rJlS7XWNW0g8sEHH8jlcmncuHFq2LBhpcs0aFD69W9VgciECROq3H5Zj5Kybaenp2vx4sXq3bu3QkJCtH79+vM9BGVnZyszM9O3lcJC5c8vrN1ut5wvviyVFEttYuV6/0NZr7xCltZRv72yl45mHZVOezHHqZ8VFBT89kK/OH36tOe3L+v5/Pz5QVBouN+21aRVgtp0HuC37VXmaNZRlRR6/29amzIzMzXb+pCm3fyuLJbSRorb7dbTC0brRN4PBleH2uL6pXu8y+lUZmZmhdtmx/EH9vGfyS2357dZjt2sbQF/quycr++vg/vvv9/z91133aXi4uJqbaeqMKRszJAnnnhCL7/8siRp4sSJ+uMf/1jltsoCNwC1y7SByOrVqyVJ/fv3r3KZspGgzwxEnE6ndu/eLavVqquuuqrS9ZxOpw4fPixJatOmjSTpiiuu8LyRPfXUU34JRFq1auXzOu6QEB077z3/yvXpUrlTdsp6xx9kvfR3Krn/QTlffFm2WcmyWCx+2UfrqNaG9BAJD/c+OAgLC/P89mW96Ohon+s6X7ay6zzqidZRretsD5H4Vpdo0qi/ecIQqfR64Ofv/Uyz/m+cThflGVgdaov1l0smrTaboqOjK9w2O44/sI//TBZZPL/NcuxmbQv4U2XnfF1/HbhcrioDhv79++viiy+WJP3nP//Rtm3bqrWP3wpDJGnevHn6y1/+okaNGunWW29VUlKSfv7550q3FxUVRQ8RoJqq87m5jGkDkUOHDkkqvW6vMiUlJZ7Q4sxA5Ntvv9WpU6fUokWLKgdA2rhxo3Jzc5WYmOj5x6+JN7DqdPvJd5bogtX/9sv+3ZmZcs1fIMtFHWS96UZZbDZZbx0n1zt/l+vTpbKNGumX/ezbv092W+2fir5cA7xnzx7Nnz9fQ4YMUWJiotfrTZ8+vTqlnZfCEmnaolrfbbXt279foXXwnejsqXXP1D6qpz54Zq963CgFhdZ+bahdz81eqJ/z8hXVKkoOh6PCbbPj+AP7+M/05YuS3KUfgs1y7GZtC/hTZed8XX8d5OfnV9lD/Prrr/f8/be//a1a2/cmDJFKZ678xz/+oYkTJ8put+u6667Txx9/XOk29+/fz5TOgAFMG0Pm5+dLkk6dqvyb50WLFiknJ0eNGjXShRde6Lm/bEDVonP0WHjjjTckSbfccou/yq1z3C6XnDNfklwu2aY+7Jli13rTjbJ0SJBr/gK5jwZO174OHTpo/fr16tChg9GloBacHYZEVpKrVjYlLwDAvGgLmEOvXr08f3/++ec+r+9tGFJmxYoVnr979uzp8/4A1CzTBiJlPTcq6waXlZWlqVOnSpK6du1a7tKPsvFDTpw4UekMMuvWrdPChQvVtGlTPfjggzVQed3g+mSJ3Klpsv7hVll+uSxIkiw2m2yPPCy5nHK++LLppx0uExwcrMjISAUHM6WI2VUWhnT7vaQzrhA7e0peQhEAMD/aAvWfzWbz9Azfv3+/Tp486dP6voYhkrR161bP3wQiQN1j2kBkwIDSgSCTk5PLBRubN29W//79lZOTI0nq3r17ufXKApHg4GBNnDix3Bvl0qVLPbPOLFiwwLRzirsPH5br7/+QpePFst5wfYXHLXFtZb11nNy7dsv16VIDKqx9hw8f1sSJEz1jx8CcqgpDyk2ta6k4JS+hCACYH22B+q9169aeSRV27drl07rVCUOk0i9if/zxR0lS+/btq1E1gJpUB6/c94+kpCS9//77OnLkiBITE3XxxRfr9OnTSk9P1+DBgxUXF6fPP/+8wgwzZZfMzJkzR/fdd59iYmLUsWNHZWVlyeFwyGq16rXXXtOwYcOMOKxaYWnTRsHL/3nOZWw3j5Ht5jG1VJHxcnNztWbNmnKjkptZTKerNOm9c/f++a3H6xuvwpBfNGpeGops+0gqPvVrKMKYIgBgXoHWFjCjkpISrVy5Ug0aNPC0+b1hsVj02Wef+RyGlFm3bp2aNGmio0ePVqtuADXHtIFITEyMvvrqK02dOlVr167VwYMH1alTJ82dO1f33HOP4uPjJZUfUDU7O1vff/+9IiMjdffddysqKkpPP/20du/eLbvdruuvv15/+tOf1Lt3b6MOC0AN8CUMKUMoAgBA/ZKVlaXBgwf7vJ7b7dbrr7+u3/3udzp+/LhPYYhUfiBXAHWLaQMRSerYsaOWLVtW4f68vDwdPHhQVqtVnTt39tzfqlWrcmNiDB06VEOHDq2VWgEY4+fvfQ9DylQVilwyRjJg4iQAAFBDPvzwQ5WUlGjv3r0+hSEA6raAbLLv2bNHbrdbHTp08Gke+d/yySefSJJSU1PL3Y6Liys3ojWAuiO8iWSPlH7O9i0MKXN2KBIZJ1ltNVQsAAAwTFnbHoB5BGQgUjaI0tnjh5yv0aNHV3r7D3/4gxYsWODXfaF2tWzZUtOmTVPLli2NLgV+FhQqXTJa+u5rKf5y38KQMmWhyI/fSW37SGdMXAUAMAnaAgBgPgQifhQoU9AGombNmmn8+PFGl4EaEhQqdeh/ftto1Lz0BwBgTrQFAMB8TDvt7rnUVCAC8zp58qRWrlzp83z1AADAHGgLAID5BGQgsnr1arndbgZMhdccDocmT54sh8NhdCkAAMAAtAUAwHwCMhABAAAAAACBjUAEAAAAAAAEHAIRAAAAAAAQcAhEAC+EhYWpY8eOCgsLM7oUAABgANoCAGA+ATntLuCr+Ph4LVmyxOgyAACAQWgLAID50EMEAAAAAAAEHAIRwAupqanq2rWrUlNTjS4FAAAYgLYAAJgPgQjgBbfbreLiYrndbqNLAQAABqAtAADmwxgiJhNutemnqwcaXYZPwq02o0swlRCblDzG6Cq8F8LTDwAA/Cg8PFx5eXl+297MuR/q5/wCRdjDNfW+sRVu+0N4eLhftgPANwQiJmOxWGS38bQGMotFCuUUAAAAAcpischut/tteyGhYQopdiokNEx2u73CbQD1F5fMAAAAAACAgMP3yIAX4uPjtXTpUsXGxhpdCgAAMABtAQAwHwIRwAthYWFKSEgwugwAAGAQ2gIAYD5cMgN4ITMzU48//rgyMzONLgUAABiAtgAAmA+BCOCFEydOaPHixTpx4oTRpQAAAAPQFgAA8yEQAQAAAAAAAYdABAAAAAAABBwCEQAAAAAAEHAIRAAvNGvWTPfcc4+aNWtmdCkAAMAAtAUAwHwIRAAvWCwWhYSEyGKxGF0KAAAwAG0BADAfAhHAC8eOHdPs2bN17Ngxo0sBAAAGoC0AAOZDIAIAAAAAAAIOgQgAAAAAAAg4BCIAAAAAACDgEIgAXmjcuLGGDx+uxo0bG10KAAAwAG0BADCfIKMLAOqDmJgYzZgxw+gyAACAQWgLAID50EME8EJhYaEOHTqkwsJCo0sBAAAGoC0AAOZDIAJ4IT09XYMGDVJ6errRpQAAAAPQFgAA8+GSGZNxu90qcDmNLsMn4VabLBaL0WWYhtstFdWjUyDEJvH0AwAA+Ifb7VZBQYHRZfgkPDyczwMwBIGIyRS4nLpg9b+NLsMnP109UHYbp6K/FDmlaYuMrsJ7yWOkUJ5+AAAAvygoKFDDhg2NLsMneXl5stvtRpeBAMQlMwAAAAAAIOAQiAAAAAAAgIBDR3XAC4mJiUpLSzO6DAAAYBDaAgBgPvQQAQAAAAAAAYdABPBCRkaGxo4dq4yMDKNLAQAABqAtAADmQyACeKGgoEApKSn1bgozAADgH7QFAMB8CEQAAAAAAEDAIRABAAAAAAABh0AEAAAAAAAEHAIRwAvR0dFKTk5WdHS00aUAAAAD0BYAAPMhEDmH5s2by2KxyOFwGF0KDNakSRONGDFCTZo0MboU1AC3W/rpPF/mziLp5+/9Uw8AoO6hLQBU38UXX6ymTZsaXQZQQZDRBdRVDodDOTk5ioyMVExMjNHlwGDHjx/XihUrNHjwYEVGRhpdDvzI7ZYO/Fc6+I2UcKXUtrfv23AWSTv+T/o5W+p+g3QBbxkAYDq0BRBounfvrv/3//6fevbsqR49euiCCy5QUFCQTp8+rQMHDmjLli3aunWrvvjiC/38889VbqdTp05as2aNsrKydM011+jHH3+sxaMAzo1ApAo7duyQJHXt2tXYQlAnZGVlafr06erevTuNIJP56UhpGCJJ+9eW/vYlFCkLQ346Unp79zLpsrslG++uAGAqtAUQCBo0aKCxY8dq4sSJ6tWrV5XLXXjhhRowYIAkKS8vTwsXLtScOXO0c+fOcsuVhSEtWrRQixYtNHPmTN155501egyAL7hkpgqBHog45y9Q8bVD5Fr5RYXH3G63Sh6ZpuKhI+TOOFj7xaHGOVL/o1dutWjr8llVLvPKrRb9c9awWqyqZkS2kdr1+/X2/rXSoc3erXt2GGILkbqONFcY4nZLPx6SDm8r/Xc5ulsqOmV0VQAAwN/69++v1NRUzZ8/v0IYUlxcrMzMTB0+fFjHjx8v91jDhg113333KSUlRW+88YYaNWokqXwYIkmbN2/W5MmTa+dgAC+ZqNnuXykpKZKkbt26GVyJMay3jZNr4zdyzn1Llp6XyNK8mecx15JP5d65S9Y7x8tyYZxxRQJ+0u7S0t/frS/97U1PkcrCkEtGS42jaq7O2uRySke2S44d0qkT5R+z2qSWF0lxfSU7lwMDAFCvhYaG6qWXXtLEiRPL3b9161YtWLBAGzdu1K5du1RYWOh5LCoqSj179tTgwYN12223eUKQ++67T4MGDdKf//xnzZw5s1wYMnDgQJ08ebL2DgzwQkD0EMnJyVFSUpLat2+vsLAwxcbGatKkScrPz9ddd90li8Wi119/vdw6Z/YQ2bBhg0aNGqXmzZsrPDxcl112mb74omLPCTOxBAcraOoU6fRpOV/6q+d+9xGHXAveleXii2QdfYNxBQJ+1u5S73uKmD0McRZLKf8n7f9PxTBEKg1LslKlTQt//TcAAAD1T3h4uP71r3+VC0PWrl2rvn37qlevXnr99de1ZcuWcmGIVHoJ2bJly3T//ferdevWevjhh5WXlydJatu2rRYsWEAYgnrB9IHIjh071KVLF82cOVPZ2dnq1KmTiouL9eqrr2rMmDFKS0uTVDpoUJm8vDwdOHBANptNq1at0uWXX66vv/7aM7jqhg0bNHjwYC1dutSIQ6o1loT2so69Se6t2+RavkJup1POGbMkt1u2qVNksdmMLrHW2O129evXT3a73ehSUIO8CkXc5g5D3G5p92fSjwd/e9myYCgvp8bLAgDD0RaA2YSEhGjJkiUaOHCgJKmgoEAPPPCA+vfvr02bNnm9nby8PL388svq0qWLvvmmdGA2i8UiSdq3bx9hCOo0UwciOTk5Gj58uLKzszVlyhRlZWVp27Ztys7OVnJyspYvX67NmzfLYrGUGyskJSVFbrdbkjR9+nS9/fbbOnr0qLZv3+4ZHdnlcmny5Mme5czKOu5mqV07Od+aJ9fsN+T+dp+s42+XJTawptGIi4vTvHnzFBcXZ3QptaqkqECncnMq/TErb0IRs4YhknQyUzq23/vlnUXSd1/XXD0AUFcEalsA5vXMM8/ouuuukySdOHFC11xzjWbPnl3tzzfh4eG68MILy93XqlUrRUREnHetQE0x9RgiDz30kBwOhx544AHNmlV+cMikpCS9//77SklJ0YUXXljuhVo2fojT6dS7776rUaNGeR5r3Lix5s2bp/j4eH333Xfat2+fLrrooto5IANYgoIUNPVhlTz4P3ItWy5L50RZr/+90WXVOqfTqVOnTqlBgwayBVDPmI2Ln9TGxU8aXUatq2pMkTOZMQyRpCM7fF/nWLpUmCeFNvR7OQBQZwRqWwDm1LdvX02ZMkWSVFhYqKFDh2rjxo3V3t7ZA6geP35ckZGRioiI0Lx58zzBC1DXmLaHSFpamhYtWqRmzZrp+eefr3SZnj17Sqo4cGrZ+CGDBw8uF4aUiYuLU3R0tCQpMzNTkvTJJ5/ohhtuUNu2bRUeHq6LL75Yjz32mOdaunrNbpeCgyVJlt69ZLGa9rSp0t69e9W7d2/t3bvX6FJqVef+92rUn/5d6Y/Znd1T5ExmDUNcTumHfb6v53ZJ31djPQCoTwK1LQDzsVqteueddzzB3pNPPqmvv65+d8/KZpPp0aOHHA6HJOnaa6/V7bfffv6FAzXAtD1EPvjgA7lcLo0bN04NG1b+tWWDBg0kVR2ITJgwocrtl/UoKdv2rFmz1KZNGz333HOKiYnRjh079PTTT2vt2rVat26drNUIEXr16qXs7Gyf1nGHhEhzZ/u8ryq353bL+eLLUkmx1CZWrvc/lPXKK2Rp7b9Pgh0SOshSVOS37Xlr/PjxXi+blZUlSfrss8+0fft2r9dbsGCBj1WdP1twA42a7sM1D+fQpFWC2nQe4JdtVaVDQoKcxXV3Htff/26Kfv+7X6eIc7vd+vPfhytjxg7jiqohjRpE6rX7dlZr3VnP/1VLNlQ9TXN9NuqO/5G9YYSysrMUExNT4bbZcfyBffxnmv/QIVmtNrmcTsXEtDW6HL8wa1vAnyo75wPtdVDf3gdcLtc5Hx86dKg6duwoSdq0aVOFnvS+qCwMKRsz5J577tGKFSskSVOmTNG7775b5XYSEhKq9XkJkEovzdqyZUu11jVtILJ69WpJpfNpV6UstTwzEHE6ndq9e7esVquuuuqqStdzOp06fPiwJKlNmzaSpH/9619q3ry5Z5krr7xSzZs317hx4/Tf//5XV1xxhc/HkJ2d7emB4rWwUAX7vKequT5dKnfKTlnv+IOsl/5OJfc/KOeLL8s2K9kzWNL5Opp1VDpd+NsL+llBQYHXy54+fdrz25f1fH7+/CAoNLzW93k+jmYdVUmh9/+mtSksOFxtm5UPTC0Wi1o1ulj/3bbcoKpqTsMG+dVe96cTxw0532uDy+n0/M7MzKxw2+w4/sA+/jO55fb8Nsuxm7Ut4E+VnfOB9jow2/vAmTPKPPXUU3L+cjy+OlcYIkkrV67U119/rcsuu0xdu3ZVv379tH79+kq3VRY4ArXNtIHIoUOHJJVO+1SZkpISzwvyzEDk22+/1alTp9SiRQvPfNpn27hxo3Jzc5WYmKhWrVpJUrkwpEyvXr0kVf8/wrJt+8IdEqJj1dpbJdvKzJRr/gJZLuog6003ymKzyXrrOLne+btcny6VbdRIv+yndVRrQ3qIhId7HxyEhYV5fvuyXtmlVbXJFtyg1vd5PlpHta6TPURCghrof0YuUKfY0utm3G63JwS8b9gsNY5orJXb5hpZot9ZZNHPBTmKCG/m87oFrh8NOd9rg/WXLsVWm03R0dEVbpsdxx/Yx38miyye32Y5drO2BfypsnM+0F4H9e19wOVyVRkwREdHa9CgQZKk7777Tp9//nm19vFbYUiZOXPm6LLLLpMk3XnnnVUGIlFRUfQQQbVV53NzGdMGIvn5pd90njpV+QetRYsWKScnR40aNSo3GnLZgKpF5/iA/sYbb0iSbrnllnPWsGbNGknydEnzVXW6/eQ7S3TB6vMf38Htcsk58yXJ5ZJt6sOeKXatN90o9/qv5Zq/QNa+ffxy6cy+/ftkt9X+qejLNcB79uzR/PnzNWTIECUmJnq93vTp06tT2nkpLJGmLar13Vbbvv37FVrH3onKppMtP5uMRT8e/HWg1bFXPKEnnnhCbXsbVmaNSP9KOviNb+sEN5A++ny2bEH+u1yvLnlu9kL9nJevqFZRcjgcFW6bHccf2Md/pi9flOQu/RBolmM3a1vAnyo75wPtdVDf3gfy8/OrHDKgb9++nr/LhhjwlbdhiFQ6zuLbb7+t0NBQXXrppVVuc//+/UxpDUOYNoYrS4m2bdtW4bGsrCxNnTpVktS1a9dyl36UjR9y4sQJ7dtXcZTAdevWaeHChWratKkefPDBKvefmZmpJ554QoMGDVL37t3P40iM4fpkidypabL+4VZZfrksSJIsNptsjzwsuZxyvviy6acdLtOhQwetX79eHTp0MLoU1LDKw5DSAVS9mZK3vovuKsnHq+Fad5YMyDQBoFbRFoAZlE0qIZUGGb7yJQyRSmew2bVrlyTpoosuqjKoAYxi2kBkwIDSgSCTk5PLBRubN29W//79lZOTI0kVwoqyQCQ4OFgTJ04s9+JeunSpZ9aZBQsWVHlJTV5enkaOHKmQkBDNnz/fX4dUa9yHD8v193/I0vFiWW+4vsLjlri2st46Tu5du+X6dKkBFda+4OBgRUZGKjjYnyO0oK45VxhSxuyhSIPGUoeqh16qoFEL6cKqv/ABANOgLQAz6Nq1q+fvyr44Phdfw5AyW7dulVQ6u03nzp19rBioWaYNRJKSktS0aVMdOXJEiYmJ6tKlixISEtSnTx+1a9dOV199taSKM8yUXTIzZ84crVmzRjExMerTp49iY2M1cuRInThxQq+99pqGDRtW6X5PnTql4cOHKyMjQ1988YWiourfvJyWNm0UvPyfCnrlJc+lMmez3TxGwV985rdxROq6w4cPa+LEiZ7BdM0uptNVmvSeWz2HPlLlMpPec2vkI8tqsaqa5U0YUsbsoUibS7wLRRq3lnrcKAWF1HxNAGC0QGsLwJzKZsqU5NNsltUNQyTp+++/9/xd1RfKgFFMG4jExMToq6++0tChQxUWFqaDBw8qMjJSc+fO1fLlyz29Rs4MRLKzs/X9998rMjJSd999t5YuXaqOHTtq9+7dOn36tK6//npt3LhR999/f6X7LC4u1o033qgtW7ZoxYoV6tSpU60cK2pebm6u1qxZo9zcXKNLQQ3wJQwpY/pQpKd06Z1SbE8pKLT8Y5FtpC4jpJ5jpJD6NakRAFQbbQGYwahRo9S2bVtdfPHFKi4u9nq9jh07qmnTppJ8C0Mk6bXXXlP79u0VHR2ttWvXVqtuoKaY+qrvjh07atmyit9g5+Xl6eDBgxW6bbVq1arcmBhDhw7V0KFDvdqXy+XSuHHjtGrVKn322Wfq06fP+R8AgBpXnTCkTLtfLhUpG2h1/y//x5tloFV7pHRRfynh/0n/fVMqKpBC7NIlNxldGQAAqI7jx4/r+PHjPq+3ePFijRs3TpMmTdLgwYO9DkMkKScnxzNcAVDXmDoQqcqePXvkdrvVoUMHn6ZNO5f7779fH3/8sf70pz8pPDxcGzdu9DwWHx9f6bS8AIyX96N08peZ6XwJQ8qcHYpkpUoxPcw1yKg1SLL80p/Q4uOAqwAAwBwWLVqkjz/+uFoz0wB1lWkvmTmXspGOzx4/5HysWLFCkvTCCy/o0ksvLfezfPlyv+0HgH81jpK6j/ql54OPYUiZsstnGjYv3YaZwhAAAIAyhCEwm4BsttdEIHLw4EG/bQt1T8uWLTVt2jS1bNnS6FJQAyLbSv3ulmznMXFAu0ultr3ObxsAgLqLtgAAmA+BCOCFZs2aafz48UaXgRrkjyCDMAQAzIu2AACYT0BeMrN69Wq53W6vB0wFTp48qZUrV/o0gBQAADAP2gIAYD4BGYgAvnI4HJo8ebIcDofRpQAAAAPQFgAA8yEQAQAAAAAAAYdABAAAAAAABBwCEQAAAAAAEHAIRAAvhIWFqWPHjgoLCzO6FAAAYADaAgBgPgE57S7gq/j4eC1ZssToMgAAgEFoCwCA+dBDBAAAAAAABBwCEcALqamp6tq1q1JTU40uBQAAGIC2AACYD4EI4AW3263i4mK53W6jSwEAAAagLQAA5sMYIiYTbrXpp6sHGl2GT8KtNqNLMJUQm5Q8xugqvBfC0w8AAOA34eHhysvL89v2Zs79UD/nFyjCHq6p942tcNsfwsPD/bIdwFcEIiZjsVhkt/G0BjKLRQrlFAAAAAhIFotFdrvdb9sLCQ1TSLFTIaFhstvtFW4D9RmXzAAAAAAAgIDD98iAF+Lj47V06VLFxsYaXQoAADAAbQEAMB8CEcALYWFhSkhIMLoMAABgENoCAGA+XDIDeCEzM1OPP/64MjMzjS4FAAAYgLYAAJgPgQjghRMnTmjx4sU6ceKE0aUAAAAD0BYAAPMhEAEAAAAAAAGHQAQAAAAAAAQcAhEAAAAAABBwCEQAL1itVvXu3VtWKy8ZAAACEW0BADAf3tEBL7hcLm3evFkul8voUgAAgAFoCwCA+RCIAAAAAACAgEMgAgAAAAAAAg6BCAAAAAAACDgEIoAXGjdurOHDh6tx48ZGlwIAAAxAWwAAzCfI6AKA+iAmJkYzZswwugwAAGAQ2gIAYD70EAG8UFhYqEOHDqmwsNDoUgAAgAFoCwCA+RCIAF5IT0/XoEGDlJ6ebnQpAADAALQFAMB8uGQGMBm3WypyGl2F90JsksVidBUAAAAwC7fbrYKCAqPL8El4eLgsNIprHYEIYDJFTmnaIqOr8F7yGCmUdyIAAAD4SUFBgRo2bGh0GT7Jy8uT3W43uoyAwyUzAAAAAAAg4BCIAAAAAACAgENHdcALiYmJSktLM7oMAABgENoCAGA+9BABAAAAAAABh0AE8EJGRobGjh2rjIwMo0sBAAAGoC0AAOZDIAJ4oaCgQCkpKfVu+i4AAOAftAUAwHwIRAAAAAAAQMAhEAEAAAAAAAGHQAQAAAAAAAQcAhHAC9HR0UpOTlZ0dLTRpQAAAAPQFgAA8yEQOYfmzZvLYrHI4XAYXQoM1qRJE40YMUJNmjQxuhSgRrhddWMbAFBX0RYAcD6sVj5610VBRhdQVzkcDuXk5CgyMlIxMTFGlwODHT9+XCtWrNDgwYMVGRlpdDmAXzmLpZRPpci2Ulyf6m2j4IS0Y4nUcaB0Qaw/qwOAuoG2ABB4bDabOnbsqJ49e6pNmzYKCwtTcXGxcnJytG3bNu3YscOrmadGjx6tadOm6brrrtOPP/5YC5XDWwQiVdixY4ckqWvXrsYWgjohKytL06dPV/fu3WkEwVRcrtIw5Pih0h/J91Ck4IS0dZFUmFsaivQYLTVp7e9KAcBYtAWAwNG/f39NnDhRQ4YMUXh4eJXLOZ1Obdq0SXPnztWiRYt0+vTpCsuMHj1a77//voKCgrRq1SpdccUV+vnnn2uyfPiAfjtVIBABEAis1vI9OtLXSQc3eb/+mWGIJIVFSOGN/VoigDrA5ZLk/uWG+1xLAkD9NWjQIKWmpmr16tW68cYbzxmGSKU9SC699FItWLBADodDSUlJstlsnsfPDEMkadOmTcrNza3RY4Bv6CFShZSUFElSt27dDK4EqH2O1P9o8XP9dfnNM9Vz6COVLvPKrRbFdR+qkY8sq+Xq4G8X/q7094H/lv5OX1f6+7d6ipwdhtibSj1vkkLsNVImgFrmdkvHD0uOHVJOevnHDm6SWneWQs79WQEA6oXGjRvrpZde0p133lnu/u+//15r167V1q1blZqaqoKCAgUHBysuLk49e/ZUv3791KlTJ0lS06ZNlZycrBtuuEHjx49X586dy4Uhb731lu677z653aTKdUlABCI5OTmaMWOGlixZIofDoebNm+v666/Xc889p4ceekjz58/Xa6+9pgceeMCzzpk9RDZs2KAZM2bov//9r/Lz89W9e3c99dRTuvbaaw06IgDwL19DEcIQwNyKT0s7/yn9dKTyx9PXSd99LXUeKrVIqN3aAMCf4uLi9O9//1vt27f33Ld+/Xq98sor+vTTT1VcXHzO9X/3u99p4sSJuuWWW2Sz2dSnTx/t2LFDNpvN01uEMKTuMv0lMzt27FCXLl00c+ZMZWdnq1OnTiouLtarr76qMWPGKC0tTZLUvXt3zzp5eXk6cOCAbDabVq1apcsvv1xff/21Z3DVDRs2aPDgwVq6dKkRhwQD2O129evXT3Y7n/ZgXhf+Toq//NfbVV0+QxgCmJuzSNr+SdVhSBlXSWlo8sP+2qnLaLQFAPNp27at1q1b5wlDfv75Z9199926/PLL9fHHH/9mGCJJGzdu1O23365+/fp5PluGhIQQhtQTpg5EcnJyNHz4cGVnZ2vKlCnKysrStm3blJ2dreTkZC1fvlybN2+WxWIpN1ZISkqK54SdPn263n77bR09elTbt29XVlaWrrnmGrlcLk2ePJkTO0DExcVp3rx5iouLM7oUoEb9VijidhGGAGZ34Gvp52zvl9+9XCo+VXP11BW0BQBzCQ8P1+eff67Y2NLB1FJTU9WlSxe9/fbb1dreN998o+nTp8vlcnnuczqdevPNN/nMWIeZOhB56KGH5HA49MADD2jWrFlq1KiR57GkpCR169ZNJSUliouLU0REhOexsvFDnE6n3n33XY0fP96T8DVu3Fjz5s2T1WrVd999p3379tXuQcEQTqdTeXl5cjqdRpdSq0qKCnQqN6fSH5hXZaFISVHp30WnCEMAM3MWS0d3+baOq0Q6uqdm6qlLArUtAJjVCy+8oIsuukiSlJaWpiuvvFKHDx+u9vZGjx6tv//977Jaf/2IbbPZ9M477ygkJOS860XNMG0gkpaWpkWLFqlZs2Z6/vnnK12mZ8+ekioOnFo2fsjgwYM1atSoCuvFxcUpOjpakpSZmSlJ+uqrrzRgwABFRUUpNDRUMTEx5S7JQf22d+9e9e7dW3v37jW6lFq1cfGTenNC80p/YG5nhyLOXwKRstklCEMAc/r+W6mk0Pf1MlP8X0tdE6htAcCMrrjiCj344IOSpIKCAo0YMUI5OdX/wu/s2WTefvttbdu2TZLUuXNn/fnPfz7/olEjTDuo6gcffCCXy6Vx48apYcOGlS7ToEEDSVUHIhMmTKhy+2U9Ssq2/dNPP6lLly6677771KJFCzkcDj3//PO69NJLtXv3bs/4I77o1auXsrN96LMKn4wfP97rZbOysiRJn332mbZv3+71egsWLPCxqvNnC26gUdP9c0F35/73KqHv6Eof+78XBvplHx0SEuQMhL7W9dTw3g/qhn7Tyt3nyNmr5LljlPvEjwZVVbtG3fE/sjeMUFZ2lmJiYircNjuOP7CO/6bLH9OQXlW3f6pS8JPUJratXO761XvCrG0Bf6rsnDf76+BsgfY+cLb6ePxnXrZSmWeffdbz96OPPqr09PRzLH1uZ4chZWOGdO7cWVu2bFFISIimTJmil19+WT/+WHXbKSEhoVzvEnivVatW2rJlS7XWNW0gsnr1aklS//79q1zG4XBIKh+IOJ1O7d69W1arVVdddVWl6zmdTk93qjZt2kiSRowYoREjRpRbrnfv3rrooou0ePFiTZo0yedjyM7O9vRAgf8VFBR4vezp06c9v31Zz4jnLyjUf3MgNmmVoDadB/hte5U5mnVUJYXe/5uidv3z9Ju67pL71LBBE899a7Yt0t70ncYVVctcv3SPdzmdyszMrHDb7Dj+wDr+wlNFv71QFX74/pgK61nAbda2gD9Vds6b/XVwtkB7Hzib2Y6/a9euuvzy0m6we/bs0WuvvVbtbVUVhrjdbu3atUuzZ8/W5MmTFRYWpjvuuEOzZs2qcltloStql2kDkUOHDkkqHTm4MiUlJVq/fr2k8oHIt99+q1OnTqlFixblxhw508aNG5Wbm6vExES1atWqyhqaNm0qSZ4XiK/OtW2cv/Bw74ODsLAwz29f1iu7tKo22YIb1Po+z0frqNb0EKmjmjduqz/d+HG5MESSbrv2SYU0sGnF1jeMKayWWX8ZQ8pqsyk6OrrCbbPj+APr+N226gUihcWn1KxFpJ+rqXlmbQv4U2XnvNlfB2cLtPeBs9XH43e5XFUGDH/84x89f8+ePbvaA56eKwwpM2fOHE2ePFlS6dUHL774YpX7i4qKoodINZ3P52bTBiL5+fmSpFOnKv+gtWjRIuXk5KhRo0a68MILPfeXDahaVFR1g+CNN0o/BNxyyy0VHnM6nXK5XDp06JAeffRRtWrVSjfddFO1jqG63X7gHV+uAd6zZ4/mz5+vIUOGKDEx0ev1pk+fXp3SzkthiTRtUa3vttr27d+vUNO+E9VfZ0+te7Yx/+9xPfbY44rrU6tlGeK52Qv1c16+olpFyeFwVLhtdhx/YB1/Xo60cYHv67Xt1qBe/nuYtS3gT5Wd82Z/HZwt0N4HzlYfjz8/P7/KYROuu+46SaWfE997771qbd+bMESS0tPTtWrVKl1zzTVq166d4uPjq7w8Z//+/UzrbQDTRlBlKVHZYDZnysrK0tSpUyWVdpmyWCyex8rGDzlx4kSlM8isW7dOCxcuVNOmTT0D8ZzpyiuvVEhIiBISErRjxw6tXr1azZszAGV916FDB61fv14dOnQwuhSgxp0dhtibVr7c2VPyAqj/GjaTLoj1fb3Y7n4vpc6hLQDUfxdccIHatWsnqfRzYm5uFd/8nIO3YUiZtWvXev4um9QDdYdpA5EBA0rHPUhOTi4XbGzevFn9+/f3jCLcvXv3cuuVBSLBwcGaOHGiTp486Xls6dKlnllnFixYUOklNW+//bY2btyoDz74QBEREbr22mvPa/om1A3BwcGKjIxUcHCw0aUANaqyMKTnTZLKcmNLxSl5CUUAc2nXT7L40EJs3l6KiKq5euoK2gJA/XfJJZd4/t66davP6/sahpy9n169evm8T9Qs0wYiSUlJatq0qY4cOaLExER16dJFCQkJ6tOnj9q1a6err75aUsUZZsoumZkzZ47WrFmjmJgY9enTR7GxsRo5cqROnDih1157TcOGDat0vxdddJH69u2rsWPHatWqVcrNzdWMGTNq9mBR4w4fPqyJEycSbsHUqgpDzp5a9+wpeQlFAHO5IEbqPMS7UOSC2F+Wtfz2svUdbQGg/mvdurXn78quBjiX6oQhUukYlWWiogIgPa5nTHvlfkxMjL766itNnTpVa9eu1cGDB9WpUyfNnTtX99xzj+Lj4yWVD0Sys7P1/fffKzIyUnfffbeioqL09NNPa/fu3bLb7br++uv1pz/9Sb179/aqhiZNmqh9+/bnNY0T6obc3FytWbNG999/v9Gl1IqYTldp0nvnfnP/rcdRv3gbhpS58Helvw/8t/R3+rrS34EwpggQCFpeLIU2kr7bIB0/WPHxELsU0630NW81bWuyvEBrCwBmlJKSoj//+c8KCwvT5s2bvV6vdevW+sc//uFzGCJJOTk5Sk5O1qlTpzxfvqPuMPV/YR07dtSyZcsq3J+Xl6eDBw/KarWqc+fOnvtbtWpV7qQeOnSohg4dWu39//DDD/r222/Vt2/fam8DAGqar2FIGUIRwNyaREuX3CgV/CT9sP/X17gkXX6vZLUZVxsAVMfOnTu1c+dOn9c7evSoxo8fr/fee0/z58/3OgyRpJMnT+pPf/qTz/tE7TB1IFKVPXv2yO12q0OHDj5Nm3Yut956q9q3b6/u3burSZMm2r9/v15++WUFBQV5ploCgLrG5ZJ2LPY9DClTWSjSsKnULN7/tQIwRvgFpUFn+leS3JIshCEAAs+HH36ojIwMbdq0qdpT9aLuCchAZNeuXZIqjh9yPn73u9/p3Xff1SuvvKLTp08rNjZW/fv31//+7/+qbdu2ftsPAPiT1SpdPFDasURq0Ni3MKTMmaFIq45S0wvPvTwAAEB99M033xhdAvyMQMRPHnjgAT3wwAN+2x7qlpYtW2ratGlq2bKl0aUAfhfZprRbfPgFvochZS78nWRvJjVv59vsFABQX9AWAADzIRABvNCsWTONHz/e6DKAGtMk5vy30aL9+W8DAOoq2gIAYD4B+T3e6tWr5Xa7z2vAVASWkydPauXKlTp58qTRpQAAAAPQFgAA8wnIQATwlcPh0OTJk+VwOIwuBQAAGIC2AACYD4EIAAAAAAAIOAQiAAAAAAAg4BCIAAAAAACAgEMgAnghLCxMHTt2VFhYmNGlAAAAA9AWAADzCchpdwFfxcfHa8mSJUaXAQAADEJbAADMhx4iAAAAAAAg4BCIAF5ITU1V165dlZqaanQpAADAALQFAMB8CEQAL7jdbhUXF8vtdhtdCgAAMABtAQAwH8YQAUwmxCYljzG6Cu+F2IyuAAAAAGYSHh6uvLw8v21v5twP9XN+gSLs4Zp639gKt/0hPDzcL9uBbwhEAJOxWKRQXtkAAAAIUBaLRXa73W/bCwkNU0ixUyGhYbLb7RVuo/7ikhkAAAAAABBw+B4Z8EJ8fLyWLl2q2NhYo0sBAAAGoC0AAOZDIAJ4ISwsTAkJCUaXAQAADEJbAADMh0tmAC9kZmbq8ccfV2ZmptGlAAAAA9AWAADzIRABvHDixAktXrxYJ06cMLoUAABgANoCAGA+BCIAAAAAACDgEIgAAAAAAICAQyACAAAAAAACDoEI4AWr1arevXvLauUlAwBAIKItAADmwzs64AWXy6XNmzfL5XIZXQoAADAAbQEAMB8CEQAAAAAAEHAIRAAAAAAAQMAhEAEAAAAAAAGHQATwQuPGjTV8+HA1btzY6FIAAIABaAsAgPkEGV0AUB/ExMRoxowZRpcBAAAMQlsAAMyHHiKAFwoLC3Xo0CEVFhYaXQoAADAAbQEAMB8CEcAL6enpGjRokNLT040uBQAAGIC2AACYD4EIAAAAAAAIOIwhYjJut1sFLqfRZfgk3GqTxWIxugzTcLulonp0CoTYJJ5+AAAAwD/cbrcKCgqMLsMn4eHhhnwmJBAxmQKXUxes/rfRZfjkp6sHym7jVPSXIqc0bZHRVXgveYwUytMPAAAA+EVBQYEaNmxodBk+ycvLk91ur/X9cskMAAAAAAAIOHwvC3ghMTFRaWlpRpcBAAAMQlsAAMyHHiIAAAAAACDgEIgAXsjIyNDYsWOVkZFhdCkAAMAAtAUAwHwIRAAvFBQUKCUlpd6N1gwAAPyDtgAAmA+BCAAAAAAACDgEIgAAAAAAIOAQiAAAAAAAgIBDIAJ4ITo6WsnJyYqOjja6FAAAYADaAgBgPkFGFwDUB02aNNGIESOMLgMAABiEtgAAmA89RKrQvHlzWSwWORwOo0tBHXD8+HEtXLhQx48fN7oUoEZk7ZHycqq/vtslHfxGKinyX00Aak/xaengJsntrv42fv5e+v5b/9VU19AWABDImjdvrgsvvFDt2rVTixYtfF5/8uTJatq0aQ1Udn4IRCrhcDiUk5OjyMhIxcTEGF0O6oCsrCxNnz5dWVlZRpcC+F3mLmnPCmnbR9ULRdwuKXWllP6VtGMxoQhQ3xSflrZ/LKWvk779snqhyM/fS9s+lnYtk7L3+r/GuoC2AIBA0r59ez311FNasWKFvv/+e/3www/67rvvdODAAX3//fc6duyYPv/8cz3zzDO66KKLzrmtF198US+99JJWrVpV50IRApFK7NixQ5LUtWtXYwsBgBrmckmZKaV/FxX4HoqUhSFZqaW3T2ZJP2f7v04ANedEpvTzD6V/O1J8D0XKwpCS05LckmPH+fU0AQAY57rrrtOKFSu0f/9+Pfnkkxo0aFClPUKaNWuma6+9Vo8//rj27t2rL7/8UsOGDauw3IsvvqiHH35YktSlSxddeeWVNX4MviAQqQSBiOScv0DF1w6Ra+UXFR5zu90qeWSaioeOkDvjYO0XhxrnSP2PXrnVoq3LZ1W5zCu3WvTPWRXf9FC/WK1SjxulRi1Lb/sSipwdhlisUpfhUmSbmqsXgP81j5cSB0uylN72JRQpF4ZIahwtdb9eslhqrFwAQA1o2rSp3n//fa1cuVKDBg0q99ixY8f0xRdfaOHChVq4cKFWrlyp77//vtwy11xzjf71r3/pk08+8QQoZ4YhLpdLd999t5YsWVI7B+QlBlWtREpK6del3bp1M7gS41hvGyfXxm/knPuWLD0vkaV5M89jriWfyr1zl6x3jpflwjjjigTgF8Fh0iWjSz/U5H7/ayhyyU1Sw2aVr1NVGNIiofbqBuA/UZ1Kf+9ZodJeHr/0HLtoQNXhRmVhSI8bpKCQGi8XAOBHV155pRYtWqSWLVt67vvuu+/0t7/9TR999JEOHz5c6XoxMTG68cYbNWHCBHXo0EGSdMMNN+jKK6/U2rVrdcMNN0j6NQx55513av5gfGT6HiI5OTlKSkpS+/btFRYWptjYWE2aNEn5+fm66667ZLFY9Prrr5db58weIhs2bNCoUaPUvHlzhYeH67LLLtMXX1TsNWE2luBgBU2dIp0+LedLf/Xc7z7ikGvBu7JcfJGso28wrsBaZrfb1a9fP9ntdqNLAWpEWSjiTU8RwhDAnKI6ed9TJBDDENoCAMxo8ODBWrlypScMOX78uG677Ta1b99es2bNqjIMkUrH3vzrX/+qiy++WGPGjNGxY8cklV5OUx/CEMnkgciOHTvUpUsXzZw5U9nZ2erUqZOKi4v16quvasyYMUpLS5Mkde/e3bNOXl6eDhw4IJvNplWrVunyyy/X119/7RlcdcOGDRo8eLCWLl1qxCHVKktCe1nH3iT31m1yLV8ht9Mp54xZktst29QpsthsRpdYa+Li4jRv3jzFxcUZXQpQY7wKRdyEIYCZeRWKuAMvDJFoCwAwn379+mnx4sUKCwuTJH3++edKTEzUe++9J7cPg0G53W599NFH6tSpkw4cOFDu/pdeeqnOhiGSiQORnJwcDR8+XNnZ2ZoyZYqysrK0bds2ZWdnKzk5WcuXL9fmzZtlsVjKjRWSkpLiefKnT5+ut99+W0ePHtX27duVlZWla665Ri6XS5MnT/bpJKmvrONultq1k/OteXLNfkPub/fJOv52WWIDa/Ydp9OpvLw8OZ1Oo0upVSVFBTqVm1PpD8ypqlBEZ7zdEYYA5lZVKHLm+0CghSFS4LYFAJhTRESE3n//fTVo0ECStGjRIg0bNkzZ2dUfHf/RRx9VfHy857bFYtGtt96qyMjI8663ppg2EHnooYfkcDj0wAMPaNasWWrUqJHnsaSkJHXr1k0lJSWKi4tTRESE57Gy8UOcTqfeffddjR8/XrZfekI0btxY8+bNk9Vq1Xfffad9+/bV7kEZwBIUpKCpD0tFxXItWy5L50RZr/+90WXVur1796p3797au9ekcwlWYePiJ/XmhOaV/sC8KgtFzkYYAphbZaHI2QIpDJECty0AwJxmzZqlNm1KR8Jfs2aNbr31VpWUlFR7e2cPoLpz505JUqtWrfTqq6+ef8E1xJSBSFpamhYtWqRmzZrp+eefr3SZnj17Sqo4cGrZ+CGDBw/WqFGjKqwXFxen6OhoSVJmZmal2x48eLAsFoueeuqpah5BHWO3S8HBkiRL716yWE152qASnfvfq1F/+nelPzC3s0ORMxGGAIHh7FDkTIEWhgCAmfTt21f33HOPJCk3N1fjx4/3axhy9913a9CgQfrpp58kSePGjVP//v3Pv/AaYMpZZj744AO5XC6NGzdODRs2rHSZsq5BVQUiEyZMqHL7ZT1KKtv2Rx995NnG+erVq5fPXZbcISHS3Nl+2b9Uet2X88WXpZJiqU2sXO////buPDqqOs/7+Keqsm8QhOyEsJMEgQgRwpogSyBRRBRmbEdsEM2gIvo02g4u3Y2gAgOnx9ajgopNt9qO8mAeBVQExQaVZnMUbAUVNCGB1jaEEGJIqp4/QmWISaCqUtRN1X2/zuFA3fX7KwK59cn3/u7Lso4ZLUtSotfO0ad3H1lqa712PFfddNNNLm9bVlYmSdqwYYP27t3r8n5r1qxxs6q2swWHa+rDB71yrI4JvZXaf5xXjtWaPr17q/7M6Yt6DnguMixWj858X9HhDa2ODodDf3r3QW1e0X7vBfW2qb+cr8ioGJWVlyklJaXZ60DH+M09fkkqzL5d04bfK8vZx804HA5d/x/pOr2gyuDK2i5QrwW8qaWvebP9OzD7/wNmH7/kf++B3W4/7/rbb7+98c/33XffeSdOvZCWwhDnnCF33313459vv/12bd26tdXj9O7dW1YPf/CekJCgXbt2ebRvQAYiW7ZskaTzplAlJSWSmgYi9fX1+uyzz2S1WpWbm9vifvX19Y1fMM4WI6fKykrNnz9fy5cv1w033NCWIUiSysvLW+1CaVVYqILbfOb/ZV9fLMcn/yPrL2fKmjNMdbfdofr/XCnb8scaL4za6mjZUanmJ68cyx3V1S3cB9CKmpqaxt/d2c/tvz8vCAqN8Pk52+Jo2VHV/eT6ewrfsVqs+j/TFzeGIVLDvaAFQ27X1l2v6dvjnxtYne/Yz84XYK+vV2lpabPXgY7xm3v8PZMGaULWLU2+51ssFk3Kmqc/rL/d7+dTC9RrAW9q6WvebP8OzP7/gNnHLwXWe9ClSxddd911kqQffvhBq1ev9vhY5wtDJOlPf/qTFi9erKSkJE2ZMkXJycmtvl/O0NnXAjIQOXLkiCSpW7duLa6vq6vT9u3bJTUNRL744gudPn1acXFxTeYcOddHH32kkydPKjMzUwkJCU3WLVy4UH369NEvfvELrwQiPz++KxwhIfpHm8989lilpbI/t0aWvn1knX6tLDabrDf8QvbnX5B9fbFsU6d45TxJiUmGdIhERLgeHDhnXg4LC3NrP+ftVb5kCw73+TnbIikxiQ6RdshisWr2+P/UyIyGb5jODz0Wi0Wx0fFaMfd9PfbadB39p3e6kdoz69l5pKw2m5KTk5u9DnSM37zjT+2SqXum/UVRYR0lNVzsWiwWWSwWXTV8riIjI/WnrffLIf8NRQL1WsCbWvqaN9O/A8nc/w9IjF/yv/fAbre3GjBMnTpVoaGhkqRnn31WP/3k2Q+mLxSGSA2fu5955hn95je/kc1m0/Tp07Vy5coWj5eYmNimDhFPBWQgcurUKUnS6dMtf8j6y1/+ou+//17R0dHq3r1743LnhKq15/lw/tRTT0mSrr/++ibLd+3apVWrVmn37t1tqv3nx3TXqfo6xW5p+/wODrtd9ctWSHa7bAvubnzErnX6tXJs3yH7c2tkHXq5V26d+fLgl4q0+f5L0Z1J0c6cOaPZs2crOjpawcGu9+A8/PDDnpTWJj/VSff+xeen9diXBw8qNCD/J/JfDnvzR+sOuNKi2K4Nj9o8eUzqENlFy4u26rLpUlRnY+u92JY88WdVVp1SYkKiSkpKmr0OdIzfnOOvPNbSo3Wt+schaf9GSQ7pioEzNfPGmeo7TvJS06jPBeq1gDe19DVvln8HTmb9f8DJ7OOX/O89OHXqVKtTR2RnZzf+ef369R4d35Uw5NxzOOfWHDJkSKvHPHjwoCIjIz2qpy0CcnZMZ0K0Z8+eZuvKysq0YMECSdKAAQOatIA65/6oqKho8Qky27Zt05///GddcskluuOOOxqX19fX69Zbb9Xtt9+uzMxMbw7FMPZX18lx4HNZZ94gyzm3BllsNtl+dbdkr1f9f670+1ZZVwUHB6tTp05uXQAB/qilMMQ5gWprj+St4inMQEBpOQxpmEC1tUfymuFygGsBAIHA+XCR+vp6j+a+dCcMkaT9+/c33nLoPHd7EpCByLhxDZNAPvbYY02Cjb/97W/Ky8vT9983XL0PGjSoyX7OL4jg4GDNnTtXJ06caFxXXFzc+NSZNWvWNLml5g9/+IOOHTsWME+VcXz7rewvrJUlvZ+s065ptt6S1k3WG34hx6efyb6+2IAKfe/bb7/V3Llz2zThENDenS8McSIUAQLb+cIQJ7OGIlwLAAgE/fr1k9TQkdHaHRWtcTcMkRpum9m/f78kqW/fvh7fFnOxBGSj+j333KMXX3xR3333nTIzM9WvXz/V1NTo0KFDmjRpktLS0vTWW281e8KM85aZJ598UrfeeqtSUlKUnp6usrIylZSUyGq16vHHH1dhYWHjPt9//70eeOABLV++XHV1daqoqGhcV1NTo4qKCsXExLS7v/jzsaSmKvjN18+7je1fZ8j2rzN8VJHxTp48qa1bt+q2224zuhSfSMnI1Z1/Ov+V7YXWw7+4EoY4OUMR5+0zzlDEDLfPAIHMlTDEKTGj4Xfn7TMlDZdQfn37zIWY7VoAQGAqKSlReHi4Dh8+7NZ+S5cudTsMcTpy5Iji4+NVU1OjkJCQxo6R9sB/PqW7ISUlRR988IEKCgoUFhamw4cPq1OnTnr66af15ptvNnaNnBuIlJeX69ixY+rUqZNuvvlmFRcXKz09XZ999plqamp0zTXX6KOPPmr2TbCkpEQnT57UrbfeqtjY2MZfUkOHSmxsLD9JANCuuROGONEpAgQWd8IQJ7N2igCAP+vTp4+6du2qSZMmubXfnj17VF9f73YYIknTpk1T165d1bt373YVhkgB2iEiSenp6XrjjTeaLa+qqtLhw4dltVrVv3//xuUJCQlN5sMoKChQQUHBBc/Tq1evFp+nnJeXp5kzZ+qmm25q06y3AHAxeRKGONEpAgQGT8IQJzN2igCAGb388suSpPDwcLfCkPYuYAOR1uzfv18Oh0N9+vRx65FprYmKilJubm6L69LS0lpdBwDtgkWynp0f0J0wxOnnoYjFKlltF6dUABeH1fa/4YU7YYjTz0MRq+muLgHAHJyhSCAx3besTz/9VJKazR8CnE98fLzuvfdexcfHG10K4FUWi9Tv7E9yO3VzLwxxcoYi+zdKfXKliFivlwngIorqLA2eIX21veEWGHfCECdnKFJ1XOo1JjC7Q7gWAIDAQyBykZjlcbRm0blzZ910001GlwFcFM5QpC2Cw6RBU71TDwDfi+osDZzStmMkZkjK8Eo57RLXAgAQeAJyUtXzoUMEnjhx4oQ2bdrU5FHMAADAPLgWAIDAY7pAZMuWLXI4HC5NmAo4lZSU6K677lJJSYnRpQAAAANwLQAAgcd0gQgAAAAAAACBCAAAAAAAMB0CEQAAAAAAYDoEIoALwsLClJ6errCwMKNLAQAABuBaAAACj+keuwt4omfPnlq3bp3RZQAAAINwLQAAgYcOEQAAAAAAYDoEIoALDhw4oAEDBujAgQNGlwIAAAzAtQAABB4CEcAFDodDZ86ckcPhMLoUAABgAK4FACDwEIgAAAAAAADTYVLVABNhtenHseONLsMtEVab0SUElBCb9NgMo6twXQh//QAAAIDXREREqKqqymvHW/b0y6o8Va2YyAgtuPVfmr32hoiICK8cx10EIgHGYrEo0sZfq5lZLFIoXwIAAACAKVksFkVGRnrteCGhYQo5U6+Q0DBFRkY2e+3P+NgEuKBnz54qLi5W165djS4FAAAYgGsBAAg8BCKAC8LCwtS7d2+jywAAAAbhWgAAAg+TqgIuKC0t1f3336/S0lKjSwEAAAbgWgAAAg+BCOCCiooKvfbaa6qoqDC6FAAAYACuBQAg8BCIAAAAAAAA0yEQAQAAAAAApkMgAgAAAAAATIdABHBB586dNWfOHHXu3NnoUgAAgAG4FgCAwMNjd2Fa/fr1c2vbMWPGXMRqAACAr3EtAADmRocIAAAAAAAwHQIRAAAAAABgOgQiAAAAAADAdAhEAAAAAACA6RCIAAAAAAAA0yEQAQAAAAAApkMgAgAAAAAATIdABAAAAAAAmA6BCAAAAAAAMB0CEQAAAAAAYDoEIgAAAAAAwHQIRAAAAAAAgOkQiPixtWvXavDgwYqNjVV4eLjS09O1YsUKORwOo0sDAJzHhg0bNGjQIIWGhiotLU0rVqwwuiSf2rZtm6ZMmaJu3brJYrHo4YcfNrokn1m2bJlycnIUGxurjh07auTIkdq0aZPRZQEAYEpBRhcAz8XFxemBBx5Q3759FRoaqg8++EBz586VzWbTnXfeaXR5AIAW7Nq1S1OmTNGvfvUrvfTSS/r4449VVFSkiIgIFRUVGV2eT1RVVSkjI0PXX3+95s+fb3Q5PrVlyxbNmjVL2dnZioiI0OrVq1VYWKj3339fI0aMMLo8AABMhUDEj02cOLHJ6x49emj9+vV67733CEQAoJ1asWKFsrOz9cgjj0iS0tPTtX//fj366KOmCUQmT56syZMnS5Luvfdeg6vxrY0bNzZ5vXTpUm3atEnr1q0jEAEAwMe4ZSZAOBwO7dy5U9u3b1deXp7R5QAAWrF9+3bl5+c3WZafn68jR46opKTEoKpgFLvdrsrKSkVGRhpdCgAApkOHiJ87ceKEkpOTVVtbK7vdroceekjz5s0zuiwA8Dt79x/U54eONFt+uqam8fcXX9/c7LVTfJdOumL4ZRc8T1lZmRISEposc74uKytTSkqKx2Noi4rKKm3Y+lGz5a6O32KxqPCKHEVHRvimYC9zOBx6+4Nd+uHHE02Wuzp+Sbq0bw9d2q+HW+ddsmSJKioqdMstt7ShegAA4AkCET8XHR2tffv2qbq6Wjt27NB9992npKQkzZ492+jSAMCv9OnRVRve+1gnq6pbXH+mrl7/8/evW3xts1qVO2yQL8q8aDrGRCk8LFQf7/u8xfXnG78kjb58gN+GIVJDoNOvR1c99eK+Ficnv9D4YztE65r80W6d88knn9SSJUtUXFxsWBAGAICZccuMn7NarerVq5cGDBigoqIi3XPPPVq4cKHRZQGA34kMD9O1bn6gdRo/aoiS4ju7tG1iYqLKy8ubLDt27FjjOiNNzhumSzrGuL1ffOdYjR815CJU5FvdUhKUO2yg2/tZJE0vyFVYaIjL+yxfvlwLFixQcXGxxo0b5/Y5AQBA2xGIBBi73a6as+28AAD39O2ZqmFZGW7t0y05XqMvH+Dy9iNGjNBbb73VZNmmTZvUrVs3w7sEQkOCNb0wTxaLxeV9bFarZlw5VsFBgdF0esWIwUqKv8StfUYPHajuXV0Psx588EH99re/1YYNGwhDAAAwEIGIH3vooYe0efNmff311/riiy+0atUqPfbYY5o5c6bRpQGA35qcO1SdYzu4tG3I2QDBanX92+ldd92lnTt3auHChfr73/+uF154QY8//rh+/etfe1qyV3VLjnfr9p/xo4YoKc69AKGqqkr79u3Tvn37VFtbq/Lycu3bt0+HDh1ys1rvC7LZNKMgT0E2m0vbJ3TppPEjXe+OmT9/vpYtW6a1a9eqb9++Ki8vV3l5uU6cOHHhnQEAgFcRiLRBZWWlfv3rX6t3794KCwtTfHy8pk2bpl27dvns/EVFRcrMzNSwYcP01FNP6ZFHHtGKFSt8cn4ACESNIYcLXRKFY3PcvsUkOztb69ev1xtvvKGBAwfqwQcf1OLFi9vVI3evGHGZkl24BSgtJcGt7hinXbt2KSsrS1lZWSorK9MTTzyhrKws3XzzzZ6U63XxXTpp4pjsC25ns1k1ozBPQUGuhSeS9Pvf/141NTWaOnWqEhMTG3/deeedbSkZAAB4IDD6Ww1w/PhxDR8+XF999ZXCwsKUmZmpo0ePat26dSouLtbLL7+sadOmXdQaVq5cqZUrV17UcwCAGaUmxSk3J0tbduxpdZv0XqnKHtDXo+MXFBSooKDA0/IuuiCbTdML8/T4mnWqq69vcZuQkGBNL8h1qzvGKTc3t8WJS9uTEUMu1eeHvtXX3x5tdZsJo7KV6GZ3THsfNwAAZkKHiIdmzZqlr776SkOHDtWRI0e0e/dulZSUaNGiRaqrq9ONN96o0tJSo8tstHf/Qb27Y49qfqo1uhQA8AtXDL9MyQktd0lERoTpmvzRbs214W/iO8cqP/fyVtdfeUWOOnkwAau/sFosml6Qq9CQ4BbXd++aqFHZl/q4KgAA4E0EIh7YvXu33nzzTQUFBemll15SXFycJMlms+n+++9XXl6eqqurtXz5coMrbVBXX6+3tv1N73ywS7s/+9LocgDALzTcDjG2xdshrpk42q8fMeuq4YP7q1e35GbL03t105BLPeuO8ScdY6J09YSRzZaHhgTrOg+7YwAAQPvBd/Jz1NfXa+3atZowYYK6dOmi0NBQpaamKj8/X6tXr1b92bbh1157TZJ0xRVXqHv37s2OM2fOHEnSq6++6rviz2P3p1+qorJK0ZHhunxAP6PLAQC/EXdJR03KHdpk2eBL+yizT5oxBfmY1WLRtZPHNHmcbGREmKYFeHfMuQZl9NKlfZt+r79y3HB16hBtUEUAAMBbCETOqqys1Pjx43XjjTfqnXfeUUhIiAYOHCi73a63335bc+bM0cmTJyVJH330kSRp5MjmPzU6d3lJSYlKSkp8M4BW1NXXa+uHeyVJY4YNUnAw08YAgDtyLsts7JKI7RCtK68YbnBFvtUxJkpTxo9ofD0tf7SiIsMNrMi3LBaLrp44StFRDR1BGb3TNLh/H4OrAgAA3kAgctbs2bO1detWpaSkaMuWLSotLdXOnTtVUlKisrIyLV68WMHBDfcRf/llw20nPXv2bPFYKSkpCgkJabKtUc7tDhk6MN3QWgDAH1ktFl03eYwiwkM1vSC3SbeEWQzK6KUB/XpoyIC+yuidZnQ5PhcZHqZrzwZB1+SPMk13DAAAgc7iYLpz7d69W0OGDFFQUJD27t2r/v37n3f7yMhIVVdXa+PGjcrPz29xm/j4eB0/flyvvvqqx0+befyFdTpZddqjfRs4dPLUaTkcDoWFhigkuOWJ4QAAF2a32009Z4TzcsHMYYDZvwZgTidPVcvhcMhisTTOndTSskD28/EyfnONX+I9aO/jj44K1x0zr/FoX+6fkLR+/XpJDY9BvFAYIkk1NTWS1NgF0pLQ0FBJ0unTngcaJ6tOq7LqlMf7n6vmp1qeMAMAAACPOByOZtelLS0LZD8fL+M31/gl3oNAHD+BiKQDBw5IknJyclzaPiwsTNXV1aqtbT1g+OmnnyRJ4eGe32cdHdWWe7TpDgEAAEDb0CHS/n86frGZffwS70F7H39bPjcTiKhhQlVJ6tChg0vbx8bGqrq6Wj/++GOL6x0OhyoqKhq39ZSnbT+S9PG+z/V/3/pA0ZHhuufWf2UyVQAAALhtyRN/VmXVKUVHRug/bvtFq8sC2c/Hy/jNNX6J9yCQx88cIpKmTZumdevW6dFHH9W99957we3Hjh2rrVu3atGiRbr//vubrf/uu++Umpra+OeUlBSP6vJ8DhG6QwAAANB2dIi0/5+OX2xmH7/Ee9Dex88cIm2UmZmpdevW6cMPP3Rp+6FDh2rr1q3661//2uJ65/Lk5GSPwxDJO3OIMHcIAAAA2oo5RAJz/gR3mH38Eu9BII6fQETS1KlTtWjRIm3YsEEHDhxQRkbGebefNm2aHn30Ub377rv65ptv1L179ybrV61aJUm69tpr21SXZ/dC0R0CAAAA76BDpP3/dPxiM/v4Jd6D9j7+tswhwi0zZ82YMUOvvPKKUlNT9cc//lFjxoxpXHfs2DE999xzmjdvniIjIyVJkyZN0qZNmzRs2DC9/vrriouLk91u15IlS/TAAw8oPDxcX375ZZs6RDzB3CEAAADwFudcATFRkc3mEDl3WSD7+XgZv7nGL/EeBPL4+bR81qpVq3T8+HG99957ys3NVXJyspKSklRWVqbS0lI5HA79+7//e+P2zz//vEaMGKGPPvpIaWlpSk9PV1lZmcrKyhQUFKQ1a9b4PAypq6/X1g/3SpLGDBtEGAIAAAAAQCusRhfQXsTExGjz5s169tlnlZubq+rqan3yySeyWq2aOHGinn32WUVHRzdun5CQoD179mjBggVKSkrS/v37VVdXp6uvvlo7duzQ9OnTfT6GvZ8dVEVllaIjwzV0YLrPzw8AAAAAgL+gheAcNptNs2bN0qxZs1zavkOHDlq6dKmWLl16kStzzcCMXqqprVV4aCjdIQAAAAAAnAefmgNISHCQRmUPMLoMAAAAAADaPW6ZAQAAAAAApkMgAgAAAAAATIdABAAAAAAAmA6BCAAAAAAAMB0CEQAAAAAAYDoEIgAAAAAAwHQIRAAAAAAAgOkQiAAAAAAAANMhEAEAAAAAAKZDIAIAAAAAAEyHQAQAAAAAAJgOgQgAAAAAADAdAhEAAAAAAGA6BCIAAAAAAMB0CEQAAAAAAIDpEIgAAAAAAADTIRABAAAAAACmQyACAAAAAABMh0AEAAAAAACYDoEIAAAAAAAwHQIRAAAAAABgOgQiAAAAAADAdAhEAAAAAACA6RCIAAAAAAAA0yEQAQAAAAAApkMgAgAAAAAATIdABAAAAAAAmA6BCAAAAAAAMB0CEQAAAAAAYDoEIgAAAAAAwHQIRAAAAAAAgOkQiAAAAAAAANMhEAEAAAAAAKZDIAIAAAAAAEyHQAQAAAAAAJgOgQgAAAAAADAdAhE/9pvf/EYWi6XZr0OHDhldGgAAANCqDRs2aNCgQQoNDVVaWppWrFhhdEk+tW3bNk2ZMkXdunWTxWLRww8/bHRJPrNs2TLl5OQoNjZWHTt21MiRI7Vp0yajy/KptWvXavDgwYqNjVV4eLjS09O1YsUKORwOo0szxJYtW2Sz2dSrVy+fnzvI52eEV6WlpenDDz9ssqxLly4GVQMAAACc365duzRlyhT96le/0ksvvaSPP/5YRUVFioiIUFFRkdHl+URVVZUyMjJ0/fXXa/78+UaX41NbtmzRrFmzlJ2drYiICK1evVqFhYV6//33NWLECKPL84m4uDg98MAD6tu3r0JDQ/XBBx9o7ty5stlsuvPOO40uz6fKy8s1c+ZMTZgwQQcPHvT5+QlE/JzNZlNCQoLRZQAAAAAuWbFihbKzs/XII49IktLT07V//349+uijpglEJk+erMmTJ0uS7r33XoOr8a2NGzc2eb106VJt2rRJ69atM00gMnHixCave/ToofXr1+u9994zVSBit9t1ww036LbbblNNTY0hgQi3zPi5kpISpaSkKCUlRZMmTdKOHTuMLgkAAABo1fbt25Wfn99kWX5+vo4cOaKSkhKDqoJR7Ha7KisrFRkZaXQphnA4HNq5c6e2b9+uvLw8o8vxqUWLFslisRgaCtIh4scuv/xyPf/888rIyFBlZaWefvppjRo1Sps2bdL48eONLg8AAAB+5Nujx1XzU22TZXX19Y2/f/lNSavLJCksNESpSXEXPE9ZWVmzDmfn67KyMqWkpHg+iDY4UVmlYz9UNFv+8/G2Nn5JSkuOV0hI8EWv9WKw2+366shR/XwWC3fGH9shSl06dXTrvEuWLFFFRYVuueUWT0v3mvJ//FOVVdXNlrv6HtisVvVITZTFYrnguU6cOKHk5GTV1tbKbrfroYce0rx587w0Es9Un65RSfn3zZa78zWQFH+JoiLCL3iurVu36qmnntLevXtder8uFgIRP+Zss3MaNWqUSkpKtGzZMgIRAAAAuKXixEm9WPxui+uqT9fouVc2nHfZ9VPGuRSItFfBIcF6dcP7qqw61eL6n4/356/79uiq3mnJF73Oi8VqterAoSP6cM/+FtdfaPwhwUGa98tpbp3zySef1JIlS1RcXGxYEHau2jN1WvPfG2VvZXLTC70HE0dnq2e3JJfOFR0drX379qm6ulo7duzQfffdp6SkJM2ePbttg2iD0JAQvbVtp0pbCEWkC48/vnOsbp859YLn+f7773XDDTfo+eefN3z6B26ZCTA5OTk6fPiw0WUAAADAzwxI76lBGZ495SErs5cG9Ovh0raJiYkqLy9vsuzYsWON64wSERaq6yaP8Wzf8FBNmzTG0J90e8Ok3KHq0qmDR/sWjM1R51jX912+fLkWLFig4uJijRs3zqNzeltqUpzycrI82rdbcrzGDB3o8vZWq1W9evXSgAEDVFRUpHvuuUcLFy706NzeYrNZNaMgT0FBNvf3tVo148qxCg66cM/FZ599pqNHj6qwsFBBQUEKCgrS7373O3311VcKCgrSiy++6En5HiEQCTB79uxR165djS4DAAAAfuiq8SPUIdq9uRw6REfqqnGuT4Y5YsQIvfXWW02Wbdq0Sd26dTO8S6B39xQNH5zp9n5TJ45STFTERajIt0KCgzS9ME9WN4Odfj1TdfnAfi5v/+CDD+q3v/2tNmzY0G7CEKexwy9TSoJ7T+0MCQ7S9II8Wa2ef7y22+2qqanxeH9viescq0ljhrq93/hRQ5QUd4lL22ZnZ+vTTz/Vvn37Gn8VFRWpa9eu2rdvnwoKCtw+v6e4ZcaP3X333SosLFRaWpoqKyu1atUqvfPOO3r99deNLg0AAAB+qKFLIler//Kmy/tcV5Cr8LBQl7e/6667NHz4cC1cuFD/9m//po8//liPP/64Vq5c6UnJXpc/ZqgOflOqf/yzwqXtszJ769K+rnXHOFVVVenQoUOSpNraWpWXl2vfvn2KiopSr16edel4S9fEOI0dfpk2b9/t0vYR4aGalj/a5e6Y+fPn6+mnn9ZLL72kvn37NnYLhYeHq0MHz7pTvMlms2p6YZ7+a81rqqurd2mfwrE5uiQ2xuVzPPTQQxo1apR69OihM2fOaNu2bXrsscf0y1/+0tOyvSpncKY+P3REh46UurR9WkqCRl8+wOXjR0ZGqn///k2WxcXFKSQkpNnyi40OEQ/Y7XZt3LhRv/vd73TVVVcpMbFh4hyLxeLT21XKysp04403Kj09XRMmTNAXX3yhzZs368orr/RZDQAAAAgsvdKSNWKwax9KRgzpr17d3Js3Izs7W+vXr9cbb7yhgQMH6sEHH9TixYvbzSN3Q4KDNKMwT1brhT/gd4yJ0pTx7j8qdteuXcrKylJWVpbKysr0xBNPKCsrSzfffLMnJXtdXk6Wuia61iVxzcTRinajO+b3v/+9ampqNHXqVCUmJjb+ak+Pm427pKMm57rWJdGvZ6qy3eiOkaTKykoVFRUpMzNTw4YN01NPPaVHHnlEK1as8KRcr7NaLLpu8hiFhYZccNuQkGBdV5Dbpu4YI1kcjlZmjEGrKioqFBsb2+K6b775Rmlpab4tCAAAAPCiM2fq9PgL63S8haeuOMVdEqs7Zk5VcHBgNp2/u32P3vnrrvNuM+dfCl2eRNPf/OOfFfqv51/TmfN0SVzWv4+mF+T6rigfsjscev6VDTp4uPUuicjwMM2ffa2iI/3/dqmW7DtwSC//vy3n3WZa/mi3A6H2xD9jHINZrVYNGjRIc+bM0dNPP62dO3caXdIF/eOfFfrniZNGlwEAAAA/EOycS6KVLgmr1aIZV+YFbBgiSbk5g9Q1sfWn5ozMvjRgwxBJ6tKpoybnDWt1fceYKF01brgPK/Itq8Wiayef/3awqfmjAjYMkaRBGeefLDm9VzcNGdDXhxV5H4GIB2JiYrR3714988wzuuWWW5SV5dlMxL70xrsfavkzL2vXp18YXQoAAAD8QEpCF10xYnCL68aPHKLk+M4+rsi3bFarphfmthj6xHeO1cTR2QZU5VvDsjLUp3vziW4tkqYX5Lp0S4U/6xAdqatbuSVqcP8+6t+nu48r8r2rJ4xsccLgyIgwt+aOaa8IRM5RX1+vtWvXasKECerSpYtCQ0OVmpqq/Px8rV69WvX1rk2q0958d/S4vvj6O8nRMOENAAAA4IrcYYOUmtS0SyI1KV6j3Xi8qD/r0qmjCn7WJdEQlOS59HhRf2exWHTtpDHNuiRGZg9Qj9TA7Y4518CMXhqY3rPJso4xUboygLtjzhURHqZrJ+c2W35N/mhFRYb7viAvIxA5q7KyUuPHj9eNN96od955RyEhIRo4cKDsdrvefvttzZkzRydP+uctJ84ZorMye7v1bHAAAACYW+OH/7NdEg2PZc2VzU8nUPTE0EHp6tO9a+PrcSMHB3x3zLlioiM1dcLIxtfxnWM1YfQQAyvyvSkTRiomquFx1BZJ0wvzAr475lx9uqco57L/fRz1kEv7KrN3mnEFeZF5/ie7gNmzZ2vr1q1KSUnRli1bVFpaqp07d6qkpERlZWVavHixgoODjS7Tbc7uEKvForzh7f/WHgAAALQvnWM7qHBsQ5dEwdgc0/2AzWKx6NrJYxQRFqpuyfEaY5LumHMNSO+pQRm9ZLNaNePKsabojjlXw+Oox0iSRl0+QD26Jhpcke9Nyh2qLp06qFOHaF15RY7R5XgNT5mRtHv3bg0ZMkRBQUHau3ev288+rqurawxLvPmUmcdfWKeTVafbdIzq0zWqq69XcFCQW8+HBwAAAJwcDodqz9QpJDjI7+cM8NSZujrZrFa/fbxoWzkcDp2pq1OIH/6Q2Ftqz5xRcJB5/w3U19fLISnIZjO6lCaio8J1x8xrPNrXXNFeK9avXy9JKigocDsMuZhOVp1WZdUprxzrTF2dzlTVeeVYAAAAMKefamuNLgEGq/nJ3F8DZh9/oCEQkXTgwAFJUk5O+2r9iY5q2yQ1dIcAAAAAAAJZWz43E4ioYUJVSerQoX3dD+lp24/UMHfIE2vXy2qx6M5Z00x3rycAAAAAAOdDICIpJiZGknTixAmDK2mqLXOIVJ+ukSTZbDY98+Ib3iwLAAAAAIB2gTlE2igzM1Pr1q3Thx9+aHQpTXhjDhHmDgEAAAAAoDkCEUlTp07VokWLtGHDBh04cEAZGRlGlyTJ83uhmDsEAAAAAGAGbZlDhMfunjVjxgy98sorSk1N1R//+EeNGTOmcd2xY8f03HPPad68eYqMjGy278V67K4nzp075O4505k7BAAAAACAFhCInFVZWakpU6bovffekyQlJycrKSlJZWVlKi0tlcPh0I8//qiOHTtKkqZMmaLt27c37v/DDz9IkmJjYxufTT5ixAi9/vrrPh3H8/+9UV98/Z0G9++j6wpyfXpuAAAAAAD8BbfMnBUTE6PNmzfrhRde0Nq1a/XJJ5/ok08+UUJCgiZOnKjrrrtO0dHRjdufOHGiMQQ5148//thkG1/67uhxffH1d7JaLMobnuXTcwMAAAAA4E/oEAkgh0vKtf7tvyo5vjPdIQAAAAAAnAeBSICxOxw6U3tGoaEhRpcCAAAAAEC7RSACAAAAAABMx2p0AQAAAAAAAL5GIAIAAAAAAEyHQAQAAAAAAJgOgQgAAAAAADAdAhEAAAAAAGA6BCIAAAAAAMB0CEQAAAAAAIDpEIgAAAAAAADTIRABAAAAAACmQyACAAAAAABMh0AEAAAAAACYDoEIAAAAAAAwHQIRAAAAAABgOgQiAAAAAADAdAhEAAAAAACA6RCIAAAAAAAA0yEQAQAAAAAApkMgAgAAAAAATIdABAAAAAAAmA6BCAAAAAAAMB0CEQAAAAAAYDoEIgAAAAAAwHQIRAAAAAAAgOkQiAAAAAAAANMhEAEAAAAAAKZDIAIAAAAAAEyHQAQAAAAAAJgOgQgAAAAAADAdAhEAAAAAAGA6BCIAAAAAAMB0CEQAAAAAAIDpEIgAAAAAAADTIRABAAAAAACmQyACAAAAAABMh0AEAAAAAACYDoEIAAAAAAAwHQIRAAAAAABgOgQiAAAAAADAdAhEAAAAAACA6fx/sLpKTgKZD0gAAAAASUVORK5CYII=", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "# Draw the circuit\n", - "circuit.draw(output='mpl')" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA4MAAAKxCAYAAADpUnnoAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAACm/UlEQVR4nOzdeVxU9f4/8NeZYRlnUBBRQUBRBENULMAW/ZaYmrtpi5aWeE3LJZdKrFt9u/d3rUTtmmmLpWZdzSi1Ipe+ddWrXtNCVFQWFQN1WEpSlH2ZOb8/aCaRQWeGYc5wzuv5ePiAmbO9z8zxw7zmnPP5CKIoiiAiIiIiIiJFUUldABERERERETkfwyAREREREZECMQwSEREREREpEMMgERERERGRAjEMEhERERERKRDDIBERERERkQIxDBIRERERESkQwyAREREREZECMQwSEREREREpEMMgERERERGRAjEMEhERERERKRDDIBERERERkQIxDBIRERERESkQwyAREREREZECMQwSEREREREpEMMgERERERGRAjEMEhERERERKRDDIBERERERkQIxDBIRERERESkQwyAREREREZECMQwSEREREREpEMMgERERERGRAjEMEhERERERKRDDIBERERERkQIxDBIRERERESkQwyAREREREZECMQwSEREREREpEMMgERERERGRArlJXQCRVLKysqye97fffsMXX3yBRx99FB06dLB6udtuu82e0oiImp0tbSDAdpCISI54ZpDICpcuXcK7776LS5cuSV0KEZEk2A4SEckPwyAREREREZECMQwSEREREREpEMMgERERERGRAjEMElnB29sbo0ePhre3t9SlEBFJgu0gEZH8CKIoilIXQSQFW3vSswd70SMiV+WMNhBgO0hE5Mp4ZpDIClVVVTh//jyqqqqkLoWISBJsB4mI5IdhkMgK2dnZGDZsGLKzs6UuhYhIEmwHiYjkh4POy4woiig3GqQuwyZalRqCIEhdhmyIIlDdgg4BDzXAt5+IiIgcRRRFlJeXS12GTbRarSSfhxkGZabcaEDbPT9IXYZNrgwaAp2ah6KjVBuARUlSV2G9xAmAJ99+IiIicpDy8nJ4eXlJXYZNSktLodPpnL5dXiZKRERERESkQAyDRERERERECsSLs4isEBkZiczMTKnLICKSDNtBIiL54ZlBIiIiIiIiBWIYJLJCTk4OJk6ciJycHKlLISKSBNtBIiL5YRgkskJ5eTnS0tJaXDfFRESOwnaQiEh+GAaJiIiIiIgUiGGQiIiIiIhIgRgGiYiIiIiIFIhhkMgKgYGBSExMRGBgoNSlEBFJgu0gEZH8MAw2on379hAEAXq9XupSyAX4+PhgzJgx8PHxkboUomZRcRUw1DZtHWWXHVOLFIxGoPxK09ZRVQbUVDqmHlfEdpCIyH7h4eFSl2ARB523QK/Xo6ioCL6+vggKCpK6HHIBly9fxq5duzB8+HD4+vpKXQ6RQ5VdBo5+AXi1B/qMBdR2/GX49QxwajvQ7R6g612Or7E5GY1A+k7gci5w+yNAm462r6OqDDiaBKjd69bhrnF4mZJjO0hESiIIAqKjoxETE4Po6Gj06NEDWq0WRqMR165dw8mTJ5GamopDhw7h3LlzN13XlClTsG7dOsydOxfvvfeek/bAOgyDFhw/fhwA0KdPH2kLIZdRUFCAxYsXo2/fvvwQRLJiNAJpXwFVpXX/TnxjeyA0BUHRCJz7b12obB/afDU7Wu5PwK9Zdb8f+9L2QGgKgqYzoxn/B0SNdXydUmM7SERK4OPjg/j4eMycOfOmZ/Puv/9+8+/79+/He++9h23btqGmpqbefFOmTMH69euhUqnw7rvv4uTJkzhw4ECz1W8rXiZqAcMgESmFSgVEDAVUf4S/33PqAqG1l4xeHwQBICAS8OvaPLU2l87RgHenut9rKusC4bVfrVv2xiCoaQ2E3dc8dRIRUfMRBAHPPPMMLly4gBUrVlgMgrW1tTAajQ2ev/fee/H5558jKysLAwcOND9/fRAEgJUrV7pUEAQYBi1KS0sDAERFRUlciXQM6zegZugIGL/7vsE0URRR+8Ii1IwcAzEn1/nFUbPTZ/wHKycLSN2xvNF5Vk4W8M3yUU6sippL22Dg9odsD4SWgmDPBwChhf1lcfMAbn/Y9kBoKQjeMQHQ+jRruURE5GDBwcH44Ycf8P7776N169bm53fv3o25c+eif//+8PLygru7O9RqNdq3b48HHngAr7zyCjIyMszzd+vWDXv37sXq1asxffr0BkFw/vz5zt61W2phf7JtV1RUhISEBHTv3h0ajQbBwcGYN28eysrKMG3aNAiCgNWrV9db5vozg4cOHcK4cePQvn17aLVa3HPPPfj++4YBSW5UT0wCQrrAsOYjiJeK6k0zbvsa4omTUD0xGULXEGkKJCKHsjUQyiUImtgaCBkEiYjkISIiAocOHap32ef69etx2223YfDgwVi1ahV+/PFHlJWVmacXFRXh+++/x+uvv47IyEgMHDgQ+/fvN0+fPXs21qxZ4/JBEJB5GDx+/Dh69+6NZcuWobCwED179kRNTQ3eeecdTJgwAZmZmQCAvn37mpcpLS3FuXPnoFarsXv3bgwYMAA//vijuSOZQ4cOYfjw4UhOTpZil5xGcHeH28LngcpKGP75tvl58aIexg2fQritB1SPPCRdgU6m0+nQv39/6HQ6qUshajbWBkK5BUETawOhUoMg20EikpvQ0FDs2bPHPGTOhQsXMGTIEEybNg2nT5+2ej379u3DwIEDMXfuXFRVVQGou+wUAN59912XDYKAjMNgUVERRo8ejcLCQjz//PMoKCjA0aNHUVhYiMTEROzYsQMpKSkQBKHevYFpaWkQRREAsHjxYqxbtw75+fk4duwYCgoKcP/998NoNGLBggXm+eRKCOsO1cRHIaYehXHHLogGAwxLlwOiCPXC5yGo1VKX6DQhISFYu3YtQkJCpC6FqFndKhDKNQia3CoQKjUIAmwHiUhePDw88PXXX8Pf3x8AkJqaiujoaPz73/+2a32iKOLatWtwd3ev97xG49rdS8vkz3dDc+fOhV6vx5w5c7B8+fJ61/8mJCQgKioKtbW1CAkJQZs2bczTTPcLGgwGfPrpp4iPj4f6j9Dj7e2NtWvXQqVS4ZdffsGZM2ecu1MSUE16DOjWDYaP1sL47gcQT5+BKv5JCMHKGnLDYDCgtLQUBoNB6lKcqra6HBUlRRb/kXw1FggLMuUdBE0aC4S/5yo3CALKbQeJSJ5ee+019OrVCwCQnp6OIUOGoKjI/s83N3YWU11dDQCYNm0aHnjggaYX3Exk9ie8TmZmJpKSkuDn54c333zT4jzR0dEAGnYSY7pfcPjw4Rg3blyD5UJCQsynkvPy8iyue/jw4RAEAX/729/s3APXIbi5wW3hc0B1DYzbd0DoFQnV+AelLsvpsrKyEBsbi6ysLKlLcarDW1/DhzPbW/xH8mYpEKbvkH8QNLEYCLcqNwgCym0HiUh++vbti0WLFgGoC20TJ07ElStX7F6fpV5DZ8+ebZ7+0Ucfuewl9rIcZ3Dz5s0wGo2YNGkSvLy8LM7TqlUrAI2HwZkzZza6ftOZREvr/uKLL8zraKqYmBgUFhbatIzo4QGsedch2zfT6QB3d6C2FkJsDASVYz/9hYeFQ/jj2xNnio+Pt3regoICAMDOnTtx7Ngxq5fbsGGDjVU1ndq9FcYtPuuQdfWKm4GwOx+xOO2rJUMcso3wsDAYaiocsi5yvPDAO7Fw3Gdwd/M0P/ffjC+xbuXzEMWG3WvLjcZdh4SHktDNvy/wx50BomjEsysH4NI/LkhaW1PZ0gYCLasdJCJlszT8w/VeeOEF85V//+///T+cOnXK7m1ZCoKmewQffvhhPPDAAwgODsbjjz+Ojz76qNH1hIWFmddhK39/fxw5csSuZWUZBvfs2QMAiIuLa3QevV4PoH4YNBgMOHXqFFQqVb0xQq5nMBhw4ULdB4DOnTvXm3bt2jXMnz8fy5cvx+TJk5uyCwCAwsLCRs8+NkrjCfdbz2U1URRheGsFUFsDdA6G8bPPobrvXgidAhy2jfyCfKCyymHrs1Z5ebnV81ZWVpp/2rKcze+fA7h5ah22Lh//MHTuNdhh67MkvyAftVXWv6bkXF19AUGof3+wu6DDr4W/oabW+f9vnc3HqwPcVDfe7yGg5GoF8vKd///bkWxpy4CW1Q4SETWmffv2eOSRui+6i4qKsHx548No3crNgiAAvPTSS+ZLRGfPnn3TMGj6ws3ZZBkGz58/DwDo0qWLxem1tbU4ePAggPph8PTp06ioqECHDh3q3WN4vcOHD6OkpASRkZHmG05NXn75ZYSHh2PSpEkOCYM3rt8aoocHLjV5y38yfp0MMe0EVFOnQHX3Xaid/SwMb62AenmiuZekpuoU0EmSM4NarfWhyXTzr0ajsWk50yXFzqR2b+X0bTZFp4BOPDPoomK6j8Azw9+Fm7r+n4o7I0bgzRk7sHr7DNQY5BsI22j9sOihLxDYrm7gYVEUIQgCBEHA8mf2YOm2ibhwKV3iKu1nS1sGtKx2kIiUzWg0NhqunnzySXh4eAAA1q1bZ+7901a3CoIAcOzYMRw+fBh33XUXoqKiEBMT0+gZvICAgCadGbSXLMOgaRyQigrLHzCTkpJQVFSE1q1bo2vXrubnTZ3HVN8kmHzwwQcAgMcff7ze80eOHMFHH32E1NTUJtV+4zptVWaoRds9Pzhk+2JeHozrN0DoEQ7Vow9DUKuhmjwJxo8/gfHrZKjHjXXIds6cPQOd2vmHoi33vaSnp2P9+vUYMWIEIiMjrV5u8eLF9pTWJFW1wKIkp2/WbmfOnoWnLFuilu3GXkNvFNX1fmz75zn0GQtI8N+32VnqNbSy5M8vwLxatcWb0/4Ptz8CtOkoUZFNZOu9fy2pHSQiZSsrK2v0VrH+/fubf//000/tWr81QdDkk08+wV133QUAGDBgQKOf78+ePSvJfYWyvPXflI6PHj3aYFpBQQEWLlwIoG5Q+evPbpnu9SsuLrbYU+j+/fuxadMmtGvXDs8++6z5eYPBgKeffhpz5syx6Q+kKxONRhiW/RMwGqFe+Jx5GAnVow9DCA+Dcf0GiPnSnM6WQnh4OA4ePIjw8HCpSyFqdpaGj7ietQPTt1SNDR+BGy6GuNXA9HLDdpCI5MDUieS1a9fMY47bwpYgCAA//fRTg227ElmGwcGD6+5xSkxMrBfqUlJSEBcXZ+429vrB5oE/w6C7uztmzZqFq1evmqclJyebexfdsGFDvctIV69ejV9//VUWvYeaGLdsg5iRCdWUyRCuuzdSUKuhfuE5wGiA4a0Vsh9r0cTd3R2+vr4Nxo4hkpvGxhE0ByHBuoHpWyprxxG81cD0csR2kIhaurZt25r7/Dh69KjNn2NtDYIAcOrUKfOlqDdmD1cgyzCYkJCAdu3a4eLFi4iMjETv3r0RFhaGfv36oVu3bhg0aBCAhj2Jmi4Tfe+997B3714EBQWhX79+CA4OxtixY1FcXIxVq1Zh1KhR5mWKiorw6quv4n//939RW1uL4uJiFBcXA6i7yb64uPiWPRq5GvHCBRg/+ReEiNugemh8g+lCSBeoJk+CePIUjF8nS1Ch8124cAGzZs0ydx5EJEfWDih/q4HpWyqrB5QXbj4wvVyxHSSilq5t27bm323t3MqeIAgANTU1uHSprkcPHx8fm7bpDLIMg0FBQThw4ABGjhwJjUaD3Nxc+Pr6Ys2aNdixY4f5bOH1YbCwsBC//vorfH198dRTTyE5ORkRERE4deoUKisrMX78eBw+fLjemCFAXa+kJSUlePrpp9G2bVvzP6DuzGTbtm1b3B9OoXNnuO/4Bm4r/2m+PPRG6scmwP37nQ67b9DVlZSUYO/evSgpKZG6FKcI6jkQ8zaKiB75QqPzzNsoYuwL251YFTUna4OgidwCodVB8A+NDUwv50CotHaQiOQnLy8Pd9xxB/r374/XX3/d6uUEQcDUqVNtDoImjzzyCO6++24MHz7c1pKbnQxv+68TERGB7dsbflAtLS1Fbm4uVCoVevXqZX7e39+/3qnikSNHYuTIkbfcTvfu3bF3794Gz8fFxWHKlCmIj49vUg8/RETNzdYgaGIKhMe2AsbaPwNhS+tUxtYgaGIKhMe2AFfz/wyELblTGSIiOauqqrJpnFQTURQxatQo7Ny5E0ePHrUpCAJ1oxG4qhb059ox0tPTIYoiwsPDbe5W2xIvL69GxyQMCQlpdBoRkSswGoGcH20PgiaWAmHxRaBd11sv6yoK0m0PgiaWAuH5FKD3qFsvS0RELUdpaSmGDh1qHnNVLmR5mejNnDx5EkDD+wWJiJRIpaoLM1pf24OgiSkQqj3qlm9JQRAAusQCnaNtD4Im118y2i4E6DmsOaokIiKpyS0IAgo8M+isMKiUXjaVomPHjli0aBE6duS1XyQ/nl5AzGOAu6ftQdCkbTDQ/ynAo+kXXDidIABhA4GQO+2v3xQIBVXLukTWFmwHiYjkR6Z/shrHM4NkDz8/P8THx0tdBlGz8WjlgHW0wCBoIghNr9/NwzG1uCq2g0RE8qO4y0T37NkDURSt6hyGyOTq1av47rvv6o09SUSkJGwHiYjkR3FhkMgeer0eCxYsgF6vl7oUIiJJsB0kIpIfhkEiIiIiIiIFYhgkIiIiIiJSIIZBIiIiIiIiBWIYJLKCRqNBREQENBqN1KUQEUmC7SARkfwobmgJInuEhoZi27ZtUpdBRCQZtoNERPLDM4NEREREREQKxDBIZIWMjAz06dMHGRkZUpdCRCQJtoNERPLDMEhkBVEUUVNTA1EUpS6FiEgSbAeJiOSH9wzKjFalxpVBQ6QuwyZalVrqEmTFQw0kTpC6Cut58O0nIiIiB9JqtSgtLXXY+pat+RzXysrRRqfFwqcnNnjsCFqt1iHrsRXDoMwIggCdmm+rkgkC4MlDgIiIiBRKEATodDqHrc/DUwOPGgM8PDXQ6XQNHrdkvEyUiIiIiIhIgXj+gMgKoaGhSE5ORnBwsNSlEBFJgu0gEZH8MAwSWUGj0SAsLEzqMoiIJMN2kIhIfniZKJEV8vLy8MorryAvL0/qUoiIJMF2kIhIfhgGiaxQXFyMrVu3ori4WOpSiIgkwXaQiEh+GAaJiIiIiIgUiGGQiIiIiIhIgRgGiYiIiIiIFIhhkMgKKpUKsbGxUKn4X4aIlIntIBGR/LBFJ7KC0WhESkoKjEaj1KUQEUmC7SARkfwwDBIRERERESkQwyAREREREZECMQwSEREREREpEMMgkRW8vb0xevRoeHt7S10KEZEk2A4SEcmPm9QFELUEQUFBWLp0qdRlEBFJhu0gEZH88MwgkRWqqqpw/vx5VFVVSV0KEZEk2A4SEckPwyCRFbKzszFs2DBkZ2dLXQoRkSTYDhIRyQ8vEyWSGVEEqg1SV2E9DzUgCFJXQUREJB+iKKK8vFzqMqym1Woh8MOAJBgGiWSm2gAsSpK6CuslTgA82RIRERE5THl5Oby8vKQuw2qlpaXQ6XRSl6FIvEyUiIiIiIhIgRgGiYiIiIiIFIgXZxFZITIyEpmZmVKXQUQkGbaDRETywzODRERERERECsQwSGSFnJwcTJw4ETk5OVKXQkQkCbaDRETywzBIZIXy8nKkpaW1qG6aiYgcie0gEZH8MAwSEREREREpEMMgERERERGRAjEMEhERERERKRDDIJEVAgMDkZiYiMDAQKlLISKSBNtBIiL5YRi8ifbt20MQBOj1eqlLIYn5+PhgzJgx8PHxkboUomYhiq6xDnJdbAeJiOSHg843Qq/Xo6ioCL6+vggKCpK6HJLY5cuXsWvXLgwfPhy+vr5Sl0PkUEYjkLEL8A0BOkXat46qMuDkt0CP+4HW7R1aHrkItoNEytSpUydER0cjICAAHh4eqK6uRkFBAY4cOYKCggKr1jFlyhQMGjQIU6dOhdFobOaKyRYMg404fvw4AKBPnz7SFkIuoaCgAIsXL0bfvn35IYhkRTQC6TuBX7OAwsy652wNhFVlwNEkoOwycPQLIPpRwIuBUHbYDhIpx5133omZM2di6NChCAgIaHS+goICfP/993jvvffw888/W5xnypQpWL9+PVQqFdRqNZ588kkGQhfCy0QbwTBIRIogAO6t/nyYsQvIT7d+8euDIACo3QCVu2NLJCIi53jggQeQmpqKw4cPY8qUKTcNggAQEBCAKVOm4KeffsKRI0cwdOjQetOvD4IAUFRUxCDoYnhmsBFpaWkAgKioKIkrIXI+fcZ/sPWNOAx4bBmiR75gcZ6VkwWE9B2JsS9sd3J15EiCAPQYVPe7/ljdz4xddT9vdYbwxiCoaQ3cMQHQ+jRLqU4nisDVfEB/HPg9F4DpnkgR+C0b8OsGqPiVKhHJgLe3N9566y1Mmzat3vNXr17Fzz//jNTUVJw9exaVlZXQaDQICwtDdHQ0+vXrB29vbwBAdHQ0/u///g9r167F888/j3HjxtULgitXrsT8+fOdvWt0C4oIg0VFRVi6dCm2bdsGvV6P9u3bY/z48XjjjTcwd+5crF+/HqtWrcKcOXPMy1x/ZvDQoUNYunQp/vvf/6KsrAx9+/bF3/72twbffhARtUT2BEK5B8HqCuDEN0BxI/2HnfgaaOUD9B0H6No5szIiIscKCwvD999/j5CQEPNzR44cwerVq5GUlITKyspGl9VoNJgwYQLmzJmDmJgYAMBTTz2FsWPHol27dgyCLYDsv9M8fvw4evfujWXLlqGwsBA9e/ZETU0N3nnnHUyYMAGZmXU3yfTt29e8TGlpKc6dOwe1Wo3du3djwIAB+PHHH80dyRw6dAjDhw9HcnKyFLtEEtDpdOjfvz90Op3UpRA1C1MgDLr9z+cau2RU7kGwphJI/bzxIGhSUQykbP7zdZA7toNE8hMeHo4DBw6Yg+C1a9fw1FNPITY2Fp988slNgyAAVFZW4pNPPkFsbCymT5+Oa9euAajrkZ9BsGWQdRgsKirC6NGjUVhYiOeffx4FBQU4evQoCgsLkZiYiB07diAlJQWCINS7NzAtLQ3iH32kL168GOvWrUN+fj6OHTuGgoIC3H///TAajViwYIF5PpK3kJAQrF27tt63ZkRyY1UgFOUdBAHg9G6g7Hfr5q2trDuDqIQ/BWwHieSlXbt2+OGHH9CxY0cAdSdQevXqhXXr1tm1vrVr1+Lvf/97vc/GJSUl+H//7/85pF5qHrIOg3PnzoVer8ecOXOwfPlytG7d2jwtISEBUVFRqK2tRUhICNq0aWOeZrpf0GAw4NNPP0V8fDzUajWAumuq165dC5VKhV9++QVnzpxx7k6RJAwGA0pLS2EwGKQuxalqq8tRUVJk8R/JU2OBENeFHTkHwaoy4NfTti1T9jtw5ULz1ONKlNoOEsnVO++8g86dOwOoC4JxcXG4ePGi3eubMmUKli1bBkEQzM+1bt0a77zzTpNrpeYj2zCYmZmJpKQk+Pn54c0337Q4T3R0NICGncSY7hccPnw4xo0b12C5kJAQBAYGAgDy8vIAAAcOHMDgwYMREBAAT09PBAUF1bsMlVq2rKwsxMbGIisrS+pSnOrw1tfw4cz2Fv+RfFkKhDeSYxAEgPyTdcNt2OricYeX4nKU2g4SydGDDz6Ixx9/HEDdGKIjRoxAcXGx3eu7sdfQtWvX4sqVKwCASZMmYezYsU2umZqHbDuQ2bx5M4xGIyZNmgQvLy+L87RqVdefemNhcObMmY2u33Qm0bTuK1euoHfv3nj66afRoUMH6PV6vPnmm7j77rtx6tQpuwauj4mJQWFhoc3LkXXi4+Otntc0qOrOnTtx7Ngxq5fbsGGDjVU1ndq9FcYtPuuQdfWKm4GwOx+xOO2rJUMcso3wsDAYaiocsi5yvMkD/4HBfafWe67omh6J6x/FpX/I73TY7JFrEBs20ubl0lNyMXL2gGaoqPnY0gYCLasdJFK6mw3fIAgCli1bZn787LPPWj14vCU3BkHTPYL79u3Dv/71LwDA8uXLkZyc3OjtVWFhYeblXdG4qfOh82qDgsICBAUFNXgsNX9/fxw5csSuZWUbBvfs2QMAiIuLa3Qevb6ud4Drw6DBYMCpU6egUqkwcOBAi8sZDAZcuFD3Ich0en3MmDEYM2ZMvfliY2PRo0cPbN26FfPmzbN5HwoLC81nHsnxysvLrZ7XdAN1ZWWlTctJ8f65eWodti4f/zB07jXYYeuzJL8gH7VV1r+m5FxrvnkR/cLHoo22bpBxURSxZd8KHM88JHFlzUOsFW49kwVqwaPFtde2tGVAy2oHiahxQ4YMQffu3QEAe/fuxWeffWb3uhoLggCwceNG/OUvf0FcXBy6d++OwYMH44cffrC4nqaEUWcw/nF5vNFgQF5eXoPHLZlsw+D58+cBAF26dLE4vba2FgcPHgRQPwyePn0aFRUV6NChQ717DK93+PBhlJSUIDIyEv7+/o3W0K5dXX/jbm72vcw3Wzc1nVZrfWjSaDTmn7YsZ7qc2JnU148g3gJ0CujEM4Muqo3WD4se+sIcBIG6b5RnjFoGlUctfszcKmF1zcMgVNm1XGVtqST/35vClrYMaFntIJHSGY3GRgPWrFmzzL+vXLnS7m3cLAiavPPOO+YTM7Nnz240DAYEBLj0mUHVH32HqNRqBAYGNngstaZkBtmGwbKyMgBARYXlD5lJSUkoKipC69at0bVrV/Pzps5jqqurG133Bx98AADma62vZzAYYDQacf78ebz00kvw9/fHo48+atc+2Hu6l6xjy30v6enpWL9+PUaMGIHIyFuMxH2dxYsX21Nak1TVAouSnL5Zu505exaesm2JWq4bh4+4nkpQYcYDK/H22ytvOTB9S1OYBZzabvty9wwPh/7NW4xF4WJsvfevJbWDREpXVlZm8TYpNzc3PPDAAwDqztpv325HgwfrgiAAfPvtt8jLy0NgYCAeeOABuLm5oba2tsF8Z8+edelha954dxOulZYhwD8Aer2+weOWzHUjeBOZEvLRo0cbTCsoKMDChQsB1A0qf32vR6b7BYuLiy32FLp//35s2rQJ7dq1w7PPPttg+n333QcPDw+EhYXh+PHj2LNnD9q3Z2cbLV14eDgOHjyI8PBwqUshanaWxhH0+ONEkMr9z/kaG4ewJesQ9ue+2iKoz63naenYDhK1fJGRkeaz/Pv27bOrd2BrgyBQd5Jk//79AOquKujZs6d9hVOzkW0YHDy47j6nxMTEeqEuJSUFcXFxKCqq6xr/+sHmgT/DoLu7O2bNmoWrV6+apyUnJ5t7F92wYYPFy0jXrVuHw4cPY/PmzWjTpg2GDh1qvr+QWi53d3f4+vrC3d391jMTtWCNDSgv/PHXws3DuoHpWyqVGgi5y7ZlAnoBrXyapRyXwnaQqOWLiYkx/56ammrz8rYEQUvbMfXkT65DtmEwISEB7dq1w8WLFxEZGYnevXsjLCwM/fr1Q7du3TBo0CAADXsSNV0m+t5772Hv3r0ICgpCv379EBwcjLFjx6K4uBirVq3CqFGjLG63R48euPPOOzFx4kTs3r0bJSUlWLp0afPuLDW7CxcuYNasWQz2JGuNBcHrh4+wamD6Fi74dqCzlZ9X2oUAEc3bx5LLYDtI1PIFBwebf7d1+DN7giAAZGRkmH83dbxIrkO2YTAoKAgHDhzAyJEjodFokJubC19fX6xZswY7duwwny28PgwWFhbi119/ha+vL5566ikkJycjIiICp06dQmVlJcaPH4/Dhw9j9uzZVtXg4+OD7t27Izs7u1n2kZynpKQEe/fuRUlJidSlOEVQz4GYt1FE9MgXGp1n3kYRY1+w714Dcj3WBEETuQdCQQDCBgK3DQE0bSzP464BQu4EosYBKoXc86q0dpBIjo4cOYIPPvgAGzZsQG5urtXL9evXz64gCNR16rhhwwZ88MEHdp2NpOYl6z9hERERFm+MLS0tRW5uLlQqFXr16mV+3t/fv974JyNHjsTIkbaPN2Xy22+/4fTp07jzzjvtXgcRUXOzJQiamAIhAOj/GHIuY1fdTzl0KiMIQFAUENgb+D0HKMr9cz8BYMDTgJpXSxJRC7N9+3a7Oo35+eefsXr1asydO9emIAjUnRmcOnXqrWckScg6DDYmPT0doigiPDzc5q61GzN58mR0794dffv2hY+PD86ePYsVK1bAzc0NCxYscMg2iIgczWgEjm2xLQiaNBYIPXV1l0/KgaAC/ELr/umPAxABCAyCRKQ88+bNw3/+8x989dVXUpdCDqTIMHjy5EkADe8XbIq77roLn376KVauXInKykoEBwcjLi4Of/3rXxsd65CISGoqFdD1rrrhFDy9rA+CJjcGwnYhgE9Qc1RKRERSYxCUH4ZBB5kzZw7mzJnjsPWRa+nYsSMWLVqEjh07Sl0KkcN17AEIasDLz7YgaGIKhF7t6nrWVCvyL4v8sR0kIpIfRf7Jbo4wSPLm5+eH+Ph4qcsgajYdujdteUEAgvo6pBRyUWwHiYjkR7a9id7Mnj17IIpikzqHIWW5evUqvvvuu3rjThIRKQnbQSIi+VFkGCSylV6vx4IFC6DX66UuhYhIEmwHiYjkh2GQiIiIiIhIgRgGiYiIiIiIFIhhkIiIiIiISIEYBomsoNFoEBERAY1GI3UpRESSYDtIRCQ/ihxagshWoaGh2LZtm9RlEBFJhu0gEZH88MwgERERERGRAjEMElkhIyMDffr0QUZGhtSlEBFJgu0gEZH8MAwSWUEURdTU1EAURalLISKSBNtBIiL54T2DRDLjoQYSJ0hdhfU81FJXQEREJC9arRalpaUOWdeyNZ/jWlk52ui0WPj0xEafawqtVtvkdZB9GAaJZEYQAE/+zyYiIlIsQRCg0+kcsi4PTw08agzw8NSY12npOWqZeJkoERERERGRAvH8AZEVQkNDkZycjODgYKlLISKSBNtBIiL5YRgksoJGo0FYWJjUZRARSYbtIBGR/PAyUSIr5OXl4ZVXXkFeXp7UpRARSYLtIBGR/DAMElmhuLgYW7duRXFxsdSlEBFJgu0gEZH8MAwSEREREREpEMMgERERERGRAjEMEhERERERKRDDIJEV/Pz8MH36dPj5+UldChGRJNgOEhHJD8MgkRUEQYCHhwcEQZC6FCIiSbAdJCKSH4ZBIitcunQJ7777Li5duiR1KUREkmA7SEQkPwyDRERERERECsQwSEREREREpEAMg0RERERERArEMEhkBW9vb4wePRre3t5Sl0JEJAm2g0RE8uMmdQFELUFQUBCWLl0qdRlERJJhO0hEJD88M0hkhaqqKpw/fx5VVVVSl0JEJAm2g0RE8sMwSGSF7OxsDBs2DNnZ2VKXQkQkCbaDRETyw8tEZUYURZQbDVKXYROtSs1BjB1IFIHqFnQIeKgBvv1EROQooiiivLxc6jJsotVq+VmIJMEwKDPlRgPa7vlB6jJscmXQEOjUPBQdpdoALEqSugrrJU4APPn2ExGRg5SXl8PLy0vqMmxSWloKnU4ndRmkQLxMlIiIiIiISIEYBomIiIiIiBSIF2cRWSEyMhKZmZlSl0FEJBm2g0RE8sMzg0RERERERArEMEhkhZycHEycOBE5OTlSl0JEJAm2g0RE8sMwSGSF8vJypKWltbiuqomIHIXtIBGR/DAMEhERERERKRDDIBERERERkQIxDBIRERERESkQwyCRFQIDA5GYmIjAwECpSyEikgTbQSIi+WEYvIn27dtDEATo9XqpSyGJ+fj4YMyYMfDx8ZG6FGoGRiOQfwoQRfvXUVUGXMp2XE1ErobtICmdp6cnWrVqBUEQbF72wQcfRLt27ZqhKqKmYRhshF6vR1FREXx9fREUFCR1OSSxy5cvY9OmTbh8+bLUpZCDGY1A+k4g4zvg9L/tC4RVZcDRJCDtG6Awy/E1ErkCtoOkJF5eXoiPj8eaNWtw5MgRVFVVobKyEuXl5aitrUVWVhY2bdqE+fPn3/Js+ZNPPomtW7di9+7dDITkchgGG3H8+HEAQJ8+faQthFxCQUEBFi9ejIKCAqlLIQe7mg/8errud32a7YHQFATLLgMQgXMHAENts5RKJCm2g6QE4eHhWL16NfLz8/Hxxx9jxowZiI6OhoeHh3kelUqFHj164PHHH8eKFSuQm5uLrVu3YuDAgQ3W9+STT+Ljjz+GSqVCVFQUpk6d6sS9Ibo1hsFGKD0MGtZvQM3QETB+932DaaIoovaFRagZOQZiTq7zi6Nmp8/4D1ZOFpC6Y3mj86ycLOCb5aOcWFXzaBsERA4H8MdVP7YEwnpBEICmNXD7I4DardnKdbraKkB/vO6n6XHJb5KWRETkcG5ubnjllVdw8uRJzJ49G61btzZPMxqNyMzMxN69e7Fnzx4cPXoUlZWV9ZYdP3489u7di40bN8LX1xdA/SAIACtXrsTy5Y3/XSWSgow+sjhWWloaACAqKkriSqShemISjId/gmHNRxCi74DQ3s88zbjta4gnTkL1l3gIXUOkK5LIQQJ61v1M3wVArAuEANBjMNDYrSGWguAdEwCtT3NX6xy1VUD2fqAgAzDU/Pm8oQb46VPAuxMQOgDw7SxdjUREjtC1a1ds2bIFd9xxh/m5srIybNy4EZ999hlSU1NRVlZWbxk3Nzf06tULY8eOxYwZM9CpUycAwKRJk3D//ffjk08+wcKFC+sFwfnz5zttn4ispYgzg0VFRUhISED37t2h0WgQHByMefPmoaysDNOmTYMgCFi9enW9Za4/M3jo0CGMGzcO7du3h1arxT333IPvv294xkxOBHd3uC18HqishOGfb5ufFy/qYdzwKYTbekD1yEPSFUjkYAE9rT9DKPcgWF0OHNlc9xpcHwSvdzUfOLYFKMx0bm1ERI4UERGBgwcPmoNgbW0t3njjDXTq1AnPPPMM9u/f3yAImuY7fvw4/v73v6NLly74y1/+gitXrgAA/P39kZCQwCBILYLsw+Dx48fRu3dvLFu2DIWFhejZsydqamrwzjvvYMKECcjMrPsk07dvX/MypaWlOHfuHNRqNXbv3o0BAwbgxx9/NHckc+jQIQwfPhzJyclS7JLTCGHdoZr4KMTUozDu2AXRYIBh6XJAFKFe+DwEtVrqEp1Gp9Ohf//+0Ol0UpdCzciaQCj3ICgagbSvgdIi6+ZN3wVcYYfLisB2kOSmS5cu+OGHHxAQEAAAyMrKwl133YWXX34Z165ds3o9tbW1+Pjjj9GzZ0/zlWWmHke/+uorBkFyabIOg0VFRRg9ejQKCwvx/PPPo6CgAEePHkVhYSESExOxY8cOpKSkQBCEevcGpqWlQfzj09/ixYuxbt065Ofn49ixYygoKMD9998Po9GIBQsWmOeTK9Wkx4Bu3WD4aC2M734A8fQZqOKfhBCsrB5WQ0JCsHbtWoSEhEhdilPVVpejoqTI4j+5ulkglHsQBIDfc+rO+llLNAI5h5uvHnIdSm0HSZ5UKhU2bdpk7gk0NTUV/fv3R2pqqt3rHDp0KHr37l3vuf/5n/9Bhw4dmlQrUXOS9T2Dc+fOhV6vx5w5cxrcsJuQkIDPPvsMaWlp6Nq1K9q0aWOeZvpWx2Aw4NNPP8W4cePM07y9vbF27VqEhobil19+wZkzZ9CjRw/n7JAEBDc3uC18DrXPzodx+w4IvSKhGv+g1GU5ncFgQEVFBVq1agW1gs6IHt76Gg5vfU3qMpzO0j2Ehtq6kFRedxWQLIMgAFw8bvsyl3PrXhdtW0dXQ65Eqe0gydO8efPQv39/AMC5c+fwwAMPNGnYlBs7i/nll1/QrVs3+Pn54b333sPDDz/skLqJHE22ZwYzMzORlJQEPz8/vPnmmxbniY6OBtCwkxjT/YLDhw+vFwRNQkJCzN8k5eXlAQC2bNmChx56CF26dIFWq8Vtt92Gl19+GaWlpY7aJenodIC7OwBAiI2BoJLtYdOorKwsxMbGIitLWYPI9YqbgXEv/mDxn9zdeIawIF3+QdBYW3dm0B6Xsh1bC7kepbaDJD+dOnXC66+/DqCup9D4+Hj8/vvvdq/PUq+hd955Jy5dugQAeOihhzB69OimF07UDGR7ZnDz5s0wGo2YNGkSvLy8LM7TqlUrAI2HwZkzZza6ftOZRNO6ly9fjs6dO+ONN95AUFCQ+abiffv2Yf/+/eYGwhYxMTEoLCy0aRnRwwNY867N22p0faIIw1srgNoaoHMwjJ99DtV990LoFOCwbYSHhUOornbY+qwVHx9v9bymcbV27tyJY8eOWb3chg0bbKyq6dTurTBu8VmHrMvHPwydew12yLoaEx4WBkNNRbNuoykG9XkST8S9br7/QxRFzF05AL/947zElTleG60f3plx3K5l/7nsHWz9caljC3Ix6+eeh0qlhtFgQFBQF6nLaTJb2kCgZbWDpGxGo/Gm02fMmGH+DPjuu+/iv//9r93bshQETfcIzpkzB0lJSQDqzkR+++23ja4nLCzMrs+KzjBu6nzovNqgoLDA3H+Gpefk7Mb9dbX99/f3x5EjR+xaVrZhcM+ePQCAuLi4RufR6+t6Pbg+DBoMBpw6dQoqlcri4KGmeS5cuAAA6Ny5rl/1b7/9Fu3btzfPc99996F9+/aYNGkS/vvf/+Lee++1eR8KCwvNZx6tpvGEu81bapzx62SIaSegmjoFqrvvQu3sZ2F4awXUyxPNH46bKr8gH6iscsi6bFFeXm71vKbxhCorK21azub3zwHcPLVO32ZT5Bfko7bK+tfUmXy8OuC+yMn1jnVBEDDgtklY/fUc2d0zfEVTYveyRZd/k+R4dyYRovmnHPbVlrYMaFntIFFj3NzcMGPGDAB1Hb8sWbLE7nXdLAgCwJdffol//OMfCA8Px/33348ePXrg9OnTFtdl+rLFFRkNBvNP0/9nS8/J2Y37K6f9l20YPH++7lv7Ll0sf3tbW1uLgwcPAqgfBk+fPo2Kigp06NCh3oCj1zt8+DBKSkoQGRkJf39/AKgXBE1iYmIA2P+H0LRuW4geHrhk19YsrCsvD8b1GyD0CIfq0YchqNVQTZ4E48efwPh1MtTjxjpkO50COklyZlCrtT40aTQa809bljNdTuxMavdWTt9mU3QK6OSSZwbbaP2w6KEvENguHEDdGUFTKBxzzyzodDps3PuKOSDIxaWrF9De2/bBA69W50lyvDuT8Mc1wwIEWeyrLW0Z0LLaQVI2o9HYaLgaPHiwuffQb775Bvn5NvSYdZ1bBUGg7u/G+++/jxUrVgAAJk+ejFdffdXi+gICAlz2zKDqj3uEVWq1+f+zpefk7Mb9dbX9tyczmMg2DJrGhKmosPwhMykpCUVFRWjdujW6du1qft7UeUz1TcLJBx98AAB4/PHHb1rD3r17AdSNYWMPe073lhlq0XZP0+/nEo1GGJb9EzAaoV74nHkYCdWjD0M8+COM6zdAdWc/h1wueubsGejUzj8UbbnvJT09HevXr8eIESMQGRlp9XKLFy+2p7QmqaoFFiU5fbN2O3P2LDxdrCWy1GtoZUn9M+H3R03BlCen3HRg+pYo9ycg+4Bty3i2BpL/8zFc9HOMw/z7LQBi3R9/05UlLZmt9/61pHaQlK2srKzRW4RiY2PNv2/ZssWu9VsTBE2+/PJLcxjs169fo+s8e/asyw7b8sa7m3CttAwB/gHmts/Sc3J24/7Kaf9l+6fblJCPHj3aYFpBQQEWLlwIoG5Q+esvATPdL1hcXIwzZ840WHb//v3YtGkT2rVrh2effbbR7efl5eHVV1/FsGHD6o1h2FIYt2yDmJEJ1ZTJEDr/eZZAUKuhfuE5wGiA4a0VsrtMrjHh4eE4ePAgwsPDpS6Fmlljw0fg+sBnxcD0LVWn3oDKxnAe1BeyD4LEdpDkwdR5IGDfl+62BEGg7vPgr7/+2mDbRK5Ctn++Bw+u6/QiMTGxXqhLSUlBXFwciorqxkm7MaiZwqC7uztmzZqFq1evmqclJyebexfdsGFDo5eRlpaWYuzYsfDw8MD69esdtUtOI164AOMn/4IQcRtUD41vMF0I6QLV5EkQT56C8etkCSp0Pnd3d/j6+sLd3ZF3ZJKrsWocQeHWA9O3ZB5aoNco1A+/N9GuK9AlpllLIhfBdpDkwHRWu6SkBOfOnbNpWVuDoImpw6V27dqhY8eOthVM1MxkGwYTEhLQrl07XLx4EZGRkejduzfCwsLQr18/dOvWDYMGDQLQsCdR02Wi7733Hvbu3YugoCD069cPwcHBGDt2LIqLi7Fq1SqMGjXK4nYrKiowevRo5OTk4Pvvvzdfl96SCJ07w33HN3Bb+U/z5aE3Uj82Ae7f73TYfYOu7sKFC5g1a5a54yC5C+o5EPM2ioge+UKj88zbKGLsC9udWFXzsmVA+ZsNTC8HHboDUQ8Cao+bz9fxNqDPWEDFIecUQWntIMlXbW0tLl++bNPVTfYGQQD4/fffYTQaUVZWZu7FlMhVyDYMBgUF4cCBAxg5ciQ0Gg1yc3Ph6+uLNWvWYMeOHeazhdeHwcLCQvz666/w9fXFU089heTkZERERODUqVOorKzE+PHjcfjwYcyePdviNmtqavDwww/jyJEj2LVrF3r27OmUfaXmV1JSgr1796KkxP7eFsl12RIETeQeCNuHAv/zNNDjfsDLDxD++GvhrgECo4A7nwR6jwIkuN2XJMJ2kOQgLCwM7u7uCA0NtWm56upqc3i0JQgCwJQpU6BWq+Hl5YXc3FybtkvU3GT9ZzwiIgLbtzc8c1FaWorc3FyoVCr06tXL/Ly/v3+9b4lGjhyJkSNHWrUt05iGu3fvxs6dO296kzARuQ57gqBJwB/f96TvAiDWBUIAsulUxs0TCL697p8oAhD/DIVERC2Z4Y+hAaz1+eefA6jrgOb5559v1m0ROZOsw2Bj0tPTIYoiwsPDbe5auzGzZ8/Gl19+iRdffBFarRaHDx82TwsNDbU49AQRSa+mAqj+o9NhW4KgyY2BsOIqIBoAQWatqyDA6vsIiYjk6PPPPzeHQiK5kNnHFeucPHkSQMP7BZti165dAIAlS5Y0GMD0448/Rnx8vMO2RUSO4+UHRE8AMnYBvUbbFgRNTIHw1yyg9xjbe+MkIiIikoIiP7I0RxjkNeDy1rFjRyxatIi9gMmUlx8QO7lpl3YG9AT8I+RxeSiRJWwHiYjkh2GQyAp+fn48uytzjghxDIIkZ2wHiYjkR5FdAezZsweiKFrdOQzR1atX8d1339Ubd5KISEnYDhIRyY8iwyCRrfR6PRYsWAC9Xi91KUREkmA7SEQkPwyDRERERERECsQwSEREREREpEAMg0RERERERArEMEhkBY1Gg4iICGg0GqlLISKSBNtBIiL5UeTQEkS2Cg0NxbZt26Qug4hIMmwHiYjkh2cGiYiIiIiIFIhhkMgKGRkZ6NOnDzIyMqQuhYhIEmwHiYjkh2GQyAqiKKKmpgaiKEpdChGRJNgOEhHJD+8ZlBmtSo0rg4ZIXYZNtCq11CXIiocaSJwgdRXW8+DbT0REDqTValFaWuqw9S1b8zmulZWjjU6LhU9PbPDYEbRarUPWQ2QrhkGZEQQBOjXfViUTBMCThwARESmUIAjQ6XQOW5+HpwYeNQZ4eGqg0+kaPCZqyXiZKBERERERkQLx/AGRFUJDQ5GcnIzg4GCpSyEikgTbQSIi+WEYJLKCRqNBWFiY1GUQEUmG7SARkfzwMlEiK+Tl5eGVV15BXl6e1KUQEUmC7SARkfwwDBJZobi4GFu3bkVxcbHUpRARSYLtIBGR/DAMEhERERERKRDDIBERERERkQIxDBIRERERESkQwyCRFVQqFWJjY6FS8b8MESkT20EiIvlhi05kBaPRiJSUFBiNRqlLISKSBNtBIiL5YRgkIiIiIiJSIIZBIiIiIiIiBWIYJCIiIiIiUiCGQSIreHt7Y/To0fD29pa6FCIiSbAdJCKSHzepCyBqCYKCgrB06VKpyyAikgzbQSIi+eGZQSIrVFVV4fz586iqqpK6FCIiSbAdJCKSH4ZBIitkZ2dj2LBhyM7OlroUIiJJsB0kIpIfXiYqM6IootxokLoMm2hVagiCIHUZsiGKQHULOgQ81ADffiIixxFFEeXl5VKXYROtVsvPAkQSYBiUmXKjAW33/CB1GTa5MmgIdGoeio5SbQAWJUldhfUSJwCefPuJiBymvLwcXl5eUpdhk9LSUuh0OqnLIFIcXiZKRERERESkQAyDRERERERECsSLs4isEBkZiczMTKnLICKSDNtBIiL54ZlBIiIiIiIiBWIYJLJCTk4OJk6ciJycHKlLISKSBNtBIiL5YRgkskJ5eTnS0tJaXFfdRESOwnaQiEh+GAaJiIiIiIgUiGGQiIiIiIhIgRgGiYiIiIiIFIhhkMgKgYGBSExMRGBgoNSlEBFJgu0gEZH8MAzeRPv27SEIAvR6vdSlkMR8fHwwZswY+Pj4SF0KNZOayqYtL4pNXweRK2M7SE3h7e0tdQlEZAEHnW+EXq9HUVERfH19ERQUJHU5JLHLly9j165dGD58OHx9faUuhxzst2wgYxfQZyzg29n25UURyN4HXDoHRE8APL0cXyOR1NgOKk/Hjh0RHR2NmJgYhIaGQqPRoLa2FpcvX8bx48eRmpqKU6dOoba29qbrmTJlCpYvX44HHngAR48edVL1RGQNhsFGHD9+HADQp08faQshl1BQUIDFixejb9++/BAkM8V5wMlkQDQCx7cBfcfbFghNQfD8kbrHqV8Adz4JqNm6ksywHVQGT09PPPzww5g1axbuueeeW85/5coVfPzxx/jggw9w9uzZBtOnTJmC9evXQ6VS4d///jf69u2LCxcuNEfpRGQHXibaCIZBImVo0xFo17Xud2NtXSC8bOXnlBuDIAB0iWEQJKKWafLkybhw4QI2btxoVRAEgLZt2+K5557DmTNn8MUXX6BDhw7madcHQQD49NNPGQSJXAzDYCPS0tIAAFFRURJXIg3D+g2oGToCxu++bzBNFEXUvrAINSPHQMzJdX5x1Oz0Gf/ByskCUncsb3SelZMFfLN8lBOrah4qN6DPaMAvtO6xtYHQUhCMGAoE8vsjImph/P398c033+Bf//pXvTB38uRJLF26FBMmTEBkZCS6dOmCbt264b777sNzzz2HL774ApWVf94s/cgjjyA9PR2PPvpogyC4cuVKzJ8/39m7RkS3oIgwWFRUhISEBHTv3h0ajQbBwcGYN28eysrKMG3aNAiCgNWrV9db5vozg4cOHcK4cePQvn17aLVa3HPPPfj++4YhSU5UT0wCQrrAsOYjiJeK6k0zbvsa4omTUD0xGULXEGkKJHIgWwMhgyARyUWPHj3w888/Y8yYMebnvvrqKwwYMAB9+vTBokWL8MUXXyAjIwMXLlxATk4O9u/fjxUrVmDChAkIDAzEwoULcenSJQCAn58fkpKS8PHHHzMIErUAsg+Dx48fR+/evbFs2TIUFhaiZ8+eqKmpwTvvvIMJEyYgMzMTANC3b1/zMqWlpTh37hzUajV2796NAQMG4McffzR3JHPo0CEMHz4cycnJUuySUwju7nBb+DxQWQnDP982Py9e1MO44VMIt/WA6pGHpCvQyXQ6Hfr37w+dTid1KdRMrA6EDIKkUGwH5ad79+74z3/+g+DgYADAr7/+inHjxmH8+PE4ePCgVeu4fPkyli9fjp49e+KLL74wPy8IAgAGQSJXJ+swWFRUhNGjR6OwsBDPP/88CgoKcPToURQWFiIxMRE7duxASkoKBEGod29gWloaRFEEACxevBjr1q1Dfn4+jh07hoKCAtx///0wGo1YsGCBeT45EsK6QzXxUYipR2HcsQuiwQDD0uWAKEK98HkIarXUJTpNSEgI1q5di5CQEKlLoWZkbSBkECQlYjsoL1qtFjt37oS/vz8A4NixY+jTpw++/vpru9ZXVFSEnTt3wmg01nuevYcSuTZZh8G5c+dCr9djzpw5WL58OVq3bm2elpCQgKioKNTW1iIkJARt2rQxTzPdL2gwGPDpp58iPj4e6j+Cj7e3N9auXQuVSoVffvkFZ86cce5OOZlq0mNAt24wfLQWxnc/gHj6DFTxT0IIVtZwGwaDAaWlpTAYDFKX4lS11eWoKCmy+E+uGguEsPC9D4MgKYlS20G5evPNNxEWFgYAOHHiBO6//3789ttvdq/vxnsETVauXIlOnTo1qVYiaj6yDYOZmZlISkqCn58f3nzzTYvzREdHA2jYSYzpfsHhw4dj3LhxDZYLCQlBYGAgACAvLw8AzKGzX79+8PT0NF8e0dIJbm5wW/gcUF0D4/YdEHpFQjX+QanLcrqsrCzExsYiKytL6lKc6vDW1/DhzPYW/8mZpUB4IwZBUhqltoNyNGDAAMydOxcAUF5ejoceeghXrlyxe32WOov55JNPAAA+Pj748MMPm140ETUL2XaAvnnzZhiNRkyaNAleXpZHgG7VqhWAxsPgzJkzG12/6Uyiad3Z2dnYunUrYmNj4eHhYfW19jcTExODwsJCm5YRPTyANe82edv16HSAuztQWwshNgaCyrHfIYSHhUOornboOq0RHx9v9bwFBQUAgJ07d+LYsWNWL7dhwwYbq2o6tXsrjFvccKwne/SKm4GwOx+xOO2rJUMcso3wsDAYaiocsi5Hc1N7YPaID3B76NB6z3/87wTse/sziaoiqayfex4qlRpGgwFBQV2kLqfJbGkDgZbVDirdjZdq3ujVV181//7Xv/4V2dnZdm+rsV5DfXx8MGTIEHTq1AkjR45EdHQ0UlNTG11PWFhYg7OKrmLc1PnQebVBQWEBgoKCGjyWO0v7q/TXwNX239/fH0eOHLn1jBbINgzu2bMHABAXF9foPHq9HkD9MGgwGHDq1CmoVCoMHDjQ4nIGg8E8Tk7nznWjU997773mP5R/+9vfHBIGCwsLzWcerabxhHuTt/wnURRheGsFUFsDdA6G8bPPobrvXgidAhy2jfyCfKCyymHrs1Z5ebnV85q6zq6srLRpOZvfPwdw89Q6bF0+/mHo3Guww9ZnSX5BPmqrrH9Nne2c/lS9MCiKItKzUyR5b0la4h/XCosQZfH+29KWAS2rHaTGhYWFYejQujbt3LlzWLVqld3rutnwEcXFxXjttdfw0UcfAaj7gv2pp55qdF2mz1CuyPjHpdFGgwF5eXkNHsudpf1V+msgp/2XbRg8f/48AKBLF8vf3tbW1poD2/Vh8PTp06ioqECHDh3q3WN4vcOHD6OkpASRkZHmG6+b49ss07ptIXp44JIDazB+nQwx7QRUU6dAdfddqJ39LAxvrYB6eaLDLoXtFNBJkjODWq31oUmj0Zh/2rKc6XJiZ1K7t3L6NpuiU0Anlz0zOGHAKxge80y95wRBwOvTdmLFN1OQpf9RospICgIE808p/m87mi1tGdCy2kGlMxqNjYarGTNmmH9///33b3kWsTHWjCP42WefYfny5fD29sbjjz+O5557DteuXbO4voCAAJc9M6j6o98IlVqNwMDABo/lztL+Kv01cLX9tyczmMg2DJaVlQEAKiosf8hMSkpCUVERWrduja5du5qfN3UeU32TcPLBBx8AAB5//HFHlWuRPad7ywy1aLvnB4dsX8zLg3H9Bgg9wqF69GEIajVUkyfB+PEnMH6dDPW4sQ7ZzpmzZ6BTO/9QtOW+l/T0dKxfvx4jRoxAZGSk1cstXrzYntKapKoWWJTk9M3a7czZs/B0sZbI0jiCag/A8Eez4OneCn+d+AX6jgd8O0tTIznfv98CINb98TddWdKS2XrvX0tqB5WurKys0VtkTFc9GY1Guy/htXZA+fLycmzevBnPPPMMWrVqhX79+uHf//63xXWePXvWZYcteePdTbhWWoYA/wDo9foGj+XO0v4q/TWQ0/675lcwDmBKyJa6NC4oKMDChQsB1A0qf/0ZLtP9gsXFxRZ7Ct2/fz82bdqEdu3a4dlnn22Gyl2DaDTCsOyfgNEI9cLnzMNIqB59GEJ4GIzrN0DMd91LOhwtPDwcBw8eRHh4uNSlUDNrbEB5N4+631V/jKhyq4HpieSG7WDL5+HhYR5K6/Tp0/j9999tXoe1QdDkxx//vILC1HEfEbkO2YbBwYPr7nNKTEysF+pSUlIQFxeHoqK6rvGvH2we+DMMuru7Y9asWbh69ap5WnJysrl30Q0bNjR6GakcGLdsg5iRCdWUyRA6/3nqQ1CroX7hOcBogOGtFbIeZ/F67u7u8PX1hbu7I+/IJFfTWBC8vtdQN40VA9MTyRDbwZYvMjISHh5132zZc/WRrUHwxu3ccccdNm+TiJqXbMNgQkIC2rVrh4sXLyIyMhK9e/dGWFgY+vXrh27dumHQoEEAGvYkarpM9L333sPevXsRFBSEfv36ITg4GGPHjkVxcTFWrVqFUaNGOX2fnEW8cAHGT/4FIeI2qB4a32C6ENIFqsmTIJ48BePXyRJU6HwXLlzArFmzzB0HkfxYEwQBQBCsG5ieSG7YDrZ8fn5+5t9zc3NtWtaeIAgAOTk55t/bt5f3sERELZGL3anjOEFBQThw4AAWLlyIffv2ITc3Fz179sSaNWswffp0hIbWfZK7PgwWFhbi119/ha+vL5566ikEBATg73//O06dOgWdTofx48fjxRdfRGxsrFS75RRC585w3/HNTedRPzYB6scmOKki6ZWUlGDv3r2YPXu21KU4RVDPgZi38eZnfW81vSWxNgiamMYhPPEtUHTuz0DIewhJzpTWDsrRyZMnMXHiRLRq1QonTpywernWrVsjMTHR5iAIAFVVVXjqqadQWVmJ/Px8e8omomYk2zAIABEREdi+fXuD50tLS5GbmwuVSoVevXqZn/f396932ePIkSMxcuRIp9RKRNKwNQiaMBASUUtTWFiIpCTbexgrKSnBkCFDsHv3bnz22WdWB0GgbjiedevW2bxNInIOWYfBxqSnp0MURYSHh9vctfbNbNmyBQCQkZFR73FISAhiYmIcth0icpwrF20PgiaWAmH6TuCepwAJOsglImo2J0+exO23397ix1QjovoU+XHl5MmTABreL9hUjzzyiMXHU6ZMsbv7ZiJqXr6dge73Atn7bQuCJtcHwuI8IGocgyARyRODIJH8KPIjS3OFQaX0rKlEHTt2xKJFi9CxY0epS6FmENIPaNcVaG1n3wamQFhxFdC1c2xtRK6C7SARkfwwDBJZwc/PD/Hx8VKXQc3I3iBoonJjECR5YztIRCQ/sh1a4mb27NkDURTZOQxZ7erVq/juu+/qjTtJRKQkbAeJiORHkWGQyFZ6vR4LFiyAXq+XuhQiIkmwHSQikh+GQSIiIiIiIgViGCQiIiIiIlIghkEiIiIiIiIFYhgksoJGo0FERAQ0Go3UpRARSYLtIBGR/ChyaAkiW4WGhmLbtm1Sl0FEJBm2g0RE8sMzg0RERERERArEMEhkhYyMDPTp0wcZGRlSl0JEJAm2g0RE8sMwSGQFURRRU1MDURSlLoWISBJsB4mI5If3DMqMVqXGlUFDpC7DJlqVWuoSZMVDDSROkLoK63nw7SciciitVovS0lKHrW/Zms9xrawcbXRaLHx6YoPHjqDVah2yHiKyDcOgzAiCAJ2ab6uSCQLgyUOAiEixBEGATqdz2Po8PDXwqDHAw1MDnU7X4DERtVy8TJSIiIiIiEiBeP6AyAqhoaFITk5GcHCw1KUQEUmC7SARkfwwDBJZQaPRICwsTOoyiIgkw3aQiEh+eJkokRXy8vLwyiuvIC8vT+pSiIgkwXaQiEh+GAaJrFBcXIytW7eiuLhY6lKIiCTBdpCISH4YBomIiIiIiBSIYZCIiIiIiEiBGAaJiIiIiIgUiGGQyAoqlQqxsbFQqfhfhoiUie0gEZH8sEUnsoLRaERKSgqMRqPUpRARSYLtIBGR/DAMEhERERERKRDDIBERERERkQIxDBIRERERESkQwyCRFby9vTF69Gh4e3tLXQoRkSTYDhIRyY+b1AUQtQRBQUFYunSp1GUQEUmG7SARkfzwzCCRFaqqqnD+/HlUVVVJXQoRkSTYDhIRyQ/DIJEVsrOzMWzYMGRnZ0tdChGRJNgOEhHJD8MgERERERGRAvGeQSKZEUWg2iB1FdbzUAOCIHUVRCQXoiiivLxc6jJsotVqIbAhJCIJMAwSyUy1AViUJHUV1kucAHiyJSIiBykvL4eXl5fUZdiktLQUOp1O6jKISIF4mSgREREREZEC8ft4IitERkYiMzNT6jKIiCTDdpCISH54ZpCIiIiIiEiBGAaJrJCTk4OJEyciJydH6lKIiCTBdpCISH4YBomsUF5ejrS0tBbXQx0RkaOwHSQikh+GQSIiIiIiIgViGCQiIiIiIlIghkEiIiIiIiIFYhgkskJgYCASExMRGBgodSlERJJgO0hEJD8cZ5DICj4+PhgzZozUZRARSYbtIBGR/PDMYCPat28PQRCg1+ulLoVcwOXLl7Fp0yZcvnxZ6lKIqBlcLQDO7gNE0f516I8DhVkOK8nlKLUddHd3R1RUFO6//34MGzYMAwcORLdu3Wxax5NPPon4+PjmKZCIqAl4ZtACvV6PoqIi+Pr6IigoSOpyyAUUFBRg8eLF6Nu3L3x9faUuh4gc6GoBcGwLUFsFGKqBHoMBQbBtHfrjQNa/AfyxnP9tjq5SekpqB7t3744ZM2Zg4MCB6NOnDzw9PRvMc/nyZRw9ehTffvstPvnkE1y9etXiup588kl8/PHH5scbNmxorrKJiGzGM4MWHD9+HADQp08faQshIqJmV3EVqK2u+12fBpz+t21nCM1BEABEoPSSoyskZ+nfvz++++47nD17FgsXLkRsbKzFIAgAvr6+GDx4MFauXIm8vDysWbMGnTp1qjePKQiqVCqoVCp+riAil8MzgxYwDJLS6TP+g61vxGHAY8sQPfIFi/OsnCwgpO9IjH1hu5Orc57aaqAwE/g1C6j+Y5ztmkrg9/OAb2fbzx6Ra/K/DYAInNpZ91OfVve8NWcI6wVBACH9gNABzVQoNRutVos33ngD8+bNq/e80WjEmTNnkJqaitzcXNTU1ECr1aJnz56Ijo5GQEAAAECn02HGjBl49NFHMX/+fHzyySf1giAArFy5Es8995zT942I6GYYBi1IS6v7JBAVFSVxJUQkBVEELh4Fzh2su2zwesZa4NiXgNYX6DUCaOMvTY3kWP4RdT9tCYQWg+D/8EuClqZ79+7YuXMnwsLCzM/98ssveP/997FhwwYUFRU1umzPnj3xzDPPYMqUKWjTpg18fHywYcMGzJ49G9HR0fWC4Pz585t7V4iIbCb7y0SLioqQkJCA7t27Q6PRIDg4GPPmzUNZWRmmTZsGQRCwevXqestcf2bw0KFDGDduHNq3bw+tVot77rkH33//vQR7QlLS6XTo378/dDqd1KWQE/xyEDizt2EQvF75ZeDI50BxnvPqoublH1EX8E33/d3sklElBkE5toM9evTAgQMHzEGwvLwc8+fPR1hYGJYvX37TIAgAGRkZmDt3Lrp06YJPPvnE/HxsbCyDIBG1CLI+M3j8+HEMHz4chYWF0Ol06NmzJ/Lz8/HOO+/g3Llz5h7R+vbta16mtLQU586dg1qtxu7du/HXv/4Vfn5+CAoKwunTp3Ho0CEMHz4cX331FbvYVpCQkBCsXbtW6jLICX49A+Qctm5eYy2Q9hVwz1OAu6Z56yLnuNkZQjNReUEQkF876O/vjx9++AH+/nWn90+cOIGHHnoI2dnZNq+ruLgY8fHxuHLlCubNmwfhj4Ph3LlzDIJE5NJke2awqKgIo0ePRmFhIZ5//nkUFBTg6NGjKCwsRGJiInbs2IGUlBQIglDv3sC0tDSIf3wNvHjxYqxbtw75+fk4duwYCgoKcP/998NoNGLBggXm+Uj+DAYDSktLYTAYpC7FqWqry1FRUmTxn1xdOGLb/DWVQEF689RC0mjsDCEsNPlKCYKA/NrBNWvWIDg4GABw9OhRDBw40K4gaPLkk09i7ty55iAIAKGhoXj66aebXCsRUXORbRicO3cu9Ho95syZg+XLl6N169bmaQkJCYiKikJtbS1CQkLQpk0b8zTT/YIGgwGffvop4uPjoVarAQDe3t5Yu3YtVCoVfvnlF5w5c8a5O0WSycrKQmxsLLKyZDyImAWHt76GD2e2t/hPjkp+A67m276c/njTxqcj12MpEN5ISUEQkFc7+MQTT5iv7iksLMTw4cNx5coVu9d3Y2cxX3/9tXna8uXLERIS0pRyiYiajSwvE83MzERSUhL8/Pzw5ptvWpwnOjoaaWlpDTqJMd0vOHz4cIwbN67BciEhIQgMDMTFixeRl5eHHj16AABycnIwb9487N27F25ubhg9ejRWrFiBdu3a2b0fMTExKCwstHt5ujlbBgAuKCgAAOzcuRPHjh2zejkpxpNSu7fCuMVnHbKuXnEzEHbnIxanfbVkiEO2ER4WBkNNhUPW1VSDo6Zictw/bFpGFEWUXxHQq8ftuFrOMQXk5q4eD2LGAyuhUqnrPb89ZTW2vL1Eoqocw9ZB0FtKO2g0Gm863dPTE2+99Zb58TPPPIPffvvN7u1Z6jV0/vz5WLNmDWbMmAEvLy8sWbIEEydObHQdYWFh5uVd0bip86HzaoOCwgIEBQU1eCx33P+G+6v018DV9t/f3x9Hjth4adMfZBkGN2/eDKPRiEmTJsHLy8viPK1atQLQsMdQUxicOXNmo+s3nUk0rbukpARxcXHw9fXF5s2bUVFRgYSEBIwaNQoHDx60u4EvLCxEXh57p2gu5eXlVs9bWVlp/mnLclK8f26eWoety8c/DJ17Db71jE2QX5CP2irrX9PmVBVea/MypkvCii+XIP93/n+Vm6157yKk3e0Y1m+a+TlRFPHOl3Nb/K0CtrRlQMtqB2/mkUceQfv2dVc3bNu2Dd98843d62osCALACy+8gAcffBAdOnTA+PHj4e/v3+gXvKag7aqMf1wabDQYkJeX1+Cx3HH/G+6v0l8DOe2/LMPgnj17AABxcXGNzqPX6wHUD4MGgwGnTp2CSqXCwIEDLS5nMBhw4cIFAEDnzp0BAB9++CHy8vKwf/9+83NBQUG45557kJycjAcffNCu/TDd1E7NQ6u1PjRpNBrzT1uWCwwMtLmuplK7t3L6NpuiU0Anlzkz6KGx/5t5b18vCBrnv9/UvOJ6T64XBIG6LwAWTfoYG/e+AtHSjYQthC1tGdBy2kGj0XjTcDVr1izz79efIbTVzYIgUPdF8UcffYSXX34Z7u7ueOqpp7B48WKL6woICHDpM4OqP26XUanVCAwMbPBY7rj/DfdX6a+Bq+1/UzKDLMPg+fPnAQBdunSxOL22thYHDx4EUD8Mnj59GhUVFejQoUO9ewyvd/jwYZSUlCAyMtL8wm/fvh0DBgwwB0EAuPvuu9GtWzd8++23dodBe0/3knVsue8lPT0d69evx4gRIxAZGWn1co394W9OVbXAoiSnb9ZuZ86ehaeLtESlRcDhDbYvp2sHpJ8+rph7x5TixuEj/LoBRTkAROD+qCmY8uQUqwamd1W23vvXUtrBsrKyRq8KCggIwN133w2grvfQH3/80a5t3CoImqxZswYvvvgi1Go1HnrooUZfi7Nnz7r0kB1vvLsJ10rLEOAfAL1e3+Cx3HH/G+6v0l8DOe2/634N1QRlZWUAgIoKy2cbkpKSUFRUhNatW6Nr167m502dx1RXNz642AcffAAAePzxx83PZWRkWPzDGBkZiYyMDNt3gFxOeHg4Dh48iPDwcKlLoWbk5Qe0DbZ9uaC+LTcQkGWWxhGMGmf9OIRyJId2MDo62vz7rl277FqHtUEQAC5evGj+HBAZGQlPT0+7tklE1FxkGQZNZ+yOHj3aYFpBQQEWLlwIoG5Q+eu7gDbdL1hcXGyxp9D9+/dj06ZNaNeuHZ599lnz81euXIGPj0+D+X19fc1jGVLL5u7uDl9fX7i7u0tdCjWzLrG2ze+hAwJ6Nk8tJI2bDShvy8D0ciOHdvD6MJiammrz8rYEwRu34+7uXm8oKyIiVyDLMDh4cF2HF4mJifVCXUpKCuLi4lBUVDdG2vWDzQN/hkF3d3fMmjULV69eNU9LTk429y66YcOGRi8jJXm6cOECZs2aZb5flOTLrxsQdp9187p5An3H1/0kebhZEDRRaiCUQzvYvXt38+8nT560aVl7guCN27l++0RErsBF7tRxrISEBHz22We4ePEiIiMjcdttt6GyshLZ2dkYPnw4QkJC8H//938NehI1XSb63nvv4emnn0ZQUBAiIiJQUFAAvV4PlUqFVatWYdSoUfWWa9u2LYqLixvUcfnyZfj6+jbbfpLzlJSUYO/evZg9e7bUpThFUM+BmLfx5p9sbzW9JesSC7i3ArIPANVlludpEwBEDqu7X5DkwZogaOIfUffz1E4A4p/jELbkewhvRQ7tYHp6Onbv3o1WrVrZdOXOmDFj7AqCAPDLL7/gwIEDqKysxKVLHH6GiFyLLMNgUFAQDhw4gIULF2Lfvn3Izc1Fz549sWbNGkyfPh2hoaEA6nceU1hYiF9//RW+vr546qmnEBAQgL///e84deoUdDodxo8fjxdffBGxsQ2vIYuIiLB4b2BGRgbuvffe5ttRImo2nXrVfeC/dBYoPA1UlwMqFaBtCwT2Adqws19ZsSUImigxELZ0S5YswZIlto8PuX//fqSmpiI2NtamIAjUDUB//SD0RESuRJZhEKgLaNu3b2/wfGlpKXJzc6FSqdCrVy/z8/7+/vXGjBo5ciRGjhxp1bZGjRqFv/71r9Dr9eaBJ3/66SecO3cOy5Yta+KeEJFUVGqg4211/0i+8k/aHgRNLAVCQQ30GNQspZJEiouLMXToUMTHx+Ptt9+WuhwiIoeR5T2DN5Oeng5RFBEWFmbzGEuNmTFjBgICAjB27Fhs374dW7ZswWOPPYZ+/fph7NixDtkGERE1jzYBdZcFA7YFQZPr7yEU1ICv5VGNqIUrLi5mECQi2ZHtmcHGmG7kvvF+waZo06YN9uzZg3nz5mHixIlwc3PDqFGjsGLFCpceRJas17FjRyxatAgdO3aUuhQicjAvPyB6AnApGwi5075LPE1nCNUeQPtQx9bnKtgOEhHJD8Ogg4SGhlq8LJXkwc/PD/Hx8VKXQUTNxMuv7l9TmAKhXLEdJCKSH8WdtmquMEjydvXqVXz33Xf1hhshIlIStoNERPKjuDC4Z88eiKJodecwRACg1+uxYMEC6PV6qUshIpIE20EiIvlRXBgkIiIiIiIihkEiIiIiIiJFYhgkIiIiIiJSIIZBIitoNBpERERAo9FIXQoRkSTYDhIRyY/ihpYgskdoaCi2bdsmdRlERJJhO0hEJD88M0hERERERKRADINEVsjIyECfPn2QkZEhdSlERJJgO0hEJD8Mg0RWEEURNTU1EEVR6lKIiCTBdpCISH54zyCRzHiogcQJUldhPQ+11BUQkZxotVqUlpY6bH3L1nyOa2XlaKPTYuHTExs8dgStVuuQ9RAR2YphkEhmBAHw5P9sIlIoQRCg0+kctj4PTw08agzw8NRAp9M1eExE1JLxMlEiIiIiIiIF4vkDIiuEhoYiOTkZwcHBUpdCRCQJtoNERPLDMEhkBY1Gg7CwMKnLICKSDNtBIiL54WWiRFbIy8vDK6+8gry8PKlLISKSBNtBIiL5YRgkskJxcTG2bt2K4uJiqUshIpIE20EiIvlhGCQiIiIiIlIghkEiIiIiIiIFYhgkIiIiIiJSIIZBIiv4+flh+vTp8PPzk7oUIiJJsB0kIpIfDi1BZAVBEODh4QFBEKQuhRwkKyvLpvl/++03fPHFF3j00UfRoUMHq5a57bbb7CmNyClsPT5vu+023Hfffc1UDRERSYFnBomscOnSJbz77ru4dOmS1KWQRHgMEBERkdwwDBIRERERESkQwyAREREREZECMQwSEREREREpEMMgkRW8vb0xevRoeHt7S10KSYTHABEREckNexMlskJQUBCWLl0qdRkkIR4DREREJDc8M0hkhaqqKpw/fx5VVVVSl0IS4TFAREREcsMwSGSF7OxsDBs2DNnZ2VKXQhLhMUBERERyw8tEiWRGFIFqg9RVWM9DDQiC1FUQyYcoiigvL5e6DJtotVoIbAiIiJyOYZBIZqoNwKIkqauwXuIEwJMtEZHDlJeXw8vLS+oybFJaWgqdTid1GUREisPLRImIiIiIiBSIYZCIiIiIiEiBeHEWkRUiIyORmZkpdRkkIR4DREREJDc8M0hERERERKRADINEVsjJycHEiRORk5MjdSkkER4DREREJDcMg0RWKC8vR1paWovrrp0ch8cAERERyQ3DIBERERERkQIxDBIRERERESkQwyAREREREZECMQwSWSEwMBCJiYkIDAyUuhSSCI8BIiIikhuGQSIr+Pj4YMyYMfDx8ZG6FJIIjwEi+91zzz0QBEHqMoiI6AYMg0RWuHz5MjZt2oTLly9LXQpJhMcAKYmbmxuGDBmCl19+GV999RVOnz6NvLw86PV6ZGVlYcuWLXjppZcwaNAgqFQ3/ygxZcoUHDhwAB988AEDIRGRi3GTugCilqCgoACLFy9G37594evrK3U5JAEeA6QEAQEBmDFjBqZPn37TS6J79OiBhx56CABw4cIFrFmzBmvXrsVvv/1Wb74pU6Zg/fr1UKlUmDFjBv7973/jyy+/bNZ9ICIi6ynizGBRURESEhLQvXt3aDQaBAcHY968eSgrK8O0adMgCAJWr15db5nc3FwsW7YMw4YNQ2hoKHQ6HbRaLaKiorBkyRJUV1dLtDdEzU+f8R+snCwgdcfyRudZOVnAN8tHObEqImouKpUK8+fPx7lz5/C3v/2tQRAsLS3FxYsXcfHiRZSVldWb1rlzZ7z++us4d+4cnnnmGfPZv+uDIACsXLmSQZCIyMXI/szg8ePHMXz4cBQWFkKn06Fnz57Iz8/HO++8g3Pnzpkv+erbt2+95f7xj39g/fr10Ol06NSpEyIjI/Hbb7/hxIkTOHHiBFJSUrB161YJ9oiIiMhxunTpgo0bN2LAgAHm5wwGA7755hts2bIFR44cQXZ2NkRRBFAXHMPDwxETE4NHH30UI0eOhEqlgpeXF95//3088sgj+Pbbb/HWW2/VC4Lz58+XYveIiOgmZH1msKioCKNHj0ZhYSGef/55FBQU4OjRoygsLERiYiJ27NiBlJQUCIKAPn361Ft26NChSE1NRUlJCc6cOYOff/4Zubm5SElJQceOHbFt2zacPHlSoj0jIiJquttuuw0HDx6sFwRXr16NkJAQPPTQQ9i8eTPOnj1rDoIAYDQakZWVhY0bN2LMmDEIDQ3F2rVrzdMHDRqEf/7znwyCREQtgKzD4Ny5c6HX6zFnzhwsX74crVu3Nk9LSEhAVFQUamtrERISgjZt2tRbdsKECbjjjjsa3OweExODIUOGAADS09ObfyfIJeh0OvTv3x86nU7qUkgiPAZIbrp164bdu3ebLwn95ZdfcO+99+LZZ5+FXq+3ej25ubmYPn06hg4dit9//x0AzH87161bxyBIROTCZHuZaGZmJpKSkuDn54c333zT4jzR0dFIS0tDVFRUg2lVVVVITk7Gvn37kJOTg5KSEhiNRgB/hkAPDw/z/Fu2bMHmzZtx5MgRXLp0CZ07d8ZDDz2El156CV5eXs2wh+RMISEh9b75Vora6nJUlBRJXYZLUOoxQPLk5uaGL7/8Ep06dQIApKam4oEHHjCHOXt06tQJbdu2rfdcjx49oFKpzH8/iYjItcg2DG7evBlGoxGTJk1qNIy1atUKABqEwd27d2Pq1Km4ePHiTbfRrVs38+/Lly9H586d8cYbbyAoKAjHjx/H3//+d+zbtw/79++/Zdfb5NoMBgMqKirQqlUrqNVqqctxmsNbX8Phra9JXYZLUOoxQPL00ksv4Y477gAAZGVlYejQoU0aNuXGzmKuXr0Kb29vDBgwAHPnzsXbb7/tiLKJiMjBZBsG9+zZAwCIi4trdB7TZTDXh8GffvoJI0aMQE1NDaZNm4ZJkyahV69eaNu2Ldzc3JCVlYWIiAi4ubkhIiLCvNy3336L9u3bmx/fd999aN++PSZNmoT//ve/uPfeex29i+REWVlZePjhh7FlyxZERkZKXY7T9IqbgbA7H7E47aslQ5xcjbSUegyQ/PTo0QOvvvoqAKC2thaTJk1yaBBcuXIltmzZgn379kGlUuGNN97Atm3bcOHCBYfUT0REjiPbMHj+/HkAdb2kWVJbW4uDBw8CqB8GX3rpJVRXV2PJkiVYtGhRg+V27NgBAOjZsyc8PT3Nz18fBE1iYmIAAHl5eXbtQ0xMDAoLC+1alm4tPj7e6nkLCgoAADt37sSxY8esXm7Dhg02VtV0avdWGLf4rEPW5eMfhs69BjtkXY0JDwuDoaaiWbdhiS3vP2DfMSDF+090q0sy586dC3d3dwBAYmIijh49ave2LAVB0z2Cq1atwrx589CqVSvMmjULL774YqPrCQsLc9kraMZNnQ+dVxsUFBYgKCiowWMlUPprwP1vuL9Kfw1cbf/9/f1x5MgRu5aVbRg0jYNUUWH5Q2ZSUhKKiorQunVrdO3aFUDdZWD79+8HAEydOrXBMkajEZs2bQIA3H777besYe/evQBQ7wyiLQoLC+0OknRr5eXlVs9bWVlp/mnLclK8f26eWqdvsynyC/JRW2X9a+ootryPgH3HAP//kqtp3bo1nnjiCQB1YwcmJibava6bBUEAeP311/HMM8/A09MT06ZNw2uvvYaqqiqL6zJ92eKKjAaD+WdeXl6Dx0qg9NeA+99wf5X+Gshp/2UbBv39/XHlyhUcPXoUd999d71pBQUFWLhwIQCgT58+5l7PysrKYPjjzTV98LveW2+9ZT4jcKswmJeXh1dffRXDhg1rMIahLftAzUertT40aTQa809blrtx4GZnULu3cvo2m6JTQCdJzgza8j4C9h0DUrz/REajsdFw9fDDD5t71t64cSNKSkrs2satgiAAXLp0CVu2bMGkSZPg5+eHMWPGNDrofEBAgMueGVT9cY+wSq1GYGBgg8dKoPTXgPvfcH+V/hq42v43JTPINgwOHjwYmZmZSExMxJAhQxAeHg4ASElJwRNPPIGioroeEq8Pam3atEFgYCDy8vLw+uuv47333oNarUZ1dTVWrlyJV199FW5ubqitrb1pGCwtLcXYsWPh4eGB9evX270P9p7uJetkZWVZPW96ejrWr1+PESNG2HS/2OLFi+0prUmqaoFFSU7frN3OnD0LTwlaIlvef8C+Y0CK95+orKys0Y7Trv9y1HSli62sCYLXb2PSpEnmbTcWBs+ePeuyw7a88e4mXCstQ4B/APR6fYPHSqD014D733B/lf4ayGn/XfNrOAdISEhAu3btcPHiRURGRqJ3794ICwtDv3790K1bNwwaNAhAw55EX375ZQDAhx9+iMDAQMTGxqJDhw54+eWXsWrVKoiiCEEQGj3bV1FRgdGjRyMnJwfff/89AgICmnU/yTnCw8Nx8OBB85cKpDw8BkgOoqOjAdTdFmHPvYK2BEGg7gvYG7dNRESuQ7ZhMCgoCAcOHMDIkSOh0WiQm5sLX19frFmzBjt27MCZM2cANAyDM2fOxIcffoiwsDBcvnwZ+fn5GDVqFFJTU9GvXz8YDAZ069atwSD1AFBTU4OHH34YR44cwa5du9CzZ0+n7Cs1P3d3d/j6+po7XSDl4TFALZ0gCOjVqxeAujPjtt43a2sQBICioiJzh26WxvQlIiJpyfYyUaCu45bt27c3eL60tBS5ublQqVTmP4zXmz59OqZPn25xnaIoWnzeNKbh7t27sXPnTvTr169pxZNLuXDhApYsWYIXX3wRnTt3lrqcZhfUcyDmbbR8rJvcarrcKO0YIPlp1aoVPDw8AMDmnqrtCYImv/76K7p06WK+V5GIiFyHrMNgY9LT0yGKIsLDw23uRKIxs2fPxpdffokXX3wRWq0Whw8fNk8LDQ21OPQEtRwlJSXYu3cvZs+eLXUpJBEeA9TSVVRUICAgAK1atUJtba1Ny9599912BUEAePTRRyEIgsWO2YiISFqKDIMnT54E4NhLVnbt2gUAWLJkCZYsWVJv2scff2zzmGZERESOJIqi3WPXzpw5E2q1GmVlZTYFQeDPcX+JiMj1MAw6SG5ursPWRURE5EpEUcSMGTMavVWCiIhaJtl2IHMzzREGiYiI5IxBkIhIfhR5ZnDPnj1Sl0AtTMeOHbFo0SJ07NhR6lJIIjwGiIiISG4UGQaJbOXn58f7PhWOxwARERHJjSIvEyWy1dWrV/Hdd9/h6tWrUpdCEuExQERERHLDMEhkBb1ejwULFkCv10tdCkmExwARERHJDcMgERERERGRAjEMEhERERERKRDDIBERERERkQIxDBJZQaPRICIiAhqNRupSSCI8BoiIiEhuOLQEkRVCQ0Oxbds2qcsgCfEYICIiIrnhmUEiIiIiIiIFYhgkskJGRgb69OmDjIwMqUshifAYICIiIrlhGCSygiiKqKmpgSiKUpdCEuExQERERHLDewaJZMZDDSROkLoK63mopa6ASF60Wi1KS0sdtr5laz7HtbJytNFpsfDpiQ0eO4JWq3XIeoiIyDYMg0QyIwiAJ/9nEymWIAjQ6XQOW5+HpwYeNQZ4eGqg0+kaPCYiopaLl4kSEREREREpEM8fEFkhNDQUycnJCA4OlroUkgiPASIiIpIbhkEiK2g0GoSFhUldBkmIxwARERHJDS8TJbJCXl4eXnnlFeTl5UldCkmExwARERHJDcMgkRWKi4uxdetWFBcXS10KSYTHABEREckNwyAREREREZECMQwSEREREREpEMMgERERERGRAjEMEllBpVIhNjYWKhX/yygVjwEiIiKSG36qIbKC0WhESkoKjEaj1KWQRHgMEBERkdwwDBIRERERESkQwyAREREREZECMQwSEREREREpEMMgkRW8vb0xevRoeHt7S10KSYTHABEREcmNm9QFELUEQUFBWLp0qdRlkIR4DBAREZHc8MwgkRWqqqpw/vx5VFVVSV0KSYTHABEREckNwyCRFbKzszFs2DBkZ2dLXQpJhMcAERERyQ0vE5UZURRRbjRIXYZNtCo1BEGQugzZEEWgugUdAh5qgG8/OZIoiigvL5e6DJtotVq2g0RE5HQMgzJTbjSg7Z4fpC7DJlcGDYFOzUPRUaoNwKIkqauwXuIEwJNvPzlQeXk5vLy8pC7DJqWlpdDpdFKXQURECsPLRImIiIiIiBSIYZCIiIiIiEiBeHEWkRUiIyORmZkpdRkkIR4DREREJDc8M0hERERERKRADINEVsjJycHEiRORk5MjdSkkER4DREREJDcMg0RWKC8vR1paWovrrp4ch8cAERERyQ3DIBERERERkQIxDBIRERERESkQwyAREREREZECMQwSWSEwMBCJiYkIDAyUuhSSCI8BIiIikhuOM0hkBR8fH4wZM0bqMkhCPAaoKVQqFYxGo9RlEBER1cMwSGSFy5cvY9euXRg+fDh8fX2lLockwGNAedzc3NCzZ09ER0cjODgYnp6eqK6uxqVLl3D06FGkpaWhoqLiluuZMmUKnnnmGQwbNgxXr151QuVERETWYRgkskJBQQEWL16Mvn37MggoFI8BZRAEAYMHD8asWbPwwAMPoFWrVo3OW1tbi0OHDuGDDz7Ali1bUF1d3WCeKVOmYP369VCpVPj+++8RFxfH4UmIiMhlKOKewaKiIiQkJKB79+7QaDQIDg7GvHnzUFZWhmnTpkEQBKxevbreMrm5uVi2bBmGDRuG0NBQ6HQ6aLVaREVFYcmSJRb/6BMRUcs1duxYnD59Gt9//z0efPDBmwZBoO7M4f/8z/9g06ZNuHjxIubNmweV6s8/q9cHQQA4dOgQgyAREbkU2Z8ZPH78OIYPH47CwkLodDr07NkT+fn5eOedd3Du3DlcvnwZANC3b996y/3jH//A+vXrodPp0KlTJ0RGRuK3337DiRMncOLECaSkpGDr1q0S7JFzGNZvgPHzL6B+bj5Uw4bWmyaKIgwLX4SYmQm31e9A6BoiTZHUbPQZ/8HWN+Iw4LFliB75gsV5Vk4WENJ3JMa+sN3J1RE5lq+vL1atWoXHH3+83vP5+fnYv38/jhw5gqysLFRUVMDd3R3dunVDTEwM+vfvjx49egAAOnTogLfffhsPP/wwpk6div79+9cLgitXrsT8+fOdvWtEREQ3JeswWFRUhNGjR6OwsBDPP/88XnvtNbRu3RoAsHTpUixatAhubm4QBAF9+vSpt+zQoUMxe/Zs3H777RAEwfz8kSNHMGrUKGzbtg0nT55E7969nbpPzqJ6YhKMh3+CYc1HEKLvgNDezzzNuO1riCdOQvWXeAZBImrRwsPD8cMPP6Bz587m5/7zn/9g5cqV+Pbbb2EwGG66/IABAzB79mxMnDjR/PjkyZPw8PBgECQiIpcn68tE586dC71ejzlz5mD58uXmIAgACQkJiIqKQm1tLUJCQtCmTZt6y06YMAF33HFHvSAIADExMRgyZAgAID09vfl3QiKCuzvcFj4PVFbC8M+3zc+LF/UwbvgUwm09oHrkIekKdDKdTof+/ftDp9NJXQpJhMeA/ISFhWH//v3mIHj58mVMnjwZcXFx+Prrr28ZBAHgv//9Lx577DHce++9yM7OBgBoNBoGQSIiahFke2YwMzMTSUlJ8PPzw5tvvmlxnujoaKSlpSEqKqrBtKqqKiQnJ2Pfvn3IyclBSUmJuVtwUwj08PAwz6/X67FkyRL8/PPPSEtLQ3V1NURRbIY9cx4hrDtUEx+FcdNmGHfsgjBsKAxLlwOiCPXC5yGo1VKX6DQhISFYu3at1GWQhHgMyIu3tze+//57dOzYEUDdLQUjRoxAQUGBXes7cOAAli1bhg8++MD8JWJNTQ0++ugjh9VMRETkaLINg5s3b4bRaMSkSZPg5eVlcR5T5wA3hsHdu3dj6tSpuHjx4k230a1bN/Pv2dnZ2Lp1K2JjY+Hh4YGDBw82cQ9cg2rSYzAe+gmGj9ZCde4XiKfPQDXjKQjBQVKX5lQGgwEVFRVo1aoV1AoKwbXV5agoKZK6DJeg1GNArlasWIGQkBAAQFpaGuLi4lBcXGz3+qZMmYL333+/3tUk7u7u+Pjjj3H33XdbdZaRiIjI2WR7meiePXsAAHFxcY3Oo9frAdQPgz/99BNGjBgBvV6PadOmYc+ePfjtt99QU1MDURSRmZkJoK4XuYiICPNy9957LwoKCpCcnIzBgwc3xy5JQnBzg9vC54DqGhi374DQKxKq8Q9KXZbTZWVlITY2FllZWVKX4lSHt76GD2e2t/hPaZR6DMjR8OHDMXXqVADAtWvXMHr06CYHwes7i1m9erX5b0VsbCwSEhKaXDMREVFzkO2ZwfPnzwMAunTpYnF6bW2t+ezd9WHwpZdeQnV1NZYsWYJFixY1WG7Hjh0AgJ49e8LT09P8/PXdiTtKTEwMCgsLbVpG9PAA1rzr2EJ0OsDdHaithRAbA8HB+xoeFg5BgqE64uPjrZ7XdOnYzp07cezYMauX27Bhg41VNZ3avRXGLT7rkHX1ipuBsDsfsTjtqyVDHLKN8LAwGGpuPXC3o9ny/gP2HQNSvP8E8yX9jXnjjTfMvz/33HO3vArkZm4MgqZ7BPv164cff/wRarUaL730ElavXo2SkpJG1xMWFtYsf0ccYdzU+dB5tUFBYQGCgoIaPJY7pe8/wNeA+99wf5X+Grja/vv7++PIkSN2LSvbMFhWVgYAqKiw/CEzKSkJRUVFaN26Nbp27Qqg7jKw/fv3A4D5W+PrGY1GbNq0CQBw++23N0fZ9RQWFiIvL8+2hTSecHdgDaIowvDWCqC2BugcDONnn0N1370QOgU4bBv5BflAZZXD1mctW8b7qqysNP+0ZTmb3z8HcPPUOmxdPv5h6Nyrec905xfko7bK+WOv2Tremz3HgBTvP93cXXfdZR5KKCUlBevWrbN7XY0FQQD4+eefsX79ekyfPh2tW7fG5MmT8f777ze6LnvvVXQG4x+XuBoNBuTl5TV4LHdK33+ArwH3v+H+Kv01kNP+yzYM+vv748qVKzh69CjuvvvuetMKCgqwcOFCAECfPn3M93iUlZWZ7+swffC73ltvvWU+I+CMMOjv72/zMqKHBy45sAbj18kQ005ANXUKVHffhdrZz8Lw1gqolyc26GnVXp0COklyZlCrtT40aTQa809blgsMDLS5rqZSu998oGxX0ymgkyRnBm15HwH7jgEp3n+q++KusXA1c+ZM8++rV6+2exs3C4LXr3/69OkAgFmzZt00DAYEBLjsmUHVH/fIqtRqBAYGNngsd0rff4CvAfe/4f4q/TVwtf23JzOYyDYMDh48GJmZmUhMTMSQIUMQHh4OoO6b4CeeeAJFRXWdYlw/2HybNm0QGBiIvLw8vP7663jvvfegVqtRXV2NlStX4tVXX4Wbmxtqa2udEgbtOd1bZqhF2z0/OGT7Yl4ejOs3QOgRDtWjD0NQq6GaPAnGjz+B8etkqMeNdch2zpw9A53a+YeiLfd+paenY/369RgxYgQiIyOtXm7x4sX2lNYkVbXAoiSnb9ZuZ86ehacELZGt9/7ZcwxI8f5T3Rd7jXUc9sADDwAAiouLkZRk338Ua4IgAJw4cQKHDx/GXXfdhV69eiEgIKDRkHr27FmXHbbkjXc34VppGQL8A6DX6xs8ljul7z/A14D733B/lf4ayGn/XfNrSAdISEhAu3btcPHiRURGRqJ3794ICwtDv3790K1bNwwaNAhAw55EX375ZQDAhx9+iMDAQMTGxqJDhw54+eWXsWrVKoiiCEEQ6oVIORKNRhiW/RMwGqFe+Jx5GAnVow9DCA+Dcf0GiPmue1mTo4WHh+PgwYPmLxVIeXgMtHyBgYHmoSR++uknVFXZfnm6tUHQZN++febfo6Ojbd4eERFRc5JtGAwKCsKBAwcwcuRIaDQa5ObmwtfXF2vWrMGOHTtw5swZAA3D4MyZM/Hhhx8iLCwMly9fRn5+PkaNGoXU1FT069cPBoMB3bp1azBIvdwYt2yDmJEJ1ZTJEP4YkBkABLUa6heeA4wGGN5a0eLHUrSWu7s7fH194e7uyDsyqSXhMdDyXR/GUlNTbV7e1iB443YYBomIyNXI9jJRAIiIiMD27dsbPF9aWorc3FyoVCr06tWrwfTp06eb7/O4kRLCj3jhAoyf/AtCxG1QPTS+wXQhpEuzXC7qyi5cuIAlS5bgxRdfROfrwjEpB4+Blq9Tp07m301fCFrLniB443YCAhzX8RYREZEjyDoMNiY9PR2iKCI8PNzmTiRuZsuWLQCAjIyMeo9DQkIQExPjsO00N6FzZ7jv+Oam86gfmwD1YxOcVJH0SkpKsHfvXsyePVvqUpwiqOdAzNt48y8+bjVdbpR2DMhRSkoK/vd//xetWrVCWlqa1ct169YNa9eutTkIAkB+fj6WLFmCyspKu7v9JiIiai6KDIMnT54E0PAS0aZ65JFHLD6eMmUKxxsjIpJYamqqXZeH/vLLL5gxYwbWrl2LVatWWR0EAeDSpUt46aWXbN4mERGRMzAMOpASLiElIlKijz/+GJmZmTh8+LDUpRARETmMbDuQuZnmCoNERCRfDIJERCQ3ijwzuGfPHqlLoBamY8eOWLRokblbelIeHgNEREQkN4oMg0S28vPzQ3x8vNRlkIR4DBAREZHcKPIyUSJbXb16Fd999x2uXr0qdSkkER4DREREJDcMg0RW0Ov1WLBgAfR6vdSlkER4DBAREZHcMAwSEREREREpEMMgERERERGRAjEMEhERERERKRDDIJEVNBoNIiIioNFopC6FJMJjgIiIiOSGQ0sQWSE0NBTbtm2TugySEI8BIiIikhueGSQiIiIiIlIghkEiK2RkZKBPnz7IyMiQuhSSCI8BIiIikhuGQSIriKKImpoaiKIodSkkER4DREREJDe8Z1BmtCo1rgwaInUZNtGq1FKXICseaiBxgtRVWM+Dbz85mFarRWlpqcPWt2zN57hWVo42Oi0WPj2xwWNH0Gq1DlkPERGRLRgGZUYQBOjUfFuVTBAATx4CpGCCIECn0zlsfR6eGnjUGODhqYFOp2vwmIiIqKXiZaJEREREREQKxPMHRFYIDQ1FcnIygoODpS6FJMJjgIiIiOSGYZDIChqNBmFhYVKXQRLiMUBERERyw8tEiayQl5eHV155BXl5eVKXQhLhMUBERERywzBIZIXi4mJs3boVxcXFUpdCEuExQERERHLDMEhERERERKRADINEREREREQKxDBIRERERESkQAyDRFZQqVSIjY2FSsX/MkrFY4CIiIjkhp9qiKxgNBqRkpICo9EodSkkER4DREREJDcMg0RERERERArEMEhERERERKRADINEREREREQKxDBIZAVvb2+MHj0a3t7eUpdCEuExQERERHLjJnUBRC1BUFAQli5dKnUZJCEeA0RERCQ3PDNIZIWqqiqcP38eVVVVUpdCEuExQERERHLDMEhkhezsbAwbNgzZ2dlSl0IS4TFAREREcsMwSEREREREpEC8Z5BIZkQRqDZIXYX1PNSAIEhdhXyIoojy8nKpy7CJVquFwIOAiIjI6RgGiWSm2gAsSpK6CuslTgA82RI5THl5Oby8vKQuwyalpaXQ6XRSl0FERKQ4vEyUiIiIiIhIgfh9PJEVIiMjkZmZKXUZJCEeA0RERCQ3PDNIRERERESkQAyDRFbIycnBxIkTkZOTI3UpJBEeA0RERCQ3DINEVigvL0daWlqL66WRHIfHABEREckNwyAREREREZECMQwSEREREREpEMMgERERERGRAjEMElkhMDAQiYmJCAwMlLoUkgiPASIiIpIbjjNIZAUfHx+MGTNG6jJIQjwGiIiISG54ZpDICpcvX8amTZtw+fJlqUshiSj5GPD29kZISAhCQ0PRqVMnqFS2/el4/PHHERkZ2UzVERERkb0YBomsUFBQgMWLF6OgoEDqUkgiSjoG/Pz88Nxzz2Hr1q3Izc1FcXExcnJykJ2djby8PFy9ehUHDhzAihUrcM8999x0XVOmTMG//vUv7N27l4GQiIjIxTAMEhERACAqKgr/+te/oNfr8dZbb2H8+PHo0qVLg/m8vLwwYMAAzJ8/HwcPHsTx48cxffp0qNXqevNNmTIF69evh0qlQvv27TFhwgRn7QoRERFZQRFhsKioCAkJCejevTs0Gg2Cg4Mxb948lJWVYdq0aRAEAatXr663TG5uLpYtW4Zhw4YhNDQUOp0OWq0WUVFRWLJkCaqrqyXaG6Lmp8/4D1ZOFpC6Y3mj86ycLOCb5aOcWBU1Fw8PDyxevBhHjhzB5MmT4enpaZ5WUlKC/fv3Y/Pmzdi4cSO++eYb5OTk1Fs+KioKH374IQ4dOoSePXsCqB8EAWDlypX43//9X+ftFBEREd2S7DuQOX78OIYPH47CwkLodDr07NkT+fn5eOedd3Du3Dnz/T99+/att9w//vEPrF+/HjqdDp06dUJkZCR+++03nDhxAidOnEBKSgq2bt0qwR4RETlOaGgovv76a/Tq1cv83O+//45169bh008/RWZmJoxGY4PlfH19MWLECMycOdN8qWhsbCyOHj2KL774ApMmTaoXBOfPn++U/SEiIiLryfrMYFFREUaPHo3CwkI8//zzKCgowNGjR1FYWIjExETs2LEDKSkpEAQBffr0qbfs0KFDkZqaipKSEpw5cwY///wzcnNzkZKSgo4dO2Lbtm04efKkRHtGzqbT6dC/f3/odDqpSyGJyPEYiIiIwH//+19zEKyursarr76KwMBALFq0COnp6RaDIFDXoc7GjRvRv39/9O/fH5mZmQAAT09PPPHEEwyCRERELYCsw+DcuXOh1+sxZ84cLF++HK1btzZPS0hIQFRUFGpraxESEoI2bdrUW3bChAm44447IAhCvedjYmIwZMgQAEB6enrz7wS5hJCQEKxduxYhISFSl0ISkdsxEBwcjB9++AH+/v4AgIyMDMTExGDx4sWoqqqyaV0//vgjbr/9dnz33Xf1nt+3bx+DIBERkQuT7WWimZmZSEpKgp+fH958802L80RHRyMtLQ1RUVENplVVVSE5ORn79u1DTk4OSkpKzN+Qm0Kgh4dHvWVycnIwb9487N27F25ubhg9ejRWrFiBdu3aOXjvyNkMBgMqKirQqlWrBp1kyFltdTkqSoqkLsMlyOkYEAQBGzZsQGBgIAAgNTUVQ4YMwZUrV+xe58SJEzF06NB6z91zzz3o27cvjh8/3pRyiYiIqJnINgxu3rwZRqMRkyZNgpeXl8V5WrVqBQANwuDu3bsxdepUXLx48abb6Natm/n3kpISxMXFwdfXF5s3b0ZFRQUSEhIwatQoHDx40OZxuci1ZGVl4eGHH8aWLVsU1T3+4a2v4fDW16QuwyXI6Rh4+umnMWjQIADAhQsXMGzYsCYFwRs7izly5AhiYmLg7u6ODRs2IDY2FjU1NQ6pnYiIiBxHtmFwz549AIC4uLhG59Hr9QDqh8GffvoJI0aMQE1NDaZNm4ZJkyahV69eaNu2Ldzc3JCVlYWIiAi4ubkhIiLCvNyHH36IvLw87N+/H507dwYABAUF4Z577kFycjIefPDBZthLoubVK24Gwu58xOK0r5YMcXI15Aht27bF0qVLzY//8pe/oKjI/rO/lnoNXbhwIX7++Wf07dsXUVFRmDNnDlasWNHk2omIiMixZBsGz58/DwAWx8gCgNraWhw8eBBA/TD40ksvobq6GkuWLMGiRYsaLLdjxw4AQM+ePet1v759+3YMGDDAHAQB4O6770a3bt3w7bff2hUGY2JiUFhYaPNyZJ34+Hir5zUNNL5z504cO3bM6uU2bNhgY1VNp3ZvhXGLzzpkXT7+Yejca7BD1tWY8LAwGGoqmnUbltjy/gP2HQNSvP+NdfhiEh8fb75/et26ddi9e7fd27IUBE33CE6dOtX8Os2ZMwdvv/02RFG0uJ6wsDCXvnpi3NT50Hm1QUFhAYKCgho8ljvuv7L3H+BrwP1vuL9Kfw1cbf/9/f1x5MgRu5aVbRgsKysDAFRUWP6QmZSUhKKiIrRu3Rpdu3YFUHdP0P79+wHUfZC5kdFoxKZNmwAAt99+e71pGRkZeOSRhmdQIiMjkZGRYdc+FBYWIi8vz65l6dbKy8utnreystL805blpHj/3Dy1Tt9mU+QX5KO2yvrX1FFseR8B+44BV/v/KwgCZs2aZX58/RlCW90sCAJ1w/p89913GDZsGLp164Zhw4Zh165dFtdlCtquymgwmH/m5eU1eCx33H9l7z/A14D733B/lf4ayGn/ZRsG/f39ceXKFRw9ehR33313vWkFBQVYuHAhAKBPnz7mHkPLyspg+OPNNX3wu95bb71l/qb7xjB45coV+Pj4NFjG19cXp0+ftnsfqPlotdaHJo1GY/5py3KmDjqcSe3eyunbbIpOAZ0kOTNoy/sI2HcMSPH+G43GRsNVTEwMunfvDgD44YcfcObMGbu2casgaPLee+9h2LBhAIDHH3+80TAYEBDg0mcGVX90GKRSqxEYGNjgsdxx/5W9/wBfA+5/w/1V+mvgavvflMwg2zA4ePBgZGZmIjExEUOGDEF4eDgAICUlBU888YT5HpnrB5tv06YNAgMDkZeXh9dffx3vvfce1Go1qqursXLlSrz66qtwc3NDbW1tgzDYHOw93UvWycrKsnpe0z2krVu3hru7u9XLLV682J7SmqSqFliU5PTN2u3M2bPwlKAlsuX9B+w7BqR4/8vKyhrtNCsmJsb8+zfffGPX+q0NggDw3XffoaqqCp6envW2faOzZ8+69PiNb7y7CddKyxDgHwC9Xt/gsdxx/5W9/wBfA+5/w/1V+msgp/133a9imyghIQHt2rXDxYsXERkZid69eyMsLAz9+vVDt27dzD3p3diT6MsvvwygrkOYwMBAxMbGokOHDnj55ZexatUqiKIIQRDqhUigrlOG4uLiBnVcvnwZvr6+zbKP5Dzu7u7w9fW1KQiSvMjhGIiOjjb/bs+XTbYEQaAuQJ84cQIAEB4e3mhIJSIiImnINgwGBQXhwIEDGDlyJDQaDXJzc+Hr64s1a9Zgx44d5sujbgyDM2fOxIcffoiwsDBcvnwZ+fn5GDVqFFJTU9GvXz8YDAZ069atwSD1ERERFu8NzMjIqNfrKLVMFy5cwKxZs3DhwgWpSyGJyOEYuO2228y/p6Wl2bSsrUHQxDTGoEqlQo8ePWzaJhERETUv2V4mCtQFtO3btzd4vrS0FLm5uVCpVOjVq1eD6dOnT8f06dMtrrOx3vBGjRqFv/71r9Dr9eZehX766SecO3cOy5Yta8JekCsoKSnB3r17MXv2bKlLcYqgngMxb6PlY93kVtPlRg7HQFFRES5cuACVSmXxvujGTJ482a4gCAD5+fnIz89vtDMvIiIiko5szwzeTHp6OkRRRFhYmM2dSDRmxowZCAgIwNixY7F9+3Zs2bIFjz32GPr164exY8c6ZBtERE3x4IMPokuXLggODrZpuczMTFy7dg2AbUEQAP72t78hMDAQ3bt3R2pqqk3bJSIioualyDB48uRJAA0vEW2KNm3aYM+ePQgICMDEiRPx1FNP4Z577sH27dtdupc8IqJbSU1NxeDBg/HGG2/YFASJiIjItcn6MtHGNEcYBIDQ0FCLl6USEbV0qampPLNHREQkM4o8ZdVcYZDkq2PHjli0aBE6duwodSkkER4DREREJDeKPDO4Z88eqUugFsbPzw/x8fFSl0ES4jFAREREcqPIM4NEtrp69Sq+++47XL16VepSSCI8BoiIiEhuGAaJrKDX67FgwQLo9XqpSyGJ8BggIiIiuWEYJCIiIiIiUiCGQSIiIiIiIgViGCQiIvr/7d17cFT1/f/x12aXbO4hXBMIJIRrAhJukUsCSZBLIMGI3H5ffxamofhN7XwRHS+1qKgoojg4Hb91pKBWmUq/VilQDVERIhYoFCS0SkUFpSYk0FogxBBDsvv9A5IvMQnZ3YQ92T3PxwzjnHM+Z8/7bBbMa9/ncw4AACZEGARcEBQUpMTERAUFBRldCgzCZwAAAPgbUz5aAnBX//79tXnzZqPLgIH4DAAAAH9DZxAAAAAATIgwCLjg6NGjGj58uI4ePWp0KTAInwEAAOBvCIOAC5xOpy5duiSn02l0KTAInwEAAOBvCIMAAAAAYELcQAbwM4FW6ekFRlfhukCr0RX4l5CQEFVWVrbb661Z9ztVfFeliNAQ3fef/6/JcnsICQlpl9cBAADuIQwCfsZikez8zTYti8Wi0NDQdnu9QHuQAi/VKdAepNDQ0CbLAADAd/ErI+CC/v37a9u2berTp4/RpcAgfAYAAIC/IQwCLggKCtLAgQONLgMG4jMAAAD8DTeQAVxQWlqqhx56SKWlpUaXAoPwGQAAAP6GMAi44Ny5c3rrrbd07tw5o0uBQfgMAAAAf0MYBAAAAAATIgwCAAAAgAkRBgEAAADAhAiDgAu6deumJUuWqFu3bkaXAoPwGQAAAP6GR0vAtIYMGeLW2PT09OtYDbzNnZ9//Xg+AwAAwJ/QGQQAAAAAEyIMAgAAAIAJEQYBAAAAwIQIgwAAAABgQoRBAAAAADAhwiAAAAAAmBBhEAAAAABMiDAIAAAAACZEGAQAAAAAEyIMAgAAAIAJEQYBAAAAwIQIgwAAAABgQoRBH/boo4/KYrE0+fPll18aXRoAAGhBQUGBRowYIbvdrvj4eK1du9bokrxq9+7dys3NVVxcnCwWi5544gmjS/KqNWvWaPz48YqKilLnzp2VlpamwsJCo8vyqo0bN2r06NGKiopScHCwEhMTtXbtWjmdTqNLM8TOnTtltVo1YMAArx/b5vUjol3Fx8dr3759jdZ1797doGoAAMC1HDx4ULm5ubr33nu1adMm7d+/X/n5+QoJCVF+fr7R5XlFZWWlkpKSdNttt2nZsmVGl+N1O3fuVF5enlJSUhQSEqINGzYoJydHH374oVJTU40uzyt69Oihhx9+WIMHD5bdbtdHH32kO++8U1arVXfddZfR5XlVeXm5Fi1apGnTpumLL77w+vEJgz7OarUqOjra6DIAAIAL1q5dq5SUFD311FOSpMTERH366adavXq1acLgzJkzNXPmTEnSAw88YHA13rd9+/ZGy88884wKCwu1efNm04TB6dOnN1pOSEjQli1bVFRUZKow6HA4dPvtt+tnP/uZqqurDQmDXCbq40pKShQbG6vY2FjNmDFDe/fuNbokAADQgj179igrK6vRuqysLJ08eVIlJSUGVQUjORwOVVRUKDQ01OhSDOF0OnXgwAHt2bNHmZmZRpfjVStXrpTFYjH0SxE6gz7sxhtv1CuvvKKkpCRVVFRo3bp1mjhxogoLCzV16lSjywMAwGc4nU6999FBfXv2fKP1F6urG/77+tYdTZavdsPgBN0wJOGaxykrK2tyRU/9cllZmWJjY9t0Hm3xxVcl+stfP2uy3tX3ICw0WDmTxysgwDd7Dd/XXNLW9/+k2tq6Ruvd+QxMnjBK0d27uHXcVatW6dy5c7rjjjvaUH372HPoE50sKW+0rrnzbek9iI+N1oTRw1w61vnz59W7d2/V1NTI4XBoxYoVWrp0aXuchsfK//lv7dz7cZP1rn4GbDarcqemyR7YqdVj7dq1Sy+++KIOHz4si8XSTmfgPsKgD6u/xKLexIkTVVJSojVr1hAGAQBwg8Vi0ZCEPnrx9eJmb2JxqbZOf/3sRIvLUZHhujVrkldqvV769Y1RQdF+lZ35ttntrb0HC2+d5rNBUJLsgZ0U3a2LCor2N7u9tfNPGhivnt2i3DrmCy+8oFWrVmnbtm2GfhFQL3FAnN7b/Rd9X3OpybYfnu8P19kDO2lGxliXjxUeHq7i4mJVVVVp7969evDBB9WrVy8tXry4bSfRBj27RelSbZ3+/uXJZre39hnIzhznUhD817/+pdtvv12vvPKK4dO9fPdvLJo1fvx4ff3110aXAQCAz4mLjVbGuGS397NImp+doSB7YKtjY2JiVF7euPNy+vTphm1GslmtWpCTKavV/V8PxwwfrKSB8e1flJelpdygfn3c/zmEhQTr1qyJbnV4nn32Wd13333atm2bpkyZ4vYxr4cukeGaddMEj/a9eUqqoiLDXR4fEBCgAQMGaPjw4crPz9f999+v5cuXe3Ts9mKxWDQna5JCQ4Lc3jehb4xSU25waewnn3yiU6dOKScnRzabTTabTY8//riOHz8um82m119/3e3je4ow6Gc+/vhj9enTx+gyAADwSTeljlavnl3d2mfS2GSXA0RqaqrefffdRusKCwsVFxfXITpD0d27KGvSjW7t0yUyXLMmj79OFXlXQECA5mdnuNTdudqtMyYpLCTY5fGPPPKIHnvsMRUUFHSYIFhv9A2D3A72QwfFa9SwgW06rsPhUPWVyy+NFBYarDludvntgZ00b2aGAlz8MiAlJUV/+9vfVFxc3PAnPz9fffr0UXFxsbKzsz0p3SNcJurD7rnnHuXk5Cg+Pl4VFRVav3693n//fW3dutXo0gAA8Ek2q1ULsjP1/Kt/UG1dXavjo7t30dS0MS6//t13360JEyZo+fLl+tGPfqT9+/fr+eef13PPPdeWsttVasoN+vvxkzrxj7JWx1okzc/JlN2Frmi9ysrKhmci19TUqLy8XMXFxQoLCzPkOWs/FBUZrpunpOr3BUUujU8ZPkRJA+Jcfv1ly5Zp3bp12rRpkwYPHtzQKQ4ODlZkZKQnJbcri8WiW7Mm6h+lp1VZdbHV8WGhwZo93b2u6IoVKzRx4kQlJCTo0qVL2r17t55++mn9+Mc/bkvp7SZpYLzGDB+sg3895tL4m6e61xUNDQ3VsGGN51b26NFDgYGBTdZfb3QGPeBwOLR9+3Y9/vjjuvnmmxUTE9PwwHdvXqJZVlamhQsXKjExUdOmTdOxY8e0Y8cOzZo1y2s1AADgb3p276Lp6SmtjrNaA7QgJ1M2m9Xl105JSdGWLVv09ttvKzk5WY888oiefPLJDvVYiQCLRfNmutYdmzQ2WfGx7s15OnjwoEaOHKmRI0eqrKxMv/rVrzRy5Ej95Cc/8bTkdjdq2EANHRTf6rguncOVM3mcW6/9y1/+UtXV1Zo9e7ZiYmIa/nSkRyqEhQTr1hmudcfmzkh3qysqSRUVFcrPz9fQoUM1btw4vfjii3rqqae0du1aT8q9LmZNHq8uLgS8YYP6adTQtnVFjURn0AMVFRVNbt5ihE2bNhldAgAAfil1zA36+5f/0Il/nGpxzLSJKYrp4d4lpZKUnZ3t1cvAPBEVGa6bp6bq9+8UtTgmpkdXt7qi9TIyMpq9SU9HYrFYNHv6RJ0sPa3K75rvjlksFs3Pdq8rKqnDn3u9pAFxShk+pNk7zNa7MXmIhvTv6/ZrP/fccx2qG94cuz1Q83Myte6329TST8yTrmhLHn30UT366KNtfh130Rn0QEBAgEaMGKElS5Zo3bp1OnDggNElterwp1/og70fq/r7GqNLAQCgwwuwWK45d6xfnxhNdPFmEb5q1NCBGjaoX7PbPOmK+pqwkGDNnZHe4vZ0D7qiviZn8jh16dx8d6xr5whl+8lc0ZbEx0Zr0tiWbyo1d0a6Rzeb6UjoDHogIiJChw8fbliura01sJrW1dbV6d3df9G5ikoF2QOV6uLzXwAAMLPOEWG6ZVqa/uftXY3W2wM7aV52hk8/RsEV9d2xr0vLm3THpk+60e3n6fmiIf376sbkITpwpHF3LKZHV01JG21QVd5jtwdqfnam1r3+x0YdTUsrX5b4k6lpY/T5VyVNHrkydkSiR13Rjsa//xVzU11dnTZu3Khp06ape/fustvt6tu3r7KysrRhwwbVuTCRvCM69LfPda6iUuGhwbpx+BCjywEAwGeMSBqgGwY37o7NmjLBpblE/iA0JKhJd6xfnxil+XlX9GrZk8era+eIhuX6R3DYrP7bFb1afGy00n/QHcsYl6w4P++K1rPZmj5ypWtUhGZmujdXtKMiDF5RUVGhqVOnauHChXr//fcVGBio5ORkORwOvffee1qyZIkuXLhgdJluq62r0659l7uY6eNGqFMnmsEAALjKYrHolukTFR4WIunyXQZHDxtkcFXeNaR/X40dkSjpcld0frbrt9D3B/XnXD8vbPqkFFN0Ra82JW10w/zYXj276qZU/++KXi26exdNv/LIFYvFogXZmX7TFSUMXrF48WLt2rVLsbGx2rlzp0pLS3XgwAGVlJSorKxMTz75pDp18r0f+tVdwbHJiUaXAwCAzwkNDtLcrEkKC3X/weL+YmbmOHWNinD7weL+Ii42WhnjkpXQt5fLDxb3J/Xd0CB7oBbkTDZNV/RqaSk3qF+fGGWOG6G+vXsaXU67sTh95ZZG19GhQ4c0ZswY2Ww2HT582O3ne9TW1jYExa+++krx8fHtUtfzr27WhcrWn+/SMqcufHdRTqdTQfZABfpgmAVgrAvfVcnpdMpisSg8NKTJshmY/T0w+/lfzeFw+P08wWtxOBwNj9IyI6fTKafTafrPgNnPvyP+HQgPC9Z/LbrVo325ZlDSli1bJF2+1bO3H/R4LRcqL6qi8rt2ea3q72u4kygAjzmdzkb/Hv1w2QzM/h6Y/fwBwB8RBiUdPXpUkjR+fMe6PW54mHsP8GyMriCAtqMrxHtg9vMHgI6uLZmBMKjLN4+RpMjISIMraczTdq8k7S/+u/7w7kcKDw3W/f/5H9w4BoBHVv3qt6qo/E7hoSH6xc/+f5NlMzD7e2D28wcAf8acQUlz5szR5s2btXr1aj3wwANu79/x5gzSFQTQPugK8R6Y/fwBoKNjzmAbDR06VJs3b9a+ffuMLqWR9pgzyFxBAO2B+WK8B2Y/fwDwR4RBSbNnz9bKlStVUFCgo0ePKikpyeiSJHl6/S9dQQDth64Q74HZzx8AOrq2zBnkMtErFixYoDfeeEN9+/bVa6+9pvT09IZtp0+f1ssvv6ylS5cqNDS0yb7X6zJRTzBXEEB7qp8fFhEW2mi+WP2yGZj9PTD7+QOAPyMpXLF+/XqdOXNGRUVFysjIUO/evdWrVy+VlZWptLRUTqdTP/3pTxvG5+bmas+ePU1eZ9SoUQ3PX0lNTdXWrVu9dg61dXXate+wJCl93AiCIAAAAIAWkRauiIiI0I4dO/Tqq69q48aNOnLkiI4cOaLo6GhNnz5d8+bNU3h4eMP48+fP69tvv23yOmfPnm00xpsOf/KFzlVUKjw0WGOTE716bAAAAAC+hTB4FavVqry8POXl5bU6tqio6PoX5KbkpAGqrqlRsN1OVxAAAADANZEY/EhgJ5smpgw3ugwAAAAAPiDA6AIAAAAAAN5HGAQAAAAAEyIMAgAAAIAJEQYBAAAAwIQIgwAAAABgQoRBAAAAADAhwiAAAAAAmBBhEAAAAABMiDAIAAAAACZEGAQAAAAAEyIMAgAAAIAJEQYBAAAAwIQIgwAAAABgQoRBAAAAADAhwiAAAAAAmBBhEAAAAABMiDAIAAAAACZEGAQAAAAAEyIMAgAAAIAJEQYBAAAAwIQIgwAAAABgQoRBAAAAADAhwiAAAAAAmBBhEAAAAABMiDAIAAAAACZEGAQAAAAAEyIMAgAAAIAJEQYBAAAAwIQIgwAAAABgQoRBAAAAADAhwiAAAAAAmBBhEAAAAABMiDAIAAAAACZEGAQAAAAAEyIMAgAAAIAJEQYBAAAAwIQIgz5s48aNGj16tKKiohQcHKzExEStXbtWTqfT6NIAoEUFBQUaMWKE7Ha74uPjtXbtWqNL8qrdu3crNzdXcXFxslgseuKJJ4wuyavWrFmj8ePHKyoqSp07d1ZaWpoKCwuNLgsATMlmdAHwXI8ePfTwww9r8ODBstvt+uijj3TnnXfKarXqrrvuMro8AGji4MGDys3N1b333qtNmzZp//79ys/PV0hIiPLz840uzysqKyuVlJSk2267TcuWLTO6HK/buXOn8vLylJKSopCQEG3YsEE5OTn68MMPlZqaanR5AGAqhEEfNn369EbLCQkJ2rJli4qKigiDADqktWvXKiUlRU899ZQkKTExUZ9++qlWr15tmjA4c+ZMzZw5U5L0wAMPGFyN923fvr3R8jPPPKPCwkJt3ryZMAgAXsZlon7C6XTqwIED2rNnjzIzM40uBwCatWfPHmVlZTVal5WVpZMnT6qkpMSgqmAkh8OhiooKhYaGGl0KAJgOnUEfd/78efXu3Vs1NTVyOBxasWKFli5danRZAHxMXZ1Dx/9xqsn62rq6hv9+/lVJk+Wrde0coa5REdc8TllZmaKjoxutq18uKytTbGysx+fQVqdO/0uVVdVN1rv6HnSyWdWvT4x3ir0OKr+7qFNnvm2y3p3PQGx0N4UEB7l13FWrVuncuXO64447PKwcAOApwqCPCw8PV3FxsaqqqrR37149+OCD6tWrlxYvXmx0aQB8iNUaoCNHv9ShTz5vdnvVxWq9/EZBi8tB9kAty5t73eu8nqq/r9ErbxSopVtwtfYezLppgk+HQbu9k97+YJ/OfHu22e2tnX9sdHf99PZct475wgsvaNWqVdq2bZuhXwQAgFlxmaiPCwgI0IABAzR8+HDl5+fr/vvv1/Lly40uC4APmjVlgjpHhHm0b+7UVJf2jYmJUXl5eaN1p0+fbthmpIS+vZSWMtyjfQfE9db40UPbuSLv6mSzacGsTFkD3P/VwGazan5OpqxW1/d99tlndd9992nbtm2aMmWK28cEALQdYdDPOBwOVVc3vcwJAFoTZA/U/JxMWdzcb/iQBI1IGuDS2NTUVL377ruN1hUWFiouLq5DdIamTRqjnt2i3NonyB6oeTPTFWBx953reHr37KYpaaPd3m9mxlj16NrZ5fGPPPKIHnvsMRUUFBAEAcBAhEEftmLFCu3YsUMnTpzQsWPHtH79ej399NNatGiR0aUB8FEJfWI08UbXu2PhYSG6ZVqaLC4GobvvvlsHDhzQ8uXL9dlnn+nVV1/V888/r5///OeeltyuLnfHJrvVHbtlWpoi3eioVlZWqri4WMXFxaqpqVF5ebmKi4v15ZdfelJyu0sfm6y43j1dHj8wvrfGjXK9K7ps2TKtWbNGGzdu1ODBg1VeXq7y8nKdP3/ek3IBAG1gcfKEco9VVFRo1apVeuutt/TNN98oMjJSaWlpevDBBzVmzJjrfvy7775bf/zjH1VaWqqgoCAlJCQoLy9P+fn5slqt1/34APxTbW2d/vu1P6j8n/9udWzevBkalNDHrdd/55139Itf/EKfffaZoqOjddddd+mee+7xtNzroujPxSr88ECr44YPSdBtue51toqKipq963N6erqKiorceq3r5duzFfrlK2+q5lLtNccFB9m1LG+uIsNdvxNoS18cLFq0SL/5zW/cKRMA0EaEQQ+dOXNGEyZM0PHjxxUUFKSkpCSdOnVK5eXlstls+t3vfqc5c+YYXSYAeKTszLf679f+oLo6R4tjxo1M0i3T0rxYlfc4HA79etPb+rqkvMUxEWEhWpY31+27Z/qKA8V/1+Z3P7rmmP+YNVnJLl4iDADoeLhM1EN5eXk6fvy4xo4dq5MnT+rQoUMqKSnRypUrVVtbq4ULF6q0tNToMhv889/n9O/zF4wuA4CPiOnRVdMmtnyFQ7cukZqZMdaLFXlXQECA5mVnKDCwU4tj5s7M8NsgKEkpyUM0pH/fFrcnJ/YnCAKAjyMMeuDQoUN65513ZLPZtGnTJvXo0UOSZLVa9dBDDykzM1NVVVV69tlnDa70/7z9wT49++vf6eDfjhldCgAfMTFluOJjo5usD7BYtCA785pByR907RyhWZPHN7tt/KihGtTP+BveXE8Wi0VzZkxSaDOBNyIsVLl+2hUGADMhDF6lrq5OGzdu1LRp09S9e3fZ7Xb17dtXWVlZ2rBhg+quPGj3rbfekiTddNNN6tevX5PXWbJkiSTpzTff9F7x1/DNqTM6duIbyalmf7EDgOYEBARofjPdscwJI9WnVw+DqvKuMcMHK3FAXKN13btEaoYfd0WvFh4aotlZE5usnzczXSFBdgMqAgC0J8LgFRUVFZo6daoWLlyo999/X4GBgUpOTpbD4dB7772nJUuW6MKFy5dZ/vnPf5YkpaU1/61o/fqSkhKVlJR45wSuYceeQ5KkkUMHqltUpMHVAPAlXTpH6OabJjQsx0Z31+TxowysyLssFovmZE1SaMjl7liAxaL5OZkK7GQzuDLvGTaon0YPG9SwPGH0UA30864oAJgFYfCKxYsXa9euXYqNjdXOnTtVWlqqAwcOqKSkRGVlZXryySfVqdPlb8c///xzSVL//v2bfa3Y2FgFBgY2GmuU+q5ggMWizAkjDa0FgG8afcMgJQ2MUyebVQvcfLC4PwgLDdatWZMkSZMnjFKfGHN0Ra82a8oEdY4IU/cunZWVbo6uKACYAXcT1eU5gGPGjJHNZtPhw4c1bNiwa44PDQ1VVVWVtm/frqysrGbH9OzZU2fOnNGbb77p8V1Fn391sy5UXvRo33pVF6tVW1enTjabgrmkB4CHHA6nauvqTNUR+6Gamkvq1Mnm8jMV/U1tXZ0sEo8uAoAOJjwsWP+16FaP9jXv/9WvsmXLFklSdnZ2q0FQkqqrqyWpofvXHLv9cvC6eNHzMHeh8qIqKr/zeP+rXaqt1aXKaz8vCgBaU/3990aXYKjqmhqjSwAAoN0QBiUdPXpUkjR+fPN3jfuhoKAgVVVVqeYavxR8f+UXpuDgYI/rCg/zfF+JriAAAADg79qSGQiDunzzGEmKjHTt5ipRUVGqqqrS2bNnm93udDp17ty5hrGe8rTdK12eK/irjVsUYLHorrw53DgGAAAAQCOEQUkRERGSpPPnz7s0ftCgQSotLdXx48eb3V5SUtLQNRw0aFCzY1zRljmDVRcvX8pqtVr169ff9rgGAAAAAB0XcwbbaOjQodq8ebP27dvn0vixY8dq165d+tOf/tTs9vr1vXv3Vmys57ffbo85g8wVBAAAANAcwqCk2bNna+XKlSooKNDRo0eVlJR0zfFz5szR6tWr9cEHH+irr75q8uD59evXS5Lmzp3bpro8vf6XuYIAAACAObRlziCPlrhiwYIFeuONN9S3b1+99tprSk9Pb9h2+vRpvfzyy1q6dKlCQ0MlSTNmzFBhYaHGjRunrVu3qkePHnI4HFq1apUefvhhBQcH6/PPP29TZ9ATV88VvGfJfOYKAgAAAGgWYfCKiooK5ebmqqioSNLlSzx79eqlsrIylZaWyul06uzZs+rcubMkqby8XKmpqTpx4oSCg4OVmJiosrIylZWVyWaz6be//a3mz5/v9fN45ffbdezENxo9bJDmZWd4/fgAAAAAfEOA0QV0FBEREdqxY4deeuklZWRkqKqqSkeOHFFAQICmT5+ul156SeHh4Q3jo6Oj9fHHH+u+++5Tr1699Omnn6q2tla33HKL9u7da0gQ/ObUGR078Y0CLBZlThjp9eMDAAAA8B10Bv3I1yXl2vLen9S7Zze6ggAAAACuiTDoZxxOpy7VXJLdHmh0KQAAAAA6MMIgAAAAAJgQcwYBAAAAwIQIgwAAAABgQoRBAAAAADAhwiAAAAAAmBBhEAAAAABMiDAIAAAAACZEGAQAAAAAEyIMAgAAAIAJEQYBAAAAwIQIgwAAAABgQoRBAAAAADAhwiAAAAAAmBBhEAAAAABMiDAIAAAAACZEGAQAAAAAEyIMAgAAAIAJEQYBAAAAwIQIgwAAAABgQoRBAAAAADAhwiAAAAAAmBBhEAAAAABMiDAIAAAAACZEGAQAAAAAEyIMAgAAAIAJEQYBAAAAwIQIgwAAAABgQoRBAAAAADAhwiAAAAAAmBBhEAAAAABMiDAIAAAAACZEGAQAAAAAEyIMAgAAAIAJEQYBAAAAwIQIgwAAAABgQoRBAAAAADAhwiAAAAAAmBBhEAAAAABMiDAIAAAAACZEGAQAAAAAE/pfEicj3KKz1XgAAAAASUVORK5CYII=", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "# Draw the circuit with reversed bit order\n", - "circuit.draw(output='mpl', reverse_bits=True)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA8MAAAKxCAYAAAB36H5IAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAACTQUlEQVR4nOzdeVxU9f7H8feZQbZRUlwCQVzREEXLpSwr166GZmZqpd3yaotm2iZ2b9db3VupafWz7WbXzFbjpl2vadtNKss0V9zLJTe2itIUUIGZ+f1BM4mAMuPAwJzX8/HgAXOW7/l8xwHnPd9zvsdwOp1OAQAAAABgIhZ/FwAAAAAAQHUjDAMAAAAATIcwDAAAAAAwHcIwAAAAAMB0CMMAAAAAANMhDAMAAAAATIcwDAAAAAAwHcIwAAAAAMB0CMMAAAAAANMhDAMAAAAATIcwDAAAAAAwHcIwAAAAAMB0CMMAAAAAANMhDAMAAAAATIcwDAAAAAAwHcIwAAAAAMB0CMMAAAAAANMhDAMAAAAATIcwDAAAAAAwHcIwAAAAAMB0CMMAAAAAANMhDAMAAAAATIcwDAAAAAAwHcIwAAAAAMB0CMMAAAAAANMhDAMAAAAATIcwDAAAAAAwHcIwAAAAAMB0CMMAAAAAANMhDAMAAAAATIcwDAAAAAAwHcIwAAAAAMB0CMMAAAAAANMhDAMAAAAATIcwDAAAAAAwHcIwAAAAAMB0CMMAAAAAANMJ8ncBgC85nVKh3d9VeCbYKhmGv6tAoHA6nSooKPB3GR4JDw+XwS8BAACoZoRhBJRCuzQ11d9VeGbmSCmE30T4SEFBgerWrevvMjySl5cnm83m7zIAAIDJcJo0AAAAAMB0CMMAAAAAANMhDAMAAAAATIcwDAAAAAAwHcIwAAAAAMB0CMMAAAAAANMhDAMAAAAATIcwDAAAAAAwHcIwAAAAAMB0CMMAAAAAANMhDAMAqlRcXJxCQkL8XQYAAEApQf4uAABQ8zRr1kyXXnqpunTpok6dOqlBgwayWq06fvy49uzZow0bNmj9+vVau3at7HZ7he20bt1an3/+ubZt26Zrr71WJ0+erMZeAAAAVIwwDACQJFksFiUnJ2vChAkaMGBAhdtddtlluuWWWyRJBw8e1Ny5czVv3jz9+OOPpbZzBeHY2FjFxsZq1qxZmjRpUpX2AQAAoLJMcZp0bm6uUlJS1KZNG4WGhqpZs2aaPHmy8vPzNXbsWBmGoeeff77UPvv379esWbM0YMAAtW7dWjabTeHh4erUqZNmzJihwsJCP/UGAHyvS5cuSk9P19KlS8sNwg6HQ0VFRWWWx8XF6fHHH9fBgwf14IMPymq1SiodhCVp69at+vvf/161nQAAAPBAwIfh9PR0dezYUbNmzVJOTo7at2+voqIiPfvssxo5cqR27twpSercuXOp/f7xj38oJSVFX331laxWqxITE9WkSRNt2bJFf/7zn3XjjTf6oTeoLhk7Ptec0YY2LJ9d4TZzRhv67+xB1VgV4HtWq1WPPfaY1qxZo44dO7qXf//99/r73/+uQYMGKTo6WlarVcHBwQoLC1P37t01fvx4vf/++3I4HJKkkJAQTZ8+XatXr1b//v3LBOE+ffooNzfXL30EAAAoT0CfJp2bm6vBgwcrJydH999/vx5++GHVq1dPkvTkk09q6tSpCgoKkmEYSkpKKrXvVVddpbvuuksXXnihDMNwL1+/fr0GDRqk9957T1u3bi315hEAapOQkBC98847uvbaa93LNm7cqL/+9a/6+OOP3UH3VCdOnNC6deu0bt06vfTSS2revLnuuece3X333bJarerWrZs++ugjWSwln7UShAEAQE0V0CPDkyZNUkZGhiZOnKjZs2e7g7AkpaSkqFOnTiouLlaLFi0UERFRat+RI0fqoosuKhWEJalr167q37+/JGn79u1V3wkAqAJBQUFKTU11B+GioiL97W9/08UXX6wPP/yw3CBcngMHDujee+/VZZddpj179kiSOwjv3r2bIAwAAGqsgB0Z3rlzp1JTU9WoUSNNnz693G26dOmizZs3q1OnTmXWnTx5UkuXLtUXX3yhffv26dixY+43h64QHBwcXGqfffv2afLkyfrss88UFBSkwYMH65lnnlHDhg193DsAODePPPKIhgwZIknKz8/XkCFDtGLFCq/by83NVVhYWKllNpuN+RUAAECNFbBheOHChXI4HBo1apTq1q1b7jauN26nh+EVK1ZozJgxOnTo0BmP0apVK/fPx44dU+/evRUZGamFCxfq+PHjSklJ0aBBg7Rq1Sr3SAlql+LCAh0/xqgWAkuXLl00depUSVJhYeE5B2HXZFkxMTGSSsK1zWZT06ZN9fTTT2vcuHE+qRsAAMCXAjYMp6WlSZJ69+5d4TYZGRmSSofhb775RldffbWKioo0duxYjRo1Sh06dFCDBg0UFBSkb7/9VgkJCQoKClJCQoJ7v5dfflmZmZlauXKl4uLiJEmxsbG69NJLtXTp0lLX5KH2WLP4Ya1Z/LC/ywB8xmq1asGCBQoKKvnz/49//MMnQfjUybJuvvlmrVy5UhERERo7dqzeeecdffrppz6pHwAAwFcCNgwfOHBAktS8efNy1xcXF2vVqlWSSofhP//5zyosLNSMGTPcIyenWr58uSSpffv2CgkJcS9ftmyZevbs6Q7CktSjRw+1atVK77//vldhuGvXrsrJyfF4PzOz1gnT0Md2+6y9Dr1vV/zFw8td958Z/X1yjLbx8bIXHfdJW8DZrvVNTk5Whw4dJJVMljVjxgyvj1VeEHZdI3zfffdp3rx5kqSpU6eeMQzHx8dz9gwAAPBKVFSU1q9f79W+ARuG8/PzJUnHj5cfMlJTU5Wbm6t69eqpZcuWkiS73a6VK1dKksaMGVNmH4fDobfeekuSdOGFF5Zat2PHDg0fXjY0JSYmaseOHV71IScnR5mZmV7ta1ZBIeE+ba9+VLziOvTzaZuny8rOUvHJgio9BuAyYcIE988PPfSQiouLvWrnTEFYkubPn6+pU6cqPj5e/fr1U7t27fTdd9+V21Z2drZXNQAAAJyLgA3DUVFROnz4sDZu3KgePXqUWpedna0pU6ZIkpKSktwzRufn58tut0squX3I6Z566ilt2rRJUtkwfPjwYdWvX7/MPpGRkRW+AaxMH+AZa52ws29UwzSNbsrIMHzG4XBUGC7j4uL0hz/8QVLJfYQ//vhjr45xtiAsSU6nU//85z/19NNPS5LGjh2rlJSUctuLjo5mZBgAAHjlXDJTwIbhfv36aefOnZo5c6b69++vtm3bSpLWrVunm2++2f2mrXPnzu59IiIiFBMTo8zMTD3++ON68cUXZbVaVVhYqDlz5mjatGkKCgpScXFxmTBcFbwd7jezk8XS1FR/V+GZXbt3KyRgfxNR3fLz8yucNPDSSy91//zGG2/I6XR63H5lgrDL66+/7g7DPXv2rLDN3bt3y2azeVwLAADAuQjYj+JTUlLUsGFDHTp0SImJierYsaPi4+PVvXt3tWrVSn369JFUdibphx56SFLJhFgxMTHq1q2bmjRpooceekjPPfecnE6nDMMoFaIlqUGDBjpy5EiZOn755RdFRkZWSR8BwBNdunRx/7xmzRqP9/ckCEvSzz//7L73cKdOnWS1Wr2oGgAAoGoEbBiOjY3Vl19+qeTkZIWGhmr//v2KjIzU3LlztXz5cu3atUtS2TA8fvx4vfzyy4qPj9cvv/yirKwsDRo0SBs2bFD37t1lt9vVqlUrRURElNovISGh3GuDd+zYUWrWaQDwl1M/xNuwYYNH+3oahE8/Tnh4uPsMHQAAgJogoE/OTEhI0LJly8osz8vL0/79+2WxWNyzqp7qtttu02233VZumxWdVjho0CD95S9/UUZGhvvN4jfffKO9e/dq1qxZ59ALAPCNBg0aSJKKior0008/VXo/b4OwpFKTAJY3rwIAAIC/GE5vLhqr5b755htdcsklateunb799luftHn06FF17NhRjRo10qOPPqoTJ04oJSVFjRs31urVq5kcpprUxmuGZ44U1wzDZ850zXC7du1Uv359BQcH68svv6x0mxMnTtRzzz0nybMgLJUE6aioKB0/flzfffede6b/U+Xl5XHNMAAAqHamfAu+detWSWVPkT4XERERSktL0+TJk3XDDTcoKChIgwYN0jPPPEMQBlAjeDuz/fPPP6969erpxhtv9CgIS9LevXu1d+9er44LAABQlQjDPtS6detyT8sGgNpu+vTpeuaZZ8q97RwAAEBtZMohy6oKwwAQyAjCAAAgkJhyZDgtLc3fJQAAAAAA/MiUI8MAAAAAAHMjDAMAAAAATIcwDAAAAAAwHcIwAAAAAMB0CMMAAAAAANMhDAMAAAAATIcwDAAAAAAwHcIwAAAAAMB0CMMAAAAAANMhDAMAAAAATIcwDAAAAAAwHcPpdDr9XQTgK06nVGj3dxWeCbZKhuHvKhAonE6nCgoKfNberLnv6Gh+gSJs4Zpyxw1lHvtCeHi4DH4JAABANQvydwGALxmGFMKrGiZmGIZsNpvP2gsOCVVwkV3BIaGy2WxlHgMAANRWnCYNAAAAADAdwjAAAAAAwHQIwwAAAAAA0yEMAwAAAABMhzAMAAAAADAdwjAAAAAAwHQIwwAAAAAA0yEMAwAAAABMhzAMAAAAADAdwjAAAAAAwHQIwwAAAAAA0yEMAwAAAABMhzAMAAAAADAdwjAAAAAAwHQIwwAAAAAA0yEMAwAAAABMhzAMAAAAADCdIH8XAN9yOp0qcNj9XYZHwi1WGYbhk7acTqmwdnVfwVbJR90HoN/+DhYU+LsMj4SHh/vs7yAAAKgcwnCAKXDY1SDtf/4uwyOH+/SXzeqbl2KhXZqa6pOmqs3MkVIIv4mAzxQUFKhu3br+LsMjeXl5stls/i4DAABT4TRpAAAAAIDpEIYBAAAAAKZDGAYAAAAAmA5hGAAAAABgOoRhAAAAAIDpEIYBAAAAAKZDGAYAAAAAmA5hGAAAAABgOoRhAAAAAIDpEIYBAAAAAKZDGAYAAAAAmE6QvwsAAKCmaty4sbp06aJmzZopJCRERUVF+vHHH7Vx40YdOHCgUm0kJyfrtttu08iRI3Xy5MkqrhgAAFQWYRgAgFN07NhR48ePV3JysuLi4ircLjc3V2lpaXrppZf02WeflbtNcnKyFi9erJCQEC1ZskTXXnstgRgAgBrCFKdJ5+bmKiUlRW3atFFoaKiaNWumyZMnKz8/X2PHjpVhGHr++edL7bN//37NmjVLAwYMUOvWrWWz2RQeHq5OnTppxowZKiws9FNvAABVoUePHvryyy+1ZcsWjR8//oxBWJIaNWqkESNGKC0tTTt27NCIESNKrT81CEvS4cOHVVxcXGX1AwAAzwT8yHB6eroGDhyonJwc2Ww2tW/fXllZWXr22We1d+9e/fLLL5Kkzp07l9rvH//4h+bPny+bzaamTZsqMTFRP/74o7Zs2aItW7Zo3bp1Wrx4sR96VD3s8xfI8c6/Zb3vHlkGXFVqndPplH3Kg3Lu3Kmg55+V0bKFf4qsQhk7PtfiJ3qr542z1CX5gXK3mTPaUIvOyRrywLJqrg6AL4WGhuqxxx7TvffeK4vl98+I8/PztW7dOm3YsEHffvutjh8/rjp16qhVq1bq0qWLLr74YjVs2FCSlJCQoNTUVI0YMUITJkxQt27dSgXhhQsX6uabb5bdbvdLHwEAQFkBHYZzc3M1ePBg5eTk6P7779fDDz+sevXqSZKefPJJTZ06VUFBQTIMQ0lJSaX2veqqq3TXXXfpwgsvlGEY7uXr16/XoEGD9N5772nr1q3q2LFjtfapulhuHiXHmm9kn/svGV0uktG4kXud470lcm7ZKsufbg3IIAzAPKKjo/Xxxx+X+lu+Y8cOPf/883rjjTeUl5dX4b5BQUG69tprNXHiRF155ZWSpGHDhqlv374KDw9XcHCwJIIwAAA1VUCfJj1p0iRlZGRo4sSJmj17tjsIS1JKSoo6deqk4uJitWjRQhEREaX2HTlypC666KJSQViSunbtqv79+0uStm/fXvWd8BOjTh0FTblfOnFC9qf/z73ceShDjgWvy7ignSzDh/mvQAA4R9HR0Vq5cqU7CJ84cUJTpkxRx44d9c9//vOMQViSiouLtWjRIvXq1UvDhw/XTz/9JEmqX78+QRgAgFogYEeGd+7cqdTUVDVq1EjTp08vd5suXbpo8+bN6tSpU5l1J0+e1NKlS/XFF19o3759OnbsmBwOh6TfQ7DrzY4kZWRkaMaMGVq7dq02b96swsJCOZ3OKuhZ9THi28hywwg53loox/IPZQy4SvYnZ0tOp6xT7pdhtfq7RADwSlhYmD7++GO1adNGkvT9998rOTlZ3377rVftLVq0SHXq1NGbb77pPtX65MmTmjZtGkEYAIAaKmDD8MKFC+VwODRq1CjVrVu33G3CwsIkqUwYXrFihcaMGaNDhw6d8RitWrVy/7xnzx4tXrxY3bp1U3BwsFatWnWOPagZLKNulGP1N7L/a54se7+X87tdstw+TkazWH+XVi2KCwt0/Fiuv8sA4GOPPfaYe0T4+++/1+WXX66srCyv20tOTtarr75a6prjkJAQvfzyy+rXr1+t/3AUAIBAFLBhOC0tTZLUu3fvCrfJyMiQVDoMf/PNN7r66qtVVFSksWPHatSoUerQoYMaNGigoKAgffvtt0pISFBQUJASEhLc+11xxRXKzs6WJD3yyCMBE4aNoCAFTblPxXffI8ey5TI6JMpy3bX+LqvarFn8sNYsftjfZQDwocsuu0z33HOPpJJTo5OTk885CJ86WdaiRYvUrVs3NW/eXH369NEdd9yhl156yRelAwAAHwrYMHzgwAFJUvPmzctdX1xc7A6sp4bhP//5zyosLNSMGTM0derUMvstX75cktS+fXv3Gx9JpUYDfKVr167KycnxaB9ncLA09wXfFmKzSXXqSMXFMrp1leHjvraNbyvDR7eqstYJ09DHdvukLUnq0Pt2xV88vNx1/5nR3yfHaBsfL3vRcZ+0Bfja0DH3yFY3Qtk52YqNjS3zuCZyXdJSkZkzZ7r/Zv/1r3/1+tRoqWwQdl0j3Lt3b/3vf/+TJD3++ONasGCBTpw4UWE78fHxVfL/CAAAgS4qKkrr16/3at+ADcP5+fmSpOPHyw8Zqampys3NVb169dSyZUtJkt1u18qVKyVJY8aMKbOPw+HQW2+9JUm68MILq6LsUnJycpSZmenZTqEhquPDGpxOp+xPPSMVF0lxzeR4+x1ZrrxCRtNonx0jKztLOnHSJ20FhYT7pB2X+lHxiuvQz6dtni4rO0vFJwuq9BiAtxy/Xe/qsNuVmZlZ5nFt06lTJ1122WWSSuZ/eOaZZ7xuq6IgbLfb9emnn2rhwoW68cYbFRkZqREjRuj111+vsC3XmUUAAKD6BGwYjoqK0uHDh7Vx40b16NGj1Lrs7GxNmTJFkpSUlOSeMTo/P9890Ul5n+A/9dRT2rRpk6TqCcNRUVEe7+MMDtZPPqzBsWSpnJu3yDLmFll6XKLiu+6W/alnZJ09s8xM295qGt3UpyPDtU3T6KaMDKPGsvw2UZ7FalVMTEyZxzWRw+GoMFyOHz/e/fPzzz9/1lHkipwpCLs8++yzuvHGGyVJd9111xnDcHR0NCPDAAB4wZvM5BKwYbhfv37auXOnZs6cqf79+6tt27aSpHXr1unmm29Wbm7JpEidO3d27xMREaGYmBhlZmbq8ccf14svviir1arCwkLNmTNH06ZNU1BQkIqLi6slDHsz3J9vL1aDtP/55PjOzEw55i+Q0a6tLCOul2G1yjJ6lByvvibHkqWyDh3ik+Ps2r1LNqtvXooni6WpqT5pqtrs2r1bIQH7m4ja7okX3tLRvHxFR0UrIyOjzOOaKD8/v8KJE5OTkyVJeXl5evPNN71qvzJBWJLWrFmj9PR0de7cWd27d1ejRo3c//ecbvfu3bLZbF7VAwAAvBOwH0OnpKSoYcOGOnTokBITE9WxY0fFx8ere/fuatWqlfr06SOp7EzSDz30kCTp5ZdfVkxMjLp166YmTZrooYce0nPPPSen0ynDMEqF6EDkdDhkn/W05HDIOuU+922ULCOul9E2Xo75C+TM4rQ+ALXH+eef777Oee3atWe9j3B5KhuEXVyTOUolt/MDAAA1R8CG4djYWH355ZdKTk5WaGio9u/fr8jISM2dO1fLly/Xrl27JJUNw+PHj9fLL7+s+Ph4/fLLL8rKytKgQYO0YcMGde/eXXa7Xa1atVJERIQ/ulVtHIvek3PHTlluGS0jLs693LBaZX3gPslhl/2pZ7hdCIBa49QwumHDBo/39zQIn34cwjAAADVLQJ+cmZCQoGXLlpVZnpeXp/3798tisahDhw5l1t9222267bbbym3TDOHPefCgHK+9ISPhAlmGXVdmvdGieZWcLg0AValZs2bun3fu3OnRvt4E4dOPE3fKB4sAAMD/AjoMV2T79u1yOp1q27atwsN9N/vwokWLJEk7duwo9bhFixbq2rWrz45T1Yy4ONVZ/t8zbmO9caSsN46spoqqX2z7Xpr85pk/+DjbegA1y86dO/XPf/5TYWFhHt1OqVWrVl4FYankrgCvvfaaTpw44b5bAQAAqBlMGYa3bt0qqewp0udq+PDh5T6+5ZZbtGDBAp8eCwDgmZUrV3oVSL///ns9+uijeuKJJzwKwlLJ3QtuvfVWj48JAACqHmHYh8xwCjUAmNH06dO1Y8cOLVu2rNJBGAAA1GyEYQAAKuG//z3z5SMAAKB2MWUYPvVWFwAAAAAA8wnYWysBAAAAAFARwjAAAAAAwHQIwwAAAAAA0yEMAwAAAABMhzAMAAAAADAdwjAAAAAAwHQIwwAAAAAA0yEMAwAAAABMhzAMAAAAADAdwjAAAAAAwHQIwwAAAAAA0wnydwHwrXCLVYf79Pd3GR4Jt1h91lawVZo50mfNVYtg33UfgKTw8HDl5eX5rL1Zc9/R0fwCRdjCNeWOG8o89oXw8HCftAMAACqPMBxgDMOQzWref1bDkELM230A+u3voM3ms/aCQ0IVXGRXcEiobDZbmccAAKB24jRpAAAAAIDpEIYBAAAAAKZDGAYAAAAAmA5hGAAAAABgOoRhAAAAAIDpEIYBAAAAAKZDGAYAAAAAmA5hGAAAAABgOoRhAAAAAIDpEIYBAAAAAKZDGAYAAAAAmA5hGAAAAABgOoRhAAAAAIDpEIYBAAAAAKZDGAYAAAAAmA5hGAAAAABgOoRhAAAAAIDpEIYBAAAAAKYT5O8CAF9yOqVCu7+r8EywVTIMf1cBIFA4nU4VFBT4uwyPhIeHy+APIQCgmhGGEVAK7dLUVH9X4ZmZI6UQfhMB+EhBQYHq1q3r7zI8kpeXJ5vN5u8yAAAmw2nSAAAAAADTIQwDAAAAAEyHMAwAAAAAMB3CMAAAAADAdAjDAAAAAADTIQwDAAAAAEyHMAwAAAAAMB3CMAAAAADAdAjDAAAAAADTIQwDAAAAAEyHMAwAAM7IMAyFhYUpNDRUhmF4vP/o0aMVEhJSBZUBAOA9wjAAACilcePGmjBhghYsWKCtW7eqqKhIBQUFOn78uAoLC7V582bNnz9fd9xxhxo0aHDGth555BG98cYbWrJkCYEYAFCjEIYBAIAkqVu3bnrjjTd06NAhvfDCC7rlllvUoUMHWa1W9zZBQUFKSkrSmDFj9NJLLykzM1Pz589X586dy7T3yCOP6OGHH5YkDRgwQAMHDqyurgAAcFamCMO5ublKSUlRmzZtFBoaqmbNmmny5MnKz8/X2LFjZRiGnn/++VL77N+/X7NmzdKAAQPUunVr2Ww2hYeHq1OnTpoxY4YKCwv91BtUh4wdn2vOaEMbls+ucJs5ow39d/agaqwKAKqGzWbT888/r7Vr15Y5pbmoqEibN29WWlqa0tLStHXrVhUXF7vXh4WFacyYMdqwYYNmz56tsLAwSaWDsCRNmjRJS5YsqbY+AQBwNkH+LqCqpaena+DAgcrJyZHNZlP79u2VlZWlZ599Vnv37tUvv/wiSWU+0f7HP/6h+fPny2azqWnTpkpMTNSPP/6oLVu2aMuWLVq3bp0WL17shx4BAOA73bp1U2pqqlq2bOle9vPPP+uVV17RokWLtGXLFp08ebLUPqGhoercubNGjBihMWPGqH79+rJYLLr//vs1ePBgpaWl6c4773RvP2nSJD333HPV1icAACojoEeGc3NzNXjwYOXk5Oj+++9Xdna2Nm7cqJycHM2cOVPLly/XunXrZBiGkpKSSu171VVXacOGDTp27Jh27dqltWvXav/+/Vq3bp3OP/98vffee9q6daufegYAwLnr1auX0tLS3EE4Pz9f99xzj2JiYjR16lStW7euTBCWpBMnTmjNmjW677773NueOHFCktS2bVuCMACgVgjoMDxp0iRlZGRo4sSJmj17turVq+del5KSok6dOqm4uFgtWrRQREREqX1Hjhypiy66qMysmV27dlX//v0lSdu3b6/6TgAAUAW6deum999/X3Xr1pUkrVq1SklJSZozZ065AbgiBQUFevLJJ9W5c2dlZWWVWjdjxgyCMACgxgrY06R37typ1NRUNWrUSNOnTy93my5dumjz5s3q1KlTmXUnT57U0qVL9cUXX2jfvn06duyYHA6HpN9DcHBwsHv7RYsWaeHChVq/fr1++uknxcXFadiwYfrzn//sfqOB2qe4sEDHj+X6uwwA8CmbzabU1FT3/0/vv/++hg8f7lEIPt2NN96opk2bllo2ZMgQPfLII+fULgAAVSVgw/DChQvlcDg0atSoCsOoa5KP08PwihUrNGbMGB06dOiMx2jVqpX759mzZysuLk5PPPGEYmNjlZ6erkcffVRffPGFVq5cKYsloAfhA9aaxQ9rzeKHz74hANQiTz75pPvU6FWrVp1zED59sqyDBw8qLi5OCQkJevTRR/Xggw+ec80AAPhawIbhtLQ0SVLv3r0r3CYjI0NS6TD8zTff6Oqrr1ZRUZHGjh2rUaNGqUOHDmrQoIGCgoL07bffKiEhQUFBQUpISHDv9/7776tx48bux1deeaUaN26sUaNG6auvvtIVV1zh6y6iGnTofbviLx5e7rr/zOhfzdUAwLnr3r27JkyYIKnkGuGbb77Zp0F40qRJWrFihTZu3KiQkBA98MADeuONN7i0CABQ4wRsGD5w4IAkqXnz5uWuLy4u1qpVqySVDsN//vOfVVhYqBkzZmjq1Kll9lu+fLkkqX379qVuPXFqEHbp2rWrJCkzM9OrPnTt2lU5OTle7WtW1jphGvrYbp+1Vz8qXnEd+vmsvfK0jY+Xveh4lR4D8NbQMffIVjdC2TnZio2NLfPYDGrbc+C6pKcikyZNcv/8l7/8Rfv27fP6WOUFYdc1wn//+9/1+OOPy2q1auLEiRo/fnyF7cTHx3MGFQDAK1FRUVq/fr1X+wZsGM7Pz5ckHT9efshITU1Vbm6u6tWr5z5VzG63a+XKlZKkMWPGlNnH4XDorbfekiRdeOGFZ63hs88+k6RSI8ieyMnJ8TpIm1VQSLi/S/BYVnaWik8W+LsMoFwOu939PTMzs8xjMwik56Bx48YaPrzkbJfc3FzNnTvX67bOFIQl6dlnn9WDDz6oevXqafTo0Zo6daqOHj1ablvZ2dle1wEAgLcCNgxHRUXp8OHD2rhxo3r06FFqXXZ2tqZMmSJJSkpKcs8YnZ+fL/tvb3Jct4g41VNPPaVNmzZJOnsYzszM1LRp0zRgwIAy9zD2pA/wjLVOmL9L8FjT6KaMDKPGslit7u8xMTFlHptBbXsOHA5HheFy5MiR7skfX3nlFa9Pjz5bEJakvLw8vfHGG5owYYLq1q2roUOH6rXXXiu3vejoaEaGAQBeOZfMFLBhuF+/ftq5c6dmzpyp/v37q23btpKkdevW6eabb1ZubskMwacG1YiICMXExCgzM1OPP/64XnzxRVmtVhUWFmrOnDmaNm2agoKCVFxcfMYwnJeXpyFDhig4OFjz58/3ug/eDveb2cliaWqqv6vwzK7duxUSsL+JqO2eeOEtHc3LV3RUtDIyMso8NoPa9hzk5+dXOHFkt27d3D8vWrTIq/YrE4Rd3n33Xff1yd27d68wDO/evVs2m82regAA8FbAfgybkpKihg0b6tChQ0pMTFTHjh0VHx+v7t27q1WrVurTp4+ksjNJP/TQQ5Kkl19+WTExMerWrZuaNGmihx56SM8995ycTqcMw6hwtPf48eMaPHiw9u3bp08++UTR0dFV2k8AACqrS5cukqTCwkJt2bLF4/09CcKStHHjxjLHBgCgpgjYMBwbG6svv/xSycnJCg0N1f79+xUZGam5c+dq+fLl2rVrl6SyYXj8+PF6+eWXFR8fr19++UVZWVkaNGiQNmzYoO7du8tut6tVq1aKiIgoc8yioiJdf/31Wr9+vT788EO1b9++WvoKAMDZWCwWXXDBBZKk7du3q7Cw0KP9PQ3CknT06FHt2bNHkpSYmOhhxQAAVK2APjkzISFBy5YtK7M8Ly9P+/fvl8ViUYcOHcqsv+2223TbbbeV26bT6Sx3ueuexitWrNAHH3yg7t27n1vx8KvY9r00+c3y/61dzrYeAGqS0NBQnThxQmFhYfr555892tebIOzy888/q2XLlhX+/wkAgL8EdBiuyPbt2+V0OtW2bVuFh/tm9uG77rpL7777rh588EGFh4drzZo17nWtW7cu99ZLAABUl4KCAve1xNbfJgGrrFMn2vIkCEvSZZdd5p6cEgCAmsSUYXjr1q2Syp4ifS4+/PBDSdKMGTM0Y8aMUuteffVV3XrrrT47FgAA58LTcDp9+nQ5nU7l5+d7FIS9ORYAANWFMOwj+/fv91lbAADUNKd/0AsAQG0XsBNonUlVhGEAAAAAQO1hypHhtLQ0f5cAAAAAAPAjU44MAwAAAADMjTAMAAAAADAdwjAAAAAAwHQIwwAAAAAA0yEMAwAAAABMhzAMAAAAADAdwjAAAAAAwHQIwwAAAAAA0yEMAwAAAABMhzAMAAAAADAdwjAAAAAAwHSC/F0A4EvBVmnmSH9X4Zlgq78rABBIwsPDlZeX57P2Zs19R0fzCxRhC9eUO24o89gXwsPDfdIOAACeIAwjoBiGFMKrGoCJGYYhm83ms/aCQ0IVXGRXcEiobDZbmccAANRWnCYNAAAAADAdwjAAAAAAwHQIwwAAAAAA0yEMAwAAAABMhzAMAAAAADAdwjAAAAAAwHQIwwAAAAAA0yEMAwAAAABMhzAMAAAAADAdwjAAAAAAwHQIwwAAAAAA0yEMAwAAAABMhzAMAAAAADAdwjAAAAAAwHQIwwAAAAAA0yEMAwAAAABMhzAMAAAAADCdIH8XAPiS0ykV2v1dhWeCrZJh+LsKAECgcDqdKigo8HcZHgkPD5fBf4YAqhlhGAGl0C5NTfV3FZ6ZOVIK4TcRAOAjBQUFqlu3rr/L8EheXp5sNpu/ywBgMpwmDQAAAAAwHcIwAAAAAMB0CMMAAAAAANMhDAMAAAAATIcwDAAAAAAwHcIwAAAAAMB0CMMAAAAAANMhDAMAAAAATIcwDAAAAAAwHcIwAAAAAMB0CMMVaNy4sQzDUEZGhr9LAQAAVcxeJNmLz62NohO+qSUQnXfeef4uAQDKCPJ3ATVRRkaGcnNzFRkZqdjYWH+XAwAAqpC9SNq8RDIsUtIQyerFu6OCI9KGVCm2k9TyEl9X6B/nn3++unTpoq5du6p169YKDQ1VcXGxfvnlF6Wnp2vDhg3atm2biovP/CnCLbfcotmzZ+sPf/iDNm7cWE3VA8DZEYbLkZ6eLklKSkrybyEAAKDKbftA+uVAyc9b/ut5IHYF4ZPHpL1fScHhUkwtfQsREhKi66+/XhMmTNCll1561u0PHz6sV199VS+99JJ2795dZv0tt9yi+fPny2Kx6NNPP1Xnzp118ODBqigdADzGadLlIAwDv3MUS3k/Sb9mSXm5ksPh74oAwLfiLpIsv4Xfn/eVBOLKnjJ9ahCWJFtDqXHrKimzyo0ePVoHDx7Um2++WakgLEkNGjTQfffdp127dunf//63mjRp4l53ahCWpNdff50gDKBGYWS4HJs3b5YkderUyc+VwF8ydnyuxU/0Vs8bZ6lL8gPlbjNntKEWnZM15IFl1Vxd9Tj+q5S5WcrcKhUd/315SL2SEY+YJCnE5r/6AMBXGjSTLhwmbVpc8gGgKxCfbYS4vCDcZYQUXMv+NkZFRWnu3Lm65pprSi3funWrPvzwQ/fp0Hl5ebJarWrWrJm6dOmiSy65RNdcc41CQ0MlScOHD1fv3r111113KSwsrFQQnjNnju65557q7hoAnFHAjwzn5uYqJSVFbdq0UWhoqJo1a6bJkycrPz9fY8eOlWEYev7550vtc+rI8OrVqzV06FA1btxY4eHhuvTSS/XJJ5/4oSdA9flpr7T6VWn/2tJBWCp50/f9qpL1h5lfDkCAcAXiyo4QB0oQbteundauXVsqCP/nP/9Rz549lZSUpKlTp+rf//63duzYoYMHD2rfvn1auXKlnnnmGY0cOVIxMTGaMmWKfvrpJ0lSo0aNlJqaqldffZUgDKDGC+gwnJ6ero4dO2rWrFnKyclR+/btVVRUpGeffVYjR47Uzp07JUmdO3d275OXl6e9e/fKarVqxYoV6tmzp77++mv3RFqrV6/WwIEDtXTpUn90CahyPx8oeQPoOMspgsUnpPTF0tGc6qkLAKpaZQNxoAThNm3a6PPPP1ezZs0kST/88IOGDh2q6667TqtWrapUG7/88otmz56t9u3b69///rd7uWEYkgjCAGq2gA3Dubm5Gjx4sHJycnT//fcrOztbGzduVE5OjmbOnKnly5dr3bp1Mgyj1LXBmzdvltPplCQ99thjeuWVV5SVlaVNmzYpOztbffv2lcPh0L333uveDggUDoe04yPJWcnrgu1F0s5PJH4VAASKswXiQAnC4eHh+uCDDxQVFSVJ2rRpk5KSkrRkyRKv2svNzdUHH3wgx2kTSzB7NICaLGDD8KRJk5SRkaGJEydq9uzZqlevnntdSkqKOnXqpOLiYrVo0UIRERHuda7rhe12u15//XXdeuutslqtkkrukTdv3jxZLBZ9//332rVrV/V2CtWuuLBAx4/llvsViHL3/v4Gr7KO/cjoMIDAUlEgzssNjCAsSdOnT1d8fLwkacuWLerbt69+/PFHr9s7fbIslzlz5qhp06bnVCsAVJWADMM7d+5UamqqGjVqpOnTp5e7TZcuXSSVnSTLdb3wwIEDNXTo0DL7tWjRQjExMZKkzMxM9/J9+/bpmmuuUb169dSgQQP98Y9/1M8//+yL7sCP1ix+WC+Pb1zuVyDK2urdfplbfFsHAPhbeYF47RuBEYR79uypSZMmSZIKCgo0bNgwHT582Ov2Tg/Cc+bM0WuvvSZJql+/vl5++eVzLxoAqkBAzia9cOFCORwOjRo1SnXr1i13m7CwMEkVh+Hx48dX2L5rJNnV9rFjx9S7d29FRkZq4cKFOn78uFJSUjRo0CCtWrWqzKekldW1a1fl5DDk5glrnTANfazsfQ691aH37Yq/eHi56/4zo79PjtE2Pl7202ep8pPHb16hmIbtPN7vf8u/1FVjb6yCiuBvQ8fcI1vdCGXnZCs2NrbMYzMw+3Ng9v63jblYD1z7poLrhMlhL1mWkfudZs4doWPTauaH3qefqny6adOmuX/+y1/+oj179nh9rPKC8D333KP69eurf//+atq0qZKTk9WlSxdt2LChwnbi4+O9fr8EwNyioqK0fv16r/YNyDCclpYmSerdu3eF22RklEyDe2oYttvt2rZtmywWi3r16lXufna73X2PvLi4OEnSyy+/rMzMTK1cudK9LDY2VpdeeqmWLl2qa6+91qt+5OTklBp9xtkFhYT7tL36UfGK69DPp22eLis7S8UnC6r0GJVlt3t38W9xkZ3XaoBy2O3u75mZmWUem4HZnwPT9/9EuvJPHFNwnTD3sh9/Oai9+79TUfFJP1bmnfj4eF111VWSpL179+q5557zuq2KgrAkHTlyRA8//LD+9a9/SSoZZBg3blyFbWVnZ3tdBwB4KyDD8IEDByRJzZs3L3d9cXGxe5bEU8Pwd999p+PHj6tJkyalrjE+1Zo1a3Ts2DElJia6J51YtmyZevbs6Q7CktSjRw+1atVK77//vtdh2NU+Ks96ypuV2qJpdNMaMzKcf/IXr/YrKDrivnwAgcXy25wJFqtVMTExZR6bgdmfAzP3v/F5zfXg9e+qQb0mpZZf1La/pt++XM8vu11F9poXiB0OR4Xh8vbbb3f//M9//vOso8gVOVMQdnn77bc1e/ZsnXfeebrpppt033336ejRo+W2Fx0dzcgwAK+cS2YKyDCcn58vSTp+vPyAkZqaqtzcXNWrV08tW7Z0L3dNnlVYWFhh2y+99JIk6aabbnIv27Fjh4YPL3sqbWJionbs2OF5B37j7XC/mZ0slqam+rsKz+zavVshNeQ3MXOrtPNjz/cb/5drNW3etT6vB/73xAtv6WhevqKjopWRkVHmsRmY/Tkwa/9PnzX6dJ1a9tV7T+9V0hDJWkP+hrvk5+dXeJmY68w3h8OhBQsWeNV+ZYKwVHI98sKFC3XnnXcqLCxM3bt316efflpum7t375bNVgsvwAZQqwXkR3CuTwfKm84/OztbU6ZMkSQlJSW574Mn/X698JEjR8qdKXrlypV666231LBhQ919993u5YcPH1b9+vXLbB8ZGalffvFupA3wh6gLpKAQz/YJO09q2KJKygEAvyjv9kmnOtt9iGuq4OBg9+0kv/vuO68m+qxsEHb5+uuv3T+7Ji8FgJoiIMNwv34l13jOnDmzVKhdt26devfurdzcktvidO7cudR+rjBcp04dTZgwQb/++qt73dKlS92zSy9YsKDC06iB2sxaR4q/0rN94ntLRkD+JQFgRhXdR1iuz86NM9+HuCZLTExUcHCwJO/OPvM0CJ9+nIsuusjjYwJAVQrIt7ApKSlq2LChDh06pMTERHXs2FHx8fHq3r27WrVqpT59+kgqO5O06zTpF198UZ999pliY2PVvXt3NWvWTEOGDNGRI0f03HPPadCgQaX2a9CggY4cOVKmjl9++UWRkZFV00mgisQkVTIQG1L7AVKTNlVeEgBUi4qC8Om3T6roPsQ1PRA3atTI/fP+/fs92tebICyV3HrSpXHjwLwtIYDaq4Zd5eIbsbGx+vLLLzVlyhR98cUX2r9/v9q3b6+5c+fqtttuU+vWrSWVDsM5OTn64YcfFBkZqXHjxik6OlqPPvqotm3bJpvNpuuuu04PPvigunXrVuZ4CQkJ5V4bvGPHDl1xxRVV11FUmdj2vTT5zTPPrHy29bVZ825SvfOlg+ul3O9LrzMsUpN4Ka6rdF60f+oDAF+rbBB2cQXiTYslR/HvgbgmXkPssnXrVt1www0KCwvTli2Vv0F8vXr1NHPmTI+DsCSdPHlS48aN04kTJ5SVleVN2QBQZWron+tzl5CQoGXLlpVZnpeXp/3798tisahDhw7u5VFRUXI6fw83ycnJSk5OrtSxBg0apL/85S/KyMhw33Pxm2++0d69ezVr1qxz7AngH5FxJV/Hj0jfvCEVnyy5nrjHGCmk/HlZAKBW8jQIu9S2QJyTk6PUVM9nmTx27Jj69++vFStW6O233650EJYkp9OpV155xeNjAkB1CMjTpM9k+/btcjqdio+PV3i4b+5Je/vttys6OlpDhgzRsmXLtGjRIt14443q3r27hgwZ4pNjAP4SVr/kWmKp5DtBGECg+fZ/ngdhl/JOmc5Ir5Iy/Wrr1q268MILPQrCAFDTmS4Mb926VVLZ64XPRUREhNLS0hQdHa0bbrhB48aN06WXXqply5ZxzzwAAGq4xIFSeKTnQdjl1EAclSDFBeg8UZmZmf4uAQB8qgaexFO1qiIMS1Lr1q3LPS0bAADUbCF1S0KwYXgehF0aNJO6j5ZskcywDwC1BWEYAACYni8uAanb6OzbAABqDtOF4bS0NH+XAAAAAADwM07kAQAAAACYDmEYAAAAAGA6hGEAAAAAgOkQhgEAAAAApkMYBgAAAACYDmEYAAAAAGA6hGEAAAAAgOkQhgEAAAAApkMYBgAAAACYTpC/CwB8KdgqzRzp7yo8E2z1dwUAgEASHh6uvLw8n7U3a+47OppfoAhbuKbccUOZx74QHh7uk3YAwBOEYQQUw5BCeFUDAEzMMAzZbDaftRccEqrgIruCQ0Jls9nKPAaA2orTpAEAAAAApkMYBgAAAACYDmEYAAAAAGA6hGEAAAAAgOkQhgEAAAAApkMYBgAAAACYDmEYAAAAAGA6hGEAAAAAgOkQhgEAAAAApkMYBgAAAACYDmEYAAAAAGA6hGEAAAAAgOkQhgEAAAAApkMYBgAAAACYDmEYAAAAAGA6hGEAAAAAgOkQhgEAAAAApkMYBgAAAACYTpC/C4BvOZ1OFTjs/i7DI+EWqwzD8ElbTqdUWLu6r2Cr5KPuAwBgek6nUwUFBf4uwyPh4eE+ey8EoPIIwwGmwGFXg7T/+bsMjxzu0182q29eioV2aWqqT5qqNjNHSiH8JgIA4BMFBQWqW7euv8vwSF5enmw2m7/LAEyH06QBAAAAAKZDGAYAAAAAmA5hGAAAAABgOoRhAAAAAIDpEIYBAAAAAKZDGAYAAAAAmA5hGAAAAABgOoRhAAAAAIDpEIYBAAAAAKZDGAYAAAAAmA5h+AwaN24swzCUkZHh71KAKvXjHunAeu/3dzqlvV9Jh/lVAQAEGJvNposvvlj9+/fXVVddpcsvv1xNmjSp9P6GYejJJ5/URRddVIVVAvBGkL8LqKkyMjKUm5uryMhIxcbG+rscoMr8uEfaulRyOiQ5pebdPNvf6ZT2rJQOrJMObpA6D5Ma8CsDAKjFLrvsMv3pT39Sjx491K5dO1ksZcePDh06pHXr1mnhwoVasmSJiouLy2xjGIZefPFF3XnnnRo3bpz69eunjRs3VkcXAFQCI8MVSE9PlyQlJSX5txCgihX8/FsQlrT7i5JQW1mnBmFJshdJBYd9XyMAANXh5ptv1ubNm/XVV1/pT3/6kxISEsoNwpLUrFkzXXfddXr33Xd14MABTZs2TaGhoe71pwZhSYqIiFDr1q2rpR8AKocwXAGzh2H7/AUquupqOT76pMw6p9Op4gemqij5Gjn37a/+4qpBxo7PNWe0oQ3LZ1e4zZzRhv47e1A1VlU1Wlwste75++PKBuLTg7AkJVwlxXT0fY0AAFSlZs2a6aOPPtLrr79e6r1fYWGh1q9fr5dffll///vf9eijj2rOnDn6/PPPdfToUfd2TZs21d///nelp6erR48eZYKw3W7XqFGj9O6771Z73wBUjNOkK7B582ZJUqdOnfxciX9Ybh4lx5pvZJ/7LxldLpLRuJF7neO9JXJu2SrLn26V0bKF/4qEz7S8pOT73q9Kvu/+ouR7RadMVxiEzfnZEQCgFrv66qu1cOFCRUREuJetWrVK//znP7Vo0SKdPHmy3P0Mw1Dv3r01YcIEDRkyREFBQWrXrp2++uorrV+/Xt27d5f0exBOTU2tlv4AqDxTjAzn5uYqJSVFbdq0UWhoqJo1a6bJkycrPz9fY8eOlWEYev7550vtc+rI8OrVqzV06FA1btxY4eHhuvTSS/XJJ2VHTAOJUaeOgqbcL504IfvT/+de7jyUIceC12Vc0E6W4cP8VyB8ruUllRshJggDAALFddddpyVLlriD8KFDhzRgwAD17NlTb731VoVBWCo5Uy4tLU3XX3+9OnTooNWrV0uSLBYLQRioJQI+DKenp6tjx46aNWuWcnJy1L59exUVFenZZ5/VyJEjtXPnTklS586d3fvk5eVp7969slqtWrFihXr27Kmvv/7aPZHW6tWrNXDgQC1dutQfXao2RnwbWW4YIeeGjXIs/1BOu132J2dLTqesU+6XYbX6u0T42NkCMUEYABAorrzySi1cuFB16tSRJL377rvq0KGDPv74Y4/b+u6773T55Zdr7dq1pZYvXLiQIAzUYAEdhnNzczV48GDl5OTo/vvvV3Z2tjZu3KicnBzNnDlTy5cv17p162QYRqnrQzZv3iyn0ylJeuyxx/TKK68oKytLmzZtUnZ2tvr27SuHw6F7773XvV2gsoy6UWrVSvZ/zZPjhZfk/G6XLLf+UUYzc0wXXFxYoOPHcsv9ClTlBeLiwpKf7YUEYQBA7RcREaHXX39dwcHBkqQFCxbohhtuKHUdsCdcZxm6RoRdRo4cWWrABUDNEtDXDE+aNEkZGRmaOHGiZs8uPRFSSkqK3n77bW3evFktW7YsdZ2I63phu92u119/XUOHDnWvO++88zRv3jy1bt1a33//vXbt2qV27dpVT4f8wAgKUtCU+1R89z1yLFsuo0OiLNdd6++yqs2axQ9rzeKH/V1GtTv9GmK7KwwX/b4NQRgAUFvNnj1bcXFxkqS0tDSNGzdODofDq7bKmyxr6dKlGjp0qOrUqaMFCxaoW7duKioqOktLAKpbwIbhnTt3KjU1VY0aNdL06dPL3aZLly7avHlzmUmyXNcLDxw4sFQQdmnRooViYmJ06NAhZWZmql27dsrIyNCMGTO0du1abd68WYWFhec8aty1a1fl5OR4tI8zOFia+8I5HbcMm02qU0cqLpbRrauMCm4x4K228W1lFBb6pC1rnTANfWy3T9qSpA69b1f8xcPLXfefGf19coy28fGyFx33SVu+Nrjb3Rp22dQyy1/9NEVf/N/bfqgI1W3omHtkqxuh7JxsxcbGlnlsBmZ/Dszef5f5kw7IYrHKYbcrNra5v8upVrXtNXC2UNu5c2fddtttkqRjx47pT3/6k+x2u1fHqmjW6Pfee0/r1q1Tp06d1KlTJ91+++164YWK35/Fx8dXeAsnAGcWFRWl9evXe7VvwIbhhQsXyuFwaNSoUapbt26524SFhUkqO2O0KwyPHz++wvZdI8mutvfs2aPFixerW7duCg4O1qpVq861C8rJyVFmZqZnO4WGqM45H/l3TqdT9qeekYqLpLhmcrz9jixXXiGjabTPjpGVnSWdqHiCCk8EhYT7pB2X+lHxiuvQz6dtni4rO0vFJwuq9BjeeinzQcVH91BSqyvcy77Y/K7e/niWH6tCdXL89gbRYbcrMzOzzGMzMPtzYPb+uzjldH83U7+lwHsNTJgwwf3ztGnTdODAAa/aqSgIu64RHjdunNatW+c+5pnCcHZ2tlc1ADg3ARuG09LSJEm9e/eucJuMjAxJpcOw3W7Xtm3bZLFY1KtXr3L3s9vtOnjwoCS5T7G54oor3H/IHnnkEZ+E4aioKI/3cQYH66dzPvLvHEuWyrl5iyxjbpGlxyUqvutu2Z96RtbZM2UYhk+O0TS6qU9HhmubptFNa+zI8IieD5UKwpJ0Zafhyv717/po41w/VYXqZPltojyL1aqYmJgyj83A7M+B2fvvYshwfzdTv6Xa9xpwOBwVhsvzzjtPo0aNkiQdPXpU8+bN8+oYZwvCkrR+/XqtXLlSV1xxhdq3b68rr7xSX3zxRbntRUdHMzIMeMmbzOQSsGHY9Slf8+bln8pUXFzsDqynhuHvvvtOx48fV5MmTVSvXr1y912zZo2OHTumxMRE95NfFX/AvBnuz7cXq0Ha/3xyfGdmphzzF8ho11aWEdfLsFplGT1Kjldfk2PJUlmHDvHJcXbt3iWb1TcvxZPF0tRaNmnjrt27FVLDfhPLmzX6VDdcMU3Tpk2r8D7ECBxPvPCWjublKzoqWhkZGWUem4HZnwOz99/l06ckOUsCoJn6LdW+10B+fn6FZwX+4Q9/UHh4yVlkr7/+uvLz8z1uvzJB2OXFF1/UFVeUfKg8bNiwCsPw7t27ZbPZPK4FwLkJ2I+gXH/cjh8vf8QtNTVVubm5qlevnlq2bOle7po8q/AMI5UvvfSSJOmmm27yVbk1jtPhkH3W05LDIeuU+9y3UbKMuF5G23g55i+QM4tTegLR2YKwS0X3IQYAoKbq2rWr++ePPvrI4/09CcKSSt2mqUuXLh4fD0DVCtgw7Bqx3bhxY5l12dnZmjJliiQpKSmp1Om+ruuFjxw5ol27dpXZd+XKlXrrrbfUsGFD3X333VVQec3gWPSenDt2ynLLaBm/nQouSYbVKusD90kOu+xPPRPwt5Yym4ruIyzXr4hx5vsQAwBQk50aSDds2ODRvp4GYank/eTevXsllUzcZf1tcAFAzRCwYbhfv5JJj2bOnFkq1K5bt069e/dWbm7JfWJPv/ebKwzXqVNHEyZM0K+//upe55omXyq5H11Fp1HXds6DB+V47Q0ZCRfIMuy6MuuNFs1lGT1Kzq3b5Fiy1A8VoipUFIRPv31SefchJhADAGqD1q1bS5Jyc3M9umOHN0HYZevWrZKk8PBwRUf7bgJSAOeuhl2p6Duu+wgfOnRIiYmJuuCCC3TixAnt2bNHAwcOVIsWLfTxxx+XmUnadZr0iy++qDvuuEOxsbFKSEhQdna2MjIyZLFY9Nxzz2nQoEH+6Fa1MOLiVGf5f8+4jfXGkbLeOLKaKqp+se17afKbZx71Ptv62qSyQdjl9PsQ7/7tEiiuIQYA1GSrVq3S999/r8OHD3u03/Tp070KwlLJQEuDBg10/Phxr2/hBKBqBOzIcGxsrL788kslJycrNDRU+/fvV2RkpObOnavly5e7R4tPDcM5OTn64YcfFBkZqXHjxmnp0qVKSEjQtm3bdOLECV133XVas2aN7rrrLn91C/A5T4OwCyPEAIDaZtSoUerTp4+GDRvm0X5vvfWWfvrpJ4+DsCQ9+uij6tWrlwYOHMgtlIAaJmBHhiUpISFBy5YtK7M8Ly9P+/fvl8ViUYcOHdzLo6KiSl0Dm5ycrOTk5GqpFfCXvas8D8Iu5Y0QG1Yp7iLf1ggAgD9t3bpVffv2Vbt27bRo0SJ/lwPARwI6DFdk+/btcjqdatu2rXt6fV9w/XHcsWNHqcctWrQoNXshUJNENpMOrpccxZ4FYZdTA3FQqFS/5t1yEgCAc7Z161b39b8AAoMpw7DrD9np1wufq+HDh5f7+JZbbtGCBQt8eizAVyKbS52vk47/KsV09K6NlpdIFqvUIE6KON+39QEAAABVgTDsQ9xmCLVVZNzZtzkbJs8CAABAbRKwE2idSVWFYQAAAABA7WDKkeG0tDR/lwAAAAAA8CNTjgwDAAAAAMyNMAwAAAAAMB3CMAAAAADAdAjDAAAAAADTIQwDAAAAAEyHMAwAAAAAMB3CMAAAAADAdAjDAAAAAADTCfJ3AfCtcItVh/v093cZHgm3WH3WVrBVmjnSZ81Vi2DfdR8AANMLDw9XXl6ez9qbNfcdHc0vUIQtXFPuuKHMY18IDw/3STsAPEMYDjCGYchmNe8/q2FIIebtPgAApmcYhmw2m8/aCw4JVXCRXcEhobLZbGUeA6i9OE0aAAAAAGA6hGEAAAAAgOkQhgEAAAAApkMYBgAAAACYDmEYAAAAAGA6hGEAAAAAgOkQhgEAAAAApkMYBgAAAACYDmEYAAAAAGA6hGEAAAAAgOkQhgEAAAAApkMYBgAAAACYDmEYAAAAAGA6hGEAAAAAgOkQhgEAAAAApkMYBgAAAACYDmEYAAAAAGA6hGEAAAAAgOkE+bsA+JbT6VSBw+7vMjwSbrHKMAyftOV0SoW1q/sKtko+6j4AAEDJ+8GCAn+XUWnh4eE+ey8IeIIwHGAKHHY1SPufv8vwyOE+/WWz+ualWGiXpqb6pKlqM3OkFMJvIgAA8JGCggLVrVvX32VUWl5enmw2m7/LgAlxmjQAAAAAwHQIwwAAAAAA0yEMAwAAAABMhzAMAAAAADAdwjAAAAAAwHQIwwAAAAAA0yEMAwAAAABMhzAMAAAAADAdwjAAAAAAwHQIwwAAAAAA0yEMn0Hjxo1lGIYyMjL8XQpQpQoLpPyfz62NYz9KxYW+qQcAAASOiIgIdezY0d9lAGUE+buAmiojI0O5ubmKjIxUbGysv8sBqkxhgbTx3yXfLxoh1W3keRu/ZkkbF0n1Gkudh0lBwb6vEwAAVJ9mzZqpb9++6tq1q7p06aLo6GgFBwersLBQ2dnZ2rBhg9avX68VK1bo0KFDFbYTERGhTz75RG3btlW/fv20cePGauwFcGaE4Qqkp6dLkpKSkvxbCFDFdn8u5eWW/Lzx354HYlcQthdKRzKlfaul+CurpFQAAFCFDMPQH/7wB40fP16DBg2SxVL+SaTNmzfXJZdcIkmy2+1avny5XnzxRX3yySdyOp3u7VxB+OKLL5Ykvf3220pMTJTdbq/6zgCVwGnSFTB7GLbPX6Ciq66W46NPyqxzOp0qfmCqipKvkXPf/uovrhpk7Phcc0Yb2rB8doXbzBlt6L+zB1VjVVWjbR+p3vklP7tGiV3h+GxODcKSFBkntbq0aur0l6ITUvZ26cA66eBGKXef5HT4uyoAAHyrdevW+vzzz/Xhhx/qmmuuKROEf/jhBx04cEA//PBDqeVWq1XXXHONPvroI6WlpalVq1aSygbhn376Sddffz1BGDUKI8MV2Lx5sySpU6dOfq7EPyw3j5JjzTeyz/2XjC4XyWj8+1Ch470lcm7ZKsufbpXRsoX/ioRP1AmVLhoubXxXOvbD74H4bCPE5QXhTkMla53qqbuqFRyR9n8j5eyUHMWl14VGSLGdpLgukoW/ogCAWm78+PGaPXu2wsPD3csOHTqkefPmaeXKldq0aZN+/fVX97rzzjtPF154oa688kqNHTtWzZo1kyT16tVLW7Zs0V//+lfdcMMNpYJwnz59tG3bturtGHAWphgZzs3NVUpKitq0aaPQ0FA1a9ZMkydPVn5+vsaOHSvDMPT888+X2ufUkeHVq1dr6NChaty4scLDw3XppZfqk0/KjpgGEqNOHQVNuV86cUL2p//Pvdx5KEOOBa/LuKCdLMOH+a9A+JQrEFd2hDjQg/Cv2dK6N6WsrWWDsCSdOCrt+bLkOWDSMABAbTZ9+nS9+OKL7iC8b98+DRs2TC1bttTf//53ff7556WCsCT9+uuv+vzzz/Xoo4+qZcuWGjZsmPbt2ydJstlseuaZZwjCqBUCPgynp6erY8eOmjVrlnJyctS+fXsVFRXp2Wef1ciRI7Vz505JUufOnd375OXlae/evbJarVqxYoV69uypr7/+2j2R1urVqzVw4EAtXbrUH12qNkZ8G1luGCHnho1yLP9QTrtd9idnS06nrFPul2G1+rtE+FBlA3GgB+GCI1L64pLTo8/mSIa0dal0yuVRAADUGo8++qgefPBB9+MXXnhBHTt21HvvvVfp05ntdrvee+89JSUlad68eaXW5efnE4RRowV0GM7NzdXgwYOVk5Oj+++/X9nZ2dq4caNycnI0c+ZMLV++XOvWrZNhGKWuDd68ebP74v/HHntMr7zyirKysrRp0yZlZ2erb9++cjgcuvfee0tNEhCILKNulFq1kv1f8+R44SU5v9sly61/lNHMHDNsFxcW6Pix3HK/AlFFgViul7kzsIOwJO1bU7kg7PLz/pIvAABqk0GDBulvf/ub+/Gdd96piRMnKj8/36v2LBZLmdsn2Ww2tWjR4lzKBKpUQF/tNmnSJGVkZGjixImaPbv0REgpKSl6++23tXnzZrVs2VIRERHuda7rhe12u15//XUNHTrUve68887TvHnz1Lp1a33//ffatWuX2rVrVz0d8gMjKEhBU+5T8d33yLFsuYwOibJcd62/y6o2axY/rDWLH/Z3GdWqvGuITxXIQbjouPTDTs/3y0iXGrX0eTkAAFSJBg0a6OWXX3Y/vueeezR37lyv2zt9sqy8vDzVrVtXkjR37lwlJibqyJEj51QzUBUCdmR4586dSk1NVaNGjTR9+vRyt+nSpYukspNkua4XHjhwYKkg7NKiRQvFxMRIkjIzMyVJixYt0rBhw9S8eXOFh4frggsu0EMPPaS8vDxfdcl/bDapTkniMbp1lVHBNPuBqEPv2zX0wf+V+xXITh8hPl0gBmFJ+mmv5PBiksvcvVLxSd/XAwBAVXjyyScVHR0tSVq2bJnmzJnjdVvlzRrdo0cPLV++XJLUtGlTzZo169yLBqpAwI4ML1y4UA6HQ6NGjXJ/MnW6sLAwSRWH4fHjx1fYvmsk2dX27NmzFRcXpyeeeEKxsbFKT0/Xo48+qi+++EIrV66s8D5tZ9K1a1fl5OR4tI8zOFia+4LHx6qwPadT9qeekYqLpLhmcrz9jixXXiGjabTPjtE2vq2MQt/MQmStE6ahj+32SVuSVD8qXnEd+vmsvfK0jY+Xveh4lR7DW+Eh5+mvI5eoaWS8e9merA168vmRKrzPg3OJa4mBXcZr5OUPebVvtwsv1U9HD/q4Iv8bOuYe2epGKDsnW7GxsWUem4HZnwOz999l/qQDslisctjtio1t7u9yqpXZXwO1sf8OR8X3AGzSpIn++Mc/SpKOHDmiO+64w+vjlBeEXdcI33777dq+fbvq16+vP/7xj/rLX/6in376qdx24uPjvXqvDEhSVFSU1q9f79W+ARuG09LSJEm9e/eucJuMjAxJpcOw3W7Xtm3bZLFY1KtXr3L3s9vtOniw5E1vXFycJOn9999X48aN3dtceeWVaty4sUaNGqWvvvpKV1xxhcd9yMnJcY88V1poiHw5WOdYslTOzVtkGXOLLD0uUfFdd8v+1DOyzp4pwzB8coys7CzphG+G1YJCws++UQ2TlZ2l4pMFZ9/QDxLiYnVeeOnh4YYRsbIfD1bmj3v9VFXVOdz6Z6/3zcw6pJ9+9fD3tRZw/DaBisNuV2ZmZpnHZmD258Ds/Xdx/jZ5glNOU/Vb4jUQaP0fO3asgoODJUn//Oc/lZWV5VU7ZwrCkpSVlaWXXnpJDz74oIKDgzV27FjNmDGj3Lays7O9qgE4VwEbhg8cOCBJat68/E9vi4uLtWrVKkmlw/B3332n48ePq0mTJqpXr165+65Zs0bHjh1TYmKioqKiJKlUEHbp2rWrJHn9h9LVtiecwcEq/zM3zzkzM+WYv0BGu7ayjLhehtUqy+hRcrz6mhxLlso6dIhPjtM0uqlPR4Zrm6bRTWvkyHDrqIv0wNC3FBZS8nvgdDplGIYa1D1fT0/4QjMXj1DWL74bha8JTjh+8Wq/gpNHFX5eHcXUjfFxRf5n+W3WeIvVqpiYmDKPzcDsz4HZ++9iyHB/N1O/JV4DtbH/DoejwoA5duxY9zbeXid8tiDsMnfuXKWkpMhisZwxDEdHRzMyDK95k5lcAjYMu2bCO368/JCRmpqq3Nxc1atXTy1b/j7zjWvyrMIzhLOXXnpJknTTTTedsYbPPvtMkpSQkFD5wk/hzXB/vr1YDdLO/XpWp8Mh+6ynJYdD1in3uW+jZBlxvZyrvpZj/gJZLu7uk9Old+3eJZvVNy/Fk8XS1FSfNFVtdu3erZAa9ptY3u2T2g80tHlJyaRa59kaa/adn+miEVLdRn4t1accDmnVy9JJDy/1b3dJhPY/9H3VFOVnT7zwlo7m5Ss6KloZGRllHpuB2Z8Ds/ff5dOnJDlLApCZ+i3xGqiN/c/Pzy/3MsHGjRurdevWkqRVq1a5B488UdkgLEn79+/X119/rZ49e6pNmzZq2LChfv657FlYu3fvls1m87gW4FwF7Ecwrk8INm7cWGZddna2pkyZIklKSkoqdbqv63rhI0eOaNeuXWX2Xblypd566y01bNhQd999d4XHz8zM1LRp0zRgwIBS9zCuLRyL3pNzx05Zbhkt47dTwSXJsFplfeA+yWGX/alnAv7WUmZU0X2EQ+tV7j7EtZnFIsUknX2708V29nkpAAD4nGvyWElau3atx/t7EoTLO86pxwdqgoANw/36lUx6NHPmzFKhdt26derdu7dyc0vewZ8eVF1huE6dOpowYYJ+/fVX97qlS5e6Z5desGBBhadR5+XlaciQIQoODtb8+fN91aVq4zx4UI7X3pCRcIEsw64rs95o0VyW0aPk3LpNjiVL/VAhqkpFQdg1a3RF9yEOpEDcvJt0XtPKb9/6csnWsOrqAQDAV5KSfv/Et7wBozPxJghL0oYNG9w/nz5pLeBvNezkTN9x3Uf40KFDSkxM1AUXXKATJ05oz549GjhwoFq0aKGPP/64zC+l6zTpF198UXfccYdiY2OVkJCg7OxsZWRkyGKx6LnnntOgQYPKPe7x48c1ePBg7du3T19++aV72vraxIiLU53l/z3jNtYbR8p648hqqqj6xbbvpclvnnnU+2zra5uzBWGX8u5DvPHfCphTpq11pM7XSVv+Kx0+dOZtW18utehePXUBAHCuXHdDkeTRHUu8DcKS9MMPP5R7fKAmCNiR4djYWH355ZdKTk5WaGio9u/fr8jISM2dO1fLly93jxafGoZzcnL0ww8/KDIyUuPGjdPSpUuVkJCgbdu26cSJE7ruuuu0Zs0a3XXXXeUes6ioSNdff73Wr1+vDz/8UO3bt6+WvgLnqrJB2CXQR4hd/es0VGrYouz62M7SJbdKLS+WfDSpOgAAVW7GjBlq1qyZ4uPjtWbNmkrv17RpU7Vq1UqSZ0FYklavXq34+Hg1a9ZMM2fO9KpuoKoE7MiwVDJx1bJly8osz8vL0/79+2WxWNShQwf38qioqFLXwCYnJys5OblSx3Ld03jFihX64IMP1L07w0WoHTwNwi6BPkJsWKTGrUu+ik5IX8+XigqkYJt0QdXeehoAgCqRl5envDwPZ4mU9O2336pPnz565513dMMNN1Q6CEtSQUGB9uzZ4/ExgeoQ0GG4Itu3b5fT6VTbtm0VHu6b+9Leddddevfdd/Xggw8qPDy81KdtrVu3LvfWS0BN8MN3ngdhl/ICce73gRGGT1UntGRyLYmRYACAOW3btk1JSUlyOBz+LgXwmYA9TfpMtm7dKsm3F/F/+OGHkkpOP+nRo0epr+XLl/vsOICvxfeSYjp5HoRdTj1luuUlJRNQAQCAwEMQRqAx5chwVYTh/fv3+6wtoDoZRslpvw675O3tnuuESl1vkCxBjJwCAACgdiAMA5BheB+EXTwdUQYAAAD8yZRhOC0tzd8lAAAAAAD8yJTXDAMAAAAAzI0wDAAAAAAwHcIwAAAAAMB0CMMAAAAAANMhDAMAAAAATIcwDAAAAAAwHcIwAAAAAMB0CMMAAAAAANMhDAMAAAAATCfI3wXAt8ItVh3u09/fZXgk3GL1WVvBVmnmSJ81Vy2Cfdd9AAAAhYeHKy8vzydtzZr7jo7mFyjCFq4pd9xQ4bJzER4efs5tAN4gDAcYwzBks5r3n9UwpBDzdh8AAKDk/aDN5pO2gkNCFVxkV3BIqLvN8pYBtRGnSQMAAAAATIcwDAAAAAAwHcIwAAAAAMB0CMMAAAAAANMhDAMAAAAATIcwDAAAAAAwHcIwAAAAAMB0CMMAAAAAANMhDAMAAAAATIcwDAAAAAAwHcIwAAAAAMB0CMMAAAAAANMhDAMAAAAATIcwDAAAAAAwHcIwAAAAAMB0CMMAAAAAANMhDAMAAAAATCfI3wUAvuR0SoV2f1fhmWCrZBj+rgIAACAwOJ1OFRQU+LsMj4SHh8vgDWG1IwwjoBTapamp/q7CMzNHSiH8JgIAAPhEQUGB6tat6+8yPJKXlyebzebvMkyH06QBAAAAAKZDGAYAAAAAmA5hGAAAAABgOoRhAAAAAIDpEIYBAAAAAKZDGAYAAAAAmA5hGAAAAABgOoRhAAAAAIDpEIYBAAAAAKZDGAYAAAAAmA5h+AwaN24swzCUkZHh71IAVDGno2a0AQAAAo/FQuyqiYL8XUBNlZGRodzcXEVGRio2Ntbf5QCoQr9mS9s/lJKukeo28q6NjHQp51up83VSULBPywMAAH7SvHlzdenSRRdccIHCwsLkdDp19OhRbdmyRRs2bNDPP/981jbat2+vxYsXa/To0dqwYUM1VI3KIgxXID09XZKUlJTk30IAVKljP0qbFknFJ6WN/5YuGuF5IM5Il779tOTn9MXShcMlK39dAQColS644AJNmDBBN9xwgxo3bnzGbXfv3q358+frlVde0U8//VRmffv27fXZZ5+pSZMm+t///qdevXppy5YtVVU6PMR4fQUIw4A5hEZIYfVLfi4sKAnEebmV3//UICxJ9WMki9WXFQLwN6dTktP1wJ+VAKhK7dq10yeffKKdO3fq7rvvPmsQlqT4+HhNnz5dGRkZevnll1W/fn33ulODsCTt2bNHBw4cqKry4QXGLiqwefNmSVKnTp38XAn8IWPH51r8RG/1vHGWuiQ/UO42c0YbatE5WUMeWFbN1cGX6oRKFw2XNr4rHfvh90BcmRHi04Nwi+5S68slw6jSkgFUk+KTUvb2kt/1U21aJMV2lhq1kgyGFYBaz2Kx6L777tM//vEPhYaGupcXFBToiy++0Pr167V582YdOXJEhmEoKipKF110kbp3764ePXrIYrEoODhYt912m5KTk3X77bdr3759pYLwunXr1L9/f/3666/+6ibKYYo/4bm5uUpJSVGbNm0UGhqqZs2aafLkycrPz9fYsWNlGIaef/75UvucOjK8evVqDR06VI0bN1Z4eLguvfRSffLJJ37oCYCq4ArE9c4veVyZEWKCMBDYfjkoffWy9F2alP9L6XU/75c2L5HWviWdzPNHdQB8JSwsTO+//75mzZrlDsLff/+9Jk+erJiYGF199dX629/+psWLF2vFihX69NNP9eabb+q+++5Tz5491aZNG82cOdMdcps2baply5Zp7dq1BOFaIODDcHp6ujp27KhZs2YpJydH7du3V1FRkZ599lmNHDlSO3fulCR17tzZvU9eXp727t0rq9WqFStWqGfPnvr666/dE2mtXr1aAwcO1NKlS/3RJQBVwJNATBAGAtvhQ9KmxSUjw2dy7AdpQ2rJ3wsAtU9oaKiWLVumq6++WpLkcDj01FNPKTExUc8++6yOHDly1jb27dunBx98UImJifrggw/cy202mySCcE0X0GE4NzdXgwcPVk5Oju6//35lZ2dr48aNysnJ0cyZM7V8+XKtW7dOhmGUujZ48+bNcjpLLgp67LHH9MorrygrK0ubNm1Sdna2+vbtK4fDoXvvvde9HYDarzKB2F5EEAYCmaNY2vq+5LRXbvuCw9Kuz6q2JgBVY/78+erTp48k6ddff1Xfvn31wAMP6MSJEx63lZmZqSlTpujYsWOlli9cuJAgXIMFdBieNGmSMjIyNHHiRM2ePVv16tVzr0tJSVGnTp1UXFysFi1aKCIiwr3Odb2w3W7X66+/rltvvVVWa8mMOOedd57mzZsni8Wi77//Xrt27areTqFaFRcW6Pix3HK/EJgqCsSO3+4hfOpIEUEYCDw/7vZ8pPeH76TC/KqpB0DVGD58uG688UZJJWeFXnXVVfr888+9bs81WdapeUOS/vGPf6hVq1bnUiqqUMCG4Z07dyo1NVWNGjXS9OnTy92mS5cukspOkuW6XnjgwIEaOnRomf1atGihmJgYSSWfAknSl19+qX79+ik6OlohISGKjY0tdRo2aqc1ix/Wy+Mbl/uFwFVeIC467c0xQRgITBmbPd/H6ZCytvm+FgBVo3HjxnrhhRfcj8eNG6e1a9d63d7ps0avW7dO8+bNk1RyuvT8+fNl8IahRgrY2aQXLlwoh8OhUaNGqW7duuVuExYWJqniMDx+/PgK23eNJLvaPnz4sDp27Kg77rhDTZo0UUZGhqZPn64ePXpo27Zt7uuNPdG1a1fl5OR4vJ+ZWeuEaehju33WXofetyv+4uHlrvvPjP4+OUbb+HjZi477pC34VnjIeZpy3dtqeX7pvxHL1j2vRf83w09VVa+hY+6RrW6EsnOyFRsbW+axGZj9OTBb/5+9fbMiwht6vN+Cue9q3rB7q6Ai/zPba+B09L9sf2v6c+Bwnc5VgXvvvdd926TFixcrNTXV62OVF4T79++v4uJi9e3bVy1bttSVV16pq666Sh9//HGF7cTHx8tiCdhxyioVFRWl9evXe7VvwIbhtLQ0SVLv3r0r3CYjI0NS6TBst9u1bds2WSwW9erVq9z97Ha7Dh48KEmKi4uTJF1zzTW65pprSm3XrVs3tWvXTosXL9bkyZM97kNOTo575BmVExQS7tP26kfFK65DP5+2ebqs7CwVn2T2lZopUx+vfV13Dn7KvcTpdOo/n7+ozB/N8bvpsNvd3zMzM8s8NgOzPwdm67/VUser/YoLHQH5fEjmew2cjv6X7W9tfg6Cg4M1btw4SVJhYaHuvvtur9uqKAi7rhG+//779d5770mSJkyYcMYwnJ2d7XUd8F7AhmHXDa2bN29e7vri4mKtWrVKUukw/N133+n48eNq0qRJmXP+XdasWaNjx44pMTFRUVFRFdbQsGHJJ8tBQd49zWdqG+Wz1gnzdwkeaxrdlJHhGqp30s26pU/pyywMw9DTE77QzMUjlPWL785CqKksv82XYLFaFRMTU+axGZj9OTBb//NPHpYtNOLsG56mWMcD8vmQzPcaOB39L9vfmv4cOByOCsPlsGHDSo0KextCzxaEJWnp0qU6dOiQmjVrpkGDBikuLs49oHa66OhoRoa9dC6ZKWDDcH5+yUwWx4+XHzJSU1OVm5urevXqqWXLlu7lrsmzCgsLK2z7pZdekiTddNNNZdbZ7XY5HA4dOHBAf/7znxUVFaURI0Z41Qdvh/vN7GSxNNX7M138Ytfu3QoJ2N/E2uv02yed6jxbY82+8zNdNEKq26hay6p2T7zwlo7m5Ss6KloZGRllHpuB2Z8Ds/V/9xfSgXWe75fyxK2aEXerz+upCcz2Gjgd/S/b35r+HOTn51d4meQf/vAH988vv/yyV+1XJghLJbnglVde0SOPPCKLxaK+ffvq1VdfLbfN3bt3u2/HhOoTsB8/uD4h2LhxY5l12dnZmjJliiQpKSmp1AXtruuFjxw5Uu5M0StXrtRbb72lhg0blntaxZVXXqng4GDFx8crPT1daWlp7k+fANQO5d1H+HRnug8xgNorptPZtzmdLVJq0Mz3tQDwPdcEukVFRVq9erXH+1c2CLt88cUXZY6NmiNgw3C/fiXXec6cObNUqF23bp169+6t3NySd7CdO3cutZ8rDNepU0cTJkwoc6qDa3bpBQsWlHsa9SuvvKI1a9Zo4cKFioiI0FVXXVXh6RAAap7ygnDryyWdMgnkme5DDKB2C6/veSBmZnmgdggLC1NCQoIkadu2bTp58uRZ9ijN0yAslR6Y69q1qxdVoyoFbBhOSUlRw4YNdejQISUmJqpjx46Kj49X9+7d1apVK/cNtk+fSdp1mvSLL76ozz77TLGxserevbuaNWumIUOG6MiRI3ruuec0aNCgco/brl07XXzxxbrhhhu0YsUKHTt2TE8++WTVdhaAT1QUhEu9yTXKvw8xgRgIHO36SI3jK7ltX6lJJbcF4F9NmjSR9bfrncs7A/RMvAnCknT06FH3dcnR0dFeVI2qFLBXKsbGxurLL7/UlClT9MUXX2j//v1q37695s6dq9tuu02tW7eWVDoM5+Tk6IcfflBkZKTGjRun6OhoPfroo9q2bZtsNpuuu+46Pfjgg+rWrVulaqhfv77atGmjPXv2VEkfUXVi2/fS5DedZ9zmbOtRu1QqCP/GdR/ije9Kx374PRCb4RpiwAwsVilpsHRwg3Rok3TiaNlt6sdILS6RGrUsuw5AzXT06FE99NBDCgsL07Ztlb85uGEY+ve//+1xEHZ59tlnFRYWpp9//tmrulF1AjYMS1JCQoKWLVtWZnleXp72798vi8WiDh06uJdHRUXJ6fw94CQnJys5Odnr4//444/67rvvdPHFF3vdBoCq50kQdiEQA4HNsEjNu0lxXaSf90np//l93cW3SPWYDgSodQ4fPqwnnnjC4/2cTqduvPFGrVixQvv37/coCEvSjBkzPD4mqkdAh+GKbN++XU6nU23btlV4uG/uSzt69Gi1adNGnTt3Vv369bV7924988wzCgoK0r333uuTYwDwvcOHPA/CLuUF4k2LpUvHSlZT/nUFAo9hkRq1Vsm8Ac6S7wRhwHy2bt2qK6+8UllZWR4FYdRsAXvN8Jls3bpVUtnrhc/FJZdcog8++EBjxozRwIEDNWvWLF1++eVKT09XmzZtfHYcAL5VP/b3yXI8CcIurkBc73zJsEoX9CMIAwAQiHbu3EkQDjCmfMtWFWF44sSJmjhxos/aA1A9DKMkwDZsITVu492MsK5AfOxHKTLO5yUCAACgChCGAZieYZz7bLB1QgnCAAAAtYkpw3BaWpq/SwAAAAAA+JEprxkGAAAAAJgbYRgAAAAAYDqEYQAAAACA6RCGAQAAAACmQxgGAAAAAJgOYRgAAAAAYDqEYQAAAACA6RCGAQAAAACmQxgGAAAAAJhOkL8LAHwp2CrNHOnvKjwTbPV3BQAAAIEjPDxceXl5Pmtv1tx3dDS/QBG2cE2544Yyj30hPDzcJ+3AM4RhBBTDkEJ4VQMAAJiWYRiy2Ww+ay84JFTBRXYFh4TKZrOVeYzai9OkAQAAAACmQxgGAAAAAJgOYRgAAAAAYDqEYQAAAACA6RCGAQAAAACmQxgGAAAAAJgOYRgAAAAAYDqEYQAAAACA6RCGAQAAAACmQxgGAAAAAJgOYRgAAAAAYDqEYQAAAACA6RCGAQAAAACmQxgGAAAAAJgOYRgAAAAAYDqEYQAAAACA6RCGAQAAAACmQxgGAAAAAJhOkL8LgG85nU4VOOz+LsMj4RarDMPwSVtOp1RYu7qvYKvko+4DAADA5JxOpwoKCvxdhkfCw8N9lgc8QRgOMAUOuxqk/c/fZXjkcJ/+sll981IstEtTU33SVLWZOVIK4TcRAAAAPlBQUKC6dev6uwyP5OXlyWazVftxOU0aAAAAAGA6hGEAAAAAgOkQhgEAAAAApkMYBgAAAACYDmEYAAAAAGA6hGEAAAAAgOkQhgEAAAAApkMYBgAAAACYDmEYAAAAAGA6hGEAAAAAgOkQhivQuHFjGYahjIwMf5cCoIrZi6R930gOu/dtFByRMrf4rCQA1ezn/dIvB8+tjUMbpZN5PikHAGqUiIgINW/eXK1bt1ZMTIysVqtH+w8bNkwXXXRRFVXnvSB/F1ATZWRkKDc3V5GRkYqNjfV3OQCqkL1I2rxE+uWAdCxH6jBIsnj2910FR6QNqdLJY5K9WIqreX/rAZzBz/tL/g5IUufrpMg4z9vYu0rat1o6tEnqMlIKqevLCgGgekVGRmr06NG6/PLL1aVLF7Vs2bLU+oKCAqWnp2vDhg1avHixvvjiiwrbGj58uN5++20dO3ZM/fr108aNG6u6/EpjZLgc6enpkqSkpCT/FgKgyuX9JB357QSQH3dL25Z5NkJ8ahCWSkaH7cU+LxNAFcraKjmKS77S3/N8hNgVhCWp4LD08z7f1wgA1aF9+/aaP3++MjIyNGfOHF1//fVlgrAkhYeH69JLL9Xdd9+tzz//XNu3b9eECRNUp06dUtu5gnBQUJAaNGigUaNGVVdXKoUwXA7CsGSfv0BFV10tx0eflFnndDpV/MBUFSVfI+e+/dVfXDXI2PG55ow2tGH57Aq3mTPa0H9nD6rGqlAVzmsqdbr299FgTwLx6UHY1lDqMlyycs4NUKskDpQatS752dNAfGoQlqS2vaWmHX1fIwBUpaCgIE2bNk3p6ekaM2aMwsLC3Ovy8/P11VdfaeHChXrzzTe1ZMkS7d27t9T+7du31wsvvKC1a9eqU6dOkkoHYUmaN2+eHnjggerrVCXwlq0cmzdvliT3P6QZWW4eJceab2Sf+y8ZXS6S0biRe53jvSVybtkqy59uldGyhf+KBHykYcuSQLx5SUkIdgXiM50yXW4QHiEF26qpaAA+YwmSkgZLW96Xcvf+HojPdsp0eUE4rkvV1wsAvtSsWTMtWbKk1DW9R44c0auvvqrXXntNW7dulcPhKLNf/fr1NWDAAI0fP15XXHGFJKlz585at26dUlNTdcMNN5QKwrfffrucTmf1dKqSAn5kODc3VykpKWrTpo1CQ0PVrFkzTZ48Wfn5+Ro7dqwMw9Dzzz9fap9TR4ZXr16toUOHqnHjxu7TAT75pOxoaaAx6tRR0JT7pRMnZH/6/9zLnYcy5FjwuowL2skyfJj/CgR8zBWIKzNCTBAGAo8rEFd2hJggDCAQtGrVSl999ZU7CBcXF+uxxx5TTEyM7rvvPm3evLncICyVBOZ33nlHV155pbp27eoeUKxTp45Gjx5d44OwFOBhOD09XR07dtSsWbOUk5Oj9u3bq6ioSM8++6xGjhypnTt3Sir5BMMlLy9Pe/fuldVq1YoVK9SzZ099/fXX7om0Vq9erYEDB2rp0qX+6FK1MuLbyHLDCDk3bJRj+Ydy2u2yPzlbcjplnXK/DA9nkQNqukoFYidBGAhUlQ3EBGEAgeD888/Xp59+qri4klNgdu/erUsuuUTTpk1TQUGBR21t2LBB3bp103vvvVdq+fr162tsEJYCOAzn5uZq8ODBysnJ0f3336/s7Gxt3LhROTk5mjlzppYvX65169bJMIxS1wZv3rzZ/Y/12GOP6ZVXXlFWVpY2bdqk7Oxs9e3bVw6HQ/fee2+N/Uf1JcuoG6VWrWT/1zw5XnhJzu92yXLrH2U0M8cs28WFBTp+LLfcLwSmigKxTvl1JwgDgauiQOz+G+AkCAMIDP/617/ck2Nt27ZNPXv21IYNG7xu79prr9U111xTatlFF12kHj16nFOdVSlgw/CkSZOUkZGhiRMnavbs2apXr557XUpKijp16qTi4mK1aNFCERER7nWu4X273a7XX39dt956q/s+Wuedd57mzZsni8Wi77//Xrt27areTvmBERSkoCn3SYVFcixbLqNDoizXXevvsqrNmsUP6+Xxjcv9QuAqLxCfjiAMBK7yAnF5CMIAaqubb75ZgwcPliTl5OToqquu0o8//uh1e6dPlrV+/XpJksVi0auvvqrQ0NBzL7oKBGQY3rlzp1JTU9WoUSNNnz693G26dCn53+v0SbJc1wsPHDhQQ4cOLbNfixYtFBMTI0nKzMwst+2BAwfKMAw98sgjXvaghrHZpN+mSTe6dZVhCciXTbk69L5dQx/8X7lfCGynB+JTEYSBwHd6ID4dQRhAbWWz2fR///d/7sd33HGHsrOzvW6vvFmjL7nkEq1Zs0aS1LZtW02ZMuWcaq4qATmb9MKFC+VwODRq1CjVrVv+Xe9d04VXFIbHjx9fYfuukeTy2v73v//tbuNcde3aVTk5OR7t4wwOlua+4JPjSyW3UbI/9YxUXCTFNZPj7XdkufIKGU2jfXaMtvFtZRQW+qQta50wDX2snGE8L9WPildch34+a688bePjZS86XqXHgPcuSxiucVc9LcMwJJX8Toyb0VW/TvvBz5VVj6Fj7pGtboSyc7IVGxtb5rEZmP05MHv/g6zB+seo/yk68vdU/OnmV3Xr/03zY1XVy+yvAfpftr9mfw5qev8rmvDKZdSoUYqMjJQkpaamntNcSOUFYdc1wmPGjNHWrVsVFBSk8ePHa/r06SouLv9Um/j4eFm8HHCLiopyj0R7KiDDcFpamiSpd+/eFW6TkZEhqXQYttvt2rZtmywWi3r16lXufna7XQcPlsyk4brY3OXo0aO65557NHv2bI0ePfpcuiCp5JSFikafKxQaojpn36rSHEuWyrl5iyxjbpGlxyUqvutu2Z96RtbZM93h4FxlZWdJJ076pK2gkHCftFOdsrKzVHzSs0kKUD2iG7bSkIvvK/VaNwxDwy7+s55460bZKzp3MoA47Hb398zMzDKPzcDsz4HZ+39z/4dLBWFJ6pkwUh+tfl2b937un6KqmdlfA/S/bH/N/hzU9v5PmDDB/fPMmTO9budMQViSvv32W/33v//VsGHDFB0drWuvvVaLFi0qt61zGZk+FwEZhg8cOCBJat68ebnri4uLtWrVKkmlw/B3332n48ePq0mTJqWuMT7VmjVrdOzYMSUmJioqKqrUuoceekht27bVqFGjfBKGT2+/MpzBwfrpnI/8W1uZmXLMXyCjXVtZRlwvw2qVZfQoOV59TY4lS2UdOsQnx2ka3dSnI8O1TdPopowM10CNz2uuB69/Vw3rNZUkOZwOGTJkGIauSLpeYWFheunDuwI+EFt+mzPBYrUqJiamzGMzMPtzYOb+X3vJfbr2kvvcj51OpwzDUGhwuB4f+4Ge+e8t+jbjaz9WWD3M/BqQ6H95/TX7c1DT++9wOCoMlwkJCe78s3r1am3atMmrY5wtCLu8+OKLGjas5HasN910U4VhODo6+pxGhr0VkGE4Pz9fknT8ePkBIzU1Vbm5uapXr557BjXp98mzCs8QzF566SVJJf+Yp1q/fr3+9a9/ndMMbKfzZrg/316sBmnnfj2r0+GQfdbTksMh65T73LdRsoy4Xs5VX8sxf4EsF3f3yenSu3bvks3qm5fiyWJpaqpPmqo2u3bvVkhA/ibWXuXfR9iiYz9Km5eU3GqpW3yykq9OVodB5V9XHCieeOEtHc3LV3RUtDIyMso8NgOzPwdm7X95t0+K7WRoy/tS7l4ppE6Y/nLDv9X5OikyruJ2AoFZXwMu9L9sf83+HNT0/ufn51d4qWi3bt3cPy9ZssSr9isbhCXps88+06+//qrzzjtPXbt2rbDN3bt3y2ar/slYAnImJNenAxs3biyzLjs7230Bd1JSUqnTH13X+h45cqTcmaJXrlypt956Sw0bNtTdd9/tXm6323XHHXdo4sSJSkxM9GVX/Max6D05d+yU5ZbRMk45HdywWmV94D7JYZf9qWdMcXspmEv5QbhksqxK3YcYQK1X0X2EK3sfYgCoqVyTCEvyahDPkyAslZxR4xp9btasmRo3rll3ZAnIMNyvX8mERzNnziwVatetW6fevXsrN7fkHrGdO3cutZ8rDNepU0cTJkzQr7/+6l63dOlS9+zSCxYsKHUa9fPPP68ffvghYGaPdh48KMdrb8hIuECWYdeVWW+0aC7L6FFybt0mxxLvL7gHapozBWEXAjEQ2CoKwi4EYgC12QUXXOD+2XVWbGV5GoRdTp1cOCEhwaNjVrWAPDkzJSVFb7/9tg4dOqTExERdcMEFOnHihPbs2aOBAweqRYsW+vjjj8vMJO16Qbz44ou64447FBsbq4SEBGVnZysjI0MWi0XPPfecBg0a5N4nNzdX06ZN0+zZs1VcXKwjR4641504cUJHjhxRRESE1+fA+4MRF6c6y/97xm2sN46U9caR1VRR9Ytt30uT3zzzL/bZ1qN2qUwQdnEFYtcp065AHOinTAOB7mxB2MUViF2nTLsCsRlOmQZQu/388886ePCgwsLCdPjw4Urvd91113kVhCUpKytLWVlZOnHixFlnuq5utSeheSA2NlZffvmlkpOTFRoaqv379ysyMlJz587V8uXL3aPFp4bhnJwc/fDDD4qMjNS4ceO0dOlSJSQkaNu2bTpx4oSuu+46rVmzRnfddVepY2VkZOjYsWO644471KBBA/eXVDIy3aBBA/fs0wBqJk+CsAsjxEBgqWwQdmGEGEBtdNNNN6l58+Zq0qSJ7PbKv2nZtWuXOzx7EoQladasWYqJiVHr1q311VdfeVV3VQnIkWGpZAh+2bJlZZbn5eVp//79slgs6tChg3t5VFRUqX/Q5ORkJScnn/U4bdq00WeffVZmee/evXXLLbfo1ltvPacZzgBULW+CsAsjxEBg+P5rz4KwCyPEAMxi27Zt6tOnj2655RalpKQEzLxBARuGK7J9+3Y5nU61bdtW4eHnfk/aunXrVnhP4hYtWlS4DkDNYLGUfEmeBWGX0wOxJUjy0S24AVQTyynvhiobhE/d99RAbBh8GAYgMG3bts09EXGgMF0Y3rp1qySVuV4YgDmFRkhdRkrfrpDaX+VZEHZxBeIfdkkJ/SUjIC9AAQJXi+4l3y1Wz4KwiysQ7/hYiu0s1a95tx0FAJSDMFxFAuXUAcAMQiOkzkPPrY2GLUu+ANROrkDsLUuQ1OHsV1cBAGoQ041fMDIMAAAAADDdyHBaWpq/SwAAAAAA+JnpRoYBAAAAACAMAwAAAABMhzAMAAAAADAdwjAAAAAAwHQIwwAAAAAA0yEMAwAAAABMhzAMAAAAADAdwjAAAAAAwHQIwwAAAAAA0wnydwHwrXCLVYf79Pd3GR4Jt1h91lawVZo50mfNVYtg33UfAAAAJhceHq68vDyftTdr7js6ml+gCFu4ptxxQ5nHvhAeHu6TdjxFGA4whmHIZjXvP6thSCHm7T4AAABMzjAM2Ww2n7UXHBKq4CK7gkNCZbPZyjyuzThNGgAAAABgOoRhAAAAAIDpEIYBAAAAAKZDGAYAAAAAmA5hGAAAAABgOoRhAAAAAIDpEIYBAAAAAKZDGAYAAAAAmA5hGAAAAABgOoRhAAAAAIDpEIYBAAAAAKZDGAYAAAAAmA5hGAAAAABgOoRhAAAAAIDpEIYBAAAAAKZDGAYAAAAAmA5hGAAAAABgOoRhAAAAAIDpEIYBAAAAAKZDGAYAAAAAmA5hGAAAAABgOoThWuyNN95Qly5d1KBBA4WFhSkhIUFPP/20nE6nv0sDgAp98MEH6ty5s0JCQtSiRQs9/fTT/i6pWq1cuVJDhgxR8+bNZRiGHnvsMX+XVK1mzZqlHj16qEGDBqpfv7569uypjz76yN9lAQBMKMjfBcB7TZo00bRp09SuXTuFhIToyy+/1IQJE2S1WjV58mR/lwcAZaxfv15DhgzRAw88oIULF+qbb77RnXfeqfDwcN15553+Lq9a5OXlqX379rrpppt0zz33+LucapeWlqY//elP6tatm8LDwzVv3jwNGjRIX3zxhS677DJ/lwcAMBHCcC32hz/8odTjVq1aacmSJfr8888JwwBqpKefflrdunXT9OnTJUkJCQnavn27ZsyYYZowfPXVV+vqq6+WJE2dOtXP1VS/Dz/8sNTjJ598Uh999JHee+89wjAAoFpxmnSAcDqdWrt2rVatWqXevXv7uxwAKNeqVas0YMCAUssGDBigAwcOKCMjw09VwZ8cDoeOHj0qm83m71IAACbDyHAt9+uvvyomJkaFhYVyOBx6+OGHNWnSJH+XBaCWsdsdWvrpKh0/cbLU8uMnTri/v/3fT8s8PlWPixLVsln0GY+TnZ2tqKioUstcj7OzsxUbG3tO/TgXm7bv1s49B8osr+xzcH7jSPW99KLqKbYKHDmapw8+W1NmeWX7bxiGBvXtoXq2cI+O+8QTT+jIkSO6/fbbz6F6AAA8Rxiu5erVq6f09HQVFBTo66+/1p///Gc1bdpUY8eO9XdpAGoRq9WiFrFRSl32Wbnri4rt2vLt9xU+bh5zvuJizq/yOqtS21bN9MHn3+hYXkG568/0HFgtFvW6pHN1lFll6kfUVVhoiL5J31nu+rO9Bq7onuRxEH7xxRf1xBNPaOnSpX79IAQAYE6cJl3LWSwWtWnTRklJSbrzzjuVkpKihx56yN9lAaiFOrdvo6QLWnm8X3CdII1I7i2r5ez/pURHRysnJ6fUsh9++MG9zp9sYaG6fsAVXu3b//Kuanp+Ix9XVP2u7n2JGtaP8Hi/8xs1UP/Lu3q0z+zZszVlyhQtXbpU/fr18/iYAACcK8JwgHE4HDrx2ylsAOAJwzB07VU9Va+uZ6N7g/r0UMMGlQtQl112mT7++ONSyz766CM1b968RowMtmsdp0subO/RPs1jztcV3ZOqqKLqFRJcRyMG9ZZhGJXex2qxaOTgPqoTVPmTzf72t7/p0Ucf1QcffEAQBgD4DWG4Fnv44Yf16aef6vvvv9d3332nf/3rX5o5c6ZuueUWf5cGoJYKDwvV8IFXVnr7C1rHqVunCyq9/b333qu1a9fqoYce0rfffqvXXntNzz33nB588EFvyq0SV/e6WI0anFepbYN/C4+WSoyKu+Tl5Sk9PV3p6ekqLCxUTk6O0tPTtWfPHm9L9qnmMed7dMp3/8u7qmmThpXe/p577tGsWbP0xhtvqF27dsrJyVFOTo5+/fVXL6oFAMB7hOFzcPToUT344IOKj49XaGiozj//fA0bNkzr16+vtuPfeeedSkxM1CWXXKKXXnpJ06dP19NPP10txwcQmNq2alap0VFbWKiGDbjCo1HEbt26acmSJVq2bJk6deqkv/3tb3r88cdr1G2V3AG3Ev0a1KeHx6cVr1+/XhdeeKEuvPBCZWdn64UXXtCFF16ocePGeVuyz/W97CLFVOK07xaxUR6Pis+ZM0cnTpzQ0KFDFR0d7f7iloAAgOrGBFpe+vHHH3XppZdq7969Cg0NVWJiorKysvTee+9p6dKleueddzRs2LAqreGZZ57RM888U6XHAGBOV/e6WHsOZCr3l4pH64YOuNzjU6olKTk5WcnJyedSXpWLa9pEvXpcqLSvN1a4TUKbOHVLaudx27169ZLT6TyX8qpckNWqEYN667kF76nYbi93m+DgOhqR3MujUXFJNb7vAADzYGTYS3/605+0d+9eXXzxxTpw4IA2bNigjIwM/eMf/1BxcbH++Mc/KjMz099lum3avlsrvt6oEycL/V0KgFogOLiORiZXPDrapUNbdWjbspqrql59L71IMVHlj47awkN1nYej4rXN+Y0aaECv7hWuH9y3hyK9mGwLAICagjDshQ0bNmj58uUKCgrSwoUL1aRJE0mS1WrVX//6V/Xu3VsFBQWaPXu2nystUWy36+OV6/S/L9drw7Zd/i4HQC3RrGkT9b70wjLL60fU1eB+l/qhoupltVo0clAfBQVZy6y77g9XeHwbodro0i4d1KZ5TJnlCW2aq2tHz0fFAQCoSQjDp7Db7XrjjTd01VVXqXHjxgoJCVFcXJwGDBigefPmyf7bqWKLFy+WJPXt21ctW5YdGbntttskSYsWLaq+4s9gw9ZdOnI0T/VsYeqeVPmJbgCgT4+LFBvV2P3YkDQiuZdCQ4L9V1Q1atKwvgb2urjUsi4d2yqxbQv/FFTNLIah66++stS/ty3c82vFAQCoiQjDvzl69Kj69++vP/7xj/rf//6n4OBgderUSQ6HQ5988oluu+02HTt2TJK0Zs0aSVLPnj3Lbcu1PCMjQxkZGdXTgQoU2+36bPUmSdKVl3RWnTpcJg6g8kpGR3urzm+jo5d3T1KruKZ+rqp69bgo0T062uC8ehrcN/BHxU9VP6KuhvS/zP142IArVNcW5seKAADwDcLwb8aOHavPPvtMsbGxSktLU2ZmptauXauMjAxlZ2fr8ccfV506dSRJu3aVnGrcunXrctuKjY1VcHBwqW395dRR4Ys7Jfi1FgC1U+PfRkejGkfqqsu7+bucamcxDA2/+kqFh4WYalT8VJ3bt1HSBa3UNamd2se38Hc5AAD4hOFkWkdt2LBBXbt2VVBQkDZt2qQOHTqccXubzaaCggJ9+OGHGjBgQLnbnH/++frxxx+1aNEir2eVfu6193Qs77hX+5Zw6lj+cTmdToWGBCv4tzAPAJ5yOp1yOp0ezxwcSBwOh6n773q7wOnR5nMsv0BOp1OGYaieLbzM40BH/8v21+zPAf2vWf2vVzdMd99ynVf7cs6spCVLlkgqud3H2YKwJJ04cUKS3KO/5QkJCZEkHT/ufZg9lndcR/Pyvd7/VCdOFjKTNAAA8JrT6Sz1vuT0x4GO/pftr9mfA/pf+/tPGJa0Y8cOSVKPHj0qtX1oaKgKCgpUWFhxuDx58qQkKSzM++uq6tU9l2uyGBUGAADnrqaPClU1+s/IMK+Bmt3/c8lMhGGVTJ4lSf/f3v0HR13feRx/7WaTkIT8UgjkJwGjmAQhKQQSQkhCgQQSiSm/7jyrJxYvrVO0TtXpWbWVihQd2p5jRwShypy29C4FxgtRkOAPoHBIwih0UCx6BBawSohpiPmxe39AUmIC2WyW/Wb3+3zMZGC/P/b7/mQ2DK+8v5/vJzIy0qXjo6Oj1dzcrHPnzvW63+l0qqGhoetYd7nb7pekfXV/0Z/eeFfhYSF6+N/+mQdnAQAAt6x4/j/V2PR3hYeF6t/v+5cer/0d4+85XrN/Dxi//4yfOcOS5s+fr8rKSq1cuVKPPPJIn8fPmDFDNTU1Wr58uX7605/22H/ixAklJSV1/T0hIcGtutyfM0xXGAAAeMZg7wpda4yfzjCfgcE9fuYMD1B6eroqKyu1d+9el46fMmWKampq9N577/W6v3N7fHy820FY8sycYeYKAwAAT/DH+YL9wfiZM8xnwP/GTxiWVF5eruXLl6uqqkpHjhxRWlraVY+fP3++Vq5cqbfeekvHjx/X6NGju+1fu3atJGnBggUDqsu9+9/pCgMAAM8Z7F2ha43x0xnmMzC4xz+QOcPcJn3J4sWLtWnTJiUlJemVV15Rfn5+174zZ85o/fr1WrZsmcLCwiRJc+bMUXV1tbKzs7VlyxbFxMTI4XBoxYoVeuyxxxQSEqKPPvpoQJ1hdzBXGAAAeFLn/MCIoWHd5gt2vvZ3jL/neM3+PWD8/jN+ktIla9eu1dmzZ7Vr1y4VFBQoPj5ecXFxstvtOnnypJxOp77//e93Hb9hwwbl5ubqz3/+s5KTk5Wamiq73S673S6bzabf/e53Xg/C7R0dqtlbK0nKz84gCAMAAADAFViNLmCwiIiI0I4dO/TSSy+poKBAzc3NOnTokKxWq4qKivTSSy8pPDy86/iRI0fq4MGDeuihhxQXF6fDhw+rvb1dt912m/bs2aNFixZ5fQy1H36shsYmhYeFaMqEVK9fHwAAAAB8Ba3DywQEBGjJkiVasmSJS8dHRkZq1apVWrVq1TWuzDUT0lLU0tqqkOBgusIAAAAAcBUkJj8SFGhTXtZ4o8sAAAAAgEGP26QBAAAAAKZDGAYAAAAAmA5hGAAAAABgOoRhAAAAAIDpEIYBAAAAAKZDGAYAAAAAmA5hGAAAAABgOoRhAAAAAIDpEIYBAAAAAKZDGAYAAAAAmA5hGAAAAABgOoRhAAAAAIDpEIYBAAAAAKZDGAYAAAAAmA5hGAAAAABgOoRhAAAAAIDpEIYBAAAAAKZDGAYAAAAAmA5hGAAAAABgOoRhAAAAAIDpEIYBAAAAAKZDGAYAAAAAmA5hGAAAAABgOoRhAAAAAIDpEIYBAAAAAKZDGAYAAAAAmA5hGAAAAABgOoRhAAAAAIDpEIYBAAAAAKZDGAYAAAAAmA5hGAAAAABgOoRhAAAAAIDpEIYBAAAAAKZDGAYAAAAAmA5hGAAAAABgOoRhAAAAAIDpEIZ92M9+9jNZLJYeX8eOHTO6NAAAgCuqqqpSRkaGgoODlZycrNWrVxtdkle98847Kisr06hRo2SxWPSLX/zC6JK86plnnlFOTo6io6MVFRWladOmqbq62uiyvGbjxo2aOHGioqOjFRISotTUVK1evVpOp9Po0gyxc+dOBQQEKCUlxevXtnn9ivCo5ORk7d27t9u24cOHG1QNAADA1R04cEBlZWX68Y9/rNdee0379u1TRUWFQkNDVVFRYXR5XtHU1KS0tDTdfvvteuCBB4wux+t27typJUuWKCsrS6GhoVq3bp1KS0v19ttvKzc31+jyrrmYmBg99thjGjt2rIKDg/Xuu+/qBz/4gQICAnT//fcbXZ5XnT59WnfddZdmz56tjz/+2OvXJwz7uICAAI0cOdLoMgAAAFyyevVqZWVl6emnn5Ykpaam6vDhw1q5cqVpwvDcuXM1d+5cSdIjjzxicDXet23btm6vV61aperqalVWVpoiDBcVFXV7PWbMGG3evFm7du0yVRh2OBy64447dN9996mlpcWQMMxt0j6uvr5eCQkJSkhI0Jw5c7Rnzx6jSwIAALii3bt3q7i4uNu24uJiffbZZ6qvrzeoKhjJ4XCosbFRYWFhRpfidU6nU/v379fu3btVWFhodDletXz5clksFkN/IURn2IdNnjxZGzZsUFpamhobG7VmzRrl5eWpurpas2bNMro8AADgQz7/skHnzjf12N7e0dH150fH63u87mSRdMOoOFmtV++12O32Hne1db622+1KSEgYyDDc1trapk9Pnumx3dXxS9KI66MUGTH02hd7jfzfqbNq+bq127bexnul78GQ4CAlxcX0+7orVqxQQ0OD7r33XndL94jzjU0680VDj+39+Qwkx49QUFBg39c6f17x8fFqbW2Vw+HQE088oWXLlg18EAPgcDj0yWen9M2Zy/0Zf3TkUA2/LqrPa9XU1OiFF15QbW2tLBaLJ8p3C2HYh3XeXtMpLy9P9fX1euaZZwjDAACgXyyyaOOf3lRbW3uv+5svtGj9pqorvp46MV03jjYmyHpCYKBN7/3vB/ro+Ile9/c1/sjwMN2/ZME1r/Naajj/lV7d+lav+7453t623V42s99h+Le//a1WrFihrVu3GvaLkE6BQYH6r6q31dj091739/UZGDsmUTcmx7t0rfDwcNXV1am5uVl79uzRT37yE8XFxemee+4Z2CAGwGq16sixz7T34OFe9/c1/qBAm5bdPb/P6/ztb3/THXfcoQ0bNhg+3ZPbpP1MTk6OPv30U6PLAAAAPmbYdZEqKcx269zh10WpOH+KS8fGxsbq9OnT3badOXOma59RLBaLFsyZrtAhwW6dv3BugdvnDhbjU29QRpp7T/TNTE/R+JvH9OucZ599Vg899JC2bt2qmTNnunVdTwodEqyFc/PdOzckWPPn5Lvc5bRarUpJSdH48eNVUVGhhx9+WI8++qhb1/akOQVTNPy6SLfOLZmRo2HRfZ/74Ycf6tSpUyotLZXNZpPNZtOTTz6pTz75RDabTa+++qpb13cHYdjPHDx4UImJiUaXAQAAfNCUjFSNHdO//0dYrRYtLi1UUKBrNxzm5ubqjTfe6Laturpao0aNMrwzGBEeptuK8vp9Xu7EcUpxsSM42M2blavI8P7N3Y0MD9O8mf178NXjjz+un//856qqqhoUQbjTjaMTNHVier/PKy/KU8TQULev63A41NLS4vb5nhIUaNOi0kJZ+3nr8s03JGnyhJtdOjYrK0sffPCB6urqur4qKiqUmJiouro6lZSUuFO6W7hN2oc9+OCDKi0tVXJyshobG7V27Vpt375dW7ZsMbo0AADggywWi+bPydev1/9RzRe+dumcb0+dqIRY15d1/NGPfqSpU6fq0Ucf1Xe/+13t27dPzz33nH71q1+5W7ZHjb95jP5yLEW1h4+5dHzM9VEqzp/cr2s0NTXp2LGL79/a2qrTp0+rrq5OQ4cONWSt1ctd7I4WaN0f/sflcxaWFCikH13xBx54QGvWrNFrr72msWPHdt0pEBISoshI97qSnlScP0UfHz+pz79scOn4zPQbdctY17viTzzxhPLy8jRmzBi1tbXpnXfe0S9/+UvdfffdblbsWYmxMZox9Vvasft9l44PDQnW/OLpLnfFw8LCNG7cuG7bYmJiFBQU1GP7tUZn2A0Oh0Pbtm3Tk08+qXnz5ik2NlYWi0UWi8Wrtyjb7XbdeeedSk1N1ezZs3X06FHt2LFDt956q9dqAAAA/iViaKjKXeyOJsbGqCAno1/vn5WVpc2bN+v111/XhAkT9Pjjj+upp54aVMsqzZvpWnfUarVoUWmhAl3sinc6cOCAMjMzlZmZKbvdrueff16ZmZn63ve+527JHpWSHK/cia6FktxJ45Qyqn9d8d/85jdqaWlReXm5YmNju74Gy7JCQYE2LS4tlNXad7iLihiqsln964o3NjaqoqJC6enpys7O1gsvvKCnn35aq1evdrdkjyvMyVSii7/k+k7RdIUPoCtuJIvT6fzmA8PQh4aGBkVHR/e67/jx40pOTvZuQQAAAB72h9drVHv4yut+BgbatOxfv+PSk2N90bHPTmrd76/eHZ2VN0nfnvotL1XkXW1t7Xru5Uqd7eXpyp1iro/WD+8q7/cvA3zFW7sPavt7B656zNJ/KtUNo+K8VJF3ff5lg/5jw3+rrb3jisd8a9xNWlRS4L2iPIzOsBusVqsyMjK0dOlSrVmzRvv37ze6pD59/mWDvjz/ldFlAAAAH1E2K1dRV1kmqKQw22+DsCSljIpX7qQrd0eT4mJUkJ3hvYK8LLBz7ugVuqNWq0WLb+1/V9yXFORkKDH2yk/HnpZ1i98GYenig/HmXuWhelERQzVv5lQvVuR5hGE3REREqLa2Vi+++KLuvfdeZWZmGl1Sn15/a6+effH3OvDBUaNLAQAAPmBIcJAWzi3odd9NoxM1JSPVuwUZoHj6ZMVc3/NuwM6gGNDHmsq+LmHkcH07d2Kv+2ZNm6T4EcO8XJF3BVitWlRa0GvgHzEsWkXTswyoyruyM9N0Uy9LplkkLSop0JDgIO8X5UH+/RPcTx0dHdq4caNmz56t4cOHKzg4WElJSSouLta6devU0XHlWwQGsxOnzuroX09ITik5wdi1vAAAgO+4YVScpmXd0m1b6JBgLZjr+hIyviww0KbFt/bsjpbOyHZpCRl/UJCd0WPt4KS4EZo+ZYJBFXnX8Ouieiw5djEkFyrQ5r9d8U4XlxzL7/GAtGlZ4zUmyfe74oThSxobGzVr1izdeeed2r59u4KCgjRhwgQ5HA69+eabWrp0qb76yjdvM+58Elxm+o2m+YcbAAB4RtH0LI0Y9o/u6ECXkPE18SOGada0SV2vx45J1OQJ/t8V79QV/C51Ry8uvVPg913xy03JSNVNo/+x5NjMaRP9vit+uYjwMJXPntb1esSwaM2ePukqZ/gO83yK+3DPPfeopqZGCQkJ2rlzp06ePKn9+/ervr5edrtdTz31lAIDA40us986u8JWi0WFUwf/7dwAAGBwCbT945bgzPQU3XKz60vI+IvpUyYoKW7ExSVk5pijK365YdGRKp1xsTtaMiPHdM0Vi8WiBXPzFTokWKPiRyjfJF3xy41PvUEZaSkKsFq1+NYZftMV52nSkt5//31NmjRJNptNtbW1/V7fqr29vSsoe/Jp0s+9XKmvmi4M6D2aL7SovaNDgTZbv9Z/AwAAuFxrW5sCbTbTBcFODodDHQ6H34SA/nI6nWpta1dQoHk/A23t7QqwWmU1UVf8ck6nU23t7QoaZA3C8KEh+uFd33HrXHP+NH/D5s2bJUklJSVeX+j5ar5quqDGpr975L3a2tvV1tTukfcCAADm1PJ1q9ElGO6Cvja6BEN93cpnwOz86d8BwrCkI0eOSJJycnIMrqS78KEhAzqfrjAAAAAAfzaQzEQY1sWHZ0lSZOTgmv/gbrtfujhX+PmNm2W1WHT/kvmmm9sBAAAAAFdDGNbFdYMl6fz58wZX0t1A5gw3X2iRJAUEBOjFV1/3ZFkAAAAAMCgwZ3iA0tPTVVlZqb179xpdSjeemDPMXGEAAAAA6IkwLKm8vFzLly9XVVWVjhw5orS0NKNLkuT+/e/MFQYAAABgBgOZM8zSSpcsXrxYmzZtUlJSkl555RXl5+d37Ttz5ozWr1+vZcuWKSwsrMe512ppJXdcPlf4waWLmCsMAAAAAL0gDF/S2NiosrIy7dq1S5IUHx+vuLg42e12nTx5Uk6nU+fOnVNUVJQkqaysTLt37+46/4svvpAkRUdHd609lpubqy1btnh1HBv+uE1H/3pCE8fdpIUlBV69NgAAAAD4Cm6TviQiIkI7duzQyy+/rI0bN+rQoUM6dOiQRo4cqaKiIi1cuFDh4eFdx58/f74rAF/u3Llz3Y7xphOnzuroX0/IarGocGqmV68NAAAAAL6EzrAf+bT+tDa/+Z7iRwyjKwwAAAAAV0EY9jMOp1NtrW0KDg4yuhQAAAAAGLQIwwAAAAAA07EaXQAAAAAAAN5GGAYAAAAAmA5hGAAAAABgOoRhAAAAAIDpEIYBAAAAAKZDGAYAAAAAmA5hGAAAAABgOoRhAAAAAIDpEIYBAAAAAKZDGAYAAAAAmA5hGAAAAABgOoRhAAAAAIDpEIYBAAAAAKZDGAYAAAAAmA5hGAAAAABgOoRhAAAAAIDpEIYBAAAAAKZDGAYAAAAAmA5hGAAAAABgOoRhAAAAAIDpEIYBAAAAAKZDGAYAAAAAmA5hGAAAAABgOoRhAAAAAIDpEIYBAAAAAKZDGAYAAAAAmA5hGAAAAABgOoRhAAAAAIDpEIYBAAAAAKZDGAYAAAAAmA5hGAAAAABgOoRhAAAAAIDpEIYBAAAAAKZDGAYAAAAAmA5hGAAAAABgOoRhAAAAAIDpEIYBAAAAAKZDGAYAAAAAmA5hGAAAAABgOv8P9x0nmfVnG0MAAAAASUVORK5CYII=", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "# Draw the circuit without barriers\n", - "circuit.draw(output='mpl', plot_barriers=False)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0IAAAKxCAYAAAB+Lxx3AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAACQlklEQVR4nOzdeXhTVf7H8c9NupFAgbLYQoGylK1sUkDBDRSUCoigiAoOIqKCCy4D6jhu4wIIyijKiAuijiD+FBXBbQQVAUG2IvsmW0uLVkDoRtskvz9qIqUpNCVt2tz363l4bHLvPfd7Ypd8cu49x3C5XC4BAAAAgIlYAl0AAAAAAFQ0ghAAAAAA0yEIAQAAADAdghAAAAAA0yEIAQAAADAdghAAAAAA0yEIAQAAADAdghAAAAAA0yEIAQAAADAdghAAAAAA0yEIAQAAADAdghAAAAAA0yEIAQAAADAdghAAAAAA0yEIAQAAADAdghAAAAAA0yEIAQAAADAdghAAAAAA0yEIAQAAADAdghAAAAAA0yEIAQAAADAdghAAAAAA0yEIAQAAADAdghAAAAAA0yEIAQAAADAdghAAAAAA0yEIAQAAADAdghAAAAAA0yEIAQAAADAdghAAAAAA0yEIAQAAADAdghAAAAAA0yEIAQAAADAdghAAAAAA0yEIAQAAADAdghAAAAAA0yEIAQAAADCdkEAXAP9yuVzKdjoCXYZPbBarDMPwS1sul5RXtbqvMKvkp+4DAAAUvh/Mzg50GaVms9n89l7QFwShIJPtdKj2kv8FugyfHLm0j+xW/3wr5jmkB+f5pakKM3moFM5PIgAA8JPs7GxVr1490GWUWmZmpux2e4Wfl0vjAAAAAJgOQQgAAACA6RCEAAAAAJgOQQgAAACA6RCEAAAAAJgOQQgAAACA6RCEAAAAAJgOQQgAAACA6RCEAAAAAJgOQQgAAACA6RCESlCvXj0ZhqGUlJRAlwKgAmQdPrvjnQ4p+6hfSgmInD8kR8HZtXG2ryEAIDiFh4ercePGgS6jmJBAF1AZpaSkKCMjQ1FRUYqNjQ10OQDK2f510o5vpYS+UkyC78c7HdKmRdKRA1LidVL1ev6vsTxlHZbWfVBYd4eBkrUMfxkO7ZA2LZSa9ZCanu//GgEAFSsyMlI9evRQYmKiEhMTFRMTo7CwMOXl5SktLU1r167V2rVrtWLFCh07dqzEdsLDw/Xxxx+rffv26tWrl3bt2lWBvTg9gpAXycnJkqQOHToEthAA5e7wfmnHksKvN39R+F9fwpA7BP26o/Dx+vlSj1FlCxOB4HRKGz6WTmQW/vv5U9/DkDsEuZzS7mWFgape8/KrGQBQfjp27KixY8dq2LBhstvtJe43aNAgSVJWVpb++9//asaMGfr555+L7OMOQUlJSZKkzz77TO3atZPD4Si/DviAS+O8IAgB5lG7kRTb6a/Hm7+Q0jaX7thTQ5DFKrW5vOqEIEmyWAprtvxZ8+97CsNQaS+TOzkESYUhsm7T8qkVAFB+6tatq3nz5ik5OVm33Xab1xCUl5dX7Dm73a7bb79dGzZs0Pvvv6+6detKKh6CMjMzNXr06EoTgiSCkFcbNmyQVJiIzcoxa7byL79Szi+/LrbN5XKp4O8PKr/fVXLt2VvxxVWAlC3f6cXhhtYumlriPi8ON/Tp1P4VWBXKg2FIrS7zPQx5C0Edrq6aIaB2I+nca3wPQ95CUNsrJIO/LABQpQwaNEhbtmzRdddd53nu2LFjevXVV3XjjTeqVatWslqtCg8Pl9VqVatWrXTjjTdq5syZRS6LGzp0qDZv3qwhQ4YUC0FJSUlatmxZhfftdIL+z1VGRoYmTJigFi1aKCIiQo0aNdK4ceOUlZWlUaNGyTAMvfzyy0WOOXlE6Mcff9SgQYNUr1492Ww29ejRQ19/XTwcBBvLTcOkuCZyzHxdrt8yimxzzv9Erp83ynLTcBlN4wJTIOBHvoahYApBbr6GIUIQAASHcePGaf78+apXr/AG14yMDN15551q2LChxowZo7lz52rHjh1yOgt/4TudTu3YsUNz587VHXfcoYYNG+rOO+/U77//LkmqX7++Pvjgg0ofgqQgD0LJyclq3769pkyZovT0dLVt21b5+fl66aWXNHToUG3dulWS1KlTJ88xmZmZ2r17t6xWqxYvXqwLL7xQK1as8Eya8OOPPyopKUkLFiwIRJcqjBEaqpDxD0i5uXK88G/P864DKXLOfkdG61ayDLkmcAUCflbaMBSMIcittGGIEAQAweGuu+7Sv//9b8/j+fPnKyEhQTNmzFBmZmap2sjMzNSMGTOUkJCgTz/9tMi2EydOVNoQJAVxEMrIyNCAAQOUnp6uBx54QGlpaVq3bp3S09M1efJkLVq0SKtXr5ZhGEXuBdqwYYNcLpck6emnn9abb76pgwcPav369UpLS9Nll10mp9Op++67z7NfsDLiW8hy/XVyrV0n56Iv5HI45HhuquRyyTr+ARlWa6BLBPzqTGEomEOQ25nCECEIAILDRRddpBdffNHz+IknntA111yjX3/9tUztHT16VGFhYUWeCw0NlWEYZ1VneQraP1333HOPUlJSdNddd2nq1KmqUaOGZ9uECRPUsWNHFRQUKC4uTpGRkZ5t7vuDHA6H3nnnHd18882y/vmGv2bNmnrjjTdksVj0yy+/aMeOHRXbqQCwDLtBatZMjtffkPOVV+XavkOWm/8mo5E5phUvyMtWzvEMr/8QnEoKQ6kbgz8EuZUUhtK2EoIAIBjYbDa99dZbslgKf4E/++yzevLJJ8vc3qkTI7gnVbBYLJo1a5ZsNtvZF10OgvLP19atWzVv3jzVrVtXEydO9LpPYmKipOITIrjvD0pKSvJMC3iyuLg4NWzYUJKUmprqte2kpCQZhqEnnniijD2oPIyQEIWMv1/Ky5dz4SIZ7RJkGXx1oMuqMCs/elyvjann9R+Cl7cwtPUrc4QgN29haPMiQhAABIOnnnpKzZsXrnPwww8/6J///GeZ2/I2O1yfPn08l8O1aNFC//rXv86+6HJQhSZ5Lb25c+fK6XRq2LBhql69utd9qlWrJqnkIDRmzJgS23ePIHlr+4MPPvC0cba6dOmi9PR0n45xhYVJM1/xy/k97HYpNFQqKJDRtYsMi3/f+bSMbynDy3SMZWENraZBT+/0S1uS1K7XbYo/b4jXbR9P6uOXc7SMj5cjP8cvbcH/bur1jC7rOMLz2OVyacqHN2nj898FrqgK1LLheRo/aI5CQ8I9zy3b8n9688UH5HKnIgBApeKe2MCbWrVq6Y477pAkZWdn65Zbbinz7R7eQpD7nqBbbrlFycnJstlsGjNmjJ566in98ccfXtuJj4/3jE6VRXR0tNasWePzcUEZhJYsKVwdsVevXiXuk5KSIqloEHI4HNq0aZMsFot69uzp9TiHw6H9+/dLkho3blxk27Fjx3Tvvfdq6tSpGj58+Nl0QZKUnp5e4qhTiSLCFXrWZ/6Ly+WS4/lpUkG+1LiRnHPel+WSi2U0iPHbOQ6mHZRyT/ilrZBw/w691oqOV+N2vf3a5qkOph1UwYnscj0HysZqCVGoin9PFeQavv9sVlFNoyTDKHo/YKhh16H0X5Vf4J+fWwBAxRkxYoTnUrU33nhDu3btKlM7pwtBkrRz5069+eabuvvuu2Wz2TRixAi99NJLXttKS0srUw1nKyiD0L59+yRJTZo08bq9oKBAy5cvl1Q0CG3fvl05OTmqX79+kXuKTrZy5UodP35cCQkJio6OLrLtkUceUcuWLTVs2DC/BKFT2y8NV1iYfjvrM//F+ckCuTb8LMvIEbJ0P18Fd94tx/PTZJ062W83vzWIaeDXEaGqpkFMA0aEKiGrJUR39H1ZXVsWrhXlcrlkGIYMw9D4699W7dpRWrHtowBXWb66tLhSdyS9opBTVog9r82VmnjbIr288DblOwhDAFDZOJ3OEsPF6NGjPV//5z//KVP7ZwpBJ7d/9913e85bUhCKiYk56xGhsgjKIJSVlSVJysnx/uZy3rx5ysjIUI0aNdS06V8X+bsnSvC2aq7bq6++Kkm68cYbizy/Zs0avf7661q7du1Z1X5qm77KchSo9pL/+eX8rtRUOWfNltGqpSzXXSvDapVl+DA533pbzk8WyDpooF/Os2PnDtmt/vlWPFEgPTjPL01VmB07dyo8KH8Sqy5vs8M5HX8Ff4th0W19X9SLL76omIQAFVnOTp0d7lQdm16m+S/sVoeBkp9+fAEAfpKVleX1Fo7atWsrIaHwD9dPP/2kbdu2+dx2aUOQVHjf/k8//aRu3bqpXbt2qlmzptfL43bu3Cm73e5zLWcrKG9zdafCdevWFduWlpam8ePHSypcMPXkUQ33vT1Hjx71OiPc0qVL9d5776lOnTqedCsVXi53++2366677vJ8c1V1LqdTjikvSE6nrOPv90yVbbnuWhkt4+WcNVuug4EZxgTKU0lTZMvLAOjpFl2tyrxNkX2y0i66CgCoXDp37uz5euXKlT4f70sIclu1apXX81cGQRmEevcuvKdj8uTJRQLN6tWr1atXL2VkFE59fPJCqtJfQSg0NFRjx44tklgXLFjgmUVu9uzZRS6de/nll3Xo0KGgmCXOzfnhfLm2bJVlxHAZJ90LZVitsv79fsnpkOP5aUG/lhLMpbTrBJ1p0dWqrKR1gjxB0CjdoqsAgMrn5Pe+vl7FVJYQdOp5Tn3vHWhBGYQmTJigOnXq6MCBA0pISFD79u0VHx+vbt26qVmzZrr00kslFZ8xzn1p3IwZM/Ttt98qNjZW3bp1U6NGjTRw4EAdPXpU06dPV//+/T3HZGRk6NFHH9Vjjz2mgoICHT16VEePHpUk5ebm6ujRo6eduaMycu3fL+fb78po01qWawYX227ENZFl+DC5Nm6S85MFAagQ8L9SL5Z6hkVXq7LSLpZ6pkVXAQCVU61atTxf+zLpT1lD0KnnqV27dumLrQCGK0g/0t+6davGjx+v77//XpLUtm1bjRo1SqNHj1bz5s21Z88erVq1St26dZNUOENbTEyMoqKi9Pvvv2vRokV68skntWnTJtntdl188cV66KGH1LVr1yLnSU5O1rnnnnvaWvbs2aO4uLhy6eep/HmPUEU5cmkfU98jNHmouEcowEoTgr55XpJLkiH1fkByuaTti6WU5L/2SUgqfhlZVXGmEHRq/yXpyAFp/UeS888AVKepuGcIACqBku4RiomJUWxsrCIiIrRx40bPh/dn0rFjRy1btkzVq1f3KQRJheGrffv2ys3N1YEDB7wuDZOZmRmQe4SCNgiVJDMzU5GRkTIMQ8ePHz/rlW4zMzO9TmrQq1cvjRgxQjfffLPOP/98RUREnNV5SosgRBCCb0o7EuQtCARLGCrNSJC3/kuEIQCojEoKQmfjwgsv1AcffKDrrruu1CGotAIVhEz3p2rz5s1yuVxq2bLlWYcgqXBR1ZLWHIqLiytxG4DK4Via9Nufa/CWeDlcCYw/L5OT/gpDv/wo1W9VdYKA0yntWXHmy+FK4r5Mzh2Gft8jHT1QGIgAAMFj2bJlatasmXJzcwNdit8E5T1Cp7Nx40ZJxe8PAmBOtWKldv0ka6hvIcjNOOmeoWo1pc5Dqk4IkiSLRTr3WskW5XsIcnOHIWtY4fGEIAAITsEUgiQTjghVVBAy2RWHQJV2TmupdmMprIyDxO4wlJ9T9jYCKby61OUGKTTc9xDkVruRdMGtVbP/AABzIggBgM7+DbxhVO0QEFbND21U4f4DAMzHdEFoyZIlgS4BAAAAQICZ7h4hAAAAACAIAQAAADAdghAAAAAA0yEIAQAAADAdghAAAAAA0yEIAQAAADAdghAAAAAA0yEIAQAAADAdghAAAAAA0wkJdAHwL5vFqiOX9gl0GT6xWax+ayvMKk0e6rfmKkSY/7oPAAAgm82mzMxMv7Q1Zeb7OpaVrUi7TeNvv77E586GzWY76zbKgiAUZAzDkN1q3v+thiGFm7f7AAAAhe8H7Xa/tBUWHqGwfIfCwiM8bXp7riri0jgAAAAApkMQAgAAAGA6BCEAAAAApkMQAgAAAGA6BCEAAAAApkMQAgAAAGA6BCEAAAAApkMQAgAAAGA6BCEAAAAApkMQAgAAAGA6BCEAAAAApkMQAgAAAGA6BCEAAAAApkMQAgAAAGA6BCEAAAAApkMQAgAAAGA6BCEAAAAAphMS6AIAf3K5pDxHoKvwTZhVMoxAVwEAQHBwuVzKzs4OdBk+sdlsMngzUOEIQggqeQ7pwXmBrsI3k4dK4fwkAgDgF9nZ2apevXqgy/BJZmam7HZ7oMswHS6NAwAAAGA6BCEAAAAApkMQAgAAAGA6BCEAAAAApkMQAgAAAGA6BCEAAAAApkMQAgAAAGA6BCEAAAAApkMQAgAAAGA6BCEAAAAApkMQOo169erJMAylpKQEuhQA5czlqhxtAACAihES6AIqq5SUFGVkZCgqKkqxsbGBLgdAOco6LG39Wmp3pRQRWbY2Du2QDm2V2vWXLFb/1gcACAyr1aq2bduqQ4cOioyMlMViUXZ2trZt26bk5GTl5OScsY3w8HC9//77evPNN7Vw4cIKqBqlRRAqQXJysiSpQ4cOgS0EQLnKOiytnSflZRX+N3Go72Ho0A5p02eFI0I/L5A6XEUYAoCqKiIiQkOHDtUtt9yirl27qlq1al73czgc2rx5s+bOnas333xTv/32W7F9wsPD9fHHHyspKUlXXnmlrrnmGsJQJcKlcSUgCAHmYA0t/CdJOX8UhqHcY6U//uQQJEmh1SSD36wAUOWEh4frySefVGpqqmbPnq2LL764xBAkFY4WdejQQRMnTlRKSorefvttRUdHF2nPHYIkKS8vT0ePHi3vbsAHjAiVYMOGDZKkjh07BrgSBELKlu/00bO9dOENU5TY7+9e93lxuKG4Tv008O98slOVRdQoHAVaO0/KOfpXGCrNyNCpISimndT2Cskwyr3sCuHIl9K3SakbJLnvf3JJ25dIsR0le51AVgcA/tOtWze99dZbatu2bZHnd+/erdWrV2vdunVKT0+Xy+VSrVq11LFjRyUmJqpjx46yWCwKCwvT3/72N/Xv31933323PvrooyIhKDMzU0lJSVq2bFkguocSmOJzy4yMDE2YMEEtWrRQRESEGjVqpHHjxikrK0ujRo2SYRh6+eWXixxz8ojQjz/+qEGDBqlevXqy2Wzq0aOHvv766wD0BEB5cIeharUKH5dmZCjYQ9Dve6UfZkpbv5KOpRfddmCd9ONb0uYvJacjIOUBgN+MGTNGK1as8ISgvLw8vf322zrvvPPUokUL3XDDDZoyZYreffdd/fe//9XLL7+s0aNHq3PnzmrevLkmTZqk33//XZIUFRWl9957T7t27SIEVQFBH4SSk5PVvn17TZkyRenp6Wrbtq3y8/P10ksvaejQodq6daskqVOnTp5jMjMztXv3blmtVi1evFgXXnihVqxY4Zk04ccff1RSUpIWLFgQiC4BKAe+hKFgD0EZv0jJ86WC3NPvl7ZJ2viZ5HJWTF0A4G/33nuvZsyYIau18MbO1atX69xzz9XNN9+sn3766YzH7927Vw8//LBatWqlOXPmeJ53v2ckBFVuQR2EMjIyNGDAAKWnp+uBBx5QWlqaZ2hz8uTJWrRokVavXi3DMIrcC7Rhwwa5/nyH8/TTT+vNN9/UwYMHtX79eqWlpemyyy6T0+nUfffd59kPQNVXqjDkCu4QlJfjW7j5bZe0f2351gQA5WHo0KGaNm2a5/HkyZPVvXt3bdmyxee2fv/9d91yyy2eK4rcvvrqK0JQJRbUQeiee+5RSkqK7rrrLk2dOlU1atTwbJswYYI6duyogoICxcXFKTLyr5sB3PcHORwOvfPOO7r55ps9nxTUrFlTb7zxhiwWi3755Rft2LGjYjuFClWQl62c4xle/yE4lRSGdNJnHsEagqTCUR5Hvm/HHFjPqBCAqiUmJkb/+c9/PI8ff/xxPfTQQ3I4yna9r3tiBPcVRu4Pyq+55hr17t37rOtF+QjaILR161bNmzdPdevW1cSJE73uk5iYKKn4hAjuNJ+UlKRBgwYVOy4uLk4NGzaUJKWmpkqSfvjhB/Xu3VsxMTEKDw9XbGxskUvvUDWt/OhxvTamntd/CF7ewtCpgjEEuVxSygbfj8s9Jv2+x//1AEB5mTlzpmrXri1JmjNnjv71r3+Vua1TZ4fLzMzUCy+84Nn+5ptvFvkwHpVH0M4aN3fuXDmdTg0bNkzVq1f3uo97SsSSgtCYMWNKbN89guRu+8iRI2rfvr1uv/121a9fXykpKZo4caK6d++uTZs2lWlR1i5duig9Pf3MO8LDGlpNg57e6bf22vW6TfHnDfG67eNJffxyjpbx8XLkn3lBNlS8WvZoPXTt/ym6dtMizy/d/L7e+vd4uRRcl8ZGhFXXq2O3lenYR/8+WZ+tnu7nigDAd07n6YeoL774Yg0YMECSlJ6errvvvrvM5/IWgpKSkrR8+XJ16tRJl112mRo3bqx77rlHzzzzTIntxMfHy2KpnOMTg0beK3v1SKWlp3nez3p7LpCio6O1Zs0an48L2iC0ZMkSSVKvXr1K3CclJUVS0SDkcDi0adMmWSwW9ezZ0+txDodD+/fvlyQ1btxYknTVVVfpqquuKrJf165d1apVK3300UcaN26cz31IT0/3jDihdELCbX5tr1Z0vBq3K98h7YNpB1VwIrtcz4GySVWq5nzzrO679jUZfw79uFwuzfxkgn49mhLg6vyvVvX6ZT42Nyef31cAqoSxY8d6vh4/frwOHz5cpnZKCkHue4Juv/127dixQxaLRbfddpsmTZpU4qV3aWlpZaqhIjj/rNnpcHh+z3t7rioK2iC0b98+SVKTJk28bi8oKNDy5cslFQ1C27dvV05OjurXr1/iMObKlSt1/PhxJSQkFFk461R16hQushESUraX+XRtwztraMkLn1VWDWIaMCJUSXVpcaXGXDnDE4IkyTAMTbtzqSZ9OESHMyvvH66yCLWGl/lYa5jLc8kwAASS0+ksMVhER0dr8ODBkqRDhw5p3rx5ZTrHmUKQVLgG0aJFizRgwAA1btxY/fr1K3HG4ZiYmEo7ImT58z55i9Xq+T3v7blAKut75qANQllZWZKknBzvbzDnzZunjIwM1ahRQ02b/nXZi3uihLy8vBLbfvXVVyVJN954Y7FtDodDTqdT+/bt08MPP6zo6Ghdd911ZepDWYb4zO5EgfRg2X6nBcyOnTsVHrQ/iVXXqVNkG1bJ9ecHefVrxek/D6wu1aKrVc26D6XDe30/7sXZj8oe9ajf6wEAX2VlZZV4W8Tll1+u0NBQSdKsWbOUn+/j7DAqXQhy+89//uO5DO90QWjnzp2y2+0+11IRnn3lPR3LzFJMdIznaipvz1VFlTN6+oE7Ga5bt67YtrS0NI0fP15S4YKpJ3/a674/6OjRo15nhFu6dKnee+891alTx+s1pZdcconCwsIUHx+v5ORkLVmyRPXqcWM9UJV4WycoNKLwa/evi9IsuloVxXby/ZioxpI9yu+lAIDfuSfKkqTFixf7fLwvIUiSvv/+e8/lcCefG5VD0AYh91SFkydPLhJoVq9erV69eikjo3D645MXUpX+CkKhoaEaO3as/vjjr+miFixY4JlFbvbs2V4vnXvzzTe1cuVKzZ07V5GRkbr88ss99xMBqPzOtFhqaLXSLbpaVdVtJkWe48MBhhR3frmVAwB+dXIY8fZh+en4GoIkKTs7W9u2FU5C0759e4WFhZWhapSXoA1CEyZMUJ06dXTgwAElJCSoffv2io+PV7du3dSsWTNdeumlkorPGOe+NG7GjBn69ttvFRsbq27duqlRo0YaOHCgjh49qunTp6t///5ez9uqVSudd955uv7667V48WIdP35czz33XPl2FoBfnCkESZJhKcWiq1WYxSJ1HCzZSjPCYxS+PlGNy70sAPAL9yRX6enpOnLkSKmPK0sIcnMvpRIWFqZzzvHlkyaUt6C9MyE2NlY//PCDxo8fr++//1579+5V27ZtNXPmTI0ePVrNmzeXVDQIpaen69ChQ4qKitKtt96qmJgYPfnkk9q0aZPsdrsGDx6shx56SF27di1VDbVq1VKLFi20a9eucukjyk9s254a99/TT418pu2oWkoTgtzc6wytnSflHP0rDAXLPUPhdqnrDdKO76VDWyWnl0mOatSXml8k1W1afBsAVFbvvvuu6tWrp+PHj/t03AsvvFCmECRJ33zzjf744w/l5OSUeO86AiNog5AktWnTRgsXLiz2fGZmpvbu3SuLxaJ27dp5no+OjvasBCwV3tTWr1+/Mp//119/1fbt23XeeeeVuQ0A5c+XEOQW7GEotJqU0FeKv0RK2yzt/O6vbV2HSZHRwbWYLABzeOSRR8p03DPPPKPevXurQYMGPoUgqXDx1pkzZ5bpvChfQR2ESrJ582a5XC61bNlSNpt/1p0ZPny4WrRooU6dOqlWrVrauXOnpk2bppCQEN13331+OQcA/zua4nsIcvMahj6Qzr9ZsgbJb9ewalKTLtLO7yW5JBlSzZhAVwUAFevgwYPq1auXGjdurJUrVwa6HPhJkPyp9s3GjRslFb8/6Gycf/75euedd/Tiiy8qNzdXjRo1Uq9evfSPf/yjxLWMAAReZIxUt4X0207fQpDbqWGo6fnBE4IAAH85ePCgDh48GOgy4Eem/HNdHkHorrvu0l133eW39gBUDItVat9fOrhRatixbJd7ucPQHwelc1r5v0YAAOB/BCEApmexlm39nJNF1JAiCEEAAFQZpgxCS5YsCXQJAAAAAAIoaNcRAgAAAICSEIQAAAAAmA5BCAAAAIDpEIQAAAAAmA5BCAAAAIDpEIQAAAAAmA5BCAAAAIDpEIQAAAAAmA5BCAAAAIDphAS6AMCfwqzS5KGBrsI3YdZAVwAAQPCw2WzKzMz0W3tTZr6vY1nZirTbNP7264s99gebzeaXduAbghCCimFI4XxXAwBgWoZhyG63+629sPAIheU7FBYeIbvdXuwxqi4ujQMAAABgOgQhAAAAAKZDEAIAAABgOgQhAAAAAKZDEAIAAABgOgQhAAAAAKZDEAIAAABgOgQhAAAAAKZDEAIAAABgOgQhAAAAAKZDEAIAAABgOgQhAAAAAKZDEAIAAABgOgQhAAAAAKZDEAIAAABgOgQhAAAAAKZDEAIAAABgOgQhAAAAAKYTEugC4F8ul0vZTkegy/CJzWKVYRh+acvlkvKqVvcVZpX81H0AAArfC2RnB7oMn9hsNr+9FwBKiyAUZLKdDtVe8r9Al+GTI5f2kd3qn2/FPIf04Dy/NFVhJg+VwvlJBAD4SXZ2tqpXrx7oMnySmZkpu90e6DJgMlwaBwAAAMB0CEIAAAAATIcgBAAAAMB0CEIAAAAATIcgBAAAAMB0CEIAAAAATIcgBAAAAMB0CEIAAAAATIcgBAAAAMB0CEIAAAAATIcgdBr16tWTYRhKSUkJdClAuco6LB05cHZtZOyWTmT6px4AQOVisVhks9kUFhbm87Hh4eEaPnx4OVQFnJ2QQBdQWaWkpCgjI0NRUVGKjY0NdDlAuck6LK37QMrPlToNlqIa+97GoR3SpoVStZpS4lApvLr/6wQAVJxWrVpp8ODBSkxMVGJiouLi4jzbsrKylJycrLVr12rZsmX69NNPlZeX57Wd8PBwffzxx0pKSlJ8fLwef/zxCuoBcGaMCJUgOTlZktShQ4fAFgKUs32rC0dynAVS8nzp8H7fjneHIJdTyj4iHUgulzIBAOXMMAwNHjxY33zzjbZt26Znn31W11xzTZEQJEl2u10XXHCB7rnnHn3wwQfav3+/nn76acXExBTZ7+QQJEn333+/Gjcuw6dtQDkhCJXA7EHIMWu28i+/Us4vvy62zeVyqeDvDyq/31Vy7dlb8cVVgJQt3+nF4YbWLppa4j4vDjf06dT+FVhV+Wh9mVS3eeHXvoahk0OQJMUkSM17lE+dgZKZIe1eXjhiJkmOvL++BoBgERcXp2+++UYfffSRLrvssiLbjh8/rlWrVmnx4sX67rvvtHv37iLbzznnHD3yyCPatm2bRo0aJal4CMrMzFRSUpL27/fx0zagHHFpXAk2bNggSerYsWOAKwkMy03D5Fy5So6Zr8tI7CyjXl3PNuf8T+T6eaMst9wso2lc4IqEX1hCpA4DpJ8/K7zPxx2GznSZnLcQ1PYKyQiSj1eOpkq7fpCOnnKLYEGe9MOrUnQbqcXFUli1wNQHAP5y0003acaMGape/a/rmnfs2KFXX31VX3zxhXbs2CGn01nkmNq1a+u8887TiBEjdM011yg0NFSRkZF64403dN1118lisah3796S/gpBy5Ytq9B+AWcSJG9ZTi8jI0MTJkxQixYtFBERoUaNGmncuHHKysrSqFGjZBiGXn755SLHnDwi9OOPP2rQoEGqV6+ebDabevTooa+/Lj5SEkyM0FCFjH9Ays2V44V/e553HUiRc/Y7Mlq3kmXINYErEH7lDkOlHRkK9hD06y5p7QfFQ5Cbs0A6uFFaM4cJIgBUbffdd5/eeecdTwjav3+/BgwYoNatW2vatGnatm1bsRAkSUeOHNGXX36pG264QY0bN9abb77p2Xb55ZcTglAlBMnblpIlJyerffv2mjJlitLT09W2bVvl5+frpZde0tChQ7V161ZJUqdOnTzHZGZmavfu3bJarVq8eLEuvPBCrVixwjNpwo8//qikpCQtWLAgEF2qMEZ8C1muv06utevkXPSFXA6HHM9NlVwuWcc/IMNqDXSJ8KPShqFgD0HH0qVNn0kux5n3zT4irZ8vOUuxLwBUNrfddpteeOEFz+M333xT7dq108KFC+VyuUrdTnp6um699VZdddVVOnHihOd5h8OhIUOGEIJQaQXJWxfvMjIyNGDAAKWnp+uBBx5QWlqa1q1bp/T0dE2ePFmLFi3S6tWrZRhGkXuBNmzY4PkF8PTTT+vNN9/UwYMHtX79eqWlpemyyy6T0+nUfffd59MviqrIMuwGqVkzOV5/Q85XXpVr+w5Zbv6bjEbmmEmvIC9bOcczvP4LRmcKQ8EegiRpzyrfgk3mr9KvO8uvHgAoD+3bt9f06dM9jx977DHdeuutOn78eJnaCw8P15gxYxQeHu55zmq16vrrrz/rWoHyEtT3CN1zzz1KSUnRXXfdpalTi970PmHCBM2ZM0cbNmxQ06ZNFRkZ6dnmvj/I4XDonXfe0aBBgzzbatasqTfeeEPNmzfXL7/8oh07dqhVq1YV06EAMEJCFDL+fhXcfa+cCxfJaJcgy+CrA11WhVn50eNa+ZG5pvos6Z6hJt2kvSuDOwTlHpcydvl+XEqyFN3a7+UAQLkICQnR7NmzPWsCTZs2TU899VSZ2zt1YoSsrCw5nU7VqFFDI0aM0IcffqiFCxf6pXbAn4I2CG3dulXz5s1T3bp1NXHiRK/7JCYmasOGDcUmRHDfH5SUlFQkBLnFxcWpYcOGOnDggFJTU9WqVSt9+OGHmjt3rtasWaPffvtNjRs31jXXXKOHH364yM2HVZLdLoWGSgUFMrp2kWEJone+Z9Cu122KP2+I120fT+pTwdVUHG9haM+Kv7YHYwiSpIxfpLIM8h5NkfJzpFAmTgBQBdx9993q3LmzJGnjxo166KGHytxWSbPDNW/eXLNnz5Ykvfrqq2rWrFmJaw0BgRK0QWju3LlyOp0aNmxYiUGkWrXCdy0lBaExY8aU2L57BMnd9tSpU9W4cWM9++yzio2NVXJysp588kl9//33Wrp0qSxlCA9dunRRenq6T8e4wsKkma/4fK4S23O55Hh+mlSQLzVuJOec92W55GIZDWLOfHAptYxvKcNPvxytodU06Gn/XadUKzpejdv19lt73rSMj5cjP6dcz1FWIdYwPTLkYzWN/utn5Oc932rkiyPkchW/ebaq69flTg258OEyHXtelwv16x97/VtQJTLrnn2yWKxyOhyKjW0S6HIAnIa3yQ3cLBaL7rnnHs9+I0eOLHNAKSkELVu2TMuWLdP111+vvn37qmHDhrr22ms1Z86cEtuKj48v03ulijBo5L2yV49UWnqaYmNjiz0Odt76W9leg+joaK1Zs8bn44I2CC1ZskSS1KtXrxL3SUkpnBLq5CDkcDi0adMmWSwW9ezZ0+txDofDMw++e2Gwzz77TPXq1fPsc8kll6hevXoaNmyYli1bposvvtjnPqSnpys1NdW3gyLCFerzmUrm/GSBXBt+lmXkCFm6n6+CO++W4/lpsk6dLMMw/HKOg2kHpdwTZ96xFELCbX5ppyIdTDuoghPZgS7DqwvbD1ajem2LPNey4XmqE95cG3Z/F5iiytFvTQ+V+dj9KXv0+7GDfqymcnHJ5fmvz7+XAFQaSUlJngVSv/zyS61du7ZM7ZwuBLk988wz6tu3ryRp7Nixpw1CaWlpZaqjIjgdDs9/U1NTiz0Odt76GyyvQdAGoX379kmSmjTx/sllQUGBli9fLqloENq+fbtycnJUv3591ahRw+uxK1eu1PHjx5WQkKDo6GhJKhKC3Lp06SJJZf4GcbftC1dYmH4r09m8tJWaKues2TJatZTlumtlWK2yDB8m51tvy/nJAlkHDfTLeRrENPDriFBV0yCmQaUcEerS4krdkfSKQqxFo3VEmE3PjPpc0z4doW0pK0o4umo6ll8YZFwul09B/4+sX2WvGaqIGg3Lq7SAM2R4/tuwYfD2EwgGTqezxGDxt7/9zfP1jBkzytR+aUKQJC1btkwbN25U+/btdcEFF6hZs2b65ZdfvLYZExNTaUeELH/OkmuxWtWwYcNij4Odt/5WttegLO+ZpSAOQllZWZKknBzvbzDnzZunjIwM1ahRQ02bNvU8754o4XTDxK+++qok6cYbbzxtDd9++60kqU2bNqUv/CRlGeLLchSo9pL/lel8J3M5nXJMeUFyOmUdf79nqmzLddfKtXyFnLNmy3JeN79cIrdj5w7Zrf75VjxRID04zy9NVZgdO3cqvJL9JJ46O9ypwkOr6R/Xf3DGRVerGpdL+vEtKfuwb6OdnS6rr32P7y2foiqJb56X5Cr8o+ceTQdQOWVlZZV4W0C3bt08+3z55Zc+t13aEOT2f//3f2rfvr0kqWvXriUGoZ07d8put/tcT0V49pX3dCwzSzHRMUpJSSn2ONh562+wvAaVM3r7gTsZrlu3rti2tLQ0jR8/XlLhgqknf/Lrvj/o6NGj2rFjR7Fjly5dqvfee0916tTR3XffXeL5U1NT9eijj6pv375F1iiqKpwfzpdry1ZZRgyX0fivd7qG1Srr3++XnA45np8W9NOHm5G3KbJPVtpFV6siw5AadfLxGIvUsMOZ9wOAQIuKivJcFrdu3To5HL4tguZrCJKKfqibmJjoe9FAOQraIORe0Xjy5MlFAs3q1avVq1cvZWQUrgNzakhxB6HQ0FCNHTtWf/zxh2fbggULPLPIzZ49u8RL5zIzMzVw4ECFhYVp1qxZ/upShXHt3y/n2+/KaNNalmsGF9tuxDWRZfgwuTZukvOT4F5U1mxKWidI7s8KjNItulqVxXaS6seXfv+2faWIyDPvBwCBlpDw1ydb69ev9+nYsoSgU89z8vmByqCSXZDjP+51gg4cOKCEhAS1bt1aubm52rVrl+dGwa+++qrYjHHuS+NmzJih22+/XbGxsWrTpo3S0tKUkpIii8Wi6dOnq3///l7Pm5OTowEDBmjPnj364YcfFBPjv9nVKorRuLFCF3162n2sNwyV9YahFVRRxYtt21Pj/nv60a4zba9qSrtYaknrDAXLZXKGRWrXX9r2P+ngppL3s4QUhiDWDwJQVYSHhysnJ0fVqlXT77//7tNxZQlBkjznyc/Pr7T3AMG8gvY7MjY2Vj/88IP69euniIgI7d27V1FRUZo5c6YWLVrkGSU6OQilp6fr0KFDioqK0q233qoFCxaoTZs22rRpk3JzczV48GCtXLlSd955p9dz5ufn69prr9WaNWv0xRdfqG3btl73Ayqb0oYgN3cYCtaRIYu1MOScf7MUe+5f6wMZhmSPklr2ki66gxAEoGr55ptvZLPZZBiGnn766VIf53Q6PfdO+xKCpML3RiEhIQoLC/MEKaCyCNoRIalwkgJvKxlnZmZq7969slgsateunef56OjoIve89OvXT/369SvVudxrFi1evFiff/6552ZEoLLzNQS5BfvIkCRVryu1vqzwn8spySgMQwBQ1Z1uraFT5efna8iQIXrrrbf06quvljoEufl6LxJQUYI6CJVk8+bNcrlcatmypWw2/6w7c+edd+r//u//9NBDD8lms2nlypWebc2bN/c6vTZQGeT+4XsIcvMWhnKPlV+tgVTa1wQAglF+fr6GDx8e6DIAvzJlENq4caMkFbs/6Gx88cUXkqRJkyZp0qRJRba99dZbuvnmm/12LsCfmnQtnDY663ffQpCbOwxtXCjVay41aHfmYwAAAAKNIOQne/fu9VtbQEWL61YYhsp62ZclROowkMvGAABA1WHKiz3KIwgBVd3ZhhhCEAAAqEpMOSK0ZMmSQJcAAAAAIIBMOSIEAAAAwNwIQgAAAABMhyAEAAAAwHQIQgAAAABMhyAEAAAAwHQIQgAAAABMhyAEAAAAwHQIQgAAAABMhyAEAAAAwHRCAl0A/MtmserIpX0CXYZPbBar39oKs0qTh/qtuQoR5r/uAwAgm82mzMxMv7U3Zeb7OpaVrUi7TeNvv77YY3+w2Wx+aQfwBUEoyBiGIbvVvP9bDUMKN2/3AQAofC9gt/utvbDwCIXlOxQWHiG73V7sMVBVcWkcAAAAANMhCAEAAAAwHYIQAAAAANMhCAEAAAAwHYIQAAAAANMhCAEAAAAwHYIQAAAAANMhCAEAAAAwHYIQAAAAANMhCAEAAAAwHYIQAAAAANMhCAEAAAAwHYIQAAAAANMhCAEAAAAwHYIQAAAAANMhCAEAAAAwHYIQAAAAANMJCXQB8C+Xy6VspyPQZfjEZrHKMAy/tOVySXlVq/sKs0p+6j4AmJ7L5VJ2dnagy/CJzWbz299BAKVHEAoy2U6Hai/5X6DL8MmRS/vIbvXPt2KeQ3pwnl+aqjCTh0rh/CQCgF9kZ2erevXqgS7DJ5mZmbLb7YEuAzAdLo0DAAAAYDoEIQAAAACmQxACAAAAYDoEIQAAAACmQxACAAAAYDoEIQAAAACmQxACAAAAYDoEIQAAAACmQxACAAAAYDoEIQAAAACmQxA6jXr16skwDKWkpAS6FKBcOZ1SQd7ZtVFwQnK5/FMPAAST8PBwhYeHB7oMAKcICXQBlVVKSooyMjIUFRWl2NjYQJcDlBunU9r8uZT7h3TutVJIGf5Wn8iS1s2ToppILS+VDMP/dQJARbJarWrdurUSExPVuXNn1a1bV6GhoTpx4oT27dunNWvWaO3atWf8sDQ8PFwff/yxDMPQ1VdfrRMnTlRQDwCcCUGoBMnJyZKkDh06BLYQoJztWCId2lb49foPfQ9D7hCUdbjwX2g1qVmP8qkVAMpbo0aNdNttt2n06NE655xzzrh/cnKyZsyYoTlz5igrK6vINncISkpKkiT997//1ZAhQ8qlbgC+49K4EhCEYBYNOxaGF0n6I60wDBWU8gPLk0OQJEXUkKLblk+dAFCeatasqddff1179uzRP//5z1KFIEnq1KmTXnvtNaWmpuquu+6S8eeQ+KkhKDMzU//+97/Lq3wAZUAQKsGGDRskSR07dgxwJYHhmDVb+ZdfKeeXXxfb5nK5VPD3B5Xf7yq59uyt+OIqQMqW7/TicENrF00tcZ8Xhxv6dGr/CqyqfNSoJ3W+zvcw5C0EdR4q2WqVa7kA4HdXXHGFNm3apFtvvVVWq1WSlJ+fr08//VQPPvigevfurRYtWqhJkyZq06aNBg8erGeeeUY//fSTp42aNWtq+vTpWrJkiVq1alUsBPXt21fLly8PSP8AeGeKIJSRkaEJEyaoRYsWioiIUKNGjTRu3DhlZWVp1KhRMgxDL7/8cpFjTh4R+vHHHzVo0CDVq1dPNptNPXr00NdfFw8IwcRy0zAprokcM1+X67eMItuc8z+R6+eNstw0XEbTuMAUCL/yNQwRggAEi7vvvltffvml537gY8eO6fHHH1fjxo119dVX67nnntPixYu1e/du7d+/X9u2bdPHH3+sf/7znzrvvPOUmJiod955x9Nez5499fPPPxOCgCog6INQcnKy2rdvrylTpig9PV1t27ZVfn6+XnrpJQ0dOlRbt26VVDi07ZaZmandu3fLarVq8eLFuvDCC7VixQrPL8kff/xRSUlJWrBgQSC6VCGM0FCFjH9Ays2V44V/e553HUiRc/Y7Mlq3kmXINYErEH5X2jBECAIQLO6++2699NJLnsdff/212rVrp3/9619KT08vVRvr1q3TiBEjdOmll2rv3r2SpLCwMElSdnY2IQioxII6CGVkZGjAgAFKT0/XAw88oLS0NK1bt07p6emaPHmyFi1apNWrV8swjCL3Am3YsEGuP+cBfvrpp/Xmm2/q4MGDWr9+vdLS0nTZZZfJ6XTqvvvu8+wXjIz4FrJcf51ca9fJuegLuRwOOZ6bKrlcso5/QMaflw8geJQUhuT+NncRggAEh759+xYJQU899ZSuuOIKHThwoEztrVixQjt37izyXG5urrZv335WdQIoP0EdhO655x6lpKTorrvu0tSpU1WjRg3PtgkTJqhjx44qKChQXFycIiMjPdvc9wc5HA698847uvnmmz3XDNesWVNvvPGGLBaLfvnlF+3YsaNiO1XBLMNukJo1k+P1N+R85VW5tu+Q5ea/yWhkjinFC/KylXM8w+u/YOUtDJ2MEASgqnP/LXd76qmn9Nhjj5W5PffECH369JFU+P5BkqKiovTKK6+cXbEAyk3QBqGtW7dq3rx5qlu3riZOnOh1n8TEREnFJ0Rw3x+UlJSkQYMGFTsuLi5ODRs2lCSlpqZKkidwdevWTeHh4Z5ZY6o6IyREIePvl/Ly5Vy4SEa7BFkGXx3osirMyo8e12tj6nn9F8xODUOnIgQBqMqef/55z9/xr776yi8h6OR7gq6++mplZBR+YHbdddfpmmu4lByojIJ2HaG5c+fK6XRq2LBhql69utd9qlUrfJdXUhAaM2ZMie27R5Dcbe/atUsfffSRunbtqrCwML9cD9ylS5dSX6Ps5goLk2b6+dMnu10KDZUKCmR07SLD4t/83DK+pYy8PL+0ZQ2tpkFP7zzzjqXUrtdtij/P+5oPH0/q45dztIyPlyM/xy9t+Vts3TZ66NoPVD2itue534+latKsIfrtqf0BrAwVbdY9+2SxWOV0OBQb2yTQ5QAlcjqdp93euHFjjRw5UlLhxAijR48u87m8hSD3PUF33XWX3n//fUnSY489po8++qjEduLj42Xx899Wfxo08l7Zq0cqLT1NsbGxxR4HO/pfvL+V7TWIjo7WmjVrfD4uaIPQkiVLJEm9evUqcR/3atAnByGHw6FNmzbJYrGoZ8+eXo9zOBzav7/wTWDjxo0lSRdffLHS0gqvIXriiSf8EoTS09M9I06lFhGu0LM+819cLpccz0+TCvKlxo3knPO+LJdcLKNBjN/OcTDtoJTrn5W2Q8JtfmnHrVZ0vBq36+3XNk91MO2gCk5kl+s5yirrj3wdyzpcJAgdPn5IO/ZsVnbusQBWhorm+vNGMZdcvv9eAiqR2267zRM6pkyZUuZ7gk4XgiRp3rx5GjdunLp3764OHTqoR48eWrFihde23O8fKivnn5f6OR0OpaamFnsc7Oh/8f4Gy2sQtEFo3759kqQmTbx/cllQUOD5ZXVyENq+fbtycnJUv379IvcUnWzlypU6fvy4EhISFB0dLUnl8kmOu21fuMLC9Jsfa3B+skCuDT/LMnKELN3PV8Gdd8vx/DRZp0722+V/DWIa+HVEqKppENOgUo4IRdrq6sFrPlCDOs2LPB/fsLOeH7tEz388XDl5xwNUHSqaIcPzX/clRUBl5HQ6SwwWVqtVt956q6TCdYJef/31Mp3jTCHI7ZVXXlH37t0lSXfccUeJQSgmJqZSjwhZ/rxP2mK1qmHDhsUeBzv6X7y/le01KMt7ZimIg1BWVpYkKSfH+xvMefPmKSMjQzVq1FDTpk09z7snSsg7zRvzV199VZJ04403+qtcr8oyxJflKFDtJf/zy/ldqalyzpoto1VLWa67VobVKsvwYXK+9bacnyyQddBAv5xnx84dslv98614okB6cJ5fmqowO3buVHgl+0k8dYpsGfpr5jhJLWISNeeprTr3WikkPBAVoqJ987wkV+EfPfdoOlAZZWVllXhJfJs2bXTOOedIkhYuXKhDhw753H5pQ5Akffjhh5oxY4YiIyNLvMpEknbu3Cm73e5zLRXl2Vfe07HMLMVExyglJaXY42BH/4v3N1heg8r78cNZcifDdevWFduWlpam8ePHSypcMPXkkQ33/UFHjx71OiPc0qVL9d5776lOnTq6++67y6HyysHldMox5QXJ6ZR1/P2eqbIt110ro2W8nLNmy3Wwcg/lo2y8rRMU9udAW2i10i+6CgCVTZcuXTxflzQ6czq+hCBJOnHihNauXStJatSokerXr1+GqgGUl6ANQr17F97XMXny5CKBZvXq1erVq5dnNpeTF1KV/gpCoaGhGjt2rP744w/PtgULFnhmkZs9e3aJl84FA+eH8+XaslWWEcNl/HkflCQZVqusf79fcjrkeH5aUK+jZEYlLZZq/PmbwmIt3aKrAFAZde7c2fO1O6CUlq8hyNt5Tj4/gMAL2iA0YcIE1alTRwcOHFBCQoLat2+v+Ph4devWTc2aNdOll14qqfiMce5L42bMmKFvv/1WsbGx6tatmxo1aqSBAwfq6NGjmj59uvr371/hfaoorv375Xz7XRltWstyzeBi2424JrIMHybXxk1yfrIgABWiPJQUgk6dIrukRVcJQwAqu7p163q+3rNnT6mPK2sIOvU8J58fQOBVsjsT/Cc2NlY//PCDxo8fr++//1579+5V27ZtNXPmTI0ePVrNmxfeAH5yEEpPT9ehQ4cUFRWlW2+9VTExMXryySe1adMm2e12DR48WA899JC6du0aqG5VCKNxY4Uu+vS0+1hvGCrrDUMrqKKKF9u2p8b99/SjXWfaXpWUNgS5ucPQug+k/Jy/whD3DAGozF566SUtXLhQ1apV06+//lrq4wYOHFimECQVzmI7cuRI5ebmauXKlWWqG0D5CNogJBXeFLlw4cJiz2dmZmrv3r2yWCxq166d5/no6Ogil3r169dP/fr1q5BagUDxNQS5EYYAVDUrV64sUxj54IMP1Lx5c/3jH//wKQRJ0rZt27Rt2zafzwmg/AV1ECrJ5s2b5XK51LJlS9ls/lt35sMPP5QkbdmypcjjuLi4IjdoApXJru99D0Fu3sLQnpVS/CXlVi4ABMTEiRP1zjvvVOk1UwAUZcogtHHjRknF7w86W0OGDPH6eMSIEZo9e7ZfzwX4S6vLpKwjUl6mbyHI7eQwFHmO1OyCcikTAAKOEAQEF4KQHzGDGqqikHCp87VSfq5UrWbZ2qhRT+pygxQRKflpSSgAAIByZcq3LOUVhICqKiT87O/rsUf5pxYAAICKYMogtGTJkkCXAAAAACCAgnYdIQAAAAAoCUEIAAAAgOkQhAAAAACYDkEIAAAAgOkQhAAAAACYDkEIAAAAgOkQhAAAAACYDkEIAAAAgOkQhAAAAACYTkigC4B/2SxWHbm0T6DL8InNYvVbW2FWafJQvzVXIcL8130AMD2bzabMzEy/tTdl5vs6lpWtSLtN42+/vthjf7DZbH5pB4BvCEJBxjAM2a3m/d9qGFK4ebsPAKZnGIbsdrvf2gsLj1BYvkNh4RGy2+3FHgOourg0DgAAAIDpEIQAAAAAmA5BCAAAAIDpEIQAAAAAmA5BCAAAAIDpEIQAAAAAmA5BCAAAAIDpEIQAAAAAmA5BCAAAAIDpEIQAAAAAmA5BCAAAAIDpEIQAAAAAmA5BCAAAAIDpEIQAAAAAmA5BCAAAAIDpEIQAAAAAmA5BCAAAAIDpEIQAAAAAmE5IoAsA/MnlkvIcga7CN2FWyTACXQWAYOFyuZSdnR3oMnxis9lk8IsQQAUjCCGo5DmkB+cFugrfTB4qhfOTCMBPsrOzVb169UCX4ZPMzEzZ7fZAlwHAZLg0DgAAAIDpEIQAAAAAmA5BCAAAAIDpEIQAAAAAmA5BCAAAAIDpEIQAAAAAmA5BCAAAAIDpEIQAAAAAmA5BCAAAAIDpEIQAAAAAmA5BqAT16tWTYRhKSUkJdCkAUK5cLumXFdLh/WVvw5EvbflKOpHpv7pQOdSuXVsXXHCBLr/8cvXp00c9evRQzZo1S318eHi4Zs6cqcaNG5djlQDgu5BAF1AZpaSkKCMjQ1FRUYqNjQ10OQBQblwuafcyae8qyRIidRosRfn4ftWRLyXPl44ckI6mSIlDpfDq5VMvyp/FYlHfvn110003qVu3bmrWrJnX/Xbt2qVVq1bp7bff1jfffCOXy1Vsn/DwcH388cdKSkpSnz591LNnT+3ffxaJGwD8iBEhL5KTkyVJHTp0CGwhAFDOXC4pM6Pwa2dBYaDxZWTo5BAkSSeyGBWqqkJCQnTvvfdq165dWrRoka6//voSQ5AktWjRQsOGDdPXX3+t7du3a+zYsbJY/npbcXIIkgqvtGjYsGG59wMASosRIS8IQkjZ8p0+eraXLrxhihL7/d3rPi8ONxTXqZ8G/n1hBVdXcbIOSykbpLzswsd52dKuH6TYjlJEZGBrg39YLFKHq6SfF0gZu/8KQ6UZGTo1BFnDpM5DpMjo8q8b/tW+fXu99dZbSkxMLPJ8VlaWkpOTtX79ev3++++SCgPNueeeq06dOqlatWqSpPj4eL3yyisaPny4Ro4cqb179xYJQZmZmerbt69+/PHHiu0YAJwGQciLDRs2SJI6duwY4EqAwMjPkTZ/WfjG+GQuZ+ElVHt/kqJbS20ul6yhgakR/mOx+h6GSgpBNWMqrm74x2233abp06crLCxMkuR0OvXVV19pxowZ+uKLL+RwOLweFxISogEDBmjs2LHq3bu3JKl79+5KTk7W9u3bPX9D3SFo+fLlFdMhACiloL80LiMjQxMmTFCLFi0UERGhRo0aady4ccrKytKoUaNkGIZefvnlIsecPCL0448/atCgQapXr55sNpt69Oihr7/+OgA9ASpGfo605v3iIagIl5S+VVr3f4VviFH1ucNQ3eaFj093mRwhKHjcd999mjlzpicEbdq0Sd26ddOVV16phQsXlhiCJKmgoEAff/yx+vTpowsuuEA7duyQJEVERBCCAFQJQR2EkpOT1b59e02ZMkXp6elq27at8vPz9dJLL2no0KHaunWrJKlTp06eYzIzM7V7925ZrVYtXrxYF154oVasWOGZNOHHH39UUlKSFixYEIguAeVu8xdS1u+l2/ePg9L2JeVbDypOqcKQixAULG666Sa98MILnsfTpk1TYmKi1q5d63NbK1as0HnnnVdkIgSXy6WJEycSggBUWkEbhDIyMjRgwAClp6frgQceUFpamtatW6f09HRNnjxZixYt0urVq2UYRpF7gTZs2OCZ+ebpp5/Wm2++qYMHD2r9+vVKS0vTZZddJqfTqfvuu8/rDDkILgV52co5nuH1XzDK+l3K+MW3Y9I2S3lZ5VMPKl5JYUgn/bojBFV9cXFxmjFjhufxY489pvvvv195eXllai88PFxz5swpMkW2YRh64IEHFB3NTWMAKqegvUfonnvuUUpKiu666y5NnTq1yLYJEyZozpw52rBhg5o2barIyL/u+nbfH+RwOPTOO+9o0KBBnm01a9bUG2+8oebNm+uXX37Rjh071KpVq4rpEAJi5UePa+VHjwe6jAqTkuz7MS6nlLpRanq+38tBgHi7Z+hUhKCqyzAMvfnmm6pevXCO8zfeeENPPfVUmds7dXa4zMxMrVy5Ur1791ZUVJRmzpypgQMH+qV2APCnoAxCW7du1bx581S3bl1NnDjR6z6JiYnasGFDsQkR3PcHJSUlFQlBbnFxcWrYsKEOHDig1NRUTxDas2ePxo0bp2+//dZzA+m0adNUp06dMvejS5cuSk9PL/PxZmQNraZBT+/0W3vtet2m+POGeN328aQ+fjlHy/h4OfJz/NLW2Xryxi/VpH47n4+b/+4STbv2b+VQEQLJagnVXf1m6tzmlxd5PvvEMU2Ze6P2PJccmMJwWk6n87TbBw8erEsvvVSStG/fPt1///1lPpe3ENS3b19t3bpVmzdvVnR0tK666ipdfvnlp72/Nj4+vsjU25XJoJH3yl49UmnpaYqNjS322AzM/hrQ/+L9rWyvQXR0tNasWePzcUEZhObOnSun06lhw4Z5PvE6lXvKz5KC0JgxY0ps3z2C5G77+PHj6tWrl6KiojR37lzl5ORowoQJ6t+/v5YvX17mX+7p6elKTU0t07FmFRJu82t7taLj1bhdb7+2eaqDaQdVcCK7XM9RWiFGeJmOs7hC+V4NUk/OHqK3H9qlmvZ6kgrv+3h90YNatm5RgCtDWd15551Fvj5+/HiZ2ikpBLnvCbr33nv1/vvve85zuiCUlpZWphoqgvPPCSOcDodSU1OLPTYDs78G9L94f4PlNQjKILRkSeHd27169Spxn5SUFElFg5DD4dCmTZtksVjUs2dPr8c5HA7PzaDua6Ffe+01paamaunSpZ7nYmNj1aNHDy1YsEBXX311mfrBddW+s4ZWC3QJPmsQ06DSjAjlO8tWh9PIY6HEIBQWEqF7B77tCUFS4WVVdwx4QTnO37UtZUUAq0NJnE5nicGiTZs2nr+N27Zt06JFZQu0ZwpBkvThhx/qwIEDatSokfr3768mTZpo3759XtuLiYmptCNCFqvV89+GDRsWe2wGZn8N6H/x/la216Cs75mDMgi5f9E2adLE6/aCggLPL+uTg9D27duVk5Oj+vXrq0aNGl6PXblypY4fP66EhATPi75w4UJdeOGFRW4S7d69u5o1a6bPPvuszEGoLEN8ZneiQHpwXqCr8M2OnTsVXkl+End+J+0rw7fdtSMv0wOvpPi9HgTOqVNkW0KlyPrS0VQpPLSa/nH9B6VadBUVLysrq8SrIU6+5PvVV18tU/ulCUFS4QeHr732mp566ilZLBYNHDhQL730ktc2d+7cKbvdXqZ6ytuzr7ynY5lZiomOUUpKSrHHZmD214D+F+9vsLwGlfPjl7OUlVU4hVVOjvdPt+fNm6eMjAzVqFFDTZs29TzvnijhdLPmuP9w3HjjjZ7ntmzZooSEhGL7JiQkaMuWLb53AAiQhp18P8ZilRoU//ZHFeZtnaDE66TO15VunSFUXl26dPF8/cUXX/h8fGlDkLdzJCYm+nw+AChPQRmE3CM169atK7YtLS1N48ePl1S4YKphGJ5t7vuDjh496lkY7mRLly7Ve++9pzp16ujuu+/2PH/kyBHVqlWr2P5RUVE6fPjw2XQFqFC2WlL9lr4d07CDVAWvSEQJTrdYqi+LrqJycoeRY8eOaedO3yaW8TUESdLGjRs9Hy4ShABUNkEZhHr3Lry5ffLkyUUCzerVq9WrVy9lZBSuAXPyQqrSX0EoNDRUY8eO1R9//OHZtmDBAs8lBbNnzy7x0jmgqmvbV4os5aW2UXFSfM/yrAYV6XQhyI0wVHWFhIR4LuHevHmzT2vhlSUESYVXWLj/Drdo0aKMlQNA+agkdyb4l3udoAMHDighIUGtW7dWbm6udu3apaSkJMXFxemrr74qNmOc+9K4GTNm6Pbbb1dsbKzatGmjtLQ0paSkyGKxaPr06erfv3+R42rXrq2jR48Wq+Pw4cOKiooqt36i/MS27alx/z39m4Qzba+qQsIKL4Ha/o2Uvq1wnaBTWaxSgw5Sy56FX6PqK00IcvO2zlDyfHHPUCUXEhKiL7/8UhEREfr55599OnbOnDk+hyC3lStXKiMjo8TL1QEgUIIyCMXGxuqHH37Q+PHj9f3332vv3r1q27atZs6cqdGjR6t588KPMk8OQunp6Tp06JCioqJ06623KiYmRk8++aQ2bdoku92uwYMH66GHHlLXrl2Lna9NmzZe7wXasmWLLr744vLrKFBOQsKkhCulFhdLqT8X3iDvyC98PqqJFNNOCuNyuKDhSwhyIwxVPbm5uZ4w46tXX31VSUlJcjgcPoUgSRo9enSZzgkA5S0og5BUGE4WLlxY7PnMzEzt3btXFotF7dr9tXBkdHR0kcsE+vXrp379+pXqXP3799c//vEPpaSkeBaVWrVqlXbv3q0pU6acZU+AwAmvLjXrEegqUJ6cTin5Y99CkFtJYajzEKlW4GdThR/973//01VXXaWcnByfQhAAVGZBeY/Q6bivi46Pj5fN5p/FN2+77TbFxMRo4MCBWrhwoT788EPdcMMN6tatmwYOHOiXcwBAebBYpDpxhV/7EoI8x59yz5CtduE/BJ9vvvmGEAQgqATtiFBJNm7cKEnF7g86G5GRkVqyZInGjRun66+/XiEhIerfv7+mTZtWaReIAwC3uG6FgaZmA99CkJs7DO36obCtMP98xgQAQLkiCPlJ8+bNvV6KBwBVQeOznNnYYi2cPAMAgKrCdMMV5RWEAAAAAFQdphsRWrJkSaBLAAAAABBgphsRAgAAAACCEAAAAADTIQgBAAAAMB2CEAAAAADTIQgBAAAAMB2CEAAAAADTIQgBAAAAMB2CEAAAAADTMd2CqghuYVZp8tBAV+GbMGugKwAQTGw2mzIzM/3W3pSZ7+tYVrYi7TaNv/36Yo/9wWaz+aUdAPAFQQhBxTCkcL6rAZiYYRiy2+1+ay8sPEJh+Q6FhUfIbrcXewwAVRWXxgEAAAAwHYIQAAAAANMhCAEAAAAwHYIQAAAAANMhCAEAAAAwHYIQAAAAANMhCAEAAAAwHYIQAAAAANMhCAEAAAAwHYIQAAAAANMhCAEAAAAwHYIQAAAAANMhCAEAAAAwHYIQAAAAANMhCAEAAAAwHYIQAAAAANMhCAEAAAAwHYIQAAAAANMJCXQBgD+5XFKeI9BV+CbMKhlGoKsAgofL5VJ2dnagy/CJzWaTwS8CAKhQBCEElTyH9OC8QFfhm8lDpXB+EgG/yc7OVvXq1QNdhk8yMzNlt9sDXQYAmAqXxgEAAAAwHYIQAAAAANMhCAEAAAAwHYIQAAAAANMhCAEAAAAwHYIQAAAAANMhCAEAAAAwHYIQAAAAANMhCAEAAAAwHYIQAAAAANMhCAEAUI7Cw8PVpUuXQJcBADhFSKALAACgsjnnnHPUu3dvdenSRYmJiWrUqJHCw8OVn5+vX3/9VevWrdOaNWv07bffateuXSW2Ex4ero8//lg9e/bUgAEDtHjx4grsBQDgdAhCAAD86aKLLtLYsWN1zTXXKDQ01Os+jRs3VpcuXXTbbbdJkr755hvNmDFDCxYskMPh8OznDkFJSUmSpDlz5qhp06bKzs4u/44AAM7IFJfGZWRkaMKECWrRooUiIiLUqFEjjRs3TllZWRo1apQMw9DLL79c5Ji9e/dqypQp6tu3r5o3by673S6bzaaOHTtq0qRJysvLC1BvUBFStnynF4cbWrtoaon7vDjc0KdT+1dgVQDKS0xMjBYsWKClS5fq+uuvLxaCfvvtN+3fv19paWlyOp1FtvXu3Vvz58/XTz/9pPbt20sqHoIyMzN1zTXXEIIAoBIJ+hGh5ORkJSUlKT09XXa7XW3bttXBgwf10ksvaffu3Tp8+LAkqVOnTkWOe+qppzRr1izZ7XY1aNBACQkJ+vXXX/Xzzz/r559/1urVq/XRRx8FoEcAAH8aOnSo/vOf/6h27dqe53799VfNmjVLS5Ys0bp16/T77797ttntdnXq1EkXXHCBbr31VsXHx0uSOnfurDVr1ujZZ5/VeeedVyQEJSUladmyZRXbMQDAaQX1iFBGRoYGDBig9PR0PfDAA0pLS9O6deuUnp6uyZMna9GiRVq9erUMw1CHDh2KHHv55Zdr7dq1On78uHbs2KGffvpJe/fu1erVq3XOOedo/vz52rhxY4B6BgDwh3vvvVfvv/++JwQdOnRII0aMUKNGjfTwww/rf//7X5EQJElZWVlavny5nnvuObVq1UpXXHGFNm3aJEkKCwvTE088QQgCgCogqIPQPffco5SUFN11112aOnWqatSo4dk2YcIEdezYUQUFBYqLi1NkZGSRY4cOHarOnTvLMIwiz3fp0kV9+vSRJG3evLn8OwEAKBdjxozRtGnTPI/nzp2rtm3b6p133in15c8ul0tff/21EhMTNWnSJLlcLs+2/Px8QhAAVGJBe2nc1q1bNW/ePNWtW1cTJ070uk9iYqI2bNigjh07Ftt24sQJLViwQN9//7327Nmj48ePe64LdwegsLAwz/4ffvih5s6dqzVr1ui3335T48aNdc011+jhhx9W9erVy6GHqAgFednKOZ4R6DIA+Nl5552n6dOnex4//vjj+te//lXm9gzDUMeOHYt8eBYaGqrWrVsThACgkgraIDR37lw5nU4NGzasxCBSrVo1SSoWhBYvXqyRI0fqwIEDpz1Hs2bNPF9PnTpVjRs31rPPPqvY2FglJyfrySef1Pfff6+lS5fKYgnqwbegtfKjx7Xyo8cDXQYAPwoPD9dbb70lq9UqSZo8efJZhaBTJ0bIzc1VRESEJOn555/XV199dca/JwCAihe0QWjJkiWSpF69epW4T0pKiqSiQWjVqlW68sorlZ+fr1GjRmnYsGFq166dateurZCQEG3btk1t2rRRSEiI2rRp4znus88+U7169TyPL7nkEtWrV0/Dhg3TsmXLdPHFF/u7i6gA7Xrdpvjzhnjd9vGkPhVcDQB/+Oc//+n5/f3TTz/pkUceKXNb3maHS0pK0s0336xRo0YpMjJS//nPf9S/PzNMAkBlE7RBaN++fZKkJk2aeN1eUFCg5cuXSyoahB5++GHl5eVp0qRJevDBB4sdt2jRIklS27ZtFR4e7nn+5BDk5l5JPDU1tUx96NKli9LT08t0rFlZQ6tp0NM7/dZereh4NW7X22/tedMyPl6O/JxyPQdgJqdOb32yatWq6c4775Qk5eXlaeTIkUXW/vFFSSFo2bJl2rhxo6644grFxsaqX79+at26tbZt21ZiW/Hx8ZX2yoFBI++VvXqk0tLTFBsbW+xxsDN7/yVeA/pfvL+V7TWIjo7WmjVrfD4uaINQVlaWJCknx/sbzHnz5ikjI0M1atRQ06ZNJUkOh0NLly6VJI0cObLYMU6nU++9954k6dxzzz1jDd9++60kFRk58kV6enqZQ5RZhYTbAl2Czw6mHVTBCdYWASrC9ddf75khbs6cOdqyZUuZ2jldCJKkP/74Q1OnTtW///1vSYUTM4wbN67E9tLS0spUR0Vw/hkUnQ6HUlNTiz0Odmbvv8RrQP+L9zdYXoOgDULR0dE6cuSI1q1bp+7duxfZlpaWpvHjx0uSOnTo4Lm5NSsry/PJYG5ubrE2n3/+ea1fv17SmYNQamqqHn30UfXt27fYGkW+9AG+sYZWC3QJPmsQ04ARIcCPnE5nicHilltu8Xw9Y8aMMrV/phDk9vbbb+vZZ5+VzWbTiBEjdP/995c4+hQTE1NpR4Qsf95LZbFa1bBhw2KPg53Z+y/xGtD/4v2tbK9BWd8zB20Q6t27t7Zu3arJkyerT58+atmypSRp9erVuummm5SRUTgT2MkhJTIyUg0bNlRqaqqeeeYZzZgxQ1arVXl5eXrxxRf16KOPKiQkRAUFBacNQpmZmRo4cKDCwsI0a9asMvehLEN8ZneiQHpwXqCr8M2OnTsVHrQ/iUDFy8rK8jpJTkhIiOeS5Z07d2r16tU+t13aECRJR48e1aJFizRkyBDVrFlTbdq08aw3dKqdO3fKbrf7XE9FePaV93QsM0sx0TFKSUkp9jjYmb3/Eq8B/S/e32B5DSrnx09+MGHCBNWpU0cHDhxQQkKC2rdvr/j4eHXr1k3NmjXTpZdeKqn4jHHum2Zfe+01NWzYUF27dlX9+vX1yCOPaPr06XK5XDIMo8RRnpycHA0YMEB79uzR119/rZiYmHLtJwCgdBISEjyzuZV3CHI7+TyJiYk+nxMAUH6CNgjFxsbqhx9+UL9+/RQREaG9e/cqKipKM2fO1KJFi7Rjxw5JxYPQmDFj9Nprryk+Pl6HDx/WwYMH1b9/f61du1bdunWTw+FQs2bNii3AKhUunnfttddqzZo1+uKLL9S2bdsK6SsA4Mw6dOjg+XrdunU+HVuWECRJa9eu9Xztbc06AEDgBPUFOW3atNHChQuLPZ+Zmam9e/fKYrGoXbt2xbaPHj1ao0eP9trmyauGn8y9ZtHixYv1+eefq1u3bmdXPAIqtm1Pjfuv9//XbmfaDqByOfkDLF9m5CxrCJKkQ4cOeT0/ACDwgjoIlWTz5s1yuVxq2bKlbDb/zDJ255136v/+7//00EMPyWazaeXKlZ5tzZs39zq9NgCg4syaNUuffPKJqlWrpl9//bXUx9WtW1etW7eW5FsIkgrv/WnZsqVyc3P1xx9/lKluAED5MGUQ2rhxoyT/XqbwxRdfSJImTZqkSZMmFdn21ltv6eabb/bbuQAAvsvJySnTNK+pqanq1auXPvvsM40dO7bUIUgqXKto507/rW0GAPAfgpCf7N27129tAQAql3379qlTp06nXawVAFC1BO1kCadTHkEIABDcCEEAEFxMOSK0ZMmSQJcAAAAAIIBMOSIEAAAAwNwIQgAAAABMhyAEAAAAwHQIQgAAAABMhyAEAAAAwHQIQgAAAABMhyAEAAAAwHQIQgAAAABMhyAEAAAAwHQIQgAAAABMhyAEAAAAwHRCAl0A4E9hVmny0EBX4Zswa6ArAIKLzWZTZmam39qbMvN9HcvKVqTdpvG3X1/ssT/YbDa/tAMAKD2CEIKKYUjhfFcDpmYYhux2u9/aCwuPUFi+Q2HhEbLb7cUeAwCqJi6NAwAAAGA6BCEAAAAApkMQAgAAAGA6BCEAAAAApkMQAgAAAGA6BCEAAAAApkMQAgAAAGA6BCEAAAAApkMQAgAAAGA6BCEAAAAApkMQAgAAAGA6BCEAAAAApkMQAgAAAGA6BCEAAAAApkMQAgAAAGA6BCEAAAAApkMQAgAAAGA6IYEuAP7lcrmU7XQEugyf2CxWGYbhl7ZcLimvanVfYVbJT90HCn8HZGcHugyf2Gw2v/0OAACgtAhCQSbb6VDtJf8LdBk+OXJpH9mt/vlWzHNID87zS1MVZvJQKZyfRPhJdna2qlevHugyfJKZmSm73R7oMgAAJsOlcQAAAABMhyAEAAAAwHQIQgAAAABMhyAEAAAAwHQIQgAAAABMhyAEAAAAwHQIQgAAAABMhyAEAAAAwHQIQgAAAABMhyAEAAAAwHQIQgCAcmWx8KcGAFD5hAS6AABA5VSzZk117txZnTp1Uq1atWS1WpWbm6udO3dq7dq12r17t1wu12nbCA8P18cff6ylS5dq0qRJFVQ5AABnRhACAHjUrFlTI0aM0OjRo9WuXbvT7nv06FF9+OGHmjFjhtavX19suzsEJSUlKSkpSfn5+Xr++efLq3QAAHxiiusVMjIyNGHCBLVo0UIRERFq1KiRxo0bp6ysLI0aNUqGYejll18ucszevXs1ZcoU9e3bV82bN5fdbpfNZlPHjh01adIk5eXlBag3AOB/NptNU6dOVWpqql588cUzhiBJqlWrlm699VatW7dOK1asUGJiomfbySFIkjIzM7Vq1apyqx8AAF8F/YhQcnKykpKSlJ6eLrvdrrZt2+rgwYN66aWXtHv3bh0+fFiS1KlTpyLHPfXUU5o1a5bsdrsaNGighIQE/frrr/r555/1888/a/Xq1froo48C0KOK4Zg1W873P5D1/ntl6Xt5kW0ul0uO8Q/JtXWrQl5+SUbTuMAUWY5Stnynj57tpQtvmKLEfn/3us+Lww3FdeqngX9fWMHVAf510UUXadasWWrRokWR51evXq1Vq1Zp7dq1Sk1NlcPhUI0aNdShQwclJiaqZ8+eqlmzpiSpe/fuWrlypSZPnqzJkydr3rx5RUJQUlKSli1bVuF9AwCgJEEdhDIyMjRgwAClp6frgQce0OOPP64aNWpIkp577jk9+OCDCgkJkWEY6tChQ5FjL7/8ct15550699xzZRiG5/k1a9aof//+mj9/vjZu3Kj27dtXaJ8qiuWmYXKuXCXHzNdlJHaWUa+uZ5tz/idy/bxRlltuDsoQBJjJ2LFjNX36dM+EBjk5OXrjjTf0n//8R1u3bvV6zKeffipJstvtuuGGG3TvvfcqISFBISEheuSRRzR27FjVrl1bEiEIAFB5BfWlcffcc49SUlJ01113aerUqZ4QJEkTJkxQx44dVVBQoLi4OEVGRhY5dujQoercuXORECRJXbp0UZ8+fSRJmzdvLv9OBIgRGqqQ8Q9IublyvPBvz/OuAylyzn5HRutWsgy5JnAFAjhr48aN0yuvvOIJQcuWLVOHDh10zz33lBiCTpaVlaU33nhDnTp10qOPPuq5ZJgQBACoCoJ2RGjr1q2aN2+e6tatq4kTJ3rdJzExURs2bFDHjh2LbTtx4oQWLFig77//Xnv27NHx48fldDol/RWAwsLCPPunpKRo0qRJ+umnn7Rhwwbl5eWdcTalys6IbyHL9dfJ+d5cORd9IaPv5XI8N1VyuWQd/4AMqzXQJQIoo0GDBunf//635/Gzzz6rRx991PN7zhcFBQWeeyovuOACz/Pbt2/X8uXL/VEuAAB+F7RBaO7cuXI6nRo2bJiqV6/udZ9q1apJUrEgtHjxYo0cOVIHDhw47TmaNWvm+XrXrl366KOP1LVrV4WFhQXNH3/LsBvk/HGVHK+/IcvuX+TavkOW226V0Sg20KVViIK8bOUczwh0GYBf1atXTzNnzvQ8fuKJJ/Tkk0+WuT33xAjuEORyuWQYhhITE3XnnXcWm4wGAIDKIGgvjVuyZIkkqVevXiXuk5KSIqloEFq1apWuvPJKpaSkaNSoUVqyZIl+/fVX5efny+VyeS4XCQkJUZs2bTzHXXzxxUpLS9OCBQvUu3fv8uhSQBghIQoZf7+Uly/nwkUy2iXIMvjqQJdVYVZ+9LheG1PP6z+gqnr55ZdVr17h9/D8+fP9EoJOnhhh3Lhxnu2TJk0q8qERAACVRdCOCO3bt0+S1KRJE6/bCwoKPKM2Jwehhx9+WHl5eZo0aZIefPDBYsctWrRIktS2bVuFh4d7ni+PldO7dOmi9PR0n45xhYVJM1/xbyF2uxQaKhUUyOjaRYaf+9oyvqUMP01Hbg2tpkFP7/RLW5LUrtdtij9viNdtH0/q45dztIyPlyM/xy9tAWe6tO3cc8/VddddJ6lwQpkxY8aU+VzeQpD7nqBWrVrpzjvvlN1u1yOPPKJRo0aV2E58fHy5/A71l0Ej75W9eqTS0tMUGxtb7HGwo//m7r/Ea0D/i/e3sr0G0dHRWrNmjc/HBW0QysrKklQ4A5I38+bNU0ZGhmrUqKGmTZtKkhwOh5YuXSpJGjlyZLFjnE6n3nvvPUmFbybKW3p6ulJTU307KCJcoX6sweVyyfH8NKkgX2rcSM4578tyycUyGsT47RwH0w5KuSf80lZIuM0v7bjVio5X43blO8J3MO2gCk5kl+s5ALeTg89jjz2mX3/9tUztnC4ESdJDDz2kYcOGqVatWrrhhhv097//XUeOHPHaVlpaWplqqChOh8Pz39TU1GKPgx39N3f/JV4D+l+8v8HyGgRtEIqOjtaRI0e0bt06de/evci2tLQ0jR8/XpLUoUMHz8xwWVlZcvz5PzY3N7dYm88//7xn9fSKCELR0dE+H+MKC9NvfqzB+ckCuTb8LMvIEbJ0P18Fd94tx/PTZJ06udiMemXVIKaBX0eEqpoGMQ0YEYLfOJ3OEoNFZGSkhg0bJkk6duyY3nnnnTKd40whyP3c7Nmzde+996patWq6+eabNW3aNK/txcTEVOoRIcufE8NYrFY1bNiw2ONgR//N3X+J14D+F+9vZXsNyvKeWQriINS7d29t3bpVkydPVp8+fdSyZUtJhQsE3nTTTcrIKLwB/uSFVCMjI9WwYUOlpqbqmWee0YwZM2S1WpWXl6cXX3xRjz76qEJCQlRQUFAhQagsQ3xZjgLVXvI/v5zflZoq56zZMlq1lOW6a2VYrbIMHybnW2/L+ckCWQcN9Mt5duzcIbvVP9+KJwqkB+f5pakKs2PnToUH7U8iKlpWVlaJE8RceOGFstkKR03fe+89z8i5L0oTgtxee+013XvvvZIK12YrKQjt3LlTdrvd51oqyrOvvKdjmVmKiY5RSkpKscfBjv6bu/8SrwH9L97fYHkNKu9HcGdpwoQJqlOnjg4cOKCEhAS1b99e8fHx6tatm5o1a6ZLL71UUvEZ4x555BFJhX/AGzZsqK5du6p+/fp65JFHNH36dM9sSCcHqGDkcjrlmPKC5HTKOv5+z1TZluuuldEyXs5Zs+U6WLkvZwFQVGJioufr77//3ufjfQlBUuEyBr/99luxcwMAUBkEbRCKjY3VDz/8oH79+ikiIkJ79+5VVFSUZs6cqUWLFmnHjh2SigehMWPG6LXXXlN8fLwOHz6sgwcPqn///lq7dq26desmh8OhZs2aFVuANdg4P5wv15atsowYLqNxY8/zhtUq69/vl5wOOZ6fVuXXSgLMpHPnzp6v165d69OxvoagU89Tr149NT7pdwkAAIEW1BfktGnTRgsXLiz2fGZmpvbu3SuLxaJ27doV2z569GiNHj3aa5tmeOPv2r9fzrffldGmtSzXDC623YhrUi6XyAEoXw0aNJBUeB/R7t27S31cWUOQVLioat++fSUV3gu0f//+MlQOAID/BXUQKsnmzZvlcrnUsmVLz/Xy/vDhhx9KkrZs2VLkcVxcnLp06eK385Q3o3FjhS769LT7WG8YKusNQyuooooX27anxv339KH3TNuBymbmzJn64osvFBIS4tOHOg899FCZQpAkff3118rMzFROTk6VnlkIABB8TBmENm7cKKn4ZXFna8iQIV4fjxgxQrNnz/bruQDAV7NmzSrTcZMnT1aPHj3Uo0cPn0KQJH3++ef6/PPPy3ReAADKE0HIj8xw2RwA88nNzdXAgQPVunVrJScnB7ocAAD8ImgnSzid8gpCABCscnNzCUEAgKBiyhGhJUuWBLoEAAAAAAFkyhEhAAAAAOZGEAIAAABgOgQhAAAAAKZDEAIAAABgOgQhAAAAAKZDEAIAAABgOgQhAAAAAKZDEAIAAABgOgQhAAAAAKZDEAIAAABgOgQhAAAAAKYTEugC4F82i1VHLu0T6DJ8YrNY/dZWmFWaPNRvzVWIMP91H5DNZlNmZqbf2psy830dy8pWpN2m8bdfX+yxP9hsNr+0AwCALwhCQcYwDNmt5v3fahhSuHm7DxT+DrDb/dZeWHiEwvIdCguPkN1uL/YYAICqikvjAAAAAJgOQQgAAACA6RCEAAAAAJgOQQgAAACA6RCEAAAAAJgOQQgAAACA6RCEAAAAAJgOQQgAAACA6RCEAAAAAJgOQQgAAACA6RCEAAAAAJgOQQgAAACA6RCEAAAAAJgOQQgAAACA6RCEAAAAAJgOQQgAAACA6RCEAAAAAJgOQQgAAACA6YQEugDAn1wuKc8R6Cp8E2aVDCPQVQQPl8ul7OzsQJfhE5vNJoNvAgAAKhRBCEElzyE9OC/QVfhm8lApnJ9Ev8nOzlb16tUDXYZPMjMzZbfbA10GAACmwqVxAAAAAEyHIAQAAADAdAhCAAAAAEyHIAQAAADAdAhCAAAAAEyHIAQAAADAdAhCAAAAAEyHIAQAAADAdAhCAAAAAEyHIAQAAADAdAhCAHAahmEoJiZGzZo1U1xcnGrXru3T8eHh4XrooYcUGhpaThUCAICyCAl0AQBQ2XTt2lVDhw5Vly5ddO655yoyMrLI9gMHDmjt2rVasWKF3n33XaWnp3ttJzw8XB9//LGSkpLUrVs3DR06VPn5+RXRBQAAcAaMCAGAJIvFohEjRmj16tX66aef9MADD+iSSy4pFoIkqVGjRrr66qv13HPPaf/+/Xr//ffVtWvXIvucHIIkqU+fPmrdunWF9AUAAJyZKYJQRkaGJkyYoBYtWigiIkKNGjXSuHHjlJWVpVGjRskwDL388stFjtm7d6+mTJmivn37qnnz5rLb7bLZbOrYsaMmTZqkvLy8APUGFSFly3d6cbihtYumlrjPi8MNfTq1fwVWhfISHx+v77//XrNnz1aXLl2KbNu3b58+++wzvffee5ozZ46+++47HTt2zLM9NDRUQ4cO1cqVKzV16lRVq1atWAjKzMxUUlKSNm7cWKH9AgAAJQv6S+OSk5OVlJSk9PR02e12tW3bVgcPHtRLL72k3bt36/Dhw5KkTp06FTnuqaee0qxZs2S329WgQQMlJCTo119/1c8//6yff/5Zq1ev1kcffRSAHgHwp5EjR+qVV15RtWrVPM+tWbNGM2bM0GeffaaMjIxixxiGoVatWmn48OG69dZbdc4558hiseiBBx7QVVddpfT0dF100UWS/gpBy5Ytq7A+AQCAMwvqEaGMjAwNGDBA6enpeuCBB5SWlqZ169YpPT1dkydP1qJFi7R69WoZhqEOHToUOfbyyy/X2rVrdfz4ce3YsUM//fST9u7dq9WrV+ucc87R/Pnz+XQXqOLuu+8+zZo1yxOCdu/erV69eqlr16566623vIYgSXK5XNq2bZv++c9/qlGjRvr73/+u3NxcSYWjS4QgAAAqv6AOQvfcc49SUlJ01113aerUqapRo4Zn24QJE9SxY0cVFBQoLi6u2H0AQ4cOVefOnWUYRpHnu3Tpoj59+kiSNm/eXP6dAFAuRo0apRdeeMHz+NVXX1WHDh303Xff+dROfn6+nn/+eXXr1q3IJXNOp1OjR48mBAEAUEkF7aVxW7du1bx581S3bl1NnDjR6z6JiYnasGGDOnbsWGzbiRMntGDBAn3//ffas2ePjh8/LqfTKemvABQWFlbkmD179mjcuHH69ttvFRISogEDBmjatGmqU6eOn3uHilKQl62c495HBVB1tW7dush9gY899pieeuqpMrcXHh6uyZMnF/lAxWKxaNy4cfrggw88vzsAAEDlEbRBaO7cuXI6nRo2bJiqV6/udR/35TCnBqHFixdr5MiROnDgwGnP0axZM8/Xx48fV69evRQVFaW5c+cqJydHEyZMUP/+/bV8+XJZLEE9+Ba0Vn70uFZ+9Higy4AfWSwWvfXWW4qIiJAkvfzyy2cdgk6dGOHIkSNq1KiRzj//fN1///2aOrXkSTcAAEBgBG0QWrJkiSSpV69eJe6TkpIiqWgQWrVqla688krl5+dr1KhRGjZsmNq1a6fatWsrJCRE27ZtU5s2bRQSEqI2bdp4jnvttdeUmpqqpUuXqnHjxpKk2NhY9ejRQwsWLNDVV19dDr1EeWvX6zbFnzfE67aPJ/Wp4GrgD6NGjdL5558vSdq+fbvGjx9f5rZKmh3O4XBo2bJlslgseuqpp/Tee+8pLS3NL/UDAAD/CNogtG/fPklSkyZNvG4vKCjQ8uXLJRUNQg8//LDy8vI0adIkPfjgg8WOW7RokSSpbdu2Cg8P9zy/cOFCXXjhhZ4QJEndu3dXs2bN9Nlnn5UpCHXp0qXEhRrhnTW0mgY9vdNv7dWKjlfjdr391p43LePj5cjPKddzmMmZLkO7++67PV+PGjXKM8mBr0oKQe57gl566SXde++9ioiI0K233nraUaf4+PhKO2o8aOS9slePVFp6mmJjY4s9NgOzvwb039z9l3gN6H/x/la21yA6Olpr1qzx+bigDUJZWVmSpJwc728w582bp4yMDNWoUUNNmzaVJDkcDi1dulRS4ZS6p3I6nXrvvfckSeeee26RbVu2bNGQIcVHDhISErRly5Yy9SE9PV2pqallOtasQsJtgS7BZwfTDqrgRHagyzCFiy66SO3bt5ckLVu2zPNhiK/OFIIk6fnnn9fdd98tq9Wq22+/XRMnTlRBQYHX9irzaJHT4fD8NzU1tdhjMzD7a0D/zd1/ideA/hfvb7C8BkEbhKKjo3XkyBGtW7dO3bt3L7ItLS3NczlMhw4dPDPDZWVlyfHn/1hvnxI///zzWr9+vaTiQejIkSOqVatWsWOioqK0ffv2MvcBvrGGVjvzTpVMg5gGjAj5kdPpLDFY3HDDDZ6vZ8yYUab2SxOCpMJLbxcsWKBBgwapYcOGuuiii/Ttt996bTMmJqbSjghZrFbPfxs2bFjssRmY/TWg/+buv8RrQP+L97eyvQZlfc8ctEGod+/e2rp1qyZPnqw+ffqoZcuWkqTVq1frpptu8qwPcvJCqpGRkWrYsKFSU1P1zDPPaMaMGbJarcrLy9OLL76oRx99VCEhISooKCgWhMpDWYb4zO5EgfTgvEBX4ZsdO3cqPGh/EiteVlZWiROkdO3aVVJhWPrss898bru0Icjt008/1aBBgyQVXupaUhDauXOn7Ha7z/VUhGdfeU/HMrMUEx2jlJSUYo/NwOyvAf03d/8lXgP6X7y/wfIaVM6PIP1gwoQJqlOnjg4cOKCEhAS1b99e8fHx6tatm5o1a6ZLL71UUvEZ4x555BFJhZMfNGzYUF27dlX9+vX1yCOPaPr06XK5XDIMo0iAkqTatWvr6NGjxeo4fPiwoqKiyqWPAEovNDTUc1nc9u3blZmZ6dPxvoYgqeiHGYmJiWWoGgAAlJegDUKxsbH64Ycf1K9fP0VERGjv3r2KiorSzJkztWjRIu3YsUNS8SA0ZswYvfbaa4qPj9fhw4d18OBB9e/fX2vXrlW3bt3kcDjUrFmzYguwtmnTxuu9QFu2bCkyuxyAwGjatKlngpMNGzb4dGxZQpAkbdu2TSdOnJAkfg8AAFDJBPUFOW3atNHChQuLPZ+Zmam9e/fKYrGoXbt2xbaPHj1ao0eP9tqmy+Xy+nz//v31j3/8QykpKZ7ZM1atWqXdu3drypQpZ9ELBEJs254a91/v/6/dzrQdlYvFYtHu3btVrVo1n4bxQ0JCyhSCpMIJWPbu3SubzaZDhw6VuXYAAOB/QR2ESrJ582a5XC61bNlSNpt/Zhm77bbbNH36dA0cOFBPPvmkcnNzNWHCBHXr1k0DBw70yzkAlN22bdvUokULn48rKCjQ2rVrlZSU5FMIcmvdurXP5wQAAOXPlEFo48aNkopfFnc2IiMjtWTJEo0bN07XX3+9QkJC1L9/f02bNq3SzgYFoHQeffRR5eXl6dtvv/UpBAEAgMqLIORHzZs393opHoCq73QLogIAgKrHlEMV5RWEAAAAAFQNphwRWrJkSaBLAAAAABBAphwRAgAAAGBuBCEAAAAApkMQAgAAAGA6BCEAAAAApkMQAgAAAGA6BCEAAAAApkMQAgAAAGA6BCEAAAAApkMQAgAAAGA6BCEAAAAApkMQAgAAAGA6IYEuAPCnMKs0eWigq/BNmDXQFQQXm82mzMxMv7U3Zeb7OpaVrUi7TeNvv77YY3+w2Wx+aQcAAJQeQQhBxTCkcL6rTc0wDNntdr+1FxYeobB8h8LCI2S324s9BgAAVROXxgEAAAAwHYIQAAAAANMhCAEAAAAwHYIQAAAAANMhCAEAAAAwHYIQAAAAANMhCAEAAAAwHYIQAAAAANMhCAEAAAAwHYIQAAAAANMhCAEAAAAwHYIQAAAAANMhCAEAAAAwHYIQAAAAANMhCAEAAAAwHYIQAAAAANMhCAEAAAAwHYIQAAAAANMhCAEAAAAwHYIQAAAAANMhCAEAAAAwHYJQFfbEE0/IMIxi/3bt2hXo0gAAKNHnn3+uTp06KTw8XHFxcXrhhRcCXVKFWrp0qQYOHKgmTZrIMAw9/fTTgS6pQk2ZMkXdu3dX7dq1VatWLV144YX68ssvA11WhXn33XeVmJio2rVrq1q1amrTpo1eeOEFuVyuQJcWEEuWLJHValWLFi0q/NwhFX5G+FVcXJx+/PHHIs/Vq1cvQNUAAHB6a9as0cCBA/X3v/9dc+fO1apVq3THHXfIZrPpjjvuCHR5FSIzM1Nt27bVjTfeqHvvvTfQ5VS4JUuW6JZbblHXrl1ls9n0xhtvqH///vr+++91wQUXBLq8cle/fn09+uijatWqlcLDw/XDDz9o7NixslqtGjduXKDLq1Dp6ekaMWKELr/8cu3cubPCz08QquKsVquio6MDXQYAAKXywgsvqGvXrpo4caIkqU2bNtq8ebMmTZpkmiB05ZVX6sorr5QkPfjggwGupuJ98cUXRR4/99xz+vLLLzV//nxTBKErrriiyONmzZrpk08+0XfffWeqIOR0OjV8+HDdeeedys3NDUgQ4tK4Ki4lJUWxsbGKjY1VUlKSVqxYEeiSAAAo0fLly9W3b98iz/Xt21f79u1TSkpKgKpCIDmdTh07dkx2uz3QpVQ4l8uln376ScuXL1evXr0CXU6Feuqpp2QYRkA/DGBEqArr1q2b3nrrLbVt21bHjh3TzJkzddFFF+nLL79Unz59Al0eAKAKOXosU59/u7LY8zm5uZ7/zvn0m2KP3QzDUP/LuquG3Xba86SlpRW7ksH9OC0tTbGxsWfVj7JyuVz6+oc1+v3IH0WeL23/Jal9q2Zq37pZxRRcDnbuSdHqn7cVe760r0F1ezX1v7S7LBbfPmd/9tlndfToUd12221nUf3ZO5GXr0//t0wFBY4iz/vyPXBpj86Krhd1xnP98ccfatiwofLy8uR0OvX444/rnnvu8VNPym752k3al5Je5Dlv/S3pNYiLjVaPxHZnPM+3336rV199VevXr5dhGP4q32cEoSrMPazudtFFFyklJUVTpkwhCAEAfFIrsrqqRYRrVfJWr9vzCxz6edsvJT6+uFuHM4agyswwDLVu1kivzkn2etP6mfpfu2YNDe57cYXUWl6aNo7R59+tUtqvv3vdfqbX4G+DL/c5BM2YMUPPPvusFixYELAQ7BYeFqroulH6/LtVXrefqf9t4+N0Tt3apTpXjRo1lJycrOzsbK1YsUIPP/ywGjRooFGjRp1dJ85SmxZN9PXS1TqRl19s26n9PfW58LBQJfU874znyMjI0PDhw/XWW28F/PYOLo0LMt27d9fevXsDXQYAoAq6stf5qlMr0ufjzqlbW30u6lKqfWNiYpSeXvQT50OHDnm2BVKT2Gj1PL+jz8cZkq7r11MR4WH+L6oChVitGtq/l6xW398edunQSm3j43w6ZurUqRo/frwWLFig3r17+3zO8nBh1/Zq2sj378Pqtmoa3PeiUo9uWCwWtWjRQh06dNAdd9yhCRMm6JFHHvH5vP4WVbOGBlzWo0zHXtX7AtWuWeOM+23atEkHDx5U//79FRISopCQEP3rX//S7t27FRISojlz5pTp/GVBEAoy69atU6NGjQJdBgCgCgoPC9V1/Xv5dKmK1WLR0AGXKjSkdBeZXHDBBfrqq6+KPPfll1+qSZMmAR8RkKTLLkhUg3Pq+HTMxed1LNOb58ooul6U+l7czadjomrW0IBLu/t0zGOPPaYnn3xSn3/+eaUJQVJhQLmuX0+Fh4X6dNzgpItV3VatzOd1Op3K/fNys0BLbN/S51Cb0DJOndvFl2rfrl27auPGjUpOTvb8u+OOO9SoUSMlJyerX79+Zai6bLg0rgq7//771b9/f8XFxenYsWN6/fXX9b///U+ffvppoEsDAFRRTRqeo57nd9K3P64v1f59LuqiBvVLHxzuu+8+9ejRQ4888ohuuukmrVq1StOnT9e0adPKWrJfhVitGtqvl6a//bEKHI4z7h9dL0p9LizdaJhbZmamZ82/vLw8paenKzk5WdWrVw/IWiqnuqBre23dvU+/7E87476GpOv691K4D6Nh9957r2bOnKm5c+eqVatWnhHCatWqqWbNmmUt229q16yhq3pfoP/7/LtS7d+1Q2u1bdGk1O0//vjjuuiii9SsWTPl5+dr6dKlmjx5skaOHFnGiv3LMAwN7nuR9qceUmZ2zhn3r26vpkFXlH40zG63q127ovcR1a9fX2FhYcWeL2+MCJWB0+nUF198oX/961+66qqrFBMT41nMtCIvS0tLS9Pf/vY3tWnTRpdffrm2b9+ub775RgMGDKiwGgAAweeyCzqr4Tl1z7hfXGy0Lu7Wwae2u3btqk8++UQLFy5Ux44d9dhjj+mZZ56pVFNnn1MvSldc0vWM+1mtFg3t30shIVaf2l+zZo3OPfdcnXvuuUpLS9Mrr7yic889V7feemtZS/Yri2FoyJWlGxW5+LyOiov17T6PF198Ubm5uRo0aJBiYmI8/yrT1NGd28UroWXcGfeLqlVD/S8936e2jx07pjvuuEMJCQk6//zz9eqrr2rixImVamHh6rZqGpxUunverk265KxGwwKJEaEyOHbsWLGJCgJh7ty5gS4BABCEQqxWXde/l6bPnl/iqEhYWKiu69fT55vjJalfv34VevlLWVzQpb227tqvX/YfLHGfyy/qqhgfRsPcevbs6XVChsqkds0auqrPBfq/Rd+VuE9M/To+j4ZJqvR9lwpHRQZdcZH2pR5SZpb3URHDMHRdP99GwyRp2rRplWYE9HTatmiirh1ae51J0K1bx9Zq3bzxWZ/riSee0BNPPHHW7fiKEaEysFgs6tSpk0aPHq2ZM2fqp59+CnRJZ7R+804tXrFOuSfyAl0KAKAKOKdubfXtWfK9IgMu666oMkysUFVYDOO094o0bRSji7q2r+CqKlbnhHi1a9nU67ayjoZVJdVt1XRt0iUlbr+kDKNhVU3/S89XVC3vEyDUqRWpfj7eG1bZMCJUBpGRkVq//q9rpwsKCgJYzZkVOBz6aulqHT2WqYjwMF1QivndAQDokdhO23bt1659qUWeb9Oiibq0bxWgqipOrcjquvryCzVv4bdFng8PC9WQMo6GVSXuUZG9qenFRkWuuLhbqdbLqepaN2+sbh1b66cNRUdFYurXUe8LEwNUVcUJDw/Tdf16aeacz4qM5Bln+KCgqgjun2AfORwOvfvuu7r88stVr149hYeHq3Hjxurbt6/eeOMNOUpx02RltHbjDh09lqka9mrq1qF1oMsBAFQRFsPQtVdeUmRaaLstQtf0vTigiyBWpE5tW6h9q6KjIgN691BUKaYJDgZ2W0SxUZGmjWJ0YZCPhp2s36Xdi0wr755mPMQavKNhJ4uLjdYl5xWdVr7n+R3VJAhGwwhCfzp27Jj69Omjv/3tb/rf//6nsLAwdezYUU6nU19//bVGjx6t48ePB7pMnxU4HJ6Zfy45v5NCQxkEBACUXq3I6hrY5wLP42v6Xqzq9qp5Y3RZGIahq6+4SDWqFy4W2zY+TontWga4qorVunljndepjaQ/p1jv11MWkwRh6a8+u8P/FRd3NcVo2Ml6X5jouR+uwTl1dNkFwTEaRhD606hRo/Ttt98qNjZWS5YsUWpqqn766SelpKQoLS1NzzzzjEJDq97w38mjQed1bBPocgAAVVCnti3UoXWzMi2aGQzs1SJ07Z8B0JdFM4PJlb3OV53akaVeNDPYuBfbbda4gS4w0WiYm3sULCI8TEP7Xxo0o2GGqypM3VHO1q5dqy5duigkJETr16/3eQ7zgoICT0jas2eP4uLi/FLX9Lfn63jmmedvL5lLx7Ny5HK5FBEeprAqGOSAQDuelS2XyyXDMFTDbiv2ONiZvf8Sr4Gb++2CGUOAm9PpDPr7gk7H6XR6lgsxI5fLJZfLZfrvgcrY/xrVq+nuEYN9Po7rpCR98sknkgqn86zohZxO53hmjo5lZvmlrdwTecwYB5wFl8tV5Ofx1MfBzuz9l3gNACDYEIQkbdmyRZLUvXvlmgKwRvWzuQab0SDAH8w+GmD2/ku8BgBQ2ZX1PTNBSIUTJUhSzZo1A1xJUWUZ4nNblbxVH3/1g2rYq2nC7TcwSQJQRs++8p6OZWapht2mf9w5rNjjYGf2/ku8BgAQrLhHSNI111yj+fPna9KkSXrwwQd9Pr7y3SPEaBDgL2YfDTB7/yVeAwCo7LhH6CwkJCRo/vz5+vHHHwNdShH+uEeIe4MA/zD7/SFm77/EawAAwYYgJGnQoEF66qmn9Pnnn2vLli1q27ZtoEuSVNbrHRkNAvzJ7KMBZu+/xGsAAJVdWe8R4tK4Pw0dOlQffPCBGjdurHfeeUeXXPLXKsqHDh3SrFmzdM8998hutxc7trwujSsL7g0C/Mt9P0hkdXuR+0Pcj4Od2fsv8RoAQLDiXfKfXn/9df3666/67rvv1LNnTzVs2FANGjRQWlqaUlNT5XK5NGbMGM/+AwcO1PLly4u107lzZ8/86hdccIE+/fTTCutDgcOhb39cL0m65PxOhCAAAACgBLxT/lNkZKS++eYbvf3223r33Xe1YcMGbdiwQdHR0briiis0ZMgQ1ajx10rKf/zxh37//fdi7Rw5cqTIPhVp/aadOnosUzXs1XRexzYVem4AAACgKiEIncRqteqWW27RLbfccsZ9v/vuu/IvyEcd27ZQbl6eqoWHMxoEAAAAnAbvloNIWGiILuraIdBlAAAAAJWeJdAFAAAAAEBFIwgBAAAAMB2CEAAAAADTIQgBAAAAMB2CEAAAAADTIQgBAAAAMB2CEAAAAADTIQgBAAAAMB2CEAAAAADTIQgBAAAAMB2CEAAAAADTIQgBAAAAMB2CEAAAAADTIQgBAAAAMB2CEAAAAADTIQgBAAAAMB2CEAAAAADTIQgBAAAAMB2CEAAAAADTIQgBAAAAMB2CEAAAAADTIQgBAAAAMB2CEAAAAADTIQgBAAAAMB2CEAAAAADTIQgBAAAAMB2CEAAAAADTIQgBAAAAMB2CEAAAAADTIQgBAAAAMB2CEAAAAADTIQgBAAAAMB2CEAAAAADTIQgBAAAAMB2CEAAAAADTIQgBAAAAMB2CUBX27rvvKjExUbVr11a1atXUpk0bvfDCC3K5XIEuDcBpfP755+rUqZPCw8MVFxenF154IdAlVailS5dq4MCBatKkiQzD0NNPPx3okirUlClT1L17d9WuXVu1atXShRdeqC//v737D6qq3Pc4/tk/+C3gT0RATDI4Ytmx4KqACZqKqBdL0zvNHT2DY8M0c/3RZGVmTuNEVk7/dG5/pHZKp2PXqx6zVCpTnNKSycI5R0edwONl497SvSnI2RLC5v6BcOWyUfZW9nKz3q9/mPWsZ6313fzBXh+e9ayntNTosgDAdOxGFwD/xcXFae3atUpLS1NYWJi++eYbPfvss7LZbFq+fLnR5QHw4ocfflBhYaGef/55bd++XcePH1dxcbEiIyNVXFxsdHkB0dDQoPT0dD399NNasWKF0eUE3KFDh1RUVKTMzExFRkZq8+bNmj17to4cOaLs7GyjywMA0yAIBbEZM2Z02k5JSdGePXtUVlZGEALuUe+8844yMzP1xhtvSJJGjx6tU6dOacOGDaYJQgUFBSooKJAkvfjiiwZXE3gHDhzotP3WW2+ptLRUu3fvJggBQADxaFwf0draqvLych09elR5eXlGlwOgG0ePHlV+fn6ntvz8fF24cEEOh8OgqmAkj8ej+vp6RUVFGV0KAJgKI0JBrq6uTomJiWpqapLH49G6deu0bNkyo8sCgs7luqv65de6Lu3NLS0dP8+dd3TZvtnI4fEKsd/6z6rT6VR8fHyntvZtp9OppKQkvz/DnWhp8ajyvy52affl8w/qH6NBA2J6v9hecvHSf6vB3dilvae/gxC7TSOHD/P5uiUlJbpy5YqeeeYZPysHAPiDIBTkoqOjVVFRIbfbrWPHjmn16tVKSEjQkiVLjC4NCCp2u03/8fkh/cPLjbAkua816oMd+7vdfihtpB64L7HX6+wtNptVJ0//rBN/O+d1/+0+f3hYqFYUze/1OntT429N+tOO/erudTO3+x3MmZrlcxB67733VFJSor179xoWggHArHg0LshZrVaNGjVKY8eOVXFxsV544QWtWbPG6LKAoBMdFakn8x/z79h+kZo7Y5IsFstt+w4bNkwul6tT26VLlzr2GWnO41nqH9PPr2MLp2X7fey9IiU5QTmZY/06dtSIRE18dIxPx2zcuFGrVq3S3r179fjjj/t1XQCA/whCfYzH41Fjo/f/aAO4tTEP3KeMh9J8Pm5+/mOKigjvUd/s7Gx98cUXndpKS0s1YsQIw0cEwsNCtWB2nm4f5zob+7sU/T59VK/UFGjTH8vQ0MEDfDomPCxUTxVMlrUHQbjdq6++qtdee0379+8nBAGAQQhCQWzdunU6ePCgqqqqdPbsWW3atElvvvmmFi9ebHRpQNCaPXWiBsRG97j/hHHpSrs/ucf9V65cqfLycq1Zs0ZnzpzRRx99pHfffVcvvfSSP+XedSnDh2nSP/V8VCS6X6TmTs/p0WhYu4aGBlVUVKiiokJNTU1yuVyqqKjQzz//7E/Jd1WI3a6Fc6bIZu351+Pc6TmK9WE0bMWKFXr77be1bds2paWlyeVyyeVyqa6u6xw1AEDvsbSy+qbf6uvrVVJSol27dqm6ulqxsbHKycnR6tWrlZGR0evXX7lypT777DPV1NQoPDxcKSkpKioqUnFxsWw2W69fH+irzlc79f6fP+t2rki7wQNitewPTyo0NMSn8+/bt08vv/yyzpw5o/j4eC1fvlzPPfec/wXfZc3NLfrj1r/I9cuvt+1b9NRMpaYM9+n8ZWVlXt9uOXnyZJWVlfl0rt5S9n2FSo+U37bf2N+l6OlC30Z0uguNixcv1ocffujTuQAA/iMI+am2tlZZWVmqrKxUeHi40tPTdfHiRblcLtntdn3yySeaN2+e0WUC8NOBsuM6cvxkt/utFouK/7VQyQlxAawqcJy1/6M/bv2LWlo83faZMC5dc6fnBLCqwPF4PHp/++f6u8PVbZ+YfpFaUTRfkT18LBIAcG/h0Tg/FRUVqbKyUuPHj9eFCxd04sQJORwOrV+/Xs3NzVq0aJFqamqMLrPDL79e0a91V40uAwga03IyFD9kYLf7cyeO67MhSJKGxQ3S9Endj2wPHhirgtzxAawosKxWq56alXvL0b75BbmEIAAIYgQhP5w4cUL79u2T3W7X9u3bFRfXdjNks9n0yiuvKC8vT263Wxs3bjS40v/z+dffaeP7n+iHv541uhQgKNjtNv3LnCmy2br+mUyMH6ypWY8YUFVgTcocq/uS4ru0Wy0WLZyV5/MjgcFmUP8YzZky0eu+iY+MUepIXncNAMGMIHSTlpYWbdu2TdOnT9eQIUMUFham5ORk5efna/PmzWq5sYjerl27JElTp07VyJEju5xn6dKlkqSdO3cGrvhbqL5Yq7NV1VKrvN7UAPAufshAzZiU2anNbrdp4WzvAamvsVqtWuBlVCQva5yG9+HRsJtljE3T6FEjOrUNGRirmX14NAwAzKLvf5P3UH19vaZNm6ZFixbpq6++UmhoqB5++GF5PB59+eWXWrp0qa5ebXu07Pvvv5ck5eR4fza+vd3hcMjhcHjtE0gHj56QJI0b84AGD4g1uBoguORkPtRpkcyZueMVN6i/cQUF2MD+MfrnqVkd20nxQzRlYt8fDWtnsVg0L/8xRUW2PQJntVi0YHaeQkNYjxwAgh1B6IYlS5bo8OHDSkpK0qFDh1RTU6Py8nI5HA45nU69/vrrCglp+6/ouXNtK6/ff//9Xs+VlJSk0NDQTn2N0j4aZLVYlJc1ztBagGDUPlckLDSkbdHMR3xbNLMvePShVKU/MEIhdpsWzs4zxWjYzfpFRXQstjsl6xENH2aO0TAA6Ot4a5za5vxkZGTIbrfrp59+0oMPPnjL/lFRUXK73Tpw4IDy8/O99hk6dKhqa2u1c+dOv98e9+5Hu3W14Zpfx7ZzX2tUc0uLQux2RYSH3dG5ADO7fr1ZNptVVh/Wl+lLPJ5WNbe0mHokpKnpukJC7D6tmQQA6H3R/SL0b4uf9Pk4836j3WTPnj2SpFmzZt02BElSY2OjJHWM+ngTFtYWOq5d8z/IXG24pvqGf/h9/M2uNzfrekPzXTkXAPNq/O03o0swVGNTk9ElAADuEoKQpNOnT0uSJk70/nag/y88PFxut1tNt/hC/O3GzUJERITfdUX38/9YidEgAAAA9H3+3jMThNT2ogRJio3t2YsEBgwYILfbrcuXL3vd39raqitXrnT09Zc/Q3ztqi/W6t+37ZHVYtHyonm8JAEAAAC4CUFIUkxMjCSprq6uR/1TU1NVU1OjyspKr/sdDkfHaFFqaqrfdd3JHCH3tbbH92w2m97/8+d+1wAAAADcy5gjdAfGjBmj3bt367vvvutR//Hjx+vw4cP69ttvve5vb09MTFRSkv8L7t2NOULMDQIAAAC6IghJeuKJJ7R+/Xrt379fp0+fVnp6+i37z5s3Txs2bNDXX3+t8+fPd1lUddOmTZKk+fPn31Fd/j7vyNwgAAAAmIW/98y8PvuGhQsXaseOHUpOTtbWrVs1efLkjn2XLl3SBx98oGXLlikqKkqSNHPmTJWWlmrChAn69NNPFRcXJ4/Ho5KSEq1du1YRERE6d+7cHY0I+ePmuUHPLV3A3CAAAADAC4LQDfX19SosLFRZWZmktsfaEhIS5HQ6VVNTo9bWVl2+fFn9+/eXJLlcLmVnZ6uqqkoREREaPXq0nE6nnE6n7Ha7Pv74Yy1YsCDgn+NP/3lAZ6uq9eiDqXpqVm7Arw8AAAAEA3OuDOhFTEyMDh48qC1btig3N1dut1snT56U1WrVjBkztGXLFkVHR3f0j4+P148//qhVq1YpISFBp06dUnNzs+bOnatjx44ZEoKqL9bqbFW1rBaL8rLGBfz6AAAAQLBgRKgP+bvDpT1ffqvEoYMZDQIAAABugSDUx3haW3W96brCwkKNLgUAAAC4ZxGEAAAAAJgOc4QAAAAAmA5BCAAAAIDpEIQAAAAAmA5BCAAAAIDpEIQAAAAAmA5BCAAAAIDpEIQAAAAAmA5BCAAAAIDpEIQAAAAAmA5BCAAAAIDpEIQAAAAAmA5BCAAAAIDpEIQAAAAAmA5BCAAAAIDpEIQAAAAAmA5BCAAAAIDpEIQAAAAAmA5BCAAAAIDpEIQAAAAAmA5BCAAAAIDpEIQAAAAAmA5BCAAAAIDpEIQAAAAAmA5BCAAAAIDpEIQAAAAAmA5BCAAAAIDpEIQAAAAAmA5BCAAAAIDpEIQAAAAAmA5BCAAAAIDpEIQAAAAAmA5BCAAAAIDpEIQAAAAAmA5BCAAAAIDpEIQAAAAAmA5BCAAAAIDpEIQAAAAAmA5BCAAAAIDpEIQAAAAAmM7/Aju5/hIqmqd6AAAAAElFTkSuQmCC", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "# Draw the circuit without barriers and reverse bit order\n", - "circuit.draw(output='mpl', plot_barriers=False, reverse_bits=True)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### レンダラー特有のカスタマイズ\n", - "\n", - "利用可能な一部のカスタマイズオプションはレンダラーに固有です。 \n", - "\n", - "`text` レンダラーの `line_length` kwarg は、出力の最大幅を設定するのに使用できます。 図が最大幅を超える場合、図が下に折り返されます。 \n", - "\n", - "`mpl` レンダラーには、出力をカスタマイズするのに使用する `style` kwarg があります。 \n", - "\n", - "`scale` オプションは `mpl` および `latex` レンダラーで使用し、出力イメージのサイズを乗算調整係数でスケーリングします。 \n", - "\n", - "`style` kwarg は、色指定、ゲートのタイプごとにレンダリングされるテキストの変更、異なる線スタイルの選択などの複数のオプションを持つ `dict` を取ります。 \n", - "\n", - "以下は、利用可能なオプションです。\n", - "\n", - "- **textcolor** (str): テキストのカラーコード。 デフォルトは `'#000000'`\n", - "- **subtextcolor** (str): サブテキストのカラーコード。 デフォルトは `'#000000'`\n", - "- **linecolor** (str): 線のカラーコード。 デフォルトは `'#000000'`\n", - "- **creglinecolor** (str): 古典レジスターの線のカラーコード。デフォルトは `'#778899'`\n", - "- **gatetextcolor** (str): ゲートテキストのカラーコード。デフォルトは `'#000000'`\n", - "- **gatefacecolor** (str): ゲートのカラーコード。 デフォルトは `'#ffffff'`\n", - "- **barrierfacecolor** (str): バリアーのカラーコード。 デフォルトは `'#bdbdbd'`\n", - "- **backgroundcolor** (str): 背景のカラーコード。 デフォルトは `'#ffffff'`\n", - "- **fontsize** (int): テキストのフォントサイズ。 デフォルトは 13\n", - "- **subfontsize** (int): サブテキストのフォントサイズ。 デフォルトは 8\n", - "- **displaytext** (dict): 出力可視化の各要素の型\n", - " のテキストの辞書。 デフォルト値:\n", - " \n", - " \n", - " 'id': 'id'、\n", - " 'u0': 'U_0'、\n", - " 'u1': 'U_1'、\n", - " 'u2': 'U_2'、\n", - " 'u3': 'U_3'、\n", - " 'x': 'X'、\n", - " 'y': 'Y'、\n", - " 'z': 'Z'、\n", - " 'h': 'H'、\n", - " 's': 'S'、\n", - " 'sdg': 'S^\\\\dagger'、\n", - " 't': 'T'、\n", - " 'tdg': 'T^\\\\dagger'、\n", - " 'rx': 'R_x'、\n", - " 'ry': 'R_y'、\n", - " 'rz': 'R_z'、\n", - " 'reset': '\\\\left|0\\\\right\\\\rangle'\n", - " \n", - " \n", - " これを使用する場合、必要な値をすべて指定する必要があります。 渡される\n", - " 不完全な辞書に対する規定はありません。\n", - "- **displaycolor** (dict): 各回路要素に使用するカラーコード。\n", - " デフォルトでは、すべての値は `gatefacecolor` の値となり、\n", - " キーは `displaytext` と同じです。 また、\n", - " `displaytext` と同様に、渡される不完全な辞書に対する規定はありま\n", - " せん。\n", - "- **latexdrawerstyle** (bool): True にセットすると、LaTeX モードが有効化され、\n", - " ゲートは `latex` 出力モードのように描画されます。\n", - "- **usepiformat** (bool): True にセットすると、出力にラジアンを使用します。\n", - "- **fold** (int): 回路を折り返す回路要素の数。\n", - " デフォルトは 20\n", - "- **cregbundle** (bool): True にセットすると、古典レジスターをバンドルします。\n", - "- **showindex** (bool): True にセットすると、インデックスを描画します。\n", - "- **compress** (bool): True にセットすると、圧縮した回路を描画します。\n", - "- **figwidth** (int): 出力図の最大幅(単位: インチ)。\n", - "- **dpi** (int): 出力イメージに使用される DPI。 デフォルトは 150。\n", - "- **creglinestyle** (str): 古典レジスターに使用される線のスタイル。\n", - " 選択肢は `'solid'`、`'doublet'`、または有効な matplotlib\n", - " `linestyle` kwarg の値です。 デフォルトは `doublet`。" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
            ░ ┌───┐ ░    ┌─┐                           \n",
-              "qa_0: ──────░─┤ H ├─░────┤M├───────────────────────────\n",
-              "      ┌───┐ ░ ├───┤ ░    └╥┘┌─┐                        \n",
-              "qa_1: ┤ X ├─░─┤ H ├─░─────╫─┤M├────────────────────────\n",
-              "      └───┘ ░ ├───┤ ░     ║ └╥┘┌─┐                     \n",
-              "qa_2: ──────░─┤ H ├─░─────╫──╫─┤M├─────────────────────\n",
-              "            ░ ├───┤ ░     ║  ║ └╥┘    ░ ┌─┐            \n",
-              "qb_0: ──────░─┤ H ├─■─────╫──╫──╫──X──░─┤M├────────────\n",
-              "      ┌───┐ ░ ├───┤ │     ║  ║  ║  │  ░ └╥┘┌─┐         \n",
-              "qb_1: ┤ X ├─░─┤ H ├─X─────╫──╫──╫──┼──░──╫─┤M├─────────\n",
-              "      ├───┤ ░ ├───┤ │     ║  ║  ║  │  ░  ║ └╥┘┌─┐      \n",
-              "qb_2: ┤ X ├─░─┤ H ├─X──■──╫──╫──╫──┼──░──╫──╫─┤M├──────\n",
-              "      └───┘ ░ ├───┤    │  ║  ║  ║  │  ░  ║  ║ └╥┘┌─┐   \n",
-              "qb_3: ──────░─┤ H ├────X──╫──╫──╫──■──░──╫──╫──╫─┤M├───\n",
-              "      ┌───┐ ░ ├───┤    │  ║  ║  ║  │  ░  ║  ║  ║ └╥┘┌─┐\n",
-              "qb_4: ┤ X ├─░─┤ H ├────X──╫──╫──╫──X──░──╫──╫──╫──╫─┤M├\n",
-              "      └───┘ ░ └───┘       ║  ║  ║     ░  ║  ║  ║  ║ └╥┘\n",
-              "c0: 3/════════════════════╩══╩══╩════════╬══╬══╬══╬══╬═\n",
-              "                          0  1  2        ║  ║  ║  ║  ║ \n",
-              "c1: 5/═══════════════════════════════════╩══╩══╩══╩══╩═\n",
-              "                                         0  1  2  3  4 
" - ], - "text/plain": [ - " ░ ┌───┐ ░ ┌─┐ \n", - "qa_0: ──────░─┤ H ├─░────┤M├───────────────────────────\n", - " ┌───┐ ░ ├───┤ ░ └╥┘┌─┐ \n", - "qa_1: ┤ X ├─░─┤ H ├─░─────╫─┤M├────────────────────────\n", - " └───┘ ░ ├───┤ ░ ║ └╥┘┌─┐ \n", - "qa_2: ──────░─┤ H ├─░─────╫──╫─┤M├─────────────────────\n", - " ░ ├───┤ ░ ║ ║ └╥┘ ░ ┌─┐ \n", - "qb_0: ──────░─┤ H ├─■─────╫──╫──╫──X──░─┤M├────────────\n", - " ┌───┐ ░ ├───┤ │ ║ ║ ║ │ ░ └╥┘┌─┐ \n", - "qb_1: ┤ X ├─░─┤ H ├─X─────╫──╫──╫──┼──░──╫─┤M├─────────\n", - " ├───┤ ░ ├───┤ │ ║ ║ ║ │ ░ ║ └╥┘┌─┐ \n", - "qb_2: ┤ X ├─░─┤ H ├─X──■──╫──╫──╫──┼──░──╫──╫─┤M├──────\n", - " └───┘ ░ ├───┤ │ ║ ║ ║ │ ░ ║ ║ └╥┘┌─┐ \n", - "qb_3: ──────░─┤ H ├────X──╫──╫──╫──■──░──╫──╫──╫─┤M├───\n", - " ┌───┐ ░ ├───┤ │ ║ ║ ║ │ ░ ║ ║ ║ └╥┘┌─┐\n", - "qb_4: ┤ X ├─░─┤ H ├────X──╫──╫──╫──X──░──╫──╫──╫──╫─┤M├\n", - " └───┘ ░ └───┘ ║ ║ ║ ░ ║ ║ ║ ║ └╥┘\n", - "c0: 3/════════════════════╩══╩══╩════════╬══╬══╬══╬══╬═\n", - " 0 1 2 ║ ║ ║ ║ ║ \n", - "c1: 5/═══════════════════════════════════╩══╩══╩══╩══╩═\n", - " 0 1 2 3 4 " - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "# Set line length to 80 for above circuit\n", - "circuit.draw(output='text')" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABEQAAAKxCAYAAABaCnmzAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAACxQ0lEQVR4nOzdeVyVZf7/8fd9gMMqICQgCKa5kVuKZZq2aVrp1FS2m5Uz2WK7bfPlN19zyiYr2yZbzXSqmRazsprK0qnmO1bmUopLmoLKqqCAyM65f38QGAJ6Dh644T6v5+PhA865t8/tuQ9cvM91Xbfx9L6nTQEAAAAAAPgQh9UFAAAAAAAAtDUCEQAAAAAA4HMIRAAAAAAAgM8hEAEAAAAAAD6HQAQAAAAAAPgcAhEAAAAAAOBzCEQAAAAAAIDPIRABAAAAAAA+h0AEAAAAAAD4HAIRAAAAAADgcwhEAAAAAACAzyEQAQAAAAAAPodABAAAAAAA+BwCEQAAAAAA4HMIRAAAAAAAgM8hEAEAAAAAAD6HQAQAAAAAAPgcAhEAAAAAAOBzCEQAAAAAAIDPIRABAAAAAAA+h0AEAAAAAAD4HAIRAAAAAADgcwhEAAAAAACAzyEQAQAAAAAAPodABAAAAAAA+BwCEQAAAAAA4HMIRAAAAAAAgM8hEAEAAAAAAD7H3+oCAKvE74p3e939e/fri8Vf6JxJ56hzl85ub5edlN2S0tAGPHn9pZZdA7z+AAAAQPtFDxHADfvz92vxS4u1P3+/1aXAIlwDAAAAgL0QiAAAAAAAAJ9DIAIAAAAAAHwOgQgAAAAAAPA5BCKAG8LCwzTq/FEKCw+zuhRYhGsAAAAAsBfj6X1Pm1YXAVjB07uMtAR3GWm/eP0BAAAA30YPEcANlRWVyt2Vq8qKSqtLgUW4BgAAAAB7IRAB3JC5I1O3X3C7MndkWl0KLMI1AAAAANiLv9UFAPAu05TMmo7z1jb8qmUYVlcBOzFNU5WlHasnjzPEKYM3AgAAQJvqOH81AXCLWeOvncumW12G27qPmyfDv9rqMmAjlaWVuj/xfqvL8Mic3XMUGBpodRkAAAA+hSEzAAAAAADA5xCIAAAAAAAAn8OQGcANPZN76p0f37G6DFiIawAAAACwF3qIAAAAAAAAn0MgArghOyNbqVNSlZ2RbXUpsAjXAAAAAGAvBCKAG8rLyrVt/TaVl5VbXQoswjUAAAAA2AuBCAAAAAAA8DkEIgAAAAAAwOcQiAAAAAAAAJ9DIAK4ISY+RrfOvlUx8TFWlwKLcA0AAAAA9kIgArghLCJMp084XWERYVaXAotwDaClHA6HTjjhBKvLAAAAwGH8rS4A6AiK9xVr5bKVGjlupMKjwq0uBxbgGvAtwcHBGjlypFJSUpSSkqLExEQFBgaqqqpKe/bs0dq1a7VmzRr997//1b59+5rdj8Ph0MKFCzVx4kSNHTtWa9eubcOzAAAAwJEQiABuyM/L14JHF6jP4D78MeyjuAZ8Q58+fXTTTTfp+uuvV2RkZLPr/e53v5MkVVRU6N1339W8efP03XffNVinLgy55pprJEn/+te/1LNnT5WWlrZa/QAAAHCfTwQiJQUlWvHsCq3/eL0KswsVFh2mQRMHacKfJ2jJA0v0/Zvf65I5l2j0DaPrtynYVaCfPvhJW7/Zqr079urAngMyTVNdenbR0EuG6sxbzpS/0yf++wDA9jp16qTHH39cN954Y7PrVFVVKSAgoMFzgYGBmjx5siZPnqzPP/9cN9xwg3bv3t0oDKmqqtK0adMIQwAAANoR2/9Fn7khUy9f9rKK84rlDHUqrm+cinKL9M3L3yg/I1+l+2sbpwkDExpst+zxZfr+ze/lDHUqIi5Ccf3idGDvAWVvzFb2xmztWrtLU/8+1YpTAlpd5qav9N4jZ2nUlY8rZcI9Ta7zzGRDx580QRfe83EbVwd411lnnaXXXntN3bt3r3+urKxM77zzjlasWKE1a9Zoy5YtqqmpkWEYOv7445WSkqLTTjtN11xzjaKjoyVJ48ePV1pamu666y6deeaZDcKQSZMmaenSpZacHwAAAJpm60CkpKBE86+cr+K8Yp01/SyNv2+8gjoFSZKWP7tcHz34kRz+DhmGofgT4xts2/esvhr1x1HqNqibDMOof37Xul165cpXtP7j9crelN1oOwBAx3HVVVdp0aJF8vev/XVYUlKihx56SK+88or279/faH3TNJWenq709HQtXrxYf/rTn3TZZZdp9uzZ6tatm8LDw/Xqq6/Wr08YAgAA0H7Z+i4zSx5YosLsQo2+YbQufOjC+jBEksbcPkbxA+LlqnYpKilKQeFBDbYdevFQJQ5ObBCGSFLSkCT1PbOvJCl3c27rnwTaheCQYA0eMVjBIcFWlwKLcA3Yz6WXXqrXX3+9PgxZvny5BgwYoMcee6zJMKQp5eXl+vvf/64BAwbotddea7CspqaGMAQAAKAds20Pkdyfc7Xu/XUKjQ7VxD9PbHKdxMGJyk7LVvyAxr08qiuqlfZpmn5Z+Yv27dyn8pJymS6zdt9baoMQP6dfg20KdhZoyZ+W6Jf/+0UOP4f6n9tfF82+SKFRoV4+O7S1rt27KvWFVKvLgIW4BuzlxBNP1Ouvvy6Ho/ZzgRdffFG33HKLTNNs0f4OHDhQH6zU8fPzk9PpPOZaAQAA0DpsG4isfW+tTJeplEkpCgwLbHKdgODayfHi+zcMRLZ+vVX/uPUfKswqPOIxoo+Prv++/EC5nrvgOYV2DtWUV6aoqqxKSx9cqpeveFl3fHZHfaMbHZOrxqXysnIFBQfJ4ec7r2V1ZanKDuRbXUa74KvXgB35+flp4cKFCgys/d2wYMEC3XzzzS3e3+ETqNbU1MjPrzYwnzdvnr766ivl5/M+AgAAaG9sG4hs+882SVLv0b2bXacwu1CSlDDg0ISqGasz9NLlL8lV5dKpk09VyqUp6prcVcGRwfLz91Pe1jz99dS/yuHvUFyfuPrtvl30rYpyinT7J7erc7fOkqSI+Ag9c+4zSvs0TYMmDGqFs0RbydiaoQeufECP/vNR9UzuaXU5bea792bqu/dmWl1Gu+Cr14Ad3X333Tr55JMlSZs3b9Ytt9zS4n01dTeZSZMm6dprr9XFF1+smJgYPfPMM7r66qu9UjsAAAC8x7aByP7dteO/Oyd2bnJ5TXWN0r9Pl6QGQ2Y+eegT1VTWaOLMiRp7x9hG221atkmSFNc3Tv6Bh/77Ni7bqJ6n9qwPQySpxyk9FH18tDZ+trFFgcjcs+eqOK/Y4+3gnpum3uT2urk5tcOkNn+xWfvT3JtbQJJeXPCix3UdK/+AEE1+ZLpX9jXgrGnqPfzSJpe9/+g5XjnG7GGzVV3V9rci9eT1l1p2DVjx+kP1wxubEhAQoLvvvltSbU+O6667ThUVFS06TnNhyNKlS/Xdd9/pjDPOUHR0tK644gqlpqYqIyOj2X3NHjZbhsNodjkAAACaFh4brhkrZrRoW9sGIpWllZKkqrKqJpeve3+dDhYcVGBYoKK71w59cdW4tH3ldknS8KuGN9rG5XJpzeI1kqSEQQ1v05v7c65OuvCkRtvE9YtT7s8tm3y1OK9YRTlFLdoWR1d3jbijqryq/qsn21nx+vkHNn3Nt0RkXG8lDWgcDHpTUV6RqivaPhDx5HWUWnYN8P5tfy666CLFxdX27luyZIlWrVrVov0cKQyRpD179ujJJ5/U7Nmz5XA4dOONN+pPf/pTs/sj/AYAAGh7tg1EOsV0UmlhqTLXZ6rHKT0aLCvKLdLSmbWN1vj+8fV3kqk8WClXjUtS7aSqh/vqua+UuT5TktRtYLcGy8oKyxQc0fjuEyGdQ7Tnlz0tOofw2PAWbQf3OEPcn+wwICig/qsn20V0jfC4rmPlHxDS5sc8FhGxEaquCmjz43ryOkotuwaseP1R20OkuYDhhhtuqP9+3rx5Ldr/0cKQOvPnz9fMmTPldDr1hz/8QampqXK5XE3uMzw2nB4iAAAALXAsfzfbNhDpc2Yf5W3N0/JnlqvvmX0V0ytGkrRr7S69cfMbOlhwUJKUMPBQT4+g8CBFdI1QUU6Rls1dpkufuFQOP4eqK6v1zYvf6F9//Zcc/g65ql3qNqhbk8f1ppZ2+4F74nc1vrtQc3Zs3iEtkJLPSfZo/ohZM2a1pLRj4qr2185lbX7YFktdnSqHf+MAsrV58vpLLbsGrHj9IVUcrND9ifc3et7hcGjEiBGSpJ07d+rrr7/2eN/uhiFSbS+RTz/9VBdeeKG6dOmi3r176+eff25yv6mrUxUY2vQE4AAAAGgdtg1Extw2RmsXr1VhVqEeHfmoYnvHqqqiSvk78pU8NllRiVHasmKLEvo3HPpyzoxztPiexfp20bdK+zRNkQmR2rt9r6rKqjTpsUl69553ZRhGg4lYJSk4MlhlRWWN6ijdX6qQyI71iT0aS+qVpPkr5iukE6+lr+Ia6Pj69eun0NDa26C3ZKiMJ2FInVWrVunCCy+UJKWkpDQbiAAAAKDt2fbekZEJkbrtk9t04rgTFRAUoH279ykkMkSXPXmZpr09TXu375XUcEJVSRo1dZQuf+pydTmhi0r3l6o4t1j9x/fXjH/PUFJKklw1LkUfH62g8KAG28X2iVXez3mN6sj7OU+xfWJb70TRJvwD/BUeFS7/ANtmiDgKroGO76STTqr/fs2aNR5t25Iw5PDj/Pb4AAAAsJ6tW/ZxfeM07a1pjZ6vKKnQvl37ZDgMdU3u2mj5iGtHaMS1I5rc59P7nm7y+f7j+uuThz9RYVahIhMiJdXewjc/PV8XzLqgxeeA9iF3d64WPbFI195zreIS446+AWyHa6Dji4yMrP8+KyvL7e1aGoYcfpzOnZu+6xkAAACsYetApDk5W3JkmqZiesV4PLFic0ZeO1L/eeU/mj95vs574DxVlVfpowc/UtLQJA04f4BXjgHrlJaUas3Xa3TpTU3fgtZuup14pu54o/lbl0o66nK78bVrwI7eeecdrVq1SsHBwR4NXUlMTNS5554rybMwRJJ27NihM844Q+Xl5crJyWlR3QAAAGgdvhmIbKptlMb392xSxSMJCg/S9A+na8mflmjRHxfJ4edQ//H9ddHsi+Rw2HZkEgB0GPn5+crPz/d4u507d+rss8/WZ599pltuucXtMESSSktL9c0333h8TAAAALQ+nw5EDp8Y9Vgd1+O4JofoAAA6trS0NPXq1Uvl5eVWlwIAAAAv8cmuCzmbf+0hMsB7PUQAAPZGGAIAAGAvPtlDZPqH060uAR1MVEyUpsyYoqiYKKtLgUW4BgAAAAB78clABPBUZHSkJl4z0eoyYCGuAQAAAMBefHLIDOCpkuISfbvsW5UUl1hdCizCNQAAAADYC4EI4IY9WXv01H1PaU/WHqtLgUW4BgAAAAB7IRABAAAAAAA+h0AEAAAAAAD4HAIRAAAAAADgcwhEADc4A53q0a+HnIFOq0uBRbgGAAAAAHvhtruAG7r17KY5b82xugxYiGsAAAAAsBd6iAAAAAAAAJ9DIAK4IX1Luq46+Sqlb0m3uhRYhGsAAAAAsBcCEcANpmmquqpapmlaXQoswjUAAAAA2AtziAA2Y/hVq/u4eVaX4TbDr9rqEmAzzhCn5uz23nwve94OkqvUkCPEVMzl5Y0ee4MzhMl6AQAA2hqBCGAzhiEZ/oQM8F2GYSgwNNBr+3MGBspVbcgRaCow1Gz0GAAAAB0TQ2YAAAAAAIDPoYcI4IZuPbpp7uK5iu0Wa3UpsAjXAAAAAGAvBCKAG5xBTiX2SrS6DFiIawAAAACwF4bMAG7Ym71XL856UXuz91pdCizCNQAAAADYC4EI4IYDRQe04v0VOlB0wOpSYBGuAQAAAMBeCEQAAAAAAIDPIRABAAAAAAA+h0AEAAAAAAD4HAIRwA0Ow6HklGQ5DN4yvoprAAAAALAXWvaAG1ymS5vXbJbLdFldCizCNQAAAADYC4EIAAAAAADwOQQiAAAAAADA5xCIAAAAAAAAn0MgArghLDxMo84fpbDwMKtLgUW4BgAAAAB78be6AKAjiEmI0e2P3G51GbAQ1wAAAABgL/QQAdxQWVGp3F25qqyotLoUWIRrAAAAALAXAhHADZk7MnX7Bbcrc0em1aXAIlwDAAAAgL0wZMZmTFOqchlWl+GRAIcpo2OV3K6ZpmTWdJy3tuFXzesPeJFpmqos7Vg9mZwhThn8IAAAAG2s4/zVBLdUuQylruttdRkemT1km5x+ptVl2IZZ46+dy6ZbXYbbuo+bJ8O/2uoyANuoLK3U/Yn3W12GR+bsnqPA0ECrywAAAD6GITMAAAAAAMDnEIgAAAAAAACfw5AZwA09k3vqnR/fsboMWIhrAAAAALAXeogAAAAAAACfQyACuCE7I1upU1KVnZFtdSmwCNcAAAAAYC8EIoAbysvKtW39NpWXlVtdCizCNQAAAADYC4EIAAAAAADwOQQiAAAAAADA5xCIAAAAAAAAn0MgArghJj5Gt86+VTHxMVaXAotwDQAAAAD24m91AUBHEBYRptMnnG51GbAQ1wAAAABgLwQigBuK9xVr5bKVGjlupMKjwq0uBxbgGoAvCgwM1KBBg3TiiScqLCxMpmmqpKREaWlp2rBhg6qqqo66j6ioKL377ru69957tXbt2jaoGgAAwD0EIoAb8vPyteDRBeozuA9/DPsorgH4ioiICF177bW65pprNHjwYAUEBDS5XmVlpdatW6dFixbpjTfe0IEDBxqtExUVpeXLl+ukk07Sl19+qbFjxxKKAACAdsMnApGSghKteHaF1n+8XoXZhQqLDtOgiYM04c8TtOSBJfr+ze91yZxLNPqG0fXbFOwq0E8f/KSt32zV3h17dWDPAZmmqS49u2joJUN15i1nyt/pE/99AAAfEBkZqYcffljXX3+9QkJCjrq+0+nU8OHDNXz4cM2ZM0fz58/XzJkz64OR34YhklRWVtZkaAIAAGAV2/9Fn7khUy9f9rKK84rlDHUqrm+cinKL9M3L3yg/I1+l+0slSQkDExpst+zxZfr+ze/lDHUqIi5Ccf3idGDvAWVvzFb2xmztWrtLU/8+1YpTahM1CxbK9dY78rv7TjnOHddgmWmaqrn3AZmbN8v/uWdl9DjemiLRajI3faX3HjlLo658XCkT7mlynWcmGzr+pAm68J6P27g6AN52/vnn6+WXX1ZCQsPfhWlpaVqzZo3WrVungoICSVKXLl00ZMgQDRs2TMnJyZKkTp066a677tLFF1+sP/zhD1q3bl2DMCQ7O1tnnnmmtm3b1qbnBQAAcCS2DkRKCko0/8r5Ks4r1lnTz9L4+8YrqFOQJGn5s8v10YMfyeHvkGEYij8xvsG2fc/qq1F/HKVug7rJMIz653et26VXrnxF6z9er+xN2Y22swvHNVfL9d33qnnpFRkpQ2V0Oa5+mWvJBzLXb5Bj6nWEIQDQwc2ZM0f33Xdf/eMDBw7otdde0wsvvKAtW7YccduBAwfq5ptv1pQpUxQaGqru3bvryy+/VG5uruLi4iQRhgAAgPbL1rfdXfLAEhVmF2r0DaN14UMX1ochkjTm9jGKHxAvV7VLUUlRCgoParDt0IuHKnFwYoMwRJKShiSp75l9JUm5m3Nb/yQsYgQEyP/eGVJ5uWqefLr+eXN3plwL/y6jX185Lr3EugLbWHBIsAaPGKzgkGCrS4FFuAZgR88991yDMORf//qXkpOTdccddxw1DJGkDRs26JZbbtGAAQO0YsWK+ucJQwAAQEdg2x4iuT/nat376xQaHaqJf57Y5DqJgxOVnZat+AGNe3lUV1Qr7dM0/bLyF+3buU/lJeUyXWbtvrfUBiF+Tr/69QuzCvXlM19q19pdykrLUk1ljZ7e97T3T6wNGb17yXHFZXK9+U+5PvlUxrnjVPPYE5Jpyu/eGTL8/I6+E5vo2r2rUl9ItboMWIhrAHbzP//zP5o+fbokyeVy6bbbbtPzzz/fon1lZGTosssu0/r16xUff+h36oIFCwhDAABAu2XbQGTte2tlukylTEpRYFhgk+sEBNfOnB/fv2EgsvXrrfrHrf9QYVbhEY8RfXx0/fd70/dq/UfrlTgkUUlDkpT+ffqxnUA74bj6Srm+/V41r8yXY/sOmT9vlWPaH2UkdrO6tDblqnGpvKxcQcFBcvjZumNVA9WVpSo7kG91Ge2Cr14DsKchQ4Zo1qxZkmrDkClTpujNN99s8f6ioqL05ZdfNghDJOmee+7RG2+8oZ9//vmY6gUAAGgNtg1Etv2n9hOp3qN7N7tOYXahJClhwKFJ5DJWZ+ily1+Sq8qlUyefqpRLU9Q1uauCI4Pl5++nvK15+uupf5XD36G4PnH1250w8gT9ZfNfJEmfPvqpbQIRw99f/vfererb7pTr409kDOgvx8W/t7qsNpexNUMPXPmAHv3no+qZ3NPqctrMd+/N1HfvzbS6jHbBV68B2E9AQIBee+01+fvXNgEeeuihYw5DDp9A9bPPPtPUqVMVFBSk1157TaNGjZLL5fJG+QAAAF5j20Bk/+79kqTOiZ2bXF5TXVMfWvx2yMwnD32imsoaTZw5UWPvGNtou03LNkmS4vrGyT/w0H+fw+H9T4znnj1XxXnFHm1jOgOlVxZ6t5DQUCkgQKqulnHyMBlePteHh82WUVnh1X2646apN7m9bm5O7TCpzV9s1v60/W5v9+KCFz2u61j5B4Ro8iPTvbKvAWdNU+/hlza57P1Hz/HKMWYPm63qqlKv7MsTnrz+UsuuAStef3jf5Kn/o7BOkSrOLdLz/R9p9Li9qRve2ZxrrrlGgwcPliT9+OOPmj17douP1VQYcuaZZ2r37t067bTT1LdvX40YMUKTJk3SO++80+x+Zg+bLcNhNLscAACgOeGx4ZqxYkaLtrVtIFJZWilJqiqranL5uvfX6WDBQQWGBSq6e+3QF1eNS9tXbpckDb9qeKNtXC6X1ixeI0lKGJTQaLm3FecVqyinyLONggIV4MUaTNNUzdynpOoqKSlRrn+8JccZp8uI7+q1YxTnFUnlbR+I1F0j7qgqr6r/6sl2Hr9+XuAf2PQ13xKRcb2VNKBxMOhNRXlFqq5o+0DEk9dRatk1YMXrD++rCxhMl6minKJGjzuaunlDJOnmm29WVVXLfmY0F4bUzRly66236osvvqg/zpECEU/DfwAAAG+wbSDSKaaTSgtLlbk+Uz1O6dFgWVFukZbOXCqpdv6QujvJVB6slKumtktvdUV1o31+9dxXylyfKUnqNrD159AIjw33eBvTGagyL9bg+mCpzJ/Wy3H9tXKMOFXV029Tzdyn5PfEnEZ34Gmp8NgIS3qIOEOcbq8bEBRQ/9WT7SK6Rnhc17HyDwhp82Mei4jYCFVXeTPGc48nr6PUsmvAitcf3lfXc8FwGIroGtHocXtjusxmA4ZTTjlFQ4cOlSStWrVK3333XYuOcbQwRJK+/PJLbd68WcnJyTrzzDPVv39/bdy4scn9hceG00MEAAC0SEv+bq5j20Ckz5l9lLc1T8ufWa6+Z/ZVTK8YSdKutbv0xs1v6GDBQUlSwsBDPT2CwoMU0TVCRTlFWjZ3mS594lI5/ByqrqzWNy9+o3/99V9y+Dvkqnap26DWD0Ra0u2nssZQ6jrvHN/MypJrwUIZffvIcdkkGX5+cky+Wq7XFsn1wVL5XXShV47z/1anyul35C7erSF+V+O7CzVnx+Yd0gIp+Zxkj+aPmDVjVktKOyauan/tXNbmh22x1NWpcvg3DiBbmyevv9Sya8CK1x/el/dmkFwHpfC4CM3aOKvR4/am4mCF7k+8v8llEyceuuvaSy+91KL9uxOG1HnxxRf1zDPPSJLOP//8ZgOR1NWpCgxtegJ0AACA1mLbQGTMbWO0dvFaFWYV6tGRjyq2d6yqKqqUvyNfyWOTFZUYpS0rtiihf8OhL+fMOEeL71msbxd9q7RP0xSZEKm92/eqqqxKkx6bpHfveVeGYTSYiNWOTJdLNY8/Kblc8rv37vpb7DoumyTzvyvlWrBQjuGneHXoTHuW1CtJ81fMV0injtX7At7DNQA7SElJqf9++fLlHm/vSRgiSStWrGjy2AAAAO2Bbe8dGZkQqds+uU0njjtRAUEB2rd7n0IiQ3TZk5dp2tvTtHf7XkkNJ1SVpFFTR+nypy5XlxO6qHR/qYpzi9V/fH/N+PcMJaUkyVXjUvTx0QoKD7LitNqMa/ESmZs2y3HtZBlJSfXPG35+8rvnbslVo5q5T8k0275nhxX8A/wVHhUu/wDbZog4Cq4B2EFdKFFQUKCdO3d6tK2nYYgkbd68WaWltXMEDRs2rGVFAwAAtBJbt+zj+sZp2lvTGj1fUVKhfbv2yXAY6prcuIfDiGtHaMS1I5rc59P7nvZ2me2OuWuXXItel5HcT45LLm603Di+e6sMnWnPcnfnatETi3TtPdcqLjHu6BvAdrgG0NE5nU7FxsZKqg0qPNGSMESSampqtHXrVp100klKTExsUd0AAACtxdaBSHNytuTINE3F9IrxeGLFI/nxwx8lSXk/5zV4HJUUpaQhSc1s1f4YSUkK+OTDI67jd+Xl8rvy8jaqyHqlJaVa8/UaXXpT07egtZtuJ56pO944cu+foy23G1+7BmA/hmHoueeeU1BQkH755RePtn3rrbc8DkPqfPDBB1q9erXKyrw55TcAAMCx881AZFOOpNo7zHjTwusXNvn45CtP1tXzrvbqsQAA8ERFRYVuu+22Fm07Y8YMLV++XFVVVR6FIZI0a1b7m3gWAABA8vFAxNsTo/rCcBoAgO/ZsGGDzj77bFVUVHgUhgAAALRnvhmIbP61h8gA7/YQAQDArtLS0qwuAQAAwKt8MhCZ/uF0q0tABxMVE6UpM6YoKibK6lJgEa4BAAAAwF58MhABPBUZHamJ10y0ugxYiGsAAAAAsBeH1QUAHUFJcYm+XfatSopLrC4FFuEaAAAAAOyFQARww56sPXrqvqe0J2uP1aXAIlwDAAAAgL0QiAAAAAAAAJ9DIAIAAAAAAHwOgQgAAAAAAPA5BCKAG5yBTvXo10POQKfVpcAiXAMAAACAvXDbXcAN3Xp205y35lhdBizENQAAAADYCz1EAAAAAACAzyEQAdyQviVdV518ldK3pFtdCizCNQAAAADYC4EI4AbTNFVdVS3TNK0uBRbhGgAAAADshTlEbCbAYWr2kG1Wl+GRAAd/YHqT4Vet7uPmWV2G2wy/aqtLAGzFGeLUnN3em+9mz9tBcpUacoSYirm8vNFjb3CGMFkxAABoewQiNmMYktOPgMGXGYZk+BMyAL7KMAwFhgZ6bX/OwEC5qg05Ak0FhpqNHgMAAHRUDJkBAAAAAAA+hx4igBu69eimuYvnKrZbrNWlwCJcAwAAAIC9EIgAbnAGOZXYK9HqMmAhrgEAAADAXhgyA7hhb/ZevTjrRe3N3mt1KbAI1wAAAABgLwQigBsOFB3QivdX6EDRAatLgUW4BgAAAAB7IRABAAAAAAA+h0AEAAAAAAD4HAIRAAAAAADgcwhEADdERkXq91N/r8ioSKtLgUW4BgAAAAB7IRAB3GA4DPkH+MtwGFaXAotwDQAAAAD2QiACuGF//n4tfmmx9ufvt7oUWIRrAAAAALAXAhEAAAAAAOBzCEQAAAAAAIDPIRABAAAAAAA+h0AEcENYeJhGnT9KYeFhVpcCi3ANAAAAAPbib3UBQEcQkxCj2x+53eoyYCGuAQAAAMBe6CECuKGyolK5u3JVWVFpdSmwCNcAAAAAYC8EIoAbMndk6vYLblfmjkyrS4FFuAYAAAAAe2HIDGAzpimZNR3nrW34VcswrK4CgF2YpqnK0o7Vk8sZ4pTBD0IAANpcx/mrCYBbzBp/7Vw23eoy3NZ93DwZ/tVWlwHAJipLK3V/4v1Wl+GRObvnKDA00OoyAADwOQyZAQAAAAAAPodABAAAAAAA+ByGzABu6JncU+/8+I7VZcBCXAMAAACAvdBDBAAAAAAA+BwCEcAN2RnZSp2SquyMbKtLgUW4BgAAAAB7IRAB3FBeVq5t67epvKzc6lJgEa4BAAAAwF4IRAAAAAAAgM8hEAEAAAAAAD6HQAQAAAAAAPgcAhHADTHxMbp19q2KiY+xuhRYhGsAAAAAsBd/qwsAOoKwiDCdPuF0q8uAhbgGAN8WEBCggIAAVVRUqKamxqNthwwZIsMwtHbt2laqDgAAtAQ9RAA3FO8r1mdvfabifcVWlwKLcA0AvsPPz0+/+93vNHfuXP373/9WUVGRKisrdfDgQVVXVyszM1Mffvih/vd//1dDhgw54r6GDBmiL7/8Ul9++aWGDh3aRmcAAADcQSACuCE/L18LHl2g/Lx8q0uBRbgGAPuLjo5Wamqq0tPTtXTpUt19990688wzFR4e3mC9hIQEXXDBBZo1a5bWrl2rlStXavLkyfLz82uwXl0YEhUVpc6dO2vmzJlteToAAOAofGLITElBiVY8u0LrP16vwuxChUWHadDEQZrw5wla8sASff/m97pkziUafcPo+m0KdhXopw9+0tZvtmrvjr06sOeATNNUl55dNPSSoTrzljPl7/SJ/z74oMxNX+m9R87SqCsfV8qEe5pc55nJho4/aYIuvOfjNq4OALxv0qRJev7559WlS5dGy3bt2qWMjAxVVVUpJCREycnJioyMrF8+YsQIjRgxQrfddpuuv/56bdq0qUEYIkn/+c9/dNVVV7XV6QAAADfY/i/6zA2Zevmyl1WcVyxnqFNxfeNUlFukb17+RvkZ+SrdXypJShiY0GC7ZY8v0/dvfi9nqFMRcRGK6xenA3sPKHtjtrI3ZmvX2l2a+vepVpwSAADwkpCQEC1YsECXX355/XMul0sff/yxFixYoJUrV2rv3r0NtjEMQz179tTYsWN18803a/DgwZKkU045RWvXrtVzzz2n66+/vkEYct555+ngwYNtd2IAAOCobB2IlBSUaP6V81WcV6yzpp+l8feNV1CnIEnS8meX66MHP5LD3yHDMBR/YnyDbfue1Vej/jhK3QZ1k2EY9c/vWrdLr1z5itZ/vF7Zm7IbbQcAADqGTp066dNPP9Vpp51W/9ySJUt09913a+fOnc1uZ5qmtm/fru3bt+ull17SGWecoRdeeEHJyckKDAzUjBkz6tclDAEAoP2y9RwiSx5YosLsQo2+YbQufOjC+jBEksbcPkbxA+LlqnYpKilKQeFBDbYdevFQJQ5ObBCGSFLSkCT1PbOvJCl3c27rnwTaheCQYA0eMVjBIcFWlwKLcA0A9hIYGKilS5fWhyFFRUW64oordMkllxwxDGnK119/rSFDhmjRokUNnt+5cydhCAAA7Zhte4jk/pyrde+vU2h0qCb+eWKT6yQOTlR2WrbiBzTu5VFdUa20T9P0y8pftG/nPpWXlMt0mbX73lIbhPg5D02e9uOHP2rte2u1+8fdKikoUedunTX4d4M19s6xCgwLbIUzRFvq2r2rUl9ItbqMNlddWaqyA0wiKvnuNQDY1axZs3TmmWdKkgoKCjR27Fj9+OOPLd7fiSeeqN/97ncNnuvevbtOPvlkffXVVy0vFAAAtBrbBiJr31sr02UqZVJKs4FEQHCAJCm+f8NAZOvXW/WPW/+hwqzCIx4j+vjo+u///dy/1blbZ0348wRFxkcqa0OWPn/sc/3y31902ye3yeGwdWcc23PVuFReVq6g4CA5/HzntfzuvZn67j3uiiD57jUA2NHw4cN1zz21E0ZXVFTovPPOO6Yw5PAJVNPT09WjRw9J0oIFCzRw4EB6iQAA0A7ZNhDZ9p9tkqTeo3s3u05hdqEkKWHAoQlVM1Zn6KXLX5KryqVTJ5+qlEtT1DW5q4Ijg+Xn76e8rXn666l/lcPfobg+cfXb3fDPGxR2XFj9416n9VLYcWF6fdrrSv8uXSeMPMHLZ4i2lLE1Qw9c+YAe/eej6pnc0+py2syAs6ap9/BLm1z2/qPntHE11vLVawCwG8Mw9Morr9TfIvfBBx/UDz/80OL9NXU3mfPPP18ff/yxzjjjDPXo0UMzZ87Ufffd55X6AQCA99g2ENm/e78kqXNi5yaX11TXKP37dElqMGTmk4c+UU1ljSbOnKixd4xttN2mZZskSXF94+QfeOi/77dhSJ3EkxIlSYU5hS06h7lnz1VxXnGLtsXR3TT1JrfXzc2pHSa1+YvN2p+23+3tXlzwosd1HSv/gBBNfmS6V/YVGddbSQMavw+8afaw2aquKm3VYzTFk9dfatk1YMXrD++bPPV/FNYpUsW5RXq+/yONHttdRzv/uuGtzTn77LM1cOBASdKaNWv0+OOPt/hYTYUhdXOGTJ06VWlpaQoODtYNN9ygBx98UKWlTf+smz1stgyH0eQyAABwZOGx4ZqxYsbRV2yCbQORytJKSVJVWVWTy9e9v04HCw4qMCxQ0d1rh764alzavnK7JGn4VcMbbeNyubRm8RpJUsKghEbLD7ft/2p7qcT2ifX8BCQV5xWrKKeoRdvi6OquEXdUlVfVf/VkOyteP//Apq/59qoor0jVFW0fiHjyOkotuwZ4/9pD3R/YpstUUU5Ro8d2Z7fzv+WWW+q//+tf/6qampoW7edIYYgk7dixQ//85z81depURUZG6sorr9Srr77a5L748AMAAGvYNhDpFNNJpYWlylyfqR6n9GiwrCi3SEtnLpVUO39I3Z1kKg9WylXjklQ7qerhvnruK2Wuz5QkdRvY7YjHL8wu1KePfKp+Y/oddd3mhMeGt2g7uMcZ4nR73YCggPqvnmwX0TXC47qOlX9ASJsf81hExEaouiqgzY/ryesotewasOL1h/fVfXJvOAxFdI1o9NjuOtr5my6z2YAhPDxcF1xwgSQpOztbH374YYuOcbQwpM7zzz+vqVOnSpKuueaaZgOR8NhweogAANBCx/J3s20DkT5n9lHe1jwtf2a5+p7ZVzG9YiRJu9bu0hs3v6GDBbWNloSBh3p6BIUHKaJrhIpyirRs7jJd+sSlcvg5VF1ZrW9e/Eb/+uu/5PB3yFXtUrdBzYccFSUVenXyq/IL8NOVf7uyxefQ0m4/cE/8rsZ3F2rOjs07pAVS8jnJHs0fMWvGrJaUdkxc1f7auazND9tiqatT5fBvHEC2Nk9ef6ll14AVrz+8L+/NILkOSuFxEZq1cVajx3bX0c6/4mCF7k+8v8llQ4cOlb9/bdPngw8+UHW15z973A1DpNohOXUTrA4bNkwOh0Mul6vReqmrUxUYyh3pAABoa7YNRMbcNkZrF69VYVahHh35qGJ7x6qqokr5O/KVPDZZUYlR2rJiixL6Nxz6cs6Mc7T4nsX6dtG3Svs0TZEJkdq7fa+qyqo06bFJeveed2UYRoOJWH+rsqxSr1z1igp2Fuj2T25XRFz7+/QMnkvqlaT5K+YrpFPH6n0B7+EaADq+lJSU+u9Xr17t8faehCF11qxZox49eig0NFR9+/bV5s2bPS8cAAC0CtveOzIyIVK3fXKbThx3ogKCArRv9z6FRIbosicv07S3p2nv9r2SGk6oKkmjpo7S5U9dri4ndFHp/lIV5xar//j+mvHvGUpKSZKrxqXo46MVFB7U6Jg1VTVaeN1C7f5xt25850bF9YtrtA46Jv8Af4VHhcs/wLYZIo6CawDo+Pr371///bp16zzatiVhyOHH+e3xAQCA9Wzdso/rG6dpb01r9HxFSYX27donw2Goa3LXRstHXDtCI64d0eQ+n973dJPPu1wuvT7tdW39ZqumvT1N3VO6H1PtaF9yd+dq0ROLdO091you0f5BV7cTz9Qdbxz5Tg1HW243vnYNAHbkcDhUWVkpp9OpgoICt7draRgiqf445eXlcjo9m7sIAAC0Ltv2EDmSnC05Mk1TXU7o4vHEis1ZfO9i/fjhjzrj5jPkDHYq44eM+n8l+SVeOQasU1pSqjVfr1FpSdvfDQXtA9cA0PFdd911CgwMlJ+fn3bv3u32dtXV1fV3o/EkDJGkV155RQ6HQ8HBwfrHP/7RoroBAEDrsHUPkebkbMqRVHuHGW/Z/GXtmODlTy/X8qeXN1h25XNXNnkbXwAA0Paamtj0SDZs2KAxY8bowQcf1JQpU9wOQ1pyLAAA0HZ8OhBpbmLUlpj500yv7QsAALQvGzZs0CWXXGJ1GQAAwIt8c8jM5l97iAzwXg8RAAAAAADQcfhkD5HpH063ugR0MFExUZoyY4qiYqKsLgUW4RoAAAAA7MUnAxHAU5HRkZp4zUSry4CFuAYAAAAAe/HJITOAp0qKS/Ttsm9VUswdg3wV1wAAAABgLwQigBv2ZO3RU/c9pT1Ze6wuBRbhGgAAAADshUAEAAAAAAD4HAIRAAAAAADgcwhEAAAAAACAzyEQAdzgDHSqR78ecgY6rS4FFuEaAAAAAOyF2+4CbujWs5vmvDXH6jJgIa4BAAAAwF7oIQIAAAAAAHwOgQjghvQt6brq5KuUviXd6lJgEa4BAAAAwF4IRAA3mKap6qpqmaZpdSmwCNcAAAAAYC/MIQLYjOFXre7j5lldhtsMv2qrSwBgI84Qp+bs9t58P3veDpKr1JAjxFTM5eWNHnuDM4TJmgEAsAKBCGAzhiEZ/oQMAHyTYRgKDA302v6cgYFyVRtyBJoKDDUbPQYAAB0XQ2YAAAAAAIDPoYcI4IZuPbpp7uK5iu0Wa3UpsAjXAAAAAGAvBCKAG5xBTiX2SrS6DFiIawAAAACwF4bMAG7Ym71XL856UXuz91pdCizCNQAAAADYC4EI4IYDRQe04v0VOlB0wOpSYBGuAQAAAMBeCEQAAAAAAIDPIRABAAAAAAA+h0AEAAAAAAD4HO4yA7jBYTiUnJIsh0GGaBfZSdkerV/hrND4+8arYnCFsuM82xYA0D7F74p3e939e/fri8Vf6JxJ56hzl85ub+fp7xsAQNvhrzvADS7Tpc1rNstluqwuBRaJiIvQeQ+cp4i4CKtLAQBYYH/+fi1+abH25++3uhQAgJcQiAAAAAAAAJ9DIAIAAAAAAHwOgQgAAAAAAPA5BCKAG8LCwzTq/FEKCw+zuhQAAGAB2gIAYD/cZQZwQ0xCjG5/5HarywAAABahLQAA9kMPEcANlRWVyt2Vq8qKSqtLAQAAFqAtAAD2QyACuCFzR6Zuv+B2Ze7ItLoUAABgAdoCAGA/DJkBbMY0JbOm47y1Db9qGYbVVQAAYB+maaqytOP0ZHGGOGXQGABggY7zVxMAt5g1/tq5bLrVZbit+7h5MvyrrS4DAADbqCyt1P2J91tdhtvm7J6jwNBAq8sA4IMYMgMAAAAAAHwOgQgAAAAAAPA5DJkB3NAzuafe+fEdq8sAAAAWoS0AAPZDDxEAAAAAAOBzCEQAN2RnZCt1SqqyM7KtLgUAAFiAtgAA2A+BCOCG8rJybVu/TeVl5VaXAgAALEBbAADsh0AEAAAAAAD4HAIRAAAAAADgcwhEAAAAAACAzyEQAdwQEx+jW2ffqpj4GKtLAQAAFqAtAAD2QyDSjNTeqboz6k4VZhVaXQragbCIMJ0+4XSFRYRZXQoAAK3CUeE8th24DDkqA7xTTDtEW6DlDMNQeHi41WUAQCP+VhfQHhVmFepgwUGFdA5RZEKk1eWgHSjeV6yVy1Zq5LiRCo/iFzoAwF4if+6v2NUjtXP8Byo/bq/nO3AZSvjPOQosjFLGuUvkCqz0fpEW88W2wAknnKBhw4YpJSVFXbt2ldPpVGVlpXJycrRmzRqtXr1a27dvP+I+DMPQCy+8oFNPPVVjxoxRQUFBG1UPAEdHINKErLQsSVJ8/3iLK0F7kZ+XrwWPLlCfwX18phEEAPANnXb2VML/jZUkdf/sIu08933PQpFfw5DIX5Jr97HsQqVPfFcyWqNa6/hKWyA6OlrXX3+9brrpJp1wwglHXX/79u168cUX9dprrzUKO+rCkBtvvFGS9Pnnn2v48OGqqalpldoBwFMMmWlC1oZfA5ETCUQASAEHOil4b6yC8rvIryLQ6nIAwKsOdt2t0phsSZJ/RbC6f3aRgvK7uLfxYWGIadQof+Aa24UhvsDpdGr27NnKzMzU448/7lYYItX2Inn88ceVmZmphx9+WE5n7dCrw8OQmpoaPf7444QhANoVeog0ob6HyAACEfimzE1f6b1HztKoKx9XyoR7mlznmcmGjj9pgi685+M2rq5tGNV+Ck/vrajNgxSyt2v98y5HjYp7bNO+5PUqi82xsEIA8A6Xs0o7x3+g7p//XiF74utDkaP2FGkiDNl99r904PgdbVQ5vCUlJUULFy7UgAEDGjz/5Zdf6ptvvtGaNWu0bds2lZeXKygoSL1791ZKSorOOOMMjRkzRpIUFBSk1NRUXXDBBbr++ut1ww03NAhDrr76ar399tttfm4AcCS2D0RKCkq04tkVWv/xehVmFyosOkyDJg7ShD9P0JIHluj7N7/XJXMu0egbRtdv89shM+mr0rXibyu047sdqiytVMKABJ17/7nqd3Y/q04JQCvzKwtW0rILFJIfJ0kyZcr49eNOh8tPkdv7KXJ7P+UPXK28k//LJ6EAOjyPQxHCENu48MIL9fbbbyswsLYHZGVlpZ5//nnNmzdPv/zyS5PbbNu2Tf/617/00EMPqVevXpo+fbpuueUWOZ1ODRw4UN999538/Wv/zCAMAdCe2XrITOaGTD026jGt+NsKFe8pVlzfONVU1+ibl7/Roj8sUt7WPElSwsCE+m0qSipUkF4gh59DW7/ZqmfPf1bpq9IVGR8pScr4IUMvXfaS0j5Ns+KUYJHgkGANHjFYwSHBVpeCVuaoDFD3zy5SSH6cTJmSVB+GHO64DcMUs3pkW5YHAK2mLhQ56vAZHw1D7NgW+N3vfqfFixfXhyFr167VsGHDdNdddzUbhhzul19+0V133aVhw4Zp7dq1kkQYAqDDsG0PkZKCEs2/cr6K84p11vSzNP6+8QrqFCRJWv7scn304Edy+DtkGEaDuUKy0rJkmrWfBn8x9wtd8ewVOvnyk+Xwc6isuEyvXfuatn69Ve+nvq/+5/aXYfDRsC/o2r2rUl9ItboMtIHj1g9T8L4uDXqFHEmX9SeruOdWlUfnt0F1ANC6jtpTxEfDEMl+bYH+/fvrnXfeqQ8v/v73v+sPf/iDqqurW7S/tLQ0rVmzRkOHDq1/rqamRhs2bPBKvQDQGmzbQ2TJA0tUmF2o0TeM1oUPXVgfhkjSmNvHKH5AvFzVLkUlRSko/NCy7I21n4q4aly6+vmrNfyq4XL41f43BYcH6/JnLpfhMFSQUaA9v+xp25OCZVw1LpWWlMpV47K6lDZVXVmqsgP5Tf6zI6PGoc4/146fdicMqdN586DWKgkA2lyzPUX2xvhsGCLZqy3g5+en1157TUFBtW3gN998U9ddd12Lw5C6CVRvuOEGSZLLVft/5HQ6tXDhQvn5+XmncADwMlsGIrk/52rd++sUGh2qiX+e2OQ6iYMTJTWeOLXuDjPJY5M1aGLjP3Kik6IV0TVCklSUU1T/fMHOAr1y1Su6P+l+/anHn/TGzW/o4L6DXjkfWC9ja4auG3WdMrZmWF1Km/ruvZl6+eYuTf6zo7DdPeRfHuLxdpHb+8moprEHwD6aCkV6fHypz4Yhkr3aAvfcc49OPvlkSdKmTZv0hz/8QaZptmhfTd1N5tprr9XmzZslSSeffLLuuafpCdoBwGq2HDKz9r21Ml2mUialKDCs6VtkBgQHSKqdOPW36iZUPW3qac3uv663SWBo7b7LD5TruQueU2jnUE15ZYqqyqq09MGlevmKl3XHZ3fI4WhZ7jT37Lkqzitu0bY4upum3uT2urk5uZKkzV9s1v60/W5v9+KCFz2u61j5B4Ro8iPTvbKvAWdNU+/hlza57P1Hz/HKMWYPm63qqlKv7OtY/S7lVl17RtMh6pE4qgP07KgXlX8gsxWqgtUmT/0fhXWKVHFukZ7v/0ijx3bH+fv2+QcFPKL/d8l76hc/XA5XbbPRNE099uEU/TD3E4urO3Z2bQuYrubDjeDgYN13332SasOL6667ThUVFS06TlNhSN2cIVu3btXKlSvl5+en++67T88884zKy8ub3M/sYbNlOBiGDqBlwmPDNWPFjBZta8tAZNt/tkmSeo/u3ew6hdmFkqSEAYcmVHXVuJSzOUeGw1Cv03o1uZ2rxqX9mbW/BDt36yxJ+nbRtyrKKdLtn9xe/1xEfISeOfcZpX2apkETWtadvjivuEEvFHhXZWml2+tWlVfVf/VkOyteP//AKq/tKzKut5IGjPXa/ppSlFek6or2EYhUlrj/2h7u4N6DKtrP+9WO6v6wMF2minKKGj22O87ft8//gHFA2Xnb1S9+eIPn03dsssX527UtcCSXX365oqKiJNUOlfnhhx9atJ8jhSGStGrVKr355puaMmWKoqKidPnll2vRokVN7osPAAFYxZaByP7dvwYWiZ2bXF5TXaP079MlNRwys2fbHlWVVSmsS1iDOUd+K+OHDFWUVCiuX5zCY8MlSRuXbVTPU3vWhyGS1OOUHoo+PlobP9vY4kCkbv9oHc4Qp9vrBgQF1H/1ZLu64VVtyT/A8yEfVoqIjVB1VYDVZUiSyhwta7TWuKpldqpSRFDbv95ofXWfWhoOQxFdIxo9tjvO33fP32E4NH388zrjxCsk1fYMMQxDhmHo8ZuW6y+Lf6/0vestrvLY2LUtYLrMZkOGm2461Ctm3rx5Ldr/0cKQOs8//7ymTJlSf9zmApHw2HB6iABosWP5u9mWgUhdal9V1vQn5eveX6eDBQcVGBao6O7R9c9nbawdLlNTWdPsvlcuXClJSpmUUv9c7s+5OunCkxqtG9cvTrk/53pcf52WdvuBe+J3xR99pV/t2LxDWiAln5Osnsk93d5u1oxZLSntmLiq/bVzWZsftsVSV6fK4d+ySdy8zVHpVM0/K+VX7X5DV5JKeqbrTz/e20pVwWp5bwbJdVAKj4vQrI2zGj22O87fR8+/ibvJSMav/6ROwVH66x8/P3T3mQ7Krm2BioMVuj/x/kbPh4aG1s8dkpaWplWrVnm8b3fDEEn6/vvvtXHjRvXv318nn3yyQkJCVFrauFdo6urU+qHoANCWbDmpaqeYTpKkzPWNx/MX5RZp6cylkmrnD/ntbXPrJlQtKypr8g4y21du15p31yg0KlSjbxhd/3xZYZmCIxrfkz6kc4hKC9vHUAAcm6ReSZq/Yr6SeiVZXQpakctZqaJeW9xe31Rt1/n9yR37E1IAaKCZW+vW3Xyr7mdf/d1n8u050fbh7NAWGDJkSP3cditXrvR4e0/CkDp1x/Hz89NJJ53kedEA0IpsGYj0ObOPJGn5M8sbBBu71u7SvAvn6WBB7d1fEgYmNNiuLhDxC/DT4nsXq6y4rH5Z2qdpevWaVyVJV827qtkhNbAn/wB/hUeFyz/Alp2q8Bt7B/+gqpCSo65nypQhQ8XH/6KDXZlMFYBNNBOGNLybjNn4lrw+EIrYoS0wdOjQ+u9Xr17t0bYtCUMOP85vjw8A7YEtA5Ext41RaFSoCrMK9ejIRzXntDl6eNjDenLsk4ruHl0/2WpC/4aBSPbG2l/ukx6fpG3/2aYHBzyoJ8c+qQcHPKj5V89XWVGZLp5zsfqP799gu+DIYJUVlelwpftLFRLZseZzQNNyd+dqzh1zlLu75UOg0DFUh5Vo5/gPmg1F6j4ZNWToQOIOZZ7xWf2npgDQobkVhkgy1OiWvL4QitihLXDcccfVf5+RkeH2di0NQyQpPT29/vsuXex9jQDoeDpuxH0EkQmRuu2T27R05lJtX7ld+3bvU2yfWF325GUace0IPTz0YUkNJ1QtzivWgT0HFNI5RCOmjFB4XLg+f+xz5WzOkTPEqUETB2nsnWOVNLRxN8nYPrHK+zmv0fN5P+ep5wj3x5ii/SotKdWar9fo0puavgWt3XQ78Uzd8Ubzt+yTdNTlHVlFVIF2XPCWojcOUeTWE+VfcWhInCFD5Z3zte/En7S/z0bJYd//BwA+xN0wpG51Z5V2jv9A3T//vUL2xNeHIh19TpEjsUNb4J133tHmzZsVFBSktLQ0t7c7+eST9cc//lGSZ2GIVDtXydSpU1VeXq4NGza0qG4AaC22DEQkKa5vnKa9Na3R8xUlFdq3a58Mh6GuyV3rnw+PDdfT+56uf9x/XH/1H9e/0fZN6T+uvz55+BMVZhUqMiFSkpSxOkP56fm6YNYFx3QeAKxRHXpQeaf8n/YM/Vah2UlK+Hqc/CuDVB14UNsvepNeIQDsw8MwpH4zHwxFOrq0tDSPgpA6q1at0uTJk7Vw4UJde+21bochkpSTk6PXXnvN42MCQFuw5ZCZI8nZkiPTNNXlhC4e3TLtSEZeO1LhseGaP3m+Nn6+UT9++KNev+F1JQ1N0oDzB3jlGACsYfrXqCQpXaZ/7V2rTD8XYQgAWwlP7+1xGFKnLhT57fCZhP+cI9F5znbeeustnXDCCR6FIQDQ3vleILIpR1LtHWa8JSg8SNM/nK7w2HAt+uMivXXHWzr+lOM17a1p9TN5AwAAtEfFPbcqv/9aj8OQOr8NRapCDmj3mE8Ijm0qKyvL6hIAwKtsO2SmOXWBSMKAhKOs6ZnjehzX5BAd2ENUTJSmzJiiqJgoq0sBAMC7DClv+H9U2GezKqLyW7SLulDEryJYVZ2KvVxg+0BbAADsx/cCkc2/9hAZ4L0eIrC/yOhITbxmotVlAADQOgy1OAyp43JWyeWs8lJB7Q9tAQCwH58LRKZ/ON3qEtABlRSXaMN3GzTw1IEKCw+zuhwAANDGaAsAgP0wwQXghj1Ze/TUfU9pT9Yeq0sBAAAWoC0AAPZDIAIAAAAAAHwOgQgAAAAAAPA5BCIAAAAAAMDnEIgAbnAGOtWjXw85A51WlwIAACxAWwAA7Mfn7jIDtES3nt005605VpcBAAAsQlsAAOyHHiIAAAAAAMDnEIgAbkjfkq6rTr5K6VvSrS4FAABYgLYAANgPgQjgBtM0VV1VLdM0rS4FAABYgLYAANgPc4gANmP4Vav7uHlWl+E2w6/a6hIAALAVZ4hTc3Z7Z76TPW8HyVVqyBFiKuby8mafOxbOECaqBWANAhHAZgxDMvwJGQAA8FWGYSgwNNAr+3IGBspVbcgRaCow1Gz2OQDoiBgyAwAAAAAAfA49RAA3dOvRTXMXz1Vst1irSwEAABagLQAA9kMgArjBGeRUYq9Eq8sAAAAWoS0AAPbDkBnADXuz9+rFWS9qb/Zeq0sBAAAWoC0AAPZDIAK44UDRAa14f4UOFB2wuhQAAGAB2gIAYD8EIgAAAAAAwOcQiAAAAAAAAJ9DIAIAAAAAAHwOgQjgBofhUHJKshwGbxkAAHwRbQEAsB9+ogNucJkubV6zWS7TZXUpAADAArQFAMB+CEQAAAAAAIDPIRABAAAAAAA+h0AEAAAAAAD4HAIRwA1h4WEadf4ohYWHWV0KAACwAG0BALAff6sLADqCmIQY3f7I7VaXAQAALEJbAADshx4igBsqKyqVuytXlRWVVpcCAAAsQFsAAOyHQARwQ+aOTN1+we3K3JFpdSkAAMACtAUAwH4IRAAAAAAAgM9hDhGbMU2pymVYXYZHAhymjI5VcrtmmpJZ03He2oZfNa8/AADwGtM0VVnasYY2OUOcMmgQAW2u4/zVBLdUuQylruttdRkemT1km5x+ptVl2IZZ46+dy6ZbXYbbuo+bJ8O/2uoyAACATVSWVur+xPutLsMjc3bPUWBooNVlAD6HITMAAAAAAMDn0EMEcEPP5J5658d3rC4DAABYhLYAANgPPUQAAAAAAIDPIRAB3JCdka3UKanKzsi2uhQAAGAB2gIAYD8EIoAbysvKtW39NpWXlVtdCgAAsABtAQCwHwIRAAAAAADgcwhEAAAAAACAzyEQAQAAAAAAPodABHBDTHyMbp19q2LiY6wuBQAAWIC2AADYj7/VBQAdQVhEmE6fcLrVZQAAAIvQFgAA+6GHyBGk9k7VnVF3qjCr0OpSYLHifcX67K3PVLyv2OpS0Ar8yoIV/5+xclQ6W7yP4D1xivlhpGR6sTAAQLtBW8B3xcTEaPTo0Ro3bpzOOeccDR8+XKGhoW5vHx4erldffVXR0dGtWCWAlqCHSDMKswp1sOCgQjqHKDIh0upyYLH8vHwteHSB+gzuo/CocKvLgRf5lQXr+E8vVtD+4xS4P0o7z/1ALmelR/sI3hOn7p/9Xn5VgXJU+yv31G8ko5UKBgBYgraA7/D399dFF12kK6+8UsOGDVNiYmKjdVwul37++Wd9++23WrBggf773/82ua/w8HAtW7ZMw4cPV0pKisaMGaOCgoLWPgUAbqKHSDOy0rIkSfH94y2uBEBr8i8LkX9p7ac8IXu7qvtnv/eop8hvwxBJCiyMluHya5VaAQBA6wkODtaf//xn7dq1S++8844uuuiiJsMQSXI4HEpOTtbUqVP1f//3f/rpp590zTXXNFjnt2GIJMXHxys2NrbVzwOA+whEmpG14ddA5ETfDERqFixU1bjz5fpsWaNlpmmq+p77VTXhApnpGW1fHFpd5qav9MxkQ2s+eaLZdZ6ZbOjDJya2YVWtoyKqQBnnL1F1YJkkz0KRw8OQkvhd2nXORzL9alq1ZgAA4F0jR47Ujz/+qL/85S/q2rVr/fPFxcX66quv9Mwzz2jWrFn6y1/+opdfflmrV69WZeWhHqWDBg3S3//+d3322WdKTExsFIbs3btXZ599tjZt2tTm5wageQyZaUZ9D5EBvhmIOK65Wq7vvlfNS6/ISBkqo8tx9ctcSz6QuX6DHFOvk9HjeOuKBLykIipfGecv0fH/ulj+FcH1ociRhs80G4b4V7dl6QAA4BilpqbqL3/5ixyO2s+Kq6ur9cEHH+iFF17Qv//9b5lm0xOEBQYGatKkSbrllls0cuRISdL48eOVlpamnJwc9e3bV9KhMCQtLa1tTgiA23yih0hJQYmWzlyqh1Me1j1d79GDAx7UkgeWqOJghf552z91Z9Sd+s8r/2mwzW+HzKSvSter17yq1N6pujfhXj09/mltWbHFilNpM0ZAgPzvnSGVl6vmyafrnzd3Z8q18O8y+vWV49JLrCuwjQWHBGvwiMEKDgm2uhS0krpQxJ2eIoQhAOB7aAvY05w5c/Twww/XhyHffvutBgwYoEsvvVQrVqxoNgyRpIqKCr355ps67bTTdN555ykzM1NS7VAZwhCgY7B9IJK5IVOPjXpMK/62QsV7ihXXN0411TX65uVvtOgPi5S3NU+SlDAwoX6bipIKFaQXyOHn0NZvturZ859V+qp0RcZHSpIyfsjQS5e9pLRP7f2DzejdS44rLpO5Zq1cn3wqs6ZGNY89IZmm/O6dIcPPd+ZJ6Nq9q1JfSFXX7l2PvjI6LHdCEaPGQRgCAD6ItoD93HvvvbrvvvvqH6empmrUqFH6+eefPd7XZ599ppEjR2rfvn31z5mmqfvuu48wBGjHbD1kpqSgRPOvnK/ivGKdNf0sjb9vvII6BUmSlj+7XB89+JEc/g4ZhtFgrpCstCyZpilDhr6Y+4WuePYKnXz5yXL4OVRWXKbXrn1NW7/eqvdT31f/c/vLMOx7OwnH1VfK9e33qnllvhzbd8j8easc0/4oI7Gb1aW1KVeNS+Vl5QoKDpLDz/Y5Yr3qylKVHci3uow21dzwmbrb6fpVhMj49RYyhCEA4Dt8tS1gV0OGDNEjjzxS/3jatGl65ZVXWry/8PBwvfvuu4qKiqp/zjAMPfjgg3rvvfd04MCBY6oXQOuw9U/zJQ8sUWF2oUbfMFoXPnRhfRgiSWNuH6P4AfFyVbsUlRSloPBDy7I3Zkuq/cV39fNXa/hVw+t/8QWHB+vyZy6X4TBUkFGgPb/saduTamOGv7/8771bqqyS6+NPZAzoL8fFv7e6rDaXsTVD1426ThlbM6wupU19995MvXxzlyb/2VlTPUX8y0MkiTAEAHyUr7YF7CggIEALFy6Uv3/tZ8MPP/zwMYchh0+g+v3330uSunfvrscff/zYiwbQKmzbQyT351yte3+dQqNDNfHPTd8JI3FworLTshtNnFp3h5nksckaNHFQo+2ik6IV0TVChVmFKsopUmzvWBVmFerLZ77UrrW7lJWWpZrKGj297+ljOoe5Z89VcV6xR9uYzkDplYXHdNxGQkOlgACpulrGycNkOLyboz08bLaMygqv7tMdN029ye11c3NyJUmbv9is/Wn73d7uxQUvelzXsfIPCNHkR6Z7ZV8Dzpqm3sMvbXLZ+4+e45VjzB42W9VVpV7Zl7d1P+55zbx0qcKDo2WYh4aI/bTz35rz7FWqvKfMwurQViZP/R+FdYpUcW6Rnu//SKPHdsf5+/b5/9bbd94qP4fkqjE1s/9Mq8vxCru2BbypqWu+vb8PTFfz835I0o033qhBg2rb+HV3lmmp5u4mU1JSog0bNigsLEw33nijnn/+ea1fv77Z/cweNluGw769zoHWFB4brhkrZrRoW9sGImvfWyvTZSplUooCwwKbXCcgOEBS7cSpv1U3oeppU09rdv91vU0CQ2v3vTd9r9Z/tF6JQxKVNCRJ6d+nH/M5FOcVqyinyLONggIVcMxHPsQ0TdXMfUqqrpKSEuX6x1tynHG6jHjvjZ8tziuSyts+EKksbfruIU2pKq+q/+rJdh6/fl7gH1jltX1FxvVW0oCxXttfU4ryilRd0T4DkfU5K/W8/x26/8q/yzBqg0DTNPXwwitUWGLv3mE4pK5hbbpMFeUUNXpsd5y/b59/Q2b9V7ucu13bAt7U1DXf0d8H06cf+uDoD3/4g6qqWtZ2ai4MqZsz5M9//rOeeuopSdItt9yim25qPoDz9ENQAN5h20Bk23+2SZJ6j+7d7DqF2YWSpIQBhyZUddW4lLM5R4bDUK/TejW5navGpf2ZtZ8MdO7WWZJ0wsgT9JfNtenyp49+6pVAJDw23ONtTGegvPmZteuDpTJ/Wi/H9dfKMeJUVU+/TTVzn5LfE3O8NndKeGyEJT1EnCGN7x7SnICggPqvnmwX0TXC47qOlX9ASJsf81hExEaousqbMZ739O46TLdf/Hx9GCLVjgd++IaP9PCSS1RWyXhgX1D3iZ3hMBTRNaLRY7vj/H37/Bsy6r/a5dzt2hbwpqau+fb+PjBdZrMBw1lnnaV+/fpJkr766iutXbu2Rcc4WhgiSfPnz9df/vIXderUSZMnT9Z9992n4uKm6wqPDaeHCNBCLfm7uY5tA5H9u38NLBI7N7m8prqmPrT47ZCZPdv2qKqsSmFdwhrMOfJbGT9kqKKkQnH94ur/8x1eHkYiqUXdfiprDKWu887xzawsuRYslNG3jxyXTZLh5yfH5Kvlem2RXB8sld9FF3rlOP9vdaqcfkfu2tga4nfFH32lX+3YvENaICWfk6yeyT3d3m7WjFktKe2YuKr9tXNZmx+2xVJXp8rRDufhOPzWuqbM+vlD+safopdmrdLOcz+Qy+n+p4TomPLeDJLroBQeF6FZG2c1emx3nL9vn/9vORYYkik5/AzbnLtd2wLe1NQ1397fBxUHK3R/4v1NLrv44ovrv3/hhRdatH93whBJKikp0euvv65bbrlFoaGhGj9+vN59990m95m6OrW+5zmAtmPbSVXrujJWlTXdBW7d++t0sOCgAsMCFd09uv75rI21w2VqKmua3ffKhSslSSmTUrxVbrtjulyqefxJyeWS3713199i13HZJBl9esu1YKHM7ByLq2w7Sb2SNH/FfCX1SrK6FLSBw8OQkvhdqusqbv76talb8gIA7Iu2gD0MGzas/vvPP//c4+3dDUPqfPrpp/Xfp6TY928HoKOybSDSKaaTJClzfWajZUW5RVo6c6mk2vlDfjv0o25C1bKisibvILN95XateXeNQqNCNfqG0a1RervgWrxE5qbNclw7WUbSoV/8hp+f/O65W3LVqGbuUzLNtu/ZYQX/AH+FR4XLP8C2narwq6bCkF3nfHSop7jMBnefIRQBAN9AW6Dj8/Pz0+DBgyVJ27ZtU1GRZ/OfeBqGSNKaNWvqvycQAdof2wYifc7sI0la/szyBsHGrrW7NO/CeTpYcFCSlDAwocF2dYGIX4CfFt+7WGXFh2bkSPs0Ta9e86ok6ap5VzU7pKajM3ftkmvR6zKS+8lxycWNlhvHd5dj8tUyN6TJ9cFSCypse7m7czXnjjnK3Z1rdSloRc2FIQ1urWuo0S15CUUAwP5oC3R88fHxCg4OliRt2LDBo21bEoZIUk5OjgoKCiRJvXo1PT8hAOvYNuIec9sYrV28VoVZhXp05KOK7R2rqooq5e/IV/LYZEUlRmnLii1K6N8wEMnemC1JmvT4JL1z9zt6cMCDiu0Tq+LcYhVmF8pwGLp4zsXqP76/FafVJoykJAV88uER1/G78nL5XXl5G1VkvdKSUq35eo0uvanpW9DaTbcTz9Qdbxy598/Rlnc0boUhv6qIylfG+Ut0/L8uln9FcH0owpwiAGBfvtYWsKPq6mp99tlnCg4O1k8//eT2doZh6F//+pfHYUidb775RpGRkcrOzm5R3QBaj20DkciESN32yW1aOnOptq/crn279ym2T6wue/Iyjbh2hB4e+rCkhhOqFucV68CeAwrpHKIRU0YoPC5cnz/2uXI258gZ4tSgiYM09s6xShrK2FHATjwJQ+oQigAA0LHk5OTovPPO83g70zT13HPP6dRTT9W+ffs8CkOkhhO5AmhfbBuISFJc3zhNe2tao+crSiq0b9c+GQ5DXZO71j8fHhuup/c9Xf+4/7j+6j/Ovj1BAEhB+V08DkPqNBeKZJz/nkz/5idmBgAAHctbb72l6upqbdmyxaMwBED7ZutApDk5W3JkmqZiesV4dB/5o/nxwx8lSXk/5zV4HJUUpaQh9CoB2qPK8CJVRO5XyN44j8KQOoeHIiXddsn0IwwBAMBuFi9ebHUJALzMNwORTbW3i43v7/69592x8PqFTT4++cqTdfW8q716LLStqJgoTZkxRVExUVaXAi9zOSu189z31WXdcO1J+dajMKROXSjSaXd35Q9a85s70gAA7IK2AADYj08HIgkDEo6ypmd+O9wG9hIZHamJ10y0ugy0EpezUnnD/3NM+6iIyldFVL6XKgIAtDe0BQDAfmx7290jydn8aw+RAd7tIQL7Kiku0bfLvlVJcYnVpQAAAAvQFgAA+/HJQGT6h9P19L6nmTAVbtuTtUdP3feU9mTtsboUAABgAdoCAGA/PhmIAAAAAAAA30YgAgAAAAAAfA6BCAAAAAAA8DkEIoAbnIFO9ejXQ85Ap9WlAAAAC9AWAAD78cnb7gKe6tazm+a8NcfqMgAAgEVoCwCA/dBDBAAAAAAA+BwCEcAN6VvSddXJVyl9S7rVpQAAAAvQFgAA+yEQAdxgmqaqq6plmqbVpQAAAAvQFgAA+2EOEZsJcJiaPWSb1WV4JMBBw8KbDL9qdR83z+oy3Gb4VVtdAgAAsBFniFNzdntvvpc9bwfJVWrIEWIq5vLyRo+9wRnCZL2AFQhEbMYwJKcfAYMvMwzJ8CdkAAAAvskwDAWGBnptf87AQLmqDTkCTQWGmo0eA+i4GDIDAAAAAAB8Dj1EADd069FNcxfPVWy3WKtLAQAAFqAtAAD2QyACuMEZ5FRir0SrywAAABahLQAA9sOQGcANe7P36sVZL2pv9l6rSwEAABagLQAA9kMgArjhQNEBrXh/hQ4UHbC6FAAAYAHaAgBgPwQiAAAAAADA5xCIAAAAAAAAn0MgAgAAAAAAfA6BCOCGyKhI/X7q7xUZFWl1KQAAwAK0BQDAfghEADcYDkP+Af4yHIbVpQAAAAvQFgAA+yEQAdywP3+/Fr+0WPvz91tdCgAAsABtAQCwHwIRAAAAAADgcwhEAAAAAACAzyEQAQAAAAAAPodABHBDWHiYRp0/SmHhYVaXAgAALEBbAADsx9/qAoCOICYhRrc/crvVZQAAAIvQFgAA+6GHCOCGyopK5e7KVWVFpdWlAAAAC9AWAAD7IRAB3JC5I1O3X3C7MndkWl0KAACwAG0BALAfhszYjGlKVS7D6jI8EuAwZXSskts105TMmo7z1jb8qnn9AQAAvMQ0TVWWdqyeTM4QpwwahLBAx/mrCW6pchlKXdfb6jI8MnvINjn9TKvLsA2zxl87l023ugy3dR83T4Z/tdVlAAAA2EJlaaXuT7zf6jI8Mmf3HAWGBlpdBnwQQ2YAAAAAAIDPIRABAAAAAAA+hyEzgBt6JvfUOz++Y3UZAADAIrQFAMB+6CECAAAAAAB8DoEI4IbsjGylTklVdka21aUAAAAL0BYAAPshEAHcUF5Wrm3rt6m8rNzqUgAAgAVoCwCA/RCIAAAAAAAAn0MgAgAAAAAAfA6BCAAAAAAA8DkEIoAbYuJjdOvsWxUTH2N1KQAAwAK0BQDAfghEjiC1d6rujLpThVmFVpcCi4VFhOn0CacrLCLM6lLQGkwpJDf+mHZhVPkrKL+LlwoCALQ3tAWAluvXr5+io6OtLgNoxN/qAtqrwqxCHSw4qJDOIYpMiLS6HFiseF+xVi5bqZHjRio8KtzqcuBNphSzZoS6/HSKck/5jwoGrvV4F0aVv5K+uEDBe2O1a/yHKo3jlowAYDe0BeBrTjrpJI0ePVopKSkaMmSIOnfuLH9/f5WXl2v79u1avXq11qxZo2XLlqm4uLjZ/Zx44on697//rZycHI0ZM0YFBQVteBbAkRGINCMrLUuSFN//2D41hj3k5+VrwaML1GdwHxpBNhOSm6AuP50iSYpbNVqSPApF6sKQsJxESVK3f5+rbZcukulf4/1iAQCWoS0AXxAcHKwrrrhCt9xyi4YNG9bsej169NDYsWMlSSUlJXrzzTf1/PPPa/369Q3WqwtDYmJiFBMTo8cff1xTp05t1XMAPMGQmWZkbfg1EDnRNwORmgULVTXufLk+W9ZomWmaqr7nflVNuEBmekbbF4dWl7npKz0z2dCaT55odp1nJhv68ImJbVhV6yjtmqW8oSvrH8etGq3oDUPd2vbwMKQmoEK7x35irzDElEKzEhW1cbCiNwxVxLZk+ZUHWV0VAADwsrPOOkubNm3SggULGoUhVVVVysrK0q5du7Rv374Gy8LCwnTjjTfqp59+0osvvqhOnTpJahiGSNIPP/ygu+66q21OBnATPUSaUd9DZIBvBiKOa66W67vvVfPSKzJShsroclz9MteSD2Su3yDH1Otk9DjeuiIBL8kf8oMkKXbtSEnu9RRpKgzZed77KuuS18rVthGXQ9EbB6vz5kEKPBDZcJFftYp7bNXewatVGbnfmvoAAIBXBAYG6sknn9Qtt9zS4Pk1a9Zo4cKF+u6777RhwwZVVFTUL+vatatSUlJ03nnn6ZprrqkPQW688Uade+65+t///V89/vjjDcKQc845R0VFRW13YoAbfCIQKSko0YpnV2j9x+tVmF2osOgwDZo4SBP+PEFLHlii79/8XpfMuUSjbxhdv81vh8ykr0rXir+t0I7vdqiytFIJAxJ07v3nqt/Z/aw6pVZnBATI/94Zqr79LtU8+bT8//qwJMncnSnXwr/L6NdXjksvsbhKwHs8CUXsHoYY1f5K/HKCOmUdL0kyZcqQUb/cUeOvyF9OVKedJ2jXOUtV2pU5UwAA6IhCQkL0wQcf6Jxzzql/7uuvv9Z9992nVatWNbtdTk6OPv74Y3388ce6//77dcMNN+gvf/mLwsLC1L17dy1cuFCGUdt2IAxBe2b7ITOZGzL12KjHtOJvK1S8p1hxfeNUU12jb17+Rov+sEh5W2v/gEkYmFC/TUVJhQrSC+Twc2jrN1v17PnPKn1VuiLjIyVJGT9k6KXLXlLap2lWnFKbMXr3kuOKy2SuWSvXJ5/KrKlRzWNPSKYpv3tnyPDzs7rENhMcEqzBIwYrOCTY6lLQivKH/HD04TOmbB2GyJS6fT1enbKOlylTkhqEIb/lVxWopC8uUOD+qLasEAAsQVsAduN0OrVkyZL6MKS0tFS33nqrzjrrrCOGIYcrKSnRU089pYEDB+r777+XpPowZOvWrYQhaNds3UOkpKBE86+cr+K8Yp01/SyNv2+8gjrVjn1f/uxyffTgR3L4O2QYRoO5QrLSsmSatZ+IfjH3C13x7BU6+fKT5fBzqKy4TK9d+5q2fr1V76e+r/7n9q9/w9uR4+or5fr2e9W8Ml+O7Ttk/rxVjml/lJHYzerS2lTX7l2V+kKq1WW0uerKUpUdyLe6jDbVXE+RQwz7hiGSQvLiFZ7Rq1GvkOb4VQWqy7rhyjz70zaoDgCs46ttAdjXQw89pPHjx0uSCgsLdd555+m7775r8f5CQkLUo0ePBs/FxcUpPDycQATtlq0DkSUPLFFhdqFG3zBaFz50YYNlY24fozWL1yg7LVvR3aMVFH5oksDsjbXdv101Ll39/NUaNHFQ/bLg8GBd/szlenjowyrIKNCeX/Yotnds25yQBQx/f/nfe7eqb7tTro8/kTGgvxwX/97qstqcq8al8rJyBQUHyeFn+45V9b57b6a+e2+m1WW0uaZCEVMuSYd6S9gxDJGkzptrf965E4bUCc84Qf4HQ1UderC1ygIAy/lqWwD2NHz4cM2YMUOSVFFRoQkTJhxTGHL4BKr79u1TVFSUwsPDNX/+/PrgBWhvbBuI5P6cq3Xvr1NodKgm/rnpO2EkDk5Udlp2o4lT6+4wkzw2uUEYUic6KVoRXSNUmFWoopwixfaO1Y8f/qi1763V7h93q6SgRJ27ddbg3w3W2DvHKjAs0Psn2JZCQ6WAAKm6WsbJw2Q4fK8RkLE1Qw9c+YAe/eej6pnc0+py2syAs6ap9/BLm1z2/qPnNPm8XRweihi/GWFo1zBELofCM3p5vJlh+ik8o5f29f+pFYoCgPbBV9sCsB+Hw6HXXntNfr8Of585c6ZWrlx5lK2a19TdZCZNmqT//ve/6tatm8aNG6cpU6bo73//u1fqB7zJtoHI2vfWynSZSpmU0mwgERAcIKl24tTfqptQ9bSppzW7/7qhN4Ghtfv+93P/VudunTXhzxMUGR+prA1Z+vyxz/XLf3/RbZ/cJkcLQoS5Z89VcV6xR9uYzkDplYUeH6vZ/ZmmauY+JVVXSUmJcv3jLTnOOF1GfFevHePhYbNlVFYcfUUvu2nqTW6vm5uTK0na/MVm7U9z/64aLy540eO6jpV/QIgmPzLdK/uKjOutpAFjvbKv5sweNlvVVaWteoxjcfmIP+nSEffXPzZNU6mLztMvc5q/A01HFR4crQU339aibf/79A96a+VsL1fUPkye+j8K6xSp4twiPd//kUaP7Y7z9+3z/62377xVfg7JVWNqZn979B60a1vAm5q65n3tfdDRfg6YLvOIyydMmKDk5GRJ0qpVq/TEE0+0+FhNhSF1c4bccMMN+vTT2iG1M2bMOGIgMnvYbBkO+05DgNYVHhuuGStmtGhb2wYi2/6zTZLUe3TvZtcpzC6UJCUMODShqqvGpZzNOTIchnqd1vQnpa4al/Zn1v4i7NytsyTphn/eoLDjwurX6XVaL4UdF6bXp72u9O/SdcLIEzw+h+K8YhXleDjeLihQAR4fqXmuD5bK/Gm9HNdfK8eIU1U9/TbVzH1Kfk/M8drcKcV5RVJ52wcilaWVbq9bVV5V/9WT7Tx+/bzAP7CqzY95LIryilRd0T4DkaCAEPXqcnKD5wzDUI/woVqz7t8WVdV6aoJb/p4+WHTAkuu9LdQ1LE2XqaKcokaP7Y7z9+3zb8is/2qXc7drW8Cbmrrmfe19YLefA7+9ve6DDz6ompqaFu3nSGGIJH322WdauXKlRo4cqUGDBum0007Tf//73yb35emHwIC32DYQ2b/718AisXOTy2uqa5T+fbokNRgys2fbHlWVVSmsS1h9L5DDZfyQoYqSCsX1i1N4bLgkNQhD6iSeVDvxYmFOYYvOoW7fnjCdgSpr0dGa2FdWllwLFsro20eOyybJ8POTY/LVcr22SK4PlsrvoguPvhM3hMdGWNJDxBnidHvdgKCA+q+ebBfRNcLjuo6Vf0BImx/zWETERqi6ypsxnncE+ofogd+/pYFJp0uq7RlSFwLeOPEJBXcK0tI1z1lZotcZkopK9yoipIvH2+6rzrLkem8LdZ9YGQ5DEV0jGj22O87ft8+/IaP+q13O3a5tAW9q6pr3tfdBR/s5YLrMZgOGhIQEnXvuuZKkHTt26PPPP2/RMY4WhtR5/vnnNXJk7fDjqVOnNhuIhMeG00MELdaSv5vr2DYQqUvuq8qa/rR83fvrdLDgoALDAhXdPbr++ayNtcNlaiqbT0pXLqwdY5cyKeWINWz7v9peKrF9Wjbpaku6/VTWGEpd16LDNWC6XKp5/EnJ5ZLfvXfX32LXcdkkmf9dKdeChXIMP8UrQ2f+3+pUOf2O3LWvNcTvij/6Sr/asXmHtEBKPifZo3HDs2bMaklpx8RV7a+dy9r8sC2WujpVDv9qq8towKjyb/LWuqGZSfVzikw542GNu3e8Cgbaa+hM5eoM6SfPApHqwDKNf2eIxvk3nnPJDvLeDJLroBQeF6FZG2c1emx3nL9vn/9vORYYkik5/AzbnLtd2wLe1NQ172vvg472c6DiYIXuT7y/yWXDhw+v//6f//ynXC6Xx/t3NwyRpMWLF+vVV19VYGCgRowY0ew+U1en1k9FALQl286O2SmmkyQpc31mo2VFuUVaOnOppNr5Q3479KNuQtWyojLt+WVPo223r9yuNe+uUWhUqEbfcPjtOA8pzC7Up498qn5j+qnbwI53i1rX4iUyN22W49rJMpKS6p83/Pzkd8/dkqtGNXOfkmm2fZBhhaReSZq/Yr6SeiUdfWV0aM2FIWVd8pQ/5AflDT006VjcqtGK3jDUqlJbxf6+G2Qa7jWOzF+7zxf22SjTv2XdbQGgo6AtADtISTn0ge4PP/zg8faehCFS7R1sNmzYIEnq27evwsIa96oHrGTbQKTPmX0kScufWd4g2Ni1dpfmXThPBwtqbw+ZMDChwXZ1gYhfgJ8W37tYZcWHBqCkfZqmV695VZJ01byrmh1SU1FSoVcnvyq/AD9d+bcrvXdSbcTctUuuRa/LSO4nxyUXN1puHN9djslXy9yQJtcHSy2osO35B/grPCpc/gG27VQFHTkMqWP3UKSq0wHlDv/mqOuZMmXIUFn0Hu09aVUbVAYA1qItADsYNOhQb861az3r5eppGFJnzZo1kmrvbjNgwAAPKwZal21/oo+5bYzWLl6rwqxCPTryUcX2jlVVRZXyd+QreWyyohKjtGXFFiX0bxiIZG/MliRNenyS3rn7HT044EHF9olVcW6xCrMLZTgMXTznYvUf37/J41aWVeqVq15Rwc4C3f7J7YqIa3/jCo/GSEpSwCcfHnEdvysvl9+Vl7dRRdbL3Z2rRU8s0rX3XKu4xDiry2l13U48U3e8ceTeP0db3tG4E4bUOfyWvHGranuL2WX4zL7+P0mmobjvT5ehpsfzGjJUGpOtXed8JJezY03kCwAt4WttAdhTePihuRZyc3Pd3q6lYYgk5eUdakt16tTJg2qB1mfbHiKRCZG67ZPbdOK4ExUQFKB9u/cpJDJElz15maa9PU17t++V1HBC1eK8Yh3Yc0AhnUM0YsoI/fEff1Rsn1jlbM5RVUWVBk0cpLuW3aXRf2x6qExNVY0WXrdQu3/crRvfuVFx/fhlaRelJaVa8/UalZa0z7uh4Nh4EobUsXtPkX0DftQvl/xdBf3XqcbZcNLjkvhd2nX2J0qf8J5qgsotqhAA2hZtAdjBRRddpO7du6tfv36qqnL/A43k5GRFR9fOu+hJGCJJf/vb39SrVy8lJCTo66+/blHdQGuxbQ8RSYrrG6dpb01r9HxFSYX27donw2Goa/KhSUHDY8P19L6n6x/3H9df/cc13RPkcC6XS69Pe11bv9mqaW9PU/eU7sdcP4DW15IwpI7de4pURhYq99RvlHfyf9X7resUUB6mquAD2nne+1aXBgAAWmDfvn3at2+fx9u99957uvrqq3XHHXfovPPOczsMkaT8/Hzl5+d7fEygLdg6EGlOzpYcmaapmF4xHt027UgW37tYP374o8bcOUbOYKcyfsioX3Zcj+OavC0vAOsFFUYrZE9tby5PwpA6h4ciEb/0077kn2w1yajpVyM5fh0ixR3xAADwSW+//bbefffdFt2ZBmivfDMQ2ZQjqfYOM96y+cvNkqTlTy/X8qeXN1h25XNXavhVw5vaDIDFyrrkade4j5Tw1XjtPucjj8KQOnWhSHhGb+08b4mtwhAAAIA6hCGwG58ORBIGJBxlTffN/Gmm1/aF9icqJkpTZkxRVEyU1aWgFRyM361tl712TEFG/pAfVDBwLWEIANgUbQEAsB/fDEQ2/9pDZID3eojA3iKjIzXxmolWl4FW5I0ggzAEAOyLtgAA2I9PBiLTP5xudQnoYEqKS7Thuw0aeOpAhYUzHwwAAL6GtgAA2I9tb7sLeNOerD166r6ntCdrj9WlAAAAC9AWAAD7IRABAAAAAAA+h0AEAAAAAAD4HAIRAAAAAADgcwhEADc4A53q0a+HnIFOq0sBAAAWoC0AAPbjk3eZATzVrWc3zXlrjtVlAAAAi9AWAAD7oYcIAAAAAADwOQQigBvSt6TrqpOvUvqWdKtLAQAAFqAtAAD2QyACuME0TVVXVcs0TatLAQAAFqAtAAD2wxwiNhPgMDV7yDary/BIgIOGhTcZftXqPm6e1WW4zfCrtroEAAAA23CGODVnt/fmu9nzdpBcpYYcIaZiLi9v9NgbnCFMVgxrEIjYjGFITj8CBl9mGJLhT8gAAADgiwzDUGBooNf25wwMlKvakCPQVGCo2egx0JExZAYAAAAAAPgceogAbujWo5vmLp6r2G6xVpcCAAAsQFsAAOyHQARwgzPIqcReiVaXAQAALEJbAADshyEzgBv2Zu/Vi7Ne1N7svVaXAgAALEBbAADsh0AEcMOBogNa8f4KHSg6YHUpAADAArQFAMB+CEQAAAAAAIDPIRABAAAAAAA+h0AEAAAAAAD4HAIRwA0Ow6HklGQ5DN4yAAD4ItoCAGA//EQH3OAyXdq8ZrNcpsvqUgAAgAVoCwCA/RCIAAAAAAAAn0MgAgAAAAAAfA6BCAAAAAAA8DkEIoAbwsLDNOr8UQoLD7O6FAAAYAHaAgBgP/5WFwB0BDEJMbr9kdutLgMAAFiEtgAA2A89RAA3VFZUKndXriorKq0uBQAAWIC2AADYD4EI4IbMHZm6/YLblbkj0+pSAACABWgLAID9MGQGsBnTlMyajvPWNvyqZRhWVwEAAAC7ME1TlaUdqzeXM8Qpg0Zxm+s4fzUBcItZ46+dy6ZbXYbbuo+bJ8O/2uoyAAAAYBOVpZW6P/F+q8vwyJzdcxQYGmh1GT6HITMAAAAAAMDnEIgAAAAAAACfw5AZwA09k3vqnR/fsboMAABgEdoCAGA/9BABAAAAAAA+h0AEcEN2RrZSp6QqOyPb6lIAAIAFaAsAgP0QiABuKC8r17b121ReVm51KQAAwAK0BQDAfghEAAAAAACAzyEQAQAAAAAAPodABAAAAAAA+BwCEcANMfExunX2rYqJj7G6FAAAYAHaAgBgPwQiR5DaO1V3Rt2pwqxCq0uBxcIiwnT6hNMVFhFmdSlA63AZ7WMfANBO0RYAcCwcDv70bo/8rS6gvSrMKtTBgoMK6RyiyIRIq8uBxYr3FWvlspUaOW6kwqPCrS4H8Cqj2k9JX/xOJQm7VDBobYv2EVAcoe7LLlD2actV2pVbUgKwH9oCgO/x8/NTcnKyUlJSlJSUpKCgIFVVVSk/P19r167Vjz/+qNLS0qPu59JLL9X999+v8ePHq6CgoA0qh7sIRJqRlZYlSYrvH29xJWgP8vPyteDRBeozuA+NINiLy1DSF79TWHZ3hWV3lySPQ5GA4gj1+NclCjjYSUnLLtTOc99XWWxua1QLAJahLQD4jrPOOku33HKLzj//fIWEhDS7Xk1NjVatWqWXXnpJb7/9tsrLG9+W+9JLL9U//vEP+fv7a/ny5Tr99NNVXFzcmuXDA/TbaUbWhl8DkRMJRADYmMPUwa5Z9Q/jfhit6PVD3d78t2GIJFWFFasyvMjrZQKwmMuQzF+/N4+4JgB0WOeee642bdqkFStWaNKkSUcMQ6TaHiQjRozQwoULlZmZqfvuu09+fn71y38bhkjSqlWrdODAgVY9B3iGHiLNqO8hMoBABL4nc9NXeu+RszTqyseVMuGeJtd5ZrKh40+aoAvv+biNq4O35Z/0gyQpds1ISbWhiHT0niKHhyHlkfnKOH+JaoLLWrFaAG3GlEKzExW1eZA67eopo/5zNEPR61NU2GejaoIafxoKAB1NRESEnnzySU2dOrXB83l5efr666+1Zs0abdq0SaWlpQoICNDxxx+vlJQUnXbaaTrxxBMlSdHR0ZozZ44uueQSXXfddRowYECDMOSVV17RjTfeKNMkVW5PfCIQKSko0YpnV2j9x+tVmF2osOgwDZo4SBP+PEFLHlii79/8XpfMuUSjbxhdv81vh8ykr0rXir+t0I7vdqiytFIJAxJ07v3nqt/Z/aw6JQDwKk9DEcIQwN4cFYFKXD5BYTmJjZYZMhT3wyjFrB2uzDM/14Hjt1tQIQB4x/HHH68vvvhCvXr1qn/uv//9r5555hl98MEHqqqqOuL2p556qm655RZdddVV8vPz0ymnnKIff/xRfn5+9b1FCEPaL9sPmcnckKnHRj2mFX9boeI9xYrrG6ea6hp98/I3WvSHRcrbmidJShiYUL9NRUmFCtIL5PBzaOs3W/Xs+c8qfVW6IuMjJUkZP2TopcteUtqnaVacEiwQHBKswSMGKzgk2OpSgFaTf9IPyktZWf+4ueEzhCGAvRlV/ur+2e8VlpMo8wjjYxw1AUpcPkGdMk5ow+qsQ1sAsJ/u3bvrm2++qQ9DiouL9cc//lGjRo3Su+++e9QwRJK+++47TZkyRaeddpo2b94sSXI6nYQhHYSte4iUFJRo/pXzVZxXrLOmn6Xx941XUKcgSdLyZ5frowc/ksPfIcMwGswVkpWWJdM0ZcjQF3O/0BXPXqGTLz9ZDj+HyorL9Nq1r2nr11v1fur76n9ufxkGt5q0u67duyr1hVSrywBaXXM9Req5DMIQwOZi1p6qkPw4maptCx2JIUPdvh6vrV1fVU1gRRtVaA3aAoC9hISE6PPPP1diYm1PuE2bNum8887Trl27WrS/77//Xg8//LBef/31+lvs1tTU6OWXXyYMacds3UNkyQNLVJhdqNE3jNaFD11YH4ZI0pjbxyh+QLxc1S5FJUUpKPzQsuyNtbeMdNW4dPXzV2v4VcPl8Kv9rwoOD9blz1wuw2GoIKNAe37Z07YnBUu4alwqLSmVq8ZldSltqrqyVGUH8pv8B/tqqqeIoypAkuRfEUIYAtiYUe2vzlv7135/lDCkjqM6QJHbTmzNstoFX20LAHb16KOPqm/fvpKkzZs364wzzmhxGCLVTqC6aNGi+jBEqp109bXXXpPT6TzmetE6bNtDJPfnXK17f51Co0M18c8Tm1wncXCistOyG02cWneHmeSxyRo0cVCj7aKTohXRNUKFWYUqyilSbO9Ybf92uz5/7HPlbsnVwf0HFRYdph7De+jc+89VXN84758g2lTG1gw9cOUDevSfj6pnck+ry2kz3703U9+9N9PqMmCBw3uK+FXVhsaGWftLnjAEsKfw9N7yqww6+oqH6bxloAoGrGuFitoPX20LAHZ0+umn67bbbpMklZaW6oILLlB+fss/8Dv8bjKvvvqqhgwZoqFDh2rAgAH63//9X/2///f/vFI7vMu2gcja99bKdJlKmZSiwLDAJtcJCK79xDO+/2GByK8Tqp429bRm91/X2yQwtHbfZYVl6prcVSOvHamwLmEqzC7Ul099qafHP60H/vuAIhMiPT6HuWfPVXEe96huLTdNvcntdXNzciVJm7/YrP1p+93e7sUFL3pc17HyDwjR5Eeme2VfA86apt7DL21y2fuPnuOVY8weNlvVVaVe2Re87+JTZuiqUX9u8Nyu/E168IULVPy/vtFTaPLU/1FYp0gV5xbp+f6PNHpsd5y/b53/5NGz1O3kcR5vF1jUWbMG/EUus6YVqmo9dm0LeFNT17zd3weH87WfA4friOdvuo48RGX27Nn13//pT3/SL7/80uJjHR6G1M0ZMmDAAK1evVpOp1MzZszQU089pYKCguZrGjZbhoOpGFoiPDZcM1bMaNG2tg1Etv1nmySp9+jeza5TmF0oSUoYcGhCVVeNSzmbc2Q4DPU6rVeT27lqXNqfWfuLsHO3zpKkAecN0IDzBjRYL2lIkh455RH99NFPOuOmMzw+h+K8YhXlFHm8HdxTWVrp9rpV5VX1Xz3ZzorXzz/w6JM/uSsyrreSBoz12v6aUpRXpOoKApH26rP/W6gLUm5TWHBk/XNfr31Xu3f4zl0l6hpVpstUUU5Ro8d2x/n71vmbx3AX3dK9Zaqo6li9xuzaFvCmpq55u78PDudrPwcOZ7fzHzRokEaNGiVJ2rhxo/72t7+1eF/NhSGmaWrDhg2aN2+e7rrrLgUFBen666/XE0880ey++CDcGrYNRPbv/jWwSOzc5PKa6hqlf58uSQ2GzOzZtkdVZVUK6xLWYM6R38r4IUMVJRWK6xen8NjwZmsIjQqVJDn8WzZVy5H2jWPnDHF/LF9AUED9V0+2i+ga4XFdx8o/IKTNj3ksImIjVP3r/BRoX2Ijjtesyz5uEIZI0jXjZsoMqtbS1S1vQHQkdZ/WGA5DEV0jGj22O87ft86/wlHSsu2qShV0nFNB6ljj5O3aFvCmpq55u78PDudrPwcO1xHP33SZzQYMN910qGfYvHnzWjzh6ZHCkDrPP/+87rrrLknSzTffrLlz5zZ7vPDYcHqItNCx/N1s20CkLrmvKmv60/J176/TwYKDCgwLVHT36PrnszbWDpepqWy+y+fKhbWTDaZMSmm0zFXjkukytW/3Pn38l48VHhuuIb8f0qJzaGm3H7gnflf80Vf61Y7NO6QFUvI5yR6NG541Y1ZLSjsmrmp/7VzW5odtsdTVqXL4V1tdBg5z+K11D7/bxJTTH9K4GeNUMGitVSW2mbw3g+Q6KIXHRWjWxlmNHtsd5+9b5x+4P0pa0vg9fzRlyTs75P+HXdsC3tTUNW/398HhfO3nwOE64vlXHKzQ/Yn3N7ls/PjxkqSysjK98cYbLdq/O2GIJP3yyy9avny5xowZo549e+qEE05odnhO6urU+ukY0HZse5eZTjG1jfjM9ZmNlhXlFmnpzKWSaucP+e1tc+smVC0rKmvyDjLbV27XmnfXKDQqVKNvGN1o+d8m/k0zYmdo9rDZykrL0i0f3KKw48K8ck6wTlKvJM1fMV9JvZKsLgVodYeHIeWR+ZJ+7R6rQ3dXiPthtKLXD7WiRACtpKLzPpV03e12GGL++rNhX/L61iyrXaAtAHR8nTt3Vs+etYHm2rVrdeDAAY/34W4YUufrr7+u/z4lpfEH6rCWbQORPmf2kSQtf2Z5g2Bj19pdmnfhPB0sOChJShiY0GC7ukDEL8BPi+9drLLiQ2Nh0z5N06vXvCpJumreVU0Oqbni2St057I7NeWVKQrqFKQXL3mxfr4RdFz+Af4KjwqXf4BtO1UBkpoOQzLOX6L6v40MNbolL6EIYC97h34n03H0yVHrepEUJ21XWZfcNqjMWrQFgI5v6NBDbZY1a9Z4vL2nYcjhxxk2bJjHx0Trsu1P9DG3jdHaxWtVmFWoR0c+qtjesaqqqFL+jnwlj01WVGKUtqzYooT+DQOR7I3ZkqRJj0/SO3e/owcHPKjYPrEqzi1WYXahDIehi+dcrP7j+zd53NjesZKk44cdr35j++kvg/+i5c8u16THJrXuCaNV5e7O1aInFunae65VXCK3UYY9NReGHH5r3cNvyRv3Q21vOV8YPgP4gtK4bGWe8bm6fT1ehsuv2eEzhgwd7LpbmWd+Jg9G13RYtAWAji8+/tAwua1bt3q0bUvCEEn6+eef67/v2rWrR8dE67NtIBKZEKnbPrlNS2cu1faV27Vv9z7F9onVZU9ephHXjtDDQx+W1HBC1eK8Yh3Yc0AhnUM0YsoIhceF6/PHPlfO5hw5Q5waNHGQxt45VklD3esqGRIRoi49uyh/h2/cmtLOSktKtebrNbr0pqZvQWs33U48U3e8ceQf7kdbjo7F3TCkDqEIYG/FPbcpPbREMeuGKyyre6PlVcEHtb/fBuUPXi3Tr2PdarelfK0tANjRTz/9pP/93/9VUFCQfvjhB7e3i4+P1+uvv+5xGCJJ+fn5mjNnjsrKyvTTTz+1uHa0DtsGIpIU1zdO096a1uj5ipIK7du1T4bDUNfkQyldeGy4nt73dP3j/uP6q/+4pnuCuOPA3gPa88senXz5yS3eBwC0Nk/DkDqEIoC9lcXmaOe5H8hZFKlOO3sq9odRMmTIlEtbr1ggOVxH3wkAtCPr16/X+vWez3mUnZ2t6667Tm+88YYWLFjgdhgiSUVFRXrggQc8Pibahq0DkebkbMmRaZqK6RXj0W3TjuT1G1/XcT2OU8LABAVHBCt/e76+euErOfwcOuPmM7xyDADwOpeh7ssu9DgMqdNUKFIRuU8lSRmtUi6AtlcZUaiCQWsVu/o0yTRqh8cQhgDwMW+99ZbS09O1atWqFt+qF+2PbwYim3Ik1d5hxluOH3a8fnj7B33z0jeqrqhWZEKkeo3qpXPuPkdRiVFeOw4AeJXDVM7IFUpadoEqOxV5FIbU+W0oUnjCFpV029kalQIAAFjq+++/t7oEeJlPByIJAxKOsqb7Rt8wusnb8MIeomKiNGXGFEXFEG7Bfg7GZ2rnuR+oImK/x2FInfyTflBF5wIdSEyXHHxqAsB+aAsAgP34ZiCy+dceIgO810ME9hYZHamJ10y0ugyg1ZTGZR/zPg503+GFSgCgfaItAAD245OByPQPp1tdAjqYkuISbfhugwaeOlBh4WFWlwMAANoYbQEAsB+H1QUAHcGerD166r6ntCdrj9WlAAAAC9AWAAD7IRABAAAAAAA+h0AEAAAAAAD4HAIRAAAAAADgcwhEADc4A53q0a+HnIFOq0sBAAAWoC0AAPbjk3eZATzVrWc3zXlrjtVlAAAAi9AWAAD7oYcIAAAAAADwOQQigBvSt6TrqpOvUvqWdKtLAQAAFqAtAAD2QyACuME0TVVXVcs0TatLAQAAFqAtAAD2wxwigM0YftXqPm6e1WW4zfCrtroEAAAA2IgzxKk5u70358+et4PkKjXkCDEVc3l5o8fe4AxhwmYrEIgANmMYkuFPyAAAAADfZBiGAkMDvbY/Z2CgXNWGHIGmAkPNRo/RcTFkBgAAAAAA+Bx6iABu6Najm+YunqvYbrFWlwIAACxAWwAA7IdABHCDM8ipxF6JVpcBAAAsQlsAAOyHITOAG/Zm79WLs17U3uy9VpcCAAAsQFsAAOyHQARww4GiA1rx/godKDpgdSkAAMACtAUAwH4IRAAAAAAAgM8hEAEAAAAAAD6HQAQAAAAAAPgcAhHADQ7DoeSUZDkM3jIAAPgi2gIAYD/8RAfc4DJd2rxms1ymy+pSAACABWgLAID9EIgAAAAAAACfQyACAAAAAAB8DoEIAAAAAADwOQQigBvCwsM06vxRCgsPs7oUAABgAdoCAGA//lYXAHQEMQkxuv2R260uAwAAWIS2AADYDz1EADdUVlQqd1euKisqrS4FAABYgLYAANgPgQjghswdmbr9gtuVuSPT6lIAAIAFaAsAgP0QiAAAAAAAAJ/DHCI2Y5pSlcuwugyPBDhMGR2r5HbNNCWzpuO8tQ2/al5/AAAAwEtM01Rlacca3ucMccqw4I+CjvNXE9xS5TKUuq631WV4ZPaQbXL6mVaXYRtmjb92LptudRlu6z5ungz/aqvLAAAAAGyhsrRS9yfeb3UZHpmze44CQwPb/LgMmQEAAAAAAD6HHiKAG3om99Q7P75jdRkAAMAitAUAwH7oIQIAAAAAAHwOgQjghuyMbKVOSVV2RrbVpQAAAAvQFgAA+yEQAdxQXlaubeu3qbys3OpSAACABWgLAID9EIgAAAAAAACfQyACAAAAAAB8DoEIAAAAAADwOQQigBti4mN06+xbFRMfY3UpAADAArQFAMB+/K0uAOgIwiLCdPqE060uAwAAWIS2AADYDz1EmpHaO1V3Rt2pwqxCq0tBO1C8r1ifvfWZivcVW10K0CoitvVT4P6olu/AZei4n4bJURngvaIAtBlHRaCi1w+VzJbvIyi/i8LTe3mvqHaGtgAAX9alSxf16NFDPXv2VEyM5z3l7rrrLkVHR7dCZceGQKQJhVmFOlhwUCGdQxSZEGl1OWgH8vPyteDRBcrPy7e6FMDrIreeqIRvxun4f13SslDEZSjhP2MVu/o0JS27kFAE6GAcFYE6/rOLFPfDaHVdeVaLQpGg/C7q/unF6vbv8xS+vY/3i2wHaAsA8CW9evXSgw8+qE8//VR5eXnas2ePduzYoe3btysvL0979+7V559/roceekh9+/Y94r7mzp2rJ598UsuXL293oQiBSBOy0rIkSfH94y2uBABamctQ580DZciQf3mI56HIr2FI5C8nSpJC9vz/9u48vqk63//4+yRp0pY2LVtbtopYdsUFEBBlEUTG6+AobljUWRh37/WH4lwHZ9SZ0RkdF3T0ogM6Ohd0QARGQXABVLiICy4ssillKUvLYpuWbknO+f1RWihtIemWNuf1fDx8YE7OST7fkoaTdz7n+01T3MHURioWQGOIz+mo2EPtJUltNvcLOxSpCENcZbEyLIfabD6rXp0mAIDIufTSS7VkyRJt27ZNDz30kMaOHVtjR0i7du00ZswYPfjgg9q8ebM+/PBDXX755dX2e+qppzR58mRJ0llnnaXhw4c3+hjCQSBSgz3rjwYifewbiARfeVX+MZfJXPp+tfssy1Lgvt/I/x/jZGXtaPri0Oiyv/tIz040tHbxk7Xu8+xEQ/9+svqbHloYh6WdYxequF2OJIUXipwQhlhGULsvXqIjHbMbs2IADawwPUt7hr0vyzAlhReKHB+GSNKR1L3adcnbktGYFQMAGlrbtm31+uuva+nSpRo7dmyV+w4cOKD3339fs2fP1uzZs7V06VLl5ORU2WfUqFF65513NG/evMoA5fgwxDRNTZo0SfPnz2+aAYWISVVrUNkhcqZ9AxHHjZky13ym4EszZPQ/T0b7dpX3mfMXylq3Xo5f/lzG6V0jVySABmF6SrVj7AJ1XXql4g6mVoYiOy57S6WtD9dyUM1hSEHXH5qwcgANJT9jiySp0ydjjnZ59JMk7btgRa3hRo1hyJiFMt3+JqkZANAwhg8frjlz5ig19ViX7/bt2zV9+nTNnTtXu3btqvG4zp076+qrr9btt9+uHj3KL5ccP368hg8fro8//ljjx4+XdCwM+cc//tH4gwlT1HeIFB4q1NsPva0/9f+T7utwnx4+82HN/+/5Kj1SqjfufkP3tLlHK2esrHLM8ZfMZH2epZdvfFlTu0/VlE5TNO3Sadq8fHMkhtKkjJgYuabcK5WUKPj0tMrt1u5sma/+U0avnnJcMz5yBTaxuPg4nT3kbMXFx0W6FKBRVIQiIXWKEIYAUSk/Y0vInSJ2DEM4FwAQjX7yk59o6dKllWHI4cOHdeONNyojI0NPPvlkrWGIJGVnZ2vatGnq1auXrrvuOh04cEBS+eU0LSEMkaI8EMlen60nLnxCy/+2XL5cn9J6pikYCOqTv3+i1371mnK2lp/4dzqrU+UxpYWlOpR1SA6nQ1s/2arnLntOWZ9nKbljsiRpxxc79NK1L2nDkg2RGFKTMrpnyHH9tbLWfiVz8RJZwaCCTzwpWZacU+6V4XRGusQm0+G0Dpo6fao6nNYh0qUAjSakUMQSYQgQxUIKRSzZLgyROBcAEH2GDh2qt956S7Gx5e/n7733nvr27atZs2bJskKfDMqyLM2dO1d9+vTRDz/8UGX7008/3WzDECmKL5kpPFSomRNmypfj08g7R+rS+y9VbGL5X/Sy55bpnYffkcPlkGEYVeYK2bNhjyzLkiFDHzz1ga5/7noNvG6gHE6Hin3F+sfN/9DWj7dqwdQF6ju2rwwjui+SdWROkPnpZwrOmCnHD9tlbdkqxy2TZHTpHOnSmpQZNFVSXKLYuFg5nFGdI1YRKCtScQGz6dtJbZfPHPswZBCGAFGutstnjn8fsFsYItn3XABAdPJ6vXr99dcVF1fe9TZnzhxNnDhRgUCgzo/5wAMP6Iwzzqi8bRiGJk6cqD//+c86fLiWy7AjLGrfzef/93zl7c3TRb++SFf88YrKMESSRv3nKHU8s6PMgKk26W0U6z12396NeyWV/6OX+T+ZGnTDoMp/9OK8cbru2etkOAwd2nFIud/nNu2gIsBwueSaMlkq88tctFjGmX3luOpnkS6rye3YukM/v/Dn2rF1R6RLaVJr3npIf7+9fY3/IXrV1ClSMYmAcfRPwhAgutXUKXLi+4CdwhDJvucCAKLTk08+qfT0dEnSihUr6h2GnDiB6rp16yRJaWlpeu655+pfcCOJyg6R/Vv26+sFX6tV21a6/Hc1r4LR5ewu2rthb7WJUytWmOk9urf6Xd6v2nFt09sqqUOS8vbkKX9fvlK7V19e8sVrXtTmZZt16f2X6if//ZMGGFGEtWolxcRIgYCMgQNkOKI2R8MJzhx5i7oPuqbG+xb85ZImrgZN6cROEeO4WRUJQwB7OLFT5Pj3AbuFIQAQTQYNGqRf//rXkqSCggL9/Oc/b9AwZNKkSVq6dKk2btyo1q1bKzMzUy+//LJWrFjRIPU3pKgMRL566ytZpqX+V/eXJ8FT4z4xcTGSyidOPV7FhKpDfzm01sev6DbxtKr+2F8v+Fp7N+ytU90neurip+TL8YV1jOX2SDNebZDnl8qv+wo+9YwU8EvpXWS+/i85hg+T0bHhrp/904BHZZSVNtjjheq2X94W8r779+2XJG36YJN+3PBjyMe9+MqLYddVX66YeE187M4GeazktO5KP3N0gzxWbR4d8KgC/qJGfQ7UXWLs43ruF18qMa6tpPL3hFeWP6AlT/09wpU1nYm//K0SEpPl25+v/+n7WLXb0Y7x23v8knTV+fdqwtAHKy8TtixLtz04SMW/KYhwZfUXrecCDamm17zdfg/s/j5g9/FLLe9nYJknn//jrrvuqvz/Bx544KQTp55KTWFIxZwhkydPrvz/u+6666SByKMDHpXhqNt0FN5Ur+5dfm+djo3KQGTbym2SpO4Xda91n7y9eZKkTmcem1DVDJrat2mfDIehjKEZNR5nBk39mF3+j2Drzq2r3FfiK9GCqQs07g/jNOvWWfUZgiTJl+NT/r788A6K9Sim3s98jLnwbVnfrpPjFzfLMWSwAnfereBTz8j55OMNNn+KLydfKmn6QKSsqCzkff0l/so/wzku7L+/BuDytKxv6/Jz8hUoJRBpjhyGQ7dc+2xlGCKVXwt61cB7tXrtIu3K3RTB6ppOxUmFZVrK35df7Xa0Y/z2Hv8ZHc/R5efdWeXffMMwdE3/B/T8wrvCmnSvOYrWc4GGVNNr3m6/B3Z/H7D7+KXo+hm0b99e11xT3gF+6NAhzZw5s86PdbIwRJJmzZqlRx99VB07dtQVV1yhTp06ac+ePTU+VriNAA0lKgORH3cfDSy6tK7x/mAgqKzPsiSpyiUzudty5S/2K6F9QpU5R46344sdKi0sVVqvNHlTvVXuW/zoYrU/o70GXDOgQQKREx8/FJbbo+J6P/PRx9qzR+Yrr8ro2UOOa6+W4XTKMTFT5j9ek7nwbTmvvKJBnsebmhSRDhF3vDvkfWNiYyr/DOe4pA5JYddVX66Y+CZ/zvpISk1SwN+QMR4agsNw6I4xL2hE3wmSVPmhxzAMtU5M1VN3fKSH3/ypsg9viWSZTaLi2wrDYSipQ1K129GO8dt3/Ke376ffX/NvJcaWn0+ZpinDMGQYhsZdcIfc8W69vHyKrJrW5W0hovVcoCHV9Jq30++BZO/3AYnxSy3vZ2CZVq0Bw5VXXimPp/xKh5dfflmlpXX7HHaqMESSAoGA/v73v+vhhx+W0+nUtddeq2eeeabGx/OmeuvVIVJXURmIVKT2/uKavyn/esHXOnLoiDwJHrU97dg3n3s2lqdVwbJgrY+9+tXVkqT+V/evsn3X17v06T8/rXOrTk3q8lhlQUNTv67/c1umqeBfn5ZMU84pkyuX2HVce7Ws/1st85VX5Rh0foNcOvPgl1Pldjb9yVTHXR1PvdNRAX9AF028SPGJ8XLFhP5r88i9j9SltHoxAy7tfL/Jn7bOpn45VQ5X3a9ZRCMwjepL645aoiMdsivnFElulaInb1uhHZe9pdLWzXPW8IaSMztW5hHJm5akRzY+Uu12tGP89hx/7MH2NS6tm7irW+WcImPPmaTzrz9f+y5YIdXtHDbiovVcoCHV9Jq3y+9BBbu+D1Sw+/illvczKD1Sqt90+U2N9w0cOLDy/xcuXFinxw8lDDn+OR5++GFJ0oABA2p9zKlfTq1xSorGFpWzYyamJEqSstdlV7svf3++3n7obUnl84cc3wJaMaFqcX5xjSvI/LD6B619c61atWmli359UeV2M2hq7uS5umjSRerQOzrWpjfnzZf13SY5bp4o4+jsw5JkOJ1y3jdZMoMKPvVMi2+VDZUrxiVvG29YJ0BAi1RTGHJ0AtWaVp/p+u54eX5sE8mKATSw2sIQ0+2vcfWZDqtHqgU3iYSMcwEA0aB///Iv9oPBoL755puwjw8nDJGkjRs3qqSkpMpzNydRGYj0GNFDkrTs2WVVgo1dX+3SC1e8oCOHjkiSOp3VqcpxFYGIM8apeVPmqdh37OKTDUs26OUbX5Yk3fDCDVUuqVk5Y6UKcgs09jdjG2dATczatUvma/8ro3cvOcZfVe1+o+tpckzMlLV+g8yFb0egwqa3f/d+Pf5fj2v/7v2RLgVoPCcJQyp3IRQBotrJwpAKdg1FOBcAEA169eolSdq2bZuKi8ObbCHcMEQqv2xm48aNkqSePXvK0cxWLI3KiHvU3aP01byvlLcnT3+54C9K7Z4qf6lfB7cfVO/RvdWmSxttXr5ZnfpWDUT2bixfHebqv16tuZPn6uEzH1Zqj1T59vuUtzdPhsPQVY9fpb6X9q08pvBQod597F1d8YcrFAwGVZR/bHLIQGlARflFik2MbXZ/8SdjpKcrZvG/T7qPc8J1ck64rokqiryiwiKt/Xitrrmt5iVoo03nPiP0X7NOfmZ7qvvRwoQQhlTuesKSvBWhiB0unwGiWShhSIUTl+Rts7mfJLXoy2dOxW7nAgCiU3Z2tuLi4rRjx46wjnviiSfCDkMq7Ny5U6mpqSopKZHb7a7sGGkOojIQSe6UrLsX3623H3pbP6z+QYd3H1Zqj1Rd+/S1GnLzEP3pvD9Jqjqhqi/Hp4LcAsW3jteQm4bIm+bVe0+8p32b9skd71a/y/tp9D2jlX5eepXnytubp9LCUs2dPFdzJ8+tct+yZ5dp2bPL9Ltvfqe26W0FAM1SGGFI5SGEIkBUCScMqWDHUAQAWroePXrU6bivvvpKwWBQhmGEFYZI0vjx4+v0nE0hKgMRSUrrmaZb/nVLte2lhaU6vOuwDIdRZb4Pb6pX0w5Pq7zdd0xf9R3Tt9rxJ2p/envd+fad1ba/MO4FDZwwUOdPOF/elLrPegsAjaoOYUjloYQiQFSoSxhSgVAEAOzhX//6lyQpLi4urDCkuYvaQKQ2+zbvk2VZSslICWvJtNp4EjzqfmH3Gu9r06VNrfcBQLNgWDJd5StrhROGVDgxFLEcQVkOs7GqBdAILGdQOvp7G04YUuHEUMRk5TAAiEoVoUg0sV8g8t0+SeUrzAChapPSRjfde5PapDBxJKKMIe27YLksw9SRjrvDCkMqVIQinT65RDnnr1JZUl7D1wmg0ZS2Pqwdl72llLVDtGfY+2GFIRUqQpHYw+2VM3BVVHaHcC4AANHHtoFIpzM7nWLP+jn+8hu0fMltk3X5jZdHugygcRjS/gs+qtdDmJ5S7b5kUcPUA6DJlbY+rN2jF9frMfIztihfWxqoouaHcwEAiD4tZ+mTBrJv09EOkTPpEEHoCn2F+vT9T1XoK4x0KQAAIAI4FwCA6GO7QOTOf9+paYenhTRhKlAhd0+unrn/GeXuyY10KQAAIAI4FwCA6GO7QAQAAAAAAIBABAAAAAAA2A6BCAAAAAAAsB0CESAEbo9bp/c6XW6PO9KlAACACOBcAACij+2W3QXqonO3znr8X49HugwAABAhnAsAQPShQwQAAAAAANgOgQgQgqzNWbph4A3K2pwV6VIAAEAEcC4AANGHQAQIgWVZCvgDsiwr0qUAAIAI4FwAAKIPgQgAAAAAALAdJlWNMjEOS4+euy3SZYQlxsE3LQ3JcAZ02pgXIl1GyAxnINIlAAAAAFHDHe/W47sbbhLo3DmxMosMOeItpVxXUu12Q3DHR2YFLwKRKGMYkttJwGBnhiEZLkIGAAAAwI4Mw5CnlafBHs/t8cgMGHJ4LHlaWdVut2QEIkAIOp/eWU/Ne0qpnVMjXQoAAIgAzgUAIPoQiAAhcMe61SWjS6TLAAAAEcK5AABEHyZVBUJwYO8BvfjIizqw90CkSwEAABHAuQAARB8CESAEBfkFWr5guQryCyJdCgAAiADOBQAg+hCIAAAAAAAA2yEQAQAAAAAAtkMgAgAAAAAAbIdABAhBcptk/eyXP1Nym+RIlwIAACKAcwEAiD4suwvb2pu+N/Sd06URA0eoRCXaqzCOAwAAzRbnAgBgb3SIAAAAAAAA2yEQAQAAAAAAtkMgAgAAAAAAbIdABAAAAAAA2A6BCAAAAAAAsB0CEQAAAAAAYDsEIgAAAAAAwHYIRAAAAAAAgO0QiAAAAAAAANshEAEAAAAAALZDIAIAAAAAAGyHQAQAAAAAANiOK9IFoO6+mPOFPn7xYx3acUiB0oBad2mtITcN0Yg7RsgwjEiXBwCoxXcffKdFf1yknK058qZ6NeyWYRp558hIl9Vkflj9g1a8sEJ71u/Rj9k/6rLfXqYx942JdFlNYvlzy/Xtom+Vuy1XlmWpQ+8OGnPvGPUe3TvSpQEAYDsEIi1YQrsEjblvjFIyUuTyuLT90+2aN2WeHE6Hht82PNLlAQBqsOvrXZqZOVMj7xqpm2bcpJ1rd+rNe9+UO96tob8YGunymkTpkVKl9kzVeePP08KpCyNdTpPaunKrBmcOVpfzusgd59aa/12jGRNm6K537lK3wd0iXR4AALZCINKC9R5V9dukdl3baf276/X9/31PIAIAzdRH//OR0s9N109//1NJUlrPNO3fvF8fTvvQNoFIn0v6qM8lfSRJ7zzyToSraVq3vXlbldvjHhmnTcs2ad2idQQiAAA0MeYQiRKWZWnn2p3K+ixLGRdmRLocAEAtsj7LUq9Rvaps6z2qt37c/aPy9uRFpihEjGmaKikokTveHelSAACwHTpEWrhiX7Ee6vuQgmVBWaalS++/VMNvpTsEAMJVtM2p0p3VvycwS479+eOHMdVuV3C1sZR4XuCUz+PL8cmb4q2yLTElsfK+5E7JdRtAPQULDfnWVD8tCHX8MiTvEL+c8U1QbCOwLKnwS5cC+VXn4Ap5/JJiuwUV180M63k/fPpDFecX64KbL6hz7QAAoG4IRFo4T4JHUz6eIn+xX1mfZ2nRHxYpKS1Jg28cHOnSAKBFie0SVMFnMTKLapmUOmioZLur5tsOS+3OKW38IhuRM8GSwyMVbarl1OBk45fUql/LDUMkyTAkTxdThd+4JauG18Apxu9MNJU0zB/Wc656eZU+eOYDTZo9KWJBGAAAdkYg0sI5HA6179ZektSxb0cV5RVp8aOLCUQAIEyOWClpWJl+XOoJ+9jEAQHFtLNC2teb6pUv11dlW8GBgsr7IilxsF+lexwK+sK7otbV2lTigFN3xzR37jRTrc4O6Mg3MafeuQpLySP8coRx1cvyvy3X0seXatLsSeo5omeYzwcAABoCc4hEGcu05C8J7xsqAEC52HRT8X3C+2AfkxpUq36hH3P6oNO1ZfmWKts2L9us1l1aR7xLwBEjJY/0S0Zo4U75QZaSLy6TESVfsST2D8jVNrzLXlqdHZC7Q+jHvPvYu3rvr+/pljm3EIYAABBBBCIt2JI/L9GWj7bo4I6DytmWo09f+1TLnl2m868/P9KlAUCLlTjIL2dSaB9ujRhLySP9MsL413TE7SO086udWvynxcrZmqPP3/hcK2es1Oh7Rtex4oblTjWVcE7oAU/igIBi2oYRoEgqLSxV9vpsZa/PVtAflC/Xp+z12Tqw/UC45TY4wykljyyTnKGNydUmvO6Y+Q/M14rnVyhzeqZSMlLky/HJl+NTsa+4riUDAIA6ipLvcyKjxFeiD575QN++863y9uQp1hurboO6afT/G630c9Mb//kLSvTmvW8qf1++XB6X2nZtq8t/f7ltlm0EgMZQ3iVRpkP/9tQ8l8RxvEP8cnnDCwPSz0vXr2b9Sov/uFjLn18ub4pXl029rFm9dyecF1DJbqcCB0+e9MSkhdcdU2HXN7v0wrgXKm+vmrlKq2au0hlDz9Dd79wd9uM1tJg2lhIH+lWw5hTXwDgsJY8sk+EM/bE/eekTSdIrN75SZfvACQOV+UJmuKUCAIB6IBCpo4IDBXp27LM6mHVQMbExSuuVJt9+n9YtWqcNSzfo5pk36+xxZzdqDVc+dqWufOzKRn0OALAjd4qlhHMDKvyq9rkkPOlBxfUM1unx+47pq75j+ta1vEZX0SVxcL5HCtYcChkx5fNmhNMdU6H7hd017fC0+hXZyFqdFVTprqDK9taediQODL87prmPGwAAO+GSmTp64+43dDDroE7rf5p+/+3vdd+K+/Twhod12W8vkxkwNfuO2crbmxfpMisVb3Oq4CuXzLJIVwIALUPCeQHFtKv50hlHrKWkYWUyTt5A0qLFtLbkPb/2Oanq0h3TkhiGygOfmJrH6O4QVKuzWv5EsgAA2BmBSB3s/ma3vnv/OzlcDt008yYltk+UJDmcDo25b4y6X9RdZUVlWvH8ighXWs4KSgVfuFT4ZYyKt4bR1wsANmY4pOSLa55LImlYWYteYjZU8WcG5e5UvQvGc1rdu2NaEmeCJe+F1UMhI8ZSUh27YwAAQPPBJTPHMYOm1s5bqy/nfKns9dkqKShRYvtEpfVM09njztagzEFyOB369p1vJUk9hvVQ29PaVnucwTcN1raV2/Tt2982i0tairc6FSx0yBFnKb5X9J/AAkBDcSVb8g7yy7f62FwScT0Ciu0a3iokLZVhSMnD/TowzyGrrLwdxg7dMceLywiqdEdQJVnHvlDwXuCXKzF6u2MAALALvts4qsRXoulXTdfs22dry0db5HK71OnMTrJMS1tWbNGce+aopLBEkrTzy52SpG6Du9X4WN0GlW/P25unvD15TVJ/baygVPh1ee6VcI4/apZFBICmEt/3WJeEM9GU9wJ7LW3uTLCUNPTYmJOGlckZF8GCmphhSEkXlckRXx6AeLoGFdeDLxcAAIgGfDw+6o3/fEPbVm5TcsdkZU7PVPeLulfeV5BboDWz1sjpKv92KPf7XElS29Ord4dIUnKnZDndTgXLgsr9IVfJnZIbvf7aVOkO6c0JHACEq7xLokwH3opV8gi/HKdYeCQaxWYEFbszICNGtumOOZ4jtjwIyv/YraSL7NMdAwBAtDOmHZ5m+57P3d/s1lMXPyWHy6EpH01Rhz4dTrr//Z3vV1lRmW6de6t6j+5d4z4P9nxQhQcK9YtXf1Hn1WYOzvcoWFyPsy5LMoslWYYMtyWj9sUSAACnYJmy9ZwR1tGzBTuHAXZ/DcCezCKVL0FuWHLE174tmp04XsYvW41f4mfQ3MfvjLPU7qrSOh1Lh4ik9YvXS5L6jOlzyjBEkvwl5a3DTnftE5S63K4q+9ZFsNiQeaRhzjytMkMWK8wAQL3Y/hsE8TOw+/hhY5Yh80gI26LZieNl/PYav8TPIArHTyAiaf+W/ZKkrgO7hrR/TGyMyorKFCyr/RKUQFmgct+6csbV47SL7hAAAADUEx0izf/b8cZm9/FL/Aya+/jr87mZQERSSUH5ZKlx3tBmiYtLilNZUZmK8otqvN+yLBXnF5fvm1z3mefq2vYjSUWbnMpf6ZYjzlLKhBImUwUAAEDYcmbHyjwiOeKl1MySWrdFsxPHy/jtNX6Jn0E0j5+PyZJiE2MlScW+4pD2T8lIUf6+fB3KOlTj/Xl78iq7R1LOSKlzXXWeQ6SiO0Tlq8zkzomtcw0AAACwL7Po2J85s2Nr3RbNThwv46962w7s/jNo7uNnDpF6SuuVpnWL1mnHFztC2j+9f7q2rdym7Wu213j/9s/Ktyd1SKrXCjMNMYcIc4cAAACg3phDJCrnTwiL3ccv8TOIwvETiEjqd3k/vf/k+9r0wSbt37xfab3STrr/2T89W8umLdPWT7bq0M5Danta1eV31/xzTfl+dVxdpkKdroVi7hAAAAA0EOYQaf7zJzQ2u49f4mfQ3MfPHCL11LlfZ53zs3P0zcJv9NK1LylzeqYyhmZU3l+QW6A1s9do2C3D5GnlUfq56eo1qpc2L9usf/76n5o0e5IS2yfKNE19+PSH2rZym2LiYnTxXRfXq666tP0wdwgAAAAaCnOIRPf8CaGw+/glfgbRPH4+Lh91/bTrVXiwUN+v+l7P//R5JXVIUlKHJPn2+5S/L1+WZWnoL4dW7n/D8zfo2Z88q51f7tQfzvmDUnukypfjk2+/Tw6XQzc8f0O9LpepCysoFX5d/leacI6fMAQAAAAAgFo4Il1AcxHrjdUdC+7Q9c9dr4wLM+Qv9mvPhj0yHIZ6XtxT1z93vWITjk0Y40316r6P7tPFd1+spLQk7d+8X2bA1Fn/cZbuWXqPzr3y3CYfQ/E2p4KFDjniLMX3rn1JYAAAAAAA7I4eguM4nA4NnjhYgycODmn/OG+cxj0yTuMeGdfIlYUmLiMos6xMDo/oDgEAAAAA4CT42BxFDJeU0I/OEAAAAAAAToVLZgAAAAAAgO0QiAAAAAAAANshEAEAAAAAALZDIAIAAAAAAGyHQAQAAAAAANgOgQgAAAAAALAdAhEAAAAAAGA7BCIAAAAAAMB2CEQAAAAAAIDtEIgAAAAAAADbIRABAAAAAAC2QyACAAAAAABsh0AEAAAAAADYDoEIAAAAAACwHQIRAAAAAABgOwQiAAAAAADAdghEAAAAAACA7RCIAAAAAAAA2yEQAQAAAAAAtkMgAgAAAAAAbIdABAAAAAAA2A6BCAAAAAAAsB0CEQAAAAAAYDsEIgAAAAAAwHYIRAAAAAAAgO0QiAAAAAAAANshEAEAAAAAALZDIAIAAAAAAGyHQAQAAAAAANgOgQgAAAAAALAdAhEAAAAAAGA7BCIAAAAAAMB2CEQAAAAAAIDtEIgAAAAAAADbIRABAAAAAAC2QyACAAAAAABsxxXpAlB3S/6yRO898V617VO/nKr23dpHoCIAAADg1L774Dst+uMi5WzNkTfVq2G3DNPIO0dGuqwm88PqH7TihRXas36Pfsz+UZf99jKNuW9MpMtqEsufW65vF32r3G25sixLHXp30Jh7x6j36N6RLq3JfDHnC3384sc6tOOQAqUBte7SWkNuGqIRd4yQYRiRLq/Jbf1kq6ZfNV1tT2urB9c+2KTPTSDSwrVJb6N73runyraEdgmRKQYAAAA4hV1f79LMzJkaeddI3TTjJu1cu1Nv3vum3PFuDf3F0EiX1yRKj5QqtWeqzht/nhZOXRjpcprU1pVbNThzsLqc10XuOLfW/O8azZgwQ3e9c5e6De4W6fKaREK7BI25b4xSMlLk8ri0/dPtmjdlnhxOh4bfNjzS5TUpX45Pr9/xunqO7KmD2w82+fMTiLRwDqdD3lRvpMsAAAAAQvLR/3yk9HPT9dPf/1SSlNYzTfs379eH0z60TSDS55I+6nNJH0nSO4+8E+FqmtZtb95W5fa4R8Zp07JNWrdonW0Ckd6jqnbDtOvaTuvfXa/v/+97WwUipmlq1m2zdOGkC+Uv8UckEGEOkRYub2+eHur7kB7q+5BevOZFZX2WFemSAAAAgFplfZalXqN6VdnWe1Rv/bj7R+XtyYtMUYgY0zRVUlAid7w70qVEhGVZ2rl2p7I+y1LGhRmRLqdJvf/X9yVJo/5rVMRqoEOkBTut/2ma8PwEpfVMU0lBiVa/ulrP/cdzuu3N29RzZM9IlwcAAIAWpCzXkFVWdf4CK3jsz9JsR63bJMlwW3KnWKd8Hl+OT96Uqh3OiSmJlfcld0qu4wjqJ1goBfKqf1984nhrG78kxaSacsQ0dqWNwzKlsr31G78zwZIr+dSvgeN9+PSHKs4v1gU3X1CnuhuS/7Ahs6j6HB4h/wwckruDqVCmASn2Feuhvg8pWBaUZVq69P5LNfzWyHaHmCWS/2D9XgOutqaccad+rm0rt2n1q6t130f3RXTeFAKRFqyiza7CGUPOUN7ePC3/23ICEQAAAIQlWOBQ3rKav6W3Sgwdftdz0m3Jo0ulEAKR5sqIkfI+dss8UvOHsxPHe+JtT5egWncqa/Q6G4vhkEp2OlW0seaPiKcav+Gy1G58aVjPuerlVfrgmQ80afakiAVhx7MC0uElbsmq22sgcaBfno5mSM/lSfBoysdT5C/2K+vzLC36wyIlpSVp8I2D6zeIejDcUsHnMTWGItKpx+9qbardlad+DRQeKtSs22Zpwt8mRHz6BwKRKNN1YFete2ddpMsAAABACxN3RlAlOwMq+T78jwhxGQHFdQvtg6A31Stfrq/KtoIDBZX3RYrDIyUPL6sW/ITC8FhKGl4WUmdAc+Yd5FdptkPB/PBnVvAO8cuVFHogtvxvy7X08aWaNHuSeo5oHl/mulMsJZwbUOFX4bf5xKQG1ersQMj7OxyOypVBO/btqKK8Ii1+dHFkAxGHlDSyTAfne6RgmC9mh6Xki8tkhPD2sW/TPuXvy9eMCTMqt1mmJcuyNLn9ZGVOz1T/q/uHWX3dEIhEmexvs5tFugoAAICWJ2moX2X7HDKPhP6B2NHKlHeoP+T9Tx90urYs36Kx94+t3LZ52Wa17tI64uexns6m4vsGau2SqE3SRWVyxjdSUU3IcEnJI8t06N+eWrskauJJDyquVzDk/d997F19/OLHumXOLcoY2rzmzUg4L6DS3U75D4T+O2C4LCWP9MuoxwydlmnJXxL671FjiWltyTvIL9/q8OZ0SRwQUEzb0AKx9HPT9ZtVv6mybdUrq7TxvY26dc6tSu6cHNZz1weBSAu2YOoC9b20r9qkt1FJQYnW/HONtn60Vb+a/atIlwYAAIAWyOGRkkf4dXhx6F0SySP8coTRVDHi9hGaNnaaFv9psQZcO0A71+7Uyhkr9bNHfxZ+wY3AO8iv0j0OBWuYT6Qmcd1D746pUFpYqgNZByRJQX9Qvlyfstdny9PKU9k1ECnuFEsJ5wVUuDa0LgnDYylpWOjdMfMfmK9PX/tUN864USkZKfLllHcLxcTFKM4bwuQTjcxwlIdCB94KvUvCO8Qvlzf07pglf16ibkO6qW3Xtgr6g9q+eruWPbtMg24YVNeyG1R836BKdgZVtscZ0v4xaUG16hd6d4ynlUcd+nSosi2hXYJcble17Y3NmHZ4Wsu90C9CTNPU5mWbtevrXdr9zW7t/np35S/y7775ndqmt22SOl6b9Jq2f7pdhYcKFeeNU8e+HTX6/41Wj2E9muT5AQAAEJ3yV8eoaMOpvzttdWZA3gvC/1Z74/sbtfiPi5WzLUfeFK+G3TpMI+8cWZdSG0XZAUOHFp66S8KZYKrd1aVyhLlAyrZV2/TCuBeqbT9j6Bm6+527w3uwRmCZ0qF/e0Lqkki+pFRxp4ceCN3T5p4atw+cMFCZL2SG/DiN7cgGZ0hdEp70oFpfGt7lUgt+u0Ab39uo/H35cnlcatu1rQZlDtLQXwyVw9k8FoINFkoH5sVWm2j5REZM+dwx4QRCNVnylyVa++ZaPbj2wXo9TrgIROqgKL9Ivz39tzXe15SBCAAAANAYrIB0cL6nxlVXKlRMoBjKnAEtUcFXLhV+efIuiTaXl4Y8iWZLE8gzTtklEdcjoOQRkb/MozFYlnT4XfdJuyQcsZbaXV0SFZdL1aT4e6fylp88FEoaVqb4MC6Xam6aR/zUwjgMhzqd1UlDbhqia5++VpM/nBzpkk4pkGcoUNDCZ3kCAABAk6iYS0JGLd+dGpaSR4Y2gWJLlXBOQDEptYcdrc4KfUWRlsiVbMk7uPaww5lg1qk7qKUwDCl5RJkMT+39A9Eyd0xt4jKCiu1W+6UwntOCiuvZcsMQiTlE6iTWG6spH0+pvB0MNP8Xge/TGJVmO5Q0zK/4Fv6iBQAAQOOLaW8poX+gxi6JxAEBxbSL7kZzw1H+gfjgfI+sQNUvFl2tTSUODH3OhJYqvk9QpTuDKs0+sUvCUtIIf9iXCrU0zlblEw3X1CUR1yOg2DAuFWqpki70q2y/U2ZR1d8BR2x4c8c0VwQixzGDptbOW6sv53yp7PXZKikoUWL7RKX1TNPZ487WoMxBzeaarnCU5Roq3e2UDEvutOj/pQUAAEDDSDgnoNJdTvlzj50Dh7u8aEvmSraUONgv36rjPhA7or87poJhSEnDy8rnkig99sm3Vb9AVHfHHC8u4+hy1D8c+wuP9u6Y4zliy4PBE5ejThpWJmfk58Ctt5b36b6RlPhKNP2q6Zp9+2xt+WiLXG6XOp3ZSZZpacuKLZpzzxyVFJZEusw6qZghOq57MKy1wQEAAGBvFStuGK7yc0jDZSl5RP2WF21p4nsH5elyrMM6sX/0d8ccz9mqvEuggqu1qcQB9gjEKiRd6JejVcXfuaWkkdHfHXO8iuWoK8T1DCi2a3QEYjbINUPzxn++oW0rtym5Y7Iyp2eq+0XdK+8ryC3Qmllr5HSFtuxQc3J8d0jCufZ64wIAAED9uZKOdUl4h/ht9wVbZZfEm7FyJZu26Y45XtwZR7sktjuVfLE9umOO5/BIycPLuyRa9QvI0yE6woBweAf5VZrtkMzyZYajhc1eyjXb/c1uffv2t3K4HLp17q3V1j5OTEnUJZMvafK6Ds73KFhcv4uyzIqmFqd0aFEYC8QDAAAAR1mWZLgt+dbGqOCrk6+8Es0CPody34iNdBkRYVnlk+0eXmrfzxSG21LR9y4V/2DPj9HW0UapA282r98BZ5yldleV1ulYe/5NnmD94vWSpD5j+lQLQyIpWGzIPNJAs9QEDJn2C7MBAADQkMoke/WHVGf78ZdFuoII43cgqsZPICJp/5b9kqSuA7tGtpATOOPq91IzS1S+brjLksO+QS4AAAAAIErV53MzgYikkoLy60rivM1rmty6tv1I5XOHHFoYKxmW2o8vtd21ngAAAAAAnAyBiKTYxPJroIp9xRGupKr6zCHC3CEAAAAAgGjHHCL1lNYrTesWrdOOL3ZEupQqGmQOEeYOAQAAAACgGgIRSf0u76f3n3xfmz7YpP2b9yutV1qkS5JU92uhmDsEAAAAAGAHzCFST537ddY5PztH3yz8Ri9d+5Iyp2cqY2hG5f0FuQVaM3uNht0yTJ5WTZcw1KXth7lDAAAAAAA4NWPa4Wl8YpZU4ivRzIkz9f2q7yVJSR2SlNQhSb79PuXvy5dlWXos6zHFJ8VLkmZmzlTWZ1mVxx85fESSFJ8cL8NRfpnL6YNO16TZk5p0HIeXuFW626m4HgElj/A36XMDAAAAANBS0CFyVKw3VncsuEOfv/G5vpz7pfZu2Ks9G/bIm+JVz4t76pwrzlFsQmzl/sW+4soQ5HhFeUVV9mlKZbmGSnc7JcNSwrlMHAIAAAAAQG3oEIkiZfsdyl8Vo5h2Jt0hAAAAAACcBB0iUcSdZqrd+FJZZCEAAAAAAJwUgUiUMQzJcEe6CgAAAAAAmjdHpAsAAAAAAABoagQiAAAAAADAdghEAAAAAACA7RCIAAAAAAAA2yEQAQAAAAAAtkMgAgAAAAAAbIdABAAAAAAA2A6BCAAAAAAAsB0CEQAAAAAAYDsEIgAAAAAAwHYIRAAAAAAAgO0QiAAAAAAAANshEAEAAAAAALZDIAIAAAAAAGyHQAQAAAAAANgOgQgAAAAAALAdAhEAAAAAAGA7BCIAAAAAAMB2CEQAAAAAAIDtEIgAAAAAAADbIRABAAAAAAC2QyACAAAAAABsh0AEAAAAAADYDoEIAAAAAACwHQIRAAAAAABgOwQiAAAAAADAdghEAAAAAACA7RCIAAAAAAAA2yEQAQAAAAAAtkMgAgAAAAAAbIdABAAAAAAA2A6BCAAAAAAAsB0CEQAAAAAAYDsEIgAAAAAAwHYIRAAAAAAAgO0QiAAAAAAAANshEAEAAAAAALZDIAIAAAAAAGyHQAQAAAAAANjO/wcLBMvqqvyNWQAAAABJRU5ErkJggg==", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "# Change the background color in mpl\n", - "\n", - "style = {'backgroundcolor': 'lightgreen'}\n", - "\n", - "circuit.draw(output='mpl', style=style)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiwAAAFiCAYAAADVzYNoAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAABXUElEQVR4nO3dfVxUdf7//8fMMICIhuKo4CUJMmqZgCxmF15WlklFaLZqtKUVsVrm+qvVct3ST/XRsv2WrvsxS01LzdBKzNJMLUtAMMsU1E1KAQVUvIBQmJnfHwhJzHDlmTkznNf9dusmnDnzfr/OaO95zvuc8x6dzWazIYQQQgjhxvRqFyCEEEIIUR8JLEIIIYRwexJYhBBCCOH2JLAIIYQQwu1JYBFCCCGE25PAIoQQQgi3J4FFCCGEEG5PAosQQggh3J4EFiGEEEK4PQksQgghhHB7EliEEEII4fYksAghhBDC7UlgEUIIIYTbk8AihBBCCLcngUUIIYQQbk8CixBCCCHcngQWIYQQQrg9CSxCCCGEcHteahcgasrKynL4WEpKCiNHjqy13Ww2O7Mkl3P0Gmjl+IUQQtQmMyweJCUlRe0SVKX14xdCCC2TwCKEEEIIt6ez2Ww2tYsQv6vrlFBJSQktW7astb25nRJx9Bpo5fiFEELUJjMsHmTBggVql6AqrR+/EEJomVx060Hy8vIUb9NqBaWn2HSA3glR2BnH7w4sFgtWq1XRNvV6PQaDQdE2hRBCTRJYPEhYWJii7VmtMCsZLlxUtFn8feDFOOVDi9LH7w4sFgtBQUEUFhYq2q7JZCI/P19CixCi2ZBTQh5k3LhxirZnQ/mwwuU2nXFhlNLH7w6sVqviYQWgsLBQ8VkbIYRQkwQWDzJ79my1S1CV1o9fCCG0TAKLEEIIIdyeBBYPMnr0aLVLUJXWj78uLVq0ULsEIYRwKgksHqS8vFztElSlteM3GAzExsayceNGDh8+zLFjx/jxxx95/fXXa1yA3Lt3bw4fPsydd96pYrVCCOFcElg8yIYNG1ze57nCHJJfHl5j27JnQl1eB6hz/GqJi4vj559/5uOPPyYwMJDk5GSWLl3Krl27mDBhAocOHWLTpk3ceuutbNu2jaKiItLS0tQuWwghnEb125qLi4t56qmn2LNnDz4+Ptx8882UlJSwdOlSMjMzefrppykpKeHs2bOMHTuWOXPmADB16lT27NlD//79ZUEx0aw8/vjjLF68mA0bNnDfffeRmZlZ4/GnnnqK0aNHM3/+fLZt20Z2djbDhg3j1KlTKlUshBDOp/oMS3x8PP369eOnn37i888/Z/ny5fTv3x+AkJAQvvzySzIyMti/fz/vvPMO+fn5ZGZmUlZWxtdff01ZWRl79+5V+ShcY+7cuWqXoCotHP+IESNYtGgR//rXv4iLi6sVVgAuXrxIZmYmer2eiooKDAYDJSUlKlQrhBCuo+oMy86dOykoKGDq1KlA5WJXwcHBREdHA/DFF1+wePFiTp8+DcDJkyfx9fVl9+7d3HbbbQAMHz6c7777joiICLt9lJaW1vn9PO6mtLTU4WMLFy4kKSmp1nZ7b2oNYbUBRNa7X8HRDNbNGdyotvfuzUSva1JZDl8DpY/fHfzxupzZs2ezY8cOpk6diqOv+erduzfbtm0jLy+P++67j507dzJ27FiWLVtWY7/MzEyMRqOzShdCiKtiNpvx8/Nr8P6qBpb09HRiYmKqfz916hS5ubn07duXzz//nPnz57N+/Xo6d+7Mrl27GD9+PG3atKG4uJiePXsCcM0115Cdne2wj6ysLKKiopx+LEqpCm/2pKWlERQUVGt7U0+J6Q1eTF5e/4Ws7UOiiPv71urfG3INS0xMDFZLRZPqcvQaKH387iYqKoqYmBhiY2PrDSsnTpyoPg20efNmnnzyyVqBZcCAAS6oWgghmiYjI4PIyPo/NFdRNbCYTCaSk5OxWCxYLBYSExMJDw/H29ubjIwMIiIi6Ny5M0VFRTzzzDPVMy/XXHMN586dA+DcuXMEBAQ47MNsNpORkeGKw1FEXTMsubm5xMXF1do+fvz4JvVltcFKJ00+paamKj7DovTxu4Py8vLqYPHQQw9x7NgxUlJS7O5rL6wALF68mE8++YTevXtz4MCB6v13794tMyxCCLdlNpsbtb+qgWXMmDGsXbuW8PBwunXrRs+ePQkMDARgwoQJxMbG0rdvX3r06EFwcHD1tS033ngjS5cuJS4ujq1btzJx4kSHffj5+TUqwamtrtNXU6dOtRvOGvuXXsVidV5giYiIxNDEK6QcvQZKH787uPKUUJcuXfjxxx/tLqnvKKwAfP/99wB06tSpRmCJjIyUwCKEaDZUDSy+vr5s3Lix+veEhAQGDRoEVA7eji6mjYyMZMWKFdxyyy1ERUV5VCC5GjNmzGDRokUu7bO1qXuN00EAD79+xKU1VFHj+F3pkUcewdvb2+5joaGhHDt2jBEjRtS6Gyg3N5euXbty8uRJV5QphBCqUP225iulp6czbdq0Bu37xhtvOLcYIVysuLjY4WOffPIJGzdutDv7YrVaOXbsmBMrE0II9blVYLlyOlvUFhsbq3YJqtL68cu3LwshtEz1dVhEw/n6+qpdgqq0fvxCCKFlElg8yNq1a9UuQVVaP34hhNAyCSxCCCGEcHsSWDzIrFmz1C5BVVo/fiGE0DIJLB5kzZo1iranA/x9FG0SLrfZxDXj6qT08bsDvV6PyWRSvF2TyYReL/97CyGaD7e6S0jUra6vIGgKvR5ejAP7i8A3ne5y20pT+vjdgcFgID8/v847gHJPFLHwvQ2MvmsQH27aQdKEe+nUsV2d7er1egwGg9LlCiGEaiSweJCOHTsq3qYnfQh3xvG7A4PBUGe4MBqNGAyGGn/KCrZCCK3xoLcrMX36dLVLUJXWj18IIbRMAosHaegqwM2V1o9fCCG0TAKLEEIIIdyeBBYPEhwcrHYJqtL68QshhJZJYPEgeXl5apegKq0fvxBCaJkEFiGEEEK4PQksHmTevHlql6AqrR+/EEJomQQWD7JgwQK1S1CV1o9fCCG0TPMLx1lsNqw2Zdd61et0GHTKL07vjGs4rFbPWelWrmFxDovFUudKu00hK+0KIZSm6cBisdnoumMbheWXFG3XZPTm10FDFQ8tYWFhirZntcKsZLhwUdFm8fepXPJf6dCi9PGLyrASFBREYWGhou2aTCby8/MltAghFKPpU0JWm03xsAJQWH5J8VkbgHHjxinang3lwwqX21T+6JU/fgFWq1XxsAJQWFio+KyNEELbNB1YPM3s2bPVLkFVWj9+IYTQMgksQgghhHB7Elg8yOjRo9UuQVVaP34hhNAyTV9062nKy8vVLkFVWj9+NbRt25a//OUv9O/fH39/f86fP09aWhrLli2juLgYAC8vL9577z0++ugj1q1bp27BQohmS2ZY6mE7dpyKKVOxWSwAWN5djmX9BlVq2bDB9f2eK8wh+eXhNbYteybU5XWAOsevVR06dODdd98lNzeXuXPn0rFjRywWC8HBwbz66qvk5eWxdOlSgoKCWL16NXFxcZSVlaldthCiGVN9hqW4uJinnnqKPXv24OPjw80330xJSQlLly4lMzOTp59+mpKSEs6ePcvYsWOZM2cOhYWF3HHHHRw4cMDpg6SuS2d0/aOwJm9AH90f274fMLz2v07tUwg1hYaGsmXLFnx9ffnHP/7BO++8Q1FRUfXj7du355FHHmHq1KmMGTMGb29v7r//fjZu3Khi1UKI5k71wBIfH8/IkSNZvnw5hYWFhIaG8sorrwAQEhLCl19+idFopKysjGuvvZakpCQCAwPZunUrcXFxLqlRP/YBKp6ehm3n1xiemoxOpbUl5s6dq0q/7kLrx+8KgYGBbN68mbKyMm655RaOHz9ea5+CggLmz5/PrbfeyogRI8jNzeWbb75RoVohhJaoGlh27txJQUEBU6dOBSoXmwoODiY6OhqAL774gsWLF3P69GkATp48ia+vL97e3rRt27ZBfZSWlpKVlWX3sYoGrpWi8zai7xWO9WAWutAeDXrO3r178WrCwnGlpaUOH1u4cCFJSUm1tmdmZja6HwCrDSCy3v0Kjmawbs7gRrW9d28m+iaum+foNVD6+D3FmXMlAOTkHAUgK+sgJ/NaKtL2H68LevrppzGZTPTt29duWIHKa1ZWr17NsGHDePzxx1mwYAF//etfmTNnTo39MjMzMRqNitQphGh+zGYzfn5+Dd5f1cCSnp5OTExM9e+nTp0iNzeXvn378vnnnzN//nzWr19P586d2bVrF+PHj6dNmzaN6iMrK4uoqCj7DxoMGD/7tN42bD8fxXY0B12PHli/2oF+yKB6nxMTEwOXr3tpjKrwZk9aWhpBQUG1tjf1O3b0Bi8mL6//Qtb2IVHE/X1r9e8NuYYlJiYGq6WiSXU5eg2UPn5P0SG4Cw9PeZ6ZM58n9sGJjBs3jpN5xxTvx2g0MmnSJJYvX84vv/xid5+qsDJq1Kjq00D9+/fn8ccf5+WXX8Zyxb/5AQMGKF6jEKL5yMjIIDKy/g/NVVQNLCaTieTkZCwWCxaLhcTERMLDw/H29iYjI4OIiAg6d+5MUVERzzzzTPXMS2OYzWYyMjLsPlZhs3Hz6YI6n2+zWrG8uRDD5CRo146K6c+i+1M0upZ1p8LU1FTFZ1hyc3PtngYbP358o/uByhmWlfYnn65aamqq4jMsSh+/pzhzroQtqQeZO3cOqftzWLVqFW1aKzfDUhUsYmNj6dChA4sWLbK7r72wArBo0SIee+wxRo4cySeffFK9/+7du2WGRQjhkNlsbtT+qgaWMWPGsHbtWsLDw+nWrRs9e/YkMDAQgAkTJhAbG0vfvn3p0aMHwcHB9O/fv9F9+Pn5OUxw5VYrfPl5nc+3fpqCrlcvdNeGAGC4Pw7ru8sw/PXJOp8XERGBsQlfpuPo9BVUzjwEBATU2t7Yv/QqFqvzAktERCSGJt6D5ug1UPr4PUXuiSK2pB6ke/cQUvfnYDb3olPHdoq0feUpofDwcAoKCuy+/o7CCsC+ffs4e/Zsre96ioyMlMAihFCMqoHF19e3xsCXkJDAoEGVp1u6dOnC3r177T7ParVy++23s2/fPoYPH868efOIiIhwSo2Ge0bV+F1/+3C4fbiDvZ1rxowZDj/9OktrU/cap4MAHn79iEtrqKLG8WvJ2rVr2bNnj93HoqOjGTFihMO7gcaOHcuhQ4ecXaIQQsNUv0voSunp6UybNq3e/fR6PVu3bq13PyFEwx05coQjR+yH0e+++47u3bvXuL35Sps3b3ZmaUII4V6B5cCBA2qX4NZiY2PVLkFVWj9+tTkKK0II4Qqy0q0H8fX1VbsEVWn9+IUQQssksHiQtWvXql2CqrR+/EIIoWUSWIQQQgjh9iSweJBZs2apXYKqtH78QgihZRJYPMiaNWvULkFVWj9+IYTQMk0HFr1Oh8norXi7JqM3+iascluf7OxsRdvTAf4+ijYJl9tU/uiVP35RuUSAyWRSvF2TyYS+CQsnCiGEI251W7OrGXQ6fh00FGsDvwSxofQ6HQYnBJaOHTsq2p5eDy/GgbJHXxlWnPFepfTxCzAYDOTn52O1Wh3uk3uiiIXvbSBpwr0A1T/XtdquXq/HoNK3mgshmidNBxaoDC3OCBfOMH36dMXb9KQPwc44flEZWuoKF0ajEYPBUL3MftXPsuy+EMKVPOjtSjRkFeDmTOvHL4QQWiaBRQghhBBuTwKLBwkODla7BFVp/fiFEELLJLB4kLy8PLVLUJXWj18IIbRMAosQQggh3J4EFg8yb948tUtQldaPXwghtEwCiwdZsGCB2iWoSuvHL4QQWqb5dVg8iTOu4bBaPWfhOLmGpXmyWCx1LlzXFLJwnRDNjwQWDxIWFqZoe1YrzEqGCxcVbRZ/n8oVdJUOLUofv1CfxWIhKCiIwsJCRds1mUzk5+dLaBGiGZFTQh5k3LhxirZnQ/mwwuU2lZ61AeWPX6jParUqHlYACgsLFZ+1EUKoSwKLB5k9e7baJahK68cvhBBaJoFFCCGEEG5PAosHGT16tNolqErrxy+EEFomF916kPLycrVLUJXWj1+rbrjhBoYNG0ZAQAClpaVkZWWxceNGKioqqveJj49Hp9Px4YcfqlipEMKZJLB4kA0bNnD77berXYZqtH78WjN27Fj++te/ctNNN3HhwgVOnz5NixYtMJlM5OXlsWTJEv71r38xbNgwPvjgA1auXCmBRYhmTPVTQsXFxSQkJNCnTx8iIyOZMmUKjz76KACZmZnceuutREVFERoayvPPPw/Ali1bGDBgADfeeCOvvfaamuU3e+cKc0h+eXiNbcueCVWpGqEFBoOBJUuW8MEHH1BaWsp9991HQEAA3bp1o3379lx//fVs2LCBadOm8eOPP/LBBx+wZs2a6nFDCNE8qT7DEh8fz8iRI1m+fDmFhYWEhobyyiuvABASEsKXX36J0WikrKyMa6+9lqSkJHr16sXXX3+Nl5cXgwcP5vHHH8ff31/lI3G+uXPnql2CqrR+/Frx5ptv8vDDDzNhwgRWrlxZ6/H9+/eTlJTEgQMHePPNN7lw4QLTpk2T25iFaOZUDSw7d+6koKCAqVOnApWLPQUHBxMdHQ3AF198weLFizl9+jQAJ0+exNfXlzZt2lS34eXlhb6OFcqqznl7itLSUoePLVy4kKSkpFrbMzMzm9SX1QYQ2aTn1mfv3kz0uqY919FroPTxe4oz50oAyMk5CkBW1kFO5rV0ef9ZWQertylVwx+vS7r11ltJTEzksccesxtWqsTHx/PGG2/w8ccfc9NNN/HSSy/x2GOP1dgnMzMTo9F41TUKIZzDbDbj5+fX4P1VDSzp6enExMRU/37q1Clyc3Pp27cvn3/+OfPnz2f9+vV07tyZXbt2MX78+BphZfPmzYSGhtZ5wFlZWURFRTn1OJRUFd7sSUtLIygoqNb2pn7Hjt7gxeTl9V/IWnA0g3VzBjeq7ZiYGKyWivp3tMPRa6D08XuKDsFdeHjK88yc+TyxD05k3LhxnMw75vL+qxbuq/rZGTU8+eSTZGVlsWTJEof7xMfHV58Geuihh5gxYwbPPfcc06dP5+zZs9X7DRgwQPH6hBDKycjIIDKy4R+aVQ0sJpOJ5ORkLBYLFouFxMREwsPD8fb2JiMjg4iICDp37kxRURHPPPNM9cwLwK+//sq8efP45JNP6uzDbDaTkZHh7ENRTF0zLLm5ucTFxdXaPn78+Cb1ZbXBygZMPrUPiSLu71urf2/INSypqamKz7Aoffye4sy5ErakHmTu3Dmk7s9h1apVtGnt2hmWLakHWbVqFUD1z0rUUF5eXh0sOnToQFxcHNOmTXO4/x/DitVq5e2332bWrFk89NBDvPnmm9X77t69W2ZYhHBjZrO5UfurGljGjBnD2rVrCQ8Pp1u3bvTs2ZPAwEAAJkyYQGxsLH379qVHjx4EBwfTv39/oPINLSEhgSVLltCyZd2Dpp+fX6MSnNrqOn01depUAgICam1v7F96FYu1YYGlKSIiIjE08ZJuR6+B0sfvKXJPFLEl9SDdu4eQuj8Hs7kXnTq2c3n/ZnMvgOqflajhylNCN9xwA0aj0eGHEHthBeDEiROkp6fXmkmNjIyUwCJEM6JqYPH19WXjxo3VvyckJDBo0CAAunTpwt69e+0+b+nSpRw6dIiJEycCsGLFCrp27er8glU2Y8YMFi1apHYZqtH68Td3R48eZfbs2Zw8ebLWYx06dGDFihW1wkqVxYsXc+HCBVeVKoRQgep3CV0pPT29zungKpMnT2by5MkuqEi0NnWvcToI4OHXj6hUjWjODh8+zD//+U+7j508eZLBgwezZ88eu3cDvffee84uTwihMrcKLAcOHFC7BLcWGxurdgmq0vrxa11aWpraJQghVKT6wnGi4Xx9fdUuQVVaP34hhNAyCSweZO3atWqXoCqtH78QQmiZBBYhhBBCuD0JLB5k1qxZapegKq0fvxBCaJkEFg+yZs0atUtQldaPXwghtEwCiwfJzs5WtD0d4O+jaJNwuc0mLnJbJ6WPX6hPr9djMpkUb9dkMtX5HWNCCM/jVrc1i7p17NhR0fb0engxDmyKtloZVpzxXqH08Qv1GQwG8vPz6/2m5dwTRSx8bwOj7xrEh5t2kDTh3jpX2tXr9RgMBqXLFUKoSAKLB5k+fbribXrSh1BnHL9Qn8FgqDdcGI1GDAZDjT9l2X0htMWD3q5EQ1YBbs60fvxCCKFlEliEEEII4fbklJAHCQ4OVrsEl3D07cuTJk1q9t/MLAQ4/sbylJQURo4cWWu7/H8htEBmWDxIXl6e2iWo6sEHH1S7BCFUlZKSonYJQqhGAosQQggh3J4EFg8yb948tUsQQqhIxgChZRJYPMiCBQvULkEIoSIZA4SWyUW3HsQZ17BYrZ6zcJwQWues69gsFku9i/c1lizeJ5QmgcWDhIWFKdqe1QqzkuHCRUWbxd+ncgVdCS1CKEvpMQAqw0pQUBCFhYWKtmsymcjPz5fQIhQjbykeZNy4cYq2Z0P5sMLlNpWetRFCKD8GAFitVsXDCkBhYaHiszZC2ySweJDZs2erXYIQQkUyBggtk8AihBBCCLcngcWDjB49Wu0ShBAqkjFAaJkEFg9SXl6udglCaMaJLKi45PjxC0VQnOu6ekC9MaBnz57ceeed3HvvvQwePJgWLVrU2mfChAl4ecl9HMJ53DqwlJaWEhAQgMViUbsUt7Bhwwa1S1DNpRIoL1O7CqEVF0vg4Bfw/Uf2Q8uFIshcC4d3gs2FV5i7cgwwGo088MAD7Nixg+zsbDZt2sT69ev56quvOH78OPPnz6dHjx4AzJ8/nxUrVnDbbbe5rD6hPW4dWDIzM+nXr5/cFqeic4U5JL88vMa2Zc+Euqz/4lz47h34ejHsWAjpH0Bpscu6Fxrl0xIi4+F8Ye3QUhVWvP3ghntAp1OvTmdp27Yt27ZtY/Xq1VgsFsaMGUOnTp0IDAzk+uuv5+233+bhhx/mwIEDpKSkMG3aNJKSkvjss8/ULl00Y6oHluLiYhISEujTpw+RkZFMmTKFRx99FIC0tDSCg4MZNWoU4eHhDBs2jDNnzgAwdepUbrnlFqZOnapm+S41d+5ctUtwqdIzkPkhlJy+/CnWBmfzIH1V3VP1QijhmuDaoeXKsBI5pvJPV3LFGODv78+WLVsIDw/npptuYujQoXz44Yfk5eVx+vRp9u/fz7PPPkvnzp3Jzs7mrrvuYtmyZSxatMjptQltUz2wxMfH069fP3766Sc+//xzli9fTv/+/QFIT0/n+PHjvP/++2RlZREQEMCiRYvIzMykrKyMr7/+mrKyMvbu3avyUbjG22+/rXYJLvXLHrD9cRkHG1gq4MRBVUoSGnNlaMlYDRlr1Asr4Jox4NVXXyU0NJRhw4bx7bffOtxvzpw5XH/99Xz33Xf8+c9/pnPnzk6vTWibqldI7dy5k4KCgupZEpPJRHBwMNHR0UDlDMtHH31Eq1atAIiOjiYvL4/du3dXnysdPnw43333HREREXb7KC0tJSsrywVHo4zS0lKHj2VnZ1NUVFRre2ZmZpP6stoAIuvdr+BoBuvmDG5U23v3ZqK/yqnysz+HY7O2rLXdWg5HDxRQYDl+dR14iDPnSgDIyTkKQFbWQU7m1X5dnN1/VtbvKVGtGtR6DXxD23D+QHfQ2fDtc5D9WU5YcfEKjsYBpccAqHkhb+vWrUlISODVV1/lxx9/dPic+fPnV58GWrFiBXl5eUyaNIl//OMfteoyGo1Nrk00b2azGT+/hid/VQNLeno6MTEx1b+fOnWK3Nxc+vbty6lTp8jPz+eGG26ofvzbb78lPj6e48eP07NnTwCuueYasrOzHfaRlZVFVFSU8w5CYXWd4vrtt99ITk6utb2pX4imN3gxeXn9dx20D4ki7u9bq39vyDUsMTExWC0VTaqryt/GvMOwyPF4GWoOeL9dKuGthS/x8a63rqp9T9EhuAsPT3memTOfJ/bBiYwbN46Tecdc3n/VKqtVP6tRgxqvQdf2vZj3xDawnaRt644c2GTgyX/dStmlEqf16WgcUHoM+KOEhAS8vb3rnMm5MqxUnQZ67733mDRpEnPmzKkRgAYMGKBIXaJ5ysjIIDKy/g/NVVQNLCaTieTkZCwWCxaLhcTERMLDw/H29iY9PZ2ysjKys7Mxm82sX7+eo0ePMnbsWJYsWcK5c+cAOHfuHAEBAQ77MJvNZGRkuOiIrl5dMyzDhw+ndevWtbaPHz++SX1ZbbDSSZNPqampVz3DUnGhBef2GKDGaSEbLVr48vxrE5ll/MvVdeAhzpwrYUvqQebOnUPq/hxWrVpFm9aund3YknqQVatWAVT/rEYNrn4NLCW+nNsbht5YgU+nAkoPQZeOPfnsrRO0uuEIOi/nLD3vaBxQegyAyhmWqmAxfPhwtm/fTn5+vt197YUVgPfff58nn3yS3r17s2/fvurtu3fvlhkW4ZDZbG7U/qoGljFjxrB27VrCw8Pp1q0bPXv2JDAwEKicfZk0aRKJiYkUFBQQEhLC5s2b8fb25sYbb2Tp0qXExcWxdetWJk6c6LAPPz+/RiU4tdV1+mrWrFl2L2xr7F96FYvVeYElIiISgwJXSBV1ggOfQ/lFsFnAp5WOfvcZaNX+hvqf3EzknihiS+pBuncPIXV/DmZzLzp1bOfy/s3mXgDVP6tRgytfg6oLbFu2hsgxRk7ldOOnQxASo+fXDH9s/+3HDfeDl7fyfTsaB5QeA6DmKaGMjAx+++03u/tNmzbNblgByMnJYcOGDVy8WPNUWWRkpAQWoRhVA4uvry8bN26s/j0hIYFBgwYB8MILLzh8XmRkJCtWrOCWW24hKirKowKJp2lt6l7jdBDAw68fcVn/7XrALU/AyUOwfyP0vQdatXdZ90KjLpY4vhvIr03lhbiZ6+CHDRAxuvnc2vziiy86fOy9994jPz+f999/v9Zjubm53Hfffc4sTQh1A8sfpaenM23atAbt+8Ybbzi3GDcUGxurdgmq0Okr3ySg+bwxCPfm7QfdB0BHs/27garuHir/zbX/JtUcAwoKCuyGFSFcxa0Cy4EDB9Quwa35+vqqXYIQmqDTQdd6Jm6vCXZNLVeSMUBomerrsIiGW7t2rdolCCFUJGOA0DIJLEIIIYRwexJYPMisWbPULkEIoSIZA4SWSWDxIGvWrFG7BCGEimQMEFomgcWD1LWib1PoAH8fRZuEy23KzTxCKE/pMQBAr9djMpkUb9dkMqHXy1uMUI5b3SUk6taxY0dF29Pr4cU4sCnaamVYkXFKCOUpPQYAGAwG8vPzsVodr9qbe6KIhe9tYPRdg/hw0w6SJtxb78J9er0eg8GgdLlCwySweJDp06cr3qYECyE8hzPGAKgMLXWFC6PRiMFgqPGnrGArXE3erjxIQxfVE0I0TzIGCC2TwCKEEEIItyeBxYOMGDFC7RKEECqSMUBomQQWDyIXsAmhbTIGCC2TwOJBUlJS1C5BCKEiGQOElklgEUIIIYTbk8DiQebNm6d2CUIIFckYILRM84HFYrNRbrUq+p/FpvRSbJUWLFigeJtWK1gU/q+O9aeEEFfBGWOAO7BYLJSXlyv6n8ViUfuwhMI0vXCcxWaj645tFJZfUrRdk9GbXwcNxaBTdoH6vLw8RduzWmFWMly4qGiz+PtUrqAri9IJoSylxwB3YLFYCAoKorCwUNF2TSYT+fn5cqFyM6LptxSrzaZ4WAEoLL+E1QmzLGFhYYq2Z0P5sMLlNp0zxySEtik9BrgDq9WqeFgBKCwsrPPrBoTn0XRg8TTjxo1TuwQhhIpkDBBaJoHFg8yePVvtEoQQKpIxQGiZBBYhhBBCuD0JLB5k9OjRapfgMhcK677bqOIilBa7rBwh3IKWxoAr6fV6TCYT3bt3JzAw0O4+ffr0wctL0/eRNHsSWDxIeXm52iW4RHkZ7FkNP6XYDy0VF2HvOti3Hpx0B7kQbkkrY0CVjh078sILL/DLL79QUFDA0aNHKSoqIisri6eeeoqAgAAAbrzxRr777jtmzJihbsHCqdw6sJSWlhIQEKDq/fS2Y8epmDIV2+UaLO8ux7J+gyq1bNjg+n7PFeaQ/PLwGtuWPRPq1D6NvtDrDig4XDu0VFyqDCslp6HPnaDwneNCuDU1xgC1PP300/z66688++yzbNq0iXvvvZfhw4czevRoMjMz+d///V9yc3N5/vnn+fzzz8nMzOS1115Tu2zhRG49f5aZmUm/fv1UvY9e16Uzuv5RWJM3oI/uj23fDxhe+1/V6tGKDj2Bu2H/RiAFuvav3J79JVw8D5GjoXVHNSsUQjjL888/z0svvcTrr7/Oiy++yNmzZ2s8vm7dOjp06MDy5ct56aWXyMrKYuTIkZSUlKhUsXAF1WdYiouLSUhIoE+fPkRGRjJlyhQeffRRANLS0ggODmbUqFGEh4czbNgwzpw5Q2FhIZGRkfj6+rqkRv3YB7B+tQPLawsw/PVJdCoFqLlz56rSr1o69ITr7q6caTmys3Jb2VkJK0K7tDAG3HXXXbz00ku88MILTJs2rVZYqXLttdcycOBA8vPz6dGjR7Nco0bUpPoMS3x8PCNHjmT58uUUFhYSGhrKK6+8AkB6ejq5ubmkpKTg7+9PfHw8ixYtYvr06WzdupW4uLh62y8tLSUrK8vuYxUNvABC521E3ysc68EsdKE9GvScvXv34tWE8xWlpaUOH1u4cCFJSUm1tmdmZja6HwCrDSCy3v0Kjmawbs7gRrW9d28meoVO17QIb8OZg90BHd4hORzJOw3Nb8FPh86cq/zUmJNzFICsrIOczGvp8v6zsg5Wb1OrBrVeA4CLJ9oAIeTkHCW/7IxT+3I0Dig9BjSUM1//P16XM23aNHbt2sWcOXMcPufGG2+sPg0UGxvLvn37mDJlCo888kiN/TIzMzEajYrUKZRnNpvx8/Nr8P6qBpadO3dSUFDA1KlTgcqllIODg4mOjgYqZ1g++ugjWrVqBUB0dDR5eXl4e3vTtm3bBvWRlZVFVFSU/QcNBoyffVpvG7afj2I7moOuRw+sX+1AP2RQvc+JiYmBJlx7U/Va2JOWlkZQUFCt7U39fhG9wYvJy+u/iK99SBRxf99a/XtDrmGJiYnBaqloUl1X8vNtzcsTNxMaHIS30ZeML/KZ+u9bsFq18z0hHYK78PCU55k583liH5zIuHHjOJl3zOX9Vy1aVvWzGjWo9RoADOn3IDPGvc/MmTP56vsPnNqXo3FA6TGgoVz1+pvNZoYOHcqDDz7ocJ8rw0rVaaDFixfzj3/8g2nTpnHmzO9hcsCAAYrXKJSTkZFBZGT9H5qrqBpY0tPTK9/YLzt16hS5ubn07duXU6dOkZ+fzw033FD9+Lfffkt8fHyj+jCbzWRkZNh9rMJm4+bTBXU+32a1YnlzIYbJSdCuHRXTn0X3p2h0LetOhampqYrPsOTm5tqdVRo/fnyj+4HKGZaV9iefrlpqaupVz7BYK/Sc/z4Ua6kvPl1OUna0E727D+Crdwto2TsHneonNF3jzLkStqQeZO7cOaTuz2HVqlW0ae3a2Y0tqQdZtWoVQPXPatSg1msAlTMsJQcqT8v4dPybU/tyNA4oPQY0lDNf//Ly8upgERcXx9mzZ0lOTra7r72wAvDOO+/wyiuvcOedd/L+++9X7797926ZYXFjZrO5UfurGlhMJhPJyclYLBYsFguJiYmEh4fj7e1Neno6ZWVlZGdnYzabWb9+PUePHmXs2LGN6sPPz89hgiu3WuHLz+t8vvXTFHS9eqG7NgQAw/1xWN9dhuGvT9b5vIiICIxN+PY/R6evoPJTV9VtfFdq7F96FYvVeYElIiISw1UEiqpbl3UXIXoslJzuxE9HoUuEjuP72uKd35Y+I7XxBYu5J4rYknqQ7t1DSN2fg9nci04d27m8f7O5F0D1z2rUoNZrAJB/AH46AN27hxDUO8SpfTkaB5QeAxrKma//laeELBYLe/fu5dKl2t/xFh0dbTesQOX3Bh0+fBj9HwaEyMhICSzNiKrD/ZgxY2jTpg3h4eHceeedBAYG0r9/5e0g6enpTJo0icTERPr06cPSpUvZvHkz3t7eLq3RcM8oDI89Wv27/vbh9YYVZ1FjjYHWpu41TgcBPPz6Eaf2eeWty3+8wLZ10O8X4v6UIuuwCG1p7uuMvPrqqwwZMsTuYzk5Oaxevdrh3UA9e/Zk5cqVzi5RqEjVGRZfX182btxY/XtCQgKDBlVeH/LCCy84fJ7VauX2229n3759DB8+nHnz5hEREeH0eoVr6L3A3wThw+zfDVR1y3NJkctLE0KopLCwkMcee0ztMoSKVL9L6Erp6elMmzat3v30ej1bt26td7/mJjY2Vu0SXEKvh163171Ph55AT5eUI4Tb0MoYIIQ9bhVYDhw4oHYJbs1V684IIdyTjAFCyzRwyWLzsXbtWrVLEEKoSMYAoWUSWIQQQgjh9iSweJBZs2apXYIQQkUyBggt03Rg0et0mIzK3yZtMnqjd8LXCK9Zs0bR9nSAv4+iTcLlNuVLlIVQntJjgDvQ6/WYTCbF2zWZTLXWZRGeza0uunU1g07Hr4OGYlV4MQ+9TofBCYElOztb0fb0engxDpReykSHNhZ0E8LVlB4D3IHBYCA/Px+r1epwn9wTRSx8bwOj7xrEh5t2kDTh3noXrtPr9RhU+qJa4RyaDixQGVqcES6coWNH5b+iWIKFEJ7DGWOAOzAYDHWGC6PRiMFgqPGnrGCrPfJ25UGmT5+udglCCBXJGCC0TAKLB2nIonpCiOZLxgChZRJYhBBCCOH2JLB4kODgYLVLEEKoSMYAoWUSWDxIXl6e2iUIIVQkY4DQMgksQgghhHB7Elg8yLx589QuQQihIhkDhJZpPrBYbDbKrVZF/7MovBBdlQULFijeptUKFoX/q2P9JyHEVXDGGCDAYrFQXl6u6H8Wi0Xtw2p2NL1wnMVmo+uObRSWX1K0XZPRm18HDVV8QTqlz19brTArGS5cVLRZ/H0qV9CVRemEUJZcw6I8i8VCUFAQhYWFirZrMpnIz8+X1XYVpOm3FKvNpnhYASgsv6T4cv8AYWFhirZnQ/mwwuU2nTPHJIS2KT0GCLBarYqHFYDCwsI6v25ANJ6mA4unGTdunNolCCFUJGOA0DIJLB5k9uzZapcghFCRjAFCyySwCCGEEMLtSWDxIKNHj1a7BJcpL6v7cZsVKpS//EgIt6alMcDT+Pn54eWl6ftYnE4CiwcpLy9XuwSXKC+D3cvh6G77j9us8NNm2LsOnHQHuRBuSStjgDuJiYlh+fLl/PLLLxQXF5OXl8eWLVu4//77qwOKn58fKSkpvP322ypX27y5dWApLS0lICBA1fvZbceOUzFlKrbLNVjeXY5l/QZVatmwwfX9nivMIfnl4TW2LXsm1Kl9Gn2h0/Xw329qhxabrTKsnDgIXSJB4TvHa7HZ4GQ2ZK6DPR/Ar5lgkfcMoRI1xgCtCg8PZ8+ePezevZubb76ZDz74gDlz5rB48WJ8fHxYt24dv/zyCw888AApKSlERUXxn//8R+2ymzW3nr/KzMykX79+qt7HruvSGV3/KKzJG9BH98e27wcMr/2vavVoxbUDK//87zeVf/q2rvwz9wc4mwfXjYSOZufWYLPBT5ug4DBYKyq3nTtZWcOf/gwGb+f2L4RQxw033MC2bdvIz89nxIgRfPHFF9iumM598cUXuf7665k7dy4ffPABFy9eZOjQoXz33XcqVt38qR5YiouLeeqpp9izZw8+Pj7cfPPNlJSUsHTpUtLS0ggODmbUqFEcOnSIzp07s27dOvbs2cMLL7yATqcjPj6eadOmObVG/dgHqHh6GradX2N4ajI6lQLU3LlzVelXLVeGFtPl5SfO5sJ1dzs/rACcza8ZVqDy59+K4fiP0C3K+TUIcSWtjQFqaNeuHZs2beLnn39m+PDhnD171u5+//3vf2nVqhXl5eV4eXnh7S2fYJxN9cASHx/PyJEjWb58OYWFhYSGhvLKK68AkJ6eTm5uLikpKfj7+xMfH8+iRYtISEjg66+/xsvLi8GDB/P444/j7+9vt/3S0lKysrLsPlbRwAsgdN5G9L3CsR7MQhfao0HP2bt3L15NOF9RWlrq8LGFCxeSlJRUa3tmZmaj+wGw2gAi692v4GgG6+YMblTbe/dmolfidI0v+HbvSOHhYAB8OhWQV3qcvKYdcqOU/jcYa0UHoOaBWCvg5z0lnNJlO78I4My5EgByco4CkJV1kJN5LV3S95X9Z2UdrN6mVg1qvQYAF0+0AULIyTlKftkZp/blaBxQegxoKLVff2f2/8frgiZOnEibNm2IiopyGFaqrlmJiopi6NChLFiwgJkzZ7Jjx44a+2VmZmI0GhWpszkym834+fk1eH9VA8vOnTspKChg6tSpQOVSxsHBwURHRwOQlpbGRx99RKtWrQCIjo4mLy+Pzp07V7fh5eWFvo414LOysoiKcvBR2GDA+Nmn9dZp+/kotqM56Hr0wPrVDvRDBtX7nJiYGGjCtTdVr4U9aWlpBAUF1dre1O8X0Ru8mLy8/gsy2odEEff3rdW/N+QalpiYGKyWinr3q49ep+dvD7zLsIjx6PV6Pk/5irl/HnvV7TbE+Ntm8eehMzF61f7k9P2+DJ55ov5/B0roENyFh6c8z8yZzxP74ETGjRvHybxjLun7yv6rFi2r+lmNGtR6DQCG9HuQGePeZ+bMmXz1/QdO7cvROKD0GNBQar/+rupfr9fzxBNP8MEHH3DixAm7+1wZVu644w6+++47/vWvf7Fy5Up69uzJoUOHqvcdMGCA4jU2JxkZGURG1v+huYrOZlPvPovXXnuNrKwslixZAsCpU6cICQmhqKiI8+fP06VLF0pKStBdnqmIjY0lPj6ehx56CIDNmzezfv36Oi90qm+G5ebTBXXWaLNasUz7/zBMToJ27aiY/ixer89H17LuVPhN2/aKz7C8+eabTJ48udb2xiTUK1ltsDKr7n8s5wpz2Pr2xFqB5eHXj9T5vPHmq59hsdmg5GA3Lp1oi1/4L5Sfvobywja0uDaPFt3tDyZKspT4cjbNDLY/BGK9hZbhx/AJOu30GqDy0+WW1IPEXNed1P053BbTizatXfvpdkvqQW6L6QVQ/bMaNaj1GkDlDEvJgRBa9j6KT0d1ZliUHgMaSu3X35n9l5eXVweLQYMGsX37dmJiYkhLS6u1r72wAuDj40Nubi6LFi1i1qxZ1fvv3r1bZljq4FEzLCaTieTkZCwWCxaLhcTERMLDw/H29iY9PZ2ysjKys7Mxm82sX7+eo0ePMnZs5afrX3/9lXnz5vHJJ5/U2Yefn5/DBFdutcKXn9f5fOunKeh69UJ3bQgAhvvjsL67DMNfn6zzeRERERib8O1/jsIVVH7qCggIqLXdbG7aBR0WK6x03N1ViYiIxHAV96BV3bp85mTVNSvdAfj5W/j522CCg4MJccGHl6NelXcqWa2ADfQGaNvNwA13dken7+78AoDcE0VsST1I9+4hpO7PwWzuRaeO7VzS95X9m82/Bxa1alDrNQDIPwA/HYDu3UMI6h3i1L4cjQNKjwENpfbr78z+rzwl1KlTJwB+/PHHWvs5CisAFy9e5PDhw7VmvyIjIyWwKEjVwDJmzBjWrl1LeHg43bp1o2fPngQGBgKV169MmjSJxMRECgoKCAkJYfPmzXh7e1NaWkpCQgJLliyhZUvnpnzDPaNq/K6/fTjcPtzB3s41Y8YMFi1a5NI+W5u615hdAeqdXblaVWHlxMHadwP98e4hZ4eWkBvBFAo5e+DETxA2BDrf4PzbqYWwR40xQEtWr17N5s2b+e2332o95ufnh4+PT62wUmXEiBF2nyeUo2pg8fX1ZePGjdW/JyQkMGhQ5XUBL7zwgsPnLV26lEOHDjFx4kQAVqxYQdeuXZ1brHAZSzmUnnF863JVaDl3svK0kbPDg78JukZWBpZrgiSsCNFcWa1WTp+2f6q3qKiIgQMHOnyuowt0hXJUv0voSunp6Q26RXny5Ml2z+M2d7GxsWqX4BJePhD9IOjqOKV07cDKmRgJD0JLtDIGCGGPWwWWAwcOqF2CW/P19VW7BJepK6w0Zh8hmhMtjQFC/JEM+R5k7dq1apcghFCRjAFCyySwCCGEEMLtSWDxIFfe3y+E0B4ZA4SWaTqw6HU6TEblv//BZPRG74SrQdesWaNoezrA30fRJuFym3ItrBDKU3oMEJWr25pMJsXbNZlMda7CLhrPrS66dTWDTsevg4ZiVXixX71Oh8EJgSU7W9nvrtHr4cU4UHqpY93ltoUQylJ6DBBgMBjIz8/HarXWuV/uiSIWvreB0XcN4sNNO0iacG+di9fp9XoMKn1RbnOl6cAClaHFGeHCGTp27Kh4mxIshPAczhgDRGVoqS9cGI1GDAZDjT9lFVvXkrcrDzJ9+nS1SxBCqEjGAKFlElg8SEMW1RNCNF8yBggtk8AihBBCCLcngcWDBAcHq12CEEJFMgYILZPA4kHy8vLULkEIoSIZA4SWSWARQgghhNuTwOJB5s2bp3YJQggVyRggtEwCiwdZsGCB2iUIIVQkY4DQMs0vHOdJnHH+2mqVlW6F8BRyDUvzZLFY6l1pt7Ga40q7Elg8SFhYmKLtWa0wKxkuXFS0Wfx9Kpf8l9AihLKUHgOE+iwWC0FBQRQWFirarslkIj8/v1mFFnlL8SDjxo1TtD0byocVLrep9KyNEEL5MUCoz2q1Kh5WAAoLCxWftVGbBBYPMnv2bLVLEEKoSMYAoWUSWIQQQgjh9iSweJDRo0erXYJm2BpwTqsh+wihJBkDhJZJYPEg5eXlapegCTYbHNgMR3c73qfoZ8hYAxVOuAZICEdkDNAeHx8fJkyYwLp169i2bRubN2/mP//5D3/6059q7JeYmMiHH37YrC6y/SO3DiylpaUEBARgsVjULsUtbNiwweV9nivMIfnl4TW2LXsm1OV1uJJOBy2ugf9+Yz+0FP0M+z4Goy/o5T67Zs9mgzPH4WR25e+XStSrRY0xQKjDYDDwz3/+k+PHj7NixQo6dOjAiRMnOH/+PLfddhupqans2bOHO+64g8TERBYtWsSvv/7arN8v3Xq4zczMpF+/fs06MQr3dO3Ayj//+03ln4EhlX8W58LhHdAuBK4fBXr5p9ms2azwwydwKgesFZXbjuysDKpdIlQtTTRj3t7erF+/nttuu4233nqLRYsWceTIkerH9Xo9d9xxB9OnT2fTpk3o9Xpef/11pk2bpmLVzqd6YCkuLuapp55iz549+Pj4cPPNN1NSUsLSpUtJS0sjODiYUaNGcejQITp37sy6desoLCzk4YcfxmAwEBYWxtKlS9HpdGofitPNnTtX7RI05crQcvFC5c+Ht0O7ayWsaEX+TzXDClTOuBz6qjK0tghwbT0yBmjDO++8w9ChQ7nrrrvYunVrrcetViufffYZISEhDBkyBKvVyrZt21So1LVUDyzx8fGMHDmS5cuXU1hYSGhoKK+88goA6enp5ObmkpKSgr+/P/Hx8SxatIhnn32WXbt2odPpePTRR/n++++JiLD/cae0tJSsrCxXHtJVKS0tdfjYwoULSUpKqrU9MzOzSX1ZbQCR9e5XcDSDdXMGN6rtvXsz0TeHDOkLLUI6cvz7YAAMrc5T0fkI3+9z3RW3Z85VnoPIyTkKQFbWQU7mtXR5/1lZB6u3qVWDq1+Ds3t6Yq3wr7XdZrOS+VU+LbqddEq/jsYBpceAhnKXf4Nq9e/MGv54XVL//v0ZN24cCQkJdsNKlcTERBYuXMiCBQvo3bs38+bNIyUlpcY+mZmZGI3Gq67RWcxmM35+fg3eX9XAsnPnTgoKCpg6dSpQuTJfcHAw0dHRAKSlpfHRRx/RqlUrAKKjo8nLy8PL6/eyjUYjnTp1cthHVlYWUVFRTjwKZVW9FvakpaURFBRUa3tTv19Eb/Bi8vL6L+JrHxJF3N9//x+nIdewxMTEYLVU1LufJ/iT+U5e/MunGPQGvtz5GXMee8Cl/XcI7sLDU55n5szniX1wIuPGjeNk3jGX91+1aFnVz2rU4OrX4D9Tv+fa4Btqba+osPJ/i99mxRezndKvo3FA6TGgodzl36Ba/buyhsTERHJycli5cmWd+yxatKj6NNCgQYPYvn07Q4YM4auvvqreb8CAAYrXp6SMjAwiI+v/0FxFZ7Opd3Pma6+9RlZWFkuWLAHg1KlThISEUFRUxPnz5+nSpQslJSXVp3tiY2OJj4/noYceYvPmzfztb3+jZ8+erFmzxmGKbE4zLG+++SaTJ0+utb0xCfVKVhuszKr7H8u5why2vj2xVmB5+PUjdTwLxpubxwzLpaLWXPjxWgz+v2E5X/lpqsW1ubTo7pxP1vacOVfCltSDxFzXndT9OdwW04s2rV376XZL6kFui+kFUP2zGjW4+jUoPdqBsl+CwPqH+xP0VlpHHsKrteP/X6+qXwfjgNJjQEO5y79Btfp3Zg3l5eXVwaJly5YUFhby4osvVp9p+KM/hpUq+/fv54cffuDPf/5z9bbdu3fLDItSTCYTycnJWCwWLBYLiYmJhIeH4+3tTXp6OmVlZWRnZ2M2m1m/fj1Hjx5l7NixAIwYMYIRI0YwefJkNm/ezKhRo+z24efn16gEp7a6wtXUqVMJCAiotd1sNjepL4sVVjopy0VERGJw63vQ6lf0M+zbAaYe0C60JQc3gykMCg93Iji4EyEu+vCSe6KILakH6d49hNT9OZjNvejUsZ1rOr+if7P598CiVg2ufg3Ke0Pae5XXMFkv33yh00P7nnquG2TGWZfOORoHlB4DGspd/g2q1b8za7jylFCnTp1o0aIFu3btsruvo7AC8O2333LDDTVnAyMjI906sDSWqm8pY8aMoU2bNoSHh3PnnXcSGBhI//79gcrrVyZNmkRiYiJ9+vRh6dKlbN68GW9vby5e/H3xi9atW+Pr66vWIbjUjBkzXN5na1P3GrMrQL2zK81B1a3L1XcDXf4/pX1Y5cW4jm55Fs2L0RdiHoKQG8G3deW24OvhupE4LazURY0xQLjO8ePHGTJkCPv27av1mLe3N4mJiQ7vBnr99dd54oknXFGmalSdYfH19WXjxo3VvyckJDBo0CAAXnjhBYfP27FjR/XV8mFhYQwbNsy5hQpNsdngaKrjW5er7h46lgmd+oK3c2fjhcq8fCBkQGVg+WkTBHRSJ6yI5q+0tJTt27fbfezSpUvcdNNNnD9/3u7jnnTpQ1OpfpfQldLT0xt0H/ntt9/O7bff7oKK3EtsbKzaJWiCTgcRcZVrbTi6dfnagdC5n4QV4VoyBmibo7CiFW4VWA4cOKB2CW5NK6e+3IGXT/37SFgRriZjgNAyD78sUlvWrl2rdglCCBXJGCC0TAKLEEIIIdyeBBYPMmvWLLVLEEKoSMYAoWUSWDzImjVr1C5BCKEiGQOElklg8SDZ2dmKtqcD/BtwcWlj+ftUti2EUJbSY4BQn16vx2QyKd6uyWRCr29eb/FudZeQqFvHjh0VbU+vhxfjQOnvZtDx+0JrQgjlKD0GCPUZDAby8/OxWq117pd7ooiF721g9F2D+HDTDpIm3FvnSrt6vR6DoXl9pbwEFg8yffp0xduUYCGE53DGGCDUZzAY6g0XRqMRg8FQ48/mtOx+Q8jblQdpyKJ6QojmS8YAoWUSWIQQQgjh9iSweJDg4GC1SxBCqEjGAKFlElg8SF5entolCCFUJGOA0DIJLEIIIYRwexJYPMi8efPULkEIoSIZA4SWSWDxIAsWLFC7BCGEimQMEFqm+XVYLDYbVpuyS6fpdToMOuXXenXG+WurVRaOE8JTyDUswlksFku9i9c1hjMWrtN0YLHYbHTdsY3C8kuKtmsyevProKGKh5awsDBF27NaYVYyXLioaLP4+1SuoCuhRQhlKT0GCAGVYSUoKIjCwkLF2jSZTOTn5ysaWjT9lmK12RQPKwCF5ZcUn7UBGDdunKLt2VA+rHC5TeWPXgih9BggBIDValU0rAAUFhYqOmMDGg8snmb27NlqlyCEUJGMAULLJLAIIYQQwu1JYPEgo0ePVrsEIYSKZAwQWqbpi249TXl5udolaMavGeB7DbQPtf/4hSI4vg96DpGLi5sjqwUOfQVdIqFlW/v7nMyGS6XQJcJ1dckYINTQuXNnxowZQ8eOHdHpdJw4cYK1a9dy7Nix6n1CQ0OZOnUqTz31FBUVFU6pw62H2tLSUgICArBYLGqX4hY2bNigdgmaYLNBcS78+AkUHKn9+IUiyFwLxcfAovw128INVFyCM8cgYw2UnK79+Mls2L8RzuZV/ntxFRkDhCvFxMSQnJxMTk4OL730Evfccw+jRo3in//8J0ePHmXDhg3ceOONhIaG8tVXXzF06FACAgKcVo9bB5bMzEz69eun+L3cjWE7dpyKKVOxXQ5NlneXY1m/QbV6XO1cYQ7JLw+vsW3ZMw6mHZoJnQ6uGwmm0Nqhpex8ZVjx9oPIMWD0Va9O4TzeLX7/+/1jaDmbXxlWOpih952V/16EaG4mTJjA119/TVhYGElJSXTo0IHw8HDMZjMdOnQgMTGRkJAQdu7cSWpqKhcuXGDIkCEUFRU5rSbVA0txcTEJCQn06dOHyMhIpkyZwqOPPgpAWloawcHBjBo1ivDwcIYNG8aZM2eqn/vGG28wePBgp9an69IZXf8orMkbsOX8gm3fD+hjRzm1T0fmzp2rSr9apDfUDC3nTlZuz0n9Pax4+6lbo3Aun5Y1Q8vFC5Xbj3//e1hx9elAGQOEK8TGxrJs2TJWrFhBv379+M9//sOFCxeqHy8pKWHJkiWMGTOGsrIy2rRpw/z58zlx4oRT61L9Gpb4+HhGjhzJ8uXLKSwsJDQ0lFdeeQWA9PR0cnNzSUlJwd/fn/j4eBYtWsTMmTMpLy/n+++/r7f90tJSsrKy7D5W0cC5XP3YB6h4ehq2nV9jeGoyugbM+OzduxevJnz0Ki0tdfjYwoULSUpKqrU9MzOz0f0AWG0AkU16bn327s1E3ww+edqCwVgcwrGMAECHVXcJL/NB9me57jTlmXMlAOTkHAUgK+sgJ/Naurz/rKyD1dvUqkGN18DYy4uyvWEc+cYbMGBodYGLHQ7RgOGnyRyNA0qPAQ3lLv8G1erfHWpwZv9XXhvl7e3N//3f//Hxxx8zadIkbA7eJ0NDQ9m6dSvHjx/n8OHDvPrqq6xatYqysrLqfTIzMzEajQ77NZvN+Pk1/JOfqoFl586dFBQUMHXqVKByZbzg4GCio6OByhmWjz76iFatWgEQHR1dvTT1e++9x4MPPsjLL79cZx9ZWVlERUXZf9BgwPjZp/XWqfM2ou8VjvVgFrrQHg06tpiYGGjCtTdVr4U9aWlpBAUF1dre1O8X0Ru8mLy8/ov4Co5msG7O4Ea1HRMTg9XinAuvXC2k4/UsemoPXl7ebNj2Nm9Nqf2G4Uwdgrvw8JTnmTnzeWIfnMi4ceM4mXes/icq3H/VomVVP6tRg1qvwYjoR3hm9NvodLBo1T9Z9/h8p/bnaBxQegxoKLVff7X7d4caXNX//fffT4cOHfj73/9eZ1j56quvqk8D+fv7c/jwYUaPHs17771Xvd+AAQPq7CsjI4PIyIZ/aNbZHFXkAq+99hpZWVksWbIEgFOnThESEkJRURHnz5+nS5culJSUoLs8UxEbG0t8fDzjx4/nwQcfZM2aNQwePJjt27c77KO+GZabTxfUW6ft56NY3loEnTqhj4xAP2RQvc/5pm17xWdY3nzzTSZPnlxre2MS6pWsNliZVfc/lnOFOWx9eyJxf99avW3ZM6E8/Lqdq1GvMN7cPGZYLCW+nMsMA68K9AYrlhI//K/7GW/TWZfVcOZcCVtSDxJzXXdS9+dwW0wv2rR27Se7LakHuS2mF0D1z2rUoMZrcKkggAs/heDVthjL+ZaAjtYRhzC0dMIy0Zc5GgeUHgMayl3+DarVvzvU4Mz+y8vLq8PFzp07uXTpEsOHD7e77x/DStVpoM2bN9O6dWsGDhxYve/u3bubzwyLyWQiOTkZi8WCxWIhMTGR8PBwvL29SU9Pp6ysjOzsbMxmM+vXr+fo0aOMHTuW5ORkYmNjG9SHn5+fwwRXbrXCl5/X+Xyb1YrlzYUYJidBu3ZUTH8W3Z+i0bWs+0WOiIjA2IQT3I7CFVR+6rJ3BbbZbG50PwAWK6x03N1ViYiIxKD6FVJXp+puoJbXQOQYI14+sD8FCn/qwbWxjm95VlruiSK2pB6ke/cQUvfnYDb3olPHdq7p/Ir+zebfA4taNbj6NTiZDft/go5m6H1nG8p/q/w38dv+PkQ94PiW56vlaBxQegxoKHf5N6hW/+5QgzP7v/KUUL9+/RyuqOworABs2rSp+nKOKpGRkXUGlsZS9S1lzJgxtGnThvDwcO68804CAwPp378/UHn9yqRJk0hMTKRPnz4sXbqUzZs34+3tTXZ2NsuWLWPEiBH88MMP/Oc//3FajdZPU9D16oXu2hB0rVthuD8O67vLnNZfXWbMmKFKv1pUFVauvMD2jxfi2rvlWTQfVbcuX3mB7R8vxLV3y7MzyRggnG3mzJl8+eWXdh9766237IYVgO3bt/Pcc89VnxFxBlVnWHx9fdm4cWP17wkJCQwaVHm65YUXXnD4vJkzZzJz5kwABg8ezOOPP+60Gg331LwjSH/7cLjd/lRZc9Ta1L3G6SCg3tNBns5mg/2b7N8NVBVa9qfATykQMEnuFmqOLpbAT5/ZvxuoKrRkroWfNkH0OLm1WTQfb775psPHHnroIfR6vd27gX744Qd++OEHZ5am/l1CV0pPT2fatGmNek5d1680Nw09DSaujk4H199d+SnaXhipCi3nCySsNFc+LSHqAWjVwf6ty1WhxVLu2rAiY4BQU0FB/dd8OpNbBZYDBw6oXYJb8/WVVcpcpb5rE/QGuKb2zRqiGanv79fHtdd8AjIGCG3z8MsitWXt2rVqlyCEUJGMAULLJLAIIYQQwu1JYPEgs2bNUrsEIYSKZAwQWiaBxYOsWbNG7RKEECqSMUBomaYDi16nw2T0Vrxdk9EbvRNuHcjOzla0PR3g76Nok3C5TbnLUwjlKT0GCAGg1+sxmUyKtmkymdAr/O2gbnWXkKsZdDp+HTQUq8LfTqDX6TA4IbB07NhR0fb0engxDpT+bgYdrv8WWyG0QOkxQAgAg8FAfn4+VqvV4T65J4pY+N4GRt81iA837SBpwr11rrSr1+sxNOCLghtD04EFKkOLM8KFM0yfPl3xNiVYCOE5nDEGCAGVoaWugGE0GjEYDDX+VHLZ/YaQtysP0thF9YQQzYuMAULLJLAIIYQQwu1p/pSQu6nrW1cnTZrk9G9lFUKoz9H/5zIGCC2TGRYP8uCDD6pdghBCRTIGCC2TwCKEEEIItyeBRQghhBBuTwKLEEIIIdyeBBYhhBBCuD0JLEIIIYRwexJYhBBCCOH2NLkOy+HDh3nttde4ePEiwcHBzJ07V+2ShFBEaWkpTz75JH5+fvTs2ZOnn37apf0XFBTw3HPPcfjwYb7++muX9g2QkpLC+vXr+e2337j99ttJSEhweQ1CCOfQZGAJCwtj8eLFAIwePVrlaoSwb8s3e9iffZTyigoAPtueCsCqj7dg9PLiz7HD6GBqW+M5ycnJjBo1ivvvv58xY8aQlJTU5O/72Hfwv2z7NrO6/1Ufb6l+bNXHW7hr8ACuCw+p8Zz27dvzzjvvcO+99zapzyvlnSxizcavAOy+Bv2vD2fowMgazxk5ciQjR44E4J577pHAIkQzotlTQlu2bCEuLo7o6Gi1SxHCroFR11FadpHTxecBOHehFIDTxecJ7dapVlgBOHbsGF27dgUqv969qKioyf1fHx6Cr493df+ni89X/9zavyW9e3ZvctsNEdyhHd07d+Rk0Zlar0FFhYUbI/s4fO7LL7/MpEmTnFqfEMK1NBtYbrvtNpKTk9m5cyfl5eVYLI6/VlsINbRs4Uv8nYNqbW8fGMCIQX+y+5wuXbpw7NgxAIqKimjXzvHXv9dHr9czZuQQvI01J2J9vI2MHTUUvQu+5XzkkAEEtmlda/uYu4fQwtfH7nNeeuklQkJCuPvuu51dnhDChTwusPz222+MHz+e0NBQwsLCWL58eaPb2LVrF1OmTCExMZGIiAhOF5/nlX+v4uu0H7DZbE6oWoimCb+2CwMielf/rtfreODuoRiN9s/mxsXF8emnnzJlyhQGDhx41V//HtimNXcPG1hj2z233URAa3+7+1+8eJEnnniCffv2kZSUdFV9A3h7G3lg5BB0V4Sjm/tfT2i3Tnb3X7JkCatXr2b79u3Mnj37qvsXQrgPj7uG5fXXXwfgyJEj5OXlERUVxZAhQ6qnwRvipptu4qabbqr+/f2Pt3K+5Dd+yT3JLX/qq3jNQlyNuwbHcCQnl6IzZxl+UxSdOjqeNfHz8+Pdd99VtP/ovuEcPJLDwSO/cl3PECL6hDnc18fHp/r6MKV07dSBITdGsO3bTNoHtuGOQY5P406aNElOBQnRTLl1YElNTWX69OkUFxcD8Oyzz/LBBx+wZMkSAIKDgxk1ahRr167lb3/7m902LpVXUHiq2GEfp86c5Yesn4HKc/a5J5p+zl8IZxlyYwS79vxIWPfOqvwbHRh5HQWnzjIgojd5J0+5vH9zj64cPJzDoJh+FBQVu7x/rSs4dQaA02fP1/hdK/27Qw3NsX9TYECtU8510dnc9BzImTNn6NWrF6tXr2bw4MHYbDZOnTpFSEgI2dnZBAcHA/A///M/nDhxgv/3//6f3XZyTxTx5vJkV5YuhBBCiHpMToirc8b4j9x2huXbb78lLCyMwYMHA6DT6Zp0AaEpMIDJCXF2Hzt15izvf/IlAA+OGkq7tgFNLVcIIZqtglNnWLPxK267pT9bvt7DA3cPoX1gG8307w41NMf+TYEBjdrf4y667dq1K7/88kv17zk5OY26fuVKaT9kAdCja7CEFSGEEMKNedwpoX//+99kZ2ezcuVK8vLyiIyMJDU1lW7dutltR04JCSGEEO6nsaeE3DawQOVFt9OmTePcuXMAPPfcc9x7771MnDiR1NRUdDodM2bM4JFHHnHYhqOLbj/bkcqRnFx6dA3mriEDnHUIQgjh8Zrj6QhPq6E59t/Yi27d9hoWgJiYGL755pta299///0Gt+Ft9LKb4HqHdqOgqJi7h91IUPvAq6pTCCG0oO01rQBoH9imUZ+Mm0v/7lCDlvt368DiTAOjriOmX28MBo+7jEcIIYTQHE2/W0tYEUIIITyDvGMLIYQQwu1JYBFCCCGE25PAIoQQQgi3J4FFCCGEEG5PAosQQggh3J4EFiGEEEK4PQksQgghhHB7EliEEEII4fYksAghhBDC7UlgEUIIIYTbk8AihBBCCLcngUUIIYQQbk8CixBCCCHcngQWIYQQQrg9CSxCCCGEcHsSWIQQQgjh9iSwCCGEEMLtaTKwbN++nZtuuoknnniCDz/8UO1yhBCi2SgtLeXhhx/mySef5I033nB5/wUFBTzyyCPccsstLu8bICUlhYkTJzJu3DiWL1/u8v4PHz7ME088wV/+8hdmzpzp8v4BLBYLd911l+J//16KtuYhdDod/v7+lJaWcu2116pdjhBCuKUdqfs4UXiK0t/KANi99ycAvvg6Db8Wvgy/qT+BbVrXeE5ycjKjRo3i/vvvZ8yYMSQlJWE0GpvU/w8H/8vB//7isP+o68MJ7dapxnPat2/PO++8w7333tukPq/0a14B32XuB7Bbw/XhPejfN7zGc0aOHMnIkSMBuOeee0hISGhy/+culPLZ9lTAZrf/zkHtGX5TFDqdrvo5YWFhLF68GIDRo0c3uW+ACouFjV9+x8VLl+z2H9C6FXcPuxGjV80osWDBAmJjYykrK7uq/v9IkzMst9xyC59//jn//ve/mTVrltrlCCGEW+oZ0pkfsn4m++fjAPySWwBA9s/HsdmoFVYAjh07RteuXQEwmUwUFRU1uf/Q7p347y95dvs/UXiG7p06NrnthujcsR1nzl5g709HatXwa24BPUM6O3zuyy+/zKRJk66q/9b+fvj6GO32n/3zccK6d64RVqps2bKFuLg4oqOjr6p/L4OB4A7tHPYf1D6wVlhJT0/H19cXs9l8VX3bo8nAotdXHnbLli2x2WwqVyOEEO4pqH0gt99S+02vtX9LYm+7ye5zunTpwrFjxwAoKiqiXbt2Te7fr4Uvo+8aXGu7waDngbuH4OVlaHLbDaHX6xkzcjDe3rVniO4bcSutW7W0+7yXXnqJkJAQ7r777quu4c7BA2jX9ppa2wcP6Ef3zvYD22233UZycjI7d+6kvLz8qvqP7htOr9CutbaHX9uFmH69am3/4osvOHz4MG+99Rbr168nNzf3qvq/kscFlk8++YSoqCh8fHx4+umnm9RGcnIyjz32GH/+859JSEjg3IVS3l6dwpGcXAkwQghxhVuiryekS1CNbaNHDsLP18fu/nFxcXz66adMmTKFgQMHNvl0UJWwkM7cGNmnxrY7bv0THU1t7e5/8eJFnnjiCfbt20dSUtJV9Q3QNqA1o4bdWGNbv96h9DXbv5xgyZIlrF69mu3btzN79uyr7t/b6MUDI4egv2ImJah9IMNvjrK7/65du5gyZQqJiYlERERc9euv0+mIG3ErLf18q7f5+fpw/52D7M7uzJw5k3/961/89a9/5b777qNTp0619mlyLTYPe4fOzs6mrKyMDz/8kAsXLihyUc+nW79lV8Z+unXqwBPjYu3+JQghhFadPnuef72zjouXyhkYdR2xwwe6tP9L5RW8uewjCk+fJaRLEJMevLvGG7iz2Ww2ViR/wcEjv3BNq5Y8/Ug8LRwENmfZ8s0evtyViZfBwOSE++jgILA5y0+Hcnhv/RcAjLtnONc7CGzO5NYzLKmpqdx666307duXvn37smrVKsLDw7nhhhvw8lLmeuFzF0pJ3XcQgOE3R0lYEUKIP2h7TStGDR+IqW0Adw76k8v79zZ68cDdQ/Hz9WHMyMEuDStQOctw/4hb8W/ZgtEjB7s8rAAMvTGSzkEm7hgU7fKwAtCnZ3f6Xx9ORJ8wVcIKuPEMy5kzZ+jVqxerV69m8ODB2Gw2Tp06VX0+dPbs2RQXF9c7w3KpvILCU8UOH9+Zto99B/9LR1Nb4h1McQkhhNbZbDZKSn/Dv6WfajWcLymllYb7v1DyGy39fFV7n7pUXo7NZsPH21uR9kyBAXgbGz754La3NX/77beEhYUxePBgoDLhNuXircJTxby5PLne/U4UnuatFesb3b4QQgghGm9yQhydOjb8fd1tA4tSrmntzwN3D7H7WOb+wxzOOU5gQGuG3RSFTK4IIYQQrnFNa/9G7e+2gWXgwIEcPnyY7du32z0l1FBnz11gzcav6tznVPE51qbUvY8QQgghlDM5IQ7/K+4+qo/bXsMClRfdTps2jXPnzgHw3HPPERgYyKOPPsq5c+ew2Wxcc801LFiwwOGKfo6uYZFrV4QQQgj1NPYaFrcOLM604YtvSPv+IH8Zcydh3R2vViiEEEII9Wk2sAAUn7vANa1ayuyKEEII4eY0HViEEEII4RnceuE4IYQQQgiQwCKEEEIIDyCBRQghhBBuTwKLEEIIIdyeBBYhhBBCuD0JLEIIIYRwexJYhBBCCOH2JLAIIYQQwu1JYBFCCCGE25PAIoQQQgi3J4FFCCGEEG5PAosQQggh3J4EFiGEEEK4PQksQgghhHB7EliEEEII4fYksAghhBDC7UlgEUIIIYTbk8AihBBCCLcngUUIIYQQbk8CixBCCCHcngQWIYQQQrg9CSxCCCGEcHsSWIQQQgjh9v5/o2H/K3LtSUUAAAAASUVORK5CYII=", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "# Scale the mpl output to 1/2 the normal size\n", - "circuit.draw(output='mpl', scale=0.5)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### 関数としての circuit_drawer()\n", - "\n", - "circuit オブジェクトのメソッドではなく、自己完結型の関数を使用して回路を描画するアプリケーションがある場合、`circuit_drawer()` 関数を直接使用することができます。これは、`qiskit.tools.visualization` の public stable interface に含まれます。 この関数は `circuit.draw()` メソッドと同様に動作しますが、必須の引数として circuit オブジェクトを取る点が異なります。\n", - "\n", - "
\n", - "注記: Qiskit Terra $<=$ 0.7 では、qiskit.tools.visualization import circuit_drawer の circuit_drawer() 関数は latex 出力バックエンドを使用するのがデフォルトの動作ですが、0.6.x では何らかの理由で latex が失敗した場合に mpl にフォールバックする動作が含まれています。 > 0.7 のリリース以降では、このデフォルトが text 出力に変更されています。\n", - "
" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "from qiskit.tools.visualization import circuit_drawer" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA8MAAAKxCAYAAAB36H5IAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAACTQUlEQVR4nOzdeVxU9f7H8feZQbZRUlwCQVzREEXLpSwr166GZmZqpd3yaotm2iZ2b9db3VupafWz7WbXzFbjpl2vadtNKss0V9zLJTe2itIUUIGZ+f1BM4mAMuPAwJzX8/HgAXOW7/l8xwHnPd9zvsdwOp1OAQAAAABgIhZ/FwAAAAAAQHUjDAMAAAAATIcwDAAAAAAwHcIwAAAAAMB0CMMAAAAAANMhDAMAAAAATIcwDAAAAAAwHcIwAAAAAMB0CMMAAAAAANMhDAMAAAAATIcwDAAAAAAwHcIwAAAAAMB0CMMAAAAAANMhDAMAAAAATIcwDAAAAAAwHcIwAAAAAMB0CMMAAAAAANMhDAMAAAAATIcwDAAAAAAwHcIwAAAAAMB0CMMAAAAAANMhDAMAAAAATIcwDAAAAAAwHcIwAAAAAMB0CMMAAAAAANMhDAMAAAAATIcwDAAAAAAwHcIwAAAAAMB0CMMAAAAAANMhDAMAAAAATIcwDAAAAAAwHcIwAAAAAMB0CMMAAAAAANMhDAMAAAAATIcwDAAAAAAwHcIwAAAAAMB0CMMAAAAAANMJ8ncBgC85nVKh3d9VeCbYKhmGv6tAoHA6nSooKPB3GR4JDw+XwS8BAACoZoRhBJRCuzQ11d9VeGbmSCmE30T4SEFBgerWrevvMjySl5cnm83m7zIAAIDJcJo0AAAAAMB0CMMAAAAAANMhDAMAAAAATIcwDAAAAAAwHcIwAAAAAMB0CMMAAAAAANMhDAMAAAAATIcwDAAAAAAwHcIwAAAAAMB0CMMAAAAAANMhDAMAqlRcXJxCQkL8XQYAAEApQf4uAABQ8zRr1kyXXnqpunTpok6dOqlBgwayWq06fvy49uzZow0bNmj9+vVau3at7HZ7he20bt1an3/+ubZt26Zrr71WJ0+erMZeAAAAVIwwDACQJFksFiUnJ2vChAkaMGBAhdtddtlluuWWWyRJBw8e1Ny5czVv3jz9+OOPpbZzBeHY2FjFxsZq1qxZmjRpUpX2AQAAoLJMcZp0bm6uUlJS1KZNG4WGhqpZs2aaPHmy8vPzNXbsWBmGoeeff77UPvv379esWbM0YMAAtW7dWjabTeHh4erUqZNmzJihwsJCP/UGAHyvS5cuSk9P19KlS8sNwg6HQ0VFRWWWx8XF6fHHH9fBgwf14IMPymq1SiodhCVp69at+vvf/161nQAAAPBAwIfh9PR0dezYUbNmzVJOTo7at2+voqIiPfvssxo5cqR27twpSercuXOp/f7xj38oJSVFX331laxWqxITE9WkSRNt2bJFf/7zn3XjjTf6oTeoLhk7Ptec0YY2LJ9d4TZzRhv67+xB1VgV4HtWq1WPPfaY1qxZo44dO7qXf//99/r73/+uQYMGKTo6WlarVcHBwQoLC1P37t01fvx4vf/++3I4HJKkkJAQTZ8+XatXr1b//v3LBOE+ffooNzfXL30EAAAoT0CfJp2bm6vBgwcrJydH999/vx5++GHVq1dPkvTkk09q6tSpCgoKkmEYSkpKKrXvVVddpbvuuksXXnihDMNwL1+/fr0GDRqk9957T1u3bi315hEAapOQkBC98847uvbaa93LNm7cqL/+9a/6+OOP3UH3VCdOnNC6deu0bt06vfTSS2revLnuuece3X333bJarerWrZs++ugjWSwln7UShAEAQE0V0CPDkyZNUkZGhiZOnKjZs2e7g7AkpaSkqFOnTiouLlaLFi0UERFRat+RI0fqoosuKhWEJalr167q37+/JGn79u1V3wkAqAJBQUFKTU11B+GioiL97W9/08UXX6wPP/yw3CBcngMHDujee+/VZZddpj179kiSOwjv3r2bIAwAAGqsgB0Z3rlzp1JTU9WoUSNNnz693G26dOmizZs3q1OnTmXWnTx5UkuXLtUXX3yhffv26dixY+43h64QHBwcXGqfffv2afLkyfrss88UFBSkwYMH65lnnlHDhg193DsAODePPPKIhgwZIknKz8/XkCFDtGLFCq/by83NVVhYWKllNpuN+RUAAECNFbBheOHChXI4HBo1apTq1q1b7jauN26nh+EVK1ZozJgxOnTo0BmP0apVK/fPx44dU+/evRUZGamFCxfq+PHjSklJ0aBBg7Rq1Sr3SAlql+LCAh0/xqgWAkuXLl00depUSVJhYeE5B2HXZFkxMTGSSsK1zWZT06ZN9fTTT2vcuHE+qRsAAMCXAjYMp6WlSZJ69+5d4TYZGRmSSofhb775RldffbWKioo0duxYjRo1Sh06dFCDBg0UFBSkb7/9VgkJCQoKClJCQoJ7v5dfflmZmZlauXKl4uLiJEmxsbG69NJLtXTp0lLX5KH2WLP4Ya1Z/LC/ywB8xmq1asGCBQoKKvnz/49//MMnQfjUybJuvvlmrVy5UhERERo7dqzeeecdffrppz6pHwAAwFcCNgwfOHBAktS8efNy1xcXF2vVqlWSSofhP//5zyosLNSMGTPcIyenWr58uSSpffv2CgkJcS9ftmyZevbs6Q7CktSjRw+1atVK77//vldhuGvXrsrJyfF4PzOz1gnT0Md2+6y9Dr1vV/zFw8td958Z/X1yjLbx8bIXHfdJW8DZrvVNTk5Whw4dJJVMljVjxgyvj1VeEHZdI3zfffdp3rx5kqSpU6eeMQzHx8dz9gwAAPBKVFSU1q9f79W+ARuG8/PzJUnHj5cfMlJTU5Wbm6t69eqpZcuWkiS73a6VK1dKksaMGVNmH4fDobfeekuSdOGFF5Zat2PHDg0fXjY0JSYmaseOHV71IScnR5mZmV7ta1ZBIeE+ba9+VLziOvTzaZuny8rOUvHJgio9BuAyYcIE988PPfSQiouLvWrnTEFYkubPn6+pU6cqPj5e/fr1U7t27fTdd9+V21Z2drZXNQAAAJyLgA3DUVFROnz4sDZu3KgePXqUWpedna0pU6ZIkpKSktwzRufn58tut0squX3I6Z566ilt2rRJUtkwfPjwYdWvX7/MPpGRkRW+AaxMH+AZa52ws29UwzSNbsrIMHzG4XBUGC7j4uL0hz/8QVLJfYQ//vhjr45xtiAsSU6nU//85z/19NNPS5LGjh2rlJSUctuLjo5mZBgAAHjlXDJTwIbhfv36aefOnZo5c6b69++vtm3bSpLWrVunm2++2f2mrXPnzu59IiIiFBMTo8zMTD3++ON68cUXZbVaVVhYqDlz5mjatGkKCgpScXFxmTBcFbwd7jezk8XS1FR/V+GZXbt3KyRgfxNR3fLz8yucNPDSSy91//zGG2/I6XR63H5lgrDL66+/7g7DPXv2rLDN3bt3y2azeVwLAADAuQjYj+JTUlLUsGFDHTp0SImJierYsaPi4+PVvXt3tWrVSn369JFUdibphx56SFLJhFgxMTHq1q2bmjRpooceekjPPfecnE6nDMMoFaIlqUGDBjpy5EiZOn755RdFRkZWSR8BwBNdunRx/7xmzRqP9/ckCEvSzz//7L73cKdOnWS1Wr2oGgAAoGoEbBiOjY3Vl19+qeTkZIWGhmr//v2KjIzU3LlztXz5cu3atUtS2TA8fvx4vfzyy4qPj9cvv/yirKwsDRo0SBs2bFD37t1lt9vVqlUrRURElNovISGh3GuDd+zYUWrWaQDwl1M/xNuwYYNH+3oahE8/Tnh4uPsMHQAAgJogoE/OTEhI0LJly8osz8vL0/79+2WxWNyzqp7qtttu02233VZumxWdVjho0CD95S9/UUZGhvvN4jfffKO9e/dq1qxZ59ALAPCNBg0aSJKKior0008/VXo/b4OwpFKTAJY3rwIAAIC/GE5vLhqr5b755htdcsklateunb799luftHn06FF17NhRjRo10qOPPqoTJ04oJSVFjRs31urVq5kcpprUxmuGZ44U1wzDZ850zXC7du1Uv359BQcH68svv6x0mxMnTtRzzz0nybMgLJUE6aioKB0/flzfffede6b/U+Xl5XHNMAAAqHamfAu+detWSWVPkT4XERERSktL0+TJk3XDDTcoKChIgwYN0jPPPEMQBlAjeDuz/fPPP6969erpxhtv9CgIS9LevXu1d+9er44LAABQlQjDPtS6detyT8sGgNpu+vTpeuaZZ8q97RwAAEBtZMohy6oKwwAQyAjCAAAgkJhyZDgtLc3fJQAAAAAA/MiUI8MAAAAAAHMjDAMAAAAATIcwDAAAAAAwHcIwAAAAAMB0CMMAAAAAANMhDAMAAAAATIcwDAAAAAAwHcIwAAAAAMB0CMMAAAAAANMhDAMAAAAATIcwDAAAAAAwHcPpdDr9XQTgK06nVGj3dxWeCbZKhuHvKhAonE6nCgoKfNberLnv6Gh+gSJs4Zpyxw1lHvtCeHi4DH4JAABANQvydwGALxmGFMKrGiZmGIZsNpvP2gsOCVVwkV3BIaGy2WxlHgMAANRWnCYNAAAAADAdwjAAAAAAwHQIwwAAAAAA0yEMAwAAAABMhzAMAAAAADAdwjAAAAAAwHQIwwAAAAAA0yEMAwAAAABMhzAMAAAAADAdwjAAAAAAwHQIwwAAAAAA0yEMAwAAAABMhzAMAAAAADAdwjAAAAAAwHQIwwAAAAAA0yEMAwAAAABMhzAMAAAAADCdIH8XAN9yOp0qcNj9XYZHwi1WGYbhk7acTqmwdnVfwVbJR90HoN/+DhYU+LsMj4SHh/vs7yAAAKgcwnCAKXDY1SDtf/4uwyOH+/SXzeqbl2KhXZqa6pOmqs3MkVIIv4mAzxQUFKhu3br+LsMjeXl5stls/i4DAABT4TRpAAAAAIDpEIYBAAAAAKZDGAYAAAAAmA5hGAAAAABgOoRhAAAAAIDpEIYBAAAAAKZDGAYAAAAAmA5hGAAAAABgOoRhAAAAAIDpEIYBAAAAAKZDGAYAAAAAmE6QvwsAAKCmaty4sbp06aJmzZopJCRERUVF+vHHH7Vx40YdOHCgUm0kJyfrtttu08iRI3Xy5MkqrhgAAFQWYRgAgFN07NhR48ePV3JysuLi4ircLjc3V2lpaXrppZf02WeflbtNcnKyFi9erJCQEC1ZskTXXnstgRgAgBrCFKdJ5+bmKiUlRW3atFFoaKiaNWumyZMnKz8/X2PHjpVhGHr++edL7bN//37NmjVLAwYMUOvWrWWz2RQeHq5OnTppxowZKiws9FNvAABVoUePHvryyy+1ZcsWjR8//oxBWJIaNWqkESNGKC0tTTt27NCIESNKrT81CEvS4cOHVVxcXGX1AwAAzwT8yHB6eroGDhyonJwc2Ww2tW/fXllZWXr22We1d+9e/fLLL5Kkzp07l9rvH//4h+bPny+bzaamTZsqMTFRP/74o7Zs2aItW7Zo3bp1Wrx4sR96VD3s8xfI8c6/Zb3vHlkGXFVqndPplH3Kg3Lu3Kmg55+V0bKFf4qsQhk7PtfiJ3qr542z1CX5gXK3mTPaUIvOyRrywLJqrg6AL4WGhuqxxx7TvffeK4vl98+I8/PztW7dOm3YsEHffvutjh8/rjp16qhVq1bq0qWLLr74YjVs2FCSlJCQoNTUVI0YMUITJkxQt27dSgXhhQsX6uabb5bdbvdLHwEAQFkBHYZzc3M1ePBg5eTk6P7779fDDz+sevXqSZKefPJJTZ06VUFBQTIMQ0lJSaX2veqqq3TXXXfpwgsvlGEY7uXr16/XoEGD9N5772nr1q3q2LFjtfapulhuHiXHmm9kn/svGV0uktG4kXud470lcm7ZKsufbg3IIAzAPKKjo/Xxxx+X+lu+Y8cOPf/883rjjTeUl5dX4b5BQUG69tprNXHiRF155ZWSpGHDhqlv374KDw9XcHCwJIIwAAA1VUCfJj1p0iRlZGRo4sSJmj17tjsIS1JKSoo6deqk4uJitWjRQhEREaX2HTlypC666KJSQViSunbtqv79+0uStm/fXvWd8BOjTh0FTblfOnFC9qf/z73ceShDjgWvy7ignSzDh/mvQAA4R9HR0Vq5cqU7CJ84cUJTpkxRx44d9c9//vOMQViSiouLtWjRIvXq1UvDhw/XTz/9JEmqX78+QRgAgFogYEeGd+7cqdTUVDVq1EjTp08vd5suXbpo8+bN6tSpU5l1J0+e1NKlS/XFF19o3759OnbsmBwOh6TfQ7DrzY4kZWRkaMaMGVq7dq02b96swsJCOZ3OKuhZ9THi28hywwg53loox/IPZQy4SvYnZ0tOp6xT7pdhtfq7RADwSlhYmD7++GO1adNGkvT9998rOTlZ3377rVftLVq0SHXq1NGbb77pPtX65MmTmjZtGkEYAIAaKmDD8MKFC+VwODRq1CjVrVu33G3CwsIkqUwYXrFihcaMGaNDhw6d8RitWrVy/7xnzx4tXrxY3bp1U3BwsFatWnWOPagZLKNulGP1N7L/a54se7+X87tdstw+TkazWH+XVi2KCwt0/Fiuv8sA4GOPPfaYe0T4+++/1+WXX66srCyv20tOTtarr75a6prjkJAQvfzyy+rXr1+t/3AUAIBAFLBhOC0tTZLUu3fvCrfJyMiQVDoMf/PNN7r66qtVVFSksWPHatSoUerQoYMaNGigoKAgffvtt0pISFBQUJASEhLc+11xxRXKzs6WJD3yyCMBE4aNoCAFTblPxXffI8ey5TI6JMpy3bX+LqvarFn8sNYsftjfZQDwocsuu0z33HOPpJJTo5OTk885CJ86WdaiRYvUrVs3NW/eXH369NEdd9yhl156yRelAwAAHwrYMHzgwAFJUvPmzctdX1xc7A6sp4bhP//5zyosLNSMGTM0derUMvstX75cktS+fXv3Gx9JpUYDfKVr167KycnxaB9ncLA09wXfFmKzSXXqSMXFMrp1leHjvraNbyvDR7eqstYJ09DHdvukLUnq0Pt2xV88vNx1/5nR3yfHaBsfL3vRcZ+0Bfja0DH3yFY3Qtk52YqNjS3zuCZyXdJSkZkzZ7r/Zv/1r3/1+tRoqWwQdl0j3Lt3b/3vf/+TJD3++ONasGCBTpw4UWE78fHxVfL/CAAAgS4qKkrr16/3at+ADcP5+fmSpOPHyw8Zqampys3NVb169dSyZUtJkt1u18qVKyVJY8aMKbOPw+HQW2+9JUm68MILq6LsUnJycpSZmenZTqEhquPDGpxOp+xPPSMVF0lxzeR4+x1ZrrxCRtNonx0jKztLOnHSJ20FhYT7pB2X+lHxiuvQz6dtni4rO0vFJwuq9BiAtxy/Xe/qsNuVmZlZ5nFt06lTJ1122WWSSuZ/eOaZZ7xuq6IgbLfb9emnn2rhwoW68cYbFRkZqREjRuj111+vsC3XmUUAAKD6BGwYjoqK0uHDh7Vx40b16NGj1Lrs7GxNmTJFkpSUlOSeMTo/P9890Ul5n+A/9dRT2rRpk6TqCcNRUVEe7+MMDtZPPqzBsWSpnJu3yDLmFll6XKLiu+6W/alnZJ09s8xM295qGt3UpyPDtU3T6KaMDKPGsvw2UZ7FalVMTEyZxzWRw+GoMFyOHz/e/fPzzz9/1lHkipwpCLs8++yzuvHGGyVJd9111xnDcHR0NCPDAAB4wZvM5BKwYbhfv37auXOnZs6cqf79+6tt27aSpHXr1unmm29Wbm7JpEidO3d27xMREaGYmBhlZmbq8ccf14svviir1arCwkLNmTNH06ZNU1BQkIqLi6slDHsz3J9vL1aDtP/55PjOzEw55i+Q0a6tLCOul2G1yjJ6lByvvibHkqWyDh3ik+Ps2r1LNqtvXooni6WpqT5pqtrs2r1bIQH7m4ja7okX3tLRvHxFR0UrIyOjzOOaKD8/v8KJE5OTkyVJeXl5evPNN71qvzJBWJLWrFmj9PR0de7cWd27d1ejRo3c//ecbvfu3bLZbF7VAwAAvBOwH0OnpKSoYcOGOnTokBITE9WxY0fFx8ere/fuatWqlfr06SOp7EzSDz30kCTp5ZdfVkxMjLp166YmTZrooYce0nPPPSen0ynDMEqF6EDkdDhkn/W05HDIOuU+922ULCOul9E2Xo75C+TM4rQ+ALXH+eef777Oee3atWe9j3B5KhuEXVyTOUolt/MDAAA1R8CG4djYWH355ZdKTk5WaGio9u/fr8jISM2dO1fLly/Xrl27JJUNw+PHj9fLL7+s+Ph4/fLLL8rKytKgQYO0YcMGde/eXXa7Xa1atVJERIQ/ulVtHIvek3PHTlluGS0jLs693LBaZX3gPslhl/2pZ7hdCIBa49QwumHDBo/39zQIn34cwjAAADVLQJ+cmZCQoGXLlpVZnpeXp/3798tisahDhw5l1t9222267bbbym3TDOHPefCgHK+9ISPhAlmGXVdmvdGieZWcLg0AValZs2bun3fu3OnRvt4E4dOPE3fKB4sAAMD/AjoMV2T79u1yOp1q27atwsN9N/vwokWLJEk7duwo9bhFixbq2rWrz45T1Yy4ONVZ/t8zbmO9caSsN46spoqqX2z7Xpr85pk/+DjbegA1y86dO/XPf/5TYWFhHt1OqVWrVl4FYankrgCvvfaaTpw44b5bAQAAqBlMGYa3bt0qqewp0udq+PDh5T6+5ZZbtGDBAp8eCwDgmZUrV3oVSL///ns9+uijeuKJJzwKwlLJ3QtuvfVWj48JAACqHmHYh8xwCjUAmNH06dO1Y8cOLVu2rNJBGAAA1GyEYQAAKuG//z3z5SMAAKB2MWUYPvVWFwAAAAAA8wnYWysBAAAAAFARwjAAAAAAwHQIwwAAAAAA0yEMAwAAAABMhzAMAAAAADAdwjAAAAAAwHQIwwAAAAAA0yEMAwAAAABMhzAMAAAAADAdwjAAAAAAwHQIwwAAAAAA0wnydwHwrXCLVYf79Pd3GR4Jt1h91lawVZo50mfNVYtg33UfgKTw8HDl5eX5rL1Zc9/R0fwCRdjCNeWOG8o89oXw8HCftAMAACqPMBxgDMOQzWref1bDkELM230A+u3voM3ms/aCQ0IVXGRXcEiobDZbmccAAKB24jRpAAAAAIDpEIYBAAAAAKZDGAYAAAAAmA5hGAAAAABgOoRhAAAAAIDpEIYBAAAAAKZDGAYAAAAAmA5hGAAAAABgOoRhAAAAAIDpEIYBAAAAAKZDGAYAAAAAmA5hGAAAAABgOoRhAAAAAIDpEIYBAAAAAKZDGAYAAAAAmA5hGAAAAABgOoRhAAAAAIDpEIYBAAAAAKYT5O8CAF9yOqVCu7+r8EywVTIMf1cBIFA4nU4VFBT4uwyPhIeHy+APIQCgmhGGEVAK7dLUVH9X4ZmZI6UQfhMB+EhBQYHq1q3r7zI8kpeXJ5vN5u8yAAAmw2nSAAAAAADTIQwDAAAAAEyHMAwAAAAAMB3CMAAAAADAdAjDAAAAAADTIQwDAAAAAEyHMAwAAAAAMB3CMAAAAADAdAjDAAAAAADTIQwDAAAAAEyHMAwAAM7IMAyFhYUpNDRUhmF4vP/o0aMVEhJSBZUBAOA9wjAAACilcePGmjBhghYsWKCtW7eqqKhIBQUFOn78uAoLC7V582bNnz9fd9xxhxo0aHDGth555BG98cYbWrJkCYEYAFCjEIYBAIAkqVu3bnrjjTd06NAhvfDCC7rlllvUoUMHWa1W9zZBQUFKSkrSmDFj9NJLLykzM1Pz589X586dy7T3yCOP6OGHH5YkDRgwQAMHDqyurgAAcFamCMO5ublKSUlRmzZtFBoaqmbNmmny5MnKz8/X2LFjZRiGnn/++VL77N+/X7NmzdKAAQPUunVr2Ww2hYeHq1OnTpoxY4YKCwv91BtUh4wdn2vOaEMbls+ucJs5ow39d/agaqwKAKqGzWbT888/r7Vr15Y5pbmoqEibN29WWlqa0tLStHXrVhUXF7vXh4WFacyYMdqwYYNmz56tsLAwSaWDsCRNmjRJS5YsqbY+AQBwNkH+LqCqpaena+DAgcrJyZHNZlP79u2VlZWlZ599Vnv37tUvv/wiSWU+0f7HP/6h+fPny2azqWnTpkpMTNSPP/6oLVu2aMuWLVq3bp0WL17shx4BAOA73bp1U2pqqlq2bOle9vPPP+uVV17RokWLtGXLFp08ebLUPqGhoercubNGjBihMWPGqH79+rJYLLr//vs1ePBgpaWl6c4773RvP2nSJD333HPV1icAACojoEeGc3NzNXjwYOXk5Oj+++9Xdna2Nm7cqJycHM2cOVPLly/XunXrZBiGkpKSSu171VVXacOGDTp27Jh27dqltWvXav/+/Vq3bp3OP/98vffee9q6daufegYAwLnr1auX0tLS3EE4Pz9f99xzj2JiYjR16lStW7euTBCWpBMnTmjNmjW677773NueOHFCktS2bVuCMACgVgjoMDxp0iRlZGRo4sSJmj17turVq+del5KSok6dOqm4uFgtWrRQREREqX1Hjhypiy66qMysmV27dlX//v0lSdu3b6/6TgAAUAW6deum999/X3Xr1pUkrVq1SklJSZozZ065AbgiBQUFevLJJ9W5c2dlZWWVWjdjxgyCMACgxgrY06R37typ1NRUNWrUSNOnTy93my5dumjz5s3q1KlTmXUnT57U0qVL9cUXX2jfvn06duyYHA6HpN9DcHBwsHv7RYsWaeHChVq/fr1++uknxcXFadiwYfrzn//sfqOB2qe4sEDHj+X6uwwA8CmbzabU1FT3/0/vv/++hg8f7lEIPt2NN96opk2bllo2ZMgQPfLII+fULgAAVSVgw/DChQvlcDg0atSoCsOoa5KP08PwihUrNGbMGB06dOiMx2jVqpX759mzZysuLk5PPPGEYmNjlZ6erkcffVRffPGFVq5cKYsloAfhA9aaxQ9rzeKHz74hANQiTz75pPvU6FWrVp1zED59sqyDBw8qLi5OCQkJevTRR/Xggw+ec80AAPhawIbhtLQ0SVLv3r0r3CYjI0NS6TD8zTff6Oqrr1ZRUZHGjh2rUaNGqUOHDmrQoIGCgoL07bffKiEhQUFBQUpISHDv9/7776tx48bux1deeaUaN26sUaNG6auvvtIVV1zh6y6iGnTofbviLx5e7rr/zOhfzdUAwLnr3r27JkyYIKnkGuGbb77Zp0F40qRJWrFihTZu3KiQkBA98MADeuONN7i0CABQ4wRsGD5w4IAkqXnz5uWuLy4u1qpVqySVDsN//vOfVVhYqBkzZmjq1Kll9lu+fLkkqX379qVuPXFqEHbp2rWrJCkzM9OrPnTt2lU5OTle7WtW1jphGvrYbp+1Vz8qXnEd+vmsvfK0jY+Xveh4lR4D8NbQMffIVjdC2TnZio2NLfPYDGrbc+C6pKcikyZNcv/8l7/8Rfv27fP6WOUFYdc1wn//+9/1+OOPy2q1auLEiRo/fnyF7cTHx3MGFQDAK1FRUVq/fr1X+wZsGM7Pz5ckHT9efshITU1Vbm6u6tWr5z5VzG63a+XKlZKkMWPGlNnH4XDorbfekiRdeOGFZ63hs88+k6RSI8ieyMnJ8TpIm1VQSLi/S/BYVnaWik8W+LsMoFwOu939PTMzs8xjMwik56Bx48YaPrzkbJfc3FzNnTvX67bOFIQl6dlnn9WDDz6oevXqafTo0Zo6daqOHj1ablvZ2dle1wEAgLcCNgxHRUXp8OHD2rhxo3r06FFqXXZ2tqZMmSJJSkpKcs8YnZ+fL/tvb3Jct4g41VNPPaVNmzZJOnsYzszM1LRp0zRgwIAy9zD2pA/wjLVOmL9L8FjT6KaMDKPGslit7u8xMTFlHptBbXsOHA5HheFy5MiR7skfX3nlFa9Pjz5bEJakvLw8vfHGG5owYYLq1q2roUOH6rXXXiu3vejoaEaGAQBeOZfMFLBhuF+/ftq5c6dmzpyp/v37q23btpKkdevW6eabb1ZubskMwacG1YiICMXExCgzM1OPP/64XnzxRVmtVhUWFmrOnDmaNm2agoKCVFxcfMYwnJeXpyFDhig4OFjz58/3ug/eDveb2cliaWqqv6vwzK7duxUSsL+JqO2eeOEtHc3LV3RUtDIyMso8NoPa9hzk5+dXOHFkt27d3D8vWrTIq/YrE4Rd3n33Xff1yd27d68wDO/evVs2m82regAA8FbAfgybkpKihg0b6tChQ0pMTFTHjh0VHx+v7t27q1WrVurTp4+ksjNJP/TQQ5Kkl19+WTExMerWrZuaNGmihx56SM8995ycTqcMw6hwtPf48eMaPHiw9u3bp08++UTR0dFV2k8AACqrS5cukqTCwkJt2bLF4/09CcKStHHjxjLHBgCgpgjYMBwbG6svv/xSycnJCg0N1f79+xUZGam5c+dq+fLl2rVrl6SyYXj8+PF6+eWXFR8fr19++UVZWVkaNGiQNmzYoO7du8tut6tVq1aKiIgoc8yioiJdf/31Wr9+vT788EO1b9++WvoKAMDZWCwWXXDBBZKk7du3q7Cw0KP9PQ3CknT06FHt2bNHkpSYmOhhxQAAVK2APjkzISFBy5YtK7M8Ly9P+/fvl8ViUYcOHcqsv+2223TbbbeV26bT6Sx3ueuexitWrNAHH3yg7t27n1vx8KvY9r00+c3y/61dzrYeAGqS0NBQnThxQmFhYfr555892tebIOzy888/q2XLlhX+/wkAgL8EdBiuyPbt2+V0OtW2bVuFh/tm9uG77rpL7777rh588EGFh4drzZo17nWtW7cu99ZLAABUl4KCAve1xNbfJgGrrFMn2vIkCEvSZZdd5p6cEgCAmsSUYXjr1q2Syp4ifS4+/PBDSdKMGTM0Y8aMUuteffVV3XrrrT47FgAA58LTcDp9+nQ5nU7l5+d7FIS9ORYAANWFMOwj+/fv91lbAADUNKd/0AsAQG0XsBNonUlVhGEAAAAAQO1hypHhtLQ0f5cAAAAAAPAjU44MAwAAAADMjTAMAAAAADAdwjAAAAAAwHQIwwAAAAAA0yEMAwAAAABMhzAMAAAAADAdwjAAAAAAwHQIwwAAAAAA0yEMAwAAAABMhzAMAAAAADAdwjAAAAAAwHSC/F0A4EvBVmnmSH9X4Zlgq78rABBIwsPDlZeX57P2Zs19R0fzCxRhC9eUO24o89gXwsPDfdIOAACeIAwjoBiGFMKrGoCJGYYhm83ms/aCQ0IVXGRXcEiobDZbmccAANRWnCYNAAAAADAdwjAAAAAAwHQIwwAAAAAA0yEMAwAAAABMhzAMAAAAADAdwjAAAAAAwHQIwwAAAAAA0yEMAwAAAABMhzAMAAAAADAdwjAAAAAAwHQIwwAAAAAA0yEMAwAAAABMhzAMAAAAADAdwjAAAAAAwHQIwwAAAAAA0yEMAwAAAABMhzAMAAAAADCdIH8XAPiS0ykV2v1dhWeCrZJh+LsKAECgcDqdKigo8HcZHgkPD5fBf4YAqhlhGAGl0C5NTfV3FZ6ZOVIK4TcRAOAjBQUFqlu3rr/L8EheXp5sNpu/ywBgMpwmDQAAAAAwHcIwAAAAAMB0CMMAAAAAANMhDAMAAAAATIcwDAAAAAAwHcIwAAAAAMB0CMMAAAAAANMhDAMAAAAATIcwDAAAAAAwHcIwAAAAAMB0CMMVaNy4sQzDUEZGhr9LAQAAVcxeJNmLz62NohO+qSUQnXfeef4uAQDKCPJ3ATVRRkaGcnNzFRkZqdjYWH+XAwAAqpC9SNq8RDIsUtIQyerFu6OCI9KGVCm2k9TyEl9X6B/nn3++unTpoq5du6p169YKDQ1VcXGxfvnlF6Wnp2vDhg3atm2biovP/CnCLbfcotmzZ+sPf/iDNm7cWE3VA8DZEYbLkZ6eLklKSkrybyEAAKDKbftA+uVAyc9b/ut5IHYF4ZPHpL1fScHhUkwtfQsREhKi66+/XhMmTNCll1561u0PHz6sV199VS+99JJ2795dZv0tt9yi+fPny2Kx6NNPP1Xnzp118ODBqigdADzGadLlIAwDv3MUS3k/Sb9mSXm5ksPh74oAwLfiLpIsv4Xfn/eVBOLKnjJ9ahCWJFtDqXHrKimzyo0ePVoHDx7Um2++WakgLEkNGjTQfffdp127dunf//63mjRp4l53ahCWpNdff50gDKBGYWS4HJs3b5YkderUyc+VwF8ydnyuxU/0Vs8bZ6lL8gPlbjNntKEWnZM15IFl1Vxd9Tj+q5S5WcrcKhUd/315SL2SEY+YJCnE5r/6AMBXGjSTLhwmbVpc8gGgKxCfbYS4vCDcZYQUXMv+NkZFRWnu3Lm65pprSi3funWrPvzwQ/fp0Hl5ebJarWrWrJm6dOmiSy65RNdcc41CQ0MlScOHD1fv3r111113KSwsrFQQnjNnju65557q7hoAnFHAjwzn5uYqJSVFbdq0UWhoqJo1a6bJkycrPz9fY8eOlWEYev7550vtc+rI8OrVqzV06FA1btxY4eHhuvTSS/XJJ5/4oSdA9flpr7T6VWn/2tJBWCp50/f9qpL1h5lfDkCAcAXiyo4QB0oQbteundauXVsqCP/nP/9Rz549lZSUpKlTp+rf//63duzYoYMHD2rfvn1auXKlnnnmGY0cOVIxMTGaMmWKfvrpJ0lSo0aNlJqaqldffZUgDKDGC+gwnJ6ero4dO2rWrFnKyclR+/btVVRUpGeffVYjR47Uzp07JUmdO3d275OXl6e9e/fKarVqxYoV6tmzp77++mv3RFqrV6/WwIEDtXTpUn90CahyPx8oeQPoOMspgsUnpPTF0tGc6qkLAKpaZQNxoAThNm3a6PPPP1ezZs0kST/88IOGDh2q6667TqtWrapUG7/88otmz56t9u3b69///rd7uWEYkgjCAGq2gA3Dubm5Gjx4sHJycnT//fcrOztbGzduVE5OjmbOnKnly5dr3bp1Mgyj1LXBmzdvltPplCQ99thjeuWVV5SVlaVNmzYpOztbffv2lcPh0L333uveDggUDoe04yPJWcnrgu1F0s5PJH4VAASKswXiQAnC4eHh+uCDDxQVFSVJ2rRpk5KSkrRkyRKv2svNzdUHH3wgx2kTSzB7NICaLGDD8KRJk5SRkaGJEydq9uzZqlevnntdSkqKOnXqpOLiYrVo0UIRERHuda7rhe12u15//XXdeuutslqtkkrukTdv3jxZLBZ9//332rVrV/V2CtWuuLBAx4/llvsViHL3/v4Gr7KO/cjoMIDAUlEgzssNjCAsSdOnT1d8fLwkacuWLerbt69+/PFHr9s7fbIslzlz5qhp06bnVCsAVJWADMM7d+5UamqqGjVqpOnTp5e7TZcuXSSVnSTLdb3wwIEDNXTo0DL7tWjRQjExMZKkzMxM9/J9+/bpmmuuUb169dSgQQP98Y9/1M8//+yL7sCP1ix+WC+Pb1zuVyDK2urdfplbfFsHAPhbeYF47RuBEYR79uypSZMmSZIKCgo0bNgwHT582Ov2Tg/Cc+bM0WuvvSZJql+/vl5++eVzLxoAqkBAzia9cOFCORwOjRo1SnXr1i13m7CwMEkVh+Hx48dX2L5rJNnV9rFjx9S7d29FRkZq4cKFOn78uFJSUjRo0CCtWrWqzKekldW1a1fl5DDk5glrnTANfazsfQ691aH37Yq/eHi56/4zo79PjtE2Pl7202ep8pPHb16hmIbtPN7vf8u/1FVjb6yCiuBvQ8fcI1vdCGXnZCs2NrbMYzMw+3Ng9v63jblYD1z7poLrhMlhL1mWkfudZs4doWPTauaH3qefqny6adOmuX/+y1/+oj179nh9rPKC8D333KP69eurf//+atq0qZKTk9WlSxdt2LChwnbi4+O9fr8EwNyioqK0fv16r/YNyDCclpYmSerdu3eF22RklEyDe2oYttvt2rZtmywWi3r16lXufna73X2PvLi4OEnSyy+/rMzMTK1cudK9LDY2VpdeeqmWLl2qa6+91qt+5OTklBp9xtkFhYT7tL36UfGK69DPp22eLis7S8UnC6r0GJVlt3t38W9xkZ3XaoBy2O3u75mZmWUem4HZnwPT9/9EuvJPHFNwnTD3sh9/Oai9+79TUfFJP1bmnfj4eF111VWSpL179+q5557zuq2KgrAkHTlyRA8//LD+9a9/SSoZZBg3blyFbWVnZ3tdBwB4KyDD8IEDByRJzZs3L3d9cXGxe5bEU8Pwd999p+PHj6tJkyalrjE+1Zo1a3Ts2DElJia6J51YtmyZevbs6Q7CktSjRw+1atVK77//vtdh2NU+Ks96ypuV2qJpdNMaMzKcf/IXr/YrKDrivnwAgcXy25wJFqtVMTExZR6bgdmfAzP3v/F5zfXg9e+qQb0mpZZf1La/pt++XM8vu11F9poXiB0OR4Xh8vbbb3f//M9//vOso8gVOVMQdnn77bc1e/ZsnXfeebrpppt033336ejRo+W2Fx0dzcgwAK+cS2YKyDCcn58vSTp+vPyAkZqaqtzcXNWrV08tW7Z0L3dNnlVYWFhh2y+99JIk6aabbnIv27Fjh4YPL3sqbWJionbs2OF5B37j7XC/mZ0slqam+rsKz+zavVshNeQ3MXOrtPNjz/cb/5drNW3etT6vB/73xAtv6WhevqKjopWRkVHmsRmY/Tkwa/9PnzX6dJ1a9tV7T+9V0hDJWkP+hrvk5+dXeJmY68w3h8OhBQsWeNV+ZYKwVHI98sKFC3XnnXcqLCxM3bt316efflpum7t375bNVgsvwAZQqwXkR3CuTwfKm84/OztbU6ZMkSQlJSW574Mn/X698JEjR8qdKXrlypV666231LBhQ919993u5YcPH1b9+vXLbB8ZGalffvFupA3wh6gLpKAQz/YJO09q2KJKygEAvyjv9kmnOtt9iGuq4OBg9+0kv/vuO68m+qxsEHb5+uuv3T+7Ji8FgJoiIMNwv34l13jOnDmzVKhdt26devfurdzcktvidO7cudR+rjBcp04dTZgwQb/++qt73dKlS92zSy9YsKDC06iB2sxaR4q/0rN94ntLRkD+JQFgRhXdR1iuz86NM9+HuCZLTExUcHCwJO/OPvM0CJ9+nIsuusjjYwJAVQrIt7ApKSlq2LChDh06pMTERHXs2FHx8fHq3r27WrVqpT59+kgqO5O06zTpF198UZ999pliY2PVvXt3NWvWTEOGDNGRI0f03HPPadCgQaX2a9CggY4cOVKmjl9++UWRkZFV00mgisQkVTIQG1L7AVKTNlVeEgBUi4qC8Om3T6roPsQ1PRA3atTI/fP+/fs92tebICyV3HrSpXHjwLwtIYDaq4Zd5eIbsbGx+vLLLzVlyhR98cUX2r9/v9q3b6+5c+fqtttuU+vWrSWVDsM5OTn64YcfFBkZqXHjxik6OlqPPvqotm3bJpvNpuuuu04PPvigunXrVuZ4CQkJ5V4bvGPHDl1xxRVV11FUmdj2vTT5zTPPrHy29bVZ825SvfOlg+ul3O9LrzMsUpN4Ka6rdF60f+oDAF+rbBB2cQXiTYslR/HvgbgmXkPssnXrVt1www0KCwvTli2Vv0F8vXr1NHPmTI+DsCSdPHlS48aN04kTJ5SVleVN2QBQZWron+tzl5CQoGXLlpVZnpeXp/3798tisahDhw7u5VFRUXI6fw83ycnJSk5OrtSxBg0apL/85S/KyMhw33Pxm2++0d69ezVr1qxz7AngH5FxJV/Hj0jfvCEVnyy5nrjHGCmk/HlZAKBW8jQIu9S2QJyTk6PUVM9nmTx27Jj69++vFStW6O233650EJYkp9OpV155xeNjAkB1CMjTpM9k+/btcjqdio+PV3i4b+5Je/vttys6OlpDhgzRsmXLtGjRIt14443q3r27hgwZ4pNjAP4SVr/kWmKp5DtBGECg+fZ/ngdhl/JOmc5Ir5Iy/Wrr1q268MILPQrCAFDTmS4Mb926VVLZ64XPRUREhNLS0hQdHa0bbrhB48aN06WXXqply5ZxzzwAAGq4xIFSeKTnQdjl1EAclSDFBeg8UZmZmf4uAQB8qgaexFO1qiIMS1Lr1q3LPS0bAADUbCF1S0KwYXgehF0aNJO6j5ZskcywDwC1BWEYAACYni8uAanb6OzbAABqDtOF4bS0NH+XAAAAAADwM07kAQAAAACYDmEYAAAAAGA6hGEAAAAAgOkQhgEAAAAApkMYBgAAAACYDmEYAAAAAGA6hGEAAAAAgOkQhgEAAAAApkMYBgAAAACYTpC/CwB8KdgqzRzp7yo8E2z1dwUAgEASHh6uvLw8n7U3a+47OppfoAhbuKbccUOZx74QHh7uk3YAwBOEYQQUw5BCeFUDAEzMMAzZbDaftRccEqrgIruCQ0Jls9nKPAaA2orTpAEAAAAApkMYBgAAAACYDmEYAAAAAGA6hGEAAAAAgOkQhgEAAAAApkMYBgAAAACYDmEYAAAAAGA6hGEAAAAAgOkQhgEAAAAApkMYBgAAAACYDmEYAAAAAGA6hGEAAAAAgOkQhgEAAAAApkMYBgAAAACYDmEYAAAAAGA6hGEAAAAAgOkQhgEAAAAApkMYBgAAAACYTpC/C4BvOZ1OFTjs/i7DI+EWqwzD8ElbTqdUWLu6r2Cr5KPuAwBgek6nUwUFBf4uwyPh4eE+ey8EoPIIwwGmwGFXg7T/+bsMjxzu0182q29eioV2aWqqT5qqNjNHSiH8JgIA4BMFBQWqW7euv8vwSF5enmw2m7/LAEyH06QBAAAAAKZDGAYAAAAAmA5hGAAAAABgOoRhAAAAAIDpEIYBAAAAAKZDGAYAAAAAmA5hGAAAAABgOoRhAAAAAIDpEIYBAAAAAKZDGAYAAAAAmA5h+AwaN24swzCUkZHh71KAKvXjHunAeu/3dzqlvV9Jh/lVAQAEGJvNposvvlj9+/fXVVddpcsvv1xNmjSp9P6GYejJJ5/URRddVIVVAvBGkL8LqKkyMjKUm5uryMhIxcbG+rscoMr8uEfaulRyOiQ5pebdPNvf6ZT2rJQOrJMObpA6D5Ma8CsDAKjFLrvsMv3pT39Sjx491K5dO1ksZcePDh06pHXr1mnhwoVasmSJiouLy2xjGIZefPFF3XnnnRo3bpz69eunjRs3VkcXAFQCI8MVSE9PlyQlJSX5txCgihX8/FsQlrT7i5JQW1mnBmFJshdJBYd9XyMAANXh5ptv1ubNm/XVV1/pT3/6kxISEsoNwpLUrFkzXXfddXr33Xd14MABTZs2TaGhoe71pwZhSYqIiFDr1q2rpR8AKocwXAGzh2H7/AUquupqOT76pMw6p9Op4gemqij5Gjn37a/+4qpBxo7PNWe0oQ3LZ1e4zZzRhv47e1A1VlU1Wlwste75++PKBuLTg7AkJVwlxXT0fY0AAFSlZs2a6aOPPtLrr79e6r1fYWGh1q9fr5dffll///vf9eijj2rOnDn6/PPPdfToUfd2TZs21d///nelp6erR48eZYKw3W7XqFGj9O6771Z73wBUjNOkK7B582ZJUqdOnfxciX9Ybh4lx5pvZJ/7LxldLpLRuJF7neO9JXJu2SrLn26V0bKF/4qEz7S8pOT73q9Kvu/+ouR7RadMVxiEzfnZEQCgFrv66qu1cOFCRUREuJetWrVK//znP7Vo0SKdPHmy3P0Mw1Dv3r01YcIEDRkyREFBQWrXrp2++uorrV+/Xt27d5f0exBOTU2tlv4AqDxTjAzn5uYqJSVFbdq0UWhoqJo1a6bJkycrPz9fY8eOlWEYev7550vtc+rI8OrVqzV06FA1btxY4eHhuvTSS/XJJ2VHTAOJUaeOgqbcL504IfvT/+de7jyUIceC12Vc0E6W4cP8VyB8ruUllRshJggDAALFddddpyVLlriD8KFDhzRgwAD17NlTb731VoVBWCo5Uy4tLU3XX3+9OnTooNWrV0uSLBYLQRioJQI+DKenp6tjx46aNWuWcnJy1L59exUVFenZZ5/VyJEjtXPnTklS586d3fvk5eVp7969slqtWrFihXr27Kmvv/7aPZHW6tWrNXDgQC1dutQfXao2RnwbWW4YIeeGjXIs/1BOu132J2dLTqesU+6XYbX6u0T42NkCMUEYABAorrzySi1cuFB16tSRJL377rvq0KGDPv74Y4/b+u6773T55Zdr7dq1pZYvXLiQIAzUYAEdhnNzczV48GDl5OTo/vvvV3Z2tjZu3KicnBzNnDlTy5cv17p162QYRqnrQzZv3iyn0ylJeuyxx/TKK68oKytLmzZtUnZ2tvr27SuHw6F7773XvV2gsoy6UWrVSvZ/zZPjhZfk/G6XLLf+UUYzc0wXXFxYoOPHcsv9ClTlBeLiwpKf7YUEYQBA7RcREaHXX39dwcHBkqQFCxbohhtuKHUdsCdcZxm6RoRdRo4cWWrABUDNEtDXDE+aNEkZGRmaOHGiZs8uPRFSSkqK3n77bW3evFktW7YsdZ2I63phu92u119/XUOHDnWvO++88zRv3jy1bt1a33//vXbt2qV27dpVT4f8wAgKUtCU+1R89z1yLFsuo0OiLNdd6++yqs2axQ9rzeKH/V1GtTv9GmK7KwwX/b4NQRgAUFvNnj1bcXFxkqS0tDSNGzdODofDq7bKmyxr6dKlGjp0qOrUqaMFCxaoW7duKioqOktLAKpbwIbhnTt3KjU1VY0aNdL06dPL3aZLly7avHlzmUmyXNcLDxw4sFQQdmnRooViYmJ06NAhZWZmql27dsrIyNCMGTO0du1abd68WYWFhec8aty1a1fl5OR4tI8zOFia+8I5HbcMm02qU0cqLpbRrauMCm4x4K228W1lFBb6pC1rnTANfWy3T9qSpA69b1f8xcPLXfefGf19coy28fGyFx33SVu+Nrjb3Rp22dQyy1/9NEVf/N/bfqgI1W3omHtkqxuh7JxsxcbGlnlsBmZ/Dszef5f5kw7IYrHKYbcrNra5v8upVrXtNXC2UNu5c2fddtttkqRjx47pT3/6k+x2u1fHqmjW6Pfee0/r1q1Tp06d1KlTJ91+++164YWK35/Fx8dXeAsnAGcWFRWl9evXe7VvwIbhhQsXyuFwaNSoUapbt26524SFhUkqO2O0KwyPHz++wvZdI8mutvfs2aPFixerW7duCg4O1qpVq861C8rJyVFmZqZnO4WGqM45H/l3TqdT9qeekYqLpLhmcrz9jixXXiGjabTPjpGVnSWdqHiCCk8EhYT7pB2X+lHxiuvQz6dtni4rO0vFJwuq9BjeeinzQcVH91BSqyvcy77Y/K7e/niWH6tCdXL89gbRYbcrMzOzzGMzMPtzYPb+uzjldH83U7+lwHsNTJgwwf3ztGnTdODAAa/aqSgIu64RHjdunNatW+c+5pnCcHZ2tlc1ADg3ARuG09LSJEm9e/eucJuMjAxJpcOw3W7Xtm3bZLFY1KtXr3L3s9vtOnjwoCS5T7G54oor3H/IHnnkEZ+E4aioKI/3cQYH66dzPvLvHEuWyrl5iyxjbpGlxyUqvutu2Z96RtbZM2UYhk+O0TS6qU9HhmubptFNa+zI8IieD5UKwpJ0Zafhyv717/po41w/VYXqZPltojyL1aqYmJgyj83A7M+B2fvvYshwfzdTv6Xa9xpwOBwVhsvzzjtPo0aNkiQdPXpU8+bN8+oYZwvCkrR+/XqtXLlSV1xxhdq3b68rr7xSX3zxRbntRUdHMzIMeMmbzOQSsGHY9Slf8+bln8pUXFzsDqynhuHvvvtOx48fV5MmTVSvXr1y912zZo2OHTumxMRE95NfFX/AvBnuz7cXq0Ha/3xyfGdmphzzF8ho11aWEdfLsFplGT1Kjldfk2PJUlmHDvHJcXbt3iWb1TcvxZPF0tRaNmnjrt27FVLDfhPLmzX6VDdcMU3Tpk2r8D7ECBxPvPCWjublKzoqWhkZGWUem4HZnwOz99/l06ckOUsCoJn6LdW+10B+fn6FZwX+4Q9/UHh4yVlkr7/+uvLz8z1uvzJB2OXFF1/UFVeUfKg8bNiwCsPw7t27ZbPZPK4FwLkJ2I+gXH/cjh8vf8QtNTVVubm5qlevnlq2bOle7po8q/AMI5UvvfSSJOmmm27yVbk1jtPhkH3W05LDIeuU+9y3UbKMuF5G23g55i+QM4tTegLR2YKwS0X3IQYAoKbq2rWr++ePPvrI4/09CcKSSt2mqUuXLh4fD0DVCtgw7Bqx3bhxY5l12dnZmjJliiQpKSmp1Om+ruuFjxw5ol27dpXZd+XKlXrrrbfUsGFD3X333VVQec3gWPSenDt2ynLLaBm/nQouSYbVKusD90kOu+xPPRPwt5Yym4ruIyzXr4hx5vsQAwBQk50aSDds2ODRvp4GYank/eTevXsllUzcZf1tcAFAzRCwYbhfv5JJj2bOnFkq1K5bt069e/dWbm7JfWJPv/ebKwzXqVNHEyZM0K+//upe55omXyq5H11Fp1HXds6DB+V47Q0ZCRfIMuy6MuuNFs1lGT1Kzq3b5Fiy1A8VoipUFIRPv31SefchJhADAGqD1q1bS5Jyc3M9umOHN0HYZevWrZKk8PBwRUf7bgJSAOeuhl2p6Duu+wgfOnRIiYmJuuCCC3TixAnt2bNHAwcOVIsWLfTxxx+XmUnadZr0iy++qDvuuEOxsbFKSEhQdna2MjIyZLFY9Nxzz2nQoEH+6Fa1MOLiVGf5f8+4jfXGkbLeOLKaKqp+se17afKbZx71Ptv62qSyQdjl9PsQ7/7tEiiuIQYA1GSrVq3S999/r8OHD3u03/Tp070KwlLJQEuDBg10/Phxr2/hBKBqBOzIcGxsrL788kslJycrNDRU+/fvV2RkpObOnavly5e7R4tPDcM5OTn64YcfFBkZqXHjxmnp0qVKSEjQtm3bdOLECV133XVas2aN7rrrLn91C/A5T4OwCyPEAIDaZtSoUerTp4+GDRvm0X5vvfWWfvrpJ4+DsCQ9+uij6tWrlwYOHMgtlIAaJmBHhiUpISFBy5YtK7M8Ly9P+/fvl8ViUYcOHdzLo6KiSl0Dm5ycrOTk5GqpFfCXvas8D8Iu5Y0QG1Yp7iLf1ggAgD9t3bpVffv2Vbt27bRo0SJ/lwPARwI6DFdk+/btcjqdatu2rXt6fV9w/XHcsWNHqcctWrQoNXshUJNENpMOrpccxZ4FYZdTA3FQqFS/5t1yEgCAc7Z161b39b8AAoMpw7DrD9np1wufq+HDh5f7+JZbbtGCBQt8eizAVyKbS52vk47/KsV09K6NlpdIFqvUIE6KON+39QEAAABVgTDsQ9xmCLVVZNzZtzkbJs8CAABAbRKwE2idSVWFYQAAAABA7WDKkeG0tDR/lwAAAAAA8CNTjgwDAAAAAMyNMAwAAAAAMB3CMAAAAADAdAjDAAAAAADTIQwDAAAAAEyHMAwAAAAAMB3CMAAAAADAdAjDAAAAAADTCfJ3AfCtcItVh/v093cZHgm3WH3WVrBVmjnSZ81Vi2DfdR8AANMLDw9XXl6ez9qbNfcdHc0vUIQtXFPuuKHMY18IDw/3STsAPEMYDjCGYchmNe8/q2FIIebtPgAApmcYhmw2m8/aCw4JVXCRXcEhobLZbGUeA6i9OE0aAAAAAGA6hGEAAAAAgOkQhgEAAAAApkMYBgAAAACYDmEYAAAAAGA6hGEAAAAAgOkQhgEAAAAApkMYBgAAAACYDmEYAAAAAGA6hGEAAAAAgOkQhgEAAAAApkMYBgAAAACYDmEYAAAAAGA6hGEAAAAAgOkQhgEAAAAApkMYBgAAAACYDmEYAAAAAGA6hGEAAAAAgOkE+bsA+JbT6VSBw+7vMjwSbrHKMAyftOV0SoW1q/sKtko+6j4AAEDJ+8GCAn+XUWnh4eE+ey8IeIIwHGAKHHY1SPufv8vwyOE+/WWz+ualWGiXpqb6pKlqM3OkFMJvIgAA8JGCggLVrVvX32VUWl5enmw2m7/LgAlxmjQAAAAAwHQIwwAAAAAA0yEMAwAAAABMhzAMAAAAADAdwjAAAAAAwHQIwwAAAAAA0yEMAwAAAABMhzAMAAAAADAdwjAAAAAAwHQIwwAAAAAA0yEMn0Hjxo1lGIYyMjL8XQpQpQoLpPyfz62NYz9KxYW+qQcAAASOiIgIdezY0d9lAGUE+buAmiojI0O5ubmKjIxUbGysv8sBqkxhgbTx3yXfLxoh1W3keRu/ZkkbF0n1Gkudh0lBwb6vEwAAVJ9mzZqpb9++6tq1q7p06aLo6GgFBwersLBQ2dnZ2rBhg9avX68VK1bo0KFDFbYTERGhTz75RG3btlW/fv20cePGauwFcGaE4Qqkp6dLkpKSkvxbCFDFdn8u5eWW/Lzx354HYlcQthdKRzKlfaul+CurpFQAAFCFDMPQH/7wB40fP16DBg2SxVL+SaTNmzfXJZdcIkmy2+1avny5XnzxRX3yySdyOp3u7VxB+OKLL5Ykvf3220pMTJTdbq/6zgCVwGnSFTB7GLbPX6Ciq66W46NPyqxzOp0qfmCqipKvkXPf/uovrhpk7Phcc0Yb2rB8doXbzBlt6L+zB1VjVVWjbR+p3vklP7tGiV3h+GxODcKSFBkntbq0aur0l6ITUvZ26cA66eBGKXef5HT4uyoAAHyrdevW+vzzz/Xhhx/qmmuuKROEf/jhBx04cEA//PBDqeVWq1XXXHONPvroI6WlpalVq1aSygbhn376Sddffz1BGDUKI8MV2Lx5sySpU6dOfq7EPyw3j5JjzTeyz/2XjC4XyWj8+1Ch470lcm7ZKsufbpXRsoX/ioRP1AmVLhoubXxXOvbD74H4bCPE5QXhTkMla53qqbuqFRyR9n8j5eyUHMWl14VGSLGdpLgukoW/ogCAWm78+PGaPXu2wsPD3csOHTqkefPmaeXKldq0aZN+/fVX97rzzjtPF154oa688kqNHTtWzZo1kyT16tVLW7Zs0V//+lfdcMMNpYJwnz59tG3bturtGHAWphgZzs3NVUpKitq0aaPQ0FA1a9ZMkydPVn5+vsaOHSvDMPT888+X2ufUkeHVq1dr6NChaty4scLDw3XppZfqk0/KjpgGEqNOHQVNuV86cUL2p//Pvdx5KEOOBa/LuKCdLMOH+a9A+JQrEFd2hDjQg/Cv2dK6N6WsrWWDsCSdOCrt+bLkOWDSMABAbTZ9+nS9+OKL7iC8b98+DRs2TC1bttTf//53ff7556WCsCT9+uuv+vzzz/Xoo4+qZcuWGjZsmPbt2ydJstlseuaZZwjCqBUCPgynp6erY8eOmjVrlnJyctS+fXsVFRXp2Wef1ciRI7Vz505JUufOnd375OXlae/evbJarVqxYoV69uypr7/+2j2R1urVqzVw4EAtXbrUH12qNkZ8G1luGCHnho1yLP9QTrtd9idnS06nrFPul2G1+rtE+FBlA3GgB+GCI1L64pLTo8/mSIa0dal0yuVRAADUGo8++qgefPBB9+MXXnhBHTt21HvvvVfp05ntdrvee+89JSUlad68eaXW5efnE4RRowV0GM7NzdXgwYOVk5Oj+++/X9nZ2dq4caNycnI0c+ZMLV++XOvWrZNhGKWuDd68ebP74v/HHntMr7zyirKysrRp0yZlZ2erb9++cjgcuvfee0tNEhCILKNulFq1kv1f8+R44SU5v9sly61/lNHMHDNsFxcW6Pix3HK/AlFFgViul7kzsIOwJO1bU7kg7PLz/pIvAABqk0GDBulvf/ub+/Gdd96piRMnKj8/36v2LBZLmdsn2Ww2tWjR4lzKBKpUQF/tNmnSJGVkZGjixImaPbv0REgpKSl6++23tXnzZrVs2VIRERHuda7rhe12u15//XUNHTrUve68887TvHnz1Lp1a33//ffatWuX2rVrVz0d8gMjKEhBU+5T8d33yLFsuYwOibJcd62/y6o2axY/rDWLH/Z3GdWqvGuITxXIQbjouPTDTs/3y0iXGrX0eTkAAFSJBg0a6OWXX3Y/vueeezR37lyv2zt9sqy8vDzVrVtXkjR37lwlJibqyJEj51QzUBUCdmR4586dSk1NVaNGjTR9+vRyt+nSpYukspNkua4XHjhwYKkg7NKiRQvFxMRIkjIzMyVJixYt0rBhw9S8eXOFh4frggsu0EMPPaS8vDxfdcl/bDapTkniMbp1lVHBNPuBqEPv2zX0wf+V+xXITh8hPl0gBmFJ+mmv5PBiksvcvVLxSd/XAwBAVXjyyScVHR0tSVq2bJnmzJnjdVvlzRrdo0cPLV++XJLUtGlTzZo169yLBqpAwI4ML1y4UA6HQ6NGjXJ/MnW6sLAwSRWH4fHjx1fYvmsk2dX27NmzFRcXpyeeeEKxsbFKT0/Xo48+qi+++EIrV66s8D5tZ9K1a1fl5OR4tI8zOFia+4LHx6qwPadT9qeekYqLpLhmcrz9jixXXiGjabTPjtE2vq2MQt/MQmStE6ahj+32SVuSVD8qXnEd+vmsvfK0jY+Xveh4lR7DW+Eh5+mvI5eoaWS8e9merA168vmRKrzPg3OJa4mBXcZr5OUPebVvtwsv1U9HD/q4Iv8bOuYe2epGKDsnW7GxsWUem4HZnwOz999l/qQDslisctjtio1t7u9yqpXZXwO1sf8OR8X3AGzSpIn++Mc/SpKOHDmiO+64w+vjlBeEXdcI33777dq+fbvq16+vP/7xj/rLX/6in376qdx24uPjvXqvDEhSVFSU1q9f79W+ARuG09LSJEm9e/eucJuMjAxJpcOw3W7Xtm3bZLFY1KtXr3L3s9vtOniw5E1vXFycJOn9999X48aN3dtceeWVaty4sUaNGqWvvvpKV1xxhcd9yMnJcY88V1poiHw5WOdYslTOzVtkGXOLLD0uUfFdd8v+1DOyzp4pwzB8coys7CzphG+G1YJCws++UQ2TlZ2l4pMFZ9/QDxLiYnVeeOnh4YYRsbIfD1bmj3v9VFXVOdz6Z6/3zcw6pJ9+9fD3tRZw/DaBisNuV2ZmZpnHZmD258Ds/Xdx/jZ5glNOU/Vb4jUQaP0fO3asgoODJUn//Oc/lZWV5VU7ZwrCkpSVlaWXXnpJDz74oIKDgzV27FjNmDGj3Lays7O9qgE4VwEbhg8cOCBJat68/E9vi4uLtWrVKkmlw/B3332n48ePq0mTJqpXr165+65Zs0bHjh1TYmKioqKiJKlUEHbp2rWrJHn9h9LVtiecwcEq/zM3zzkzM+WYv0BGu7ayjLhehtUqy+hRcrz6mhxLlso6dIhPjtM0uqlPR4Zrm6bRTWvkyHDrqIv0wNC3FBZS8nvgdDplGIYa1D1fT0/4QjMXj1DWL74bha8JTjh+8Wq/gpNHFX5eHcXUjfFxRf5n+W3WeIvVqpiYmDKPzcDsz4HZ++9iyHB/N1O/JV4DtbH/DoejwoA5duxY9zbeXid8tiDsMnfuXKWkpMhisZwxDEdHRzMyDK95k5lcAjYMu2bCO368/JCRmpqq3Nxc1atXTy1b/j7zjWvyrMIzhLOXXnpJknTTTTedsYbPPvtMkpSQkFD5wk/hzXB/vr1YDdLO/XpWp8Mh+6ynJYdD1in3uW+jZBlxvZyrvpZj/gJZLu7uk9Old+3eJZvVNy/Fk8XS1FSfNFVtdu3erZAa9ptY3u2T2g80tHlJyaRa59kaa/adn+miEVLdRn4t1accDmnVy9JJDy/1b3dJhPY/9H3VFOVnT7zwlo7m5Ss6KloZGRllHpuB2Z8Ds/ff5dOnJDlLApCZ+i3xGqiN/c/Pzy/3MsHGjRurdevWkqRVq1a5B488UdkgLEn79+/X119/rZ49e6pNmzZq2LChfv657FlYu3fvls1m87gW4FwF7Ecwrk8INm7cWGZddna2pkyZIklKSkoqdbqv63rhI0eOaNeuXWX2Xblypd566y01bNhQd999d4XHz8zM1LRp0zRgwIBS9zCuLRyL3pNzx05Zbhkt47dTwSXJsFplfeA+yWGX/alnAv7WUmZU0X2EQ+tV7j7EtZnFIsUknX2708V29nkpAAD4nGvyWElau3atx/t7EoTLO86pxwdqgoANw/36lUx6NHPmzFKhdt26derdu7dyc0vewZ8eVF1huE6dOpowYYJ+/fVX97qlS5e6Z5desGBBhadR5+XlaciQIQoODtb8+fN91aVq4zx4UI7X3pCRcIEsw64rs95o0VyW0aPk3LpNjiVL/VAhqkpFQdg1a3RF9yEOpEDcvJt0XtPKb9/6csnWsOrqAQDAV5KSfv/Et7wBozPxJghL0oYNG9w/nz5pLeBvNezkTN9x3Uf40KFDSkxM1AUXXKATJ05oz549GjhwoFq0aKGPP/64zC+l6zTpF198UXfccYdiY2OVkJCg7OxsZWRkyGKx6LnnntOgQYPKPe7x48c1ePBg7du3T19++aV72vraxIiLU53l/z3jNtYbR8p648hqqqj6xbbvpclvnnnU+2zra5uzBWGX8u5DvPHfCphTpq11pM7XSVv+Kx0+dOZtW18utehePXUBAHCuXHdDkeTRHUu8DcKS9MMPP5R7fKAmCNiR4djYWH355ZdKTk5WaGio9u/fr8jISM2dO1fLly93jxafGoZzcnL0ww8/KDIyUuPGjdPSpUuVkJCgbdu26cSJE7ruuuu0Zs0a3XXXXeUes6ioSNdff73Wr1+vDz/8UO3bt6+WvgLnqrJB2CXQR4hd/es0VGrYouz62M7SJbdKLS+WfDSpOgAAVW7GjBlq1qyZ4uPjtWbNmkrv17RpU7Vq1UqSZ0FYklavXq34+Hg1a9ZMM2fO9KpuoKoE7MiwVDJx1bJly8osz8vL0/79+2WxWNShQwf38qioqFLXwCYnJys5OblSx3Ld03jFihX64IMP1L07w0WoHTwNwi6BPkJsWKTGrUu+ik5IX8+XigqkYJt0QdXeehoAgCqRl5envDwPZ4mU9O2336pPnz565513dMMNN1Q6CEtSQUGB9uzZ4/ExgeoQ0GG4Itu3b5fT6VTbtm0VHu6b+9Leddddevfdd/Xggw8qPDy81KdtrVu3LvfWS0BN8MN3ngdhl/ICce73gRGGT1UntGRyLYmRYACAOW3btk1JSUlyOBz+LgXwmYA9TfpMtm7dKsm3F/F/+OGHkkpOP+nRo0epr+XLl/vsOICvxfeSYjp5HoRdTj1luuUlJRNQAQCAwEMQRqAx5chwVYTh/fv3+6wtoDoZRslpvw675O3tnuuESl1vkCxBjJwCAACgdiAMA5BheB+EXTwdUQYAAAD8yZRhOC0tzd8lAAAAAAD8yJTXDAMAAAAAzI0wDAAAAAAwHcIwAAAAAMB0CMMAAAAAANMhDAMAAAAATIcwDAAAAAAwHcIwAAAAAMB0CMMAAAAAANMhDAMAAAAATCfI3wXAt8ItVh3u09/fZXgk3GL1WVvBVmnmSJ81Vy2Cfdd9AAAAhYeHKy8vzydtzZr7jo7mFyjCFq4pd9xQ4bJzER4efs5tAN4gDAcYwzBks5r3n9UwpBDzdh8AAKDk/aDN5pO2gkNCFVxkV3BIqLvN8pYBtRGnSQMAAAAATIcwDAAAAAAwHcIwAAAAAMB0CMMAAAAAANMhDAMAAAAATIcwDAAAAAAwHcIwAAAAAMB0CMMAAAAAANMhDAMAAAAATIcwDAAAAAAwHcIwAAAAAMB0CMMAAAAAANMhDAMAAAAATIcwDAAAAAAwHcIwAAAAAMB0CMMAAAAAANMhDAMAAAAATCfI3wUAvuR0SoV2f1fhmWCrZBj+rgIAACAwOJ1OFRQU+LsMj4SHh8vgDWG1IwwjoBTapamp/q7CMzNHSiH8JgIAAPhEQUGB6tat6+8yPJKXlyebzebvMkyH06QBAAAAAKZDGAYAAAAAmA5hGAAAAABgOoRhAAAAAIDpEIYBAAAAAKZDGAYAAAAAmA5hGAAAAABgOoRhAAAAAIDpEIYBAAAAAKZDGAYAAAAAmA5h+AwaN24swzCUkZHh71IAVDGno2a0AQAAAo/FQuyqiYL8XUBNlZGRodzcXEVGRio2Ntbf5QCoQr9mS9s/lJKukeo28q6NjHQp51up83VSULBPywMAAH7SvHlzdenSRRdccIHCwsLkdDp19OhRbdmyRRs2bNDPP/981jbat2+vxYsXa/To0dqwYUM1VI3KIgxXID09XZKUlJTk30IAVKljP0qbFknFJ6WN/5YuGuF5IM5Il779tOTn9MXShcMlK39dAQColS644AJNmDBBN9xwgxo3bnzGbXfv3q358+frlVde0U8//VRmffv27fXZZ5+pSZMm+t///qdevXppy5YtVVU6PMR4fQUIw4A5hEZIYfVLfi4sKAnEebmV3//UICxJ9WMki9WXFQLwN6dTktP1wJ+VAKhK7dq10yeffKKdO3fq7rvvPmsQlqT4+HhNnz5dGRkZevnll1W/fn33ulODsCTt2bNHBw4cqKry4QXGLiqwefNmSVKnTp38XAn8IWPH51r8RG/1vHGWuiQ/UO42c0YbatE5WUMeWFbN1cGX6oRKFw2XNr4rHfvh90BcmRHi04Nwi+5S68slw6jSkgFUk+KTUvb2kt/1U21aJMV2lhq1kgyGFYBaz2Kx6L777tM//vEPhYaGupcXFBToiy++0Pr167V582YdOXJEhmEoKipKF110kbp3764ePXrIYrEoODhYt912m5KTk3X77bdr3759pYLwunXr1L9/f/3666/+6ibKYYo/4bm5uUpJSVGbNm0UGhqqZs2aafLkycrPz9fYsWNlGIaef/75UvucOjK8evVqDR06VI0bN1Z4eLguvfRSffLJJ37oCYCq4ArE9c4veVyZEWKCMBDYfjkoffWy9F2alP9L6XU/75c2L5HWviWdzPNHdQB8JSwsTO+//75mzZrlDsLff/+9Jk+erJiYGF199dX629/+psWLF2vFihX69NNP9eabb+q+++5Tz5491aZNG82cOdMdcps2baply5Zp7dq1BOFaIODDcHp6ujp27KhZs2YpJydH7du3V1FRkZ599lmNHDlSO3fulCR17tzZvU9eXp727t0rq9WqFStWqGfPnvr666/dE2mtXr1aAwcO1NKlS/3RJQBVwJNATBAGAtvhQ9KmxSUjw2dy7AdpQ2rJ3wsAtU9oaKiWLVumq6++WpLkcDj01FNPKTExUc8++6yOHDly1jb27dunBx98UImJifrggw/cy202mySCcE0X0GE4NzdXgwcPVk5Oju6//35lZ2dr48aNysnJ0cyZM7V8+XKtW7dOhmGUujZ48+bNcjpLLgp67LHH9MorrygrK0ubNm1Sdna2+vbtK4fDoXvvvde9HYDarzKB2F5EEAYCmaNY2vq+5LRXbvuCw9Kuz6q2JgBVY/78+erTp48k6ddff1Xfvn31wAMP6MSJEx63lZmZqSlTpujYsWOlli9cuJAgXIMFdBieNGmSMjIyNHHiRM2ePVv16tVzr0tJSVGnTp1UXFysFi1aKCIiwr3Odb2w3W7X66+/rltvvVVWa8mMOOedd57mzZsni8Wi77//Xrt27areTqFaFRcW6Pix3HK/EJgqCsSO3+4hfOpIEUEYCDw/7vZ8pPeH76TC/KqpB0DVGD58uG688UZJJWeFXnXVVfr888+9bs81WdapeUOS/vGPf6hVq1bnUiqqUMCG4Z07dyo1NVWNGjXS9OnTy92mS5cukspOkuW6XnjgwIEaOnRomf1atGihmJgYSSWfAknSl19+qX79+ik6OlohISGKjY0tdRo2aqc1ix/Wy+Mbl/uFwFVeIC467c0xQRgITBmbPd/H6ZCytvm+FgBVo3HjxnrhhRfcj8eNG6e1a9d63d7ps0avW7dO8+bNk1RyuvT8+fNl8IahRgrY2aQXLlwoh8OhUaNGqW7duuVuExYWJqniMDx+/PgK23eNJLvaPnz4sDp27Kg77rhDTZo0UUZGhqZPn64ePXpo27Zt7uuNPdG1a1fl5OR4vJ+ZWeuEaehju33WXofetyv+4uHlrvvPjP4+OUbb+HjZi477pC34VnjIeZpy3dtqeX7pvxHL1j2vRf83w09VVa+hY+6RrW6EsnOyFRsbW+axGZj9OTBb/5+9fbMiwht6vN+Cue9q3rB7q6Ai/zPba+B09L9sf2v6c+Bwnc5VgXvvvdd926TFixcrNTXV62OVF4T79++v4uJi9e3bVy1bttSVV16pq666Sh9//HGF7cTHx8tiCdhxyioVFRWl9evXe7VvwIbhtLQ0SVLv3r0r3CYjI0NS6TBst9u1bds2WSwW9erVq9z97Ha7Dh48KEmKi4uTJF1zzTW65pprSm3XrVs3tWvXTosXL9bkyZM97kNOTo575BmVExQS7tP26kfFK65DP5+2ebqs7CwVn2T2lZopUx+vfV13Dn7KvcTpdOo/n7+ozB/N8bvpsNvd3zMzM8s8NgOzPwdm67/VUser/YoLHQH5fEjmew2cjv6X7W9tfg6Cg4M1btw4SVJhYaHuvvtur9uqKAi7rhG+//779d5770mSJkyYcMYwnJ2d7XUd8F7AhmHXDa2bN29e7vri4mKtWrVKUukw/N133+n48eNq0qRJmXP+XdasWaNjx44pMTFRUVFRFdbQsGHJJ8tBQd49zWdqG+Wz1gnzdwkeaxrdlJHhGqp30s26pU/pyywMw9DTE77QzMUjlPWL785CqKksv82XYLFaFRMTU+axGZj9OTBb//NPHpYtNOLsG56mWMcD8vmQzPcaOB39L9vfmv4cOByOCsPlsGHDSo0KextCzxaEJWnp0qU6dOiQmjVrpkGDBikuLs49oHa66OhoRoa9dC6ZKWDDcH5+yUwWx4+XHzJSU1OVm5urevXqqWXLlu7lrsmzCgsLK2z7pZdekiTddNNNZdbZ7XY5HA4dOHBAf/7znxUVFaURI0Z41Qdvh/vN7GSxNNX7M138Ytfu3QoJ2N/E2uv02yed6jxbY82+8zNdNEKq26hay6p2T7zwlo7m5Ss6KloZGRllHpuB2Z8Ds/V/9xfSgXWe75fyxK2aEXerz+upCcz2Gjgd/S/b35r+HOTn51d4meQf/vAH988vv/yyV+1XJghLJbnglVde0SOPPCKLxaK+ffvq1VdfLbfN3bt3u2/HhOoTsB8/uD4h2LhxY5l12dnZmjJliiQpKSmp1AXtruuFjxw5Uu5M0StXrtRbb72lhg0blntaxZVXXqng4GDFx8crPT1daWlp7k+fANQO5d1H+HRnug8xgNorptPZtzmdLVJq0Mz3tQDwPdcEukVFRVq9erXH+1c2CLt88cUXZY6NmiNgw3C/fiXXec6cObNUqF23bp169+6t3NySd7CdO3cutZ8rDNepU0cTJkwoc6qDa3bpBQsWlHsa9SuvvKI1a9Zo4cKFioiI0FVXXVXh6RAAap7ygnDryyWdMgnkme5DDKB2C6/veSBmZnmgdggLC1NCQoIkadu2bTp58uRZ9ijN0yAslR6Y69q1qxdVoyoFbBhOSUlRw4YNdejQISUmJqpjx46Kj49X9+7d1apVK/cNtk+fSdp1mvSLL76ozz77TLGxserevbuaNWumIUOG6MiRI3ruuec0aNCgco/brl07XXzxxbrhhhu0YsUKHTt2TE8++WTVdhaAT1QUhEu9yTXKvw8xgRgIHO36SI3jK7ltX6lJJbcF4F9NmjSR9bfrncs7A/RMvAnCknT06FH3dcnR0dFeVI2qFLBXKsbGxurLL7/UlClT9MUXX2j//v1q37695s6dq9tuu02tW7eWVDoM5+Tk6IcfflBkZKTGjRun6OhoPfroo9q2bZtsNpuuu+46Pfjgg+rWrVulaqhfv77atGmjPXv2VEkfUXVi2/fS5DedZ9zmbOtRu1QqCP/GdR/ije9Kx374PRCb4RpiwAwsVilpsHRwg3Rok3TiaNlt6sdILS6RGrUsuw5AzXT06FE99NBDCgsL07Ztlb85uGEY+ve//+1xEHZ59tlnFRYWpp9//tmrulF1AjYMS1JCQoKWLVtWZnleXp72798vi8WiDh06uJdHRUXJ6fw94CQnJys5Odnr4//444/67rvvdPHFF3vdBoCq50kQdiEQA4HNsEjNu0lxXaSf90np//l93cW3SPWYDgSodQ4fPqwnnnjC4/2cTqduvPFGrVixQvv37/coCEvSjBkzPD4mqkdAh+GKbN++XU6nU23btlV4uG/uSzt69Gi1adNGnTt3Vv369bV7924988wzCgoK0r333uuTYwDwvcOHPA/CLuUF4k2LpUvHSlZT/nUFAo9hkRq1Vsm8Ac6S7wRhwHy2bt2qK6+8UllZWR4FYdRsAXvN8Jls3bpVUtnrhc/FJZdcog8++EBjxozRwIEDNWvWLF1++eVKT09XmzZtfHYcAL5VP/b3yXI8CcIurkBc73zJsEoX9CMIAwAQiHbu3EkQDjCmfMtWFWF44sSJmjhxos/aA1A9DKMkwDZsITVu492MsK5AfOxHKTLO5yUCAACgChCGAZieYZz7bLB1QgnCAAAAtYkpw3BaWpq/SwAAAAAA+JEprxkGAAAAAJgbYRgAAAAAYDqEYQAAAACA6RCGAQAAAACmQxgGAAAAAJgOYRgAAAAAYDqEYQAAAACA6RCGAQAAAACmQxgGAAAAAJhOkL8LAHwp2CrNHOnvKjwTbPV3BQAAAIEjPDxceXl5Pmtv1tx3dDS/QBG2cE2544Yyj30hPDzcJ+3AM4RhBBTDkEJ4VQMAAJiWYRiy2Ww+ay84JFTBRXYFh4TKZrOVeYzai9OkAQAAAACmQxgGAAAAAJgOYRgAAAAAYDqEYQAAAACA6RCGAQAAAACmQxgGAAAAAJgOYRgAAAAAYDqEYQAAAACA6RCGAQAAAACmQxgGAAAAAJgOYRgAAAAAYDqEYQAAAACA6RCGAQAAAACmQxgGAAAAAJgOYRgAAAAAYDqEYQAAAACA6RCGAQAAAACmQxgGAAAAAJhOkL8LgG85nU4VOOz+LsMj4RarDMPwSVtOp1RYu7qvYKvko+4DAADA5JxOpwoKCvxdhkfCw8N9lgc8QRgOMAUOuxqk/c/fZXjkcJ/+sll981IstEtTU33SVLWZOVIK4TcRAAAAPlBQUKC6dev6uwyP5OXlyWazVftxOU0aAAAAAGA6hGEAAAAAgOkQhgEAAAAApkMYBgAAAACYDmEYAAAAAGA6hGEAAAAAgOkQhgEAAAAApkMYBgAAAACYDmEYAAAAAGA6hGEAAAAAgOkQhivQuHFjGYahjIwMf5cCoIrZi6R930gOu/dtFByRMrf4rCQA1ezn/dIvB8+tjUMbpZN5PikHAGqUiIgINW/eXK1bt1ZMTIysVqtH+w8bNkwXXXRRFVXnvSB/F1ATZWRkKDc3V5GRkYqNjfV3OQCqkL1I2rxE+uWAdCxH6jBIsnj2910FR6QNqdLJY5K9WIqreX/rAZzBz/tL/g5IUufrpMg4z9vYu0rat1o6tEnqMlIKqevLCgGgekVGRmr06NG6/PLL1aVLF7Vs2bLU+oKCAqWnp2vDhg1avHixvvjiiwrbGj58uN5++20dO3ZM/fr108aNG6u6/EpjZLgc6enpkqSkpCT/FgKgyuX9JB357QSQH3dL25Z5NkJ8ahCWSkaH7cU+LxNAFcraKjmKS77S3/N8hNgVhCWp4LD08z7f1wgA1aF9+/aaP3++MjIyNGfOHF1//fVlgrAkhYeH69JLL9Xdd9+tzz//XNu3b9eECRNUp06dUtu5gnBQUJAaNGigUaNGVVdXKoUwXA7CsGSfv0BFV10tx0eflFnndDpV/MBUFSVfI+e+/dVfXDXI2PG55ow2tGH57Aq3mTPa0H9nD6rGqlAVzmsqdbr299FgTwLx6UHY1lDqMlyycs4NUKskDpQatS752dNAfGoQlqS2vaWmHX1fIwBUpaCgIE2bNk3p6ekaM2aMwsLC3Ovy8/P11VdfaeHChXrzzTe1ZMkS7d27t9T+7du31wsvvKC1a9eqU6dOkkoHYUmaN2+eHnjggerrVCXwlq0cmzdvliT3P6QZWW4eJceab2Sf+y8ZXS6S0biRe53jvSVybtkqy59uldGyhf+KBHykYcuSQLx5SUkIdgXiM50yXW4QHiEF26qpaAA+YwmSkgZLW96Xcvf+HojPdsp0eUE4rkvV1wsAvtSsWTMtWbKk1DW9R44c0auvvqrXXntNW7dulcPhKLNf/fr1NWDAAI0fP15XXHGFJKlz585at26dUlNTdcMNN5QKwrfffrucTmf1dKqSAn5kODc3VykpKWrTpo1CQ0PVrFkzTZ48Wfn5+Ro7dqwMw9Dzzz9fap9TR4ZXr16toUOHqnHjxu7TAT75pOxoaaAx6tRR0JT7pRMnZH/6/9zLnYcy5FjwuowL2skyfJj/CgR8zBWIKzNCTBAGAo8rEFd2hJggDCAQtGrVSl999ZU7CBcXF+uxxx5TTEyM7rvvPm3evLncICyVBOZ33nlHV155pbp27eoeUKxTp45Gjx5d44OwFOBhOD09XR07dtSsWbOUk5Oj9u3bq6ioSM8++6xGjhypnTt3Sir5BMMlLy9Pe/fuldVq1YoVK9SzZ099/fXX7om0Vq9erYEDB2rp0qX+6FK1MuLbyHLDCDk3bJRj+Ydy2u2yPzlbcjplnXK/DA9nkQNqukoFYidBGAhUlQ3EBGEAgeD888/Xp59+qri4klNgdu/erUsuuUTTpk1TQUGBR21t2LBB3bp103vvvVdq+fr162tsEJYCOAzn5uZq8ODBysnJ0f3336/s7Gxt3LhROTk5mjlzppYvX65169bJMIxS1wZv3rzZ/Y/12GOP6ZVXXlFWVpY2bdqk7Oxs9e3bVw6HQ/fee2+N/Uf1JcuoG6VWrWT/1zw5XnhJzu92yXLrH2U0M8cs28WFBTp+LLfcLwSmigKxTvl1JwgDgauiQOz+G+AkCAMIDP/617/ck2Nt27ZNPXv21IYNG7xu79prr9U111xTatlFF12kHj16nFOdVSlgw/CkSZOUkZGhiRMnavbs2apXr557XUpKijp16qTi4mK1aNFCERER7nWu4X273a7XX39dt956q/s+Wuedd57mzZsni8Wi77//Xrt27areTvmBERSkoCn3SYVFcixbLqNDoizXXevvsqrNmsUP6+Xxjcv9QuAqLxCfjiAMBK7yAnF5CMIAaqubb75ZgwcPliTl5OToqquu0o8//uh1e6dPlrV+/XpJksVi0auvvqrQ0NBzL7oKBGQY3rlzp1JTU9WoUSNNnz693G26dCn53+v0SbJc1wsPHDhQQ4cOLbNfixYtFBMTI0nKzMwst+2BAwfKMAw98sgjXvaghrHZpN+mSTe6dZVhCciXTbk69L5dQx/8X7lfCGynB+JTEYSBwHd6ID4dQRhAbWWz2fR///d/7sd33HGHsrOzvW6vvFmjL7nkEq1Zs0aS1LZtW02ZMuWcaq4qATmb9MKFC+VwODRq1CjVrVv+Xe9d04VXFIbHjx9fYfuukeTy2v73v//tbuNcde3aVTk5OR7t4wwOlua+4JPjSyW3UbI/9YxUXCTFNZPj7XdkufIKGU2jfXaMtvFtZRQW+qQta50wDX2snGE8L9WPildch34+a688bePjZS86XqXHgPcuSxiucVc9LcMwJJX8Toyb0VW/TvvBz5VVj6Fj7pGtboSyc7IVGxtb5rEZmP05MHv/g6zB+seo/yk68vdU/OnmV3Xr/03zY1XVy+yvAfpftr9mfw5qev8rmvDKZdSoUYqMjJQkpaamntNcSOUFYdc1wmPGjNHWrVsVFBSk8ePHa/r06SouLv9Um/j4eFm8HHCLiopyj0R7KiDDcFpamiSpd+/eFW6TkZEhqXQYttvt2rZtmywWi3r16lXufna7XQcPlsyk4brY3OXo0aO65557NHv2bI0ePfpcuiCp5JSFikafKxQaojpn36rSHEuWyrl5iyxjbpGlxyUqvutu2Z96RtbZM93h4FxlZWdJJ076pK2gkHCftFOdsrKzVHzSs0kKUD2iG7bSkIvvK/VaNwxDwy7+s55460bZKzp3MoA47Hb398zMzDKPzcDsz4HZ+39z/4dLBWFJ6pkwUh+tfl2b937un6KqmdlfA/S/bH/N/hzU9v5PmDDB/fPMmTO9budMQViSvv32W/33v//VsGHDFB0drWuvvVaLFi0qt61zGZk+FwEZhg8cOCBJat68ebnri4uLtWrVKkmlw/B3332n48ePq0mTJqWuMT7VmjVrdOzYMSUmJioqKqrUuoceekht27bVqFGjfBKGT2+/MpzBwfrpnI/8W1uZmXLMXyCjXVtZRlwvw2qVZfQoOV59TY4lS2UdOsQnx2ka3dSnI8O1TdPopowM10CNz2uuB69/Vw3rNZUkOZwOGTJkGIauSLpeYWFheunDuwI+EFt+mzPBYrUqJiamzGMzMPtzYOb+X3vJfbr2kvvcj51OpwzDUGhwuB4f+4Ge+e8t+jbjaz9WWD3M/BqQ6H95/TX7c1DT++9wOCoMlwkJCe78s3r1am3atMmrY5wtCLu8+OKLGjas5HasN910U4VhODo6+pxGhr0VkGE4Pz9fknT8ePkBIzU1Vbm5uapXr557BjXp98mzCs8QzF566SVJJf+Yp1q/fr3+9a9/ndMMbKfzZrg/316sBmnnfj2r0+GQfdbTksMh65T73LdRsoy4Xs5VX8sxf4EsF3f3yenSu3bvks3qm5fiyWJpaqpPmqo2u3bvVkhA/ibWXuXfR9iiYz9Km5eU3GqpW3yykq9OVodB5V9XHCieeOEtHc3LV3RUtDIyMso8NgOzPwdm7X95t0+K7WRoy/tS7l4ppE6Y/nLDv9X5OikyruJ2AoFZXwMu9L9sf83+HNT0/ufn51d4qWi3bt3cPy9ZssSr9isbhCXps88+06+//qrzzjtPXbt2rbDN3bt3y2ar/slYAnImJNenAxs3biyzLjs7230Bd1JSUqnTH13X+h45cqTcmaJXrlypt956Sw0bNtTdd9/tXm6323XHHXdo4sSJSkxM9GVX/Max6D05d+yU5ZbRMk45HdywWmV94D7JYZf9qWdMcXspmEv5QbhksqxK3YcYQK1X0X2EK3sfYgCoqVyTCEvyahDPkyAslZxR4xp9btasmRo3rll3ZAnIMNyvX8mERzNnziwVatetW6fevXsrN7fkHrGdO3cutZ8rDNepU0cTJkzQr7/+6l63dOlS9+zSCxYsKHUa9fPPP68ffvghYGaPdh48KMdrb8hIuECWYdeVWW+0aC7L6FFybt0mxxLvL7gHapozBWEXAjEQ2CoKwi4EYgC12QUXXOD+2XVWbGV5GoRdTp1cOCEhwaNjVrWAPDkzJSVFb7/9tg4dOqTExERdcMEFOnHihPbs2aOBAweqRYsW+vjjj8vMJO16Qbz44ou64447FBsbq4SEBGVnZysjI0MWi0XPPfecBg0a5N4nNzdX06ZN0+zZs1VcXKwjR4641504cUJHjhxRRESE1+fA+4MRF6c6y/97xm2sN46U9caR1VRR9Ytt30uT3zzzL/bZ1qN2qUwQdnEFYtcp065AHOinTAOB7mxB2MUViF2nTLsCsRlOmQZQu/388886ePCgwsLCdPjw4Urvd91113kVhCUpKytLWVlZOnHixFlnuq5utSeheSA2NlZffvmlkpOTFRoaqv379ysyMlJz587V8uXL3aPFp4bhnJwc/fDDD4qMjNS4ceO0dOlSJSQkaNu2bTpx4oSuu+46rVmzRnfddVepY2VkZOjYsWO644471KBBA/eXVDIy3aBBA/fs0wBqJk+CsAsjxEBgqWwQdmGEGEBtdNNNN6l58+Zq0qSJ7PbKv2nZtWuXOzx7EoQladasWYqJiVHr1q311VdfeVV3VQnIkWGpZAh+2bJlZZbn5eVp//79slgs6tChg3t5VFRUqX/Q5ORkJScnn/U4bdq00WeffVZmee/evXXLLbfo1ltvPacZzgBULW+CsAsjxEBg+P5rz4KwCyPEAMxi27Zt6tOnj2655RalpKQEzLxBARuGK7J9+3Y5nU61bdtW4eHnfk/aunXrVnhP4hYtWlS4DkDNYLGUfEmeBWGX0wOxJUjy0S24AVQTyynvhiobhE/d99RAbBh8GAYgMG3bts09EXGgMF0Y3rp1qySVuV4YgDmFRkhdRkrfrpDaX+VZEHZxBeIfdkkJ/SUjIC9AAQJXi+4l3y1Wz4KwiysQ7/hYiu0s1a95tx0FAJSDMFxFAuXUAcAMQiOkzkPPrY2GLUu+ANROrkDsLUuQ1OHsV1cBAGoQ041fMDIMAAAAADDdyHBaWpq/SwAAAAAA+JnpRoYBAAAAACAMAwAAAABMhzAMAAAAADAdwjAAAAAAwHQIwwAAAAAA0yEMAwAAAABMhzAMAAAAADAdwjAAAAAAwHQIwwAAAAAA0wnydwHwrXCLVYf79Pd3GR4Jt1h91lawVZo50mfNVYtg33UfAAAAJhceHq68vDyftTdr7js6ml+gCFu4ptxxQ5nHvhAeHu6TdjxFGA4whmHIZjXvP6thSCHm7T4AAABMzjAM2Ww2n7UXHBKq4CK7gkNCZbPZyjyuzThNGgAAAABgOoRhAAAAAIDpEIYBAAAAAKZDGAYAAAAAmA5hGAAAAABgOoRhAAAAAIDpEIYBAAAAAKZDGAYAAAAAmA5hGAAAAABgOoRhAAAAAIDpEIYBAAAAAKZDGAYAAAAAmA5hGAAAAABgOoRhAAAAAIDpEIYBAAAAAKZDGAYAAAAAmA5hGAAAAABgOoRhAAAAAIDpEIYBAAAAAKZDGAYAAAAAmA5hGAAAAABgOoThWuyNN95Qly5d1KBBA4WFhSkhIUFPP/20nE6nv0sDgAp98MEH6ty5s0JCQtSiRQs9/fTT/i6pWq1cuVJDhgxR8+bNZRiGHnvsMX+XVK1mzZqlHj16qEGDBqpfv7569uypjz76yN9lAQBMKMjfBcB7TZo00bRp09SuXTuFhIToyy+/1IQJE2S1WjV58mR/lwcAZaxfv15DhgzRAw88oIULF+qbb77RnXfeqfDwcN15553+Lq9a5OXlqX379rrpppt0zz33+LucapeWlqY//elP6tatm8LDwzVv3jwNGjRIX3zxhS677DJ/lwcAMBHCcC32hz/8odTjVq1aacmSJfr8888JwwBqpKefflrdunXT9OnTJUkJCQnavn27ZsyYYZowfPXVV+vqq6+WJE2dOtXP1VS/Dz/8sNTjJ598Uh999JHee+89wjAAoFpxmnSAcDqdWrt2rVatWqXevXv7uxwAKNeqVas0YMCAUssGDBigAwcOKCMjw09VwZ8cDoeOHj0qm83m71IAACbDyHAt9+uvvyomJkaFhYVyOBx6+OGHNWnSJH+XBaCWsdsdWvrpKh0/cbLU8uMnTri/v/3fT8s8PlWPixLVsln0GY+TnZ2tqKioUstcj7OzsxUbG3tO/TgXm7bv1s49B8osr+xzcH7jSPW99KLqKbYKHDmapw8+W1NmeWX7bxiGBvXtoXq2cI+O+8QTT+jIkSO6/fbbz6F6AAA8Rxiu5erVq6f09HQVFBTo66+/1p///Gc1bdpUY8eO9XdpAGoRq9WiFrFRSl32Wbnri4rt2vLt9xU+bh5zvuJizq/yOqtS21bN9MHn3+hYXkG568/0HFgtFvW6pHN1lFll6kfUVVhoiL5J31nu+rO9Bq7onuRxEH7xxRf1xBNPaOnSpX79IAQAYE6cJl3LWSwWtWnTRklJSbrzzjuVkpKihx56yN9lAaiFOrdvo6QLWnm8X3CdII1I7i2r5ez/pURHRysnJ6fUsh9++MG9zp9sYaG6fsAVXu3b//Kuanp+Ix9XVP2u7n2JGtaP8Hi/8xs1UP/Lu3q0z+zZszVlyhQtXbpU/fr18/iYAACcK8JwgHE4HDrx2ylsAOAJwzB07VU9Va+uZ6N7g/r0UMMGlQtQl112mT7++ONSyz766CM1b968RowMtmsdp0subO/RPs1jztcV3ZOqqKLqFRJcRyMG9ZZhGJXex2qxaOTgPqoTVPmTzf72t7/p0Ucf1QcffEAQBgD4DWG4Fnv44Yf16aef6vvvv9d3332nf/3rX5o5c6ZuueUWf5cGoJYKDwvV8IFXVnr7C1rHqVunCyq9/b333qu1a9fqoYce0rfffqvXXntNzz33nB588EFvyq0SV/e6WI0anFepbYN/C4+WSoyKu+Tl5Sk9PV3p6ekqLCxUTk6O0tPTtWfPHm9L9qnmMed7dMp3/8u7qmmThpXe/p577tGsWbP0xhtvqF27dsrJyVFOTo5+/fVXL6oFAMB7hOFzcPToUT344IOKj49XaGiozj//fA0bNkzr16+vtuPfeeedSkxM1CWXXKKXXnpJ06dP19NPP10txwcQmNq2alap0VFbWKiGDbjCo1HEbt26acmSJVq2bJk6deqkv/3tb3r88cdr1G2V3AG3Ev0a1KeHx6cVr1+/XhdeeKEuvPBCZWdn64UXXtCFF16ocePGeVuyz/W97CLFVOK07xaxUR6Pis+ZM0cnTpzQ0KFDFR0d7f7iloAAgOrGBFpe+vHHH3XppZdq7969Cg0NVWJiorKysvTee+9p6dKleueddzRs2LAqreGZZ57RM888U6XHAGBOV/e6WHsOZCr3l4pH64YOuNzjU6olKTk5WcnJyedSXpWLa9pEvXpcqLSvN1a4TUKbOHVLaudx27169ZLT6TyX8qpckNWqEYN667kF76nYbi93m+DgOhqR3MujUXFJNb7vAADzYGTYS3/605+0d+9eXXzxxTpw4IA2bNigjIwM/eMf/1BxcbH++Mc/KjMz099lum3avlsrvt6oEycL/V0KgFogOLiORiZXPDrapUNbdWjbspqrql59L71IMVHlj47awkN1nYej4rXN+Y0aaECv7hWuH9y3hyK9mGwLAICagjDshQ0bNmj58uUKCgrSwoUL1aRJE0mS1WrVX//6V/Xu3VsFBQWaPXu2nystUWy36+OV6/S/L9drw7Zd/i4HQC3RrGkT9b70wjLL60fU1eB+l/qhoupltVo0clAfBQVZy6y77g9XeHwbodro0i4d1KZ5TJnlCW2aq2tHz0fFAQCoSQjDp7Db7XrjjTd01VVXqXHjxgoJCVFcXJwGDBigefPmyf7bqWKLFy+WJPXt21ctW5YdGbntttskSYsWLaq+4s9gw9ZdOnI0T/VsYeqeVPmJbgCgT4+LFBvV2P3YkDQiuZdCQ4L9V1Q1atKwvgb2urjUsi4d2yqxbQv/FFTNLIah66++stS/ty3c82vFAQCoiQjDvzl69Kj69++vP/7xj/rf//6n4OBgderUSQ6HQ5988oluu+02HTt2TJK0Zs0aSVLPnj3Lbcu1PCMjQxkZGdXTgQoU2+36bPUmSdKVl3RWnTpcJg6g8kpGR3urzm+jo5d3T1KruKZ+rqp69bgo0T062uC8ehrcN/BHxU9VP6KuhvS/zP142IArVNcW5seKAADwDcLwb8aOHavPPvtMsbGxSktLU2ZmptauXauMjAxlZ2fr8ccfV506dSRJu3aVnGrcunXrctuKjY1VcHBwqW395dRR4Ys7Jfi1FgC1U+PfRkejGkfqqsu7+bucamcxDA2/+kqFh4WYalT8VJ3bt1HSBa3UNamd2se38Hc5AAD4hOFkWkdt2LBBXbt2VVBQkDZt2qQOHTqccXubzaaCggJ9+OGHGjBgQLnbnH/++frxxx+1aNEir2eVfu6193Qs77hX+5Zw6lj+cTmdToWGBCv4tzAPAJ5yOp1yOp0ezxwcSBwOh6n773q7wOnR5nMsv0BOp1OGYaieLbzM40BH/8v21+zPAf2vWf2vVzdMd99ynVf7cs6spCVLlkgqud3H2YKwJJ04cUKS3KO/5QkJCZEkHT/ufZg9lndcR/Pyvd7/VCdOFjKTNAAA8JrT6Sz1vuT0x4GO/pftr9mfA/pf+/tPGJa0Y8cOSVKPHj0qtX1oaKgKCgpUWFhxuDx58qQkKSzM++uq6tU9l2uyGBUGAADnrqaPClU1+s/IMK+Bmt3/c8lMhGGVTJ4lSf/f3v0HR13feRx/7WaTkIT8UgjkJwGjmAQhKQQSQkhCgQQSiSm/7jyrJxYvrVO0TtXpWbWVihQd2p5jRwShypy29C4FxgtRkOAPoHBIwih0UCx6BBawSohpiPmxe39AUmIC2WyW/Wb3+3zMZGC/P/b7/mQ2DK+8v5/vJzIy0qXjo6Oj1dzcrHPnzvW63+l0qqGhoetYd7nb7pekfXV/0Z/eeFfhYSF6+N/+mQdnAQAAt6x4/j/V2PR3hYeF6t/v+5cer/0d4+85XrN/Dxi//4yfOcOS5s+fr8rKSq1cuVKPPPJIn8fPmDFDNTU1Wr58uX7605/22H/ixAklJSV1/T0hIcGtutyfM0xXGAAAeMZg7wpda4yfzjCfgcE9fuYMD1B6eroqKyu1d+9el46fMmWKampq9N577/W6v3N7fHy820FY8sycYeYKAwAAT/DH+YL9wfiZM8xnwP/GTxiWVF5eruXLl6uqqkpHjhxRWlraVY+fP3++Vq5cqbfeekvHjx/X6NGju+1fu3atJGnBggUDqsu9+9/pCgMAAM8Z7F2ha43x0xnmMzC4xz+QOcPcJn3J4sWLtWnTJiUlJemVV15Rfn5+174zZ85o/fr1WrZsmcLCwiRJc+bMUXV1tbKzs7VlyxbFxMTI4XBoxYoVeuyxxxQSEqKPPvpoQJ1hdzBXGAAAeFLn/MCIoWHd5gt2vvZ3jL/neM3+PWD8/jN+ktIla9eu1dmzZ7Vr1y4VFBQoPj5ecXFxstvtOnnypJxOp77//e93Hb9hwwbl5ubqz3/+s5KTk5Wamiq73S673S6bzabf/e53Xg/C7R0dqtlbK0nKz84gCAMAAADAFViNLmCwiIiI0I4dO/TSSy+poKBAzc3NOnTokKxWq4qKivTSSy8pPDy86/iRI0fq4MGDeuihhxQXF6fDhw+rvb1dt912m/bs2aNFixZ5fQy1H36shsYmhYeFaMqEVK9fHwAAAAB8Ba3DywQEBGjJkiVasmSJS8dHRkZq1apVWrVq1TWuzDUT0lLU0tqqkOBgusIAAAAAcBUkJj8SFGhTXtZ4o8sAAAAAgEGP26QBAAAAAKZDGAYAAAAAmA5hGAAAAABgOoRhAAAAAIDpEIYBAAAAAKZDGAYAAAAAmA5hGAAAAABgOoRhAAAAAIDpEIYBAAAAAKZDGAYAAAAAmA5hGAAAAABgOoRhAAAAAIDpEIYBAAAAAKZDGAYAAAAAmA5hGAAAAABgOoRhAAAAAIDpEIYBAAAAAKZDGAYAAAAAmA5hGAAAAABgOoRhAAAAAIDpEIYBAAAAAKZDGAYAAAAAmA5hGAAAAABgOoRhAAAAAIDpEIYBAAAAAKZDGAYAAAAAmA5hGAAAAABgOoRhAAAAAIDpEIYBAAAAAKZDGAYAAAAAmA5hGAAAAABgOoRhAAAAAIDpEIYBAAAAAKZDGAYAAAAAmA5hGAAAAABgOoRhAAAAAIDpEIZ92M9+9jNZLJYeX8eOHTO6NAAAgCuqqqpSRkaGgoODlZycrNWrVxtdkle98847Kisr06hRo2SxWPSLX/zC6JK86plnnlFOTo6io6MVFRWladOmqbq62uiyvGbjxo2aOHGioqOjFRISotTUVK1evVpOp9Po0gyxc+dOBQQEKCUlxevXtnn9ivCo5ORk7d27t9u24cOHG1QNAADA1R04cEBlZWX68Y9/rNdee0379u1TRUWFQkNDVVFRYXR5XtHU1KS0tDTdfvvteuCBB4wux+t27typJUuWKCsrS6GhoVq3bp1KS0v19ttvKzc31+jyrrmYmBg99thjGjt2rIKDg/Xuu+/qBz/4gQICAnT//fcbXZ5XnT59WnfddZdmz56tjz/+2OvXJwz7uICAAI0cOdLoMgAAAFyyevVqZWVl6emnn5Ykpaam6vDhw1q5cqVpwvDcuXM1d+5cSdIjjzxicDXet23btm6vV61aperqalVWVpoiDBcVFXV7PWbMGG3evFm7du0yVRh2OBy64447dN9996mlpcWQMMxt0j6uvr5eCQkJSkhI0Jw5c7Rnzx6jSwIAALii3bt3q7i4uNu24uJiffbZZ6qvrzeoKhjJ4XCosbFRYWFhRpfidU6nU/v379fu3btVWFhodDletXz5clksFkN/IURn2IdNnjxZGzZsUFpamhobG7VmzRrl5eWpurpas2bNMro8AADgQz7/skHnzjf12N7e0dH150fH63u87mSRdMOoOFmtV++12O32Hne1db622+1KSEgYyDDc1trapk9Pnumx3dXxS9KI66MUGTH02hd7jfzfqbNq+bq127bexnul78GQ4CAlxcX0+7orVqxQQ0OD7r33XndL94jzjU0680VDj+39+Qwkx49QUFBg39c6f17x8fFqbW2Vw+HQE088oWXLlg18EAPgcDj0yWen9M2Zy/0Zf3TkUA2/LqrPa9XU1OiFF15QbW2tLBaLJ8p3C2HYh3XeXtMpLy9P9fX1euaZZwjDAACgXyyyaOOf3lRbW3uv+5svtGj9pqorvp46MV03jjYmyHpCYKBN7/3vB/ro+Ile9/c1/sjwMN2/ZME1r/Naajj/lV7d+lav+7453t623V42s99h+Le//a1WrFihrVu3GvaLkE6BQYH6r6q31dj091739/UZGDsmUTcmx7t0rfDwcNXV1am5uVl79uzRT37yE8XFxemee+4Z2CAGwGq16sixz7T34OFe9/c1/qBAm5bdPb/P6/ztb3/THXfcoQ0bNhg+3ZPbpP1MTk6OPv30U6PLAAAAPmbYdZEqKcx269zh10WpOH+KS8fGxsbq9OnT3badOXOma59RLBaLFsyZrtAhwW6dv3BugdvnDhbjU29QRpp7T/TNTE/R+JvH9OucZ599Vg899JC2bt2qmTNnunVdTwodEqyFc/PdOzckWPPn5Lvc5bRarUpJSdH48eNVUVGhhx9+WI8++qhb1/akOQVTNPy6SLfOLZmRo2HRfZ/74Ycf6tSpUyotLZXNZpPNZtOTTz6pTz75RDabTa+++qpb13cHYdjPHDx4UImJiUaXAQAAfNCUjFSNHdO//0dYrRYtLi1UUKBrNxzm5ubqjTfe6Laturpao0aNMrwzGBEeptuK8vp9Xu7EcUpxsSM42M2blavI8P7N3Y0MD9O8mf178NXjjz+un//856qqqhoUQbjTjaMTNHVier/PKy/KU8TQULev63A41NLS4vb5nhIUaNOi0kJZ+3nr8s03JGnyhJtdOjYrK0sffPCB6urqur4qKiqUmJiouro6lZSUuFO6W7hN2oc9+OCDKi0tVXJyshobG7V27Vpt375dW7ZsMbo0AADggywWi+bPydev1/9RzRe+dumcb0+dqIRY15d1/NGPfqSpU6fq0Ucf1Xe/+13t27dPzz33nH71q1+5W7ZHjb95jP5yLEW1h4+5dHzM9VEqzp/cr2s0NTXp2LGL79/a2qrTp0+rrq5OQ4cONWSt1ctd7I4WaN0f/sflcxaWFCikH13xBx54QGvWrNFrr72msWPHdt0pEBISoshI97qSnlScP0UfHz+pz79scOn4zPQbdctY17viTzzxhPLy8jRmzBi1tbXpnXfe0S9/+UvdfffdblbsWYmxMZox9Vvasft9l44PDQnW/OLpLnfFw8LCNG7cuG7bYmJiFBQU1GP7tUZn2A0Oh0Pbtm3Tk08+qXnz5ik2NlYWi0UWi8Wrtyjb7XbdeeedSk1N1ezZs3X06FHt2LFDt956q9dqAAAA/iViaKjKXeyOJsbGqCAno1/vn5WVpc2bN+v111/XhAkT9Pjjj+upp54aVMsqzZvpWnfUarVoUWmhAl3sinc6cOCAMjMzlZmZKbvdrueff16ZmZn63ve+527JHpWSHK/cia6FktxJ45Qyqn9d8d/85jdqaWlReXm5YmNju74Gy7JCQYE2LS4tlNXad7iLihiqsln964o3NjaqoqJC6enpys7O1gsvvKCnn35aq1evdrdkjyvMyVSii7/k+k7RdIUPoCtuJIvT6fzmA8PQh4aGBkVHR/e67/jx40pOTvZuQQAAAB72h9drVHv4yut+BgbatOxfv+PSk2N90bHPTmrd76/eHZ2VN0nfnvotL1XkXW1t7Xru5Uqd7eXpyp1iro/WD+8q7/cvA3zFW7sPavt7B656zNJ/KtUNo+K8VJF3ff5lg/5jw3+rrb3jisd8a9xNWlRS4L2iPIzOsBusVqsyMjK0dOlSrVmzRvv37ze6pD59/mWDvjz/ldFlAAAAH1E2K1dRV1kmqKQw22+DsCSljIpX7qQrd0eT4mJUkJ3hvYK8LLBz7ugVuqNWq0WLb+1/V9yXFORkKDH2yk/HnpZ1i98GYenig/HmXuWhelERQzVv5lQvVuR5hGE3REREqLa2Vi+++KLuvfdeZWZmGl1Sn15/a6+effH3OvDBUaNLAQAAPmBIcJAWzi3odd9NoxM1JSPVuwUZoHj6ZMVc3/NuwM6gGNDHmsq+LmHkcH07d2Kv+2ZNm6T4EcO8XJF3BVitWlRa0GvgHzEsWkXTswyoyruyM9N0Uy9LplkkLSop0JDgIO8X5UH+/RPcTx0dHdq4caNmz56t4cOHKzg4WElJSSouLta6devU0XHlWwQGsxOnzuroX09ITik5wdi1vAAAgO+4YVScpmXd0m1b6JBgLZjr+hIyviww0KbFt/bsjpbOyHZpCRl/UJCd0WPt4KS4EZo+ZYJBFXnX8Ouieiw5djEkFyrQ5r9d8U4XlxzL7/GAtGlZ4zUmyfe74oThSxobGzVr1izdeeed2r59u4KCgjRhwgQ5HA69+eabWrp0qb76yjdvM+58Elxm+o2m+YcbAAB4RtH0LI0Y9o/u6ECXkPE18SOGada0SV2vx45J1OQJ/t8V79QV/C51Ry8uvVPg913xy03JSNVNo/+x5NjMaRP9vit+uYjwMJXPntb1esSwaM2ePukqZ/gO83yK+3DPPfeopqZGCQkJ2rlzp06ePKn9+/ervr5edrtdTz31lAIDA40us986u8JWi0WFUwf/7dwAAGBwCbT945bgzPQU3XKz60vI+IvpUyYoKW7ExSVk5pijK365YdGRKp1xsTtaMiPHdM0Vi8WiBXPzFTokWKPiRyjfJF3xy41PvUEZaSkKsFq1+NYZftMV52nSkt5//31NmjRJNptNtbW1/V7fqr29vSsoe/Jp0s+9XKmvmi4M6D2aL7SovaNDgTZbv9Z/AwAAuFxrW5sCbTbTBcFODodDHQ6H34SA/nI6nWpta1dQoHk/A23t7QqwWmU1UVf8ck6nU23t7QoaZA3C8KEh+uFd33HrXHP+NH/D5s2bJUklJSVeX+j5ar5quqDGpr975L3a2tvV1tTukfcCAADm1PJ1q9ElGO6Cvja6BEN93cpnwOz86d8BwrCkI0eOSJJycnIMrqS78KEhAzqfrjAAAAAAfzaQzEQY1sWHZ0lSZOTgmv/gbrtfujhX+PmNm2W1WHT/kvmmm9sBAAAAAFdDGNbFdYMl6fz58wZX0t1A5gw3X2iRJAUEBOjFV1/3ZFkAAAAAMCgwZ3iA0tPTVVlZqb179xpdSjeemDPMXGEAAAAA6IkwLKm8vFzLly9XVVWVjhw5orS0NKNLkuT+/e/MFQYAAABgBgOZM8zSSpcsXrxYmzZtUlJSkl555RXl5+d37Ttz5ozWr1+vZcuWKSwsrMe512ppJXdcPlf4waWLmCsMAAAAAL0gDF/S2NiosrIy7dq1S5IUHx+vuLg42e12nTx5Uk6nU+fOnVNUVJQkqaysTLt37+46/4svvpAkRUdHd609lpubqy1btnh1HBv+uE1H/3pCE8fdpIUlBV69NgAAAAD4Cm6TviQiIkI7duzQyy+/rI0bN+rQoUM6dOiQRo4cqaKiIi1cuFDh4eFdx58/f74rAF/u3Llz3Y7xphOnzuroX0/IarGocGqmV68NAAAAAL6EzrAf+bT+tDa/+Z7iRwyjKwwAAAAAV0EY9jMOp1NtrW0KDg4yuhQAAAAAGLQIwwAAAAAA07EaXQAAAAAAAN5GGAYAAAAAmA5hGAAAAABgOoRhAAAAAIDpEIYBAAAAAKZDGAYAAAAAmA5hGAAAAABgOoRhAAAAAIDpEIYBAAAAAKZDGAYAAAAAmA5hGAAAAABgOoRhAAAAAIDpEIYBAAAAAKZDGAYAAAAAmA5hGAAAAABgOoRhAAAAAIDpEIYBAAAAAKZDGAYAAAAAmA5hGAAAAABgOoRhAAAAAIDpEIYBAAAAAKZDGAYAAAAAmA5hGAAAAABgOoRhAAAAAIDpEIYBAAAAAKZDGAYAAAAAmA5hGAAAAABgOoRhAAAAAIDpEIYBAAAAAKZDGAYAAAAAmA5hGAAAAABgOoRhAAAAAIDpEIYBAAAAAKZDGAYAAAAAmA5hGAAAAABgOoRhAAAAAIDpEIYBAAAAAKZDGAYAAAAAmA5hGAAAAABgOv8P9x0nmfVnG0MAAAAASUVORK5CYII=", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "circuit_drawer(circuit, output='mpl', plot_barriers=False)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## ヒストグラムのプロット \n", - "\n", - "以下の関数は、システムまたはシミュレーターで実行された量子回路からのデータを可視化します。 \n", - "\n", - "`plot_histogram(data)`\n", - "\n", - "例えば、2 量子ビットのベル状態を作ります。" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "ExecuteTime": { - "end_time": "2021-07-31T05:07:56.673595Z", - "start_time": "2021-07-31T05:07:56.670504Z" - }, - "execution": { - "iopub.execute_input": "2023-08-25T18:25:12.506650Z", - "iopub.status.busy": "2023-08-25T18:25:12.506365Z", - "iopub.status.idle": "2023-08-25T18:25:13.114975Z", - "shell.execute_reply": "2023-08-25T18:25:13.114242Z" - } - }, - "outputs": [], - "source": [ - "from qiskit import *\n", - "from qiskit.visualization import plot_histogram" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": { - "ExecuteTime": { - "end_time": "2021-07-31T05:08:03.168385Z", - "start_time": "2021-07-31T05:08:03.152732Z" - }, - "execution": { - "iopub.execute_input": "2023-08-25T18:25:13.119830Z", - "iopub.status.busy": "2023-08-25T18:25:13.119057Z", - "iopub.status.idle": "2023-08-25T18:25:13.173736Z", - "shell.execute_reply": "2023-08-25T18:25:13.172985Z" - } - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "{'11': 492, '00': 508}\n" - ] - } - ], - "source": [ - "# quantum circuit to make a Bell state \n", - "bell = QuantumCircuit(2, 2)\n", - "bell.h(0)\n", - "bell.cx(0, 1)\n", - "\n", - "meas = QuantumCircuit(2, 2)\n", - "meas.measure([0,1], [0,1])\n", - "\n", - "# execute the quantum circuit \n", - "backend = BasicAer.get_backend('qasm_simulator') # the device to run on\n", - "circ = bell.compose(meas)\n", - "result = backend.run(circ, shots=1000).result()\n", - "counts = result.get_counts(circ)\n", - "print(counts)" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": { - "ExecuteTime": { - "end_time": "2021-07-31T05:08:04.672500Z", - "start_time": "2021-07-31T05:08:04.216126Z" - }, - "execution": { - "iopub.execute_input": "2023-08-25T18:25:13.212273Z", - "iopub.status.busy": "2023-08-25T18:25:13.211898Z", - "iopub.status.idle": "2023-08-25T18:25:14.140756Z", - "shell.execute_reply": "2023-08-25T18:25:14.140029Z" - } - }, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAnkAAAG8CAYAAACixLM7AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAAAw70lEQVR4nO3deXjM9/7//8dMEhGRTRJF7YpQVKjWVsSSWHqcj9ahG6Kt01O0VV1UW0VbVNHW4fR8LG04n1aV008XPpa0JBxbuaj1HMSeCGrNhkgy8/vDL/PtNAnJZJnk5X67LtfVeb1f857na668333M671Z7Ha7XQAAADCK1d0FAAAAoOQR8gAAAAxEyAMAADAQIQ8AAMBAhDwAAAADEfIAAAAMRMgDAAAwECEPAADAQJ7uLqCis9lsSk5Olp+fnywWi7vLAQAAhrPb7UpLS1OtWrVktRY8X0fIK6bk5GTVqVPH3WUAAIA7TGJiomrXrl3gckJeMfn5+Um6+UX7+/u7uRoAAGC61NRU1alTx5FBCkLIK6bcQ7T+/v6EPAAAUGZud5oYF14AAAAYiJAHAABgIEIeKrRJkybJYrE4/QsLC3Msv379ukaNGqXg4GBVrVpVjz76qM6dO+e0jh07dqhHjx4KDAxUUFCQoqKitGfPnrIeCgAAJYqQhwrv3nvv1ZkzZxz/Nm3a5Fj28ssva8WKFVq+fLk2bNig5ORkPfLII47l6enp6t27t+rWrauff/5ZmzZtkp+fn6KiopSVleWO4QAAUCK48AIVnqenp2rUqJGnPSUlRZ999pmWLFmi7t27S5JiYmLUrFkzbdu2Te3bt9fBgwd16dIlvfvuu45b4UycOFGtWrXSyZMndc8995TpWAAAKCnM5KHCS0hIUK1atdSwYUM9+eSTOnXqlCRp586dysrKUs+ePR19w8LCVLduXW3dulWS1LRpUwUHB+uzzz7TjRs3dO3aNX322Wdq1qyZ6tev747hAABQIgh5qNAefPBBLVq0SGvWrNHf//53HT9+XA899JDS0tJ09uxZVapUSYGBgU7vueuuu3T27FlJN+9zGB8fry+++EI+Pj6qWrWq1qxZo9WrV8vTk4luAEDFxf/FUKH16dPH8d+tWrXSgw8+qHr16mnZsmXy8fG57fuvXbumZ555Rp06ddJXX32lnJwczZw5U/369dOOHTsKtQ4AAMojQh6MEhgYqCZNmujIkSPq1auXbty4oStXrjjN5p07d85xDt+SJUt04sQJbd261fH8vyVLligoKEjff/+9HnvsMXcMAwCAYuNwLYySnp6uo0ePqmbNmmrbtq28vLy0bt06x/JDhw7p1KlT6tChgyTp6tWrslqtTncNz31ts9nKvH4AAEoKIQ8V2quvvqoNGzboxIkT2rJliwYMGCAPDw89/vjjCggI0DPPPKOxY8cqLi5OO3fu1PDhw9WhQwe1b99ektSrVy9dvnxZo0aN0n/+8x8dOHBAw4cPl6enpyIiItw8OgAAXMfhWlRoSUlJevzxx3Xx4kWFhoaqc+fO2rZtm0JDQyVJH3/8saxWqx599FFlZmYqKipKn376qeP9YWFhWrFihSZPnqwOHTrIarUqPDxca9asUc2aNd01LAAAis1it9vt7i6iIktNTVVAQIBSUlLk7+/v7nIAAIDhCps9OFwLAMAd4oMPPpDFYtGYMWMcbUePHtWAAQMUGhoqf39/DRo0yOnxjydOnNAzzzyjBg0ayMfHR40aNdLEiRN148YNN4wARUHIAwDgDrBjxw7NmzdPrVq1crRlZGQoMjJSFotF69ev1+bNm3Xjxg394Q9/cFx8dvDgQdlsNs2bN08HDhzQxx9/rP/+7//Wm2++6a6hoJA4Jw8AAMOlp6frySef1IIFC/T+++872jdv3qwTJ07ol19+cRz2W7x4sYKCgrR+/Xr17NlTvXv3Vu/evR3vadiwoQ4dOqS///3vmjlzZpmPBYXHTB4AAIYbNWqU+vXr5/SYR0nKzMyUxWKRt7e3o61y5cqyWq3atGlTgetLSUlRtWrVSq1elAxCHgAABlu6dKl27dqladOm5VnWvn17+fr6aty4cbp69aoyMjL06quvKicnR2fOnMl3fUeOHNGcOXP03HPPlXbpKCZCHgAAhkpMTNRLL72kL7/8UpUrV86zPDQ0VMuXL9eKFStUtWpVBQQE6MqVK2rTpo3jKUC/dfr0afXu3Vt/+tOfNGLEiLIYAoqBc/IAADDUzp079euvv6pNmzaOtpycHG3cuFFz585VZmamIiMjdfToUV24cEGenp4KDAxUjRo11LBhQ6d1JScnKyIiQh07dtT8+fPLeihwASEPAABD9ejRQ/v27XNqGz58uMLCwjRu3Dh5eHg42kNCQiRJ69ev16+//qr+/fs7lp0+fVoRERFq27atYmJi8p3lQ/lDyAMAwFB+fn5q0aKFU5uvr6+Cg4Md7TExMWrWrJlCQ0O1detWvfTSS3r55ZfVtGlTSTcDXrdu3VSvXj3NnDlT58+fd6yrRo0aZTcYFBkhDwCAO9ihQ4c0fvx4Xbp0SfXr19dbb72ll19+2bH8xx9/1JEjR3TkyBHVrl3b6b08NKt847FmxcRjzQAAQFnisWYAAAB3MEIeAACAgQh5AAAABiLkAQAAGIiQBwAAYCBCHgAAgIEIeQAAAAYi5AEAABiIJ15UECM+cXcFwP+zYIy7KwAA3A4zeQAAAAYi5AEAABiIkAcAAGAgQh4AAICBCHkAAAAGIuQBAAAYiJAHAABgIEIeAACAgQh5AAAABiLkAQAAGIjHmgEAKjwe/YjypLw8+pGZPAAAAAMR8gAAAAxEyAMAADAQIQ8AAMBAhDwAAAADEfIAAAAMRMgDAAAwECEPAADAQIQ8AAAAAxHyAAAADETIAwAAMBAhDwAAwECEPAAAAAMR8gAAAAxEyAMAADAQIQ8AAMBAhDwAAAADEfIAAAAMRMgDAAAwECEPAADAQIQ8AAAAA1WIkDd9+nRZLBZZLBZt27bNadmkSZMcy/L7d+LEiXzXuXbtWnXt2lV+fn7y9/dXRESE1q1bVwajAQAAKH2e7i7gdvbv36+JEyfK19dXGRkZBfYbNmyY6tevn6c9MDAwT9sXX3yhIUOGKDQ0VNHR0ZKkr7/+Wr169dKyZcs0cODAEqoeAADAPcp1yMvKytKwYcPUunVrNW7cWF988UWBfaOjo9WtW7fbrvPy5ct64YUXFBISol27dql27dqSpHHjxik8PFzPP/+8oqKi5OfnV1LDAAAAKHPl+nDtlClTdODAAX3++efy8PAokXUuX75cV65c0QsvvOAIeJJUu3ZtjR49WhcuXNC3335bIp8FAADgLuU25O3atUtTpkzRxIkT1bx589v237hxo6ZPn64ZM2bou+++U3p6er794uPjJUmRkZF5lkVFRUmSNmzY4HrhAAAA5UC5PFybmZmpoUOHqnXr1nr99dcL9Z6JEyc6vQ4MDNTs2bM1dOhQp/aEhARJUuPGjfOsI7ctt09BtWVmZjpep6amSrp5aDkrK0uSZLVa5eHhoZycHNlsNkff3Pbs7GzZ7XZHu4eHh6xWa4HtN9frdcvxA2Up9289l6fnzV1Jdna2U7uXl5dsNptycnIcbRaLRZ6engW2F7TdlOz2dPvaGVPFGpNkEVBelMX2VBjlMuS98847SkhI0M6dO297mPa+++7T559/rm7duqlmzZo6e/asVq5cqXfeeUfR0dEKDAxU//79Hf1TUlIkSQEBAXnW5e/v79QnP9OmTdPkyZPztMfGxqpKlSqSpLp16yo8PFx79+7VqVOnHH2aNm2qsLAwbd++XefPn3e0t27dWvXq1dPGjRuVlpbmaO/QoYOqV6+u2NhYSf1u+T0AZWnVqlVOr/v27atr164pLi7O0ebp6al+/frpwoUL2rp1q6Pdz89P3bt3V2Jionbv3u1oDw0NVceOHZWQkKBDhw452ktje/rtDjIiIkI+Pj6MqYKPSfIXUF6U9va0c+fOQtVhsf/2J1Q5sHXrVnXu3FmTJk3ShAkTHO3R0dFavHixtm7dqvbt2992PevWrVOvXr3UokUL7d2719HepEkTJSQkKCsr6ze/AG/KyspSpUqV1KpVK+3Zsyff9eY3k1enTh1duHDBERJL4xftyL8xk4fy49NRzOQxpvI1pj/PZiYP5ce8F0t3e7p06ZKCg4OVkpLiyB75KVczednZ2Ro2bJhatWqlN954o1jr6tGjhxo1aqR9+/YpNTXV8SXkzuClpKQoODjY6T25h17zm+XL5e3tLW9v7zztXl5e8vJyDmIeHh75zkT+Plzerv336wXcraC/yfzarVarrNa8p/8W1F7QdlPa2xNjqthjAsoTd21PeT6vUL3KSHp6uhISErR7925VqlTJ6abGixcvlnRzKt9isei777677fpCQkIkSVevXnW03eq8u1udrwcAAFCRlKuZPG9vbz3zzDP5Ltu4caMSEhLUv39/hYaG5nvj49/KyMjQgQMH5Ovr6wh7ktS1a1d99dVXio2NzXPYd+3atY4+AAAAFVm5Cnk+Pj5auHBhvsuio6OVkJCg8ePHO8JZWlqazpw5oyZNmjj1vXbtmkaMGKG0tDQNHz7caVpz0KBBGjdunObMmaOnn37aca+8pKQkzZ07VyEhIRowYEApjRAAAKBslKuQV1QXL15UWFiY2rVrp2bNmqlGjRo6d+6cfvrpJyUlJally5aaMWOG03uCgoI0d+5cDRkyRG3atNHgwYMl3Xys2cWLF/X111/ztAsAAFDhVeiQV61aNY0cOVLbt2/XqlWrdPnyZfn4+KhZs2Z68cUXNXr0aPn4+OR531NPPaWQkBBNnTpVMTExslgsatu2rd5++2317NnTDSMBAAAoWeXuFioVTWpqqgICAm57GXNxjfik1FYNFNmCMe6uAHDGPhLlSWnvIwubPcrV1bUAAAAoGYQ8AAAAAxHyAAAADETIAwAAMBAhDwAAwECEPAAAAAMR8gAAAAxEyAMAADAQIQ8AAMBAhDwAAAADEfIAAAAMRMgDAAAwECEPAADAQIQ8AAAAAxHyAAAADETIAwAAMBAhDwAAwECEPAAAAAMR8gAAAAxEyAMAADAQIQ8AAMBAhDwAAAADEfIAAAAMRMgDAAAwECEPAADAQIQ8AAAAAxHyAAAADETIAwAAMBAhDwAAwECEPAAAAAMR8gAAAAxEyAMAADAQIQ8AAMBAhDwAAAADEfIAAAAMRMgDAAAwECEPAADAQIQ8AAAAAxHyAAAADETIAwAAMBAhDwAAwECEPAAAAAMR8gAAAAxEyAMAADAQIQ8AAMBAhDwAAAADEfIAAAAMRMgDAAAwECEPAADAQIQ8AAAAAxHyAAAADETIAwAAMBAhDwAAwECEPAAAAAMR8gAAAAxEyAMAADAQIQ8AAMBAhDwAAAADEfIAAAAMRMgDAAAwECEPAADAQIQ8AAAAAxHyAAAADETIAwAAMBAhDwAAwECEPAAAAAMR8gAAAAxEyAMAADAQIQ8AAMBAhDwAAAADEfIAAAAMRMgDAAAwECEPAADAQIQ8AAAAAxHyAAAADETIAwAAMBAhDwAAwECEPAAAAAMR8gAAAAxEyAMAADAQIQ8AAMBAhDwAAAADEfIAAAAM5HLI27hxo06dOnXLPomJidq4caOrHwEAAAAXuRzyIiIitGjRolv2+cc//qGIiAhXPwIAAAAucjnk2e322/ax2WyyWCyufgQAAABcVKrn5CUkJCggIKA0PwIAAAD58CxK56efftrp9XfffacTJ07k6ZeTk+M4H69Pnz7FKhAAAABFV6SQ99tz8CwWi3bv3q3du3fn29disahdu3b6+OOPi1MfAAAAXFCkw7XHjx/X8ePHdezYMdntdo0ZM8bR9tt/p06dUmpqqrZt26Z77rmnSAVdv35dY8eOVZcuXVSrVi1VrlxZNWrUUKdOnRQTE6OsrKw870lNTdXYsWNVr149eXt7q379+nrttdeUnp6e72fYbDbNmTNHLVu2lI+Pj0JDQ/X444/r2LFjRaoVAACgvLLYC3MFRT4WL16s8PBwtWrVqkQLunDhgurUqaMHHnhATZo0UWhoqC5fvqzVq1fr5MmTioyM1OrVq2W13synGRkZ6ty5s3bv3q3IyEiFh4frl19+UWxsrNq1a6eNGzeqcuXKTp8xYsQILVy4UPfee6/69eun5ORkLVu2TFWrVtW2bdvUuHHjQtebmpqqgIAApaSkyN/fv0S/C6eaPym1VQNFtmCMuysAnLGPRHlS2vvIwmaPIh2u/a1hw4a5+tZbqlatmlJSUlSpUiWn9uzsbPXq1UuxsbFavXq1+vXrJ0n68MMPtXv3bo0bN04ffPCBo/8bb7yh6dOn6+OPP9b48eMd7XFxcVq4cKG6dOmiH3/80fE5TzzxhPr27avRo0dr7dq1pTI2AACAsuJyyMu1fft27dixQ1euXFFOTk6e5RaLRRMmTCj0+qxWa56AJ0menp4aMGCA4uPjdeTIEUk3b+OycOFCVa1aNc9nTJgwQX/729+0cOFCp5C3YMECSdJ7773n9Dl9+vRRt27dFBsbq1OnTqlu3bqFrhkAAKC8cTnkXbp0Sf/1X/+lzZs33/KeeUUNeQWx2Wxas2aNJKlFixaSbt6iJTk5WVFRUfL19XXq7+vrq06dOmnt2rVKTExUnTp1JEnx8fGOZb8XFRWl+Ph4bdiwQUOGDCl2zQAAAO7icsgbO3asNm3apG7dumnYsGGqXbu2PD2LPTHocOPGDU2dOlV2u10XL17UunXrdPDgQQ0fPlw9evSQdDPkSSrwHLrGjRtr7dq1SkhIUJ06dZSRkaEzZ86oRYsW8vDwyLf/b9ebn8zMTGVmZjpep6amSpKysrIcF4VYrVZ5eHgoJydHNpvN0Te3PTs72ykYe3h4yGq1Fth+c71et/y+gLL0+wugcrf97Oxsp3YvLy/ZbDanWX6LxSJPT88C2wvabkp2e7p97YypYo1J4sb7KD/KYnsqDJdT2cqVK/XAAw9o3bp1pfJUixs3bmjy5MmO1xaLRa+++qqmTZvmaEtJSZGkAm+4nHsyYm6/ovbPz7Rp05zqyhUbG6sqVapIkurWravw8HDt3bvX6fm+TZs2VVhYmLZv367z58872lu3bq169epp48aNSktLc7R36NBB1atXV2xsrKR+BdYElLVVq1Y5ve7bt6+uXbumuLg4R5unp6f69eunCxcuaOvWrY52Pz8/de/eXYmJiU63YAoNDVXHjh2VkJCgQ4cOOdpLY3v67Q4yIiJCPj4+jKmCj0kqvQvfgKIq7e1p586dharD5atrfX19NWrUKH344YeuvL3QbDabkpOTtWLFCr355pu69957tWrVKvn7+2vJkiV68skn9dZbb+n999/P89633npLU6dO1f/+7/9qwIABSk5O1t13361OnTpp06ZNefr/+OOPioyM1IsvvqjZs2fnW09+M3l16tTRhQsXHCGxNH7RjvwbM3koPz4dxUweYypfY/rzbGbyUH7Me7F0t6dLly4pODi49K6ubd26db5PuyhpVqtVtWvX1vPPP6+QkBANGjRIU6ZM0fTp0x0zcgXNvOUeSs3tV9T++fH29pa3t3eedi8vL3l5OQcxDw+PfA8LF3RYu6D2368XcLeC/ibza7darY5bHhWmvaDtprS3J8ZUsccElCfu2p7yfF6heuVj4sSJ+uGHH7Rt2zZXV1FkkZGRkm5ePCHd/hy635+z5+vrq5o1a+r48eP5Xgl8u3P8AAAAKgqXZ/LOnj2rfv36qWvXrnryySfVpk2bAqcMhw4d6nKBv5WcnCzp//2Sa9y4sWrVqqXNmzcrIyPD6QrbjIwMbd68WQ0aNHBcWStJXbt21dKlS7V582Z16dLFaf2598f7fTsAAEBF43LIi46OlsVikd1u16JFi7Ro0aI8F2DY7XZZLJYihbx///vfql+/vuMihlxXr17V2LFjJd080Va6eSz72Wef1bvvvqv33nvP6WbI7733ntLT0/Xmm286refPf/6zli5dqgkTJjjdDHn16tWKj49XZGSk6tWrV/gvAgAAoBxyOeTFxMSUZB0Oy5Yt00cffaTOnTurfv368vf31+nTp7V69WpdvHhRDz30kF5++WVH/9dff13ff/+9pk+frl9++UVt2rTRrl27HI81GzNmjNP6IyIi9Oyzz2rhwoVq06aN+vXrpzNnzujrr79WtWrVNGfOnFIZFwAAQFkqd481e/jhh5WcnKwtW7Zo69atSk9PV0BAgFq1aqXHHntMTz/9tNMJh76+vtqwYYMmTZqkb775RnFxcapZs6ZeeeUVTZw4UT4+Pnk+Y968eWrZsqXmz5+v2bNnq2rVqhowYICmTJmiRo0alcq4AAAAypLLt1DBTYV9SHBx8fBtlCel/fBtoKjYR6I8Ke19ZGGzh8szeb+9Od/t8BxYAACAsuVyyKtfv36hnnRhsVgK/fgNAAAAlAyXQ97QoUPzDXkpKSnas2ePjh8/rq5du6p+/frFqQ8AAAAucDnkLVq0qMBldrtds2bN0ocffqjPPvvM1Y8AAACAi1x+4sWtWCwWvfrqq7r33nv12muvlcZHAAAA4BZKJeTluv/++7V+/frS/AgAAADko1RD3tGjR7noAgAAwA1cPievIDabTadPn9aiRYv0/fffq0ePHiX9EQAAALgNl0Oe1Wq95S1U7Ha7goKCNGvWLFc/AgAAAC5yOeR16dIl35BntVoVFBSkdu3aafjw4apevXqxCgQAAEDRuRzy4uPjS7AMAAAAlKRSvfACAAAA7lEiF15s3rxZu3fvVmpqqvz9/dW6dWt16tSpJFYNAAAAFxQr5G3ZskXDhw/XkSNHJN282CL3PL3GjRsrJiZGHTp0KH6VAAAAKBKXQ96BAwcUGRmpq1evqlevXoqIiFDNmjV19uxZxcXFKTY2VlFRUdq2bZuaN29ekjUDAADgNlwOee+++65u3LihVatWqXfv3k7Lxo0bpzVr1qh///569913tXTp0mIXCgAAgMJz+cKL+Ph4DRw4ME/Ay9W7d28NHDhQcXFxLhcHAAAA17gc8lJSUtSgQYNb9mnQoIFSUlJc/QgAAAC4yOWQV6tWLW3btu2WfX7++WfVqlXL1Y8AAACAi1wOef3791d8fLwmTJig69evOy27fv26Jk6cqLi4OP3xj38sdpEAAAAoGpcvvJgwYYJWrlypqVOnat68eXrggQd011136dy5c9qxY4fOnz+vhg0basKECSVZLwAAAArB5ZAXHBysbdu26fXXX9fSpUu1atUqx7LKlStr+PDhmj59uqpVq1YihQIAAKDwinUz5JCQEH3++eeaN2+eDh486HjiRVhYmLy8vEqqRgAAABRRkUPelClTlJGRocmTJzuCnJeXl1q2bOnoc+PGDb311lvy8/PTG2+8UXLVAgAAoFCKdOHFTz/9pHfeeUfBwcG3nKmrVKmSgoOD9dZbb3GfPAAAADcoUsj7xz/+oaCgII0ePfq2fUeNGqVq1aopJibG5eIAAADgmiKFvC1btqhnz57y9va+bV9vb2/17NlTmzdvdrk4AAAAuKZIIS85OVkNGzYsdP8GDRrozJkzRS4KAAAAxVOkkGe1WpWVlVXo/llZWbJaXb7fMgAAAFxUpARWq1Yt7d+/v9D99+/fr7vvvrvIRQEAAKB4ihTyHnroIa1fv14nTpy4bd8TJ05o/fr16tKli6u1AQAAwEVFCnmjRo1SVlaWBg4cqAsXLhTY7+LFi/rTn/6k7OxsPf/888UuEgAAAEVTpJsht2nTRmPGjNEnn3yi5s2b6y9/+YsiIiJUu3ZtSdLp06e1bt06zZ8/X+fPn9fYsWPVpk2bUikcAAAABSvyEy9mzZqlypUra8aMGZoyZYqmTJnitNxut8vDw0Pjx4/X+++/X2KFAgAAoPCKHPIsFoumTp2qZ555RjExMdqyZYvOnj0rSapRo4Y6deqk6OhoNWrUqMSLBQAAQOEUOeTlatSoETN1AAAA5RQ3sQMAADAQIQ8AAMBAhDwAAAADEfIAAAAMRMgDAAAwECEPAADAQIQ8AAAAAxHyAAAADETIAwAAMBAhDwAAwECEPAAAAAMR8gAAAAxEyAMAADAQIQ8AAMBAhDwAAAADEfIAAAAMRMgDAAAwECEPAADAQIQ8AAAAAxHyAAAADETIAwAAMBAhDwAAwECEPAAAAAMR8gAAAAxEyAMAADAQIQ8AAMBAhDwAAAADEfIAAAAMRMgDAAAwECEPAADAQIQ8AAAAAxHyAAAADETIAwAAMBAhDwAAwECEPAAAAAMR8gAAAAxEyAMAADAQIQ8AAMBAhDwAAAADEfIAAAAMRMgDAAAwECEPAADAQIQ8AAAAAxHyAAAADETIAwAAMBAhDwAAwECEPAAAAAMR8gAAAAxEyAMAADAQIQ8AAMBAhDwAAAADEfIAAAAMVC5D3hdffKHnnntO999/v7y9vWWxWLRo0aJ8+06aNEkWi6XAfydOnMj3fWvXrlXXrl3l5+cnf39/RUREaN26daU3KAAAgDLk6e4C8vP222/r5MmTCgkJUc2aNXXy5MnbvmfYsGGqX79+nvbAwMA8bV988YWGDBmi0NBQRUdHS5K+/vpr9erVS8uWLdPAgQOLOQIAAAD3Kpchb+HChWrcuLHq1aunDz74QOPHj7/te6Kjo9WtW7fb9rt8+bJeeOEFhYSEaNeuXapdu7Ykady4cQoPD9fzzz+vqKgo+fn5FXcYAAAAblMuD9f27NlT9erVK5V1L1++XFeuXNELL7zgCHiSVLt2bY0ePVoXLlzQt99+WyqfDQAAUFbKZchzxcaNGzV9+nTNmDFD3333ndLT0/PtFx8fL0mKjIzMsywqKkqStGHDhlKrEwAAoCyUy8O1rpg4caLT68DAQM2ePVtDhw51ak9ISJAkNW7cOM86ctty++QnMzNTmZmZjtepqamSpKysLGVlZUmSrFarPDw8lJOTI5vN5uib256dnS273e5o9/DwkNVqLbD95nq9bjl+oCzl/q3n8vS8uSvJzs52avfy8pLNZlNOTo6jzWKxyNPTs8D2grabkt2ebl87Y6pYY5IsAsqLstieCqPCh7z77rtPn3/+ubp166aaNWvq7NmzWrlypd555x1FR0crMDBQ/fv3d/RPSUmRJAUEBORZl7+/v1Of/EybNk2TJ0/O0x4bG6sqVapIkurWravw8HDt3btXp06dcvRp2rSpwsLCtH37dp0/f97R3rp1a9WrV08bN25UWlqao71Dhw6qXr26YmNjJfUr5DcClL5Vq1Y5ve7bt6+uXbumuLg4R5unp6f69eunCxcuaOvWrY52Pz8/de/eXYmJidq9e7ejPTQ0VB07dlRCQoIOHTrkaC+N7em3O8iIiAj5+Pgwpgo+JslfQHlR2tvTzp07C1WHxf7bn1DlUO6FFzExMY4rYQtj3bp16tWrl1q0aKG9e/c62ps0aaKEhARlZWX95hfgTVlZWapUqZJatWqlPXv25Lve/Gby6tSpowsXLjhCYmn8oh35N2byUH58OoqZPMZUvsb059nM5KH8mPdi6W5Ply5dUnBwsFJSUhzZIz8VfiavID169FCjRo20b98+paamOr6E3Bm8lJQUBQcHO70n99BrfrN8uby9veXt7Z2n3cvLS15ezkHMw8NDHh4eefr+Plzerv336wXcraC/yfzarVarrNa8p/8W1F7QdlPa2xNjqthjAsoTd21PeT6vUL0qqJCQEEnS1atXHW23Ou/uVufrAQAAVCTGhryMjAwdOHBAvr6+jrAnSV27dpWk//88N2dr16516gMAAFBRVeiQl5aWpsOHD+dpv3btmkaMGKG0tDQNGjTIaVpz0KBBCggI0Jw5c5SUlORoT0pK0ty5cxUSEqIBAwaUSf0AAAClpVyek7dw4UJt2rRJkrRv3z5HW+497jp37qxnn31WFy9eVFhYmNq1a6dmzZqpRo0aOnfunH766SclJSWpZcuWmjFjhtO6g4KCNHfuXA0ZMkRt2rTR4MGDJd18rNnFixf19ddf87QLAABQ4ZXLkLdp0yYtXrzYqW3z5s3avHmz4/Wzzz6ratWqaeTIkdq+fbtWrVqly5cvy8fHR82aNdOLL76o0aNHy8fHJ8/6n3rqKYWEhGjq1KmKiYmRxWJR27Zt9fbbb6tnz56lPj4AAIDSVu5voVLepaamKiAg4LaXMRfXiE9KbdVAkS0Y4+4KAGfsI1GelPY+srDZo0KfkwcAAID8EfIAAAAMRMgDAAAwECEPAADAQIQ8AAAAAxHyAAAADETIAwAAMBAhDwAAwECEPAAAAAMR8gAAAAxEyAMAADAQIQ8AAMBAhDwAAAADEfIAAAAMRMgDAAAwECEPAADAQIQ8AAAAAxHyAAAADETIAwAAMBAhDwAAwECEPAAAAAMR8gAAAAxEyAMAADAQIQ8AAMBAhDwAAAADEfIAAAAMRMgDAAAwECEPAADAQIQ8AAAAAxHyAAAADETIAwAAMBAhDwAAwECEPAAAAAMR8gAAAAxEyAMAADAQIQ8AAMBAhDwAAAADEfIAAAAMRMgDAAAwECEPAADAQIQ8AAAAAxHyAAAADETIAwAAMBAhDwAAwECEPAAAAAMR8gAAAAxEyAMAADAQIQ8AAMBAhDwAAAADEfIAAAAMRMgDAAAwECEPAADAQIQ8AAAAAxHyAAAADETIAwAAMBAhDwAAwECEPAAAAAMR8gAAAAxEyAMAADAQIQ8AAMBAhDwAAAADEfIAAAAMRMgDAAAwECEPAADAQIQ8AAAAAxHyAAAADETIAwAAMBAhDwAAwECEPAAAAAMR8gAAAAxEyAMAADAQIQ8AAMBAhDwAAAADEfIAAAAMRMgDAAAwECEPAADAQIQ8AAAAAxHyAAAADETIAwAAMBAhDwAAwECEPAAAAAMR8gAAAAxEyAMAADAQIQ8AAMBAhDwAAAADEfIAAAAMRMgDAAAwECEPAADAQHd0yNuxY4f69u2rwMBA+fr6qn379lq2bJm7ywIAACg2T3cX4C5xcXGKiopS5cqV9dhjj8nPz0/ffPONBg8erMTERL3yyivuLhEAAMBld+RMXnZ2tkaMGCGr1aqNGzdq/vz5mjVrlvbs2aMmTZrozTff1MmTJ91dJgAAgMvuyJC3fv16HT16VE888YRat27taA8ICNCbb76pGzduaPHixe4rEAAAoJjuyJAXHx8vSYqMjMyzLCoqSpK0YcOGsiwJAACgRN2RIS8hIUGS1Lhx4zzLatSooapVqzr6AAAAVER35IUXKSkpkm4ens2Pv7+/o8/vZWZmKjMzM8+6Ll26pKysLEmS1WqVh4eHcnJyZLPZHH1z27Ozs2W32x3tHh4eslqtBbZnZWXpxnUvF0cLlLyLF7OcXnt63tyVZGdnO7V7eXnJZrMpJyfH0WaxWOTp6Vlge0HbTUluT4WpnTFVrDHduG4RUF5cuVK629OlS5ckyWnbyc8dGfKKY9q0aZo8eXKe9gYNGrihGsA9/jHe3RUAQPlVVvvItLS0AiespDs05OV+IQXN1qWmpiooKCjfZePHj9fYsWMdr202my5duqTg4GBZLPySLM9SU1NVp04dJSYmyt/f393lAEC5wj6y4rDb7UpLS1OtWrVu2e+ODHm55+IlJCSobdu2TsvOnj2r9PR0PfDAA/m+19vbW97e3k5tgYGBpVInSoe/vz87MAAoAPvIiuFWM3i57sgLL7p27SpJio2NzbNs7dq1Tn0AAAAqIov9dmftGSg7O1tNmzbV6dOntW3bNse98lJSUvTAAw/oxIkTOnTokOrXr+/WOlGyUlNTFRAQoJSUFH6lAsDvsI80zx15uNbT01MLFy5UVFSUunTp4vRYs5MnT2rmzJkEPAN5e3tr4sSJeQ63AwDYR5rojpzJy7V9+3ZNnDhRW7ZsUVZWllq2bKmxY8dq8ODB7i4NAACgWO7okAcAAGCqO/LCCwAAANMR8gAAAAxEyAMAADAQIQ8AAMBAhDwAAAADEfJgtNyLx+12u7iQHABwJ+EWKgAAAAa6I594gTvDr7/+qn379ikhIUFpaWl68MEH1bRpUwUHB8vT8+afvs1mk9XKhDYAwDyEPBhp9erVmjJlirZs2eLUHhwcrB49emjw4MF6+OGH5eXl5aYKAcD9cnJy5OHh4e4yUEo4XAvjJCYmqlu3bsrIyFB0dLQiIiJ07Ngx/fLLL9qzZ4/27t2rzMxMNWvWTG+99ZYeffRReXt7y263y2KxuLt8ACh1vz+KkXve8u2ObLCfrFiYyYNx5s2bp8uXL2vhwoV65JFHnJYlJSVpy5Yt+uGHH7RkyRI99dRTSkpK0uuvv86OC8AdY968eYqPj9fQoUPVtWtXVa1a1bEPtNlskpRv4GM/WbEwkwfjtG/fXj4+Plq+fLlCQkKUnZ0ti8WS55BEXFycXnnlFf373//Wp59+qqefftpNFQNA2WrQoIFOnjwpb29v3XfffYqMjFTfvn314IMPOgW57OxseXp66urVq5o/f77uu+8+RUREuLFyFAUhD0ZJT0/XgAEDlJSUpJ07d6pKlSpOhyV+f0jil19+UY8ePfTQQw/p+++/51AEAOMdOHBALVu2VNu2bRUUFKSffvpJkuTr66tOnTqpb9++ioyMVFhYmOM9mzZtUpcuXdSxY0dt2rTJXaWjiLisEEapWrWq2rZtq0OHDmnp0qWS8h5yyH1ts9kUHh6uLl266ODBgzp58iQBD4Dx9u3bJ0l64oknFBsbq4MHD+qDDz7QPffco9jYWI0ZM0bdu3fXE088of/5n//R5cuXtX37dknS+PHj3Vk6ioiZPBjn9OnT6tOnj/bv36/Ro0crOjpazZs3V+XKlR19cg9BpKam6tlnn9XPP/+skydPurFqACgb8+fP11/+8hf93//9n/r06eO0bMeOHfrqq6/0z3/+U0lJSZKkxo0bKzU1VdeuXdOVK1fcUDFcxUwejHP33Xfr3XffVf369TV37lw999xzmjlzpuLj43Xy5Eldv37dcZ+8FStWKD4+Ps+ODgBMZLfb1apVK40ZM0ZNmjRxapekdu3a6aOPPtLhw4e1YsUKDR06VOfOndO5c+c0ZMgQd5UNFzGTB2P8/ny6S5cuadq0aVq2bJkSExMVGhqqFi1aqFatWqpSpYquXbumZcuWqUGDBvruu+/UtGlTN1YPAGUnPT1dlSpVUqVKlfIs+/2+dPTo0fr000+1a9cutW7dugyrRHER8mCU3J1TUlKSatWqJavVqv3792vlypWKj4/Xf/7zHyUmJkqSgoKC1Lp1a/31r3/Vvffe6+bKAaD8yN2XHj16VIMHD1ZKSooSEhLcXRaKiJAHI2RnZ2vz5s36/PPPdfjwYVksFlWpUkXt2rXToEGDFB4eLrvdrsTERF27dk3Hjh1TWFiY6tSpI09PT66qBYB8rFy5Uv3799drr72m6dOnu7scFBEhD0aYOXOm3nvvPaWlpemee+6Rh4eHDh065FjevHlzjRw5UgMHDlT16tXdWCkAuF9hf9ieO3dOa9as0R/+8AdVq1atDCpDSSLkocI7fvy4WrZsqTZt2mjx4sWqVKmS7rrrLp09e1YrVqzQ8uXLFR8fL0mKiIjQ9OnTdf/997u3aAAoQ9euXdOpU6dUt25d+fj4FOm9PN+24iLkocJ75513NG/ePC1ZskQ9evSQlPdX6r59+zRz5kwtW7ZM9erV05dffqm2bdu6q2QAKFMffPCBvvnmGz3yyCNq3769mjZtqrvuuuuW4e38+fMKCgpy3I0AFQ8hDxXeo48+qt27dysuLk5169Z13APPbrfLZrM57cRmz56tl19+WcOGDVNMTIwbqwaAslO7dm0lJyfLw8NDAQEB6tixoyIjI/Xggw+qYcOGCg4OduqfkZGhSZMm6eLFi1qwYAEzeRUU8RwVXnh4uL799lulp6dLkuNX52+fV5s7s/fSSy/pX//6l9avX69jx46pYcOGbqsbAMrC4cOHlZKSog4dOuiJJ57Qjz/+qK1bt2rlypWqW7euunXrpp49eyo8PFx33323AgMDtX//fi1YsEDdunUj4FVghDxUeLkPy37yySc1a9Ysde7cOd97P+WeV9K0aVOtXr3aEQoBwGSHDx/W9evXFRkZqVGjRunhhx/WoUOHtHXrVq1fv17ffPONvvzySzVv3lzdu3dX7969tW7dOqWmpmrEiBHuLh/FwOFaVHg5OTkaN26cPvroI4WFhWnUqFEaOHCg7rrrrjx9L1++rDFjxmj16tX69ddf3VAtAJStf/7znxo0aJCWLl2qQYMGOdqzsrJ08uRJ7dmzR//6178c9xL18vKS3W6Xt7e3Ll265MbKUVyEPBhj3rx5mjFjho4dO6ZatWppwIAB6tOnj+rUqSMPDw8FBgZqzpw5+uSTTzRy5EjNmjXL3SUDQKmz2+06ePCgKleurAYNGuR7+5SMjAwdPnxYhw4dUkxMjH788UeNHj1af/3rX91UNUoCIQ/GsNvtOnLkiBYsWKClS5c6Hq5dvXp1eXl56cyZM7LZbHr88cc1ffp01a5d280VA4B75Rf4XnzxRc2dO1c7d+5UeHi4mypDSSDkwUgZGRnavn27fvjhByUnJ+vXX3+Vv7+/Bg0apEcffVSVK1d2d4kAUG7YbDZZrVadOHFCf/zjH3X58mWdOnXK3WWhmLjwAkby9fVVRESEIiIilJWVJS8vL3eXBADlltVqlSSdPn1aWVlZGjlypJsrQklgJg8AAEi6efg2KSlJ1apVk6+vr7vLQTER8gAAAAxkdXcBAAAAKHmEPAAAAAMR8gAAAAxEyAMAADAQIQ8AAMBAhDwAAAADEfIAAAAMRMgDAAAwECEPAADAQP8fmiUzVxzAK60AAAAASUVORK5CYII=", - "text/plain": [ - "
" - ] - }, - "execution_count": 3, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "plot_histogram(counts)" - ] - }, - { - "attachments": {}, - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### ヒストグラムをプロットするときのオプション\n", - "\n", - "出力グラフを調整するには、`plot_histogram()` に以下のオプションを使用します。\n", - "\n", - "* `legend`: 実行にラベルを指定します。 各実行の結果のラベル付けに使用される文字列のリストを取ります。 これは、複数の実行の結果を同じヒストグラムにプロットする際に最も役立ちます。\n", - "* `sort`: ヒストグラムに表示される棒がレンダリングされる順序を調整します。 昇順の `asc` または降順の `desc` をセットできます\n", - "* `number_to_keep`: 表示する項数の整数を取ります。 残りは単一の「rest」という棒にまとめられます\n", - "* `color`: 棒の色を調整します。各実行の棒に使用する色の文字列または文字列のリストを取ります。 \n", - "* `bar_labels`: ラベルが棒の上に出力されるかを調整します。 \n", - "* `figsize`: 出力図を作成するためのインチ単位のサイズのタプルを取ります。" - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": { - "ExecuteTime": { - "end_time": "2021-07-31T05:08:30.989035Z", - "start_time": "2021-07-31T05:08:30.821801Z" - }, - "execution": { - "iopub.execute_input": "2023-08-25T18:25:14.144536Z", - "iopub.status.busy": "2023-08-25T18:25:14.144009Z", - "iopub.status.idle": "2023-08-25T18:25:14.340822Z", - "shell.execute_reply": "2023-08-25T18:25:14.340126Z" - } - }, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA04AAAG8CAYAAADpZfW6AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAABNTUlEQVR4nO3deXxM9/7H8fdksojIhiixRKQkFLVr7UETS6vVaoqWhNLaq24v1VZDW1trqdblpyhK+7NUaatUiqhbS7k01tJQe6g9ISKyzO8Pv8ztSOJIJCaS1/PxyOPR+Z7vOfM5c+8c5z3fc77HZLFYLAIAAAAAZMvB3gUAAAAAQEFHcAIAAAAAAwQnAAAAADBAcAIAAAAAAwQnAAAAADBAcAIAAAAAAwQnAAAAADBAcAIAAAAAA472LuBBl56erri4OLm7u8tkMtm7HAAAUMhZLBZdvXpVvr6+cnDI/Bu4xWJRWlqaUlNT7VAd8OBwdHSU2Wy+63N4gtM9iouLU8WKFe1dBgAAKGJOnjypChUqWF9bLBZduXJF58+fV1pamh0rAx4cZrNZZcqUkaenp2GAIjjdI3d3d0m3Dl4eHh52rgYAABR2CQkJqlixovUcJMPZs2d15coVeXh4yMPDQ46OjlwNA2TDYrEoNTVVCQkJOnPmjJKSklSuXLk7rkNwukcZB6SMgxQAAMD98PdQlJaWpvj4ePn4+Kh06dJ2rAp4sLi7u8vFxUUXLlxQmTJlZDabs+3L5BAAAAAPuJSUFFksFrm5udm7FOCB4+bmJovFopSUlDv2IzgBAAAUElyaB+Tc3X5vCE4AACDfjB49WiaTyeYvKChIknTp0iUNHjxYgYGBcnV1VaVKlTRkyBDFx8db17948aLatWsnX19fubi4qGLFiho0aJASEhLstUsAiijucQIAAPnqkUce0bp166yvHR1vnX7ExcUpLi5OkyZNUo0aNXT8+HH169dPcXFx+vrrryVJDg4Oevrpp/XBBx/Ix8dHhw8f1sCBA3Xp0iV99dVXdtkfAEUTI04AACBfOTo6qmzZsta/jMkLatasqeXLl+upp55SQECAWrdurbFjx+r777+3PoPI29tb/fv3V4MGDeTn56c2bdpowIAB+ve//23PXUIBc+zYMZlMJs2fP9/epRRK8+fPl8lk0rFjx+xdil0RnAAAQL6KjY2Vr6+vqlSpohdffFEnTpzItm98fLx1Ku2sxMXF6ZtvvlHLli3zq1wUQBkn7ln9vfnmm/nynuPGjdPKlSvzZdsFVVHc55zgUj0AAJBvGjdurPnz5yswMFBnzpzRmDFj1Lx5c+3bty/Tc4guXLig999/X6+88kqm7XTr1k3ffvutkpKS9NRTT2nOnDn3axcKhb4f27sCafbQe9/Ge++9J39/f5u2mjVrys/PT0lJSXJycrr3N/l/48aNU5cuXfTMM8/k2TYLuuz2uUePHuratatcXFzsU1gBQXACAAD5pn379tb/rl27tho3biw/Pz8tXbpUL7/8snVZQkKCOnbsqBo1amj06NGZtjN16lRFRkbqjz/+0MiRIzVs2DDNmDHjfuwCCpD27durQYMGWS4rVqyY4fqJiYlM2Z4LZrP5js83Kiq4VA8AANw3Xl5eqlatmg4fPmxtu3r1qtq1ayd3d3etWLEiy1GDsmXLKigoSJ06ddKsWbM0c+ZMnTlz5n6WjgIsq3ucIiIiVKJECR05ckQdOnSQu7u7XnzxRUm3Lh997rnnVLZsWRUrVkwVKlRQ165drTM6mkwmJSYmasGCBdZLAiMiIu5YQ3JysiIjI/Xwww9bZ4AcPny4kpOTrX3Cw8NVrFgx/f777zbrhoaGytvbW3Fxcda2NWvWqHnz5nJzc5O7u7s6duyo/fv3Z3rfgwcPKiwsTD4+PnJ1dVVgYKDefvttm8+hcuXKmdbLmPEyw532Obt7nGbMmKFHHnlELi4u8vX11cCBA3XlyhWbPq1atVLNmjV14MABBQcHq3jx4ipfvrw+/PDDO36eBREjTgAA4L65du2ajhw5oh49eki6NdIUGhoqFxcXfffdd3c1apCeni5JNiekKBri4+N14cIFm7aMyUaykpqaqtDQUDVr1kyTJk1S8eLFdfPmTYWGhio5OVmDBw9W2bJldfr0aa1atUpXrlyRp6enFi5cqD59+qhRo0bWS0cDAgKyfZ/09HR16tRJv/zyi1555RVVr15de/fu1dSpU/XHH39Y7xuaNm2aNmzYoPDwcG3dulVms1mzZs1SVFSUFi5cKF9fX0nSwoULFR4ertDQUE2cOFHXr1/XzJkz1axZM/3222/WILRnzx41b95cTk5OeuWVV1S5cmUdOXJE33//vcaOHZujzzan+zx69GiNGTNGbdu2Vf/+/XXo0CHNnDlTO3bs0ObNm21+ALl8+bLatWunZ599VmFhYfr66681YsQI1apVy2ZUuqAjOAEAgHzzxhtv6KmnnpKfn5/i4uIUGRkps9msbt26KSEhQSEhIbp+/boWLVqkhIQE6/OZfHx8ZDabtXr1av31119q2LChSpQoof379+uf//ynmjZtmuWv6Cjc2rZtm6nNYrFk2z85OVnPP/+8xo8fb22LiYnR0aNHtWzZMnXp0sXa/u6771r/+6WXXlK/fv1UpUoVvfTSS4Z1ffXVV1q3bp1+/vlnNWvWzNpes2ZN9evXT1u2bFGTJk3k5eWluXPnKjQ0VBMmTFD37t31xhtv6JlnnrG+z7Vr1zRkyBD16dNHn332mXVb4eHhCgwM1Lhx46ztgwcPlsVi0a5du1SpUiVr3wkTJhjWfLuc7PP58+c1fvx4hYSEaM2aNXJwuHURW1BQkAYNGqRFixapV69e1v5xcXH64osvrD+YvPzyy/Lz89PcuXMJTgAAAJJ06tQpdevWTRcvXpSPj4+aNWumbdu2ycfHRxs3btSvv/4qSXr44Ydt1jt69KgqV64sV1dXzZ49W6+//rqSk5NVsWJFPfvss/k2kxoKtn/961+qVq1ajtbp37+/zWtPT09J0tq1a9WhQwcVL178nutatmyZqlevrqCgIJsRsdatW0uSoqOj1aRJE0lSSEiIXn31Vb333nv6+uuvVaxYMc2aNcu6zk8//aQrV66oW7duNtsym81q3LixoqOjJd0KL5s2bdJrr71mE5ok2VyClx/WrVunmzdvaujQodbQJEl9+/bVW2+9pR9++MEmOJUoUcImjDk7O6tRo0b6888/87XOvEZwQq61atVKP//8s02bs7Oz9dKJK1euqHnz5tq/f78sFot8fX21du1a1axZ09p/wYIFev3113X58mWZTCaVLFlSM2bMUFhY2H3dFwBA/li8eHG2y1q1anXH0QJJCg4O1pYtW/K6LDygGjVqlO3kEFlxdHRUhQoVbNr8/f01bNgwTZkyRV9++aWaN2+uTp066aWXXrKGqpyKjY3V77//Lh8fnyyXnzt3zub1pEmT9O233yomJkZfffWVypQpY7Mt6b+h63YeHh6SZA0dfz+vul+OHz8uSQoMDLRpd3Z2VpUqVazLM1SoUCFTmPP29taePXvyt9A8RnDCPXFxcdH27dttXmdo2rSpDh06pI8++kgPPfSQ+vfvryZNmlgvwzh79qx69eqlgIAAffnll7p586YGDhyobt266cknn8yTX4AAAEDR5eLiYjMikmHy5MmKiIjQt99+q6ioKA0ZMkTjx4/Xtm3bMgWtu5Genq5atWppypQpWS6vWLGizevffvvNGqb27t2rbt262WxLunXPUdmyZTNtK7tnnGUnu9GntLS0HG3nXmQ3I5/RDycFDcEJ98RkMql27dqZ2k+cOKEDBw5o2LBh+sc//iFJKlmypDp27Kg5c+aoT58+ioqKksVi0aJFi9S4cWNJt27i7NKli7Zu3ao2bdrc130BAABFR61atVSrVi2988472rJli5o2bar/+Z//0QcffCApZ5e7BQQEaPfu3WrTpo3heomJierVq5dq1KihJk2a6MMPP1Tnzp3VsGFD67YkqUyZMlne05WhSpUqkqR9+/bd8f28vb0zzXQnKdOokHT3++zn5ydJOnTokLUOSbp586aOHj16x7ofZExHjnty48YNmc1mOTk5qXLlytq6daukW9f6StKQIUOsfTt06CCz2axVq1ZJunWDp8lk0ogRI3Tt2jVdunRJH3zwgZydndW0adP7vzMAAKDQS0hIUGpqqk1brVq15ODgYDNTo5ubW5aBIythYWE6ffq0Zs+enWlZUlKSEhMTra9HjBihEydOaMGCBZoyZYoqV66s8PBw63uHhobKw8ND48aNU0pKSqbtnT9/XtKtCVRatGihzz//XCdOnLDp8/eRnICAAMXHx9tcFnfmzBmtWLEi07bvdp/btm0rZ2dnffLJJzbvNXfuXMXHx6tjx46G23gQMeKEXGvdurXq1aunJk2a6NChQ5owYYKaN2+uEydOWK+7zfhFIkOxYsWsz93w9fXV8uXLFRYWZn16vLOzszZs2HBX09ECAADk1IYNGzRo0CA9//zzqlatmlJTU7Vw4UKZzWY999xz1n7169fXunXrNGXKFPn6+srf3996hcztevTooaVLl6pfv36Kjo5W06ZNlZaWpoMHD2rp0qVau3atGjRooA0bNmjGjBmKjIxUvXr1JEnz5s1Tq1atNGrUKH344Yfy8PDQzJkz1aNHD9WrV09du3aVj4+PTpw4oR9++EFNmzbV9OnTJUmffPKJmjVrpnr16umVV16Rv7+/jh07ph9++EExMTGSpK5du2rEiBHq3LmzhgwZYp3avFq1atq1a5fNftztPvv4+GjkyJEaM2aM2rVrp06dOunQoUOaMWOGGjZseFczET6QLLgn8fHxFkmW+Ph4e5did8eOHbNIsoSHh1sGDBhgyer/Xm5ubpZGjRpZLBaL5eLFixY3NzdLlSpVLPPnz7fMnj3bUr58eYuLi4vl4sWL97t8AAAeCFmdeyQlJVkOHDhgSUpKsmNl+WfevHkWSZYdO3Zkufzo0aMWSZZ58+ZZ28LDwy1ubm6Z+v7555+W3r17WwICAizFihWzlCxZ0hIcHGxZt26dTb+DBw9aWrRoYXF1dbWe39zJzZs3LRMnTrQ88sgjFhcXF4u3t7elfv36ljFjxlji4+MtCQkJFj8/P0u9evUsKSkpNuu+/vrrFgcHB8vWrVutbdHR0ZbQ0FCLp6enpVixYpaAgABLRESE5T//+Y/Nuvv27bN07tzZ4uXlZSlWrJglMDDQMmrUKJs+UVFRlpo1a1qcnZ0tgYGBlkWLFlkiIyMznatlt88Zn//Ro0dt+k+fPt0SFBRkcXJysjz00EOW/v37Wy5fvmzTp2XLlpZHHnkk0+cVHh5u8fPzu+Nner/c7ffHZLE8YHdlFTAJCQny9PRUfHy8dZaToszNzU21a9dWly5d9MYbb+jYsWM2o06Ojo568skntXLlSkVEROiLL77QzZs3rTc6Xrt2Te7u7ho8eLA++eQTe+0GAAAFVlbnHjdu3NDRo0fl7+/PVRtADt3t94d7nJBnzp49q6SkJPn6+ur555+XJOtQsiStWbNGaWlpevLJJyXdCkkmk8lmtpuMAHU/Z3oBAAAAjHCPE3KtQYMG6tGjh+rXr6/9+/frrbfekiR98MEHqlSpkmrUqKGpU6eqXLlyKlOmjPr3768SJUqoT58+kqTevXtr+fLlql27tiZMmKC0tDS9/vrrkm49QA0AAAAoKAhOyLVz585p2LBhSk9Pl4ODg8qXL299crYkbd68Wc2bN9cbb7whi8WicuXK6ccff7Su36FDB40fP17jxo3TU089JZPJJC8vL82ePVt16tSx014BAAAAmXGP0z3iHicAAHA/cY8TkLe4xwkAgP/Xrl07mUwm1a1b19q2YcMG+fr6ysHBQSaTSRUrVrR5kOQvv/yiatWqycnJSSaTSU5OTmrZsqWuXbtmj10AANgZwQkAUKgtWLBA69evt/kV8dy5cwoNDZV064HdX3/9tVJTU/XYY49ZH4y5ceNGWSwWvffee4qOjtbw4cP173//W61atbLHbgAA7Ix7nAAAhdbZs2fVt29fjR07VuPGjbO2z507V6mpqdq+fbsqVKggSWrYsKH8/Pw0ZcoUDR8+XO+8847eeecd6zqtWrVSTEyMoqKi7vt+AADsjxEnAECh1bRpU9WsWVPDhw+3ab9+/bok2dyb6uXlJUlavXp1ttuLj4+Xs7Nz3hcKACjwCE4AgEJpyJAhOn36tDZs2JBpWffu3SVJLVu21IULF3Tu3Dk1a9ZMkvTXX39lub3169dr8+bNeu655/KvaABAgUVwAgAUOr/++qumT5+uRYsWWUeS/q569eoaN26c9u3bJx8fHz300EO6du2aXF1dbR7KneE///mP2rVrp2rVqumLL764D3sAAChoCE4AgEJn5cqVslgsev7552UymWQymRQfH6+YmBiZTCbdvHlTI0eOVEpKig4ePKhjx47pzz//VHJysipXrmyzrV27dqlJkyaqVKmS9u/fb58dAgDYHcEJAFDoDB48WN98843NX/HixeXv769vvvnG5j6lwMBA+fn5afLkyUpPT9egQYOsy/7zn//oscceU7ly5fT777/L0ZE5lQDkD5PJpNGjR9u7DLuaP3++TCaTjh07Zu9SssS/AACAQsfX11edO3e2aXNycpKnp6e1vXfv3mrSpImqVKmiZcuWadasWapfv77at28v6VZoatKkiUqUKKHly5fr4MGD1m3Vrl37/u0MAEnS3r17NWbMGO3YsUN//fWXSpUqpRo1aqhTp04aPHiwvctDDowbN041atTQM888Y+9ScoTgBAAokg4cOKAFCxYoPT1dTk5Oeuqpp7RixQrr8v/5n/9RSkqKLl++rIYNG9qsa7FY7ne5d+VI4Gh7lwBJAYdG27uETArC/zfu5XPZsmWLgoODValSJfXt21dly5bVyZMntW3bNk2bNo3g9IAZN26cunTpkik49ejRQ127dpWLi4t9CjNAcAIAFAlXrlyxeb1t27Y79p8zZ47mzJmTjxUBuFtjx46Vp6enduzYkWnCl3PnztmnKOQ5s9kss9ls7zKyxT1OQCE0YcIEmUwmDR06VJJ07Ngx6w3yt/8tW7ZM0n+vK87qj3+UAAD2dOTIET3yyCNZzpJZpkyZTG2LFi1S/fr15erqqpIlS6pr1646efJkpn6//vqrOnToIG9vb7m5ual27dqaNm2aTZ8NGzaoefPmcnNzk5eXl55++mn9/vvvNn1Gjx4tk8mkw4cPKyIiQl5eXvL09FSvXr2sz43LkJycrNdff10+Pj5yd3dXp06ddOrUqbv+LJKTkxUZGamHH35YLi4uqlixooYPH67k5GRrn/DwcBUrVixTnaGhofL29lZcXJy1bc2aNdb9c3d3V8eOHbOcCOfgwYMKCwuTj4+PXF1dFRgYqLffftu6PCIiItPkOn//bDKYTCYlJiZqwYIF1vOMiIgISdnf4zRjxgw98sgjcnFxka+vrwYOHJjpx7BWrVqpZs2aOnDggIKDg1W8eHGVL19eH374odFHetcITkAhs2PHDs2aNcvmHoyKFSvqzJkzNn9jxoxRiRIlrPdzvPDCC5n6hIaGqmXLlln+owQAwP3i5+ennTt3at++fYZ9x44dq549e6pq1aqaMmWKhg4dqvXr16tFixY2J9s//fSTWrRooQMHDui1117T5MmTFRwcrFWrVln7rFu3TqGhoTp37pxGjx6tYcOGacuWLWratGmWExiEhYXp6tWrGj9+vMLCwjR//nyNGTPGpk+fPn308ccfKyQkRBMmTJCTk5M6dux4V59Denq6OnXqpEmTJumpp57Sp59+qmeeeUZTp07VCy+8YO03bdo0+fj4KDw8XGlpaZKkWbNmKSoqSp9++ql8fX0lSQsXLlTHjh1VokQJTZw4UaNGjdKBAwfUrFkzm/3bs2ePGjdurA0bNqhv376aNm2annnmGX3//fd3VfffLVy4UC4uLmrevLkWLlyohQsX6tVXX822/+jRozVw4ED5+vpq8uTJeu655zRr1iyFhIQoJSXFpu/ly5fVrl07Pfroo5o8ebKCgoI0YsQIrVmzJsd1ZoVL9YBC5Nq1a3rxxRc1e/ZsffDBB9Z2s9mssmXL2vRdsWKFwsLCVKJECUmSq6urXF1drcvPnz+vDRs2aO7cufeneAAAsvHGG2+offv2qlOnjho1aqTmzZurTZs2Cg4OlpOTk7Xf8ePHFRkZqQ8++EBvvfWWtf3ZZ59V3bp1NWPGDL311ltKS0vTq6++qnLlyikmJsZmJOvv9zD+85//VMmSJbV161aVLFlSkvTMM8+obt26ioyM1IIFC2zqrFu3rs2/mxcvXtTcuXM1ceJESdLu3bu1aNEiDRgwQP/6178kSQMHDtSLL76oPXv2GH4OX331ldatW6eff/7Z+tBuSapZs6b69eunLVu2qEmTJvLy8tLcuXMVGhqqCRMmqHv37nrjjTf0zDPP6KWXXpJ065xhyJAh6tOnjz777DPrtsLDwxUYGKhx48ZZ2wcPHiyLxaJdu3apUqVK1r4TJkwwrPl2L730kvr166cqVapYa8nO+fPnNX78eIWEhGjNmjXW5+wFBQVp0KBBWrRokXr16mXtHxcXpy+++EI9evSQJL388svy8/PT3LlzrT8U3wtGnIBCZODAgerYsaPatm17x347d+5UTEyMXn755Wz7fPHFFypevLi6dOmS12UCAJAjTzzxhLZu3apOnTpp9+7d+vDDDxUaGqry5cvru+++s/b75ptvlJ6errCwMF24cMH6V7ZsWVWtWlXR0dGSpN9++01Hjx7V0KFDM13+l3FZ2ZkzZxQTE6OIiAhraJJuzar5xBNPaPXq1Znq7Nevn83r5s2b6+LFi0pISJAk6zpDhgyx6Zdxab2RZcuWqXr16goKCrLZv9atW0uSdf8kKSQkRK+++qree+89PfvssypWrJhmzZplXf7TTz/pypUr6tatm822zGazGjdubN3W+fPntWnTJvXu3dsmNP39s8ov69at082bNzV06FCbh5P37dtXHh4e+uGHH2z6lyhRwiaMOTs7q1GjRvrzzz/zpB5GnIBCYvHixdq1a5d27Nhh2Hfu3LmqXr26mjRpcsc+3bt3txmFAgDAXho2bKhvvvlGN2/e1O7du7VixQpNnTpVXbp0UUxMjGrUqKHY2FhZLBZVrVo1y21kjE4dOXJE0q2RmuwcP35c0q1nvd2uevXqWrt2rRITE+Xm5mZtvz1YeHt7S7p1CZmHh4eOHz8uBwcHBQQE2PTL6j2yEhsbq99//10+Pj5ZLr/9nuRJkybp22+/VUxMjL766iubS+9jY2MlyRq6bufh4SFJ1tBxp88qv2T3v4Gzs7OqVKliXZ6hQoUKmcKct7f3XY3m3Q2CE1AInDx5Uq+99pp++uknFStW7I59k5KS9NVXX2nUqFHZ9tm6dat+//13LVy4MK9LBQDgnjg7O6thw4Zq2LChqlWrpl69emnZsmWKjIxUenq6TCaT1qxZk+XsbBmXp+eX7GaEy6tHGKSnp6tWrVqaMmVKlssrVqxo8/q3336zhqm9e/eqW7duNtuSbt1zdPvl/JJy/MDv7EafMu6xuh/y+/MnOAGFwM6dO3Xu3DnVq1fP2paWlqZNmzZp+vTpSk5Oth5Mvv76a12/fl09e/bMdntz5sxRnTp1VL9+/XyvHQCA3GrQoIGkW5fVSVJAQIAsFov8/f1VrVq1bNfLGPHZt29ftpe3+/n5SZIOHTqUadnBgwdVunRpm9Gmu+Hn56f09HQdOXLEZhQlq/fIru7du3erTZs2hpfJJSYmqlevXqpRo4aaNGmiDz/8UJ07d7Y+ly7jMyhTpswdL/GvUqWKJBlOzOHt7Z1ppjtJmUaFpLu/xO/v/xtk1CFJN2/e1NGjRw1vTchr3OMEFAJt2rTR3r17FRMTY/1r0KCBXnzxRcXExNj8AjN37lx16tQp22H+a9euaenSpXe8/wkAgPspOjo6y1GDjHuGMkLIs88+K7PZrDFjxmTqb7FYdPHiRUlSvXr15O/vr48//jjTyX7GeuXKlVOdOnW0YMECmz779u1TVFSUOnTokOP9yJig4JNPPrFp//jjj+9q/bCwMJ0+fVqzZ8/OtCwpKUmJiYnW1yNGjNCJEye0YMECTZkyRZUrV1Z4eLh12vLQ0FB5eHho3LhxmWank27d2yRJPj4+atGihT7//HOdOHHCps/fP+OAgADFx8fbXBZ35swZmweLZ3Bzc8syZN2ubdu2cnZ21ieffGLzXnPnzlV8fPxdz0aYVxhxekD0/djeFSDD7KH2riAzd3f3TNceu7m5qVSpUjbthw8f1qZNm7K8oTXDkiVLlJqaajjTDQAA98vgwYN1/fp1de7cWUFBQbp586a2bNmiJUuWqHLlytaZ1QICAvTBBx9o5MiROnbsmJ555hm5u7vr6NGjWrFihV555RW98cYbcnBw0MyZM/XUU0+pTp066tWrl8qVK6eDBw9q//79Wrt2rSTpo48+Uvv27fX444/r5ZdfVlJSkj799FN5enpq9OjROd6POnXqqFu3bpoxY4bi4+PVpEkTrV+/XocPH76r9Xv06KGlS5eqX79+io6OVtOmTZWWlqaDBw9q6dKlWrt2rRo0aKANGzZoxowZioyMtF6NMm/ePLVq1UqjRo3Shx9+KA8PD82cOVM9evRQvXr11LVrV/n4+OjEiRP64Ycf1LRpU02fPl3SraDXrFkz1atXT6+88or8/f117Ngx/fDDD4qJiZEkde3aVSNGjFDnzp01ZMgQXb9+XTNnzlS1atW0a9cum/2oX7++1q1bpylTpsjX11f+/v5q3Lhxpv318fHRyJEjNWbMGLVr106dOnXSoUOHNGPGDDVs2PC+n6sQnIAi5PPPP1eFChUUEhKSbZ+5c+fq2WefzfIhgwAA2MOkSZO0bNkyrV69Wp999plu3rypSpUqacCAAXrnnXds/s168803Va1aNU2dOtX6DKWKFSsqJCREnTp1svYLDQ1VdHS0xowZo8mTJys9PV0BAQHq27evtU/btm31448/KjIyUu+++66cnJzUsmVLTZw4Uf7+/rnal88//1w+Pj768ssvtXLlSrVu3Vo//PBDpvuTsuLg4KCVK1dq6tSp+uKLL7RixQoVL15cVapU0WuvvaZq1arp6tWr6t27t+rWrWvzgNrmzZtbn1f17LPP6rHHHlP37t3l6+urCRMm6KOPPlJycrLKly+v5s2b20zz/eijj2rbtm0aNWqUZs6cqRs3bsjPz09hYWHWPqVKldKKFSs0bNgwDR8+XP7+/ho/frxiY2MzBacpU6bolVde0TvvvKOkpCSFh4dnGZykW89x8vHx0fTp0/X666+rZMmSeuWVVzRu3DibqejvB5Mlr+6WKqISEhLk6emp+Ph46+wj+YERp4KjII44AYAkHQkcbe8SICng0Oh83X5W5x43btzQ0aNH5e/vbzhJEABbd/v94R4nAAAAADBAcAIAAAAAAwQnAAAAADBAcAIAAAAAAwQnAAAAADBAcAIAAAAAAwQnAACAQoKnzAA5d7ffGx6ACwC4JzxnruB4094FwG6cnJxkMpmUmJgoV1dXe5cDPFASExNlMpkMH6hLcAIAAHjAmc1meXp66vz580pOTpaHh4ccHR1lMpnsXRpQIFksFqWmpiohIUEJCQny8vKS2Wy+4zoEJwAAgEKgbNmycnV11blz55SQkGDvcoAHgtlsVrly5eTp6WnYl+AEAABQCJhMJnl5ecnT01NpaWlKTU21d0lAgebo6Ciz2XzXI7MEJwAAgELEZDLJ0dFRjo6c5gF5iVn1AAAAAMAAwQkAAAAADBCcAAAAAMAAwQkAAAAADBCcAAAAAMAA060AOXQkcLS9S4CkgEOj7V0CAAAoQhhxAgAAAAADBCcAAAAAMEBwAgAAAAADBCcAAAAAMEBwAgAAAAADBCcAAAAAMEBwAgAAAAADBCcAAAAAMEBwAgAAAAADBCcAAAAAMEBwAgAAAAADD0Rwmjhxokwmk0wmk7Zt22azbPTo0dZlWf0dO3Ysy22uXbtWLVu2lLu7uzw8PBQcHKz169ffh70BAAAA8KBxtHcBRvbt26fIyEi5ubkpMTEx237h4eGqXLlypnYvL69MbYsWLVKPHj3k4+OjiIgISdKSJUv0xBNPaOnSperSpUseVQ8AAACgMCjQwSklJUXh4eGqU6eOqlatqkWLFmXbNyIiQq1atTLc5uXLlzV48GCVLl1au3btUoUKFSRJI0aMUN26ddW/f3+FhobK3d09r3YDAAAAwAOuQF+qN3bsWO3fv1+ff/65zGZznmxz2bJlunLligYPHmwNTZJUoUIFDRo0SBcuXNCKFSvy5L0AAAAAFA4FNjjt2rVLY8eOVWRkpGrUqGHYf9OmTZo4caI++ugjrVy5UteuXcuy38aNGyVJISEhmZaFhoZKkn7++efcFw4AAACg0CmQl+olJyerZ8+eqlOnjoYPH35X60RGRtq89vLy0rRp09SzZ0+b9tjYWElS1apVM20joy2jT3a1JScnW18nJCRIunVZYUpKiiTJwcFBZrNZaWlpSk9Pt/bNaE9NTZXFYrG2m81mOTg4ZNt+a7tOd9x/oKhJS0u7h+/Tfzk63joMpqam3lW7k5OT0tPTlZaWZm0zmUxydHTMtj27Y0HeHiPsuU8cn4C/ux/HCAD3X4EMTu+++65iY2O1c+dOw0v0Hn30UX3++edq1aqVypUrp7Nnz2rVqlV69913FRERIS8vL3Xq1MnaPz4+XpLk6emZaVseHh42fbIyfvx4jRkzJlN7VFSUihcvLkmqVKmS6tatqz179ujEiRPWPoGBgQoKCtL27dt1/vx5a3udOnXk5+enTZs26erVq9b2xx9/XGXKlFFUVJSkjnf8HICiJjY2Ntffp7+fdAQHB8vV1VWrV6+22X6HDh2UlJSk6Ohoa5ujo6M6duyoCxcuaOvWrdZ2d3d3tW7dWidPnlRMTIy13cfHR02aNFFsbKwOHTpkbc+PY4R99+lpAfiv/D5G7Ny5877sBwBbJsvff74sALZu3apmzZpp9OjRGjVqlLU9IiJCCxYs0NatW/XYY48Zbmf9+vV64oknVLNmTe3Zs8faXq1aNcXGxiolJcX662uGlJQUOTs7q3bt2tq9e3eW281qxKlixYq6cOGCNXjlx6/JA/7FL7oFxZszR9u7BEiqfGDUAzo6U/hGnDg+FRwcnwoG/9/fzddjxKVLl1SqVCnFx8dbzz0A5L8CNeKUmpqq8PBw1a5dW2+++eY9batNmzYKCAjQ3r17lZCQYD2wZIw0xcfHq1SpUjbrZFx2l9VoVAYXFxe5uLhkandycpKTk+3Jg9lsznLE7PbAZtR++3YByPrdyqvvU07aHRwc5OCQ+RbR7NqzOxbk9zHCHvsEwH7HCAD5q0BNDnHt2jXFxsYqJiZGzs7ONg+yXbBggaRbl6aYTCatXLnScHulS5eWJF2/ft3adqf7mO50/xMAAACAoqtA/WTh4uKil19+OctlmzZtUmxsrDp16iQfH58sH3b7d4mJidq/f7/c3NysAUqSWrZsqf/93/9VVFRUpkv+1q5da+0DAAAAABkKVHBydXXVnDlzslwWERGh2NhYjRw50hp4rl69qjNnzqhatWo2fZOSktS3b19dvXpVvXr1shnSDgsL04gRI/Tpp5+qd+/e1mc5nTp1StOnT1fp0qXVuXPnfNpDAAAAAA+iAhWccurixYsKCgpSw4YNVb16dZUtW1Z//fWX1q1bp1OnTqlWrVr66KOPbNbx9vbW9OnT1aNHD9WrV08vvPCCJGnJkiW6ePGilixZInd3d3vsDgAAAIAC6oEOTiVLltSAAQO0fft2rV69WpcvX5arq6uqV6+uIUOGaNCgQXJ1dc203ksvvaTSpUtr3Lhxmjdvnkwmk+rXr6933nlHbdu2tcOeAAAAACjIHpjgNH/+fM2fP9+mzcPDQ9OnT8/V9tq1a6d27drlQWUAAAAACrsCNaseAAAAABREBCcAAAAAMEBwAgAAAAADBCcAAAAAMEBwAgAAAAADBCcAAAAAMEBwAgAAAAADBCcAAAAAMEBwAgAAAAADBCcAAAAAMEBwAgAAAAADBCcAAAAAMEBwAgAAAAADBCcAAAAAMEBwAgAAAAADBCcAAAAAMEBwAgAAAAADBCcAAAAAMEBwAgAAAAADBCcAAAAAMEBwAgAAAAADBCcAAAAAMEBwAgAAAAADBCcAAAAAMEBwAgAAAAADBCcAAAAAMEBwAgAAAAADBCcAAAAAMEBwAgAAAAADBCcAAAAAMEBwAgAAAAADBCcAAAAAMEBwAgAAAAADBCcAAAAAMEBwAgAAAAADBCcAAAAAMEBwAgAAAAADBCcAAAAAMEBwAgAAAAADBCcAAAAAMEBwAgAAAAADBCcAAAAAMEBwAgAAAAADBCcAAAAAMEBwAgAAAAADBCcAAAAAMEBwAgAAAAADBCcAAAAAMEBwAgAAAAADBCcAAAAAMEBwAgAAAAADBCcAAAAAMEBwAgAAAAADBCcAAAAAMEBwAgAAAAADBCcAAAAAMEBwAgAAAAADBCcAAAAAMEBwAgAAAAADBCcAAAAAMEBwAgAAAAADBCcAAAAAMEBwAgAAAAADBCcAAAAAMEBwAgAAAAADBCcAAAAAMEBwAgAAAAADBCcAAAAAMEBwAgAAAAADBCcAAAAAMEBwAgAAAAADBCcAAAAAMEBwAgAAAAADBCcAAAAAMJDr4LRp0yadOHHijn1OnjypTZs25fYtAAAAAKBAyHVwCg4O1vz58+/Y54svvlBwcHBu3wIAAAAACoRcByeLxWLYJz09XSaTKbdvAQAAAAAFQr7e4xQbGytPT8/8fAsAAAAAyHeOOencu3dvm9crV67UsWPHMvVLS0uz3t/Uvn37eyoQAAAAAOwtR8Hp7/c0mUwmxcTEKCYmJsu+JpNJDRs21NSpU++lPgAAAACwuxwFp6NHj0q6dX9TlSpVNHToUL322muZ+pnNZnl7e8vNzS1vqgQAAAAAO8pRcPLz87P+97x581S3bl2bNgAAAAAojHIUnP4uPDw8L+sAAAAAgAIr18Epw/bt27Vjxw5duXJFaWlpmZabTCaNGjXqXt8GAAAAAOwm18Hp0qVLeuaZZ7R58+Y7PtOJ4AQAAADgQZfr4DRs2DD98ssvatWqlcLDw1WhQgU5Ot7zABYAAAAAFDi5TjqrVq1So0aNtH79eplMpjwr6MaNG3rrrbf0n//8R4cPH9alS5fk5eWlgIAA9enTRy+99JKcnJxs1klISNDo0aO1fPlynT17VuXKldPzzz+vyMhIlShRItN7pKen61//+pc+++wzHT58WCVKlFDbtm01duxYValSJc/2BQAAAEDh4JDbFZOSktSiRYs8DU2SdO3aNc2cOVMmk0kdO3bUsGHD1LlzZ50+fVq9e/fWk08+qfT0dGv/xMREtWzZUlOnTlVQUJBef/11BQYGatKkSWrdurVu3LiR6T1effVVDRkyRBaLRUOGDFG7du30zTffqGHDhoqNjc3T/QEAAADw4Mv1iFOdOnV07NixPCzllpIlSyo+Pl7Ozs427ampqXriiScUFRWlNWvWqGPHjpKkDz/8UDExMRoxYoQmTJhg7f/mm29q4sSJmjp1qkaOHGltj46O1pw5c9SiRQv99NNP1vfp3r27OnTooEGDBmnt2rV5vl8AAAAAHly5HnGKjIzUd999p23btuVlPXJwcMgUmiTJ0dFRnTt3liQdPnxY0q0H8c6ZM0clSpTINAHFqFGjVKJECc2ZM8emffbs2ZKk999/3+Z92rdvr1atWikqKkonTpzI030CAAAA8GDL9YjT2bNn1bFjR7Vs2VIvvvii6tWrJw8Pjyz79uzZM9cFZkhPT9ePP/4oSapZs6YkKTY2VnFxcQoNDZWbm5tNfzc3NzVt2lRr167VyZMnVbFiRUnSxo0brctuFxoaqo0bN+rnn39Wjx497rlmAAAAAIVDroNTRESETCaTLBaL5s+fr/nz52e638lischkMuUqON28eVPjxo2TxWLRxYsXtX79eh08eFC9evVSmzZtJMl6P1LVqlWz3EbVqlW1du1axcbGqmLFikpMTNSZM2dUs2ZNmc3mLPv/fbtZSU5OVnJysvV1QkKCJCklJUUpKSmSbo2amc1mpaWl2dyPldGemppqM4W72WyWg4NDtu23tms7IQZQ1KWlpd3D9+m/MmYDTU1Nvat2Jycnpaen2zy3zmQyydHRMdv27I4FeXuMsOc+cXwC/u5+HCMA3H+5Dk7z5s3LyzoyuXnzpsaMGWN9bTKZ9MYbb2j8+PHWtvj4eEmSp6dnltvIGAHL6JfT/lkZP368TV0ZoqKiVLx4cUlSpUqVVLduXe3Zs8fmsr/AwEAFBQVp+/btOn/+vLW9Tp068vPz06ZNm3T16lVr++OPP64yZcooKipKUsdsawKKotjY2Fx/n/5+0hEcHCxXV1etXr3aZvsdOnRQUlKSoqOjrW2Ojo7q2LGjLly4oK1bt1rb3d3d1bp1a508eVIxMTHWdh8fHzVp0kSxsbE6dOiQtT0/jhH23aenBeC/8vsYsXPnzvuyHwBsmSx3enptAZCenq64uDh9//33euutt/TII49o9erV8vDw0FdffaUXX3xRb7/9tj744INM67799tsaN26cvvnmG3Xu3FlxcXEqX768mjZtql9++SVT/59++kkhISEaMmSIpk2blmU9WY04VaxYURcuXLAGr/z4NXnAv/hFt6B4c+Zoe5cASZUPjHpAR2cK34gTx6eCg+NTweD/+7v5eoy4dOmSSpUqpfj4+GxvkwCQ9wr8E2sdHBxUoUIF9e/fX6VLl1ZYWJjGjh2riRMnWkeOshshyriMLqNfTvtnxcXFRS4uLpnanZycMj1fymw2Z3lJYHYPCs6u/fbtApD1u5VX36ectDs4OMjBIfPcOtm1Z3csyO9jhD32CYD9jhEA8leuv3k5mXmuUqVKuX0bGyEhIZJuTfAgGd+TdPs9UG5ubipXrpyOHj1qvT/iTv0BAAAAQLqH4FS5cuW7evityWTKs5sY4+LiJP3319KqVavK19dXmzdvVmJios3MeomJidq8ebP8/f2tM+pJUsuWLbV48WJt3rxZLVq0sNl+xvObbm8HAAAAULTlOjj17Nkzy+AUHx+v3bt36+jRo2rZsqUqV66co+0eOHBAlStXtk60kOH69esaNmyYpFs3OEu3QlmfPn303nvv6f3337d5AO7777+va9eu6a233rLZziuvvKLFixdr1KhRNg/AXbNmjTZu3KiQkBD5+fnlqGYAAAAAhVuug9P8+fOzXWaxWDR58mR9+OGHmjt3bo62u3TpUk2ZMkXNmjVT5cqV5eHhodOnT2vNmjW6ePGimjdvrtdff93af/jw4fr22281ceJE/fbbb6pXr5527dqlqKgoNWzYUEOHDrXZfnBwsPr06aM5c+aoXr166tixo86cOaMlS5aoZMmS+vTTT3NULwAAAIDCL1/uLsyYOvyHH37QP//5Ty1fvvyu133yyScVFxenLVu2aOvWrbp27Zo8PT1Vu3Ztde3aVb1797a5KdLNzU0///yzRo8ereXLlys6OlrlypXTP/7xD0VGRsrV1TXTe8yaNUu1atXSZ599pmnTpqlEiRLq3Lmzxo4dq4CAgDz5DAAAAAAUHvk6LUuDBg00Z86cHK/ToEGDHK3j6empqVOnaurUqXfV38HBQUOGDNGQIUNy9D4AAAAAiqbMc2LmoSNHjvB0awAAAAAPvDwfcUpPT9fp06c1f/58ffvtt2rTpk1evwUAAAAA3Fe5Dk4ODg53nI7cYrHI29tbkydPzu1bAAAAAECBkOvg1KJFiyyDk4ODg7y9vdWwYUP16tVLZcqUuacCAQAAAMDech2cNm7cmIdlAAAAAEDBla+TQwAAAABAYZAnk0Ns3rxZMTExSkhIkIeHh+rUqaOmTZvmxaYBAAAAwO7uKTht2bJFvXr10uHDhyXdmhAi476nqlWrat68eXr88cfvvUoAAAAAsKNcB6f9+/crJCRE169f1xNPPKHg4GCVK1dOZ8+eVXR0tKKiohQaGqpt27apRo0aeVkzAAAAANxXuQ5O7733nm7evKnVq1erXbt2NstGjBihH3/8UZ06ddJ7772nxYsX33OhAAAAAGAvuZ4cYuPGjerSpUum0JShXbt26tKli6Kjo3NdHAAAAAAUBLkOTvHx8fL3979jH39/f8XHx+f2LQAAAACgQMh1cPL19dW2bdvu2OfXX3+Vr69vbt8CAAAAAAqEXAenTp06aePGjRo1apRu3Lhhs+zGjRuKjIxUdHS0nn766XsuEgAAAADsKdeTQ4waNUqrVq3SuHHjNGvWLDVq1EgPPfSQ/vrrL+3YsUPnz59XlSpVNGrUqLysFwAAAADuu1wHp1KlSmnbtm0aPny4Fi9erNWrV1uXFStWTL169dLEiRNVsmTJPCkUAAAAAOzlnh6AW7p0aX3++eeaNWuWDh48qISEBHl4eCgoKEhOTk55VSMAAAAA2FWOg9PYsWOVmJioMWPGWMORk5OTatWqZe1z8+ZNvf3223J3d9ebb76Zd9UCAAAAgB3kaHKIdevW6d1331WpUqXuOKLk7OysUqVK6e233+Y5TgAAAAAeeDkKTl988YW8vb01aNAgw74DBw5UyZIlNW/evFwXBwAAAAAFQY6C05YtW9S2bVu5uLgY9nVxcVHbtm21efPmXBcHAAAAAAVBjoJTXFycqlSpctf9/f39debMmRwXBQAAAAAFSY6Ck4ODg1JSUu66f0pKihwccv2MXQAAAAAoEHKUanx9fbVv37677r9v3z6VL18+x0UBAAAAQEGSo+DUvHlzbdiwQceOHTPse+zYMW3YsEEtWrTIbW0AAAAAUCDkKDgNHDhQKSkp6tKliy5cuJBtv4sXL+r5559Xamqq+vfvf89FAgAAAIA95egBuPXq1dPQoUP18ccfq0aNGurXr5+Cg4NVoUIFSdLp06e1fv16ffbZZzp//ryGDRumevXq5UvhAAAAAHC/5Cg4SdLkyZNVrFgxffTRRxo7dqzGjh1rs9xischsNmvkyJH64IMP8qxQAAAAALCXHAcnk8mkcePG6eWXX9a8efO0ZcsWnT17VpJUtmxZNW3aVBEREQoICMjzYgEAAADAHnIcnDIEBAQwogQAAACgSOAhSwAAAABggOAEAAAAAAYITgAAAABggOAEAAAAAAYITgAAAABggOAEAAAAAAYITgAAAABggOAEAAAAAAYITgAAAABggOAEAAAAAAYITgAAAABggOAEAAAAAAYITgAAAABggOAEAAAAAAYITgAAAABggOAEAAAAAAYITgAAAABggOAEAAAAAAYITgAAAABggOAEAAAAAAYITgAAAABggOAEAAAAAAYITgAAAABggOAEAAAAAAYITgAAAABggOAEAAAAAAYITgAAAABggOAEAAAAAAYITgAAAABggOAEAAAAAAYITgAAAABggOAEAAAAAAYITgAAAABggOAEAAAAAAYITgAAAABggOAEAAAAAAYITgAAAABggOAEAAAAAAYITgAAAABggOAEAAAAAAYITgAAAABggOAEAAAAAAYITgAAAABggOAEAAAAAAYITgAAAABggOAEAAAAAAYITgAAAABggOAEAAAAAAYITgAAAABggOAEAAAAAAYITgAAAABggOAEAAAAAAYITgAAAABggOAEAAAAAAYITgAAAABgoEAGp0WLFunVV19VgwYN5OLiIpPJpPnz52fZd/To0TKZTNn+HTt2LMv11q5dq5YtW8rd3V0eHh4KDg7W+vXr82+nAAAAADywHO1dQFbeeecdHT9+XKVLl1a5cuV0/Phxw3XCw8NVuXLlTO1eXl6Z2hYtWqQePXrIx8dHERERkqQlS5boiSee0NKlS9WlS5d73AMAAAAAhUmBDE5z5sxR1apV5efnpwkTJmjkyJGG60RERKhVq1aG/S5fvqzBgwerdOnS2rVrlypUqCBJGjFihOrWrav+/fsrNDRU7u7u97obAAAAAAqJAnmpXtu2beXn55cv2162bJmuXLmiwYMHW0OTJFWoUEGDBg3ShQsXtGLFinx5bwAAAAAPpgIZnHJj06ZNmjhxoj766COtXLlS165dy7Lfxo0bJUkhISGZloWGhkqSfv7553yrEwAAAMCDp0BeqpcbkZGRNq+9vLw0bdo09ezZ06Y9NjZWklS1atVM28hoy+iTleTkZCUnJ1tfJyQkSJJSUlKUkpIiSXJwcJDZbFZaWprS09OtfTPaU1NTZbFYrO1ms1kODg7Ztt/artMd9x8oatLS0u7h+/Rfjo63DoOpqal31e7k5KT09HSlpaVZ20wmkxwdHbNtz+5YkLfHCHvuE8cn4O/uxzECwP33wAenRx99VJ9//rlatWqlcuXK6ezZs1q1apXeffddRUREyMvLS506dbL2j4+PlyR5enpm2paHh4dNn6yMHz9eY8aMydQeFRWl4sWLS5IqVaqkunXras+ePTpx4oS1T2BgoIKCgrR9+3adP3/e2l6nTh35+flp06ZNunr1qrX98ccfV5kyZRQVFSWp411+IkDREBsbm+vv099POoKDg+Xq6qrVq1fbbL9Dhw5KSkpSdHS0tc3R0VEdO3bUhQsXtHXrVmu7u7u7WrdurZMnTyomJsba7uPjoyZNmig2NlaHDh2ytufHMcK++/S0APxXfh8jdu7ceV/2A4Atk+XvP18WQBmTQ8ybN886A97dWL9+vZ544gnVrFlTe/bssbZXq1ZNsbGxSklJsf76miElJUXOzs6qXbu2du/eneV2sxpxqlixoi5cuGANXvnxa/KAf/GLbkHx5szR9i4BkiofGPWAjs4UvhEnjk8FB8engsH/93fz9Rhx6dIllSpVSvHx8dZzDwD574EfccpOmzZtFBAQoL179yohIcF6YMkYaYqPj1epUqVs1sm47C6r0agMLi4ucnFxydTu5OQkJyfbkwez2Syz2Zyp7+2Bzaj99u0CkPW7lVffp5y0Ozg4yMEh8y2i2bVndyzI72OEPfYJgP2OEQDyV6GZHCIrpUuXliRdv37d2nan+5judP8TAAAAgKKr0AanxMRE7d+/X25ubtYAJUktW7aUpP+/b8jW2rVrbfoAAAAAgPSAB6erV6/qjz/+yNSelJSkvn376urVqwoLC7MZ0g4LC5Onp6c+/fRTnTp1ytp+6tQpTZ8+XaVLl1bnzp3vS/0AAAAAHgwF8iLZOXPm6JdffpEk7d2719qW8QymZs2aqU+fPrp48aKCgoLUsGFDVa9eXWXLltVff/2ldevW6dSpU6pVq5Y++ugjm217e3tr+vTp6tGjh+rVq6cXXnhBkrRkyRJdvHhRS5Yskbu7+/3bWQAAAAAFXoEMTr/88osWLFhg07Z582Zt3rzZ+rpPnz4qWbKkBgwYoO3bt2v16tW6fPmyXF1dVb16dQ0ZMkSDBg2Sq6trpu2/9NJLKl26tMaNG6d58+bJZDKpfv36euedd9S2bdt83z8AAAAAD5YCGZzmz5+v+fPnG/bz8PDQ9OnTc/Ue7dq1U7t27XK1LgAAAICi5YG+xwkAAAAA7geCEwAAAAAYIDgBAAAAgAGCEwAAAAAYIDgBAAAAgAGCEwAAAAAYIDgBAAAAgAGCEwAAAAAYIDgBAAAAgAGCEwAAAAAYIDgBAAAAgAGCEwAAAAAYIDgBAAAAgAGCEwAAAAAYIDgBAAAAgAGCEwAAAAAYIDgBAAAAgAGCEwAAAAAYIDgBAAAAgAGCEwAAAAAYIDgBAAAAgAGCEwAAAAAYIDgBAAAAgAGCEwAAAAAYIDgBAAAAgAGCEwAAAAAYIDgBAAAAgAGCEwAAAAAYIDgBAAAAgAGCEwAAAAAYIDgBAAAAgAGCEwAAAAAYIDgBAAAAgAGCEwAAAAAYIDgBAAAAgAGCEwAAAAAYIDgBAAAAgAGCEwAAAAAYIDgBAAAAgAGCEwAAAAAYIDgBAAAAgAGCEwAAAAAYIDgBAAAAgAGCEwAAAAAYIDgBAAAAgAGCEwAAAAAYIDgBAAAAgAGCEwAAAAAYIDgBAAAAgAGCEwAAAAAYIDgBAAAAgAGCEwAAAAAYIDgBAAAAgAGCEwAAAAAYIDgBAAAAgAGCEwAAAAAYIDgBAAAAgAGCEwAAAAAYIDgBAAAAgAGCEwAAAAAYIDgBAAAAgAGCEwAAAAAYIDgBAAAAgAGCEwAAAAAYIDgBAAAAgAGCEwAAAAAYIDgBAAAAgAGCEwAAAAAYIDgBAAAAgAGCEwAAAAAYIDgBAAAAgAGCEwAAAAAYIDgBAAAAgAGCEwAAAAAYIDgBAAAAgAGCEwAAAAAYIDgBAAAAgAGCEwAAAAAYIDgBAAAAgAGCEwAAAAAYIDgBAAAAgAGCEwAAAAAYIDgBAAAAgAGCEwAAAAAYIDgBAAAAgIEiHZx27NihDh06yMvLS25ubnrssce0dOlSe5cFAAAAoIBxtHcB9hIdHa3Q0FAVK1ZMXbt2lbu7u5YvX64XXnhBJ0+e1D/+8Q97lwgAAACggCiSI06pqanq27evHBwctGnTJn322WeaPHmydu/erWrVqumtt97S8ePH7V0mAAAAgAKiSAanDRs26MiRI+revbvq1Kljbff09NRbb72lmzdvasGCBfYrEAAAAECBUiSD08aNGyVJISEhmZaFhoZKkn7++ef7WRIAAACAAqxIBqfY2FhJUtWqVTMtK1u2rEqUKGHtAwAAAABFcnKI+Ph4SbcuzcuKh4eHtc/tkpOTlZycnGlbly5dUkpKiiTJwcFBZrNZaWlpSk9Pt/bNaE9NTZXFYrG2m81mOTg4ZNuekpKimzeccrm3yGtX05KNOyHfXb58Odffp79zdLx1GExNTb2rdicnJ6WnpystLc3aZjKZ5OjomG17dseCvDxG2HOfOD4VHByfCoYrV67k6zHi0qVLkmRzPACQ/4pkcLoX48eP15gxYzK1+/v726Ea2MMX9i4At5ScYO8KgAKH41MB4X1/jk9Xr17N9kdgAHmvSAanjINMdqNKCQkJ8vb2znLZyJEjNWzYMOvr9PR0Xbp0SaVKlZLJZMr7YlGgJCQkqGLFijp58qQ8PDzsXQ4AWHF8KjosFouuXr0qX19fe5cCFClFMjhl3NsUGxur+vXr2yw7e/asrl27pkaNGmW5rouLi1xcXGzavLy88qVOFFweHh6cmAAokDg+FQ2MNAH3X5GcHKJly5aSpKioqEzL1q5da9MHAAAAAEyWInhnYWpqqgIDA3X69Glt27bN+iyn+Ph4NWrUSMeOHdOhQ4dUuXJlu9aJgichIUGenp6Kj4/nF10ABQrHJwDIX0XyUj1HR0fNmTNHoaGhatGihbp27Sp3d3ctX75cx48f16RJkwhNyJKLi4siIyMzXa4JAPbG8QkA8leRHHHKsH37dkVGRmrLli1KSUlRrVq1NGzYML3wwgv2Lg0AAABAAVKkgxMAAAAA3I0iOTkEAAAAAOQEwQkAAAAADBCcAAAAAMAAwQkAAAAADBCcAAAAAMAAwQkwkDHxpMViEZNQAgAAFE1MRw4AAAAABhztXQBQkJ07d0579+5VbGysrl69qsaNGyswMFClSpWSo+Otr096erocHBi8BQAAKMwITkA21qxZo7Fjx2rLli027aVKlVKbNm30wgsv6Mknn5STk5OdKgRQ1KWlpclsNtu7DAAoErhUD8jCyZMn1apVKyUmJioiIkLBwcH6888/9dtvv2n37t3as2ePkpOTVb16db399tt67rnn5OLiIovFIpPJZO/yARRyt490Z9yDaTT6zTEKAHKPEScgC7NmzdLly5c1Z84cPfvsszbLTp06pS1btui7777TV199pZdeekmnTp3S8OHDOSEBcF/MmjVLGzduVM+ePdWyZUuVKFHCevxJT0+XpCxDFMcoAMg9RpyALDz22GNydXXVsmXLVLp0aaWmpspkMmW6JCY6Olr/+Mc/dODAAc2YMUO9e/e2U8UAihJ/f38dP35cLi4uevTRRxUSEqIOHTqocePGNuEoNTVVjo6Oun79uj777DM9+uijCg4OtmPlAPDgIjgBt7l27Zo6d+6sU6dOaefOnSpevLjNZTG3XxLz22+/qU2bNmrevLm+/fZbLoUBkK/279+vWrVqqX79+vL29ta6deskSW5ubmratKk6dOigkJAQBQUFWdf55Zdf1KJFCzVp0kS//PKLvUoHgAcaU4EBtylRooTq16+vQ4cOafHixZIyX/KS8To9PV1169ZVixYtdPDgQR0/fpzQBCBf7d27V5LUvXt3RUVF6eDBg5owYYIefvhhRUVFaejQoWrdurW6d++uhQsX6vLly9q+fbskaeTIkfYsHQAeaIw4AVk4ffq02rdvr3379mnQoEGKiIhQjRo1VKxYMWufjEtgEhIS1KdPH/366686fvy4HasGUBR89tln6tevn3744Qe1b9/eZtmOHTv0v//7v/r666916tQpSVLVqlWVkJCgpKQkXblyxQ4VA0DhwIgTkIXy5cvrvffeU+XKlTV9+nS9+uqrmjRpkjZu3Kjjx4/rxo0b1uc4ff/999q4cWOmExgAyGsWi0W1a9fW0KFDVa1aNZt2SWrYsKGmTJmiP/74Q99//7169uypv/76S3/99Zd69Ohhr7IBoFBgxAn4m9vvT7p06ZLGjx+vpUuX6uTJk/Lx8VHNmjXl6+ur4sWLKykpSUuXLpW/v79WrlypwMBAO1YPoKi4du2anJ2d5ezsnGnZ7cexQYMGacaMGdq1a5fq1KlzH6sEgMKF4ATcJuOk49SpU/L19ZWDg4P27dunVatWaePGjfr999918uRJSZK3t7fq1KmjTz75RI888oidKweAWzKOY0eOHNELL7yg+Ph4xcbG2rssAHigEZyA/5eamqrNmzfr888/1x9//CGTyaTixYurYcOGCgsLU926dWWxWHTy5EklJSXpzz//VFBQkCpWrChHR0dm0wNQ4KxatUqdOnXSP//5T02cONHe5QDAA43gBPy/SZMm6f3339fVq1f18MMPy2w269ChQ9blNWrU0IABA9SlSxeVKVPGjpUCKOru9oeav/76Sz/++KOeeuoplSxZ8j5UBgCFF8EJkHT06FHVqlVL9erV04IFC+Ts7KyHHnpIZ8+e1ffff69ly5Zp48aNkqTg4GBNnDhRDRo0sG/RAIqMpKQknThxQpUqVZKrq2uO1k1LS8v08G4AQM4RnABJ7777rmbNmqWvvvpKbdq0kZT5F929e/dq0qRJWrp0qfz8/PTll1+qfv369ioZQBEyYcIELV++XM8++6wee+wxBQYG6qGHHrpjIDp//ry8vb2tM4ACAO4NwQmQ9NxzzykmJkbR0dGqVKmS9RlNFotF6enpNicn06ZN0+uvv67w8HDNmzfPjlUDKCoqVKiguLg4mc1meXp6qkmTJgoJCVHjxo1VpUoVlSpVyqZ/YmKiRo8erYsXL2r27NmMOAFAHuBnKEBS3bp1tWLFCl27dk2SrL/Qmkwm6wlHxgjUa6+9pn//+9/asGGD/vzzT1WpUsVudQMo/P744w/Fx8fr8ccfV/fu3fXTTz9p69atWrVqlSpVqqRWrVqpbdu2qlu3rsqXLy8vLy/t27dPs2fPVqtWrQhNAJBHCE6Abt23JEkvvviiJk+erGbNmmX5fJSMewUCAwO1Zs0aa9ACgPzyxx9/6MaNGwoJCdHAgQP15JNP6tChQ9q6das2bNig5cuX68svv1SNGjXUunVrtWvXTuvXr1dCQoL69u1r7/IBoNDgUj1AtwLRiBEjNGXKFAUFBWngwIHq0qWLHnrooUx9L1++rKFDh2rNmjU6d+6cHaoFUJR8/fXXCgsL0+LFixUWFmZtT0lJ0fHjx7V79279+9//tj5nzsnJSRaLRS4uLrp06ZIdKweAwoXgBPzNrFmz9NFHH+nPP/+Ur6+vOnfurPbt26tixYoym83y8vLSp59+qo8//lgDBgzQ5MmT7V0ygELOYrHo4MGDKlasmPz9/bOcijwxMVF//PGHDh06pHnz5umnn37SoEGD9Mknn9ipagAofAhOwN9YLBYdPnxYs2fP1uLFi3Xq1ClJUpkyZeTk5KQzZ84oPT1d3bp108SJE1WhQgU7VwygKMsqRA0ZMkTTp0/Xzp07VbduXTtVBgCFD8EJyEZiYqK2b9+u7777TnFxcTp37pw8PDwUFham5557TsWKFbN3iQAgSUpPT5eDg4OOHTump59+WpcvX9aJEyfsXRYAFCpMDgFkw83NTcHBwQoODlZKSoqcnJzsXRIAZMnBwUGSdPr0aaWkpGjAgAF2rggACh9GnAAAKCQsFotOnTqlkiVLys3Nzd7lAEChQnACAAAAAAMO9i4AAAAAAAo6ghMAAAAAGCA4AQAAAIABghMAAAAAGCA4AQAAAIABghMAAAAAGCA4AQAAAIABghMAAAAAGCA4AQAAAICB/wMIl0qQBnPUdAAAAABJRU5ErkJggg==", - "text/plain": [ - "
" - ] - }, - "execution_count": 4, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "# Execute two-qubit Bell state again\n", - "second_result = backend.run(circ, shots=1000).result()\n", - "second_counts = second_result.get_counts(circ)\n", - "# Plot results with legend\n", - "legend = ['First execution', 'Second execution']\n", - "plot_histogram([counts, second_counts], legend=legend)" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": { - "ExecuteTime": { - "end_time": "2021-07-31T05:08:33.681069Z", - "start_time": "2021-07-31T05:08:33.494469Z" - }, - "execution": { - "iopub.execute_input": "2023-08-25T18:25:14.344321Z", - "iopub.status.busy": "2023-08-25T18:25:14.343863Z", - "iopub.status.idle": "2023-08-25T18:25:14.576584Z", - "shell.execute_reply": "2023-08-25T18:25:14.575703Z" - } - }, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABcAAAAPXCAYAAAAMsOj7AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAABcZklEQVR4nOzde5zVZaHv8e+a4SoyAwpsRQnQVMxLSpIlXlPBZOfWMlNTAVPLUjNra20zsBRTUzM9uu0imtZOO6XtUjd4QT3etp1teE2jAu+WmM4gIAywzh++WMdxGIVxcODx/X69eOU861m/9fyGF6xfH37zrEq1Wq0GAAAAAAAKU9fVCwAAAAAAgNVBAAcAAAAAoEgCOAAAAAAARRLAAQAAAAAokgAOAAAAAECRBHAAAAAAAIokgAMAAAAAUCQBHAAAAACAInXr6gWs7ZYtW5bnnnsuffv2TaVS6erlAAAAANCFqtVq5s2bl8GDB6eubtXuPV26dGlaWlpW08qgDN26dUt9ff1Kt1gB/B167rnnMmTIkK5eBgAAAABrkKeffjobb7zxSs2tVqt54YUX8sorr6zeRUEh6uvrM2jQoDQ2Nr5tCBfA36G+ffsmef0vtYaGhi5eDQAAAABdqbm5OUOGDKk1o5WxPH4PGjQo66yzjl0GoB3VajVLlixJc3Nznn/++SxcuDAbbrjhWz5HAH+Hlv+F1NDQIIADAAAAkCQrHbGXLl1ai9/rr7/+al4VlKFv377p2bNn5s6dm0GDBqW+vr7duT4EEwAAAAC6yPI9v9dZZ50uXgmsXfr06ZNqtfq2++YL4AAAAADQxWx7AqtmZf/MCOAAAAAAABRJAAcAAAAAoEgCOAAAAADwrpszZ04qlUquuOKKrl5Kka644opUKpXMmTOnq5fSpQRwAAAAAKDTLQ+wK/r19a9/fbW85pQpU3L99devlmOvqd6L57wqunX1AgAAAACAFfj5GvLBmIdW39HTv/3tb2f48OGtxrbeeusMHTo0CxcuTPfu3d/R8d9oypQpOfDAA7P//vt32jHXdO2d8+GHH56DDz44PXv27JqFrSEEcAAAAABgtfn4xz+eHXbYYYWP9erV622fP3/+/PTp06ezl1W8+vr61NfXd/UyupwtUAAAAACAd92K9gCfMGFC1l133fzlL3/Jvvvum759++azn/1skmTWrFn51Kc+lQ022CC9evXKxhtvnIMPPjhNTU1Jkkqlkvnz5+fKK6+sbbUyYcKEt1zDokWLMmnSpLz//e9Pz549M2TIkJx88slZtGhRbc748ePTq1ev/PGPf2z13LFjx6Z///557rnnamM33XRTdtlll/Tp0yd9+/bNuHHj8uijj7Z53ccffzwHHXRQBg4cmN69e2eLLbbIqaee2ur7MGzYsDbPmzx5ciqV//+TAW91zu3tAX7JJZdkq622Ss+ePTN48OB86UtfyiuvvNJqzu67756tt946jz32WPbYY4+ss8462WijjXLOOee85fdzTeQOcAAAAABgtWlqasrcuXNbjQ0YMKDd+UuWLMnYsWOz884753vf+17WWWedLF68OGPHjs2iRYty/PHHZ4MNNsizzz6b3/3ud3nllVfS2NiYq666KkcddVQ+/OEP55hjjkmSbLrppu2+zrJly7LffvvlrrvuyjHHHJMtt9wyDz/8cC644IL86U9/qu2rfeGFF+a2227L+PHjc++996a+vj6XXXZZpk+fnquuuiqDBw9Oklx11VUZP358xo4dm7PPPjsLFizIpZdemp133jl/+MMfakH7oYceyi677JLu3bvnmGOOybBhw/KXv/wlv/3tb3PmmWeu0vd2Vc958uTJOf3007PXXnvl2GOPzRNPPJFLL700v//973P33Xe32o7m5Zdfzj777JNPfvKTOeigg/K///f/zimnnJJtttkmH//4x1dpnV1JAAcAAAAAVpu99tqrzVi12v6+4osWLcqnP/3pnHXWWbWxmTNnZvbs2fnlL3+ZAw88sDb+rW99q/bfhx12WL7whS9kk002yWGHHfa26/r5z3+eW265JXfccUd23nnn2vjWW2+dL3zhC7nnnnuy0047pV+/fvnJT36SsWPH5rvf/W4OPfTQfO1rX8v+++9fe51XX301J5xwQo466qj88Ic/rB1r/Pjx2WKLLTJlypTa+PHHH59qtZoHHngg73vf+2pzv/vd777tmt9sVc75xRdfzFlnnZUxY8bkpptuSl3d65uDjBgxIscdd1yuvvrqTJw4sTb/ueeey09/+tMcfvjhSZLPfe5zGTp0aH7yk5+sVQHcFigAAAAAwGrzv/7X/8rNN9/c6tfbOfbYY1t93djYmCSZNm1aFixY0Cnr+uUvf5ktt9wyI0aMyNy5c2u/PvaxjyVJZsyYUZs7ZsyYfP7zn8+3v/3tfPKTn0yvXr1y2WWX1R6/+eab88orr+SQQw5pdaz6+vrsuOOOtWO9+OKLufPOO3PkkUe2it9JWm1tsjrccsstWbx4cU488cRa/E6So48+Og0NDbnhhhtazV933XVbRfUePXrkwx/+cP7617+u1nV2NneAAwAAAACrzYc//OF2PwRzRbp165aNN9641djw4cNz0kkn5fzzz8/Pfvaz7LLLLtlvv/1y2GGH1eL4qpo1a1b++Mc/ZuDAgSt8/O9//3urr7/3ve/lN7/5TWbOnJmf//znGTRoUKtjJanF8zdraGhIklo83nrrrTu05nfiySefTJJsscUWrcZ79OiRTTbZpPb4chtvvHGbKN+/f/889NBDq3ehnUwABwAAAADWGD179mx1h/Jy5513XiZMmJDf/OY3mT59ek444YScddZZue+++9oE85WxbNmybLPNNjn//PNX+PiQIUNaff2HP/yhFsUffvjhHHLIIa2Olby+J/cGG2zQ5ljduq1ahm3vbvClS5eu0nHeifr6+hWOv9X2NWsiARwAAAAAWCtss8022WabbfLNb34z99xzT0aPHp1///d/zxlnnJFk1bYR2XTTTfPggw9mzz33fNvnzZ8/PxMnTswHPvCB7LTTTjnnnHNywAEHZNSoUbVjJcmgQYNWuOf5cptsskmS5JFHHnnL1+vfv39eeeWVNuNvvks7WflzHjp0aJLkiSeeqK0jSRYvXpzZs2e/5brXZvYABwAAAADWaM3NzVmyZEmrsW222SZ1dXVZtGhRbaxPnz4rDMcrctBBB+XZZ5/Nj370ozaPLVy4MPPnz699fcopp+Spp57KlVdemfPPPz/Dhg3L+PHja689duzYNDQ0ZMqUKWlpaWlzvBdffDFJMnDgwOy66665/PLL89RTT7Wa88Y7qzfddNM0NTW12m7k+eefz3XXXdfm2Ct7znvttVd69OiRH/zgB61e6yc/+Umampoybty4tz3G2sgd4AAAAADAGu22227Lcccdl09/+tPZfPPNs2TJklx11VWpr6/Ppz71qdq8D33oQ7nlllty/vnnZ/DgwRk+fHh23HHHFR7z8MMPz7XXXpsvfOELmTFjRkaPHp2lS5fm8ccfz7XXXptp06Zlhx12yG233ZZLLrkkkyZNysiRI5MkU6dOze67757TTjst55xzThoaGnLppZfm8MMPz8iRI3PwwQdn4MCBeeqpp3LDDTdk9OjRufjii5MkP/jBD7Lzzjtn5MiROeaYYzJ8+PDMmTMnN9xwQ2bOnJkkOfjgg3PKKafkgAMOyAknnJAFCxbk0ksvzeabb54HHnig1Xms7DkPHDgw3/jGN3L66adnn332yX777Zcnnngil1xySUaNGtXqAy9LIoADAAAAwJro0LVrr+XV6YMf/GDGjh2b3/72t3n22Wezzjrr5IMf/GBuuummfOQjH6nNO//883PMMcfkm9/8ZhYuXJjx48e3G8Dr6upy/fXX54ILLshPf/rTXHfddVlnnXWyySab5Mtf/nI233zzzJs3L0ceeWS23377nHrqqbXn7rLLLvnyl7+c8847L5/85CfzkY98JIceemgGDx6c7373uzn33HOzaNGibLTRRtlll10yceLEVudy33335bTTTsull16a1157LUOHDs1BBx1Um7P++uvnuuuuy0knnZSTTz45w4cPz1lnnZVZs2a1CeCrcs6TJ0/OwIEDc/HFF+crX/lK1ltvvRxzzDGZMmVKunfv3qHfmzVdpbq27Vq+hmlubk5jY2Oamppqn+YKAAAAwHvTqrai1157LbNnz87w4cPTq1evd2GFUIaV/bNjD3AAAAAAAIokgAMAAAAAUCQBHAAAAACAIgngAAAAAAAUSQAHAAAAAKBIAjgAAAAAAEUSwAEAAAAAKJIADgAAAABAkQRwAAAAAACKJIADAAAAAFAkARwAAAAAgCIJ4AAAAAAAHVCpVDJ58uSuXkaXuuKKK1KpVDJnzpyuXsoKCeAAAAAAwGrx8MMP58ADD8zQoUPTq1evbLTRRtl7771z0UUXdfXSWEVTpkzJ9ddf39XLWGUCOAAAAACsgSqVyhrxq6Puueee7LDDDnnwwQdz9NFH5+KLL85RRx2Vurq6XHjhhZ34neLd0F4AP/zww7Nw4cIMHTr03V/USujW1QsAAAAAAMpz5plnprGxMb///e/Tr1+/Vo/9/e9/75pF0enq6+tTX1/f1ctolzvAAQAAAIBO95e//CVbbbVVm/idJIMGDWozdvXVV+dDH/pQevfunfXWWy8HH3xwnn766Tbz/vu//zv77rtv+vfvnz59+mTbbbdtc0f5bbfdll122SV9+vRJv3798i//8i/54x//2GrO5MmTU6lU8uc//zkTJkxIv3790tjYmIkTJ2bBggWt5i5atChf+cpXMnDgwPTt2zf77bdfnnnmmZX+XixatCiTJk3K+9///vTs2TNDhgzJySefnEWLFtXmjB8/Pr169WqzzrFjx6Z///557rnnamM33XRT7fz69u2bcePG5dFHH23zuo8//ngOOuigDBw4ML17984WW2yRU089tfb4hAkTMmzYsDbPW/69Wa5SqWT+/Pm58soraz8ZMGHChCTt7wF+ySWXZKuttkrPnj0zePDgfOlLX8orr7zSas7uu++erbfeOo899lj22GOPrLPOOtloo41yzjnnvN23dKUJ4AAAAABApxs6dGj+53/+J4888sjbzj3zzDNzxBFHZLPNNsv555+fE088Mbfeemt23XXXVtH05ptvzq677prHHnssX/7yl3Peeedljz32yO9+97vanFtuuSVjx47N3//+90yePDknnXRS7rnnnowePXqFH9R40EEHZd68eTnrrLNy0EEH5Yorrsjpp5/eas5RRx2V73//+xkzZky++93vpnv37hk3btxKfR+WLVuW/fbbL9/73vfyiU98IhdddFH233//XHDBBfnMZz5Tm3fhhRdm4MCBGT9+fJYuXZokueyyyzJ9+vRcdNFFGTx4cJLkqquuyrhx47Luuuvm7LPPzmmnnZbHHnssO++8c6vze+ihh7Ljjjvmtttuy9FHH50LL7ww+++/f37729+u1Lrf6KqrrkrPnj2zyy675KqrrspVV12Vz3/+8+3Onzx5cr70pS9l8ODBOe+88/KpT30ql112WcaMGZOWlpZWc19++eXss88++eAHP5jzzjsvI0aMyCmnnJKbbrpplde5QlXekaampmqSalNTU1cvBQAAAIAutqqtaOHChdXHHnusunDhwjaPJVkjfnXU9OnTq/X19dX6+vrqRz/60erJJ59cnTZtWnXx4sWt5s2ZM6daX19fPfPMM1uNP/zww9Vu3brVxpcsWVIdPnx4dejQodWXX3651dxly5bV/nu77barDho0qPrSSy/Vxh588MFqXV1d9YgjjqiNTZo0qZqkeuSRR7Y61gEHHFBdf/31a1/PnDmzmqT6xS9+sdW8Qw89tJqkOmnSpLf8Plx11VXVurq66v/5P/+n1fi///u/V5NU77777trYtGnTqkmqZ5xxRvWvf/1rdd11163uv//+tcfnzZtX7devX/Xoo49udawXXnih2tjY2Gp81113rfbt27f65JNPtpr7xu/V+PHjq0OHDm2z5uXfmzfq06dPdfz48W3mTp06tZqkOnv27Gq1Wq3+/e9/r/bo0aM6ZsyY6tKlS2vzLr744mqS6uWXX14b22233apJqj/96U9rY4sWLapusMEG1U996lNtXuuN3urPzhu5AxwAAAAA6HR777137r333uy333558MEHc84552Ts2LHZaKON8p//+Z+1eb/+9a+zbNmyHHTQQZk7d27t1wYbbJDNNtssM2bMSJL84Q9/yOzZs3PiiSe22VZl+XYdzz//fGbOnJkJEyZkvfXWqz2+7bbbZu+9986NN97YZp1f+MIXWn29yy675KWXXkpzc3OS1J5zwgkntJp34oknrtT34Ze//GW23HLLjBgxotX5fexjH0uS2vklyZgxY/L5z38+3/72t/PJT34yvXr1ymWXXVZ7/Oabb84rr7ySQw45pNWx6uvrs+OOO9aO9eKLL+bOO+/MkUcemfe9730r/F6tLrfccksWL16cE088MXV1/z8/H3300WloaMgNN9zQav66666bww47rPZ1jx498uEPfzh//etfO2U9PgQTAAAAAFgtRo0alV//+tdZvHhxHnzwwVx33XW54IILcuCBB2bmzJn5wAc+kFmzZqVarWazzTZb4TG6d++e5PU9xZNk6623bvf1nnzyySTJFlts0eaxLbfcMtOmTcv8+fPTp0+f2vibA3H//v2TvL41R0NDQ5588snU1dVl0003bTVvRa+xIrNmzcof//jHDBw4cIWPv/kDQb/3ve/lN7/5TWbOnJmf//znrfZLnzVrVpLU4vmbNTQ0JEktHr/V92p1ae/3oEePHtlkk01qjy+38cYbt4ny/fv3z0MPPdQp6xHAAQAAAIDVqkePHhk1alRGjRqVzTffPBMnTswvf/nLTJo0KcuWLUulUslNN92U+vr6Ns9dd911V+vaVvSaSVKtVjvl+MuWLcs222yT888/f4WPDxkypNXXf/jDH2pR/OGHH84hhxzS6ljJ63tyb7DBBm2O1a3bquXe9u4GX74H+bthdX//BXAAAAAA4F2zww47JHl9u5Ik2XTTTVOtVjN8+PBsvvnm7T5v+R3YjzzySPbaa68Vzhk6dGiS5Iknnmjz2OOPP54BAwa0uvt7ZQwdOjTLli3LX/7yl1Z3Na/oNdpb94MPPpg999zzbbcfmT9/fiZOnJgPfOAD2WmnnXLOOefkgAMOyKhRo2rHSpJBgwa1+z1Ikk022SRJ3vYDSPv379/qQ0aXe/Nd2snKb53yxt+D5etIksWLF2f27Nlvue7VwR7gAAAAAECnmzFjxgrv4l2+p/bymPzJT34y9fX1Of3009vMr1areemll5IkI0eOzPDhw/P973+/TbRd/rwNN9ww2223Xa688spWcx555JFMnz49++677yqfx8c//vEkyQ9+8INW49///vdX6vkHHXRQnn322fzoRz9q89jChQszf/782tennHJKnnrqqVx55ZU5//zzM2zYsIwfPz6LFi1KkowdOzYNDQ2ZMmVKWlpa2hzvxRdfTJIMHDgwu+66ay6//PI89dRTrea88Xu86aabpqmpqdV2I88//3yuu+66Nsfu06fPCmP5m+21117p0aNHfvCDH7R6rZ/85CdpamrKuHHj3vYYnckd4AAAAABApzv++OOzYMGCHHDAARkxYkQWL16ce+65J9dcc02GDRuWiRMnJnk9wp5xxhn5xje+kTlz5mT//fdP3759M3v27Fx33XU55phj8rWvfS11dXW59NJL84lPfCLbbbddJk6cmA033DCPP/54Hn300UybNi1Jcu655+bjH/94PvrRj+Zzn/tcFi5cmIsuuiiNjY2ZPHnyKp/Hdtttl0MOOSSXXHJJmpqastNOO+XWW2/Nn//855V6/uGHH55rr702X/jCFzJjxoyMHj06S5cuzeOPP55rr70206ZNyw477JDbbrstl1xySSZNmpSRI0cmSaZOnZrdd989p512Ws4555w0NDTk0ksvzeGHH56RI0fm4IMPzsCBA/PUU0/lhhtuyOjRo3PxxRcneT3Y77zzzhk5cmSOOeaYDB8+PHPmzMkNN9yQmTNnJkkOPvjgnHLKKTnggANywgknZMGCBbn00kuz+eab54EHHmh1Hh/60Idyyy235Pzzz8/gwYMzfPjw7Ljjjm3Od+DAgfnGN76R008/Pfvss0/222+/PPHEE7nkkksyatSoVh94+a6o8o40NTVVk1Sbmpq6eikAAAAAdLFVbUULFy6sPvbYY9WFCxe2eSzJGvGro2666abqkUceWR0xYkR13XXXrfbo0aP6/ve/v3r88cdX//a3v7WZ/6tf/aq68847V/v06VPt06dPdcSIEdUvfelL1SeeeKLVvLvuuqu69957V/v27Vvt06dPddttt61edNFFrebccsst1dGjR1d79+5dbWhoqH7iE5+oPvbYY63mTJo0qZqk+uKLL7Yanzp1ajVJdfbs2bWxhQsXVk844YTq+uuvX+3Tp0/1E5/4RPXpp5+uJqlOmjTpbb8Xixcvrp599tnVrbbaqtqzZ89q//79qx/60Ieqp59+erWpqana3NxcHTp0aHXkyJHVlpaWVs/9yle+Uq2rq6vee++9tbEZM2ZUx44dW21sbKz26tWruummm1YnTJhQ/b//9/+2eu4jjzxSPeCAA6r9+vWr9urVq7rFFltUTzvttFZzpk+fXt16662rPXr0qG6xxRbVq6++uva9eaPHH3+8uuuuu1Z79+5dTVIdP358u9+varVavfjii6sjRoyodu/evfpP//RP1WOPPbb68ssvt5qz2267Vbfaaqs236/x48dXhw4d+pbf07f6s/NGlWq1k3YTf49qbm5OY2Njmpqaap+yCgAAAMB706q2otdeey2zZ8/O8OHD06tXr3dhhVCGlf2zYw9wAAAAAACKJIADAAAAAFAkARwAAAAAgCIJ4AAAAAAAFEkABwAAAACgSAI4AAAAAABFEsABAAAAoItVq9WuXgKsVVb2z4wADgAAAABdpHv37kmSBQsWdPFKYO0yf/78VCqV2p+h9nR7l9YDAAAAALxJfX19+vXrl7///e9JknXWWSeVSqWLVwVrpmq1miVLlqS5uTnNzc3p169f6uvr3/I5AjgAAAAAdKENNtggSWoRHHhr9fX12XDDDdPY2Pi2cwVwAAAAAOhClUolG264YQYNGpSWlpauXg6s0bp165b6+vqV/kkJARwAAAAA1gD19fVvu50DsGp8CCYAAAAAAEUSwAEAAAAAKJIADgAAAABAkQRwAAAAAACKJIADAAAAAFAkARwAAAAAgCIJ4AAAAAAAFEkABwAAAACgSAI4AAAAAABFEsABAAAAACiSAA4AAAAAQJEEcAAAAAAAiiSAAwAAAABQJAEcAAAAAIAiCeAAAAAAABRJAAcAAAAAoEgCOAAAAAAARRLAAQAAAAAokgAOAAAAAECRBHAAAAAAAIokgAMAAAAAUCQBHAAAAACAIgngAAAAAAAUSQAHAAAAAKBI3bp6AayZKpVKVy8BilGtVrt6CQAAAADvSe4ABwAAAACgSAI4AAAAAABFEsABAAAAACiSAA4AAAAAQJEEcAAAAAAAiiSAAwAAAABQJAEcAAAAAIAiCeAAAAAAABRJAAcAAAAAoEgCOAAAAAAARRLAAQAAAAAokgAOAAAAAECRBHAAAAAAAIokgAMAAAAAUCQBHAAAAACAIgngAAAAAAAUSQAHAAAAAKBIAjgAAAAAAEUSwAEAAAAAKJIADgAAAABAkQRwAAAAAACKJIADAAAAAFAkARwAAAAAgCJ16+oFAAAAwFrp55WuXgGU4dBqV68AKJg7wAEAAAAAKJIADgAAAABAkQRwAAAAAACKJIADAAAAAFAkARwAAAAAgCIJ4AAAAAAAFEkABwAAAACgSAI4AAAAAABFEsABAAAAACiSAA4AAAAAQJEEcAAAAAAAiiSAAwAAAABQJAEcAAAAAIAiCeAAAAAAABRJAAcAAAAAoEgCOAAAAAAARRLAAQAAAAAokgAOAAAAAECRBHAAAAAAAIokgAMAAAAAUCQBHAAAAACAIgngAAAAAAAUSQAHAAAAAKBIAjgAAAAAAEXq1tULACjezytdvQIow6HVrl4BAAAAaxl3gAMAAAAAUCQBHAAAAACAIgngAAAAAAAUSQAHAAAAAKBIAjgAAAAAAEUSwAEAAAAAKJIADgAAAABAkQRwAAAAAACKJIADAAAAAFAkARwAAAAAgCIJ4AAAAAAAFEkABwAAAACgSAI4AAAAAABFEsABAAAAACiSAA4AAAAAQJEEcAAAAAAAiiSAAwAAAABQJAEcAAAAAIAiCeAAAAAAABRJAAcAAAAAoEgCOAAAAAAARRLAAQAAAAAokgAOAAAAAECRunX1AgAAgHdPpVLp6iVAMao/6+oVAABvxx3gAAAAAAAUSQAHAAAAAKBIAjgAAAAAAEUSwAEAAAAAKJIADgAAAABAkQRwAAAAAACKJIADAAAAAFAkARwAAAAAgCIJ4AAAAAAAFEkABwAAAACgSAI4AAAAAABFEsABAAAAACiSAA4AAAAAQJEEcAAAAAAAiiSAAwAAAABQJAEcAAAAAIAiCeAAAAAAABRJAAcAAAAAoEgCOAAAAAAARRLAAQAAAAAokgAOAAAAAECRBHAAAAAAAIokgAMAAAAAUCQBHAAAAACAIgngAAAAAAAUSQAHAAAAAKBIAjgAAAAAAEUSwAEAAAAAKJIADgAAAABAkQRwAAAAAACKJIADAAAAAFAkARwAAAAAgCIJ4AAAAAAAFEkABwAAAACgSAI4AAAAAABFEsABAAAAACiSAA4AAAAAQJHWigB+9tlnp1KppFKp5L777mv12OTJk2uPrejXnDlzVnjMadOmZbfddkvfvn3T0NCQPfbYI7feeuu7cDYAAAAAALwbunX1At7OI488kkmTJqVPnz6ZP39+u/PGjx+fYcOGtRnv169fm7Grr746hx9+eAYOHJgJEyYkSa655prsvffeufbaa3PggQd20uoBAAAAAOgqa3QAb2lpyfjx47Pddttls802y9VXX93u3AkTJmT33Xd/22O+/PLLOf744zNgwIA88MAD2XjjjZMkp5xySrbffvsce+yxGTt2bPr27dtZpwEAAAAAQBdYo7dAOfPMM/Poo4/m8ssvT319facc85e//GVeeeWVHH/88bX4nSQbb7xxjjvuuMydOzfXXXddp7wWAAAAAABdZ40N4A888EDOPPPMTJo0KR/4wAfedv6dd96Zs88+O+eee26uv/76vPrqqyucd/vttydJxowZ0+axsWPHJknuuOOOji8cAAAAAIA1whq5BcqiRYtyxBFHZLvttsvJJ5+8Us+ZNGlSq6/79euXCy+8MEcccUSr8VmzZiVJNttsszbHWD62fE57a1u0aFHt6+bm5iSvb9fS0tKSJKmrq0t9fX2WLl2aZcuW1eYuH1+yZEmq1WptvL6+PnV1de2OLz/uct26vf7btmTJkpUa7969e5YtW5alS5fWxiqVSrp169buOACsidp7b12b33Odk3N6t88JANY0LS0tRb3nvvk1gK61RpbOb33rW5k1a1b+53/+5223PvngBz+Yyy+/PLvvvns23HDDvPDCC/nd736Xb33rW5kwYUL69euX/fbbrza/qakpSdLY2NjmWA0NDa3mrMhZZ52V008/vc349OnTs8466yRJ3ve+92X77bfPQw89lKeeeqo2Z4sttsiIESNy//3358UXX6yNb7fddhk6dGjuvPPOzJs3rzb+0Y9+NIMGDcr06dNb/YW7xx57pHfv3rnxxhtbrWHffffNwoULM2PGjNpYt27dMm7cuMydOzf33ntvbbxv37752Mc+lqeffjozZ86sjQ8cODA77bRTu+cPAF1p1qxZeeKJJ2pfl/Ce65yc07t9TgCwprnxxhuLes9dsGBB53xjgE5Rqb7xn8PWAPfee2923nnnTJ48OaeddlptfMKECbnyyitz77335iMf+cjbHufWW2/N3nvvna233joPPfRQbXzzzTfPrFmz0tLS0uZO55aWlvTo0SPbbrttHnzwwRUed0V3gA8ZMiRz586tBfS18V8n3zxeqVRWeP7Aqqv+rKtXAIU4tFrEHUFvHndOzundPqcePXoE6Byu86BztHx6cVHvuc3NzRkwYECamppqrQjoOmvUHeBLlizJ+PHjs+222+brX//6OzrWnnvumU033TQPP/xwmpuba3/hLL/zu6mpKeuvv36r5yzfzmRFd4cv17Nnz/Ts2bPNePfu3dO9e/dWY/X19Su8g729LUbaG3/zcTsyXldXl7q6tlu+tzcOAGui9t5b1+b3XOfknNpb46qOu94DYG31xve1Et5z2zsW0DXWqCvhV199NbNmzcrMmTPTo0ePVCqV2q8rr7wyyes/slKpVHL99de/7fEGDBiQJK1+9OSt9vl+q/3BAQAAAABYu6xRd4D37Nkzn/vc51b42J133plZs2Zlv/32y8CBAzNs2LC3PNb8+fPz6KOPpk+fPrUQniS77bZb/uM//iPTp09vs5XKtGnTanMAAAAAAFi7rXF7gLdnRXuAz5s3L88//3w233zzVnMXLlyYz33uc/mP//iPTJw4MZdffnntsZdffjnDhw9P9+7d84c//CEbb7xxkuSZZ57J9ttvnyT561//mr59+67Uupqbm9PY2Fjcvk72AIfOY29I6CSHrhWXLLDGc50Hncd1HnSSwq7zSm1FsLZao+4AX1UvvfRSRowYkVGjRmXLLbfMBhtskL/97W+55ZZb8swzz2SbbbbJueee2+o5/fv3z8UXX5zDDz88I0eOzGc+85kkyTXXXJOXXnop11xzzUrHbwAAAAAA1lxrdQBfb7318sUvfjH3339/brzxxrz88svp3bt3ttxyy5xwwgk57rjj0rt37zbPO+ywwzJgwIBMmTIlU6dOTaVSyYc+9KF885vfzF577dUFZwIAAAAAQGdba7ZAWVOV+mMtfjQWOo8fjYVOUtiPxkJXcZ0Hncd1HnSSwq7zSm1FsLaq6+oFAAAAAADA6iCAAwAAAABQJAEcAAAAAIAiCeAAAAAAABRJAAcAAAAAoEgCOAAAAAAARRLAAQAAAAAokgAOAAAAAECRBHAAAAAAAIokgAMAAAAAUCQBHAAAAACAIgngAAAAAAAUSQAHAAAAAKBIAjgAAAAAAEUSwAEAAAAAKJIADgAAAABAkQRwAAAAAACKJIADAAAAAFAkARwAAAAAgCIJ4AAAAAAAFEkABwAAAACgSAI4AAAAAABFEsABAAAAACiSAA4AAAAAQJEEcAAAAAAAiiSAAwAAAABQJAEcAAAAAIAiCeAAAAAAABRJAAcAAAAAoEgCOAAAAAAARRLAAQAAAAAokgAOAAAAAECRBHAAAAAAAIokgAMAAAAAUCQBHAAAAACAIgngAAAAAAAUSQAHAAAAAKBIAjgAAAAAAEUSwAEAAAAAKJIADgAAAABAkQRwAAAAAACKJIADAAAAAFAkARwAAAAAgCIJ4AAAAAAAFEkABwAAAACgSAI4AAAAAABFEsABAAAAACiSAA4AAAAAQJEEcAAAAAAAiiSAAwAAAABQJAEcAAAAAIAiCeAAAAAAABRJAAcAAAAAoEgCOAAAAAAARRLAAQAAAAAokgAOAAAAAECRBHAAAAAAAIokgAMAAAAAUCQBHAAAAACAIgngAAAAAAAUSQAHAAAAAKBIAjgAAAAAAEUSwAEAAAAAKJIADgAAAABAkQRwAAAAAACKJIADAAAAAFAkARwAAAAAgCIJ4AAAAAAAFEkABwAAAACgSAI4AAAAAABFEsABAAAAACiSAA4AAAAAQJEEcAAAAAAAiiSAAwAAAABQJAEcAAAAAIAiCeAAAAAAABRJAAcAAAAAoEgCOAAAAAAARRLAAQAAAAAokgAOAAAAAECRBHAAAAAAAIokgAMAAAAAUCQBHAAAAACAIgngAAAAAAAUSQAHAAAAAKBIAjgAAAAAAEUSwAEAAAAAKJIADgAAAABAkQRwAAAAAACKJIADAAAAAFAkARwAAAAAgCIJ4AAAAAAAFEkABwAAAACgSAI4AAAAAABFEsABAAAAACiSAA4AAAAAQJEEcAAAAAAAiiSAAwAAAABQJAEcAAAAAIAiCeAAAAAAABRJAAcAAAAAoEgCOAAAAAAARRLAAQAAAAAokgAOAAAAAECRBHAAAAAAAIokgAMAAAAAUCQBHAAAAACAIgngAAAAAAAUSQAHAAAAAKBIAjgAAAAAAEUSwAEAAAAAKJIADgAAAABAkQRwAAAAAACKJIADAAAAAFAkARwAAAAAgCIJ4AAAAAAAFEkABwAAAACgSAI4AAAAAABFEsABAAAAACiSAA4AAAAAQJEEcAAAAAAAiiSAAwAAAABQJAEcAAAAAIAiCeAAAAAAABRJAAcAAAAAoEgCOAAAAAAARRLAAQAAAAAokgAOAAAAAECRBHAAAAAAAIokgAMAAAAAUCQBHAAAAACAIgngAAAAAAAUSQAHAAAAAKBIAjgAAAAAAEUSwAEAAAAAKJIADgAAAABAkQRwAAAAAACKJIADAAAAAFAkARwAAAAAgCIJ4AAAAAAAFEkABwAAAACgSAI4AAAAAABFEsABAAAAACiSAA4AAAAAQJEEcAAAAAAAiiSAAwAAAABQJAEcAAAAAIAiCeAAAAAAABRJAAcAAAAAoEgCOAAAAAAARRLAAQAAAAAokgAOAAAAAECRBHAAAAAAAIokgAMAAAAAUCQBHAAAAACAIgngAAAAAAAUSQAHAAAAAKBIAjgAAAAAAEUSwAEAAAAAKJIADgAAAABAkQRwAAAAAACKJIADAAAAAFAkARwAAAAAgCIJ4AAAAAAAFEkABwAAAACgSAI4AAAAAABFEsABAAAAACiSAA4AAAAAQJEEcAAAAAAAiiSAAwAAAABQJAEcAAAAAIAiCeAAAAAAABRJAAcAAAAAoEgCOAAAAAAARRLAAQAAAAAokgAOAAAAAECRBHAAAAAAAIokgAMAAAAAUCQBHAAAAACAIgngAAAAAAAUSQAHAAAAAKBIAjgAAAAAAEUSwAEAAAAAKJIADgAAAABAkQRwAAAAAACKJIADAAAAAFAkARwAAAAAgCIJ4AAAAAAAFEkABwAAAACgSAI4AAAAAABFEsABAAAAACiSAA4AAAAAQJEEcAAAAAAAiiSAAwAAAABQJAEcAAAAAIAiCeAAAAAAABRJAAcAAAAAoEgCOAAAAAAARRLAAQAAAAAokgAOAAAAAECRBHAAAAAAAIokgAMAAAAAUCQBHAAAAACAIgngAAAAAAAUSQAHAAAAAKBIAjgAAAAAAEUSwAEAAAAAKJIADgAAAABAkQRwAAAAAACKJIADAAAAAFAkARwAAAAAgCIJ4AAAAAAAFEkABwAAAACgSAI4AAAAAABFEsABAAAAACiSAA4AAAAAQJEEcAAAAAAAiiSAAwAAAABQJAEcAAAAAIAiCeAAAAAAABRJAAcAAAAAoEgCOAAAAAAARRLAAQAAAAAokgAOAAAAAECRBHAAAAAAAIokgAMAAAAAUKQOB/A777wzTz311FvOefrpp3PnnXeu0nFfe+21nHTSSdl1110zePDg9OrVKxtssEFGjx6dqVOnpqWlpc1zmpubc9JJJ2Xo0KHp2bNnhg0bln/913/Nq6++usLXWLZsWS666KJss8026d27dwYOHJhDDjkkf/3rX1dprQAAAAAArLk6HMD32GOPXHHFFW8556c//Wn22GOPVTruq6++mksvvTSVSiXjxo3LSSedlAMOOCDPPvtsjjzyyPzzP/9zli1bVps/f/787LbbbrngggsyYsSIfOUrX8kWW2yR733ve/nYxz6W1157rc1rfP7zn88JJ5yQarWaE044Ifvss09+/etfZ9SoUZk1a9YqrRcAAAAAgDVTt44+sVqtvu2cZcuWpVKprNJx11tvvTQ1NaVHjx6txpcsWZK9994706dPz0033ZRx48YlSc4555zMnDkzp5xySr773e/W5n/961/P2WefnQsuuCDf+MY3auMzZszIj3/84+y66665+eaba69z6KGHZt99981xxx2XadOmrdKaAQAAAABY86zWPcBnzZqVxsbGVXpOXV1dm/idJN26dcsBBxyQJPnzn/+c5PUI/+Mf/zjrrrtuTjvttFbzTzvttKy77rr58Y9/3Gr8Rz/6UZLkO9/5TqvX+fjHP57dd98906dPf9utXQAAAAAAWPOt0h3gRx55ZKuvr7/++syZM6fNvKVLl9b2//74xz/+jha43LJly/Jf//VfSZKtt946yeuB/bnnnsvYsWPTp0+fVvP79OmT0aNHZ9q0aXn66aczZMiQJMntt99ee+zNxo4dm9tvvz133HFHDj/88E5ZNwAAAAAAXWOVAvgb9/yuVCqZOXNmZs6cucK5lUolo0aNygUXXNChhS1evDhTpkxJtVrNSy+9lFtvvTWPP/54Jk6cmD333DNJavt1b7bZZis8xmabbZZp06Zl1qxZGTJkSObPn5/nn38+W2+9derr61c4/43HXZFFixZl0aJFta+bm5uTJC0tLbUP6Kyrq0t9fX2WLl3aar/y5eNLlixptYVMfX196urq2h1/8wd/duv2+m/bkiVLVmq8e/fuWbZsWZYuXVobq1Qq6datW7vjALAmau+9dW1+z3VOzundPicAWNO0tLQU9Z775tcAutYqlc7Zs2cneX3rkU022SQnnnhivvzlL7eZV19fn/79+7e5K3tVLF68OKeffnrt60qlkq997Ws566yzamNNTU1J0u42Kw0NDa3mrer8FTnrrLNarWu56dOnZ5111kmSvO9978v222+fhx56qNV2KltssUVGjBiR+++/Py+++GJtfLvttsvQoUNz5513Zt68ebXxj370oxk0aFCmT5/e6i/cPfbYI717986NN97Yag377rtvFi5cmBkzZtTGunXrlnHjxmXu3Lm59957a+N9+/bNxz72sTz99NOt/hFj4MCB2Wmnndo9fwDoSrNmzcoTTzxR+7qE91zn5Jze7XMCgDXNjTfeWNR77oIFCzrnGwN0ikp1ZT7NcgWuvPLKbL/99tl22207e02tLFu2LM8991x++9vf5t/+7d+y1VZb5cYbb0xDQ0N+/vOf57Of/WxOPfXUnHHGGW2ee+qpp2bKlCn59a9/nQMOOCDPPfdcNtpoo4wePTp33XVXm/k333xzxowZkxNOOCEXXnjhCtezojvAhwwZkrlz59YC+tr4r5NvHl/VDy8F2lf9WVevAApxaLWIO4LePO6cnNO7fU4r+rwdoGNc50HnaPn04qLec5ubmzNgwIA0NTXVWhHQdTq818X48eM7cx3tqqury8Ybb5xjjz02AwYMyEEHHZQzzzwzZ599du1O7vbu2F6+Pcnyeas6f0V69uyZnj17thnv3r17unfv3mqsvr5+hVuttLfFSHvjbz5uR8br6upSV9f2M0/bGweANVF7761r83uuc3JO7a1xVcdd7wGwtnrj+1oJ77ntHQvoGu94s+f7778/v//97/PKK6+scG/BSqWS00477Z2+TJJkzJgxSV7/IMvk7ffsfvMe4X369MmGG26Y2bNnZ+nSpW3+4ny7PcUBAAAAAFh7dDiA/+Mf/8j++++fu+++O2+1i0pnBvDnnnsuyf//17fNNtssgwcPzt1335358+e32nN8/vz5ufvuuzN8+PAMGTKkNr7bbrvlF7/4Re6+++7suuuurY4/bdq0JGkzDgAAAADA2qfDPwt50kkn5a677spuu+2WqVOn5uabb86MGTPa/LrttttW6biPPfbYCj8sYMGCBTnppJOSvP5BBMnrcf2oo47Kq6++mu985zut5n/nO9/Jq6++mqOPPrrV+DHHHJMkOe2007J48eLa+E033ZTbb789Y8aMydChQ1dpzQAAAAAArHk6/CGYAwYMyPvf//7ce++9nfqBiZMnT87555+fnXfeOcOGDUtDQ0OeffbZ3HTTTXnppZeyyy67ZNq0aendu3eS1+/0Hj16dB588MGMGTMmI0eOzAMPPJDp06dn1KhRueOOO2pzlzv66KPz4x//OFtttVXGjRuX559/Ptdcc03WXXfd3Hvvvdl8881Xer3Nzc1pbGws7oMNfAgmdB4fjgSd5NAOXbIAb+I6DzqP6zzoJIVd55XaimBt1eEtUBYuXJhdd9210y+g//mf/znPPfdc7rnnntx777159dVX09jYmG233TYHH3xwjjzyyFYfZNCnT5/ccccdmTx5cn71q19lxowZ2XDDDfPVr341kyZNahO/k+Syyy7LNttskx/+8Ie58MILs+666+aAAw7ImWeemU033bRTzwcAAAAAgK7R4TvAR48enY022ijXXnttZ69prVLqv+q5Mwg6jzuDoJMUdmcQdBXXedB5XOdBJynsOq/UVgRrqw7vAT5p0qT853/+Z+67777OXA8AAAAAAHSKDm+B8sILL2TcuHHZbbfd8tnPfjYjR45s91+1jjjiiA4vEAAAAAAAOqLDW6DU1dWlUqnkjU9/849TVqvVVCqVLF269J2tcg1W6o+1+NFY6Dx+NBY6SWE/GgtdxXUedB7XedBJCrvOK7UVwdqqw3eAT506tTPXAQAAAAAAnarDAXz8+PGduQ4AAAAAAOhUHf4QTAAAAAAAWJN1+A7wp556aqXnvu997+voywAAAAAAQId0OIAPGzZspT5Ap1KpZMmSJR19GQAAAAAA6JAOB/AjjjhihQG8qakpDz74YGbPnp3ddtstw4YNeyfrAwAAAACADulwAL/iiivafaxarea8887LOeeck5/85CcdfQkAAAAAAOiw1fIhmJVKJV/72tey1VZb5V//9V9Xx0sAAAAAAMBbWi0BfLkddtght9122+p8CQAAAAAAWKHVGsD/8pe/+ABMAAAAAAC6RIf3AG/PsmXL8uyzz+aKK67Ib37zm+y5556d/RIAAAAAAPC2OhzA6+rqUqlU2n28Wq2mf//+Oe+88zr6EgAAAAAA0GEdDuC77rrrCgN4XV1d+vfvn1GjRmXixIkZNGjQO1ogAAAAAAB0RIcD+O23396JywAAAAAAgM61Wj8EEwAAAAAAukqnfAjm3XffnZkzZ6a5uTkNDQ3ZbrvtMnr06M44NAAAAAAAdMg7CuD33HNPJk6cmD//+c9JXv/gy+X7gm+22WaZOnVqPvrRj77zVQIAAAAAwCrqcAB/9NFHM2bMmCxYsCB777139thjj2y44YZ54YUXMmPGjEyfPj1jx47Nfffdlw984AOduWYAAAAAAHhbHQ7g3/72t7N48eLceOON2WeffVo9dsopp+S//uu/st9+++Xb3/52fvGLX7zjhQIAAAAAwKro8Idg3n777TnwwAPbxO/l9tlnnxx44IGZMWNGhxcHAAAAAAAd1eEA3tTUlOHDh7/lnOHDh6epqamjLwEAAAAAAB3W4QA+ePDg3HfffW8557//+78zePDgjr4EAAAAAAB0WIcD+H777Zfbb789p512Wl577bVWj7322muZNGlSZsyYkX/5l395x4sEAAAAAIBVValWq9WOPPGll17KjjvumNmzZ2f99dfPhz/84fzTP/1T/va3v+X3v/99XnzxxWyyySa5//77s95663X2utcYzc3NaWxsTFNTUxoaGrp6OZ2mUql09RKgGNWfdfUKoBCHduiSBXgT13nQeVznQScp7Dqv1FYEa6tuHX3i+uuvn/vuuy8nn3xyfvGLX+TGG2+sPdarV69MnDgxZ599dtHxGwAAAACANVeHA3iSDBgwIJdffnkuu+yyPP7442lubk5DQ0NGjBiR7t27d9YaAQAAAABgla1yAD/zzDMzf/78nH766bXI3b1792yzzTa1OYsXL86pp56avn375utf/3rnrRYAAAAAAFbSKn0I5i233JJvfetbWX/99d/yDu8ePXpk/fXXz6mnnpoZM2a840UCAAAAAMCqWqUA/tOf/jT9+/fPcccd97Zzv/SlL2W99dbL1KlTO7w4AAAAAADoqFUK4Pfcc0/22muv9OzZ823n9uzZM3vttVfuvvvuDi8OAAAAAAA6apUC+HPPPZdNNtlkpecPHz48zz///CovCgAAAAAA3qlVCuB1dXVpaWlZ6fktLS2pq1ullwAAAAAAgE6xSnV68ODBeeSRR1Z6/iOPPJKNNtpolRcFAAAAAADv1CoF8F122SW33XZb5syZ87Zz58yZk9tuuy277rprR9cGAAAAAAAdtkoB/Etf+lJaWlpy4IEHZu7cue3Oe+mll/LpT386S5YsybHHHvuOFwkAAAAAAKuq26pMHjlyZE488cR8//vfzwc+8IF84QtfyB577JGNN944SfLss8/m1ltvzQ9/+MO8+OKLOemkkzJy5MjVsnAAAAAAAHgrlWq1Wl2VJ1Sr1Zx66qk599xzs2zZshU+Xl9fn5NPPjlnnHFGKpVKpy12TdTc3JzGxsY0NTWloaGhq5fTaUr/fYN3U/VnXb0CKMShq3TJArTDdR50Htd50EkKu84rtRXB2mqV7gBPXr9gnjJlSj73uc9l6tSpueeee/LCCy8kSTbYYIOMHj06EyZMyKabbtrpiwUAAAAAgJW1ygF8uU033TRnnHFGZ64FAAAAAAA6zSp9CCYAAAAAAKwtBHAAAAAAAIokgAMAAAAAUCQBHAAAAACAIgngAAAAAAAUSQAHAAAAAKBIAjgAAAAAAEUSwAEAAAAAKJIADgAAAABAkQRwAAAAAACKJIADAAAAAFAkARwAAAAAgCIJ4AAAAAAAFEkABwAAAACgSAI4AAAAAABFEsABAAAAACiSAA4AAAAAQJEEcAAAAAAAiiSAAwAAAABQJAEcAAAAAIAiCeAAAAAAABRJAAcAAAAAoEgCOAAAAAAARRLAAQAAAAAokgAOAAAAAECRBHAAAAAAAIokgAMAAAAAUCQBHAAAAACAIgngAAAAAAAUSQAHAAAAAKBIAjgAAAAAAEUSwAEAAAAAKJIADgAAAABAkQRwAAAAAACKJIADAAAAAFAkARwAAAAAgCIJ4AAAAAAAFEkABwAAAACgSAI4AAAAAABFEsABAAAAACiSAA4AAAAAQJEEcAAAAAAAiiSAAwAAAABQJAEcAAAAAIAiCeAAAAAAABRJAAcAAAAAoEgCOAAAAAAARRLAAQAAAAAokgAOAAAAAECRBHAAAAAAAIokgAMAAAAAUCQBHAAAAACAIgngAAAAAAAUSQAHAAAAAKBIAjgAAAAAAEUSwAEAAAAAKJIADgAAAABAkQRwAAAAAACKJIADAAAAAFAkARwAAAAAgCIJ4AAAAAAAFEkABwAAAACgSAI4AAAAAABFEsABAAAAACiSAA4AAAAAQJEEcAAAAAAAiiSAAwAAAABQJAEcAAAAAIAiCeAAAAAAABRJAAcAAAAAoEgCOAAAAAAARRLAAQAAAAAokgAOAAAAAECRBHAAAAAAAIokgAMAAAAAUCQBHAAAAACAIgngAAAAAAAUSQAHAAAAAKBIAjgAAAAAAEUSwAEAAAAAKJIADgAAAABAkQRwAAAAAACKJIADAAAAAFAkARwAAAAAgCIJ4AAAAAAAFEkABwAAAACgSAI4AAAAAABFEsABAAAAACiSAA4AAAAAQJEEcAAAAAAAiiSAAwAAAABQJAEcAAAAAIAiCeAAAAAAABRJAAcAAAAAoEgCOAAAAAAARRLAAQAAAAAokgAOAAAAAECRBHAAAAAAAIokgAMAAAAAUCQBHAAAAACAIgngAAAAAAAUSQAHAAAAAKBIAjgAAAAAAEUSwAEAAAAAKJIADgAAAABAkQRwAAAAAACKJIADAAAAAFAkARwAAAAAgCIJ4AAAAAAAFEkABwAAAACgSAI4AAAAAABFEsABAAAAACiSAA4AAAAAQJEEcAAAAAAAiiSAAwAAAABQJAEcAAAAAIAiCeAAAAAAABRJAAcAAAAAoEgCOAAAAAAARRLAAQAAAAAokgAOAAAAAECRBHAAAAAAAIokgAMAAAAAUCQBHAAAAACAIgngAAAAAAAUSQAHAAAAAKBIAjgAAAAAAEUSwAEAAAAAKJIADgAAAABAkQRwAAAAAACKJIADAAAAAFAkARwAAAAAgCIJ4AAAAAAAFEkABwAAAACgSAI4AAAAAABFEsABAAAAACiSAA4AAAAAQJEEcAAAAAAAiiSAAwAAAABQJAEcAAAAAIAiCeAAAAAAABRJAAcAAAAAoEgCOAAAAAAARRLAAQAAAAAokgAOAAAAAECRBHAAAAAAAIokgAMAAAAAUCQBHAAAAACAIgngAAAAAAAUSQAHAAAAAKBIAjgAAAAAAEUSwAEAAAAAKJIADgAAAABAkQRwAAAAAACKJIADAAAAAFAkARwAAAAAgCIJ4AAAAAAAFEkABwAAAACgSAI4AAAAAABFEsABAAAAACiSAA4AAAAAQJEEcAAAAAAAiiSAAwAAAABQJAEcAAAAAIAiCeAAAAAAABRJAAcAAAAAoEgCOAAAAAAARRLAAQAAAAAokgAOAAAAAECRBHAAAAAAAIokgAMAAAAAUCQBHAAAAACAIgngAAAAAAAUSQAHAAAAAKBIAjgAAAAAAEUSwAEAAAAAKJIADgAAAABAkQRwAAAAAACKJIADAAAAAFAkARwAAAAAgCIJ4AAAAAAAFEkABwAAAACgSAI4AAAAAABFEsABAAAAACjSGhnAr7766nz+85/PDjvskJ49e6ZSqeSKK65Y4dzJkyenUqm0+2vOnDkrfN60adOy2267pW/fvmloaMgee+yRW2+9dfWdFAAAAAAA76puXb2AFfnmN7+ZJ598MgMGDMiGG26YJ5988m2fM378+AwbNqzNeL9+/dqMXX311Tn88MMzcODATJgwIUlyzTXXZO+99861116bAw888B2eAQAAAAAAXW2NDOA//vGPs9lmm2Xo0KH57ne/m2984xtv+5wJEyZk9913f9t5L7/8co4//vgMGDAgDzzwQDbeeOMkySmnnJLtt98+xx57bMaOHZu+ffu+09MAAAAAAKALrZFboOy1114ZOnToajn2L3/5y7zyyis5/vjja/E7STbeeOMcd9xxmTt3bq677rrV8toAAAAAALx71sgA3hF33nlnzj777Jx77rm5/vrr8+qrr65w3u23354kGTNmTJvHxo4dmyS54447Vts6AQAAAAB4d6yRW6B0xKRJk1p93a9fv1x44YU54ogjWo3PmjUrSbLZZpu1OcbyseVzVmTRokVZtGhR7evm5uYkSUtLS1paWpIkdXV1qa+vz9KlS7Ns2bLa3OXjS5YsSbVarY3X19enrq6u3fHlx12uW7fXf9uWLFmyUuPdu3fPsmXLsnTp0tpYpVJJt27d2h0HgDVRe++ta/N7rnNyTu/2OQHAmqalpaWo99w3vwbQtdb60vnBD34wl19+eXbfffdsuOGGeeGFF/K73/0u3/rWtzJhwoT069cv++23X21+U1NTkqSxsbHNsRoaGlrNWZGzzjorp59+epvx6dOnZ5111kmSvO9978v222+fhx56KE899VRtzhZbbJERI0bk/vvvz4svvlgb32677TJ06NDceeedmTdvXm38ox/9aAYNGpTp06e3+gt3jz32SO/evXPjjTe2WsO+++6bhQsXZsaMGbWxbt26Zdy4cZk7d27uvffe2njfvn3zsY99LE8//XRmzpxZGx84cGB22mmnds8fALrSrFmz8sQTT9S+LuE91zk5p3f7nABgTXPjjTcW9Z67YMGCzvnGAJ2iUn3jP4etgZZ/CObUqVMzYcKElX7erbfemr333jtbb711Hnroodr45ptvnlmzZqWlpaXNnc4tLS3p0aNHtt122zz44IMrPO6K7gAfMmRI5s6dWwvoa+O/Tr55vFKprPD8gVVX/VlXrwAKcWi1iDuC3jzunJzTu31OPXr0CNA5XOdB52j59OKi3nObm5szYMCANDU11VoR0HXW+jvA27Pnnntm0003zcMPP5zm5ubaXzjL7/xuamrK+uuv3+o5y7czWdHd4cv17NkzPXv2bDPevXv3dO/evdVYfX196uvr28xtb4uR9sbffNyOjNfV1aWuru2W7+2NA8CaqL331rX5Pdc5Oaf21riq4673AFhbvfF9rYT33PaOBXSNoq+EBwwYkCStfvTkrfb5fqv9wQEAAAAAWLsUG8Dnz5+fRx99NH369KmF8CTZbbfdkry+Z/ebTZs2rdUcAAAAAADWXmt1AJ83b17+9Kc/tRlfuHBhjj766MybNy8HHXRQqx97Oeigg9LY2JiLLroozzzzTG38mWeeycUXX5wBAwbkgAMOeFfWDwAAAADA6rNG7gH+4x//OHfddVeS5OGHH66N3X777UmSnXfeOUcddVReeumljBgxIqNGjcqWW26ZDTbYIH/7299yyy235Jlnnsk222yTc889t9Wx+/fvn4svvjiHH354Ro4cmc985jNJkmuuuSYvvfRSrrnmmvTt2/fdO1kAAAAAAFaLNTKA33XXXbnyyitbjd199925++67a18fddRRWW+99fLFL34x999/f2688ca8/PLL6d27d7bccsuccMIJOe6449K7d+82xz/ssMMyYMCATJkyJVOnTk2lUsmHPvShfPOb38xee+212s8PAAAAAIDVr1KtVqtdvYi1WXNzcxobG9PU1JSGhoauXk6nqVQqXb0EKEb1Z129AijEoS5ZoDO4zoPO4zoPOklh13mltiJYW63Ve4ADAAAAAEB7BHAAAAAAAIokgAMAAAAAUCQBHAAAAACAIgngAAAAAAAUSQAHAAAAAKBIAjgAAAAAAEUSwAEAAAAAKJIADgAAAABAkQRwAAAAAACKJIADAAAAAFAkARwAAAAAgCIJ4AAAAAAAFEkABwAAAACgSAI4AAAAAABFEsABAAAAACiSAA4AAAAAQJEEcAAAAAAAiiSAAwAAAABQJAEcAAAAAIAiCeAAAAAAABRJAAcAAAAAoEgCOAAAAAAARRLAAQAAAAAokgAOAAAAAECRBHAAAAAAAIokgAMAAAAAUCQBHAAAAACAIgngAAAAAAAUSQAHAAAAAKBIAjgAAAAAAEUSwAEAAAAAKJIADgAAAABAkQRwAAAAAACKJIADAAAAAFAkARwAAAAAgCIJ4AAAAAAAFEkABwAAAACgSAI4AAAAAABFEsABAAAAACiSAA4AAAAAQJEEcAAAAAAAiiSAAwAAAABQJAEcAAAAAIAiCeAAAAAAABRJAAcAAAAAoEgCOAAAAAAARRLAAQAAAAAokgAOAAAAAECRBHAAAAAAAIokgAMAAAAAUCQBHAAAAACAIgngAAAAAAAUSQAHAAAAAKBIAjgAAAAAAEUSwAEAAAAAKJIADgAAAABAkQRwAAAAAACKJIADAAAAAFAkARwAAAAAgCIJ4AAAAAAAFEkABwAAAACgSAI4AAAAAABFEsABAAAAACiSAA4AAAAAQJEEcAAAAAAAiiSAAwAAAABQJAEcAAAAAIAiCeAAAAAAABRJAAcAAAAAoEgCOAAAAAAARRLAAQAAAAAokgAOAAAAAECRBHAAAAAAAIokgAMAAAAAUCQBHAAAAACAIgngAAAAAAAUSQAHAAAAAKBIAjgAAAAAAEUSwAEAAAAAKJIADgAAAABAkQRwAAAAAACKJIADAAAAAFAkARwAAAAAgCIJ4AAAAAAAFEkABwAAAACgSAI4AAAAAABFEsABAAAAACiSAA4AAAAAQJEEcAAAAAAAiiSAAwAAAABQJAEcAAAAAIAiCeAAAAAAABRJAAcAAAAAoEgCOAAAAAAARRLAAQAAAAAokgAOAAAAAECRBHAAAAAAAIokgAMAAAAAUCQBHAAAAACAIgngAAAAAAAUSQAHAAAAAKBIAjgAAAAAAEUSwAEAAAAAKJIADgAAAABAkQRwAAAAAACKJIADAAAAAFAkARwAAAAAgCIJ4AAAAAAAFEkABwAAAACgSAI4AAAAAABFEsABAAAAACiSAA4AAAAAQJEEcAAAAAAAiiSAAwAAAABQJAEcAAAAAIAiCeAAAAAAABRJAAcAAAAAoEgCOAAAAAAARRLAAQAAAAAokgAOAAAAAECRBHAAAAAAAIokgAMAAAAAUCQBHAAAAACAIgngAAAAAAAUSQAHAAAAAKBIAjgAAAAAAEUSwAEAAAAAKJIADgAAAABAkQRwAAAAAACKJIADAAAAAFAkARwAAAAAgCIJ4AAAAAAAFEkABwAAAACgSAI4AAAAAABFEsABAAAAACiSAA4AAAAAQJEEcAAAAAAAiiSAAwAAAABQJAEcAAAAAIAiCeAAAAAAABRJAAcAAAAAoEgCOAAAAAAARRLAAQAAAAAokgAOAAAAAECRBHAAAAAAAIokgAMAAAAAUCQBHAAAAACAIgngAAAAAAAUSQAHAAAAAKBIAjgAAAAAAEUSwAEAAAAAKJIADgAAAABAkQRwAAAAAACKJIADAAAAAFAkARwAAAAAgCIJ4AAAAAAAFEkABwAAAACgSAI4AAAAAABFEsABAAAAACiSAA4AAAAAQJEEcAAAAAAAiiSAAwAAAABQJAEcAAAAAIAiCeAAAAAAABRJAAcAAAAAoEgCOAAAAAAARRLAAQAAAAAokgAOAAAAAECRBHAAAAAAAIokgAMAAAAAUCQBHAAAAACAIgngAAAAAAAUSQAHAAAAAKBIAjgAAAAAAEUSwAEAAAAAKJIADgAAAABAkQRwAAAAAACKJIADAAAAAFAkARwAAAAAgCIJ4AAAAAAAFEkABwAAAACgSAI4AAAAAABFEsABAAAAACiSAA4AAAAAQJEEcAAAAAAAiiSAAwAAAABQJAEcAAAAAIAiCeAAAAAAABRJAAcAAAAAoEgCOAAAAAAARRLAAQAAAAAokgAOAAAAAECRBHAAAAAAAIokgAMAAAAAUCQBHAAAAACAIgngAAAAAAAUSQAHAAAAAKBIAjgAAAAAAEUSwAEAAAAAKJIADgAAAABAkQRwAAAAAACKJIADAAAAAFAkARwAAAAAgCIJ4AAAAAAAFEkABwAAAACgSAI4AAAAAABFEsABAAAAACiSAA4AAAAAQJEEcAAAAAAAiiSAAwAAAABQJAEcAAAAAIAiCeAAAAAAABRJAAcAAAAAoEgCOAAAAAAARRLAAQAAAAAokgAOAAAAAECRBHAAAAAAAIokgAMAAAAAUCQBHAAAAACAIgngAAAAAAAUSQAHAAAAAKBIAjgAAAAAAEUSwAEAAAAAKJIADgAAAABAkQRwAAAAAACK9J4O4L///e+z7777pl+/funTp08+8pGP5Nprr+3qZQEAAAAA0Am6dfUCusqMGTMyduzY9OrVKwcffHD69u2bX/3qV/nMZz6Tp59+Ol/96le7eokAAAAAALwDlWq1Wu3qRbzblixZkhEjRuSZZ57Jfffdl+222y5J0tTUlA9/+MOZM2dO/vSnP2Xo0KFve6zm5uY0NjamqakpDQ0Nq3nl755KpdLVS4BiVH/W1SuAQhz6nrtkgdXCdR50Htd50EkKu84rtRXB2uo9uQXKbbfdlr/85S859NBDa/E7SRobG/Nv//ZvWbx4ca688squWyAAAAAAAO/YezKA33777UmSMWPGtHls7NixSZI77rjj3VwSAAAAAACd7D25B/isWbOSJJtttlmbxzbYYIOsu+66tTlvtmjRoixatKj2dVNTU5LkH//4R1paWpIkdXV1qa+vz9KlS7Ns2bLa3OXjS5YsyRt3nqmvr09dXV2748uPu1y3bq//ti1ZsmSlxrt3755ly5Zl6dKltbFKpZJu3bq1Ow50nuYFXb0CKERzc7vvrWvze65zck7v9jkBncd1HnSOlpdeKuo9d968eUmS9+Cuw7BGek+WzuXRurGxcYWPNzQ01Oa82VlnnZXTTz+9zfjw4cM7b4FAURqP7uoVQCGOXvH7NgB0Fdd50EmOHtDVK1gt5s2b1257At4978kA/k584xvfyEknnVT7etmyZfnHP/6R9ddf3wcKAW00NzdnyJAhefrpp334CQBAQVznAe2pVquZN29eBg8e3NVLAfIeDeDL//Wtvbu8m5ub079//xU+1rNnz/Ts2bPVWL9+/Tp1fUB5Ghoa/B8jAIACuc4DVsSd37DmeE9+CObyvb9XtM/3Cy+8kFdffXWF+4MDAAAAALD2eE8G8N122y1JMn369DaPTZs2rdUcAAAAAADWTu/JAL7nnntmk002yc9//vPMnDmzNt7U1JQpU6akR48eOeKII7pugUAxevbsmUmTJrXZOgkAgLWb6zwAWDtUqtVqtasX0RVmzJiRsWPHplevXjn44IPTt2/f/OpXv8qTTz6Z733ve/nqV7/a1UsEAAAAAOAdeM8G8CS5//77M2nSpNxzzz1paWnJNttsk5NOOimf+cxnunppAAAAAAC8Q+/pAA4AAAAAQLnek3uAAwAAAABQPgEcAAAAAIAiCeAAAAAAABRJAAcAAAAAoEgCOAAAAKyEarVa+9/l/w0ArNkqVe/aAAAAAAAUqFtXLwAAAADWdH//+9/z8MMPZ9asWZk3b152/H/t3X9MlXUfxvELzuE3K5CSDZCCYSBleEQHURFHGhNmNcThpDLWbDpkhnPWWltrtZYsdGXODWm51iTGj2lCo2Hq2fw1dWYmBZwMPXK0oAWJIDTgnOePBnsQKeIBb8bzfv137vs+2/Xn93vtc3/vpCTFxsYqJCREZvNfW2uXyyVPT160BgBgJqEAB4ApNjQ0JJPJZHQMAAAATJH6+nq99957Onny5KjrISEhSk9P1+rVq7VixQp5eXkZlBAAAIyHI1AAYIrcPvEzfDbkP00Bud1ueXh4THc8AAAATEJbW5vS0tLU29ur/Px8Wa1Wtba26vz587pw4YK+//57/fnnn1qwYIHefPNN5eTkyMfHhzUeAAAzBBPgADBFSktLZbPZtHbtWj311FMKDAwc2fS4XC5JumMZzsYIAABg5iotLVVXV5c++eQTrVy5ctQ9p9OpkydP6uDBgyovL9cLL7wgp9Op1157jTUeAAAzBBPgADBFoqKi5HA45OPjo4SEBGVkZCgrK0tJSUmjNkCDg4Mym826deuW9uzZo4SEBFmtVgOTAwAAYDzJycny8/NTVVWV7rvvPg0ODsrDw2PMkXdHjx7Vli1b9OOPP2r37t16+eWXDUoMAAD+GwU4AEyBH374QQsXLlRiYqKCg4P1zTffSJICAgL0+OOPKysrSxkZGYqLixv5z/Hjx5WamqqUlBQdP37cqOgAAAAYR09Pj7Kzs+V0OnXu3Dn5+/uPOvbu9iPvzp8/r/T0dD355JP68ssvOQYFAIAZgM9TA8AUuHjxoiQpLy9PDQ0Nam5u1rZt2xQTE6OGhgYVFRVp2bJlysvL0+eff66uri6dOXNGkvTGG28YGR0AAADjCAwMVGJiolpaWlRRUSFp7JF2w79dLpcsFotSU1PV3Nwsh8NB+Q0AwAzABDgATIE9e/Zow4YN+uqrr5SZmTnq3tmzZ/XFF1+ourpaTqdTkjR//nx1d3err69Pf/zxhwGJAQAAMBHXrl1TZmamGhsbVVhYqPz8fMXHx8vX13fkmeEj7rq7u7Vu3TqdPn1aDofDwNQAAGAYE+AA8D9yu9169NFHVVRUpIceemjUdUlaunSpduzYIbvdrtraWq1du1bt7e1qb2/Xiy++aFRsAAAATEB4eLjeeecdPfjgg9q1a5fWr1+vkpIS2Ww2ORwO9ff3y2w2S5Jqa2tls9nGDEQAAADjMAEOAFOkp6dH3t7e8vb2HnPv9vMfCwsLtXv3bn377bdatGjRXUwJAACAibh9/dbZ2an3339flZWVamtr0/33369HHnlEYWFh8vf3V19fnyorKxUVFaUDBw4oNjbWwPQAAGAYBTgA3CXDm6iff/5Zq1ev1o0bN/TTTz8ZHQsAAADjGF6/OZ1OhYWFydPTU42Njaqrq5PNZlNTU5Pa2tokScHBwVq0aJF27typhx9+2ODkAABgGAU4ANxldXV1evbZZ7V161YVFxcbHQcAAAC3GRwc1IkTJ/Tpp5/KbrfLw8ND/v7+Wrp0qXJzc2WxWOR2u9XW1qa+vj61trYqLi5O8+bNk9lsHjM9DgAAjEMBDgBTZKIbnfb2dn399dd65plnNGfOnLuQDAAAAP9GSUmJ3n33Xd28eVMxMTEymUxqaWkZuR8fH6+CggKtWrVKc+fONTApAAD4JxTgADBJfX19unr1qiIjI+Xn5/ev/js0NCSTyTRNyQAAADBZly9f1sKFC7V48WJ99tln8vb2VmhoqH799VfV1taqqqpKNptNkmS1WlVcXKwlS5YYGxoAAIyLAhwAJmnbtm2qqanRypUrlZycrNjYWIWGhv5tsf3bb78pODhYZrP5LiYFAADARL311lsqLS1VeXm50tPTJY190+/ixYsqKSlRZWWlHnjgAe3bt0+JiYlGRQYAAH+DAhwAJikiIkLXr1+XyWTSvffeq5SUFGVkZCgpKUnR0dEKCQkZ9Xxvb6/efvtt/f777yorK2MCHAAAYAbKycnRd999p6NHjyoyMlKDg4Mj53q7XK5Ra7iPPvpImzdv1ksvvaS9e/camBoAAIyHEUQAmAS73a4bN27oscceU15eng4dOqRTp06prq5OkZGRSktL09NPPy2LxaLw8HAFBQWpsbFRZWVlSktLo/wGAACYoSwWi/bv36+enh5JGnlzz8PDY2QNNzwR/uqrr+rYsWM6cuSIWltbFR0dbVhuAABwZxTgADAJdrtd/f39ysjI0MaNG7VixQq1tLTo1KlTOnLkiGpqarRv3z7Fx8dr2bJlWr58uQ4fPqzu7m698sorRscHAADAOKxWqyTp+eef1/bt2/XEE0/I29t7zHPD33SJjY1VfX39SGEOAABmFo5AAYBJqK6uVm5urioqKpSbmztyfWBgQA6HQxcuXNCxY8dks9nU1NQkLy8vud1u+fj4qLOz08DkAAAA+DtDQ0N6/fXXtWPHDsXFxWnjxo1atWqVQkNDxzzb1dWloqIi1dfXq6Ojw4C0AADgn1CAA8AkuN1uNTc3y9fXV1FRUWM+jCT9dea33W5XS0uL9u7dq0OHDqmwsFA7d+40KDUAAAAmqrS0VB988IFaW1sVFham7OxsZWZmat68eTKZTAoKCtLHH3+sDz/8UAUFBdq+fbvRkQEAwB1QgAPAFLtTGb5p0ybt2rVL586dk8ViMSgZAAAAJsrtduvSpUsqKytTRUWFnE6nJGnu3Lny8vLSL7/8IpfLpTVr1qi4uFgREREGJwYAAHdCAQ4A08TlcsnT01NXrlzRc889p66uLl29etXoWAAAAPiXent7debMGR08eFDXr19XR0eH7rnnHuXm5ionJ0e+vr5GRwQAAOPgI5gAME08PT0lSdeuXdPAwIAKCgoMTgQAAIDJCAgIkNVqldVq1cDAgLy8vIyOBAAAJogJcACYZm63W06nU3PmzFFAQIDRcQAAAAAAAP5vUIADAAAAAAAAAGYlT6MDAAAAAAAAAAAwHSjAAQAAAAAAAACzEgU4AAAAAAAAAGBWogAHAAAAAAAAAMxKFOAAAAAAAAAAgFmJAhwAAAAAAAAAMCtRgAMAAAAAAAAAZiUKcAAAAAAAAADArEQBDgAAAAAAAACYlf4D9/WsxcoDTFgAAAAASUVORK5CYII=", - "text/plain": [ - "
" - ] - }, - "execution_count": 5, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "plot_histogram([counts, second_counts], legend=legend, sort='desc', figsize=(15,12), \n", - " color=['orange', 'black'], bar_labels=False)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### plot_histogram() からの出力の使用\n", - "\n", - "`plot_histogram()` 関数を使用すると、レンダリングされた可視化の `matplotlib.Figure` が返されます。 Jupyter ノートブックはこの戻り値の型を理解して適切にレンダリングすることができますが、Jupyter の外部で実行すると、これは自動的には機能しません。 ただし、`matplotlib.Figure` クラスには、可視化の表示と保存のどちも行えるメソッドがネイティブで備わっています。 返されたオブジェクトに `plot_histogram()` から `.show()` を呼び出すと、イメージを新しいウィンドウで開くことができます(構成済みの matplotlib バックエンドがインタラクティブであることが前提です)。 または `.savefig('out.png')` を呼び出すと、図を `out.png` に保存できます。 `savefig()` メソッドはパスを取るため、出力の保存場所とファイル名の調整が可能です。" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## 状態のプロット " - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "デバッグの目的など、多くの状況では、量子コンピューターの状態を確認できると役立ちます。 ここでは(シミュレーションまたは状態トモグラフィーからの)特定の状態があることを前提とし、目標は量子状態を可視化することです。 これには膨大なリソースが必要となるため、小さな量子系の状態のみを確認することをお勧めします。 量子状態の様々な種類の可視化を生成する関数がいくつかあります。\n", - "\n", - "```\n", - "plot_state_city(quantum_state)\n", - "plot_state_qsphere(quantum_state)\n", - "plot_state_paulivec(quantum_state)\n", - "plot_state_hinton(quantum_state)\n", - "plot_bloch_multivector(quantum_state)\n", - "```\n", - "\n", - "量子状態は、密度行列 $\\rho$(エルミート行列)または状態ベクトル $|\\psi\\rangle$(複素ベクトル)のいずれかです。 密度行列は以下によって状態ベクトルに関連しています。\n", - "\n", - "$$\\rho = |\\psi\\rangle\\langle \\psi|,$$\n", - "\n", - "そして、混合状態(状態ベクトルの正の和)を表すため、より一般的です。\n", - "\n", - "$$\\rho = \\sum_k p_k |\\psi_k\\rangle\\langle \\psi_k |.$$\n", - "\n", - "関数によって生成される可視化は、以下のとおりです。\n", - "\n", - "- `'plot_state_city'`: 密度行列の実部と虚部が都市のようにプロットされている、量子状態の標準的なビュー。\n", - "\n", - "- `'plot_state_qsphere'`: 状態ベクトルの振幅と位相が球状にプロットされる、Qiskit 固有の量子状態ビュー。 振幅は矢印の厚みで、位相は色です。 混合状態の場合は、コンポーネントごとに異なる `'qsphere'` を表示します。\n", - "\n", - "- `'plot_state_paulivec'`: $\\rho=\\sum_{q=0}^{d^2-1}p_jP_j/d$ を基底としたパウリ演算子による密度行列の表現。\n", - "\n", - "- `'plot_state_hinton'`: ``'city'`` と同じですが、要素のサイズは行列要素の値を表します。\n", - "\n", - "- `'plot_bloch_multivector'`: 量子状態を単一量子ビットスペースへ射影し、ブロッホ球上にプロットします。" - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": { - "ExecuteTime": { - "end_time": "2021-07-31T05:08:38.155610Z", - "start_time": "2021-07-31T05:08:38.152536Z" - }, - "execution": { - "iopub.execute_input": "2023-08-25T18:25:14.580619Z", - "iopub.status.busy": "2023-08-25T18:25:14.580076Z", - "iopub.status.idle": "2023-08-25T18:25:14.584263Z", - "shell.execute_reply": "2023-08-25T18:25:14.583502Z" - } - }, - "outputs": [], - "source": [ - "from qiskit.visualization import plot_state_city, plot_bloch_multivector\n", - "from qiskit.visualization import plot_state_paulivec, plot_state_hinton\n", - "from qiskit.visualization import plot_state_qsphere" - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": { - "ExecuteTime": { - "end_time": "2021-07-31T05:08:53.778558Z", - "start_time": "2021-07-31T05:08:53.767409Z" - }, - "execution": { - "iopub.execute_input": "2023-08-25T18:25:14.587661Z", - "iopub.status.busy": "2023-08-25T18:25:14.587205Z", - "iopub.status.idle": "2023-08-25T18:25:14.599107Z", - "shell.execute_reply": "2023-08-25T18:25:14.598274Z" - } - }, - "outputs": [], - "source": [ - "# execute the quantum circuit \n", - "backend = BasicAer.get_backend('statevector_simulator') # the device to run on\n", - "result = backend.run(bell).result()\n", - "psi = result.get_statevector(bell)" - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "metadata": { - "ExecuteTime": { - "end_time": "2021-07-31T05:08:55.480726Z", - "start_time": "2021-07-31T05:08:54.964494Z" - }, - "execution": { - "iopub.execute_input": "2023-08-25T18:25:14.602902Z", - "iopub.status.busy": "2023-08-25T18:25:14.602620Z", - "iopub.status.idle": "2023-08-25T18:25:15.064751Z", - "shell.execute_reply": "2023-08-25T18:25:15.063989Z" - } - }, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABBcAAAGpCAYAAADWRN6TAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOz9eXgkZ3nvjX+relPvi/Z9mdHs45nxrJoxGGPjgXA4kF8cbN73DbFPYjjZSI79noBNYichMUt8EpKc5JDEgJ2AE7/ExJCA8YI3jBdsj6TRNtpGo9FoGUndraX37qr6/SGq3C21pF6qq6pr7s91zQWWurueKnU99/N863vfNyMIggCCIAiCIAiCIAiCIIgCYdUeAEEQBEEQBEEQBEEQ5Q2JCwRBEARBEARBEARBFAWJCwRBEARBEARBEARBFAWJCwRBEARBEARBEARBFAWJCwRBEARBEARBEARBFAWJCwRBEARBEARBEARBFAWJCwRBEARBEARBEARBFAWJCwRBEARBEARBEARBFAWJCwRBEARBEARBEARBFAWJCwRBEARBEARBEARBFAWJCwRBEARBEARBEARBFAWJCwRBEARBEARBEARBFAWJCwRBEARBEARBEARBFAWJCwRBEARBEARBEARBFAWJCwRBEARBEARBEARBFAWJCwRBEARBEARBEARBFAWJCwRBEARBEARBEARBFAWJCwRBEARBEARBEARBFAWJCwRBEARBEARBEARBFAWJCwRBEARBEARBEARBFAWJCwRBEARBEARBEARBFAWJCwRBEARBEARBEARBFAWJCwRBEARBEARBEARBFAWJCwRBEARBEARBEARBFAWJCwRBEARBEARBEARBFAWJCwRBEARBEARBEARBFAWJCwRBEARBEARBEARBFAWJCwRBEARBEARBEARBFAWJCwRBEARBEARBEARBFAWJCwRBEARBEARBEARBFAWJCwRBEARBEARBEARBFAWJCwRBEARBEARBEARBFAWJCwRBEARBEARBEARBFAWJCwRBEARBEARBEARBFAWJCwRBEARBEARBEARBFAWJCwRBEARBEARBEARBFAWJCwRBEARBEARBEARBFAWJC4RmEAQBPM9DEAS1h0IQBEEQBEHIDK3zCELfGNUeAEEAa8JCMplELBYDABiNRhiNRhgMBrAsC4ZhVB4hQRAEQRAEUQiCICCVSiEWi4HneZhMJlrnEYQOYQSSDwmV4XkeyWQSHMchkUhIirYgCGBZFizLkthAEARBEARRhojrvPT1nrjWYxgGLMuS2EAQOoHEBUI1BEEAx3FIpVLgeR4MwyCZTAJYCzaCIEipEiJiECKxgSAIgiAIQruIazhRWGBZFslkEoIgZKzz0td6DMPAYDDQOo8gyhQSFwhVENMgOI4DsBZMFhcXMTo6CrvdDq/XC6/XC4vFkvGezcQGk8kkBSOGYSgIEQRBEARBqES2dR6ADHEh23vW/yMHK0GUFyQuEIrD8zwSiYSkYguCgNHRUVy+fBltbW1IJpMIBoNYXV2F1WqVhAav1wuz2Sx9TrrYIAaqbIo3iQ0EQRAEQRDKkJ7+kC4EiILDZuLCesjBShDlB4kLhGKIaRBiYGFZFtFoFL29veB5HocOHYLJZAKwFjxSqRSWlpYQDAYRDAYRCoVgs9kkocHj8eQsNojOBjEIEQRBEARBEPKxPt11/aY/X3Eh2+dv9VCJHKwEoT4kLhCKwPM8UqlUhj1udnYWg4ODaGhowO7duzfk4q0nmUxmiA3hcBgOhwMej0cSG0RxAiCxgSAIgiAIQgmypUGsX8sVKy5kOyY5WAlCW5C4QJSU9GI+4sTPcRyGhoYwPz+PAwcOoLa2VnptPkEnkUhkiA2RSAROpzNDbDAa3+22KgahqakpLC0tYd++fRusdSQ2EARBEARB5I7oSs3mVkhHXOeJr5MbcZ03NzeHmZkZHD58mB4qEYTCGLd/CUEUhtjTOJVKAVhTsUOhEHp6emA2m3HmzBlUVFQU/Plmsxk1NTWoqakBAMTjcQSDQSwtLWF0dBSxWGyD2JCem2c0GqVAl0gkJGWbxAaCIAiCIIitSV/niemuajoE0p0LAGAwGKQxit3I6KESQZQWEheIkpBezEec7C9fvoyRkRG0t7djx44dsgcgi8WCuro61NXVAQBisZjkahgeHkY8HofL5YLBYJDyAdODSrrLIr0lZnoQEnP5CIIgCIIgrlXWp7uqLSxkQ1x/pq/z0h8qASQ2EITcUFoEISvZivkkk0n09/djeXkZhw4dgs/n2/S9cubirScajSIYDGJ6ehrhcBiCIMDtdkuuBrfbnRFQ0vP40nP5xCCUnstHEARBEAShd7Klu+a6Dip1WoTI/Pw8Ll++jGPHjm07HnGdJ0IOVoIoDnIuELIhCAJWVlYgCAIsFgtYlsXS0hJ6e3vhdDpx5syZjO4OSmO1WmG1WsHzPPx+Pzo7OyVnw/T0NFKplCQ2eL1eOJ1OyVonnp8YUMU0CpZlN+TykdhAEARBEITeEAQB4XAYyWQSFRUVmi6UmMuz0/QUCvE95GAliOIgcYGQBZ7nkUgkMDw8DLvdjh07dmB8fBwTExPYtWsXWlpaCp6Mhy6F4XUyqKu0yTpmm80Gm82GxsZGCIKASCQiiQ1TU1PgeT5DbHA4HDmJDesVbwpCBEEQBEGUM+J6Z3x8HBzHYf/+/WoPSXa2EhvWP1QiBytBZIfEBaIoxDQI0R4npkG89dZbiMViOHnyJFwuV4GfDTzydAJvDcbA8zwYbg41riQOdVpx84kaVHoKKwaZLQgwDAO73Q673Y6mpiZJnRfFhsnJSQiCIBWHXC82iAq5KLLE43ESGwiCIAiCKGuypbuKdRa0ilzrrFzFBlrnEcS7kLhAFMz6nsYsyyIej2N2dhb19fW4/vrrM1pB5sPiCo8//9coAssxAADDsIDRjfkI8Fwv8GzPKhhuGvWeFK7fY8f7T9TAZZcv5YJhGDgcDjgcDjQ3N0MQBIRCIUlsmJiYAMMwGWKD3W7fVGzYqnAQBSGCIAiCILRGtnUewzA5pRyoTSnGmC420EMlgsgOiQtEQazvaSwIAi5cuAC/34+qqiocPHiw4M/+aT+Hbz0X2lIZXxMbPJgNAT94G/jPny3BIKyg0cfh2F4n3ne8GrYK06bvzzfoMAwDp9MJp9OJlpYW8DyP1dVVBINB+P1+jI+Pw2AwSMUhvV4vbDZbRhAS/8XjcRIbCIIgCILQLOKmWVzniWsThmHA83xBn6nlGg35Ip4HiQ0EkQmJC0RepPc0BtY2x5FIBL29vQCA+vr6gos2cryAv/1eAj0jq3m/l2EN4OHF1DIw9Qbw5E8DMGEFLdUCTux34r1Ha2A2Gbb/oBxhWRZutxtutxvAWjBZWVlBMBjEwsICxsbGYDQaM8QGq9Uq5eqtFxvSg5DJZJKCkBZbOxEEQRAEoU+ypbumr0PKxbmgNFuJDfRQibiWIHGByBkxz0xUrBmGwczMDAYHB9Hc3Ixdu3ZhZGSkoKAzG+DxpW8tY2k1JstYWYMRHHyYCAATPwH+5aV5WJhVtNUCe5p5NHrkDYwsy8Lj8cDj8QBYc3aIYsPVq1cxMjICs9m8QWwAsEFsiMXEVBASGwiCIAiCUIbN0iDSEd2qWkYL66R0sSHbQ6V0sUHsOGY0GmmdR5Q9JC4Q25JewCa9mM/g4CAWFhZw+PBhVFdXAyjMLvf8uQQef3appAWCWIMZSVRidAEYXQD4VBzWF4bRUc/izCEvThyolHUyF1MkvF4vgDWxYXl5GcFgEDMzMxgeHobFYpFe4/V6YbFYpPduJjasr1BMQYggCIIgiGJJdytslb5QLs4FrY0x/ZrSQyVCz5C4QGxJNhV7ZWUFvb29qKiowJkzZ1BR8W7XhnyCTooT8JffiaB/fKUkY98K1mhBHBYMzQJDs8DfPXkBH3+vgA+/f19JjmcwGODz+eDz+QAAqVRKEhumpqYwODgIq9WaITaI6SXpQYjneSkIsSy7wV5HQYggCIIgiFxZn+66XV2EchEXtA6JDYReIXGB2BTRrcBxHFiWBQBMTk5idHQUHR0d6Ojo2DDB5Rp0Juc5/Pnjy1gNx0sy9nxY9U/g6qXXMLvnqGLHNBqNqKysRGVlJYA1sWFpaUlqezkwMACbzSYJDR6PZ1OxQXxtY2MjiQ0EQRAEQeTE+nRXca23FcWKC0qsScpx3bOV2DA8PAyGYdDa2koOVkLzkLhAbCBbT+NkMom+vj6srq7i2LFjkt1/PSzLbpsW8YM34vi3F5cKrjYsFzzPYfHyW1heGAagroXOaDSiqqoKVVVVAIBkMimJDRMTEwiHw3A4HFK9Bo/HA5NprRtGKpWSbIwcx4HjuA0FIsVgpKdKzQRBEARB5E+2dNdc1wbFigtKrbXK3V2Rvl7jeV5a04kFImOxGDlYCU1C4gKRQbY0iEAggPPnz8Pj8eDMmTPSpjYbWwWdRFLAnz8Rxshk/t0g5CYZW8Xs+MuIR/zSz7QUiEwmE6qrq6VaFolEQhIbxsfHEYlE4HQ64fF4EIvF4HA4pCADvNv6UhSJxCC1XvEmsYEgCIIgrh1yKdq4FZQWoTxi1450Z0n6Om/9QyUSGwg1IXGBkBCL+YgqtiAIGBsbw6VLl7B79240NzdvO0FtFnTGZzg8/K9LiEQTpRp+zoSCl3F14lXwXDLj51qOlWazGTU1NaipqQEAxONxBINBBINBhEIhrKysYHFxUXI1eDweKagA7wahVCqFZDKZITaIzob01xMEQRAEoS/Wp7sWsukspHC30uhtMy26U9MR13HZHiqliw3iQyVysBJKQeICkVHMR1RHY7EYzp8/j0QigVOnTsHpdOb0WZuJC3//QwNSsMFgZMGl4gCU38kLPI/FK+9g6ergZq9QdDzFYLFYUFdXh7q6OiSTSTidTlRUVCAYDGJ4eBjxeBwul0sSG9xuN4kNBEEQBHENki3dtdANZrk4F8phjPmQy8O9bGJDtnUeOViJUkLiwjUOz/NIpVIZ9rj5+Xn09/ejtrYWx44dg8FgyPnzNgs6AmOGxWoBrIAg8OBScXDJGFLJGHiu9EUdk4kw5sZfRiy0sOlryjUOCYIAk8mE+vp61NfXAwCi0ajkbJidnUUymdwgNmRLoxCDEIAN1joSGwiCIAiivCg2DWI9orOVUI5Crnc+YgM9VCLkhMSFa5T0Yj6i3YrneVy4cAEzMzPYv3+/tFHNh83EhfQ4xjAsjCYrjCYrLPi52PBzoYFLRTekKxRLeHkacxd/Aj61tYhRzsFy/ULBarXCarWioaEBgiBkiA3T09NIpVJwu91SNwqn05lVbEgmk0gkElIQIrGBIAiCIMqD9emucjyhLhfngp7IlhaRL7mKDbTOI4qFxIVrkPUqNsMwCIfD6O3tBcuyOH36NGw2W0GfnYu4sPF3LIxmG4zmtWPyPAfu50JDKhmDwKcKGosg8AhM9yIwez7H1xd0GNXZLugwDAObzSa1qxQEAZFIRBIbpqamwPN8htiQrUCkKEaJzob1QUjM5SMIgiAIQj3S012B4t0K6ZSDuFAOY1SbzcQG8aESQA5WojBIXLjGWF/MBwCmp6cxNDSElpYWdHZ2FjVxbCou5PEZLGsAa7HDZLH/fNBJBOdHwCVjMJhtMJqs235GKhnF3PgriK7O5Xzccg1E+Y6bYRjY7XbY7XY0NTVBEASEw2FJbJicnIQgCFLbS1FsSE+PSRcbsjkb0nP5CIIgCIJQhvQWk0BmS0M5KHbjTuuC/JHDubAd24kN5GwgcoXEhWuEbMV8UqkUBgYGEAgEcOTIEVRVVRV9HLEH73qKmhNZE7x1+6X/jK5eRTQ0Dz6VhNFih8FoyXh5ZGUOcxdfAZeM5nWYMtUWABQXrBmGgcPhgMPhQHNzMwRBwOrqqtT6cmJiAgzDZIgNdrt9W7GBZdkNuXy0qCAIgiAI+UmPw3KmQayHXAHXBtnEBnKwErlA4sI1QLZiPsvLy+jt7YXNZsOZM2dgsVi2+ZTc2CzosDLONVZnLazOWgBrKRTRlVnEwn4IAofw0hX4p3tQWOeH8gyWcgd5hmHgcrngcrnQ0tICnuexurqKYDAIv9+P8fFxGAwGqTik1+uFzWbLSWxYr3hTECIIgiCI4pC7aONWlIO4UA5jzAclnAvbIRZ/FNnqoRI5WK9tSFzQOTzPI5FISCo2AFy6dAljY2PYuXMn2traFLHLMYyA/JIjcoNlDbB7mmD3NAEApoefRaEiQTmHoVJO3izLwu12w+12A1j7Tq2srCAYDGJhYQFjY2MwGo0ZYoPVapWCkPh9EL+LYu9lEhsIgiAIojjWp7sqYZ/P5lDN5/1E/mjtuuUjNpCD9dqCxAWdIqZBiN0gWJZFIpFAX18fwuEwjh8/Do/HI/txCynoKPMACn5ruarcSo+bZVl4PB7p+8NxnCQ2zM3NYWRkBGazmcQGgiAIgigR2dJdlYiZ5eAK0NvaQevXG8gUG9LXeeRgvfYgcUGH8DyPVCqVYY/z+/04f/48fD4fTp8+DZPJVJJjK5EWsc0ICn5nGczdWVHbLiemSHi9XgBrYsPy8jKCwSBmZmYwPDwMi8Uivcbr9cJisWQEIfFfPB5HIpHA8vIyWJZFZWUlBSGCIAiCSEPJNIj1sCxbFpvdchhjrqi9zssXcaxbPVQKhULgeR7V1dW0ztMZJC7oCFHFTq/qKggCRkZGcPnyZezduxeNjY0lvXHVFheYosSF8g1EWpqMDQYDfD4ffD4fACCVSkliw9TUFAYHB2G1WjPEBrPZLL1XEAQsLCzAYDDA4XBkOBtEa53RaFR0MUUQBEEQWiCVSmW0ClQ6DhbrXBAfJhD5Uc7rnWxiw9LSEiKRCFwu15atL8v5vK9VSFzQCWJP46mpKUxNTeHkyZOIRqPo7e0Fx3Ho6uqCw+Eo+Tg2y8VjlOpUU1RahIzjUBCtB2mj0YjKykpUVlYCWFsYiZ0oJicnMTAwALvdLqVQiOkWYp5eurMhFosBQIbYIAYhEhsIgiAIvSKu865evYqhoSG85z3vUSXmlUNahN7Q2/UWv0PZ1nmigxUgsaFcIXFBB6QX8xFv2Lm5OQwMDKChoQG7d+/OKLpSStR2LhRXNLJ8J+9ymmyNRiOqqqqk1qfJZDKj7WU4HIbRaITNZoPT6YTH45HSeERnQzaxYX2FYhIbCIIgCD2Qnu4qrrPUim/lIC7oMfbr7Zx4npfOSXRbAxvXefF4fIODldZ52obEhTJms2I+kUgEg4ODOHjwIGpraxUd02a5eIqlRVyjzoVynlxNJhOqq6tRXV0NAFLhUUEQMD4+jkgkIokMorPBaFybutKDEM/zJDYQBEEQuiG9Ar8Y641GY1HdGoqlHMQFQF9P+/V0LiJisflsbCU2kINV+5C4UKZkK+YTCoUwPDwMjuPwnve8B1arVfFxlXO3iHJFb0HHbDbDbDbD7XajpaUF8XgcwWAQwWAQo6OjiMVicDqdktDg8XgkZ856sSEejyMWi4Fl2Q32OgpCBEEQhFYR0yBSqRSAdzdcxbaCLJZyERf0RLk/RMoGz/M5u6pzFRvooZI2IHGhDBGrrYpuBQCYmprC8PAwampqsLS0pIqwAGyRFqFQzYViCjryZRws9TZ5pivaFosFdXV1qKurAwDEYjFJbBgeHkY8HofL5ZLEBrfbvaH3sujy4Thu09aXFIQIgiAILbA+3TX9CS/LspoQF7S84dXquIpBb+e0lXNhOzYTG9IdrPRQST1IXCgjxA2SaI9jWRapVAr9/f1YWlrC9ddfD5ZlEQwGVRuj6jUXikmL4MtTXNDjE4T0XLz1VFRUoL6+HvX19QCAaDQqiQ0zMzNIpVIbxAYxyACZYkMqlZKC1HrFOz14EQRBEESp2SzdNR21W0GK49GyuADoa22kp3MR2Wqdly+biQ3iQyVysCoLiQtlQrY0iKWlJfT29sLpdOLMmTMwm81YWlpSPeisP348HkckHAPgVmIEBb8zHA4jGo2q5vooBr1NjumunO2wWq2wWq1oaGiAIAgZYsOVK1fAcRzcbrfU9tLpdGYVG1KpFJLJ5KZiQ6EKO0EQBEFsR7Z1XrbYLjoX1Nrcp8fOQtDbekUJtC7kFEIxzoXtENdx2R4qrXewprc4p4dK8kDiQhkguhXSN1wXL17ExYsX0dnZidbWVulm0IpdTsTv96O3txcG9oxixy+USCSKN954AxaLBT6fT9qMms1mGUcoP3oNOoWcE8MwsNlssNlsaGxshCAIiEQiktgwNTUFnuczxAaHw5Gz2CAGIRIbCIIgCLlYn+66VfxT2zmQfnytorc1kR7J5yFSsWwlNpCDVX5IXNAw64v5sCyLeDyO8+fPIxaL4cSJE3C7M90AaosL6Yr6+Pg4JiYmsGfPHvSt2jG3qtqwcqKyqhLvec97sLy8jEAggMnJSQwMDMDhcEgb0fROBVpBywG+UOQKOgzDwG63w263o6mpCYIgIBwOS2LD5OQkBEGQOlHkIjYA2Xsvk9hAEARB5EO2dNftNjNirFFyc5ZOOYgLgPbHlw/0EEleNhMb6KGSPGhrl0RIiMV8RKGAYRgsLi7i/PnzqK6uxvXXX591k6uVKsJvv/02otEoTp48CZfLBUOPYgMo/L0CYDQaUVlZicrKSgBrbRGXlpYQCASkTgViPr/X65Xy+dVGj0GnFNeVYRg4HA44HA40NzdDEASsrq5iaWkJwWAQExMTYBhGEpK8Xi/sdntWsSGZTCKRSAAgsYEgCILIj1zTINZTbFpCsRQrLuhtvaIUertuaolj2SCxQV5IXNAY6T2NxRtPEAQMDw9jamoK+/btQ2Nj46bvF1+vliK4vLwMADCZTDhy5IgkgJRDtwgBGwOl2WxGTU0NampqAKx1KggEAhnFA9OfejudTsWvux4VbTkL/WwFwzBwuVxwuVxoaWkBz/NYXV1FMBiE3+/H+Pg4DAZDhthgs9k2iA3iPSs6G8Re5KLYIObyEQRBEES6WyFf63W6c0ENxLGq+SDrWkNPLgwRpdZ5hbCd2ADQQ6WtIHFBQ2RTsSORCHp7ewEAp0+fht1u3/Iz0m8EJW9aQRBw8eJFjI+PAwAOHjyY0Q6wLLpF5DB3V1RUoKGhQSoeGIlEJLFhcnISACShQdyIanXy1DKlLPSzFSzLwu12S+lGPM9jZWUFwWAQ8/PzGBsbg9FozBAbrFbrhtaXotiQSCSkIEViA0EQxLXN+nTXQnK61d7cy5EWUer4p8f4qrdzUmudVwibiQ1brfOuZbGBxAWNkN7TWLTGzczMYGBgAE1NTdi9e3dOX1I1cvESiQTOnz+PSCSCo0eP4q233soyLkWGUpxzIc9AmZ7P39zcDJ7nEQqFEAgEsLCwgLGxMZhMpgyxoaKiouDxbTVuvQUdrSjaLMvC4/HA4/Ggvb0dHMdJYsPc3BxGRkZgNpszanJsJTaEw2FcunQJu3fvhtFozLDXaeF8CYIgiNKwPt210DWauJFRMy1CzePnitbHlw96OhcRrazzCiGb2JD+UGl0dBQ7duxARUXFNflQicQFlcnW05jjOAwNDWF+fh6HDh2SLPm5oLSiHQwG0dPTA4/Hg66uLunn6ydCg06cC1vBsqxksW9rawPHcVheXkYwGMT09DQuXLgAq9WaITaYTKbiDgp9Bh2tKtpiioTX6wWArH9ji8WS8Te2WCyS2JBIJDA/P4/du3dnKN7Z7HXXShAiCILQM9nSXYud39Uu3l0O4oKe0ONDJK2u8wpBrMcAAKlUCnNzc9ixY8emzob0bhR6hMQFFcmWBrG6uore3l6YzWacOXMm7yfdSuXiCYKAiYkJjI+PY9euXWhpaQHDMJLVb33QUW7+KOZGlTdQGgwG+Hw++Hw+AGsTjtilYGJiAv39/XA6nRlPvdOfeOeD3iaoclG0s/2NRbFhamoKg4ODGYKS2WwGy7LS31m8T8Q2ZOm9l0lsIAiCKG8KLdq4HSQubI0e46Xezqlc1nn5It6XJpNpU2eDuM5bXyBSL9eDxAWVEIv5pKcvXL58GSMjI2hvb8eOHTsK+pIp0SIokUigr68PoVBoQzvMzaoYG1hlglAxN2ap46TRaER1dTWqq6sBAPF4XBIbhoeHEY/H4Xa7pY2oy+XKSdXVcoAvlHJVtNd3G0mlUlInisnJSYRCITAMg+HhYUlQMpvNJDYQBEHojGzprnJB4sL2aH18+aCncxEp13XednAct6GWSrqzAdhcbNDLOo/EBYVJL+Yj3ljJZBL9/f1YWVnB0aNHpaeghSB+QUsVdILBIHp7e+F2u3H69OkNtv7N0jIUmz+KEheUnbwtFgvq6upQV1cHQRAQjUYlseHKlSvgeT6jE4XD4dh0oinXCWgz9KJoG41GVFVVoaqqCgAwPz+PkZERMAyDiYkJhMNhOBwO6e/s8XgkFRvIFBvi8fiWrS/1cL0IgiDKnWzprnLPz2pv7tU+/rWI3mK8llpRykkuYmK62KDHh0okLigIz/NIpVIZ9rj1m3Wz2Vz0cRiGkV1cEAQBly5dwtjYGDo7O9Ha2rrll1y1mgtFtaJUD4ZhYLPZYLPZ0NjYCEEQEAqFMtIoWJbNyOW3Wq1SgC+XCScXxCq8egw6LMvCbDZj165dANZcQKKzYXx8HJFIBE6nM0NsSA8s4rURBAHxeDwjCImihNFoLMliliAIgtiaUqVBrIecC1ujt/in5WtdKHpbu4rkK5qI10BPYgOJCwqQbn9Jv5nGx8cxMTGRUbNADuQOOslkEn19fVhZWcHx48fh8Xg2fe1mVYQLLCWQN0p2iyglDMPA6XTC6XSipaUFPM9jdXUVgUAAV69excjIiFQ4UJyAtmtTWi6Ifwe1xYVYQsD/+e5VeKxR3HyiGi31jqI/c33QMZvNqKmpkYq2pqfKjI6OIhaLSXU5xK4VYgBaLzbEYjEA2CA2hMNheDwe1a8nQRCEnlmf7lrKhb8WxAU1j58LWlrTFYseN+J6di4UWj8NyC42pD9UyuZgDYVCRdVtkxsSF0rMehWbYRjE43H09vYikUjg5MmTcLlcsh6TZVnZJtWlpSX09PTA6XTm7KzIKi6URVqEjOOQGZZl4Xa74Xa7pZaI4hNvQRDQ3d0Nu92e4WwwGsvz9hYXLGoG0vklHg99O4xwxATAhJ8Ox4DUAqqccRzcUYGbT9agrtKW9+duF3TSU2UAIBaLSWLDhQsXkEgk4HK5JLHB7XZvKTasrKygvb0dfr+/qHQrgiAIIjvp6a5A6dwK6WhBXNDT5r0c0Ju4oEfBBFhbw8q5yU+v37CZg7W5uRlvv/029u3bJ9txi6E8dx9lQrZiPvPz8+jr60NNTQ2OHj1akg2gHEFHEARMTk5idHQUO3fuRFtbW86TQLagUw7dIsopUBoMBqlw4NTUFI4ePSptRMfHxxGNRjM6UaRvQrWO2s6FkSs8vvpvq0gmU9LPGIYBTC74Y8BLA8CL/WEw3BxqXEkc7rTilpO18Lot2362OBfkSkVFBerr61FfXy8JBqLYMDMzg1QqJYkN64uAGgwGyc3gcBTvuiAIgiAySW8xCWRuBEqJ2pt7OR9iEdujx2utZ+dCKc9rvdiQSqUQjUY15V4mcaEEZCvmw/M8hoeHMTMzg3379qGhoaFkxy/WriYWmFxeXsaxY8fg9XrzPr5azgU9qqC5YDKZ4HK5JHt9+iZ0aGgIyWRS6kTh8/ngdDo1e63UdC78tJ/DPz2zsu39wzAsYHRjPgI82ws807MClltBnSeF6/fY8f4TNXDZN7p8ilG0GYaB1WqF1WpFQ0ND1iKgHMdJf+fZ2Vm4XC5YLJaCRcy33noLDz74IF577TUkk0kcPHgQ99xzDz7+8Y/n9P5HH30Ud91116a/f/HFF/G+972voLERBEGoRXq6qxJpEOsh58LWaHV9Uyh6e8ovPnnX0zmJKC2ahEIhAIDT6VTsmNtB4oLMZCvmEw6H0dvbC4ZhcPr0adhs+dup86GYoLO8vIyenh44HI6CC0yWa1qEqhUdiyDbBL3+iXckEpE2oZcvXwaAjE4UdrtdM5O8+N1RejzffTWFp19fQSFfBIZhIRg9mA0BP3gb+M+fLcEgrKCxksPxvU7ceKwatgqTrIp2tiKg4t95bm4Ot99+O2KxGBwOB/78z/8c73//+3HkyJGchYYXX3wRZ8+eRUVFBe644w44nU48+eSTuP322zE1NYV7770357F+9KMfxeHDhzf8vK2tLefPIAiC0AJKFW3cChIXckNPG1i9nAegvkO1lBRbcyFfwuEwAG05VElckBGxsF66ajU9PY2hoSE0Nzdj165ditxIhdjVBEHA5cuXMTIygh07dqC9vb3giSzb8Q2sMkGoqIKOZagu5PJ3ZhgGdrsddrsdTU1NEAQBq6urCAaD8Pv9GB8fh9Fo3NCJQi3ENpRKBVJBAP7PfyTQPbwq22cyrAE8vJhaAqZeB/7t1QBMWEGVI4y9zQJ2dnIwm+QNPuv/zhMTE/jWt76FP/3TP8Xrr7+OL33pS+B5Hl/5ylfw6U9/esvPSqVSuPvuu8GyLF555RVJGHjggQdw4sQJ3H///bjtttvQ2tqa09g+9rGP4c477yzyDAmCINQlW7qrGpC4sDV62ogD+kuL0EJtrVIhd82F7YhEIkU5VEuBdkZSxohpEOPj40gkEujs7ATHcRgYGIDf78fhw4dRXV2t2HjyDTrJZBIDAwMIBoMFpUGsJ1tahrEMnAvlPHfnM0EzDAOXywWXy4XW1lbwPI/l5WUEg0HMzs5ieHgYFRUVGWKDHC1Sc0XJNpTJlIAv/ksMU3ORkh6HNRjBwYerUR+ujgAvDM3Dwq6irRY4fdCDrkNVMMhs7zEYDKitrYXX68VTTz0FjuPQ29ubk7r9wgsvYHx8HHfddVeG48DtduP+++/HnXfeicceewwPPPCArGMmCILQIuI6b2pqCsFgEPv27VN1Y6R2twatiwsi5FzQJnp3LiidFqEl9zFA4kLR8DyPVCol1VgQK7T39vbCarXi9OnTqKioUHRM+QSdlZUV9PT0wGaz4cyZM7JsIsu3oKOMw1AIOVIIWJaVRARg7am12IlicnISAwMDcDgc0ms8Hk9JFVLRuVBqViIC/uSfIlhejZX8WOthDWYkUYnReWD0x8A3n5mDlVnEA3e3oaZSvu4x4XBYKvJjMBhw/fXX5/S+l156CQBw6623bvjd2bNnAQAvv/xyzuPo7u6G3+9HKpVCW1sbbrnlFlRWVub8foIgCLVIT4NIpVKIRCKqL+TVLqhYLuKCXtDbtda7c0ENcUFLkLhQIOnFfERllGVZrK6u4mc/+xk6OjrQ0dGhyo2Ti3NBEARMTU1heHhY9rFmCzpGhRxCRZ1DGU7epQg4RqMRVVVVqKqqAgAkEgmpXsPIyAji8XhGhwK32y3rRKqEc2FqXsCX/3UV8XiypMfJlVQyhgsjryOeaJb1c8PhcEF5eKOjowCAzs7ODb+rq6uDw+GQXpMLf/3Xf53x31arFQ8++CA++9nP5j02giAIpeA4LqNoo9FoVNUxIKKFtAgtXIfN0OOmVU/npFZtLSVQuuZCJBKBw+HQ1LUkcaEA1vc0ZhgGiUQC09PTiEajOH78eNGpBcWwnaKdSqXQ39+PYDCIo0ePwufzyXp8VQs6FlVzoXwp5aRiNptRW1uL2tpaAMjoUCC2QxSLQ/p8vqInuVI7F7rHePz991ekYlxqEw3NY2bkBfBcHG6nvC6ncDhcUAHZ5eVlAGtpENlwuVzSa7aivb0df/M3f4OzZ8+iqakJgUAAL7zwAu677z587nOfg81mw+/8zu/kPT6CIIhSkr7OEwVv8SGSFjbVam/uybmgLHpK7wCgSocVpeB5XtH6B4Wu80oJiQt5kl7MRww0fr8f58+fh8VikdrAqclWwW91dRXd3d1SyobFYpH9+Go6F4rQFsoSNYL7+naI4XBYEhsuXboEhmEkV4PP54PVas0rgJTSUvbMWxyefHlZM4uiUPAy5sZfgSCsCR1Ou/zigpoVhG+88UbceOON0n83NjbiV37lV3D99dfj2LFj+KM/+iP8xm/8hqYKEREEcW2Tnu4KZHaDYFlWE8K02iKH2mkZuVIOY8wFvZyHiN7EknQ4jlO0TlkoFNJUpwiAxIWcEYv5pFIpafMjCAJGRkYwOTmJPXv2gGVZXLlyRe2hZlW0BUHAlStXcOHCBbS3t2PHjh0lu7GzOhcUmkOK6hZRxpO3WpM0wzBwOBxwOBxobm4Gz/NSJ4r5+XmMjY3BZDJliA3bCVqlSot47NkkXu1dkf1zC2VpfhgLk28i3TMj99+xUHFBdCxs5k5YWVkpSkTdv38/brjhBjz//PMYGhrCwYMHC/4sgiAIOciW7rp+TjYYDJpwLqi9uSfngvLoaTOudF0CJVG6W0R6bS2tQOJCDmTraRyLxdDb24tUKoVTp07B6XTi6tWrmlG00yf9VCqFwcFBLC4u4vrrry95IbWs4oJizoVrs6CjVmBZFm63G263G21tbeA4TupEIbZltdlsktDg8XhgMpkyPqMUaRF/930O3cPaERYWr5xDcLYv42elWDcUGnTEWgujo6M4evRoxu/m5uYQCoVw4sSJosYm1vQQezQTBEGoRbZ012xxSG3HQPo41Fxval1c0NNGHNDeWq9Y9O5cUFI4EWsuaAkSF7aB53kkEomM/KC5uTn09/ejvr4ee/bskRQqLQUdcRyrq6vo6emBxWLBmTNnSpIGsZ7saRHKTIxFORfKuOqCVidpg8EAn88n1fVIJpNSJ4qLFy8iHA7D6XRKYoPb7S6Jc2Ey4IbD40QqFQOXXPvH88oXcxR4HlcvvYZV//iG35XibxgOh9HQ0JD3+2688UZ88YtfxLPPPos77rgj43fPPPOM9JpC4TgOb7/9NgCgtbW14M8hCIIolmzprpthMBg08RCJai7kRjmMMVe0us4rBHIuyAd1iygjxDQI0R4nbtgvXLiA2dlZHDhwAHV1dRnvUVtJTh8Hz/O4cuUKhoaG0NbWhp07dyo2MWUTWRQr6HiNOhfKJeiYTCZUV1ejuroaABCPx6V6DUNDQ0gkErBarZLjwel0yhKAeAFgWANMZjtM5rVJmOdT4JIxpJIxcKkoBL609y7PJTE79hIiKzNZf28oQaAtNC3i5ptvRkdHBx5//HF85jOfweHDhwGspUk89NBDMJvN+OQnPym9fnZ2FsvLy6ivr88oAvnOO+9scD5wHIfPfe5zGBsbw0033YT6+vrCTo4gCKIIsqW7bhdLtfgQSQ2KFRfKZc2iFfQkkgDKtRxXA6WdC5QWUSZkS4MIhULo7e2F0WjE6dOns1bm1EouniAImJ+fRzKZxJEjRyT7sVKo6VwoqltEGU7e5TjmdCwWC+rq6lBXVwdBEBCNRnHp0iWpSCrP8xmdKOx2e0EBKdtlYlkjWIsDJsva5pvnkpLQwCVjEAT57uVUMoqZkR8jHvFv+hpDCQqTRCIROJ3OvN9nNBrxyCOP4OzZs3jve9+LO+64A06nE08++SQmJyfx8MMPo62tTXr9fffdh8ceewzf/OY3ceedd0o/P3bsGK677jpcd911aGxsRCAQwMsvv4yRkRE0NTXhkUcekeEsCYIg8iPbOi+X2CI+RFLb1l3uNRdK/WBETxvXcnuIlAtKtBxXCzVqLjQ2Nip2vFwgcWEd63saA5AKIba2tmLnzp2b3hBqK8nAmj1mbm4OLMvi9OnTqKiQt/p8LqjZLUJPk28+6OG8GYaBzWaD2+1GIpHAoUOHEAqFJGfDxMQEWJbd0IkiF3JZArEGE8wGEwAnBEGAwCcQvDoMgU/BaHHAYCis+m8itoKZkeeRjK9u+TpDCew9oVCo4BZFN910E1599VU8+OCDeOKJJ5BMJnHw4EF8+ctfxu23357TZ9x7771444038NxzzyEQCMBsNmPnzp34gz/4A9xzzz2qd9YhCOLaI1u6a66ImwYtiAtqOxfUXu/mQrk/gElHD+s8EXIuyEckEiHnglZZX8yHZVmkUikMDAwgGAzmVAhR7Vy86elpDA4Owul0wm63qyIsAJuIC+WQFiHjMJRCT4FTJL2nuNPphNPpREtLC3iex8rKCoLBIObm5jAyMgKLxZIhNmzW/iffy8QwDBiDBZUN1wEAeI5DZGUG8YgfgiDAVOEEy24/fcZCi5gZfR5cKr7ta40lULoLdS6InDhxAk8//fS2r3v00Ufx6KOPbvj5ww8/XPCxCYIg5CRbumu+Gxxx06B2zrjam/tyqbmgB/R4ncm5IB9i7TItQeIC3i3mI07UDMNgeXkZvb29sNvtOH36dE6FEEUlWWlFm+M4DA0N4erVqzh8+DBWVlZUrcCeLegsLwcAlD63upiCjsl4AhzHKTopFIse7XKbKdosy8Lj8cDj8aC9vR0cx0nFIS9fvozBwUHY7faMThRGozxTHGswwOFthsPbDADgUklElq8gHl0CwzAwWVxg1gXK8NIVzI6/DIFP5XQMUwkUOC0W+iEIglCaQtMg1iOuDziOky2+FILazgW10zK2Q09romtpnacHlHYuaHGdd02LC+k9jdNV6ImJCYyNjaGzsxNtbW053wBi0FFStQqFQujp6YHRaMSZM2dQUVGBUCikGUWb53mMjY1hdHQBSogLxdRcCIXDeOWVV+B2u6UOB06nU/MToNbHly+5PhEyGAyorKyUHEXJZFJKoRgdHUUsFpM6UQCHZB2jwWiCs7IdolacSkYRXrqCZHwVDGtEdHUO85feQD5+GJNJ3ulYEISinQsEQRDlTrpbYbMWk7kivlftlAC1N/fkXFAePa31yLkgH1pc512z4kI2FTuRSOD8+fOIRCI4efJkRtXzXEi3yynxxZqZmcHAwABaWlrQ2dkpHV/tSV88fjweR29vL+LxOI4fPYoXLity8ILf6na7cfLkSQQCAelpOADpSXg+Of5KocfgXqjzx2QyoaamBjU1NQCAWCyGYDCIhcUAihGdcsFossJd3Sn9d+8LP0K+iTZmk/xzRjgcLrjmAkEQRDmzPt21WGFB/AwtdAZT27lQzDpTyU2yHtZIejiH9aidVlQqxIfWSneL0No675oUF9J7GovWuIWFBfT19aGyshJHjhwpyO4mfpk4joPJZJJ72BLpaRCHDh2SNlPp41A76EQiEbz22mvwer24/vrrEUko9VUrruaCzWaDzWZDU1MTeJ7H6uoqAoEArl69KuX4i0KD1+st6d85V/SkZgPyBZ2KigrU19fD5a0HfibDwPIg11SIdCxm+e8RLebiEQRBlJr16a5yLva10Bms3Gsu6G3dogR6umZqF0QtFaLoqJRzQRAETa7zrilxIVtPY0EQMDIygsuXL2Pv3r1obGws+AsvChWlnPDD4TB6enqkbhDZnqSrKS6IVuyrV69i9+7daG1tBcMwMOS/1yqIoiardYGSZVm43W643W60t7cjlUpJOf4TExPo7++H0+mUxAa32624EqvHCVpuu1wsKdtH5QzP5X9QucWFZDKJRCKhuaBDEARRKrKlu8odI8m5oL5Ddjv0tC7S8nUuFL06F0ohZm5HOBymmgtqkS0NIhqNore3FzzPo6urCw6Ho+jjlHLCn52dxcDAAJqamrBr165Nv7xqKdpid41QKISGhga0tbVJvyuB4zs7JQwoRqMRVVVVqKqqAgDE43EEAgEEAgEMDAwglUpldC6w2+0lD3B6DTpyXrdYQtkAxnOFKWkVFnldMKFQCAA0F3QIgiBKgVxFG7dDC84FLdRcUPsa5IKe1kh6Ekz0WtAxfe5RikgkIsv+VU6uCXFBLOaTrmKLG/WGhgbs3r1bNgtLKdpRchyH4eFhzMzM4ODBg6itrd3y9Woo2mJhSbPZjNra2g1tMJWqbVJMt4h8Y5DFYkF9fT3q6+sla5JYr+HixYswGo0Z9Rpy6ThSCHqboAVBkNVSFlfYucDzhR2wokJecUHsGKO1oEMQBCE32dJdS4XargEtjKFcxAU9oMduEXot6Fgqt9RmJJNJxONxzTlUdS0upBfzEb/IHMfhwoULuHr1ak4b9XyRe8KPRCLo6ekBwzA4ffp0TkU7lFa05+bm0NfXJxWWHBoa2nB8AwusVTUo8Q1XxA0t5FmAL/OwDBwOBxwOB1paWsDzPJaXlxEIBDA9PY2hoaGStEnUkyovIreinVBaXCjQuWAtgbhgtVrLqrUqQRBEPmRLdy31wl4LaRFqb+4pLUI5tHydC0XPzgUl11yiQ1VrD5F0Ky7wPI9UKpVhUUl/ur5ZvYJikTPozM3Nob+/H42Njdi9e3fOKp9SijbP8xgZGcGVK1dw3XXXSUKNukFHOefCVrAsK6VIAO+2SQwEAhgZGUE8Hofb7ZbEBqfTWbCKq7cJWm5FO55S9voU6lywWc2yjkPMw9Pb94MgCAJQLg1iPZQWof7xc6UcxpgreorlencuKIXoUNVa+qvuxIX0Yj7pxe6mpqYwPDyMtrY27Nixo2R/fDmCDs/zGB4exvT0NA4cOIC6urq83q+Eoh2LxdDb24tkMomurq6ML7aa4oKcBR3lZH2bxGg0KtVrmJqaAoCMeg1WqzWnc9FT4BSRveZCUtmALBRQzBEArBXyiwtaa09EEAQhB9nSXZVC7ZQELYxB684FPaHH60zOBXmIRCKadKjqSlxYr2IzDINkMomBgQEsLS3h6NGj8Pl8JR1DsRN+JBJBb28vBEHIOQ1C7jFsRyAQQE9PD6qqqnDs2LENX+qydS7IOIrtsFqtaGxsRGNjIwRBkFpezs/PY3R0VGp5KYoNW7W81NsELbeinVTcuVBYWoTdJq+4EAqF4HA4dPf9IAji2iU93RVQzq2QTilqa+ULiQtbo6e4p9eaC1rbEMuB0s6FUCikSYeqbsSFbMV8gsEgent74XQ6cebMGZjN8i7es1FMWsTVq1fR19eHhoYG7Nmzp+AvaKnsaoIg4NKlSxgbG8Pu3bvR3Nyc9Qutai5gMfeXSnGSYRi4XC64XC60tbWB4zgsLS0hEAjg0qVLGBgYkFpeer1eeDwe6buhx1aUcivaihd0LNC54LDJW/BTi+2JCIIgCiW9xSSwFjvViH9qb+wBqrmQK+UwxlygdV55oLRzQavrvLIXF7IV8wGA8fFxXLx4EZ2dnWhtbVXsS1xIWkSxaRDrKUXgS6VS6Ovrw/LyMo4fPw6Px7Pl8ZNJhXd0P6eobhEyjqMYDAYDKisrUVlZCWCt5aVYr2FwcBCpVAoejwc+nw9Go1E3wVNEbuU3UZiRoGAKFRfC4TVBye12yxKcwuGw5or8EARB5Et6uqsaaRDr0UJBR7UfMJSLuKAH9HidqeaCPGi1tlZZiwuinXxqagodHR1gWRbxeBznz59HLBbDyZMn4XK5FB1Tvna5aDSKnp4e8Dy/oXZBocitaK+urqK7uxtWqxWnT5/e1gGyWdBhoMAGvphuERqdwC0WC+rq6lBXVwdBEBCJRKR6DcFgEDzPY2BgQEqhWN8GtNyQe7GkdFqEUGBahNkADA0NIZlMwuVySU6VQot9Us0FgiDKHTHmjY+PY+fOnaoLC4B2CjoCa5sZNezl5SAuqP09kRM9nQug/CZcKci5sEbZigs8zyORSCAWi2FiYgI7d+7E/Pw8+vr6UF1djeuvv76oVn+xhIC/+P+WMDd7BUc6rfjwexpRU7l9d4l8XAPieOvq6rBnzx7ZvpByOhdmZmYwMDCAtrY27Ny5M6cJbtOgo4C6UIxzoRxgGAZ2ux12ux3Nzc3w+/0YGhqC1WrFzMwMhoeHYbVa4fP5ZG15qSTyOxcUrrlQoHNh/97d2NtZJxX7DAaDuHz5MgRBkIp9er3enFVqci4QBFHOiG6FZDIprfO0sMnSknNBTXGhmHWmUuKE1gWQXNBj+qsezwlQ/n4Ua2tpjfLadeDdNAixG4TJZALHcRgaGsKVK1ewf/9+NDQ0FHWMkSsp/MUTy4jGEgCq8NIA8GJ/AAZ+Ba01PG683of3Hq2FwbBxA5RL0BFbOE5NTcky3mxjEAShqJuX53lcuHABs7OzOHz4MKqrq3N+LzkXlINhGBgMBnR0dKCjowPJZFKq1zA6OopYLCY9BS+25aVSyF7QUeE1YKEFHV3OCjAMA5vNBpvNhqamJgiCgFAohEAgAL/fj/HxcRiNxgyxYbOWupFIRJNBhyAIYivWp7uKBY2Vfiq4GQaDQbXUT5F0cUENysG5oBf0eJ317FxQIy1Ca5SVuMDzPFKpVEZP40QiAWCtg8Hp06eLvsjfeSmOH7y2BEHInLAZhgVv8GDCD0w8B3zj6Uk4LWEc7DDjw++pR0u9E8D2drloNIre3l6kUil0dXWVZPFfbC6emKohCAK6urrytlZTtwhlSf8bm0wmVFdXS2JQNBqV6jVcuXIFPM9L6RNerxc2m01z6rHchX4U7xZRoHPB7dwoEjAMA6fTCafTidbWVvA8j+XlZQSDQczOzmJ4eDijs4jX65XSlsQqwoXw1ltv4cEHH8Rrr72GZDKJgwcP4p577sHHP/7xgj4vGAziwIEDmJmZwdmzZ/GjH/2ooM8hCELfrO/6lb5QT6VSihTm3g6tFHQE1Nt4lqpwuJxobW1TDHo6F0C/BR2Vdi5EIhESFwolvZiPuGFmGAbT09MYHBwEABw9erSoXPNITMAXHw/h8mwop9ezxgqEuQq8MQq8PrIKhptGoy+FnXUxHN2d/UniwsICzp8/j9raWuzdu7dkX0Dxhi1EGVxcXERvb29RY9zUuaBEWkQxk5XGA2U2tgvuVqsVVqsVDQ0NGU/BFxYWMDY2BpPJJLka0jemaiK3cyGltHOh0G4R9u27RbAsK4kIwNpie3l5GYFAAJOTkxgYGMDw8DB6e3sRjUbR3t6e9zhefPFFnD17FhUVFbjjjjvgdDrx5JNP4vbbb8fU1BTuvffevD/zt3/7t7G8vJz3+wiCuHYQXanZijZqof2jiBbGIq6DybmwNeUwxu3QwzmsR68FHdWouaBFh6rmxYX1PY0ZhgHHcRgcHMTCwgIOHTqEc+fOFXXz9V/i8Nf/FkS8wJ51DMMARjemV4DpFeDFoQRs/9GPPa0mfPB0DXa3uTE6OorLly+XJA1iPYXY5QRBwMWLF3Hx4kXs3bsXTU1NBR9/q7SIklNMWoSMw1CSXAWV9U/BxZaXwWBQ2pg6HA5JbJCra0G+yO5c4BR2LhSYFlHIORuNxozOIolEAoIg4I033sCrr76K733ve3j99ddx88034+abb8YNN9ywZQ2OVCqFu+++GyzL4pVXXsHhw4cBAA888ABOnDiB+++/H7fddhtaW1tzHuOTTz6Jxx9/HP/7f/9v/PZv/3be50gQhL5JX+eJm47186HRaFR9Qy+iBeeC2uMoF3FBL+jtKb+enQtKPqSjmgsFILoVOI4DwzBgWRbLy8vo7e1FRUUFzpw5g4qKiqJU5H9+Lobn31qS9ak1azAjhkr0TAI9kzFwiXk4TUHccKgVXe4q2Y6z6fHT0iJyIZlM4vz58wiFQrJ02NiyoGOJKaqgYxnGyWLqaqxveZlIJKRCgmLXArfbLYkNDodDkWBQ7s4FoQDnglyX1Ww2S0LCbbfdhtOnT6OlpQU//vGP8eu//usYGBjYUlx44YUXMD4+jrvuuksSFgDA7Xbj/vvvx5133onHHnsMDzzwQE7jWVhYwG/8xm/gV37lV/DhD3+YxAWCIDLIlu6aLc5owS0gooWCjuI4SFzQP3q8znp2Lih5XpFIBFVVpd9X5osmxYX1xXzEP9SlS5cwOjoqFa8TA5DBYJCcDbmyEhHwxW+vYmY+LPv412MwuxCBC8+eB37UcxUWZgU7G1jcfLIax/ZVyr5hS0+L2I6VlRV0d3fD4XDg9OnTUuGkYtgs4JFzQX7kDDpmszlry8tgMIhLly5JlnxRbChVy0u5FW3F0yL4/MUFtgSiTTgcRlNTE+666y7cddddOb3npZdeAgDceuutG3539uxZAMDLL7+c8xj++3//7zAYDPirv/orSosgCEJis3TXzdCSuKCFVpSAuhv8chAX9PRkXE/nAujbuUCtKDUoLmQr5pNMJtHX14fV1VUcO3ZMyjcWyTfovDOawtf+fQkJFar9sqwRSfgwNAsMPZUE/51xVDqi+OBJJz74njZZjpFrLt6VK1cwNDS0QayR4/ib1lwoOddWzQWgNEFnfctLnuexsrKCQCAgFRK0Wq0ZxSHlankpu3OBV7qgY/5pEaVQukOhEJxOZ17vGR0dBQB0dnZu+F1dXR0cDof0mu341re+he9+97t46qmn4PV6SVwgCAJA9nTX7eKYlsQFSosoD3EB0MdTfz22bSTngjyEw+G813lKoClxged5JBKJjGI+fr8f58+fh8fjwZkzZ7I+Wc816AgC8PUfRvGTnmVo5Tk1a7Lj4qUJfPPiG/jge+6W73O3qOQrtu68evUqjhw5IrulRk1xoZi0iHKMQUoFTpZl4fF44PF4AKzl5geDQQSDQYyPjyMajcLpdEquBpfLVfAEK7eirfR6tBDngsEg/81RSBVhUQBwu91Zf+9yuXISCWZmZvCZz3wGn/jEJ/DRj340rzEQBKFfsqW75oLWxAUtjEVtcUELAsu1gB4EkvWQc0EeyLmwBWIahGiPEzfGY2NjuHTpEnbv3o3m5uZNv4i5BJ1giMdD/7yK+UCkFKdQEFwqjqsTP0V4aQp11cXVOVjPZkEnEomgp6cHDMPg9OnTsFqzd7YoBiroqCxqTNBGozGj5WUsFpNSKPr6+sDzPDwejyQ25NPyUn7ngmwflROFdIswGORVugVBULWK8K//+q/DZDLhr//6r1U5PkEQ2iJbums+sauQ9NdSoaW0iHJ2LpT6ibyeNq96OheAnAtyQd0iNiFbGkQsFsP58+eRSCRw6tSpbS0f21URfmMoiX/8/pJmAhMAxMKLmB17GanEWuvLFCdvgMgmLoitMOvr67Fnz56S3QCqpkUUdZDykxe0YperqKhAQ0PDhpaXi4uLGB8fh8lkyqjXsFk1XUEQZA86XBmkRRiN8ivdhSjaomNhM3fCysrKhrS09Tz22GN4+umn8Z3vfEeThYYIglCWbOu8fOMWOReyj0Otp9pqHjsfymGM26GHc1hPej09PaGkc0F8iETOhXVk62l89epV9Pf3o7a2FkePHs0pj3uzoCMIwP/5XgRvDmgr13fp6gUsTr0FQXh385+S+fFquqKd7gJRohVmuaZFlKG2oMmgk63l5fLyMgKBAKampjA4OAiHwyGJDR6PR5qMxfORUzBR+sGOUEBahKkEwaiQXDyx1sLo6CiOHj2a8bu5uTmEQiGcOHFiy8/o7u4GAPzyL/9y1t8/88wzYBgGhw4dQk9PT17jIwiivMiW7loIWhIXtOJcUDstQovrDz2ilYdIcqLHcwKo5oKIauKCqGSLTyl5nsfw8DBmZmawf/9+1NfX5/xZ2YLOwhKPh761gsByVO6hFwzHJTB/6XWEApey/E5+54IgCEgkEujt7UU0Gs3JBSIHm1n1tO5cKNc4qfUJ2mAwSI4FYK3lZTAYRCAQwIULF5BIJODxeOD1eqUn5/I6F2T7qJwoJC3CZJJXXEgkEkilUnnf7zfeeCO++MUv4tlnn8Udd9yR8btnnnlGes1WdHV1IRQKbfh5KBTCE088gaamJpw9exYtLS15jY0giPJCXIMUKywA2hIXqKBjeYgLWl8b5YOezgUg54JckHNhHWIhH57nEQ6H0dvbC5Zlcfr0adhstrw+K1vQefjfBKxEWTAMm+EQUIt4JIDZsZeRjK9k/T0nc4BgWRarq6vo6+uD2+3G6dOnZavmvx2q1lwopqBjGVoXtB7cs2E2m1FbW4va2loIgoBoNIpAIIBAIIDJyUkAwNDQkCRIFFsXhFf4EhWSFmE2yxuMxM19vkHn5ptvRkdHBx5//HF85jOfweHDhwGspUk89NBDMJvN+OQnPym9fnZ2FsvLy6ivr5eEodtvvx233377hs++dOkSnnjiCezfvx+PPPJIgWdGEES5kF6wsdjNkcFgQCKRkGNYRSOmRaj99LXcay4oQTmMcTv0cA7rUfveKRVKOxcikQjVXMjG9PQ0hoaG0NLSgs7OzoL+KNkK/fCMFVaHba2XMpdAKhlFKhEFz8XlGnrOLC+MYmHyTQjC5qq7nAFCbPM0MjKCzs5OtLW1KXoTb5aLp0haRDEHKcP5u9wnaIZhYLPZYLPZ0NTUhFgshtdeew12ux1zc3MYGRlBRUWF1O7S6/Vm7RizFbzSNRcKSIuwmOWdigsVF4xGIx555BGcPXsW733ve3HHHXfA6XTiySefxOTkJB5++GG0tbVJr7/vvvvw2GOP4Zvf/CbuvPNOGc+AIAg9IFduvpacC+lpfGrGX3IuXDuU8zpvPaWoraUFBEFQ1LmQSCSQTCYpLWI9/f39srRDzKZoi39bhmFgMFpgMFpgsXog8Nya0JCMgktGS+pq4LkUFi6/iZXFsW1fy8n0eJXjOAwMDCAej6OjowPt7e2yfG4+bB50eAClvumuLeeC3hC/Nx0dHQDWWl4uLS0hEAjg4sWLiEQicLlcUr0Gt9u9bYBS3rlQgLhgkncqFttQFhK8b7rpJrz66qt48MEH8cQTTyCZTOLgwYP48pe/nNWRQBAEUWq0JC6I86ra1m41iyqSuKAcaotYciMKYno6J+Dd81JqThAfIpFzYR0NDQ3YuXMnLBZLUZ+TLegYWQHZNpoMa4DJ4oDJ4sh0NSSj4FPyuRoS0WXMjr+ERHQpp9fzMuyAwuEwuru7YTKZ4HK5VMvDyRZ05ubmkEzWAJC/9eX6YxdKLBbDzMwMfD4fKioqZBxV6dBb0FmvZhuNRlRVVUniYywWk+o1DAwMgOM4qeWl1+uF3W7fcD0UFxf4/NMiKiryc2NsRygUynotcuXEiRN4+umnt33do48+ikcffTSnz2xra6PFKEEQBbFdVzAlEZ9MchynWLppNtR2Lmih7sRW6GVtpLe4KZ6P3pwL4v2glHMhHA5L7l+toaq4UFVVJUuwyCYu5FIfLburIYZUMlKUq2HVP4Grl16DkMcmo9jJ4+rVq+jr60NTUxN27dqFd955RxN2OUEQMDo6isnJSVhMH0RMO91AN8AwLGZnZzE8PAyr1Qqfz4fKysqMbgZaRC8BFFibnLc6n4qKCtTX16O+vl5qwxMIBOD3+zE+Pg6j0SgJDT6fDxaLRfFCnUIBzgWrRV5xIRwOazLg5IJomdyK9d8RPd0DBEFsREvOBXG+UXtzXa41FxiGUWzO1svGXE8xTq/OhfRWu0ogrvO0KNKoXnNBDrKKCwWc2ZqrwQ6TxS65Gvj4ApaXFmGucIFhtrFf8xwWL7+F5YXhvI9d6ATI8zxGR0cxNTWFAwcOoK6uDoD6irbYDaS3txeRSARdXV149SkFboAiJiuT2YSjR48imUxKT8eHh4cRj8elp+OVlZVFPRGWG70ETpF88vAYhoHD4YDD4UBLSwt4npdaXl65cgVDQ0Ow2+3g+ZtLPOp3EXi+IFFSa84FNVFy4UkQRGmR617WmrighfGouc4T47Te3JNaRI/rPEB/zgWxmKNS94OW13kkLmzCu66GJlTZm5BMhBEOTiGZiMBotsJoyrT3J2OrmB1/CfFIoKDjFTJ3xONx9PT0IJlM4tSpUxl5N2qLCzzP47XXXoPD4UBXVxdMJhNYJQo6FtOT4ud/A5PJhJqaGtTU1EjdDPx+PwKBAC5dupTRWtHn88FsNssz+ALR4sRSKNs5F7aCZVmp6OOOHTskkUjol3mQW1BIMUcAsFnl/Q5ptYLwdnzuc5/Dk08+iebmZlgsFtjtdjgcDthsNjidTjgcDuln6f/fbrfDZrOhoqIClZWV8Pl8urovCOJaRwub+XS00I5S7ZoLgLbFBa2OqxD0dC56dS4oXYNFq20oAZXFBbm+WNly8SxGeSdck9kOT+0eAGtfoOjqLGKhBQgAktFlXL3004IKuRVKMBhET08PfD4fjh49uiHvT81iO4uLi0ilUmhra8OOHTukv/M2xg95KOI7le1qpXczaG5uzng6fvnyZQwODsLpdEpCQy4FBuVEy4G9EOSsICyKREpSSBtKQH5xIRQKlWVaxNDQEMbHxzE3N4d4PL6hC1Au/OIv/iK++tWvorm5uQQjJAhCDbQoLqg9HrUfIgHaf6qu9fHlAq3zygMlO0UA76ZFaPG7oV/ngrwu4wxYloXd3Qi7uxEAMPTT/yOLsMBxPAyGrW84QRAwOTmJ0dFR7Nq1Cy0tLVm/WGoEHZ7nMTIygqmpKTAMg507d2aOSZHvf2lbUa5/Op5IJBAIBDIKDIr5/j6fD1artaQ3vh4CZzrFOBe0QKHOBYetuKK26wmHw2XpXFhYWMD73vc+/M3f/A08Hg+CwSCi0ShCoRAikQhCoRBCoRDC4TBCoRBWV1elnzEMg3/7t39TvcgaQRDvImdaRCFiY6kwGAyqOxfUrrkA6G8NokX0do3LfZ23GRzHKS4uaHWdp4sVWDZxQeYU5i1hDPIcLByJweXc/GljKpVCf38/gsEgjh07Bq/Xu+lrlRYXEokEent7EY/HceTIEbzzzjsbx6REWkRRzoX8J3Cz2Yy6ujrU1dVBEASEQiEEAgEsLCxgdHQUFotFqtXg9XpLsunR0yQtt6JdDsUcAcBOaREAAL/fL7XQtdlsaGxszOv9b7/9NiKRSNEdiAiC0BbiOk8rT3G1khahlnuiWHFBib+hFr4ncqGnc9Grc0GsuaAUYs0FLaKLtIjs4oJyuwqWlecyhiKJTcWFUCiE7u5uVFRU4MyZM9vm+SsZ+JaXl9Hd3Q23240jR44gmUxmDTjKzI2ldS5seWSGgdPphNPpRGtrKziOkwpDjo+PIxqNwuVySWKD0+ks+h4gRXtrkhxQ1HciTwppQwkADru8rU+1rGhvxXe/+12YTCZJHBA7R4ibCnFjkf4PWAvqZrMZNTU1aG9vh6mU1jWCIBRHfCKotPV4M7SQplHOaRFKrV30sEbSwzmko1fngho1F7S6ztOVcyFd0bYoWGOPlcm5EInGs/58dnYW/f39aG1tRWdnZ043pVJ2uenpaQwODqKjowMdHR1gGEayLq5/wqDEPaelCctgMKCqqgpVVVUAgFgsJrVNnJqaAoCMwpAVFflvMLXyFEcu5Fa04wnZPionCk2PcjjkfdIeCoU0G3S2Yv/+/Rn/LQoIm30nxO+/uNl46qmnwDCMZtV8grjWkPMhEqC89XgztOJcUFtcUPsaXCvoaZ2n9CZcKZSemyKRiGbXOroRF9KfagGAzC7jLWFkci6Ew5niAs/zGB4exvT0NA4dOpRXcbpS2+XEsc3MzODw4cOorq6WfrdZFWFFai4UkxZRYnG4oqICDQ0NaGhogCAIWFlZQSAQwMzMDIaHh2Gz2SShwePx5DxJ6S3oyHk+MeVqrAIoXFxwOeR3LohtacudUCiE733ve7h8+TLsdjtaW1uxf/9+7Ny5c8N3pRwFFYIgtiddXNACWijoSDUXrg30do31mhahtKtKyw+RdJMWAazVJBDTBWwWBdMiDDKJC2k7oVgshp6eHnAch9OnT+dd+Z1lWSSTpdlZiS0wU6kUurq6Noxts6Cj9YKOhdRcKBSGYeB2u+F2u9He3i61TQwEAhgeHkYikYDb7Zba6m3Wy1ZvQUduRTuWVDaAFZoWIbe4oGVFOx8GBwfxm7/5m3jzzTcRj6+JrwzD4Pjx4/ilX/ol/PIv/zLa2trUHSRBECVHdCipvaEX0UJBR7VbUarZlSwXtD6+XNGbQ1WvaRFK11wIh8NwOp2KHS8fdONcADIVbauC9bxYVp60iGh0zcPt9/vR29uL6upq7Nu3ryAlrFSK9tLSErq7u+H1erO2wBSPDWzc+G7TCEMWipquVIxBYtvEmpoaCIKASCQidaG4ePEijEZjRgpFes0NPU3ScivaCYWdC4UWdHQ5rbKOQ8u5ePlw33334ZVXXsEv/uIv4j3veQ+SySQmJibwyiuv4LOf/Syee+45fPWrX8W+ffvUHipBEFmQMz5pSVy41tMiAP1s3ssBWudpH6XTPSKRCOrr6xU7Xj7oQlwQc3LTg045OhcisQQuXryI8fFx7NmzB01NTQVPKKUIOleuXMHQ0BB27tyJtra2Tce2WS4eyyrwN1G4W0QpEHPG7XY7mpubwfM8lpeX4ff7cfnyZQwODsLpdMLn80lPc/WC/GkRygZkLbWiLHfnQiqVwtNPP42zZ8/iH/7hH1BZWSn9rq+vD9/97nfxla98Bf/tv/03PPvss3C5XCqOliCIUqM1cUHtsZC4sDV62ZBr+RoXgp6dC0q3oszX1a4UukiLADYGHbuC4gIjk3NhdPQiXCYfTpw4AbfbXdRnyWmX43keQ0NDmJubw/XXX5+xyN/s2IBKaRE6nLBYloXX65VajyYSCakw5MLCAgRBQCqVklwNWp1sckH2go5KiwtcYWkR4+Pj8Pl8cLvdsgSncm1FmU4kEgHHcXj/+9+PyspKaUHCMAwOHjyIgwcPoqGhAZ/+9Kfxj//4j7j33nvVHjJBEFmQaxOqJXFBC2kRatZcEI+v9Y2v1seXK3rajOvZuaC0uKDVdZ4unAtAFnFBXpfxlsjlXIjF12oYbNdmMhfkUrTF2g88z+P06dOwWre/sJvWXFAkLUK9VpRKYTabUVdXh7q6OoyNjUktLhcWFjA6OgqLxSLVavB6vVlTV7SK3Ip2vLC9fsEUUnOBYdYEo6GhISSTSbjdbkkocjgceV8PQRA0HXRyJZlMwuPxYHp6GsDaUwGxxaRoP7z77rvxD//wD/jXf/1X3HvvvbrLTSUI4l20JC5oxbmg5ua5GHGB5unc0Vtc07NzQcn1tpbXearvOuRSPo1GozTRC4KApYVpADuK/txckKvmgq+qRhZhAZBH0Q4Gg+jp6UFlZSX279+ftyJXbs6FMtEWNmA2m9Ha2orW1lZwHCcVhhwfH5eEB5/Ph8rKSjidTk1P6vLXXFDauZB/WgTLMNi3b9+GWhuXLl2SXCv5tivVchXhXHE4HLjjjjvwxBNP4HOf+5zU/SJ9QR8Oh3Hw4EG88MILAPS3CCMI4l0MBoPU6lptDAZDyYpm5wqlRWyNXmKBlq9xIejZuaB0zQWtpr+qLi7Ihahop1IpDAwMwO8PAOhAkSX+ckKuVpSJhHxBs5igIwgCpqamMDw8jF27dqGlpSWvSXqzKsJady6U6wSe/rcxGAyoqqpCVVUVACAajUqb1ampKTAMI21WKysrYbEoWPk0B+RWtJNKOxcKERd+fmNkq7Wxvl2p1WqVHClbuVK0rGjnisViwW/91m/he9/7Hv7rf/2veOihh3DLLbdkiJx+vx9vvvkm9uzZA6B872GC0DN6TIvQgnNBC2kRaqeGXCvoRSgB9O1cUCotQusOVV2JC6FQCCMjI7BarThz5jS+O6zMseVKi4jG5VPBC7XLcRyHwcFBLCws4OjRo/D5fAUdP9tiQoluEXqsubAV2/2NrVYrGhsb0djYCJ7nsbq6Cr/fL21WbTab9FTc4/Eomi+WDdmdCyllvw9CAWkRBkP2MbIsC4/HA4/Hg46ODqRSqayuFFEscrlc0n1faM2Ft956Cw8++CBee+01JJNJHDx4EPfccw8+/vGP5/T+p59+Go899hh6enowNzeHRCKBlpYWnDlzBp/97Gexa9euvMazb98+PPLII/jUpz6Fj33sY/jIRz6CkydPorGxEalUCs8//zwsFgu+8IUvAIDq31+CIEqHlsQFLdRcKGfnglKbSz0Izno4h3T07FxQcg0SCoWoFeVmyKFoC4KARCKB8fFx7NixAzt27Fh7eg5lrO6sTpwL0WgUPT09AIDTp0/nbMHORlbngiKxpBjngozDUJBcgzTLsnC73XC73ejo6EAymZQ2qxcuXJBy3EWxwW63K64uy61oy3hL5UQhzgVDjqqb0WhEdXU1qqurAazdr+Lfb3p6GjzP47vf/S5qamrgdrvzFhdefPFFnD17FhUVFbjjjjvgdDrx5JNP4vbbb8fU1FROBRN/+MMf4o033sDJkyfxoQ99CCaTCUNDQ3jsscfw7W9/Gz/84Q/x/ve/P69xffCDH8STTz6Jr3/96/je976HJ554IuP3v/ZrvwaPx4PJyUlUVlaq8r0lCKL0pKe/qo3aG3txDGpuPNU+/rWC3tL99OxcUDotgpwLJSKVSmFwcBCRSASNjY3YuXOn9DuGUWbDyBrkqbkQk9G5kK9dLRAIoKenBzU1Ndi3b1/RN0h250Lp/xh6nLC2ohgF2GQyoaamBjU1NRvy/S9evAij0SilT3i9XtnqgWyFIAiyKr9JhZ0LhbSiNBkLO1+r1Qqr1YqGhgYIgoBQKISf/vSnePbZZ7G0tITjx4/j1ltvxS233IJbbrkFNTU1m35WKpXC3XffDZZl8corr+Dw4cMAgAceeAAnTpzA/fffj9tuuw2tra1bjunP//zP8Td/8zcbfv7jH/8Yt9xyCz772c/irbfeyvtcjx8/jkOHDuHOO+9ET08Pzp8/j4mJCUxMTODrX/86vv71r2PPnj04efIkjh8/jltuuSVvlwRBEKVBrrisJeeCFtIi1BY4qOaCcujpXJSuTaAUSjoXxLQIqrlQAlZXV9HT0wOLxYKampoN+eMsC/AKzP1adS7kMukLgoDJyUmMjo5i9+7daG5ulmUSyyZuKJIWoUCNDS0hV2DPlu+/tLSEQCCAyclJDAwMwOl0SmKDaMGXG/mdC9pvRWksUFxIh2EYOJ1O3H///fjEJz6BQ4cO4ZFHHsGLL76Ihx9+GD09PfjKV76y6ftfeOEFjI+P46677pKEBQBwu924//77ceedd+Kxxx7DAw88sOU4NnM73XzzzfB6vRgbGyvo/ARBgNlsxqlTp3Dq1CkAwMzMDIaGhtDf34+33noLPT09UlrGJz7xCXz7299GKpUqq24pBEFsjhaKKIpQWkRx4oIgCIoIE1oWP3JFD+eQjl7TIpR0LsRiMXAcR2kRm1HoRuLKlSsYGhpCW1sbduzYgQsXLmxQkQ0MoIQrmpHJuRBPyqeE5BJ0OI77efFLP44dOwav1yvr8cut5kK5TuClULRZlpXSIwAgHo9Lroa+vj7wPJ/RxcBms8lyXLkV7ZTC665C0iLMMogL6UQiETidTtx666344Ac/iC9/+cvbzgUvvfQSAODWW2/d8LuzZ88CAF5++eWCx/T6668jGAzihhtuKOj94nec53nJ3dLQ0ICGhgbcfPPN0usGBwfx/PPPSw4LPS5gCOJaxWAwIBaLqT0MAOpv7AH1Cypq3bmgJ/TmXNDT+Ygo6VwIh8MAQGkRciEWHJyfn8eRI0ekqvjZWhSxBiiiLsjlXEgqWHMhEomgp6cHLMuiq6urqPoK2SjHbhHliFKB3WKxoL6+HvX19ZIF3+/3Y35+HqOjo6ioqJCEhq26GGyH3Iq24t0iCkmLMMsbjEKhEGw2W0bw3u6ajo6OAgA6Ozs3/K6urg4Oh0N6TS48++yzeO211xCPxzE6Oor//M//RFVVFf7yL/8y58/IxvrzEJ9+8TwPo9GIffv2Yd++fZu+niAI5dFjWoQWxqJ2zQOtiwt62cBq+RoXAjkXiiccDoNhGFitVkWOly9lJS6EQiH09PTAZDLhzJkzGRtio9GIeDye8XqjQt9d2dIiZHQubKVo+/1+9PT0oL6+Hnv27CnJzVCO3SLKcQJXo9CPaMF3Op1oa2tDKpWSUijSuxhUVlbC5/PB6XTmPEa5Fe0Up3C3iALSIixmeZxPIoXk4S0vLwNYS4PIhsvlkl6TC88++yz+1//6X9J/79y5E//6r/+Ko0ePbvqef/qnf8KFCxfwu7/7u6itrc34bov35vrvhvjfRqMRS0tL4DhOE11PCIKQHy1s6EW04FwQxQW1Cv5pXVwAynNdlw29CCWA8l0VlEJp54LD4dDs90J16SjXCzMzM4PXX38d1dXVOH78+IYn7dmCjtGgzKQiV1pEMlXamguCIGBiYgLnzp3D7t27ZSncuBmqiQvXmHMBUD/oGI1GVFVVYdeuXVJOfF1dnVQT5dVXX0V/fz9mZ2c3CIDrkVvRTim8Di3EuVBhllfjFcUFNb8XDz/8MARBwOrqKt58803s3r0bZ86cweOPP77pe55//nn853/+p/QdSR8/wzCbno/487/927/FZz7zGczNzcl4JgRBaAWtiQtqj0WMlWqJHGqnZVwr6K1bhB6dC4IgKOpcCIVCqq/ztkLzzgWO4zA0NISrV6/i8OHDUhu29WQLOiaFhDHZ0iJKWHMhlUqhv78fS0tLOHHixKZPKOVCtbSIYpwLMo5DKbSoylutVjQ2NqKxsRE8z2N1dRV+vx/T09MYGhqC3W6XUijWP2WW37kg20flRCE1FywW+cWFfPPwxPlgM3fCyspKQTVZHA4HTpw4gaeeegrHjh3Dpz71KXzgAx/IOo9Ho1EsLS3hpZdeQnt7O4C1dByz2QyTyQSz2Qyj0QiTyQSj0QiDwQCj0Qie51FZWYm33noLExMTUsE3vS3ICOJaR0vighYKOqbXolHjSbDWnQt6mf+1fI0LQY81F8S/kZLOBa12igA0Li6IaRBGoxGnT5/eMrckq7ig0NnJ1YoyxckXqERxQRAERKNRnDt3DiaTCV1dXRu6apSCsnQulOn8reVJmmVZuN1uuN1udHR0IJlMIhgMwu/348KFC0gmk/B4PJLYIH9BR6VbUebvPrJWyJsWIdZcyAex1sLo6OiG1IW5uTmEQiGcOHGi4DEZjUbcdNNN6O3txdtvv40PfehDG14TjUZx5coVfPrTnwbLspKQIAoMFRUV0j+r1QqbzQabzQaLxYKGhga8/vrr2Lt3r1TvQ8v3BUFcS8hZc2F9bS210EpaBKDe5lPtmg/XEnqKZ3p0Loj7TyVrLqyvraUlVBcXNrswMzMzGBgYQEtLCzo7O7f9g6kqLmjQuSBe14WFBfT19aGhoQG7d+9W7IufXVwofRDS6o1WKsotsJtMJtTU1KCmpgaCICASiUhdKC5evCg9bWYYBj6fDyZTcRtvGfW6nCjEuWCtMMs6hkKcCzfeeCO++MUv4tlnn8Udd9yR8btnnnlGek0xzMzMAMCmf9Pf+I3fwE033QSO4xAOhxGJRKR/0WhU+t9oNIrl5WVcvXoVsVgMiUQCiUQC8XgcHR0dRX9nCILQJlpzLnAcp6pDSgtpEYWuQZS6ZuW2RsqGHs4hHT06F8R7UOmaC1pFdXFhPRzH4cKFC5ibm8OhQ4dQU1OT0/uyBR2zsbxqLsjpXBBv3N7eXuzfvx8NDQ2yfXaux18f8Kigo/yUs/WbYRjY7XbY7XY0NzeD4zj87Gc/g9FoxOTkJAYGBuB0OqXCkC6XK29xjFO4oGMh4oJNZnEhEonkHXRuvvlmdHR04PHHH8dnPvMZHD58GMBamsRDDz0Es9mMT37yk9LrZ2dnsby8jPr6+owUq7fffhvHjh3b8PnPPPMM/v3f/x0ejwddXV1Zx/DhD38YH/rQh6TuDxzHged5JJNJ6V8qlQLDMOA4ThIVkskkOI5DKBSSvisEQegPo9GoGXEh3TWgVgwWhfhyFBeI/CjXdV429OpcYFlWsb9TKBQicSFXwuGw1B5xuzSI9WQTFywKPcBiWQPW7PjFTbKcTOKCWF8BAI4eParKYnt90OF5HvNXrwJoKfWRC36n2PWgkE2smugl6BgMBrAsi4aGBlRVVSEej0uuhr6+PvA8D6/XK20gc5kflHYuCAWkRdis8qdF5Bt0jEYjHnnkEZw9exbvfe97cccdd8DpdOLJJ5/E5OQkHn74YbS1tUmvv++++/DYY4/hm9/8Ju68807p58ePH8eBAwdw3XXXoampCeFwGOfPn8dPfvITmEwmfOMb39gyT1C87wwGAzkQCEIn6LUVJaBs+7lskLiwOVofX67obTOuV+eCkn+jSCRCNRdyYW5uDv39/WhsbCzIvp9VXFDw7FiDsaCnlunIIS6EQiF0d3dLdRXU+vKl5+LF43F0d3cjGa8r+XGLmbB4QUBfXx8EQcjYxK7vTKI2K2EO4Ugc9dU2XQTOdNKDqMViQX19Perr6yEIAkKhEPx+P65evYqRkRFUVFRItRq8Xq+Ua5+OkuJCofe/3SZvDZRwOAyPx5P3+2666Sa8+uqrePDBB/HEE08gmUzi4MGD+PKXv4zbb789p8946KGH8OKLL+Lll1/GwsICWJZFS0sLPvWpT+H3fu/3sHfv3pzHw3EcDAYD3nnnHTz//POYnZ1FLBbDl770JXg8HgQCAczMzKC9vV3TQZYgCHkwGAySs0ntzZbaKQnp41BrHVAOaRF6QG/rPC3cv3KjtMhIBR23ged5DA4OYmZmBgcPHkRtbW1Bn5Ot0E+FWbkbkmGNQLHiQpFBan5+HufPn0dzczN27tyJ5557TnVFe3l5Gd3d3fB6vdi5ow1vz6gynJwwGY244YYbpO4Gs7OzGB4ehs1mQ2VlJSorK+F2u1WdFK8sCPjKv4YRicbBcLPwWpI4tieEunoOZqXao5SQzRRthmHgdDrhdDrR1tYmuUwCgQDGxsYQi8XgdrslscHpdK7Z5xWMyYUUcwQAh11e8SoajaKpqamg9544cQJPP/30tq979NFH8eijj274+X333Yf77ruvoGOvx2Aw4I/+6I/wjW98A1euXJF+/oUvfAHAmnL/qU99Cvfccw9uu+02WY5JEIR20YpbAHh3c6y2k0LNwpJ6cQaUA3oSY/TmxADefRiiFJQWsQ2xWAyhUAinT5/Ou8J5OtkUbZlTmbeENZjAJaNFfQbPFzZJC4KA8fFxTExM4MCBA6ivrweg7sTPMAyCwSAGBwexc+dOtLW14WcjivSiLPLtDFwuF1wuF9rb25FMJiVr/sDAADiOy9uaLxfnL/L4u6dWwHEcGIYFjB4EOQ+eGwCe6b0Ku2kVe1qMONtVjR3NLsXGJSe5KtpGoxFVVVWoqqoCsLahFv9Ok5OTYFkWPp8PqdTxUg9ZomDngl3eiUrsf1zufPvb38YXvvAF3Hzzzfjrv/5rPP300/jHf/xH6dyamppw5coV/Mu//As+9rGPZXWuEAShPnKmRQBrC3m106YYhtFEO0q1xYVijl3qDbNexA89nEM6ek2LUFJcCIfDBbUHVwrVV2N2u72oFmci4sIyXdFW0rkgR8eIQsSFZDKJ8+fPIxQK4dSpU3A6nWljUifoiF0AgsEgjhw5IvW0NygwlzBF1FzIdvVNJhNqa2tRW1ub1ZpvtVolocHj8ZRscnnuHQ7feXF50yDDGi2IChZ0TwLdk0kIyQnUeuI4sc+BD5yqhU3mdoelolBF22q1orGxEY2NjeB5HisrKwgEAuAKFOwKoVBxwWmT17mgdbtcrvzVX/0V9uzZg3/6p39CXV0dxsbGACBD0Hvf+96H119/XZUe7wRBKAvDMGBZltpRpqFmzQVqRakM5Vy4Oxt6dS4oeU7FOFSVQHVxoZSKtlVh50Kx8EJ+ASIUCuHcuXOw2Ww4ffr0BiVfjcAnih2JRALt7e2SsAAAiqz/i/k+bRMjs1nzg8Eg/H4/Lly4gGQyCa/XC5/Ph8rKyqKcOOl86/kkXu5eyes9jMmF+TDwn28B33/DDwu7gs5GFjef8OG6Tu1W05dD0WZZFh6PBx6PB8xPDIBCt0AhxRwBwOWUX1zQsl0uFxKJBHp7e/G7v/u7qKurQzKZhN/vh9FolL4fPM/D7XYjEAjoauFFEHpErqfIWivqqPZYyrXmApEfeopxenUuKCkuaN2hqrq4AMgzQYmKdvpEb5e3TtrWx5fBuZCPtjA3N4e+vj60trais7Mz642qtLgQDodx7tw5WK1W+Hy+DWKH0VD6ICS3c2ErjEYjqqurUV1dDUEQEA6HEQgEsLi4iLGxMVRUVEiuBq/Xm/fTVUEA/te/xTF8KZTnyDJhDSYkUYnBGWDwKQF8chJVjiiu32XFrWfq4HUqeKNsg9yKdp56XVEU6lxwO+QVFwppRak1otEoGIaRiqkKgoBoNAqz+V3FmOM4RCIRae7T29MdgiA2ooUNvYgWnAtqp0VoWVzQSzzQ8jUuBL06F5ROi9DyOk8T4oJcrA86NouCaREyOBdymUAEQcDo6CgmJydx3XXXbVkAU8mJf2FhAb29vWhubsauXbvQ29u74dgGJeaSooJJ4deKYRg4HA44HA60tLRIBQf9fj9GRkaQSCTgdrulwpA2m23LwBdLCPjCt6KY9xdXxyMbrMmBQNyB5/uA53qXYRSW0V4n4MbrvTh5sErVgCy3oq3kkovnC0yLkNG5IIpc6elR5YggCGhpacErr7wi/Xc4HM7o3BKLxfDTn/4U+/fvV2uYBEEojNbEBbXHQuLC1mh9fLmiF6EE0K9zgcSFd9G3uFBRXjUXthttMplEb28vIpEIurq6tv1iKRF0BEHApUuXMDY2hv3796OhoQFA9qCjhHMBxTgXZBxeesFB8amr3++H3+/HxYsXYTabpfSJ9W0UF5Z5/Nm3wghHEvINaBMY1gAOPowtAGPPAP/4gytwV0Rw3Q4zPnimFnWV8qR25IL4fZHVuaBktwiusLQIu1X+VpRatsvlgtPpxF133YXPf/7z+OpXv4q77roLLMtK53X16lX87d/+LUZGRnDvvfeqPFqCILZDr2kRajsX1Ky5UA7igh7Q2zXWq3NByXOKRCKaXufpWlyQucPblsghLmzF6uoqzp07B4fDga6urpwqJZdaXOA4DgMDA/D7/Thx4gTcbrf0u+ziQsmGknFcrcEwDGw2G2w2G5qbm8FxnORqGB8fRzQalVwNS4kq/P0PUkgm1SlYxRptWE3Z8NNh4NULYbDcLJqqUrjhkBvvP1FX0mOL31VZ/4aKtqIszLkg93dW64p2LhgMBvzqr/4qfvzjH+Oee+7B9773PUxOTiIUCuHP/uzP8OMf/xgvvfQSfvmXfxl33nknAG3e+wRByIuWxAWtpEVQzQV9o7eUP3IuFEc5OFQ1IS7IqWinVxF2KNclEIwMaREAEEukUGHO/LPMzs6iv78f7e3t2LFjR843ZSkDXywWQ3d3NxiGQVdXV4ZdGdhEXFBE1CtdQUe5MBgMUnoEAMnV8NMBDj/uS0BQslDAFjAMC8HowWSAw9vf/Cnef+IXS3q8kjgXZPuk7Smk5oLc8VUMOuUuLgBAQ0MDvv71r+NrX/savvWtb2F6ehoA8Id/+IdoaWnBPffcg//xP/6H6i3pCIJQDqPRqClxQe2xqJ0Woba4shV6Ej/0tBkn50LxaH2dpwlxQS7WK9pr3fcEFLXhzBG5nAvhcFwSF3iex8jICK5cuYJDhw6hpqYmr88q1cS6tLSE7u5uVFVVYf/+/VlvqGzH1nq3CEHRrei7WK1W/OxSHZ4/vwJlqwRsD5dKYHbsBURXr5b8WCVxLiiIUEBaBCvzuUYiEQiCoGlFOx9aW1vxJ3/yJ7j99ttx+fJlLC8vw2KxoLOzE0eOHFF7eARB5IicncHU3tCLaCEtQk1xgWVZJJOFOfaI3NGLQAKsnYtenQvpBadLDYkLCrI+6Cj53ZWjoCMARCJxVHrtUiu2eDyOrq6ugnJrShF0pqenMTg4iM7OTrS2tm46QajlXCimW4QaCALwtf9I4NzwqtpD2UAyEcbMyPNIRJcUuapyOxfWPk657wNfQCtKuZXucDgMAJrOxcsFnuelRYjJZMLhw4dx+PDhDa9bXl7G6uqqpvs9EwQhH1oSF7SQFkE1FzZHTxtYvZxLKRyqWkBJ54LoUNXyOk8T4kIpFW2GUaaom2zOhWgcy8vL6O7uhtvtxpEjRzKK/eU3JvkCH8/zGB4exszMDI4cOYKqqqotX69WzQVFFaUiSaYEfOlfYrg8F1F7KBuIR4KYGX0eqcTPx6bAZRXVbLnmg7jCD1QKSYswGOSvt2AwGDakKZUbYpAWcxg5jgPP8zAajWAYBsvLy3jrrbfwta99DS0tLfiLv/gLxVtBEQShPFoSF7QwFqq5sDVaH18u6Knmgl7FBSVrLpSDQ1UT4oJcqCkuyFVzYfLyDKYmAujo6EBHR0dRE4pcinYymURPT4/korDZtu8gkO3YJkW+bdroFrEdKxEBX/jnCJZWYsodNEciK3OYHXsRPPdutwolHCFyW+VipW+2kUEhBR1ZlkEymZStboCoZpdr4I7FYnjiiSfw+OOPI5FIoK2tDXfeeSduvPFGGAwGhMNhPPXUU/j+97+P73znOwCAP/3TP1V51ARBbIce0yKo5oL2xQVCW5R7+utmKOlcEB2qlBahENkK/bCMMlnscjkXxi5O4OMfvRHV1dVFf5YcQScUCkldKk6dOpWziyJb0DUokRZR1ISlTJC8siDgS/+yirjSj9ZzYDVwCVcv/mRjUUkF4oDcRX5iSWWDVyGtKBkIePXVV+F0OqXWpE6ns+DrEAqFNG2V2wqO4/AHf/AH+Iu/+AvpZy+//DKeeeYZPP7442hoaMDv//7v4/vf/z4A4CMf+Qg+/OEP42Mf+xgAkGuBIK4BDAYD4vG42sMAoI20CBIX9A85F7SPks4F0aFqscjbxlxONCEulFLRNrBASgFhmTXIcylbW3fIIiwAxdvl5ufncf78ebS2tmLnzp15/Z2yBR2TIvddMQUdleH58xUwWCwws1GkklHwKW0slJauDmHh8s+y/k6JwCa3cyGusLggFOBcsFkrcPr0aQQCAfj9fkxPT0MQBHi9Xvh8Pvh8Plitube90Xrv42yIC6cf/vCHeOSRR7B371784R/+IXbs2IEXX3wRf/Inf4Lf//3fB8dx6O7uxic/+Ul89KMfxX/5L/+FOkUQxDWGlpwLBoNB9YKGVHNhc/S2IdcD5FwonnJwqGpCXJALg8GARCLTC82AB1D6XS3DyrPITfHy3XCFKtqCIODixYu4ePEiDh48iLq6urw/Q61uEeUxYTEwGM0wGC2wWD0QeA6p5JrQwCWjireiFAQB/ivvIDg3sOlrlLissjsX8jcSFEUhNRdMpjX1ub6+HvX19RAEAaurqwgEArh69SpGRkZgtVolocHj8WzpHhKDTnncB2uI4sKrr76KRCKBhx56CB/96EcBAMePH8fS0hK+9KUvoampCV/72tfwqU99Snov1VkgiPKA0iJKNwaqubA5Wh9frpRTTN8KMd7r5XxElHQuhEIhTadEADoUF8SJnuM4DA0NQeD3QwlxQa60iKiMieKFKNocx6Gvrw9LS0s4efIkXC5XwcfeIC6wQMlbgxYzYSkUg9YfhmENMFkcMFkcaxXyuYQkNHAldjUIPIerEz/FamBiy9eVo3MhkdB+WoR5XSEShmHgcrngcrnQ1taGVCqFYDCIQCCA0dFRxGIxuN1uKYXC4XBkXLNyCDrrEeeJ8fFxdHR04ODBgwCAeDwOi8WCU6dOwWAw4Fd/9VclYSGVSsFoNJKwQBDXGFoSF7TSilIt90Q5iAt6QE/XWI9tKAFlnQvl4FDVhLggt6IdiUTQ09MDhmFgrTAhHpbl47dErrSIWEy+IJGvoh2NRtHd3Q2DwYCurq6i8nnUCzraT4vY6kAMw8BgtMBgtACSqyGW5mqQb1HFcQnMjr2E6Mrstq9VIhjI7VyIpxQWFwpIizCbt543jEYjqqurpVSpSCSCQCCAQCCAyclJsCwLn88n1Wkopj3RW2+9hQcffBCvvfYakskkDh48iHvuuQcf//jHt32vIAj40Y9+hO9///v46U9/isnJSSSTSXR2duL222/HPffcs20HC7/fD5/PJ8074ndOdGpcd911AIBEIgGj0SjNL3pcqBAEkR0tiQtaqLmgZlqEFs5/K/QSG/RWc0HLdv5CUbrmgs1m0/R3QhPiglwYDAZEo1G8/vrrqK+vx549e/DchDIXn5UpLSIqY5G/fCb+YDCI7u5u1NbWYu/evUXf/GqJC1q+2QphzdVgh8lil1wNLB+Gf+EyzBUuMExhf6dUIoLpkeeRiAZze4MgIBKJ5NQppFBkdy4oXtAx/3u3wpLfFGyz2WCz2dDU1ASe57GysgK/34+XX34Zv/M7v4Pm5mbYbDa88MILOHPmTM4C4YsvvoizZ8+ioqICd9xxB5xOJ5588kncfvvtmJqawr333rvl++PxOH7hF34BFosF73vf+3D27FnEYjE888wz+PznP4+nnnoKL7300pbfn1AohJqaGlRWVgIAzGYzAMBqtYLjOLS2tmb8nCCIa49shbvVQgtCR7kWdOQ4DsvLy3C73SXdbOrlqb9e1rbkXCiecnCo6kZcEAQB8/PzCIVCuO6669DQ0ABAqfaHACOTc0HODgK55gNOTU3hwoUL2L17N1paWmQ5dlna5RQab6FHEV0NgAVVjT4kE2GEg1NIJSMwmKwwmnIr/JeILmF65HmkEvlZet58801UVFSgsrISPp8PXq9XVqVWbkU7oXjNhfwPWGEpXJRkWRYejwcejwc7duzALbfcgj/+4z/Gm2++iV/5lV/B0tIS3ve+9+Ef/uEf0NjYuOnnpFIp3H333WBZFq+88goOHz4MAHjggQdw4sQJ3H///bjtttukzX02DAYD/vRP/xS/+Zu/Ca/XK/08mUzil37pl/Af//Ef+Nu//Vv8z//5Pze8V1xocByHc+fO4bd+67fg9XphNpvhdrtx4cIFGAwG/OAHP8D8/DwEQYDNZoPdbofBYMB1112n6arJBEHot+aC2k/uy7HmQiwWwzvvvCO11BPT/CorK7d1uF2LlN1aegvIuVA8xThUlUIT4kKxQSeRSKC3txehUAhWq1USFgBgG9exbMjlXIjJuCPazi7H8zwuXLiA2dlZHD16FD6fT9ZjU1pEaQ9kMtvhqd0j/Xd4eQax0AIECDBbXGCyTODR1XnMjP4YPJdfbQ+j0YD3vOc9WFpagt/vx8jICBKJBNxut7QoKNamJb9zQbaPyolCukVYixAX1lNfXw+fz4cPfOAD+Lu/+zsMDAzgmWeekZwAm/HCCy9gfHwcd911lyQsAIDb7cb999+PO++8E4899hgeeOCBTT/DZDLh85//fNaf33ffffiP//gPvPzyy1nFBZFgMIirV6/im9/8Ztbff+ELX5D+v8FggNVqRSgUwsjICHbu3LnlORIEoQ+0Ji6oPZZycy4sLS2hu7sbVVVVOHLkCGKxGBYXFzE3N4eRkRHYbDZpTVGsq0FPT8j1ci56dC7wPK+oaELiggIsLS2hp6cHbrcbBw4cwMBAZsV7s0mZLaNcNRfkdi5sNvEnEgn09PQgmUyiq6tLdru7WgGvHCatUn0j7e4G2N1rwloyEUE4OIVkIgyjyQqj2YpQ8DLmxl8pqG4DyzAwGo2oqqpCVVUVBEFANBqF3++H3+/HxYsXYTabpScQXq93y64G2eB5Xt6aC1wZpEVUyNtKMRwOo7KyEgzD4MCBAzhw4MC273nppZcAALfeeuuG3509exYA8PLLLxc8JrFd5GbfB/Fv/uyzz2J5eRmxWAzhcBjhcBihUAiRSAThcBjLy8sIh8NYXV1FKBRCNBrF9PR0wUVnCYIoP7QkLmihoGM5taKcnZ1Ff38/Ojs70dzcjFgsBqvVipaWFrS1tSGZTEptmfv7+yEIQoar4VpNidNTzQW513laQLz/lHQuUFpEiRAEAVNTUxgeHsbOnTvR1taGlZWVDUEnz5TmgpGrW0RcRufCZhv81dVVnDt3Di6XC9dff33em8Bc2CzoMCixQ6AcJmAF9C6T2QZP7W7pv5cXRjA79mLBn8ewmdeVYRgp/7+5uRkcx0muhvHxcUSj0QxXQy7tEeUOoEmlay7w+d+7Nqu8i6VwOLxl+kI2RkdHAQCdnZ0bfldXVweHwyG9phC+8Y1vAMguXqST7fgEQegDOdMixCeFam+4tJIWoXVxQRAEjI2NYXJyEocOHUJ1dTU4joMgCNKanWEYsCyL6upq1NbWSm2ZFxcXceXKFQwNDcHpdEprCpfLldPfXw8pBXo4BxE9pkWI32ElnQskLpQAjuMwMDAAv9+fYefPpmhbzMrclIxBnieQiRKLC3Nzc+jr60N7ezt27NhRsuC8adApsbrAFJMWoVIrSiUwV3iKej/Lbn1dDQaDFPQBSK6GQCCAS5cuZfze6/VKT7PTkVvRTir8cKsQ54JdZnGhkBZFy8vLANbSILLhcrmk1+TL008/jb//+7/H3r178Wu/9msFfQZBEPpAjnRJ8ekgx3EleTCS71jUdlFoveaC2N58eXkZJ0+ehN1uB8dx4HkeFotFEhh4ns+4lizLwuFwwOVyoaOjA4lEQnJKXrlyBQzDSGsKn8+XdU2hJ9QW0uRCj2kRHMdJ4pgShEIhVFVVKXKsQtGEuJDPFy0cDqO7uxsmkwldXV0ZxV+MRuMGRVtm1/GmyOZcSJam5oKoHF+6dAnXXXcdamtrZTvOZscuP+eCQgUdVVgHCCjuyQab53W1Wq1oamqSuhosLS0hEAhgYmICAwMDcLlc0sLA4XBI3xd5xQXtp0XI7VwIhUKaycV76623cPvtt8PtduM73/kOFV0kCKJoRHEhlUqpLi6Qc2FrcSEWi+HcuXMwGAw4deoUTCZTxlNecZ0u/k1FgUFcx6dSKek4BoMBtbW1qK+vz+iUdOnSJQwODmZdU5RlYfEs6OEcRPToXFA61SMSiZBzIVdymQSuXr2Kvr4+NDU1YdeuXRv+mNkUbcXEBZmcC8mEfCq4qGinUin09fVhZWUFp06dgtPplO0Ym6FeK8pymLRUUG2L/Fts51zY+r0sfD4ffD4fdu7ciVgsJrkaJicnYTAY4PP5pAWFXMio0+VEIWkRDru8lbELCTqiY2Ezd8LKykpGB4hcePvtt3HrrbeCZVk888wz2L9/f17vJwiCyIa4KVXbMSCORe1xqCkubHXs5eVlnDt3DlVVVdi3b9+GFIhsDxVZlpXW9TzPZ/xb72pwuVxSpyRxTeH3+zE5OQmj0YjKykqppoMe0MvTfj06F5TsFAEU5lBVGs2IC1vB8zxGR0cxNTWFAwcOoK6uLuvrsokLVotCBR1lci4kZNwRsSyLZDKJN954A2azGV1dXYoVxClHxVixtAg1nAuCss6FraioqEBjYyMaGxvB8zyWl5cRCAQwOzuLRCKBt99+WyrilGteZTZSCjoXBJ4DCrjGDru8T/MLycUTax2Mjo7i6NGjGb+bm5tDKBTCiRMncv68t99+Gx/4wAfA8zyeffZZHD9+PK/xEAShT+RaFxiNRtU39YA26j+oudba7Nhi+u3OnTvR2toqCQTpboXtWC80CIIgfc56V4PJZEJ9fb20phDrP4VCISwvL2N5eVm2rlZqoIX6InKhR+cCx3GKnlMoFCLnQrHE43Gpq8GpU6e2vKDZFG2ZXcebwrCGNUt+kZN8MiWfAh2JRLCysoKWlhbs3r1b0S//+qAjCAIuXLgA4CCAUit8hSVfcByH0dFRVFZWwuPx6GsCVNG5sPXnsvB6vfB6vWAYBpFIBJWVlRl5laLrId9q0SkF156FuBYAwCWjuCAIAsLhcN7OpBtvvBFf/OIX8eyzz+KOO+7I+N0zzzwjvSYXRGGB4zg888wzOHnyZF5jIQiC2A4t1DoA3i3gpubmT0tpEYIg4OLFi7h48WJG4cZ8hYX1iNd5ffqEKDisdzV4PB74fD4kk0kYjUZYrdaMrlZVVVXSOk/JJ86EPp0LHMcp7lwgcSFHsimgwWAQPT098Pl8OHr0aE75deuDjk1e1/GWsKwJPJco6jNENbYYBEHA5cuXMTExAYvFgr179xb9mfmSXmQolUqhp6cH0Wh0LRCWek1QoMjDsgxSqRQGBwfBcVxGCyQ588XVeMZQrHPBoIDQIgiC9ARCzKtcXV2VhAaxWnS6q2ErAUjJgo6F1FsAAIdD3gmqkP7HN998Mzo6OvD444/jM5/5DA4fPgxgzdb60EMPwWw245Of/KT0+tnZWSwvL6O+vj6jCOQ777yDD3zgA0ilUvjRj36Erq4uWc6JIAgiHa2IC+luWbUeRmhFXOA4Dv39/QgGgzh16lRG4cZihIVsZHM1iGJDuquB53kYjUY0NjZKXa2CwSD8fj8uXLiAZDIJr9crrfO0mkJBzgVto3TNhULWeUqjGXEhHUEQMDk5idHRUezatQstLS0531gGgyFjg65UWgSwlhpRrLhQrHOB53kMDg5ifn4eO3fuxOzsbFGfVyhiMclIJIJz586hoqICJ0+exHeHFDg2CtvAM2Cwd+9eCIKAUCiExcVFzMzM4MKFC3A4HKisrERVVVVRVn1ArbSIIp0LhtIHtvWKNsuycLvdcLvdUrVosQd2X18fBEHIWBisF4A4XrlgXKhzwS2zuFCIom00GvHII4/g7NmzeO9734s77rgDTqcTTz75JCYnJ/Hwww+jra1Nev19992Hxx57DN/85jdx5513AgACgQA+8IEPYGlpCR/84Afx3HPP4bnnnss4jsfjwe/93u8VeYYEQVzraEVcSN/gqjkGtcWFeDyOc+fOgWEYnDp1CmazOWvhxu34wasL+NE5C+pcYZw+YMYNh70wGbfetG3malhZWUEwGITb7Zb2BGL9p6qqKuzatQvhcBh+vx/z8/MYHR2FzWaT1hNut1szm+BySzHeCnIuFEehDlWl0Zy4kEql0N/fj6WlJRw/fhwejyev968POg4FxQXGYAQKe4ApkSrCyx2Px9Hd3Q2e59HV1YVwOIzp6eniBlQgDLPmAnj99dfR0NCAXbt2/Vx9VeTgBakLAoBEIgGWZWG32+F0OtHe3p6xqe3t7QWAjBZIStWxKI4iay4o5FzY6jhmsxl1dXWoq6uTemD7/X7Mzs5ieHgYdrtdcjW43W5l0yIKdC64XPI9KeF5vuD+xzfddBNeffVVPPjgg3jiiSeQTCZx8OBBfPnLX8btt9++7fvFhRwA/OhHP8KPfvSjDa9pbW0lcYEgrmHk2lRoRVwQz0fNsahdc4Hnebz++uvwer3Yv39/RmryZoUbs/G1785iYL4NbIUB8wngqXPAk2+GYWPncaBVwAdPeVDj295ByrIsFhcX0d/fj/b2dqljVfo/8XVWqxXNzc1obW1FKpWS1nkDAwMlda8Wgl425Eo/5VcCpQs6FrrOUxJNiQuhUAjd3d2oqKjA6dOnC9q0rQ86Mhdj3xKWLb5jRIorbBO4vLyM7u5ueL1eHDhwAAaDAdFoVDVFe3FxEbFYDPv27UNzc7M0qSszPRbX2SBbC6SamhppUyu2QJqampKs+qKrQWyBtBXl6FwwlKjmQjr5TNAMw8DlcsHlcqG9vR3JZHLDwiAceT8AW2kH/XOEAsUFW4V8wlQ4HAaAgoPOiRMn8PTTT2/7ukcffRSPPvpoxs/a2tp09XSFIAjtoiVxQSzqqBZqOhcCgQBSqRTa29vR3t4uuQYYhsl5A5lM8fizx64iyO3A+rcYTHbEYcc7V4C3/z8OSMyjpTKCGw9bcWyfe8NaSxAETE1NYWxsDPv379/Qcn19q0vxuonjraqqQk1NTcndq/mit7QIvZyLiNJpUdQtIg9mZ2dx/vx5tLa2orOzs+Av3wbngoIpVKyh+MvJFSAuzM7Oor+/Hzt27EB7e7t07URVWUkEQcDw8DCmpqZgNpulPLd38+5KPwaWZVGgRgOLxbJtCySn0ylZ9ePxuNQC6fLlyzAYDBmuBrX7cEsU2y1CgYmzGEXbZDKhtrYWtbW10sLgxSvKKcmFpkXIGWQjkQiAwsUFgiCIckAr4gKgfjtKNcQFQRAwMTGB8fFxMAyDjo6OguorLK0k8Cf/tArOvGPb1zKsAaiox1QY+NZPgUdfWIbb7MeRnSw+eMoLu9WAkZERXL16FUePHs2oBySyWa2GbOu8XN2rlZWVMJlK2/NeT8I9OReKPxY5F/IgmUzi0KFDqKmpKepz1gcdiwlYM7yXflcrh3OByyNICIKAkZERTE1NZb126UUVlSCVSqG3txfhcBgHDhzAhQsXNgQcJcQFQSjsIOKVyqcFktFoRF1dHRoaGqS2in6/HxMTExgYGIDb7ZYCkN1uX7MwynGS+Z5bsc4FgzJpEXJsthmGgdPpBGsobcBPp5C0CLnvhXA4DJPJpLp9kyAIIhtypkXIUfxaDrTgXBALGSrxRJjnefT39yMQCODQoUPo7u4uSFgYuxLGV78LGCqaCxqH0eJGGG68Og68MpKEEJtGZUUSv3jTgazCwno2q9WQbZ2Xzb26uLiIy5cvF+ReLQS9PO3XY0FHJZ0LokOVai7kSGtrqyzqr5r9jxlZnAu5bQLTN/KbtehUUtEWCzdaLBacOnUKkUgEiUQCQ0NDUtsfg8GgiLjAsAxQyFcgy6XPtwWS2+2G1+vFzp07EY1GJVfDxMQEzGYzKisrkUjsh+K3XtHdIpRZtMg5QRfqXikEns9fXJA7GIVCIUnAIgiC0Ctacy6oKS6I870S4oJY10sQBJw6dUraiA8MDKCqqgpVVVU5uTV/ci6Af33NDWOFPBsk1mAC7G1YQhu++QqQetaPavsSTuwx4ebjXljM2z9VXv9QKRf36o4dOxRxr+oplUDp+gRKoOQ5ieICpUXkSCkL/RTYmTBv5HAu5BKkwuEwzp07B6vViq6urk0tWUqlRQSDQXR3d6Ourg67d++GIAiw2Ww4dOgQ/H4/RkZGEI/H4fV6wfOnUPqvXekUxK1aIKUXC2IYBmazGQ0NDWhqagLHcVhaWoLf70ckGgGgbMujcnEuyLnhVnK9x3P5P0VjZRZsQqEQbDZlakwQBEGohdbEBbXTIoDS281XV1fxzjvvwOPx4MCBA9L68ujRo1hcXMTFixfR398Pr9crCQ3ZNkDf/tEc3phogrGEhbCNFZUIcpV4ZgD4YW8MFmEeexpT+OApF5rrto+RxbpXxeshulfFB2w2m003IkGh6NW5UOrUGJFIJFIWDlXNiAtykS3osAyQoyGgKOSoucDzWw90cXERPT09aGpqwu7du7ecqJRQ1KenpzE4OCi1DBUnYJZlUV1djerqagiCgEgkgoWFBQhFPkHPhUIn7727mvJ6fa6uBrFistg20TVixWKkoCEWjFBktwilnAtyBl4l7nmRQtIiDDIHWLEN5bW+eCEIQpvI+RApmSyyNZdMaCEtAihtO8z5+Xn09vaivb0dHR0dGQ9SfD4ffD4fdu3ahUgkgsXFRSwuLmJ0dBRWq1USGjweD/7Xv8zjSrhDkdbWIgZjBVJoQf880Pc9AW2ui7jnE/U5v79Q92pnZ2eGe/XixYuSe7WyshJerzfnp916cy7o5VxElHQulItD9doRFxQ4NsvKIC5s8oRZEARcunQJY2Nj2LdvHxobG3MYDyu9V+4voiAIGB0dxeXLl3HkyBFUVlZumnfHMAzsdjvsdjvMJiPiJU6VLORcb+zajy/c+6GijrtVsaD0YCwICrYwESly4VGOzgWBV7CacwEFHY3b9O/Ol3A4rHmrHEEQRLGomf66HrXTIkopLqSvOw8ePIja2tot6yvYbDa0tLSgpaVFau24uLiIcz19+I/eNjCOfcq0I9+EavNF/O7H64r6jFzXeSzLbupeHRkZQSKRgMfjkcSGrVyHeiroqFfnglLnJIoLWkcz4oKcinY8Hs/4GctCEXWBkaGAXLY5hOM4DAwMwO/34/jx4/B4PDl9VvoEKKeqlkqlcP78eYRCIZw6dQo2my3ngj7KBJZ8DsLgk7fdgLs/cUrWEWxZLEjWI+WGUORRDcbSq7JyK9rbmIBkpRDnglFmwSYUCmm+gjBBEESxaCktQu2xiDFTbnGB53kMDAxgcXERJ06cgMvlyqtwo9FoRE1NDTjWha893wjGkbtbQG4EnsP+mkv49P9P3jFsVxRyfatL0b3a2dmJSCQCv9+PxcVFjI2NwWq1SkKDx+PZsFnV+pPqXCHnQnGUi0NVM+KCXGSrIqzAQ1cA8jgX1iuUsVgM3d3dAICuri5UVOT+1LsU4kI0GsW5c+dgMplw8uRJmEwmKbDmEnAUcNcj15oLLGvA537rF/Ch9+0p8Xgy1W6GUV61LTYdRe6NcDZkr7mgpLhQQEFHk8yCTSQSoZoLBEFollLW1lILtZ0L4hjkfLqdSCSkLhCnTp2CxWIpqCNEz/AK/vHZChgr1BMWuFQMH9g/h4/eWPox5NPq0mq1oqmpSXJ5BINBLC4uYnBwEBzHSUJEZWUlORc0jtLdIsphnadLcWF90FHgoSsAyN76bmlpCd3d3aiqqsK+ffvyFgjS0yLkGs+5c+dQU1ODvXv3ShMn8G5dge1QpFtEDgcxmy34iwduw6G9DaUfkBYo8jughLggt6KtZDwupKCjySTvxETOBYIgrgW0Ji6oPRY5BY5QKIR33nkHLpcLBw8eBMMweT1AEvnBqwt4urcGRouyxavTScVX8Ks3hXDiQHEt7gshn1aXLMuisrJSqlEWCoXg9/sxNzeHkZERCIKAK1euoK6uDi6Xq6w35+RcKI5yWedpRlwopaJtNAjIzypfGHI4F4A1MWBmZgaDg4Po7OxEa2trQddHTrvczMwMBgYG0NnZuaFwYz5jq3OF4V+ukF2IyWTr8bhdTvzjl/9v1Neo0ydWlbSIYrtFKBDMZK+5INsnbU8hzgWzWd7pNxwOl0XQIQiCKAYtiQtqF3QE5BMXFhYW0Nvbi9bWVuzYsWNDDYFceXtwCT/sqYLRrJ6wwMUW8P/+EoP2Ro9qY0gnn1aXdrsdTqcTbW1tSCaTePXVV5FIJNDX1wdBEODz+SRXg7mEXTdKQam7mqiB0s4FqrmgAtkK/cj8gHBT5Ki5AAA9vf0I+Odx5MgRVFVVFT6en7sJigk6giBgbGwMk5OTOHz4MKqqqgqyx4n89/9iQDQWw/NvL+KdUQH+iAusSeYN0Ra5F00NNfj6Vz4Bm1XFCVkVdaHItAiZiw9mo7ydC/mLCywjIJFIyLY4KBe7HEEQRDFkS39VCy04F+RY501OTmJ0dBT79+9HfX19Ueu8Y/s8OLiTwwtvX8abQykshD0wVvgKHl++sIkr+OM7HfC4tLnxXi80ANjS1QAAO3fuhNVqxcrKCvx+P65cuYKhoSG4XC5JaHA6nZp3Beip84WIks4FEhdUIpuirZS4IJdz4crMHN5/42lZvkDFKNocx+H8+fNYWVnJu3DjVlgrDPjIDW585Ia1iaZnZAEv98ZxadEKnvWCKVIBZDZxLhy9bif+8oGPqTqxvdq9gNVIHQCFvpQ/p2jngkJpEeWqaAsFpEUIfAqvvvoqnE6n9CSiGMtjJBJBdXV1Qe8lCIIoNVRzoXRjKDTG8zyPwcFBzM/P4/jx43C73bKs8yxmAz50ugofOr323wPjc3j+7TAuzleAN9XKtl5ejxMX8cCna2A2qbeWeGcwgFAkiRuO1MCwTdtNMd5v5mqIRCKS4MBxHJxOJ9xuNzo6OhCPxxEIBOD3+3H58mUpvaKyshI+nw8mUykdwoVRzuu8zVDauVAODlXNiAulDDpK3V9yTZZ79h6QTZliGKagoBOLxXDu3DkYDAacOnUq78KN+YzvyG47juxeO9/54Cqe/VkIA5MGhFIesMYC2jZmGdv7TnXid++6QVGFcT2Pfe8invjPd9C050OwOpXNARRw7RV0VJJC0iKqq3y44YYbpMWBaHlML+RksVhy/rxQKISOjo68x0EQBKEUha5J0tGSuGAwGJBM5j//y0mhAkcikUBPTw+SySS6uroKLtyYC/t3uLB/hwsAEFwJ4enXgzg/wWA1VQWjufjNkiDwqGTO479/1A0Dq14BxKdeuIyv/v2/g0slYLY40LGjA2eOdeAjN7ag0rN9PE93NaysrOD8+fOor6+H1Wrd4GowGo2ora1FfX09eJ7H8vIy/H4/Ll26hMHBQbjdbmktYbfbNeEYKOd13maQc2EjmhEX5CJb0LEYlZloGIM8lzOekE8FLyToLC8v49y5c1IhSQB5F24slBqvCf/PWS8AIJlM4ZWeObwxxGFu1QHW5M7pM9LHxzAs7vr4KZw66MPg4CCSySQqKytRVVWFqqqqvLpvFMOXv96Pl18fFAelyDEzKHIxJ3fxwWzImRbB8YASdVZECkmLsFpMMJvNqKurQ11dHQRBwOrqKvx+P2ZnZzE8PAy73S65Gtxu95ZBORKJlEXQIQiCKAaxzoEWLNYGgwGxWEzVMRSyzguFQjh37hwcDgeOHDmSkd4ht7CwHq/LjP/rbC3+LwAcJ+DV3it49XwcsytOsJbqvI/Nc0kcqR/Fmb0CRkdH0d/fD6/Xi6qqKlRXV8NqVab2w99/5wK+/cQPpO5ciXgIFwbP48LgeXzjn1lU17XgyIEO/MKN7Tiyx7vleQaDQfT09KClpQUdHR1S6gvHcVKby/W1GtxuN7xeL3bu3IlYLAa/3w+/34+JiQmYTCZJaPB6vTAa1dn+6bGgo5LOhUgkgpoa5QuU5oumxIVSKdosklDChs6y8lgkItGELJ8D5B90Zmdn0d/fj507d6K1tVWyZqXnfimFycTi5uMunNoXRk/Pz7Acd2Ei2IiL8xYkGO8WTpG1ictoNOGhz34MXde3AQD27NmDUCiExcVFzMzM4MKFC3A4HFIAcrlcsk96HMfjs3/5DgYvTKwbnbJca60oY/LdQjnB8/mnRVjX1f1gGAYulwsulwvt7e1IJpOSq2FgYCCjPZXP59uwYCoXRZsgCKIYxKeEHMeptkkS0UJaRL41FxYXF6WN686dOwsu3CgHBgODG6/34eS+GHp6ehAIGXFpqQFjcxYkDbVgDVvXTUglwrjtVAA3HWsDAOzatQuRSAQLCwuYn5/HyMgIbDYbqqurUVVVta1IXwiCIOBP/u5tPP/CS1u8hsf87CU8M3sJzzwHWO1e7OrswI0nO/Dh9zTBZn33ezw/P4/+/n7s2rULTU1N0s+3anW5/m9oMplQX1+PxsZGcByHpaUl+P1+jI2NIRaLwePxoKqqCpWVlYrWatKbc0H8OyjZLaIcHKqaEhfkQBQXREV7enoaK0tmAE3bvrdYWJmcC2qIC4IgYHx8HBMTEzh06BCqq6tLZo/Lh2AwiN7eXjQ0NOB0Z6c0jpVwBM/+LISeiwyW426wxncnR4ZhYLPZ8H/+7A50tFRm/NzpdMLpdKK9vR2JRAJ+vx8LCws4d+4cGIaRhAY58tWisRQ+88XXMD09V9TnyEKRol0qmSx5rpycinZMYZdqQc6Fiq2/XyaTCbW1taitrc1oT3X16lWMjIzAarWisnLt+93Q0IBwOAynM/8OKG+99RYefPBBvPbaa0gmkzh48CDuuecefPzjH8/p/ePj4/jnf/5nnDt3Du+88w5mZmbQ2tqKS5cu5T0WgiD0jRwPkURBQSvigtopGvnUXJicnMTIyAj27duHhoaGgjt/ycnq6iq6u7tRWVmJEyf2SuuMcDSGZ9+cwTsjPILxShgtme7VVCyA3/pwEvt2ZK7z7HY77Ha71G0hEAhInTAEQZDaPsrRbSGZ4vF7D72E873v5PW+aDiI3p530NvzDv73IyY0NLbh+OEdOLnPhvjqJA4cOLDlE+rtWl2K637xwaD4YAJYe/otuhrGxsZQUVEhuRo8Hk9JN8p6cy4oLcqVi0NVl+ICAKRSKYyNjWFmZgb1te/BlVDpjy2XcyEq42PXXBRtjuPQ19eHpaUlnDp1Cg6HQxPCwuzsLAYHB7F79+4M9RYAXHYjbrvJg9tuWhNG3hiYx6vnE7gStKGhrgpfvf+X4XFtbYUzm82or6/PyFdbWFjA+Pg4+vr64PF4JLXbZrPldR0WAjH87kM/wdJSMMtvlb+exToXgkE/fvKTn2S0QMqnHsB2CIIgq6IdTyirjAsFOBfseXQsSRfG2trakEqlEAwG4ff78cUvfhE//OEP0djYiJdeegknT57Ejh07cvrcF198EWfPnkVFRQXuuOMOOJ1OPPnkk7j99tsxNTWFe++9d9vP+MlPfoI//uM/hsFgwN69ezE3pwExjSAI3SKmZ6q9qQfKpxUlz/O4cOEC5ubmcOzYMXg8Hk2s8xYWFtDX14f29na0tbVljMNuNeIX31eDX3zf2hrhnaEZvNQdxWW/HQzD44H/uwK1lVsL6utF+pWVFSwsLGBychIDAwNwu91SmqzD4cjrOoQiSXz6D5/G5UvDBZ79GjyXxJXLo7hyeRT//n3A6a7Gvr1m3NyVws0n63IqTrmVq2F9+kRFRQUaGxvR3NycsZa4cOECkslkxjpP7tRhPToXACjqXKCCjnkiV1oEALzzzjvgOA5dXV14vk+ZfCu5ai7I7VzY6prGYjF0d3eDYRicOnUKZrNZ9YAjCAIuXryIy5cv4/Dhw5LauhkMw6DrgANdB8Sf/ELexxSVXa/Xi127diEajWJhYQGLi4sYHR1FRUWFJDR4vd4tJ8fRyVV87uFXEI2GNxlw3sMrniLvq/b2Nhw5sh9+v19KKXE6nVIAKjalRPyOXkvOBbutcHHGaDSiuroa1dXV+OY3v4nu7m7cfffdePvtt7F37160trbizjvvxOc///lNPyOVSuHuu+8Gy7J45ZVXcPjwYQDAAw88gBMnTuD+++/HbbfdhtbW1i3H8t73vhevv/46Dh06BKvVqlgdE4Igrk0YhtFMUcdySItIJpPo6elBPB4veeHGfJiamsLo6Cj27duHurq6LV/LMAyO7fPg2D5PwcdjGAZutxtut1uqS7C4uIjFxUVcvHgRZrNZEhp8Pt+WG8bZhSh+4w+fgn/hSsHj2YzV5QW8+cYC3nzjdXzFVIGW1g50He3Af72pFQ3V26cwbOdqWN/qUnRyCIKAcDic4ZC02WzSOk+OlBK9ORc4jit5Lbp0IpEIiQtqsLKyAmBNrTx27BiMRiOsZmUKOsrmXIjLtzPaKvCtrKzg3Llz8Pl82L9/PwAoVtBnM8S2SMFgEMePH1ftJrJarWhpaUFLSws4joPf78fi4iIGBgaQSqUyikKmP8F/o8+Ph/7uVaSScVXGvRnFdoswGBg4HA6pHkAikZDqAfT29oJhmAy1O9+UElFckEvRTpSBuOCwy+P8YFkW119/PZaWlvCtb30L+/fvx4svvohweBNx6+e88MILGB8fx1133SUJCwDgdrtx//33484778Rjjz2GBx54YMvP6ejoKIscQIIg1Edv7Si1khax2TovHA7j3LlzsNlsOHnyZMZ1U/MB0sjICGZnZ3H99dfD4/EoPgYAqKioQFNTE5qamsBxHILBIBYXF3HhwgUkEgn4fD5pnZde42jw4jLu+ZMnEV71l3yMqWQMF8cGcXFsEN9+AvBVN+G6fR249YZ23HAkt+KX610N6f/WuxpsNhscDgdaW1uRTCala9Lf3w+e56Vr4vP5CnKv6tG5oOR9VC61tXQlLly5cgVDQ0NgGAadnZ1SLl4e7uOikKsVZUzGx66bBZ25uTn09fVhx44daGtrkxRN8T1qIKrrPM/jxIkTstrui8FgMKCmpgY1NTVSRf/FxUVMT09jcHAQLpcLVVVVODcKPPbd3hyK+6kTzIvByLIZard4Terq6sDzPFZWVqRey0NDQ3C5XJLQkIvVMD0/UA7iKWWvcSEFHR1FOBeyIfY/djgc+MhHPrLt61966SUAwK233rrhd2fPngUAvPzyy7KOkSAIQg60Ii5oJS0iW4z3+/3o6elBU1MTOjs7MzaTSj5tTUdMw41EIjhx4oSixQS3wmAwSELC7t27EQ6Hsbi4iLm5/z975x3eVnn24VvDlveUPGLHcew4eznDmRBGIHuwyihQPkqhlEIpLW2hZVNWoYxCGWVTNgmEEZIQSAjZw3bs2PHeU8Nbe5zvD1fCTjwlWZKD7uviuoilc86rdd7n/b3P83uaHJ2b5HI55U1Snnjxa8zGgcX7kaJFVcfu7+sICJBw1pzhdw3oq3zCLjT0ldUgl8t7xb4ajYb6+npOnjzpVPbqmZi54Kk1kz2zxBlvLU/jU+KCs184m83GyZMnaWpqYs6cOeTl5fW62bs5hu8Xd5VFjKTngr3koKKigpkzZxIXF+cT6XE6nY6cnBzCwsKYPn26x+qXhktPR/+0tDRMJhNqtZp3vqrl+8M1LpcfjBguei4EBQUilUr7bYEUERFBVFQU6enpGI1Gh1lQdXU1EonEMQHFxMT0acDlbmHLYPawuOBE5kJ4mPvKB6xWK3q9fliZPqWlpQBkZGSc9lhCQgJhYWGO5/jx48ePL+Er4oKvZi7U1tZSVFTElClTSEpK8gnjRoOhuyOEVCpl/vz5LptmjxQikcgh1NtNITUaDZt2VvPR5wexWT3cjqr34LjiktXccuVUl0/VX/lEf3Heqdmr9jivrq5uSNmr7vbW8gWsVqtH1yv2TSRfx6fEBWew36xsNhuLFy8mODj4tEknNMgzqrK7yiKMpuHvgvZHT0XbarVy4sQJWltbWbBgAeHh4Q6V0lc6QmT06AgxGggICOCtrRp+OFQ95GNGYyvKwECJY7IYrAWSVColISHB4URtb4FUUVFBQUEBUVFRjgnIbpTp7swFs4czF5wxdIxwo7hgL4EYzqTT3t4OdJdB9EVERITjOX78+PHjS0gkEkf84u1xeDtzoeccarPZKC4upqGhgblz5xIdHe0TG0g9O0JMmTJlVC0wAwIC+GSXho8+2+tyLOUKYrGUX1+/gStXjUwZYn+mkHZR4NTs1fj4eIch+lCyV72dHT0S2Gw2j4oL/m4RHqC1tZXc3FxiY2OZNm2a4wM+VVzwVOaCu1pRGkfAc8FoNJKTk4MgCL2MG+0q4lAnnAaVnlc3lbA0M4Fl8xRIJK7dJOwdISZOnMjYsWNdOpensVpt3PnUEYpKhi4sAOClGkdXCAj48bs93BZIUVFRxMTEkJGRgV6vd6jddgMl++RjP8YdeNJzwZmsBYDwcO+KC378+PHjac5EzwVviwv2TSSz2czx48cxGAwsWrSIoKAgp4SFtk4Tz7x9nHkzErlw0ZghdSsYCLVaTX5+Pqmpqad1hPB1BEHg3n8dZvf3e7w6DmlAEHfddgkXLh7jkesNN6uhZ/aqwWDoM3s1OjoacN89wBcY6RbtPXEmQ9VbjEpxQRAEamtrKS4uZuLEiaSkpPT6sp466bhxg3BA3JW5YDC5b8IUi8XodDoOHDhAdHQ006ZN69XCaTgTTvbJVh58fi8mo56DR4t5+o0AxibFsThzDGvPTiYqYuivXxAEKisrqa6uZtasWcjlcqden7fQ6i3c9sg+GhubvT2UoeFq5oK0f2V2OC2QZDIZY8aM6WWgpNFoqKqqAuD48eMOtbungdJwMXpwQ8tZcSEy3H1dbLRaLTKZbFhppvaMhf6yEzo6OhzBgB8/fvz4Er4kLnh7HGKxGKPRyMGDBwkODnbJuLG0upPbH/yUjrZmvv0Onvp3EONS01k6P50N541DET28gHo4HSF8DZPZxu/+/h0n8nO8Og5ZUDiP3nUZ86cP3DltJBkozjs1ezUgIIDExERHOY49e7WyshKA/Px85HJ5r+zV0YonPRe6uroA/J4Lw2UoXzCr1UphYSEqlYq5c+cSExNz2nNOExc804kSkVgMIrHLCzmTG7ddjUYjSqWS9PR0xo8ff9pNYKhs2VXPf94/1Mu4zmoxU1VdT1V1Pe9tOUpsTAyZ0xJZu2wsE8f1/+Xv2RFi3rx5o+KHcipb9zbQ2aX39jCGjOuZC0NL+xpuCyS783BiYiI5OTlER0ejUqkoLS0lODjYITRERUUN6/vqybIIZ8wcAYJl7qs37erqIjQ0dFiTtN1robS0lLlz5/Z6rKmpia6uLrKystw2Rj9+/PhxF74iLtjLIgRB8NoiyWQyoVQqGTt2LJMmTXLauPH7o008+PSnmAxdjr9ZzAbKSwsoLy3g7ffFKOLHMnfWBNadm8aMjKh+z+UrHSFcYdfhJpqUmu5sUy/5aYWGx/LcA5cNGFN7GmezV1NSUti3bx9yuZzW1tZe2atyuZyoqCif9VvrD096Luh0OmB0ZKj6lLgwGHq9ntzcXAAWL17cbz/1U2vxujO6BTxR7S4WS102ezG6IXPBnhnQ1tZGfHw8aWlpThv6PPvfIrbvzhvsgmg0Gnbu0bBzzwmCQ8KYlB7P8oXJvcon7Gl7FovFpzpCDJfLLkjhsgtSqG3W8eXuOo7mN9KkVCPYhvLZeSMAcU3wChggc2EghtoCya7+2tt/WiwWR6vLwsJCrFZrL7Ogwb43Jk+KC05mLrgzENVqtcN23V62bBmPPvooO3bs4Iorruj12Pbt2x3P8ePHjx93cSaWRQBeExfq6upobm4mKiqKyZMnOxZ59oXdUHlzSylv/PfLAcVyQbChbKrm66Zqvt7+LaHhsUyZPIELlqSzfGGio3zC3hFCq9X6VEeI4bJiyRhWLLmcZo2BL3ZVs+9YBVWVZVjMBo9cP1qexMsPX0SiwkM7pE4y1OxVs7k7Vho7dqyjzbs9e7W4uBiTyUR0dLRbslc9hSc9F+wZqn2Zovsavj/C/9HS0kJubi5xcXFMnTp1wJumNycdscR1ccFkdi2n22azUVBQgFqtJi4ujpCQEKfq7sxWG3f98yiFxVXDHoNe10Vufhe5+eU8/UYgY5MUZM2IIym8GUVsGJmZmaNOoeyLsfEh3Hz5RLh8InqjlR37m9hztJ7yqmZMRt/JbHB35oLZauX5D2oZlyhjxSIFocGD30oGaoHU2tqKVCrFZDL12QKpq6sLjUZDY2Ojoy1UzxZIp94PzB78+dtswxcX3B2E2h2Eh3Pe888/n7S0NN577z1uu+02Zs+eDXSXSTzyyCMEBgZy7bXXOp7f2NhIe3s7iYmJ/ZpA+vHjx48n8BVxwR7HeDI9Grrn9OLiYurr60lMTHSUuw43zhMEgftfOMJ3u4bfdljbqeHoEQ1HjxziHwHBpI5PZ2HmOFJj24iNDCQrK8tnO0IMh/jYIG64dBI3XDoJk9nGt4ea2Lm/gsKiMrraVSNyzTHJ6bzy97VEhgWOyPmHgiAIvLS5iZgIMSsWRBMVMfhYBspqaG1tRSKRYDabT8teFQQBnU6HRqNBqVS6nL3qKTxdFjHcDFVv4VPiQl9vmCAIVFdXU1payqRJkxg7duygb2xfk46nsprc4btgdmFlZDKZyMnJwWq1smjRIioqKujq6sJoNCKTyYZu6NNh5neP7kWlcv3GabWYHOUTiETExsaSmVfMumVjyfChVC9XCZZJ2HBuEhvOTQIgt7iVr3+oJ7+okba2NrqzZ8AbmQuuOhz3NHQ0GC38+YVqOk3h5NfCFwdVhATomZwiYeWiWDJSBk/Zst+MxWIxVVVV1NXVMXPmTEeK6aleDaGhoYSHh/dqC6XRaMjPz0cQhF6tLgMDAzFbPfceC9bhi4FisfvFheE6CEulUl599VVWrFjB2WefzRVXXEF4eDibNm2iurqaJ598ktTUVMfz77rrLt566y3eeOMNrrvuOsff1Wo1f/zjHx3/NpvNqNXqXs958sknR52vih8/fnwXqVSK0Wj09jB6CeaewmKxcPz4cXQ6HQsXLqSxsZGWlhYMBgNBQUFDjvN0Bgu3PvQtJUWDZKYOZUxmPWUlJygrOYFIZC+fEA9aPjHaCAwQs2rpGFYtHQMs5WRFB1/sruTo8XKaGqqGmL06MGPHTeCu6ydhMXZiC4n2yqLaahW477VmOkkHDewtsyC2NJMWZ+C8uaHMmBAxpPPYN5Xq6uqoqKhwmO/3FecFBwe7LXvVU3jS0NEuLowGfEpcOBWr1UpBQQEajYZ58+YN2VysL3FBLAKrB8QFkRs6RjibudDZ2Ul2djaRkZFMnz7doQqWlZWxd+9eoqOjkcvlKBSKAdPUSqs7ueupH9Dpuvp9jtMIAhq1mp171Ozcc4KQkDAmpSdw/qIkls11vfuELzF7UjSzJ0UD01G3Gfny+3oO5NR7pVuEq8pa4P8yFzq0Zv7yQi0G24+ikEgsQW8NI6cScip1iGwakmKtLJkRxnnzY/v1axAEgbKyMhoaGnp5bwzWAkksFhMXF0dCQgKCIDhaINXW1lJYWNjdQrFjDuCZ3XVnMhd8QVwAOPfcc9m7dy/33XcfH374IWazmRkzZvD4449z+eWXD+kcXV1dvPXWW6eNp+ff7r//fr+44MePnzOyLKKnSfZIo9PpyM7ORiaTsWDBAqRSKVFRUSiVSvbt20dkZKQjzhtol7NBpeOW+z5H3Vzr9jH2VT4xdUoGy5eksXxBosvdJ3yJKWkRTEmbBcyirdPEl9/XsudwBWVlZZiNw4+h587L4i//N4WWFjUFBQVYLBZiYmJQKBTI5XKPLKqNJiv3vKrBKP2x5aVYIgVJEhXtUPEdWLa2IA9pZd4kKRdkxRAk6z8TuaqqisrKSjIzMx3ruFOzV/uK84aSvSqXy4mIiPDabr6nPRf8mQsuotPpyM3NRSwWO1rqDBWJRILJ1Ls0QSwCT9z63ZG5YLEMXwFXqVQcP36ccePGkZ6e7lAFY2NjUSgU6PV6VCqVwywvJCQEhUKBQqEgMjLS8WXdfUTJU6/tx2pxrbRjqOh0XeTkl5GTX8bT0u7yiSVzkrj4/GSCg3z26zls5FEyLj0/jvSYer6pDKTdMyV7DlzNXJAFSFG3Grn75QYsDJyZIIiDqWuFD/fAB7ubiAgyMCNNxuolsYz5X+2gIAgUFRWhVquZN29er4XxUFsg2Y2qwsPDiYyMJC0tDaPRiEajwVTpuV0kZzwX3C2iOSsuAGRlZfH1118P+rw333yTN99887S/p6amulx248ePHz/DwVfEBfBcO8rW1lZycnJISEhg0qRJQPfiJjIykqysLEwmkyPOq6ioQCaTOeK8nmnl2Sdb+Mujm9FrW0d8zNBdPnHksIYjhw86yieWzkvn0hWpXk37dzdR4YFcujyJtJhmgoMX0m5J5Jt9VeQVltOmaRj0+AuWn8u9N88DICHhx0W1SqWivr6ewsJCwsPDHULDSCyqu3Rm7nm9A1tg6oDPkwbF0GaLYedJ2J5vJNDWzKQxZlYsiiQ1sXvzUhAEKioqqK2tZe7cuURE/JjtMNxWl/1lr+bl5fWZveopbDabxzwQXInzPI1Prd7sPxKNRkNubi6JiYlMnjx52CknfU06ErFn6rDFbslcGPpAe5aNTJ8+nYSEhD6NG09NN9JoNKhUKodBpkKhYE++wJffFrm8EHUWe/lEcFAAP1uZ4pUxjBRtbW3k5uaSnJyMrEEGHhYXXM1c0LSb+fu7jQji4d3YROIAOk0B7C+CfSc7kNJEajykK9pJiupk3rx5g5r2DKcFklQqJSEhgaCQUOhw7rUOF5sTZRHSERAXRoODsB8/fvy4A18TF0Z6LPbFpb08uC/jRplMRnJysqPVsz3Oy8/Px2azIZfLya0Q89r732H1kCnhqdjLJ0QiET9fm+6VMYwUXV1dZGdnI5fLHWuXc+YnAAupaujii93VHMoup7amsrc3m0jEFZes5pYrp/Y6n33zJDw8nLS0NEwmE2q1GrVaTU1NjWN3397W0dVFbku7kfvfMiAKGjus4yRSGVZSKFRDwecCNqOahPAO0uQtJISqyMqaN2h80l+c1zO7oefz+stePXnyJOHh4Y6shuF6UQ0Xq9XqMTGjq6tr1MR5PiUu2DsclJWVMWXKFJKTk506T5/iggRwX4fHfnFL5sIQJyl7S0eVSsX8+fOJjIwckqGPVColPj6e+Ph4Rw/ax98oIv9knctjd5Xzlk7jj9dN8/Yw3Ip9cs/IyGDs2LFwzPNjEFzsFvHcpnYCgl3rsSwSibASSrkSypWhCFYTW7IbmDMpiFWLFUS7aBbUswWS2eK5nXRnyiLcLS6MpknHjx8/P13cWRbRsyuYN7HXkI8E9paOtbW1ZGZmEhsbO6Q4TyKREBcX50gr7+jo4Ll3C/jmuwNe20Cyc9ZZS/n77xaOivTuodLa2kpubi4pKSmkpaWd9tpSx4Rx61XTuPWqaegMFrbtrWf3oUpKyyq59mfLuHJVWj9n/pHAwEDGjBnDmDFjHLG7Wq2mvLyc/Px8R+mzXC4f9g53g0rPI+9bkQQlDuu4UxGJREiCFKjMClSN6VjNWrYVqZg2rotVi6KJixm8rGO4rS77yl7VaDTU1NQgkUh6ZTW4O8vA090i/JkLTqDT6aitrWX+/Pku9cSVSqWniQtSD5V4ucNzwTqEsohTjRsDAwOdcgo2mmz89flCqmsGT9kaSUQiMVdfPJ8rV43z6jjcTX19PUVFRUyfPp34+HjgR1tHj+Ji5oJI4v5WUiJJIC36QHbmwjc5LcjEOjKSxCzPimbWxKH5JfSndltsnmxFOfwA19nWnv2h0+lGbbsvP378+Bkuvpa5MBLigsViIS8vj66uLhYuXEhoaKhTcZ7FKnDfC7kcO3bY7WMcDiKRmMsvWXXaDv1oR6lUcuLECSZOnDikTdGQICkXLx/HxcvHAec4dU27p1pMTAwTJ05Ep9M5shrsnRbsQkN09MCmkGV1Wp7eLEEaFOfUWAZCEhCKkVCy6+HYR1YwqRgbo2XZ7GDmT4sc0nd4qK0ue2av2gWY9vZ2NBoNlZWVFBQUEBkZ6RAb3OFf4MluEXbPhdGAT4kLYWFhLF261OUPqq9JRyoR8IRLv1js+ls6WOaCPfUqPDyc6dOn93q9w5lwGlR67njsBzra21wdsktIpIHc+avFnD3X/Tc2b2HPwqmuriYzM5OYmJgeD3pjPK4FPiLxyCqzIpEYkxBGQR0U1BnBWkN8lIUF00JYsVA+JP+Nnmq3TfBgtwgnMhcCA91769VqtSQmurbj4MePHz+eQCQSuezT4kviwkiMRa/Xk52dTUBAAAsWLCAgIMApYaGt08TN926lrqbUreMbLhKpjDt+fRHrzx1eyr2vU1dXR0lJCdOnTycuznsxbEhIyGmdFtRqNSdOnOjlv3Zqp4W80g5e3haMNGjkDbBFYgkEJVCng3f3w1u7OogM1JCZDisXxRAeOnjm93CzGiIjI4mOjmbChAno9XpHVkNlZSWBgYEOoSE6OtqpDARPZi6MpgxVnxIXALcoQH2KCx56pe4oi7AO0NbCbtyYkpLChAkT+jS4GwrZJ1t58Pm9mIx6l8frCkHBoTx6x1lMGj+0tjajAbtZoVKp7NUFwfG4l8bkCiI3iGbDQhJEcydsO9TFefMEBnZlOB2rj2cuBPbTQcNZ/J4Lfvz4+SnRV4aqt3B35kJbWxvZ2dnEx8czefJkAKc2kEqrO7n9wU/paGt229icISgkkkf+cgnzp7lWWulL2M0Ka2pqenVB8AWkUmmvkpjOzk5UKhW1tbUUFBQQERGBXC6nWh3MpiMJSGXeiR2ksgi0RPB9oZKls61DEhdOZThZDad6krS1taHRaCgpKcFkMhEVFeUQG4aaCerJzAV/WYQLjJSiHegZYck9ZRF9TFKCIFBTU0NJSQnTpk0jMTHRKRUbwGy28sanRZjNnukI0R8xMTE8c/dZyKN8o1+tO7BarZw4cYKuri6ysrIGNSv0GC5mLnijz3KQuIsnfjuWsJDhTziejDmd6RYhG4HMhdEy6fjx48ePq/hS5oI7DR0bGhooKChg4sSJjB071rFgsl9nqAiCwEsf5KLTesjZuB+iY8fw3P0bSB1z5ojfNpvN0e1q/vz5Pi3si0QiIiIiiIiIID093eFJsP2AkmNNE5AGejdGtRmauP9amVvWAb2yV/+3juqZ1XBqq8vo6GhiY2PJyMhAr9c7ykrKysoIDg52CA09O62cNn4PZi7odLpRk6Hqc+KCO+hTXBhVmQu9F4I2m42TJ0/S3NzMvHnziIqKclpYAAgIkPCvuxehN1rZtreR74/UU1nThNlkdHnsQyV1XBJP/3khMk+pPh7AbDaTm5uLIAjMnz+/XwdZb3TtG22tAsMCOnnit+MIkjn3w7V60K/KGUPHkRAXfDnA8ePHjx877txEEgTB68aA7jB0FASBsrIyqqurmT17NnK53KU4TyQS8dSfz8JkXsI3Bxv5Zm85J4tK0XW1uDTO4TA2dSIvPbiaCCd2pH0Vq9VKfn4+Op2OrKwsgoKCvD2kYSGTyThcIiVbOQ9JgJfbgBrrefj60BFpR2oXA3pmNfT879SshqCgoF5lJa2trWg0Gk6ePInFYnEIEbGxsb0+c09nLoyWOO+MFRdOdREOCPDM4sodrShtPSZdk8lEbm4uZrOZRYsWIZPJXJpwehIsk3DR+clcdH4ygiBw4LiG7fvqKCxtQts1cmp31pyJ3HfzLK8GBIIg8NaX9aQnBbM0M8blsRgMBnJycggKCmLmzJkeUzKHjnfdoYdDpKyTJ36bSoALpQOe9FxwpiwiSObeYEur1Z5WfuPHjx8/Zyo9a669Pd+6mrlgsVjIz8+no6PDYdxoj2FdjfMCA8SsOSuJNWclIQhnkVPUyhe7KsjJK0WjGrkOYZlz5vPUn88mwFNu6v3w4TfNxEZKWTYn2uWx2DeQAObPn09AwOgTTd7Z2sThmhS3rFVcQWyq4+EbIggN9sw4Bmp12VdWg92jQhAEtFotarWapqYmSkpKCAkJcbT/tFqtHu0W4RcXnGSkFO0h+MG5BXdkLths3a9fq9Vy7NgxwsLCyMzMdNq4cSiIRCIWz5azeLYcgPLaLr7YXUt2QSNqjcY92+0iEUvmJHHNmhgMBoPXSgbMZit3v1iFRhfOngIrr39djzzcyPzJIaxcIh+2yt7V1UVOTg4xMTFMmTLFKyUEgyGMUJssdyMP7eLR34xH4mKrRo9mLjhRFhEU5H5xwV8W4cePn58K9oDek8F9f7jiuWAwGMjOzkYikbBw4UKHcaMgCCMS582ZEsOcKTHAPOqUOj7bWcmBY+XU1VY4NZf1xeKFc7n5slRMRj1SSYhXNpIEQeDvbzWhMqUD8NkRLaFiJTPG21i9KJqYyOGl4ds/p5CQEGbMmOH175wzvLi5kZOq8V6PUaXmGv7+q2iCZN55D/szhbQbQp6a1RASEkJqaiqpqamYzWZaWlrQaDTk5+djNpuprKwkPj6e2NjYfjOW3YHf0NHL9KVoywJHT+aCIAhoNBpyc3NJTk4mIyPDoazZTRtH+madPjaM26+ZAkyhrcPMF9/XsT+ngdp6pVMTkFgi5YbL5zBnghiVSkVJSQmhoaHI5XIUCgWRkUNrSeMqHV1m7nqxFr31x11ekSQQjS6Qbdnw9VE1IQF6po6TsnpJLOOTBl6wtbW1OT6n9PT0Ib0Grxg6eqcB5rBIjOji4ZvHu+V74EktxZluEcFuFBcEQUCn042aScePHz8/bdxxj7cvECwWy4gG9EPB2bKI9vZ2srOzUSgUTJkyBXDOuNFZkuNC+O1V0/jtVdPQ6S18/n0tuw+WU1pahsnQOezziSUBXP/z1Zw/NwSVSkV5eTlBQUGOOG+g2nV3YjRZufc1DQZJuuNvkoBQDIRypAYOVVkQm5tJjzdwYVY4k1MHnjvtHdrkcjmTJ0/2+uLcGbKL2jlRH4NU5t2xy6xVPHyjnMAA33kPBzKFtP/X83kKhYL4+HgEQWD37t0EBwdTV1fHyZMnCQ8PJzY2FrlcTnh4uFt/w6MpzjujxYWeirabs5D7ReSGzAXBJpCdnc3UqVMZM2aM40tuT9fxNFERAVyzbjwXZoWQl2dAbUwgp0RPaUUTRoNu0OMDZcHcd+tSMid3u+mmpKRgNpvRaDSoVCpycnIQi8WOCSg2NnZEVOF6pY77X2vGKur/xykSS9BbwzhWAUfLu5AIKsbFC5w7J5Ils6N73ShUKhX5+flkZGQwduww2it5RV3w7cyF1Fgt99zgHmEBwObB99iZsoj2Ng1FRUWOFkhSF9vZ+DMX/Pjx81NCJBL5jKmjM2URjY2NnDhxgoyMDFJSUpw2bnQXIcFSrlg5ngvmR5CTK6bFoOBYUScnCsuG1G0iQBbKfXdczLJ5CQAOR357nJefn4/NZusV541EWUFrh4n739KCLLXf54jFUpAlUd4GL+4Aq0FNfHg7i6cFcvYp5ROtra3k5uaSkpJCWlqa1/09nGXO5EjmTIbckia+O6alWhWMLTAe8Qi3Ge9JqFDBQzfGI5H47ns4nFaX9kz7cePGERQUhMlkcrS6zM3NRSQSOXwaYmJiXP6+j6Y4z+fEBXf8cHuKC3aCPSRsuyVzAdxi3OguBEGgqqqKyspKZs+eiUKh4Mr/PXa8uJWv9tSRX9RIe3vbaceGhUfw1F/OZmx877YuAQEBJCQkkJCQgM1mo62tzZHRYDQaiYmJQaFQIJfL3WKYU1DWwVMftoFk6D9MkUiETRRCpQoqt1t4bev/yiemhJCZZqamqpTp06cTHx8/rLGMxlaUI8mkRC1//sV4t57To+KCE5kLSWPikUgklJeXo9frT2uBNNzfut9zwY8fPz81fEVcGE7mgiAIlJeXU1lZyaxZs1AoFI7dUW/GeQB1dXUUFxczbepUEhMT+dkagMUUVXWw5dsKjuaW0dxYjXDKZkVYhJyn77uEyam9W4pLJJJeLRHb29tRqVRUVlZy4sQJoqOjUSgUKBQKt5TJVjdq+cfHIAlKGtZxkiA5arOcz3Nh82EtYRIlM8fbyJpoo7aqiIkTJ5KcnOzy+HyB2RMjmD2x+3NSt3Ww7UAb+VUitDYFkoCRW7hGiSu4/5fxXhdndh9rISE2cNBsFTsDZTV0dHQ4/m6xWJBKpcTHx5OYmOh4XKPRUFVVRWFhIREREY6shtDQ0GG9F3bvh9ES5/mcuOAO+lK0g2UeKosQu+ct9RVhwd6pQqPRMH/+/NO+2LMmRTNrUjQwg0a1ns931XE4r4GmZjXxcXKeu3sJYSEDvydisZiYmBhiYmKYOHEiOp0OlUpFY2MjRUVFhIeHI5fLiYuLIywsbNjvxffHNLy5TY9I4ppI4SifOAZfH4EgyTiKW4ysXqIldYxvq4mnBgPDQSwWcckSOHCii4ZWCYjd45UhCALpsWp+vTHZ7Y7fntRSnCkTio2KICMjg4yMDHQ6nUPtrqioIDAw0GEWFBUVNWgWj8ViwWg0jpp0OT9+/Py0cde93lfEBbFYjMk0eGtve6eB9vZ2Fi5cSFhYmE/EefZOFfX19cyZM4fo6Ohej09OjWDyL2cDs9G0Gdmyq4YfDpdRVVlGjDyBlx5ahyJ64PhKJBIRFRVFVFSUY95Tq9W9ymTtQkNERMSw34vc4g7+syMYaVDkMF99b6SB3eUTh2vgYKUFkUlGhtrEhVmdTEodHQu7oSKPknH1qu7NMbPFxp7sWvYXmGjujEQSJHfbdcKtJ/jdpVFe7+zyztYmjtSMQySWYDFoiAttI2tKAOfNix5S57qeWQ1dXV0UFBSQmppKYGBgn6aQERERREVFkZ6ejsFgcMR51dXVSKVSx4bSULNXdTqdP3PB25wmLngoc0HkJgdWo9GERCL26oRjNpvJy8vDbDYPqeVOojyYmy7L4KbLMtAbLAQGiIdtzCcSiQgNDSU0NJTU1FRMJpNjAqquriYgIMCRVhcTEzNo+uDHOxvZerhbGHAnIrEEoxDB0XI4UtaFBBXj4vounzgVryQRuHBRkUjEmrPiWHNWHAD5pe18c7iVkjobRlsIItHwUzgFQWBGchvLZ1nJzs52lMXYF9Wulgl4VFywDb8sIjhYislkcrRAGjt2LGPHjsVqtTpaIBUVFWE2m3u1QOprd6erqwvALy748ePnJ4WviAtDyVywd5QSiUS9jBu9LSxYrVZOnDhBZ2cn8+fPH3TxEhsl4/qLMrj+ogxM5u6dXGdaioeEhDha//Usk+0ZDwy1TPabQ2q2HJUjlYUM+LzhIpZIIXgsZW1Q1rN8YnogZ2e63n3ClwiQijk/K5bzs7r/XVqtZMeRTsqaZFgk8YglzqX0x0kL2bBYR15eDYIg9IrzPOmV8uaXTWTXpSL635pBGhRLizWWbSfgqxwDQSiZnGxm5cJIkuMH/h51dXVx9OhRxo4dS3p6t6/HYK0uAwMDSUpKIikpyZGtrdFoTstelcvlBAcH93k/8HeLcIGRUrRDhmcM6zTu6BYBoNUZiYzwjssugF6vJycnh+DgYObNmzfsxV6wm9pzBAYGMmbMGMaMGYPNZqOlpQWVSkVhYSEWi8XRLkYul592o3rxkxoOlwY6biYjhUgkwkbP8ok6FBEm5k8JYdViOWEh3m9X5ErmwqlfwRkZkczIiKS6upq8wpMoDSkUVkOLVjYkEUcQbJw9zcL/rZ8E4LjRqtVqysvLyc/PJzo62jEJOaPUelJcEJzIXIgIC0YsFvepdsfExCCXyx1ZPBqNBqVSSWlpKSEhIQ6hITIyErFYjFarBZwTF44cOcJ9993H/v37MZvNzJgxgzvuuIOf/exnQz6H0Wjk8ccf55133qG2tpaYmBjWrl3Lww8/TFxc3LDH5MePHz9DwVfEhcG6RXR0dHDs2DFiY2OZNm0aIpHIo8aN/WE0Gjl+/DgikYisrKxhL/bcZco31DJZhUKBTNY7mH9/RzP7y5OReKAtpKN8Igc2H+oun5iVJrB6UTRREd41FXU3GePCyBgXRkNDA9m529BY0ihuDKHdFItUFjHo8YIgkBFdwa0/S3X8u729HbVaTXV1NQUFBURGRjriPGeykofKa583cbwhtd+1gCQgCDMp5DdD3mc2BKOKMVFdLJkuY8ms6F4eEX0JC9B3+YRdaOgrzouKiiImJqbP7FWZTOaI8+zZq2azeUQzVN0RC/bE58QFd9Fz0hEEgfaWeiB1xK/rrt6xOoOZqEjvTDjt7e3k5uYSHx/PpEmTvF4jZafn7vbkyZPp6upCqVRSW1tLYWEhkZGRDqHh6Q+UVKrDTlsYewKRRIZaK+Pro/B9bi3P/j7V5daKruNC5gK930RBEKioqKC2tpazF88hMrI7DdFqtbEnu4U9uZ3UqkRYRaerr4JgY8UcG1es+LF+8dSyGL1ej0qlQq1WU1paSlBQkONzjY6OHpLZlSeTQ8Si4Qs30VFhyGSyQVsgBQcHO3Z3LBaLowVSQUEBVquV9957j7FjxyKXy4dtgrpr1y5WrFhBUFAQV1xxBeHh4WzatInLL7+c2tpa/vCHPwx6DpvNxoYNG9i+fTsLFy7kkksuobS0lFdffZVvv/2WgwcPolAohv3++PHjx89gSKVSnxEX+htHU1MT+fn5pKenk5qaepr7vLewt9COiopi2rRpPtMB4dR4QKvVnlYmaxca3vy6k9LWNMReiK/s5ROHquFgcSNP3CTxWmvFkaK2tpbS0lIWLZhNbGws0B3/HTxRz55cPXWt4YhkitOyVwXBxvS4Sm68KNHxt55lMRMmTMBgMKBWq1Gr1b3KQeVyOTExMW4zdX/l00ZOKMcPeZNRJBIjCoqnyRDPpqPw4f4uwiQqZoy3cdb0ACrL8k8TFk6lL1PIgbIaBste/eyzz4iLiyMqKmpEPBfcEQueikjwMac3q9XqUHhc4cCBA4wfPx6FQsGJEyeoajTxTeVSN4xwYLRtdRQfes3l87z+1C/ISPX8rl9zczMFBQVMmDCBlJQUj1/fWew3qoYGJW98G4BRNDyTxZEgIrCTx24ZR5Cst+B037tBtGk9OxkW7vs3hi6VU8cGBkj49oM7gO6JpbS0lMbGRubOnTugilpe18W2Ay0UVlnQmbvT+dcvEnHRuQlDvrZ9QW2fhOzZKvZJ6NRdDDu/eyUY8IyylL/7n5iNw2vb9do/rmViWu/v6KlmQT1vzfbdLbvqLQgCnZ2dPPbYY+zcuZPi4mJmz57N6tWrWbNmDVlZWQNOzhaLhcmTJ1NXV8fBgweZPXs20C0sZmVlUVVVRUlJCePGjRvwdbzxxhtcf/31XHnllbz77rsOMemll17i5ptv5sYbb+Tll18e1nvjx4+fMxubzYbZPPyMr1PJzs4mNjZ20PvUSFNXV0djYyPz5893/M0uwldUVDBz5kzi4uIcCwtvGzdqNBry8vJGXQcEe5lsU7OSd78PxhKS6e0hITLW8cD/hREZdmZlLthN3DMzM4mKiur3eXVKPdsPtnGyNgCDKA6xOIC5ydX8Yu3Q4zz7gtpeAm0ymRwZnAqFwmlT9xc3NXJS7b7vt81mRTA0Mj7OwLlzQsmcNHxvkJ5xniAIjv/gx6yGnnGeVqvlueeeY+vWreTn5zN58mTWrl3L6tWrWbJkicsdKNwVC56Kz4kL7pp0Dh8+jEKhoLGxEbFYTNqkTB78YPBUHlfRdTZRtN/1YPr5h69k1hTPudMKgkB1dTUVFRXMmDFjVO42tnWauPvFOgw279ckJUR08dBNfWcs3PvfINp1HhYX9r6AQat26liZTMrO936PIAgOc8+5c+cSEjL0+kat3kJtk57J451XXe0LarvQ0NHR4TD7VCgUvXoKe1JcyN35GDarcVjHfPzSjSQoBjaeOrUFUn8T0J49e7jpppt4/PHH2bp1K9u2beP555/nyiuv7PfcO3bsYMWKFfzf//0fr7/+eq/H3nrrLa677joeeOAB7r333gHHuHjxYg4cOEBVVVWvyUcQBCZMmEBzczMqlcotTuB+/Pg5M3BXnHf8+HHCw8NJS0tzw6icp6GhgdraWhYsWAD86GPQ2trKnDlzCA8P9wl/BYD6+nqKioqYMmUKY8aM8do4nMVgtHLPaxpM0lRvDwWZpYqHboh1ynPCV7F3M6mrq2POnDlERAx93WQwWimv0zIt3fm1ln1BbRca2tvbCQ0NdcR5kZGRQ/r9PP9xIyUtIyucWYxtRMtamJMh5sIF0U6VQJ+avXrqppL9v+LiYs466yzeeusttm3bxtdff82f/vQnfv/737v0GtwVC57KGVsWYbPZKCsrIzExkalTp2ITPLOYc1e3CJ2u/8WK2WqjUWkgJdE95jU2m42ioiLUajXz5s0b1s3EV6hp1PHgG0psYu8LC5MStfzp2vE+tRvgUrcIkQibzUZBQQEdHR3Mnz9/2EpyaLDUJWEBuhfVERERREREkJaW5tjFUKvV1NTUOMpmoqMVeKIEyo7NNrhL+KlEhQ++2B6oBVLPtLqOjg5CQ0P5+c9/zs9//nOsVuugqcK7d+8G4MILLzztsRUrVgDw/fffD3gOg8HAoUOHmDRp0mmqtkgk4oILLuDll1/m6NGjnHXWWYO+Xj9+/PgZDr7iudBzHEajkezsbAAWLVrktHGjIAhUN2pJHeOemMbeEaKuro7MzExiYmLccl5Pom4z8tA7OpClensoREvKueeXCb3q8Uc7giBQXFyMUqkckrnnqQTJJC4JC9AdO4SFhREWFkZqaqrD7FOtVpObmwvQyxSyr537Zz9spKI9fcTLoqWyKDqJ4vtS2FVkQmpRMiHRyIXzw8kY53qry54lVO3t7YSEhHDZZZfxs5/9zG0CrTtiwb44I8WFuro62tvbUSgUDvOc7o9OYKR3M91l6Kgz9L1gaesw87tH96JSqQgLj2D6pERWnzWWuVMH7lDQH/aOECaTaUgdIXyR4yXtPPtxO0jc6xQ8XATBxoKJZn59yfiBn+eh8fS6povdIvLy8tDr9cyfP9+jDr8DcarZp90EqrCkCk+JC4LNNmz3yMiIUIKChvce9lXDZxcRXn/9dRoaGhxtniQSyaD1iqWlpQBkZGSc9lhCQgJhYWGO5/RHeXk5Nputz3P0PHdpaalfXPDjx48Ddxp3u6OM1lXsho4dHR1kZ2cTHR3t8DFwxrhRZ7Bw60M7KSnKJyI6npnTMli9LJ2lmQqn3jur1erYHMjKyho17ex6UlGn5Z+bRUiCkrw6DkEQGBdewR+uShz8yaMIQRAoLCyktbWV+fPn+0y2YU+zT7sppEqlorKykhMnTvTyWgsNDeXpDxqp7pzg8XGKJYHYJMmUtEDJdggwV/P4r+XDEp/6i/NsNhtvvfUWHR0dWK1WpFIpYrG437Lg4eCOWLAvzihxwWazUVxcTENDA7Gxsb3SpD2Fu1pR6vWnK1Kl1Z3c9dQP6HTdree6Ojs4eLSDg0eLCZQFkzE+gfMWJrF8UQIBQzC46dkRYv78+S63//MGB/JaeOVLPSKJd0URwWZl1Tz42YVjvTqOfnEhc8Fms2EymZg3b57L9V0jRU8TqJgE+KLEM9cdbhvKkJAQXn/yGpeva5+E7rvvPgoLC9m7d++w7nXt7e0ADjPOU4mIiHA8x5Vz9HyeHz9+/LgTiUSCyTT8zDF3IxaLMZlMHDp0iLS0NMaPH98rw8zulzMUGlQ6brn3c9TKWgA6WpvZu7eZvXv3EhQSyaSJEzh/yQRWL00aUjq+yWQiNzfX6Y4QvsDJyk6e/zIYaZB3s2oFm5WZiVXcsOHMEhZsNhsnTpygq6uLefPm+ewmY09TyIyMDPR6vSN7tby8nG8LE9DK5g9+ohHGYmjhjstCXM5qsQuSzz33HF988QXfffed29dp7ogF+8LnVpPOigH2G6jJZGLRokVUVVWdli4nEo18izp3ZS7ojb3Fhd1HlDz12n6slr4nUpNRT0FRJQVFlfz7nQDGJsexZG4S65clER56+ph6doSYOHGizzgFD5eFM6KxWuG7Y+3UKEXYxJ7PXhBsZq48N4ALFw3RgNMLqQuCCxcVi2DOnDmjRnwymDwnKArDEBdCQkJ4++lriYt13e1XEAQeeughPvzwQ3bv3s2kSZNcPqcfP378jCZ8oSxCEASam5sxmUzMnj2b+Ph4p/0Vsk+28JdHN6PXtvb5uEHXzvHcYxzPPcazL8tIHT+BsxZMYOO544iNOn0Xs6uri9zcXCIjI5k6darbHPg9zeTUMP7vvA6+y1FR2xLWZ4eCkcZmNXH2xAYuO//MEhasVivHjx93bCCNJvEpODjY0WXhsbcb0Mo8n7FwKhZDC3deZmNcouvZQYIg8OKLL/LEE0+wfft2srKy3DBCzzA6VguD0NnZSXZ2NhEREY5FUF/pcmIRWEdaXHBT5oKhR1nEW1sq+OjL7CHXzVutZqqq66mqrue9T8UoFLHMmzGGi85LISk+eNR2hOgLkUjE0swYlmZ21w+W1nSxdb+GomorBlvIiE9AgtXEzRtDyZoWPaLXcRkXMhcCAgJGjbAAYDB7Tlyw2YYW2AYHB/PmU9cSL3ePsPDYY4/xxhtvsGvXLqeEBbtK3Z8i3dHRQXT0wN/poZyj5/P8+PHjB9xbFuFNccG+46tWq5FKpS4JC59+V8OzL3+G1TI0c2CrxUh5aQHlpQW89a6YhKRUsjIzuOj8NNLHhjk6Qtjb5vmSB9RwEYlEzJsWybxp3XNJdaOGbQc6KG4IxCyJRywZ2QWx1axn43w1y7M838HtVOzlj+7AYrGQm5uLIAjMnTvXZzNTB0IQBB57p4kmgw8IC8ZW/niJjVQ3+OEJgsBrr73GQw89xNatW0dMWHBHLNgXo2fF0A/Nzc3k5eWRmprKhAkTHD86qVSK0dj7Ji0Wg9X5NdaQEInEiERilwz0APRGC4Ig8OBLeRw6Vuz0eQTBhlKpYuu3KrZ+e5yw8AiS42RsOD9t1AsLfZGREsbvUrqNVFraTXy1V0V2iYE2fRAiN2WVOLDq+fNVUUweP7zF02jzXBCLR1dQYnTd42bICLbBLxYcFMybT11DYpx7hIV//vOfvPjii3z77bdMmzbNqfP09EOYO3dur8eampro6uoadDJLS0tDLBb3W483UC2fHz9+/LiKN8UFk8lEdnY2giCQmZnJkSNHnBYW/vlWHp9+scPp1FpBsNFYV8GWugq2fAGR0QmMG6tg7Tnpo15Y6ItxiaHcdHH3znCnVs+2A/Vkl4nosMiRBrrX1Nti7OAX53aQNT3WrecdLoIg8MS7TdS0xRMuVTE7TWDV4minW2CazWays7MJCAhg1qxZozKrRRAE/v5mEypzureHgsXYxh8usjA+yT0ZC2+//TZ/+9vf+Pzzz1myZIkbRtg37ogF+8LnxIXhOOmWl5dTWVnJjBkzSEjo3VO1r0lHIgZPrDtEkgCEIarP/aHVGrn5wX3U1Da4aVTddHV2UNQJReUqnn3nBBPTEli+eCznzlP02TZxNBMTGcg1a5K4Zg2YzVZ2HtGw73gXDS1ScNGjQWTtYn1mPQ2V5Rg7Yh2GMr6aUuZSt4hRJi4YTJ6TbwbLXAgKCuKNp65hTLzru/eCIPCvf/2Lp59+mh07djBr1iynz7Vs2TIeffRRduzYwRVXXNHrse3btzueMxDBwcFkZWVx8OBBqqurT2tF+c033xAaGsq8efOcHqcfP37OTEQikUuiN3hPXLBny0ZGRjJ9+nTMZrMji8EeCwwl289ssfHHJ/aQfeyIW8fX3tpEXmsTeXn5PP1aNFMmZ3DB0nQuXDSGwIAzK84LDw3gsuXxXLYcrFaBPTm17M030dwZhSTINUHArNdw3vhsOpsN5JhjUCgUKBQKtxjpDQdBEHjg9SZarelIA0FPGAeqYF+5GYmlmQkJRlYsCCcjZWjCir2jSUhICDNmzBiVZdGCIPDQG01oLL4hLNy+wURasuvCliAIvP/++9x5551s2bKFc845x/UBDoA7YsG+EAmu3t1HgFMzDk7FYrGQn59PR0eHo4fwqdTW1tLc3NwrsP3zG4FoDSO/UMrb9SQWk9alc4SExSAJcH2nc6hIpIGMGxvH2fOSWXP2GEKDfU53chuCIHAoX8WWXfUou8KxiYdn/CkTdfHob5KJDAugs7MTlUqFSqWiq6vL4VyrUCj6dWT+2zvBdOo9u2A//u1jQ063PBVFbBibX7nZzSMaOQxGGzsOd5JdJqDRRSAOGLn2pLqORooOvNLnY0FBQbz+5DWMTYxy+TqCIPDyyy/z4IMPsm3bNhYuXOjS+SwWC5MmTaK+vp6DBw8ye/ZsoDs1Lisri6qqKoqLi0lNTQWgsbGR9vZ2EhMTe5U5vPHGG1x//fVceeWVvPvuu47f0UsvvcTNN9/MjTfeyMsvv+zSWP348XPmYTKZXBYXlEolpaWlI7qz19c17dmyaWlpjv70HR0djlhAr9cTEzPwYrS1w8Rv7vuKupoyj41dGhhMWtoEzl4wgY3npTi96z1ayCtpZdO3jagN8UiCxyASD3133mZo5u6rAkiIlaHVah2fbUdHB+Hh4Y7PNiwsbEQzQ8wWG/e8qkIvHrgLGYDVoCIxooMlM2ScNTu6T0NBvV7vEMamTp06KoUF6BaSth/UcLjIgkobhTTIO61VLcY2bl9vGnLrycH45JNP+M1vfsPHH3/MqlWr3HLOgRhuLDhUfFJcGGjSsf8wAgICmD17dr87xQ0NDdTW1rJgwQLH3/76ViDtupFf1J34/hlMBtcc0qWBIQSHKtw0ouEhEkmIj5dzz81zGZ80cgszb6HVasnOziYmJoYpU6bQqDbw5V4N+RVmtKbgASegiMBOHrtlHEGy08UXg8HgmIBaW1sJCgpyTECRkZGOm/hf3w6mywMiV09ydz6Kzeqcq3a8IoJPXrrJzSPyDIIgkFuiY3euiWp1EDZptFt9OLpaayk5/Pppf5fJgnj9yatJGeO6F4cgCLzxxhv89a9/5auvvmLp0qUunxNg165drFixgqCgIK644grCw8PZtGkT1dXVPPnkk/zhD39wPPe6667jrbfe4o033uC6665z/N1ms7F69Wq2b9/OwoULWbZsGWVlZWzevJnU1FQOHTqEQuGd+5gfP358F3eICxqNhoKCAs4++2w3jap/BEGgqqqKsrIypk+fTkJCgqMMQiQS9Vqk2RejSqWSjo6O0zYdSqo7+f2Dm+loU474uPtDJJaSlJzKn399DrMn+bhnlBMYDIZeu/Oadgtf728lv1qCQRSPRNp/9qrIWMcD/xfWp/hiMpkccZ5GoyEwMNDx2UZHR7t1sa4zWLjntTYsAcMvYbaYugiXqshMh5WLussn7LGvXC5n8uTJZ1S5TH5ZB98e1VKpCsYWEIdYPPIbpBZjO7etMzAp1T0bwVu2bOGGG27g/fffZ/369W4551AYTiw4VEbV9nRLSws5OTkkJiYyefLkAX/EfaXLSaUCMPI/JrHEDbX9XtR8BMHKjElxZ6Sw0NbWRm5uLsnJyY5axKS4EG66uNuARau38PU+FYcKdag7ZYh6GAUlRHTx0E3j+y0fCQoKcjjXWiwWWlpaUKlUHD9+HAC5XP6/hdY4PPE97IkrZRGSUVYW0RORSETmpFAyJ3VnkShbOth+WEtBjQStJRqx1LX0RlsfngsymYzXnnCfsPDf//6Xu+66iy+++MJtwgLAueeey969e7nvvvv48MMPMZvNzJgxg8cff5zLL798SOcQi8Vs2bKFxx57jHfeeYenn36amJgYfvnLX/Lwww/7hQU/fvz0yWgqi7DZbBQWFqJSqcjKyiIiImJAf4XQ0FBCQ0NJTU3FaDQ6FqNlZWVUNAfxwVd5mI2uZbe6imCzMGH8GGZNjPLqOEaCrq6uXotosVhMXIyEX6ztLp82GM18c7iZw0VWWgyxSGU/ZuPJLFU8dFNsv20+AwMDSUpKIikpCavV6ojzCgoKsFgsjjhPLpe7ZJDY3mXi3je0IHPOG00aGIaeMPZXwt4yM2JzE1GSOpbNOvOEBYAZEyKYMaG7VWlLeyfbDraRVymi06JAGui6D8KpWIzt3LrO6DZh4auvvuKGG27g7bff9qiwAO6JBU9l1GQu1NTUUFxczOTJkxk7duyg51Cr1RQWFvZStB/+IICm1pFPATq5/2X0nU0unUMiDSIkPN5NIxo6IrGE6y6bz2UXnHlmjyqVivz8/CF3ybBabew93sruYx2EB4v4/c/HOXVDFgSB9vZ2R4DxaeFZmGyerdnL2fEwguBcEJacGMX7z//KzSPyPmazjd05XRwqstLcGYY4YPi+CO2qEsqz33f8OyAggFuunMbUicnI5XJiYmKcNkoSBIGPPvqIW2+9lc2bN3PhhRc6dR4/fvz48TXsPgWu0NnZyaFDh1i+fLmbRnU6JpOJnJwcrFYrc+bMQSaTOW3c+NqmYt76YOuwWhiPBCKxhKt/tpobL5vs1XGMBG1tbeTk5JCSkkJaWtqgn48gCBwuaGd3jh6bAH/6eUKf5QSDIQiCU2WyfaFsMfLQf42IgxIGf7IT2Msnls6UsXRW3+UTZwpWq8APua3syzfS2BGBWCZ3WVgxG9pZmnyIWZOikcvlxMbGutRRbceOHVx99dW8+uqrp/kejFZ8MnOhp6Jts9k4efIkzc3NzJ07l5iYodXV9KVoB3jo1bolc8ELPQWkAYH8+cYlLMk883Yb6+vrKSoqYvr06cTHD020kUjELJsTy7I5rpkCiUQioqKiiIqKIiMjgy9KAzC55vc5bAScD+K0eht6g4XgIJ+8XThNQICYC7IiuOB/RrhFVWq+PthJRbMMZPGIh1CfabP+GCQGBsp4+dEriQoToVarKS4uxmg0EhMTg1wuRy6XExwcPOTxffrpp9x666189NFHfmHBjx8/fk7BHue5sz1fT7q6ujh27BgRERFMnz69V4vz4QgLgiBw7/OH2b17j9vHOFykAUHcecvFrD4rydtDcTtKpZITJ06QkZExpE1I6I7PFkyPYsH0KJeuLRKJiIiIICIigvT09F5lsmVlZQQHB/dZJnsq1Y1a/vGxCMkICQsAkiAFSpOCzUfho/1dREiVZE4QsWJh1BnnwyGRiDhnbgzn/K8RQkWdmi/3aSiuD0AUNBaJdHiv12Ls4OZVOpJip6JWqykvLyc/P5/o6GhH1kpIyNBbUe7atYurr76af//7305nCfgiPr1a6KkYL1q0aFiBeV/iQqCnxAU31Pp4Op8kOCSMx+88iwljPWci6QkEQaCyspLq6moyMzOHLE6NJCIPl0QALn2htAYxv/mnktBAA9PHB3D1qgTCQkZfP+TBiIswMCuugMvPnkxoeBc7jmg5XiGi3RiJOKDvycIuLgQGBvLKY1eRPk4OdJfACIKAVqtFrVbT3NxMcXExoaGhjgkoMjKy3+D0iy++4KabbuK9995j9erVI/OC/fjx48dLuEMMkEgkCIIwIuKCvaRx3LhxpKenIwiCI6YUiURDvp7OYOG3D+6ktDjfreNzhuDQaB6/+2IyJ3s/DnI3dXV1lJSUMH36dOLi4rw9nNPKZDUaTZ9lsj13vYuquvjXFwFIgzzngSENDENHGPsq4IfS7u4TGYlGLl8egzzKsxm2nkAeYWVGXDnrF4xHEW9gx6FGjpXYaDXG9CqP6QuLqZNfr9IxY0L382JiYpg4cSI6nQ61Wo1araa0tJTg4GDH5xsVFdWvkPTDDz9wxRVX8Oyzz3LNNdecUaUqPisudHR0kJ2dTVRUFDNmzBh2anFf4oJM6pkV+2jLXIiNjeWZu5YSe4bdSARBoLi42NE1pK+uIj8FXK58EokQiaXoLGHUNHedkZ1EWlpayM3NZfLkyYwZMwaAy86L4rLzutPqDhY0s++EhfrWEARplGMSEGxmAgIDeenRnzuEBTsikYiwsDDCwsJITU3FbDaj0WhQq9Xk5uYC3b89e1aDvT5z27Zt/PKXv+TNN99kw4YNnnsT/Pjx42cUYY8LLRaL29pAC4JATU0NJSUlTJs2jcTEREd2BDAsw74GlY5b7v0ctbLWLWNzhRh5Ei88uJHk+KHvqo4GBEGgoqKCmpoaMjMziY72PXNKqVRKfHw88fHxvcpk7bveMTExKLURfJGbilQW4bVxiiUBCJJkqpVVRISeeRtIHR0dHDt2jPHjxzu6H1x0joKLzun+Hh0pbOD7HD21LaEQGIeox2/dYurkphVah69DT0JCQkhJSSElJcXht6ZWq8nPz8dqtRIbe3q7+oMHD/Kzn/2Mxx9/nOuvv/6MEhbAR8WFpqYmjh8/Tlpa2pBqpvrCrmjb6+IAAj30WxG5xaXUM+JC2vhknrpzQb/mNaMVq9XKiRMn6OrqIisra1hZLyONxwteXDBzhB93mMbFdnHvDePPuJtgX8JCTyQSEUtmhrNkZve/a5pb+eawjqL6AIIDbbz0yFVkpMpPO+5UAgICSEhIICEhwRFgqNVqqqqqeOaZZ/j+++/JzMzk448/5j//+Q+XXnqpu1+qHz9+/Jwx2MUFd5k69izDnT9/PpGRkU77KwB8+HU5er3OLWNzhdS0ybz4wMozLuNQEAROnjyJWq1m/vz5hIX5vgn5qWWyOp2O7fvq2Fk8AanM+8JPqFDJQzfFnXE+DH0JCz0RiURkTYsia1oUAI3qNrYdaKOgRoLeGsavVpiZmTG48COVSomLiyMuLq6XD0dtbS1vvvkmn3zyCVlZWWzZsoUHHniAm2+++YyLqcFHxQW9Xs+sWbNcSm2ypxlZrVaHuBAU4KnMBXeURYz8WBfNn8zfbpxxxn2xzWYzx48fx2azMX/+fLftaIxWXM9cEJORoOWu69LcMyAfYjBhoS9S4oP45Tp7G6tpTl23Z4AxYcIEEhMTEQSBL774AqvVyl//+lcOHDjA2rVrWblypVPX8OPHjx9fxR1xh70FpDvEBZPJRG5uLmazmUWLFhEUFOSSsADw+2tn8PtrZ5B9soUt35WTk1dKq7re5bEOh3nzF/DknWedcYtFq9VKfn4+Op2OrKwsgoL6by3py3yfo+Xb0ilIA72fORwpruCBX8afcWuCwYSFvkiUB/F/63r6Xgx/g/JUH46UlBRMJhOffvopRqORJ554goKCAtasWcO6deucNv/2RUa+dYITpKWluVwz1ZeiHeShNaZY7OPqsEjEpWvmcs9NM71+Eymv7eKtLRW0drjH4dBgMHD06FEkEglz5879yQsL4FobSoBQmcBd141302h8B2eEhZGivr6et99+m7/97W+0trby4osvIggCL774olfH5cePHz++jDvaUXZ1dXHw4EGkUilZWVkudYToizlTYnjglvl8/vJVvPnMzWxYt4KEpDREopEMwUVsWLeCp/9ytteFhSaNnlc3FdOsMbjlfGazmezsbEwmE/Pnzx+1wsLHO5vZmjcGiYstsd1BXGC5X1gYYTQaDa+//jrXXXcd7e3t/Pe//yU8PJxnnnlmWOVWowGfzFwYKUXbU+KCyA2ZC9ERQVy4fBaHjzegUqvd5vAolki56LyxrFwQjMlk8uri+2hBCw89/wNms5EPvzyGPDaWudPHsOHcZFKThp/eptVqyc7OJiYmhilTpvjsj9XzzV9du+DYBN8pKXEXGo2G48eP+4SwcPjwYS699FIeeeQRbrjhBkQiEatWrWLVqlVeHZcfP378+Dquigt2D5yxY8eSkZHRy7jRHcLCqaSPDeOP182E62aiajWweWcVe4+UUVNVhs1qdss1xJIALlqVxaXLYzAajchk3lu8FlV18PsHNtHVoebt98UoElLImp3BhuVpTE4dvr+AwWAgOzubkJAQp/zYfIXXv2gktz4VsQ+MPzmknDuvTvT2MNyOLwkLJ0+eZO3atfzmN7/h7rvvRiQScd5553Heeed5dVwjhU+KC+7i1EknONBDZRFuyVwQuOWKSdxyxSTaOsx8/n0t+441UN+gxOZkj+RAWTB33TiPuAgDtbW1FBYWEhUVhUKhIC4uzqO+BF/vbeCFtw/++FoEAbVazfbdarbvziMsPILpkxJZfdZY5k6NHnSCb2trIzc3l+TkZNLT08849dUVXM1ckEh8U6RxFl8SFrKzs7nooou4//77ueWWW/zfWz9+/PwkcNe9TiqVOi0u1NTUUFxczNSpUxkzZozTxo3OoogO4qbLJnPTZZPR6S18vruWXQfKKC0twWxyzqshMCiMu29dS3qClcbGRoqKioiIiHDEeaGhoW5+Ff2zL1fJvf/YhMnQBXTHIsrGKr5srOLLryEiOp6Z0zJYvSydpZmKQb8TXV1dZGdnI5fLmTx5ss9uIA3Gt0c05NSN9bqwIAgC6VEV/O5yv7AwkpSUlLB27Vquv/567r///p9EnPeTEhdCPCTeusNzoee4oyICuHZdGletSuHYseMcOmmkrFFEVY0Si3lo5QQREVH8866zGKPoFhDGjx/fqw9vaWkpoaGhxMXFoVAoCA8PH7EfwJtbKvjoy2MDbuF3dXZw8GgHB48WEygLJmN8AuctTGL5ogQCTlnsqlQq8vPzmTBhAikpKSMy5lGNi6kS0jNIXPAlYSEvL4/169fzl7/8hdtvv/0nMeH48ePHjztxJnPBZrNRVFREU1MT8+bNIyoqyq1lEM4QEizlilXjuezCFPLz49l7vI2SOitFxeXota1DOkd4ZBzP3ncxGeO6O2OlpqZiMplQqVQolUoqKioICgpyxHkDtUN2lU+/q+HZlz/FajH1+5yO1mb27m1m7969BIVEMmniBM5fMoHVS5NOMxlva2sjJyeHlJQUp43efYXz58cyb4qOrfvrOV4hotOiQBroOdEHuoWeaYpKbrr4zBMW2tvbyc7OJi0tjXHjxnl1LBUVFaxdu5YrrriCRx55ZNQKYsPFJ8UFd900JBIJFsuPu/weExfckLlgsfZeEBoMBnJycpDJZNz88/kEBAQgCALfH1OxY18tRWVNGPTaPs81ZkwCz961+LQWgj378JrNZtRqNSqViurqagICAhxK90B9WofL46+d4PsDhcM6xmTUU1BUSUFRJf9+J4CxyXEsmZvE+mVJdLQpKSoqYvr06cTHx7tljGcaozVzoa3ThCxATHCQe25TviQsFBYWsm7dOn7/+9/zpz/9yeOBklarpaKigpSUFCIjB+7t7MePHz++ynDFBbPZTG5uLkajkYULFxIcHOx1YcGOyWTi+PHjCILAr65YgEwmQxDO4VC+hi93lZF7opT2lqY+j01ISuOlB9ee1lI8MDCQpKQkkpKSsFgsaDQaVCoVOTk5iMViR5wXExPjtjjvpY9O8t5HW4cVexh07RzPPcbx3GM8+7KM1PETOGvBBDaeOw6rqZ0TJ06QkZHB2LFj3TJGbxMZFsiVF8ZzJWC22Pj+WC37C0w0d0UjDYoZ0WsLNitzkqu5bq33hYUunRlBgHA3tb70JWGhurqaNWvWsGHDBp566imPCwvejPN8UlxwF6dlLgS5tsgaKu7wXLDZfhxrR0cHOTk5KBSKXqlgIpGIc+bFcc68bvPL48WtfPl9LXlFjXR2tAMwc1oaf79tzqALxICAABITE0lMTMRms9HS0oJSqSQ/Px9BEJDL5cTFxREbG+tUjZvVauPPTx+lsKhq2Mf2Po+Zqup6qqrree9TMZGR4cydkcjk6d7rDTxcPG254Gq3CG9kLtQrddz7qhIbgYQFGpiRFsCapbEkxTnXqskuLEyZMoXERO9OqMXFxaxdu5abbrqJv/3tb14JZv/0pz+xZcsWRxnR5Zdfzvr16z0+Dj9+/PhxheGIC3ZfppCQEBYuXOjw5fIFYUGr1ZKTk0NERATTpk1zxFkikYiFM+UsnCkHFlJU1cFnO8s5klOKsrkGBIGp02bz3N/OG7SluFQqJT4+nvj4eGw2G21tbSiVSk6ePInZbEYul6NQKJDL5QQEDH+xJwgC9//7KN99t9uJd+BHrBYj5aUFlJcW8Na7YmIVScydlca4jGiXzuurBEjFLF8Qy/IF3f/OK21i51EtVeoQCIhH5MZFqc1qYW5SKb9Y4/0s39YOE/e9qUcIkCO1NDNxjJGVCyMZn+RcnOdLwkJ9fT1r1qxhxYoV/Otf//JKxoI34zyR4Imeh8PEZrNhNrtubHPo0CGSk5NJSkoCoEEDj3w08ukL6rpsagq+cOkcskApO9//PUqlkhMnTjh+LEOd/Krquygob2fN2UkujUMQBNrb2x1pdQaDgZiYGEda3VAMIfUGC7c+sp+Ghr4Vd3cRERnFzMmJrFk2llkTo0b0Wq7w5zeCMZg9F8SY9O2c2POM08efs2giD/1xg/sGNAg1jToeeEOFIO7tASIIAlJ0pCXC+fOjmD81aki/B18SFsrKyli1ahVXXXUVjz/+uFcmHKvVyrPPPssPP/zAwYMHaW5uBuDJJ5/k1ltvdSqo9OPHj5/hIAgCJlP/KfNDJTc3l8jISMaPH7ijkUajITc3l6SkJCZOnIggCI5NHJFI5FVhobW1lePHj5OUlMSECROGPJZGlZ4Dx5VcdH6KS+MXBIHOzk5HnKfVaomJiUGhUKBQKIbUjcFssXH7I7vIO57t9DiGQlRMIrNnZLD23HSypseO6vKIodCoNvD1/jYKa6UYRPEudZawWc1Mj8lmUrwGwCEmxcbGIpV6dq+5pd3IfW8ZEQcl9Pq7IAjYjCqSojo5a4aMJbMH91wD3xIWmpqaWLlyJYsXL+a1117ziumot+M8nxQX3DXpHDt2DIVC4ajD79DB3W+NvLjQ0pBHVf6nLp1DKhXz5hOXUl5ezrRp03wm5V+r1aJUKlGpVHR0dBAZGekQGkJCTlcbVS0GbnvkB9rbhlYz6C6CgkOYmJbA8sVjOXeewqdMCT0tLhh1rRT88JzTx8+dHs+dN56PXC4fcdfpqgYtD76pBvEQzEWtBuIjzSycHsqKRXKCZKdPjr4kLFRVVbFy5Uouuuginn76aa/W3gmCgEgkoqSkhKuvvhqlUskrr7zChRde6LUx+fHj56eDu+K8/Px8goKCyMjI6Pc5tbW1FBUVMWXKFJKSkjxu3DgQDQ0NnDx5kkmTJpGcnOzVsdjR6XQOoaG9vZ3w8HBHnBcaGnraYq9TZ+bX92ylpqrEo+MMDo1myuQMLliazoWLxhAY4Dtx3kjQ1qHjnS0nqWqJxSBORiobesau1WJkzexmVi2WIwgCbW1tqFQq1Go1Op1u2GKSK6hajTz4jglx0ODrGoupk8gANZkTRKxaFE1YyOmLYl8SFpRKJatWrSIzM5O3337b46JNT7wZ5/2kyiJCPdQKVyxxXRGy2QSqqqqYO3euT9VEh4aGMn78+H4NIe31e+Hh4ZTVdPHnJ/f06wUxkhj0OvIKKsgrqODZNwLJnJHKg7fM9vg4+sLjZREuXjE4KIj6+npOnjzpcJ3uL8hwhfK6Lv7+VgtIhti1RBJEc1cQWw7CZ/uVhMv0zEgLZM1SOWMUwT4lLNTW1rJ69WrWrFnjdWEBfvS1KSwspKSkhNWrVzN79mzgxwnJ/v9arZawsOG3hvXjx4+fkWagsghBECgqKqKhoYG5c+cSHR2NzWbziTIIQRCoqKigpqaG2bNnExsb67WxnEpISAjjxo1j3LhxDkNIlUrVpyFkk9rAr+/5jBZVncfHqde2kn3sMNnHDvPUi8HMnDGDf/75bCSSMy+bwWg0Ungil7NnhnLLjO5MlQP59Xyfa6C+LRyxrP9uG1aznksWqDl3nhzonv+jo6OJjo5m4sSJaLVaVCoVzc3NFBcXExYW5ojz3G3u3qwx8NC7FiRDEBYApIHhaAlnbznsKTEhtTYzcYyJVYsiSU0M8SlhQaPRsH79eqZNm8Zbb73lVWEBvBvn/aTEhe7NawEY2RuPSOz62yoIAllZWR5tDzlcTjWE1Gg0KJVKjh49SrUqgE93abAM4BTsKaRSKT9fnebtYXgPFw0doyIjyMrKwmg0Okw/KyoqCAwMdExA0dHRLi2YS2u6ePSdFpA4pwCKxFK6zOEcKIb9RR1IhUaiZK1csCCVhISEwU8wgjQ2NrJmzRqWL1/O888/73VhwT6ptLW18fXXX6PX61m7di1xcd3eLT0DiSNHjvDee+9hsViYPHkyK1euZMKECd4auh8/fs4QRsq4247FYiE3Nxe9Xs+iRYt8yrjRZrNRUFBAW1sb8+fP92nxtqchpNVqdcR5ubm5NLSIeGtLKbouz2am9oVELOXq9dPPSGFBr9dz7NgxoqOjmTJliiOGWDwzmsUzu59TVqdm+8EOShtlWKUJjq51VrOWK5e2sWRW/+JVaGgooaGhju4idtPP6upqpFKpo3wiJibGpRT/RrWBv79nRRIU59TxYkkgNslYitRw8nMBm0FFCPUsnpbs9U5xra2tbNiwgfHjx/Pee+95vbzU23HeT0pc8BTuyFwQBHxaWDiVgIAAEhISSEhI4PPddXzy7SEEm+ff+1MJC4/gmbuXOVpw/hRx2dBR2j2ZyGSyXkFGS0sLKpWKEydOYLPZiI2NdcoMqri6k8f/2+q0sHAqIpEIqygMjTmMD/bCB9/XEh9lYdH0UC5cGNtn+cRI0dzczJo1a1i8eDEvv/yyV2rv+iM/P5+dO3cyb9485s+f3+dzlEolO3bsoKioyPG31atX8/LLLzu8bPz48ePHGUQikRvmJylGY++W3DqdjuzsbIKCgli4cKEjFvQFYcHeEcJms5GVlTXipYbuRCKREBcXR1xcHLuPNPHqK5sxGz2fmXoqoeGxPPfAZUz8XwvOMwmtVsuxY8eIi4tj0qRJ/X53JySHMuHS7naWrR1dfH2glbxKuOw8GXOnDN0IMzAwsJe5e2trKyqViqKiIkwmU684bzjf3Tqlnsc+EJAEKYZ8zECIRCIkwXEYiWNXBXxT1F0+MSdDxMqFfZdPjBTt7e1s3LiRhIQEPvrooyF50XkKb8V5PikuuFPR7ikuKJVKRCQhjHDmgtgNmQujldc+LWfTV9l4Pvn/dGJjY/nXX88mKsLHDOo8XhfhWuaCVHr6TrtEInFkLQiCQEdHh0PpLigoICoqyvF4X14cdgoqOnjy/XZEbhIW+kQSRHMnfHYAPt33v/KJ9EDWLJGPqOikUqlYt24ds2fP5vXXX/cZYUEkEmGxWNizZw+VlZXceOON/ar+y5cv5+DBg6jVal555RX+8Y9/UFVVRWioZ3ty+/Hjx09fnBrntbS0kJOTw5gxY5g4cWK32Py/x70tLNg7QoSHhzN9+nSfmROGy8c7qnj+1c+wWV03XneVaHkSLz98EYln4AZSZ2cnx44dc7j9D/W7Gx0RyFUr4rnKxeuLxWJiY2OJjY1l0qRJdHV1oVKphl0mW9uk4/GPREiC5C6OqH/s5RM/lMH3xSYC/lc+sfJ/5RMjRWdnJ5dccglRUVFs2rTJZ8RCb8d5PrsKdoeiLZFIMBqNCEK3f0FZWRlicTLWEe5I6Y7MBehdE+PrCILAo6+eYO+hk94eCgDJyYk8e9digmW+N3mfaa0oRSIRkZGRREZGMmHCBPR6vaN8orS0lJCQEMcEFBkZ6fhO55e288+POhBJPHczdpRPFMH+kx0EiJpIT4TVi2OYkeE+b5OWlhbWrVvHpEmTeOedd7xee2fHfk8pKytj27ZtpKSksGzZsn4nxKCgIAIDA4mIiCAgIABBELjmmmuIiopy7AL68ePHj7foKS7U1dU5zBHHjh3ryFaA4XWEMFtsPPDCYSLCg7nkgnTSx7petuBsRwhf4/n3C/hw09fd6bVeZkxyOq/8fS2RYb6zU+wu2trayMnJITU1ddBOKJ5AJBIRHh5OeHg4aWlpGI1GhyFkRUUFMpnMEedFRUU5YoOqRh3/+FiMNCjGY2MVSwKxSsZyUg2Fn//YfWL53GDmT4ty23W0Wi2XXXYZgYGBfPbZZz6Tbe4LcZ5vRLwjhL0W78SJE6jVarKysthaxYiLC+7wXAAwmSzIZD62694HZquNPz11hOKSam8PBYApk1J54o55PtUhwqu4mLkQIB2eQBMcHOzw4rBYLI76vdzcXKC7/ZFaG8ZbOyUeFRZORSQSYSGUonozy/TuK+Fpa2tjw4YNjBs3jvfff9/rtXd2eoqVhw4d4ujRo/ziF79g0qRJAx4nFotpaWnhlVdeISkpiQ0bPNeW1I8fP34Gwh7nFRUVUV9fz5w5c4iJiXHauLG1w8TN935FfW0ZAF98BTHyJObMmsjG5enMmjj0FHM7jY2NFBYW+lRHiOEiCAL3/Osw33+/x9tDASBj0nRevP9CZIG+t4HkKi0tLeTm5pKRkcHYsWO9PZw+kclkJCcnk5yc3KtMNj8/31Ema7BF8taeeI8KC6ciEomQBMVR3xVJS0ez286r1+u5/PLLsdlsfPXVVz6Tzekrcd4ZLS4IgkBLSwshISEsWrQImUyGRAQjncglDXCPitqlM44KceHz7+qoqHLfj9YVFs+fzF9vnDFqdwVGAle7RUiHKS70PlZKfHw88fHxjvZHP2Q3sPmgBLEXhQU7gs3MjWuDWTjTPZNfR0cHF110EQqFgo8//tinau/sv4nGxka2b9+ORCJh1apVREf3HyzbJ6otW7agUqm44YYbmDx5MuD9Fm5+/PgZ3bgjQxWgq6sLk8nEwoULCQkJcdpfoaS6k9sf2Exnu7LX31vU9ez8tp6d3+4iPFLBzOmTWHdeOotn9e/QD77dEWK4fHuoiaPZBd4eBgDz5i3gyT+ddUaaN9oX6JMnT2bMmDHeHs6Q6KtMNrugkY+PxhPgRWHBjs1qYu3sZlYsck9ZhsFg4KqrrkKn07F9+3bCw33H68NX4jyfFRdcnXQ6OzuprKxEJBKRlZWFWCzGarUikQhgHuFuESL3CAJavYnY4YvkHueSC1K4ePlYDuRp+PqHWk6WNqLTdnl8HGuWz+KWKwZW536KCC5nLrhnESkSiShvgE8PRiKWeH/RLdjM3LAmmEVuEha6urq49NJLCQsL49NPPx3xXtHDIS8vD4VCQWJiIuXl5ezevZslS5Ywa9asAY+zT1SvvPIKAQEBXHLJJQD/u5eeeTtGfvz4GT3o9XpKS0ux2WwsWrTIJePG7w438fAzgxsUdrar2LdPxb59ewkOjWLqlImsPDuDCxYm9lrs2mw2CgsLaW1t9fmOEENh+cJEli+8nuyTLWz5rpycvFJa1fUeH8cFy8/l3pvnefy6nqCpqYmCggKmT59OfPzQWjX6GiKRiKZWMZ8cSyMgKMrbw8FmNbF6ZiMrF7vHSNJkMnHttdeiVqvZuXMnkZHuK6d1FV+K83xWXHAFlUrF8ePHiY2NRafT9TL0cdM6aUBEYvcE3TqdcfAn+QgikYjFs+QsniUHMjlZ3sGW3TUcP9lIe9vItikSicRcffF8rlzl3R630K0A/pDTwqIZUQQE9P098Hilopu6RbjKwbwWXv5Cj8hHhIVfrgpmySz3CAs6nY7LLrsMiUTCli1bfKb2DkCtVvOrX/0KmUzG6tWrKSsro7m5mb///e+kpqYCDFhXt3//fg4dOsTy5cs577zzAPzCgh8/frxKa2srOTk5REdH09ra2st7YbjCwmuflvDWe18h2E5vaTkQem0bx44e5tjRwzwhC2XixIksXzKBCxfFU3zyxKjsCDEYc6bEMGdKDDCfivouNn9TwaHsUpobqlzeyBgQkYgrLlnNLVdOHblrDIO9ua3MmRxOSJB7llF1dXWUlJQwa9Ys5PKRMz4caQrLO3lhaxBSmfcX3TarmZUzGlm1xD3Cgtls5rrrrqO2tpZvv/12wGwAT+Nrcd4ZJS4IgkB1dTWlpaVMnz4dqVTKyZMnsVqtiEQixGIxblonDYi7PBe0epNbzuMNpqRHMCV9OjCd+mY9n+2q4UheAyqVxq0TkFgs5efrJrH+bO/fjK1WG3f/uxKVNpw3tjURFWxg7qQg1p6lICrcewtq1zMXXP/R7Dvewqtf6RG5yezUFQSbhetXBrE00z3Cgl6v54orrsBsNrNt2zaf26EKCQlh+fLlPPPMM+zduxfAIbzqdDpCQkL6nHDsqXKvvvoqABdddBEBAQF+I0c/fvy4BWfLF+vr6yksLGTixIlERUVx5MgRzGazQ1QY6nnd6SNgNmopyM+hID+H51+VkZScwvKzpjJ5mogzSFvoRVpSGH+8biZcNxNVq4FPd1bxw5EyaqrKsVndF7+KxVKuuHgZ16xL8brRuSAIPPJWE0pTOh/sNxAkKJmWYmHNkmjiYpz7oKurq6moqCAzM9OnFqzDJb+sg5e+DkEqi/D2ULBZzVw4rYE1S90jLFgsFn71q19RWlrKrl27fE4A8rU4TyS4o+BtBDCbzQ6X36FgT0FTqVRkZmYSGRmJVqvl0KFDiMViR2/el79NpKl15BWGnB0PIwiumcQ9+ueLWJo1wU0j8g3au8xs2VXLvmMN1DcosQ1zp6An0oBAbr58KgmRWjQaDSEhIcTFxaFQKIiIiPDoBGQ0WfnT81V0mk6vvRJsVoKleqalSlmzNJbnv5ZjtnpubJ2aSkqPvu308X+86QI2XDjb6eOPFrTywhYdIrFvCAvXrZCxbK57al+NRiNXXXUVGo2GHTt2EBUV5ZbzjhTvvvsuzz33HEeOHCEkJIRly5Zx9dVXs2HDhl4tQ+0TS2NjIxMmTGDs2LHs3LmT5ORkrwd3fvz4OTOwWCy92kgOhiAIlJaW9vIwMBgMHDx4EJvNhkKhID4+npiYmEEDY53Bwm8f/IbS4hOuvowBEYmlJKeksXR+BhdfMJ6EWN/JahspdHoLn++uZdeBMkpLSzCbdE6fSxoQxM2/WM6kMSbUajUymcwR50VFRXl0LrJaBe5/vZkOIe20x2w2K2JzE+nxBlYtCCdj3OCbDHZPjtraWse6ZbRSWtPFM58HIw30vv+AzWpm+dR6NiyLc8v5rFYrN998M0ePHmXXrl0kJia65bwjhS/EeT4rLgxn0jGZTOTm5mI2m5kzZw5BQUG9WhC1tbWhVCpRKpV8V7WINmPUCI68m+PfPYHVrHfpHPf8bg0Xnu0bKWAjQUtbB29vPk5RjY2G5jYs5qGXgciCQnjsD2czaXy3QmrvSqBUKlGr1Q6Dmbi4OKKjo0d0p7VDa+YvL9RisA1tMgmPGYdI5Lmd3w51OWXH/uv08Xf/diWrzp3h9PGCIHAov5Vvj7ZT2SzCyVowLAAAc9pJREFUSrBXFqeCzcK1FwRy7nz3KM722ru6ujp27txJTIz3jYuGSl5eHv/4xz/44IMPWLduHW+//TZhYWGYTN27TXYjyqeeeoo777yTO+64gyeffNKbQ/bjx88ZxnDiPIvFQl5eHl1dXcyZM4fQ0FBHnCcSiWhvb3fEeRaLBblcTlxcHHK5/LT03jqljt/etwWNsm4kXlb/iETEJ6aycO5ELr4gjbQk38pyGwk6tTre2XSM46VaKqvr0GuHXiYrCwrn0bsuY/707s0Ae1cCpVKJSqUCcMR5MTExI1quZzRZuedVDUZp6pCebzWoGBPZwbLZQSyeeboIYhfKGhsbmTt3rs9lPDpDbnEHO49qqdGEQmAcIi9kONqsZs6fUs/Gc9wjLNhsNm677Tb27NnDrl27fLZ7R194M84b9eJCV1cX2dnZhIeHM2PGDMRicb8tiARB4OlPpVSrRz5HLX/3M5iN7U4fLxGLeeaBy5k9dXS2LRqMtrY2cnNzHT2fAX7IVrFtby1FZU0Y9P2bKoWFR/DM3csYo+h7B8Bms9Ha2opKpUKpVGK1WpHL5SgUCuRyOVKp+6qB1K1G7n65AQtDb0MTFp3iUXGhXV1G+bF3nT7+3tvXcMFZ7hO5Kuu1bN2noaDKgt4S7DaPkoEQbBauWR7IeVnuERbMZjO//OUvKSkp4bvvvvO5FLmhYjdEmzlzJlarlZ07d/L222+zatUqzjrrLNasWUNdXR3bt29nwYIFmM1mn2mt6cePn9GN1WrFYhk8e1Gv15OdnU1AQACzZ89GKpUOGOd1dHQ4hAaDwdBLaMgt6eCvj29Gr20bwVc2NOISxvHSw+tRRPuO+a87scfncrmcyZMnIxKJOHRCw5fflZF7opT2lqZ+jw0Nj+W5By5j4ri+d8Lt3afsQoPRaHTEeQqFwq3zlFZv4Z7X2rEGOrewtBjbiZZpWDBFwoULYggMEHPy5Ek0Gg1z587ttZt8plCn1LPtQDsna6UYxfFIpCO/7rJZLZw7uY6Lz3WfsPCHP/yBHTt2sGvXLod3wWjDG3HeqBYX1Go1ubm5pKSkOBao9mP6q7t7+etACmtH3mqi4IfnMeo0Th0rlUp58A8bOCvr9NSrMwF7q50JEyaQkpLS53OOl7Tx5e5a8ooa6Oz4UaSJjY3lX389m6iIoX3x7YGGXWjQ6XTExMQ40upcMVqqa9Zx/2tKbOLhTQweFxdUJZRnv+/08Q/9cQPnLJroxhH9SEeXmS/3qjhWpKdFKxsRs0fBZuHn5wewfIH7au9uuukmjh8/zq5du0atq/OpWK1W/vWvf3HHHXcglUpJS0ujpKSE888/nx07dvhLIfz48eNWhiIutLW1kZ2dTVxcHFOmTOll0D2Yv4IgCGi1Wpqbm1EqlfxwXMfWXQVYLd43y5YGBvOX317MiiWjo93gcGlrayMnJ4eUlBTS0tL6/JxKqjv59JtyDueUoGyucZhPR8uTePnhi0jsZwPpVOyfs11Q6urqIjo62iE0uGKw3NJu5P639IiC3PM5Wc16pOY6EsOauWZdBmPivV9GMNJo9Ra2H2zhaIlAu1k+IqUTNpuFZRm1XHq+e+Ixm83GXXfdxZYtW9i1axfp6eluOa+38VSc57PiwmCTTnV1NSUlJUybNo3ExESsVqujdeVAKfBv7gwkp2LkxYWT+19B39k47OOCg4N54eEryEgdnTuhg1FfX09RURHTpk0jISFhSMdUN+r47LsaGpVd3PebTIJlzu9063Q6h9Ld3t5ORESEI60uNHTo2Qcl1Z089t9WkAx/x8HT4kKbspiKnA+cPv6xuy5mybyRv7GarVZ2H2nhh9xO6lokIHa9NlWwWchMLGPeJKkj0IiMjHT6Bmq1Wvntb3/LgQMH2L1796jpQz0cmpqaeP755/nPf/6DSqUiLCyMG264gQULFrBy5cpRXRfqx48f32GwOK+hoYGCggIyMjJISek287OXuw7HuBHgyTfz2PLlDpe7J7mDkLAYnvjrxcyaOHrN+wZCqVRy4sQJMjIyhpxG3qjS8+m3lRRXqHjwtkVEhjm/0aDX61GpVKhUKlpbWwkLC3PEeWFhYUP+3jSo9DzyvhVJkHt2wk/FZrMgMTcxIcHI6kURpCUPPQYdrQiCwN7cVvYcN9LYEYEkyPVNH5vNwljpHhZPtjjivKioKKfLoW02G/feey8ffPABu3fvZuLEkdlc8yYjHeeNOnHBZrNx8uRJmpubyczMJCoqCpvNhtVqHVL7ofe/D+Bg8cin9RYfegNtW82wjomNieL1f/ycmKgzL0VKEASqqqqoqqpi1qxZPlGfbjQaUavVKJVKWlpaCA4OdkxAAxlC5ha38ewnnYgkzmU9eFxcaD5JRe5HTh//z3svY/6sVPcNaIjklbbzxZ4myhvFCJLhG3QKNgtXnCPl/KwYNBoNKpUKtVoN4JiAYmJihlwmY7PZuP3229m1axe7du3qN+vmTGLz5s384x//4NChQwB89913nHPOOd4dlB8/fs4IbDYbZrP5tL8LgkBZWRnV1dWO1nw9/RWGs2gwW2z84fE95GQfcefQnSY2Lpl/P7iBMYozL86DH1sqTps2zSey+sxmsyPO02g0BAYGOuK8yMjIfr9LZXVant4sRhrkHvPnwRAEAZtRRXJ0J+dlBjN/mvObIKOJ0uouvtiroaw5GElIMuJhdtuz2awsTa/h0vPkveI8m83mKJOJjY0dcpq/IAg8/PDDvP766+zatYupU89c3zs7IxHnjSpxwWw2k5ubi9FoZO7cub2MG4fa1/jT/QHsPjHy4kLZ0f/SoSkf8vMz0pJ46ZGfERhwRnUHBbp/rMXFxTQ3NzNnzhzCw30vDcxuCGlXu+0dRuwLUPsEtDenhde26lxK3/e0uNDaVEDl8U+cPv75h69k1hTPe3+oVCry8vKYPn06NkkEX+3VkFdupNMYPGi7V8Fm5WfLJKxa0nvHwWaz0d7e7vicDQZDr/TJoKC+M1FsNht/+tOf2Lp1K7t27WL8+PFue52jgZMnT/LSSy/x7LPPensofvz4OUPoS1ywWq3k5eXR0dHB3Llzexk3DjXOs9PaYeLme7+ivrbM3UN3irQJU3nx/hWEBJ+ZcV5FRYWjk4cvtlS0G0Lay2Thx42G2NhYhyFkXmkHL28LRirzXpaexdiGPFjDoqkBrFx8ZmYyw4/lMxMmTCA0Io6t+9vIqxSjE+KQBAycvWqzWVmcVsOVF/YWsXqWQ6tUKrRaLdHR0Q6xoT+PC0EQeOKJJ3jhhRf47rvvmDlzptte52jAnXGez4oLp046Wq2WY8eOERoayqxZswY0bhyIr49J2XbM/XXdp1Ke8yHtyqIhPXfZomk89IdVZ6RKabVaOXHihMPh2ZXaN09hs9l6GQVZLBZiY2Mpbghha3bIoAvbwfC0uNDSeIKqvE1OH//K41czZYJnW+/0FBZO3f3QGyxsP6DmQIEOZXvAaRkkgs3KZWdLWL108FRGrVbrmIDa29sd6ZMKhYLw8HBEIhE2m42//vWvbNq0id27dzv8XX6q+FtR+vHjxx2cGucZDAays7ORSCRkZmYSEBDgtLBQVNXBHQ9+Sme7ciSGPmwWLFzE43csQSI58+6dgiBQVFSESqVizpw5o6LzgSAIvTqMGI1GYmNjaWiP4Kv8VKSB3n8NgmBjmqKSmy727daHzmL3U+mrfMZktvHtkRYOFlpQ62OQyqJ6PS7YrCxIrebnKwcvrz61TCYkJOS0MllBEHj22Wd58skn+eabb5g7d647X+qo44xtRdlz0tFoNOTm5pKcnExGRgYwuHFjfxRW2/jPVgtW8cimHFXlbaalMX+QZ4m4+pIl3HTVohEbhzcxm80cP34cq9VKZmamo+3JaEIQBDo7O/lgWy0HymLc0tnA4+JCQx5V+Z86ffwbT/2CCakjU3PYFwMJC6ciCAL781rZdbSdqmYRVmRcvFTMurOHn45pMnX30VapVGg0Gp544gni4uIIDg7mm2++4fvvv2fSpEnOviw/fvz48dMDQRAcbdHa29sdnQWmTp3qEHadERZMZhu/+tvXVJSdBLwc4opEXLJhBbdf43w7Z1/GarWSn5+PTqcjMzNzVGwgnYrdEPLL7+vZWzV50B1zj4zJZmVOcjXXrR2aN9loYyBh4VQEQSC7uIPvjun+1+ZSzoJxtVy9avhxntls7lU+8cILLyCRSEhISODjjz9mx44dZGVlOfuy/PwPnxcXampqKC4uZsqUKSQlJfUybhyusNCTygYDXx/UUdoUhFUS4/bFXvWJz9HU5/T7uFgs4c+/WcXqc6e49bq+gsFgICcnB5lMxqxZs0a0//BI88bndewpkLrtOxIWPc6jO7+a+uNUn/jM6eP/+9z1jEvyTN3hcISFvujQmokIdb3syWaz8fnnn/Of//zHUYe2cuVK1q9fz5o1a1Ao3NN5wo8fP35+qtjFhaamJkcHqXHjxrlk3NiTuiYtn3xTwf6jJTTVVyEINncOf1Ak0kB+e8MGLr0g1aPX9RT2UmVBEByZJqOVz3Yr+fbkGMQj0LFquNhsFhan1Z6W7n+m0NraSk5ODhMnTiQ5efglt51aM+FuivN27tzJyy+/zN69ezGZTCxfvpz169ezdu1akpKSXL7GTxWfLfwSBIHCwkIaGxuZN28eUVFRTqfH9cX4MUH85uLu+up6ZTtbD2o5WS/DInLP7rRY0v8XPzBQxj/vvZRZU7zvNC8IAqU1Xf32EnYGrVZLdnY2MTExTJkyxWnHVl/gXx9Wk10RNMrTwF0LqDzlA+KqsAC4RViA7oC2rKyM/Px89u/fj1gs5vPPP+fFF1+kqKiIxx57zC3X8ePHj5+fKnbjRrvRs0KhGHLnr6GQnBDK7dfM4PZrZtCsMbD5m0p+OFJCXU0Fgm3gFpiuIguO4KE/Xcyimb4hRJdWdzEhJdRtsYy9hCUkJIQZM2aM6g2k/37dzKHqsYgl3l8S2axmzptSz0Xn+IWF/nCHsADdcV5DQwP79u3jyy+/JCEhgS+++IJ3332Xw4cP89prr7nlOj9FfDZzwW7yMXv2bIKDg90qLAyEus3El/u1nKiRYiR22M6lduqLv6G5av9pfw8NCeGJv6xi2uRxXr8Zm81W7n6xCo0uHJFNT4rCyvL5USyeFe30e9zW1kZubi5JSUlMmDBh1C7KBUHgsbeqKG1yf2sgT2cuqOuyqSn4wunjt7z6G2KiR7ZFkjuEBXchCALPPfcc//jHP9ixYwfz5s3r9bj9PuTHjx8/fpxHq9Vy8OBBZs2aRVhYmMfivLZOE5t2VvH9wVKqK8uwWU1uPX94pIL7blvGnGnJXt/NFwSBh99sQm1Ox2JsQxGi4ayZgZwzJ8Zp/4euri5ycnKIjY1l8uTJo3o+fGlzI4XK8Yh84DVYLUbWzGpi1RLfEKTcjTuEBXchCALvvfced9xxB5999hnnn39+r8f9cZ5r+Ky4IAgCRqPRkR7niQnnVNo7zWw92EVuhQSdLWZY6VINZbtpKv++19/GJMj5268X0tHRgsFgQC6XExcXh1wu9/gE1NFl5q4Xa9FbTzetEaxGEqPNLJsdxnkLYgkYogiiUqkcqY2juU2fIAjc+3Il9W0jY+jjaXFBVXuM2sIvnT7+63duJSyk7y4K7sDXhIWXX36ZBx98kG3btrFw4UKvjsePHz9+zmQMBgOAozuYK2UQzqDTW/j0uxq+219CeXkpVrPBpfONSU7nL7+cjkGrQavVEhMTQ3x8PAqFwuO+U0aTlXtf02CQpJ72mMXUSVSgmoWTxVy4MAZZ4NDiPPvG39ixY0lPTx+1G0gAT73XSE1XureHAYDVbOCSBSrOneeZElRP42vCwieffMItt9zCJ598wsqVK706njMRnxYXDAaD08aN7kZnsPLh9nryqgOxSJMQS2UDPr+5ci/1Jd86/j1nRjrP3HeRw5VUq9WiVCppbm52TEBxcXHExcWN+ARUr9Rx/2vNWEWD70YLVhPycCOLpoeweomCIFnfmRz19fUUFRUxbdo0EhJGtwGNIAgcym9l55Fuk0Cb2L39qD0uLtQcofbkVqeP//aD349YaYRSqSQ/P99nhIU33niDv/71r3z11VcsXbrUq+Px48ePnzMZ+yaSpzIWBsNosvLBV0Xs3F9GfV09ZpN2WMdPn5nJs3efR2BA946nvRuRUqmko6ODqKgoR5zXX9tjd9HaYeL+t7QgG7xu3GrWEypuJjNdYM2SmH7TzpVKJSdOnBiSCd9oILe4g2+OaqnRhCGSxXntu2c1a7lyaRtLZvle+0534EvCAsBnn33GjTfeyPvvv8+6deu8PZwzEp8VF1566SW++uorNmzYwKpVq4iKivLaD18QBEpKSmhsbOwu0wiJ4JsjnRwqEmgzRiOWnu4sq6w+RF3RNgDWXziPO286t9/z63Q6RzuckZ6ACso6eOrDNpAM/7yCzUJkkJ55k4JYe7aCqPBABEGgqqrKUTMZExPj1vH6AkWVnWzdr6G4VsAkhLj8PfS0uKCsPkxd0ddOH7/nkz+OyHjtwsKMGTOIi/NcN4q+EASBd955hzvvvJMvvviCc845x6vj8ePHj58znU2bNvHyyy87DNQUCoVX4zx7LDNjxgwio2LYcaCRbd+XcLKoBKO+Y8DjL7zgPP5205x+x28wGBxxXltbGxEREY44LyTEvRsYVY06nvxYQBI0/PR6m9VEoLWJ6eMsrF0ajSK6eyOtrq6OkpISpk2b5vWNgJGgsl7H1gPtlDYGYQ2Id7okerhYTJ1cf34nc6dEeeR6nsbXhIUvv/yS//u//+Odd97h4osv9vZwzlh8VlwoLS3lv//9L5s3b6akpIRzzz2XjRs3smbNGmJiYjw2Adnb7Gi1WjIzM0+bBMxWG7uOdbG/wIZGF4k4oDsbQF2bTe3Jr7jluvO5fO3sIV/PYDCgUqlobm6mra2N8PBw4uLiiI+Pd3kC+v6Yhje36RG5wQ1XsFkJCdAzLlbL5IQWzj1rDuHh7jOF9FUaVHq++EFNXrkZnTnYKfNPz4sLB6kr2u708T9supN/f1xDrdLC4hmhXLhQPuQUyn7H5GPCwocffshtt93G5s2bufDCC70yDq1WS0VFBSkpKURGRnplDH78+PHjKWpqavjvf//Lp59+Sm5uLkuXLmXDhg2sX7+e+Ph4j82TNpuNkydPotFoyMzMPC2WsVoFdh9t5qvdpZwoKEavbXU8JhJL+b+fr+X/NmYM+Xomk8khNLS0tBAaGuqI80JDXTNdzClq59VvQpDKXJ9DbDYLEnMzY8JVjI9uZPnZM4mOPjN313uibjPy1d5W8qulGETxSAbJVHYWi7GdX6/SM2NCxIicf7j8d1sThdUi5k0UsXJRDCFBrgksviYsbN++nWuuuYZXX32VK664witj+KnEeT4rLtgRBIHi4mI2bdrEpk2byM/P5+yzz2bDhg2sW7eOuLiRS2UyGo3k5OQglUqZNWvWoL4IVqvAvrwu9uRbqK9v5ucXyFg6b7zT1zeZTI6UOo1G45iA4uLiCAsLG9br/nhnI1sP45ZOGKciCDZkYh1TUiSsPSuW9OSR8SrwNTq6zHz5g5IjRQba9EGIxEPzzfC0uNBcdYD64h1OH3/ppT8jt+rHjhmCzUxUsIG5E4NYc5aC6IjhiVW+JCwAbN68mV//+td89NFHrF692mvjuOWWW9iyZQvJycmkp6dz+eWXs379eq+Nx48fP348gSAIVFZWsmnTJj799FMOHz7MwoUL2bBhAxs2bCApKWnE5kyz2czx48exWCzMnj170GxRQRA4cFzN59+VcrKkmt/+4hwuWJTo0vXVajVKpRK1Wk1QUJAjzouIiBjW6/7mkJotR+VIAtybCQHdcZ5gVDJeoWXVwjCmjD/zN5MAdAYLX+9v4WiJQIclDmmge8ytzfoWzko5xIyMWBQKBXK53Ksm72991cSx2nGONYLVYiRIaGZaioU1S6KJixmewOJrwsKuXbu4/PLL+fe//80111zjtQypn0qc5/PiQk8EQaC8vJxNmzaxefNmjh07xuLFix1K95gxY9z2hens7CQ3N9dn2imeOgHJZDLi4+OHNAH9++MajpQFIhKN/GsQBAEpOiaMEbFqcTQzM85cZa4nRpOVHQfV7Mvrork9ANEAZSceFxcq91FfstPp4zPm/6LfxwTBRrBEx9RUKWuXxpI6ZuCJ19eEhS+++ILrr7+e9957jw0bNnhtHFarlWeffZYffviBgwcP0tzcDMCTTz7Jrbfe6nXHcT9+/PjxBIIgUFdXx+bNm9m8eTP79u1j7ty5bNy4kQ0bNjBunPvmT51OR25urs+0U7Rarb3iPKlU6hAaBisNfn9HM/vLkwdsg+7WsRpUJEV1cP7cYOZPjRzVxo5DxWyxsftYC/tOWFBqowkIci6Lw2LQ8MdLbUSHmB0biAaDweG95mnzz9e/aCS3vv+OGTabFbG5mbQ4PSsXhDEpdWBhydeEhR9++IFLL72UZ555huuvv9573ho/oThvVIkLPREEgZqaGofSfeDAAebPn+9QulNSUpz+AqnVavLz8xk3bhzjx4/3uZum1WpFo9GgVCpRqVRIJBLHBBQd/WMbSUEQeOi1KqrUI9tGcCBENj3jFDbOz4pk8UznW1yOBgRBoKioCJVKhSlwAvvyDdSoJAji3p4cnhYXmir20lD67eBP7IeBxIWe2IWltAS4YEEUc6f0DoZ8TVj4+uuvufbaa3nrrbe49NJLvT0cBEFAJBJRUlLC1VdfjVKp5JVXXvFamYYfP378eBNBEGhqauLTTz9l06ZN7NmzhxkzZrBhwwY2btzoUrtre9vsxMREJk6c6HOxic1mo6WlxVE+IRKJUCgUxMXFERMT02vD618fNVLaOt4jG0h9YTG2EhfaytkzAzg70/kWl6MB+yZnbW0t4rDJHCiCutZwJEFDi2msBhV3XylmjKJ3XGg3eVepVHR0dBAZGekQGtztydGT/3zWRH5z6rC+O1aDisSIDs6ZHcTiWb3jPLuwMGnSJJKSBjcTHWkOHDjARRddxGOPPcbNN9/s9d/5TyXOG7XiQk8EQaChocGhdO/du5dZs2Y5lO60tLQhf6Fqa2spLS1lypQpJCY6n+rmKU6dgADi4uKIjJbzzw87aTX4RuqaYDPzqzXBLJ515hk+QvfnUFBQQEdHB3Pnzu2VWplX2s62A62UNQiYhRDCY1I9eoNrLN9DY9kup48fqrhwGlYDY2IsnDUrjBnjBU4WnvAZYeHbb7/lyiuv5D//+Q9XXHGF1yecnnz22Wdcd911rF69mmeeeYa4uDjHhOTHjx8/P0UEQUCtVvPZZ5+xadMmdu3axaRJk1i/fj0bN25kypQpQ75HNjU1UVhYOGq6HthsNtra2hxxntVqRaFQEBur4JWtVlqsE7w9RKDbDHL1rCZWLZZ7eygjgt3cvbm5mTlz5hAW9mMJcGl1F1sPdVLRHIwQEN9nCbLN0MS918gcJpn9YfdeU6lUDk8Ou7AUHh7utljgpc2NFKpcE6UsxnaiZRoWTJYwf6KIwsI8nxEWjh49yvr163nggQe47bbbfCqGOtPjvDNCXOiJIAgolUrHBLR7926mTJniEBomTZrU54cnCAKlpaU0NDQwe/ZsoqKiPD94FxEEgba2NsorG3jpayk2iW8Y7whWEzdvDCVrmm+Mx93YbDby8vLQ6/XMmTMHmaz/iaO6Ucs/v5ADHhQXyr6nsXy308c7LS70wGY1ERmkY+H0MNYsVRDRT6srT7Bnzx4uu+wynn/+ea699lqfuJnbJ5W2tjb+/Oc/8+abb/LGG29w1VVX9fk8tVpNVVUVhYWFLF68mAkTfCO49OPHj5+RRhAEWltb+fzzz9m8eTM7duxg/PjxrF+/nosuuojp06f3Wcpq7whRWVnJjBkzUCiG303B2wiCQEdHB7V1TbyyPQRR2CRvDwnobme5cb6a5Vmx3h7KiCAIAoWFhbS2tjJnzpwBswmaNQa+3NdKQU0gZkk8YkkgGBp44LoQoobpUWU2mx2Zymq1moCAABQKBQqFgujoaKdLtl/4pJFizdA3XoeC1awnwNpA5gQRa5dEExM5MkaYQyE3N5c1a9Zw991388c/jkzHs+HyU4rzzjhxoSeCINDS0sKWLVvYtGkTO3fuZMKECY6UuqlTpyIWi+no6GDHjh0kJib22RFiNFHTqOPBN5TYxD7yGmx6/vzzGCaN840MCndjtVrJzc3FarWSmZk5pJqp2/8TjCB47kbXULaLpvI9Th4tImP+tW4dj73TyIw0KWuXykmO99x3dd++fVxyySU89dRT3HDDDT4x4cCPk8kPP/zAddddR0JCAm+++SYZGac7kG/fvp3bb7+d0tJSZDIZBoOB8847j7///e9kZWWdUeq3Hz9+/AxGe3s7X375JZs3b2bbtm0kJiY6hIbMzEzEYjEGg4Evv/ySuLi4PjtCjCbUbUYeekcHMu/vDkN3O8X/O6+TeVOjvD2UEcFms3HixAm6urqYM2fOsFrEd2rNbD/UysqF0YSFuLapYs9Utvs02Gw2h9AQGxuLVDq07g7dZTTuFRZOH6sFsbmZjAQDqxdFkJbsufLsEydOsGrVKu644w7uvvtun4mHfkpx3hktLvREEATa29v54osv2LRpEzt27CA5OZkVK1awbds2xowZw+effz6qDTWOl7Tz7MftMICZoCeRCFoeuCHhtNqyMwWz2Uxubi4ikYjZs2cP+cbuaXGhvuRbmiv3Onm0+8WFngiCQICo2wB0xcJoZk0cOQPQQ4cOsXHjRh555BF+85vf+NyN2WKx8Pjjj3PPPffw6KOPcvvttyOTybDfokUiEZs2beKaa64hLCyM6667jtmzZ1NSUsIrr7zC+PHj2bp16xnd3siPHz9+BqKrq4utW7eyefNmtm7dSkxMDCtXruTAgQPYbDZ2795NcPDojUkq6rT8c7MISZBvlB5YDC3cvsFCxrgzs0uY1WolLy8Po9HInDlzPGq0OBD2DBa7T4NerycmJsYhNvSXQfvMBw1Udnh2B1wQBGxGFcnRnZyXGcz8aSNnAHry5ElWrVrFzTffzP333++P87zET0ZcOJXOzk5efPFF7r//fhQKBVKplLVr13LRRRcxb948r3eHGC7fHVbzzk7jkNshjjQyUReP/iaZqHDfuBG7G5PJRHZ2NjKZjJkzZw7LZdrz4sJOmiv3OXewSEzGvGvcO6CBsOkZK7dy1y9SCJK51mO5J9nZ2axbt4777ruP3/3udz414dgV6KKiIm644Qbq6ur44IMPWLhwYa/n1dXVce6551JeXs6WLVtYt26d47Hnn3+e2267jbvuuou///3vnn4Jfvz48eNz6HQ63nnnHf785z8THByMTCZj1apVbNiwgcWLFw95Q8BXOHayjdd3hiGVRXh7KADYDM3cfVUAiXLf2NByNxaLhdzcXARBYPbs2T69+ajVah0ZDXZDSLtPgz0b+6n3Gqjp8n5qvcXYRmxwC7//WcywW5kPRElJCatWreIXv/gFjz76qD/O8yKjawXtRvbv38/f//537rrrLgoKCnjiiSdQq9UOY6A777yTffv2YbVavT3UQflwRwPv7DT7jLAQEdjJ07ennLHCgsFg4OjRo4SEhDBr1iyvt68aDEGwOX2sp2/NgiiIxNgAtwoLeXl5rF+/nrvuustnhQXozqw4duwYK1euZNKk7jpam637s9NqtfznP/+hvLyc2267zTHh2B+/8sorGTNmDBUVFb3+7sePHz8/VfLy8rjnnnv4xS9+QVlZGS+88AJGo5Grr76ajIwMbr31Vr777jvMZrO3hzoo2/areeO7aJ8RFkTGOh6+XnbGCgtms5ns7GxEIhFz5szxaWEBIDQ0lNTUVLKysjjrrLNITEykpaWF/fv3s3//fu5/pcwnhAUAqSyKiGCbW4WFiooK1q5dy5VXXskjjzzij/O8zOiSbd3Ivn37+Pe//83Pf/5zAC655BIuueQS9Ho933zzDZs3b+byyy9HJpOxbt06Nm7cyJIlS3zuBqPVW8gpMYAQCHh/kZsY0cWDN41HIjkzdSu9Xs+xY8eIjo5m6tSpzt3APJ0r5FJykudu0IIgkJVh5NeXpLjtnIWFhaxdu5bf//733HnnnT414QCO8TQ2NrJ9+3YkEgmrVq0iOrrb/NSeQVVWVsZHH33E1KlTueKKK4DuicX+eHBwMG1tbVRUVKDX60d12q8fP378uINDhw5xzz33cOuttwKwZs0a1qxZg9lsZvfu3XzyySfccMMNmM1m1q5dy8aNGznnnHMGNGX2BmaLjcNFZgSbGfD+vV1mqeKhm2KRBXo/5hwJjEYj2dnZBAcHM2PGDJ/fQDoVmUxGcnIyycnJWCwW/v5mPa1M8fawHCSHlPPHn49x2/mqq6tZs2YNGzdu5Mknn/S5zPOfYpz3kxUXHnzwwT7/HhwczPr161m/fj0mk4ldu3bxySefcN111yEIgmMCWrZsmU/UXoUGS3nst2mYrVa+O6Th+9wuGlsDEEk8PzlOStTyp2vH+9wCzl10dXWRnZ1NfHy8T/bF7g9XMhc8hSAIzJ9g5OZL3ScsFBUVsWbNGn7961/zt7/9zec+r7y8PBQKBYmJiZSXl7N7926WLFnCrFmzgB/VbqvVyqFDhyguLuaOO+5g9uzZQPeEZJ94Dhw4gMlkIjExkeDg4F4Tkh8/fvz8FPnd737X598DAgK44IILuOCCC3jhhRfYu3cvn3zyCbfeeitdXV2sXr2ajRs3cv755/tEAB8gFXPv9YkIgsCenDq+zzXSrI1BKvN8B65oSTn3/DIBicS35lN3YTAYOHbsGBEREUybNm1Uz6OCIPD4f1W02HxHWBgTXMadV7tPWKivr2fNmjWsWLGC5557zuc+r59qnPeTFReGQmBgICtWrGDFihW8+OKL7Nmzh48//pibb74ZvV7P2rVr2bBhA+edd96w3GNHggCJhBWL41ixuLtX6p7sFr490k6dRjriBo+CYGPBRDO/vmT8iF5nqJjNVnYe0XDu3Bi3pdd3dHSQnZ1NcnIy6enpPrdQHQiXbFU88DoFQWBuupHfXOY+YaGsrIy1a9fyi1/8ggcffNDnPi+1Ws2vfvUrZDIZq1evpry8nObmZh5++GFSU1OBHycdQRDYvXs34eHhLF26lKCgIMdj9oklJycHi8XC+eefD+Bzr9ePHz9+fBGpVMo555zDOeecw7PPPsuBAwfYtGkTf/rTn2hpaWHFihVs3LiRCy+8kNBQzzne94VIJGLZnBiWzemeH44UNLDzmJ6G9sgRN3gUBIFx4RX84arEEb3OUBEEge0HNJyVGUVosHviPJ1Ox7Fjx4iNjWXKlCmjeh4VBIGH32xCbU739lAcJAaV8+dr3CcsNDU1sXr1as4++2xefPFFn1to/5TjPL+4MESkUinnnXce5513Hs8//zz79u3jk08+4Y477qC9vZ2VK1eyceNGLrjgAq+3shSJRCybG8uyubEIgsDhglZ2HGyjSilBELtXhRdsVualqrh02RifUNH0Bgt/er4arSWcj3Y3ExVsYN7kINadFUdEmHMlLW1tbeTk5DB+/HjHDWFU4VLmwsjevARBYM54A7/92Ti3nbOyspK1a9dy2WWX8dhjj3n9O9kXISEhLF++nGeeeYa9e7s7ecTGxqLX69HpdISEhDjGLZFI2L17N2PGjHGo3fDjpFRfX8/3339PZGQk8+bNA3x70vHjx48fX0QikbB06VKWLl3KU089xZEjR9i0aRP3338/N954IxdccAEbNmxg1apVRER41/tAJBKRNT2KrOlRABwvaWLHYS3VLeFIguLcei3BZiU5KIdrlsuxWq1eLxMwW2zc+6oKnXg8X+YaCRKamTHOwrqzoomJdC5rt6uri2PHjpGYmEhGRsaonkMFQeDB15tosfqOsJAQVM5frnWfMKVUKlmzZg1ZWVm8+uqrXv9O9sVPOc77yXaLcBc2m41Dhw7xySef8Nlnn9Hc3MyFF17Ixo0bWbFihc/1Uj5e0s7X+1soaxRhE7kmggg2MxsWmpk8xoBSqcRqtTrcaWNjYz3+Y2/rNPGXf9dhEk5viSTYrIQG6pk1IYD1ZyuIjxlaNodGo+H48eNkZGQwduxYt4zzd68E40kvg+qCL9DUZTt1rFgSQPqcq9w8oh+ZNU7P7650n7BQU1PDypUrWbVqFS+88IJPCgun8u677/Lcc89x5MgRQkJCWLZsGddccw3r1q0jNDSUwsJCpk+fzuLFix0TVE8++ugjbrrpJs4//3xefPFFFAqFF16FHz9+/JyZ2Gw2jh8/zieffMLmzZuprKxk+fLlrF+/njVr1hAVFeVTgX5pdRdfHeigQhkKsnhEIufnQZvVRFZKOQsyjCiVSkwmE3K5nLi4OORyucc7bhiMVv6/vTuPaupa2wD+HAIIyDwExAlnEBVxrGOdFRkSrFqtWrXq1VbbqrVqvU5VK9UOtvbW29Fqta2tJKCIoKKg4Kw4AaI4AMoUkBkSEnL294eXfOLQMoQk4Ptb6667SnKSHQN53zxnn71X/1QAlcmzMx15dSUEldlwb1kBv0E2aOVcsx63qKgIV65cQZs2bdCuXeO/tHf9z1koMKBgQWh6F/+epb1gIS8vD76+vnB3d8fvv/9ucGvhPc/L1udRuKBFPM8jPj4eEokEUqkU6enpGDVqFMRiMcaPHw9ra2uD+tC6cO0BQk7kIFduBzVnWauxMbUSb4ubo5/n42v+ntxzNycnBxUVFZoCVLXVZ0PKyVNg9Y9ZUHP/PG2RMR7NjMrh2VYA/6GOcHN9/jEymQwJCQnw8PBAixba+2DUebiQcACPMq7W6VgjgSk69Jqq3QH9T482cix+Q3vBQmZmJsaNG4dhw4bhhx9+aBTBwpOuX7+Ozz77DPv27UNAQAB+/fVXNG/eHJmZmRgyZAg8PDxw6NAhVFZWgjEGExMTPHr0CHPnzkVYWBj+/PNPTJgwwaA+YwghpClhjCExMRHBwcEICQnBzZs3MWzYMIjFYvj5+cHBwcGgPoMTbudg/7EsPFK1hpGZKzijmp/0UavkEPfNw6h+DgAev/bS0lJNn1deXg4HBwdNn9fQ65AVlSqx7pdSsGat/vG+jOcBZQ7aC8vg84oVurg9/0RfQUEBrl69ivbt26NtW+31I/qUmlWOw2eKcDvTDGoTZxgZ6W+SupPJXfx7lovW/iYKCgrg5+eHNm3aYP/+/Qax9l1tvCx9HoULDYQxhoSEBOzfvx9SqRQpKSkYMWIERCIRfH19YW9vr9dfjoyMDCQnJ8PT0xMuLi5IyyrDwVN5SExVo4K3+Pukm5djxTR7dGn7/A/rJwuQTCZDWVlZgxag1MwybNyVV6dLPhhjMEY5OrXk4DvQHp4dH091zMrKws2bN9GtWzcIhdqdYqjrcCH1RijyM6/V6VgjQTN06DVFyyMCurUqx9Lpblp7vOzsbPj4+KB///745ZdfDHKKXE3J5XKkpKSgR48eAP63i0a/frhz5w6ioqLQu3dvzX0//fRTrFq1CmKxGH/88YfBrXJOCCFNFWMMt2/f1pxQunbtGgYPHgyxWAx/f384Ozvrtc+rOkFSNfMyK0+BsLgC3HzYDJUCFxgJXvyls1JZgtkjStCnq+0L71NWVqbp80pKSmBnZwehUAihUKj1WpRbUIENeypgZOZSp+PVChla25VgVB9z9HK3AcdxyMvLw/Xr19GlSxe0bNlSq+M1FHmFFQg/XYAbqcZQcEIIjHW3PpyD8V2sma29YKGoqAj+/v4QCoUICQlp1P1OU+/zKFzQAcYYkpOTNUl3QkIChg4dCpFIBH9/fzg5OemsADHGkJqaitTUVHh5ecHe3v6Z+2TlyXHgZB6u31VBrq4eNAhYGT6e6wJXp5p/kX9RAXJycqr3QpiJ94rxxR+FWlu0kuPL0cJWATdbGcRjusLRUfuLJOk8XLguRX7WjToda2Rshg7er2t1PJ6tyvGBFoOF3NxcjB8/Hj169MCePXt0Pk2zIVVdbxcTE4PXX38d7du3x9y5c+Hi4oKoqCh8++23cHV1RWRkJNzd3fU9XEIIeSkxxnD//n1N0HDx4kUMGDAAIpEIIpEIrq6uOg0aHj58iNu3b8PT0xPOzs7P3J5fVIGw2AJcTzOG0sgFRoL/P+lTqcjHYlElOrV99hLTF5HL5cjNzUVOTg6KiopgbW0NoVAIZ2fneu+48SC7HFv+YhCYaWcqeKUiH/bNZHC1SId4VAetzkw1ZOWKSkSezcel2wxFKicYm9b8/a0te+O7WKvFYKGkpARisRiWlpYICwvT+yL62tQU+zwKF3SMMYa7d+9qgob4+HgMHDgQIpEIAQEBaNGiRYMVIMYYbt26hZycHPTq1atG60HkFylx4KQM8beVYAzYtKAVbK3qPvNAoVBogobCwkJNARIKhbVeCPNCYgH+G1oGTtBA06LUCrR0qMSrvawwvLcDBALtTLPXdbhw/5oEBdkJdTpWYGyG9loMFxxN0zB5KKdZm6O+TcejR4/g6+uLTp06Yd++fY3i2rvaYoyhsrISu3fvxrp165CdnQ0zMzPI5XKMHDkSGzZswIABA/Q9TEIIIXj8mf3gwQNIpVJIpVKcOXMGffr00QQNbdu2bdA+7/79+0hLS0PPnj1hZ/fP21WWlKlw6HQ+4u9wUKpNsHKqOVo41v3LW0VFBXJzcyGTyZCfnw9LS0tNn2dpWbsvtMmppfgmzKTBtt2srCiGvVkeBngYY1R/e5iaNK7LKetKrWaIvpyPuBtK5JZrd1tTQekVvD6oUPOe13eXlbKyMrz22mswMjJCeHi43ndtaQhNrc+jcEGPGGNIS0uDRCJBSEgIzp07h379+mkKUOvWrbVWgNRqNRITE1FSUoJevXoZxN7NSqVSEzQ8XYCaN2/+t689+mIefj1WAc5IN18mmVoJJ2slBna3gM9AJzQzrfu0e12HC/eu7kdhTlKdjnWyt8TSd17H8UtFSJNxgKDui4B2aVGO91930TQdBQUFaN68ebWmoza/74WFhfDz80OrVq0QHBzc6K69q6uIiAjcu3cPr7zyCjp27AgbGxt9D4kQQshzMMaQlZWFkJAQSCQSxMbGokePHpo+r2PHjlrr86pmyebm5sLb29sgFhRXqVSamv/o0SOYm5trar6VldXfvvb45CL8HGUJY1PdvA61qhyWghz07sRh/EB7rW1xaegYY7h8swjHL8vxIN8SRmbCOv9O2hrdxaoZ9sjLy9P09ubm5poTSrVde04ul2PSpElQKpWIiIgwiN9pXWjsfR6FCwaCMYaMjAxN0n369Gn07NkTYrEYIpGoXivYqlQqXLt2DWq1Gt7e3gb5JUylUmk+jPLy8mBmZqYpQE9/GIWdyoE0Tg1OT4vUMF4FW3MF+nqYwW+IENbNaxdw6D5c+AuFOTfrdKyzoxWCv1+A7OxsJCYmwsy2M84kqpGSyaBiFjX+nezsUoaVs9pV+1nVe56bm4u8vDyYmJhoLpextbX92wUZi4uLIRKJYGdnh9DQ0CY1Ra42qqbTEUIIMWyMMeTl5WmChujoaLi7u0MkEkEsFsPd3b3On+dqtRoJCQkoKyuDt7e3QZxAelplZSUePXoEmUyG3NxcTc0XCoXP7LgRG5+PP8/aQ2Cin63d1ZX/2+LSrRL+g+u+xWVjUrU7moVdB1xMMcWdHHMwE+caLwJqw93Dx3OrrzNS9Z7n5uYiNzcXRkZGmqDB3t7+b/s8hUKBqVOnoqioCEeOHGl0X7C1pTH2eRQuGCDGGHJychAaGgqJRIKTJ0+ia9eumgLUuXPnGv+iKRQKXLlyBc2aNYOXl1ejWOhOrVZXCxqMjY01BejwuXJEXRXUa2slbeL4cmx7v2WtAgZdhwt3r+xDkexWnY5tIbTB9nUBSEpKQo8ePaqtQZGeVY5DcXlIuF/5zNocT+ooLMOqt9o997YqPM8jPz9f03QwxjS7jTy9rWlpaSkCAwNhZmaGQ4cOGWQTRQghhLwIYwwFBQU4cOAApFIpjh07hnbt2kEkEiEwMBCenp413vFIpVLh6tWrYIyhZ8+eBnkC6Wlqtbpazec4TtPnnbvJI+K6s04XH/w7lRVFWD1VXa9LRQxdVbDw9O5oOY8UOHS6EEnpxlAKqq/N8SRr7h42zP37BUx5nkdhYaHmPVepVNX6vCcva1UqlZg+fTqysrIQFRVVo8t7iOGgcMHAMcaQn5+vCRqOHz+OTp06ISAgAIGBgfDw8HhhASorK0N8fDzs7OzQtWvXRrc1H/D4w6gq6d4fU4q0YjeDSfA4Xo41s168leWL6DxciP8DRbm363Ssi5MV3p7c+Zlg4WkFxUqExeYi/pYCRQpzzayS9sIyrP6HYOFpjDEUFRVpplJWrdORm5sLPz8/LFy4EAAQHh5e6+s3CSGEEENTVFSEsLAwSKVSHDlyBC1atNCcUPL29n5h/1Z1AsnMzAw9evRoFCeQnvbkl85Dp4uRphwEI4FhrJ9UWVGEBT5ydP/fTmJN0YuChaeVlqsQcSYfl+8ApWpnzawSK9zDxnm12xmFMYaSkhJNb1dWVobS0lLcvn0bgYGBWLduHe7fv48TJ07AwcGh3q+R6BaFC41I1ZeugwcPagpQmzZtNEFDjx49NAUoMTERMpkMrVq10uo1ffry5d5U3HhgbjCvw4gvx4Z5zrXaNaOKrsOFO5d/Q3HenTod62DbDD9teaNWu2YoKioReSYPOQUqzJ/Quk7P+6SysjJIJBJ8/fXXuH37NiwtLbFixQpMmTIF7du3r/fjE0IIIYaitLQUhw8fhkQiweHDh+Hg4ICAgACIxWL07dtXEyAkJycjJycHjo6Of3uiqbHYGZaFqxluNZ6G39AqKwqwOEBVq10zGpuaBgtPU6p4nLiYjzsZKiycWP9dIcrLy3H06FFs2bIFCQkJMDMzw+LFizF9+vR6XS5E9IPChUasuLgY4eHhkEqliIiIgFAoREBAAJycnPDJJ59gz5498PHx0fcw64Uxho0/pyI1z3BWhxWwMmxe4Aonu7pdg6frcCHl0h6UPLpXp2Nbu9ri92/maXlEtVdRUYE33ngDeXl5mDJlCo4ePaq5XvXs2bNNcvVgQgghL7fy8nIcOXIEEokEhw4dgqWlJQICAtChQwd8/PHH2LJlC958881G/+Xrm78ykVLQwWBeR6XiET6cxODWQj9rPuhCXYOFhqJWq7FgwQJcuXIF8+bNQ0xMDI4ePYo2bdrgxIkTaNmypb6HSGqIwoUmoqysDBEREfj8889x8eJF9OrVC/3794dYLEb//v0b5VQ5tZrH6v/eR06p4awOa8KVYcs7Leu1HafOw4WLv6Ik/36dju3Q1gm7vpyl3QHVklKpxIwZM5CRkYGoqCjY29sDeLxbRFxcHPz8/PQ6PkIIIaShKRQKREVFYdu2bYiJiUHPnj3h7e2NwMBADB48uFFuxcwYw5a92ciSd9D3UDTUilysmmpUp5mpjYUhBgvvvfce4uLiEBMTowkSysrKEBUVBX9//0Y/M+dl8nLss/ISsLCwQEpKCm7evIlDhw5BpVJBIpFg8uTJMDMzg7+/P8RiMQYNGgRjY8N/2yuUaqz8NhVFFYYTLJgZlWLrotawtGhcBZwxvs7HCoz0exZBpVJhzpw5SEtLw4kTJzTBAgDY2tpSsEAIIeSlYGZmhuzsbJw/fx5//PEHbG1tERwcjLfeegtqtRq+vr4IDAzEsGHDGsWijowxrP85G4W84QQLvCIb62Y0q/PM1MYgLy8P169fN5hgged5fPDBB4iJiakWLABA8+bNIRKJ9Dg6UheG/y2T1EhaWhp+/vlnnDx5Ej179gQABAQEQKlU4vjx45BIJJqpc1UFaOjQoQZbgHbsf4BCRXMYyAw5NDcuwdZFbWFu1vj+ZOozOclIoL+kuLKyEvPnz8fNmzcRHR1dq3UfCCGEkKYkPz8fW7ZsweHDhzF06FAAwJgxY7Bjxw7ExsYiODgYCxcuRFlZGXx9fSESiTBq1CiD3ar51/Ac5KvawECWWABTZGLjLAvYWhtmX6wNhhgsrFy5EpGRkYiOjkbbtm31PSSiBXRZRBNSWVn5t7MSKisrcfLkSezfvx8HDhxARUUFfH19IRaLMXz4cIMrQDl5Chw4lYtrd1UoV5nrbZEfa9MSfPauG0xMtPP8ur4s4tb5n1FW+LBOx3br4or/bp6m5RH9M7VajYULF+LcuXM4efKkQRRBQgghRJ/+qc9Tq9U4c+YMJBIJQkJCUFBQgHHjxkEkEmHMmDEGtz5RQbESYXH5uH7fGArOGQJj/cwY4CoeYtMcq0Y3M7U2qoKFrl27wsXFRd/DAc/zWLNmDf766y9ER0ejc+fO+h4S0RIKF15SarUacXFxmgJUXFwMHx8fiMVijBo1ChYWhrWITUGxEgdPynD5dgVKKv5/q8OG5mBRgs0L3WCixTUrdB0uJJ/7CeVFGXU61qtrK/xn41Qtj+jv8TyP999/HzExMYiOjkabNm10+vyEEEJIY8fzPC5evIjg4GCEhIQgKysLY8aMgUgkgo+PD6ysDOeyU+DxVofhp/Nx+Q6Hct4FAhPdnPAyVqZj41xbWBjIzFTGmNYXtjS0YIExho0bN+KXX35BdHQ0unbtqu8hES2icIGA53mcO3dOEzTk5uZizJgxEIvFGDt2LCwtDWsbntJyFcJic3EhSY5CecMFDU4WRQha1EHri8joPFw4+wPKi7PqdGyvbm3w9ceva3lEL8bzPD788ENEREQgOjoa7dq109lzP09qaioSExNhZWWlmYZKCCGENCY8z+Pq1auaoCE1NRWjRo1CQEAAfH19YWNjYzA7NQCAokKNiLOPcCGZobhSCGPThplxYay8h0/mOcKsmWEEC7kFFdiwRwkAaGNfitF9m6NnF+t6PaYhBgtbt27Fjh07cOLECXTv3l2v46E+T/soXCDV8DyP+Ph4BAcHQyqV4uHDhxg1ahREIhHGjx8Pa2trAytAlTh8OhdnE+TIKzEFJ9DOtXKOZjL4eOXCyMgIQqEQQqEQdnZ2WgkadB0u3DzzPeQl2XU6tq+XG75cO0nLI3o+nuexatUqhISEIDo6Gh07dtTJ8z5Pbm4uNm7ciG+//RYAIBAI0KJFC6xevRqzZs1qlKtyE0IIIYwxJCQkaIKGW7duYdiwYRCLxfDz84O9vb1B9XlKFY/jFx7hdKIaBUonGJtqZ8aFseIWfLvdhZER4OTkBKFQCHt7e73trpbzSIGNv1VCYCas9vNKxSO0sCrEMG8zDPKyrdV7Y4jBwldffYUvvvgCUVFR6NWrl97GQn1ew6FwgbwQz/O4ceOGJmi4c+cORo4ciYCAAPj5+cHOzs6gCpBKpcax849w4nIh8krNYSSo27V7nZzL8NHsduB5HoWFhZDJZJDJZFCr1ZoC5ODgUOcCpPNw4fR/IS+V1enYV3q1x2f/fk3LI3oWYwzr16/H3r17ERMTgy5dujT4c75Ifn4+5s2bh5CQEM3ipwqFAvv378fly5exc+dOTJw4UW/jI4QQQrSBMYZbt25BIpFAKpXi+vXrGDJkCMRiMfz9/SEUCg2qz1OrGU5dyceJeDkeKZxgYmZXp8ex4e7h47nOAICioiLIZDLk5ORApVLB0dERzs7OcHBw0Nnuapm5cmz+g4fAzOlv71dZUQQH80cY2NUYI/vZw8T4xSe8DDFY+PbbbxEUFIQjR46gX79+ehsL9XkNy+DDhYa49ojUHmMMN2/e1CTdiYmJGDp0qKYAOTo6GsT7lJOTg4SEBLi7d8WtDBNExxcj45ExIPjna/cYY+jeRo6l09yee1tVAZLJZFAqlXB0dIRQKISjo2OtCpCuw4WkuB1QlOXW6djBfTsiaGWglkdUHWMMQUFB+PHHH3HixAl4eno26PP901j+/e9/Y8uWLZgxYwa2bt0KofDxWYTU1FQMHToUrq6uOHToEO1eQQghWkB9nmFgjOHevXuaoOHSpUsYOHAgRCIRAgIC4OrqahDvU35+Pq5evYoOHTogo8ga0fEKZBbbwtjMoUbHO5rcxepZLs+8FsYYSkpKNH2eXC6Hg4MDhEIhnJycGuxM9kOZHJ/uYxCY1a6nqFSWwdpYhr5dOIwbYF9tzQhDDBZ+/PFHrFu3DhERERg4cKBex0J9XsMy+HCBGB7GGO7cuaMJGq5cuYKBAwdCLBYjICAALi7PfmjrQmZmJpKTk9G9e3c4Of1/+ssYw5nrBYi6UIi0XAFgZP7MsYwx9O1YgXcm/fPigYwxlJaWIicnR1OA7O3t4ezsXKMCpPM1F858j/I6XhYxbEBnbFzWcHsMM8bwxRdfYPv27Th+/Di8vLwa7Llq4u7du+jfvz/atGmDvXv3omvXrtVW5541axZ+/fVXXLt2TXOdYFJSEq5fvw5LS0t4e3tX26OZEEIIaWwYY0hPT4dUKoVUKsXZs2fRt29fBAQEQCwWo02bNnrp83Jzc3Hjxg24u7vD1dW12m3xyUU4drEcDwqsXzgDwNXiLlZMr9nuU6WlpcjNzUVOTg5KS0thZ2en6fOaNdPOrhYPssux5S8OghoGIy+irlTAHDnwasdjgDuP1HtJ8PT0NJhgYffu3Vi5ciXCwsLw6quv6nU81Oc1PMNYweQ5wsLCkJ6ejry8PIwYMQIdO3ZEixYtwPO81hfYI7XDcRw6deqEjz76CCtXrkRaWhokEgmCg4Px4Ycfon///hCJRBCJRGjVqpVOCtCDBw+QkpICLy8vODhU/5DmOA6DvOwxyMseAHD5ZiGOnC3AvWwOvJEFGOMxpGsl3hLVbFcCjuNgZWUFKysrdOzYEWVlZZDJZHjw4AGSkpJgZ2enWafh+QVItwWZZ+o6H2ssaLi/NcYYtm/fjq+++grHjh3Te7AAADt27EB+fj6CgoI0qxc/OSulXbt2aNasGdTq//833b9/P4KCgqBUKmFjYwNPT0+sXbsWY8aM0fn4CSGksaA+z3BxHIe2bdtiyZIlWLx4MTIzMxESEgKpVIq1a9fCy8tL0+d16NBBJ31ednY2EhMT0a1bNzg7Oz9zey93G/RytwEAJN3NQcT5EqTmWYFr9visdHubu1g8xfWZ417E0tISlpaWaNeuHeRyOWQyGbKyspCcnAwbGxtNn2du/uwJq5pIzSrHZ/uNYGxmX6fjnyQwNoMSbXHxAXA+VQUjpTHulajhN1iBFo7622aeMYbff/8dK1aswIEDB/QeLADU5+mCQc5cmDJlCsLDwyGXyzVFxtvbG19++SWGDBmi7+GRF2CMISMjA1KpFBKJBGfOnIG3tzfEYjFEIhHc3NwapADdv38fqamp8Pb2hq2tba2OTbxXjKzcCozq//fXudVUVQGSyWQoKip6bgF6/wfdbvOZGPctKsry6nTs2Fc9sfq98Voe0ePfle+++w6bNm1CZGQk+vfvr/XnqK3i4mJ4enqC4zhcuXKlWkilVqshEAgQEBCAEydOIDw8HK+++ioqKyuRlpaGpKQkREdH4/jx47hx4wYGDRqEAwcOwN6+/k0DIYQ0NdTnNU6MMchkMoSGhkIqlSI6OhoeHh4QiUQQi8Xo0qVLg/R5GRkZuHXrFnr06FHrqer3HpbhVlo5fAZpp8+rqKjQ9HkFBQWwtLSEs7MzhEIhmjev2a4W9x6W4QupQCvBwt9hvBqcKgcdneXwGWiNjq0aZteN5z43Y9i/fz8WLVqE4OBgjBs3TmfP/SLU5+mGwYULM2fORHBwMBYsWIBJkyahqKgIf/75J3bt2gWO4/Ddd99h9uzZOltkhdQNYww5OTkICQmBRCLByZMn0a1bN00B6tSpU70LEGMMd+/excOHD9G7d2+D27O5oqICubm5kMlkyM/Ph6WlJZychNh+vJtOx5EQ+w2U5fl1OtZ3RHesXKjdgsAYw86dO7F69WqEh4dj8ODBWn38uoqIiICvry8WL16ML7/8UvPzquuBi4uL0aJFCwiFQly5cuW5QdaiRYvwyy+/ICgoCO+9954OR08IIY0D9XlNA2MMBQUFOHDgACQSCaKiotC+fXuIRCIEBgaia9euWpmBkp6ejrt376Jnz56ws6vbAo4NRaVSaS6dyM/Ph7m5OYRCIZydnWFpafncPjclrRRfHTSFcTNbnY6VMQZWIUMbh1KM6dscXp3rt8XlPwkNDcW8efOwb98++Pv7N+hz1RT1ebphUJ/cFy9exKFDhzBt2jSsXbsWNjaPpzeNHTsW/fv3R1BQEBYsWACFQoFFixYZxMIy5Pk4joOLiwvefvttLFiwAI8ePcKBAwcQHByMoKAgdO7cGQEBAQgMDISHh0et38uqFY5lMhn69u1b47RYl5o1a4ZWrVqhVatWmgKUnV23XRvqhefrfKhlc+1Op2OMYc+ePVi1ahXCwsIMJlhgjOH8+fPgOO6ZfY55nodAIMC+ffsgl8sxfPhw2NraVpu6yxjD7du3ceDAAXTo0AGjR4/WHEvTewkh5DHq85oOjuNgb2+P2bNnY/bs2SgsLERYWBikUimGDRuGli1bamau9uzZs9a1kDGG+/fvIz09Hb169dL8rhgSExMTuLq6wtXVFZWVlcjLy4NMJsPFixdhamqqmblqY2MDjuOQnFqKb8KawbiZ7l8Lx3HgzJzxsMwZO2MAdeQjtLAuxNRR1miv5RkNhw4dwrx587Bnzx6DCRaoz9MdgwoX0tLSUFBQgFdffRU2NjaorKwEx3EQCASYP38+7O3tsWbNGixZsgT29vaYNm0arTLcCHAcB0dHR8yZMwdvvfUWCgsLcfDgQUilUnz55Zdo06aNJunu3r37P/6RMsaQlJSEgoIC9O3bt87Xu+lSVQESOrsCl3T73HWdnNSyhRPmT9fe9FTGGPbt24dly5YhNDQUw4YN09pj1xfHcZDJZDA3N4e1dfU0v2rL0Z9++gkAMGfOHADV/105jsOxY8eQkZGBKVOmwMPDAwCo4BBCyBOoz2u6bG1tMWPGDMyYMQMlJSU4fPgwJBIJfHx84OjoqFkMsm/fvjXq81JSUpCVlYU+ffrA0tJSR6+i7oyNjeHi4gIXFxeo1Wrk5+cjJycHV65cgUAgQDlvj7AbXfQSLDyPwMwBuSVyODtoZ3HKKkeOHMHs2bOxc+dOTJgwQauPXR/U5+mOQYULVW92fv7jKdxVU+KqUqFJkyZBrVbjvffew+zZs+Hu7o7evXvrbbyk9jiOg52dHWbOnImZM2eiuLgYhw4dglQqxejRoyEUCjWXTvTu3fuZP1qe55GQkIDS0lL06dMHZmb6W6imLvRyEVIdFnR0dXHCr9umw8RYoLVhSKVSvP/++/jrr78watQorT2utsjlcpSXl2umwSmVSpiYmIDjOISGhuLSpUsYMmQIBg0aBOD/ixHw+DPrjz/+gJOTE8aOHQuA0mxCCHka9XkvBysrK7z++ut4/fXXUV5ejsjISEgkEgQGBsLKygr+/v4Qi8UYMGBAtVoKPP5Cl5ycjLy8PPTp08cgZ6b+E4FAACcnJzg5OYHneZy7momw0y4wbtawlyLUSkUGPplrjebm2vsqeOLECcyYMQPfffcdJk+erLXH1Rbq83RD7/8iT6ZCDg4OMDU1xfbt25GcnKz5uZGREfj/Te2eMmUKli9fjsrKSnz11VcoKyvT+ZiJ9lhbW+ONN95AcHAwcnJysHXrVmRnZ8Pf3x+enp5YsWIFzpw5A7VajZKSErz99tvIz89vlMECAOgjW+BZ7S6LaOHsiD1fTYepifYKzsGDB7FgwQL89ttvGD9e+wtEaoOfnx8AICYmBgBgamoKjuNw7do1rF+/HhYWFli2bBkAVFtFGADOnz+Ps2fPYtiwYRgwYAAASrMJIQSgPu9lZ2FhgQkTJuC3335DdnY2duzYAblcjilTpqBz5854//33ERMTA5VKhYqKCrz77rtITU012Etea+t6Sil+O9PC8IKFOZZaDRZiY2MxdepUfP3115g+fbpBzjaiPk839D5z4clfvt69e2Pu3LnYsWMHdu/ejaVLl8LJ6fHqrlWFx8jICMuWLUNYWBhOnz4NhULRJD58CNC8eXNMnDgREydOhFwux9GjRyGRSDB58mSYmprCysoKpqam2LhxI0xNTfU93DrRx8wFhpqHCy7ODtj79QytBguHDx/GnDlzsHv3bohEIq09rraNGTMG48aNw8aNG1FRUYGePXuivLwcH374IVJTU7F582b4+PgAqJ5mKxQK7Nu3D8bGxvDx8UHz5s1pGi8hhPwP9XmkipmZGfz9/eHv7w+lUono6GhIJBLMmjULPM/DxcUFpaWlWLp0aaM8gfS0yzcLsfO4NYxNDeiyjooMbHrLEpYWJlp7yLNnz2LSpEnYunUr3nrrLYPtf6jP0w297RYRFhaGlJQUlJSUoF+/fvDy8oKrqyvS09MxceJE3Lp1Cxs3bsSMGTOqrQ6rVCphamqK5cuX4/PPP8eJEycM6tpton1ZWVkYNmwY5HI5VCoV1Go1/Pz8EBgYiKFDh8LERHsfkA1NoQRW7NLtVpRXo4LAq5X/eD9noQN+++pNNGumvWAhKioKb7zxBn788UdMnTpVa4/bUC5duoTly5cjJiYGJiYmUKlUcHFxwbJly7B06dJq960qLDdu3MCrr74KDw8P/P7772jbti0VHULIS4/6PFJTRUVFGDlyJB4+fAhzc3MUFhbC19cXYrEYI0aMaJRBw8XEQuyKtoGxqQEFY4pMbJrTHFbNtdc3X7x4ESKRCBs2bMC7775r8L0P9XkNTy8zFyZPnoyDBw9Cqfz/LzwDBgzA3LlzMXv2bHz88cdYtGgR1q9fD5VKhalTp2pWYq06Y11YWAgXFxe4ubnp4yUQHcnOzsaYMWPg6emJP/74A0ZGRjh58iSCg4Mxb948qFQqTQEaPnw4mjXT7sI02qaXmQs1eFKhk73Wg4WTJ09i2rRp2LFjB6ZMmaK1x21Iffr0wYkTJ3Djxg3ExMSgVatW6NmzJ9q2bau5T1VB4TgOPM8jNDQUhYWFGDt2rOZ+VHAIIS8z6vNITRUVFcHX1xdWVlZISUmBhYUFTp8+DYlEgqVLl6KoqAjjxo2DSCTCmDFjYGGh2xM0dXHuRgH2nrI1qGCBKbKw8S0LrQYLV65cgVgsxurVqxtFsABQn6cLOp+5MHv2bAQHB2PRokWYPXs2UlNTERsbi6CgIPA8jzVr1uDjjz9GSEgIVqxYgczMTLzxxhtYuHAhvLy8AADh4eFYtGgR2rdvD4lE8tx9SEnTkJeXh6+++grr169/Zs9rtVqN2NhYSCQShISEoLS0FD4+PhCLxRg1apRB7iKhqmT4an8J0vPNYWSimxWDrxzdCPY36y44Odrht6/fhLmZ9i41OX36NF577TV8+eWXmDNnTqP/EK6aqsvzPOLi4pCRkYGhQ4fCwsICw4cPR1FREfbu3YtBgwbRAj+EkJca9XmkNkpLS/HJJ59g7dq1z/RtPM/jwoULCA4ORkhICHJycjB69GiIxWKMGzcOVlZWehr13/uvJAuJGVYQmAn1PRQAVcGCOWwstdfn3bhxA+PHj8cHH3yAjz76iPo8oqHTcCEpKQlDhgyBv78/tm3bVm0aXExMDCZPnoy8vDwsX74cn376KWJiYrBx40ZER0ejefPmEIlEKCwsxLVr1yCXyxEbG6vZCoS83NRqNc6dO6cJGvLy8jB27FiIRCKMHTvWILcxun6nDMcuVSDtUXNwJnb/fEAdxR/ZgBctJenoYIfft2s3WDh//jzEYjE2b96Md955p9EXnCfl5eXh3XffxZ9//onBgwejdevW2LdvH2bNmoWff/4ZAK0eTAh5eVGfRxoKz/O4cuUKgoODIZVKkZ6ejlGjRkEkEmH8+PGwsbExuH4jObUUh88W436uJbhmQnCc7nsDpsjChlnmsLXWXp+XlJSE8ePH4+2338b69esN7t+9PqjPqz+dhguRkZEYP348goODMWHCBM11dVVv0qVLlzBx4kSkp6fjk08+wUcffQSlUomtW7fiwIEDSEhIgFAohLe3N7Zs2YIuXbroauikEeF5HpcvX9Yk3Q8fPsTo0aM1Bejp/W0Nwe10OSLPy3FPZg7e2E6rBSj+yMfP/bmDvS1+3z4TFubaKziXL19GQEAA1q1bh/fff79JFZwqubm5+Oyzz7B7927k5uYCAEaPHo1ly5bBy8sLQqFhnKkghBBdoz6P6AJjDAkJCZqg4fbt2xg+fDjEYjF8fX1hb29vcP3H/cxyhJ8uQkq2OZiJMzgj7W31/SK8IhsbZpnBTovBwu3bt+Hj44OZM2ciKCjI4P6dtYH6vPrRabgQGxuLV199FStWrEBQUFC126qub7l48SJGjhwJlUqFvXv34rXXXgMAlJWVoaioCPb29mCMGeSUd2J4eJ7H9evXNUHD3bt3MXLkSAQEBMDPzw+2trYG98GYnqVA+Lly3M4yg9rIHlw90lHGeFw5uvGZn9vaWOH7za+hhbOj1l7/tWvX4Ovri5UrV+LDDz80uH/XhhASEoIvv/wSp0+fhrm5OQYNGoTt27fD3d1d30MjhBCdoz6P6BpjDLdu3YJEIoFEIkFCQgKGDBkCsVgMf39/ODk5GVw/kpkrx6G4QiQ9bAa1iQuMjLS/BF5leSY+CKyAW2snrZ1lv3v3Lnx8fDB58mR8/vnnL8XZe+rzak+n4UJmZia6d++ONm3aYM+ePejWrVu126uS7YMHD+K1117DtGnTsGvXLgCgVTlJvTHGkJSUpAkakpKS8Oqrr0IsFsPPzw+Ojtr7oq0tWXlKHD5XiqQHplBxDrVOuhmvxpVjm6r9zNbGGmsXvoLS4nwIBAIIhUIIhULY2trWuVAkJibCx8cH77//PlavXm1w/44NLTk5GV988QViY2MRHx/fKBacIoQQbaM+j+gTYwx3796FRCKBVCpFfHw8BgwYALFYjICAALRo0cLgfsfyCitwKK4AN1KNoRS4wEhQ/1kGank2pg16AGVZHhhjcHJyglAohIODQ537vNTUVPj4+MDf3x/bt29/KYKFJ1GfV3M6X9Bx06ZNWLt2LZYuXYrNmzdrVgWuwhiDQqHA5MmTERkZiYSEBJoWR7SOMYaUlBRN0HD16lUMGjRIU4CcnZ0NrgA9KlRif5QMNzPMwJu2gJHgn1f85flKXD32iea/7Wxt8Ps3M2Fp0Qw8z6OgoAAymQwymazOBSg5ORk+Pj7417/+hQ0bNhjcv5suPbkg0MtWeAkhBKA+jxgGxhjS09M1QcO5c+fQr18/BAQEQCwWo3Xr1gbXrxSVKvHX0Qxcvy8AM3eDwLj2W3Dyihyse9MUjrbNwBhDYWGhps+rrKyEo6MjhEIhHB0dIRDU7IRVRkYGxowZgzFjxuC///3vS93fUJ/3z3QeLmRnZ+O1117D2bNn8emnn2L58uXVbq9KroOCgvDvf/8bsbGxGDRokC6HSF4yjDGkpqZqCtCFCxfwyiuvQCQSQSQSoWXLlgZRgDIyMnDr1i14e3tDYGqFiLOluHLPCGVq+xcm3bxahatRmwE8nrHw+/aZsLJ8tlgxxlBUVIScnBzIZDKoVKpqQcPTO3VUSUlJgY+PD6ZPn45PP/2UPmgJIeQlR30eMTSMMWRmZkIqlUIqlSIuLg5eXl4Qi8UQiURo3769QfR5MpkMN27cQPfu3WFpbY/DZ/Jx6TZDqdoZApN/PlOuVsiwboYJnOye3ZadMYaSkhLIZDLk5ORAoVBUCxpMTJ5/wiorKwvjxo3D4MGD8dNPP9U4kCAvL52HC8DjxUDGjRuH1NRUbNq0CYsWLXpmkb3Fixdj165dOHPmDLp27arrITYImvJn+BhjePjwoaYAnT59Gr1799YEDW5ubnp5Dx8+fIjbt2/D29u72urbACBXqBF5vgSXUjgUK+1g9ETSra5U4trxINjaWGPv1zNhY/XPKfiTBUgmk0Eul8PBwQFCoRBOTk6aAnT//n2MGzdOs+UkBQuEEEIA6vOI4WKMIScnB6GhoZBKpYiJiYGHh4cmaOjSpYte3sMng4WnFwxUqngcOfcI527yKFQ6wdj02R3Q1AoZ1k43gdD+2WDhaYwxlJWVafq80tJS2Nvbay6TrZptJJPJ4OPjg169emH37t0vPNFEyJP0Ei4AwM2bNyESiXDnzh289dZbmDZtGoYPHw4AOHz4MBYvXgwXFxccPHiwSexv/PSKycTwMcaQnZ2NkJAQSCQSnDp1Ct27d9cEDZ06ddJJAfq7YOFpKhWPY5dKcO4mQ77CDoARUi9+i9+2z6pRsPA8paWlmgJ07NgxHD9+HMOHD8e+ffvg6+uL//znP/Q7TQghpBrq84ihY4whPz8fBw4cgEQiQVRUFDp27AiRSASxWIyuXbvq5L38u2DhaWo1w4lLjxB3Q4U8uSOMm9lArcjFmmkCODvUrc8rLy/X9Hnnzp3Dn3/+iZEjR+LIkSNwd3fH77///sKZDYQ8TW/hAvB41dHFixcjMjISFhYWGDhwIBhjuHbtGiorK3Hy5MkmkWbPnz8flpaW2LhxIywsLKjwNEKMMeTl5WkK0IkTJ9C5c2dNAfLw8GiQoKE2wcLT1GqGk/GF6NXFDLbW2ll1+969e/jxxx8RGhqKBw8eYPDgwZgwYQImTJiANm3aaOU5CCGENA3U55HGoury0LCwMEgkEhw9ehStWrXS9HleXl4N8p7m5OQgISGhRsHC88Ycd7UAHVtboIVj3YKFpz18+BA7d+6ERCLB3bt30adPH7z22muYMGECOnXqpJXnIE2bXsMFACgsLER4eDg+//xzZGZmwsrKCr1798aGDRuaxAI/06dPx++//w5XV1csWLAAH3zwAczNzanwNGJVC+QcOHAAUqkUR48ehZubG0QiEQIDA9GtWzetvLf1CRYaSnZ2Nnx8fPDKK69g06ZNOHToECQSCU6ePIkbN27Q1jyEEEKqoT6PNEYlJSUIDw+HRCJBREQEnJycEBAQgMDAQPTp00cr721VsNCjRw84OTlpYdT1V1RUBH9/fzg7O+OHH37AkSNHIJVKcezYMRw7dgxDhw7V9xCJgdN7uFBFLpejoqICxsbGMDU1fWZ14cbo+++/xzvvvANvb2/k5uYiLy8PK1euxLJly6jwNCFFRUU4dOgQpFIpIiMj4eLiokm6e/XqVaf32BCDhdzcXIwfPx49evTAnj17ql17l5+fDzs7O7rWlBBCyHNRn0caq7KyMkRGRkIikSA8PBw2Njbw9/eHWCzGK6+8UqdFDg0xWCgpKYFIJIKVlRXCwsJgZvb/syGKi4thbm5Ol0eQf2Qw4UJTc+vWLUybNg03b97E5cuXUVZWhokTJyIvLw/Lly+nwtNElZaWIiIiAhKJBIcPH4adnZ1m26N+/frVqAAZYrDw6NEj+Pr6olOnTti3bx8VF0IIIS816vNeTnK5HMeOHYNUKsXBgwfRrFkz+Pv7IzAwEIMGDarRooeGGCyUlZVhwoQJEAgECA8PR/PmzfU9JNJI0addA1EoFLC2tsYPP/wAd3d3eHl54eeff4aTkxO2bt2Kzz//HHK5XLNXKmkaLC0tMWnSJOzbtw/Z2dn4+uuvUVhYiIkTJ8Ld3R1Lly7FqVOnUFlZ+dzjDTFYKCws1OyU8ccff1CwQAgh5KVHfd7LydzcHAEBAdi1axeys7Pxyy+/gDGGN998Ex06dMDChQtx7NgxKJXK5x5viMGCXC7H5MmTwRhDWFgYBQukXmjmgpY9uQ1RcnIyWrZsCSsrK81tMTExmDNnDnJzc6sl2yqVqtqXNtrOqGlRKBQ4fvw4pFIpDhw4AIFAAD8/PwQGBmLIkCEwMTHB9u3bYWtri4CAAINZObu4uBgBAQFwcHBASEhItSlyhBBCyMuG+jzyPJWVlTh16hT279+P0NBQKBQK+Pn5QSQSYcSIETAzM8Ovv/6qmeFiKMGCQqHAlClTUFxcjCNHjsDGxkbfQyKNHIULOva8wrNkyRJYWj7es1YikaBDhw7o2bOnfgdKGoxKpUJMTAwkEglCQ0OhUqnQp08fxMXF4ddff4WPj4++hwjg8SUeYrEYFhYWCAsLg7m5dnacIIQQQpoq6vOIWq3G6dOnERwcjNDQUBQVFWHgwIGIjo7G9u3bMX36dH0PEQBQUVGB6dOnIycnB8eOHTOYGbOkcaNwQUvCwsKQkpKCkpIS9OvXD71799ZsKaNWq6tda/904Vm1ahWWLl2KkJAQLFq0CC1btsT58+fRrFkzSrWbuMrKSnz44YfYsWMHOnbsiIyMDIwfPx5isRgjR47U2xf6srIyvPbaa+A4DuHh4ZqmiBBCCHkZUZ9H6oLneQQFBeHjjz9Gly5dcP/+fYwZMwZisRjjxo3TW3+lUqnw5ptvIjU1FSdOnICDg4NexkGaHgoXtGDy5Mk4ePBgteurBg4ciNmzZ2POnDkAnl94jh8/jvnz50Mmk2HcuHGIjY1FRUUFTp06he7du+v8dRDd++9//4uVK1ciIiIC/fv3x9mzZyGRSBASEoJHjx5h3LhxEIlEGDt2rM6ugau69k6hUCAyMlIz3VPfUlNTkZiYCCsrK9oKiRBCiM5Qn0fqKjg4GDNnzsRff/0FHx8fxMfHIzg4GFKpFA8fPsTIkSMhFosxfvx4WFtb6yRsqqysxFtvvYXk5GScOHFCE5LpG/V5TQOFC/U0e/ZsBAcHY9GiRZg9ezZSU1MRGxuLoKAg8DyP5cuX49NPPwXwbOEBgJMnT2Lq1KnIzs6Gra0tTp06hW7duunjpRAdY4zh3XffxRtvvIGBAwdWu43neVy6dAnBwcEICQlBZmYmRo8eDZFIBB8fH1hbWzfImCoqKjB16lQUFBTg6NGjBnHtXW5uLjZu3Ihvv/0WACAQCNCiRQusXr0as2bNogUmCSGENBjq80h9rFmzBq+88gp8fX2r/ZzneSQkJGiChpSUFIwYMQIikQh+fn4Ntr23Wq3GggULEB8fj+joaLi4uGj9OWqL+rymhcKFekhKSsKQIUPg7++Pbdu2VbtWKSYmBpMnT0ZeXh7ee+89fPXVVwAef5hwHKf5wNi1axfee+89mJiYIC4uDh4eHvp4KcSA8TyPa9euaYKGe/fuYeTIkRCJRPD19YWtra1WCpBSqcSMGTOQkZGBqKgo2Nvba2H09ZOfn4958+YhJCQEvr6+CAwMhEKhwP79+3H58mXs3LkTEydO1PcwCSGENEHU5xFdYIwhOTlZEzQkJiZi6NChEIlE8Pf3h5OTk1b6PLVajXfffRenT59GTEwMWrZsqYXR1w/1eU0QI3UWERHBOI5jEomEMcZYRUUFY4wxtVrNGGPs4sWLrG3btozjOLZu3bpnjt+9ezezsbFh9vb2LCEhQWfjJo0Xz/MsISGBrV+/nvXo0YOZmJiw0aNHs2+//ZalpaWx0tJSVlZWVuv/FRYWssDAQNa9e3eWm5ur75fJGHv8Wj/66CNmZGTEZs6cyXJycjS33b9/n7Vu3Zr179/fYMZLCCGkaaE+j+gaz/MsJSWFBQUFsb59+zJjY2M2dOhQ9sUXX7CUlJQ693klJSVs7ty5zM3NjaWmpur7ZTLGqM9rqoz0HW40ZlXXwF+8eBEAYGpqCgAwMjICYwx9+vTB/v37YWlpia1bt0IqlWqOLS0txcOHD2Fqaoro6Gh4enrq/gWQRofjOHh6emLdunW4evUqEhISMGzYMOzcuRMdOnSAn58ffvzxR2RnZ4PVcFJSZWUl5s+fj+TkZBw7dgyOjo4N/Cpq5t69e/jhhx/g5eWF5cuXQygUorKyEgDg5uaGESNG4MKFC8jKygLwOJGvUlRUhOzsbL2MmxBCSNNAfR7RNY7j0LFjR6xcuRLnz59HSkoKAgICIJVK4e7ujtGjR+Obb75Benp6jfs8nuexYsUKHDlyBFFRUWjbtm0Dv4qaoT6vaaJwoR46dOgAOzs7REZGIiEhodptHMeB53n07dsXe/fuhUqlwsGDBzW3W1paYtq0abhx4wZ69Oih66GTJoDjOHTu3BmrVq3CxYsXcevWLYwfPx779u1D586dMW7cOOzYsQMPHz58YQFSq9VYuHAh4uPjcfz4cTg7O+v4VbzYjh07kJ+fj7fffhtdu3YFABgbG2tub9euHUxNTTWFSCAQ4N69e5gyZQoGDx6Mvn37YujQodX+7gghhJCaoj6P6BPHcXBzc8MHH3yA2NhYpKamYsqUKYiIiED37t0xbNgwbNu2Dffu3Xthn8fzPNasWYPQ0FBERUWhQ4cOOn4VL0Z9XhOlz2kTTcHGjRsZx3Hsgw8+0EyXexLP86y8vJz5+fkxY2NjlpycrIdRkpcJz/MsLS2Nbdu2jQ0ZMoQJBALWv39/tnnzZpaYmKiZUldSUsJmz57NOnTowNLT0/U97GqKiopYq1atWOvWrVleXl612yorKxljjPn7+zMLCwsWHR3NGGMsKiqKtWnThhkZGbEhQ4aw6dOnsz59+jAzMzO2YcMGXb8EQgghTQD1ecTQ8DzPsrKy2I4dO9ioUaOYsbEx8/LyYuvWrWPx8fGaPq+0tJStWLGCOTs7s8TERH0Puxrq85ouChfqKSsriw0cOJBxHMe2bNnyzO08zzPGGNu8eTPjOI7FxcXpeojkJcbzPMvIyGD/+c9/2IgRI5ixsTHr1asXW79+PZsyZQpr27Ytu3//vr6H+YzDhw8zjuPYkiVLqv286u+pqKiIWVhYsLZt27Li4mKWmZnJevTowTiOY99++63m/klJSWz48OHMycmJnTt3TqevgRBCSONHfR4xZDzPs9zcXPbTTz8xHx8fZmpqyjw9PdmqVavY/PnzmaOjI7t+/bq+h/kM6vOaLrosop5cXFzwyy+/wM3NDStXrsTmzZtRXFysub1qddecnBxYW1tXW2m4KXnyOihiODiOg6urKxYuXIioqChkZmZi/vz5iIyMRHBwMI4dOwY3Nzd9D7MaxhjOnz8PjuOe2eeY53kAwL59+yCXyzFu3DhYWVlh27ZtSEhIwHvvvYd33nlHc38PDw+8//77yMvLQ0xMjObxCSGEkJqgPu8x6vMME8dxcHR0xJw5cxAeHo6cnBwsX74c58+fx48//ohDhw6he/fu+h5mNdTnNW0ULmhB586dER4ejo4dO2L16tVYunQpoqOjNbcfPnwYhw8fRo8ePeDq6qrHkTacsrKyav9NRcjwcBwHJycn/Otf/8KZM2eQl5eHTp066XtYz+A4DjKZDObm5rC2tq52W9X+4T/99BMAYP78+UhMTMRff/2Fnj17YsaMGQAeF5aq4tKzZ08AgEwmg1qtbpB9owkhhDRd1OdRn9cYcBwHW1tbvPnmm4iKikJ+fj769++v72E9g/q8ps34n+9CasLDwwMRERFYvHgxdu/ejf3792PgwIFgjOHatWuorKxEaGgobG1t9T1Urfrkk09w9uxZXLt2DYMHD0afPn2wdOlSzYcDMUwcx8HGxkbfw3ghuVyO8vJyzd+LUqmEiYkJOI5DaGgoLl26hGHDhsHb2xubNm1Ceno6/vWvf2lW465aaIvjOFy/fl3zmPR7SQghpC6oz6M+r7GhPo/oA81c0KIOHTpgz5492LVrF9q3b4/4+HjcuXMHQ4cORVxcnGYl1KZCJBJh48aNuHv3Llq2bInw8HB8+OGHGDp0KOLj46FSqfQ9RNJI+fn5AYBmipupqSk4jsO1a9ewfv16mJmZYfny5VAqlYiOjkaLFi0wZMgQmJmZaR7DyOjxx9upU6cAAK+++iqA/59yRwghhNQG9XnU5xHtoD6vCdPXYg9NXXl5OSsoKGAlJSXPXV24sVu1ahUzNTVlmzdvZgUFBYwxxlJTU9nUqVOZiYkJ69y5Mztw4ABTKBT6HShplIqLi5mPjw+ztbVlmzdvZocPH2bBwcGsXbt2jOM4FhQUxFQqFUtPT2dCoZCNHz+eZWRkMMYeLwZUtSDQgwcP2MCBA5mNjQ1LS0vT50sihBDShFCfR30eqTvq85ouChdIrVVWVrLBgwez3r17s+LiYsYY0xTW/Px89umnnzInJyfWrl07Fh4ervkAIKQ2Ll68yIYPH844jmOmpqaM4zjWokUL9sUXX2juc+bMGcZxHJs1a1a1Y9VqNWOMsd27dzNTU1M2depUplQqdTp+QgghpDGiPo/oAvV5TROtuUBqhed5yGQyXLlyBUOHDoWVlRWUSiVMTU3BGIOdnR0WLlwIc3NzbNiwAR9++CG6du0KNzc3qNVquhaK1FifPn1w4sQJ3LhxAzExMWjVqhV69uyJtm3bau4jk8kAQLOAVkVFBUxMTGBkZAS5XI59+/ZBpVJh5syZMDEx0cvrIIQQQhoL6vOIrlCf1zRRuEBqxcjICC1atECvXr1w8+ZNyOVymJubg+d5GBkZgTEGS0tLzJ49G/n5+diwYQPee+89HDx4kAoOqZPu3btX20aJPbHF0IABA2BiYoKkpCQAQLNmzTS3/frrr4iMjMSoUaMwduxY3Q2YEEIIaaSozyO6Rn1e00ILOpJaYYxBrVajR48eSEtLw+rVq6FSqTQFh+M4MMZgZWWFRYsWYciQITh06BAOHz6s76GTJqJqiyHGGIRCIebMmYOIiAh8+umnSE5Ohkqlws8//4xly5bB3t4emzZt0tyfEEIIIS9GfR7RN+rzGjeO0TtBaqCqoFTJycnBK6+8gpKSEmzduhWzZs2qVniqEu7jx49j7Nix2LJlCz744AM9vgLSVCUnJ2PBggWIi4tD+/btoVAo8PDhQ3Tp0gVBQUEQi8X6HiIhhBBi0KjPI4aK+rzGhWYukL919epVqFSqagVHrVbD2dkZX3zxBRhj2Lp1K/7880+o1WpNwani4uICjuPw4MEDfQyfvATc3d0RExODP/74Az169MCAAQOwadMm7N+/nwoOIYQQ8jeozyOGjvq8xoXWXCAvNH78eKSnp2Pbtm0YMWKE5lq6qv8fNWoU1q9fjzVr1mDt2rXIz8/HvHnzYGpqqnmMc+fOwdTUVHMt1dPJOCHaMmnSJEyaNAkKhaLaPsiEEEIIeRb1eaQxoT6vcaBwgTzXkiVLEBkZCQBYs2YNOI7D8OHDIRAINIXD2toa06ZNg7GxMdauXYulS5fi9OnTWL16NaytrRETE4Ovv/4aLi4umoVWqOCQhmZmZkbNDSGEEPI3qM8jjRX1eYaN1lwgzwgODsacOXPQpk0bjBkzBj/++CO6dOmCzZs3a5LtJ/+o5XI5zp8/j3fffReJiYkwNzeHQCCAWq2Gg4MDDh8+jG7duun5VRFCCCGEEOrzCCENhcIFUo1cLsekSZMQFRWFy5cvw8PDAxs3bsRnn30GDw+PFxYeACgtLcW+fftw7do15Ofnw8vLC6+//nq1/WoJIYQQQoh+UJ9HCGlIFC6QZ1y4cAFxcXFYunQpACA7Oxs//PADtm7d+tzCAzy+xs7IiNYHJYQQQggxZNTnEUIaCoUL5LlUKhVMTEw0/52Tk4Pvv//+uYWnSnFxMaytravtg0zXQxFCCCGEGBbq8wghDYEiSPJcVQWnKntydnbG/PnzsXz5cty8eROrVq1CVFSU5v579+7FmjVrcO/ePU2hoYJDCCGEEGJ4qM8jhDQEmrlAauXJZLtr164ICgpCWloali9fDgsLC5w9exYtW7bU9zAJIYQQQkgtUZ9HCKkPChdIrWVmZmLXrl3YvHkzXF1dkZ2dDYFAgFOnTmn2OW5KeJ6n6wwJIYQQ8lKgPo8QUlf0l0RqRa1Ww9XVFfPmzcO4ceNw584dmJiYIC4urskVnJiYGACAkZEReJ7X72AIIYQQQhoY9XmEkPqgcIHUStXCPkeOHEFsbCxsbW0RFxcHT09PPY9MuyZOnAhfX1/s3bsXABUeQgghhDR91OcRQurDWN8DII1PZGQkVq5cidLSUly4cAEeHh76HpJWLV26FFKpFBzHYeXKlRAIBJg6daqm8NDUOUIIIYQ0VdTnUZ9HSF3RXw+pNXd3d3h7e+PChQtNLsmWSCT46aef0LdvX2zcuBGZmZlYsmQJfv/9dwCUbBNCCCGkaaM+j/o8QuqKZi6QWnNzc4NEIoGpqam+h6JVxcXFOHbsGEpLS/HNN9+gX79+sLe3xzvvvIOlS5cCAN544w1KtgkhhBDSZFGfR30eIXVF4QKpk6ZWcACgefPm6N+/PwYPHox+/fpBrVZjwYIFMDIywoIFC55beDiO0+zzzBijPZ8JIYQQ0uhRn0d9HiF1QVtREvIEtVoNpVIJc3Pzaj//4YcfsGDBAgiFQnz55Zd44403nns8Jd2EEEIIIYaJ+jxCGhb9dZCX3pP5mkAgeKbgAMC//vUvfPfdd5DJZFi6dKlmdWEA+M9//oMpU6YAABUcQgghhBADQn0eIbpDMxfIS+vq1avw9PSEiYlJjY+pSradnZ2xbds2cByHZcuWISMjA/fu3YObm1vDDZgQQgghhNQI9XmE6B6FC+SlNH78eKSnp2Pbtm0YMWKEZl/nmti5cyfmzp0Le3t7lJeXw8zMDKdOnUK3bt0acMSEEEIIIaQmqM8jRD9obg956SxZsgSRkZFISkrCmjVrEB0dDbVa/Y/HVd3nrbfewqxZs5Cfnw9zc3PExsZSwSGEEEIIMQDU5xGiPxQukJdKcHAwdu7cCU9PTyxZsgRJSUn46KOPcOLEiX8sPFWp9y+//IKoqCjY2NggLi6uye0BTQghhBDSGFGfR4h+UbhAXhpyuRy7du1CRUUF9u3bh88++wwffPABbt68iVWrVtWo8MTExGDhwoUoLCxEbGwsPDw8dDR6QgghhBDyItTnEaJ/FC6Ql4a5uTnWrl2LzZs3w9PTE0ZGRpg/fz6WL1/+wsLz9JIkrVu3xuTJk2mKHCGEEEKIAaE+jxD9owUdyUtHpVJVWzk4JycH33//PbZu3QoPDw9s3rz5mcV/SkpKYGVlBcYYVCoVTE1N9TF0QgghhBDyN6jPI0R/aOYCeelUFZyqXM3Z2fmZZDsqKkpz/71792L16tW4c+cOOI6jgkMIIYQQYqCozyNEf2jmAiH/82Sy3bVrVwQFBSEtLQ3Lly+HhYUFzp49i5YtW+p7mIQQQgghpJaozyOk4VG4QMgTMjMzsWvXLmzevBmurq7Izs6GQCDAqVOn0L17d30PjxBCCCGE1BH1eYQ0LAoXCPkftVoNgUCA3NxcvP3225BKpbCzs8OpU6doGyJCCCGEkEaM+jxCGp6xvgdAiKGoWtjnyJEjiI2Nha2tLeLi4mgbIkIIIYSQRo76PEIaHs1cIOQJkZGRmDt3LgoKCnDhwgVKsgkhhBBCmgjq8whpWLRbBCFPcHd3h7e3NxUcQgghhJAmhvo8QhoWzVwg5ClKpZK2ISKEEEIIaYKozyOk4VC4QAghhBBCCCGEkHqhyyIIIYQQQgghhBBSLxQuEEIIIYQQQgghpF4oXCCEEEIIIYQQQki9ULhACCGEEEIIIYSQeqFwgRBCCCGEEEIIIfVC4QIhhBBCCCGEEELqhcIFQgghhBBCCCGE1AuFC4QQQgghhBBCCKkXChcIIYQQQgghhBBSLxQuEEIIIYQQQgghpF4oXCCEEEIIIYQQQki9/B9f0TPvABzg0gAAAABJRU5ErkJggg==", - "text/plain": [ - "
" - ] - }, - "execution_count": 8, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "plot_state_city(psi)" - ] - }, - { - "cell_type": "code", - "execution_count": 9, - "metadata": { - "ExecuteTime": { - "end_time": "2021-07-31T05:08:56.152890Z", - "start_time": "2021-07-31T05:08:55.944830Z" - }, - "execution": { - "iopub.execute_input": "2023-08-25T18:25:15.069341Z", - "iopub.status.busy": "2023-08-25T18:25:15.068583Z", - "iopub.status.idle": "2023-08-25T18:25:15.385365Z", - "shell.execute_reply": "2023-08-25T18:25:15.384499Z" - } - }, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAxYAAAGmCAYAAADh6xL7AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAAAkCklEQVR4nO3df5BV9X0//tddfuzyY3c1YvihiIpoOjGVsWp0oCohylRrTRt/oGkyYEDUplVjBKFYSamCSoOdOlHjRsE6RlAb7dRJESOsstHIqFiaEYsQ17UEq0m7FwQX0Pv9I9/dZj8suJf3Xu69ex+PmTvDnvO+97zue5bz2uc9P24ml8vlAgAAIEFVsQsAAADKn2ABAAAkEywAAIBkggUAAJBMsAAAAJIJFgAAQDLBAgAASCZYAAAAyQQLAAAgmWABAAAkEywAAIBkggUU0JIlSyKTyXQ8Jk+enPR6GzZs6PR6Rx99dM8UCsBBpT/QG/UtdgFQLG+//XYcc8wxnZb17ds3PvvZz8a4ceNi5syZccopp/TIti688MIYO3ZsnHjiiUmvM2TIkLjlllsiIuKuu+7qgcoA2Jf2PjFp0qT4t3/7t4JsQ3+gNxEsqHijR4+OP//zP4+IiA8//DBeeeWVeOyxx+LJJ5+MZ599Ns4888zkbXzlK1+JKVOmJL/OkCFDYt68eRHx20+7AChv+gO9iWBBxTvuuOM6dsbtFi5cGLNnz46bb745Ghsbi1MYAEAZcY0FdOGb3/xmRES88sorXa5//vnn44ILLoghQ4ZEdXV1jBkzJubOnRs7duxI2u7jjz8eY8eOjYEDB0b//v3jpJNOiqeeeirpNQHoOatXr45MJhPz5s2Ln/3sZzFhwoSora2Nww8/PK655prYuXNnREQ8/fTTccYZZ8SgQYNi6NChMXPmzNizZ88Bb1d/oBwIFrAfffvufVDvnnvuibPPPjuampri/PPPj7/6q7+KI488Mm699dY455xzYteuXXlv5+OPP46pU6fGxRdfHIccckhce+21cfHFF8cvfvGL+OpXvxovv/xyT7wdAHrIz3/+85g4cWLU19fHjBkz4qijjop77rknpk+fHsuWLYuLLrooRo0aFTNmzIhDDjkk7rzzzrjtttvy3o7+QFnJQYX65S9/mYuI3KRJk/Zad9ttt+UiInf++ed3Wv6LX/wi17dv39xJJ52U++CDDzqtW7BgQS4icosWLepY9uCDD+YiIvfggw/ut5ZZs2blIiJ33333dVq+ePHiXETkvva1r+31nFGjRuVGjRr1Ke8SgAPVVZ9YtWpVLiJyEZF78sknO5bv2rUr9/u///u5TCaTGzJkSO7ll1/uWJfNZnOf/exnc5/5zGdyu3btyuVy+gO9kyMWVLy33nor5s2bF/PmzYsbb7wxvvSlL8WcOXNi6NChceedd3Yae99998WePXviH//xH+Owww7rtG7mzJlx+OGHx49+9KO8tv/mm2/G9773vbjkkkviyiuv7LTu0ksvjYiI9evXH8A7A6BQJkyYEBdeeGHHz/369YuLLroocrlcXHDBBXHqqad2rKutrY0//uM/jt/85jfx7rvvdnsb+gPlxsXbVLxNmzbFd7/73U7Lhg0bFi+88EIcd9xxnZa/9NJLERGxYsWK+OlPf7rXa/Xr1y82bNiQ1/Yffvjh2L17d1x33XV7rRs4cGBERPTp0yev1wSgsMaOHbvXsuHDh3/qui1btux1q/N90R8oN4IFFe9370/+/vvvx9KlS2PWrFnxJ3/yJ/Hyyy/H4MGDO8b+5je/iYiIW2+9tce2/6//+q/xmc98Jk4//fS91rV/sjV69Oge2x4A6erq6vZa1n5d3v7W7d69u9vb0B8oN06Fgt9x+OGHx3e+852YM2dOvPHGGzF37txO69ubRTabjVwut89Hd+3YsSP+/d//PY444ojIZDJ7rX/66acjImLixIkJ7wqAcqM/UI4EC+jCnDlzYsSIEfH9738/3n777Y7lX/ziFyPi/06JSrVu3br45JNPurxN7Y4dO+IHP/hBDBo0qONcWgAqg/5AORIsoAsDBgyIWbNmxe7du2P+/Pkdy6+55pro27dv/OVf/mW88847ez3vf//3f+O1117r9nZeffXViPjtdR6/+7yPP/44/uIv/qLj+o9DDz004d0AUG70B8qRayxgH6688sq4/fbb46GHHoo5c+bE6NGj48QTT4zvf//7cfXVV8cJJ5wQ5513XowePTq2bdsWmzdvjsbGxpgyZUrce++93dpGe+M4//zzY+LEiXH55ZfHgAED4umnn4433ngjpk2bFt/+9rcL+TYBKEH6A+XIEQvYh5qampg9e3bs2bOn012jpk+fHi+++GJ85StfiZdeeinuuuuuePzxx+ODDz6I66+/vsu7d+zLq6++GocddlgsX748Lr300li+fHncfffdMWjQoHjooYfi/vvv7/LcWgB6N/2BcpTJ5XOlKZCXJUuWxNSpU+PBBx+MKVOmdFrX1tYWtbW1ceaZZ8azzz6b92sfffTRERGdrgEBoDzoD/RGjljAQTB16tTIZDIxefLkjmXr16+P3bt3d3m/833ZsGFDZDKZyGQy0dzcXIBKATiY9Ad6E9dYQAGNHTs2brnllo6fTzzxxI5/t58/m0/jGDJkSKfXO+SQQ5JrBODg0x/ojZwKBUVy9dVXx7333hvr16/v1FAAqGz6A+VKsAAAAJK5xgIAAEgmWAAAAMnK6uLtTz75JLZs2RK1tbXu3QzQQ3K5XGzbti1GjBgRVVXl+3mTHgHQ8/LpEWUVLLZs2RIjR44sdhkAvVJLS0sceeSRxS7jgOkRAIXTnR5RVsGitrY2In77xurq6opcTe/zwAMPxHvvvVfsMmC/hg4dGldccUWxy+hVstlsjBw5smMfW67a67/++uujurq6yNUA9A5tbW2xePHibvWIsgoW7Ye26+rqBIsCGDBgQNTU1BS7DNivAQMG+P9fIOV++lB7/dXV1fZlAD2sOz2ifE+mBQAASoZgAQAAJBMsAACAZIIFAACQTLAAAACSCRYAAEAywQIAAEgmWAAAAMkECwAAIJlgAQAAJBMsAACAZIIFAACQTLAAAACSCRYAAEAywQIAAEgmWAAAAMkECwAAIJlgAQAAJBMsAACAZIIFAACQTLAAAACSCRYAAEAywQIAAEgmWAAAAMkECwAAIJlgAQAAJBMsAACAZIIFAACQTLAAAACSCRYAAEAywQIAAEgmWAAAAMkECwAAIJlgAQAAJDvgYLF27do477zz4pBDDolBgwbF6aefHsuXL+9y7K9+9av45je/GcOHD4+ampo44YQT4tZbb43du3cfcOEAlCb9AaAy9T2QJ61atSomTZoUNTU1MXny5KitrY0nnngiLr300mhpaYkbbrihY+zWrVvji1/8Yrz77rvxp3/6pzFmzJhobGyMuXPnxssvvxxPPvlkZDKZHntDABSP/gBQufIOFnv27Inp06dHVVVVPP/88zF27NiIiPibv/mbOO2002LOnDlx0UUXxahRoyIiYtasWdHS0hL33HNPXHXVVRERkcvl4vLLL49HH300Hn300bjssst67h0BUBT6A0Bly/tUqOeeey42bdoUl19+eUfTiIior6+POXPmxK5du2Lp0qUREbFt27ZYtmxZHHvssTFjxoyOsZlMJhYuXBgREffff3/iWwCgFOgPAJUt7yMWq1evjoiIc889d691kyZNioiIxsbGiIh48cUXo62tLc4555y9DmePGjUqTjjhhGhqaoqPP/44+vTps9frtbW1RVtbW8fP2Ww233IBOEgOZn+I0CMASk3eRyw2btwYERFjxozZa92wYcNi8ODBHWP2N7Z9+a5du6K5ubnL9QsWLIj6+vqOx8iRI/MtF4CD5GD2hwg9AqDU5B0sWltbI+K3h7a7UldX1zGmO2N/d9z/a/bs2dHa2trxaGlpybdcAA6Sg9kfIvQIgFJzQHeFOliqq6ujurq62GUAUIL0CIDSkvcRi/ZPl/b1KVI2m+0Y052xvzsOgPKlPwBUtryDRfv5sO3nx/6urVu3xvbt2zvG7G9s+/L+/fvHUUcdlW8ZAJQY/QGgsuUdLM4666yIiHjmmWf2WrdixYpOY04//fTo379/rFy5MnK5XKexzc3N8eabb8a4ceOib9+SPiMLgG7QHwAqW97BYuLEiXHsscfGI488EuvWretY3traGrfddlv0798/vvGNb0TEby++mzx5cmzevDnuu+++jrG5XC5mz54dERHTp09PfAsAlAL9AaCy5f1RUN++faOhoSEmTZoUZ555ZkyePDlqa2vjiSeeiObm5li0aFEcffTRHeMXLlwYq1atimuuuSaeffbZOO6446KxsTFeeumluOCCC2Ly5Mk9+X4AKBL9AaCy5X3EIiJiwoQJsWbNmhg3blwsW7Ys7rnnnhg6dGg8+uijccMNN3QaO3z48Pj5z38eU6dOjTVr1sTixYvj17/+dcyfPz8ef/zxvb4YCYDypT8AVK4DPnn1tNNOi5/85CfdGjt8+PD44Q9/eKCbAqCM6A8AlemAjlgAAAD8LsECAABIJlgAAADJBAsAACCZYAEAACQTLAAAgGSCBQAAkEywAAAAkgkWAABAMsECAABIJlgAAADJBAsAACCZYAEAACQTLAAAgGSCBQAAkEywAAAAkgkWAABAMsECAABIJlgAAADJBAsAACCZYAEAACQTLAAAgGSCBQAAkEywAAAAkgkWAABAMsECAABIJlgAAADJBAsAACCZYAEAACQTLAAAgGSCBQAAkEywAAAAkgkWAABAMsGCiIjYvXt37Nixo9hlwKfasWNH7N69u9hlAAD/j77FLuBAPPDAAzFgwIBil9Gr7NixI7LZbLHLgE+VzWbj7rvvjoEDBxa7lF5j586dxS4BgF6gLIPFe++9FzU1NcUuAyiSbDYrCPegjz76qNglANALOBUKAABIJlgAAADJBAsAACCZYAEAACQTLAAAgGSCBQAAkEywAAAAkgkWAABAMsECAABIJlgAAADJBAsAACCZYAEAACQTLAAAgGSCBQAAkEywAAAAkgkWAABAMsECAABIJlgAAADJBAsAACCZYAEAACQTLAAAgGSCBQAAkEywAAAAkgkWAABAMsECAABIJlgAAADJBAsAACCZYAEAACQTLAAAgGSCBQAAkEywAAAAkgkWAABAMsECAABIJlgAAADJDihYrF27Ns4777w45JBDYtCgQXH66afH8uXL9xr3/PPPx3e+852YMGFC1NfXRyaTiSlTpqTWDEAJ0yMAKlPffJ+watWqmDRpUtTU1MTkyZOjtrY2nnjiibj00kujpaUlbrjhho6xDzzwQCxdujQGDhwYRx11VGSz2R4tHoDSokcAVK68jljs2bMnpk+fHlVVVfH888/HD37wg/j7v//7eP311+P444+POXPmRHNzc8f4b33rW/Ef//Efkc1m48EHH+zx4gEoHXoEQGXLK1g899xzsWnTprj88stj7NixHcvr6+tjzpw5sWvXrli6dGnH8lNOOSU+//nPR58+fXqsYABKkx4BUNnyCharV6+OiIhzzz13r3WTJk2KiIjGxsb0qgAoO3oEQGXL6xqLjRs3RkTEmDFj9lo3bNiwGDx4cMeYntDW1hZtbW0dPzv/FqB06REAlS2vIxatra0R8dvD2l2pq6vrGNMTFixYEPX19R2PkSNH9thrA9Cz9AiAylbS32Mxe/bsaG1t7Xi0tLQUuyQASoQeAVBa8joVqv1TqH194pTNZuPQQw9Nr+r/V11dHdXV1T32egAUjh4BUNnyOmLRft5sV+fIbt26NbZv397lubUA9H56BEBlyytYnHXWWRER8cwzz+y1bsWKFZ3GAFBZ9AiAypZXsJg4cWIce+yx8cgjj8S6des6lre2tsZtt90W/fv3j2984xs9XSMAZUCPAKhseV1j0bdv32hoaIhJkybFmWeeGZMnT47a2tp44oknorm5ORYtWhRHH310x/g1a9ZEQ0NDRES8//77HcumTJkSERFDhgyJRYsW9cw7AaCo9AiAypZXsIiImDBhQqxZsyZuueWWWLZsWezevTu+8IUvxO233x6XXnppp7FvvfVWp29ZjYjYtGlTbNq0KSIiRo0apWkA9CJ6BEDlyuRyuVyxi+iubDYb9fX1cdNNN0VNTU2xywHoFT766KNYuHBhtLa2Rl1dXbHLOWB6BEDPy6dHlPT3WAAAAOVBsAAAAJIJFgAAQDLBAgAASCZYAAAAyQQLAAAgmWABAAAkEywAAIBkggUAAJBMsAAAAJIJFgAAQDLBAgAASCZYAAAAyQQLAAAgmWABAAAkEywAAIBkggUAAJBMsAAAAJIJFgAAQDLBAgAASCZYAAAAyQQLAAAgmWABAAAkEywAAIBkggUAAJBMsAAAAJIJFgAAQDLBAgAASCZYAAAAyQQLAAAgmWABAAAkEywAAIBkggUAAJBMsAAAAJIJFgAAQDLBAgAASCZYAAAAyQQLAAAgmWABAAAkEywAAIBkggUAAJBMsAAAAJIJFgAAQDLBAgAASCZYAAAAyQQLAAAgmWABAAAkEywAAIBkggUAAJBMsAAAAJIJFgAAQDLBAgAASCZYAAAAyQQLAAAgmWABAAAkEywAAIBkggUAAJBMsAAAAJIJFgAAQDLBAgAASCZYAAAAyQQLAAAgmWABAAAkEywAAIBkggUAAJBMsAAAAJIJFgAAQDLBAgAASCZYAAAAyQQLAAAgmWABAAAkyztYPPzwwzFjxow45ZRTorq6OjKZTCxZsmSf47PZbHz729+OUaNGRXV1dRx99NFx4403xvbt21PqBqAE6REAlatvvk+YO3duNDc3x5AhQ2L48OHR3Ny8z7EffvhhnHXWWbFu3bo499xz47LLLovXXnstFi1aFI2NjfH8889HTU1N0hsAoHToEQCVK+8jFg0NDfH222/H+++/H1ddddV+x95xxx2xbt26mDVrVqxYsSIWLlwYK1asiFmzZsXatWtj8eLFB1w4AKVHjwCoXHkHiy9/+csxatSoTx2Xy+WioaEhBg8eHDfffHOndTfffHMMHjw4Ghoa8t08ACVMjwCoXAW7eHvjxo2xZcuWGDduXAwaNKjTukGDBsW4ceNi8+bN0dLSUqgSAChRegRA71PQYBERMWbMmC7Xty9vH9eVtra2yGaznR4AlD89AqD3KViwaG1tjYiI+vr6LtfX1dV1GteVBQsWRH19fcdj5MiRPV8oAAedHgHQ+5T091jMnj07WltbOx4OiQPQTo8AKC153262u9o/hdrXp03th6z39WlVRER1dXVUV1f3fHEAFJUeAdD7FOyIxaedH/tp59cC0HvpEQC9T0GDxYgRI6KpqSk+/PDDTus+/PDDaGpqimOOOcY5sQAVSI8A6H0KFiwymUxMmzYttm/fHvPnz++0bv78+bF9+/aYPn16oTYPQAnTIwB6n7yvsWhoaIg1a9ZERMT69es7lq1evToiIsaPHx/Tpk2LiIiZM2fGU089Fbfffnu89tprcfLJJ8err74azzzzTJx66qlx3XXX9cy7AKAk6BEAlSvvYLFmzZpYunRpp2VNTU3R1NTU8XN70xg0aFA0NjbGvHnz4oknnohVq1bF8OHD44YbbohbbrklBgwYkFg+AKVEjwCoXJlcLpcrdhHdlc1mo76+Pm666aaoqakpdjkAvcJHH30UCxcujNbW1o7vjyhHegRAz8unR5T091gAAADlQbAAAACSCRYAAEAywQIAAEgmWAAAAMkECwAAIJlgAQAAJBMsAACAZIIFAACQTLAAAACSCRYAAEAywQIAAEgmWAAAAMkECwAAIJlgAQAAJBMsAACAZIIFAACQTLAAAACSCRYAAEAywQIAAEgmWAAAAMkECwAAIJlgAQAAJBMsAACAZIIFAACQTLAAAACSCRYAAEAywQIAAEgmWAAAAMkECwAAIJlgAQAAJBMsAACAZIIFAACQrG+xCzgQQ4cOjQEDBhS7jF5lx44dkc1mi10GdEtdXV0MHDiw2GX0Gjt37ix2CQD0AmUZLK644oqoq6srdhm9yu7du+Puu+8WLih5dXV18a1vfSv69etX7FJ6jWw2G9dff32xywCgzDkVioiI6Nevn0+AKQsDBw4UKgCgBAkWAABAMsECAABIJlgAAADJBAsAACCZYAEAACQTLAAAgGSCBQAAkEywAAAAkgkWAABAMsECAABIJlgAAADJBAsAACCZYAEAACQTLAAAgGSCBQAAkEywAAAAkgkWAABAMsECAABIJlgAAADJBAsAACCZYAEAACQTLAAAgGSCBQAAkEywAAAAkgkWAABAMsECAABIJlgAAADJBAsAACCZYAEAACQTLAAAgGSCBQAAkEywAAAAkgkWAABAMsECAABIJlgAAADJ8g4WDz/8cMyYMSNOOeWUqK6ujkwmE0uWLOly7Lp162LOnDkxadKkOPzwwyOTycTZZ5+dWDIApUqPAKhcffN9wty5c6O5uTmGDBkSw4cPj+bm5n2OffLJJ2PBggXRv3//OP744+ODDz5IKhaA0qZHAFSuvI9YNDQ0xNtvvx3vv/9+XHXVVfsde/HFF8crr7wS27dvj5UrVx5wkQCUBz0CoHLlfcTiy1/+crfHfv7zn8/35QEoY3oEQOVy8TYAAJAs7yMWB1NbW1u0tbV1/JzNZotYDQClRI8AKC0lfcRiwYIFUV9f3/EYOXJksUsCoEToEQClpaSDxezZs6O1tbXj0dLSUuySACgRegRAaSnpU6Gqq6ujurq62GUAUIL0CIDSUtJHLAAAgPIgWAAAAMkECwAAIFne11g0NDTEmjVrIiJi/fr1HctWr14dERHjx4+PadOmRUTEhg0bYuHChRERsXPnzo5lU6ZM6Xi9JUuWHGjtAJQYPQKgcuUdLNasWRNLly7ttKypqSmampo6fm5vGlu3bt1r7HvvvddpmaYB0HvoEQCVK+9gsWTJkm7v6M8+++zI5XL5bgKAMqVHAFQu11gAAADJBAsAACCZYAEAACQTLAAAgGSCBQAAkEywAAAAkgkWAABAMsECAABIJlgAAADJBAsAACCZYAEAACQTLAAAgGSCBQAAkEywAAAAkgkWAABAMsECAABIJlgAAADJBAsAACCZYAEAACQTLAAAgGSCBQAAkEywAAAAkgkWAABAMsECAABIJlgAAADJBAsAACCZYAEAACQTLAAAgGSCBQAAkEywAAAAkgkWAABAMsECAABIJlgAAADJ+ha7gHzkcrmIiMhms0WupHfauXNnfPTRR8UuA/Zr586d9gE9rH0+2/ex5aq9/ra2tiJXAtB7tO9Tu9MjMrky6iTvvvtujBw5sthlAPRKLS0tceSRRxa7jAOmRwAUTnd6RFkFi08++SS2bNkStbW1kclkil3OfmWz2Rg5cmS0tLREXV1dscvpNcxrYZjXwiiXec3lcrFt27YYMWJEVFWV7xmyegTmteeZ08Iop3nNp0eU1alQVVVVZfdpWl1dXcn/wpQj81oY5rUwymFe6+vri11CMj2Cdua155nTwiiXee1ujyjfj6YAAICSIVgAAADJBIsCqa6ujltuuSWqq6uLXUqvYl4Lw7wWhnllX/xuFIZ57XnmtDB667yW1cXbAABAaXLEAgAASCZYAAAAyQQLAAAgmWABAAAkEywAAIBkggUAAJBMsAAAAJL1LXYBvUkul4vm5uZobW2NiIj6+vo46qijoqpKfgOodHoE0NsJFj1g2bJlcf/990dTU1Ps2rWr07r+/fvH+PHjY/r06XHJJZcUqcLe7cYbb4x//ud/jk2bNhW7lLLyX//1X7Fx48ZOf+SMGTMmjjjiiCJXBr2LHlE8+sOB0yM4EIJFgj179sTFF18c//Iv/xK5XC5OOOGEGDNmTNTV1UVERDabjY0bN8ZPf/rTeO655+JHP/pRPPbYY9G3r2nvSR988EG8/fbbxS6jLOzatSsWL14cDQ0NsXnz5i7HHHPMMXHllVfGtddeG9XV1Qe5wt5v6tSp8U//9E+xZ8+eYpdCgekRxac/5EePKL5y7xH2XgnuuOOOeOqpp2Ly5MmxcOHCOOqoo7oc984778RNN90Uy5YtizvvvDNmz559kCuFiA8//DAmTpwYL7/8cgwePDjOPffcLv/IaWpqitmzZ8ePf/zjePbZZ2PQoEFFrrz3yeVyxS6Bg0CPoJzoEaWjnHtEJlfO1RfZ5z73uTjssMOiqampW+PPOOOM+J//+Z/YsGFDgSsrb1dccUVe41944YXYvHlzfPzxxwWqqHeYOXNmLFq0KGbNmhU333xzDBw4sMtxO3bsiL/927+NO+64I2688ca4/fbbD3KlvdvUqVPjoYce8vtaAfSInqc/FI4eURrKvUcIFgkGDBgQ119/fdx2223dGj979uy46667YufOnQWurLxVVVVFJpPJK7FnMpmy/U94sBxzzDHxuc99Ln7yk590a/ykSZPiP//zP+OXv/xlgSsrb1/60pfyGv/GG2/Ef//3f/t9rQB6RM/THwpHjyiMSusRToVKcOihh8Zbb73V7fFvvfVWHHrooQWsqHeoq6uLI444Ih544IFujZ8/f363d4SV7Fe/+lVcdtll3R7/B3/wB9HY2FjAinqH1atXH9AfOvR+ekTP0x8KR48ojErrEYJFgj/6oz+KpUuXxv333x/Tp0/f79j77rsvfvzjH8fUqVMPUnXl6+STT461a9fGaaed1q3/XIcffvhBqKr8DRs2LNatW9ft8a+++moMGzascAX1EkOGDInhw4fHM888063x1157bTz22GMFropSoEf0PP2hcPSIwqi0HiFYJLj11ltj5cqVcdVVV8Udd9wR55xzTowZMybq6+sjIqK1tTU2btwYK1eujM2bN8eRRx4Zf/d3f1fkqkvfySefHI2NjbFhw4b4vd/7vWKX02v82Z/9WfzDP/xD/PVf/3XMnTs3BgwY0OW4nTt3xvz582PlypVx3XXXHdwiy1D77+uQIUOiT58+nzp+X/NO76NH9Dz9oXD0iMKotB4hWCQYNmxYrF27NmbOnBnLly+Pe++9NyL+7xBW+2Gv/v37x9e//vVYuHBhDB06tGj1losLL7wwfv3rX3f7PONp06bF2WefXdiieoHvfve7sWrVqliwYEHcfffdMW7cuC7/yGlqaopt27bFSSedFPPmzStu0WXg5JNPjpUrV8b69etj7NixnzreZW2VQ4/oefpD4egRhVFpPcLF2z1k+/bt8eKLL3b5ZTKnn3561NbWFrlC+O3dPG6//fb44Q9/GFu2bOlyzIgRI2LatGkxc+bMfd4VhP/z+uuvx5NPPhmXXHJJtz5BffPNN2Pr1q1x1llnHYTqKBV6BOVAj+h5ldYjBAuoUBs3buzyj5wxY8YUuTIAik2P4EAIFj2gpaUlli5dGo2NjV3+Jzz77LPj61//+j6/HImumVegN7Av63nmFEpUjiTf+973cjU1NblMJpPLZDK52tra3BFHHJE74ogjcrW1tR3La2pqcosXLy52uWXDvBZfQ0NDburUqcUuo9cxr5XFvqznmdPSYF9WGOU+r4JFguXLl+cymUzuhBNOyC1dujS3devWvcZs3bo1t2TJktzxxx+fq6qqyj322GNFqLS8mNfSMGXKlFxVVVWxy+h1zGvlsC/reea0dNiXFUa5z6tToRKcccYZ8d5778Xrr7/+qRfetba2xtixY2PYsGHx4osvHqQKy5N5LQ1Tp06Nhx56qGy//bNUmdfKYV/W88xp6bAvK4xyn1e3m02wfv36uPrqq7t1N4/6+vr46le/2nG7QfbNvBbGQw89lNf4fL4xuJKZV/bFvqznmdPCsS8rjEqbV8EiQb9+/WLbtm3dHr9t27bo169fASvqHcxrYUyZMqVb31TbLpfL5TW+UplX9sW+rOeZ08KxLyuMSptXp0IlOO+88+JnP/tZvPDCC/GFL3xhv2Nff/31OPPMM2P8+PHx9NNPH6QKy5N5LYyampoYMWJEzJgxo1vjH3vssXjttdfK9nDswWJe2Rf7sp5nTgvHvqwwKm1eBYsEa9eujfHjx0efPn3ia1/7WpxzzjldfkvlM888E4888kh88sknsWbNmjjllFOKXHlpM6+Fceqpp8Y777wT7733XrfGl/t5ngeLeWVf7Mt6njktHPuywqi4eS3WVeO9xXPPPZcbPXp0LpPJ5Kqqqrp8ZDKZ3OjRo3OrVq0qdrllw7z2vBkzZuSqqqpy77zzTrfGl/udKQ4W88r+2Jf1PHNaGPZlhVFp8+oai0QTJkyIN998M5577rlYvXp1l1/Uc9ZZZ8XEiROjT58+Ra62fJjXnveHf/iHsWLFiti4cWOMHDnyU8ePHz/+IFRV/swr+2Nf1vPMaWHYlxVGpc2rU6EAAIBkVcUuAAAAKH+CBQAAkEywAAAAkgkWAABAMsECAABIJlgAAADJBAsAACDZ/wdm0IFEuLDGdgAAAABJRU5ErkJggg==", - "text/plain": [ - "
" - ] - }, - "execution_count": 9, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "plot_state_hinton(psi)" - ] - }, - { - "cell_type": "code", - "execution_count": 10, - "metadata": { - "ExecuteTime": { - "end_time": "2021-07-31T05:08:58.220624Z", - "start_time": "2021-07-31T05:08:56.933497Z" - }, - "execution": { - "iopub.execute_input": "2023-08-25T18:25:15.389159Z", - "iopub.status.busy": "2023-08-25T18:25:15.388695Z", - "iopub.status.idle": "2023-08-25T18:25:16.829616Z", - "shell.execute_reply": "2023-08-25T18:25:16.828929Z" - }, - "tags": [ - "nbsphinx-thumbnail" - ] - }, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjAAAAIvCAYAAABqceEhAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAACnpklEQVR4nOz9d5gkd33ngb+rOqfJceNs3lVaCQMCg0CysMSRBcYyBpGM/YM7c77z2Y8DhwkWGA7wzwGfMQ4g8E+czZkTyAKMhUkiCBEUkHYlbd6dnZ08093TscLvj96qqa6uqq7qro7zfj3PPDNd4Vvfqq6p77s+6SuoqqqCEEIIIaSHEDvdAUIIIYQQr1DAEEIIIaTnoIAhhBBCSM9BAUMIIYSQnoMChhBCCCE9BwUMIYQQQnoOChhCCCGE9BwUMIQQQgjpOShgCCGEENJzUMAQQgghpOeggCGEEEJIz0EBQwghhJCegwKGEEIIIT0HBQwhhBBCeg4KGEIIIYT0HBQwhBBCCOk5KGAIIYQQ0nNQwBBCCCGk56CAIYQQQkjPQQFDCCGEkJ6DAoYQQgghPQcFDCGEEEJ6DgoYQgghhPQcFDCEEEII6TkoYAghhBDSc1DAEEIIIaTnoIAhhBBCSM9BAUMIIYSQnoMChhBCCCE9BwUMIYQQQnoOChhCCCGE9BwUMIQQQgjpOShgCCGEENJzUMAQQgghpOeggCGEEEJIz0EBQwghhJCegwKGEEIIIT0HBQwhhBBCeg4KGEIIIYT0HBQwhBBCCOk5KGAIIYQQ0nNQwBBCCCGk56CAIYQQQkjPQQFDCCGEkJ6DAoYQQgghPQcFDCGEEEJ6DgoYQgghhPQcFDCEEEII6TkoYAghhBDSc1DAEEIIIaTnoIAhhBBCSM9BAUMIIYSQnoMChhBCCCE9BwUMIYQQQnoOChhCCCGE9BwUMIQQQgjpOShgCCGEENJzUMAQQgghpOeggCGEEEJIz0EBQwghhJCegwKGEEIIIT0HBQwhhBBCeg4KGEJIU8zMzOC9731vp7tBCNliUMAQQnynWCzi937v97Bt2zbEYjFcf/31+Pd///eGt33Xu96FvXv3tqPrhJAegQKGEOI7b37zm/Gnf/qneP3rX48///M/RyAQwEte8hI88MADDW378pe/HKdPn8bjjz/eztMghHQxgqqqaqc7QQjpXWZmZvDmN79ZdyP98Ic/xPXXX4+PfOQj+J3f+R0AQKFQwFVXXYWJiQl873vf0/d1u62qqpiensZ/+2//Db//+7/f3hMkhHQltMAQQnzl//7f/4tAIIDf+I3f0JdFo1H82q/9Gr7//e/j/PnznrcVBAEve9nLcO+997bvRAghXQ0FDCHEV37605/i4MGDGBgYqFr+7Gc/GwDw8MMPN7TtK17xCvzgBz/A4uJiazpOCOkpKGAIIb4yNzeH6enpmuXasosXLza07Yte9CJEIhF8+ctf9rvLhJAehAKGEOIr+XwekUikZnk0GtXXN7JtPB7HzTffTDcSIQQABQwhxGdisRiKxWLN8kKhoK9vZFsAuPHGG/HNb37Tx94SQnoVChhCiK9MT09jbm6uZrm2bNu2bQ1tC1Sylp75zGf62V1CSI9CAUMI8ZVrr70WTz31FNLpdNXyBx98UF/fyLblchlf/epX8fKXv7w1HSeE9BQUMIQQX/mlX/olyLKMT37yk/qyYrGIT33qU7j++uuxc+fOhrb91re+hXQ6TQFDCAEABDvdAUJIf3H99dfjta99Lf7gD/4ACwsL2L9/P+666y6cOXMGf//3f9/wtl/60pdw9OhR7Nq1q52nQwjpUihgCCG+85nPfAbvfve78dnPfharq6u45ppr8K//+q94wQte0PC29957L97whje06xQIIV0OpxIghDSFeSqBVvDYY4/hmmuuwYMPPqgXuSOEbG0YA0MI6Xq+9KUvYWpqCs961rM63RVCSJdAAUMI6Xre9ra34cc//jEEQeh0VwghXQJjYAghXc/k5GSnu0AI6TIYA0MIIYSQnoMuJEIIIYT0HBQwhBBCCOk5KGAIIYQQ0nNQwBBCCCGk56CAIYQQQkjPQQFDCCGEkJ6DAoYQQgghPQcFDCGEEEJ6DgoYQgghhPQcFDCEEEII6TkoYAghhBDSc1DAEEIIIaTnoIAhhBBCSM9BAUMIIYSQnoMChhBCCCE9BwUMIYQQQnoOChhCCCGE9BwUMIQQQgjpOShgCCGEENJzUMAQQgghpOeggCGEEEJIzxHsdAcIIf3P8loRP3h0BU+dyeDYqTQWV4qQZBXBgIDxkQiO7B3AwZkUnnPNCEaHIp3uLiGkBxBUVVU73QlCSH/yyJNr+ML9F/DAT5agKEAgIECWax852nJRBJ7/jDG8+kU7cPTQUPs7TAjpGShgCCG+s54p4c//8Wl844eLCIiArLjfV9v+pmeP47fecACDqXDrOkoI6VkoYAghvvLQz1Zw5yeeQDYvQfEgXMyIIpCMBfHud1yBZ1454l8HCSF9AQUMIcQ3vvWjRbz/rx+HqgJ+PFkEARAFAX/0jivwgmeON98gIaRvYBYSIcQXHvrZCv74r5+AovgjXoBKO7Ki4v1//QR+9PiKP40SQvoCChhCSNOsZ0q48xNPQGmRQVdRVfzxXz+B9Wy5Je0TQnoPChhCSNP8+T8+jWxe8s3yYkZVgWxewp9/9qnWHIAQ0nNQwBBCmuLh42v4xg8XmwrYdYOiAN/44SIeeXKttQcihPQEFDCEkKb4f1+/gECbniQBEfh/98+252CEkK6GAoYQ0jDLa0U88JMlT3VemkFWgO/8ZBHLa8X2HJAQ0rVQwBBCGuYHj6603HVkRlGABx9lRhIhWx0KGEJIwzx1JoNAQGjrMQMBAU+dzbT1mISQ7oMChhDSMMdOpS3nNmolsqzi2Kl0W49JCOk+KGAIIQ2zuNKZWJSFZcbAELLVCXa6A4SQ3kWSVQAyABUCFAhQIAqAIEiVtyNBhYhKkExAkKFCRTCgQhQEKKoKWREuTzsgQoVYqbyrCgACUC//VqBW1iEAIGA4LiFkK0MBQwixpVwuI5/PI5/Po1gsQpZlSJIEVVUhSRLGYguIowxBFAFBARQBCjZNu4IAKCogCAIABYIgQlFUKKqIkFARPSpUCACgAqqgAqoAVVWhCgIEAJXp2i4vhwoFQCIcwrFjxxAIBBAIBBAKhRCNRhGLxRCPxxEIBDpzwQghbYMChhACACiVSsjn8ygUCvqPLMsAKiJCEAQIggDj/K8jQ2EUyjKgiFABiAFAvLxaVS9PxghU/kAAUBVIShAlOQwASIRyAESoUCrtQwCEy5sDUFCx1gAV8QJVRFBQMDIYQLlcRrlc1vtXOUxlx3A4jFgshmg0img0ikQigWCQjztC+gn+RxOyBdHEimZZKRaLkCSpRqBogkBDW6cJmumxGBaWi1CgAhU7SkVoABBFASoECMJmexWHUkDfVoGIgKAAEHTBc/nIAIDA5eVKpSWIAiCKAWyfSFT1Seun9nexWESpVML6+rq+LBQKIRaL6VaaWCxGUUNID8P/XkL6HM2aks/nUSqVUCwWUS6XIYpileXCLFYAQFGUKsuLUeCoqorp8Sh+/ETFxXPZRnJZeoiQlcuuHwNqJeBFFzlQVaiCURjh8j7VfRHUiqNJVhSIqoip0UiV0FJNkzAZ+ysIAhRFqRI12j6RSES30sTjccTjcYRCIe8XmRDSdihgCOkzisUi0uk0NjY2dDeQJlaMAztgb2HRMAsW8zb7dyYQECvF5SrWFq09FYJZh6iqbmExLhYqBzK0bVFX5nI8TCAgAlCxd2eidhsDiqJAFMUqAWY8R1VVIYoiCoUCisWibqkBgFAohEQigeHhYQwMDEAUmaxJSDdCAUNIH6BZFjY2NlAsFqvEhjYAa7/Ng7nxb6MrxriveVuNRDyIAzMpPHU6XTGcqKr2CzC4jiohvJvSxNiSWtOPip5RDftqH0QROLRnAIOpiC5OzP3WztHu3IyCxrwdAEiShNXVVayuriIYDGJgYADDw8NIpVIUM4R0ERQwhPQopVIJmUwG6XQapVKpRrSYA1u1debBXsO4nXmQ1ywaZgRBwLOvHsFTZ7Kb8SsWxwUqobqXV1SCdbW/hcvbav2vpB5V73/5TxXAs64arToP87nYxfBYCTAA+rXS2tTOVVVVyLJsKWYGBgYs2yKEtA8KGEJ6CE20ZLNZPa3ZLBSMVgVzcKudeLHCKZjXyO7pBK7Ym8Lx0xloYS81m7sq2yIAl1OqVQs3kiAAR/aksHMqZlpea0Wp3ddeyJivlZWlCqiklK+srGBlZQXBYBCDg4O6ZYYQ0n4oYAjpcsrlMjKZDDKZjO4eMosLowXBCjeDvIY508jslrE6xq3Pm8KpCxvIFSVoNVuq26wkQusfjH9rcS+VjXQUxej2AaJhEbc+b0rvi7GvXs5Pi42ph/lcjXFEkiRhaWkJy8vLCIVCuphJJpOu+kAIaR5BdftfTwhpG5Ik6e4hO9ECwDFI1ShstH2sRIm2j/bbixgwcnp2A5/78jkoSu2+qrppUylIYUhK5d0pFswjIG5ub8xjUgz7iIKA2//TDuzdYS8QzNfIfD5WVhizZcquXe23OSZIczlpx4hEIhgcHMTQ0BDFDCEthgKGkC5BURSsra1hY2MD+Xze0krg1QWkDa5e+9GoJeeJk+u45+sXK2Kiqi+bFhgnAaMY3U+X061FQcRtN2/D4b31406sREy97UVRtHTFmbdzI+yMgigUCmFoaAgTExMIh8Ou+0QIcQcFDCEdRpIkrK+vY3V1VRctRvHiJhBVW2e0Nti5SeysEvXaN1obnPpw6sIG7vn6LIoluRITA7UqBsatgBEAhEMCbnvRdkfLixk37iEzZmuVE16sVNq2o6OjmJqaQiQS8dw3Qog1FDCEdAhJkrC2toa1tTXHQdfOEmOXRaRtbzXQWrlS3AokN2j75woy/u27l/DEybRhPqMKzi4kLZQXOLI3hRc/bwrRiOjZiuQkRqyui9drYEwzd/rujEJSEASMjY1RyBDiExQwhLQZrc7I+vp6jdiwwsrqYbd9vcHUaVB3ws7yYq4bY153dm4DP3x0BU+dqWQoiSKQL9UKGEEUoF6OnTm8J4Wfu2oYu6fjrvpmdS5Gi4qTxanevm5wsnaZ29a2HxkZwfT0NKLRqKtjEEJqoYAhpE1IkoSVlRWk02nHAc9rIK0xyLRR/HgMOImjbK6Mk+c2MLdcwBOnS1jLVKwsg7EihgcC2D4Zx/RoFPt2JZCI1SZHeu2fUVQ0cm7a/l72pZAhpL1QwBDSYjThYixXb8RsIajn+jBTb9CsJ4b8egS4te48drKI8/OVWa5vuDaKVFx03L7RPpoFRaMiyG8RY5UdRiFDiHdYB4aQFlEul3VXEWBdQK1eWXsjVrErXt74va4DNucUMh7Ta/vG/SqfAVhM2Khhdx3cuIKMosCY3uzUf6e+a9+P1wDfekHUQHUF4OXlZaysrGBkZARTU1OIxWKW+xJCNqGAIcRntIqt6XTakxvIOPgal9cTDXb1Xaz+tmvDrk9WQcB22zott16v2gqDxtqz3s5K1GiYr525crEWqGtnJbMKBjbH3dTro/GYRiEzOTmJeDzueJ6EbGUoYAjxiXK5jOXlZWQymbqWFCsLihvrgHFAtvvt9LfVZ7vjuMXNuXYSYx+Mc0QB7q6h5kYyZ3mZt7f6rC2zmkvKLKSMbS8vL2N5eVm3yFDIEFILBQwhTaKVlc9kMrbbmN/uAfvMHuO2VhV2nfBLMLh1t5hdRFbr/aKTYsiNRctp30Ag4Ch2rNZpFpnV1VUMDQ1h+/btjJEhxAAFDCFNkE6nsbi4WBXs6TZuxGs8hh+WE7cDr9u+uamD0mkLjLkfXqoZm9vQ9mvkvIwxL/WOYTyWoihYXV3F2toatm/fjqmpKU/HJaRfoYAhpAEkScLCwgJyuVzNm7nVbMZ2hdLM8RPmbc3bNIPfriM32zfS924QPE6YY2nc9tdY0E77XM+yowlEbfm5c+ewtraGPXv2sBge2fKI9TchhBjJZDI4e/YscrkcAOsy9EYxYsw0Mi8TRbHqs9WP1X5O643HN68zx9BYxdT4RaPtebFMNUMz1iHte9PaMWN3jY3rzNYru/gZ47GAitXvsccew8LCQkN9J6RfoAWGEJdIkoTFxUVks1lTWnBtBVoz9SZItMIqK8luOytrj5Ulx84qpH2u52YxL7frY6NuFru+mbHK/HHTpvkamIN6vfbRnOFk10czWj/cHN9qvaIoOHPmDFZXVzEzM0NrDNmSUMAQ4oJMJqPHugDuhYu2rVerglt3j5u23Q7QVm15FV1u1ldWVVuo7Ppj1a4XoWDGLBiaEVmadcToGvKaveVlHytRub6+jscffxw7d+7E+Pi4h94T0vtQwBDigGZ12djYqFruRRR4xUusihth5FRUzbydn7QqlqVZ0eF3e0bLjttrbd7fqX/m7c2uJ0mScOrUKayurmL37t20xpAtAwUMITaYrS6Ae8tLo7VRWhFo67ZabyusRL1Ao1lJGmZLSqOCyBzca7eNMVDcaP1ZW1tDNpvFrl27MDY21sipENJTUMAQYsIc66INUGYhYDfIOA1AgPsqs85umPrVYM1tOQ209VK9rfaxCzqte57KpgisZNg4B8Ea++eHaLK6Jm7Q7gErN5TV341kdGk1Y2RZdnUPmVOzJUnCyZMndWtMOBz21AdCegkKGEIMGK0uxgHE6yzDxt/aAGMVsGnn0nB7LKs2zBkw5mVOx7brh9XfjfYdggBtMydLg9eKt14xz1ZtZV2zQpZly+Ve3UdW+2vHNxa+sxKSGlZxNIIgYHV1VbfGjI6ONtwnQroZChhCYJ1hZDVvjvFvp4HFvMzOreD1jb2edcfYVqddPI24pYz7tptOu5LM4tJKgJqPZRTLgiBUWW7K5TJOnDihW2NCoVBD50VIt0IBQ7Y82WwWi4uLNW/WdjVWzOubFQtusoncZhwZ+9ZKEeAm2LSZoOB6/ffj/KzaaLZdq/bcik5zO8Z7zs59aRY5xgBfrY3l5WWk02nMzMxgZGSkofMipBthITuypVldXcXFixd18WL1Fu40GPshXozHbXQbM824MrqhfaD1Be0aTRH32q7VPEhe23Bbr0YTS+b9y+UynnrqKZw4caIt3x0h7YAChmxZFhYWsLy8XDNLMFAtZKzWa7Ta1dGqNOxmcGNdabX48AO769Rs361So53uIbcEAgFPxzcG+Go/i4uLOHbsGCRJaro/hHQaChiy5VAUBXNzc0in0wDsi6lpg4Dxs7kdK9wKCDfbNTKYtlrA9II4cUurrDB28U5eY2LMP1ZZYOZ4GQBVFkXzunQ6jccffxzFYrGhcyOkW6CAIVsKSZIwOzuLjY2NKuHi9DZuFSxpNNVb/Zj3NS9zOqYRp22s3Fd+iqdm8KP9Tlp57ESt1zbMv42zlNtli1l9r8a+GEW1031rtMSYyeVyePzxx5HNZhs9PUI6DgUM2TKUSiXMzs66fvO0G8Dq1ehwsugA3qYAcBJJoijWTPRnl51i/Gk2wNYYk2MWaL1Iq1yEdhYTu8yzemLVLiPOCU1om+8TACgWizh+/DjW1tZctUVIt0EBQ7YEhUIBs7OzKJfLVQN5pZCa+3om9cSLG7xkEnlp0ywkWukesRNofouZelauVmJnvfCCnZuxUdegnSXGDitroZFyuYwnn3wSi4uLnvtDSKehgCF9z8bGBmZnZy3TWZ0sJWbsxIvXuIZWZYG0I7ukWeuNn/jVD6fr5pdYdXIJecF8D7sVMWZrnrnNU6dO4cKFCw31iZBOQQFD+pr19XXMzc25jhWxEyhOlhe3g1Eri8t1S+yLn7Srr/UsOn4IJSuh0Yh1R7OoNNKOlg1lJ2IuXLiAU6dO9dQ9QrY2LGRH+palpSWsra1ZPqzdWl68FpCzo1HxYldoze6cvMTWOC3zEq9h1ZZbjNelkWtstHAY402Mfxs/2x3DzTUxr3M6vtX2Vu2ZZ5Z2g/k8vbQjy7JtELCqqlhYWECpVML+/fsRDHJ4IN0N71DSdyiKgsXFRaTT6Zq3Uy/ixWl7wFuBuUYsJHaDqtV2duvs2rfaptFlbvczrITVas/twHq+J6c+urk2dvvV65/XrDIni56V+DLeD2bhBLgTMWYhZ7boqKqK1dVVHD9+HAcPHuRkkKSroQuJ9BWyLGNubg6ZTKYp8eIUq2IezIypr04/TtRLnXXCiwurHfSqC6LVbiQzdunTWmC5+bPVduZ2jBV7reJvjO0YhY+ZTCaDY8eOIZ/P+37ehPgFBQzpG7QaL1YPXaOLxS1Wg0ajbqBWBr62szR8u8vQ+2nd6lYazaqyss4ZXVlWwgeAvlz7Lo3ZVsY2c7kcjh07hkwm09B5EdJqKGBIX1AsFnHhwgWUy2UA1Q9io+XFqkaKGSfrSyO4sb70Ct2SgaTRzho0fkwH0A2Y45o0QWMVIFwsFvHEE09gZWWl3d0kpC798R9JtjSlUqlqQkZj0S6vMS+Av4KinvWl2WM1ElvTb/hdd6ZdxzK361fbzbRlNWmkoih4+umncenSJT+6R4hvUMCQnkaSJFy6dKmqWJcxRsBN3RcjdoXt3Ozbbhp1aRF72iVgnAoB+tGm3yJGkiScPn0a8/PzDfePEL+hgCE9i6IouHTpEiRJqnl4a7+tsjWc8Jql0mhb2vpmBEi3CapO4ed1aFeMj5NIbvR8rILAvbRl3F7LaDLG1SiKgtOnT2N1dbWh/hHiNxQwpGeZn5+3nNfInIVhDFI0rjfvo7mg2kkzg2+73Ufd6q7y83huvo9eioXR7n2jGAFQZaW0ynYCas9TEzFPPfUUNjY22noehFjRO/+JhBhYWlpCLperW0TNanCz28dYat0u2Nf8t7k9uwwQu740Qy8LBT/xO5C33QLFnOFmtBraXXOrNH27dGtVVREIBKr21bAqiGhcZ3VdZVnGsWPHXE+KSkiroIAhPcfa2hrW19dt00iNn5upkeJUl8VKxJj/dhI69YSVm6ypesuNx3Ea5N0KgF5KaW6mH2Yhof1d7/r7IaSMLhuzkKmXyl8vcN3LvEn1KJVKOHbsGCRJqrstIa2CAob0FNlsFsvLy45WFA23A66f8QhuU7DdWnuM2xv/dhpkjcutBl27AddqXSMDs98WkUbw4/hmMWxXMK7ZOkF2NHoOdvs10jen7zKfz+Ppp5/uGtFKth4UMKRnKBQKWFhYqOs2cku9AafRdusNPO164PspItz22Y0ggiDg8q+6osntOfgtmNxaK/zAqZ1Gj2FlfdTiYdzub97Pyj27urqKkydPNtRHQpqFAob0BKVSyXJW6VZgNON7wa353Q83g5/bdTPtrvyr0c5r1woBA9hfu0ZEjNN+CwsLuHDhgrfOEeIDFDCk6zHXevELv1NZ3Qy2XsWHl9gcs8vDab1xeb1+eHGNuNperUzmWPlxnj+qnih0uj5W52dllXC7zLy/Xd+8Bm3XE8uNBhX7IYzM95HVfqqq4ty5c1hcXPTeSUKagLNRk65GURTMz8+jXC5buo6MD3+3VhM3riOvQa12WSR2+5iP4WUgdPps9Xe99a3Cz/bdiBirmJV67bjZxu4YQOMiRtvPfD/Y3XtW69xeX6tZqt1aC43HMQcWG9sCgJMnTyIcDmNwcNBVu4Q0Cy0wpKtZXFxEoVDwJWjXLDLMP9p641QETgOG0VJgrqdhnlHYKtCzFYGf/Uin4mBaeUzzPWC1zOp+0e4tq/vLqm+CsDm/kfl+N97nbs7TybIFQK8Rk8vlPFwJQhqHAoZ0LcvLy8hms66Cdu1EgNUD3sldYRQy5nadHvbtEiGdin/pBZHVqcyndgXz1nMlme9no9DRhIxZAAGoqR/jFEhdT8SUy2UcO3YMpVLJ07kT0ggUMKQrWV9fx9raWpXJup6rwO7N1YhTnEqjg3Q7B3c3x2pFfzqdFt0p6l1LP1PG3VjjGv1unapMm91CZqFj/NG2c4q7KhaLePLJJ1kjhrQcChjSdWxsbGBpackykNLK9O4FuyBEt3EvVnQqU8aOToqNfhNP7T52PSuMsaKu13bt2nYbJGy0Tmr/L1p6tWbx0chkMjhx4kRDfSXELRQwpKuQJMmy1ovZtQN4HyzthEYzb9Hd6Frpxj71Kl6DudtxvEZxEuleMp3sMrSMYkaWZaysrODUqVONd5iQOlDAkK5icXHR9QDcSJ0WK5pxHbXT+tJtlh6yiV/zJ9X7jr0Uo/OK2/8nqz7avXDMzc3h0qVLvvSPEDMUMKRrSKfTlhkM2sOxmQHcLvC3GddRO90LWzUGxSu9fp1anXHldL97Obab7D/tf+7MmTMoFAoee0pIfShgSFcgSZI+x5FVerNRvBgzJZqh2TbaaRHppFuoU5lPrW7Xz2P7Gczb6mP5UTTP6t7X6s0Yr5miKJBlmdMNkJZAAUO6As115KZ6qPntzyrd0yyArGh2YOzG7KN+jH/xMlhvlYDfZkSM+WXATbt2pQfMKdhmAaS1tba2hvn5+Yb6S4gdFDCk42QyGdviV1ZxJvVEjnG9k5WkkQHAmGraTtzOcE38p1uvq5Vgt1tvxKm2kV1JArt27ASLVZtnzpxBsVi0Ox1CPEMBQzqKJElYWlryVBW0Wfw0v9tZgMy4sQI51bfpFP1o0fGKFzeSNqDbVca1+ttpmZWQsBIVdsvs+lnvPNz+j1jVl7FyQymKAkmS6EoivkIBQzqKU9aR2fri1WxuZ7Xwa1C2G4TcDk7m5XZv1ObME7t96g2abvtZb6C1eytvlQvLzs3h9GPVfzs3o9225j64+bHb33wedtevHuZtOp2R5PZ+11y5q6urWFhY8KWPhFDAkI7h1XXULdaAeu4cv/uptWcWNVZ/u+1LMyLErfhpFV6EhJ1Vy+6z1d+N9M8POh3P47Zonl1atd11OH36NKcaIL5AAUM6gjnrqB5+WV9aPSj4LV7c9rcdViU3rrJGjlevbTuhZhXUbd6unuvObXHETgQSu42zauU97aVt87WzEkCaK4lVeokfBDvdAbI1WVpagqIotqZ2WZZb8mDuZOZRI+djnn/G6bdTn5sRQm4HUrcuJBUqAOO8O+76ZBfjUS8epJH4o0bQvgctndjpe6nn+tOWaW25OW4rEEXRcR4lDe28rdx9Vq41zZU0MTHhb4fJloIWGNJ2MpkMNjY2LNdprqNmxEuzGULmN3s32R1uB0yvP8b26v2udz5bhU6dr9mqo6UYW/2YZ4W2c4HJsmy7zoibWJhGRY7bOBsroWMlrrTPdCWRZqGAIW1Fcx25zTry6rIwWhvqBaM6tWH1W/vbaiBo9Fhu+1Jvm1a9gXdD3JHX69npa9EON2UzYtgomtzgJaDXCidXEudKIs1AAUPayvLysmN2kDnryMokrf2ulyHjV1CmRqeCd92w1awsTnTDtfCrD14EfCPbmf9fnMSPXd+MP15F0fLyMhYXF13tQ4gZChjSNjY2NpDNZmuWGx+g9YI67YIvjevMdMOA1gi92u9+pROBvF7aaqXbVRMndm4wozvMPJ0AAMv4GO3zqVOnUC6XG+472bpQwJC2IEkSFhcXLYMXjRkjdhaUeji9KbbDDdKKY3SD+8brd0A28et6tOO61rP0CIK3WbCtrDjG/3PjscrlMgvckYaggCFtwSrryPh3u0vze4WDM/GC1wHfTXt+btdqrM5dEAT9/9xorQEqrqTl5eW29pH0PhQwpOUUi8WqrCO7KqfdTLcKrG6/bp2gXQX13PSj3W0160Zyup+8iDK7/xergF5NyJw8eZKuJOIJChjSctbW1lpWsE6j1QN5JwZEN+fUyn5RHNXSqWviRUA3avlpl9XIrlhhqVTCuXPnfDs+6X8oYEhLKZVKljVfzMGA3YzToNVp61Erj91MFVa/6QaLCtC5QN5uwasVxq7kgHm5Vu/m0qVLrA1DXEMBQ1rK6uqqpVXFuKxZk3+rBRAtEZ2nV78DvywaXv9HGv1/MgfYNtsXu2KQWlaSOcBXURScP3++gZ6TrQgFDGkZpVIJ2WzWMTvInEJdj05bPMy06i3bbQG7bqHV1gav7fer9aMV2zaCWZhZlT4wW1nr1ZXR1tEKQ9xCAUNaxvr6uqeKu24wv/0ZU7G9FtNqln6vgOuFXutvL9Kua6y5c9xgVwQPqP8/bWWd0uZ+mp2d9dhrshWhgCEtQZIkZDIZx22afSCbzc8aVm+DTvMZWf2tCSGnzIxOWl+IM636bhqxBHXKGmQl9K2wqtdiVbjO/OP25cRN/zQ0d/Dc3BwzkkhdKGBIS1hbW3Nc78cgbTc42IkVK1Fj97fVb6fKv1ZCqdGHe7e4P3p5KoNusozZle43r3Mjsq2us5Nrxuymtfpphmb210SQGUEQIMsyrTCkLhQwxHckSUI6nXYc1PwYYNptqXCy9BjXWwkjtz8aXmNg6g1edvs1u86vgdAt9awC5gFbwywG7ALI3W5n7Ivd31bLnL5nJ4HsdH2t7h+7PrvF7ffZbJCynRVGVVVaYUhdKGCI72h1X9zg58Dn90DaifRuzXTvNW7IzhLltNzqR3MLGPthXGduRxRFT64EQRAgQAAu/9QTuVZxFY38mK+Hdm5mkVMvwNToWjGus/q75rx9sFJ5vcf9dvE02r7TdbVqQxRFSJKEixcvumqfbE2Cne4A6S/cxL6YZ5xuBKsHYjvdGMYHr/kh7FaAWLUJoGbKBeM6wHmg9Xqsett4sci4bVMxtFt523b3HtXIOTuJULOlxs351Ftm973XuyesxJTxPjAKOLvYL7t2G8Xt9XZzPzr1QxRFyLJctUw794sXL2L79u0IBjlUkVpogSG+sr6+7ipgUPu7Uby6Rrxu68b6Yuc2MH/24vYAnK0pTrEQnaTd7rxuws6FY97G6bs3pxlr95+VtUezhBlngDb+uHFR+n3+zeBktaIVhjhBAUN8Q4t9ccL45tisedv8YK/XnheR4WZ9J+mGPhjpNkHVbfh5fczuNDOasNF+tH2s7hk7od4u8aNhNUeS1reLFy9CkqSWHp/0JhQwxDc08eJkRrf6ux5WgY9mkWH82w/R0SmB0C1CoFeu11bE67Wu576xO4bZMuTUh2aDeZ3OqVwu49KlS021T/oTChjiC4qiYH193fX2XqwwTkGTVp/9oFMDsh+xKaRCt4jBXsbuGlrFaFm5s+rNcG3ESQRduHCh6+dMI+2HAob4wtramuvYF/PyZumngcrN9WiHSZ8404gVxK/vrJF2Wn2/WGWpGY/rxhJqDljW/hYEAeVyGXNzcz73mvQ6FDCkaTTri1Vcit/WgnZYHtw8ZDtxbNI9dFpAej1+O/rrRzCvVUaTZnmZnZ2lFYZUQQFDmkbLPLKKS/GbVllx3LbXDQKjG/pAvNNp0dNq/Kj9ZKxBZH4BKhQKmJ+f96WvpD+ggCFNk81m627TykHX7wyPTgoYihPSKpoNtG3XMaza0P4vGAtDjFDAkKYolUoolUqO2/TSm2e9vrbyXHo5toXCqz69+t16pdl7weo6Ga0wi4uLTbVP+gcKGNIU2Wy27oPZrzemfh8kezkDqRsH524s3tbp69Tqe8cumNdMvewk43UyBvcqikIBQ3QoYEhT5HK5th2rHabjbhQHRrrVStPt161b6PR31y1uJKf72FhtGNgUO9r2q6urLGxHAFDAkCZw4z4CrK0GjQx45mJ2rYD+9QoUJM50w/VpRIx0WkBp1CurYP5t/FtRFCwvL7ehl6TboYAhDeMmeBewftuq99lNm37TyfRpt7Rr4OyW8yX2dIOIskMURVcixVz8zojThKZ0IxGAAoY0gRv3kXHeFjfbWaHNzGve3u94EKc+tmOw6FXrTzcPpK0UYs1aETtx/Gb74GRNdRIsbkWK23V0IxGAAoY0iBf3kfF3I9hNJWCsGWFe57ZfXvrQarpJCHjpC6013uhkRV7jfnbuGrtilE5FKu3+P1sF3UgEoIAhDeLFfeQH5qwEqywFL8ezS9U0ztFkfNAbhZLVg9y8vBEoBHqLdmUi2Ql4pzadAmQ1142xLavf7bif6x3DHOdDNxIxQgFDGsKL+6hXsHpzNAoZqwkordY7CRqnN1bjb7uS6sbBx7yPVduNDpbd+N0ZU2/r9c9K5Fp9tvvRtnHa1tgP8/W3+j68WCaMbbgR7G6D5LW2Gs1G8nI/+SHIrdpgNhLRCHa6A6T3cOs+8gur+JdOWyvM1hmrdVZZU1brjOuNmRbGz9o+VuLGzrRvZTVy6pMZq3OzEkduY3f0fVUVgLs3fafB2mk/u+tp2R+Xbdj1zck64hS75eW616Mb/idagdNLgOZGmpycbHe3SJdAAUM842XqgFY8WBttzxw7Y7XObh+n5X6Y2v20eDi9tdZb1mg7rQpA9uO6OA2Cfrdrxu56uRVPXvrhZHkzC1c7y43bY7ml2XtbsxYZ7y9FUXQL0sLCAgXMFoYChnjGS/G6Vr0Vmk3r9YSGWbR0m4vEj3iBfqeRwbCVVolmBme/+uVWeFt9tnJFWrnPjNY8TaxqosKNCK53jbR27NpyEmNra2sol8sIhUKOxyD9CWNgiCfa7T6ye3s2Cpd6LoheEAedPn4z9HLfm6FbzruRfliJArPA10SO+bfR4mas42J297ntl9v/USuYjbS1oYAhnnCbfQQ0bmKv10Yr3qq7ZTByoltjHLq1X62mmfP265o1M/j7HWRrFDNm645dULLbPpiDjo0B3cxG2rpQwBBP+Fm8zritm/W9IDIaxc25tev8+/k6dwt+ir5G22pHJpLVcRRFsbTseHluGEWQ5kYiWw8KGOIaJ/eR1Zug3294/fym38uioZf73gw8b//bNYoZo3vYSmyZs5HI1oMChrjG7D4yB9EasyHqxaZ0E14zkPodr0Kx24Vlt/evUzR6f7cqkNoprbxewDDdSFsTChjiGrP7yE6kNOOXd6JVgqLTA1yvC6Ve738n6AYXUrPlCPw+ViNp/VpfVldX6UbaglDAEFcoiuIp+6gVoqCVKdmEbEUaiYNp5P+w0XgbN2j/v3QjbT0oYIgr3IoXN1VS3UJh0Rt02oLVSZot0tZpuqEPGs1kLSqKQjfSFoQChriiUCi0/ZgUMJ2h1dVZ202ri9l1mk5c/0bOu5GSCfXaMLqrM5mM5z6R3oYChriin/3LdsXy2jUwdFuhvW4YlLcCfl3nVk3j4Dd+3lfa/4Msy/r5t7vIJuk8FDDEFXYPBmPthm5/E/dCqwKRrein60bajyiKXVFUr5VYTQOiFcUzxtfQCrO1oIAhrrCzwLiZFK4XHpBmuk1UtLM/3XbupLU08v/Zykwkp2yjeu2k02nP/SK9CwUMqUupVHJlpnaq4+CVdlad7fSA7UeKqZ/0ouDsFP1g+ejEvaUJFfMLkJv/R6f+epnqhPQ+FDCkLsVi0dV2fgoBq6J4rAND+g0/50RqN24qb9ttY/6fdmPJtcP4crWxseF5f9K7BDvdAdL9uBUwrcD8APQyX4pxH7vtrWJ3rGbX7RfszsvtAOL2+6i3HKh+E2+k7073gpvZkf2I2+oW8dlKcW8V52YX+N5sv5r9/y4UCiiXywiFQp6OS3oTChhSFy81YPwY9I0Cwmog8or5IWx1LON25gkkmz0nu8FUWybLcs0yu8HafD7m47jtT7v2tV/n3mXQ6PHruSWaHfT9EEDGe65Zd5Q5uLXedm6Wm/8XjNu3AjeC1vy/Yt4+nU5jdHS0Jf0j3QUFDKlLJ1IT7R5OzbZnxuoBbSWY7ASV1b71ivlZDVhW+9gNwK1+6/c6MPdbBppbGi3aaL5XtHl+rASI8Z6zuv+s+uD0P9Pp78mv/2dRFG1FfTabpYDZIlDAEEfcBvC2ikbfTJ0e6PXEgJs3+kaOa8SpT2774xW3QsPpPO1cbu2gkTgoqxgMK7Fp3t4oWO32N/bLab0ddlZBO4HiRhjbLa/3QiCKImRZtt2v2zBfZ+PfTKXeOlDAEEeKxaKrB1mrHnbm2Azzg9iNAHEaULaS9aBZV43XNvym0fvLzhXnxWVit6xTYs4LdudvpJ6brVuFjIbx/5iBvFsHChjiSKlUavnDq55bxmpZNw4UjdJP57LV6BcB7OYFpR5GV1e9Y9WzOHp95mhuOADI5/OQJAnBIIe3fodp1MQRP1Ko7YSI2Sxu/iHESL/eE91wXo32wcplavW/bPwxu/HsasI002fWg9kaUMAQR/wK4G1EnLTjwd4Ng0e3m+eJPd1w/wD+ZFS1C+NLi6IoVT9uLaz1LD0UMFsDChhiiyRJNYF9GkYzr/YgsnvjapRODOydGJC6ZRDsdvpV6PlxXp1qwzgPkZ8Y08vtniNO/WUg79aAAobYUigUXKdk9uvg0mooXtpDK+uWEG+4uWb13M71MqtogdkaUMAQW8zuIyfB4ueDfCsN6hwA3dPMfdGqe8qPdv26BzrhRmr0mG4Cfd0c22j9NQby5nK5jpZ/IO2BAobYYhYwTtU9Sf/QjwJyK9yjnThHP1Lb/Tq2IAhVRQHpRup/KGCILXbxL2ZaMeB1KhNpKwx09ejHa9CPosxvevF7tytUKAgCBcwWgAKG2OJWwLQCN/UkWgEHuv6kFwdnrzR7jo3c+61yITWC0WWkqipyuZzvxyDdBQUMsYU+ZEJaTzfFwHhto9G+1zuO236Y5y0zBvmWy+WG+kZ6BwoYYku/CxhaW6zp1uuyFawozdAt6dh+HMcPYSRJUkNtkN6BAoZYIstyQ3PF9Drddk7dHgfUbdfLDoqf7sPvzEXzFASddIGT9kABQyyxs77YzVnUDwNEN55Ht8cBddv1sqNXhFan6bbv02qyTKtpSKygBab/4WxXxBJjTQU7jIWk7B4i3TzZXTf3rdMY32g1Mat9lmUZoijqn7WBQhRF/b6RJAmhUAiSJOnLA4EAZFlGWVIhyypUVUG5LCCfVxAKhVAulxEIBKAoCoLBIGRZrgnmlmVZbycQCFTNrWPc1vhb++nm77pbxHM7r5PdsYz3HNC4+KQFpv+hgCGW+PXP7+bh0y2DSzv7YXx7NLrrtAd3uVxGOBxGLpdDMBhEqVRCNBrFxsYGQqGQLhQURUGxWEQymUQ6nda3GRoawsrKCmKxmD4zryRJKJVKGBgYwMrKCuLxOLLZLMbHx7GwsIBkMolisYhYLIZcLgdZljE4OIi1tTXE43Gk02lMTU1hfn4eqVQK+XweyWQS2WwWgiAgHo8jk8kgGo0ik8lgamoKly5dQiqVQi6Xw/DwMNbW1rC6GkcuF4YkSVhaVCCX01XbZjIZTExMYGlpCdFoFKFQCKVSCYFAQF+3sLCgbzs5OYmFhQUkEgldPAWDQX2d1u76+jomJyexuLiIVCqliypVVVEoFDA6Oorl5WUkk0nk83mMjIzo5y7LMkKhEFRVhSRJSCQSyOVyiEQiKJVKiMfjKBQKiEQiersawWAQqqrqos9qluRuEC9A6/rhJNCsrCx+9IUWmP6HAoZY0s4AXuNgrg3K2hwr5gefXw83p37YrTNONqcJvEKhoIuGYDCoD+rr6+sIh8MAKmJEFEVks1mMjo5ifn5eFxwTExP6AGu0emWzWUxOTmJubg4DAwP6YLy8vIyBgQHdwqEoCsrlMhRFgSRJ+vcmCAKCwSCCwSAEQUAkEoEkSQiHw4hEIhgeHkY4HEY0GkU0GsX4+DgikQhkWUYwGEQikQBQGXxjsRiCwSAGBwcRiUQQDoerLCWpVAqCIEAURQwMDEAURYyOjiIYDGJmZkbfNhAIIJVKYUNRkJcr13R8PIRoeKRqW23feDwOURSr3siHhob0cwgEAvrncDhcNTeXIAhIJpOIRqOYmppCMBhENBpFLBbD6OgowuFwlRtCFMWqc9XEhnHCQe06FwoFhMNhrK+vIx6P68JI+x5LpZJ+vUulEoaGhnRhpH2P8/PzGBgYQKlUQjKZxMbGBgRB0IVRNBrVxebGxgZisRhkWUY0GtWtWtp3q117P+Yl8iLg3WxbL2bOyXLbLBQw/Y+gdsOrL+k60uk0lpaWXG2rmfr9wk179eZhshM+mrWjXC4jGAzqJcdFUUSxWNTf8gcHB7G0tKRbHsbGxrC0tIRYLIZAIKC/5afTad0CMDg4iFwuh7GxMaytrSGRSOhv3qIoolQq6ZYLTSxEo1EUCgWEQiEA1ZPjGV0kdufZCrwUEdQGeC88frqMCwuVfX7+6hBScfcDb6OPq0b66aVtq+No1rVAIIByuVzlWsvn87pVLBAIoFgsolwu69Yr7ffw8DCWlpZ0YaP9BlBlddOE0eLiIgYHB1EoFPT7URN4mhVJlmVdEIVCIQiCoFuMtD47WUuMlspmrZZOll6397vxxcIs4m644QZLixfpD/jNEku8uJD8ziZw054WiwEAxWIRQGXqA21wUFUVgUBAt4xoIkR7881kMhgfH9etIcFgULcSaG+0yWQSsVgM4XAYyWQSoVBIf9PXtpmamoIoihgZGanq3+DgoG3f4/F41WenB2ynspD4XtMYRjEAbH635u84EolUfU4mk/o11+6dsbExABWrk4ZmDTJambTfkUgEIyMjumUGgC7MgcpLSTgc1t17mnUvm81iZGQEmUwGkUhEF1aaFSmVSqFYLCISiUBVVUSjUf1cu/0+0V40SH/Cb5ZY4vZttRVvtZqFRFEUPfYhl8vpoiSbzVZZP7SYDM3tkslkkEgkoCgK4vE4gsEgwuEwEokEdu3ahXA4jImJCQSDQQwNDVW5Howkk8mqz5pLCKguWW52gbn5bTzXbqMb+9St+HWtzFYvOxGvudQ0YrEYAOiiwiyMjEJ6dHS06ljRaBSCIGBwcBCBQEC3zgiCgHK5DEmSsL6+jlAoZBnLFIlEdJeW9ltzi0UiEQiCoFsWW4mTkNKsWqQ/oYAhlniphOn1Ia4oCmRZRrFY1AVQPp+HIAhYXl7WLSNGUbKxsaG7ZAYHB/U4jXg8jng8jlAopD/ch4eHGzpPL+diTuH0+tt4TLuML7PQMbvE3LjZ3FizrLazEltafzuJ13vNTpxabddIwLmWYeUWu+/ED2Hr5X9WEIQa0aOJIS14GwDGx8cBAAMDA7p7SVEU3ToTDAaRzWYhSRLW1tYQCoUwNzeHwcFBbGxs6JadaDSqH0ezYprFlh+Yry/jYPobChhiiduHst1DU1VVlEolKIqCjY0NxONxLCws6MGPmr8+kUjoAYmhUAhjY2OIx+PYuXMnotGoHj/iRZQ0SqcsD25dZs3u47VtN0GXxnRrt1Sa2BR0rUwhdhur4VW4et1Po5UCsJUuHS22RHOPGd1IqVQKQEXsqKqqB6QPDQ3pMWDFYhGCIGB1dRWRSER/BszNzWFoaAiyLGNoaEh3XRkD0JuBAqa/oYAhlriNgdHMzVq679raGoBNX70gCCgWiwiHwwiFQkgmk0gmk0gkErrp2oiXANJmsbIudJP7pFP9afWgXNm8uk5Lq+mm77VV+HWOjVgijfsGAgHdJQVAz2gDoIuasbGxqozDQqGAjY0NFAoFPXNrbW0Ng4ODUBQFw8PDUFVVd02Zj2kH50PqbyhgiCV2FhgtPkUL+Lt48SKi0SjS6TS2bduGcrmMwcFBCIKgZ+xoImVgYKCdp+CZrTDIuaHTbqJeottEb7tp5PwFQdDjyUZGRnS3sIYmOjTrq2a1uXTpku7KGhgY0GsPGTOP6ELaWlDAEEuMD6VyuYxCoYBMJqPXM9FqeoyOjiISiWB6elqvy+HHsTmIdk5Q9eOA3O1Cw4/73a//Gy/XqhXXVbPcjIyM6DFtWtCxJElQVRWZTAYAcOHCBUxPT+tp48ZAe4DVePsdChhiiSzLyGQyEAQB586dw+DgIGRZxvj4OAYGBvQMBsD/Aa9d4sWYGUTaRzAgQJLKKJVKkMpRAPG6+3QrfmYhNYtf97GXvrSr4KVm0dUYGBiAoihIpVIQRRFra2sol8soFouYnp5GKBTSp7Ig/QsFDKkhnU5jbm4O6+vrGBwcxPbt25FIJGriVVoFRUWFTlkNWn3t1cIsZs/MIhwo4pv/sYbrrrsOMzMzLT1mq+gmy04n/m+8ZmF5od65aJWfAeDAgQMoFAooFouYn59HIBBAJBLB5ORkS/pGugMKGFLF6uoq8vk8NjY29Jop7aadD+FuEErdJthaOSDn83kce/wnGDcYXX76059icnKy6g3bim66RhrdIl78xIsoa+eUI/XQpsUYGBhAoVDAhQsXkMlkuu7/i/hH85NnkL7izJkzWFhYwJ49ezoiXoD+HBQaoZvTuhslm81aLt/Y2GjZMVtJtwyMnRqkmz2m333WKmRrpRiefPJJPV6G9B8UMKSKHTt2IJ/PdzT9cKtZYLqhD0ZaKZwqJfOBghSFpGy6JI2ptp3oV6/TbfdQpzAnHwSDwZYUzCPdAQUMqWJgYADJZBJra2tYXV3tiTokvXrMbqWVg2EsFsP2vc/E/MY05rI7oKgCrrvuurruI+KMn/evt6KErfm/afQe1OZIW1hYqKkATPoPxsCQKiKRCI4cOYKHHnoIxWIRCwsL2LZtm26W9VK1tRE69SbZTcGYGt3YJzON9DExMIX9+4dRLpfx/KOHMT7CLCQ/XDGdyIhq9rh25+21XW1qknQ6jUgkgkwmg9HRURw4cKDhvpHuhwKG1CCKIiYnJ1EqlRAOhyFJEubm5jA8PIxgMIiBgYGqAnWkOewe1t0uXpohFAoiFAoiGu1MnJVf9ILI9Eo3WGDqtauqKnK5nD7hZDQaxdLSEoaHhxEIBLB3796qgnmkP6GAITVoFTCDwSDGxsYAAPF4HNlsFoIg4Pz584hGo8jn85ienkY+n0cymdTnL2mGTgUj9tsgREi/oKoqJEmCJEkoFotYX1/HwMAA5ufn9TTqVCqFVCpV4y5q9nlEuht+u8QSY3luoDKD7MjICIDKw0KSJD1FcXl5Gfl8Hvl8HiMjI7rlRnM5hcNh19aadr/RGovZbSURY56F27zOjWvQ6tq5n2RSMPxt3Q+rPjttU6/frRDH3VTIzi/a2RfzscrlMmRZRqFQQCgU0ieAzefzGBgYQD6fRywWQygUqsqU1NK5zf/HWlVf0p9QwBBLzALGiGZp0arxHjp0qFJVVZJQKpUgyzLS6TQEQcDCwgJSqRRyuRympqaQTqf1t6ZYLKZbe1pV1bcX0R7CjRQJsxqk3Zjj3Syz28a4rfv9jPu6++7dTPRZT3BZbVdP1Jj3qyf4nMSwndDrpiyiVvZFVVUUi0X9dyAQQDqdRqlUQiQSQTab1X9PT0/rdV1GRkb02emt2rSDLqT+hgKGWOI1viUcDutWFw1VVZFIJCDLMsLhMERR1C03kiRhbW0NqqqiUChgYmIC6XQayWQSsiwjmUyiXC4jEono7qxeoFFLjpUIaHRmborA+jQT52H1uTERt3m/2FmyjMutlnXyuzaLOc3VAwDFYlGfhyifzyMQCGBtbQ2jo6OYn59HKpXCxsYGpqamUCwWMTg4iGAwqP/WLCdu5lazE6aA9+cY6S16Y1QgbcfLA95u0BYEAdFoFMBmnY9kMgmg+k2sUCggEokgEAigXC5jbW0NgiDoDzpZlhEMBiGKIorFIkZHR5HNZnVxZBQ7WiGreq4Gq3P0wwrk54BCIdL/GO9F48SDdoLWar22v6Iolve91TK395ZRlJTLZd0iWCqVoKoqNjY2MDQ0hEuXLiEejyOTyWBiYkK3vGr/t4FAAIODg0gkEti9e7f+YgJsPhMahRaYrQsFDLHEyYXkB0Zxo9UAicfjUFUVk5OTkGUZAwMDkGUZiqKgXC5XPewLhQKAytQHU1NTuHTpElKpFFRV1d+6SqUSRkdHkU6nkUgkUC6XMTg4qAsmTewoitJRC083uQ+A7shCsaIb45R6oT/GZdpszpIkIRAIIJfL6YK/WCxCFEWsr69jeHgYly5dQiKRQDqdxuTkJObn55FMJvX/m1AopIuT0dFRRKNRDA8PIxqNYnBwEIFAwFVcU7M4HaNXLLekMfjtEktaLWDqIQgCgsGgLkY0kTM4OAgAuliZmpqCoihIJBJQFAWqqkKWZT3NUhRFyLKMUqmE9fV1hEIhzM3NIZVK6W+siqIgk8lgenoai4uLerDg2NgY1tfXkUgkoKoqwuEwVFWFoiiIRqOQJEl/QIZCISiK4uqh7eUasKifP/TCOTnFLymKot+v5XJZ/x0Oh5HNZhEKhZDP5xGPx5FOpxEIBCCKIkqlkj5b8/T0tH7vZzIZTE5OYmlpqUqUCIKgW0NHRkYQi8UwODiIaDSqZxpqzwZjXzUrip0VqF2YryGDePsbChhiSSd8x06xBk7rRFG0NBWnUikAm+6riYkJABW/uiZyZFmGLMtIpVL6G6QmRoDNAlmyLCOXy0FVVf3hr7m4NPGjDQ6yLCMSiUCWZUiShKGhIaTTacRiMRSLRQwPDyOTySAWi0FRFIRCId1MHw6H9RLoiqLodXi078M4eLRqoOg2i5BGswXT/HbvaWJW+60dQ5Zl3R0qCAJKpRKi0Sg2NjYQCoVQLpcRCoV0K6ImPgRBQDabxejoKBYWFnSXzOjoKFZWVhCJRBAKhVAsFhEKhapEyMDAAHK5nH5PaQGvmpUkFoshHo9j165dCIVCmJiYqMosNJ+boihV8WzA5jPBaAl1CjK3EmNuM8G8ZIzZBWSzDkz/QwFDLPFbwFjFndg90NoRnKidnyYUotEoVFXV60holh4r/7zWN00gjYyMIBQKYceOHVWZQ4qi6IONZplRFAWyLGNjYwOqqqJUKumDWaFQwNjYGJaWlvQ3aaN7rFgsIplMIpfLQVEUDAwMIJ1O6zV6xsfHsby8jFQqhUKhoA9qoigiGo3qqamFQkEXVdFoFOVyGclkEoVCQbd8lctlBAKBqmNqYsrYFlAReYIgQJIkxGIxfV25XNY/a+dfiX1SUSwqCAYDyKQzCCCkt5vP5xEKhaq+f62dXC6nC4NYLKZvqyiKbmmTJEm/HuFwGMViEalUSre+afFUWsZcMplEJpPRM19GRkawvLyMeDyuZ8YUCgUoioJUKoXV1VVEo1H9u9FEq3a90+k0RFFEIpHQ+5DJZDA1NYXFxUWkUink83kMDw/r/desH1q1ay2YNRqNIh6PIxaLIRKJ6IOxdi2np6chiqIuQsz3pRVuBvRmBaxVzI7dccwByc0c27w/A3j7HwoYYon2hu8mbdUpzdT4MLNqz23QYavxIpi0/mkDuPm3Fdrb7OjoKIDaQUYTPaqq6pkX4+PjCAQCiEajCAQCulBIJpO65UYTR+FwGJFIBAMDAwiHwxAEAYFAoEYMaMdSFAWlUgnBYBDFYhHBYBDpdBrBYBDhcBi5XE5/yw8Gg7qrYWNjA6Ojo1heXtZdDUaLgBbAmUwmkc1m9c+JREIPVM1kIkinK8HXl+bnIZfj+iCviTVZlnVrUzabxeTkpL7OaAEbGBiAJEm6OCkWixAEQXf9aSJCC/rWgr21gFTtB4DuHtEsHVqcVjAY1F2Io6OjCAaDSCQSiMfj2L59O8LhsP59aFWqBUHA6OioLk4A1Fg7zJ8lSdLvLbP1o958Pr0UPG7OsjNacbTnhDnjyg3m7eg+6n8EtRecw6Tt5PN5XLx40dXDzGhKbvYtSsOYkdFqtAdpJ/8VrEzxneqTl2OaByCr/c0pwE+ckXFhQYYgAM+9MoRkvLJOFEVbd4C2bzP3l9/3lN+iwWvNn073xQ+3nNWxnO4Dq+9fc+OZt00mk3j2s5/dVP9Id0MLDLFEC+hz+4Ay16roJer58rcazQ5MTkXaKm/Xm4GegihUBYx7KSrnBb6n+Ytf19NNO+ZYOLu6L2bhQwtM/9PZVBPStXTSf6yqatuzoDotvDp9/F6g265Rt/SnE/3w6//TqxAyxssYLZRWLyFMoe5/KGCIJZ1Mo25lhg0hpH/QBI1V+jYtMP0PBQyxpF41WzO9LjjoYqimG69HN/apG+i369LI/F/Gv81B9qR/oYAhtnixwvgZcNqJ4NVeF2B+02/XoxXn0y3XyO9+uA3cb8WxvFpfzRlNxikV6ELqfyhgiC1eBIyfbp9uT6MmvUcrvt9uuWe6PVPNqQ2ngG836MHghueP5lZiEbv+hwKG2OI1DsZP4dFuEdPpt+luqYdD3EMB0xx+3N/m9GmjRWZgYKDp9kl3QwFDbNGKeXWKdgYSd6NY6JYBslvotu/Iz/7wu67QSFYSUP2sUFVVLzZI+hsKGGJLveqfZvweYNo5YHXb4Ehq8bM2TbfR7f1rF16vgzHuxXh/ULxsDShgiC2RSMRy0ODbYntox6BmnurB63Ht7gUtJqG2iF39QnVu93MqnGg8L+N0AX7SDf8HrbhH6p1XK2vANPI9We1D99HWgGHaxJZIJFI1OaGGVYn3RuYuscNu3qR+xqnCqDk40fzb3Ibdd2B1Pc1tG7dr5vo3Knyd9vM64BnjI8yZbY2WCDDf68b2nejVKtWtxEsAr9V3qGElqJwmtCT9AwUMsUUQKtPRFwqFuttaPczrzWHidNxewTygOb2dOg1yVpVE7QSF04Duh/jYCnid78nLZyvcWp7sjm8nWjtBq6YRsBLk9Y5pVcAO2JxNnvQ3FDDEkWg0imKx6PjQcvvGb3zYOIkb7bP2064HtvlY9c7J3O9m+trpQclMNwyUWwlzDIcZK2FqLqVv/G1noes27KYGcIvVsycUCtXM5k36EwoY4ohdHIwRt4O4nYvE6k3Manmz1GvX65t1K9LGzQKqGwedTtDsdeh2q14j37XxnrETOEaMFsJm/sfcWpzcWK68uOHsjmOG7qOtAwUMcSQcDrt6uDQz2FrF1Fh9doqzcfNAdhOc2E2zUlO8bNKsmGuFGPazzXZY7qzinOq15yT8jBbVRtxqrRKlyWSyqXZJ78AsJOKIFshbj1aaqo3xAU4P3kZM0IR0A52uPu30f6VlcWni3vi38eVCmz/N7bk0+79q57pm/MvWgQKG1MVrSe5G0iyt3Et2WTP1shXc0GiWTCvpdjdHJ+n0d9NqGnWfNGu5sXI/eY1J0bbT4nisrDhGgWNcbvW313MwwxTqrQNdSKQukUgE+Xze9fZuH6ydDDCsVz/EbRvmYEmnNGbSOM26bLrt+7C7b5y2t9rfal0raSZmxik2rtF2RVGs2jccDiMajXpui/QmFDCkLl4r8tqlAzdKu4JZG6kCavxtt6yRNgH7FFE/odhyxqn2jpfv2NyGeX+v7s9WfWf1+tCK/0PztXGq+aJhJ94YwLu1oIAhdXEjYIwPZlEUIctyU8fslMugmzJ/tKDiVgoMp1RxN2/Mjaa+Aqr2oa7L0Pi7VXETzn1tXphalQ+wOk6nceqHn0HudkG/5vtJs7C4DRKmgNlaMAaG1CUcDiMQCNQsd/OG5BftesDTGlE/zsj4XfidSm7+MR7Tjywkv/rrd7ZaIyKwW0RPI7jtu7E+jrk2lNV3yfiXrQUFDHGFMZDXzvTdqoGtFe3ZHaPTAqbTx+9Wmr0u3S6ovbbXCReSn+fcyLPCTXAxM5C2FhQwxBWRSKSu/7/XBQzQeVO+XX2bduP2OnT6ernF7376+b30ShySn9fQrqhlM0SjUc8Zk6S3oYAhrnBTkRfwV8R04qHeDVaYXmKrCMtuo933aLf9T1jdDyxgt/WggCGu0AJ5vdRgafah5zZwz2+67WHdCbrtGnRTf7rButjuitGtuv6NtmuuNSUIAuNftiAUMMQVdoG8TnTDg540Tjddb1pgWk+74l+M4suvdlVVxdDQkC9tkd6BAoa4xuvEjlafm6FdA2o3DdzdDq1izdML4qyb+mhlfYpGoxgeHu5Ab0gnoYAhrkkkElWf6wXyAr058HR6QsduGSzcfHe9+P0Sa5zq/nQb5roxExMTHe4R6QQsZEdck0qlsLS0BFVVq+ozAPYPuW58+NVDK9jVKSFhLo/eDM1muLjZ19hfN9klVYHSl+fIsdtH+6woiu1xjNuaj++mRL9dn+2uXTekULeqIm47afQ8rP4/p6en/ewa6REoYIhrRFFEPB5HNpu1HSzMdIs1wS1WJeO7uR9W191c+KtR3BZL8xrTUNXuZTFcD0EQXB3HbYVXp32Mx7Ra1mhRPGMfzBMZernXeu1/ygov52B+zpjvl0QiwQykLQpdSMQTyWQSgumtWcNsmdEG10Zmp7ajHRadTg8QXubbsRtk/bhObtrYajEwiqLoA6i5sFq9H6D6u7Fyt5p/tP8d7e9OCOtWHM/pmWC+RvUK2E1OTvreP9Ib0AJDPJFIJBznpTE/YM0PnWZdGlp7rays2mnri5FO9sVtDEw7+tfsMfzqo5/zAWnX1yiIzNSzIBnnWDKKJPNLRKPn7/f3a752xntMm/fLzjVtdw2mpqZ86x/pLWiBIZ4QRVEP5nUyyVuZ8s0PY7fuBiONWBfqHcfO7dAtdFt/zLSjf91igek0Vu5Co+XT/Le2jbav0bKjWXS0362+xmarivFvNy8ldnMfxeNx/ztLegJaYIhnUqkUstmsY+Cu2cdv9+baqIvE6uFs13a3vH02SrcP3lvBrdcPmC2hxr/NLxRGsWEMnnb7/2pnTTK312j/NZh9tLWhBYZ4JhaL6W9trcbOhG58yzS+dWoxCnZm6F7Bz7gh0r0CyGu/2pXib7SI2P0/GS03VtaVViMIAt1HWxw+JYlnNDeSk4XC6qHnNfPAHCMA2M9+bf5cL5iynQ9a0nn8ErGdvGdaWc5fEyxOQcbm/zvzS4TWlvlHwynWpx5W/6+Dg4OIRqOe2yL9AwUMaYhUKgXA3lJg5VO32ta8nZXAsHMjNYqT0LHqW70sCNL9+PW9dbrIoRvsBATg7Nox3+ONnKtdW8a+2fXDCav/d2YfEcbAkIaIx+MIBAKQJMl2G6MZ2vy3cRsjXoSJm8A/r7jx9RuzJZrJ1Ol211Y/iTW/rrXf31m9GC+7ZW5iv9wezwo/s600jPEvRoHl5jhW14MChtACQxrGmFJth/nh5GcKajviRJyEh9vBoJ6bzWyKt3pzdWM1quc280o3Cax2iSk7d2OjbZn/NlsYZVl23M/cLw0/s4bacW2trqV272sYLZ7mfc3LRkZGEA6HW9hj0gvQAkMaJpVKIZ1O1yzX3rCsHlp+lslvB63MRHIjhNwMpG76Z+WSM1uQ6lmUmrV4VQ/egJum/Lj2xuPaDZB2FjUr4dHIse3a6IZMNyvrht/WF/NUEE79MMfhWF0jWl8IQAFDmiAWiyEYDKJcLtu6hexM3N30dm+F8aHZCnO6lz74NciZr3m9zxpOLj+7ZW5QVe3Hez0g78eyFyBeLWp+0mnxYtWHVogqr5ZAp3suEAgwfZoAoAuJNIk2tQCw+ZByqp7pp+unlcW3umFg6QaR5zbGhzRGN9xnZlohXgKBQFP7G++x0dFRBIN89yYUMKRJtGwkJ1oZQNnK1NJO0w2DWzdch26hFd+Hm+vbTByTm7bN/em09cW8r/Zbu1as/UI0KGBIU0QiEYRCIQDuH/CNDop27bdjkO30QN4NYoZ0hlbee1YCpluwyrwKhUIYGxvrYK9IN0EBQ5pGcyPZmYmtBt9eqzTb6Qd7p45P4VShFde/G65tq7IENfyOd5uamuq5ZwdpHbwTSNNobqR2PJDbOZB7ydBpFZ1+WHdauJHW0urv15wq7QVzinUgEMDMzIxPPSP9ACOhSNOEw2Ekk0lkMhlPPvRGsnucskhaKaC6Id21GbTie2ZRpgkkq9Rer8X6jO1aVVc2bqtn/oi1FWO9pjlb7WtOw3VK4TXuYxWI3irc3k/tin9pRbZdo9dRFEVIklT1PW7btg2RSMTP7pEehwKG+MLo6CgymQyAzZoPRuwGBb8Gi3YIjHYewzwAWw2uZtGhiRQN48BsN42DU1q0drx652y1Tb16H/oxFNVVKrVTGnS9ZfXOwXjNrIqpGT8b1zsJ514Qu16ukR/HcIvxXtb2DwQC2LNnj9/dIz0OXUjEF8LhcNX8SFaDX6/Hwnh5YzaWSq+yOFjUHKka0C3Eg2aGN6+zOqYRP9LMt2oatfl70zB+F8aZz80/Xts1iygzrc4MakWByUbbM4p1je3bt7PyLqmhd0YP0vWMjo4CqH0AOw3Aflo1WjGQGgWH1Zu6ncXDblCzsiQ4CQ27Aa9duPlu2mGVaoZm++endcJO5NgJfTsxbPfTKN0UpGy+Pox9IXZQwBDfMFph7N4wjT72RuMN6rknvLZj96Ztfts2uw3MD9pW1qRplYnfzbH92KaX6eT5WVns3G7vRehYzcnUKpzuY6s4HFpfiB0UMMRX7KwwGnbLjUIBcH7IObVt55Kys5bYuQLqHavddNIKU++4vRDv0W208pp5vU9EUUQgEIAoir7dY07tOK0zWmoBWl+IMxQwxFfMsTBmrCwJRuFhdCl5iS2wO47RkmIUKc3QCSHRSZFQ73y7ReT1G638zp2sidpyTdBov728lEiS5LlPVu5kWl+IExQwxHc0K4wdVg88t4OgnSgxv7n5iVPAZbvo5mDnfrfAtGIiTzdttuo+MwfvWq0zZlqZ47bMrigrq2Wjfaf1hXihe5+KpGdpxAoDWAf/mvcx/pjTWM3BsuY4Frvjeh2AuzUWpVN0c9+apV2iuF04WSDr/e+Y27BztfpRuA6g9YXUhwKGtATNCtOIOLASInbb2uGUlmqXHWR3XDu311ah0zEw3ew+6xRu3Krm+9cYX+YkUJrBqoaOW2h9IV6hgCEtQbPCOJmTzSIB8Hfm6kYfyua3TWN7VrE1TmLI3IdG4nmM59SNdGu//KAd4szqHrHbpt49ZXUvapgtlq3AbEVxI2asatDQ+kLcQAFDWoYxI8nOZeRkinaD0/Z2k0v6hV36tRk70WIUP/WEkNUxrAYqP9+mtzr1LHxuY7nM2W9u3DJW370f36vfLwpG6r002K0zx68Fg0FaX4grOJUAaRmaFSaTyej1HcxBgVYPUi9zsvTyYF3PzWX+LAgCZFmuGSis3ra1wc/41u0mm8hscXKDl++g0e/LrfXAfI717qNGBlyndXYC1ti/VgQFu8XqXvEDP8+L1hfiFgoY0lK0OZLaYb62ws8J6ppxS/mFlzdnJ4FkhdPbfr3z9nRdVBWA0dLgftf6TTcfpK3Riu/bLCzNtGJCRfOxW0WjblHj+QaDQezevdvPbpE+hi4k0lLqZSTZ0c1pw0b6Of7DyFY5z3ZQr5Bbr9HMPEpmlxatL8QLvTFKkJ7GWBfGTcyI3baN4pcY6rT1BeicsHP6LtoR6NqJfVtBO+53p2O34hhaPSYvaDFE5tgXWl+IFyhgSMtxmiMJsH+oN+ouaRVeAje3Ev16/t0mfpqhmew3J/woWKexd+9eWl+IJxgDQ9rC6OgostksFEXx5Od3u229B7NfsQWdHtTqxVB4bcuIVcyMOQDVaj4p4/bm9ZbbCwIA+1m+rfrmFe3YdsHM9bJxWvE91xMQnb63GqERUaRdcy37SBRFDA4OYteuXa3oIuljKGBIWwiHwxgbG8P8/DyA2gBJu0HZPOB0mnop4X5jPH9RFHUXkl19DycBUC/7yymIVwu2rJd94yr41yGI169raCWorJZbiSwr94a2T71r3Ex/uy3Ath1ta3MtHTlyxMceka0CXUikbQwPDyMej9uutxMGbq0N9bbzI36k2WBFDeN8MsYfcx0Q44BrTnHWfsxzQplrypjfkltVA6TbcGMdqCdwzO25bdeuTeMEicZJErs5jsgKKyHtBaM1dP/+/Y7PBULsoIAhbWVqaspy5mntsx1uxEc7rDRWgso86Jnf0K0sHlYCwyxYukkU+JpG7YFOXQM/z8dK+JhFkJN4N/400rdWfDeaAHHr3jVatoz7jIyMYMeOHb73j2wNKGBIWwmHw5iYmNA/G60JsizXPOT9xosVxiwm3MZLmOMrtorFoxU0657oxHG9tml3b9lZ0cwxQ0bLjtXx/E7NNv4PuQnK1/pnJhQK4YorrvC1b2RrQQFD2s7Q0BASiQQA+2JrVm+qrUghtnrDNR/XPIB0QyBmJwSM0zFb1Z9uEyF+00gQrNX+VvFJVkLHj++pnvXFSdQY9zlw4AAikUjT/SFbFwoY0hGmp6f1uYqMwsTugW7ncrHCSyxMI3Eizbq6mqVTQc2dEE29IEKaoZkicG6wE+GAvXivh10mWr19jNuOj49jenra9TEJsYIChnSEYDCIyclJ/bPbB6j5gW9+A9VcUUasHrLNCg2n/rZj0O2VSsXN0i8WGLu+tLLybj3rjp14NwYYa9sB1bFdWr/rfT9WsTuhUAiHDx9u8KwI2WRrPAVJVzIwMOBY4M4Oq8HbGEsDbFYHtZvxGWjdANcucdFuEdMJF1K7Y2Cadek4tdtunCx1TsHBxv8bYztaIK4X0WXlOjp8+DAL1hFfoIAhHWVyctKTKwmofhOs504ytmfcxzgztpNryqndTlth2k0nYn/abYFppyhstUvObIk0Ui842LytlUWmHlYp4pOTk1VB/IQ0AwUM6SjBYBBTU1P6Z7tMCuNn7U3QD5we2laix/jQ194qrQaAVsc2tDLDqZtotxBs52SKbo5lF+QOWMe3tMLCaBR1mvD3gtaPSCSCQ4cO+dInQgBW4iVdQCqVwuDgINbX123N3lbL2h3M6qW4mZu3W6sByUttHG19u65BPWtUt1mduqU/VkLF6nrVu++9/l/4JW6N96XXa2o89yNHjiAUCvnSJ0IAWmBIlzA5OYlgsKKnvbiS/DD5N/qgd8reMNbmqGflcXprtqusa9WW1f71lnl5W+81a4/Xwdb8XVmlIVsttzqeneXQGGjuxQXqBaN10A+8iBdN7JgF2rZt26pmpSfEDyhgSFcgimJNWqWbwVXzzzdLKwZnPwYlpyJn5mPYuRSclpl/m6clMLvP7CwtTgNmo+m6Wrt2cUrmH/O2xr66GYCtrGhW6+y2sRI2VsdtpRD0K4bHbDl0a2HT4tmMIioWi+HAgQO+9IsQIxQwpGtIJBIYGhpydLuY6UbXhYZfhcPaiRtLA+A9gLpRS0Oz9UmM59It30Wr4my0DCE/2g8EAlUizCkg2Hh8o8jT9j9y5IhuXSXETyhgSFcxMTGBSCRSM4jWi7/otCvJjlaKq26rxttNNBJo2gph0a3i2olGXgrsXGkzMzMYHh72rW+EGKGAIV2F0ZXk9a25G11JrX7z96t9KzePeZlxubHYmbnwmdV+Vf0UBADW8SVW/TJvY7fMKTPLydVWrw+N4uSSagV+iDCzeGmkTW3/qakp7Nu3r6n+EOIE7Xqk64jFYpicnMT8/Lwe42KMwXBC27bdtMOV5XT+9a6LeVCql65ut8yuPadAZIudAbgb2OvF+jj1x4iVO8zpmrkRM2YBVK+NTt2bXjDeG42IF2374eFhHDlyxPf+EWKEAoZ0JSMjI5BlGQsLCwDgScTYiQm3IqMRMVJve6s3W225l7adhIbbGh294gZqhma/P7f7OwkX8/ehKIpeH8hPsav9bzQrjhqtXWQWh4lEAtdcc82Wme6CdA4KGNK1jI+PQ5IkrK6uVmWV1Bv87QSIl4ezVxFjjtVx2wc/BjLtWK0unlevD0D3xHy4EbqtPDZQHaxrTi3W/rayBhmrRNdDC9xtFqvj1WvXnKEkyzJisRiuu+46Bu2StkCJTLqa6elpfb4kDTeDk5bO2UrMcRNOKb3dMrD7QbdbcDopXuywswga1xvTv43rrWKJNOuGlVjyo3/1guaN/1+aeAmHw7j22ms5zxFpGxQwpOvZvn07YrEYgM2HuV29Eg3NItEMNcGnqBUp5mO7cW+1knYM3HbH6BaR1g3ixWx9aRSna20slGgMpPZ6PKt9rKxHxs/G9YqiIBAI4OjRo0gkEp6OTUgzUMCQrkcURezcubPqzc7osrATGF7fxO22tRJIzdDqrKRWY3cdukE4AM3Hv/jZh1ZZ34wuH6v7UxM1xt/1rEDG/hpFi7Fts5tSEzJXXXUVBgcH/T1JQupAAUN6gmAwiF27diEYDFoKlnpYuXLcZOJYbecHfg5q5utBOovTPdaKY9Tbxig+tN+asDELfjuLJlBredHWHzp0COPj476cFyFeoIAhPUM4HMauXbv0KqGa2Ryo77PXMLp+FEWBLMs18Sr12qiHm239ztAwHrPV2R/9FNPTSutLOyxSVrEvdudkjpfRfmuCRvs/sMOcYq2qKvbs2YMdO3Y0dQ6ENAoFDOkpotEoduzYYZm9Ue/BbZVlYRRA5tgWY4yL1f52oqdfBnc7WlH0zYpGr2Mnr7/xfvC7H3b3mdX/gJVlRcPsTrISLubPxkKF2vrp6Wns3bu3ybMipHEoYEjPkUgksG3bNv2zXfqw8cFsjAXQ8JIqbUxTthMtXgcsPy0l5sGlH4KFe1kINnJ9zNWEzW3Yxat4jdGy2s5KsBhdTkZhpCgKxsbGWKiOdBwm65OeZHBwEJIkYX5+HkAlbdo84ZxTkbFGBkdNxDilrHp5+3ZKnTVuY1VjptM0UuyvkWM0QjsEnNUxgVrRbPW3cXs7C6JV/Il5vV/X30mQm0W2qqoYGBjAlVde2RX3IdnaUMCQnmV0dBSyLGNpaUlfZnQL2WElYtwOyNrgWG9bL4XI6rkdnMz79QYRY3/NxdOa3dbuXDpNveBsYyp+PewEiHkb43qrartWffCCVVVfP6gX92VcJ8syEokEjh49ykJ1pCvgXUh6momJCZRKJaTTaV24yLLs2T1jLPPuBjfz2rgd0JuZI8dN/I1ZHNUL1DT/thI0rRIrToO+2/2Ng7KVULBzA7rtlxnzNWnFdbFKafYDOyFqFScTiURw9OhRFqojXQNjYEjPs23btqoCWm7FhXkGZa8Dmp8mdL/iYdymhjfSppv0davg0ZofAKp6+Qe1gsMqDsSP4mzGPrYCt3NRuaXVVi6r/xEr66SiKAiHwzh69Cji8bgvxybED2iBIT2PVujuzJkzyOfzVTUuAHezDjf6tl8Pt+23alD1M1DYfD3NFqtmz8HOpWcnoBoVC04ZbPWsN/Xw83u0ur5eLHVOYsdJvBhRVRXJZBJXX301xQvpOmiBIX2BKIqYmZlBMpkEUG1hcROvYs5OcoPbdGK3QsfN/E3aMc1VVo0/5u39ot51arX1wc2x3AoIs1XI2K65LL/5OhvXG+8xrwKj3vm5cQ/WO0e3y+3cp8PDw3jGM55B8UK6EgoY0jeIoojdu3djdHS0aiBxY4UwDs5eXQH1tnXTlltXiXGgNP42/thltmwF3JxvIyLDLgPIuFwURV2EmkWl8f5qpI9eY1+cBJ65HU28mO+bqakpHD16FKFQyPVxCWkndCGRvmNqagqRSASzs7OeB/BGXUr1LD31RIXZbeG38PA7ZseOTmYiuT3HVl8HNy5Lq1gloyXHfL94FV1urS9WrlZFUbBv3z7s3r3b0zEJaTcUMKQvGR4eRigUwrlz5/SHf73YhnZYLty267cQYM2O1n2nsiw3bbGzClzWaFXQrlWNF1EUcdVVV2FiYsKXYxLSSuhCIn1LMpnE3r17dRO4sf6HcZoAJxeMXWCj1Tq3MTH18KMdp377SaviYNrR12ZpJtjXqT2r5WaB4zU4W2tDE8ZWtWpCoRCuvfZaihfSM1DAkL4mGo1i3759iMVi+jLjw98u1dccD2OV0ms34Pg1oLVywsdWtemX8GhFX/0WRZoYbhY7IWR2HdllYVn9NsfcGGOnAoFAzbWIx+N4xjOegcHBwabPh5B2QQFD+p5gMIg9e/ZgYGBAX+YkDsyptJIk+RZE6dW60uqZpZulmywl7Yy98cvFVy9ux0kkm+8lY1t2WVZW2UZDQ0PMNCI9SXc/HQnxCVEUsWvXLoyPj+vL3IqJQCBg624yZwIZsbPUeBn4/Kh30k46FWvTTvHiVcw6Yefqs6tHY5X9pG1jdn1apYebmZ6eZqYR6VkYxEu2FJOTkwiHw5idndUf8m7eprXqvk4BmIB9hpH5LdjYlnmg8dJ2pzFfu27sI+B/gTnjpI1ejl0vNkm7H42uI/P+dm4gp2Na3eN79+5lphHpaShgyJZjeHgY4XAYZ8+erQrm9aOei9N+2gBizooyoq2zG3S6EePUDX70uVvP2Sgu3IoHq5RoJ9zE1dSbs8tcA8kshgKBAA4fPozJyUnH4xDS7dCFRLYkiUQC+/btQygUqqqyWq+WSyN1Wrym2Nodw1gnpJ4rq17/nNoxHtvqt58uFCuaiYGxuiZuA22dzlWzmGltObkUnc7FzffSyDrzNsb7WeuDKIoIh8O49tprKV5IX0ALDNmyRCIR7Nu3D+fOncPGxobreBOjwHA72BozRJrJXAkEApBl2fEYGnbxEvX6UU/EaGiDunHQbETYmDO+rPpVz9VntAAZadTdY+cKNIsCL7gJ2HUK2q2HVo/Gzk2VTCZxxRVXMFiX9A0UMGRLEwwGMTMzg7m5OSwvL7ver5EBzPgm3KiIUVXV0/52g67VYOo2HkjDKMqaETHmYFWrvplTha36YtUPYxq8sV3zdalnVTLWTWlEpDUqXtzEuwAV8WKXsSYIAnbv3o09e/Z46zQhXQ4FDNnyiKKI7du3Y3BwEBcuXECpVHK1n2YtcArwdTqmHzVErESE3WBnN0D6ESjslAHTDqwETr3sHfMyOwGlnY8oirqVQxMcbr5zN9vZXa968S4A9HvQikQigUOHDlWVECCkX6CAIeQyyWQSBw8e1K0xbrOTtMHN66BtHhDdZiBZWQ3quR7szqWRfreSRt0zVu002pZZvFi5tuzSlq2EZL0+OLnM6mFledH23blzJ/bs2dP1tYQIaRQKGEIMaNaY4eFhXLhwAblcru4A0KjFQVVVvcaMVWn3em02ElBs1YduohkXlLkdPzDG+bgJsLXrizkA2xj302jf7ax+yWQShw8fRiqVctUOIb0KBQwhFsTjcRw4cAALCwu4dOmSvtz4Rm7nNrEbhOvFnTTjvnGzr9V2foigTmMV39OKdr1gFXOjLbfaTvtxE+9i3Nf4nQYCAezatQu7du3yTcAR0s1QwBBigyAImJyc1GNjjJlKRsGhDSRWbh0vA6sxlsbrINxs3IlfMTmdwE4UNEMzoshtppL5/vHSN/Pfg4ODOHjwIBKJhOt2COl16BwlpA7RaBT79+/Hjh07qtxJxrdr4wzXZiHgplCeMUOpUdzsa9cHP6wW3fDW34wly9iG8Vy8Cjs3x7cTuQD0ukRWbZn7EggEsH//flx33XUUL13Ij370IwiCgI9//OOYnZ3Fn/3Zn+GWW27Brl27EA6HMTU1hde85jV48MEHO93VnoQWGEJcMjo6ilQqhdnZWayvrwOoFjFG64w58NM8YNnV6mgm1dprirWZZq0wfoiHRo5pxA/rS6OBv24y0cyWO8A+E8x4n1gFJQ8PD+PAgQOs69LFfPGLXwQAvPKVr8Rf/uVf4sMf/jD27duHW265BePj43j66adxzz334J577sHdd9+N22+/vcM97i0EtZed34R0iNXVVVy8eFGfqdqcpWLEKkPFDU6ZNG7qitRr266vfriSnNp44oyM2cXK+udeFUQyVm3t8CIg/EoD1/Y1t+UmJd2LVauR/hlT9YFK7aJ9+/Zhenrac1ukvVxzzTUIhUL48Y9/jC984QsYHR3FC1/4wqptvvOd7+Dmm29GMpnE3NwcIpFIh3rbe9CFREgDDA8P49ChQxgaGtKXOVlWjL/dIgibMwibXVRGt5X2t9XbvVf8SmNu17H97KtVLI1ZdFqJGmMQrvHHahvtbzeYrXqqqmJsbAzPetazKF7azOc///mqWDe7n127dun7nD59Go899hhe+cpXAgBe/epX14gXALjhhhtw0003YXV1FY899ljbzqkfoAuJkAYJBoPYvXu3nnKtFcCzi19oxr3h5N4xD4xGEWNl0TAPjMbfTkXazK4NK7Fk5SIzt2VcL2CzLTc1acwDup3Fxquly6oNuxmhtXPwIkTM+zr1w6rdUCiEvXv3YmpqytUxib+Mj4/jTW96E+666y4897nPxS233KKvu//++/Hd734Xd9xxB2699VZ9+T333AMAuoBxIhQKAag8U4h76EIixAckScLS0hKWlpYgSRIA6wGpGRGj7efFxWNlQTAKLD8tRuY27PZ/4oyMi0uVc3jOlZsupEZcbMZjmbN/rASasX0nd5WTWPRS/M9tXIyV6NWONTExgb179yIcDrs6JmkNf//3f4+3ve1t+Ou//mu8/e1v15e/5jWvwRe+8AWcPn0aMzMz+vIbb7wRZ8+exenTpx3bPXfuHA4ePIiRkRGcP38egUCgVafQd1DuEeIDwWAQU1NTGB8fx8rKChYXF6umJGi21ouGl0DdegNnPcHQzanVdjEoVvEwdoJMc8+ZRY9TKrtbkeUUv2TVpiAIVVWZRVHUs99GR0frtkFazyOPPAKgEtdi5OGHH8bg4GCVeFleXsYDDzyA3/zN33Rss1wu44477kCxWMSHP/xhihePUMAQ4iOBQADj4+MYGxvDysoKFhYWUCwWAdS6lrxaHIyuG7MVwE3AqJU1xolGs5oatTJ5vRbNxBYZLSPmTB+za8zJneamfTNW7WkxTKIoIh6PY/v27ZiamuI0AF3Eo48+CkEQcPXVV+vL0uk0Tp8+jec///lV2953332QZdnRfaQoCt785jfj29/+Nn79138dd9xxR8v63q9QwBDSAgRBwOjoKEZHR7G2toaFhQXkcjl9HdC4i6aZ/YzCxynexbyPFxHjFMvhZj+32wLes5bMbibzOvN52rVtJSS1duv1ybhOyzASBAGDg4PYuXMnxsfHXZ8PaR+PPvoo9u7dWzVFw8MPPwxVVXH06NGqbe+55x6MjIzghhtusGxLURS89a1vxd133403vOEN+MQnPtHSvvcrFDCEtJihoSEMDQ0hm83i0qVLSKfTAGrrfNhhHhDNMR1eBIOVVabevo0KEuM+2ZyEE+ezuLRYwFPnFaRzASgq8OgTGQwmA9g2EcP0WBT7diWQiofqnoNVALGX/lhhDtqtt705kLmei9Ds3tLEy+DgIHbt2oXh4WHX50Lay7lz57C6uoqbbrqpavlPf/pTAKgSMIVCAV/72tfw6le/2jIoV1EUvOUtb8FnPvMZvO51r8OnP/1pWtoahAKGkDaRTCaxf/9+5HI5zM/PY21tzdb143XwNP5uxPLhZptGgmzPzeXwo8dX8OSZDBQFCAQEFKUYZFT6upGXkS+UsbBcwE8UFYIIHJpJ4VlXjmLXNusCba04T/NM027aMlpfjNWWjdYZLa7FuJ+iKLqrcdeuXZx0sQdwin8BqgXM/fffj42NDUv3kVG83H777fjsZz/LuJcmoIAhpM3E43Hs2bMHhUIBCwsLWFlZqYlNMQ+25gkknQSFVSCrE24EgTmzpx65goSvfOcSnji5joAIaPpAlq33VRQBgApVAZ46k8HxUxlcsX8At/78FOKx6seUl2BoN/3VxIsXK4rdNdb+1sSNMVBYEy6Tk5PYuXMnK+j2EI8++igA1LiKnnjiCQDAlVdeqS/74he/iEgkUpVSDWy6jT7zmc/gta99Lf7xH/+R4qVJKGAI6RDRaBS7du3C1NQUFhYWsLy8bDmYOrmajMLGvM48gNbDrTipt92pCxu45+uzyBdlAIDsJnxGUIHLTWpi59ipNE5fyOFVN2/D3h1JfVO/xIvbTCG7oGuz2DEHA2t/K4qCUCiEqakp7Ny5k+nQPYhmgTELmJWVFQDAQw89hKuvvhpDQ0O499579cq6Rt7//vfjrrvuQjKZxMGDB3HnnXfWHOdVr3oVrr322tacRB9CAUNIhwmHw9ixYwempqawuLiIxcVFSJJkGWNhxOyyMOOl7olxH7M7xSpuBti0MhhFwLHTGfzLv18AoFUHBgzRO4a/DIXsVAGKqgKCCAGqpmOgKkC+KOP/fOUCXv2i7Ti8J1V1fCsrlLEvbi019bYxW1uM10i7/lYuKFVVEQ6HMT09jW3btunFykjv8cgjj2BgYKAqVRoAXv/61+NjH/sYbrvtNtx3331QVRXz8/N41ateVdPGmTNnAADZbBYf+MAHLI8zMzNDAeMBFrIjpMtQFAXLy8tVKdh24sUOu39rq0wb47pGU5MB4OT5LP75q+ehKJv7yqqiixUNSY1DRsUKEUIaIuS6bYsC8Mv/aRf2bHd2u5izjMyWEC3jxymrql5WllE4WQVXAxXr2rZt2zA9Pc0AzS3E7/3e7+EjH/kILl68yKrJbYAChpAuZnV1FUtLS9jY2KgKFHVjNbCyQJgHX7sgYi+oqop8QcYn/ukk8iVZdwVV1gGKqsKoB8wCRoACAU6uHgCigFhYwP/n9n2IR2rjBty4i4wWo0YDgJ0sUrFYDMPDwxgbG8PAwICn9kl/cPjwYQwPD+P73/9+p7uyJaCAIaQHkCQJ6XQaa2trSKfTupjRcArEdXKraMubnVPoC/dfwPHTaagmw0bFGFPdhhcBo6rY9DwJKq7YM4BX3by9ahsn8WK+Lo3WszH+rQkhQRAwMDCAkZERjIyMMCiXkDbDGBhCeoBgMKgPlKqqIpPJYHV1Fel0GqVSydJCYBVwao6ZsUrF9vpOc/biBo6dzECFUCNEtM+KCth7vGzES6WBy/2sLHj8ZBrPuGIYu7clqs7LjNkCZfzbKUvLaJ0yijrN9SQIAoaHhzE8PIzR0VHGtRDSQShgCOkxtDd/zU2Ry+WwtraG9fV15PN5APYzIDtlzVjVltFwEjU/emIVoggoilojYqpjRWysJBbLKqG8QtUSAAgIwI8eX8Wu6WprhzHjymxlMaY2W1munAKkgUo8y9DQEEZHRzE0NMSYFkK6BAoYQnqceDyOeDyObdu2oVQqYX19HWtra8hms5AkyTLYFLCv8Gte5xQvk81JeOp0GooqAEIlXFdVhcsmF1zeXwAEFapi7MdlQaMCEASDYFE3TS8m6wsAyCrw5Jk0MhsTSCVCNWX5NUFi1V9j5pCGVVCuIAiIxWK6xYvxLIR0JxQwhPQR4XAY4+PjGB8fhyzLuphZX1+HLMs1LhezW8k8E7NVDIggVGZOFkURT51NQ5LVSqAuBAhQUFEeAqAH76qAurkM2jKtD5UjAWrFggMol4UQAFWAcnlpZTcVsgScOp/F1QcHq1xfRsFlTnM2n7N5DqNgMIhkMonh4WGMjIwgFov5+8UQQnyHAoaQPiUQCOhWBADI5/PIZrPIZrPI5XLI5/OW7hQANQXwzBVoNQFwabEAURQgKJqZRKhx/giCAFlVIYoCoAoQIAEIQ4AKQVAgCJvBuqKqQhUqUkhVFahQIeoWk8pGgYCIS8slHL3cR6OgMosvc7+12BZt1udUKoXh4WEMDAzQNURcI2dLKM2uozyXQXlxA6okonRhA0quDLVYycRT5RiEoAAhEkAgHkRoZwpiMIzgeBih6SgiO2IQ46zE2wwUMIRsEWKxGGKxmD7bsSRJyOfzKBQKKBQKKBaLKJfLKBQKkCQJQLUIMAe1qqqK2cWCnnlkFC6aLUWTR4IqQoVy2UpTQggKAKWypVIpYqeqQqV6HUSol6cVEIxGm0qHoCgqLizkqlxBRsFl7HMkEkEsFtN/x2IxJBIJVsMlnijNriL3s4soHJ+DnC0h/9h61fro4WkUjmf0z0JIhFqujsWK5lQUjpU2FwhA9PAogqMRxA7HELsygfA070svUMAQskUJBoNIpVKWkwkaxU2xWEShUECpVKoRN+sZCYpQkS6XZzO63MLlUF7NwiMqUABArRStE1QJqoLLMgeAIAMQL7uJlEpMDTaDgjUHVcXNBKTTZb0PoVCoSqBEo1H9d73Kw4RYoaoqCk9eRPYHT6F0IYP8zy7p64RwEBBi1THpgovMPbX6XhTCIgrHCgCKyD5QmaE+dl0S4rYoBp+TRPxA1Icz6W8oYAghNTiJG1mWdXFTUi9BUooQhDIEVYEAuSI4BPly3Iq6GcFy2boioJJTLQQMVhu1smVF72iWHgEqAlAQgKr9rQahIogA4rj22msZq0J8RVrNIP31nyH9rcchLVZERfTIrqpt1JKE4GQc0nxuc6GL+kKqVP05NBlB6Vy1qCnnFGTvW8PyfWsIT4UwfGMKgzcNIDzIodoKXhVCiCcCgQCSySSSySSE0AiKhXJthrRacRFVBA1Q2UD70QJ9AT2wt9IyVEGACvHyehEQrONSgpEQxQvxjeLpOaze+z1s/PhJCKFBKNmivk5aWqvZPjgUgjS/+Vkt158OQy1WixwxEULlf+EyAlC4uKlySpfKWP73NE7+3xWM/XwK214+hPjOiOtz2gpQwBBCGmZ8JIK1TNlijYhKLEvQYZKAyzTg5ZkY5YOcNE/x7CUs/9M3kPvJU/qyyN4BFI4t6p+lxTSC4xOQFg0WF9GUop+3+h+oRt4wl6kWYRQwoe1hFC6YRM5EEOqyhMVvZ7D4nQxGnpXAzttHEd/OWBmAAoYQ0gRH9g7g1IUNyHL7ZiQJBAQc2cvaLKRxpNU0lj/3ZeQeexpy1uTGmV+q2T44FqsSMEo2X7Ve3igCcK7KLKerrTTSWrVYEVJBAJtBvkJIwPq5TUsQVGD9sTzmjl3AxPVJ7P/lUYQHtnYWE/MGCSENc3Am1VbxAgCyrOLg7trYHELqoSoK1r7yAM7+9v9C5ts/hryaRnT/RNU28koa4b2jVcuUjVzV5/JCunp9puRoSRTjQcAQAyOERUgL1YKmuFItaCJ7wpA2qv+3IjNhlDMKZu9P43u/fRYX/qM6G2qrQQFDCGmY51wzgnaXTxFF4PprRtp7UNLzlC8tYv6v7sLSXV+Emt+0bJTOXoAQr3bJCGqp6nPpwhKExOY2alFCcMIQg6WqEAfsLTCBVPW60GSkKispMBpEcb46yjefqxY0ocEAlk4WNs8nq+D43y/ixx+/hNxSfRdWP0IBQwhpmNGhCJ7/jDEE2vQkCYjADT83jtEhxsAQ92Qe+CHO/f4HkP3uDxE9vKNqnZLLI7K72uJSPHMRgdGEYSMVkR3Jqm2CQ9WiJ5C0j8gQYtXrKgG8hn3Hq9sKbwshe6FalASnQ1CqdRVSh6I4+0AWX/+985j9Ydb2+P0KBQwhpCle/aIdkOtnkfqCrAC33by9PQcjPY8qyVj4u7sx//FPQS1UrC7F06cQGK2OoSqePANx0DBBqAqEJqqz3FTZlAcdME2YGrGPRxHDpnVq9dArFUyTiaaqtw+PB7H0VKFqWWwqhLknK8vKGwoe/NNLeOwflyqFIbcIFDCEkKY4emgINz17vOWuJFEEbnr2OI4eGmrtgUhfIGcyuPgnH0bh6RNVy9ViCYFk9c2qlsoIT1fHVZXOXwKCm9uVLixWfVY2qgWFGHYIgjGZKKX1TZEhxkTkz22aVsS4iLXT1W0LQwG94jUACAGgKAKKKXt78VgeX/9fF1HKtemNosNQwBBCmua33nAAyVgQrSp8KwhAMhbEb91xsDUHIH1FeXEJF97zfuQffwLS8sUai0vp7IUaV1Lh6dMIjm9up2TziBqCedVCGZGdm+vLC6YAWqd73xDvIoQFSIZ4l+COCFRlc314d7jKVRTdHsLy04ZsJACpg1GsX6x2MSUmQ5ifLeLiw3n82/suIL9mshj1IRQwhJCmGUyF8e53XGGYeNFfREHAu99xBQaTzqmqhJQuzuHCe96H8sU5AICSzUIMyUCkOs6kxpUkKwgMVd9fci5T9VmIbN7fakFCcNwYyGtv9VANlpLQZLRK0CjG/xkByCxVCw/JZNmJTYUwZ3InhRIiNiQV5cuLV8+W8NX3zCLb58G9FDCEEF945pUjePc7rkBAFHyzxAgCEBAF/NE7rsAzr2TmEXGmdGkOi//4KciZauFRvnQJkZ3DVcusXEnFE+cQ2r55n5UvLCK0fXDz8/xK1faBYUNmkkM1XrVocBkZA3gDQN4QrBvZHUZhcVPAxPeEsXbaUBvGwnUkBIDAWBDZZVMW05qEb31yAZk+FjGCqqpbJ+KHENJyHvrZCu78xBPI5iU3U8TYIooVt9G7KV6IC6SVZVy4848grSwjMrMPxZOzQLl6UI8euRKFY+dMyw6jcOyC/jk8sx2lM5vuoeih3Sg8uSlcgtPTkOYyl/fdDmlBQmTPMGLXTENACEJIhBANAEoQakmBUlKgSiLyj2dRPJ1DaCKBwpOVfoV3R5A+u6lGAvsiWDt52V0kAMK2EDKzmwIkdSSKi8eqrS+Dh6OYPV69LBgREJ4MYeFcCUPTIdz2vh2I9WHROwoYQojvrGfL+PPPPoVv/HARARGespS07W969jh+646DdBuRusgbG5j9wHtQurgpROxETOTAFSg+fV7/LITDCKTGIC1vFqcLz+xB6czi5fVBIDgANVcGBAGDL30WAvE4IvvGET0wicDlGjKqrMAwGTuq5vkSBAiBillSzsooPJ1H8WQB5ZyMxa9kABUIDgWwui7rbSQORDH/9KYwiU2HsDhfrvJUDR+O4ryDeNGY2BfBK/9oO0KR/nK6UMAQQlrGI0+u4f/dP4vv/GQRilKZBsCqcq+2XBSBG54xjttetJ3ZRsQVqqJg4VOfQOY7365ZZyVihHAYwbHtKF/cnDIgvHsHSmfX9M+hbRMoX9yAFpkb/7krENk5jcFbrkVwJAlVUgBRgCA25itVFRVQASEgoLRYxvK/rSN3sYSFn1Qq/goBQB4OInc5HkYIAJgIIT23aY0Z2BXGpQulKiunlXjRuOIXB/DCt45fnum9P6CAIYS0nOW1Ih58dAVPnc3g2Kk0FpaLkGQVwYCAidEIjuwdwMHdKVx/zQiL1BFPLN3z/8P6N7+KyPReFI49WbPeSsQEhoehShEomQ19WfTwYRSOGyw4B/ZDEEMYvOVZSD7nyoqWEQTfBYCqVsSMqgBLD2Rw6WvrQFjAvMGyYnYdRUcCyJZUFLKb6sVJvEwejuLUUwU877Uj+Pnb+scdSwFDCCGkJ9l47MeY+5uP6J+je46g8PhxQDHPIVQrYsI7d6J0MQPIlRgUIRxGYGAc0tI6QlNjmHznryK6bydUWYYQaE/8iCqrEAICVo/l8LOPL6CwLNW4jgIRAcJIAGtzhlRsG/EiBoGR/VGcviyGBBH4lXdtw64r4+gHKGAIIYT0HFJ6Dec+8LtQNqozjiI79qB0bh5qrnoCRisREz10GIUnZ/XP4d07EbvyKoy97iUVF1GbhIsZRVahllU89Y9LmH08h7QmVgQguS+CSyc268LYiZdoSkRgKIhL56uXJ0cC+LX/tQvRZO8H9fZXRA8hhJAtwcrXvwBVrU1dLl44jcBYAsGJ6lmmi2dOIrJvOxDanJeo8ORxRA/vAgCEpsYx/mu/gvE3vgJCKNgx8QIAYkCAGBFw5G0TuObXJhAbq/R56HDUlXgZnA6hEBRqxAsAyGUV37lnpWZ5L0ILDCGEkJ4i8+j3MP+5v0AgOYhAbAylUydrthGjMYQGp1A8ebpqeY0lRhQx8suvw/BLf7GjVhc7FFmFUlbx1H2r+NHnV/XlduJl/EAE588WUa7VLpg+GMHsxRJyWRVv/P1pHLg2UbtRD0ELDCGEkJ5BKRawdN9nAQBydh2lxZOIXnEQQrw6rkMp5FFcOIPoVUeqlpstMaO//EsYedV/6rjVxQ4xICAQEXDFa0Zx1SuGANiIFwGYOBLFqadrxUssJWJsfwRPP1VELluxWfzrp5cglXvbfkELDCGEkJ5h+d8+h9VvfrFmeSA5iGBsDEULa0x05hAKx08C0mb8S2TPfgw8/xcwePMvtLS/fvPEfat44luZKvESjAhI7gzj/IlizfbTBy5bXTZqh/pffN0oXvDK4ZrlvQItMIQQQnoCKbOCwvxJwMJSImfXUVw8iegVhyDEqq0xhTNPIjwzDXFgc+6j1PNuwMAv3NTyPvvNFS8dxsxzkvrnxEgA4nCgRrzoVpeni5biJRgWcOKJHHJZ+ykQuh0KGEIIIT3BygP/D/nzP0NwYgjRvQctZ4AunH8S4lAIkb17q5aXLp2HkBQR2rEdI6/+ZQy96NaeLer2zFeP4OhLhzCyO4x0ScXypepqw1MHIthQVJyxsMiIIrDzcBRyXMCjj+TxH/eutanX/kMBQwghpOuRsmvIPPLNyt+ZZRQWnkJoxzQiu/fWbFuxxpyqscbI6TVED+3HyCte3a5ut4zn3TGG8HgQOUMxu1hKxNiBKE7YWF22748gNBbEE8cLSK9V9nvga+vI53rTCkMBQwghpOtZf+grUOXqmZXLq3MoLp9CeM8uhKd31OxTscaEdWtMYGAIY7/0JqjNzDLaJSiKihf/xgSiicowPnUggpwKnHm6ULPt1EwYqe0hHD9RxNJCtbWmkFfwvfvTNfv0AhQwhBBCuhpFKiF/6Wnb9aXFcyhlLiByYD9CY5NV6+Tsmm6NmXjD2yGGIxDE3h/6RFFANBHALW8bx/iBCE48XcRGtlqYjW0LYWRPGE+fKeHibNmyHUEAnn4iD0XpvXye3v8WCSGE9DUbJ36IwsITCE6PI7rvMISodSn84twJlIsLiB46hMBgdXZNcHQciSuu7cpU6UYRAwKOPDeFcKr6nAbHgpg8GMGZi2WcPW1REAZAIiVi5kgUoeEAfvRwDj97OGe5XTdDAUMIIaSrSR/7FgBAyiyiMH8ciEqI7j+E0Pi22o1VFYXZJ6Egi+ihIxDiSQRSQxh/5Vv7wnVkRlFU3Pb2CcQSIhIDAWw/HMXcioQTTxVhZVOZ2hnG9oMRLOcV/OxYASsrlfiX736r99xIFDCEEEK6FmljDfnzP6tapkolFC49iXL+IkI7dyA6cxAIBqu3kcsozB4DojImX/dOiKH+cB2ZEUUBsUQAr3rHBFYKMo4fL0A26bRwRMDMoShS00GcOF/Ck08VjSVxAACP/iSHfK63BF7/fZuEEEL6huypHwEO9VbLqxdQWHoK4mAU0f1HEBgcrVofiMQRmznSV64jM2JAwMGjCQRD1UP6yEQQuw5HkReBnz1ZwNycZNMCUC6reOzhjVZ31VcoYAghhHQtuUs/QXjXLkT3HEZwcNx2O6WYReHSMcjyCiJ79iC8Yy8gAAPPuNlRAPULYgB49gsHIAaAXfsjGNsdxrkFCU8cLyCftz//8ckg9h2JYnRHGA/+uLcETLD+JoQQQkj7UeUy8hd/BlU2lM2fHkcwNgYlu4HS4nkLcaKiuFiZwDEwNY7BZ70Ygti/1hcNQQBuevkQHvheGk9YFLDTEAPAth1hhGMiLi6WcXpeAuYrlpmVdQmqqvZMgT8KGEIIIV1JYfFElXgBACm7CCm7CAAQR5IID2yDWlZQXLgAlKproMSm9iMQsc5Y6jcEQcDgcBDbdkWwtpavWheLi5jeEUZZVXFutoTjZ60zkzIZBefOlbB7d6QdXW4aChhCCCFdSX7+Scf1SimLwtJTlQ+xIMLTeyAKEZSX5yFnVjF49FaoirwlLDAAIMsqfuGWQTzxaB4jo0GMTASRzik4e76ExadqC9xZ8eSThZ4RMIyBIYQQ0pXI5TVEpvYhkBiqv7EiobRyGoXl45Cxiuj+I4htP9yweHnzm98MQRBw5syZhvbvBIGAgKPPSGBiJoxzyxIePlbAqbOlmqwkK0ZGAth/IILlNeuCd90IBQwhpClmZmbw3ve+t9PdIH3IxvyPUcyehCysQRxJIbJjL6K7jiAytb+uqAlEUzXLzpw5A0EQqn7C4TB27tyJX/3VX8Wjjz7aojNpH4IoIJ50Fm2jo0EcOBjBkaui2HMojOSEgJWSjBNzRTxyzFtBu4ceeggveclLMDQ0hEQigec85zn453/+52ZOwTV0IRFCfCWbzeIjH/kIHnzwQfzwhz/E6uoqPvWpT+HNb35zw9u+613vwuc+9zmcOnWqPSdBOo4iFSFtLG1+LmVQLGU2NxAAcSSFUHwMghiFWipDyi5Dzq4CAKJje6EqEgSxdpjbt28f3vCGNwCo3IM/+MEP8LnPfQ5f+MIX8PWvfx3Pe97zWntyLUSWVezZE8HPflaJgxkdC2JkJIhgGCiUFCyslrGcl7B80TqlevZSGYqiQhTrB/J+4xvfwK233opoNIpf+ZVfQSqVwr/8y7/g9ttvx/nz5/E//sf/8PXczNACQwjxlaWlJbz//e/HsWPHcPToUV+2ffnLX47Tp0/j8ccf97u7pEspZ+cBy1qymyilDIprp1FYOYZi9gRkrEIcSSKyYw9iO68BBGtLxP79+/He974X733ve/HRj34UDzzwAN71rnehWCziXe96VwvOpn0IAnD0ujhmDoURHxOwXJDw9MUCjp0p4PTFEjYcUqqBSj2YlVX7ejEakiTh13/91yGKIr797W/jk5/8JD72sY/hkUcewcGDB/GHf/iHOHv2rF+nZQkFDCHEV6anpzE3N4ezZ8/iIx/5iC/bXn/99ZicnMS9997rd3dJC/j85z9f46qx+tm1a5dtG1JusaFjK6UsimunEUpOeUoHfuc73wmg4hIxoqoq/uIv/gKHDx9GJBLB7t278b73vQ+KaVqC9fV1fPjDH8YLX/hCbNu2DeFwGNu2bcMb3/hGnDx5suZ4hUIBH/vYx3D06FEMDg4ikUhgZmYGv/zLv4xHHnmkZvsvfvGLuPnmmzE8PIxoNIqrrroKH/3oRyHLctV2oihgajKEM7Ml5AqN1b9ZWqkvYP7jP/4DJ0+exK/+6q/i2muv1ZcPDg7iD//wD1EqlXDXXXc1dHy30IVECPGVSCSCqakpX7cVBAEve9nLcO+99+L3f//3m+0iaTHj4+N405vehLvuugvPfe5zccstt+jr7r//fnz3u9/FHXfcgVtvvdW2DUlOIzgxATEYhyiEK9YUBVAVCWqpBKWch5RPA1Jtdk0wPo5AuLH0abPo+d3f/V1861vfwste9jLceuutuOeee/De974XpVIJH/jAB/Ttjh07hj/6oz/CTTfdhNtuuw2JRALHjx/H3Xffjfvuuw8/+clPsHv3bn37N73pTfjnf/5nXHPNNXjLW96CSCSC8+fP4xvf+AYeeuihKovkH/zBH+BDH/oQtm/fjle/+tUYHBzEd77zHfzu7/4uHnzwQXz+85+v6vPYaAiJuIgNi6kBYjERqaSIeFxEOCwiEAQgAJKioiipyBcUrG/UFzDf/OY3AaDqu9XQvtdvfetbddtpBgoYQkhP8IpXvAKf+tSnsLi4iPFx+4qspPPceOONOHnyJO666y688Y1vxNvf/nZ93WOPPQYAeP/734+ZmRnbNuTiGqT8gvOBYoAQiCAQSkEMxiGIEQhCENGhg577/L//9/8GADz72c+uWv6Tn/wEjz76KKanpwEA7373u3HgwAH85V/+Jd7znvcgHA4DAI4cOYK5uTmMjIxU7f+Nb3wDL3rRi3DnnXfib//2bwFUrDWf//zn8XM/93N48MEHETBMcyDLMjKZzViff//3f8eHPvQh3HrrrfiXf/kXJBIJABXL0H/+z/8Zn/jEJ/Av//IveM1rXlN13Buel8SZ2VJFmJRV5Aoy0jkZeUlBvqAADlnVa1nZfuVlnn76aQDAgQMHatZNTU0hmUzq27QKChhCSE/wohe9CJFIBF/+8pfxpje9qdPdIXXQ3CDXXHNN1fKHH34Yg4ODjuIFABTJXTaMKhchydWVZ4OJUZutK5w4cULPnNvY2MCDDz6I73znO4hGo1VWFaAiWDTxAgBjY2N45StfibvuugtPPvkkrr76agAV14kVN910E6688krcf//9+jJBEKCqKqLRKETTBJOBQABDQ0P6549//OMAgE9+8pO6eNHa+NCHPoS/+Zu/wec+97kaAbOQlnD8vLvaL2byhfp51+vr6wDsz3tgYEDfplVQwBBCeoJ4PI6bb74Z9957LwVMD/Doo49CEAR9gAeAdDqN06dP4/nPf37d/VXFulqsG0Qx5Lj+5MmTeN/73gcACIVCmJycxK/+6q/i93//96v6CwA/93M/V7P/jh07AABra2tVy7/5zW/iz/7sz/Dggw9iaWkJkmHKZ81SA1QG95e85CX48pe/jGc84xl47WtfixtvvBHPetazEApV9/0HP/gBEokE/uEf/sHyXGKxGI4fP16zPBRqfDqAYqk35o6igCGE9Aw33ngj/uRP/qTT3SAuePTRR7F3716kUpv1WB5++GGoqlo3Ow0AhFAM4eGZho4dTE5BVRUIgnWeyq233oqvfvWrrtoaGBiobT9YGTqNAbSf//zncfvttyOZTOLWW2/FzMwM4vE4BEHApz/96ZqMnM9//vP44Ac/iLvvvlvPfBoYGMBb3vIWfPCDH0Q8XonhWVlZgSRJuuCyYmOjdhLGbVMhzKyGLbauTyRSX/xolhc7K0s6ncbw8HBDx3cLBQwhpGf44Q9/iGc+85md7gapw7lz57C6uoqbbrqpavlPf/pTAHAlYFQhh1L5TEPHl6T9ANo7IeF73/teRKNR/PjHP66JC/k//+f/1Gwfj8dx55134s4778Tp06fxjW98A5/4xCfw53/+58jn8/ibv/kbABVRIwgClpaWatpw4lJawpmVxqxY1yr1LTDaOT799NM1VqpLly4hm83WxBP5DdOoCSE9Qblcxle/+lW8/OUv73RXSB2c4l8AdwIGFgXo3KIq5bbPqHzy5EkcOXKkRrzMzc3VLcC4Z88evPWtb8W3vvUtJJNJfOlLX9LXXX/99VheXvYcEFuWGncDhYL1r90LX/hCAMDXvva1mnX/9m//VrVNq6CAIYT0BN/61reQTqcpYHoArSS/Wag88cQTAIArr7yybhtiINZ4B9osXgBg9+7dOHHiBObn5/VlhUIB73jHO1AuV88vtLi4iJ/97Gc1bayurqJYLCIajerL/ut//a8AgLe+9a1YXl6u2efSpUs4duxYzfJmrkA0XH/vm2++GXv37sXdd9+tC1Og4lL64Ac/iHA4jDe+8Y1N9KI+dCERQnzn4x//ONbW1nDx4kUAwL333osLFy4AqBQMM2YuuN32S1/6Eo4ePepY/Ix0B5oFxixgVlZWAFSKxV199dU1KcdGAsFEzTIhmEAgkkIgGIMQDAOiCAgqVEhQlSJkZQOKlEEJF3w8G3e8853vxDvf+U5cd911+KVf+iVIkoR///d/12N+jMXpZmdncd111+Ho0aO45pprsH37diwvL+OLX/wiyuUyfud3fkff9sUvfjHe/e5344//+I+xf/9+vPjFL8bu3buxvLyMEydO4Dvf+Q7uvPNOHDlypKo/s7kSQkPAQCyAeCiAaFBEoHK5oMiVQN1CUUE2JyObr846SsTqT4AZDAbxd3/3d7j11lvxghe8oGoqgbNnz+KjH/1o3UyzZqGAIYT4zkc/+tGqoMUvfOEL+MIXvgAAeMMb3lAlYNxue++99+rz15Du5pFHHsHAwEDNAPb6178eH/vYx3Dbbbfhvvvuw3Of+1zbNgLxMUQm9kNRClDkDchyGqq6AQkbkBQADuEdpfxZxyDeVvBf/st/QSgUwl/+5V/ib//2bzE0NISXvvSl+JM/+RO89rWvrdpWmwD1P/7jP3D//fdjeXkZY2NjeMYznoHf+q3fwotf/OKq7d///vfjBS94Af7iL/4CX//617G2tobR0VHs2bMH733ve/H617++avtiWcHcShkqgOWsjGU41HUJAoFBYCAaQCIiIhoUMTLkThrcdNNNeOCBB/Ce97wH//RP/4RyuYyrr74aH/7wh3H77be7aqMZBFVVeyNfihDSlczMzODNb35zS2ekfuyxx3DNNdfgwQcfbHlgIOkO8tljmD1hn3lTj12HP4ZwdLuPPeoNVFXFU7MFvOfu2Ybb+F9v2Yld4xEfe9UaaIEhhHQ9X/rSlzA1NYVnPetZne4KaROhyKT7jYUgQrFJBMIpQFQhK2kUSicQikxCELbWMCcrwMnlIrZvCyEVrky/kNmQMb9WhlS/wC4AYGLQuY5Ot7C1vllCSE/ytre9DW95y1vanllCOkcwNAJBjEFV8tUrhNBlsZKsiBU1jXJ5AWXMomyYwqdYPIVU6ob2droLCAYEnFwoYDZdBrAZPByIA9tSFVEjXBY1C2sSynK1E2YkFUQ03Bv5PRQwhJCuZ3LSw9s46Rsi8T1QlDRETawo6yhLiyjjQpVYsaJQONnWGJhu4vRisWaZrAIXTaJGjAPTySAGIkEICpDNyZga6g3rC0ABQwhpkjNnznS6C6RPiQzuxPr6vwH1J0fWEQNDEEJTKCgSZHkDgUBtNlO/oqoqVvMyYkkRhxNRzK2UsZ639xspKjCXkTCX2bzAz9qebEdXfYEChhBCSFcSjR6oCBgHVADB0HaogQEU5TUUy3OAvAYAWEp/HRNDL4Ug1E8L7gdUAF89voaT65ctMAFg23QIg8EA1jIy5tbKjvsDwIHJaN1tugUKGEIIIV1JLHbEZk0QgcguKEIYhfIcNsqzQLk262Z5/X5MDG2dwoeqCnzzZGZzgQBczJZx8bLbaHg8gMlYCMWCgvNLpUo6ugFRAA5PU8AQQgghTREMjiIU2oZy+SIEMQUxtA0SZORK56AWncvzh8I7IYtRrOUexVD8qr63wkiKigdns5geCSG1IWJ2vdbaslqQsVqouJSig8BMIgJREXBxuYRsUcGe8Qjikd65ThQwhBBCupZ46gVYzjyAQnkWKD7puK2ACELRPcjL68iWzgMAxPWvYDjhYu6lHicoCvi3U+t4Kl0AAGybCCElBHB6qYiSXFvurSABJy67moQwsGs0jOfv7534F4BzIRFCCOliYrFDKJQvoBLhYU0wNIlg9DBygoiVwnHky3P6utXcIyhKK+jnmq2KqmI2XcJTKwV92cVcGU9uFBBKAke2RTGWsLdXqADOZUq4cnu8Db31DwoYQgghXUsiegihQO2cSSpEhCP7oYZ3Y608j7XCcchqdc0YUYgiEj2M40uf6+saQqIg4P+cWsKRySjCgerz3JBVHEsXsAQJe6bC2DcWgWhxKbYPhrBruPur7xqhgCGEENK1CIKI4dTz9M8BcQih6BGUAimsFE9go3TWYq8gotHDyAlBLBWO4WL2O7iU/SEU1WUp2h5CVlV8YzaNhxZzOLZRQDQl4PB4FAGzSBGA09kSThaKGBwO4Mh0FKnIpgS4YU+qvR33AcbAEEII6WpGBm7Cau4xyEIQ6eJpqIU1y+1UALHoIaTLC8gUjletO7b4GYzFr4aASN8UuFNUFTlJweeeXtaXpSUFaamAseEghoUATiwXa5xvqyUZqyUZgTBwYDSCckHFC/cNtLfzPtAf3yIhhJC+JRreBjWQQrp4AqrNzMrRyD4owUksFp5EUV6tWhcP78aGoOJHC5/sG/ECVFxHf3VyHtGUgB3JcNW6pZKEp4tFTI+FMDNk7RqSVeDpdBGTYyEMx3vPntE/3yQhhJC+ZdvQSyyXR8I7gfAuLBZPIifNV60TEUY8ehgLpXPIS8s4n/0+LvSJK0lRVXxjIY2H13JYKEuYRQlHxqIImQJcLhbKOCMVsXsijO0p62kCXrJ/qA099h8KGEIIIV3PSOI6JMIz+udQcAqByF4slc4jUzpXs308vAtSMIWFwnEYM5ieSn8DOWmlp0WMrKq4VCzjgeW0vkwVgGPFAoaHAtiRrBUqZ3MlzKpl7J+IYNxgbTkyGsWh0Vhb+u03FDCEEEJ6gp0jr0YwMIJQ9CBWpHmsWRSzq1hdjmChdB45aTM2RAWQih7BmdxP8eXZ96MgZ3pSxMiqipWyhPefmcXjUgFHhqIw2lwq1piypTUGAE7kilgWJRyejGIwEsAvHanN8OoVKGAIIYT0BGPJZwOhCawUnoJVXZhYeDek4AAWCseq1geEGGKRvbhYOAYAyEqL+Nrsh1BWCj0lYmRVxYYs44NnLmJNkgEBOCYVsH84irBBrGjWmJGhILYnaq0xCoDjGwXsnQrjyvHeqv1ihAKGEEJIz3Bo9HUAqi0LmtVlsXQOOWmpal00OAY5kMKiwVoTQBh5QcU/XfifyMnpnhAxsqpiSSrjDy6cQSysImSoa/N0uYDRgQCGw9XTAMyXy7goVKwxQZMxRhSA1x0Ya0fXWwYFDCGEkJ5hOHYI21M36J8rsS61VhcASIX3YF3JISMt6MsCCCMcnsZi6SzWynP45wv/ExvSGhTVNLNhF6GoKhbLZfzRhbNYliSckgrYmQhUiZg5SYIUUbErXp2NpFljRoerrTG37BjErlRvFa4zI6j9XF+ZEEJI31GU0/juuT9AMDSBeVOQrsZA9DAuFp6Cik1hYhQvGoOh7ViR13HDyC/hmUMvhqIqELsk1VpWVQgA7l27hH9dmUM8OIj58uYkjXuDUZzfkFE2DOMBAPvFKJ5MF2raEwEcikSxvCHhQ8/ZhXiwO86zUShgCCGE9Bznsz/ADy79Wc1yAQHEo/txqVA98aOVeImKg8gLwIa8DgDYE7sGL5l8O1KBoY6LGEVVsSQV8FeXzuDJYhYAMBqMoKBEsaFsijIrEQMAh0NRPLVagJVd6Q8PTeOa4UQru98Welt+EUII2ZLsTD4Hu5LPr1oWElMIhLe5Ei8igkAgpYsXANhQS/jTs/8dP1j/GgBA7kBsjKwqUFQV966dw/8490OIwmYflqUixoIKjJEuVu4kADheLmD3UBjxQPUwf8vkYF+IF4AWGEIIIT1KWcnj/vN/iGx5DvHQNmSUPHKmKrxW4gUAhqMHcb7wlP55NLwbZ0vnoF52Rz1z4BYcTlyHK+LXQoUCUagOkPUbWVUgQMCPNi7hJxur+GamUpRPgIBtoVHMljddQoejIzheKFftb2eJGQsEESgA80UJM/Ew3n/VDoTF/rBdUMAQQgjpWdaL5/HQ4qcwWzwBWS1VrbMTL+PRIzh9OaUaAEKIQA4ksC6vAACCCEMOxJCR1zEaHMeLR34ZVyeuQyKQ9DVGRlYVBAQRaamAhzYu4V9WnsaKXMBYMIFVSYR8WUxNBhNYkcUqcXI4OobjhWJVe3YiJioI2CdG8Rt7JjAZta7G24tQwBBCCOlpzm38CF+f+5huPQHsxctIZC/OF09XbTsePYxThskfd0SP4LhB4AyGd+JSaQ7PSl6PFw+/AtvC2xASQlBVFTJkBIX68whVtlUQvGzJKSkSzpfW8aXVJ/CjjQvYHRnDqaLRyjKN44WM/vlIdBzHCnn9swgBO8IjOFeqFm2Wgb0C8Ie7t+HKZO/WfLGCAoYQQkjP88TaV/GDpU8DsBcvyeA4VpUsisqmEBgLz+BM6awuaCJCAhuCgsLlbcZC0zhdntO33xk5hJPF09gR3o7nJH8eCTGF/dEZ7I7ssBUyZUXC6dICThYuISvL+EH2NC6W13Ewuh1P6jNrCxgNjmFZqoiYATGCohpB8XJ6t5UrKSkGERKSWJWrY3WMIkYA8I7tE3jBcO/NNl2P3pt+khBCCDFxxdCLUZAzeGz1XkvxEhLiyANV4iWEKJbldJU1ZjSyC8sG60s4MABcFjABBHG+NAsFCs6VziORO45jhZMAgJnwHlwqpxEWQ4gJUUiIoKxKKCkSRoOTmC1XYnOORPdhtrwGAJgrLUNA4PLRVUwEI7qASStFXBEdwROXrTAqVEjIISQEdOtKVpEwHSwiIoRQNNgiTkkF7E1URMzrJkf7UrwAzEIihBDSJzxj9LW4auQ1NeIFEBANT2JdWqxaOhSdQfpy3AsAJAJDOFU8oX+OCDGcLp7WP28L70JB3bSA5JTNv8NCGAW1iLScxbK0hmUpjbScQ0EtISJuxp2U1c24lbSSx7bQprg4X1xEyBBfc6q4iKS4aWeYL+ewPxKtOoc5KY+dYQHmWY9OSQW8YdsIXjI2hH6FAoYQQkjf8HMjr8RzR26vWjYWPYQ5gxABgLHwnqq4FwBIhSYhqZvZPROR3SgZAoNDolE8CFgob04WGXCIgwkbMpiWpPWqdQOBTXGTVYvYE0npnwuqhJ3hasFyvLCEHaZlJ4rrOBzdrMArAHjz2ARuHR627VM/QAFDCCGkr3jWyG34hfHfgIgAxqOHcMYkVCquo7WqZUPBCZwqPF21bFFaqfo8V9604IwFx5FXa6vdWmG0jqzJGaTEzRL+qyZBk5M3qj4/XVjAcGBTnKhQUVJyNXVfjhWWsT8SQUgQ8M7JbXjxUO/OMu0WChhCCCF9x1WDv4BXTv8BFsvzNesqrqPqejGhwAAUQ93aqfBuLBrmUJoIbsOqYZ+RQLVAkB3yYVRUB9mOh5L635ekNYwEYvrnC+VVbAttFpqToGAiVG3dWZBqXUkAkJYz+J/bduLnU/0Z82KGAoYQQkhfsjNxFe7Y8T5MRfbqy8bCMzWuo7HQDpw2xL4AgCpU10tJBavdMQGheiLEolpdWM5IWZWqPkdNRfEmQtXpzSmx2rryVGERkyFnV9KhaBLv3XEYh2L9lSrtBAUMIYSQvmU4NIk37Xg/nj34EoSEGJbl9ZptJJOgSIpDVcG7ALAuZ6s+55XqInLGgF4zBdO2JbVoWp+v+nyquIC4IXhXhYqkWG3hUaGiqOQQEUTcNjyN92w/jJFg9UzU/Q4FDCGEkL4mIATxovE34rXbfg9BsXqQn4zsxQXzNAPhacgGt09KHMRs+aJhCwHz0lLVPhk5Z3v8DaV63bIp7uV8aQkxQxBwGTJ2hZNV25wsLmNnuNq6EhGBP9p+ELeP7oAomPOQ+h8KGEIIIVuCmdhh/LedH8EvDL8awcsuoozJ+iFAxIUqsQKMh7dV1YoZC44hb7C4RBBBwWRVMZKWN6oCeVflDJKGQF4ZCnaEq+NWlqW1mtRoAZWMqIgQwK+M7MWHdj4L+6IpbFUoYAghhGwZQmIYvzj6y/jvuz6G5w69BIvlS1Xrt0X2Im1yMxVNMSzDgbGqz6mgs4hQoCAhVsewjAerLSyCUB3ouyhlsDtc3e6F0jpeMbQD/9/d1+NVI7sR9GlOpl6FlXgJIYRsOUZCE3jF2BvxzNSN+LfV/4eHsw9CgYKcKRg3hDDOl2arlgVNAb4JMY4lOKdUpwJRZA1Wm6hYHXczW1yCiDAUg6UneFnUBCDgeanteNXwAWwzuZa2MhQwhBBCtizbIrvwlqnfwmL5Er63/g18LX1/zfoni2eqluWV6gkUw0JtSrOZqCn2pmyaOXtDLWJXeAznSpvWn8XyOm4bPoKbB3ZjLLR1sovcQgFDCCFkyzMemsIrx16H/zTyGvxk4yF8P/MAfpZ7FIJQm9mzIC1XfXaqwqsRNmU6rUhrNdskxABCgohr49vwvNQMnpnYrs9eTWqhgCGEEEIuExbDeE7qeXhO6nnIyTk8lnsME6FJPJ5/AsvSMkYDY1iWzYG/9TOAzNEqK3IGCXEUG0oJE8EUroxvwzPiu3F1fDuiYsiyDVINBQwhhBBiQTwQx/Wp63F96noAwEJ5EWeL5/F04SwulC5irryAxfIyZNhX4dVQoSAkBDEeHMB0eBg7w2M4EN2B3eExjIUY19IIgqo61D8mhBBCiC2qqiIjb2BdziKnFFBUS1AUBaoQQEAQERXCSASiGBATSAUZx+InFDCEEEII6Tm2dhI5IYQQQnoSChhCCCGE9BwUMIQQQgjpOShgCCGEEACFQgG//du/jRe84AXYtm0botEopqam8LznPQ+f+tSnUC6X6zfikh/96EcQBAHve9/78Gd/9me45ZZbsGvXLoTDYUxNTeE1r3kNHnzwQd+O148wiJcQQggBsLS0hJ07d+LZz342Dh48iPHxcayuruIrX/kKzp49i1tuuQVf+cpXIIrNv/u/+93vxp133om3vvWt+Id/+Afs27cPN954I8bHx/H000/jnnvugaqquPvuu3H77bf7cHb9BwUMIYQQAkBRFEiShHC4uvquJEn4xV/8RXzzm9/Ev/7rv+KlL31p08e65pprEAqF8K53vQujo6N44QtfWLX+O9/5Dm6++WYkk0nMzc0hEonYtLR1oQuJEEIIASCKYo14AYBgMIjbbrsNAHDixAl9+ec//3kIglD3Z9euXVXtnT59Go899hhe+cpX4tWvfnWNeAGAG264ATfddBNWV1fx2GOP+Xym/QEr8RJCCCEOKIqCr371qwCAq666Sl8+Pj6ON73pTbjrrrvw3Oc+F7fccou+7v7778d3v/td3HHHHbj11lur2rvnnnsAAK985SsdjxsKVaYUCAY5VFtBFxIhhBBioFQq4YMf/CBUVcXy8jK+/vWv4/jx43jLW96Cf/iHf6ja9u///u/xtre9DX/913+Nt7/97fry17zmNfjCF76A06dPY2ZmpmqfG2+8EWfPnsXp06dt+3Du3DkcPHgQIyMjOH/+PAIBTupohrKOEEIIMVAqlfC+971P/ywIAn7nd34Hf/Inf1Kz7SOPPAKgEtNi5OGHH8bg4GCNeFleXsYDDzyA3/zN37Q9frlcxh133IFisYgPf/jDFC82MAaGEEIIMZBMJqGqKmRZxvnz5/FXf/VX+Lu/+zvceOONSKfTVds++uijEAQBV199tb4snU7j9OnTNaIGAO677z7IsmzrPlIUBW9+85vx7W9/G7/+67+OO+64w9+T6yMoYAghhBALRFHEjh078I53vAOf/OQn8d3vfhcf+MAHqrZ59NFHsXfvXqRSKX3Zww8/DFVVcfTo0Zo277nnHoyMjOCGG26oWacoCt761rfi7rvvxhve8AZ84hOf8P+k+ggKGEIIIaQOWoDuN7/5TX3ZuXPnsLq6WiNUfvrTnwJAzfJCoYCvfe1reOlLX1oTmKsoCt7ylrfgrrvuwute9zp8+tOf9qXeTD/Dq0MIIYTU4eLFiwA2M4MA5/gXoFbA3H///djY2KhxH2ni5TOf+Qxuv/12fPazn2XciwsoYAghhBAATzzxBHK5XM3yXC6H3/7t3wYAvOQlL9GXP/roowBqhcoTTzwBALjyyiurln/xi19EJBKpSqvW3Eaf+cxn8NrXvhb/+I//SPHiEmYhEUIIIQD++Z//GX/6p3+K5z//+ZiZmcHAwABmZ2fxla98BcvLy7jhhhvw3//7f9e31ywwZgGzsrICAHjooYdw9dVXY2RkBIqi4N5779Wr62q8//3vx1133YVkMomDBw/izjvvrOnXq171Klx77bUtOOPehgKGEEIIAfCyl70MFy9exPe+9z18//vfRzabxeDgIK655hr8yq/8Ct761rdWxa488sgjGBgYqEmVfv3rX4+PfexjuO2223Dffffhuc99Ln7wgx9gfn4er3rVq6q2PXPmDAAgm83WBAhrzMzMUMBYwEJ2hBBCSIv5vd/7PXzkIx/BxYsXMTU11enu9AUUMIQQQkiLOXz4MIaHh/H973+/013pGyhgCCGEENJzMAuJEEIIIT0HBQwhhBBCeg4KGEIIIYT0HBQwhBBCCOk5KGAIIYQQ0nNQwBBCCCGk56CAIYQQQkjPQQFDCCGEkJ6DAoYQQgghPQcFDCGEEEJ6DgoYQgghhPQcFDCEEEII6TkoYAghhBDSc1DAEEIIIaTnoIAhhBBCSM9BAUMIIYSQnoMChhBCCCE9BwUMIYQQQv7/7dYBCQAAAICg/6/bEegKdwQGANgRGABgJ8ryK/iv/JHOAAAAAElFTkSuQmCC", - "text/plain": [ - "
" - ] - }, - "execution_count": 10, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "plot_state_qsphere(psi)" - ] - }, - { - "cell_type": "code", - "execution_count": 11, - "metadata": { - "ExecuteTime": { - "end_time": "2021-07-31T05:08:58.370300Z", - "start_time": "2021-07-31T05:08:58.223788Z" - }, - "execution": { - "iopub.execute_input": "2023-08-25T18:25:16.840662Z", - "iopub.status.busy": "2023-08-25T18:25:16.840109Z", - "iopub.status.idle": "2023-08-25T18:25:16.966388Z", - "shell.execute_reply": "2023-08-25T18:25:16.965586Z" - } - }, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAoQAAAHeCAYAAAACShpDAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAABN90lEQVR4nO3dd3xUVf7/8fdMMi0JvUdKqKISpEgTaaKgfldxbai7Cn7Xvur6Q1cFZCmKYGFX17a6uIKuurqCvYCuBASMIh0EpAUQiICRlJlMn98ffDPLOJmQNtxM5vV8PHho5tzc+eTOycl7ztx7rikUCoUEAACApGU2ugAAAAAYi0AIAACQ5AiEAAAASY5ACAAAkOQIhAAAAEmOQAgAAJDkCIQAAABJjkAIAACQ5AiEAAAASY5ACAAAkOTqZSD85z//qVtuuUVnnXWWbDabTCaT5s2bV+X9BINBPf3008rOzpbD4VCLFi10zTXXaNeuXbVfNAAAgEHqZSB88MEH9eKLL2rPnj1q06ZNtfdzyy236K677lIoFNJdd92lCy64QAsXLlS/fv20ffv2WqwYAADAOPUyEM6dO1d5eXk6fPiwbr311mrtY8mSJZo7d66GDh2qNWvW6NFHH9Wrr76qd999VwUFBbrjjjtquWoAAABjpBpdQDycd955Nd7H3//+d0nSQw89JKvVGn78wgsv1PDhw7V48WLt3btX7du3r/FzAQAAGKlezhDWhpycHKWnp2vw4MFRbaNHj5YkLV269GSXBQAAUOvq5QxhTTmdTh08eFA9evRQSkpKVHvXrl0l6YTnEXo8Hnk8nvDXwWBQBQUFatasmUwmU+0WDQAAcJxQKKTi4mJlZmbKbK54DpBAWI7CwkJJUqNGjcptb9iwYcR2scyaNUvTp0+v3eIAAACqYN++fWrbtm2F2xAI42jixImaMGFC+OvCwkK1b99eubm5ysjICD+empoqu92uUCgkp9MZtZ+ybUtLSxUIBCLa7Ha7UlNT5fP55PF49NgH7eL00yS+Gdf8XKljeLwTvTbp6ekymUxyu93y+/0RbTabTRaLRX6/X263O6ItJSVFDodDklRSUlKl/VqtVlmtVgUCAZWWlka0mc1mpaWlSTo20x0KhSLa09LSZDab5fV65fV6JYk+U4H7L/kh5jH0eDzy+XwRbWWvTTAYlMvlimgzmUxKT0+XJLlcLgWDwYh2h8OhlJSUiNemTG2OEVXZb23074r6YUXH8ET92+Vyyel0avv27eratascDkeFx9Bischms53wtamLx9DoMaJMZY9hef2bcaZ89128L/z/8RgjSkpKNHDgQDVo0OCEtRAIy1E2MxhrBrCoqChiu1hsNptsNlvU461btw7PMsZ67vLE+p7jWe0n3iZZNWwYqNQxjKWmr011vvdE+23SpEmNa6LPxFaTZasaN24cs60u9kMj+veJnKh/l5aWyuVyKTMzMxyeKiPRXhujx4jyVPUYMs6ULzMzs9zHa6sfluWVypymRiAsR3p6utq0aaPdu3crEAhEnUdYdu5g2bmEAICTz+FwKDs72+gygHqBq4xjGDZsmJxOp1asWBHVtmjRIknS0KFDT3ZZAID/EwqF5Pf7oz72BFB1SR8Ijxw5oq1bt+rIkSMRj998882SpClTpkR8Vv/JJ58oJydHo0aNUocOHU5qrQCA/yopKdHKlSvLPccOQNXUy4+M586dq+XLl0uSNm7cGH4sJydHknTOOefoxhtvlCQ988wzmj59uqZOnapp06aF9zFixAjdeOONmjt3rvr06aP/+Z//0cGDB/Xmm2+qadOmevrpp0/qzwQAABAv9TIQLl++XPPnz494bMWKFREf/5YFwoq88MILys7O1osvvqinnnpKGRkZ+vWvf62ZM2eqc+fOtV43AACAEeplIJw3b57mzZtXqW2nTZsWMTN4PLPZrLvuukt33XVX7RUHAABQxyT9OYQAAADJrl7OEAIA6r/09HQNHDhQqan8KQNqit8iAEBCMpvNslqtRpcB1At8ZAwASEilpaXatGlT1O3ZAFQdgRAAkJD8fr8KCgqi7uULoOoIhAAAAEmOQAgAAJDkCIQAAABJjkAIAEhINptNnTp1ks1mM7oUIOGx7AwAICFZrVa1bdvW6DKAeoEZQgBAQvL5fDp8+LB8Pp/RpQAJj0AIAEhIbrdbW7ZskdvtNroUIOERCAEAAJIcgRAAACDJEQgBAACSHIEQAJCQUlJSlJGRoZSUFKNLARIey84AABJSWlqa+vTpY3QZQL3ADCEAAECSIxACABJSSUmJvvzyS5WUlBhdCpDwCIQAgIQUCoXC/wDUDIEQAAAgyREIAQAAkhyBEAAAIMmx7AwAICGlpaWpb9++stvtRpcCJDwCIQAgIaWkpCg9Pd3oMoB6gY+MAQAJye126/vvv5fb7Ta6FCDhEQgBAAnJ5/MpPz9fPp/P6FKAhEcgBAAASHIEQgAAgCRHIAQAAEhyBEIAQEKyWq1q166drFar0aUACY9lZwAACclms6ljx45GlwHUC8wQAgASkt/v19GjR+X3+40uBUh4BEIAQEIqLS3Vhg0bVFpaanQpQMIjEAIAACQ5AiEAAECSIxACAAAkOQIhACAhmc1mWa1Wmc38KQNqimVnAAAJKT09XQMHDjS6DKBe4G0VAABAkiMQAgASktPpVG5urpxOp9GlAAmPQAgASEjBYFBer1fBYNDoUoCERyAEAABIcgRCAACAJEcgBAAASHIEQgBAQnI4HOrZs6ccDofRpQAJj3UIAQAJKTU1VY0bNza6DKBeYIYQAJCQPB6Pdu/eLY/HY3QpQMIjEAIAEpLX69W+ffvk9XqNLgVIeARCAACAJEcgBAAASHIEQgAAgCRHIAQAJCSLxaLWrVvLYrEYXQqQ8Fh2BgCQkOx2u7p162Z0GUC9wAwhACAhBQIBOZ1OBQIBo0sBEh6BEACQkFwul1avXi2Xy2V0KUDCIxACAAAkOQIhAABAkiMQAgAAJDkCIQAgIZlMpvA/ADXDsjMAgISUkZGhIUOGGF0GUC8wQwgAAJDkCIQAgITkcrm0Zs0alp0BagGBEACQkAKBgEpKSliYGqgFBEIAAIAkRyAEAABIcgRCAACAJEcgBAAkJLvdrtNOO012u93oUoCExzqEAICEZLFY1KJFC6PLAOoFZggBAAnJ6/Xqhx9+kNfrNboUIOERCAEACcnj8WjXrl3yeDxGlwIkPAIhAABAkiMQAgAAJDkCIQAAQJIjEAIAElJqaqqaNm2q1FQWzABqit8iAEBCcjgc6tGjh9FlAPUCM4QAgIQUDAbl9XoVDAaNLgVIeARCAEBCcjqdys3NldPpNLoUIOERCAEAAJIcgRAAACDJEQgBAACSXL0NhKtWrdJFF12kxo0bKz09XQMHDtRbb71V6e+fN2+eTCZTzH85OTnxKx4AAOAkqpfLzixZskSjR4+W3W7X1VdfrQYNGmjBggUaO3as9u3bp3vuuafS+xozZox69eoV9XhWVlbtFQwAqLKMjAydffbZSklJMboUIOHVu0Do9/t10003yWw2a9myZeEw96c//Un9+/fXpEmTdMUVV6hDhw6V2t+ll16q8ePHx69gAEC1mEwmFqUGakm9+8j4iy++0M6dO3XttddGzOw1atRIkyZNktfr1fz5840rEABQK0pLS7Vx40aVlpYaXQqQ8OrdW6uyc/tGjRoV1TZ69GhJ0tKlSyu9v7Vr1+qnn36S3+9XVlaWzjvvPDVr1qxWagUAVJ/f79fPP/8sv99vdClAwqt3gXD79u2SpK5du0a1tW7dWhkZGeFtKuOvf/1rxNcOh0NTp07V/ffff8Lv9Xg88ng84a+LiookSSUlJTKZTOHHU1NT5XA4FAwGy11gtUGDBpIkl8ulQCAQ0Wa322WxWOT1ev/vuZpU+mdLRpU7hv91otcmIyNDJpNJpaWlUX+UbDabrFarfD6f3G53RFtKSorS0tIkScXFxVH7TU9Pl9lsLne/VqtVNptNfr8/ambEbDYrPT1d0rF+FgqFItrT0tKUkpIij8cjr9f7f4/SZ2Kp6Bi63W75fL6ItrLXJhAIyOVyRbSZTCZlZGRIOrag8i/vruFwOJSamvqL1+aY2h0jovcbCoVUUlIStd+K+mFl+3d1j+GJ+rfT6Qwf47L/VnQMLRaL7Hb7CV8bxojyxohjKnsMy+vfjDPlO/61jccYUd7vdSz1LhAWFhZKOvYRcXkaNmwY3qYiHTt21NNPP63Ro0erbdu2Kigo0BdffKGJEyfqgQceUFpamu68884K9zFr1ixNnz496vENGzaEf9ElqWXLlurevbs8Ho/Wrl0btf3QoUMlSdu2bYsaGE499VS1atVKR44c0Y4dOyS1P+HPlsy2bt0a9Qty2mmnqUWLFjp06JB27doV0da0aVP16NFDfr+/3Nfm7LPPVmpqqnbs2KGff/45oq1Lly7KzMxUQUGBtm3bFtHWoEED9e7dW5LK3W+/fv3kcDi0Z88eHTp0KKKtffv2ysrKUlFRkTZt2hTRZrfb1b9/f0nSxo0bo/7Y9urVSw0bNtQPP/yg/fv3l+0x6vlxzPr166PCQe/evdWgQQPt27dPBw8ejGg75ZRT1LlzZzmdTq1bty6izWKxaNCgQZKkzZs3RwWAHj16qGnTpjp48KD27t0b0Va7Y8R/NWnSRNnZ2QoEAuXud+DAgbJardq5c6cKCgoi2jp16qS2bdvq6NGj2rJlS0RbRkaG+vTpI+lY//5l6Ojbt6/S09O1d+9e5efnR7S1a9dOHTt2VElJiTZs2BDRZrVaNXDgQEnH+nfZH8Wy36+ePXuqcePGOnDggPbt2xfxva1bt1a3bt3kdrujflaTyaQhQ4ZIYowof4w4pk2bNuratatcLldUTSkpKRo8eLAkacuWLVGBkXGmfMcfx3iMEdGvQ2ym0C9/UxPcqFGj9Nlnn2n79u3q0qVLVPspp5yikpKSSoXC8mzevFlnnXWW0tLS9OOPP1Z4QnN5M4Tt2rXTpk2bwu/opdp99//QQn7pYnls3M+8+y/n3T99JrY/Xb6PGcI6PENYUlKibdu26dRTT1VaWhozhFU8hidzhpBxpnxTLvtvsIvHGFFcXKwePXqosLBQDRs2rLCWejdDWDYzGCvwFRUVqUmT6k9dn3HGGTrnnHP0+eefa8uWLcrOzo65rc1mk81mi3o8IyMjIhCWMZvN5T5e5vhZxV+yWq2yWq0nqB7VPYYnem0cDkfMNovFIovFErO9uvtNTU2t8HvLBpbyxOqbiFTRMbTb7bLb7eW2paSkVPjalP1BLk9Fr028xgiTyRS3/l3dY3ii/p2eni6LxaIuXbqoSZMmET9bRcfwRK8NY8QxNTmGFfVvRIp1HGtrjKjKnF+9u8q47NzB8s4TzM/PV0lJSbnnF1ZF8+bNJYkbqgOAgaxWqzIzM3kzDNSCehcIhw0bJklavHhxVNuiRYsitqmOQCCgb7/9VpIqvZYhAKD2+Xw+/fjjj1EfOwOounoXCEeOHKlOnTrp9ddfjzipu7CwUI888oisVquuv/768OMHDx7U1q1boz5iXr16ddS+A4GAHnjgAe3YsUMjRoxQmzZt4vZzAAAq5na7tW3btqjz7wBUXb07hzA1NVVz587V6NGjNXTo0Ihb1+3Zs0dPPPFExG3nJk6cqPnz5+vll1+OuCPJWWedpZ49e6pnz5465ZRTVFBQoKVLl+r7779X27ZtNXfu3JP/wwEAAMRBvQuEkjRixAgtX75cU6dO1Ztvvimfz6fs7Gw9+uijGjt2bKX2cc899yg3N1efffaZCgoKZLVa1aVLFz344IOaMGFCjS5MAQAAqEvqZSCUpP79++uTTz454Xbz5s3TvHnzoh5/4okn4lAVAABA3VPvziEEACSHsuVPUlJSjC4FSHj1doYQAFC/paWlhe/mAaBmmCEEAABIcgRCAEBCKi4u1rJly8q9tRuAqiEQAgAAJDkCIQAAQJIjEAIAACQ5AiEAAECSY9kZAEBCSk9PV79+/WSz2YwuBUh4BEIAQEIym81yOBxGlwHUC3xkDABISKWlpdq6datKS0uNLgVIeARCAEBC8vv9OnTokPx+v9GlAAmPQAgAAJDkCIQAAABJjkAIAACQ5AiEAICEZLVa1b59e1mtVqNLARIey84AABKSzWZTVlaW0WUA9QIzhACAhOT3+1VQUMBVxkAtIBACABJSaWmpNm3axDqEQC0gEAIAACQ5AiEAAECSIxACAAAkOQIhACAhmc1m2e12mc38KQNqimVnAAAJKT09Xf379ze6DKBe4G0VAABAkiMQAgASUklJib766iuVlJQYXQqQ8AiEAICEFAqF5PP5FAqFjC4FSHgEQgAAgCRHIAQAAEhyBEIAAIAkRyAEACSktLQ09erVS2lpaUaXAiQ81iEEACSklJQUNWzY0OgygHqBGUIAQELyeDzauXOnPB6P0aUACY9ACABISF6vV/v375fX6zW6FCDh1fpHxnl5efrss89kt9v161//WhkZGbX9FAAAAKhF1Z4hfOSRR9SxY0f9/PPP4cdycnLUo0cP3XrrrRo/frz69OmjgoKCWikUAAAA8VHtQPjuu+8qKytLTZo0CT92//33KxgMavr06brtttu0Y8cOPfnkk7VRJwAAAOKk2oEwLy9Pp59+evjrAwcOaNWqVfr973+vBx98UM8884xGjhypd955p1YKBQDgeBaLRW3atJHFYjG6FCDhVTsQFhUVqXHjxuGvly1bJpPJpIsvvjj8WJ8+fbR3794aFQgAQHnsdru6du0qu91udClAwqt2IGzVqpX27NkT/vqzzz6TzWbTgAEDwo+53W6ZTKaaVQgAQDkCgYCKi4sVCASMLgVIeNW+yrhfv35677339OGHH8put+vNN9/UiBEjZLPZwtvs3r1bmZmZtVIoAADHc7lcWrt2rXr37q0GDRoYXQ6Q0Ko9Qzhp0iT5/X6NGTNGo0ePltvt1qRJk8LtHo9Hy5Yti5gxBAAAQN1T7RnCPn36KDc3V6+++qok6aqrrlL//v3D7WvXrtWIESN07bXX1rxKAAAAxE2NFqY+88wzdeaZZ5bbNnDgQK4wBgAASADV/sj43HPP1SuvvFLhNv/85z917rnnVvcpAACIyWQyKSUlhYsXgVpQ7UCYk5OjvLy8CrfZs2ePli5dWt2nAAAgpoyMDA0ePJhbpAK1oNqBsDKcTicLhgIAANRxVTqH8JeLTB89erTchacDgYD27dunBQsWKCsrq0YFAgBQHqfTqS1btui0005Tenq60eUACa1KgTArKyt8robJZNJTTz2lp556Kub2oVBIjz/+eM0qBACgHMFgUC6XS8Fg0OhSgIRXpUB4/fXXy2QyKRQK6ZVXXtGZZ56pXr16RW2XkpKipk2b6txzz9UFF1xQW7UCAAAgDqoUCOfNmxf+/6VLl+qGG27QXXfdVds1AQAA4CSq9jqEu3fvrs06AAAAYJC4XmUMAEC8OBwOnXHGGXI4HEaXAiS8GgXCzz//XBdddJFatGghi8WilJSUqH+pqTW6GQoAAOVKTU1Vs2bN+DsD1IJq/xYtWLBAY8eOVTAYVIcOHdS9e3d+KQEAJ43X61V+fr5at24tq9VqdDlAQqt2gpsxY4YcDofee+89bk8HADjpPB6P8vLy1KRJEwIhUEPV/sh427ZtuvrqqwmDAAAACa7agbBZs2ZKS0urzVoAAABggGoHwiuuuEKff/65/H5/bdYDAACAk6zagfCRRx5R48aNNXbs2HLvZwwAQDylpqaqefPmXNAI1IJq/xZlZ2fL5/MpNzdX7777rho3bqxGjRpFbWcymbRz584aFQkAwC85HA6dfvrpRpcB1AvVDoTBYFCpqalq3759+LFQKBS1XXmPAQBQU8FgUD6fTxaLRWYz91kAaqLagTAvL68WywAAoGqcTqfWrl2r3r17q0GDBkaXAyQ03lIBAAAkuVo5E/e7777T1q1b5XQ6dd1119XGLgEAAHCS1GiGcNWqVerVq5eys7N15ZVXavz48eG2ZcuWKS0tTe+//35NawQAAEAcVTsQbt68Weeee652796t//f//p8uvPDCiPYhQ4aoefPm+ve//13jIgEAABA/1Q6EU6dOlSStXr1aTzzxhPr16xfRbjKZNGjQIK1atapmFQIAUI6MjAydc845ysjIMLoUIOFVOxAuXbpUl19+ubp06RJzm/bt2+vgwYPVfQoAAGIymUwym80ymUxGlwIkvGoHwuLiYrVs2bLCbUpLSxUIBKr7FAAAxORyubR+/Xq5XC6jSwESXrUDYbt27bRx48YKt1mzZo06d+5c3acAACCmQCCgwsJCJh6AWlDtQPirX/1Kixcv1ueff15u+1tvvaXc3Fxdeuml1X0KAAAAnATVXodw0qRJevvtt3XRRRdp3Lhxys/PlyQ999xz+uqrr/TGG28oKytLEyZMqLViAQAAUPuqHQhbtGihpUuX6rrrrtNLL70UfvyOO+6QJA0YMEBvvPGGGjVqVPMqAQAAEDc1ulNJp06dtGLFCq1bt065ubkqKChQw4YNNWDAgKhlaAAAqE12u11du3aV3W43uhQg4dXKret69eqlXr161cauAACoFIvFojZt2hhdBlAv1OjWdQAAGMXn8+ngwYPy+XxGlwIkvErPEM6YMUMmk0m///3v1bRpU82YMaNS32cymTRlypRqFwgAQHncbre2b9+ujIwMWSwWo8sBElqlA+G0adNkMpk0duxYNW3aVNOmTavU9xEIAQAA6rZKB8IlS5ZIOnY7uuO/BgAAQGKrdCAcNmxYhV8DAAAgMXFRCQAgIaWkpKhRo0ZKSUkxuhQg4VU7EH744Ye67LLLdODAgXLbDxw4oMsuu0yffPJJtYuriVWrVumiiy5S48aNlZ6eroEDB+qtt96q0j48Ho9mzJgRXucqMzNTN998sw4dOhSnqgEAlZWWlqYzzzxTaWlpRpcCJLxqB8Jnn31WO3fuVGZmZrntmZmZ2r17t5599tlqF1ddS5Ys0eDBg7V8+XJdddVVuvXWW5Wfn6+xY8dqzpw5ldpHMBjUmDFjNHXqVDVv3lx33323Bg0apLlz52rQoEE6fPhwnH8KAEBFQqGQgsGgQqGQ0aUACa/agXD9+vUaMGBAhdsMGDBA69atq+5TVIvf79dNN90ks9msZcuW6cUXX9ScOXO0fv16devWTZMmTdKePXtOuJ/58+dr0aJFuuaaa7Ry5UrNnj1bCxYs0HPPPaddu3bpwQcfPAk/DQAglpKSEi1fvlwlJSVGlwIkvGoHwoKCArVs2bLCbZo3b64jR45U9ymq5YsvvtDOnTt17bXXRtw9pVGjRpo0aZK8Xq/mz59/wv38/e9/lyTNmjVLJpMp/Pgtt9yiTp066bXXXlNpaWmt1w8AAHCyVTsQtmjRQtu2batwm23btqlp06bVfYpqycnJkSSNGjUqqm306NGSpKVLl1a4D7fbra+//lqnnnqqOnToENFmMpl0/vnny+l06ttvv62dogEAAAxU7XsZDx06VAsWLNCGDRvUs2fPqPb169fr/fff12WXXVajAqtq+/btkqSuXbtGtbVu3VoZGRnhbWLZuXOngsFgufs4ft/bt2/XkCFDYu7H4/HI4/GEvy4qKpIkffPNNxEnQaempspmsykYDJY765ieni7pWFANBAIRbTabTampqfL5fPJ6vTqyj/t6xrJ+fVGljuHxTvTapKWlyWQyyePxyO/3R7RZrVZZLBb5/f6IfiAduzrSbrdLkpxOZ9R+HQ6HzGZzufu1WCyyWq0KBAJyu90RbWazWQ6HQ5Lkcrmizq2y2+1KSUmR1+sN3+6LPhPbV1/lxzyGVX1tTCZT+Pe+tLRUwWCw3P0e/9qUqc0xorz9hkIhuVyuqP1W1A8r278r6oc16d+lpaVyuVzas2eP/H6/7HZ7pY7hiV4bxoiaH8Py+jfjTPlWrjwY/v94jBHl/V7HUu1AeP/992vBggU655xzdO+99+r888/XKaecov3792vx4sWaM2eOzGazJk6cWN2nqJbCwkJJxz4iLk/Dhg3D29RkH8dvF8usWbM0ffr0qMevuuqqCr8P8fHun42uAImGPgMgnurSGFPtQNizZ0+99tprGjdunKZPnx4RfEKhkDIyMvTGG2+UO3uYLCZOnKgJEyaEvy4qKlK7du301ltvxW2G8HhGv/t3u93yeDxKTf1vN6vKu//qvDvi3b8x7/7L9luTY1haWiqv1xvRX8pem4qOYU36d02OYTLPEM79gtmeWG4892DE14wRkfutyRhRUf+uyhjh9/uVmpqaFGOEy+Wq9CRUtQOhJF1++eUaMmSI5s2bp1WrVqmwsFCNGzdW//79NW7cOLVo0aImu6+Wslm9WLN3RUVFatKkSY33cfx2sdhsNtlstqjH+/fvH55lBIBE8+72isfQZHb22T8bXQIQVpZXKqNGgVCSWrZsqfvuu6+mu6k1x5/f17dv34i2/Px8lZSUqH///hXuo1OnTjKbzTHPNazoPEX8V2lpqXbv3q2OHTuG300BsdBfAMQb40xs9e7WdWX3WF68eHFU26JFiyK2icXhcKh///7atm1b1JqFoVBIn332mdLT03XWWWfVUtX1k9/v15EjR6KmzIHy0F8AxBvjTGyVniFctmyZpGMfd9rt9vDXlTF06NCqV1ZNI0eOVKdOnfT666/rrrvuCq9FWFhYqEceeURWq1XXX399ePuDBw+qsLBQbdq0ifgI+Oabb1Zubq4mTpyo1157LbwW4QsvvKBdu3bp5ptv5t0FAACoFyodCIcPHy6TyaQtW7aoW7du4a8r45cngcZTamqq5s6dq9GjR2vo0KG6+uqr1aBBAy1YsEB79uzRE088oaysrPD2EydO1Pz58/Xyyy9r/Pjx4cfHjRunN998U2+88YZ2796tYcOGaceOHVq4cKE6duyohx9++KT9TAAAAPFU6UD4pz/9SSaTSc2bN4/4ui4aMWKEli9frqlTp+rNN9+Uz+dTdna2Hn30UY0dO7ZS+zCbzXrvvfc0e/Zsvfrqq/rLX/6ipk2b6ne/+50efvhhQy6YAQAAiAdTiLuCnzRFRUVq1KiR8vLykuIqY6/Xq/z8fLVu3VpWq9XoclDH0V8Sx33zuco4lsfGcZVxXZZs40xRUZGysrJUWFh4wtxR6YtKmjZtqscffzz89YwZM6p0HiGSj9VqVfv27ZPilw41R38BEG+MM7FVOhAWFhZGLHY4bdq08H2DgfL4/X799NNPXM2FSqG/AIg3xpnYKh0IW7VqpR9++CGetaCeKS0t1ebNm8tdeR74JfoLgHhjnImt0heVDBgwQK+++qpSUlLUps2x2xZVZobQZDJpypQp1S4QAAAA8VXpQPj444/r+++/1wsvvCDpWNDLyck5YSgkEAIAANRtlQ6EXbp00caNG7V7927t379fw4cP1/jx4zVu3Lh41gcAAIA4q9K9jM1mszp37qzOnTurQ4cO6tWr1wlvA4fkZTablZaWJrO53t0hEXFAfwEQb4wzsVVp2ZnHHnss/PX48ePDt4UDylN2v+f09HSjS0ECoL8AiDfGmdgqPUNYWFgot9sd/nrGjBkymUwn9T7FAAAAqH3VXnaGG5zgREpKSrRixQqVlJQYXQoSAP0FQLwxzsTGsjOIm1AopEAgwJsHVAr9BUC8Mc7ExrIzAAAASY5lZwAAAJIcy84AAAAkuSoFwuPt3r27NutAPZSWlqbevXsrLS3N6FKQAOgvAOKNcSa2agfCMvn5+Vq4cKG2bt0ql8uluXPnSpIOHz6s3bt3Kzs7Ww6Ho8aFIvGkpKSoQYMGRpeBBEF/ARBvjDOx1Wip7ueee04dO3bUHXfcoWeeeUYvv/xyuO3QoUMaNGiQ/vnPf9a4SCQmt9ut7du3R6xfCcRCfwEQb4wzsVU7EH7wwQe64447lJ2drffff1+33XZbRPsZZ5yhnj176t13361pjUhQPp9PBw8elM/nM7oUJAD6C4B4Y5yJrdofGT/++ONq3769lixZovT0dK1evTpqm+zsbH355Zc1KhAAAADxVe0ZwnXr1ul//ud/Krwf4CmnnKIff/yxuk8BAACAk6DagTAYDMpisVS4zaFDh2Sz2ar7FAAAADgJqh0ITz311Ao/Dvb7/Vq2bJmys7Or+xRIcFarVaeccoqsVqvRpSAB0F8AxBvjTGzVDoS/+c1vtHbtWk2fPj2qLRAI6N5779WuXbt0/fXX16hAJC6bzabOnTszS4xKob8AiDfGmdiqfVHJnXfeqQ8++EAzZszQa6+9JrvdLkm66qqr9O233yovL0+jRo3S7373u1orFoklEAjI6XQqPT1dKSkpRpeDOo7+AiDeGGdiq/YMocVi0aJFi/TAAw/op59+0qZNmxQKhfT222+roKBA999/v95//32ZTKbarBcJxOVyad26dXK5XEaXggRAfwEQb4wzsdXoTiVWq1UzZ87Uww8/rG3btqmgoEANGzbUaaedRvIGAABIEDW+dZ0kmUwmde/evTZ2BQAAgJOsVgLhihUrtG7dOhUVFalhw4bq1auXBg8eXBu7BgAAQJzVKBCuXLlSN9xwg3bs2CFJCoVC4XMGu3btqpdfflmDBg2qeZVISCaTSRaLhfNIUSn0FwDxxjgTW7UD4ebNmzVq1Ci5XC6df/75GjFihNq0aaP8/HwtWbJEixcv1ujRo5Wbm6vTTz+9NmtGgsjIyOANASqN/gIg3hhnYqt2IJwxY4a8Xq8+/vhjXXDBBRFt999/vz799FNdcsklmjFjhv71r3/VuFAAAADER7WXncnJydEVV1wRFQbLXHDBBbriiiu0ZMmSaheHxOZ0OvXNN9/I6XQaXQoSAP0FQLwxzsRW7UBYWFiojh07VrhNx44dVVhYWN2nQIILBoNyu90KBoNGl4IEQH8BEG+MM7FVOxBmZmYqNze3wm2+/vprZWZmVvcpAAAAcBJUOxBecsklysnJ0ZQpU+R2uyPa3G63pk6dqiVLlmjMmDE1LhIAAADxU+2LSqZMmaIPP/xQjzzyiF544QX1799frVq10o8//qhVq1bp8OHD6tSpk6ZMmVKb9QIAAKCWVTsQNmvWTLm5ubrvvvv0r3/9Sx9//HG4zW6364YbbtCjjz6qpk2b1kqhSDwOh0M9evSQw+EwuhQkAPoLgHhjnImtRgtTN2/eXP/4xz/0wgsvaOvWreE7lXTv3l0Wi6W2akSCSk1N5Q0BKo3+AiDeGGdiq3IgnDlzppxOp6ZPnx4OfRaLRdnZ2eFtvF6vJk+erAYNGuiBBx6ovWqRUDwejw4ePKg2bdrIZrMZXQ7qOPoLgHhjnImtSheVfP755/rTn/6kZs2aVTgDaLVa1axZM02ePJl1CJOY1+vV3r175fV6jS4FCYD+AiDeGGdiq1IgfOWVV9SkSRPdcccdJ9z297//vZo2baqXX3652sUBAAAg/qoUCFeuXKnzzjuvUtOsNptN5513nlasWFHt4gAAABB/VQqEBw4cUKdOnSq9fceOHXXw4MEqFwUAAICTp0qB0Gw2y+fzVXp7n88ns7naa18jwaWmpqply5ZKTa3RxexIEvQXAPHGOBNblY5IZmamNm3aVOntN23apFNOOaXKRaF+cDgc6t69u9FlIEHQXwDEG+NMbFWavhsyZIi++OIL5eXlnXDbvLw8ffHFFxo6dGh1a0OCCwaDKi0t5SbiqBT6C4B4Y5yJrUqB8Pe//718Pp+uuOIKHTlyJOZ2P/30k6688kr5/X7ddtttNS4SicnpdGrVqlVyOp1Gl4IEQH8BEG+MM7FV6SPjPn366O6779aTTz6p008/XbfeeqtGjBihtm3bSpL279+v//znP3rxxRd1+PBhTZgwQX369IlL4QAAAKgdVT6rcs6cObLb7Xr88cc1c+ZMzZw5M6I9FAopJSVFEydO1MMPP1xrhQIAACA+qhwITSaTHnnkEf3ud7/Tyy+/rJUrVyo/P1+S1Lp1aw0ePFjjx49X586da71YAAAA1L5qX3fduXNnZgABAADqARbiQdw0aNCAq8xRafQXAPHGOBMbq0YDAAAkOQIh4sblcmnt2rVyuVxGl4IEQH8BEG+MM7ERCBE3gUBAxcXFCgQCRpeCBEB/ARBvjDOxEQgBAACSHIEQAAAgyREIAQAAkhyBEHFjt9t16qmnym63G10KEgD9BUC8Mc7ExjqEiBuLxaJWrVoZXQYSBP0FQLwxzsTGDCHixuv16sCBA/J6vUaXggRAfwEQb4wzsREIETcej0c7duyQx+MxuhQkAPoLgHhjnImNQAgAAJDkCIQAAABJjkAIAACQ5AiEiJvU1FQ1adJEqalczI4To78AiDfGmdg4Iogbh8Oh7Oxso8tAgqC/AIg3xpnYmCFE3IRCIfn9foVCIaNLQQKgvwCIN8aZ2AiEiJuSkhKtXLlSJSUlRpeCBEB/ARBvjDOxEQgBAACSHIEQAAAgyREIAQAAkhyBEAAAIMmx7AziJj09XQMHDmS9J1QK/QVAvDHOxMYRQdyYzWZZrVajy0CCoL8AiDfGmdj4yBhxU1paqk2bNqm0tNToUpAA6C8A4o1xJjYCIeLG7/eroKBAfr/f6FKQAOgvAOKNcSY2AiEAAECSIxACAAAkOQIhAABAkiMQIm5sNps6deokm81mdClIAPQXAPHGOBNbvQyERUVFmjBhgjp06CCbzaasrCz98Y9/rPLNrE0mU8x/48ePj0/x9YjValXbtm25xB+VQn8BEG+MM7HVu3UInU6nhg0bpnXr1mnUqFG65pprtHbtWj3xxBNaunSpli1bJrvdXun9dejQodzw16tXr9orup7y+Xw6evSoGjduLIvFYnQ5qOPoLwDijXEmtnoXCB977DGtW7dO999/v2bPnh1+/IEHHtCjjz6qv/zlL5o4cWKl95eVlaVp06bFodL6z+12a8uWLerduze/eDgh+guAeGOcia1efWQcCoU0d+5cZWRkaMqUKRFtU6ZMUUZGhubOnWtQdQAAAHVTvZoh3L59uw4cOKDRo0crPT09oi09PV2DBw/WokWLtG/fPrVr165S+zx69KhefPFFHTlyRE2bNtXgwYOVnZ0dj/IBAAAMUe8CoSR17dq13PauXbtq0aJF2r59e6UD4fr163XLLbdEPHbBBRdo/vz5atmyZYXf6/F45PF4wl8XFRVJkkpKSmQymcKPp6amyuFwKBgMyul0Ru2nQYMGkiSXy6VAIBDRZrfbZbFY5PV6I57r+P2GQqFyL6hJT0+X2WxWaWlp1KrtNptNVqtVPp9Pbrc7oi0lJUVpaWnhnyUUCkW0p6WlKSUlRV6vN1x3GavVKpvNJr/fH3XrILPZHA7yTqdTwWAwot3hcCg1NVUejye87zIWi0V2u12BQCDi+aRjFwdlZGSEa6nOMYz12mRkZMhkMtXoGBYXF0ftt6LXprLHsKLXpibHsKLXpibHsOwYHf/cZa9NRcewJv27JsfQ7XbL5/NFtJW9NjU5huW9NnVvjGgStS2O+eXvM2PEMbUxRlTUvys7RpTV7XK5kmKMqMrFtPUqEBYWFkqSGjVqVG57w4YNI7Y7kXvuuUeXX365unXrJqvVqk2bNumhhx7SJ598ol/96lf66quvlJKSEvP7Z82apenTp0c9vmHDhvAvuiS1bNlS3bt3l8fj0dq1a6O2Hzp0qCRp27ZtUQPDqaeeqlatWunIkSPasWNHRFuTJk2UnZ2tQCBQ7n4HDhwoq9WqnTt3qqCgIKKtU6dOatu2rY4ePaotW7ZEtGVkZKhPnz6SpLVr10b9MvTt21fp6en68ccfw3WXadeunTp27KiSkhJt2LAh4vusVqsGDhwoSdq4cWNUh+/Zs6caN26sAwcOaN++fRFtrVu3Vrdu3eR2u6N+VpPJpCFDhkiStm7dGvULctppp6lFixY6dOiQdu3aFdHWtGlT9ejRQ36/v9xjePbZZys1NVU7duzQzz//HNHWpUsXZWZmqqCgIOIYSMf+gPfu3VuSyt1vv3795HA4tGfPHh06dCiirX379srKylJRUZE2bdoU0Wa329W/f39Jx47hLwejXr16qWHDhvrhhx+0f//+iLY2bdqoa9eucrlcUTWlpKRo8ODBkqQtW7ZEDWRnnHGGmjVrpvz8fOXl5UW0NW/eXKeffrp8Pl+5P+s555wjk8kUfk2PP1Zdu3ZVmzZtdOTIkfAbvjKNGjXSmWeeqVAoVO5+BwwYIJvNpt27d+vIkSMRbVlZWWrfvr0KCwu1efPmiLa0tDSdddZZko69IfzlH6DevXurQYMG2rdvnw4ePBjRdsopp6hz585yOp1at25dRJvFYtGgQYMkSZs3b47649WjRw81bdpUBw8e1N69eyPa6t4Y0T5qWxzzy+PIGHFMbYwR27dvj/r7Xd0xYtu2bWrcuHG9HyN++TpUxBT65V/zOuCee+6JegdRkT/84Q/q2rWrXn/9df3mN7/R5MmT9fDDD0dtN3nyZD3yyCNauHChfv3rX1ertmAwqHPPPVdLly7VggULdNlll8XctrwZwnbt2mnTpk3hd/RSXXz3XzszhBW9O2KGkHf/ZWrz3f/xkuHdf5mTPUY8tJBAGMuUyyL/UDNGHMMYcczJHiOKi4vVo0cPFRYWhifFYqmTM4QvvPBCuZ0iliuuuEJdu3YNzwzGmgEs+8g21gxiZZjNZt10001aunSpVqxYUWEgtNls5S5+mZGREREIj993eY+XOX5W8ZesVmvMdZVMJlOF+3U4HDHbLBZLhVdilXXe8tjt9phL/KSmplZY0y/PAT1erOMqHRsA4nEMT/Ta1OQYVne/JzqGFb02NTmGFb02NTmGFb02FR3DmvTvmhzDivp3TY5hRa9NXRwjECnWcWSMOIYx4piTNUZUZc6vTl5lXJa4K/tv+PDhkv577uAvp43LnOgcw8pq3ry5JFUptCajkpISffnll1VeEBzJif4CIN4YZ2Krk4Gwurp27arMzEytWLEiKqw5nU6tWLFCHTt2rPQFJbF8/fXXko6dY4DYjg/twInQXwDEG+NMbPUqEJpMJt14440qKSnRQw89FNH20EMPqaSkRDfddFPE4y6XS1u3bo06QbO8k20laeXKlXr00UdlsVh05ZVX1v4PAQAAcJLVyXMIa+K+++7Te++9p0cffVRr165Vnz59tGbNGi1evFj9+vXT3XffHbH9N998oxEjRmjYsGHKyckJPz5nzhx99NFHOuecc9SuXTtZLBZt3rxZixcvlslk0rPPPqvOnTuf3B8OAAAgDupdIExPT9fSpUs1bdo0LViwQEuWLFGbNm10zz33aOrUqZU+OXrMmDE6evSo1q9fr88++0xer1etW7fW1Vdfrbvvvjt82T4AAECiq5PLztRXRUVFatSokfLy8k54+Xd9EAgE5Ha7ZbfbK1yvEZDoL4nkvvksTB3LY+N+PvFGMEyyjTNFRUXKyspK3GVnUD+kpKRUeOk8cDz6C4B4Y5yJrV5dVIK6xe126/vvv49aLBQoD/0FQLwxzsRGIETc+Hw+5efnl3u1NvBL9BcA8cY4ExuBEAAAIMkRCAEAAJIcgRAAACDJEQgRN1arVe3atYt5I3PgePQXAPHGOBMby84gbmw2mzp27Gh0GUgQ9BcA8cY4ExszhIgbv9+vo0ePyu/3G10KEgD9BUC8Mc7ERiBE3JSWlmrDhg0qLS01uhQkAPoLgHhjnImNQAgAAJDkCIQAAABJjkAIAACQ5AiEiBuz2Syr1SqzmW6GE6O/AIg3xpnYWHYGcZOenq6BAwcaXQYSBP0FQLwxzsRGRAYAAEhyBELEjdPpVG5urpxOp9GlIAHQXwDEG+NMbARCxE0wGJTX61UwGDS6FCQA+guAeGOciY1ACAAAkOQIhAAAAEmOQAgAAJDkCISIG4fDoZ49e8rhcBhdChIA/QVAvDHOxMY6hIib1NRUNW7c2OgykCDoLwDijXEmNmYIETcej0e7d++Wx+MxuhQkAPoLgHhjnImNQIi48Xq92rdvn7xer9GlIAHQXwDEG+NMbARCAACAJEcgBAAASHIEQgAAgCRHIETcWCwWtW7dWhaLxehSkADoLwDijXEmNpadQdzY7XZ169bN6DKQIOgvAOKNcSY2ZggRN4FAQE6nU4FAwOhSkADoLwDijXEmNgIh4sblcmn16tVyuVxGl4IEQH8BEG+MM7ERCAEAAJIcgRAAACDJEQgBAACSHIEQcWMymcL/gBOhvwCIN8aZ2Fh2BnGTkZGhIUOGGF0GEgT9BUC8Mc7ExgwhAABAkiMQIm5cLpfWrFnD5f2oFPoLgHhjnImNQIi4CQQCKikpYQFQVAr9BUC8Mc7ERiAEAABIcgRCAACAJEcgBAAASHIEQsSN3W7XaaedJrvdbnQpSAD0FwDxxjgTG+sQIm4sFotatGhhdBlIEPQXAPHGOBMbM4SIG6/Xqx9++EFer9foUpAA6C8A4o1xJjYCIeLG4/Fo165d8ng8RpeCBEB/ARBvjDOxEQgBAACSHIEQAAAgyREIAQAAkhyBEHGTmpqqpk2bKjWVi9lxYvQXAPHGOBMbRwRx43A41KNHD6PLQIKgvwCIN8aZ2JghRNwEg0F5vV4Fg0GjS0ECoL8AiDfGmdgIhIgbp9Op3NxcOZ1Oo0tBAqC/AIg3xpnYCIQAAABJjkAIAACQ5AiEAAAASY5ACAAAkORYdgZxk5GRobPPPlspKSlGl4IEQH8BEG+MM7ERCBE3JpOJxT9RafQXAPHGOBMbHxkjbkpLS7Vx40aVlpYaXQoSAP0FQLwxzsRGIETc+P1+/fzzz/L7/UaXggRAfwEQb4wzsREIAQAAkhyBEAAAIMkRCAEAAJIcgRBxY7PZ1KVLF9lsNqNLQQKgvwCIN8aZ2Lj2GnFjtVqVmZlpdBlIEPQXAPHGOBMbM4SIG5/Ppx9//FE+n8/oUpAA6C8A4o1xJjYCIeLG7XZr27ZtcrvdRpeCBEB/ARBvjDOxEQgBAACSHIEQAAAgyREIAQAAkhyBEHGTkpKiBg0aKCUlxehSkADoLwDijXEmNpadQdykpaWpd+/eRpeBBEF/ARBvjDOxMUMIAACQ5AiEiJvi4mItW7ZMxcXFRpeCBEB/ARBvjDOxEQgBAACSHIEQAAAgyREIAQAAkhyBEAAAIMmx7AziJj09Xf369ZPNZjO6FCQA+guAeGOcia3ezRCuW7dOkyZN0ujRo9WiRQuZTCYNHz682vtbtWqVLrroIjVu3Fjp6ekaOHCg3nrrrdoruB4zm81yOBwym+tdN0Mc0F8AxBvjTGz17oi8++67mjVrlnJyctS6desa7WvJkiUaPHiwli9frquuukq33nqr8vPzNXbsWM2ZM6eWKq6/SktLtXXrVpWWlhpdChIA/QVAvDHOxFbvAuGVV16p1atXq6SkRJ999lm19+P3+3XTTTfJbDZr2bJlevHFFzVnzhytX79e3bp106RJk7Rnz55arLz+8fv9OnTokPx+v9GlIAHQXwDEG+NMbPUuEJ5xxhnq06ePLBZLjfbzxRdfaOfOnbr22mvVq1ev8OONGjXSpEmT5PV6NX/+/BpWCwAAYLx6FwhrS05OjiRp1KhRUW2jR4+WJC1duvRklgQAABAXXGUcw/bt2yVJXbt2jWpr3bq1MjIywtvE4vF45PF4wl8XFhZKkvLz81VSUhJ+PDU1VXa7XaFQSE6nM2o/GRkZko6d+xAIBCLa7Ha7UlNT5fP5Ip6rMvtNT0+XyWSS2+2Omj632WyyWCzy+/1yu90RbSkpKXI4HJIkp9OpUCgU0Z6Wliaz2ayCggK5XC4dOnQofJsgq9Uqq9WqQCAQdQ6H2WxWWlqaJMnlcikYDEa0OxwOpaSkyOv1yuv1RrRZLBbZbDYFg0G5XK6INpPJpPT09Dp7DI/vC5XZb2WPYUWvTU2OYUWvTU2O4U8//RTVX8pem4qOYU1em5ocQ4/HI5/PF9FW9trU5BiW99rUtTHC606J2hbHHDhwIOJrxohjamOMqKh/V3aMKC0tDY8zwWCw3o8RZX3nlzWWh0AYQ1l4a9SoUbntDRs2DG8Ty6xZszR9+vSoxwcOHFjzAgEAdc4rE42uAIhWXFwcM8+UqZOB8J577ol6B1GRP/zhD+XO5Blt4sSJmjBhQvjrYDCogoICNWvWTCaTycDKTo6ioiK1a9dO+/btU8OGDY0uB3Uc/QVVRZ9BVSVbnwmFQiouLlZmZuYJt62TgfCFF14od9o4liuuuKLWA2FZko41C1hUVKQmTZpUuA+bzRa1+GXjxo1rpb5E0rBhw6T4xUPtoL+gqugzqKpk6jMnmhksUycDYXnnS5xsZQFz+/bt6tu3b0Rb2TmA/fv3N6I0AACAWsVVxjEMGzZMkrR48eKotkWLFkVsAwAAkMiSPhD6fD5t3bpVO3fujHh85MiR6tSpk15//XWtW7cu/HhhYaEeeeQRWa1WXX/99Se52sRis9k0depU7hmJSqG/oKroM6gq+kxsplBlrkVOIFu3btXs2bMlHbu8/K233lKrVq10wQUXhLeZN29e+P/z8vLUsWNHdejQQXl5eRH7WrJkiUaPHi273a6rr75aDRo00IIFC7Rnzx498cQTuueee07GjwQAABBX9S4Q5uTkaMSIERVuc/yPXFEglKRvvvlGU6dO1cqVK+Xz+ZSdna0JEyZo7NixtV06AACAIepdIAQAAEDVJP05hAAAAMmOQAgAAJDkCIQAgISwefNmo0sA6i0CIQDDbNq0Kepm9UB5PvjgA91xxx2Sjt0GFKisb775Rj/88IMk+k5FCIQADHP99ddrw4YNkhioUbFvvvlGS5cu1fPPPy+zmT9dqLzx48dr4sSJCoVC9J0KcGRQY0ePHlVRUZHRZSDBrF+/XuvWrdM999zDQI0TGj9+vAYMGKA//OEPWrJkidHlIEF88MEH2rp1q1577TX95S9/MbqcOo0RGDV2yy236L777tNHH32kvLw8ud1uo0tCAujWrZvuvvtu5eTkaPLkyTrRCliskJXcOnfurOnTp8vv9+vhhx9Wfn6+0SUhATz11FNq3ry5GjVqpGeffVa7d+82uqQ6i3UIUSMFBQUaMGCA9u3bJ7PZrD59+mj06NEaOnSoTj31VDVv3lypqalGl4k66tChQxo5cqT27dunN954QxdeeKECgYDMZrNMJpMCgYBSUlLC23u9XlmtVgMrhtEef/xx3X///ZowYYKeeOIJo8tBHVZcXKxGjRpp+vTpcrvdmjVrlu655x49/vjjUduGQiGZTCa5XC4dPnxYHTp0MKBiYxEIUSM+n0+rV6/Wli1blJOTo+XLl2v37t1q0qSJBg8erNGjR2vgwIHq2LGjmjRpIpPJZHTJqCPKBuC1a9dq+PDhat68uVavXq3GjRtHbFdYWKgdO3Zo9erVeu211/S///u/GjdunDFFwzChUEihUEhOp1M33nij/v3vf+uNN94I3zWq7BxUTj1Amb/+9a/64x//qA8++EDDhw/Xeeedp+XLl2vFihUaNGhQxLZl49GSJUt0zTXX6KGHHtJNN91kUOXGIBCi1hw5ckRbtmzRqlWrtHTpUuXm5urw4cNq27atzj33XJ1//vnq06eP2rVrp4yMDKPLhcHKri5OSUnRiy++qFtvvVXXX3+9JkyYIJ/PpyVLlmjDhg1avHixSkpK5HK5ZDabtWvXLrVv397g6nEy/XKmeMOGDRo6dKjatWunJ598UkOHDpXFYgm3Ew4hSdnZ2WrZsqX+8Y9/qEOHDnr//fd16aWXasSIEXr77bfVpEmTiO1DoZBmz56tyZMna/fu3Uk3S0ggRLV99913mjdvni699FINGDAgYsDeu3evNm3apK+//lo5OTlau3atXC6XsrOz1a9fP91yyy3q27evgdWjLvD5fLJYLHr//fc1YcIEHT58WG3atNGePXvk8Xhks9nUvXt3DRs2TH369NGwYcOSbpDGMfn5+SooKNCiRYu0ZcsWffjhh8rPz5fNZtPAgQN1wQUX6MILL1TPnj2NLhV1wM6dO9W1a1fNnj1b9913X/jxq6++Wm+99Zb++te/6o477og4RWXv3r367W9/q5KSEq1Zs8bA6o1BIES13XzzzZo7d65atmyp/v3767zzztN5552n008/PbyNz+fTzp07tX79eq1YsUIrVqzQ2rVrtWjRIp1//vkGVg+jeDwefffdd/rqq6+0cuVKLV++XPv375f031nD3/zmN7ryyivVqVMnnX766cz0JKnDhw/rk08+0Ycffqh169Zp586dCoVCatq0qTp37qwhQ4Zo+fLl+uabbyRJzZs31/DhwzV06FCNHTtWLVq0MPgngFHuv/9+vfTSS3rnnXc0ZMgQBYNBmc1m7d27Vz169FCTJk309ddfq3Xr1uG2Dz74QJdffrmeeuop3XbbbUb/CCcdgRDV9v333+vNN9/UO++8o3Xr1kmS2rdvr6FDh2rUqFEaPny42rZtG96+pKREW7du1ZYtW3TdddcZVDWMdtppp+n7778Pn7PTt29f9e7dWxdccIE2bdqkWbNm6bbbbtOcOXPC31O2LZLLuHHj9Oqrr8pisahPnz7q16+fRo4cqZ49e6pDhw4ym83y+/1as2aNFixYoLfffjt8FemSJUs0bNgwg38CGKV169YaOnSonn/+eTVr1kyhUEiBQECpqan685//rHvvvVfXX3+95s2bJ+nYBWuTJ0/Wn//8ZxUXFystLc3YH8AABELUmN/v1zfffKO33npLCxcuDK8I36NHj/C5g0OGDFHDhg0NrhRG27p1qwYPHqxbbrlFWVlZGjNmjGw2W/hCkn379um6667TsmXL9M9//lPXXnstYTCJdenSRc8++6w6dOig7t27R7WXzeyUcTqdysnJ0UcffaTnnnvuZJaKOmT16tXq169f+GPhX/rxxx919dVXa+nSpfroo4904YUX6rvvvtPYsWPVtm1bffLJJwZUbTwCIWpVcXGxlixZojfeeEMff/yxiouLZbVawx8pl32cg+T1008/qVmzZhGPHf+HffXq1Ro8eLC6d++uhQsXqlOnTlF/+FH/ff311xo0aJDuvvtu/fnPfw4/zhsEnMjXX3+tZcuWacyYMerWrVu5febDDz/UJZdcopEjR+qdd97R+++/r9/+9rd65513NGbMGIMqNxaBEHGTn5+vjz76SK+//rq+/PJL+f1+9e3bV6tWrTK6NBhk4cKFuuyyyyJO5D5e2cD9yiuvaPz48RozZozeeecdg6qFkfbt26dx48YpJydH//73v3X55ZdHXW0MlOeVV17RueeeG3HKUnluv/12/e1vf9NDDz2kQ4cO6R//+IeKi4tPUpV1D4EQJ8XWrVs1b948de3aVb/73e+MLgcG+Ne//qVrr71Wq1evVu/evWNuFwwG5fV6deedd+qll17S7NmzNWHCBBY4T0K7du1Snz59dMopp+jzzz9XmzZtmCFEhRYuXKgrrrhCo0eP1ttvv6309PSobcr6UF5engYPHqzCwkKVlpbqhhtu0Ny5cw2oum7gMxicFN27d9fs2bMJg0ms7CTtCRMm6NChQzG3M5vNstvteuCBB8K3KysoKDhZZaKOCAQC6tSpk5555hlt3749vEgwYRAVeemllyRJ//nPf/Tmm29K+u/qBWXK+lBWVpZuu+02+Xw+hUKhcs83TCYEQgAnxSWXXKLbb79dS5cu1fPPPy8p+v7EZV/7fD517txZTz75pE477TS1bNnypNcLY5V9NHz55Zfruuuu08cff6w5c+YoFAopGAxG/ZEHioqK9Mknn+jKK69UMBjUE088oYMHDyolJSXmvdDvvvtuDR8+XMOGDVOvXr1ObsF1DIEQQNyVDcazZ8/WqFGjNH36dH300UcRsz3BYDD8tcVikdvtVkZGhh577DFDaoZxyvpLMBiUw+HQ008/rb59++qFF17QmjVrZDabw4GRcIgyL7/8sqxWq2688UY99dRT2rp1qx588EFJ0TPLZX3sxx9/1MiRIzV58uSTXm9dwzmEAE6KsiuFV6xYoTFjxqhhw4b68MMPwwuZu91u7d27V7m5uVq9erUWL16sffv2KS8vT82bNze4ehghEAjom2++0f79+/XQQw9p48aNslqtuuSSSzR27FhdeOGFSbleHMrXo0cPtWrVSvPnz1ejRo00YsQIbdy4UR9//LFGjhwZtX0oFNK0adP01FNPafv27Um/kDmBEEDc/XLZmJkzZ2r69OkaN26cRo8erXfffVebNm3S5s2bw7M9Xbp00Xnnncd6cklm48aN4XtYr1+/Xhs2bJAkNWvWTKeffrrWrFkjp9MpSWrbtq0uueQSXXnllSxCneR27Nihbt26Rdyq7o033tBvfvMbjRo1Sm+//bYyMjIk/feikrJb1R09ejTcz5IZgRDASeF2u7V//36tXLlSW7Zs0ezZsyPae/Tooc6dO4fXDuvbt6/MZrMsFotBFeNky83N1dlnny1Jstvt6tatm8466yxdfPHFysrK0plnnilJWrBggV566SV9+umn4e/95XqFSC733Xef/vGPf4RvVVfm1ltv1Ysvvqj58+fruuuuC39UbDKZwreqe/rpp3XLLbcYVXqdQSAEEFcvvfSSvv/+e73//vvat2+fXC6XJCk7O1v5+flq3LixHnvsMV188cUsPp3kZs2apRUrVujyyy/X0KFD1axZs/BdbKRjd0U6fvmhn3/+Wf/61780a9YsPffcc/rVr35lQNWoCzIzM3XOOeeEb1VX1le2bt2qoUOHyuFwaNGiReE73ni9Xk2aNEl/+ctfVFJSIofDYfBPYDwCIYC4OX7GJzMzUxdddJG6deumSy+9VBaLRc8++6yeeOIJ3X333Xr88cdlNpsVDAZZfDhJ/TLwSdGnG0j/XUaEfgJJWr58uYYOHaq//e1vuvnmm6PaZ86cqSlTpuimm27S888/L7PZrC1btujKK69U+/bt9fHHHxtQdd1DIAQQNx9++KG+/fZb/epXv9KZZ56plJSUiD/ufr9fI0eO1Jdffqn33ntPF198MbepS3JVWXg6FAopEAiwaHmSu/vuu/Xuu+9q4cKF6tOnT1Qf8ng86tu3r3bu3KlPP/1Uw4YNC98NqWzcAYEQQByV98e97LGy25B99913uvDCC+V2u/Xll1+qW7duBlULIBF5vV599913Ou2002Sz2SLaysaZTz/9VBdddJEGDx6sDz74QH/84x/15ptvqqioyKCq6x7ehgOIG5PJFLUgbFlALFss9vTTT9fUqVN1+PBhTZgwQYWFhUaUCiBBWa1W9erVKyoMSsfGmUAgoPPPP18333yzVqxYoTvvvFMfffSRrrzySgOqrbuYIQRQJ/z2t7/V66+/rscee0z33nuv0eUAqGc2btyoc889V16vV8XFxVq1apX69u1rdFl1BoEQgKHKPkIuKirSOeeco/z8/ArvdQwA1fW3v/1Nt99+u9q0aaP9+/cbXU6dwpm4AAxlMpkUDAbVsGFD/fGPf1RpaanRJQGop66//nodOHBAHTt2NLqUOocZQgAAgCTHRSUAAABJjkAIAACQ5AiEAAAASY5ACAAAkOQIhAAAAEmOQAgAAJDkCIQAUE/l5OTIZDJp2rRpEY8PHz486h7TAJIbgRAAalleXp5MJlPEP6vVqnbt2unaa6/Vhg0bjC4RACJwpxIAiJPOnTvrt7/9rSSppKREubm5euONN7Rw4UL95z//0eDBgw2p65VXXpHL5TLkuQHUTQRCAIiTLl26RH1c++CDD2rmzJmaPHmycnJyDKmrffv2hjwvgLqLj4wB4CS68847JUmrVq3SgQMHNHXqVA0cOFAtW7aUzWZTVlaWbr/9dh06dCjqeys692/8+PEymUzKy8s7YQ2cQwjgl5ghBAADmEwmLVu2THPmzNHIkSM1YMAAWSwWrV27Vs8//7wWLVqkNWvWqFGjRkaXCiAJEAgB4CR67rnnJEn9+/fXueeeq/z8fGVkZERs88orr2jcuHF65plnNHnyZCPKBJBkCIQAECc7duwIn0PodDr19ddf68svv5TdbtfMmTPVsmXLcr/vuuuu05133qnPP/+cQAjgpCAQAkCc7Ny5U9OnT5ckWSwWtWrVStdee60eeOABZWdnS5IWLlyoF154QWvWrNHPP/+sQCAQ/v4DBw4YUjeA5EMgBIA4GT16tD799NOY7XPmzNG9996rFi1aaNSoUWrbtq0cDock6cknn5TH4zlZpQJIcgRCADCA3+/XQw89pDZt2mjdunURHx+HQiE99thjUd9jNpvD35uaGjl8FxYWxrdgAPUay84AgAGOHDmiwsJCDRo0KOpcwm+//ValpaVR39OkSRNJ0v79+yMeDwaDWr9+ffyKBVDvEQgBwAAtW7aUw+HQmjVrIu4a8vPPP4fXKvylfv36SZLmzZsX8fif//xn7d69O261Aqj/+MgYAAxgNpt1++23a86cOTrzzDN18cUXq6ioSJ988ok6dOigzMzMqO+54YYb9Nhjj2natGlat26dOnfurG+//VabNm3SsGHDtHTpUgN+EgD1ATOEAGCQWbNmaebMmTKZTHruuef02Wef6ZprrtHixYtlsViitm/VqpWWLFmikSNHavHixfr73/+uxo0bKzc3V1lZWSf/BwBQb5hCoVDI6CIAAABgHGYIAQAAkhyBEAAAIMkRCAEAAJIcgRAAACDJEQgBAACSHIEQAAAgyREIAQAAkhyBEAAAIMkRCAEAAJIcgRAAACDJEQgBAACSHIEQAAAgyREIAQAAktz/B11fTskrHSqNAAAAAElFTkSuQmCC", - "text/plain": [ - "
" - ] - }, - "execution_count": 11, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "plot_state_paulivec(psi)" - ] - }, - { - "cell_type": "code", - "execution_count": 12, - "metadata": { - "ExecuteTime": { - "end_time": "2021-07-31T05:08:59.932552Z", - "start_time": "2021-07-31T05:08:59.518913Z" - }, - "execution": { - "iopub.execute_input": "2023-08-25T18:25:16.970636Z", - "iopub.status.busy": "2023-08-25T18:25:16.970134Z", - "iopub.status.idle": "2023-08-25T18:25:17.399215Z", - "shell.execute_reply": "2023-08-25T18:25:17.398371Z" - } - }, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAvsAAAF3CAYAAAA7G4RwAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOy9WYykaXYW/Hz7EmvumVVd3VXVVV1d3dPbeLpnumc8HrBlIyPwBUhICFmyAclIlrAMhgsQ5hphbEu2MEI29g0SXMFIWBg89ox/Znq6e3qfrr0qa819ieXbt/e/eJf8IjIiMnKp/X2kUmZFxrfGF+ec95znPEchhBBISEhISEhISEhISDxxUB/2CUhISEhISEhISEhI3B/IYF9CQkJCQkJCQkLiCYUM9iUkJCQkJCQkJCSeUMhgX0JCQkJCQkJCQuIJhQz2JSQkJCQkJCQkJJ5QyGBfQkJCQkJCQkJC4gmFDPYlJCQkJCQkJCQknlDIYF9CQkJCQkJCQkLiCYUM9iUkJCQkJCQkJCSeUMhgX+Kxw82bN6EoCj755JOh7/nud78LRVHQarUe2HlJSEhISDx+kD5F4kmHDPYlnki88847WF5eRqPRAAD88R//MZrN5ljbfve738WXv/xlWJaFM2fO4I//+I/v34lKSEhISDzyOKhPWV5ext//+38fL7zwAlRVxa/92q/d3xOVkBgAGexLPJEwTRPz8/NQFGVf2y0uLuJv/s2/ib/21/4aPvnkE/zar/0a/tE/+kf4sz/7s/t0phISEhISjzoO6lPiOMbMzAz+9b/+13jttdfu09lJSIyGDPYlHih838cv/uIvolqtYmFhAb/1W7+Fb33rWz3ZDkVR8D/+x//o2a7ZbO7KsF+6dAnvvPMObNvGl770JXzve98TfyuXXL/73e/il37pl9But6EoChRFwb/9t/924Pn9wR/8AU6dOoXf+q3fwvnz5/Grv/qr+Lt/9+/it3/7t4/oDkhISEhIHBUedZ9y8uRJ/O7v/i5+8Rd/UVQFJCQeNGSwL/FA8Ru/8Rv43ve+h//5P/8n/s//+T/47ne/i48++ujA+/pn/+yf4eOPP8bbb7+Nv/W3/hY2Nzd3ve+dd97B7/zO76Ber2N5eRnLy8v45//8nw/c57vvvouf+Zmf6Xnt537u5/Duu+8e6BwlJCQkJO4fHnWfIiHxKEAG+xIPDJ7n4Q//8A/x7//9v8dP//RP45VXXsGf/MmfIMuyA+3vV3/1V/F3/s7fwfnz5/Ef/+N/RKPRwB/+4R/uep9pmmg0GlAUBfPz85ifn0e1Wh24z5WVFczNzfW8Njc3h06ngzAMD3SeEhISEhJHj8fBp0hIPAqQwb7EA8P169eRJAm++tWvitcmJydx7ty5A+3v7bffFr/ruo6vfOUruHjx4qHPU0JCQkLi0Yf0KRIS40EG+xKPHBRFASGk57U0TR/Isefn57G6utrz2urqKur1OhzHeSDnICEhISFxdHiYPkVC4lGADPYlHhief/55GIaB9957T7y2vb2NK1eu9LxvZmYGy8vL4v9Xr15FEAS79vfDH/5Q/J5lGT788EOcP39+4LFN00Se53ue49tvv43vfOc7Pa/93//7f3syPhISEhISDx+Pg0+RkHgUoD/sE5B4elCtVvEP/+E/xG/8xm9gamoKs7Oz+Ff/6l9BVXvXnH/9r/91/N7v/R7efvtt5HmOf/kv/yUMw9i1v9///d/H2bNncf78efz2b/82tre38cu//MsDj33y5El4nofvfOc7eO211+C6LlzX3fW+X/mVX8Hv/d7v4V/8i3+BX/7lX8Zf/MVf4L//9/+O//W//tfR3AQJCQkJiSPB4+BTAIhhXZ7nYX19HZ988glM08RLL710uBsgITEuiITEA0S32yX/4B/8A+K6LpmbmyP/7t/9O/JTP/VT5J/+038q3nPv3j3ysz/7s6RSqZCzZ8+SP/3TPyWNRoP8l//yXwghhCwuLhIA5L/+1/9K3nrrLWKaJnnppZfIX/zFX4h9/OVf/iUBQLa3t8Vrv/Irv0KmpqYIAPKbv/mbQ8/xL//yL8nrr79OTNMkp0+fFseVkJCQkHi08Dj4FAC7/j333HNHeyMkJEZAIaSPyCYh8YDxrW99C6+//jp+53d+52GfioSEhITEYw7pUyQkeiE5+xISEhISEhISEhJPKGSwLyEhISEhISEhIfGEQtJ4JCQkJCQkJCQkJJ5QyMy+hISEhISEhISExBMKGexLSEhISEhISEhIPKGQwb6EhISEhISEhITEEwoZ7EtISEhISEhISEg8oZDBvoSEhISEhISEhMQTChnsS0hISEhISEhISDyhkMG+hISEhISEhISExBMKGexLSEhISEhISEhIPKGQwb6EhISEhISEhITEEwoZ7EtISEhISEhISEg8oZDBvsRThT/6oz/CpUuXHvZpSEhISEg8AZA+ReJxgAz2JZ44/P7v/z5OnjwJ27bx1a9+Fe+//77423vvvYf/9J/+00M8OwkJCQmJxwnSp0g87pDBvsRjj29961vi9//23/4bfv3Xfx2/+Zu/iY8++givvfYafu7nfg5ra2sAgF/4hV/At7/97Yd0phISEhISjzqkT5F40iCDfYknCv/hP/wH/ON//I/xS7/0S3jppZfwB3/wB3BdF3/0R38EAPjpn/5prK6u4sc//vFDPlMJCQkJiUcd0qdIPAmQwb7EE4MkSfDhhx/iZ37mZ8RrqqriZ37mZ/Duu+8CACzLws/+7M/KTIyEhISExEhInyLxpEAG+xJPDDY2NpDnOebm5npen5ubw8rKivi/LLtKSEhISOwF6VMknhTIYF/iqcPP//zP4/3338fGxsbDPhUJCQkJiccc0qdIPOqQwb7EE4Pp6WlomobV1dWe11dXVzE/Py/+v7i4iGaziWaz+YDPUEJCQkLicYH0KRJPCmSwL/HEwDRN/MRP/AS+853viNeKosB3vvMdvP322+K1b3/72/j5n/956Lr+ME5TQkJCQuIxgPQpEk8KZLAv8UTh13/91/Gf//N/xp/8yZ/g4sWL+Cf/5J/A93380i/9knjPt7/9bfzCL/zCQzxLCQkJCYnHAdKnSDwJkMtQiScKf+/v/T2sr6/j3/ybf4OVlRW8/vrr+N//+3+LBqvFxUVcvnwZf+Nv/I2HfKYSEhISEo86pE+ReBKgEELIwz4JCYkHhd/93d/Fn/7pn+LP/uzPHvapSEhISEg85pA+ReJxgKTxSDxV+Pa3v42//bf/9sM+DQkJCQmJJwDSp0g8DpCZfQkJCQkJCQkJCYknFDKzLyEhISEhISEhIfGEQgb7EhISEhISEhISEk8oZLAvISEhISEhISEh8YRCSm9KPHUoigK+7wMANE2D4zhQFOUhn5WEhISExOOKLMsQBAEURYGu67BtW/oViUcGMtiXeGxQZBnyokCR5yiyDEVR0Nf7fhJCQIqC/gSgKAoUAIqqIs9ztDsd+l72umXbmJmZgWYYcgKihISExFOEIsuQ5Tn1K3lOfQcA0u9XmE8pioIG8YoClf3MsgztdhsEoH5FUeC6LqampqDpOjTpVyQeMqQaj8QjgSLLkGUZsiRBmiTIswxFniPnBrgUwI8C/zsP9Is8B0ADfkII2t0u8jyHpqowDANxkoAQAse24bouXRioKhRFoUZa08QiwLAsmJYFwzTv9+2QkJCQkDgkuE8pskz4Fe5biqJAwfwKxvArwreg16/keY52twtCCHTmM5I4BgFQq1RgWRagqgAhwqeo7KfwKYYBXfoVifsIGexL3FcURYEsy5DnObIsQxyGyLIMKAoohFAjy7PwLGuS57kwwgV7rWDvyUvZFQIALKhHyRCDEIAF94QfQ1Hg+z6yPIemKKhUKtA1DQkrvQJArVqFZZpQFAUqC/hVVRXZG6X0TzdN6IaBghB4vo8kTTE5PY3p6Wlq3CUkJCQk7gu4P8nzHEmSIIkiFHkOhfkHhQfxwI7vKAX4RcmP9P+fYCdpNMiv8Ew//3u320XBAvma60JVVYRxjDiOoagqGtUqdF3v8SdK6ScBoLK/aYYBwzSRZRk830dGCGZmZzE5OQnDMB7kLZZ4wiBrSxJHhqIoEIYhkiRBlmVI4hhJHCNn/8/TlAbzjIqTs8A+Z1kSKAo0RYGqaTANQ/Ady+vRnmCeUXEGos9YZ1mGNMugAHAqFZqRKQpoqkozMWkKjwX9/fvIiwJBENB/YYgwDBEGAfwgQJYk4GensHPSbRv1RgMTU1OYmp7G5OQk5ufnMTs7e/ibLCEhIfEUIc9zBEGANE2R5zniMESSpsiThP7j9M4BvkUBBN1G0zQY3K+Ug3hgd8JoGAgRdh4APQ9CoCoKKo4DAuovDF0XftALAji2vat6kOY5/CBA6PvUrwQBwjBEEATIs0ycC/dVdqWCRqOBielpTE1NYXJyEsePH0ez2TyS+yzxZENm9iUODd7w2mm3kbBgP41jJEkCkucgJeOqAMIgFpx/TwiKUnDODZxlGLBtG5Zp9mTaOQcffL+qSjn5LPAv/+TUn063izhJYFkWKq67Y9gJQZbnaLXbACGo1+vimtrtNu7cvYulpSVkeQ4oCgzWeOW6LhzXhes4cBwHlmkiThLEUYQoioTR9pkBJwAWnnkG3/zWt3D69GnZuCUhISExAlmWUb/SaiGJY2RJgjgMaXDPqracnqkqisjQ84CfZ+q5nyAs6LdNE5Ztw9R1mmnnPoX5FVLyL/1+hf/O999qt5HlOVzXhW1ZdBGgqkBRIE4SdD0PiqKgXquJyvTG5ibu3r6NtbU15MwPWaYJ23GoX2H+xXVdaLpOfUocIwpDRMyveEGAJEmQAzjzwgv45k/9FBYWFh7GxyTxmEAG+xIHRpqmaG9vo7W1hdDzaHBPCDRVBViZUtM09Ie1qqpC1TTomgZNVamRznMUoEY0y3OkaSrer6kqLMuCbVlQ1d1qsaMeYFIU9Dy7XSgAmo0GNE2jBr306HOj7dg2NjY2sLi4iK2tLdi2jZMnT2J+fh6u40A3DGRsn5z3mbNM0jAUbDFxa3ER260WmpOTePOrX8Urr78OU/I0JSQkJATiOEZrcxPt7W1EYYgkjkV2ngfnKkvwlKFqGu2xUlVoLPjPCQFhCaU0TZFxO00IdE0TyaRdyZc9KsekKBBFEbwggKqqmGg0xHZ8C0IItlot0RO2tLSExcVFdD0P9VoNp06dwvTUFNxSpZn7UO5TihF+Jc8ybGxs4OatW/A9D/PHj+OrX/saXjh/Hpqm7f/GSzzRkMG+xL5QFAU6W1tYX11Fu91GmiTI8pxKjbFGI27sNF2nAX35HzPUZY7+IIOWZRmiOEacJCI7Q4oClmXBYcfhKFN7+kGKAp1uF0mawrYsVCuVnYpACWsbG7h+/TpWV1eR5znmZ2dx6vRpzM/P9ywwuCHOsow6jyxDVhS0v4DzP3kZmS0EwM8PQLvbxcryMjrtNmzHwZmzZ/HKK69g/vhx2I5zqM9GQkJC4nFElqbY3tjAxtoavG6XJlOKAoZhwLasHZU0RRE+pd+38Cw/r9YOarpN05RmyeNY7E8By6yXj4PRfoUncPKiQMV1qcxm33sIgDt37uAWy+JrioLjx4/j1OnTmJ6e7n0vO+c0y5Axv5KXqhO8YiHoSqXrIwC2trexvLSEIAjQqNVw7vx5nH/5ZczOz0tBCQkAMtiXGAOEEHTbbXS2t7G1sYFutysMoaHrsB0HpmHA0HUYug7dMKBr2k6QXDKW3GgpbL8FU0Lg1J1Bx46TBFEUIc0y0XiraxoqjiMy44IqVOZjEoIsyyhFBzSrr2vaDscewNLyMq5cuYLNzU1ohoGFhQWcP3cO9XpdGNWM9RWUDbCiKHQ/vFEYlFvacw3sXMV+StzSwPextLyM7e1t6IaBs2fPYm5+HlPT05idm4NbqcAwjIGVDAkJCYnHHVmWodtuo7u1hY2NDYRhCIDabdOyYJsmTNOkPoX7Ftbo2h+Ac0ooSnQeALsC8PL74zhGGMc0cGZ+Q9d1VBl9hlN6egJ+1vjLKTqqqqJRr0Njjbb8/G/dvIlr16+j3W7Ddl08c/w4zr/4IizLoqIVJZ/Cf+f77xGYwI4EqAD7W172K6x60Wm3sby0hI7noeI4OPvCC5iZnaVNvjMzcBxnp29B4qmCDPYlBoLzJb2tLRrc5zlCxkUHAMdxUK9W4dg2dMOg1J0RKCseiNdKgXJPFoYZszJ44B6zbD9hPH/bNFFhCgj9IAB81vxk6DrqtZow2mEU4bNPPsG95WXMTE3h1OnTsB0HSZLAchxaBuZOgP8jRHA5dZZZ4qVjpXQNxaivFFNzSJIEcRxju9XCpStX4HseTp0+jcmJCaiqCsd1UZ+YwOTUFCqVCqpM0UFCQkLicUWapvA6HXS2txH4PghrUk3SFAohcKtV1CsVkWXfK9lRsEqrAKPuDETJPnMuPiEESZIgYvaY23nHtuEOGbZYsB6wJElgWxYqlYr4W6fTwUcffYStrS0cP34cJ0+eBFQVWZahWqlQv5XnlNffB43JPfNEmaDi8KB/L7+S5zQxFsfY3NjAxStXkGcZzp49i0qlAlVVUa3V0JicRHNiAtVqlfYFSMrPUwEZ7EsIpGkK3/fRbbcReh6KJBGBdxRFVGVA01Cv11GrVnu25RKbKdfLZxmH8sNVlh0TKgn89dK/MggzzIT9U9ixwihCGEVUtgxAxXV3SV7y8mae57TUalkgioJbN2/i888/h6ZpePW11zA9NYUkSdDudpFmGWxW0gV2eKBcP5mXjsvnVx7cxV/j1YtxkOc53nv/fdy9dw+nTp/GzOysoAVpmga3VkO92USz2cTk5KSczCghIfFYgAfTvu+j22oh8n0UWQaFJT3CKAIAGLqOiUYDTh+VUfiSPEeeZUgYvYfTdRRVhcbnoigKCpaY0ZmPGeRXSClTrzD7DVC/4gUB4iSh2yoKqpUK9BI1FaDiEptbWwCAer0OQ9OQFwWuXLmCS5cuoVqr4Y3XX0e1UkGUJGh3OsiLAq7jwGQJG5X5FL3kX3adI0NZlU4koMZAFEX4fz/4AVqtFl48dw7VRkM0FmuGgWq9TtV9JicxMTEh+8eecMhg/ylHnucIwxC+58HvdJCGoTA0BsvYe76PhElnWrYNTVWF8eWGWJQaS6oGBTPIZa17cK4+IEqWZelKAEKDWFUUGIYBy7JgmSalCpmmMNBZlqHr+4JaYxoGKqVMRZrn2N7eBgBMNJsIwxAfffQR1tbWcOLZZ/H888/T47Hjx0mClDXpTrBG3l2Zpb4KBEpKQuWyL8/EkNL+wV5TB9GVAFz44gtcvHQJp06dwvnz55Ewfmkcx8jyHJbjoFqrCePcaDQkzUdCQuKRQ8bml3jdLkLPQxpFojJqsobYTreLJM9RpCkc14WqKEj5TBY+UDHLoKjqzrRa0GBb8OlLlBfs4VfKim6mYVCfYlmwDAO6YYht+OKkYP+3TZMOXGT7CuMY3W4XiqpistHA1vY2PvroI3Q6HZw5cwYnnnuOav4zXxBGEQoAVddFrVod6VeED+F6/jzZxQQlCkBM+O2Xph7kV/Iswwc/+hHu3buHL73yCk48+6zwKbwfznFdVOt1NCcmMDk5iVqtJpNJTyBksP8UghCCOI6pNKTnIQkCZHFMOfiGIQxeEATYbLUE/7HiOIJKUpYhU7n8Gcug6LpOX2PvEwNLGN+RMM5i+TV+XoMoPOVBJxrT4DcZn9M0DGR5jiiORQWg6jiwbRt+GML3feiGgdWVFXzx4x/Dsm288MILmJicFNQbjRl+VVHgeR4UVcXUxMT49xPYdc7i3Amhmsl9xrN8/8p/uXHzJj7+6CPMzczgra99DZqmievzul3EcQzNMFCpVlFtNDA5OYmpqSmZlZGQkHioKJhCDfcrKfMrCguuizxHnKbwfB/b7TYdRMX06VWWoClLYALUNiqM0qJrmkgm8eORohAqbmBNrgP9CvpU23jgDBo865oGi1GHLNuGqWlIs4xSRsGy/K4L0zTR6naRxDEMw8DijRu4du0a6o0GXjh3DrWSAIRumrBMEwWjwBqGgUatNv79ZOc57F4PUoAr+xV+/wiAH3/2GS5fvYozzz+PV155BVAUuiBjPjJOEli2DadaRZ35lcnJSUkdfYIgg/2nCJyH7/s+1cEPAjHoijcNRVEksvFxFNFBV6qKCmsY1UpcdV3brYgAADkvNw5BefQ4h5iSix0N47wokCYJkjQVA0oKpmPMjTyKAoRxHfM0haIoIsOf5Tm2221cv3IF7W4XJ06cwOnTp6GzRYlpmrBtWzgRUhTY2t4GAURmf1yM4unzfoORA8BK1Ka1lRW89957qFSreOedd2DbtrhfSZrC8zyaeQLgVqtwq1U0Gg1MTU2hwSXgJCQkJB4AeGLI931kUYSYDxtkiZ4sTRHHsbDtcZLQKeSaRv1KH0VS0zTKXWc0Fx68ctWzYRik6laevs5/Znku/EqaJEhLdNOC+RNSFKLCnOe5OKeq4yBJU2xsbODqtWtI4xinnn8ez544AQWApmmwmJwn72PLsgytTgeKouwriQSM9iu7+hX60edXFq9dw6effYa5+Xl89atfFdUFQghNJrHYQNU06lcqFTQnJjA9Pd3TlyDxeEIG+08BUhYgBkGANAgQeB7CMNzRhy8ZNlWhE2yzLIOu63AdRzSNjgNCCJ1UO4Sqwjn3/ShTYHjjlHiN7lg0tvLgn/+e57nQvI+SBCFTWVhbXYUXBKjYNs48/zyajQatCrCyLVcEKp9rx/MEx98syXuKUeeMI6ryJipuMLHT+NW/T2AMw9yHVruNH/y//4dqrYZvfvObO0PE+P7YVN82GxZm2zaqzSYajQYWFhZo2VmWYiUkJO4TYkZnicMQcRDA73aRRBHykq1TWaaZ+5U0y2DoOmoskBy7r2lAAqmsiqawxtz+/fHMNoChfiXPcyRpijhNaRIsTZHEcc+ArjBJEEYR/DDE6vIykizDRL2OM2fOwLVtGKYJyzB2VHxKPoAQgnanAwKgzmg8KJ0Tb8YVvoXLU4Pa+VF2fC8t/n6sLC3h3fffx6lTp/DG66/3/pEQZGxAZtfzkKQp3GoV1XodU1NTmJ2dhW3bYx9L4tGCrNE8wUiSBJ7nIYoitNtttNbXkSSJoOvoqgpDVaGwbITrOHBsG1maIkoSAFSucs+gsfT3PM93KDx9fxel2SH7Kwe0wlCWaD+8B0BTVVimCcMw4LLG4Jhn/glBmiRobWzQUquuY3pqSlCTNJbF51ke4QA4zx7UgMZJMvYCR1UUKJomhr7whjFV06CxnyoAUpovMEy/maPZaOCtr34Vf/W97+HihQs49+KLorkZjDJVrVZRrVYRJQm8bhcby8tI2ATfCca/lM28EhISR4koinb8yvY2ttfXkRcFVNA+L1VRYLDqr2NZsBmtMmGBtKZplBc+zsFYlp1z4Mt+pUyDJIoCdUjQWz5O2a9wSWROBzJUFZplwTQM5JYlBCeSJEFBCJIowvbaGgiAZq2GmdlZJElCJacZ/XWoX2EVgjhNMS7hsjzdt7wgKPsYjfmDkQpwJcwfO4bXXn0Vn3z8MWZmZnBsfl70RHCVuWa9jma9jiCK0O50sL6ygpTFElNTU2g2m7vEMCQefchg/wlEkiTodrsIwxDdbhfrq6vI4hi2ZcG1LEp1MU04tk3/OY4IbLkMGQFQq1YHThYEBusXCw5hiXPZj0Fl2PIglDxNRWaIlKU6hy0QFAW6YdCsUZpCVVXcu3cPSlHg1IkTWF5bw0S9Dtu2oWkaYjZQxXUcurhxXaHcANDhKn4YwjQMev3Y4eSLYVl8cm65FyHLaOl3wHnywF9ljkvXdWiGARU7C5xBC4Dp6Wm8eP48Ll68SHWSJycBnjErLURs04Q9NYVqtYqNzU0kUYQ0TRGGIWq1Gmq1GpwhMnISEhIS4yCKInS7XURRhO3tbWyurQFFAduyYLOZIKZlwbZtMQOF26kwDJGkKQghqFQqg/3DEL+RozewH4Rh9B6uEpex6i+33WIeS8kmlrPxnE7EVdhACBYXF2ExX3P6ueegMQELVVEQBAHCKILrunC5bGfJr+iahihJdiQ9UfJ75YRWH+2oX66653bxoB/UR/XPISgr2ZVx+tQprK6u4qMPP0Tzp38aDsvWi0Zgtr1jWXBmZxEGATa2txEzv+L7Pur1OqrVqsz0P0aQNJ4nCGmaotPpUHpHu43W1haKNIXNDFalWhVBrsZX8yUUeY5Wp4OCGXDHdQEMN7BliKmFe7yHU114j4CYFjjEWHP1GpVP32VZdF1VobBMeRxFSFm/waeffoo8y/DKq69CURS8//77ePPLX4bOKha8F4AUBdVjJgSO46Diuqi4Lp0Q7HnQyiPQB50Xv2cs65SVjDUvrfLegzIyRpsCqEPhBlovDTopLwCKosD3/uqvEIUh/vpP/zSMAQ1ToqGNbdP1PARRJPj8tVoNpmmiXq/vkraTkJCQGIU4joVf2draQrvdhpbnsE0TuqahWq3CYVXhQdXQLE3R6nRACEG1UqFiAnsE7xxcdW3ke0p+JWc9AlmWIc+ykZr7CqNjaqVkDM+e58yfFISg1Wrh888+g+04OH36ND795BO888470A0DSRxTiWlGIyryHAWoTXZsG9VKBVXXRRjHCFgSqd4nW91/vcBOA25eFGKacHmSbn/jbnlisD5oCBnQswCIkwR//ud/jmq1iq9//etDk1T8X57naHc6iLMM1XqdCkRUq8KvyEz/ow+Z2X8CQAhBt9vF1tYWtre30e12YagqbE2DYZqoVSqo79FwSgiB5/s0uNY0mgk+5Hn18CmZ0UoZ3WaQEdYURWS9NWZ4lX7tfZaN4ZKhCWvK9TwPn3/6KUzTxNd/8ifpPfF9qIoCt1KBpusgpgmVqfkEUYQwCJBlGZI4RhhF2NjchGEYgrPPM03lyYhllQgA0Fh2xWDvy0ulW4AuoPhAsaIoELN+A55lyvMcYKPbRfBvGELRSFVVfPWtt/Dnf/7n+Pijj/DWW28N/Oy4FJ2iKKjXarANA23fBwhBmqao1WrI85yOU280pMqChITESBRFgXa7je3tbWxvb8P3fZiahpphwHRd1KtVVGu1kXTHoijQ9X0quWlZ+w4KB+Uiue0loLTRNE2RsgB/EJ1FU1UYrGGW+xROg0FpXyogKqJplkEBsL6xgQtffIHpqSm88cYb2G61AACObcN2HAQs4cTnsURhiDCKqNhFGCIIQ6wBYnJ7o1rtTbKRXnnmfr8CUKlSLkTBtyn7FU47TZKEVgjYrJuI7as/+IeiwDJNvPnmm/irv/orXLl6FedeeGHgvS/LejbrdYRRBK/TAQhBEseoNxpI0xSu66Jer0sp6EcY0uM/5ojjGMvLy9jc3ITneTAUBVVdh2UYqNXrdELesC8gC5wV0ImyPIMykL6zB0QgzKgqecnocBWdfolKMVDEMKgiw4BqQxkKaDAdBQEipuigKAo6nQ4+/eQTNJtNvP3225QbGccioNUNA9VqFZ7nochzJISgWa9jamICcRQhYEY5Zc2+Hd+nWYwkQa1aRYM7tD7noAxzRKVytKbr0MiOpKhpmshtG0VRiAFkaZaNDP4Nw8Abb7yBDz74ALdv38Zzzz0n7mX/3eIGWjdNTBgGOt0uojBE7Ptw63VMTEwgSRLUajVaTpfUHgkJiT4EQYClpSVsbW0hDENYmoaKrsO1LNSZXxkFbgfDMBTKNpU9thkEQY1kQXFe8ikpy6j3S1TqfGAVs539cpT07Tu69mD79aNIJI8UAKurq7hw4QKee/ZZ/MRP/AR83+/Zh81oStyvKAAmJicxraoIwhAh+8ftvMcEFcI4Rq1aRXXA5PdBNl0FUJQpTgpVn9NK77dMU1CVyn5lVPA/0WzixXPncPHCBcxOT2OS9bYNkvvkiyjHtqHrOrq+j8jzEPo+6o0G+ODNxoDBaBKPBmSw/5iiKArcvXsXy8vLiKIIap6jYpqoui4ajQZcxxmY5eC8REEZUeggkzAMUYBq6Q9dHJRR5jyyTEMUx8LQDMrIcHk1bmy4oRsYcPYp2oipuUxPn0tsrq6t4dNPPsGxY8fw1ptvQtM0dLpdcTyAGnRd11Gv1eD5Ph3G1emgWq3SgV22jWaziSxNEQQBzcDHMZIkweb2NrZbLTTqdTRqtZ05A9hRdOCB/9CwuXSv+T9V02BpGiymj98T/LOybTn4r1armF9YwMcff4xavY5msymc4CBeJkCzMfVaDUEQ0EEqa2tobW5ibn4ehBCEYYhGoyE1+iUkJADQnq3bt29jbW0NWZJAIwRVy0K9UhF0jYHMX8JkHnkQrShieFNBCOr7SSDxiiohSIsCaRQJ27j7rQoMNttF+BVlZ8bL8EPQY+R5jqBUIVYUBZZl4dq1a7h+/TrOv/giXnr5ZQDYTVNVFJi6jlqtBs/zkBcFPM9DtVIRvH0+QdhjKm9ZliGOIoRhiE1dR5P5FRH092X9975VO+9XFQUq7zFgFZR8j+B/7vhxLK+s4L0PPsC3fuqnYNn2jlAGGTAUEtSXNmo1dNmwtFVG75o/dkyoxMnq8aMH+Wk8hlhaWsKtW7eQxjFQFHA0DRNTU6g3GnCYMd4V6JeC/H4OH89YmGxa7SiUjUvOFAq4Ek5ZWlJhlBzBSdc0ymVkx90TpUA6Ytl3fu6mrsN2HDGe/PnTp/Ha66+Lqb38PIw+2pKqqqhVq/B9X+jVu5WKCLgN00TdMKCoKmKWXY+TBGmaYrvTwXarhVqthol6nU6B5KfK7yV2pEX3cmzlLA0BRPDP91uujPDg/+yZM9hutfDhhx/iJ37iJ2BZFkzLonMCyI4MXdlJqIpCqzu6Dt/3QbIM9+7cgeu6aE5NIUkSVKtV1Ot1meWXkHhKURQF7ty5g9u3b4NkGRRC4BoGJiYn0azVYBiGUEMT4JXhvl4jgAaZnu+DAHBLwxj7QRh3XintL2MKOHGSiGw1h1oK7HkDLR/G2KO6M+BY5dcKluwoJ48sNgTro48+wt179/DG66/j9OnTO3NSgF7/ya6XJ5K6LKDvdjqo1mq0v4otHnizcpKm0DUNfhAgz/OhySS+bxFs76O1snx+uq5TCivzSf3Bv1YUOP/SS3j/gw/w8Sef4PxLL4nJwhpbvPHEVrnqoKoqarUaQuab8zjG7evXUW800GDV43q9LvX5HyHIYP8xQpZluHz5MjY2NqBkGQxVxcz0NCYnJnr0fbnaQI/xG5Kt54E6gF1lVs5j7FcsEIa4lGlRVRWqrsPgCgaca1/aVtlDD7jfQOdM8zdjsmu6ptHmYk3DRx9/jFu3buGVV17B2bNnxbb8nFRVRTFo30yykk8N9H2fjgwvqQpwbqfrOJiyLNrw3OkgYUoE3W4XFdfFRKPRo0aggI0s5/e6xN3nGDZjYOc/O2oQKpMY5fciyzJ86UtfwgcffICtzU1MTE0hYnQlyzRhsCnA5f3wBmcxIdj3QRjNaWttDdsbG5iYnkaWZZjYxzwFCQmJJwNhGOLSpUvotlpQWePt7PQ0Gs2msCc80BeVYaAn0O9P4ERsIrumaQMVW3hVkg994tXUOEl6bKSmqtA1jUpFM7+iKApVjWHvGaYzX6aWls8uzTIEvk/7q1iF2HEcFHmO77/7Llrb23j77bdxbGFBnCvP6g9btKiaJirHaZrC63Z7Ekn8PQYhqFWrmJiYQLfbpdnxIckkAD3BNVdsExTOcuKtKIZWlsuflTYg8++6Ls6eOYNLly/j5MmToopusMnyBptJU17Mcb9is0VB1/OgqioCz0McRdAMA9Ozs5hkgx5lIunhQwb7jwm2t7dx5coVxJ4HDcDUxAQW5uags4ZSEeiXjMA4X7Aookw+q6zHXs7UYGcCbBTHSNO0Z3tD12FZFm1s5RrDpX2gtI9+DDPGAO1F8IJAOBa3UoFtmiAA3n/vPSwtLeGtt97CiWee6dmOn59hGCI7L47Hf1EUVKpVqCVepQIITXquxZ8XBR2TXqmgWqkgCEPKgWdlWN/3YTMKUHUQH1VRaFlb2VHW2Uv8qmeBVqpuaKoKzTTx3DPPYPHaNdy9exdzCwtIWGNalmVQwhAmy06V6UZ8EaLrOqqVCrqeR/sq8hy2rmN9aQl+p4P4+HHMzs7K8quExFOCpaUlLC4uIo8iaADm5+YwOzMDhSnSAKwPiGWGy3KSw1AUBaI4prTQ/kCfB/mgdi1hdMm0j6JjGAZsy4Ku68iKQtjRcp8ZMFzKmQ/y6nkddGETRpGYdltxXRiGgTTL8P99//sIgwA/9c1vYoJNuuV0IO5X9EEiF5zuwirHnu/TqcK+LxYTXBM/Z9l1wzDQqNdRq9UQ+D7a3e7IZJKgarJrF9fPKiF7fSY9MwmwI56hahpsTcP5c+eweOMGlpeWcPaFF5CyinKaplBY0skyzR5qLED9EmF+xfN9FIRAB03sLd++jcDzkCwsYHp6WiaSHjKkV3/EkWUZbt++jaWlJRRRBNMw8MzCAprNJp3+V1rRF2y1PS4SPoiqKGAx/f3+Y/MsfjlI1RjdxOI6yswAa6oqGnH7Ud5+mDEGqKPwg4ByKEEXE5VKhRoVQvDpZ5/h7r17ePtrX8PCsWN0f2xb3n/AeYVRGIrz4XJoZW1lrj3vhyH8MASYUVOYQSsIobx85ui4bGmcJGi32wiY7vDK6ioMw0Cz0UCtUqGZfX695b6DIVSbvdCzeFIUnDt3Du/+8IeIwxATk5PiM+KNyXEc07HtbEAMN7KaqoIwqTxeco6TBK7rwvc83Lx2DYHv48Szz0opNQmJJxhRFGFxcREb6+tAksC1LDx34oSQW865lKOiUL+yj0AtimOQohAqOD2cb5Y44uoxZfAKpWmavVQUVe2Z4VJG2YqW+9F2VYnzHF4QIGfT3S3TFFPG86LAez/8IbxuFz/1zW+iOTHRQ1kpy0qruk6V1cpV29ICBopCqSuKQhNWnodavQ6dVWo51ZRvqyqKGI7Yk0yKIpFMmmg2aUN0yXeJn5xa1UezGYVy4M9/NwwDZ8+exaVLl/Dyyy/DdV3xGRVFgYgNaxz0GWmaRucnuC485rstRYHjONje3ITveYjCEMeOH5eJpIcIeecfYXQ6Hdy6dQutjQ0oeY5mrYbjx46JQIxzw/m0vv0E+oQQBGEIAD2KPcPKqbxxyWTl1B6UKgmqpiHPsqGZ/bIx7g93kySBHwTivQ6bvAhQA3n16lVcu3YNb7zxxq5AnwBC0QagBqg8rlyUP+lFir9ZliU0lX3Pg8I1kDkdihnSnG+j0IFkMzMzgvffZc1Z65ub2NzeRr2/6YrdV+4Qyhz/cQ20uNUAjh07hnq9jsuXL+Odd96BbduwbZtOe2RTKrnMZsAyS7wcq6oqNEJQYxl+XrHhlYul27fhdTo4feYM6iPmDEhISDyeWF9fx+1bt+B3OtAIweTkJI7Nz0PTdYAFtnxy634TSDwwJKBiD3zLPM/pwMY47kn8cKoi54j301MA7GTFh9F1wOimLMnC/SFHGEUIfR9gc1rcSgWmYdBtiwIfffghVtfX8ZPf+AYazabYlve9ZWxeCg/Wy4uAnvMo/d91HCq6kKbodruo12rivPh+CSCqxwDErII4TdFpt6lCXJZhmSWTGs0mKqUBmPy+it6xUiV42IDHUXj++edx+coVXLt+HS+/9BIdOmnbSNNU9K7xKnLQV0Xm1fCKosD3PMRJAiiKqHTcun4dXqeDU2fOSLWehwQZ7D+CyLIMS0tL2FhbQ9DpQFcUzMzNYWZqShhkniUuZ/XHATemfKogAdXxjYeUU8tf6H4jOggKAM0waMDPj1ky0qTvJ/97EAQ008O4+ZVKpWcuwJ07d/D555/jxXPncPr06d5rYsfl2RfRLzDk/EifEXRdF4QQweHn2a1+p1ReNAC06jDRbKJeq6HjefC6XWRFga2tLWxtb6NRq6FRr0NhFQ9+/PK5KAcI+hVFwYvnzuH9Dz5Au9NBkzkogzVEO6yvIoljZMzJJklCm4ANQzS2VatV+IwzqigKKq6LMIrQabXw408/xemzZzHPeKsSEhKPN5IkwZ07d7C1uYmo04FtGJidmcHU5CQdUMgy1uWprOPaJW6D4yQRlQBd1xExAYeyeANAkyxlumG5OjsIPODn/VsgVHKT+8Gy/KYI1vMcPpulAlWFYRio9MldfnHhAm7dvo23vvpVzMzMDDwu92W6pu054Ku8XbVSQbfbpepvnid4+KTkC/gCp3zepmFgenoaKVON81jf2uraGjRVRbPRQL1aRVHaZldzcqlvbFxYpokzzz+PG9ev49wLL8BgCyKTZfILpucfx/FOUjCOobNKv6qqsAwDxHWpAlwUQWUBvx8EWF9bQ7fbxbkXX0RzcnLs85I4Gshg/xFDp9PB3bt3qYat56HiOJiZmhJBI8CaY0rbjG57peDGmGenoygSg57anU7Pe4eVU1Hanp3Irv0DgMKMvcgQqaqYGtuPLE3FMC8oCmzbhlPuHwCwtr6OH334IZ577jm8zGTQes6J74sb5T1KhYPcicum56ZZRtWJeGa/79oHOUBN0zDRaKBZr8PzPHQ6HcRpinang612Gw02xVZIjdKd9VzjftuXnnnmGXxx8SKuXL6Mt956a4eLCYjGKduyekrmRZ4j5OVoVYVj26iwDH/COKncGUZRhCsXLiD0fTx38iRUWX6VkHhssbm5iaWlJSRBgNTz0Gw0MDM1hWql0kMr1Eo2aZxAX/gV9v+YTZTVVBWtdrvnvQZTezPKU12Bnd6mMsrUGPESbTDNs4z2DvDAfwDiOEYQBOL/FdfdRU28fuMGLl++jFdffXVX71cZIomk6yOD/X6ZSoX1hnndLvKiQBgEghbVj0GJNEPXMTk5iUajgY7niYXD+uYmNra3MVGvo1qexsv5/OXPkP9/zKD/zJkzuHbtGhZv3MAL587t+Hvm0x3mn3m2P0lTZHmOLAxFwsm2bcB1EQYB7Y9gC58gCBCHIT7/9FOcOXsWCyPuucTRQ3rwRwRFUWBpaQmbGxsgSYIsDDE1MYFqpSICfT6Ztd+8DWpS6keZ953EMVqloVHATjnVsqzerPggQzHIWJX/DGpgDCa3OVAtgVDpsyiKKN9f0+C6LpUrK6HdbuOH776LuZkZfPnLXx5JDyob5T1R5j+y7SslaosfBKi47q4ydjkbP8gZ1Wo1VKpVdLtdbLfbKOIY2+02ur6PqclJOLYtth04HbLEpywADGPKqqqKc2fP4qOPP6baztXqbinQohAyda7j9Kgopawsa1kWXNel04jjmC4UbBuEZXHusiark6dPo1Kv731fJSQkHhlkWYY7d+6g02ohjyIUaYqZmRlUXBdVNlRPAaN99G1bjBHslwNL3/fRYZXCGrNHuq6L6nAPrZJuTG3ooEB0kKADWDacSUkO8nqE9XylvErMmkf7K7337t3Dpx9/jBdeeAFnz54dcPgdOlFWyuzHu95ZuhfYHfBrTP2t63lIWeKlX45yl6JR37XzZFK9VkO73Uar1UKS51jf2qJ+ZWKCVg1KSj3DroX/fxg1y7FtnDp5EteuXcPzZ87Q6npf9YCALtwMw0BRFL09Y2wBYLP5NXEcC9ls13VRsDk3169ehdft4sTJk7AlreeBQLZHPwJIkgRXrlzB5uoqEMfQAUxPT8N1HNSqVSprOSTAJEOCxp7mIfavyHP4vo/V9XUkaQrDMGCaJmrVKpps8h2nqwijsY8yILBDkeFBscYz2KX9ZFmGTqcjAn3LslDjusQlBEGA//f976NWreKrX/vacGoOO2a53LonBhg7lRlmXdPocBA2/XHwhQ4fZgVCYFoW5ufmMDkxAZM1da2srWFtY2N0doh9ngWnDLHfeb9B+bN+9uRJOLaNq1evDj6/0kh43nNRr9VQL0m7xXGMKIrE9OIwjpHmORwmcUoIwfb2Nq5dvozlO3eGytxJSEg8WvA8D5cvX0Z7cxMkjmExeohj27TS2B98lzBsOrdAqcKbZxm63S7WmF/htI9GvY56rQabiT+InqkhQe0wEPT6FRUQ/PnyOaVJgnanQ5VzFIVeJ/OfZWxubOCDDz7As889h1deeWXwQfm15bmwedoYfmVQCK1pmlhwZFnWU3EYuO0A38Sv0nFdzC8soFGvw1BVpGmKeysr2NzeHmmbuV8p+5eyXynjzNmzSNIUN2/eHHyepc9PVVXYtk2VhapV4TNCJl7Be/R4Lx6vHBdFgfW1NVy9eBEba2tDz1vi6CCD/YeMJElw/do1xN0utKJAvVZDrVaDpqqos2EmosQ3yDiW6CBlw1em25CiQOD7aLXblBufplAVBdOTk/QYbDBJ2Rj3lwP3At924CRZQvWWVQBRGKLb6dDGJBZcV1x3V6YhSRJ8//vfh65peOfrX9+TmpPnuSiPjmOU6Wntvp88E6PpOoo8h+d5wzPwfVScgjW3lZuuarUaFubnUatUYKgqojDEveVltDudsQJn0ePAjHTOjTTj1p45exa3bt1CyJqt+y5QLErKd1fXNNRYCZgb55w1k+VZRsvNgDDeXCFpfXUV1y9d2iVpKiEh8WjB8zwsXr+OLAhgqSoa9TqqrA+qzvzLqKCbDPhd+JRSkO95HlrtNp1Xwmgcs1NTNMhmtoX7FgC7bNFeENsN8CuKqkJngXzgecJW82vkamtldDod/ODddzE1NTWwUkxvx46vzcfoA+s/30H+gvdIKaDy0MEge42d+1Nuts2ZX+GCHKqqYqLZxMLCAhzLgqGq8DwP95aX4Q9ZSPQcoy/LXzD7z/1KpVLBiRMncOXKlcE9etyn8J5B9h6uSFcO6AkhiOIYOUueqaqKKlMryhhldvnOHdy8erWnz0/i6CGD/YeIKIpw7coVpL4PXVEwPzsLlQWQtVptp6EHgw0I2OvDjDFvfN1utRBGkfhiu46DiWYTFqOUkNI2BzHG/bzNXWCZ/SCK6LAVhSrE1BsNoYpQRp7n+MG77yKJY3zjG98YOJSFXfxOqXWACs9eGPY+jTUIA7ThLGSzCIadgwjymWqDuGa+P13H1NQUZmdnKU1KUbDdamFlbU3MORgXqrKj6FAUBZ47eRIKIbh9+zY9nVHXi1JfBSgntF6rwWXG2TAMxEmCruehyzSiK64LhWWkojhGFIa4fukSAjZ1WUJC4tFCp9PBjWvXUCQJbMPAzNSU8CvlKa1iAOMQ9DR/Dgjy252OsOcElBc/OTEBzTB6Kss8KDxQkD9kuzKlJPB9JHlOe75Y9XJQcigMQ3z/Bz+A67p4++23hyeFSkmcvYZpDTyvIX7FsizYTKEoDIKRSROCnWnwBZdB7YNhGJibm8PU5CRMlrBb29jAytoakn0EzoKaWvIrp59/HmEQYHWMrDvP3vNFgGmadLHFeu8Mw0AYBOh0uwijiFY6XBdQFCEe0e10cOPKFZlIuo+Qwf5DQhRFuHHtGvIwhK6qOM4GJKmMbmGXmolISbaxjJ5m0b4gPwwCbLVaCKKIKixoGmq1mlBAMEyztxKA/TeJlkurI99HCLq+j5iNJq+yhlWeXerX4P/ggw/QabXw9a9/vbcBacjxgX1SePj2GL6IMnUdjuOAAIiZ7nH/NRVFQRWNGN91r4Zb27YxNzuLiWYTpq4jS1Msr65ifXMT2T7oMcK4KgrNpC0s4N7SEs2kjDm4q3yuFjPOLpM6LYoCrVZLNG67bLEVxzHyPEeeZbhx6RK2NzfHPmcJCYn7j06ng1s3bgBJAscwMD87i5CporhsgBSwUykcZKeIQtVtFJ79Z7aCVzrbrN+LECICO9M0oamqSFABB/QpZPfU8UHgQWm320WaplAB1Gs1VAbw8wGaTf/+978PBcA3vvENcR8GHb/sa/MxRR/KGHXNnMsOQkSVvf+68jxHlmU7FNI9/EqlWsXCwgKt0qsqkjjG0vIy7Rnbr19h967ZbKJSqWDp7l0h5DFISU+AJ97Ywk9hvV/cr5hMLGJjcxN+ENDJypYFAgg51igMcePyZfjd7tjnLDE+ZLD/EBAEAQ30gwC6pmFhbg5QdiS+3FLDyiD6DiF02JP4cvZn8ttt+Kw7XmclzWazKRRyAIipfgcyyKAOYSBlpw9ZntPmpCQRgT7ncPLBWlzTWQHw6WefYXl5GV/92tcwMUKeq78Rar8ZGPDth2RheEbCsSzKZQ8COhWyKJBlmeByKn3720ueVFVV1Ot1LMzPo1KpwNA0BEGAe/fuobNPI8ePd2x+HttbW6JKwBcie03sLWfHuHGempgQz1/X89DudoWqEpcn5dvcuXkTK0tL+zpnCQmJ+4N2u43bPNC3LMzPz1MpZda/45QqpAP7v9hPhfSpveU5fM+jog5xLOg6ddY0yukfiqLsmrC6H/AK8zg+KcsydLhtYoksrh7HqS68Z4kQgnd/+EOEYYhvfP3rwyvF/PpLPqFcMT4K8IFeBlsUeZ6HJMsojZJl8cuLMN6jsKuJtw+qqmJyYgJzc3NwbBu6oqDdbmNpZWUoZWggyM7Ay2PHjmFpeVk8J4T5lIJJdvPz67k+7PhVPpvAdRxMT07CYgnGTqeDTrcrGoXzPBeLnixNsXjlCra3tsY/Z4mxIIP9B4wgCHDz+nUa6Os6js3PwzRNwZO2bFsYlkHNtwToHVnO3hOGIbbZII6iKCgvu1ZDs9EQ2ZbyyG9V3XvseT/KzTy7pNIGIMtzIRemqmoPNakMbqDvLS1h8fp1vP7665ifnx/YPCS2KZ8Xy4YA+wv2+/fTd1KC/2mYJvKiQKfT2TWHYND+xuF2arqOmelpzMzOiknEm60WllZWREA9LhaOH4eqKFhZXt71t/7Av/9+DjLOU5OToqEsZbrKaZpS1QWW3efbri0t4daNG7JxV0LiIaLVauHujRsgSQLbtjE/NwdVUURFkk+LBSCGLpXBk0c8k0/Aps56HqWBskSHYRhoNBqo1+tCUCFNEqrQYlkHTh4BQ/q9BiBhQ6eKPKe9bdXqQLvPkyGXLl7ExsYG3nnnHdRqNeEz9wKnZZYXMfu9pt0npaAoCjrZXNNQ5Dk6nQ4djrVHYmYceqplWZibm8Pk5CQsppazur6O1fX1sWcEcBw7fhxxkmBre7vvEhQR+Od9CSW+UFHIzjRjgPrl6akpVFwXeZ5T6U42ADLNMioFToh49u4uLmLl7t19na/EaMhg/wEiCALcvHKFUnc0Dcfn56HrOlImhwhFEZQJAb6qBnY1hIIH+a0W/CDYCfKrVTSbTVilwJoQIlbPgwLucTGuMU+Z4g7XXB7Go+QIfB8fffghTjz7LE6fOtVzrHL5kFNvyopBPJDdr1Hm+81LhivjJVTWtJQXBWzLEo3Svu/vWWYWAf8YAbDDHHOzVoOhacjSFEsrK9jc2hqb2mOZJmZmZ2kWZtT1EjI0O6Ow7B/YuVcrFbiOA5X1QGiahizP4fk+up5XulgF7e1tLF65IgN+CYmHgO3tbdxbXESepjSjPzsLTdNopa8o6DC9si8oVSTLggwcBSHwgwCtdptSLED54Y16vSfIB6iscpKmACE9xxgH41J2yojiGF63i4IQ6IZBVYVG2Pz19XVcunwZX3r5ZUxPT4vFTL98MufI898JISI43k8fWPma8qJAzv1InotJvAUTWqi4Lm1iZhX5vcD9yjgLlWq1ivm5OdSqVRiqijiKcHef1J6pqSk4loXl5eWRn1M5oVSQ3mZsQe8hREhAV5lCkqLQAZpxHKPrefQe8M+AEKyvrODurVtjnavE3pDB/gOC53m4cfUq8iSBoes4fuwYdBZAhqwpxbEsYbjKQSynWZSRZhm2O53eTD4P8st8f7Z9QQjSNKXZmX0Y5Z5s/pjbRHGMbqdDewV0fU+DXBQF3nv/fRimiddff31XqbJc0uz5CzMMSZqKrDTnrHNpsbxkhIpSUJ8zfjs3fLwUTQ+k9GTBeKOqqmnI83yw8k0fFIAa8j3fSQ14o9nEwtwcKq5L1RV8H0tLS2OpKwDAwsICNjY2aNadGde9UL4XwE5mTVEUmLy3g+n0V1yXzgggBJ1uF92SSpECqrF9Z4hUm4SExP3B1tYW7t28iTxN4ToO5ufmRMKD+xW3pErTMwW8L8gHgDhN0Wq1EDFBBx7kN+r1Hp4730+WZUIlZj9V1R7VtzG3CcJQqP5YljVQVrOMJI7x/vvvY3Z2FudeeGHX38s0zp7MObNrKUv6CDlq9k/4lAF+hSdUeJ8dKXorqj1+RVVRYbMOEjakai/0UHr2gKbrmJqcxNzcHGzL6qH2jCMMoSgKFhYWsLKy0jtfZgR43JKXfCtYxl4B7VtTmbKRaZpwHQeWZaEoih4hEV5l2t7YwNoeSSyJ8SCD/QcAz/Nw49o1kDiGYRg4trDQo4jAMwhWmVPJAymulV4y1n4Yos1Kf1wqstFo7JoQiFIwlnEKj67TxtgxsN8gHygZZNCM814GGQAuXriA7VYLb7311tDGqVEoyrzKvqbhMt0Jpdd2XVNfcCwyX+x1VdNQYU4ziqKx1A4493FcGIaBmZkZTE9Pi+rL2sbGnhrKAA32i6LA6uoqvb7StOVByPv2l5ecFVdV4Nx9Tv+aaDYF3zWKInQ9T9x7BUB7awurksMvIfFAsLGxgXu3bqFIElQrFczPzIikSp7ntLLIFu5AqSpaouvQP9DESJdNaS1YFrZeq+0K8vl++PbcNhiGMZafGEu9bcA2nu+LJIvrOCJIHr4RwY8+/BCkKPCVr3xlKNe9d5NeWymoof2Jqr7quni5f4cDjileYfZX13Wq0MOqxrxHYBS4stK4VRGL9W9M8JkveY7ltbWxesQWjh1Dt9ulU+WBnlhkEMrTgQnQk0wC2OR25ldiFg9NTUzAMAwQ1rTs+35Pv9nK0hJaksN/aMhg/z6Dy6AhTWFaFp45dqwnA5JxWS1VFRmZnAfpfUYlzTK0Oh1h9CzTRHNiQjS87ry1lLlhrycsazAOhedIDLJtiwmNo7C2toZLly/jpfPnMTmiIbfn3MY1ymNiEB+yP8sDAEZpwnDg++JzGmv/+zgf13WxUCrBdrtdrKytjeRcVioVNJtNLJWC7aGLDTJccq+suayxpj6lxP2tui4cxxGqEV3PExkpRVGwurQkm6skJO4z1tfXce/OHeRJglqtRmWbS/YvLanI9M9h4bQ9nnGNswytVgtxkkBRFDiOg4lGY3CQj157lqQppfmM6Vf49uOiYJVELslYqVT2bLAFgGvXrmF5eRlf+cpXxnr/IGWi4pDNuQPtPk/ClF6yLQsG+5yCINg7iGef534SScDOzBfHdaGrKja3t7G2sTEykTQ7Owtd04Rf4dc0yK8PnQWEnSoyKQpYhgGLxSxl7X2uBJdmGZ1kX0ok3b11S8o9HxIy2L+PSJIEtxYXQdIUjmHg+Pz8riw3z7gbpUw/BjS99GTzFarDX6tWxSpfbMvQ38CapClIUeyaUtuPgxrkbrcrgr5KpQLHdffcLoljfPDBB0PLrMPQb2h45uCoFBPYQQDsXliIybLA+ManxBMdF7xRdmpyEjqT6dxLWeHYsWNYWVnpNd7lxjuGgpCxzqVgZXyVNZWFUQRN16Ez2TQ+jC0IAjEhEQDu3rwp5dMkJO4TOp0Olu7eBZIEzVoNczMzu96TlvwKp5ugzy70Z/M1TUOjVhMVTLUUmParnwEQs0UADJyXMgj78SsZF0Vg11Kr1XZXrwegtb2Nz378Y5w9cwZz8/P7OOIOeMIDOFq/0l8xBhhNtFIZmyaqDPl9HGi6jrmZGTTZBN4wDLG0siKSgbver2mYnZ/H8gAqjfAr7FqKMZJfPNvP+zuyLEOcJFQIQ9dhM4GSoijged7OfKCiwK3r16UO/yEgg/37hKIocOvmTZAkgaPrWFhYGKz/yzIwhq4Lfni5i31QNr/RbMIqGVeVGW5BYekL5DinXVHVkbzKgwT6eVGgw7SOQQhq1epYBhmE4Ec/+hFIUeDNMcusfLsyOF8SOJxRHpbZ7w/2uWHm1KhR3MdBAfVe0pz9qFSrmGOKPQCwuraG7XZ74HsXFhaQ5Tk2NjZ2H7d0/P1qL1slPWRVVUUPSDnLlrBhXAXjqt6+cQPxPgeGSUhIjEaWZbh7+zaQZahVKpgdEOjz9xHQzL5QXivZI87N5wkax3HQrNd3+4cSra8fPEA0dH2oz+ifnjsusixDt9NBxqiqjQGVhoHbpSnef/99NOt1vPylL411rEGNwuWs/n6SNMP2zzHMr6iqSgcYjkET7TkfZWdo2X7QaDYxMzu7Q+tZXYVXFl4o4fjCAra2tgYG2pwySvbpVzhnn4A+Rzz+ISyG4AyEKIqoKEZRIEtT3L5xQywwJfYHGezfJ6wuLyP1PKgAZmdmhvLWMxaI68xg8i8Mz+Z3ul3keQ61L5vPwbMumqYN/cKne6jwDCrPjoOMK+7kORSmH18u544Kaa9du4bllRV85c03e3oVRmFQkJwfoVEuo9xI1Q9N04SUXRBF+5Y0G1dRgcMyTczNzaHqujA0De12eyCtp9lsouI4A7MwAIRk2n6dA8/uA3TIjIKdXhPHtoW6QpnWk2UZFq9e3feEYAkJieG4c+sWSBTB1LShgX7BMu4KIFTEuNTmwGx+vS6y+Rwi8cR7xgZASG4OG1AFDGwC3gtxmlK/xyrR9Xp97ETOJ59+iiAM8eZbb40lgYwh5yj8yrj7GLrr3oruoMw+h2EYgpI7iiY68FV2DfvxK1wJzmFNs+tbW9jY3NwVtM+zROXyqH6sotg3rcgyTdrkzYRDAAjFoorrCh/LaT1pliEKAixeubJvnyshg/37gnarhfbaGvIsw/TkJMwBmW6eHeUGVS0Nxypn8wmhkmbNvmw+3weA3YM3+pCyBcUgXuV+pc84sjxHx/OQMyWgxrCs0ACIMuvZs5ibmzvgGVAICs8hjTKAsY0yQJueTMuCCsALgrFKmGWoYyrmiPerKqanpzExMQGdTUlcXl3dFUzPzc8PzOwDEEoSAPZFK+KDYADsKEaU1Cm4ElQ/rSeJY1y/eBHRfoa6SEhIDMT66ipiJp04NyCBtCuDzL7jvOobpynaA7L5/dTOnuTPEBtBWA8ZYdr7u/5e2sd+kKQpfLYQMbm05pi2/c7t27h16xbeeOONkZPXxwEP9kepyI2LHr/Cr2WI7bcdBzrLcg+jiQ69p4x6tZ+AX9N1zMzMoM76wzzfx8raWk9lwWTxx8aQielckQhgzcNjHltVVfrsqKqQby0rGJmGgVq1uovWE/g+rl+8KAP+fUIG+0eMJEmwfvcusjxHxXVRr9d7/s5LVQrYF4N9+QtC6KTCMbL5fD9AH39vgGEumMYvD8oGYb8GOSvomPKCZ17GUNwR27Iya6PRwMsvv7zPI+/GkRrl8u+lBt1hxpPr0I+rk9x7sP0pKnDUajXMzc3BME0UhGB5bQ3tTkf8vdlsUtnTASXV8ms9jVZjOAfTNKGAZvZF45SioGD7VYCBtJ44jnH1wgVE+70/EhISAr7nYXtlBVmWYXJysqfptNx4C5QCSuzYf57Nz0dl8xmdpVzhVcBmhvTZCB5oqarak2gR092xf7+SZhnV0GfUwWq1OrgRdMC2nufho48/xnPPPotnn3127GNyqcx+HPXkXPEZDaHxcOyHJjoM+w34VVXFxMQEVYHTdWRZhuXl5R6fNjExgfYA+ihhcUv/Nahj0lU55Tdm3Hx2QoKnr2kaqpXKLlqPH4a4euGCDPj3ARnsHyGKosDKrVvI4xiqovSUWQdlS8olviRNsd1uj5XNH6aUw/lzZYhgWFXFgoHvg2+zH+RFgW6nQzP6uo5atbrrmP3XXAYvs351P2XWUedTGnxyFBg4lnyYYe7TSY76mpyUEdvyY4xrFMuwLAvzMzOoOg4MVcVWq4W19XUURYFmowGiKOj0GeZiyKJFOPM9svw8C6OoquDqKooihnHxoN+2LNpsxmg9fhAgCkNcuXhx/wsiCQkJZFmG9Vu3kKcpbNvGRKMBoDfIJyx7Lxpr2fc5iuPxs/lDsrIKAKXPvg6aWC72sU97xq+x2+2iAG32rZQm/vaj344VRYH333sPlm3jtdde2/ex+4/DA03g4ApvPftHaar6CHooh6Zp4voH0UTH8dn7DfgBqgI3NzcHyzSpslpJ9rnZbNLFYl9gP6qirfFekREwmBQ4UaiMaw/FVFF6aD0OW5ymWYbA9+F5Hq5cuCBoyhKjIYP9I0JRFNi6dw+x7yMtCiqFVirZlfl0/Ty+KAzRarcPlM3vRz+dJ+szygcN8oEd1Z2crbhHBfqDjnH71i3cunULX37jDVQqlX0du99wcQoJLyUroA4oyzJkWYY0TUWTGp9emOe50P3lQ7d2NeDynyUFm1FGU9d1OI4DlfEsd+kkj0GVOUjAz8uvjUaDqipEEZZWVmCzc2m1WuK9PLs3CqNK9hyWaaJgjVJ8kA6AneebHUtjUmo6p/XEMbrdLq5euIBgSBOYhITEbhR5jrVbtxAzfvzc7Oyu95SFHXZeJAjCEJ1OZ2Q2n28PjOFXSv/vz3wfxq9krPJQEAJT10dLNg+w2V/8+Mdotdv46ptvQj/AnJbe3e8MCuPH4X4lZb6FAMLPDPIrZEhiBdgJuPaifZojaKLjeoqDJNMMw8Dc7CxqlYqQfV5dX0e1WgUBVYLiKPjwsFEYgy5q8UZdFuyLTQFR/c7zHIauo1qi9QRBgHarhasXLgxVE5LYwfgj7ySGoigKBJubaG1uIskyTNTrojzFp8ENMshFUdDMZ5LANE1YrkuzogMyDftpdFIZvYIQ0tPAehSBPldHqI/BpSwbvDAM8fEnn+C5557DiWefFQaRq+nwQJHz9XI+gZAfn10HKe23KAp4nNdYosXwjLrHNIu9IBAqMhw8OC1nEXhWoWDBK+dMaqpKpx2z6ginX/Gftm0jTVOkaYogDFEv8UX5cUaC7bMngB4TfJja5uYm0izD6sYGbNdFi2X2uW7+XnsVf2dTiAeBK3tAVZFm2a5zVZXeEfSu4yBJEkRxjDRN0W63ceXiRbxw/jzcQ3JqJSSedBR5js7KCvxuF0mW9QzNEn6F932Vvot5lsHzfWRZRrPEjgOXzcsoY99+RVVFMJuz6bKH9SucEsqbcau12p42sPz3jfV1XL16Fa+88gqaExO7/QrZmUQvuOXMr5TFMMo/0zSlMsMDmpP9IACYeIZaEsUYeg/4Z0MI9clsHwpoBUNVFID7FXY87ldcx0GWZUKOs8LkrEXFeAxfMZb/6YOqqpiamoJlWdhqtZAmCRJ2b9qtFiYmJnpU8PY6Pr8PwxZApmkCnicWUf3blxXsFADVSgVBGNJqehiiyHNcvXgRZ8+fH2uO0NMKGewfEkVRIOt0sLG2hizPKf2mNBxKUHaAXQa543niITbZtNl+HFTRgAf8Oct8j1Lr2QsEoEMusgyqqu7ZNFUUBXKWCSkYJ/Kjjz+Goqo4eeoUWq2WyFSIgLvEHScAlFKgP8xI8IFk3CjzYJ3fZ43tk++f77NMYyrzVIVeMAuOizxHDqoOkY0KmNnxuAZ+nuc9g84UzmsdgypzkIDfZqoKG5ubiOIYpm1jfXMTeZ6Lhcu4ULgTIbvl6AD0TOgUY83L2wMgqio0vU3ThKZp8IMAeZ6j3engysWLOHP+/KGb6CQknlQUeY5oexsbGxtIswyNapVWQ0t0HWB3AilJU3S7XRE42o6DCptYWsah/Aohgl6hjZDd3AsDKaEjqDtFUaDIc+pXWCb9Rx9+iFqjgZnZWWy3Wju+YkAw3LNAwoDsOtsmZ36F+zhBLeEUKUKgYndyo+xXULKj4u/MF2YsURIxuu8wKKoq+vj8IBALIoWfg6bR7Uf5i5Lf2y+q1SoMw8Dm1haSNIVp21hZW8Ozzz23L5lNYCf+GVTRUBSF+mrsnuxeehP9yRZzjm3D0HUqBJGmaG1t4cqFC3jhpZdkwD8EMtg/BIqiQNbtYnNjAwkrs85OT9MAsz8IKv0/ZdJihBDYpgmdGeacUSA4DpMx4ccs8lzoLR8EBLT5iQ//4t3xvGrAA3texuSGkoAZU0KwtbmJ5aUlvMQacvkXmnMZRUaDZ8tLWQ52IeKell+LogiGrsOyLJH1KINXNarVKhqM59pzbez8uMEuZ3j4IJo8y2BbFrRSVqs8pKY8oErTdURRhE63i4LJkRYlY6+qKlRNg8amJfPmtjIV6iBcS37smZkZtDsdNKpVLN66haXVVcxNT4+kWg2CWByBflb99AAFgM6y+4OG6SiEiCYrsOyfW6nQxuE8R6fTwbULF3DmxRdR7Wtgl5B42lFkGdJuFxvr68iyDLquY4InkIZk8wHa5Nhl1UjHtmEaBsiABsbD+hVu0xRFgX7AvqthlFBS8iNFniNjAT635TxzT0Bpod1uF2++9RZNPpSuS2V2tcevcF/Tdy79fsX3faRpCtdxdk3f5VXPSrWK+jCfQn/p8Su8Il0WzHBY9b/fr/DqNre1mkKnHLfbbSFHySsUfAGiMb+iDvIrpUB5v7AsC3MzM9hqtdCo1bC5vY31zU1MTUzse1/0VHZTY3mFiV9vnue7evBEBaW0WNPZEK4gCJBkGdrb27jyxRc4c/78WFOTnzbIYP+A4IF+0O3C8zwkeY752VnBGRzHIOu6jlqlgla3iyzLkCQJHNved3l1GLIsAxSFGgJN2/eXnQDodLu0abgo4LguwjAUQf7Abdh1q6oKFdQ4Xr5yBVPT0zh96pQI7nuC+VHnUM6890EM0zqgwxHydEP2beg6VIXKTg7TkhYczaKAWxToMhmxgk0J5AshQghyZtCzctYHO5l/bqi5c1L3OTtAVVU0Gw3MzsxgcXERXqcDBXQBetBmaL7I4fckZ1J7umEgiePhkzN59gwQiwPHcRBGEZVt7XZx9eJFPP/iiwOdpoTE04giy5B5Hlrb24jjGDkhVGazFCQN8it+EPQMXnRdF1vb28gJQZqmMAzjSP1KvwrPfpAXBdqdDpI4BhQFpq7DYzLOgyiE5SCe04aSOMaNxUWcOnUK8/PzuxJHe2JEtvswQxrLi4ZhfoUn3kzbFhntXe/j9KOigOM4dJIwS6TphrGjisboNEWeI+1PyvAFAPct3C+Pe48YNF3H9NQUmo0G1tfW4Ps+iqLA1MTEvv0KP6rCqtgAfZ4UJgCh6TriJIE7oBolti8F/KZpIstzxHGMJEkEh//s+fOwh+zjaYUM9g8AHuiTLMP29jYts9ZqqLgufYA5paTvCxUEgaB6WKaJarWKglDlHT422rbtIzHIBEypRlGgl4LGUVnjnJUYeeOR53liCmqlUqFfytI+FLbvnmw1+53v7+LFi4iCAN/4+tfHm6w7AMPuhdD2PcJx5uKYpc9u1BJJlFFVFToArdFAh02StS0LquuC8CoBr4QUBQjLWpE8p/+KAuBNtCVHpKgqdE2j/3R95AKA9zrMzs5CIQRRFMF2HKysrWF2evrA1Z2yYhRAs4a8HD0oC9N/f3iGy2CNWEEQUPUNz8O1S5fw/LlzaDSbBzo3CYknBTzQT+MY3U4HcZZhZmoKtmUNFXcghMDzfTHd1LFtuMwPGaaJOI4RJwn97h+RX8myDIQF6UqpgjcMWVk4gclrpmkKhanO8Cny/Bp5ppovKDSm2KKW/Mp7X3wB0zDwyiuvjDVZdxdKyZae6yOkZ3ruUaO/SjqMgsOTPdA0GABQryNgSn08EOb2ngf7efknIVDY51SmZYpkHPMpGvMro66VV/Hn5uZw+fJlpEkCKAo2trYwPTl5sEQS2ell5H6l4rrI8xxJmsIZ0GMi7iF2ePwKIGbARFGEOEnQabcph//FF2EPqPg/rZDB/j7BA33kOW1YTVPa0MLKrGUuJUe/QbZtG1XOvyQEpmnCDwJkaYo8zw8t98VNWMYaX3VdF1ls8DIhIHj1gl/PsyqKgjAMEccx1U+vVuFYVk8wP87EWs/zcOniRZx94QXUarWDXcwQowyU5N/uh1HGwcrcuq7DYk42CALBS1cVBeqAYJsAuw116XelKJDkORL+XIFmWnRdF8aac/3552eaJhzXpVkgTUOW51jb2DhwwM8XeCkbfGLbNlL2zKSsCXDP7VUVKstqua6LIAio4/c8XL98WQb8Ek81iiyjfoUQtNlUcsey0KjXe+djlGxuURTosKowQBsXbdsW9t8qBfsuU+k6DPiiPWcZZe4DeOBF8hxEUXYSRuyfaIQFXeinaUpV5yoVmCyby4P5vewTAbCysoK7d+/irTffPFigj+FJLy4WISRM7wPKDafjwjJNJGwyeRiGwr5rvMLSd984HUhQovjvrLE6Z36fQ1UU4Vc05luAHeoRADQbDdFArDIa7frmJmampg50rxSweIqdh+s48JnyUJZle3+27HlWFaVHh58H/FwMQgb8FDLY3ydy3wcY567b7SIplbP4l6LfIHc9T2jBVkuDh/jXXVNVWIZBpwf6Pur1+qGaaUWjEVdMYI0+PGPPlWN4WbfMM9Q1jQZwTD6xVqvBPkBGngD49NNPYTsOXnzxxQNeDYYG+lxhob/x+cigKLTRtMQFHReO4yBNU+RFgSRNd2la9xwG2KFZ9Rm3ghAh95bnOXLe8MxkRQHGIWUVFp6h0TSN6iJ7Hs6/9BLW19eRFQVW19cxNzNzoIA/jmMUeb4z9RB0CE6WpsAYz4fCeyIIoQG/bcNnAb/veVi8ehUvvfaabK6SeOpQFAUy3wdYkBP4PjJCMMd5+oTsnp/CBB7yPIeiKKhVq+K7w6kwXMO8KAoEYUgTTAdEj18p9YHleY4sTalfyTJkSYKCNYXybLKiKNBUFXGawjQMuohpNA5kh/Isw6effILZmRkcf+aZA1/LIHEBoDSR/T4kkAD0VMb3E/ArigLXddHpdqlPYT56GFRFAQb4FQL6vKUssViWDi1YXABFoc+QqsLQNBH8G6aJCqPyLhw7hq3NTcRJIhJJBwn4oygScYeu6zB0nQpijBHsC0qQpgFZRp9/QhBGEZ150+ngxrVrOPfyy/ft83ycIIP9fSAPQ5A0BVEUdDsdKm2mqmJKrqAs8PePMMgAehRpKpUKUrbPKIrgHKDBpGyQuYFP4ljo0APoaYThXD6eJdZ1HXEcI2Oatq7rHijQB4ClpSUsr6zg7bffPjB9ZFRpuDw5974E+6CfZ77HeQzbznYcStsKAqpedIBzVBUFpmGIxQLPsmTMwabMyfKmJj44R1UUOK6L9Vu3oAKYnZnBxsYGkizD6vo6Zqam9hVU53mOiFWlXMeBzhq0FUCocozzGfBsWVEU0E0TVZWOZ0+yDJ1OB9cvX8a5l1++bxk1CYlHEXkQiKRCu91GXhRwLEv4gP5AP01TquRWFFCZDHLPcCu+sFYUVKtVdDodxHEMy7JGJh6GQVg/RUGSJAjDUASFYMkG0VCqKNBLWWKegAiCgNoqVUW173z3gytXrsD3fbz9zjuHsvvDtuUUnvtmg1ij8J769AOgaxosy0IcRaJqvN87oIAmF1XL6mkgzlnQn7IZNQWr3uRZBjDbr6oq3GoVm1tbOP/SS5iensbG5ibSNBV+ZT+fa5qmQh+fz3/QdB1KmiLNMozNuCc7KksmU8ELmKT59tYW7ty6hZOnT+/nNj2RkMH+mCjSlAb7oJmTLmvK5Vl9BbRTnAeGaZZRxZ0hBhnATuYD1KDzbGcQhrS8uY/VKAFEABhzzXffR8FoFwToMcA6y/qI6ysKxHEMnzUPu6574I72LM/xySef4Nj8PBbm5w+0DwAjKTyHbc4d6/Clxdh+YZsmkjhGSkiPRvK+zwHo4XVyCU+N6ftzdYeMZf4zVrLlGveb29uUNlat0sFtRYHVjQ3MTU+PHfBzriinKAGMGgYaWPDF4d4XQxfDPODXVBUV1xUZ/vW1NVTrdZx47rl93ycJiccReRyjYBzoPMvod6EoMMMobQp67U8cx+iywXS6pqFWq/X4Ca6CxuUiDV2HbVmI4hie56HZbO4rQCwIQZamSJiARJQkCKOIqoaxJJbOePXcr5SHSRaE0FkycQwQgkq1eqAFB7BDCz334osHp4Wy8xqG/EH4FZQSc/uEY9tIk4Q2pUbRgX00p6kSYKevj9GoHNsWwT/3K5xeWqlUcPfuXSrvyhKYrU4HWZruiypKCNnpX7SsnaZlw0Dg+6ICsZ9FFw/4DcOA7TiIoghRHOPurVuo1WqYmpnZ9316kiCD/TFQFAVSFgQriiK4+jyrL4wn+/LGcUwVd1h5qt8g8332q8zYtk1LWGkKLwjQ2MOg8eaWJI6RJgnKuQKurW8ZBmq1mvgyD0Ne0Il0BJSGchjpqksXLyKOY7z6jW8cKvuyVzMxcH+aczl4A9FBjDJAF0ytTgcJG5p2UCfHjXLOeJhl6hJXVzBKKlA5W7gR0GfRME0UrAzcarWQE4I79+5hYW4O7h6LkDiOhS50ecHClRAixiMd59pI6Sdv7DNKAX+SZbh57RqqtdqO1KCExBOKIsuQ+b7wAW02Rd2xLCqx2Pf+IAwRBAGAnbksgwZlCV14Bsd1hUJYEAR7Jh4KQpAmifBFPdrobGFvWhbq9Trldg+z8YqCJI4RsaCu0lfZ3i8+/ewzWLaNc+fOHXgfo9TdANzX5lwOpTSHZL9QFQWO48ALAoRRBMM0D7UwIYoCwvvDykklRgHinxbP/teqVaoSlecgTNXHtW202m0USYJ7y8s4Nj+/JwUnCEMRzJdZDHyAJe/32O/zwn02ZyRwDv+VCxfwxptvPtX8fVkvHwO570NhXwZS0Il/aZ6j2WjsWnmGYUgzL4TANAw0Go1dhmOQQeaoui6gKMjSFAFTwimjKAqq5e552NraQrfbRcwCfQV0ZVypVFCr12ljrW3DYNNfh6EoCngsW+Q4DuV2HqCJCAC63S6uXr2KF8+do0NgDgjOqxwGMRn4flI+Bigq7Qe6psFhZcWQVYX2C56pyxldR9njM+EKSXwRqjHFC9MwoGsafR5VFUWW4eadO1jb2BBymP3IsgwhewYd2971rOu6DhW7px4OPbcB50pY026FNZzFaYoLn38umtklJJ5EFEWBjNlcsKZW3/eRFgUm+rPvhMDzPBHo27Y9NNDnFM0yVEURtjiKIsSsf6yMPM8RRhHa3S62t7fR8X0kSYKCECE/XK1WUa/X4bouHMcRCj/DkGUZwiCAoqpC5GHU+0dhaWkJKysreO311w8ViA/zuxwiiXQf/YqKHb34g8AyTRiMvsoXUvsB961C6nRMCqau65Q6RAhstiDVdR2GYaDRbEJVFIRRhBu3bmG71ULEFgX9SJJkh77D5gaUwXtN0gHbjgOe4bdMk7IaCEEQRfjx558PPJ+nBTKzvweyIADh/ESwSbJMgaec1ScAPN8XwZFt2wMfZDHFb8jKno8394OAGkrQhz/hHO1SYEUInaJnGIbgdvPj8fPYc6ASIfCZVKSm63SxgZ0GH8H/HBMff/IJ3EoFZ194YexthmFUoH0/ZTfF8dm/g2b2AVatYUZv3LIrryaUM2riXqjjTdnldJskjmGwxiew8qzjOFhfX0fO1BTyPIdt21CZQTcNA1DocBlB3xnQu8Gz+XlRoMDBMgcKm//AA37+3H/+ySf48ptvSv6+xBOJPAholY59jzssq2/3DQgsCEHb86jcIXoFHsromRw7AKZhUL43o/OgUoGqqiLwKiv+EFaRNk2TJglKVbuUDY/cqweJFAU8RiM1TVNkb/m3ea9kThlZluGTTz/FsYUFzB+GForRlEyubQ/cX7/CJVAP7lVo1ThJUzrZdj+V1T6/wqFq2lh9BLZtgyh0+u+E48DQdRDHocMnTRPrGxuIGId/cmKCBu6sH9A0DBRFAZ8tWsv0nTIM1jt4mMCcf6/Kspyt7W1cvnABL73yyoH3+zhDBvsjUKQp8jje0ahnWf0kzzE9MdGTVfZ9XzQxViqVgQ225UbGQV84Dtu2xeCRrufBME3YvJxF6IhygxviIUaJB+l7BUtBGCJh+vk8o1+G0HUmBAW/hiH7unPnDtbX1/GNr3+9ZxjTUYOXFIH7n9kHRn9We0Flw6R8thAcVnYVzVIY7QR5k+tejlLVNJiWRdUOStA0DY6m4cQzz2BjcxOe79OJv6y3o0gSRFGEIAwFf3OYigfXwyaM1zlIWrT3IoecM3u9HPC3Wi1cvXwZ586fH71PCYnHDFkUgSSJ8AVZlsFjWf3Z0mRSAgjKKBg/2hpAaxATSDE6gKxUKsjzHJ7vo9vtwrasHvqfYRg0cTSCGsIDwpFJJEKlpvM8h6ppu+0HC3Z5nxsfSjgsgXHx4kUkSYJXX3vt0EHyqMRNuTn3sDKle+Gwe9dUFbZlIWS2ul6rDdxnuQm3PO190PmUew6HwbYsKICYv8O35Vl/x3GwtraGMI6x3W6jXq3CsiwU7LmLkwQGs/PDBmfpui56I4uioJOQx7gnvRfEtmAZfoAG/MtLS2g0mzh+4sR+9/jYQ6bNhoDLoZUfMp7V1zStZ+qnX9KkrzHqTD/KQfKoQC1lw4aiKBJBbcT4bRXXxcTEBC2l2vZIfXmRoRhhtLiyAghBtVodXR5l2roa+9lvNLIsw2effYYTzzyD2bk5ajgOiL2qCWWJ0/uZ+eXNsYdS+yF0mJRuGLvKrjyw5xmlYo/rFue1Rymaw7HtXcF+eR/TU1OoV6uimZdXioIoEtN+C+a4Y/b3fvBGXc7rH1USHrpoYqpQfH+ObQOE4O7t21hdWRnjSiUkHg8UWYYiDHu+Jzyr79r2zsAkMH+TZVAVBc16fXCgD+wMyxry/SIA4iSh9FMmuZjnOYIwpOo41Sommk3UajU4tj0ygZIzqtCwya8ArSonaSr84VD7yc5bVeiUd4WJD5Svotvt4tq1a3jxxRfhuu59C/SBks+839VEZicPSuPhsG2bJlsYtZeDYIf+KfwK9paoHmeBY5a48IOgaRpmZ2dpMM8awxVVRcEoPnweTJKmVImNS4CXoCgKZSkA4vkfhWJYRYJR0ACa4TdNE4QQXL18GX63u+e1PmmQmf0hyFmDLQfP6mdFgYmJCfEQRVEkArhqpSK+DGWIh7m02iyjKArELKNafnArjiM641VV7TXse2Avw5XnOXzGGbUdZ/zhJOwayk2ihBB88cUXyLIMr/AS2SEN2Ti8yvuuncs/r8NKvBV05HmWZYjTFDrT3j+MsR9Hvs1iFKJR5zY5OQml1YLv+2i3WjAtC47jCPoYn36ZZxlChQ4vMU1TLDR1XUfEmniB4Rkirq4w9F7ynhhW9ufzIC5/8QUazeahGsYlJB4FCD39EjhXPy8KzJaGyvm+L6g7Nd4I24fyVF32Qs/fuWRunCQ7GXlFQb1Woz06LKPOdfzHsXLl9w9CmiQImdDDngmkPpR9CgAUAD7++GNUKhWcPXNm7P0MP8DozLWoFt9nvyKu8DBJJLZgcGybVo3DEIZhQFWUkRn8vaAqCvIR1XtVVWHZtmAxDIKmaZidmcH65iZIFGFzcxOu46BSqYiZCznT+k9ZMG/yilLJr/C5QBboc1Fgd88ab7geiL4FlW1ZVLEuy/D5p5/iK1/72sFlwR9DyMz+AORBgKKviUlkWVQVDaarHyeJ4J/ZTMGm/0vCS6w9E3Wxo6TT9Txst1oIgkAEQxZTOmg0m5iYmBCKKb7vww+CsYLEgmVgBq6KeZmVlW7dQwZSYRhi8eZNvHj+PJ3sV772g2APQ/VAKDxlHCIoJ4SAsAqEyRZU4Zif4V5Q9qDzOHsYZYAF/BMTsC0LaZ7ToS1JgmajQRvyajXK11dV5IQgThJ43S463S7iOKYqT4CQZgN2y4WWDjb0PPhYd/688obgJE3x448/Hp69kZB4TJAHwS4Vlk6rhbwoYJey+gGrFAM0YDZZlrOMXYE+IDK4cRyj3e2i1W7TCjGjQti2jUa9jkajgcmJCZHp7LBK8jjgxxiURMqLAh4L9G3bPrjyDrMF62tr2NjcxGuvvUYz/zgchWcvm/vAMvsMe4ktjAKn5+i6LuiTXATiUJXokg0eBtu292wMVhQF05OT0FUVeZpiq9UCCEGzXke9VkO9pMyUFQWiOEan26WS5kkiFrflHsVBn8qed5D5Xr6Q5PGJ53m4cvHiXls/UXh6ljVjIk9TZFHUG5zzrH6ei6x+mmVCwcayLFQ4/4xlckU5si8Tz8uncRz3BDBcw5wPhSiDly+jKKJSiGmKarU6ksYzKgPj+T5dUasqVWk4JD/x0qVLMA0DZ55/XnyphEMgO1r1oyTPek/+ETPKY76v7EyEZCd/HsAy7UmCPM+FHOdhz2tUY5Vt21jf2Bh9zqBOwjBNVByHZgLjGFEci4Dbtm3Yto2UaW2naQrC1DvCMKQle1VFmmWCasADfn5PxgnWlb5ys+s48HwfrXYb165cwQuHmcQsIfEQkUcRihJPH2BZ/TBElueYZhrgURxTaiWo3R9K3UFvUJemKcIwRJymPfZANwzBzS+/X1F2FHqSNEXABmVVKpWhSRSeQAIGUD5KQg+6Yez4w0PgiwsXMDU1hbn5eWGDVXry1E6Uepz2CnDHed8DqxhzMPs4zrnTX3ay2OXeLseykKWpGJx22PMvV+wHgTd6jzxnQnX0HddFkmXQ8lwMAuMzhLjEt/ArWSYmxkNRECcJNE1Dluci1umXwx7Hr5RjD4310IVhiKW7d9GcnMSx48fHvDOPN2RmvwTB0+/78iVJIpp3GvU6MjYwCwANkkoNSD1BTqkclue5yOKHjIMPRYHNsvj1eh2WbQ/84hNCUHEc1KpVWmZjzbvhiC9cUcool8EXDCoon/KwAbPnebh58yZeOHeud4oj/4VlaZQS118pvdbzXnqxex7zQZVbh4EbWsG3J4Ry3Lnz4W/s+yxVVrVRFKpmcCTZfQzP5FgDGnTLyPMcHsukAMDM1BQm6nVoqor1jQ3xOgdvrKrXapRWo9AJw4TQwWGtdptO1iyfHzPOYxllzvln3xtN0wR95/biItZWV/fch4TEo4Y8TZEFwa7vacSquRZbaMdJIoYa2rbd0/vVYytLAWKapuh0OjSLz6elqypsx0Gz0UC9VoNpmgNtBJ/qzivHKZtknQyQ5gRKvVKMW18GH4ynKMpAoYf9Ynl5GdtbW3j5pZd6ky0lGmmPX0FJTIKh37ruFVQ/8Iox0HOfBNceEH6F93H101XKvoPLX6qq+kAkix3HGXmcNMtocpQlFOfn5lBjMdLG5mZPtl5hFJ5qpYIGryIzKlJeFAjCEO1Op3cbtt1ICk8fRMwBqkzFFecuX7gA7ynh78tgv4QiDHtLayzoCMMQeVHQDDsre/ISWm3EyGpFUXqC/DiOUbDtqpUKJppNuJXKSN4YXzQA9CGt1+tCZisIAnQ9b1fjo8jA9NF40izrGZx1FHy1i5cuwbIsnD51qv/iR26niLf1LgLKwXKPcSv9fj8z+/x+k77fgZ2GJ9If1GN00F2+F5Zl0QmyjJN+ZBhwbJv1ewzSwecSfHmeQ1NVIek3NTUF27KgqSo2trYGbquqKqWa1WqoVSqwLAuEEKRsGFyHNQKKUxtyfntdiwLaWMX1vK9cuDC2pr+ExKOCfECgrwC0EZ5NJU2ZIg/AKsVDhv9wO8MDcx6cE9DEE2+2dR1npHxkWTDCsSw02CK/IARdz4PPpmb3bMMGQfbb3TiOaVKBENSYpOdhceHCBUxPT2NmnKmnPEkg/tuXXAJ6qh09mfJShpj/fl/9Cr+n/PcBQf04Ca/+58lmiUJeOT4s+hdOPccakkQioM3ZPpNc1TQNtWoVtmVhemoKhq6jyHNsbG0NTP7wAVv1Wg1VNhuGgCZbu74Pz/d75sEcNFWmgN4vVVWR5zkuffHFAff0eEEG+wx5mtKx5SXw1WAQBMhYk2Wn0wFhk99qQ+SuVEVBURQ9QT5Ag/Umy+IPouv0Y1C5VlNV1Gs1we9M0hTtdrtnUMqgDAwfnEUIgWVZR9Lw2O12cfvWLbz44otHlmUvK82U7w7na/JufmCwFnI5q064AS8Z2h6D2vcaN8QieyZ2yl7ntJxDQGXVHEVRhOLSYVGWRy3DtiwohPRkYfKiEDKgBIBhGJQSxhZ+iqJganISuqaNNMwcfOFaqVSgM0oR5+52PY+qfxykYawU8DvMkUVxjGtXr+5vPxISDxF5HPfy9Nl3oSgKJIzKaVkWrRSzHqphwwgV7GTyO+02nYoLujiYaDRQG3NC7SD5ZF3T0KjXxTyNiA3YKi+u8wEUnizLEPg+TSC5LvRxhR5G4N69e9hut/HSSy8del8AaEa3FMCXG2R5gqk8TKuH+tpXfRZJnoP6FfT6qEPx60vQNQ2GaUJlfuUoMEzm2WYqb+VXM0Zr5r7GsixUS8wBTdMwNTlJh2UlCba2t0ce1zAM1KpVVFyXPm9FIZQKedA/SgZ8wE53aLXsvvMYqtVqYenevXH39NhCBvsMRd8XhGcjEz7cgRAUeS50X+v1+sBGljzP0WU843KQ36jXUavVRvLsyxg2DZHDsW00ajXRfe95njDORX8GhgwenHVYXLx4EY7r4rnnntv1t4M2H43UmMcO73KYFnI5QOeNOf1ZeAx5bSQOY5j7rsm0LKiahoIpEhwFFOxu2LUdB0Rh03sJQRhF8LpdWm4HfYYGDX7TNA3T09PUMKcpNkcYZoDpUrMG5FqlAkvXgaIQDoCXdMe9e+J8Shk6bpiX79xBu90ec08SEg8PhBDk/X6FPdtckIGrWYlK8ZAEEg90eCa/HORX95FN32uGR9V1Ua1UaNN9nqPNmiazPN+lsT9scNahQAguXriAudlZTE9PH35/bJ+jsuU8868oVAK0573s93ICqlyBPgq/ciBPOeB6eBIpYfKqR4X+pBqfA5RlGU0eBcHOXAVFEXOG+p9j0zQxyQJ+TvsceVzmVyzTRK1ahcGSSWmWod1uw2ffobFjjb7qj6Zp4pm9fvXqLtrqkwYZ7INl9YcEXUEYIs/zHunARq22i9fHg/xtFuQroA+3CPJZ5nScx5L0GZhh0HUdjUZDPLBZlqHd7aLjeSDsi8evYdTgrIOg0+ng9t27R5rVHwcPujkXGFxhOQxURYFdysIcRXYf2MnEcPABKF3PE+o5IpvP+ZFDYOg6zcQodDbAdqs1+ril7JnjOJQrbBjI2MCtwPOonOA+aTi8YVfXdSqdVhRYvHbtaClQEhL3Af1Z/TKdLQxDZJwSOKJSnHG6TrtNgxFmO3iQz23vOIP/xvUrlmmi0WjsTOFOU7Q7HVoZLgrqV8geg7MOiDt376LV6eDlo8rqYzyfmz8Ev8JxVAO8+NRjVVWPLLsP7KZhWqxi3G61aPKIzVSwLAu1Wm3kNF/HttFoNKCpKjrdrqCuDQIX+ODDQSuui3q1KuhmKZsdEUSR6KkceR0DqHSmacIwDMRRhMXr159o1TcZ7APIw3DnQeCUA26UgwBBFNEHWKEaxeXgNmfZja0SXcfQddRZc1Q/L37cwG7crz/PejZLxjmNYyGnFjHFFBBClRaOKDC/cPEiKq6L5559duDfDxK+jnNvhFE+IgO5Hxw42B+wnWVZUI44u08PpYgKSM7KlhHL7GvMKVdcd6wmNNu20Ww2oSkKup6HLlOfGgSVUcbKA89Mxus3TRMENHCJfB++74/k3g96Drgz0TUNmxsbWF1dPbJFkoTEUSPP811ZfQ4+BMnzfZiGMbBSzEUgWu020izbyeQ3m6gOSDbtSQkdM9Dn4H08jVKPWBTH6Ha7iJOEJpDGGZy1H7Cs/sLCAiZKk4QfBB5GEmkcbv5+YbEET5KmR9rfxJ9N0XvAsvPl5JEzRGCkH7VqVag+bW1vD12YqKoq9lem7jqWhVqlQmfVgFLbfN9HEAQjKxq77jbzlVx1bmVpCVtbW3ue/+OKpz7Yz5MEKD0gPXJmTEc/SRLYjoMqe8CAnWaUVquFkEl1GrpONWSZgRzY5DKGUT6I2SwbZ61knFfX1hDFMQw2DOkosN1q4d69e3jp/PmjNY7jZKcetDxaz8HHm3A7DhTG3edZmKPaLyFEzG+IwpAaaUVBxXVRK3Hzx0W1UkGtVoOmKFRJaoRhBnYyjHywFm+64nxigp2BbmK2RD/6vzecZ0kIHE7nuXtX0nkkHlmQJNmhF3CbXqq08gSMZdsiWwlQv+IHAVosk88bbyeaTTGkSunjoO95LvsM9MvQNY024rNjE1Dp5rWNDcRxDNtxjswW375zBx3Pw/nz549kfxzjWFZuhx6oEg/DQT6XYUE1z+5rrMfpqFAUBZIkQafT2ekPVJR9JY/KaDYaokl2Y2trqAKUqqqAqorPh7MrNE2D67qosV6xghBBGw1H+dMB8Rjn76dpiqW7d4Ui1pOGpzrYJ4QgLw2H6C9X8aEkhmlSWSg+BIJxxoIgQEFIb5Df16BUbjgd53wOmx/RWQd8pVJBmiTIWcNkmqbwPA/ZEWSRL164gGq1ihMnThx6Xxzjymjxlft+nN2BMcQw7BtDDI/FSq58fPhhUBQFwjBEp9ulGRfWtwG2CB17QvIANBoNqu6hKAMlOYEdJ8lVLfozLD1BP6uS8WdybK4k43C6joPO9jY2NzePtFwtIXEU6M/qlyvFANDa3kbMEkhlimeSpthutcQzbbIgvzZgEm2PXxlHveVwl7TTj8M01os8R0EIojCEv0dGdRwQQnDhwgUcP34cE6VJwv3vOcCOx7o/PaIWDxpHXKXmssjZEWT3c6aP3+l2EUURFNAYA4TAtu0DK/rxoVuWYQCE7JLk5FBLfqUYkGzTNI0msljQD0KQMKW5QfsbdKc5f9+2bWysrWFra+uJpIk+3cF+mu6aaMiRZRk67TZyQjDRbMK2LJp1CUO0Oh1kzNhVKxU0Go2RwRQfRT7KWI0ruTUWWDOxwYZ91apVANSZdDwP7U5HNIXtF1tbW1haXsb58+ePjMMOjE+R4Znjh5GBAQ5I5RmyjaIosFh2Iz5gdp+XMDudDuXkM/6vw6hd6kEbwPowOTkpJDnXBxhm3gydFwWyohg5bt1xHCrRp1Ct5DAMqVxbn2rJoOeT8/dNy0JrY4OqY0k6j8SjhCQZqA0PAFEY0kAkzzEzNQVT14XcZbfbRZHn4Pr3tT7K6C6UKHvDcBQJpPLxSFHAtW1UWEaXgE3s7XTQZdO3D+JXbt66BT8I8NKorP4BbO9YPXJ4uJl94GCLsWGfu6aqVATigMo8hBAqd8meSf6ZapoGt1Kh8cQRxCuKouwpyck/jzzPBYV3EHjQ7zoOFNDP0/d9IU4hrm3wBQuZZ1VV0d7eRvcJ1N5/qifoiuxLH0+fFAW6TPVAZQ9kmmXwWUMSl0irViojtYx7UOoJ6MdRN4BmjBOq6jrq9brQW4/iWKgLBUGAMAxhmea+pu5dvHgRjXodzzzzzJGcK8e4ZoNnkB5GIxXAlBiOMLi0DAOxpiFnUwRHNc1ycJ7/rinMbFgIn5bJG5uOYhHJJTnX1teRZhk2trYwOz0tPgcu0Zam6ViqHLx/IE4SRGGIDFTK1XYcWKZJaUAjYFkWWq0Wpthz7B6RwpSExGFQFEWvXynZqSLP0e50UBQFbNtGvV6ng7SCQMgEc439cTLMYpoolxXsw5EG+qAJsDhJYFoWJptN6IaBLE0RxTHSNBUTUDlFkc8U2QtFUeDSpUt45plnUK/Xj/CMx0NZg/9BZPYHfiZDPsOR+xlhI23LQhLHyNhnMqpplqMoCsRJgjRJdvyKQodemXzeCSA+46NoZuWSnOsbG0KSc3pqSvydPz9JnmMcErJpmtANA2EQIElTMZnXse3hCVleJSsK2JaFjbU1NCcn6bTfI6I+Pwp4aoP9PI5BOCWkr8wahiGCIAAIQbVaRZIklKvMjHfNdWGySW/jQlGUgVWEw/AphyHk9CJNg82Cx/LKN45jRCxQjNjvmqaJL/WwwH9jcxPLKyv42te+dqTnC/Qa3KHvKRnDYYsswvaVM8MFsKZerrF76BMlQv7zKMAdY5BliOJ46LTLgkmOpbw0y58bRYFhmrAGfG6KogiJz6MAl+RcW1sTkpwzzDCriiJUq8a9P6qqwrYs6LoupkpHYUgXDI4DfYDGM78usMBo9d49OI4Dx3GOtNIkIXEQFKxCt6tfixD4QUCb5UGpcb7vC16+yvyKsc/gYtgzf9TVLkIIAtZnYLOACqAJhqph0ECR+RIu8xsyYQud+5UhgfTNmzcR+D6+/s47I8/hKLPfZfRo7A/bDwBSGlDIZSe1vtjhwDhAsD8KGht8GDORDoNV9/vBE0dJ3zAuVVVhsj6//gWbxp7to3rGuCTn5uamkORsNhr0PBQFOZvEOy5URYFbqcBgcRspCgRBAMMwRJ9A/70moAs9jSnLba6twbbto5N/fQTwVAb7hJAdowz0fFnTJEGcJIijCFBV0YgLQmCyrMtBs8oKdrTiUfqyHGWIEiWJ4H9XHGeXIVIUBbZtw7ZtpCwrkzFd3jDPEUbRzhfdMHo4eRcuXMBEo4Fjx44d3QkTgjhJEAaBWHhEUYQ4ipBlGQijhfCJs2mailkHRZ4jZ7MP8tLvHHzwxvf+8i/ptWsadFWFqmlQ+37X2O8a+13jQTIhgltr2zZsy4JhWSOd135hGgYiXUeeZbTpjWXGhSFOU+T9tBlNg2VZVM1jhLM5atUiLsm5sbkpJDknGg0hkQlCp0FqYx5XURQYmgbVdZGkKaIoQp5l8LpdOJZFqxQD7jPX9e96HjzPQ6VSQXWIQ5OQeBAoigJFHO/w6cv0HZZlTZIEhAUwcZKAEALXccZWMhkGhVFs7pdfCZg9VlR14EBGTs9zbBsJqzryTH+aZQjDkA5+6kso5XmOi5cu4dlnn0WtVjuy8yWEUDW6MNzxKcy/5GwWDfcZvCrBtfb534b5lQLAX33vezvXruvUZ3AfoqrQdF38rjB/IvxKnlPRhEoFFTZh1rJtkWwbO77YI4Fl2zZidr1pmorMdp7nSLgv7eu10HVdyFEOex4VppJzlAtKLsnZbrfR6Xah67qgiQHYd8JKAVUJUjUNcRzTDD9LlA3L8nMfZlkWNtbXMTkzgziOx6q2Pw54KoP9IknoFxu9ZTtSFAhYhjFOEoRJQiXRmMbrYUs6pNRUJag7h9pjLwpCxDRD27aFKs8wGIzywRVckiRBxoJpLtupKApM00Sn3cbq2hq+/vbbe54zAWh5N4p6DS0L4ssBfRRFYly4wrY1dB0WMzgqD8hZc6bBHIVt28J49gTr7H2qpsH3fXzyySd46aWXBJVJGHC2gOCvFawaUDAnnBcFsjxHmmXIVld3mkh5+ZLQQTJ84WTbNixmtG02oZgvDvaaKlnO7vPnjzuZMjTmLA3DGJt2xQdt8Xt7FOCSnK3tbXQ9T3w/VFWlvSxFsb+FEKtAmIyPH4Yh8qJAyAIG27Z3XS/PhtqmiZWlJVQqFbiHWIhLSBwWZAg/Os9zYQOTJEGSZTDZcKHqARSyeo7JfipAj2rJUdN3eEXCse3R1FXmL0zTFAouPJjO8hxZKaFkmSbu3LmDMAjw4osv7nkehGmrc//B/8VRRP11GO74mTgWGXvhVwyD2mPuT0p+xWLVCl4hVcv+pBSoR1GEjz/7DC996UuwbZv6EOZLijwXiameBQP7nQtm8MbZ5eXlnUZQVhlVFAWWacJ2nF4/YtuwmI/hiwNtRCUC2JnWHkQRfN+HZVkiWVb+vHQm4GDo+lj2835VUGvVKlXU8X0xYZeLovC+iv3Y9/LgLMMwhHBFEIbQGd101/4Y9VXXdaytrMC2bczMzBzVJT5UPHXBflEUYlpu/0MbhCHyLEO320XOB51UKnB4EMFXsgd92EvUi2JEE+NB4TP6jqaq0DVtXxNLLUYFASFIWcCbpikIIYjjGD/+4gvUazW4lQqCIICu69A0DWEY0uxqt4sOa9Lqdru0fIYdQ8sNDzdczWaTGi7bhsn6BrhBGzZlmM8MMExzrCEuXDN3fn4ezSEKD6MQsVI0N7AJywyFTDovimOxYPF9H5tbWzSjVTLg/DOvVauo1+uo1mqo12qo1mriGrI8R5amCKIIKVtw8YWlMMRs4bNf8AZdRVXHokqNi2qlgixN0ep0sN1q0VHtqgqlLws2LhRAOK9qpSKocxmo1F/FdXcHRax3puN56HY6cF33oXB+JSSKPEfBGhl7aKEsAcPlZgtCYFvWzpTRoxQ56Pt5FCCEwAsCEAAmo+SMu3+VVQFs2x6YUPJ8HxcvXcLCsWOigq7rOlRFgR8E6Jb8SZf5lyRNe/yKziqcPACenJwUiReejLFY/8CwBInn+0iZOtJe/UYtNlxwbnb2QD4FAKVvpSlcx4Gu67RvKYoQsZk+PCEWRxG63S7WNzYQsyFsAIQMMRQ64LPKBnfWmG9xXRcFITSjn2Xi+cvynPrWkkKbPmaAX0b5mVVLC8yjwESzSc85CLC9vY252VlxjP0G+8COwqJe6hGLGZvBz3O4TO9/ZwNFNOtub25ienYWYRgKyefHGU9dsE/SdGDQnrKMQBiGwpg1Gw1UODXgsIF+H7j+OSGEcvkPud8kTZEwhR3HcfY9qVRAUURwyQP/ldVVtFotPPvss7h27RoC34fHOt159lnXNGps6nXMzc3Bsm04jiOCeJ3NHRiEcY3Fgx58Us6Eq6pKsy2Og2azSa97yPXkeU6zTcxoc1WDTqeD1dVVMYyGgE6bdV0XlUqF6u4zWUqu8HTYa+XlVs4hPjI9fwCVahVhFCFKErS2t1Fhi5fDGH++KOENYQHL8vu+D8dxeqtrLHNjmSbWVldRrdWOdHCchMS4IIyrjnKgD/QkBfjfmhMTcHnwcFS9RNipdonv+BF81yNO31EU2I5zYCnHckKJN/Jfu3YNcZLAcRxcungRfhAgCAIELAPLqRj1eh31RgPHjx/fyW6zRcSoqkg+ZkKNJ0Ee+KBGZr9cx6HPw8TEUMUZwnTkywuBDl8IdTq4t7SEPMsoW0FRYFcqqDoO3EqF0nHZv3qtNpKiMw7KcpgAjrRqTAhBo14XNLBWuy2qRIdaVLAg3rYsGMyvFITA9zy4AxJJuqZB1zRsrK3BcRzYR7wwfxh4+oL9JAEYN0+8lufoeB4C34dhmijyHJZto8IVPo7AIIsvAyFUaYTtT1EUkEMqphBC4DP6jsUyEwfVifV9H1ubm2i12zRb73nwPQ8KIbh965boW2g2GlhYWKBNv0x/WVEUUQIDqFHgZdBRjWTjNnQ+8CmHIz4TRR3cPApA0IwM04RbFKjW65jNMrEwyli2xQ9DBGzy38b6uphIWBQFDNOkw2zYAmpychLNZvNAWRjuzIR6xyGDAMJoV6qqYmJiAqtra0iyDGoQQGfO/BA7FxURVVVRYZUkXv7nSibi7aBDh7iusud5aLDmLgmJBwWR1S99PzPWexJFEWzXFWpblXKgf1iU98G+O9yWHva7nuW5aMp1XVcIHuw76CEE7U4HW1tbtPrLMvZBGEIhBNeuXaMBr+ticnISz7iuSIDwwFRl1WpO+eN0zeGHHF+JiAfYDypJMPITGRJrcMlhzXVhWRbyahX1RoPSJplfSfgkWeZTgiDAysqKkN/MiwIOU4HifmVqagq1Wm1fn6l4vrjfZpn3w0RIXFiDgFazJ5pNbG5u0oUfaNX3oH6F95LxrbkSnMeGOvq+D8d1YZbptgqVxe6228hYz8njrvj2VAX7RVFQBZ6+7Mt2q4XA86BoGiqOQ5shs2wni3hEKi4ABkoKHjYI81n2U1XopFQ/CMbarigKtFotbG5uYnNzE1tbW8IwcD3d2elp3Oh28fyZM3jx/HnBoQMgSoNZllF1AkbhSBg3sVwNUVkWo8x/5MZ1XEMjjPIjwMtWQHskCs79L/3MmYweByn9X1VVSjep1aAxKhQH1xre3t5GEASI4xjb29u4desWSFFA0zRMTE5iamoKU5OTmJya2rOPpJzpUxQFKnZmFewXZT1qDsMw0Gw00Gq10PV91FR1LJm3YSg7EoDeZ9dxqGwsa54viqJHfUdjqj7t7W3a2FWpHIoHLSGxHxQssdKTQCoKbDN1EZ2pgIRBgDxNexV3jiiJRAYEiYf2K4y+Y5gmbMsaezZLlufY3tra8SubmzQZoCioVquoVauYnp7Gzdu38cYbb+DZZ5/t+b7mJZ+SsmbaoigQMxtbukCRUNL6mmTHvWJCyE4y5BFJIvHr7ekBYL6lnDQs22JN01A1TTQbDdqTUPIrWZZhfX0dLTYBPQwCrK6s4Pr165QKydRwuF+ZmJwcaT932Wj2ORyUJsqTR2U4joNKpQKPzZBpHJKeyal15cRXxXUFdTsMAhSsx45DZY3Ige9T7v9jrvj2VHnEHgoPQ5tlsKEoaLJMaqvdpg2YjMpypNJawzrcD0jr4aU9EIJKtUpX10MoR0mSiKCe/yyKAqqmYXJiAs899xwmWRBpsVXuhYsXoagqzr/0Uu/KFxABu2iiYaXGjHX7iyZT9mUuigLoqzgQthDgXyxVoaPge17r6/6/30aZT/PlCxlVVREpCp3gVxTiWrIsG+pUFLDKBjO6PDM1qrlN1TQ6ZIRJ2YkR9YT0LMpu3ryJS5cvA6zkOTk1hempKUxOTaFSqfQYJIWdd/n/B6HzEECoSPSjWq0iDEMkWYZ2p9OzIDwIOM9SnCPj/qqqSjONAIogoFN92bNgGAY8z8Pk9DS63S4mJiYOdQ4SEuOi4H6lxNPf3NqilFBVRbPZpEII7P0ikDpC+s4ov1IOEMdFyHuPmFrQyPeGYU9g32q3QQidLD85NYWzL7yAqakpTExMiH6sd3/4Q9TrdZw6dWpXACX8Cgu8uK3N81yIJ3CRBB4I91SylZ0ZI/0+pOc1paQVryj3PYnEg1ruVxImFFL2KzyBNgwKO09u9/i9GlXl0HUdMzMzcBwHRVGgXq9DUWhD8DabRL65uYkrly8jZf6u2WxSv8IWAXbpGeA+pMevgCUy9+tXCKF0qwHPb6PRoM3YSYJOt3to3ny/X1EAVFwXIeuVi1nlmPfSKITAMk3aD1apwPf9x1rx7ekK9pOkxyB3PQ/tVkvoHtfqdWRZJh5infGnjwTlVfkI7IfWQwhBl9F3TCbDCOxke3zPw9rqKrY2N7GxuYlutysUFaYmJ/Hyyy9jamoKjWZzoFRiVhS4ceMGTj733K5Af9i5c76/WaJz9Kvg5MxAE0JA8hw5gL2GrRNQihEUBRrj//cEtdhZMPHfedmZKzX0ZMHoL0IXvvw7dwBxFCFh8mSD+IKEle258eXyalzlgZ9fwfTnx4GqqrAMAxHLYrssmzAxMYGJiQmcOXMGABAEgTDSm5ubWFxcBBTaBM0zNFPT09QI9527oqpixsReKJdXR30XJicmaDUiz9H1vLEaqEdB6TPKBFSPWVFVmiEFfR7cSoWOAScEWak5ulqtjpxqLSFxFCiKYsevMEpiq9Wi1EcAU1NTcF0XQRCIAFjdI/Gzb+yxr/3SevKiQMjmzLiu2yOYQEATZJ1OB5vMr4SsklypVjE1OYmTJ09ianqa0kMG7N/zfSwtLeH1118fK1PKpaABiKoIt9O8ospVwHr8SlHs6Veygs724KIW6Pcryo6MqgI6LRhgPoUl2Xr8Cq/g89e5X2HBPLAjBAJCkPXZKFEB5lWLcjWcyXhyWsqoibL94IIavPLOG5anp6d7tOQ7jG61ubmJ5aUlXLt6FVCoTOgUz/5PTfXQQ/l92k/VuFwlHvYMqKqKyWYTQRgiSRIEQdCTeT8sOBWXq/JEUSTUiiquKz7ziD3fHuP3P66Kb09NsM8pPFwJh6vHgBDUajUxxIFnMw7SpT4SfdSh0W8tZflHfHnCKBJyXRXXRZZlWF1dxa3bt2kjKHNCjUYD09PTOHfunHA+45zJvbt3EUYRnn/++TEvsoTSefPsQ3/wxXXkecaDG3D+k//ODVvBMgD9mvPDIAxzHCM6QLZZ4bJrXP+YZ4hY5YE3xO2F/RbRTcsSqgHDFDtcxms9ceIEAFrh4UZ6Y2MDFy5epHrSoDS1Buux4J/9OOo8g8qrw6DpOs3ErK3R4UFRNFCPez/gJW0VO/fQ0HWolUpPgxWXAzQMA1EQwGg00O12MTk5eajjS0jsCWaLeKa02+3C832oCmvEZTxfruNu8u/EUVFD97Fo6Mnyj6geB75P5XN1XWi1L6+s4NatW1jb2ECRZVA1Dc1mE88cO4ap6WlMTEyMNTkbABZv3ICm68J2HQRcVlHTNKDPr2RMQrkoZ83LfoX5GlEZYH5lnObjHp8yRGp15HmDKaRpGh02ZlnUr5Qq2uP4lYPw1y3TpFX3EZPa6/U66vU6Tp48CYA2aG9tbWFzawubGxu4e+eOWMhcuHABumFgfm5O9Ozt5VfKCbVxFnqWbaPmuthKU7S7XdRrtUNRNEVVoo9qazE1OZ5I8nyfCmawz4H7M9/3j3QexIPEUxPsE/YlJYTA8zwEQYAiz+FWqz0SWglb2e13Qu7ogx+8sURkY/qMepbnQlfY73Zx6eJFrK6uoigKuJUK5o8dw9zMDOYXFmAe4MtBAFy7fh1zs7MHe7jHKOnxSsBeKIoCcZoCjHJUqVR2MifAwAw9X7ABdGiVZVk72f/Sz3Imh1NvFCYBGTK9ZocpP+w6L+40jhg6k7gjbDjNOEGzruuYnZ3F7OwsAJr5//73vw/P86CoKj797DN8+umnaDBVi/n5+aGf6yBu/jhwXZdKlKYpttttzO1nQMwA8M+j/zni06D5TAIvCFBxXaqDHYaoN5uIoghJkjxR484lHj0UrHpYsIpWwLKA1VoNtVLJP01TFKCL1SPzK8C+myJFlp9/L/uC/pgNZQyjCF63i08/+QSbm5sghNAg8NlnMb+wgJmZGegH+G5nWYYbN2/i1KlT962vRlUUqmq2Bwqmua4qdAq56zh7+hWDBfjcpwDY7Vf6fEw/PVXrdpHlOSpMKWfXeY3jVw5AmTFME2oUifkx4/RW2baNY8eOiUGam5ub+MEPfiAWRj/60Y+gKApmpqexsLCA+YWFgYs+fqZ7ZfMHoVqtimbarVYLs0cw1VZhfqV8n3sSSXmOIAhEJj8JQ9i2LbL7j6Pi29MT7DP5MN/z6GCTNIVTqaBeq/UEJNwo7zUIafwD75T1DoKeLD8AFAU6nocbi4tYWVlBp9OBpiiYmp7Gyy+/jIWFBSiKgjAMqdbwAQ3q1vY2tre28M4eI8wPg3HvCR9jrus6DDawZRzwLIxt23vyTgee3x5/P+opgmVYpkl5nWm67wx5u93GD37wA6Fz/cyJE3jhhRewurqKpaUlXL5yBV9cuADXdTE/O4uF48cxzSg/xZh0s2Go1WpotVoo8hzb7TamDsudH1Ld4oO8gjCk6kZBgEqlgigIoKl0uFe328XU1NThji8hMQRFUYCwoMfzfSRskFO1UkGtXu9NzjB66GH7WXpQDkz3iZ6gn33HNre2cGNxEWvr6/B9H7qqYnZ+Hm+88QYW5udptTFJ6MyLAy7ib9+5gzRJcPrUqYOdN8aolO7HryhU5cYa06+kbHF3UJ9SxrBwd5xrPMhyUVEUmJaFgiUJ9yuksLy8jB/96Eeo1WrY2t7Gq6+9hpmZGawsL2NpaQmff/45PvvsM1RrNRxjgX+z2RQ9eweFwmS9u50OkiRBt9s9kuz6oDPiiSQ/CKhfCUPqZ7pdTM3OIk3Tx1bx7akI9os8B+Ha50mCmK3Sdul2o2SUj3hE8qFkqYoC29vbWFpexr1799But6GoKiYnJ/ETX/4yjh071nO+PLt0mED0+rVrcKtVzM3NHeLM98A+shPkABmBQ2Ovc7tPgT5AG041VaWKFKVR53thdXUV77//Pmq1Gt5++238+Z//uRig8swzz+CZZ55BURTYWF/H8soK7t27h6vXr0PXdczPz2NhYQFzc3MHzrqpqop6vY4gDBGEIRzLOpRkmVjsMrpa/99cx0G326XTo8MQFcdBFIbQTZNO0czzxzILI/Hog7D+kMD3qVAC04y3HWfXYMA0SUAIOZpKE7c7B8jullHkOdbX14VfCYIAKqsQvvrKK7vsQMJ03A+j5nX92jUsHDsmZnI8bDxwJR7sn9Z5lPuwDEPMTtiPbbx+/To+++wzHD9+HC+//DL+7M/+jE4ktm2cPHUKJ0+dQpamWFtbw/LyMq5eu4YvLl6klQHmV6ZnZg5U6VVA/WG1WkUUx2h3u2Jo2kGhYPiiiivmdTod5EzyWVEUFGxhH4ahaHJ+nPBUBPskSZCyJs0sSWCYJgxdH7gy5w1+R97ct0/DTIoC62truLe0hOXlZURskuvc/DxOnTqFGuPWDWpYUVQV6OuW3w/CKMKdu3fxype+dF8f6ANpIT+M5pgRShd7KicdoqJjmibyoqBZmDGex5s3b+KTTz7B/Pw83nzzTWiahjRNdwXuqqpidm4OM7OzeOVLX8LG5iaWl5extLyMW7dvQ1NVzM7OYmFhAc8888z43wV2H0zThKpp8DwPrU5HDMg6DDRd75XdE4dU4DgO/CCghjmO0W61cOzECcRs2vHjrKAg8eiCpCki1jyYxDFsVkl1+mwyTyApOKKK8SGC/DzPsbS0hOV797Cyuoo0y1CpVHD8mWfoZO9qVQz023VY/ssBj722vo52u41XX3vtQNuPg/3MbQEewuyWcTDO53tAv6xqGkzDoHQttjjdC59//jmuXbuGs2fP4ktf+hI8zwMUZVdlQDcMHDt+HAvHjuG111/H6uoqlpeXcW95GdeuX4dpmpibm8PxY8ewsLAwUpluFwihTbOEIEoSQec5LE102F3WVBWO4yAIAqRpikhV0e10UG00epqcHyc8FcF+xgZMcC1i3TBgD9BMzbJM6MOPoz4zEn1f1nGz7FEU4dbNm1i8eRMBk3o68eyzOHbsGCYYFzkIQ0rRYA8b56jz6xGP/wGN8uLiIjRVxXPPPXeg7ceBaD4e02iVNX0fNEYdsafpbQAOk8UxTRMh41hmWTYyYP7xj3+Mq1ev4vnnn8err74KAKIZrX877hC5ws7k1BSaExM4/9JLCHwfy8vLWF5exscff4zPPvsMJ06cwMlTpzDRbI68/+W/NGo1xEwbv9VuY/qQdBquiLHrewXqqB3bRhAESJIEWxsbOMaa/2SwL3E/UOQ5EtaITlgvkabrsBxnl03jWf0jEX0Y8PyPg263i5uLi7h56xbSJEFzYgJnX3gBx44dQ71WQ9fzELMeF66k1u9X+HUd1KZdv34dNSYWcT+xHx/BE2IPJdgflkQaZ9tDTJO1LAtpqR9s2P3K8xwffPABVlZW8Prrr+MUo15lTEmovHDtVx9SVBVz8/OYmZ3Fq6++inang2WWuHzv/fdhmSaeO3kSp06eRGUf9nlichKrq6uiGf4wdJpd8qslEFAOv2PbVP4zirC+uorJmRlEUSRo0o8TnvhgPw1DeJ5Hv9Qs0C8HymUkaUqzL3vo1u6J/QbZhGBtbQ2Li4tYWl6Goih45plncPrNN6leOJdwLArqXAiB47o9jaVC/gs4lFHOigLXr1/Hs88+e6jqxjh89n0ZZZbVfaBGeYzP8X7y9lVVhWWadKDUgAw9QA3yhx9+iHv37uHVV1/tUU4qG2VuiAdVe7i8HAEdpvb8mTN4/syZnYXn4iIWb95Es9HA6dOn8cyJEwP5nkKmDtTYTzSbWF9fRxTH8Hz/0HKc6ohqla7rsB0HURQhShLcu3MHM3NzSNN0z4WShMR+kfIEEgCoKnQ2Odw0zV12I0lTqsRz2OBgn3amyHMsLS9j8cYNbKyvw7AsnDx5EidPnuxZAGdpSrnohMBl/UFlm0APvRP0H8TecbnNN8aU2zwo9nNm5YFa6gNMIvFzHJlEwuhrUQYkPsbFIBnOfsRxjHfffRfdbhdvv/12D503TVOR2efPQjGgwi3+xxQBG40GXjx/Hl6ng8XFRdxYXMSVK1cwOzuLU6dO0Wz/AP/O90NAOfWNZhPb29vo+j6svkFY+4WqKCADfDj/v2ma9D6lKbqeh63NTbiViojDHicqzxPtAQkh6G5uIi8K6Gw4UV4UtOFxwJclY0o8xgNS8EjiGDdv3sTNxUV4vo9avY5XX3kFJ06cGHgOURSJTG1/o1c58D+MUb539y6iOD6Y3GYJRx0ACwP5KJVbgT1Lroc1BSbjng+S4UySBO+++y7a7Ta+9rWvYWFhoWfbjElvapo2dCAWh6qqu3SbbdvGuRdfxLkXXsDK2hoWb9yg2f7PP8ezJ07g1KlTPUpWAEAUOoyEn3u9VkO720Wr3YZtWYcOuvsXV2WZN9MwaMY1TbGytIR6owHTshCG4WMrlybx6CFNEnS3toQtzpm2u+M4u20BIXQKLO4DNRSDg0Lf97G4uIhbN28ijmNMT0/jK2++iWPHjw8MpgI2g8S2LGh938+yvdF4YHSArPKNGzeg6zqeffbZfW/bd0Kjg9x9+J3yQK1HisaDvZNIh/WuXIYzHhDse56H73//+yiKAj/5kz+5y8ZnWYYiz6GyBcNQWXF2X/sz59V6Ha+89hpe+tKXsHT3LhZv3sR7770H27JEtt/tTwyV9l9xXZFdb7Xbh6LzEOwsnMoJ0/IzblkWHeyW57hz8ybOnj8PgMZjhx309SDxRAf7rY0NZGkKTVVhmCZCRn8ZpoiQZhkIIYc3yqPoKYRgfWMDN2/cwN2lJUBR8Mzx4/jyV76CqcnJodsVbPgHIWTPhkeVSXztt9RHAFy7dg3zc3OHDo72NFb7NMrkEeTsc4xa4R920TNMhtPzPPzgBz9Anuf45je/uTvoJgQxm9DIh8WMRF8mrweqivn5+f+fvf/obiPrskXRucPBEvQEKJISRXmvlFI2M6XMOtV6t/s69y+c1jnNU+3zR864v+CN26v6TGbVl5RS3jvKUCQlAvTw4fdrxN7BQCAABAxFKT/OMXKISQIIg9hrrb3WXHMhk8mgWqlgfn4eHz9+xPsPHzA8OIiDBw9iYnKSH9iZpMiQTCZR1TRoHp5lJ6i5jx6H77+/kUjEmVJpmlhcWMD0zMxesL+HnsG2bRTX1mCzdSWxJnpJkrY3svyZZH6Ac/a7SiK1sCPUtrH8+TM+zM8jl8tBlmXs37/f7e9qBMMw3FknzQIXrqEuOP/TVt+AV26z62b5VvcB4RMsu0YNDXPfumy+bgVZUSCqKgyfDOfa2hpu3bqFeDyO69ev1zwTFABhfoUnkVr5lWaNsKIoYurAAUwdOIBCPo8P8/N4++4dXr9+jUw6jemDB5Fh6oJ+DPT3w9A0d2r7oM//hYV7bmw+AD/fmtd4+sJ0w8DnpSVMTE3tBftfCyqlEsxyGQQONYFP+XOz+gHgsoP+7EZoeFUSfNB03c3iF4tFJJNJnD59Ggf27w/lBHj2RVaUlpuRIK1fTuNohvWNDWxubu6o3CZHO0aZUzfc6YFfCGECdQK4g1ACIQhAyGm1jeCX4VxfX8ft27cRiUTw008/uRlFPq6cNwOarNk8bFNgUHbfj1g8jhMnT+LE8eNYzmbx4cMH3HvwAE+ePsXk5CTGRkdrKAKETUHMra5CZ7JlHXHoWeDE6QWNtKgJIYhFoyhXKqiUSlhfW8MYo/PsTdTdQ7coFQqwNQ0iU+wolkoAEOz0Of2SrX+/Qk9oNLFD5VLJpdlpmoah4WFcvHgRE5OToQLrSrUKAIjGYi0bJt2qMbMv3k19s3P8uLgIswu5zdqTaBwEtyP4AOx+c24rX7aTNBFCCORIBJZHhnNhYQEPHjzA2NgYLl++7G5e/Xx8wzCcWQZhnmfSetAWAKT6+3Hu3DmcPnUKS58+4f3797h96xai8TimmF8RPX5DFEUMDA5ibX0dpXLZUcHqgM7jpVQJ7DyDni6u/FauVLC1sYH+wUG3avG1VYUa4U8Z7FNKUS4UADjBCR+nHZjV92bhebNOD89F1TS8fv0ab9++hU0pJvbtw/nz550mpZAL2bQs6IwjFkbbl3iCPvd3zh8ANA5i3717t/Nym2jfKLvyaDtzOo2Py/5tZXB3krcP1Mpwzs/P4/HjxxgaGsKVq1dd3qRNqUuf4WdrtBnsgzcshbkWQcD4vn0Y37cPlXIZ86yp/P2HDxgaGsLZM2ecfhN2/FQyiXyxiEKnI8cDZDcbnac34F9bWcHg0BCq1epesL+HrmBZFtRi0XH88Th0T+NtDT3NF5DuhGUoFot4+fIlPnz8CFmSMHXgAA5OT7fVsKjrupMQYOulJdiatX12xvkfT8LDd+3v5uaw70vIbbbb07BbwX7IJBIf/LRT8MpwvnjxAq9fv8b09DTOsb6KRoMVTdNsy5a247dFScKBAwdw4MABbG1tYZ5x++fm5pAZH8eZM2ccVR5szzooV6soFAqIjo62cSQG7/1lmyurQXKO93pWVRXLnz45c11UtStp6S+JP2WwXy6XAdOEyOQLiyzwr8vq+wIIii4Mc0BT1pu5Obx7+xYAcPT4cRycnu6og1utVmEDUEJynr3BaVAG3f93wNHmX1xcxNkzZ3qSTWj2Ce3eY9cof2m99JCGljbJNpEeGGsuw/n+/Xu8ffcOk5OTuPDddzWbjKD7bZqmqyrQzrHadTDxRAInT53CkSNH8OHDB8zPz+PXv/8d4+PjOHnqFFKpFJLJJMrlMgzbRrFUQn8TakHgeaH2uSHE0d5vtGEWRRGyJKGqqtjc2EA0GkWqzWPuYQ9eFPN5CLYNUZYhiaLjZxCQ1W+gNNZxUOn5rHK1ilcvX2J+fh7RaBQXvvsOk1NT7ffCUOpWi2PRaKhzE1oki7wNmTwTnFtZQaFQwLnz59s7vwZomlhp03a5fuUL03jcMwxBgdm5UN/xp7Ik4fGTJ/j8+TNOnjiBY8eOuWptjWA2EItoiAbc/VYYGBjA+e++w9GjR/Fhfh7z8/P493//dxycnsbxY8cQjcWQ6utDVVWhGwYq1Wr7g848zwzh/ShNrl2WZei6jkq5jDKrKOwF+7sE27ZRKhQgUYpoNApD12HZNsRGXH3ObWc7WUppV02ghmni7du3mJubg2XbOHzoEI4cPQpZltt+2AEnYNM1rUYpoRXcQUT8epoYFf6XpaUlCIS4cptdlxCbvbfdDMwucSvDqCYATkDf6Iq6NtYsa//s2TN8XFjAgf37cebs2VD3go80b4sn2052v+6tBOlMBpnxcWxtbuLly5f461/+gsnJSZw4eRJ9/f2OikKp5EzhbDNA8T6TNqUgoti0PKwoCjRdR35rC/0DA9CZtOAe9tAuDMOAWi5DptSR42OV1rqsPoc3odKE3tkSLNCvqipevXqF+Q8fICkKzp49i+mDBzuuKmq6Dss0IRASmv7g2pyQmWkQgsWFBfSlUhhhWdd26Jvtot374MpufuEkUthegZ0M9imlMAwD9+7fx/raGk6ePIkjhw+HuoedUCL96k7tQBBFTE1OYv/UFJaXl/H6zRvMf/yIQzMzOHrsGJKJBIqlEgrFIqKRSFubav85UUYVbXYfIooC3TCwvraGeDyOQUbp+drxpwv2S6USiGk6zVOyjGKxCKA5Vz+IItAWWEPghw8f8OrNG5i6joMzMzh29KjbUNmpKm6VybtFApQSGoFwbjN/aFtxAwEsfPyIfRMT7iL234N2m5l6SWuxd6k5N3QGxrNh7PqY3hI4pTANA3/cuYPV1VWcOXUKQyMjMHQdYoiNn2EYTla/3fPq8Hps1uAkCAKmpqYwMTmJhfl5vHz9Gkt/+Qv2T01hdGwMRBBQLJXabqriZ0M9x7LROHgQRRHRWAzVSgXlchmVSmUv2N9DRygUChBYk61ACDRdB9Ccq+9vIm87g8yaId+8fo23795BFAQcP3kSh2dm3A2GjQ5sLaWoesQewgYq7voLeTzDNPFpaQnHjh/fluStO5Xe8dLb3UjsRma/ne+qG3nNZsellKJSqWB2dhaapuH7779HIpmEYZqh5gtZltWRqlqYnrBAsGSaLEk4cuQIDh48iLdv3+Lt3Bw+vH+PmUOH0N/fD4tdVzs9YbbvvlDbbhnsi0wNsVwqoVwuo1qtfjUToZvhTxXsW5aFcrG4ndU3DDerX+fkm2Rb2ln8tm07Qf6rV1BVFdPT0zh+/Hj75aQAGIbhaDSH5Op70Y5hzufzyBcKOHHqVOPPC6A8oZmhbnIP2zXw7kZjtxqpQr2oM4fhN8JeVKtVzM7OolKp4McffkD/wABKTBEgGibY71BfnvCya5uOxt/jIBCC6YMHMXXgAObfv8eruTksLi5iLJ3GWDqNRDIJpYPz8/Z8CC2avyKKgmqlglKxiM3NTfT393959Y09fNPQNA1apYIo8ys8qy/Lcv368iZX+KaZ0Xraee4Mw8CbN2/w9u1bUABHjh7FkSNH6tdLB8GgqmmwmHRiO7TSGrGHEPj8+TNMy8IUG3DX7DM5WiWVGt1BrqTSDnaDs19DRdypY/AGamz7aS+2Njdx69YtiJKEmzdvQmJ0R8MwQgX7QVPZQ6HD7D4XY+DPhCRJOH78OGYOHcLcmzd49+4dBFFEOpNxZsW0uYHl51PjRwShoZohIQSRaBT5fB7lchmFQmEv2P/SKBaLgGVBYXKFnFMZmNUP4O63ox9MKcXiwgKev3iBcrmMA/v34/iJEw0HB3WysF2lhGi07VJjO1r7i4uLkGW5rcZcb8OvCw+dpZkUZbvB1q4M1AJquHyt0JbUaBPaD8fW1hZuzc5ClCT88vPPSPb1AZRCgDP4LMygqG6GSXVSreBKBv77JQoCDh0+jOnpabx99w5zc3NYWVnB+vo6zp4+HTrgcBUhfOu0WUaPAIjHYlhfW0Mimfzm5NL2sPsoFAoQ+VAsT1Y/zIYbbdJsTMvC+7dv8er1a1iWhZmZGRw7dqyhXHS7PHXKJJw5LbQdW0wEwT1emCz64uIihoeH2+I0t5QwbvT3DrLguzmVPexxG/oVL6/eY6v57xrdieXlZdy9excDAwO4evUqFEVxGs/ZtPNYLNYy2WkYRscD4jrJ7vPNiz/Zp8gyTp06hcOHD+Ply5dYWFhAdnkZm9PTOHn8eCj6qhvo+3yygOZsDJFtlNfX1hCLxTA2Nta9rOwO408T7BuGgUqpBIVxKnVVbTurH5Ybvrq6ikePHqFQKGDf+DiuXbvWdsNhK7hKCWhQKm6BsME+BbCwsIDJycnuy5mE1FAtEGB4OqH37NpI8zZLrnzAiJfDb9t2270a2WwWd+/cQV8qhWvXrm0Hw4RAVhTYTSbqemHoeuMgoRUI2R6aEhLcKDd6jkRJwrFjxzC5fz+ePX2Kz58/Y/nzZxw/dgyHjxxp+fwJAUoJnDbUirtfLJdRyOexsbGBiYmJ0Ne0h39uVKtVGJqGCCGIxmLO1NwwWX3P77gtaGa/KIDFhQU8ffoUqq7j4IEDOH78eEuVnHYttsr8oiCKbQdsXr9oM9/a7Di5bLanjbmAj3bh/kDbDvQtTyPmF83sNxFUCAIBXCll7/VarB+P/3/Nvw3w7t07PHnyBBMTE/j+++/d6xbZvAhLEGAYRkufoek6Ep3IJwMd9YTxQLzRPYtEIjh//jympqbwilHeFhYWcO7MGUxMToaaVBzo55ptIFmcuba+jnK5jM3NTUdh8SvGnybYL5VKEGwbiixDlCSUmP5xQ65+wO9cXmGDxW9aFp49fYp3795heHgYP//8M4aYvGBPQdtXSvBDEEUQNhG4GVbX1lCtVjHV7WRDH7yZf++dtjknjr/Ou6P2cF29m5XdGGkO1HL2ubEJXPosy0IprW/WbfOcP3z4gMePH2N8fBzff/99XbZAkSRouu4MwmmRmStXKoh1oRTQdlmcX3uLa07EYjh85AjGxsawnMvh6bNn+Pz5My5evNh0+JXtv7ee82zG3SeEIMGy+/0DAw3Hsu9hD36USiVIpoloLAZKKTRNA4BwUpWofS4brVVVVfHw4UN8/vwZU1NTOHnypCsv2EvYtu1SkGLxeEcZbZGpqrQK9peWlkAJ2R621yN4z9l79harevq1/12bzQI3fxLsS89u4WjUT+eeLzs/m21k/Havra0NpXj85Anev3+Po0eP4lQAXVdWFGfAVogEUbVSQbyL77XdXgQakm41PDyMw4cPI53J4NOnT/jjzh1MfvqE8+fPN6weNwz0gZabEkEQEItEsL66ioGBgb1g/0tB0zQIto1oJAJN02C2yuo3QCMN+LW1Ndy7dw+qquLsuXM4NDPTVjBE+LFDGJYapYSQTsUPHhi3CvYXFxcRj8Wc6b29RpAx828APNUAz4tcY+w9f4HpDlPPpoC/nht2r+ybW9L00ov872/0s/fYDQxu0HUF3oOQePr0Kd6+fYvDhw/jzOnTgc+KJEkQCYFBaUu940qlUjdZty2Q9iTT2mlETCWTUKtVTE5MYGpyEs+fPsVf//Y3nDp5EocOH677DApG52rw2a2y+9FoFFvFIiqVyjeljbyH3YNlWTA0DTKliESjjliCbTvTR1so8NT+2rFn/mCFZ/MfP34MQRBw7do1jGcyO3AlDlRVhU0dBaFOK378GlrZhIXFRWQymVAc8HYQeIe5D/H7kgBfw30Dp4Z6A89QfgVwVe68wXoov+J5r3v3fP7B7y0EQtDNSEbLsnDnzh3kcjl89913mJ6eDnydLMsg1SoM03QZEUHgwx27okK2md23vd9HC/SnUjAMAwdnZhy/8vw5/uMvf8F3588HV3Rpc5nRVjS5aCyG1Y0NVCoVWJb1VVN5/hTBvmEYsE0TMiEQJcnhurNmqrBZfQAu39gbuJmWhRfPnmHu7VsMDw/jhx9/3Oblt0tJCZNBoNtKCbFOhg8xCKK4TS1pANO2sbS4iJmZmY6O0fok6oeChOXsB2Vg2B9qjDcCfvZWFWpKvfz/ffz5oJ87yc53qp5gWRbu37+Pz58/4+zZszh06FCzg0CWZVi2Db2JBBql1MnAdBnUEjSpaAQcM+z3K8uyK5lGRBE///ILXr18iSeM3nPx4kVXVcH9XEFoaJibniN7ZmRJQrVcRokN9trDHppB0zTnuZFlELAhdW0mYNyJnNw2sLWhaRoePHyIz58+YWpqCufOnXMSUx3YjzCwGVefK/B0CkEQnEpaE79SLJWwsb6OS1eudHycdtBOHxj3DTyAFHkfAv8b+zsCfg6s0LTpVzjaqVIHUlhCPCeqquLWrVsolUq4fv06xsbGGr5WEARIsgybOpKcYoNMOO8j7LrvydNn0BSe6wzzHUejUUSjUVRVFcm+Pvzrf/tvePjoEW7/8QcmJyZqs/yUOs9xkyRsq02JJEkghKBaqaBSqTStTO82/hTBPs/qS5IE27ZhsgxgXSDUKqvPOvr5Q7W2vo77d++iqqpuENZLOawgeJUSOhn/zBEms59dXoZuGD2n8HD4A7Cg5s1WcPn6u1Bq5QjtSEh9M1WrJ0XXdczOzqJYKODqlSvIjI+3PI4sy071yjBgUxp4bzRNg802jF2BhBt3DmyXW8OqJiWTSVQqFRimCU3XcebsWeybmMCD+/fxl7/+FadOnXI2Ppwm1epUW3H3ZRkVZpT3sIdW0HUdxLIgRaMwTBM2pRAFoa2md2+1i099XlxawuNHj0AIwbWrVzG+bx9/cdvnGLZizGmhsqJ0NUk6TGZ/cXERoizvaJWiW+xWc24nMxc6iTmKxSJmZ2dh2zZu3LgRarKyIsswDAOGrjeMParMdnadRCLhFN9qKvsh71lfXx9UTYOqqkgkk7hy+TKWPn3C48eP3Sz/vn37wvejNbr/LImkSBLKpdJesP8loGmao4HMHlaAZWP8QUfIh4VSiidPnmDuzRsMj4zg2g8/oM/bkNJhwN9yAAqlLqcy0aZSgh+8nNTKKA/099de206ig3u2WyPNO2kkDswuN/mcUrGI2Vu3YJkmfrpxIzTlRpIkiKLoZmGCSvI8A9MLCdhQ2X3aWonJD1EUkUwmkS8WUSwWHTrZ8DD+5b/9N7x4/hxPnjzB4uIiLl64gGQy2XL9eHtBgqDIMraKRVSrVdi2vcfb30NTaJoGAU5FSNN1UEo7ViHhn/fg4UN8+vQJU5OTOHf+/BeZ+2DbNnTmV7q1ByLjuDfyKxTAx48fMTExsXOUBv/mpgNb3W5iolfoJE0YlDRrhtXVVdy+fRuJRALXr11DNOR3zitYlm03pKTwREnYnpVmCKP45lY12oiFIoqCOGumLxQKiI6MYHJyEqOjo3j48CFu3b6NiX37cO78eUQUpaWyVMPsPvudwuSdufrj14pv3ttRSp0MDJwgSOdGOSirH4KvXywW8evf/44P79/j7NmzuPHTT7XBcIjP6RS6YThZfUHoyqkAnsx+g4yoZhhYzmabaiD3HJ0Y5V3KwHDwQDfUawPOsVFwura2hl9/+w0io7C0y62XZRmEEHdz6wcfxtYTuoqP2hYE6lkX7XxTiWQSkiiCwin/A84m4MzZs/jxxx9RrVbxl7/+FW/fvWv9/FDqUMeCfg/HPoBSFAoF6Ew+cQ97CIJhGLAMAyIcFSlT10GBYL/SBFwjfHNzE//+H/+BtbU1XLlyBZcuXepdoN9ibWqqCgpAClIQavdQoghQ2lA+cWNzE6VyGft3qFoMoG6Nd+KNd2OgVg3azex70eSZ+/jxI37//XeMDA/jxo0boQN9fhxZUUAIaWgfq1y6uBebJFY1bgZXiafN76mPJYcMXXc3KJFIBFevXMHF779HNpfDX/7yF3xaXm7t25qcP+DYBF3TUGW8/a8V33ywr+s6qGlCZAGJxSk8fkNKSPMdpG3j8ePHePnqFSiAn27cwJGjRx19+x2k7XihqSoAQIlEug5uBVF0KxBBWZjPS0uwWww86RoBTZbtYrcyMDVNWmHfgnDXuLS4iH/84x8YGBjAzRs3OuI/KswoG4zK40elUnGmSHfp3DlalZLdZrUQGwMvBELQl0qBUIpiqQTTNJ3PAzA0NIT/9i//gunpaTx+8gS//dd/uWoozT4v6NwopRBFEaIgoFwqocoqH3vYQxB0XQdh1FDTMEABiKwnrAYtnnVd1/HgwQO8ffsWqb4+/Msvv2BycrKtAK4Vmp4BpW5VohtaKIfI1ngjutziwgKi0ShGhoe7PlYj+K+3Gznn3aLxtHPUunNscM4vX77EgwcPMD09jWvXrnVk+xVZhkAIdNMMvK/VSqWnc0pabbY4tbrdTRnvCRMIQaFUcmMgG8DkxAT+9V//FQODg7h9+zbu37vXNEgnaBB/8L4PUYQgisjn8y39027iTxHsC5RCkmV3Nyqx5lQXIXhhd+/ehabrbjDw22+/4bdff8XrV6+QLxQc49Zl0N/MsJiW5cgpUopYD4wysN18FBTsLywuYnRsrGO1nzBo2ygH/N3P2a8pZ3qqFpT9P69k8ACPv8YfiAedif+z/dfQkjOO1s7j9evXuHvvHvbv348ffvgBUof8WUEQIIkiBEGAEZCFqVSrjlHulTNjHMtG4FrQnRiURCwGmTmZYrEIr1qGKEk4e/YsfvrxRxQKBfz6228oswpAIAL4y7zpnhDiTIssl7/6kusedheapkFk1FCdU0ODlN2a2DRd03D3zh23B2t9fR3/8R//gdnff8e79++3n8Fuk0lN1rjGq8Wi2JNKAh/uaDNb64VFnUGTU0GbmR1C29PY+b8B9NAg/+D1JfyaqWXV/h2tfUOjv4d9b7PX2LaNe/fu4dWrVzh9+jTOnz/fsd2XJcntfQoKgLuVc64DCVDj88D18R0k+5LJJERBgGWaTs8K3ZbxjkajuHb1Ki5euICFpSX8/vvvDavkQDCVyJ9EKn3lSaRvnrPv8vUlyd1VRfwBVLMg2zBw+/ZtrK2t4cjhw4gnEhgYGsLWxgZyuRzevHmDFy9eQIlGMTY6ivHxcYyNjUHuUcbUex0UTla/3Wm5jdComapSrWJldRUXL17syXHCoC7Qp7R26iEP0nyvs7maheczal7hoym5DWsIzp6EDfgDh7ew35MGBorAkWDj2tr+zcPDhw/x8eNHnDx5EseOHQv4hPYgyzIM04Su63U6wr1Q4vGjaXaffQ+dlsX7UylnQImqIq7rdVmpkZER/HzzJv7xj3/g199+w7Xr1xvOuCCCAOp3VOzcFUVBvlBAuVz+6qXS9rA74Hr6EpzEkcoceF2w3ORZL5fL+P3336FpGk6dPAlRljE6PIzcygqyuRyePH0KPH6MeCKB9NgYMuPjGB4ZgdTjCian8ER7UC0G2MZZEBw7x4ZzcazmctA0bccEH2rA/IXXzgZapgB7RbFNb/X3ATXzD5zSSQISTw2P7/u7tyLiPxbx/Os9pvOD5zw952uw+GVjYwOXL1/ufmAgIVBkGZZlBQ5u7FrOOeiQTYQVukkieXvCCsUiIopSl7Dav38/4vE4bt2+jV9//RU//Phjw74W/7PiXU+SJEFlvP3hHaxqdYNvPtg3TRMSC8Asy3K4+95gv4lSQbVSwe+//45qtYoff/wRumGgUq1CkSQcPHgQBw8ehGVZWF9fR3Z5GZ+zWSx8/AgiCBgeHkY6k0EmnUYqlWp7AJEX1Laha1rPSq0cjWTSFhcXIQoCJrgKxA6B81VrsuNe4+v9ucF3tGsNuuxfv4NsZOjd37GgkjsUEALTMHDr9m1srK/j+++/7xl1SlEUVKtVmLZdp41crVaR6vFUZ79z9cLqkm4VjUahKAoqqopyuRyoHhFPJPDzzz/j1q1b+K///E9cvnwZ4wHqRa7mdcCzxqshpWJxL9jfQyBs2wY1TQjYDgoFQah9VprQ/LY2N/H77CwkScIvv/yCzY0NqLqOWDyOI0eO4MiRIzAMA2urq1heXsbS58949+4dREnC2Oio41cymfDNtA024aZpOlPYKUW0h43AoiDAsizHNnvuyeLiIvpSKQyEUH7pFG6mHSyxQlvopAd9huc9u0XjCaQb+v71/sztrtsbRQgqbEOp6zp++uknDPVoVo4sy1ADBjf2Ss7Zj6aZ/S79SoLJO+umiaqqBg6rGx4Zwc2bN/H777/jt19/xfXr1wP9D0H98EZeWZJlGZVq9asWf/jmg32wh8Gl8MhyqJJPoVDA7//4BwghuPnzz0j19SG3sgIALm8YcHaHY2NjGB0dxZmzZ1EulZDN5ZDN5fDyxQs8f/YM8VgM6XQa6UwGY6OjDblyjR5qTddhM35oN7JofjQK9hcWFjC+b1/P+NyNTK0AuMNDOuFVet/3xRdPB5x9PwQAxXIZs7OzqKoqfrh+HSOjo9tZKc9nU+8xQ4IbGVvXYeg6RA8lq1ypIL0D0ncCIbCC6FacdtPB98SdWCweh6qqqKgq+vr6AkvsSiSCH3/8EXfv3cPt27dx7vx5zBw8WPeZddl9FhDxz9yj8eyhGQT2jHO/EmiXA2xDNpvFH3/8gf5UCteuX0dEUbC1tQUCh6rJP0eWZYzv24fM+DjOU4p8oYBsNotcNovHjx7hEYBUKoV0Oo1MJoOh4WGHLx+ARhtwVdNgw2lM7FW1GHDWlt+vmKaJpU+felKxBLZtQlAwXjMIq4PPrhvU+AXhnm+bfoVnlQkhsAFsrK3h1q1bkGUZN2/edGaS8Pvl9Ssd+F1JkiAKAkzbhmGablN6z+Sc/SCNh2xZtu3IS3fyPTE/G4vFYBSLKFcqDSdT9/X14Zeff8bs7Cx+++03XL16NXAugX94I38+ud8rFYu7JibSCt98sM8fgRrJTe8LAm786soKbt++jTiTpuINJyJraq1TGvA8hIlkEocSCRyamYFpWVhbW3OC/2wWH+bnIQgCRkZGkGHBv1fJx6WY+M5JZVn9RiOdO0UQZ3+rUMBWPo8TJ0+29VnNjG9D+IPZNvE1ZGDaPq7HEW1ubeH3f/wDgijil5s3keQavJ5Mie+gNZuAMIZaURTobKoh77+wLAuapvVEdrMOhDiZc9+vLTYZst2gwq2AsKqWIIowLasuC+MNaERJwpUrV/Dk8WM8evQI1WoVJ0+cqOvT8ZfEgW1J2kql0vEGdA9/bnirdybzK2EoPPMfPuDBw4fYNz6O7y9dgsSeNYn7FU8SyTnAto0Z6O/HQCqF48eOQTcMrLCE0sLCAubm5iBJEsbGxpDJZJBOp1tKH1ImtwlKe96XJQbQQz8vL8M0zbarlm6So1FQH4Aaid0O1jB/x24o8XTSoMve6P74+dMn3LlzB4ODg7h69er2s0lI46SRh3oayq8wKo9hGG6w7w7U2ok+vwbVKd430G4F1vUr2M7um4zy2qh3JRKN4qcbN/DH7dv4/fffcfH777Hf9zw32ljzzUipWT/ZLuObD/YJb+YjxFEf8VN4gBpDsriwgPv372NkdBRXLl+uydhIouhkLv1Gue6gxH19Jp1GJp0GPXsWpVIJuWwW2VwOz54/x5OnTxFPJJBhdJ+RkZE6o2boOizTBBGEngf7hC0Q7+ZlcWEBiiwjnU43fF+jwL6rgLsDo7ybGZhOm+Z4BiabzeKP27fRl0rh2rVr4b7bZkE+N4Y+oyhLEgQ405BN03QaULlR3okpsSR4yFYnmX2K+u84EY+jEJCFCeJLnjt3DvF4HM+fP0e1UsGFCxfc58RVUOCf76sQaaoK0zR7vub28OeAwIYzypIEQRTduRYA6oNTSvHixQu8evUKMzMzOHvuXE0gyZ85f8Nj3SrnfSWyjMmJCUxOTIAC2NracrL+uRwePHgAAOjv73cC/0wGg4ODdefEe8AkSepZBdd7PX6t/cXFRQwPD7ekeNgBfqXt6qmPY9+uV+LnvSsZWH7u7foz4iggvZ2bw+MnTzA5OYkLFy+Gt7f+BA1/Xjg10+dzZFmGqmnQdR2xWAwCIb2Vc/aBBGT3bctqSntqBApnrblZd1FELBpFpVpFuVKpCfb9wbskSbh+/ToePHiAu3fvolqp4OjRoy2fFb4ZqbJG4K8xu/+nCPYNy3KMGlP0qCkH8ZtOKd68eYNnz55h/4ED+O677+oWiiCKIJQ6E3g9aBj2eQIvAkfbte/wYRw+fBimaWJlddUJ/j9/xvt379ys/xhryIrH41B5U3GPGqi84GVfb2D26dMnTExM1CyeoOC+J81cnp87McpfRQamg2O/f/8eT548QWZ8HBcvXOgNL9wbaFDqchgpp/JQCoMF+70cqBUEf4XK9qhThN2U+QN9jrBZGOdECI4cPYpoLIb79+9DVVVcuXLF3cB7aWTetSoIAkxdh67rSCQSoc53D/9cIHCy+rIk1Wvre22nbePBw4eYn5/H6dOncfTIkTqbIUoSCCE19FBXyadR4MueVwJgcGAAgwMDOHH8ODRdRy6XQy6bxYf37/H69WsosoyR0VGk02mMpdOIKIpbLe5lDxiHX/jBME0s53I4e+ZMzeuC/GZPfJyn8tLJp+2anDNqOfjtvZHi8ePHeP/+PY4dP46Tx493RTH1xkW05tcsQGZUHlsQYDIqD5dz7iXVuO6cvMG+bTu+n4STc3b7OQKC7XgigYqqQlXVGk594DMqCLh48SLiiQSePX+OSqWCc+fPu3FIULLLn0T6EsPy2sU3H+wLniCnWamVB/rHjx/HCX/Jn0Fkkp01GZhWGd4GGVdJkrBvfBz7xsdB4fQIZHM5LC8v48nTp3j8+DGSySRSAwMYHBzEgQMHOrn8pvDKpFmUolIuo1As4tSpU/VKAzsQUHsbjjr59N3MwLhGuZ2Mgm3j6dOnePPmDQ4fOYKTp051XCFoCl+WW2ITPk3TBDwZmHYGqrR7fCII7jnYTJZWCGGUvQY5CM2yMI0wNTWFaDSKP27fxuzvv+PHn35yN1iBVB5CYAAo5PNOVnQPe/CA2raT9DFNUDhZzsCnlVLcv38fi0tLuHzpUkMKC586W0cPbWVbAqgNEUXB/qkp7J+agk0pNlnW//Pnz1hcXAQA9A8MIJVKYWR4eEeeb4HRQy22yc+trMC2LIyNjXVE1+wY3faBfSM0HtM0cefOHXz69AkXLlxw1I52iILo9yumbcM0DEc8gWvs79B98/sOvl7CJMu8dNAgRCMRyJIE3TBQrlS26dUN6EMgBCdOnEAsFsOjR49g2zYuXLgALuEcSOURRRi6Dk3T9oL9XsO2bdiWtU3jaUDhyS4v49mzZ86OuAlXXRQEEKY04H5MmBNpEPC7f4YjLdifSuHokSNQVRUrq6tYXFpCNpvF4sICXr54UaPE0O3gCnfRskZFy7KQzWZBCMFoQOPJTsBdFJ0a5d3MwLRplC3TxN27d7GczeK78+cxPTPTkVJEJ+B9KqZpwrIsFItFRCMRiGwy7U7A26hr2bZThm1BF2iUzfeDZ2Gqqor+kMoGo6Oj+OGHH/Cf//VfePTokWuYBd/GCNh+norFYsvP3cM/IVhjItfQ5hOe/fzyN2/eYGFhAZcvX8bk5GTDj+MV47b9SgsIhGB4cBDDg4M4fuIEqpUKcrkcFhcXsbCwgPn5eTx79szl+Y+l090HIWxTb9u28x+lyC4voy+ZdJpEvwBc7nmH77e/Br8SMmBWq1XMzs6iVC7jxx9/xNjY2Beb0uqq8pgmqG2jWC4jHot1ff+bwcvM4BXjVvY/rF9JxOMw8nlUvcF+C/88PT0NgRDcf/AAAwMDOHToUMNYTyAEJoD81hb6eH/eV4RvOtiHbbuNuRLjLtfcfkJQKhRw584djI+P4+SJE00/jnMb3QxMo1JrELzlV/7eBpAVBRP79iEej7sPz/raGrLZLB49egRKKfq5EsP4OIaGhsLRI+i25CA3KhIrxVmWheVsFqMjIz3ncDYDgYdK0SZ2MwPTjhqPqqq4desWioUCrl29inQm48j3hTBAvQAfFmWxbGShWEQqldqWaWPqGT01zmRbhrMVX58HSUFqC0FwszCmWZuFaYHBoSF8d/58rWEOMsrsPCt7ijx7CIJluX1bdZQFZg+y2aybQGoW6AOsYsyG+wBoL/kRwp8ADmUtGo1iYnISfckkjh47Btu2sZrLIZfL4ePCAgghGBoacvrMMhmk+vtD0yO4L6SMQigQRxXGNE0sZ7Mt70Ev4c5b+QYz+xxh7nthawuzt24BAH6+cQPJ/v7t4Z5f4Nx5D6PJNqqFfB4Tk5Pb952QWqpkD0AIcfqsWCWMorlfaVYl9iMWi6FQKMC0baiqGrpxff+BA8jn83j85An6+vowNjZW10MGbG8ev1alt2872LcsV0c4iFdp6Dpmb91CPBbD999/33KBuUoibHocV7PpCE2y/KAUKpfbFEUMDAxgZGQEx44fh67rjhJDNouPHz/izdwcZFnGWDqNzNgY0plMzUNK2cKnlLqLxAtRFAHDgKbrWF1ZwalTpzq7nk5BGo9Wb4VdzcCwf1s9M8VCAbOzs7BsGzdu3nQGjnyBbL4fkiTBME2Ypol8Po99fIYC3/zxFxLSs8yMO2mxgTwa//wwWRc//FmYsOfqNcypVMqROvWBG+lKpdL2ee3hzw9qWS6/XvEnRihFqVjEnT/+CJVAArZpPLwXrKN114hu4ANvzI1Go+hLJpEeG8PpM2dQrVZdac9Xr1/j+YsXiEajrrTn2NhYzcamoV/xND1ato3NzU1Uq1Vkmgg+9BrNhjCFAU867Ao9NGQSaSWXw+0//kAykcC169cRi8XAp/h+iUCfn6MsSbAsy9WQ7/fObqHOAElvQgno0q8QZ1K7zSf40nqFN15lsz1NuGEgiiJisRjK1SrK1Sqi0Wjocz195gwKLHH8yy+/IJFI1M7VoRSEfbdNJ7zvIr7pYJ8yg+zedPcPzk3/484d6LqOn3/+OVRTiUDItmE2TQi94F0FGWlBgMonG/p2l4qiYHJqCpNTU6CUYnNz023Ius+UGAYGB5EeG0M6ncbAwMB2kNWgDwEA1lZXYVkWMjugvd4UXRimr51bubqygj/++AOxWAw3rl/fVr/h3/kXNMyyLKPKGpDKlUrjgVoNGrI6MdD8yoLk0VpxKFuh0ywMsG2Y//jjD/zyyy81qkR8IjMFoLPm+D3swQvLNIOrYZTCMIy2EkjAdsXYXQ+d2oUmWX4C59luNJwxFou5gyJty8La+rqr8PPx40cIhGCID4ocG3NoCP5qtQeiJIGYJrK5HERJ+vJTQxs0YobBbg1qBBCqYjw/P4+HDx8inU7j0qVLbuxC0FnvWzeQJAlE15Hf2gIFgv2KP6EED4W3AxBBgO1pZveLiXTTy5dIJFCpVqGyRloxJMuBEILLly/j73//O2ZnZ3Hz55+dih37O1f/EQiBqqptn9eXwDcd7Ju6DkmWYdl2rVwmIXj65AlWcjn88OOPbXEJBaaJbPSio9prLD0G2jJNR26TkKbH4GXXoaEhHD9+HLqmYXl5GbmVFbx99w6vXr6ErChudiYdwMnkD+Tq6ioSiQQSX4hX6V4D0LlR/goyMI2OvfDxIx48eIDRkRFcvnIFclBz+Bc8b5HJA25sbgJA4ATAIASN/w5tpFnmz7spa7e02gj+LEykjWCfG+Zff/0Vt27dwo2bN13Nc56x5VNA1Wp15xqZ9/DNwbZtWIbh8PQZd19mAQFF+wkkoLZibPZianODoF8POZxRYIMix8bGQClFuVzG8vIyVnI5vHj+HM+ePEEsHnelPYOon/waVnI5pMfGejq0KxRCiAE0wq4NakTzJBKlFC+eP8frN29w8OBBnD93rraqTYhD0/2C4P1ghXzeURwMyUX3VjA6oZDatg2CbZnXXvkVRVHcQZSVarUtbr2sKLh27Rp+/fVX3L93D1evXnWvy+TBviii+pVWjL/ZYJ8bZVEUITA+JM/Yffz4EXNzczh77hzSbTajir6goGfwBPxqtepk9RUllMGxWSlVVhTsP3AA+w8cALVtbGxuuqXZpcVFgBAMejiZA/39EAUBFE6wv298/IsHzhSdB+u7moHh8J07pRSvXr3Cy5cvMX3gAL47f96dZ1Dzti91fh7IkuTy0MPy3L3ohItJmTwad0KdUHYaoSYLYxi1DfgtICsKrl696hrmK1euAPAE++w7K5dKe8H+HrZh27CZupvFe8LYRvPp06dYyeXwY7sJJF/FuCdSvECdMISm6wgznNGdxMqqDLx37NChQ7D4oEjmVz68fw8iihgdGXGTSslkEqIgwDAMbG1tBU6w/lpREzDuRhKJ/es/sm1ZrrLTmdOncThAwjXofTsNQpz5ReVqFYlksn1f7Mn41wyLbHHvbfY+QRB6LnSRTCRgsGA/kUi0dU19qRQuXb6M27du4cWLF+5wUtM0Yds2RFGEaZpfZRLpmw32wZR4BEGo0Rkv5PN4cP8+DkxP49DMTNsfy6fo2jvR8c4+VzcMwLYbayCzB73mAfctDiIIGB4exvDwME6dOoVqterQfXI5zL15g5cvXiASiSCdyUCWZVSqVYx8IRUeL7paojwL8pWoJlDLwoOHD/FxYQGnTp7E0WPHGm9kBAH4QqoJHFxjPxGPd5dp83AxXT3/Bi+12eRcwoxyL8GzMNQwUFFVpNrUd/Ya5pcvX+L48eMOb5rxQCmlKBaLGA7g9e/hnxS+7LttmrAoxcePH/GWJZDGOrCjAlP0MS0LPVW+Z/bHMAyYhgFCSMNgnzfatpK+TafTztDFs2dRKpeR9QyKfPrkCRLJJMbSaRisktDJ/egW3Wb1ga9nfouuabh9+za2Njdx5fJlTHzBZucwkGQZlXK5a7WlRhPjg2CzXjCJ2eleIhqNOgli24bawaT5TCaDkydO4PmLF+hLpTCeybgbGN5M/DUmkb7pYJ83PCmRCKhto1qtYvbWLQwODeH8+fMdGQSRcTV7ntln0AzDbXzhAUcNfaLDXWwsFsP09DSmp6dh2zbW19eRY42++XwehBC8ef0a5VIJmXQ6tBJDt+imW9+l8WA7I+MqQ8DnvDw/c2hMqcnQdeia5lwvu2biaVTl2rnsf5yffdkfQ9dx+48/sLG+jktNNLVd7FKTbqVYRDKZdDbCPaALeJ2Te+8998dgFTVphzZkyUQCm1tbqFSrSLaZhQG2DfOz58+R6u9HX18fiCCA35m9Jt091IDJFBNCICsKqG1jc30d97tIIAGeijGzSb2GZhggguAIVbB1W+dXAgQcmoIQJJNJHPYMilxdXUU2m8Xy58/u2nn48CHGx8eRzmS+2JC6bpV4XL30Nv2KpusAtn2KK3jAfIuXV+/3K17w35dLJfw+OwtD1/HjTz9hqEXvw25UjCVRRKlcxgQXn+hF3OCjM1HP7ymc+EsAdoQeJggC4vE4SuUyKpVKR8Mnjx47hnyhgHt37zo0UUnanu3ylSaRvt1gnxllwNmpVctlvH/7Frqm4V9++SX8GGkfZEUBwfai7jUMXQcohRyNOsbGtkFJ54o1QRAEAaOjoxgdHcXp06fxl7/9DWq1ClmW8erVKzx//hyxWKxGiWGn5DgbGWVKqZsV9v7Lf7YsC6ViMXC6b1horAFT1TTIbKpsWJRYRz2ljpzlwwcPoOs6Ll++jJGREccYEWe41NcyGpvAOe/xiQkYpolIDw2l+z0yY883Ylxjf6fuQTQadeTfLAuqqnY0qv3osWPIrqzgxYsXuHT5MiRRdBMF5T2t/T14YBmGa28iigJVVfHy1SvEY7GOE0gAoMgyBEGApqpAyH6asKCUwtB1EEqhMP9VE8RydLlGJUnC+Pg4xsfHYds2/n//7/+LoVQKhmniyZMnsB8/Rl9fHzKZDDLpNIaHh3eOy9/gWoL8isVkkG1KnaFKpVLNUMB20I1PoZSiVCqBsAxwoVDAw4cPocgyrl+/jmQy2dKv7Iav0U0TtmkimUjAtKyexgr+njEut8lnJ/WM8uZDPB5HsVx2h1G2fU2E4MKFC1hdW8ObN29w4sQJZwgZSxJ/jUmkbzbY9xplRZZRME3Mz8/j8KFDXQ2kijAeva7rziTFHmYsqWcuQMTb0MmaUcJw2dqFYRjIb21h5tAh7J+aQiIer1FimJ+fh0AIRkZG3IFeyWSya6PCy3CGpkFnQzlsjwFuZWht23YrAv5z4ZkU97c8o+LNrhDiLmBJkiBJUm32hvFV6+hSDPy1+Xwez549gyiKuHjxImLxOMoBC1lgA9kE1pHPh7PxnpIvAVVVYZim6zRacXfbBXeghH9/nk2qvEObRZ6FKZZKqFSrHQX7IARnzpzBr7/+imw2iwP797vBPldl+JKzJ/bw9cJi9llk9NAso0ZevHix4wQS4FDSBELcamMvYZomLDZ8ThJF165xmecabn+PsLW1BUPXMXPqFEZHR6HIMnIrK8hls1hcXMTc3BwkScLY6KgrHhHrZO36YFkWbNt2g7S2/Qof1BTwtzB+xe9TANT5lUZzALy/X15exouXL5FKpXDm7FkQQajzK26DKvMr7gaFUkcN6QsF/oV8HjaAZF9f721l0KaUVaD49e8EZFlGVFGgahrK5XJoQQsvREnC8WPH8OTpU0xMTmJkeNgJ9ilF5SuU3/xmPZzpMcqCIODjx4+glOLgoUNdfS4vxxDDgKppXU+y9UIzDNjUmcpISH02v04NpQcGepWNMh8ZGoJl2xAlaZuTCScTzAP/58+e4enTp4jH406T7/g4RkdGmspT8aDeNk2YluX8bFnbmV/TbMrl5kaMd90LfGALMwKCILjavu1mkDUmgRWLxULxDb3Za2rbWF1bw4sXL9Df34+LFy64vSE2+7u3GdW2bWc+g+ezDMYPJ2DPqSQ5DlkQIOzAJiBfKACUusF+rxy814Hx+891wynbqPKGxp1ALBZDsVTqPAsDYLC/HyMjI3j37h1mpqfd3/PKzV6wvwfA08DN/MCH9+8RTyS251Z0iAir5Oq67iYBegVd12FTioiiuNQUL5WE/dBTv5LLZiHLMvoHBmAx8YjJyUlMsqFL+Xwe2eVlZHM5PPQOimQJpVaDInlQb1kWTMuCzXwLt0VeH+MHD9AFn1/hDdKE0Wi5Eks7foU/H2F9CrCdWOL9QouLi3j3/j0m9u3DmTNnnGZptmnhmxfAiQMs5le894Urv/AKAU8oiYKwI5uAQrHoqKNFo72hN3vpUQF/NtjsJJH5y16KPngRj8ehahoqqoq+vr6O/PHU/v148/Yt3r9/74rBUOCLTTluB9+sh3O1vSUJlUoFiwsLODAz4y6Wjppv2CJTFAWqrkNV1Z4F+xRwNZBlWXZ26Q0eCJfH1oNFm83l0NfXh1g87kiU+hyNl5NpeTiZ2VwO7z98cClB6bExjIyOOgs+IKhvdB2yLIOPnQ8ywI1geJSWvlRm3LvZWvr0CXNzc5jYtw/ff/99ww0PD/ptz8+UGXbOPaQATNsGfNSwXm8CCoUCBFF0yq1swFY7CjbbF+XJUjV5meUJjHj2sNPyeONTcdaLIstQDQNVVe1IaUgzDBw6dAi3bt/Gx4UFjI6OdjX0aw9/TnhnRqysrGBzcxOnz5yBbhgdbwgpnHXOB9+pmoZED7Lc/LM1TXPU2hhfv1G/UJ1f6SLoX85mkUmnQVAf2BBCMDAwgIGBARw/cQK6pmFlZQXZbBbz8/N48+YNFFl25T+HR0Ygy3JdUN8IgihCEgRQXkVtw69wXyQxm/sl4PaKmSbm5ubw6fNnHD92DCdOnmwYmDf0K6YJahhOhYL5GTPg/vdyE1DI59HHqv2maXbeD8a+01ZCDtx38j6woGm1vYBLEaUUuq63NcuFwzAMzBw8iKdPn2J9fd1tyt0L9nsIN9AQRTx79gxyJIIDU1MwLcv54jqgMPDHSVEUiIT0hLfPH1KLlR4pHP4mYRniZguQeD+jEwPNyoWTk5MQRRE248I3yiqJkoTM+Dgy4+MwTRNbW1vIZrNYXV3Fk6dPYVNHpm14aAjDw8POQC82UluUJNfA8P/ArtHiI77bwG4N1KK2jSePH+Pdhw84sH8/Lly82Pw74sbU/zmWBSsScbJTLBPFs1W2ZcFk3MTATQDjKkqSBEkUndJ8iPtQKBSQSqWc2ROWBaPdYJ8H96yPpBV4lkeSJCebxrIwQg8Dfp7ZiUaj0AwDmqa1HezzYUPxeBz7Mhm8fPnSySwyhZRe9svs4duFO7UTznP3/NkzDDFbp6kq5Bb69Q3hSSJVNQ1aD4J9nhnVDcOxr4x2FAZ1TZH8HEPaWlVVsbmxgYPMNtoBSSQvlEgEk1NTmJichGmaWF9fR3Z5Gatra1hYWgLgDGsaGhrCyNAQkqmUG7xLogiB+ROeDKFg9rWDdbtbs1sMw8Aff/yBtbU1nDp5EseOH2/6+iC/wisa0Wh0e3I5u/c8+WZ5kk3+TYDAqK3ct4iCEOo7zxcK6B8YgCRJsG0bpmlCCRvse6oUYX0Cl1GXJMkJxtk1iaLoNs93C14ZiUSjsKpVaB0E+zyhNppOo29+Hi9fvsT5774D8HX6lG832OcNduUy5ufncf78eSSSSVQrFaiq6nIk2wLLikQiERBBcJtxOkENJQROYy7frfIscdigqEb+sfYgTRdrvlBAtVpFOpNx9V+DDCRviOUPr8moN4IoYt/EBPZNTMA0TeS3trC+sYG11VUsLS05Mm1jY25p1s+nduUb/ecdAi5t5AvKbpqmiXt372I5m8WxY8cwOTHRucQb4Co0iCzTUuOMKW28CWAZHG/JVPIG/zyT7sNWPo9UKgVZkqAT4lDdwlSm2KbMRYhr5udoY1tpxK9w0cugPxKNghSLMAzD3VCEhappztoTRZw+fRr//h//gcWlJRw4cMD5Hr7CLMwevjwoW4MAkM1msbm1hRs3bjgbTU2DqqqdBfvMryiKAhHoiV/h/+reBBI7TtgVV+NXvGu+hV/J5XKgcJSuVE1rmERyg07ThGkYTsaWUiiRCPZPT2P/9DR0TcPW5ibWNzbw+dMnfJyfR0RRXJ8yNjZW13vUtqqQ75z8177TqFaruDU7i1K5jLPnz2OsQ5UWTk8icL4vnlSr8ysNNgG8QRmMAs019MUmSSVKKYqFAvZPTUGSZRjMLynNkqm8nytED4UftmXB4tRX9jwJhMAGq8Dy3oUug2l+XtFIBNVqte01SSl13xORJJw8eRK3b93Cxvo6hkdG3D6SXZ0R5MM3Gexz1RYAeP36NeKJBKYPHAARRWiaBtM0oXVCwfFkYAicHaZhGG0b+KBdLG/Mkr2LpEnJtRHaCfyz2SwkScLI8LD7YFqmWWuE2X/+8/Vml2WWDRgbHcURdm2FfB5ZJu35+PFjPHr0CKlUCpl0GulMBsNDQ47WfIfwym5+CaiqitnZWZRKJVy+fBmJRKLzQD/MuTfbBLDsCd+A2QGZGm6cRU+jWLFQwNTUlJNpJ8TZRASVXEOWU5vBzYCyc/Ffb03Qz3owOrmfbrVNliGIIizThKbriIXMwpiWBdMwQG0bUTZ/4ODBg/g4P+/ysPdoPHsAtitVhBC8ePEC45kMRkZGYDOhAcM0oRuGI28ZFp41FlEUCMxHtYtGTZ86U3dzJ6d3GAx5V2arql4ul8PQ4CAikYgb/HkDTMPjV+qOw7LLrl8ZGEAmkwHgrMONjQ23h2xxcRGEEAyy12TGx2saKTuid/CK8RcKwvJbW5i9dQsEwPXr190qaCfg30tLv9JgE8B9iMX66yh1ZhMZ/LkHtgN/9m+pVIJl20j190OWJKhw5Jbr4g1/Br9D32KYptOYy2i/ziVtx0kEbLPHKaMdbvz4c8M3koZhtNW7ZfCKGksOZzIZDA0P4927d6586l6w3wPw5sNioYDPnz/j0qVLbkATj8VQLBahqSqUSCS0goL30eQBmGGa0DQtdLDvUiB8v7cphcHUg9pyFC3QKvBfzmYxlk67D5yqqu7wsaDgnhthvtAbBWeEEPQPDKB/YADHjh1zOJmrq8hls/i4sIA3c3OQJQlDIyMYT6cxGpCdaQXurL5EZr+Qz2N2dhYUwM0bNxBPJFAulzs+tqtJ39mbt2lQDJZtuwaaT+pzg39GAVJVFZZtuzrX7gRQLsHZgwDfC5dX6TGO3sy+93fU+3O7xtnzWVFFQcWyoGla6GCfN2nLsuwOzDt27BgWFhexsLCA/tOnv8qS6x6+PLjow3I2i1Kp5E5dFgQB0VgM5UoFlUoFcioVeuNKPYGKEok4G1/bhq7r2wF6q8+gtTrw7vkyWwCgs4pDA9QE/vy4vJ/JtpHNZnGICWFQ24aqqk41PcDGC77gXmjiVwRBwMjICEZGRnD69GlUKxVnVkwuhzdzc3jx8iWi0ShGRkaQYRuxdvsoej34rxly2Sz+uHMHyWQS169dAwiBqqqdVxX4uXfyfs/3gEikJqnENwC2t6LMNqRrq6sAgEQ87vYAcP8jSVLb1M9W4PTslt8r9zMBPqcdiKIIRZahMUGWZIjniVLPtGrGIKEATp06hX/8/jtWWJ/k15ZE+iaDfS5fubS0hFQqhUnPxDlZliErCnRdR5UN4gkF38OiKAqqqgpV19GKIex2ljd44Higz5u0OPjI8l5x0LznY+g61nI5nDpzBvl83tm4eMap83Ph/4lNjHArKJFIjRLD1tYWctksPn3+jPsPHoBSij6W9c9kMhgcHGy54/1SnP3VlRXc/uMPJOJxXLt+HbFYzJmFAHSuWNHjUrEoCBAVBTw0cFUqPFm1fKHgquIUCwXYYJUpQnoaCHCYDYxyo8Zz0qFx9r4uGo2i0kbJ1TAMp7rBjDLgrI2IomBqagpLi4s4dfLkV2eU97A74H5l4eNHTE5O1mSRI9EoVE2DxTabofm9nudXYGuR9560CvYbJY84NMMABZsN47E1XSUbfOBylPx81tbXoaoqUv392Nzagq7r0HQdhBB3M8MDe0mSmiq5tUIsHsf0wYOYPngQtmVhfWPD8SufPrnqe0NDQ+68mFSITRhf6zudcf3w4QMePXqEdDqNy5cvQ5IkVJkuf8d+oZe+0JNU4ls0N6nENgC2baNQLEKJRGAYBgqFgkPHYptVkZDtAL9H58apof44qZkqT9uBvo9REYlGoRuGUyULES9qTJZdANzkLSEEQ4ODGBkexuLiIg4dPuxSAr8WfNPB/vrGBg7OzNQtnlg0Cl3Xoes6zEikIxWFSCQCkRDoLDPYCF699kbQWfAYZNyJIHRc8gqCaZrQDAPLnz+DEoJEMulIdbHpikQQkIjHO+o8DwNCCAYHBzE4OIgjR49C13Uss4mLHz58wOvXr6EoCsbSaYfyk04HZv2/BLdyYX4eDx4+xOjoKC5fueIGxaFoOE3g/TZ3QkmAN695z/fD+/eIRqOQFcXhaloWqtUqyuWyw+lVFJfe0y0opS4drC7YD/F+t4m3RZbff+/4+uEVjmbrmlLq8on57AwAIOzzRkdGMD8/j83NzR2TDN3DtwWTJURKpRJOnjxZ8zcCx6+UymWomuYGtu1CVhQIqgpV01zpxyCE4TvzAY2RHdjM+8/FME3ouo7Pnz9DlCREmfiAm7EXBKT6+nZMwlYQRYyOjmJkZAQnTp5EpVLB8vIylpeXtwdFxuNIj401HxS5w71glFK8eP4cr9+8waGZGZxlGvreY3dMb/VSWXqUJPTCTSoxO2vbNgr5PPr7+52kJHsOVE1z+qBSKbdi2otzsVi1mKvUtYvQfWK+v0cjEYcNoustqTdc7MGmFPFYrEbBj1KKkdFRvH71ChaTWf+a8E0G+yYzyLquBza7SJKEiKJAY9n9ZkYVQGCwrSiK06TbYLhWIw5l3UcD0DmFJyjY7zIY5I2SfGfKH7CtrS1IsoxUKoUo2/BEZBkaa1bk54YdMBr8vADnPh6YmsLkxARs28Ymy/pns1ncW1wEADc7k06nMTg46FY8gJ0J9imlePnyJV69eoXp6Wl8d+4ciIc2w4/di6pCJ83JnWBtbQ3Dw8PoSyQc3izLHlrMOPFMPFcUkSSpY4fHewe4rJsXBK2v2dUC92T7w8Bbcm0lwakznj4B42V61hilziwCWZKwvra2R+PZAwAnibS5sQEAGGWa2V5EIhFnCBuf5tyiJyxoDUQUBQIaN+mGSR4BzhrkfTNBlbte+BUe4PMmYADY3NpCqr8fkWgUiiw7tkQU3SqaxNRy+DnsFOLxOGZmZjA9PQ3LsrC2tlY7KJJRgnjWnw+K7DaR0wy2ZeHe/ftYWlrCmTNncPjw4dqKew+PzakjOwW+2dzY3MSJEyeQYgO1BBYTWYzirLOqjixJkLhf6fB7r1F3831GmE+s8yuNL67mf7mYi0mdBuZmSo583YqC4AyS5N8pdUQuhgYHAQArq6t7mf1egFKKzY0NCIS4zRA1f4dT8td13dmJqmrTTHbQYyHLsrOgKIVumjUTb9vpMtcZdUbwUXg4Oi25GoYBzTBgeAJ8wFkUiqKgVCphdHQUKc9GR5IkdzARfy3fkdYYwh0y0oIgOLKdQ0M4efIkVFV1JlRms3j79i1evnwJRVHckuxACLpPu7AtCw8ePMDC4iJOnzqFI0eP1l1vT51VB03YrcCfP35+hmEgXyhg+uDBmt4L27ZRUVWIggACuP0ahseoyrIMuc3A3+VVNpBfEwQhVLacsv+EBsY56HdcgpNXywLPz7Kgsf6UaCRS5yj4pw4MDGBtbW1PjWcPDphf6R8YqJ1wzv8Mh1rCe8IkSWregxWURGJKb+5m1LPu3ObGEOABOJ/ZUocO7A5lwY7B1pf33ZyCVCwUMD09XUOPlSRpe/NBiJt55sO9emlPqc/XAU4SoG5QJPMrz58/x9OnT5FIJJBOp5Hs68PAwEDPfZyuabh96xa2trZw9coV7JuYqHtN10kkr039An5lc3MTlmVhZHjYCejZ5s5ifRqiKLrv0Q0DumE4VFK+CWwz8OczaYIkXIP6wVpdR9CGqNH7XQlOTWsY7BtsbVi2jWQ87j7f7mfbNiKRCKKxGFZXV786eug3G+xvbG1haHg4sNxDABBRRCweR6VSQaVahcCygoEIWDgCIZAVxWncUFVEFMXNQraTMeH872alVl66agWbOnJPPGPrnj6cAF9RFMiSBAons3/06NGa9/PNhlcloY7r6Vnw/kbLdlBzhxq8NxqNYvrAAUwfOADLtrHJlBiyrNGX8+AymQzGx8dDcTKbwdB13Lp9G5sbG7h8+XJNr0cN+L3ttpGqB/BWkPzfFcfGxoZTQvRtfLk2tShJiMfjbsafy1dyzn8VzvPD1UJagRvlhiX7Nu5bTXbfl30PQiQaBSkUnCpWQMnVtm1UGDfWzb74wT57aHgYr169gtqCqreHPz94Rn1jawtTDewC74nhVeNKqQQhlWq46Q3yK4osO5tvSqEyVSm30tpGcGCwJFIjn9ZORdGybdeveBNHAiGOX2GBW7lSgaZpGPbZGUmWAU2rUQursVVAz/yKF42uL5lM4nAyicOHDsGyLFc8Ynl5GZX37yGyQZEZJu+ZCNvX1wClUgmzs7MwdB0//fQTBgMSkN7z7UrOmaMHwb4/uPef2/r6OkRBQP/AQM37ZEmCJctuzMH9ismoK9zHCIRAjkQQabQh9Z2L2YAayiEQAivkNfMkql+ZqtGGoZUEp2lZqKqq0/PIxR7818Du3fDQEFZXVvaC/V7AsixsbW7imC+Y9YKX723LgqppKJdKEBpxChsFFpGI2xDoBl1tfIEUgM4e4Ga6tI0ymxwmuwbdQ8HxB/jeRZrP52EYRp1R5tw6mzXiBDVPNVr4bnMlEM5Y+66n1a5c9CkxLGezWF9fR7FQwOvXr/HixQvEYjGX6z82NtZW42mZGWRd0/Djjz9ieGSk4Wu7rXC05cx8G8hGx272OesbG1AUBUkfXY1PTfROBRVFEdFo1JXIM1jQzMv1kiQ15fdTpsRAKW3YfOc29bXjjBh1QWQUrkYNWYosQ5AkWIxi4K3YUUpRqVZhM/qOy6n0nQf/3JHhYVDbxqdPnzBz+HD4c93Dnw6UUjdj30gHnWfeY/G4G9SUSiX09fXVJ52aPPuyokBl6h/RaLRpE24QLKbExX1AIELYLk7101mjL8ACfBag+X3l+vo6AId26QXf7PBgLchuBPkVV2UIDg3C3+sUBq2466IoYjyTwXgmg9OnTyOby2F9YwPFfB5Pnz7F48ePkezrc8UjhoeHGw4HC8L62hpu37oFJRLBzz//jESzgX/8mejAr9Sp5yH8Zs6tGAXcq6Z+ZX3dqa77XsPjCMs0QRhFWJIkIBaDyeTKeeCvqaozkI5tDhoF8hZbAwIhzTfPbcJV9eMUHzSg1zWR4LRtG9VKxfF5oui+tu5s2LGGh4exuLCA/NYWBhit52vANxnsr66uOuWlEMMporGYI0FoGCiVy8GGuQE4l0tjO7p24R0A1LRxKSAg4fQhTVVd2gXgLLRoJIKIT4HBi431dQiCgEHfg8YpHjZ7oNtRSmjXWHcDPjF1YmICA0wtZX193eVkfmSczOHhYWf4SjqNvr6+hvejsLWFp8+eQVYU3PzlFyRbTGDtJtjn9yTone7v2WtcR9Vlpmt9fd3pdfD9nhtNy7LqKANu4M+0srmOOM/2c6ev+LIyPMgI4ut7wbX12wGnGvk3lH5wCU7Vo4rCA33LsgDqTHr2Nk957w3fQiQTCcSiUSyx3pE9/POCUopcNgsCNPQrfBNL4EgRlkolmJaFcrmMZDJZExTRAJvOEVEUlNnwR7uvr20ONw/OpRYZ0yC9fS4byJWFOGRJQoSv9yZ+pa+vr26DwSUZKduEBFbTgs7Pexx2X/k5evnt1PN3fyKlHXtJKUUikUBfXx/6UykYhoHV1VVkmcLP27dvnXky6bTb6OsfFOnF0tIS7t+7h8GhIVy7ehVyK3UlT+DZLvx0X/cT/Mki9rtAznub92ptfR3T09N1fxNF0ZlDFEB/5IE/jUZhMqoxn1dkGAYEUUREURz6med8TKav3ywm4X6nk4x5q8nubj8YWxtcgtO2bZQrFScBBadJv9H3x/3d6MgIKID5hQUcOHiw7XPdKXyTwf7nz58hSRIGfOWlGjBjSwhBIpFAqViEaVluJkbwBKyNwHdwGuP+hzViHK4KTxsZaHc3rOsuVYewz4hEIqGy2RsbG+hPpQIzFJIkOQvPNNGe8n09mhlri1IIlIL6ft/w/R54g21CHImwsbExjLGmuXK57Ab+L168wLOnTxGPx5HJZJDOZDDq019++OgRBgcGcPXateaT//jxW5yf/1zdV3mdvfNHAI7B8Aae2y/vnjdq2zbW19Zw7Nixur/xe2dRZ6CK3CAwkJmihm1ZTh8IK+e7+tmy7MysEEW3VN9qo9jNlXHn3ihYCpLgVFXVUQiybSTi8Rp6Tx1nn10DYeX8paWlLs52D38WrKysIDUw0DQxw58lIghIJBIolkowTROVcrl2EF8Tv6KwPpJqtdoyMx0EvQWFZ/tkPcEUp+qoam11OBJxBBxCZLPXNzbqsvocvEfI6sBP1p92QKAKx9Z6bal/M98qScP/zn2/LMvYt28f9u3bB0opCoWCSyOtGRSZySCdTtf0B36cn8e79++xf2oKFy5cCEV/bKdB1+9XKJuszq+35l54N0Ds9d2iVC5DD6BsASzYFwRHcSZoaCOc70BWFFcdTmcVJJupxKmq6lLE+LBEoLW+fqc+06UoN3mNoig1EpyUUmeN2jYIq+jVPHsNKsaRSAT9qRQWP37s6Fx3Ct9ksJ/LZrF/dLRp86a3XMMD/mKpBMuyUC6V3O78RqBwdpERRYFpmiiVShhstrkIQDMVHv+5ckkrb2OUQAgikYirix8WaxsbDUvRQbz9XoOQ7ZHegCd484FnceFxkDy7W8fv9CyuRCKBQ4cO4RDjZK5yJYZsFu/fv3eVGHR2jSPDw7h2/XpTg0w952LzCX38mJz/5zcWnr/x/+flUv/92CkUCgWYlhVolAHWPMem8bbaKAqiiBjP9us6NGacefOVKElOD0qzUiuD+wx0eF3+8qsXfglOzhm1bRvxWKxmkxtklPmzJRCC0bExPHn2DGUWrO3hnxOWZWF1ZQX7z5xxfsHWth/e51EQRSSTSRQLBac5sVpFokkmGIArgyuKIgwW+LR6T815sl4bAgQ2EfuhGwY0VXVtIeBQJrlfCdssahgGtra2cLBBplKSJEfqegf9CoC6hmYe5HtXuE3rEzAETjBW13fnsQ/9/f3o7+93BkXqOlZWV5FdXsbHjx/x5s0byLLsJhjfvX+P48eP48SJE83jCM+5BGXdGwkTEL9f8d4Dz3XtFNbX1kDptrqMF4Q4k98tRhFttdERWf9k1LYdX8KSSbxPRJIkaJoG0ooBwdDJBpmdOOBNvPnufSwWQ7lcdiU4efXLphSJWCz0bCAiCBgbG3NnQeyk/28H31ywz+WgTnF9/QZGmb+W32hBFNGXTKJYLMIwTZQrFSQbGFmK7ZJMLB5HVVVRrlTaCvZd6gSa71ZN00SlWq3h40uiiEg06jS2tPmgqJqGYrGI4wGZXv7ZwPZgpnb4iW3B970EXUVNKZL/iAYZGu9ruPEjBIKn7ErPnEGpVMJyNou3c3MoFItO428+jydPnyKdyWBsZASiILjv9x6LG2Ov8/Bm6OvMcsjvplsZvGZYW1uDQEgdZYuD8yvNgJJrIxBO4YlEHFlXRvExDAOlSgWEkFBzGnpx3UFNfV4JzkKpBImVdrnErO8kAoN9EAIiCBgaHAS1beRyOczMzHR1rnv4dsEHD6ZSKecXIde2KIpO5bhchqZpEAhBtIEkJ/crhE3k1U3T2WS2Eex7FUuaUXh0XUe1UoHGNgaAU8GLMsnMdrG5teUEfw0y+/IXSCIFImB913xzvmy49+88gbP90m27LysKJiYmsG98HACwlc9j6dMnvHv71gkA4TAMbNtGJpPBEOO2c/oWRW3lwUtN8p5L8CW1fvaI/zp7jPX1dfT39zdMEPHnz7QshH2aCNtkKiyByjeHmqqiqqrO5jmRaDqHgFN5OvErPPnUKADn1CJKKUqlEgAEJpAABPsU5lcEQjA4NISPS0uoVCpfTRLpmwv2AQCUbu+yGiwMgvpFI4gi4okEykyjvyIIiPmCFv9CjMfj2NrchMYCnrAlSq+8YdCDZVuWE+Qzqg8RBChsWEk3g0k2NzYAShtmenn/gGEYMHco2HfVVRr9nf1bk31pYJSbLml/UM4c7draGlRNw/Hjx/Hy1SuMDA3h8+fPePfunaPEMDaGdDqN8XQaMbYQvd+57S2ZejL+XiNRk61phSaUlG6xxpuoGhhI/izxIVjtbh5dDqZto1QqQSQEIASqpsE0DESj0eaqPD247iC+ZTQaRZU13nMecWAFLcAo27YNgRllQRR3PEu2h68f/NkKYw/960hWFMQpRaVSQVVVnaDG9yx6E0iA41cqpZLTUE5p6Ax7KyUsnjwy2eBJkTiKOpGQVJ1G2FhfhyzLDWfWuE2bltVQ/KFbBAZ4Puok8fwL/8+eILzGbzQ7Fvv8aCSC3PKyE1cIAk6dOIFisYgP7987gyJluWZQpBKJ1PoUJmoAsi0h2coWe18TeJ49Hsjpxdr6ep26mxeSJIH4FJjCwivjaVsW8oWC+72UKhW3f6TR89ppEslm0rBAbULR+3MkGoVWKqFYqSARiwX6N+8z5X42r/YJglM1Zv9+Tfjmgv22vuSAYEOWZTcTU61UADiBAzcS/qZCUZKcDCfj+4fN7jcyytS2Hc6ah28sK4rT+IHuKR/rGxuIRqOINRn4IjNqh+mbH7Aj4PczgC9H/a9hcBtw2q1qqCpmZ2dRLpVw/do1yIqCl69e4ejx4xjo70exWMQy4/o/efIEjylFX1+fO3hlZHi4JtsveA2tJ/ivOXcPCH+db/OyUwaZUoqN9XVMBGg6c/BpuxYbf97p5o4IgrNZjsfd78W07abGudNn2cvL5Z/jV1IQJQlatQqbEAwQ0ngQSlAGhv3ez/3dwz8v/MFdIzSy0RE2UVZVVVRKJdBEwn0mg/xKNBKBIIqgIQd0cZimCVBal3TyJ4/4MXo1KZ3z9RutFd4fxCUUdyLYB7C9nj3UT9fGNgji+c+c3tPues9vbWH21i0QABcuXsTs7CzS6TSOHTsGSqkrGZ1bWcE91v8zyCSj0+k0BgcGtqm5NZfS2i/UiTjwyoHPHvYSqqqiVCw2VTsUWZKEb2I65tILglMdi8chsL4PPguG9ykGDW7s7GD17/RXjgkAXVUhSBKGUqnAKpgQVC1mMUvNpv0r8yvfZrAf0kk3WgyyoiBm26iUy6hWq7BM083wBiEei0Ftk8rDjTIP9imlUDUN1WrVfVAkpn/ufU230zzX19cxxIZgNEIvefs1mW84ZVHbtmFbVv05tMj4ez/T+cjwiyWfz2N2dhYAcOPGDfQPDGCDTcNkH4a+VAp9qRSOHj3qKDGsrCCbzWJxcRFv376FJIoYHRtDKpVyKiNtLlbK/wsoK9dtdHrA5atUKqhWqw2rOBwik6o0TbPjYJ8yI0wB9CWTIHCmCWqs2dswTSiShEg06hrnTq6umcIGz/6oquoENYRAJARSgw1rI76+/zhfl0new26gnSRSo8xiLBYD5QF/peKqitkBa91P5QkT7FPUThkFgpNHCkse8YDbYgpanYIrsxw6dKjp63gSqRfiD3Vcd9RWXOsSKGFsacgNnRfZbBZ379xBMpnEtevX62ZyEOIM9hwaHsbJU6egqipybKDX3NwcXr58iYiiYHRsDP2pVCgFwfrTpvXXzfjn/uvz0oc6BZ/b0kyemqux2WyYWqdsBJNx4gVBQF8i4QpDGKbpDniLsKptKzZHp+DJpSqrslE4m7J2pL29mX2gzaT0F8K3Gey3+fqghz8ajUIgxG3IMEzTkU8LCIbiiQS2trZCU3lsSrdHmbPmkwrr6gacBqlYPF5PO+jyIbYoxfr6Ok6cPNn0dd5gP2gwUSO42QQPL5H6FAFcik7QtYS9vjaD/ZVcDn/cuYNEIoHr16415Mx6Icsy9k1MOJMOKcVWPo9cLofs8jLeLC+DAuj3KTGEOh/brr9OJktXA7458vwqqDzYDOvr66BA62BfFAGW3e8UfDqiKIpuMB+LxaBEItvG2TRhlEo1xrntkmuT13J1BIM1vnO1LNuygCDDHBDs86qR95n/+szyHnYDvajwxFjlS61WUa1WoRuGw0MO+Ox4PI5yqYRypYLhEFQeXi0WBAFEEFBV1abJIw4hQIKzHZRKJRi63pCvz+H6lXbtjL/qy31LqLduc6VbwW7Tr3x4/x6PHj9GJpPBpUuXIElSywF80WgUBw4cwIEDB0BtGxsbG8jmclheXsbS0hIInGF+mXQa6UwG/alU537f/716KCr+JuB2nu31jQ1EY7Gm7ADA8QUGE0joONhnlSjOlxcJQSIed2YLqarzL5sBE2H9JoRRSdupmNMgv+xBuVzenl3Bhma1ExvZvsw+F6j4mvCnDvablewopZAVBUlBQLFQgGVZKBaLSCQSzkRAD7xUnnK5jIH+/qbH5UbZsm2nSdQj9ReLRhGJRALPi1AKG51nGgtbW7CaKLNwCKx0RtmmJMwDTW17O0Pl+Q6CrqPRNxRWe91Po2mGj/PzePjwIcbGxnD58uW67y4UCMHAwAAGBgZw6NAhbG5tYXNzE8V8HvPz83jNlBjGxsZcIx0Joo0EUJX47xuhm4z/+vo6kslkS7UnVxe5i0qOwTjAfi1pURAaGmeu0x92xVJKA7Og/G/lchmWbcO2bcTYYLBqtdq4QhVw3+tG1nsyiHv450W71cRm6zTGGvpKxSJMw0CpWEQ8mayrqkWZnK0RksrD+8Bsy8JWPt86ecTg12hvF+sbG6C2HajM4gUP+GxGGWzqV6gjy9zukEo/3MCvDbT0K5Ti2bNnmJubw8yhQzh75kzLCbBBIIKA4ZERDI+M4PDhw9jc2kKe+ZZXr1/j+YsXiEajbv/YaDrdVb/e9oF937fvelslldZWVzE8PNzSLoqi6Ey1NU0ghKS1H5Q6g+ko6rPoEmvWNQzDkVWmFFVVha5pTvVYktqndAfAsixUKhVnqBelSPb1OQMmWSU8kK8fcFyvEg/wdVaLv7lgnyP0TrXZDpCXj1IplCsVWMwwx+JxRHxcRy+Vp1Wwb+g6KqwfQBQEgBDEolGnN6DZeRPScppuM6xvbIAIQiiqkSRJziRG09xeaJ7jBgXl7TjCbhCKP0spXrx4gdevX2P64EGcP3euI4McdGxZkjCeyeDokSOglGJra8uV9rz/4AEAYHBgAGPpNMYzGQwMDm47nW4qGuy1/rvX6N1ra2stN3aAZ7iWbdcN1woDmw3LoUDDqlaQceZSshEW1LRCo4EpXoMMOAONJEmCommoIpiO5vZP+OAGF+x89vj6ewB6l0RiHwZRkhy/wjKGxUIBiUSiZrPcLpVH1zSUSiXIsowIcdSk4tGoo9u/g8/x+vo6UgMDraV7mfiDzoY2upuPRn6lXT/R4PXtJpGa2WPLNHH//n18+vQJZ86exeEeTdamlCIaiSA1NYVjx47BtqztQZErK/j48SMIIRgeHkbGMygSTeKBdr7zoH45lybl2bialoWtrS2cnpxs+Zlip5UcBrdShcaN8TKb5MwlZC3qDE/k8rGhMu8NYkDDMFCpVFzqU5LNyZBk2alSmyb8HS9BfH1gO7PfjkT6l8Y3F+y3G0g2a2JxM8iCgL5kEpVKBZqmoVqpwLYstyQLeKg8jLLQKOgxTBMbW1swDMPN4sdjsdABVjdyhRsbGxgYGAi1ACRJgspoSVF4yqG9QDPjFOIYbrm10d8tC/cfPMDS4iJOnz6NI0eO9IzH5+q78x06cWQtBwcHceLECWiahpVcDstM0//169eIKArS6TTGxsYwMjZW1/Tc7Zl57xhhJWtd15HP53EohDMihEBkzU+mabac9OiHwacbskmZzeA3zrZto1gqIRaNQmky9RlAY4NcrTrNxYKAuGdgltCs90QQ6jmt2HZM3CjTvWB/D/Bk5kK+vpmd5o2goiiir6/PCfgNA+VSqS6RFJbKo2katvJ5mKaJGKNYtEweec+3CyrPxvo6hltQeDgkSYLJuNayonTdg+ZFt31OrSbYaqqK27dvYyufx9WrVzG+b1/Hx6o7tq9yJLD+sNGxMZwBUGGDIrO5HF6+eIFnz54hHoshzWikI8PD9U3P3SbV+A/cLxOCrc1NmJbVkrIFODaUCAKoaTYcrtUMbrW4hcQ4IcShhrIJtxrTvy+VSojGYq2lZAOeQZUNLrXhJKpisZi79kRBAEH4TQxnSADh2Ai7hW822G9rVxtgJLyauhzxeByiKDr6xJoG07aRjMdBRHGbymPbgVQeCqdhUlVVZ+gJIRgcGKirELREFw/L2toaxpkucEOw65YYjUfX9eBm2i7QLve8EYI2SLqm4fbt29jY3MSly5cxGSID0Q6CVBO8iEQimNq/H1P79ztqOBsbyDEj/ZFNzBtgSgyZTMZ5TjrgGDY8P/Y9raysAIRgbHR0u0zf5PMlUYRJCEzbDq2LzKE3KLU2AjfOsiShqqpO05WmuYFK0IbBT+GhdHvois2qLVGPQQY82t5BAUUDCo8/A/P1muY9fGsIElgghCCZTDoTn1njrmVZrqqVq8pjmoFUHpvR16rVKizbhiRJGBoYaFvtplnSqxl0w3CSCkeOtHwthbPBoXACuS8V6IdNIjXb0JVKJcz+/jtM08SNn37CYMjNTVi02mjEEwnMHDqEGTYocs07KPLdO4AQjI6OIp3JYDydRoINBe3V0CbuV3K5HCKKgv6BARBWaW306d7hWqZlQWkj2K+h8IRMPhG2XmRZdmI01pzOJaCD/AoB4H0Ked+XzvoVo0yW1i+lSyqV0AImlue7FRjX/2vENxfsA04mnu8KWyGo5FrT3e4DpxyUy2VYhoFiqYREIgFRkhpSeSzLQomVa3mzSiwabT/Q5+fcQXa/yhzJUBCtw7Ox8VYzJEGASWktladLNGuYaoe7DdR/b6VSCbdu3YKuabjx00/B19ol2mni4mXXYabEUKlUHAOdy2HuzRu8fPECEcbJHBsdxcjoaNtZ9UbIZrNI9fUhFo/XZGi8pVkvREkCOL+yDXC1hWYUnkYQGJ9fFARH+5tnY1iW3/9abiQpK9UahgGbUkQVJVBCUGQzLLjcn5df6VXz4ODXzpUkLNt27AghveHK7uGbhSiKoKzyFRaBSaQGr43HYhAFAdVKBTrLTCYSCWdqdSzmDHr0UXkMNrndphQWGxqXiMU6k7XsMCDc2NhwRAAaBL9+XyozO2Oy3pqwDY7dILRfYf/6v7O1tTXcvn0bkUgEN2/eRCKZ7On5eY8dJvMriiLSTK8fZ8+iUCw6Wf9sFs+ePsXTx4+RSCadjP/oaHDWv0Nkl5eRTqfrNhLuZjHArwisSbcd8DkQhLSexu6HKAhIJBIgTIXKME2YbO3Ucew9G0HbtlGpVGDaNijbcAdVBSTWDxAYtAfEZa5Clmdmi8ESvjs2tLQDfHMeThAEDAwNYWNzM/ybPF94wy/RA0mSkOzrQ7lUchp3CwVEIhEns+ij8qiqinK1yg7jDGUQRLG74EEQgDYXzyaTy/I2UVE0p+fIigJL05ySa4+CfZDG0olh3U1QFmRjfR23bt2Coii4+fPPSO6AQQawXfLrwEnFYjFMT09jenoatm1vczJzOXz48AGAo5zDdf1TnSoxUIpsNoupqan6P/EffIG/JIoQ4JQm28kG6YzCI0lSx447wrKXnHdfZdWvmmwMCxoMw4CqaaCsv6CRQQYcxymKYp38W6Mr42VZr3NZXV1FJBJpXRHbw58a/f39gCRhY3091CRlfxIpjGwyn0VRKpdhmSYKhQKi0Sji0SjKxaI7YIsQ4lSJmZymyLj5hmV1JkDAz7kDKs/m5iYUNpuGo1myjBACmW2cDMMIFjLoMUJZsgaiEouLi7h//z6Gh4dx9cqVniVj/GhXCcgFqwwdPnwYhw8fhmWaWFldRS6bxfLnz3gzN+cMihwddf1KvMOJrWq1IHNT0AAA11hJREFUis0GVRz/RokH/pIoQkP7vH2e1Y90+DwTQtxGeC6ZWa5UEPFn6lnjraZp0HTdfW6TAQ3zHN5Gc4vRR/kxg2IpvtERJcn9++rqKjL79vVszkUv8M0F+6IoYt++ffj87h10wwg1+tu7Kw07jEIUBPT19TklH02DqmkQTBNgSjbFUsmdRAuwYV3xuNuY224WNPB82wA/n2gs5hiWEJUB2cPb7xV6oS/rL7d+WlrCvfv3MTgwgKtXr0LZQQdSp9bSDjzXLjADPDo6ijNnzqBcKuHz8jKy2SxevXqF58+fIxaLORmcTAbpsbHQ2ZmtrS2oqopMJtP8dPgPrJmP89ipbYOEzDgYut5RVr8GxJkomEgkXM6lNxvDJdxUVXWyLszANjPIHBJ7r2GaiEYizjU34Ot7jTK/N6urqzh46FDvNrt7+CYhiiLGMhmsrK2Ffg/PfvIEUhiLIUoS+vr6UKlUnI1ttQrCqC82U3uzLculpkUjEcTjceTzeSe46nIdtotisYhkKgUAoekJsizDsKwvFuyHkd/0NvASNnn29evXePHiBfbv34/vLlzY2SpEp0mkgEz6+Pi4k5xg4hGfl5e3B0U+fuwMimRNvsPDw6G59LlcDgCcikKj0/H9vzcwDn1Jtg2dTXTvavPKjp9IJFz5Z03XYZqmQ8kWBGhMMIJTOIPooH4IrNqgWxZ0XUc8Gm3a92l5kkj8U9fX1/HDzZsdX9tO4JsL9gVBwOTkJF4/e4a11VXsC9lEU6dHGyIoJYQgHo8joigODcE0IcBppilXKu6i4GOVgfphWp2inSwMBVDI553yYxvBtizLbiOKZVk9KTmRgF6Imr+HoCh5/zo3N4dnT59icmoKFy9caLsJqF24GYy239j8uuPJJA7OzODgzAws08Ta+rrD9c9mMT8/D0IIRkZHXWnPvmSyofPKZrOQZDmUEg8HH+ENQhx51xDZfT51l3b5PBPnBEDgBC+yJDlDhyhFqVx2nllKXd5oLBpt2bTF4Y5tN03YYL0WDdQSeLDCM/s2pdjc3MTVH3/s+Nr28OeAKIqYmJjAq8ePUa1WW2qMc/BgP0zfDIfANrK6YbhiEDalLg2Qz/RIJhJQZLlubkun4Ouwncmt+Xwe/f39bSVxZFkGYcFXzzjlTY4fRn7T60tt28ajR4/wcX4ex0+cwInjx3sm8NAIHSeRmsUqhCA1MIBkKoWjx47B0HWseAdFzs1BkiSMjo0582LGxhzRkQZYzmYxNDjYUsq55tzANk/MT4T5rnlyURSEtik8/uNT6igqxuNx6GzzbNk2CoWCe+94tSwei4VO6oiSBMFDYW10XbyiwSfVAw7dWDcMHDx4sPNr2wF8c8E+4FAhLDhNimGCfX+mvN3cM8/GaKrq/KdpUA0Dfckk0pkMFD6p0BtQdBvsk+bayNz48dfkCwWHFtImJEmCzegTvQj2aYuNVMuqhYdf9+TpU8x/+ICjR4/i1KlTO26QgXo1ntBotYH0/E2UJJeTefbcOZSKRWfqYi6HZ8+e4enTp4gnEo7+ciaDkZGRmqx/NpvF2NhY2+coiiKIacIyTUjRaEMeJoe3atVt1su7yRNFEYlEAiWmQsIHs/X19bXMuvghsSw9H4gCBPP1XRUeUXQN9wYbShaGtrGHPzcEQcC+fftw/9Yt5FZWMH3gQOs38Yx+h3ZJkWXIqRSqqgpSKEA3DJQqFaT6+zEyNOTaYz65mg/T6got7BSfUG8DgG2jWCi0LYLgXWO97AdrhlZJJP4Xy7IwOzuLtdVVXLx4EfvDfM89QMdJpDYgKwomJicxMTnpZP3zeTeh9OjhQ1BKkWKDIjOZDIaGhtznybYsrORyjrJdG/AmkUxGpRRabHwNNqCxW8oUwXaVBmDDsAQB+XweFVUFWEN7X19fw9lGjcCHofI+L5vSQNEO/ne+VikhWFlbgxyJ4MAXerbC4psM9iVJwmg6jSwrO7UC35k1HLXdBpRIBDFGlVF1HeVSCZRl/7lurNfYdYwG5+jSkWpeSlEsFjviHcuyDINJpfWEX9YljYdSCsM08eL5c2xsbOC7CxcwPT3d/Xm1cXygA25lKzT5vGRfH5J9fTjEOJmrq6vIsmm+H96/dylBaVaWXd/YwIXvvmv7FAQmKeY2wsK53kbG2aXw9MBZCwB4oddmKgo2nLWsaZpDweng2eEVAG50Ke9V8H2W3ygDwOraGuLJ5B5ffw8ghCCRSEBJJLCSy4UL9gnZXjtAR7aP84D7EgkUCgVHLURVUWLCEJIkuQ2AXVHpPMcLGlzH1z+XDSVwpooaluXovbcJWZbdBvhe2I9WtiFMEqmqqnj65Ak0TcMPP/6I0dHRrs8rDKhtu89G25u1Tv0p2R4Ueez4cUcyemUFuVwO8/PzeOMdFJnJOJRk00S6BTU0CKIoQmDqNjxJWTPPxXMN1Lbdik+v/Aqv2ZimiWq1CkGS3LhGZMnMtq+JN5r7JTV9n1XXB0Yp1lZWMH3w4BehsLWDbzLY5yXXuWfPoLJAoRlqgvwOg7gqy+oLgoDx8XFsbG6iVC5DNwzYpRI0tkul6D6rD8BtdK3J4NPgCaNVVYVhGOjrILMvy7L7UHcycMmPlgFbi8xSpVLBo4cPUalU8MP16xhrwh/cCXTF2W8CgmD1Dj9ESUJmfByZ8XHg3DkUmRJDLpfD06dP3fu7sbGBeDzeFidTFAQnMPaUtOsqSOyZsxi1AOhNkME/V2P9L4Bj+PuSSaRYb4zJhmfF4/HQ918URYBSWCzLKgpCYBbNNcqea1lbW8PhI0e+iGLIHr5+iKKIdCaDT9lsy7VKwTbNISmhjVAulWCYJkRJwsT4ODa3tlApl9GXSCBfKCAaibjBUa8Uo3g2lGfxvTbbe83FYhEAOgr2uSZ6L/vBusFmPo/79+5BFEX8fPNmR76yU3iHebWbRGpZKQ/5eZFIBFNTU5iamgK17e1Bkbkc7t+/D8DxeZ8/fwa1bQww6c0wEJhf8fZ01LyXJWA4g4DAWWs9GUBFCGw2gZpLRBNK0d/XBwqgylTdAIceGvZ+cUUer8qQv2LspYbyyjulFOubm7h49Wr319ZjfNPB/qO7d7G6uoqpJmXGmi5yQegoe1ipVKDrOgC4kprVatUx+KYJiCJ0XUe5XHYoCiH5nmFAsT2kxb0OH0rFIkBpRwo1IpMhtNmOOzRfr0MEjZrmyOfzmJ2dhU0pLn7//RcP9L3KRW0b5RCvaXv7QAj6Uin0pVI4cvQoTMPA77//jkKh4HL9RVHE2NiY25DVjJPJNwUNm6k812xyDWQmb9kNeLWmVC7X9ABEEwlX1UQQBGeKNWtSTCQSoWXqBEFwmhpNEwJ7fr3KCRZTIAK29fVNy8JWodCzCZl7+Pbh+pU//kCxWGxJi3TXBW2sTtMIlDr6+Txrz2U4q6oKCqcSJUoSqpqGUrEIWVEg9ihA5YEX791phGKpBInxoduFxJRJOLW12w11y0RJk6B4OZvFndu3EU8kcOHChS8a6APbvqGjO7ADmu1EEDA4NITBoSGcOHkSmqrib3/9KyAIeP/uHV6/eoVIJIIxRjVNp9NN4wKeYGnWpMvZFTrrrQojrNIKlFIYuo4y6/+yKUVElusoOyoP+ClFLBYL5c9kSXL7GWsoPD6/AjC+PvvMrXwetm1/ldTQbzbYj8fjkKJRrORyzYN9vwFo0yiXy+XtnSGj6wBOtkPXdeiGgZGREbeBVzcMRxvZshxpwQ558O7QrwD+sR/FYhFEFJHsUHJLlmVYLFjqNtinaBHUNjDKuWwWd+7cQSyRwOnTp1uOjt8ReM+r3QA3zHPVZdAsiiKKxSIOzszgxIkTKBYKLt3n0aNHAKVI9fcjzUqzw8PDNRkWNwNDafMqDnWGrVE4tLVOK2KUUuiG4eiK27bjDHyNUl4efzKRcDcEpVIJyUQi9DRo27adwS6eY/OAP4ivv7a2BlEUv0qjvIfdgSRJyGQyKGsaVldXGwb7PKvvBg0NSvyNQClFick6c/oQz9onEgmYpgnDsjA4OIh8sQjTtmGqKoqlEqKRCKKRSMcVWLdCjNbJh2KxiESHgTEhBLIswzYM6IbRsvreDM0aJN3jNbj379+/x+PHj5EeG8Ox48d3RQqRZ387+c5aPVFhK8bNYFkWqqqKy5cvu6wFzvVfXFgACMHw0JCrHNff319zPIHZVavFxsRi/WKgtKtg37Zt16/YlMK0bUh8pgvTuue9d4osQyCOlK1hmqCVCmIhKseiKEJgvSuWaULw+Su+EQBqq8UrKyuIJRKYmJjo+Pp2Ct9ssA8A4/v2YWFxEefOnQsscfoXCu/aD5uFKZVKbuYlzpQROBKJBPL5PFRdR7VaRSKRQKVSQVVVAUJQ1TSoqupw/KPRtoZeuE2izkm3PN9ioYBkItFVo5iqadANA+3ncHwIERj6+ZUfPnzAo0ePkEmncf6776BpWu858yHg1UJu+/ghnqlOhqV5sbGxAU3XkWFDT1L9/Uj19+Po0aPbSgy5HBYWFjA3NwdJlh0DPTaGdDrtNL+yLITFDGQQdJYFkYhn4EkbdIUaYwy4DbhRj8oO38x677IgCEgmEo78IHWUelwD3gSSJEE3DGdQi3eTyM7ZCjDKi4uLGBwaCjUWfg//HBBFEbIsY2BoCIuLi5g5dKjp9FAvwq5rvpHlmwW/vGyqrw/FUgmaqsK0LCQTCejMNluWhUq1iqqquoPm2kkmufKghEAIcc7FQgGpLuaZyEya2ugy2A+dSPG+jlI8ffYMb+fmcOjQIRw5cgSaru/OxOyd6gNj6PZzueTm6OgoiCDUDIqsVirIMa7/6zdv8IINiswwTf/R0VFHPpPRKJslkTg7QvEKPrThVyzbdtaCrjs8fUpB2AwKr1/xf54kSYjH4+5gx0q5jHiIyrEkSbDY8+vtL3CTSN5hWnBimk+fPuHw0aNf1TAtjm862D916hRu/f3veDs3h+MnTtS9rtPAirJAgzf1JZPJus0EN9Tm5ibyxaIbyCiRCBLxuDM4yDBcXXFZUVxJwWbHrXvwQyyGYqnUEa+SQ2IlK4tlRzuVwwqbYfAuymfPn2PuzRscPHgQ586dczmeuxLss01WJyXn7tqSwyGXy0GRZQx6BqdxeJUYKHX0l3OMk/ngwQMAwMDAAIaGh5Hq73cG/DTYgPKsfk2DUYi1ZNs2NF13jDH7fokguBNzvaVe78RcLwRBQCKZRKVchmXbKFcqLQN+3lPgH+xCGWXIb5S3CgUsLi7i//t//9+78pzt4esEf8bOnT+Plw8eILu8XNe87adVAtvJgVb+xrJtlIpF104m+/rqeMt8UrtpWSjk80j190NRFGe4nKI4sygsy00mRSIRRFskk2qSR/yc0dpm5QsFzHTRxCrLMsD6ybrJPrdrWy3TxL179/B5eRlnz57FocOHUeWDL3ehP2en+sBcdNk3sszkXoPUcWLxuDsokto21tbWkGXKcR8/fgQRBAwNDWFwcBD9/f1IJBKQA+4xte3tarH3OCHO27Qsd8PLRSVEQUCExVPeQamN1qEkSUjE4w5V1LZRZg3wzXw9nw4cNDDMZL4F2LYbS0tLyBcK+Omnn1pe027gmw32uVTfocOH8XpuDgdnZmqCk4aPEHsYmi07HuhzreNGhjTZ14d8oQDDMFAql53mXEGALMuQZdntDjcMA7quw9B1yLLsBj/uuXJaRYAxIHCMRLOO8nw+37XMk1eCsyvt2xAghMA2Tdy/fx9LS0s4feYMjhw+XFN+2xV8gQxMN5n9bDbrjDJv4bAIIRgcHMTg4CCOnzjhKDEwA720uAj17VtIoogxlp0ZGxtDhJW3DcNwA/JGpVa/prhl29BYgxTgODevMQ66m83ug0AI4okEqpUKTA+Hv1HAzw120Gd6qzX8/c+fPUOirw+XLl1qeA57+OeDWzEeH8fK8DCePnuGTCZTZw+CnudWwbPtCfS5zn6jQKMvlUKlUkGlUkGEDfQRJQmRSASRSASGYbjJJFXXoWoaFEVBLBar2cA3m55OCGk6E0VTVei6jlQXSSRRFCESAkpIVxKcYTYmgGM3qtUqbt26hUKhgKtXr7qbNf+gxi+Jbmg8YRD2/gTBMk2srqzg+PHjrY8jCBgdG8Po2BjOnDmDSqXi0n0+vH8PnQ1Ry4yPI5NOY3RszH0edVZVEQShcaO5jw5nsiFZBqP+2NSZ2Bths1o4+LW38q01VFGW0E0mkw03YaK3kd0DSqnrI3ksato2nj9/jqmpKezfv7/peewWvslgH3BusmmaOHP2LP7y6RNevXqFc+fOuX9v+MXzEmaDz61Uq9uBfosJniKjHRQKBeQLBefB8byea7xarFtc0zS3rCmKolMNkCSXS90MjTIjOpsQ123TkSLLziRSw0CsQ15jWIOjaRp+n53F1tYWLl++7OgC+z5jt2k8XxvUahWbW1s4dOhQ2++NRCKY2r8fU/v3Q1NVLGezWF9fx8bGBu7duwcAGBwaQiadRn9//3ZvSoP7wNeWyYJ8boypbUOUJMR8xtgP3iDYDAJxBtpVWMBfqVSQaGSY2e+C1rxpGIAn0F9ZW0M2m8VPN29+laXWPewevM/Dd999h1//9jd8/PjRlf4Nyuq7aBE8lyuVUIE+AEQUBZFIxMnuFwqIMfodh5tMYkG/wSrIOk8msapdS557k8GNxVIJFJ0p8XghyzIslkTaab39YqmEf/zXf8GyLNy4cQMD3gootw27YNupJ+vc1vt24mR8WFtfh2lZLaexByEej7uDIsulEpZzOWxubGB1ZQXzHz5AIM6gyLGxMSRTKUSjUSSa9QR6gvyqqjo9ACzIl2UZcUUJTETy+xommeanilarVSQaNKDzTVSgX2Ey63zjMv/hA8rlMv4//9f/1fT4u4lvPtiXFQXHjh3Dy5cvcfjQIWeKbDNwTnnAF8h5xoDzIIcJBvr6+lAqlVzFhKDJi3yIUCwWg6ppbhbUME2IjOYQUZSGDoAQn56zByUuj9YFtxJgJVcWWHUqwRkmw1AqlfD7779D0zT89NNPDTnTu5mBaZfGE9Yod3NN7ijzDoyyF6IkYWBgAP39/Th3/jzUatUd6DX39q2zptjQL57195ddTdOEysaS8wy/KIqIxuOhqkKt5OQ4CCGIxeMOx5lSqNVqoDKI0OTzOC2MD9969uwZBgYHcbjN4TF7+PODq0LZto3B4WFMTk7iBcvWcV/QbA03CjaqquomkBItAn2OvlQKmqYhXyxCiUQCZQolWUYfE1eoVqvQNM2hjeq6o3YViSCiKA2DzGbXUiwWQYDW/rQFZNYP1o0EZ5hq6NraGm7NzkKJRPDTTz8h7hOr2M3MvqvGsxOiD+gus5/LZhGLRpHsdlOnKBgZGsLo6Ci+u3Bhe1BkNosXz5/DhqNkmE6nkRkfx+jISE18xfX3XTEHtnFWFAURRWkq0+kG5CGFJPjEXa6GpWlasCY+rxj7fm1TR12OsJ423TTx8tUrHJieRvorntnyTQf7gHPjjxw5gvdv3+LFy5e4dOlS6w72AKNsscYNAC7/PgxkWUY8HkepXEapVMJwk4Y/gRDEWWDP9cZ51rJSqUBhnH+FNZu0OmfAMcoU6Eh2s+bcBAGiKLoPckeqPC2M0/r6Om7dvo2IouDmzz8Hn/MuZtc7HqjVBTUnLNoeZd4A3GharJkqGovhwPQ0DkxPo1IqYXVtDRubm1hfW8Pi4iIAZ2L16OgohoaHEYtG3eZa27YdaoGiOBWtFveB39V2qFoCIQ7XslyG0cwwo75aYHoGvciShE+fPmFzcxM3fvqpu4bBPfxpIYoibNuGRSlOnTyJf//LX/D23TscO3o0VNDpbzo3DAOaqgJw+M9htcXjsZjb+FipVDAU0KfjnrMgIJFIIBqNOskkTYNpGCiZJiqVCmRFQYRVA/y2rVHvTLFQQDyR6FoLnR/TtCxYlrUj1bSFhQU8ePAAw8PDuHT5cqDv3tWKcYc0nm4onyEPgOVsFukAqlq74FN0+bV6B0Xmt7awtraGzc1NZHM5fPjwwR0UOTI6iqGhISiy7DbdAtvVrbo5MAEgaF6lCoIoiojGYqhWq1A1DaIo1lPgtv+n5r1cnVEURYiiiFcvX8I0DJw8efKrG6TlxTcf7FuUIiqKOHHqFB48eIDDR45gYGCg5ftrBlZRR/MYcDKA7cpz9SWTWFtbcylACNoo0O0hJoIgIBaLIRqNukG/ZZrQDAOaYUAgpM5AkwbZy2Kx6DiGHgxcUViWSDeMjoLKZoty6dMn3Lt3D0ODg7h69WrDPogdm2AbAvzY7WZgKB+u0wodXpNlmshlszh67FhH7685BUFwaGOW5Q6hArYzK/0DA9i3bx8kSUKpWMTy8jJyq6t48/YtzNevEVEUR4ZtbAz7Jia2ef38e2thdDvpW+CUtyqjwnkNM1cXCQLvIZCZI3n+/DnSY2MYGR11exT2sAcvJKYgQ6kzt+TQwYN49eoVpqenW1NjCIHgofJYto1KpQIAiESjbcsNJuJxbLHhjU0HfDG/IooiEvE4Yizo1zUNlmU5GX9NgygINX6lGYqlUss5A2HB+8F0XQ+sfLdCI2tBKXUUYp4/x4EDB/Ddd9+FSvR9aXTk09qxkR026ObzeZRLJZw9c6bt9/rB/YjNZprwa+XiCEMjIzjI6HD5fB6fl5exsrbmZP0pRSwex8jwMDKZDNIerj8QrhrTSa+fwvoqDcNApVqtkXomHmq1119xbX/AEYaoqirezM3h8JEjiMViiOyGZHhIfLPBPjdWuq4jEY3iwP79mHvzBs+ePsX1H35ozVcEXK3hSqXiZgATHWjV80ZEQddRKpcDDVrQ5FsuRxiNRp1gn/EuvQZaIGS7lMWmunlRLBa75lVyKIqCKmvMorFYTxqKKKV4MzeH58+eYf/+/fjuwgVnCAfj4gW9HsCucCvtDrmVO32un5eXYVpW03kS7YBT4CzbBs+zcVk0wFE/UKtVmLaNUdZoZds2iqUSNtbXsbK6is+fPuHRo0cYGRlxB3r19fU5RlcQAofBcM5zJ1AUBaZlbRtmzt/3Utw8n23btutoFFnGx/l5lEolXL5yBZTSrzoDs4fdg9tQaJpQRBHHjh3D/Pw8Xr16hTNhgiJP4FUplx3lEEnqqA/KpZKaJsqVSj1Vk28sArL18VjMUfVh1TAu3WmpKlRVdRroFQVKJAIhYNhkIZ/HeI+0wiOK4ohUGEZHwX4QbNvGw4cP8fHjR5w8eRLHjh0Dn+IaZGF21a90kkTqUmEnDJaWliDLMsbGxrr+LJ5E4vNURE9jLgBIhDjNtroOIgjYNzGB8X37YNu2k/lfX8fKygoWPn6EKEkYGx11Av90evuZaSCu4iZ8OrhfsWgUtmU5G3PG3+eJVVeq3fN6PmSLEAJRkvD02TOIgoAjR44AlH7VFeNvNthXGBfR5BP6RBGnT5/GrVu3sJLLteY2syyMyhqcAHSsVW9ZlsvHL1cqGPEE9mF39aIkIc70YL0G2rYsqCz7LxBnUImiKK5TyhcKSPdgsQLbZSkK9GSaLqUUjx49wocPH3D8+HGcOHGippkmaHG65daujtwZ3O9qF+TZmmFxcRFDg4N1PNRO4R9vblsWSqUSdMb15U1RlFIoigJFliExrj/fcJQrFWSzWazkcnjx4gWePX2KWDzu6i+PjI66n8URRlmqGWLRKCxWkaiy4SiEZTUJajMwPKsvMVrGixcvsH//fvQPDIBQupfZ30MgIpEIisUiNF1HMhZDJBrF0aNH8fLVKxyamWm5BnnlqsKmQRNGQ+sEFECUyXDmC4WaYD9sdUySJEdnnNEzuYShyQL/qqq6CimRSMRNBJQrlZ5l9l0qT6fSzgE0ij/++ANra2v4/vvva9RPGlUOd4uzT1mTKbCzajxtg1IsLi5i38REz85LEAQnicqSSKZpolwquUPVTH4vWBwjs2dzcGDAbYLfyucdyeiVFTx8+BAAkEql3ITS0PBwsGphh0p3hAlBlMplV0iFby5cn+L5XDerL8sol8v4+PEjTp06hWgk4iSRvmK/8s0G+wKTuNRZo6AiyxgfH8fg8DAePHyIX375pSUdx2ST4wAgFou1NfjKC9u2a3j+hUIB/f394ekdPngNdE3gb9uo8syMKEJkVIvDHSi0NEJEUWBVq9B0ve1gv2YHbJr4448/sLq6igsXL2I6pDToN5eBaQPceLSzodQ1DblcDqdPn+7ZeXDFKJU1DvJnCgAUlqGJsg1lo3NNxOM4NDODQzMzsCwLq0zlZoVxMgnjZPKybJxtpLspo/PAqVQqOdrLuu5ME2V/90qw8Q28rCh4+PAhDMNwNpvsNV+zUd7D7kFmA39s24ZlWRAkCYePHMHc27e4e+8efvzxx5a8c51JLQNoqeXdDLZlIZFIOIpXbHhjLBoNrBK3AiHE6QljuuR8+jun+pimCVVVIUkS1GoV1LZ7VjF2p+nqOnRNg9Tm5sfbB1GuVHBrdhaqquLHH3/EyMhI3bECk0i75Fe8x23nO9tpvv76+jrKlQou9KhaDDhUHgo4PHhdR7VSga5pbtZfkiQ3cdQIA/39GOjvx7Fjx6AbBlZWVpDLZrHw8SPm3ryBxCoRXDwiynrIumlSFgQBsWgUlWoVumFAkiRng8o2L15anjuNXRAwe/cuorEYZmZmXHncXtCpdwpf75mFQDQadYyWZbl8yCuXL+Ovf/0rbt26hRs3bjQ2zCz7QuGU+bsp69ssqO9LJlGtVrdlOLvcMXMjyQdHcOOsMQO9lc/DYso55UoFsixDEsWujisrijsIxbbt9j6LGahqtYrZ2VlUKhVcv369ozLhl+ZWenfwO2mU272qz8vLoLaNyS5L6pTSGqfOpcfi8bgzsRjOlOi+ZLLtey+KopPRT6cBOIpL2WwW2VwOT58+xRPbRjweRzqTQTqTwdDgYMfPqCAIbmOVrmm1esvsuzBM05E5JATv5uawuLiIS5cvO5UAOGpA7fbl7OGfA4QQRCIRZz6KaSLK+kOuXr2K//rP/8Sjhw9x4eLF+jXCMpa86kQp7bqXyrZtd+aEqmnY2tpCtAfNlPwaI5EI7HgcOlPwMZhqztrGBiijL1SqVTcD281xI4riKtC1DXZvNzc3cevWLQiiiJs3bwZuRhra413K7O/4QC2gow3M4tISotEohn2bpXZBWQDM5TIr5TIgCIhGItB0HYIgoK+vD/FYrO3nR5FlTE5MuL5va2vL8SvZLB7cvw8ASPX3O1Pi02mk+vs7vs+yLCPC6NNVVa1N/HK/wjbwoiThwYMHKObzjoQz82VfOzX0mw72+c3VuQFhTvz69ev47bff8ODBA3z//fcN9el5MNsJT98Lrgeb7OuDrutQDQP5QgGDIRqFw4IQ4nSos2mKmq5ja2sLgPOgaqx5kcDJ3HrLZO0sMlEQIImiM/GuzTHnFA7Xc3Z2FkQQcPPmzbZLwbtabgWcDEwHG5zQYIM6wmJpcREjIyNtZ6K9wT3/l99bi1HfuE5wNBJxN6u92GQlk0kcPnwYhw8fhmmaWF1bw/LyMpaXl/H27VsQQjA6OuqWZoPkNJtBkWVYpgndMALVebhRXl9fx4uXL3H8xAlMMIdBKYWyF+jvoQncYN+yECUEsCyMDA/j4vff4+7du+jr66tvlmfrhivvyLLcdfWI0+xSqRT01VVUVNWdKN0rCEz6ORqNujQfQ9chiCIInOqfCscei5IEmWU9293E8OF63BaFfT+vhC4vL+PO3bvoT6Vw7dq1hoFVI+u1W2o8nWjs8yGbYYP4divG1LbxaWkJE5OT7Wv/M7YB/x5NJkFJsc1nFwEIkoRELAaBNY33AgMDAxgYGMDx48edQZErK1heXsaHDx/w8tUryJKEsbEx16+0y0yIRCKwPRKgfONAGaWVb1Q/vH+PT58+4fKVK+jv73f7Bb72avE3HezzkitlD50oSSAAhgYHcen773Hn7l0kk0mcOHGi9o2Mqw/ApQF0UzSjlgUKx3Cm+vthbmxga2sLqWSyY2pQMwisuYob5KGhIbch0WIL0bKsGiPNS1PNhh1x8C51TpMIi1w2izt37qCvrw/Xrl1rmT0NvO+7pMbTaQaGK2GERTvPmlqtIreygu+++y7UefBnwGQjvr3VCj7QR5QkRNiGw71mlr3ciXsuSRLGx8cxnsk4m8FCAUufPiGbzeLxo0d4BCDV1+fq+g+PjLT8Djg3kmcKvYGDYRiwbBvFQgEPHz/GxMQEjrHATGDX/bVnYPawu/Amkdygi1Lsn5pCsVjE06dPkezrw759+2reZ9s2NLbR7EUjqs30xhVZdqe1b25uIhaNdl01DoIkihCYzU5Eo0jE4zBMEyZLjBnMtlRV1dEYZ8G/FJK+oMgyVEYhamez8PbdOzx98gTj+/bh0vffN6dRtWrU3CUaTzvfF68+toN2bPfK6ipUTcPU1FTL13qTRjzI543hXN9e8lB0RCbBCUpBBKFtBaqwcAdFTk3BphQb6+v49PkzsrkcFtmgyKHBQbfJd2BgoLVoC2NSGCz2kdi5U8BV6MqtrODN69c4eeqUu/6/FWroNx3sAywLwwdUscE5BMDk5CSKxSJePH+Ovr4+THq4aVyZgBDiqiR0w5HjHegCcabuFotFWLaN9c1NjI2OdnmF9eDcZ01VnUFenofMNcrsntiehapyIy2KkDyZfz8URUFFVV2d8jCG6sP797j/4AEymQwuXboUypgHNdXsNrfya1Li+fTpEwRCMOELKjgsy3Ia7dj3Sz1KFBRwHTL/zzvdWWVa3JqqOka5y2bsZuCcSgInS3k0HsfRI0dgcE5mLofFpSXMvX0LSZKQHhtzS7NBQRNXD5Fl2VH58CgJcUrC4ydPkOrrw8WAyp6yF+zvoQlEVhnl68pry06ePIlisYg7d+7g559/rpF51lTVCX5YYoVnBDsFr8AJooj+/n5UKhVouo5CsYiB/v5uLrEpNE1DJBp1qT6AY2u8foVXfnlvTJjgX2HUDt0wEAuRiaaU4smTJ3jz5g0OHz6MM2fOhLLPdQkVn0jAl0RHU9k7UJZpJ4m0tLiIRDweKFFOKYVl2+6zz4dsev8uCELN98wr4VxMRGf0HQA76lf4PRIIwfDwMPoHBnDy5Emoqro9KHJuDi9evkQ0EnETSqNjY8GbEBbsi2ywlzs0Ek7MmC8UnCF7+/c76js+fO1JpG8+2I9Go6iWyzAMA9FYrGYxHz9xAsVSCffu3kUiHsfg0FBtVj8a3Q7WOjTKvHwFbDc+Dg0OYmVlBaVSCam+vh3hBxNBgKaqdZl3nvWPsEXGd+UG05Oltg2dlaSqgBv8i6LoZHjZz7JHG7nZ+VNK8fz5c7x+/RoHZ2Zw7uzZ0IYtqJlqh8eINAQ3aDuRMfOiHaO8uLiIsXQaEpt/wCXCuDHm58yHkXA5MEmSnO+xyYZLIASmYTia9Yy6tRPwf8fE83tZljExMYGJiQlQSpHP550mX6bEQOE0bHEjPTg0VLO+o5EIDMNwN6WUEFQ1DU+ePAEBcO3q1cDv82s3ynvYfUQiEVSqVRiG4Q63Apzn99L33+O3//xP3Jqdxc+//IJYLAbbstysPreX3VSM+RrniR1CCFKpFDY3NpDP59GXSPS8asyPo2oaor5NNldqA1s7pmXBZGuvWfDP38fpoYQQNwHVTOvfsizcu3cPS0tLOHf+PA7NzLR1HX5tdO/fviS+2NyYkBsEyzTx+dMnzDBRD5P7FaZyZjEqDgCA2VSB+xVWARYa+Ap+jbphIMpkXb/U/XaPw6jcBw4cwIEDB2BTivW1NTf4/7iwAAJnUCT3K6lUqsaveNc+py2VKxU8efIEqVQK3333nXs8ga2Zr12JB/gTBPvezANl2Xov7/vihQv4z3IZs7Oz+Jd/+RcIouhm9b2BcqeSgLZpgvJgnz0AkWgUsVgMVqWCjc1N7NuBEcoETna2VeDCjW2kmZGmFMQw3I0PYa9TOX+TTdflko0clmXh/r17WPr0CWfOnMHMzEzXi7slZ79V5t9Dq+GZNeJZkM5bPX9nx7JbHfcLgRvdUrGIjc1NnD51CoVCYVtTm4HThyRRhCJJrjFup9KgGwYiO9ysGpTZ5Gon3mCIEFLDydR13TXQ8/PzeP3mDRRZxhhrBE6n04hEIm523zAMQBDw/u1blEsl3Lhxo8b4clk4Cuw15+6hJSKRCEqC4M5q8NoPURRx7do1/O1vf8OtW7dw8+ZNaJpWk9Vnb6qThA0L0zCc/ivPZrUvmUSpVIKqadjc2qpToukFBEJQrVZbfrbEEkPu+bJMsOGpMuqG4fgVBkIcrXXTMGBT6tJc/RtyTdMwOzuLYrGIa9euIc0a/8PCn2Couf+t/EYIWqbXpwT9HmD+hHPv0V4SqSMJSTTeWHKKp2VZWP78GbppYmBoCIVCwfF/Ht/Cr0GSJEiRSNPgvu4cuIqVacKSZTfh+KXgxnCe719g/WGjo6M4ffo0KtWqI+2Zy+H169d4/uIFYtGoy/MfGx11s/sGpc612Dbezs1BEARcu3at9rv0PANfs8Y+8CcI9gVBgByJuLx9WZZrpLpEUcS1q1fx919/xezsrMN/5gGOd7ESUvPQh4HFxqoDLKvv+bzBwUFUq1VomoZSqYSkfyBKD6Drel0GphWCjDTn+LulKzZgjHPXCHGmMxJCILLA37QsPLh/H4VCAVevXsX4+Hjg2PWm4JzyAONaY0h9C9j9XbPP9XyOv5xek+nx/Y74NjTeY/uP2FGJnn2WzUr0VoOsyjzLQAywfgxCCARPloxXYTqlEemGAUIdxZovLRdGBMFZa8yxBN1HRVEwNTXlcjK5EkMum8X9pSUATsNWmg3zsiwLueVlrK+v47sLF2obwz3HApxR7nvYQzPwOS4Wl+BkTYh8tcWiUfxw/Tp+/e033Lt71ynrB2ycXfsS8rgU21x93ge2/WHOhnhtdRUFNkyx51UqQqAHVIxbgVM6ovCJA3hsnOtX2IAtt8rHfIokiqhUKrh37x5sy8KNGzeQSqXatrP+VzdM4vF+JrDvib8uhG9pRNGqSVax4JOCZYDZ74LAbXyn4Gfi+hHLcmYQsZ85x35haQmJeNwZ5MkmqHO/IjDf0k3FyNB1EABKwCZup0EEAcS2Xdpo0LcYj8Vw8OBBHDx4ELZtY2193fUrH+fnQQjByMgIRkdHEUskoOs6FpaWUK1W8cMPP9TQklzfRRxRj1iP5uDsFL75YB/wlF1YsO9fMtFoFNeuXcNvv/2Gx0+e4OzZs4HGjLDFGWbJWSyw5Txp/2MtShL6Uink83lsbG4iHo/3/OHXVNWhJnWBIH6lzagiAFBlGSsCpxHZsG0UikU8fvwYlmXh/PnziMfjKBQKbrZD8GwMiCDUlLq8Bo0SUhPE1xnQsMF9D2B7MjB1Rjygr0DwXg9b8LyZj1cMKAvobZbhsZkT5E2kNZ/pnIRz/wQBuWwWo2NjSPX1QWAGuWfXyqo7IGTnOJUhysre0muz1wqEYGhwEMPDwzh54gQ0VUVuZQXZXA7v37936EisX+fgzEydTCnnlFI40rJ9PRoWtIc/LwghiMRiDkedq5L5ntGBgQFcunQJt2/fBhEEHD92rJ6a0kZ2n8JZm/7MpBexWAzRWAxWuYzNzU1kWg2PbBOcm98NJcHbK+T/bIsFY4auw2b8b574WF1ZwdNnzxCNRPDdhQsAISgWi24CRmT/Cj6/4gW3u/4KMbfZQXZmJ6u5vIJJmAZ9IzvnXgdLgLnnRLenJPOp89TnU1y/wu4p/O/F9jWurazg8JEjSCQSrn/uFUxGEwZ2kKvfxFd4K/fNEkkcgiBgbHQU6bEx0DNnUC6XkcvlkM1m8fr1a7dfhgI4c/ZsXY+DexwAfanUV62xD/yJgv0yyxiA6bn6g/aB/n6cOXMGDx89wsOHD/HDDz/Ul/OJM1W3lVkOzGAH7MoH+vtRKZcdKc58HoODg21fWzOomrYjlASBDcHoSyYdZ0UI+lMpxyCvruLBgwdQFAUXL16EoigujxxAbaae73opdQ02EYQ6o00AN3jm+FrVeLiBNVnmxM3S+4ww3/G7ijgeBRyLKeV4s/Tuz4KAYqGAUqmE06dOuYoAvYSmaQ6HlmXUdgRNjCwJ2EyFmYBoM/pdJBrF/v37sX//fti2jXv37iG7vAwiyzgwNVX37HiNcqqHcrh7+HMjEolA51QelhzyZvcBYHx8HEePHMHrN29gWRYuXbpUv6ZC8qn5vBbAQzEMsEeDAwNQq9UdkeLUdR2U0p6oCfnBKaWpZNLVMk/G47BsGwsfP+Lx48cYGh7G6dOnIWB7cwCg/v55/IrA/ApPMnHKHiGkNsD/wj4FaN+v2Iw64v6/bTs/A9u+BPXVCm9VWGD9ETxJxHsllpaWYNo2Dhw4sCOBqappgCA4s3p2Cs38Cmppof7fBb7H43cSiQRmZmYwMzMDTdPwX//1X6hUKohGo+4Mme3TqE1MDvQ4ttsJ/CmCfUVRQEQRlI0Bl5gkpReWbWNwcBDfX7yIp0+e4Ne//x3Xrl93dFI9aBV08LJcKBCyLcWZzyOZTDZtSmoHtm1D07QdMcociqJAYGPfTdPE8vIyHjx4gKGhIVy9etW5Fup07+uG4TaQ2szw8M5+d2Q4ISCmCdNn+GyPESuXy+BNwzwr5u0lIKwaQAL+xl/PX2OxXgqTNSdzOoeXn8izLdVq1VFUEgTojGfqXdDerAqBU5Xw/s1rVHhWQQBcgysAIJ4GNUGSGjqApaUlR5WmTa5qGFiMmkXhqGO0Tb0KgxbBjV9WLkygz1/nhWmauHv3LpaXl5EeH0dff3/d5si/iez1hnsPf15EIhHkBcHJWHqreB6YponJqSlEolE8f/4c//nbb7h2/XpdEqZVT5jl+5t/U+GFxKQ4C4UCNjY2eirFqWkaQMiONrErioIqmwpsx2J48+YNXr18ienpaZznzY/UaYw0vDRHPh+EB8GUApYFC6ilyFC6bZ9ZckXVNCcA5v7D83qvLwnyK8TzOi7GwSu0NVVpoOZnalmOGAilrt/n/qahX8F2P1YjPr1AiNtDJxDi+BVeEWA+JgiLi4sYHhxEfAfoJoauOw3lcCTRO+l/7BY0YH0SQtqmSFWrVdy6dQvlchnj+/YhmUrVvd+/3oaGhzs/8S+EP0WwTwiBEo3C0HVHPYFlVrwGkzdaDQ4O4pd/+Rfcmp3Fb7/+istXrtSWQklj7r67EL2/a/FQJ5NJlEslWKqKza2tnklx8oawSCTilkJ7DUKcEetV28bLV6/w9s0bTO3fjwsXLtQEqgLT07UbZAvcrDcz0JbHYNu2DcokrrgqAIjTL9CIz9/gZOsWeqlcBqUU1UrFzbZ5HbbXOGjMKBtM+aYOvkwbX+wCyyTx5mVebuaOI+hzTG4o2PFrtPopxeLiIib27QPZgaw7H7wmK4rraHoNvvlphKC/8e/FpsGSfH4KGDfIxWIRp8+cgck2anXPi++5GOzAKE9OTuLf/u3f8N//+393fzc7O4t//dd/xcuXL3HgwIG2P3MPXz8kSYIky6C6DsM0oTCKqHfFcL+yb98+jIyMYPb334MTSU38ijfZUYcG9q9GirNQCJRR7AQ8OI1Fo6E34e2Cq/TwqtynpSWcPHUKx44erbleUZIApuEeBNvrQyh1uOmeSqvF/AplySpQ2rVf4ZPHK+VyTcAX5Fcsy4LBNk9eeWAX/PX8/Z6qhFut8FTB+e8a3gvmO91nlKnpAHAFD86cPh3uutsBpU5WH444iZvc6yVCVMeCsvgUcJ+1+o+sf775lGYAOH3mDDRdh6IoTeMrWVGQ6KAn80v7lT9FsA84WRiNOHKCYIbK+3BwoyyKIuLxOG7+/DPu3LmD2d9/x9nz53GYSVEBjTONLp8yAM12jgMDA9B7LMVZl4EJWSpuF5Ik4fXjx/j0+TNOHD/uDijz8w+DdtUcAiEAl27zgxlnwPmObDiLNplI1GbW4dlYeTL03r9zviP/PTfGvAHMW9rzZnW4ZjsAxOPxmkwO/9ftR/A08Haywaq5Q577xTdPaxsbKJVKoQZptQte4eBl+kq12ntnzoKaZmj4V5a18p+Tf21tbm7i1u3bIJTi2vXrsC0L+WIRkiTVbNT86zieSHTEJb1y5Qru3r27ff6U4n/8j/+B//k//+deoP8nRyQadabpGoajze2hhAFwnzdJkpBIJJomkoLopUEJJOcPzdeQIAiuFOdWPo++Hg1wrJGl3kEQQvDo4UNs5fP4/tIlTE1N1dBUOJrdBYE4/WFo5FfY56maBjA6C6c8uf6DvZb/Ds38CvMpnI7Kh1q61QDnwtxEj8k2GaIoOrNwfP7E+zP/3E6TdnUcf2wnOwkh+PTpE2zbxoRn3lCvoOu6ExsBiCoKqprW++RjCD/V6BVBDbvus+bxLZ8/f3YnZJ8/fx6VatWds+H1K7xZn6O/w432l/Yrf5pgPxqNoiCKMDXNpfIA2w88D/Z5lkCSJFy9ehXPnj3D44cPUSoWHY14npVFrRH28im9CBMqeaU41zc3MdEDKU6egXE1nTsoV7WCruv4484drKyu4vjx4zh0+HDjF3caNBLi8tmJR4u5F1x1XnJNJBLoa6LAYrEgmJDwMpQdG+WA78cblM7PzyMej2NkbAwCsC0l1gNozJErnnH3vQz2Q9NxWn9QDc/W+5leg3z1yhXohoGKYThBPHstV5nwn09/hxSeq1ev4v/8n//j/v//8//8P1hcXMT/+l//q6PP28O3g2g0igrLzMZisW1VFTi23+J+xZMsaJhIIvU9YU3tSIu1xKU4rR5KcWqa5k6m3z6N3tkISinKlQpuzc6iUq3i3LlzGN+3r/Exuj02SyBwjfhu+eS8hyCRSCDVQtVL13XYLFgM1fBMa1XDuoVXYnp+fh6ZTAaxaLSGKtQ1KHUSj3DiHJ606mXFuB2aZ8OA3/9aFnMAzr2Ym5vDs2fPsG/fPpw7fx6qqsK2bSjRKERBcNkIQd9Np3z9L+1Xvqw20g5CFEXEkklQQtzsBN9x83IfgJqSoCAIOHv2LL67cAHv3r3D7K1bMFi5rSb70qD86kWrBTo4OAiREOhMirNb+DMwXm5hN6Bw7lepVMKvv/2Gzc1NXL50Cfv27XMXda/hOk+2+L50G5Wrsf+FpcL80A0Di4uLzrwCbJd33QCji2wJ18Gm1Bn+QYCONcAboWef5Vlv3mfjzZs3uH37NtLpNH66cWM7M0cIZEmCzDb4vAHafz7dGOWXL1+iVCqhXC7j3/7t3/C///f/3hE53T18XYhEIhCZEg+3fzyo4BM2XeoeA08kHTp8GI8fPsSjR49clRKvjW4WEHmVRRqCOFKckiCgUCz2xD5rvtktPfEpbD3blGJ9YwN//9vfQCnFlatXMTg42Py8Oz1+EI2yh4mwMAj6zpuBBJ1zWDR538bmJjY3NzEzM1PTwOr6lS7stsay+IQQRGTZDfZ3xa80eR2PBb3sAMB5Jh8+fIhnz57h6NGjuHTpkjsYTmAiFoIouvQw/4aCENIxX/9L+5U/TWYfcHbb6uamK23IDTD/8nhTix8HDx5EPB7H7du38etvv+GHH35wpDLhNE413aWGDFB7LcWp63pdBqbT7D4vVfLr3NrawuzsLARBwM2bN5FMJrG1teXqJosB593N0q7j2n1ho+zKbn6h4/Jqkx8LHz+CMrWEmtd7NiP8fe1m/PnmMKIo29+fh47UdYNfGzSyVsabeJwQ7yt49PAh5ufncfToUZw8eRKmZbmN1JIo4v/P3p8FyXGl6YHo57t7rLnviZ0gSBAgAe5VZG2SRi+t1oPuvMkkk5mkJ8lMdk125+WO7M5rd490Zf2mNo3J7rzIRrclU8/VaNTdpSpVccgqLgCLBLETO5F7Zqy+u5/7cJY8EemxZSZBAvDPDAYgM8LD3SPiP//5/u///iBNBWuXxDFsy+p4HV3X911uff3116GqKi5duoS//Mu/xPT0NP7e3/t7+zpWjqcPpUoFDddFEASw2VTQrGqxDE4klctlXL58Ge12G2+99Ra1hiYEScZmdD+QrTi3d3Ywf0ArziDD4W0/2n3xeCZdAiF4/PgxPv3kE1THxvDOO+9AVRQ0221RNcmMZodwj7qJgycFMYNnyNh6oCvtc5/u3r2LguPsMXyQN5SiOXiUl0xTMTXa4t8LbnP8LUiKDwypJyJlpiK/+c1vsL21hdcvXsTy0aMIg0DM1eADWE1WtYuThM5xkq6tVCrtW4XwpNeVZ4bZB2gXuO44ACEIJRZGDsq92MzZ2Vn89Kc/RRzH+Pl//a9YW18HAKFF64VRPtRj1SoMXUeSptje2Rn6eVnwfX+PY4L8ZRsEzrZwhwOe6K+uruJX/+2/wXEc/PQnP0GlUqGDy0wTCvCtsfvfJYZi0eTHH/D1ejWg3rlzB/MLC31Lvjwgq4yZGQZxFNFmNUI6PjPcmeJQSq4jHGPozaiiwPU8fPDrX+PBgwd4/eJFvHz2LIDOzQsH77vgJVcZ/HO8HxQKBZw7dw5/+qd/ij/6oz/Cv/gX/+KJD4zJ8d3BcRwohiGmwnJEbF3hrmRZOH78OH74wx9iY2MDv/zlL1Gv13vr9DMwzDdlfGwMmqrC9300m82hjtsLXo91ZWhILL5cUb99+zatys3N4b333oNlWdANgxIPhGQ3sOLgsfa7BHnCJFIWeLX4+PHjfd9HeUOkAkPF8yAMQdIUqqKIhPjbqBgPjWHuM/tM1mo1/PIXv0C9VsMP33sPy0ePgqTpbqOxZYlKOt/M84qxjOoB5hw96XXlmVuxCmxgjh8EIonhzRWiQbTHh6JSqeCnP/0pKuUyPvj1r/Hxxx+LqsAgDBUQFQXj4+MwVBWNRgOu6w517CxkMTDDnAdPFuVAzHHnzh189NFHmJmdxfvvv9+RdNpME81tG/ce+PASxifusc+D8rDuNwe91oznb25uotlq4cSJE8MdAruNRyr6JAWE7Eq+mHMTx2GUcYHR369hXi0lBLdv3cJf/Pmfo9lq4Qc//CGWWcUjDEMk3HPfsmhyD+y6pbANrIyxAw6fe+edd/DHf/zH+Ot//a/jJz/5yYGOlePpgqIoKLDSukx2pJxEGjDJmhNJaZri5z//Ob66coV+PgfIeLhEaBB0w0C5UoGmqtjc2hp6zcpC4HmZZMMw60pKCJ3aKn33SJrii9/9Dl988QVOnz6Nt956q8MZzZTWlT3HJMMNuOwFoVnn/z/AsfaDUeWhByFder0/vFp87NixoY8l5KP9HpOmCHwfBFSrL7vUHcTA4kAYcP8IoXauV778Ev/1v/5XKKqKn/z0p5hkMhzucKix/g5OGnFCiWRcz0GtnJ/kuvJMyXgAultq6zrSOKY+9LYt2HnetNvdhS3Dsiy8//77uH/vHj7/3e+wsrKCc+fOYfnIkf4NukMmPE6hgEKxiLTVwubWFhZNc18uClkMDADhAZ/1wecJfndgIITgypUruHXrFk6dPIlz587tCVCchUmSBGEYdjCq9IWHl3HsPenO5z7poDwyA3MITWPdx/j6zh1UyuV9NdnxI6ns3yRNadMzKLPDN7t7nGjYYw4SlPdT4h90l+v1Oj67dAk729s4fuIEzr78siiVEjZfAqCbF4V9JhVCoGsaneHA5GyqVFLej+WmjFdffRWGYeAP//APD3ScHE8nnHIZ7va2aOZX2URUBbskUi/bWIASSX/lZz/D9Zs3cf3qVTx89AgXLlzA1CFZMY9Vqwh8H14QYH1zE/Ozs/tiCX0mVepG1vdc+MGzzTZ/HEccx/j000+xsrKC1157LZPIsCwLvu9TiWiSdDq2HZT06dJnf2fy0GHfhwOuK90NpKJavLgIcx9zE/jnm7/38tlxN0BdYvU5uI1oSsj3ik1eX1/HpcuXEXgezr7yCk6dPCnynCRJhCTJtm0x+Vi2fuX5E38/NU1DpWtO06h4kuvK9+m9ODQ4EgvT0XU+QqPMkaNH8df+u/8O07Oz+OSzz/DBBx+g3W4fyvlNTkxQX/o0xcbW1r6OEfp+T7mH3NRIADGQJKubPEkSfPzxx7h16xZeffVVnH/11UwmYhALcxjsMPmugvIoFYUhmrUHoftVfN/H48ePcez48QMdVyy4zJMZLDEmgJjHIIOPmz8Io3SY5dokSXDlyy/x85//HHEc48c//jFee+21Dk1kwCp2mqbR6c1JQjc4TI+pqeqec3IKhQMPn/u3//bf4h/9o3+EU/0cqXI8s9B1HSazbRQGEEBnrBoQPzRdx5kXX8Rf+at/FZZt49cffIBLn32WzWoPeUz5tScnJ6GpKsIgQL1eH+55Evigxl4DtUTSx3tp2HOyIkDg+/jVr36F9bU1/ODdd3tWLGWJqN9DyrNvdDW8flck0hOrVHe9zgarFp886Loi9SUqAEiS7M75ychBDqNivJ9n9rrPvu/j448/xgcffIBioYC/8lf/Kk6fPt2R5/DvtMGc6mJmsy7POejG2Pj4gd/bJ7muPHPMPgDYpRLcRgMkTUVJU35LBpYk2Q7Otiy89eabOHLkCC5fvoy/+PM/x0svv4zTL7yw+0HZzwdaUTAxMYH19XV4nodGo4EKkx8NC9letN919EvGgiDAb37zG9RrNbzzzjtYWFjoe7x+LEyvptNh0c8269uGPGZ8IA5SwehxjHv37kFVVRw5cuRgx5VAmA6WsGajPZUYSO/XIVVkDoK19XVcunQJvu/jpZdeot8x9vni00d5VQlgLlSKIqwP+VTJrLPZrwtPmqbY2NjAv/7X/xq3bt3Cf/yP/3Ffx8nxbKBQLiN0XRH/RgWPM+VyGT96/33cu38fX37xBR6vrOC18+extLwsErb9bKJ1w8D4+Dh2trexU6vR5t0R/PKzHOtk8KpxlpxBRqPRwIcffghCCH704x8PHPhlmSbCMEQUBEgl+8bDiC2HIVPcD+Rq6ZPq7+meLXSHVYsnD8GSVYYfBCIBNrI+K93ON/vAfnKJ7lcjhOD+/fv44ssvAQBvvPEGlpaXd/M/dr+iKELMpv/yqhYnkXQ2SyHrWvYrDf2u1pVnMtlXDYMmpp4nGi4ADM3Kdpdj52Zn8dfYVLMrV67g0cOHuHjxIsYnJpA1CGQYWLaNcqWCRr2Ore1t2I6zpxzWD6SH646YisorGj3Ordls4sMPP0QSx3j//fcxPsQHl7MwYRjCD0MUGVt6UG2ldPL07yfM7D9xBkZCykqty0tLosH0UI4rNRvZtg2FTVnukCodVpn8AAiCAF988QUePHyIqakp/PCHP9xjPUbYa/lMI2ro+m5plb13mjRXoxv7lfD86le/ws9+9jOcOXMGf/qnfzryhjzHswXDtmGYJqIw3GNUwD+j/b5TcpKsKAqOHzuG+bk5/O6LL/Dxxx/j/oMHuHDhAgrFYsfjRkGpVILveUg8Dxubm1hcWBg62Ux7xEF5gCF3bemF9fV1/Pa3v0WhUMAP3n0XDquG9INhGNA0jUqkwlBUFsghxeMsidG3DXlNGeZ1D6VCKh3D932sPH6Mc+fPH/y4EiJpMGPRcagUNGPzt++rOQCBJN/lZrOJS5cvY3NjA0eOHMG5c+f2SJn4HBth9mDbom8vTRLaD6eqPXsuhsmZsvBdrSvPZrKvqrDLZfi+j0Syi+RfvH5fLEJIZiKt6zrOnTuHpaUlXPrsM/ziF7/AyVOncIKVyPYTSLjOMvV9bIyos+y2S5RZfLm8nKXR39zcxG9+8xvYto33338fhSECModlmgiDACHrh+COLgcG2eut/iQwKgNz2BzR6uoqPN/H8SEbc4eF53kAqHSABznRgMwXokN9xdFACMGDBw/wxZdfgqQpLl64gCNHj/b8HvFplAo6p3vGLCj3qnJZloWJfQbln/zkJ0++ySzH9xaqrsMuFBCFoXDl4VK4QQlKL6mcbdt4+623cGR5WVSPXz57Vkze3c93dGJyEuHKCoIowubWFmaG7AuQLX7Fz+Sfs5+pjDjoxoMHD3Dp0iXMTE/jrbfeGsmS0LIsuHEMX0r2D4WRl9+bJ5jsjzy75ZCv9d69e1BUFcvLywc/LgMB4LN1xbKs3V5DPqDqoPf5gJViPlDx5o0buHH9OizHwXvvvYfpmZnsx4M6CvFcSq5+J0kCotD5LR35Iru2sYmJfU+Z/q7WlWcy2QcA3XFg8sQ0DOm4amAgMzFogt3Y2Bh+8rOf4c7t27hy9SoePXyIUy+8sL8vlaJgamoKj1dWEAYBavU6JoaUHPDqA68spNi7MPCdqfxhffDgAS5fvozJyUm8/fbbI7PJhmFA0/U9LMyBoSjfSfL5XTAw8mfwzp07GB8fH1jqHgVRFCGOIqQASlla9e9QxwoArWYTn372GdY3NrC0tIRz5871DZwkTcXmxbSsDtckXm7ttVGbl8u2OXIcEGaxCK3VQhKGiKKo43PbT8o4KG7Mz81h8q/9NVy9ehVfXrmCe3fv4oXTp/c1YEdVVYxPTGBzYwOtdhsFxxnqOJwwUiVtfhbkpk3+vGvXruH69es4duwYLrz22sgDCi3DgKsoIGxT30tKNDIOocdqPxhpdsshnSNfV0S1eHn5UKvFvu+LvGNPvOZEKm9sxehr5UEVAltbW/j0s8/QajZx6tQpnDlzprPhuwtpkgiLdi4L5YjTFAofotVtHkIIFpeWDnCm3w2e2WRf03XYpRIdksDYffmj1yupH2bgjwbg5AsvYH5hAZ999hl+98UXePDgAV5++WU61GSE5ELTdUxMTGB7awu1Wg2FIXWWvPE4ZV+QXq/I9WYEwM0bN/DV1as4evQoLl64sO+JsXtYmEPSRH4XQZmPP39Sjgky2u021tfWcPHixUM7JiGEJsaKQq02s4IdY1AU5igyEg7AvtQbDdy8eRP379+HaVn44Q9+gJmuQS9Z8DxPWKJ1O4XEcUwbkruvU1GgG4ZgSHPkOAzotg3bccSGmrDPo9KHrOhVLe4AYxHPnz+PI8vL+PSTT/Dpp59idnYWL7388sjVKcdxUCqX0Wg0sLW9DcuyBiZ+Yk2U1pXep0sdrwghuHTpEh48eIBXzp7FC6dP72tzragqLMtCEATwgwClw0r2vysSaRRm/7B6n9hxRLX4gI25MpIkQej7gKJQaVZW7sTOgX+GRsV+dfqbm5u4fv06VldXUalW8ZOf/ASVarXv55AQgrbrIiUEuq7v+W4kcUydeDLWz1Klsm8Jz3eJZzbZBygLo7MhI7LjgaooyGqvGnonqihQCEGhWMTrb7yBx48f4/79+/joww9RqVTw4pkzWF5aGvoDXywW4bkuEtelbOfiYt/kkxCCiEkaBr0C/8BfvnQJ9+7fx8svv4wXX3zxQGxnNwujHlJg5uf0JIMzGTXZP0TcuXMHumEcKkvg+z5l51Q100JPYD/3ep+L0k6thuvXr+PxN9/Atm2cf/VVLC8tQeND7vo8N/B9Mbyo4Dh7vlNRFIGk6V5bUQBzc3OHxxDmyMFglctoN5tIWXMfhwI6NTWLzR0m3nI50Nj4ON5+5x08fPQID+/fxy9+8QvMzMzgzJkzmJ6aGnpdGR8bg+/7CIIAm1tbA6frJkkiGo8Hrivs8R9++CF2dnbw1ltvYemAccwyTQRBgCiKkB4iI8+1/0+ywsdJpKxp8982vo1qMSeQdF3vL89i93gkee8+1hUCYG11FdevX8fW1haqlQreeustzM3NiUnz/Y7oex5SJu8udFW/+fcgRYZdNSFYeApZfeAZT/Y1w4BTKKC2vU1lDWkK8IEeGCzZ6QcemDVVxeT4OOZmZ+H5Pq5fv45PPv4YV69exYsvvoijfXTIMiYmJxGG4UCdJXcKGsgUMYRRhN/+9rdYX1/HG2+8cSiOL4KF8X34QYDCsMOoBmDUSbaHgZGceA4RSZri/v37OHr0aN9S4yiI4xghs9q0MxLjTPDg3EOH2/G4EQMyZ1zW1tZQKhZx8eJFLB85AkVRxGLY74hxHIsmY8e2oXXpJ8MwFN9h4QrBfq9pGhYOUa+aIweHZlnUcrDZRMisYLl2X2Xyl26/85FfQ9MwNzeHY8eOYXtrC9evX8evfvUrTExO4syLLw5XQVYUTE9NYWVlBb7vo1arZSaAXLKTjCA9abVa+PDDD+EFAd577z0xmOgg0HWdzspgcczI2MDvB8p34MYziunDodkXE4J2u421tTW8fojVYj7EkBAynIWx5CilqGp/96YR1xUC4JtvvsGNGzdQ29nBxPg43nn3XczNzQmbcf64ntcTBKLnxikUoGlaR0+NzzY2pqbtkUHbjtOzB+D7jmc62QcAs1SCbhgIwxCtVkto4rO+hKP6jXPtIn/u5OQkfvjDH6LGmMxLn36K69eu4YXTp3Hs2LG+Sd0gnWWHyw57vUElwna7jQ8//BC+7+P99947VAsuyzQp68o68w8NT1hfPYq28tCuU1Hw6JtvEIThoZVaCeigNSh0yMmwjDZnQAg6dbh7X2C4aycA1tbWKOOyuYlKpYI333wTi4uLI8nGSJrCYxOmTcPIHArDNzaGaYqgzL/DU9PTmWx/jhwHhaqqcKpVqJubSFmCVWaxOlMaOsKxhRxIMlhYWFzEwsIC1tbXceP6dXz04Yeojo3hxRdfxNLiYt+YqRsGxsbGsFOrYXtnB47jdPRZyevKsAnq1vY2PvrwQximiZ/99KcjGTwMgmVZiNmAo8NK9mUnoSeFUaayD5JMDQtFUXDnzh0Yh1gtFrJQQmA7zlAxnOvaRaW+X8I/5LqSEoKHDx/ixo0baDQamJ6awnvvvYep6WnxOqTHLCEZSRzTdRLUZjNrneSVZIPbcEqGFvNLS09tD9gzn+zrloViuYxoawu+7yMMQ5oE8OYiSCXLUZM5hXp7Q1HElF6ANvG+8847aDYauHHzJj7/3e9w7do1nD59GieOH+9ZBnMcB+VyGfVms0Nn2Z3o83Ptl6Du7Ozgw48+gqaq+PGPf4xKpdKRDB0UOrM/jOMYge/va0JfN8SZPUlmn3+RhwhiWc5G+wIhuHXrFmZmZvbVgJeFwPfpZzCreaoXuq9FSjQ6gvMQ7AsB8PjxY1y/fh21nR2Mj4/jnXfewdz8/J57NugzKOspVU2jVYq9DxITD7llbcy+g5qm4egh6lVz5OiGUSigWCqh2WzCdV04jkP1vey7wpOOofT6GdBUlTLSksPJ7OwsZmdnscUqZh//9re4Wi7jxRdfxBFWMctCuVKBHwRIXRcbm5tYmJ+nlTwpwQeGc5D55ptv8Mknn2BsfBzvvvMOLMs61HXFNE24nidm5ByGDI9gBFecQ8IoJNJhrXZRFOHuvXs4OoBYHAXcGEHV9cxZLT3Rdd0Kc+zZ42wz4HOTJAnuP3iAmzduoNVuY252FhcvXuzZw6Iqvef1kDSFy67H0HUxEKyjAVdRRCOyxdYVPsvFsm3Mzc/3Pd/vM575ZB8ACpUK2s0m4iiC67rQDUM4DnA5D7A/WY+iqjQ5yvhduVLBG2+8gZdfegk3bt7EV199hRs3buDUyZM4eepUJvM4NjYGT9JZzs3O7pFXiNHVPc718coKPvn4Y1QqFbz77rsdyd8g69FR4Ng2mq0W/DCEbprDOQ8Mge+CgRlGW3lYO/rVtTXUazW8//77h3K8NE2FV3BhSPYFwN4JoNL/ZTamHyuWEoJHjx7hxo0bqNfrmMpgXLpByF6pgww/CJAkCRRFQdFxOh4nazG5jIcvQkkcA4RgcmLiUNnGHDm6oaoqnHIZnuchjmO4rivYfaAzVuwnbggSKSNWT05N4YfvvYfazg6u37iBTz/5BNeuXsVpJhvNSvQmxseFTHR7exsTk5N72FbSJ0ElhOD27dv48ssvsbi0hNdff323efGwGkxB75VtWfA8D57vd9zTfYPHrydEIo1i53yYAqOv79xBkiR44ZCmsUZxLHodnS63mr6QZDwy+KaLpOnAz0wcx7h77x5u3bwJ1/OwtLiIt99+G9UBfQj97qfrusJms0OOxHowCeiGiZN6PD/jJNLC4uJT3QP29J75CLBKJRimiTiKECcJXNdFqVjcTWC4+8B+grKqQgUr9ZDsoSqFYhEXLlzAmTNncOvWLdy8cQM3b93C8ePHcWR5meoo+fMknaXnedjc2tpjx8lZ/qygfPvrr/HlF19gbm4Ob775ZseHU0iODomhNkwTmq4jjSKEQbBv31kZT7Q5V2IanhTzQwjB9evXMTkxgalDklW5nkddojRt9NJ3v0WaDUzJek8838ejR49w5+uv0Wy1MDc3hwuvvYaJAdpdQgiUPt+1iH2WAFrp6i6D814ZPwzpd0BVO4OyomA5Z/VzPAHY1SrMWg0+S/h9NnuEACJ52C+xwnsA0j6TesdY9axRr+PmzZu4/PnnuHr1Kk6ePIkjR46gKA3n4q5vGxsbqDWb0A1jTyLNSaTuWJimKX73xRe4e+cOXjh9Gq+cPbtnAz6w52cE2JYFj1Uqwygaadjk9wEj2Tkf0iYpSRLcunULR48ePZR1mHvq86RXGyHJ7XXFw8h6mq0WHjx4gLt37iCMIhxZXsYLp0+jXC4PfM2UbyIy4Pu+mMmSRYhx+VwQBEIKy6WhSZJAU1UcOXas7zl83/FcJPuapsEoFJCyLusoDBGaJrVb4l+2fX7pFEUBVBVKmopGrV5wHAfnz5/HmRdfxK3bt3Hv7l3cunUL1XIZy0eP4sjyMpxCAbquY2xsDJtbW6g3mzB0vePDzr1sZdYgTVNcuXIFt2/fxqlTp/DKK69ksgoKux+HFZgd2xYLnWVZh7KJeFLtVN/FSPPNrS1sbW3h7bffPpTjhVGEJI5BgOGap2RwBibjV9zRh0iBOY5jPF5ZwYP797G2vg5VUTA/P48333prKOcH7uGd9GB10iTp8NPPsgrkvQWB74MoimD1U/b9KxQKmB5yiFCOHAeBZVnQTBN6HCNJEvi+T5MEaYO631jGK8bDrEuVahVvvPkmXnr5ZTpQ6MYNXL16FVOTkzhy5AiWmN+64zgoFApImk1sbm9D13UxfwbY1Y7La1gcx/j4k0+wtrqKCxcu9Owx4v1rhzKHRFXhWBbarivu6WHgSRFJo9g5H1aV/e7du4jCEKdfeOFQjuf7viAF97V56HFdvKKrKLv2rn4Q4NGjR3jw4AF2trehG4ZI8oeq0BICwtQVWe9xFMdi4rXjOJkbF362AauQcwKJu1ONT04+9dXi5yLZByi7H7Xb4svlui7K5fJuQxT2786jKgrSEUqZpmXh7NmzePmll7C+sYGHDx7g2tWr+OrKFUxNTWFpeRkLCwuoVquo1+vY3NmhgZklc4KBYecaxzE++eQTrK6u4vyrr+LUyZMjX8N+YbAdcJIkCA9pyNaTYtlHceJJejDco+LG9esYGxs7FP93QoiYaNjTU78PRGk743OrsiSfEIL1jQ08uH8fj775BnEcY2pyEq+99hqWFheHriSIYT3I1uwTQqhWl2T76YvzApCCbnIUQjqCMklTLC4tfSc2qjmeTxjFItIwpMkCIbRqzJt10Sk7GwUq0+ynGD6JLhaLuHDxIs6/+ioeP35MJ9p+/jk+//xzzM/PY3FpCXNzc1R25HnY2NjA/Nyc2FQLRpp9fzzfx4cffoh2q4V3meNJPxymRNSybbQ9D2kcI4qiwxkO9YRkPE/azpmkKW7evImlpSUUpGrOfsE99QlAE9z93LeMz4LIrxhb/nhlBffv38fa2hoAYGZmBm+9/Tbm5+aGXsu44w965G5pksDnRg+mmble8bUpTVOEzHDEkqrFhBAsHz060uV/H/HcJPuO46Cl61DjGHzSWxAEtPlP2m3uV7dP2HP5h2aYL4iiqqLp6rXXXsM3jx/j3v37+PTTT6GpKuYXFzFercKybayzwGyaJvhALVVV4fs+PvroIzQaDbzz7rsDvZSBwy278p1/HMeUhTHNA7P7T4qB4SXyYYLyYZzTzs4OtUB9/fVDOBrz1Ac9/0ObZAz6ntZ2dvDgwQM8fPgQnu+jWCzi9OnTWF5e7pAHDItuC7Nu+L6PJEmgKgqKhULmZ4j/JGFaUgLsBuU4hm3bmH2KG6hyPH1wikUEjQY0FvPjOEbIktODxAxeMQbbxIp4PURs1TQNy8vLWF5eRuD7ePjoEe7dvYuPPvoIpmlicXERpXIZlmlibWMD87Oz0DRtl0QCUKvX8dGHH4IAeP9HP8L4EJU7XhU4jGZdVVVhmyY8Zu98GMn+k3JRedJ2zvcfPIDv+zhz5syBj0VAZaFQqJ1xX0/9XuhxnxVFwQYjN7/55huEUYTxsTGcP38eS0tLI7unyZuHXr93PQ8pJ5B6VCg0tjYJvb6qCvlzHEUYGxs71JkF3xWem2Rf13WoloU0joUVZ+D7MAyjo9FoP+FAZc+T3QxGZTh0XacBemkJru/j4cOHlE19+BCGYWBsYgKu5+HUiRMiSfd8H7/85S+RpCl+9KMfYbxL298PhxmYLdNEW1WFxnKkrv3vEE9ar3/9+nWUikUsLC4e+L5Hsqd+qbR/1orsDq/xPA+PHj7Evfv30Ww0YJgmlpeWsHzkiPhs7Ze56/e8KAx3G8EKhcz3Q1TfAOGRrDFHKIAm+wvz84e66cmRYxAsywIMAyQMYRoGojCE57rQymXa9M+/l/v43qiKghQQTYXcQWek87NtnDh+HCeOH0ej2RQb+Ht378KybYyPjyMIApw4dowmOqCkxOXPP0ehUMAPfvCDPUOH+kJqdjwobMeBHwS01y6OD94c+YQbdAcZVhxGFYQQgps3bmB+fh6lcvnABF4YBEj3KwuVIF95s9HAA5bPuJ6HYqGAEydO4MiRI7QKxgnSESBkptxcJeMxnEBSFIXq9HsQSPwY3Xr9JE2RpimmZ2efiXXluUn2FUWB5TjwggCEEBiGQd152m2UKxX5gSMHZp6ciDIoOw4ZkokB0GGtWbBtvPjCC3jxhRdQq9dx//593Lt/H6srK7jz9dfUW5kQfPnFFygWi/jRj360Pz2ZogAjnGO/49iWBdfzqA2nYTwVXrTDTjk8jIWr0WhgZWUFFy9epIt2n8a7QSCEwHNdoVnf7yKoKAqSOMb6xgZW19awvr4OVdMwPzuLs2fPYmZmZu+9Yd+PYe/JoNJ+EsdCp2/18D3uBh+0xdm+OIqgG0burZ/jiUPTNOi2jTiKqPRG00CSBJ4k5xHoYeDQC3LFWPxsRKmMHGcq5TJeOXsWZ8+exebmJu7dvYtH33yDh48e4datW5hlhgGffPIJZmdn8dZbb43MqCsAwOLbgSu8qgrDNJEGAfwgQOkpcUIZ1s75MJL9R48eodVq4c033zzwseI4hu95ItE/CAkWBAHWHz7E6uoqdpgMeWl5GUeWlzExOdlJqrLEfZSEf8/3oOteRlG0SyBlGD0Ae6v1fF0R0tAoQrFUwvjExDMhDX06vj2HhEKhAK/dRuj7KJfLomzjex7MA3Sw8x28zLrwoDfMFzrlTj4ZGKtWMXb+PM6cOYObN29ifWMDN2/fFk4yU1NTqNXrMAxjX4FZ1TSx+z0IbMuiXs5JgiiKDpZ0SZKqbxPDDpHpOwFwSFy/fh2O42D5gFNdCYC26+5q20f93KYplRNtbGBtbQ1bbLr0+MQEXr94EfMLC30b4hQAZEj2TmGMTcf9ld5T7ntMQH2Ps66FS+PkY4ZBAKIosNm8jCAMsXzsGEql0lOxyczxbKFQKKARBPCZ3K3dbgvbQo1/l2SGf8jPaHfFGJCIpEGxkZCeyZMCYHpqCtNTUzjz0ku4/fXXWF9fx+2vv6Z6ZctCpVrFTq2GiYmJ3cr3kDhMEwjbthEEAeIwRGLbh+Yf/21iKDvnQ2L1b1y/jpnZWYyNjyM5wDHF8CxVhaHrI8/NSeIY29vbWF9fxxpL8BMAc2zTODc31/+94+YNQzgFjkogDZMXpYSIzYFpWXTOQ5Lg6KlTT31jLsdzlexblgXLcRAwvb7jOHBdl/rEG8buTpaz+0MGZkVVaRLUFdyGCcxEYvT7nrtp4oVTp1CtVjHXauHKF19gYnISKysr+Prrr6EoCianpjAzPY3pmRlMTEwM5x0PGpQOLOdhyZfLNJaHybAS5rRC0hQJaxpNkwQpsDscjW1+OOtMADSbTQB0tDt/j7hUS1EUtFstpKADQ8AafVRVhcL6IQ4rcWy32/jmm29w7vz5fZXiZQS+L9x3Co4z+PNJCFqtFtbX17Gxvo71jQ1EUQRN0zA1OYmTJ09ienqa2oAOeV484e87LKiriVz8mP+dpmi129m+xxK6S+FxHCNmQ05000QcxyiPjWF8YuLQBpTlyDEKeIKfMLc30zQRBgFt1i2XO2yVgeGNILorxuLn7O9+39ZhY0y5VMKpkycxOTGBxysruHf3LsbGxnD3zh3cuH4dmqZhenoaM7OzmJ6exli1Oty543AadjVNg2lZCKXN1KiQz0CcE1svkjTdu74AYv0X9qns381WCwBbUxSlYz3heUPbdaEqCgzThM6INFVaWxRFAdmHgqAbqysraDQaePXChQMdB6A6fa5Xd4YhkNIUtXod6+vrWF9fx+bmJtIkgWVZmJyawuzcHObm5lCRVRNDYFBv1zCJPifDdE3LlN90E0gAhFuPpmkwNQ1BEGBmdhblcjlP9p9WlMtlBEGAwPfFuOSIDUUpFov7CsxZzD5H38DM2JdhU0qbaSzTNAVRFExPT+OlM2fQdl2RzN26fRtXr16FpuuYmZnBzPQ0ZmZmUKlU+l7HYQRmi7P7rEltFMs0QgjiOEYUxyCeh5hZSu65p3KQlK5HbJq6fiaCNQ/i2H0v+FjsJIrgs3/Lv5eTfk3ToKoqdE0bubx548YNGKaJowfs6OdN0FyD2MuxIPB9+nlg7L3H/JInJiZw6uRJzMzOYnx8HFEUodVuUyuyUaVrGByYe6E70S/20Omr2Pu98X2fNo9pGnRFQZimWGJNw08D65fj2YOiKCiXy6hFEfwgQLlUQhSGSBlb6sjJwgh9Yf3WlX7a+GEJJI5yqYQoilAtl5ECOHnqFGZnZlBvNEQy99WXXyJhLiUzs7NibemXfPPmyYNy2LZlIQoChGFIJRkjxN+UECTM0cdzXfiqSsmSDDIi07qRk0g8H2BVeHGPJXIJABKJiIrDELH0O358kfwrCjRdh6qqdGLyCNdFCMH1GzcwOTWFKTbbZL/UFK+cEIAOMcw6D0LQbrcpYcTWliAMoakqpqancfbllzEzM4NypUKHgvr+6DNf+DX0yUV6/hw00Xelqnehh9GDlrFucQmPZhhICYFuGJiZmxOOjc8Cnrtk3zRN2LYNP03h+j4twdZqiNgUUrt7stoQx1T5FN1eZUt2nO4P2CiJPke5VBLNSo16HZ7vo1QsosSasFJCUK/VsL6xgfX1dXz55ZdI05Q6lczOYpoFaXm3elhBWWGuMJ7v9/VHTllinySJmH0QM5/qOI5FVUDcT8aGcHZElZn3LmZF2EmCWogpAIqFgmB9eQVAttmyLYsyO7z0LbE73Gc3jmNRSVAVBaqmQVNVqtllATsLnuvi/v37ePns2ZHL4TK4s4CiKFSyJQXSOIqwubkpAnG90QAIQblaxcLiImanpzE5NbVHD5+mKZUKHGST14uh6hEg0zRFi08yVKjzTi89ZdZZtT0PSFOYjoM4jjHPXBxyVj/HdwnHcdAyTcSsalwoFtFoNBAGAXU1kROfIZt2eTUyq7+nZ1I0IoHEMTE+jna7DU1Vsba+jomJCSohrVZx+oUXkKQptre2qPxvfR2PHj4EIQTFchlzMzOYnp7G9PR0B5N6UP0+jwG6rsMwTYRhCJ+t2Vng60ocx3RdSVOkSYI2izdQFBGDhd87mM3pkOsKv5aONYUeUDi6JHEMVVFgWhZSZt2YpOnu5oytKzEAsCotX1c0TaN/mCNMrw3AxsYGdnZ28IMf/GDk+yojSRKh07e7POgD38fG5iY21tawtrEBt90GAExMTODYiROYmZ7GRJaeXe5dfEJI2bBU7rzTl0DqzsPYpjxl6oQoinDs1CmYpnmgJuXvG567ZB8AKpUKfN9HxLqtC6USmq0WXM/bO4V0iMDMPZF5CbD7Qy7/nx/lIHrG8bExWJYFQgg2NjcxPzsrEmRVUTA+Po7x8XG8ePo0kiTB5vY2NtbXsba2hvv37wOMiZqZnsbY+DjGqlWUy2VomjaUZm4PpHtjWxaCIBBsimEYHax9HMdIJBZd3BMWfDU2EZUzDAeR1PAgxBNyGXEc00ZiVc1cPFL22YjZgsFL9AnfFLD/g20YNEWBztxh5CB96/ZtaLqOEwecvue6rpDNJEmCx48eoVavY2tjA1vb23RD5ziYnZ3FC6dPY2Z6GtYQ5diUkKHkXllQ2J+EvXeDqmAkTdFut5Fyi81icajGKY4gDKlbhKLAsW3YxSLGxsdRKpWeiQaqHE8vOLu/E8cI2LwR27bhuS6a7TYqLIkTGGKDzd18+q0VHRXZfSb6HDMzM7RalyRYX1/HvKSz1lRVJPRnX34ZISMY1tm68vXXXwMAxsfHMTMzg7GxMVQqFZSYK9FBZaK2bSOKImqXbdtCDsmT+ziKBDHDIVdoNU2DbZp08GOXpGYUiPuRsaYANJ6ahgFd1/e4GHGiKUlTsZ6k7N8pO19OfPE1kSf9uq53VJWvX7+OsWoVszMzI51/9/m4rguwdTfwPKyvraFWq2FjfR21eh0gBKVyGfOMKJyemhpox8mr6ftlxBXQja78ue93vDRN0Wq1Bib6/Ny64bou0iSBrmkwDQOV8XE4jjNwau/Thucy2dd1HYVCger14xgl26ZuMq6LVruNsqKM5C+rqiptdGWJbC9HEVkveFC9Hh86pABYW1/H3NwcjIzX1TQNs9PTmJ2exitnzyIMQ2ww1n+NNWVxBqNcLqNSraJSqaBaraJarcK27ZG+tApL1l3PQ71eh2VZiJOkszFTCmIqZzI0Db7nIYgiOLYtGoS+rSZdvjD0SnQF20MIIH0W+PjsNEkQs0DNWf8ojhFwW0hm3XX37l2ceuGFffkVx3GMer2Ora0t1HZ20Gw00Gq3xf20LAuTExM4d/48ZmZmUCwWR3qveGIwyCJuEPi1Dkz0XRfRgES/JxQFzUYDiqLAsSyouo6FpSUa3A9hkEyOHAeF4zhotVqI0hQBk5zELPlvNhqoVqsj9YXpur5LIvVIdnjsTg+hMiv3WSVpKtaVrPhgGgYW5uexwOZauJ4npKQPHjzAjRs3AEbUVCsVlCsVVCsVVMfGUK1Wh+vpkmK/ruswdB2e76NWr0PXdSRxLNh//khdYsY1XafrjKYhThLYjkPJp65jHybEQK0sEkOqUHdLDjm5xDcBMfubEIIwiui6kqbQdB2tRgObm5t0Cvs+YncYBKg3GtjY2EC90UCr2USz2RS5iVMoYGpqCidPncL09PRI7LYCyY3oIOsKIWJYp8r7ITLAE/0kTaH2SfR7nYkC1n8BiLxjdn5eKECeJTyXyT5Atfue5yECECUJCoWCGIjSbDZRqVT2jlUeEJhjlvj1sw9UAMSHMI3Vsm1orHM+ZPaJ8z0Csww+VGVxcREATSgbzSbqtRrqjQbqtRoeP36MKIqgKAosy6KJPwvUfCOQxaSmbIpuGIai+ZUQQnWJChvSwf4Mk+h9m1488kyEXsiSkiiMwYeugy9XqZT0x3Espu5xtmtmdhau5wnGJwvtVgv1el28B/VGA23WDAZVRbFYRLVSwdKRI+L9GIa573Vd3Or1MO4xAcQUw8zfs0Q/SVOooO4lWe8/Hx6094QVWsJnusqCbWNmdhaGYeQOPDm+V6hUKtja2kKQJLAIQbFYRBLHiNMUjUYD1UqFDssCBjr0KEzTnbC40tdVhG0KDlLfUkCNIEzThK6qCKMIG5ubmJ2eHvjcguPg2NGjOMb6ksIoQr1WQ6PRQK1eR71Ww4P790XcdRwH1WpVVACq1SrKpVJnPGYbojiOEYUh/DCkzZcASkyPrWoaDLYR6Cd76b7Ob2tt4SRSv3U467W5RFVeH9I03V1T4hipSqea37x1C8ViEaVSCZ48K6gr/hKWCNfqddTrdTRqNew0Ggh8n1bSNQ2lYhHjY2M4fvy4eB8OMsBM9Mmh/9o67LGgKD3fqzRNaZ5BCFRNo5+JPox+1jvS9n3EUQSoKpxCAbMLC1AUZeTG4qcBz22yzxnBVqsFL0lQVlWUymU0Gg3EcYxms7mXiel3PF2HEgTCKaQXen3oRoVpGAiCANPT01hbX0ccx1hbW8Ps7OxITK2u65gYH8eENJArJQRuu416o4FarYZ6vY7Hq6u4eeuWYCfK5bII1LZlQWVlTb5B0nWdatwVBZVSae/GaRiwsue3kcylA5h9YPgFgQdqHiTTNEWz2cSjhw9x5OhRmLqOOIqodCyKELMNZbPVEol9zJrGbMtCpVLB/Pw8KpUKdMNAwXFgWtZow236gBDSkfAf5P4S0IWNEIIssYGc6CugiX6vzwKf4tkBduwWKzcbuo6xiQlUx8dFhS5Hju8LLMuCxaSMfhyjYJp0XWk2EScJGq1WZ9MfYy17OVtpug5lmGQfu9/Dg0RLkzHfk1NT2NzYgO952NjcxDTz4B/lOFz2w5ESgkajgXqjgQaLe/fZoCUFNBZXKhWMjY3RCb+WRQfnaRpUTaOP0XWhs6+Uy6NVBxmeBInUzyxglHXFZJsvgK5Zj1dXsb29jXPnzwsSxHVdKnEKQ7SbTUHeNZpNYevtFAqoVio4dvQoSqUSDMOAbdtwHOfQBkaJzx57zYN8Dvm6wu2bu5FySSh7XK+5AIQx/nuIKL6uNJuApsExTUxOTcEpFGDb9jM5r+W5TfYBoFQqwWWJiBcEcCwLpWIRzWYTCWNiKrLVGG9kzUiQdF0HFKVvsk+AzpHnByglGoaBZrMJ0zQxPTWFjY0NhGGIldVVzM3MHMiZRFUUFEslFIpFzLMyLcCqAI0G6vU6tre3sVOr4dGjR/DDUNwTjVl32Y4D3TBgmia2SiWUSyU4jgO7UIBtmsMxMLx89y2UXMWUwz7nsccjvgd4Y5bvefB8H57n4dbt21AAuO02PvnkE3i+j4g5HvDJfJytPz0/T0dyd7H1bdcVn6fDKCnyBF84RPFkf58MDHezIEBmEzohBG3PE4m+08MdAdhNVPa8BpNNee02CC8xz84CwDPllJDj2UGlUsHm5iaCJIEahjAMg9pztlqIogjtVotackro1fOis+Q2HjCEj68rygHjpcFsLguOg4mJCWxtb1OJzsYGpqamDiT5UxUF1UqFsqZLS+LnYRiiXq+jVquhVqthc3MTd+/fR8jipQIIDbxt29B0nc4CqFRQLJXg2LaQYAxrCyo77BwmOInU6zxGkRARQr3fPc8Tf65dvQrLNLHy+DHu3rlD1QlxTPs1kgQpI+KqlQqOHD2KMSbL5X2IhBA0Wy2QNIXWw5pyVGStKwci6fhaQg+259ci0WdNzU4vC2omBeo4hiSlDoMAQRhCURSUKhVMTE0JIvNZxHOd7KuqivHxcWxvbyMAoAQBDcylElqMiWk1GiiVyx0MvwLsKb1qrOGHSzoyk+2M3WXmz4eAybrGAZoITk9PY2NjA3EcY3V9/cAJf5bbg6ZpKJZK0HUdlbExHCMEKSGIwhBRFCEKQwQsOPmeh1a7jZ3tbdwPQxAeBEEDoV0owLFtGsAdR+zMNU2D7zhwWFDXGGvOdf2HldwlGck+b5DijVPcMYj/CYNAJPO+79OeD8+DyxJa8T4ypq5QKEBVVUxOTtINkG3DME36vrASNIfdNfwjYGPiCSG0AfUQrrub9cuynxsF3c+Ty+O8+Us4IjFb26yEvnuTwA4ufsbt1FRNw+LyskieniWnhBzPDgzDQKVSQb1ehxfHUEGT1WKxiFa7jSAMobbbtColEUn8eyB/r7h7TMxcW7K+qWl34so24Ptx2bKkdaVUKgGKgu2tLXjMmWX6gAl/lsWzYRgol8swGLvKXdFkowfu8OZ7HhrtNjY3N3Hn7t0OBlnVNDhsLXHYxsBxHBCFuvDEYQjTssRaoioKVLbGHMa6IjPQ8trLbSET5hCUJAn9P/u3z9YUvq7wf7uet0vIsOOkAKrlsrhn/DoNZjahqSqViTESx7Ksjn4xz/NoX4GidFrCHuS6pfcgldaUfd3T7k2vokCV2P3uRL9YLGY2f2dKQrs+e+12W0jlFo8cgaIoB5YxfZ/xXCf7AARDUK/X4UcRLRXyhL/VQhjHaLfbKMra4AytpcICSpimiHsk+5kT7vgxRgzMhmGIiW8ATfhnZmawzhP+tTXMzc4eivc4IYSWpYOAevyzAGSyknV357z0RNQbDWpXpqpAmopk2WMsuM8aeTlDwaezdm82+OKlspKuLv/NmrE6mrM0DT67P19dvSrGcSdJgjiKEEYRUsaGcLcgnpiKgSdS4BL2aKxy4RQKcBwHY2NjopLBA+/Hn3yCJI7xs5/9LDPgpYSIcwiCAIQQGuR9HxbbDPhsAqDjOAd+D7uZF/l95b8f6Xi9dJRS5ct1XcRSoq9pGq1SSPcja7gJ0MnoEG7VSQjGymWMT0yI72yOHN9XFItFRFEE13XhRREcALphiEGOnu/vDjDqk/Dz+R48Qezu+RHV4i5wm8dRv9uGaVKHFoZSsQgFwNbWFjzPw8bGBqanpw8l4ecJfRAEwvoYrE+MM85ZiVyaJGg0GkjSVDTqdq8pnudhe2cHPltXeLKs0hMQCS9fVzR5PeHSIWa8wdcVnccwAFevXROvzZP2mG1MUjaoK2GEEW/a5YMIO+4DQF13NK2D+JqYmOjYuBi6jv/2q19henoab775ZuZ95QRVEIYd64rPZgoRABEjkIqFwoEJJDEhXf6h9H6NnOyz9SPzeezz0Z3oZ1WyuAFIx0+7Ev0kSdBmm6n52VkUmJXqsywLfe6TfaArMPs+CqxRpuA4aLsuHR7h+7Bse/cLkvGB1HUdYRQhjmNYXZov/qX+6KOP8Cd/8if45//8n2NsbAxQFPzJv/pX+PrOHfyzf/bPhtZlm6YpmF/+5bAsC7Ms4Y/iGCtra5idmcl06RkKrIzI/WvlYGyzJB/oM61RoRaJ3DaywhqyeqHBdOy82YoH0pgHVIlpT9n/uSNOKrEmURgiThJ4vo80TeF5nrBr45Z4Ke/eZ8m07ArEF1j5b03ThH6yXwj75vFj7Gxv4wc/+EHvYCexLhbzjw7DEHGaIgwCtFxXfP4OrB3soePln8eRy608aPZ4jqIoaDPHIKHR1zQh9dk9gYxEP4P1830fSRQhSVO88OKL0HUd4+PjuXwnx/ce1WqVmj6kKVzPQ7FQoJbJEumhqSp00xRJaFblWNd1GgeTZG+yn7WmAPiTP/kT3L13D//P//F/RGEECaCp66hLJBIAkVRtbm7CYwP7ZmZm9p8sEgLf89Bmc0NImkLRNCrFMU3x3e5lOapqGizbpo2moFbUcs9Z50sRbNdq8HxfyEf5OhIxwke4q7G/+b+5Tz9n5ENWuU6SBK1WixIzui7WBn7Ouq53VKbFmsKqCR0udKoKy7aFXKsXvrp6FWEY4uzZs31vraKqsG2briuMTEoZ+dJ2XZjM1KCficiwIBlGI4JA2mei309a1epK9NXuhJ5B7SajMtaVVqtFN1mGgWPHj8OyrGdWvsORJ/sMPDD7SULtN4tFmMzL3vU8uK4LBZT5kAdvcAYY7EusKMoeH3lgV8v37jvv4P/3v//v+LM/+zP8nb/zd/Dv//2/x5UrV/D/+p/+JxQcZ2g2hluIRVHUkRCapomZ6WmR8K/xhH/E0lTE2BKeaINp4+RgzNGvXGxaFg2QcQyfLXi9oEm6THlkN0GGzGMIbO/s4C/+4i9w8cKFjk1GFEV0gIymZX7B92vNlqQprly5gpmZGcwyXXkmukrupmXBtCxEYYidWk2UfWPmbmQYxr6SWwXoOehNlvAMfeweumKONE3hSYx+oVDYXVS6tPxq1z3gP+9Gq91GFMdYXF4WjFfuqZ/jaQCfWr2xsYGIrSulUgm244jksdVuo6yqIJoGjT5p9w/7Pui6LmIoJI01Z/UHrSmjxDI+vKobhUIBU9PT2GSTU/djBgFQlx6XD7lilVKrWBw5xtlsXUmTBEEYCivqbigKbepXHQfFYrFj0ON+vP9rtRr+8i//Em+8/voe4oqz6D3NFLqY/WHh+T5u3b6NU6dO9WWe5fgpk0l+GGJnZwcAZbSjOIbOZuDsB0qf6xAynlFidB8CFaDnzAlHOdEHeq9v/HhZ06T5vJcwivDS6dMwDOO5IJDyVZOBB2bDNEFUlVp8EQLLtkVJ0fU84X3Lg5UIzJB8kdljOLgVFXsh/N/++/8ev/zlL/Fnf/Zn+PM//3P8P/6H/wHj4+OiwWqYEGSapkj2s343Mz0NkzFCq2trCDMelwWuiWs2m4jiGCkr+Y1Vq1Syk/WFGPAl4dpqPwgGNpoB+FYacmUIvf4hSJxk3L1zB+12G+fOnev/wB7XF0URLMtCwbbFoCjP96m3/gCXp25w6c4w5zBUU9uARD+JY7RaLcRsemRHoo/Ohag7WSdcGtaFMAjQdl0oqoqjx45hbGzsUBipHDmeFFRVxcTEBDTTRAKqmQZo8mzoOnUEabVAkoTKCuXeHwAghA5TUvqYP/RbU9jvh4Uhafa7UXAczMzMUFvOMMTq6uqeQVa9kCQJGs0mjRHsOaVSCRXmuT/qusIlUIqiwPf9vrGu11EOO7kTpg89jrvfVe3KlSvQNQ1nzpzp/8AerxuzmQ9FtuEBIJj+/Qz37PecUZj9YZqkoyiiA7Pk+Sxyn50kReV/+pFHAM3jgiBAoVTC3Pz8c0MgPftXOAJEYLZt6gAi6aZNNgm23WqJAMeHnci6fU3XQboDc9eH7sKFC1hYWMB/+A//Af/kn/wT4XnPMUzCz+UkvQKzaZqYnZ2FyRaU1bW1TMZm9xSpvq9Wr1MWKU1h6Dr1c7cs2sy0z+DIx51rqiq06Fnod/TDTP/JgKC8HwRhiGvXrwu/4lHBtaUEED76BbaYEULgsgnPw7JRWRr97t8DIyT6fR7LGUpeji8Vi3uScv56KtBRrt0j75FQq9cRxzEWFhYwNTX1zA05yfF8wDAMjI2NQTVNoVFXWOKisV4i/v0BIKZ0Q1EA1o/E9dHdU0U5Bq0pnJQauK4YBiV5eiR03AxC1zREzAyiX8LPK+P1RkOQR9xe2DTNjgbbbgxqMLZYlR2grHpPyLHmWwQnkXr2WO2zkvDw4UO89NJLA4mOPfeLEOroxuYvjI2NocqsshXWB9JsNOD7/lCVc66P77tisN8PWlVSVtXpB9/34bbbVG6j6yiXy3sS/W4lBF8v+13Nzs4OUkJw5MgRTExMPDcEUp7sd8EwDIxPTEAxDASsLKcoCgqsyTBlTEySJB2NRhzcB1hO9rs/eF988QVWHj9GmiSoVquZ5zEo4eeSoX4JvK7rNOFnQXV1fT3z8fyaRDKpKKiUy3t20fy89gPHtmkPAGti6ofu6x4meIyCgUF5H7hx4wYIIXhpEPuSgSAIhH1p0XGEjatpWaiWy7AMA1BVxIzl6MfyCwZ+wGsKRqTfnAHG5Pf6HIrGYtelDKSuo8S+J10PpK+F3eR+UED2fR/1RgOmZeGFF1+kziA5cjylcBwHlfFxqLpOpW5RBEVVRQUvYTIfroMmhHRsyDVN60siDbOm8GP1+95xSWi/GM3NIHjD6uraWmbCz9l8n/VO6bqOCnOQ4euIwnoUsuIVGbTWKLuOMoHvi7i+52HigBmuLf1fYST0s3PejzSUAPjiyy9RLpVw/PjxwY/vul/ClhNAgU8sVxTYto0y0+0rmkb7xNrtgSz/MBKkYW039zTQSuDqAt6TYVhWdi7CX1N+7oB73Gg04HkeiuUyTp469VwRSHmynwHHcVCenISiadQCi1k0lWQmptmkk9cYkjQFAXNPADqCn/zxu3fvHv74j/8Yf/8f/AOcfeUV/H//3b/reR79vjA8efb6MOUATfhnZmZEwr+ytiYmkQK73vmcdSk4Dirlcs/d7n4Tb95UpSoKvB5MQr/jHmbJVYzzzgrKklZ2WLRaLXx9+zZOnz498lTbKIrEe2g7jvBD5lDYZL9SqSSSaG7f1w3R7DbE6xKume1TclYGBGRXCsiWbdMFhWspu2RsvLw6TP8F7zVRFAULi4sdsx5y5HhaUS6XYbNEvNVuIwgCOvmTWevyYY5i7eCSUABGht8+/x6NsqYA/WOpZdtQQHXi/WBZFmamp2GwyfEra2sisQTYBN1Gg04TB1AslbKJAHpCfV+rHww+lVxVe6+FvcwEcHjVXULIbsU4Y13Zz/q1urqKzc1NvHLu3PCyGAY/CKh0l8lwu9dzjVVgi8wemhBCpbu9NnlDronccbAnaz+gwpQkCTV44LbijoOCtDnMOidFUUSvQD/4vo/NzU2omoZTp071NQt5FpEn+z1QrVZRGh+HAirRaLfbUFQVZZYIp4Sg1W4jZIkzZ1R1tnvmkgxgd0e8ubmJP/qjP8Lv//7v491338Xf+lt/C598+inu3bvX+0R6fMl1XUehWESj2Rx4LbqmYWZmRvQerK2v02aiIBCTHQGgwqYWDgosnI0R/x94BhS2bQOMxQr6MEffZrlVrsToGQvPfkL/l1euwLZtnDp5cuhzAOhGy3VdKIoCyzB6NpkB9P0ul0owdR2qqiKQfZjRv2kqC0ma0umDGfdgUGUgiePdPgLGrtlMcsRORgR7+bM0TKk4DAJsbW4iimMUSiW8/sYbz3zjVI7nB5NTU7BLJYBtln3Po4kXkygknEhiiTNfV1QWc7n5A+8D29eawpD1bayUy4CioNloDHy+nPAnSYI11hvmeh7VWRNqgVgulzsaY7PQvaYAg2U8HE6hAAUQTni98G2uKzKBlBWvRjWYSAnBl19+iempKczNzQ31HP6qURhSaQ5on0W/RlyDu/NoGhRVhddud8h6hDPUkCCsXzGTSBvwXFmfr6gqiqVSx9CvjgZkRUHCzm+YSoLn+9ja2kKappicmsKZl14a+pqeFeTJfh9UJydRYP76YRBQuybQxiLTNKmGnw1W4uDJEyHUS51/PNvtNv7gD/4Ar1+8iL/xN/4GAODkyZM4f/48/t3/9r/1PxGpCbjj/KpVNIdI9gGa2E5PT4uE8t6DB9ja3kZKiBjQMYqspSOJGzIZG9hUxY+TFVwOqWmXN8D1cqEZNShvbm5iZWUFZ195Bdqw2j9FQZokcNttENBEfqgBUUxOxr25uaynW8s7DNIkyWT2FUWhgbrHexpFEZUbsIBcKhZ72oPyQMyrXoPg+z7arot2uw1d0/Daa689077HOZ4/KIqCybk52CxB9Xwf7XYbqqoKaQWXVYZSBVbTdaTMLjJmMeyga4qSsa6YhoGCbaMxRLIP7JpBGLqOOI5x9/59UZ2wLItWJIdsfhQJP4/BQ64rmqZRlzxFgduv0v0tGj9kDWkUL4vR15W7d++i2WoNNnvoep04jqmlKQDbNGEOMSFXZSy/ZZoAa77mgwxHPW/ex9hNpGVt5mQEXfr8LHtQvmar2CXtBp0dIQRuu41WswnP82BZFt58++1ndnBWPzwfnQn7hKqqqExOQgVoo0sUodlsolgqUQ2ZosBnU1UTNjFVURSYpimGeziaRrXYxSL+4A/+YM9r/NN/+k+HP6EuiUmlXMaDR4+GfrquaZiZnsaDR49AkgRbW1uYmZnB+D7LWTyZGwWWaSJgGs7A9zuS3GFkPPux4JQxSFc5jN5dfvyXX36JsbExLC8vD30O3PqLANBVldqRjsBeW2wKJLewa7VadPjNCI4CPCjzDQpnY/o5JPi+L2Q7uq7DYSXgPdfHjjHsBoQwOVocRWg2GtB0HTNzczh+4sTQ15Mjx9MCVddRYQ4gbruNMAxB0hTFYhGlUon+LIo6HOFUTYNpWQijiK4rzFnlwGsKIHpo+Le+Uq0OVTHm4An//QcPEIchNjY3sTA/P/TMmM5TUUaKHRyO4yBiHvhhFHVWEvq5+mB/0s1ucOlVL8JslNpkFMe4du0ajiwvozrC2swrrgqo7Mse5f4r1Fpb1zS0metgq9USec4w4G5SRGq+JZB873uQay7LrQDqBuX0ke0oikIb2NN0IJtP0hRttq60Wi2YloXjJ09iampqqOt51pAz+wNgOA7sYhEl1uAil1mdQkEwj2EYot1qgaSp2E1HjD0FDp6kCkh6t1KlIgYYDQNCCDzfp3IQ5gXcdl1sbG7uy4JL4XKNUa6NBRUgw4rzCcg1+gXlQexDN+7cuYOdWg3nR2FfCEHLdZGwwFUsFvd13TqbEcBlY8M0WHF0BGX2eRJJe8a5dDdMmZbVoc+Xr41PpuSBedDnnqQpXNelvQu+D6IosB0HFy5efC7s0HI8nzCKRdGLw13Vmmz9KBSLHXbP7XYbhBBRQePDFMU080OAnDhVKpWhZDwcaZrC931UmY2m4zjYqdVQq9f3dy7oo/nuAVVVYbMkcRTXMv56B0U/EmlUXLlyBWma4pVXXhnp9dss0dc0bd8VUcMwUGY9JDwRH/ZO8llC8hyifg3hfEPRoc9nhKkMTsLJZNygz33KGt7TOIbbblPziHIZ5159dcirefaQr6ZDwKpWYVgWyqwkycusURjSUiWbMBixBisFEGWigJdiWUlsP4M8usG/SOVyGQqA1pAsjOu6ojS8vLyMyclJaIoC13Wxtr4+0CWnF7QRE37DNKEzb2VeLpTR70gHvXt9mf0RrqHtuvjyyhUcP34ck0MyBYLFYLrS4ohsvAxe0uT2fVAUtNjgkUGQg7LKPLyHbpgqFPYwLx2DS3iiDwz8vPOAnLDm8IgNennl3DlMTEwMdR9y5HgaoaoqXVdMk+r1NQ1JHKPJZHmFDCJJZxNZE0IQx7H4DnbPddk32PEq5TLtyRmCROJJZhRFUFUVR48eFetkvVbD2sbG0F78HaeC0ZtabcsSzaZys24/N57DAo+pmZKlEV53fWMDd+/exSuvvDK0Uwx/D7id5aiV4g4w56diqSQqLFxuOsx5AHSzMYjoiVkVIk0SIEOfD0hJfjeJNaAZN5acrfgkZMM08eZbbz1X7jvdyJP9IaCqKuyxMWhM267rOgjzRg6CAIZpCg/YJE3RbLUEcxxx1xRuNQb6pTiMpH+M+bnXh2BQ2uxcUyYp0nUd1WoV09PT0DSNDklZW+vvV9wLyuge/AXHARSFNutK2lQAPYPjYVhw9mL2R7FGIwAuXboEyzBGYl8836eJPiG9nSmGBD9ThQV3jSXZPOj3A//8DXr97oapUqlEdZ3SORDp31nn1wt8E5GkKRRmK6poGhaXlnDy1KkBz86R4+mHpuuwqlXRfK9pGtI0RZM5vXUTSS3GUCpAR8zkSXEcx50b7/1AUVCpVsGHffUDYfEmZL1pXGc9NTWF8fFxaJqGwPOwurq6PyJpiMbL7nMvFIu0WTcM97xmr7tyGMx+LzvnUd6JOI5x6bPPMDU1NZTVJrBLIKVM1lIsFPZFIHEPfQ7u1qMoCpIhE/5YWlcIem/WAt9Hu9UC0hQqs2vu0OczYpSwtbr7OP3WtyiK4LZaQkoUhCF0XcfpM2cw02+q/XOAPNkfEpquw6pUqCMPk8EAbBJdqwUF6AjYQRAgZTvL7qDDv1gHTfp1w0CxVBrYpOsHAXx2PoVCoaM5xXEczM3OwmINx2tra0NtHvZgxIRfVVVhqeX5PmWRhnj+Qa3SejH7oxz1/v372NjYwIWLF4ceyBH4PtXm9rBCGwa9gqeqacKHmBBCfe/7IGELQ68Jwmmaou26exqmhL4fEuPSRzqUJSsihCBgze4pIXSUvaoijCJUq1Wcf+21XL6T47mBYVmwSiWoTJbHp+o2Wy24rgudEUzciz9kAw/jKNp1gGFxQWX9YWLY4z7XlkqlAlVVB64rrusiYjGtu6GyXC7T4VtsivvjlRW0B8SlbiiKAmWEHiqA9hJxR7m2NDcGQN/7cRDHLzH1OMP0YZSjXr12DV4Q4OKFC0M/x2X6em6xuZ+p8IKF7zp3Xddp9Zkl/IOIQJGc9zgHLtvhxzFMs5P0Yu+PmC/RYx3IyplImlKbdPYZMw2Dfg/SFLPz83hxH/NvnjXkq+oIMCwLZqkEwuQTXM4QssbdKI5RLpVgsKAXhSHiKOo7+EpO+vdTih2rVtFstUSTVTfiJIHHpDKO42Q6pxiGgbm5ORRYw+VOvb5/Hf8IjzUtC7ph0IR/yIVg0DCmgc9lQW2P3nzIY/i+jy+/+ALLy8uYHZIpCHyf+lYTAtu293jpD3HiA8uiPOFXeLWkx2dOUVWkrOyflVQHQUCZRfZ8Ux5owhkXOcnos0h2ny1n83mwN5ndaKPZhOM4OHvuXO6+k+O5g1ksQrcsQFGE0xvAvouNBkiaCiIJzBkuiuM96wqvfPJNv0j6R4TBHHmajUbPdSUMQ1EpznJOAajV8iwjkhRFwcbmJnZqtdFORuk9dKsXHMcR8crz/eGeewDSLZEkPFl682Gwtb2N27dv45WzZ6mEZgC4EyDv33AKheHd4HYP0vP95dB1ncqCQG2Rs6xNefNtwmSb3VImPnyx1WxS61jWl8X1+Zw84jlQd5Wh+1jd4BXoMAypQYpl0UbjdhuVsTGcPXfuuZmS2w95sj8iLB6YQYMZt6xMWKNhu92GUyjANE0YbDx6s9HYkzhzzbWsJ9wPK1MulUQzVfcQJM7ypoRON+038ElRFExPTWFsbEzo+FfW1oYuv/Lr6GVp2QvcsSFOkl2ruQEMzH7Z/bi7gYhhWAkPAXD588+hqirOnz8/1Gv6bAozQAfW2LY98gI8TKMrQEuvDptl4Htex2eOl1UJIdTNoEvGkyQJ2q0WtZElhJZXSyXhn9+9yRr0Dsjsiwj2bPI0r+oUi0U06nVomoZjJ08O7SedI8ezBqtSgWaaACOSxGRdJgv1fB/FYhGGrsPQdfi+j2azuTcucLkob47kZNKIiX9FsnXuXlfSNBVNsJZt902k+BT3UrEITVHQaDSwtr4+lI5fJH084R827iuKIA0CKUHtd/UHZvaRPbNkmHUlSVNc+uwzjI+N4eQQs1pE7xerqnRX64cCJ2qGOD/dMOiGTdP2Nj+zz1lKiLBzlteVOI7RarV2XdyYrz+Xg6a9cp0e70fHmpam8FyXypjY6xaLRdiWhZ1aDbbj4NTp08/d8KxeyJP9fcCuVKCyAKdpGirlsgguvElX1mEGQYDt7e3sxJl/6SRNP9/lDhOgK9WqaHKkh9s9VhAEiNjOf1jGtFKp0PKrpiGOIqyurfX3Lpavg2MEraWqaXQoiqKIseqH5lzUhZ7NuUOe6zePHmFlZQWvXbjQ01tehscSfQK6MXT2kegDo+k+TcsSY9CFkwJbLAkggjJn9mXWhQ/JsmxbuE9leS0LK7U+4A1rMSvdco2xaZoos2asdrsNPwyxsLSE48eP5/KdHM8tVFWFU60K6YJhGGLIISEEYRhS+0DTFBU813VRq9WEXnwPullmQifyiipyn1hUqVQ6ZDxyPOfSEZXNTRkERVEwOTlJdfyqCt/3sbq6urdXq/9BRmL4dcOAybz35SFRg85zPzjounL9+nW0Wi1cfP31wXaSZNfkgQAoMGJxJAyZ5MtwHIf2hbH72X2cbieelJOfUs+XUyjQKjHT9HfbXA9z//lGIwpDNFstMSXYZgYqhq5T8lNVsXT06EiW2M868tV1H1BVFbYUmKEosG0blUoFOkuQXNdFGEX0Z6YJn+mUeTONDB7EshjcjgBNf9Dx+wpr0m12NVOlSQKPsbuirDkkHMfB3Nyc0PFvrK+PpOPnjMywDLzFElRVVeEHwVDJ7X62A70cE4Y5Sz8I8PnvfoeFhQUsLCwMfLzreYLNcBijPwr6lTIHocBeK0lToanlC48clLlHv+ydX5L6UcR5dGHQWRHGJHqsEStNUygACtJ49iAIUK/XMTs/j6Xl5Vy+k+O5h6ppdF1h/1dUFYVCARWm2ee9NFAUao/IEudmo5GZ0MrVVsj/5lXkPkl/uVxGs9kU8YI9GVEUIWCvVRjR9YXr+PnE3dW1NbTb7b7PydLAD/uKjuOIqkTA42C/1xryuN3oafowRPyu1Wq4ceMGzrz0kljLe4E3RHMCr9hnoOGAA43+HIVOSgehrmnCqYmvK1KDMt+YcnMSwzRRKpVgGMaez9so5BdhGny33RbT41VFQalcFpJq13XR8jzMLy7iyJEjuXxHQp7s7xOarsOuVjt/xpqseONpHMdIkgSmrkNlu90gCNBstXrKY7KSchGg03Q3QDOUy2Uoyt7x5j7TU+qmua+AoOs65ubmRHf/Tr2OjY2Nnjr+7kDJg/SwbAkfeR5naFGzXms/H9wsx4RMa68MfPHFFyCE4LUBPr18o8cDneM4feVTGQcQx9mvfZqqaSiyhc7vupe8PySKIrSZrAbMo5p75+951REXBz5ll8uyTMNApVqFxUrNURRha3sbEzMzmJmbG7r3IUeOZx26acKqVDo21LphoFKpCMIgDEMQQFQKU9acyCfXyugXhzuqyF2JP088ux15AkbGcIJmVAgdv2VBAbCxtYWdnZ3eT+g+b2X4WSh8swTQZD/K0JvLkN3FRoFYV6S1exgpbkoIPrt8GZVKBadPn+7/WGavGccxFEAkz/K5f9vQdZ3KOhlZI4NbXPpBQHsE05TKNTOsmmUMXU0hBB7rJ+Pvo2VZKFcqokfS933s1GqYW1zE3Pw8xsfH93+xzyDyZP8A0E0TdvcHiskgKsxZgUt0uAeuqmnUX7zVQjuD5aeHoF+ArF2vCNCMPdU0DQXH6Rxvzsq+hBA4zJlgP1AUhdqocR2/72NlbW2k8quC4Rx0NE2jI+QVBZ7nIRnEwgxxTB5w+X3MKrcOc5yV1VU8evQIr776at/EXU70eUN0t3fwQByGlEVRYBgGve+EdCxyfhCIRYOAsfmDGKIhPz9cQ8kHfKkKtcKTpzBGUYTNzU2MTU5ibn4+l+/kyNEFw3Fgl8sd8V9RFDi2LaShqqoKdlVjVdEkSdBsNnvKVvr2UxHSkfiXymUQoGOSbhzHIpbIk89HBdfxl8tlquNvNrE6Qn8Yd34bJnYbspyHscE9D4v+axV/Zpqmu45kElnUsa4MEdNu3ryJeq2G119/vW8M5BUdvpErZjVEf0vSVw4FABSFTiYmRBCZ9KWpFLTtulQiCmbsUCpBz+glGFXKmjJjB4/JUoV02nHE+xUEAbZ3djC7sID5+XksLS0d7IKfQeSr7AFhmCZs5kssQ9U0lJiW37QsEJbgqywRA2h3ey+Wn0+nHUbDNzY+jvWNDZHcBkEAQgh0TRO+zAcxrKxUKpiZmYGuqkiiCKurq9je2RnJrWeYhN+yLNHk1Mudh5DO4WQEQIrdqbCcuRayJ4A6BaQpHT4DqZFK6T3GmyOKY3x++TJmZ2f76v+ytJRZiX7PQMfPYb9BW+6TYFUBkzX8hUEgnHCaTJuvMVs14bSTdUrDvjSzZWs2m1SGRei0z3Kl0jG2PoljbG5toTI2hvmFBRw/fjwvs+bIkQGzUIDZlfBDUSjLXy7DtiwYpomYOcHpuk79zQkRLH+Wcwo9zIBEmVBL3EKhgA22rhBCELLvtmWaHWvKfsgkRVEwMTGBiYkJaKqKMAzxzcpKJ2mFATFoyN4w7voS97GP5JUNbkQg+pu6+uc6rDxZ9Z4AUDSNJvhy42ufc2s0m7h27RpeeOGFvg2kYmAWa34t93A+6okDNB4D2HWCY/9WNQ0mc9ALwhBxkqDRasFlgxcN1oDLjR2yT2m4c+JS5GazKapZtmWhwkxROIIgwOb2NqZmZzE3P4+jR4/mBFIG8jtyCDBsG/bYWKb/q2WamBgbg+04QiMdRZFIOAXLz9jQLAz6cszOzGB7e5smdUwrnaTpHra24ygjJpW2bWN+fl5IPZrNJh6vrIjm3WG+wIMSfpWxVwQ0yQ7YsBYecGOmM01IdulZbnTuhuyYIOy+uD8yf658DPb/L774AlEc47XXXut53gfWUh5Any8fo3sjYZomwFihWr0uZj8YhoExNswn61rEvwe8pJzkB74vFsJCoUC1+VLJPYljbGxtoVQuY25xESdOnNif3jRHjucEdrEIo1jcu64w/fTkxAQs20bCp5Gm6a7XPmP5vT5s9qCYvTA/j5XVVUqgJAk8RhrI31sFOFDsKpVKoj9MBbBTq2FlyObdYXvDVFUVEig/CBAz0oevIUnX31mmBL3WFV6B1pjZAcl6vvRcvpH47NIlFItFvPTSSz3PO2WDO9M0BRSlY9bJHvQ634OsK4oCsOuSX8dkTeONRgPNRgNhECAFrfZUq9WewxqH3XakzC682WwKKaiq66iUSnsqSlwSOjk9nVeKByC/K4cE07bhVCp7NPVgDP309DQtjbJAzB1ROBMdhqHYwWahHxszNzcHECIszfj4dN0wMl19eEkOGK2kpmkapqemMDU5SYe/pCnWNzawubU19Eh0tU9iqygKNFWlwUTaGPGg3P28UTiLLF3lns1B1/395ptvcP/+fZzr4/8+SEvZE91M/H7Q4zNBQJvGojBEEIYI45huREB1vsWM6b3cGWEoeVRXks9tPB1mRdudxCdxjK3tbTiFAhaWl/NEP0eOIeGUy7AKhUwiyDAMTE1NoVgsIoljkZQDu705vu+j0YflB3p/5+fm5uC222g1m9T1hMlGVWY1zaunPHrtl0Pmc14mmFtPFEVYWV1FrV4fOHRSDBTrE7cUAIauQ9c0pICoenQQRvuE7LHfcU4yecT/ZvH6+vXr2NnexsWLF3smxnwAVcqGTZaKxb4++uLTwSsK+5iRs+f8CQGYuQI9NLUGj6IIruchimO67jFt/iCThWEc3ESSz/IgTddhO07m9XNJ6MTUVJ7oD4G8hn6IMNmH3WPONYr0Rdc1TTiRKKABjg+BSNMUQRTB0HXBEPdz0Ol27XEcB2Pj41hdXcX09DQIITBYqY2/vqwxVKWfD2Oj2I1CsQjLtlGr1cSkVc/zUK1Wh3JV4c4Se9gSFkx0VhIljJUul0qZzIpwJxoiQe0VlHsF+laziUuXLmFpaQnHjx3jJ97RzMu1lGk/LeWek96tJBzYYjRN9wR5QgiiMBQN2oqmQWPlVcuyEAZBxznyISbKEJ8DkqYI2DAdfh2aptFmPea00H1NaZpiu1aDadtYWF7GsWPHRnYmypHjeYZdqdCmetfdsyZYpgnLtqFqGk3EmbSEG0RErJLXbDZhWRZs287sWeIEkPz9nZqagq7rWF1bw+LCApXnMSKju69MjiP7RblSgVMoYGtrS7h1tdptjI+NDdX7pLLeuA6w/yfsPqigjL7reSgWi5nHGXauCQCkbBMlJ6Ika21jWF1dxfVr13D25ZcxNTXFXxBgfQAAS/TbbXB75CxyZg/kCvWQa+IesEqs6HVjxyWgcZwPUiMAdR1MU+HcFrE1Zvd0yNC5RZokCIKgg+jUWDOwrmliUyZfURzH2NraQmV8HLPz8zh58mQuCR2AfBt0yDALBVjl8l42ne1+eblP0zRUKhXaPKSqMA0DURyLIUy80SprGBfQyc4DwPz8PFZXV6n+n5DepTSe+GN3p04IAWEBbtggp2kaJicnMT01JUa8b6yvY2NjQ3j+94PCJhwCNDgmcSwSV4VJQWS/3r7HGQJ7gjLp7cITxzE++s1vYDsOHV0uMR2KotCNCJPujKKl5P0F+wI7X3mRld8pgt3pty6T1KiKgqLkshMx9o+f56hMfoMx+SBEaP5L5TKtxGQ8L01TbG1vQ9M0zC0u4tixY7nFZo4c+0ChWoVh25nrSqlUooluksBxHFFd1HWdrithCJ9N8W62Wtk2lBlJv6ZpmJ2Zwerq6t5+J3Q/XYpLXX9GmZ3Cm3cnJiagaxqSKMLaCD1igsgiBCRJECeJeJ4CSlQR0OS0l1RoaBKGEMRZHvs9Yqrruvj0008xOzeHF198seM4XAHAE32wRL/EJyf3Ow0crCdP6PKl4WuiGZnQKcSiH4tda6lYpPeS7M5t0VkeQG/BcLNYupl8XddRLJXEZ1h+7zhi1vtVrFQwzySheaI/GPkd+hZgl0rUKqrZhMq+xABllR3HQavdRhAEYkCK7TjwPU8kt57vC2aGP86yrD0BRZTXFAVzs7O4evUqdnZ2UCgUegblbohkT2IW0iTZ3VR0/d0Nx3FgLyygVqthZ2cHnufhcRBgfGwMpX5jv8mulahc9lSwG7wKxSLabHCGHgQd/u+7hxkiMGcFZWmz0f3Yy5cvw/M8/PSnP810E4ijCG3XFWxWcUCJlWNofStnZvhmiP+cV0QkpGmKMIoQ+r7YSKiKIhr4ALqwhXzomqqKwDgUkx8ECMJwl8nXddiMyQekzaNU7uXntVOrQVFVzC8v4/jx4/0/Dzly5OiLwvg42js7iDyvw7zB1HVYlgU/COB6Hh0uZBiIGXmkKAoS1uyoqSriOKY2ipYF0zQ7YztbVzgZMzc/j0uXLtENAiijOzI4456mULqsfXutKyWmz97a3kar1UKr2YTvupiYnOxbGSSEAEmCWKo0iI0IaDJZsG14vk/vBzOxyDrnQbE64T1fTH7aD2mS4Le/+Q0MXcebb76ZuSEI2PsHMPtkpgQYBAXobBzuha6qstgksES/43yZjWbE3neA5i8W+8wkSYKQ5Se6rtM5OQdg8nVd75jGrCqK6IeQ1/gkSbC9tQWnWBTDGHNJ6HDIk/1vCXa5TJMl1mDDg45t22Kyref7KBYK0FjCKCf9SZLAY84BhmHA8Dxh5ZiV9E9MTMCyLGxsbGD5yJF9BWXhrsAGkXQw/byMJjNA2O0lGB8fh2lZtFE4DLG1vQ233cb4xMQeDTvvWwD2TmOVS6gGK+V5vg/X96Exx4mug4n70AspIVC7g3KPQH7n7l08evgQb775Jsrl8p7fB0EAz/OggC0crFqTdJUZ5fPj48Tl8e8d55+V2HdfV1fPQndZFehM8uVFlDNGCgB7kGUeIWLWgewS1ZHk8xItL5GzY/PPjKIo2NnZQQpg6cgRHD9+fODAmBw5cgyGU62CpCniIOhIZovFIqIoQsK+u5ZtQ2ND8njSz6t7nutCUVWEQQDDMGDbtqgwd0BRMDc3B0IItre2MDk1tS9NNK8gEhaTOqQ2GesKj12apmFmehqWaaJWryNJEqytr6NULGKsWu2UzrC1KmGkgyrFXDkWEkJoU3OSIIwiuO02nVXTfV083vZbV1iCrHMXnj6P/90XX6DRbOLHP/rR3p4uxp4HYUjXFcMQs3q65SvydfC1s99MFlmKo+w+mVYSJKmOuKYkgR8EtEeDQdM0uq5I580/B3zqesFx+if6hM52CcOwo39EZ/JSOckXjkhcDiXlIVvb2zAdB4us9yuXhA6PPNn/FuEwS87QdXd99pmcp8G62C3T7Pigy0m/YRi03BiGCJi8xzRNOIUCnC7tpaqqmJudxdbGxqFYT3U08bIvnRwY+L85K6+A6kdnZ2ep1rLVgh+GWFlZwdjYGCqVCrgncVbTlWD02Zc7BaCBugAlzN+53W6jXCp1BmauM+xzLSkb7T4oKO/s7OCL3/0OJ0+dwlK3zSbTeYZRBEWhtpbysBCVPWbPeUg6UiIFV8J0mlkMEtdqdgdigC4wQRhSGzz2M1VVYZvmniSfQ1NVKmNSlJ6bwDRJEIYhwijqYHn2MPmQSrR8MerahGzv7IAAWDxyBEePHUO1a/hcjhw59gdVVVEYH4e7s4OY9eVoqkqrxraNluvC932qT2dxUu9K+kNdp25nQSBko4Zpolgo7En6i4UCqtUqNjc3MXPA4XciMvVYS8S/JbkiFDqrw3Yc7Gxvw/V96rnu+5gYH0ehUNiVksivAYlIyiBXnEIBSbOJhPVdlYrFPWvCICmKIKz4pqNHwv3gwQPcu3sXFy5exFjXXB4uB02SBAohsBwHjpTAaqza33Fe7D6JdbSbAc9Y30RVWVWhcImV9PusJF9n/VhZhhOKQvv9kjSFmiRisFU34jhGxIgjmaHvTvLl6wI7rvx4rtG3HAfzjNHPE/3RkCf73zIKY2PQTRNevU5lKwodTCHKrq4rpuAKRoM15XD21gpDhKzpsu268DxPBOdCsSjY6rn5eTx4+FDYVQHYf7MOpMDJjp+l85SZA/5b3qi7tb2N0Pexvb2NVruNSqlEh1JJ+nf5dTrOUnqtQqGAZqtF9fsZjVX9mA2A2qPpkIJyhoQnDEP85je/wfjEBM6dO9fxO+F1zIJux7As9tp8YVAItXBTWWlUZrs7NgMZ58yT/O5GOX4OvPTZXVbtaMbuOpYCWm7m59TRnMucFULGCHIorIfEMIwO9kwwSfz5QEczmue62KnVUCyXMTM3hyNHjuRTDHPkOGSoqorixAT8ZhMBi4tQFFiOIybF8qoxANEAypP+JE2pU1cQ0JgSRQhaLXiuK6SlskHE7Ows7t650xGTDqITV9BJ7mRZi3ZXOBVFwcTkJBzPw87ODuI4xvr6Ou1RKJc75nl0x0LZqUd2HSsUCmiwKeK+7++teg6Q8mSZPnSjXq/j8uXLOHL0KI4dPdrxuziO4bJBUQA1eOhIrDkjr0j9dDz5l9aPflafuz/qXKvlawi6k3xO8PRI4Pn9jVm/msaGhXKkrGoSRZEwrwCoNMkwDJiG0fH4PWsXO09+/9vtNur1OsYmJzEzN4ejR4/mvV/7QJ7sPwGYhQJUw4C3s4MkjpGAyimiKKLlxDDMdBvg/sA2KztyCYnPgnQQBKg3Gig4DsrlMuZmZ6EoCjY3NzE9M9OhhT8IOo4gBZisx/GfGoaB2ZkZNJtN1Go1eJ4H1/NgmyYq1Sps5tUrH5dXEzoauhgbUSwU0Gg2EUURfM/rDMwDrpF0B+UMJv3j3/4WSZrirbfe6gg+EdPnK9J5GMx5Zo8EhyX1GpNh7Z7erma0F/h71X1fZUlNR5Jv2x0LnLgWMDZIes2INVDxTUHMyqndw9x0w9itNMkyIKm0KoNPkkzTFM16HW3Pw9TsLKZnZnDkyJE8IOfI8S1BURQ4lQp004Rbq1FigdCp3THzJxffZU5IgBoEaKoKja0rXFrhui6CMKRadt+HITVKzs3O4tatW2g0GkKOd/BVpbMfTOjOB8BxHNjMCa7RaKDVaqHZaqFQKKBaqezGZnTGXX58eS6LqusoOg4l0HwfmqaJPidgcD+YsHPWtEw5aRRF+O1vf4tSuUzntEi/C8KQykEJdUwrlUq0mpumIIrScX/5usIr492vM2hd6d4MECbVjJgtM4fBej/6JfkdbHsUUcMHJu3MkumAkZuGpGCQj5e1mUpYz2Aax6jt7CCMIswfOYKpqSkcOXIk1+jvE3my/4SgGwaKU1Pw63WEngdNUWBaFlzPE/Kc7h0ub9hVFAWapqFQKNBgzhiBdruNKI7RbLXQarXgsKR/a3t7l02WjwcIZnY/wVo+ntIjAex+fIX5rtfrdbTbbQRhiI2NDViWhbFqdfeL26UrTJgzAP+dwpqbuc2noqqCBZGlJfJ1kyRBQggdosKOIYIpWwAJIbh27RrW1tfx3nvvwbZtEdB4iVtRFKjs/mcF9izbOU3Thpo9IJgtKeglSSICp7wAZmknpQN1MmbSr2I26TBJEjSazU6ZDlvgTMPYo1vlx9hTCuc/IwRJHGN7extEUbB09Chm5+awtLSU+x3nyPEEYNg2ylNTcGs1xGEIQ9dhGAaCKOqoGgMQlUe5smmwCp7jOFQq2WoJD/VarYZGvQ7TsqBpGjY3NrC0tNTzXLLWnGHAnyH3b3XPhZHXGUVRMDY2RteVRgO+58HzPHiui0KxiEq53JH0i/MDSyQl0kdnTHMQhmi12yixtZa/rqIo1PhASriTJKEbB5bUCjJEUaCw9YWkKT755BP4vo+f/exnNJFnSbfruoiiCAoAjVXoZdmSiLtd6wo/xh5Xoq5EnjdBdyf5nDiKo6jDFY73xmW6/nRtPDqIsDhGkiSI4xiNRqPjtTRdh8nWlUxJkXT8zkuhlZfA87C1swPbtnFkeRlz8/OYnZ3N15UDIE/2nyC43lK3LHj1OhzLQuB5iFnCXi6V9jQTdQy4AP2yGYaBarWKcrlMx0m3WqKTv1go4JvHj7GzvY1yudyh4+ZfRTmJOwhDwxmZbqmKfP5pkkDXdUxOTqJcqaDZaNCkPwiwurZGp+4xC1J+TACZtpimadKAxYZ6lDVNsPU8sHWcA2eM5IFaUgUBANbW1nD9+nWcffllzMzMAOzxnueJgNytz5evr5+3tJgnID2eYLesLM6ZvSZP8BPpOQrogmxmMCNgx0qx933ki1IURWi1WnCDgFZTmCNGlkxHfs2+elXGuvgsIJcrFUyzJH9ycrLXs3LkyPEtQNV1lKam4Deb8JtNFItFhNvbiJIErut2yh67YzTo911VVerZPzGBaprSYVrMCc3zPJSLRayurqLRaMBxnJ46bvmY+4Gs6wckiWY3M50ksCwLM9PT8IMAjVoNPqtQuO02isVixzRXhUmZZJacw3EcJGkqSDR5Hebxmf1HJP1pkkBj82D45oGvKwqAW7dvY2VlBe+88464/wl7Pzhzzav2Pe9FDzlO9/nzzQgURbgo8d/2Io5URRGV3CzTC27SkbWu8N4PPhOoVCoJW9YsmY78moOaiVM2TKzeaGBiehrTs7NYWlrKDR4OAXmy/x3ALBSgmiY8lijt1GoIwxDtdpt6ond/GXqUE/nAjWKxSJmJZhOVSgWPvvkG9+7fx8zMjGiwdAoFmLrekdx1lApxwADNglAisdTdzL9pGCLpr9frVJLEysaO46AqsVBich9jSXiAKDiOmBLsttsoSYG5H6uksOZoGe12m/oez87iNPM9TpIEbTbQBIrSqc/vPuYAFkvo+LHLjnPGhd8fXkrtnnDJGbosPb4oe6PzfeMsSxxFiOMYBLQXIYxj4dRjc3uzXrpOXvHocT0pWxSbjQZa7TZm5uYwNTODo0eP5g1TOXJ8h7DLZeiWhfb2NkqVChosxiqseTczeQT2JNOaqqJcLqNcLtP5Go0GKtUqNre38c3jx9QDnbHBtm1T0kDWYGMvGz8qupN+GWmXza9tWbBnZ+EHAeq1GgLW28YbbyuVCk2CWaV1T8KvKFQmKveFMQlitySII2bJvq5peyoaGxsb+Oqrr/Diiy9iYWEBAJX08HkxClu3u5tah62MqMw+VSa2hPSHMf+iF0uWk2K3kqPreua6wu8HfzwAYZARS+tU23WRECLyiyyZTsdxeS6QdX3svQjDEPVaDVEUYeHIEUxNT+Po0aO5h/4hIb+L3xF0XUdxchJao4E0TWk5MghACEGxVBo88Ih9QfgjLNOENTkJy7Kwtr6O9bU1zM7OIo4itKII7XYbumGIIG0aBnTJsUGULGUnhBEgSrGggSdNU2GD1g3TMDA9NYUwCFBvNuG5Li3Fuq5IclNJ3tPBMivUsajRaAgnBVEG7aEBBPb6Q/u+jw8++ED4HiuKQrWrzFZTUeiI8oMGGo1NGgTZHWAmHApYQi4/1up6XwS6dZxgDbZJIpL7LNeGiHlqF1gjWze6F/tebBIhdIphFMfY2twEVBXLx45hhjEveXk1R47vHrppojw9Da1Woyxpu412u02JC0Za7PmOy7JEuUIKiIRe13WsrK5ifW0N5VKJkghhiGarRT3STZM2dZomTWKlhLGj4XJE8Fic8L/7DOjiSb/neag3Ggh9n3r0t9vQNQ2mZe1uFPi6wogkhfVjtVotRGEIjxE9vdYV3njKpxbz39ZrNfzmo48wNTWFl196CcBeOWiRy0HF7R99+rDGNhkpQF3dCBFNsdEIxBGwVzvPNws8ue++3wroZsfUdVTY1OPMY3b+YO9F8A0XIfA8DztbW7AKBSwvLWFhcRGzB3R/ytGJPNn/DqGqKnXrYUG4Xq8jCENongeT+en3TPp5ot+V9Nu2jZMnTuDjTz6BqqqYGB+H53kI2Jc3Yo1BPPE3DUMEaHm3Lzf2jBKEZL2hKp1fVuXAtCxMWxbCIECtXqdBkTUdF4NASE3kYxN230qlElqtFuI4RtvzUHScvpUJXdfFOYRhiA8++ABJHOPHP/kJdF0XJUlFUYR//n4TWFkmxBmNOIrgBgHiMOzQS6qKIrSNe0qfyq4OP8WuNCfuYlm6r1PXdRi6jiRN4fo+7RfpCsh7Sqp9knz+/rntNra3t1GqVjE9O4vl5WVMTEzs6x7lyJHj24GqaShNTkIzTSRra/DabbjtNlRFgaHruwRPj6RfkWIXjwvFYhHHjx3DtWvXcOHCBaiqKqSOcRQhCkO0OVmj6zCZXS9fV/aT6HdckyIN75PkQiSDnHIcB47j7Cb9TOJabzYRjY1hmlcipD4uSHHfZTJTLrXp3gABkjRU14Wff6vZxAcffIBSuYx333kHKSFwWy0kcUxZddMU/vn09o6e5MuP5RId3/cziSO+fnavY7L8lp8HX0+iOO5w0AEgZsroug7dMBCGIbRWC2C9HnvOr8dmTHoQvXaWt9TqdTS4bIeZO+QDGA8febL/PYDpOJhcXERMCNrNJnV/YbrqFBiY9MtBWdM0TExMoFqp4PbXX+NH77+PQrFI3XzCEL7nCSbYY4O9eHKoS39UVqLkrz10Yy9jS+REUmwgkB2gTcvCzMwM/CDA9uYmwiCA57pYXV1FsVikvQfyxFZuI1csotVu00RaUVDMGhjFXkfXdcpIxDE+/Ogj+L6PH73/PnRdR6PZFPfXYlKXUasb3Qx5ypNyyYaMa/FVUAbOZOVU+VzlEniapnTcOxv7nsWyqKrasajK591uNBDypj1WKelw1ulxjd0ODgHbjAVBgJn5eVFezWU7OXJ8f+GUy5g1Tazcv4+AsdzlUml3rkuvpJ9D+rlhGFhcXMTtr7/G3bt38eqrrwrv/jAI4Pm+WFdC5urD1xVN+lvTNMqGSxXlQdbJ4lwyKpeQJvJ2D6DiSb/rutjY2EAUhpQgiiKUmdOQpmlCgkrSFKZpgjCm2Q8CgMkfuRaeQ+4DUxQFruvig//r/4JpWfjBD36AKEkQuK5YV2Q56KhJPo/HCqikhq8rQRhSdz92Xv2IIznBT5KEVt7ZmpJ0bRQAiMnCXKLFzzVNUzqrIUlgsXVHHFuuEGVfSEeS33Zd1Ot1EEKwcOQIpqenceTIkVy28y0hv6vfE2iGgbmjR7H+4AG1MWy3obLATNK0b9Lf7ZJjmCaOHz+Oz3/3O9RqNYyNjVE3H8ehmvc4RhBFCNkkX+4zTAARoPkAMF565PpETVWhssQ5K/kX7gXdP5f+FqVRdLou2JaF2bk56LqOVrsNgAaEVrsN27JQKBZpQs/OizPW7XYbURDAA0QCyiVJ7D9QmTvOb37zGzTqdfzwBz+Aqml0YjFok1vBcUYKNHJlJZGS+ySOO5psOUyWdHdUUNgxkjRFHIb0WOw4mfamjIHifzIdFADRyJwkCdXVMnZt1CS/0WjQSpCuY/noUcwtLGBhYSGX7eTI8RTAsCwsHDuGx/fuwfc8tNttlMplOmiPkw+Dkn72GNM0sbS4iPv37uGll18WZIWu6yiwCb5RFNEJ8SwpdX2fstoSicQTXU3T6AZAVaFrGhRN60kmKQDijJgqP14YHwAdiXmhUMD83By2trfh+T7SNEWj0UCj0YDtOCgVizShZ9IYi9lC+74vJtpbbBPQ8dqqClVREAQBPvjgAwDAO+++i4ANO1MIdftxHEfIboZJ8jvWFWlNieO4o8mWr6Umc77haxffPCnY7ePiyX3Sb12RSKNe8T1i8i1NoVNz+eP6rSvdSb7rumg0GgiiCLZtY25xEUtLS8IgI8e3gzzZ/x5BVVXMHTsG8uABWrUamq0WKuUy3VkDIunXFKWD0eiGaRiYnpmB4zi4ceMG3n777Y7fa7qOAktueeIfhaEIDFEcI2W7fR6M+eAMHqg0lvhrmgaVPUYEiCHKeJ3/7SxrGqaJCcuCZVk0KAQBrUqEIWq1GtWfl0owmQ1loVikPtG89Oo4VCPPJxwy1uaTTz/F5uYm3nzzTWiGQX/PSrWWZQ3FtAj9epJQ67GMIAzQQKzxpFzThAwnJdQrOWKsPekTgAH6meBsGE/uB50nIUTMYbBMk26A+jxnT5IfhmjU6wh8H4SxRS+dO4eFxcWczc+R4ymDbppYPHkSj+7cQeC6lOEvl0VyzJN+hZEovSKFZVk4euwY7j98iDtff40zZ850/J7rwguFAk382UTuhCWrQRSB+D4AiDWDs/xiXWExTme/U5gmnuvsh4Eso+ROcWAza4rFIlRNQ7PRQMRcZXzPg6ZpcIpFlAoFGKz/gLBp5R5L+Lvnmui6jjCK8MEHHyAMQ7zz7rtUssMS+gKbSCzOq18MZucaS2tKFuHDN0m8UsJJpZRQh6I0TSnZxNaVXhAEnqrSdWUIkivl60oYQjdN6q/fby3KSPKbrCeCpCmKpRLOnj+POUbw5fh2kd/h7yHmlpexqihobm+j1WoJJgbA7vARZt8lpB9dJVfTMHD8+HFcvXqVsjnM/mtPuY4l/mD+/XyaKk9AeaNtFMdIWVlT4QmoxP4DdLHQFAVRmooqhKaqImBnobsqoTIrM5KmsGwbs45DrTZZo1mSJJTtZ/rQYqGAYqkE27bhM3cfMCZGMFeahkuXL2Plm29w/rXXqFUYY12EO80AcH1kL9adB2Ehg1IUMcQlYSxRlh6y471gAVhTVWhSdWUQCCD6I3gjsOt5CMMQhUIh201IkQbZyEl+o4GALW4AMDU9jddefz3XUObI8RRD0zQsHj+Olfv34bG5LKVyGXJ04WSSoigiXnfILZkF8eLCAr7++mucfuEFUVnsXldE4g+IxJ8no5wsSQgdxCRXGLplPoQQkfTzRFpl64m89vQCXxu53IYQglKxiFKxiDAI0Gq3hR1mq9lEs9GAxarIpUJBOJq5rgula3K7AuDDjz6C67q4ePEirZ4SIjYLvaquuzecCHlmLzmNXMkV14Bdnb0XBEgyzBnkc9RYRYVXUNQhCCP5+RxxFMH1faSEoMDsoPc8XtpAckmq53l0IGYYik3b8rFjePXixTzJf4LI7/T3EIqiYHZxEQRAmyf8pdKesdy8kz1L4lMoFLA4P4/bX3+NGzdv4vULF+ix+XP5a0n/5kGFHzuRyod8kAiA3ZJgHCPkekHssgVRkuzxyedsh6KqUEEDkMKeoyrKLoPDWRyWuCrM/9k0DFQqFQQsQHus96Ber6Ner8N2HGGD5nseVFUVzg33793D48eP8fLZs5ianAQY62J1BSu+wSFsg5OyP91BmC9YnGWXg3oUhgjCcA8LFYRhx72QF7VRA7B8HNGoTd80ALvuD7yE3LFh4H0FUtM0T/J9zxPvge04OHriBE6fOTPyeeXIkeP7B13XMX/0KB4/eAC/2USbrStAp8wSvAKJznWFN6weO3YMjx4+xN3793HqxAnxPGEzrNChhTwC8sSfHpqI9SSWSCVOLKVpikgyMdAUBQmLjSEzUJAhrymchJI3BFxq000qAaBTyC0LY+Pj1J+/1YIfBAiDQNhAOsz4QVFVtNttaorAJKKfffYZarUaLjACSVVVFAqFPQmsIM7YGpqw9THuIn7kTY/KroFvUALGhkO6zwBdb+Tr4muJJv0ZFoSQnqQcQNeVIAhg6HrH3Bn+nvN8hJ+LSPJZxV0BUCyVcObsWSwuLw99XjkOB3my/z2FqqqYXVjAmqLA3dlBs9FAoVjcU0oEICQ+IoFnjLBdKODYkSO49fXXeOXllzsY3qyvtJz4y4wCf5Zo6uG6dInh5oE6jmPRB9BxbM7EsPNTugM3X1w0DZ7niWSa69tFmVdVUa1UUC6X4bZaaLkudeRhGv8kSaDpOnymHVUUBY9XVnDq9Gkx8EnXNESsWTnlQThNRYOXaGAlu374/BpknSlv2soql/KNTMcmR5I+7Rcd71tGWTthA3GSOKazFSxrt9QqBWOAJvnNZhO+6wo2z3YcVKtVHDl2DPN9pmXmyJHj6YOu65hbWsLKo0cImk006nUUmOd7dw9Wx7rC4phhGCiXSpibm8Otmzdx4sQJUR0QG4aMqqccQ+XkH9g1IuDJfyK5jMmESxxFe+WS0roCJjfl4DGcJ7Aui3PcglJeV0zDgDk+Tu2cWy2a2LP1jq8RhmGIc7t1+zZazSZeOXeODs1i1QPP8yjJxAgjMmhdYUkwX2v5gC4+OCyrJ05jm4EUgJ1RDRkVsuypF6I4Rtt1QQgRsxV4vsCviR/B933UGw3EXAmgULvs6tgYTrzwAiampvZ1njkOhjzZ/x5D0zTMzs9jU9fR3NxEq9WCbduCbegFHqAty8LS0hK+vnMHN27exPlz5zIfvyfAy39LgZrLSvYEarkxlQ0bkb1+uQMPT6jTKNodsoHOZFpRqN89HyuuSZUG+W+euFqmCV1V4XoegiCgkqMoQhjH2NjYAAEwMT4O27aprr9Pos03IjyR504NvF9BsBbAnlIyT+z5c2WGJEEnAzMM5OoGv4fD8Ouu68IPAii6jmKxKNh/Du7I5Ps+PSeJya9Wq7AsC8vHjmFyenqk882RI8fTAdM0sbC8jM3VVbRqNbRaLTi2DYv142TGGrJrwWvbNo4ePYqV3/4WDx8+xNEeLK1ccewgkqR/A6z5l7nPcYiqstRgqqpqR5MurwbwXqg0ihBJ6wQhRCTAqqoiDEMoioJ2uy0ksJyN7pZlOrYNn7kM8emzIbMXJQAajQaWlpdp9d3zoAVBx72Sk2dOpPC1gq9pnMji95tvXDizL9Yi6ecyQcbltcNiz3sqrw2E9F1fmq0WwiCgst9CocNBKU1T6sDE1pU0jgGVTqsvsqFmlm3j+AsvoJxPwv3OkCf733NomoaZ2VlYto2d9XUEnoc4jlEsFndZjK6EjkMBUCqVsLy8jFu3b2NhcRFTQ/iid5d0u6U/9CXpT7lLgyyIiZm7jwjELMkn0t/dwVXeECiqipjZiildCa/s+w52fimozZrtOPBcl8p7trfhtlrUW9o06fkkCUzbhs3GhCucaWd9BRpniCQpEd+AiGDdlcgPg25Jk3yPe713/Nr2PL7Xa4BuKGqs8azE7ErlJjPf9ykzpew24fHJxaZpolCp4OiJE3kTbo4czzgMw8Ds4iJMx0F9Y4PKIuMYBUYQyIm5DAXM3nlyEpOTk/ji888xPT1NJ/QOeM1uUomj+7UIaPVV0zSxrhBCB/qFYUjXFU4cSWuMXN2Wj52yCrSiKLT3Ko7pkMV+60qaQtM0lIpFJI4Dr91G6Pto1GpAkqDIZDshS265yQP3tef9ByqvNkiSF0hrSq9Efhj0qih3/mC49aUfXM9Ds9lETAgmikVomoY0TeF5HjwmGSXyAE2FOvVUmQvg+MQElo8fz/X53zEU0ssGJMf3DkEQYHN9HV69jjRJMnXnHDI702y18MEHHyBOEvz0pz+FxSfpyQHogBAfIpZI+lG064vcxXTwn8llTjl488TUYg1h6D7XjPNOkgRhGCIKQ9y6dQtbW1uoVKsolUqwbBuWaVKveRb8dDb4xbJtFEwTujSxl4OXjEWVg1BXB/ln/DkyQ9N9TwL5XnwLIKDXv76+jjAM6VCdUgl+EOwNxKAVH8dxUGCTHBVNw8LiImbm57+1c8yRI8f3E67rYnNtDQGbN8JlPRwdlV7pZ5ubm/jg17/G2MQE3nnnnQ5HtsPq8pE3Ailos+zuL/euK3LiL68rXJ4TRRGcQgEWc5KRK9hZchY+N8D3fVy/ehVN18VYuYzxyUmomiYSfP7aumHQSb6WBZtZbvJz7ZDwSOffvaZ1zKhBj/tPCK3gdvn/HxTd73EYhlhfX0ckbWj8IEDg+7RXkG2SFOZ2VHAc2LZNHYNME0tHj2IsH7z4vUCe7D9lSJIE29vbaO/sIPQ8ysgWCv1lPQBWVlbw4YcfYmFhAa+//rpgEQiYP7GyO9DpMBATgjiK9vXcgA3VMkyT6iG7wYILADFBMGaazi+//BKNZhMvv/QSpmdmoGkagiBAGEWCYRf/ZoGSsOTfkoK0fgBdvQxe/j0MyLIqeWoyAKxtbqJWqyEMAtisKVcF9gTiQqGwyyARgnK1iuXjx0UJP0eOHM8foijC1tYW3FoNke/TSukAtj4lBF9//TUuXb6Msy+/jBdeeGFPI2w/K8/9IGay0f3A8zwEvg+bXVsWeHzl60qSJPA8D7/7/HMkaYpz586hUqmIdSVgunTC5KPd0lTTMGg1ma0tB+nXksHlqocGSa7LNw8pIXi8soJmu40kikRTLt94aHxdKRQ6B1ESgvHpaSwdPZqz+d8j5O/EUwZN0zA1NQXbtrGztYWg1UKj0UCJldd6YX5uDi+ePo2vrl3D5OQkjh07tvvF5bpF9lhF8vDfb6DWFAWpNLhlpOey6+h4bhfTETG2hXvle56HL7/4AnGS4IfvvScm+xWLRRiGgbbrAqDlYYfZeXJ3gTAIkCYJdWRwXZDtbejMvlRnDbl82MgojVDc0Wi/4Mm9zApFbFPDh9bEcYxavY5mq4UkSVAul6Gx3gE+QTJrIrCqqlhYXsb03Ny+zy9HjhzPBgzDwOzsLOq2jfr2NoJWSzT5d7vAcaiKghPHj2NjYwPXrl3D+Pg4pqamdokkSQsvy1fE//cBrm3fD0fJ43b3uiJiLNmdT8IfU6vV8OWVKyg4Dt594w16HE1DsVDokN6YpgnLtumawtaViMfpdhutVos+zjCgs2FkBrdqZuvMsDiUdQW78iUF2D3XKBJT32s7O3DbbRAAlUoFCgBD02AXCnRdybB0NljPV3VsbN/nl+PbQc7sP8UIwxBbW1vwWy3EngeD+cb3Cs5JkuBXv/41dnZ28M6772J8fFw8Nqspi7PCikKt1EaR/XBpSZymI5cZCSGo1+tQFAVjUtDoZlw4c9RqtXDp8mUUbBs/+MEPoOk6PNcVPvoADWZtFrhUtgngjVJ85HvAZC8yQyNfDy+78g2A2Aj0CNoJH5w15IaHJ/fcczlk4+flP91fV9/30ZIS/cnJSRQch7rw9ECZue2YOZufI0eOLriui22W8JMwhGlZME2z57rieh5++ctfggB4++23US6VaEKuKFDSdK/UBsj08R9mXUlBNfgjryuKgigM0W63oes6bRTlkhrW18STfK6jX1tbw5UrVzA7M4O33n5bTI/l90NR6PRcmUgqFoui6hzzoV0s+U/iGKSrB43+g60rbE3p+JsTTpIcKCEkcy3IgpzY836FKAw71xXe0yBOh8Btt+EyZ6HJiQlUq1UUCoUOc45uTM7MYGF5OWfzv6fIk/2nHGmaolarod1sIvQ8xEEAU9dh2XaH7pKj3W7j5z//OYqlEs6dO4dSqbTny0l46TXDCUZ48XYF66xAzX3uhZ8w1yjKwV9iaeTXqNVqAICxahUpS/J5cxZAFwvTsrC6uorPP/8cM9PTeOvtt2EYBprNJpI4pnIc6drSNKWJMTvGnmtn55EkCfwgoCyHNGcgSZIO3WXadc78fsgOQlnJvtBksr+FPzErB/ONjLhF/Hnsb+6lLG98KpUKpvs46BBCUCyXMbewgOr4eM/H5ciRI0ccx9jZ2YHXbiNyXSRRBLPPsKj1jQ38+te/xuLSEl44dYo2sEoMvywbVbJiPnZ18/02ADxpBbDHpx6gVWmRuHY1pyZJgkajAU3TUC6XhfQzCMPd2KqqsGwbN2/exM2bN3Hy5Em8ev48oKpo1OsgaYqCdG0As6VstTKJJHYDxPn6vi/Yc07q8CZjTq7JKVmHEx6bI8OZ/T0mF/z/UqWC31e5gZnLdTsMN0DdgVRVpY5tvg9CCCYmJjoIt24QANXxccwtLmZLbnN8b5An+88IwjBEq9WiSb/rImE2WbInLsdjpt8/eeoUFubnUSqV+u7YZfT6sPAgLQdqHsQAiAR7WOxsbyMIQ9qALPUUqEwnaBgGrn71FW4wr+fXXn1VMCq1Wo3q0SuVzsAJAISgxYejAB2Wc50Xmn2lYuIh3whIQVsMT2FBVmx0MoJyt6ymu7KisjHmBmN3DF2Hwcq/KSFos4nCQRjCtiyMj49ny4vY4jO3uIhKXlrNkSPHkOCyllarBa/VQsDmd/Qik65dv44rX32F1159FWPj4wOlpbLPfFa0JYRAyyCWhAMPdie1DnU9aYqt7W3apOs4u69PCF0rLQuKquLTTz/FysoKzp8/j5MnT9JkmW0UFFUVE9hlDCSSdi8q8zq7mfYk7rSzBhh5BknGI0lvMyvz7G9B3Clsyrum0TWFrSvc4z9JEjFROIoiFAoFVMfGsu+voqA6NobZPMl/apAn+88Y+ICpRr2OsN1GHATQVBWWZcG0LMFIfP755/j6zh1cuHgRxUKBNi1Z1sj2X/0gNJu8qZQzC5IOXdZ38iQ6imPKzicJHMeBaZrUPccwqI2m5+HS5ctYW1vrCMgAk+u0WlBVFeVKJVPbSAB4rism3fIx8EqPMjVhpd3M30n/5s24ETtuku61GO1G92uqrDLQq2QeRRHarit8jS3TRKVazdysFUslzOZMfo4cOQ6IkElgmmxdSZh9pcUlLaDx74MPPkBtZwevv/EGdDbrw+zhGLdfpFIlFKBJsBjkxdaa7nUlZNKVRqMBECIchwymoTdNE/VaDZ9++ila7TbeeustzEvuZLJphOM4mb1oRCaSCB0+Zdv2HhmT2Nz0WBvkNUNRFCRpiiAIKHGUpgMlTFnrmKrsDhPLQhAEYlZNGIawbBtV1ojccW6Kgmq1Spl8Nn05x9OBPNl/RpGmqUj6/WYTcRhCY9IXzjj86le/Qr1ex9mzZ6l+X9OEHeNhQWb0eVlRjP3mgZix5HJSHQQBkKYolcsolcvi8Xfv3sWVr76CoWm4+PrrmJMbTBWFJvG+TxP4QmFPsi8zIL7vw/N98TuHWYvtAWOfUgCQvJy7Gfqki8UXsp9DACGEukmwYBywgGxbFgqFQsdjC8UiZhcWcsuzHDlyHCo4mVTf2UHYbiONYyGpNHQdYRThF7/4BdI0xfnz5+E4DjSW9I86n6QfuDEDALGmyNPckzhGyKa5C2tktj5oLGF1WNxMkgTXr13DzVu3UK1U8Mabb6JardJjs+e2Wi3EjO3WDWNPsi9r42UiSVVV+hzO8ndJiyARX7JRhrxZSaXkXpYxHcp9TFO4bDaNx2bjcIc/eS1UFAWVahVzS0so5Ez+U4k82X/GwZPEeq0Gt15HzIIQx1dXrmBtbQ2nTp/G4sICUkKoTViGg8t+X5/7HSdpSpurmPQliqLdhJkFRt00YbCSos+S9mKxiHq9jsuXLmF7Zwcnjh/H2Vde2WWzJf17s15HmqaUuTGMbPmQdP1xksBjZUsC6kpRkP2RMyCcDNj/+Tj1bo/9wwrKURTB9TykSQKPaSkN7ufMrDQVAAXO5OdynRw5cnyLSFmSWNveRsB6pHg/VxhFuHz5MlzXxcsvv4yJiQmkhKDgONlkyn5en1WNU9bj1L2uALsJs6ppMHUdhmkKsoRPol9bW8Ply5fh+z5eOnMGp0+f3mXGJbe6Wr0OhVCrYq6B3wNCaL8bIQijCG67Lc6Tzzbpu+Fh61gq9W/t6ffC4awrhFWhXc8Dn1avs5krxUKBVmvYEMlypYK5hYWcyX/KkSf7zxF830e73YbbaMBvtYT28datW3j04AHmFhawvLwMVVGgGwbK5fIeXWa/DYAYW86aWXkgFr72XH/JWQo2Lddg+kE+PhygCW6r1QIhBI8fP8bNmzdRKZdx4fXXMdmDsU6SBM1GA1AUjFWrgKIMFRgJIXTKLHNVAOhIeKuPz7RI9KUqhWBlgKEkPMOcl+t5CIMABPT90zUNiqqiUCzCNk1ohoHxyUlMTE/TAWQ5cuTI8YTAyaR2qwW32UTQbguTgStXrmBzYwMnTp7EzMwMoCiwGHnTrWcfeV1hzL1sbsAfS8AmuzN5jkzcBEEA13WREoLbt2/jm4cPMT0zg4sXL/ac6RJEEbx2mzb2ViqCvNrzUHTq5gkhwo2Hwxliw0Mg2YPytZL3vh1CtThJU7hMbpQyJyLDMEAAlMtlet8sCxNTUxifmjp0GVaO7wZ5sv+cIk1TtJtNtBsNuM0m7t69i5vXr2N8YgLHjx8XDEJWwBSBuatxSi6lykk9D47cUYB71XPferAGqO7m3rt37+L69esIowgvnzmDF06f7tmECi5z8X0YloWiVKLNhLRAcCRpCs91ETJmSNM0FLocfbqT/OxDU3mS7EAhXnMIpIRQr+Yw3J0snCTQdR1xmlKLzakpjE9OojI2NrTvf44cOXJ8m0iSBO1GA616HW6ziWtXr+LBo0dYXFjA/Py8SNx5Qikz3UOtK/JrMQJJUxS6rrD1Rdc0qLpOWfKufqsoinDz1i3cvn0bmqri/PnzWF5e7rvZ4BIePoyrV7IPZJsvxGyGSxLHIKCuN1nV444kv8exE2kT0E/3nwWu/Q/Y5iPh67KmQQH10p+YmsLE9LSQzuZ4dpAn+zno7t51cePqVfz2ww9RKBZx5swZpNxdJk1hmCZMwxis52cd/3x0usZKg8IKrR8YS9N2XVy5cgWPHj7E+Pg4XrtwAeO9mkylTUW90QBJEhSkprD9lDzDKKLDtZg+3zRNWKYJTdeHGhKWcp3lnsvblSyJeyE7KrBgHIahKP/KjzEtC0eOHsX03ByMnG3JkSPH9xhpmsJtNnHp449x5csvMTM9jWPHjgmHsl5JfyakdUXjvvPc/W3IdaVWq+Hz3/0OW1tbmJ2bw+sXL/aepAsIHX29XqfubtUqNFXtm+z3PoXd6jGvAFi2DdMw9tht9sLAanHXuiIbY/h82i92qwS82l4slbB87BgmpqZyj/xnGHmyn6MDjx4+xH/80z+FoWk4feoU5ubmkCYJUtAgYTA7T415/gKdFl+qqmYG31RqbM1EmmJ1dRV3797F6uoqdMPAiy++SIdEsXHc/ZAwBx9ZwgMMSPa7m6Xk0yEEvufBCwIRMDVNg2lZsFiA7oVRB77wJD8Igt0knwVrVVVRLJfp+PGlpUNtns6RI0eOJ4GvrlzBn//n/4yJSgWnTp7E5OSksComhIgJtGp3NRTUSaZXvB1k6ZzEMb559Ah3797F5vY2ioUCzpw5g3K5TGWqAyyngzDskPAA2FeyzxEnCXzPgx9F1OyBrammZfV1yyFAR7V4GKRsXoxI8qUBZ5quo1QuY3puDrNzc3l1+DlAnuzn2INGo4Ff/OIXuPbllygWCjh17BjV8quqcD4wTVNYYg5kVgBqRZnxUfNcF/fv3cPde/fgeR7GqlUcP3ECy0tLiJmsxjBNlJiekpdlu8ulrusiDIIOCQ8wBLMvMSBy462skfR9n0p7pPM3TBOWZe0Zcz5KA1WaJJ1MfpqK69MNA5XxcVTGx1Eul1GtVvOAnCNHjqcWKysr+MXPf44H9+7RpP/ECczOzYl4Tgih/v2sf2sYcFlQN5r1Ou7cvYsHDx4giiLMzMzg+PHjmJ+bg+f7tEnXsuAUCn3Zci7hcSR3mqGSfbaupESaTMueq4DKiYIgoDbNqiqc6CzThJkxuKxDwjMAYiJ8GNLnShUBy7ZRnZhAeWxMbHgO0247x/cXebKfoyeazSZ++9vf4vJnn0EHcPzIESwvL1OfYcY+q6oqEn91AOtM0lTYVwoWf20NmqZheWkJx44f75DrxIytV1SVsvVdx+JlXJKmqDebSJMEpWKxQ+LCh2d1y4g6/PGlyYL9zj0IQ4RBIJJ5Agi239B1KKqKVLKE63WciE1tjKKoY5S5wizsxpgWv1gs9h7OkiNHjhxPITY2NvDhhx/i+ldfoWBZOHHsGJYWFwVxJKqobF3pV0XlmwSCThZ/a3sblmXh2LFjOHbsWEfzLW/SNQwDJeYwI1epVVbxTdKUTs0FUGUuPApL4OUEWl5bOAlFGLk1KI1OkwRBFCEMgg6zB872c9OKuKunLes4fAORJgkIu48JGzrmFIsYn5pCuVpFoVCgU37zKvFzhTzZzzEQQRDg0qVL+O1vfoPY87A4P49yqQTbtmFaFgqOA9OyhP7SNAwhkXFdF81WC81mE81mE416HfVGA0EQdLD4ekY5lRBCdfhpinKp1PEY+WMbhCHcdhuqqqJSqexOWmSNrTJ++d/+G06fPo0FaWAK6TreIERRhDAMd9l+ttikLNDL/Qq8cSyKIlpS9X2h6U+TBAprKCuWSiIYF4vFQ593kCNHjhzfJ3STSUsLC8KekzfDWizht/h8GJbEttttNFsttJpNNPi6Uq8jimPMzszgGGPxswiohE/DVRRUymXxmO41wHVdBEHQsSkAWGOrtK5krSnAbsPtMMw5N3WQ2X4wcixl5hY6M7ZQVRWarosKgc/MHEDoxPY0TaGx6evlahVjExMolssolUooMKvmHM8f8mQ/x9BIkgRfffUVfnf5MnZ2dtBqtaACNLlVFBQcBwXbhm4Y8D1PePgClC0plUoolkooFotYWFjo3XQrod1uIwxD4bcPdAZlQggajNV3HAf37t3Df/pP/wl3793DxuYm/u//5J/g9ddfF4//1//L/wLLNPG3//bf7nidURN+YJftj8KQjjaXbNHkicAxc2HgQdpg11IolWBZFgzLgmVZeTDOkSPHc4cgCHD58mVc/eor1Gs1+J5HJ4mznqWC48BxHOiKAtf34XmeeK6u63RdKRRQKpexvLycbaHZhWaziTiO4RQKsC1rT+xP0xSNRoNaP6+s4P/8z/8Zd+/dQ61Wwz/+x/8Yr1+8KB7ba03hSIZM+MVrJ4lYV5Ik6ZDv8P/zNUcBoOo6VFWF5TgoFgpwikW6OWLTfkuMmMvXlecbuT4gx9DQNA3nz5/H+fPnAewyJDs7O9je3sbGxga2t7fht9soTUxg3nHg2DaKpRIqzL9XsDNDJtaWZSEMQ0Rswm63RCaKIvzJn/wJ/sHf//uwLAtBEODIkSP48Y9/jD/8n//nPcd7/eJF/H/+1/91T2DmpdhREn5FVcVI9CiKxB/f9xFFEXTTpNadbJqvbdsi8GqaJqxH+b9z5MiR43mDZVl455138M477wCgMb1er2NnZwdbW1vY2NhArVZD4PsYn57GsuPAsSyUy2UUSyXqEqfrI8VuwzSFtt3O8L3/wz/8Q/zDf/gPqd1xFIk15f/9L//lnsf2WlM4VFUdmuEH6BAwh62dURzTKjKbmh6zdaU0NkZJItsWshy+rnSvLTlyAHmyn+MA0DQN4+PjGB8fx4kTJ8TPuXaQ/wl9H6Hvw/V9xM0mDF2n8hZdp0OiuIUa9g5X0bkWPk0RRlHHgA9CCDzmGWxZFhRFwauvvopXX3215zmffeUV1Gs1PHz0CMtLSx2/4wl/OkhryZrC4iRBHEUIowhJFEHVddiFAqpTU7BZcm/b9m5PQ95gmyNHjhx9YRgGpqamMDU1hRdeeAEAjfV8XfF9n8pdggCh56HtuojjWKwrOltbVE0Tpgrd64plGPBBe7riJIEmxWYugwEA27IOtKYAuy51PRN+yTJTTAJOEkRBgCiOKWlULmOyWBTrisXce/J1JcewyJP9HIcOPhG3VCrRJD0Md5N/30cUBDRJZo1SvCFL/GGsBA+MpmGISYTcKk1RFLieRzX5zLptqHPTdZw7dw6XLl3C0tLSrlMCG3MOACp9ATFhmKSpkOnwP2mawrAs6ppTKtEgzPSm/E/OquTIkSPHwaEoiiBNyuUynQ3D1hTf9xGy5D9mDHjYblNXs651RVVVYYqgahqSOIbXbqNULlMJJusHIIRA1bSh5pnIawpP9rnhA19XFG4fqihAkoh+sjjpnApMQKsOhmXBKZWoC1DXupIn9zn2gzzZz/GtQpWkLgCzBWNONFEUIfA8NHZ2EIchEp5Uex7A2HWFJcye50FRFIRRhFKphIhtIACq+eTWZDyQK2wqL/etl6fYXrx4EX/xl3+J3/u93xNDw/gfQgh122HH4w4J8mAw3TRRnZxEuVIRGxvTNPv6JOfIkSNHjsOBqqpU6uI4AHZNE4SU0nXR3N5GwhLqMIpoLJfWFZKm8D0PgaIgShIUHAee7yOOIhBC4Ni2cEnjSFlizqu/fF25eOEC/uLnP8fv/d7v0cel6e70c2ldkf+GouzOEFAUmI6DiZkZOIXCnnUlR46DIk/2czxR6LreoU8nhGB2fr5D8x6xptY0SZDEMdI4huE4aNRqdMjJxoYIoJZlwTBN1Ov1zkRbUVCtVBCFIXX0kSbSHjt+HNvb23i8soJSsSgkRZqmwWD6T/5HZ1ODdV0XAZj/yRP7HDly5PjuwWMyByEE8cLCnnUlSRKkcYw4jpEkCTTXRavRQJu5xnGXHVVRqO2zJDGFoqBSqSCOIjSbzV3bT0Jw/ORJbP+7f4fHjx+jWCxS1xyum+driGHQtYb1rvE/8prCrTZz5Dhs5Ml+ju8UiqKIoMdZGgCCaZelM+12m9qrcebFcVAoFPBgbQ0zy8vU+5+xKSRNce/xY6i2jan5ecGiQFVx7do13F9dxamXX4bOSrsdMqKuP3nZNEeOHDmeHiiKsmcDAGDPmsJNJprNppifUiwWcW91FbNHj+6SRGxduf3gAWBZGJ+dFeuJKq8pZ88KCWrWOpKvKzm+K+TJfo7vJbifsFwFKJfLmJ2dBbDbcEUIQavVwvzCQgfTQgjBo8eP4RSLWFhaEgyNoij4V//qX+GNN96gmv2cRcmRI0eO5wJ8XZE3AZVKZXdAFlsPWq0WFjLWlIfffINCsYjFfE3J8ZQh31rmeKrQUVbFbnDmUpsgCHD16lVcu3YNQRDgwYMHuHr1KlZWVoQd2Z/92Z/hb/7Nv5kH5Rw5cuTIsWddASCYeN/38dVXX+Hq1asIwxAPHjzAtWvXsLq6KqQ3+ZqS4/uOfKhWjqceP/nJT/DLX/4SAPDLX/4SP/3pT/c85u/+3b+Lf/Nv/g3u3r2LM2fOYHNzE+Vy+QmfaY4cOXLk+L4jX1NyPGvIk/0czxX+5b/8l/g//o//A//lv/yX7/pUcuTIkSPHU458TcnxNCCX8eR4rvBnf/Zn+P3f//3v+jRy5MiRI8czgHxNyfE0IGf2c+TIkSNHjhw5cuR4RpEz+zly5MiRI0eOHDlyPKPIk/0cOXLkyJEjR44cOZ5R5Ml+jhw5cuTIkSNHjhzPKPJkP0eOHDly5MiRI0eOZxR5sp8jR44cOXLkyJEjxzOKPNnPkSNHjhw5cuTIkeMZRZ7s58iRI0eOHDly5MjxjCJP9nPkyJEjR44cOXLkeEaRJ/s5cuTIkSNHjhw5cjyjyJP9HDly5MiRI0eOHDmeUeTJfo4cOXLkyJEjR44czyjyZD9Hjhw5cuTIkSNHjmcUebKfI0eOHDly5MiRI8czijzZz5EjR44cOXLkyJHjGUWe7OfIkSNHjhw5cuTI8YwiT/Zz5MiRI0eOHDly5HhGkSf7OXLkyJEjR44cOXI8o8iT/Rw5cuTIkSNHjhw5nlHkyX6OHDly5MiRI0eOHM8o8mQ/R44cOXLkyJEjR45nFHmynyNHjhw5cuTIkSPHM4o82c+RI0eOHDly5MiR4xlFnuznyJEjR44cOXLkyPGMIk/2c+TIkSNHjhw5cvz/260DGQAAAIBB/tb3+IoipmQfAACmZB8AAKZkHwAApmQfAACmZB8AAKZkHwAApmQfAACmZB8AAKZkHwAApmQfAACmZB8AAKZkHwAApmQfAACmZB8AAKZkHwAApgLM2UeffqAqwAAAAABJRU5ErkJggg==", - "text/plain": [ - "
" - ] - }, - "execution_count": 12, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "plot_bloch_multivector(psi)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "ここでは、すべてのベクトルがゼロであるため、単一量子ビットスペース内には、量子状態に関する情報がないことがわかります。 " - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### 状態プロット関数を使用するときのオプション\n", - "\n", - "量子状態をプロットするための様々な関数には、プロットのレンダリング方法を調整するためのオプションがいくつかあります。 どのオプションを使用できるかは、使用されている関数によって異なります。" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### **plot_state_city()** のオプション\n", - "\n", - "- **title** (str): プロットのタイトルを表す文字列\n", - "- **figsize** (tuple): インチ単位の図のサイズ (幅, 高さ)\n", - "- **color** (list): 行列要素の実部と虚部の色を指定する、長さ 2 のリスト。" - ] - }, - { - "cell_type": "code", - "execution_count": 13, - "metadata": { - "ExecuteTime": { - "end_time": "2021-07-31T05:09:02.178208Z", - "start_time": "2021-07-31T05:09:01.864008Z" - }, - "execution": { - "iopub.execute_input": "2023-08-25T18:25:17.403287Z", - "iopub.status.busy": "2023-08-25T18:25:17.402659Z", - "iopub.status.idle": "2023-08-25T18:25:17.838824Z", - "shell.execute_reply": "2023-08-25T18:25:17.838115Z" - }, - "scrolled": true - }, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABBcAAAHbCAYAAACQrnJZAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOz9eXxb1Z0//r+uJMuWrNX7vsXOHrIndgIFCiRtaQtMGRKmLQRa6E7nA78OBVpopx0olO7LdKZAk5mWlnZogS4hlLKkgUBDYjvetziO4yW2ZXmRZFnb/f2R771Itmxrubqb38/HI49SW8uRLN1z7uu+zzkMy7IsCCGEEEIIIYQQQhKkkboBhBBCCCGEEEIIUTYKFwghhBBCCCGEEJIUChcIIYQQQgghhBCSFAoXCCGEEEIIIYQQkhQKFwghhBBCCCGEEJIUChcIIYQQQgghhBCSFAoXCCGEEEIIIYQQkhQKFwghhBBCCCGEEJIUChcIIYQQQgghhBCSFAoXCCGEkBhVVFSAYRgwDIMvfvGLi97229/+Nn9bnU4nUgsv6u/vx1e+8hXU1tYiNzcXaWlpsNls2LJlC774xS/ixIkT8+7DtZUQQgghJBEMy7Ks1I0ghBBClKCiogJ9fX0AgOzsbAwODkKv10e97Zo1a9De3g4A0Gq1CAQCorTxsccew1e/+lX4fD6YTCbs3LkTeXl5mJ6eRlNTE9/+L33pS3jsscf4+3HBwtxhwRVXXIHXX38dr776Kq644gpRXgMhhBBClIcqFwghhJA4bdu2DQ6HA88//3zU37/55ptob2/H9u3bRW3Xl7/8Zdx7771gWRaPP/44xsbG8PLLL+Ppp5/GH//4R5w9exbHjx/He9/7XnR2dkbct62tDW1tbaK2lxBCCCHqQeECIYQQEqfbb78dAPDUU09F/f2TTz4ZcTsx/O1vf8Ojjz4KAHjmmWdwzz33ID09fd7tamtr8fLLL+Oee+6J+Pnq1auxevVqUdpKCCGEEPWhcIEQQgiJ04YNG7Bt2za89NJLGBgYiPidy+XCb3/7W5SUlGDPnj3z7js1NQWLxQKdTof+/v4Fn+MDH/gAGIbBT3/605ja9M1vfhMA8OEPfxg33HDDordlGAaXXXbZvJ+Fr7nw2muvgWEYvP766wCAK6+8kr8NwzA4ePAgXn31VTAMg9WrV8+bTsHxer3Izs4GwzBobW2N6bUQQgghRHkoXCCEEEIScPvttyMUCuHgwYMRP//tb38Ll8uFW2+9FRrN/G7WYrHgwIEDCAaD+NnPfhb1sXt6evDiiy/CYrHglltuWbItExMTOHr0KADg1ltvjf/FRFFQUIBbb70V+fn5AIC9e/fi1ltv5f9VV1fjyiuvxIYNG9DR0YGXX3456uP8+te/xvj4OK688kqsXbtWkLYRQgghRH4oXCCEEEIS8C//8i8wGAzzwoWnnnoKDMMsOiXiC1/4AhiGwRNPPIHZ2dl5v//P//xPsCyLW2+9FSaTacm2nDp1CqFQCAAEW+dh9erVOHjwID9V4stf/jIOHjzI/7v00ksBAHfddRcA4Mc//nHUx/nJT34CAPj85z8vSLsIIYQQIk8ULhBCCCEJsFqt+Kd/+id0d3fzUwc6Ojrwxhtv4PLLL0dVVdWC962pqcH73/9+jIyM4He/+13E72ZmZviA4nOf+1xMbRkdHeX/Oy8vL4FXk7iPfvSjyM7Oxp/+9Cd+JwrOW2+9hZMnT6K0tBTXXXedqO0ihBBCiLgoXCCEEEISNHdhR+5/Y1nI8Ytf/CKA+Vf8n376aTidTlx99dVYtWqVkM1NCYPBgDvvvBOhUAj/+Z//GfE7rmrh05/+NLRarRTNI4QQQohIKFwghBBCEnTllVeisrIS//d//wen04n/+Z//gcViwY033rjkfa+55hqsWbMGb7/9Nk6ePMn/PJFpBLm5ufx/j4yMxPEKhPHZz34WOp0OTz75JLxeL4CL1RS/+93vkJ6ejjvuuEP0NhFCCCFEXBQuEEIIIQliGAYHDhyAx+PBrbfeiuHhYezfvx8GgyGm+37hC18A8G71wvHjx1FfX4+Kigp88IMfjLkdmzdv5hePPHHiRAKvJDklJSX4p3/6J4yNjeGZZ54BAH49iZtuuiki/CCEEEKIOlG4QAghhCThwIED0Gg0+OMf/wggtikRnFtuuQU2mw2/+c1v4HA4+JDhM5/5TNSdJhZit9v5rSUPHToUR+uFwy3s+JOf/CRiJwxayJEQQghZHihcIIQQQpJQVlaG6667DtnZ2aitrcXOnTtjvm9mZiY+8YlPwOv14uGHH8b//d//ISMjA5/4xCfibscDDzwAAHjhhRfwhz/8YdHbsiyLY8eOxfS4er0eABAIBBa93e7du7F161acOHECX/nKV3Du3Dls374dO3bsiOl5CCGEEKJsFC4QQgghSfr973+PsbExHD9+PO77fv7zn4dGo8F3v/td+Hw+3HzzzcjOzo77ca655hrcc889AID9+/fju9/9btRtLk+ePIm9e/fi8ccfj+lxS0pKAAAtLS1L3pZbpPJb3/oWAKpaIIQQQpYThmVZVupGEEIIIUpQUVGBvr4+/P3vf8ell1665O3Pnj2LyspKaLXaRa/833DDDXjuuecAXDz537JlS8JtfPjhh/G1r30Nfr8fZrMZO3fuRF5eHlwuF06fPo2zZ88CAO69914+BAAurgEBXKxqCPfnP/8ZH/zgB6HX67Fnzx7k5eWBYRjcfvvt2LVrV8RtfT4fysrKcOHCBeTm5qK/vx/p6ekJvxZCCCGEKAdVLhBCCCES27t3LwCgrq4uqWABAO6//350dXXhvvvuw+rVq1FfX4/f/va3eP3112G32/HFL34Rp06diggWFnPttdfi5z//OdavX49XXnkFTz31FJ588kl0dnbOu61er8cVV1wBAPjkJz9JwQIhhBCyjFDlAiGEECKxSy+9FG+88Qaefvpp3HzzzVI3J2ETExMoKSmB1+tFb28vSktLpW4SIYQQQkRClQuEEEKIhA4fPow33ngDZWVluPHGG6VuTlIeeeQRuN1u3HTTTRQsEEIIIcuMTuoGEEIIIcuNw+HAvffeC6fTib/85S8AgMceewxpaWkStyx+b775Jp566in09vbilVdegdFoxDe/+U2pm0UIIYQQkVG4QAghhIhsenoaTz75JHQ6HaqqqnDPPfdg3759UjcrIZ2dnXjyySdhMBhQW1uLRx99FFVVVVI3ixBCCCEiozUXCCGEEEIIIYQQkhRac4EQQgghhBBCCCFJoXCBEEIIIYQQQgghSaFwgRBCCCGEEEIIIUmhcIEQQgghhBBCCCFJoXCBEEIIIYQQQgghSaFwgRBCCCGEEEIIIUmhcIEQQgghhBBCCCFJoXCBEEIIIYQQQgghSaFwgRBCCCGEEEIIIUmhcIEQQgghhBBCCCFJoXCBEEIIIYQQQgghSaFwgRBCCCGEEEIIIUmhcIEQQgghhBBCCCFJoXCBEEIIIYQQQgghSaFwgRBCCCGEEEIIIUmhcIEQQgghhBBCCCFJoXCBEEIIIYQQQgghSaFwgRBCCCGEEEIIIUmhcIEQQgghhBBCCCFJoXCBEEIIIYQQQgghSaFwgRBCCCGEEEIIIUmhcIEQQgghhBBCCCFJoXCBEEIIIYQQQgghSaFwgRBCCCGEEEIIIUmhcIEQQgghhBBCCCFJoXCBEEIIIYQQQgghSaFwgRBCCCGEEEIIIUmhcIEQQgghhBBCCCFJoXCBEEIIIYQQQgghSaFwgRBCCCGEEEIIIUmhcIEQQgghhBBCCCFJoXCBEEIIIYQQQgghSaFwgRBCCCGEEEIIIUmhcIEQQgghhBBCCCFJoXCBEEIIIYQQQgghSaFwgRBCCCGEEEIIIUmhcIEQQgghhBBCCCFJoXCBEEIIIYQQQgghSaFwgRBCCCGEEEIIIUmhcIEQQgghhBBCCCFJoXCBEEIIIYQQQgghSaFwgRBCCCGEEEIIIUmhcIEQQgghhBBCCCFJoXCBEEIIIYQQQgghSaFwgRBCCCGEEEIIIUmhcIEQQgghhBBCCCFJoXCBEEIIIYQQQgghSaFwgRBCCCGEEEIIIUmhcIEQQgghhBBCCCFJoXCBEEIIIYQQQgghSaFwgRBCCCGEEEIIIUmhcIEQQgghhBBCCCFJoXCBEEIIIYQQQgghSaFwgRBCCCGEEEIIIUmhcIEQQgghhBBCCCFJoXCBEEIIIYQQQgghSaFwgRBCCCGEEEIIIUmhcIHIBsuyCIVCYFlW6qYQQgghhBCB0TiPEHXTSd0AQoCLwYLf74fX6wUA6HQ66HQ6aLVaaDQaMAwjcQsJIYQQQkgiWJZFIBCA1+tFKBRCWloajfMIUSGGpfiQSCwUCsHv9yMYDMLn8/GJNsuy0Gg00Gg0FDYQQgghhCgQN84LH+9xYz2GYaDRaChsIEQlKFwgkmFZFsFgEIFAAKFQCAzDwO/3A7jY2bAsy0+V4HCdEIUNhBBCCCHyxY3huGBBo9HA7/eDZdmIcV74WI9hGGi1WhrnEaJQFC4QSXDTIILBIICLncnY2Bi6urqQmZkJu90Ou92O9PT0iPssFDakpaXxnRHDMNQJEUIIIYRIJNo4D0BEuBDtPnP/UQUrIcpC4QIRXSgUgs/n41NslmXR1dWFc+fOoaKiAn6/H06nE9PT0zAYDHzQYLfbodfr+ccJDxu4jipa4k1hAyGEEEKIOMKnP4QHAVzgsFC4MBdVsBKiPBQuENFw0yC4jkWj0WBmZgaNjY0IhULYuHEj0tLSAFzsPAKBACYmJuB0OuF0OuFyuWA0GvmgwWazxRw2cJUNXCdECCGEEEKEM3e669yT/njDhWiPv9hFJapgJUR6FC4QUYRCIQQCgYjyuKGhIbS2tqKoqAirVq2aNxdvLr/fHxE2uN1umEwm2Gw2PmzgwgmAwgZCCCGEEDFEmwYxdyyXbLgQ7TmpgpUQeaFwgaRU+GI+3IE/GAyira0NIyMjWL9+PfLz8/nbxtPp+Hy+iLDB4/HAbDZHhA063bu7rXKdUH9/PyYmJrB27dp5pXUUNhBCCCGExI6rSo1WrRCOG+dxtxMaN84bHh7G4OAgNm3aRBeVCBGZbumbEJIYbk/jQCAA4GKK7XK50NDQAL1ej927dyMjIyPhx9fr9cjLy0NeXh4AYHZ2Fk6nExMTE+jq6oLX650XNoTPzdPpdHxH5/P5+GSbwgZCCCGEkMWFj/O46a5SVgiEVy4AgFar5dvI7UZGF5UISS0KF0hKhC/mwx3sz507h87OTlRWVmLFihWCd0Dp6ekoKChAQUEBAMDr9fJVDR0dHZidnYXFYoFWq+XnA4Z3KuFVFuFbYoZ3QtxcPkIIIYSQ5WrudFepg4VouPFn+Dgv/KISQGEDIUKjaRFEUNEW8/H7/Whubsbk5CQ2btyIrKysBe8r5Fy8uWZmZuB0OjEwMAC32w2WZWG1WvmqBqvVGtGhhM/jC5/Lx3VC4XP5CCGEEELULtp011jHQameFsEZGRnBuXPnsG3btiXbw43zOFTBSkhyqHKBCIZlWUxNTYFlWaSnp0Oj0WBiYgKNjY0wm83YvXt3xO4OYjMYDDAYDAiFQnA4HKipqeErGwYGBhAIBPiwwW63w2w286V13OvjOlRuGoVGo5k3l4/CBkIIIYSoDcuycLvd8Pv9yMjIkPVCibFcOw2fQsHdhypYCUkOhQtEEKFQCD6fDx0dHcjMzMSKFSvQ09OD3t5erFy5EmVlZQkfjI8dO4bi4mJUVlYK2maj0Qij0Yji4mKwLAuPx8OHDf39/QiFQhFhg8lkiilsmJt4UydECCGEECXjxjs9PT0IBoNYt26d1E0S3GJhw9yLSlTBSkh0FC6QpHDTILjyOG4axIkTJ+D1erFz505YLJaEH/vWW2/F888/D5ZlYTAYsHr1auzduxcHDhxAUVFRQo8brRNgGAaZmZnIzMxESUkJn85zYUNfXx9YluUXh5wbNnAJOReyzM7OUthACCGEEEWLNt2VW2dBroQaZ8UaNtA4j5B3UbhAEjZ3T2ONRoPZ2VkMDQ2hsLAQW7ZsidgKMh5nz57Fnj17MDw8zP9sZmYG9fX1qK+vx7e+9S1kZmZi3bp1uPbaa3HLLbcgOztbkNcFXOxQTCYTTCYTSktLwbIsXC4XHzb09vaCYZiIsCEzM3PBsGGxhYOoEyKEEEKI3EQb5zEME9OUA6mloo3hYQNdVCIkOlrQkSRk7p7GLMuio6MD586dQ05ODrZu3Rr3Y3Kd2MGDB/H//t//izsZt1gsuOSSS/DhD38YH/3oR2E2m6PebmBgAKOjo9i0aVPcbeSEQiFMT0/zW19OTExAq9Xyi0Pa7XYYjUa+Q+EWheRSb+7n1AkRQgghRG64k2ZunMeNTbq7u+HxeHDJJZck9LhcWJHKRRJHR0fR29uLHTt2pOw55goPG8IXAqdxHlluKFwgcQnf0xi4mOJ6PB40NjYCAEwmE/R6PVavXh33YwcCAXzkIx/BkSNHBGmr3W7H5s2bcf311+Pmm29Geno6AGHChblCoRCmpqb4sGFychI6nS4ibDAYDAuGDQD4TigtLY3vhOS4tRMhhBBC1CnadNfwcUhPTw9cLhc2btyY0OOrNVyYKzxsoItKZDmhcIHEjJtnFn4yPDg4iNbWVpSWlmLlypXo7OwEy7JYs2ZNXI/d0dGBq666CmNjY6loOgAgJycH27dvx3vf+15s2bIF27dvT9lzBYPBeWGDXq+fFzZwKGwghBBCiJTmToOIthtEb28vJicnE75AI0a4MDY2hjNnzkgaLsy1WAUrt+OYTqejcR5RPFpzgSwpfAGb8MV8Wltb+QqA3NxcABc7Iu7kOFY//vGP8W//9m9x3y9eY2NjOHz4MA4fPgwAKCgowM6dO7Fv3z5ce+21gh7MuSkSdrsdwMWwYXJyEk6nE4ODg+jo6EB6ejp/G7vdzldWaLXaiE7I6/UCeHeuX3jiTZ0QIYQQQpIVXq2w2BaTy3nNhWSEv6eLjfPoohJROgoXyKKiLeYzNTWFxsZGZGRkYPfu3cjIyOBvH0+n4/f7ce211+Lo0aMpaftShoeH8fzzz+P555+HTqfD9773Pdx6660peS6tVousrCxkZWUBuDgFhAsb+vv70draCoPBEBE26PV6/r7haTfXCWk0mnnlddQJEUIIISRW0aa7LjaOUEq4IHcUNhC1onCBLIirVggvX+vr60NXVxeqqqpQVVU17wAXa6fT0NCA973vfZiYmEhF0+MWCARw7tw50Z5Pp9MhOzub3+EiEAhgYmKC3/aypaUFRqORDxpsNtuCYQN32+LiYgobCCGEEBKTudNdY5mqkGy4IMaYRInjnsXCho6ODjAMg/LycqpgJbJH4QKZJ9qexn6/H01NTZiensa2bdv4cv+5NBrNktMbHn30UXzta1+TXfKd6mkZi9HpdMjJyUFOTg6Ai1UdXNjQ29sLt9sNk8nEr9dgs9mQlpYG4GIwwZUxBoNBBIPBiC2RwufyLXVFghBCCCHqFm26a6xjg2TDBbHGfnIbY8YrfLzGrdHAjbFnZ2fh9XqpgpXIEoULJEK0aRDj4+M4ffo0bDYbdu/ezZ/URrNYpzMzM4O9e/fiH//4R0raniw5dURpaWnIzc3l17Lw+Xx82NDT0wOPxwOz2QybzQav1wuTycR3MsC7CwdxIRHXSc1NvClsIIQQQpaPaOO8eMYBNC1CfNyuHeGVJeHjvLkXlShsIFKicIHwuMV8uBSbZVl0d3fj7NmzWLVqFUpLS5c8QC3U6Rw/fhwf+tCH4HK5UtX8pMm5s9Tr9cjLy0NeXh4AYHZ2Fk6nE06nEy6XC1NTUxgbG+OrGmw2G9+pAO92QoFAAH6/PyJs4Cobwm9PCCGEEHWZO901kZPORBbuFpvaTqa56tRw3Dgu2kWl8LCBu6hEFaxELBQukIjFfLh01Ov14vTp0/D5fKitrYXZbI7psRYKF2666SZZBwtKk56ejoKCAhQUFMDv98NsNiMjIwNOpxMdHR2YnZ2FxWLhwwar1UphAyGEELIMRZvumugJplIqF5TQxnjEcnEvWtgQbZxHFawklShcWOZCoRACgUBEedzIyAiam5uRn5+Pbdu2QavVxvx4C3U6Pp9PsDanityT+IWwLIu0tDQUFhaisLAQwMUpKFxlw9DQEPx+/7ywIdo0Cq4TAjCvtI7CBkIIIURZkp0GMRdX2UrEk8j7HU/YQBeViJAoXFimwhfz4cqtQqEQ2tvbMTg4iHXr1vEnqvFYKFxQwsFKyZ3l3IGCwWCAwWBAUVERWJaNCBsGBgYQCARgtVr53SjMZnPUsMHv98Pn8/GdEIUNhBBCiDLMne4qxBVqpVQuqEm0aRHxijVsoHEeSRaFC8vQ3BSbYRi43W40NjZCo9Fg165dMBqNCT02hQviW6rTYRgGRqOR366SZVl4PB4+bOjv70coFIoIG6ItEMmFUVxlw9xOiJvLRwghhBDphE93BZKvVginhHBBCW2U2kJhA3dRCaAKVpIYCheWmbmL+QDAwMAA2traUFZWhpqamqQOHKkIF7RaLR+EpJJSO6J4280wDDIzM5GZmYmSkhKwLAu3282HDX19fWBZlt/2kgsbwqfHhIcN0SobwufyEUIIIUQc4VtMApFbGgoh2RN3GhfET4jKhaUsFTZQZQOJFYULy0S0xXwCgQBaWlowPj6OzZs3IycnJ+nn4fbgjfbzRIkRLADKXXMBSK6zZhgGJpMJJpMJpaWlYFkW09PT/NaXvb29YBgmImzIzMxcMmzQaDTz5vLRoIIQQggRXng/LOQ0iLmoKmB5iBY2UAUriQWFC8tAtMV8Jicn0djYCKPRiN27dyM9PV2Q51LytAilErqTZxgGFosFFosFZWVlCIVCmJ6ehtPphMPhQE9PD7RaLb84pN1uh9FojClsmJt4UydECCGEJEfoRRsXo4RwQQltjIcYlQtL4RZ/5Cx2UYkqWJc3ChdULhQKwefz8Sk2AJw9exbd3d2orq5GRUWFKOVy8ew4IRUld0SpPHhrNBpYrVZYrVYAFz9TU1NTcDqdGB0dRXd3N3Q6XUTYYDAY+L85975yn0Vu72UKGwghhJDkzJ3uKkb5fDKVntTPJ0Zu71s8YQNVsC4vFC6oFDcNgtsNQqPRwOfzoampCW63G9u3b4fNZhP8eZVcuaDUcEHsdms0GthsNv7zEwwG+bBheHgYnZ2d0Ov1FDYQQgghKRJtuqsYfaYSqgLUNnaQ+/sNRIYN4eM8qmBdfihcUKFQKIRAIBBRHudwOHD69GlkZWVh165dSEtLS8lzKzlcUOqaC1KXy3FTJOx2O4CLYcPk5CScTicGBwfR0dGB9PR0/jZ2ux3p6ekRnRD3b3Z2Fj6fD5OTk9BoNMjOzqZOiBBCCAkj5jSIuTQajSJOdpXQxlhJPc6LF9fWxS4quVwuhEIh5Obm0jhPZShcUBEuxQ5f1ZVlWXR2duLcuXNYs2YNiouLU/rFpWkR0pDTwVir1SIrKwtZWVkAgEAgwIcN/f39aG1thcFgiAgb9Ho9f1+WZTE6OgqtVguTyRRR2cCV1ul0OlEHU4QQQogcBAKBiK0Cxe4Hk61c4C4mkPgoebwTLWyYmJiAx+OBxWJZdOtLJb/u5YrCBZXg9jTu7+9Hf38/du7ciZmZGTQ2NiIYDKKurg4mkynl7VhoLh6FC6kj93brdDpkZ2cjOzsbwMWBEbcTRV9fH1paWpCZmclPoeCmW3Dz9MIrG7xeLwBEhA1cJ0RhAyGEELXixnkXLlxAW1sbLrvsMkn6PCVMi1Abtb3f3Gco2jiPq2AFKGxQKgoXVCB8MR/uCzs8PIyWlhYUFRVh1apVop3cU+WCNJR0sNXpdMjJyeG3PvX7/RHbXrrdbuh0OhiNRpjNZthsNn4aD1fZEC1smLtCMYUNhBBC1CB8uis3zpKqf1NCuKDGvl9trykUCvGviau2BuaP82ZnZ+dVsNI4T94oXFCwhRbz8Xg8aG1txYYNG5Cfny9qmxaai6eEcEGplDYXb660tDTk5uYiNzcXAPiFR1mWRU9PDzweDx8ycJUNOt3FQ1d4JxQKhShsIIQQohrhK/Bzfb1Op5N0jSglhAuAsi8YzaWm18LhFpuPZrGwgSpY5Y/CBYWKtpiPy+VCR0cHgsEgLrvsMhgMBtHbpeTKBSUv6Kgmer0eer0eVqsVZWVlmJ2dhdPphNPpRFdXF7xeL8xmMx802Gw2/vM1N2yYnZ2F1+uFRqOZV15HnRAhhBC54qZBBAIBAO+ecCW7FWSylBIuqInSLyJFEwqFYj43iDVsoItK8kDhggJxq61y1QoA0N/fj46ODuTl5WFiYkKSYAFQdrig5M5SbQfP8EQ7PT0dBQUFKCgoAAB4vV4+bOjo6MDs7CwsFgsfNlit1nl7L3NVPsFgcMGtL6kTIoQQIgdzp7uGX+HVaDSyCBfkfMIr13YlQ22vabHKhaUsFDaEV7DSRSXpULigINwJElcep9FoEAgE0NzcjImJCWzZsgUajQZOp1OyNip5K0qlhgtKbfdiwufizZWRkYHCwkIUFhYCAGZmZviwYXBwEIFAYF7YwHUyQGTYEAgE+E5qbuId3nkRQgghqbbQdNdwUm8FybVHzuECoK6xkZpeC2excV68FgobuItKVMEqLgoXFCLaNIiJiQk0NjbCbDZj9+7d0Ov1mJiYkLzTmfv8XGm63LndbszMzEhW9ZEMtR0cw6tylmIwGGAwGFBUVASWZSPChvPnzyMYDMJqtfLbXprN5qhhQyAQgN/vXzBsUEJARgghRJmijfOi9e1c5YJUJ/fhfWci1DZeEYPcg5xEJFO5sBRuHBftotLcCtbwLc7popIwKFxQAK5aIfyE68yZMzhz5gxqampQXl7OfxnkUi7HcTgcaGxs5BfgkzO324233noL6enpyMrK4k9G9Xq91E1blFo7nUReE8MwMBqNMBqNKC4uBsuy8Hg8fNjQ39+PUCgUETaYTKaYwwauE6KwgRBCiFDmTnddrP+TunIg/PnlSm1jIjWK5yJSshYLG6iCVXjyP+NbxuYu5qPRaDA7O4vTp0/D6/Vix44dsFqtEfeROlwIT9R7enrQ29uL1atXz2unHOXk5OCyyy7D5OQkxsfH0dfXh5aWFphMJv5ENHynArmQcwefKKE6HYZhkJmZiczMTJSUlIBlWbjdbj5s6OvrA8uy/E4UsYQNQPS9lylsIIQQEo9o012XOpnh+hoxT87CKSFcAOTfvnjQRSRhLRQ20EUlYcjrLInwuMV8uKCAYRiMjY3h9OnTyM3NxZYtW6Ke5MplFeF33nkHMzMz2LlzJywWi+xOyKNhWRY6nQ7Z2dnIzs4GcHFbxImJCYyPj/M7FXDz+e12Oz+fX2pq7HRS8b4yDAOTyQSTyYTS0lKwLIvp6WlMTEzA6XSit7cXDMPwQZLdbkdmZmbUsMHv98Pn8wGgsIEQQkh8Yp0GMVey0xKSlWy4oLbxiljU9r5JFY5FQ2GDsOR/xrfMhO9pzH3xWJZFR0cH+vv7sXbtWhQXFy94f+72UiWCk5OTAIC0tDRs3ryZDxWUEi7MpdfrkZeXh7y8PAAXdyoYHx+PWDww/Kq32WwW/X1XY6It5EI/i2EYBhaLBRaLBWVlZQiFQpienobT6YTD4UBPTw+0Wm1E2GA0GueFDdx3lqts4PYi58IGbi4fIYQQEl6tEG/pdXjlghS4tip1+24lUlMVBkescV4ilgobALqotBj5n/EtI9FSbI/Hg8bGRgDArl27kJmZuehjhH8RxPzSsiyLM2fOoKenBwCwYcOGiO0A1bIVZUZGBoqKivjFAz0eDx829PX1AQAfNHAnonI9eMpZKhf6WYxGo4HVauWn8YRCIUxNTcHpdGJkZATd3d3Q6XQRYYPBYJi39SUXNvh8Pr6TorCBEEKWt7nTXROZ0y31yb0Q0yJS3f+psX9V22uSapyXiIXChsXGecs5bKBwQSbC9zTmSuMGBwfR0tKCkpISrFq1KqYPqRRz8Xw+H06fPg2Px4OtW7fixIkT826TlpYmSluSEW9HHT6fv7S0FKFQCC6XC+Pj4xgdHUV3dzfS0tIiwoaMjAzB202VC6mj0Whgs9lgs9lQWVmJYDDIhw3Dw8Po7OyEXq+PWJNjsbDB7Xbj7NmzWLVqFXQ6XUR5nRxeLyGEkNSYO9010TEadyIj5bQIKZ8/VnJvXzzU9Fo4chnnJSJa2BB+UamrqwsrVqxARkbGsryoROGCxKLtaRwMBtHW1oaRkRFs3LiRL8mPhdiJttPpRENDA2w2G+rq6vifzz0QKnVaRDw0Gg1fYl9RUYFgMIjJyUk4nU4MDAygvb0dBoMhImwQInRRY6cj10SbmyJht9sBIOrfOD09PeJvnJ6ezocNPp8PIyMjWLVqVUTiHa28brl0QoQQombRprsme3yXevFuJYQLaqLGi0hyHeclgluPAQACgQCGh4exYsWKBSsbwnejUCP5n/GpWLRpENPT02hsbIRer8fu3bvjvtIt1lw8lmXR29uLnp4erFy5EmVlZWAYhi/1U2K4IDStVousrCxkZWUBuHjA4XYp6O3tRXNzM8xmc8RV70Snj6jtAKWURDva35gLG/r7+9Ha2hoRKOn1emg0Gv7vzH1PuG3IwvdeprCBEEKULdFFG5dC4cLi1Nhfqu01KWWcFy/ue5mWlrZgZQM3zpu7QKRa3o/ld8YnE9xiPuHTF86dO4fOzk5UVlZixYoVCX3IxNgiyOfzoampCS6Xa952mAutYqyEcCHVHaVOp0Nubi5yc3MBALOzs3zY0NHRgdnZWVitVv5E1GKxxJTqyrmDT5RSE+25u40EAgF+J4q+vj64XC4wDIOOjg4+UNLr9RQ2EEKIykSb7ioUCheWJvf2xUNNr4Wj1HHeUoLB4Ly1VMIrG4CFwwa1jPPkf8anMuGL+XBfLL/fj+bmZkxNTWHr1q38VdBEcB/QVHU6TqcTjY2NsFqt2LVr17yy/oWmZVC4MF96ejoKCgpQUFAAlmUxMzPDhw3nz59HKBSK2InCZDIteKBR6gFoIWpJtHU6HXJycpCTkwMAGBkZQWdnJxiGQW9vL9xuN0wmE/93ttlsfIoNRIYNs7Ozi259qYb3ixBClC7adFehj89Sn9xL/fzLkdr6eDltRSmkWMLE8LBBjReV5H/GpyKhUAiBQCCiPG7uybper0/6eRiGETxcYFkWZ8+eRXd3N2pqalBeXr7oh5wqF+LDMAyMRiOMRiOKi4vBsixcLlfENAqNRhMxl99gMPAdvFIOOLHgVuFVY6ej0Wig1+uxcuVKABergLjKhp6eHng8HpjN5oiwIbxj4d4blmUxOzsb0QlxoYROp0vJYJYQQsjiUjUNYi6qXFic2vo/Ob/XiVLb2JUTb2jCvQdqChvkf8anAuHlL+Ffpp6eHvT29kasWSAEoTsdv9+PpqYmTE1NYfv27bDZbAvedqFVhJWwW4ScDt4Mw8BsNsNsNqOsrAyhUAjT09MYHx/HhQsX0NnZyS8cyB2AltqmVCm4v4PU4cL09DRuv/12VFZW4rbbbsOaNWuSfsy5nY5er0deXh6/aGv4VJmuri54vV5+XQ5u1wquA5obNni9XgCYFza43W7YbDbJ309CCFGzudNdUznwl0O4IOXzx0JOY7pkqfFEXM2VC4munwZEDxvCLypFq2B1uVxJrdsmNAoXUmxuis0wDGZnZ9HY2Aifz4edO3fCYrEI+pwajUawg+rExAQaGhpgNptjrqxQargg545So9HAarXCarXyWyJyV7xZlkV9fT0yMzMjKhuUUC0SDfd3kLIj7enpweWXX46pqSkAwM9+9jOkp6ejpqYG11xzDQ4cOIDKysq4H3epTid8qgwAeL1ePmxob2+Hz+eDxWLhwwar1bpo2DA1NYXKyko4HI6kplsRQgiJLny6K5C6aoVwcggX1HTyrgRqCxfUGJgAF8ewQp7kh6/fsFAFa2lpKd555x2sXbtWsOdNhjLPPhQi2mI+IyMjaGpqQl5eHrZu3ZqSE0AhOh2WZdHX14euri5UV1ejoqIi5oOAUsMFJXWUWq2WXziwv78fW7du5U9Ee3p6MDMzE7ETRfhJqNxJXblw9OhR3HDDDfD7/RE/n52dRXNzM5qbm/G9730PBoMBq1evxvve9z7cdtttfCCwGO5YEKuMjAwUFhaisLCQDwy4sGFwcBCBQIAPG+YuAqrVavlqBpPJFMc7QAghJBbhW0wCkScCqST1yb2QF7HI0tT4Xqu5ciGVr2tu2BAIBDAzMyOr6mUKF1Ig2mI+oVAIHR0dGBwcxNq1a1FUVJSy50+2XI1bYHJychLbtm2D3W6P+/mVGC4oWVpaGiwWC19eH34S2tbWBr/fz+9EkZWVBbPZLNvEWMrKhV/84hf413/915g68pmZGdTX16O+vh6PPPIIMjMzsX79enzgAx/ALbfcwu8YES6ZRJthGBgMBhgMBhQVFUVdBDQYDPJ/56GhIVgsFqSnpyccYp44cQIPPfQQ3nzzTfj9fmzYsAF33303brrpppjuf/DgQdx2220L/v7VV1/FFVdckVDbCCFEKuHTXcWYBjEXVS4sTq7jm0Sp7So/d+VdTa+JI3Zo4nK5AABms1m051wKhQsCi7aYj9vtRmNjIxiGwa5du2A0GlPahmQ6ncnJSTQ0NMBkMiW8wKRSwwU5d5SLiXaAnnvF2+Px8Ceh586dA4CInSgyMzNlc5Dn/g5it+crX/kKfvjDHyZ8f7fbjbfffhtvv/02HnroIVgsFlxyySW47rrr8C//8i8wm82CJtrRFgHl/s7Dw8PYt28fvF4vTCYTvv3tb+O9730vNm/eHHPQ8Oqrr2Lv3r3IyMjA/v37YTab8eyzz2Lfvn3o7+/HPffcE3Nbr7vuOmzatGnezysqKmJ+DEIIkQOxFm1cDIULsVHTCaxaXgcgfYVqKiW75kK83G43AHlVqFK4ICBuYb3w1GpgYABtbW0oLS3FypUrRfkiJVKuxrIszp07h87OTqxYsQKVlZUJH8iiPT+FC6kRS5sZhkFmZiYyMzNRUlIClmUxPT0Np9MJh8OBnp4e6HS6eTtRSIXbhlKsjpRlWezbtw8vvviioI87NTWFY8eO4dixY/jSl74Eu92OVatW4aqrrsKKFSuQnp4u6PPN/Tv39vbil7/8Jb75zW/i+PHj+Na3voVQKITHHnsMn/rUpxZ9rEAggDvuuAMajQZHjx7lg4EHH3wQO3bswP33348bb7wR5eXlMbXt+uuvx4EDB5J8hYQQIq1o012lQOHC4tR0Ig4oc3y6GDmsrZUqQq+5sBSPx5NUhWoqyKclCsZNg+jp6YHP50NNTQ2CwSBaWlrgcDiwadMm5ObmitaeeDsdv9+PlpYWOJ3OhKZBzBVtWgaFC6kVzwGaYRhYLBZYLBaUl5cjFAphcnISTqcTQ0ND6OjoQEZGRkTYIMQWqbEScxvK2dlZvOc970FbW1vKn8vpdOKtt97CW2+9hf/4j/9Abm4utm3bhhtvvBH/9E//JHhnpNVqkZ+fD7vdjueeew7BYBCNjY0xpduvvPIKenp6cNttt0VUHFitVtx///04cOAADh06hAcffFDQNhNCiBxx47z+/n44nU6sXbtW0hMjqXdrkHu4wKHKBXlSe+WC2NMi5FR9DFC4kLRQKIRAIMCvscCt0N7Y2AiDwYBdu3YhIyND1DbF0+lMTU2hoaEBRqMRu3fvFuQkkqZFiEeIKQQajYYPEYCLV625nSj6+vrQ0tICk8nE38Zms6U0IeUqF1JtZGQEtbW1GBsbS/lzRTM6OorDhw/j8OHD+OQnP4mSkhK89NJLKC4uFuw53G43v8iPVqvFli1bYrrfa6+9BgDYs2fPvN/t3bsXAPD666/H3I76+no4HA4EAgFUVFTg6quvjromBSGEyE34NIhAIACPxyP5QF7qBRWVEi6ohdrea7VXLkgRLsgJhQsJCl/Mh0tGNRoNpqen8Y9//ANVVVWoqqqS5IsTS+UCy7Lo7+9HR0eH4G2lcEE8qWizTqdDTk4OcnJyAAA+n49fr6GzsxOzs7MROxRYrVZBD6RiVC40NjZiz549mJmZSenzxIr7PgrdHrfbndA8vK6uLgBATU3NvN8VFBTAZDLxt4nF3LUsDAYDHnroIdx7771xt40QQsQSDAYjFm3U6XSy2LZaDtMi5PA+LESNJ61qek1Sra0lBrHXXPB4PDCZTLJ6LylcSMDcPY0ZhoHP58PAwABmZmawffv2pKcWJGOpRDsQCKC5uRlOpxNbt25FVlaWoM8fLVwQs6w+UUoMFzipPKjo9Xrk5+cjPz8fACJ2KOC2Q+QWh8zKykr6IJfqyoUXXngBt956K78Yl5wI/V10u90JLSA7OTkJ4OI0iGgsFgt/m8VUVlbiRz/6Efbu3YuSkhKMj4/jlVdewX333Ycvf/nLMBqN+MIXvhB3+wghJJXCx3lc4M1dRJLDSbXUJ/dUuSAuNU3vACDJDitiCYVCoq5/kOg4L5UoXIhT+GI+XEfjcDhw+vRppKen89vASWmxzm96ehr19fX8lA2hF5UDlBsuKJEUnfvc7RDdbjcfNpw9exYMw/BVDVlZWTAYDHF1IKksKfvOd76Dr3/96yl5bCEIfexItHJBKJdffjkuv/xy/v8XFxfj4x//OLZs2YJt27bha1/7Gj7zmc/IaiEiQsjyFj7dFYjcDUKj0cgimJY65JB6WkaslNDGWKjldXDUFpaECwaDop7zuFwuWe0UAVC4EDNuMZ9AIMCf/LAsi87OTvT19WH16tXQaDQ4f/681E2NmmizLIvz58+jvb0dlZWVWLFiRcq+2DQtQnxSHaQZhoHJZILJZEJpaSlCoRC/E8XIyAi6u7uRlpYWETYsFWilalrEpz/9aTz99NOCP66QhP47JhoucBULC1UnTE1NJRWErFu3DpdeeilefvlltLW1YcOGDQk/FiGECCHadNe5x2StViuLygWpT+6pckF8ajoZF3tdAjGJvVtE+NpackHhQgyi7Wns9XrR2NiIQCCA2tpamM1mXLhwQTaJdvhBPxAIoLW1FWNjY9iyZUvKF1KL1umkokJCaErsKOXWZo1GA6vVCqvVioqKCgSDQX4nCm5bVqPRyAcNNpttXvCUimkRN954I1566SVBH1NoqRg4JNrpcGstdHV1YevWrRG/Gx4ehsvlwo4dO5JqG7emB7dHMyGESCXadNdox2SpKwbC2yHleFPu4YKaTsQB+Y31kqX2ygUxgxNuzQU5oXBhCaFQCD6fL2J+0PDwMJqbm1FYWIjVq1fzCZWcOh2uHdPT02hoaEB6ejp2794tykk+VS6IT64Haa1Wi6ysLH4tAb/fz+9EcebMGbjdbpjNZj5ssFqtKalcOHr0qKCPlwqp6IzcbjeKiorivt/ll1+ORx55BC+99BL2798f8bsjR47wt0lUMBjEO++8AwAoLy9P+HEIISRZ0aa7LkSr1criIhKtuRAbJbQxVnId5yWCKheEQ7tFKAg3DYIrj+NO2Nvb2zE0NIT169ejoKAg4j5SJ8nh7QiFQjh//jza2tpQUVGB6upq0Q5M0UIWJay5oMROSGkr7qalpSE3Nxe5ubkAgNnZWX69hra2Nvh8PhgMBr7iwWw2C9IBySH0W0oqOqNEp0VcddVVqKqqwtNPP4277roLmzZtAnBxmsTDDz8MvV6PW265hb/90NAQJicnUVhYGLEI5MmTJ+dVPgSDQXz5y19Gd3c3rrzyShQWFib24gghJAnRprsu1ZfK8SKSFJINF5QyZpELJY5PFyPWluNSELtygaZFKES0aRAulwuNjY3Q6XTYtWtX1JU55TIXj2VZjIyMwO/3Y/PmzXz5sViUuqCjEg/eSmxzuPT0dBQUFKCgoAAsy2JmZgZnz57lF0kNhUIRO1FkZmYm1CHJ4Xu5lFQsaujxeGA2mxNqyxNPPIG9e/fiPe95D/bv3w+z2Yxnn30WfX19ePzxx1FRUcHf/r777sOhQ4fwi1/8AgcOHOB/vm3bNlxyySW45JJLUFxcjPHxcbz++uvo7OxESUkJnnjiCQFeJSGExCfaOC+WvoW7iCR1WbfS11xI9YURNZ24Ku0iUizE2HJcKlKsuVBcXCza88WCwoU55u5pDIBfCLG8vBzV1dULfiGkTpKBi+Uxw8PD0Gg02LVrFzIyMkRvA4UL4lNDp8MwDIxGI6xWK3w+HzZu3AiXy8VXNvT29kKj0czbiSIWiXwvxS77TEW44HK5Et6i6Morr8SxY8fw0EMP4ZlnnoHf78eGDRvw6KOPYt++fTE9xj333IO33noLf/3rXzE+Pg69Xo/q6mp85Stfwd133y35zjqEkOUn2nTXWHEnDXIIF6SuXJB6vBsLJY/r5lLDOI9DlQvC8Xg8VLkgV3MX89FoNAgEAmhpaYHT6YxpIUSp5+INDAygtbUVZrMZmZmZkgQLgHLDBSVSU8fJCd9T3Gw2w2w2o6ysDKFQCFNTU3A6nRgeHkZnZyfS09MjwoaFPmeJvE9iv7epWJck0coFzo4dO3D48OElb3fw4EEcPHhw3s8ff/zxhJ+bEEKEFG26a7wnONxJg9RzxqU+uVfKmgtqoMb3mSoXhMOtXSYnFC7g3cV8uAM1wzCYnJxEY2MjMjMzsWvXrpgWQuSSZLET7WAwiLa2Nly4cAGbNm3C1NSUpCuwR+t0lLAivM/nQzAYFPWgkCw1lsstlGhrNBrYbDbYbDZUVlYiGAzyi0OeO3cOra2tyMzMjNiJgqsGUELnnIoATo4L/RBCiNgSnQYxFzc+CAaDKak2i5XUlQtST8tYiprGRMtpnKcGYlcuyHGct6zDhfA9jcNT6N7eXnR3d6OmpgYVFRUxfwG4TkfM1MrlcqGhoQE6nQ67d+9GRkYGXC6XbBLtUCiE7u5u9PT0SNaeWLlcLhw9ehRWq5Xf4cBsNsv+ACj39sUr1itCWq0W2dnZfEWR3+/np1B0dXXB6/XyO1EogdA7ubAsm3TlAiGEKF14tcJCW0zGiruv1FMCpD65p8oF8alprEeVC8KR4zhv2YYL0VJsn8+H06dPw+PxYOfOnRGrnscivFxOjA/W4OAgWlpaUFZWhpqaGv75pT7oc88/OzuLxsZGzM7Oora2VrL2xMpisWDnzp0YHx/nr4YD4K+ExzPHXyxq7NwTrfxJS0tDXl4e8vLyAABerxdOpxMXLlwQuokpkYptYt1ud8JrLhBCiJLNne6abLDAPYYcdgaTunIhmXGmmCfJahgjqeE1zCX1tKJU4S5ai71bhNzGecsyXAjf05grjRsdHUVTUxOys7OxefPmhMrduA9TMBhMyfxpTvg0iI0bN/InU+HtkLrT8Xg8ePPNN2G327FlyxaMjY1J1p54GI1GGI1GlJSUIBQKYXp6GuPj47hw4QI/x58LGux2e0r/zrFSU5oNCNfpZGRkoLCwUDHrfaRijRQ5zsUjhJBUmzvdVcjBvhx2BlP6mgtqG7eIQU3vmdQLoqYKFzqKVbnAsqwsx3nLKlyItqcxy7Lo7OzEuXPnsGbNGhQXFyf8geeCilQe8N1uNxoaGvjdIKJdSZcyXOBKsS9cuIBVq1ahvLwcDMOk5Kqs0OZ2lBqNBlarFVarFZWVlQgEAvwc/97eXjQ3N8NsNvNhg9VqFT2JVeMBWuhyuenpacEeK5WETp79fj98Pp/sOh1CCEmVaNNdhe4jqXJB+grZpahpXCTn9zlRaq1cSEWYuRS3201rLkgl2jSImZkZNDY2IhQKoa6uDiaTKennSeUBf2hoCC0tLSgpKcHKlSsX/PBKlWhzu2u4XC4UFRWhoqKC/50SwoWl6HQ65OTkICcnBwAwOzuL8fFxjI+Po6WlBYFAIGLngszMzJR3cGrtdIR831wul2CPlUpCT7nhXrfcOh1CCEkFoRZtXIocKhfksOaC1O9BLNQ0RlJTYKLWBR3Djz1i8Xg8gpy/CmlZhAvcYj7hKTZ3ol5UVIRVq1YJVsKSiu0og8EgOjo6MDg4iA0bNiA/P3/R20uRaHMLS+r1euTn588r8VZCuBBvJ5Seno7CwkIUFhbypUnceg1nzpyBTqeLWK8hVe+B2g7QLMsKWlK2XCsXuB1a5NbpEEKI0KJNd00VqasG5NAGpYQLaqDG3SLUuqBjqqqlFuL3+zE7Oyu7ClVVhwvhi/lwH+RgMIj29nZcuHAhphP1eAl9wPd4PGhoaADDMNi1a1dMJyBiJ9rDw8NoamriF5Zsa2ub9/xK2N4x2fmDJpMJJpMJZWVlCIVCmJycxPj4OAYGBtDW1rbgNolStVmuhE60lbANKiB8COB2u2EwGBTx3SOEkEREm+6a6oG9HKZFSH1yT9MixCPn9zlRaq5cEHPMxVWoyu0ikmrDhVAohEAgEFGiEn51faH1CpIlZKczPDyM5uZmFBcXY9WqVTGnfGIl2qFQCJ2dnTh//jwuueQSPqiRe6ezECHbrNFo+CkSwLvbJI6Pj6OzsxOzs7OwWq182GA2mxNOcdV2gBY60VbKtAihk2duHp7aPh+EEAKINw1iLpoWIf3zx0oJbYyVmvpytVcuiIW7eCa36a+qCxfCF/MJX+yuv78fHR0dqKiowIoVK1L2xxei0wmFQujo6MDAwADWr1+PgoKCuO4vRqLt9XrR2NgIv9+Purq6iA82hQvzzd0mcWZmhl+vob+/HwAi1mswGAwxdSRKfJ+XslzXXEhF5YLcticihBAhRJvuKhappyTIoQ1KHecpkRrfZ6pcEIbH45FlhaqqwoW5KTbDMPD7/WhpacHExAS2bt2KrKyslLYh2QO+x+NBY2MjWJaNeRqE0G1Yyvj4OBoaGpCTk4Nt27bN+1ArtdMRs80GgwHFxcUoLi4Gy7L8lpcjIyPo6urit7zkwobFtrxU2wFa6ETb4/EI9lipZLFYBH08l8sFk8mkus8HIWT5Cp/uCohXrRAuFWtrxYvChcWpqd9T65oLcjshFoLYlQsul0uWFaqqCReiLebjdDrR2NgIs9mM3bt3i7LffTLTIi5cuICmpiYUFRVh9erVCX9AU1WuxrIszp49i+7ubqxatQqlpaVRP9ALVU7IvTOSqm0Mw8BiscBisaCiogLBYBATExMYHx/H2bNn0dLSwm95abfbYbPZ+M+GGreiXK5rLlitVkEfT47bExFCSKLCt5gELvadUvR/Up/YA7TmQqyU0MZY0DhPGcSuXJDrOE/x4UK0xXwAoKenB2fOnEFNTQ3Ky8tF+xAnMi0i2WkQc6Wi4wsEAmhqasLk5CS2b98Om8226PP7/X5Bn3850Wq1yM7ORnZ2NoCLW15y6zW0trYiEAjAZrMhKysLOp1ONZ0nR+jkVymVC16vF+Pj47BarYJ0Tm63W3aL/BBCSLzCp7tKMQ1iLjks6Cj1BQalhAtqoMb3mdZcEIZc19ZSdLjAlZP39/ejqqoKGo0Gs7OzOH36NLxeL3bu3Cl4qfFS4i2Xm5mZQUNDA0Kh0Ly1CxIldKI9PT2N+vp6GAwG7Nq1a8kKkIU6Hbl3RnJtW3p6OgoKClBQUACWZeHxePj1GpxOJ0KhEFpaWvgpFHO3AVUaoQdLMzMzgj1WKhkMBrS1tcHv98NisfCVKoku9klrLhBClI7r83p6elBdXS15sADIZ0FH4OLJjBTl5XIfzwHqutqvptcCiH8SLhaqXLhIseFCKBSCz+eD1+tFb28vqqurMTIygqamJuTm5mLLli1JbfXndrvx4Q9/GKOjo/jABz6Az372sygrK1vyfvFUDXDtLSgowOrVqwX7QApZuTA4OIiWlhZUVFSguro6pgOcEjodpWIYBpmZmcjMzERpaSkcDgfa2tpgMBgwODiIjo4OGAwGZGVlCbrlpZiWa+XCJZdcgm3btvGLfTqdTpw7dw4sy/KLfdrt9phTaqpcIIQoGVet4Pf7+XGeHE6y5FS5IGW4kMw4U6xxohrGomqc/qrG1wSI/33k1taSG2WddeDdaRDcbhBpaWkIBoNoa2vD+fPnsW7dOhQVFSX1HMeOHcN1113Hz9Xu7OzE97//fZjNZmzfvh0f/ehHsX///qgfoFg6HW4Lx/7+fkHaG60NLMsm9eUNhUJob2/H0NAQNm3ahNzc3Jjvu1jlgpwpsRNiGAZarRZVVVWoqqqC3+/n12vo6uqC1+vlr4Inu+WlWIQul1NK5UJWVhYYhoHRaITRaERJSQlYloXL5cL4+DgcDgd6enqg0+kiwoaFttT1eDyy7HQIIWQxc6e7cgsai31VcCFarVbyqZ/h4YIU6CKSeNT4Pqu5ckGKaRFyo6hwIRQKIRAIROxp7PP5AFzcwWDXrl1Jv8n33Xcfvve970X93fT0NF555RW88sor+OQnP4mysjLs2bMHn/3sZ7FmzRoAS5fLzczMoLGxEYFAAHV1dSkZ/Cc7F4+bqsGyLOrq6uIuraZwQVzh72taWhpyc3P5MGhmZoZfr+H8+fMIhUL89Am73Q6j0Si7v4vQC/14vV7BHiuVuDU2wjEMA7PZDLPZjPLycoRCIUxOTsLpdGJoaAgdHR0RO4vY7XZ+2hK3inAiTpw4gYceeghvvvkm/H4/NmzYgLvvvhs33XRTQo/ndDqxfv16DA4OYu/evXjxxRcTehxCiLrN3fUrfKAeCAREWZh7KXJZ0BGQbtySqoXDhSS3sU0y1PRaAPUu6Ch25YLH46FwIVHhi/lwJ8wMw2BgYACtra0AgK1btyY113xychJXXnkl/3ixtKmvrw8///nP8fOf/xwGgwEbN27EFVdcgQ9/+MNR7zM6OorTp08jPz8fa9asSdkHkPvCJpIMjo2NobGxMak2UrggnqXabDAYYDAYUFRUFHEVfHR0FN3d3UhLS+OrGsJPTKUkdOWCUsKFWHaL0Gg0fIgAXBxsT05OYnx8HH19fWhpaUFHRwcaGxsxMzODysrKuNvx6quvYu/evcjIyMD+/fthNpvx7LPPYt++fejv78c999wT92N+/vOfx+TkZNz3I4QsH1xVarRFG+Ww/SNHDm3hxsFUubA4JbRxKWp4DXOpdUFHKdZckGOFquzDhbl7GjMMg2AwiNbWVoyOjmLjxo04depUUl++l19+GTfeeGNSJyEzMzN466238NZbb+Fb3/oWCgsLcfnll+NTn/oUdu7cia6uLpw7dy4l0yDmSqRcjmVZnDlzBmfOnMGaNWtQUlKS8PMrNVxQqljf17lXwbktL51OJ39iajKZ+LBBqF0L4rVcKxcSec06nS5iZxGfzweWZfHWW2/h2LFjeP7553H8+HFcddVVuOqqq3DppZcuugZHIBDAHXfcAY1Gg6NHj2LTpk0AgAcffBA7duzA/fffjxtvvBHl5eUxt/HZZ5/F008/jR//+Mf4/Oc/H/drJISoW/g4jzvpmHs81Ol0kp/Qc+RQuSB1O5QSLqiF2sbPaq5cEPMinVzXXJB1bMQt2sjNbdNoNJiamsKbb74Jr9eL3bt3Iy8vL6kU+Qtf+AI++MEPCn4CMjQ0hN/85je48sorYbFY8JGPfATHjx9fcH60kMKnRcTC7/fj1KlTOH/+PHbu3JlUsAAoN1xQYkeZzLoa3JaX1dXV2LFjBy699FKUlZXB7/ejra0Nf//731FfX4++vj5MT0+L9v4InWjPzs4K9lipItR3Q6/X46qrrsKhQ4ewefNmPPjgg7jjjjvQ29uLT37yk0seJ1955RX09PTgX/7lX/hgAbhYVXH//ffD5/Ph0KFDMbdndHQUn/nMZ/Dxj38c1157baIvixCiUlxVKncBaaHdIORQLcCRw4KOXDsoXFA/Nb7Paq5cEPN10bSIOMxdzIf7Q509exZdXV384nVcB6TVavmOKVajo6O44oor0NPTI3j75woEAuju7sbDDz+Mhx9+GNnZ2di9ezduv/127N27V/CT7vBpEUuZmppCfX09TCYTdu3axS+clIyFOjy5H0iUeAAXss16vT7qlpdOpxNnz57lS/K5yoZUbXkpdKLNrcsiZ6n4brjdbpSUlOC2227DbbfdFtN9XnvtNQDAnj175v1u7969AIDXX3895jZ8+tOfhlarxQ9+8AOaFkEI4S003XUhcgoX5LAVJSDtCb4SwgW5X9CKh5peC6DuygXailKG4UK0xXz8fj+ampowPT2Nbdu28fONOfF2Os899xxuueUWyU46HA4HXnjhBbzwwgvQarWoqanBF7/4xZhPAJYS61y88+fPo62tbV5YI8TzU+WCeFLxvs7d8jIUCmFqagrj4+P8QoIGgyFicUihtrxcjpULqeiMXC4XzGZzXPfp6uoCANTU1Mz7XUFBAUwmE3+bpfzyl7/E73//ezz33HOw2+0ULhBCAESf7rpUPyancIGmRSgjXACUO64Lp8ZtG6lyQRhutzvucZ4YZBUucNMgwhfzcTgcOH36NGw2G3bv3h31ynqsnQ7LsvjEJz6Bp59+OhXNT0gwGER7ezu+853vCBYuAIuv5Mtt3XnhwgVs3rwZOTk5gj0vsHCnI/cDiRI7IbHarNFoYLPZYLPZAFysxnE6nXA6nejp6cHMzAzMZjNf1WCxWBL+ey/HygWhgplwiZTLcQHAQotLWiyWmEKCwcFB3HXXXbj55ptx3XXXxdUGQoh6cdUKwWAQDMPE3E/ILVyQQ1ukDhfkELAsB0ocmy6FKheEQZULi+CmQXDlcdyJcXd3N86ePYtVq1ahtLR0wQ9iLJ3O4OAgLr/8cvT396fiJSRN6BOghTodj8eDhoYGMAyDXbt2pWQNCKpcEJcU76tOp4vY8tLr9fJTKJqamhAKhWCz2fiwIZ4tL4VOtJdjuMCyrKSrCH/yk59EWloafvjDH0ry/IQQeYk23TWeviuR6a+pIqdpEUquXEj1FXm5jznjoabXAlDlglBot4gFRJsG4fV6cfr0afh8PtTW1i5Z8rHUKsK//vWvcccdd8imY4qGW7RSKNHCBW4rzMLCQqxevTplXwClVi4okVzK5TIyMlBUVDRvy8uxsTH09PQgLS0tYr2GhVbTZVlW8E5H6O9WKgix1slciSTaXMXCQtUJU1NT86alzXXo0CEcPnwYv/vd7wSviiKEKE+0cV68/RZVLkRvh1QXRaR87ngooY1LUcNrmCt8PT01EbNygbuIRJULc0Tb0/jChQtobm5Gfn4+tm7dGtMVvYU6HZZlcfPNN+O5555LQeuFJXTwEZ5oh1eBiLEVplLDBSUewOXY5mhbXk5OTmJ8fBz9/f1obW2FyWTiwwabzcYfjLnXI2RgIudQkZOKrYsSmYvHrbXQ1dWFrVu3RvxueHgYLpcLO3bsWPQx6uvrAQD//M//HPX3R44cAcMw2LhxIxoaGuJqHyFEWaJNd02EnMIFuVQuSD0tQo7jDzWSy0UkIanxNQG05gJHsnCBS7K5q5ShUAgdHR0YHBzEunXrUFhYGPNjRet0zpw5g/e+970YHh4WuukpkYrKBZZl4fP50NjYiJmZmZiqQISwUKme3MMFpZL7AVqr1fIVC8DFaQpOpxPj4+Nob2+Hz+eDzWaD3W7nr5wvt8qF9PR0QR/P5/MhEAjE/X2//PLL8cgjj+Cll17C/v37I3535MgR/jaLqaurg8vlmvdzl8uFZ555BiUlJdi7dy/KysriahshRFm4MUiywQIgr3CBFnRURrgg97FRPNT0WgCqXBAKVS7MwS3kEwqF4Ha70djYCI1Gg127dsFoNMb1WNE6HSUFCwAE7zQ1Gg2mp6fR1NQEq9WKXbt2pWTRuGiockE8SmyzXq9Hfn4+8vPzwbIsZmZmMD4+jvHxcfT19QEA2tra+EAi2XVBlFC5IPS2ntzJfbydzlVXXYWqqio8/fTTuOuuu7Bp0yYAF6dJPPzww9Dr9bjlllv42w8NDWFychKFhYV8MLRv3z7s27dv3mOfPXsWzzzzDNatW4cnnngiwVdGCFGK8AUbkz050mq1slk/h5sWIfXVV6WvuSAGJbRxKWp4DXNJ/d1JFbErFzweD625EM3AwADa2tpQVlaGmpqahP4o0Rb6mZmZEaqJohAyXOC2eers7ERNTQ0qKipE/RIvNBePwgXhKf0AzTAMjEYjjEYjSkpK4PV68eabbyIzMxPDw8Po7OxERkYGv92l3W6Pe30CuVztWoxcwgWdTocnnngCe/fuxXve8x7s378fZrMZzz77LPr6+vD444+joqKCv/19992HQ4cO4Re/+AUOHDgg4CsghKiBUHPz5VS5ED6NT8r+lyoXlg8lj/PmSsXaWnLAsqyolQs+nw9+v5+mRczV3NwsyHaI0RLtVMxhTiWhOs1gMIiWlhbMzs6iqqoKlZWVgjxuPGi3CJIo7m9QVVUF4GLVwcTEBMbHx3HmzBl4PB5YLBZ+vQar1bpkB6WEygWhd23htqFMpPO+8sorcezYMTz00EN45pln4Pf7sWHDBjz66KNRKxIIISTV5BQucMdVqUu7pVxUkcIF8UgdYgmNC8TU9JqAd1+XWMcE7iISVS7MUVRUhOrq6qTnG0frdISew5xqQnSabrcb9fX1SEtLg8VikWweTrROZ3h4WPZz371eLwYHB5GVlSX4leRUUVunMzfN1ul0yMnJ4cNHr9fLr9fQ0tKCYDDIb3lpt9uRmZk57/2Qw9zYpcQ7FWwpLpcr6nsRqx07duDw4cNL3u7gwYM4ePBgTI9ZUVFBg1FCSEKW2hVMTNyVyWAwKNp002ikrlyQe9+qlrGR2vpN7vWorXKB+z6IVbngdrv56l+5kTRcyMnJEaSzUEO4kOzB48KFC2hqakJJSQlWrlyJkydPyqJcjmVZdHV1oa+vT/Yn7AzDYGhoCB0dHTAYDMjKykJ2dnbEbgZypJYOFLh4cF7s9WRkZKCwsBCFhYX8Njzj4+NwOBzo6emBTqfjg4asrCykp6fLZkC6GKGDQLfbLcsOJxZcyeRi5n5G1PQdIITMJ6fKBe54I/XJtVLXXGAYRrRjtlpOzNXUx6m1ciF8q10xcOM8OYY0kq+5IIRonY5QZcZGoxEej0eQx1pMoh1EKBRCV1cX+vv7sX79ehQUFACQPtHmdgNpbGyEx+NBXV1d3HPlxZaWloatW7fC7/fzV8c7OjowOzvLXx3Pzs5O6oqw0NTScXLimYfHMAxMJhNMJhPKysoQCoX4LS/Pnz+PtrY2ZGZmSj4AjIXQ4UKylQtSEnPgSQhJLaG+y3ILF+TQHinHeVw/rbbqSTlS4zgPUF/lAreYo1jfBzmP8yhcWIIYwQKQ2MFjdnYWDQ0N8Pv9qK2tjZh3I3W4EAqF8Oabb8JkMvHBgpyv/odLS0tDXl4e8vLy+N0MHA4HxsfHcfbs2YitFbOysiRf30OOB5ZELVW5sBiNRsMv+rhixQo+JFJCuCD0nDm5riC8lC9/+ct49tlnUVpaivT0dGRmZsJkMsFoNMJsNsNkMvE/C//vzMxMGI1GZGRkIDs7G1lZWar6XhCy3MnhZD6cHLajlHrNBUDe4YJc25UINb0WtVYuiL0Gi1y3oQQkDheE+mBFm4un1JLgWDmdTjQ0NCArKwtbt26dN+9PysV2xsbGEAgEUFFRgRUrVvB/Z7mHCwstQsntZlBaWhpxdfzcuXNobW2F2Wzmg4ZYFhgUus1qOkALuYIwFxIpgdCr/bpcLkUeA9va2tDT04Ph4WHMzs4mtBjnDTfcgO9///soLS1NQQsJIVKQY7ggdXukvogEyP+qutzbFwsa5ymDmDtFAO9Oi5DjZ0O1lQtyTXMWEwwGl/xgsiyLvr4+dHV1YeXKlSgrK4v6wZKi0wmFQujs7ER/fz8YhkF1dXXE75UYLsw19+q4z+fD+Ph4xAKD3Hz/rKwsGAyGlH7x1dBxhkumcmEhSniPLBaLoI/ndrsVWbkwOjqKK664Aj/60Y9gs9ngdDoxMzMDl8sFj8cDl8sFl8sFt9sNl8uF6elp/mcMw+D//u//JF9kjRDyLiGnRchp5x+tVit55YLUay4AyuhflU5t73EqxnlyEMs5nJDkPM5TxQgsWrgg1zd8MZOTk8jKylrw94FAAM3NzXA6ndi2bRvsdvuCtxU7XPD5fGhsbMTs7Cw2b96MkydPzruN3MOFROj1ehQUFKCgoAAsy8LlcmF8fByjo6Po6upCeno6v1aD3W5PyUmPmg7SQifaSumUrVaroI+n1GkRDoeD30LXaDSiuLg4rvu/88478Hg8ilvQlxCyOG6cJ5eruHKZFiFV9USy4YIYf0M5fE6EoqbXotbKBW7NBbFway7IkSqmRUQLF4QuMxbD1NTUguGCy+VCfX09MjIysHv37iXn+YvZ8U1OTqK+vh5WqxWbN2+G3++P2uGoMVwIxzAMzGYzzGYzysvLEQwG+YUhe3p6MDMzA4vFwocNZrM56e+AUk6eYyV0ou31egV7rFSiyoWLfv/73yMtLY0PB7idI7iTCu7EIvwfcLFT1+v1yMvLQ2VlpewXjyWExIcbP4hderwQOUzTUPK0CLHGLmoYI6nhNYRTa+WCFGsuyHWcp6rKhfBEW6nhQjRDQ0Nobm5GeXk5ampqYvpSilUuNzAwgNbWVlRVVaGqqgoMw/Cli3OvMMhhQLAYoQ/gWq0WOTk5yMnJAXDxRJfbNrG/vx8AIhaGTGSrTrlcxRGK0In29PS0YI+VSotVISXC5XLJttNZzLp16yL+PxcgLPSZ4D7/3LHlueeeA8Mwsk3zCVluhLyIBIhferwQuVQuSB0uSP0eLBdqGueJfRIuFrGPTR6PR7ZjHdWEC+FXtQDhy4zFMDdcCIVC6OjowMDAADZu3BjX4nSpLpfj2jY4OIhNmzYhNzeX/91CqwjLYUCwmFSnwxkZGSgqKkJRURFYlsXU1BTGx8cxODiIjo4OGI1GPmiw2Wwxv19q63SEfD0LBXZyI3S44Ha7+W1plc7lcuH555/HuXPnkJmZifLycqxbtw7V1dXzPitKDFQIIUsLDxfkQA4LOtKaC8uD2t5jtU6LELuqSs4XkVQzLQK4uCYBN11AieGC2+3m/9vr9aKhoQHBYBC7du2Ke+V3jUYDv98vdBMBvLsFZiAQQF1d3by2LdTpLPdwIRzDMLBarbBaraisrOS3TRwfH0dHRwd8Ph+sViu/rd5Ce9mqrdMROtFerpULck6049Ha2orPfvazePvttzE7Owvg4ndn+/bt+MhHPoJ//ud/RkVFhbSNJISkHFehJPUJPUcOCzpKvRWllLuSxULu7YuV2ipU1TotQuw1F9xut2yr9FVTuQBEJto2m02i1iSOOxFyOBxobGxEbm4u1q5dm9BJeaoS7YmJCdTX18Nut0fdApN7bmD+ia/cV3CXshPitk3My8sDy7LweDz8LhRnzpyBTqeLmEIRvuaGmg7SQifaLpdLsMdKpezsbEEfT85z8eJx33334ejRo7jhhhtw2WWXwe/3o7e3F0ePHsW9996Lv/71r/j+97+PtWvXSt1UQkgUQvZPcgoXlvu0CEA9J+9KQOM8+RN7uofH40FhYaFozxcPeZ/txYibkxve6Qh9JVAMLpcLZ86cQU9PD1avXo2SkpKEDyip6HTOnz+PtrY2VFdXo6KiYsG2LTQXT+6VC3LBzRnPzMxEaWkpQqEQJicn4XA4cO7cObS2tsJsNiMrK4u/mqsWQifa4dVAcpaKBR2VXrkQCARw+PBh7N27F//93/8dEcA0NTXh97//PR577DHcfvvteOmllwR/Dwkh8iK3cEHqtlC4sDi1nJDL+T1OhJorF8TeijLeqnaxqGJaBDC/01lsS0e5am9vR2VlJXbs2JH0tA4hy+VCoRDa2towPDyMLVu2LHmVlUvuqHJBGBqNBna7nQ/MfD4fvzDk6OgoWJZFIBDgqxrkerCJxXKtXOjp6UFWVhasVqsgnZNSt6IM5/F4EAwG8d73vhfZ2dn8gIRhGGzYsAEbNmxAUVERPvWpT+HnP/857rnnHqmbTAiJQqiTUDmFC3KYFiHlmgvc88t13MSRe/tipaaTcTVXLogdLsh1nCfvs704zO10hC4zFsPMzAzq6uqW3GYyFkIl2tzaD6FQCLt27YLBYFjyPkqdFqEUer0eBQUFKCgoQHd3N7/F5ejoKLq6upCens6v1WC32xX1vgudaCshXGAYBj6fD21tbfD7/bBarXxQZDKZ4n4/WJaVdacTK7/fD5vNhoGBAQAXrwpwW0xy5Yd33HEH/vu//xu/+c1vcM8996hubioh5F1yChfkUrkg5clzMuECHadjp7Z+Tc2VC2KOt+U8zpP8rEOo5FOn0/EHepZlFbO/fTibzSZIsAAIk2g7nU40NDQgOzsb69atizuRU1q4oNSEW6/Xo7y8HOXl5QgGg/zCkD09PXzwkJWVhezsbJjNZlkf1IVOtD0ej2CPlSparRZr166dt9bG2bNn+aqVeLcrlfMqwrEymUzYv38/nnnmGXz5y1/md78IH9C73W5s2LABr7zyCgD1DcIIIe/SarX8VtdS02q1KVs0O1Y0LWJxaukL5PweJ0LNlQtir7kg1+mv8j7biwOXaAcCAbS0tMDhcEjdpLjNzMwI9ljJdDosy6K/vx8dHR1YuXIlysrK4jpIL7SKsNzDBaWau91nTk4OcnJyAFz8THEnq/39/WAYhj9Zzc7ORnp6ulTNjkroRFsp4QIQfa2NuduVGgwGviJlsaoUOSfasUpPT8fnPvc5PP/88/jwhz+Mhx9+GFdffXVEyOlwOPD2229j9erVANQ3CCNEDdQ4LUIOlQtymBYh9dSQ5UItQQmg7soFsaZFyL1CVTVne1qtFi6XC52dnTAYDNi9e7fUTYqbkCdCiZbLBYNBtLa2YnR0FFu3bk147QolhgtKPDFZqs0GgwHFxcUoLi5GKBTC9PQ0HA4Hf7JqNBr5q+I2m03yRTeXa+VCNBqNBjabDTabDVVVVQgEAlGrUriwyGKx8N/7RNdcOHHiBB566CG8+eab8Pv92LBhA+6++27cdNNNMd3/8OHDOHToEBoaGjA8PAyfz4eysjLs3r0b9957L1auXBlXe9auXYsnnngCd955J66//np86EMfws6dO1FcXIxAIICXX34Z6enp+MY3vgGAFo0lRM3kFC7IYc0FJVcuiHVyqcRx3VxqeA3h1Fy5IOYYxOVy0VaUCxEi0WZZFj6fDz09PVixYgVWrFjB7yAh9cE/HlJXLszMzKChoQEAsGvXrphLsKOhcEE8sXbSGo0GVqsVVqsVVVVV8Pv9/Mlqe3s7P8edCxsyMzNFT5eXY+VCrN8LnU6H3Nxc5ObmArj4feX+fgMDAwiFQvj973+PvLw8WK3WuMOFV199FXv37kVGRgb2798Ps9mMZ599Fvv27UN/f39MCyb+5S9/wVtvvYWdO3fi/e9/P9LS0tDW1oZDhw7hV7/6Ff7yl7/gve99b1ztet/73odnn30WTz75JJ5//nk888wzEb//xCc+AZvNhr6+PmRnZ0vyuSWEpF749FepyWF8KfWaC1I//3Khtul+aq5cEHtaBFUupEggEEBrays8Hg+Ki4tRXV3N/04OB/94CBkuxFuuNj4+joaGBuTl5WHt2rVJf0GUGC4oUTIJcFpaGvLy8pCXlzdvvv+ZM2eg0+n46RN2u12w9UAWw7KsoMmvkN+pVEn0fTUYDDAYDCgqKgLLsnC5XHjjjTfw0ksvYWJiAtu3b8eePXtw9dVX4+qrr0ZeXt6CjxUIBHDHHXdAo9Hg6NGj2LRpEwDgwQcfxI4dO3D//ffjxhtvRHl5+aJt+va3v40f/ehH837+t7/9DVdffTXuvfdenDhxIu7Xun37dmzcuBEHDhxAQ0MDTp8+jd7eXvT29uLJJ5/Ek08+idWrV2Pnzp3Yvn07rr766rirJAghqSHUiYScKhfkMC1C6jEurbkgHjW9FrHXJhCLmJUL3LQIWnMhBaanp9HQ0ID09HTk5eXNmz8up8V/YiHkIpSxJsosy6Kvrw9dXV1YtWoVSktLBTmIRQs3uJXe5UrOneRChGpztPn+ExMTGB8fR19fH1paWmA2m/mwgSvBF5rQibaaw4VwDMPAbDbj/vvvx80334yNGzfiiSeewKuvvorHH38cDQ0NeOyxxxa8/yuvvIKenh7cdtttfLAAAFarFffffz8OHDiAQ4cO4cEHH1y0HQtVO1111VWw2+3o7u5O6PWxLAu9Xo/a2lrU1tYCAAYHB9HW1obm5macOHECDQ0N/LSMm2++Gb/61a8QCAQo1CREJeSwiCKHpkUkFy6wLCvKmEuJ47q51PAawql1WoSYlQterxfBYJCmRSwk0ROJ8+fPo62tDRUVFVixYgXa29vnpcg6nQ6zs7NCNFMUQocLS3U6wWCQX/xy27ZtsNvtgj4/VS6IIxWJtkaj4adHAMDs7Cxf1dDU1IRQKBSxi4HRaBTkeYVOtJWwa4zQFSEejwdmsxl79uzB+973Pjz66KNLHgtee+01AMCePXvm/W7v3r0AgNdffz3hNh0/fhxOpxOXXnppQvfnPuOhUIivbikqKkJRURGuuuoq/natra14+eWX+QoLNQ5gCFmutFqtbI7pUp/YA9IvqCj3ygU1UVvlgppeD0fMygW32w0ANC1CKNyCgyMjI9i8eTO/Kn60KgW5XymfS8xwwePxoKGhARqNBnV1dUmtrxCNEqdFKLGTFKvN6enpKCwsRGFhIV+C73A4MDIygq6uLmRkZPBBw2K7GCxF6ERbCeGi0N89l8sFo9EY0Xkv9Z52dXUBAGpqaub9rqCgACaTib9NLF566SW8+eabmJ2dRVdXF/70pz8hJycH3/ve92J+jGjmvg7u6lcoFIJOp8PatWuxdu3aBW9PCBGfGqdFyKEtUq95IPdwQS0nsHJ+jxNBlQvJc7vdYBgGBoNBlOeLl7zP9uZwuVxoaGhAWloadu/eHTEoj1alIMYccSH5fD7BHmuxRNvhcKChoQGFhYVYvXp1Sr4M0Toduf89lHgAl2KhH64E32w2o6KiAoFAgJ9CEb6LQXZ2NrKysmA2m2Nuo9CJtlyuci1G6HAhkXl4k5OTAC5Og4jGYrHwt4nFSy+9hO985zv8/6+ursZvfvMbbN26dcH7/M///A/a29vxxS9+Efn5+RGfbe67Ofezwf1/nU6HiYkJBINBWex6QggRnhxO6DlyqFzgwgWpFvyTe7gAKHNcF41aghJA/F0VxCJ25YLJZJLt50Ly6CjWN2ZwcBDHjx9Hbm4utm/fPm9AHq3TmbsGg9wJeZU1WqLNsix6e3tx6tQprFq1SpCFGxeixMoFpZL64KLT6ZCTk4OVK1fyc+ILCgr4NVGOHTuG5uZmDA0NLfkZX46VC0Inz1y4IOXn4vHHHwfLspiensbbb7+NVatWYffu3Xj66acXvM/LL7+MP/3pT/zfLLz9DMMs+Hq4n//kJz/BXXfdheHhYQFfCSFELuQWLkjdFq6vlCrkkHpaxnKhtt0i1Fi5wLKsqJULLpdL8nHeYmR/thcMBtHW1oYLFy5g06ZN/DZsc0XrdIS+IphqQlYuzE3VA4EAmpubMTExgR07dix4hVIo0cIFuU9TUWLCLcc2GwwGFBcXo7i4GKFQCNPT03A4HBgYGEBbWxsyMzP5KRRzrzILXbmghHBBqPUqOFyiHQ/ueLBQdcLU1FRCa7KYTCbs2LEDzz33HLZt24Y777wT11xzTdTj+MzMDCYmJvDaa6+hsrISwMWAWK/XIy0tDXq9HjqdDmlpadDpdNBqtdDpdAiFQsjOzsaJEyfQ29vLL/imtgEZIcudnMIFOSzoGL4WjRRXguVeuaCW47+c3+NEqHHNBe5vJGblglx3igBkHi5w0yB0Oh127dq16BU+ChciceECy7KYmZnBqVOnkJaWhrq6OlEqOpQYLiiVnA/SGo0GVqsVVqsVVVVV8Pv9cDqdcDgcaG9vh9/vh81m48MGoRd0FPI7lSpCdxDcmgvx4NZa6Orqmjd1YXh4GC6XCzt27Ei4TTqdDldeeSUaGxvxzjvv4P3vf/+828zMzOD8+fP41Kc+BY1GwwcJXMCQkZHB/zMYDDAajTAajUhPT0dRURGOHz+ONWvW8BVScv5eELKcCLnmglx2AJPLtAhAupNPqdd8WE7U1J+psXKBO/8Uc82FuWtryYnk4cJCb8zg4CBaWlpQVlaGmpqaJf9g0cIFuS50sRAht1ji3tfR0VE0NTWhqKgIq1atEu2DT+GCOJTWsaelpSEvLw95eXlgWRYej4ffheLMmTP81WaGYZCVlZX0Z0YJ4YLQq/0mUrlw+eWX45FHHsFLL72E/fv3R/zuyJEj/G2SMTg4CGDh48BnPvMZXHnllQgGg3C73fB4PPy/mZkZ/n9nZmYwOTmJCxcuwOv1wufzwefzYXZ2FlVVVXScIUSl5Fa5EAwGJa2QksO0iETHIGK9Z0obI0WjhtcQTo2VC9x3UOw1F+RK8nBhrmAwiPb2dgwPD2Pjxo3Iy8uL6X7ROh2hy41TLRXhQmNjI9atW4eioiLBHjvW55/b4cl90K/EA7iSS78ZhkFmZiYyMzNRWlqKYDCIf/zjH9DpdOjr60NLSwvMZjO/MKTFYok7HJPLnuiLEbqD8Hg8cT/mVVddhaqqKjz99NO46667sGnTJgAXp0k8/PDD0Ov1uOWWW/jbDw0NYXJyEoWFhRFTrN555x1s27Zt3uMfOXIEf/jDH2Cz2VBXVxe1Dddeey3e//7387s/BINBhEIh+P1+/l8gEADDMAgGg3yo4Pf7EQwG4XK5+M8KIUR9dDqdbMKF8KoBqfpgLohXYrhA4qPUcV40aq1c0Gg0ov2dXC4XhQuxcrvd/PaIS02DmCtauCDnNz4aocr9uPUVAGDr1q2SDLbndjqhUAhjY2OityMefr8fExMTCZ3ESkktnY5Wq4VGo0FRURFycnIwOzvLVzU0NTUhFArBbrfzJ5CxHB+UEC6YzWZBHy+RTken0+GJJ57A3r178Z73vAf79++H2WzGs88+i76+Pjz++OOoqKjgb3/ffffh0KFD+MUvfoEDBw7wP9++fTvWr1+PSy65BCUlJXC73Th9+jT+/ve/Iy0tDU899dSi00C4751Wq5V9GEkIiY1at6IExN1+LhoKFxYm9/bFSm0n42qtXBDzb+TxeGjNhVgMDw+jubkZxcXFCZXvR+t05PzGRyNEuOByuVBfX8+vqyDVexA+F292dhb19fWymSu5EJZl0dTUBJZlI05i5bZ2x+joKKamprBixQpVdJzhwjvR9PR0FBYWorCwECzLwuVyweFw4MKFC+js7ERGRga/VoPdbo+6G4kSwgWLxSLo47ndbthstrjvd+WVV+LYsWN46KGH8Mwzz8Dv92PDhg149NFHsW/fvpge4+GHH8arr76K119/HaOjo9BoNCgrK8Odd96Jf/3Xf8WaNWtibk8wGIRWq8XJkyfx8ssvY2hoCF6vF9/61rdgs9kwPj6OwcFBVFZWKu5YTwiJn1ar5SubpD7ZknpKQng7pBoHKGFahBqobZwnh++v0MQOGWlBxyWEQiG0trZicHAQGzZsQH5+fkKPE22hH6GvCKZason8yMgITp8+jdLSUlRXV+Ovf/2r5In25OQk6uvrYbfbsWrVKknaEiudTodLL72U391gaGgIHR0dMBqNyM7ORnZ2NqxWq6QHxaamJuzdu5ffhqampgbXX389Pve5zylu69VoFkq0GYaB2WyG2WxGRUUFAoEAJiYmMD4+ju7ubni9XlitVj5sMJvNYBhG9oEWAMF3bpmZmUFJSUlC992xYwcOHz685O0OHjyIgwcPzvv5fffdh/vuuy+h555Lq9Xia1/7Gp566imcP3+e//k3vvENABeT+zvvvBN33303brzxRkGekxAiX3KpFgDePTmWupJCyoUl1VIZoARqCmPUVokBvHsxRCw0LWIJXq8XLpcLu3btSmqNhGiJttBXBFMt0RMhlmXR09OD3t5erF+/HoWFhQCkPfAzDAOn04nW1lZUV1ejoqICTU1NkrQlHgzDwGKxwGKxoLKyEn6/ny/Nb2lpQTAYjLs0Xyh//vOf8bGPfYwfzHDTiBoaGvD1r38dRUVFuOKKK3DnnXdi8+bNorVLSLEm2jqdDjk5OcjJyQFw8YSa+zv19fVBo9EgKytLEQs6Ch0ucMGT0v3qV7/CN77xDVx11VX44Q9/iMOHD+PnP/85/9pKSkpw/vx5/PrXv8b1118ftXKFECI9IadFABcH8lJPm2IYRhbbUUodLiTz3Kk+YVZL+KGG1xBOrdMixAwX3G53QtuDi0Xy0VhmZmZSW5xxuIFleKIt9KA91RI5SPv9fpw+fRoulwu1tbUR1RpSdTrcLgBOpxObN2/m97SXejCwlGgH8LS0NOTn5yM/Pz9qab7BYOCDBpvNlrKDy/e//308+OCDi7Z9YGAAv/rVr/CrX/0K6enpWLduHW644QbcfvvtiqniSTTRNhgMKC4uRnFxMUKhEKampjA+Pr4sKxfkXi4Xqx/84AdYvXo1/ud//gcFBQXo7u4GELkL0BVXXIHjx49Lssc7IURcDMNAo9HI5rguh+0opVxzgbaiFIeSF+6ORq2VC2K+pmQqVMUgebiQykRbaZUL8XYQLpcLp06dgtFoxK5du+advEvR8XFhh8/nQ2VlJR8sAFB82X600nyn0wmHw4H29nb4/X7Y7XZkZWUhOztbsN1KPve5z+F///d/47rP7OwsTp06hVOnTuGrX/0qcnNzcemll+K2227DFVdcIUi7UkGIRFuj0cBmsyW07oAUhF5wVe5bFMXC5/OhsbERX/ziF1FQUAC/3w+HwwGdTsd/PkKhEKxWK8bHx1U18CJEjYS6iiy3RR2lbotS11wg8VFTH6fWygUxwwW5V6hKHi4AwhyguEQ7/EAv55KRaOIJAoaHh9HU1ITy8nLU1NRE/aKKHS643W6cOnUKBoMBWVlZ88IOJVYuLEan0yE3Nxe5ublgWRZutxvj4+MYGxtDd3c3MjIy+KoGu90e99VVlmXxvve9D8ePH4/rftGMjo7iD3/4A/7whz9Ap9Nh5cqV+OAHP4g777wz5u1exSB0oi31wC8WQocLiWxFKTczMzNgGIZfTJVlWczMzECv1/O3CQaD8Hg8/LFPbVd3CCHzyeGEniOHygWpp0XIOVxQS38g5/c4EWqtXBB7WoScx3myCBeEMrfTUdp+57EcQFiWRVdXF/r6+nDJJZcsugCmmAf+0dFRNDY2orS0FCtXrkRjY+O85w4/MVAbhmFgMplgMplQVlbGLzjocDjQ2dkJn88Hq9XKLwxpNBoX7fimp6exa9cu9PX1Cd7WQCCA1tZWtLa24rHHHoPNZsPOnTvxsY99DB/+8Icl7ZCFTrSlHvjFQsjjFBdyKWUazEJYlkVZWRmOHj3K/3+32x2xc4vX68Ubb7yBdevWSdVMQojI5BYuSN0WChcWJ/f2xUotQQmg3soFChfepepwQWmVC0sdBP1+PxobG+HxeFBXV7fkB0uMTodlWZw9exbd3d1Yt24dioqKAETvdOQeLgjZCYUvOMhddXU4HHA4HDhz5gz0ej0/fWLuNoq9vb247LLLMDU1JVh7FjMxMYEjR47gyJEj0Gg0qKysxN69e/GpT30KlZWVorQBePf9FzLRVkK4IHQQoIY1F8xmM2677TY88MAD+P73v4/bbrsNGo2Gf10XLlzAT37yE3R2duKee+6RuLWEkKWodVqE1H2MlGsuKCFcUAO1vcdqrVwQ8zV5PB5Zj/NUHS5kZ2dL2BphTU9P49SpUzCZTKirq4tpikGqw4VgMIiWlhY4HA7s2LEjYmG65R4uhGMYBkajEUajEaWlpQgGg3xVQ09PD2ZmZviqhs7OTuzfvx9+vz8lbVlKKBRCT08PfvrTn+KnP/0pMjMzsXnzZtx88834+Mc/nvLnBoRN6KUe+MVC6ARf7ol2LLRaLW699Vb87W9/w913343nn38efX19cLlc+I//+A/87W9/w2uvvYZ//ud/xoEDBwCo68oOISQ6OYULcpkWQWsuqJvapvxR5UJylFChKotwQchEO3wV4fDFBJXC6/VGlP4CwNDQEJqbm1FZWYkVK1bE/KVMZcfn9XpRX18PhmFQV1c3r81KDBfEotVq+ekRAPiqhkOHDuGxxx6TVWftdrtx7NgxvPHGGykPF1JRuSCn9zIaoZNurtNRergAAEVFRXjyySfxs5/9DL/85S8xMDAAAPjqV7+KsrIy3H333fh//+//yX4tF0KIcHQ6nazCBanbIvW0CKnDlcWoKfxQ08k4VS4kT+7jPFmEC0KZm2jL+Y1fyOTkJH+iHgqF0NnZifPnz2Pjxo1xL7yXqgPrxMQE6uvrkZOTg3Xr1kX9QkV7bqXvFpEqBoMBP/vZz/DDH/5Q6qYsSIwOOhWVC3IndGfk8XjAsqysE+14lJeX49///d+xb98+nDt3DpOTk0hPT0dNTQ02b94sdfMIITEScmcwqU/oOXKYFiFluKDRaCSrslxO1BKQABdfi1orF8S8gErhgojmdjpK/PBOTU0hPz+f34ptdnYWdXV1Cc2tSUWnMzAwgNbWVtTU1KC8vHzB91iJ4YIUB3CWZbF//34cPnxY9OeOhxjfJaErF5TQIQtdRud2uwFA1nPxYhEKhfhBSFpaGjZt2oRNmzbNu93k5CSmp6dlvd8zIUQ4cgoX5DAtgtZcWJgSzwEWopbXkooKVTkQs3KBq1CV8zhPFuFCKhNtORz84zE1NYXJyUnU19fDarVi8+bNEYv9xUPI1x4KhdDR0YHBwUFs3rwZOTk5i96epkUsbXZ2FpdffjlaW1ulbooscGm2UMcDl8slyOOkUirCBa1WO2+aktJwnTT3/gSDQYRCIeh0OjAMg8nJSZw4cQI/+9nPUFZWhu9+97uibwVFCBGfnMIFObSF1lxYnNzbFws1rbmg1nBBzDUXlFChKotwQShqCBd6e3sxPj6OqqoqVFVVJXVAESrR9vv9aGho4KsojEZjQs9NlQvvGhkZQV1dHUZHR0V7zmSI0bEJXSon1m4bydBqtfD7/YKtG8Cl2UrtuL1eL5555hk8/fTT8Pl8qKiowIEDB3D55ZdDq9XC7XbjueeewwsvvIDf/e53AIBvfvObEreaELIUNU6LoDUX5B8uEHlR6/RXMSsXuApVmhYhkmgL/eh0uohFHuWus7MTd9xxhyCLUQrR6bhcLn6Xitra2pirKKJ1unIPF8TS1NSEq6++GjMzM1I3JWZiTYsQ8uA8PT0t2GOlikajwbFjx2A2m/mtSc1mc8Lvg8vlknWp3GKCwSC+8pWv4Lvf/S7/s9dffx1HjhzB008/jaKiIvzbv/0bXnjhBQDAhz70IVx77bW4/vrrAQhfBUIIkR+tVovZ2VmpmwFAHhevKFxQP6pckD8xKxe4ClU5n1PJIlxIZaKd6JQCqZSUlAi2y0Wy5XIjIyM4ffo0ysvLUV1dHdffidZcWNi3v/1tRQULgDIrF5QwLSIzMxO7du3C+Pg4HA4HBgYGwLIs7HY7srKykJWVBYPBEPPjyX3v42i4gdNf/vIXPPHEE1izZg2++tWvYsWKFXj11Vfx7//+7/i3f/s3BINB1NfX45ZbbsF1112HD37wg7RTBCHLjJwqF7jKMynRmgsLU9sJuRpQ5ULylFChqqwz7yVotVr4fL55P1MSITuqRBNtlmVx5swZnDlzBhs2bEBBQUHcj6HEcEEsSuwoqHIhNdLT05Geno7CwkIUFhaCZVlMT09jfHwcFy5cQGdnJwwGAx802Gy2RQNTrtNRUsfNhQvHjh2Dz+fDww8/jOuuuw4AsH37dkxMTOBb3/oWSkpK8LOf/Qx33nknf19aZ4EQZaBpEalrA625sDC5ty9WSurTF8P192p5PRwxKxdcLpesp0QAKgwXuAN9MBhEW1ubrJOdaIS82ppIoh0MBtHU1ISJiQns3LkTFosl4eeee1CX+0mAWJ2QEjs7Mb5HQlcucPPS5Gxu4MYwDCwWCywWCyoqKhAIBOB0OjE+Po6uri54vV5YrVZ+CoXJZIp4z5TQ6czFfR96enpQVVWFDRs2ALi44Gl6ejpqa2uh1Wpx66238sFCIBCATqeT/TGFECIsOYULctmKUqrqCSWEC2qgpvdYjdtQAuJWLiihQlUW4YLQibbH40FDQwMYhoHJZILT6RTk8cXg8XgEe6x4E+2ZmRnU19dDq9Wirq4uqUoD6nTURYmVC0qYFrHUlAedTofc3Fx+qpTH48H4+DjGx8fR19cHjUaDrKwsfp2GZLYnOnHiBB566CG8+eab8Pv92LBhA+6++27cdNNNS96XZVm8+OKLeOGFF/DGG2+gr68Pfr8fNTU12LdvH+6+++4ld7BwOBzIysrijzvcZ46r1LjkkksAAD6fDzqdjj++qHGgQgiJTk7hghzWXJByWoQcXv9i1NI3qG3NBaVd9I2F2GsuGI1GWX8mZBEuCEWr1WJmZgbHjx9HYWEhVq9erbgt2YS82hrPgd/pdKK+vh75+flYs2ZN0l9+ChcWluz7YjAYRF+zgWEYeDyemHYKSdRyrFyIZz0FADAajTAajSgpKUEoFMLU1BQcDgdef/11fOELX0BpaSmMRiNeeeUV7N69O+aA8NVXX8XevXuRkZGB/fv3w2w249lnn8W+ffvQ39+Pe+65Z9H7z87O4gMf+ADS09NxxRVXYO/evfB6vThy5AgeeOABPPfcc3jttdcW/fy4XC7k5eUhOzsbwLtb1xoMBgSDQZSXl0f8nBCy/ERbuFsqcgg6lLqgYzAYxOTkJKxWa0pPNtUyDpXziWQ8qHIheUqoUFVNuMCyLEZGRuByuXDJJZegqKgIQPyDd6kJXbkQS8fX39+P9vZ2rFq1CmVlZYI8txLDBaVMi5BqMci3334bGRkZyM7ORlZWFux2u6BJrdCJtpDfpVRJJqzRaDSw2Wyw2WxYsWIFrr76anz961/H22+/jY9//OOYmJjAFVdcgf/+7/9GcXHxgo8TCARwxx13QKPR4OjRo9i0aRMA4MEHH8SOHTtw//3348Ybb+RP7qPRarX45je/ic9+9rOw2+38z/1+Pz7ykY/gj3/8I37yk5/gS1/60rz7cgONYDCIU6dO4XOf+xzsdjv0ej2sViva29uh1Wrx5z//GSMjI2BZFkajEZmZmdBqtbjkkktoPRdCZE6tay5IfeVeiWsueL1enDx5kr8AwE3zy87OVtwFQTEobSy9GKpcSF4yFapikUW4kGyn4/P50NjYCJfLBYPBwAcLgPLCBSFPHJcqlwuFQmhvb8fQ0BC2bt2KrKwsQZ872gFRiaGD0JT4+nU6HS677DJMTEzA4XCgs7MTPp8PVquVHxQkW6a1HCsXhOwgCgsLkZWVhWuuuQY//elP0dLSgiNHjvCVAAt55ZVX0NPTg9tuu40PFgDAarXi/vvvx4EDB3Do0CE8+OCDCz5GWloaHnjggag/v++++/DHP/4Rr7/+etRwgeN0OnHhwgX84he/iPr7b3zjG/x/a7VaGAwGuFwudHZ2orq6etHXSAhRB7mFC1K3RWmVCxMTE6ivr0dOTg42b94Mr9eLsbExDA8Po7OzE0ajkR9TJFvVoKYr5Gp5LWqsXAiFQqKGJhQuiGBiYgINDQ2wWq1Yv349WlpaIn6fyjLuVBBrzQWfz4eGhgb4/X7U1dUJ/j7JIdGPl1IqF6Sg0Wig0+mQk5ODnJwcsCyLmZkZOBwOOBwOnDlzBnq9nr8CYbfb494GNhQKCXpwVsJ2n0J3EG63G9nZ2WAYBuvXr8f69euXvM9rr70GANizZ8+83+3duxcA8PrrryfcJm67yIU+D9zf/KWXXsLk5CS8Xi/cbjfcbjdcLhc8Hg/cbjcmJyfhdrsxPT0Nl8uFmZkZDAwMJLzoLCFEeeQULshhQUclbUU5NDSE5uZm1NTUoLS0FF6vFwaDAWVlZaioqIDf7+e3ZW5ubgbLshFVDct1Spya1lwQepwnB9z3T8zKBZoWkSIsy6K/vx8dHR2orq5GRUUFpqam5nU6cv8DzOX1egV7rIVO8Kenp3Hq1ClYLBZs2bIl7pPAWFDlwsKU+PrndgYMw/Dz/0tLSxEMBvmqhp6eHszMzERUNcSyPaLQHagSpkUIfXxyu92LTl+IpqurCwBQU1Mz73cFBQUwmUz8bRLx1FNPAYgeXoSL9vyEEHUQcloEd6VQ6hMuOVxEUULlAsuy6O7uRl9fHzZu3Ijc3FwEg0GwLMuP2RmGgUajQW5uLvLz8/ltmcfGxnD+/Hm0tbXBbDbzYwqLxRLT31+J46251PAaOGqcFsF9hsWsXJD7ua0iw4VgMIiWlhY4HI6Icv5oibbc/wBzpTpcGB4eRlNTEyorK7FixYqUdc4UIixMie/LUgdNrVbLd/oA+KqG8fFxnD17NuL3drudv5odbjlWLgh91T2RLYomJycBXJwGEY3FYuFvE6/Dhw/jv/7rv7BmzRp84hOfSOgxCCHqIMS4gLs6GAwGU3JhJN62SF1FIfc1F7jtzScnJ7Fz505kZmYiGAwiFAohPT2dDxhCoVDEe6nRaGAymWCxWFBVVQWfz8dXSp4/fx4Mw/BjiqysrKhjCjWROkgTihqnRQSDQT4cE4PL5UJOTo4oz5UoWYQL8XzQ3G436uvrkZaWhrq6uojFX3Q63bxE22w2C97eVBIyXAgvl+OS47Nnz+KSSy5Bfn6+YM+z0HMvVLkgVzQtYmHxlnsZDAaUlJTwuxpMTExgfHwcvb29aGlpgcVi4QcGJpOJ/7wIeXAW8ruUKkIfn1wul2zm4p04cQL79u2D1WrF7373O1p0kRCSNK4vCgQCkocLVLmweLjg9Xpx6tQpaLVa1NbWIi0tLeIqLzce5P6mXMDAjeMDgQD/PFqtFvn5+SgsLIzYKens2bNobW2NOqZQy0UuNbwGjhorF8Se6uHxeGR/4VwW4QIQWwJ64cIFNDU1oaSkBCtXrpz3x4yWaCttPu7s7Kxgj8Ul2oFAAE1NTZiamkJtba0ogYsSwwWxKLGjSObAqdFokJWVhaysLFRXV8Pr9fJVDX19fdBqtcjKyuIHFEJRQriwULVAohLpdLg2LFSdMDU1FbEDRCzeeecd7NmzBxqNBkeOHMG6deviuj8hhETDnZRKXTHAtUXqdkgZLiz23JOTkzh16hRycnKwdu3aeVMgoo0FNRoNP9YIhUIR/+ZWNVgsFn6nJG5M4XA40NfXB51Oh+zsbH5NBzVQy9hZjZULYu4UASRWoSo22YQLiwmFQujq6kJ/fz/Wr1+PgoKCqLejcCGSRqOB3+/HW2+9Bb1ej7q6OtEWxFFiuECVCwsT8sCZkZGB4uJiFBcXIxQKYXJyEuPj4xgaGoLP58M777zDL+IU67zKaJZjuJDIXDxurYOuri5s3bo14nfDw8NwuVzYsWNHzI/3zjvv4JprrkEoFMJLL72E7du3x9UeQog6CXUlWafTSX5SD8hj/Qcpr84v9Nzc9Nvq6mqUl5fzAUF4tcJS5gYNLMvyjzO3qiEtLQ2FhYX8mIJb/8nlcmFychKTk5OC7WolBTmsLyIUNVYuBINBUV+Ty+WiyoVkzc7O8rsa1NbWLvqGRku0bTabCK0Ujs/nE+yxPB4PpqamUFZWhlWrVon64Z/b6bAsi/b2dtGePxHBYBBdXV3Izs6GzWZL2fulxHAhVe+FRqOB3W6H3W4HwzDweDzIzs6OmFfJVT3Eu1q0kEFdqsRbEbAYlmXhdrvjrky6/PLL8cgjj+Cll17C/v37I3535MgR/jax4IKFYDCII0eOYOfOnXG1hRBCliKHtQ6Ad/tFKU/+5DQtgmVZnDlzBmfOnIlYuDHeYGEu7n2eO32CCxzmVjXYbDZkZWXB7/dDp9PBYDBE7GqVk5PDj/PEvOJM1Fm5EAwGRa9coHAhRtESUKfTiYaGBmRlZWHr1q0xza+b2+kIOXgXgxDhAsuyOHfuHHp7e5Geno41a9YI0LL4hC8yFAgE0NDQgJmZGVknlhqNBoFAAK2trQgGgxFbIAk5X1yJ4YIYB06WZfkrENy8yunpaT5o4FaLDq9qWOzztNzCBSCx/Y+vuuoqVFVV4emnn8Zdd92FTZs2AbhY1vrwww9Dr9fjlltu4W8/NDSEyclJFBYWRlRenDx5Etdccw0CgQBefPFF1NXVCfKaCCEknFzChfBqWanGNnIJF4LBIJqbm+F0OlFbWxuxcGMywUI00aoauLAhvKohFApBp9OhuLiY39XK6XTC4XCgvb0dfr8fdrudH+fJdQoFVS7Im9hrLiQyzhObbMKFcCzLoq+vD11dXVi5ciXKyspi/mJptVr+wAIsv3AhFAqhtbUVIyMjqK6uxtDQkEAtiw+3mKTH48GpU6eQkZGBnTt3yv6gsmbNGrAsC5fLhbGxMQwODqK9vR0mkwnZ2dnIyclJqlQfoHBhIXMTbY1GA6vVCqvVyq8Wze2B3dTUBJZlIwYGcwOg5RguJJJo63Q6PPHEE9i7dy/e8573YP/+/TCbzXj22WfR19eHxx9/HBUVFfzt77vvPhw6dAi/+MUvcODAAQDA+Pg4rrnmGkxMTOB973sf/vrXv+Kvf/1rxPPYbDb867/+a5KvkBCy3MklXAg/wZWyDVKHC7Ozszh16hQYhkFtbS30en3UhRuXMvrOD5De8Qjchg3QV38U9nUfhUa7+C4QC1U1TE1Nwel0wmq18ucE3PpPOTk5WLlyJdxuNxwOB0ZGRtDV1QWj0ciPJ6xWq2zGq0ocMy6EKheSk2iFqthkFy4EAgE0NzdjYmIC27dvj3taw9xOh9umUin8fn/C952dnUV9fT1CoRDq6urgdrsxMDAgYOtixzAMAoEAjh8/jqKiIqxcuVIR6avP54NGo0FmZibMZjMqKysjTmobGxsBIGILpHjXsVBiRyFW5cJinbler0dBQQEKCgr4PbAdDgeGhobQ0dGBzMxMvqrBarUKOsUoVbitO4UQCoUS3v/4yiuvxLFjx/DQQw/hmWeegd/vx4YNG/Doo49i3759S96fG8gBwIsvvogXX3xx3m3Ky8spXCBkGROq/5dLuMC9HinbIvWaC6FQCMePH4fdbse6desipiYvtHBjNENH7kSF+1fQZgLAm8CZN+Fu/zxGguVgCz4A2+bPId1WseTjaDQajI2Nobm5GZWVlfyOVeH/uNsZDAaUlpaivLwcgUCAH+e1tLSktHo1EXIfO8dK7Kv8YhB7QcdEx3liklW44HK5UF9fj4yMDOzatSuhxQfndjpCDt7FEF51EY/JyUnU19fDbrdj/fr10Gq1mJmZkSzRHhsbg9frxdq1a1FaWhqxoI9ccSe30bZAysvL409quS2Q+vv7+VJ9rqqB2wJpqedRGrEqF2J9HoZhYLFYYLFYUFlZCb/fP29gMD09neIWJ0/IDsLtdif1mDt27MDhw4eXvN3Bgwdx8ODBiJ9VVFQo8nNNCFEeOYUL3KKOUpGycmF8fByBQACVlZWorKzkqwYYhol5rBcK+nHh9+/FirRTwJy7ZOpZZOIsMPlTBF/5KUZmLPCYd8Kw5nZYqz80b6zFsiz6+/vR3d2NdevWzdtyfe5Wl9z7xrU3JycHeXl5Ka9ejZcSLszFSk2vhSP2tCjaLSIOQ0NDOH36NMrLy1FTU5Pwh29up5OTkyNUE0WRSOXC0NAQmpubsWLFClRWVvLvHZcqi4llWXR0dKC/vx96vZ6f55aKeXepkJ6evuQWSGazmS/Vn52d5bdAOnfuHLRabURVQ7R1QpR4EiZWuJDoATotLQ35+fnIz8/nBwZS7z8eCyG/Dx6PB4CwgQUhhMiNXMIFQPrtKKUIF1iWRW9vL3p6esAwDKqqqhIa5/lcFzD9fB1WZF5Y8rZaDVCYOQWE/gq0/BWTJ7VwMCuhKbke9s2fgTbDjs7OTly4cAFbt26NuhPTQms1RBvnxVq9mp2djbS0xaduJEuJY8aFyP0iYyLErFxIpkJVTLIJF/x+PzZu3Ii8vLykHmdupyP3dGeueDoplmXR2dmJ/v7+qO9d+KKKYggEAmhsbITb7cb69evR3t4+r8NRwkElni2QdDodCgoKUFRUxG+r6HA40Nvbi5aWFlitVr4DyszMlLSEMRmxLKaaLKESbYZhYDabZf8+C/1dcLvdSEtLk7x8kxBCohFyWkSiVZ5Ck0PlAreQoRgXb0KhEJqbmzE+Po6NGzeivr4+oWDBPXQSeGUPSjMT2zLamhGEFW3AaBv8hx/BgMsGv+YSrK/7UkxbPC+0VkO0cV606tWxsTGcO3cuoerVRMj9wlys1Ligo5iVC1yFKq25EKPy8nJB0l+57H+cqFg7zPAT+YW26BQz0eYWbkxPT0dtbS08Hg98Ph/a2tr4bX+0Wq3iDirxboFktVpht9tRXV2NmZkZvqqht7cXer0e2dnZilgLYC4xwgWhE225DD4XIvR3weVy8QEWIYSoldwqF6QMF7jjvRjhAreuF8uyqK2t5U/EW1pakJOTg5ycnJjGCuPNv4a15U6YM4V539K0QIV1AhU4CjQfheMfekykbUBa1U2wb/gEtPqld4GYe1EplurVFStWJFS9Gi81TSUQe30CMYj5mrhwQe4XzmUTLqRyoR+pD/7xiKWdbrcbp06dgsFgQF1d3YIlWWJNi3A6naivr0dBQQFWrVoFlmVhNBqxceNGOBwOdHZ2YnZ2Fna7XdZXk2Np22JbIIUvFsQwDPR6PYqKilBSUoJgMIiJiQk4HA7+4KAkYlUuLKdwQejOyOVywWg0CvqYhBAiN3ILF6SeFgGkvtx8enoaJ0+ehM1mw/r16/nx5datWzE2NoYzZ86gubkZdrudDxqinQANH30AJSPfhz6FBXbZRh+ycRLoPwnvmXsx4i9GIPdqWDZ9DsbcdUveP9nqVe794KpXuQtsRqNRNSFBotRauZDqqTEcj8ejiApV2YQLQonW6UhdthaPpTqpsbExNDQ0oKSkBKtWrVr0QCVGqDIwMIDW1lZ+y9DwhRtzc3ORm5sLlmXh8XgwOjqa0rYka8uWLXHdPtaqBm7FZG7bRIvFImzDRSDFVpTJWm7hArcN5XIfvBBC5EnIi0jJ7KwlJKnHl2JshzkyMoLGxkZUVlaiqqoq4kJKVlYWsrKysHLlSng8HoyNjWFsbAxdXV0wGAx80GCz2TDypxtQFfobGBHPPDLSgLK0AcB9COyxQzij+wAKP/S7mO+faPVqTU1NRPXqmTNn+OrV7Oxs2O32mMcAaqtcUMtr4YhZuaCUCtVlEy7IpSNaykIdBMuyOHv2LLq7u7F27VoUFxcv+VjcQTEVByaWZdHV1YVz585h8+bNyM7OXnDeHcMwyMzMRGZmpmzTtmuvvRbPPPNMUo+x2GJB4Z2xUoKucFS5IDyhk2632y37UjlCCEmWnKa/Sl0Zm8pwIXzcuWHDBuTn5y+6voLRaERZWRnKysr4rR3HxsbQ1HACFX2fx9qsIUDCc6IzoVoUfOA3ST1GrOM8jUazYPVqZ2cnfD4fbDYbHzYsVnUo54rfeKm1ckGs18SFC3Inm3BByER7dnY24mdpaWnwehNbNEZs0Q4iwWAQLS0tcDgc2L59O2w2W0yPFX4AFDJVCwQCOH36NFwuF2pra2E0GmNe0EeOB5W7774b3/jGNwR9zKUWC1IaMUq+hE605R7iJLLV7mJcLpfsVxAmhJBkyWlahNRt4fpMofu7UCiElpYWjI2NYceOHbBYLHEt3KjT6ZCXlweLbhrF9behMGtK0PbFIxgCzpo+hsI9/yXo4y41zpu71SVXvVpTUwOPxwOHw4GxsTF0d3fDYDDwQYPNZps3Vpb7lepYUeVCcpRSoSqbcEEo0VYRFmsujBDmdhBerxf19fUAgLq6OmRkZMT8WKkIF2ZmZnDq1CmkpaVh586dSEtL4zvWWDocOYULDMPgpz/9KW655ZaUP1d42i33g0I0YnyHhE605TL4XIjQ4YLH46E1FwghspXKtbWkInXlAtcGIS9a+Hw+fheI2tpapKenJ7QjxNSZvyLj7RtRmCldFaHXDwyXfR2FO/9/KX+ueLa6NBgMKCkp4as8nE4nxsbG0NraimAwyAcR2dnZirwgtRCqXEiO2+1WxDhPleHC3E5H6EG8WCYmJlBfX4+cnBysXbs27oAgfFqEUO05deoU8vLysGbNGv7ACby7rkCsbZKaXq/HCy+8gMsuu0z051ZiR6HENRekHvAthSoXCCEkfnILF6Rui5ABh8vlwsmTJ2GxWLBhwwYwDBPXBSTO6Ds/QN6ZB2AwSDfemfJq4dryv8hbeZ3ozx3PVpcajQbZ2dn8GmUulwsOhwPDw8Po7OwEy7I4f/48CgoKYLFYZDOOTgRVLiRHKeM82YQLqUy05TrPfyEsy2JwcBCtra2oqalBeXl5Qu+PkOVyg4ODaGlpQU1NzbyFG+Np28aNG9Hf3590e5JhtVrx5ptvoqKiQpLnV2K4oMTKBbmHC/FUIcXC7XYrotMhhJBkyClckHpBR0C4cGF0dBSNjY0oLy/HihUr5q0hEKuJrj8hp+cBGNKlG+uMug1grvobbAUbJWtDuHi2uszMzITZbEZFRQX8fj+OHTsGn8+HpqYmsCyLrKwsvqpBaRdPU72riRTErlygNRckEG2hH6WFC6dOncLExAQ2b96MnJychB+HqyZIptNhWRbd3d3o6+vDpk2bkJOTk1B5HOeZZ57B9PQ0fvazn+HZZ59FW1ubqAvvVVRU4K233oLZbBbtOedSYrggxoKOQifacn+ftVotfD6fYIMDpZTLEUJIMqJNf5WKHCoXhBjn9fX1oaurC+vWrUNhYWFS4zxbzQcRLB/FueanEOj5DWz+ZmQZfQm3L17n3bkwXfc29KZ80Z4zHnODBgCLVjUAQHV1NQwGA6ampuBwOHD+/Hm0tbXBYrHwQYPZbJZ9VYCadr7giFm5QOGCRKIl2gaDQaLWJKavrw979+4V5AOUTKIdDAZx+vRpTE1Nxb1w42LMZjO+9KUv4Utf+hJYlsWLL76In//85zh+/DimplK36M+ll16KF198UdID229/+1uMj49L9vyJEmtBRyHTX7mHCxqNBseOHYPZbOavRCRT8ujxeJCbmytwKwkhRBi05kLq2pBofxcKhdDa2oqRkRFs374dVqtVkHGeVm9AzpbPAVs+BwAY7nsd7ub/QsbEUeRnOKFL0bnYmdm1yNt3DBqddBcVx7sOwz8zgbx1N4FZ4qST6+8XqmrweDx84BAMBmE2m2G1WlFVVYXZ2VmMj4/D4XDg3Llz/PSK7OxsZGVlyXK9OapcSI5SKlRlEy6kstNR2tW86upqwZIphmES6nS8Xi9OnToFrVaL2trauBdujKd973//+/H+978fAHD27Fn86Ec/wuHDh3Hu3DnBThCvv/56/OAHPxA1YZzrvvvuww9/+ENJnjtZSpwWIXd5eXm49NJL+cEBV/IYvpBTPFVXLpcLVVVVKWwxIYQkJ9ExSTg5hQty2Oo80YDD5/OhoaEBfr8fdXV1CS/cGAtL+eWwlF8OAHBND8NZ/2Mwg39EDnMGpvTkw5kQC5z2vgfW9x4Ey0h3anPuje/jD08+AF8AMGXciaqqSlRt/hDK6j6HdEvRkvcPr2qYmprC6dOnUVhYCIPBMK+qQafTIT8/H4WFhQiFQpicnITD4cDZs2fR2toKq9XKjyUyMzNlUTGgxnEeVS7MJ5twQShqCBdmZmYEe6xEOp3JyUmcOnWKX0gSQNwLNyaqoqIC3/nOd/Cd73wHs7OzOHToEH7961+jsbFx3hajsXrggQdwww03oLW1FX6/H9nZ2cjJyUFOTo7g894Xsn//fvzxj38U5blSQYx5fUJOi5DLwHMxmZmZ0Ov1KCgoQEFBAViWxfT0NBwOB4aGhtDR0YHMzEy+qsFqtS7aKXs8HkV0OoQQkgxunQM5lFhrtVrJtzpPZJzncrlw6tQpmEwmbN68OWJ6h9DBwlx6cwHy3/NNAN8EGwzifNuvMdv1vzB7TiLXOIN4n9ofBLrMnwa79k50dXWhubkZdrsdOTk5yM3NFa16uf2P/4o//9/PEfr/sjOXN4TTrT043fp9aJ7+PsoKbahatwuVtZ+EvXrPou+x0+lEQ0MDysrKUFVVxU99CQaD/DaXc9dqsFqtsNvtqK6uhtfrhcPhgMPhQG9vL9LS0vigwW63izLVNRo1LugoZuWCx+NBXl6eKM+VDFmFC6lKtJW25oLL5RLsseLtdIaGhtDc3Izq6mqUl5fzpVnhc7/Ekp6ejjvvvBMf/ehH0dDQgJ6eHrz00ks4evQoHA7HkvfXarX4zW9+gw984AMAgNWrV8PlcmFsbAyDg4Nob2+HyWTiOyCLxSL4QS8YDOLyyy/ntxNVKqVVLkxOTgryOKk0t7SNYRhYLBZYLBZUVlbC7/fzVQ0tLS0R21NlZWXNGzApJdEmhJBkcFcJg8GgZCdJHDlMi4h3zYWxsTH+xLW6ujrhhRuFwGi1yFr/MXirb0RDQwN0M70o8r6M9PFXkZ9+Afol/rzuWQbja36MiksOAABWrlwJj8eD0dFRjIyMoLOzE0ajEbm5ucjJyVkypE8Ey7J459ANeO2Vvy54mxALnB2cwNnBvwB//QvsJh2qalajass/oWTnp6HLsPK3HRkZQXNzM1auXImSkhL+54ttdTn3b5iWlobCwkIUFxcjGAxiYmICDocD3d3d8Hq9sNlsyMnJQXZ2tqgXYNVWucD9HcTcLUIJFaqyCheEwIULXKI9MDAgaCWAGKanpwV7rFg7PpZl0dPTg97eXmzcuBG5ubkpK4+Lh9PpRGNjI4qKirBr1y7ccsstAC6uavzTn/4Uzz33HLq7u+e9RqPRiFdffRXr16/nf8YwDMxmM8xmMyorK+Hz+eBwODA6OopTp06BYRg+aBBivtr09DS2b98u+e4YQgj/LKSKkIl2KtfuEMpS8+bS0tKQn5+P/Pz8iO2pLly4gM7OThgMBmRnZwMAioqK4Ha7E1qo9MSJE3jooYfw5ptvwu/3Y8OGDbj77rtx0003xXT/np4e/O///i9OnTqFkydPYnBwEOXl5Th79mzcbSGEqJsQF5G4QEEu4YLUlXLxrLnQ19eHzs5OrF27FkVFRQnv/CWk6elp1NfXIzs7G2t27INGczMAwDszicHG/0Lo3LPIDrbDaohcxHPco4f/0heQXfbuluIMwyAzMxOZmZn8bgvj4+P8Thgsy/LbPgqx20Io6MdrP9iNkw0tcd3P6QrgZH0zTtY3I+3gv6OiNA8r1l8JY82N6HNmYP369YteoV5qq0tuTMxdGOQuTAAXr35zVQ3d3d3IyMjgqxpsNltKT5TVVrkgdiinlApVVYYLABAIBNDd3Y3BwUGUlZVJ3Kr4CFm5EEuiHQwG0dTUhImJCdTW1sJkMskiWBgaGkJraytWrVoVkd4CQG5uLh566CE89NBDYFkWv/vd73Dw4EG88847yM7OxtGjR5dc3E6v16OwsDBivtro6Ch6enrQ1NQEm83Gp91GozGu9+HcuXOora1VxBX0WExMTODvf/97xBZIQlYEsSwraKLtdrsFeZxUiicICA/GKioqEAgE4HQ64XA48Mgjj+Avf/kLiouL8dprr2Hnzp1YsWJFTI/76quvYu/evcjIyMD+/fthNpvx7LPPYt++fejv78c999yz5GP8/e9/x9e//nVotVqsWbMGw8PDMb8uQgiJFzc9U+qTekA5W1GGQiG0t7djeHgY27Ztg81mk8U4b3R0FE1NTaisrERFRUVEO3QGK/Jq/w2o/beLW7R3/xkzbU8ic/othKBBxgf+DrN98au4c0P6qakpjI6Ooq+vDy0tLbBarfw0WZPJFNf74J9x4vCj29FxZijh1w/8f9M6zo6g6+wzAJ5Bri0d+vaNCGy/GQWbb41pccrFqhrmTp/IyMhAcXExSktLI8YS7e3t8Pv9EeM8oacOq7FyAYColQu0oGOchJoWAQAnT55EMBhEXV0dXn/9dSGaJxqhp0Us9p56vV7U19eDYRjU1tZCr9dL3uGwLIszZ87g3Llz2LRpE5+2LoRhGNx0000xX2mNhkt27XY7Vq5ciZmZGYyOjmJsbAxdXV3IyMjggwa73b7owfGdd97Bnj17El4jQo5WrFiBzZs3w+Fw8FNKzGYz3wElO6WE+4wK9XkTsvonVSwWS8L31el0yM3NRW5uLn7xi1+gvr4ed9xxB9555x2sWbMG5eXlOHDgAB544IEFHyMQCOCOO+6ARqPB0aNHsWnTJgDAgw8+iB07duD+++/HjTfeiPLy8kXb8p73vAfHjx/Hxo0bYTAYRFvHhBCyPDEMI5tFHZUwLcLv96OhoQGzs7MpX7gxHv39/ejq6sLatWtRUFCw6G0ZhoGt5oOw1Xww4edjGAZWqxVWq5Vfl2BsbAxjY2M4c+YM9Ho9HzRkZWUtesI4M96D5x7ejfMjwo81RidmMfrWP3D8rX8gQ383qipKULVxL8p3fR7G7Jol779UVcPcrS65Sg6WZeF2uyMqJI1GIz/OE2JKidoqF4LBYMrXogvn8XgoXJACVw6dlpaGbdu2QafTJTWIl4KQV10X6/impqZw6tQpZGVlYd26dQAg2oI+C+G2RXI6ndi+fbtkXyKDwYCysjKUlZUhGAzC4XBgbGwMLS0tCAQCEYtChl/Bf/755/Gxj31M8sGG0HQ6HUwmE78egM/n49cDaGxsBMMwEWl3vFNKuHBBqERbyIAuVaxW69I3ioFGo8GWLVswMTGBX/7yl1i3bh1effXVJY8jr7zyCnp6enDbbbfxwQLXrvvvvx8HDhzAoUOH8OCDDy76OFVVVYqYA0gIkZ7atqOUy7SIhcYcbrcbp06dgtFoxM6dOyPeNykvIHV2dmJoaAhbtmyBzWYTvQ0AkJGRgZKSEpSUlCAYDMLpdGJsbAzt7e3w+XzIysrix3nhaxxN9r2BZ7/9QTimfClvo9fHorWzH62dTwC/ewIleSZUrdmOyh23IHf9P8f095tb1RD+b25Vg9FohMlkQnl5Ofx+P/+eNDc3IxQK8e9JVlZWQtWraqxcEPN7pJS1tVQVLpw/fx5tbW1gGAY1NTX8XDypDlyJ8ng8gj3WQp3O8PAwmpqasGLFClRUVPCJJncfKXDpeigUwo4dO2SzEKdWq0VeXh7y8vL4Ff3HxsYwMDCA1tZWWCwW5OTk4Pe//z2+9rWvSd3clEhLS4tIu7n3pKCgAKFQCFNTU/xey21tbbBYLHzQEEupYfj8QCEsp3CBw+1/bDKZ8KEPfWjJ27/22msAgD179sz73d69ewFAcVVfhJDlQS7hglymRUSrUHU4HGhoaEBJSQlqamoiTibFvNoajpuG6/F4sGPHDtns5qbVavkgYdWqVXC73RgbG8Pw8DC/c1NOTg50jmM4/NRdcHul+ZufH3Hh/Mir0OrSkbch/mrdaNMnuKAhWlVDTk5OxNjX4XBgYGAAbW1tCVWvqrFyQaxzJq6yJJG1tcQmq3Ah0Q9cKBRCW1sbhoeHsWXLFpw+/f9n77zDoyrTPnxPejLpPYEESAgQWgoQKSIoSK8CgrsW1t6767rr7rru6tpFEBEsCIii9CJNFJDekpAC6SGkZ2bSJ2Xa+f7gm7MJhNRJZhLPfV1el8ycec9zMmfO+7y/9ykJjR72Hh4epjKxSzBl5ML14XLGlIOsrCyGDx+Or6+vRYTH1dTUEBcXh7OzM0OHDu2y/KW20rCif0hICBqNBqVSyV//+lc2b95sbvM6DUdHR2xsbG7aAsnV1RV3d3dCQ0Opr68XiwXl5ORgbW0tTkCenp5NFuD6PUYumFL01Ov11NbWtinSJz09HYCwsBvDLP39/XF2dhaPkZCQkLAkLEVcsNTIhdzcXFJSUggPD6dXr14WUbixrq7uWkcIGxtGjRrVJV2o2oNMJhOFemNRSJVKRc6x9zm973M0upbH6DzbYMb8pQyet7LDY90sfeJmft710atGPy8vL69V0aumrq1lCej1+i5drxg3kSwdixIX2oPxYWUwGBg7diyOjo43TDrdTVwwdeSCceGm1+tJSkqirKyMW265BRcXF1GltJSOEGFhYd1K1bS1teW5555j79695jalU7G3txcni5ZaINnY2ODv7y9Woja2QMrKyiI5ORl3d3dxAjIWyjR15IIpf0Odhaenp8nGMgqSbZl0jMVGbxZB4erq2mMKkkpISPQsrK2tRf/F3HaYO3Kh4RxqMBhITU2loKCAESNG4OHhYREbSI06QoSHd6sFpq2tLarTb3J8zzoMHSsL1yFsrGHufa8RcsfrnTL+zYpCGkWB66NX/fz8xILorYleNXd0dGdgMBi6VFyQukV0AWVlZcTHx+Pl5cWQIUPEL/h6ccGUTnxXYMrWmUZFu76+nri4OARBaFS40agitnbCSU9P56WXXmLhwoX88Y9/7PCPytgRYsCAAQQFBXVorK5Gr9dz6623kpCQYG5TOp2GKSptbYHk7u6Op6cnYWFh1NbWimq3sYCScfIxfsYUdIduEaYUPdsjLkhISEh0NT2x5oK5xQXjJpJWq+XixYvU1dUxZswYHBwc2iUsaKqLubj5UQLCpxI48qFWdStoDqVSSWJiIn379r2hI4SlIwgCZ7+ezW9HD5vVDgc7GQue+ITAEQ91yfnaGtXQMHq1rq6uyehVo8/Tnb7/lujsFu0NaU+EqrnoluKCIAjk5uaSmprKgAEDCA4ObnSzXj/peHt7m8PMdlNXV2eysaysrKipqeHUqVN4eHgwZMiQRi2c2jLhHDhwgLvvvhudTscvv/zCk08+SUhICHPnzuXpp5/Gz8+v1XYJgkB2djY5OTlERER0u++ooqKCUaNGkZ+fb25TuoTmekG3pQWSvb09gYGBjQooqVQqrly5AsDFixdFtbthAaW20h0iF1rqgtIW1Gp1o+iS1mCMWLhZdEJlZWW3i/qSkJD4fWBJ4oK57bCysqK+vp7Tp0/j6OjYocKNVfnn2f7+VIpL6+DwIRzs/kxovyBCI2fS59ZncXBrW2v3tnSEsDQMunp+XTaWuIQUs9rh4mjFohe/x2tg+ztldJTm/Lzro1dtbW0JCAgQ03GM0avZ2dkAJCYm4u3t3Sh6tbvSlTUXjOm+Us2FNtKaG0yv13Pp0iUUCgUjRoxoMirh+knHx8fHpHZ2NqaMXKivr6ekpITQ0FD69et3w0OgtSxbtozXX3+9UdEgQRDIzMzko48+4qOPPsLLy4vbb7+dp556ipiYmJuO1bAjxMiRI7vFD+V6PvvsM8rLy81tRpfR2uKabW2BZKw8HBAQQFxcHB4eHigUCtLT03F0dBSFBnd39zbdr6b8DXUWpgxtq66uRi6Xt2mSNtZaSE9PZ8SIEY3eKyoqorq6utnfsYSEhIS5sBRxwZgWIQiC2RZJGo2GkpISgoKCGDhwYLsLNxYlfM/2lY9SXfu/SIw6jUBy6lWSU1dh9eMqggLc6T/0VkLGPYF7v4k3HctSOkJ0hKK4DahKCpDJoJmO7p2Kl5sdi149gEtvy5mL2xu9GhwczIkTJ/D29qasrKxR9Kq3tzfu7u4WW2/tZnRlzQXjppkUuWBiamtriY+PB2Ds2LE37ad+fS6epXQdaC2miFwwRgaUl5fj5+dHSEhIuwv6PPTQQ2zatKnF41QqFVu2bGHLli04ODgQFRXF/fff3yh9whi2p9PpLKojRFt57bXXeO2117h8+TKffvopBw8epKCgwNxmdRrNRS40R2tbIBnVX2P7T51OJ7a6vHTpEnq9vlGxoJbum+4QuWBKR1StVre56vaECRP473//y8GDB1myZEmj9w4cOCAeIyEhIWEqemJaBGA2cSEvL4/i4mLc3d0ZNGiQuMgzLuxaS/qBv7Fn0zJ0zfxJDQLkFJSTU7CHXw7uwcvNjv4DhhEacw8BIx4U0yeMHSHUarVFdYRoK4GjHmbxqIepK7tCzskVZMXvIyP7KnWarlEaevnImf+3Uzh6hnbJ+dpLa6NXtVotAEFBQWKbd2P0ampqKhqNBg8PD5NEr3YVXVlzwRih2lRRdEvD8i38f0pLS4mPj8fX15fBgwc3+9BsatJpWEzE0umouGAwGEhOTkapVOLr64uTk1O78u60Wi0TJ04UBZ22UFdXx6lTpzh16hRPPfUUISEhzJw5k3HjxtGrVy+ioqK6nULZFOHh4axcea1qr1qtZs2aNWzevJlLly6JD9KewPWLea1WywMPPEBERASPP/54q9oqNtcCqaysDBsbGzQaTZMtkKqrq1GpVBQWFoptoRq2QLr+eWDK1KLOwNRhdMYKwm1xbidNmkRISAjfffcdzz77LJGRkcC1NIm3334bOzs77r//fvH4wsJCKioqCAgIMHkbTQkJCYm2YCnigtGP6crwaLgmZqSmppKfn09AQICY7tpWP08QBM59M5ejh39psw2qCg2qcxc4c+4CjnavENovmD7Dp1LuPAE7l97ExMRYbEeItuDg0ZeBMz9k4MwPMejqKYpbR9bZ78hITUBRXt8p5wwN9mbWa+exk5sv8loQBIoOPoyVPAiPyCewc2459bm5qIaysjKsra3RarU3RK8KgkBNTQ0qlYqSkpIOR692FV2dFtHWCFVzYVHiQlN/MEEQyMnJIT09nYEDBxIUFNTiH7apSccS8uJai0aj6dBn4+Li0Ov1jBkzhqysLKqrq6mvr8fe3r7VN2VxcTGjR4+mpKSk3bYYMRgMZGRk8Mknn/DJJ5/g7e3NxIkTeeaZZxg5cmSHx7cU5HI5L7zwAi+88AIAhw4dYvXq1Zw4caLbV91vKC6o1WpGjBhBbm4uO3fu5M0338TX15eJEyfy1FNPteo7NT6MraysuHLlCnl5eQwfPlwMMb2+VoNcLsfFxaVRWyiVSkViYiKCIDRqdWlnZ2fxaRGdIS60Nc3CxsaGL7/8kqlTp3LbbbexZMkSXFxc2Lp1Kzk5OXzwwQf07dtXPP61115j3bp1rF27lqVLl4qvK5VKXn75ZfHfWq0WpVLZ6JgPPvig29VVkZCQsFxsbGyor++chV1baCiYdxU6nY6LFy9SU1PD6NGjKSwspLS0lLq6OhwcHFrt5+nqq/jlo7EkXM7qsE21GoGk1BySUtdgJVtDUIA7Viktp090N6xs7Akc9SiBox7lVqDy6imyT35GZuJRruSr0JvgNujf15+Bd2+lqs4KD8euKxjYEEGvp3jLWELtk6AWdAfep7jOkzr38ciHPoprn4mtGse4qZSXl0dWVpZYfL8pP8/R0dFk0atdRVcWdDSKC90BixIXrkev15OcnIxKpWLkyJGtLi7W3cWF9k6YVVVVxMbG4ubmxtChQ0VVMCMjg+PHj+Ph4YG3tzc+Pj7NhqmdP3+eqVOndtrur1KpbJQ+ER0dzf33388f/vCHHhHNYGTy5MlMnjwZuBa6uGLFCvbs2SMWL+xOGB/kKpWK6OholEplo/dLSkr48ccf+fHHH7G3tyciIoIlS5awdOnSm04CgiCQkZFBQUFBo9obLbVAsrKywtfXF39/fwRBEFsg5ebmcunSJVxdXSktLe3Ev0bHMfV93h5xAeD222/n+PHj/POf/+SHH35Aq9UybNgw3n33XRYvXtyqMaqrq1m3bt0N9jR87Y033pDEBQkJiR6ZFtGwSHZnU1NTQ2xsLPb29txyyy3Y2Njg7u5OSUkJJ06cwM3NTfTzmtvlrFGls+vd28gtqjS5jU2lT4QNHEZIzB8JiF7a4e4TloRr8BgigscQseRal43c06vIit1BRkYm1XVtVxpiRkYRfvcWlKWlJCcno9Pp8PT0xMfHB29v7y5ZVOs1tai2jiTE8Yr4mo019JKXgnYnxO2k9IQtZbZDsOm7EM+IR7G2u7n/ceXKFbKzs4mKihLXcddHrzbl57UmetXb2xtXV1ez7eZ3dc2F7hK5IBMsKFfAYDCIoeQ1NTXEx8djZWVFZGTkTesrNEVaWhoajYahQ4eKr3l4eFj8bqaR8PBw4uLi2vQZhULBxYsX6dOnD6GhoeKPFa5NfrW1tSgUChQKBWVlZTg5OeHj44OPjw9ubm7izbpx40Yef/xxs7RWsrKyIiQkhHnz5vHyyy93y0KPzVFdXU1cXByPPfYYOTk55janTZw5cwZ3d3dGjRpFZWXrnRGZTEbv3r2ZMmUKzzzzjFhEUBAEUlJSUCqVREdHN7swvr4FkvG+NhaqaphuUV9fj0ql4oEHHuDMmTMduOLORS6XU1hYaLLxPv/8cw4fPszevXtNNqaEhISEqREEoUPRmUZycnJEsdvc/Pzzz4wZM6bTC62VlZURFxeHv78/AwcOBP4XMSGTydBoNKKfV1pair29vejnNQwrL00/wLZld1NWpbvpuToLRzsZof2CCY2eSd/b/mzWsP/OoK6ujtjYWBwdHQmQXebKuQ1kXj5PgbLlOlC3T5rGyAe2iv82LqoVCgVKpZKKigpcXFxEoaEzFtXa2jIqt0UTJG991HK9Foo1AWh9JuEW8RROfsNF+7OyssjNzSU6OhpXV9ebjnEzPw/+F/1gvH8bRq+WlpY2Gb3aVaSmpmJjY0NoaOfXxdi2bRsrVqzg/PnznX6ujmJRkQvGH4lKpSI+Pp6AgAAGDRrU5pCTphTt7lAAw0hbJt6GaSNDhw7F39+/ycKN14cbqVQqFAqFWE/Bx8eHNWvW8OWXX3bGJbUKY/rEoUOHeP31181mR2dQXl5OfHw8vXv3tphwrraQl5fHhAkT2hzNYmwb+9VXX/HVV1/h7OzMyJEjueOOO4iJiWHkyJEtFu1pSwskGxsb/P39LT7P09TPI2PNBQkJCYnfA5YSuQBdExmbn5/PpUuXxPTgpgo32tvb07t3b7HVs9HPS0xMxGAw4O3tjVX+Dn7d/C51WvPsKxrTJ2SyvYROesMsNnQW1dXVxMbG4u3t/f9rlyj8I//AaKC6OImck5+SefEQ2VcL0TTQdWQymDF/KYPnrWw0nkwmw8XFBRcXF0JCQtBoNCiVSpRKJVevXhV3941tHTvqV9RXFVC3ayRB8ral8drbQrBtIdR8i3DyW5S1jlQ6RFLqPBmFzUhGxoxu0T+5mZ/XMLqh4XE3i169fPkyLi4uYlRDW2tRtRW9Xt9lYkZ1dXW38fMsasVt7HCQkZFBeHg4vXv3btc4TU06XalkdZTWigvGlo4KhYJRo0bh5ubWqoI+NjY2+Pn54efnJ/agvfvuuzl16pQpL6NdzJ8/n2+//dbcZpgU4+QeFhZGUFBQtyks2pC7777bJM5TdXU1R44c4ciRI1hZWREaGsrs2bN56qmnWtUDu7UtkCy9oKOpn0fdadKRkJD4/WLKtIiGXcHMiTGHvDMwtnTMzc0lKioKLy+vVvl51tbW+Pr6imHllZWVJG97lFNH9mAwswty6/jxjH54X7cI724tZWVlxMfHExwcTEhIyA3X5uw3lCHzP2fI/Gu1LvLPrSH7/BayM1OYMP8lQu5oeUPNzs6OwMBAAgMDRd9dqVSSmZlJYmKimPrs7e3d5jTJ2tJ09PvGEiDvWKctmQx8nGrx4RShNadQa2Qodveh2n86HlFPY+/et8Ux2trq0sXFBTc3N0JCQsToVZVKxdWrV7G2tm4U1WDqjZ2u7hYh1VxoBzU1NeTm5jJq1KgO9cS1sbHp1uJCaybM6ws32tnZtatSsFqtZsKECWRldbygT0f5y1/+wt///ndzm2FS8vPzSUlJYejQofj5Xau02x3Fhc7YlTEYDKSnp/PRRx/x0Ucf4eHhwbhx43jkkUfEWhUtcTO12xRht52JqZ9HNTU13bbdl4SEhERbsbTIhc4QF3Q6HQkJCVRXVzN69Gjkcnn7OkIYdMSvm8HZ8/Emt7EtWMlgehM79N2dkpISkpKSGDBgQKs2RW3sXehz60v0ufUlJrbznMaaap6engwYMICamhoxqsHYacEoNHh4eDQbAa4uvID14cn4yk3vN8ntBORcgYpV6H9dhaLWFbVzDI7hD+IWNqdV93BrW102jF41CjAVFRWoVCqys7NJTk7Gzc1NFBtMUb+gK7tFGGsudAcsSlxwdnbm1ltv7fAX1d0jF1pqYWgMvXJxcWHo0KGNrrctE056ejq33XZbm3LoOwMrKyvWrFnDPffcY1Y7TIkxCicnJ4eoqCg8PT0bvSdxI2VlZezZs4c9e/Zga2vLoEGDWLhwIY899lir6m80VLstZUfrZpg6NUatVhMQEGDSMSUkJCQ6A1O0BrckcaEzbKmtrSU2NhZbW1tuueUWbG1t2yUsaKqL2fveaNKvdLzzV0ewt4X5D71N0NjnzGqHqcnLyyMtLY2hQ4fi6+trNjucnJxu6LSgVCpJSkpCr9fj5eWFj4/PDZ0WKq/8iuPpebg5df5vydoK/OWVIByCS4eojLVGJQuD3vPwjHoSWyevFsdoa1SDm5sbHh4e9O/fn9raWjGqITs7Gzs7O1Fo8PDwaFcEQldGLnSnCFWLEhfANC3amnrQt5TXbUk0tzAyFm4MDg6mf//+jZQ7Y4G71nDgwAHuvvtusy/C7O3t2bt3L6NHjzarHabEWKywpKSkURcEidaj1WpJTEwkNzeXBx54oM1/Q0uPXOgMcaG7TDoSEhISHaWpCFVzYerIhfLycmJjY/Hz82PQoEEA7dpAqso/z/b3p1Jcat40QTe5NQte2ITXgBlmtcOUGIsVXr16tVEXBEvAxsamUUpMVVUVCoWC3NxckpOTcXV1xdvbG8fK0/inPY6zQ9cXcAdwddDjSgolV5ajD/9Dq8SF62lLVMP1NUnKy8tRqVRiEwB3d3dRbGhtJGhXRi5IaREdoLMU7e4uLgiCwNWrV0lLS2PIkCEEBAS0S8WGaxX1//rXv5pdWPDw8OD06dPtrq1hiej1epKSkqiuriYmJqbJ+06KXGgdPj4+xMXFtWvSbin6x9yY+nnUnSYdCQkJiY5iSZELpizoWFBQQHJyMgMGDCAoKOiGzl+tRRAE4ne8RGV1+1qbm4pAbyfmvnoYZ7+hLR/cTTAYDGK3q1GjRlm0sC+TyXB1dcXV1ZXQ0FCxJkFJ7Br617yPo5nrixepXbCffR57146vAxpGNRjFvoZRDde3uvTw8MDLy4uwsDBqa2vFtJKMjAwcHR1FoaFhp5Xr6crIhZqamm4ToWpx4oIp6O7iwvW2GwwGLl++THFxMSNHjsTd3b3dwgJc2zW9cOECarWaVatWsXnzZi5fvtylE3VoaChnzpzpVt9LS2i1WuLj4xEEgVGjRt00FUcSF1qmV69exMXFtXvB/HsUFyzZwZGQkJAwYspNJEEQzF4Y0BQFHQVBICMjg5ycHCIjI/H29u6QnyeTyRj/1FHG6eopvPA1mWc3kp6SRGlV182NA/r5MePVc+3akbZU9Ho9iYmJ1NTUEBMTg4ODg7lNahP29vbYXP2WkXXvY+5s8Xy1B/L5cdg5mb4dqVEMaBjV0PC/66MaHBwcGqWVlJWVoVKpuHz5MjqdThQivLy8Gn3nXR250F38vB4rLly/K9+dip01nKQ0Gg3x8fFotVrGjBmDvb19hyachsjlcl5++WVefvllBEFg27ZtfPXVV5w7d46amo5VjG2O22+/nd27d5vVIRAEgVdeeYWRI0eyePHiDttSV1dHXFwcDg4ODB8+vFklUxIXmqdv377ExsZ2KHXA3FE5LWHq55FarZbSbyQkJH43NMy57qqdw5vR0cgFnU5HYmIilZWVYuFG4xzWUT/PysaeXrc8Qa9bnmC8IFCWcYCsk6tJTzpFXnFVu8dtiVEjIrjt6aNYWZu3LXTx8TewcQnCY+j9HbbFuIEEMGrUKItved0URUdeJVj1KSZumtBm8tQ+uN51ERtHty45X3OtLpuKajDWqBAEAbVajVKppKioiLS0NJycnMT2n3q9vku7RUjiQjvpLEW7u3wh8L/IBbVazYULF3B2diYqKqrdhRtbg0wmY8GCBSxYsACAuLg4VqxYwS+//IJSqTTZeebNm8d///tf6urqzBa1UF9fz5gxY0hNTQXgkUceISwsjPnz5/Pkk0/i5dU2lb26upq4uDg8PT0JDw/vMhWzJxIeHs6ZM2c6/LC29MgFU6cwSGkREhISvyeMc0RXOvc3oyM1F+rq6oiNjcXa2prRo0eLhRsFQegUP88zbBqeYdMYCdQoU8k+tozMiwfJyilCa6Lg1RG33EbfmauordPg5GRjlo0kQRAo2n4noVanQAnq1Oco0ffFEDgbj+hnsHcJbNN4xu/JycmJYcOGmf2eaw+FBx6hX813WJnZ9Ks1vfBYFIe1nXl8lpsVhTQWhLw+qsHJyYm+ffvSt29ftFotpaWlqFQqEhMT0Wq1ZGdn4+fnh5eXV6c2D5AKOpqZphTt7vKFwLWHokqlIj4+nt69exMWFiYqa8aijZ39sI6KiuLrr78GoLi4mE8//ZQdO3aQnZ3dLvFHJpPx1ltvMX/+fBQKBWlpacjlcry9vfHx8cHNza1LJiCFQkFMTAwlJf+rnGwwGEhNTeWdd97hnXfewdfXlzvuuINnn32WiIiIZscrLy8Xv6fQ0NBWXYMUudA0UVFRHDt2zCT3gaXk4t4MUwoBgiBQU1PTrZ5xEhISv19M8Yw3LhB0Op3Zu4G1Ny2ioqKC2NhYfHx8CA8PB9pXuLG9OHkPZMj8VQyZD7q6CnJPfUrmhW1kpKdRVdv267G1hhlLXsRpyGMoFAoyMzNxcHAQ/bzmctdNiV5Ti2prDKGO/2uxfq0lYjaULUd3cDnFdZ7Uud+Gy/CncA4a2+x4xg5t3t7eDBo0qFtuIFVk7MOzdDNWZs5EvlLbF++7Y7GyMXOxhwY0VxTS+F/D43x8fPDz80MQBI4cOYKjoyN5eXlcvnwZFxcXvLy88Pb2xsXFxaS/4e7k5/VocaGhot2dQoYNBgOxsbEMHjyYwMBA8SY3hut0NX5+fvz73//m6aefJj4+nvj4ePbu3UtCQkKrqvLb2NiwZcsW7rzzTgCCg4PRarWoVCoUCgVxcXFYWVmJE5CXl1enqMKpqamMHz8etVrd7HElJSVs2rSJTZs24eTkxMiRI3nggQduSJ9QKBQkJiYSFhZGUFBQq+2QxIUbGTduHAcOHDDZg9jSxYXq6mpSUlLEFkg2HYxRlCIXJCQkfk/IZDKLKerYnrSIwsJCkpKSCAsLIzg4uN2FG02FjYMb/W7/G67DH8cqPg4fQyJVmXvJuBxLcVnL3SbkDlbc9fQa/IdfaylurMhv9PMSExMxGAyN/LzOSCvQVBWh3jWKvvLSmx5jYw295KWg3QEXdqA8Zk+FfSR2/e/FY+h9jdInysrKiI+PJzg4mJCQELPX92gvbv2nQ/9yirIOoU5ejWPlSfwcy7Huwlstqz4cv7vPILPgqI+2tLo0Rtr36dMHBwcHNBqN2OoyPj4emUwm1mnw9PTs8P3enfw8ixMXTPHDbSguGHFz65q8HlMgCIJJCjea0p4rV66QnZ1NdHQ0U6dO5dVXXwXg0KFDfP7555w4cYLKysobPiuXyzl69KioyhuxtbXF398ff39/DAYD5eXlYkRDfX09np6e+Pj44O3tbZKCOUePHmXu3LltDpevqanht99+47fffhPTJ+666y7uuusuCgsLGTp0KH5+fh227/fMnXfeyY4dO0w6piU4nM0RFBSEtbU1mZmZ1NbW3tACqa2/danmgoSExO8NSxEX2hK5IAgCmZmZZGdnExERgY+Pj7g7ak4/DyAvL4/U1FQGDx5CQMBkuPMFxgKVuafJOv4pGYlHyckvxXDd/oi3mx0L/rwP16DGLcWtra0btUSsqKhAoVCQnZ1NUlISHh4e+Pj44OPjY5I0WXVJEvw8kV7y2jZ9ztupHm/OQPYZ1CnPUmLoh6HXHAxB95CSXcKAAQN6TFcz15DJuIZMBqCyMo/yuBXICn7Cx/oKcrvO2/jK0kbhd7dpIlM7QmniBuzcQ1uMVjHSXFSDcc1jMBjQ6XTY2Njg5+dHQECA+L5KpeLKlStcunQJV1dXMapBLpe36W9hrP3QXfw8mWBh26g6nc4kk8XPP//MmDFjxBCSjz76iL/+9a8dHrerqK2ttQhhwdipQqVSERUV1eyNnZmZySeffML+/fvJz88nMDCQs2fPtqmVoDHEW6FQoFAoqKiowMXFBW9vb3x9fXF2dm7z32Ljxo089thjJo8Y8Pb2ZsqUKTzzzDMMHz681Z8bNGgQubm5JrWlM7G2tubtt9/mhx9+ICkpqVXRKq1l8uTJrF+/HldXV5Pe4x4eHia109S8+eabPP/888A1AcuodpeXl2NnZycWC3J3d28xiker1eLl5cXVq1fbFEEjISEhYQ70er1Jiu4ePXqUoUOHtrlOkqlJS0tDo9EwdGjz7RaNnQYqKiqIjo7G2dnZIvw8Y6eK/Px8IiIimvXZ6isLuHryEzIu7CYj+yr+3m7Mfu0UDm7BbTpnTU0NSqUShUJBWVkZcrlcFBra4w9UZv2M45mFuDmarpizTg+FNR5ovCbiPPxpXHqPbvlD3RSDXktZ0gY0GRtxq4/H26nlaJXWkqSOxn36zi5Li7kZRUdepU/pp1hbgarGnnK7odiGLMZj6INY27VN3Kqurub8+fP06tWL4OBgsTAk/K8oZMNo87q6OtHPKysrw8bGRtxQak30qiAI9OvXj/379zNq1Kj2/QG6kB4rLvz666+MGDFCjFj4+uuvefLJJzs8bldRXl6OtbV1l9RXuBlarZaEhAS0Wi2RkZFtiiCoqqrCycmpw+kNGo1GnIBUKhW2trZiWJ2np2eLD6q33nqLt99+u0M2tAZj+sTSpUu5++67m/3Oupu4YGNjQ0VFhfjvI0eOsHr1ao4dO0ZZWVm7x12wYAEvv/wyKpVKTIsxLqo7mibg6upqETtaN+Ojjz7i/vvvF1Vx432s1+vFFkhKpRKtVtuoBVJTuztlZWX06dOH0tLSNgl5EhISEubAVOLC8ePHGTBgAL6+viawqv1kZmaiVqub3WQwdpSSyWRERUVha2trERELer2epKQkqqqqiIqKalPYtUFXj2AwtHlhdj0N02SVSmWb02SV8V/infY8Tp248w6grDGmT9yHx9B7zd4JozOpzj9LVeJn2KuO4GevwLadLtkl7QSqw99DqVQiCEIjP68ra6UU/foCfcvX0NSSoU4LJdpeaH3vxC3yaZy8w288qAFGYSEoKIjQ0FDgxlaXDZfW1/t5xmhto9jQMHrV29sbR0fHG54HgiDg6+tLXFzcDZHglojFiQumVLSHDRuGp6cnANu3b+eee+7p8LhdRU5ODl5eXmabcGpra4mLi8PR0ZFhw4Z1eLFnCgwGA6WlpWJUg06nE9vFeHt73/Cgeuyxx/j222+73E4rKysGDBjAXXfdxZNPPnnDgm/gwIHk5eV1uV3txdbWlvLy8htez8nJ4dy5c5w6dYqff/6ZrKysVkeHPP7443z44YfA/x60SqUSpVJJTU0NHh4e4iTUnhwzFxeXDvcd70zWrl3L3Llzm1W7jVE8RqGhoqICJycnUWhwc3PDysqKvLw8Bg8ejEajaXNO37lz5/jnP//JyZMn0Wq1DBs2jBdffJG777671WPU19fz7rvvsmHDBnJzc/H09GTWrFn85z//MbvTLyEhYXmYys87deoUffv2JSAgwARWtZ/s7GwqKiqIjIxs8v3KykouXLiAl5cXQ4YMQSaTieK3OTeQ6uvruXjxIjKZjIiICLMXxgQapckqFIpGabI+Pj43tKguPvZ3epd8hG0Xp/Gr62UoDCEIvebgEf0Mds49Mz22oKCAywlnCLE+i1PpQbyEdFwdWt64EQTIsp9PwIxv///f19JijH5edXU1bm5uop/Xnqjk1lL0y7P0rfiqSWHhegwCKGqcqHYaiX3YfXiEL25UI6IpYeGGMRrUZzD+f3NRDddHr9rb24t+njF6VaPR4O3t3WkRqqbwBRvSY8WF48ePM3DgQLFP6aZNm/jTn/5kAgu7hqSkJPr162eWc1dUVBAfH4+fnx8DBw40e45UUwiCQHV1NSUlJSiVSqqqqnBzcxOFhgULFnD8+HFzm0lAQACpqamNlPcBAwaQn59vRqvahr29PaWl/yuOJAgCWVlZ5ObmEhUVJUYH6fV6vvvuO9avX09cXBy1tU3nPb7yyiu88cYbNz1fbW2tuINRWlqKg4OD+L16eHi0KqzO2dm5ywpn2tratrmWx549e7j99ttvaIHUnNqt0+nEFkgqlUr8ewcFBfH1119TXFzcppDDw4cPM3XqVBwcHFiyZAkuLi5s3bqVnJwcPvjgA1566aUWxzAYDMyYMYMDBw4wevRoJkyYQHp6Otu3b6dfv36cPn0aHx+fNv1tJCQkejam8vPOnTtHQECA2fPhc3JyUCqVjBgx4ob3ioqKSExMJDQ0lL59+5q9cKMRYwttd3d3hgwZYpEdEIx55kZ/wJgmaxQaqo49SUj9NqzM7KIWql1xXpRhttaKnUVubi7p6elERESIqUeCIFCeuo3a1G9wqT6Lj1P1DX9/gwDZ8vsImPL5Tceuq6sThQaVSiWmg3p7e+Pp6Wmyou6FBx+nn3pDu++R6norlIZ+GAJnYhu2lMS0wmaFhaZoS1RDU9GrO3bswNfXl88//5zs7Gzc3d3bdzE3wRS+4PX0WHHh1KlT9OvXDx8fH5KSkoiNjeWJJ54wgYVdw6lTp9qUx28qiouLSU5Opn///gQHty2HzpwYH1S5ubk88MADFrF4Dw4O5vz58zfsvHc3ccHBwQGVSgVcm1jS09MpLCxkxIgRzbbFiYuLY+XKlfz6668UFxcD8M9//pM///nPrT63cUFtnISM0SrGSej6XQwjll5R98SJEzfscl1fLOj6Cci4w2WMaqiqquKdd97h0KFDpKamEhkZyYwZM5g5cyYxMTHNTs46nY5BgwaRl5fH6dOnRVsqKiqIiYnhypUrpKWl0adPn2avY+3atTz44IPcc889bNy4URQiP//8c5544gkeffRRVq9e3b4/koSERI/EYDC0WZBtitjYWLy8vFp8TnU2eXl5FBYWNsqFNorwWVlZDB8+HF9fX1FMNnfhRpVKRUJCQrfrgGBMky0pLsIx7iGiPNPMbRJ5am+c55/HzqlniejGIu5RUVHNLmZrlamUx6/AtuQgvrb52FpDjsfj+N/+YavPZVxQG1OgNRoNnp6eYmpMe4u6Fx54iJCaTZjq9tYboFDtQp37rcjDH8I1dFqbfzsN/TxjRENz0atqtZrly5ezd+9eEhMTGTRoELNmzWLGjBmMGzeuwx0oTOULXo/FiQummnTOnj2Lj48PhYWFWFlZ4e/vz6BBg0xgYdfw888/M3Zs66qZmgJBEMjJySErK4thw4Z1y93G4uJiYmJiUCqV5jaFiIgIjh071uQCLywsjIKCAjNY1T4cHR3FfDljcc8RI0bg5OTU6jEqKipITk7u0D1tXFAbhYbKykqx2KePj0+jnsKWLi5cvny5RfHu+hZIN5uAfvvtNx577DHeffdd9u7dy/79+/n000+bTQM7ePAgU6dO5U9/+hNff/11o/fWrVvH0qVL+de//sU//vGPZm0cO3Ysp06d4sqVK40mH0EQ6N+/P8XFxSgUCpNUApeQkOgZmMrPu3jxIi4uLoSEhJjAqvZTUFBAbm4ut9xyC/C/OgZlZWVER0fj4uJiEYUbAfLz80lJSSE8PJzAwECz2dFe9Bo1qq2j6OuYY25TuFLbF68F5ztcc8KSMHYzycvLIzo6GldX11Z/Vq9Roy48j2ufCR06v1qtFoWGiooK5HK56Oe5ubm16vdTuO8BQuq2mExYaIryWhtKrQdhFTQPj8jHsXVse82r1kavpqamMn78eNatW8f+/fvZt28ff/7zn3nhhRc6dA2m8gWvx/yJ9J2EwWAgIyODgIAABg8ebNHF3ZqiqbaORrRaLWlpaQwZMsQk5zIYDKSkpKBUKhk5cmSbHiaWQnJyMhMnTqSmpsbcpnDnnXeyffv2mz4ALUzPaxErKysMBgPJyclUVlYyatSoNivJbm5uHRbLZDIZrq6uuLq6EhISIu5iKJVKrl69KhaB6g6tery9vVs8prkWSA2fZ5WVlcjlcv74xz/yxz/+Eb1e3+Lz7siRIwBMmTLlhvemTp0KXKtb0xx1dXWcOXOGgQMH3qBqy2Qy7rzzTlavXs358+cZP358i9crISEh0RYsqRWl0Y76+npiY2MBGDNmDLa2tu0SFgRBQF2ciLO/aSJYjR0h8vLyiIqKEuuRdSfqK/Oo2T2avvL2F5I2FZnaaPzvPtIoH7+7IwgCqamplJSUMGrUqDZv0ljbyTskLMA138HZ2RlnZ2f69u0rFvtUKpXEx8cDNCoK2dTOfeFPfyBUuxM6WcNzd9ThThIUJ6H56T+U1PtS7zUBl2FP4twrplVjNOfnGf8DxJpbixYt4u677zaZQGsKX7ApeqS4kJeXR0VFBT4+PmLxHEvMJ2uO6urqJl8vLi5m9OjRlJSUIJfLGT16NI8//jjTp09vlxpu7Aih0WiIiYlpd/iROTl06BALFiwwSTpNR7n//vtZtWqVuc0wKVZWViQkJFBbW8uoUaMsougTgJ2dHYGBgQQGBjYqApWQkGBu05rF09OzTVEf8L/cXGMkjFFg0Ov1fP311xQUFCAIAjKZDGtr6xbzFdPT04FrUTTX4+/vj7Ozs3jMzcjMzMRgMDQ5RsOx09PTJXFBQkJCxFQ799bW1hYx7xsF+MrKSmJjY/Hw8BDrGBhFh7YIC7r6Kg59NIbEy9n4eToQNngUoWMexGfoonb97fR6vbg5EBMTY/GRfU2hLoxDdngyveSma5HYHgQBsqynEbBoq1ntMDWCIHDp0iXKysoYNWqUxUQb2tra4u/vj7+/v1gUUqFQkJ2dTVJSUqNaa3K5nMI9i+mv/6nL7bSzgd42JVC3Gc5tJudob7wXX2qT+HQzP89gMLBu3ToqKyvR6/XY2NhgZWV107TgtmAKX7ApepS4YDAYSE1NpaCgAC8vr0Zh0nBtQusuu8ZqtfqG186fP8/UqVOpq6sTj/nll1/45ZdfsLW1ZdiwYdx77708+OCDrcrDadgRYtSoURbREaKtbNu2jfvvv98ivte//OUv/P3vf2/xOEuwtS0IgoBGo2HkyJEdzu/qLKysrPD09MTT09Oi72MnJydOnTrV4XGMk9A///lPLl26xPHjx9vkdBpbixqLcV6Pq6tro/aj7R2j4XESEhISpsRYRd3cWFlZodFoOHPmDCEhIfTr169RhFlbOkLUqNLZ9c5t5BZfi14tLq2j+Pgxjh8/hpvTw/QfGE7/mCX0GvV4q8LxNRoN8fHxyGQyYmJiLGZzoC1U5Z7A8cR0XJ3MG6WiN8AV16UETF5pVjtMjcFgICkpierqakaOHGmxm4wymQx3d3fc3d0JCwujtrZWjF7NzMzEP/dNRrmfN7eZlNbY4TR5a4ejWoyC5PLly9m9eze//vqryf1bU/iCTWFx2/ntVbQ1Gg3nz59HpVIxZswYnJycbgiX607RC9eLCxs3buT2228XhYXr0Wq1xMbG8uKLL+Lh4cHw4cN54403xEJ811NRUcHZs2fx9PQkIiLCohdkzTF//ny+/PJLbr31VrMprTKZjI8//rhVwgJ0P3FBJpMRHR1tscLC9VRVVZnbhCZxcnLiwoULJqlsLggC//73v/nhhx/49ddfiYiIMIGFEhISEt0HS0iLEASB4uJiNBoNw4YNIyQkRAxnblgfpzWUph/gu7+PFIWF66mo0XMhLokfVr/Oyie82ftWOGn7XqW+sukaTtXV1Zw9exZHR0eio6O7pbAA4Nx7LOoRG8mUTaJYLcdgBhdKo4Ncv9d6nLCg1+uJj4+npqbGooWFpnB0dCQoKIioqCjCqz62EGHBFsOko8h9h3Z4LEEQWLVqFe+99x4HDhzoVhGg3We13QxVVVWcOnUKW1tbRo8ejZOTU5OTjqlam3QFDcWF1157jUcffVTMvWkJY0GW999/X6wG/Pjjj5OamgpcS624cOEC/fr1Y9CgQd1KdLkemUzGkiVLOHDgAEqlkqNHj7JgwQKxbU5nY2VlxXfffcejjz7aJeczB3Z2dt1KfLJEccHR0ZFz586ZpAOLIAi88847rF27lkOHDjFw4MA2j2FUqW+mSFdWVt5UyW7LGA2Pk5CQkADTpkWYU1wwGAwkJiZSVFSEjY0Nfn5+7S7cePXEx3z7zl2UVbcuzaNeC8mpV9n5/ad8+kwYW/8WTMIPS6kuiAOudYQ4d+4c/v7+DB06tFv5v9cjk8lwC5tNwNxduPyxBNW4M2Q6/ZFctR+aLsiKqdXIKA5bju+41zv/ZC1gys0pnU5HXFwcer2eESNGdEvxSRAECrdPoz+HzW0KZbW2GO44ipNfx+ukCILAV199xb///W/27NlDTEzraji0FVP4gk3RfVYMN6G4uJiEhAT69u1L//79xYe5jY0N9fX1jY7tTg/XmpoaBEFgzpw5/Prrrx0aq7i4mA0bNrBhwwbkcjmDBw/m2Wef7VatJlvLyJEjWb9+PXCtgvOKFSvYtWsXOTk5Jo8YsLW1Ze/evV3a1cMcdDfx6Wb1SsyFg4MDZ8+epW/fvh0eSxAEPvroI1atWsUvv/zS7qKuDeshXN+bvaioiOrq6hYns5CQEKysrG6aj9dcLp+EhIRERzGnuKDRaIiNjUUQBKKiojh37ly7hYWEzQ9ycM8PtNdFMQiQlasiK3cz/LQZfy9HfAIHEDruMUJDJ3abVpOtRe47FPmUNQDU1qjIj1uJLHcb3rJMnO1btwnXWirrrKiM2ojXwDkmHbetCIJA0a65+NUdRiGEIPSeh0f00+1ugWmMdra1tSUiIqJbrY+MCIJA0fY7CbXqeKppRymvtUE38TBy/45HkQqCwPr163n99dfZtWsX48aNM4GFTWMKX7ApLG7V0JZKuhkZGSQkJDBs2DDCwsIafbapSae7hHUDlJeXM2zYsA4LC9ejVqs5d+4c9913Hx4eHtx+++188803Zg8t7AwCAwP573//S3JyMiqVig8++ICoqCiT3AeOjo589tln1NXVcfHiRQoKClqd+9nd0iK626RjSZELRmHBFK3SBEFgxYoVfPzxx+zfv79DqRATJlyr6Hzw4MEb3jtw4ECjY26Go6MjMTExpKamkpPTuC2YIAj8/PPPyOVyRo4c2W47JSQkeiamWPCaS1wwRss6ODiI3ZOMeesKhaLVNhn0Wo58MpYDu9svLDRFkaqWxMSL7Pj8Sb56yp2jn4wj7/RnGHT1LX+4m2Hr5IXfuH/guyQe2cJyckM/I1M/GlVNx4vdqdS2nHH7iLg8OXFxceTl5d2wadkVCIJA0ZYJhAq/4GxvoK9DBv2UHyDf15fSjX0o3PcA1QWtTwmor6/n/PnzODg4EBkZ2e18PPj/v8nW2y1GWNBM+AV5QFSHxxIEge+//55XXnmF7du3M3HixI4b2Aym8AWbQiZY4EqnpR+vTqcjMTGRyspKsYfw9eTm5lJcXNzIse3Vq9dNaxBYGra2tiZpM9JarKys6N+/PwsXLuTpp5/u0aHMgiCwe/duPv74Y5KSktrcvtLLy4tz587h6+tLVVUVCoUChUJBdXW1WLnWx8fnphWZ+/XrR0lJiSkupUvo1asXaWlp5jaj1ajValauXMnWrVtJSUkxWzVxe3t7zpw5Y5Kde0EQWL16NW+++Sb79+9n9OjRHRpPp9MxcOBA8vPzOX36NJGRkcC10LiYmBiuXLlCamqqGG1RWFhIRUUFAQEBjZ4Na9eu5cEHH+See+5h48aN4oLh888/54knnuDRRx9l9erVHbJVQkKi56HRaDostJeUlJCent6pO3tNndMYLRsSEiL2p6+srBR9gdraWjw9PUVfoKmq7pqqIn56bwwZOV3nCzjayegf2pf+I+YRPO457OTt2/XuLpRlH6HwxDv46eMJdKnCug3bqcVqObbTT2HvEYJarRa/28rKSlxcXMTv1tnZuVMjQwx6LYrNo+jn0HLFfkWNA5UO0diH3Y/H4D80WVCwtraW2NhY3NzcGDx4cLeLTDUi6PWo4lehy9qEuzYZTyfzFHYtr7VBc9vPrW492RJbtmzhySefZPPmzUyfPt0kYzZHW33B1mKR4kJzk47xh2Fra0tkZORNc4QKCgrIzc3llltuEV8LCQmhoKDpwjcSjQkMDGTz5s3ijdaTUKvVxMbG4unpSXh4OOnp6SxbtoyDBw9SVFTU7GeDg4M5f/58k8JBXV2dOAGVlZXh4OAgTkBubm7iQ7xv374oFIpOubbOICgoiJSUFHOb0S4EQWDv3r18+eWXnD59WqwD0NnY29tz6tSpdtVDuB5BEFi7di1/+9vf+Omnn7j11ltNYCEcPnyYqVOn4uDgwJIlS3BxcWHr1q3k5OTwwQcf8NJLL4nHLl26lHXr1rF27VqWLl0qvm4wGJgxYwYHDhxg9OjRTJgwgYyMDLZt20bfvn05c+YMPj4924GVkJBoO6YQF1QqFcnJydx2220msurmCILAlStXyMjIYOjQofj7+4tpENe3OzcuRktKSsSc5YabDlV5Z9n2/nRKyszXVtHGCvoG+TJx6Rd4hE42mx2dRV1dHbGxsTg5OTFs2DB0VbmUxS7Humgvfra5ODQTwJqn9sZ5/vkmUw40Go3o56lUKuzs7MTv1sPDw6SLdV19FeVbRxDslN/mz1bXW6EQQqH3PDyin8LOyUf0fb29vRk0aFCPSpepzDmCOmk1juXH8HUow6YLgjEqam2oG38Al94d2+wxsnPnTh5++GG+//575szpujSctviCraVbiQulpaXExcUREBDQYiHC4uJiMjMzG+XDh4eHk52d3Sk29zTuvvtu1q5da24zTE55eTnx8fH07t2b0NDQGx6uFRUVfPrpp2zbto20tLRGRTQjIiI4duxYq0LIdDodpaWl4iQE4O3tjY+PDzExMSiVStNeWCfSt29fkpOTzW2GScjKymLFihXs37+f3NzcTklRsbe358SJE4SHh3d4LEEQ+Pbbb3n55ZfZvXu3yUPkzp49yz//+U9OnjyJVqtl2LBhvPjiiyxevLjRcTcTF+BapNk777zDhg0byM3NxdPTk1mzZvGf//wHPz8/k9orISHRM9Bqta0uUn0zysvLiYuL4/bbbzeRVU1jMBi4dOkSCoWC6OhoXF1dW11fob6+vtFi1KH8GAkHP0RdZ37X+7YJtxPz4O4etciEa3WXGi6ir18r6DVqSi+uQZ/9A176y7g5/i+68UptX7wWnG9Vm0+9Xi/6eUqlEp1OJ/p53t7eHUrB1dQoUG+Pppe8tN1jGNHqoajWizz9UOwGPsSgW+7qcd95Q+qrCiiPW4ksfzc+VlnI7U3/W6uos6Z+3H6cg0xTc+2nn35i6dKlrF+/ngULFphkzLbQWl+wtXQbceHq1aukpqYyaNAggoKCWhxDqVRy6dKlRop2VFQUly9fNrm9PY3XX3+d1157zdxmmByFQkFiYiL9+/dvVTFLvV7PDz/8wNq1a/Hy8uL7779v1wNZEAQqKipEB2PBggVdtoNuCkJDQ0lISDC3GSanvr6etWvX8v3335OYmGiSXEobGxs+/fRTRo4cibe3N56enu3OZxQEgR9//JFnnnmGbdu2MWXKlA7bJyEhIWEJmEJcqKqq4syZM0ye3Hk77xqNRqyoHx0djb29fbsLN6bu/TN7f1yJzrQ1B9uMtRXMWPgog2Z9bF5DOgGj4GTslNbS9yMIAhXpO6m9/CUIBvxn724ynaAlBEFoV5psU9SXX6H+p9H4yzunfpRC7UCl4wjsBzyAR/iSdl1vd0HQ6ym79B316etxrY3D26mWjuoqFbVWnHF+B4+QiXh7e+Pl5dWhjmoHDx7k3nvv5csvv2TJkiUdM85CsEhxoeGkYzAYuHz5MsXFxURGRuLp6dmqMcrKyoiPj2+kaI8dO5bY2NhOsbknYGVlxdq1a1m4cKG5TTE5+fn5pKSkMHToULPvpgYHB3eb2h9wrcZEcnJyk7VNehInTpzgk08+4dixY+0Sf+zs7Dh69CiBgYEolUqUSiX19fV4enri7e2Nt7c3jo4t74YY2bZtG48//jg//vgjM2bMaLM9EhISEpaKKcSFmpoajh07xpQpUzplJ7a6upoLFy7g6uoqtnM0FmuUyWRtKkB+9us5/HbUtAW624ODnYy7HnmfXrc8YW5TTE5JSQlJSUmEhYW1ahOyM2mYJltaWoqjo2OTabLXoy5JQnZoAt5OXZMycy19oj+y3vNwj36y3d0nugvqwjhUF5ZhqzhEkEs5dm3UBCrrrFGP3oXedbjo59XU1ODh4SFGrTg5ObV6vMOHD7N48WI+++wz7rvvvh4TUWLR4kJDxTgqKqpNjnllZSVnz55tpGhPmjSJEydOdIbJ3R4HBwcOHjx4QyuS7o4gCGRnZ5OTk0NERESrxanOpLuJC0YCAgK48847efvtt/Hw8DC3OSantLSU+Ph4Bg0ahLW1NZ999hk7d+4kMzOzRSfY1taW3377jeHD/9ffWBAE1Gq1OAGVl5cjl8vFCcjNze2mE8nu3bt58MEH+e6775g7d65Jr1NCQkLC3Oh0ug53eqivr+fw4cNMmTLF5IXpFAoFFy9epE+fPoSGhoqFG6FtwoKuvopDH44mMeWKSe1rDx7ONtz10hY8Q+80tykmJy8vj7S0NIYOHYqvr6+5zWmETqdDpVKJ6RPwvzTZhrve1bknsT0+Aw/Hrivm3hCtHorrfKj3uh3Psf/G3rW3WezoTCorK7lw4QL9+vWjt58HZRdXYbi6DU9DCm4OzT+PquqsUI/ZjWufiY1er6mpEf08o5Bk/H7d3d1v+mw6duwYCxcuZNmyZTz44IM9RlgACxYXysvLiY2Nxd3dnWHDhrU5tFitVnP8+HGmTp0qvjZnzpwm22383vHy8uL06dMEBgaa2xSTIggCqampFBcX37SriDkICgqitLTjeXTmICIighMnTvSohyA0Fhau/x3o9Xo2b97MunXrOH/+/A3dRWxtbTl69GiLrSG1Wi0qlUqchODab88Y1WDMz9y/fz/3338/a9euZdGiRSa8SgkJCQnLwBTigk6n49ChQ9xxxx03Le7dVgRB4OrVq6SlpTFkyBACAgLQ6/Viqm5bRIwaVTq73rmN3GLzp0H28nVm3l+O4uQ9yNymmBRBEMjKyuLq1atERkZa/MbH9WmyNTU1eHp64qpJou+Vp3B1MHPODNfqTngvisXKpuPtPC2JhsLC9d0PBEGgImM3tZe+Ql59Bl/HKhr+1KvqrVDfshPXvnc0ew5jvTWlUim2pfXy8hLrcBifU6dPn2b+/Pn897//5YknnuhxPnX7k0Q6kaKiIi5evEhISEircqaawtraWlSajZNBW3Kefi8MGDCAkydPtikqpDug1+tJSkqiurqamJiYHnd95mDMmDH8/PPPPe4h2JywANeeJUuWLBFz4ZKSklixYgW//PILtbW17Nmzp0VhAa6JEP7+/vj7+4sOhlKp5MqVKyxbtoyjR48SFRXF5s2b+eKLL3pkepKEhISEqTBuOnVUpDDSMA131KhRuLm5tbu+AkDm4XeoqTVfRwgjg0IDmfbns9g6WvbCu60IgsDly5dRKpWMGjUKZ2dnc5vUIjKZDHd3d9zd3QkLC6Ompoa8c1/Rv+g1nBzMv9ebXT8Q37vP9bg6DM0JC/D/30vYHNzDrnVpKC/NpDx+BdZF+3GmGO3oH1sUFuBa3S1fX198fX0b1eHIzc3lm2++YcuWLcTExLBz507+9a9/9UhhASxUXKitrSUiIqJDoU3GMCO9Xi+KC5ayc20p3HnnnWzfvr3H3dharZaLFy9iMBgYNWqUyXY0TIUFBgu1yKRJk9i1a5e5zTA5LQkLTTF06FBWr17dofM2dDD69+9PQEAAgiCwe/du9Ho9f/vb3zh16hSzZs1i2rRpHTqXhISEhKVhCr/D2ALSFOKCRqMhPj4erVbLmDFjcHBw6JCwADBs4VcMW/gVpen7yTy+ivSkU+Qr1B22tS3cMmoE45883OMWi3q9nsTERGpqaoiJicHBwcHcJrUL9eWvCS/5C/YWECSQpY3A7+6eF5nakrDQFA6eofjfsUz8d3u2J2UyGa6urri6uhIaGkpwcDAajYbt27dTX1/Pe++9R3JyMjNnzmT27NntLv5tiZg2Sc1EhISEdDhnqilF29XVtUNj9iSefPJJduzYYfaHSFxcHK+99hpFRUUmGa+uro7z589jbW3NiBEjLE5Y6I54eHhIwkInk5+fz/r163n99dcpKytj1apVCILAqlWrzGqXhISEhCXTsMhie6murub06dPY2NgQExPToY4QTeEZNo1Rf9rJHz4s4Yl3jjN15kJCenti1YnulwyYOnMRtz3zm9mFhdrSLFJ/epm6sismGU+r1RIbG4tGo2HUqFHdVlgoPvFvAq+8in37O1aajEzDWPwWSsJCZ6JSqfj6669ZunQpFRUVfPvtt7i4uLBs2TKT14wxNxYZudBZinZ3Ehf8/PyYMmUKBw4coKSkxGTjymQyXnrpJR577DE0Go1ZF9979+5lyZIl6PV6li9fjre3N5MnT+a5555rVBivtajVamJjY/H09CQ8PNxif6zdLXJh8ODB5jbB5KhUKi5evGgRwsLZs2dZuHAhb7/9Ng8//DAymYzp06czffp0s9olISEhYel0VFxQKpXEx8cTFBREWFgYgiCI45lCWLge58Aohi9ex/DFUFdxlSvHPiYj9icyruSj1ZnmHLbWEDPlQTzHvUp9fT32ZtwWr8w9zdb3pqOs0GD14yqCA9wJGz6RkPHP4Bo0us3j1dXVERsbi5OTU7vqsVkKhb88R9+KL7EE8zNlkwm4a6e5zTA5liQsXL58mVmzZvHkk0/y17/+FZlMxh133MEdd7ScatEdsUhxwVRcP+l0J3EB4PPPPweguLiY5cuXs2PHDnJyctq9OLW1tWXjxo0MHjyY3NxcLl26hLu7Oz4+Pvj6+nZpXYJVq1bxyiuvNLoWpVLJpk2b2LRpE3K5nNGjR/P4448zffr0Fif48vJy4uPj6d27N6GhoT1OfTUnxkKDPQVLEhZiY2OZP38+b7zxBk899ZR030pISPwuMNWzzsbGpt3iwtWrV0lNTWXw4MEEBga2u3Bje3FwC2bQrI8ZNOtjdHUV5J76lIxzm0lLz6Cmvn1+nrOjFbMeXYXe61YKCwtJSUnB1dVV9PO6svZYSfIWti7/E9W1/99aXoArBeVcKdgB+3fg5+lA2OBRhI55EJ+hi1q8J6qrq4mNjcXb25tBgwZZ7AZSS6guriWo7EuszbwCEwTIsptLwMzvzGtIJ2BJwkJaWhqzZs3iwQcf5I033vhd+HkW2S1Cr9ej03Vcwj1y5AgRERFi9dhvvvmGxx9/vMPjdgVeXl5cvXq10Ws6nY6zZ8/y448/cuLECVJTU1s9qbq4uHDs2DHCwsLE167vwyuXy/H19cXHxwcXF5dO+wH85S9/YcWKFa0+3tbWlmHDhnHvvffy4IMP3rDYVSgUJCYm0r9/f4KDg01trskJDAykoqLC3Ga0msmTJ7NzZ89QtS1JWEhISGDGjBm8+uqr/PnPf/5dTDgSEhIScK14olbb8ZZ7p06dol+/fvj7+7fp3CkpKRQVFREVFYW7u7tJ0yA6gl6vJznxIuWXN6EvPk5mWjJl1a3zh3097Lnrzwdx6TVSfE2j0aBQKCgpKaG0tBQHBwfRz2uuHXJHuXriY7Z/9TqaVrrybk7W9B8YTv+YJfQa9TjWdo03u8rLy4mLiyM4OLjdhd4tCU2NgrILK5Dl7cDHKgu5fdcuxQwCZMvvJWBKx+pHWSIVFRXExsYSEhJCnz59zGpLVlYW06ZNY9GiRXz44YfdVhBrKxYpLphq0jl27BiDBg3Cx8cHgF27dnH33Xd3eNyuwM3NjYKCAvHfdXV1xMXFYW9vz7Bhw7C1tUUQBL7//nu+/vprLly4gEajaXKs3r17c/bsWdzc3G56Pq1WK7ZOUSqV2Nraikp3c31a28qSJUvYvXt3uz8vk8kICQnhrrvu4plnnqGuro6UlBSGDh2Kn5+fSWzsbLqbuDBt2jS2bt3a5ectLi7GycnJZIVYLUlYuHTpEtOnT+fZZ5/l9ddf73JHSa1Wk5WVRXBwcLPPBQkJCYnOwFR+3tmzZ+nVqxe9evVq1fFarZb4+Hjq6+uJjo7G0dHRYoQFjUbDxYsXEQSBiIgI7O3tEQQBVcpOMk6sIT35LEWq2iY/G9Lbk1l/OYO9683nNp1Oh0qlEjeVrKysRD/P09PTZH7e5d3PsXfLlxjaubqwt4X+IcH0j55Dn3HPUVFnQ1JSEmFhYQQFBZnERkvCoNdSlrQeTfoGPDQX8XRq2pc3FXoD5Lg/iv8dH3fqeVqDtrYMBAO2Tl4mGc+ShIWcnBymTZvGrFmzWLFiRZcLC+b083q0uHDy5ElCQkJERfvYsWPceeedHR63K5DL5WKthcrKSuLi4vDx8Wk2FOzQoUN89tlnnDhxgurqagBiYmI4dOhQm/LSDAYDpaWllJSUoFAoEAQBb29vfH198fLyaleOm16vZ8KECcTFxbX5s83h4eHBnXfeyV/+8hcGDhxo0rE7i4CAACorzd/3urXMmjWLH374oUvPmZqaytixY6mrqyMwMJApU6bw7LPPtvs7NgoL4eHhBAQEmNjatpGamsr06dN5+OGH+fe//20WZ/app55i586dYhrR4sWLmTNnTpfbISEh8fvEVH7ehQsX8PHxaVXUorEuk5OTExEREVhZWWEwGCxCWFCr1cTFxeHq6sqQIUNu6mdV5p4m89hy0hOOcLWwAkGAyKEDuOP5kzfs9jeHwWCgvLxc9PO0Wi3e3t74+Pjg7e3drnRIQRA4/808jhw+1ObP3gwrGfTydSVk2AQGT34V58Aok41tqVRe+RV14iqcKk/g51iBKdekOj2kuz5F8OR3zR79oakqonZXFN4OlRTX+VLvfQduEc/i5N9ya++msCRhIT8/n6lTpzJ58mQ+//xzs0QsmNPP69HiwpkzZ+jdu7eoaCcnJzNixIgOj9sVODg4oFKpKCkpISkpSfyxtPZhkJCQwG+//cbTTz/dITsEQaCiokIMq6urq8PT01MMq2tNQciqqipGjhxJXl5eh2xpCRcXF2699VaefPJJiy6S0t3Ehfnz5/Ptt9922fmSk5MZP3489fX1N7zn7OzMLbfcwsMPP8zs2bNb9XuwJGEhIyOD6dOn84c//IF3333XLBOOXq/nk08+4dixY5w+fZri4mIAPvjgA5555pkeV2NDQkLC8hAE4abRlm0hPj4eNzc3+vXr1+xxKpWK+Ph4evXqxYABAxAEAYPhWi0AmUxm1oVWWVkZFy9epFevXvTv37/VttSWZlJyaQfB417skP2CIFBVVSX6eWq1Gk9PT3x8fPDx8WlVNwaDXsvhZWOJvXip3Xa0hgBvJ8KG3ELouEfxGtg6H6A7U1eaSXncJ9gU78fPNr9DnSW0Ooi1ewKV6ywAUUzy8vLCxqZrC0DUVxVQvysaf3lVo9cFARQ1TlQ5jcB+wFI8Bi9u1XdsScJCUVER06ZNY+zYsXz11VdmKTpqbj/PIsUFU0061yvaxcXFZr/pWoudnR3x8fFkZmYyZMgQiwn5V6vVotJdWVmJm5ubKDQ4OTndcPzVq1cZPXp0l6cB2NnZERkZyQMPPMB9991nURWFu5u4cOedd7Jy5Uq8vb07vep0QkICEyZMaNXv38bGhvDwcBYtWsTjjz/eZKEqSxIWrly5wrRp05g/fz4ff/yxWXPvBEFAJpORlpbGvffeS0lJCWvWrGHKlClms0lCQuL3g6n8vMTERBwcHBrVk7qe3NxcUlJSCA8Pp1evXl1euLE5CgoKuHz5MgMHDqR3795mtcVITU2NKDRUVFTg4uIi+nlyufyGxZ62tpS974wiLds0LcVbi4ezDWEDhxJ6yx8JHPkQVjbm64rRFdRUqbi8/1941Rymt30Org6tL2Rar4Xi0Pfxjn4SQRAoLy8X06BramraLCZ1hPryq2h+GomfXN3isVV1VihlYch634VH9FPYOnrccIwlCQslJSVMnz6dqKgo1q9f3+WiTUPM6ef1aHHhekVbr9d3aaXcjmBtbc3u3buJjIy02JzopgpCGvP3XFxcuHDhAlOmTGlyB7orsbKyYvz48ezdu9esdhjx9/enqqqq5QMthDlz5vDCCy9QWVkpVp2+mZPREeLi4rj99tvbHbXUq1cvpkyZwnPPPUdYWJhFCQu5ublMnTqV6dOns3LlSrM7tEZ27NjB0qVLmTFjBsuWLcPX11eckODas1itVuPs7GxmSyUkJHoSpvLzLl26hJWVFYMGDWryHCkpKRQUFBAVFYWHhwcGgwG9Xm/2NAhBEMjKyuLq1asMHz4cLy/T5JybGmNBSIVCgUqluqEgZF1ZFjveHkteSbVZ7XS0kzFsWAS3Pf0bMgvaTDIV9fX1XLhwAblczrBhw5DJZJSnbKEu9Wtc1OfwcarlZrdzrUaGctCneA1f2uT7arVaFBrKy8txdnYW/TxTF3evK8tCt/cWfOU1bf6sRgfF9b5ovCfjFvkMTn7DLUpYUKlUzJw5kwEDBvD9999bTBSoOfy831UrSkvavW4Jg8FATExMl7aHbCsODg4EBQURFBSEVqsV0zjOnz/P2bNneeutt8SwQ3NiY2PDP/7xD3Ob0W3x9PQkJiaG+vp6sehnVlYWdnZ24gTk4eHRoQXz+fPnmTRpUoe6xOTn57N27VrWrl2LXC5n4MCBPProo9x+++3tHtMUFBYWMnPmTCZPnsynn35qdmHBOKmUl5ezb98+amtrmTVrFr6+vkDjFnHnzp3ju+++Q6fTMWjQIKZNm0b//v3NZbqEhEQPwVQLFmtr6ybnDZ1OR3x8PLW1tYwZM8aiCjcaDAaSk5MpLy9n1KhRFi3e2tnZiQUz9Xq96OfFx8cjq0gm/eBfKavqeHe3jmJjLWPotNd6pLBQW1vLhQsX8PDwIDw8XPQhPMIXQfgiAJSFF6i8uAJ71WH8HZTY/P+fQa2RUT70a7wG37yYvVwuRy6X07dvXzQajVj0MycnBxsbGzF9wtPTs0PrqLrSTPT7bsFX3nRR0paws4EgmxKo/Q7h5HcoahzJr+9P7/73ERw8sd12mYKysjLmzp1Lv379+O6778wuLJjbz/tdiQtw7Q9qgcEaTWLJwsL12Nra4u/vj7+/P8uXL+ff//63uU0Crj00T5w40WzIZFfTXe4/I8aHpL29fSMno7S0FIVCQVJSEgaDAS8vr3YVgzp9+jRTp041SftZI8bCXY8//jhPP/004eHhLF68mEcffbRLo5eKi4uZOXMmY8eOZfXq1RYlcCYmJnLo0CFGjhzJqFGjmjympKSEgwcPkpKSIr42Y8YMVq9e3erq7BISEhJNYQp/zMbG5oboyJqaGmJjY3FwcGD06NGiL2gJwoKxI4RxA6mzUw1NibW1Nb6+vvj6+lJ08Xu2ffcX1HXm30DycrNj0asHcOkdY25TTI5arebChQv4+voycODAm9678oARyAO+AaC6qoiyuBVQ8BP2I9/Go/+MVp/Pzs6OgIAAAgICMBgMlJWVoVAoSElJQaPRNPLz2nLv1ipTEQ6OxUde1+rPNIdMBr7yWnzliVD6Z6p++AtK2QBkQXfhEfVkk+kTnUVFRQXz5s3D39+fH3/8sVW16LoKc/l5FikumFLRbigulJSUdBtxoTvY2BQvv/wyq1atMrcZAHh5eXHu3DmLqVfRXWlKKLC2thajFgRBoLKyUlS6k5OTcXd3F99vqhaHkWPHjjFz5swbREBTotPpSExMJDExkddff51evXoxdepUnn322U4VnRQKBbNnzyYyMpKvv/7aYoQFmUyGTqfjt99+Izs7m0cfffSmldYnT57M6dOnUSqVrFmzhvfff58rV650m/QyCQmJns31fl5paSlxcXEEBgYyYMAAZDKZ+L65hQVjRwgXFxeGDh1qMXNCW7ly9F12rHsTrfkDFujlI2f+307h6BlqblNMTlVVFRcuXBCr/bf23rVz8cfvtreAtzp0fisrK7y8vPDy8mLgwIFUV1ejUCjIz8/n8uXLrU6TrVEkI/t5PN5OnZci7eJgwIUUKHkbzU9vU1zv9//pE0/j5De8085bVVXFggULcHd3Z+vWrRYjFprbz7NIcQFMo2hbW1tTX1+PIAhcuXKFjIwMrK2tLSJUvzU0zImxdARBYNGiRezbt8/cpgAQHBzM+fPnLXIR1N2Eo5aiEGQyGW5ubri5udG/f39qa2vF9In09HScnJzECcjNzU28p48cOcKcOXM6VVhoivz8fL7++mu+/vprXFxcGD16NM8//zwTJ0402TlKS0uZPXs2AwcOZMOGDWYt6tMQ4zMlIyOD/fv3ExwczIQJE246ITo4OGBnZ4erqyu2trYIgsB9992Hu7u7uAsoISEhYS4aigt5eXliccSgoCAxWgHa1hHCoNdydu08HJ29CL3tBZO0P2xvRwhLI3nHk+zbvg5LcGNCg72Z9dp57OQ+5jbF5JSXlxMXF0ffvn1b7ITSFchkMlxcXHBxcSEkJIT6+nqxTkNWVhb29vain+fu7i76BjXFCVj9MgFPp47XV2kt19IniqF2I8LJjde6T8hH4TjkcdzDTNeKUa1Ws2jRIuzs7NixY4fFRJtbgp9nGR5vJ2HMxUtKSkKpVBITE4Otra1J2lx2BXV1dRZzszaHVqtl/PjxJCYmmtsUACIiIjh27Fi33RWwNNoa4uXo6CjW4tDpdGL+Xnx8PHCt/dHly5d58MEHzS70VVVVcejQIR544AGTjVleXs7cuXPp06ePRRX1aShWnjlzhvPnz/PAAw8wcODAZj9nZWVFaWkpa9asoVevXsydO7crzJWQkJBoEaOfl5KSQn5+PtHR0Xh6emIwGNqVBqGpKuKn90aTkaO49sLerfTykTNg+K2Ejn8aj5C2t7kuLCzk0qVLFtURoq0IgsDZr2fx29Ej5jYFgKGD+jLl5fNY21m+j9xWSktLiY+PJywsjKCgIHOb0yT29vb07t2b3r17N0qTTUxMFNNk3WTF+CUuwtPJfGuua+kTNbjpjlJcbTrfpba2lsWLF2MwGPjpp58sZiPTUvy8Hi0uCIJAaWkpTk5OjBkzBnt7+y7ZQWyq1kN7qKys7BbiwkcffcTly5fNbQZwrW3i9u3bLXpXoKdFLjSHjY0Nfn5++Pn5ie2Ptm7dyvPPP28RfweZTMb69euZP3++ScarrKxk/vz5+Pj4sHnzZovKvTP+JgoLCzlw4ADW1tZMnz4dD4+b5yYaJ6qdO3eiUCh4+OGHxarsUtSChIRERzBVmmp1dTUajYbRo0fj5OTU7voKVXln2fb+NErKGodv5yvU5P9ygMO/HMDH3Z6BQ0YSeuuj+Axe0Oz4DTtCREZGWmxHiNZQFLeO5PiT5jYDgFtGRTP+ySM9snijcYE+aNAgAgMDzW1Oq2gqTbYw5Vf8Mh/A06lrI1ObQqOD4pAP8I56zCTj1dXV8Yc//IGamhoOHDiAi4uLScY1BZbi51msd9jRxWFVVRXZ2dnIZDJiYmKws7NDr9d3ibNvqjDvyspKk4zT2bz66quUl5ezYcMGxo8f3+k9cm/G/fffz44dOyxaWOiOmOo3I5PJOHHihEUJC19//TV33XWXScarrq5m4cKFODs7s337drP9DpoiISGBwsJCADIzMzly5Ajjxo0jIiKi2c8Zf0tr1qzB1taWBQsWAKZ7xklISEi0l9raWtLT0zEYDB3uCFEUv4ENb066QVi4HkV5PcdPnGDduw/w5VPuHF1+KwXnvkC47plo7AhRUFDAqFGjurWwABAQvZQHV5Tx0N+3MfH2yfTyMc9O7e2TpnHbM8d6pLBQVFREQkICQ4YM6TbCwvXIZDKsqi4TkrXUYoSFwn7v4h39hGnG02i4//77USqV7Nu3Dzc3N5OMawosyc/rkZELCoWCixcv4uXlRU1NTaOCPpa0k9gSVVVV5jah1chkMu666y5xoXbixAmWL1/OsWPHqKio6PTz/+Uvf+Hvf/97p5+nJQRBYNOmTdx1110WU9ilo5jqN7N9+3buu+8+ixEWvvrqK+6+++btmdpCTU0NixYtwtramp07d1pUxJFSqeSRRx7B3t6eGTNmkJGRQXFxMW+99RZ9+/YFaDav7uTJk5w5c4bJkydzxx3XQoKllCMJCQlzUlZWRlxcHB4eHpSVlTWKGG2rsJC271V++uFTdG3M0iuv1nH2fBxnz8chd3iRAQMG0P+WxfhFPULS5Yxu2RGiJTzDpuIZNpVRQHVRPFlHl5F+8Reu5Jdi6MSpXSaDGfOXMnjeys47SRsou/QDLqEzsLE3za51Xl4eaWlpRERE4O3tbZIxzUHV1WM4nJyJm6P5hQWtHgr7vo3PiKdNM55Wy9KlS8nNzeWXX35pNhqgq7E0P69HiQuCIJCTk0N6ejpDhw7FxsaGy5cvo9frr6lpVlbd6iHfncSF6xk3bhzjxo0DIDU1lY8//piDBw9SXFxs8nP94x//4OmnTfPw6Ah6vZ7Ro0dz6dIlHnnkEfr06cPcuXN57rnnGnWssITFdVswhbjw448/8uCDD1rMtX/55ZcsXrzYJGPV1tayZMkStFot+/fvt7ie5U5OTkyePJlly5Zx/PhxAFF4rampwcnJqckJxxgq9+WXXwIwf/58bG1tpUKOEhISJqG9UYb5+flcunSJAQMG4O7uzrlz59BqtaKo0NpxTVlHQF1nIC4hhbiEf2Fv+y+CewcweMwiZLoQsO95BQcBnP0jGb74G4YvhrqKq1w59jEZsT+ReSUfjQk7SdhYw4TZTxA8+Q2zFzoXBIGiHVMJlZ2gLhlKtL3Q+c/AI/p57N37tmvMnJwcsrKyiIqKsqgFa1upzDmC06k5uDpYhrBQEPQffEY+Z5LxdDodjzzyCOnp6Rw+fNjiBCBL8/NkgqV4+9eh1WrbVOzNYDBw6dIlFAoFUVFRuLm5oVarOXPmDFZWVmJv3ilTplhMfYCW+OGHH5g1a5a5zTApCoWCZcuWsWPHDnJycjq02LSysmL58uVERkaiUqlwcnLC19cXHx8fXF1du3QCqq2tJTo6mqtXrzb5vo+PD5MmTeK5557jjjvuoLa2tsts6yjLly/noYceavfn9+zZw5IlSyxGWFizZg1//OMfTTJWfX09f/jDH1CpVBw8eBB3d3eTjNtZbNy4keXLl3Pu3DmcnJyYMGEC9957L3Pnzm3UMtQ4sRQWFtK/f3+CgoI4dOgQvXv3NrtzJyEh0TPQ6XRtCr0VBIH09PRGNQzq6uo4ffo0BoMBHx8f/Pz88PT0bNEx1tVX8fOHo0lKudLBq2geGysI6eNHWPQM+o1/EUfPkE49nyWgq6sg99SnZJzbTFp6BjX17Z/7HexkTL7nTTTek1Aqldjb24t+nru7e5fORYJeT/HWcYTY3Vi8XG+AoloP6twn4BL5HM69Yloe7/9rcuTm5orrlu5KdcF5HH+7HRcH83fj0+ohv/e/8L3lZZOMp9freeKJJzh//jyHDx8mICDAJON2Fpbg51msuNCWSUej0RAfH49WqyU6OhoHB4dGLYjKy8spKSmhpKSE5557jvT09M403WR89dVXLFmyxNxmdBpKpZJ///vfHDlyhOzs7DY5GXZ2duzbt4/Ro0cDiF0JSkpKUCqVYoEZX19fPDw8OnWnVaVSMWLECBQKRaedw5ysXr2ae++9t92fFwSB7du389VXX3H27FlqampMaF3bWLVqFffff79JxjLm3uXl5XHo0CE8PT1NMm5XkJCQwPvvv8+mTZuYPXs269evx9nZGY3mWrsoY7TKhx9+yCuvvMKLL77IBx98YE6TJSQkehht8fN0Oh0JCQlUV1cTHR2NXC4X/TyZTEZFRYXo5+l0Ory9vfH19cXb2/uG8N4aZSo7351AXnHXRofKZNA30IMBkZMImfACzv6RXXp+c1CjruLCnrdQX/mZvJwMyqpbH9Lg4mjFohe/x2vgtU02Y1eCkpIS0d8y+nmenp6dmq6n19Si2jqSvo5XWnW8Qu1ApeMoHAY9iHv4ohsWakahrLCwkBEjRlhcxGN7qMw6iDrpc+RVJ/F1rMIcAY5aPeT3+ie+o/9skvEMBgPPPvssv/32G4cPH7bY7h1NYU4/r9uLC9XV1cTGxuLi4sKwYcOwsrK6aQsiQRCYNGkSZ86c6UzTTYK1tTV79+7l1ltvNbcpnUJ5eTnx8fFiz2eATZs28dVXXxEbG0t9/c2LKsnlck6cOEFYWFiT7xsMBsrKylAoFJSUlKDX6/H29sbHxwdvb2+TdgzJy8tj1KhR3ab4ZntYu3atyWoTAFy8eJHly5fzyy+/dKkgs3LlSpYuXWqSsbRaLQ899BBpaWn8+uuvFhci11qMBdGGDx+OXq/n0KFDrF+/nunTpzN+/HhmzpxJXl4eBw4c4JZbbkGr1VpMa00JCYnujV6vR6drebFZW1tLbGwstra2REZGYmNj06yfV1lZKQoNdXV1jYSGyuyf2bbsHsrbsMjtLPoEuDHnr6dxcAs2tymdgtE/9/b2ZtCgQchkMlSpu8k4vpr05DMUqW4ewenlZseiVw/g0rvpCABj9ymj0FBfXy/6eT4+Piadp3S1FVRsiyJI3r603oo6a1SycKxDluAZ8ThWtg5cvnxZ3JhquJvcU6hVplIRtxwbxQH87Aqx74IkfJ0e8gJfx3fMayYZz2Aw8NJLL3Hw4EEOHz4s1i7obpjDz+vW4oJSqSQ+Pp7g4GBxgWr8zM3y7u666y4OHDhgeoNNiLW1NRs2bOix/eSNrXb69+9PcHDTk+qvv/7KypUrOX78ONXV1eLrXl5enDt3rlENg+YwOhpGoaGmpgZPT08xrK4jNTguX77M+PHju1WKQ3vYuHEj8+bN65SxFQoFK1asYMeOHWRlZXVa6kRHUzsaotPpeOyxx7h48SKHDx9u9b1o6ej1elasWMGLL76IjY0NISEhpKWlMWnSJA4ePCilQkhISJiU1ogL5eXlxMbG4uvrS3h4eKMC3S3VVxAEAbVaTXFx8bX5P2U9ycfXU6816WW0C0c7GXc9tozAUQ+b25ROoby8nLi4OIKDgwkJCWnye6rKO0vmb5+QlnCEq4XlGKf/Xj5y5v/tFI6eoa06l/F7NgpK1dXVeHh4iEJDRwos11cVULtrJIFy0xQmr9XIyKv1p9h2DGF3/gsXn99BmkxtBaXxnyFc3YK3kNYpqRM6PeQG/BW/sX8zyXgGg4HXXnuNnTt3cvjwYUJDW3cvWjpd5edZrLjQ0qSTk5NDWloaQ4YMISAgAL1eLy5MmguBv//++9m6davJ7TUVjo6O/PLLLy22Dumu5Ofnk5KSwpAhQ/D392/VZ5KSkli2bBmZmZns2bMHubz9LZBqampEpbuiogJXV1cxrK4t4549e5YpU6ag1VqAl9LJbNmyhenTp3f6ebRaLevXr2fDhg1cvHhRDN3qKI899hgLFy4UHQ03N7d2P0D1ej1PP/00p06d4siRI922XVRzFBUV8emnn/LFF1+gUChwdnbm4Ycf5pZbbmHatGndOi9UQkLCWXv91gAAaitJREFUcmjJzysoKCA5OZmwsDCCg4MRBEFMd21L4UaAhB+WcnDvZizB4/V0seWul7bhEXKHuU3pFEpKSkhKSiIsLKzVYeS1pZlkH/sYxZU4xjy8Azt5+4tg1tbWolAoUCgUlJWV4ezsLPp5zs7Orb5vakvT0e8bi6+8c1I5dXooqvOi3vMOXCOfQx4Q1SnnsSQEQaDs0ibq09biWnsBH6e6Do+p08NvtYvR9X1Q9PPc3d3bnQ5tMBj4xz/+waZNmzhy5AgDBgzosI2WRmf7ed1OXDAYDFy+fJni4mKioqJwd3fHYDCg1+tb1X7oiSeeYP369Z1ldofw8fHhzJkzPWYntCGCIHDlyhWuXLlCRESEReSn19fXo1QqKSkpobS0FEdHR3ECaq4g5M8//8yCBQs61AO2O7F7926xNU1X8uuvv/LJJ59w8uTJdtdp+Oijj3jooYdQqVQoFAqUSiWAOAF5enq2Ok3GYDDw/PPPc/jwYQ4fPnzTqJuexLZt23j//ffFVLJff/2ViRMnmtcoCQmJHoHBYGhSoBcEgYyMDHJycsTWfA3rK7Rl0WDQa/nt09s4dyHBlKa3m95+Lsz9yzGcvJpO6+zuGFsqDhkyxCJ8Wa1WK/p5KpUKOzs70c9zc3O76b2kLryA1eHJeDmZZpOjJQQBFDVOVMlvwXHwI7iFzfldRAtW559Fdf4jHMuO0NulCps2ls3QG+Cq7yt4j/l7Iz/PYDCIaTJeXl6tDvMXBIH//Oc/fP311xw+fJjBgwe346q6F53h53UrcUGr1RIfH099fT0jRoxoVLixtX2NX331VT799NPOMrvdDB48mOPHj3erVpmtRRAEUlNTKS4uJjo6GhcX0/QFNiXGgpBGtdvYYcS4ADVOQD/88AMPPfSQxXQ+6Ap+/vlnxo4d2+XnVSgUJCQkMHToUKqrq/nkk0/Yv38/+fn5rfr8+++/z5NPPtnoNYPBQEVFhfg919XVNQqfdHBwaHIsg8HAn//8Z/bu3cvhw4fp169fh6+vO3H58mU+//xzPvnkE3ObIiEh0UNoSlzQ6/UkJCRQWVnJiBEjGhVubK2fZ0RTVcRP740mI8cyii0PDuvN1FfOYuPQ86K/jJ0PjJ08LLGlorEgpDFNFv630eDl5SUWhKy88iuOp+fhZsaWiuW1NqhshmIbei/e0U+YzY7Oxpg+079/f3zdrSmP/QSrgt34Wl/F0a55P1tvgKs+L+I3/t+NXm+YDq1QKFCr1Xh4eIhiw81qXAiCwHvvvcfKlSv59ddfGT58uMmusztgSj/PYsWF6ycdtVrNhQsXkMvlRERENFu4sTneeust3n777c4yu13MnDmTH374oUeqlHq9nqSkJLHCc0dy37oKg8HQqFCQTqfDy8uLAwcO8MYbb5jbvC7nt99+Y8SIEV16zobCwvW7H1VVVXz++eds3ryZlJSUJiNI3n33XZ5++ukWz6NWq8UJqKKiQgyf9PHxwcXFBZlMhsFg4G9/+xtbt27lyJEjYn2X3ytSK0oJCQlTcL2fV1dXR2xsLNbW1kRFRWFra9tuYaEy9zTbP5hBSdnNi0N3JWNGxzDusUPIOrGjgbkQBIGUlBQUCgXR0dHdovOBIAiNOozU19fj5eWFa815+ua+gLO9+VsqGgTIlt9LwJTV5jalUzDWU2kqfcagq6c04Ut0md/hqUvC3bHxZrPeADnez+N/21stnuf6NBknJ6cb0mQFQeCTTz7hgw8+4Oeff+5yn9fS6LGtKBtOOiqVivj4eHr37i12CGhtQZ/rOXToEPfdd5/FVPd/4YUX+M9//mNuMzoFrVbLxYsX0ev1REVFiW1PuhOCIFBVVcWbb77JqlWrzG2OWTh9+jTDhg3rsvM1JyxcjyAIbNmyha+//ppz585RW1vL22+/zXPPPdfm82o0GpRKJQqFApVKxXvvvYevry+Ojo78/PPPHD16lIEDB7b3siQkJCQkGiAIglhbp6KiQuwsMHjwYFHYbY+wYNDVs++dCC6n5WJuB1cmg6mz/8CwhV+Y2ZLOQa/Xk5iYSE1NDVFRUd1iA+l6jAUh80+vZFDpmzhagKuqN0CO+6P43/GxuU3pFJoTFq5HEAQqM/dTc2k18qpTeDtUk+v9DH4T3mnzebVabaP0iZUrV2JtbY2/vz+bN2/m4MGDxMQ03aFEovVYvLhw9epVUlNTCQ8Pp1evXo0KN7ZVWGhIXFwcH374Ib/++isVFaapAtsWZDIZn376qcla41kadXV1xMXFYW9vT0RERKf2H+5sXnrpJT7//HNzm2E24uLiuqygTVuEhaZQqVR4eXl12A6DwcCuXbv44osvxDy0adOmMWfOHGbOnImPT/uLTUlISEhI/E9cKCoqEjtI9enTp0OFGxuiVlwm6+hHpMUd4EqeCkMXe7t2NjD3T/+k7/g/d+2JuwhjqrIgCGKkSXel5PR7BOb9C7suaJnYEjo95PreGO7fUygrKxP9yt69e7f589oaFbZOpvHzDh06xOrVqzl+/DgajYbJkyczZ84cZs2aRa9evTp8jt8rFvAzahpBELh06RKFhYWMHDkSd3f3dofHNUVUVBTffvstcC3P5KOPPuLAgQOoVCpTmN8sdnZ27Nq1i/Hjx3f6uVpCEATOnTtnUqVOrVYTGxuLp6cn4eHh7a7Yagn86U9/4scffzS3GWalq+qAdFRYAEwiLMA1hzYjI4PExEROnjyJlZUVu3btYtWqVaSkpPDOO21XzCUkJCQk/oexcKOx0LOPj0+rO3+1BrlPOMMWfsGwhVBXdoXs3z4kLfYnsnKK0XVy1LurkzV3PbsOn8HzO/dEraQ6/yzywFEmS2kzprA4OTkxbNiwbr2BVHz0LwQpV9DK2s6dilYP+b3+gd/oV81tSqfQUWEBMImwANf8vIKCAk6cOMGePXvw9/dn9+7dbNy4kbNnz/LVV1+Z5Dy/Ryw2csFY5CMyMhJHR0eTCgvNcfXqVT744AP27NlDcXGxycd3dnZmz549REdHm/1hXF9fz5gxY0hNTcXe3p4RI0bwyCOPsGjRonb/jcvLy4mPj6dXr17079+/2+ZmC4LA3Llz+eWXX8xtitnJysrq9KrPphAWTIUgCCxfvpz333+fgwcPMnLkyEbvG59DEhISEhLtR61Wc/r0aSIiInB2du4yP09TXcyVYx+Rfn4HGdl5aG7eDbNd+LjbM+GRH+g9aKLZd/MFQaBo22RCrU9fKxJoG4Fd2J/wHHp/u+s/VFdXExcXh5eXF4MGDerW82HhgUfpp96IJVxCvQ6K+r2Lz4iW60V1R0whLJgKQRD47rvvePHFF9mxYweTJk1q9L7k53UMixUXBEGgvr5eDI/rignneoqLi/n444/ZsWMHubm5HR4vKCiITZs2oVarqaurw9vbG19fX7y9vbt8AlIoFMTExIgVcxtibW3N0KFDeeCBB3jwwQdbbZtCoRBDG7tzmz5BEJgwYQIXLlwwtykWQWFhIa6urp02vqUJC6tXr+bNN99k//79jB492qz2SEhISPRk6uqu9bk3dgfrSBpEe9DVVXD1xDLSzm4mPeMKddqOucShQV4MXfIjquprefyenp74+fnh4+PT5XWn9JpaVFtH0dcx+4b3quqtUDIIq3734Bn5BNZ2rauVYNz4CwoKIjQ0tNtuIAEU7lpAqGG/uc0AoE4LioEr8Rq+1NymdAqWJixs2bKFp556ii1btjBt2jSz2tMTsWhxoa6urt2FG01NRUUFb775Jjt27KC4uLjNrQjHjh3LwYMHxaqkarWakpISiouLxQnI19cXX1/fTp+AUlNTGT9+PGq1usVjZTIZYWFhLF68mGeeeQa5XN7kcfn5+aSkpDBkyBD8/f1NbXKXIggCO3bsYM2aNWKRwN8zZWVlnXZPlpSUkJiYaDHCwtq1a/nb3/7GTz/9xK233mpWeyQkJCR6MsZNpK6KWGgJvaaWlEPvkHF2E/n5+ajr2+bnRUWEc8dzJ7CyuZZKaOxGVFJSQmVlJe7u7qKfd7O2x6ZCU1WEetcoeslLWzy2ViOjWN8XIWgBntHP3jTsvKSkhKSkpFYV4esOVGb9jDppJc5VJ/F1UmOuW0+tkVE+9Gs8Bt9tHgM6GUsSFgB27NjBo48+yvfff8/s2bPNbU6PxGLFhc8//5yffvqJuXPnMn36dNzd3c026QiCQFpaGoWFhURGRmJvb8/KlSv57rvvSEtLa1FouP/++5vtNFBTUyO2w+nsCejo0aPMnTv3ht7SrSU4OJh58+bx/PPP4+fnhyAIXLlyRcyZ9PT0NKm9lsDJkydZsWIFR48eNUvxT3NTXV3dKb89o7AwbNgwfH19TT5+WxAEgQ0bNvDKK6+we/duJk6caFZ7JCQkJHo6W7duZfXq1WIBNR8fH7P6eUZfZtiwYXh6uFF4/kvSTq0jLeUSlTU3tjxuyB2TpxN93+ab2l9XVyf6eeXl5bi6uop+npOTk0mvpaY4AeHQHfjI274xotFBkSYAnf8sPKJfxN79WhRqXl4eaWlpDBkyxOwbAZ1BTdFFKuI/xkH1K34OKmy6KGu5qt6KqhE/4N5/RtecsIuxNGFhz549/OlPf2LDhg3cdddd5janx2Kx4kJ6ejrffvst27ZtIy0tjdtvv5158+Yxc+ZMPD09u2wCMrbZUavVREVF3TAJaLVavvzyS9atW8elS5fESAsjb731Fs8//3yrz1dXV4dCoaC4uJjy8nJcXFzw9fXFz8+vwxPQxo0beeyxx9ocdXEz/Pz8GDNmDLNnz2bmzJm4uLiYZFxLJj09XSz+2Rk1OSwRtVrNI488QmJiIvfccw+PPvpoh9tNWZqw8MMPP/Dss8+ybds2pkyZYhY71Go1WVlZBAcH4+bmZhYbJCQkJLqKq1ev8u2337J9+3bi4+O59dZbmTt3LnPmzMHPz6/L/DyDwcDly5dRqVRERUXd4MsIej3FCRtJP/ElqZcuUlb9vyINNlYwa8mzhE37b6vPp9FoRKGhtLQUuVwu+nlyubxD112ReQCnc4twc2heDGkNOj0U13mhsBtNoeN0ho+bh4eHR4fHtXTqK/Mou/AxNoV78LPNw76TspYr6qypHbML1z4TO+cEbaTo6GvIig4iC16IZ/TT2Nh3zKe3NGHhwIED3HfffXz55ZcsWbLELDb8Xvw8ixUXjAiCQGpqKlu3bmXr1q0kJiZy2223MXfuXGbPno2vr2+nTUD19fXExcVhY2NDREREi7UH9Ho93333HV9++SU5OTksX76cOXPmtPv8Go1GDKlTqVTiBOTr64uzs3Obrvutt97i7bffbrctLeHu7s6kSZN44YUXiIqK6rTzWBIKhYLly5ezfft2rly5YjLRxtKYP38+27dvF/8tk8no06cPc+bM4bnnnmtzGowlCQsA27Zt4/HHH+fHH39kxgzz7R489dRT7Ny5k969exMaGsrixYs79PyQkJCQ6A4IgkB2djZbt25l+/btnD17ltGjRzN37lzmzp1Lr169Os3P02q1XLx4EZ1OR2RkZIvRooIgoLy0nfTjn5OTfpGJ97xDwIg/dej8SqWSkpISlEolDg4Oop/n6uraputWxn+Jd9rzONmZ3hcxCFBS44LadTzOkc/jEjTO5OewRHT1VZTGrkDI2YyvLB25vWn+tqVqa864vItXyHh8fHzw9vY2a5H3osMv06dsFdb/X8OwXgvF2l7o/GfgEf089u592zSepQkLhw8fZvHixXz22Wfcd999ZouQ+r34eRYvLjREEAQyMzPZunUr27Zt48KFC4wdO1ZUugMDA012w1RVVREfH28x7RSvn4Ds7e3x8/Nr1QT06KOPsnHjxi6zVS6XM27cOJ555hnuuOOOLjuvOamtrWXNmjV89913XLp0SezR/XvA29ubSZMm8fzzzzN8+PBmj7U0YWH37t08+OCDfPfdd8ydO9dsduj1ej755BOOHTvG6dOnxaiYDz74gGeeecbsFcclJCQkugJBEMjLy2Pbtm1s27aNEydOMGLECObNm8fcuXPp06ePyfy8mpoa4uPjLaadol6vb+Tn2djYiEJDS6nBxcf+Tu+Sj7DtoktQ1DhQ6XQLjkMex63/7G5d2LG1GPRaShPXoUtfh4c2AQ+n9rUZUdXYY5h0BK19sLiBWFdXJ9Ze6+rin4W/PEe/ii9v2jFDb4DiWndq3SfgHPEsLr2bL3RtacLCsWPHWLhwIcuWLePBBx802736e/LzupW40BBBELh69aqodJ86dYpRo0aJSndwcHC7byClUkliYiJ9+vShX79+FvfQ1Ov1qFQqSkpKUCgUWFtbixOQh4eHaK8gCEybNo3jx4+bzVZ7e3tGjhzJI488wsKFCy3ub2lKBEEgJSUFhUJBdnY2GzZsIDY2lvr6enOb1mXI5XJGjx7NY489xowZMxp935YmLOzbt4/777+fdevWsXDhQnObgyAIyGQy0tLSuPfeeykpKWHNmjVmS9OQkJCQMCeCIFBUVMT27dvZunUrv/32G8OGDWPu3LnMmzevQ+2ujW2zAwICGDBggMX5JgaDgdLSUjF9QiaT4ePjg6+vL56eno02vAr33ku/+u1YmekSymptKbONwHbAn/Accl+7W1x2B4ybnLm5uQzyLIHs9bioz+DbyvoWCrUjVtNP4egZ1uh1Y5F3hUJBZWUlbm5uotBg6pocDSn6+Un6Vq9r072jqHGg0nEkDgMfwj28cet6o7AwcOBAevXq1QkWt41Tp04xf/583nnnHZ544gmz/85/L35etxUXGiIIAgUFBaLSffz4cSIiIkSlOyQkpNU3VG5uLunp6YSHhxMQENDJlnec6ycgAF9fX1xcXJg1axYZGRlmtvAaMpmMb775xiIWcZ2BwWAgOTmZyspKRowY0Si08tdff2XlypWcOHGCqqoqM1rZtdja2jJs2DDuvfdeZs2aRUpKisUIC7/88gv33HMPX3zxBUuWLDH7hNOQHTt2sHTpUmbMmMGyZcvw9fUVJyQJCQmJ3yOCIKBUKtmxYwdbt27l8OHDDBw4kDlz5jBv3jzCw8Nb/YwsKiri0qVL3abrgcFgoLy8XPTz9Ho9Pj4++Hh5oT++hP62581tIvD/xSBD3sc7+klzm9IpGIu7FxcXEx0djbOzs/hedf5ZquI/wbH8CH6O5WJ6QUOK1M7YzzwnFsm8GcbaawqFQqzJYRSWXFxcTOYLFB54lH41GzskSlXUWaOShWPdbwmyvneTkJRqMcLC+fPnmTNnDv/617949tlnLcqH6ul+Xo8QFxoiCAIlJSXiBHTkyBHCw8NFoWHgwIFNfnmCIJCenk5BQQGRkZG4u7t3vfEdRBAEysvLuXTpEosWLbKYzgZWVlZs3LixR+YVwbWJPyEhgdraWqKjo7G3t7/psUlJSYwePbrH1me4GcY6DQsXLuTZZ5/Fy6vpVlddwW+//caiRYv49NNPuf/++y3iYW6cVMrLy3n11Vf55ptvWLt2LX/4wx+aPE6pVHLlyhUuXbrE2LFj6d+/v5ksl5CQkOhaBEGgrKyMXbt2sW3bNg4ePEi/fv2YM2cO8+fPZ+jQoU2msho7QmRnZzNs2DB8fHzMYH3HEASByspKigpycDo9j4EellFYulYjQznwE7wiHjK3KZ2CIAhcunSJsrIyoqOjm40mqCvLouzCR9iV7MPPrgg7GyhQu+M0NxY757Z12tBqtWKkslKpxNbW9pqw5OODh4dHu1O2C/f/iZDaH03afrNWAwX1gch6z8Nj5AvYuwSabvA2Eh8fz8yZM/nrX//Kyy+/LPl5XUyPExcaIggCpaWl7Ny5k61bt3Lo0CH69+8vhtQNHjwYKysrKisrOXjwIAEBAU12hOhOJCcnM3HiRGpqasxtCgB2dnbs27eP0aObz9Hqruj1euLj49Hr9URFRbUqZ8rV1fWGriK/N/z8/JgyZQrPPfcc4eHhXXbeEydOsGDBAj788EMefvhhi5hw4H+TybFjx1i6dCn+/v588803hIWF3XDsgQMHeP7550lPT8fe3p66ujruuOMO3nrrLWJiYnqU+i0hISHREhUVFezZs4dt27axf/9+AgICRKEhKioKKysr6urq2LNnD76+vk12hOhO1FfmUbN7NL3kZeY2BYCqOiuqRnyPe9gsc5vSKRgMBpKSkqiuriY6OrpNLeK1NSrK4j/HI+pJbB071mnDGKlsrNNgMBhEocHLywsbG5tWjVO4915C6rebVFi4nmudRjyp87wD18jnkQd0XaH3pKQkpk+fzosvvshf//pXi/GHfk9+Xo8WFxoiCAIVFRXs3r2brVu3cvDgQXr37s3UqVPZv38/gYGB7Nq1q1sX1Dh06BALFixAp2tfkRlTI5fLOXHiRJM/nJ6AVqslPj4emUxGZGRkqx/sLi4uv6uCjy3h4uLCuHHjeOKJJ5g8eXKnnefMmTPMmzePt99+myeffNLiHsw6nY53332Xv//97/z3v//l+eefx97eXoxykclkbN26lfvuuw9nZ2eWLl1KZGQkaWlprFmzhn79+rF3794e3d5IQkJCojmqq6vZu3cv27ZtY+/evXh6ejJt2jROnTqFwWDgyJEjHW6lbE7UhXHIDk/G26nO3KYAUFpjh27CAZx7xZjblE5Br9eTkJBAfX090dHRXVposTmMESzGOg21tbV4enqKYsPNImgL9iyhv253F9sKihonquS34Dj4EdzC5nSa/3X58mWmT5/OE088wRtvvCH5eWbidyMuXE9VVRWrVq3ijTfewMfHBxsbG2bNmsX8+fMZOXKk2btDtJVvvvmGp59+2mLC7b28vDh37hx+fm0LAesuaDQaYmNjsbe3Z/jw4W2qMi2JCzfHzs6OqKgodu/ejVwuN9m4sbGxzJ49m3/+858899xzFjXhGBXolJQUHn74YfLy8ti0adMN0T55eXncfvvtZGZmsnPnTmbPni2+9+mnn/Lss8/y2muv8dZbb3X1JUhISEhYHDU1NWzYsIFXX30VR0dH7O3tmT59OnPnzmXs2LGt3hCwFMoz9uJ8fgmuDpYR+VislmM7/RQOnqHmNqVT0Ol0xMfHIwgCkZGRFr35qFarxYgGY0FIY50GYzR2we6F9NfvM7OlUF5rQ6nNEDynbcPOpW2tzJsjLS2N6dOn88ADD/Df//5X8vPMSPdaQZuQkydP8tZbb/Haa6+RnJzMe++9h1KpFAsDvfLKK5w4caJbhK//61//4qmnnrIYYaFPnz5cvny5xwoLdXV1nD9/HicnJyIiIszevqonodFoGDhwoEmFhYSEBObMmcNrr71mscICXIusuHDhAtOmTWPgwIEAogilVqv54osvyMzM5NlnnxUnHOP799xzD4GBgWRlZTV6XUJCQuL3SkJCAn//+9954IEHyMjIYOXKldTX13PvvfcSFhbGM888w6+//opWqzW3qS2ijF2FR+zdFiMs5Km9sZ+f3GOFBa1WS2xsLDKZjOjoaIsWFuBapHDfvn2JiYlh/PjxBAQEUFpaysmTJzl58iQZ399pEcICgLujDoO9v0mFhaysLGbNmsU999zD22+/Lfl5ZqZ7ybYm5MSJE3z22Wf88Y9/BGDBggUsWLCA2tpafv75Z7Zt28bixYuxt7dn9uzZzJs3j3HjxlncA6aiooKffvoJKysri7jRIiMj+e2333rsgru2tpYLFy7g4eHB4MGDLeoB1hO49957WbVqlcnGu3TpErNmzeKFF17glVdesbjvy2hPYWEhBw4cwNramunTp+PhcS030xhBlZGRwY8//sjgwYNZsmQJcG1iMb7v6OhIeXk5WVlZ1NbWduuwXwkJCQlTcObMGf7+97/zzDPPADBz5kxmzpyJVqvlyJEjbNmyhYcffhitVsusWbOYN28eEydObLYoszkw6LVos35Aa7DCEfOLC1dq++K16DzWdj1znqmvryc2NhZHR0eGDRvW7fxZe3t7evfuTe/evdHpdORvnUa44ylzmyWSKZtM4JxtJhsvJyeHmTNnMm/ePD744AOLizz/Pfp5lvUNdCFvvvmmKCw0xNHRkTlz5vDNN99QVFTEN998gyAILF26lP79+/PUU0/x888/o9FozGD1jbi5uXH27FlKS0v56KOPzLqTfuedd3L8+PFu9yBuLdXV1Zw7dw4fHx9JWOgE/vCHP7B69WqTjZeSksLMmTN5/PHHef311y3u+0pISKCwsBCAzMxMjhw5wrhx44iIiAAQI5H0ej1nzpwhNTWVadOmERkZCdBIUDx16hQajYaAgAAcHR0tQmiUkJCQMCfPPfecKCw0xNbWljvvvJPVq1eTl5fH1q1bcXFx4ZlnnqFfv348/PDD7Nmzh9raWjNYfSNW1rYELDyC9eIK8vqvIVM3irJa82x0ZWqj8bk7occKC8bIVGdn5zanvFoagiCg2DWDcHvLERYyZHcQMHenycbLz89n5syZTJ06leXLl1ucsPB79fMs61uwMOzs7Jg6dSpffPEFBQUF/PDDDzg4OPDEE0/Qr18/HnvsMfbu3UtdnfkL69ja2vLYY49x8uRJKioqWLNmDaNGjeqySIv777+fHTt2WMQCrr6+nlWrVqFWq002ZmVlJefPnycwMJABAwZ06DotJX3Fkli8eDFffPGFycbLyMhg1qxZPPDAA7z55psWcV82RKlU8sgjj7B48WLeeecd1q1bR3FxMYsXL6Zv377A/+4TQRA4cuQILi4u3HrrrTg4OIjvGSfSuLg4dDodkyZNArC465WQkJCwRGxsbJg4cSKffvopOTk57NmzBz8/P/785z/Tr18/HnjgAbZv325Sf6K9yGQyPIf+kYCFR7BbUkbB4O/INIxHWdP5kRaCAJlW0whYdAyZBSy4BUFAGbsKXa3pWq7X1NRw7tw5PDw8btrOtLsgCAJF2yYRanXC3KaIZDKRwLmmKyZZVFTEjBkzuO2221i1apXFfV+/Zz/vd1vQsSPo9XpOnDjBli1b2LFjBxUVFUybNo158+Zx5513WlQrS0EQ2LVrF6tWreLs2bPU19eb/BwPPfQQ//jHP/D09DT7j7uqqoqoqCgKCwuRyWT06dOH+fPn89xzz7W7p3V5eTlxcXH069dPfCB0BGdnZ0lgaMCiRYv45ptvTDZednY206dPZ/78+Xz88cdmvyeboqamhrfeeotly5aJu2NeXl688cYb/OlPf2r0DBEEgV69euHm5sbevXvp169fo8rC+fn5PP744xw/fpy9e/cyZswYs1yThISERE/BYDBw7tw5tm7dyvbt2ykoKODOO+9k7ty5TJ8+HVdXV3Ob2IjK7EOoE1bgUn0SX7lpW5HrDRCnm4v3xGV4eXmZfTffoNei2BxDP4c06nVQrOmFLmA2HiNfwt4lsF1jVldXc+HCBQICAggLC7PohVtLCIJA0dYJhNpcMLcpIpnCeALm7zfZeCUlJUyfPp3o6GjWrVtnkcVZf89+niQudBCDwcCZM2dEoaG4uJgpU6Ywb948pk6danG9lA8dOsSKFSs4efIkNTUdm4BkMhlvvfUWU6dOpaSkBL1eL1anNccEVFxczIgRIygra7r3s7+/PzNmzOCll15qtUigUqm4ePEiYWFhBAUFmcROSVz4HwsWLGD9+vUmG+/q1atMmzaN6dOns3LlSosUFq5n48aNLF++nHPnzuHk5MSECRO47777mD17NnK5nEuXLjF06FDGjh3L8ePHb/j8jz/+yGOPPcakSZNYtWpVu0U0CQkJCYkbMRgMXLx4kS1btrBt2zays7OZPHkyc+bMYebMmbi7u1vUYrQ6/yyVcR8hrziKn1MlVh0wTaODTM/nqe/9ACUlJWg0Gry9vfH19cXb27vLF3V6jZqyLVEEO+Xf8J5OD0V13tR7T8FtxIs4eYe3asyKigri4uIIDg6mX79+FvVdtofCzeMJtY01txkimYZxBNx10GTjKZVKZs6cyaBBg/juu+8srhZeU/ze/DxJXDAhBoOB2NhYtm7dyrZt27h69SqTJ09m3rx5zJgxA1dXV4t6aB04cID33nuPpKQkqqur2/RZKysrNm7cyJw5c4DGPXeLi4upr68XJyBjq8/OJCsri9GjR7c6dNHDw4PJkyfz4osvMnz48CaPKSkpISkpifDwcAICAkxmqyQuXGPevHls3LjRZOMVFBQwbdo0Jk6cyJo1a7qFsNCQhIQE3n//fTZt2sScOXNYv349crmcgoICxo8fT3h4OHv27EGn0yEIAra2tqhUKh5++GF2797NDz/8wF133WVRzxgJCQmJnoQgCCQnJ7Nlyxa2b9/O5cuXmThxIvPmzWPWrFl4eXlZ1DO4OPMUhcffJEh2kUDnCqzbMC3WamQoB36CV8RDwLVrr66uFv28mpoavLy8RD/Pzs6uk67iGpoaBdXbR9BbrmrxWIMBimtdUbtNwCXyeVx6j27yuLKyMuLj4wkJCaFPnz6mNtks1BQnUBG3DAfVIfwcVNiYMdAk0zAG//k/m+w3UVZWxqxZswgODmbz5s2dfs+Zmt+LnyeJC52EIAgkJSWxefNmtm3bRnp6OnfccQdz585l5syZeHp6mvXmyM/PJyUlhSFDhuDv709SUhIffPABhw4duunOvxE7Ozv27dt3Q39WIw0noJKSEtRqdadOQAkJCUycOLHdKR/Ozs7ceuutPPvss0yYMAG4VtX18uXLDB06FF9fX1OaK4kLwOzZs9m0aZPJxisqKmL69OnccsstrF271uxhmx2htraW9PR0UfQSBIGYmBgyMjI4dOgQI0aMEI995513+Otf/8q8efP4/vvvLa7KuYSEhERPRRAE0tLSxA2lixcvcuuttzJv3jxmz56Nn5+fWf084waJMfKyrjSTsgsfYF+yD38HRbOLzqo6K6pGfI972KybHqNWq0U/r6qqCg8PD3x9ffH19TX5XFRffpX6n2Lwl1e16/MlakeqnEfjOORJ3EKnI5PJUCqVJCQkMHDgQHr16mVSey2F+so8yi58jE3hHnxt83Dowk3+TH0M/nf9arLfQEVFBbNnz8bX15ft27d3a3+np/t5krjQBQiCQEpKiqh0JyUlcdtttzF37lxmz56Nj49Pl01AgiBw5coVrly5QkREBJ6enjcck5mZyQcffMC+fftQKBSN3pPL5Zw4cYKwsLBWn/NmE5CPjw8ODg4dup5jx44xa9YsdDpdh8Yx4uDgwPDhw7njjjt44okn8Pb2Nsm4Dfm9iwuzZs3ihx9+MNl4CoWCGTNmMHz4cDZs2GCRuXftxdgf+ciRIyxevJiQkBAefvhh/P39OXToECtXriQwMJD9+/czaNAgc5srISEh8btEEASys7NFoeHcuXOMGTOGuXPnMnfuXAIDA7tUaMjLyyMtLY0hQ4bg5+d3w/v1VQWUnf8Qm8Jd+NsVYNdg2iytsUM34QDOvWJafb7a2loUCgXFxcVUVFTg6uqKr68vfn5+HW6ZV6NIRvj5NnycTFM8vbTGjhLZEK5a30bo+GdMGplqyejqqyiN/RTh6mZ8SMfZvvO6DWTqRuK/4IjJ7vmqqirmzZuHs7Mzu3fv7vDawZLoiX6eJC50MYIgkJmZKQoNsbGxjB07lrlz5zJnzhwCAgI6bQISBIHU1FSKi4uJjo5uVT2IgoICPvzwQ3bt2oVer+fUqVNNTlStpa6uThQaysvLxQnI19e3zYUwd+3axR//+MdOa8diY2NDREQES5cu5YEHHjDZbvjvWVwYOXIkH374oVibo6NOh0qlYubMmYSFhbFp06ZukXvXVgRBQKfTsW7dOv75z39SVFSEg4MDtbW1TJo0iTfffNPii/tISEhI/F4QBIHc3Fy2bdvGtm3bOHnyJCNHjhSFhj59+nSqn5ednU1OTg6RkZF4eHi0+BltjYrSC8uQ5W3F1lCJ4/SjOHiGttuG+vp6FAoFJSUllJaW4uzsLPp5zs7ObRqrOvcktsdn4OGobbc9zVFZZ43SajA2IX/EM/JRrGwsf1fYFAh6PaVJ36BJX4enNsGkf984VX/Kh64Rv3O5XN6h8dRqNQsWLMDKyoqffvqpw+NZIj3Nz5PEBTMiCAI5OTliNeLTp08TExMjTkBBQUEmm4D0ej3JyclUVVURHR3d4UWdKdBoNKLQcP0EJJfLm7329evX8+STT3bZIt3KyoqBAweyZMkSnnrqqQ79/brTgzEwMJB///vffPXVV5w/fx6NRtPusaZOncp3330nOh1lZWXI5fJGTkdb7vfy8nJmzZpF79692bJlS7fLvWsv+/btE2uM9O/fHzc3N3ObJCEhISHRBIIgUFhYyPbt29m6dSvHjh1j+PDhop/Xv39/k/l5xihZhUJBVFSURRQU12q14pyvUqlwdHQU53wXF5dmr70iYx/O5+/GxaHzdtgbUqORUawPQRa8CM/oZ7Fx/H3MrYIgUJHxE7WXPse5+jS+TrW095bM1EbiOedXlEql6Ns7OjqKG0ptrT1XW1vLokWL0Gg07Nu3zyLu6a6gu/t5krhgIQiCQH5+vqh0nzhxgsjISObNm8fcuXM7VMFWq9Vy8eJF9Ho9UVFRFrkI02q14sNIqVTi4OAgTkDXP4yWLVvG3/72N7PZamxxedddd/H888/j5eXVps93J3EhKCiIlJQUioqKSE5Oprq6mg0bNnD8+HGqqlqf+zh58mR27tzZ6DXjd65QKFAqldja2orpMu7u7s0WZKysrGTu3Ll4eHiwY8eOHhUi1xaM4XQSEhISEpaNIAgolUpRaDh8+DCDBg1i7ty5zJs3j0GDBrX7ea7/v/buPCyq8v0f+PuwCcgumztJqYiguOa+L6wzmJpramZamiUamh81UwO1TLOy0nJJS0pmWJRFQUBBcVcEEcUFUZBNdhhgmHl+f/jl/MSlWAZmBu/XdX2uzxUzc84zjMx9z3ue8zwyGZKSklBWVgYnJyeV+ALpedXV1Xjy5AlycnKQm5vL13xLS8sXdtzITzoMs+QF0NdRzkeUSimQLe3wf1tcejV4i0t1UrM7mq15JXQe/Qm9gmhY6RXWeRHQe1WOsJpyttbrWPOa5+bmIjc3FxoaGnzQ8F/b11dUVGD69OkoKirC8ePH1e4DtqKoY59H4YIKYowhOzsbgYGBEIlEOHXqFHr06MEXoK5du9b5H1pFRQWuXr2KVq1aoVevXmqx0J1MJqsVNGhpafEFaNu2bdi+fbuyh8jT1dXF7du36xUwqFO40LlzZ0RFRSE5ORmOjo611qC4ceMGduzYgYiIiBfW5njW6NGjcfTo0X89j1wuR35+Pt90MMb43Uae39a0tLQUnp6e0NXVxbFjx1SyiSKEEEJehTGGgoICBAUFQSwWIyIiAm+88QYEAgE8PT1hb29f5x2PpFIprl27BsYYevfurZJfID1PJpPVqvkcx/F9nvzeYVilrWzWxQf/TZFEC7IJVxp1qYiqqwkWnt8draLgHgqv7IBWdiisdR7XWpvjWfeqHGA1Jf5fP5vI5XIUFhbyr7lUKq3V5z17WWtVVRVmzZqFx48fIzIysk6X9xDVQeGCimOMIT8/nw8aTp48ibfeegseHh7w9PSEnZ3dKwtQWVkZrly5AlNTU/To0UPttuYDnr4Z1STda9aswYkTitsrt7FatWqFmJiYV25l+SrqFi78+OOPLwQLz8vKysL27dsRHByM9PR0/ucjR45ESEhIvc7JGENRURE/lbJmnY7c3Fy4ublh8eLFAICQkJB6X79JCCGEqJqioiIcPXoUYrEYx48fR9u2bfkvlJycnF7Zv9V8gVSzGLU6fIH0vGc/dBZf+RZDWh2Gtoo8jaIKTUgGBcOo80hlD6XJvCpYeJ5UUoD8Kz8A6f6w0rzHzyq5V9kDVlMv1OvbdcYYSkpK+N6urKwMpaWluH37Njw9PfHll1/i/v37iIqKqvfsYKJ8FC6okZoPXcHBwXwB6tSpEx80ODo68gXoxo0byMnJQYcOHRR6TZ+yTJs27T+//W5Oenp6iI+Pr9euGTXUKVxo3749zp49W69dM8rKyrBr1y7cv38fu3btavQYysrKIBKJ8P333+P27dswMDDAypUrMW3aNHTp0qXRxyeEEEJURWlpKUJDQyESiRAaGoo2bdrAw8MDQqEQ/fv35wOElJQUZGdnw9zc/F+/aFIXj09+Cpui3+o8Db+pFUi0IR1+ol67ZqibugYLz5NXVyL/+l5Is8/DeuK+Rn/GKC8vx4kTJ7BlyxYkJSVBV1cXn332GWbNmtWoy4WIclC4oMaKi4sREhICsViMsLAwWFpawsPDAxYWFvj6669x8OBBODs7K3uYjcIYw4QJE3DmzBllD4VnYGCAixcvolOnTg16vDqFC127dsXVq1eVPQxUVlZixowZyMvLw7Rp03DixAn+etX4+Hi1+p0SQgghdVFeXo7jx49DJBLh2LFjMDAwgIeHB2xtbfHVV19hy5YteO+999T+w1dm2HuwrRA1eCFBRXtS3gpsTAz0reo3M1WdNDRYaCoymQyLFi3C1atXsWDBAsTExODEiRPo1KkToqKi0L59e2UPkdQRhQstRFlZGcLCwvDtt9/i4sWL6NOnDwYOHAihUIiBAweq5VQ5mUyGIUOGIDExUdlD4ZmYmODKlSuN2o5TnT4IOzg44Ny5c0odQ1VVFWbPno2MjAxERkbCzMwMwNPdIuLi4uDm5qbU8RFCCCFNraKiApGRkdi+fTtiYmLQu3dvODk5wdPTE0OHDlXLrZgZY8gKcoMtYpQ9FF5umR40nOOhZ1b/manqQhWDhaVLlyIuLg4xMTF8kFBWVobIyEi4u7ur/cyc18krluYg6kZfXx+pqam4efMmjh07BqlUCpFIhKlTp0JXVxfu7u4QCoUYMmQItLRU/2WXSCTo168f0tLSlD0Unrm5Oa5du/ZaLSyj7DdzqVSK+fPn48GDB4iKiuKDBeBp0EPBAiGEkNeBrq4usrKycP78eRw+fBgmJibw9/fH+++/D5lMBldXV3h6emLkyJFqsagjYwxZ/kNhq31N2UPhZZUZoJXrRbQyadjMVHWQl5eH69evq0ywIJfLsXz5csTExNQKFoCnX8YJBAIljo40BM1caCHS0tIwduxY+Pv7o3fv3vzPq6qqcPLkSYhEIgQFBYHjOL4ADR8+XGUL0IwZM17YulCZ2rZti6tXrypkj111mrnQt29fnD59Winnrq6uxocffojr168jOjq6UbNFCCGEEHWWn5+PgQMH4vfff8fw4cP5n1dXVyM2Nhb+/v4IDAxEWVkZXF1dIRAIMHbsWJXdqjkrejk65v+iMos3ZpYZQ19wFToGLbfXUMVgYdWqVQgODkZ0dDRsbVvujhyvEwoXWpDq6up/nZVQXV2NU6dO4ciRIwgKCkJlZSVcXV0hFAoxatQolStA9+7dw7Zt2xAWFobs7GyljaNz5878dp6KoE7hwsCBAxEVFdXs55XJZFi8eDHOnTuHU6dOqUQRJIQQQpTpv/o8mUyGs2fPQiQSISAgAAUFBZg4cSIEAgHGjx+vcv1HVUkW8i9tg9bjIFjpZKCVkibWPiozh+Gka9DWa7kzU2uChR49esDa2lrZw4FcLsfatWvxzz//IDo6Gl27dlX2kIiCULjwmpLJZIiLi+MLUHFxMZydnSEUCjF27Fjo6+sre4i1ZGVlYdu2bQgKCkJGRkaznbdr1664cOGCQq9lVLXi/m+GDBnS7Nt/yuVyfPrpp4iJiUF0dHSDF84khBBCXldyuRwXL16Ev78/AgIC8PjxY4wfPx4CgQDOzs4KmYmpSFJJAfIvfw/u4RFYa6VBt5mWkEgvbwuTd65Cq5Vq/D4YYwpfoFPVggXGGDZu3Ih9+/YhOjoaPXr0UPaQiAJRuEAgl8tx7tw5PmjIzc3F+PHjIRQKMWHCBBgYGCh7iLUUFBRgx44d8Pf3b9I1Gezt7XHu3DmFrzugTuHCiBEjEBoa2mznk8vl+PzzzxEWFobo6Gi88cYbzXbul0lLS8ONGzdgaGhYaxoqIYQQoi7kcjmuXbvGBw01l9J6eHjA1dUVxsbGKrXjhKyqDE+u/AiW5gdLLhWtWzXNR5V7pR1hPvUqtHT0muT49VVZmI6qkH4AGEoNBqO1wxIYdRnXqGOqYrCwdetW7Nq1C1FRUXBwcFDqeKjPUzwKF0gtcrkcV65cgb+/P8RiMR49eoSxY8dCIBDAxcUFRkZGKlWAysrK8OOPP8LPzw+pqalQ1D9nR0dH+Pj4QENDA5aWlrC0tISpqalCggZ1ChfGjBmD4ODgZjmXXC7H6tWrERAQgOjoaLz55pvNct6Xyc3NxcaNG/HTTz8BADQ1NdG2bVusWbMGc+fOVctVuQkhhBDGGJKSkvig4datWxg5ciSEQiHc3NxgZmamUn2evLoSTxL2QHbnICxYMgx15Qo57q1iG9zt8D2goQULCwtYWlrCzMxMaburVRTcQ3XoQFi2Lq/18yflOijU7Qvd7h/AxO7der02qhgs7NixA9u2bUNkZCT69OmjtLFQn9d0KFwgrySXy5GYmMgHDXfu3MGYMWPg4eEBNzc3mJqaqlQBqqysxJ49e7Bv3z7cunWrwUFDzQdquVyOwsJC5OTkICcnBzKZjC9Abdq0aXABUqdwYcKECRCLxU1+HsYY1q9fj0OHDiEmJgbdunVr8nO+Sn5+PhYsWICAgAB+8dOKigocOXIEly9fxt69ezF58mSljY8QQghRBMYYbt26BZFIBLFYjOvXr2PYsGEQCoVwd3eHpaWlSvV5TCZD/o2DkNzcDQtZEkz1ZQ06zr0qR1hNOQsAKCoqQk5ODrKzsyGVSmFubg4rKyu0adOm2XZXk+SnQh72NixaV/zr/YoqNPFEsye0bGfDrNcH0NB89QdgVQwWfvrpJ/j6+uL48eMYMGCA0sZCfV7TUvlwoSmuPSL1xxjDzZs3+aT7xo0bGD58OF+AzM3NVeJ1ys7ORlJSErp3746IiAjs3bsXCQkJqK6urtPjPTw8cPjw4Rd+zhjjC1BOTg6qqqpgbm4OS0tLmJub16sAqVO44Orqin/++adJz8EYg6+vL/bs2YOoqCjY29s36fn+ayz/+9//sGXLFsyePRtbt26FpaUlgKdT54YPH4527drh2LFjMDc3V9o4CSGkpaA+TzUwxnDv3j0+aLh06RIGDx4MgUAADw8PtGvXTiVep/z8fFy7dg22trYwKr+Aipu7YVJxCW30q+r0+Luyt2E9KfKF58IYQ0lJCd/nSSQStGnTBpaWlrCwsGiyb7IlebfATgyCuX5lvR5XVskhh70FrvNUmPVZUmvNCFUMFvbs2YMvv/wSYWFhGDx4sFLHQn1e01L5cIGoHsYY7ty5wwcNV69exeDBgyEUCuHh4QFra2ulFKDMzEykpKTAwcEBFhYWtcbr7++P3bt349KlS6iqenkBmjFjBvbs2fOf52GMobS0FNnZ2XwBMjMzg5WVVZ0KUHOHCxzHNXgWh1AoxJ9//qngEf1/jDFs27YNO3fuxMmTJ9GrV68mO1dd3L17FwMHDkSnTp1w6NAh9OjRo9bq3HPnzsUff/yBhIQE/jrB5ORkXL9+HQYGBnBycqq1RzMhhBCibhhjSE9Ph1gshlgsRnx8PPr37w8PDw8IhUJ06tRJKX1ebm4uEhMT0b17d7Rr167WbUV3wlB+4ycYlZ6DRWvJSx9/lxuDtoK6XepZWlqK3NxcZGdno7S0FKampnyfp6jdw8pzb4CLGIY29QwWnlchBbKlHSFvL4Tc5j0k33kMe3t7lQkWDhw4gFWrVuHo0aMYMWKEUsdDfV7TU9lw4ejRo0hPT0deXh5Gjx6NN998E23btoVcLlf4Anuk4RhjePDgAZ90nz9/HgMHDoRAIIBAIECHDh2apQA9fPgQqamp6NWrF9q0afOv9w0LC8NPP/2Ec+fOQSJ5WoAWLFiAHTt2NOjcZWVlfNJdUlICU1NTfp2GlxUgdZq5MGXKFOzfv79Jjs0Yw86dO/HNN98gIiICffv2bZLz1Mfy5cuxfft2/Prrr1iwYMELt3/11VfYvHkz4uPj0bt3b/5nvr6+qKqqgrGxMezt7bFu3TqMHz++mUdPCCHqg/o89cAYQ2ZmJgICAiAWixEbG4tevXrxfZ6trW2z9HlZWVm4ceMGevbsCSsrq3+9b0l6LEoSvodhcSws9UsBAHe13dHOza9B55ZIJHyfV1RUBGNjY77P09Nr2GKQ5dnXoXFyBMzqOOOirqQyILPcHDJrF5j0XQFdM1uFHr8+GGP466+/4OXlhaCgIIwePVppY6lBfV7TU8lwYdq0aQgJCYFEIuGLjJOTE7777jsMGzZM2cMjr8AYQ0ZGBsRiMUQiEc6ePQsnJycIhUIIBALY2Ng0SQG6f/8+0tLS4OTkBBMTk3o9NjY2Frdv38b8+fMVMpa6FCB1ChfqOpujvhhj+OWXX7Bp0yaEh4dj4MCBCj9HfRUXF8Pe3h4cx+Hq1au1QiqZTAZNTU14eHggKioKISEhGDFiBKqrq/HgwQMkJycjOjoaJ0+eRGJiIoYMGYKgoCCYmZkp8RkRQohqoj5PPTHGkJOTg8DAQIjFYkRHR8POzg4CgQBCoRDdunVrkj4vIyMDt27dgqOjY72nqpc9voryzDOw6LtEIWOprKzk+7yCggIYGBjAysoKlpaWde7vyh5fhWb0KJjpSxUypleRyYFsiQkkpqNg5LQMrds235c4jDEcOXIES5Ysgb+/PyZOnNhs534V6vOah8qFC3PmzIG/vz8WLVqEKVOmoKioCH///Tf2798PjuPwyy+/YN68ec22yAppGMYYsrOzERAQAJFIhFOnTqFnz558AXrrrbcaXYAYY7h79y4ePXqEvn37qtyezZWVlcjNzUVOTg7y8/NhYGAACwsLODo6Kntodfbee+/h559/VugxGWPYu3cv1qxZg5CQEAwdOlShx2+osLAwuLq64rPPPsN3333H/7zmeuDi4mK0bdsWlpaWuHr16kuDrCVLlmDfvn3w9fXF0qVLm3H0hBCiHqjPaxkYYygoKEBQUBBEIhEiIyPRpUsXCAQCeHp6okePHgqZgZKeno67d++id+/eMDU1VcDIFUcqlfKXTuTn50NPTw+WlpawsrKCgYHBS/vc0owL0Dk9DiZ6dVsLTFEYA3LKW6PU8P+2uHxjbJOeLzAwEAsWLICfnx/c3d2b9Fx1RX1e81Cpd+6LFy/i2LFjmDlzJtatWwdjY2MAT1esHzhwIHx9fbFo0SJUVFRgyZIlKrGwDHk5juNgbW2Njz76CIsWLcKTJ08QFBQEf39/+Pr6omvXrvDw8ICnpyfs7Ozq/VrWrHCck5OD/v37q+RsgFatWqFDhw7o0KEDX4AeP36s7GHVi5GRkUKPxxjDwYMHsXr1ahw9elRlggXGGM6fPw+O417Y51gul0NTUxN+fn6QSCQYNWoUTExMak3dZYzh9u3bCAoKgq2tLcaNG8c/lqb3EkLIU9TntRwcx8HMzAzz5s3DvHnzUFhYiKNHj0IsFmPkyJFo3749P3O1d+/e9a6FjDHcv38f6enp6NOnD/9vRZVoa2ujXbt2aNeuHaqrq5GXl4ecnBxcvHgROjo6/MxVY2NjcByH0odn0SrOGcbNHCwAAMcBVq3LYCWPABIi8CS+FQp1+8Jo0Fa0buuk0HMdO3YMCxYswMGDB1UmWKA+r/moVLjw4MEDFBQUYMSIETA2NkZ1dTU4joOmpiYWLlwIMzMzrF27FsuWLYOZmRlmzpxJqwyrAY7jYG5ujvnz5+P9999HYWEhgoODIRaL8d1336FTp0580u3g4PCff6SMMSQnJ6OgoAD9+/dv8PVuzammAD270KSq69SpEzZt2qSw4zHG4OfnhxUrViAwMBAjR45U2LEbi+M45OTkQE9P74VApWbL0d9++w0A+Etonp30xXEcIiIikJGRgWnTpsHOzg4AqOAQQsgzqM9ruUxMTDB79mzMnj0bJSUlCA0NhUgkgrOzM8zNzfnFIPv371+nPi81NRWPHz9Gv379YGBg0EzPouG0tLRgbW0Na2tryGQy5OfnIzs7G1evXoWmpibMNB6i28OPYKzXsO0zFa2NfiUkZbfQyqSLQo97/PhxzJs3D3v37sWkSZMUeuzGoD6v+ahUuFDzYufn5wMAPyWuJhWaMmUKZDIZli5dinnz5qF79+4qsQgcqTuO42Bqaoo5c+Zgzpw5KC4uxrFjxyAWizFu3DhYWlryl0707dv3hT9auVyOpKQklJaWol+/ftDV1VXSM2kYuVyu7CHUSceOHXHt2jWFbr0kFovx6aef4p9//sHYsU07Ha8hJBIJysvL+WlwVVVV0NbWBsdxCAwMxKVLlzBs2DAMGTIEwP8vRsDT96zDhw/DwsICEyZMAEBpNiGEPI/6vNeDoaEh3n33Xbz77rsoLy9HeHg4RCIRPD09YWhoCHd3dwiFQgwaNKhWLQWefqBLSUlBXl4e+vXrp5IzU/+LpqYmLCwsYGFhAblcjsykY7C+sQhGeqrTA2aUmcFoUiK09BQ3IyQqKgqzZ8/GL7/8gqlTpyrsuIpCfV7zUPpv5NlUqE2bNtDR0cHOnTuRkpLC/1xDQ4P/UDZt2jR4e3ujuroaO3bsQFlZWbOPmSiOkZERZsyYAX9/f2RnZ2Pr1q3IysqCu7s77O3tsXLlSpw9exYymQwlJSX46KOPkJ+fr5bBAqAe4UKHDh2QkJCgsK2WACA4OBiLFi3Cn3/+CRcXF4UdV5Hc3NwAADExMQAAHR0dcByHhIQErF+/Hvr6+lixYgWApwv/POv8+fOIj4/HyJEjMWjQIACUZhNCCEB93utOX18fkyZNwp9//omsrCzs2rULEokE06ZNQ9euXfHpp58iJiYGUqkUlZWV+OSTT5CWlqayl7zWV2naSbRNnqliwYIpDCZdV2iwEBsbi+nTp+P777/HrFmzVHK2EfV5zUPlFnRcsmQJdu3ahZUrV8LLy6vWNPJnE6IRI0bg4cOHuHjx4n9uPUjUj0QiwYkTJyASiXDs2DHo6OjA0NAQOjo6CAkJgaWlpbKH2CBlZWUqPfb27dsjMTFRocFCaGgo5syZgwMHDmDy5MkKO66ilZSU4N1330V8fDy8vb3Ru3dvlJeX4/PPP0daWhp8fHywYsWKFxYZq6iowMKFC3H48GHs3r0bc+fOpWm8hBDyCtTnEeDpt8bR0dEQiUQIDAyEXC6HtbU1SktLcezYMXTpotjp+spQeCcURpffhUErFQsWPBOgra+4v6n4+Hh4enpiy5YtWLRokcr2P9TnNQ+lhQtHjx5FamoqSkpKMGDAAPTq1Qvt2rVDeno6Jk+ejFu3bmHjxo2YPXt2rdVhq6qqoKOjA29vb3z77beIiopSqWu3ieI9fvwYI0eOhEQigVQqhUwmg5ubGzw9PTF8+HCFTt1vaiUlJbC2tlb2MF6qXbt2uH79ukLXsIiMjOS3s5w+fbrCjttULl26BG9vb8TExEBbWxtSqRTW1tZYsWIFvLy8at23prAkJiZixIgRsLOzw19//YXOnTtT0SGEvPaozyN1VVRUhDFjxuDRo0fQ09NDYWEhXF1dIRQKMXr0aLWcqVqYGgzjKzPQupXqfIebWWaC1p7XFRosXLx4EQKBABs2bMAnn3yi8r0P9XlNTylrLkydOhXBwcGoqqrifzZo0CB88MEHmDdvHr766issWbIE69evh1QqxfTp0/mVWHV0dAAAhYWFsLa2ho2NjTKeAmkmWVlZGD9+POzt7XH48GFoaGjg1KlT8Pf3x4IFCyCVSvkCNGrUKIV+494UVPWyiLZt2yo8WDh16hRmzpyJXbt2Ydq0aQo7blPq168foqKikJiYiJiYGHTo0AG9e/dG586d+fvUFBSO4yCXyxEYGIjCwkJMmDCBvx8VHELI64z6PFJXRUVFcHV1haGhIVJTU6Gvr48zZ85AJBLBy8sLRUVFmDhxIgQCAcaPHw99fX1lD/k/FaSIYXL9PZUKFh6XGUPf85pCg4WrV69CKBRizZo1ahEsANTnNYdmn7kwb948+Pv7Y8mSJZg3bx7S0tIQGxsLX19fyOVyrF27Fl999RUCAgKwcuVKZGZmYsaMGVi8eDF69eoFAAgJCcGSJUvQpUsXiESil+5DSlqGvLw87NixA+vXr39hmpJMJkNsbCxEIhECAgJQWloKZ2dnCIVCjB07ViV3kaiqqoJAIMD58+dRWVmp7OEAAKysrJCYmKjQaxvPnDmDd955B9999x3mz5+v9m/CNVN15XI54uLikJGRgeHDh0NfXx+jRo1CUVERDh06hCFDhtACP4SQ1xr1eaQ+SktL8fXXX2PdunUv9G1yuRwXLlyAv78/AgICkJ2djXHjxkEoFGLixIkwNDRU0qj/3ePj82GYFwzL1uXKHgoA4HGZEfQ8r0NHX3E7liUmJsLFxQXLly/HF198QX0e4TVruJCcnIxhw4bB3d0d27dvrzUNLiYmBlOnTkVeXh68vb2xefNmxMTEYOPGjYiOjkbr1q0hEAhQWFiIhIQESCQSxMbG8luBkNebTCbDuXPn+KAhLy8PEyZMgEAgwIQJE1RyG6OIiAj88MMPiI+PR3m5cgqQpaUlkpKSFBosnD9/HkKhED4+Pvj444/VvuA8Ky8vD5988gn+/vtvDB06FB07doSfnx/mzp2L33//HQCtHkwIeX1Rn0eailwux9WrV+Hv7w+xWIz09HSMHTsWAoEALi4uMDY2Vrl+o/ThWRRf2wGD4tOw1C+BhhKG97jMCHqCa9AxsFLYMZOTk+Hi4oKPPvoI69evV7nfe2NQn9d4zRouhIeHw8XFBf7+/pg0aRJ/XV3Ni3Tp0iVMnjwZ6enp+Prrr/HFF1+gqqoKW7duRVBQEJKSkmBpaQknJyds2bIF3bp1a66hEzUil8tx+fJlPul+9OgRxo0bxxeg5/e3VQVnz57Fjh07cPr0aZSUlDTLOS0sLJCYmKjQ5P/y5cvw8PDAl19+iU8//bRFFZwaubm5+Oabb3DgwAHk5uYCAMaNG4cVK1agV69eKr1gJyGENCXq80hzYIwhKSmJDxpu376NUaNGQSgUwtXVFWZmZirXf5RnJ6DoynfQy4+ElV4hNJvhs2lWmSF0Pa5Bx1Bxa33dvn0bzs7OmDNnDnx9fVXu96wI1Oc1TrOGC7GxsRgxYgRWrlwJX1/fWrfVXN9y8eJFjBkzBlKpFIcOHcI777wD4Okq+0VFRTAzMwNjTCWnvBPVI5fLcf36dT5ouHv3LsaMGQMPDw+4ubnBxMRE5d4Yr1+/jm3btiEyMhKFhYVNcg5TU1PEx8ejQ4cOCnv+CQkJcHV1xapVq/D555+r3O+1KQQEBOC7777DmTNnoKenhyFDhmDnzp3o3r27sodGCCHNjvo80twYY7h16xZEIhFEIhGSkpIwbNgwCIVCuLu7w8LCQuX6EUl+KgovbUOr3HBY6+ZCS1Px58gs0UflyFOwaN9dYd+y3717F87Ozpg6dSq+/fbb1+Lbe+rz6q9Zw4XMzEw4ODigU6dOOHjwIHr27Fnr9ppkOzg4GO+88w5mzpyJ/fv3AwCtykkajTGG5ORkPmhITk7GiBEjIBQK4ebmBnNzc5X7N5aamopt27YhPDycT08by8zMDEeOHIFEIoGmpiYsLS1haWkJExOTBheKGzduwNnZGZ9++inWrFmjcr/HppaSkoJt27YhNjYWV65cUYsFpwghRNGozyPKxBjD3bt3IRKJIBaLceXKFQwaNAhCoRAeHh5o27atyv0bqyx+hIJL26CVdRTWOo+ho4Cl9rNK9fHQ7gjySjkwxmBhYQFLS0u0adOmwX1eWloanJ2d4e7ujp07d74WwcKzqM+ru2Zf0HHTpk1Yt24dvLy84OPjw68KXIMxhoqKCkydOhXh4eFISkqiaXFE4RhjSE1N5YOGa9euYciQIXwBsrKyUrkC9OjRI2zYsAFhYWHIz89v0DHMzMyQlJQEY2NjyOVyFBQUICcnBzk5OQ0uQCkpKXB2dsaHH36IDRs2qNzvrTk9uyDQ61Z4CSEEoD6PqAbGGNLT0/mg4dy5cxgwYAA8PDwgFArRsWNHletXqspzkXH6a2hmBsHGMAe6DdhpPbtMHzruV9HKqAMYYygsLOT7vOrqapibm8PS0hLm5ubQ1KzblImMjAyMHz8e48ePx88///xa9zfU5/23Zg8XsrKy8M477yA+Ph6bN2+Gt7d3rdtrkmtfX1/873//Q2xsLIYMGdKcQySvGcYY0tLS+AJ04cIFvP322xAIBBAIBGjfvr1KFKCMjAzcunULTk5OqK6uxo4dO/hFjerC1NQUiYmJtRbYqsEYQ1FREbKzs5GTkwOpVForaHh+p44aqampcHZ2xqxZs7B582Z6oyWEkNcc9XlE1TDGkJmZCbFYDLFYjLi4OPTq1QtCoRACgQBdunRRiT4vJycHiYmJcHBwgJmxHvIv7wR78DesNO9BX+e/P67llOlD2/UyWpl0euE2xhhKSkqQk5OD7OxsVFRU1AoatLVfnmQ8fvwYEydOxNChQ/Hbb7/VOZAgr69mDxeAp4uBTJw4EWlpadi0aROWLFnywiJ7n332Gfbv34+zZ8+iR48ezT3EJkFT/lQfYwyPHj3iC9CZM2fQt29fPmiwsbFRymv46NEj3L59G05OTi+EAyUlJdi5cyf++ecf3L17Fy/7kzY1NUVCQgLatPnv/Y2fLUA5OTmQSCRo06YNLC0tYWFhwReg+/fvY+LEifyWkxQsEEIIAajPI6qLMYbs7GwEBgZCLBYjJiYGdnZ2fNDQrVs3pbyGzwYLzy8YKK+uxJOrP0N+709YIAUGreQvPr5MD9qul9DKxOY/z8UYQ1lZGd/nlZaWwszMjL9Mtma2UU5ODpydndGnTx8cOHDglV80EfIspYQLAHDz5k0IBALcuXMH77//PmbOnIlRo0YBAEJDQ/HZZ5/B2toawcHBLWJ/4+dXTCaqjzGGrKwsBAQEQCQS4fTp03BwcOCDhrfeeqtZCtC/BQvPq6ysxM8//4w///wTKSkpkMvlMDExwfXr1+sULLxMaWkpX4AiIiJw8uRJjBo1Cn5+fnB1dcWPP/5I/6YJIYTUQn0eUXWMMeTn5yMoKAgikQiRkZF48803IRAIIBQK0aNHj2Z5Lf8tWHhhzDIZniTugzR1H8xliTDWlSG3TBeaLheha9qlQecvLy/n+7xz587h77//xpgxY3D8+HF0794df/311ytnNhDyPKWFC8DTVUc/++wzhIeHQ19fH4MHDwZjDAkJCaiursapU6daRJq9cOFCGBgYYOPGjdDX16fCo4YYY8jLy+MLUFRUFLp27coXIDs7uyYJGuoTLDxPJpPhwIED/GrJinDv3j3s2bMHgYGBePjwIYYOHYpJkyZh0qRJ6NTpxWl4hBBCXl/U5xF1UXN56NGjRyESiXDixAl06NCB7/N69erVJK9pdnY2kpKS6hQsvGzMBcl+0G87ALpmtgoZz6NHj7B3716IRCLcvXsX/fr1wzvvvINJkybhrbfeUsg5SMum1HABAAoLCxESEoJvv/0WmZmZMDQ0RN++fbFhw4YWscDPrFmz8Ndff6Fdu3ZYtGgRli9fDj09PSo8aqxmgZygoCCIxWKcOHECNjY2EAgE8PT0RM+ePRXy2jYmWGgqWVlZcHZ2xttvv41Nmzbh2LFjEIlEOHXqFBITE2lrHkIIIbVQn0fUUUlJCUJCQiASiRAWFgYLCwt4eHjA09MT/fr1U8hrWxMsODo6KuxLoMYqKiqCu7s7rKyssHv3bhw/fhxisRgRERGIiIjA8OHDlT1EouKUHi7UkEgkqKyshJaWFnR0dF5YXVgd/frrr/j444/h5OSE3Nxc5OXlYdWqVVixYgUVnhakqKgIx44dg1gsRnh4OKytrfmku0+fPg16jVUxWMjNzYWLiwscHR1x8ODBWtfe5efnw9TUlK41JYQQ8lLU5xF1VVZWhvDwcIhEIoSEhMDY2Bju7u4QCoV4++23G7TIoSoGCyUlJRAIBDA0NMTRo0ehq6vL31ZcXAw9PT26PIL8J5UJF1qaW7duYebMmbh58yYuX76MsrIyTJ48GXl5efD29qbC00KVlpYiLCwMIpEIoaGhMDU15bc9GjBgQJ0KkCoGC0+ePIGrqyveeust+Pn5UXEhhBDyWqM+7/UkkUgQEREBsViM4OBgtGrVCu7u7vD09MSQIUPqtOihKgYLZWVlmDRpEjQ1NRESEoLWrVsre0hETdG7XROpqKiAkZERdu/eje7du6NXr174/fffYWFhga1bt+Lbb7+FRCLh90olLYOBgQGmTJkCPz8/ZGVl4fvvv0dhYSEmT56M7t27w8vLC6dPn0Z1dfVLH6+KwUJhYSG/U8bhw4cpWCCEEPLaoz7v9aSnpwcPDw/s378fWVlZ2LdvHxhjeO+992Bra4vFixcjIiICVVVVL328KgYLEokEU6dOBWMMR48epWCBNArNXFCwZ7chSklJQfv27WFoaMjfFhMTg/nz5yM3N7dWsi2VSmt9aKPtjFqWiooKnDx5EmKxGEFBQdDU1ISbmxs8PT0xbNgwaGtrY+fOnTAxMYGHh4fKrJxdXFwMDw8PtGnTBgEBAbWmyBFCCCGvG+rzyMtUV1fj9OnTOHLkCAIDA1FRUQE3NzcIBAKMHj0aurq6+OOPP/gZLqoSLFRUVGDatGkoLi7G8ePHYWxsrOwhETVH4UIze1nhWbZsGQwMDAAAIpEItra26N27t3IHSpqMVCpFTEwMRCIRAgMDIZVK0a9fP8TFxeGPP/6As7OzsocI4OklHkKhEPr6+jh69Cj09PSUPSRCCCFEpVGfR2QyGc6cOQN/f38EBgaiqKgIgwcPRnR0NHbu3IlZs2Ype4gAnm5fPmvWLGRnZyMiIkJlZswS9UbhgoIcPXoUqampKCkpwYABA9C3b19+SxmZTFbrWvvnC8/q1avh5eWFgIAALFmyBO3bt8f58+fRqlUrSrVbuOrqanz++efYtWsX3nzzTWRkZMDFxQVCoRBjxoxR2gf6srIyvPPOO+A4DiEhIXxTRAghhLyOqM8jDSGXy+Hr64uvvvoK3bp1w/379zF+/HgIhUJMnDhRaf2VVCrFe++9h7S0NERFRaFNmzZKGQdpeShcUICpU6ciODi41vVVgwcPxrx58zB//nwALy88J0+exMKFC5GTk4OJEyciNjYWlZWVOH36NBwcHJr9eZDm9/PPP2PVqlUICwvDwIEDER8fD5FIhICAADx58gQTJ06EQCDAhAkTmu0auJpr7yoqKhAeHs5P91S2tLQ03LhxA4aGhrQVEiGEkGZDfR5pKH9/f8yZMwf//PMPnJ2dceXKFfj7+0MsFuPRo0cYM2YMhEIhXFxcYGRk1CxhU3V1Nd5//32kpKQgKiqKD8mUjfq8loHChUaaN28e/P39sWTJEsybNw9paWmIjY2Fr68v5HI5vL29sXnzZgAvFh4AOHXqFKZPn46srCyYmJjg9OnT6NmzpzKeCmlmjDF88sknmDFjBgYPHlzrNrlcjkuXLsHf3x8BAQHIzMzEuHHjIBAI4OzsDCMjoyYZU2VlJaZPn46CggKcOHFCJa69y83NxcaNG/HTTz8BADQ1NdG2bVusWbMGc+fOpQUmCSGENBnq80hjrF27Fm+//TZcXV1r/VwulyMpKYkPGlJTUzF69GgIBAK4ubk12fbeMpkMixYtwpUrVxAdHQ1ra2uFn6O+qM9rWShcaITk5GQMGzYM7u7u2L59e61rlWJiYjB16lTk5eVh6dKl2LFjB4CnbyYcx/FvGPv378fSpUuhra2NuLg42NnZKeOpEBUml8uRkJDABw337t3DmDFjIBAI4OrqChMTE4UUoKqqKsyePRsZGRmIjIyEmZmZAkbfOPn5+ViwYAECAgLg6uoKT09PVFRU4MiRI7h8+TL27t2LyZMnK3uYhBBCWiDq80hzYIwhJSWFDxpu3LiB4cOHQyAQwN3dHRYWFgrp82QyGT755BOcOXMGMTExaN++vQJG3zjU57VAjDRYWFgY4ziOiUQixhhjlZWVjDHGZDIZY4yxixcvss6dOzOO49iXX375wuMPHDjAjI2NmZmZGUtKSmq2cRP1JZfLWVJSElu/fj1zdHRk2trabNy4ceynn35iDx48YKWlpaysrKze/yssLGSenp7MwcGB5ebmKvtpMsaePtcvvviCaWhosDlz5rDs7Gz+tvv377OOHTuygQMHqsx4CSGEtCzU55HmJpfLWWpqKvP19WX9+/dnWlpabPjw4Wzbtm0sNTW1wX1eSUkJ++CDD5iNjQ1LS0tT9tNkjFGf11JpKDvcUGc118BfvHgRAKCjowMA0NDQAGMM/fr1w5EjR2BgYICtW7dCLBbzjy0tLcWjR4+go6OD6Oho2NvbN/8TIGqH4zjY29vjyy+/xLVr15CUlISRI0di7969sLW1hZubG/bs2YOsrCywOk5Kqq6uxsKFC5GSkoKIiAiYm5s38bOom3v37mH37t3o1asXvL29YWlpierqagCAjY0NRo8ejQsXLuDx48cAnibyNYqKipCVlaWUcRNCCGkZqM8jzY3jOLz55ptYtWoVzp8/j9TUVHh4eEAsFqN79+4YN24cfvjhB6Snp9e5z5PL5Vi5ciWOHz+OyMhIdO7cuYmfRd1Qn9cyUbjQCLa2tjA1NUV4eDiSkpJq3cZxHORyOfr3749Dhw5BKpUiODiYv93AwAAzZ85EYmIiHB0dm3vopAXgOA5du3bF6tWrcfHiRdy6dQsuLi7w8/ND165dMXHiROzatQuPHj16ZQGSyWRYvHgxrly5gpMnT8LKyqqZn8Wr7dq1C/n5+fjoo4/Qo0cPAICWlhZ/+xtvvAEdHR2+EGlqauLevXuYNm0ahg4div79+2P48OG1/u4IIYSQuqI+jygTx3GwsbHB8uXLERsbi7S0NEybNg1hYWFwcHDAyJEjsX37dty7d++VfZ5cLsfatWsRGBiIyMhI2NraNvOzeDXq81ooZU6baAk2btzIOI5jy5cv56fLPUsul7Py8nLm5ubGtLS0WEpKihJGSV4ncrmcPXjwgG3fvp0NGzaMaWpqsoEDBzIfHx9248YNfkpdSUkJmzdvHrO1tWXp6enKHnYtRUVFrEOHDqxjx44sLy+v1m3V1dWMMcbc3d2Zvr4+i46OZowxFhkZyTp16sQ0NDTYsGHD2KxZs1i/fv2Yrq4u27BhQ3M/BUIIIS0A9XlE1cjlcvb48WO2a9cuNnbsWKalpcV69erFvvzyS3blyhW+zystLWUrV65kVlZW7MaNG8oedi3U57VcFC400uPHj9ngwYMZx3Fsy5YtL9wul8sZY4z5+PgwjuNYXFxccw+RvMbkcjnLyMhgP/74Ixs9ejTT0tJiffr0YevXr2fTpk1jnTt3Zvfv31f2MF8QGhrKOI5jy5Ytq/Xzmr+noqIipq+vzzp37syKi4tZZmYmc3R0ZBzHsZ9++om/f3JyMhs1ahSzsLBg586da9bnQAghRP1Rn0dUmVwuZ7m5uey3335jzs7OTEdHh9nb27PVq1ezhQsXMnNzc3b9+nVlD/MF1Oe1XHRZRCNZW1tj3759sLGxwapVq+Dj44Pi4mL+9prVXbOzs2FkZFRrpeGW5NnroIjq4DgO7dq1w+LFixEZGYnMzEwsXLgQ4eHh8Pf3R0REBGxsbJQ9zFoYYzh//jw4jnthn2O5XA4A8PPzg0QiwcSJE2FoaIjt27cjKSkJS5cuxccff8zf387ODp9++iny8vIQExPDH58QQgipC+rznqI+TzVxHAdzc3PMnz8fISEhyM7Ohre3N86fP489e/bg2LFjcHBwUPYwa6E+r2WjcEEBunbtipCQELz55ptYs2YNvLy8EB0dzd8eGhqK0NBQODo6ol27dkocadMpKyur9d9UhFQPx3GwsLDAhx9+iLNnzyIvLw9vvfWWsof1Ao7jkJOTAz09PRgZGdW6rWb/8N9++w0AsHDhQty4cQP//PMPevfujdmzZwN4Wlhqikvv3r0BADk5OZDJZE2ybzQhhJCWi/o86vPUAcdxMDExwXvvvYfIyEjk5+dj4MCByh7WC6jPa9m0/vsupC7s7OwQFhaGzz77DAcOHMCRI0cwePBgMMaQkJCA6upqBAYGwsTERNlDVaivv/4a8fHxSEhIwNChQ9GvXz94eXnxbw5ENXEcB2NjY2UP45UkEgnKy8v5v5eqqipoa2uD4zgEBgbi0qVLGDlyJJycnLBp0yakp6fjww8/5Ffjrlloi+M4XL9+nT8m/bskhBDSENTnUZ+nbqjPI8pAMxcUyNbWFgcPHsT+/fvRpUsXXLlyBXfu3MHw4cMRFxfHr4TaUggEAmzcuBF3795F+/btERISgs8//xzDhw/HlStXIJVKlT1Eoqbc3NwAgJ/ipqOjA47jkJCQgPXr10NXVxfe3t6oqqpCdHQ02rZti2HDhkFXV5c/hobG07e306dPAwBGjBgB4P9PuSOEEELqg/o86vOIYlCf14Ipa7GHlq68vJwVFBSwkpKSl64urO5Wr17NdHR0mI+PDysoKGCMMZaWlsamT5/OtLW1WdeuXVlQUBCrqKhQ7kCJWiouLmbOzs7MxMSE+fj4sNDQUObv78/eeOMNxnEc8/X1ZVKplKWnpzNLS0vm4uLCMjIyGGNPFwOqWRDo4cOHbPDgwczY2Jg9ePBAmU+JEEJIC0J9HvV5pOGoz2u5KFwg9VZdXc2GDh3K+vbty4qLixljjC+s+fn5bPPmzczCwoK98cYbLCQkhH8DIKQ+Ll68yEaNGsU4jmM6OjqM4zjWtm1btm3bNv4+Z8+eZRzHsblz59Z6rEwmY4wxduDAAaajo8OmT5/OqqqqmnX8hBBCiDqiPo80B+rzWiZac4HUi1wuR05ODq5evYrhw4fD0NAQVVVV0NHRAWMMpqamWLx4MfT09LBhwwZ8/vnn6NGjB2xsbCCTyehaKFJn/fr1Q1RUFBITExETE4MOHTqgd+/e6Ny5M3+fnJwcAOAX0KqsrIS2tjY0NDQgkUjg5+cHqVSKOXPmQFtbWynPgxBCCFEX1OeR5kJ9XstE4QKpFw0NDbRt2xZ9+vTBzZs3IZFIoKenB7lcDg0NDTDGYGBggHnz5iE/Px8bNmzA0qVLERwcTAWHNIiDg0OtbZTYM1sMDRo0CNra2khOTgYAtGrVir/tjz/+QHh4OMaOHYsJEyY034AJIYQQNUV9Hmlu1Oe1LLSgI6kXxhhkMhkcHR3x4MEDrFmzBlKplC84HMeBMQZDQ0MsWbIEw4YNw7FjxxAaGqrsoZMWomaLIcYYLC0tMX/+fISFhWHz5s1ISUmBVCrF77//jhUrVsDMzAybNm3i708IIYSQV6M+jygb9XnqjWP0SpA6qCkoNbKzs/H222+jpKQEW7duxdy5c2sVnpqE++TJk5gwYQK2bNmC5cuXK/EZkJYqJSUFixYtQlxcHLp06YKKigo8evQI3bp1g6+vL4RCobKHSAghhKg06vOIqqI+T73QzAXyr65duwapVFqr4MhkMlhZWWHbtm1gjGHr1q34+++/IZPJ+IJTw9raGhzH4eHDh8oYPnkNdO/eHTExMTh8+DAcHR0xaNAgbNq0CUeOHKGCQwghhPwL6vOIqqM+T73QmgvklVxcXJCeno7t27dj9OjR/LV0Nf8/duxYrF+/HmvXrsW6deuQn5+PBQsWQEdHhz/GuXPnoKOjw19L9XwyToiiTJkyBVOmTEFFRUWtfZAJIYQQ8iLq84g6oT5PPVC4QF5q2bJlCA8PBwCsXbsWHMdh1KhR0NTU5AuHkZERZs6cCS0tLaxbtw5eXl44c+YM1qxZAyMjI8TExOD777+HtbU1v9AKFRzS1HR1dam5IYQQQv4F9XlEXVGfp9pozQXyAn9/f8yfPx+dOnXC+PHjsWfPHnTr1g0+Pj58sv3sH7VEIsH58+fxySef4MaNG9DT04OmpiZkMhnatGmD0NBQ9OzZU8nPihBCCCGEUJ9HCGkqFC6QWiQSCaZMmYLIyEhcvnwZdnZ22LhxI7755hvY2dm9svAAQGlpKfz8/JCQkID8/Hz06tUL7777bq39agkhhBBCiHJQn0cIaUoULpAXXLhwAXFxcfDy8gIAZGVlYffu3di6detLCw/w9Bo7DQ1aH5QQQgghRJVRn0cIaSoULpCXkkql0NbW5v87Ozsbv/7660sLT43i4mIYGRnV2geZrocihBBCCFEt1OcRQpoCRZDkpWoKTk32ZGVlhYULF8Lb2xs3b97E6tWrERkZyd//0KFDWLt2Le7du8cXGio4hBBCCCGqh/o8QkhToJkLpF6eTbZ79OgBX19fPHjwAN7e3tDX10d8fDzat2+v7GESQgghhJB6oj6PENIYFC6QesvMzMT+/fvh4+ODdu3aISsrC5qamjh9+jS/z3FLIpfL6TpDQgghhLwWqM8jhDQU/SWRepHJZGjXrh0WLFiAiRMn4s6dO9DW1kZcXFyLKzgxMTEAAA0NDcjlcuUOhhBCCCGkiVGfRwhpDAoXSL3ULOxz/PhxxMbGwsTEBHFxcbC3t1fyyBRr8uTJcHV1xaFDhwBQ4SGEEEJIy0d9HiGkMbSUPQCifsLDw7Fq1SqUlpbiwoULsLOzU/aQFMrLywtisRgcx2HVqlXQ1NTE9OnT+cJDU+cIIYQQ0lJRn0d9HiENRX89pN66d+8OJycnXLhwocUl2SKRCL/99hv69++PjRs3IjMzE8uWLcNff/0FgJJtQgghhLRs1OdRn0dIQ9HMBVJvNjY2EIlE0NHRUfZQFKq4uBgREREoLS3FDz/8gAEDBsDMzAwff/wxvLy8AAAzZsygZJsQQgghLRb1edTnEdJQFC6QBmlpBQcAWrdujYEDB2Lo0KEYMGAAZDIZFi1aBA0NDSxatOilhYfjOH6fZ8YY7flMCCGEELVHfR71eYQ0BG1FScgzZDIZqqqqoKenV+vnu3fvxqJFi2BpaYnvvvsOM2bMeOnjKekmhBBCCFFN1OcR0rTor4O89p7N1zQ1NV8oOADw4Ycf4pdffkFOTg68vLz41YUB4Mcff8S0adMAgAoOIYQQQogKoT6PkOZDMxfIa+vatWuwt7eHtrZ2nR9Tk2xbWVlh+/bt4DgOK1asQEZGBu7duwcbG5umGzAhhBBCCKkT6vMIaX4ULpDXkouLC9LT07F9+3aMHj2a39e5Lvbu3YsPPvgAZmZmKC8vh66uLk6fPo2ePXs24YgJIYQQQkhdUJ9HiHLQ3B7y2lm2bBnCw8ORnJyMtWvXIjo6GjKZ7D8fV3Of999/H3PnzkV+fj709PQQGxtLBYcQQgghRAVQn0eI8lC4QF4r/v7+2Lt3L+zt7bFs2TIkJyfjiy++QFRU1H8WnprUe9++fYiMjISxsTHi4uJa3B7QhBBCCCHqiPo8QpSLwgXy2pBIJNi/fz8qKyvh5+eHb775BsuXL8fNmzexevXqOhWemJgYLF68GIWFhYiNjYWdnV0zjZ4QQgghhLwK9XmEKB+FC+S1oaenh3Xr1sHHxwf29vbQ0NDAwoUL4e3t/crC8/ySJB07dsTUqVNpihwhhBBCiAqhPo8Q5aMFHclrRyqV1lo5ODs7G7/++iu2bt0KOzs7+Pj4vLD4T0lJCQwNDcEYg1QqhY6OjjKGTgghhBBC/gX1eYQoD81cIK+dmoJTk6tZWVm9kGxHRkby9z906BDWrFmDO3fugOM4KjiEEEIIISqK+jxClIdmLhDyf55Ntnv06AFfX188ePAA3t7e0NfXR3x8PNq3b6/sYRJCCCGEkHqiPo+QpkfhAiHPyMzMxP79++Hj44N27dohKysLmpqaOH36NBwcHJQ9PEIIIYQQ0kDU5xHStChcIOT/yGQyaGpqIjc3Fx999BHEYjFMTU1x+vRp2oaIEEIIIUSNUZ9HSNPTUvYACFEVNQv7HD9+HLGxsTAxMUFcXBxtQ0QIIYQQouaozyOk6dHMBUKeER4ejg8++AAFBQW4cOECJdmEEEIIIS0E9XmENC3aLYKQZ3Tv3h1OTk5UcAghhBBCWhjq8whpWjRzgZDnVFVV0TZEhBBCCCEtEPV5hDQdChcIIYQQQgghhBDSKHRZBCGEEEIIIYQQQhqFwgVCCCGEEEIIIYQ0CoULhBBCCCGEEEIIaRQKFwghhBBCCCGEENIoFC4QQgghhBBCCCGkUShcIIQQQgghhBBCSKNQuEAIIYQQQgghhJBGoXCBEEIIIYQQQgghjULhAiGEEEIIIYQQQhqFwgVCCCGEEEIIIYQ0CoULhBBCCCGEEEIIaZT/BwUMc+MrpFIfAAAAAElFTkSuQmCC", - "text/plain": [ - "
" - ] - }, - "execution_count": 13, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "plot_state_city(psi, title=\"My City\", color=['black', 'orange'])" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### **plot_state_hinton()** のオプション\n", - "\n", - "- **title** (str): プロットのタイトルを表す文字列\n", - "- **figsize** (tuple): インチ単位の図のサイズ (幅, 高さ)" - ] - }, - { - "cell_type": "code", - "execution_count": 14, - "metadata": { - "ExecuteTime": { - "end_time": "2021-07-31T05:09:03.630399Z", - "start_time": "2021-07-31T05:09:03.400479Z" - }, - "execution": { - "iopub.execute_input": "2023-08-25T18:25:17.843784Z", - "iopub.status.busy": "2023-08-25T18:25:17.842591Z", - "iopub.status.idle": "2023-08-25T18:25:18.141422Z", - "shell.execute_reply": "2023-08-25T18:25:18.140719Z" - }, - "scrolled": true - }, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAxYAAAHRCAYAAAD3zC+CAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAAAsgUlEQVR4nO3de3SU9Z0/8M+ESwKYRAsWULmJVLu2K4tYdWG5SDEt1tq1WtG2CiqirV1rrVBYXbCugpdW96xbb4jAtlZRW9ytVUSFKKlVj4rLdsVyEcRarFqbgNx1fn/0l2yzBEz4ZphM8nqdM+eQ5/nOPJ/5nvB88p7nMplsNpsNAACABEX5LgAAACh8ggUAAJBMsAAAAJIJFgAAQDLBAgAASCZYAAAAyQQLAAAgmWABAAAkEywAAIBkggVAM+rbt29kMpnIZDJxySWX7HHsDTfcUDe2ffv2Oa9t+vTpkclkYsSIEXscN2fOnMhkMtG3b99d1tW+v7Vr1+akRgAKl2ABkCM/+clPYvv27btdP3v27H1YTctUG3amT5+e71IASCRYAOTA4MGD4913342HHnqowfW/+tWvYsWKFXHMMcfs48rSPPHEE/HKK6/EwQcfnO9SAGhhBAuAHDj33HMjYvdHJe6666564wpF//7944gjjogOHTrkuxQAWhjBAiAHPv3pT8fgwYPjsccei9/97nf11m3atCnmz58fhxxySJx44om7PLempibKysqiffv2sX79+t1uY8yYMZHJZOJHP/pRs9e/O7u7xmLEiBGRyWRiyZIlsWzZsjj11FOjW7duUVxcHH/1V38VP/jBDyKbzdZ7TiaTiauuuioiIq666qq6600ymUyMGzeu3tg//vGPMXXq1DjyyCOjc+fOUVpaGkcffXRcf/31sWXLll3qXLJkSd31JDt27IjrrrsujjzyyOjUqVN07do1Tj311HjllVeadW4A2jrBAiBHzj333Pjwww9jzpw59ZbPnz8/Nm3aFOecc04UFe26Gy4rK4tx48bFBx98ELfddluDr7169ep49NFHo6ysLM4+++xclL9XFi5cGMcee2ysWLEiRo8eHccff3z89re/je9+97tx6aWX1ht7zjnnxFFHHRUREUcddVScc845dY+hQ4fWjVuzZk0MGjQoZsyYEW+//XaMGTMmTjjhhFi5cmVMnjw5hg4dGu+9916D9ezYsSPGjBkT3//+96N3795x0kknRZcuXeLnP/95/O3f/q2L0AGaUxaAZtOnT59sRGSffvrp7J/+9Kdsp06dsocddli9MUOGDMlmMpns6tWrs6+99lo2IrLt2rWrN+a3v/1tNpPJZD/+8Y9nt27dust2LrvssmxEZL/1rW81urZp06ZlIyI7fPjwPY67++67sxGR7dOnz27f32uvvVZv+fDhw7MRkY2I7G233VZv3RNPPJHNZDLZdu3aZdevX99gTdOmTdttPccee2w2IrJf/OIXs5s2bapb/oc//CE7aNCgbERkzzrrrHrPWbx4cV09f/M3f5P9/e9/X7duy5Yt2YqKimxEZC+44II9zgUAjeeIBUCOlJeXx6mnnhqrVq2KysrKiIh49dVXo6qqKoYPHx6HHnrobp87YMCA+PznPx9/+MMf4v7776+3bsuWLTF79uzIZDLxzW9+s8l1VVZW1jvt6P8+xo8f3+TXrHXqqafGxIkT6y074YQToqKiIj744INYvHhxk15v6dKl8eyzz0bnzp3jjjvuiC5dutStO/DAA+OOO+6IiIh777033njjjV2en8lk4u67744ePXrULSspKak7Bevxxx9vUj0A7F7ub5wO0Iade+658ZOf/CRmz54dw4cPr7uYuzEXbV9yySXxy1/+Mm655Zb42te+Vrf8nnvuiffeey9Gjx4dhx9+eJNr6t69e3zuc5/b7fpVq1ZFVVVVk183IuLkk09ucPknP/nJePTRR3e53uSjLFmyJCIiPve5z0X37t13WX/00UfHUUcdFS+//HJUVlbGV7/61Xrre/fuXXe61f+tJyKaXA8AuydYAOTQyJEjo1+/fvHAAw/EzTffHPPmzYuysrI47bTTPvK5o0ePjk9+8pPx7LPPxgsvvBBHH310RET827/9W0REXHzxxXtV0xFHHLHLdR9/ac6cOXsdLHr37t3g8rKysoiI2Lp1a5Ner/YP/379+u12TP/+/ePll19uMCR8VD3btm1rUj0A7J5ToQByqPYOR5s3b45zzjknNmzYEGPHjo1OnTo16rnf+ta3IiLilltuiYiIZ555Jl566aXo27dvfOELX8hp7XujoYvR86ml1QPQmtnjAuTYuHHjoqioKP7zP/8zIpr23RVnn3127L///nHvvffGu+++WxcwLrroojbxR3PtF/GtWbNmt2Nq1/nSPoD8av1dCSDPevfuHaecckp07do1jjvuuDj22GMb/dwuXbrEeeedF1u3bo1rr702HnjggSgpKYnzzjsvhxXvOx07doyIiJ07dza4fsSIERER8eijj8Zbb721y/qXXnopli1bFkVFRTFs2LCc1QnARxMsAPaBn/3sZ/HOO+/EM8880+TnXnzxxVFUVBQ//OEPY/v27XHmmWdG165dc1DlvnfIIYdERMRvfvObBtcPHTo0jj322NiyZUtMnDgxNm/eXLfunXfeqbsD1dixY6NXr165LxiA3XLxNkAL17dv3/jiF78YCxYsiIi9v2i7JaqoqIguXbrEggULYujQoTFgwIBo165dDBkypO62t/fcc0+ccMIJ8dBDD0W/fv1i2LBhsWPHjli8eHHU1NTEoEGD6k4RAyB/HLEAKAAVFRUREXH88cfHoEGD8lxN8+nevXs88sgj8dnPfjb+53/+J+bNmxd33XVX3fd+REQceuih8eKLL8aUKVOia9eu8Ytf/CIWLVoU/fv3j5kzZ8bSpUvjgAMOyOO7ACAiIpPNZrP5LgKAPRs6dGhUVVXFPffcE2eeeWa+ywGAXQgWAC3cI488EmPGjInevXvHqlWrokOHDvkuCQB24RoLgBbo3XffjcmTJ8d7770Xv/zlLyMi4vrrrxcqAGixHLEAaIHWrl0b/fr1i/bt28ehhx4al112WVxwwQX5LgsAdkuwAAAAkrkrFAAAkEywAAAAkgkWAABAMsECAABIJlgAAADJBAsAACCZYAEAACQTLAAAgGSCBQAAkEywAAAAkgkWAABAMsECAABIJlgAAADJBAsAACCZYAEAACQTLAAAgGSCBQAAkEywAAAAkgkWAABAMsECAABIJlgAAADJBAsAACCZYAEAACQTLAAAgGSCBeTQnDlzIpPJ1D3Gjh2b9HorVqyo93p9+/ZtnkIB2Kf0B1qj9vkuAPJl7dq10a9fv3rL2rdvHx//+MdjyJAhMWnSpBg8eHCzbOuUU06JgQMHxqc+9amk1+nWrVtMmzYtIiJuvvnmZqgMgN2p7RMVFRXx6KOP5mQb+gOtiWBBm9e/f//42te+FhER77//frzwwgtx//33x4IFC+Lxxx+PYcOGJW/jS1/6UowbNy75dbp16xbTp0+PiD9/2gVAYdMfaE0EC9q8ww47rG5nXGvmzJkxZcqUuPLKK6OysjI/hQEAFBDXWEADzjvvvIiIeOGFFxpc/9RTT8XJJ58c3bp1i+Li4hgwYEBcccUVsXnz5qTtPvDAAzFw4MDo3LlzdOzYMY466qh46KGHkl4TgOazZMmSyGQyMX369PjVr34VI0eOjNLS0jjwwAPjG9/4RmzZsiUiIh5++OE4/vjjo0uXLtG9e/eYNGlS7Ny5c6+3qz9QCAQL2IP27Xc9qHfrrbfGiBEjoqqqKk466aT4h3/4hzjkkEPimmuuidGjR8f27dubvJ0PPvggxo8fH6effnrsv//+cckll8Tpp58ev/nNb+LLX/5yPPfcc83xdgBoJs8++2yMGjUqysvLY+LEidG7d++49dZbY8KECXHffffFaaedFn369ImJEyfG/vvvHzfccENce+21Td6O/kBByUIb9dprr2UjIltRUbHLumuvvTYbEdmTTjqp3vLf/OY32fbt22ePOuqo7DvvvFNv3YwZM7IRkb3xxhvrlt19993ZiMjefffde6xl8uTJ2YjI3n777fWW33TTTdmIyH71q1/d5Tl9+vTJ9unT5yPeJQB7q6E+sXjx4mxEZCMiu2DBgrrl27dvz/71X/91NpPJZLt165Z97rnn6tbV1NRkP/7xj2c/9rGPZbdv357NZvUHWidHLGjzVq1aFdOnT4/p06fH5ZdfHieccEJMnTo1unfvHjfccEO9sbfffnvs3Lkz/vVf/zW6du1ab92kSZPiwAMPjJ/+9KdN2v6rr74aP/zhD+MrX/lKXHDBBfXWnXHGGRERsXz58r14ZwDkysiRI+OUU06p+7lDhw5x2mmnRTabjZNPPjmOOeaYunWlpaXxhS98If74xz/GG2+80eht6A8UGhdv0+atXr06rrrqqnrLevToEU8//XQcdthh9Zb/+te/joiIhQsXxhNPPLHLa3Xo0CFWrFjRpO3/+Mc/jh07dsS3v/3tXdZ17tw5IiLatWvXpNcEILcGDhy4y7KePXt+5Lo333xzl1ud747+QKERLGjz/vL+5G+//XbMnTs3Jk+eHF/84hfjueeei/32269u7B//+MeIiLjmmmuabfu/+MUv4mMf+1gcd9xxu6yr/WSrf//+zbY9ANKVlZXtsqz2urw9rduxY0ejt6E/UGicCgV/4cADD4zvfve7MXXq1HjllVfiiiuuqLe+tlnU1NRENpvd7aOxNm/eHP/1X/8VBx98cGQymV3WP/zwwxERMWrUqIR3BUCh0R8oRIIFNGDq1Klx0EEHxY9+9KNYu3Zt3fJjjz02Iv73lKhUy5Ytiw8//LDB29Ru3rw57rjjjujSpUvdubQAtA36A4VIsIAGdOrUKSZPnhw7duyIq6++um75N77xjWjfvn1861vfitdff32X5/3pT3+Kl156qdHbefHFFyPiz9d5/OXzPvjgg/jmN79Zd/3HAQcckPBuACg0+gOFyDUWsBsXXHBBXHfddTFv3ryYOnVq9O/fPz71qU/Fj370o7jooovi8MMPjzFjxkT//v1j48aNsWbNmqisrIxx48bFbbfd1qht1DaOk046KUaNGhVnnXVWdOrUKR5++OF45ZVX4vzzz4/vfOc7uXybALRA+gOFyBEL2I2SkpKYMmVK7Ny5s95doyZMmBDPPPNMfOlLX4pf//rXcfPNN8cDDzwQ77zzTlx66aUN3r1jd1588cXo2rVrzJ8/P84444yYP39+3HLLLdGlS5eYN29e3HnnnQ2eWwtA66Y/UIgy2aZcaQo0yZw5c2L8+PFx9913x7hx4+qt27ZtW5SWlsawYcPi8ccfb/Jr9+3bNyKi3jUgABQG/YHWyBEL2AfGjx8fmUwmxo4dW7ds+fLlsWPHjgbvd747K1asiEwmE5lMJtatW5eDSgHYl/QHWhPXWEAODRw4MKZNm1b386c+9am6f9eeP9uUxtGtW7d6r7f//vsn1wjAvqc/0Bo5FQry5KKLLorbbrstli9fXq+hANC26Q8UKsECAABI5hoLAAAgmWABAAAkK6iLtz/88MN48803o7S01L2bAZpJNpuNjRs3xkEHHRRFRYX7eZMeAdD8mtIjCipYvPnmm9GrV698lwHQKq1fvz4OOeSQfJex1/QIgNxpTI8oqGBRWloaEX9+Y2VlZXmupvWZPXt2vPXWW/kuA/aoe/fuce655+a7jFalpqYmevXqVbePLVS19V966aVRXFyc52oAWodt27bFTTfd1KgeUVDBovbQdllZmWCRA506dYqSkpJ8lwF71KlTJ///c6TQTx+qrb+4uNi+DKCZNaZHFO7JtAAAQIshWAAAAMkECwAAIJlgAQAAJBMsAACAZIIFAACQTLAAAACSCRYAAEAywQIAAEgmWAAAAMkECwAAIJlgAQAAJBMsAACAZIIFAACQTLAAAACSCRYAAEAywQIAAEgmWAAAAMkECwAAIJlgAQAAJBMsAACAZIIFAACQTLAAAACSCRYAAEAywQIAAEgmWAAAAMkECwAAIJlgAQAAJBMsAACAZIIFAACQTLAAAACSCRYAAEAywQIAAEgmWAAAAMn2Olg8//zzMWbMmNh///2jS5cucdxxx8X8+fMbHPv73/8+zjvvvOjZs2eUlJTE4YcfHtdcc03s2LFjrwsHoGXSHwDapvZ786TFixdHRUVFlJSUxNixY6O0tDQefPDBOOOMM2L9+vVx2WWX1Y3dsGFDHHvssfHGG2/E3//938eAAQOisrIyrrjiinjuuediwYIFkclkmu0NAZA/+gNA29XkYLFz586YMGFCFBUVxVNPPRUDBw6MiIh/+qd/is985jMxderUOO2006JPnz4RETF58uRYv3593HrrrXHhhRdGREQ2m42zzjor7r333rj33nvjzDPPbL53BEBe6A8AbVuTT4V68sknY/Xq1XHWWWfVNY2IiPLy8pg6dWps37495s6dGxERGzdujPvuuy8OPfTQmDhxYt3YTCYTM2fOjIiIO++8M/EtANAS6A8AbVuTj1gsWbIkIiJOPPHEXdZVVFRERERlZWVERDzzzDOxbdu2GD169C6Hs/v06ROHH354VFVVxQcffBDt2rXb5fW2bdsW27Ztq/u5pqamqeUCsI/sy/4QoUcAtDRNPmKxcuXKiIgYMGDALut69OgR++23X92YPY2tXb59+/ZYt25dg+tnzJgR5eXldY9evXo1tVwA9pF92R8i9AiAlqbJwaK6ujoi/nxouyFlZWV1Yxoz9i/H/V9TpkyJ6urqusf69eubWi4A+8i+7A8RegRAS7NXd4XaV4qLi6O4uDjfZQDQAukRAC1Lk49Y1H66tLtPkWpqaurGNGbsX44DoHDpDwBtW5ODRe35sLXnx/6lDRs2xKZNm+rG7Gls7fKOHTtG7969m1oGAC2M/gDQtjU5WAwfPjwiIh577LFd1i1cuLDemOOOOy46duwYixYtimw2W2/sunXr4tVXX40hQ4ZE+/Yt+owsABpBfwBo25ocLEaNGhWHHnpo3HPPPbFs2bK65dXV1XHttddGx44d4+yzz46IP198N3bs2FizZk3cfvvtdWOz2WxMmTIlIiImTJiQ+BYAaAn0B4C2rckfBbVv3z5mzZoVFRUVMWzYsBg7dmyUlpbGgw8+GOvWrYsbb7wx+vbtWzd+5syZsXjx4vjGN74Rjz/+eBx22GFRWVkZv/71r+Pkk0+OsWPHNuf7ASBP9AeAtq3JRywiIkaOHBlLly6NIUOGxH333Re33nprdO/ePe6999647LLL6o3t2bNnPPvsszF+/PhYunRp3HTTTfHuu+/G1VdfHQ888MAuX4wEQOHSHwDarr0+efUzn/lMPPLII40a27Nnz7jrrrv2dlMAFBD9AaBt2qsjFgAAAH9JsAAAAJIJFgAAQDLBAgAASCZYAAAAyQQLAAAgmWABAAAkEywAAIBkggUAAJBMsAAAAJIJFgAAQDLBAgAASCZYAAAAyQQLAAAgmWABAAAkEywAAIBkggUAAJBMsAAAAJIJFgAAQDLBAgAASCZYAAAAyQQLAAAgmWABAAAkEywAAIBkggUAAJBMsAAAAJIJFgAAQDLBAgAASCZYAAAAyQQLAAAgmWABAAAkEywAAIBkggUAAJBMsCAiInbs2BGbN2/OdxnwkTZv3hw7duzIdxkAwP/RPt8F7I3Zs2dHp06d8l1Gq7J58+aoqanJdxnwkWpqauKWW26Jzp0757uUVmPLli35LgGAVqAgg8Vbb70VJSUl+S4DyJOamhpBuBlt3bo13yUA0Ao4FQoAAEgmWAAAAMkECwAAIJlgAQAAJBMsAACAZIIFAACQTLAAAACSCRYAAEAywQIAAEgmWAAAAMkECwAAIJlgAQAAJBMsAACAZIIFAACQTLAAAACSCRYAAEAywQIAAEgmWAAAAMkECwAAIJlgAQAAJBMsAACAZIIFAACQTLAAAACSCRYAAEAywQIAAEgmWAAAAMkECwAAIJlgAQAAJBMsAACAZIIFAACQTLAAAACSCRYAAEAywQIAAEgmWAAAAMkECwAAINleBYvnn38+xowZE/vvv3906dIljjvuuJg/f/4u45566qn47ne/GyNHjozy8vLIZDIxbty41JoBaMH0CIC2qX1Tn7B48eKoqKiIkpKSGDt2bJSWlsaDDz4YZ5xxRqxfvz4uu+yyurGzZ8+OuXPnRufOnaN3795RU1PTrMUD0LLoEQBtV5OOWOzcuTMmTJgQRUVF8dRTT8Udd9wRP/jBD+Lll1+OT3ziEzF16tRYt25d3fiLL744/vu//ztqamri7rvvbvbiAWg59AiAtq1JweLJJ5+M1atXx1lnnRUDBw6sW15eXh5Tp06N7du3x9y5c+uWDx48OI488sho165dsxUMQMukRwC0bU06FWrJkiUREXHiiSfusq6ioiIiIiorK9Or+v+2bdsW27Ztq/vZYXKAlkuPAGjbmnTEYuXKlRERMWDAgF3W9ejRI/bbb7+6Mc1hxowZUV5eXvfo1atXs702AM1LjwBo25oULKqrqyPiz4e1G1JWVlY3pjlMmTIlqqur6x7r169vttcGoHnpEQBtW5PvCrUvFRcXR3Fxcb7LAKAF0iMAWpYmHbGo/RRqd5841dTU7PaTKgBaNz0CoG1rUrCoPW+2oXNkN2zYEJs2bWrw3FoAWj89AqBta1KwGD58eEREPPbYY7usW7hwYb0xALQtegRA29akYDFq1Kg49NBD45577olly5bVLa+uro5rr702OnbsGGeffXZz1whAAdAjANq2Jl283b59+5g1a1ZUVFTEsGHDYuzYsVFaWhoPPvhgrFu3Lm688cbo27dv3filS5fGrFmzIiLi7bffrls2bty4iIjo1q1b3Hjjjc3zTgDIKz0CoG1r8l2hRo4cGUuXLo1p06bFfffdFzt27IhPf/rTcd1118UZZ5xRb+yqVavqfctqRMTq1atj9erVERHRp08fTQOgFdEjANquTDabzea7iMaqvaPI9773vSgpKcl3OQCtwtatW2PmzJlRXV0dZWVl+S5nr+kRAM2vKT2iSddYAAAANESwAAAAkgkWAABAMsECAABIJlgAAADJBAsAACCZYAEAACQTLAAAgGSCBQAAkEywAAAAkgkWAABAMsECAABIJlgAAADJBAsAACCZYAEAACQTLAAAgGSCBQAAkEywAAAAkgkWAABAMsECAABIJlgAAADJBAsAACCZYAEAACQTLAAAgGSCBQAAkEywAAAAkgkWAABAMsECAABIJlgAAADJBAsAACCZYAEAACQTLAAAgGSCBQAAkEywAAAAkgkWAABAMsECAABIJlgAAADJBAsAACCZYAEAACQTLAAAgGSCBQAAkEywAAAAkgkWAABAMsECAABIJlgAAADJBAsAACCZYAEAACQTLAAAgGSCBQAAkEywAAAAkgkWAABAMsECAABIJlgAAADJBAsAACCZYAEAACQTLAAAgGSCBQAAkEywAAAAkgkWAABAMsECAABIJlgAAADJBAsAACCZYAEAACQTLAAAgGSCBQAAkEywAAAAkgkWAABAMsECAABIJlgAAADJBAsAACBZk4PFj3/845g4cWIMHjw4iouLI5PJxJw5c3Y7vqamJr7zne9Enz59ori4OPr27RuXX355bNq0KaVuAFogPQKg7Wrf1CdcccUVsW7duujWrVv07Nkz1q1bt9ux77//fgwfPjyWLVsWJ554Ypx55pnx0ksvxY033hiVlZXx1FNPRUlJSdIbAKDl0CMA2q4mH7GYNWtWrF27Nt5+++248MIL9zj2+uuvj2XLlsXkyZNj4cKFMXPmzFi4cGFMnjw5nn/++bjpppv2unAAWh49AqDtanKw+OxnPxt9+vT5yHHZbDZmzZoV++23X1x55ZX11l155ZWx3377xaxZs5q6eQBaMD0CoO3K2cXbK1eujDfffDOGDBkSXbp0qbeuS5cuMWTIkFizZk2sX78+VyUA0ELpEQCtT06DRUTEgAEDGlxfu7x2XEO2bdsWNTU19R4AFD49AqD1yVmwqK6ujoiI8vLyBteXlZXVG9eQGTNmRHl5ed2jV69ezV8oAPucHgHQ+rTo77GYMmVKVFdX1z0cEgeglh4B0LI0+XazjVX7KdTuPm2qPWS9u0+rIiKKi4ujuLi4+YsDIK/0CIDWJ2dHLD7q/NiPOr8WgNZLjwBofXIaLA466KCoqqqK999/v966999/P6qqqqJfv37OiQVog/QIgNYnZ8Eik8nE+eefH5s2bYqrr7663rqrr746Nm3aFBMmTMjV5gFowfQIgNanyddYzJo1K5YuXRoREcuXL69btmTJkoiIGDp0aJx//vkRETFp0qR46KGH4rrrrouXXnopBg0aFC+++GI89thjccwxx8S3v/3t5nkXALQIegRA29XkYLF06dKYO3duvWVVVVVRVVVV93Nt0+jSpUtUVlbG9OnT48EHH4zFixdHz54947LLLotp06ZFp06dEssHoCXRIwDarkw2m83mu4jGqqmpifLy8vje974XJSUl+S4HoFXYunVrzJw5M6qrq+u+P6IQ6REAza8pPaJFf48FAABQGAQLAAAgmWABAAAkEywAAIBkggUAAJBMsAAAAJIJFgAAQDLBAgAASCZYAAAAyQQLAAAgmWABAAAkEywAAIBkggUAAJBMsAAAAJIJFgAAQDLBAgAASCZYAAAAyQQLAAAgmWABAAAkEywAAIBkggUAAJBMsAAAAJIJFgAAQDLBAgAASCZYAAAAyQQLAAAgmWABAAAkEywAAIBkggUAAJBMsAAAAJIJFgAAQDLBAgAASCZYAAAAydrnu4C90b179+jUqVO+y2hVNm/eHDU1NfkuAxqlrKwsOnfunO8yWo0tW7bkuwQAWoGCDBbnnntulJWV5buMVmXHjh1xyy23CBe0eGVlZXHxxRdHhw4d8l1Kq1FTUxOXXnppvssAoMA5FYqIiOjQoYNPgCkInTt3FioAoAUSLAAAgGSCBQAAkEywAAAAkgkWAABAMsECAABIJlgAAADJBAsAACCZYAEAACQTLAAAgGSCBQAAkEywAAAAkgkWAABAMsECAABIJlgAAADJBAsAACCZYAEAACQTLAAAgGSCBQAAkEywAAAAkgkWAABAMsECAABIJlgAAADJBAsAACCZYAEAACQTLAAAgGSCBQAAkEywAAAAkgkWAABAMsECAABIJlgAAADJBAsAACCZYAEAACQTLAAAgGSCBQAAkEywAAAAkjU5WPz4xz+OiRMnxuDBg6O4uDgymUzMmTOnwbHLli2LqVOnRkVFRRx44IGRyWRixIgRiSUD0FLpEQBtV/umPuGKK66IdevWRbdu3aJnz56xbt263Y5dsGBBzJgxIzp27Bif+MQn4p133kkqFoCWTY8AaLuafMRi1qxZsXbt2nj77bfjwgsv3OPY008/PV544YXYtGlTLFq0aK+LBKAw6BEAbVeTj1h89rOfbfTYI488sqkvD0AB0yMA2i4XbwMAAMmafMRiX9q2bVts27at7ueampo8VgNAS6JHALQsLfqIxYwZM6K8vLzu0atXr3yXBEALoUcAtCwtOlhMmTIlqqur6x7r16/Pd0kAtBB6BEDL0qJPhSouLo7i4uJ8lwFAC6RHALQsLfqIBQAAUBgECwAAIJlgAQAAJGvyNRazZs2KpUuXRkTE8uXL65YtWbIkIiKGDh0a559/fkRErFixImbOnBkREVu2bKlbNm7cuLrXmzNnzt7WDkALo0cAtF1NDhZLly6NuXPn1ltWVVUVVVVVdT/XNo0NGzbsMvatt96qt0zTAGg99AiAtqvJwWLOnDmN3tGPGDEistlsUzcBQIHSIwDaLtdYAAAAyQQLAAAgmWABAAAkEywAAIBkggUAAJBMsAAAAJIJFgAAQDLBAgAASCZYAAAAyQQLAAAgmWABAAAkEywAAIBkggUAAJBMsAAAAJIJFgAAQDLBAgAASCZYAAAAyQQLAAAgmWABAAAkEywAAIBkggUAAJBMsAAAAJIJFgAAQDLBAgAASCZYAAAAyQQLAAAgmWABAAAkEywAAIBkggUAAJBMsAAAAJIJFgAAQDLBAgAASCZYAAAAydrnu4CmyGazERFRU1OT50papy1btsTWrVvzXQbs0ZYtW+wDmlntfNbuYwtVbf3btm3LcyUArUftPrUxPSKTLaBO8sYbb0SvXr3yXQZAq7R+/fo45JBD8l3GXtMjAHKnMT2ioILFhx9+GG+++WaUlpZGJpPJdzl7VFNTE7169Yr169dHWVlZvstpNcxrbpjX3CiUec1ms7Fx48Y46KCDoqiocM+Q1SMwr83PnOZGIc1rU3pEQZ0KVVRUVHCfppWVlbX4X5hCZF5zw7zmRiHMa3l5eb5LSKZHUMu8Nj9zmhuFMq+N7RGF+9EUAADQYggWAABAMsEiR4qLi2PatGlRXFyc71JaFfOaG+Y1N8wru+N3IzfMa/Mzp7nRWue1oC7eBgAAWiZHLAAAgGSCBQAAkEywAAAAkgkWAABAMsECAABIJlgAAADJBAsAACBZ+3wX0Jpks9lYt25dVFdXR0REeXl59O7dO4qK5DeAtk6PAFo7waIZ3HfffXHnnXdGVVVVbN++vd66jh07xtChQ2PChAnxla98JU8Vtm6XX355/OxnP4vVq1fnu5SC8rvf/S5WrlxZ74+cAQMGxMEHH5znyqB10SPyR3/Ye3oEe0OwSLBz5844/fTT4z/+4z8im83G4YcfHgMGDIiysrKIiKipqYmVK1fGE088EU8++WT89Kc/jfvvvz/atzftzemdd96JtWvX5ruMgrB9+/a46aabYtasWbFmzZoGx/Tr1y8uuOCCuOSSS6K4uHgfV9j6jR8/Pv793/89du7cme9SyDE9Iv/0h6bRI/Kv0HuEvVeC66+/Ph566KEYO3ZszJw5M3r37t3guNdffz2+973vxX333Rc33HBDTJkyZR9XChHvv/9+jBo1Kp577rnYb7/94sQTT2zwj5yqqqqYMmVK/PznP4/HH388unTpkufKW59sNpvvEtgH9AgKiR7RchRyj8hkC7n6PDviiCOia9euUVVV1ajxxx9/fLz33nuxYsWKHFdW2M4999wmjX/66adjzZo18cEHH+SootZh0qRJceONN8bkyZPjyiuvjM6dOzc4bvPmzfH9738/rr/++rj88svjuuuu28eVtm7jx4+PefPm+X1tA/SI5qc/5I4e0TIUeo8QLBJ06tQpLr300rj22msbNX7KlClx8803x5YtW3JcWWErKiqKTCbTpMSeyWQK9j/hvtKvX7844ogj4pFHHmnU+IqKivjtb38br732Wo4rK2wnnHBCk8a/8sor8Yc//MHvaxugRzQ//SF39IjcaGs9wqlQCQ444IBYtWpVo8evWrUqDjjggBxW1DqUlZXFwQcfHLNnz27U+KuvvrrRO8K27Pe//32ceeaZjR5/9NFHR2VlZQ4rah2WLFmyV3/o0PrpEc1Pf8gdPSI32lqPECwSfP7zn4+5c+fGnXfeGRMmTNjj2Ntvvz1+/vOfx/jx4/dRdYVr0KBB8fzzz8dnPvOZRv3nOvDAA/dBVYWvR48esWzZskaPf/HFF6NHjx65K6iV6NatW/Ts2TMee+yxRo2/5JJL4v77789xVbQEekTz0x9yR4/IjbbWIwSLBNdcc00sWrQoLrzwwrj++utj9OjRMWDAgCgvL4+IiOrq6li5cmUsWrQo1qxZE4ccckj88z//c56rbvkGDRoUlZWVsWLFivjkJz+Z73JajVNPPTX+5V/+Jf7xH/8xrrjiiujUqVOD47Zs2RJXX311LFq0KL797W/v2yILUO3va7du3aJdu3YfOX53807ro0c0P/0hd/SI3GhrPUKwSNCjR494/vnnY9KkSTF//vy47bbbIuJ/D2HVHvbq2LFjfP3rX4+ZM2dG9+7d81ZvoTjllFPi3XffbfR5xueff36MGDEit0W1AldddVUsXrw4ZsyYEbfccksMGTKkwT9yqqqqYuPGjXHUUUfF9OnT81t0ARg0aFAsWrQoli9fHgMHDvzI8S5razv0iOanP+SOHpEbba1HuHi7mWzatCmeeeaZBr9M5rjjjovS0tI8Vwh/vpvHddddF3fddVe8+eabDY456KCD4vzzz49Jkybt9q4g/K+XX345FixYEF/5ylca9Qnqq6++Ghs2bIjhw4fvg+poKfQICoEe0fzaWo8QLKCNWrlyZYN/5AwYMCDPlQGQb3oEe0OwaAbr16+PuXPnRmVlZYP/CUeMGBFf//rXd/vlSDTMvAKtgX1Z8zOn0EJlSfLDH/4wW1JSks1kMtlMJpMtLS3NHnzwwdmDDz44W1paWre8pKQke9NNN+W73IJhXvNv1qxZ2fHjx+e7jFbHvLYt9mXNz5y2DPZluVHo8ypYJJg/f342k8lkDz/88OzcuXOzGzZs2GXMhg0bsnPmzMl+4hOfyBYVFWXvv//+PFRaWMxryzBu3LhsUVFRvstodcxr22Ff1vzMacthX5YbhT6vToVKcPzxx8dbb70VL7/88kdeeFddXR0DBw6MHj16xDPPPLOPKixM5rVlGD9+fMybN69gv/2zpTKvbYd9WfMzpy2HfVluFPq8ut1sguXLl8dFF13UqLt5lJeXx5e//OW62w2ye+Y1N+bNm9ek8U35xuC2zLyyO/Zlzc+c5o59WW60tXkVLBJ06NAhNm7c2OjxGzdujA4dOuSwotbBvObGuHHjGvVNtbWy2WyTxrdV5pXdsS9rfuY0d+zLcqOtzatToRKMGTMmfvWrX8XTTz8dn/70p/c49uWXX45hw4bF0KFD4+GHH95HFRYm85obJSUlcdBBB8XEiRMbNf7++++Pl156qWAPx+4r5pXdsS9rfuY0d+zLcqOtzatgkeD555+PoUOHRrt27eKrX/1qjB49usFvqXzsscfinnvuiQ8//DCWLl0agwcPznPlLZt5zY1jjjkmXn/99XjrrbcaNb7Qz/PcV8wru2Nf1vzMae7Yl+VGm5vXfF013lo8+eST2f79+2czmUy2qKiowUcmk8n2798/u3jx4nyXWzDMa/ObOHFitqioKPv66683anyh35liXzGv7Il9WfMzp7lhX5YbbW1eXWORaOTIkfHqq6/Gk08+GUuWLGnwi3qGDx8eo0aNinbt2uW52sJhXpvf3/3d38XChQtj5cqV0atXr48cP3To0H1QVeEzr+yJfVnzM6e5YV+WG21tXp0KBQAAJCvKdwEAAEDhEywAAIBkggUAAJBMsAAAAJIJFgAAQDLBAgAASCZYAAAAyf4fNR5f1JmV6hsAAAAASUVORK5CYII=", - "text/plain": [ - "
" - ] - }, - "execution_count": 14, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "plot_state_hinton(psi, title=\"My Hinton\")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### **plot_state_paulivec()** のオプション\n", - "\n", - "- **title** (str): プロットのタイトルを表す文字列\n", - "- **figsize** (tuple): インチ単位の図のサイズ (幅, 高さ)\n", - "- **color** (list または str): 期待値の棒の色" - ] - }, - { - "cell_type": "code", - "execution_count": 15, - "metadata": { - "ExecuteTime": { - "end_time": "2021-07-31T05:09:05.915291Z", - "start_time": "2021-07-31T05:09:05.790887Z" - }, - "execution": { - "iopub.execute_input": "2023-08-25T18:25:18.146375Z", - "iopub.status.busy": "2023-08-25T18:25:18.145164Z", - "iopub.status.idle": "2023-08-25T18:25:18.300399Z", - "shell.execute_reply": "2023-08-25T18:25:18.299672Z" - }, - "scrolled": false - }, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAoQAAAHvCAYAAADNbM5LAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAABYeElEQVR4nO3deXhTZf7+8Ttps7WlQNn3sgpKkX0R2RUUF9xRVMBxd3CGH86ooA6gIqjg6Lg7OKCjoIyg4oKAIwUBEWQHKQJSQKACVrov2X5/8G2GkKZ0C6dp3q/r4tKe5+Tkk5OnT++cnPMck9fr9QoAAAARy2x0AQAAADAWgRAAACDCEQgBAAAiHIEQAAAgwhEIAQAAIhyBEAAAIMIRCAEAACIcgRAAACDCEQgBAAAiHIEQQFhITEyUyWSSyWTSn//85xLXff75533rRkdHh7y2KVOm+J6v6F9UVJQSEhLUr18/vfzyy3I6nSGvI5i5c+fKZDJp7NixfstTU1NlMpmUmJhoSF0Aqo7Qj5QAUMnef/99Pf/887JarcW2/+tf/zrHFZ3SoEEDXXbZZZIkp9Op3bt3a/Xq1Vq9erU++OADLVu2TLGxsYbUBgAl4QghgLDSvXt3/fbbb/r000+LbV+7dq1SUlLUo0ePc1yZ1L59e82dO1dz587V+++/rx9++EGLFy9WVFSU1q5dq2efffac11SSJk2aaNeuXfrvf/9rdCkADEYgBBBW/vCHP0gKfhTw7bff9lvPaFdddZVuu+02SdKCBQsMrsafxWJR+/bt1bp1a6NLAWAwAiGAsJKUlKTu3btr2bJlOnz4sF9bdna2FixYoKZNm2ro0KEBj83MzFR8fLyio6N16NChoM8xfPhwmUwmvfbaa5VSc7du3SSdOmevyKJFi3TXXXepY8eOql27tux2u1q2bKk//OEP2r17d7HbGThwoEwmk5KTk4ttLzqXccqUKaWqq7hzCFNSUmQymVS7dm3l5+cHfWz37t1lMpkCjtS6XC7Nnj1bAwcOVEJCgmw2m1q2bKn777+/xH1++PBh/fWvf1VSUpJq1Kih2NhYtWvXTmPHjtXatWtL9XoAlB+BEEDY+cMf/iCPx6O5c+f6LV+wYIGys7M1ZswYmc2Bw1t8fLzGjh0rt9utN954o9ht79u3T1999ZXi4+M1evToSqk3MzNTkmSz2XzLbrrpJs2fP18Oh0ODBw/WsGHDZDabNWfOHHXr1s2wENS+fXv16dNHJ0+e1CeffFLsOtu3b9fGjRvVoEEDXXHFFb7lWVlZuvTSS3X33Xdr48aN6tSpk66++mrZbDa98cYb6tKlizZv3hywvf/+97/q2LGjZs6cqWPHjmnIkCG64oorVKtWLc2bN09vvfVWqF4ugP9DIAQQdkaNGiWHwxEQCP/1r3/JZDKV+HXxgw8+KJPJpNmzZ6ugoCCg/fXXX5fX69WYMWMUFxdX4Vq9Xq8WL14sSercubNv+fvvv69jx45pw4YNWrhwoT799FPt3btXr776qnJycnTPPffI6/VW+PnLo2j/nbl/i8yZM0eSdNttt/ldxX3fffcpOTlZV155pfbt26fk5GT95z//UUpKiv7+97/rt99+08iRI+V2u32POXTokK6//nqdPHlSjz76qA4dOqRPPvlECxYs0Pr16/XLL7/orrvuCt2LBSCJQAggDNWsWVPXXXed9u7dq5UrV0qSdu/erTVr1mjAgAFq1apV0Me2bdtWl19+uY4dO6b//Oc/fm15eXm+UPnHP/6xQjU6nU79+OOPGjVqlNavXy9JGj9+vK995MiRAVccm0wmPfDAA+rTp4927typXbt2VaiG8ho5cqRiYmK0fPnygK/lnU6n3nvvPUnSHXfc4Vu+a9cuzZ8/X40bN9a8efNUv359v8eNHz9ew4cP1549e7RkyRLf8hdeeEEZGRm66qqrNH369IArx+vXr6+LL764sl8igDMQCAGEpTMvLin6b2kuJimax/CVV17xWz5v3jz9/vvvuuSSS3TeeeeVuaaVK1f65iG0Wq264IIL9MEHH8hqtWrWrFm69tpr/dbfu3evXnnlFY0fP1533nmnxo4dq7Fjx+rXX3+VpKDnEoZajRo1dMMNN8jj8ejdd9/1a/viiy90/Phx9ezZUxdccIFv+Zdffimv16vLL79cNWrUKHa7AwcOlCS/r8O/+uorSdI999xTya8CQFkwDyGAsDRo0CC1bNlSH330kV588UW9++67io+P1w033HDWx1566aXq0KGDvv/+e23cuNF30cerr74qSRo3bly5ajp9HkKz2az4+Hidf/75uvrqq9WwYUPfem63W+PGjdObb75Z4tfCReceGuEPf/iD3n33Xc2dO1cTJ070LS/6uvj0o4OS9PPPP0s6dZV30ZXewRw/ftz3/wcOHJB06txFAMYhEAIIS0V33pg8ebLGjBmjtLQ03XPPPXI4HKV67IMPPqgHHnhAr7zyiubMmaPvvvtOmzdvVmJioq688spy1VQ0D+HZvPTSS3rjjTfUsGFDvfDCC7rooovUoEED2e12SafOkZw/f36ZzyH0eDzlKbtY/fv3V+vWrfXTTz9p7dq1uuiii3Ts2DF9+eWXstvtuvnmm4t97s6dO+vCCy8scdu9evWqtDoBVA4CIYCwNXbsWE2dOlWfffaZpLLNPTh69GhNmjRJH3zwgWbOnOn7+vj+++8v9grlylQ0H+Gbb76pq6++OqB9z549xT6u6Py6rKysYtuLjrZVhqLA/cQTT2jOnDm66KKL9N5778nlcummm25SrVq1/NZv1qyZJKlv374BX8WXpHnz5tq9e7dSUlLUpk2bSqsfQNlwDiGAsNW8eXONGDFCderUUe/evct05Ck2NlZ33nmn8vPz9cwzz+ijjz6S3W7XnXfeGcKKT0lPT5cktWjRIqBt586d2rJlS7GPa9KkiSQVe7FJbm6uVqxYUXlF6lTgNpvNWrBggXJzc4N+XSxJl19+uSRp8eLFJc5feKair9j/+c9/VkLFAMqLQAggrC1atEgnTpzQd999V+bHjhs3TmazWS+88IIKCwt1yy23qE6dOiGo0l+HDh0knTpn8fSveY8eParRo0fL5XIV+7hLLrnE97jTr/4tmqampImfy6Np06a69NJLlZmZqUmTJmnHjh1q3ry5Bg8eHLBuly5ddP311+vQoUO67rrr/CbhPr3O999/33fRjCRNmDBBNWrU0OLFi/X444/L6XT6PebYsWNavXp1pb4uAIEIhAAiVmJiot9XtuW9mKSsJk2aJKvVqn/+858677zzNHLkSF1++eVq3bq1CgoKAq5GLnLTTTepe/fuOnjwoC644AJdeeWVGj58uFq2bKnk5OSQ3K6v6GjgSy+9JOl/Rw2LM2fOHA0ZMkRLlizReeedp549e2rkyJG66aab1LNnTyUkJOi2227T77//7ntM8+bN9dFHH6lGjRqaNm2amjVrpmuvvVY33XSTevXqpaZNm2r27NmV/roA+CMQAohow4YNkyT16dNHXbt2PSfP2atXL/3www+6+uqrlZOTo8WLF2vfvn168MEH9d133yk+Pr7Yx1ksFi1fvlzjxo1TjRo1tGzZMm3btk3XXnutNm3a5DuPrzJdc801SkhIkPS/8wqDKapp3rx5uuSSS3Tw4EF9/PHH+uabb5SXl6dbb71VH3/8ccC9k4cOHaodO3boz3/+s2rVqqWvvvpKS5Ys0cmTJ3X77bfrvvvuq/TXBcCfyWvUVPgAUAVcfPHFWrNmjebNm6dbbrnF6HIAwBAEQgARa8mSJRo+fLiaN2+uvXv3ymKxGF0SABiiWn5l/N577+nee+9V9+7dZbPZZDKZSjU32Jk8Ho9efvllJSUlyeFwqF69errlllt8E7ACCD+//fab7rrrLl1//fW67rrrJEnPPfccYRBARKuWRwgTExN14MAB1a1bV7GxsTpw4IDmzJlT4rkvxbn77rs1e/ZsXXDBBbriiit05MgRLViwQHFxcVq3bp3atm0bmhcAIGRSU1PVsmVLRUdHq1WrVnrooYe4bRqAiFctJ6aePXu22rZtqxYtWmjGjBl+t10qrRUrVmj27Nnq37+/li9f7psQdtSoURo+fLjGjRunpUuXVnbpAEIsMTGxzHcAAYDqrloGwqK5uiqiaJLUp556yhcGpVOTrw4cOFDLli3TwYMH1bx58wo/FwAAgJGq5TmElSE5OVmxsbHq27dvQFvRNBUrV64812UBAABUump5hLCicnJydPToUXXs2FFRUVEB7UXnDga732iRgoICFRQU+H72eDxKT09XnTp1ZDKZKrdoAACA03i9XmVlZalx48ZnvUc7gbAYGRkZkqSaNWsW2140aWzResFMnz5dU6dOrdziAAAAyuDQoUNq2rRpiesQCENo4sSJmjBhgu/njIwMNW/eXOvWrVNcXJxveXR0tOx2u7xer3JycgK2U7RuXl6e3G63X5vdbld0dLScTqcKCgr0Xsf3QvRqwt99qfeVah+e7mzvTWxsrEwmk/Lz8wPuP2uz2WSxWORyuZSfn+/XFhUVJYfDIUnKzs4u03atVqusVqvcbrfy8vL82sxms2JiYiSdOtJ95sUTMTExMpvNKiwsVGFhoSSp2XcdA54fp/xy0c6g+7CgoCDgvrtF743H41Fubq5fm8lkUmxsrCQpNzfX7x7GkuRwOBQVFeX33hSpzDGiLNutjP5dUj8saR+erX/n5uYqJydHe/bsUdu2beVwOErchxaLRTab7azvTVXch0aPEUVKuw+L69/8bSrebTtu8/1/KMaI7Oxs9e7dWzVq1DhrLQTCYhQdGQx2BDAzM9NvvWBsNptsNlvA8oYNGwa9NVVJ2wz2mNPZZT/rOpEqPj6+VPswmIq+N+V57Nm2W7t27QrXFB9TqtUiUqNGjcr92Fq1agVtq4r90Ij+fTZn6995eXnKzc1V48aNfeGpNMLtvTF6jChOWfchf5uK17hx42KXV1Y/LMorpTlNjUBYjNjYWDVq1Ej79++X2+0OOI+w6NxB5iEEAOM4HA4lJSUZXQZQLXCVcRADBgxQTk6O1qxZE9BWNP9g//79z3VZAID/4/V65XK5mFcSqAQRHwhPnDihlJQUnThxwm950Z0LnnjiCb/v6pcsWaLk5GQNHTpULVq0OKe1AgD+Jzs7W2vXri32HDsAZVMtvzKePXu2Vq9eLUnavn27b1lycrIk6eKLL9Zdd90lSXrllVc0depUTZ48WVOmTPFtY9CgQbrrrrs0e/Zsde3aVVdccYWOHj2qDz/8UAkJCXr55ZfP6WsCAAAIlWoZCFevXq133nnHb9maNWv8vv4tCoQlefPNN5WUlKS33npLL730kuLi4nTttddq2rRpat26daXXDQAAYASTl5MvzpnMzEzVrFlTqampFbqCqCT/SPhHSLZbHfwp/U9Gl1Al1V6SYHQJVdbvl6cbXQJKkJWVpc2bN6tLly6lmlYDxuFvU/FC/XcpMzNTiYmJysjIOGvuiPhzCAEAACJdtfzKGABQ/cXGxqp3796KjuZPGVBR/BYBAMKS2WyW1Wo1ugygWuArYwBAWMrLy9OOHTsCbs8GoOwIhACAsORyuZSenh5wL18AZUcgBAAAiHAEQgAAgAhHIAQAAIhwBEIAQFiy2Wxq1aqVbDab0aUAYY9pZwAAYclqtapp06ZGlwFUCxwhBACEJafTqePHj8vpdBpdChD2CIQAgLCUn5+vXbt2KT8/3+hSgLBHIAQAAIhwBEIAAIAIRyAEAACIcARCAEBYioqKUlxcnKKioowuBQh7TDsDAAhLMTEx6tq1q9FlANUCRwgBAAAiHIEQABCWsrOz9e233yo7O9voUoCwRyAEAIQlr9fr+wegYgiEAAAAEY5ACAAAEOEIhAAAABGOaWcAAGEpJiZG3bp1k91uN7oUIOwRCAEAYSkqKkqxsbFGlwFUC3xlDAAIS/n5+frpp5+Un59vdClA2CMQAgDCktPpVFpampxOp9GlAGGPQAgAABDhCIQAAAARjkAIAAAQ4QiEAICwZLVa1axZM1mtVqNLAcIe084AAMKSzWZTy5YtjS4DqBY4QggACEsul0snT56Uy+UyuhQg7BEIAQBhKS8vT9u2bVNeXp7RpQBhj0AIAAAQ4QiEAAAAEY5ACAAAEOEIhACAsGQ2m2W1WmU286cMqCimnQEAhKXY2Fj17t3b6DKAaoGPVQAAABGOQAgACEs5OTlat26dcnJyjC4FCHsEQgBAWPJ4PCosLJTH4zG6FCDsEQgBAAAiHIEQAAAgwhEIAQAAIhyBEAAQlhwOhzp16iSHw2F0KUDYYx5CAEBYio6OVq1atYwuA6gWOEIIAAhLBQUF2r9/vwoKCowuBQh7BEIAQFgqLCzUoUOHVFhYaHQpQNgjEAIAAEQ4AiEAAECEIxACAABEOAIhACAsWSwWNWzYUBaLxehSgLDHtDMAgLBkt9vVrl07o8sAqgWOEAIAwpLb7VZOTo7cbrfRpQBhj0AIAAhLubm52rhxo3Jzc40uBQh7BEIAAIAIRyAEAACIcARCAACACEcgBACEJZPJ5PsHoGKYdgYAEJbi4uLUr18/o8sAqgWOEAIAAEQ4AiEAICzl5uZq06ZNTDsDVAICIQAgLLndbmVnZzMxNVAJCIQAAAARjkAIAAAQ4QiEAAAAEY5ACAAIS3a7XR06dJDdbje6FCDsMQ8hACAsWSwW1atXz+gygGqBI4QAgLBUWFioX375RYWFhUaXAoQ9AiEAICwVFBTo559/VkFBgdGlAGGPQAgAABDhCIQAAAARjkAIAAAQ4QiEAICwFB0drYSEBEVHM2EGUFH8FgEAwpLD4VDHjh2NLgOoFjhCCAAISx6PR4WFhfJ4PEaXAoQ9AiEAICzl5ORo3bp1ysnJMboUIOwRCAEAACIcgRAAACDCEQgBAAAiXLUNhBs2bNDw4cNVq1YtxcbGqnfv3lqwYEGpHz937lyZTKag/5KTk0NXPAAAwDlULaedWbFihYYNGya73a6bb75ZNWrU0MKFCzVy5EgdOnRIDz30UKm3NWLECHXu3DlgeWJiYuUVDAAos7i4OF100UWKiooyuhQg7FW7QOhyuXT33XfLbDZr1apVvjD3t7/9TT179tSkSZN0ww03qEWLFqXa3jXXXKOxY8eGrmAAQLmYTCYmpQYqSbX7yvibb77Rvn37NGrUKL8jezVr1tSkSZNUWFiod955x7gCAQCVIi8vT9u3b1deXp7RpQBhr9p9tCo6t2/o0KEBbcOGDZMkrVy5stTb27x5s3777Te5XC4lJibqkksuUZ06dSqlVgBA+blcLv3+++9yuVxGlwKEvWoXCPfs2SNJatu2bUBbw4YNFRcX51unNP7xj3/4/exwODR58mQ98sgjZ31sQUGBCgoKfD9nZmZKkrKzs2UymXzLo6Oj5XA45PF4ip1gtUaNGpKk3Nxcud1uvza73S6LxaLCwkK/50LxyroPz/bexMXFyWQyKS8vL+CPks1mk9VqldPpVH5+vl9bVFSUYmJiJElZWVkB242NjZXZbC52u1arVTabTS6XK+DIiNlsVmxsrKRT/czr9fq1x8TEKCoqSgUFBSosLJQk1Q54dhQpaR/m5+fL6XT6tRW9N263W7m5uX5tJpNJcXFxkk5NqHzm3TUcDoeio6P93psioRojirbr9XqVnZ0dsN2S+mFp+3d59+HZ+ndOTo5vHxf9t6R9aLFYZLfbz/reMEYEjhFFSrsPi+vfKN7p720oxojifq+DqXaBMCMjQ9Kpr4iLEx8f71unJC1bttTLL7+sYcOGqWnTpkpPT9c333yjiRMn6tFHH1VMTIwefPDBErcxffp0TZ06NWD5tm3bfL/oklS/fn21b99eBQUF2rx5c8D6/fv3lyTt3r07YGA477zz1KBBA504cUJ79+496+uKdCkpKQG/IB06dFC9evV07Ngx/fzzz35tCQkJ6tixo1wuV7HvzUUXXaTo6Gjt3btXv//+u19bmzZt1LhxY6Wnp2v37t1+bTVq1FCXLl0kqdjt9ujRQw6HQwcOHNCxY8f82po3b67ExERlZmZqx44dfm12u109e/aUJG3fvj3gj23nzp0VHx+vX375RYcPHz61vYBnR5GtW7cGhIMuXbqoRo0aOnTokI4ePerX1qRJE7Vu3Vo5OTnasmWLX5vFYlGfPn0kSTt37gwIAB07dlRCQoKOHj2qgwcP+rWFaoyoXbu2kpKS5Ha7i91u7969ZbVatW/fPqWnp/u1tWrVSk2bNtXJkye1a9cuv7a4uDh17dpV0qn+fWbo6Natm2JjY3Xw4EGlpaX5tTVr1kwtW7ZUdna2tm3b5tdmtVrVu3dvSaf6d9EfxaLfr06dOqlWrVo6cuSIDh065PfYhg0bql27dsrPzw94rSaTSf369ZPEGFHcGFGkUaNGatu2rXJzcwNqioqKUt++fSVJu3btCgiMKN7p+zEUY0RZ3geT98zf1DA3dOhQLV++XHv27FGbNm0C2ps0aaLs7OxShcLi7Ny5U927d1dMTIx+/fXXEk9oLu4IYbNmzbRjxw7fJ3qpcj/9z2kxp1yvKxL8Kf1PfPov5tN/89Wlu8AqEh3qd5AjhFX4CGF2drZ2796t8847TzExMRwhLOM+PJdHCPnbVLw7Dtzh+/9QjBFZWVnq2LGjMjIyFB8fX2It1e4IYdGRwWCBLzMzU7Vrl/9LsgsuuEAXX3yxvv76a+3atUtJSUlB17XZbLLZbAHL4+Li/AJhEbPZXOzyIqcfVTyT1WqV1Wo9S/Uo7z4823vjcDiCtlksFlkslqDt5d1udHR0iY8tGliKE6xvwl9J+9But8tutxfbFhUVVeJ7U/QHuTglvTehGiNMJlPI+nd59+HZ+ndsbKwsFovatGmj2rVr+722kvbh2d4bxohTKrIPS+rf8BdsP1bWGFGWY37V7irjonMHiztPMC0tTdnZ2cWeX1gWdevWlSRuqA4ABrJarWrcuDEfhoFKUO0C4YABAyRJy5YtC2hbunSp3zrl4Xa79cMPP0hSqecyBABUPqfTqV9//TXga2cAZVftAuGQIUPUqlUrzZs3z++k7oyMDD3zzDOyWq0aPXq0b/nRo0eVkpIS8BXzxo0bA7btdrv16KOPau/evRo0aJAaNWoUstcBAChZfn6+du/eHXD+HYCyq3bnEEZHR2v27NkaNmyY+vfv73frugMHDmjmzJl+t52bOHGi3nnnHc2ZM8fvjiTdu3dXp06d1KlTJzVp0kTp6elauXKlfvrpJzVt2lSzZ88+9y8OAAAgBKpdIJSkQYMGafXq1Zo8ebI+/PBDOZ1OJSUl6dlnn9XIkSNLtY2HHnpI69at0/Lly5Weni6r1ao2bdro8ccf14QJEyp0YQoAAEBVUi0DoST17NlTS5YsOet6c+fO1dy5cwOWz5w5MwRVAQAAVD3V7hxCAEBkKJr+JCoqyuhSgLBXbY8QAgCqt5iYGN/dPABUDEcIAQAAIhyBEAAQlrKysrRq1apib+0GoGwIhAAAABGOQAgAABDhCIQAAAARjkAIAAAQ4Zh2BgAQlmJjY9WjRw/ZbDajSwHCHoEQABCWzGazHA6H0WUA1QJfGQMAwlJeXp5SUlKUl5dndClA2CMQAgDCksvl0rFjx+RyuYwuBQh7BEIAAIAIRyAEAACIcARCAACACEcgBACEJavVqubNm8tqtRpdChD2mHYGABCWbDabEhMTjS4DqBY4QggACEsul0vp6elcZQxUAgIhACAs5eXlaceOHcxDCFQCAiEAAECEIxACAABEOAIhAABAhCMQAgDCktlslt1ul9nMnzKgoph2BgAQlmJjY9WzZ0+jywCqBT5WAQAARDgCIQAgLGVnZ+u7775Tdna20aUAYY9ACAAIS16vV06nU16v1+hSgLBHIAQAAIhwBEIAAIAIRyAEAACIcARCAEBYiomJUefOnRUTE2N0KUDYYx5CAEBYioqKUnx8vNFlANUCRwgBAGGpoKBA+/btU0FBgdGlAGGPQAgACEuFhYU6fPiwCgsLjS4FCHuV/pVxamqqli9fLrvdrmuvvVZxcXGV/RQAAACoROU+QvjMM8+oZcuW+v33333LkpOT1bFjR913330aO3asunbtqvT09EopFAAAAKFR7kD4ySefKDExUbVr1/Yte+SRR+TxeDR16lTdf//92rt3r1588cXKqBMAAAAhUu5AmJqaqvPPP9/385EjR7Rhwwb98Y9/1OOPP65XXnlFQ4YM0ccff1wphQIAcDqLxaJGjRrJYrEYXQoQ9sodCDMzM1WrVi3fz6tWrZLJZNJVV13lW9a1a1cdPHiwQgUCAFAcu92utm3bym63G10KEPbKHQgbNGigAwcO+H5evny5bDabevXq5VuWn58vk8lUsQoBACiG2+1WVlaW3G630aUAYa/cVxn36NFDn376qT7//HPZ7XZ9+OGHGjRokGw2m2+d/fv3q3HjxpVSKAAAp8vNzdXmzZvVpUsX1ahRw+hygLBW7iOEkyZNksvl0ogRIzRs2DDl5+dr0qRJvvaCggKtWrXK74ghAAAAqp5yHyHs2rWr1q1bp3//+9+SpJtuukk9e/b0tW/evFmDBg3SqFGjKl4lAAAAQqZCE1NfeOGFuvDCC4tt6927N1cYAwAAhIFyf2U8ePBgvfvuuyWu895772nw4MHlfQoAAIIymUyKiori4kWgEpQ7ECYnJys1NbXEdQ4cOKCVK1eW9ykAAAgqLi5Offv25RapQCUodyAsjZycHCYMBQAAqOLKdA7hmZNMnzx5stiJp91utw4dOqSFCxcqMTGxQgUCAFCcnJwc7dq1Sx06dFBsbKzR5QBhrUyBMDEx0Xeuhslk0ksvvaSXXnop6Pper1fPP/98xSoEAKAYHo9Hubm58ng8RpcChL0yBcLRo0fLZDLJ6/Xq3Xff1YUXXqjOnTsHrBcVFaWEhAQNHjxYl112WWXVCgAAgBAoUyCcO3eu7/9XrlypO+64Q3/6058quyYAAACcQ+Weh3D//v2VWQcAAAAMEtKrjAEACBWHw6ELLrhADofD6FKAsFehQPj1119r+PDhqlevniwWi6KiogL+RUdX6GYoAAAUKzo6WnXq1OHvDFAJyv1btHDhQo0cOVIej0ctWrRQ+/bt+aUEAJwzhYWFSktLU8OGDWW1Wo0uBwhr5U5wTz75pBwOhz799FNuTwcAOOcKCgqUmpqq2rVrEwiBCir3V8a7d+/WzTffTBgEAAAIc+UOhHXq1FFMTExl1gIAAAADlDsQ3nDDDfr666/lcrkqsx4AAACcY+UOhM8884xq1aqlkSNHFns/YwAAQik6Olp169blgkagEpT7tygpKUlOp1Pr1q3TJ598olq1aqlmzZoB65lMJu3bt69CRQIAcCaHw6Hzzz/f6DKAaqHcgdDj8Sg6OlrNmzf3LfN6vQHrFbcMAICK8ng8cjqdslgsMpu5zwJQEeUOhKmpqZVYBgAAZZOTk6PNmzerS5cuqlGjhtHlAGGNj1QAAAARrlLOxP3xxx+VkpKinJwc3X777ZWxSQAAAJwjFTpCuGHDBnXu3FlJSUm68cYbNXbsWF/bqlWrFBMTo8WLF1e0RgAAAIRQuQPhzp07NXjwYO3fv1//7//9P11++eV+7f369VPdunX1n//8p8JFAgAAIHTKHQgnT54sSdq4caNmzpypHj16+LWbTCb16dNHGzZsqFiFAAAUIy4uThdffLHi4uKMLgUIe+UOhCtXrtT111+vNm3aBF2nefPmOnr0aHmfAgCAoEwmk8xms0wmk9GlAGGv3IEwKytL9evXL3GdvLw8ud3u8j4FAABB5ebmauvWrcrNzTW6FCDslTsQNmvWTNu3by9xnU2bNql169blfQoAAIJyu93KyMjgwANQCcodCK+88kotW7ZMX3/9dbHtCxYs0Lp163TNNdeU9ykAAABwDpR7HsJJkybpo48+0vDhwzVmzBilpaVJkl577TV99913mj9/vhITEzVhwoRKKxYAAACVr9yBsF69elq5cqVuv/12vf32277l48aNkyT16tVL8+fPV82aNSteJQAAAEKmQncqadWqldasWaMtW7Zo3bp1Sk9PV3x8vHr16hUwDQ0AAJXJbrerbdu2stvtRpcChL1KuXVd586d1blz58rYFAAApWKxWNSoUSOjywCqhQrdug4AAKM4nU4dPXpUTqfT6FKAsFfqI4RPPvmkTCaT/vjHPyohIUFPPvlkqR5nMpn0xBNPlLtAAACKk5+frz179iguLk4Wi8XocoCwVupAOGXKFJlMJo0cOVIJCQmaMmVKqR5HIAQAAKjaSh0IV6xYIenU7ehO/xkAAADhrdSBcMCAASX+DAAAgPBUbS8q2bBhg4YPH65atWopNjZWvXv31oIFC8q0jYKCAj355JO+aQ0aN26se+65R8eOHQtR1QCA0oqKilLNmjUVFRVldClA2Ct3IPz888913XXX6ciRI8W2HzlyRNddd52WLFlS7uLKa8WKFerbt69Wr16tm266Sffdd5/S0tI0cuRIzZo1q1Tb8Hg8GjFihCZPnqy6detq/Pjx6tOnj2bPnq0+ffro+PHjIX4VAICSxMTE6MILL1RMTIzRpQBhr9yB8NVXX9W+ffvUuHHjYtsbN26s/fv369VXXy13ceXhcrl09913y2w2a9WqVXrrrbc0a9Ysbd26Ve3atdOkSZN04MCBs27nnXfe0dKlS3XLLbdo7dq1mjFjhhYuXKjXXntNP//8sx5//PFz8GoAAMF4vV55PB55vV6jSwHCXrkD4datW9WrV68S1+nVq5e2bNlS3qcol2+++Ub79u3TqFGj/CbLrlmzpiZNmqTCwkK98847Z93OP//5T0nS9OnTZTKZfMvvvfdetWrVSu+//77y8vIqvX4AQOlkZ2dr9erVys7ONroUIOyVOxCmp6erfv36Ja5Tt25dnThxorxPUS7JycmSpKFDhwa0DRs2TJK0cuXKEreRn5+v77//Xuedd55atGjh12YymXTppZcqJydHP/zwQ+UUDQAAYKByB8J69epp9+7dJa6ze/duJSQklPcpymXPnj2SpLZt2wa0NWzYUHFxcb51gtm3b588Hk+x2zh922fbDgAAQDgo972M+/fvr4ULF2rbtm3q1KlTQPvWrVu1ePFiXXfddRUqsKwyMjIknfqKuDjx8fG+dSqyjdPXC6agoEAFBQW+nzMzMyVJ69ev9zsJOjo6WjabTR6Pp9ivoWNjYyWdOnLpdrv92mw2m6Kjo+V0OlVYWKgjKv4iH5zqk6XZh6c723sTExMjk8mkgoICuVwuvzar1SqLxSKXy+XXD6RTV0fa7XZJUk5OTsB2HQ6HzGZzsdu1WCyyWq1yu93Kz8/3azObzXI4HJKk3NzcgHOr7Ha7oqKiVFhY6LvdV6P9AU+P/5P23XdB92FZ3xuTyeT7vc/Ly5PH4yl2u6e/N0Uqc4wobrter1e5ubkB2y2pH5a2f5fUDyvSv/Py8pSbm6sDBw7I5XLJbreXah+e7b1hjKj4Piyuf/O3qXhr1671/X8oxojifq+DKXcgfOSRR7Rw4UJdfPHF+stf/qJLL71UTZo00eHDh7Vs2TLNmjVLZrNZEydOLO9ThL3p06dr6tSpActvuukmA6rBW4PeMroEhJ0rjC4AQDX21pVV5+9SuQNhp06d9P7772vMmDGaOnWqX/Dxer2Ki4vT/Pnziz16GEpFR/WCHb3LzMxU7dq1K7yN09cLZuLEiZowYYLf45o1a6YFCxaE7Ajh6Yz+9J+fn6+CggJFR/+vm5Xl0395Ph3x6d+YT/9F263IPszLy1NhYaFffyl6b0rahxXp3xXZh5F8hPDKxVcGrItTPr/6c7+fGSP8t1uRMaKk/l2WMcLlcik6Ojoixojc3NxSH4QqdyCUpOuvv179+vXT3LlztWHDBmVkZKhWrVrq2bOnxowZo3r16lVk8+Vy+vl93bp182tLS0tTdna2evbsWeI2WrVqJbPZHPQcwZLOUzydzWaTzWYLWN6zZ0/f184AEHa4ni6oiy66yOgSAJ+iA1ilUaFAKEn169fXww8/XNHNVJoBAwZo+vTpWrZsmW6++Wa/tqVLl/rWKYnD4VDPnj21bt06HThwwO9KY6/Xq+XLlys2Nlbdu3ev/BdQjeTl5Wn//v1q2bKl79MUEAz9BUCoMc4EV+1uXTdkyBC1atVK8+bN85sDMSMjQ88884ysVqtGjx7tW3706FGlpKQEfD18zz33SDr1te/ph4PffPNN/fzzz7r11lvpTGfhcrl04sSJgEPmQHHoLwBCjXEmuFIfIVy1apWkU1932u1238+l0b9//7JXVk7R0dGaPXu2hg0bpv79++vmm29WjRo1tHDhQh04cEAzZ85UYmKib/2JEyfqnXfe0Zw5czR27Fjf8jFjxujDDz/U/PnztX//fg0YMEB79+7VokWL1LJlSz399NPn7DUBAACEUqkD4cCBA2UymbRr1y61a9fO93NpnHkSaKgNGjRIq1ev1uTJk/Xhhx/K6XQqKSlJzz77rEaOHFmqbZjNZn366aeaMWOG/v3vf+vvf/+7EhISdOedd+rpp5825PxIAACAUCh1IPzb3/4mk8mkunXr+v1cVfXs2VNLliw563pz587V3Llzi22z2WyaPHmyJk+eXMnVAQAAVB2lDoRTpkwp8WfgTDabTYmJicVeaQ2cif4CINQYZ4Ir9UUlCQkJev75530/P/nkk2U6jxCRx2q1qnnz5rJarUaXgjBAfwEQaowzwZU6EGZkZPhNdjhlyhQlJyeHoiZUEy6XS7/99htXc6FU6C8AQo1xJrhSB8IGDRrol19+CWUtqGby8vK0c+fOYmeeB85EfwEQaowzwZX6HMJevXrp3//+t6KiotSoUSNJKtURQpPJpCeeeKLcBQIAACC0Sh0In3/+ef3000968803JZ0KesnJyWcNhQRCAACAqq3UgbBNmzbavn279u/fr8OHD2vgwIEaO3asxowZE8r6AAAAEGJlupex2WxW69at1bp1a7Vo0UKdO3c+632BEbnMZrNiYmJkNle7OyQiBOgvAEKNcSa4Mk0789xzz/l+Hjt2rDp37hyKmlBNxMbGqnv37oqNjTW6FIQB+guAUGOcCa7URwgzMjKUn5/v+/nJJ5+UyWQ6p/cpBgAAQOUr97QzXq83JAWh+sjOztaaNWuUnZ1tdCkIA/QXAKHGOBMc084gZLxer9xuNx8eUCr0FwChxjgTHNPOAAAARDimnQEAAIhwTDsDAAAQ4coUCE+3f//+yqwD1VBMTIy6dOmimJgYo0tBGKC/AAg1xpngyh0Ii6SlpWnRokVKSUlRbm6uZs+eLUk6fvy49u/fr6SkJDkcjgoXivATFRWlGjVqGF0GwgT9BUCoMc4EV6Gpul977TW1bNlS48aN0yuvvKI5c+b42o4dO6Y+ffrovffeq3CRCE/5+fnas2eP3/yVQDD0FwChxjgTXLkD4WeffaZx48YpKSlJixcv1v333+/XfsEFF6hTp0765JNPKlojwpTT6dTRo0fldDqNLgVhgP4CINQYZ4Ir91fGzz//vJo3b64VK1YoNjZWGzduDFgnKSlJ3377bYUKBAAAQGiV+wjhli1bdMUVV5R4P8AmTZro119/Le9TAAAA4BwodyD0eDyyWCwlrnPs2DHZbLbyPgUAAADOgXIHwvPOO6/Er4NdLpdWrVqlpKSk8j4FwpzValWTJk1ktVqNLgVhgP4CINQYZ4IrdyC89dZbtXnzZk2dOjWgze126y9/+Yt+/vlnjR49ukIFInzZbDa1bt2ao8QoFfoLgFBjnAmu3BeVPPjgg/rss8/05JNP6v3335fdbpck3XTTTfrhhx+UmpqqoUOH6s4776y0YhFe3G63cnJyFBsbq6ioKKPLQRVHfwEQaowzwZX7CKHFYtHSpUv16KOP6rffftOOHTvk9Xr10UcfKT09XY888ogWL14sk8lUmfUijOTm5mrLli3Kzc01uhSEAfoLgFBjnAmuQncqsVqtmjZtmp5++mnt3r1b6enpio+PV4cOHUjeAAAAYaLCt66TJJPJpPbt21fGpgAAAHCOVUogXLNmjbZs2aLMzEzFx8erc+fO6tu3b2VsGgAAACFWoUC4du1a3XHHHdq7d68kyev1+s4ZbNu2rebMmaM+ffpUvEqEJZPJJIvFwnmkKBX6C4BQY5wJzuT1er3leeDOnTvVq1cv5ebm6tJLL9WgQYPUqFEjpaWlacWKFVq2bJni4uK0bt06nX/++ZVdd1jKzMxUzZo1lZqaqvj4eKPLAYBySfhHgtElVFnpf0o3ugTAJzMzU4mJicrIyDhr7ij3EcInn3xShYWF+vLLL3XZZZf5tT3yyCP66quvdPXVV+vJJ5/UBx98UN6nAQAAQIiVe9qZ5ORk3XDDDQFhsMhll12mG264QStWrCh3cQhvOTk5Wr9+vXJycowuBWGA/gIg1Bhngit3IMzIyFDLli1LXKdly5bKyMgo71MgzHk8HuXn58vj8RhdCsIA/QVAqDHOBFfuQNi4cWOtW7euxHW+//57NW7cuLxPAQAAgHOg3IHw6quvVnJysp544gnl5+f7teXn52vy5MlasWKFRowYUeEiAQAAEDrlvqjkiSee0Oeff65nnnlGb775pnr27KkGDRro119/1YYNG3T8+HG1atVKTzzxRGXWCwAAgEpW7kBYp04drVu3Tg8//LA++OADffnll742u92uO+64Q88++6wSEpieIFI5HA517NhRDofD6FIQBugvAEKNcSa4cs9DeDqn06mUlBTfnUrat28vi8VSGfVVK8xDCKA6YB7C4JiHEFVJSOchnDZtmnJycjR16lRf6LNYLEpKSvKtU1hYqMcee0w1atTQo48+WtanQDVRUFCgo0ePqlGjRrLZbEaXgyqO/gIg1BhngivTRSVff/21/va3v6lOnTolHgG0Wq2qU6eOHnvsMeYhjGCFhYU6ePCgCgsLjS4FYYD+AiDUGGeCK1MgfPfdd1W7dm2NGzfurOv+8Y9/VEJCgubMmVPu4gAAABB6ZQqEa9eu1SWXXFKqw6w2m02XXHKJ1qxZU+7iAAAAEHplCoRHjhxRq1atSr1+y5YtdfTo0TIXBQAAgHOnTIHQbDbL6XSWen2n0ymzudxzXyPMRUdHq379+oqOLvfsRogg9BcAocY4E1yZ9kjjxo21Y8eOUq+/Y8cONWnSpMxFoXpwOBxq37690WUgTNBfAIQa40xwZTp8169fP33zzTdKTU0967qpqan65ptv1L9///LWhjDn8XiUl5fHTcRRKvQXAKHGOBNcmQLhH//4RzmdTt1www06ceJE0PV+++033XjjjXK5XLr//vsrXCTCU05OjjZs2KCcnByjS0EYoL8ACDXGmeDK9JVx165dNX78eL344os6//zzdd9992nQoEFq2rSpJOnw4cP673//q7feekvHjx/XhAkT1LVr15AUDgAAgMpR5rMqZ82aJbvdrueff17Tpk3TtGnT/Nq9Xq+ioqI0ceJEPf3005VWKAAAAEKjzIHQZDLpmWee0Z133qk5c+Zo7dq1SktLkyQ1bNhQffv21dixY9W6detKLxYAAACVr9zXXbdu3ZojgAAAANUAE/EgZGrUqMFV5ig1+guAUGOcCY5ZowEAACIcgRAhk5ubq82bNys3N9foUhAG6C8AQo1xJjgCIULG7XYrKytLbrfb6FIQBugvAEKNcSY4AiEAAECEIxACAABEOAIhAABAhCMQImTsdrvOO+882e12o0tBGKC/AAg1xpngmIcQIWOxWNSgQQOjy0CYoL8ACDXGmeA4QoiQKSws1JEjR1RYWGh0KQgD9BcAocY4ExyBECFTUFCgvXv3qqCgwOhSEAboLwBCjXEmOAIhAABAhCMQAgAARDgCIQAAQIQjECJkoqOjVbt2bUVHczE7zo7+AiDUGGeCY48gZBwOh5KSkowuA2GC/gIg1BhnguMIIULG6/XK5XLJ6/UaXQrCAP0FQKgxzgRHIETIZGdna+3atcrOzja6FIQB+guAUGOcCY5ACAAAEOEIhAAAABGOQAgAABDhCIQAAAARjmlnEDKxsbHq3bs38z2hVOgvAEKNcSY49ghCxmw2y2q1Gl0GwgT9BUCoMc4Ex1fGCJm8vDzt2LFDeXl5RpeCMEB/ARBqjDPBEQgRMi6XS+np6XK5XEaXgjBAfwEQaowzwREIAQAAIhyBEAAAIMIRCAEAACIcgRAhY7PZ1KpVK9lsNqNLQRigvwAINcaZ4KplIMzMzNSECRPUokUL2Ww2JSYm6q9//WuZb2ZtMpmC/hs7dmxoiq9GrFarmjZtyiX+KBX6C4BQY5wJrtrNQ5iTk6MBAwZoy5YtGjp0qG655RZt3rxZM2fO1MqVK7Vq1SrZ7fZSb69FixbFhr/OnTtXXtHVlNPp1MmTJ1WrVi1ZLBajy0EVR38BEGqMM8FVu0D43HPPacuWLXrkkUc0Y8YM3/JHH31Uzz77rP7+979r4sSJpd5eYmKipkyZEoJKq7/8/Hzt2rVLXbp04RcPZ0V/ARBqjDPBVauvjL1er2bPnq24uDg98cQTfm1PPPGE4uLiNHv2bIOqAwAAqJqq1RHCPXv26MiRIxo2bJhiY2P92mJjY9W3b18tXbpUhw4dUrNmzUq1zZMnT+qtt97SiRMnlJCQoL59+yopKSkU5QMAABii2gVCSWrbtm2x7W3bttXSpUu1Z8+eUgfCrVu36t577/Vbdtlll+mdd95R/fr1S3xsQUGBCgoKfD9nZmZKkrKzs2UymXzLo6Oj5XA45PF4lJOTE7CdGjVqSJJyc3Pldrv92ux2uywWiwoLC/2e6/Tter3eYi+oiY2NldlsVl5eXsCs7TabTVarVU6nU/n5+X5tUVFRiomJ8b0Wr9fr1x4TE6OoqCgVFhb66i5itVpls9nkcrkCbh1kNpt9QT4nJ0cej8ev3eFwKDo6WgUFBb5tF7FYLLLb7XK73X7PJ526OCguLs5XS3n2YbD3Ji4uTiaTqUL7MCsrK2C7Jb03pd2HJb03FdmHJb03FdmHRfvo9Ocuem9K2ocV6d8V2Yf5+flyOp1+bUXvTUX2YXHvTVUcI1C8M3+fGSNOqYwxoqT+Xdoxoqju3NzciBgjynIxbbUKhBkZGZKkmjVrFtseHx/vt97ZPPTQQ7r++uvVrl07Wa1W7dixQ0899ZSWLFmiK6+8Ut99952ioqKCPn769OmaOnVqwPJt27b5ftElqX79+mrfvr0KCgq0efPmgPX79+8vSdq9e3fAwHDeeeepQYMGOnHihPbu3evXVrt2bSUlJcntdhe73d69e8tqtWrfvn1KT0/3a2vVqpWaNm2qkydPateuXX5tcXFx6tq1qyRp8+bNAb8M3bp1U2xsrH799Vdf3UWaNWumli1bKjs7W9u2bfN7nNVqVe/evSVJ27dvD+jwnTp1Uq1atXTkyBEdOnTIr61hw4Zq166d8vPzA16ryWRSv379JEkpKSkBvyAdOnRQvXr1dOzYMf38889+bQkJCerYsaNcLlex+/Ciiy5SdHS09u7dq99//92vrU2bNmrcuLHS09P99oF06g94ly5dJKnY7fbo0UMOh0MHDhzQsWPH/NqaN2+uxMREZWZmaseOHX5tdrtdPXv2lHRqH545GHXu3Fnx8fH65ZdfdPjwYb+2Ro0aqW3btsrNzQ2oKSoqSn379pUk7dq1K2Agu+CCC1SnTh2lpaUpNTXVr61u3bo6//zz5XQ6i32tF198sUwmk+89PX1ftW3bVo0aNdKJEyd8H/iK1KxZUxdeeKG8Xm+x2+3Vq5dsNpv279+vEydO+LUlJiaqefPmysjI0M6dO/3aYmJi1L17d0mnPhCe+QeoS5cuqlGjhg4dOqSjR4/6tTVp0kStW7dWTk6OtmzZ4tdmsVjUp08fSdLOnTsD/nh17NhRCQkJOnr0qA4ePOjXVhXHCBTvzP3IGHFKZYwRe/bsCfj7Xd4xYvfu3apVq1a1HyPOfB9KYvKe+de8CnjooYcCPkGU5M9//rPatm2refPm6dZbb9Vjjz2mp59+OmC9xx57TM8884wWLVqka6+9tly1eTweDR48WCtXrtTChQt13XXXBV23uCOEzZo1044dO3yf6KWq+em/Mo4QlvTpiCOEfPovUpmf/k8XCZ/+i5zrMaLFnBYB6+KUA3cc8PuZMeIUxohTzvUYkZWVpY4dOyojI8N3UCyYKnmE8M033yy2UwRzww03qG3btr4jg8GOABZ9ZRvsCGJpmM1m3X333Vq5cqXWrFlTYiC02WzFTn4ZFxfnFwhP33Zxy4ucflTxTFarNei8SiaTqcTtOhyOoG0Wi6XEK7GKOm9x7HZ70Cl+oqOjS6zpzHNATxdsv0qnBoBQ7MOzvTcV2Yfl3e7Z9mFJ701F9mFJ701F9mFJ701J+7Ai/bsi+7Ck/l2RfVjSe1MVxwj4C7YfGSNOYYw45VyNEWU55lclrzIuStyl/Tdw4EBJ/zt38MzDxkXOdo5hadWtW1eSyhRaI1F2dra+/fbbMk8IjshEfwEQaowzwVXJQFhebdu2VePGjbVmzZqAsJaTk6M1a9aoZcuWpb6gJJjvv/9e0qlzDBDc6aEdOBv6C4BQY5wJrloFQpPJpLvuukvZ2dl66qmn/NqeeuopZWdn6+677/Zbnpubq5SUlIATNIs72VaS1q5dq2effVYWi0U33nhj5b8IAACAc6xKnkNYEQ8//LA+/fRTPfvss9q8ebO6du2qTZs2admyZerRo4fGjx/vt/769es1aNAgDRgwQMnJyb7ls2bN0hdffKGLL75YzZo1k8Vi0c6dO7Vs2TKZTCa9+uqrat269bl9cQAAACFQ7QJhbGysVq5cqSlTpmjhwoVasWKFGjVqpIceekiTJ08u9cnRI0aM0MmTJ7V161YtX75chYWFatiwoW6++WaNHz/ed9k+AABAuKuS085UV5mZmapZs6ZSU1PPevl3deB2u5Wfny+73V7ifI2ARH8JJwn/SDC6hCor/U/M11iVRdo4k5mZqcTExPCddgbVQ1RUVImXzgOno78ACDXGmeCq1UUlqFry8/P1008/BUwWChSH/gIg1BhngiMQImScTqfS0tKKvVobOBP9BUCoMc4ERyAEAACIcARCAACACEcgBAAAiHAEQoSM1WpVs2bNgt7IHDgd/QVAqDHOBMe0MwgZm82mli1bGl0GwgT9BUCoMc4ExxFChIzL5dLJkyflcrmMLgVhgP4CINQYZ4IjECJk8vLytG3bNuXl5RldCsIA/QVAqDHOBEcgBAAAiHAEQgAAgAhHIAQAAIhwBEKEjNlsltVqldlMN8PZ0V8AhBrjTHBMO4OQiY2NVe/evY0uA2GC/gIg1BhngiMiAwAARDgCIUImJydH69atU05OjtGlIAzQXwCEGuNMcARChIzH41FhYaE8Ho/RpSAM0F8AhBrjTHAEQgAAgAhHIAQAAIhwBEIAAIAIRyBEyDgcDnXq1EkOh8PoUhAG6C8AQo1xJjjmIUTIREdHq1atWkaXgTBBfwEQaowzwXGEECFTUFCg/fv3q6CgwOhSEAboLwBCjXEmOAIhQqawsFCHDh1SYWGh0aUgDNBfAIQa40xwBEIAAIAIRyAEAACIcARCAACACEcgRMhYLBY1bNhQFovF6FIQBugvAEKNcSY4pp1ByNjtdrVr187oMhAm6C8AQo1xJjiOECJk3G63cnJy5Ha7jS4FYYD+AiDUGGeCIxAiZHJzc7Vx40bl5uYaXQrCAP0FQKgxzgRHIAQAAIhwBEIAAIAIRyAEAACIcARChIzJZPL9A86G/gIg1BhngmPaGYRMXFyc+vXrZ3QZCBP0FwChxjgTHEcIAQAAIhyBECGTm5urTZs2cXk/SoX+AiDUGGeCIxAiZNxut7Kzs5kAFKVCfwEQaowzwREIAQAAIhyBEAAAIMIRCAEAACIcgRAhY7fb1aFDB9ntdqNLQRigvwAINcaZ4JiHECFjsVhUr149o8tAmKC/AAg1xpngOEKIkCksLNQvv/yiwsJCo0tBGKC/AAg1xpngCIQImYKCAv38888qKCgwuhSEAfoLgFBjnAmOQAgAABDhCIQAAAARjkAIAAAQ4QiECJno6GglJCQoOpqL2XF29BcAocY4Exx7BCHjcDjUsWNHo8tAmKC/AAg1xpngOEKIkPF4PCosLJTH4zG6FIQB+guAUGOcCY5AiJDJycnRunXrlJOTY3QpCAP0FwChxjgTHIEQAAAgwhEIAQAAIhyBEAAAIMIRCAEAACIc084gZOLi4nTRRRcpKirK6FIQBugvAEKNcSY4AiFCxmQyMfknSo3+AiDUGGeC4ytjhExeXp62b9+uvLw8o0tBGKC/AAg1xpngCIQIGZfLpd9//10ul8voUhAG6C8AQo1xJjgCIQAAQIQjEAIAAEQ4AiEAAECEIxAiZGw2m9q0aSObzWZ0KQgD9BcAocY4ExzXXiNkrFarGjdubHQZCBP0FwChxjgTHEcIETJOp1O//vqrnE6n0aUgDNBfAIQa40xwBEKETH5+vnbv3q38/HyjS0EYoL8ACDXGmeAIhAAAABGOQAgAABDhCIQAAAARjkCIkImKilKNGjUUFRVldCkIA/QXAKHGOBMc084gZGJiYtSlSxejy0CYoL8ACDXGmeA4QggAABDhCIQImaysLK1atUpZWVlGl4IwQH8BEGqMM8ERCAEAACIcgRAAACDCEQgBAAAiHIEQAAAgwjHtDEImNjZWPXr0kM1mM7oUhAH6C4BQY5wJrtodIdyyZYsmTZqkYcOGqV69ejKZTBo4cGC5t7dhwwYNHz5ctWrVUmxsrHr37q0FCxZUXsHVmNlslsPhkNlc7boZQoD+AiDUGGeCq3Z75JNPPtH06dOVnJyshg0bVmhbK1asUN++fbV69WrddNNNuu+++5SWlqaRI0dq1qxZlVRx9ZWXl6eUlBTl5eUZXQrCAP0FQKgxzgRX7QLhjTfeqI0bNyo7O1vLly8v93ZcLpfuvvtumc1mrVq1Sm+99ZZmzZqlrVu3ql27dpo0aZIOHDhQiZVXPy6XS8eOHZPL5TK6FIQB+guAUGOcCa7aBcILLrhAXbt2lcViqdB2vvnmG+3bt0+jRo1S586dfctr1qypSZMmqbCwUO+8804FqwUAADBetQuElSU5OVmSNHTo0IC2YcOGSZJWrlx5LksCAAAICa4yDmLPnj2SpLZt2wa0NWzYUHFxcb51gikoKFBBQYHv54yMDElSWlqasrOzfcujo6Nlt9vl9XqVk5MTsJ24uDhJp859cLvdfm12u13R0dFyOp1+z1Wa7cbGxspkMik/Pz/g8LnNZpPFYpHL5VJ+fr5fW1RUlBwOhyQpJydHXq/Xrz0mJkZms1np6enKzc3VsWPHfLcJslqtslqtcrvdAedwmM1mxcTESJJyc3Pl8Xj82h0Oh6KiolRYWKjCwkK/NovFIpvNJo/Ho9zcXL82k8mk2NjYKrsPT+8LpdluafdhSe9NRfZhSe9NRfbhb7/9FtBfit6bkvZhRd6biuzDgoICOZ1Ov7ai96Yi+7C496bKjRH5Aavi/xw5csTvZ8aIUypjjCipf5d2jMjLy/ONMx6Pp9qPEUV958wai0MgDKIovNWsWbPY9vj4eN86wUyfPl1Tp04NWN67d++KFwgAqHI6zuhodAlAgKysrKB5pkiVDIQPPfRQwCeIkvz5z38u9kie0SZOnKgJEyb4fvZ4PEpPT1edOnVkMpkMrOzcyMzMVLNmzXTo0CHFx8cbXQ6qOPoLyoo+g7KKtD7j9XqVlZWlxo0bn3XdKhkI33zzzWIPGwdzww03VHogLErSwY4CZmZmqnbt2iVuw2azBUx+WatWrUqpL5zEx8dHxC8eKgf9BWVFn0FZRVKfOduRwSJVMhAWd77EuVYUMPfs2aNu3br5tRWdA9izZ08jSgMAAKhUXGUcxIABAyRJy5YtC2hbunSp3zoAAADhLOIDodPpVEpKivbt2+e3fMiQIWrVqpXmzZunLVu2+JZnZGTomWeekdVq1ejRo89xteHFZrNp8uTJ3DMSpUJ/QVnRZ1BW9JngTN7SXIscRlJSUjRjxgxJpy4vX7BggRo0aKDLLrvMt87cuXN9/5+amqqWLVuqRYsWSk1N9dvWihUrNGzYMNntdt18882qUaOGFi5cqAMHDmjmzJl66KGHzsVLAgAACKlqFwiTk5M1aNCgEtc5/SWXFAglaf369Zo8ebLWrl0rp9OppKQkTZgwQSNHjqzs0gEAAAxR7QIhAAAAyibizyEEAACIdARCAACACEcgBACEhZ07dxpdAlBtEQgBGGbHjh0BN6sHivPZZ59p3Lhxkk7dBhQorfXr1+uXX36RRN8pCYEQgGFGjx6tbdu2SWKgRsnWr1+vlStX6vXXX5fZzJ8ulN7YsWM1ceJEeb1e+k4J2DOosJMnTyozM9PoMhBmtm7dqi1btuihhx5ioMZZjR07Vr169dKf//xnrVixwuhyECY+++wzpaSk6P3339ff//53o8up0hiBUWH33nuvHn74YX3xxRdKTU1Vfn6+0SUhDLRr107jx49XcnKyHnvsMZ1tBixmyIpsrVu31tSpU+VyufT0008rLS3N6JIQBl566SXVrVtXNWvW1Kuvvqr9+/cbXVKVxTyEqJD09HT16tVLhw4dktlsVteuXTVs2DD1799f5513nurWravo6Gijy0QVdezYMQ0ZMkSHDh3S/Pnzdfnll8vtdstsNstkMsntdisqKsq3fmFhoaxWq4EVw2jPP/+8HnnkEU2YMEEzZ840uhxUYVlZWapZs6amTp2q/Px8TZ8+XQ899JCef/75gHW9Xq9MJpNyc3N1/PhxtWjRwoCKjUUgRIU4nU5t3LhRu3btUnJyslavXq39+/erdu3a6tu3r4YNG6bevXurZcuWql27tkwmk9Elo4ooGoA3b96sgQMHqm7dutq4caNq1arlt15GRob27t2rjRs36v3339cf/vAHjRkzxpiiYRiv1yuv16ucnBzddddd+s9//qP58+f77hpVdA4qpx6gyD/+8Q/99a9/1WeffaaBAwfqkksu0erVq7VmzRr16dPHb92i8WjFihW65ZZb9NRTT+nuu+82qHJjEAhRaU6cOKFdu3Zpw4YNWrlypdatW6fjx4+radOmGjx4sC699FJ17dpVzZo1U1xcnNHlwmBFVxdHRUXprbfe0n333afRo0drwoQJcjqdWrFihbZt26Zly5YpOztbubm5MpvN+vnnn9W8eXODq8e5dOaR4m3btql///5q1qyZXnzxRfXv318Wi8XXTjiEJCUlJal+/fr617/+pRYtWmjx4sW65pprNGjQIH300UeqXbu23/per1czZszQY489pv3790fcUUICIcrtxx9/1Ny5c3XNNdeoV69efgP2wYMHtWPHDn3//fdKTk7W5s2blZubq6SkJPXo0UP33nuvunXrZmD1qAqcTqcsFosWL16sCRMm6Pjx42rUqJEOHDiggoIC2Ww2tW/fXgMGDFDXrl01YMCAiBukcUpaWprS09O1dOlS7dq1S59//rnS0tJks9nUu3dvXXbZZbr88svVqVMno0tFFbBv3z61bdtWM2bM0MMPP+xbfvPNN2vBggX6xz/+oXHjxvmdonLw4EHddtttys7O1qZNmwys3hgEQpTbPffco9mzZ6t+/frq2bOnLrnkEl1yySU6//zzfes4nU7t27dPW7du1Zo1a7RmzRpt3rxZS5cu1aWXXmpg9TBKQUGBfvzxR3333Xdau3atVq9ercOHD0v631HDW2+9VTfeeKNatWql888/nyM9Eer48eNasmSJPv/8c23ZskX79u2T1+tVQkKCWrdurX79+mn16tVav369JKlu3boaOHCg+vfvr5EjR6pevXoGvwIY5ZFHHtHbb7+tjz/+WP369ZPH45HZbNbBgwfVsWNH1a5dW99//70aNmzoa/vss890/fXX66WXXtL9999v9Es45wiEKLeffvpJH374oT7++GNt2bJFktS8eXP1799fQ4cO1cCBA9W0aVPf+tnZ2UpJSdGuXbt0++23G1Q1jNahQwf99NNPvnN2unXrpi5duuiyyy7Tjh07NH36dN1///2aNWuW7zFF6yKyjBkzRv/+979lsVjUtWtX9ejRQ0OGDFGnTp3UokULmc1muVwubdq0SQsXLtRHH33ku4p0xYoVGjBggMGvAEZp2LCh+vfvr9dff1116tSR1+uV2+1WdHS0XnjhBf3lL3/R6NGjNXfuXEmnLlh77LHH9MILLygrK0sxMTHGvgADEAhRYS6XS+vXr9eCBQu0aNEi34zwHTt29J072K9fP8XHxxtcKYyWkpKivn376t5771ViYqJGjBghm83mu5Dk0KFDuv3227Vq1Sq99957GjVqFGEwgrVp00avvvqqWrRoofbt2we0Fx3ZKZKTk6Pk5GR98cUXeu21185lqahCNm7cqB49evi+Fj7Tr7/+qptvvlkrV67UF198ocsvv1w//vijRo4cqaZNm2rJkiUGVG08AiEqVVZWllasWKH58+fryy+/VFZWlqxWq+8r5aKvcxC5fvvtN9WpU8dv2el/2Ddu3Ki+ffuqffv2WrRokVq1ahXwhx/V3/fff68+ffpo/PjxeuGFF3zL+YCAs/n++++1atUqjRgxQu3atSu2z3z++ee6+uqrNWTIEH388cdavHixbrvtNn388ccaMWKEQZUbi0CIkElLS9MXX3yhefPm6dtvv5XL5VK3bt20YcMGo0uDQRYtWqTrrrvO70Tu0xUN3O+++67Gjh2rESNG6OOPPzaoWhjp0KFDGjNmjJKTk/Wf//xH119/fcDVxkBx3n33XQ0ePNjvlKXiPPDAA3rjjTf01FNP6dixY/rXv/6lrKysc1Rl1UMgxDmRkpKiuXPnqm3btrrzzjuNLgcG+OCDDzRq1Cht3LhRXbp0Cbqex+NRYWGhHnzwQb399tuaMWOGJkyYwATnEejnn39W165d1aRJE3399ddq1KgRRwhRokWLFumGG27QsGHD9NFHHyk2NjZgnaI+lJqaqr59+yojI0N5eXm64447NHv2bAOqrhr4DgbnRPv27TVjxgzCYAQrOkl7woQJOnbsWND1zGaz7Ha7Hn30Ud/tytLT089Vmagi3G63WrVqpVdeeUV79uzxTRJMGERJ3n77bUnSf//7X3344YeS/jd7QZGiPpSYmKj7779fTqdTXq+32PMNIwmBEMA5cfXVV+uBBx7QypUr9frrr0sKvD9x0c9Op1OtW7fWiy++qA4dOqh+/frnvF4Yq+ir4euvv1633367vvzyS82aNUter1cejyfgjzyQmZmpJUuW6MYbb5TH49HMmTN19OhRRUVFBb0X+vjx4zVw4EANGDBAnTt3PrcFVzEEQgAhVzQYz5gxQ0OHDtXUqVP1xRdf+B3t8Xg8vp8tFovy8/MVFxen5557zpCaYZyi/uLxeORwOPTyyy+rW7duevPNN7Vp0yaZzWZfYCQcosicOXNktVp111136aWXXlJKSooef/xxSYFHlov62K+//qohQ4boscceO+f1VjWcQwjgnCi6UnjNmjUaMWKE4uPj9fnnn/smMs/Pz9fBgwe1bt06bdy4UcuWLdOhQ4eUmpqqunXrGlw9jOB2u7V+/XodPnxYTz31lLZv3y6r1aqrr75aI0eO1OWXXx6R88WheB07dlSDBg30zjvvqGbNmho0aJC2b9+uL7/8UkOGDAlY3+v1asqUKXrppZe0Z8+eiJ/InEAIIOTOnDZm2rRpmjp1qsaMGaNhw4bpk08+0Y4dO7Rz507f0Z42bdrokksuYT65CLN9+3bfPay3bt2qbdu2SZLq1Kmj888/X5s2bVJOTo4kqWnTprr66qt14403Mgl1hNu7d6/atWvnd6u6+fPn69Zbb9XQoUP10UcfKS4uTtL/LiopulXdyZMnff0skhEIAZwT+fn5Onz4sNauXatdu3ZpxowZfu0dO3ZU69atfXOHdevWTWazWRaLxaCKca6tW7dOF110kSTJbrerXbt26t69u6666iolJibqwgsvlCQtXLhQb7/9tr766ivfY8+crxCR5eGHH9a//vUv363qitx3331666239M477+j222/3fVVsMpl8t6p7+eWXde+99xpVepVBIAQQUm+//bZ++uknLV68WIcOHVJubq4kKSkpSWlpaapVq5aee+45XXXVVUw+HeGmT5+uNWvW6Prrr1f//v1Vp04d311spFN3RTp9+qHff/9dH3zwgaZPn67XXntNV155pQFVoypo3LixLr74Yt+t6or6SkpKivr37y+Hw6GlS5f67nhTWFioSZMm6e9//7uys7PlcDgMfgXGIxACCJnTj/g0btxYw4cPV7t27XTNNdfIYrHo1Vdf1cyZMzV+/Hg9//zzMpvN8ng8TD4coc4MfFLg6QbS/6YRoZ9AklavXq3+/fvrjTfe0D333BPQPm3aND3xxBO6++679frrr8tsNmvXrl268cYb1bx5c3355ZcGVF31EAgBhMznn3+uH374QVdeeaUuvPBCRUVF+f1xd7lcGjJkiL799lt9+umnuuqqq7hNXYQry8TTXq9XbrebScsj3Pjx4/XJJ59o0aJF6tq1a0AfKigoULdu3bRv3z599dVXGjBggO9uSEXjDgiEAEKouD/uRcuKbkP2448/6vLLL1d+fr6+/fZbtWvXzqBqAYSjwsJC/fjjj+rQoYNsNptfW9E489VXX2n48OHq27evPvvsM/31r3/Vhx9+qMzMTIOqrnr4GA4gZEwmU8CEsEUBsWiy2PPPP1+TJ0/W8ePHNWHCBGVkZBhRKoAwZbVa1blz54AwKJ0aZ9xuty699FLdc889WrNmjR588EF98cUXuvHGGw2oturiCCGAKuG2227TvHnz9Nxzz+kvf/mL0eUAqGa2b9+uwYMHq7CwUFlZWdqwYYO6detmdFlVBoEQgKGKvkLOzMzUxRdfrLS0tBLvdQwA5fXGG2/ogQceUKNGjXT48GGjy6lSOBMXgKFMJpM8Ho/i4+P117/+VXl5eUaXBKCaGj16tI4cOaKWLVsaXUqVwxFCAACACMdFJQAAABGOQAgAABDhCIQAAAARjkAIAAAQ4QiEAAAAEY5ACAAAEOEIhABQTSUnJ8tkMmnKlCl+ywcOHBhwj2kAkY1ACACVLDU1VSaTye+f1WpVs2bNNGrUKG3bts3oEgHAD3cqAYAQad26tW677TZJUnZ2ttatW6f58+dr0aJF+u9//6u+ffsaUte7776r3NxcQ54bQNVEIASAEGnTpk3A17WPP/64pk2bpscee0zJycmG1NW8eXNDnhdA1cVXxgBwDj344IOSpA0bNujIkSOaPHmyevfurfr168tmsykxMVEPPPCAjh07FvDYks79Gzt2rEwmk1JTU89aA+cQAjgTRwgBwAAmk0mrVq3SrFmzNGTIEPXq1UsWi0WbN2/W66+/rqVLl2rTpk2qWbOm0aUCiAAEQgA4h1577TVJUs+ePTV48GClpaUpLi7Ob513331XY8aM0SuvvKLHHnvMiDIBRBgCIQCEyN69e33nEObk5Oj777/Xt99+K7vdrmnTpql+/frFPu7222/Xgw8+qK+//ppACOCcIBACQIjs27dPU6dOlSRZLBY1aNBAo0aN0qOPPqqkpCRJ0qJFi/Tmm29q06ZN+v333+V2u32PP3LkiCF1A4g8BEIACJFhw4bpq6++Cto+a9Ys/eUvf1G9evU0dOhQNW3aVA6HQ5L04osvqqCg4FyVCiDCEQgBwAAul0tPPfWUGjVqpC1btvh9fez1evXcc88FPMZsNvseGx3tP3xnZGSEtmAA1RrTzgCAAU6cOKGMjAz16dMn4FzCH374QXl5eQGPqV27tiTp8OHDfss9Ho+2bt0aumIBVHsEQgAwQP369eVwOLRp0ya/u4b8/vvvvrkKz9SjRw9J0ty5c/2Wv/DCC9q/f3/IagVQ/fGVMQAYwGw264EHHtCsWbN04YUX6qqrrlJmZqaWLFmiFi1aqHHjxgGPueOOO/Tcc89pypQp2rJli1q3bq0ffvhBO3bs0IABA7Ry5UoDXgmA6oAjhABgkOnTp2vatGkymUx67bXXtHz5ct1yyy1atmyZLBZLwPoNGjTQihUrNGTIEC1btkz//Oc/VatWLa1bt06JiYnn/gUAqDZMXq/Xa3QRAAAAMA5HCAEAACIcgRAAACDCEQgBAAAiHIEQAAAgwhEIAQAAIhyBEAAAIMIRCAEAACIcgRAAACDCEQgBAAAiHIEQAAAgwhEIAQAAIhyBEAAAIMIRCAEAACLc/wc2Z9yRlGfogwAAAABJRU5ErkJggg==", - "text/plain": [ - "
" - ] - }, - "execution_count": 15, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "plot_state_paulivec(psi, title=\"My Paulivec\", color=['purple', 'orange', 'green'])" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### **plot_state_qsphere()** のオプション\n", - "\n", - "- **figsize** (tuple): インチ単位の図のサイズ (幅, 高さ)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### **plot_bloch_multivector()** のオプション\n", - "\n", - "- **title** (str): プロットのタイトルを表す文字列\n", - "- **figsize** (tuple): インチ単位の図のサイズ (幅, 高さ)" - ] - }, - { - "cell_type": "code", - "execution_count": 16, - "metadata": { - "ExecuteTime": { - "end_time": "2021-07-31T05:09:08.540562Z", - "start_time": "2021-07-31T05:09:08.227233Z" - }, - "execution": { - "iopub.execute_input": "2023-08-25T18:25:18.306822Z", - "iopub.status.busy": "2023-08-25T18:25:18.305000Z", - "iopub.status.idle": "2023-08-25T18:25:18.752819Z", - "shell.execute_reply": "2023-08-25T18:25:18.752096Z" - }, - "scrolled": true - }, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAvsAAAG0CAYAAACsZ+hqAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOy9eZhcZ3Xn/71b3Xtr770l2bIkS5YlY2wDtrHN4gABBkhIgIQhw8MakjBjfiSseZI8IdswT1iTDBAm87CELEMYQsATGJKJARPA2Ma2DFiStVjW1q3ea7119/f3x33ft29VV3VXL9ra5/M8/ahVXXer5Zxzz3vO9yiMMQaCIAiCIAiCIDYd6sU+AYIgCIIgCIIgzg8U7BMEQRAEQRDEJoWCfYIgCIIgCILYpFCwTxAEQRAEQRCbFAr2CYIgCIIgCGKTQsE+QRAEQRAEQWxSKNgnCIIgCIIgiE0KBfsEQRAEQRAEsUmhYJ8gCIIgCIIgNikU7BMEsS527NgBRVGgKAre+c53LvvcD3/4w/K5uq6f93P7gz/4A3m89I9pmti+fTte+9rX4gc/+EHXbb/zne9AURTceeed5/08L/Txjx49irvuugv79+9HLpeDZVm44oorcPPNN+Ouu+7CP/7jP27Yse68804oioLvfOc7G7ZPgiAIon/Ov7clCOIpw9/93d/hwx/+MDKZTNe/f/azn73AZ5QwNjaGl770pfL/lUoFBw4cwJe+9CX87//9v/HJT34Sb3/72y/KuV1ovvKVr+BXfuVX4HkehoaGcMcdd2BkZAQLCws4cOAAPvnJT+KLX/wiXv3qV1/sUyUIgiA2AAr2CYLYEJ71rGfhRz/6Eb72ta/hl37pl5b8/Qc/+AEOHz6Mm2++GQ8++OAFPbdrr70Wn//859sei6II733ve/Hxj38c73rXu/BLv/RLGB4evqDndaGZmprCG9/4Rnieh3e/+934kz/5E1iW1fachx56CF/+8pcv0hkSBEEQGw2V8RAEsSG85S1vAdA7e/+Zz3ym7XkXG03T8MEPfhCapsF1XXz/+9+/2Kd03vnnf/5nNBoNbN26FR/5yEeWBPoA8MxnPhP/7b/9t4twdgRBEMT5gIJ9giA2hOuvvx7Petaz8K//+q84e/Zs298ajQa+9KUv4YorrsCLX/ziJdvWajUUi0Xouo7Tp0/3PMbLXvYyKIqCT33qUxtyzpZloVwuAwDCMFzVtocPH8ab3/xmXHXVVTBNE4ODg3jhC1+IL33pS8tu99BDD+GNb3wjdu7cCcuyMDg4iBtuuAHvfe97cfLkya7bBEGAP/3TP8V1110H27YxNDSEV73qVTh06NCqznlqagoAMDIysqrtgMXejCeffBL/9E//hOc85zkoFosoFAq488478Y1vfGPFfRw4cACvetWrMDw8DNM0sX//fnz0ox8FY6znNvfccw9e9apXYcuWLchkMhgdHcUv/uIv4r777uv6fNGXAQCf+9zncNttt6FUKslzF0xMTOBd73oX9u3bh2w2i0KhgJtvvhmf+MQnun4WPM/Dhz/8YTzzmc9EoVBAJpPB+Pg4br75Zrzvfe/D/Pz8itdPEARxMaBgnyCIDeMtb3kL4jheUjLzpS99CY1GA2984xuhqkvNTrFYxJve9CZEUYRPf/rTXfd9/PhxfPOb30SxWMQb3vCGDTnfJ554AnNzcwCA6667ru/tvv71r+Omm27C5z//edi2jVe96lW46aabcO+99+K1r30t3vrWt3bd7sMf/jBuueUWfOELX0Amk8ErX/lKPOc5z0EQBPjIRz6Cb3/720u2CYIAL3vZy/BHf/RH2L59O17+8pcjl8vhn/7pn3D77be3BbArsX37dgDAT3/6U9xzzz19b5fmL/7iL/CqV70KnufhFa94Bfbv3497770XL3/5y/Hf//t/77ndv/zLv+DWW2/F4cOH8bM/+7O47bbbcOTIEbznPe/Bb/3Wb3Xd5j3veQ9e9KIX4Wtf+xq2b9+OX/iFX8CuXbvwta99Dc997nPxuc99rufx3vGOd+BXf/VXoes6Xv7yl+PWW2+VNwHf/e538bSnPQ0f//jH4boufvZnfxZ33HEHjh8/jne84x14+ctfjiAI5L7iOMbLX/5yvO9978OxY8fw3Oc+F695zWtw/fXXY2ZmBh/+8Idx6tSpNb2eBEEQ5x1GEASxDq666ioGgP37v/87q1QqzLZttnv37rbn3HHHHUxRFHb8+HF24sQJBoBpmtb2nCNHjjBFUdjo6ChzXXfJcd797nczAOwd73hH3+f2gQ98gAFgz3/+89ser1Qq7J577mE33ngjA8Be+9rXLtn229/+dtdtz507x0qlEgPA/uRP/oTFcSz/9uCDD7KBgQEGgP3VX/1V23Zf+9rXGABmWRb7h3/4hyXHe+yxx9jBgweXHB8Au+mmm9jk5KT8W6vVYi95yUsYAPZrv/Zrfb8e9Xqdbdu2jQFgiqKwO++8k/3xH/8x+/rXv86mp6eX3Va8z4qisL/9279t+9sXv/hFpigK03Wd/eQnP2n72/Of/3x5HZ/+9Kfb/nbPPfcwRVGYpmns9OnTbX/7q7/6KwaA7d69mz366KNtf7v33ntZoVBgmUyGHTlypO1v4ljFYpHdd999S65jcnKSDQ0NMUVR2Kc+9SkWRZH82+zsLHvBC17AALA//MM/bDueeB9qtdqSfT744INsdna228tGEARx0aFgnyCIdZEO9hlj7D/9p//EALDvfOc7jDHGDh8+zACwO++8kzHGegb7jDH2spe9jAFgf/M3f9P2uOM4bGBggCmKwg4fPtz3uYlgv9dPsVhkH//4x1kYhku27RXs//Ef/zEDwJ75zGd2PeZHPvIRBoDt2bOn7XFxY/HRj360r3MXx1cUhR04cGDJ33/4wx8yAGzXrl197U9w+PBhduutt3Z9PW688Ub2l3/5l11fD/E+/8Iv/ELX/b761a9mANjb3va2tsdFsP+qV72q63YvfelLGQD2hS98QT4WRRHbunUrA8B+9KMfdd3uQx/6EAPA3v3ud7c9Lq7lj/7oj7pu9/73v58BYHfddVfXv585c4YZhsFGRkbkjdyXvvQlBoD9f//f/9d1G4IgiEsZKuMhCGJD6WzUFf/205grdPo/8YlPtD3+93//91hYWMCLXvQi7N27d9XnNDY2hje+8Y3y55d/+Zdx8803o1ar4Y//+I/x13/9133vS+jFv/GNb+z6d1HCc/ToUUxMTAAAzp07hwMHDkBV1Z4lPr3Yvn07brjhhiWP79u3DwCW9EesxN69e/HDH/4Q999/P37/938fL3nJS2QN/4EDB/D2t78dL33pS+H7ftfte123eLyXnv7P/dzPdX2823U88sgjmJiYwNVXX41nPvOZXbcT8wd6zUl4zWte0/Xxr3/96wCA1772tV3/vm3bNuzZswczMzM4evQoAOAZz3gGNE3DZz/7WXzyk5/E5ORk120JgiAuRSjYJwhiQ/mZn/kZ7Ny5E1/+8pexsLCAL3zhCygWiz2DrzQ/+7M/i3379uH+++/HQw89JB//5Cc/CQC466671nROQnpT/PzDP/wDHnjgAdx///3wPA9vfetb+5abFEHpzp07u/69XC5jcHAQAHDmzBkAkPXcW7ZsQalUWtW5izr7TorFIoCkcXQt3HLLLfjDP/xDfPOb38TU1BQeeugh/Mf/+B8BAP/2b/+GP//zP++6Xa/rFo+La+5kpetwXVc+9sQTTwBI+jS6DUVTFAW33HILAGBmZqbrfnfs2NH1cbHv5z73uT33ffDgwbZ9X3311fj4xz+OIAhw1113YevWrdixYwde97rX4e/+7u963hgRBEFcCpDOPkEQG4qiKHjTm96ED3zgA3jjG9+Ic+fO4dd+7ddg23Zf277jHe/Af/7P/xmf+MQn8LnPfQ733XcfHnnkEezYsQOveMUrNvRcb7nlFvz6r/86Pvaxj+FP//RP+7ohudB0a2jeaBRFwTOe8Qz8r//1v+A4Du6++2589atfxXvf+95V74v1UNZZzXXEcQwAGB8fx0te8pJln9trNkKvz5vY92te8xrkcrll9z00NCR/f8c73oFf/uVfxt13343vfe97+N73vocvfvGL+OIXv4gPfOAD+Pd//3ds2bJl2f0RBEFcDCjYJwhiw3nTm96EP/zDP8T/+T//B8DqtPXf8IY34Hd+53fwxS9+ER/5yEdkSc/b3/728xL47tq1CwD6lrHctm0bDh8+LDPEnVSrVSnDuG3bNgCLWe3JyUlUq9VVZ/cvJC9+8Ytx9913Y3Z2tuvfT5w40bWsSKgCXXHFFes+hyuvvBJAEmx3KjttxL6PHj2K97///XjWs561qm3Hxsbwtre9DW9729sAJPKrb3nLW3Dffffht3/7t1dVDkYQBHGhoDIegiA2nO3bt+OVr3wlhoaG8OxnPxu33npr39vmcjm89a1vheu6+OAHP4gvf/nLsCxr1bXu/XL8+HEAQD6f7+v5ola8V2AnehT27Nkjg/3x8XHccMMNiOO459CxC0GvrHsaUXLUK2j/m7/5m66Pf+ELXwCw+Pqsh5tvvhnDw8M4ePAgHnvssXXvL81/+A//AQBWnIfQD9deey3e//73A0j6HQiCIC5FKNgnCOK88JWvfAWzs7M9hx8tx1133QVVVfGxj30Mvu/jda97XVtJxUbxwAMP4K/+6q8AAK985Sv72uZtb3sbisUiHn74YXzwgx9sC6AfeeQR/Mmf/AkALCmB+cAHPgAA+N3f/V384z/+45L9Hjx4cNVDslbLpz71KbzxjW/s2tTKGMNXvvIVuZIi6vc7+ad/+id88YtfbHvsy1/+Mv7xH/8Ruq7jHe94x7rP0zAMfOADHwBjDL/4i7+I733ve0ueE0URvvWtb+GHP/zhqvb93ve+F+VyGR/72Mfw0Y9+tGu9/YkTJ/C3f/u38v/f+ta38I1vfKNNex9IXrN//ud/BgBcddVVqzoPgiCICwWV8RAEccmxY8cO/PzP/zy++tWvAlh7Y67g8OHDeNOb3iT/32q18OSTT+KBBx4AANxwww344Ac/2Ne+xsbG8Hd/93f4pV/6Jfzu7/4u/uZv/gY33XQTpqence+99yIMQ7z5zW+WpR6CX/zFX8R//a//Fb/3e7+H17zmNbj22mtxww03oNVq4dixYzh48CA+97nPSXWa80EQBPjCF76AL3zhCxgZGcFNN92E4eFhVCoVHDx4UJbivP71r++5kvLOd74Tr3vd6/Cxj30Me/bswfHjx3H//fcDAD7ykY/g6U9/+oac61133YVTp07hwx/+MJ773Ofiuuuuw+7du2HbtlQ3qlQq+Mu//Es8+9nP7nu/V1xxBb72ta/h1a9+Nd7znvfgQx/6EJ72tKdhy5YtqFarOHToEI4fP45bb70Vr3/96wEAP/7xj/Fbv/VbKBaLeMYznoGtW7ei1Wrh4YcfxsmTJ1EqlfBHf/RHG3LdBEEQGw0F+wRBXJK85CUvwVe/+lXcdttteMYznrGufU1NTbWV3WiahlKpJCeh/vqv/zpM0+x7f694xSvw8MMP40//9E9xzz334Mtf/jJyuRye+9zn4td//dd7yjr+zu/8Dl7wghfgL/7iL/Dd734XX/nKV1AoFHDllVfife97H17wghes6zpX4q1vfSt27tyJe+65B/fffz8OHjyIqakp6LqOrVu34nWvex3e8IY34KUvfWnPfbzzne/E7bffjo9//OO4++67wRjDc5/7XLzvfe/b8AbqD33oQ/iFX/gFfOpTn8L3vvc9fPOb30Qmk8GWLVtw55134hWveAVe9apXrXq/z3ve8/DYY4/hE5/4BL7+9a/jwQcfhOd5GB0dxfbt2/H6178er371q+Xzf+7nfg7VahX//u//jqNHj+KHP/whbNvGlVdeid/+7d/Gf/kv/2VDehUIgiDOBwrrp4iTIAjiAvOc5zwH3//+9/H3f//3eN3rXnexT+cpz44dO3Dy5EmcOHGip6wlQRAEcelBNfsEQVxy/N//+3/x/e9/H9u3b78k5TAJgiAI4nKByngIgrgkmJubw/vf/34sLCzgG9/4BoCkjMMwjIt8ZgRBEARx+ULBPkEQlwT1eh2f+cxnoOs6du3ahXe/+909a98JgiAIgugPqtknCIIgCIIgiE0K1ewTBEEQBEEQxCaFgn2CIAiCIAiC2KRQsE8QBEEQBEEQmxQK9gmCIAiCIAhik0LBPkEQBEEQBEFsUijYJwiCIAiCIIhNCgX7BEEQBEEQBLFJoWCfIAiCIAiCIDYpFOwTBEEQBEEQxCaFgn2CIAiCIAiC2KRQsE8QBEEQBEEQmxQK9gmCIAiCIAhik0LBPkEQBEEQBEFsUijYJwiCIAiCIIhNCgX7BEEQBEEQBLFJoWCfIAiCIAiCIDYpFOwTBEEQBEEQxCaFgn2CIAiCIAiC2KRQsE8QBEEQBEEQmxQK9gmCIAiCIAhik0LBPkEQBEEQBEFsUijYJwiCIAiCIIhNCgX7BEEQBEEQBLFJoWCfIAiCIAiCIDYpFOwTBEEQBEEQxCaFgn2CIAiCIAiC2KRQsE8QBEEQBEEQmxQK9gmCIAiCIAhik0LBPkEQBEEQBEFsUijYJwiCIAiCIIhNCgX7BEEQBEEQBLFJoWCfIAiCIAiCIDYpFOwTBEEQBEEQxCaFgn2CIAiCIAiC2KRQsE8QBEEQBEEQmxQK9gmCIAiCIAhik0LBPkEQBEEQBEFsUijYJwiCIAiCIIhNCgX7BEEQBEEQBLFJoWCfIAiCIAiCIDYpFOwTlx1PPvkkFEXBgQMHej7nO9/5DhRFQaVSuWDnRRAEQVx+kE8hNjsU7BObkttvvx2Tk5MolUoAgM9//vMol8t9bfud73wHz3jGM2CaJnbv3o3Pf/7z5+9ECYIgiEuetfqUyclJ/Mqv/AquueYaqKqK3/zN3zy/J0oQXaBgn9iUZDIZjI+PQ1GUVW134sQJvPzlL8fP/MzP4MCBA/jN3/xN/Oqv/ir+5V/+5TydKUEQBHGps1af4nkeRkZG8Hu/93u44YYbztPZEcTyULBPXFCazSbe8IY3IJ/PY8uWLfjoRz+KO++8sy3boSgKvvrVr7ZtVy6Xl2TYDx8+jNtvvx2WZeFpT3sa7r33Xvm39JLrd77zHbz5zW9GtVqFoihQFAV/8Ad/0PX8Pv3pT2Pnzp346Ec/in379uGuu+7Ca17zGnz84x/foFeAIAiC2CgudZ+yY8cO/Pmf/zne8IY3yFUBgrjQULBPXFDe+9734t5778XXvvY1/Ou//iu+853v4OGHH17zvt797nfjkUcewW233Yaf+7mfw9zc3JLn3X777fizP/szFItFTE5OYnJyEu95z3u67vO+++7Di170orbHXvKSl+C+++5b0zkSBEEQ549L3acQxKUABfvEBaPRaOAzn/kMPvKRj+CFL3whrr/+evz1X/81wjBc0/7uuusuvPrVr8a+ffvwl3/5lyiVSvjMZz6z5HmZTAalUgmKomB8fBzj4+PI5/Nd93nu3DmMjY21PTY2NoZarYZWq7Wm8yQIgiA2nsvBpxDEpQAF+8QF4/jx4/B9H7feeqt8bHBwEHv37l3T/m677Tb5u67reNaznoVDhw6t+zwJgiCISx/yKQTRHxTsE5cciqKAMdb2WBAEF+TY4+PjmJqaantsamoKxWIRtm1fkHMgCIIgNo6L6VMI4lKAgn3ignH11VfDMAzcf//98rGFhQUcOXKk7XkjIyOYnJyU/z969Cgcx1myvx/+8Ify9zAM8dBDD2Hfvn1dj53JZBBF0YrneNttt+Gee+5pe+z//b//15bxIQiCIC4+l4NPIYhLAf1inwDx1CGfz+Otb30r3vve92JoaAijo6P43d/9Xahq+z3nC17wAnziE5/AbbfdhiiK8P73vx+GYSzZ3yc/+Uns2bMH+/btw8c//nEsLCzgLW95S9dj79ixA41GA/fccw9uuOEGZLNZZLPZJc/7jd/4DXziE5/A+973PrzlLW/Bt771LXzpS1/C17/+9Y15EQiCIIgN4XLwKQDksK5Go4GZmRkcOHAAmUwG+/fvX98LQBD9wgjiAlKv19nrX/96ls1m2djYGPvQhz7Env/857N3vvOd8jlnz55lL37xi1kul2N79uxh3/jGN1ipVGKf+9znGGOMnThxggFgf//3f89uueUWlslk2P79+9m3vvUtuY9vf/vbDABbWFiQj/3Gb/wGGxoaYgDYBz7wgZ7n+O1vf5vdeOONLJPJsF27dsnjEgRBEJcWl4NPAbDk56qrrtrYF4IglkFhrKOQjSAuMHfeeSduvPFG/Nmf/dnFPhWCIAjiMod8CkG0QzX7BEEQBEEQBLFJoWCfIAiCIAiCIDYpVMZDEARBEARBEJsUyuwTBEEQBEEQxCaFgn2CIAiCIAiC2KRQsE8QBEEQBEEQmxQK9gmCIAiCIAhik0LBPkEQBEEQBEFsUijYJwiCIAiCIIhNCgX7BEEQBEEQBLFJoWCfIAiCIAiCIDYpFOwTBEEQBEEQxCaFgn2CIAiCIAiC2KRQsE88pfjsZz+Lw4cPX+zTIAiCIDYB5FOIywEK9olNxyc/+Uns2LEDlmXh1ltvxQMPPCD/dv/99+N//I//cRHPjiAIgricIJ9CXO5QsE9c9tx5553y93/4h3/Au971LnzgAx/Aww8/jBtuuAEveclLMD09DQB45StfibvvvvsinSlBEARxqUM+hdhsULBPbCo+9rGP4W1vexve/OY3Y//+/fj0pz+NbDaLz372swCAF77whZiamsJPf/rTi3ymBEEQxKUO+RRiM0DBPrFp8H0fDz30EF70ohfJx1RVxYte9CLcd999AADTNPHiF7+YMjEEQRDEspBPITYLFOwTm4bZ2VlEUYSxsbG2x8fGxnDu3Dn5f1p2JQiCIFaCfAqxWaBgn3jK8bKXvQwPPPAAZmdnL/apEARBEJc55FOISx0K9olNw/DwMDRNw9TUVNvjU1NTGB8fl/8/ceIEyuUyyuXyBT5DgiAI4nKBfAqxWaBgn9g0ZDIZPPOZz8Q999wjH4vjGPfccw9uu+02+djdd9+Nl73sZdB1/WKcJkEQBHEZQD6F2CxQsE9sKt71rnfhf/7P/4m//uu/xqFDh/D2t78dzWYTb37zm+Vz7r77brzyla+8iGdJEARBXA6QTyE2A3QbSmwqXvva12JmZga///u/j3PnzuHGG2/EN7/5TdlgdeLECTz++ON46UtfepHPlCAIgrjUIZ9CbAYUxhi72CdBEBeKP//zP8c3vvEN/Mu//MvFPhWCIAjiMod8CnE5QGU8xFOKu+++Gz//8z9/sU+DIAiC2ASQTyEuByizTxAEQRAEQRCbFMrsEwRBEARBEMQmhYJ9giAIgiAIgtikULBPEARBEARBEJsUkt4knnLEcYxmswkA0DQNtm1DUZSLfFYEQRDE5UoYhnAcB4qiQNd1WJZFfoW4ZKBgn7hsiMMQURwjjiLEYYg4jpPHO/5ljIHFcfIvAEVRoABQVBVRFKFaqyXP5Y+bloWRkRFohkETEAmCIJ5CxGGIMIoSvxJFie8AwDr9CvcpcRwnQbyiQOX/hmGIarUKBiR+RVGQzWYxNDQETdehkV8hLjKkxkNcEsRhiDAMEfo+At9HFIaIowiRMMCpAH45xN9FoB9HEYAk4GeMoVqvI4oiaKoKwzDg+T4YY7AtC9lsNrkxUFUoipIYaU2TNwGGaSJjmjAymfP9chAEQRDrRPiUOAylXxG+JY5jxNyvoA+/In0L2v1KFEWo1utgjEHnPsP3PDAAhVwOpmkCqgowJn2Kyv+VPsUwoJNfIc4jFOwT55U4jhGGIaIoQhiG8FothGEIxDEUxhIjK7LwPGsSRZE0wjF/LObPiVLZFQYAPKhHyhCDMYAH90wcQ1HQbDYRRhE0RUEul4OuafD50isAFPJ5mJkMFEWBygN+VVVl9kZJ/eiZDHTDQMwYGs0m/CDA4PAwhoeHE+NOEARBnBeEP4miCL7vw3ddxFEEhfsHRQTxwKLvSAX4ccqPdP6fYTFp1M2viEy/+Hu9XkfMA/lCNgtVVdHyPHieB0VVUcrnoet6mz9RUv8yACr/m2YYMDIZhGGIRrOJkDGMjI5icHAQhmFcyJeY2GTQ2hKxYcRxjFarBd/3EYYhfM+D73mI+P+jIEiCeV6KE/HAPuJZEigKNEWBqmnIGIasd0zfj7YF87wUpysdxjoMQwRhCAWAncslGZk4hqaqSSYmCNDgQX/nPqI4huM4yU+rhVarhZbjoOk4CH0f4uwUfk66ZaFYKmFgaAhDw8MYHBzE+Pg4RkdH1/8iEwRBPIWIogiO4yAIAkRRBK/Vgh8EiHw/+RHlnV18iwLIchtN02AIv5IO4oGlCaNeMCbtPIDkPBiDqijI2TYYEn9h6Lr0gw3HgW1ZS1YPgihC03HQajYTv+I4aLVacBwHURjKcxG+ysrlUCqVMDA8jKGhIQwODmLbtm0ol8sb8joTmxvK7BPrRjS81qpV+DzYDzwPvu+DRRFYyrgqgDSIsai/ZwxxKjgXBs40DFiWBTOTacu0ixp8iP2qalKTzwP/9L+i9KdWr8PzfZimiVw2u2jYGUMYRahUqwBjKBaL8pqq1SpOnzmDiYkJhFEEKAoM3niVzWZhZ7PI2jZs24aZycDzfXiuC9d1pdFucgPOAGy54go87847sWvXLmrcIgiCWIYwDBO/UqnA9zyEvg+v1UqCe75qK8ozVUWRGXoR8ItMvfATjAf9ViYD07KQ0fUk0y58CvcrLOVfOv2K+F3sv1KtIowiZLNZWKaZ3ASoKhDH8Hwf9UYDiqKgWCjIlenZuTmcOXUK09PTiLgfMjMZWLad+BXuX7LZLDRdT3yK58FtteByv9JwHPi+jwjA7muuwfOe/3xs2bLlYrxNxGUCBfvEmgmCANWFBVTm59FqNJLgnjFoqgrwZUpN09AZ1qqqClXToGsaNFVNjHQUIUZiRMMoQhAE8vmaqsI0TVimCVVdqha73AeYxXFynvU6FADlUgmapiUGPfXRF0bbtizMzs7ixIkTmJ+fh2VZ2LFjB8bHx5G1beiGgZDvU9R9RjyT1IuY30ycPHECC5UKyoODuPnWW3H9jTciQ3WaBEEQEs/zUJmbQ3VhAW6rBd/zZHZeBOcqT/CkUTUt6bFSVWg8+I8YA+MJpSAIEAo7zRh0TZPJpCXJlxVWjlkcw3VdNBwHqqpioFSS24ktGGOYr1RkT9jExAROnDiBeqOBYqGAnTt3YnhoCNnUSrPwocKnxMv4lSgMMTs7iydPnkSz0cD4tm249dnPxjX79kHTtNW/8MSmhoJ9YlXEcYza/DxmpqZQrVYR+D7CKEqkxnijkTB2mq4nAX36hxvqdI1+N4MWhiFcz4Pn+zI7w+IYpmnC5scRpEt7OmFxjFq9Dj8IYJkm8rnc4opAiunZWRw/fhxTU1OIogjjo6PYuWsXxsfH224whCEOwzBxHmGIMI6T/gJR/ymWkfmNAMT5AajW6zg3OYlatQrLtrF7zx5cf/31GN+2DZZtr+u9IQiCuBwJgwALs7OYnZ5Go15PkilxDMMwYJnmokqaokif0ulbRJZfrNZ2a7oNgiDJknue3J8CnllPHwfL+xWRwIniGLlsNpHZ7HgOA3D69Gmc5Fl8TVGwbds27Ny1C8PDw+3P5ecchCFC7lei1OqEWLGQ5Uqp62MA5hcWMDkxAcdxUCoUsHffPuy77jqMjo+ToAQBgIJ9og8YY6hXq6gtLGB+dhb1el0aQkPXYdk2MoYBQ9dh6Dp0w4CuaYtBcspYCqOl8P3GXAlBlO50O7bn+3BdF0EYysZbXdOQs22ZGZelQul6TMYQhmFSooMkq69r2mKNPYCJyUkcOXIEc3Nz0AwDW7Zswb69e1EsFqVRDXlfQdoAK4qS7Ec0CiOpLW27Bn6ucj+p2lKn2cTE5CQWFhagGwb27NmDsfFxDA0PY3RsDNlcDoZhdF3JIAiCuNwJwxD1ahX1+XnMzs6i1WoBSOx2xjRhZTLIZDKJTxG+hTe6dgbgoiQUqXIeAEsC8PTzPc9Dy/OSwJn7DV3XkeflM6Kkpy3g542/okRHVVWUikVovNFWnP/JJ5/EsePHUa1WYWWzuGLbNuy79lqYppmIVqR8ivhd7L9NYAKLEqAS/rco7Vf46kWtWsXkxARqjQZyto0911yDkdHRpMl3ZAS2bS/2LRBPKSjYJ7oi6iUb8/NJcB9FaPFadACwbRvFfB62ZUE3jKR0ZxnSigfysVSg3JaF4cYsjQjcPZ7tZ7zO38pkkOMKCJ0wAE3e/GToOoqFgjTaLdfFjw8cwNnJSYwMDWHnrl2wbBu+78O07WQZWDgB8cOYrOXUeWZJLB0rqWuIl/tKcTUH3/fheR4WKhUcPnIEzUYDO3ftwuDAAFRVhZ3NojgwgMGhIeRyOeS5ogNBEMTlShAEaNRqqC0swGk2wXiTqh8EUBhDNp9HMZeTWfaVkh0xX2mV8NKdrqTss6jFZ4zB93243B4LO29bFrI9hi3GvAfM931YpolcLif/VqvV8PDDD2N+fh7btm3Djh07AFVFGIbI53KJ34qipK6/A43LPYtEmSzFEUH/Sn4lipLEmOdhbnYWh44cQRSG2LNnD3K5HFRVRb5QQGlwEOWBAeTz+aQvgEp+nhJQsE9IgiBAs9lEvVpFq9FA7Psy8HZdN1EZ0DQUi0UU8vm2bYXEZiD08nnGIf3hSsuOSZUE8XjqJw3jhpnxH4Ufq+W6aLluIlsGIJfNLpG8FMubURQlS62mCaYoOPnkk/jJT34CTdPw9BtuwPDQEHzfR7VeRxCGsPiSLrBYByr0k8XScfr80oO7xGNi9aIfoijC/Q88gDNnz2Lnrl0YGR2VZUGapiFbKKBYLqNcLmNwcJAmMxIEcVkggulms4l6pQK32UQchlB40qPlugAAQ9cxUCrB7ihllL4kihCFIXxe3iPKdRRVhSbmoigKYp6Y0bmP6eZXWCpTr3D7DSR+peE48Hw/2VZRkM/loKdKU4FEXGJufh4AUCwWYWgaojjGkSNHcPjwYeQLBdx0443I53JwfR/VWg1RHCNr28jwhI3KfYqe8i9LzpGTVqWTCag+cF0X3/vBD1CpVHDt3r3Il0qysVgzDOSLxUTdZ3AQAwMD1D+2yaFg/ylOFEVotVpoNhpo1moIWi1paAyesW80m/C5dKZpWdBUVRpfYYjlUmNK1SDmBjmtdQ9Rqw/IJcu0dCUAqUGsKgoMw4BpmjAzmaRUKJORBjoMQ9SbTVlakzEM5FKZiiCKsLCwAAAYKJfRarXw8MMPY3p6Gldu346rr746OR4/vuf7CHiT7gBv5F2SWepYgUBKSSi97CsyMSy1f/DH1G7lSgAOPvYYDh0+jJ07d2Lfvn3weX2p53kIowimbSNfKEjjXCqVqMyHIIhLjpDPL2nU62g1GghcV66MZnhDbK1ehx9FiIMAdjYLVVEQiJksYqBiGEJR1cVptUiCbVlPnyp5wQp+Ja3oljGMxKeYJkzDgG4YchtxcxLz/1uZTDJwke+r5Xmo1+tQVBWDpRLmFxbw8MMPo1arYffu3bjyqqsSzX/uC1quixhAPptFIZ9f1q9IHyL0/EWyiwtKxICc8NspTd3Nr0RhiAd/9COcPXsWT7v+ely5fbv0KaIfzs5mkS8WUR4YwODgIAqFAiWTNiEU7D8FYYzB87xEGrLRgO84CD0vqcE3DGnwHMfBXKUi6x9zti1LSdIyZKqQP+MZFF3Xk8f48+TAEl7vyHjNYvoxcV7dSnjSg040rsGf4fWcGcNAGEVwPU+uAORtG5ZlodlqodlsQjcMTJ07h8d++lOYloVrrrkGA4ODsvRG44ZfVRQ0Gg0oqoqhgYH+X09gyTnLc2cs0UzuMJ7p1y/9lyeefBKPPPwwxkZGcMuznw1N0+T1Nep1eJ4HzTCQy+eRL5UwODiIoaEhysoQBHFRiblCjfArAfcrCg+u4yiCFwRoNJtYqFaTQVRcn17lCZq0BCaQ2EaFl7TomiaTSeJ4LI6liht4k2tXv4IO1TYROCMJnnVNg8lLh0zLQkbTEIRhUjIKnuXPZpHJZFCp1+F7HgzDwIknnsCxY8dQLJVwzd69KKQEIPRMBmYmg5iXwBqGgVKh0P/ryc+z12vdTQEu7VfE68cA/PTHP8bjR49i99VX4/rrrwcUJbkh4z7S832YlgU7n0eR+5XBwUEqHd1EULD/FELU4TebzUQH33HkoCvRNOS6rszGe66bDLpSVeR4w6iWqlXXtaWKCAAQieXGHqRHjwvklFwsahhHcYzA9+EHgRxQEnMdY2HkEcdgvNYxCgIoiiIz/GEUYaFaxfEjR1Ct13HllVdi165d0PlNSSaTgWVZ0omwOMb8wgIYIDP7/bJcnb7oN1h2AFiqtGn63Dncf//9yOXzuP3222FZlny9/CBAo9FIMk8Asvk8svk8SqUShoaGUBIScARBEBcAkRhqNpsIXReeGDbIEz1hEMDzPGnbPd9PppBrWuJXOkokNU1Latd5mYsIXoXqWS+6qbqlp6+Lf8Mokn4l8H0EqXLTmPsTFsdyhTmKInlOeduGHwSYnZ3F0WPHEHgedl59NbZfeSUUAJqmweRynqKPLQxDVGo1KIqyqiQSsLxfWdKv0EmHXzlx7Bge/fGPMTY+jltvvVWuLjDGkmQSjw1UTUv8Si6H8sAAhoeH2/oSiMsTCvafAgQ8QHQcB4HjwGk00Gq1FvXhU4ZNVZIJtmEYQtd1ZG1bNo32A2MsmVTbo1RF1Nx3ki6BEY1T8rFkx7KxVQT/4vcoiqTmvev7aHGVhempKTQcBznLwu6rr0a5VEpWBfiyrVAESp9rrdGQNf6ZlLynHHXOa0RV0UQlDCYWG7869wn0YZg7qFSr+MH3vod8oYDnPe95i0PExP74VN8qHxZmWRby5TJKpRK2bNmSLDvTUixBEOcJj5ezeK0WPMdBs16H77qIUrZO5Zlm4VeCMISh6yjwQLLvvqYuCaS0KprCG3M79ycy2wB6+pUoiuAHAbwgSJJgQQDf89oGdLV8Hy3XRbPVwtTkJPwwxECxiN27dyNrWTAyGZiGsajik/IBjDFUazUwAEVexoPUOYlmXOlbhDw1Eju/nB1fSYu/k3MTE7jvgQewc+dO3HTjje1/ZAwhH5BZbzTgBwGy+TzyxSKGhoYwOjoKy7L6PhZxaUFrNJsY3/fRaDTgui6q1SoqMzPwfV+W6+iqCkNVofBsRNa2YVsWwiCA6/sAErnKFYPG1N+jKFos4en4u1ya7bG/dEArDWWq7Ef0AGiqCjOTgWEYyPLGYE9k/hlD4PuozM4mS626juGhIVmapPEsvsjySAcg6uyRGFDP9/u+wVEVBYqmyaEvomFM1TRo/F8VAEvNF+il3ywol0q45dZb8d1778Whgwex99prZXMzeMlUPp9HPp+H6/to1OuYnZyEzyf4DvD6S2rmJQhiI3Fdd9GvLCxgYWYGURxDRdLnpSoKDL76a5smLF5W6fNAWtO0pC68n4PxLLuogU/7lXQZJFMUqD2C3vRx0n5FSCKLciBDVaGZJjKGgcg0peCE7/uIGYPvuliYngYDUC4UMDI6Ct/3E8lpXv7a06/wFQIvCNBvwWV6um/6hiDtYzTuD5ZVgEsxvnUrbnj603HgkUcwMjKCrePjsidCqMyVi0WUi0U4rotqrYaZc+cQ8FhiaGgI5XJ5iRgGcelDwf4mxPd91Ot1tFot1Ot1zExNIfQ8WKaJrGkmpS6ZDGzLSn5sWwa2QoaMASjk810nCwLd9YtlDWGq5rKTbsuw6UEoURDIzBBLS3X2ukFQFOiGkWSNggCqquLs2bNQ4hg7r7wSk9PTGCgWYVkWNE2DxweqZG07ubnJZqVyA5AMV2m2WsgYRnL9WKzJl8OyxOTcdC9CGCZLv13OUwT+Kndcuq5DMwyoWLzB6XYDMDw8jGv37cOhQ4cSneTBQUBkzFI3IlYmA2toCPl8HrNzc/BdF0EQoNVqoVAooFAowO4hI0cQBNEPruuiXq/DdV0sLCxgbnoaiGNYpgmLzwTJmCYsy5IzUISdarVa8IMAjDHkcrnu/qGH34jQHth3o1d5j1CJC/nqr7Ddch5Lyiams/GinEiosIExnDhxAib3NbuuugoaF7BQFQWO46Dlushms8gK2c6UX9E1Da7vL0p6IuX30gmtjrKjTrnqtpdLBP1IfFTnHIK0kl2aXTt3YmpqCg8/9BDKL3whbJ6tl43AfHvbNGGPjqLlOJhdWIDH/Uqz2USxWEQ+n6dM/2UElfFsIoIgQK1WS8o7qlVU5ucRBwEsbrBy+bwMcjVxN58ijiJUajXE3IDb2SyA3gY2jZxauMJzRKmL6BGQ0wJ7GGuhXqOK6bs8i66rKhSeKfdcFwHvN3j00UcRhSGuf/rToSgKHnjgAdz8jGdA5ysWoheAxXGix8wYbNtGLptFLptNJgQ3GtDSI9C7nZd4zXjWKUwZa7G0KnoP0oS8bApIHIow0Hpq0En6BiCOY9z73e/CbbXwghe+EEaXhinZ0Ma3qTcacFxX1vMXCgVkMhkUi8Ul0nYEQRDL4Xme9Cvz8/OoVqvQoghWJgNd05DP52HzVeFuq6FhEKBSq4Exhnwul4gJrBC8C4Tq2rLPSfmViPcIhGGIKAyX1dxXeDmmlkrGiOx5xP1JzBgqlQp+8uMfw7Jt7Nq1C48eOIDbb78dumHA97xEYpqXEcVRhBiJTbYtC/lcDvlsFi3Pg8OTSMUO2erO6wUWG3CjOJbThNOTdDsbd9MTg/VuQ8iAthsAz/fxb//2b8jn87jjjjt6JqnETxRFqNZq8MIQ+WIxEYjI56VfoUz/pQ9l9jcBjDHU63XMz89jYWEB9XodhqrC0jQYmQwKuRyKKzScMsbQaDaT4FrTkkzwOs+rrZ6SG62Al9t0M8Kaosist8YNr9Kpvc+zMUIy1OdNuY1GAz959FFkMhnc8dznJq9JswlVUZDN5aDpOlgmA5Wr+Tiui5bjIAxD+J6Hlutidm4OhmHImn2RaUpPRkyrRACAxrMrBn9elFq6BZIbKDFQLI5jeLzfQGSZoigC+Oh2GfwbhlQ0UlUVt95yC/7t3/4Njzz8MG655Zau752QolMUBcVCAZZhoNpsAowhCAIUCgVEUZSMUy+VSGWBIIhlieMY1WoVCwsLWFhYQLPZREbTUDAMZLJZFPN55AuFZcsd4zhGvdlMJDdNc9VBYbdcpLC9DEnZaBAECHiA362cRVNVGLxhVvgUUQaD1L5UQK6IBmEIBcDM7CwOPvYYhoeGcNNNN2GhUgEA2JYFy7bh8ISTmMfitlpouW4idtFqwWm1MA3Iye2lfL49ycba5Zk7/QqQSJUKIQqxTdqviLJT3/eTFQI+68bl++oM/qEoMDMZ3Hzzzfjud7+LI0ePYu8113R97dOynuViES3XRaNWAxiD73kolkoIggDZbBbFYpGkoC9hyONf5nieh8nJSczNzaHRaMBQFOR1HaZhoFAsJhPyen0BeeCsIJkoKzIoXct3VkAGwrxUJUoZHaGi0ylRKQeKGEaiyNBltSGNgiSYdh0HLld0UBQFtVoNjx44gHK5jNtuuy2pjfQ8GdDqhoF8Po9Go4E4iuAzhnKxiKGBAXiuC4cb5YA3+9aazSSL4fso5PMoCYfW4RyUXo4otRyt6To0tigpmslkEFkW4jiWA8iCMFw2+DcMAzfddBMefPBBnDp1CldddZV8LTtfLWGg9UwGA4aBWr0Ot9WC12wiWyxiYGAAvu+jUCgky+lU2kMQRAeO42BiYgLz8/NotVowNQ05XUfWNFHkfmU5hB1stVpS2Sa3wjbdkKWRPCiOUj4l4Bn1TolKXQys4razU44yefqirj34fpuuK5NHCoCpqSkcPHgQV23fjmc+85loNptt+7B4mZLwKwqAgcFBDKsqnFYLLf4j7HyDCyq0PA+FfB75LpPfu9l0FUCcLnFSEvU5LfV8M5ORpUppv7Jc8D9QLuPavXtx6OBBjA4PY5D3tnWT+xQ3UbZlQdd11JtNuI0GWs0miqUSxODNUpfBaMSlAQX7lylxHOPMmTOYnJyE67pQowi5TAb5bBalUglZ2+6a5RB1ibJkREkGmbRaLcRItPR73hykSdc88kyD63nS0HTLyAh5NWFshKHrGnB2KNrIqblcT19IbE5NT+PRAwewdetW3HLzzdA0DbV6XR4PSAy6rusoFgpoNJvJMK5aDfl8PhnYZVkol8sIgwCO4yQZeM+D7/uYW1jAQqWCUrGIUqGwOGcAi4oOIvDvGTanXmvxo2oaTE2DyfXx24J/vmybDv7z+TzGt2zBI488gkKxiHK5LJ1gt7pMIMnGFAsFOI6TDFKZnkZlbg5j4+NgjKHVaqFUKpFGP0EQAJKerVOnTmF6ehqh70NjDHnTRDGXk+UaXSt/GZd5FEG0osjhTTFjKK4mgSRWVBlDEMcIXFfaxqVPVWDw2S7SryiLM156HyI5RhRFcFIrxIqiwDRNHDt2DMePH8e+a6/F/uuuA4ClZaqKgoyuo1AooNFoIIpjNBoN5HM5WbcvJgg3uMpbGIbwXBetVgtzuo4y9ysy6O/I+q/8Ui0+X1UUqKLHgK+gRCsE/2PbtmHy3Dnc/+CDuPP5z4dpWYtCGazLUEgkvrRUKKDOh6VN8fKu8a1bpUocrR5fetC7cRkyMTGBkydPIvA8II5haxoGhoZQLJVgc2O8JNBPBfmdNXwiY5Hh02qXI21cIq5QIJRw0tKSCi/JkTXpmpbUMvLjrkgqkHZ59l2ce0bXYdm2HE9+9a5duOHGG+XUXnEeRkfZkqqqKOTzaDabUq8+m8vJgNvIZFA0DCiqCo9n1z3fRxAEWKjVsFCpoFAoYKBYTKZAilMVryUWpUVXcmzpLA0DZPAv9pteGRHB/57du7FQqeChhx7CM5/5TJimiYxpJnMC2KIMXdpJqIqSrO7oOprNJlgY4uzp08hmsygPDcH3feTzeRSLRcryE8RTlDiOcfr0aZw6dQosDKEwhqxhYGBwEOVCAYZhSDU0iVgZ7ug1ApIgs9FsggHIpoYxdsJ47byS2l/IFXA835fZaoGaCuxFA60YxtimutPlWOnHYp7sSCePTD4E6+GHH8aZs2dx0403YteuXYtzUoB2/8mvVySS6jygr9dqyBcKSX8Vv3kQzcp+EEDXNDQdB1EU9UwmiX3LYHsVrZXp89N1PSlh5T6pM/jX4hj79u/HAw8+iEcOHMC+/fvlZGGN37yJxFZ61UFVVRQKBbS4b448D6eOH0exVEKJrx4Xi0XS57+EoGD/MiIMQzz++OOYnZ2FEoYwVBUjw8MYHBho0/cVagNtxq9Htl4E6gCWLLOKOsZOxQJpiFOZFlVVoeo6DKFgIGrtU9sqK+gBdxroiGv+hlx2Tde0pLlY0/DwI4/g5MmTuP7667Fnzx65rTgnVVURd9s3l6wUUwObzWYyMjylKiBqO7O2jSHTTBqeazX4XImgXq8jl81ioFRqUyNQwEeWi9c6Vbsv6DVjYPE/i2oQKpcYFa9FGIZ42tOehgcffBDzc3MYGBqCy8uVzEwGBp8CnN6PaHCWE4KbTTBe5jQ/PY2F2VkMDA8jDEMMrGKeAkEQm4NWq4XDhw+jXqlA5Y23o8PDKJXL0p6IQF+uDANtgX5nAsflE9k1Teuq2CJWJcXQJ7Ga6vl+m43UVBW6piVS0dyvKIqSqMbw5/TSmU+XlqbPLghDOM1m0l/FV4ht20YcRfj+ffehsrCA2267DVu3bJHnKrL6vW5aVE2TK8dBEKBRr7clksRzDMZQyOcxMDCAer2eZMd7JJMAtAXXQrFNlnCmE29x3HNlOf1eaV0y/9lsFnt278bhxx/Hjh075Cq6wSfLG3wmTfpmTvgVi98U1BsNqKoKp9GA57rQDAPDo6MY5IMeKZF08aFg/zJhYWEBR44cgddoQAMwNDCALWNj0HlDqQz0U0agny+Y6yaVfGZajz2dqcHiBFjX8xAEQdv2hq7DNM2ksVVoDKf2gdQ+OulljIGkF6HhONKxZHM5WJkMGIAH7r8fExMTuOWWW3DlFVe0bSfOzzAMmZ2XxxO/KApy+TzUVF2lAkhNeqHFH8VxMiY9l0M+l4PTaiU18HwZttlswuIlQPlu9aiKkixrK4vKOiuJX7XdoKVWNzRVhZbJ4KorrsCJY8dw5swZjG3ZAp83poVhCKXVQoZnp9LlRuImRNd15HM51BuNpK8iimDpOmYmJtCs1eBt24bR0VFafiWIpwgTExM4ceIEIteFBmB8bAyjIyNQuCINwPuAeGY4LSfZiziO4XpeUhbaGeiLIB+JXfN5uWTQUaJjGAYs04Su6wjjWNrRdJ8Z0FvKWQzyanscyY1Ny3XltNtcNgvDMBCEIf79+99Hy3Hw/Oc9DwN80q0oBxJ+Re8mciHKXfjKcaPZTKYKN5vyZkJo4kc8u24YBkrFIgqFApxmE9V6fdlkkizV5Ncur5+vhKz0nrTNJMCieIaqabA0Dfv27sWJJ57A5MQE9lxzDQK+ohwEARSedDIzmbbSWCDxS4z7lUaziZgx6EgSe5OnTsFpNOBv2YLh4WFKJF1kyKtf4oRhiFOnTmFiYgKx6yJjGLhiyxaUy+Vk+l/qjj7md9v94otBVHEMk+vvdx5bZPHTQarGy01MoaPMDbCmqrIRt5P09r2MMZA4iqbjJDWUSG4mcrlcYlQYw6M//jHOnD2L2579bGzZujXZH99W9B+IukK31ZLnI+TQ0trKQnu+2Wqh2WoB3Kgp3KDFjCV1+dzRCdlSz/dRrVbhcN3hc1NTMAwD5VIJhVwuyeyL6033HfQotVmJtpsnRcHevXtx3w9/CK/VwsDgoHyPRGOy53nJ2HY+IEYYWU1VwbhUnlhy9nwf2WwWzUYDTx47BqfZxJXbt5OUGkFsYlzXxYkTJzA7MwP4PrKmiauuvFLKLUdCylFREr+yikDN9TywOJYqOG013zxxJNRj0ogVykwm016KoqptM1zSpK1ouh9tySpxFKHhOIj4dHczk5FTxqM4xv0//CEa9Tqe/7znoTww0FaykpaVVnU9UVZLr9qmbmCgKEnpiqIkCatGA4ViETpfqRWlpmJbVVHkcMS2ZJLrymTSQLmcNESnfJf8V5RWdZTZLEc68Be/G4aBPXv24PDhw7juuuuQzWblexTHMVw+rLHbe6RpWjI/IZtFg/tuU1Fg2zYW5ubQbDTgtlrYum0bJZIuIvTKX8LUajWcPHkSldlZKFGEcqGAbVu3ykBM1IaLaX2rCfQZY3BaLQBoU+zptZwqGpcyfDm1jdRKgqppiMKwZ2Y/bYw7w13f99F0HPlcm09eBBIDefToURw7dgw33XTTkkCfAVLRBkgMUHpcuVz+TC5S/s00Tamp3Gw0oAgNZFEOxQ1pJLZRkoFkIyMjsu6/zpuzZubmMLewgGJn0xV/XYVDSNf492ug5UsNYOvWrSgWi3j88cdx++23w7IsWJaVTHvkUyqFzKbDM0tiOVZVVWiMocAz/GLFRqxcTJw6hUathl27d6O4zJwBgiAuT2ZmZnDq5Ek0azVojGFwcBBbx8eh6TrAA1sxuXW1CSQRGDIkYg9iyyiKkoGNnteW+BGliqJGvLM8BcBiVrxXuQ54uSlPsgh/KGi5LlrNJsDntGRzOWQMI9k2jvHwQw9hamYGz33Oc1Aql+W2ou8t5PNSRLCevgloO4/U/7O2nYguBAHq9TqKhYI8L7FfBsjVYwByVoEXBKhVq4lCXBhikieTSuUycqkBmOJ1lb1jqZXgXgMel+Pqq6/G40eO4Njx47hu//5k6KRlIQgC2bsmVpGdjlVksRqeUxQ0Gw14vg8oilzpOHn8OBq1Gnbu3k1qPRcJCvYvQcIwxMTEBGanp+HUatAVBSNjYxgZGpIGWWSJ01n9fhDGVEwVZEh0fL0ey6npL3SnEe2GAkAzjCTgF8dMGWnW8a/4u+M4SaaH1+bncrm2uQCnT5/GT37yE1y7dy927drVfk38uCL7IvsFepwf6zCC2WwWjDFZwy+yW51OKX3TACSrDgPlMoqFAmqNBhr1OsI4xvz8POYXFlAqFFAqFqHwFQ9x/PS5KGsI+hVFwbV79+KBBx9EtVZDmTsogzdE27yvwvc8hNzJ+r6fNAEbhmxsy+fzaPKaUUVRkMtm0XJd1CoV/PTRR7Frzx6M87pVgiAub3zfx+nTpzE/Nwe3VoNlGBgdGcHQ4GAyoJBnrNNTWfu1S8IGe74vVwJ0XYfLBRzS4g1AkmRJlxumV2e7IQJ+0b8FlkhuCj+Ylt+UwXoUoclnqUBVYRgGch1yl48dPIiTp07hlltvxcjISNfjCl+ma9qKA77S2+VzOdTr9UT9rdGQdfgs5QvEDU76vDOGgeHhYQRcNa7B+9ampqehqSrKpRKK+Tzi1DZLmpNTfWP9YmYy2H311Xji+HHsveYaGPyGKMMz+THX8/c8bzEp6HnQ+Uq/qqowDQMsm00U4FwXKg/4m46Dmelp1Ot17L32WpQHB/s+L2JjoGD/EqNWq+HMmTOJhm2jgZxtY2RoSAaNAG+OSW2zfNtrgjDGIjvtuq4c9FSt1dqe22s5Fant+Yks2T8AKNzYywyRqsqpsZ2EQSCHeUFRYFkW7HT/AIDpmRn86KGHcNVVV+E6LoPWdk5iX8Ior7BU2M2dZPn03CAME3UikdnvuPZuDlDTNAyUSigXi2g0GqjVavCCANVaDfPVKkp8iq2UGk121naNq21fuuKKK/DYoUM48vjjuOWWWxZrMQHZOGWZZtuSeRxFaInlaFWFbVnI8Qy/z2tShTN0XRdHDh5Eq9nEVTt2QKXlV4K4bJmbm8PExAR8x0HQaKBcKmFkaAj5XK6trFBL2aR+An3pV/j/PT5RVlNVVKrVtucaXO3NSE91BRZ7m9KkS2PkQ0mDaRSGSe+ACPy74HkeHMeR/89ls0tKE48/8QQef/xxPP3pT1/S+5VGJpF0fdlgv1OmUuG9YY16HVEco+U4siyqk26JNEPXMTg4iFKphFqjIW8cZubmMLuwgIFiEfn0NF5Rz59+D8X/+wz6d+/ejWPHjuHEE0/gmr17F/099+k2988i2+8HAcIoQthqyYSTZVlANouW4yT9EfzGx3EceK0WfvLoo9i9Zw+2LPOaExsPefBLhDiOMTExgbnZWTDfR9hqYWhgAPlcTgb6YjJrp3nr1qTUSbru2/c8VFJDo4DF5VTTNNuz4t0MRTdjlf4zEgNjcLnNrmoJLJE+c103qffXNGSz2USuLEW1WsUP77sPYyMjeMYznrFseVDaKK9Iuv6Rb59LlbY0HQe5bHbJMnY6G9/NGRUKBeTyedTrdSxUq4g9DwvVKurNJoYGB2Fblty263TIVD1lDKBXpayqqti7Zw8efuSRRNs5n18qBRrHUqYua9ttKkoBX5Y1TRPZbDaZRux5yY2CZYHxLM4Z3mS1Y9cu5IrFlV9XgiAuGcIwxOnTp1GrVBC5LuIgwMjICHLZLPJ8qJ4CXvbRsW3cR7CfDiybzSZqfKWwwO2RrutydbitrDLZOLGh3QLRboIO4NlwLiXZzesx3vMViFVi3jzaudJ79uxZPPrII7jmmmuwZ8+eLodfLCcKU5l9b8kzU68Flgb8Gld/qzcaCHjipVOOcomiUce1i2RSsVBAtVpFpVKBH0WYmZ9P/MrAQLJqkFLq6XUt4v+9SrNsy8LOHTtw7NgxXL17d7K63rF6wJDcuBmGgTiO23vG+A2AxefXeJ4nZbOz2SxiPufm+NGjaNTruHLHDlhU1nNBoPboSwDf93HkyBHMTU0BngcdwPDwMLK2jUI+n8ha9ggwWY+gsa15iP/EUYRms4mpmRn4QQDDMJDJZFDI51Hmk+9EuYo0GqtYBgQWS2REUKyJDHZqP2EYolaryUDfNE0UhC5xCsdx8L3vfx+FfB63PvvZvUtz+DHTy60r0sXYqdww65qWDAfh0x+7X2jvYVZgDBnTxPjYGAYHBpDhTV3npqcxPTu7fHaIv5+xKBniv4t+g/R7vX3HDtiWhaNHj3Y/v9RIeNFzUSwUUExJu3meB9d15fTiluchiCLYXOKUMYaFhQUce/xxTJ4+3VPmjiCIS4tGo4HHH38c1bk5MM+DyctDbMtKVho7g+8UvaZzS1IrvFEYol6vY5r7FVH2USoWUSwUYHHxB9kz1SOo7QVDu19RAVk/nz6nwPdRrdUS5RxFSa6T+880c7OzePDBB7H9qqtw/fXXdz+ouLYokjZP68OvdAuhNU2TNxxhGLatOHTdtotvEldpZ7MY37IFpWIRhqoiCAKcPXcOcwsLy9pm4VfS/iXtV9Ls3rMHfhDgySef7H6eqfdPVVVYlpUoC+Xz0me0uHiF6NETvXhi5TiOY8xMT+PooUOYnZ7ued7ExkHB/kXG930cP3YMXr0OLY5RLBRQKBSgqSqKfJiJXOLrZhxT5SBpw5cut2FxDKfZRKVaTWrjgwCqomB4cDA5Bh9MkjbGncuBKyG27TpJliV6yyoAt9VCvVZLGpN4cJ3LZpdkGnzfx/e//33omobb77hjxdKcKIrk8mg/Rjk5raWvp8jEaLqOOIrQaDR6Z+A7SnFi3tyWbroqFArYMj6OQi4HQ1Xhtlo4OzmJaq3WV+Asexy4kY6Ekea1tbv37MHJkyfR4s3WHRcob0rSr66uaSjwJWBhnCPeTBaFYbLcDEjjLRSSZqamcPzw4SWSpgRBXFo0Gg2cOH4coePAVFWUikXkeR9UkfuX5YJu1uV36VNSQX6j0UClWk3mlfAyjtGhoSTI5rZF+BYAS2zRSsjtuvgVRVWh80DeaTSkrRbXKNTW0tRqNfzgvvswNDTUdaU4eTkWfW3URx9Y5/l28xeiR0pBIg/tdLPXWHx90s22EfcrQpBDVVUMlMvYsmULbNOEoapoNBo4OzmJZo8bibZjdGT5Y27/hV/J5XK48sorceTIke49esKniJ5B/hyhSJcO6BljcD0PEU+eqaqKPFcrCnnJ7OTp03jy6NG2Pj9i46Fg/yLiui6OHTmCoNmErigYHx2FygPIQqGw2NCD7gYE/PFexlg0vi5UKmi5rvxiZ20bA+UyTF5SwlLbrMUYd9ZtLoFn9h3XTYatKIlCTLFUkqoIaaIowg/uuw++5+E5z3lO16Es/OIXl1q7qPCsRK/nabxBGEgazlp8FkGvc5BBPldtkNcs9qfrGBoawujoaFImpShYqFRwbnpazjnoF1VZVHSI4xhX7dgBhTGcOnUqOZ3lrhepvgokNaHFQgFZbpwNw4Dn+6g3GqhzjehcNguFZ6Rcz4PbauH44cNw+NRlgiAuLWq1Gp44dgyx78MyDIwMDUm/kp7SKgcw9qCt+bNLkF+t1aQ9Z0jq4gcHBqAZRtvKsggK1xTk99guXVLiNJvwoyjp+eKrl92SQ61WC9//wQ+QzWZx22239U4KpZI4Kw3T6npePfyKaZqwuEJRy3GWTZowLE6Dj4UMageGYWBsbAxDg4PI8ITd9Owszk1Pw19F4CxLU1N+ZdfVV6PlOJjqI+susvfiJiCTySQ3W7z3zjAMtBwHtXodLddNVjqyWUBRpHhEvVbDE0eOUCLpPELB/kXCdV08cewYolYLuqpiGx+QpPJyCyvVTMRSso1p2ppFO4L8luNgvlKB47qJwoKmoVAoSAUEI5NpXwnA6ptE00uryz6PMdSbTXh8NHmeN6yK7FKnBv+DDz6IWqWCO+64o70BqcfxgVWW8Ijt0fsmKqPrsG0bDIDHdY87rymO40TRiNe7rtRwa1kWxkZHMVAuI6PrCIMAk1NTmJmbQ7iK8hhpXBUlyaRt2YKzExNJJqXPwV3pczW5cc5yqdM4jlGpVGTjdpbfbHmehyiKEIUhnjh8GAtzc32fM0EQ559arYaTTzwB+D5sw8D46ChaXBUlywdIAYsrhd3sFFMSdRtFZP+5rRArnVXe78UYk4FdJpOBpqoyQQWs0aewpVPHuyGC0nq9jiAIoAIoFgrIdanPB5Js+ve//30oAJ7znOfI16Hb8dO+NupT9CHNctcsatnBmFxl77yuKIoQhuFiCekKfiWXz2PLli3JKr2qwvc8TExOJj1jq/Ur/LUrl8vI5XKYOHNGCnl0U9KTiMQbv/FTeO+X8CsZLhYxOzeHpuMkk5VNEwyQcqxuq4UnHn8czXq973Mm+oeC/YuA4zhJoO840DUNW8bGAGVR4iubaljpVr7DWDLsSX45OzP51SqavDte50ua5XJZKuQAkFP91mSQkTiEriU7HYRRlDQn+b4M9EUNpxisJTSdFQCP/vjHmJycxK3PfjYGlpHn6myEWm0GBmL7HlkYkZGwTTOpZXecZCpkHCMMQ1nLqXTsbyV5UlVVUSwWsWV8HLlcDoamwXEcnD17FrVVGjlxvK3j41iYn5erBOJGZKWJvensmDDOQwMD8vNXbzRQrdelqpKQJxXbnH7ySZybmFjVORMEcX6oVqs4JQJ908T4+Hgipcz7d+zUCmnX/i/+r8I61N6iCM1GIxF18DxZrlPkTaOi/ENRlCUTVleDWGHuxyeFYYiasE08kSXU40Spi+hZYozhvh/+EK1WC8+5447eK8Xi+lM+Ib1ivBGIgV4GvylqNBrwwzApo+RZ/PRNmOhRWNLE24GqqhgcGMDY2Bhsy4KuKKhWq5g4d65nyVBX2OLAy61bt2JiclJ+Thj3KTGX7Bbn13Z9WPSrYjZB1rYxPDgIkycYa7UaavW6bBSOokje9IRBgBNHjmBhfr7/cyb6goL9C4zjOHjy+PEk0Nd1bB0fRyaTkXXSpmVJw9Kt+ZYB7SPL+XNarRYW+CCOOI6TuuxCAeVSSWZb0iO/VXXlseedpJt5lkildSGMIikXpqpqW2lSGmGgz05M4MTx47jxxhsxPj7etXlIbpM+L54NAVYX7Hfup+OkZP2nkckgimPUarUlcwi67a+f2k5N1zEyPIyR0VE5iXiuUsHEuXMyoO6XLdu2QVUUnJucXPK3zsC/8/XsZpyHBgdlQ1nAdZWDIEhUF3h2X2w7PTGBk088QY27BHERqVQqOPPEE2C+D8uyMD42BlVR5IqkmBYLQA5dSiOSRyKTz8CnzjYaSRkoT3QYhoFSqYRisSgFFQLfTxRaTHPNySOgR79XF3w+dCqOoqS3LZ/vavdFMuTwoUOYnZ3F7bffjkKhIH3mSoiyzPRNzGqvaelJKYjjOJlsrmmIowi1Wi0ZjrVCYqaf8lTTNDE2NobBwUGYXC1namYGUzMzfc8IEGzdtg2e72N+YaHjEhQZ+EcdCSVxo6KwxWnGQOKXh4eGkMtmEUVRIt3JB0AGYZhIgTMmP3tnTpzAuTNnVnW+xPJQsH8BcRwHTx45kpTuaBq2jY9D13UEXA4RiiJLJiTirhpY0hAKEeRXKmg6zmKQn8+jXC7DTAXWjDF599wt4O6Xfo15wBV3hOZyrzpKgdNs4uGHHsKV27dj186dbcdKLx+K0pu0YpAIZFdrlMV+o5ThCsUSKm9aiuIYlmnKRulms7niMrMM+PsIgG3umMuFAgxNQxgEmDh3DnPz832X9piZDEZGR5MszHLXy1jP7IzCs3/g557P5ZC1bai8B0LTNIRRhEaziXqjkbpYBdWFBZw4coQCfoK4CCwsLODsiROIgiDJ6I+OQtO0ZKUvjpNhemlfkFqRTAsyCGLG0HQcVKrVpMQCSX14qVhsC/KBRFbZDwKAsbZj9EO/JTtpXM9Do15HzBh0w0hUhZax+TMzMzj8+ON42nXXYXh4WN7MdMonixp58TtjTAbHq+kDS19TFMeIhB+JIjmJN+ZCC7lsNmli5ivyKyH8Sj83Kvl8HuNjYyjk8zBUFZ7r4swqS3uGhoZgmyYmJyeXfZ/SCaWYtTdjy/IexqQEdJ4rJClKMkDT8zzUG43kNRDvAWOYOXcOZ06e7OtciZWhYP8C0Wg08MTRo4h8H4auY9vWrdB5ANniTSm2aUrDlQ5iRZlFmiAMsVCrtWfyRZCfrvfn28eMIQiCJDuzCqPcls3vcxvX81Cv1ZJeAV1f0SDHcYz7H3gARiaDG2+8cclSZXpJs+0v3DD4QSCz0qJmXUiLRSkjFKeC+ojXtwvDJ5aikwMpbVkw0aiqahqiKOqufNOBAiSGfMVnJga8VC5jy9gYctlsoq7QbGJiYqIvdQUA2LJlC2ZnZ5OsOzeuK5F+LYDFzJqiKMiI3g6u05/LZpMZAYyhVq+jnlIpUpBobJ/uIdVGEMT5YX5+HmeffBJRECBr2xgfG5MJD+FXsilVmrYp4B1BPgB4QYBKpQKXCzqIIL9ULLbVuYv9hGEoVWJWs6rapvrW5zZOqyVVf0zT7Cqrmcb3PDzwwAMYHR3F3muuWfL3dBlnW+ac27WAJ32kHDX/kT6li18RCRXRZ8fi9hXVNr+iqsjxWQc+H1K1Em0lPSug6TqGBgcxNjYGyzTbSnv6EYZQFAVbtmzBuXPn2ufLLIOIW6KUbwXP2CtI+tZUrmyUyWSQtW2Ypok4jtuERMQq08LsLKZXSGIR/UHB/gWg0WjgiWPHwDwPhmFg65YtbYoIIoNgpmsqRSAltNJTxrrZaqHKl/6EVGSpVFoyIRCpYCwUJTy6njTG9sFqg3wgZZCRZJxXMsgAcOjgQSxUKrjlllt6Nk4tR5yuq+xoGk6XOyH12JJr6giOZeaLP65qGnLcabqu25fagah97BfDMDAyMoLh4WG5+jI9O7uihjKQBPtxHGNqaiq5vtS05W5EHfuLUs5KqCqI2n1R/jVQLst6V9d1UW805GuvAKjOz2OKavgJ4oIwOzuLsydPIvZ95HM5jI+MyKRKFEXJyiK/cQdSq6Kpcp3kD0lipM6ntMY8C1ssFJYE+WI/YnthGwzD6MtP9KXe1mWbRrMpkyxZ25ZBcu+NGH700ENgcYxnPetZPWvd2zdpt5WyNLQzUdWxui4f7txhl2PKR7j91XU9Uejhq8aiR2A5hLJSv6siJu/fGBAzX6IIk9PTffWIbdm6FfV6PZkqD7TFIt1ITwdmQFsyCeCT27lf8Xg8NDQwAMMwwHjTcrPZbOs3OzcxgQrV8K8bCvbPM0IGDUGAjGniiq1b2zIgoZDVUlWZkYlEkN5hVIIwRKVWk0bPzGRQHhiQDa+LT01lbvjjPs8a9FPCsyEG2bLkhMblmJ6exuHHH8f+ffswuExDbtu59WuU+6RbPWRnlgcAjNSEYafZlO9TX/tfxflks1lsSS3B1ut1nJueXrbmMpfLoVwuYyIVbPe82WC9JffSmssab+pTUrW/+WwWtm1L1Yh6oyEzUoqiYGpigpqrCOI8MzMzg7OnTyPyfRQKhUS2OWX/gpSKTOccFlG2JzKuXhiiUqnA830oigLbtjFQKnUP8tFuz/wgSMp8+vQrYvt+iflKopBkzOVyKzbYAsCxY8cwOTmJZz3rWX09v5syUbzO5tyudl8kYVIPWaYJg79PjuOsHMTz93M1iSRgceaLnc1CV1XMLSxgenZ22UTS6OgodE2TfkVcUze/3nMWEBZXkVkcwzQMmDxmSWvvCyW4IAyTSfapRNKZkydJ7nmdULB/HvF9HydPnAALAtiGgW3j40uy3CLjbqQy/ejS9NKWzVcSHf5CPi/v8uW2nM4GVj8IwOJ4yZTaTtZqkOv1ugz6crkc7Gx2xe18z8ODDz7Yc5m1F52GRmQONkoxgR8EwNIbCzlZFujf+KTqRPtFNMoODQ5C5zKdKykrbN26FefOnWs33unGO07MWF/nEvNlfJU3lbVcF5quQ+eyaWIYm+M4ckIiAJx58kmSTyOI80StVsPEmTOA76NcKGBsZGTJc4KUXxHlJuiwC53ZfE3TUCoU5AqmmgpMO9XPAMjZIgC6zkvpxmr8SihEEfi1FAqFpavXXagsLODHP/0p9uzejbHx8VUccRGR8AA21q90rhgDvEw0l+u7TFTp8Xs/aLqOsZERlPkE3larhYlz52QycMnzNQ2j4+OY7FJKI/0Kv5a4j+SXyPaL/o4wDOH5fiKEoeuwuEBJHMdoNBqL84HiGCePHycd/nVAwf55Io5jnHzySTDfh63r2LJlS3f9X56BMXRd1oenu9i7ZfNL5TLMlHFVueGWJSwdgZyoaVdUddm6yrUE+lEco8a1jsEYCvl8XwYZjOFHP/oRWBzj5j6XWcV2aUS9JLA+o9wrs98Z7AvDLEqjlqt97BZQryTN2Ukun8cYV+wBgKnpaSxUq12fu2XLFoRRhNnZ2aXHTR1/tdrLZkoPWVVV2QOSzrL5fBhXzGtVTz3xBLxVDgwjCGJ5wjDEmVOngDBEIZfDaJdAXzyPIcnsS+W1lD0StfkiQWPbNsrF4lL/kCrr60QEiIau9/QZndNz+yUMQ9RrNYS8VLXUZaWh63ZBgAceeADlYhHXPe1pfR2rW6NwOqu/miRNr/0LevkVVVWTAYZ9lIm2nY+yOLRsNZTKZYyMji6W9UxNoZEWXkixbcsWzM/Pdw20RckoW6VfETX7DMnnSMQ/jMcQogLBdd1EFCOOEQYBTj3xhLzBJFYHBfvnianJSQSNBlQAoyMjPevWQx6I69xgii+MyObX6nVEUQS1I5svEFkXTdN6fuGDFVR4ui3P9kMoFHeiCArXj08v5y4X0h47dgyT587hWTff3NarsBzdguRoA41ymnQjVSeapkkpO8d1Vy1p1q+igsDMZDA2NoZ8NgtD01CtVruW9ZTLZeRsu2sWBoCUTFutcxDZfSAZMqNgsdfEtiyprpAu6wnDECeOHl31hGCCIHpz+uRJMNdFRtN6Bvoxz7grgFQRE1KbXbP5xaLM5gtk4kn0jHVBSm72GlAFdG0CXgkvCBK/x1eii8Vi34mcA48+CqfVws233NKXBDJ6nKP0K/3uo+eu21d0u2X2BYZhyJLc5cpEuz7Kr2E1fkUowdm8aXZmfh6zc3NLgvZxnqicXK4fK45XXVZkZjJJkzcXDgEgFYty2az0saKsJwhDuI6DE0eOrNrnEhTsnxeqlQqq09OIwhDDg4PIdMl0i+yoMKhqajhWOpvPWCJpVu7I5ot9AFg6eKODgN9QdKurXK30mSCMItQaDURcCajUKyvUBbnMumcPxsbG1ngGCbKEZ51GGUDfRhlImp4ypgkVQMNx+lrCTKP2qZgjn6+qGB4exsDAAHQ+JXFyampJMD02Pt41sw9AKkkAWFVZkRgEA2BRMSKlTiGUoDrLenzPw/FDh+CuZqgLQRBdmZmagselE8e6JJCWZJD5d1ys+npBgGqXbH5naWdb8qeHjWC8h4xx7f0lf0/tYzX4QYAmvxHJCGnNPm376VOncPLkSdx0003LTl7vBxHsL6ci1y9tfkVcSw/bb9k2dJ7l7lUm2vM15aVXqwn4NV3HyMgIirw/rNFs4tz0dNvKQobHH7M9JqYLRSKANw/3eWxVVZPPjqpK+da0glHGMFDI55eU9TjNJo4fOkQB/yqhYH+D8X0fM2fOIIwi5LJZFIvFtr+LpSoF/IvBv/wxY8mkwj6y+WI/QEf9XhfDHHONXxGUdWO1BjmMkzHlsci89KG4I7fly6ylUgnXXXfdKo+8lA01yunfUw26vYyn0KHvVye5/WCrU1QQFAoFjI2NwchkEDOGyelpVGs1+fdyuZzInnZZUk0/1tZo1YdzyGQyUJBk9mXjlKIg5vtVgK5lPZ7n4ejBg3BX+/oQBCFpNhpYOHcOYRhicHCwrek03XgLpAJKLNp/kc2Plsvm83KW9AqvAj4zpMNGiEBLVdW2RIuc7o7V+5UgDBMNfV46mM/nuzeCdtm20Wjg4UcewVXbt2P79u19H1NIZXay0ZNz5XvUo4xHsJoy0V6sNuBXVRUDAwOJCpyuIwxDTE5Otvm0gYEBVLuUjzIet3Reg9pnuaoo+fV4bT4/IVmnr2ka8rnckrKeZquFowcPUsC/CijY30DiOMa5kycReR5URWlbZu2WLUkv8flBgIVqta9sfi+lHFE/l0YGw6oqbxjEPsQ2qyGKY9RrtSSjr+so5PNLjtl5zWnEMuutq1lmXe58UoNPNoKuY8l7GeYOnWS3o8lJWWZbcYx+jWIa0zQxPjKCvG3DUFXMVyqYnplBHMcol0pgioJah2GOe9y0SGe+QpZfZGEUVZW1uoqiyGFcIui3TDNpNuNlPU3Hgdtq4cihQ6u/ISIIAmEYYubkSURBAMuyMFAqAWgP8hnP3svGWv59dj2v/2x+j6ysAkDpsK/dJpbLfazSnolrrNfriJE0++ZSE3876bRjcRzjgfvvh2lZuOGGG1Z97M7jiEATWLvCW9v+kZqqvkx5qEDTNHn93cpE+/HZqw34gUQFbmxsDGYmkyirpWSfy+VycrPYEdgvt6KtiV6RZTC4FDhTEhnXthJTRWkr67H5zWkQhnCaTTQaDRw5eFCWKRPLQ8H+BhHHMebPnoXXbCKI40QKLbVkl66n66zjc1stVKrVNWXzO+ks5wk7jPJag3xgUXUn4nfcywX63Y5x6uRJnDx5Es+46SbkcrlVHbvTcIkSErGUrCBxQGEYIgxDBEEgm9TE9MIoiqTurxi6taQBV/ybUrBZzmjqug7btqHyOsslOsl9lMqsJeAXy6+lUilRVXBdTJw7B4ufS6VSkc8V2b3lWG7JXmBmMoh5o5QYpANg8fPNj6VxKTVdlPV4Hur1Oo4ePAinRxMYQRBLiaMI0ydPwuP18WOjo0uekxZ2WHyQwWm1UKvVls3mi+2BPvxK6v+dme/1+JWQrzzEjCGj68tLNnex2Y/99KeoVKu49eaboa9hTkv77hcHhYnjCL8ScN/CAOlnuvkV1iOxAiwGXCuVfWaWKRPt11OsJZlmGAbGRkdRyOWk7PPUzAzy+TwYEiUoQSyGhy1HH+WipmjU5cG+3BSQq99RFMHQdeRTZT2O46BaqeDowYM91YSIRfofeUf0JI5jOHNzqMzNwQ9DDBSLcnlKTIPrZpDjOE4yn76PTCYDM5tNsqJdMg2raXRSeXkFY6ytgXUjAn2hjlDso5YybfBarRYeOXAAV111Fa7cvl0aRKGmIwJFUa8XiQmE4vj8Olhqv3EcoyHqGlNlMSKj3uCaxQ3HkSoyAhGcprMIIqsQ8+BV1ExqqppMO+arI6L8SvxrWRaCIEAQBHBaLRRT9aLiOMvC99kWQPeJGKY2NzeHIAwxNTsLK5tFhWf2hW7+SnuVf+dTiLshlD2gqgjCcMm5qkr7CPqsbcP3fbiehyAIUK1WceTQIVyzbx+y66ypJYjNThxFqJ07h2a9Dj8M24ZmSb8i+r5S38UoDNFoNhGGYZIltm1k+byMNKv2K6oqg9mIT5ddr18RJaGiGTdfKKxoA9N/n52ZwdGjR3H99dejPDCw1K+wxUn0srac+5W0GEb63yAIEpnhLs3JTccBuHiGmhLF6PkaiPeGscQn830oSFYwVEUBhF/hxxN+JWvbCMNQynHmuJy1XDHuw1f05X86UFUVQ0NDME0T85UKAt+Hz1+baqWCgYGBNhW8lY4vXodeN0CZTAZoNORNVOf2aQU7BUA+l4PTaiWr6a0W4ijC0UOHsGffvr7mCD1VoWB/ncRxjLBWw+z0NMIoSspvUsOhZMkOsMQg1xoN+SHO8GmznaxV0UAE/BHPfC+n1rMSDEiGXIQhVFVdsWkqjmNEPBMS85rIhx95BIqqYsfOnahUKjJTIQPuVO04A6CkAv1eRkIMJBNGWQTr4nXW+D7F/sU+02VM6TpVqRfMg+M4ihAhUYcIlwuY+fGEBn4URW2DzhRR19pHqcxaAn6LqyrMzs3B9TxkLAszc3OIokjeuPSLIpwIWypHB6BtQqcca57eHgBTVanpnclkoGkamo6DKIpQrdVw5NAh7N63b91NdASxWYmjCO7CAmZnZxGEIUr5fLIamirXAZYmkPwgQL1el4GjZdvI8YmladblVxiT5RXaMrKbK9G1JHSZ0p04jhFHUeJXeCb9Rw89hEKphJHRUSxUKou+oksw3HaDhC7Zdb5NxP2K8HGytESUSDEGFUuTG2m/gpQdlX/nvjDkiRKXl/v2QlFV2cfXdBx5Q6SIc9C0ZPvl/EXK762WfD4PwzAwNz8PPwiQsSycm57G9quuWpXMJrAY/3Rb0VAUJfHVWDrZPfWk5F9+M2dbFgxdT4QgggCV+XkcOXgQ1+zfTwF/DyjYXwdxHCOs1zE3OwufL7OODg8nAWZnEJT6f8ClxRhjsDIZ6NwwR7wEQrCejIk4ZhxFUm95LTAkzU9i+JfojherBiKwF8uYwlAycGPKGObn5jA5MYH9vCFXfKFFLaPMaIhseSrLwS9Evqbpx1zXhaHrME1TZj3SiFWNfD6PEq9zbbs2fn7CYKczPGIQTRSGsEwTWiqrlR5Skx5Qpek6XNdFrV5HzOVI45SxV1UVqqZB49OSRXNbuhRqLbWW4tgjIyOo1moo5fM4cfIkJqamMDY8vGypVTfkzRGS96qzPEABoPPsfrdhOgpjsskKPPuXzeWSxuEoQq1Ww7GDB7H72muR72hgJ4inOnEYIqjXMTszgzAMoes6BkQCqUc2H0iaHOt8NdK2LGQMA6xLA+N6/YqwaYqiQF9j31WvklCW8iNxFCHkAb6w5SJzz5CUhdbrddx8yy1J8iF1XSq3q21+RfiajnPp9CvNZhNBECBr20um74pVz1w+j2Ivn5L80uZXxIp0WjDD5qv/nX5FrG4LW6spyZTjarUq5SjFCoW4AdG4X1G7+ZVUoLxaTNPE2MgI5isVlAoFzC0sYGZuDkMDA6veV3IqS0tjxQqTuN4oipb04MkVlNTNms6HcDmOAz8MUV1YwJHHHsPuffv6mpr8VIOC/TUiAn2nXkej0YAfRRgfHZU1g/0YZF3XUcjlUKnXEYYhfN+HbVmrXl7tRRiGgKIkhkDTVv1lZwBq9XrSNBzHsLNZtFotGeR33YZft6qqUJEYx8ePHMHQ8DB27dwpg/u2YH65c0hn3juQw7TW6HCkPF2PfRu6DlVJZCd7aUnLGs04RjaOUecyYjGfEihuhBhjiLhBD9NZHyxm/oWhFs5JXeXsAFVVUS6VMDoyghMnTqBRq0FBcgO61mZocZMjXpOIS+3phgHf83pPzhTZM0DeHNi2jZbrJrKt9TqOHjqEq6+9tqvTJIinInEYImw0UFlYgOd5iBhLZDZTQVI3v9J0nLbBi9lsFvMLC4gYQxAEMAxjQ/1KpwrPaojiGNVaDb7nAYqCjK6jwWWcu5UQpoN4UTbkex6eOHECO3fuxPj4+JLE0Yosk+1ez5DG9E1DL78iEm8Zy5IZ7SXPE+VHcQzbtpNJwjyRphvGoioaL6eJowhBZ1JG3AAI3yL8cr+vEUfTdQwPDaFcKmFmehrNZhNxHGNoYGDVfkUcVeGr2EDyeVK4AISm6/B8H9kuq1Fy+1TAn8lkEEYRPM+D7/uyhn/Pvn2weuzjqQoF+2tABPosDLGwsJAssxYKyGWzyQdYlJR0fKEcx5GlHmYmg3w+j5glyjtibLRlWRtikBm4Uo2iQE8FjctljSO+xCgajxqNhpyCmsvlki9lah8K33dbtpr/LvZ36NAhuI6D59xxR3+TdbvQ67WQ2r4bOM5cHjP13i13iySXUVUVOgCtVEKNT5K1TBNqNgsmVgnESkgcg/GsFYui5CeOAdFEm3JEiqpC17TkR9eXvQEQvQ6jo6NQGIPrurBsG+empzE6PLzm1Z20YhSQZA3FcnS3LEzn6yMyXAZvxHIcJ1HfaDRw7PBhXL13L0rl8prOjSA2CyLQDzwP9VoNXhhiZGgIlmn2FHdgjKHRbMrpprZlIcv9kJHJwPM8eL6ffPc3yK+EYQjGg3QltYLXizAtnMDlNYMggMJVZ8QUeXGNIlMtbig0rtiipvzK/Y89hoxh4Prrr+9rsu4SUsmWtutjrG167kbTuUraqwRHJHugaTAAoFiEw5X6RCAs7L0I9qP0v4xB4e9TuixTJuO4T9G4X1nuWsUq/tjYGB5//HEEvg8oCmbn5zE8OLi2RBJb7GUUfiWXzSKKIvhBALtLj4l8DbFYx68AcgaM67rwfB+1ajWp4b/2WlhdVvyfqlCwv0pEoI8oShpWgyBpaOHLrOlaSkGnQbYsC3lRf8kYMpkMmo6DMAgQRdG65b6ECQt546uu6zKLDbFMCMi6ellfL7IqioJWqwXP8xL99Hwetmm2BfP9TKxtNBo4fOgQ9lxzDQqFwtoupodRBlLyb+fDKGNty9y6rsPkTtZxHFmXrioK1C7BNgOWGurU70ocw48i+OJzhSTTouu6NNai1l+8f5lMBnY2m2SBNA1hFGF6dnbNAb+4wQv44BPLshDwz0zAmwBX3F5VofKsVjabheM4ieNvNHD88ccp4Cee0sRhmPgVxlDlU8lt00SpWGyfj5GyuXEco8ZXhYGkcdGyLGn/zVSwn+UqXetB3LRHPKMsfIAIvFgUgSnKYsKI/8hGWCQ3+kEQJKpzuRwyPJsrgvmV7BMDcO7cOZw5cwa33Hzz2gJ99E56CbEIKWF6Hkg3nPaLmcnA55PJW62WtO+aWGHpeN1EOZAsiRK/88bqiPt9gaoo0q9o3LcAi6VHAFAulWQDscrLaGfm5jAyNLSm10oBj6f4eWRtG02uPBSG4crvLf88q4rSpsMvAn4hBkEBfwIF+6skajYBXnNXr9fhp5azxJei0yDXGw2pBZtPDR4SX3dNVWEaRjI9sNlEsVhcVzOtbDQSigm80Udk7IVyjFjWTdcZ6pqWBHBcPrFQKMBaQ0aeAXj00Udh2TauvfbaNV4Negb6QmGhs/F5w1CUpNE0VQvaL7ZtIwgCRHEMPwiWaFq3HQZYLLPqMG4xY1LuLYoiRKLhmcuKAryGlK+wiAyNpmmJLnKjgX3792NmZgZhHGNqZgZjIyNrCvg9z0McRYtTD5EMwQmDAOjj86GIngjGkoDfstDkAX+z0cCJo0ex/4YbqLmKeMoRxzHCZhPgQY7TbCJkDGOiTp+xpfNTuMBDFEVQFAWFfF5+d0QpjNAwj+MYTquVJJjWSJtfSfWBRVGEMAgSvxKGCH0fMW8KFdlkRVGgqSq8IEDGMJKbmFJpTXYoCkM8euAARkdGsO2KK9Z8Ld3EBYDURPbzkEAC0LYyvpqAX1EUZLNZ1Or1xKdwH90LVVGALn6FIfm8BTyxmJYOjXlcAEVJPkOqCkPTZPBvZDLI8VLeLVu3Yn5uDp7vy0TSWgJ+13Vl3KHrOgxdTwQx+gj2ZUmQpgFhmHz+GUPLdZOZN7Uanjh2DHuvu+68vZ+XExTsr4Ko1QILAjBFQb1WS6TNVFVOyZUlC+L5yxhkAG2KNLlcDgHfp+u6sNfQYJI2yMLA+54ndegBtDXCiFo+kSXWdR2e5yHkmrbZbHZNgT4ATExMYPLcOdx2221rLh9Zbmk4PTn3vAT7SN7PaIXz6LWdZdtJ2ZbjJOpFazhHVVGQMQx5syCyLCF3sAF3sqKpSQzOURUFdjaLmZMnoQIYHRnB7Ows/DDE1MwMRoaGVhVUR1EEl69KZW0bOm/QVgCpytHPeyCyZXEcQ89kkFeT8ex+GKJWq+H4449j73XXnbeMGkFcikSOI5MK1WoVURzDNk3pAzoD/SAIEiW3OIbKZZDbhluJG2tFQT6fR61Wg+d5ME1z2cRDL6T1UxT4vo9WqyWDQvBkg2woVRToqSyxSEA4jpPYKlVFvuN8V8ORI0fQbDZx2+23r8vu99pWlPCcNxvEG4VX1Kfvgq5pME0TnuvKVePVvgIKkuSiapptDcQRD/oDPqMm5qs3URgC3ParqopsPo+5+Xns278fw8PDmJ2bQxAE0q+s5n0NgkDq44v5D5quQwkCBGGIvivu2aLKUoar4Dlc0nxhfh6nT57Ejl27VvMybUoo2O+TOAiSYB9J5qTOm3JFVl9B0ikuAsMgDBPFnR4GGcBi5gOJQRfZTqfVSpY3V3E3ygAZAHpC873ZRMzLLhjQZoB1nvWR1xfH8DwPTd48nM1m19zRHkYRDhw4gK3j49gyPr6mfQBYtoRnvc25fR0+dTO2WqxMBr7nIWCsTSN51ecAtNV1CglPjev7C3WHkGf+Q75kKzTu5xYWkrKxfD4Z3BbHmJqdxdjwcN8Bv6gVFSVKAC8NQxJYiJvDlS8muRkWAb+mqshlszLDPzM9jXyxiCuvumrVrxNBXI5EnoeY10BHYZh8F+IYI7ykTUG7/fE8D3U+mE7XNBQKhTY/IVTQhFykoeuwTBOu56HRaKBcLq8qQIwZQxgE8LmAhOv7aLluohrGk1g6r6sXfiU9TDJmLJkl43kAY8jl82u64QAWy0L3Xnvt2stC+Xn1IroQfgWpxNwqsS0Lge8nTamuu2YfLcpUGbDY18fLqGzLksG/8CuivDSXy+HMmTOJvCtPYFZqNYRBsKpSUcbYYv+iaS42LRsGnGZTrkCs5qZLBPyGYcCybbiuC9fzcObkSRQKBQyNjKz6ddpMULDfB3EcI+BBsKIoslZfZPWl8eRfXs/zEsUdvjzVaZDFPjtVZizLSpawggANx0FpBYMmmlt8z0Pg+0jnCoS2vmkYKBQK8svciyhOJtIxJGUo65GuOnzoEDzPw9Of85x1ZV9WaiYGzk9zrkA0EK3FKAPJDVOlVoPPh6at1ckJoxzxOsx06ZJQVzBSKlARv3FjSD6LRiaDmC8DVyoVRIzh9Nmz2DI2huwKNyGe50ld6PQNi1BCcHkdaT/XxlL/isY+IxXw+2GIJ48dQ75QWJQaJIhNShyGCJtN6QOqfIq6bZqJxGLH851WC47jAFicy9JtUJbUhefY2axUCHMcZ8XEQ8wYAt+XvqhNG53f2GdME8ViMant7mXjFQW+58HlQV2uY2V7tTz64x/DtCzs3bt3zftYTt0NwHltzhUoqTkkq0VVFNi2jYbjoOW6MDKZdd2YMEUBE/1h6aQSLwES75bI/hfy+UQlKorAuKpP1rJQqVYR+z7OTk5i6/j4iiU4Tqslg/l0FYMYYCn6PVb7eRE+W1QkiBr+IwcP4qabb35K1+/TenkfRM0mFP5lYHEy8S+IIpRLpSV3nq1WK8m8MIaMYaBUKi0xHN0MsiCfzQKKgjAI4HAlnDRxHCda7o0G5ufnUa/X4fFAX0FyZ5zL5VAoFpPGWsuCwae/9iKOYzR4tsi27aS2cw1NRABQr9dx9OhRXLt3bzIEZo2IuspeyMnA57Pko4ui0mrQNQ02X1Zs8VWh1SIydREv11FWeE+EQpK4CdW44kXGMKBrWvJ5VFXEYYgnT5/G9OyslMPsJAxDtPhn0LasJZ91XdehYunUw57n1uVcGW/azfGGMy8IcPAnP5HN7ASxGYnjGCG3ueBNrc1mE0EcY6Az+84YGo2GDPQty+oZ6IsSzTSqokhb7LouPN4/liaKIrRcF9V6HQsLC6g1m/B9HzFjUn44n8+jWCwim83Ctm2p8NOLMAzRchwoqipFHpZ7/nJMTEzg3LlzuOHGG9cViPfyuwKZRDqPfkXFol78WjAzGRi8fFXcSK0G4Vul1GmfJZi6rielQ4zB4jekuq7DMAyUymWoioKW6+KJkyexUKnA5TcFnfi+v1i+w+cGpBG9JkGXbftBZPjNTCapamAMjuvipz/5SdfzeapAmf0VCB0HTNQngk+S5Qo86aw+A9BoNmVwZFlW1w+ynOLX485ejDdvOk5iKJF8+H1Ro50KrBhLpugZhiFru8XxxHmsOFCJMTS5VKSm68nNBhYbfGT9Z588cuAAsrkc9lxzTd/b9GK5QPt8ym7K4/OftWb2Ab5aw41ev8uuYjUhnVGTr4Xa35RdUW7jex4M3vgEvjxr2zZmZmYQcTWFKIpgWRZUbtAzhgEoyXAZWb7TpXdDZPOjOEaMtWUOFD7/QQT84nP/kwMH8Iybb6b6fWJTEjlOskrHv8c1ntW3OgYExoyh2mgkcodoF3hI0zY5tgsZw0jqvXk5D3I5qKoqA6+04g/jK9KZTCZJEqRW7QI+PHKlHiQWx2jwMtJMJiOzt+LbvFIyJ00Yhjjw6KPYumULxtdTForlSzKFtj1wfv2KkEBdu1dJVo39IEgm265mZbXDrwhUTeurj8CyLDAlmf47YNswdB3MtpPhk5kMZmZn4fIa/sGBgSRw5/2AGcNAHMdo8pvWdPlOGoP3Dq4nMBffq7QsZ2VhAY8fPIj911+/5v1ezlCwvwxxECDyvEWNep7V96MIwwMDbVnlZrMpmxhzuVzXBtt0I2O3L5zAsiw5eKTeaMDIZGCJ5SyWjCg3hCHuYZREkL5SsOS0WvC5fr7I6KeRus6MIRbX0GNfp0+fxszMDJ5zxx1tw5g2GrGkCJz/zD6w/Hu1EiofJtXkN4K9ll1lsxSWd4KiyXUlR6lqGjKmmagdpNA0Dbam4corrsDs3BwazWYy8Zf3dsS+D9d14bRasn6zl4qH0MNmvK6zm7Ro+0X2OGf+eDrgr1QqOPr449i7b9/y+ySIy4zQdcF8X/qCMAzR4Fn90dRkUgbIklHw+mizS1mDnECK5QPIXC6HKIrQaDZRr9dhmWZb+Z9hGEniaJnSEBEQLptEYonUdBRFUDVtqf3gwa7ocxNDCXslMA4dOgTf9/H0G25Yd5C8XOIm3Zy7XpnSlVjv3jVVhWWaaHFbXSwUuu4z3YSbnvbe7XzSPYe9sEwTCiDn74htRdbftm1MT0+j5XlYqFZRzOdhmiZi/rnzfB8Gt/O9Bmfpui57I+M4TiYh9/GatF8Q34Jn+IEk4J+cmECpXMa2K69c7R4veyht1gMhh5b+kImsvqZpbVM/mylN+gIvnekkHSQvF6gFfNiQ67oyqHV5fVsum8XAwECylGpZy+rLywzFMkZLKCuAMeTz+eWXR7m2rsb/7TQaYRjixz/+Ma684gqMjo0lhmONrLSakJY4PZ+ZX9Ecuy61H5YMk9INY8myqwjsRUYpXuG65XmtsBQtsC1rSbCf3sfw0BCK+bxs5hUrRY7rymm/MXfcHv97J6JRV9T1L7ck3POmiatCif3ZlgUwhjOnTmHq3Lk+rpQgLg/iMETcarV9T0RWP2tZiwOTwP1NGEJVFJSLxe6BPrA4LKvH94sB8Hw/KT/lkotRFMFptRJ1nHweA+UyCoUCbMtaNoES8VKhXpNfgWRV2Q8C6Q972k9+3qqSTHlXuPhA+irq9TqOHTuGa6+9Ftls9rwF+kDKZ57v1URuJ9daxiOwLCtJtvDSXgHDYvmn9CtYWaK6nxucTKoWvhuapmF0dDQJ5nljuKKqiHmJj5gH4wdBosQmJMBTKIqSVCkA8vO/HHGvFQleggYkGf5MJgPGGI4+/jia9fqK17rZoMx+DyLeYCsQWf0wjjEwMCA/RK7rygAun8vJL0Ma+WFO3W2mieMYHs+opj+4OduWnfGqqrYb9hVYyXBFUYQmrxm1bLv/4ST8GtJNoowxPPbYYwjDENeLJbJ1GrJ+6irPu3aueL/WK/EWJyPPwzCEFwTQufb+eox9P/JtJi8hWu7cBgcHoVQqaDabqFYqyJgmbNuW5WNi+mUUhmgpyfCSTCYjbzR1XYfLm3iB3hkioa7Q87UUPTF82V/Mg3j8scdQKpfX1TBOEJcCUk8/hajVj+IYo6mhcs1mU5buFEQjbAfpqbr8gba/C8lcz/cXM/KKgmKhkPTo8Iy60PHvx8qln9+NwPfR4kIPKyaQOkj7FACIATzyyCPI5XLYs3t33/vpfYDlM9dytfg8+xV5hetJIvEbBtuyklXjVguGYUBVlGUz+CuhKgqiZVbvVVWFaVmyiqEbmqZhdGQEM3NzYK6Lubk5ZG0buVxOzlyIuNZ/wIP5jFhRSvkVMRfIRPK5iLG0Z000XHel44bKMs1EsS4M8ZNHH8Wznv3stcuCX4ZQZr8LkeMg7mhiklkWVUWJ6+p7vi/rzyyuYNP5JRFLrG0TdbGopFNvNLBQqcBxHBkMmVzpoFQuY2BgQCqmNJtNNB2nryAx5hmYrnfFYpmVL91m1xlItVotnHjySVy7b18y2S997WthBUN1QUp40qwjKGeMgfEViAy/oWr1+R6uhLJCOY+9glEGeMA/MADLNBFEUTK0xfdRLpWShrxCIanXV1VEjMHzfTTqddTqdXiel6g8AVKaDVgqF5o6WM/zEGPdxedVNAT7QYCfPvJI7+wNQVwmRI6zRIWlVqkgimNYqay+w1eKgSRgzvAsZ5olgT4gM7ie56Far6NSrSYrxLwUwrIslIpFlEolDA4MyExnja8k94M4RrckUhTHaPBA37KstSvvcFswMz2N2bk53HDDDUnmH+sr4VnJ5l6wzD5nJbGF5RDlObquy/JJIQKxrpXolA3uhWVZKzYGK4qC4cFB6KqKKAgwX6kAjKFcLKJYKKCYUmYK4xiu56FWryeS5r4vb27TPYrd3pUVX0Hue8WNpIhPGo0Gjhw6tNLWm4qnzm1Nn0RBgNB124NzkdWPIpnVD8JQKtiYpomcqD/jmVy5HNmRiRfLp57ntQUwQsNcDIVII5YvXddNpBCDAPl8ftkynuUyMI1mM7mjVtVEpWGd9YmHDx9GxjCw++qr5ZdKOgS2qFW/nORZ+8lfYka5z+elnYmU7BSfB/BMu+8jiiIpx7ne81quscqyLMzMzi5/zkichJHJIGfbSSbQ8+B6ngy4LcuCZVkIuNZ2EARgXL2j1WolS/aqiiAMZamBCPjFa9JPsK50LDdnbRuNZhOVahXHjhzBNeuZxEwQF5HIdRGn6vQBntVvtRBGEYa5BrjreUlpJRK737N0B+1BXRAEaLVa8IKgzR7ohiFr89PPV5RFhR4/CODwQVm5XK5nEkUkkIAuJR8poQfdMBb94Tp47OBBDA0NYWx8XNpgNTn5xE6kepxWCnD7ed4FWzEWcPvYz7knvyxmsdO9XbZpIgwCOThtveefXrHvhmj0XvacWaKjb2ez8MMQWhTJQWBihpCQ+JZ+JQzlxHgoCjzfh6ZpCKNIxjqdctj9+JV07KHxHrpWq4WJM2dQHhzE1m3b+nxlLm8os59C1ul3fPl835fNO6ViESEfmAUgCZJSDUhtQU5qOSyKIpnFb/EafCgKLJ7FLxaLMC2r6xefMYacbaOQzyfLbLx5t7XMFy5OZZTTiBsGFUk95XoD5kajgSeffBLX7N3bPsVR/MKzNEqq1l9JPdb23ORiVzzmhVpu7YUwtLLenrGkxl04H/HEjvdS5as2ipKoGWxIdh+9MzlmlwbdNFEUocEzKQAwMjSEgWIRmqpiZnZWPi4QjVXFQiEpq1GSCcOMJYPDKtVqMlkzfX7cOPdllEXNP//eaJomy3dOnTiB6ampFfdBEJcaURAgdJwl31OXr+aa/Ebb83051NCyrLberzZbmQoQgyBArVZLsvhiWrqqwrJtlEslFAsFZDKZrjZCTHUXK8cBn2Ttd5HmBFK9Ury2Po0YjKcoSlehh9UyOTmJhfl5XLd/f3uyJVVG2uZXkBKT4HRa15WC6gu+Ygy0vU6y1h6QfkX0cXWWq6R9h5C/VFX1gkgW27a97HGCMEySozyhOD42hgKPkWbn5tqy9Qov4cnnciiJVWReihTFMZxWC9VarX0bvt2yJTwdyJgDiTKVUJx7/OBBNJ4i9fsU7KeIW632pTUedLRaLURxnGTY+bKnWEIrLDOyWlGUtiDf8zzEfLt8LoeBchnZXG7ZujFx0wAkH9JisShlthzHQb3RWNL4KDMwHWU8QRi2Dc7aiHq1Q4cPwzRN7Nq5s/Pil91OkU9rvwlIB8ttxi31+/nM7IvXm3X8Diw2PLHOoB7LB93p18I0zWSCLK9J3zC6HNvi/R7ddPCFBF8URdBUVUr6DQ0NwTJNaKqK2fn5rtuqqpqUmhUKKORyME0TjDEEfBhcjTcCylPrcX4rXYuCpLFK6HkfOXiwb01/grhUiLoE+gqQNMLzqaQBV+QB+Epxj+E/ws6IwFwE5wxJ4kk022Zte1n5yLRghG2aKPGb/Jgx1BsNNPnU7LZt+CDITrvreV6SVGAMBS7puV4OHjyI4eFhjPQz9VQkCeR/O5JLQNtqR1umPJUhFr+fV78iXlPxe5egvp+EV+fnyeKJQrFyvF46b5zajtUjicSQNGc3ueSqpmko5POwTBPDQ0MwdB1xFGF2fr5r8kcM2CoWCsjz2TAMSbK13myi0Wy2zYNZa6pMQfJ6qaqKKIpw+LHH1rinywsK9jlRECRjy1OIu0HHcRDyJstarQbGJ78VeshdqYqCOI7bgnwgCdbLPIvfrVynk27LtZqqolgoyPpOPwhQrVbbBqV0y8CIwVmMMZimuSENj/V6HadOnsS11167YVn2tNJM+tUR9Zqimx/oroWczqozYcBThrbNoHY8JgyxzJ7JnfLHRVnOOlD5ao6iKFJxab2k5VHTWKYJhbG2LEwUx1IGlAEwDCMpCeM3foqiYGhwELqmLWuYBeLGNZfLQeclRaJ2t95oJOofa2kYSwX8Nndkrufh2NGjq9sPQVxEIs9rr9Pn34U4juHzUk7TNJOVYt5D1WsYoYLFTH6tWk2m4iK5ORgolVDoc0JtN/lkXdNQKhblPA2XD9hK31xHXUp4wjCE02wmCaRsFnq/Qg/LcPbsWSxUq9i/f/+69wUgyeimAvh0g6xIMKWHabWVvnasPsskz1r9Ctp91Lrq61PomgYjk4HK/cpG0Evm2eIqb+lHQ17WLHyNaZrIpyoHNE3D0OBgMizL9zG/sLDscQ3DQCGfRy6bTT5vcSyVCkXQv5wMeJedLpbV8tddxFCVSgUTZ8/2u6fLFgr2OXHHF0RkI30x3IExxFEkdV+LxWLXRpYoilDndcbpIL9ULKJQKCxbZ5+m1zREgW1ZKBUKsvu+0WhI4xx3ZmBY98FZ6+XQoUOws1lcddVVS/621uajZTXmsVh32UsLOR2gi8acziw8ejy2LOsxzB3XlDFNqJqGmCsSbAQKljbsWrYNpvDpvYyh5bpo1OvJcjuSz1C3wW+apmF4eDgxzEGAuWUMM8B1qXkDciGXg6nrQBxLByCWdPt99eT5pDJ0wjBPnj6NarXa554I4uLBGEPU6Vf4Z1sIMgg1K7lS3COBJAIdkclPB/n5VWTTV5rhkc9mkc/lkqb7KEKVN02GUbREY7/X4Kx1wRgOHTyIsdFRDA8Pr39/fJ/LZctF5l9REgnQtufy39MJqPQK9Eb4lTV5yi7XI5JIPpdX3Sg6k2piDlAYhknyyHEW5yooipwz1Pk5zmQyGOQBvyj7XPa43K+YmQwK+TwMnkwKwhDVahVN/h3qO9boWP3RNE1+Zo8fPbqkbHWzQcE+eFa/R9DltFqIoqhNOrBUKCyp6xNB/gIP8hUkH24Z5PPMaT8fS9ZhYHqh6zpKpZL8wIZhiGq9jlqjAca/eOIalhuctRZqtRpOnTmzoVn9frjQzblA9xWW9aAqCqxUFmYjsvvAYiZGIAag1BsNqZ4js/miPrIHhq4nmRglmQ2wUKksf9xU9sy27aRW2DAQ8oFbTqORyAmusgxHNOzqup5Ip8UxThw7trElUARxHujM6qfL2VqtFkJRErjMSnEoynWq1SQY4bZDBPnC9vYz+K9fv2JmMiiVSotTuIMA1VotWRmO48SvsBUGZ62R02fOoFKr4bqNyuqjP58bXQS/ItioAV5i6rGqqhuW3QeWlmGafMW4WqkkySM+U8E0TRQKhWWn+dqWhVKpBE1VUavXZelaN4TAhxgOmstmUcznZblZwGdHOK4reyqXvY4upXSZTAaGYcBzXZw4fnxTq75RsA8garUWPwii5EAYZceB47rJB1hJNIrTwW3EsxvzqXIdQ9dR5M1RnXXx/QZ2/X79RdaznDLOgedJOTWXK6aAsURpYYMC84OHDiGXzeKq7du7/n0t4Ws/r400yhtkIFfDmoP9LtuZpgllg7P7yaEUuQIS8WVLl2f2Ne6Uc9lsX01olmWhXC5DUxTUGw3UufpUN1ReMpYeeJbhdf2ZTAYMSeDiNptoNpvL1t53+xwIZ6JrGuZmZzE1NbVhN0kEsdFEUbQkqy8QQ5AazSYyhtF1pViIQFSqVQRhuJjJL5eR75JsWrEktM9AXyD6eEqpHjHX81Cv1+H5fpJA6mdw1mrgWf0tW7ZgIDVJ+EJwMZJI/dTmrxaTJ3j8INjQ/ibx2ZS9Bzw7n04e2T0ERjop5PNS9Wl+YaHnjYmqqnJ/6dJd2zRRyOWSWTVIStuazSYcx1l2RWPJq819pVCdOzcxgfn5+RXP/3LlKR/sR74PpD4gbXJmXEff931Yto08/4ABi80olUoFLS7Vaeh6oiHLDWTXJpc+jPJazGbaOGsp4zw1PQ3X82DwYUgbwUKlgrNnz2L/vn0baxz7yU5daHm0toP3N+G2HxReuy+yMBu1X8aYnN/gtlqJkVYU5LJZFFK1+f2Sz+VQKBSgKUqiJLWMYQYWM4xisJZouhL1xAyLA93kbIlOOr83os6SMdiinOfMGSrnIS5ZmO8vlhcIm55aaRUJGNOyZLYSSPxK03FQ4Zl80Xg7UC7LIVVKRw36iueyykA/ja5pSSM+PzZDIt08PTsLz/Ng2faG2eJTp0+j1mhg3759G7I/QT+WVdihC6rEw1nL+9IrqBbZfY33OG0UcRzD933UarXF/kBFWVXyKE25VJJNsrPz8z0VoFRVBVRVvj+iukLTNGSzWRR4r1jMmCwbbS3nT7vEY6J+PwgCTJw5IxWxNhtP6WCfMYYoNRyic7lKDCUxMplEFkoMgeA1Y47jIGasPcjvaFBKN5z2cz7rzY/ovAM+l8sh8H1EvGEyCAI0Gg2EG5BFPnTwIPL5PK688sp170vQr4yWuHNfjbNbMz0Mw6rpYXhMvuQqxoevhziO0Wq1UKvXk4wL79sAvwnte0JyF0qlUqLuoShdJTmBRScpVC06MyxtQT9fJROfyb5rJXkNZ9a2UVtYwNzc3IYuVxPERtCZ1U+vFANAZWEBHk8gpUs8/SDAQqUiP9MZHuQXukyibfMr/ai3rO+SFvtxuMZ6HEWIGYPbaqG5Qka1HxhjOHjwILZt24aB1CThzuesYcd9vT5tohYXmg1epRayyOEGZPcjro9fq9fhui4UJDEGGINlWWtW9BNDt0zDABhbIskpUFN+Je6SbNM0LUlk8aAfjMHnSnPd9tftlRb1+5ZlYXZ6GvPz85uyTPSpHewHwZKJhoIwDFGrVhExhoFyGZZpJlmXVguVWg0hN3b5XA6lUmnZYEqMIl/OWPUrudUXvJnY4MO+Cvk8gMSZ1BoNVGs12RS2Wubn5zExOYl9+/ZtWA070H+JjMgcX4wMDLDGUp4e2yiKApNnN7w1ZvfFEmatVktq8nn9r81Lu9S1NoB1MDg4KCU5Z7oYZtEMHcUxwjhedty6bduJRJ+SaCW3Wq1Erq1DtaTb51PU72dME5XZ2UQdi8p5iEsJ3++qDQ8AbquVBCJRhJGhIWR0Xcpd1ut1xFEEoX9f6CgZXUKqZK8XG5FASh+PxTGyloUcz+gy8Im9tRrqfPr2WvzKkydPouk42L9cVn8NtrevHjlc3Mw+sLabsV7vu6aqiQjEGpV5GGOJ3CX/TIr3VNM0ZHO5JJ7YgHhFUZQVJTnF+xFFkSzh7YYI+rO2DQXJ+9lsNqU4hby27hcsZZ5VVUV1YQH1Tai9/5SeoCuzLx11+iyOUeeqByr/QAZhiCZvSBISaflcblkt4zZSPQGdbHQDaMhrQlVdR7FYlHrrrudJdSHHcdBqtWBmMquaunfo0CGUikVcccUVG3Kugn7NhsggXYxGKoArMWxgcGkaBjxNQ8SnCC7XNCsQdf5LpjDzYSFiWqZobNqIm0ghyTk9M4MgDDE7P4/R4WH5PgiJtiAI+lLlEP0Dnu/DbbUQIpFytWwbZiaTlAEtg2maqFQqGOKf4+wGKUwRxHqI47jdr6TsVBxFqNZqiOMYlmWhWCwmg7QcR8oEC439fjLMcpqokBXsYEMDfSQJMM/3kTFNDJbL0A0DYRDA9TwEQSAnoIoSRTFTZCXiOMbhw4dxxRVXoFgsbuAZ90dag/9CZPa7vic93sNl97OMjbRME77nIeTvyXJNs4I4juH5PgLfX/QrSjL0KiPmnQDyPd6IZlYhyTkzOyslOYeHhuTfxefHjyL0U4ScyWSgGwZajgM/CORkXtuyeidkxSpZHMMyTcxOT6M8OJhM+92g0udLgadssB95HpgoCelYZm21WnAcB2AM+Xwevu8ntcrceBeyWWT4pLd+URSl6yrCeuope9ES5UWaBosHj+k7X8/z4PJA0eW/a5omv9S9Av/ZuTlMnjuHZz/72Rt6vkC7we35nJQx7HWTxfi+Im64AN7UKzR2132iTMp/bgTCMTphCNfzek67jLnkWCCWZsXnRlFgZDIwu7xviqJIic+NQEhyTk9PS0nOEW6YVUWRqlX9vj6qqsIyTei6LqdKu61WcsNg29C7aDyL6wIPjKbOnoVt27Bte0NXmghiLcR8hW5JvxZjaDpO0iyPpDSu2WzKunyV+xVjlcFFr8/8Rq92Mcbg8D4DiwdUQJJgyBtGEihyXyJkfltc2EIXfqVHIP3kk0/CaTZxx+23L3sOG5n9TtOmsd9rPwBYakChkJ3UOmKHNbOGYH85ND740OMiHQZf3e9EJI78jmFcqqoiw/v8Om/YNP7Z3qjPmJDknJubk5Kc5VIpOQ9FQcQn8faLqijI5nIweNzG4hiO48AwDNkn0PlaMyQ3ehpXlpubnoZlWRsn/3oJ8JQM9hlji0YZaPuyBr4Pz/fhuS6gqrIRF4whw7Mua80qK1jUikfqy7KRIYrr+7L+O2fbSwyRoiiwLAuWZSHgWZmQ6/K2oggt1138ohtGW03ewYMHMVAqYevWrRt3wozB8320HEfeeLiuC891EYYhGC8LERNngyCQsw7iKELEZx9Eqd8FYvDGvd/+dnLtmgZdVaFqGtSO3zX+u8Z/10SQzJisrbUsC5ZpwjDNZZ3XaskYBlxdRxSGSdMbz4xLQxwEiDrLZjQNpmkmah7LOJuNVi0Skpyzc3NSknOgVJISmWDJNEitz+MqigJD06Bms/CDAK7rIgpDNOp12KaZrFJ0eZ2Frn+90UCj0UAul0O+h0MjiAtBHMeIPW+xnj5dvsOzrL7vg/EAxvN9MMaQte2+lUx6ofASm/PlVxxujxVV7TqQUZTn2ZYFn686ikx/EIZotVrJ4KeOhFIURTh0+DC2b9+OQqGwYefLGEvU6FqtRZ/C/UvEZ9EInyFWJYTWvvhbL78SA/juvfcuXruuJz5D+BBVhabr8neF+xPpV6IoEU3I5ZDjE2ZNy5LJtr7jixUSWJZlwePXGwSBzGxHUQRf+NKOXgtd16UcZa/Po8JVcjbyhlJIclarVdTqdei6LsvEAKw6YaUgUQlSNQ2e5yUZfp4o65XlFz7MNE3MzsxgcGQEnuf1tdp+OfCUDPZj30++2GhftmNxDIdnGD3fR8v3E0k0rvG63iUdlmqqkqU769pjOzFjcpqhZVlSlacXBi/5EAouvu8j5MG0kO1UFAWZTAa1ahVT09O447bbVjxnBiTLu67bbmh5EJ8O6F3XlePCFb6toeswucFRRUDOmzMN7igsy5LGsy1Y589TNQ3NZhMHDhzA/v37ZSmTNOD8BkI8FvPVgJg74SiOEUYRgjBEODW12EQqli9ZMkhG3DhZlgWTG22LTygWNwcrTZVMZ/fF5084mTQad5aGYfRddiUGbYnXdiMQkpyVhQXUGw35/VBVNelliePV3QjxFYgMr8dvtVqI4hgtHjBYlrXkekU21MpkcG5iArlcDtl13IgTxHphPeqjoyiSNtD3ffhhiAwfLpRfg0JW2zH5vwrQplqy0eU7YkXCtqzlS1e5v8hkMlLBRQTTYRQhTCWUzEwGp0+fRstxcO211654Hoxrqwv/IX481038dau16Gc8T2bspV8xjMQeC3+S8ismX60QK6Rq2p+kAnXXdfHIj3+M/U97GizLSnwI9yVxFMnEVNsNA/9dCGaIxtnJycnFRlC+MqooCsxMBpZtt/sRy4LJfYy4OdCWWYkAFqe1O66LZrMJ0zRlsiz9fulcwMHQ9b7s5/laQS3k84miTrMpJ+wKURTRV7Ea+54enGUYhhSucFot6LzcdMn+eOmrruuYPncOlmVhZGRkoy7xovKUC/bjOJbTcjs/tE6rhSgMUa/XEYlBJ7kcbBFEiDvZtX7YU6UX8TJNjGulyct3NFWFrmmrmlhq8lIQMIaAB7xBEIAxBs/z8NPHHkOxUEA2l4PjONB1HZqmodVqJdnVeh013qRVr9eT5TMsGlpheIThKpfLieGyLGR434AwaL2mDIuZAUYm09cQF6GZOz4+jnIPhYflcPlStDCwPs8Mtbh0nut58oal2Wxibn4+yWilDLh4zwv5PIrFIvKFAoqFAvKFgryGMIoQBgEc10XAb7jEjaU0xPzGZ7WIBl1FVfsqleqXfC6HMAhQqdWwUKkko9pVFUpHFqxfFEA6r3wuJ0vnQiRSf7lsdmlQxHtnao0G6rUastnsRan5JYg4ihDzRsa2slCegBFyszFjsExzccroRoocdPy7ETDG0HAcMAAZXpLT7/5VvgpgWVbXhFKj2cShw4exZetWuYKu6zpURUHTcVBP+ZM69y9+ELT5FZ2vcIoAeHBwUCZeRDLG5P0DvRIkjWYTAVdHWqnfqMKHC46Njq7JpwBIyreCAFnbhq7rSd+S68LlM31EQsxzXdTrdczMzsLjQ9gASBliKMmAzzwf3FngviWbzSJmLMnoh6H8/IVRlPjWlEKb3meAnyb9mVVTN5gbwUC5nJyz42BhYQFjo6PyGKsN9oFFhUU91SPm8WqGZhQhy/X+FzdQZLPuwtwchkdH0Wq1pOTz5cxTLthnQdA1aA94RqDVakljVi6VkBOlAesN9DsQ+ueMsaSWf5379YMAPlfYsW171ZNKJYoig0sR+J+bmkKlUsH27dtx7NgxOM0mGrzTXWSfdU1LjE2xiLGxMZiWBdu2ZRCv87kD3ejXWFzowSfpTLiqqkm2xbZRLpeT6+5xPVEUJdkmbrSFqkGtVsPU1JQcRsOQTJvNZrPI5XKJ7j6XpRQKT+u9VrHcKmqIN0zPH0Aun0fLdeH6PioLC8jxm5f1GH9xUyIawhye5W82m7Btu311jWduzEwG01NTyBcKGzo4jiD6hfFadaQDfaAtKSD+Vh4YQFYEDxvVS4TF1S75Hd+A77oryncUBZZtr1nKMZ1QEo38x44dg+f7sG0bhw8dQtNx4DgOHJ6BFaUYxWIRxVIJ27ZtW8xu85uI5VZFoj4TaiIJcsEHNXL7lbXt5PMwMNBTcYZxHfn0jUBN3AjVajg7MYEoDJNqBUWBlcshb9vI5nJJOS7/KRYKy5bo9ENaDhPAhq4aM8ZQKhZlGVilWpWrROu6qeBBvGWaMLhfiRlDs9FAtksiSdc06JqG2elp2LYNa4NvzC8GT71g3/cBXpsnH4si1BoNOM0mjEwGcRTBtCzkhMLHBhhk+WVgLFEa4ftTFAVsnYopjDE0efmOyTMTa9WJbTabmJ+bQ6VaTbL1jQaajQYUxnDq5EnZt1AulbBly5ak6ZfrLyuKIpfAgMQoiGXQ5RrJ+m3ovOBTDpd5TxS1e/MoAFlmZGQyyMYx8sUiRsNQ3hiFPNvSbLXg8Ml/szMzciJhHMcwMplkmA2/gRocHES5XF5TFkY4M6nesc4ggPGyK1VVMTAwgKnpafhhCNVxoHNnvo6dyxURVVWR4ytJYvlfKJnIpyMZOiR0lRuNBkq8uYsgLhQyq5/6foa898R1XVjZrFTbyqUD/fWS3gf/7ghbut7vehhFsik3m81KwYNVBz2MoVqrYX5+Pln95Rl7p9WCwhiOHTuWBLzZLAYHB3FFNisTICIwVflqtSj5E+WavQ/ZvxKRCLAvVJJg2XekR6whJIe1bBamaSLK51EslZKySe5XfDFJlvsUx3Fw7tw5Kb8ZxTFsrgIl/MrQ0BAKhcKq3lP5+RJ+m2fe1xMhCWENhmQ1e6BcxtzcXHLjh2TVd61+RfSSia2FElyDD3VsNpuws1lk0uW2SiKLXa9WEfKek8td8e0pFezHcZwo8HRkXxYqFTiNBhRNQ862k2bIMFzMIm6QiguArpKC6w3Cmjz7qSrJpNSm4/S1XRzHqFQqmJubw9zcHObn56VhEHq6o8PDeKJex9W7d+PafftkDR0AuTQYhmGiTsBLOHxem5heDVF5FiNd//j/s/dn3W1jS7YoPNGypxpKJNXZkvveTjvTaXtne855uvf1vtyf+Y37dKp2VeU+tVN2Nu57y7Y6WyIlURJ79Ot7wFoQCIEkQFKWnVtzjBxWSiSxAAIRsSJmzGDGNaihcYzyZ8DL5mD3SFiM++/616QyegzE9f88z9t0k1QKAqVCMTCt4Z2dHTQaDaiqip2dHSwvL4NYFgRBwMjoKDKZDDKjoxjNZLr2kbgzfRzHgcferIKwcOtRM0iShOGhIezu7qJaryPF84Fk3trB7UgA+zrHYzFbNpY2z1uW1aK+I1BVn/LOjt3YlUj0xYM+whHCwKKJlZYEkmVhh6qLiFQFpNlowNT1VsWdASWRiE+Q2LdfofQdSZYRjUQCz2YxTBM729t7fqVUspMBHIdkMolUMomxsTEsrazgq6++wrFjx1qeV9PlU3TaTGtZFlRqY10n6CSUBE+TbNAzJoTsJUM+kyQSO9+WHgDqW9xJQ7ctFgQBSVnG8NCQ3ZPg8iuGYWBzcxO7dAJ6s9FAsVDAu3fvbCokVcNhfmVkdLSj/dxno+n30CtNlCWP3IjFYkgkEqjRGTJDfdIzGbXOnfhKxOMOdbvZaMCiPXYMPG1EbtTrNvf/C1d8+5fyiC0UHooyzWCD4zBMM6m75bLdgEmpLAOV1mrX4d4jrYeV9kAIEsmkvbtuQznSNM0J6tm/lmWBFwSMjozg+PHjGKVBZITucl+8fAmO53H+woXWnS/gBOxOEw0tNRq0299pMqUPs2VZgKfiQOhGgD1YPGePgm/5naf7/6CNMpvmyzYyPM9D4Th7gp9lOediGEZbp8KBVjao0WWZqU7Nbbwg2ENGqJSdM6KekJZN2dLSEl69fg3QkudoJoOxTAajmQwSiUSLQeLout3/3wudhwCOioQXyWQSzWYTmmGgXKm0bAh7AeNZOmuk3F+e5+1MIwCr0bCn+tJ7QZIk1Go1jI6NoVqtYmRkpK81HOEIQWExv+Li6Ze2t21KKM9jeHjYFkKgr3cCqQHSdzr5FXeAGBRN1ntE1YI6vrbZbAnsd8tlEGJPlh/NZHD6zBlkMhmMjIw4/Vh3791DOp3G3NzcvgDK8Ss08GK21jRNRzyBiSSwQLilks3tzRjx+pCW33EurXiOO/AkEgtqmV/RqFCI26+wBFo7cHSdzO6xa9WpyiGKIsbHxxGLxWBZFtLpNDjObgjeoZPIS6US3rx+DZ36u+HhYduv0E1A1HUPMB/S4ldAE5lh/QohNt3K5/4dGhqym7E1DZVqtW/evNevcAAS8TiatFdOpZVj1kvDEYKILNv9YIkE6vX6F6349q8V7Gtai0Gu1moo7+46usepdBqGYTg3sUj50wOBe1feAWFoPYQQVCl9R6YyjMBetqdeq2GjWMR2qYStUgnVatVRVMiMjuLixYvIZDIYGh72lUo0LAvv37/H7PHj+wL9dmtnfH/ZRefwquCY1EATQkBMEyaAbsPWCWyKETgOAuX/twS12NswsZ9Z2ZkpNbRkwewfHF1498/MAaiKAo3Kk/nxBQkt2zPjy+TVmMoDW59F9eeDgOd5RCQJCs1ix2k2YWRkBCMjIzh16hQAoNFoOEa6VCphcXER4OwmaJahyYyN2UbYs3aO550ZE93gLq92ehZGR0bsaoRpolqrBWqg7gTOY5QJbD1mjuftDCns+yGeSNhjwAmB4WqOTiaTHadaH+EIg4BlWXt+hVISd3d3beojgEwmg3g8jkaj4QTAfJfET2h0+aywtB7TstCkc2bi8XiLYAKBnSCrVCooUb/SpJXkRDKJzOgoZmdnkRkbs+khPp9fq9extraGa9euBcqUMiloAE5VhNlpVlFlKmAtfsWyuvoVw7JnezBRC3j9Crcno8rBnhYMUJ9Ck2wtfoVV8NnvmV+hwTywJwQCQmB4bJRTAWZVC3c1nMp4MlpKp4myXjBBDVZ5Zw3LY2NjLVryFUq3KpVKWF9bw9uFBYCzZUIzLPufybTQQ9l1ClM1dleJ290DPM9jdHgYjWYTmqah0Wi0ZN77BaPiMlUeRVEctaJEPO585wq9v2uU3/+lKr79ywT7jMLDlHCYegwIQSqVcoY4sGxGL13qHeGhDnV+qSvL3+HhaSqKI9eViMdhGAaKxSKWV1bsRlDqhIaGhjA2NoazZ886zifISj5++ICmouDkyZMBT9IF17pZ9sEbfDEdeZbxYAac/ct+ZobNohkAr+Z8OziGWVWh9JBt5pjsGtM/ZhkiWnlgDXHdELaILkcijmpAO8WOOOW1zszMALArPMxIb21t4cXLl7aeNGya2hDtsWDffRB1Hr/yajsIomhnYjY27OFBiuKrxx0GrKTNY+8aSqIIPpFoabBicoCSJEFpNCANDaFarWJ0dLSv4x/hCF1BbRHLlFarVdTqdfAcbcSlPF+m4y6zZ2JQ1NAQm4aWLH+H6nGjXrflc0XR0WpfLxSwvLyMja0tWIYBXhAwPDyM6clJZMbGMDIyEmhyNgAsvn8PQRQd29ULmKyiIAiAx68YVELZcmfN3X6F+hqnMkD9SpDm4xaf0kZqteO6QRXSBMEeNhaJ2H7FVdEO4ld64a9HZNmuuneY1J5Op5FOpzE7OwvAbtDe3t5GaXsbpa0tfFhddTYyL168gChJyOdyTs9eN7/iTqgF2ehFolGk4nFs6zrK1SrSqVRfFE2nKuGh2kaomhxLJNXqdVswg34PzJ/V6/WBzoP4lPiXCfYJfUgJIajVamg0GrBME/FkskVCS6M7u7ATcjsfvPfGEicb4zHqhmk6usL1ahWvXr5EsViEZVmIJxLIT04iNz6O/MQE5B4eDgLg7bt3yGWzvd3cAUp6rBLQDZZlQdV1gFKOEonEXuYE8M3Qsw0bYA+tikQie9l/17/uTA6j3nBUArJJ9ZpjVPlh37qY0xgwRCpxR+hwmiBBsyiKyGazyGazAOzM/6+//oparQaO5/H4yRM8fvwYQ1TVIp/Pt/1e/bj5QRCPx22JUl3HTrmMXJgBMT5g34f3PmLToNlMglqjgUQ8butgN5tIDw9DURRomvaXGnd+hM8PFq0eWrSi1aBZwGQqhZSr5K/rOizYm9WB+RUgdFOkk+Vnz6Un6FfpUMamoqBWreLxo0colUoghNhB4LFjyE9MYHx8HGIPz7ZhGHi/tIS5ubkD66vhOc5WNesCi2qu85w9hTwei3X1KxIN8JlPAbDfr3h8jJeeKlSrMEwTCaqUs29dQfxKD5QZSZbBK4ozPyZIb1U0GsXk5KQzSLNUKmF+ft7ZGP3555/gOA7jY2OYmJhAfmLCd9PHVtotm++HZDLpNNNu7+4iO4Cpthz1K+7r3JJIMk00Gg0nk681m4hGo052/0tUfPvXCfapfFi9VrMHm+g6YokE0qlUS0DCjHK3QUjBD7xX1usFLVl+ALAsVGo1vF9cRKFQQKVSgcBxyIyN4eLFi5iYmADHcWg2m7bWcI8GdXtnBzvb27jTZYR5Pwh6TdgYc1EUIdGBLUHAsjDRaLQr79R3fV3+Pugpgm5EZNnmdep66Ax5uVzG/Py8o3M9PTODM2fOoFgsYm1tDa/fvMHzFy8Qj8eRz2YxMTWFMUr5sQLSzdohlUphd3cXlmlip1xGpl/ufJvqFhvk1Wg2bXWjRgOJRAJKowGBt4d7VatVZDKZ/o5/hCO0gWVZIDToqdXr0Oggp2QigVQ63ZqcofTQfvtZWuAOTEOiJeinz1hpexvvFxexsbmJer0OkeeRzefx1VdfYSKft6uNmmbPvOhxE7+yugpd03Bibq63dSNApTSMX+FslZtIQL+i081drz7FjXbhbpBz7GW7yHEc5EgEFk0ShhVSWF9fx59//olUKoXtnR1cuXoV4+PjKKyvY21tDU+fPsWTJ0+QTKUwSQP/4eFhp2evV3BU1rtaqUDTNFSr1YFk1/1WxBJJ9UbD9ivNpu1nqlVkslnouv7FKr79SwT7lmmCMO1zTYNKd2n7dLvhMsoDHpHclyyVZWFnZwdr6+v4+PEjyuUyOJ7H6Ogobly/jsnJyZb1suxSP4Hou7dvEU8mkcvl+lh5F4TITpAeMgJ9o9vaDijQB+yGU4HnbUUK16jzbigWi/j999+RSqVw+/Zt/P3vf3cGqExPT2N6ehqWZWFrcxPrhQI+fvyIhXfvIIoi8vk8JiYmkMvles668TyPdDqNRrOJRrOJWCTSl2SZs9mldDXv3+KxGKrVqj09utlEIhaD0mxClGV7iqZpfpFZmCN8/iC0P6RRr9tCCVQzPhqL7RsMqGsaCCGDqTQxu9NDdtcNyzSxubnp+JVGowGeVgivXL68zw5oVMe9HzWvd2/fYmJy0pnJcdj45Eo8CE/rHORnRCTJmZ0Qxja+e/cOT548wdTUFC5evIj//b//tz2ROBrF7NwcZufmYOg6NjY2sL6+joW3b/H85Uu7MkD9ytj4eE+VXg62P0wmk1BUFeVq1Rma1is4tN9UMcW8SqUCk0o+cxwHi27sm82m0+T8JeFfItgnmgadNmkamgZJliGJou/OnDX4Dby5L6RhJpaFzY0NfFxbw/r6OhQ6yTWXz2Nubg4pyq3za1jheB7wdMuHQVNRsPrhAy5funSgN3RPWsiH0RzTQemiq3JSHxUdWZZhWpadhQlwPy4tLeHRo0fI5/P45ptvIAgCdF3fF7jzPI9sLofxbBaXL13CVqmE9fV1rK2vY3llBQLPI5vNYmJiAtPT08GfBXodZFkGLwio1WrYrVScAVn9QBDFVtk955AcYrEY6o2GbZhVFeXdXUzOzECl046/ZAWFI3y+ILoOhTYPaqqKKK2kxjw2mSWQOAyoYtxHkG+aJtbW1rD+8SMKxSJ0w0AikcDU9LQ92TuZdAb67Tss+6HHY29sbqJcLuPK1as9vT8IwsxtAQ5hdksQBPl+e/TLvCBAliSbrkU3p93w9OlTvH37FqdPn8alS5dQq9UAjttXGRAlCZNTU5iYnMTVa9dQLBaxvr6Oj+vrePvuHWRZRi6Xw9TkJCYmJjoq0+0DIXbTLCFQNM2h8/RLE213lQWeRywWQ6PRgK7rUHge1UoFyaGhlibnLwn/EsG+QQdMMC1iUZIQ9dFMNQzD0YcPoj7TEZ6HNWiWXVEULC8tYXFpCQ0q9TRz7BgmJycxQrnIjWbTpmjQm41x1Nn5OLd/j0Z5cXERAs/j+PHjPb0/CJzm44BGy63p+6nR6YgtTW8+6CeLI8sympRjaRhGx4D52bNnWFhYwMmTJ3HlyhUAcJrRvO9jDpEp7IxmMhgeGcH5CxfQqNexvr6O9fV1PHz4EE+ePMHMzAxm5+YwMjzc8fq7/zKUSkGl2vi75TLG+qTTMEWMfc8VbEcdi0bRaDSgaRq2t7YwSZv/joL9IxwELNOERhvRCe0lEkQRkVhsn01jWf2BiD743P9BUK1WsbS4iKXlZeiahuGREZw+cwaTk5NIp1Ko1mpQaY8LU1Lz+hV2Xr3atHfv3iFFxSIOEmF8BEuIHUqw3y6JFOS9fUyTjUQi0F39YO2ul2ma+OOPP1AoFHDt2jXMUeqVQZWE3BtXr/oQx/PI5fMYz2Zx5coVlCsVrNPE5W+//46ILOP47CzmZmeRCGGfR0ZHUSwWnWb4fug0++RXXSCwOfyxaNSW/1QUbBaLGB0fh6IoDk36S8JfPtjXm03UajX7oaaBvjtQdkPTdTv70kW3tivCBtmEYGNjA4uLi1hbXwfHcZiensaJb76x9cKZhKNl2c6FEMTi8ZbGUkf+C+jLKBuWhXfv3uHYsWN9VTeC8NlDGWWa1f2kRjnA93iQvH2e5xGRZXuglE+GHrAN8v379/Hx40dcuXKlRTnJbZSZIfar9jB5OQJ7mNrJU6dw8tSpvY3n4iIWl5YwPDSEEydOYHpmxpfv6cjUwTb2I8PD2NzchKKqqNXrfctx8h2qVaIoIhqLQVEUKJqGj6urGM/loOt6143SEY4QFjpLIAEAz0Okk8NlWd5nNzRdt5V4+g0OQtoZyzSxtr6OxffvsbW5CSkSwezsLGZnZ1s2wIau21x0QhCn/UFum2Afei/o78XeMbnNrwLKbfaKMCtzD9TiP2ESia2xYxIJnc+F80l8BIWfDKcXqqri7t27qFaruH37dgudV9d1J7PP7gXLp8Lt/B9VBBwaGsK58+dRq1SwuLiI94uLePPmDbLZLObm5uxsv49/Z59DYHPqh4aHsbOzg2q9johnEFZY8BwH4uPD2f/LsmxfJ11HtVbDdqmEeCLhxGFfEpXnL+0BCSGolkowLQsiHU5kWpbd8OjzsBhUiUf6RAoemqpiaWkJS4uLqNXrSKXTuHL5MmZmZnzXoCiKk6n1Nnq5A/9+jPLHDx+gqGpvcpsuDDoAdgzk51RuBbqWXPs1BTLlnvvJcGqahrt376JcLuPWrVuYmJhoea9BpTcFQWg7EIuB5/l9us3RaBRnz53D2TNnUNjYwOL793a2/+lTHJuZwdzcXIuSFQAQzh5GwtaeTqVQrlaxWy4jGon0HXR7N1dumTdZkuyMq66jsLaG9NAQ5EgEzWbzi5VLO8LnB13TUN3edmyxSbXdY7HYfltAiD0FFgdADYV/UFiv17G4uIjlpSWoqoqxsTF8/c03mJya8g2mGnQGSTQSgeB5Pt32RmCBUQ9Z5ffv30MURRw7diz0ez0L6hzkhvA77oFanxWNB92TSP16VybDqfoE+7VaDb/++issy8L333+/z8YbhgHLNMHTDUNbWXF6Xb2Z82Q6jctXr+LCpUtY+/ABi0tL+O233xCNRJxsf9ybGHJ9fiIed7Lru+VyX3Qegr2Nkzth6r7HI5GIPdjNNLG6tITT588DsOOxfgd9fUr8pYP93a0tGLoOgechyTKalP7SThFBNwwQQvo3yp3oKYRgc2sLS+/f48PaGsBxmJ6awvWvv0ZmdLTt+yw6/IMQ0rXhkacSX2FLfQTA27dvkc/l+g6OuhqrkEaZfIacfYZOO/x+Nz3tZDhrtRrm5+dhmiZ++OGH/UE3IVDphEY2LKYjPJm8FvA88vk88vk8mo0GlpaWsLy8jPeLi8iMjGBubg5T09PswPYkRYpkMommqkJ18Sx7Qct1dDl87/WNRCL2lErDwOrKCmZPnDgK9o8wMFiWherWFiz6XIm0iV4Uxb2NLLsnqR9gnP2+kkhd7AixLKyvrWFxaQnFYhGSJOHYsWNOf1c76LruzDrpFLgwDXXe/p9QfQNuuc2+m+W7XQcET7AcGjU0yHXrs/m6GyRZhqAo0D0ynFtbW7h79y7i8Tju3LnTck8QABz1KyyJ1M2vdGqEFQQBM8ePY+b4cVTKZSwuLeHtu3d4/fo18rkcZufmkKfqgl4MDw1BV1VnavuIx/8FhbM2Oh+ArbflNa6+ME3XsfbhA6ZmZo6C/c8FjVoNRr0ODjY1gU35c7L6PmCyg97sRmC4VRI8UDXNyeJXq1Ukk0lcunQJx48dC+QEWPZFkuWumxE/rV9G4+iE0vY2dnZ2DlRukyGMUWbUDWd64CdCkECdA5xBKL7geSDgtNp28Mpwlkol3Lt3D5FIBN9//72TUWTjylkzoEGbzYM2Bfpl972IxeM4f+ECzp87h/VCAYuLi/jzwQM8efoU09PTyI6Pt1AEODoFsbi5CY3KlvXEoaeBE6MXtNOi5jgOsWgU9UYDjVoNpa0tZCmd52ii7hH6Ra1SgaWqEKhiR7VWAwB/p8/ol/T59yr0BEYHO1Sv1RyanaqqGM1kcOPGDUxNTwcKrBvNJgAgGot1bZh0qsbUvrg39Z3WuLy6CqMPuc3WRbQPgsMIPgCH35zbzZcdJE2E4zhIkQhMlwznysoKHjx4gGw2i5s3bzqbVy8fX9d1e5ZBkPuZ6z5oCwDSQ0O4evUqLl28iA8fP+L9+/e4d/cuovE4ZqhfEVx+QxAEDI+MYKtUQq1et1WweqDzuClVPF2n393FlN/qjQZ2t7cxNDLiVC0+t6pQO/wlg31CCOqVCgA7OGHjtH2z+u4sPGvWGeBaFFXF69ev8fbtW1iEYGpyEteuXbOblAI+yIZpQqMcsSDavpwr6HN+Z/8BQPsg9t27dwcvt4nwRtmRRzuY5bQ/Lv23m8E9SN4+0CrDubS0hMePH2N0dBTf3rrl8CYtQhz6DFutHjLYB2tYCnIuPI+JyUlMTE6iUa9jiTaVv19cxOjoKK5cvmz3m9Djp5NJlKtVVHodOe4ju9lune6Af2tjAyOjo2g2m0fB/hH6gmmaUKpV2/HH49Bcjbct9DRPQHoQlqFareLly5dYXF6GJIqYOX4cc7OzoRoWNU2zEwL0eekK+sxaHjtj/48r4eE593cLC5j8FHKbYXsaDivYD5hEYoOfDgpuGc4XL17g9evXmJ2dxVXaV9FusKJhGKFsaRi/LYgijh8/juPHj2N3dxdLlNu/sLCA/MQELl++bKvyYG/WQb3ZRKVSQXR8PMSRKNzXl26uzDbJOdbr2VQUrH/8aM91UZS+pKU/Jf6SwX69XgcMAwKVL6zSwH9fVt8TQBD0YZh9mrLeLCzg3du3AIAz585hbna2pw5updmEBUAOyHl2B6d+GXTv3wFbm391dRVXLl8eSDah0yeEvcaOUf7UeukBDS3pkG3iBmCsmQzn+/fv8fbdO0xPT+P6V1+1bDL8rrdhGI6qQJhjhXUw8UQCFy5exOnTp7G4uIilpSX88l//hYmJCVy4eBHpdBrJZBL1eh26ZaFaq2GoA7XAd11ovW84ztbeb7dhFgQBkiiiqSjY2d5GNBpFOuQxj3AEN6rlMnjLgiBJEAXB9jPwyeq3URrrOah0fVa92cSrly+xtLSEaDSK6199hemZmfC9MIQ41eJYNBpobXyXZJG7IZNlgosbG6hUKrh67Vq49bVBx8RKSNvl+JVPTONxVhiAAnNwob7tTyVRxOMnT7C2toYL58/j7NmzjlpbOxhtxCLaog13vxuGh4dx7auvcObMGSwuLWFpaQn/9m//hrnZWZw7exbRWAzpVApNRYGm62g0m+EHnbnuGY71o3Q4d0mSoGkaGvU66rSicBTsHxIsy0KtUoFICKLRKHRNg2lZENpx9Rm3ne5kCSF9NYHqhoG3b99iYWEBpmXh1MmTOH3mDCRJCn2zA3bApqlqi1JCNziDiNj5dDAq7C8fPnwAz3GO3GbfJcRO7w2bgTkkbmUQ1QTADujbnVHfxppm7Z89e4bllRUcP3YMl69cCXQt2EjzUDzZMNn9fW/lkMvnkZ+YwO7ODl6+fIn/+PvfMT09jfMXLiA1NGSrKNRq9hTOkAGK+560CAEnCB3Lw7IsQ9U0lHd3MTQ8DI1KCx7hCGGh6zqUeh0SIbYcH6207svqM7gTKh3onV1BA/2mouDVq1dYWlyEKMu4cuUKZufmeq4qqpoG0zDAc1xg+oNjcwJmpsFxWF1ZQSqdxhjNuoahb4ZF2OvgyG5+4iRS0F6Bgwz2CSHQdR1/3r+P0tYWLly4gNOnTgW6hr1QIr3qTmHACwJmpqdxbGYG6+vreP3mDZaWl3HyxAmcOXsWyUQC1VoNlWoV0Ugk1KbauyZCqaKdrkNElqHpOkpbW4jH4xihlJ7PHX+5YL9Wq4EzDLt5SpJQrVYBdObq+1EEQoE2BC4uLuLVmzcwNA1zJ07g7JkzTkNlr6q4TSrvFvFRSmgHjnGb2U3bjRsIYGV5GZNTU85D7L0GYZuZBklrsQ6pOTdwBsa1Yez7mO4SOCEwdB2//f47Njc3cfniRYyOjUHXNAgBNn66rttZ/bDr6vF8LNrgxPM8ZmZmMDU9jZWlJbx8/Rof/v53HJuZwXg2C47nUa3VQjdVsdUQ17EstA8eBEFANBZDs9FAvV5Ho9E4CvaP0BMqlQp42mTLcxxUTQPQmavvbSIPnUGmzZBvXr/G23fvIPA8zl24gFMnTjgbDAs92FpC0HSJPQQNVJznL+DxdMPAxw8fcPbcuT1J3n1LGRwvPexG4jAy+2G+q37kNTsdlxCCRqOB+fl5qKqKr7/+GolkErphBJovZJpmT6pqQXrCfEGTaZIo4vTp05ibm8Pbt2/xdmEBi+/f48TJkxgaGoJJzytMT5jluS7EsroG+wJVQ6zXaqjX62g2m5/NROhO+EsF+6Zpol6t7mX1dd3J6u9z8h2yLWEefsuy7CD/1SsoioLZ2VmcO3cufDnJB7qu2xrNAbn6boQxzOVyGeVKBecvXmz/eT6UJ3Qy1B2uYVgD72w0DquRKtCLenMYXiPsRrPZxPz8PBqNBr77298wNDyMGlUEiAYJ9nvUl+dY2TWko/H2OPAch9m5OcwcP46l9+/xamEBq6uryOZyyOZySCSTkHtYn7vng+/S/BWRZTQbDdSqVezs7GBoaOjTq28c4YuGqqpQGw1EqV9hWX1JkvY/X+7kCts0U1pPmPtO13W8efMGb9++BQFw+swZnD59ev/z0kMwqKgqTCqdGIZW2iL2EABra2swTBMzdMBdp89k6JZUancFmZJKGBwGZ7+FinhQx2AN1Njz027s7uzg7t27EEQRP/74I0RKd9R1PVCw7zeVPRB6zO4zMQZ2T4iiiHPnzuHEyZNYePMG7969Ay8IyOXz9qyYkBtYtp4WP8LzbdUMOY5DJBpFuVxGvV5HpVI5CvY/NarVKmCakKlcIeNU+mb1fbj7YfSDCSFYXVnB8xcvUK/XcfzYMZw7f77t4KBeHmxHKSEaDV1qDKO1v7q6CkmSQjXmuht+HbjoLJ2kKMMGW4cyUAto4fJ1Qyip0Q60H4bd3V3cnZ+HIIr4+aefkEylAELAwx58FmRQVD/DpHqpVjAlA+/1EngeJ0+dwuzsLN6+e4eFhQVsbGygVCrhyqVLgQMORxHC85x2yuhxAOKxGEpbW0gkk1+cXNoRDh+VSgUCG4rlyuoH2XAjJM3GME28f/sWr16/hmmaOHHiBM6ePdtWLjosT51QCWdGCw1jizmed44XJIu+urqKTCYTitPcVcK43d97yIIf5lT2oMdt61fcvHqXrWa/a3cl1tfX8ccff2B4eBi3bt2CLMt24zmddh6LxbomO3Vd73lAXC/ZfbZ58Sb7ZEnCxYsXcerUKbx8+RIrKysorK9jZ3YWF86dC0RfdQJ9j0/m0ZmNIdCNcmlrC7FYDNlstn9Z2QPGXybY13UdjVoNMuVUaooSOqsflBu+ubmJR48eoVKpYHJiArdv3w7dcNgNjlIC2pSKuyBosE8ArKysYHp6uv9yJse1UC3gY3h6ofcc2kjzkCVXNmDEzeG3LCt0r0ahUMAfv/+OVDqN27dv7wXDHAdJlmF1mKjrhq5p7YOEbuC4vaEpAcGMcrv7SBBFnD17FtPHjuHZ06dYW1vD+toazp09i1OnT3e9/3gfpQRGG+rG3a/W66iUy9je3sbU1FTgczrCvzaazSZ0VUWE4xCNxeypuUGy+q7fMVvQyX4RAKsrK3j69CkUTcPc8eM4d+5cV5WcsBZboX6RF4TQAZvbL1rUt3Y6TrFQGGhjLuChXTg/kNCBvulqxPykmf0Oggp+4ABHStl9vibtx2P/3/JvG7x79w5PnjzB1NQUvv76a+e8BTovwuR56Lre1WeomoZEL/LJQE89YSwQb3fNIpEIrl27hpmZGbyilLeVlRVcvXwZU9PTgSYV+/q5ThtIGmdulUqo1+vY2dmxFRY/Y/xlgv1arQbesiBLEgRRRI3qH7fl6vv8zuEVtnn4DdPEs6dP8e7dO2QyGfz0008YpfKCAwUJr5TgBS8I4OhE4E7Y3NpCs9nETL+TDT1wZ/7dV9pinDj2OveO2sV1dW9WDmOkOdDK2WfGxvfRp1kWQsj+Zt2Qa15cXMTjx48xMTGBr7/+el+2QBZFqJpmD8LpkpmrNxqI9aEUELoszs69yzknYjGcOn0a2WwW68Uinj57hrW1Ndy4caPj8CvLe21d6+zE3ec4Dgma3R8aHm47lv0IR/CiVqtBNAxEYzEQQqCqKgAEk6pE633Z7llVFAUPHz7E2toaZmZmcOHCBUdecJCwLMuhIMXi8Z4y2gJVVekW7H/48AGE4/aG7Q0I7jW7V2/SqqdX+9+x2TRw8ybBPvXsFoZ2/XTOeun6LLqR8dq9UFsbQvD4yRO8f/8eZ86cwUUfuq4ky/aArQAJomajgXgf32vYXgQSkG6VyWRw6tQp5PJ5fPz4Eb/9/jumP37EtWvX2laP2wb6QNdNCc/ziEUiKG1uYnh4+CjY/1RQVRW8ZSEaiUBVVRjdsvpt0E4DfmtrC3/++ScURcGVq1dx8sSJUMEQx44dwLC0KCUEdCpesMC4W7C/urqKeCxmT+8dNPyMmXcD4KoGuF7kGGP3+nmqO0xcmwL2embY3bJvTknTTS/yvr/dz+5jtzG4fuflew0C4unTp3j79i1OnTqFy5cu+d4roihC4DjohHTVO240Gvsm64YCF04yLUwjYjqZhNJsYnpqCjPT03j+9Cn+4z//ExcvXMDJU6f2fQYBpXO1+exu2f1oNIrdahWNRuOL0kY+wuHBNE3oqgqJEESiUVsswbLs6aNdFHhaf23bM2+wwrL5jx8/Bs/zuH37Niby+QM4ExuKosAitoJQrxU/dg7dbMLK6iry+XwgDngY+F5h5kO8vsTH1zDfwKih7sAzkF8BHJU7d7AeyK+43utcPY9/8HoLnuPQz0hG0zTx+++/o1gs4quvvsLs7Kzv6yRJAtdsQjcMhxHhBzbcsS8qZMjsvuX+PrpgKJ2GruuYO3HC9ivPn+Pf//53fHXtmn9Fl3SWGe1Gk4vGYtjc3kaj0YBpmp81lecvEezrug7LMCBxHARRtLnutJkqaFYfgMM3dgduhmnixbNnWHj7FplMBn/77rs9Xn5YSkqQDALZU0qI9TJ8iIIXhD1qSRsYloUPq6s4ceJET8fovoj9Q0GCcvb9MjD0Dy3GGz4/u6sKLaVe9v8e/rzfz71k53tVTzBNE/fv38fa2hquXLmCkydPdjoIJEmCaVnQOkigEULsDEyfQS2HDhUNn2MG/X4lSXIk0zhBwE8//4xXL1/iCaX33Lhxw1FVcD6X59sa5o5rpPeMJIpo1uuo0cFeRzhCJ6iqat83kgQOdEhdyASMM5GT2Qb6bKiqigcPH2Lt40fMzMzg6tWrdmKqB/sRBBbl6jMFnl7B87xdSevgV6q1GrZLJXzz7bc9HycMwvSBMd/AAkiB9SGwv9G/w+dn3wpNSL/CEKZK7UthCXCfKIqCu3fvolar4c6dO8hms21fy/M8REmCRWxJTqFNJpz1Efbd9+TqM+gI13kG+Y6j0Sii0SiaioJkKoX/9T//Jx4+eoR7v/2G6amp1iw/IfZ93CEJ221TIooiOI5Ds9FAo9HoWJk+bPwlgn2W1RdFEZZlwaAZwH2BULesPu3oZzfVVqmE+3/8gaaiOEHYIOWw/OBWSuhl/DNDkMx+YX0dmq4PnMLD4A3A/Jo3u8Hh6x9CqZUhsCPh9jdTdbtTNE3D/Pw8qpUKbn37LfITE12PI0mSXb3SdViE+F4bVVVh0Q1jX+CCjTsH9sqtQVWTkskkGo0GdMOAqmm4fOUKJqem8OD+ffz9P/4DFy9etDc+jCbVbanduPuShAY1ykc4QjdomgbONCFGo9ANAxYhEHg+VNO7u9rFpj6vfviAx48egeM43L51CxOTk+zFodcYtGLMaKGSLPc1STpIZn91dRWCJB1olaJfHFZzbi8zF3qJOarVKubn52FZFn744YdAk5VlSYKu69A1rW3s0aS2s+8kEhdM8a2lsh/wmqVSKSiqCkVRkEgm8e3Nm/jw8SMeP37sZPknJyeD96O1u/40iSSLIuq12lGw/ymgqqqtgUxvVoBmY7xBR8CbhRCCJ0+eYOHNG2TGxnD7b39Dyt2Q0mPA33UACiEOpzIRUinBC1ZO6maUh4eGWs/tINHDNTuskea9NBL7Zpc7fE6tWsX83bswDQPf//BDYMqNKIoQBMHJwviV5FkGZhASsIGy+6S7EpMXgiAgmUyiXK2iWq3adLJMBv/jf/5PvHj+HE+ePMHq6ipuXL+OZDLZ9flx94L4QZYk7FaraDabsCzriLd/hI5QVRU87IqQqmkghPSsQsI+78HDh/j48SNmpqdx9dq1TzL3wbIsaNSv9GsPBMpxb+dXCIDl5WVMTU0dHKXBu7npwVaHTUwMCr2kCf2SZp2wubmJe/fuIZFI4M7t24gG/M5ZBcu0rLaUFJYoCdqz0glBFN+cqkaIWCgiy4jTZvpKpYLo2Bimp6cxPj6Ohw8f4u69e5ianMTVa9cQkeWuylJts/v0dzKVd2bqj58rvnhvRwixMzCwgyCNGWW/rH4Avn61WsUv//VfWHz/HleuXMEP33/fGgwH+Jxeoem6ndXn+b6cCuDK7LfJiKq6jvVCoaMG8sDRi1E+pAwMAwt0A73WZ43tgtOtrS388o9/QKAUlrDcekmSwHGcs7n1gg1jGwhdxUNt8wNxPRdhvqlEMglREEBgl/8BexNw+coVfPfdd2g2m/j7f/wH3r571/3+IcSmjvn9HrZ9ACGoVCrQqHziEY7gB13XYeo6BNgqUoamgQD+fqUDmEb4zs4O/u3f/x1bW1v49ttv8c033wwu0O/ybKqKAgJA9FMQCnsoQQAIaSufuL2zg1q9jmMHVC0GsO8Z78UbH8ZArRaEzey70eGeW15exq+//oqxTAY//PBD4ECfHUeSZXAc19Y+Npl08SA2SbRq3AmOEk/I7ylFk0O6pjkblEgkglvffosbX3+NQrGIv//97/i4vt7dt3VYP2DbBE1V0aS8/c8VX3ywr2kaiGFAoAGJySg8XkPKcZ13kJaFx48f4+WrVyAAvv/hB5w+c8bWtz9A2o4bqqIAAORIpO/glhcEpwLhl4VZ+/ABVpeBJ33Dp8kyLA4rA9PSpBX0LQh2jh9WV/HPf/4Tw8PD+PGHH3riP8rUKOuUyuNFo9Gwp0j36dwZupWSnWa1ABsDN3iOQyqdBkcIqrUaDMOwPw/A6Ogo/uf/+B+YnZ3F4ydP8I///m9HDaXT5/mtjRACQRAg8DzqtRqatPJxhCP4QdM0cJQaaug6CACB9oS1oMu9rmkaHjx4gLdv3yKdSuF//PwzpqenQwVw3dBxBYQ4VYl+aKEMAn3G29HlVldWEI1GMZbJ9H2sdvCebz9yzodF4wlz1H1rbLPmly9f4sGDB5idncXt27d7sv2yJIHnOGiG4Xtdm43GQOeUdNtsMWp12E0Z6wnjOQ6VWs2JgSwA01NT+F//639heGQE9+7dw/0//+wYpHNoE3+wvg9BAC8IKJfLXf3TYeIvEezzhECUJGc3KtLmVAcBeGF//PEHVE1zgoF//OMf+Mcvv+D1q1coVyq2cesz6O9kWAzTtOUUCUFsAEYZ2Gs+8gv2V1ZXMZ7N9qz2EwShjbLP372c/ZZypqtqQej/s0oGC/DYa7yBuN9KvJ/tPYeunHF0dx6vX7/GH3/+iWPHjuFvf/sbxB75szzPQxQE8DwP3ScL02g2baM8KGdGOZbtwLSgezEoiVgMEnUy1WoVbrUMQRRx5coVfP/dd6hUKvjlH/9AnVYAfOHDX2ZN9xzH2dMi6/XPvuR6hMOFqqoQKDVUY9RQP2W3DjZNU1X88fvvTg9WqVTCv//7v2P+11/x7v37vXuw32RSh2dcZdViQRhIJYENd7SorXXDJPagyRm/zcwBIfQ0dvavDz3Uzz+4fQk7Z2KarX9Hd9/Q7u9B39vpNZZl4c8//8SrV69w6dIlXLt2rWe7L4mi0/vkFwD3K+e8D5yPGp8Ljo/vIdmXTCYh8DxMw7B7VsiejHc0GsXtW7dw4/p1rHz4gF9//bVtlRzwpxJ5k0i1zzyJ9MVz9h2+vig6u6qIN4DqFGTrOu7du4etrS2cPnUK8UQCw6Oj2N3eRrFYxJs3b/DixQvI0Siy4+OYmJhANpuFNKCMqfs8COysfthpue3Qrpmq0WxiY3MTN27cGMhxgmBfoE9I69RDFqR5XmcxNQvXZ7S8wkNTchrW4J89CRrw+w5vob/n2hgoDrYEG9PW9m4eHj58iOXlZVy4cAFnz571+YRwkCQJumFA07R9OsKDUOLxomN2n34PvZbFh9Jpe0CJoiCuafuyUmNjY/jpxx/xz3/+E7/84x+4fedO2xkXHM+DeB0VXbssyyhXKqjX65+9VNoRDgdMT1+EnThSqAPfFyx3uNfr9Tp+/fVXqKqKixcuQJAkjGcyKG5soFAs4snTp8Djx4gnEshls8hPTCAzNgZxwBVMRuGJDqBaDNCNM8/bdo4O52LYLBahquqBCT60gPoLt531tUw+9opgj97q7QPq5B8YpZPzSTy1Pb7n7+6KiPdYnOtf9zHtH1zrdK1Xp/HL9vY2bt682f/AQI6DLEkwTdN3cGPfcs5+h+wgrNBPEsndE1apVhGR5X0Jq2PHjiEej+PuvXv45Zdf8Lfvvmvb1+K9V9zPkyiKUChvP3OAVa1+8MUH+4ZhQKQBmGmaNnffHex3UCpoNhr49ddf0Ww28d1330HTdTSaTciiiLm5OczNzcE0TZRKJRTW17FWKGBleRkczyOTySCXzyOfyyGdToceQOQGsSxoqjqwUitDO5m01dVVCDyPKaYCcUBgfNWW7Ljb+Lp/bvMdHVqDLv3X6yDbGXrndzSoZA4FHAdD13H33j1sl0r4+uuvB0adkmUZzWYThmXt00ZuNptID3iqs9e5umH2SbeKRqOQZRkNRUG9XvdVj4gnEvjpp59w9+5d/Pf/+T+4efMmJnzUixzNa597jVVDatXqUbB/BF9YlgViGOCxFxTyPN96r3Sg+e3u7ODX+XmIooiff/4ZO9vbUDQNsXgcp0+fxunTp6HrOrY2N7G+vo4Pa2t49+4dBFFEdnzc9iv5fPBm2jabcMMw7CnshCA6wEZggedhmqZtm13XZHV1Fal0GsMBlF96hZNpB02skC466X6f4XrPYdF4fOmGnn/dPzO76/RGcRwadEOpaRq+//57jA5oVo4kSVB8BjcOSs7Zi46Z/T79SoLKO2uGgaai+A6ry4yN4ccff8Svv/6Kf/zyC+7cuePrfzjsH97IKkuSJKHRbH7W4g9ffLAPejM4FB5JClTyqVQq+PWf/wTHcfjxp5+QTqVQ3NgAAIc3DNi7w2w2i/HxcVy+cgX1Wg2FYhGFYhEvX7zA82fPEI/FkMvlkMvnkR0fb8uVa3dTq5oGi/JD+5FF86JdsL+ysoKJycmB8bnbmVoecIaH9MKrdL/vkz88PXD2veABVOt1zM/Po6ko+NudOxgbH9/LSrk+m7iPGRDMyFiaBl3TILgoWfVGA7kDkL7jOQ6mH92K0W56+J6YE4vF41AUBQ1FQSqV8i2xy5EIvvvuO/zx55+4d+8erl67hhNzc/s+c192nwZE7DOPaDxH6ASe3uPMr/jaZR/bUCgU8Ntvv2EoncbtO3cQkWXs7u6Cg03VZJ8jSRImJieRn5jANUJQrlRQKBRQLBTw+NEjPAKQTqeRy+WQz+cxmsnYfHkftNuAK6oKC3Zj4qCqxYD9bHn9imEY+PDx40AqlsCeTfALxlsGYfXw2fsGNX5COOsN6VdYVpnjOFgAtre2cPfuXUiShB9//NGeScKul9uv9OB3RVGEwPMwLAu6YThN6QOTc/aCaz9ky7QsW166l++J+tlYLAa9WkW90Wg7mTqVSuHnn37C/Pw8/vGPf+DWrVu+cwm8wxvZ/cn8Xq1aPTQxkW744oN9dgu0SG66X+Bz4Tc3NnDv3j3EqTQVazgRaFPrPqUB102YSCZxMpHAyRMnYJgmtra27OC/UMDi0hJ4nsfY2BjyNPh3K/k4FBPPmhSa1W830rlX+HH2dysV7JbLOH/hQqjP6mR828IbzIbE55CBCX1clyPa2d3Fr//8J3hBwM8//ogk0+B1ZUo8B23ZBAQx1LIsQ6NTDVn/hWmaUFV1ILKb+8Bxdubc82uTToYMG1Q4FRBa1eIFAYZp7svCuAMaQRTx7bff4snjx3j06BGazSYunD+/r0/HWxIH9iRpG41GzxvQI/y14a7eGdSvBKHwLC0u4sHDh5icmMDX33wDkd5rIvMrriSSfYA9GzM8NIThdBrnzp6FpuvYoAmllZUVLCwsQBRFZLNZ5PN55HK5rtKHhMptgpCB92UJPvTQtfV1GIYRumrpJDnaBfU+aJHY7eEZZu84DCWeXhp06RudH9c+fsTvv/+OkZER3Lp1a+/e5Lj2SSMX9TSQX6FUHl3XnWDfGah1EH1+bapTrG8gbAXW8SvYy+4blPLarnclEo3i+x9+wG/37uHXX3/Fja+/xjHP/dxuY802I7VO/WSHjC8+2OdYMx/H2eojXgoP0GJIVldWcP/+fYyNj+PbmzdbMjaiINiZS69R3ndQznl9PpdDPpcDuXIFtVoNxUIBhWIRz54/x5OnTxFPJJCndJ+xsbF9Rk3XNJiGAY7nBx7sc/QBcW9eVldWIEsScrlc2/e1C+z7Crh7MMqHmYHptWmOZWAKhQJ+u3cPqXQat2/fDvbddgrymTH0GEVJFMHDnoZsGIbdgMqM8kFMieX8h2z1ktkn2P8dJ+JxVHyyMH58yatXryIej+P58+doNhq4fv26c584Cgrs8z0VIlVRYBjGwJ+5I/w1wNPhjJIoghcEZ64FgP3BKSF48eIFXr16hRMnTuDK1astgSS757wNj/uectZXIkmYnprC9NQUCIDd3V07618s4sGDBwCAoaEhO/DP5zEyMrJvTawHTBTFgVVw3efj1dpfXV1FJpPpSvGwfPxK6Oqph2Mf1iuxdR9KBpatPaw/42wFpLcLC3j85Ammp6dx/caN4PbWm6Bh9wujZnp8jiRJUFQVmqYhFouB57jByjl7wPlk9y3T7Eh7agcC+1lzsu6CgFg0ikaziXqj0RLse4N3URRx584dPHjwAH/88QeajQbOnDnT9V5hm5EmbQT+HLP7f4lgXzdN26hRRY+WchC76ITgzZs3ePbsGY4dP46vvvpq34PCCwI4QuwJvC60DftcgRcHW9s1deoUTp06BcMwsLG5aQf/a2t4/+6dk/XP0oaseDwOhTUVD6iByg1W9nUHZh8/fsTU1FTLw+MX3A+kmcv1cy9G+bPIwPRw7Pfv3+PJkyfIT0zgxvXrg+GFuwMNQhwOI2FUHkKg02B/kAO1/OCtUFkudYqgmzJvoM8QNAtjL4TD6TNnEI3FcP/+fSiKgm+//dbZwLtpZO5nled5GJoGTdOQSCQCrfcI/1rgYGf1JVHcr63vtp2WhQcPH2JpaQmXLl3CmdOn99kMQRTBcVwLPdRR8mkX+NL7lQMwMjyMkeFhnD93DqqmoVgsolgoYPH9e7x+/RqyJGFsfBy5XA7ZXA4RWXaqxYPsAWPwCj/ohoH1YhFXLl9ueZ2f3xyIj3NVXnr5tEOTc0YrBz/cGwkeP36M9+/f4+y5c7hw7lxfFFN3XERafk0DZErlsXgeBqXyMDnnQVKN963JHexblu37uWByzk4/h0+wHU8k0FAUKIrSwqn3vUd5Hjdu3EA8kcCz58/RaDRw9do1Jw7xS3Z5k0ifYlheWHzxwT7vCnI6lVpZoH/u3Dmc95b8KQQq2dmSgemW4W2TcRVFEZMTE5icmACB3SNQKBaxvr6OJ0+f4vHjx0gmk0gPD2NkZATHjx/v5fQ7wi2TZhKCRr2OSrWKixcv7lcaOICA2t1w1MunH2YGxjHKYTIKloWnT5/izZs3OHX6NC5cvNhzhaAjPFlukU74NAwDcGVgwgxUCXt8juedNVhUlpYPYJTdBtkPnbIw7TAzM4NoNIrf7t3D/K+/4rvvv3c2WL5UHo6DDqBSLttZ0SMcwQViWXbSxzBAYGc5fe9WQnD//n2sfviAm99805bCwqbO7qOHdrMtPtSGiCzj2MwMjs3MwCIEOzTrv7a2htXVVQDA0PAw0uk0xjKZA7m/eUoPNekmv7ixAcs0kc1me6Jr9ox++8C+EBqPYRj4/fff8fHjR1y/ft1WOzogCqLXrxiWBUPXbfEEprF/QNfN6zvY8xIkWeamg/ohGolAEkVouo56o7FHr25DHwLH4fz584jFYnj06BEsy8L169fBJJx9qTyCAF3ToKrqUbA/aFiWBcs092g8bSg8hfV1PHv2zN4Rd+CqCzwPjioNOB8TZCFtAn7nz7ClBYfSaZw5fRqKomBjcxOrHz6gUChgdWUFL1+8aFFi6HdwhfPQ0kZF0zRRKBTAcRzGfRpPDgLOQ9GrUT7MDExIo2waBv744w+sFwr46to1zJ440ZNSRC9gfSqGYcA0TVSrVUQjEQh0Mu1BwN2oa1qWXYbtQhdol833gmVhmoqCoYDKBuPj4/jb3/6G//Pf/41Hjx45hpn3bIyAvfupWq12/dwj/AuCNiYyDW024dnLL3/z5g1WVlZw8+ZNTE9Pt/04VjEO7Ve6gOc4ZEZGkBkZwbnz59FsNFAsFrG6uoqVlRUsLS3h2bNnDs8/m8v1H4TQTb1lWfZ/hKCwvo5UMmk3iX4CONzzHt9vfQ5+JWDArDSbmJ+fR61ex3fffYdsNvvJprQ6qjyGAWJZqNbriMdifV//TnAzM1jFuJv9D+pXEvE49HIZTXew38U/z87Oguc43H/wAMPDwzh58mTbWI/nOBgAyru7SLH+vM8IX3SwD8tyGnNFyl1uufwch1qlgt9//x0TExO4cP58x49j3EYnA9Ou1OoHd/mVvbcNJFnG1OQk4vG4c/OUtrZQKBTw6NEjEEIwxJQYJiYwOjoajB5B9iQHmVERaSnONE2sFwoYHxsbOIezEzi4qBQhcZgZmDBqPIqi4O7du6hWKrh96xZy+bwt3xfAAA0CbFiUSbORlWoV6XR6T6aNqmcM1DhzezKc3fj6LEjyU1vwg5OFMYzWLEwXjIyO4qtr11oNs59RputsHCnyHMEPpun0be2jLFB7UCgUnARSp0AfoBVjOtwHQLjkRwB/AtiUtWg0iqnpaaSSSZw5exaWZWGzWESxWMTyygo4jsPo6KjdZ5bPIz00FJgewXwhoRRCnrNVYQzDwHqh0PUaDBLOvJUvMLPPEOS6V3Z3MX/3LgDgpx9+QHJoaG+45ydYO+thNOhGtVIuY2p6eu+6c1wrVXIA4DjO7rOilTCCzn6lU5XYi1gshkqlAsOyoChK4Mb1Y8ePo1wu4/GTJ0ilUshms/t6yIC9zePnqvT2ZQf7punoCPvxKnVNw/zdu4jHYvj666+7PmCOkgidHsfUbHpChyw/CIHC5DYFAcPDwxgbG8PZc+egaZqtxFAoYHl5GW8WFiBJErK5HPLZLHL5fMtNSuiDTwhxHhI3BEEAdB2qpmFzYwMXL17s7Xx6Bdd+tHo3HGoGhv7b7Z6pViqYn5+HaVn44ccf7YEjnyCb74UoitANA4ZhoFwuY5LNUGCbP/ZCjhtYZsaZtNhGHo19fpCsixfeLEzQtboNczqdtqVOPWBGutFohF7XEf76IKbp8Otlb2KEENSqVfz+22+BEkjAHo2H9YL19Ny1oxt4wBpzo9EoUskkctksLl2+jGaz6Uh7vnr9Gs9fvEA0GnWkPbPZbMvGpq1fcTU9mpaFnZ0dNJtN5DsIPgwanYYwBQFLOhwKPTRgEmmjWMS9335DMpHA7Tt3EIvFwKb4fopAn61REkWYpuloyA+5Z7cQe4CkO6EE9OlXOHtSu8Um+JL9Cm+syma5mnCDQBAExGIx1JtN1JtNRKPRwGu9dPkyKjRx/PPPPyORSLTO1SEEHP1uO054P0R80cE+oQbZuejOH+yL/tvvv0PTNPz000+Bmkp4jtszzIYBfhC8Kz8jzfNQ2GRDz+5SlmVMz8xgemYGhBDs7Ow4DVn3qRLD8MgIctkscrkchoeH94KsNn0IALC1uQnTNJE/AO31jujDMH3u3MrNjQ389ttviMVi+OHOnT31G/adf0LDLEkSmrQBqd5otB+o1aYhqxcDzc7MTx6tG4eyG3rNwgB7hvm3337Dzz//3KJKxCYyEwAabY4/whHcMA3DvxpGCHRdD5VAAvYqxs7z0Ktd6JDl52Df2+2GM8ZiMWdQpGWa2CqVHIWf5eVl8ByHUTYoMpu1aQjearULgiiCMwwUikUIovjpp4a2acQMgsMa1AggUMV4aWkJDx8+RC6XwzfffOPELhx6633rB6IogtM0lHd3QQB/v+JNKMFF4e0BHM/DcjWze8VE+unlSyQSaDSbUGgjrRCQ5cBxHG7evIn/+q//wvz8PH786Se7Ykf/ztR/eI6Doiih1/Up8EUH+4amQZQkmJbVKpfJcXj65Ak2ikX87bvvQnEJeaqJrA+io9ptLF0G2jQMW26T4zoeg5VdR0dHce7cOWiqivX1dRQ3NvD23Tu8evkSkiw72ZmcDyeT3ZCbm5tIJBJIfCJepXMOQO9G+TPIwLQ79sryMh48eIDxsTHc/PZbSH7N4Z9w3QKVB9ze2QEA3wmAfvAb/x3YSNPMn3tTFra02g7eLEwkRLDPDPMvv/yCu3fv4ocff3Q0z1nGlk0BVZrNg2tkPsIXB8uyYOq6zdOn3H2JBgQE4RNIQGvF2BjE1OY2Qb8WcDgjTwdFZrNZEEJQr9exvr6OjWIRL54/x7MnTxCLxx1pTz/qJzuHjWIRuWx2oEO7AiGAGEA7HNqgRnROIhFC8OL5c7x+8wZzc3O4dvVqa1Wb42ya7icE6werlMu24mBALrq7gtELhdSyLHDYk3kdlF+RZdkZRNloNkNx6yVZxu3bt/HLL7/g/p9/4tatW855GSzYFwQ0P9OK8Rcb7DOjLAgCeMqHZBm75eVlLCws4MrVq8iFbEYVPEHBwOAK+JVm087qy3Igg2PRUqokyzh2/DiOHT8OYlnY3tlxSrMfVlcBjsOIi5M5PDQEgedBYAf7kxMTnzxwJug9WD/UDAyDZ+2EELx69QovX77E7PHj+OraNWeeQcvbPtX6XJBE0eGhB+W5u9ELF5NQeTTmhHqh7LRDSxZG11sb8LtAkmXcunXLMczffvstAFewT7+zeq12FOwfYQ+WBYuqu5msJ4xuNJ8+fYqNYhHfhU0geSrGA5HiBfYJQ6iahiDDGZ1JrLTKwHrHTp48CZMNiqR+ZfH9e3CCgPGxMSeplEwmIfA8dF3H7u6u7wTrzxUtAeNhJJHov94jW6bpKDtdvnQJp3wkXP3ed9DgOHt+Ub3ZRCKZDO+LXRn/lmGRXa69Rd/H8/zAhS6SiQR0GuwnEolQ55RKp/HNzZu4d/cuXrx44QwnNQwDlmVBEAQYhvFZJpG+2GAfVImH5/kWnfFKuYwH9+/j+OwsTp44Efpj2RRd6yA63unnaroOWFZ7DWR6o7fc4J6Hg+N5ZDIZZDIZXLx4Ec1m06b7FItYePMGL1+8QCQSQS6fhyRJaDSbGPtEKjxu9PWIsizIZ6KaQEwTDx4+xPLKCi5euIAzZ8+238jwPPCJVBMYmMZ+Ih7vL9Pm4mI6ev5tXmrRybkcNcqDBMvCEF1HQ1GQDqnv7DbML1++xLlz52zeNOWBEkJQrVaR8eH1H+FfFJ7su2UYMAnB8vIy3tIEUrYHO8pTRR/DNDFQ5Xtqf3Rdh6Hr4DiubbDPGm27Sd/mcjl76OKVK6jV6yi4BkU+ffIEiWQS2VwOOq0k9HI9+kW/WX3g85nfoqkq7t27h92dHXx78yamPmGzcxCIkoRGvd632lK7ifF+sGgvmEjt9CARjUbtBLFlQelh0nw+n8eF8+fx/MULpNJpTOTzzgaGNRN/jkmkLzrYZw1PciQCYlloNpuYv3sXI6OjuHbtWk8GQaBczYFn9ilUXXcaX1jA0UKf6HEXG4vFMDs7i9nZWViWhVKphCJt9C2Xy+A4Dm9ev0a9VkM+lwusxNAv+unWd2g82MvIOMoQ8Dgv188MKlVq0jUNmqra50vPmXM1qjLtXPo/9s+e7I+uabj322/YLpXwTQdNbQeH1KTbqFaRTCbtjfAA6AJu5+Rce9f10WlFTTygDVkykcDO7i4azSaSIbMwwJ5hfvb8OdJDQ0ilUuB4HuzKHDXpHqEFVKaY4zhIsgxiWdgplXC/jwQS4KoYU5s0aKi6Do7nbaEK+tzu8ys+Ag4dwXFIJpM45RoUubm5iUKhgPW1NefZefjwISYmJpDL5z/ZkLp+lXgcvfSQfkXVNAB7PsURPKC+xc2r9/oVN9jv67Uafp2fh65p+O777zHapffhMCrGoiCgVq9jiolPDCJu8NCZiOv3BHb8xQMHQg/jeR7xeBy1eh2NRqOn4ZNnzp5FuVLBn3/8YdNERXFvtstnmkT6coN9apQBe6fWrNfx/u1baKqK//Hzz8HHSHsgyTI47D3Ug4auaQAhkKJR29hYFgjXu2KNH3iex/j4OMbHx3Hp0iX8/T//E0qzCUmS8OrVKzx//hyxWKxFieGg5DjbGWVCiJMVdv/LfjZNE7Vq1Xe6b1CotAFTUVVIdKpsUNRoRz0htpzlwwcPoGkabt68ibGxMdsYcfZwqc9lNDYHe90TU1PQDQORARpK53ukxp5txJjG/kFdg2g0asu/mSYURelpVPuZs2dR2NjAixcv8M3NmxAFwUkU1I+09o/ggqnrjr2JyDIURcHLV68Qj8V6TiABgCxJ4HkeqqIAAftpgoIQAl3TwBECmfqvliCWoc9nVBRFTExMYGJiApZl4f/3//1/GE2noRsGnjx5AuvxY6RSKeTzeeRzOWQymYPj8rc5Fz+/YlIZZIsQe6hSrdYyFDAM+vEphBDUajVwNANcqVTw8OFDyJKEO3fuIJlMdvUrh+FrNMOAZRhIJhIwTHOgsYK3Z4zJbbLZSQOjvHkQj8dRrdedYZShz4njcP36dWxubeHNmzc4f/68PYSMJok/xyTSFxvsu42yLEmoGAaWlpZw6uTJvgZSRSiPXtM0e5LiADOWxDUXIOJu6KTNKEG4bGGh6zrKu7s4cfIkjs3MIBGPtygxLC0tgec4jI2NOQO9kslk30aFleF0VYVGh3JYLgPczdBaluVUBLxrYZkU57cso+LOrnCc8wCLoghRFFuzN5Svuo8uRcFeWy6X8ezZMwiCgBs3biAWj6Pu8yDzdCAbTzvy2XA21lPyKaAoCnTDcJxGN+5uWDAHyrHvz7VJlQ5os8iyMNVaDY1ms6dgHxyHy5cv45dffkGhUMDxY8ecYJ+pMnzK2RNH+HxhUvssUHpogVIjb9y40XMCCbApaTzHOdXGQcIwDJh0+JwoCI5dYzLPLdz+AWF3dxe6puHExYsYHx+HLEkobmygWChgdXUVCwsLEEUR2fFxRzwi1suz64FpmrAsywnSQvsVNqjJ529B/IrXpwDY51fazQFw/359fR0vXr5EOp3G5StXwPH8Pr/iNKhSv+JsUAix1ZA+UeBfKZdhAUimUoO3lX6bUlqBYud/EJAkCVFZhqKqqNfrgQUt3BBEEefOnsWTp08xNT2NsUzGDvYJQeMzlN/8Yj2c4TLKPM9jeXkZhBDMnTzZ1+eycgyn61BUte9Jtm6oug6L2FMZOW5/Nn+fGsoADPQmHWU+NjoK07IgiOIeJxN2JpgF/s+fPcPTp08Rj8ftJt+JCYyPjXWUp2JBvWUYMEzT/tk09zK/htGRy82MGOu659nAFmoEeJ53tH3DZpBVKoEVi8UC8Q3d2WtiWdjc2sKLFy8wNDSEG9evO70hFv27uxnVsix7PoPrs3TKD+dA71NRtB0yz4M/gE1AuVIBCHGC/UE5eLcDY9ef6YYTulFlDY0HgVgshmqt1nsWBsDI0BDGxsbw7t07nJiddX7PKjdHwf4RAFcDN/UDi+/fI55I7M2t6BERWsnVNM1JAgwKmqbBIgQRWXaoKW4qCf1hoH6lWChAkiQMDQ/DpOIR09PTmKZDl8rlMgrr6ygUi3joHhRJE0rdBkWyoN40TRimCYv6FmaL3D7GCxag8x6/whqkOUqjZUosYfwKuz+C+hRgL7HE+oVWV1fx7v17TE1O4vLly3azNN20sM0LYMcBJvUr7uvClF9YhYAllASeP5BNQKVatdXRotHB0Jvd9CifP+t0dpJA/eUgRR/ciMfjUFQVDUVBKpXqyR/PHDuGN2/f4v37944YDAE+2ZTjMPhiPZyj7S2KaDQaWF1ZwfETJ5yHpafmG/qQybIMRdOgKMrAgn0COBrIkiTZu/Q2N4TDYxvAQ1soFpFKpRCLx22JUo+jcXMyTRcns1As4v3iokMJymWzGBsftx94n6C+3XlIkgQ2dt7PALeD7lJa+lSZcfdm68PHj1hYWMDU5CS+/vrrthseFvRbrp8JNeyMe0gAGJYFeKhhg94EVCoV8IJgl1vpgK0wCjZ7J+XKUnV4mekKjFj2sNfyePul2M+LLElQdB1NRelJaUjVdZw8eRJ3793D8soKxsfH+xr6dYS/JtwzIzY2NrCzs4NLly9D0/WeN4QE9nPOBt8pqorEALLc7LNVVbXV2ihfv12/0D6/0kfQv14oIJ/LgcP+wIbjOAwPD2N4eBjnzp+HpqrY2NhAoVDA0tIS3rx5A1mSHPnPzNgYJEnaF9S3Ay8IEHkehFVRQ/gV5otEanM/BZxeMcPAwsICPq6t4dzZszh/4ULbwLytXzEMEF23KxTUzxg+13+Qm4BKuYwUrfYbhtF7Pxj9TrsJOTDfyfrA/KbVDgIORZQQaJoWapYLg67rODE3h6dPn6JUKjlNuUfB/gDhBBqCgGfPnkGKRHB8ZgaGadpfXA8UBnY7ybIMgeMGwttnN6lJS48ENn+ToxniTg8g5/6MXgw0LRdOT09DEARYlAvfLqskiCLyExPIT0zAMAzs7u6iUChgc3MTT54+hUVsmbbM6CgymYw90IuO1BZE0TEw7D/QczTZiO8QOKyBWsSy8OTxY7xbXMTxY8dw/caNzt8RM6bezzFNmJGInZ2imSiWrbJMEwblJvpuAihXURRFiIJgl+YDXIdKpYJ0Om3PnjBN6GGDfRbc0z6SbmBZHlEU7WwazcLwAwz4WWYnGo1C1XWoqho62GfDhuLxOCbzebx8+dLOLFKFlEH2yxzhy4UztRP2fff82TOMUlunKgqkLvr1beFKIjVVFeoAgn2WGdV03bavlHYUBPuaItkaA9paRVGws72NOWobLZ8kkhtyJILpmRlMTU/DMAyUSiUU1texubWFlQ8fANjDmkZHRzE2OopkOu0E76IggKf+hCVDCKh97eG5PazZLbqu47fffsPW1hYuXriAs+fOdXy9n19hFY1oNLo3uZxee5Z8M13JJu8mgKfUVuZbBJ4P9J2XKxUMDQ9DFEVYlgXDMCAHDfZdVYqgPoHJqIuiaAfj9JwEQXCa5/sFq4xEolGYzSbUHoJ9llAbz+WQWlrCy5cvce2rrwB8nj7lyw32WYNdvY6lpSVcu3YNiWQSzUYDiqI4HMlQoFmRSCQCjuedZpxe0EIJgd2Yy3arLEscNChqkX9sPUjHh7VcqaDZbCKXzzv6r34GkjXEspvXoNQbXhAwOTWFyakpGIaB8u4uStvb2NrcxIcPH2yZtmzWKc16+dSOfKN33QHg0EY+oeymYRj4848/sF4o4OzZs5iemupd4g1wFBoEmmlpccaEtN8E0AyOu2QquoN/lkn3YLdcRjqdhiSK0DjOproFqUzRTZmDAOfM1mhhT2nEq3AxyKA/Eo2Cq1ah67qzoQgKRVXtZ08QcOnSJfzbv/87Vj98wPHjx+3v4TPMwhzh04PQZxAACoUCdnZ38cMPP9gbTVWFoii9BfvUr8iyDAEYiF9h/2ruBBI9TtAnrsWvuJ/5Ln6lWCyCwFa6UlS1bRLJCToNA4au2xlbQiBHIjg2O4tjs7PQVBW7OzsobW9j7eNHLC8tISLLjk/JZrP7eo9Cqwp51uQ994NGs9nE3fl51Op1XLl2DdkeVVoYPYmD/X2xpNo+v9JmE8AalEEp0ExDX+iQVCKEoFqp4NjMDERJgk79ktwpmcr6uQL0UHhhmSZMRn2l9xPPcbBAK7Csd6HPYJqtKxqJoNlshn4mCSHOeyKiiAsXLuDe3bvYLpWQGRtz+kgOdUaQB19ksM9UWwDg9evXiCcSmD1+HJwgQFVVGIYBtRcKjisDw8HeYeq6HtrA++1iWWOW5H5IOpRc2yFM4F8oFCCKIsYyGefGNA2j1QjT/7zrdWeXJZoNyI6P4zQ9t0q5jAKV9nz8+DEePXqEdDqNfC6HXD6PzOiorTXfI9yym58CiqJgfn4etVoNN2/eRCKR6D3QD7L2TpsAmj1hGzDLJ1PDjLPgahSrViqYmZmxM+0cZ28i/EquAcupneBkQOlavOfbEvTTHoxerqdTbZMk8IIA0zCgahpiAbMwhmnC0HUQy0KUzh+Ym5vD8tKSw8M+ovEcAdirVHEchxcvXmAin8fY2BgsKjSgGwY0XbflLYPC9YxFZBk89VFh0a7pU6Pqbs7k9B6DIfeT2a2qVywWMToygkgk4gR/7gBTd/mVfceh2WXHrwwPI5/PA7Cfw+3tbaeHbHV1FRzHYYS+Jj8x0dJI2RO9g1WMP1EQVt7dxfzdu+AA3Llzx6mC9gL2vXT1K202AcyHmLS/jhB7NpHO7ntgL/Cn/9ZqNZiWhfTQECRRhAJbbnlfvOHN4PfoW3TDsBtzKe3XPqW9OIkD3ewxymiPGz9237CNpK7roXq3dFZRo8nhfD6P0UwG7969c+RTj4L9AYA1H1YrFaytreGbb75xApp4LIZqtQpVUSBHIoEVFNy3JgvAdMOAqqqBg32HAuH5vUUIdKoeFMpRdEG3wH+9UEA2l3NuOEVRnOFjfsE9M8LsQW8XnHEch6HhYQwND+Ps2bM2J3NzE8VCAcsrK3izsABJFDE6NoaJXA7jPtmZbmDO6lNk9ivlMubn50EA/PjDD4gnEqjX6z0f29Gk7+3NezQoCtOyHAPNJvU5wT+lACmKAtOyHJ1rZwIok+AcQIDvhsOrdBlHd2bf/Tvi/jmscXZ9VlSW0TBNqKoaONhnTdqSJDkD886ePYuV1VWsrKxg6NKlz7LkeoRPDyb6sF4ooFarOVOXeZ5HNBZDvdFAo9GAlE4H3rgSV6AiRyL2xteyoGnaXoDe7TNIqw68s15qCwD0VnFog5bAnx2X9TNZFgqFAk5SIQxiWVAUxa6m+9h43hPc8x38Cs/zGBsbw9jYGC5duoRmo2HPiikW8WZhAS9evkQ0GsXY2BjydCMWto9i0IP/OqFYKOC3339HMpnEndu3AY6Doii9VxXY2nt5v+t7QCTSklRiGwDLXVGmG9KtzU0AQCIed3oAmP8RRTE09bMbGD276/fK/IyPzwkDQRAgSxJUKsiSDHA/EeKaVk0ZJATAxYsX8c9ff8UG7ZP83JJIX2Swz+QrP3z4gHQ6jWnXxDlJkiDJMjRNQ5MO4gkEz80iyzKaigJF09CNIex0lre54Vigz5q0GNjI8kFx0Nzr0TUNW8UiLl6+jHK5bG9cXOPU2VrYf0IHI9wNciTSosSwu7uLYqGAj2truP/gAQghSNGsfz6fx8jISNcd76fi7G9ubODeb78hEY/j9p07iMVi9iwEoHfFigGXigWehyDLYKGBo1LhyqqVKxVHFadaqcACrUxx3EADAQajjVFu13jO9Wic3a+LRqNohCi56rpuVzeoUQbsZyMiy5iZmcGH1VVcvHDhszPKRzgcML+ysryM6enplixyJBqFoqow6WYzML/Xdf/y9FlkvSfdgv12ySMGVddBQGfDuGxNX8kGD5gcJVvPVqkERVGQHhrCzu4uNE2DqmngOM7ZzLDAXhTFjkpu3RCLxzE7N4fZuTlYponS9rbtVz5+dNT3RkdHnXkx6QCbMPasH3TGdXFxEY8ePUIul8PNmzchiiKaVJe/Z78wSF/oSiqxLZqTVKIbAMuyUKlWIUci0HUdlUrFpmPRzarAcXsB/oDWxqih3jipkypP6EDfw6iIRKPQdN2ukgWIF1Uqy84DTvKW4ziMjoxgLJPB6uoqTp465VACPxd80cF+aXsbcydO7Ht4YtEoNE2DpmkwIpGeVBQikQgEjoNGM4Pt4NZrbweNBo9+xp3j+Z5LXn4wDAOqrmN9bQ2E45BIJm2pLjpdkeN5JOLxnjrPg4DjOIyMjGBkZASnz5yBpmlYpxMXFxcX8fr1a8iyjGwuZ1N+cjnfrP+n4FauLC3hwcOHGB8fx81vv3WC4kA0nA5wf5sHoSTAmtfc6118/x7RaBSSLNtcTdNEs9lEvV63Ob2y7NB7+gUhxKGD7Qv2A7zfaeLtkuX3Xjv2/LAKR6fnmhDi8InZ7AwA4OjnjY+NYWlpCTs7OwcmGXqELwsGTYjUajVcuHCh5W8cbL9Sq9ehqKoT2IaFJMvgFQWKqjrSj34IwndmAxojB7CZ965FNwxomoa1tTUIoogoFR9wMvY8j3QqdWAStrwgYHx8HGNjYzh/4QIajQbW19exvr6+NygyHkcum+08KPKAe8EIIXjx/Dlev3mDkydO4ArV0Hcfu2d6q5vKMqAkoRtOUonaWcuyUCmXMTQ0ZCcl6X2gqKrdB5VOOxXTQazFpNViplIXFoH7xDx/j0YiNhtE07pSb5jYg0UI4rFYi4IfIQRj4+N4/eoVTCqz/jnhiwz2DWqQNU3zbXYRRRERWYZKs/udjCoA32BblmW7SbfNcK12HMp9Hw1AYxQev2C/z2CQNUqynSm7wXZ3dyFKEtLpNKJ0wxORJKi0WZGtDQdgNNi6APs6Hp+ZwfTUFCzLwg7N+hcKBfy5ugoATnYml8thZGTEqXgABxPsE0Lw8uVLvHr1CrOzs/jq6lVwLtoMO/Ygqgq9NCf3gq2tLWQyGaQSCZs3S7OHJjVOLBPPFEVEUezZ4bHeASbr5gaH7ufsaIG7sv1B4C65dpPg1ChPnwPlZbqeMULsWQSSKKK0tXVE4zkCADuJtLO9DQAYp5rZbkQiEXsIG5vm3KUnzO8ZiMgyeLRv0g2SPALsZ5D1zfhV7gbhV1iAz5qAAWBndxfpoSFEolHIkmTbEkFwqmgiVcthazgoxONxnDhxArOzszBNE1tbW62DIikliGX92aDIfhM5nWCZJv68fx8fPnzA5cuXcerUqdaK+wCPzagjBwW22dze2cH58+eRpgO1eBoTmZTirNGqjiSKEJlf6fF7b1F383xGkE/c51fan1zL/zIxF4PYDcydlBzZcyvwvD1Ikn2nxBa5GB0ZAQBsbG4eZfYHAUIIdra3wXOc0wzR8nfYJX9N0+ydqKJ0zGT73RaSJNkPFCHQDKNl4m2YLnONUmd4D4WHodeSq67rUHUduivAB+yHQpZl1Go1jI+PI+3a6Iii6AwmYq9lO9IWQ3hARprneVu2c3QUFy5cgKIo9oTKQgFv377Fy5cvIcuyU5IdDkD3CQvLNPHgwQOsrK7i0sWLOH3mzL7zHaiz6qEJuxvY/cfWp+s6ypUKZufmWnovLMtCQ1Eg8Dw4wOnX0F1GVZIkSCEDf4dX2UZ+jef5QNlyQv/j2xhnv98xCU5WLfNdn2lCpf0p0Uhkn6Ngnzo8PIytra0jNZ4j2KB+ZWh4uHXCOfszbGoJ6wkTRbFzD5ZfEokqvTmbUddz5zQ3BgALwNnMln3owe4QGuzo9Plyv5tRkKqVCmZnZ1vosaIo7m0+OM7JPLPhXoO0p8Tj6wA7CbBvUCT1K8+fP8fTp0+RSCSQy+WQTKUwPDw8cB+nqSru3b2L3d1d3Pr2W0xOTe17Td9JJLdN/QR+ZWdnB6ZpYiyTsQN6urkzaZ+GIAjOezRdh6brNpWUbQJDBv5sJo2fhKtfP1i38/DbELV7vyPBqaptg32dPhumZSEZjzv3t/PZloVIJIJoLIbNzc3Pjh76xQb727u7GM1kfMs9HABOEBCLx9FoNNBoNsHTrKAvfB4cnuMgybLduKEoiMiyk4UMkzFh/O9OpVZWuuoGi9hyTyxj6ywfdoAvyzIkUQSBndk/c+ZMy/vZZsOtkrCP6+l64L2NlmHQcoXavDcajWL2+HHMHj8O07KwQ5UYCrTRl/Hg8vk8JiYmAnEyO0HXNNy9dw8729u4efNmS69HC9i17beRagBwV5C83xXD9va2XUL0bHyZNrUgiojH407Gn8lXMs5/E/b9w9RCuoEZ5bYl+xDXrSW778m++yESjYKrVOwqlk/J1bIsNCg31sm+eEE/ezSTwatXr6B0oeod4a8PllHf3t3FTBu7wHpiWNW4UauBT6fbbnr9/IosSfbmmxAoVFXKqbSGCA50mkRq59PCVBRNy3L8ijtxxHOc7Vdo4FZvNKCqKjIeOyNKEqCqLWphLbYKGJhfcaPd+SWTSZxKJnHq5EmYpumIR6yvr6Px/j0EOigyT+U9E0H7+tqgVqthfn4euqbh+++/x4hPAtK93r7knBkGEOx7g3vv2kqlEgSex9DwcMv7JFGEKUlOzMH8ikGpK8zH8BwHKRJBpN2G1LMWow01lIHnOJgBz5klUb3KVO02DN0kOA3TRFNR7J5HJvbgPQd67TKjo9jc2DgK9gcB0zSxu7ODs55g1g1WvrdME4qqol6rgW/HKWwXWEQiTkOgE3SF+AIJAI3ewJ10adtlNhkMeg6ai4LjDfDdD2m5XIau6/uMMuPWWbQRx695qt2D7zRXAsGMted8uu3KBY8Sw3qhgFKphGqlgtevX+PFixeIxWIO1z+bzYZqPK1Tg6ypKr777jtkxsbavrbfCkcoZ+bZQLY7dqfPKW1vQ5ZlJD10NTY10T0VVBAERKNRRyJPp0EzK9eLotiR30+oEgMhpG3zndPUF8YZUeqCQClc7RqyZEkCL4owKcXAXbEjhKDRbMKi9B2HU+lZB/vcsUwGxLLw8eNHnDh1Kvhaj/CXAyHEydi300FnmfdYPO4ENbVaDalUan/SqcO9L8kyFKr+EY1GOzbh+sGkSlzMB/gigO1iVD+NNvoCNMCnAZrXV5ZKJQA27dINttlhwZqf3fDzK47KEGwahLfXKQi6cdcFQcBEPo+JfB6XLl1CoVhEaXsb1XIZT58+xePHj5FMpRzxiEwm03Y4mB9KW1u4d/cu5EgEP/30ExKdBv6xe6IHv7JPPQ/BN3NOxcjnWnX0K6WSXV33vIbFEaZhgKMUYVEUgVgMBpUrZ4G/qij2QDq6OWgXyJv0GeA5rvPmOSQcVT9G8UEbel0HCU7LstBsNGyfJwjOa/ethh4rk8lgdWUF5d1dDFNaz+eALzLY39zctMtLAYZTRGMxW4JQ11Gr1/0NcxswLpdKd3Rh4R4A1LFxyScgYfQhVVEc2gVgP2jRSAQRjwKDG9ulEniex4jnRmMUD4ve0GGUEsIa637AJqZOTU1hmKqllEolh5O5TDmZmUzGHr6SyyGVSrW9HpXdXTx99gySLOPHn39GsssE1n6CfXZN/N7p/J6+xnFUfWa6SqWS3evg+T0zmqZp7qMMOIE/1cpmOuIs28+cvuzJyrAgw4+v7wbT1g8DRjXybii9YBKciksVhQX6pmkCxJ707G6ecl8btoVIJhKIRaP4QHtHjvCvC0IIioUCOKCtX2GbWA62FGGtVoNhmqjX60gmky1BEfGx6QwRWUadDn+0UqnQHG4WnItdMqZ+evtMNpApCzFIoogIe947+JVUKrVvg8EkGQndhPhW0/zW5z4Ova5sjW5+O3H93ZtICWMvCSFIJBJIpVIYSqeh6zo2NzdRoAo/b9++tefJ5HJOo693UKQbHz58wP0//8TI6Chu37oFqZu6kivwDAsv3df5BG+yiP7Ol/Me8lptlUqYnZ3d9zdBEOw5RD70Rxb4k2gUBqUas3lFuq6DFwREZNmmn7nWY1B9/U4xCfM7vWTMu012d/rB6LPBJDgty0K90bATULCb9Nt9f8zfjY+NgQBYWlnB8bm50Gs9KHyRwf7a2hpEUcSwp7zUAmpsOY5DIpFArVqFYZpOJoZ3BaztwHZwKuX+BzViDI4KT4gMtLMb1jSHqsPRz4hEIoGy2dvb2xhKp30zFKIo2g+eYSCc8v1+dDLWJiHgCQHx/L7t+11wB9scZ0uEZbNZZGnTXL1edwL/Fy9e4NnTp4jH48jn88jl8xj36C8/fPQII8PDuHX7dufJf+z4XdbnXavzKrezt/8IwDYY7sBz7+X980Yty0Jpawtnz57d9zd27UxiD1SR2gQGElXUsEzT7gOh5XxHP1uS7JkVguCU6rttFPs5M+bc2wVLfhKciqLYCkGWhUQ83kLv2cfZp+fA0XL+hw8f+ljtEf4q2NjYQHp4uGNiht1LHM8jkUigWqvBMAw06vXWQXwd/IpM+0iazWbXzLQftC4Unr3FuoIpRtVRlNbqcCRiCzgEyGaXtrf3ZfUZWI+Q2YOf3L9sn0AVtq1121LvZr5bkob9nfl+SZIwOTmJyclJEEJQqVQcGmnLoMh8HrlcrqU/cHlpCe/ev8exmRlcv349EP0xTIOu168QOlmdnW/LtXBvgOjr+0WtXofmQ9kCaLDP87bijN/QRtjfgSTLjjqcRitIFlWJUxTFoYixYYlAd339Xn2mQ1Hu8BpZllskOAkh9jNqWeBoRa/l3mtTMY5EIhhKp7G6vNzTWg8KX2SwXywUcGx8vGPzprtcwwL+aq0G0zRRr9Wc7vx2ILB3kRFZhmEYqNVqGOm0ufBBJxUe71qZpJW7MYrnOEQiEUcXPyi2trfblqL9ePuDBsftjfQGXMGbByyLC5eDZNndffxO18OVSCRw8uRJnKSczE2mxFAo4P37944Sg0bPcSyTwe07dzoaZOJai8Um9LFjMv6f11i4/sb+n5VLvdfjoFCpVGCYpq9RBmjzHJ3G222jyAsCYizbr2lQqXFmzVeCKNo9KJ1KrRTOPdDjeXnLr254JTgZZ9SyLMRjsZZNrp9RZvcWz3EYz2bx5Nkz1GmwdoR/TZimic2NDRy7fNn+BX22vXDfj7wgIJlMolqp2M2JzSYSHTLBABwZXEEQoNPAp9t7WtZJe204wLeJ2AtN16EqimMLAZsyyfxK0GZRXdexu7uLuTaZSlEUbanrA/QrAPY1NLMg3/2EW2R/AoaDHYzt67tz2YehoSEMDQ3ZgyI1DRubmyisr2N5eRlv3ryBJElOgvHd+/c4d+4czp8/3zmOcK3FL+veTpiA8/oV9zVwnddBobS1BUL21GXc4Dh78rtJKaLdNjoC7Z+MWpbtS2gyifWJiKIIVVXBdWNAUPSyQaYLB9yJN8+1j8ViqNfrjgQnq35ZhCARiwWeDcTxPLLZrDML4iD9fxh8ccE+k4O6yPT12xhl9lp2oXlBQCqZRLVahW4YqDcaSLYxsgR7JZlYPI6moqDeaIQK9h3qBDrvVg3DQKPZbOHji4KASDRqN7aEvFEUVUW1WsU5n0wv+2xgbzBTGH5iKHi+F7+zaClFsh/RJkPjfg0zfhwHuoSXYwAA6hdJREFU3lV2JZcvo1arYb1QwNuFBVSqVbvxt1zGk6dPkcvnkR0bg8Dzzvvdx2LG2O083Bn6fWY54HfTrwxeJ2xtbYHnuH2ULQbGrzR8Sq7twDEKTyRiy7pSio+u66g1GuA4LtCchkGct19Tn1uCs1KrQaSlXSYx61mEb7APjgPH8xgdGQGxLBSLRZw4caKvtR7hywUbPJhOp+1fBHy2BUGwK8f1OlRVBc9xiLaR5GR+haMTeTXDsDeZIYJ9t2JJJwqPpmloNhpQ6cYAsCt4USqZGRY7u7t28Ncmsy99giSSL3ye75ZvzpMNd/+dJXD2Xrpn9yVZxtTUFCYnJgAAu+UyPnz8iHdv39oBIGyGgWVZyOfzGKXcdkbfImitPLipSe61+J9S93uP857ngFEqlTA0NNQ2QcTuP8M0EfRu4ugmU6YJVLY5VBUFTUWxN8+JRMc5BIzK04tfYcmndgE4oxYRQlCr1QDAN4EEwN+nUL/CcxxGRkex/OEDGo3GZ5NE+uKCfQAAIXu7rDYPBof9Dw0vCIgnEqhTjf4GzyPmCVq8D2I8Hsfuzg5UGvAELVG65Q39bizLNO0gn1J9OJ6HTIeV9DOYZGd7GyCkbaaX9Q/oug7jgIJ9R12l3d/pvy3ZlzZGueMj7Q3KqaPd2tqCoqo4d+4cXr56hbHRUaytreHdu3e2EkM2i1wuh4lcDjH6ILq/c8tdMnVl/N1GoiVb0w0dKCn9Yos1UbUxkOxeYkOwwm4eHQ6mZaFWq0HgOIDjoKgqDF1HNBrtrMozgPP241tGo1E0aeM94xH7VtB8jLJlWeCpUeYF4cCzZEf4/MHurSD20PscSbKMOCFoNBpoKood1HjuRXcCCbD9SqNWsxvKCQmcYe+mhMWSRwYdPClwtqJOJCBVpx22SyVIktR2Zo3TtGmabcUf+oVvgOehTnKuf+H92RWEt/iNTseinx+NRFBcX7fjCp7HxfPnUa1Wsfj+vT0oUpJaBkXKkUirT6GiBuD2JCS72WL3a3zXOeCBnG5slUr71N3cEEURnEeBKSjcMp6WaaJcqTjfS63RcPpH2t2vvSaRLCoNC7QmFN0/R6JRqLUaqo0GErGYr39z31POZ7NqH8/bVWP67+eELy7YD/Ul+wQbkiQ5mZhmowHADhyYkfA2FQqiaGc4Kd8/aHa/nVEmlmVz1lx8Y0mW7cYP9E/5KG1vIxqNItZh4ItEqR2GZ37AgYBdTx++HPG+hsJpwAlb1VAUzM/Po16r4c7t25BkGS9fvcKZc+cwPDSEarWKdcr1f/LkCR4TglQq5QxeGctkWrL9vNvQuoL/lrW7wLHXeTYvB2WQCSHYLpUw5aPpzMCm7Zp0/HmvmzuO5+3NcjzufC+GZXU0zr3ey25eLvscr5KCIIpQm01YHIdhjms/CMUvA0N/7+X+HuFfF97grh3a2egInSirKAoatRpIIuHck35+JRqJgBcEkIADuhgMwwAI2Zd08iaP2DEGNSmd8fXbPSusP4hJKB5EsA9g73l2UT8dG9smiGc/M3pP2Oe9vLuL+bt3wQG4fuMG5ufnkcvlcPbsWRBCHMno4sYG/qT9PyNUMjqXy2FkeHiPmttyKt39wj4RB1Y58NjDQUJRFNSq1Y5qhwJNkrBNTM9cep63q2PxOHja98FmwbA+Rb/Bjb0dbP87vZVjDoCmKOBFEaPptG8VjPerFtOYpWXT/pn5lS8z2A/opNs9DJIsI2ZZaNTraDabMA3DyfD6IR6LQQlJ5WFGmQX7hBAoqopms+ncKCLVP3e/pt9pnqVSCaN0CEY7DJK335L5hl0WtSwLlmnuX0OXjL/7M+2PDP6wlMtlzM/PAwB++OEHDA0PY5tOw6QfhlQ6jVQ6jTNnzthKDBsbKBQKWF1dxdu3byEKAsazWaTTabsyEvJhJew/n7Lyvo3OALh8jUYDzWazbRWHQaBSlYZh9BzsE2qECYBUMgkO9jRBlTZ764YBWRQRiUYd49zL2XVS2GDZH0VR7KCG4yBwHMQ2G9Z2fH3vcT4vk3yEw0CYJFK7zGIsFgNhAX+j4aiKWT7PupfKEyTYJ2idMgr4J49kmjxiAbdJFbR6BVNmOXnyZMfXsSTSIMQf9nHd0Vpx3ZdACWJLA27o3CgUCvjj99+RTCZx+86dfTM5OM4e7DmayeDCxYtQFAVFOtBrYWEBL1++RESWMZ7NYiidDqQguH/ZZP95U/659/zc9KFewea2dJKnZmpsFh2m1isbwaCceJ7nkUokHGEI3TCcAW8RWrXtxuboFSy51KRVNgJ7UxZG2tud2QdCJqU/Eb7MYD/k6/1u/mg0Cp7jnIYM3TBs+TSfYCieSGB3dzcwlcciZG+UOW0+adCubsBukIrF4/tpB33exCYhKJVKOH/hQsfXuYN9v8FE7eBkE1y8ROJRBHAoOn7nEvT8Qgb7G8Uifvv9dyQSCdy5fbstZ9YNSZIwOTVlTzokBLvlMorFIgrr63izvg4CYMijxBBoPZa1/zypLF0L2ObI9Su/8mAnlEolEKB7sC8IAM3u9wo2HVEQBCeYj8VikCORPeNsGNBrtRbjHLrk2uG1TB1Bp43vTC3LMk3AzzD7BPusauS+5z8/s3yEw8AgKjwxWvlSmk00m01oum7zkH0+Ox6Po16rod5oIBOAysOqxTzPg+N5NBWlY/KIgfeR4AyDWq0GXdPa8vUZHL8S1s54q77MtwR66x5XuhuskH5l8f17PHr8GPl8Ht988w1EUew6gC8ajeL48eM4fvw4iGVhe3sbhWIR6+vr+PDhAzjYw/zyuRxy+TyG0une/b73e3VRVLxNwGHu7dL2NqKxWEd2AGD7Ap0KJPQc7NNKFOPLCxyHRDxuzxZSFPtfOgMmQvtNOEolDVMxJ35+2YV6vb43u4IOzQoTG1mezD4TqPic8JcO9juV7AghkGQZSZ5HtVKBaZqoVqtIJBL2REAX3FSeer2O4aGhjsdlRtm0LLtJ1CX1F4tGEYlEfNfFEQILvWcaK7u7MDsoszDwtHRG6KYkyA1NLGsvQ+X6DvzOo903FFR73Uuj6YTlpSU8fPgQ2WwWN2/e3PfdBQLHYXh4GMPDwzh58iR2dnexs7ODarmMpaUlvKZKDNls1jHSET/aiA9Vif2+HfrJ+JdKJSSTya5qT44uch+VHJ1ygL1a0gLPtzXOTKc/6BNLCPHNgrK/1et1mJYFy7IQo4PBms1m+wqVz3XfN7LelUE8wr8uwlYTOz2nMdrQV6tWYeg6atUq4snkvqpalMrZ6gGpPKwPzDJN7JbL3ZNHFF6N9rAobW+DWJavMosbLOCzKGWwo18htixz2CGVXjiBXwh09SuE4NmzZ1hYWMCJkydx5fLlrhNg/cDxPDJjY8iMjeHUqVPY2d1FmfqWV69f4/mLF4hGo07/2Hgu11e/3t6BPd+353y7JZW2NjeRyWS62kVBEOyptoYBBJC09oIQezAdwf4sukibdXVdt2WVCUFTUaCpql09FsXwlG4fmKaJRqNhD/UiBMlUyh4wSSvhvnx9n+O6lXiAz7Na/MUF+wyBd6qddoCsfJROo95owKSGORaPI+LhOrqpPN2CfV3T0KD9AALPAxyHWDRq9wZ0WjfHdZ2m2wml7W1wPB+IaiSKoj2J0TD2HjTXcf2C8jCOsB8E4s8SghcvXuD169eYnZvDtatXezLIfseWRBET+TzOnD4NQgh2d3cdac/7Dx4AAEaGh5HN5TCRz2N4ZGTP6fRT0aCv9V69du/e2trqurEDXMO1LGvfcK0gsOiwHAK0rWr5GWcmJRuhQU03tBuY4jbIgD3QSBRFyKqKJvzpaE7/hAdOcEHXc8TXPwIwuCQS/TAIomj7FZoxrFYqSCQSLZvlsFQeTVVRq9UgSRIinK0mFY9Gbd3+A7yPS6US0sPD3aV7qfiDRoc2OpuPdn4lrJ9o8/qwSaRO9tg0DNy/fx8fP37E5StXcGpAk7UJIYhGIkjPzODs2bOwTHNvUOTGBpaXl8FxHDKZDPKuQZHoEA+E+c79+uUcmpRr42qYJnZ3d3FperrrZwq9VnIonEoV2jfGS3SSM5OQNYk9PJHJxwbKvLeJAXVdR6PRcKhPSTonQ5Qku0ptGPB2vPjx9YG9zH4YifRPjS8u2A8bSHZqYnEyyDyPVDKJRqMBVVXRbDRgmaZTkgVcVB5KWWgX9OiGge3dXei67mTx47FY4ACrH7nC7e1tDA8PB3oARFGEQmlJUbjKoYNAJ+MU4BhOubXd300T9x88wIfVVVy6dAmnT58eGI/P0XdnO3TOlrUcGRnB+fPnoaoqNopFrFNN/9evXyMiy8jlcshmsxjLZvc1Pfe7MvcV42jJWtM0lMtlnAzgjDiOg0CbnwzD6Drp0QudTTekkzI7wWucLctCtVZDLBqF3GHqM4D2BrnZtJuLeR5x18AsvlPvCc/v57RizzExo0yOgv0jwJWZC/j6TnaaNYIKgoBUKmUH/LqOeq22L5EUlMqjqip2y2UYhoEYpVh0TR6519sHlWe7VEKmC4WHQRRFGJRrLcly3z1obvTb59Rtgq2qKLh37x52y2XcunULE5OTPR9r37E9lSOe9oeNZ7O4DKBBB0UWikW8fPECz549QzwWQ47SSMcymf1Nz/0m1dgPzC9zHHZ3dmCYZlfKFmDbUI7nQQyj7XCtTnCqxV0kxjmOs6mhdMKtSvXva7UaorFYdylZn3tQoYNLLdiJqlgs5jx7As+DQ/BNDGNIAMHYCIeFLzbYD7Wr9TESbk1dhng8DkEQbH1iVYVhWUjG4+AEYY/KY1m+VB4Cu2FSURR76AnHYWR4eF+FoCv6uFm2trYwQXWB24Ket0hpPJqm+TfT9oGw3PN28NsgaaqKe/fuYXtnB9/cvInpABmIMPBTTXAjEolg5tgxzBw7ZqvhbG+jSI30Mp2YN0yVGPL5vH2f9MAxbLs++j1tbGwAHIfs+Phemb7D54uCAIPjYFhWYF1kBq1NqbUdmHGWRBFNRbGbrlTVCVT8NgxeCg8he0NXLFptiboMMuDS9vYLKNpQeLwZmM/XNB/hS4OfwALHcUgmk/bEZ9q4a5qmo2rlqPIYhi+Vx6L0tWazCdOyIIoiRoeHQ6vddEp6dYKm63ZS4fTprq8lsDc4BHYg96kC/aBJpE4bulqthvlff4VhGPjh++8xEnBzExTdNhrxRAInTp7ECToocss9KPLdO4DjMD4+jlw+j4lcDgk6FHRQQ5uYXykWi4jIMoaGh8HRSmu7T3cP1zJME3KIYL+FwhMw+cTR50WSJDtGo83pTALaz69wANx3Iev70mi/YpTK0nqldLlGI7CAien6bnnK9f8c8cUF+4CdiWe7wm7wK7m2dLd7wCgH9Xodpq6jWqshkUhAEMW2VB7TNFGj5VrWrBKLRsMH+mzNPWT3m9SRjPrROlwbG3c1Q+R5GIS0Unn6RKeGqTDcbWD/91ar1XD37l1oqoofvv/e/1z7RJgmLlZ2zVAlhkajYRvoYhELb97g5YsXiFBOZnZ8HGPj46Gz6u1QKBSQTqUQi8dbMjTu0qwbgigCjF8ZAkxtoROFpx14yucXeN7W/mbZGJrl976WGUlCS7W6rsMiBFFZ9pUQFOgMCyb35+ZXutU8GNi5MyUJ07JsO8Jxg+HKHuGLhSAIILTyFRS+SaQ2r43HYhB4Hs1GAxrNTCYSCXtqdSxmD3r0UHl0OrndIgQmHRqXiMV6k7XsMSDc3t62RQDaBL9eXypRO2PQ3pqgDY79ILBfof96v7OtrS3cu3cPkUgEP/74IxLJ5EDX5z52kMyvIAjIUb1+XLmCSrVqZ/0LBTx7+hRPHz9GIpm0M/7j4/5Z/x5RWF9HLpfbt5FwNos+foWnTbphwOZAcFz3aexeCDyPRCIBjqpQ6YYBgz47+zj2ro2gZVloNBowLAuEbrj9qgIi7QfwDdp94jJHIcs1s0WnCd8DG1raA744D8fzPIZHR7G9sxP8Ta4vvO2X6IIoikimUqjXanbjbqWCSCRiZxY9VB5FUVBvNulh7KEMvCD0FzzwPBDy4dmhclnuJiqCzvQcSZZhqqpdch1QsA+uvXRiUHfjlwXZLpVw9+5dyLKMH3/6CckDMMgA9kp+PTipWCyG2dlZzM7OwrKsPU5msYjFxUUAtnIO0/VP96rEQAgKhQJmZmb2/4n94An8RUEAD7s0GSYbpFEKjyiKPTvuCM1eMt59k1a/WrIxNGjQdR2KqoLQ/oJ2BhmwHacgCPvk39qdGSvLup3L5uYmIpFI94rYEf7SGBoaAkQR26VSoEnK3iRSENlkNouiVq/DNAxUKhVEo1HEo1HUq1VnwBbHcXaVmMppCpSbr5tmbwIEbM09UHl2dnYg09k0DJ2SZRzHQaIbJ13X/YUMBoxAlqyNqMTq6iru37+PTCaDW99+O7BkjBdhlYAc0MrQqVOncOrUKZiGgY3NTRQLBayvreHNwoI9KHJ83PEr8R4ntirNJnbaVHG8GyUW+IuCABXhefssqx/p8X7mOM5phGeSmfVGAxFvpp423qqqClXTnPs26dMwz+BuNDcpfZQd0y+WYhsdQRSdv29ubiI/OTmwOReDwBcX7AuCgMnJSay9ewdN1wON/nbvSoMOoxB4HqlUyi75qCoUVQVvGABVsqnWas4kWoAO64rHncbcsFlQ3/WGAFtPNBazDUuAyoDk4u0PCoPQl/WWWz9++IA/79/HyPAwbt26BfkAHcg+tZYwcJ07Tw3w+Pg4Ll++jHqthrX1dRQKBbx69QrPnz9HLBazMzj5PHLZbODszO7uLhRFQT6f77wc9gNt5mM8dmJZ4AJmHHRN6ymr3wLOniiYSCQczqU7G8Mk3BRFsbMu1MB2MsgMIn2vbhiIRiL2Obfh67uNMrs2m5ubmDt5cnCb3SN8kRAEAdl8HhtbW4Hfw7KfLIEUxGIIoohUKoVGo2FvbJtNcJT6YlG1N8s0HWpaNBJBPB5HuVy2g6s+n8OwqFarSKbTABCYniBJEnTT/GTBfhD5TXcDL0cnz75+/RovXrzAsWPH8NX16wdbheg1ieSTSZ+YmLCTE1Q8Ym19fW9Q5OPH9qBI2uSbyWQCc+mLxSIA2BWFdsvx/L87MA58SpYFjU5072vzSo+fSCQc+WdV02AYhk3J5nmoVDCCUTj96KBe8LTaoJkmNE1DPBrt2PdpupJI7FNLpRL+9uOPPZ/bQeCLC/Z5nsf09DReP3uGrc1NTAZsotmnRxsgKOU4DvF4HBFZtmkIhgEedjNNvdFwHgo2VhnYP0yrV4TJwhAAlXLZLj+GCLYlSXIaUUzTHEjJifPphWj5ewCKkvuvCwsLePb0KaZnZnDj+vXQTUBh4WQwQr+x83nHk0nMnTiBuRMnYBoGtkolm+tfKGBpaQkcx2FsfNyR9kwlk22dV6FQgChJgZR4GNgIb3CcLe8aILvPpu6SPu9nzl4AONjBiySK9tAhQlCr1+17lhCHNxqLRrs2bTE4Y9sNAxZor0UbtQQWrLDMvkUIdnZ2cOu773o+tyP8NSAIAqampvDq8WM0m82uGuMMLNgP0jfDwNONrKbrjhiERYhDA2QzPZKJBGRJ2je3pVew5zDM5NZyuYyhoaFQSRxJksDR4GtgnPIOxw8iv+n2pZZl4dGjR1heWsK58+dx/ty5gQk8tEPPSaROsQrHIT08jGQ6jTNnz0LXNGy4B0UuLEAURYxns/a8mGzWFh1pg/VCAaMjI12lnFvWBrp5on4iyHfNkosCz4em8HiPT4itqBiPx6HRzbNpWahUKs61Y9WyeCwWOKkjiCJ4F4W13XmxigabVA/YdGNN1zE3N9f7uR0AvrhgH7CpECbsJsUgwb43Ux4298yyMaqi2P+pKhRdRyqZRC6fh8wmFboDin6Dfa6zNjIzfuw15UrFpoWEhCiKsCh9YhDBPumykepatXDx6548fYqlxUWcOXMGFy9ePHCDDOxX4wmMbhtI198EUXQ4mVeuXkWtWrWnLhaLePbsGZ4+fYp4ImHrL+fzGBsba8n6FwoFZLPZ0GsUBAGcYcA0DIjRaFseJoO7atVv1su9yRMEAYlEAjWqQsIGs6VSqa5ZFy9EmqVnA1EAf76+o8IjCI7h3qZDyYLQNo7w1wbP85icnMT9u3dR3NjA7PHj3d/EMvo92iVZkiCl02gqCrhKBZquo9ZoID00hLHRUcces8nVbJhWX+hip9iEegsALAvVSiW0CIL7GRtkP1gndEsisb+Ypon5+XlsbW7ixo0bOBbkex4Aek4ihYAky5iansbU9LSd9S+XnYTSo4cPQQhBmg6KzOfzGB0dde4nyzSxUSzaynYh4E4iGZRKyXfZ+Op0QGO/lCkOe1UagA7D4nmUy2U0FAWgDe2pVKrtbKN2YMNQWZ+XRYivaAf7O3tWCcdhY2sLUiSC45/o3gqKLzLYF0UR47kcCrTs1A1sZ9Z21HYIyJEIYpQqo2ga6rUaCM3+M91Yt7HrGW3W6NCRWl5KUK1We+IdS5IEnUqlDYRf1ieNhxAC3TDw4vlzbG9v46vr1zE7O9v/ukIcH+iBW9kNHT4vmUohmUrhJOVkbm5uokCn+S6+f+9QgnK0LFva3sb1r74KvQSeSoo5jbCwz7edcXYoPANw1jwAVui1qIqCBftZVlXVpuD0cO+wCgAzuoT1Kng+y2uUAWBzawvxZPKIr38EcByHRCIBOZHARrEYLNjnuL1nB+jJ9jEecCqRQKVSsdVCFAU1KgwhiqLTANgXlc51PL/Bdez5Z7KhHOyporpp2nrvISFJktMAPwj70c02BEkiNRUFT588gaqq+Nt332F8fLzvdQUBsSzn3gi9WevVn3J7gyLPnjtnS0ZvbKBYLGJpaQlv3IMi83mbkmwYyHWhhvpBEATwVN2GJSlb5rm4zoFYllPxGZRfYTUbwzDQbDbBi6IT1wg0mRn6nFijuVdS0/NZ+/rACMHWxgZm5+Y+CYUtDL7IYJ+VXBeePYNCA4VOaAnyewzimjSrz/M8JiYmsL2zg1q9Dk3XYdVqUOkulaD/rD4Ap9G1JYNP/CeMNhUFuq4j1UNmX5Ik56buZeCSF10Dti6ZpUajgUcPH6LRaOBvd+4g24E/eBDoi7PfARz81Tu8EEQR+YkJ5CcmgKtXUaVKDMViEU+fPnWu7/b2NuLxeChOpsDzdmDsKmnvqyDRe86k1AJgMEEG+1yV9r8AtuFPJZNI094Ygw7Pisfjga+/IAgAITBpllXged8smmOUXeeytbWFU6dPfxLFkCN8/hAEAbl8Hh8Lha7PKgHdNAekhLZDvVaDbhgQRBFTExPY2d1Fo15HKpFAuVJBNBJxgqNBKUaxbCjL4rtttvucq9UqAPQU7DNN9EH2g/WDnXIZ9//8E4Ig4Kcff+zJV/YK9zCvsEmkrpXygJ8XiUQwMzODmZkZEMvaGxRZLOL+/fsAbJ+3trYGYlkYptKbQcBTv+Lu6Wh5L03AMAYBB/tZG8gAKo6DRSdQM4lojhAMpVIgAJpU1Q2w6aFBrxdT5HGrDHkrxm5qKKu8E0JQ2tnBjVu3+j+3AeOLDvYf/fEHNjc3MdOhzNjSRc7zPWUPG40GNE0DAEdSs9ls2gbfMABBgKZpqNfrNkUhIN8zCAj2hrQ45+FBrVoFCOlJoUagMoQW3XEH5uv1CL9R0wzlchnz8/OwCMGNr7/+5IG+W7kotFEO8JrQ2weOQyqdRiqdxukzZ2DoOn799VdUKhWH6y8IArLZrNOQ1YmTyTYFbZupXOdsMA1kKm/ZD1i1plavt/QARBMJR9WE53l7ijVtUkwkEoFl6niet5saDQM8vX/dygkmVSAC9vT1DdPEbqUysAmZR/jy4fiV335DtVrtSot0ngvSXp2mHQix9fNZ1p7JcDYVBQR2JUoQRTRVFbVqFZIsQxhQgMoCL9a70w7VWg0i5UOHhUiVSRi1td8NdddESYegeL1QwO/37iGeSOD69eufNNAH9nxDT1fgADTbOZ7HyOgoRkZHcf7CBaiKgv/8j/8AeB7v373D61evEIlEkKVU01wu1zEuYAmWTk26jF2h0d6qIMIq3UAIga5pqNP+L4sQRCRpH2VHYQE/IYjFYoH8mSSKTj9jC4XH41cAytenn7lbLsOyrM+SGvrFBvvxeBxiNIqNYrFzsO81ACGNcr1e39sZUroOYGc7NE2DpusYGxtzGng1Xbe1kU3TlhbskQfvDP3y4R97Ua1WwQkCkj1KbkmSBJMGS/0G+wRdgto2RrlYKOD3339HLJHApUuXuo6OPxC41xU2wA1yX/UZNAuCgGq1irkTJ3D+/HlUKxWH7vPo0SOAEKSHhpCjpdlMJtOSYXEyMIR0ruIQe9gagU1b67UiRgiBpuu2rrhl2c7A0yjl5vEnEwlnQ1Cr1ZBMJAJPg7Ysyx7s4jo2C/j9+PpbW1sQBOGzNMpHOByIooh8Po+6qmJzc7NtsM+y+k7Q0KbE3w6EENSorDOjD7GsfSKRgGEY0E0TIyMjKFerMCwLhqKgWqshGokgGon0XIF1KsTonnyoVqtI9BgYcxwHSZJg6To0Xe9afe+ETg2SzvHaXPv379/j8ePHyGWzOHvu3KFIIbLsby/fWbc7KmjFuBNM00RTUXDz5k2HtcC4/qsrKwDHITM66ijHDQ0NtRyPp3bV7LIxMWm/GAjpK9i3LMvxKxYhMCwLIpvpQrXuWe+dLEngOVvKVjcMkEYDsQCVY0EQwNPeFdMwwHv8FdsIAK3V4o2NDcQSCUxNTfV8fgeFLzbYB4CJyUmsrK7i6tWrviVO74PCuvaDZmFqtZqTeYlTZQSGRCKBcrkMRdPQbDaRSCTQaDTQVBSA49BUVSiKYnP8o9FQQy+cJlF70V3XW61UkEwk+moUU1QVmq4jfA7HgwCBoZdfubi4iEePHiGfy+HaV19BVdXBc+YDwK2FHPr4Ae6pXoalubG9vQ1V05CnQ0/SQ0NIDw3hzJkze0oMxSJWVlawsLAAUZJsA53NIpfL2c2vNAthUgPpB41mQUTONfAkBF2hxRgDTgNu1KWywzaz7qvM8zySiYQtP0hspR7HgHeAKIrQdN0e1OLeJNI1mz5GeXV1FSOjo4HGwh/hXwOCIECSJAyPjmJ1dRUnTp7sOD3UjaDPNdvIss2CV142nUqhWqtBVRQYpolkIgGN2mbTNNFoNtFUFGfQXJhkkiMPynHgA6y5Wqkg3cc8E4lKU+t9BvuBEynu1xGCp8+e4e3CAk6ePInTp09D1bTDmZh9UH1gFP1+LpPcHB8fB8fzLYMim40GipTr//rNG7yggyLzVNN/fHzcls+kNMpOSSTGjpDdgg8h/IppWfazoGk2T58QcHQGhduveD9PFEXE43FnsGOjXkc8QOVYFEWY9P519xc4SST3MC3YMc3Hjx9x6syZz2qYFsMXHexfvHgRd//rv/B2YQHnzp/f97peAytCAw3W1JdMJvdtJpihNnZ2UK5WnUBGjkSQiMftwUG67uiKS7LsSAp2Ou6+Gz/Aw1Ct1XriVTKItGRl0uxor3JYQTMM7ofy2fPnWHjzBnNzc7h69arD8TyUYJ9usnopOffXlhwMxWIRsiRhxDU4jcGtxECIrb9cpJzMBw8eAACGh4cxmskgPTRkD/hpswFlWf2WBqMAz5JlWVA1zTbG9PvleN6ZmOsu9bon5rrB8zwSySQa9TpMy0K90ega8LOeAu9gF0IpQ16jvFupYHV1Ff/P//v/Hsp9doTPE+weu3rtGl4+eIDC+vq+5m0vrRLYSw508zemZaFWrTp2MplK7eMts0nthmmiUi4jPTQEWZbt4XKybM+iME0nmRSJRBDtkkxqSR6xNaO7zSpXKjjRRxOrJEkA7SfrJ/sc1raahoE///wTa+vruHLlCk6eOoUmG3x5CP05B9UH5qDPvpF1Kvfqp44Ti8edQZHEsrC1tYUCVY5bXl4Gx/MYHR3FyMgIhoaGkEgkIPlcY2JZe9Vi93ECrNswTWfDy0QlBJ5HhMZT7kGp7Z5DURSRiMdtqqhloU4b4Dv5ejYd2G9gmEF9C7BnNz58+IBypYLvv/++6zkdBr7YYJ9J9Z08dQqvFxYwd+JES3DS9haiN0Onx44F+kzruJ0hTaZSKFcq0HUdtXrdbs7leUiSBEmSnO5wXdehaRp0TYMkSU7w46yV0Sp8jAEH20h06igvl8t9yzy5JTj70r4NAI7jYBkG7t+/jw8fPuDS5cs4fepUS/ntUPAJMjD9ZPYLhYI9yryLw+I4DiMjIxgZGcG58+dtJQZqoD+srkJ5+xaiICBLszPZbBYRWt7Wdd0JyNuVWr2a4qZlQaUNUoDt3NzG2O9qdroOPMchnkig2WjAcHH42wX8zGD7faa7WsPe//zZMyRSKXzzzTdt13CEfz04FeOJCWxkMnj67Bny+fw+e+B3P3cLni1XoM909tsFGql0Go1GA41GAxE60EcQRUQiEUQiEei67iSTFE2DoqqQZRmxWKxlA99pejrHcR1noqiKAk3TkO4jiSQIAgSOA+G4viQ4g2xMANtuNJtN3L17F5VKBbdu3XI2a95BjZ8S/dB4giDo9fGDaRjY3NjAuXPnuh+H5zGezWI8m8Xly5fRaDQcus/i+/fQ6BC1/MQE8rkcxrNZ537UaFWF5/n2jeYeOpxBh2TplPpjEXtib4TOamFg597Nt7ZQRWlCN5lMtt2ECe5GdhcIIY6PZLGoYVl4/vw5ZmZmcOzYsY7rOCx8kcE+YF9kwzBw+coV/P3jR7x69QpXr151/t72i2clzDaf22g29wL9LhM8BUo7qFQqKFcq9o3jej3TeDVpt7iqqk5ZUxAEuxogig6XuhPaZUY0OiGu36YjWZLsSaS6jliPvMagBkdVVfw6P4/d3V3cvHnT1gX2fMZh03g+NyjNJnZ2d3Hy5MnQ741EIpg5dgwzx45BVRSsFwoolUrY3t7Gn3/+CQAYGR1FPpfD0NDQXm9Km+vAni2DBvnMGBPLgiCKiHmMsResQbATeM4eaNegAX+j0UCinWGmv/N75g1dB1yB/sbWFgqFAr7/8cfPstR6hMOD+3746quv8Mt//ieWl5cd6V+/rL6DLsFzvdEIFOgDQESWEYlE7Ox+pYIYpd8xOMkkGvTrtIKssWQSrdp15bl3GNxYrdVA0JsSjxuSJMGkSaSD1tuv1mr453//N0zTxA8//IBhdwWU2YZDsO3ElXUO9b6DWIwHW6USDNPsOo3dD/F43BkUWa/VsF4sYmd7G5sbG1haXATP2YMis9kskuk0otEoEp16Al1BflNR7B4AGuRLkoS4LPsmItl1DZJM81JFm80mEm0a0NkmytevUJl1tnFZWlxEvV7H//V//98dj3+Y+OKDfUmWcfbsWbx8+RKnTp60p8h2AuOU+3yBjGcM2DdykGAglUqhVqs5igl+kxfZEKFYLAZFVZ0sqG4YECjNISLLbR0Ax3n0nF2oMXm0PriVAC250sCqVwnOIBmGWq2GX3/9Faqq4vvvv2/LmT7MDExYGk9Qo9zPOTmjzHswym4Ioojh4WEMDQ3h6rVrUJpNZ6DXwtu39jNFh36xrL+37GoYBhQ6lpxl+AVBQDQeD1QV6iYnx8BxHGLxuM1xJgRKs+mrDMJ3+DxGC2PDt549e4bhkRGcCjk85gh/fTBVKMuyMJLJYHp6Gi9oto75gk7PcLtgo6koTgIp0SXQZ0il01BVFeVqFXIk4itTKEoSUlRcodlsQlVVmzaqabbaVSSCiCy3DTI7nUu1WgUHdPenXSDRfrB+JDiDVEO3trZwd34eciSC77//HnGPWMVhZvYdNZ6DEH1Af5n9YqGAWDSKZL+bOlnG2OgoxsfH8dX163uDIgsFvHj+HBZsJcNcLof8xATGx8Za4iumv++IOdCNsyzLiMhyR5lOJyAPKCTBJu4yNSxVVf018VnF2PNri9jqchztadMMAy9fvcLx2VnkPuOZLV90sA/YF/706dN4//YtXrx8iW+++aZ7B7uPUTZp4wYAh38fBJIkIR6Po1avo1arIdOh4Y/nOMRpYM/0xlnWstFoQKacf5k2m3RbM2AbZQL0JLvZsjaehyAIzo3ckypPF+NUKpVw9949RGQZP/70k/+aDzG73vNArT6oOUERepR5GzCjadJmqmgshuOzszg+O4tGrYbNrS1s7+ygtLWF1dVVAPbE6vHxcYxmMohFo05zrWVZNrVAlu2KVpfrwK5qGKoWz3E217Jeh97JMGN/tcBwDXqRRBEfP37Ezs4Ofvj++/4aBo/wl4UgCLAsCyYhuHjhAv7t73/H23fvcPbMmUBBp7fpXNd1qIoCwOY/B9UWj8diTuNjo9HAqE+fjrNmnkcikUA0GrWTSaoKQ9dRMww0Gg1IsowIrQZ4bVu73plqpYJ4ItG3Fjo7pmGaME3zQKppKysrePDgATKZDL65edPXdx9qxbhHGk8/lM+AB8B6oYCcD1UtLNgUXXau7kGR5d1dbG1tYWdnB4ViEYuLi86gyLHxcYyOjkKWJKfpFtirbu2bA+MDDp2rVH4QBAHRWAzNZhOKqkIQhP0UuL3/aXkvU2cUBAGCIODVy5cwdB0XLlz47AZpufHFB/smIYgKAs5fvIgHDx7g1OnTGB4e7vr+loFVxNY8BuwMYFh5rlQyia2tLYcCBL+NAtkbYsLzPGKxGKLRqBP0m4YBVdeh6jp4jttnoLk22ctqtWo7hgEMXJFplkjT9Z6Cyk4P5YePH/Hnn39idGQEt27datsHcWATbAOAHTtsBoaw4Trd0OM5mYaBYqGAM2fP9vT+liXwvE0bM01nCBWwl1kZGh7G5OQkRFFErVrF+vo6ipubePP2LYzXrxGRZVuGLZvF5NTUHq+ffW9djG4vfQuM8takVDi3YWbqIn5gPQQSdSTPnz9HLpvF2Pi406NwhCO4IVIFGULsuSUn5+bw6tUrzM7OdqfGcBx4F5XHtCw0Gg0AQCQaDS03mIjHsUuHN3Yc8EX9iiAISMTjiNGgX1NVmKZpZ/xVFQLPt/iVTqjWal3nDAQF6wfTNM238t0N7awFIcRWiHn+HMePH8dXX30VKNH3qdGTTwtjI3ts0C2Xy6jXarhy+XLo93rB/IhFZ5qwc2XiCKNjY5ijdLhyuYy19XVsbG3ZWX9CEIvHMZbJIJ/PI+fi+gPBqjG99PrJtK9S13U0ms0WqWfORa12+yum7Q/YwhBNRcGbhQWcOn0asVgMkcOQDA+ILzbYZ8ZK0zQkolEcP3YMC2/e4NnTp7jzt7915ysCjtZwo9FwMoCJHrTqWSMir2mo1eu+Bs1v8i2TI4xGo3awT3mXbgPNc9xeKYtOdXOjWq32zatkkGUZTdqYRWKxgTQUEULwZmEBz589w7Fjx/DV9ev2EA7KxfN7PYBD4VZaPXIrD3qta+vrMEyz4zyJMGAUONOywPJsTBYNsNUPlGYThmVhnDZaWZaFaq2G7VIJG5ubWPv4EY8ePcLY2Jgz0CuVStlGl+d9h8EwznMvkGUZhmnuGWbG33dT3FyfbVmW42hkScLy0hJqtRpufvstCCGfdQbmCIcHp6HQMCALAs6ePYulpSW8evUKl4MERa7Aq1Gv28ohothTH5RDJTUM1BuN/VRNtrHwydbHYzFb1YdWw5h0p6koUBTFbqCXZciRCHifYZOVchkTA9IKj8iyLVKh6z0F+36wLAsPHz7E8vIyLly4gLNnz4JNcfWzMIfqV3pJIvWpsBMEHz58gCRJyGazfX8WSyKxeSqCqzEXAESOs5ttNQ0cz2NyagoTk5OwLMvO/JdK2NjYwMryMgRRRHZ83A78c7m9e6aNuIqT8OnhesWiUVimaW/MKX+fJVYdqXbX69mQLY7jIIginj57BoHncfr0aYCQz7pi/MUG+zLlIhpsQp8g4NKlS7h79y42isXu3GaahVFogxOAnrXqTdN0+Pj1RgNjrsA+6K5eEEXEqR6s20BbpgmFZv95zh5UIsuy45TKlQpyA3hYgb2yFAEGMk2XEIJHjx5hcXER586dw/nz51uaafweTqfc2teRe4PzXR2CPFsnrK6uYnRkZB8PtVd4x5tbpolarQaNcn1ZUxQhBLIsQ5YkiJTrzzYc9UYDhUIBG8UiXrx4gWdPnyIWjzv6y2Pj485nMQRRluqEWDQKk1YkmnQ4CkezmhxaMzAsqy9SWsaLFy9w7NgxDA0PgyPkKLN/BF9EIhFUq1WomoZkLIZINIozZ87g5atXOHniRNdnkFWuGnQaNEdpaL2AAIhSGc5ypdIS7AetjomiaOuMU3omkzA0aODfVBRHISUSiTiJgHqjMbDMvkPl6VXa2YdG8dtvv2Frawtff/11i/pJu8rhYXH2CW0yBQ5WjSc0CMHq6iomp6YGti6e5+0kKk0iGYaBeq3mDFUz2LWgcYxE782R4WGnCX63XLYlozc28PDhQwBAOp12EkqjmYy/amGPSnccFYKo1euOkArbXDg+xfW5TlZfklCv17G8vIyLFy8iGonYSaTP2K98scE+TyUuNdooKEsSJiYmMJLJ4MHDh/j555+70nEMOjkOAGKxWKjBV25YltXC869UKhgaGgpO7/DAbaBbAn/LQpNlZgQBAqVanOpBoaUdIrIMs9mEqmmhg/2WHbBh4LfffsPm5iau37iB2YDSoF9cBiYEmPEIs6HUVBXFYhGXLl0a2DqYYpRCGwfZPQUAMs3QROmGst1aE/E4Tp44gZMnTsA0TWxSlZsNysnkKCeTlWXjdCPdTxmdBU61Ws3WXtY0e5oo/btbgo1t4CVZxsOHD6Hrur3ZpK/5nI3yEQ4PEh34Y1kWTNMEL4o4dfo0Ft6+xR9//onvvvuuK+9co1LLALpqeXeCZZpIJBK24hUd3hiLRn2rxN3AcZzdE0Z1ydn0d0b1MQwDiqJAFEUozSaIZQ2sYuxM09U0aKoKMeTmx90HUW80cHd+Hoqi4LvvvsPY2Ni+Y/kmkQ7Jr7iPG+Y7O2i+fqlUQr3RwPUBVYsBm8pDAJsHr2loNhrQVNXJ+oui6CSO2mF4aAjDQ0M4e/YsNF3HxsYGioUCVpaXsfDmDURaiWDiEVHaQ9ZPkzLP84hFo2g0m9B0HaIo2htUunlx0/Kcaew8j/k//kA0FsOJEyccedxB0KkPCp/vygIgGo3aRss0HT7ktzdv4j/+4z9w9+5d/PDDD+0NM82+ENhl/n7K+hYN6lPJJJrN5p4MZ587ZmYk2eAIZpxVaqB3y2WYVDmn3mhAkiSIgtDXcSVZdgahWJYV7rOogWo2m5ifn0ej0cCdO3d6KhN+am6lewd/kEY57Fmtra+DWBam+yypE0JanDqTHovH4/bEYthTolPJZOhrLwiCndHP5QDYikuFQgGFYhFPnz7FE8tCPB5HLp9HLp/H6MhIz/coz/NOY5Wmqq16y/S70A3DljnkOLxbWMDq6iq+uXnTrgTAVgMK25dzhH8NcByHSCRiz0cxDERpf8itW7fw3//n/+DRw4e4fuPG/meEZixZ1YkQ0ncvlWVZzswJRVWxu7uL6ACaKdk5RiIRWPE4NKrgo1PVnK3tbRBKX2g0m04Gtp/jRmTZUaALDXptd3Z2cPfuXfCCgB9//NF3M9LWHh9SZv/AB2oBPW1gVj98QDQaRcazWQoLQgNgJpfZqNcBnkc0EoGqaeB5HqlUCvFYLPT9I0sSpqemHN+3u7tr+5VCAQ/u3wcApIeG7CnxuRzSQ0M9X2dJkhCh9OmmorQmfplfoRt4QRTx4MEDVMtlW8KZ+rLPnRr6RQf77OJqzIBQJ37nzh384x//wIMHD/D111+31adnwWwvPH03mB5sMpWCpmlQdB3lSgUjARqFg4LjOLtDnU5TVDUNu7u7AOwbVaXNixzszK27TBbmIRN4HqIg2BPvQo45J7C5nvPz8+B4Hj/++GPoUvChllsBOwPTwwYnMOigjqD4sLqKsbGx0Jlod3DP/mXX1qTUN6YTHI1EnM3qIDZZyWQSp06dwqlTp2AYBja3trC+vo719XW8ffsWHMdhfHzcKc36yWl2gixJMA0Dmq77qvMwo1wqlfDi5UucO38eU9RhEEIgHwX6R+gAJ9g3TUQ5DjBNjGUyuPH11/jjjz+QSqX2N8vT54Yp70iS1Hf1iNHs0uk0tM1NNBTFmSg9KPBU+jkajTo0H13TwAsCONjVPwW2PRZEERLNeobdxLDheswWBX0/q4Sur6/j9z/+wFA6jdu3b7cNrNpZr8NS4+lFY58N2QwaxIetGBPLwscPHzA1PR1e+5+yDdj3aFAJSoI9PrsAgBdFJGIx8LRpfBAYHh7G8PAwzp07Zw+K3NjA+vo6FhcX8fLVK0iiiGw26/iVsMyESCQCyyUByjYOhFJa2UZ18f17fPz4ETe//RZDQ0NOv8DnXi3+ooN9VnIl9KYTRBEcgNGREXzz9df4/Y8/kEwmcf78+dY3Uq4+AIcG0E/RjJgmCGzDmR4agrG9jd3dXaSTyZ6pQZ3A0+YqZpBHR0edhkSTPoimabYYaVaa6jTsiIF1qTOaRFAUCwX8/vvvSKVSuH37dtfsqe91PyQ1nl4zMEwJIyjC3GtKs4nixga++uqrQOtg94BBR3y7qxVsoI8giojQDYdzzjR7eRDXXBRFTExMYCKftzeDlQo+fPyIQqGAx48e4RGAdCrl6Ppnxsa6fgeMG8kyhe7AQdd1mJaFaqWCh48fY2pqCmdpYMbT8/7cMzBHOFy4k0hO0EUIjs3MoFqt4unTp0imUpicnGx5n2VZUOlGcxCNqBbVG5clyZnWvrOzg1g02nfV2A+iIICnNjsRjSIRj0M3DBg0MaZT29JUFFtjnAb/YkD6gixJUCiFKMxm4e27d/9/9v4kVo6rzQ5F144+sj19f9iTokiRIilRorq/c/l6ZE/87tSAgXcnhgdlwHgXLrxrvAt4VC7Yg5rdggeGJ8b1Kxu37huVXfV3Kkq/GlKiKPZiT57+nOyjj3iD3ZydmZHtOaQkKhdAkDwnMzIyMuPb317f+taHb65dw/zCAi6+/XZ3GVWvRs3vScYzyOfFq4+DYJDYvb6xAdfzsLy83POxMmnEk3zeGM797TVJoqMyC04kCYiiDOxA1S/EoMjlZcRJgu2tLTx7/hyra2t4wgZFToyPiybfsbGx3qYtTEkRsNxHY+eeAMKha219HXdu38ap06fF/f9jkYb+qJN9gLEwfEAVG5xDACwtLaFareLGt98in89jSdKmcWcCQohwSdiLRo53oCuETt2tVquI4hhbOzuYmZ7e4ztsB9c+e65LB3lJXzIRlNk1iaUb1eVBWlWhScx/KwzDQMN1hU95P4Hqwf37+PLKFczNzeHixYt9BfO0pprvW1v5Q3LiefbsGRRCsNiSVHBEUUQb7djnm0hOFAkgFmT+R57u7DIvbs91aVDeYzN2N3BNJQFlKU9kMjhx/DgCrslcW8OTp09x9949aJqG2ZkZUZpNS5q4e4iu69TlQ3IS4pKEr69dQyGfx1splT1jlOyP0AUqq4zy+0qOZadOnUK1WsVnn32GX/ziF002z57r0uSHESucERwWvAKnqCqKxSIajQY830elWsVYsbiXt9gVnufBtCwh9QForJHXFV755b0x/ST/BpN2+EEAuw8mOkkSXLt2DXfu3MGxY8dw5syZvuJzG6HSYhLwMjHUVPYhnGUGIZGePnmCbCaTalGeJAmiOBbffT5kU/69oihNnzOvhHMzEZ/JdwC80HWFXyOFEExOTqI4NoZTp07Bdd3dQZF37+LGzZuwTFMQStMzM+mbEJbsq2ywlxgaCZozlisVOmTvwAHqvtOCHzqJ9KNP9i3LglOvIwgCWLbddDOffP11VGs1fPH558hmMhifmGhm9S1rN1kbMijz8hWw2/g4MT6O9fV11Go1FPL5F6IPJooCz3XbmHfO+pvsJuO78oD5ySZxDJ+VpBxAJP+qqlKGl/1bl7yRu51/kiT49ttvcfv2bRw+cgRvnj3bd2BLa6Z6wWNEOoIHtBfBmMkYJCg/efIEM7Oz0Nj8A24RxoMxP2c+jITbgWmaRj/HLhsuhRCEQUA965l060Wg9TMm0s91Xcfi4iIWFxeRJAnK5TJt8mVODAlowxYP0uMTE033t2WaCIJAbEoTQuB4Hq5duwYC4L1Ll1I/zx96UB7h+4dpmmg4DoIgEMOtAPr9vfj22/jt736HTy5fxi9++UvYto04igSrz+PlXirG/B7nxA4hBIVCATvb2yiXy8hns/teNeav43oerJZNNndqA7t3wihCyO69bsk/fx6XhxJCBAHVzes/iiJ88cUXePr0Kd48dw5HjxwZ6H20eqPLv3uZeGlzY/rcIERhiOfPnuEIM/UI+brCXM4iJsUBALCYqvB1hVWAlQ5rBX+PfhDAYrauL+t6i9dhUu6DBw/i4MGDiJMEW5ubIvl/9PgxCOigSL6uFAqFpnVFvve5bKneaODatWsoFAo4f/68eD2F3TM/dCce4BVI9mXmIWFsvaz7fuvCBfyuXsfly5fxq1/9CoqqClZfTpSHtQSMwxAJT/bZF8C0LNi2jajRwPbODhZewAhlAsrO9kpceLA1uwXpJAEJArHxIexxLtdvsum63LKRI4oifPnFF3j67BnOnDmDI0eO7Pnm7qnZ78X8S7IazqwR6YakT5V+z14r7vW6Lwk86NaqVWzv7OCN06dRqVR2PbUZuHxIU1UYmiaC8SCVBj8IYL7gZtU0ZpO7ncjJECGkSZPp+74I0A8fPsTtO3dg6DpmWCPw7OwsTNMU7H4QBICi4P69e6jXavjZz37WFHy5LVwCjJpzR+gJ0zRRUxQxq0GOH6qq4r333sPf/u3f4pNPPsHPf/5zeJ7XxOqzJ7VZwvaLMAho/5W0Wc3ncqjVanA9DzulUpsTzX5AIQSO4/Q8tsaIIXG+jAkOpCqjHwR0XWEghHqth0GAOEmEzLV1Q+55Hi5fvoxqtYr33nsPs6zxv1+0EgxN17/XutGHLFNeU9J+DrD1hGvvMRiJNJSFJDpvLLnEM4oirDx/Dj8MMTYxgUqlQtc/aW3h70HTNGim2TW5bzsH7mIVhoh0XRCOLwsih5M+f4X1h01PT+ONN95Aw3GotefaGm7fvo1vb9yAbVlC5z8zPS3Y/SBJ6HuJY9y7exeKouC9995r/iyl78AP2WMfeAWSfUVRoJum0O3rut5k1aWqKt67dAm//s1vcPnyZap/5gmOfLMS0vSl7wcRG6sOMFZfOt74+Dgcx4HneajVasi1DkTZB/i+38bA9EJakOYaf1G6YgPGuHaNEDqdkRAClSX+YRThypdfolKp4NKlS5ifn08du94VXFOeElybAmnLDSx+1u240nFay+lNTE/Lz0jLhkZ+7dZXHKpEz44VsxJ91IFVecgYiDHWj0EIgSKxZLwKM6yMyA8CkIQ61rxsuzCiKPReYwtL2nU0DAPLy8tCk8mdGNZWV/Hl06cAaMPWLBvmFUUR1lZWsLW1hfMXLjQ3hkuvBdBR7iOM0A18jkvELThZEyK/22zLwgfvv4/f/Pa3+OLzz2lZP2XjLOJLn6+bYFerz/vAdg9GN8SbGxuosGGK+16lIgR+SsW4F7ikw0KLOYAU48S6wgZsiSofW1M0VUWj0cAXX3yBOIrws5/9DIVCYeA42/rojiQe72cC+5z44/pYWzpJtJrIKpZ8JmAMMPtZGniMHxb8TMQ6EkV0BhH7N9fYP376FNlMhg7yZBPU+bqisLVlLxWjwPdBABgpm7gXDaIoIHEsZKNpn2LGtnH48GEcPnwYcRxjc2tLrCuPHj4EIQRTU1OYnp6Gnc3C9308fvoUjuPggw8+aJIlibWLUFMPe5/m4Lwo/OiTfUAqu7Bkv/WWsSwL7733Hn7729/i62vXcPbs2dRgRtjN2c8tF7HEluukW7/WqqYhXyigXC5je2cHmUxm37/8nutSadIekKavjJlUBAAcxlgR0EbkII5RqVbx9ddfI4oinDt3DplMBpVKRbAdirQxIIrSVOqSA1pCSFMS3xZA+03u9wGxxMC0BfGUvgJFfj/shufNfLxikLCEPmYMT8wWQd5E2nRMehL0+ikK1lZXMT0zg0I+D4UF5H17r6y6A0JenKayj7KyXHrt9liFEEyMj2NychKnXn8dnutibX0dq2truH//PpUjsX6dw0eOtNmUck1pAmotm9+nYUEjvLoghMC0bapR565kLd/RsbExXLx4EZ9++imIouDka6+1S1MGYPcT0HuzlZmUYds2LNtGVK9jZ2cHc72GRw4Irs3fiyRB7hVqPXbEkrHA9xEz/TcnPjbW1/HN9euwTBPnL1wACEG1WhUEjMr+VlrWFRk87rZWiHnMToszL7KayyuYhHnQd4pz4n0wAkycU7I7JZlPnU9a1hSxrrBritbnYvc9bq6v49jx48hms2J93i+ETCYMvECtfpe1Qq7cdyOSOBRFwcz0NGZnZpCcOYN6vY61tTWsrq7i9u3bol8mAXDm7Nm2HgfxOgDyhcIP2mMfeIWS/TpjDMD8XFuT9rFiEWfOnMHVr77C1atX8cEHH7SX8wmdqtsrLKcy2Cm78rFiEY16nVpxlssYHx8f+L11g+t5L0SSoLAhGPlcji5WhKBYKNCAvLGBK1euwDAMvPXWWzAMQ+jIATQz9XzXmyQiYBNFaQvaBBDJM8cP1Y2HB9iQMSeCpW8JwnzHLxxxJAeciDnlyCy9+LeioFqpoFar4Y3Tp4UjwH7C8zyqoWWM2gtBlyBLUjZT/UxAjJn8zrQsHDhwAAcOHEAcx/jiiy+wurICous4uLzc9t2Rg3JhH+1wR3i1YZomfC7lYeSQzO4DwPz8PE4cP47bd+4giiJcvHix/Z7qU0/N57UAksQwJR6Nj43BdZwXYsXp+z6SJNkXN6FWcElpIZcTXua5TAZRHOPxo0f4+uuvMTE5iTfeeAMKdjcHANqvn7SuKGxd4SQTl+wRQpoT/Je8pgCDrysxk46I/8cx/Tewu5agvVohV4UV1h/BSSLeK/H06VOEcYyDBw++kMTU9TxAUeisnheFbusKmmWhrT9LfY607mSzWRw5cgRHjhyB53n4/e9/j0ajAcuyxAyZ3dNoJibH9jm3exF4JZJ9wzBAVBUJGwOuMUtKGVEcY3x8HG+/9Ra+uXYNv/n1r/He++9Tn1QJvZIOXpbrC4TsWnGWy8jlcl2bkgZBHMfwPO+FBGUOwzCgsLHvYRhiZWUFV65cwcTEBC5dukTfS0K79/0gEA2kMQs8vLNfjAwnBCQMEbYEvlgKYvV6HbxpmLNici8BYdUAkvI7/nj+mIj1UoSsOZnLOWR9ImdbHMehjkqKAp/pTOUbWmZVCGhVQv6dHFQ4q6AAIuAqAIjUoKZoWscF4OnTp9SVZkCtaj+ImDQrAXXHGFh61Q96JDettnL9JPr8cTLCMMTnn3+OlZUVzM7PI18stm2OWjeR+73hHuHVhWmaKCsKZSzlKp6EMAyxtLwM07Lw7bff4ne//S3ee//9NhKmV09Y1PK71k2FDI1ZcVYqFWxvb++rFafneQAhL7SJ3TAMOGwqcGzbuHPnDm7dvIlDhw7hHG9+TGhjZCDLHPl8EJ4EJwkQRYiAZolMkuzGZ0auuJ5HE2C+fkiPl9eStHWFSI/jZhy8QttUlQaa/p1EETUDSRKx7vP1puO6gt1+rE56eoUQ0UOnEELXFV4RYGtMGp48eYLJ8XFkXoDcJPB92lAOaok+TP/jXpGk3J+EkIElUo7j4JNPPkG9Xsf8wgJyhULb81vvt4nJyeFP/CXhlUj2CSEwLAuB71P3BMasyAGTN1qNj4/jl7/6FT65fBm//c1v8M677zaXQkln7b64EeWf9fhS53I51Gs1RK6LnVJp36w4eUOYaZqiFLrfIISOWHfiGDdv3cK9O3ewfOAALly40JSoKsxPN+7AFgjWmwXoSArYcRwjYRZX3BUAhPYLdNLzdzjZthu9Vq8jSRI4jYZg2+QFWw4OHgvKAXO+aUML08ZvdoUxSbx5mZeb+cKRdpyQBwr2+k1e/UmCJ0+eYHFhAeQFsO588JpuGGKh2W/wzU8npP2Ofy5xkm7J1yoB4wG5Wq3ijTNnELKNWtv3peV7MT5EUF5aWsKf/Mmf4J/9s38mfnb58mX80R/9EW7evImDBw8OfMwRfvjQNA2ariPxfQRhCINJROU7hq8rCwsLmJqawuW/+7t0IqnLuiKTHW3oEP+arDgrlVQbxWHAk1PbsvrehA8K7tLDq3LPnj7FqdOn8dqJE03vV9U0gHm4pyGW15Akodp0qdIasXUlYWQVkmTP6wqfPN6o15sSvrR1JYoiBGzzJNsDC/DH8+dLVQlRrZCq4PxnHa8FWzvFd5S56QAQhgdn3nijv/c9CJKEsvqg5iSC3NtP9FEdS2PxE0B819oP2f795lOaAeCNM2fg+T4Mw+iaX+mGgewQPZkve115JZJ9gLIwHqF2gmCBSv5y8KCsqioymQx+/otf4LPPPsPlv/s7nD13DseYFRXQmWkUesoUdNs5jo2Nwd9nK842BqbPUvGg0DQNt7/+Gs+eP8frJ0+KAWWt+sO0XTWHQgjArdtawYIzQD+jGPSmzWWzzcw6pI2VxNDLv+d6R/5zHox5A5hc2pNZHe7ZDgCZTKaJyeF/i34EqYF3mA1W0xWSrhffPG1ub6NWq/U1SGtQ8AoHL9M3HGf/F3OW1HRDx98y1qr1nFrvrZ2dHXzy6acgSYL33n8fcRShXK1C07SmjVrrfZzJZofSkr777rv4/PPPd88/SfDHf/zH+Bf/4l+MEv1XHKZl0Wm6QUC9uSVJGADxfdM0DdlstiuRlCYvTSOQ6C+630OKoggrzlK5jPw+DXBssqV+gSCE4KurV1Eql/H2xYtYXl5ukqlwdLsKCqH9Yei0rrDjuZ4HMDkLlzyJ9YM9lv8M3dYVtqZwOSofaimqAfSNCaInZJsMVVXpLJyW9UT+Nz/usKRdm8Yfu2QnIQTPnj1DHMdYlOYN7Rd836e5EQDLMOB43v6Tj32sU50ekdawK75r0try/PlzMSH73LlzaDiOmLMhryu8WZ+jOORG+2WvK69Msm9ZFiqqitDzhJQH2P3C82SfswSapuHSpUu4fv06vr56FbVqlXrEc1YWzUFY1lPK6CdVkq04t3Z2sLgPVpycgRGezkOUq3rB93384bPPsL6xgZMnT+LosWOdHzxs0kiI0LMTyYt5P7TqvOSazWaR7+LAErEkmJD+bSiHDsopn4+clD58+BCZTAZTMzNQgF0rsX2AxxZyQxp3v5/Jft9ynN4HatLZyseUA/Kld9+FHwRoBAFN4tljuctE6/kUh5TwXLp0Cf/xP/5H8f//9J/+E548eYJ/9a/+1VDHG+HHA8uy0GDMrG3bu64qoLE/4uuKRBZ0JJJIe09Y1zjS417iVpzRPlpxep4nJtPvnsb+xYgkSVBvNPDJ5ctoOA7efPNNzC8sdH6Nvb42IxC4R/xe9eS8hyCbzaLQw9XL933ELFnsq+E5aXYN2ytki+mHDx9ibm4OtmU1SYX2jCShxCNonsNJq/2sGA8i8+yY8Lc+luUcAL0Wd+/exfXr17GwsIA3z52D67qI4xiGZUFVFKFGSPtshtXrv+x15eV6I71AqKoKO5dDQohgJ/iOm5f7ADSVBBVFwdmzZ3H+wgV89913uPzJJwhYua2JfelQfpXR6wYdHx+HSgh8ZsW5V7QyMLK2cC9IQK9XrVbDb377W+zs7OCdixexsLAgbur9hlg82c33stuohMf+S7YKa4UfBHjy5AmdV4Dd8q5IMPbAlnAf7CShwz8IMLQHeCfs27Gk+03+bty5cweffvopZmdn8dHPfrbLzBECXdOgsw0+b4BuPZ+9BOWbN2+iVquhXq/jT/7kT/Bv/s2/eSF2uiP8sGCaJlTmxMPjH08q+IRNId1j4ETS0WPH8PXVq/jqq6+ES4kco7slRLKzSEcQasWpKQoq1eq+xGevZXbLvqwp7H6OkwRb29v49d/+LZIkwbuXLmF8fLz7eQ/7+mkyyn0kwvpB2mfeDSTtnPtFl+dt7+xgZ2cHR44caWpgFevKHuK2x1h8QghMXRfJ/veyrnR5HM8FZXUAQL+TV69exfXr13HixAlcvHhRDIZTmImFoqpCHta6oSCEDK3Xf9nryivD7AN0t+3u7AhrQx6A+YfHm1pacfjwYWQyGXz66af4zW9/iw8++IBaZYI2TnXdpfaZoO63Fafv+20MzLDsPi9V8vdZKpVw+fJlKIqCn//858jlciiVSsI3WU05773c2m1au5cclIXt5kt6XV5tasXjR4+QMLeEpsdLmxH+vEEZf745NA1j9/OT5Eh7bvAbQEbWK3gTaRHifQVfXb2Khw8f4sSJEzh16hTCKBKN1JqqwotjwdpFYQjLNJteR9O0ocutb731FhRFwZUrV/A//sf/wPT0NP7pP/2nQx1rhB8fcoUCKo0GPM+DxaaCplWLZXAiKZ/P4+rVq6jX63jnnXeoNXSSIErZjA4D2Ypze2cH83u04vRSHN6G0e6LxzPpEpIEz58/xxeff47i2BguXboEhRBU63VRNUmNZvtwjVqJg5cFMYOnz9i6p3fa5To9ePAAGdtuM3yQN5SiOXiQl4xjMTXa5PcFtzl+AZLiPUPqiYiZqcinn36K7a0tvHXhApYPHoTveWKuBh/AarCqXRhFdI6T9N5yudzQKoSXva68Msw+QLvANdsGkgS+xMLIQbkTmzk7O4tf/vKXCMMQf/O3f4u19XUAEFq0ThjkSz1WLELXNERxjO2dnb6flwbXddscE+SbrRc428IdDniiv7q6it/99rewbRu//MUvUCgU6OAywwABXhi7/32iLxZNfvweX69TA+r9+/cxv7DQteTLA7LCmJl+EAYBbVZLkqbvDHem2JeS6wDH6HszSggajoOPf/97PH78GG9duIBTp08DaN68cPC+C15ylcG/x8Mgk8ngzJkz+Mu//Ev82Z/9Gf79v//3L31gzAjfH2zbBtF1MRWWI2DrCnclS8Phw4fxwQcfYGNjA7/5zW9QLpc76/RT0M+dMj42BlVR4LouqtVqX8ftBKfDutI3JBZfrqjfu3ePVuXm5vDhhx/CNE1ouk6JhyRJb2DF3mPt94nkJZNIaeDV4sOHD3f9HOUNkQL0Fc8930cSx1AIEQnxi6gY941+rjP7TpZKJfzm179GuVTCBx9+iOWDB5HE8W6jsWmKSjrfzPOKsYziHuYcvex15ZVbsTJsYI7reSKJ4c0VokG0w5eiUCjgl7/8JQr5PD7+/e/x2WefiapAL/QVEAnB+Pg4dEVBpVJBo9Ho69hpSGNg+jkPnizKgZjj/v37+OSTTzAzO4uPPvqoKem0mCaa2za2H3j/EsaX7rHPg3K/7jd7fa8pz9/c3ES1VsORI0f6OwR2G48UdEkKkmRX8sWcmzj2o4wLDP559fNqcZLg3t27+O9//deo1mp4/4MPsMwqHr7vI+Ke+6ZJk3tg1y2FbWBljO1x+NylS5fw53/+5/gH/+Af4Be/+MWejjXCjwuEEGRYaV0mO2JOIvWYZM2JpDiO8Td/8zf49vp1+v3sIePhEqFe0HQd+UIBqqJgc2ur7zUrDZ7jpJIN/awrcZLQqa3SvZfEMa59/TWuXbuGEydO4J133mlyRjOkdaXtmEl/Ay47QWjW+f/3cKxhMKg8dC+kS6fPh1eLDx061PexhHy022PiGJ7rIgHV6ssudXsxsNgTely/JKF2rte/+QZ/+7d/C6Io+MUvf4lJJsPhDocq6+/gpBEnlJKU97NXK+eXua68UjIegO6W6pqGOAypD71lCXaeN+22dmHLME0TH330ER49fIivvv4aKysrOHPmDJYPHOjeoNtnwmNnMshks4hrNWxubWHRMIZyUUhjYAAID/i0Lz5P8FsDQ5IkuH79Ou7evYtjR4/izJkzbQGKszBRFMH3/SZGlb5w/zKO9pNufu7LDsoDMzD70DTWeozv7t9HIZ8fqsmOH0lh/07imDY9gzI7fLPb5kTDHrOXoDxMib/XVS6Xy/jyyhXsbG/j8JEjOH3qlCiVJmy+BEA3L4R9J0mSQFNVOsOBydkUqaQ8jOWmjDfffBO6ruPf/tt/u6fjjPDjhJ3Po7G9LZr5FTYRlWCXROpkGwtQIunv/epXuHXnDm7duIEnT5/i/PnzmNonK+axYhGe68LxPKxvbmJ+dnYoltBlUqVWpN3nwg+ebbb54zjCMMQXX3yBlZUVnDt3LpXIME0TrutSiWgUNTu27ZX0adFnf2/y0H4/hz2uK60NpKJavLgIY4i5Cfz7zT97+ey4G6Amsfoc3EY0TpIfFJu8vr6OK1evwnMcnH7jDRw7elTkOVEUCUmSZVli8rFs/crzJ/55qqqKQsucpkHxMteVH9JnsW+wJRamqet8gEaZAwcP4u//T/8Tpmdn8fmXX+Ljjz9GvV7fl/ObnJigvvRxjI2traGO4btuR7mH3NSYAGIgSVo3eRRF+Oyzz3D37l28+eabOPvmm6lMRC8WZj/Y4eT7CsqDVBT6aNbuhdZXcV0Xz58/x6HDh/d0XLHgMk9msMQ4AcQ8Bhl83PxeGKX9LNdGUYTr33yDv/mbv0EYhvj5z3+Oc+fONWkiPVaxU1WVTm+OIrrBYXpMVVHazsnOZPY8fO4//+f/jH/+z/85jnVzpBrhlYWmaTCYbaMwgACaY1WP+KFqGk6+9hr+3h/9EUzLwu8//hhXvvwyndXu85jya09OTkJVFPieh3K53N/zJPBBjZ0Gaomkj/fSsOekRQDPdfG73/0O62treP+99zpWLGWJqNtByjM0Whpevy8S6aVVqlteZ4NVi4/udV2R+hIJgCSKduf8pOQg+1ExHuaZna6z67r47LPP8PHHHyObyeDv/dEf4cSJE015Dr+ndeZUFzKbdXnOQSvGxsf3/Nm+zHXllWP2AcDK5dCoVJDEsShpyh9Jz5Ik28FZpol3Ll7EgQMHcPXqVfz3v/5rvH7qFE4cP777RRnmC00IJiYmsL6+DsdxUKlUUGDyo34h24t2ex/dkjHP8/Dpp5+iXCrh0qVLWFhY6Hq8bixMp6bTftHNNutFQx4z3hN7qWB0OMbDhw+hKAoOHDiwt+NKSJgONmHNRm2VGEif1z5VZPaCtfV1XLlyBa7r4vXXX6f3GPt+8emjvKoEMBcqQoT1IZ8qmXY2w7rwxHGMjY0N/If/8B9w9+5d/F//1/811HFGeDWQyefhNxoi/g0KHmfy+Tx+9tFHePjoEb65dg3PV1Zw7uxZLC0vi4RtmE20pusYHx/HzvY2dkol2rw7gF9+mmOdDF41TpMzyKhUKrh8+TKSJMHPfv7zngO/TMOA7/sIPA+xZN+4H7FlP2SKw0Culr6s/p7W2UL3WbV4ch8sWWW4nicSYD3tu9LqfDMEhsklWl8tSRI8evQI1775BgDw9ttvY2l5eTf/Y9crCAKEbPovr2pxEkljsxTS3suw0tDva115JZN9RddpYuo4ouECQN+sbGs5dm52Fn+fTTW7fv06nj55ggsXLmB8YgJpg0D6gWlZyBcKqJTL2NrehmXbbeWwbkg6uO6Iqai8otHh3KrVKi5fvowoDPHRRx9hvI8vLmdhfN+H6/vIMrZ0r9pK6eTp3y+Z2X/pDIyEmJVal5eWRIPpvhxXajayLAuETVlukirtV5l8D/A8D9euXcPjJ08wNTWFDz74oM16LGGv5TKNqK5pu6VV9tmp0lyNVgwr4fnd736HX/3qVzh58iT+8i//cuAN+QivFnTLgm4YCHy/zaiAf0e73VNykkwIweFDhzA/N4evr13DZ599hkePH+P8+fPIZLNNjxsEuVwOruMgchxsbG5icWGh72Qz7hAH5QGG3LWlE9bX1/GHP/wBmUwG77/3HmxWDekGXdehqiqVSPm+qCwk+xSP0yRGLxrymtLP6+5LhVQ6huu6WHn+HGfOnt37cSUE0mDGrG1TKWjK5m/od7MHAkm+ytVqFVeuXsXmxgYOHDiAM2fOtEmZ+BwbYfZgWaJvL44i2g+nKB17LvrJmdLwfa0rr2ayryiw8nm4rotIsovkN163GytJktREWtM0nDlzBktLS7jy5Zf49a9/jaPHjuEIK5ENE0i4zjJ2XWwMqLNstUuUWXy5vJym0d/c3MSnn34Ky7Lw0UcfIdNHQOYwDQO+58Fn/RDc0WXPSNq91V8GBmVg9psjWl1dheO6ONxnY26/cBwHAJUO8CAnGpD5QrSvrzgYkiTB48ePce2bb5DEMS6cP48DBw92vI/4NEqC5umeIQvKnapcpmliYsig/Itf/OLlN5mN8IOFommwMhkEvi9cebgUrleC0kkqZ1kW3n3nHRxYXhbV41OnT4vJu8PcoxOTk/BXVuAFATa3tjDTZ1+AbPErfib/nP1MYcRBKx4/fowrV65gZnoa77zzzkCWhKZpohGGcKVkf18YefmzeYnJ/sCzW/b5vT58+BBEUbC8vLz34zIkAFy2rpimudtryAdU7fU677FSzAcq3rl9G7dv3YJp2/jwww8xPTOT/nhQRyGeS8nV7yiKkBA6v6UpX2TvbWxiYugp09/XuvJKJvsAoNk2DJ6Y+j4dVw30ZCZ6TbAbGxvDL371K9y/dw/Xb9zA0ydPcOz48eFuKkIwNTWF5ysr8D0PpXIZE31KDnj1gVcWYrQvDHxnKn9ZHz9+jKtXr2JychLvvvvuwGyyrutQNa2NhdkzCPleks/vg4GRv4P379/H+Ph4z1L3IAiCAGEQIAaQS9Oqf486VgCoVav44ssvsb6xgaWlJZw5c6Zr4EziWGxeDNNsck3i5dZOG7V5uWw7wgh7hJHNQq3VEPk+giBo+t52kzL2ihvzc3OY/Pt/Hzdu3MA316/j4YMHOH7ixFADdhRFwfjEBDY3NlCr15Gx7b6OwwkjRdLmp0Fu2uTPu3nzJm7duoVDhw7h/LlzAw8oNHUdDUKQsE19JynRwNiHHqthMNDsln06R76uiGrx8vK+Votd1xV5R1u85kQqb2zF4GvlXhUCW1tb+OLLL1GrVnHs2DGcPHmyueG7BXEUCYt2LgvlCOMYhA/RajUPSRIsLi3t4Uy/H7yyyb6qabByOTokgbH78levU1Lfz8AfFcDR48cxv7CAL7/8El9fu4bHjx/j1KlTdKjJAMmFqmmYmJjA9tYWSqUSMn3qLHnjccxukE6vyPVmCYA7t2/j2xs3cPDgQVw4f37oibFtLMw+aSK/j6DMx5+/LMcEGfV6Hetra7hw4cK+HTNJEpoYE0KtNtOCHWNQCHMUGQh7YF/KlQru3LmDR48ewTBNfPD++5hpGfSSBsdxhCVaq1NIGIa0Ibn1fRICTdcFQzrCCPsBzbJg2bbYUCfs+0i6kBWdqsVNYCzi2bNncWB5GV98/jm++OILzM7O4vVTpwauTtm2jVw+j0qlgq3tbZim2TPxE2uitK50Pl3qeJUkCa5cuYLHjx/jjdOncfzEiaE210RRYJomPM+D63nI7Vey/32RSIMw+/vV+8SOI6rFe2zMlRFFEXzXBQih0qy03ImdA/8ODYphdfqbm5u4desWVldXUSgW8Ytf/AKFYrHr9zBJEtQbDcRJAk3T2u6NKAypE0/K+pkrFIaW8HyfeGWTfYCyMBobMiI7HiiEIK29qu+dKCEgSYJMNou33n4bz58/x6NHj/DJ5csoFAp47eRJLC8t9f2Fz2azcBoNRI0GZTsXF7smn0mSIGCShl6vwL/wV69cwcNHj3Dq1Cm89tpre2I7W1kYZZ8CMz+nlxmck0GT/X3E/fv3oen6vrIErutSdk5RUi30BIa51kMuSjulEm7duoXnz57BsiycffNNLC8tQeVD7ro813NdMbwoY9tt91QQBEjiuN1WFMDc3Nz+MYQjjMBg5vOoV6uIWXMfBwGdmprG5vYTb7kcaGx8HO9euoQnT5/iyaNH+PWvf42ZmRmcPHkS01NTfa8r42NjcF0Xnudhc2ur53TdKIpE43HPdYU9/vLly9jZ2cE777yDpT3GMdMw4HkegiBAvI+MPNf+v8wKHyeR0qbNv2i8iGoxJ5A0Tesuz2LXeCB57xDrSgJgbXUVt27dwtbWFoqFAt555x3Mzc2JSfPdjug6DmIm7860VL/5fRAjxa46SbDwI2T1gVc82Vd1HXYmg9L2NpU1xDHAB3qgt2SnG3hgVhUFk+PjmJudheO6uHXrFj7/7DPcuHEDr732Gg520SHLmJichO/7PXWW3CmoJ1PE4AcB/vCHP2B9fR1vv/32vji+CBbGdeF6HjL9DqPqgUEn2e4HBnLi2UdEcYxHjx7h4MGDXUuNgyAMQ/jMatNKSYxTwYNzBx1u0+MGDMiccVlbW0Mum8WFCxewfOAACCFiMex2xDAMRZOxbVlQW/STvu+Le1i4QrDfq6qKhX3Uq44wAodqmtRysFqFz6xguXZfYfKXVr/zgV9DVTE3N4dDhw5he2sLt27dwu9+9ztMTE7i5Guv9VdBJgTTU1NYWVmB67oolUqpCSCX7EQDSE9qtRouX74Mx/Pw4YcfisFEe4GmaXRWBotjesoGfhiQ78GNZxDTh32zL04S1Ot1rK2t4a19rBbzIYZJkvRnYSw5ShFF6e7eNOC6kgB49uwZbt++jdLODibGx3HpvfcwNzcnbMb54zq+H88TPTd2JgNVVZt6aly2sTFUtU0Gbdl2xx6AHzpe6WQfAIxcDpquw/d91Go1oYlPuwkH9Rvn2kX+3MnJSXzwwQcoMSbzyhdf4NbNmzh+4gQOHTrUNanrpbNsctlhr9erRFiv13H58mW4rouPPvxwXy24TMOgrCvrzN83vGR99SDayn17n4Tg6bNn8Hx/30qtCeigNRA65KRfRpszIAmadbjtL9Dfe08ArK2tUcZlcxOFQgEXL17E4uLiQLKxJI7hsAnThq6nDoXhGxvdMERQ5vfw1PR0Kts/wgh7haIosItFKJubiFmClWexOlUaOsCxhRxIMlhYWFzEwsIC1tbXcfvWLXxy+TKKY2N47bXXsLS42DVmarqOsbEx7JRK2N7ZgW3bTX1W8rrSb4K6tb2NTy5fhm4Y+NUvfzmQwUMvmKaJkA042q9kX3YSelkYZCp7L8lUvyCE4P79+9D3sVosZKFJAsu2+4rhXNcuKvXdEv4+15U4SfDkyRPcvn0blUoF01NT+PDDDzE1PS1eJ+kwS0hGFIZ0nQS12UxbJ3klWec2nJKhxfzS0o+2B+yVT/Y100Q2n0ewtQXXdeH7Pk0CeHMRpJLloMkcod7eIERM6QVoE++lS5dQrVRw+84dfPX117h58yZOnDiBI4cPdyyD2baNfD6PcrXapLNsTfT5uXZLUHd2dnD5k0+gKgp+/vOfo1AoNCVDe4XG7A/DMITnukNN6GuFOLOXyezzG7mPIJbmbDQUkgR3797FzMzMUA14afBcl34H05qnOqH1vUiJRlNw7oN9SQA8f/4ct27dQmlnB+Pj47h06RLm5ufbrlmv76Csp1RUlVYp2h8kJh5yy9qQ3YOqquLgPupVRxihFXomg2wuh2q1ikajAdu2qb6X3Ss86ehLr58CVVEoIy05nMzOzmJ2dhZbrGL22R/+gBv5PF577TUcYBWzNOQLBbieh7jRwMbmJhbm52klT0rwgf4cZJ49e4bPP/8cY+PjeO/SJZimua/rimEYaDiOmJGzHzK8BAO44uwTBiGR9mu1C4IADx4+xMEexOIg4MYIiqalzmrpiJb3TZhjT5uzTY/vTRRFePT4Me7cvo1avY652VlcuHChYw+LQjrP60niGA32fnRNEwPBmhpwCRGNyCZbV/gsF9OyMDc/3/V8f8h45ZN9AMgUCqhXqwiDAI1GA5quC8cBLucBhpP1EEWhyVHK7/KFAt5++22cev113L5zB99++y1u376NY0eP4uixY6nM49jYGBxJZzk3O9smrxCjqzuc6/OVFXz+2WcoFAp47733mpK/Xtajg8C2LFRrNbi+D80w+nMe6APfBwPTj7Zyv3b0q2trKJdK+Oijj/bleHEcC6/gTJ/sC4D2CaDS/2U2phsrFicJnj59itu3b6NcLmMqhXFpRZK0Sx1kuJ6HKIpACEHWtpseJ2sxuYyHL0JRGAJJgsmJiX1lG0cYoRWKosDO5+E4DsIwRKPREOw+0BwrhokbgkRKidWTU1P44MMPUdrZwa3bt/HF55/j5o0bOMFko2mJ3sT4uJCJbm9vY2Jyso1tTbokqEmS4N69e/jmm2+wuLSEt956a7d5cb8aTEGvlWWacBwHjus2XdOhwePXSyKRBrFz3k+B0Xf37yOKIhzfp2msQRiKXke7xa2mKyQZjwy+6UriuOd3JgxDPHj4EHfv3EHDcbC0uIh3330XxR59CN2uZ6PREDabTXIk1oOZgG6YOKnH8zNOIi0sLv6oe8B+vGc+AMxcDrphIAwChFGERqOBXDa7m8Bw94FhgrKiQAEr9STpQ1Uy2SzOnz+PkydP4u7du7hz+zbu3L2Lw4cP48DyMtVR8udJOkvHcbC5tdVmx8lZ/rSgfO+77/DNtWuYm5vDxYsXm76cQnK0Twy1bhhQNQ1xEMD3vKF9Z2W81OZciWl4WcxPkiS4desWJicmMLVPsqqG41CXKFUdvPTdbZFmA1PSPhPHdfH06VPc/+47VGs1zM3N4fy5c5jood1NkgSky70WsO8SQCtdrWVw3ivj+j69BxSlOSgTguURqz/CS4BVLMIoleCyhN9ls0cSQCQPwxIrvAcg7jKpd4xVzyrlMu7cuYOrX32FGzdu4OjRozhw4ACy0nAu7vq2sbGBUrUKTdfbEmlOIrXGwjiO8fW1a3hw/z6OnziBN06fbtuA9+z5GQCWacJhlUo/CAYaNvlDwEB2zvu0SYqiCHfv3sXBgwf3ZR3mnvo86VUHSHI7veN+ZD3VWg2PHz/Gg/v34QcBDiwv4/iJE8jn8z1fM+abiBS4ritmsqQRYlw+53mekMJyaWgURVAVBQcOHep6Dj90/CSSfVVVoWcyiFmXdeD78A2D2i3xm23Im44QAigKSByLRq1OsG0bZ8+excnXXsPde/fw8MED3L17F8V8HssHD+LA8jLsTAaapmFsbAybW1soV6vQNa3py869bGXWII5jXL9+Hffu3cOxY8fwxhtvpLIKhF2P/QrMtmWJhc40zX3ZRLysdqrvY6T55tYWtra28O677+7L8fwgQBSGSID+mqdkcAYm5Vfc0SeRAnMYhni+soLHjx5hbX0dCiGYn5/HxXfe6cv5gXt4Rx1YnTiKmvz006wCeW+B57pICBGsfszuv0wmg+k+hwiNMMJeYJomVMOAFoaIogiu69IkQdqgDhvLeMW4n3WpUCzi7YsX8fqpU3Sg0O3buHHjBqYmJ3HgwAEsMb9127aRyWQQVavY3N6Gpmli/gywqx2X17AwDPHZ559jbXUV58+f79hjxPvX9mUOiaLANk3UGw1xTfcDL4tIGsTOeb+q7A8ePEDg+zhx/Pi+HM91XUEKDrV56PC+eEWXkF17V9fz8PTpUzx+/Bg729vQdF0k+X1VaJMECVNXpH3GQRiKide2baduXPjZeqxCzgkk7k41Pjn5o68W/ySSfYCy+0G9Lm6uRqOBfD6/2xCF4d15FEIQD1DKNEwTp0+fxqnXX8f6xgaePH6Mmzdu4Nvr1zE1NYWl5WUsLCygWCyiXC5jc2eHBmaWzAkGhp1rGIb4/PPPsbq6irNvvoljR48O/B6Ghc52wFEUwd+nIVsvi2UfxIkn6sBwD4rbt25hbGxsX/zfkyQREw07eup3gShtp3xvFZbkJ0mC9Y0NPH70CE+fPUMYhpianMS5c+ewtLjYdyVBDOtBumY/SRKq1U3S/fTFeQGIQTc5JEmagnISx1hcWvpebFRH+GlCz2YR+z5NFpKEVo15sy6aZWeDQGGa/Rj9J9HZbBbnL1zA2TffxPPnz+lE26++wldffYX5+XksLi1hbm6Oyo4cBxsbG5ifmxObasFIs/vHcV1cvnwZ9VoN7zHHk27YT4moaVmoOw7iMEQQBPszHOolyXhetp1zEse4c+cOlpaWkJGqOcOCe+onAE1wh7luKd8FkV8xtvz5ygoePXqEtbU1AMDMzAzeefddzM/N9b2WcccfdMjd4iiCy40eDCN1veJrUxzH8JnhiClVi5MkwfLBgwO9/R8ifjLJvm3bqGkalDAEn/TmeR5t/pN2m8Pq9hP2XP6l6ecGIYoimq7OnTuHZ8+f4+GjR/jiiy+gKgrmFxcxXizCtCyss8BsGAb4QC1FUeC6Lj755BNUKhVceu+9nl7KwP6WXfnOPwxDysIYxp7Z/ZfFwPASeT9BeT/OaWdnh1qgvvXWPhyNeeqDnv++TTIG/UxLOzt4/Pgxnjx5Asd1kc1mceLECSwvLzfJA/pFq4VZK1zXRRRFUAhBNpNJ/Q7xn0RMS5oAu0E5DGFZFmZ/xA1UI/z4YGez8CoVqCzmh2EInyWne4kZvGIMtokV8bqP2KqqKpaXl7G8vAzPdfHk6VM8fPAAn3zyCQzDwOLiInL5PEzDwNrGBuZnZ6Gq6i6JBKBULuOTy5eRAPjoZz/DeB+VO14V2I9mXUVRYBkGHGbvvB/J/styUXnZds6PHj+G67o4efLkno+VgMpCQaidcVdP/U7ocJ0JIdhg5OazZ8/gBwHGx8Zw9uxZLC0tDeyeJm8eOv2+4TiIOYHUoUKhsrVJ6PUVRcifwyDA2NjYvs4s+L7wk0n2NU2DYpqIw1BYcXquC13XmxqNhgkHCnue7GYwKMOhaRoN0EtLaLgunjx5QtnUJ0+g6zrGJibQcBwcO3JEJOmO6+I3v/kNojjGz372M4y3aPu7YT8Ds2kYqCuK0FgO1LX/PeJl6/Vv3bqFXDaLhcXFPV/3QPbUz+WGZ62S3eE1juPg6ZMnePjoEaqVCnTDwPLSEpYPHBDfrWGZu27PC3x/txEsk0n9PET1DRAeySpzhAJosr8wP7+vm54RRugF0zQBXUfi+zB0HYHvw2k0oObztOmf35dD3DcKIYgB0VTIHXQGOj/LwpHDh3Hk8GFUqlWxgX/44AFMy8L4+Dg8z8ORQ4doogNKSlz96itkMhm8//77bUOHukJqdtwrLNuG63m01y4M994c+ZIbdHsZVuxHFSRJEty5fRvz8/PI5fN7JvB8z0M8rCxUgvzOq5UKHrN8puE4yGYyOHLkCA4cOECrYJwgHQBCZsrNVVIewwkkQgjV6XcgkPgxWvX6URwjjmNMz86+EuvKTybZJ4TAtG04nockSaDrOnXnqdeRLxTkBw4cmHlyIsqg7DhJn0wMgCZrzYxl4bXjx/Ha8eMolct49OgRHj56hNWVFdz/7jvqrZwk+ObaNWSzWfzsZz8bTk9GCDDAOXY7jmWaaDgOteHU9R+FF22/Uw73Y+GqVCpYWVnBhQsX6KLdpfGuF5IkgdNoCM36sIsgIQRRGGJ9YwOra2tYX1+HoqqYn53F6dOnMTMz035t2P3R7zXpVdqPwlDo9M0Ovset4IO2ONsXBgE0XR9564/w0qGqKjTLQhgEVHqjqkiiCI4k5xHoYODQCXLFWPxsQKmMHGcK+TzeOH0ap0+fxubmJh4+eICnz57hydOnuHv3LmaZYcDnn3+O2dlZvPPOOwMz6gQAWHzbc4VXUaAbBmLPg+t5yP1InFD6tXPej2T/6dOnqNVquHjx4p6PFYYhXMcRif5eSDDP87D+5AlWV1exw2TIS8vLOLC8jInJyWZSlSXugyT8bfdBy7UMgmCXQEoxegDaq/V8XRHS0CBANpfD+MTEKyEN/XHcPfuETCYDp16H77rI5/OibOM6Dow9dLDzHbzMuvCg188NHXMnnxSMFYsYO3sWJ0+exJ07d7C+sYE79+4JJ5mpqSmUymXouj5UYFZUVex+9wLLNKmXcxQhCIK9JV2SpOpFot8hMl0nAPaJW7duwbZtLO9xqmsCoN5o7GrbB/3exjGVE21sYG1tDVtsuvT4xATeunAB8wsLXRviCICkT/aOMMam6fpKnyn3PU5AfY/T3guXxsnH9D0PCSGw2LwMz/exfOgQcrncj2KTOcKrhUwmg4rnwWVyt3q9LmwLVX4vyQx/n9/R1ooxIBFJvWJjknRMngiA6akpTE9N4eTrr+Ped99hfX0d9777juqVTROFYhE7pRImJiZ2K999Yj9NICzLgud5CH0fkWXtm3/8i0Rfds77xOrfvnULM7OzGBsfR7SHY4rhWYoCXdMGnpsThSG2t7exvr6ONZbgRwDm2KZxbm6u+2fHzRv6cAoclEDqJy+Kk0RsDgzTpHMeoggHjx370Tfmcvykkn3TNGHaNjym17dtG41Gg/rE6/ruTpaz+30GZqIoNAlqCW79BOZEYvS7nrth4PixYygWi5ir1XD92jVMTE5iZWUF3333HQghmJyawsz0NKZnZjAxMdGfdzxoUNqznIclXw2msdxPhjVhTitJHCNiTaNxFCEGdoejsc0PZ50TANVqFQAd7c4/Iy7VIoSgXqshBh0YAtbooygKCOuH2K/EsV6v49mzZzhz9uxQpXgZnusK952Mbff+fiYJarUa1tfXsbG+jvWNDQRBAFVVMTU5iaNHj2J6epragPZ5Xjzh7zosqKWJXPyY/x3HqNXr6b7HElpL4WEYImRDTjTDQBiGyI+NYXxiYt8GlI0wwiDgCX7E3N4Mw4DvebRZN59vslUG+jeCaK0Yi5+zv7vdrf3GmHwuh2NHj2JyYgLPV1bw8MEDjI2N4cH9+7h96xZUVcX09DRmZmcxPT2NsWKxv3PH/jTsqqoKwzThS5upQSGfgTgntl5Ecdy+vgBi/Rf2qezf1VoNAFtTCGlaT3jeUG80oBAC3TCgMSJNkdYWQgiSIRQErVhdWUGlUsGb58/v6TgA1elzvbrdD4EUxyiVy1hfX8f6+jo2NzcRRxFM08Tk1BRm5+YwNzeHgqya6AO9erv6SfQ5Gaapaqr8ppVAAiDcelRVhaGq8DwPM7OzyOfzo2T/x4p8Pg/P8+C5rhiXHLChKNlsdqjAnMbsc3QNzIx96TeltJjGMo5jJIRgenoar588iXqjIZK5u/fu4caNG1A1DTMzM5iZnsbMzAwKhULX97Efgdnk7D5rUhvEMi1JEoRhiCAMkTgOQmYp2XZN5SApvR+xaWr5mQjWPIhj97PgY7GjIIDL/i3/Xk76VVWFoijQVHXg8ubt27ehGwYO7rGjnzdBcw1iJ8cCz3Xp94Gx9w7zS56YmMCxo0cxMzuL8fFxBEGAWr1OrcgGla6hd2DuhNZEP9tBp6+g/b5xXZc2j6kqNELgxzGWWNPwj4H1G+HVAyEE+XwepSCA63nI53IIfB8xY0ttOVkYoC+s27rSTRvfL4HEkc/lEAQBivk8YgBHjx3D7MwMypWKSOa+/eYbRMylZGZ2Vqwt3ZJv3jy5Vw7bMk0Engff96kkY4D4GycJIubo4zQacBWFkiUpZESqdSMnkXg+wKrw4hpL5BIARBIRFfo+Qul3/Pgi+ScEqqZBURQ6MXmA95UkCW7dvo3JqSlMsdkmw1JTvHKSAHSIYdp5JAnq9ToljNja4vk+VEXB1PQ0Tp86hZmZGeQLBToU1HUHn/nC30OXXKTjz0ET/YZU9c50MHpQU9YtLuFRdR1xkkDTdczMzQnHxlcBP7lk3zAMWJYFN47RcF1agi2VELAppFbrZLU+jqnwKbqdypbsOK1fsEESfY58LiealSrlMhzXRS6bRY41YcVJgnKphPWNDayvr+Obb75BHMfUqWR2FtMsSMu71f0KyoS5wjiu29UfOWaJfRRFYvZByHyqwzAUVQFxPRkbwtkRRWbeW5gVYScJaiFGAGQzGcH68gqAbLNlmSZldnjpW2J3uM9uGIaikqAQAkVVoSoK1eyygJ0Gp9HAo0ePcOr06YHL4TK4swAhhEq2pEAaBgE2NzdFIC5XKkCSIF8sYmFxEbPT05icmmrTw8dxTKUCe9nkdWKoOgTIOI5R45MMCXXe6aSnTDuruuMAcQzDthGGIeaZi8OI1R/h+4Rt26gZBkJWNc5ks6hUKvA9j7qayIlPn027vBqZ1t/TMSkakEDimBgfR71eh6ooWFtfx8TEBJWQFos4cfw4ojjG9tYWlf+tr+PpkydIkgTZfB5zMzOYnp7G9PR0E5O6V/0+jwGapkE3DPi+D5et2Wng60oYhnRdiWPEUYQ6izcgRMRg4fcOZnPa57rC30vTmkIPKBxdojCEQggM00TMrBujON7dnLF1JQQAVqXl64qqqvQPc4TptAHY2NjAzs4O3n///YGvq4woioRO32rxoPdcFxubm9hYW8PaxgYa9ToAYGJiAoeOHMHM9DQm0vTscu/iS0LMhqVy552uBFJrHsY25TFTJwRBgEPHjsEwjD01Kf/Q8JNL9gGgUCjAdV0ErNs6k8uhWquh4TjtU0j7CMzcE5mXAFu/5PL/+VH2omccHxuDaZpIkgQbm5uYn50VCbJCCMbHxzE+Po7XTpxAFEXY3N7Gxvo61tbW8OjRI4AxUTPT0xgbH8dYsYh8Pg9VVfvSzLVBujaWacLzPMGm6LrexNqHYYhIYtHFNWHBV2UTUTnDsBdJDQ9CPCGXEYYhbSRWlNTFI2bfjZAtGLxEH/FNAfs/2IZBJQQac4eRg/Tde/egahqO7HH6XqPRELKZKIrw/OlTlMplbG1sYGt7m27obBuzs7M4fuIEZqanYfZRjo2TpC+5VxoI+xOxz65XFSyJY9TrdcTcYjOb7atxisPzfeoWQQhsy4KVzWJsfBy5XO6VaKAa4ccLzu7vhCE8Nm/Esiw4jQaq9ToKLIkT6GODzd18uq0VTRXZIRN9jpmZGVqtiyKsr69jXtJZq4oiEvrTp07BZwTDOltXvvvuOwDA+Pg4ZmZmMDY2hkKhgBxzJdqrTNSyLARBQO2yLUvIIXlyHwaBIGY45AqtqqqwDIMOfmyR1AwCcT1S1hSAxlND16FpWpuLESeaojgW60nM/h2z8+XEF18TedKvaVpTVfnWrVsYKxYxOzMz0Pm3nk+j0QDYuus5DtbX1lAqlbCxvo5SuQwkCXL5POYZUTg9NdXTjpNX04dlxAnoRlf+3nc7XhzHqNVqPRN9fm6taDQaiKMImqrC0HUUxsdh23bPqb0/Nvwkk31N05DJZKhePwyRsyzqJtNooFavI0/IQP6yiqLQRleWyHZyFJH1gnvV6/GhQwTA2vo65ubmoKe8rqqqmJ2exuz0NN44fRq+72ODsf5rrCmLMxj5fB6FYhGFQgHFYhHFYhGWZQ100xKWrDccB+VyGaZpIoyi5sZMKYgpnMlQVbiOAy8IYFuWaBB6UU26fGHolOgKtidJAOm7wMdnx1GEkAVqzvoHYQiP20Iy664HDx7g2PHjQ/kVh2GIcrmMra0tlHZ2UK1UUKvXxfU0TROTExM4c/YsZmZmkM1mB/qseGLQyyKuF/h77ZnoNxoIeiT6HUEIqpUKCCGwTROKpmFhaYkG930YJDPCCHuFbduo1WoI4hgek5yELPmvViooFosD9YVpmrZLInVIdnjsjvehMiv3WUVxLNaVtPhg6DoW5uexwOZaNBxHSEkfP36M27dvA4yoKRYKyBcKKBYKKI6NoVgs9tfTJcV+TdOgaxoc10WpXIamaYjCULD//JGaxIyrmkbXGVVFGEWwbJuSTy3H3k+IgVppJIZUoW6VHHJyiW8CQvZ3kiTwg4CuK3EMVdNQq1SwublJp7APEbt9z0O5UsHGxgbKlQpq1Sqq1arITexMBlNTUzh67Bimp6cHYrcJJDeivawrSSKGdSq8HyIFPNGP4hhKl0S/05kQsP4LQOQds/PzQgHyKuEnmewDVLvvOA4CAEEUIZPJiIEo1WoVhUKhfaxyj8AcssSvm30gARDuwzRW07Kgss55n9knzncIzDL4UJXFxUUANKGsVKsol0ooVyool0p4/vw5giAAIQSmadLEnwVqvhFIY1JjNkXX933R/JokCdUlEjakg/3pJ9F7kV488kyETkiTkhDG4EPTwJerWEr6wzAUU/c42zUzO4uG4wjGJw31Wg3lcll8BuVKBXXWDAZFQTabRbFQwNKBA+Lz6Ie57/S+uNXrflzjBBBTDFN/zxL9KI6hgLqXpH3+fHhQ+wkTWsJnusqMZWFmdha6ro8ceEb4QaFQKGBrawteFMFMEmSzWURhiDCOUalUUCwU6LAsoKdDD2Ga7ojFla6uImxTsJf6FgE1gjAMA5qiwA8CbGxuYnZ6uudzM7aNQwcP4hDrS/KDAOVSCZVKBaVyGeVSCY8fPRJx17ZtFItFUQEoFovI53LN8ZhtiMIwROD7cH2fNl8CyDE9tqKq0NlGoJvspfV9vqi1hZNI3dbhtNfmElV5fYjjeHdNCUPECp1qfufuXWSzWeRyOTjyrKCW+JuwRLhULqNcLqNSKmGnUoHnurSSrqrIZbMYHxvD4cOHxeewlwFmok8O3dfWfo8FQjp+VnEc0zwjSaCoKv1OdGH00z6RuusiDAJAUWBnMphdWAAhZODG4h8DfrLJPmcEa7UanChCXlGQy+dRqVQQhiGq1Wo7E9PteJoG4nnCKaQTOn3pBoWh6/A8D9PT01hbX0cYhlhbW8Ps7OxATK2maZgYH8eENJArThI06nWUKxWUSiWUy2U8X13Fnbt3BTuRz+dFoLZMEwora/INkqZpVONOCAq5XPvGqR+wsueLSObiHsw+0P+CwAM1D5JxHKNareLpkyc4cPAgDE1DGARUOhYECNmGslqricQ+ZE1jlmmiUChgfn4ehUIBmq4jY9swTHOw4TZdkCRJU8K/l+ubgC5sSZIgTWwgJ/oENNHv9F3gUzybwI5dY+VmXdMwNjGB4vi4qNCNMMIPBaZpwmRSRjcMkTEMuq5UqwijCJVarbnpj7GWnZytVE0D6SfZx+59uJdoaTDme3JqCpsbG3AdBxubm5hmHvyDHIfLfjjiJEGlUkG5UkGFxb1HbNASAY3FhUIBY2NjdMKvadLBeaoKRVXpYzRN6OwL+fxg1UGGl0EidTMLGGRdMdjmC6Br1vPVVWxvb+PM2bOCBGk0GlTi5PuoV6uCvKtUq8LW285kUCwUcOjgQeRyOei6DsuyYNv2vg2MEt899pp7+R7ydYXbN7ci5pJQ9rhOcwESxvi3EVF8XalWAVWFbRiYnJqCncnAsqxXcl7LTzbZB4BcLocGS0Qcz4Ntmshls6hWq4gYE1OQrcZ4I2tKgqRpGkBI12Q/AZpHnu+hlKjrOqrVKgzDwPTUFDY2NuD7PlZWVzE3M7MnZxKFEGRzOWSyWcyzMi3AqgCVCsrlMra3t7FTKuHp06dwfV9cE5VZd1m2DU3XYRgGtnI55HM52LYNK5OBZRj9MTC8fPcCSq5iymGX82jziO8A3pjlOg4c14XjOLh77x4IgEa9js8//xyO6yJgjgd8Mh9n60/Mz9OR3C1sfb3REN+n/Sgp8gRfOETxZH9IBoa7WSRAahN6kiSoO45I9O0O7gjAbqLS9hpMNuXU60h4iXl2FgBeKaeEEV4dFAoFbG5uwosiKL4PXdepPWethiAIUK/VqCWnhE49LxpLbsMeQ/j4ukL2GC91ZnOZsW1MTExga3ubSnQ2NjA1NbUnyZ9CCIqFAmVNl5bEz33fR7lcRqlUQqlUwubmJh48egSfxUsCCA28ZVlQNY3OAigUkM3lYFuWkGD0awsqO+zsJziJ1Ok8BpEQJQn1fnccR/y5eeMGTMPAyvPneHD/PlUnhCHt14gixIyIKxYKOHDwIMaYLJf3ISZJgmqthiSOoXawphwUaevKnkg6vpbQg7X9WiT6rKnZ7mRBzaRATceQpNS+58HzfRBCkCsUMDE1JYjMVxE/6WRfURSMj49je3sbHgDieTQw53KoMSamVqkgl883MfwEaCu9qqzhh0s6UpPtlN1l6s/7gMG6xgGaCE5PT2NjYwNhGGJ1fX3PCX+a24OqqsjmctA0DYWxMRxKEsRJgsD3EQQBAt+Hx4KT6zio1evY2d7GI99HwoMgaCC0MhnYlkUDuG2LnbmqqnBtGzYL6ipjzbmuf7+Suygl2ecNUrxxijsG8T++54lk3nVd2vPhOGiwhFZ8joypy2QyUBQFk5OTdANkWdANg34urATNYbUM//DYmPgkSWgD6j6871bWL81+bhC0Pk8uj/PmL+GIxGxt0xL61k0CO7j4GbdTU1QVi8vLInl6lZwSRnh1oOs6CoUCyuUynDCEApqsZrNZ1Op1eL4PpV6nVSmJSOL3gXxfcfeYkLm2pN2pcWviyjbgw7hsmdK6ksvlAEKwvbUFhzmzTO8x4U+zeNZ1Hfl8HjpjV7krmmz0wB3eXMdBpV7H5uYm7j940MQgK6oKm60lNtsY2LaNhFAXntD3YZimWEsUQqCwNWY/1hWZgZbXXm4LGTGHoCiK6P/Zv122pvB1hf+74Ti7hAw7TgygmM+La8bfp87MJlRFoTIxRuKYptnUL+Y4Du0rIKTZEnYv71v6DGJpTRnqmrZuegmBIrH7rYl+NptNbf5OlYS2fPfq9bqQyi0eOABCyJ5lTD9k/KSTfQCCISiXy3CDgJYKecJfq8EPQ9TrdWRlbXCK1pKwgOLHMcIOyX7qhDt+jAEDs67rYuIbQBP+mZkZrPOEf20Nc7Oz++I9niQJLUt7HvX4ZwHIYCXr1s556YkoVyrUrkxRgDgWybLDWHCXNfJyhoJPZ23dbPDFS2ElXU3+mzVjNTVnqSpcdn2+vXFDjOOOoghhEMAPAsSMDeFuQTwxFQNPpMAl7NFY5cLOZGDbNsbGxkQlgwfezz7/HFEY4le/+lVqwIuTRJyD53lIkoQGedeFyTYDLpsAaNv2nj/DVuZF/lz57wc6XicdpVT5ajQaCKVEX1VVWqWQrkfacBOgmdFJuFVnkmAsn8f4xIS4Z0cY4YeKbDaLIAjQaDTgBAFsAJqui0GOjuvuDjDqkvDz+R48QWzt+RHV4hZwm8dB723dMKhDC0MumwUBsLW1BcdxsLGxgenp6X1J+HlC73mesD4G6xPjjHNaIhdHESqVCqI4Fo26rWuK4zjY3tmBy9YVniwr9AREwsvXFVVeT7h0iBlv8HVF4zEMwI2bN8Vr86Q9ZBuTmA3qihhhxJt2+SDCpusAUNcdVW0iviYmJpo2Lrqm4be/+x2mp6dx8eLF1OvKCSrP95vWFZfNFEoABIxAymYyeyaQxIR0+YfS5zVwss/Wj9Tnse9Ha6KfVsniBiBNP21J9KMoQp1tpuZnZ5FhVqqvsiz0J5/sAy2B2XWRYY0yGdtGvdGgwyNcF6Zl7d4gKV9ITdPgBwHCMITZovniN/Unn3yCv/iLv8C/+3f/DmNjYwAh+Iv/4//Ad/fv41//63/dty7bMAzB/PKbwzRNzLKEPwhDrKytYXZmJtWlpy+wMiL3r5WDscWSfKDLtEZCLRK5bWSBNWR1QoXp2HmzFQ+kIQ+oEtMes/9zR5xYYk0C30cYRXBcF3Ecw3EcYdfGLfFi3r3PkmnZFYgvsPLfqqoK/WS3EPbs+XPsbG/j/fff7xzsJNbFZP7Rvu8jjGP4nodaoyG+f3vWDnbQ8fLv48DlVh40OzyHEII6cwwSGn1VFVKf3RNISfRTWD/XdREFAaI4xvHXXoOmaRgfHx/Jd0b4waNYLFLThzhGw3GQzWSoZbJEeqiKAs0wRBKaVjnWNI3GwShqT/bT1hQAf/EXf4EHDx/i//2//W/IDCABNDQNZYlEAiCSqs3NTThsYN/MzMzwyWKSwHUc1NnckCSOQVSVSnEMQ9zbnSxHFVWFaVm00RTUilruOWt+qQTbpRIc1xXyUb6OBIzwEe5q7G/+b+7Tzxl5n1WuoyhCrVajxIymibWBn7OmaU2VabGmsGpCkwudosC0LCHX6oRvb9yA7/s4ffp010tLFAWWZdF1hZFJMSNf6o0GDGZq0M1EpF8kKUYjgkAaMtHvJq2qtST6SmtCz6C0klEp60qtVqObLF3HocOHYZrmKyvf4Rgl+ww8MLtRRO03s1kYzMu+4ThoNBogoMyHPHiDM8BgNzEhpM1HHtjV8r136RL+f//3/42/+qu/wj/5J/8E//W//ldcv34d/5///X9Hxrb7ZmO4hVgQBE0JoWEYmJmeFgn/Gk/4ByxNBYwt4Yk2mDZODsYc3crFhmnSABmGcNmC1wmqpMuUR3YnSJF59IHtnR389//+33Hh/PmmTUYQBHSAjKqm3uDDWrNFcYzr169jZmYGs0xXnoqWkrthmjBME4HvY6dUEmXfkLkb6bo+VHJLgI6D3mQJT9/H7qAr5ojjGI7E6Gcymd1FpUXLr7RcA/7zVtTqdQRhiMXlZcF4jTz1R/gxgE+t3tjYQMDWlVwuB8u2RfJYq9eRVxQkqgqVPmn3D7sfNE0TMRSSxpqz+r3WlEFiGR9e1YpMJoOp6Wlsssmpw5hBANSlp8GHXLFKqZnNDhzjLLauxFEEz/eFFXUrCKFN/YptI5vNNg16HMb7v1Qq4X/8j/+Bt996q4244ix6RzOFFma/Xziui7v37uHYsWNdmWc5fspkkuv72NnZAUAZ7SAMobEZOMOAdHkfQsYzSIzuQqAC9Jw54Sgn+kDn9Y0fL22aNJ/34gcBXj9xArqu/yQIpNGqycADs24YSBSFWnwlCUzLEiXFhuMI71serERghuSLzB7Dwa2o2Avh//E//8/4zW9+g7/6q7/CX//1X+P/9b/+rxgfHxcNVv2EIMMwRLKf9ruZ6WkYjBFaXVuDn/K4NHBNXLVaRRCGiFnJb6xYpJKdtBuix03CtdWu5/VsNAPwQhpyZQi9/j5InGQ8uH8f9XodZ86c6f7ADu8vCAKYpomMZYlBUY7rUm/9Hi5PreDSnX7Ooa+mth6JfhSGqNVqCNn0yKZEH80LUWuynnBpWAt8z0O90QBRFBw8dAhjY2P7wkiNMMLLgqIomJiYgGoYiEA10wBNnnVNo44gtRqSKKKyQrn3BwCShA5TIl3MH7qtKez3/UKXNPutyNg2ZmZmqC2n72N1dbVtkFUnRFGESrVKYwR7Ti6XQ4F57g+6rnAJFCEErut2jXWdjrLfyZ0wfehw3GFXtevXr0NTVZw8ebL7Azu8bshmPmTZhgeAYPqHGe7Z7TmDMPv9NEkHQUAHZsnzWeQ+O0mKyv90I48Amsd5nodMLoe5+fmfDIH06r/DASACs2VRBxBJN22wSbD1Wk0EOD7sRNbtq5qGpDUwt3zpzp8/j4WFBfy3//bf8Md//MfC856jn4Sfy0k6BWbDMDA7OwuDLSira2upjM3uKVJ9X6lcpixSHEPXNOrnbpq0mWnI4MjHnauKIrToaeh29P1M/5MeQXkYeL6Pm7duCb/iQcG1pQkgfPQzbDFLkgQNNuG5XzYqTaPf+ntggES/y2M5Q8nL8blsti0p56+nAE3l2jZ5j4RSuYwwDLGwsICpqalXbsjJCD8N6LqOsbExKIYhNOqEJS4q6yXi9w8AMaUbhACsH4nro1uninL0WlM4KdVzXdF1SvJ0SOi4GYSmqgiYGUS3hJ9XxsuViiCPuL2wYRhNDbat6NVgbLIqO0BZ9Y6QY80LBCeROvZYDVlJePLkCV5//fWeREfb9UoS6ujG5i+MjY2hyKyyCesDqVYqcF23r8o518d3XTHY73utKjGr6nSD67po1OtUbqNpyOfzbYl+qxKCr5fd3s3Ozg7iJMGBAwcwMTHxkyGQRsl+C3Rdx/jEBIiuw2NlOUIIMqzJMGZMTBRFTY1GHNwHWE72W794165dw8rz54ijCMViMfU8eiX8XDLULYHXNI0m/Cyorq6vpz6evyeRTBKCQj7ftovm5zUMbMuiPQCsiakbWt93P8FjEPQMykPg9u3bSJIEr/diX1LgeZ6wL83atrBxNUwTxXwepq4DioKQsRzdWH7BwPd4TcGIdJszwJj8Tt9D0VjcaFAGUtOQY/dJywPpa2E3ue8VkF3XRblSgWGaOP7aa9QZZIQRfqSwbRuF8XEomkalbkEAoiiighcxmQ/XQSdJ0rQhV1W1K4nUz5rCj9XtvuOS0G4xmptB8IbV1bW11ISfs/ku653SNA0F5iDD1xHCehTS4lXSa60hu44ynuuKuN72MHHAFNeW7q8wELrZOQ8jDU0AXPvmG+RzORw+fLj341uul7DlBJDhE8sJgWVZyDPdPlFV2idWr/dk+fuRIPVru9nWQCuBqwt4T4Zumum5CH9N+bk9rnGlUoHjOMjm8zh67NhPikAaJfspsG0b+clJEFWlFljMoiknMzHVKp28xhDFMRIw9wSgKfjJX7+HDx/iz//8z/H//F/+F5x+4w38f//Lf+l4Ht1uGJ48O12YcoAm/DMzMyLhX1lbE5NIgV3vfM66ZGwbhXy+42532MSbN1UphMDpwCR0O+5+llzFOO+0oCxpZftFrVbDd/fu4cSJEwNPtQ2CQHyGlm0LP2QOwib75XI5kURz+75WiGa3Pl434ZrZLiVn0iMgN6SAbFoWXVC4lrJFxsbLq/30X/BeE0IIFhYXm2Y9jDDCjxX5fB4WS8Rr9To8z6OTP5m1Lh/mKNYOLgkFoKf47fP7aJA1BegeS03LAgHViXeDaZqYmZ6GzibHr6yticQSYBN0KxU6TRxANpdLJwLoCXV9rW7Q+VRyRem8FnYyE8D+VXeTJNmtGKesK8OsX6urq9jc3MQbZ870L4thcD2PSneZDLd1PVdZBTbL7KGTJKHS3U6bvD7XRO442JG171FhiqKIGjxwW3HbRkbaHKadEyFE9Ap0g+u62NzchKKqOHbsWFezkFcRo2S/A4rFInLj4yCgEo16vQ6iKMizRDhOEtTqdfgsceaMqsZ2z1ySAezuiDc3N/Fnf/Zn+Ef/6B/hvffewz/+x/8Yn3/xBR4+fNj5RDrc5JqmIZPNolKt9nwvmqpiZmZG9B6sra/TZiLPE5MdAaDAphb2CiycjRH/73kGFJZlAYzF8rowRy+y3CpXYrSUhWeY0P/N9euwLAvHjh7t+xwAutFqNBoghMDU9Y5NZgD9vPO5HAxNg6Io8GQfZnRvmkpDFMd0+mDKNehVGYjCcLePgLFrFpMcsZMRwV7+LvVTKvY9D1ubmwjCEJlcDm+9/fYr3zg1wk8Hk1NTsHI5gG2WXcehiReTKEScSGKJM19XFBZzufkD7wMbak1hSLsbC/k8QAiqlUrP58sJfxRFWGO9YQ3HoTrrhFog5vP5psbYNLSuKUBvGQ+HncmAAMIJrxNe5LoiE0hp8WpQg4k4SfDNN99gemoKc3NzfT2Hv2rg+1SaA9pn0a0RV+fuPKoKoihw6vUmWY9whuoTCetXTCXSejxX1ucTRUE2l2sa+tXUgEwIInZ+/VQSHNfF1tYW4jjG5NQUTr7+et/v6VXBKNnvguLkJDLMX9/3PGrXBNpYZBgG1fCzwUocPHlKEuqlzr+e9Xodf/qnf4q3LlzAP/yH/xAAcPToUZw9exb/5f/8P7ufiNQE3HR+xSKqfST7AE1sp6enRUL58PFjbG1vI04SMaBjEFlLUxLXZzLWs6mKHyctuOxT0y5vgOvkQjNoUN7c3MTKygpOv/EG1H61f4QgjiI06nUkoIl8XwOimJyMe3NzWU+rlrcfxFGUyuwTQmig7vCZBkFA5QYsIOey2Y72oDwQ86pXL7iui3qjgXq9Dk1Vce7cuVfa93iEnx4IIZicm4PFElTHdVGv16EoipBWcFmlL1VgVU1DzOwiQxbD9rqmkJR1xdB1ZCwLlT6SfWDXDELXNIRhiAePHonqhGmatCLZZ/OjSPh5DO5zXVFVlbrkEYJGt0r3CzR+SBvSKF4Wg68rDx48QLVW62320PI6YRhSS1MAlmHA6GNCrsJYftMwANZ8zQcZDnrevI+xlUhL28zJ8Fr0+Wn2oHzNVrBL2vU6uyRJ0KjXUatW4TgOTNPExXfffWUHZ3XDT6MzYUgoioLC5CQUgDa6BAGq1SqyuRzVkBECl01VjdjEVEIIDMMQwz1sVaVa7GwWf/qnf9r2Gv/yX/7L/k+oRWJSyOfx+OnTvp+uqSpmpqfx+OlTJFGEra0tzMzMYHzIchZP5gaBaRjwmIbTc92mJLcfGc8wFpwyeukq+9G7y4//5ptvMDY2huXl5b7PgVt/JQA0RaF2pAOw1yabAskt7Gq1Gh1+M4CjAA/KfIPC2ZhuDgmu6wrZjqZpsFkJuO39sWP0uwFJmBwtDAJUKxWomoaZuTkcPnKk7/czwgg/FiiahgJzAGnU6/B9H0kcI5vNIpfL0Z8FQZMjnKKqMEwTfhDQdYU5q+x5TQFEDw2/6wvFYl8VYw6e8D96/Bih72NjcxML8/N9z4xpPhUyUOzgsG0bAfPA94OguZLQzdUHw0k3W8GlV50Is0Fqk0EY4ubNmziwvIziAGszr7gSUNmXNcj1J9RaW1NV1JnrYK1WE3lOP+BuUonUfJtA8r3vQK41WG4FUDcou4tshxBCG9jjuCebn8Qx6mxdqdVqMEwTh48exdTUVF/v51XDiNnvAd22YWWzyLEGF7nMamcygnn0fR/1Wg1JHIvddMDYU2DvSaqApHfLFQpigFE/SJIEjutSOQjzAq43GtjY3BzKgotwucYg740FFSDFivMlyDW6BeVe7EMr7t+/j51SCWcHYV+SBLVGAxELXNlsdqj3rbEZAVw21k+DFUdTUGbfJ5G0p5xLa8OUYZpN+nz5vfHJlDww9/reJ3GMRqNBexdcFwkhsGwb5y9c+EnYoY3w04SezYpeHO6qVmXrRyabbbJ7rtfrSJJEVND4MEUxzXwfICdOhUKhLxkPRxzHcF0XRWajads2dkollMrl4c4FXTTfHaAoCiyWJA7iWsZfb6/oRiINiuvXryOOY7zxxhsDvX6dJfqqqg5dEdV1HXnWQ8IT8X6vJJ8lJM8h6tYQzjcUTfp8RpjK4CScTMb1+t7HrOE9DkM06nVqHpHP48ybb/b5bl49jFbTPmAWi9BNE3lWkuRl1sD3aamSTRgMWIMVAUSZyOOlWFYSG2aQRyv4jZTP50EA1PpkYRqNhigNLy8vY3JyEiohaDQaWFtf7+mS0wnqgAm/bhjQmLcyLxfK6HakvV69rsz+AO+h3mjgm+vXcfjwYUz2yRQIFoPpSrMDsvEyeEmT2/eBENTY4JFekIOywjy8+26YymTamJemwSU80Qd6ft95QI5Yc3jABr28ceYMJiYm+roOI4zwY4SiKHRdMQyq11dVRGGIKpPlZVKIJI1NZI2SBGEYinuwda7L0GDHK+TztCenDxKJJ5lBEEBRFBw8eFCsk+VSCWsbG3178TedCgZvarVMUzSbys263dx49gs8pqZKlgZ43fWNDTx48ABvvPFG304x/DPgdpaDVoqbwJyfsrmcqLBwuWk/5wHQzUYvoidkVYg4ioAUfT4gJfmtJFaPZtxQcrbik5B1w8DFd975SbnvtGKU7PcBRVFgjY1BZdp2TdOQMG9kz/OgG4bwgI3iGNVaTTDHAXdN4VZjoDfFfiT9Y8zPvdwHg1Jn5xozSZGmaSgWi5ienoaqqnRIytpad7/iTiCDe/BnbBsghDbrStpUAB2D435YcHZi9gexRksAXLlyBaauD8S+OK5LE/0k6exM0Sf4mRIW3FWWZPOg3w38+9fr9VsbpnK5HNV1SueQSP9OO79O4JuIKI5BmK0oUVUsLi3h6LFjPZ49wgg/fqiaBrNYFM33qqoijmNUmdNbK5FUYwwlAZpiJk+KwzBs3ngPA0JQKBbBh311Q8Lijc9607jOempqCuPj41BVFZ7jYHV1dTgiqY/Gy9Zzz2SztFnX99tes9NV2Q9mv5Od8yCfRBiGuPLll5iamurLahPYJZBiJmvJZjJDEUjcQ5+Du/UQQhD1mfCH0rqSoPNmzXNd1Gs1II6hMLvmJn0+I0YTtla3Hqfb+hYEARq1mpASeb4PTdNw4uRJzHSbav8TwCjZ7xOqpsEsFKgjD5PBAGwSXa0GAjQFbM/zELOdZWvQ4TfWXpN+TdeRzeV6Num6ngeXnU8mk2lqTrFtG3OzszBZw/Ha2lpfm4c2DJjwK4oiLLUc16UsUh/P36tVWidmf5CjPnr0CBsbGzh/4ULfAzk816Xa3A5WaP2gU/BUVFX4ECdJQn3vuyBiC0OnCcJxHKPeaLQ1TAl9PyTGpYt0KE1WlCQJPNbsHicJHWWvKPCDAMViEWfPnRvJd0b4yUA3TZi5HBQmy+NTdau1GhqNBjRGMHEvfp8NPAyDYNcBhsUFhfWHiWGPQ64thUIBiqL0XFcajQYCFtNaGyrz+TwdvsWmuD9fWUG9R1xqBSEEZIAeKoD2EnFHubo0NwZA1+uxF8cvMfU4xfRhkKPeuHkTjufhwvnzfT+nwfT13GJzmKnwgoVvOXdN02j1mSX8vYhAkZx3OAcu2+HH0Q2jmfRin4+YL9FhHUjLmZI4pjbp7Dtm6Dq9D+IYs/PzeG2I+TevGkar6gDQTRNGLoeEySe4nMFnjbtBGCKfy0FnQS/wfYRB0HXwlZz0D1OKHSsWUa3VRJNVK8IogsOkMrZtpzqn6LqOubk5ZFjD5U65PLyOf4DHGqYJTddpwt/nQtBrGFPP57Kg1qY37/MYruvim2vXsLy8jNk+mQLPdalvdZLAsqw2L/0+TrxnWZQn/IRXSzp854iiIGZl/7Sk2vM8yiyy5xvyQBPOuMhJRpdFsvVsOZvPg73B7EYr1Sps28bpM2dG7jsj/ORgZLPQTBMgRDi9AexerFSQxLEgksCc4YIwbFtXeOWTb/pF0j8gdObIU61UOq4rvu+LSnGacwpArZZnGZFECMHG5iZ2SqXBToZ0HrrVCbZti3jluG5/z90D6RZJEp40vXk/2Nrexr179/DG6dNUQtMD3AmQ92/YmUz/bnC7B+n4+XJomkZlQaC2yGnWprz5NmKyzVYpEx++WKtWqXUs68vi+nxOHvEcqLXK0HqsVvAKtO/71CDFNGmjcb2OwtgYTp8585OZktsNo2R/QJg8MIMGM25ZGbFGw3q9DjuTgWEY0Nl49Gql0pY4c821rCcchpXJ53Kimap1CBJneeOETjftNvCJEILpqSmMjY0JHf/K2lrf5Vf+PjpZWnYCd2wIo2jXaq4HAzMsux+2NhAx9CvhSQBc/eorKIqCs2fP9vWaLpvCDNCBNZZlDbwA99PoCtDSq81mGbiO0/Sd42XVJEmom0GLjCeKItRrNWojmyS0vJrLCf/81k1Wr09AZl9EsGeTp3lVJ5vNolIuQ1VVHDp6tG8/6RFGeNVgFgpQDQNgRJKYrMtkoY7rIpvNQtc06JoG13VRrVbb4wKXi/LmSE4mDZj4FyRb59Z1JY5j0QRrWlbXRIpPcc9ls1AJQaVSwdr6el86fpH08YS/37hPiCANPClB7fbu98zsI31mST/rShTHuPLllxgfG8PRPma1iN4vVlVprdb3BU7U9HF+mq7TDZuqtjc/s+9ZnCTCzlleV8IwRK1W23VxY77+XA4ad8p1OnweTWtaHMNpNKiMib1uNpuFZZrYKZVg2TaOnTjxkxue1QmjZH8IWIUCFBbgVFVFIZ8XwYU36co6TM/zsL29nZ4485tO0vTzXW4/AbpQLIomR3q43WN5noeA7fz7ZUwLhQItv6oqwiDA6tpad+9i+X1wDKC1VFSVDkUhRIxV3zfnohZ0bM7t81yfPX2KlZUVnDt/vqO3vAyHJfoJ6MbQHiLRBwbTfRqmKcagCycFtlgmgAjKnNmXWRc+JMu0LOE+lea1LKzUuoA3rIWsdMs1xoZhIM+aser1Olzfx8LSEg4fPjyS74zwk4WiKLCLRSFd0HVdDDlMkgS+71P7QMMQFbxGo4FSqST04m1oZZkTOpFXVJG7xKJCodAk45HjOZeOKGxuSi8QQjA5OUl1/IoC13Wxurra3qvV/SADMfyarsNg3vvykKhe5zkM9rqu3Lp1C7VaDRfeequ3nWSya/KQAMgwYnEg9Jnky7Btm/aFsevZepxWJ56Yk59Sz5edydAqMdP0t9pc93P9+UYj8H1UazUxJdhiBiq6plHyU1GwdPDgQJbYrzpGq+sQUBQFlhSYQQgsy0KhUIDGEqRGowE/COjPDAMu0ynzZhoZPIilMbhNAZr+oOn3BdakW21ppoqjCA5jd0VZs0/Yto25uTmh499YXx9Ix88ZmX4ZeJMlqIqiwPW8vpLbYbYDnRwT+jlL1/Pw1ddfY2FhAQsLCz0f33AcwWbYjNEfBN1Kmb2QYa8VxbHQ1PKFRw7K3KNf9s7PSf0o4jxa0OusEsYkOqwRK45jEAAZaTy753kol8uYnZ/H0vLySL4zwk8eiqrSdYX9nygKMpkMCkyzz3tpQAi1R2SJc7VSSU1o5Wor5H/zKnKXpD+fz6NarYp4wZ6MIAjgsdfKDOj6wnX8fOLu6toa6vV61+ekaeD7fUXbtkVVwuNxsNtr9XncVnQ0fegjfpdKJdy+fRsnX39drOWdwBuiOYGX7TLQsMeBBn8OoZPSkVDXNOHUxNcVqUGZb0y5OYluGMjlctB1ve37Ngj5lTANfqNeF9PjFUKQy+eFpLrRaKDmOJhfXMSBAwdG8h0Jo2R/SKiaBqtYbP4Za7LijadhGCKKIhiaBoXtdj3PQ7VW6yiPSUvKRYCO490AzZDP50FI+3hzl+kpNcMYKiBomoa5uTnR3b9TLmNjY6Ojjr81UPIg3S9bwkeehyla1LTXGuaLm+aYkGrtlYJr164hSRKc6+HTyzd6PNDZtt1VPpVyAHGcYe3TFFVFli10bsu15P0hQRCgzmQ1YB7V3Du/7VUHXBz4lF0uyzJ0HYViESYrNQdBgK3tbUzMzGBmbq7v3ocRRnjVoRkGzEKhaUOt6ToKhYIgDHzfRwKISmHMmhP55FoZ3eJwUxW5JfHniWerI4/HyBhO0AwKoeM3TRAAG1tb2NnZ6fyE1vMm/c9C4ZslgCb7QYreXIbsLjYIxLoird39SHHjJMGXV6+iUCjgxIkT3R/L7DXDMAQBRPIsn/uLhqZpVNbJyBoZ3OLS9TzaIxjHVK6ZYtUso+9qSpLAYf1k/HM0TRP5QkH0SLqui51SCXOLi5ibn8f4+Pjwb/YVxCjZ3wM0w4DV+oViMogCc1bgEh3ugauoKvUXr9VQT2H56SHoDZC26xUBmrGnqqoiY9vN481Z2TdJEtjMmWAYEEKojRrX8bsuVtbWBiq/EvTnoKOqKh0hTwgcx0HUi4Xp45g84PLrmFZu7ec4K6urePr0Kd58882uibuc6POG6Fbv4J7YDykLIdB1nV73JGla5FzPE4tGAsbm92KI+vz+cA0lH/ClEGqFJ09hDIIAm5ubGJucxNz8/Ei+M8IILdBtG1Y+3xT/CSGwLUtIQxVFEeyqyqqiURShWq12lK107adKkqbEP5fPIwGaJumGYShiiTz5fFBwHX8+n6c6/moVqwP0h3Hnt35ity7LeRgb3PGw6L5W8WfGcbzrSCaRRU3rSh8x7c6dOyiXSnjrrbe6xkBe0eEbuWxaQ/QLkr5yEAAghE4mThJBZNKXplLQeqNBJaJgxg65HLSUXoJBpawxM3ZwmCxVSKdtW3xenudhe2cHswsLmJ+fx9LS0t7e8CuI0Sq7R+iGAYv5EstQVBU5puU3TBMJS/AVlogBtLu9E8vPp9P2o+EbGx/H+saGSG49z0OSJNBUVfgy78WwslAoYGZmBpqiIAoCrK6uYntnZyC3nn4SftM0RZNTJ3eeJGkeTpYAiLE7FZYz10L2BFCngDimw2cgNVKRzmO8OYIwxFdXr2J2drar/i9NS5mW6HcMdPwchg3acp8EqwoYrOHP9zzhhFNl2nyV2aoJp520U+r3pZktW7VapTKshE77zBcKTWProzDE5tYWCmNjmF9YwOHDh0dl1hFGSIGRycBoSfhBCGX583lYpgndMBAyJzhN06i/eZIIlj/NOYUepkeinFBL3Ewmgw22riRJAp/d26ZhNK0pw5BJhBBMTExgYmICqqLA9308W1lpJq3QIwb12RvGXV/CLvaRvLLBjQhEf1NL/1yTlSer3icAiKrSBF9ufO1ybpVqFTdv3sTx48e7NpCKgVms+TXfwfmoI/bQeAxg1wmO/VtRVRjMQc/zfYRRhEqthgYbvKizBlxu7JB+Sv2dE5ciV6tVUc2yTBMFZorC4XkeNre3MTU7i7n5eRw8eHBEIKVgdEX2AbplwRobS/V/NQ0DE2NjsGxbaKSDIBAJp2D5GRuahl43x+zMDLa3t2lSx7TSURy3sbVNRxkwqbQsC/Pz80LqUa1W8XxlRTTv9nMD90r4FcZeJaBJtseGtfCAGzKdaZSkl57lRudWyI4Jwu6L+yPz58rHYP+/du0agjDEuXPnOp73nrWUe9Dny8do3UgYhgEwVqhULovZD7quY4wN80l7L+LfPV5STvI91xULYSaTodp8qeQehSE2traQy+cxt7iII0eODKc3HWGEnwisbBZ6Ntu+rjD99OTEBEzLQsSnkcbxrtc+Y/mdLmx2r5i9MD+PldVVSqBEERxGGsj3LQH2FLtyuZzoD1MA7JRKWOmzebff3jBFUYQEyvU8hIz04WtI1PJ3milBp3WFV6BVZnaQpD1fei7fSHx55Qqy2Sxef/31jucds8GdcRwDhDTNOmlDp/Pdy7pCCMDel/w6Bmsar1QqqFYq8D0PMWi1p1gsdhzW2O+2I2Z24dVqVUhBFU1DIZdrqyhxSejk9PSoUtwDo6uyTzAsC3ah0KapB2Pop6enaWmUBWLuiMKZaN/3xQ42Dd3YmLm5OSBJhKUZH5+u6Xqqqw8vyQGDldRUVcX01BSmJifp8Jc4xvrGBja3tvoeia50SWwJIVAVhQYTaWPEg3Lr8wbhLNJ0lW2bg5br++zZMzx69Ahnuvi/99JSdkQrEz8MOnwnEtCmscD34fk+/DCkGxFQnW82ZXovd0boSx7VkuRzG0+bWdG2JvFRGGJrext2JoOF5eVRoj/CCH3CzudhZjKpRJCu65iamkI2m0UUhiIpB3Z7c1zXRaULyw90vufn5ubQqNdRq1ap6wmTjSrMappXT3n0GpZD5nNeJphbTxAEWFldRalc7jl0UgwU6xK3CABd06CpKmJAVD2aCKMhIXvsN52TTB7xv1m8vnXrFna2t3HhwoWOiTEfQBWzYZO5bLarj774dvCKwhAzctrOP0kAZq5AD02twYMgQMNxEIQhXfeYNr+XyUI/Dm4iyWd5kKppsGw79f1zSejE1NQo0e8Doxr6PsJgX3aHOdcQ6UbXVFU4kRDQAMeHQMRxDC8IoGuaYIi7Oei0uvbYto2x8XGsrq5ienoaSZJAZ6U2/vqyxlCRft6PjWIrMtksTMtCqVQSk1Ydx0GxWOzLVYU7S7SxJSyYaKwkmjBWOp/LpTIrwp2ojwS1U1DuFOhr1SquXLmCpaUlHD50iJ94UzMv11LG3bSUbSe9W0nYs8VoHLcF+SRJEPi+aNAmqgqVlVdN04TveU3nyIeYkD6+B0kcw2PDdPj7UFWVNusxp4XW9xTHMbZLJRiWhYXlZRw6dGhgZ6IRRvgpwyoUaFN9o9G2JpiGAdOyoKgqTcSZtIQbRASskletVmGaJizLSu1Z4gSQfP9OTU1B0zSsrq1hcWGByvMYkdHaVybHkWGRLxRgZzLY2toSbl21eh3jY2N99T4prDeuCez/EbsOCiij33AcZLPZ1OP0O9cEAGK2iZIT0SRtbWNYXV3FrZs3cfrUKUxNTfEXBFgfAMAS/Xod3B45jZxpg1yh7nNNbAOrxIpeN3bcBDSO80FqCUBdB+NYOLcFbI3ZPZ2k79wijiJ4ntdEdKqsGVhTVbEpk99RGIbY2tpCYXwcs/PzOHr06EgS2gOjbdA+w8hkYObz7Ww62/3ycp+qqigUCrR5SFFg6DqCMBRDmHijVdowLqCZnQeA+fl5rK6uUv1/knQupfHEH7s79SRJkLAA12+QU1UVk5OTmJ6aEiPeN9bXsbGxITz/u4GwCYcADY5RGIrElTApiOzX2/U4faAtKCedXXjCMMQnn34Ky7bp6HKJ6SCE0I0Ik+4MoqXk/QVDgZ2vvMjKn1SC3em3DSapUQhBVnLZCRj7x89zUCa/wph8JInQ/OfyeVqJSXleHMfY2t6GqqqYW1zEoUOHRhabI4wwBDLFInTLSl1XcrkcTXSjCLZti+qipml0XfF9uGyKd7VWS7ehTEn6VVXF7MwMVldX2/ud0Pp0KS61/Blkdgpv3p2YmICmqoiCAGsD9IgJIitJkEQRwigSzyOgRFUCmpx2kgr1TcIkCcI0j/0OMbXRaOCLL77A7NwcXnvttabjcAUAT/TBEv0cn5zc7TSwt548ocuXhq+JZuSETiEW/VjsveayWXotk925LRrLA+gl6G8WSyuTr2kasrmc+A7Lnx1HyHq/soUC5pkkdJTo98boCr0AWLkctYqqVqGwmxigrLJt26jV6/A8TwxIsWwbruOI5NZxXcHM8MeZptkWUER5jRDMzc7ixo0b2NnZQSaT6RiUWyGSPYlZiKNod1PR8ncrbNuGtbCAUqmEnZ0dOI6D556H8bEx5LqN/U52rUTlsifBbvDKZLOos8EZmuc1+b/vHqaPwJwWlKXNRutjr169Csdx8Mtf/jLVTSAMAtQbDcFmZXuUWDn61rdyZoZvhvjPeUVEQhzH8IMAvuuKjYRCiGjgA+jC5vOha4oiAmNfTL7nwfP9XSZf02AxJh+QNo9SuZef106pBKIomF9exuHDh7t/H0YYYYSuyIyPo76zg8BxmswbDE2DaZpwPQ8Nx6HDhXQdISOPCCGIWLOjqigIw5DaKJomDMNoju1sXeFkzNz8PK5cuUI3CKCM7sDgjHscg7RY+3ZaV3JMn721vY1arYZatQq30cDE5GTXymCSJEAUIZQqDWIjAppMZiwLjuvS68FMLNLOuVesjnjPF5OfdkMcRfjDp59C1zRcvHgxdUPgsc8PYPbJTAnQCwRobhzuhJaqstgksES/6XyZjWbAPneA5i8m+85EUQSf5SeaptE5OXtg8jVNa5rGrBAi+iHkNT6KImxvbcHOZsUwxpEktD+Mkv0XBCufp8kSa7DhQceyLDHZ1nFdZDMZqCxhlJP+KIrgMOcAXdehO46wckxL+icmJmCaJjY2NrB84MBQQVm4K7BBJE1MPy+jyQwQdnsJxsfHYZgmbRT2fWxtb6NRr2N8YqJNw877FoD2aaxyCVVnpTzHddFwXajMcaLlYOI6dEKcJFBag3KHQH7/wQM8ffIEFy9eRD6fb/u953lwHAcEbOFg1Zqopcwonx8fJy6Pf286/7TEvvV9tfQstJZVgeYkX15EOWNEAFi9LPOSRMw6kF2impJ8XqLlJXJ2bP6dIYRgZ2cHMYClAwdw+PDhngNjRhhhhN6wi0UkcYzQ85qS2Ww2iyAIELF717QsqGxIHk/6eXXPaTRAFAW+50HXdViWJSrMTSAEc3NzSJIE21tbmJyaGkoTzSuICYtJTVKblHWFxy5VVTEzPQ3TMFAqlxFFEdbW15HLZjFWLDZLZ9haFTHSQZFirhwLkyShTc1RBD8I0KjX6aya1vfF4223dYUlyBp34eny+K+vXUOlWsXPf/az9p4uxp57vk/XFV0Xs3pa5Svy++BrZ7eZLLIUh+w+mVYSJKmOeE9RBNfzaI8Gg6qqdF2Rzpt/D/jU9Yxtd0/0Ezrbxff9pv4RjclL5SRfOCJxOZSUh2xtb8OwbSyy3q+RJLR/jJL9FwibWXL6jcauzz6T81RYF7tpGE1fdDnp13Wdlht9Hx6T9xiGATuTgd2ivVQUBXOzs9ja2NgX66mmJl5208mBgf+bs/IEVD86OztLtZa1Glzfx8rKCsbGxlAoFMA9idOargSjz27uGIAK6gIUMX/ner2OfC7XHJi5zrDLe4nZaPdeQXlnZwfXvv4aR48dw1KrzSbTefpBAEKoraU8LERhj2k7D0lHmkjBNWE6zTQGiWs1WwMxQBcYz/epDR77maIosAyjLcnnUBWFypgI6bgJjKMIvu/DD4ImlqeNyYdUouWLUcsmZHtnBwmAxQMHcPDQIRRbhs+NMMIIw0FRFGTGx9HY2UHI+nJURaFVY8tCrdGA67pUn87ipNaS9PuaRt3OPE/IRnXDQDaTaUv6s5kMisUiNjc3MbPH4XciMnVYS8S/JbkiCJ3VYdk2dra30XBd6rnuupgYH0cmk9mVksivAYlISiFX7EwGUbWKiPVd5bLZtjWhlxRFEFZ809Eh4X78+DEePniA8xcuYKxlLg+Xg0ZRBJIkMG0btpTAqqza33Re7DqJdbSVAU9Z30RVWVFAuMRK+n1akq+xfqw0wwlCaL9fFMdQokgMtmpFGIYIGHEkM/StSb78vsCOKz+ea/RN28Y8Y/RHif5gGCX7LxiZsTFohgGnXKayFUIHU4iya6MhpuAKRoM15XD21vR9+Kzpst5owHEcEZwz2axgq+fm5/H4yRNhVwVg+GYdSIGTHT9N5ykzB/y3vFF3a3sbvutie3sbtXodhVyODqWS9O/y6zSdpfRamUwG1VqN6vdTGqu6MRsAtUfTIAXlFAmP7/v49NNPMT4xgTNnzjT9Tngds6DbNCyLvTZfGEhCLdwUVhqV2e6mzUDKOfMkv7VRjp8DL322llWbmrFbjkVAy838nJqac5mzgs8YQQ7Cekh0XW9izwSTxJ8PNDWjOY0GdkolZPN5zMzN4cCBA6MphiOMsM9QFAXZiQm41So8FhdBCEzbFpNiedUYgGgA5Ul/FMfUqcvzaEwJAni1GpxGQ0hLZYOI2dlZPLh/vykm7UUnTtBM7qRZi7ZWOAkhmJichO042NnZQRiGWF9fpz0K+XzTPI/WWCg79ciuY5lMBhU2Rdx13faqZw8pT5rpQyvK5TKuXr2KAwcP4tDBg02/C8MQDTYoCqAGD02JNWfkidRPx5N/af3oZvW5+6PmtVp+D15rks8Jng4JPL++IetXU9mwUI6YVU2CIBDmFQCVJum6DkPXmx7ftnax8+TXv16vo1wuY2xyEjNzczh48OCo92sIjJL9lwAjk4Gi63B2dhCFISJQOUUQBLSc6PupbgPcH9hiZUcuIXFZkPY8D+VKBRnbRj6fx9zsLAgh2NzcxPTMTJMWfi9oOoIUYNIex3+q6zpmZ2ZQrVZRKpXgOA4ajgPLMFAoFmExr175uLya0NTQxdiIbCaDSrWKIAjgOk5zYO7xHpPWoJzCpH/2hz8gimO88847TcEnYPp8Ip2Hzpxn2iQ4LKlXmQxr9/R2NaOdwD+r1usqS2qaknzLalrgxHsBY4Ok1wxYAxXfFISsnNo6zE3T9d1KkywDkkqrMvgkyTiOUS2XUXccTM3OYnpmBgcOHBgF5BFGeEEghMAuFKAZBhqlEiUWEjq1O2T+5OJe5oQEqEGAqihQ2brCpRWNRgOe71Mtu+tClxol52ZncffuXVQqFSHH2/uq0twPJnTnPWDbNizmBFepVFCr1VCt1ZDJZFAsFHZjM5rjLj++PJdF0TRkbZsSaK4LVVVFnxPQux9M2DmraqqcNAgC/OEPf0Aun6dzWqTfeb5P5aAJdUzL5XK0mhvHSAhpur58XeGV8dbX6bWutG4GEibVDJgtM4fOej+6JflNbHsQUMMHJu1Mk+mAkZu6pGCQj5e2mYpYz2Achijt7MAPAswfOICpqSkcOHBgpNEfEqNk/yVB03Vkp6bglsvwHQcqITBMEw3HEfKc1h0ub9glhEBVVWQyGRrMGSNQr9cRhCGqtRpqtRpslvRvbW/vssny8QDBzA4TrOXjkQ4JYOvjC8x3vVwuo16vw/N9bGxswDRNjBWLuzdui64wYs4A/HeENTdzm0+iKIIFkaUl8vtOoghRktAhKuwYIpiyBTBJEty8eRNr6+v48MMPYVmWCGi8xE0IgcKuf1pgT7OdU1W1r9kDgtmSgl4URSJwygtgmnZSOlAzYyb9KmSTDqMoQqVabZbpsAXO0PU23So/RlspnP8sSRCFIba3t5EQgqWDBzE7N4elpaWR3/EII7wE6JaF/NQUGqUSQt+HrmnQdR1eEDRVjQGIyqNc2dRZBc+2bSqVrNWEh3qpVEKlXIZhmlBVFZsbG1haWup4LmlrTj/gz5D7t1rnwsjrDCEEY2NjdF2pVOA6DhzHgdNoIJPNopDPNyX94vzAEkmJ9NEY0+z5Pmr1OnJsreWvSwihxgdSwh1FEd04sKRWkCGEgLD1JYljfP7553BdF7/61a9oIs+S7kajgSAIQACorEIvy5ZE3G1ZV/gx2lyJWhJ53gTdmuRz4igMgiZXON4bl+r607LxaCLCwhBRFCEMQ1QqlabXUjUNBltXUiVF0vGb3wqtvHiOg62dHViWhQPLy5ibn8fs7OxoXdkDRsn+SwTXW2qmCadchm2a8BwHIUvY87lcWzNR04AL0JtN13UUi0Xk83k6TrpWE5382UwGz54/x872NvL5fJOOm9+KchK3F4aGMzKtUhX5/OMogqZpmJycRL5QQLVSoUm/52F1bY1O3WMWpPyYAFJtMQ3DoAGLDfXIq6pg63lgazoHzhjJA7WkCgIArK2t4datWzh96hRmZmYA9njHcURAbtXny++vm7e0mCcgPT7BbllZnDN7TZ7gR9JzCOiCbKQwI2DHitH+OfJFKQgC1Go1NDyPVlOYI0aaTEd+za56Vca6uCwg5wsFTLMkf3JystOzRhhhhBcARdOQm5qCW63CrVaRzWbhb28jiCI0Go1m2WNrjAa93xVFoZ79ExMoxjEdpsWc0BzHQT6bxerqKiqVCmzb7qjjlo85DGRdPyBJNFuZ6SiCaZqYmZ6G63molEpwWYWiUa8jm802TXMlTMoks+Qctm0jimNBosnrMI/P7D8i6Y+jCCqbB8M3D3xdIQDu3ruHlZUVXLp0SVz/iH0enLnmVfuO16KDHKf1/PlmBIQIFyX+207EkUKIqOSmmV5wk460dYX3fvCZQLlcTtiypsl05Nfs1Uwcs2Fi5UoFE9PTmJ6dxdLS0sjgYR8wSva/BxiZDBTDgMMSpZ1SCb7vo16vU0/01puhQzmRD9zIZrOUmahWUSgU8PTZMzx89AgzMzOiwdLOZGBoWlNy11QqxB4DNAtCkcRStzL/hq6LpL9cLlNJEisb27aNosRCicl9jCXhASJj22JKcKNeR04KzN1YJcKao2XU63Xqezw7ixPM9ziKItTZQBMQ0qzPbz1mDxZL6Pixy45zxoVfH15KbZ1wyRm6ND2+KHuj+XPjLEsYBAjDEAloL4IfhsKpx+L2Zp10nbzi0eH9xGxRrFYqqNXrmJmbw9TMDA4ePDhqmBphhO8RVj4PzTRR395GrlBAhcVYwpp3U5NHoC2ZVhUF+Xwe+XyezteoVFAoFrG5vY1nz59TD3TGBluWRUkDWYONdjZ+ULQm/TLiFptfyzRhzc7C9TyUSyV4rLeNN94WCgWaBLNKa1vCTwiVicp9YUyC2CoJ4ghZsq+paltFY2NjA99++y1ee+01LCwsAKCSHj4vhrB1u7Wptd/KiMLsU2ViS0h/GPMverFkOSl2KzmapqWuK/x68McDEAYZobRO1RsNREki8os0mU7TcXkukPb+2Gfh+z7KpRKCIMDCgQOYmp7GwYMHRx76+4TRVfyeoGkaspOTUCsVxHFMy5GehyRJkM3leg88YjcIf4RpGDAnJ2GaJtbW17G+tobZ2VmEQYBaEKBer0PTdRGkDV2HJjk2iJKl7IQwAEQpFjTwxHEsbNBaYeg6pqem4HseytUqnEaDlmIbDZHkxpK8p4llJtSxqFKpCCcFUQbtoAEE2v2hXdfFxx9/LHyPCSFUu8psNQmhI8r3GmhUNmkQye4AM+FQwBJy+bFmy+ci0KrjBGuwjSKR3Ke5NgTMUzvDGtla0brYd2KTkoROMQzCEFubm4CiYPnQIcww5mVUXh1hhO8fmmEgPz0NtVSiLGm9jnq9TokLRlq03eOyLFGukAIiodc0DSurq1hfW0M+l6Mkgu+jWqtRj3TDoE2dhkGTWClhbGq4HBA8Fkf87y4DunjS7zgOypUKfNelHv31OjRVhWGauxsFvq4wIomwfqxarYbA9+EwoqfTusIbT/nUYv7bcqmETz/5BFNTUzj1+usA2uWgWS4HFZd/8OnDKttkxAB1dUsS0RQbDEAcAe3aeb5Z4Ml96/UmoJsdQ9NQYFOPU4/Z/IP2N8E3XEkCx3Gws7UFM5PB8tISFhYXMbtH96cRmjFK9r9HKIpC3XpYEC6Xy/B8H6rjwGB++h2Tfp7otyT9lmXh6JEj+Ozzz6EoCibGx+E4Djx28wasMYgn/oauiwAt7/blxp5BgpCsN1Sk80urHBimiWnThO95KJXLNCiypuOs5wmpiXzshF23XC6HWq2GMAxRdxxkbbtrZULTNHEOvu/j448/RhSG+PkvfgFN00RJkhAi/POHTWBlmRBnNMIgQMPzEPp+k15SIURoG9tKn2RXhx9jV5oTtrAsre9T0zTomoYojtFwXdov0hKQ20qqXZJ8/vk16nVsb28jVyxienYWy8vLmJiYGOoajTDCCC8GiqoiNzkJ1TAQra3BqdfRqNehEAJd03YJng5JP5FiF48L2WwWhw8dws2bN3H+/HkoiiKkjmEQIPB91DlZo2kwmF0vX1eGSfSb3hORhvdJcqEkhZyybRu2be8m/UziWq5WEYyNYZpXIqQ+Lkhxv8Fkplxq07oBAiRpqKYJP/9atYqPP/4YuXwe7126hDhJ0KjVEIUhZdUNQ/jn08s7eJIvP5ZLdFzXTSWO+PrZuo7J8lt+Hnw9CcKwyUEHgJgpo2kaNF2H7/tQazWA9Xq0nV+HzZj0IPreWd5SKpdR4bIdZu4wGsC4/xgl+z8AGLaNycVFhEmCerVK3V+YrjoGeib9clBWVRUTExMoFgq49913+NlHHyGTzVI3H9+H6ziCCXbYYC+eHGrSH4WVKPlr993Yy9gSOZEUGwikB2jDNDEzMwPX87C9uQnf8+A0GlhdXUU2m6W9B/LEVm4jl82iVq/TRJoQZNMGRrHX0TSNMhJhiMuffALXdfGzjz6CpmmoVKvi+ppM6jJodaOVIY95Ui7ZkHEtvgLKwBmsnCqfq1wCj+OYjntnY9/TWBZFUZoWVfm865UKfN60xyolTc46Hd5jq4ODxzZjnudhZn5elFdHsp0RRvjhws7nMWsYWHn0CB5jufO53O5cl05JP4f0c13Xsbi4iHvffYcHDx7gzTffFN79vufBcV2xrvjM1YevK6r0t6qqlA2XKsq9rJPFuaRULiFN5G0dQMWT/kajgY2NDQS+TwmiIECeOQ2pqiokqEkcwzAMJIxpdj0PYPJHroXnkPvACCFoNBr4+O/+DoZp4v3330cQRfAaDbGuyHLQQZN8Ho8JqKSGryue71N3P3Ze3YgjOcGPoohW3tmaErVsFACIycJcosXPNY5jOqshimCydUccW64Qpb+RpiS/3migXC4jSRIsHDiA6elpHDhwYCTbeUEYXdUfCFRdx9zBg1h//JjaGNbrUFhgTuK4a9Lf6pKjGwYOHz6Mr77+GqVSCWNjY9TNx7ap5j0M4QUBfDbJl/sMJ4AI0HwAGC89cn2iqihQWOKclvwL94LWn0t/i9Ioml0XLNPE7NwcNE1DrV4HQANCrV6HZZrIZLM0oWfnxRnrer2OwPPgACIB5ZIk9h8ozB3n008/RaVcxgfvvw9FVenEYtAmt4xtDxRo5MpKJCX3URg2NdlyGCzpbqqgsGNEcYzQ9+mx2HFS7U0ZA8X/pDooAKKROYoiqqtl7NqgSX6lUqGVIE3D8sGDmFtYwMLCwki2M8IIPwLopomFQ4fw/OFDuI6Der2OXD5PB+1x8qFX0s8eYxgGlhYX8ejhQ7x+6pQgKzRNQ4ZN8A2CgE6IZ0lpw3Upqy2RSDzRVVWVbgAUBZqqgqhqRzKJAAhTYqr8eGF8ADQl5plMBvNzc9ja3objuojjGJVKBZVKBZZtI5fN0oSeSWNMZgvtuq6YaG+yTUDTaysKFELgeR4+/vhjAMCl996Dx4adkYS6/di2LWQ3/ST5TeuKtKaEYdjUZMvXUoM53/C1i2+eCHb7uHhyH3VbVyTSqFN8D5h8SyV0ai5/XLd1pTXJbzQaqFQq8IIAlmVhbnERS0tLwiBjhBeDUbL/A4KiKJg7dAjJ48eolUqo1moo5PN0Zw2IpF8lpInRaIWh65iemYFt27h9+zbefffdpt+rmoYMS2554h/4vggMQRgiZrt9Hoz54AweqFSW+KuqCoU9RgSIPsp4zf9tLmvqhoEJ04RpmjQoeB6tSvg+SqUS1Z/ncjCYDWUmm6U+0bz0attUI88nHDLW5vMvvsDm5iYuXrwIVdfp71mp1jTNvpgWoV+PImo9lhKEARqIVZ6Uq6qQ4cQJ9UoOGGufdAnAAP1OcDaMJ/e9zjNJEjGHwTQMugHq8py2JN/3USmX4bkuEsYWvX7mDBYWF0ds/ggj/MigGQYWjx7F0/v34TUalOHP50VyzJN+wkiUTpHCNE0cPHQIj548wf3vvsPJkyebfs914ZlMhib+bCJ3xJJVLwiQuC4AiDWDs/xiXWExTmO/I0wTz3X2/UCWUXKnOLCZNdlsFoqqolqpIGCuMq7jQFVV2NkscpkMdNZ/kLBp5Q5L+FvnmmiaBj8I8PHHH8P3fVx67z0q2WEJfYZNJBbn1S0Gs3MNpTUljfDhmyReKeGkUpxQh6I4jinZxNaVThAEnqLQdaUPkivm64rvQzMM6q/fbS1KSfKrrCciiWNkczmcPnsWc4zgG+HFYnSFf4CYW17GKiGobm+jVqsJJgbA7vARZt8lpB8tJVdD13H48GHcuHGDsjnM/qutXMcSfzD/fj5NlSegvNE2CEPErKxJeAIqsf8AXSxUQhDEsahCqIoiAnYaWqsSCrMyS+IYpmVh1rap1SZrNIuiiLL9TB+azWSQzeVgWRZc5u4DxsQI5kpVceXqVaw8e4az585RqzDGugh3mh7g+shOrDsPwkIGRYgY4hIxlihND9n0WbAArCoKVKm60gsJIPojeCNww3Hg+z4ymUy6mxCRBtnISX6lAo8tbgAwNT2Nc2+9NdJQjjDCjxiqqmLx8GGsPHoEh81lyeXzkKMLJ5MIISJeN8ktmQXx4sICvvvuO5w4flxUFlvXFZH4AyLx58koJ0uihA5ikisMrTKfJElE0s8TaYWtJ/La0wl8beRymyRJkMtmkctm4XseavW6sMOsVauoViowWRU5l8kIR7NGowHSMrmdALj8ySdoNBq4cOECrZ4midgsdKq67l7wRMgzO8lp5EqueA/Y1dk7nocoxZxBPkeVVVR4BUXpgzCSn88RBgEaros4SZBhdtBtj5c2kFyS6jgOHYjp+2LTtnzoEN68cGGU5L9EjK70DxCEEMwuLiIBUOcJfy7XNpabd7KnSXwymQwW5+dx77vvcPvOHbx1/jw9Nn8ufy3p3zyo8GNHUvmQDxIBsFsSDEP4XC+IXbYgiKI2n3zOdhBFgQIagAh7jkLILoPDWRyWuBLm/2zoOgqFAjwWoB3We1Aul1Eul2HZtrBBcx0HiqII54ZHDx/i+fPnOHX6NKYmJwHGupgtwYpvcBK2wYnZn9YgzBcszrLLQT3wfXi+38ZCeb7fdC3kRW3QACwfRzRq0w8NwK77Ay8hN20YeF+B1DTNk3zXccRnYNk2Dh45ghMnTw58XiOMMMIPD5qmYf7gQTx//BhutYo6W1eAZpkleAUSzesKb1g9dOgQnj55ggePHuHYkSPiecJmmNChhTwC8sSfHjoR60kokUqcWIrjGIFkYqASgojFRp8ZKMiQ1xROQskbAi61aSWVANAp5KaJsfFx6s9fq8H1PPieJ2wgbWb8QBQF9XqdmiIwieiXX36JUqmE84xAUhQFmUymLYEVxBlbQyO2PoYtxI+86VHYe+AbFI+x4ZCuM0DXG/l98bVElf70iyRJOpJyAF1XPM+DrmlNc2f4Z87zEX4uIslnFXcCIJvL4eTp01hcXu77vEbYH4yS/R8oFEXB7MIC1ghBY2cH1UoFmWy2rZQIQEh8RALPGGErk8GhAwdw97vv8MapU00Mb9otLSf+MqPAnyWaerguXWK4eaAOw1D0ATQdmzMx7PxIa+Dmi4uqwnEckUxzfbso8yoKioUC8vk8GrUaao0GdeRhGv8oiqBqGlymHSWE4PnKCo6dOCEGPmmqioA1K8c8CMexaPASDazJrh8+fw+yzpQ3baWVS/lGpmmTI0mfhkXT55ZS1o7YQJwoDOlsBdPcLbVKwRigSX61WoXbaAg2z7JtFItFHDh0CPNdpmWOMMIIPz5omoa5pSWsPH0Kr1pFpVxGhnm+t/ZgNa0rLI7puo58Loe5uTncvXMHR44cEdUBsWFIqXrKMVRO/oFdIwKe/EeSy5hMuIRB0C6XlNYVMLkpB4/hPIFtsDjHLSjldcXQdRjj49TOuVajiT1b7/gaoeu6OLe79+6hVq3ijTNn6NAsVj1wHIeSTIwwSnqtKywJ5mstH9DFB4el9cSpbDMQA7BSqiGDQpY9dUIQhqg3GkiSRMxW4PkCf0/8CK7rolypIORKAELtsotjYzhy/DgmpqaGOs8R9oZRsv8DhqqqmJ2fx6amobq5iVqtBsuyBNvQCTxAm6aJpaUlfHf/Pm7fuYOzZ86kPr4twMt/S4Gay0raArXcmMqGjchev9yBhyfUcRDsDtlAczJNCPW752PFVanSIP/NE1fTMKApChqOA8/zqOQoCOCHITY2NpAAmBgfh2VZVNffJdHmGxGeyHOnBt6vIFgLoK2UzBN7/lyZIYnQzMD0A7m6wa9hP/x6o9GA63kgmoZsNivYfw7uyOS6Lj0nickvFoswTRPLhw5hcnp6oPMdYYQRfhwwDAMLy8vYXF1FrVRCrVaDbVkwWT9OaqxJdi14LcvCwYMHsfKHP+DJkyc42IGllSuOTUSS9G+ANf8y9zkOUVWWGkwVRWlq0uXVAN4LFQcBAmmdSJJEJMCKosD3fRBCUK/XhQSWs9GtskzbsuAylyE+fdZn9qIJgEqlgqXlZVp9dxyontd0reTkmRMpfK3gaxonsvj15hsXzuyLtUj6uUyQcXltv2j7TOW1IUm6ri/VWg2+51HZbybT5KAUxzF1YGLrShyGgEKn1WfZUDPTsnD4+HHkR5NwvzeMkv0fOFRVxczsLEzLws76OjzHQRiGyGazuyxGS0LHQQDkcjksLy/j7r17WFhcxFQfvuitJd1W6Q99SfpT7tIgC2JC5u4jAjFL8hPp79bgKm8IiKIgZLZipCXhlX3fwc4vBrVZs2wbTqNB5T3b22jUatRb2jDo+UQRDMuCxcaEE860s74ClTNEkpSIb0BEsG5J5PtBq6RJvsadPjv+3toe3+k1QDcUJdZ4lmN2pXKTmeu6lJkiu014fHKxYRjIFAo4eOTIqAl3hBFecei6jtnFRRi2jfLGBpVFhiEyjCCQE3MZBMzeeXISk5OTuPbVV5ienqYTenu8ZiupxNH6Wglo9VVVVbGuJAkd6Of7Pl1XOHEkrTFydVs+dswq0IQQ2nsVhnTIYrd1JY6hqipy2Swi24ZTr8N3XVRKJSCKkGWyHZ8lt9zkgfva8/4DhVcbJMkLpDWlUyLfDzpVlJt/0N/60g0Nx0G1WkWYJJjIZqGqKuI4huM4cJhkNJEHaBLq1FNkLoDjExNYPnx4pM//nkGSTjYgI/zg4HkeNtfX4ZTLiKMoVXfOIbMz1VoNH3/8McIowi9/+UuYfJKeHID2CPElYomkGwS7vsgtTAf/mVzmlIM3T0xN1hCG1nNNOe8oiuD7PgLfx927d7G1tYVCsYhcLgfTsmAaBvWaZ8FPY4NfTMtCxjCgSRN7OXjJWFQ5EurqIP+MP0dmaFqviSdfixeABPT9r6+vw/d9OlQnl4Pree2BGLTiY9s2MmySI1FVLCwuYmZ+/oWd4wgjjPDDRKPRwObaGjw2b4TLejiaKr3SzzY3N/Hx73+PsYkJXLp0qcmRbb+6fOSNQAzaLLv7y/Z1RU785XWFy3OCIICdycBkTjJyBTtNzsLnBriui1s3bqDaaGAsn8f45CQUVRUJPn9tTdfpJF/ThMUsN/m5Nkl4pPNvXdOaZtSgw/VPElrBbfH/3ytaP2Pf97G+vo5A2tC4ngfPdWmvINskEeZ2lLFtWJZFHYMMA0sHD2JsNHjxB4FRsv8jQxRF2N7eRn1nB77jUEY2k+ku6wGwsrKCy5cvY2FhAW+99ZZgERIwf2KyO9BpPxAmCcIgGOq5HhuqpRsG1UO2ggUXAGKCYMg0nd988w0q1SpOvf46pmdmoKoqPM+DHwSCYRf/ZoEyYcm/KQVpbQ+6ehm8/LsfkGVV8tRkAFjb3ESpVILvebBYU64CtAXiTCazyyAlCfLFIpYPHxYl/BFGGOGnhyAIsLW1hUaphMB1aaW0B1sfJwm+++47XLl6FadPncLx48fbGmG7WXkOg5DJRoeB4zjwXBcWe29p4PGVrytRFMFxHHz91VeI4hhnzpxBoVAQ64rHdOkJk4+2SlMNXafVZLa27KVfSwaXq+4bJLku3zzESYLnKyuo1uuIgkA05fKNh8rXlUymeRBlkmB8ehpLBw+O2PwfEEafxI8MqqpiamoKlmVhZ2sLXq2GSqWCHCuvdcL83BxeO3EC3968icnJSRw6dGj3xuW6RfZYInn4DxuoVUIQS4NbBnouex9Nz21hOgLGtnCvfMdx8M21awijCB98+KGY7JfNZqHrOuqNBgBaHraZnSd3F/A9D3EUUUeGRgPJ9jY0Zl+qsYZcPmxkkEYo7mg0LHhyL7NCAdvU8KE1YRiiVC6jWqshiiLk83morHeAT5BMmwisKAoWlpcxPTc39PmNMMIIrwZ0Xcfs7CzKloXy9ja8Wk00+be6wHEohODI4cPY2NjAzZs3MT4+jqmpqV0iSdLCy/IV8f8hwLXtw3CUPG63risixia780n4Y0qlEr65fh0Z28Z7b79Nj6OqyGYyTdIbwzBgWhZdU9i6EvA4Xa+jVqvRx+k6NDaMTOdWzWyd6Rf7sq5gV75EgN1zDQIx9b20s4NGvY4EQKFQAAGgqyqsTIauKymWzjrr+SqOjQ19fiO8GIyY/R8xfN/H1tYW3FoNoeNAZ77xnYJzFEX43e9/j52dHVx67z2Mj4+Lx6Y1ZXFWmBBqpTaI7IdLS8I4HrjMmCQJyuUyCCEYk4JGK+PCmaNarYYrV68iY1l4//33oWoanEZD+OgDNJjVWeBS2CaAN0rxke8ek73IDI38fnjZlW8AxEagQ9CO+OCsPjc8PLnnnss+Gz8v/2m9XV3XRU1K9CcnJ5GxberC0wF55rZjjNj8EUYYoQWNRgPbLOFPfB+GacIwjI7rSsNx8Jvf/AYJgHfffRf5XI4m5ISAxHG71AZI9fHvZ12JQTX4A68rhCDwfdTrdWiaRhtFuaSG9TXxJJ/r6NfW1nD9+nXMzszgnXffFdNj+fUghE7PlYmkbDYrqs4hH9rFkv8oDJG09KDRf7B1ha0pTX9zwkmSA0VJkroWpEFO7Hm/QuD7zesK72kQp5OgUa+jwZyFJicmUCwWkclkmsw5WjE5M4OF5eURm/8DxSjZ/5EjjmOUSiXUq1X4joPQ82BoGkzLatJdctTrdfzN3/wNsrkczpw5g1wu13ZzJrz0muIEI7x4W4J1WqDmPvfCT5hrFOXgL7E08muUSiUAwFixiJgl+bw5C6CLhWGaWF1dxVdffYWZ6Wm88+670HUd1WoVURhSOY703uI4pokxO0bbe2fnEUURXM+jLIc0ZyCKoibdZdxyzvx6yA5Cacm+0GSyv4U/MSsH842MuET8eexv7qUsb3wKhQKmuzjoJEmCbD6PuYUFFMfHOz5uhBFGGCEMQ+zs7MCp1xE0GoiCAEaXYVHrGxv4/e9/j8WlJRw/dow2sEoMvywbJWkxH7u6+W4bAJ60AmjzqQdoVVokri3NqVEUoVKpQFVV5PN5If30fH83tioKTMvCnTt3cOfOHRw9ehRvnj0LKAoq5TKSOEZGem8As6Ws1VKJJHYBxPm6rivYc07q8CZjTq7JKVmTEx6bI8OZ/TaTC/5/qVLBr6vcwMzluk2GG6DuQIqiUMc210WSJJiYmGgi3FqRACiOj2NucTFdcjvCDwajZP8Vge/7qNVqNOlvNBAxmyzZE5fjOdPvHz12DAvz88jlcl137DI6fVl4kJYDNQ9iAESC3S92trfh+T5tQJZ6ChSmE9R1HTe+/Ra3mdfzuTffFIxKqVSievRCoTlwAkCSoMaHowBNlnPNbzT9nYqJh3wjIAVtMTyFBVmx0UkJyq2ymtbKisLGmOuM3dE1DTor/8ZJgjqbKOz5PizTxPj4eLq8iC0+c4uLKIxKqyOMMEKf4LKWWq0Gp1aDx+Z3dCKTbt66hevffotzb76JsfHxntJS2Wc+LdomSQI1hVgSDjzYndTa1/uJY2xtb9MmXdveff0koWulaYIoCr744gusrKzg7NmzOHr0KE2W2UaBKIqYwC6jJ5G0+6ZS32cr0x6FzXbWACPPIMl4JOltamWe/S2IO8KmvKsqXVPYusI9/qMoEhOFgyBAJpNBcWws/foSguLYGGZHSf6PBqNk/xUDHzBVKZfh1+sIPQ+qosA0TRimKRiJr776Ct/dv4/zFy4gm8nQpiXTHNj+qxuEZpM3lXJmQdKhy/pOnkQHYUjZ+SiCbdswDIO65+g6tdF0HFy5ehVra2tNARlgcp1aDYqiIF8opGobEwBOoyEm3fIx8KRDmTphpd3U30n/5s24ATtuFLdbjLai9TUVVhnoVDIPggD1RkP4GpuGgUKxmLpZy+ZymB0x+SOMMMIe4TMJTJWtKxGzrzS5pAU0/n388cco7ezgrbffhsZmfRgdHOOGRSxVQgGaBItBXmytaV1XfCZdqVQqQJIIxyGdaegNw0C5VMIXX3yBWr2Od955B/OSO5lsGmHbdmovWiITSQkdPmVZVpuMSWxuOqwN8ppBCEEUx/A8jxJHcdxTwpS2jilkd5hYGjzPE7NqfN+HaVkoskbkpnMjBMVikTL5bPryCD8OjJL9VxRxHIuk361WEfo+VCZ94YzD7373O5TLZZw+fZrq91VV2DHuF2RGn5cVxdhvHogZSy4n1Z7nAXGMXD6PXD4vHv/gwQNc//Zb6KqKC2+9hTm5wZQQmsS7Lk3gM5m2ZF9mQFzXheO64nc2sxZrA2OfYgCQvJxbGfro/9/evfXGVWV5AP+fW506deoSO45vscFOQvAEcAaHlvIGvEfwBZB46eENqTVfA7U0vIKmhaYfW/0wkYBhulHSL6hpqeNBxHYmicZuJySOnNiu+7mfeTh7nzpVLl8ChiSV/08qcSvblRDtvc7aa6/Vk8VPy36OQBzHSTcJsRi7YkHOmyYKhULXewu2jbHJSbY8I6IjJZNJ1e1teM0moiBISyoNXYfn+7hy5QqiKML8/Dwsy4Imgv7HnU+yH9mYAUC6p2SnuYdBAE9Mc09bI4v9QRMBqyXWzTAMcWNlBTdv3UKlXMYbv/oVKpVK8r3F1zYaDQQi260bxq5gP1sbn00kqaqafI3M8veUFiGT+Mo2ysg+rESZ4D5bxnQkv49RhJaYTdMWs3Fkh7/sXqgoCsqVCsanplBgJv+ZxGB/wMkgsbqzg1a1ikAsQtLS9et48OABzpw9i5OTk4jiOGkT1qeDy4/9+bLfcRhFyeUqUfri+34nYBYLo57LwRBHio4I2m3bRrVaxeK1a9ja3sap2Vm88uqrnWx2pv69Xq0iiqIkc2MY/cuHMr/+IAzRFseWMZKuFIVsf+Q+0k4G4p/lOPXeHvtHtSj7vo9Wu40oDNEWtZSG7OcsWmkqAAoyk89yHSL6GUUiSNzZ2oIr7kjJ+1ye72NxcRGtVgvnzp3D8PAwojhGwbL6J1N+zM8Xp8aRuOPUu68AnYBZ1TTkdB1GLpcmS+Qk+gcPHmBxcRGO4+Cf5uZw9uzZTmY8061up1qFEietimUN/C5xnNx3i2N4vo9Ws5l+TjnbZN8HHrGPRZn7W7vue+Fo9pVYnEK32m3IafW6mLliFwrJaY0YIlkqlzE+OclM/jOOwf5zxHEcNJtNtGo1OI1GWvt469Yt3F1fx/jkJKanp6EqCnTDQKlU2lWXud8DQDq2XFxmlQtx2tde1l/KLIWYlmuI+kE5PhxIAtxGo4E4jnHv3j3cvHkT5VIJr1+4gON7ZKzDMES9VgMUBccqFUBRDrUwxnGcTJkVXRWAZCS8uU+f6TTQz5xSpFkZ4FAlPIf5XK12G57rIkby/0/XNCiqioJtI5/LQTMMDB0/juETJ5IBZEREvxCZTGo2GmjV63CbzbTJwPXr1/FwcxOnTp/G6OgooCgwRfKmt579sfcVkbnPNjeQ740hJruL8pxs4sZ1XbRaLURxjNu3b+OHO3dwYnQUCwsLe850cX0f7WYzudhbLqfJq11vRXfdfBzHaTceyTrEA0+MTHtQuVfKu29HcFocRhFaotwoEp2IDMNADKBUKiW/b6aJ4ZERDI2MHHkZFj0ZDPafU1EUoVmvo1mroVWvY3V1FTdv3MDQ8DBmZ2fTDEK/BTNdmHsuTmWPUrNBvVwcZUcB2ate9q2HuADVe7l3dXUVN27cgOf7ODc3h5fOnt3zEipkmYvjwDBN2Jkj2r4yG4QURhHarRY8kRnSNA2Fno4+vUF+/2+dlCdlO1CkP/MQojhOejV7XmeycBhC13UEUZS02BwZwdDx4ygfO3bovv9ERD+nMAzRrNXQqFbRqtexsryM9bt3cXJyEhMTE2ngLgPKbKb7UPtK9meJBJKmKMm+IvYXXdOg6nqSJe+5b+X7Pm7euoXbt29DU1XMz89jenp634cNWcIjh3HtFewD/ZsvBGKGSxgEiJF0vel3etwV5O/xvcPMQ8B+df/9yNp/Vzx8hHJf1jQoSHrpD4+MYPjEibR0lgYHg31Knu5bLfzv8jK+/eYbFGwbc3NziGR3mSiCkcshZxgH1/OLG/9ydLomjgbTVmj7EVmaZquF69ev4+6dOxgaGsI/v/46hva6ZJp5qKjWaojDEIXMpbAfc+Tp+X4yXEvU5+dyOZi5HDRdP9SQsEjWWe765XVKltLfi2xHBbEYe56XHv9m35MzTbzw4os4MT4Og9kWInqKRVGEVr2Oa3/7G65//z1GT5zAzMxM2qFsr6C/r8y+osm+87L72yH3lZ2dHfzPd9/h0aNHGBsfx4WFhb0n6QJpHX21Wk26u1Uq0FR132B/74/QOT2WJwBmPo+cYexqt7mXA0+Le/aVbGMMR077ReeUQJ6228UipmdmMDwywh75A4zBPnW5e+cO/vOPf4ShaTh75gzGx8cRhSEiJIuEIdp5aqLnL9Dd4ktV1b6Lb5S52NpXFGFjYwOrq6vY2NiAbhh4+eWXkyFRYhz3fkLRwSdbwgMcEOz3XpbKfpw4htNuo+266YKpaRpypglTLNB7edyBLzLId123E+SLxVpVVdilUjJ+fGrqSC9PExH9EpauX8d/f/klhstlnDl9GsePH09bFcdxnE6gVXtPQ5F0ktlrvT2opXMYBPjh7l2srq7i4dYW7EIBc3NzKJVKSZnqAS2nXc/rKuEB8KOCfSkIQzjtNhzfT5o9iD01Z5r7dsuJga7T4sOIxLyYNMjPDDjTdB3FUgknxscxNj7O0+HnAIN92qVWq+HKlStY+f572IUCzszMJLX8qpp2PsjlcmlLzAMzK0DSirLPH7V2q4V/rK1hdW0N7XYbxyoVzJ46hempKQSirMbI5VAU9ZTyWLb3uLTVasFz3a4SHuAQmf1MBiR78TZbI+k4TlLak/n8Ri4H0zR3jTl/nAtUURh2Z/KjKP316YaB8tAQykNDKJVKqFQqXJCJ6Jl1//59XPn6a6yvrSVB/6lTGBsfT9fzOI6T/v3i/tZhyLKgXvVqFf+3uor19XX4vo/R0VHMzs5iYnwcbcdJLumaJqxCYd9suSzhsTLdaQ4V7It9JYozk2nF1ypIyolc103aNKtq2onOzOWQ6zO4rKuE5wDpRHjPS742cyJg5vOoDA+jdOxY+sBzlO226enFYJ/2VK/X8e2332Lx73+HDmD2hRcwPT2d9BkW2WdVVdPAXz0g6xxHUdq+Ms3iP3gATdMwPTWFmdnZrnKdQGTrFVVNsvU930se48ZRhGq9jigMUbTtrhIXOTyrt4yoqz9+ZrLgfp/d9Tx4rpsG8zGQZvsNXYeiqogyLeH2+j6+mNro+37XKHNFtLA7JmrxbdveezgLEdEzaHNzE9988w1uLC2hYJo4NTODqZMn08RReooq9pX9TlHlQ0KM7iz+o60tmKaJmZkZzMzMdF2+lZd0DcNAUXSYyZ5Sq+LEN4yiZGougIrowqOIAD4bQGf3FpmEikVy66AwOgpDuL4Pz3W7mj3IbL9sWhH03Gnr933kA0QUhojF72Moho5Zto2hkRGUKhUUCoVkyi9PiZ8rDPbpQK7r4tq1a/j2r39F0G7j5MQESsUi8vk8cqaJgmUhZ5pp/WXOMNISmVarhXqjgXq9jnq9jlq1imqtBtd1u7L4ep/j1DiOkzr8KEKpWOx6T/aPret5aDWbUFUV5XK5M2lRXGzNuvqXv+Ds2bOYzAxMiXu+30F834fneZ1sv9hsIrHQZ+8ryItjvu8nR6qOk9b0R2EIRVwos4vFdDG2bfvI5x0QET1NepNJU5OTaXtOeRnWFAG/KefDiCC22Wyi3migUa+jJveVahV+EGBsdBQzIovfLwEVymm4ioJyqZS+p3cPaLVacF2366EAEBdbM/tKvz0F6Fy4PUzmXDZ1yGb7IZJjkWhuoYvGFqqqQtP19ITAEc0cECcT26Mogiamr5cqFRwbHoZdKqFYLKIgWjXT84fBPh1aGIZYWlrCd4uL2N7eRqPRgAokwa2ioGBZKOTz0A0DTrud9vAFkmxJsViEXSzCtm1MTk7ufek2o9lswvO8tN8+0L0ox3GMmsjqW5aFtbU1fP7551hdW8Pmw4f419/8BhcuXEjf/++/+x3MXA7vvfde18953IAf6GT7fc9LRptn2qJlJwIHoguDXKQN8WspFIswTROGacI0TS7GRPTccV0Xi4uLWF5aQnVnB067nUwSF3eWCpYFy7KgKwpajoN2u51+ra7ryb5SKKBYKmF6erp/C80e9XodQRDAKhSQN81da38URajVaknr5/v38V9ffonVtTXs7Ozgww8/xIWFhfS9e+0pUnjIgD/92WGY7ithGHaV78h/lnuOAkDVdaiqCtOyYBcKsGw7eTgS036LIjHHfeX5xvoAOjRN0zA/P4/5+XkAnQzJ9vY2tra2sLm5ia2tLTjNJorDw5iwLFj5POxiEWXRvzfNzhwysDZNE57nwRcTdntLZHzfx6effop/+fWvYZomXNfFCy+8gDfffBMf/fa3u77fhYUF/Mfvf79rYZZHsY8T8Cuqmo5E930/fTmOA9/3oedySetOMc03n8+nC6+maWnrUfn3RETPG9M0cfHiRVy8eBFAsqZXq1Vsb2/j0aNH2NzcxM7ODlzHwdCJE5i2LFimiVKpBLtYTLrE6fpjrd1GLpfWtuf79L3/6KOP8MEHHyTtjn0/3VP+7eOPd713rz1FUlX10Bl+IBkCZom90w+C5BRZTE0PxL5SPHYsSRLl82lZjtxXevcWIoDBPv0EmqZhaGgIQ0NDOHXqVPrvZe2gfHmOA89x0HIcBPU6DF1Pylt0PRkSJVuoYfdwFV3WwkcRPN/vGvARxzHaomewaZpQFAXnz5/H+fPn9/zMr7z6Kqo7O7hz9y6mp6a6/psM+KODai3FpbAgDBH4PjzfR+j7UHUd+UIBlZER5EVwn8/nO3caeMGWiGhfhmFgZGQEIyMjeOmllwAka73cVxzHScpdXBdeu41mq4UgCNJ9RRd7i6ppaVOF3n3FNAw4SO50BWEILbM2yzIYAMib5k/aU4BOl7o9A/5My8x0EnAYwndd+EGQJI1KJRy37XRfMUX3Hu4rdFgM9unIyYm4xWIxCdI9rxP8Ow58102CZHFRSl7ISl8iKyEXxpxhpJMIZas0RVHQareTmnzRuu1Qn03X8dprr+HatWuYmprqdEoQY84BQE1+QDphOI6itExHvqIogmGaSdecYjFZhEW9qXwxq0JE9NMpipImTUqlUjIbRuwpjuPAE8F/IDLgXrOZdDXr2VdUVU2bIqiahjAI0G42USyVkhJMcR8gjmOomnaoeSbZPUUG+7Lhg9xXFNk+VFGAMEzvkwVh91TgGMmpg2GasIrFpAtQz77C4J5+DAb79LNSM6UugGgLJjrR+L4Pt91GbXsbgechlEF1uw2I7LoiAuZ2uw1FUeD5PorFInzxAAEkNZ+yNZlcyBUxlVf2rc9OsV1YWMCf/vxnXLp0KR0aJl9xHCfddsT3kx0SsoPB9FwOlePHUSqX0webXC63b59kIiI6GqqqJqUulgWg0zQhLaVstVDf2kIoAmrP95O1PLOvxFEEp92GqyjwwxAFy0LbcRD4PuI4hpXPp13SpEgE5vL0V+4rC6+/jj99/TUuXbqUvC+KOtPPM/tK9q9QlM4MAUVBzrIwPDoKq1DYta8Q/VQM9ukXpet6V316HMcYm5joqnn3xaXWKAwRBgGiIIBhWajt7CRDTjY30wXUNE0YuRyq1Wp3oK0oqJTL8D0v6eiTmUg7MzuLra0t3Lt/H0XbTkuKNE2DIeo/5UsXU4N1XU8XYPliYE9E9OTJNVmK4xjB5OSufSUMQ0RBgCAIEIYhtFYLjVoNTdE1TnbZURUlafucKTGFoqBcLiPwfdTr9U7bzzjG7OnT2PrDH3Dv3j3Ytp10zZF183IPMYxkrxF31+Qru6fIVptER43BPj1RiqKki57M0gBIM+3Z0plms5m0V5OZF8tCoVDA+oMHGJ2eTnr/i2xKHEVYu3cPaj6PkYmJNIsCVcXKygr+sbGBM+fOQRdHu11lRD0vHpsSET07FEXZ9QAAYNeeIptM1Ov1dH6KbdtY29jA2IsvdpJEYl+5vb4OmCaGxsbS/UTN7imvvJKWoPbbR7iv0JPCYJ+eSrKfcPYUoFQqYWxsDEDnwlUcx2g0GpiYnOzKtMRxjLv37sGybUxOTaUZGkVR8Mknn+CNN95IavaZRSEiei7IfSX7EFAulzsDssR+0Gg0MNlnT7nzww8o2DZOck+hZwwfLemZ0nWsis7iLEttXNfF8vIyVlZW4Lou1tfXsby8jPv376ftyC5fvox3332XizIREe3aVwCkmXjHcbC0tITl5WV4nof19XWsrKxgY2MjLb3hnkJPOw7VomfeW2+9hatXrwIArl69irfffnvXe95//3189tlnWF1dxdzcHB4+fIhSqfQLf1IiInracU+hQcNgn54rH3/8Mb744gt89dVXT/qjEBHRM457Cj0LWMZDz5XLly/jnXfeedIfg4iIBgD3FHoWMLNPRERERDSgmNknIiIiIhpQDPaJiIiIiAYUg30iIiIiogHFYJ+IiIiIaEAx2CciIiIiGlAM9omIiIiIBhSDfSIiIiKiAcVgn4iIiIhoQDHYJyIiIiIaUAz2iYiIiIgGFIN9IiIiIqIBxWCfiIiIiGhAMdgnIiIiIhpQDPaJiIiIiAYUg30iIiIiogHFYJ+IiIiIaEAx2CciIiIiGlAM9omIiIiIBhSDfSIiIiKiAcVgn4iIiIhoQDHYJyIiIiIaUAz2iYiIiIgGFIN9IiIiIqIBxWCfiIiIiGhAMdgnIiIiIhpQDPaJiIiIiAYUg30iIiIiogHFYJ+IiIiIaEAx2CciIiIiGlAM9omIiIiIBhSDfSIiIiKiAcVgn4iIiIhoQDHYJyIiIiIaUAz2iYiIiIgGFIN9IiIiIqIBxWCfiIiIiGhAMdgnIiIiIhpQDPaJiIiIiAYUg30iIiIiogH1/9zQ+A33RQYkAAAAAElFTkSuQmCC", - "text/plain": [ - "
" - ] - }, - "execution_count": 16, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "plot_bloch_multivector(psi, title=\"My Bloch Spheres\")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### 状態プロット関数からの出力の使用\n", - "\n", - "状態プロット関数は、レンダリングされた可視化の `matplotlib.Figure` を返します。 Jupyter ノートブックはこの戻り値の型を理解して適切にレンダリングすることができますが、Jupyter の外部で実行すると、これは自動的には機能しません。 ただし、`matplotlib.Figure` クラスには、可視化の表示と保存のどちも行えるメソッドがネイティブで備わっています。 返されたオブジェクトに `.show()` を呼び出すと、イメージを新しいウィンドウで開くことができます(構成済みの matplotlib バックエンドがインタラクティブであることが前提です)。 または `.savefig('out.png')` を呼び出すと、図を現在作業中のディレクトリーの `out.png` に保存できます。 `savefig()` メソッドはパスを取るため、出力の保存場所とファイル名の調整が可能です。" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## ブロッホ・ベクトルのプロット \n", - "\n", - "量子系をプロットする標準的な方法は、ブロッホ・ベクトルを使用する方法です。 これは、単一量子ビットでのみ機能し、入力としてブロッホ・ベクトルを取ります。 \n", - "\n", - "ブロッホ・ベクトルは $[x = \\mathrm{Tr}[X \\rho], y = \\mathrm{Tr}[Y \\rho], z = \\mathrm{Tr}[Z \\rho]]$ として定義されます。$X$、$Y$、および $Z$ は単一量子ビットのパウリ演算子で、$\\rho$ は密度行列です。\n" - ] - }, - { - "cell_type": "code", - "execution_count": 17, - "metadata": { - "ExecuteTime": { - "end_time": "2021-07-31T05:09:13.556822Z", - "start_time": "2021-07-31T05:09:13.553512Z" - }, - "execution": { - "iopub.execute_input": "2023-08-25T18:25:18.757885Z", - "iopub.status.busy": "2023-08-25T18:25:18.756680Z", - "iopub.status.idle": "2023-08-25T18:25:18.761557Z", - "shell.execute_reply": "2023-08-25T18:25:18.760971Z" - } - }, - "outputs": [], - "source": [ - "from qiskit.visualization import plot_bloch_vector" - ] - }, - { - "cell_type": "code", - "execution_count": 18, - "metadata": { - "ExecuteTime": { - "end_time": "2021-07-31T05:09:14.078221Z", - "start_time": "2021-07-31T05:09:13.830668Z" - }, - "execution": { - "iopub.execute_input": "2023-08-25T18:25:18.766127Z", - "iopub.status.busy": "2023-08-25T18:25:18.764979Z", - "iopub.status.idle": "2023-08-25T18:25:18.953668Z", - "shell.execute_reply": "2023-08-25T18:25:18.952956Z" - } - }, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgcAAAIHCAYAAAALof87AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOy9R48sSZYdfMx16Eid+UTV06VlV3V1VVd3VQ0HJDELzpLrWXDB7fwA8h8Q4IIACQIDcMltL4j5gGkxM11adomnRT6VWkRGhGth38LNLD0iQ4t8ouwAD5kvM9Ld3MPD7Ni9555LKKUUEhISEhISEhIMyqMegISEhISEhMTjBUkOJCQkJCQkJFogyYGEhISEhIRECyQ5kJCQkJCQkGiBJAcSEhISEhISLZDkQEJCQkJCQqIFkhxISEhISEhItECSAwkJCQkJCYkWSHIgISEhISEh0QJJDiQkJCQkJCRaIMmBhISEhISERAskOZCQkJCQkJBogSQHEhISEhISEi2Q5EBCQkJCQkKiBZIcSEhISEhISLRAkgMJCQkJCQmJFkhyICEhISEhIdECSQ4kJCQkJCQkWiDJgYSEhISEhEQLJDmQkJCQkJCQaIEkBxISEhISEhItkORAQkJCQkJCogWSHEhISEhISEi0QJIDCQkJCQkJiRZIciAhITES/uEf/gFXr1591MOQkJCYAiQ5kJCQ6Ir/8T/+B86cOQPLsvDOO+/giy++EL/7/PPP8b/+1/96hKOTkJCYFiQ5kJCQEPjwww/F9//3//5f/P3f/z3+63/9r/jmm2/w2muv4d/9u3+Hra0tAMDf/u3f4ne/+90jGqmEhMQ0IcmBhIRER/y3//bf8J/+03/C3/3d3+HFF1/E//yf/xP5fB7/8A//AAD4N//m32BzcxM//vjjIx6phITEpCHJgYSExBEEQYCvv/4af/3Xfy1+pigK/vqv/xqffvopAMA0Tfzbf/tvZfRAQuIphCQHEhISR7Czs4M4jrG0tNTy86WlJWxsbIj/y9SChMTTCUkOJCQkRsbf/M3f4IsvvsDOzs6jHoqEhMQEIcmBhITEEczPz0NVVWxubrb8fHNzE8vLy+L/d+7cQbVaRbVaPeYRSkhITBOSHEhISByBYRj4xS9+gd///vfiZ0mS4Pe//z3effdd8bPf/e53+Ju/+RtomvYohikhITElSHIgISHREX//93+P//2//zf+z//5P7hy5Qr+83/+z7BtG3/3d38nXvO73/0Of/u3f/sIRykhITENSLovISHREf/xP/5HbG9v47/8l/+CjY0NvP766/jHf/xHIVK8c+cOrl27hn//7//9Ix6phITEpEEopfRRD0JCQuLJw3//7/8d/+///T/8f//f//eohyIhITFhyLSChITESPjd736H//Af/sOjHoaEhMQUICMHEhISEhISEi2QkQMJCQkJCQmJFkhyICEhISEhIdECSQ4kJCQkJCQkWiDJgYSEhISEhEQLJDmQkJCQkJCQaIEkBxISEhISEhItkORAQkJCQkJCogWSHEhISEhISEi0QPZWkJCQmBhs20YYhlAUBaqqwjRN2bFRQuIJhPzUSkj8DJAkCZIoQhzHSJIElP3jvwMASunhP/4z/hr+M0UBAUAIAVHSwKPCvjZtG57nAez3UBQoioKF+XlY+bwkCRISTxCkfbKExBOKJEkQhSHiMEwX/SgSBIASgjiKkMQxaJIgieOxzkWBnsdo2jY83wcA5CwLlFJEcYwoiqAqCirlMhRVhaKqUFUViqKAAlA0DZqqQtP19HtNg6br0A1jrPFKSEiMB0kOJCQeY/AdfxSGiIIAMfs+jiLEUYR+H1/++4RSkDHG0YscNGwbPiMGxUIBlmmKsR/U64iTBKZhoFQsQoy2x7gpABCSkgRdh26ah19lmkJC4lggyYGExCMEpRRxHCMMAvieB/BwP48KRFGnP0LCvnY6HqU0JRXsK6UUMU8lsN8DbBHmaQR+XEYiksyxKfs52tIKABCGIWzXBQFQyOdhGgbAfkcIQRRFsG0bFEA+n0fesqCwlIRCCBRFEcdquY7MuduhsEiDbhiH/0wTVi432E2XkJDoC0nBJSSmDEopIhbuj6IIYRjCd134nofA8xD4Pmgcp4sqW4hVVYXKRH2qqgJgeX6waEJm8ed6AP7/tpMju7wmSSLOgw6Lcs/rSA/Qsvu3bRsxpbBME4QQBGHYcm4QAhAC3/cRhiGSOE7JQHbRJ6SFKLR/pYRAVRRQdr5mswm72USz2USz0UDDthH4PvKFAoqlEiozM5iZm8PCwgLmFhYwMzMDXdeHulYJiZ87ZORAQmLCoJTC8zw4joMoihB4HsIoQhwEQiPAQQCAEKiqCpokCKMIYRSBxjEiTgLYws93+QoT+qmKAk3ToGfC7NkPs8J253yXzskFJSStYWYLNx9Dr6+EEJFW4FOG6/uwbRsEQKVcThdydu4sCaGUYv/gAEmSoJjPQ1HVlmtiBwVl98P1fdjNJmzXhes4cBwHdiZ1AQC6rqOYz6NYKqFULMIwTXiOg6bjCPIQJwkSpKLKXLGIcrmMmfl5zM/P4+zZszh58uQE3m0JiacTkhxISEwIlFI4joODgwP4joPA8xAFQbqgMwJAFEUsiIQQsUDGcdyiD0jiGDH/miRpWoBFFwj7B0DsuC3TRM6yoOt6y++7jnWU68tEJSilqB0cIE4S5HM55DMhfb7IZ8F1CZZpolgotBwnSRKESYK1hw9xd3UV27u7AABVUZDL51HI52HlcrAsC/lcDrl8vmMkQOWkiUVdwjCE63mwbRsuIw3NZhMNJp5cOXUKv/7Nb3Dx4sW+90tC4ucGSQ4kJMZEFEWo12qo7e0hcF3EUQSiKDANA4qiiN1/FEVHw/5t4Gr+bEqBRxUUQkQFQJwkiOMYvu8jZrt0SilMXYdpmjAYSegFvogPOgFkyYHn+2jaNhRCMFOtinNxMSFpm1aCMES90TjyettxcOfOHdxdXYUfBFhgu/r5hQWYpinGx3UTcebaE/Y1juO+16CpaloJwe7n1tYWrl27hr29PVRmZ/Hm22/j1ddeg2lZA94NCYmnG5IcSEiMgDiK4Nk2ant7qB8cIIljRHGMhFLomgaVkYJOIGzh1zqQgPYFnROLOEk6VhtQShGEITzPQ8DFiyxSYZkmTNMUmoVuGJYcZKMGhXweOb6g9tAxUEqxX6shoRSFYhF7u7u4c/s2Nre2YOg6nn32WZw9exalUqnHAKggCe3g94iTBUEcur0HhEBTVRwcHOD27dvY2dpCoVTCCy+8gBdffhnlmRlY+bzwcJCQ+LlBkgMJiQERBQE8x4HbaKBWq8G2bbGTp8Dhjj3zN4qqQmf1+7qmiRr/XhAVB0xoOOhHNI5jeL4Pz/cPzYwAmLoOi5UD9oom9DsLJwciaqAomKlUWrQGvWIV27u7uLO6io31dURhiNnZWZw9exanTp6EOkR5YsB8HaIwTKMxXe4PjzgkLG0TM1Fop0iDbdvYWF/H7u4uTNPE+XPncPHSJVRnZlAslVCsVKD0IVkSEk8TJDmQkOiBJEngNZtwGw3YzSb2azXYjiOiAqqmiVy/AojafE4GOhKBLh+5hJcMskWdst2wMmxVAaUIggCe76fRBHY+rk2wTLPzuFhqoutx2TXXDg4QxbGIGnTSGGSvaXNjA3fu3MHaxgYURcHyygpefP55VKvVvtcRscVcVHtwbUYmlcLP0+UgR6IZXOfACUPETaIIged5WN/YwO7ODhRFwcryMs6fP49CsYjZ+XnMLywgXyz2HLeExNMASQ4kJNpAKUXgOGgcHMCu1+EHAYIwTCMFTBho6DqKxWJKDLiz34jmPFk/guwYWtT8QMti2DHFwH+eKRUMmS5BRBMAEEqRz+eRY+WHR7QHfEFlXynzVaBsca7X6wAhmOG76cwYSWYsDx88wPc//QTXtkWUoFgqgSgKKqVSi6gwSZJDPQU7T5wxXcoeVyEk1WYoCjQeiWHX1okkHLlXbWSB+zoEYQjf9xEEARrNJtbW17G1tYV8LocLFy/CYO9xvljE/MIC5hYXkWfiSClolHjaIMmBhASD77qo7+/Drtfhed7hrjRJ0Gg2QQiBYRiYnZlB3rLGXhA6kYLs73p+NDMLN389obTrmCil8IMAnuchjGOAUmiahmKhAC0bLmfHbD8Kd0h0XBeu50HXdZSLxZaUAofruvjuu++wvrGBkysreO755zHDogSNZhOe76eOh5p2SASSJC2v5NUcmWoMjaVjdFWFwvQcpFuUg5GEmPspjIEgDLG9vY2vvvoKUBRcuHhRuD/y8tN8oYBKtYrZ+XlYliX+SUg86ZDkQOJnC0opfN9Ho1ZDs1aD57otCwr3BXB9P12cNA3VcrmvwK/veXEoNKRsIcwuYzycPnQ64cgPOn+0Xc+D7TjiXPlcDrks2Wk3KcIhORB+BYVC6obIX89es7q6ih++/x6qpuGN11/HyRMnAHa9vGKh0WxC1zQU8vmWc4k+C0ycqfVKy3APBfb1CBHgxGuQG9cHtuPgk08+gW3beOPNN5HL5YTugTtPKqqKUrmMyswMqjMzKJVKyOVyUtAo8cRCkgOJnx2CIECjXkejVoNn2y0LoaZpMHQdpmEgjCI0bBuUVSBUSqWekz0vVwyjSITII/Z9HIZpSgJIF7OMMRE3NeI75+zPefdDldkWi9cOuOhw8sFz9BxxHMN2HARhCEopNFVFoVAQhkrtOgIKIPB9HDQaAICZarVlDM1mE99+8w22d3bw7JkzeOXll2HoeuoGydIyYE6RTdeFruuYrVZTIsBIwSg7/U5VHJTdXx5dyKZnRo0lBGGIzz77DDs7O/jFL36BkydPpoZVLBXB3+8wCKCZJkrVKmZnZzHDiILsByHxpEGSA4mfBeI4huu6ONjfh9toIPJ9YShk6DoMw4BhGFDZgmcztz2aJNB1HXnLSheAzKIfZ/8fx4fWwBk3QhEVyJTgZXsbiMWKh8l5lQL7GwF6aIMsDJDabIY1TYNpGDANQ1zT4Z/TlvPw8/q+n14nS2PkmNFQVovAx9poNOD5PgxdR6lYFMe6ceMGLl++jFwuhzfeeAOzs7Np7j4MW7wRFEa8bMeBqihHCEZXZMbOowR8bDz9QjLXRbkTJPu5sJjOHEcYRbGfDxKliZME33zzDe7evYuXXnoJly5dEueN4hhhGCIIAriehyAIQAhBrlBAZXYWs7OzqFaryMn+DxJPCCQ5kHhqwW2MbdtG8+AAgesiCUMQQmAy1X5WTBZEEZrNJnb39uC4LuI4hqppMPiujy38Cg6Ff4IEMPBdvcZy4yprU0xY/wAArb0QKAVlpXUJC1FzRX62lJF/z68L6Fx6yEPplKb9GYyMKZLJCFB2h85Jge048IIAoBSqoqRaBMMQZkYUwO7eHpIkSe2KDQO1Wg3ffPstDvb3ce78eZw7f16UCor7w8ygTMMQu+d95gtRKpVgtjsddkhp9EPXSoUM+D3sZULFiZ3SKa2SIRZXLl/G5StXcPbMGbz2+utHCE6SJPCDAI7jwHFdRFEEM5dDqVJBdWYGc3NzKPWJQklIPGpIciDx1CEMw9SPv9GA6ziIPC+NAGgaLMsSzoVRFMFxXTiuC9t1EXge/DBEwkLVpmmmeXUWmufCOJWF+Xk4XPw80ySJg4vjBv2YHalQaP99RquQ/cpTGn4YIgyCQzdGRUmJSPrHQCZSwiMM3CgpCAI0HSeNcNC0mVI+n4dC0oZKtYMDEEJQKpVw/do1XLt6FYVyGS+88AIK+fxhpQQhgojomtbSxRFIRYl+EByxXR4Vg5CD7P3rZozUAq4FabeiZtGJu/fu4euvv8b8wgLeeeedro2doiiC67poMstmTddRKJVQrlYxMzOD2dnZlgiPhMTjAkkOJJ4KJEkCx3HgsmY9oeMgCgIQAJZlCcGd47qw2Y7O930QQkQqwfM8ESmoViqwcrkWK+NhQZE6KQ7zAetnrzzMcYIgSP+xcHfICINIX+AwcsC1FoauI2LkQNM0gBAU8vm0T4HrwrZtXL58GbZt49kzZ3Dm2WfFDljPRCd4eWEncEGkYRgoT8gzYBiCEDMny1FBmP5ja3MTn3/+OfL5PN59773DlEEXb4UgCNCwbdi2jQRAoVhEoVRCpVLB7OwsKpXKyGOSkJg0JDmQeKIRx7FoqBOxFshJFKU7Y11HTKkgDZ7npXXyPFfPdtGWaabCNlaeVioWJyIgi4aIGGSvR/QmGFCgJ/LsGV1Ce3ie5+ODKBLtk4MgQMhcBvkreVoijiJ4YQgFqVbAdRxsbW1hb3cXlUoFl557DoVcTugcDF3vGiZv1wFEcZz2WWAOi52uk78//L0CcEQDkb3euEP5ZTeIaMsEpr56vY6PP/4Yhmniow8/PEIiO/WuSJIEtm3joNGAHwTIse6SxXIZJ0+eRKFQkL4JEo8ckhxIPJGImD7Add3U1rjZhIp0Vxcyd0DHdYXYjC82qqoedvfL5aDrerojZqV95VJp7FJFAKKTYlZwCLQtbm3fd+ufMA1kxY8h683g+74wAfKDIBVx+j5qBwe4v74OCmBxbg4nT5xAqVRCMZ8XUZdhz82rHsrFYt/cO29PzTsuZv/PyQPlWgtOkjL3u13cyf8fRdHABKwXarUa/viHP+DchQt49eWX086b2fc7U67K9SB88fc8Dwf1OmzHQT6Tbpifn0eOCUMlJB4FZH2NxBOFKIrQaDTgui4AwKnX4dTrwuSHd0RUCIGmKFBUFTnThMkIgclNbDLHcxwHFECBpRGGRvvCP4ACnnT4flLLAC9fFKJHFkbnX7ktM81YEHODJ511QozCEE3bTss563XM5PMIkwQzlQo0RYHjOAh8H3nLStspt93X7Fj4Ys0jBwBg6LoQLmod7nm2wRLXVHQDJwtgkYZ2AsGFhhxcG6ExEyZg8OZTnVCtVvHyK6/g+++/x9LiIhYXF1vG1g6SIQqWZcE0TYRhiJ29PexubgqdQrlcRrlcRj6flyRB4tghyYHEE4EwDEWkAEhd+PY2NxG4LhRNS6MChEAzjLQSwbKQy+VgGUa6k+sAmiRoNpugAHRNO0IcOqKNCHTCKLqBQQJ47YZJSWaRj5mtc5yphBjEYZEAhxUVAEAIwiAAURQEQYAH9+5hrlrFs2fO4Otvv8XS/HxKoCiFquup1qPZhO/7KOTzKBQKyLP72KvngqZpCIIgtXHu4igoiAzvspjpUMl7I/D70M1pEoDwieCRhuz3CXBYfYKjEZ1BcfHCBWxubeGrr77CX/+bfwOD3YPssyDEjRlCBnY+0zCwvLiIpuOgsb+PKJP6sSwLxWJRkgSJY4UkBxKPNYIgQLPZhOd5AADHcVDb34ffbMLQNBimCVPXkWMuf8O40tmui4jtXouFwtEXDEAE2tHN37/v33Vb2JCGypFpRxwyn4VBM4JqZjetZMPzvHRPUdIUAq/PVxRsPHyImzdu4PQzz+DC+fNoNJtQCUG5VIJlWYfahDiG53lIKEWz2US9XoeiKIIo5CwLqqKIhZZrH3g6IuFlj53GTQjAHBPbr5SH52mGLPB+DNk212CviboQNl4dwhtlabouxjYUYSAEb/3iF/in3/8eX339Nd57770jL6FthE1hwkZ+XEVRUC4WYRkG6o0GmrUa4jhGPp8XEbNisSg1CRLHAkkOJB5LRFGEg4MD+L6PhO3wuehQA5AzDOQsC5VKJVWJD1kf7/u+6J/AmwEB44f2h40aCAdDHObH+VfhsMhcFztBJQREVcXXbFMiHmpvX0iyu9YkSeA6DlzfF9d++/Zt3L17Fy88/zwuXLoEx7bT3TYhIjXjMrKWz+WwMDcHm1WJuJ6XCu4cB41mE4qiIJ/Po5jPI8+IG0XayhqEpJEObm7U4z61/06Qpkz5KLd4zqYQOFHoFHlI4hiE0rQrI6vsACB8KtrJQnYcnTQjlmXhrV/8Ap98/DFu3bqF8+fP97iiw2eFsveRl4EahoFqtYqmbcOt16EqCpIkQT6fR71eR7PZlCRBYuqQ5EDisQJlO9BmsykIguu6UCgFiSJYqopCPo9SuXzo7Z/+4cDn4NbBAJCzLBhdatRHHX8/iAk9s0hHlIqIAHdc7PR3vPsj91fIOjH2G1fWuIkbRLmeJ8LdqqLgypUrWF9bw5tvvIFzZ8+K+6Sy6g3CCAJhugNO3kqFAkqFQko2fB+ObcP1PMRJAse20Ww2QRQFectCsVBIzaeQpnYUQAgIMwPufx87/Ywt5Px6FUaYqKrC6HCPkiSBFwQIWalnzMo9gzayoOt6es8ZWeikGQGQtni+cAE//Pgj5ufnUa5U+hJO7vQoekwwYlcpleA4Dup7eyiWy+L8uq6jXq/DdV1Uq9WuHgsSEuNAkgOJxwZBEKBWq8HzPOzv78N1XRiaBj1JQChFuVpFuVQ6akwzCDI7dJv1U9A0Dfl8fqLXkCUHWRLQvnhn+zAErDKgHUqGDOjMaKlFWDcIISCtNs4JpYdRE3YMnfU3+PLLL1Gr1fCrd9/FiZUVEb0A0FraSQgsli5o2jbCMESj2USxUIDKyFs+lxMExHHdtKqEWVjbrivSAPlcDqVC4WjpKMl0e2Qli4MsssJGOZsSYot5tvyRiyMVRYGp69BZ9CGhFDF7X7Jkwfd9+Px94WSBvTftaYhXXnkFOzs7+OLLL/FXH30kiFWnbpedwCMKBGlkRtO0lGDV66kvAjNOClnXyGKxiBL7XEhITAqylFHikSNJEtTrdezt7WF/fx+2bSOv69AUBZqqpqptZpYz7OPK/fP5xMktbRNKUa1UJmJhS5GK2sCcBDtN0jFvzMMiA0mGDHCNgsrC2WLRYbl2Yec7hO8BH1f2e59FCvg91DQNOctCEEX45M9/RhCG+PV772FmZkbkxw/qdfH3f/j97/FXH32EarUqFm5eUprwzoTFYqoxyNgu8zG4GaIQhiHqzSYSmnaFLOTzKBWLKObzHd+T7Lvea5EdWvNBKWJGCDohYSWPUYYstCNLFnTWSbLeaOAPf/gDTp8+jdffeEOci7+HgxKF7Bh93xfpnEKxiJn5eegseqaqKiqVimwXLTExyMiBxCOF67pYW1vD7u4uXNeFqaooM2OicrmMQqEgdo6DEgNRGsgXU/Y1DEPhfVAsFMYnBnx3mtUNKArAdsVZzUAnLYKqadBZpYDGvopdL6vXb7+GTuhWNsl3ywFbVBJWuqgyUmAaBvZrNXzy8cfQNA0fffhher+R3rsgDNNxqurRyAZ7TzRNQ6lYRNO2EcdxKprLRgJ4WSVNmzrlLAuYmYEfBFA2N+F6HjRFQeD72PI87KoqquXykQ6YLVfXZmfcMqyud6kLmNjziC4DLOXBjLJ46kmQhTBMyQITQHKPCOCQLLz44ov4/ocfsLS4iJWTJ4+WUw4xRoVpERRFSaMvjQbsRiO1Yp6ZgZXLYW9vD7lcDuUJtBWXkJDkQOKRIAxD3Lt3D1tbWwiCAFqSoGSaKBWLQhEvSvbQhxhkFtRslCCLJEnQtG1QQHRgHAmEHJ3Y2eLnB4HYFXcab1bkpqkqCNthc78BfuxBCAFwmDbo5qcQsPHEPDLBDKBM1nxpndn/VsplvPfee0LDwXf7ESMHesYP4PCSDwWgqqahVCqlOhFGEAqFQmuTJ/Z6fmzTMDBTraIURdB1HVEYosEIxu7+PvZrNVQYSWhPObQThfZKiKT9NX3Q6b1q0WekLwKAocjC3NwcFubn8eXXX+P9XA6lUulQH9DpPevxjPOSU1CKQqGQVpb4PpqNBgLXhZXPw2CpHN/3hT+ChMSokORA4thx79493L9/H3EQgCQJ8oaB2bk5zM7MiAmQo2XxzCJb85/VIHRZKF3WZZEQInbH/UApFT763fzyw4wdMXBomUwISYlA5l8nIx5+jsNfDJE66ERUcCi45KJGhZA0UmCa4j7dWV3FN998gxMrK/jlL3/ZstPkx+YVEpquA77ffprDChFWDlkuldC0bVF+mi8UhDlSu2iSJglUVUUURSL6UKlW0Wg00Gg2EYYh9ut17NdqKJVKmCmXuxK6bKSIp3h4WmSQPHzXMtL2KhJ2/GxKoB9ZeO6FF/DF55/jx59+wssvv5xqHFhDryORqz4VNwQpEaNRhDwz7HJYN02iqqBJgkathnypJJqPzfDPlITEkJDkQOLY4Lourl+/joP9fSAMYRkG5hcXMTszI1zysuF33ma3JU+bIQKDCrC4gj4BUBpgN5UlGuTwh+L3URTBZ2r27MKiqios0wRhWomWxZAtKL3KCvuijaB0+ivP82C7rogoWKYJ0zTFQkQBXLl8GVeuXsX5c+fw2uuvtxxHWDlnfBT0Ln0mCNqqDAhBsVCATYhoWZwkSUvnRfFq5rcAHL7nCiGolMsolUpwWO+BIAxh23YajcjnMdMnr569x0Jv0WPRHThVlTlm9v1KANHWml9DliyUKMULzz+P777/Hq7jIJfPp83BXFc0qsq2DW9PmbRHLngEIY5j0TGU6zgAwDJNeM0mDvb2UK5WEYYh5ubmZOdHiaEhyYHEsWBraws3b95E5LpQASwsLWF5cfFw0eIRAgYuLMsq7luqFIZQZnu+nzr6sVxwV7QtItkziLxyEBxxveM7Qb5DyzYy4q/pRgAGIgbZtEkXcG+BMIpAABiahnyh0FKjTwF8+803uLO6ildefhkXL13q6B/QEjVoi3h0Ghu7EPG1wKoWHMcRBknFNlJGcGgt3C7yUwhBsVhEsViE47qoNxqi7NK2bViWhZlqFYUuRI9XLCBLEtreW/7duF0wFbRFFdr0CwohOHfuHK5fv471tTW88uqr8FlL7TAMEYYhFEURLbRbdvnZio3MNSiEAIqCOElgmiYopULsSRg50XUdjVoNdrMJ3/OwtLx82DVSQmIASHIgMVUEQYC7d+9ic30dNAhg6TqeOX0axWyr3nZiwEkBcBjWHxFJkqQKfQD59h1nF/1Adhy83r3dhIhP5txrIPs3iqoeViMMsrB2/FWmHK8PgQiCALbjiF1wIRPOz+LHH3/Enbt38fZbb+GZZ57peUxewtivhj7bMTELy7KgEJKmGXwfLiFHFidVVQ93xl2Qz+WQz+XgBwEODg7gME3H+uYmdF3HTLV6pMKBdLuv2agLi0pFcdyzB8YgIG0khOsx+ChURcGlixfx/Q8/4KUXX0S5VEIcx/BZg6skSeB5HjzPg85cP41sNCE7dk4QFEWQZ8uykFCKwPfhOA5IPg/DMFDI5+F4Hh6srsKu13HqzBnZFlpiYEhyIDE17O3t4e7du2jWaiBJgtlyGSdOnBDlVwDSMi2mBQDQNY8+KnzfT3dzQKtArgsoyxn7GRMcDl3ThJixVySAAACbvPudq9PPeBfJfkho2o7aDwIQklYhFAsFYTfMw/6EUty4dQvXrl3Da6+9hmeeeabrgsx33WEYIkmS9FhsEeJtjrPXJXbpyJAYtms3TBN5pL4SjueBKApMyxJuiERRQAlJj8nvXZd7ZhoGFhcW0hLIRgMN20aSJNja2elY4ZAdVydQpMRRWDsPoVHohXYBJl/Uz5w9i6vXruH6jRt47fXXoapq2hnUshCGIXzWPpv7KzjMf8EwzaONqdgxVVVNdSWsHBRMFGs7Tqp50XXkczm4noe93V3YjoNnnn0WSysrY1+nxNMPSQ4kJo4oivDgwQNsb23BazRgaBoWl5YwNzOT2uZy0LTznijdYz+Oh6kB7wEebqVId6C9JkSxk/P9I/73JmvmNEzpo6IoLV4GHcfXNtb2ygMergalh62I2e9C5i/Ax2qxZlOELbbi+JTiwcOH+Mu33+LSc8/hwoULHYlB9ppj1r2RsK6WQPfoRfbvWhZj9r1pGEhY3wbbtlPSoOuH/ge81TKvNGgjHlkQALphYG52FpVKJe0/0Gx2rHBQNa1nRIJmGjWJtANp7Rw5LrLjN3QdFy5cwJWrV/H8c8/BZFEU3g3TMAzESYIgk7ryfB+e70PTNJgdSCl3teTdK3OsWiFgHTVLxWJq9JURL966dg31gwNceO65iXh8SDy9kORAYqKo1Wp4+PCh6CxXKRYxPzeHcql0RGwVsx09mQIx4LuohO3EO3VcTJJERAiypXqEEDEZH3Huw+AiQlVV03x6p9dmfPX5PRAleW3n4tfDF3vHdeF7HkCIcCTsNE4A2Nnexpdffolnnn0Wr7z8cs/xCitnllLgYf9B0e2+5HI5odmwm00orDyREJJGD3j76LY0Q/si3VJSqCioVCqolMtpw6dMhcNerYYyK4k1urzvcQetwRHx6YRIAsf58+dx/fp13Lp9Gy+99JIgfRyqoqSdRC0rdc70fQQZrwzHdVvSWUCqaRBXoigoFAqgzHq80WyiXCpBVVVRHWHbNjbW1tCo1/Hciy+iWCpN9Bolnh5IciAxEURRhLW1Nezv7cE5OAChFEvz86hUKh3rrWNmMNOulG8XdA2DlpbGhIjGSrlM1ICHzH3fP6Ij0HUdpmlCb9MRZMfXqeKgG3jpmSAevM6fEFAe9m5bIHotR1EUwbZt0VzIYqZC3cZTr9fxyaefYn5+Hr/4xS8GFnHyEshhS+B63Zd8Pn9kV8s7Q8ZgIX4epTg8YBrB6HY+9ppSqZSKFx0HB40GwiBA07axX6uhUCyiUiql3ToJQcwMqtqdM48clx0baCUl48A0DJw/fx63b93CpeeeO3zOMhGh9LSHFQ+cwPpBgCSOhdmSqqowTVMYIyWMaHNBKBenNm1b2FrrGcMqu9nE9998g/OXLmFpZWXsa5N4+iDJgcTYqNfrePDgAULHge84yDN3w3KxmOaYM+ALotpp8R0x59viR8D+3vd9sQiYpokwDBGwSTYLjekIzH56hB75cP77TgsIQdr8p0VXkQ768O/6X2Cq1nfd1FOARQt6iQUd18WfP/4YhUIB7/7qV71DyG33nVcPHMl1jwHuL5E0m4g4QchEk7rdWaWPdqD9+NwgqF6vi2oJ23HSDp7lsrhn2YhMu6Cw28/bPQ5GwYULF3Dz5k3cYQQhW6IIHL0PiqIIZ0muTQjCEHEcw3EcuK6bmmuxpkz8b4qFAuqNRup9wCIIvFV3qVhMfTCiCNevXEHz4ACnz52T5Y4SLZDkQGJkJEmChw8fYm9nB4gi0ChCtVKBaRgoFAqtxIBPtt3qzdnxhg5jZ6sZMn/rum6q6lZV1BuNlrQB1xEYptlS6nfk2D3Gku0ZwP6g62sVAFDVtP8A+9mgBXRxFMHhhkYsP53P53sq7IMwxCd//jMUQvD++++LRaPrtWQiOJQp+AF0TVWMCkJSH4RGo4GYteHm5+1VUtjJfKgX+GLqeh4OGg24tg3XddFgu+iZSqXl2rJ9IFpKWTORKB7xyUagRiEJOcvCmWefxc2bN3H+woUj0RkhpMyIGTl0VqKYJAkCFv2K4zglvmEI4nnI5XIiIlEqFtFoNpHEMZq2jUI+n0ZrGHloML3G5uYmXNfFidOnMTs/P8JVSTyNkIoUiZHQbDZx7do17G1tAb6PvGkKYmBZ1qFRDT00LuqpHh8masB3W3xhb/u7MAjgep5w2uPEwDQMlIpFVCsV5HK5jsSAsuMdGUvb2AddGPhfKUhzyiKMPMBu2Pc81BsNEQEpFgppT4ge9ylJEnz26afwPA/vv/9+30Y87SQnzrgqTsNZT1EUFFlzpjiKhGCU9iAHYGMctuTQsizMz85iYXExjbQoClzHwcP1ddQbjb5/zwkJLxlMkgQJ10cgJVX8NcPg4qVLCMIQq6urHU6aaa3N/t8ORVFgmSYq5TLKpVIqlkX63jWbTdHnQlEUkb5JkgSO4xySLEJQyOdBFCVtntVo4MHqKlZv3EDQyQ1T4mcHSQ4khgKPFty6eRN+swk1SbC0uJg6A7LyKW5OQwhpMTkaJ29Ls3lZRekajg+DAJvb23BYuJWHZWeqVRQKhaOheKZSb5nkJ5BfbhkvPxXSBY70GD+AdKfXaMBhrneapqHSwz44e84vv/oK+3t7eO/Xv07D9n3QPgqhNxgxatDputuhqioKxWKqKWA1/sPccb6T74ckSRAye+b5+XksLi4KYd5urYa1jQ14rMvhMODPCq94SNjPEnbt/cZWLBTwzOnTuH79eldiwd8XEa3o8jpN01DI51FhxByAKPd0HEecjxCSpiJYxQiQkoxCPg+QtMmW5/to1Ou4eeUKant7Q90TiacPkhxIDIwkSXD79m3sbm4CnodyLodTJ0+KroOqqqJYLIrqg2yout+C280TQIgM+a67Byk4ODjAXq0mdAXlUgkz1WqLILH92C2GS2QyHgsi+oDOEQZegqakg2j5XRAEqDcaQiyZz+dFvrj3SSm+/+EHPHz4EL985x3Mzc31H2eHCEacqVQYBYPeQ43lvgkhCMMQLlvIBjl+x8hOBtzcKG5LU1mWhaWlJVTLZeiqioiZKe3s7iIawykxW/7IIwwx84TgZKH96b703HPwPQ/379/vf4JM9K3bVfNUQTnT3Mlnz1IQhijk86CMBPCGWiBp/48ciy55nicqd+7fuYO7t26JyhWJnx+k5kBiIERRhDt37sA5OICSJFhcXESxWEzzxyzsXS6VDkPnGXATom44kr9HhhT0CSWHQQDHdcUkFvg+TMMQ9rvZcxw534TIQMs5+gkXgZa0iAoI4yXXdVPjJULEjnDQRfr6zZu4dfMm3nzjDZw4cWLgMbff32hCYsRB0kS6rqNYKMBn1sie73d0duwEAhxWeWQW5phm3DY75O55CWSxUMBerQbXcWC7LhzXTbtEZp07R0RL74VsySohYjdWLpexcuIErl67htOnTw+WUuPPTTY1lfk7wlJBxUJBlD7GcQzP86CwXhY0juG4LsqZihzLNEGZr4LtulAUBZqmoV6rwXVdnDl/Hpa0Xv7ZQUYOJPoiiiLcuXULHiMGK8vLKBaLYjHjxKCTlXDShxjw17VggEhBFIao1+tpTp55CRimCSuXS0V7uVzXXRvJ/JsEsqH0vsQAHer3aep0GLAdnWVZIlc8CO7fv48ff/gBLzz/PM6eOzfU2LPI1v+PK0YcVD9imiZMy0oNqzL3YKBz4DDFEMdx2hGzre9Ft3GomoaF+XksLC7CZFbFO/v7WNvYOFLRMg5aomhMv5Cwz8WFCxfQrNexs7Mz3EEzJIG0/Z9D0zSUSyUUmLV0kiTCjCpkWo8scrmciDg0M1bcoe/j9tWrqNfrI1y9xJMMSQ4keiKKIty6cQN+vQ4wYmBZFmiSwHVd0SSnUz580PpwHn5FDzIgxsNIwUG9jjAMQVi9f7VSESptTddbnBizi/EkSQHQP4XQD1EUpdUUSZJO6JVKKhQbcHHd3NrCV19/jTNnzuDFF18cYuBHd/ZcjKhmOiZOG6JyhD0/NhOR9gPP8UdxjCSOh9IsZJGzLCwvLaFaKolUw9rGBnb39sZuyiTQJSUwOzeHXD6PBw8fpkLHEbUu7VUUWRiGgXKphJxlQWGNxxzHQe3gAH6b8LCQz6d20qwfCUecJLh74wZ2t7ZGGp/EkwlJDiS6ghODqNEApVQQA9DUlpib/HQKBbd3WewGOkAOGehMCkzTRKVSEV0AeQtlo0102K6BmAR4RGKU4/JFJwpDNBoNJHEMVVFQLhZFwx1FUUSPhW5LRq1Ww+effYalxUW88cYbA5scAWhttcwgUgoTLmHsBf6+G7qeEgRCYDO1fSdQmjprRlGUmkFlfAJGNc9SFAWVahUrS0uiqqFp23i4vo5msznSMTuCP+cZ/4QTKytYX1sTaYJsRcRQVCFbFXTktCmBLpdKQpQbRRG2Wb8F/jwSQoT+oL37KAA8vHcPa4NoJCSeCkhyINERQRDg1vXrKTEgBCdXVkRZHKU0te9F2rOgE/rVgWd33L1K1MIoQiNDCpAhBcVM6D1JEoRhCIrUf79l0Rju0vuCZib3kUAIfN9Ho9EABaDpOkqlUmvfCfY6IV5sI1CObePPH3+MUqmEd955Z6idfieNB5CJHDwCckBI2rVR0zRQStFsNsVuOmGEIIxjxCx10FHoyY/XlocfFLquY2FhAfPz8zAMA5RSbO/tYX1z80gTrnHAx0kBrJw4Add1UTs4aHkNL+8UZGHAqIKIUHQoHVYUBflcDgtzc8IvodFsot5opCWllELX9ZQcUpq2OsdhNIIQgt2tLdy5ceNIm22Jpw+SHEgcQRAEuH39OsJmE5QQnFheFp0UCSBCjhrf7bWhV3VClhRwdJq+ebj94OAAfoYUVNtIgRgzIwYqW0wnLTbkY6dIdQXjHNt13bTFMiHCe6Hv4s7IAc8ff/zpp9A1De+9997QO/1uYx/VNrkbBilr5P0VOHiOPIrj1AqZRQhokgyk5yBIJ7Vx3p98Po+VpaXUUVFREIYhHm5sYHd/f3KpBqSkeGF+HrphYH19vedrB44q8MobFkno9Dpd1zE3O4tCPo8oioRosd5owA8CEQn0WeVCeyllo17HzWvXjqQlJJ4uSHIg0QLP87B67RoixwEYMeBOggqrSxdRgw49E7joqhO4YhtAy+4u++ooitBoNFA7OBBiR2740okUcARBIKIGj1MKof04jWYzJVeUwrIsFFgN+jD48Ycf4No23nvvPZHmoW3/uo6hy+/jOBYL36Rskwcpa8y2gw6jCJTS9LkiBBGrvR/53IT0JKq9oCgKZqpVrKysIGeaaaqh2cTD9XXYA5ZdDnQeVcXK8jLW1tYG/ptsVCHO6C3a31dOlDr9jnca5R4InHQ6jiNShi3RAxx+TgkA33Vx68oV2AOYSUk8mZDkQELAcRzcu34dgeuCKApOnTgB0zRbJnhurKIbBvQOO9YERxX7YlLptAiyXUmWFHC1eJYU9Nod82ZKoFQYwUwa45KNhNJ0Z+b7AKUoFApdUzK98PDhQ9y6dQuvvfYayuUyGxw5rIPvQLqEaU8HVTtHNmowau6+G7KkhVdE8OoCXh2RcI0KYb0jmDeF57pHGmQNCoLxoyC6rmNpaQlzc3MwWMpja2cHG1tbCCYUWj954gQajQZc1x1aWEkIaSUKHYiQ8PBoe1/zuZz4nWmawg+Evzeu58HzPOHQKXxL2N/EcYzb16+jXqsNf9ESjz0kOZAAkEYM7t+8icDzoKhqmkpg4jg+qURRJHKvnRY2SqloRcz/T9tEWO2I4xgN224hBdn0QU9SwP6FYSjq6iclpqOYgLaAIUoS1LmQEkCJWd4OC8e28fXXX+PkqVM4c+ZM19eRtnFnFwdhBcwXbLBSQHYPedSgJRKB1np94SvQ4XX82NmSPU4ChDFQW7qBjzcbcdLZzpa3GY5HVfIDR7UcI6BQKGBlZQWVUgm6oiDwfaytr2N/AqmGpeVlqKqK9bW1dEIekZzx9zdrwCR+B4iUA4eqqrA4CfN9GLou7Ji57sR2HOzXal2jUZRS3LtzB65tjzRmiccXkhxIwHEcrN64gdDzoGoaVpaXYXToUshzjIZpHlmEeagz+/9+YWXP93FwcICwjRSUBogUcIMbAojaeH0CUYOW8OmIC1IWERNURqwioZhxsBtqXEmCL7/6CrqmDV2ZcHgQKsSfJPMzUNoSOTiyELD/83w3X/S5fbD4x4Vz2X9AXz2FKMNr+3kulxPjccZYfLqp+IeFoiiYmZnB0vIycpYFjRAcNBpY29g44hswDDRNw8LCAtbW11u0Mp0qSgZFi1NjG3nhgkUgTS+oqioqkLhosVwsolQoAEg1MgeZ5mXto0riGKu3bonPscTTAUkOfuZwHCf9YLsuVFXFyeVlUU7XDh7ebS8VBA6JgRAc9ooWJAnqjQaato2EUmi6PhApyB4/W/4Y8hLGMclBNqc6icC6zzzu4ySBzkxpRg1zX7lyBTs7O3j7nXdGvs5eiyMP70+j2VJ68u5nF4the86cEKHJiMJwpD4IwCHJG7ZxUzeYhoGlpSXMzs7CZKr/jc1N7LdVHAyDEydOYHd3V0TmuJviMCmeXlofHrlpJ76EEBEFDIJAeEyoqopSqYRioQAQgjAI0Gg2j1Rt8A1AFIZYvXWrawmqxJMHSQ5+xnAcB7du3EDMicGJE9C6EANKqShfatca8LAzbScEHSYrHi0ImFdBIZdLQ7X92gp3KU0Moyhd2AjpqIEYBCL9gcmQAiBN0zQbDSTMd6FULLao8ofB9vY2rl65gpdefBFzs7Mjj6lbaDjJ7C6nYX7Uz4NA/K7D+FRVRZ6ZQjks/z0ssjvwSaopisUilpeWUMznoasqavU6Nra2RurTsLKyAlCKjY2NI78bJPLBXSL7IRtN4M+7puuptogQOK7b8pxYpokiE4hSSmE7TtrdMfMaTthd28aDO3cGvWSJxxySHPxM0Ww2cevGDVDfh65pOHXiRM9dO48aEEU54j6YxHFqd4y2UHxmUo6TBI1stIB1GuQiKKEsb4NojNRlceE7GUPXR5r4RaRjAikEDpuVKgJscmXEYJTxBb6PL7/8EvOLi7h06dJY4+p2D0Wb5mN0RmwBTyt0eQ9M04TB2hLz52eow7eda1INtoDUE2J+fh4zMzPQCUHg+1hfXx86ymFZFmZmZ3tWLfSKfAzV8hyH0YSIGUnlLAuEVSxkUyQqcx3lrdiBtMSx0WwephmYqJgQglqthvUHDwYeh8TjC0kOfoYIggB3bt1CEgQwDCONGPTZdfNObtkdfsLz/tnJtsME5bGOiX5btCBbMte+u2zpV9Bj0uNixJHy+JlzTwK8VJEvDLlcrqVUcWj6QSm+/uYbxHGMt956a+TIQ3qo7mefekoBg0UOeo0xn8tBUVVQVm43gQF1JaSjoFQqYWlpCbphIKEU61tbOBiyH8HJkyextbXVMwLQrV/EqKJIwsqTKaXIMZGs5/tHylrjJEmJbqEAoiipkLhLmmFncxO729sjjUfi8YEkBz8zJEmCu3fvggYBLE3DqZWVgRaFMJNSEHar6J/HbjQaqdtdh2hBO9oX0X7h6DiOEUVR6m8wJDmYNDHgpYpBEACUolgsIjdmJ7tbt25hbW0Nb7311ljH6mdGlO2p8CgwCHkiiiKIVhCGE2uOpCjKxAiCaZpYXlhAMZeDrijYq9Wwtb098MJ94sQJxHGMrQF6GAhNzwDeFoNCuCMiJQigFKqqptEkShHHMXRdR5lpgzqlGfjnae3+fTRks6YnGpIc/MywubkJv16HQimWFhYGCiPzlsIU6e6SW/n22sm2RwvyHaIF3c7VjxRw8F2LrusDi80mLToEUo+ArL1zqVTqLBocYgKv1Wr44YcfcOH8eSwvL489xl7XyrUk07ZN7vaeCkFin0VU0zRRemfb9sD6A17G1w188ZsEVFZ5UKlUoCsKXM/D2sbGQPbLxWIR5XK5r1siB0FKmiZFbgCI59b3fYTMN4FvHnjvDUVRUCwUuqYZAACU4v7t23AnaBglcbyQ5OBnhGazib2NDdA4xvzcHIwBa+2jKAKYgMkwDEEKOu2IukUL8l2iBRy89HGYnDffpXeqnuh2jkkjZOZNcRxDVdXUcneEFEcWcRThyy++QKlcxsuvvDKhkfY434SdEbuh27s/TK7cMk3RfdNxnIHf037nIIoy0eejUqlgcXERhqYhiWOsbW6iMUATp5WVFayvrw+84HNfCYWQiRAcXdOgsHRLxBwrVXZvwsziz5s09UozcJOkiaSBJI4dkhz8TBBFEdZXV0HjGIV8/tBdrwf4BEUBoIMQsX0yGiVawEPefCff3mCoG7jdbjKg3mBShkZZBGGIRr0uShUrY5QqZvHdX/4Cx3Hw9ttvjy0Q7BdyjjNNfY5DjNjVJRP9Iwf87wuFAhRVRRzHcF130BP3fcmkSh05LNYOOmdZUAnBzt4etnd3e6YZVlZWEIQhagO4DvIOlXzUiqKM7W7J3RJBSEtZJZiPRfZ5AdA5zZCpeIiiCDevXoUzye6WEscCSQ5+JlhfXUXs+1BJ2uylF9qFgDwX3VK+lPl+nGhB1vSFY5AJLquw75UrF30R6HjNktoRRlFaqog0mlIqlfoKBgfZDd6/fx+rq6t47Y03UCqVJjLWnroNnlKYgm3yoOD3bdB9r6IoKLDyRs/zBrIxHvTaJn0HeJqhzJo42bbd03p5plqFwlT//dCtb8S476Oh60JjwKMH2eNyB0aOI2kG3xdpBoWk9s43rl6dbPtrialDkoOnHJRS7D54AK/ZRBjHWFpc7Lq7zebjsxNCu5qcZr4fWVuQOVc7eAShF3i+uZ+9crdzjAPeB4ITg+KAzZP6kQPbtvHNN9/gmdOn8ezp0xMabW9wkjXtlAJHt/cbGC7to+s6LF6bP4a98tHBTL6bJ2/iND8/D0PT0ihelwZOiqqiVCz2JQfcpbIdPAI3TmWLoigwmUOqzxqaAYeGR3zB5826eBlltzQDb9h268oVNGWjpicGkhw8xUiSBM7+PvZ3duCHIWarVcHus8haBgOHNdPCo7+9xJCFF0eKFrSlEbqhXy16PAA5QJ9zjIIojlFn12zo+sDEAJT2DG0nSYLPP/8cpmni9ddfH9lfv+WU6E9IuN5gEv0HBkX7/RqklLETrFwOuqaBIu070bPaYbgBTiWKks/nsbS0BIstvFs7Ox3bQM/MzvYkB9xbpBcI0yGMehW890fA2jYfPcFhKagw0WIpvk5pBkVRECcJbl29isYYTpISxwdJDp5SJEmCqNnE9vo6ojiGaRiYmZlpeU12MuaLteiJkJkcs7noJEmEy+FI0YIhJqxeux+hnG47Z4s/woDnGRQRI0QJ0xgUi8WBF5F+y97ly5dROzjAL99+G9qYgsYs+o3vUZUxtj977IdDEQRCCPKFgrDv9XsYD40SV5hEP4Z26LqOxcVFlAoF6IqCRqORuipm0gyVSgX1er1ns6NB0ctgrBdUVU1TTYoiykazzxL/jt8jrn9IkgSEkCNphmazmbozRhFuXbuGuiQIjz0kOXgKkSQJYtvG3vZ2yvwpxeLCQstraGYnm52cu5URcrOUeqOBxpDRAmC0ED9BZ5EcZfnQhNIWQjIs+RgGcZII8aGmaakd8hC7y14OjJubm7h+7RpeevFFzIxhj3wEfRYEfh+B6ZcxZtH+jLWQwBEWsULWXnlCbZQ5lBHG1PeYioK5uTnMzs5C0zREYdjSvKlarSJhRLQdnRop9QPBaOQvGz3o5cCYJVE8kgDgiGmS6zgIoihNMVy7hgPZ6vmxxvHNCBLHAk4M7HodjUYDQRxjcW5OKPqzH3KR6+VphD479aZtI5/LQdU05CwrtVztRwoYCRl1weYEITsh8r71CiGHYklu4TrieXohoTQtV2Q136P0Sei2vAS+j6++/BKLi4u4dPHi2GMVupAkQXL4w8OISmZ3HkVR2uMCqdNkwARuLVUq7G8c1wVF2qFPz3TsJMDh+9shFZUlAuJZ4V/5s9Fm6DPse2iYJsIoQuD7aDoOyqXSEc3KyM8F33mz/h2TRLFYhG4YacOlMMTG1haqlQqqlQoIITio1VqqimLWCXNUDJu+EWWNSYIoinr6VLRHJ4TDoqahXCzCdhxEUQTf9xEnCXKmidvXr+PsxYuotkU0JR4PSHLwFCFJEsTNJkLPw97eHsIoQrlYRLFYFK9pn6jb9QWd4Lgu3Ex5UqVU6pvrBya3k+cEgbKuctn2wvw8k+yNkAUnBrzlcrlUGq3kr0sd+vc//ICEUrz11lsdFx8u+BJfWb5ZNLtiyvH2ksWWBaBd78D+H7BOh6qq9qxFpzjcPfpsgj9yeWgTtGa+B1rJEQGQICUw/LnLKtk1TUv7PDDCyv0viKKknQo7lOzlczlEUYQ4juF5nug0OCkQQpBgDJLRBaZhYHlpCbt7e3AdB7V6Hb7vI2dZqB0cgMtSkzGJAZAZO4sC9vV+IGlPhYZti0Zpff6gRcwMpISGV5f4vg/X9+F7HgjSyAInCBONmElMBJIcPCXgxCAJQ9H6VdM0zM7OCgFgOyjQsyEQpRS2bcPz/XTCVlVYljU4Mehy3lFAAEBRAJa3BFK9QbdrmwR4r4QoiqAoCkqjEgOghRjwhX57ext3V1fxyquvIk4S2I7TsuBnoyWdFll+7WIyzpAAsQPnCyz/PqslCUOoqgpT19PytUwEQJyT/Q0nBJauw7Ssw+vJRhoyeo/smHjEov01fJEC23XGzHhnEGSJAicSiqLA9X0E7P3SdT0lFfxa+ohCe58wbaE8yKI6LBRFwcL8POr1Omq1Gnzfh57LYW9/H0Br18xJgKcZBmlgpbJ+FjTjp9DruAAjUjxFiUP/CsuyoKgqGo0GPM9L+zlYFu7cuAF64QJm5+bGuCqJSUOSg6cAXHyIKEK90YDn+4gpxcriYnfVP6Xdf8eO2Wg2RX/3cqUC13WF8VC3UsNx0wi9wAlCxNIKmqZNnxiw6y8ViwMbHPFqDi7AillYNpsvpkmCb7/7DqVyGbNzc6mXPTos+IBI+SjZr2wxVDI7a/5aoDV91A0NQqBqGgr5vMgvd4PJbHUN00SuQ8XLKOAkCEjL46I4RiGXg6JpYkHiUZGEf89NeChNd/Jti2YcRQjDEKHvC7GiEOUhXRQVVRVfFZ7SGBAKX/imUM1QLpdhmiZ2dnZQKhTw4OFDHBwcoFAoTPxcAIQTYi+KEMUxNNZPJQjDgd0/eZohe5e4kDeXz6f6AyZ0zFkWVm/eBE0SzLVpoyQeHSQ5eMKRJAmiRgOI47SKoFaDH0WYn52FYRhiZ8YxiL4gjmMRSgchKBWL0HVdlDUFQQCrw2IyTWLQcp4kAZJkarX5FICdIUalLmmUhNV6x3GcLvxRhKhL+DeOIqGLACG4f/8+ms0m3v3Vr2AYhtjhti/4/VI+3cY/yF8II6ljLGNsAXtW+HWrjPD1W4B4VIXrKrJEosAqAPhzqmnaYbg7SXAkLqEoUAlJCQNrMiT6h3T6jBAi6vanQRBM08Ty0hLq9TpW797F2uYmlhYWUJ6QIVY7+AYh7nI9YRimzdYoRRgESCxroOhZJx0CkM4RpmGAJklqYJUhCHdv3walFPOLi5O4NIkxIcnBE4wsMYiTBHu7uwjjGMVcDpVKRUQHOCilPdMIQCpSq7NyPYXl2DVNQ8zKIR3X7UgOplkpkEXMGkApvIPcFLQGtm3DD0OAUlGuGASBiALEjBR0PDf3cSAEmqqKXSpwGAL3PA937tzBxQsXcOLEiYmPf5B7kk1bTLNVcy+IZzOrlRjg7xS2mKPLuE3DgOM4aUkd09sk7H2LoghJHCPmXgFxjJgQxEmSksFsxIa9d0eiDUz/QKdEEIii4PSpU/j+++/huS72Dw5AKUVlAMvzUdGpO2XE5hWuAYmTJP3sDxM56qBDAABN12EC8FwXAYua5SwL9xhBWFhaGvOKJMaFJAdPKLLEAAD29/fhBQEISe2RueiLYxBi4Ps+GrYNsBLBEusVwD/YBiMH2dTCtDwFOoGitUkQn9C62cgOA77oN5tNOI6DJIpg5XJdLV95BIbbN6sZItDJijjORBN++OEH6LqOF154Yawxj4Mk428w6Z4Co2CSIzANAz4jc77vI5/Pp3X7lELPRIC4qDNJEiRxjIh95T8jcQwax2m0IXuPCIHKUzzsOdTY9+OQBf4sJ0kCM5eDZZpIogiqoqBWryOhFDOVysjH7wWx08fhQh5mup7qmgbbdeEHAUzmTDnocdNvWtMMhB2XUgrP80RaLWdZuH/nDpIkwdLKyqQuT2IESHLwBCKJ41RjwCb4MAzTFrZJghNLS4c16xlRWD/HQdfzYNs2gPRDWyoWRfiQTxaaqqZ12WzS5TuI4yIGwKH5Ed/ttkdGBj1WHEWI2L+Q1V77vg+P1ZrncjlBPtqjAGpbRGAYbGxs4MGDB/jl22+P3b2xEwa9BzxqcBzNlnpBkFiulZjEMQlB3rLQYGJawzA6poW4ME9VFEDTkI2F8aqQOEMehGYkSRATAiQJaBi2WI2rmgZVVcVnZdD7m61I4WOrVKvwPA+VchkHrDQ5SRLMTbH0j4tQKaUIWFqNkwPF80TDs0E7oXY6LgFE5MUwDFAAvucJ0WvOsvDw7l2AUixNI7ImMRAkOXjCIMSHGUvT2sEB4iRBPpdDPp8HcDjZ8BBoN3CLU74oWqaJQsYSuL1EztT1FnJwnMQAYGkF2mp+1FIn3ynfnySIWBMZXu7Gow2UTfJBEKQ5alVFoVhMd5tdogAjXQN7P/7y3XdYXFjAyVOnxj7mOGgvB31kICRtitUhxTAOdF0XEQTHdVNvCgxOPhRCoGjakQmyU7QhzohNaRimbo3seVQURRAFThzan6du1QjVahX37t1DpVwGIQS1gwPYjgOaJJidmZkasSOAaLhEANEiW9d1+L6PaARywI/LdQgKDiObpmEASQIvCFoJwr17ACAJwiOCJAdPGGLbFsSAIrWNdR0HUZJguVoVr6OUpmHOHseirIaf7xDy+fzR+vC2iYynFuI4TglCH5X7OMi6OHLwSoVOjn6cJIRRhCgMEcUxwjA8nHj5bg/pjlnTdWiqKnzhDV1HPp8fLqc6IAghuH7tGmzbxrvvvTeVXPUwy6qIHDxqcoC26M8Ej2vlcgjDEHEUIQgC6KziYhx0izZQQHQxjKMoJaNJAsrSFPwzlo0ucPLZDZVqFe61a/CDQBg77dVqcDwPyd4e5mdnp0IQKE1NrwgAPZNC0DQNfhCM70LJRbYZQmQyQzW3PYJw/z5yhQLKU0qnSHSHJAdPEGLXBWWTDFek1xsNREmCvGUdLmq0v8vckYqEQqFjOVt2J84JRz6fh8MaqhislnzS6EQMeDkbkDFAYmFOHhWI4lgQgGyYVlVV6JoGjf3jf+/7fmoARAis7D2cMJrNJq5evYpLzz03sVbMRzDErvtxSSscwQQFpip7Tx3Xhet5A/lzjApOGhTDABgJoUlyGFmIY0RczxAECHD4HvA+BiIVwUh9tVoFCEH94AALCwupOFZRUsMk38f27i4W5uYm/h56LH2gKArybNGmGb0G12WMel4ewWmP5BgZDUKWINy9eRPPvfIKjAmQO4nBIcnBE4IkDBG7LoDDD1QYhrCbzTRqwPOQvJywQxkRR7YigbCKBL3LxJk1uOHKY8uyELAdRNNxUM44ME4CvPKhHTHblcXMnIkrz7Pug1x4qWdDuR0c9QAgYFoNEALTNCfuqpfFd999ByuXw/PPPz+1cwyD427V3BNTFESahiGeVc/zpkb+gKOle0RRoCuK+GxRZvIUsqgWgMNS2DhGkDkOjyxoqor9/X0ssPr/Qj4PAmBvbw9+EGBrZweL8/MTIwgRK4kGUtdJLjoW0QNVRYR0DhlrsebzSdZnQVHS94eQFpEiAKzevIlLL744+vkkhoYkB08AkiRBxMSCHISQo1GDzALe1cs/CNBoNtPQvKqiXCx2bbojlMssXJ9VGhcKBRzU6wiDIFUwT4jVHxk3E0YFYYhGowHHcdLdf6b0SmVEQOR2Oy14lLY4woVRhGajAYp0x1JgWo1p4OHDh9jY3MR77747tRx/thV2P/CICs8BPw6YtOYge9x8Lod6swk/CKBqWlciPKnzAUeFobxroaIoME1TpCOyXhlcF0OTBBGliJB+znZ2d3Gi2YSm69BZ6ktRFOzs7CAMQ2xub2NpYWFsgkApFTbahmEIwWy24kDTtDRdNy45yDx3LaSKUpjsvJwg8Du5/uABVh6xVufnBEkOngDEti1C5UD6YQqDoDVqMIABked5aHapSOgKkrHSzUBTVeRyObiOA9txUqvaMRcafn0JEwiGYYgwDI9UKhiGIWycNdZWti9Ian9LkZZoNVlnSdMwWnpPTBpRHOPbv/wFJ5aXsTLl0qxB737W/OixIQe8MmYKx9Y0DaZpwvM8uK4LrVSampC2nZhnuxR2Oic3vcpWrkRxLHQL+XweTcdJiQPrG6EQAk3XMTMzg/1aDRFr2rQ4Pz9W6sTzfcRxDKIoHV0wefmhx0SJ4yBroc2rqSgTCPOeDgBaUgzrDx+iUCpJ/cEx4TFLOEq0I3ZdJEEgPjR8Mm+JGpjmUWLQtnNp2rYgBqZpDtRAqNekBqT5QO69brdFNoZFGEVwHAcH9Tr2azXYjoOAlYkpLOxfyOdRLpVQLpWQy+Wg6/pw3RHZROS4LhJKYWjaVIkBAFy9cgVBEODV116b6nmGCc2LXPdjpDfgxG0aplZA+qwqhCCJY2G6My3wiEzMcvPDQlNV8bwXi0VEzHRMVRRRUhkEAcIogmWaQhy8ub098qIdZ9MJPVwQdeYeSbkR2IhoeVozBAFA+gww4m5ZltAhOK6LuzdvCldFielCRg4eYyRhiMh1j+zuwiAQvgZLTLR0ZGngpX2UoslCqgBayh17gU/UvZYcAqBYKOCg0UAwZHqBItVMhKyEMM7aPLNqBFPXoRuGyIvXmLBr5AgFpWjatnB9K5VKab31BEyUOqHRaODGjRt4/vnnp+aPLzDE+Lkh0+NQqSBADvsfTAMKIcgxUyvHdaHp+sTJEU/D8RC5QgjiAcTBvWBZFnzm1WAYxqFugVXkKJqGcrmM/VoNDXZty4uLaWv1QXuBUArbdQFKoet6z3QB9/wI2TgmlibLRCj5RohbLQMsxcC6Od69dQsXH6GB2M8Fkhw8pkiSBKFtt3TJ46gz7/i8ZSGXy/VsnlRvNMRuolQopB31+mBQIx0gDdlalgXPddG07TRE2iW0yUu6QqYhQGYiBSEwNA06y3V2mrgpKzkcKlqQget5aetZoCWlIvLEgOgmNwl88+23KBQKuHTx4oSOOBnwHd/jFDkApm+mZRoGPF1HyFpVT0pnwknBkX4LPJU1BvG0LEtU4mgZvwFd10FzubTRVBSBECLs09c2NjBTqYjUm6HrXf06uM9JzI4xiChXZ0ZoURzDoKM1oep7Tzhhb0sxuK6Lrc1NFEslqT+YMiQ5eEwR23baca5L1CBMEizOzHSdUOMowgEjEYSQtCJhAOOSUSayfC6HOI4RBgHqjUZL9UMUxykh6FAfTQgROyJutNILCRPdjSK8CoMAruOAAih26rDIoi8qz32OGUm4f/8+dnZ28Jv334eqqi32yY8aj2UZI3vvJ9mauNM5crkcIuZ7wJ+7UcAja1mRa6fnt5tAcVBYpgmCtOS2XU9AAFGam7MsFAsFbGxuwgsC7NZqKUEwjDSNwki7zhpb8Z257ThpTwlCUGBCx37QdB3E89LPM3c9nJR2JSt8zggV2wnCnVu3pP5gypDk4DFE7LpIwrDjBy4bNch3iQLEcSyIQb+KhCyygsdOToPdwHfijWYTYRCgVqvBME1RD52FqqrQDeNwNzPgOZJM6H/YtEKcJGgyYmBZVl+VdVbbQdkCMMwZwzDE999/j9OnTmFhcXFqeXSOYY5OKT2MHDxGaQUeIZumQJJX6FimCZflsMtDihPbUwfThmlZoKy0r19qStd1nFhZwc7uLnzfR5NV9qjM6IsGAUKmX9JU9dAFUVFQzOcHtvNWFQVQFIC5RGqsa+PE37lM9ABoJQiO6+LGlSt45c03pf/BlPAYbR0kAOZn4HkdJ8ms1mC2i796nCQ4aDTSvL2qolIuD0YM2AeRnzcZYfIzdB0eix7s7u4K4RAvv6pWKqhUKkLIOMxkIsSRijJcXTylsJtNJEkCTddRGNLLgJC0yY4yxML1008/IYoivPLqq0OdaxQMK+IT95GQxypykC2Xm/Y5TCbuo0kCn9mGd4NIGbBSxKyx1sDnHYP0cItyb0ARpaqqmJ+bS0mwrqNp26m+plBIF1FFQZIkaDSbqDebaDpOat40xLPAdQeEEBENzDZhGwR97yEhQAd/EpNtLIDUNv729etDnFViGDw+s4NERz+DLHjUIGdZHUuNEmaHTFk9dbVSGehDz8OCo4RAoziG7ThphYFtw2StlHk3x1KphFKpBMuyoGQ6PA47VdKM7fEwsB1H5GSLhcJoiw/3eWALqsInrQ7H2q/VcOv2bbz40kvCcGequ8whj83TG49T1KAFU7xXhKviFUVodVzPO5LyyRIC7so57nvIn51hj6MzB9J+JCYLVVWxMD+PHCNBu8wwKZfLoVQspukJXjLIqh3qjQYaTLg8yBh1TQNBWmXEMXCTKQyePuLvWRYWq6aglGJjYwMP798f6FgSw0GmFR4jxLbdtUc8jxrESYKlDlEDilQdz+uUy+XywGx+2F0NRZoD9dvqnYmiwDIMVCsV2I6DKIrQaDZRLpWgadphBcQICzRXfQ+TUsh2WRzI02EIZLtc0kwa5rvvvkO1XMaF8+cndq4+AxkucvCYihGnGTHodB7dMKCFIaIggOu6ImQ/7ZSBwkp/BwUhBFYuJ57jYf5ufm4utVr2POzu7wvL4yiOYZkmctUqFELgs7JILnx0M1qgbg6amqalBIr1OhHEi5C+KYZO1uhdX0vSBlhJpmySCyebzCV19fZtlMplqT+YMB6zGeLni8hxuuoMAKBeryNJElgdogYUQKPZFAKhcrHY1TK49Q87T4LdJq8witC0bREliKJIlD8Vi0VUK5W0myErE9Q0DaAU9UYj7Q3fhfgMAh45GLRSIYoiOLYNCiCXz0ObQntkAEJApSgKHjx4gN29Pbz2xhvHstiNspDFj6MYEdOvVDg80WG5rGWaguh6vj9SymDo02fHMCAsyxqaHKSnIZibnU3LGgGsbWygdnAAgrTJmskqg4qFAiqlEkzTBFEUxJTC9300Gg3UGw34vn/kvqiqKp6hdqFxPwI/7B3m8xHJjEFVVTEPuq6LG1evSv+DCePxmiF+poh76AwAprR3XURx3FFrYNt2uvgCh4syQ9ePaRf2zm14ORJK4XoeagcHqNfr6UTBdiC5XA7VahWlUgmGYbSMnxAixkIpRb3ZHDhv2gm8c+IgkQOaJGjadmp0ZBgdUzCTBqUUVy5fxqkTJ7AwP59qFICW9MM0Fp5hF9XHUYzYjql0rOTPNU3beieUQlUU8dwOE7YfF8MKai3THPmzQwjBTLWapsKQpiYBHGm5rLC+BuVSCUVGpnmnScd1ccDaRWeJAC+t7GS8RAhJ26G3gaL75qPHRaREpI3QZi2ea7Wa1B9MGDKt8IgRx3FatthlwiCA6J7YKWrguK6wFy0WizD6iA9FCLDPBBWyRjVZNk4pTX3hTXMgZTMhBMViEXaziSCK4LguwjBEoVAYOqydDBo54EZHcQxFVVOdwTHg7t27aNg23vnVr8TP2smSyJ+ydA/tE37tiyFTCsBjWsbYDl4eN8YhKDqINRkxAA5JFTcZill770EV++NiGIMky7Kws7s70nnCMITD0iZJkiBi+gIrl4PVReXPfRS4L0kQBMLSPAhDQar4ZziMInSS+QrXywzaNx+DIiuYzpLsnGUJJ8qN9XWUKhWcPH16hDNItOMxniF+Hkgcp+cEn9DU7jeKY8xUqy2/83wfLuvUWGBhwnZkF6h+Ey5NEriuK6IEnBioioJ8Po/ZmRkUi8WBJ1Deza1UKglXxjCK0mOz1tODQrRq7rOotRsdHUfvgCRJcOXqVZw6eRKVfnlPcugEl62AyIabB44wDEsM6KHP/2PljtgBg75rnAQkYNfHqgq6ul62PQ8KIamXgKKMFLofGawCZhBYljV0ZIMiDbfbjgNKKTRVxcryMoqFAlRCsLu729dqWVEUWMxqvVgoQGOEIYpjuK6btsJ2XfiMPHS+zLaNyKjRM0LExiArUswaN0VxjNVbt1Cv1UY7h0QLJDl4hIgcB7TbB5Qt5K7rilrirHuZzwSKANJdQI/QOUHviAFNEji2jb39fbHrBtKyoXK5jEq1mpZUDbHbFEyf/T9nmmlZpaKkVRXNJmzXHXghzJbgdYMwOqIU+ULh2ELnd1dX4TgOXhixpSx/X3gaQpCGthI42rYLHhZc1KUoythNsiaO9vG0/Z9XD3CdRdL2/+z9GJYQmqxcMI7jY81bD1riaJpmms4b8LhxHLdYplumiQKrUpidmUndFZMEWzs7A1cNaJqGAitHzrG5gBKCJEngeR5q9XpqptTpOtm1cgfSUZH9S6Io4j1v0R94Hq5fuTJ2YygJSQ4eGeI4RtIjj8gXB8dxEFPaQgy4MBBIJ45+tfvdHMyypMD1PFCkH7R8Po+ZalVMKMOiW7mixnwXsmYmB43GQO6B3Dq5Wzi83ehoUi2k+0FEDU6dQrlUmsxBs9EEHC4ivIRS9CDgkQb2Op6q6DVW4PFLKbQs8BmRZcy0AXGmI6lIF0wQLdGDKTdlGgW8+dAgDaMC1nE0jmMoioJioSC8EoD08z03NwdN0xDHMbZ3d4dypeTlj+VSCaViEYZpglKadjp1nNQIrUdUcKz3rp0EZp7jrNvlQb2OB6ur45xJApIcPDJQlg7oBB5i5iYtcRyLUqsoilJREasS6NvQhy2o2YW6EylQmJNihXmyj9q/oOUaOv2c+Q0UCwWxWzs4OBC7nM6XQMXC13HHO6bR0Ti4fecOXNfFi8fcCIYAh6HVzM86kkD2Nc5EDtp/L/4NubNrX9izC3y2miK7uHf6fftYkbmW40gNmdmujY9Z9IB3XfV7kANuhey4LihSH4JSF3KvaxrmZ2ehEoIgCLB/cDDS2DVVRTGfTzcRqgokCaIo6koSaJKMrbFpn5ey80EulxP+B/fu3hUpV4nRIMnBI0AcRYi7TEDZ3LPHiAFXEsdJgnqzCVB62FWw38l4KoGRDcdxjpCCEitDnIQYa1AhGU9ZqKoKirSldKPZ7BhF4OFj0mFyACZkdDQC4jjGtatX8eyzz0699XMWlFIMo/fmdyNh97A93UKy/9qiEdlzHvmXea9o27/2v0WGRAxKP46DFHDwtuCEpFbFx2WPDPQ3SDItC6C062IXhKFYjAlSkV6hUOh5/wzDwOzsLFSk1U4H9fpIY+cpKsMwUC6VYOp6ShKYOVqj2UTIbJq5BmmSyB4zqz8IwlBWL4wJSQ4eAZIuZYvtNdCu6yKhVIj56vW6KCMciBiw4yVJAocJDV22s8iSgkl5kw+rMNdUFRXmngikH+gaK5nK5ib5jqMTMRBGR5SiVCgca8j89q1b8Hwfzz///LGdE2g1YBoGPHw8SKVI+/GVTud83HQLA6DXiE3ThMLshXuFxqeFbiJRy7LScsu2yAE3GXMcB0mSQFUUFItFmKY50PnyuRwqlQo0RcFBvQ7bcYYfM8v9x5ny5nKpBEPTQBlJaDabOKjXW6yWR35yOglN2/wP+HyyvraG/b29Uc/0s4ckB8eMOAyRDBi25N4G+VwOjUYjbQmbcT/sh4RFCvZrNXgDkIJx9kpd1eF9QAhBIZdDJePP4Pk+arVaGt2gFDE7bvs1H5vRUQdEUYRr167h7Jkz/VM7E8ao71PSJa3wOKDT09xetjYJ9Doe1x4ojyB6AHQ3SFJVFYZhiGqKOI5h27YQDxNCYFkWiqXS0CLcUqkkSot39/bgDZlS4c8SzRhIKYqCfIYkxBmSwF0NO9kiDwLaKXrYVvlhGoawiL5+9eqxv49PCx6/WeIpR+y6R6MGHSoJeEoBYD0X2twPe0GQgoODNAdJaUoKCgXMVKtHDFDGBf/ojRMy1DQNFSZyUhUFFKmHQ61eh89SINlJ4VEYHWVx69YthGGI55577ljPC4xgIgO0KMUfR3LQDRNPLfQ5nmmaIKyL4SOJHnQZn8k6SbquK0L1hP28XCqJ1s6joFqpwDLNgUscW8abcWJtFzbydGipUEj9VyhFFIaCJIzanrvTUt+essixaEvj4AD3pDhxJDw5s8RTgDgIgIxHOEenCdB13TRUh0N70nKb+2E7+IK6f3AAx/OEl3qpUEgjBSyn2k1sOArDbi9ZHBeGrqNSLiOfz6cCMUYCms3mob/6IzI64ojCENeuXcOZs2dFyqcnJrhzGdlEJjMRP9bkoO1eHafugJ/PYumFRxE9AI52OKRMY8Q9BYD0c1IqlcQiOA4IIYcljnE8VIkjAOFe2P43FGm0iqcbSqVSujHJkASH27APgx5j43eCRy9ACO6xUmOJ4fAYzxJPF5IkQdxBUNQtlOg6DlzPE+2Wi8WiKNVpB0Va37u3v5+annBSwNMHA+Ygh8WoHRb7gRCCnGke1lRTmtZuM9Fiw3GO3egoixs3biCJ42PXGgCj6w0e154Kx42BfAUMQ2gPhjXrmghYmJzStMdBvV4XlSQqI8P5fH6i76UocdT1oUscue6g/fVJkrTMbVmSoHOSEEWwbTttKtdh49TlhF1/lU1XaJoGi3lErN65I70PhsTPe6Y4RlDWeGgQBMz50Pd9mLlcV/dDII0qHBwcwGFhOlVVRRMkrr5uR7fyqVF2SdNclrn6uFipiFSI67rY2dmB47owTPPYewQEQYDrN27g7PnzPY2npoVRd7KPs96gF7iB17Gek1Uu8FbJx31+blXcbDZTATEr4VWZXmgU75FBMGqJI09zZslBr6ZgfFffThKajcbA0ZpuJK89/WiaJjRVxdbGBnZ3d6X+YAg8WTPFE4okSRC325/yUHyHh/ygXofreTBNU5iYtIMiLeGr1euI4hiUEBEp6EYKsui4Ax1iBz52X4AhoBKCXC6HQqGAKAxFW2u+q/KDYKKh+164ceMGEgCXLl0a+G86NaAZFSOLEbmb3BNGDtpdIsfGgM+JaRhpe2VKj833II5jOI6DeqORViolCaAosHK5qRGCdoxS4qgoiqiKAtJnNB7gPreQBHavfd8XosVe6Hf0Fv1BLoc4irCxtob6iCWbP0fIxkvHgKTD4tXNyjiKItRqNURJgvmZmY6GPmEUpS5ozDVQNwwU8/mh/fK5BemwlQbHSQzEOQlBHEUwLAuGacI0DIRhiCiOEdk2HJYr5ju+acAPAty4eRMXzp1LjWmOGXw3NlIZI4scjGtu9SgwjaqFQc5pmibcOIbv+0e6jk4KlFKErLlRdkFUFAWmZUFnXU2JoowkRB0F+VwOcaWCg3odB/W6sE7uBv554z0t4iHnE1VRUCgUoIdhWsbMUg2GYYgyznHA0xl729tYWFpCPp8/tgZbTzIkOTgG0HZnM0q79jioHxwgiiIoioLF+fmW3yeUwnEcUdJE2IfKNIyxas4JBt+RCiJxjHl+LmwKfB+maYpwJKUUnu/D930kSZKquT0Puq7DGrBz5DC4fu0aAODixYtDXsDkFrZR77qIHDzmDZcep6CvqevwVRVxFCEIgoH9AwaB6HLY1rRI13UYptmiL6I0bS89qrp/FJRKpbT80Laxu7cHlVUedEKWHIwzRkPXoZVKafdWds+jKEKuS+SkH2lUCBHPva5pCBUFtb09WJaF2dnZkcf5c4EkB1NG7PtIWC0ygDSd0GX3xjud0SRBpVxu+UAEYYimbYvdg2mayOdyY3fXEz79AyxgkyhZHAXc2VFVlJZ20YQQ5CwLOdMULabDKEIYhgjDEKqqwjSMgdIs/eB5Hm7duoWLFy8OvUgMQ756YZxjCOvkJ9S4iLs7jn+wwevreeWCE0XwJhQ9iNiiF4Thof21osDQ9d5Rr8xCd1yoViqI2Odqd38fSwsLHRfprCCRmyGNCkVRUMjnEYQhXFZxZds2dFau3LURWQdQtH72TNPE9tYWKjMzCIJgYuZvTyskOZgieIVC9oHuNrmEQQA/COB7HjTDEOV5CaWwbRtBEAi/giKvG54QCCGpHW+PiMC0KhMGgev7iONYNIU6AkJED/qYhYH9IEhzuKytrGGaMHVdmKMMi+vXr0NRlOGjBo8Bsj0THvfIQUdMWncwBAxdh6dpiKMIvu+PJEJNkiTdCbPnmENVVUF2e10fIQSaqiI8xp4P/LyzMzPY3tlBEIbY2tnB8uLikcWfj5wConx63PMaug5NVeH5PoIgQMijCJZ1GBEc0khJVVWQIMDuzg5M08R8W2RWohWSHEwRtE1r0E2AyHfGlHWfI4SgWCymbZn5zymFZVnI5/NTmSi5rz7tQBAeJTGI4hg+KwEd5No5gcjlcinZYhOyz9IPfOIRXdwGuJeu6+L2rVt47vnnR0pVTCRqMIbeIJurHuTZoexv4iRBEsep1wSrE/fZZK2qamqDOykNwwAC2onoDoY8Bo9O2c2m0B4MsvhxE6WAkdTMAcXzN4zIsN374LjASxy3d3YQRhG2d3exMDd3eA8oFVEdHuGZFIiipGRA01K3VDZP6roOy7JEQ7meZ2Tj4s+OaRjY2drC7NwcPM97JBVHTwokOZgSkiRB0l6h0AUO6yXgBwE0TQNFGsYOgiC1PGZGRtMU0WQdxjp92B4FMaDM7CgBoOn6UM6OPCRsmSaiMITPJmrK7rMfBCBgOV7D6Ll7u3rtGlRNw4ULFyZzYSMiu0MLWE8J3lsiiqJUEJYkiOM4bQnOvue71oTlrvmiL75mXsu/b0ccx0goxZ///OeWZ4EoClRFgaJpUPn3qpqSB0WBqqriZ/z/CvuZqqri74FUaGuZJoIwTN87yxKRjomRgxFse3VNg6ppiNgz1G1BieMYAUtpJW01+9wCWdf1kXbWRFFAGDk8bpLASxy3trdFiePczAyAlAxkowWT0kUI10VmAFUsFNJnPQhSIXIUwbKsgecE/vwoqpo6QW5twWTPmERnSHIwJVDfb9ntdatOCHw/NfRhv/N9H6qqwmcLWT6XQy6Xa9EsTFMMKAgCm0AfRWUCh+f7qTgTrDPdiNet6bpo5RxFEYIwRBCGwuSGGypxApLNLTuOgzt37uClF18cvZxskPeMUqGb8DwPvufBDwLxve04qfiS/R5ozany0DMh5HAxVlVorMyMIl2gdE2DbhhQCGlZpJXMIn7kZ4qCpm3jyy+/xKuvvYZcLneUVDAxWsJICicTSRyLNsjtpITnqHmDHrGgsgWcgBnZWBZMy4LB9COWZYmfWaYJ07JgmubUyjR57wI7U7nAF8Moo3FpWRgJgaZpabpL08YPtTNL8eOsWsiClzju7e7CbjahMc8Ffs3t5YyTAAEEmeXvga7rQpflui7CMESORRH6Ho8RBNM0sbO9jdmFBbiui9wxtnh/kiDJwRSQJAkSVqEg/AQ6pRPiWLRh1TUN280mbNfFwvy86LDWsiBNSZDUviPj420RUh4zIlbzDUph5nIT2zVyopDH4cQehGG6w2aTvO046SKq67h8+TIMXce5c+dGOiXviCl2+ex7XmXByYDHxFfZBZ8LMC3ThGGamKlWDxdGtkiabHHUemgJHNeF73kwTLNnSVov6Pv7AID5uTlUq9WRjtELQRjCbjbFTtHn94iTJd8XdfecOAFoIRL8Xgni0EYgeCRplAZdhq7DU1XxfKiKgiiKjhAC/txoEyAEWRCkzxI3MHsUZj7ZEsf9Wq2lgoELXadRUaFkCBF3iOQpwyiK0LBt5AaJIrDnRFUUYYzEP0ePap57nCHJwRRA29MJXR483ppYURQ4to3A96EQgmq1etQznU8Gx/QQi2jHI4LjOKmnvK6nXfLay0EnAE3ToGlaapLCdrfcOyGMItQbDazevYuLFy/C8zzx+k4RBN4+t1Gvo9FooF6vpw1mmk0ErEkOR3bBLxaLmJ+fb90Rs+81TRMLAV8YRsEwrZofKVg+vlQsAuXykV9Tlt8GUmLtBwE8nl5pIxN2s4nd3V347D3lx6dxDN0wUC6XUWKNvkqlEkrlMvLZCB1DQiniKEIUx4hZ/X2SJCgUi6nmgolheZRgWp+ZLCEYpsJo0iiWSvB8H2EcY69WEwLFbhbKkwABgAxB4ClDrkVIWBQhSZLe/iOZ98YwDOzt7mJ+cRGO4xx7Z9UnAZIcTBhJkhy2ZO5RfuX7PkK+86AUPkstzFSracOQLKZMDI5MMZS2tEallKbWz8dEFjzfFxN6IZ8X0ZVpnl1VVeRYCofXoN+6eROapmFlZUXoFAIW6nddF67jwLFt1JvNNNTPmiJx17f5hQWcPXcOVi4ndq28+dVQGLOMryX0+yQjoxcgqpre1wFCwnEct6Rn6ozA7e3t4e7duy3kqVgqoVgsopDPw2LPQy6fh8qIgKJpoFEEhRAUCgVB4KYNRVFayIGCyYr/BgEnZ9VqNZ2/4ljoD4TmgKdSJ3xPeDQzGzFRVRWFfF5UNHC/k37NqHjqzdB17GxtTVXo/SRDkoMJg7JFTaj+OzxwCUsnRKzWWdF10CSBYVmdJ7vj9hVoOx8hBJTtDKYNbvSUICUGLeHyY7oPCkmtmdfW1jA7M4PVO3fSBYW1yk2HwiydczksLiygWCyiUq2iXC4fyYFGgzaU6YJx77ogB49xGePA1ziC5kZVVRQKBRQKBVRnZnDixAnxuziO0Ww0cFCvo16vw2YdQLe3toQWBey9LpZKKObzMEwTSZIc74JCyJGqk+NML1BKRe5fURTMzMxgZ3sbruvCZukqEeWiFOo0Kqra9FD8Z5wM8E1FkiSpB0w3Msz+3tB11A8OEMcxbNtGsVic+JifZEhyMGHQTC1yx4mD+Rb4vo84DJHL56EbBjRdhxeGj8aYY8BGJ8cRyrRtO807q+oRJfE0puFms4n9/X00Gw00mk2RDuBiud3dXZTKZZTLZZw4cQLFUgmFQgGGYSBJEkRR1DJZ8ZJJRVGgZ1IQhIdejxmUUrGoPNYGSAOUy4py25EOn96HKIoQRhHiKBKiSQAos/cYSMmEqmmgzCfDtm2RKtpYX4fjecK63MrlUCoWD9MUpRJmWPvjSaJTKSNRFNAxiWc/8LLWbDUTAFiWhWKphEazidrBQWtjuGnOEV2qTUzThKKqcB0HMdKUbT6f75xK41HRJIGqKGg2Gmmfhwl3unzSIcnBBJEkSfph7aHwd10XzWYTURShwJoq5SwLtVoNoLRVVHPMOoP0lN13ZrziYlpphoCVioFSFPP5ltK9SSBJEuzv72Nvdxe7u7vY3duDz7QMpmWhVCxibm4Ozz77LK5fv47qzAx+9c47fXeHcRwjiiKx8CRMuc9TEQnzqSAk7azXUt7Hvu8GUfEy4r3mrZofFTkZGmP6HXB9Bq+KiFkVRMwWOCRJSzieAFAZiePvTfY+FYpFLCwstJzDbjaxW6vBdRyEQYBGo4HtnR3cuXNHaEMqlQrm5+cxOzuLubm5zuZdQ0DpUAlAMN3qBW5q1A3lcjklw2GI/VotdQ6d8uahXX8gfs7EoEqhAMd1kbBoQL6b9TIgCHyz0UCxVEKz2RQEUUKSg4mCZhXUHRCGIfb39xGFoegyaJqmKO0CcDRycBzEgLFxOuD5ppFm4E6QFOjehW7Ie+EHwSER2N3F/v6+aGs9OzODs2fPYnZ2FjOzszAzpGx9YwOu6+LtX/5yoEWZLyrcVjmO47QhFNudcqtcSqkgEa2X1bmsUFXVIzu2YcEn96cmn8qf1YxJEy+j5KWV3Z5KAgCqCoOTNEYIhr03uVwOpShCIZ9HqVhscZ1sNpvY2dnB3t4eNjY2cPPmTYCkrcfn5uYwNzeH2dlZVCqVocgayWgOslAIQTKF9EI2jdANiqJgplrF1vY2fCbkzR2DbwABS312uGauQ3BYq2vbtjs3Wsr8fZB5baFQeDJdRKcASQ4mCMr90rvoDHa2txGFIXRdRzUTegzDMG2u0rZrObaIAScGQ2DSaQbHdYUv+xFBJj9nn2M0Gg3s7u5ib28POzs7aDabAICcZWF2fh4vnzyJubm5dGLucW9v3bqFmWoVcyM2ZxFkgRG9OLNwZY2GojgW7pdxFOFIgJhFargqnqvC+f8J+77XIiPEdo/7hMefI5azptw3gX+f+RqGYU8xHr8n7eZMfIEddyFVVBWmrsNjAtVsnXyxWESxWMSZM2cAAEEQCHK6u7eHhw8fgiYJVE0TUYW5uTnMzsxA75FS7BUxISTtuzCJ2aJbGqEbDNNEuVzGQb0Ou9kUDdGmDQVAjM5zAu/P4Lgu4iiC4ziilFWAzdMKu6++68LK59FsNlGpVKY+/icBkhxMCCKl0EEoFEURdnd3ETAHxPnFxZauayFzrxPs9rjTCXS0TostaYYxJoQwDOEztX+xUDjyge802cRxjP1aLSUDOzvY3dtLUxIAKtUqFhYX8cLzz2Nufr4r2eiERrOJjY0N/OIXv5jobpsv7O0REcqMgqIOhkLgJkL9Dt5GHvj3hBD4nocojqExMsIFdjx/P602xMBhOij7fCRtiz/XAni+D9d1oaqqEH32Oz43ctLaTJ96WTpPKgRvMCdH3m+h2300DAMrKytYWVkBkElt7e1hZ3cXt2/dwpWrVwFKUa1UMMvIAk9F8OP2IwfKhNILo5Qilsvl9P3zPDQaDZSOoyyQL+x8vO1eLSxa07WSgb9f7O98z4OVz4uyxpENz54iyDswIVDf77jAhr6Pg3odnutC1TTMz8+3EAMgtY2lWXIAPDY6g0HQIhIbUotAKUXTcUCRiora7w1HEARo1Os4ODgQKQIebZmdncW5c+cwNz+f7sDG+GDfvHULpmni1KlTIx9jGBBC0vB2B9IQRxFCpmERuXT2le/uKCMRPAzcHn1wXFekN9rTGZlBtCxuWUdPTiYc1lvBYc9xCwFgiz//fhSaGDOiIIhLluQoChRAfA9gsn0dRgDXKHDb85719RkoiiIWf97Eq8k8Gfb29rC9vY3bt28DJK3ln5+fx9zcHBzHae3R0IZeofZ+yEYLRsVMtYp6vY6QmRLNHYOwOnvNlD137U3ueOWQ53mikqGQ0TPx561Zr2N+aQlhGKLRaGCG2UP/nCHJwYTASxizD6fneXBtG67rQtM0VKrVju1+wyhCgrS0Ztr2yB0xAf2AKDNS1ZQgDAjH8xDHMRRCjoi29ms1rK+v4969e6jV6yCUIp/PY35uDqefeSbN3ZbLE1PhB1GE1Tt3cPHixUcehuekoV/5IScNWfKQ3ZUrrHJC1bTDvHX7e90Wau/0JPByzE6aiZ7XgcxnIpMmEREOtsjrYQiN9R8o9Skp6yeUOy6YhoGImWcNSg46gacinn32WQApEd7b2xPpiB9//DHVVlCKTz/7DCdPnMDy8nKLPmkU7wOKw+dn3AiSrusolUqo1WpoNJsosYqeaUMhBDE9bPzU6epNZnfNHVebto1CWzQxYhUsQCoaLxaLU+1l8yRAkoMJIIljkVLg8BwHLnNv03Qd+XwexS6K5SgMU5+D4y5jnEJuUKiJB0g1RFEEz3UBSpFnC8LW9jbW1tawvrYG23Vh6DpmZmdx8tQprKysoDpFNfHd1VUkSYKzI1olTxqDvDu8AqIbuK6hVCq1hEqzuXea3e1nf5b5ntsV5ywLBZ76yaQnwP/Pw+CZ8Q0CmiQIj6GiYpJPvG4YUFnaJmRaoknAMAwsLy9jeXkZURThiy++wObmJhQWwfnyq6+gEIL5+XmsrKzgxIkTIgUxiPcBj/BwIjGp1FKeheUpgL1aDYvz88dSITNISkVnzZtsx0ESx2iwSgY+PkVR0KjVML+8DNd10Wg0MDui5uhpgSQHEwANgpaJkXfMi6IIiqbB0PXU077Dh5CL1YCUfR971ACYDknoo0fg6YQwilA/OMDtW7ewvrGBMAyRz+WwzCa9ubk50RugU9RlUkgoxc1bt3Dq1KmJK65HNqsZ833JLvDtC8CwegNOXPUhu2MOjUGqZcY5PCZHEAghMEwTMev9MOmdpud5+OSTT2DbNk6ePIn9Wg0fffQRXNfF+vo61tfW8P0PP+D7779HpVLBiRMnsLKykkZeutzHaUZdCIBKqYSmbSOOYxw0Gpg5DnEfT0cR0pMk8L4MtuOAJglsx0k1Tiw1sb+/j9Nnz4peJ0EQPBrfmccEkhxMAFnjo4ipY7nwymC9x7sJXHilgkLI8YpgjkFRDHTWI7iui7v37uHhgwfYY/4O1WoVFy5cwMrKCiqVypEc+LTHvLm5CbvZxFtvvTXxY4+q3qYYbyFMMsTsifA4GAKjLvKTfoIMw4DLogdxHE8sHXVwcIBPPvkEiqLgww8/xM1bt4SWJpfL4dy5czh37hzCMMTm5ibW1tZw/cYNXL5yBTnLSkWQJ05gfm5OfJYSOn6lRi8QpJUc5XIZ9UYDzWYTuWNoiyxSmgOQHl7J0GQ9MhzXFT01EuaWmcvl4DgOGo0G5ubmpjr2xxmSHIyJhIkJCSFIokh0lovjGIauQ1PVnjtRXpalPYqUQjYXPOVJo1GvY21tDQ/W1rC3t4cEQLVcxksvvojTp0/3bHwiPvxTG2EqRKzOzIxcvtgLo0QOJtEqW0QNWH7/cQa/O4OO8lF1JmyHoihdyxpHxdbWFj7//HMUi0W8++67sCwLURR17Cap6zpOnTqFU6dOIUkS7GxvY31jAw8ePMDNW7egqWqaolhZweLS0lhi3UFhWVbapMp1sV+rYYk1Z5omeJprkGeCuyE26vU0ten7aRUDgN3tbVx47jk4jpO62E6Q8D1pkORgTPCoQZIkaTiNPZw8CpArFHqGSiNGDnLHRQ6OqUySJgn29vaEfqBp21DZRHXy5EkUy2UU8nmUS6X+B+PkYEqLQb3RwObGxlSiBqNiElfKjbWetqgBgKkT2mFgmKboEDlu+9/V1VV89913WFpexi/fflssTGEQ9F3YFUXB4tISFpeW8OrLL2NndxcP19exvr6O1Xv3oCoKFhcWsMLSDxPf0Weuu1ypwGct0HlzpmmDEAKSJEd6w3SCqijI5XJwXRd+EKSNmAwD9VoNlFIYhoEgCIQ48ecISQ7GRMIUro5tI06StOEIIYiZwFDrwzp598Gp5nH7YUKTLE0SbGxuYn1tDWvr6wh8H6ZpYmVlBa+89hoWFxeRxDHq9ToSSlHI54U4qqcTG9cvTClXeuvWLZiWhZPTKl8c4f6SEUsCs0iepJTCKCV4fZ6bTq+fBngbbxpFQ5U1tuPHH3/EjRs3cO7cObz22mstv4uiaLCoBHtuEgAzs7OozMzgxRdfhGPbWF9fx9raGr799lt8++23mJ2ZwcrKCk6fPo38BLwJsnbnqqqiWqlgZ3c37V5qmmNbSA80BlUdaJ7gvjLc5tz1vNSHRFWxt7uLQrEoOrBKciAxNJIwBFgvcb7Imyxfxbv29QSlaRlju8fBtNBlchx3ynQdB6urq1hdXYXruiiVSnj22Wdx4sQJzM7MtOwoms1mapGc0WFkzXI6TfZcMDSNqT2IIqyuruLipUs9exyMhRF2uROJHDwJDZcYhnboRJouGea+TvMujFPWmCQJvvrqKzx8+BCvvvoqzp8/f+Q1YRii1KVSp2PVCfeoYL/LFwo4f+ECzl+4gMD3sbmxgYfr67h69Sp+unwZy0tLOHP2LJZXVsZ/Xtg5LdavpNFsolavp5ulKac1CJildL/ngv2e29dHUSQEirvb25ibn8fBwQGCIEhTOj9DU6Sf3xVPEDQIEPg+fM8DRVqv7HkeAFZb2+dDRoG0tpbSqSrx05NNdmmlSYLNrS3cuXMHG+vrUBQFzzzzDM6cPYtqtdrxb8IgECQqq8NoJwTtJEE4mk1h53eXNcs5d/bsxI89DsZptsQhyMGTEDlgGOaKhxUlTlOjMGpZYxAE+Oyzz1Cr1fCrX/1KOCm2o9MC1V6SeASEQGU+AFkYponTzz6L088+iziKcP/BA9y5cwefffoprHweZ8+cwZkzZ4bXT3R4XsulUupSyNILC1MW+JEBiEH7b3OWlZpMMYEidnfhui5M04TPnDtLg6Q/nzJIcjAiaBQhdF24rgsKiDrjKIpACEnzeX0WtCAIQJFO3k+K6MXzPBElsG0b1UoFr732Gk6fPt1RMJWFw0iUZVkdzX3arWKF+15GbT1JJJTi5u3bOH369HQV1UMu8pMgBsChevtxFyO2YIixDl2xMEWdwihljc1mE59++imiKMJvf/vbrqQaSCMHQnPAUweDuJEqCkgcd71PqqbhDCMDtVoNq7dv4/r167hy9SpWlpdx9uxZLC4tDRVNyJ6LsOZM29vb8H0fzWZzqmH6rEtiNzLY/nMe5bUZQfB8Hw9WV/HMuXOSHEgMj9BxYNs2EkphGQZM00Sj0QCQRg16Wruyh5OnFKYeshp3QqQUW5ubuHPnDtZYlODUqVP45dtvpzajA0wcfhAgCkNhadoPWcczJWOROklsbG6i2Wzi7SkLEckjSCkAT2bkYBiQIRf7aVOkYcoad3d38dlnn8E0TXzwwQd98/FhGEJR1daukwMu2IqiiNbdvVCtVvH6m2/i5VdewYP793FndRUff/wxCoWCIBA9SXSXCJ9hGCiXSjhoNNL0gmXBmHZ6oYtOSViOt4E3fLNtG1EUYWNjA8snT4oN3yRNrp4USHIwAuIgQLNWQ8wW9lw+jzAMW6MGvcA+1CHTLBjT3LUOMnl2sWz2PQ93797F6p07aNo2SuUyXn31VZw+fbpnB7lOxxcRFuZ1PihEQyFC0gZEE9z93bp1CzMzM1N3QntUmvonSZA4bCnjSOeYcnVDtqzRD4KuDb8ePHiAr7/+GrOzs/jVr37Vd9HhLcA11sJ7aAzonMih6TrOnDuHM2fPora/j9t37uDq1au4cuUKTqys4OzZs1hYXDxqrAV0/WwWi0W4rAlSbX8f83NzU3kuufEXIQSEUiRofaZ6PV+qqiKXz8N1HPhBgNs3b+LM+fOpDb7rSnIg0RuUUjR2dxFFUeq4xdzIhNbANFujBj0Ws4j1VDiO2uOeyH7IKcX2zg5Wb9/Gg7U1EACnTp3CL95++4i4cFB4QYA4iqAoykjhe9EEiNX+07bxjgJevvj222+P9PfDYNiw/iQ8DnhXR+DJIAejvo9D+R0oCtCjedEkwMsafV473/beX79+HT/99BOeeeYZvPnmm12fDd73gFKKgOl0+qXteoH3IBgKhKA6O4s3Z2fx6quv4t69e7izuop//fhjFAsFnD1zBs8++yxM/pnu8ZwTRcFstYrNnZ20uZFtozKFUD33O+DjUdqiB/1Sk7qmIbEs+L6P3Z0dzC0uQtd1uK6L8hSt2x9HSHIwJJx6HZHvgxCCQrEIQkhr1GAIYSHPq09NbzDAZMBfEfg+7t67h9Xbt9PGKaUSXn75ZTz7zDPDRQk6jMFzXVBKkR+xBjxbIpX9PzA6Ubh18yYM08SJkyeHHs+wGGbHKuymxxUjPkEGSFkMO9ahdAfH4IugaRo0XQcNw5ayRkopvvvuO6yuruKFF17A888/f2RsvMNgkiGHBKkXCoDxdq5DRg/aoek6zp0/j3PnzmFvbw+3b9/GT5cv46fLl3HyxAmcPXdObJS63WdN11Epl9PmTMyJcBrphewzITYTmYqOfjANA0mSIAxD3F9dxbmLFxGzSpSfk52yJAdDIEkSePW6ECDyRd1zXQAdogYDHG/cdsldMeAksLe3hxs3buDBw4eglOLUyZN4/c03MT83N5FxeSwHq6rqyBUZRFFE/rDdUrgjUeizwPphiNW7d3HpueemV744Bn6WYsRjWLiP606YhoEoikRZI2+etLW1hV/84hd45plnADDxHAt9U0qFNqV9nLzCZ1xt0kjRg3YQgtm5OczOzeG1117DvXv3cPv2bdz/139FsVDAiRMn8Mwzz6BbfLBYKKRN6YIA9Xod81NI6bVfYUtp44DXz983x7axv7+PmZkZuK4ryYFEZzRrNSBJhJsWkH5wozjurzXosVg9igl8v1bDlcuXsbaxgZxl4cUXXsCzZ85M9OGnSQLX8wBKkWP+5aMgW8WQsPvf8XWHf9CTKNxdXUVCKc6eOTPSeIbFUEY9Ezpn/ISJEYcV2QkMoUE5Lu2HrutQFQVRFKFer+PLL7+E4zh4//33MT8/L1IGWe+OXlfNW2SPk1ZITzJe9KAdumGk3gnnz2NnZwc3b93CjZs3cWd1Fc9fuoSz5851jIqWKxV429twXTd1lZxwGXenaNKgokxxDBYFdj0Pm2trqFQq8DwP5XL5ySHcY0KSgwERxzEC2waQNj7hk1hL1KDbQ9Mtrzgtk5oeH/56o4ErV67gwYMHKBaL+OXbb2N5eXmoiMegcD0PSZJA07SxSQdv4DToxNaNKCRJglu3b+P0qVNTbwgzEiblVsn1Bk/IRCbe1xHSCo8bCCEwDAO1gwN8/5e/gCgKPvjwQxQLhZE6IvLIwSS0SYqipN4qk3wuCMH8wgKKxSIOzp7Fvbt38cNPP+HGjRt4/vnncebMmZb5xTCMtDLAdVFvNCZODroRxmHvva7rqQV0EGB/fx9zc3MIgmD6njSPCSQ5GBCNgwMgSaCpqmDwA0cNgPSBHaQueUqwHQdXrlzBvbt3YeVyePPNN/HMM89AIQTRFERaSZKk5lBjRg04eGnjSFbEhwfB9vY2ms0m3nr77Yn5CUwS7WmTUfGk9lUY5dqH9juYMiil2N/bwzdffw0zl8N7777btXJhEERRBIrx0wociqJM3DMESHUupmnilVdewQsvvIArly/j2+++w/UbN/DCCy/g9OnT4vNWLpXguC6CIBCdESeGLtc2kHNiGyzDgOM4ONjfR7VaFeZIPwdIcjAAoiiCZ9vQkUYN+AQ2UNQgiza7V9E1b5ILVFsY3XVdXL16Faurq9BNE6+89hrOnDkDrb2iYsJwPU94OEwiVcF3wONOaQ8ePEC5VOrYCGYq78cQmESVQvZYAKYSEZoGxHhH+NtH3qExIyaklOLOnTv4y1/+goWFBTz33HNjR2+iKALB5ITLZEobFVFCqCgoFAp46+238dzzz+Py5cv46quvcO3aNbzwwgs4deoUNF0X1so8ejBNIitSCkOWQmu6DlXT4DJfG13XH8tNxTQgycEAqNfrUGja/0DTNCSUiqhB3/K8bL677aEU+cZJfygIgRcEuH71Km7dvg1VVfHCSy/h/LlzHRtBTXrnFScJfF6hMKlmK31czwZBxKxiL1261OUUrR947tA4dtRjwNdN+j0AnrzIwUgL1hSdDzuBdiD4/Pw//PADbt68iQsXLuC5556D7boIwnCsFFbI2zVPakFi3iGTjh7w6qvsKEulEt555x3U9vfx05Ur+PKLL3Dt+nW89MILmF9chOM4COMYjuNMzTlRVABhhOgBpbBME7bj4ODgALlcDj7rvvm0Q5KDPgiCAJ5tw2Lhcf5YDRw1yP6uC0mYGAdlNdE3btzAjZs3AQCXLl3CxYsXe+crJzy5uo6T+jcYxsSMQ/g9HmdCW19fRxxFOH369GDnTE/c8rNp7hom0YmRQ2gOnhByMK4J0jTfl45koA1xHOPrr79ubZ7EzL8i1thn1LRAFEUT90IZ1l1yEFDmrdHpmavOzODX772H3d1d/HT5Mj759FPMzs7izNmz0DQN9WYT+Xx+Ms9r9tooRZwkrc/VMCJWdj26psFj0QPXdSU5kMhEDQwDKmPbYRCIqEHP/FMfkdUku+ZFcYwbN27g5vXriOIYFy5cwMWLF2Eec+lNFMcIfB+gdKJ5RDHxj9G2+d6DB5iZm0NhjPa0wrcdLOIywVTEJInB1MSu08IY95EAg3VoHGRByBA0HjnqhyAI8Omnn+Lg4KC1eRIh0A0DCWs8NCo5CMf4265gBkGTjB4kfeY7AJibm8Nv338fm9vbuHL5Mr75+mtUq1UsnziBQj6PygSMhrKR0KxnBMcw182fR9M0UW80YBeLqNfrqFarT31qQZKDHnBdF4HnwaQUFlvoKNDqhjho1KD95zzUNabPQRzHqb3plSuIoghnzp7F85cuDcVsJ5lW4FEDwzQnOqEpGG+cnu9jY20Nr77++kTGI0xqulWitC12g+TFJ7X7TTL51SclcjDuLnbYZ+PIezFi1KbZaOCTTz9FHEX47W9+g2qblsXQNPisGykd0QRsWi2DucXwRD77mfvZ9xoJwdLiIpYWFrC+sYEff/wR165exdr6Ol5/5ZWx7cxFC2t0eJ8xwhzCPkeWaWJ/dxf5fB6u604uZfqYQpKDLqCUotFoQI0iWLkcVFZKN6moQRajTBhJkmD17l1cvXIFrufhmWeewYsvvDDabn1CIcaIlf1MOmoAIBVzYvS0woOHD0EJwaljcEQEjr6nBK1j79emehw8amHlKBjZ54D/GTpP+vy+Upo6D45SStgNu7u7+PTTT2FZFn7z0UcdWxxrmgZVURDGcZoeGCHNFgbBdHz9J+h7kD3GwNEqQrCysoKV5WX8dPUq7t29iz/9y7/g5MoKXnjxRZRHtFfmfiidGiwBjNgrStffHwG7NsMw0KzV0Gw0sL+/L8nBzxWO4yAKAhiECO/woaIGQO+JjtKRG+McHBzgqy+/xMHBAU6dOoXnX3wRpTFC5ZOCw5orWaY5cUtohdkAD/yBbsP9e/ewtLT06BzO2ER8BGznlmREU+Mu6jErY3wc3R+7YowFSojgsrvgjDhO7CQnSAwe3L+Pr7/5BnNzc/jVO+90NygiBLqmpT4pI3b2m6av/6S0ByJ8P6Kg9PzZs6iUy9jc3sba2hrW/umf8Nxzz+H5558fen6kbV87nhJosVXuNz6upcjnctje3kaxVMLy8vL0rO8fA0hy0AW2bUOLY+RzOfBHc+ioQS+MGC24du0arl69imKphA8/+ggzPXrAD4pJ7C9DFjoF0HEHNS74bmQYlzOOpm1jd3cXbx1Dk6Whwfwbsu9BtqyPtkcgsq56/VIaTxA5aL+m7Ccou8B3+jseNWjPL7ffnUmlzq5du4bLly/3bZ7EYRgGfN9HFIZIKB1aB2I7DhaXl8cZcncQApWMb6ssKhVGJLaWZcGyLCwuLuLkyZPY2drC1evXsb6+jrfeeguVSmXwsWAww6OBoyaZss+cZaHebKJeq6FWq2Fubm7gcT1pkOSgA6IoSqMGzNQDSB84dxhfgz6/55PEoOHk+sEBvvrqK9QODloZ9aOs787A8bw0amBZUKbApjlDH2X3d//+faiqihNcKPYI0Pc97pJyOPJX3AwK6NiXg/DQOaWCHBwR1mV2TNNIPbSMi31Puvycv17s7unRNrv9doDi+ymXNFJK8e233+Lu3budmyd1gaqqUFVVlEAPIxKO4xi+708+TZfFBLQHlFUEjPM8lUoleL6PwPdx9vx5nDhxAl9//TX+8Mc/4vnnnks9IwYgvIPOEQQ48qx1fmHm80gIcqaJRrMJ27YlOfi5wfd9KDQ18OGPRRhFk4saAKKJEFcNd0OSJLh+/TquXLmCUrGIDz/8EDNc9PSYEAM/CBCFYfrBmVKJj0IIwHOJGM474N69ezh58uSjDQFOQYzY8fXsHvEdIdC5JDP7/267p+zOirImYS0LOTov4jzEnzlBS7gfbd/TNmI06vLSS5Q47iclCkN8/sUX2N7exltvvTVwOSyHruuI4nhocsA3JFPNbzPB3ShROQ4eORinOsY0DORyObiOg3q9jsX5eXz04Ye4evUqrly9irW1tb5RBIrhNhDKoNqDDPHUNQ1NVtL4NOPJiTseI4IgAKG0JY8YBAGANETYt0JhiA+I0i0XjTRa8Kc//QmXf/oJly5exId/9VeHxICf61GD1XKLqMGUQtnZaMQworL9/X3UG42hJ/OJo8d7NU44tuPxhowKEPYMtv9r+R3rjNnyd+3H6fCzYTHO309LgOm6Lv75X/4F+/v7eP/990d6lvi8EbLUwqBw2AI0jVRdC3rMQ4OAp3TGfQ/KxWJ6n5itMlEUvPDii/jwgw+QJAn+8Mc/4urVqx3nAEppqreZ8rxoGAaiOIZt2yKV+jRCkoM2UErh+z5Ikohe47xKAQCMXoKijKhskPMIdFCuX716Fb//wx8QxzE+/OgjvPjSS0cFZhOKHBzZ6Q0BLwgQRxGUKUYNOPj1D0MO7t+/D8s0sbCwMK1hDYSe09WEI0DCP+NJ0Rw8xtUVtVoNf/rjH9PP4QcfYH5+fqTjKIoCTVWhKIqYSwaB6zigOAZygDE9MSYQOQDSCEuxUIBCCOqNhniWqzMz+Oiv/gqXLl7E5StX8Kc//QkHBweHpweOmh0NAILhtTmqqkJTFDQbDTiOM+QZnxw8IbPH8SGKIiRRBJUQqIwchGGYNj5RVfGzjhgiatBeqcDzpfV6XUQLLl68iI/aowUck04pjPKhphQes0meRHOlflCGJAcJpbh//z5OnTr1yBee40wAPWmljOP0VWjBhK93Y2MD//ov/4JcPo8PPvgAxRFL6zh49CAYghw4jjM1Hc8RjBE9SCb4zBWLRaise6STCd0rmShCHMf44x//iKvXrokS1XHO3Pfz2Zb6UnUdjm0/1eRAag7aIPQGui4etiAMQSmF1itXOIqZUSbPTCnF9Rs38ONPP6FYKKTagm5mII+J1iAIQ8RxDEVVj6VTmaIoqYhoQHKwtbUF1/Nw+plnpjuwMTHJpkFZTcATEzngGHNhmWR05vbt2/j++++xsrKCt956ayJ6FZ3NKVGSIE6SgUpNHdedekQui1F9DyZZIaOqatr+uV5Ho9FIK8Yyx+VRhKtXr+Knn37Cvfv3Uy3CqL4IGEB70Da/G7oOx3HgOM5UrbsfJSQ5aANPKeiZKoUoozfoiiEfjuxuqd5o4OuvvsL+/j4uXryIF55/vvdkNAVVdi8xVzcIz4d+OowJYdjIwYP791EqFidS7jlNTHJyyVrYPinkYGKRA/RY3Aa9v5Tihx9/FM2TXnn55YlFJAgh0HUdSRAgDAKoAyz6ruNMt1KhDaM+h7y50aRmgUKxCJs1ZWo0m0dslRVFwYsvvoil5WV89eWX+OMf/oDnX3gBly5eHCm10bdyoe2YhqahmSRo1OsIguCpbOP8ZMwexwRKKYIggAoIsxKeUlAJ6b5gj8K02e5hbW0Nv/+nf0IYBPjggw/wyssvp50Tux1zCF3DUBjyAxVFESIWUbGO6YOhMiOkQchBFEV48PAhTj1qISJDt7s76VbDfPfzRO5jJrAIj7NzjeMYn3/xBW7duoXXXnsNr7zyysRTFYZhgCgKggGFbI7jHLsT3yiLK6++mhQhVQhBqVQCoRSNZhNRFB15TZIkqFYq+Ku/+iucP38el3/6CX/605/QqNdHO+cQY1dVFYqqCnLwNEKSgwyCIACNYyiEiJAff+P1CTvrNW0bX3/zDe7eu4fFxUW8/5vfHHqKd8v9PSbpBCCNsPAeCseSDwVAGGkapORqfX0dURg++iqFPpiEwjuLUV03HyWO46nuR8J838e//uu/YmtzE7965x2cO3duKuPQNQ0K0oWt04LXDsd1kTtmcjCKX8QgTZeGRSGfh67rUAhBo9FoPR8rrQXSZ/2ll17Cbz/4AFEU4Z/+6Z+wuro69PmG8TvgAtNmoyEiqE8bnpwZ5Bjg+z6UJBFRgwQQu+Oe5GBYxzPbxldffQWClHRsbmzgH//xH/HPf/oTrl29itrBQeda/imG7oc5Mk0S0XnxuKIGQBq9ARnMQvnegweozs2h+BjYSvfCpBdGETnoRw4yk3+nMXDtQsK/xrHwOsj+3SDj589yp9LHljE/oue72Wjgn//5n+E6Dn7z299ieZpmWSTt1KgMED3wgwAxc2k9VgybkuLPxBRy75VyGQSpyVrIyFRWV5PF7MwMPvroIzxz5gy++fZbXL5yZejIXM/PTeZYnBy4rgvbtifas+NxgdQcZMDFiCKlEARpqIw5nHXEkELE/b09fPLpp1BVFa+8/DIUTcPy0hI2NjawubkprFmtXC7tXLa8jIWFhYn3cz+CIXYLfhAgYSZRU2kI0wU8QpGwRatb+NPzfaxvbODVV145trGNiq62wANMtLwfQ/Z1WZOovhNjH4IAHC6qhFfiEHLktYM8NZ2mTtr2Nfs9yfx/mOWGa2fa/6bbGHd2dvDZZ58hl8vhN7/5zbGUDBqahsD3+3ZqdJkS/rgjBwBbJFmPjn4Qu/g+hm6jgNsqu56Her2O2dnZnguxqqp44/XXUcjn8eNPP8Gxbbz55puTiaS1zfWapoEQgvrBAYIgGKoT7pMASQ4YkiRB6PswKW0pYQT6CBGHwMb6Oj7//HNUqlX86p13sLm1hSAIYBgGzp49i7NnzyKOY+zu7mJzYwMbm5u4e/cuQAhmZmawsrKC5eXlNBc3kRGNAErhed6xag04CNvR8NKlbumMBw8fAklybB0YBwYhLT7tnfwtOn3f9XAdjiFKyp6gtEInUtqJMHRCOxkQhlID2AE/uH8fX339NRYWFvDOL3/ZvXnShKFpWupIGEU9OzUemwFSFwxauTBpE692cFtlz/Pgue5A8/HFS5dg5XL45uuv4Xke3nnnnYE2MgQAVZT0c9qONrt6VVGgKgoODg7g+74kB08r4jhOd2GqCpUQkVIAehgfDRE1uHP7Nr779lusnDyJt956SxiigBDEUSQiE6qqYnFxEYuLi3gFaQpiY3MTa2truPzTT/jxxx+Rz+WwtLSEpeVlLC4sTKXXezeI8kVFgfEIFLoK29EkSQJ0IQf3793D0vLyY6MgFosXn3AyYdj2ZkEcI6vGuQHSE1RaNY4vQ6foQ/v/Ka+Dz0Q9rl65giuXL+PZM2fwxhtvHG8pGqtaiJOkZ6dG13FACHlkz7FCBmvINIm+Cr1gGgYsw4DNQvh9yQEjh6dPn4ZlWfj8s8/wL//6r/j1u+/CGoBoKegc6Woh9mCiREWB3WiITqhPEyQ5yEDJLPY8pZBtmjISKMXly5dx9epVnDt/Hq+++qqYuLn6PopjdHvcC4UCzp89i3NnzyKOImzv7GBjcxMbGxu4s7oKRVEwPz+PZUYWSsXiaOMcEL7vA0iFiI+itpf08Tp41B0YKTqnBChwJHUzbMh8EEzSjOa4IFIJkxpz233mFtCcJHz73Xe4t7qKF158Ec8/95zYEWY9R6YNXdf7dmoUlQqP+XsZxbGYKycN/nkqFIuwXReu76MURb03RJn3b2FhAb/97W/xyaef4k9/+hPee/99lAfxQ+gWPWh5SRqde1oFiZIcdIGoUhgjakCTJK1IuHsXr77yCi5cuNAyAfKweD/WyR91VdOwvLyM5aUl0FdeQdO20/TDxgZ+/OknfP/DDygUi1haWsLy0hLm5+fTssgBoIAtLD2uKY7jlDRRitwj2s30s1C+f/8+VEXByrRa3DJ0IwFA90VuFC+JYfHEWSdjsj4H/DhHIgk07Yj42eefY3d3F2+//fZhmSs7fwspYO8tJZlGUAOkKgaFpml9OzW6nvdI9AYCPI3XZ5Hkvx/E1GkY0MyxDcOAoevwowiu5w21CSpXKvjggw/wyccf45//9Ce8++67fW2wO0YP2j7X/DMWxzEcxzmsNntKIMlBBkqSAIqCBEDMlLFdQ1h9iEHEJqKd7W388pe/xOlTp468RmVphUFKmtrPTQCUikWULlzAhQsXEEURtra3sbmxgfWHD3H71i0oioKFxUVBKAp9JhqiKD13TZ7vg+J4yxfbofTwOqBIOzCeOHlyIqkWEbIekgR0RXvkYAo71CfSHXHCZXCdjuI4Dj755BO4nof3f/3r/j0SeAqiEyEgbZ0jRyQN/To1Oo6DwiOutiFA341QwlKyk3zmssSAI5/PIzg4gO04PclBp/cil8vhtx98gM8++wx//vOf8fZbb+Fkhzm5/Tjt73P2PnANFAA0R/RWeJwhyQEDpTRNK6AtpaAonT/4PT4wnuvik08+gW3beP/997tORKqmpXm9HpGDrgsIX2jYV03TcGJlBSdWVkAB1Ot1bGxuYnNjA9//5S/4C6UoFYtYWl7G8soK5ubmREvfQcDLFx+FEDGLXi6JtVoNjUYjNa8ZEnwh6PSeTitEP/EyxmyJ12Meis5iKmmFDPb39vDnjz+Gpmn4aAI9EnqRAcLC0YO8t4ZhwGNVC51SC47jjNzoaWLIiIA7gvmO8KquccHLYzuVK+fzedQbDcRJAs/zhhYA6rqO93/9a3z19df4/Msv8Yrr4uLFi11fr7QJMjulAQU5aDaHGsuTAEkOODIPY9DPLrkHMWjU6/j4448BAB98+GHP/BbvFRB1IwfcDbHbpNlGEMSPkdYHV8plPHfxIoIowtbmJjY2N3H/wQPcvHkTmqZhcWEBS8vLWFpeRp6VVHUjI34QpH7wqnqs5Yvt4CLOTuTg3r17ME0Ti4uLAx0raY8ITHlBzQriAEzc1Co7gT+RgsQJHpM/y+vr6/jiiy9QLBbx7rvvTl3cRzOi02zFSKfPFa+VT5IEYZsFb0LTpmaPNK3A0MsUKfs5HDutwEhXtzlIURTkcjnYtg2bNaQaFkRR8PZbbyGfy+GHH36A47p49ZVXOhPTDvPqkTExQtSQ5OApBnvIKaUizM8XwU5hxU7Y2dnBp598glw+j1+/917fEiRNVVNxXRdyIERsvZAti+vyoTI0DadOnsSpkydBARwcHGCDaRW++/ZbUKR5uaXFRSwsLmJudvZIKZzHTY8ecbmOysRjCZtIsiVsa2trOHHiRMcPeiff9Ect2pt4w5aMGPFRX9swmFYXyVs3b+Iv33+PEydO4M0335yKYK4r2ok2J/Ftn1Nd1xFGEcIoaiEHnueBAsdvgNQJLI3SaXbhUc9J6A0GqYwoFgpwHAee7yPqJEwcxK+FELz08svI5/P4y/ffw3PdwZprdXg+efTVse2+Y3/SIMkBA2HkIIwi6Ews1PWB77CbX3v4EF98+SXm5+YGrqlVVTUtZZyUu9YAHwwCoFqpoFqp4PnnnoMfhthi6Ye7d+/i6tWr0HUdi0tLabnk0hJUVUUcRSCK8sjLAwmLHIApz/l7VK/X0bBtvMqEiO134XFbKqfRyY3v4p4kYtCCCY2bJgm+//573LhxAxcvXsTLL7/86B3s+LVlylihKGlqwfOOpBa4AdJx91XoBtKlayGfu8ZJKVCkJGOQ51bX9VSYGIawHedIQ6ZhRL9nz52DZVn48ssv8ec//xnvvfdey7xNANA+cyonFL7vC8+apwWSHHCwhzwKQ+ia1jul0Ia9vT188eWXOLGygl+89dbALFpRVRBChC1ov/NMA6au4/SpUzh96hQogB1uwLSxgW++/hoAUCqXUalUsLKygmql8kgXH2GElCSpERLThKxvbEAhBPPz88fi1T8SBnAkHAdPYqUCMNnIQRRF+OrLL7G2tobXX3sN586fP5bSxKHBFh3+PCuKgiiKYBoGKKWwHQcUj84AqR0EnRfeZIzIQVZfMMx7XygU4NdqomphnOd95cQJ/OY3v8HHH3+ML7/6Cr/61a9aUnIKIT3L2IVzKICDWg0LA6Y0nwRIcsCRJEgoFVUKXXsptD3Enuvis08/xczMzFDEAIAIiVFK0w9INkc55PBbxjfiZEgAzMzOYmZmBs+/8AJ838f6+jru3b+PB/fv4+7duzANIxU1Li9jcXHxWCMJWYtWilSrwd0sNzc2sLCwIP7/WCL77EyzUuFJixxMSETpeR4+/fRTNOp1vPvuu4cT9WN+PzRNQxjHiKJIGK41m02YhnE4RzzKAQJpaqGDJilJkrRSYcjIAcWh/fewsCwLKhNye543dnRlZnYWv3z7bXzy2We4cvkyXnrppZZxtg68NWpMkRKjhFJJDp5G8AecCwM1TRtIyR/HMT779FMoioJ33nlnaPasKoqYyKM4hs7/ftyFY4xFKDsBcHFfqVSCqqqIwjDVKmxu4v79+yCEYKZaTUslV1ZQmUJUgY+FAsKhTFVVEObUCKQ219vb2yNVKRwnuCBxkHDlKHgirZMxGUEiFwInlOK3H3yAarWaNosC+prZPGromgbf91siiAe1Gsrlckv1SVZf8yhACGl1CeSVCkOUMfKxD5pG6ARFUZDP59FoNuG47kRSL4vLy3jppZfw448/olIuCw+MI5/VDmPm0QX7KRMlSnIAiAYjvJdCT+MjQOzOv/3mG9TqdXz44Ycjl/dxx78ojrsLIMdBe66z38uz56cUPitfzOVyMCoVzM3P46WXX4bruthkzaKu37iBy1euwLKsVKewuIjFpaWR82+CELSPmV2L2mYetb21hZhSLE3Z+GgSEL7/tLNt8jh4Eq2TgUwp44h/v721hc8+/xz5XA7vvffeocKf3+spELFJgjfwoXGMOI6hqioO6nUsZ5/nbPlkphLiWK+qraxRaKVYj4F+yHoXjLuJyOfzaNo2/DBEEIaHFvdjvM8XL1zAQa2Gr7/5BsVSCdVqVYy1Z2qKXYv9lIkSJTkAgCRBnCSIowiKohxNKWQfDPYg3LhxA/fu3cMvf/lLVCuVkU+tcVEi3zX0K1+cMrJn9YMgFf2p6pGFPpfL4czZszhz9iySOMbu3l7aWZIJGwkhmJubE26N5QGiCt3qm9uhsioPTg42NjZQKhRQnLJ19KTQqV56EngSrZOB8TQH91ZX8c2332JhYQG/bBMCc6I7yDP1SEEINE1DnCQIowiUUjRtG+U2sV329bRtTjquqEK2rJGbH/VT+Y+TQugGXddhmSZcz4PtODDYHDzWGQjBG2+8gUaziU8//RQfffQRLMvqK3LkegyXNcp6WiDJAQD6/7P3Z0FyZGl6KPYd32PLfUUCmVgSO1BVqCpUA9W19XB0yWsSea+M4pNMD6TpSjIZH4ZmpK5xnvk0pB5kY8aHS/GJLzTyDin2lWjSzHR3dU83gFpQG/YtsSSW3LfYfD1HD+ccT4/IWDwiPCITQH5mMACZEe4eHsfP+c7/f//3BwFAKRRCtlW5kQEf7jzE5LW4uIgbN27g5KlTONjEZasZohacIboxubeRapCOiGaT8kVFVTE6OorR0VGcP38exWIRi8JX4e7du7h16xZSolmU1CpomrbtQNfipCGNqSiloEGAhYUFHNhrHRjroYu72HBX9hqlFaLffSvkgDGGu3fv4s6dOzg8M4ML770HUr1ISdEf9kDOvgl0XYfrefA9DyVRqdAfd9MRjSoQUr9xUBKIlDUGQkhYL6UgBYe0gxRCI6QzGd6p0bZBc7lEhLiqpuHSpUv48je/wVfXruGTTz8Nq8pqecoEInVFhEg67IfxBmCfHAA8ciAZsFAN7+hJIAZEoVDA1199hcnJSZw5fbrjU6uaBiLOCfRoEmuwQMlH2BcTFSGkprVrI2QyGRw9ehRHjx4FDQLeLEqkIB4/fgwimkWNC2vnXDbbEiEiihL60q+vr6NULmNifLyla9wtEKD9Jl7NIAWJrxE5qBWVa/qWIMD1777Ds/l5nD1zBidOnqxtby1fn8BldhsyteD5PjY3NgDGkGvHyZExTgxEqWQ37oHs1hhWKtSIHDDhRQJ0L5KVsiyomgbP91Eql5HNZBL5nKlUCpcuXcLv/uZv8MMPP+D999/frlqIVhxFPHGk/0ohn98nB28KKKWAyPVpug4Grj2o0BCIAeF5Hq5cvQrLsvDhhx8mMuhV8QAHQhTZMzTawRISRg0sw+hosSGKgrHxcYyOjeE8pSiUSlyrsLCAW7dv4+aNG0hnMpiYmMD4+DivOIihfFYVBT4heLmwAFVRMDw83PY1vil4XdMKEnGu23NdXPvqK6ytruKjjz5qHLmLTuh7/J4oigJNUUAVBRsbG8hkMp2ZNkm9ReT/BNsVPx2BEBAhRqSM7dAbBAmnEBohnUqFwsRsgn0oBoeGcOG993D9u+8wMDCAY8eO8V9E5k1pGy21GAzgosTXZKPSDG89OZBK5sD3oaoqmChnrM4LMwBff/MNHNvGL37xi8QshFVV5Q+aVFb3EvXEiqKPAhhru1SxQlQYEXJmMxlkjx3DsWPHEARB2CxqYWGBN4tSVYyOjHCyMDFRt/GMpqpwPQ+Li4sYGx/f2yWMURDSle85avLzOgkSW6lUKBYKuHL1KlzbxieffILhGH0HFEIQvCb3Q5Y0bm5toa8DHVNNSKIgvBU6zc1Hm58pqsojFoT0XN+RyWSQLxTg+z6chE2IpmdmsLm5iR9/+gm5XA6jo6MV903qxMIo8xtWsfCazKhdhBDVBEGw3fGPMXi+D0MuOIzh5s2bWFxYwM8/+SRR4ZtMKwS+v3s7nCqSIKMGuq633N2QyUkoWvJUB6qqYnJigrdXZgz5fB4LQqvw040bYD/+iKxsQT05iZGRkTCKoWoafN/H+vo6Lly40OIH3j3I3VvilQqRqMHrFDmI2yhqfW0NV69ehaZp+PwXv4j9DL4+dwLQdB1wXRQKBRw5fLg7J4mKGTsQMsrybynG62W0IApVVZGyLJTKZZSKxcQdCs+dP4+trS18/fXX+OKLL5CObFZ8sYnUVBW+2Ny9STbKbz05YKJSAeAhcEPX4TgOfM8LycHTZ8/w4P59vPPOOxhP2ORClS6JQbD7oU/B/B3bBmWsqRBRIhQWir/lsVo9d66vD7m+Phw/fhye52FleRkLCwt48fIlHj16BFVVMTo+jomxMYyMjmJtdRWUMYy/TmG8LoW5u9G8qBcIyxgb3I+XL17g22++Qf/AAC5duhR7XIoDd3aBPYSmqgg8D67jINOLyptI2kHe/7jLeyDIP2viINgLZLNZTg5sG9la/RY6ACEEH330EX7zm9/gytWr+OLzz7mYmjH4lIJRCs00Q48c13XfGBvlt54cSL0BwBdqXdPg2HZoSLK2sYFvr1/HzMzMdt4pQch8XeD7O1wSdwN+EPA8IiEwhAaj3vQakoIYUYJWoes6Jg8cwOSBAwBj2MznsfjqFW8W9eOPYJRC0TTouo58Pg/LNBNpGdttMHRHE/A6VioAjcsYGWN49OgRfvrpJxycmsIHH3zw+qSP2gEhKIlyuF6L2qqjCXWXe/G6UIi3B8iXYRgwdB2u74eWyklCNwxcvnwZX375Jb755htcunQp/PzS+hrYvofFfB7GG6CBeoOftJgQ/gYAZ+6a0BJQ30dAKa5fv47B/n5cuHChK5O6pmlQCLcEtl0XqV3ueui6LkAIdNPc3k1EJvBwEqkSO3UVhIQtqE+cPAnPdbG4tISvvv4ajFL8/ve/hyGbRYkKCGuPeNL3Cs28ApgoGY1Gd6KlpLXKSuXPGWMo2zYA3mDGFv8mMiwd+Vv+W15FRZqjVsqjTqSJUYobP/2Eh3NzOHniBM6cPftapUvaRalUgtqot0u3URVNCAWMcsxQCka4dTHB3qmMSafT8PJ5lEqlxMkBwPvLfHjxIq5euYIXL16EehfpUxNFPp/H4D45eL1RbZssQ/yarsP3fTx5+hQb6+v4/Be/SKQlaT3ohgHb82A7zt4gB4xVlC9GXf1CwdEuTtS6YSCTTiMIArz33ntIpVLYWF/nzaK+/x4ArxGfmJjAxPg4BoeG9swk1sl9Y4x3oqz+m1KKsqj31jRt2zYYNVwm24R0D3VdNyQHnUAu9L4Y97qwLCeKAhoE+OHHH7G0tIR333kHR48ebZsYvG6EolAoIJvNcoHyLkcSJaEkEHOlIH8AwjGWZAi/E6TTaWzl8/DFs9CNeXRychITExO4dfs2Ll+6BMYYNNPcjqyKZ036VLzu2Bvf7G5BkAKpOZClQ5owJLl39y4OTE1heHCwe9cgFuJSqQTHtoGkVcotwPO80NhEphTkTkJ2TqtQOu9iidjC4iJ0TUP/wAAMXcfExETYLGpxcZF7KszN4d69ezB0nds6T0xgfGystZx10qih5q616Acin0kjP2u00Psi0qVG6svroWK3L/8djQJU/w4I7Wl1Xee72mjEAdtRCESiDRXRpRqfGeBCNip0P67nwbVt/HjjBsrlMt45fx7DIyPY3NoCwHepRPQjkYZl0b/l76tO1PBe7DXkt7aQy2SgKAoXRe9mBCH6XQpIQa3sqaCp6p7wkVAUBelUCoViEaVSqWubrHPnzuGv/+qv8PzlS0xOTnK/FfFMy/tQekMqFt5uciB2XXLhk9EBXdPw6uVLFEslfHz5cldd7RgAQ4TwXdftyjniwvU87ogoiEG0DDG6A6tQOO8SQVhYWMDY2BgvVYu4S5qmienpaUxPT4NSyiMKi4tYWFjA/LffAgCGBge5U+P4OAYHB7u+u2TCMManFJ7rwvO82It+LYQLoqiukVERRVWRtixu+Rr9viLh/HY/q4wWWJbVVj48Opain9m2bSiE2wd7nodvv/8eYAwXL15ENpPh90gcg1LK04BNziXvSZTkSOOsPR1JYAxbW1sYnZ3l/VY8r7fkQJIB8e96v/d8n6eOxH32u+SA2AoIIWG/Bdu2uZFdF6Ia/f39OHDwIJ7MzeHAgQOVaTNxzxzHSfy8u4G3mxxg27ZYVZRwkWMAHj9+jImJCaR7oBo2BTnwXDdsvLIbcF2X7wZ0nUcImtQsRyeEXu4eHMfB2uoq3nv/fQAIdzHVE5SiKBgaHsbQ8DDOnDkD27a5p8LiIh6IZlGmaYb9H8bGxmB00II6SgKCIOD/DoIKDwIZLq6+X9HJNrro1/pZLUi3unbKT3uBaN/76LekqCo0TUO+UMAP33+PTDqNyx9/jFREMyLTWVT+Hf23IBqSaMnXy+eaSg8R8TsZYVBVNfx7r5CGQrGIIAgwMDAAQggXvfWCfIt7E7fqQN5bRdNAVBUqKn02dgsyquV4HoqlEvrr9aZoE3KOOTY7i1cLC3gxP49TEZfcpFN5u429N4v0EpRu6w0iE+rco0fwPA9HjhyB6zjbXd4ShhxCqqLwnZPvw3YcZHbBftPz/XAyasfgaUe9dBcntcWFBTAAkxMTXN0tFuVmSnbLsjBz+DBmDh8GDQKsra9j4dUrLCwu4tmzZyCEYGhoKOwBUa8FdRwSUA0iQuFaZCGKs+jHxW6Xk7UNxvDy1Svcv3sXY2NjuPjRRzvGHyEERFXR7A7tIBHCr8T3fQQi7ULldxdUxh/2AmnI5/NgAAYGBuCLluR+EHSP7LVICiSkgFvXtDBNJk2RdotkyU+QTqXgui6cLkRhFfEZLdPExMQEHjx8iGPHjkGNjFdJVN8EvN3kANuMV5bBua6Le/fu4ciRI0iZJhzHgWGa3REkRh5KwzBQdhw4PSYHMoQYGh8ZRkUIulUWHJKELk4Si0tLGBwYgGVZvHOkEJW2UuamqCpGRkYwMjKCc+fPo1Qqca3CwgLu3buH27dvwzJNjI2NYXRsjIsaCYlFAlRF4TtiscDIxSYUEEaFnQkhHMd7RXgZA4wx3Lt/H3Nzczh06BA+/OCDjgR4O0gEY9A1LUzhQOTKqSB1gfgu9wpp2NjYgKHrSKVSKIuIR1fC4yI90M5iLvsJUMbC6yIytSejQ7tBVMU5LcsCNjfhuW5X7p0tWtgfn53FyxcvcP/BA5w5c2bH63YzApwU3npyIFmw/CLv3b8PyhhOnT7NDUk8D+WEfbtDRB4kwzCgAokoweNAkgIq1MierFKItrxtgxyE75XnqSqF6jSawCjFy4UFHDtyBABXS/u+X9nVsg2k02nMzMxgamoKrutiZXkZS8vLWF5ZwZNnz6AQgv6BAQwPDWF4ZASZTAaaqtYkAXWvXfzdsI68XUhtyGtCDqhonjQ/P4/Z2VmcPHGia9ceFVfKxb0iOlFNGkS3z4akQVHC713TtIq0ZLvI5/PI5XIg4OPaEQtcEgirDqLiwjauN0wpRDRasqSxQqMku9v2CHKekt8tE9GDJMmB7/vwPA+MUvT39WF2dhaPHj3CUTEXAQh9YVgQVHT2fR3xVpODaG5SU1WUy2U8evQIJ2ZnYZkmAl2HJ1ioo+stdydscvKK/5qGAUVVuy5KrOh5AD6Qo4urHvmMUpTYyS4pWuMe9UiQP2sVa+vr8BwH4xMTALZJXdDGRCTDtr7nhWp/ib6BAfQNDOD4iRNwbBvra2tYWV3Fk8eP8ejRI2TSaV4qOTGBkdHRWJOQJAXdiKm8Tg6Jnuvi6rVrWF9bwzvvvFNhi50kWGTsNUQ7pIFSuJQCosSTiJSRqmncL6VG/XszbG5uYkTWz2ta+Gy2XdJYlTZIgpBKslI93qs3EiwSleh2Dr763KZhwPO8xKOwMlWh6zpUVcWJEyd4RdT9+zgqDfLEZsin9LVfXF/36+8IvniwFREmvHvnDlRVxfHjxwFwLYCZSsEul2HbNgwh1EsCrCr8ZphmmNPqhv1mI7GMrFLQqz6fzIUn9XDXJAr8omJPpAsLCzANA4MDAwAqHSabQYZpZR66VnpAEfoPXdP4jlCQjwlBRgLfx/LKSihsnHv8GAohGBkdxYTQKmTrtNplCU7S1ceNGtfsZRQLBVy5cgWu4+CTTz6BYZrbIemkESVM7YS7G5AGXxJLQayZ0DdIZ1UCbBMF8XejzxhQinw+Hy4ychxSSuF5XnyhbI3ywyQhewhUp/DqaXPk7+pWQHQBpmWhWCzylCOliRBPT2hAKKUwUyluFKdpOHHyJG7fvo0DBw5UGq+9rhqgCN5qciAXFEVRkC8U8PjJE5w/fz50SQQAyzThOg6CIIDjupWtnDtB1eBRCIGu63AE402KHFRHCmpBVinUPGeXcoh1Kx2aEIWFhQWMT0xsN2CKRA6qJ4JAkICQDNT4HDIsLMlAs4lE1bQwYvAO413YFkRXyZs3b+KnGzeQzWRCX4XRkZFwIo2evdOITBQVHRn3cFphfXUVV65ehW4Y+OIXv0Amm8XW5iaA7pOaRFM5ovRS0zTANMMIg+/78IMAgRhrvhT5itK2KFFQNa3iM0sxYn+EWGq6Ho7dZuSgVgVM0pB6AxbRG0jIapta80xNh9WErysKU+imGGNwPa/jOZsJTRZlLGxhL8957OhRPHr0CHNzczhz9uy2f0eHac69gLeaHPiRlMKNGzeQsiwcOXq04jWEEFiWFdbPGobRtZa4umFAsW3YjoNcnd1nK6i2y60FKcyKGt30GnGJQrlcxvrGBmZnZ8OfScV/ICIuAMJJuRYZ0KK7uRhkoNl1Z3M5zOZymD1+HL7vY3lpCQuLi3j56hUezc1BURSMj41hfHwco6OjSGcylbXRCUB+yr3cqvnF8+e4/u23GBgYwKXLl8PFrqvpkKr8etfC25EIg1yGAmHLLgkDFZVRUe2Cpig8uqBp2NzYABhDLmKCpmsabPBKoh2kOfJs92qP6ot5gihKTYE2URSea6+D0HEx4XFaLawkhMAwTVDbhuM4HZMD13V5miSygZJkSFVVnD51Cj/duIHpmZkwjbFPDl5zyMhBoVDA/Pw8b+xSY9AbpgnNtuEHARzbrqjBbgf1HmbTMKCgcxONcNKIMRk6IqWg6XrNvKYUMfUqXN2IKCwuLgJsuwsjFbs1x3FQsm0efq2yfZbNtCQZ6Obn0DQtbBbFGDe0WVxYwOLSEn788Uf4QYC+vr6QKAwNDydSBbMXLK3rgTGGhw8e4MbNmzh08CA++OCDsDIomg7ZyxGPdqAqClTDCMejHKsytRVQCp9S+EI4t7y6ilQqhcD3udgvInKVxEKrcd96CdmiWK+jryEx5puoDiGJlGU9om2ZJmzb7rikkVIKR1QopGqYizHGMD0zg/sPH+Lx3BzGRNfeN8Hr4K0mB75w+nr18iUsy8L09DT/RRVLJwBS6TTy+TyPHnRa2lhn4BimCaIoXAPQhghJDkhZgRAHnhj4daMGCe9yW0E1UVhcXET/wAAoY8gXClw5HClTo5RC1/UKvcBuXnt/fz/6+/tx4uRJuI6z7dQ4P4979+5BVVWMiUZR4+PjbZPOqMHPXgKjFD/++CPmHj+u3Twp+hx04dorbH93+d4oilJBXGWIXnow5Dc3kclm4YhyZqIofBEW+XrPdaHsct+VUIxYR4UvHSnjLIsVkZwupC6TKmmU5EIRGoMoQr8SQjAzPY179+/Dd11oqVRoSvY6460lB9LwhxCClZUVjI6OVgjmqqHrOnRdh9fF0kZD16EqCghjLXdojIqQ4k6DUq1PgIaVGL0uS6oGZQyu42BpeRmjY2MoFovh7xRFQSad5toBXe9KR7YkoBkGpqamMDU1BcYY1tfX8UoYMH3//fdgjKG/v58bME1OYmhwMPZuOvze99Du2/d9fP3111hcXMSFCxdwJFLuJdHtxbsihL3HdnJEaIx0XQelFJubm5g9fjw0Q6MyJeF5sF0XrqaFKYjdABMVGwyNmy3JFF+rx243ilDvHUmUNAZBAE/4qGRqEPeoyHtwcBBgDGtrazgwNfVGGCG93eQAPGy0vrGBI7IUpQFSqRQ8z4PruvBNs70HtckDoJtmSx0a4wgO68FtklKQqGi21CMEQqXtui4834cjug729/VxAaEoLZWNTzwRspX5x93eKe5A1UI4MDiI/v5+nDp1Cq7rYmlpCQsLC3jy5Anu378P3TAwPjaGMWHtbDUYC7RFUtht2OUyrly5gkKxiI8vXw7LTqvRrM10J9iR2xY71T03LgCsb2zA832Mjo4ilUrBElEFWVMPxmDbNk81KAo0QSp6GRmTmwhpClUXbVxPNIrQsjakwWs7LWm0q4Sk1ecikbnXsiyYloWVlZV9cvC6Q5KDjY0NAAhzRfVAwNmoaRhwXBflcrkt0WB1CWM1TF1HiZBYHRqbdb5rhrBKIYYQsRcTayAaEznCdyCKfD4PMIZDBw/uaPyjiBCsJ/K5hmHsEGLutUUhGn41DAMHDx7EwYMHw6jCokhBfHf9OgBgcHAwrIAYHBiomKD3UuRga2MDV65eBQB88dln6BMlp7XQ1fLLqmPKhW0vxA+ihJ4QgtWVFaiKwnefqIwqpFIpMAAl2+aW0IQ3aHNdl79O06AZRoUtdzdQz9+gGm2XjQpQSqGoauxIZSMiIUsa3TZKGmW6h1KKdJN0nyTnQ4ODWFpe5j/bJwevL+SgWl1dRSabbToAZNjesqxwN2u3o4Rt8tCYlsV1B02ENO1084tCll7FrVIgitKV0KxPKTzHgSvLviLQNA2GrkM3DMzPzyObzdbtCKhpWlh3bhjG9iQlUHGvCOn5LjvudyX7OwwNDeG0aEG9IESNj+bmcPfuXRiGEeoUxsbGwol0tzUHS4uLuPbVV8hmMjuaJ9VCNyMHNdGlstxmqCYD25fD/72yuoqBgYGa3x8hhDdmYwy6ZUFVFPieB0+UFLrCxZVANN0SjbeSvqf1/A1qQSGk7V4fsuFbnAhCM32DLGkMGPegiGtix0SkhoET90akgigKmPDLGR4exovnz2GXy/vVCq87CDg5aBY1kK8FIVBUFVYqhXK5jHKpxIVGCZYAyoVNmm5U2/F2kkaIwnPdMH+o1BEYRZFkKVhAKVzHgSM+YxSapsEUhCAq+lxbWcHw8HDdY2q6DjhOXbvZ6smy12SBob2wv2mamJmZwczMDCilYbOoxaWlsFlUX38/hoaGMHXgQNjhs9d48uQJvv/+e4yPj+PixYuxmnf1mhx0tZwxgmZkoPq1qysrmJ6ZqXs8VVUBRQH1fViZDHRdh8W4u6vnefBFC3BJFABeUaAbRltN1HZco2xQx1hdMWIUSXybcvPTKIrQ7JuMljTath2LHDDGUCqXQ5FzKCKtQyyjltRDw8NgAJaXl/erFV5nMMbgOA6KxSJGR0djvUcOesuyQIUpUqlQgNLXF+uhiTNcVEXhwkffh23byESEj51GC6JwhNK/l/3ifRFtcQUxARD6yBtiIqtVBeIHATY2N3FQVpPUgAx3+sKtrtmCU5csSMV1gguX9LXfcf7q2vUmUBQFI8PDGBkexjlw34fFxUU8f/4cT58+xdzcHFKWFaYfxsbGuu5dwRjD7Vu3cO/+fRw5cgTvvftu7PRGrzwOJBI9j/juKlwvY5CBahSLRTiO05j4qioIKmvnScSIiVnWDqIg3RpllYTRRFfUCL7vQwF4U6sYx5CanyTKFDsVQrda0mjbdphOyKTTsaJx8hpTpom+XA7LKyv7kYPXGUwoSwFgNBo5aDBhR8NYqXSaP4Seh0KhgFwu17y8MebDYhgGysIMKZPJJN4nPKAUvghFxl08CCGgaH2CZYxx10fhEyGhaRpMUQfe7AHcWF9HQClGGkygqjBDkk1y6tVi10P1RF7tC1892SVBGkiHdd6pVAqHDx/G4NAQd9JzXaysrGBhYQFPnz6FoigYGhoKUxB9fX2J7tJpEOD69euYf/4c58+dw+zx4y0df1fSCm1CEjzpMUCqdpLVaay4WF1dBWMMw0NDdV8TdQGtVeIcJQpIpeALlb0ncu222Dkb4nlrtVugTCm08kwlHaWp5YsQ5/itlDTajgPP80KdQcV9qkNSopEDoigYHRvDq1ev9jUHrzMYY9hYW0NfX19luKnBAx4VExJCkEmnUSgU4AcBisUistlsInlfwzCgEsLNNwAgYWtUT7BoVXQVjAulhQc+EOYhjrAdBfiDZBgGrBYrPdbW1qAqSlMBqC686H3fb5kc1EO9nSATJDIaZah+TcVruwjGGBe0jY5iYmIC586dQ7FY5C2oFxdx584d3Lx5E6l0GuPCV2FsbKyjsjjXcXDt2jVsrK/jZx99hKmDB9u6bqBL5KDNsrjo91kdgWJA4imo1dVV5Pr6Gob/CSFQo2O7SbRPU1VoqRQsywoFvjQIQiGjjNTF1SZI86M40dHoNScJSTZaJR1xSxpdz4PrOKCUwrKsna+rk1ZgQIXmZ3R0FI8ePeKOl6853lpyQH0faxsbODA5Gfs91QIYoijIZDLIFwrwfR+lYhEZYY+7Ay0MaFOYIcmWrUm46EURphRaFVPGEHR5ogxT5j4B0cDKMGBaVlvkaXVtDUPDw7H6HiDBNreNUIs0VDRAivy7F+RAXEj4s0wmg6NHj+Lo0aMIgiCMKCwuLeHJkyc8RTEywn0VJiaQzWZjT+jFQgF/uHIFnuvik08/xVCDiE6TC+d/d6MjY520QrjgMxaS/agepOL57kFEY3V1tWFKQUJTVfiEd/uLmyiSOXfDNOH7PlzHCXs1+MKJ0TDNhikH2YUSQEsRB4LmgsF2IJ8xpYVjNytp9EUKl4o0a81oap1nmACQMQKiKBgdGQEBMP/8Od59//2YV7g38daSg/X1dTi2HbZIbReKqiKbzSK/tcVVw+VyzQHYrIQxCtkdUYYEk2w7ShmDL/wNjDZC77U+AWMMjuvyfF0knKZrGkzLgtGBejqOYCt6PgA9IQe1UF1XX7Hg1FqshKqbRF7T6n2qaLpU572qqnIdgrCdLhSLnCgsLODWrVu4ceMGMqJZ1MTEBEZHR2svBAwo//gcD+8/xpCl4fT/+hNkhgZaut6KwyWpORCLPWGMNyGKhp9RuVCFv+um5iEGHNfF1tZW2AW2EVThlhin+2gtyLQDDQK+SxbmPmHKQde582vV9y79DWTarhV0yzwtXJBjzqmm6I1Tq6QxCAKUSiWeNlHVmtVnjcYHYyzcCCiEgGgaBgYH8fz58xY/1d7DW0sOnj9/DgK0vOupJXZTVRWZTAYFIS5SCNlZxhWTGMhXWakUXN9HsVhMlBxIMaDsDNcSqj6DHwRh6iAqMDRMk6cOWsxt1kKxVIJt27G+J2kKQ0XTm5Y/X5dAIMhhNdhOn4rqKorw/ZG/oyQiusDGJRbZTAazx45h9tgxBEGApeVl3oJ6YQFzc3NQVBWjIyNh98lMJgOUPFy+rmB44xH4N+EC3/4NvOMjUM6OQzk3BjLamjulTDc1jCZFFn0AFeMsKgYkkSgAFAWIiveq/t4rWBN6gzhjW1NVKIgvuK0HRVVhqSpM0+S7adfdJgyeF3q5aGKDIslIOymobt3v6i6kzSJzptA1+VUljZRSlMrlcGGvazTWgIRQSsONgPxOxsbG8OLly554w3QTe2P23AW8ePkSwwMDLZX6NJqAdcNAmjGUSiWUbRuKeMhahQybpdNplAoFXlbDWGI17J4sdWqnSkGokGWUwIvsYlRFgSVCmEnW26+troIBDQVb25fHhVlUmCjtFXLQdmi1akGsRSKoqGAhilKR0oCM8kRTDjXElYqqYkK4ML777rvI5/NYWFzE0uIibty4gR9//BHZbBZHf3AwvlH1vXoU7PYSgttL8P8DQMYyUM6NQzk7DswOQ9GV8NzVVsZM/EyO94oJvt6iH/388jOhxiLUYLHoVTljHKyursK0rLreHVEoigKiqiCUIqC0Y+JNCAkFin4Q8JSDKC0ulctQbBu6YYQuqu08S91aGFVFCYmlFCo2EgDWKmmUJYuMUt47J5Vq63pDghuJRoyOjuLR3BwWFxcxUccd9HXA3pg9dwEb6+s4MjraOrttwCJN0wxTAaVikTfr0PVYiwPDNgsFeAmOoqpgQQDbtpuaNMWF7CnRjmDPcRyUyuWKsL0hUwddKplbW1tDNpuNXXKpaRo8YRLTWaPWBNFiyWJrh46I+iRhkOdEZOGsVnlHIg/RK8uIFtTHZ2fh+T6WFhZw6/ZtDD62wQIev2AEqNzDi8diqYDg1wUEv34EGCrIyVFBFsZAhtKVizxj20LV6ntTb9GPiwb3eq+Rg+Hh4difU1NVBMK5L4moXPS4WjoNRikcz4MnRMTlchnFUgmqplWUVLeCZgt3O6hO0VJRwdEohWGKkkbpCluWRkWMNSxZDCN19a5FkIvoGB4cGABjDEtLS/vk4HUEa3PCbiaySaVSoJTCdV1ewRCjxJFBMNCoyE1RKlILSZCDgNLwQW0lTOh5HkqlUth4hYDn8UzThNZly964gi2JqN/BXkCzcRYVw7UF8X2SaKSgWmFf+8JqvqZaJ/Hk6VMUi0VoqgYofuQ1Ta7aDcBuLCC4sYAAACZzUM6O8ajCsSEQVQm1AbU8Hyqes2j5YAzslcW/EfwgwNraGs6cPRv7PaqqbusOWhUTxwAR0T/TMOCLEm0CAJSiUCzCkqXHLTzzSVNiGhnvUTRzVUxZFjY3N+G67vZcJr0MGnyeZp+UirGpVgmUX99kwjbeWnIgJ6R2vsRmuaR0Oh2WHRUKBWSz2boEoTpiUH2cYqGAYqmE4QRSC7IkKW7DFt/3eaRAVh4QgpRlweqRcZLv+1jf3MTM4cOx3yN3VDQIajpM7inUmETqKefrRR+C6skwoQiFbJ5ULJXw8ccfg60/Abk63/4BX+VBX+VB//oRYGkgp0YRnMwBRwdBcrkdos16wlep34jqCOpqNvYwNjY2EFDaEvFVa5ghdQOEEOiGAc0wYEXmOluUQhqCQOxGPj2aUqhGo1JHVVWhaxrcchnFYhGGYSBV7WVQC4pS1+MA2I4c7CgJf421BhJvLTkARHiqxS8xjvCLEIJsJoN8Po8gCFDI52tGEBj4br7e8SyhHvYSSi2E9cpNogZU5B2j/R1M00Q6lQqNe3rRwnltfT22YEtCUZQwteDvAXIQ3f1Wp6QY6iyCtQ5UL+xZLzTfATYjzZM+++wz9Pf3Y/2PgY3bzzC0mcB5bB/0h1fwH70CAPgDfVDP8PQDDg+CqPX3a5JE1NJhhK+RYzNyvyXp2isCsdXVVaiKgoEmzdWiUFUVRFEQCN+CVjxKWgUNAn4OTUNfNosgCGA7DgJKQ5dTyzR76rAKNK/6akQQCCG8bJEQ9OVyiXihSKKSdLn5XsBbTQ4I0B7Di1FCQxQF2WwWW/k8AkqRz+eRyWTCASlTCY0mq6RTC830BoxS7sxo2+HPdMNA2rIqBEm9auG8troKXdPQ12L3S03TwlrudkShnaB6sWaMbZtY1RgznTSpiSKpRW9xYQFff/01stksLn/88baCO2fgyocUfzx2DqkHW2C3l4CS1/hgDcCiVZ/zW6DzW6D/vwdAWgc5PQrl7DjImTGQXHvh81r3u91UYjewurqKwaGhlr43Qni7ZEIIgi6TA1dWKQjLZEm6XeF2ShlDSeTwa5oGRa45KZ1HvZRCNSq+ZyF6tW0bjLGwpXscUsP4SRtGl8Nr2icHbx7amVSb6Q4kFFVFLpdDUbgoFgoFpFIpGKYZ+2GRqYVOqxYY6rddlX0mSuVyOKFqmoZ0Ol0/ytCCb0O7WFtbw+DgYMvfka5psIG2a8JjI1IJUN0QK/p3w7vU4X0Mqw4SWPQeP36MH374ARPj47j40Uc1XOKA4NwotE+OgwUUeLIOemsJ9PYiML/V0rmouNwdU2rJA7v+EsH1l/xBmx4ISyVxaABEafI5G91vcY9qkfId6Z0ulqFJ744jR460/N7QDCkIYpshtQNPeqFEhMaEEG55rutwXBeO48CnFIVSCZqqcpJQg7AkRQ4apRR2IFImXCyVEPg+iGiSp4hy52baiWbLfbTXzW53RO0G9slBm++LO3kowva3WCrxRk/CTTGVSsXaxciqBc9xOkotyJSCoigVOw5JCkILUEVBOp1uyqy7rfpmjGFldRVHjx5t+b2hKFG0te10kq8uw9sxQTUJczZCp1NKRQi97YMw3Lx1Cw/u38fRo0fxzjvvNN0JEVUBjg1DPTYM9e+dBtu0wW4tgt5aAru7DNhNiJm4XNLo9jAATzdAn26A/td7QNYAOcNFjeT0KEimxhiNQbaUGpGvHe+oEklW1mZ0hkKhAMd1W9IbSEjL424KbgOh12GM1dwcEEJ4SkHXuc+JSOEVisWweqkbYfZWjOQAnrItlUqhaDCXy3E7dyHMbiqsbKY3iFxLdD7sWGS8R/DWk4N20HLukpBQFVsuleAIJ8FMOt18ElYUpFIpeB2mFryqqEG0AiE8j6hAiPPZQne/LjHmQqEAx3HasuZVFAWqqnI3SN9vuW1tKHyL/L9tItTl6EqnLoOyedLz589x7vx5HJ+dba+Kp98C+XgGysczPKowtw56awH05hLwKr/zvJIctCJdKbhgXz9H8PVzfo1HBnkFxLlxYKqFplIxF5laxlVJTPyrq6sgAAZjeHdUQ1Ys0A7NkBrBE03ZNF1vrOQXc5MhygQ934fr+3ALhYrKhiSukTbQZtX7DLL1MiEk7HujqSpcMS900lsEqEwhKoqyPZfKUtzXPJrwVpKD6Jfa9hfYIotl4KI+RVFQKhbhuS7yQYBMNttUNJdOpVDM5ztKLUi9AQGwlc9XVCBYloWUZbV8L+K4k7WL1fV1gDEMDg629X5N0xAEQSxyEJ1kpdiypqNhG2i6mHR4/8IdbRvX6zoOrl67ho2NDfzsZz/Dgampjq5FgqgKcHwY6vFhqP/9WbC1EtitJdBbi2B3VwAvCDUHDSMHjcAYMLcGOrcG+r/cBfotHlU4NwZ2fBgk1b2ge3UVSav3fmV1FX19fW0J4hRF4eF1sbvvdIGrBZlSiHt9qqIgk07DF8JpPwh2VjYgXiq2HuLONTJF6gh7aF3TYKVSYa8HVdMA0c66jh8iPw4QW2/QzXlwN/FWk4OqH7a0Y4oz2KMe7vLfuq4j29eHYqGAIAiQ39riQsUGYXzLsqBoWkepBc/zUC6X4QdBmBeMViC0hSqb2iSxtrKCvv7+ts2VNFWFgwZ9FhirHxlIihiIvGfD4xFS0aSprXOgdXJQKBRw9coVuK6LTz/9FENt7GLjggylQT49DOXTw2BeADxchXfrFcjjZZDFUjIn2bTBrj5DcPUZoBDupXBmDOTsGDBR2VQq0ZRYdYoiSjRRmxiurKxgbHS07VOqqgrP97tCDoJIo6VWI26aqiKbyYTN12Rlg+e6vOlal0V70tzI9TxQxmAZxo5IqK7rIYFpBEkmGqGe/ffrHjGQ2CcHHR6n6UBgDEGVn4JsP1wsFuF5HoqFAqxUCladRb/T1ILjumFZpWVZNSsQ2oJYVLvxMKytrXW0YEXNkGR+MSyD6xXL7yQyFRPtkIPVlRVcvXYNpmniiy++QCbbWk+ETkB0FTg9BnI4B82ZgVEMoD7Y5FqFByuAl0CJLGXAg1WwB6tg/+UOMJgCzo5xsnByGNC7WN5aRRaqnw/btlEsFDB86lTbp1BVFQrpjhmSK1IKagfN0nRdr6hsCBhDsVSCrutt+SPEeV4ppSiWSjzdQinXTVWRm2gZdzOxMokRGZZphB2k5w2JIryV5CBE1ISmC34HAMKueztPzfNgpXIZjm2jLPJj6XS6tiFSJLXQCmzbxvrmJt9liOqJpGqTCSHc4jlhzwPX87CxsYGjx461fQxp9CRLGrsRfm2G2CSkg4qFWu2aG+H58+f49ttvMTw0hEuXLrXXYyMBhKRmOANlahjKF0fBnADs4QrozUWwW0vAakJRhfUy8PunYL9/CqYpYMcGQU+NgJwdAxnrMjGqIgsrKyugAEZGRtrWL8g0ZDdEib7rggJIdWiHLisbdE2DbdtwRMtk3/eRTqVaiiI0s2CWZm3yNdkGqVpNdLdseu9i+ClIcqBVEan9yMFrjMRCyA0GkKypbYa0cOkqF4twHQdBECCbyYBUDe5oaqFk20jX6yAmEAgm7Xle2KFwcGAgedOSLjwI6+vrYEBbkYNoikDTNASUwtslchA3XaAQstPpMCZil1Ixhvv37+PWrVs4dOgQ3n///a7WyTdDrYgHMVWQs7xxE2MMWCqC3uQVEHi4CgQJkFCfAndWwG4tgv3FLWAkw6MKZ8dAZodAjO6Ok1cLC+jP5WClUttRBVFaF/dJkmZIzPcTNUPyfT/czCT1vMjqJ811kS8WuSlcoQDLshKZi1zXhV0uI2AMqqoi3aBPAiA+l3guG20aKKUNSxlpxPpbUZQd5mZvAt5acsCA0Pqy3S+z4XtbmOxNw4CmKCgUiwh8H1uFArKZTKXxUDS1UCg0JAeO56FYLFboHCxV7YqbGWEMFMmW7qytrsLQdWRjhrvrVRPomgbXdeF5HlJNyFQ3EHcEtD2ZVJVS1QOlFD/+8AOePHmCU6dO4fTp07tuBtSsXTMhBBjPQh3PQv1bx8BsH+zeMk8/3FoENuya74uF6DlXisBvH4P99jGYoQLHRUThzBjISHKt0gEAjGFxcRHThw6Jy6jqnCl+1kyZTwiBqigIEjZDigoRk979GoaBPkJQFA2PyrYN3/f5pqdBFKHesy2NjRzPA2MMuq7HElWHFQtCrFyvVJM0mb9l5EFGKKOvpkHQk5Rit/FWkgNFUTAwOMh3qC0KEatRK+fe1PimBlRNC3UIge8jn88jlUrBNM3w+pqlFhiAUrEIW9gea6qKVDqN/NYWf4C6sXsmhNeNJ5hnW11bw9DwcN2Hq9poqB50XechRN/nRHCPuph14rURHqPOvfI9D1999RWWl5fx/gcfYGZmps2zJQx57TG/E2JpIO9OQnl3kn/ul1vcgOnWIvBovSUyTkgdsaAbALcWeVQBACayQqswDnJsEETrbBHe2NiAXS5jvEanvqiIMfr/ekRB1TQQ30/MDIkx1lk79xhQNQ2ZdJrv9h0Hnu/DLxSQSqfrzk21UgqU0rA7LGOMN4tqQXuhahqUIKifWoiR5gsN5SQxi3xHa+vrUDXtte7ICLyl5EBVVRw4cACP79yBLTzC20Et3UEnfQeUiFDRdV2USyW4rot0Og1V0xqmFnzf55EHcW7LspBOpcJ+7IqidG1xTNoQaW1tbYf5UTtiQkVRoKkqn/h8v/c+8HGvNU5VQ7Pj13ivXS7jD3/4A0rlMn7+859jdGyspeN3E6HpVjueCoQAU/1Qp/qh/jfHwUou2N0V0NtLYDcXgLzb/BhxYoYLBWChAParOTBTA06N8IjCmTGQwdYrhhYWFqDpOoabpMuIFM/K/9eIMGgJN2Hyg2A7pdCldJOcL03ThKZpoUFRqVSCYRiwmnisRMsUmfh/ppGLax3omgbHcbhrYq25q8lzG9Ub7BB1E4KlxUUMDAy0ZXK1l/BWkgMAmJ6exs3vvsPy4iIOTU+3NTlXIyQG8jhtLpiZTAaarsMW7Di/tQXTNGGlUjtSCwxAWQgaAT7ZZrPZkIlLhtuVqIGEmLySCKI5rgvHdZHr60ukukDXdfi+D8/zek4OYkPknVuFDM3XmlBl8yQC4PPPPkNfCw1+egFJn5MYMyRtgLx/AOTCJCg9DzzfAru1xPs/PFmvyQFaTic6PvDjAtiPC/x9U33AmTHeLOpI42ZREgsLCxgbG2uJpO8gCiK/rShKaIaUBHwRbdR1vXvhcLEQE0Kgqiqy2Sxs24breXBdNxQrSjFhNKXgeR5s0dOBUsr9C5q0W64HNSJKZIzxexzZ0FHGGuoNomZH0gmSRJ7FldVVnL9wYT+t8LpiYGAA0HUsLS9zctDmFymZZ3VNe6c7aelhXi6X4ToO74QmcmQqgJLI3RVKpZAAmLqOdCZTsRuTobduC/KSSi3k83lQSpHJZBKpgtA1DWVCeD61S2WX9dAKYepI+1L1mRYWFvBNreZJewThswIkHs0ihACH+kEO9QN/5zhYwQW7u8yJwu1loCijCh3a8rzYAl5sgf7VQyCl8fLMM2Pc1rl/5/12bBura2v44P332z9n5BmTzZCCuFbADSBTCgytexu0AoJtcgPw7yqVSkHTtLBaq1AsIiXEirLBlG3b4fUBPL3ayXVqmlax+6eUhvNXK3qDWnOq6zgoFItt9c3Ya3hryYGqqhifmMDC4mLHi0bUUztJEEKQTqdhGkaYYwNjcFwXnu9jcXk5NPnIiNdVXBfqN1tKHJ0aIglh48bGBggQW4zYDJqm8fCrmAx6VbUgLZjjop3UTC3F/+O5Ofzw44+YmJjAxYsXd6VKoxmi/SASJWs17h/JGiAfTgEfToFRBjzbAL29DPLTAtjTtWTOW/aB716CffeSzwHTA8AZ3lkS0/0gqoKlpSUAwPj4eCKnJMKWmIDvdNUOyHnYdwXoeovzWuNc13WoqhpaMJdFt0dVVeE4DhghYJTCFNqCTseMLuaECg+UaElwTL1B9F7JdywtL0PVtLZ6wuw17L2Zo0dQVRVTU1O48/33KJXLyKTbUybLYdpNYx0pVoz6IZSEvmDqwAHkcrmajU4CaZlMSOeGR03Qzj6sFqkqFApIZzKJNm7RdR2UMbietycXy3ZRQQ4Yw82bN/HgwQMcPXYM75w/v2cFmPL7TvLq4oiAiUKAw4NQDw9C+W+Pw98ogd0WUYU7S3yRTwLPNjgJ+f8+ADIGcHoMjrWFkb4+mAlGcRRVBfE8bvyjaXyBr6FPaIZQiNjNlIKAQghqbSFkyaPruigUCig6TkgIDMNAKpdLzGFRmkhR8IVephvjGB/JtAZQW5uxtLSECTEnv+54c2bKFiFFiV9fuYLl5WVk2lRx97Km1bQsuL4P0zRRLBTCciDf96HWyKd7YkfQVb1BBNW5u7oQE3mtEsh8Pp/4g2XoOlzP4/0k2mxc1SpaHRdxJqYd5xD3mgYBvv76a7x48QLn33kHs7OzLZ69t5CTa5LkpZ3IC+mzQC4dAi4d4s2iHvMW1Li9xNMGSaDoAt8+xxEAhwnA7lwBzowCZ8Z4s6hmLagbQCEEEKkFICJcRKT6IYa4Lkwp7LImh1IKX4oEIRZixsKeNElC0zQEnldBDuJEkKOuiLWuaWV1FZc/+STRa90tvNXkwDRNpLJZLC0u4nCHJV69yGcXCwUEvs/1EgAKxSLy+TwIIXAMA5mImAfoYUpBoLretxryd7KbY627tbW1hckDBxK9LpmfjIYRu42W+yW0EXli4CYwN2/eRD6fx6VLlxK/d11BNIS7W6g6N1EVYHYY6uww8N+dBlsvg91eAru9DNxd5oLETk/JADxe53/+P/eBPhPs9BgnCydHQNKt5dFVUbFQS5RYXe1QryRSNmAjov6/26j3jbuuGwoOGSHoy2ZBKQ3bLqfbqEpoBE3T4IhS0PDaIgSz3nXuKGGU7wWfjx3XfSNSCsBbTg4AYGJyEs9fvcJFtK6cZtiuQ+5mZy7GGIrFYjgwM5lMaNlpOw4PmbsuPNdFKp3mZiDonRgxcqE1r122d5aoR6IC0Tsi6ciBnPiocEus1mZ0Ay2PBEJ47/gWFsx8oYDr168jCAJ89umnbbUA3g00M0BqB+08e40IPRlMgfx8Bvj5DJgfgD1aB7u9CNxa4iWOSWDLAb6a538UAnZkEDgryMJkrrmhj5jDGjqxykoiRdlO/UXulYwamF0UIlYj6l0QBEHYEI4xFnZ4lPOp1FqVSiVYqVTbjdiqoek6iNRxVYEoCn8Wa6BuCSN4SkHXdRw+fDiRa9xtvPXkYGpqCtefPcPW5ib62yj3qvkAJ0gSGGMoiA6OhJCQGGiahs3NTWiU8goGRYHredwbwXFgmmZoydozciAEZtH8LwWaqn8l8oUCGGNdydcZkZLGXpCDttDCYrmysoJrV69C13Vcvnz5tSEGQHvNopIGQQuVJJoKcnIEODkC/G/Pgq2UwO4s8f4P91e4eVKnoAx4tMb//PIuMGCByfTDiREQa+czrIr7F1Aay+Rrh8FSEMCVG4gekgNpF+04DlzRywGMcUtlXQ/Tk4QQpFMplEW1gizXToIghKXeMnIQiRowSkOBZhRUVIYAtfUGy8vLmDlypCVDpr2Mt5YcyFrbiYkJlF0Xi4uLLZGDaNRAHi8cXG3kj2uBUopCoRCeJ9pQRP7fX19HoVDAwakpuK6LUqkEPwhQ2tyE73lIp9O9nYSFsrhR6qAe8vk8AHSFHIQNV3pU0tjOtx9X1Dk/P4/r169jYGAAZ8+eRSaTaeNsu4eukIN2nrcqT/y4ICO8BTVEC2r2YJUThVtL3I45CWzYwJV5/kdVwGaHgNOjPLIwluHPlqJAFbvwgFJoMdNl8hN7UnUvzMJ6AalxKBaLobjP0PUKG+WobokQElqfS4IghYqdQM6jgUg1qqpa8ewpNebwasvkis8F7oz4wc9+1tF17SW8teQA4F+yqqoYHBnB0tISTpw40dL7qwdIkk6BAaUo5PPhQpatUZGQzeWwubXFH5pSKbQhLYmqBtdxACD0He92BEGaQDG0N/Hn83muTu7CLkbTNCiEwGcMvu93tZ4bQHuLTrPxwxju3buH27dvY3p6GsdPngQVEaXXCXLyT/K6u0nGGh5DV0HOjPEd/j8A2FKBGzDJZlF+As2iAgrcW+F//l93gOE02Jkx4OwoyKQV7sRbheO6IEBPzMGYqBZyRHM5n1KoIhIaFUzX+k5kBMEmBI6wXmYi0tAuZGUGoxR+DR1SLe1BUKOEUWJzYwOU0jdGbwDskwMAwKFDh/Ds0SMElMYqoauOGlT8LgFyIDuXMeGEls1ma4roVEVBJpNBfmsLm1tbSKXTICJn57ku/CCAoig8fOc40A0DKctKfmEUOwAi0goKUKExiItCPo9cX1+y1xaBLrs0el7XyUFbjpENIk6UUvzwww94+uQJTp0+jdOnTvGoEpLN3fcCYSnjbl93QhG+ikOOZXkb6F8cBXN83Ptf/oDMsxIOrOu8dXQSWC0Bf/ME+JsnULIK2OE+BMeGwc4dABmJF0XyRUdHxlhIxmvZNHcKSil3QBTaKDleU6JEMTqHMlGdUI80WqKxki0tlAVBaJdkapoWdq1FnQZM0XsRmh/VIAcLS0uw0mkcPHiwrWvZi9gnBwCOHj2KBzdv4snjxzh27FjT99ULSxPCmxC1szBKBKJHAmO8BWkmk2moru/L5XhZY7kM13W3dwGEIJtOI5VKIQgCuK4bihY1TeMkoerhbAlCVyDNfmqF2Vo98ubWVlttmuNCNww4wqa162jDjrveqz3RPGlleRkffPABpkVlzV7I3beDxEsZ23zekogcNALTCO7rGzj+d44DJ08CiwXg1jIvlZxbA4LOz664FOTxOoL7q8B/ug82mgHOCq3C7FDdZlEyqmgaRvg9JCmoDiiFW6UpUBQFKcOAYRio1dI+zjg2TRNEUfh8J8SUcbox1oKmaXB9P4wIVCMaPQgEkQJ2Rg58SvF4bg7nLlzouolUL7FPDgD09/fj2Ows7ty5g5mZmabh927lrH3fR6HAldCqpiGbyTQ9j67rSKVS8IMAm5ubGB0dBbBd3mQYBlSh1C/bNhzhjZAvFKCqKizLat11jLGaYTcJQghUsUuIC0op8vl8V7sG6lJ3kIDlbCO0PT5qTM7lUglXrlzhzZM++ST8fuV5AOxuSWAbSJzUdCECkATW1tbg+T7GJyb4Z53I8T9/6yiY7QH3VrlO4c4ysNleC2olAGAQULkmLReBL4vAl08AQwU7OcK1CmfGQIa4xwcNAriihNFokLsnigIm2g/HhR8EnBSIhZsxBk1RYIiIZWgaV/W+VoiJjHTY5TI3cGIMqVSq5fGkaRoUxuA1cHaVlQuN9AZzc3OwbRt//Md/3NL59zr2yQE4K/zo0iX85S9/ifsPHuDM6dN130PRZFJrc6JyPQ+lIhczaZrWkn1wXy6Hsm2jWChgcGCAfy6xc5VpEkWkG9KpFGzbhm3bCIIAxWIRpXIZKcviXdEaLZiyCiHO5xP5vLgPbKlUQkBpV53FCCHQVRVMpBb2nKq4auxsbGzg6pUrUBQFX3z++Y6US7Oa7L2KpEsZ26UF3Y64vFpYgGmaNYXOxNKBdyeAdyf49/gyv00UHq/z6oUYUESAyic1onVuANxY5H8AsMksd2s80Q9MpKHpakOCHLW5jmMpLG3dIdIDmvCSqWXCVn3nW9VrGboOhRCUSiVu9iY0V62MKYWQ0Jq5HuTvZAlj9cbR8TzcvXsXx0+ceO27MFZjnxyAf/G5wUEcO3YM9+/fx7EjR+ranMZZ8FoNVwa+HxIDXddbVp+blgVTlOpt5fPoEx0NCSE7zV4Ib3aSsizYjoOybYf90cvlMizT5MrhqvCYFBvGnVBb9X7oZqVCFLquw5MljV0iB53sYeXYebWwgG+++gq5vj5cvny5pviqujTtdQCjNFxodjut0G0sLCxgYny8+XxBCO/yONUH/DezYCUXuLvCG0XdXgIK9VtQqxFrDEoAtdGteFUAe1WA8w3ATBXG1DBwehw4PQLUaBYlLq7StKrqXntCZOiL75UyBl3XkTaMxhUQCYxZTdOQTqe5F4LwS2jZBj+OWRkhdc2P7t+7BxoEeL+Thlp7FPvkADykzQjByZMn8eTJE9y5exfvvffejtc3jRoAYa2/7I3eDIwxFDogBhLZXA6242Arn0c6nQZDk77shMAS0QLH83h76CBA2XFg2zYM00TKssKUhBQbtoJWdgP5fB66qiLVZXtjXddBRIOXbqWHOsllE0Lw6NEj/Pjjj5gUzZOa9sV4nchBZKFJ7N7vQXJQKhaR39rC6VOnWn4vSRvA+weA9w/wZlHPN3lU4fYK8Gx9x+BSA8AnBFRlUJvIaVydv121A+g/LgE/8oZQONjH0w+nR4DDA7zMsxqyVBuA57q88kBUJzFKYZgmTMNoqy9Ku3oHTdOQSadDkzhHeLzEgdwANTu37/t8vKJSb1Aql/Hw0SMcP34c/cK19k3CW00OpD+2NLcwTBMnT57EzVu3MDs7WxHalw9A0wlNhPOVmPa5RSE+VETlQbuQ9qK+63JzJE2Ll1MnBKZhwDQMXhJp2/BFuVDZtmEaBizLaqs/Q6seB9kuVipIRHOGXStpbHOiY4zhp59+woMHD3Ds2DGcb9Q8Keo42dbZdgeJuyO2alPdIywsLABAhUakHRCF8C6P0wPAf3sCrODy1MNtkYIoeVBE9CBQgGaj2RXrpuFU/eL5Fv/zV4+AlA6cGuFOjadHgazoPVCj8gDg7oqGabb/nXZI7lRVhZVKoVwuw3YcqKoav2w7ZspEnieK23fuQNM0nDxxYs+1RU8CbzU5ABDujIMggKYoODY7i0ePHuHW7dv42UcfVby2lZ1OnF2zbJwEAJkOWxQTQpDL5eCvr2Mrn8fg4GDLDF7XdR52FyTBFSVDbrTCocXObXGrN7byeeQSatPcDLqud7WksZ2pLggCfPPtt3j54gXeeecdHGvSPCk6tl67tALefDHiwuIihoaHE29mRLIGcHEKuDjF7+WTDSi3XwGPlkDn8w3f66lAQDiZ1BtFGMoe8P0r/ocAwXQ/vNODcI72g42lw120qeswhVV7y58j8ncCThAVDqilchnZJlVe4TVExNW1UNGYKjJXbObzePbsGc6fPw9N3Ic3DfvkQFV5rWsQQBN58jNnzuDb69dxfHY2LK1LevrxPA+OzRXKSbUozmSz2NraCr3I22lDLXsx5LJZBJbFKxwch+fpCwWoigJDlCPFjSY0K2tkjCG/tYXxsbGWr7cdGLq+LZ7aA3AcB1evXsXm1hYuXb6M8fHxpu+pmNBeI3IQRg72QDvpbt21wPextLiI0w2EzUmAKApwdAjaoRzU4hRowQGelnkK4t4KYFeOb1fwFMPjQsZGoATwNMDTAX9tA/ibDdDfA6qlwZgZgXFqDOQ0j4q0kkatuH4k5yYL8JJGGgS8WZPQH9TtnRFJazU6u0w/KopSEY24efMmUqkUjhw+DDC2Tw7eRERFiUSEnA8dOoQHDx7g5s2b+PSzz0KG2RIEu67FSmWnMYCXEiXlCKgKw6TNfB6FYhETcRfbSC6x4niiaiKVSsEWNctBEKAsqh0URYFpGDBMs66+QZoiNWLn0mO9Vz3QdV0HGEMgIka7WZucz+fxhytXQGXzpMHBsAVvI3SryVe3kXQZ4168C0tLSwiCABMTEz05X6idSusgl0Z4C2qfAk/WQ1+FYCEPT8z2O1IKAgycDHga4GkMYHxqYBTQKJByAH3LB5YWgG8WePOBwwNgZ0Y5UZhqMS3YpFKgVRBCkE6nUSgWEQQBbNuuqWFqpQTYc7kYVBc9H0ApVlZXsbCwgA8//JDrgfbJwZsJ+WD5vg9IpzBFwdlz53DlyhUsvnqF8cnJtsRr9YRpJWlypGlIJyzAy2az0AhBwXXhel7zhioxcraqqoZlkJ7ncUMlz4MfBAhsG2XbhqppYe6xOgrSqGUsICoVWHcaLtWDrutgrgvHdRP/DuIuWCsrK7h27Rosy8LlTz8NIz1xBI2vY6UC0AWPgz1Ikubn59HX19dVt88owl0wY6BBAEVVQTTeghqzw8B/dwrewjrIvUVoDzeg3t4APF6axwD42jYpYGBglBMClQKGD+ge//cOUABzG/zP//sB0G8Cp0fBTo2AnBoBajSLiiLanTEpKIqClGWhJEySVE3bsfmSVVSKrOaqM4YCEYUAtjcUDMCNGzcwMDCw7YYoxN1vGt56ciAdBV3XBYQgkBCCifFxjI6O4uatWxiTJiatosbAK5VK2x0W2wj7N4OiKDBME7rnIS8qF2pCCCcb2ZVWgxASphQYYyFJcB0HvufxdEa5DE3TuHJZ16GIVrGKtGatgXw+DyhKx7qLVmCaZljSiKQrJGIsWM+ePcN3332HkZER/OxnP6vIZ7ZS5fF6UYNtd8Sk0gqdRlCS7IcC8JTCq1evcOLkycSO2QyybBiEIKB0ZxkypXAtArw7AfPyUQAK/AfL8O4twXu8CrpW4kOW8nSD4QGaD2itNpvcdIBrz0GuPQdUAEeGuKjxzCgwsfPZ7lb0S9d1mEHA+zCUy9DUOn4OklDVOY4biRrI+evFy5dYW1/Hz3/+c17e/YZGDYB9csC/eMFgvSCACoQL57mzZ/GbL7/Es6dPQ8vapqgiBFFBnhT3AWhqi9wuKKVIZzIo2zav/60VPYiYGbW7gyOEwDRN3ho6nd62Z/Y8eJIogN9fwzAaCv/y+Ty/Hz3cBRvCrS0IAvi+n2hTqkYaC8a2myfNzMzgwoULO8dBnDzsa2qdLBeERL7rPRg1ePXqFfwgwKEee+yrqgrF92vuxOWcA/AIadnzQA9YYAemwb44BLJpw5jbgn5vHdqDdcBLolkUgIdr/M8v7wGD1nb1w4lhwGgjlUcZ8NVz4NtXPLTx7gTw82lA2zmPmqbJn+0gQLFUqphf4piHUcZCTZKMPFBKcevmTYyNjWFsdJSnGRjbe2ZqCeGtJwdykSsLK85wyDKGwaEhHJyawq1btzB18GC83HSDEFVZ6AysLnZIDGQLVNMEBbCxtYWRqHOXVOcmuKgoisI9EyyL93GQ3dd8n0cWPA8KIdBUFbogCtFFbSufR18PUwoSuq6DAWE1RmKoc38ppfj+++/x9OlTnDl7FidPnGh7cX9d+yqEOeYkiHECYrakIwfz8/MYHBhAusdttBVFCdN3UQTCKt1zHGi6zj+rGJ+6pkHXdWh9fcChMeBzcFfFh2vcgOnOMrCaULOodRv4wzzwh3kwlQCzQ9xT4eQQMBrzXv2HWyBfPd/+/+MNsG9eAv/nD4FcZVUIIQSpdDpseW/bNtKpVM1URq3v3xP20rJzLwA8ffIE+UIBF0UVm0z/NbKgfp3x1pMDACE5cBwHlmFUTOxnzp7FX/7lX+L69eu4ePFi65OxmHyK0uhI07qan2KUgjGGXF8fioUCCsVihaUyE9fULaiqipSqImVZCHwfjkg7BEEAhzHeJlZRYIiIgqZpyG9uYurQoa5dUz2YhhGSl1RChkj1tClh86SVFXz44YeYnp6uewwSY7EKX/GakYPEfQ72EFzHwcLiIs6ePdvzc8voEw2C0I9AVkTZtg0wBkMo7g1dr0+GDXU7FQAAS8VtovAwmWZRJGC8r8S9FZAgABtJbxswzQ4Beo1N2PxWJTGQx3qxBfbnXwH/lw+Bocr0oCJSt8VikWulVLWiPXW9yC1jrEKICACbm5v46cYNTE9PY0DYYcs7sR85eIMhv1zX98EMg4ebxK4km8ng4ocf4utvvkEul2urPKlcLoeCvG7vKCQrzmYy3NZUuCYO1PB37zZUTUNaiC593+etVh0HNAjgUMr/LSo3uqG/aAbZCCZgrHuGSACKpRKuXrkC27bxySefYGRkpPEbYuyIX8dqBZmjBZIhB0ncgyQpystXr8AYw8GpqQSPGh+eILrREl3HcaAoCtLpdKxGbjswluF/vjjMSyMfrgpb5xVgo71mURIEPI9PVkrA3zwF/uYpmK5ygiBTEMNiwf/hVf3jLBfB/h/XOEGYrIxAyuZyZdsODZJqRYCjjdj8IAi1WLqmwbZtXL16FdlMZts5N/KM7pODNxiqqobmP77vQ9c0ELHLZgAOHjyIfD6P27duIZfLtdSz2/f9kIVms9muh4GlupYoCnK5HBzXxcbGBnKZTHMb3i5C0zRkBVEIhYyuy8uOKLd4W9/Y4KkHsbPpVuolCsMwwIRWohvkYH19HVevXoWiqvj8889jV2Q0C3e/lmmF19SbIS6ez89jZHgYVpctwAG+mPmi3bDv+/AF2fZ8H5quQ9c0qIrCFy7RdK3jsWJpwLlx/gcAXuUFUZDNolo/pILKyhziBTxKcWcZAMDGM5wk/LjY8DhkywH786+B/9MH3P45AsMw4AttkW3boRNtPffRqBCRUoqr164hoBSfXr4MVVXBxHVLmD34vncD++RAwDRNzryDIGzti0iTmFOnT6NQKODbb75BJp3GoDBHaoZyuRwevxf19FT0HVfFhLC5uYkgCLC+uVmpPdglKISEToyZVIq3qCYEVirFw6ERIRAhBJqmQRdEoRtkwTSMUCjaTtvXRnj16hW+/uYb9IvmSa3sMOL2Z3idllgaITSd3mfZCKxjkpHQ922Xy1hcWsKFCxcSOV41mCADcpGTXQIBhOJiRVVhKAqymQx0XUe5VIIirIS7Yjo1meN//tZRoOxz46U7gizk6zeLioJHD+qPdLJYBBaL8Y5V9sD+9TfAP3oPOFVpW22ZJgqi/FoKkMPolahYUIDQ+wTg5ODbb7/F5sYGPv3ss9AzISQVYjxb+5GDNxumaaJQKHAhivyyxe6NgE/C77//PgrFIq5cuYI/+qM/QqpJKNwXrJ6IOtikxU+1IK8XovRmYGAAK8vL2NraQl9fX2KGS21DlF1RMbEHQQAFwNjoKBhjYUmk5/sVuVP+1m2yoOt6ImRLThI+AN/zOre7Fd/vw0ePcOOnnzB54AAufvhh69faLLXwGkYOkixjDN319ghevHgBhRBMHTiQyPEYpeFCtoMMiKimJMyaJACqCtfz+Dwjnh3GWG+e+ZQGvDfB/zAAL7Z4/4fbK8DTjfpMt5MuZbUO5wVg/8/vgf/9eeDCJAB+v1RVhSaiw05EgExkiTWlgKKEUV5N03D//n28eP4cH/3sZxgcHNw+ibj/cvTtlzK+4TAMA0TUCYeueVWWoKqq4vKlS/jNl1/iypUr+PyLLxruZmXUwDCM8HgUXbRtFWLEaHQvlUrBtCwE5TLW1tYwEcOat5dwbBt6xDgp6rQoJ0ZP/F1BFsplnhMUKQhd09omC4ZhILBtOAmQAwbgp59+wsOHD3H8+HGcO3euKwv465xWSOSa91hPhfn5eYyOjbU9fpjQvQQRQiAXLiY6H0oSoImxXh0WJ9KVlVK4QcD9Rapsf3sCAt7l8SBvQY2Cux1VuLMCFL3ISxNmBwBIQMH+3Y9AyQd+fgiKqoJRCss0w81HRfmydIiNRC2Xlpdx5/ZtnD5zBgeqCF9ooASuq+r5/e0R3sxP1QZkSaMdBPA9jy80kciBhGVZuHz5Mn7329/im2++waVLl2pOdtEH3IxEIppZCXcCRimo8AGPYmhwEI7wPSiVSvWNkXoEEnEmsx0HZp0JVU6EFvg9kxOnJ0RXjNIwJUDAw326poU517g7VEPXQ3to1kFuNggCfPXVV3j58iXefe89HDt6tK3jANtNYeqFvVuxgN0roHuQ0EiL806uqVgoYG1tDR98+GHs90THcxgZiOicGGPQxMIuSUHdDp0CikjXBIzBcxwwxvaGc1/WAD6cAj44wL0K5jc5Sbi9BDzZ6MopCQPwP98CXSoA//2pMGJZHT2Q1ER25mWMIV8o4Ifvv8fBQ4dw4sSJHcdWhL8B8OaKEYF9clAB0zRhl0rwfB/yK681ZQz09+PiRx/h6pUruHnzJs6fP7/jNTuiBpHjdWu/I3fXalUYUdN1ZHM5bG5tYW19HZZl7XrjG2kO5dh2rLCcTCloohSUMcbDroIo+L4PFgSwgwBEkAU5GUjNQr3PrGkaVEJACYHneRXlTnHhOA6uXLmC9Y0NXL58ORFf/TDkWQN7Z88cH0mmFZIk2J1SlefPn0NRFExOTtZ9DZO9PKSAUJQcRn+vCHKrCkJQ7XTYDJI8eK7LiZiIrO0JyO9LIcDMAP/zd2aBLQe4tQh2mzeLIuVkm6Epv3sK9qoA/F8vAsCO6EGUXLueB9tx8P3336O/vx/vv/9+TdIY3TDuCfLVJeyTgwgkC/R9vyJkWcvxbnJiAufPn8eNGzeQy+Vw+PDh8Hc1owYSInoQp41xK6BiJwLUnnz7+/tRLBbhuu6ulTZGIaMHtuO09YDJMiNd05DCdlhWRhUC3+eTsW3DEeFWCCMmVUy88t+EEBimCb9chuu6LZODra0tXL16FUEQ4PPPP0/u3jYIncdxedtr2LOpkMhOsB3Mz89jYnISmqaF5Zpy/Ml28FSkBgCEEQKFkJAISM1AJyCRaJyh66/HrrbPBD6aAi4e4BVijzfCCgjyqnEL6rggD1bBvn4OfHRwR/RARlu8IIDnefjpp5+gKgouXbpUcx6tHrvGPjl4O6BpGlRdBxMLjKZp4QNXC7PHjyNfKOC7775DJpPB6ChXyNqiFXN11KBbkBOPDIvVqiFXFAX9fX1YW1/H5ubmrpc2AnxytMtlZBPoqSD1B3KnJEu9vGjYVlRDEM8LdwwyHUEgukMKQhd+902wvLyMa9euIZ1O49NPP010Qo4TZWoWag7RYRpCOutFm/xEIxvV6bda152Yx0FSlQoC7UbzKKXYWF/H1tYWjh07hrxw40OECETvj6IonJAKUtspGaiGQggnxkEAGMZrQQ4kaSfgGxxldhjs6CDwvzkBtmED//crIIV4lQ8NcWUe+IiXoEejB7KM2nUc3Lp1C6VCAZ9//nnNe8eqxj+wn1Z4q2CaJlxhpRwVmtSKHhAA7777Lgr5PK5du4Zf/OIXMA0DnlAM1x04pH4751ZB2XYhkAzb1iMkuVwOhWIRtuPsidJGQggc1+1KKZCiKGGTKGA7xxv+EeSBUQoWBGAipRAIAxTTMKAqSmiaIv9EdxOyedLo6Cg++ugj6LpeoSrvGI1Ed9WRgyb6hIrXdXA9USOj6vHb7MhyfO4oZZTXzpp3CA3P08PoQ3TsyEiAHCePnz6FomnI9vXBF1U1IISPF0WBoihQhedAbCLXJogYw4zS12rRkuRMURQwYRbHGAO8IBliACC/lcerBw8wMT6OXC4XRg9kauHho0dYWVnBxQ8/rNtNUxGi8ih62Syu19gnB1WwLAu2ovAHXda1NihBVBUFP7t0CV9++SWuXrmCD4UoqVnUQE5tndCDilAlYgi+CKkobcxls7s6icg+DL0oBYpqFqKglIa5YDCGYqmEwPPAVBWeKCcLBWti96coCp48eYKHDx9iemYGF957L/yuGzVdahV1e90zBir+yP9X/F2FvRLEl59HUdWdz1M10WCRlrpAaDwjxXqNyFCrkIsTY6wiDRAlBNV3Vl7DwsICxsfGkEqlQjIpOyT2GpIYAKgr8u0l4pZuR18n/60oCmiCYsXlIybu3rmDWzdvIp1KYXR8nKf/CMHq2hqev3iBkydOYLJBKao0xpNjVVVV9A8MJHaNew375KAKhmGAqSoC1+WWmjL83GAXZxoGPv74Y/z617/Gd99/j3feeaf5otth9CBo9L4GE1MqlYKVSiEolbC+vp6IcK5duK4LBbsr6pGLvfROADhhyOVyldGGyGJx89YtLLx6haPHjuHwzAw2NzehCr8EBoS7REUopMOWujER7s5FvXqtbzP039hr+fs6iJbYxkkrhCmLyDinkd/tGONygWkSQZGlgbLsV/oJeJ4HGgQVZcDy/NJUTBHRAEkAtjY3USoW8f577+26ME2W+QLo3KsjIcSe26peJwkCSaI7JAB2fBhH/w8XcZhSrKysYGFhAQuLi3j25AkUTQMD91k52qC6iChKZYUQY8j19++6sLub2CcHVVAUBbppgrou/IhyvVleMpfN4sKFC/j2+nV8d/06Pvn00+Ylg23WalM5CVYhruBrcGAAdrmMkm3zdqa7VNpo2zYYOGHptJwsCaiqCl3T4AonNcs0K9Teruvi2rVrWFtbw3sXLmB8bIyLzoSugUZz4ZGJhECUmQmioIqdpSQmJEIiwnvQhJS+dqWM0THb4TXXWnTCUjRKQSG8AShFwBhYECCQP6vx3oAxUJEOklUuMhUg/12L0Dx/8QKWZYVao92EE6nQUcVCttvPU1ywemP8UH97Ua9BCyxrAgMW8PNDwEney0RRFN5ueWwM5xnDrVu38GhuDkRRMDMz07Cyo9b8H9cl93XFPjmoAdM0eScv34+tXKeMIZfL4eKHH+LGjRv49W9+g48vX8ZQkwFUq4VoI4Rh1Vq/i0k0ZGnj1tYW1tfXkdql0kbHcQDGYJlm2Bt9t2EYBlcuV2khSqUS/nDlClzH2dE8qcKDwfcraqaZVKyDL06EMXhyMqwxeROxIEWjDnLSj0YjXjdEuzG2smiF91D8LSM40Z/T6KIfObaMrlSIJhUFCoTuQdxP6Saqqmrs62OMYf75c95kaZe/D0YpHEG0ZfvgXSUHLW56wnB99c+n+8E+PgRyZb7m+5iuAgeywIE+4EAOmMqBHOgDMxsLPSlj+PGHH/D48WOMjI1hcHAQpmnWvV/SWKr6eR3aA3b03cQ+OagBy7JQUBQuWKt6yOrllH3hrJXL5fBHv/gFrly9it/+9re4ePFi00ZNrailaRA03XnFmRT6+/tRKpXg7GJpo6zqsCwrVCvv9m5H13WgXOad2USnNtk8SdM0fPbZZzuaJ0k9g6pp0OXCFfk9jZAEmdeO/kwucBC7XCpIhPyeQ/IodQ+EIC9agBMhfoveN0koZPg9qggPf1/1OwAVaYo4/Q9kGD8UKGI7dB+NFEjnOdd1oagqyqKF8I73Ro4pdRVRwisX+yC66IvzEULChT1KoqKRGUkE5OcKn2XGQm1J3KjGysoKbNtuqQlbt+A4DgBAUxQoug5XENTXhkQ2IBPkH5wFToyA3VkGHB8YyXBCcLAPGE5z3wSBOIRItk5fXl7G2bNnQcV3rzWKGkRTCkAY7exFg63dxD45qAFd10FUFUyo16M+3ABqDmRJDnRNg2lZ+OzTT3H9u+/w1VdfoVAo4NTJk3UnHkK4IVCzaSmowV4rINMKTY4D8J1oX18f1tfWdq200bZt6LoeTmJ7IXqgqioMTQudF9fX1/HNN9+gv78fly5d2taSRBYSOXFUiAQjUAgB6rSKjSK6O5YkggUBfBkuj5SsBr4PRkgomOsINSbnKEkAgHye15zLRlnRhT98XWT3Hp1MCSFwPA+ubUPV9dAquyEYC8PNcsGXO3sNCBd7EiEArRLLHaLgCKmS97neMefn51tqwNYt0CCALciBaVm8RTM6Ezp3hHZSpY2+N0KA9yZALkzWF+iGL61vGgYApWIRf7hyBWXbxuXLl6HrOlZWVqAZRkOnzOpxQIA3WogosU8O6sBMpeA6zo6SRqB29ECWsMkFVtU0XLx4EdlsFjdv3kShUMCFCxdqLxCEQKkTWpNougC0sajmslkUCgXYto31jY2KUHkv4FQZIBGgq70n4kI3DLi+jwcPH+Lh/fuYOngQH3zwwXZFgrzXCROZeiSiQmPCuNOeLyINaWn3LMV28roiO/hoJKOiDFG+Ry7Ekc8kJ2L5PhlJoUGwnZ+PTqSSLMkFVnhHyCiGHwRQdR2GrsMwzYpoRkX0IhLVULCdZqm4H52SoToIyUKNFAgTxI8QAhoEePH8OY4cObLrmg/HcUIdi65pvN2wELLuCtp5JmK8p6LEseYhGkcNVldXce3aNaiahi8+/xyqpqFQKEDVdWhifEU3ghL1jrnbpLAX2CcHdWCaJmxFget5YatOoPbCxQBeCgdUDC5CCM6cOYNsLofr336LYrGIy5cv19QxNBz46NJOgERKG/N55HK5npY2Oo5TcT5Cutt7Ii40VcX9e/fwbH4ex2dnQ3vs3bquirSTCJ/LBlWmYSS/QEXD/YJAeEEAQgjSmQz6+vpaSj8AAEolqIoCy7I6UvZ3ixjUQ/Q7l6LExaUluJ6HQ4cO9fRaqkGDAI7oIijvqbzGXt8nAG0LrOMduvGxlarQfxTP5ufx3fXrGBgYwKVLl0JiQCmt6FlRTQ6iHW6rr6U/2qXxDcVrkpTqPSzLAlQVVJQ5NYLv+2Hes1ZkYPrQIXz66afY3NrCr3/96zBEW4EGk6zcqTVEdHfZAmTuTBW59V7CjtlXoVeQufFrX32F58+f4+TJkzg6Oxv//V26rp7vTUW4nsjyvUg0I2oGJcP5sRAxQGoX1VqOxNDiNc09fozBwUH09ffzxXiXSKNt21CAsDkTsB2x2Y0r6jp5FuOy1nnq/ez2nTv49ptvcPDgQXz66acwTJNrXoCQZOuCEPhV86wimu9VI9fX17VOjAcPHsS//tf/uuJnV65cQTqdxtOnT7tyznrYJwd1oCgK0tksGLaFcxLVuS0/EjWQuatqjIyM4BdffAFFUfCb3/wGS0tLO15Ta4pqqjMQqDhji5Pd4MAAVEUJSxt7Bdu2d7gj1qxh7yKieoFyuYwvv/wSy0tLuPSzn2HqwAG4jhO/D0a3JsdmOdnXAGG1QgciOZmiSBqtHLNYKmFpYSGsiZfhbAW9nUwD34freaBAxTMkn5+epxU6+W5aGcNsZ9fZejqBb779Fnfv3MGZM2d4EyVFgee6CHwfBHy+ZsC2v4kUpUbOVQsDXYwa/OxnP8M333wTuQSGP/mTP8E/+Sf/BDMzM107by3sk4MGyOZygKqGXdSiiA5HvzqlUGewZ7NZfP755xgcHMTvf/97PH7ypPIFVdGDtkKDbSwWsrRRUxSsra31LCRp23bNEHMzYVGnkCZDMo8cUIrNzU385ssv4TgOPvv8cxyYmoIqyJ7nxrNw7VqlRdUk9dp5HCDSkXEPXnMrO94njx9D0/UdVQoy9UfAJ9Vuf0rbtkHABdBaJFq5K2mFTqMnLb63Wl9Q/Vkd28bvfvc7vHzxAh999BFOCDE4ozTc6JmWxTUkjPE+F2LOCWrpaarOPdBFvcGlS5cqyMG/+3f/DvPz8/jn//yfd+2c9bBPDhpAVVUYwiBIlgtJyAUsqjfQY4SaDOGmePjwYXz37be48dNPFSxfCrRaDaHK17a7QPX390PTNPi+j62trbaO0QqCIIDrujU1DgTdW0SkCj1aWbC0tITfWpPUYAAAg3lJREFU/va3MHQdX3zxBQaEEtk0TYAQ2DHJQa8iB7vvBtEaov0Yut1foB3EJaMBpXj85AlmpqcbVp6Ez2L0T4JjQ3Z9ZdjpLirvb0/HSIefreUqkwgZqda8bG1t4TdffolCsYjPPv0UB6amwt85opW1qigwDYNX+kRSZ0BzcmCa5o5S5iRx6dIl3LlzB4VCAcViEX/6p3+Kf/Ev/kUizelaxb4gsQlSuRy8fB6u68KyrIoyLIKI3gCRhkdN6qUVRcF7772HXC6Hn376CYViERcvXuSRByFMpAl2nYuDaGnjxuYmctlsV0sbXbHgNhRAtlB3XvcQqFycAFQcUzZPGhPNk6L1zqauowTwckLRpbPZubqFWoLVvbcHr43ozq6TtEI3c9px7uXLFy/gOA4ON7DZrX8CEu7EOt3Th7vfGmWhMvXSq8hB3P4JjdDWuyMRErmQLy4u4quvvkJKdEhNRZxfaRDAFRs8y7IAQkI/EXkPPdGlsdFn6rYQ8YMPPoCiKPjuu+/w13/91xgdHcU//If/sKvnrId9ctAEqVQKRcNA4LpwHaeicgHgAwrYWaXQDIQQzM7OIpPJ4Ouvv8Zvv/wSH3z4YbhrrSe8qYe41smNIEsbA8fB8spKV/suOI5Tc+cjQQgBWrwHEtG+BPXezRjDnTt3cPfuXRw5fBjvvffejl0tURSYpgnHtmE7DrK72OJ6t0RmSSCpqEEj34FeYO7xY4yMjCDX5i6uOqLQThWS73mgYkNSi1hLoydpINXt+5UEYWvnCqXJE1EUBJTi/r17uH37NsbHx/lGq8rUSFq1a5oGTde5n4joxqpoWhjZadZVdbDL5CCdTuP8+fP4i7/4C/ybf/Nv8F//63/dNTOrvRfj24NIZTIA+IIWFacRQsLB1K56dXJyEp9//jkCSvHrX/0KN376Cb4QzLSEJHZVhGB4eBiaoqBs29jY3Oz8mHVgC5e8REsnGW/uE1rq1nkZpRTXr1/H3bt3ce7sWbx34ULdhUt2t/M8L74wsctIggj2EknpDbr6eZsce3NrCysrKzh65Egip5MjSWlRyGfbNij4uKy1aETdMXe7JDgu2rlOGaVdXV3Fr371K9y+fRsnTpzA5UuXdhADaWtOAKTEZiRMH4A7S0qXUWk2Vg+98De4dOkS/vzP/xx/+2//bXzxxRddP1897EcOYsDKZlHa2uKhqSrPfV+0+u2ktGVgYAB/9Ed/hAcPH+LmzZt4Nj+PCxcuYHx8vOX0QqfTp2EY6B8YwMbGRth3oRveB1Hr5HqIGtA0QrTbXrN75bkurl67hvX1dXz00UdN7W9lm2ff9+FWmTbVuJCGx+oIu1gy1ymipkKvKx7PzcG0LBxo0NK3HYT3RvyfNkilea4bLmqNWjLLioWuWignOB5bJn2EwHUc3Lp9G48ePQrnz75aFvCMhXONYZq8PBHgJmKEhP8HOOEIwOf0Wl402VyuJx0v3333Xei6jn/5L/9l18/VCPvkIAaIpsE0DJTLZV6bbxiVA1rU33YCVVV5P/GJCXz//ff4m9//HjMzMzh//nys5k9ygUxid9XX1xd2bVxeWcGBycnEJxnHcSqsk+uh2Q5IigvjlEBK+1TXdfHJJ59gOGbjFMuyUCgWYbsuTNEHohbqdZdLHDJy0P0zJQKaQFqh27vgRuPM8308ffYMs8eOdU1QGY0kADV0CYyFNsmWaTZ8bhTRXKprd0zcq90Yf4wxvHz5Ej/88AN8z8M777yDo8eO1X29IwiVQkgFoaIiHRy9jwrAG6TtQgljFP/+3/97/ON//I8x24LHSjewTw5iQFEUWNksz1tRCi/SyjlJUEqRzWbxySefYH5+Hj/99BMWXr3CufPnMTM93VOB4vDwMJxXr+D5PtbX12MvpHFh23bsiARRlG07X6kniCrgY9yXtbU1XL16Fbqu4/PPP29J/avrehhy9HwfRr0oUa8XsNdkJx6mFfZgpUKIBt/d/Pw8At/H4YRSCg0vQ/wtdQmSJLiuG5qhGQ2aBAE98DpImBjEfWrKpRJ++OEHvFxYwMT4ON57771t0WGN6i5GaVhlZlpWBbELgoCLyKMCc1UFGmgOuplSoJRieXkZ//bf/ls8ePAA/+W//JeunSsu9slBTCiaxi2VbRuO41SQA5nji/6/1Q6D1Y1qpqenMTY+jhs3buDbb7/Fs2fPcOHChZ6VtKiahuGhIayurmJzawupdBrpBLuQBUEQq/QTqBRv7ag8iIGXL1/i22++4fapdeyrG55f7Dps24Zr2zDqfQddjhyQNkjRXoBcpNq+3ja+85ZR57tjjGFubg7jk5M7xMjdhqyCAlCxyDWNtgHdu2ddGOPNyjwppXj8+DFu3rwJVdPw0cWLODA1tSN6W31dtuOAMcZL0que+YBSMBJxtI2SqRrjVFXVrjZb+t3vfoc/+qM/wqlTp/AXf/EX6Ovr69q54mKfHMQE0XWYlgXbccI64wqdAePNa8Jh1eJEWEvsZpkmLn74Iaanp/Hd99/jr/76r3Hm1CmcOHFiR3izGxNBOpNB2bZBCwWsrKxganIysfLGuOQpalgUtKhWZ4zh0cOH+OnGDRw8eBAffvhh27tX0zRhO05Y7lSzs2C3F7DXVHPQqTtiL9I19apB1tbXsbm5iXNnz3b1/I1Qtm0w4QzYSGsQolsuo91KJzS41s3NTXz33XdYXV3FkaNHce7s2Zp5f1mZIedB6aMCoCapC4IARNxTxhjUJves2ymFL774Ynf6YTTAHo7z7S2oug4lwkClP3d0OFVMMC2WITYKAY6PjeF/9cd/jONHj+LWrVv41a9+hbW1tZqvTXo3OTg4CEPXQYMAK3XO2RYobZq/pVW75GYtj6NglOLHH3/ETzdu4OTJk7h48WJHYW1VeLATQsJmNzvO2fbRW8PrRhFYh9UKvYiP1Lunc48eIZNOY2x8vAdXsRNBEMAV5CCVSoU9LxptBuT9SnKcMCDxdEIjBEGAW7du4de//jVc18Xnn3+OCxcu1BUEVs97cn42dL3mvEEpBYXoFaIo291M6+Bt6MJYjf3IQQsgug7LNOE6DnzP21ET26xzWD3EqUfWVBXnz5/HwUOHcP277/Dlr3+No7OzOHf2LK/bjV5DglAUBUNDQ1haWkKxVEJedG/sFJSxCqVwFO2kDqLwfR9ff/01FhcXceHCBd5aNwGYpglPVC2kaggTuz5xyu/2NbJP3uvuiBK1IgeO6+LFixc4febMblwSGIBSuQwQwm2ShdaAgefHCbi5T91nPsFoS7tzWztYWlrC999/j1KphJOnTuHkyZOxo4wEXJ8h+yfUqy6SkYOQGERQfSZVUTA8OtrOR3mtsU8OWoBiWVAcB5quw/e8ih3kjgEWc+KWboixXk94i+VffPEF5ubmcOv2bbx8+RIX3n0XwyMjLXyS1mBaFnJ9fdjc3MTK6iosywqblbSLmoRI+BTUC10ScLLSKPxm2zauXLmCQqGAjz/+GOMJ7vhkdYXs1BkVhvVyNx8Vre11JOGO2It6/Vr38unTp2BAzxveSLiOExoe1QqNM/DOgV1vstQjYuC4Lm7euIEnT55geHgYly5fRl8uF9tfRKYVov0TahHSqAFSnBL0scnJjue71xH75KAFqKoKahiwTBMFz9vRbwHAtk97zAHdqnCREAJFUXBsdhaTBw7gxx9/xJVr1zA5MYGjR450bRAP9PfDsW2UHQdLKyuYHB/vKExPKQ3DzNHOiFKlXQ8EPDxda8LY2trClStXwBjD559/jv5adc8dQAoTy1KUugsTxt7de9dGx1GDXogRIXQNFadleDw3h6mpqa5UJjUDFU2CJDGod/8YAMg2zYwlYjm+8yTd19I8e/YMP924ARoEeP/99zE9MxMu9q3Mj7ZtV/RPqIUgCCCb3DVLVSqEYOrQoZY+zpuCfXLQIlTLgua6UDUtbJtavUjEtbpljPE+920+zOl0GpcvXcKLFy/ww/ffY3FhAYePHsXp06eTn9CEe+KrV6/gOg42Nzc7shKNCojCBST2pezcySwtLeGrr75CJp3G5Y8/7pqyXFas+L6PIAgq+2n0CK9j5KCmgDMOerRrrb6XS0tLKBaL+ODDD7t+7loo2zYgFi8jRskvA8J5JNFx0cX7zwAsLy3h9p07WFxawtSBA3jn3XfDVADBTtLWCJ7nwXVdKISE/RNqwacUEFUM1ddTjaHR0cbGZ28w9slBi1A0DdA0WKaJou/Ddd26u/VYrLcNYlDRXIUQTB08iIGBAdy6dQuP5+bw5MkTHD16FMePH090YGu6jsGhIaytrWF9YwOpVKrt41PB3tvdFUbTC0+ePMEPP/xQs3lS0lAUBbquw3VdOK67Xd7Zy/z/a6Q5oJ2WMfYI1aNwbm4OfX19GNoFIZrn+/A9j4sQI82DYkGo7pUE7JO7ZcHMACy8eoW79+5hbXUV/f39+PjyZYxHernE3WBJ0CBAuVwGwJ0QG80BnuOAKEr9yitJsgjBwbc0agDsk4O2oKdSYJ7HQ32MwfO8HexaIQSNW3h0nkuNtpo1TBPHjx/HkaNHsbCwgLlHj/Do0SMcPnwYJ0+caH2SqYNsNgu7XEahXMbyygqmDhxoOb3AGINPaUeW0zKMeuf2bdy9dw9HjhzBe+++2xPRm2macF0XruvykC96kxcHUEEI9vZyyxEaILVQaRJFr+Ix0XtZKpexsLCAd959t0dn3wZjLFzkTMtqr3Q4srh1svOXab6kQBnDyxcvcPfuXWxsbmJkeBgf//znGBsbQxDRTbAWyS9jDKVyOfQ0aFbu6bguQGnd18mz9g0MINvF9sx7HfvkoA0oug6iqjBNE3lstx+uBiGkYdqg04kvyuxl/l7TNJw9exYnTpzA3KNHePDwIR7NzeHwzAxOnDiRSKXB0PAw3Fev4HgeVtfWMBpTDMkY41oBUbrZide+HwS4fv06nj17hnPnzuH48eM9253qur6dVnLdeLXnSWKP78Kj6LSMkVLacxL05MkTEFXFoV3YNdqOAybKfK02e5pEd91x+5PsPAhpak4UFwGlmH/2DPfv3cNWoYCxsTF89tlnGBHzRvW1KZFNTxzYth1aJGfS6YalnoxSHpUhZKdmqMp9tFnflTcd++SgTaipFAzf5y1Dg6BmS18CQLZPrblwJfDwyYmACFGSFOrpuo6Tp05hdnYWT548wf379/H0yRMcPHQIJ06cCFtDtwNFUTA4NISV5WXkCwWkLKupc2OUGEBcZ7u7fMdxcO3aNaytr+PSpUuJN8OJA9MwUAoCOI7Te3IgsNdD9QAQdGiA1OtPSBnD48ePMX3oUEeRrXYgm3sxxpBukDNvGSLNENtkJyGdgR8EePrkCe4/eIBisYjJyUl88OGHOz0DqqJhrZzZExE8ALAEMQDqi5Zld1VFUXbosqKvzqTTGEzYMv51wz45aBOaacIvFpFOp5HP51EsFpFKpSqFVw1sbpMKQxPJ8GUIMQjCnQfAbZCPzc7iyJEjePbsGe7dv49f/+pXmJicxKlTp9rOqaZSKWRzOWxtbWF1bQ2maTbUXlRPTKxFt0OJQqGAK1evwnUcfPrppxgeHgZr0J65W5CNuIIggO/7bYfN28JrpDlgwgtkr3dklFf36tUr2LadWGvmuGDYFiHqup6IboZV/btZGTDA55NO0wme7+Px3BwePHgA23EwNTWFy5cv17cEjsyFrTzHge9vp2BMs8KOvd5xbHGPdxADxkLfGlVV39oKhSj2yUEH0FIppGwbxWIRnuehXC4jm8mEvycR9lotTkx0MavKMdbyCVBUFYePHMHMzAyeP3+Ou/fu4Te/+Q3GxsZw6tQpnhpocQIfHBgIe02srK5iMiIoAhAu2rWIEG0jrbCyuoprV69CNwx88cUX29GKSGOmXoEoCgzThOM4sB0H6YQ0HW8SaIS09ZQ8tQEmnpsHDx5geHi4dvvfLsJ1nFCkm+pURBy1cY9ARhhZJIK34zUdEAPXdfHo0SM8fPgQnu9jZnoax0+caB5VxM75sRkYpVxnAEDXtB3C6FpzjiLdTRnbEe0LIiQ2nUphZGws9rW8qdgnBx1AEbvllGWhVCqFDZmiuaxwuNeoo070WrAdoaCU1p2MiaLg0PQ0Dh06hJcvX+Lu3bv43e9+h6HhYZw6eZIv8HEfUlHeuLiwANu2sbGxEaYrwjRCHbSaVnj+/Dm++fZbDA0O4tKlSxUdHQm6p6xuBMs04dg2PM/jjmw9cgCMlq3tZUQbLrUTJYprfpMUVlZXsbq6isuXL/f0vNLTAOBjqtNxJNOZdX/frg6hDmzbxkOhbQooxdEjR3B8dja+CJqxlnUG5XKZz3OKUrNsuXo+IITA9314ngcG7Igc+DJqoGmYPHhwb3cQ7RH2yUEHUBQFeiYDLZ+HbhgIggClUglaX9/2rljk73bk0pKe+ERNtMypxXn9gakpHDhwAItLS7h39y6uXrmC/v5+nDx1CgenpmItQIZhYGBgAOsbG2F5o24YTXfycQWJjDHcf/AAt27exMFDh/D+++9Dq0F8pN6il3l42e3N9TyUXZfniXsBubvb4wSh04ZLvW40de/uXfT392OiKgLWbZSFRbIiolGJoNm9E4Stk4hbsVTCg/v38fjxYyiqiqNHj2J2djZ2K/bwUtFaJNWxbXi+DwBINzCICgmCmBekNkHVtB16ksD3eUTBNDE+OdnS9b+p2CcHHUIV5UamYcDzfTBKUS6XkanqMy6ncclmWw2jxYEimrK0NKkSgvHxcYyPj2N1ZQV3793D1199hdu5HE6cOIHp6emmk3uurw9l20axVMLi0hImxsebOo9RNBfUUdE86fHjxzhx4gTOnj1b9z3S7azXnc0sy4LruvBcF9Qw9nccEdAOKxV6ifW1NSwuLeGjixd7el7P8+D7PhchRlKSHUFGBmK9tPUoQr5QwP179/D02TNomoaTp07h2NGjdZsiNUUL5/Z9H7Zwpk01KfWMirUZANt1AUJgVuk5KBMdXxUFUwcP9lyIulexfxc6hKIoMDOZCjMkV1jr6rpeEd5qWr3QIYiiVOgcWsXwyAh+PjKCjfV13L13D9e//RY3b9zA1MGDmJmZwdDgYN3d6tDgIBzHget5WF5ZwfjYWOPP2ESQ6Hkevv7mGywtLuLC++/jyOHDTa9fWi/3cr+paRp0XQd1Xa496JIzYy3s9SU3NEDa43oDgEcNstksDkxN9eycjLGwe6BpWYnpMsKoUox5IHxFk9e7rovnL17g2dOnWBX9Vc6ePYsjR450vJiymJbPjFKUSyUAvNtisyhL9UbMFXbU1SRGNmlSVRWHdqmPxl7EPjlIAFZfH7ZEO2PdMOB7HkrlMvpEi98dw75L4dJor4JOcvADIq+fz+fx7OlTPHv2DHNzc8hms5iensb09DQy0V0OY1A0DSMjI1hcXIQtBIqN/A9kvrAWSuUyrl69imIbzZOIaIzUy/SCjB44tg3Lsnq2U97rpYyhdXIb19lL/cjW1hZeLizgnXfe6ek9tUXZotKBp0EnYDLXLy3MqwhCEARYWFzEs2fPsPDqFShjGBsbw4cXL3Lzsw7ITEXkNGZ6sVQqhWWIVgwSzrD9jAS+Dz8IuN6g6l77QQAKYGJ8fFf6aOxV7JODBKDpOjTLgm/bUFUVQRCABgFs294hlgkfgy40SJFeB1EhWCeTbC6Xw9lz53D27Fksr6zwUsh793D79m0MDw9jZnoaU1NT0AwjzNcNDw9jZXUVxWIRuq5joI7qu14nyo3NTVy5cgUEwGeff173/fVAwH38eylmC02RhLCsV9GDvU0NtjUH7QjsYncqTQB3791DOpXCdA/L13zfhyN2sulsNnn9iEhnNkLUYjk6V6yuruLZ/Dyez8/DcV0MDgzg7LlzOHjwYCJ27IxSHk1q4Rl1HAd+EICAexDEGRuKSLEy8X4QAkNVoVWVm8v2zYd7XL6617FPDhKCkcnAt234nodUKoVSsQjbcaAbBjRVragdJoSEpVNJToCKKGWU55LMueNdGCEYHR3F6Ogo3nvvPbx69QrPnj3Ddz/8gOvff4/JiQlMHzqEiclJZDIZ+L6Pjc1NrG9uQtO0ivJOiVqT/8LCAr7++mtksll8/PHH7Zd0JWTi0gpSuxE9eE0iB+3oMHpFDIrFIl48f45z58/3tNqkbNsgwqUv6Rx3nHtXLUYsFAqYn5/Hs2fPUCgUYJomZg4fxsz0NHL1/AnaAJNVSpGQfzN4kQ64qVQqVsSC8IOHBEnqFPSqqAFjDDQI0DcwkHgX19cd++QgIaQyGZTW1+EHAdKaBk3XeXqhVEKuVp1vnVrkTiAntzByIH7OElwsVVXFwYMHMTU1hXK5jOfPn2P+2TNcvXYNhmHg4MGDmJ6eRjaTQSGfx8rKCjRV3VmHjMra98ePH/PmSePj+NlHH3Xcd0ElJHTn6wV0Mcn7ngenRsSoK5D16nuQJDBhkQ10UK3QA9y7dw+6YeDw4cM9S2W4jhM2Tetmx796n4aAEzcvoiNYW1uDpmk4cOAALrz/PkZGRrpyP3YIppuJkqMNlQwjlugx3BhFfua4LhiwQ4woqx6mDh3a0+N0N7BPDhKCYRgghgFq26BBwLs2ivp323H4JFD9sCW8w1WEW2K1Xl8BdvysUzBKYZkmZo8dw+yxY8gXCnj27BmePXuGx3NzSKXTGBkZQX9/P5aWlzE5MVHhoMiEZz5jDDdv3cKD+/dx5MgRvPvuu8k8pAmUarUKy7JQDAI4rssFZt1etAlp6CO/m4hWjbQaBejV5ymXy3j69CnOnD0LVVXhi4Wimwg9DRirsPtNGtGmbNXnf/XyJdcRLCwAAMbGxnDx4kVMTk5WVhkl7B1SM4rZ4PjVDZXiEqlqYuB5XmgwJTUFsvQ58H2kM5mwz8M+trFPDhICIQRGOg3HdeF5HizLgplKwS6XYds2z0vLnX0XrwGEAJTuSFkkaRJEg539JnPZLM6eOYMzZ85gZWUlDFE+e/YM6UwGi0tLOHv6dOgkKPPRX3/zDV48f47z589jdnY20XCyJB+92lkbuo6y6LXhSkLYZeyG+VMchLlsUUHTwht7pjd48OABVE3D0RiVMEmAgXsDSE+SronfJDGIhO5XV1cx/+wZnj9/DtfzMDgwgPPnz+PgwYN1fQkIhMA3CYJdZ5w2GrnRhkrpVKrpmJDizvBzi5+HegNdDzceMvXqBwEOjI+37M3wNmCfHCQI0zTh6Drv1GeaMAwDnusiCAKUSyVkstmd5XYyepDAIhZ1ogsorTALkuVNrEGXyDioRQwqrgHA6MgIRkdG8M677+Llixd4+PAhnj55gidPnuDA5CRmZmbAKMWjuTnY5TI++uijrnRAI+Cpi6BX1QvC+rYo3DJN0+zKebtqppUQ2tUbtOum2Cocx8Hjx49x/PhxaLrek/JXW0QVQUj37bYZQ7FUwvz8POaFjiCdSuHI0aOYPnQofndWseB2TBDqjdM6P69oqBRTZ6BUR2LFnOqIctGQjAli4HkezFQKwyMjdfvCvM3YJwcJIp1Oo1AoIBA2nYZhIJVKoVAocHWy49QuWaoqQewEiqrCp7TmQxfuBNpcUJoRg2poioLpQ4cwPj6OFy9eYGl5Gevr6/jq2jVQSlEqFnFcdIjshikU0PvqBcMwUBY7HkkS30a0a4DUK6rz8NEjAMDRY8d6cj5PdFykjCHbpXRC4PtYXV3F4uIiXr16hc3NTaiahqkDB/DBBx9gaHi4PZ1Th6XRjZ7tWkfc0VApxsJd8+hiM+R6HhhjFXoDxhhcz8OxkyeRyWT2fFnwbmCfHCQIRVGQzWax5fsoi1SCoqowTRO244TphZoDUe6YOlzEZGSiEdNv50HvJHRtGgYmJiagahrGRkeh6zquXr0KXddx79690IBmdGwMY2NjGB0ZSTwk37PwuxCZlUol2KLXRtcmHpFGCtMn3YCogZfjKe552o0c9IIceJ6HR48e4ciRI9sNeLo4NiQRBnjvhCQ6LooDY2NzE0tLS1haWsLKygpoEMCwLAwODGB6ehqHjxyBpqq7k3oSO/eG47/quqiwoGcANDF3xjoVahMEz/N4mkpR+H0X5/M8DyNjY8hms00bQ72t2CcHCSOTyaBYLCKglEcKLAuGacIVopiSSC90zQhJ5tQakQOgNbFRRHneLtKpFAb6+7GxuQnX92GYJo6IBi0rq6t8gltcxNzcHAiAwcFBThRGRzEyMtJZ9YIgXV2dHiPEzhTRAxqJIHX11Ki/qDJKQcX3R6P/lvdDpLRY5P+h130kZ10oFMDAS97kZB868QmCQiL/LpfLvC6dEC6UVRRu701I+HctUCFU7SYezc0hCAIcn50Nf9YtAscAlISrn9KCqK72wRiKxSKWl5awuLSE5eVluK4LVVUxOjKCs2fPYmxsjAtjSyUQQhIjBvL7pTHTktUli3VfF/k3DQIUi0VudKSqSMfwM5BGTvWuWeoNTMOoMIlTNA0TBw4gl8vtRw3qYJ8cJAxCCHK5HDaCIOzSqCgK0uk08vk8PM+D6zj1dw8dRg8kOYgzIcS1Gk6qX0F/Xx9830c+nwchBOVyGbquY3JiImz3XLZtvgtaXsbTZ89w7/59KIqC4eFhjI2OYnx8HAMDA23lshVwLUZXJoOq8izLNFEWRlh1o0UJnItSCj8IEIi+HoEQo4ZEIBISrohMyeuJkKaw9FWeQ74+SgCilwGASHIh/i93cK7ngVEK3/NQjnh8hOcSJKGaOMgeGd2asH3fx8MHDzAzMxPLZa9TSFEdY4ybY7X4uRzbxvLKCpYXF7G4tISSWPSHhoZw9OhRjI2NYXBwsOJ5cF13ezFn7bdgroU41TE7xlrjF3NvlipiECf10ogYAHyshf4Gkc2F5/uYFrbP+63W62OfHHQBoc6AUjiuyxuEiBBZ2bZRKpXQl8sBjQZ/mwLFaNvmhq8D9z8gjXbUrHHb5XYwODgIPwhg6Dry+Txcz6tocZ2yLMxMT2NmehqMMeQLBSwvLWFpeRn37t3DrVu3oBsGxkZHMTY+jrGxMWRj5gwJIT3TH5iGEQrQPN+v+IztgAqzliAIULZt3uzJ96FrGk8jidex6EIcGUOqXICjCzFQsesPq12wvVMEKlMy2WwW/X1925a78lz8hGEEQuZ5LcsKo1SUUl5JI15LhW1t+BnlzxmDpihQNA2qokBVVaiqmkiJ65MnT+C6Lk6eOLHjd/VC0+3C8/3Qzz+TycQS1fm+j9WVFSwvL2NxcRGbm5sAY8j192NychJjMpLWYDwxxvizjeRdNJttKGTFQOxohSQGEWvkuJoMpUlkwvc8uMLfQFomM8bQPziIdCaDvr6+/ahBA+yTgy6AEIK+vj6sra3BCQKYoo+A9OD3PQ+FYhHZeorhyK6uVYIQWijHjBw0Si/IyTpJKIRwTYFpwvE87oFQp4sjIQR9uRz6cjkcO3YMlDGsr69jaWkJy0tL+OGHH8AoRTqdxtj4OMZFGqJZ6DZuxKQTEOGXXxalrK2Qg2g0IKAUNAhC61iA7wz9IOAhY2wv/AohUMSuW40Rwm/rc4ljNrt++Xlrib2oSHEwxiojHZTy1rmiFM/3fQTYJj5E7Co1RYGqaVAEcYj7+SiluH//Pg4dOtT1HSNjDOVSCUyEtOsu5pTyMb28jKXFRaysroJRCjOVwvjYGGaPH8fYyEhLUQ7GGEAplC4p8BtVL7REDARBLJZKYa+VbCYTixhIB8RGKJRKYIzBMAwYInJARDpB1/WelBq/ztgnB12CZVkwDINb6vo+UkKYlslksLW1Bcd1oZZKSNWbpNqsYFBVFSCkJUMXhezs5Cgd7rrBqxVCkMlmUVpZQRAEWFpexvj4eFNlu0IIhoeGMDw0hNOnTsH3faysrHC9wvIyHj9+DEII+vv6MD4+jtGxMQwNDlaImuTuOGlzpFrTlIwUBb6/I0ISBWUMvu/DF+17o0QgPLbI4aqqClPXoQtbakvUf0c1AruNsBtjHWKiCDIDAPKOhJoHbJOHQERKgiBAIHLdlFJ4lML1/fDzqpoGTdOgiQhDvefl6dOnsG0bJ0+erPn7pMY6A7dlZsBO8x5Kkc/nsbyygqXFRSyvrMDzPGiahtHhYbzzzjsYHR1FNptti9QxGe3rUvWPOEnNOUOePy4CStsnBnGOXSgAhCAj5lgG4MDkZJj63Y8aNMY+OegicrkcVldX4TAWRg9kr4GtrS2ePxQRhZogrVssyx2jnFxr7chroeJh7yIxkDCEQEglBI7rYrVJF8da0DQNExMTmBB6Bdu2sby8jKXlZczPz+Pe/fsghCAlxJB9/f38774+5ERovJuQ0QPbtiuiByEZEH+CCJGTV6SqahhSV1QVmqpWTJye73c1N98JAtmNsZU0QCRHLclDVIQqowuSLMgog0y3uEGAsli0JFHQNC0c/4wxPLh/HweECK2bcGQpq+eB+j4WFhawtbmJjfV1bOXzocnT0NAQjs/OYlToBjr9LsONRJV9ercQjSC0Wg3ExOItiUEmZipBRv0afjZCUCwWudlUZH4dGB5GKpOBYRj7UYMY2CcHXYRpmtwYyXHgAJCBQcM0kUqnUSqXUSwUoBKyoyFIiBYFilKh7IrQdFxyAAiCIIRs3YZhGPB8HyMjI1heWUGxWISm6xjsoPmJZVk4dOgQDh06BMa4CczGxgY2NzexubmJZ0+f4p6on1ZUFX25HPoFaegXf5KuLDAFOfAcB3kgDJdXi//kYqbp+g4iEAsR8eFug0UiB3HRLNUjhYrV4zkIgpBkwfdBIdrz+j6obUMVZGFxYQGFYhEXP/qo9Q/UBLKaY3NzE+vr61hfW0O+UAhtkhVF4WNsYADTMzPo7+vDwOBg4g2XFEUBE2kahu5VYEhUaE5aJAaFYhFehBi00v65GTGgQYBCqQRIESgAw7IwNDwMAOhLsJHUm4x9ctBl5HI5OI4D2/e5376YOK1UCr4wyskXCsgpSmIuXZqmwRUharPFxY6JkHu3lxhd1+G5LtLpdFjiuLG5GYbLOwUhBNlMBtlMBgenpsKfu56HzY0NbG1t8c6R6+t49vRp2KQplUqhv78fA6JLW19fH3LZbFumNb7vw3NdOK7LfS5cN5ys5A5XNmzq1BRnL5ACiUCYZbUSOWiXjkrCYJom1zAIfYaMyEhx5P0HDzA0PAxN1+G4LvcgaeOeeZ7HyebGBja3tsKxFAjjMdOykMlkMHXgAIaGh9Hf3992iqAVEGyTsrBVdg/OKc8X91ySGARijolNDJqdQ2yiGGNcCOz7IISEFSKTU1MghITp3n00xz456DKkS2K5XEaZUmTEIJZ+4YxSeL6PQj6PXC5XW7gkH4qYNcaapoEQUhGujo1o6Vvr744NwzBC4V1/fz8vcSwUsLyywks/u1RmZuh62H4a4IsSpRSFQgEbm5vYEpP+06dPUSqXQ4fFXH8/BiOpif7+/pod4qggfI7rggYBmCABRNRba5qGdEw72KaoGgt7pc8CjaQH4oAhGRMnIlMKmgZEyMLc3ByK5TLOnDkTNj4ql0rQDAOG0G9ULzyMMRSKRb74C+K6ubmJsvAsIIqC/r4+9A0M4NChQ+jv7w9FkoSQnhCC6OeO+kOEJaXd7jIo0p5qHf1BNRilKMiqBEKQjlnBwU/VmBhEx09BpBSsVAqKomBsfByqiNJ0O6X0JmGfHPQAuVwOtig/s9JpqILVEkVBJpNBvlBAEAQoFArI9fXxHVethyFad94AmqaBRJTgsVk9tifpJNwaG0Gyd891oaVSGBwcRBAEKJXLWFpawtjYWNcIQhQEfBHL5XJ84oj0eHAcJ4wwbIkow9OnT0MDoUw6HUYXTFGuqmsaDNMMJ2pd16Gn07BSKbi2Hbq1vcmQkYO45KBb1SNy3D948ADTos2463nwXBc+ePphq1SC47rwfR/FQgH5fB5bW1vY3NzcjgakUhjo68OhgwfRPzCA/r4+vvhHPp8jHFAZELu0NinsMI4S193NKwg9FGLOEywqPgRvcR/7XI0vpIIYuI7DyxcJQSaVgplKoX9oCEEQIJVK7fdQaAH75KAH0DQNmUwGhUIB+XIZfaYJRYiSmAh/5wsFBGIHm81ma2sFYlYwEEKgalqYe437QOxg/10kCPKaPM9DSjB8qT8ol8tYXF7G2PAwMgmkGJqh3uJkmmZFlAHgk1xe5JfX1tawvrGBubk5nuOMHM80TViWhUw6jVQqBcuyeL21aMzV398fRnhaRcNvpE1/jKTAhFIeaC1y0I3rsG0bt2/fhud5yGQyuH37No8alMvc3tq2eamoWFw9SpHNZNDf14cDBw5gYGAAfQMDTVNzvu9zYsBYOJZ7geqIgYT0oOgWQZHVMeHxm8wTkhgEghhkhF1xnGhDo09Qy7ExLxw8TWFTPX7gAO/sqCj7WoMWsU8OeoRcLgfP8+A4DvKOg5yuQ4EwIlJVZLNZFPJ5+L6PUqmEdCYDlZCdE33MCgZV00BaIAcMqF3eJyeChEmCjBy4nhf+TFEUjI6MYHV1FcVSCUurqxgFEtEgNEPskDzhPeFzuRzS2SwOCvFjINwA/SCAIxYguRCtrK6iXC7zxjuRQ+mqipQgDynLgpVK8X/L/6fTsAyjtUhDDMvabkJGDfilxCQHLV6vLxrzyPsr/22XyyiWyyiLrpjy2Iwx3L17F6lUCul0GpZlob+/H+lUCpbYTWqaxr0XIik8zTCa6iYopaE9sm4YPc1n19IGyahWN7pbSkvkWt9WPe+DamKQzmSgKAr8GE3cFHCPi3qfglYR4UA4kgJAJpXCwNBQKPocHBxsSZy9j31y0DMQQjA4OIiVlRUewnRdZDQtVKurqsqjC8UiXNeFInJmdSMIcodWZwLQhHNeEOMh5JdQf4KWLopJTjXSUtgTbVklpFUyABRLJSyvrIAxhlyXm6M0NYQSvTJsxwk9IKAoMC0r3Fk22wnJrnmlUgl+EIAJt8NyuYx8oYCl5WWUbTt0EZQuhVY6jZRlhYsZEWV+6VSKpzMiLoKyvFGNuAv2aicLRBou1ZmIGbCjHNGP+hlE/kiiLBf+kiACvu9vuz8yxg1tUimkUyn09/VhYnwclmVhfn4em5ub+MUvfhErAuUJEa8j3CcD8Zyqug7TMGqS7HK5HF5Lr8rjSCOfjsgYTJIcUMag1iEG/LQ1PA9qEANVVWORV6WJ7qnWEQrC10DXdaSyWfQPDgIA+vv739ruqJ1gnxz0EIqiYGhoiBMESuH4PkxNC3eTmq4jlUqFHf0UVeV+AKq68yFppjsQZkieUGw3ejUDwj7zNSGjFQnuSHXDABgLe7ZHIQkCURQUCgWsrK2BMcYtp7uIWgRB7kYcYcMKSnkDnUwGRqRnQpz+E6qmYXBoCIZhgFGKvv7+HTtTxhivbhCLYbg7Fn9vbm6iWC5Xik0JCSM7stpEfpeEMZCIZ0KtP5rwUojaFFf/TrbQnZ+fx8LiYmjlLBd2FjFyckWfByY8CHxBBHzfRyAMnkLr7shONzR7wvbkL1MyqVQKo6Oj4f8lUbIsi4/1KqxvbOD777/He++9F4sYyAVe03Vouo5A9EZxXZdrYYpF/jyaZvi9O47DSyYZQy6Taav6oR00ak5VoRlKEI2IgTxfGOYX11Esl8OqhJAYoHkaqaHDax0CzygNjacsy8LI6ChU0bypF6nJNxH75KDH0DQNAwMDWFtbg00pIMqqJEzTBKM0XAwUQqCLiVOpTjM0iCCoqgqFEATCOKbWBBoibp5aviYBkiC986NphSgURcGIjCAUClhdXwejFP0d+CDEgbwLnsgjO64bOipqmgYrlYJWo5FSXGGWLhYfz/NQLpd3pEwI4U2bLNPEwMBAzWMUCgXYrgtLRA3CnXhkwfbl/4UFc7XbYOD7FaZCnuOE76WR14Tv9TxQxvDg4UPuSFhl0KSqKk9lKQq3C9Y0GIYREgy1ioBIEiI9HWr9XBXRr1bBANy4cQO5XA6HDx9u4wgIFxbLNMPqE6ljcGwbqqbBc5ywXK4XIWsZMWh0T8K0QlLRIqlzivFSqTdh4J0oJRHMRIhB+Lo6UOos/iEpqPPeorBKVhQFg0NDyGSzMAyj6/PFm4x9crALsCwLfX192Nragu37UHw/LLUBuAdCQClc10WxVEJOTJoBY1BQtStosKhrmsZz4b7fkBwEMXa9FUhIqGiIRbIRRoaHoRCCfD6Ptc1NMAADXXzgqQiFOo4TVm/omgYrk2loWtNK3jyVSvEdtghjt2yGQ7jzm65pNcVySZUGRrG6toa//uu/xheff16XtAC8jMz3PKTT6ab59zBqkOiVAq9evcLKygo+vny54x20oqqwUiluZiY6qlJKsbmxAQbeirwXOoOoj0EjJBk5aPW7IYQAioJioRBagFcTA6B2+o3JtEWdcdtsPOdF1CBlWZicmoKqqom4Tr7NeLNrqvYwstksUqkUoGkolMs8rB9BOp2Grmmh+xqV4VhWo1NinR29fCgb+R1UP3JXr17FP/pH/wgbGxvhz/7N//Q/4U//9E/D0LI8Z6fLj2EYcIVwrBGGhoa4ul9RQuOipMEYQ7lcxsbmJjzPAyMEumGgT5StNV3AW5iEVJkuIgSl6D1t9ZoTuJa4iBsyb8kdUTQJSxKUMdy8eROjo6MYF7baSUBaYeey2bAcVX7CglgMu4lWmhkRdE642hE0UkpRKhbhCQfQdDodK6LCKK1NDMQc0+yTl8tlUJGymjl8GJqmYWhoaF+A2CH2ycEuYmBggAvzdB2FYrHi4ZBNmlRVDU16wp2DMHepeJhqVDZIc5dGTZiqc+WXL13C5MQEfvnLXwIA/tN/+k+4efMm/tk/+2eczERAOiQI0kI5DgZEfbmmKNjc2sJaggTB9TxsbW3xJknC0rU/l0Ouxq4nKcgue9KDvy3UWzCEoLHXkFUbQDx3xG7s6ebm5pAvFHD+3LnkD84YSuUyFw+n0xgYGoKiqqCMoZjPo1QuJ2493qrWJ5EyxjbMtALf5yTJ96ESgnQ6XZNQVx+3bovnFq5BkrNMLoehkZFwXt1HZ9gnB7sI2XxFsyxQ8E5uFb8XncoUReFdxiIEQpbeVSzu1boDYYYku9xVo2b4mRD87/7BP8CXX36JX/7yl/jLv/xL/N/+x/8Rg0L5W+sztAvDMJqmFaIYGBgIRXxbW1tYWVtr+9wAT6fkCwUUCgV4YkHNZDLI5XIhKVAQb9fWaqmnoihhR8VQ8R4XTe45iVnumjTCnHDMXWfSqQ/P93H3zh3MTE+jv0Hqo11EKyUymQyvjsjluEBRVXkr9nyem/Ak8NnacbwM54c2NQehdqaF59p1Xb65oTQsy64XaYt+GkkMqi6gpbSY6zj8e/E8HDl6dDsiu4+OsU8OdhkyN6ZaFnzXDe1ZJRTxsBFReVCq+j2AyihCJIJACIGq62BNogfVuHDhAg4cOID//J//M/7kT/4EU5HeBDXRZgRBj5lWiGKgv5/fL5HbXFldbfm8TOwANzc3eec8xmAaBvr7+nbm8EV+vynaIEmWafK6cVGhkCR2I9cqowbSQrgRZGVCkrh79y58SnH27NlEjwsAtuPA8bzQGVMufkRRkE6nkc1kwgqhsm1z7UU79uUCcTUG1eior4J8juOmkIRAsyyaHMmOs2ojbU7kMylR7ZKYt1olQ3kRregfHMSBAwf2jY4SxD452AMwDAMDw8MghgHbcXYsmKqqhpasbg0CURFFiD5s2PY7aCUn+tNPP+HVy5egou9BHLQzGRm63tYE2tfXh6GhISiKgmKxiKXl5djhXN/3uRDUthEIf4m+XA5psYuvh64stYQgJWrjyy2EpMNr2UWzo1pgEXLQFAmTl2KphIcPH+LE8eOJ+w14rhua66Qsq2ZPDU3TkM1mkbas8HksFQotR4VkbX/bkQcRvWn17rarL3DEfTEtKzQ4anx5Na5P3K92zLA2NjcRMIbjJ040FMruo3Xsk4M9gnQ6jezgIBQApWJxB0GQHggA38UUqzQKEgGlfJKWddsNzJBqvf/Jkyf48z//c/wf/4f/AWfPncP//B//Y/wP0eIEY+h66GTXKnK5HIaHhqAqCsq2jeWVlaaLq+M42Mrn4Yl7kU2nkatnVV2FboXqpY8FCAkXoLhoWHfe2WW1hVa6MSbtuHnz5k2YpokTx4+39f56V+P7PopCNGoaRmMzHUJgmCb6czmYug6oKjzfR7FYjOWDwRirX8oXE622a5aRglbOGPj+dmSEEKSE62T0nDW9CKqjGoTbx7fzeRmlWF5eBijF4OAgZo8f76nZ19uA/bu5h9A/OAgjkwEIQVE4w0VhmibS6TQAnucrRkWKAlIkGAiGrsvIgTBDiqL6oVxZWcG/+lf/Cn/v7/09XL58GX//7/99fPPtt3jy5En8D9ECQUhnMnAcpyXdQRTZbBZDw8NQRd5+uU4EgTGGYrHIG78w7qiXy+VaLkFLQgW+86C8Tp6Ak5dYEZ6YfhO9Ti2EIe0Yk3SS1GB1bQ0vXrzAmdOnG4a0G6HWnQqCgHf4Axf3pmJGJIiiIJVOIyueVcpY8zRDAsQAEJsDxIvetEIiJDzP4/qCIAg1UbWeo3oEUZ4vTJu08XlpEGBjY4PPf4qCCx980Ho58D6aYp8c7CEQQjA8OQlTdPUrl0o7IgSmaYYpBk+0Oa4ugwT4wxcIpzxFWJZGJyeGyvxfsVjEn/3Zn+GD99/H3/27fxcAcOzYMbzzzjv4j//hP7TzYZq+ROYH8/l868cXyGYyGBkZgSYiCNUphoBSbOXzcFwXAaVIWVYo8mwZInpQ65N1sgxLVz4SM3oQ91w9JwctRA6SSokwAD/duIG+vj5Mz8x0dJyK/wsBMAF3G82k0y1HxjRdR182C03cj2KxWDNSJqsLOiUGVKQWmai4aYR2iIFt2ygVi9v6gmy2PhmrYRIWjVLQGq+JA9m9dn1jA0RVcfjwYRyMdFLdR3LYp1t7DKqmoX9kBPm1NZRLJXiuiyKlyET6w+uGgZyqoiBaPefrdHKUE46iKGCEIBCGO2T7BeFrM5kM/uzP/mzH9fzTf/pPW/8Q0fAi6i9muWwWBMBWPo+hoaHWzyOQTqcxMjqKleVlOLaNxcVFjI+PwxflVXLKzWWznZc41dm1sw4X4lQqhbznwRN/kijF6pbJUD2EZYzN0jQJmWgBwIsXL7C+toaf//znnZGh6PWISBNlDCohbREDCSkoLpXLcD0Pjm0jCAJYqVQYKUgiYgBE+looSkNy0I6+QFYEAIAhOo7G1eiExIexCmvvVuH5PuxSCVvimU5nMnj/ww/bOtY+mmM/crAHoafTSKXTSGezgIgQFKoiBKqq8ny56IaWz+d3NDGS0HQdYKxy19ILMZsoaat3Jk3TkMlmkd/a6vhU6VQKY2NjUBUFrufh2bNn2NzcBBXkKJfLJVb7TFDDFKjD+6kK334i1O7Nzg/E86jvFTGgEZ1L00qFNlT4tRBQips3bmB8fBxjY2OJHBOMoVgqwZfthTOZzq2IRd1/2rIA0ZFQegIkETGQoEEACJFt/UshLXkxBEGAonC9BMCbgDUR7wI7XRCpNG9rkxi4joOyiLx4jgPDNHHixIn9vgldxD452INQVBW6sGWVIXDf88JIQfR1uVwudFIsRlrVRmGI1rN+EMBzXVDGuu7oFkWjiaS/vx9bCZADgNtSj42Nwfc8FItFLK+uQiEkJFFJI7rjSyKEn7IsgPB+GE67xkhV6FVqISpGbHTOJL0N5ubmUCqXcf78+cSOWS6XQ2OudCZTt7tkOzCEw6IklqUOyx2r0UhvINMIraQTPDHnUKkvyGZr2nXXgzxPp9+5bdso2zbv2VAuw7As9OVyOHX6dEfH3Udj7JODPQotneYNaHQ9TBkElKKQz1dMKERRwiYjjDGUSqWapY4ypy27IBIRcehZMZysY676cS6XS4wcAHyRyuVy/N4Ju+VOLIqboWIi7nASJIrCw7VoUtooJ92OzpYsmrVqlkiqIZBt27h75w6OHDmCXALdOhl4FZDreQBjFV4GSUIVhF7TNN6HoFiM3Va9GajwO6llLETQ2niJ6gvUZvqCCEItU4Q47zBriwnGGMqlElzHAQGPHmiaBkVRcPrMGR4R3UfXsE8O9igURYE1MMCNjCITCmW810K01FFaLUs1da1SR1mCFbq3RURQQRD0bKEhonxJoq+vL3Se6xQlUeGhqSoOHToUmkctr6xgPdIrIklUpBgS2KVbpsknd8Yqe1lUnRNALDLSq9RCNN/dCElEDhiA73/4gS8SCe0eXeFlwMD1H12z3xVpl2w6HXakLIoOhp1CRg4qWiPLRTrm2KRCiCn9C3TTRCaOfwEqiUGnRJlRilKpBMfzQMC1WLL9/PThw5g5cqSj4++jOfbJwR6Gqusw5a5IhMd1XedK6lIpfIAlrFQKmXQ6jBBE+zFomhbuhFzRhhgQi5uigAmL5V6QhOg0JSsWOo0elMplHnpkjOs10mmMj49zxzZCsLW5icWlpcR2adVILHxPCNIij9pJmWflIbtPD8K0QrMwfALk4MWLF3j18iXefe+9xr4DMeH7PsqlEggAq5mXQbsQZDxqUpZJp3klgyhdbmd3LVGrUiEsG4z5/e/QF6RSTc3BIMyLZFlirde22m+CBgEKpRJ83+ebpHQahUIBIAT9/f1478KFlo63j/awTw72OPRUCoZY8EEIsplMOHmVymWURB9zCeP/396b/chxnmm+T+xLLrWStZCs4iLKsqQ2bdGrDHfbQN810P0PNND/wpzrOZdn7s5c9E1fN2aAM3dzAAPdQONMG545kiwvEilZsiRbIk1K3GvJyi32+OYivu+riMjIzMisLEqk3h9QKC6VGRGZWfE937s8L291VJXMMrnX68kbt2VZgKJUWvWK55ci4bQLFvnx8h0L8+J5HnzPA0tTOHy8bnYIBWtra5ndsqYh8H08fPhwbuOlSSxyh67rOkweQRhWOex9BdMKtQYuLUCkBGGImzdvYmt7e7qtdw3EwCAoSjaa+zR8+RkDKoYLKaqKRqMhBUK/pllSFfnIzTzDwsr1BY1mc7JI4tcy0a5ZdCjMUQCZJElWU+W68HhkRdd1/PDHPyZPg6cEiYNnALPZhC4KgfjO0nVd2YEwLKUQdMNAs9WCxgc2iToFk9cdJHFcOcZZQbGI6GmIBN0wTtSx4Ps+PM/LPAwcB1aFUU2r1cKZM2eg6zqSJMHDR48wqJhRcVIW6aLo2LacuzC2e+ErYp8sd46YnFZYxGfp/fffB0tTfOfb3z7xc6Vpij7/HGiaJg3GFs6EMLsQCJoQCHNGEES9gaZpM81HAICgor5g0uAkhkwUiDbMsczYiRFFEQb9PlLGYOo6mq6bdXYMBoCq4tuvvbaQ+hKiHiQOngEURYG1tARV0+Qvm2VZWU4d2cjhfIQAQGWdQhRFME2zUJg47ngCxluQ5MS9U2BpaQm9Xm/mxSMIQwz5zXScMBDYto2NjY3MYOqU6hDy4urEz6WqWX89shqSk9ZknGZqQXzulAmdCgwnFwcPHz7E559/jr/41rcmvtd1ELl1MAZVCINFv0Y1n084DWr85wfD4cxRIdmpMEPUIEkSDPp9abxlmObY+gLx/sn0gSg2nPD8jLHMqXUKYoDTkF+3YRhwebT08PAQUBTsXryI3YsXa18bcXJIHDwjqKoKmwsEgWGaaLZaUBUlM0Pq9eDl0gyi/cg0DNnqKAqG6oyVLZiXnKJIaLfb6Ha7WSV7zedOkiQTBozBsu1aw3Z0XcfGxkbW2qgo6Ha7ePTo0cLrEBRgIa+RbhgwTBOqomCQTy88ZefDaaQ1UwonOesojnHjxg2cPXsWuydwQgQgu3rEeTdcd/IOeB5mLMoTEQTRHjvLnA1FVaUHSi3bZP78svNJUbL6ApG+LP5wITIk/39BXSciMhAEARiyTU+Dd2r1ul3ESYLl5WWqM/gSIHHwDKEZBqzSSFJd19Fut2Urox8E2S8V32kqPA1h8/xhFMdSGEwqdpPFTKWbQEEkLIhCxwKvRZjG0POQJAk0TavteQ9k17W6uopVPrTJD4LF1SHkCsBUVV3IcCHXceTNXywYs3QrSE4xBVGnGPGkr8UHH3yAKI7xnRMuEiJikHDDoGajcRyKXwTlwsMZUDUNruNk4r1GtIgBspYh4b+T0+oNhGuoKGYWNsj5+gIxIVH8rgPzRZ4mJUdEumzA6xxUVUXTdWUBZBAE6PX7sGwb36bZCV8KJA6eMQzLgtloFBZnsesQhYgJd0wUxYqKosgKfoFXMdipiiqrZeC4JmERQkHkEfu93vFxJjgrBkEg0yLzhoObzSbOnj0Lg9chPHj0KAszL5BZIiGTnkPcMD3fz8yr5rhepYZz4bzUaWM8yavwZG8Pt2/fxiuvvHKiuoC8MGCMoZHr3V+E2FWAmfPsZXTDgGUYUDQNQ95aWXks8V7yBXysxwEnTVMMPU8uxuDDoRp523XGZE1B1XFmZZwTphAooh3bNM0swsnrqtI0xeHhIXTDwDdefhlra2szH5s4OSQOnkGsZhN6xW7ZME20eBQB4COKu13ZmiSGNpm6ng0kOjqqtWMWhXbjKpIZY1nOc06h0Gq1so6FUlFi1fFink5gjMG27bkqswWWZWFzczPzFkC2CB0eHs5dMV619C5ijKxhmll6QVUxHA7ljfrUO0pqMk0cMGBukRTHMd555x2sra3h8uXLc57hsTAQ59rKFd0tRBgs0AbZtu0szVFRjMqQCca802EqBqyNmakgOhEi/rtumCZawjgNuXoCIIt8VF/gTNdQObKZz2gQ74OqKGg2m3Bdt5CS6nW7SBjDud1dXCI/gy8NEgfPKHa7DbUi1KbyQrZmswlVzF3o9zNTpDSFYZpYWl6GZZpIuEKfqcd6zE1CwXE4UnY51LxZ6rqORqNR7XUgWiz5c3n8XDVNq1VnMA1N03B2YwPtdhuaqqLb6+HJkycLrUNQ5wwz53EdB1BVJEkiBd08z7hoOSGEIVDD42AO/vDRR/B8H6+99trczyFGL4tFtNlozD3auQopDBZYjCoiYmEQSDtnKQxKnyXx+1au+RBtgUP+u69oGhrNJhzHybxNcgWGVbBxQqEG5UmxYj6MiPiZui6t3/PHEOmEs5ubuHz5MqUTvkRIHDyjiALFyhsS79lut1oFZ8QuH86kaRpW19Zg2zYiPimux7sZpiGONnW4jgh31myHbPOOhbHHVVX4vo8oirKJbAtsO1MUBSsrK4U6hAcL9kM4qW2woqpw+SS8kI+fnnWhPw23xPzApUVESfLsHxzg008/xSsvv4xmsznXc4gFkp2GMDjFCI6u67BME6qmwfO84+maFcdK4lh2XYjzCYIgG+4kooa2LaMl+QjfpN9jdUJqbyI5ocTSFN5wiCGfcik2Ly7fvJSv4/DwEMvr6zh3/vyJJrUSJ4fEwTOMputwlpfHCgSxA2nmpjf2BwMMBgMYug6XT1hj4K5kPMIwLYowq/OatGiesKCJjoUJT4IgCJAyBueE6YRx5OsQUl6H0J+hDmHaCNuTdjGYliVnZPi+P9d0w0XXHUzrVJi3uyVJU7z7zjtYWV7GCy+8MNe5iYiBqLsRxYcLoWbh7ElwbFu2NwZBMPZ4wtlUVVUkcYzBYADf86RvQaPVkgOTxGtRh3k/qUmSIE1Tmc4IxahnXltgmOaISE3TFHv7+3CazYUZXBEng8TBM45umrCXlyfegA0ewrNzUYRerwdN06BpGizTlCF68X+TfBDy1DX+ERPhWJrK+oQ87XYbQ26ZWoUQBpqmnbjHfRLlOoS9vT0cnKAOIY8oCjzJkiLazZIkqXS6nIrILS+IaZ0K80ZMPv74Y/T7fbx2/fpcgkY6HzImW3rHneNcO/8FjZ0eC1/EbT6pM4yiseeZ8MJgMbm13J4oDJbqHHMRpHwugmg1VnnBdIOfS6Uw2NuDadvYOncOFy9elHVTxJcHiYPnAMM0YS0vj7/J8UXJcV20Wi1omoaUMURxjMDzEIYhLMs6/j9evFUnipB//rqI+oQ0N8+h1WqBgXcsVBCGIdIkgcV3HaIy/DQo1yH0ej08fvIE0QLqECYWd9ZAVVW4jYaMHiQzLlKKoiy0p39qMeIcC06n08Enn3yCl775TTl7YxaSOEav35fn1awxOKgu8n07xaiBtDJHZggkvA+iCuGcMoYoDDHo9xHwlJtoTxSGZ7WOmR34xOceBgF6g4E8V1EEbY0ZZJWmKfYODqAZBrbOn8elS5dOz6mSmAkSB88Jpm3DXlqaKBDAGHQeRXBsG7qmAYqCwWCAXr8vXRUd3jonogh1d6jz3mBYmko76IODg5EdTMztnhmy0Lo83ilW65frEMIwxP179ybOgKhdsX5CgWCZJjRNg8Lfu3kot6yxiq8UxwN9RMuqfBxfwJIkAVMU6RXARJ5afJ/xPUoZwzs3bqDdbuPFF1+c+briOEZ/MMhEkKbVmihYi6fYIVI4hqIcu5qWamBSbo0unAU1nkac55pPelUindHn9R2qpqHZbMoUYNXzi5ZFVVWxfeECLl26NHdtCbF4SBw8R5iOA7vdHr/bF7UC4AVKrRYc1wVjDN2jIxwdHVVGEYaDQTaUZdouVSx6uWPVxTAMrK+v48HDh4VCRlFclTAG27JGQpKnUWSXR9QhmIYBBcDBwQEePno0tnhzlnNR5qwGF+FmBVkVuD+hcLJgaAMgydd/iKLR3M/kv+TCnvvcFJ43TRELO12xGJUXUUXJ3PRqhrb/+Mc/4qjTwfXr12de4IQ3P0MW/RFOe1OZtODPkKOfmynHsEwT4O9bzMerB7zAeMiLFW3bzvL5M4yaXsRVSVHAC5oZYzBtW9Z3TLquTqeDVFFwjguDeaJExOlBfSLPGabrIk1TBL3eeOMbvohrqorVlRVpRezzkcd+EMDixUNizn0UReh2u4Wph2MReXVRsVxzt7W5tYUPP/wwc0zjcyRYmmbh8ySBwfuyq243hYWr1tHqI+oQut0uut0ugiDAvQcPsLK0hFarVViARG1FLRSllkd91eM0TcvmRCCbSmkYBjTRnobs9UhReu1Li/1JSXKdChOtk0s74XH/3+318NHHH+Pq1atYXl6e6VyiKJJRFJ1HDOou6pMk76LbFCsOMNk4iQsv0zAQhCE8zwMAWZvDWGYfPnPqhDGwE1xTwkVpnBPJqqbJlNe01NVhp4M4SXBudxe7Fy9iaWlp7nMhTgeKHDyH2M0mrFYr2xFO+kHefra8vCxDkYxlbmue58nWQjHASXjS9/v9mXLddW/SW1tbSNMUT/b25L8F3OpZNwx5fkk63Zlx0bdyRclmyW9ubsKxLGgAOkdHePT4caHlcWZhwgXczHUAipIZI/G2vP5ggDhNkfBIQDLt9VnAYiciSXrdgrfxJwMG4J3f/Q6u4+CbL70008PDMJTCwDCMmYQBgNHIQb4Vb6YzqY+oK0C5myP3Z5nG4V0HYRii0+kgEl4Bppm1OyrKdD+AcpRqzvcrHykQwsDgG4kGL5ad9lk+4uZr2xcuYGdnBysrK3OdC3G6kDh4TrGbTViNhrRVnYSu67AsC4ZhQNd1uI0GVJ5S8DwP/X4fhmHIWoQoitDrdmWkoS7TbtgtfoN59PCh/LeIiwMrV72s5G7cZS+FkcjCgnd8hmFgY3MTK7wWIYoiPHz4EIedDtI0nXvRnaXFLPcgWLqOhBer+XxXWfd4J61OF2O/q8y4ZuX999/HUbeL733ve1mrW836jSAIMtdIRSlM8zsRYtE+DfKRggpRIN0K+d/TNIXHx5KLLgRFUbKIFa8Z0nV9etRgXs8CTjxGFLRaLVlAyICpwqDb68HzPJzb2cGFnR2sr6+f4KyI04TEwXOM027DdN3K1kEJjx44PD8rWtPardaISAiCAIZpyiiCEA513ASlNwLGiwRFUbC5uYkHDx/KG6SIEkzcGfEbX7lWATi9osVWq4WtrS243G2u2+3iwaNHcqDNrNTqYuALSpokYEmClDEoup6NdubpoLiGkVX+mCdhrDPijMLji88/x63PPsO1a9ewuroq3zuVt72NO8sgCOB7HhQA5gmEgVio5x2YVPMgx88vom75Gg9xHhzxO9fr9eTEQsMw4PAJpJqqIo7jLKo24XfjpNJYiIJBThSYOVGgahqSJIGiqhOFAWMMfV6wuL2zg3Pnz+Ps2bMnPDviNCFx8JzjLi/DcpzMmGTMjU/huw+HT4QTY58t0xwRCWEQZL7ofEGI4xi9Xq9+FEGIhDG51q2tLblDSdM0q3xW6rvvST8FHFv7nsaYaSCLuJw5cwZra2vQNQ1JHOPh48c4ODg40XyGygUuTZEkiXRGzBcAmqaZFWsqCvrD4Yh17fiDLUgclN8bETKvQa/Xw7s3buD8hQu4dPFi9Tkqo/4QAd9Np8iGkZ1EGCg8LXJatQUKIKcn5oVAZQV/kmAoREEYFroQ2u02DMOQn+k4jsHSdKI4mPdTH8cxBv1+pShwuCgQ1ybMvSb9/g89D91uF9sXLmD73DlsbW3NeWbE04IKEr8GONwDIfQ8YMxwFhVZB0MYhoiiCL7vyxuuZZowDQMh//f84pMyBoVHEYIwhG1ZtfurFUBOLhS3lfX1deiahkePHmF3ZwfAyTz78ykIcQNTFaVQhHaStkIAaDQasG0bB4eHGPT76A8GGHoeVldXs5kIs54zPx9hTZxw69/8wlWelmc7DuIkkcWlzWZz6kJ3krY8UZsCjL4/dVMCcRTh7bffhuu62Sjmae8B33kHvi8nitq2PdPI7vI1TCwGnO9JC0WpoiNk2ucrTRL4QSDdBIHsdbV5ug84LkJMkkRGDRRVPRYHpWPPQxzHCHy/YEZmmiYsy5KCQKAoyvFnc5IwGA7ROTrC9oUL2NraIvfDZwSKHHwNUBQFzvIyDNsu7qaLPyR3KGKeej5dIERCu9XKihf5jULlve5hFCGJYwyHQ3RFKLTuTTfXVaHrOs5ubODhw4dZ2xabPqN+FvI3z7IZU7mlbxY0TcOZ9XWsnzkDXdPA0hRPHj/G3t6ezM3XJT+XIhY33wk/K65LFITFfPdZi3kL0/hnQy23q/EOk6kwhndv3IDvefjhD35Qa8AOYwyD4TDz3eDtnPMKg/yO90SIWoFcVEAUAteZX5ByMdfN2Qzruo5mo4FWqTUxXzAcxTGQptANo9CFspBIAf+8VkUKgGzRUHAsuIHqCIWiKPA9D52jI2ydO4fNzU2cP39+zjMknjYUOfiaoKoq3JUVDPb3kUQRkjTNcrq5hVnBcXGi7/sYDodotVpydyV2tKZpwjAMRFEEz/ehIzc/gTFojGGYJPB9HxaPJMzSZrW5uYmbN28izIVVF424XRfSG+VQr6jwzoW0p+0AXdeFYRjodDrZRLzhEJ7vY3VlBY1GY+p5pYyB8V52cbyqYkUZEcktbqKVbMCn3+maVjCNqmTOxVHaJlelFGrw6Wef4d4XX+AHP/gBmq1WreMNhkM5n6PRaMA0jJFcfV2kkdOMjxW/B+XPifg/sYBPe94kSRD4PsKccNR1HbZljRVKqqpCU1UkjEnxbRrG/KkQnprwg6AgYMdFCoBMGIgWyCRJJtY0+L6Pg8NDnN3awsbmJnZ2dhY+nIs4PUgcfI1QVRWNtTUpEMRuR4gE8DYkx3EQhGEWYgxDaVmcp0okiIUsjmNEXHyIEcN1RIJY8LY2N3GDMTx+/DjrCjjFsa3yuioWWyCXjpD/cCwYkFu08wJLU1Wsra6i2Whg/+AAURxjb38fg+EQKysrMCquRxoVlXbdQpCVl5pCuiSHoeuwbTsTd74PTdenRl5GFrsanGRM8/7+Pj744AO8cPUqtmuEmKMowmA4zNrkuE+/ls9588/dXCKh/Jj8Ljy36OfFWfkoIrwvIlGTqBIFBhfkdaInqqYhimPEcQxV0zKX0xlJ4hhRFGXzGnKft4miIFfLAxyLJICnFpETR2mKMAyxv7+P9c1NbGxt4eLFiyQMnjFIHHzNKAsEILthqZomawBUxuA6DgbDIXzPy9wBJ3QYmKYJ0zQRhiHCMCyIhKHnyZY/EZWwLGvijaLRaKDdbmNvbw/LKysL6cmfxjSRkKcQTs3VMYgIg8gxm5aFra0tHHU66PZ68D0PD3wfK8vLWURGPiGr1/EBFFIi487Ttm3EfAEZDAZoNZuTByDNsYNO+eJWEAc1Cvp838dvfv1rrK6u4tVXX518EMbg+T6CIMiKZrnrYdW1CHGbJsnI56Xc3ioLD3OpACEAleMfKj53Ffz9rhMpiOMYQRAU5iOYug5rxgmjGp+8mCZJNpyo5u8GS1OEUYSIp//kJXCDJZOPhy4jOizKV5cXsUruu+hK6Ha7WNvYwObWFi5fvkzC4BmExMHXECEQ/G4XId+RiXCtygsWLcuSxYme5xWGocgK79INUYiElO8cgjCErutIeLEVfB9+EMA0DNi8JWvcTWN7awu3bt2C8uKLp2qPXGYWkXD8o8rIApP3XWgvLcF2nCyKEIbYPzjAYDDA2upq9vrUyNEXbsC58xu3KDVcFz3e8TH0vIkpjZl33IxltRAoiYOKz0T5OL/9zW/AAHz/+9+fKPoYYxgMBjJ0bdm27MgYhwI+tjhNZT2BIsL8/O8iDSGeJ80t7LU/Z7nXnmFyqkmE7eMTioL8Ih1zIVnH+CiOY/l7nEc3DFi8LblKYBQiVqX/z39ehbeHEMmdgwOEUYQt7mFAEYNnFxIHX1NUVYW7vAzdNOF1uzK8KKMIigLXdaVdsGVZx6Hc3I2q6raoqqpc/EVqQqQfgjDMjGs8D5ZpwnVd2I4zkrve3NzEJ598gn6/j3ZVTrrGLvUklEVC1e5p/IOVkQXHNE1sbmyg1+3iiL+mn9+/j4bjSAfK44cr8nmkT0O55oB/H3dOiqqi4bro9vuZQZLvy7HclT8/4bnK5G2TCzf+KSLjww8/xN7eHn7yk59MPJeYF7aKz5fbaMAQJljifcjv2nNRAOHQJ9p2xec6f2blAspa5ARxrU6MKlFgGIXfo6koClTk7J25iI+TBJqmVaangPFpA03XYRhGFgkcs2DLlBmqPw/5qFm+kDgKQ+wfHsK2bexcuIDNrS1sbGyQMHiGIXHwNcd0XWimieHhIZIoOo4iMAaV+/cXihNz1FmadV3PTJMcJ7th8VkNPhcInufBNE04rotmsylFwtraGnRdx8HeHrY2N0ef+CmkGoCiSBALKJvSQTBuoVUUBe2lJTiuiyd7e4i5FXV/MECTp1I0PlMCQEGQMLEbVo7nVojKeLFQs5IgUTUNrm1nczM8T74XVcwSOyjYJssnmCzWHty/jz/+8Y949dVXsX7mzNifC4IAQ9/PKuJFfYGqyrx2/nj5OhAgV/chBEKNVE0dbwPpnTFFFDDGpADOp4lMw4A9JpdfcbCs6E88J4q/Z2K4ka6qheebljYwDGNy7U5F0WsVKS+WFV1KiqKg3++j2+1i9cwZnNnYwPnz52mI0nMAiQMCmq5naYZeDyH3qBciwbJtBHwHJIoTq5Ch2jE323xtguu6CMNQVvIHPAXR63bhui5arRYMw8Da+jr2Dg7GmjfJ5wZksdRpSwYFyMLnmLBYTMnha5qGs2fOwPM8HHW7CINAusc1Wy20m81K7wCBTF3kWjDzx8sf2TBNGHGMMIrQ6/fltDx5LeDV52kK8KK68nsoj8WPE/Hx2YoQMnwHyUrnoLBsuE+/18Nvf/tbbG1t4YUXXqh83RhjGHoeYl6zohmGdJ/Mn2tdFP46yyhHFROEQV7gTaw/4fUiInSfrwkxTBP2mFx+5TEn7NgFIfc3MHgL47xpg8JxAfmZnoR8r/k1p0mCztER4jjG9s4O1s+cwe7ubq3CSuKrD72LBACeZlhagm5Z8DqdzJlQVQEuEDzPm1icmA+FA5h44y2nHYbDIQaDgVzAev0+bNvGyvIy7t+/j8D3s5atMYwU6eF0RcJIXUIpkjDp2GJBBwDHceA4DoaDAY66XURhiH6vh0G/j1azmUVSxiws8vUWOd8J0QyXO2QmcQyPGyTl30Ml/17lohbynFHcyaZJAjAmozyiXkUpvwZ89/7rX/8almXh+vXrlZ8dYdyU8msQn41asMnGP6KAr+q1qeo6EK2I0yIpeUGQF6+qkg3Esmq2785abBtHkRzd3O31Zk4blFEnvHZlpAhlTKYRHNfFFnc93NjYmOlaiK82JA6IAqZtQ19fx4CnGVRVzZwTefSg1+uh1WpNv6nVvOnpuo52u41WqwXf99Hr9eBxBzyND5a5e+cOrl69KiczTqNQmY7TEwryeadFEsS5MFZZfOg2Gpk/wWCAo6MjRHGMo24XPd5p0K7oNhCvg7hhFwrvRk5UQaPRQLfbRcIH+czj3CgQBXFCuKhjjs0Yw40bNzDo9/HTn/2sYOgjiOIYQx6tgpIZOVX9XNVz19lpA9miOakbRIiCfGqmijRJEMYxojAsvI8KsrkHptipTyHfflkHEZ3wfR+D4RBhGGZdG5ghbZA/Pt/9s7rCQFGQ8IgFAPT6fXR7PaydOYMzZ89iZ2cnc+QknitIHBAjqDzNEPR6CAYD6IqCRrOJXq+HMAyz8HSzOfOY4SozH4GiKHInHUURer0ekjiG6zj44v59tJeWZKjUdhyYfILkNMSN+CQTE+scQ1wDkBWQVV3rtHkLjUYDjutmjnl83n23282KMnkkQYgEuTDmhviIf69adFRVRbPRQL/fRxgE0HV9NBpTY7FK01Taqqq5yEGVGLxz5w7u3r2L716/jqWlpZH/D4IAnudlNQK8TbFusd5IpGraz/P++zzjUiJ50jRFHEUIeWtoHlPXoZsmDF2f+tmSfiLAcaRhwmOERXIcRdIp1PO8rBiRp+ikYVLd1yCX7mJ1HiO6ELiwStMUhwcHSNIU53Z2cPbsWVy4cIHSCM8p9K4SlaiqCmdpCRpPM5hAJhC63Uwg5CIIdZdc0Ys+bREyDCObS+C66PV6+OjjjzH0PDg8nDkYDrPFTddh2nZ2kzaMsQuLWKhnqcg/CaqSWVHnixfrjM4Wj202GnBdN0s3HB0hSRJ0ul30+n20Wi00G43CrpmlqTThkWH2igVb5y2kosBUbTRGb+xT3p+Up5tUTcvEwZj00f7+Pm7evIlLly5hZ3e38H+MMQyHQ5knrzNqeZKwrIOYp5FvzStU3peOFcUx4jAsmBUBkJ+7ulEsUbyXf7+qriPlXQhxFCGO40ohGUURdE1De3m53k49/5rNIqaUnGMo/wqCAPv7+3CbTWxvbWF7e5umKj7nkDggJiLSDMNOBzZjYHz3GYUhvOEQFvcqqC0S8rumKYulZVm4cOEC7ty5g8P9fVy4dg3ecCh3cVEYYuj7hRu2YRjZ94rdXKGdDdkO/9RSDuL6eN3GtKLKMqqioNlswm000O/1skhKmqJzdIRer5dVg4suBZSuQ6QZKgSCbduI0xRxGGYFkM1m0WVvQosqkO1o9ZzrYlU6o9Pp4K0338Ta2hq+9a1vjTxe2CCDR4vsCRbPUtgtIOqjlgoUy+edL+7L/4+mqjBME6au1y4uFF0lk846iWPpdliOSgDHnT66riMMQ2iaBss0s+mpkxC1E7O+ZlwUKOzY8ZClKXq9Ho66XZzZ2MA6jxZQGuH5h8QBMRVV19FcX4ff7YL1ehADcDzfh6KqsEwTKTCfSBB/xeiNVFEUWJaF3YsX8dFHH+Fb3/oW1tbXkcQxgihC4PuIwvB40FBOKKiaBp0XaBm6PpKPFcfLdzrUbeeqg3heBUCC0d1i3TSHqihot9totlrHIiFJcHh4iCCK4DoOmq4LtdxFMq4gVFHQdF30eaX7gAuEvM+EMkG4idy9zjsVyjv6Xq+HN954A81WCz/64Q8L0ZwgCLLPDD+PVlXkYuR0T/Z+5KdXyg4K/ndxPWEUIQrD0cJCXkcwc6pjDGmaIuKRgTiXw5fH5BMWdcOALiIz/HFCtJg8jTGOss1xzRMviALguC3z4OAAKYALu7uyTZHSCF8P6F0mamO329BNEzg8RMoYPN5loKoqDF3PKvExo0jgiAWjvCjphoHt7W189tln+NOnn+LatWvQdB2ursN1nGy3F0WyYDLmhj8M2c4rLwwMLhbyIWFWPj7nxIWM/Fqq5iUAOE4DAKM9/BXkRUKPpxhS38+KDJMEq6uraORcLMU1saooAi/863MHQuGzkO8+GLfQSY+DisjMcDjEG2+8Adu28frrr2cTA8G7ETwPSRxnbYq6jobrVoblT5o+yC5Pkc+V/zwpyKIHwsrY8/2xhYVaedrkmPOsGoCV/xnxmYy45XH5PHVNy8TAhBkYERcGCo9glIVuPmWWT5tMpUIUCIbDIQ4ODuA2mzjLxyyfmeBPQTx/kDggZkK3bbTPnIGqqkj5UKU+b73Tdf24Jx5ziISKG6zBb5o758/js9u38c2XXipMGhRhVykU+I1UtHsFUQTGBxAlup5523tetkvjOzSNf+Upn/O8i9a4HVz+mURh57gcOEo/u7S0hFaziUePH6Pb7SKOIhzs76Pb7WKp3S5YXYsogKIoWZhZFC7yAkVhsSwiCPn8eOX15Ir48gRBgDfeeAOKouDHP/4xLMsCYwx+EGSzEfi52LYNq8IG+aTpg3yEQF5j7rljUeDH/TrSnGgTotGYMENk5DgVf07TNGsZzR2rjMYFqxADdQoZ/SBAGEUybVY4vkiRTHyWkYsYKwo838dhp4MoDHFmYwNnNjaws7NT+EwRXw9IHBAzo+k6WmfOAKqKw709hGGYLS6tltx9nkgk5I/F0wPnLlzA7Tt3pECoIu8AGHG3OOEoJ/r8wziGiiwikaYpwtKxND7pTtM0aSMNoHD+aQ2hIP3ma8xNkI/JHggAxzMAxvysqmlot9uwTFMueHEUYX9/H52jIzSE42RO9BRC6oqSCYRmE30hEPp9NEQXyoTUgnh9xG45DEO88cYbiKMIf/XTn2YdJ9xTQSxCumHAcZwRETavKChEekoRgvyOXYiCwmMVBbqqQjfN6YWFStGxUJAXAikXolXRA4WnJ8Rnc1Y74TAMs2LFOIZt25mAKZ1fbSaIgiAI0O12s2JfTcP2hQs4d/48tra2KI3wNYXedWIuVFXF0pkz0HQdew8eIIyiLILQahVaHE8qEsTM+sg0cf78eXz66ad48YUXpvZ0G7ldVsRzyiGvjk+5EVEYRVmOljG5aCVJUhAMqqpCU1U5+ljL5YLlOaI6BTFLL/vIY1HcmY5beBRVRavdxrpp4oi3PSbcIKfb7cKybTQbDTi2fZzKyPkyiBHI/cEAiYggNBoT3yNN02SaIkkSvPWrX8EbDvGTv/xLOHyaZ8SdDqFkMzrMCmfNciqnzmtSEC38u1g8hRCo8jQQIlPXNFlEWVkkKor55F951EEIgTTNev7HnKOqqlJgTuqgqUsgogZcWMzSuiipIQr8IABLUxiGgZdefRUXL16sfM+Irw8kDogT0VxZgappeHj3bpa/5gJhpLgQRSe9/I58GpZlIQgC2bnw5zt38MKVK7Utk4VQcAGEUZS1qJXsZsVNn59U4bzSNC2M2lUUJRMKQjDwBWEEpb77XB3K+W0lVyOgahpWVlawtLyMIbdiDsMQge8j8H0omoaG46DRaMibvshTa5qWpRh4seNgODwejVyxgApzqiRJ8Ku338ZRp4Of/OQncBwHvV5PPrdpmoXJm+XUTJ3XpipCIMP2PBpUZSylCzHAvwrvJ1B4/8X/JWmazSgIQ8Q8MjBuPoOCrFBXvPfia5EFrTG/Nj8I4DpOZTpm0uPZJFEQhugeHSHw/exzmqZYWV3Fd3/4Q+pEIACQOCAWgNtuY3N3Fw/u3MkWFx6eHncbE1XuDJDGMJNueiJXnSQJtre28Mc//QmXr1yRZjwyt1zjXE1uLyuEglhoEMcj/vIiwlB1blU5Za20WAgHukUsF1W5biFI8kujaIFsNpsIowiDfh/D4VAWHvYHAxiGgUajkc0u0LRsDkEuxRDHMYaeB9dxirt1flyDp2R+97vfYe/JE/zoRz+CaVkY8vHfqqrCdd3ipEnxPDNcq/iMpLygL+GveXnHryB77aUYmLBIMyBrLU0SJEIAxDFiLgzGnU9eAIjo0aKEAAOyz3IpleP5fmZYxaMd1oSWz9zJys4M1BAFUBQ4to3tCxfw0iuvUAqBkNAngVgIbquFrUuXcP/WLWmJ22g0Jj4mH00Ajiv4q266pmkiCALs7O7i/oMHuPfFF7hw/nzh5pf/c12hgFyBV76YbJzdbjm8n08dJHGM/KOEsY1YSMTOUlFVqHwRPUkRniweFAWHxycpr8/k0QTf89AfDOD7PqIoQqfTQafTgcOjCY5tQ9f1zEVxMEAURfAURdosx3zhFOf67o0buH/vHl67fh2Wbcv5BbLgsPy6TbsYUXHPmDQCEtGBqtdcK0cG8sfiqQAhQlM+ZTTNiYIgDFFFOY2kjosKLQD53h2fuPw/0YXjeR6cRgP2hKiBrG+ZUKMShGE2fp07UgpH0larha1z57Bz+fLCxA7xfEDigFgYbqOB7cuX8eDPf0YYhlBUFY7YfdZgUtpBRA+WWi2sr6/jj598gvMlcZBHhMxFeFUW401A7ApF2D1fyChEQ3lvKRYuWcR3/B9IcRx9ADAyOU+eK1+QgGxxKn+NExDSrrlUnV/eoauMwXVduK6LNEnQ6/cxGAwQ86JBbzjM2kNdFw3+NRgMEPIuA8dxkPIoiaZp+PCDD3D3zh288sorWFpelgWHNhcYdRCvS8rz+OIr4SOBy9cpIgJCYAlnyDiOZdGpeI5pXR8iDSGKTnUuBsTrfVqMvIMTzlF0eRi8o6Zq3kReFIi/lxGiwPc8KSZtx8Hy0hJ0XcfWuXPYunDhJJdFPKeQOCAWittoYGN3F4/u3kUQBEiSBK7rHpvsTKiCFxTSDvyGpiiZn3xgGLi4u4vfvfMOHj9+jI0JFq7iVqlUhKFr5bvFopRb8MrtagnfoZbHJitKNp1PeBjkjyevjy9kLE3lznzSuShKZsus5BYxcfwkSWQBYDn6kh/apOk6lpaXsbS0BD8IMOz3Mw+CJEGv282KGC0LpmWB8VZVRVWzfDxjuHfvHu7evYsXX3wRm5ubAJAVHJZC3iLlkiZJ1jZY+p5HLG55UyVVRFdEoSgXAvkUx8RuDhGhyQksjX9P2Kh506IppAowGnGaRMxfd9/3MwdJ2z4+13z74oTnDLjFuS9SPTlRYPCixp3Ll7FG3gXEGBQ2bzk1QUxgOBzi8RdfIPQ8KMhEgxj0M28eXuHjd3u9Hn79m9/AMAz85U9+Mvc5ysjC3M+Qka+WF5EGQVhy3hMoABRNO87ll1rx+B8mnhtjDN1uF1CUkSLQQldISTQU/o8XHQ49D8PBAHEUSdvdJEmgahocy0J/OMSNGzcAADs7O9nAHb6jFeIoTZJs4c2lAsQuXn7PXWd+4Zbf8/n8MSJg0sKf/7dxhGNmF5yUwut9gtvqwPPQOTxEkqZoNpto8FkadcyygiBAr9+HPxzK91yKAsPI0hiahstXr6K9vDz3ORLPPxQ5IE4F13Vx4coVPLp3D4NOB/1+H7ZtV6YZ6ooFMWDIME1cvHgR7928if3DQ6ytrMx1jkrpu3SXy92E6wgIVVVhmibyjV8iFaHrembExOcrMB42Z4CcdjcP4lxFaDkVkYO8yCg8gBVsokf2BIzBtixEmobA9+H5ftbuGcfYiyLs7e+DAVhqtbLx2p4HTdfh+b58fD6doSC3+PNBTfmIgIxmsONZDiLyoeYW+XxthqzZOMGOX4zNnvcZRh5XFcE4gTBI0hR9Pv3Usm05d2JclCRNUznd0gsCII7B+GvrOA6WWi0Z1WGMwWk0cOnKFdhkakRMgSIHxKnCGEPn4AAHjx4hiSJomoZGzqp3rucE0D06whtvvQXGGP76r/8axikVjeWPOU44TBrgxBhDWCp+S8HrK7hgyBfM5b/nizXHMej3kTAG13Gg6/rI4i+n65XOSXwvRynyaRDP99Hv9fDwwQMcdDoAgI3NTSy12zAMA5ZlwbJtOKaZLeS6Do3v/sVOXgiG/OKf/3Ph/54CKWMjbaxlqgTASRb8OohnPzw8lNGg1bU1WBVeA2mawvN9+J4n/Qnyn027JArAGKCq2Dx3Dpvb21R4SNSCxAHxVAiCAI/u3UPQ64EBWb99RZFVPoowKaKQpCnu37+Pt99+G+cvXMD1116T7XJKbtF5GuR/gWQhJL9Zp8hSC/MsLmKnL8Y9S9HAd79IU9l6aNl2VkhZunYRWZDGVCKlkO904KZAotAv5Y6LURTh1q1bePToEdrtNlqtVubSZ5owTfP4uVUVpmXB4Z0K+Za7/O1l0syGp0XEUz9fhgAoU45KDQYD7B8cIE4SLC8tFfwGkiTJogNcEAhBJTwuHNuG6ziwHaf4GjMGp9nExcuXKVpAzASJA+KpkSQJ9vf20NvfR8InzLmuO37XjckLfBzH+MNHH+EPH32E7333u7iQq7oWxYxyp7q4y5gJBshahEJ6IpdTz38X3RXlWoRKt0XGMPR9hL4P27ZhO07xMeJ4pZB/+TmEUIjiGL7nZV0ZSYIPPvgAB50OvvHii9je3oaiqgh9//h6FGWkpkK4TQqR4HDL3wK568tHXmToPH/9484/928KY8WOlIqfFWfoh+FIgerTQojG8kAoIPPcePzkCaIogttoYHlpKesm8bzM7yAMpa8HGIOm63AcB47rwuJCrYyqqtjg0QKCmBUSB8RThTGGfr+Pg8ePEQwGmWlPo1Grl1z6IeT+LQgCvPWrX+Hg8BA//elP0Zrg7lZokTzBNcxKwv0OTuNXLQgCeMMhTMuqPRynbMscRxF8vuhDURD4Pn7//vvwggA/+P73YVsWGIBmq4UkjtHv9zNnRVWF47pI4jgLc/MR2qLTRAgTXddhWhZs/lXVlvc0SPjI5KeJFC252oqq83r8+DGCMARDVq8TBAFi3g4sRJPOBYHrOCPdIcWDMrjtNnYvX4Zt26dzYcRzD4kD4kshCAIc7O1h2OkgiWO4fAdUl/yN9qDTwf//v/4X3EYDP3799am99mKMcXkGxGkh0gDxCQoQxxFxF0Rd19Fstcb+XNkKmTGGiIuCfIGe73l49913oes6fvT667C586HKJ18CWSRk0O/LiEGTT+QEICd1BkGQTRMMw8K4aMa4J4IQC7Z9aiZDeRhjiCbYIS/sODiO2ExqtRTESYKHjx9nroVheCyUeZrHNM1MEDQa0Gu8TqqqYuv8eZzd2lrA1RBfZ0gcEF8aaZqi0+mgd3iIYDCAqetwXLewaNeBMYY/37mD3/z2t7h69Spe+sY3ZraBle19+Ta/BZKkKZKcIdLCnpf7EyiqiqWlJQA4Ds1XVNKLAknhQSG6CkzLwt7eHt595x0sLy/jhz/6ESzTlEOULMuCkRNvaZpiMBxKP4OR3SwXBIwx+L4vTX3CIBgpjtRL1sdinLGxgMFF8nUS0ZsFv/4ymsXz/1WkXIhFeedHbt40GA6lvXWr1YLF51HYPEIwy/U3221cuHgxSy8RxAmhVkbiS0NVVayursI0TXQOD+H3euh1u7BtG2aFBe84FEXB7u4unjx5gk8/+wxL7TY2Njezgkeev2aKAiW3gy0jwr75HL+ywMiCgqwGQgzDWQSivx+KUlikJPnOCm4ZHASBnBchagNMw8CfPv0UH37wAS7s7OD6a69J8yGx+OeFAQPkuOfhYIAwijAcDpEydhzGzo3udhwHDl+wkiTJhILvIwgCRFGEhPsOBEGQO3XGnyZrg8wLB/Fl1ByBLEyPTioMysWy+TZMMachiiJEQgBwMSANqjgisjAcDuF7HhTGsL62hvW1tdGCwhqoqortnR2c2dg40fURRB6KHBBfCcIwxOHhIbzBANFwCCVNYfKitrqRhDiO8e///u+I0xSvvfYaGq47knMdyfuKHV+NiEHVJMm6t3HRsgjwOQXTfu146kOe84Rq+qOjI6Rpina7PbLTzIsCcZ2qqmYCzDTB0hTv3riBu3fv4pvf/CZeeukleX0iKgFFwdLS0th5E6KtDoAsMq0UYRXnnyRJNgUxZ1Etpy3y45UfVTBSEuOR+ZRMISJE1IEh+1yIeQt1Ee9VoYCQX1N+95//kn4NGO1EEOOWhaAJwxA+j940m00sr6zMLEAVRcHa+jo2z52DUWcoE0HMAIkD4isDYwzD4RD9fh9+v49wOARLUzn6t443wtHREf79F7/A5tYWrvCCrIL97IRj59v7Cja1oz8s/1gQDJOKHUX7IX8+sfCJx9XJT4+j1+0i5ouMcCyMowhhFGUzLvh5aVwUGLy6PQwCvP322zg4PMRrr72GnZ2d4+tC5u/vDYcwTBONRmNkCmVeaIVhiMFwCCAbl9xoNAq2zeXXog6MMRl+zwuGiE/TlHMUxHnw1zHfoSFqDERKp+pzIGcTANIdcpI7pVj0xdXlXwdd16EbBgxdh6brcly4+OyK6Zie5yHwfZi2jZXl5ZnSB4qqYnV9HRvb2/UmNRLEHJA4IL5yiDz1YDDA4OgIoechTRKYug7LtjNv+Al8+tlnuHnzJv7iL/4Cyysr2Yhi131qPfYy54+ceMBoxCBZUP5bDEnSdR2qphUEgWh7E5ECQb/Xw5tvvYU4ivDDH/0Ia2trI8/b7/cRR5GcnVAWB4XWTABRHGPAOxlURcnMrsrvVc5P4aS+AvlIQz6EnxcUMgoixAFyraKA9HfIX9M05ERILgJ0LgKm1blEvNMjjiJ4vg/TstBqNCZ3HuRQVRUrJAqIpwSJA+IrTRiG6Pf76B4eIvI8sDiWi51hGJU3cwbgV2+9hSf7+/jed78LwzCgqioazebMxY6LRFSwA5A9+VVzF2o/X5oijCL0ej0Mh0OYpgmLp1F0Vc12raY5smg9efIEv/71r2FZFl5//fXR0dqKAqQpOkdHAGNo8XRFWRyIa8q/oik3ZhLCp9loQB/Xulj2MlgA4jVlueJPkVpA6VyfpiGTiKwI4SsiCtPGmjPGoGoa1tbXsXHuXEHgEcRpQuKAeCaI4xiDwQCdvb0skhDH0FRVThAsL/pBEOD/+x//A47j4NVXX80K1xQFruN8aX32YAxJ6ddN7KDTnAVu3sUQpZ2tqCEQle8KMgOdwPdh2Tba7TZM06wMU0dRhD/84Q/47NNPcebsWfzgBz8Yu9jEcYx+r1fogqgSB9WXydDnI6EBwODjoMemGUafoPqfK/4uzJPEcasKD/P1Hk8bxliWQgiCrFMkiqRYa7fb4wUKrw1ZWV3FxrlzFCkgnjokDohnijRNMRgMcLi3h6DfR5qm0BQFpmVli2JuAdo/OMCbb74JwzBw7do1mKaJJEmOnRm/hChCPk8uEAKhXNWef0wYhgjDUP6M+Dld1zOBEIYwDAPtpaWRUDkA3L9/Hzdv3EAUx3jl5Zdx5cqVysVapAp8XmRomiZcvrutKw7ENfncGEkg7JULxYr5209OHDFk0ZWU/8y0EctyFkXF7SzlMyyeNlEUYchTYjGvkdB1HUmaotVqjfUtUDUtEwXb2zISRBBPGxIHxDOJ2JEdPHkCr9fLCs8Yg8arwkWvvOf7ePPNNxEEAb773e/Ctm0Z8nZdt3K+w6meNzB2F8sAGQ4XgkAU34mFkTEGU6QLeKFbkqboHh1B4V0FssJeUeAPh7j53nu4f/8+tra3ce3aNTS4k+LIYpvLxfe6XSRJko3aNk0526FcqFmuOyiTxDGG3JKZ8cXRcd1swuKcr18ZMS56XIppXJfFacFYNgI75K2ZInKhctHTbDZHIzu8LXVpdRWbJAqIrwAkDohnHs/zcLS/j363i4RPQBRFbyqyYrT3bt7EYaeD73znO1hdXUXE5wcYPIrwtGoR8ousGLUsDZJ4v3/Md5oKjhdwUT8wrrf/qNNByli2I9V1pGmK27dv44MPP4Shabj27W9n8xGm7L4VRUGSpugdHckWRjmQac5FljGGIAzhe57c2Vuii2SO5xOCJOEFnpNuYU87pSA8H8RETVVVkXDrbFVVZReH+LwpyDwkVtbXsbq+TqKA+MpA4oB4bkjTFIHnoX90hEGvh9D3j0cQpyk++sMf8ODxY7xw5QrOnTuX5ez5jbrBd8inAeMpg1QY5fC++JTPMqh4AKAoWQtcTbOffr+fDe1xXfi+jxvvvouDw0NcunQJr7766sQ6i3LIXqQURAsjgBOJA0GSpvCGQznfQNU0OWp6VsSEynKKIj/D4GlGDVLehhtFkRw+paqqNHYSxYdykqWmob28jNW1NbSXl5/KORLELJA4IJ5boiBAv9PBsN9HxI12/vSnP+HW7dvY3t7G1RdekAOHFEXJrGsdp5gLrmhzGzFDKvkb5IVAkqaVznwitSGcClVVhaZp0FRVugLmK/nTJJlY0Od5HobDIe7evYs///nPaLVa+M53vlPZolimnBrodrtIkwROoyHnXdQSB8KJcsrxyrvradM586RTIgXF08l5S4i6hVqPrI+wox56nvRGcHjqKgxDpGla8NpwGg2srK1hZW1tLlFEEE8LEgfEc0+apgiGw8xYyfdx69Yt3Lx5E2tra3j55ZcRx3E2EY8XrhmGMVLcKMk7FY5zLaz497wAENbEmqpKm+GpiEK9MdGGe/fv470bNxCEIV7+5jdx9cUXa1kLlym7IspaB5w8cpAn5S19ge9LXwTbccYO35pFFAiSJKl0V8x3ggC52gk+QbHyPRY23DgWUyEfLpWkKZCm2UAp20bg+wh5ZMh1XbhcEKyur8OpOTmTIL5sSBwQXyviKILf7+POrVt46803YTsOfvTDH0LXdQwGgywsjGxhMQwDlmlC0/XjhSnXNpf/nkflu38hBMT8gzyMsfkr6Lmdb8p3re+//z4+v3sXyysr+MZLL2F7c7N+22CJqpQCsHhxIIh5wWLC7YcN7mGh6/pcgkBwWikFObiKT7MEMmEjzLlEC2fKGDa3trC5vY328vJcQo0gvkxIHBBfW+59/jn+9ec/h8oYvv3tb2NrawtpmsL3/WzUMFCwb1ZnsLidhmy9m6cQkjHs7+/j1q1b+OKLL6DrunSDTJMErWZzvPHQFERKwS3VYMwiDqQVdc1jMsYQBEHW9scYkKZQNS2brWEYcwmdRbcvMsYQhaEccc14Z4xl2zANI5tf4fvQDAPtlRVcunQJzhSDI4L4KkPigPha0+/38f/+9/+OB59/jvXVVXzj6lXs7u4CwKmLhFmjB1EQ4M7nn+P2rVvo93pwGw1cunQJu7u7sEwTfT5e2bHtuarex6UUgPkiB3W8CQQpgDSOs1QD7zgRYXzTsmBVOD2OfV4sLmowSRQYuo4gCBCEIRzXxfLqKtorK1hdXV3YqGmC+LIgcUAQAO7du4e33ngDtz79FG3XxdWrV/HClSvQdb1SJJjcZ+CkpEkyOXrAGPb293H79m3c++ILMMawvb2NS5cu4cyZMyNdBp7nwTAMNBuNQipDTGQUVPkTiGFAhmVJLwT5eJwsrSBy/Sz/NW4QEreFzofuWZpC0/Va0YRFRA1SPuApCALEaQqFtyJatg1N0+S46Wa7jaW1NTSbTTQaDThzjFwmiK8iJA4IIsfBwQHefvtt/P6992DrOq5cvIirV6/KFkFRk8DSFKqqSqFwkmhC1QCmcVGCnd1d2GOsdOM4Rq/Xg5qzPC4jWv1UjIqDcSkFYM7IgTherpBvVuI4Rsh35/wCJkYTxByFeRZoOc0yDBFGERRkhZCaosByHGiqCs/3wRhDa2kJS2traDQaaDabZG9MPHeQOCCICobDIX7729/id7/5DZQkwe7ODl584QUsLS0hjCJEYXi88DEGne9qTcOo9i6YgEwvpCn2Dg5qRQnGPc/R0REYY2jzYUnl/x/naBiGIQaDAVRVrfT8TwEwbuYj6wnY8VjjSYt/fuDUvEyMJpgmdN4Nko7rIJlAkiQIgyBrPRSFpmmaTVo0TSjcxElRFCytrmJpdRWu68oR2QTxPELigCAmEEUR3nvvPfzqV7+C3+th++xZLC0twW00YFkWDL44GYYhc+yGSDuMyZGHYYh+r4d+v49er4det4sj/neWprWiBOMQZki2bcNxHPnvk4QBkEUNkiQZeZxA1ATMyyIEgmAkmgAAjGUjsZF1iwixoKoqNF2HqiiFVIQUG0GAOIqQcqMqANKCG8giB6ZlYXltDc12G81ms9r+mCCeM0gcEEQN0jTFJ598gt+//z4ODg/ROzpCEkXZ4sPdDBuOA8dxYDsObJ6313QdPjco6vd6OOr3EfP6BQBwHAetZhONZhOu62J5eRlra2tz563zEQCRWhCiZdyvehRF6Pf7UBQF7Xa7su3uxOJA+DQssoOAL/BRHCOJIsQislE6rhhspagqGDenCnjkR8ytsG0bTqMB27YzjwvudaFzoddoNDKbbWpJJL4mkDggiDlg3MTn8PAQnU5Hfj/Y28Nhp4NBvw8kCTRVhWkYaDebaLZaaLdaaC8toc13oXk3xpP09efP66jbBUtTtJpNaDUq/Hu9HuI4Hhs1AE4uDsS5ncrNhi/yYqhVkqbZJMQ4RhRFMg0Ui2JSy4LGDYvcZlPOoxDDujRNK/yZogTE1xESBwRxCiRJgv39fYRhCE3TEAYBIt9H4HmIw1AWMxq6Dt0wZKQg5QZHJ2EwGCAMQ2lLPIk6UQOgWhz88n/+T7z44ovY3tqqfW6MWyyf9BoL58a7ExTGkPCiwiiOEYUhNF2H7bpwGg0YlgVN02AYBlzXhc07DzRNow4DgihB5t4EcQpomoazZ88C4L3yUZT18AdB1gYXBAiGQww8D2wwgK5pcsiSwucqyOWKL6R1FzDLsuS452leA2IwkGmaI8Lg448/xr/8y7/g9p//jL29Pfwf/+E/4Pr16/L/P/vsM3zx+ef4+7//+5qvyvE1zCwQ8j/Lp0QCWf1BHEXZdz7V0nIcNNttOK0WbNuGZVnyi6IABFEPEgcEccooiiJbHoEsqiBEQhAEWaW87yP0PAR8IJGqaVAVBZoIb3MLZjEXQCke4PjPvHNCURSkaYooisZOm4yiCFEUyZw7APxf/+k/4f/8j/8RQCYcdnZ28Fd/9Vf4v//zfx55/PXXXsN/+a//dSZxAGRdDeI6Cn4EpZbHvHQQHR1JkiARKYM4BuNjt23XxVKjAZtHBIQYMHJRGYIg6kPigCCeMpqmZQN5eMg/H1WIoijbCYdhFl3wfQwHAyiKIivvNU3LIg2qmlXgi4mDuYI/wzDg+z6GwyF0Tct+LjdEKIljDIZDMACWaR7v6HN1AdeuXcO1a9cqr4EBeOWVV3DU6eDu559j58IFObhIPF6cj+iSqOqWEMWC5X8TIkB+8aiAoqpwm03YjUbWOsoLCE3TlIKAigYJ4uSQOCCILxnDMGAYBlqtlqygF7v6MAxxdHCA/sEBUsaQ8uI6IQhUPtxJURRoigJFRBz4vyVJgm6/j1azeVzXkCTo9XpI0xS6rsOyrIJngxgxLZwMFQBxkiARfgxcYGi6jldefRXvvvsuzp8/X/A9AHLDqcTfj/8ju5Y0HflKkiTrKGCj45UN28bmuXNwub+A+CIxQBCLh8QBQXyFUBRFVs6LzoH19fWst19EE6IIURAgjuPM7z9NkURRtrjyYrw0SRAnCbzhEAAQ+H6WXlAURNzsR9c0WLYt2/mgKDIdIVIXQlCoqnq8WOfGF1+/fh2/+MUv8Dd/8zeZGOD/LoRByucRpOI8+XdFVbOJlYYB3TBg8JoLTdeh8AiJaRgwuIeEiApQioAgng4kDgjiGUAIBuS6D0RNgdhxV335vo/OwUFW55AkYEmShecVBYZlIeRFi2JhNwwD3V5PRg8ULhhWlpYQhiE6nc5xGkBRcOXKFfw//+2/4cmTJ2g0m5mI4EJD5ZEMwzCgilZB3p0hugTEaOvyl6ibIAjiy4HEAUE8o6iqOtHTX6Qo1tbW0Ov1spA9X9hd14WmacV0AmP44skTbPKplGmayhTAR7dvQ3NdbO7uQhWLv6riww8/xOePHuHKyy9LK2EhKGSdRG7Rz/+dIIivLiQOCOI5RaQolpeXsby8XOsx/X4f29vbI6LhwYMHcF0X586dk8+tKAr+6Z/+Cd///vflvxME8XxAlTwEQYygKAqGwyF+//vf44MPPkAcx7hz5w5+//vf4969ezJ98POf/xx/93d/92WfLkEQC4YcEgmCkPz0pz/FL3/5SwDAL3/5S/zsZz8b+Zl/+Id/wD//8z/j9u3beOmll7C3t4dWq/WUz5QgiNOExAFBEHPxj//4j/jXf/1X/Nu//duXfSoEQSwYSisQBDEXP//5z/G3f/u3X/ZpEARxClDkgCAIgiCIAhQ5IAiCIAiiAIkDgiAIgiAKkDggCIIgCKIAiQOCIAiCIAqQOCAIgiAIogCJA4IgCIIgCpA4IAiCIAiiAIkDgiAIgiAKkDggCIIgCKIAiQOCIAiCIAqQOCAIgiAIogCJA4IgCIIgCpA4IAiCIAiiAIkDgiAIgiAKkDggCIIgCKIAiQOCIAiCIAqQOCAIgiAIogCJA4IgCIIgCpA4IAiCIAiiAIkDgiAIgiAKkDggCIIgCKIAiQOCIAiCIAqQOCAIgiAIogCJA4IgCIIgCpA4IAiCIAiiAIkDgiAIgiAKkDggCIIgCKIAiQOCIAiCIAqQOCAIgiAIogCJA4IgCIIgCpA4IAiCIAiiAIkDgiAIgiAKkDggCIIgCKIAiQOCIAiCIAqQOCAIgiAIogCJA4IgCIIgCpA4IAiCIAiiAIkDgiAIgiAKkDggCIIgCKIAiQOCIAiCIAqQOCAIgiAIogCJA4IgCIIgCpA4IAiCIAiiAIkDgiAIgiAKkDggCIIgCKIAiQOCIAiCIAqQOCAIgiAIogCJA4IgCIIgCpA4IAiCIAiiAIkDgiAIgiAKkDggCIIgCKIAiQOCIAiCIAqQOCAIgiAIogCJA4IgCIIgCpA4IAiCIAiiAIkDgiAIgiAK/G9YAlnt5pcjDAAAAABJRU5ErkJggg==", - "text/plain": [ - "
" - ] - }, - "execution_count": 18, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "plot_bloch_vector([0,1,0])" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### plot_bloch_vector() のオプション\n", - "\n", - "- **title** (str): プロットのタイトルを表す文字列\n", - "- **figsize** (tuple): インチ単位の図のサイズ (幅, 高さ)" - ] - }, - { - "cell_type": "code", - "execution_count": 19, - "metadata": { - "ExecuteTime": { - "end_time": "2021-07-31T05:09:16.121246Z", - "start_time": "2021-07-31T05:09:15.903295Z" - }, - "execution": { - "iopub.execute_input": "2023-08-25T18:25:18.958875Z", - "iopub.status.busy": "2023-08-25T18:25:18.957624Z", - "iopub.status.idle": "2023-08-25T18:25:19.151618Z", - "shell.execute_reply": "2023-08-25T18:25:19.150810Z" - } - }, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgcAAAIYCAYAAAD5IU91AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOy9eYxsZ1rf/z37qb16776b737t6+XaHns89iy2Z0ZAADEjRSSZSMnMsEhAECAQJBJSBggkIUryC5GAINCwSUn4gxGygBDCzHgYPLbH+3b3pe/W3bfX6qo6+/L+/jjv+/ap6tq7qu/i9yO1uruWc95z6tR5n/dZvo9ECCEQCAQCgUAgoMi3ewACgUAgEAjuLIRxIBAIBAKBoAFhHAgEAoFAIGhAGAcCgUAgEAgaEMaBQCAQCASCBoRxIBAIBAKBoAFhHAgEAoFAIGhAGAcCgUAgEAgaEMaBQCAQCASCBoRxIBDcZfzKr/wKHn300Tt2e/3w3HPP4ed+7uduy74FAkF7hHEgEPTIl770JUiShJ/4iZ/Y9ty/+lf/CpIk4Utf+tKO9iFJEv9RVRUHDhzAz//8z8PzvB1tdxT8/u//Pk6dOoV8Po9yuYzHHnsM/+E//IfbPSyBQDAEhHEgEPTB/v378b//9/+G4zj8Mdd18T//5//EgQMHhrKPP/zDP8Ti4iKuXLmC3/md38Gf/umf4td//deHsu1h8dWvfhU/93M/h5/5mZ/B22+/jZdeegm/9Eu/hHq9fruHBt/3b/cQBIK7HmEcCAR98Pjjj2P//v342te+xh/72te+hgMHDuCxxx7jj/3Jn/wJJiYmtq34P//5z+Nf/It/0XEf5XIZs7Oz2L9/P37wB38Qn/vc5/Dmm2+2fX0cx/i1X/s17Nu3D4Zh4NFHH8Xf/M3fNLzmxo0b+MIXvoDx8XHkcjk88cQTePXVVxte86d/+qc4ePAgSqUS/tk/+2eo1Wpt9/nCCy/gn/yTf4If/dEfxdGjR/Hggw/iC1/4An7jN36Dv+ZLX/oSPv/5z+NXf/VXMTU1hWKxiJ/4iZ/YNnnHcYxf+qVfwvj4OGZnZ/Erv/IrDc9XKhX82I/9GN/Gpz/9abzzzjv8eRYW+YM/+AMcOnQIpmn29D6BQNAeYRwIBH3yIz/yI/jDP/xD/v9Xv/pVfPnLX254zQ//8A8jiiK88MIL/LHl5WX81V/9FX7kR36k532dP38e3/jGN/DUU0+1fc1v/dZv4b/8l/+C//yf/zPeffddfO/3fi9+6Id+CBcuXAAA1Ot1PPvss7h58yZeeOEFvPPOO/ilX/olxHHMt3Hp0iX8xV/8Bf7yL/8Sf/mXf4lvfetb+I//8T+23efs7CxeeeUVXL16teP4v/71r+PMmTN48cUX8b/+1//C1772Nfzqr/5qw2v++I//GLlcDq+++ir+03/6T/i1X/s1/L//9//48z/8wz+M5eVl/J//83/wxhtv4PHHH8dnPvMZrK+v89dcvHgRf/7nf46vfe1rePvtt3t+n0AgaAMRCAQ98cUvfpF87nOfI8vLy8QwDDI/P0/m5+eJaZpkZWWFfO5znyNf/OIX+et/8id/kvyjf/SP+P//5b/8F3L48GESx3HbfQAgpmmSXC5HDMMgAMgP/uAPEt/3+Wu+8pWvkFOnTvH/9+zZQ37jN36jYTtPPvkk+amf+ilCCCG/93u/RwqFAllbW2u5z6985Sskm82SarXKH/vFX/xF8tRTT7Ud58LCAvnYxz5GAJDjx4+TL37xi+TP/uzPSBRFDedrfHycWJbFH/vd3/1dks/n+eueffZZ8olPfGLb2P/1v/7XhBBCvv3tb5NisUhc1214zZEjR8jv/d7v8fFrmkaWl5f58728TyAQtEd4DgSCPpmamsIP/MAP4I/+6I/wh3/4h/iBH/gBTE5Obnvdj//4j+Nv//ZvcfPmTQDAH/3RH/Gkxk78f//f/4e3334b77zzDv7yL/8S58+fbxuKqFarWFhYwMc//vGGxz/+8Y/jzJkzAIC3334bjz32GMbHx9vu8+DBgygUCvz/ubk5LC8vt3393NwcXn75Zbz33nv42Z/9WYRhiC9+8Yv4vu/7vgaPxKlTp5DNZvn/Tz/9NOr1Oq5fv84fe+SRR7Ztm+37nXfeQb1ex8TEBPL5PP+5cuUKLl26xN9z3333YWpqiv/f6/sEAkFr1Ns9AIHgbuRHfuRH8NM//dMAgN/+7d9u+ZrHHnsMp06dwp/8yZ/ge77ne/DBBx/gr/7qr7pue3Z2FkePHgUAnDhxArVaDV/4whfw67/+6/zxfshkMl1fo2law/+SJDVM8u146KGH8NBDD+Gnfuqn8BM/8RP45Cc/iW9961t4/vnnex5fp33X63XMzc3hxRdf3Pa+crnM/87lcg3P9fo+gUDQGmEcCAQD8H3f933wfR+SJOF7v/d7277ux37sx/Df/tt/w82bN/HZz34W+/fv73tfiqIAQEOFBKNYLGLPnj146aWX8Oyzz/LHX3rpJXz0ox8FkKzM/+AP/gDr6+sdvQc75eTJkwAAy7L4Y++88w4cx+EGyiuvvIJ8Pt/zeXj88cextLQEVVVx8ODBnscy6PsEAkGCCCsIBAOgKArOnDmD06dP88m7Ff/8n/9z3LhxA7//+7/fcyJipVLB0tISFhYW8K1vfQu/9mu/huPHj+OBBx5o+fpf/MVfxG/+5m/iz/7sz3Du3Dn8m3/zb/D222/jZ3/2ZwEAX/jCFzA7O4vPf/7zeOmll3D58mX8+Z//OV5++eX+D5zykz/5k/h3/+7f4aWXXsLVq1fxyiuv4F/+y3+JqakpPP300/x1vu/jR3/0R3H69Gn89V//Nb7yla/gp3/6pyHLvd16PvvZz+Lpp5/G5z//efzt3/4t5ufn8Z3vfAe//Mu/jNdff33o7xMIBAnCcyAQDEixWOz6mlKphH/8j/8x/uqv/gqf//zne9ouq3yQJAmzs7P41Kc+hX//7/89VLX11/VnfuZnsLm5iV/4hV/A8vIyTp48iRdeeAHHjh0DAOi6jr/927/FL/zCL+D7v//7EYYhTp482TYc0guf/exn8dWvfhW/+7u/i7W1NUxOTuLpp5/G17/+dUxMTPDXfeYzn8GxY8fwqU99Cp7n4Qtf+MK2UsVOSJKEv/7rv8Yv//Iv48tf/jJWVlb4OZmZmRn6+wQCQYJECCG3exACwb3MZz7zGTz44IP47//9v9/uoewqX/rSl1CpVPAXf/EXt3soAoGgT4TnQCAYERsbG3jxxRfx4osv4nd+53du93AEAoGgZ4RxIBCMiMceewwbGxv4zd/8TZw4ceJ2D0cgEAh6RoQVBAKBQCAQNCCqFQQCgUAgEDQgjAOBQCAQCAQNCONAIBAIBAJBA8I4EAgEAoFA0IAwDgQCgUAgEDQgjAOBQCAQCAQNCONAIBAIBAJBA8I4EAgEAoFA0IAwDgQCgUAgEDQgjAOBQCAQCAQNCONAIBAIBAJBA8I4EAgEAoFA0IAwDgQCgUAgEDQgjAOBQCAQCAQNCONAIBAIBAJBA8I4EAgEAoFA0IAwDgQCwUB89atfxdmzZ2/3MAQCwQgQxoFAIGjLb//2b+PgwYMwTRNPPfUUvvvd7/LnXn31Vfze7/3ebRydQCAYFcI4EAgEnOeee47//Wd/9mf4+Z//eXzlK1/Bm2++iVOnTuF7v/d7sby8DAD43Oc+hxdeeOE2jVQgEIwSYRwIBIKW/Nf/+l/x4z/+4/jyl7+MkydP4n/8j/+BbDaLr371qwCAz3zmM7h16xbef//92zxSgUAwbIRxIBAItuH7Pt544w189rOf5Y/JsozPfvazePnllwEAhmHge77ne4T3QCC4BxHGgUAg2Mbq6iqiKMLMzEzD4zMzM1haWuL/i9CCQHBvIowDgUAwMN///d+P7373u1hdXb3dQxEIBENEGAcCgWAbk5OTUBQFt27danj81q1bmJ2d5f9fuXIF5XIZ5XJ5l0coEAhGiTAOBALBNnRdx0c+8hF8/etf54/FcYyvf/3rePrpp/ljL7zwAr7/+78fqqrejmEKBIIRIYwDgUDQkp//+Z/H7//+7+OP//iPcebMGfzkT/4kLMvCl7/8Zf6aF154AZ/73Odu4ygFAsEoEOa+QCBoyT/9p/8UKysr+Lf/9t9iaWkJjz76KP7mb/6GJyleuXIF586dw/d93/fd5pEKBIJhIxFCyO0ehEAguPv4rd/6Lfz1X/81/u///b+3eygCgWDIiLCCQCAYiBdeeAE/9EM/dLuHIRAIRoDwHAgEAoFAIGhAeA4EAoFAIBA0IIwDgUAgEAgEDQjjQCAQCAQCQQPCOBAIBAKBQNCAMA4EAoFAIBA0IIwDgUAgEAgEDQjjQCAQCAQCQQPCOBAIBAKBQNCAMA4EAoFAIBA0IBovCQSCoWFZFoIggCzLUBQFhmGIds4CwV2I+NYKBB8C4jhGHIaIoghxHIPQH/YcABBCtn7YY+w17DFZhgRAkiRIcuJ4lOnvumXBdV2APg9ZhizLmJqchJnNCiNBILiLEL0VBIK7lDiOEQYBoiBIJv0w5AYAkSREYYg4ikDiGHEU7WhfBOi4jbplwfU8AEDGNEEIQRhFCMMQiiyjVCxCVhTIigJFUSDLMggAWVWhKgpUTUv+VlWomgZN13c0XoFAsDOEcSAQ3MGwFX8YBAh9HxH9OwpDRGGIbl9f9nxMCKQdjKOTcVCzLHjUMMjncjANg499s1pFFMcwdB2FfB58tB3GTQBAkhIjQdOgGcbWbxGmEAh2BWEcCAS3EUIIoihC4PvwXBdg7n7mFQjDVm9CTH+32h4hJDEq6G9CCCIWSqDPA3QSZmEEtl1qRMSpbRP6OJrCCgAQBAEsx4EEIJfNwtB1gD4nSRLCMIRlWSAAstkssqYJmYYkZEmCLMt8Ww3Hkdp3MzL1NGi6vvVjGDAzmd5OukAg6IowwQWCEUMIQUjd/WEYIggCeI4Dz3Xhuy58zwOJomRSpROxoihQaFKfoigAaJwf1JuQmvxZPgD7v2nnSE+vcRzz/aDFpNzxOJINNKz+LctCRAhMw4AkSfCDoGHfkCRAkuB5HoIgQBxFiTGQnvQlqcFQaP5NJAmKLIPQ/dXrdVj1Our1Ouq1GmqWBd/zkM3lkC8UUBobw9jEBKampjAxNYWxsTFomtbXsQoEH3aE50AgGDKEELiuC9u2EYYhfNdFEIaIfJ/nCDAkAJAkKIoCEscIwhBBGIJEEUJmBNCJn63yZZrop8gyVFWFlnKzp7/MMl2ds1U6My6IJCU1zHTiZmPo9FuSJB5WYLcMx/NgWRYkAKViMZnI6b7TRgghBBubm4jjGPlsFrKiNBwT3SgIPR+O58Gq12E5Dhzbhm3bsFKhCwDQNA35bBb5QgGFfB66YcC1bdRtmxsPURwjRpJUmcnnUSwWMTY5icnJSRw6dAh79+4dwqctENybCONAIBgShBDYto3NzU14tg3fdRH6fjKhUwNAkmU+IUqSxCfIKIoa8gPiKELEfsdxEhag3gWJ/gDgK27TMJAxTWia1vB827EOcnwprwQhBJXNTURxjGwmg2zKpc8m+TQsL8E0DORzuYbtxHGMII6xcPMmrs7PY2VtDQCgyDIy2Sxy2SzMTAamaSKbySCTzbb0BCjMaKJelyAI4LguLMuCQ42Ger2OGk2enNu3Dx//5Cdx7NixrudLIPiwIYwDgWCHhGGIaqWCyvo6fMdBFIaQZBmGrkOWZb76D8Nwu9u/CZbNnw4pMK+CLEm8AiCKY0RRBM/zENFVOiEEhqbBMAzo1EjoBJvEe70BpI0D1/NQtyzIkoSxcpnviyUTSk23FT8IUK3Vtr3esm1cuXIFV+fn4fk+puiqfnJqCoZh8PGxvIkodewx/R1FUddjUBUlqYSg53N5eRnnzp3D+vo6SuPjePzJJ/HIqVMwTLPHsyEQ3NsI40AgGIAoDOFaFirr66hubiKOIoRRhJgQaKoKhRoFrZDoxK+2MAKaJ3RmWERx3LLagBACPwjgui58lrxIPRWmYcAwDJ6z0I5+jYO01yCXzSLDJtQOeQyEEGxUKogJQS6fx/raGq5cvoxby8vQNQ333XcfDh06hEKh0GEAhBsJzbBzxIwFbji0+wwkCaqiYHNzE5cvX8bq8jJyhQIeeOABnHzoIRTHxmBms1zDQSD4sCGMA4GgR0Lfh2vbcGo1VCoVWJbFV/IE2Fqxp94jKwo0Wr+vqSqv8e8ErzigiYa9fkWjKILreXA9b0vMCIChaTBpOWAnb0K3vTDjgHsNZBljpVJDrkEnX8XK2hquzM9jaXERYRBgfHwchw4dwr69e6H0UZ7oU12HMAgSb0yb88M8DjEN20Q0KbSVp8GyLCwtLmJtbQ2GYeDI4cM4dvw4ymNjyBcKyJdKkLsYWQLBvYQwDgSCDsRxDLdeh1OrwarXsVGpwLJt7hVQVJXH+mWA1+YzY6ClIdDmKxezkkE6qRO6Gpb7rSogBL7vw/W8xJtA98dyE0zDaD0uGppou116zJXNTYRRxL0GrXIM0sd0a2kJV65cwcLSEmRZxuzcHE7efz/K5XLX4wjpZM6rPVhuRiqUwvbTZiPbvBksz4EZDCETiZIkuK6LxaUlrK2uQpZlzM3O4siRI8jl8xifnMTk1BSy+XzHcQsE9wLCOBAImiCEwLdt1DY3YVWr8HwffhAkngKaGKhrGvL5fGIYMGW/AcV50noE6TE0ZPMDDZNhyxADezxVKhjQvATuTQAgEYJsNosMLT/clnvAJlT6m1BdBUIn52q1CkgSxthqOjVGKTWWmzdu4N0PPoBjWdxLkC8UIMkySoVCQ1JhHMdb+RR0P1FKdCm9XVmSktwMWYbKPDH02FoZCdvOVZOxwHQd/CCA53nwfR+1eh0Li4tYXl5GNpPB0WPHoNPPOJvPY3JqChPT08jS5EiR0Ci41xDGgUBA8RwH1Y0NWNUqXNfdWpXGMWr1OiRJgq7rGB8bQ9Y0dzwhtDIK0s91/GqmJm72eomQtmMihMDzfbiuiyCKAEKgqiryuRzUtLucbrN5K0wh0XYcOK4LTdNQzOcbQgoMx3Hw9ttvY3FpCXvn5nDi/vsxRr0EtXodruclioequmUIxHFSXsmqOVLVGCoNx2iKApnmc0jtvBzUSIiYnsIO8IMAKysreP311wFZxtFjx7j6Iys/zeZyKJXLGJ+chGma/EcguNsRxoHgQwshBJ7noVapoF6pwHWchgmF6QI4npdMTqqKcrHYNcGv636xlWhI6ESYnsaYO73vcMK2B1p/tR3XhWXbfF/ZTAaZtLHTLFKELeOA6xXkcokaIns9fc38/Dzee/ddKKqKxx59FHv37AHo8bKKhVq9Dk1VkctmG/bF+yzQ5Ey1U1iGaSjQ39sMAWZ49XLiumDZNr7zne/Asiw89vjjyGQyPO+BKU/KioJCsYjS2BjKY2MoFArIZDIioVFw1yKMA8GHDt/3UatWUatU4FpWw0Soqip0TYOh6wjCEDXLAqEVCKVCoePNnpUrBmHIXeQh/TsKgiQkASSTWUqYiIkasZVz+nHW/VChssX8tT1OOsz4YDF6RhRFsGwbfhCAEAJVUZDL5bigUnMeAQHgex42azUAwFi53DCGer2Ot958Eyurq7jv4EE8/NBD0DUtUYOkYRlQpci640DTNIyXy4khQI2CQVb6rao4CD2/zLuQDs8M6kvwgwCvvPIKVldX8ZGPfAR79+5NBKtoKIJ93oHvQzUMFMpljI+PY4waCqIfhOBuQxgHgg8FURTBcRxsbmzAqdUQeh4XFNI1DbquQ9d1KHTCs6jaHoljaJqGrGkmE0Bq0o/S/0fRljRwSo2QewVSJXjp3gZ8smJuclalQN/DIVsyyFwAqUlmWFVVGLoOQ9f5MW29nTTsh+3X87zkOGkYI0OFhtK5CGystVoNrudB1zQU8nm+rQsXLuD06dPIZDJ47LHHMD4+nsTug6BBG0Gmhpdl21BkeZuB0ZbU2JmXgI2NhV+k1HERpgRJH+cS06ntcKEo+ngvXpoojvHmm2/i6tWrePDBB3H8+HG+3zCKEAQBfN+H47rwfR+SJCGTy6E0Po7x8XGUy2VkRP8HwV2CMA4E9yxMxtiyLNQ3N+E7DuIggCRJMGjWfjqZzA9D1Ot1rK2vw3YcRFEERVWhs1UfnfhlbCX+cSOAwlb1Ko2NK7RNsUT7BwBo7IVACAgtrYupi5pl5KdLGdnf7LiA1qWHzJVOSNKfQU+JIhnUAEqv0JlRYNk2XN8HCIEiy0kugq5zMSMCYG19HXEcJ3LFuo5KpYI333oLmxsbOHzkCA4fOcJLBfn5oWJQhq7z1fMG1YUoFAowmpUOW4Q0utG2UiEFO4edRKiYYSe3CqukDIszp0/j9JkzOHTwIE49+ug2AyeOY3i+D9u2YTsOwjCEkcmgUCqhPDaGiYkJFLp4oQSC240wDgT3HEEQJHr8tRoc20bouokHQFVhmiZXLgzDELbjwHYcWI4D33XhBQFi6qo2DCOJq1PXPEuMU6ibn7nD+eOpJkkMlhzX69dsW4VC8/OpXIX0bxbS8IIAge9vqTHKcmKIJG8GUp4S5mFgQkm+76Nu24mHgyTNlLLZLGQpaahU2dyEJEkoFAo4f+4czp09i1yxiAceeAC5bHarUkKSuCGiqWpDF0cgSUr0fH+b7PKg9GIcpM9fO2GkBlguSLMUNfVOXL12DW+88QYmp6bw1FNPtW3sFIYhHMdBnUo2q5qGXKGAYrmMsbExjI+PN3h4BII7BWEcCO4J4jiGbdtwaLOewLYR+j4kAKZp8oQ723Fg0RWd53mQJImHElzX5Z6CcqkEM5NpkDLuF4JESbGfL1g3eeV+tuP7fvJD3d0BNRh4+AJbngOWa6FrGkJqHKiqCkgSctls0qfAcWBZFk6fPg3LsnDfwYM4eN99fAWspbwTrLywFSwhUtd1FIekGdCPgRBRJctBkWj+x/KtW3j11VeRzWbx9DPPbIUM2mgr+L6PmmXBsizEAHL5PHKFAkqlEsbHx1EqlQYek0AwbIRxILiriaKIN9QJaQvkOAyTlbGmISKEGw2u6yZ18ixWT1fRpmEkiW20PK2Qzw8lgSzsw2OQPh7em6DHBD0eZ0/lJTS751k83g9D3j7Z930EVGWQvZKFJaIwhBsEkJHkCji2jeXlZayvraFUKuH4iRPIZTI8z0HXtLZu8uY8gDCKkj4LVGGx1XGyz4d9VgC25UCkjzdqUX7ZDu5tGcKtr1qt4qWXXoJuGHj+uee2GZGtelfEcQzLsrBZq8HzfWRod8l8sYi9e/cil8sJ3QTBbUcYB4K7kpDmBziOk8ga1+tQkKzqAqoOaDsOTzZjk42iKFvd/TIZaJqWrIhpaV+xUNhxqSIA3kkxnXAINE1uTX+3658wCtLJjwHtzeB5HhcB8nw/SeL0PFQ2N3F9cREEwPTEBPbu2YNCoYB8Nsu9Lv3um1U9FPP5rrF31p6adVxM/8+MB8JyLZiRlDrfzcmd7P8wDHs2wDpRqVTwzW98A4ePHsUjDz2UdN5Mf96pclWWD8Imf9d1sVmtwrJtZFPhhsnJSWRoYqhAcDsQ9TWCu4owDFGr1eA4DgDArlZhV6tc5Id1RJQlCaosQ1YUZAwDBjUIDCZik9qebdsgAHI0jNA3zRN/DxnwUou/hzUNsPJFnvRI3ejsN5NlJikJYibwpNFOiGEQoG5ZSTlntYqxbBZBHGOsVIIqy7BtG77nIWuaSTvlpvOaHgubrJnnAAB0TeOJi2qLc55usMRyKtrBjAVQT0OzAcESDRksN0KlIkxA782nWlEul/HQww/j3Xffxcz0NKanpxvG1oyUMhRM04RhGAiCAKvr61i7dYvnKRSLRRSLRWSzWWEkCHYdYRwI7gqCIOCeAiBR4Vu/dQu+40BW1cQrIElQdT2pRDBNZDIZmLqerORaQOIY9XodBICmqtsMh5Y0GQKtGCRvoBcHXrNgUpya5CMq6xylKiF6UViUgK2KCgCQJAS+D0mW4fs+bly7holyGfcdPIg33noLM5OTiQFFCBRNS3I96nV4nodcNotcLocsPY+dei6oqgrf9xMZ5zaKgtyQYV0WUx0qWW8Edh7aKU0C4DoRzNOQ/jsGtqpPsN2j0yvHjh7FreVlvP766/jsZz4DnZ6D9LXAkxtTBhno/gxdx+z0NOq2jdrGBsJU6Mc0TeTzeWEkCHYVYRwI7mh830e9XofrugAA27ZR2diAV69DV1XohgFD05ChKn/9qNJZjoOQrl7zudz2F/RgCDTTTt+/6/vaTWxIXOVItSMOqM5CrxFBJbWaltPueVa6J8tJCIHV58sylm7exMULF7D/wAEcPXIEtXodiiShWCjANM2t3IQoguu6iAlBvV5HtVqFLMvcUMiYJhRZ5hMty31g4YiYlT22GrckAVQxsflImXuepIwF1o8h3eYa9DVhG4ONVYewRlmqpvGx9WUwSBKe+MhH8Hdf/zpef+MNPPPMM9teQpoMNpkmNrLtyrKMYj4PU9dRrdVQr1QQRRGy2Sz3mOXzeZGTINgVhHEguCMJwxCbm5vwPA8xXeGzpEMVQEbXkTFNlEqlJEu8z/p4z/N4/wTWDAjYuWu/X68BVzDEVnyc/eYKi1R1sRWKJEFSFP473ZSIudqbJ5L0qjWOYzi2Dcfz+LFfvnwZV69exQP334+jx4/DtqxktS1JPDTjUGMtm8lgamICFq0ScVw3SbizbdTqdciyjGw2i3w2iyw13AiSVtaQpMTTwcSNOpyn5ue40ZQqH2USz+kQAjMUWnke4iiCREjSlZFWdgDgOhXNxkJ6HK1yRkzTxBMf+Qi+89JLuHTpEo4cOdLhiLauFUI/R1YGqus6yuUy6pYFp1qFIsuI4xjZbBbVahX1el0YCYKRI4wDwR0FoSvQer3ODQTHcSATAikMYSoKctksCsXilrZ/8sae98GkgwEgY5rQ29SoDzr+bvAbemqSDgnhHgGmuNjqfaz7I9NXSCsxdhtXWriJCUQ5rsvd3Yos48yZM1hcWMDjjz2Gw4cO8fOk0OoNiRoIEs07YMZbIZdDIZdLjA3Pg21ZcFwXURzDtizU63VIsoysaSKfyyXiU0hCOzLAEwhTA+5+Hls9RidydrwyNZiIokBvcY7iOIbr+whoqWdEyz39JmNB07TknFNjoVXOCICkxfPRo3jv/fcxOTmJYqnU1eBkSo+8xwQ17EqFAmzbRnV9Hflike9f0zRUq1U4joNyudxWY0Eg2AnCOBDcMfi+j0qlAtd1sbGxAcdxoKsqtDiGRAiK5TKKhcJ2YZpeSK3QLdpPQVVVZLPZoR5D2jhIGwHNk3e6D4NPKwOakVPGgEaFlhoS63oxCKRGGeeYkC2vCd2GRvsbvPbaa6hUKvjY009jz9wc914AaCztlCSYNFxQtywEQYBavY58LgeFGm/ZTIYbILbjJFUlVMLachweBshmMijkcttLR6VUt0dastjLJMtllNMhITqZp8sfWXKkLMswNA0a9T7EhCCin0vaWPA8Dx77XJixQD+b5jDEww8/jNXVVXz3tdfw6eef54ZVq26XrWAeBQmJZ0ZV1cTAqlYTXQQqnBTQrpH5fB4F+r0QCIaFKGUU3HbiOEa1WsX6+jo2NjZgWRaymgZVlqEqSpK1TcVy+r1cmX4+u3EySduYEJRLpaFI2BIkSW2gSoKtbtIRa8xDPQNxyhhgOQoKdWfzSYfG2rmcbx+6B2xc6b896ilg51BVVWRME34Y4jv/8A/wgwAff+YZjI2N8fj4ZrXK3/+Nr38dn37+eZTLZT5xs5LSmHUmzOeTHIOU7DIbg5MyFIIgQLVeR0ySrpC5bBaFfB75bLblZ5L+1DtNsn3nfBCCiBoErYhpyWOYMhaaSRsLGu0kWa3V8I1vfAP79+/Ho489xvfFPsNeDYX0GD3P4+GcXD6PsclJaNR7pigKSqWSaBctGBrCcyC4rTiOg4WFBaytrcFxHBiKgiIVJioWi8jlcnzl2KthwEsD2WRKfwdBwLUP8rnczg0DtjpN5w3IMkBXxemcgVa5CIqqQqOVAir9zVe9tF6/+Rha0a5skq2WfTqpxLR0UaFGgaHr2KhU8J2XXoKqqnj+ueeS843k3PlBkIxTUbZ7NuhnoqoqCvk86paFKIqSpLm0J4CVVZKkqVPGNIGxMXi+D/nWLTiuC1WW4Xsell0Xa4qCcrG4rQNmw9E1yRk3DKvtWWoDTfbclpcBGvKgQlks9MSNhSBIjAWaAMk0IoAtY+HkyZN49733MDM9jbm9e7eXU/YxRpnmIsiynHhfajVYtVoixTw2BjOTwfr6OjKZDIpDaCsuEAjjQHBbCIIA165dw/LyMnzfhxrHKBgGCvk8z4jnJXvoYhikJtS0lyBNHMeoWxYIwDswDoQkbb+x08nP832+Km413nSSm6ookOgKm+kNsG33YhAAW2GDdnoKPh1PxDwTVADKoM2XFqn8b6lYxDPPPMNzONhqP6TGgZbSA9g65K0EUEVVUSgUkjwRaiDkcrnGJk/09Wzbhq5jrFxGIQyhaRrCIECNGhhrGxvYqFRQokZCc8ih2VBoroSIm1/ThVafVUN+RvIiAOjLWJiYmMDU5CRee+MNfCKTQaFQ2MoPaPWZdbjGWckpCEEul0sqSzwP9VoNvuPAzGah01CO53lcH0EgGBRhHAh2nWvXruH69euIfB9SHCOr6xifmMD42Bi/ATIaJs806Zr/dA5Cm4nSoV0WJUniq+NuEEK4jn47vfwgJUcMbEkmS5KUGAKpn1ZCPGwfW0/0ETpoZahgK+GSJTXKkpR4CgyDn6cr8/N48803sWduDh/96EcbVpps26xCQtU0wPOad7NVIULLIYuFAuqWxctPs7kcF0dqTpokcQxFURCGIfc+lMpl1Go11Op1BEGAjWoVG5UKCoUCxorFtgZd2lPEQjwsLNJLHL5tGWlzFQndfjok0M1YOPHAA/juq6/i/Q8+wEMPPZTkONCGXts8V10qbiQkhhgJQ2SpYJdNu2lKigISx6hVKsgWCrz52Bj7TgkEfSKMA8Gu4TgOzp8/j82NDSAIYOo6JqenMT42xlXy0u531ma3IU6bMgR6TcBiGfQxgEIPq6m0oSFtPcifD8MQHs1mT08siqLANAxINFeiYTKkE0qnssKuNBkord7lui4sx+EeBdMwYBgGn4gIgDOnT+PM2bM4cvgwTj36aMN2uJRzSkdBa9NnQkJTlYEkIZ/LwZIk3rI4juOGzov81VRvAdj6zGVJQqlYRKFQgE17D/hBAMuyEm9ENouxLnH19Dnm+RYdJt2eQ1WpbaY/rxjgba3ZMaSNhQIheOD++/H2u+/CsW1kstmkOZjj8EZV6bbhzSGTZs8F8yBEUcQ7hrI8DgAwDQNuvY7N9XUUy2UEQYCJiQnR+VHQN8I4EOwKy8vLuHjxIkLHgQJgamYGs9PTW5MW8xBQWGJZOuO+oUqhj8xs1/MSRT8aC25L0ySS3gOPK/v+NtU7thJkK7R0IyP2mnYGQE+GQTps0gamLRCEISQAuqoim8s11OgTAG+9+SauzM/j4YcewrHjx1vqBzR4DZo8Hq3GRg+E/87RqgXbtrlAUr7JKJOwJS3cnOQnSxLy+Tzy+Txsx0G1VuNll5ZlwTRNjJXLyLUx9FjFAtJGQtNny/7aaRdMGU1ehab8BVmScPjwYZw/fx6LCwt4+JFH4NGW2kEQIAgCyLLMW2g3rPLTFRupY5AlCZBlRHEMwzBACOHJnhI1TjRNQ61SgVWvw3NdzMzObnWNFAh6QBgHgpHi+z6uXr2KW4uLIL4PU9NwYP9+5NOtepsNA2YUAFtu/QGJ4zjJ0AeQbV5xtskfSI+D1bs3ixCxmznTGki/R1aUrWqEXibWlk+lyvG6GBC+78Oybb4KzqXc+Wnef/99XLl6FU8+8QQOHDjQcZushLFbDX26Y2Ia0zQhS1ISZvA8OJK0bXJSFGVrZdyGbCaDbCYDz/exubkJm+Z0LN66BU3TMFYub6twkNqd17TXhXqlwijq2AOjF6QmI4TlY7BRKLKM48eO4d333sODJ0+iWCggiiJ4tMFVHMdwXReu60Kjqp962puQHjszEGSZG8+maSImBL7nwbZtSNksdF1HLpuF7bq4MT8Pq1rFvoMHRVtoQc8I40AwMtbX13H16lXUKxVIcYzxYhF79uzh5VcAkjItmgsAoG0cfVA8z0tWc0BjglwbCI0ZeykRHIamqjyZsZMnQAIAevPutq9Wj7Eukt2ISdKO2vN9SFJShZDP5bjcMHP7S4TgwqVLOHfuHE6dOoUDBw60nZDZqjsIAsRxnGyLTkKszXH6uPgqHSkjhq7adcNAFomuhO26kGQZhmlyNURJlkEkKdkmO3dtzpmh65iemkpKIGs11CwLcRxjeXW1ZYVDelytIEgMRy7t3EeOQieaEzDZpH7w0CGcPXcO5y9cwKlHH4WiKElnUNNEEATwaPtspq9gU/0F3TC2N6ai21QUJckroeWgoEmxlm0nOS+ahmwmA8d1sb62Bsu2ceC++zAzN7fj4xTc+wjjQDB0wjDEjRs3sLK8DLdWg66qmJ6ZwcTYWCKbyyBJ5z1eukcfjvqpAe8Ac7cSJCvQTjdEvpLzvG369wZt5tRP6aMsyw1aBi3H1zTW5soD5q4GIVutiOlzAdUXYGM1abMpiU62fPuE4MbNm3jnrbdw/MQJHD16tKVhkD7miHZvlGhXS6C99yL9vobJmP5t6Dpi2rfBsqzEaNC0Lf0D1mqZVRo0GR5pJACarmNifBylUinpP1Cvt6xwUFS1o0eCpBo18bCD1Ng5cqekx69rGo4ePYozZ8/i/hMnYFAvCuuGqes6ojiGnwpduZ4H1/OgqiqMFkYpU7Vk3SsztFrBpx01C/l8IvSVSl68dO4cqpubOHrixFA0PgT3LsI4EAyVSqWCmzdv8s5ypXwekxMTKBYK25KtIrqil0ZgGLBVVExX4q06LsZxzD0E6VI9SZL4zXibch96TyJUFCWJp7d6bUpXn50DXpLXtC92PGyytx0HnusCksQVCVuNEwBWV1bw2muv4cB99+Hhhx7qOF4u5UxDCszt3yvtzksmk+E5G1a9DpmWJ0qSlHgPWPvopjBD8yTdUFIoyyiVSigVi0nDp1SFw3qlgiItidXbfO5Ri1yDbcmnQzISGEeOHMH58+dx6fJlPPjgg9zoYyiynHQSNc1EOdPz4Ke0MmzHaQhnAUlOAz8SWUYulwOh0uO1eh3FQgGKovDqCMuysLSwgFq1ihMnTyJfKAz1GAX3DsI4EAyFMAyxsLCAjfV12JubkAjBzOQkSqVSy3rriArMNGfKNyd09UNDS2NJ4o2VMimvAXOZe563LY9A0zQYhgGtKY8gPb5WFQftYKVn3PBgdf6SBMLc3k0TRKfpKAxDWJbFmwuZVFSo3Xiq1Sq+8/LLmJycxEc+8pGekzhZCWS/JXCdzks2m922qmWdISNQFz/zUmxtMPFgtNsffU2hUEiSF20bm7UaAt9H3bKwUakgl8+jVCgk3TolCREVqGpWzty2XbptoNEo2QmGruPIkSO4fOkSjp84sXWdpTxCyW63Kh6YAev5PuIo4mJLiqLAMAwujBRTQ5slhLLk1LplcVlrLSVYZdXrePfNN3Hk+HHMzM3t+NgE9x7COBDsmGq1ihs3biCwbXi2jSxVNyzm80mMOQWbEJVWk++AMd8GPQL6fs/z+CRgGAaCIIBPb7JpVJpHYHTLR+gQD2fPt5pAJCTNfxryKpJBb72v+wEm2fqOk2gKUG9Bp2RB23HwDy+9hFwuh6c/9rHOLuSm886qB7bFuncA05eI63WEzEBIeZPanVm5S+5A8/aZQFC1WuXVEpZtJx08i0V+ztIemeaEwnaPN2scDMLRo0dx8eJFXKEGQrpEEdh+HmRZ5sqSLDfBDwJEUQTbtuE4TiKuRZsysffkczlUa7VE+4B6EFir7kI+n+hghCHOnzmD+uYm9h8+LModBQ0I40AwMHEc4+bNm1hfXQXCECQMUS6VYOg6crlco2HAbrbt6s3p9vp2Y6erGVLvdRwnyepWFFRrtYawAcsj0A2jodRv27Y7jCXdM4C+oe1rZQBQlKT/AH2s1wK6KAxhM0EjGp/OZrMdM+z9IMB3/uEfIEsSPvGJT/BJo+2xpDw4hGbwA2gbqhgUSUp0EGq1GiLahpvtt1NJYSvxoU6wydRxXWzWanAsC47joEZX0WOlUsOxpftANJSypjxRzOOT9kANYiRkTBMH77sPFy9exJGjR7d5Z3giZSqZkaHREsU4juFT71cURYnhGwSQXBeZTIZ7JAr5PGr1OuIoQt2ykMtmE28NNR5qNF/j1q1bcBwHe/bvx/jk5ABHJbgXERkpgoGo1+s4d+4c1peXAc9D1jC4YWCa5pZQDdkSLuqYPd6P14CtttjE3vS+wPfhuC5X2mOGgaHrKOTzKJdKyGQyLQ0DQre3bSxNY+91YmDvkpHElLkbuYfVsOe6qNZq3AOSz+WSnhAdzlMcx3jl5Zfhui4+8YlPdG3E02zkRClVxVEo68myjDxtzhSFIU8YJR2MA9Ax9ltyaJomJsfHMTU9nXhaZBmObePm4iKqtVrX9zODhJUMxnGMmOVHIDGq2Gv64djx4/CDAPPz8y12mmqtTf9vRpZlmIaBUrGIYqGQJMsi+ezq9TrvcyHLMg/fxHEM27a3jCxJQi6bhSTLSfOsWg035ucxf+EC/FZqmIIPHcI4EPQF8xZcungRXr0OJY4xMz2dKAPS8ikmTiNJUoPI0U7itiQdl5Xltu74wPdxa2UFNnW3MrfsWLmMXC633RVPs9QbbvJDiC83jJftCskEJ3UYP4BkpVerwaaqd6qqotRBPji9z9defx0b6+t45uMfT9z2XWgeBc83GNBr0Oq4m1EUBbl8PskpoDX+/ZxxtpLvRhzHCKg88+TkJKanp3li3lqlgoWlJbi0y2E/sGuFVTzE9LGYHnu3seVzORzYvx/nz59va1iwz4V7K9q8TlVV5LJZlKhhDoCXe9q2zfcnSVISiqAVI0BiZOSyWUBKmmy5nodatYqLZ86gsr7e1zkR3HsI40DQM3Ec4/Lly1i7dQtwXRQzGezbu5d3HVQUBfl8nlcfpF3V3SbcdpoAPMmQrbo7GAWbm5tYr1R4XkGxUMBYudyQkNi87QbBJWk4Ggvc+4DWHgZWgiYng2h4zvd9VGs1niyZzWZ5vLjzTgnefe893Lx5Ex996ilMTEx0H2cLD0aUqlQYhF7PoUpj35IkIQgCOHQi62X7LT07KZi4UdQUpjJNEzMzMygXi9AUBSEVU1pdW0O4A6XEdPkj8zBEVBOCGQvNV/fxEyfguS6uX7/efQcp71u7o2ahgmKquZNHryU/CJDLZkGoEcAaakFK+n9kqHfJdV1euXP9yhVcvXSJV64IPnyInANBT4RhiCtXrsDe3IQcx5ienkY+n0/ix9TtXSwUtlznKZgIUTu2xe+RMgq6uJID34ftOPwm5nseDF3n8rvpfWzb35CMgYZ9dEtcBBrCIgrAhZccx0mElySJrwh7naTPX7yISxcv4vHHHsOePXt6HnPz+Q2HlIzYS5hI0zTkczl4VBrZ9byWyo6tkICtKo/UxByRlNpmi9g9K4HM53JYr1Tg2DYsx4HtOEmXyLRy54A09F5Il6xKEl+NFYtFzO3Zg7PnzmH//v29hdTYdZMOTaXeJ9FQUD6X46WPURTBdV3ItJcFiSLYjoNiqiLHNAwQqqtgOQ5kWYaqqqhWKnAcBwePHIEppJc/dAjPgaArYRjiyqVLcKlhMDc7i3w+zyczZhi0khKOuxgG7HUN9OApCIMA1Wo1iclTLQHdMGBmMknSXibTdtUmpX6GQdqV3tUwQIv6fZIoHfp0RWeaJo8V98L169fx/nvv4YH778ehw4f7GnuadP3/TpMRe80fMQwDhmkmglWpc9DTPrAVYoiiKOmI2dT3ot04FFXF1OQkpqanYVCp4tWNDSwsLW2raNkJDV40mr8Q0+/F0aNHUa9Wsbq62t9GU0aC1PQ/Q1VVFAsF5Ki0dBzHXIwqoLkeaTKZDPc41FNS3IHn4fLZs6hWqwMcveBuRhgHgo6EYYhLFy7Aq1YBahiYpgkSx3AchzfJaRUP77U+nLlf0cEY4OOhRsFmtYogCCDRev9yqcSztFVNa1BiTE/GwzQKgO4hhG6EYZhUU8RxckMvlZJEsR4n11vLy3j9jTdw8OBBnDx5so+Bb1/Zs2REJdUxcdTwyhF6/Vg0ibQbLMYfRhHiKOorZyFNxjQxOzODcqHAQw0LS0tYW1/fcVMmTpuQwPjEBDLZLG7cvJkkOg6Y69JcRZFG13UUCwVkTBMybTxm2zYqm5vwmhIPc9lsIidN+5EwojjG1QsXsLa8PND4BHcnwjgQtIUZBmGtBkIINwxAElliJvLTyhXc3GWxHaSHGDLQ2igwDAOlUol3AWQtlPWmpMPmHIhhwDwSg2yXTTphEKBWqyGOIiiyjGI+zxvuyLLMeyy0mzIqlQpefeUVzExP47HHHutZ5AhAY6tlCg8pDLmEsRPsc9c1LTEQJAkWzbZvBSGJsmYYhokYVEonYFDxLFmWUSqXMTczw6sa6paFm4uLqNfrA22zJew6T+kn7Jmbw+LCAg8TpCsi+jIV0lVB23abGNDFQoEn5YZhiBXab4Fdj5Ik8fyD5u6jAHDz2jUs9JIjIbgnEMaBoCW+7+PS+fOJYSBJ2Ds3x8viCCGJfC+SngWt6FYHnl5xdypRC8IQtZRRgJRRkE+53uM4RhAEIEj09xsmjf4OvSskdXMfCEmC53mo1WogAFRNQ6FQaOw7QV/HkxebDCjbsvAPL72EQqGAp556qq+VfqscDyDlObgNxoEkJV0bVVUFIQT1ep2vpmNqEARRhIiGDlomerLtNcXhe0XTNExNTWFychK6roMQgpX1dSzeurWtCddOYOMkAOb27IHjOKhsbja8hpV3cmOhR68C91C0KB2WZRnZTAZTExNcL6FWr6NaqyUlpYRA07TEOCQkaXWOLW+EJElYW17GlQsXtrXZFtx7CONAsA3f93H5/HkE9TqIJGHP7CzvpCgB3OWostVeE52qE9JGAaPV7Zu52zc3N+GljIJyk1HAx0wNA4VOpsNONmRjJ0jyCnaybcdxkhbLksS1F7pO7tQ4YPHjl15+GZqq4plnnul7pd9u7IPKJrejl7JG1l+BwWLkYRQlUsjUQ0DiuKd8DgnJTW0nn082m8XczEyiqCjLCIIAN5eWsLaxMbxQAxKjeGpyEpquY3FxseNre/YqsMob6klo9TpN0zAxPo5cNoswDHnSYrVWg+f73BPo0cqF5lLKWrWKi+fObQtLCO4thHEgaMB1XcyfO4fQtgFqGDAlQZnWpXOvQYueCSzpqhUsYxtAw+ou/eowDFGr1VDZ3OTJjkzwpZVRwPB9n3sN7qQQQvN2avV6YlwRAtM0kaM16P3w/nvvwbEsPPPMMzzMQ5p+2o6hzfNRFPGJb1iyyb2UNabbQQdhCEJIcl1JEkJaez/wviWpo6HaCVmWMVYuY25uDhnDSEIN9TpuLi7C6rHssqf9KArmZmexsLDQ83vSXoUolW/R/LkyQ6nVc6zTKNNAYEanbds8ZNjgPcDW91QC4DkOLp05A6sHMSnB3YkwDgQc27Zx7fx5+I4DSZaxb88eGIbRcINnwiqarkNrsWKNsT1jn99UWk2CdFWSNgpYtnjaKOi0OmbNlEAIF4IZNjs1NmJCkpWZ5wGEIJfLtQ3JdOLmzZu4dOkSTp06hWKxSAcnbdXBtzC6uGhPi6x2RtprMGjsvh1po4VVRLDqAlYdEbMcFYn2jqDaFK7jbGuQ1SsSdu4F0TQNMzMzmJiYgE5DHsurq1haXoY/JNf63j17UKvV4DhO34mVkiQ1GgotDCGu4dH0uWYzGf6cYRhcD4R9No7rwnVdrtDJdUvoe6IowuXz51GtVPo/aMEdjzAOBAASj8H1ixfhuy5kRUlCCTQ5jt1UwjDksddWExshhLciZv+TpiSsZqIoQs2yGoyCdPigo1FAf4Ig4HX1w0qmIxhCbgEljGNUWSIlgAKVvO0X27LwxhtvYO++fTh48GDb10lN405PDlwKmE3YoKWA9Bwyr0GDJwKN9fpcV6DF69i20yV7zAjgwkBN4QY23rTHSaMrW9ZmOBo0kx/YnssxALlcDnNzcygVCtBkGb7nYWFxERtDCDXMzM5CURQsLiwkN+QBjTP2+aYFmPhzAA85MBRFgcmMMM+DrmlcjpnlnVi2jY1Kpa03ihCCa1euwLGsgcYsuHMRxoEAtm1j/sIFBK4LRVUxNzsLvUWXQhZj1A1j2yTMXJ3p/7u5lV3Pw+bmJoImo6DQg6eACdxIAK+N14bgNWhwnw44IaUJaUJlSCsS8ikFu77GFcd47fXXoalq35UJWxshPPlTSj0GQho8B9smAvo/i3ezSZ/JB/MfljiX/gG65lPwMrymxzOZDB+PvYPJp10Wf7/IsoyxsTHMzM4iY5pQJQmbtRoWlpa26Qb0g6qqmJqawsLiYkOuTKuKkl5pUGpsMl5YwiKQhBcUReEVSCxpsZjPo5DLAUhyZDZTzcuaRxVHEeYvXeLfY8G9gTAOPuTYtp18sR0HiqJg7+wsL6drhrl3m0sFgS3DgCccdvIWxDGqtRrqloWYEKia1pNRkN5+uvwxYCWMOzQO0jHVYTjWPapxH8UxNCpKM6ib+8yZM1hdXcWTTz018HF2mhyZe38UzZaSnbffO58Mm2PmksRzMsIgGKgPArBl5PXbuKkdhq5jZmYG4+PjMGjW/9KtW9hoqjjohz179mBtbY175piaYj8hnk65Psxz02z4SpLEvYC+73ONCUVRUCgUkM/lAElC4Puo1evbqjbYAiAMAsxfutS2BFVw9yGMgw8xtm3j0oULiJhhsGcP1DaGASGEly815xowtzNpNgha3KyYt8CnWgW5TCZx1XZrK9ymNDEIw2Rik6SWORC9wMMfGI5RACRhmnqthpjqLhTy+Yas/H5YWVnB2TNn8ODJk5gYHx94TO1cw3FqdTkK8aNuGgT8uRbjUxQFWSoKZdP4d7+kV+DDzKbI5/OYnZlBPpuFpiioVKtYWl4eqE/D3NwcQAiWlpa2PdeL54OpRHYj7U1g17uqaUlukSTBdpyG68Q0DORpgighBJZtJ90dU69hBrtjWbhx5Uqvhyy4wxHGwYeUer2OSxcugHgeNFXFvj17Oq7amddAkuVt6oNxFCVyx2hyxaduylEco5b2FtBOgywJimeWN8EbI7WZXNhKRte0gW783NMxhBACw6KligC9uVLDYJDx+Z6H1157DZPT0zh+/PiOxtXuHPI2zbuojNgACyu0+QwMw4BO2xKz66evzTfta1gNtoBEE2JychJjY2PQJAm+52FxcbFvL4dpmhgbH+9YtdDJ89FXy3NseRNCKiSVMU1ItGIhHSJRqOooa8UOJCWOtXp9K8xAk4olSUKlUsHijRs9j0Nw5yKMgw8hvu/jyqVLiH0fuq4nHoMuq27WyS29wo9Z3D99s21xg3Jpx0SvyVuQLplrXl029CvocNNjyYgDxfFT+x4GrFSRTQyZTKahVLFv84MQvPHmm4iiCE888cTAnodkU+33PvKQAnrzHHQaYzaTgawoILTcbggDamuQDkKhUMDMzAw0XUdMCBaXl7HZZz+CvXv3Ynl5uaMHoF2/iEGTIiVankwIQYYmybqet62sNYrjxNDN5SDJcpJI3CbMsHrrFtZWVgYaj+DOQRgHHzLiOMbVq1dBfB+mqmLf3FxPk0KQCilwuVV0j2PXarVE7a6Ft6CZ5km0mzs6iiKEYZjoG/RpHAzbMGClir7vA4Qgn88js8NOdpcuXcLCwgKeeOKJHW2rmxhRuqfC7aAX40mSZW5o+UEwtOZIsiwPzUAwDAOzU1PIZzLQZBnrlQqWV1Z6nrj37NmDKIqw3EMPA57T04O2Ra9wdUQkBgIIgaIoiTeJEERRBE3TUKS5Qa3CDOz7tHD9OmqiWdNdjTAOPmTcunULXrUKmRDMTE315EZmLYUJktUlk/LttJJt9hZkW3gL2u2rm1HAYKsWTdN6TjYbdtIhkGgEpOWdC4VC66TBPm7glUoF7733Ho4eOYLZ2dkdj7HTsbJcklHLJrf7THlCYpdJVFVVXnpnWVbP+QesjK8dbPIbBgqtPCiVStBkGY7rYmFpqSf55Xw+j2Kx2FUtkSEhMZqGZdwA4Net53kIqG4CWzyw3huyLCOfy7UNMwAACMH1y5fhDFEwSrC7COPgQ0S9Xsf60hJIFGFyYgJ6j7X2YRgCNIFJ13VuFLRaEbXzFmTbeAsYrPSxn5g3W6W3qp5ot49hE1DxpiiKoChKIrk7QIgjTRSGeO2730WhWMRDDz88pJF22N+QlRHb0e7T7ydWbhoG775p23bPn2m3fUiyPNTro1QqYXp6GrqqIo4iLNy6hVoPTZzm5uawuLjY84TPdCVkSRqKgaOpKmQabgmpYqVCz02QmvxZk6ZOYQYmkjSUMJBg1xHGwYeEMAyxOD8PEkXIZbNb6nodYDcoAgAtEhGbb0aDeAuYy5ut5JsbDLWDye3GPeYbDEvQKI0fBKhVq7xUsbSDUsU0b7/zDmzbxpNPPrnjBMFuLuco1dRnN5IR26pkorvngL0/l8tBVhREUQTHcXrdcdeXDKvUkWHSdtAZ04QiSVhdX8fK2lrHMMPc3Bz8IEClB9VB1qGSjVqW5R2rWzK1REhSQ1klqI5F+noB0DrMkKp4CMMQF8+ehT3M7paCXUEYBx8SFufnEXkeFClp9tKJ5kRAFotuKF9K/b0Tb0Fa9IXRyw0unWHfKVbO+yKQnTVLaiYIw6RUEYk3pVAodE0Y7GU1eP36dczPz+PUY4+hUCgMZawd8zZYSGEEssm9ws5br+teWZaRo+WNruv2JGPc67EN+wywMEORNnGyLKuj9PJYuQyZZv13o13fiJ1+jrqm8RwD5j1Ib5cpMDK2hRk8j4cZZCmRd75w9uxw218LRo4wDu5xCCFYu3EDbr2OIIowMz3ddnWbjsenbwjN2eQk9ffAuQWpfTXDPAidYPHmbvLK7faxE1gfCGYY5HtsntTNOLAsC2+++SYO7N+P+/bvH9JoO8OMrFGHFBjtPm+gv7CPpmkwWW3+DuSVtw9m+N08WROnyclJ6KqaePHaNHCSFQWFfL6rccBUKpthHridVLbIsgyDKqR6tKEZsCV4xCZ81qyLlVG2CzOwhm2XzpxBXTRqumsQxsE9TBzHsDc2sLG6Ci8IMF4uc+s+TVoyGNiqmeYa/c0lhtS9OJC3oCmM0I5utehRD8YBuuxjEMIoQpUes65pPRsGIKSjazuOY7z66qswDAOPPvrowPr6DbtEd4OE5RsMo/9ArzSfr15KGVthZjLQVBUESd+JjtUO/Q1wJF6UbDaLmZkZmHTiXV5dbdkGemx8vKNxwLRFOiHRPIRBj4L1/vBp2+btO9gqBeUiWjTE1yrMIMsyojjGpbNnUduBkqRg9xDGwT1KHMcI63WsLC4ijCIYuo6xsbGG16Rvxmyy5j0RUjfHdCw6jmOucjiQt6CPG1an1Q/PnG7aZ4M+Qo/76ZWQGkQxzTHI5/M9TyLdpr3Tp0+jsrmJjz75JNQdJjSm6Ta+21XG2Hzt0Qf7MhAkSUI2l+PyvV4H4aFB/ArD6MfQjKZpmJ6eRiGXgybLqNVqiapiKsxQKpVQrVY7NjvqlU4CY51QFCUJNckyLxtNX0vsL3aOWP5DHMeQJGlbmKFeryfqjGGIS+fOoSoMhDseYRzcg8RxjMiysL6yklj+hGB6aqrhNSS1kk3fnNuVETKxlGqthlqf3gJgMBe/hNZJcoTGQ2NCGgySfo2PfojimCcfqqqayCH3sbrspMB469YtnD93Dg+ePImxHcgjb6PLhMDOIzD6MsY0zddYgxE4wCSWS8srD6mNMkMeYExdtynLmJiYwPj4OFRVRRgEDc2byuUyYmqINtOqkVI3JAxm/KW9B50UGNNGFPMkANgmmuTYNvwwTEIM585hU7R6vqPZvTuCYFdghoFVraJWq8GPIkxPTPCM/vSXnMd6WRihy0q9blnIZjJQVBUZ00wkV7sZBdQIGXTCZgZC+obI+tbLkrSVLMkkXAfcTydiQpJyRVrzPUifhHbTi+95eP211zA9PY3jx47teKw8LySOEW89uOVRSa3OwzBMelwgUZr0aYJbQ5UKfY/tOCBIOvRpqY6dErD1+bYIRaUNAX6tsN/s2mgS9On3M9QNA0EYwvc81G0bxUJhW87KwNcFW3nT/h3DJJ/PQ9P1pOFSEGBpeRnlUgnlUgmSJGGzUmmoKopoJ8xB6Td8w8sa4xhhGHbUqWj2TnCFRVVFMZ+HZdsIwxCe5yGKY2QMA5fPn8ehY8dQbvJoCu4MhHFwDxHHMaJ6HYHrYn19HUEYopjPI5/P89c036ib8wtaYTsOnFR5UqlQ6BrrB4a3kmcGAqFd5dLthdl+htkbIQ0zDFjL5WKhMFjJX5s69Hffew8xIXjiiSdaTj4s4Yv/pvFm3uyKZo43lyw2TADN+Q70f592OlQUpWMtOsHW6tGjN/hth4emhNbU30CjcSQBiJEYMOy6S2eyq6qa9HmgBivTv5BkOelU2KJkL5vJIAxDRFEE13V5p8FhIUkSYuzAyGiDoeuYnZnB2vo6HNtGpVqF53nImCYqm5tgaanxDg0DIDV26gXsqv0gJT0VapbFG6V1eUNDMjOQGDSsusTzPDieB891ISHxLDADYageM8FQEMbBPQIzDOIg4K1fVVXF+Pg4TwBshgAdGwIRQmBZFlzPS27YigLTNHs3DNrsdxAkAJBlgMYtgSTfoN2xDQPWKyEMQ8iyjMKghgHQYBiwiX5lZQVX5+fx8COPIIpjWLbdMOGnvSWtJll27PxmnDIC+AqcTbDs73QuSRBAURQYmpaUr6U8AHyf9D3MIDA1DYZpbh1P2tOQyvdIj4l5LJpfwyYp0FVnRIV3eiFtKDBDQpZlOJ4Hn35emqYlRgU7li5JoZ13mLRQ7mVS7RdZljE1OYlqtYpKpQLP86BlMljf2ADQ2DVzGLAwQy8NrBTaz4Kk9BQ6bReghhQLUWJLv8I0TciKglqtBtd1k34OpokrFy6AHD2K8YmJHRyVYNgI4+AegCUfIgxRrdXgeh4iQjA3Pd0+65+Q9s/Rbdbqdd7fvVgqwXEcLjzUrtRwp2GETjADIaRhBVVVR28Y0OMv5PM9Cxyxag6WgBVRt2w6XkziGG+9/TYKxSLGJyYSLXu0mPABHvKR07/pZCinVtbstUBj+KgdNUmCoqrIZbM8vtwOg8rq6oaBTIuKl0FgRhCQlMeFUYRcJgNZVfmExLwiMfubifAQkqzkmybNKAwRBAECz+PJijwpD8mkKCsK/y2zkEaPyGziG0E1Q7FYhGEYWF1dRSGXw42bN7G5uYlcLjf0fQHgSoidTIQwiqDSfip+EPSs/snCDOmzxBJ5M9lskn9AEx0zpon5ixdB4hgTTblRgtuHMA7ucuI4RlirAVGUVBFUKvDCEJPj49B1na/MGL3kF0RRxF3pkCQU8nlomsbLmnzfh9liMhmlYdCwnzgG4nhktfkEgJUyjAptwigxrfWOoiiZ+MMQYRv3bxSGPC8CkoTr16+jXq/j6Y99DLqu8xVu84TfLeTTbvy9vIMLSe1iGWMD9Fphx61Qg6/bBMS8KiyvIm1I5GgFALtOVVXdcnfHMbb5JWQZiiQlBgNtMsT7h7T6jkgSr9sfhYFgGAZmZ2ZQrVYxf/UqFm7dwszUFIpDEsRqhi0QojbHEwRB0myNEAS+j9g0e/KetcpDAJJ7hKHrIHGcCFilDISrly+DEILJ6elhHJpghwjj4C4mbRhEcYz1tTUEUYR8JoNSqcS9AwxCSMcwApAkqVVpuZ5MY+yqqiKi5ZC247Q0DkZZKZAmog2gZNZBbgS5BpZlwQsCgBBeruj7PvcCRNQoaLlvpuMgSVAVha9SgS0XuOu6uHLlCo4dPYo9e/YMffy9nJN02GKUrZo7wa/NdK5ED++T6WSONuM2dB22bScldTTfJqafWxiGiKMIEdMKiCJEkoQojhNjMO2xoZ/dNm8DzX8gIzIQJFnG/n378O6778J1HGxsboIQglIPkueD0qo7ZUjvKywHJIrj5Lvfj+eoRR4CAKiaBgOA6zjwqdcsY5q4Rg2EqZmZHR6RYKcI4+AuJW0YAMDGxgZc34ckJfLILOmL0Yth4HkeapYF0BLBAu0VwL7YOjUO0qGFUWkKtIKgsUkQu6G1k5HtBzbp1+t12LaNOAxhZjJtJV+ZB4bJNyspQ6CVFHGU8ia899570DQNDzzwwI7GvBPilL7BsHsKDMIwR2DoOjxqzHmeh2w2m9TtEwIt5QFiSZ1xHCOOIoT0N3tMiiKQKEq8DelzJElQWIiHXocq/XsnxgK7luM4hpHJwDQMxGEIRZZRqVYRE4KxUmng7XeCr/SxNZEHqa6nmqrCchx4vg+DKlP2ut3kj8Ywg0S3SwiB67o8rJYxTVy/cgVxHGNmbm5YhycYAGEc3IXEUZTkGNAbfBAESQvbOMaemZmtmvVUUlg3xUHHdWFZFoDkS1vI57n7kN0sVEVJ6rLpTZetIHbLMAC2xI/YarfZM9LrtqIwREh/Alp77XkeXFprnslkuPHR7AVQmjwC/bC0tIQbN27go08+uePuja3o9Rwwr8FuNFvqBDdiWa7EMLYpSciaJmo0mVbX9ZZhIZaYp8gyoKpI+8JYVUiUMh54zkgcI5IkII5BgqBBalxRVSiKwr8rvZ7fdEUKG1upXIbruigVi9ikpclxHGNihKV/LAmVEAKfhtWYcSC7Lm941msn1FbblQDuedF1HQSA57o86TVjmrh59SpACGZG4VkT9IQwDu4yePJhStK0srmJKI6RzWSQzWYBbN1smAu0HUzilE2KpmEgl5IEbi6RMzStwTjYTcMAoGEF0ih+1FAn3yreH8cIaRMZVu7GvA2E3uR9309i1IqCXD6frDbbeAEGOgb6ebzz9tuYnprC3n37drzNndBcDnrbkKSkKVaLEMNO0DSNexBsx0m0KdC78SFLEmRV3XaDbOVtiFLJpiQIErVGej3KsswNBWY4NF9P7aoRyuUyrl27hlKxCEmSUNnchGXbIHGM8bGxkRl2EsAbLkkAb5GtaRo8z0M4gHHAtsvyEGRseTYNXQfiGK7vNxoI164BgDAQbhPCOLjLiCyLGwYEiWysY9sI4xiz5TJ/HSEkcXN22BahNfxshZDNZrfXhzfdyFhoIYqixEDokuW+E9IqjgxWqdBK0Y8ZCUEYIgwChFGEIAi2brxstYdkxaxqGlRF4brwuqYhm832F1PtEUmScP7cOViWhaefeWYksep+plXuObjdxgGavD9D3K6ZySAIAkRhCN/3odGKi53QzttAAN7FMArDxBiNYxAapmDfsbR3gRmf7SiVy3DOnYPn+1zYab1Sge26iNfXMTk+PhIDgZBE9EoCoKVCCKqqwvP9natQsiTblEFkUEE1p9mDcP06MrkciiMKpwjaI4yDu4jIcUDoTYZlpFdrNYRxjKxpbk1qpLvK3LaKhFyuZTlbeiXODI5sNgubNlTRaS35sGllGLByNiAlgETdnMwrEEYRNwDSblpFUaCpKlT6w97veV4iACRJMNPncMjU63WcPXsWx0+cGFor5m30seq+U8IK2xhigqlCP1PbceC4bk/6HIPCjAZZ1wFqhJA43vIsRBFCls/g+/Cx9RmwPgY8FEGN+nK5DEgSqpubmJqaSpJjZTkRTPI8rKytYWpiYuifoUvDB7IsI0snbZLK12B5GYPul3lwmj05eioHIW0gXL14EScefhj6EIw7Qe8I4+AuIQ4CRI4DYOsLFQQBrHo98RqwOCQrJ2xRRsRIVyRItCJBa3PjTAvcsMxj0zTh0xVE3bZRTCkwDgNW+dBMRFdlERVnYpnnafVBlnippV25LRT1AMCnuRqQJBiGMXRVvTRvv/02zEwG999//8j20Q+73aq5IyNMiDR0nV+rruuOzPgDtpfuSbIMTZb5d4tQkaeAerUAbJXCRhH81HaYZ0FVFGxsbGCK1v/nsllIANbX1+H5PpZXVzE9OTk0AyGkJdFAojrJko6590BRECK5h+xosmb3k7TOgiwnn48kNSQpAsD8xYs4fvLk4PsT9I0wDu4C4jhGSJMFGZIkbfcapCbwtlr+vo9avZ645hUFxXy+bdMdnrlM3fXpTONcLofNahWB7ycZzEOy6reNmyZG+UGAWq0G27aT1X+q9EqhhgCP7baa8AhpUIQLwhD1Wg0EyYolR3M1RsHNmzexdOsWnnn66ZHF+NOtsLvBPCosBnwnMOycg/R2s5kMqvU6PN+HoqptDeFh7Q/YnhjKuhbKsgzDMHg4Iq2VwfJiSBwjJAQhku/Z6toa9tTrUDUNGg19ybKM1dVVBEGAWysrmJma2rGBQAjhMtq6rvOE2XTFgaqqSbhup8ZB6rprMKoIgUH3ywwEdiYXb9zA3G3O1fkwIYyDu4DIsrirHEi+TIHvN3oNehAgcl0X9TYVCW2RUlK6KVRFQSaTgWPbsGw7kard4UTDji+mCYJBECAIgm2VCrqucxlnlbaV7YqUyN8SJCVaddpZ0tD1ht4TwyaMIrz1zjvYMzuLuRGXZvV69tPiR3eMccAqY0awbVVVYRgGXNeF4zhQC4WRJdI2G+bpLoWt9slEr9KVK2EU8byFbDaLum0nhgPtGyFLElRNw9jYGDYqFYS0adP05OSOQieu5yGKIkiy3FIFk5UfujQpcSekJbRZNRWhCcKspwOAhhDD4s2byBUKIv9gl7jDAo6CZiLHQez7/EvDbuYNXgPD2G4YNK1c6pbFDQPDMHpqINTppgYk8UCmvW41eTb6JQhD2LaNzWoVG5UKLNuGT8vEZOr2z2WzKBYKKBYKyGQy0DStv+6I9EZkOw5iQqCr6kgNAwA4e+YMfN/HI6dOjXQ//bjmeaz7Dso3YIbbKEStgORalSUJcRRx0Z1RwTwyEY3N94uqKPx6z+fzCKnomCLLvKTS930EYQjTMHhy8K2VlYEn7SgdTuiggqhR9UjChMAGpOFqTRkIAJJrgBrupmnyPATbcXD14kWuqigYLcJzcAcTBwFCx9m2ugt8n+sazNCkpW1TAyvtIwR16lIF0FDu2Al2o+405UgA8rkcNms1+H2GFwiSnImAlhBGaZlnWo1gaBo0Xedx8QpN7BrYQ0EI6pbFVd8KhUJSbz0EEaVW1Go1XLhwAffff//I9PE5fYyfCTLdCZUKHGmr/8EokCUJGSpqZTsOVE0bunHEwnDMRS5LEqIekoM7YZomPKrVoOv6Vt4CrciRVRXFYhEblQpq9Nhmp6eT1uq99gIhBJbjAIRA07SO4QKm+RHQcQwtTJbyULKFEJNaBmiIgXZzvHrpEo7dRgGxDwvCOLhDieMYgWU1dMljVKl2fNY0kclkOjZPqtZqfDVRyOWSjnpd6FVIB0hctqZpwnUc1C0rcZG2cW2ykq6A5hAgdSOFJEFXVWg01tnqxk1oyWFf3oIUjusmrWeBhpAKjxMDvJvcMHjzrbeQy+Vw/NixIW1xOLAV353kOQBGL6Zl6DpcTUNAW1UPK8+EGQXb+i2wUNYODE/TNHkljprSG9A0DSSTSRpNhSEkSeLy6QtLSxgrlXjoTde0tnodTOckotvoJSlXo0JoYRRBJ4M1oep6TpjB3hRicBwHy7duIV8oiPyDESOMgzuUyLKSjnNtvAZBHGN6bKztDTUKQ2xSI0KSpKQioQfhkkFuZNlMBlEUIfB9VGu1huqHMIoSg6BFfbQkSXxFxIRWOhHTpLtBEq8C34dj2yAA8q06LFLvi8Jinzv0JFy/fh2rq6v45Cc+AUVRGuSTbzd3ZBkj/eyH2Zq41T4ymQxCqnvArrtBYJ61dJJrq+u3XYJir5iGAQlJyW1zPoEE8NLcjGkin8th6dYtuL6PtUolMRB0PQmjUKNdo42t2Mrcsu2kp4QkIUcTHbuhahok102+z0z1cFi5K+nE51SiYrOBcOXSJZF/MGKEcXAHEjkO4iBo+YVLew2ybbwAURRxw6BbRUKadMJjK6XBdrCVeK1eR+D7qFQq0A2D10OnURQFmq5vrWZ63Eeccv33G1aI4hh1ahiYptk1yzqd20HoBNDPHoMgwLvvvov9+/Zhanp6ZHF0Rj9bJ4RseQ7uoLAC85CNMkGSVeiYhgGHxrCLfSYnNocORo1hmiC0tK9baErTNOyZm8Pq2ho8z0OdVvYoVOiL+D4Cmr+kKsqWCqIsI5/N9iznrcgyIMsAVYlUadfGoX9yKe8B0Ggg2I6DC2fO4OHHHxf6ByPiDlo6CACqZ+C6LW+S6VyD8Tb66lEcY7NWS+L2ioJSsdibYUC/iGy/8QA3P13T4FLvwdraGk8cYuVX5VIJpVKJJzL2czPhyZGy3F9dPCGw6nXEcQxV05DrU8tAkpImO3IfE9cHH3yAMAzx8COP9LWvQeg3iY+fR0m6ozwH6XK5Ue/DoMl9JI7hUdnwdvCQAS1FTAtr9bzfHRg9TKLc7TGJUlEUTE5MJEawpqFuWUl+TS6XTKKyjDiOUavXUa3XUbftRLypj2uB5R1IksS9gekmbL3Q9RxKEtBCn8SgCwsgkY2/fP58H3sV9MOdc3cQtNQzSMO8BhnTbFlqFFM5ZELrqculUk9feuYWHMQFGkYRLNtOKgwsCwZtpcy6ORYKBRQKBZimCTnV4bHfWyVJyR73g2XbPCabz+UGm3yYzgOdUGV202qxrY1KBZcuX8bJBx/kgjsjXWX2uW0W3riTvAYNjPBcSSwrXpZ5ro7juttCPmmDgKly7vQzZNdOv9vRqAJpNyMmjaIomJqcRIYaQWtUMCmTyaCQzyfhCVYySKsdqrUaajRxuZcxaqoKCUmVEaPnJlPoPXzEPrM0Jq2mIIRgaWkJN69f72lbgv4QYYU7iMiy2vaIZ16DKI4x08JrQJBkx7M65WKx2LM13++qhiCJgXpN9c6SLMPUdZRLJVi2jTAMUavXUSwUoKrqVgXEABM0y/ruJ6SQ7rLYk6ZDH6S7XJJUGObtt99GuVjE0SNHhravLgPpz3NwhyYjjtJj0Go/mq5DDQKEvg/HcbjLftQhA5mW/vaKJEkwMxl+HffzvsmJiURq2XWxtrHBJY/DKIJpGMiUy5AlCR4ti2SJj04qF6idgqaqqokBRXudcMNLkrqGGFpJo7d9rZQ0wIpTZZMscbJOVVLnL19GoVgU+QdD5g67Q3x4CW27bZ4BAFSrVcRxDLOF14AAqNXrPEGomM+3lQxufGPrm2C7m1cQhqhbFvcShGHIy5/y+TzKpVLSzZCWCaqqChCCaq2W9IZvY/j0AvMc9FqpEIYhbMsCAZDJZqGOoD0yAJ5AJcsybty4gbX1dZx67LFdmewGmciiOzEZEaOvVNja0Va5rGkY3NB1PW+gkEHfu0+PoUdM0+zbOEh2I2FifDwpawSwsLSEyuYmJCRN1gxaGZTP5VAqFGAYBiRZRkQIPM9DrVZDtVaD53nbzouiKPwaak407mbA93uG2f1ISo1BURR+H3QcBxfOnhX6B0PmzrpDfEiJOuQZADTT3nEQRlHLXAPLspLJF9ialCltv6ZtrHcmw8uICYHjuqhsbqJarSY3CroCyWQyKJfLKBQK0HW9YfySJPGxEEJQrdd7jpu2gnVO7MVzQOIYdctKhI50vWUIZtgQQnDm9Gns27MHU5OTSY4C0BB+GMXE0++keicmIzYzko6V7LomSVvvmBAossyv237c9jul34Ra0zAG/u5IkoSxcjkJhSEJTQLY1nJZpn0NioUC8tSYZp0mbcfBJm0XnTYEWGllK+ElSZKSduhNELRffHQ4iMQQaTJo0xLPlUpF5B8MGRFWuM1EUZSULba5YUgA757YymtgOw6XF83n89C7JB9yF2CXG1RAG9WkrXFCSKILbxg9ZTZLkoR8Pg+rXocfhrAdB0EQIJfL9e3Wjnv1HDChoyiCrChJnsEucPXqVdQsC0997GP8sWZjicdPabiHdHG/dqXPkAJwh5YxNsPK43awCYIWyZrUMAC2jComMhTR9t69ZuzvlH4EkkzTxOra2kD7CYIANg2bxHGMkOYXmJkMzDZZ/kxHgemS+L7PJc39IOBGFfsOB2GIVmm+XPUyRfPio1fSCdNpIztjmlyJcmlxEYVSCXv37x9gD4Jm7uA7xIeD2LY73uBjksj9hlGEsXK54TnX8+DQTo056iZsJj1BdbvhkjiG4zjcS8AMA0WWkc1mMT42hnw+3/MNlHVzKxQKXJUxCMNk27T1dK/wVs1dJrVmoaPd6B0QxzHOnD2LfXv3otQt7iltKcGlKyDS7uaePQz9GgZkS+f/jlJHbEGvnxozAmLQ46NVBW1VL5uuB1mSEi0BWR7IdT8wtAKmF0zT7NuzQZC42y3bBiEEqqJgbnYW+VwOiiRhbW2tq9SyLMswqdR6PpeDSg2GMIrgOE7SCttx4FHjofVhNi1EBvWeSRJfGKSTFNPCTWEUYf7SJVQrlcH2IWhAGAe3kdC2Qdp9QelE7jgOryVOq5d5NEERQLIK6OA6l9DZY0DiGLZlYX1jg6+6gaRsqFgsolQuJyVVfaw2uaVP/88YRlJWKctJVUW9Dstxep4I0yV47eBCR4Qgm8vtmuv86vw8bNvGAwO2lGWfCwtDcKOhqQSONK2C+4UldcmyvOMmWUOneTxN/7PqAZZnETf9nz4f/RqEBi0XjKJoV+PWvZY4GoaRhPN63G4URQ2S6aZhIEerFMbHxhJ1xTjG8upqz1UDqqoiR8uRM/ReQCQJcRzDdV1UqtVETKnVcdJjZQqkg5J+pyTL/DNvyD9wXZw/c2bHjaEEwji4bURRhLhDHJFNDrZtIyKkwTBgiYFAcuPoVrvfTsEsbRQ4rguC5IuWzWYxVi7zG0q/tCtXVKnuQlrMZLNW60k9kEknt3OHNwsdDauFdDe412DfPhQLheFsNO1NwNYkwkooeQ8C5mmgr2Ohik5jBe68kELDBJ9KsoxobkCU6kjKwwVDpMF7MOKmTIPAmg/10jDKpx1HoyiCLMvI53JcKwFIvt8TExNQVRVRFGFlba0vVUpW/lgsFFDI56EbBgghSadT206E0Dp4BXf02TUbganrOK12uVmt4sb8/E72JIAwDm4bhIYDWsFczEykJYoiXmoVhmGSVESrBLo29KETanqibmUUyFRJsUQ12QftX9BwDK0ep3oD+VyOr9Y2Nzf5Kqf1IRA+8bVc8e5Q6GgnXL5yBY7j4OQuN4KRgC3XauqxlkYg/R2lPAfNz/OfPld2zRN7eoJPV1OkJ/dWzzePFalj2Y3QkJHu2niHeQ9Y11Wvg3HApJBtxwFBokNQaGPca6qKyfFxKJIE3/exsbk50NhVRUE+m00WEYoCxDHCMGxrJJA43nGOTfN9KX0/yGQyXP/g2tWrPOQqGAxhHNwGojBE1OYGlI49u9QwYJnEURyjWq8DhGx1Fey2MxZKoMaGbdvbjIICLUMcRjJWr4lkLGShKAoIkpbStXq9pReBuY+lFjcHYEhCRwMQRRHOnT2L++67b+Stn9MQQtBPvjc7GzE9h83hFin90+SNSO9z20/qsyJNP83vRcqI6NX82A2jgMHagktSIlW8W/LIQHeBJMM0AULaTnZ+EPDJWEKSpJfL5TqeP13XMT4+DgVJtdNmtTrQ2FmIStd1FAsFGJqWGAlUHK1WryOgMs0sB2mYpLeZzj/wg0BUL+wQYRzcBuI2ZYvNNdCO4yAmhCfzVatVXkbYk2FAtxfHMWyaaOjQlUXaKBiWNnm/GeaqoqBE1ROB5AtdoSVT6dgkW3G0Mgy40BEhKORyu+oyv3zpElzPw/33379r+wQaBZj6gbmPe6kUad6+3Gqfd1reQg90GrFhGJCpvHAn1/ioaJckappmUm7Z5DlgImO2bSOOYyiyjHw+D8MwetpfNpNBqVSCKsvYrFZh2Xb/Y6ax/yhV3lwsFKCrKgg1Eur1Ojar1Qap5YGvnFaJpk36B+x+sriwgI319UH39KFHGAe7TBQEiHt0WzJtg2wmg1qtlrSETakfdiOmnoKNSgVuD0bBTtZKbbPDuyBJEnKZDEopfQbX81CpVBLvBiGI6Habj3nXhI5aEIYhzp07h0MHD3YP7QyZQT+nuE1Y4U6g1dXcXLY2DDptj+UeyLfBewC0F0hSFAW6rvNqiiiKYFkWTx6WJAmmaSJfKPSdhFsoFHhp8dr6Otw+QyrsWiIpASlZlpFNGQlRykhgqoatZJF7gbTyHjZVfhi6ziWiz589u+uf473CnXeXuMeJHGe716BFJQELKQC050KT+mEnuFGwuZnEIAlJjIJcDmPl8jYBlJ3Cvno7cRmqqooSTXJSZBkEiYZDpVqFR0Mg6ZvC7RA6SnPp0iUEQYATJ07s6n6BAURkgIZM8TvROGjH0EMLXbZnGAYk2sXwtngP2ozPoJ0kHcfhrnqJPl4sFHhr50Eol0owDaPnEseG8aaUWJsTG1k4tJDLJforhCAMAm4kDNqeu9VU3xyyyFBvS21zE9dEcuJA3D13iXuAyPeBlEY4o9UN0HGcxFWHLXnSYpP6YTNsQt3Y3ITtulxLvZDLJZ4CGlNtl2w4iIXdXLK4U3RNQ6lYRDabTRLEqBFQr9e39NVvk9ARIwwCnDt3DgcPHeIhn44MceUysIhM6kZ8RxsHTedqN/MO2P5MGl64Hd4DYHuHQ0JzjJimAJB8TwqFAp8Ed4IkSVsljlHUV4kjAK5e2PwegsRbxcINhUIhWZikjASbybD3Q4exsTPBvBeQJFyjpcaC/riD7xL3FnEcI2qRUNTOlejYNhzX5e2W8/k8L9VphiCp713f2EhET5hRwMIHPcYg+2XQDovdkCQJGcPYqqkmJKndpkmLNdvedaGjNBcuXEAcRbueawAMnm9wp/ZU2G160hXQdZ570K9Y11CgbnJCkh4H1WqVV5Io1BjOZrND/Sx5iaOm9V3iyPIOml8fx3HDvS1tJGjMSAhDWJaVNJVrsXBqs8O2T6XDFaqqwqQaEfNXrgjtgz75cN8pdhFCGw/1gk+VDz3Pg5HJtFU/BBKvwubmJmzqplMUhTdBYtnXzbQrnxpklTTKaZllH+dLJR4KcRwHq6ursB0HumHseo8A3/dx/sIFHDpypKPw1KgYdCV7J+cbdIIJeO3qPmnlAmuVvNv7Z1LF9Xo9SSCmJbwKzRcaRHukFwYtcWRhzrRx0KkpGFvVNxsJ9VqtZ29NOyOvOfxoGAZURcHy0hLW1tZE/kEf3F13iruUOI4RNcufMld8i4t8s1qF47owDIOLmDRDkJTwVapVhFEEIkncU9DOKEjTcgXaxwp8x30B+kCRJGQyGeRyOYRBwNtas1WV5/tDdd134sKFC4gBHD9+vOf3tGpAMygDJyMyNbm7zDhoVoncMT1eJ4auJ+2VCdk13YMoimDbNqq1WlKpFMeALMPMZEZmEDQzSImjLMu8KgpIrtGoh/PcYCTQc+15Hk9a7ES3rTfkH2QyiMIQSwsLqA5YsvlhRDRe2gXiFpNXOynjMAxRqVQQxjEmx8ZaCvoEYZiooFHVQE3Xkc9m+9bLZxKk/VYa7KZhwPcpSYjCELppQjcMGLqOIAgQRhFCy4JNY8VsxTcKPN/HhYsXcfTw4USYZpdhq7GByhip52Cn4la3g1FULfSyT8Mw4EQRPM/b1nV0WBBCENDmRukJUZZlGKYJjXY1lWR5oETUQchmMohKJWxWq9isVrl0cjvY9431tIj6vJ8osoxcLgctCJIyZhpq0HWdl3HuBBbOWF9ZwdTMDLLZ7K412LqbEcbBLkCalc0IadvjoLq5iTAMIcsypicnG56PCYFt27ykSaJfKkPXd1RzLqH3FSk3JHYxzs8Sm3zPg2EY3B1JCIHrefA8D3EcJ9ncrgtN02D22DmyH86fOwcAOHbsWJ8HMLyJbdCzzj0Hd3jDpTvJ6WtoGjxFQRSG8H2/Z/2AXuBdDpuaFmmaBt0wGvKLCEnaSw+a3T8IhUIhKT+0LKytr0OhlQetSBsHOxmjrmlQC4Wkeys952EYItPGc9LNaJQliV/3mqoikGVU1tdhmibGx8cHHueHBWEcjJjI8xDTWmQASTihzeqNdTojcYxSsdjwhfCDAHXL4qsHwzCQzWR23F2P6/T3MIENo2RxEJiyoyLLDe2iJUlCxjSRMQzeYjoIQwRBgCAIoCgKDF3vKczSDdd1cenSJRw7dqzvSaIf46sTO9kGl06+S4WLmLrjzjfWe309q1ywwxDukLwHIZ30/CDYkr+WZeia1tnrlZrodotyqYSQfq/WNjYwMzXVcpJOJyQyMaRBkWUZuWwWfhDAoRVXlmVBo+XKbRuRtYCg8btnGAZWlpdRGhuD7/tDE3+7VxHGwQhhFQrpC7rdzSXwfXi+D891oeo6L8+LCYFlWfB9n+sV5Fnd8JCQJCmR4+3gERhVZUIvOJ6HKIp4U6htSBLvQR9RN7Dn+0kMl7aV1Q0DhqZxcZR+OX/+PGRZ7t9rcAeQ7plwp3sOWjLsvIM+0DUNrqoiCkN4njdQEmocx8lKmF7HDEVRuLHb6fgkSYKqKAh2secD2+/42BhWVlfhBwGWV1cxOz29bfJnIycAL5/e6X51TYOqKHA9D77vI2BeBNPc8gj2KaSkKAok38fa6ioMw8Bkk2dW0IgwDkYIaco1aJeAyFbGhHafkyQJ+Xw+acvMHicEpmkim82O5EbJdPVJCwPhdhoGYRTBoyWgvRw7MyAymUxibNEbskfDD+zGw7u49XAuHcfB5UuXcOL++wcKVQzFa7CDfIN0rLqXa4fQ90RxjDiKEq0JWifu0Zu1oiiJDO6wchh6SKAdSt5Bn9tg3imrXue5B71MfkxEyadGamqD/PrrJ8mwWftgt2AljiurqwjCECtra5iamNg6B4Rwrw7z8AwLSZYTY0BVE7VUep/UNA2mafKGch33SMfFrh1D17G6vIzxiQm4rntbKo7uFoRxMCLiOEbcXKHQBpv2EvB8H6qqgiBxY/u+n0geUyGjUSbRpBXGWn3ZbodhQKjYUQxA1bS+lB2ZS9g0DIRBAI/eqAk9z57vQwKN8ep6x9Xb2XPnoKgqjh49OpwDG5D0Cs2nPSVYb4kwDJOEsDhGFEVJS3D6N1u1xjR2zSZ9/jv1WvZ3M1EUISYE//AP/9BwLUiyDEWWIasqFPa3oiTGgyxDURT+GPtfpo8pisLfDySJtqZhwA+C5LMzTe7pGJpxMIBsr6aqUFQVIb2G2k0oURTBpyGtuKlmn0kga5o20MpakmVI1DjcbSOBlTgur6zwEseJsTEAiTGQ9hYMKy+Cqy5SAah8Lpdc676fJCKHIUzT7PmewK4fWVESJcjlZRj0GhO0RhgHI4J4XsNqr111gu95iaAPfc7zPCiKAo9OZNlMBplMpiFnYZTJgNxAoDfQ21GZwHA9L0nOBO1MN+Bxq5rGWzmHYQg/COAHARe5YYJKzABJx5Zt28aVK1fw4MmTg5eT9fKZEcLzJlzXhee68Hyf/23ZdpJ8SZ8HGmOqzPUsSdLWZKwoUGmZGUEyQWmqCk3XIUtSwyQtpybxbY/JMuqWhddeew2PnDqFTCaz3aigyWgxNVKYMRFHEW+D3GyUsBg1a9DDJ1Q6gUugQjamCcM0odP8EdM0+WOmYcAwTRiGMbIyTda7wEpVLrDJMEzluDRMjJIEVVWTcJeq7tzVTiXFd7NqIQ0rcVxfW4NVr0OlmgvsmJvLGYeBBHBjln0GmqbxvCzHcRAEATLUi9B1e9RAMAwDqysrGJ+aguM4yOxii/e7CWEcjIA4jhHTCgWuJ9AqnBBFvA2rpqpYqddhOQ6mJid5h7WGCWlECUnNKzI23oZEyl0mpDXfIARGJjO0VSMzFLLYurH7QZCssOlN3rLtZBLVNJw+fRq6puHw4cMD7ZJ1xOSrfPo3q7JgxoBLk6/SEz5LwDQNA7phYKxc3poY6SRp0MlR7ZBLYDsOPNeFbhgdS9I6oW1sAAAmJyZQLpcH2kYn/CCAVa/zlaLHzhEzljyP190zwwlAgyHBzhU3HJoMCOZJGqRBl65pcBWFXx+KLCMMw20GAbtu1CEYBGkkJNcSEzC7HWI+6RLHjUqloYKBJbqOoqJCThlETCGShQzDMETNspDpxYtArxNFlrkwEvse3a773J2MMA5GAGkOJ7S58FhrYlmWYVsWfM+DLEkol8vbNdPZzWCXLmLu7bhN2LadaMprWtIlr7kcdAioqgpVVRORFLq6ZdoJQRiiWqth/upVHDt2DK7r8te38iCw9rm1ahW1Wg3VajVpMFOvw6dNchjpCT+fz2NycrJxRUz/VlWVTwRsYhiEflo131ZoPL6QzwPF4ranCY1vA4lh7fk+XBZeaTImrHoda2tr8OhnyrZPogiarqNYLKJAG30VCgUUikVk0x46SkwIojBEGEWIaP19HMfI5fNJzgVNhmVeglF9Z9IGQT8VRsMmXyjA9TwEUYT1SoUnKLaTUB4GEgCkDAQWMmS5CDH1IsRx3Fl/JPXZ6LqO9bU1TE5Pw7btXe+sejcgjIMhE8fxVkvmDuVXnuchYCsPQuDR0MJYuZw0DEkzYsNg2y2GkIbWqISQRPp5l4wF1/P4DT2XzXLvyij3rigKMjSEw2rQL128CFVVMTc3x/MUfOrqdxwHjm3DtixU6/XE1U+bIjHVt8mpKRw6fBhmJsNXraz5VV/ssIyvwfV7N5PKF5AUJTmvPbiEoyhqCM9UqQG3vr6Oq1evNhhP+UIB+XweuWwWJr0eMtksFGoIyKoKEoaQJQm5XI4bcKNGluUG40DGcJP/eoEZZ+VyObl/RRHPP+A5ByyUOuRzwryZaY+JoijIZbO8ooHpnXRrRsVCb7qmYXV5eaSJ3nczwjgYMoROajzrv8UFF9NwQkhrnWVNA4lj6KbZ+ma327oCTfuTJAmErgxGDRN6ipEYBg3u8l06D7KUSDMvLCxgfGwM81euJBMKbZWbDIVKOmcymJ6aQj6fR6lcRrFY3BYDDXttKNOGnZ51bhzcwWWMPR/jADk3iqIgl8shl8uhPDaGPXv28OeiKEK9VsNmtYpqtQqLdgBdWV7muSign3W+UEA+m4VuGIjjeHcnFEnaVnWym+EFQgiP/cuyjLGxMayurMBxHFg0XMW9XIRAGUVFVVM+FHuMGQNsURHHcaIB084Ypu/XNQ3VzU1EUQTLspDP54c+5rsZYRwMGZKqRW5546C6BZ7nIQoCZLJZaLoOVdPgBsHtEebosdHJbrgyLctK4s6Ksi2TeBS34Xq9jo2NDdRrNdTqdR4OYMlya2trKBSLKBaL2LNnD/KFAnK5HHRdRxzHCMOw4WbFSiZlWYaWCkFIzPW6yxBC+KRyRwsg9VAuy8ttB9p8ch7CMEQQhojCkCdNAkCRfsZAYkwoqgpCdTIsy+KhoqXFRdiuy6XLzUwGhXx+K0xRKGCMtj8eJq1KGSVZBtmh4dkNVtaarmYCANM0kS8UUKvXUdncbGwMN8p7RJtqE8MwICsKHNtGhCRkm81mW4fSmFc0jqHIMuq1WtLnYcidLu92hHEwROI4Tr6sHTL8HcdBvV5HGIbI0aZKGdNEpVIBCGlMqtnlPINkl+1XZqziYlRhBp+WioEQ5LPZhtK9YRDHMTY2NrC+toa1tTWsra/Do7kMhmmikM9jYmIC9913H86fP4/y2Bg+9tRTXVeHURQhDEM+8cQ0c5+FImKqUyFJSWe9hvI++nc7eMXLgOeatWq+XcZJ3+xQ74DlZ7CqiIhWQUR0gkMcN7jjJQAKNeLYZ5M+T7l8HlNTUw37sOp1rFUqcGwbge+jVqthZXUVV65c4bkhpVIJk5OTGB8fx8TERGvxrj6QW1QCSBht9QITNWpHsVhMjOEgwEalkiiHjnjx0Jx/wB+nyaByLgfbcRBTb0C2nfQywA34eq2GfKGAer3ODUSBMA6GCklnULcgCAJsbGwgDALeZdAwDF7aBWC752A3DANqjZMe9zeKMANTgiRA+y50fZ4Lz/e3DIG1NWxsbPC21uNjYzh06BDGx8cxNj4OI2WULS4twXEcPPnRj/Y0KbNJhckqR1GUNISiq1MmlUsI4UZE42G1LitUFGXbiq1f2M39nomnsms1JdLEyihZaWW7q1ICAEWBzow0ahD0e24ymQwKYYhcNotCPt+gOlmv17G6uor19XUsLS3h4sWLgJS0Hp+YmMDExATGx8dRKpX6MtakVM5BGlmSEI8gvJAOI7RDlmWMlctYXlmBRxN5M7ugGyCBhj5bHDPLQ7Bpq2vLslo3Wkq930+9NpfL3Z0qoiNAGAdDhDC99DZ5BqsrKwiDAJqmoZxyPQZBkDRXaVq17JrHgBkGfTDsMIPtOFyXfVtCJttnl23UajWsra1hfX0dq6urqNfrAICMaWJ8chIP7d2LiYmJ5Mbc4dxeunQJY+UyJgZszsKNBWroRamJKy00FEYRV7+MwhDbHMTUU8Oy4llWOPtfon93mmR4st2dfsNj1xGNWROmm8D+Tv0OgqBjMh47J83iTGyC3elEKisKDE2DSxNU03Xy+Xwe+XweBw8eBAD4vs+N07X1ddy8eRMkjqGoKvcqTExMYHxsDFqHkGInj4kkJX0XhnG3aBdGaIduGCgWi9isVmHV67wh2qiRAURofU9g/Rlsx0EUhrBtm5eycuh9Wqbn1XMcmNks6vU6SqXSyMd/NyCMgyHBQwotEoXCMMTa2hp8qoA4OT3d0HUtoOp13Lrd7XACGazTYkOYYQc3hCAI4NFs/3wut+0L3+pmE0URNiqVxBhYXcXa+noSkgBQKpcxNT2NB+6/HxOTk22NjVbU6nUsLS3hIx/5yFBX22xib/aIECoUFLYQFAITEeq28Sbjgf0tSRI810UYRVCpMcIS7Fj8flRtiIGtcFD6+oibJn+WC+B6HhzHgaIoPOmz2/aZkJPaJPrUSdJ5WC54nSo5sn4L7c6jruuYm5vD3NwcgFRoa30dq2truHzpEs6cPQsQgnKphHFqLLBQBNtuN+NAHlJ4YZBSxGKxmHx+rotarYbCbpQFsomdjbdZq4V6a9pWMrDPi77Pc12Y2SwvaxxY8OweQpyBIUE8r+UEG3geNqtVuI4DRVUxOTnZYBgAiWwsSRsHwB2TZ9ALDUlifeYiEEJQt20QJElFzeeG4fs+atUqNjc3eYiAeVvGx8dx+PBhTExOJiuwHXyxL166BMMwsG/fvoG30Q+SJCXu7RZGQxSGCGgOC4+l099sdUeoEcHcwM3eB9txeHijOZyRGkTD5JZW9GTGhE17K9j0Om4wAOjkz/4exEyMqKHADZe0kSPLkAH+N4Dh9nUYAJajwGTPO9bXp5BlmU/+rIlXnWoyrK+vY2VlBZcvXwakpJZ/cnISExMTsG27sUdDE51c7d1IewsGZaxcRrVaRUBFiSZ2IbE6fcyEXnfNTe5Y5ZDrurySIZfKZ2LXW71axeTMDIIgQK1WwxiVh/4wI4yDIcFKGNMXp+u6cCwLjuNAVVWUyuWW7X6DMESMpLRm1PLILRlC/gAvM1KUxEDoEdt1EUURZEnalrS1UalgcXER165dQ6VahUQIstksJicmsP/AgSR2WywOLQvfD0PMX7mCY8eO3XY3PDMaupUfMqMhbTykV+UyrZxQVHUrbt38WTe52ltdCawcs1XORMfjQOo7kQqTcA8HneS1IIBK+w8UupSUdUuU2y0MXUdIxbN6NQ5awUIR9913H4DEEF5fX+fhiPfffz/JrSAEL7/yCvbu2YPZ2dmG/KRBtA8Itq6fnXqQNE1DoVBApVJBrV5HgVb0jBpZkhCRrcZPrY7eoHLXTHG1blnINXkTQ1rBAiRJ4/l8fqS9bO4GhHEwBOIo4iEFhmvbcKh6m6ppyGazyLfJWA6DINE52O0yxhHEBnk2cQ+hhjAM4ToOQAiydEJYXlnBwsICFhcWYDkOdE3D2Pg49u7bh7m5OZRHmE18dX4ecRzj0IBSycOml0+HVUC0g+U1FAqFBldpOvZO0qv99GOpv5lcccY0kWOhn1R4Aux/5gZPja8XSBwj2IWKimFe8ZquQ6Fhm4DmEg0DXdcxOzuL2dlZhGGI7373u7h16xZk6sF57fXXIUsSJicnMTc3hz179vAQRC/aB8zDwwyJYYWWstQtTwCsVyqYnpzclQqZXkIqGm3eZNk24ihCjVYysPHJsoxapYLJ2Vk4joNarYbxAXOO7hWEcTAEiO833BhZx7wwDCGrKnRNSzTtW3wJWbIakFjfu+41AEZjJHTJR2DhhCAMUd3cxOVLl7C4tIQgCJDNZDBLb3oTExO8N0Arr8uwiAnBxUuXsG/fvqFnXA8sVrPDzyU9wTdPAP3mGzDDVeuzO2bf9FIts5PNY3gGgiRJ0A0DEe39MOyVpuu6+M53vgPLsrB3715sVCp4/vnn4TgOFhcXsbiwgHffew/vvvsuSqUS9uzZg7m5ucTz0uY8jtLrIgEoFQqoWxaiKMJmrYax3UjuY+EoSepoJLC+DJZtg8QxLNtOcpxoaGJjYwP7Dx3ivU583789ujN3CMI4GAJp4aOQZseyxCud9h5vl+DCKhVkSdrdJJhdyCgGWucjOI6Dq9eu4eaNG1in+g7lchlHjx7F3NwcSqXSthj4qMd869YtWPU6nnjiiaFve9DsbYKdTYRxyjC7KzQO+mDQSX7YV5Cu63Co9yCKoqGFozY3N/Gd73wHsizjueeew8VLl3guTSaTweHDh3H48GEEQYBbt25hYWEB5y9cwOkzZ5AxzSQJcs8eTE5M8O9STHZeqdEJCUklR7FYRLVWQ71eR2YX2iLzkGYPRg+rZKjTHhm24/CeGjFVy8xkMrBtG7VaDRMTEyMd+52MMA52SEyTCSVJQhyGvLNcFEXQNQ2qonRcibKyLPV2hBTSseAR3zRq1SoWFhZwY2EB6+vriAGUi0U8ePIk9u/f37HxCf/yj2yESSJieWxs4PLFTgziORhGq2zuNaDx/TsZdnZ6HeXt6kzYjCzLbcsaB2V5eRmvvvoq8vk8nn76aZimiTAMW3aT1DQN+/btw759+xDHMVZXVrC4tIQbN27g4qVLUBUlCVHMzWF6ZmZHybq9Yppm0qTKcbBRqWCGNmcaJSzM1cs1wdQQa9VqEtr0vKSKAcDaygqOnjgB27YTFdshGnx3G8I42CHMaxDHceJOoxcn8wJkcrmOrtKQGgeZ3TIOdqlMksQx1tfXef5A3bKg0BvV3r17kS8WkctmUSwUum+MGQcjmgyqtRpuLS2NxGswKMM4Uiasda95DQCM3KDtB90weIfInbb/nZ+fx9tvv42Z2Vl89Mkn+cQU+H7XiV2WZUzPzGB6ZgaPPPQQVtfWcHNxEYuLi5i/dg2KLGN6agpzNPww9BV96riLpRI82gKdNWcaNZIkQYrjbb1hWqHIMjKZDBzHgef7SSMmXUe1UgEhBLquw/d9npz4YUQYBzskphmutmUhiuOk4YgkIaIJhmoXq5N1HxxpHLcbQ7rJkjjG0q1bWFxYwMLiInzPg2EYmJubw8OnTmF6ehpxFKFarSImBLlslidHdVRiY/kLI4qVXrp0CYZpYu+oyhcHOL/SgCWBaeK7KaQwSAlel+um1etHAWvjTcKwr7LGZt5//31cuHABhw8fxqlTpxqeC8OwN68EvW5iAGPj4yiNjeHkyZOwLQuLi4tYWFjAW2+9hbfeegvjY2OYm5vD/v37kR2CNkFa7lxRFJRLJayurSXdSw1jxxLSPY1BUXq6TzBdGSZz7rhuokOiKFhfW0Mun+cdWIVxIOibOAgA2kucTfIGjVexrn0dISQpY2zWOBgVbW6OO71lOraN+fl5zM/Pw3EcFAoF3HfffdizZw/Gx8YaVhT1ej2RSE7lYaTFclrd7FnC0Chu7X4YYn5+HseOH+/Y42BHDLDKHYrn4G5ouETpW6ETSbikn/M6yrOwk7LGOI7x+uuv4+bNm3jkkUdw5MiRba8JggCFNpU6LatOmEYFfS6by+HI0aM4cvQofM/DraUl3FxcxNmzZ/HB6dOYnZnBwUOHMDs3t/Prhe7TpP1KavU6KtVqslgacVhDApWU7nZd0OeZfH0YhjxBcW1lBROTk9jc3ITv+0lI50MoivThO+IhQnwfvufBc10QJPXKrusCoLW1Xb5kBEhqawkZaSZ+srPhTq0kjnFreRlXrlzB0uIiZFnGgQMHcPDQIZTL5ZbvCXyfG1HpPIxmg6DZSOCKZiNY+V2lzXIOHzo09G3vhJ00W2Jw4+Bu8BxQ+jnifpMSR5mjMGhZo+/7eOWVV1CpVPCxj32MKyk202qCai5J3IYkQaE6AGl0w8D+++7D/vvuQxSGuH7jBq5cuYJXXn4ZZjaLQwcP4uDBg/3nT7S4XouFQqJSSMMLUyNO8JN6MAyan82YZiIyRRMUsbYGx3FgGAY8qtxZ6CX8eY8hjIMBIWGIwHHgOA4IwOuMwzCEJElJPK/LhOb7PgiSm/fdkvTiui73EliWhXKphFOnTmH//v0tE6bS2NSIMk2zpbhPs1QsV99LZVsPk5gQXLx8Gfv37x9tRnWfk/wwDANgK3v7Tk9GbKCPsfZdsTDCPIVByhrr9TpefvllhGGIT33qU22NaiDxHPCcAxY66EWNVJYhRVHb86SoKg5SY6BSqWD+8mWcP38eZ86exdzsLA4dOoTpmZm+vAnpfUm0OdPKygo8z0O9Xh+pmz6tktjOGGx+nHl5LWoguJ6HG/PzOHD4sDAOBP0T2DYsy0JMCExdh2EYqNVqABKvQUdpV3pxspDCyF1WO70hEoLlW7dw5coVLFAvwb59+/DRJ59MZEZ7uHF4vo8wCLikaTfSimdySiJ1mCzduoV6vY4nR5yIKN2GkAJwd3oO+kHqc7IftYnUT1nj2toaXnnlFRiGgWeffbZrPD4IAsiK0th1sscJW5Zl3rq7E+VyGY8+/jgeevhh3Lh+HVfm5/HSSy8hl8txA6KjEd3Gw6frOoqFAjZrtSS8YJrQRx1eaJOnxCXHm2AN3yzLQhiGWFpawuzevXzBN0yRq7sFYRwMQOT7qFcqiOjEnslmEQRBo9egE/RLHdCcBX2Uq9Zebp5tJJs918XVq1cxf+UK6paFQrGIRx55BPv37+/YQa7V9rmHhWqd9wpvKCRJSQOiIa7+Ll26hLGxsZErod2unPq7KSGx31LGgfYx4uqGdFmj5/ttG37duHEDb7zxBsbHx/Gxj32s66TDWoCrtIV33/SonMhQNQ0HDx/GwUOHUNnYwOUrV3D27FmcOXMGe+bmcOjQIUxNT28X1gLafjfz+Twc2gSpsrGByYmJkVyXTPhLkiRIhCBG4zXV6fpSFAWZbBaObcPzfVy+eBEHjxxJZPAdRxgHgs4QQlBbW0MYhoniFlUj47kGhtHoNegwmYW0p8Ju1B53JP0lJwQrq6uYv3wZNxYWIAHYt28fPvLkk9uSC3vF9X1EYQhZlgdy3/MmQLT2nzSNdxBY+eKTTz450Pv7oV+3/jA0DlhXR+DuMA4G/Rz70juQZaBD86JhwMoaPVY73/TZnz9/Hh988AEOHDiAxx9/vO21wfoeEELg0zydbmG7TrAeBH0hSSiPj+Px8XE88sgjuHbtGq7Mz+PbL72EfC6HQwcP4r777oPBvtMdrnNJljFeLuPW6mrS3MiyUBqBq57pHbDxyE3eg26hSU1VEZsmPM/D2uoqJqanoWkaHMdBcYTS7XciwjjoE7taReh5kCQJuXwekiQ1eg36SCxkcfWR5Rv0cDNgr/A9D1evXcP85ctJ45RCAQ899BDuO3CgPy9BizG4jgNCCLID1oCnS6TS/wODGwqXLl6EbhjYs3dv3+Ppl35WrFxueqfJiHeRAFKafsfaV97BLugiqKoKVdNAgqChrJEQgrfffhvz8/N44IEHcP/9928bG+swGKeMQwmJFgqAna1c+/QeNKNqGg4fOYLDhw9jfX0dly9fxgenT+OD06exd88eHDp8mC+U2p1nVdNQKhaT5kxUiXAU4YX0NcEXE6mKjm4Yuo44jhEEAa7Pz+PwsWOIaCXKh0lOWRgHfRDHMdxqlScgsknddRwALbwGPWxvp+2S29LjTWB9fR0XLlzAjZs3QQjBvr178ejjj2NyYmIo43JpDFZRlIErMiRZ5vHDZknhloZClwnWCwLMX72K4ydOjK58cQd8KJMRd2Hi3q0zYeg6wjDkZY2sedLy8jI+8pGP4MCBAwBo8hx1fRNCeG5K8zhZhc9Oc5MG8h40I0kYn5jA+MQETp06hWvXruHy5cu4/u1vI5/LYc+ePThw4ADa+QfzuVzSlM73Ua1WMTmCkF7zETaUNvZ4/Oxzsy0LGxsbGBsbg+M4wjgQtKZeqQBxzNW0gOSLG0ZR91yDDpPV7biBb1QqOHP6NBaWlpAxTZx84AHcd/DgUC9+EsdwXBcgBBmqXz4I6SqGmJ7/lq/bekNHQ+Hq/DxiQnDo4MGBxtMvfQn1DGmf0V2WjNhvkh2njxyU3cr90DQNiiwjDENUq1W89tprsG0bn/jEJzA5OclDBmntjk5HzVpk7ySskOxkZ96DZjRdT7QTjhzB6uoqLl66hAsXL+LK/DzuP34chw4fbukVLZZKcFdW4DhOoio55DLuVt6kXpMy+TaoF9hxXdxaWECpVILruigWi3ePwb1DhHHQI1EUwbcsAEnjE3YTa/AatLto2sUVRyVS0+HLX63VcObMGdy4cQP5fB4fffJJzM7O9uXx6BXHdRHHMVRV3bHRwRo49Xpja2coxHGMS5cvY/++fSNvCDMQw1KrZPkGd8mNjH+uA4QV7jQkSYKu66hsbuLdd96BJMt49rnnkM/lBuqIyDwHw8hNkmU50VYZ5nUhSZicmkI+n8fmoUO4dvUq3vvgA1y4cAH3338/Dh482HB/0XU9qQxwHFRrtaEbB+0Mxn7PvaZpiQS072NjYwMTExPwfX/0mjR3CMI46JHa5iYQx1AVhVvwPXsNgOSC7aUueURYto0zZ87g2tWrMDMZPP744zhw4ABkSUI4giStOI4Tcagdeg0YrLRxICnirY1gZWUF9XodTzz55ND0BIZJc9hkUO7WvgqDHHvfegcjhhCCjfV1vPnGGzAyGTzz9NNtKxd6IQxDEOw8rMCQZXnomiFAkudiGAYefvhhPPDAAzhz+jTeevttnL9wAQ888AD279/Pv2/FQgG248D3fd4ZcWi0ObaelBObMHUdtm1jc2MD5XKZiyN9GBDGQQ+EYQjXsqAh8RqwG1hPXoM0TXKvvGveMCeoJje64zg4e/Ys5ufnoRkGHj51CgcPHoTaXFExZBzX5RoOwwhVsBXwTm9pN27cQLFQaNkIZiSfRx8Mo0ohvS0AI/EIjQI+3gHee9s7NKaSCQkhuHLlCt555x1MTU3hxIkTO/behGEICcNLXJZGtFDhJYSyjFwuhyeefBIn7r8fp0+fxuuvv45z587hgQcewL59+6BqGpdWZt6DURqyPKTQZym0qmlQVBUO1bXRNO2OXFSMAmEc9EC1WoVMkv4HqqoiJoR7DbqW56Xj3U0XJY83DvtLIUlwfR/nz57FpcuXoSgKHnjwQRw5fLhlI6hhr7yiOIbHKhSG1Wyli+pZL4RUKvb48eNtdtH4hWcKjTv2evT4umF/BsDd5zkYaMIaofJhK0gLA5/t/7333sPFixdx9OhRnDhxApbjwA+CHYWwAtaueVgTEtUOGbb3gFVfpUdZKBTw1FNPobKxgQ/OnMFr3/0uzp0/jwcfeACT09OwbRtBFMG27ZEpJ/IKIAzgPSAEpmHAsm1sbm4ik8nAo90373WEcdAF3/fhWhZM6h5nl1XPXoP0c22MhKHZoLQm+sKFC7hw8SIA4Pjx4zh27FjneOWQb66ObSf6Dbo+NOEQdo53ckNbXFxEFIbYv39/b/tMdtzw2ChXDcPoxMjgOQd3iXGwUxGkUX4uLY2BJqIowhtvvNHYPImKf4W0sc+gYYEwDIeuhdKvumQvEKqt0eqaK4+N4ePPPIO1tTV8cPo0vvPyyxgfH8fBQ4egqiqq9Tqy2exwrtf0sRGCKI4br6t+kljp8WiqCpd6DxzHEcaBIOU10HUo1NoOfJ97DTrGn7okWQ2za14YRbhw4QIunj+PMIpw9OhRHDt2DMYul96EUQTf8wBChhpH5Df+HbRtvnbjBsYmJpDbQXtartsO6nEZYihimIbByJJdR8UOzqME9NahsZcJIWWgMc9RN3zfx8svv4zNzc3G5kmSBE3XEdPGQ4MaB8EO3tsWKhA0TO9B3OV+BwATExP41Cc+gVsrKzhz+jTefOMNlMtlzO7Zg1w2i9IQhIbSntC0ZgSjn+Nm16NhGKjWarDyeVSrVZTL5Xs+tCCMgw44jgPfdWEQApNOdARoVEPs1WvQ/Dhzde1Q5yCKokTe9MwZhGGIg4cO4f7jx/uybIcZVmBeA90whnpDk7Gzcbqeh6WFBTzy6KNDGQ8XqWlXidI02fUSFx/W6jdOxVfvFs/BTlex/V4b2z6LAb029VoN33n5ZURhiE998pMoN+Wy6KoKj3YjJQOKgI2qZTCTGB7Kdz91PrseoyRhZnoaM1NTWFxawvvvv49zZ89iYXERjz788I7lzHkLa7T4nDHAPYR+j0zDwMbaGrLZLBzHGV7I9A5FGAdtIISgVqtBCUOYmQwUWko3LK9BmkFuGHEcY/7qVZw9cwaO6+LAgQM4+cADg63Wh+RiDGnZz7C9BgCSZE4MHla4cfMmiCRh3y4oIgLbP1MJjWPv1qZ6J9zuxMpBGFjngL0NrW/67LwSkigPDlJK2I61tTW8/PLLME0Tn3z++ZYtjlVVhSLLCKIoCQ8MEGYLfH80uv5D1D1Ib6Nnb5UkYW5uDnOzs/jg7Flcu3oVL/7932Pv3BweOHkSxQHllZkeSqsGSwA17GW57fPboMem6zrqlQrqtRo2NjaEcfBhxbZthL4PXZK4dnhfXgOg842OkIEb42xubuL1117D5uYm9u3bh/tPnkRhB67yYWHT5kqmYQxdElqmMsA9f6GbuH7tGmZmZm6fwhm9EW+DrtziVNLUTif1iJYx3onqj23ZwQTFk+DSq+BUchxfSQ7RMLhx/TreePNNTExM4GNPPdVeoEiSoKlqopMyYGe/Uer6Dyv3gLvvB0woPXLoEErFIm6trGBhYQELf/d3OHHiBO6///6+74+k6XfLXQINssrdxsdyKbKZDFZWVpAvFDA7Ozs66fs7AGEctMGyLKhRhGwmA3Zp9u016MSA3oJz587h7NmzyBcKeO755zHWoQd8rwxjfRlQ1ymAliuoncJWI/2onDHqloW1tTU8sQtNlvqG6jekP4N0WR9p9kCkVfW6hTTuIuOg+ZjS36D0BN/qfcxr0Bxfbj47wwqdnTt3DqdPn+7aPImh6zo8z0MYBIgJ6TsPxLJtTM/O7mTI7ZEkKNLOZZV5pcKAhq1pmjBNE9PT09i7dy9Wl5dx9vx5LC4u4oknnkCpVOp9LOhN8Khnr0mq7DNjmqjW66hWKqhUKpiYmOh5XHcbwjhoQRiGideAinoAyQXn9KNr0OV5dpPo1Z1c3dzE66+/jsrmZqNFfTvru1PYrpt4DUwT8gisaWahD7L6u379OhRFwR6WKHYb6PoZtwk5bHsXE4MCWvblkJjrnBBuHGxLrEutmEYRemgYF/1bavM4ez1f3ZPtbXa7rQD53yMuaSSE4K233sLVq1dbN09qg6IoUBSFl0D3kyQcRRE8zxt+mC7NEHIPCK0I2Mn1VCgU4HoefM/DoSNHsGfPHrzxxhv4xje/iftPnEg0I3oweHu9R0jAtmut9QtT30dJQsYwUKvXYVmWMA4+bHieB5kkAj7ssgjCcHheA4A3EWJZw+2I4xjnz5/HmTNnUMjn8dxzz2GMJT3dIYaB5/sIgyD54oyoxEeWJIDFEtGfdsC1a9ewd+/e2+sCHEEyYsvX03PEVoRA65LM9P/tVk/plRWhTcIaJnK0nsSZiz+1gwZ3P5r+Jk2G0aDTS6ekxJ1+U8IgwKvf/S5WVlbwxBNP9FwOy9A0DWEU9W0csAXJSOPbNOFuEK8cg3kOdlIdY+g6MpkMHNtGtVrF9OQknn/uOZw9exZnzp7FwsJCVy8CQX8LCLnX3IOU4ampKuq0pPFe5u7xO+4ivu9DIqQhjuj7PoDERdi1QqGPL4jcLhaNxFvw4osv4vQHH+D4sWN47tOf3jIM2L5uN7SWm3sNRuTKTnsj+kkq29jYQLVW6/tmPnQ6fFY7cce23F6fXgGJXoPNPw3P0c6YDe9r3k6Lx/plJ+8fVQKm4zj41t//PTY2NvCJT3xioGuJ3TcCGlroFZtOQKMI1TXQ4T7UCyyks9PPoJjPJ+eJyipLsowHTp7Ec88+iziO8Y1vfhNnz55teQ8ghCT5NiO+L+q6jjCKYFkWD6XeiwjjoAlCCDzPgxTHvNc4q1IAAL1TQlEqqayX/XBaZK6fPXsWX//GNxBFEZ57/nmcfPDB7QlmQ/IcbFvp9YHr+4jCEPIIvQYMdvz9GAfXr1+HaRiYmpoa1bB6ouPtasgeIK6fcbfkHNzB1RWVSgUvfvObyffw2WcxOTk50HZkWYaqKJBlmd9LesGxbRDsgnGAHWpiDMFzACQelnwuB1mSUK3V+LVcHhvD85/+NI4fO4bTZ87gxRdfxObm5tbuge1iRz0gof/cHEVRoMoy6rUabNvuc493D3fJ3WP3CMMQcRhCkSQo1DgIgiBpfKIo/LGW9OE1aK5UYPHSarXKvQXHjh3D883eAsawQwqDfKkJgUtlkofRXKkbcp/GQUwIrl+/jn379t32iWc3A0B3WynjTvoqNDDk411aWsK3//7vkclm8eyzzyI/YGkdg3kP/D6MA9u2R5bHs40deA/iIV5z+XweCu0eaadc93LKixBFEb75zW/i7LlzvER1J3vu+v1sCn0pmgbbsu5p40DkHDTB8w00jV9sfhCAEAK1U6xwEDGjVJyZEILzFy7g/Q8+QD6XS3IL2omB3CG5Bn4QIIoiyIqyK53KZFlOkoh6NA6Wl5fhuC72Hzgw2oHtkGE2DUrnBNw1ngPGDieWYXpnLl++jHfffRdzc3N44oknhpKvotF7ShjHiOK4p1JT23FG7pFLM6juwTArZBRFSdo/V6uo1WpJxVhqu8yLcPbsWXzwwQe4dv16koswqC4Cesg9aLq/65oG27Zh2/ZIpbtvJ8I4aIKFFLRUlUKYyjdoS58XR3q1VK3V8Mbrr2NjYwPHjh3DA/ff3/lmNIKs7E7JXO3gmg/d8jCGRL+egxvXr6OQzw+l3HOUDPPmkpawvVuMg6F5DtBhcuv1/BKC995/nzdPevihh4bmkZAkCZqmIfZ9BL4PpYdJ37Ht0VYqNDHodciaGw3rLpDL52HRpky1en2brLIsyzh58iRmZmfx+muv4Zvf+Abuf+ABHD92bKDQRtfKhaZt6qqKehyjVq3C9/17so3z3XH32CUIIfB9HwrAxUpYSEGRpPYT9iCWNl09LCws4Ot/93cIfB/PPvssHn7ooaRzYrtt9pHX0Bd9fqHCMERIPSrmLn0xFCqE1ItxEIYhbty8iX23OxGR0u7sDrvVMFv93JXrmCFMwjtZuUZRhFe/+11cunQJp06dwsMPPzz0UIWu65BkGX6PiWy2be+6Et8gkyurvhqWQSpLEgqFAiRCUKvXEYbhttfEcYxyqYRPf/rTOHLkCE5/8AFefPFF1KrVwfbZx9gVRYGsKNw4uBcRxkEK3/dBogiyJHGXH/vgtSEr69UtC2+8+SauXruG6elpfOKTn9zSFG8X+7tDwglA4mFhPRR2JR4KQKJGUy8lV4uLiwiD4PZXKXRhGBneaQZV3byd7MZV3c0I8zwP3/72t7F86xY+9tRTOHz48EjGoakqZCQTW6sJrxnbcZDZZeNgEL2IXpou9Usum4WmaZAlCbVarXF/tLQWSK71Bx98EJ969lmEYYi/+7u/w/z8fN/760fvgCWY1ms17kG917h77iC7gOd5kOOYew1igK+OOxoH/SqeWRZef/11SEiMjltLS/ibv/kbfOvFF3Hu7FlUNjdb1/KP0HXfz5ZJHPPOi7vlNQAS7w2k3iSUr924gfLEBPJ3gKx0J4Y9MXLPQTfjIHXzbzUGlrsQs99RxLUO0u/rZfzsWm5V+tgw5tt0fddrNXzrW9+CY9v45Kc+hdlRimVJSadGuQfvgef7iKhK667Sb0iKXRMjiL2XikVISETWAmpMpfNq0oyPjeH555/HgYMH8eZbb+H0mTN9e+Y6fm9S22LGgeM4sCxrqD077hREzkEKlozIQwq+n7jKqMJZS/pMRNxYX8d3Xn4ZiqLg4YcegqyqmJ2ZwdLSEm7dusWlWc1MJulcNjuLqampofdz30YfqwXP9xFTkaiRNIRpA/NQxHTSauf+dD0Pi0tLeOThh3dtbIPSVha4hxst68eQfl1aJKrrjbGLgQBsTaoSq8SRpG2v7eWqaXXrJE2/039Lqf/7mW5Y7kzze9qNcXV1Fa+88goymQw++clP7krJoK6q8D2va6dGh2bC77bnAKCTJO3R0Q2+iu8i6DYITFbZcV1Uq1WMj493nIgVRcFjjz6KXDaL9z/4ALZl4fHHHx+OJ63pXq+qKiRJQnVzE77v99UJ925AGAeUOI4ReB4MQhpKGIEuiYh9sLS4iFdffRWlchkfe+op3Fpehu/70HUdhw4dwqFDhxBFEdbW1nBraQlLt27h6tWrgCRhbGwMc3NzmJ2dTWJxQxnRABAC13V3NdeAIdEVDStdahfOuHHzJhDHu9aBsWckqUGnvZW+Rau/226uxTZ4SdldFFZoZZS2Mhha0WwMcEGpHuSAb1y/jtffeANTU1N46qMfbd88acioqpooEoZhx06NuyaA1IZeKxeGLeLVDJNVdl0XruP0dD8+dvw4zEwGb77xBlzXxVNPPdXTQkYCQGQ5+Z420yRXr8gyFFnG5uYmPM8TxsG9ShRFySpMUaBIEg8pAB2Ej/rwGly5fBlvv/UW5vbuxRNPPMEFUSBJiMKQeyYURcH09DSmp6fxMJIQxNKtW1hYWMDpDz7A+++/j2wmg5mZGczMzmJ6amokvd7bwcsXZRn6bcjQlemKJo5joI1xcP3aNczMzt4xGcR88mI3nJQbtrlZEGPgrHEmgHQXlVbtRJehlfeh+X/C6uBTXo+zZ87gzOnTuO/gQTz22GO7W4pGqxaiOO7YqdGxbUiSdNuuY1nqrSHTMPoqdMLQdZi6Dou68LsaB9Q43L9/P0zTxKuvvIK///a38fGnn4bZg6Elo7Wnq8GwB01KlGVYtRrvhHovIYyDFHJqsmchhXTTlIEgBKdPn8bZs2dx+MgRPPLII/zGzbLvwyhCu8s9l8vhyKFDOHzoEKIwxMrqKpZu3cLS0hKuzM9DlmVMTk5ilhoLhXx+sHH2iOd5AJJExNtR2yt10Tq43R0YCVqHBAiwLXTTr8u8F4YpRrNb8FDCsMbcdJ6ZBDQzEt56+21cm5/HAydP4v4TJ/iKMK05Mmo0TevaqZFXKtzhn2UYRfxeOWzY9ymXz8NyHDieh0IYdl4QpT6/qakpfOpTn8J3Xn4ZL774Ip75xCdQ7EUPoZ33oOEliXfuXk1IFMZBG3iVwg68BiSOk4qEq1fxyMMP4+jRow03QOYW72Z1sktdUVXMzs5idmYG5OGHUbesJPywtIT3P/gA7773HnL5PGZmZjA7M4PJycmkLLIHZNCJpcMxRVGUGE2EIHObVjPdJJSvX78ORZYxN6oWt5R2RgDQfpIbREuiX+466WQMV+eAbWebJ4EkHRFfefVVrK2t4cknn9wqc6X7bzAK6GdLpFQjqB5CFb2iqmrXTo2O696WfAMOC+N1mSTZ872IOvUDSW1b13XomgYvDOG4bl+LoGKphGeffRbfeeklfOvFF/H00093lcFu6T1o+l6z71gURbBte6va7B7h/2fvT2Lkytb1UOxbu48u+4zsyGSX7MmqYhXJIutUFauurp/0YMPvGbBGhgfywDYMDa4G8oMEaKaZYAHGBTR41xppIjz4StZ9tmDfe5o6555DsorFYhX7Nklmksy+jW73y4O11s4dkdHsiNgRmUnmBxAkMyP23rFj7bW+9f/f//375CAEyfcBSYIPwOPK2JohrAbEwOUT0fLSEi5fvoyDBw5se43M0wpRSpoqz00AZNJpZKamMDU1Bdd1sbi0hIX5ecy9fYvpFy8gSRKGs9mAUKQaTDREkurumkzLAkV3yxcrIdXxOqBgHRjHJyZiSbUEIesmSUBNVEYOOrBD3ZPuiDGXwVU7SrFYxPXr11EyTXz5q1817pEgUhDVCAGp6BzZImlo1KmxWCwitcPVNgRouBHyeUo2zjEXJgYCyWQS9sYGCsViXXJQ7btIJBL4+to13Lx5E3/84x9x6eJFTFSZkyuPU/k9h++D0EABQL5Fb4XdjH1ywEEpZWkFVKQUJKn6g1/ngTFLJVy/fh2FQgFffvllzYlIVhSW16sTOai5gIiFhv+tKArGx8YwPjYGCmBzcxPzCwtYmJ/H3V9+wS+UIpNOY2R0FKNjYxgcHAxa+kaBKF/cCSFiGPVcEtfX15HL5Zh5TZMQC0G177RTIfrYyxjDJV67PBQdRkfSCiGsra7ij3/6ExRFwbcx9EioRwYID0dH+W41TYPJqxaqpRaKxWLLjZ5iQ0gEXBXcd0RUdbULUR5brVw5mUxiM5eD5/swTbNpAaCqqvjyV7/Cj7dv4/tbt3C+VMLx48drvl6qEGRWSwMG5CCfb+pa9gL2yYFAaDDajeyS6xCD3OYm/vSnPwEArn3zTd38lugV4NYiB8INsdakWUEQgh+D1Qf39vTg5PHjsF0XiwsLmF9YwOybN3j+/DkURUF2eBgjo6MYGR1FkpdU1SIjlm0zP3hZ7mr5YiWEiLMaOZiZmYGu68hms5GO5VdGBDq8oIYFcQBiN7UKT+B7UpAY4zHFWJ6bm8MPP/yAdDqNq1evdlzcR0Oi03DFSLXnStTK+74Pp8KC16esqdmOphU46pkihZ/DttMKnHTVmoMkSUIikUChUECBN6RqFkSScOniRSQTCdy7dw/FUgkfnT9fnZhWmVe3XRMnRLl9cvAegw9ySmkQ5heLYLWwYjUsLy/jxvXrSCST+NUXXzQsQVJkmYnrapCDQMRWD+GyuBoPlaYoODAxgQMTE6AANjY2MM+1Cj/fuQMKlpcbyWYxnM1icGBgWymcKUyPdrhcR+biMZ9PJOEStnfv3mF8fLzqg17NN32nRXuxN2wJiRF3+rM1g051kXzx/Dl+uXsX4+Pj+PTTTzsimKuJSqItSHzFc6qqKhzXheO6ZeTANE1QoPsGSNXA0yjVZhcR9YxDbxClMiKdSqFYLMK0LLjVhIlR/FoIwdlz55BMJvHL3bswS6VozbWqjE8RfS0WCg2vfa9hnxxwEE4OHNeFysVCNQd8ld38u7dv8cOtWxgaHIxcUyvLMitljMtdK8KDQQD09fair7cXp06ehOU4WOTph9evX+Px48dQVRXZkRFWLjkyAlmW4bkuiCTteHkg4ZEDcOW5+I42NzeRKxTwERciVt6F3bZUdqKTm9jF7SViUIaYrpv6Pu7evYtnz57h+PHjOHfu3M472InPFipjhSSx1IJpbkstCAOkbvdVqAVSo2uhmLvaSSlQMJIRZdyqqsqEiY6DQrG4rSFTM6LfI0ePwjAM3Lp1C3/84x/xxRdflM3bBABtMKcKQmFZVuBZ875gnxwI8EHuOg5URamfUqjA6uoqfrh1C+NjY/js4sXILFqSZRBCAlvQRufpBHRVxcEDB3DwwAFQAMvCgGl+Hj/dvg0AyPT0oLe3F2NjY+jr7d3RxScwQvJ9ZoTENSFz8/OQCMHQ0FBXvPpbQgRHwnawFysVgHgjB67r4sdbt/Du3Tt88vHHOHrsWFdKE5sGX3TEeJYkCa7rQtc0UEpRKBZBsXMGSJUgqL7w+m1EDsL6gma++1QqBWt9PahaaGe8j42P46uvvsKf/vQn3PrxR1y5cqUsJScRUreMPXAOBbCxvo7hiCnNvYB9ciDg+/ApDaoUavZSqBjEZqmEmzduoL+/vyliACAIiVFK2QMSzlE2efll19fiZEgA9A8MoL+/H6dOn4ZlWZibm8PM7CzezM7i9evX0DWNiRpHR5HNZrsaSQhbtFIwrYZws1yYn8fw8HDw/12J8NjpZKXCXoscxCSiNE0TN27cQG5zE1evXt2aqHf5/VAUBY7nwXXdwHAtn89D17StOWInLxBgqYUqmiTf91mlQpORA4ot++9mYRgGZC7kNk2z7ehK/8AALl+6hOs3b+LRw4c4e/Zs2XWWX3h51JiCESOf0n1y8D5CDHAhDFQUJZKS3/M83LxxA5Ik4fPPP2+aPcuSFEzkrudBFe9vd+FoYxEKTwBC3JfJZCDLMlzHYVqFhQXMzs6CEIL+vj5WKjk2ht4ORBXEtVAgcCiTZRmEOzUCzOZ6aWmppSqFbkIIEqOEK1vBnrRORjyCRCEE9inF19euoa+vjzWLAhqa2ew0VEWBZVllEcSN9XX09PSUVZ+E9TU7AUJIuUugqFRoooxRXHvUNEI1SJKEZDKJXD6PYqkUS+olOzqKs2fP4v79++jt6Qk8MLY9q1WuWUQXCu+ZKHGfHABBgxHRS6Gu8REQ7M7v/PQT1jc38c0337Rc3icc/1zPqy2AbAeVuc5GLw+fn1JYvHwxkUhA6+3F4NAQzp47h1KphAXeLOrps2d4+OgRDMNgOoVsFtmRkZbzbwEhqLxm/lnkCvOopcVFeJRipMPGR3Eg8P2n1W2T28FetE4GQqWMLb5/aXERN7//HslEAl988cWWwl/c6w4QsTghGvhQz4PneZBlGRubmxgNj+dw+WSoEqKrn6qirDHQSvEeA40Q9i5odxORTCaRLxRgOQ5sx9myuG/jez4+NYWN9XXc/uknpDMZ9PX1BddaNzXFP0vhPRMl7pMDAPB9eL4Pz3UhSdL2lEJ4YPCB8OzZM8zMzODy5cvo6+1t+dSKECWKXUOj8sUOI3xWy7aZ6E+Wty30iUQCh48cweEjR+B7HlZWV1lnSS5sJIRgcHAwcGvsiRBVqFXfXAmZV3kIcjA/P49MKoV0h62j40K1euk4sBetk4H2NAczr17hpzt3MDw8jMsVQmBBdKOMqR0FIVAUBZ7vw3FdUEqRLxTQUyG2C7+eVsxJ3YoqhMsahflRI5V/OymEWlBVFYauo2SaKBSL0Pgc3NYZCMGFCxeQy+dx48YNfPvttzAMo6HIUegxSrxR1vuCfXIAgHoe4PuQCNlS5YYGfLDz4JPXwsIC7t27h5OnTuFAA5etRghbcAboxOTeQqpBOCLqDcoXJVnG8PAwhoeHcf78eRQKBSxwX4XHjx/jwYMHSPBmUUKroCjKlgNdk5OGMKbyfR++52F+fh7ju60DYy10cBcb7Mr2UFoh/N03Qw4opXj8+DEePXqEw4cO4cInn4BULlJC9IddkLNvAFVVYTsOXMdBkVcq9EbddISjCoTUbhwUB0JljR4XEtZKKQjBod9GCqEekqkU69RomvAzmViEuLKi4MqVK/jud7/D9zdv4suvvgqqyqp5yng8dUW4SDroh/EeYJ8cACxyIBgwVw1v60nAB0Q+n8cP33+PsbExnDl9uu1Ty4oCws8JdGkSq7NAiUfY5RMVIaSqtWs9pFIpHD16FEePHoXveaxZFE9BvHz5EoQ3ixrh1s6ZdLopQkQkKfClX1tbQ7FUwujISFPXuFMgQOtNvBpBCBL3EDmoFpVr+BbPw+2ffsLM7CzOnjmDEydPVre3Fq+P4TI7DZFacFwXG+vrAKXItOLkSCkjBrxUshP3QHRrDCoVqkQOKPciAToXyUoYBmRFgeO6KJZKSKdSsXzORCKBK1eu4A9///f4+eef8emnn25VLYQrjkKeOMJ/JZ/L7ZOD9wW+7wM816eoKiiY9qBMQ8AHhOM4uH7jBgzDwMWLF2MZ9DJ/gD0uiuwa6u1gCQmiBoamtbXYEElCdmQEw9kszvs+8sUi0yrMz+PBw4e4f+8ekqkURkdHMTIywioOIiifZUmCSwjezc9DliQMDg62fI3vC/ZqWkEgynU7to2b33+P1ZUVXL58uX7kLjyh7/J7IkkSFEmCL0lYX19HKpVqz7RJ6C1C/yfYqvhpC4SAcDGiT+k2vYEXcwqhHpKJRCBMTMfYh6J/YAAXPvkEt3/6CX19fTh27Bj7RWjeFLbRQotBASZK3CMblUb44MmBUDJ7rgtZlkF5OWNlXpgC+OHWLVimiW+//TY2C2FZltmDJpTV3UQtsSLvowBKWy5VLBMVhoSc6VQK6WPHcOzYMXieFzSLmp+fZ82iZBnDQ0OMLIyO1mw8o8gybMfBwsICsiMju7uEMQxCOvI9h01+9pIgsZlKhUI+j+s3bsA2TXz55ZcYjNB3QCIE3h65H6KkcWNzEz1t6JiqQhAF7q3Qbm4+3PxMkmUWsSCk6/qOVCqFXD4P13VhxWxCNHnoEDY2NvDL3bvIZDIYHh4uu29CJxZEmd+zioU9MqN2EFxU43neVsc/SuG4LjSx4FCK+/fvY2F+Hr/68stYhW8ireC57s7tcCpIgogaqKradHdDKiahcMlTDciyjLHRUdZemVLkcjnMc63C3Xv3QH/5BWnRgnpsDENDQ0EUQ1YUuK6LtbU1XLhwockPvHMQu7fYKxVCUYO9FDmI2ihqbXUVN27cgKIouPbtt5Gfwb1zJwBFVQHbRj6fx5HDhztzkrCYsQ0hoyj/FmK8bkYLwpBlGQnDQLFUQrFQiN2h8Nz589jc3MQPP/yAb775BsnQZsXlm0hFluHyzd37ZKP8wZMDyisVABYC11QVlmXBdZyAHLyemcGzp0/x0UcfYSRmkwtZuCR63s6HPjnzt0wTPqUNhYgCgbCQ/y2O1ey5Mz09yPT04Pjx43AcB8tLS5ifn8fbd+/w4sULyLKM4ZERjGazGBoexurKCnxKMbKXwngdCnN3onlRNxCUMda5H+/evsWPt26ht68PV65ciTwu+YHbu8AuQpFleI4D27KQ6kblTSjtIO5/1OXd4+SfNnAQ7AbS6TQjB6aJdLV+C22AEILLly/jd7/7Ha7fuIFvrl1jYmpK4fo+qO9D0fXAI8e27ffGRvmDJwdCbwCwhVpVFFimGRiSrK6v48fbt3Ho0KGtvFOMEPk6z3W3uSTuBFzPY3lEQqBxDUat6TUgBRGiBM1CVVWMjY9jbHwcoBQbuRwW5uZYs6hffgH1fUiKAlVVkcvlYOh6LC1jOw2KzmgC9mKlAlC/jJFSihcvXuDu3bs4MDGBzz77bO+kj1oBISjycrhui9oqowk1l3v+ukCItwvIl6Zp0FQVtusGlspxQtU0XL16Fd999x1u3bqFK1euBJ9fWF8DW/ewkMtBew80UO/xkxYR3N8AYMxd4VoC33Xh+T5u376N/t5eXLhwoSOTuqIokAizBDZtG4kd7npo2zZACFRd39pNhCbwYBKpEDt1FIQELahPnDwJx7axsLiI73/4AdT38cc//hGaaBbFKyCMXeJJ3y008gqgvGQ0HN0Jl5JWKysVP6eUomSaAFiDGZP/m4iwdOhv8W9xFWVpjmopjxqRJur7uHf3Lp5PT+PkiRM4c/bsnkqXtIpisQi5Xm+XTqMimhAIGMWY8X1QwqyLCXZPZUwymYSTy6FYLMZODgDWX+bipUu4cf063r59G+hdhE9NGLlcDv375GBvo9I2WYT4FVWF67p49fo11tfWcO3bb2NpSVoLqqbBdByYlrU7yAGlZeWLYVe/QHC0gxO1qmlIJZPwPA+ffPIJEokE1tfWWLOoO3cAsBrx0dFRjI6MoH9gYNdMYu3cN0pZJ8rKv33fR4nXeyuKsmUbjCouky1CuIfath2Qg3YgFnqXj3uVW5YTSYLvefj5l1+wuLiIjz/6CEePHm2ZGOw1QpHP55FOp5lAeYcjiYJQEvC5kpM/AMEYizOE3w6SySQ2czm4/FnoxDw6NjaG0dFRPHj4EFevXAGlFIqub0VW+bMmfCr2OnbHN7tT4KRAaA5E6ZDCDUmePH6M8YkJDPb3d+4a+EJcLBZhmSYQt0q5CTiOExibiJSC2EmIzmllSucdLBGbX1iAqijo7euDpqoYHR0NmkUtLCwwT4XpaTx58gSaqjJb59FRjGSzzeWs40YVNXe1Rd/j+Uw/9LN6C73LI11yqL68Fsp2++Lf4ShA5e+AwJ5WVVW2qw1HHLAVhUAo2lAWXarymQEmZPO57sd2HNimiV/u3UOpVMJH589jcGgIG5ubANgulfB+JMKwLPy3+H3Fierei92G3OYmMqkUJEliouidjCCEv0sOIagVPRUUWd4VPhKSJCGZSCBfKKBYLHZsk3Xu3Dn8+u/+Dm/evcPY2BjzW+HPtLgPxfekYuHDJgd81yUWPhEdUBUFc+/eoVAs4ourVzvqakcBaDyEb9t2R84RFbbjMEdETgzCZYjhHViZwnmHCML8/Dyy2SwrVQu5S+q6jsnJSUxOTsL3fRZRWFjA/Pw8Zn/8EQAw0N/PnBpHRtDf39/x3SXlhjGu78OxbTiOE3nRr4ZgQeTVNSIqIskykobBLF/D31conN/qZxXRAsMwWsqHh8dS+DObpgmJMPtgx3Hw4507AKW4dOkS0qkUu0f8GL7vszRgg3OJexImOcI4a1dHEijF5uYmhqemWL8Vx+kuORBkgP+71u8d12WpI36f3Q45IDYDQkjQb8E0TWZk14GoRm9vL8YPHMCr6WmMj4+Xp834PbMsK/bz7gQ+bHKALdtiWZKCRY4CePnyJUZHR5HsgmpY5+TAse2g8cpOwLZtthtQVRYhaFCzHJ4Qurl7sCwLqysr+OTTTwEg2MVUTlCSJGFgcBADg4M4c+YMTNNkngoLC3jGm0Xpuh70f8hms9DaaEEdJgGe57F/e16ZB4EIF1fer/BkG170q/2sGoRbXSvlp91AuO99+FuSZBmKoiCXz+PnO3eQSiZx9YsvkAhpRkQ6yxd/h//NiYYgWuL14rn2hYcI/52IMMiyHPy9W0hDvlCA53no6+sDIYSJ3rpBvvm9iVp1IO6tpCggsgwZ5T4bOwUR1bIcB4ViEb21elO0CDHHHJuawtz8PN7OzuJUyCU37lTeTmP3zSLdhO9v6Q1CE+r0ixdwHAdHjhyBbVlbXd5ihhhCsiSxnZPrwrQspHbAftNx3WAyasXgaVu9dAcntYX5eVAAY6OjTN3NF+VGSnbDMHDo8GEcOnwYvudhdW0N83NzmF9YwMzMDAghGBgYCHpA1GpBHYUEVILwULgSWoiiLPpRsdPlZC2DUrybm8PTx4+RzWZx6fLlbeOPEAIiy2h0h7aRCO5X4rouPJ528cV355XHH3YDacjlcqAA+vr64PKW5K7ndY7sNUkKBISAW1WUIE0mTJF2imSJT5BMJGDbNqwORGEl/hkNXcfo6CiePX+OY8eOQQ6NV0FU3wd82OQAW4xXlMHZto0nT57gyJEjSOg6LMuCpuudESSGHkpN01CyLFhdJgcihBgYH2laWQi6WRYckIQOThILi4vo7+uDYRiscyQXlTZT5ibJMoaGhjA0NIRz58+jWCwyrcL8PJ48eYKHDx/C0HVks1kMZ7NM1EhIJBIgSxLbEfMFRiw2gYAwLOyMCcE43i3CywiglOLJ06eYnp7GwYMHcfGzz9oS4G0jEZRCVZQghQOeK/c5qfP4d7lbSMP6+jo0VUUikUCJRzw6Eh7n6YFWFnPRT8CnNLguIlJ7Ijq0E0SVn9MwDGBjA45td+TembyF/fGpKbx7+xZPnz3DmTNntr1uJyPAceGDJweCBYsv8snTp/ApxanTp5khieOgFLNvd4DQg6RpGmQgFiV4FAhS4HM1siOqFMItb1sgB8F7xXkqSqHajSZQ38e7+XkcO3IEAFNLu65b3tWyBSSTSRw6dAgTExOwbRvLS0tYXFrC0vIyXs3MQCIEvX19GBwYwODQEFKpFBRZrkoCal47/7tuHXmrENqQPUIOfN48aXZ2FlNTUzh54kTHrj0srhSLe1l0opI08G6fdUmDJAXfu6IoZWnJVpHL5ZDJZEDAxrXFF7g4EFQdhMWFLVxvkFIIabRESWOZRkl0t+0SxDwlvlvKowdxkgPXdeE4Dqjvo7enB1NTU3jx4gWO8rkIQOALQz2vrLPvXsQHTQ7CuUlFllEqlfDixQucmJqCoevwVBUOZ6GWqjbdnbDBycv+q2saJFnuuCixrOcB2EAOL65q6DMKUWI7u6RwjXvYI0H8rFmsrq3BsSyMjI4C2CJ1XgsTkQjbuo4TqP0Fevr60NPXh+MnTsAyTaytrmJ5ZQWvXr7EixcvkEomWank6CiGhocjTUKCFHQiprKXHBId28aNmzextrqKjz76qMwWO07Q0Niri1ZIg+/D9n2Al3gSnjKSFYX5pVSpf2+EjY0NDIn6eUUJns2WSxor0gZxEFJBVirHe+VGgoaiEp3OwVeeW9c0OI4TexRWpCpUVYUsyzhx4gSriHr6FEeFQR7fDLm+v+cX171+/W3B5Q+2xMOEjx89gizLOH78OACmBdATCZilEkzThMaFenGAVoTfNF0PclqdsN+sJ5YRVQpqxecTufC4Hu6qRIFdVOSJdH5+Hrqmob+vD0C5w2QjiDCtyENXSw9IXP+hKgrbEXLyMcrJiOe6WFpeDoSN0y9fQiIEQ8PDGOVahXSNVrs0xkm68rhh45rdjEI+j+vXr8O2LHz55ZfQdH0rJB03woSplXB3HdLgCmLJiTXl+gbhrEqALaLA/673GT3fRy6XCxYZMQ5934fjONGFslXKD+OE6CFQmcKrpc0Rv6tZAdEB6IaBQqHAUo6+HwvxdLgGxPd96IkEM4pTFJw4eRIPHz7E+Ph4ufHaXtUAhfBBkwOxoEiShFw+j5evXuH8+fOBSyIAGLoO27LgeR4s2y5v5dwOKgaPRAhUVYXFGW9c5KAyUlANokqh6jk7lEOsWenQgCjMz89jZHR0qwFTKHJQORF4nAQEZKDK5xBhYUEGGk0ksqIEEYOPKOvCNs+7St6/fx93791DOpUKfBWGh4aCiTR89nYjMmGUdWTcxWmFtZUVXL9xA6qm4Ztvv0UqncbmxgaAzpOaWFM5vPRSURRA14MIg+u6cD0PHh9rrhD58tK2MFGQFaXsMwsxYm+IWCqqGozdRuSgWgVM3BB6AxrSGwiIaptq80xVh9WYrysMneumKKWwHaftOZtyTZZPadDCXpzz2NGjePHiBaanp3Hm7Nkt/44205y7AR80OXBDKYV79+4hYRg4cvRo2WsIITAMI6if1TStYy1xVU2DZJowLQuZGrvPZlBpl1sNQpgVNrrpNqIShVKphLX1dUxNTQU/E4p/j0dcAASTcjUyoIR3cxHIQKPrTmcymMpkMHX8OFzXxdLiIuYXFvBubg4vpqchSRJGslmMjIxgeHgYyVSqvDY6BohPuZtbNb998wa3f/wRfX19uHL1arDYdTQdUpFf71h4OxRhEMuQx23ZBWHweWVUWLugSBKLLigKNtbXAUqRCZmgqYoCE6ySaBtpDj3b3dqjunyeIJJUVaBNJInl2msgcFyMeZxWCisJIdB0Hb5pwrKstsmBbdssTRLaQAkyJMsyTp86hbv37mHy0KEgjbFPDvY4ROQgn89jdnaWNXapMug1XYdimnA9D5ZpltVgt4JaD7OuaZDQvolGMGlEmAwtnlJQVLVqXlOImLoVrq5HFBYWFgC61YXR57s1y7JQNE0Wfq2wfRbNtAQZ6OTnUBQlaBZFKTO0WZifx8LiIn755Re4noeenp6AKAwMDsZSBbMbLK1rgVKK58+e4d79+zh44AA+++yzoDIonA7ZzRGPViBLEmRNC8ajGKsiteX5Plzfh8uFc0srK0gkEvBcl4n9QiJXQSyUKvetmxAtitUa+hoSYb4J6xDiSFnWItqGrsM0zbZLGn3fh8UrFBJVzMUopZg8dAhPnz/Hy+lpZHnX3vfB6+CDJgcud/qae/cOhmFgcnKS/aKCpRMAiWQSuVyORQ/aLW2sMXA0XQeRJKYBaEGEJAakqECIAocP/JpRg5h3uc2gkigsLCygt68PPqXI5fNMORwqU/N9H6qqlukFdvLae3t70dvbixMnT8K2rC2nxtlZPHnyBLIsI8sbRY2MjLRMOsMGP7sJ1Pfxyy+/YPrly+rNk8LPQQeuvcz2d4fvjSRJZcRVhOiFB0NuYwOpdBoWL2cmksQWYZ6vd2wb0g73XQnEiDVU+MKRMsqyWBbJ6UDqMq6SRkEuJK4xCCPwKyEEhyYn8eTpU7i2DSWRCEzJ9jI+WHIgDH8IIVheXsbw8HCZYK4SqqpCVVU4HSxt1FQVsiSBUNp0h8awCCnqNCjU+gSoW4nR7bKkSviUwrYsLC4tYTibRaFQCH4nSRJSySTTDqhqRzqyxQFF0zAxMYGJiQlQSrG2toY5bsB0584dUErR29vLDJjGxjDQ3x95Nx1877to9+26Ln744QcsLCzgwoULOBIq9xLo9OJdFsLeZTs5wjVGqqrC931sbGxg6vjxwAzNFykJx4Fp27AVJUhB7AQor9igqN9sSaT4mj12q1GEWu+Io6TR8zw43EclVYW4h0Xe/f39AKVYXV3F+MTEe2GE9GGTA7Cw0dr6Oo6IUpQ6SCQScBwHtm3D1fXWHtQGD4Cq6011aIwiOKwFu0FKQaCs2VKX4HGVtm3bcFwXFu862NvTwwSEvLRUND5xeMhW5B93eqe4DRULYV9/P3p7e3Hq1CnYto3FxUXMz8/j1atXePr0KVRNw0g2iyy3djbqjAW/SVLYaZilEq5fv458oYAvrl4Nyk4r0ajNdDvYltvmO9VdNy4ArK2vw3FdDA8PI5FIwOBRBVFTD0phmiZLNUgSFE4quhkZE5sIYQpVEy1cTziK0LQ2pM5r2y1pNCuEpJXnIqG51zAM6IaB5eXlfXKw1yHIwfr6OgAEuaJaIGBsVNc0WLaNUqnUkmiwsoSxErqqokhIpA6NjTrfNUJQpRBBiNiNidXjjYks7jsQRi6XAyjFwQMHtjX+kXgI1uH5XE3Ttgkxd9uiEA6/apqGAwcO4MCBA0FUYYGnIH66fRsA0N/fH1RA9Pf1lU3QuylysLm+jus3bgAAvvn6a/TwktNq6Gj5ZcUxxcK2G+IHYUJPCMHK8jJkSWK7T5RHFRKJBCiAomkyS2jCGrTZts1epyhQNK3MlrsTqOVvUImWy0Y5fN+HJMuRI5X1iIQoabRbKGkU6R7f95FskO4T5Hygvx+LS0vsZ/vkYO9CDKqVlRWk0umGA0CE7Q3DCHazZitK2AYPjW4YTHfQQEjTSje/METpVdQqBSJJHQnNur4Px7Jgi7KvEBRFgaaqUDUNs7OzSKfTNTsCKooS1J1rmrY1SXGU3StCur7Ljvpdif4OAwMDOM1bUM9zUeOL6Wk8fvwYmqYFOoVsNhtMpDutOVhcWMDN779HOpXa1jypGjoZOaiKDpXlNkIlGdi6HPbv5ZUV9PX1Vf3+CCGsMRulUA0DsiTBdRw4vKTQ5i6uBLzpFm+8Ffc9reVvUA0SIS33+hAN36JEEBrpG0RJo0eZB0VUEzvKIzUUjLjXIxVEkkC5X87g4CDevnkDs1Tar1bY6yBg5KBR1EC8FoRAkmUYiQRKpRJKxSITGsVYAigWNmG6UWnH204aIQzHtoP8oVRDYBRGnKVgnu/DtixY/DOGoSgKdE4IwqLP1eVlDA4O1jymoqqAZdW0m62cLLtNFihaC/vruo5Dhw7h0KFD8H0/aBa1sLgYNIvq6e3FwMAAJsbHgw6f3carV69w584djIyM4NKlS5Gad3WbHHS0nDGERmSg8rUry8uYPHSo5vFkWQYkCb7rwkiloKoqDMrcXR3HgctbgAuiALCKAlXTWmqitu0aRYM6SmuKEcOI49sUm596UYRG32S4pNE0zUjkgFKKYqkUiJwDEWkNYhm2pB4YHAQFsLS0tF+tsJdBKYVlWSgUChgeHo70HjHoDcOAz02Rivk8pJ6eSA9NlOEiSxITProuTNNEKiR8bDdaEIbFlf7d7Bfv8miLzYkJgMBHXuMTWbUqENfzsL6xgQOimqQKRLjT5W51jRacmmRBKK5jXLiEr/2281fWrjeAJEkYGhzE0OAgzoH5PiwsLODNmzd4/fo1pqenkTCMIP2QzWY77l1BKcXDBw/w5OlTHDlyBJ98/HHk9Ea3PA4EYj0P/+7KXC8jkIFKFAoFWJZVn/jKMgjKa+dJyIiJGsY2oiDcGkWVhNZAV1QPrutCAlhTqwjHEJqfOMoU2xVCN1vSaJpmkE5IJZORonHiGhO6jp5MBkvLy/uRg70MypWlADAcjhzUmbDDYaxEMskeQsdBPp9HJpNpXN4Y8WHRNA0lboaUSqVi7xPu+T5cHoqMungQQuCj+QmWUspcH7lPhICiKNB5HXijB3B9bQ2e72OozgQqczMk0SSnVi12LVRO5JW+8JWTXRykgbRZ551IJHD48GH0DwwwJz3bxvLyMubn5/H69WtIkoSBgYEgBdHT0xPrLt33PNy+fRuzb97g/LlzmDp+vKnj70haoUUIgic8BkjFTrIyjRUVKysroJRicGCg5mvCLqDVSpzDRAGJBFyusnd4rt3kO2eNP2/NdgsUKYVmnqm4ozTVfBGiHL+ZkkbTsuA4TqAzKLtPNUhKOHJAJAnD2Szm5ub2NQd7GZRSrK+uoqenpzzcVOcBD4sJCSFIJZPI5/NwPQ+FQgHpdDqWvK+maZAJYeYbABCzNarDWbTMuwpGhdTEA+9x8xCL244C7EHSNA1Gk5Ueq6urkCWpoQBU5V70rus2TQ5qodZOkHISGY4yVL6m7LUdBKWUCdqGhzE6Oopz586hUCiwFtQLC3j06BHu37+PRDKJEe6rkM1m2yqLsy0LN2/exPraGj6/fBkTBw60dN1Ah8hBi2Vx4e+zMgJFgdhTUCsrK8j09NQN/xNCIIfHdoNonyLLUBIJGIYRCHx9zwuEjCJSF1WbIMyPokRHw9ccJwTZaJZ0RC1ptB0HtmXB930YhrH9dTXSChQo0/wMDw/jxYsXzPFyj+ODJQe+62J1fR3jY2OR31MpgCGShFQqhVw+D9d1USwUkOL2uNvQxIDWuRmSaNkah4teGEFKoVkxZQRBl8PLMEXuE+ANrDQNumG0RJ5WVlcxMDgYqe8BYmxzWw/VSENZA6TQv7tBDviFBD9LpVI4evQojh49Cs/zgojCwuIiXr16xVIUQ0PMV2F0FOl0OvKEXsjn8afr1+HYNr786isM1InoNLhw9ncnOjLWSCsECz6lAdkP60HKnu8uRDRWVlbqphQEFFmGS1i3v6iJIpFz13QdruvCtqygV4PLnRg1Xa+bchBdKAE0FXEgaCwYbAXiGZOaOHajkkaXp3B9nmatGk2t8QwTACJGQCQJw0NDIABm37zBx59+GvEKdyc+WHKwtrYGyzSDFqmtQpJlpNNp5DY3mWq4VKo6ABuVMIYhuiOKkGCcbUd9SuFyfwOthdB7tU9AKYVl2yxfFwqnqYoC3TCgtaGejiLYCp8PQFfIQTVU1tWXLTjVFiuu6iah1zR7n8qaLtV4ryzLTIfAbafzhQIjCvPzePDgAe7du4cUbxY1OjqK4eHh6gsBBUq/vMHzpy8xYCg4/b/8EqmBvqaut+xwcWoO+GJPKGVNiMLhZ5QvVMHvOql5iADLtrG5uRl0ga0HmbslRuk+Wg0i7eB7Htslc3OfIOWgqsz5teJ7F/4GIm3XDDplnhYsyBHnVJ33xqlW0uh5HorFIkubyHLV6rN644NSGmwEJEJAFAV9/f148+ZNk59q9+GDJQdv3rwBAZre9VQTu8myjFQqhTwXF0mEbC/jikgMxKuMRAK266JQKMRKDoQYUHSGawoVn8H1vCB1EBYYarrOUgdN5jaroVAswjTNSN+TMIXxedObpj9fh0DAyWEl6HafisoqiuD9ob/DJCK8wEYlFulUClPHjmHq2DF4nofFpSXWgnp+HtPT05BkGcNDQ0H3yVQqBRQdXL0tYXD9Bdg3YQM//j2c40OQzo5AOpcFGW7OnVKkm+pGk0KLPoCycRYWA5JQFACSBITFexV/7xascr1BlLGtyDIkRBfc1oIkyzBkGbqus920bW8RBscJvFwUvkERZKSVFFSn7ndlF9JGkTmd65rcipJG3/dRLJWChb2m0VgdEuL7frAREN9JNpvF23fvuuIN00nsjtlzB/D23TsM9vU1VepTbwJWNQ1JSlEsFlEyTUj8IWsWImyWTCZRzOdZWQ2lsdWwO6LUqZUqBa5CFlECJ7SLkSUJBg9hxllvv7qyAgrUFWxtXR4TZvncRGm3kIOWQ6sVC2I1EuHzChYiSWUpDYgoTzjlUEVcKckyRrkL48cff4xcLof5hQUsLizg3r17+OWXX5BOp3H0Zwsj6xXfq+ODPlyE93AR7v8EkGwK0rkRSGdHgKlBSKoUnLvSypjyn4nxXjbB11r0w59ffCZUWYTqLBbdKmeMgpWVFeiGUdO7IwxJkkBkGcT34fl+28SbEBIIFF3PYykHXlpcLJUgmSZUTQtcVFt5ljq1MMqSFBBLIVSsJwCsVtIoShap77PeOYlES9cbENxQNGJ4eBgvpqexsLCA0RruoHsBu2P23AGsr63hyPBw8+y2DovUdT1IBRQLBdasQ1UjLQ4UWywUYCU4kiyDeh5M02xo0hQVoqdEK4I9y7JQLJXKwvaaSB10qGRudXUV6XQ6csmloihwuElMe41aY0STJYvNHTok6hOEQZwToYWzUuUdijyEryzFW1Afn5qC47pYnJ/Hg4cP0f/SBPVY/IISoHwPzx+LxTy83+bh/fYFoMkgJ4c5WciCDCTLF3lKt4Sqlfem1qIfFXXu9W4jB4ODg5E/pyLL8LhzXxxRufBxlWQS1PdhOQ4cLiIulUooFIuQFaWspLoZNFq4W0FlitbnFRz1Uhg6L2kUrrAlYVREad2SxSBSV+taOLkIj+H+vj5QSrG4uLhPDvYiaIsTdiORTSKRgO/7sG2bVTBEKHGk4Aw0LHKTpLLUQhzkwPP94EFtJkzoOA6KxWLQeIWA5fF0XYfSYcveqIItgbDfwW5Ao3EWFsO1BP59knCkoFJhX/3Cqr6mUifx6vVrFAoFKLICSG7oNQ2u2vZA783DuzcPDwDGMpDOZllU4dgAiCwF2oBqng9lz1m4fDACdsviXw+u52F1dRVnzp6N/B5Zlrd0B82KiSOA8OifrmlweYk2AQDfR75QgCFKj5t45uOmxH5ovIfRyFUxYRjY2NiAbdtbc5nwMqjzeRp9Up+PTblCoLx3kwlb+GDJgZiQWvkSG+WSkslkUHaUz+eRTqdrEoTKiEHlcQr5PArFIgZjSC2IkqSoDVtc12WRAlF5QAgShgGjS8ZJrutibWMDhw4fjvwesaPyPa+qw+SuQpVJpJZyvlb0waucDGOKUIjmSYViEV988QXo2iuQG7OtH3AuB38uB//XLwBDATk1DO9kBjjaD5LJbBNt1hK+Cv1GWEdQU7Oxi7G+vg7P95sivnIVM6ROgBACVdOgaBqM0Fxn8lJIjROIncinh1MKlahX6ijLMlRFgV0qoVAoQNM0JCq9DKpBkmp6HABbkYNtJeF7WGsg8MGSA4CHp5r8EqMIvwghSKdSyOVy8DwP+VyuagSBgu3max3P4OphJ6bUQlCv3CBq4PO8Y7i/g67rSCYSgXFPN1o4r66tRRZsCUiSFKQW3F1ADsK738qUFEWNRbDagWqFPWuF5tvARqh50tdff43e3l6s/Tmw/nAGAxsxnMd04f88B/fFHADA7euBfIalH3C4H0SuvV8TJKKaDiN4jRibofstSNduEYitrKxAliT0NWiuFoYsyyCSBI/7FjTjUdIsfM9j51AU9KTT8DwPpmXB8/3A5dTQ9a46rAKNq77qEQRCCCtbJAQ9mUwsXiiCqMRdbr4b8EGTAwK0xvAilNAQSUI6ncZmLgfP95HL5ZBKpYIBKVIJ9SaruFMLjfQG1PeZM6NpBj9TNQ1JwygTJHWrhfPqygpURUFPk90vFUUJarlbEYW2g8rFmlK6ZWJVZcy006QmjLgWvYX5efzwww9Ip9O4+sUXWwrujIbrF338efYcEs82QR8uAkWn/sHqgIarPmc34c9uwv//PQOSKsjpYUhnR0DOZEEyrYXPq93vVlOJncDKygr6Bwaa+t4IYe2SCSHwOkwObFGlwC2TBem2udupTymKPIdf1TQodM1x6TxqpRQqUfY9c9GraZqglAYt3aOQGspOWje6HFzTPjl4/9DKpNpIdyAgyTIymQwK3EUxn88jkUhA0/XID4tILbRbtUBRu+2q6DNRLJWCCVVRFCSTydpRhiZ8G1rF6uoq+vv7m/6OVEWBCbRcEx4ZoUqAyoZY4b/r3qU272NQdRDDovfy5Uv8/PPPGB0ZwaXLl6u4xAHeuWEoXx4H9Xzg1Rr8B4vwHy4As5tNncvnl7ttSi06oLffwbv9jj1ok31BqSQO9oFIDT5nvfvN71E1Ur4tvdPBMjTh3XHkyJGm3xuYIXleZDOkVuAIL5SQ0JgQwizPVRWWbcOyLLi+j3yxCEWWGUmoQljiIgf1UgrbECoTLhSL8FwXhDfJk3i5cyPtRKPlPtzrZqc7onYC++SgxfdFnTwkbvtbKBZZoyfupphIJCLtYkTVgmNZbaUWREpBkqSyHYcgBYEFqCQhmUw2ZNadVn1TSrG8soKjR482/d5AlMjb2rY7yVeW4W2boBqEOeuh3SmlLITe8kEo7j94gGdPn+Lo0aP46KOPGu6EiCwBxwYhHxuE/L8+Dbphgj5YgP9gEfTxEmA2IGb8ckm920MBvF6H/3od/n99AqQ1kDNM1EhOD4OkqozRCGRLqhL52vaOCpFkeW1Ge8jn87Bsuym9gYCwPO6k4Nbjeh1KadXNASGEpRRUlfmc8BRevlAIqpc6EWZvxkgOYCnbYrEYiAYzmQyzc+fC7IbCykZ6g9C1hOfDtkXGuwQfPDloBU3nLgkJVLGlYhEWdxJMJZONJ2FJQiKRgNNmasGpiBqEKxCC8/AKhCifLXD36xBjzufzsCyrJWteSZIgyzJzg3TdptvWBsK30P9bJkIdjq606zIomie9efMG586fx/GpqdaqeHoNkC8OQfriEIsqTK/BfzAP//4iMJfbfl5BDpqRruRt0B/ewPvhDbvGI/2sAuLcCDDRRFOpiItMNeOqOCb+lZUVEAD9Ebw7KiEqFvw2zZDqweFN2RRVra/k53OTxssEHdeF7bqw8/myyoY4rtGvo82q9RlE62VCSND3RpFl2HxeaKe3CFCeQpQkaWsuFaW4ezya8EGSg/CX2vIX2CSLpWCiPkmSUCwU4Ng2cp6HVDrdUDSXTCRQyOXaSi0IvQEBsJnLlVUgGIaBhGE0fS+iuJO1ipW1NYBS9Pf3t/R+RVHgeV4kchCeZIXYsqqjYQtouJi0ef+CHW0L12tbFm7cvIn19XV8/vnnGJ+YaOtaBIgsAccHIR8fhPzfnwVdLYI+WIT/YAH08TLgeIHmoG7koB4oBaZX4U+vwv+fHwO9BosqnMuCHh8ESXQu6F5ZRdLsvV9eWUFPT09LgjhJklh4ne/u213gqkGkFKJenyxJSCWTcLlw2vW87ZUNiJaKrYWoc41IkVrcHlpVFBiJRNDrQVYUgLezruGHyI4DRNYbdHIe3El80OSg4odN7ZiiDPawh7v4t6qqSPf0oJDPw/M85DY3mVCxThjfMAxIitJWasFxHJRKJbieF+QFwxUILaHCpjZOrC4vo6e3t2VzJUWWYaFOnwVKa0cG4iIGPO9Z93iElDVpaukcaJ4c5PN53Lh+HbZt46uvvsJAC7vYqCADSZCvDkP66jCo4wHPV+A8mAN5uQSyUIznJBsm6I0ZeDdmAIkwL4UzWZCzWWC0vKlUrCmxyhRFmGiiOjFcXl5Gdni45VPKsgzHdTtCDrxQo6VmI26KLCOdSgXN10Rlg2PbrOlah0V7wtzIdhz4lMLQtG2RUFVVAwJTD4JM1EMt+++9HjEQ2CcHbR6n4UCgFF6Fn4JoP1woFOA4Dgr5PIxEAkaNRb/d1IJl20FZpWEYVSsQWgJfVDvxMKyurra1YIXNkER+MSiD6xbLbycyFRGtkIOV5WXcuHkTuq7jm2++QSrdXE+EdkBUGTidBTmcgWIdglbwID/bYFqFZ8uAE0OJrE+BZyugz1ZA/8sjoD8BnM0ysnByEFA7WN5aQRYqnw/TNFHI5zF46lTLp5BlGRLpjBmSzVMKchvN0lRVLats8ChFoViEqqot+SNEeV5930ehWGTpFt9nuqkKchMu424kViYRIsMijbCN9LwnUYQPkhwECJvQdMDvAEDQdW/7qVkerFgqwTJNlHh+LJlMVjdECqUWmoFpmljb2GC7DF49EVdtMiGEWTzH7HlgOw7W19dx9Nixlo8hjJ5ESWMnwq+NEJmEtFGxUK1dcz28efMGP/74IwYHBnDlypXWemzEgIDUDKYgTQxC+uYoqOWBPl+Gf38B9MEisBJTVGGtBPzxNegfX4MqEuixfvinhkDOZkGyHSZGFWRheXkZPoChoaGW9QsiDdkJUaJr2/ABJNq0QxeVDaqiwDRNWLxlsuu6SCYSTUURGlkwC7M28Zp0nVStwrtbNrx3EfwUBDlQKojUfuRgDyO2EHKdASRqahshyV26SoUCbMuC53lIp1IgFYM7nFoomiaStTqIcXicSTuOE3Qo7O/ri9+0pAMPwtraGijQUuQgnCJQFAWe78PZIXIQNV0gEbLd6TAiIpdSUYqnT5/iwYMHOHjwID799NOO1sk3QrWIB9FlkLOscROlFFgswL/PKiDwfAXwYiChrg88WgZ9sAD61w+AoRSLKpzNgkwNgGidHSdz8/PozWRgJBJbUQVeWhf1SRJmSNR1YzVDcl032MzE9byI6ifFtpErFJgpXD4PwzBimYts24ZZKsGjFLIsI1mnTwLAPxd/LuttGnzfr1vK6IesvyVJ2mZu9j7ggyUHFAisL1v9Muu+t4nJXtc0KJKEfKEAz3Wxmc8jnUqVGw+FUwv5fF1yYDkOCoVCmc7BkOWOuJkRSuEj3tKd1ZUVaKqKdMRwd61qAlVRYNs2HMdBogGZ6gSijoCWJ5OKUqpa8H0fv/z8M169eoVTp07h9OnTO24G1KhdMyEEGElDHklD/gfHQE0X9MkSSz88WADWzarvi4TwOZcLwO9fgv7+JagmA8d5ROFMFmQovlbpAABKsbCwgMmDB/llVHTO5D9rpMwnhECWJHgxmyGFhYhx7341TUMPISjwhkcl04TrumzTUyeKUOvZFsZGluOAUgpVVSOJqoOKBS5WrlWqSRrM3yLyICKU4Vf7nteVlGKn8UGSA0mS0Nffz3aoTQoRK1Et597Q+KYKZEUJdAie6yKXyyGRSEDX9eD6GqUWKIBioQCT2x4rsoxEMonc5iZ7gDqxeyaE1Y3HmGdbWV3FwOBgzYer0mioFlRVZSFE12VEcJe6mLXjtREco8a9ch0H33//PZaWlvDpZ5/h0KFDLZ4tZohrj/idEEMB+XgM0sdj7HO/22QGTA8WgBdrTZFxQmqIBW0PeLDAogoAMJrmWoURkGP9IEp7i/D6+jrMUgkjVTr1hUWM4f/XIgqyooC4bmxmSJTS9tq5R4CsKEglk2y3b1lwXBduPo9EMllzbqqWUvB9P+gOSyllzaKa0F7IigLJ82qnFiKk+QJDOUHMQt/R6toaZEXZ0x0ZgQ+UHMiyjPHxcbx89Agm9whvBdV0B+30HZBCQkXbtlEqFmHbNpLJJGRFqZtacF2XRR74uQ3DQDKRCPqxS5LUscUxbkOk1dXVbeZHrYgJJUmCIsts4nPd7vvAR73WKFUNjY5f5b1mqYQ//elPKJZK+NWvfoXhbLap43cSgelWK54KhAATvZAneiH/N8dBizbo42X4DxdB788DObvxMaLEDOfzwHwe9DfToLoCnBpiEYUzWZD+5iuG5ufnoagqBhuky4gQz4r/V4kwKDE3YXI9byul0KF0k5gvdV2HoiiBQVGxWISmaTAaeKyEyxQp/3+qnotrDaiKAsuymGtitbmrwXMb1htsE3UTgsWFBfT19bVkcrWb8EGSAwCYnJzE/Z9+wtLCAg5OTrY0OVciIAbiOC0umKlUCoqqwuTsOLe5CV3XYSQS21ILFECJCxoBNtmm0+mAiQuG25GogQCfvOIIolm2Dcu2kenpiaW6QFVVuK4Lx3G6Tg4ig+edm4UIzVebUEXzJALg2tdfo6eJBj/dgKDPcYwZktRAPh0HuTAG3z8PvNkEfbDI+j+8WqvKAZpOJ1ou8Ms86C/z7H0TPcCZLGsWdaR+syiB+fl5ZLPZpkj6NqLA89uSJAVmSHHA5dFGVVU7Fw7nCzEhBLIsI51OwzRN2I4D27YDsaIQE4ZTCo7jwOQ9HXzfZ/4FDdot14IcEiVSStk9Dm3ofErr6g3CZkfCCZKEnsXllRWcv3BhP62wV9HX1weoKhaXlhg5aPGLFMyzsqa93Z208DAvlUqwLYt1QuM5MhlAkefu8sViQAB0VUUylSrbjYnQW6cFeXGlFnK5HHzfRyqViqUKQlUUlAhh+dQOlV3WQjOEqS3tS8Vnmp+fx61qzZN2CYJnBYg9mkUIAQ72ghzsBf7RcdC8Dfp4iRGFh0tAQUQV2rTlebsJvN2E/3fPgYTCyjPPZJmtc+/2+22ZJlZWV/HZp5+2fs7QMyaaIXlRrYDrQKQUKJr3NmgGBFvkBmDfVSKRgKIoQbVWvlBAgosVRYMp0zSD6wNYerWd61QUpWz37/t+MH81ozeoNqfaloV8odBS34zdhg+WHMiyjJHRUcwvLLS9aIQ9teMEIQTJZBK6pgU5NlAKy7bhuC4WlpYCk48Uf13ZdaF2s6XY0a4hEhc2rq+vgwCRxYiNoCgKC7/yyaBbVQvCgjkqWknNVFP8v5yexs+//ILR0VFcunRpR6o0GiHcDyJWslbl/pG0BnJxArg4AepTYGYd/sMlkLvzoK9X4zlvyQV+egf60zs2B0z2AWdYZ0lM9oLIEhYXFwEAIyMjsZyScFtiArbTldsg50HfFaDjLc6rjXNVVSHLcmDBXOLdHmVZhmVZoISA+j50ri1od8yofE4o80AJlwRH1BuE75V4x+LSEmRFaaknzG7D7ps5ugRZljExMYFHd+6gWCohlWxNmSyGaSeNdYRYMeyHUOT6gonxcWQymaqNTjxhmUxI+4ZHDdDKPqwaqcrn80imUrE2blFVFT6lsB1nVy6WraKMHFCK+/fv49mzZzh67Bg+On9+1wowxfcd59VFEQETiQCH+yEf7of03x6Hu14EfcijCo8W2SIfB2bWGQn5/z4DUhpwOgvL2MRQTw/0GKM4kiyDOA4z/lEUtsBX0Sc0QiBE7GRKgUMiBNW2EKLk0bZt5PN5FCwrIASapiGRycTmsChMpHywhV6kG6MYH4m0BlBdm7G4uIhRPifvdbw/M2WTEKLEH65fx9LSElItqri7WdOqGwZs14Wu6yjk80E5kOu6kKvk0x2+I+io3iCEytxdTfCJvFoJZC6Xi/3B0lQVtuOwfhItNq5qFs2OiygT07Zz8Hvtex5++OEHvH37Fuc/+ghTU1NNnr27EJNrnOSllcgL6TFArhwErhxkzaJeshbUeLjI0gZxoGADP77BEQCHCUAfXQfODANnsqxZVKMW1HUgEQLw1AIQEi4iVP0QQVwXpBR2WJPj+z5cIRIEX4gpDXrSxAlFUeA5Thk5iBJBDrsiVrum5ZUVXP3yy1ivdafwQZMDXdeRSKexuLCAw22WeHUjn13I5+G5LtNLAMgXCsjlciCEwNI0pEJiHqCLKQWOynrfSojfiW6O1e7W5uYmxsbHY70ukZ8MhxE7jab7JbQQeaJgJjD3799HLpfDlStXYr93HUE4hLtTqDg3kSVgahDy1CDw350GXSuBPlwEfbgEPF5igsR2T0kBvFxjf/4/T4EeHfR0lpGFk0Mgyeby6DKvWKgmSqysdqhVEikasBFe/99p1PrGbdsOBIeUEPSk0/B9P2i7nGyhKqEeFEWBxUtBg2sLEcxa17mthFG8F2w+tmz7vUgpAB84OQCA0bExvJmbwyU0r5ym2KpD7mRnLkopCoVCMDBTqVRg2WlaFguZ2zYc20YimWRmIOieGDF0oVWvXbR3FqhFojzeOyLuyIGY+HzullipzegEmh4JhLDe8U0smLl8Hrdv34bnefj6q69aagG8E2hkgNQKWnn26hF60p8A+dUh4FeHQF0P9MUa6MMF4MEiK3GMA5sW8P0s+yMR0CP9wFlOFsYyjQ19+BxW14lVVBJJ0lbqL3SvRNRA76AQsRJh7wLP84KGcJTSoMOjmE+F1qpYLMJIJFpuxFYJRVVBhI6rAkSS2LNYBTVLGMFSCqqq4vDhw7Fc407jgycHExMTuD0zg82NDfS2UO5V9QGOkSRQSpHnHRwJIQExUBQFGxsbUHyfVTBIEmzHYd4IlgVd1wNL1q6RAy4wC+d/faCh+lcgl8+DUtqRfJ0WKmnsBjloCU0slsvLy7h54wZUVcXVq1f3DDEAWmsWFTcImqgkUWSQk0PAySHgf3MWdLkI+miR9X94uszMk9qFT4EXq+zP3zwG+gxQkX44MQRibH+GZX7/PN+PZPK1zWDJ82CLDUQXyYGwi7YsCzbv5QBKmaWyqgbpSUIIkokESrxaQZRrx0EQglJvETkIRQ2o7wcCzTB8XhkCVNcbLC0t4dCRI00ZMu1mfLDkQNTajo6OomTbWFhYaIochKMG4njB4Gohf1wNvu8jn88H5wk3FBH/d9fWkM/ncWBiArZto1gswvU8FDc24DoOkslkdydhriyulzqohVwuBwAdIQdBw5UulTS28u1HFXXOzs7i9u3b6Ovrw9mzZ5FKpVo4286hI+SgleetwhM/KsgQa0EN3oKaPlthROHBIrNjjgPrJnB9lv2RJdCpAeD0MIssZFPs2ZIkyHwX7vk+lIjpMvGJHaG652Zh3YDQOBQKhUDcp6lqmY1yWLdECAmszwVBEELFdiDmUY+nGmVZLnv2pCpzeKVlctnnAnNG/Ozzz9u6rt2ED5YcAOxLlmUZ/UNDWFxcxIkTJ5p6f+UAidMp0PN95HO5YCFLV6lISGcy2NjcZA9NsRjYkBZ5VYNtWQAQ+I53OoIgTKAoWpv4c7kcUyd3YBejKAokQuBSCtd1O1rPDaC1RafR+KEUT548wcOHDzE5OYnjJ0/C5xGlvQQx+cd53Z0kY3WPocogZ7Jsh/+PAbqYZwZMolmUG0OzKM8HniyzP/+vR8BgEvRMFjg7DDJmBDvxZmHZNgjQFXMwyquFLN5czvV9yDwSGhZMV/tORATBJAQWt16mPNLQKkRlBvV9uFV0SNW0B16VEkaBjfV1+L7/3ugNgH1yAAA4ePAgZl68gOf7kUroKqMGZb+LgRyIzmWUO6Gl0+mqIjpZkpBKpZDb3MTG5iYSySQIz9k5tg3X8yBJEgvfWRZUTUPCMOJfGPkOgPC0ggSUaQyiIp/LIdPTE++1haCKLo2O03Fy0JJjZJ2Ik+/7+Pnnn/H61SucOn0ap0+dYlElxJu77waCUsadvu6YInxlh8ymWRvob4+CWi6e/M9/QmqmiPE1lbWOjgMrReDvXwF//wpSWgI93APv2CDouXGQoWhRJJd3dKSUBmS8mk1zu/B9nzkgcm2UGK8JXqIYnkMpr06oRRoN3ljJFBbKnCC0SjIVRQm61qJGA6bwvQjMj6qQg/nFRRjJJA4cONDStexG7JMDAEePHsWz+/fx6uVLHDt2rOH7aoWlCWFNiFpZGAU83iOBUtaCNJVK1VXX92QyrKyxVIJt21u7AEKQTiaRSCTgeR5s2w5Ei4qiMJJQ8XA2Ba4rEGY/1cJszR55Y3OzpTbNUaFqGixu09pxtGDHXevVDm+etLy0hM8++wyTvLJmN+TuW0HspYwtPm9xRA7qgSoET9V1HP9Hx4GTJ4GFPPBgiZVKTq8CXvtnl2wf5OUavKcrwH96CjqcAs5yrcLUQM1mUSKqqGta8D3EKaj2fB92haZAkiQkNA2apqFaS/so41jXdRBJYvMdF1NG6cZYDYqiwHbdICJQiXD0wONECtgeOXB9Hy+np3HuwoWOm0h1E/vkAEBvby+OTU3h0aNHOHToUMPwe6dy1q7rIp9nSmhZUZBOpRqeR1VVJBIJuJ6HjY0NDA8PA9gqb9I0DTJX6pdMExb3Rsjl85BlGYZhNO86RmnVsJsAIQQy3yVEhe/7yOVyHe0aqArdQQyWs/XQ8vioMjmXikVcv36dNU/68svg+xXnAbCzJYEtIHZS04EIQBxYXV2F47oYGR1ln3U0w/78g6OgpgM8WWE6hUdLwEZrLaglD4BG4Is1aakAfFcAvnsFaDLoySGmVTiTBRlgHh++58HmJYxandw9kSRQ3n44KlzPY6SAL9yUUiiSBI1HLAPTuIr3NUNMRKTDLJWYgROlSCQSTY8nRVEgUQqnjrOrqFyopzeYnp6GaZr48z//86bOv9uxTw7AWOHlK1fwt3/zN3j67BnOnD5d8z0+GkxqLU5UtuOgWGBiJkVRmrIP7slkUDJNFPJ59Pf1sc/Fd64iTSLxdEMykYBpmjBNE57noVAooFgqIWEYrCtavQVTVCFE+Xw8nxf1gS0Wi/B8v6POYoQQqLIMylMLu05VXDF21tfXceP6dUiShG+uXduWcmlUk71bEXcpY6u0oNMRl7n5eei6XlXoTAwV+HgU+HiUfY/vcltE4eUaq16IAIkHqFxSJVpne8C9BfYHAB1LM7fGE73AaBKKKtclyGGb6yiWwsLWHTw9oHAvmWombJV3vlm9lqaqkAhBsVhkZm9cc9XMmJIICayZa0H8TpQwVm4cLcfB48ePcfzEiT3fhbES++QA7IvP9Pfj2LFjePr0KY4dOVLT5jTKgtdsuNJz3YAYqKratPpcNwzovFRvM5dDD+9oSAjZbvZCWLOThGHAtCyUTDPoj14qlWDoOlMOV4THhNgw6oTarPdDJysVwlBVFY4oaewQOWhnDyvGztz8PG59/z0yPT24evVqVfFVZWnaXgD1/WCh2em0QqcxPz+P0ZGRxvMFIazL40QP8N9MgRZt4PEyaxT1cBHI125BLYesMXwCyPVuxVwedC4P6xZAdRnaxCBwegQ4PQRUaRbFL67ctKriXjtcZOjy79WnFKqqIqlp9SsgYhiziqIgmUwyLwTul9C0DX4UszJCapofPX3yBL7n4dN2GmrtUuyTA7CQNiUEJ0+exKtXr/Do8WN88skn217fMGoABLX+ojd6I1BKkW+DGAikMxmYloXNXA7JZBIUDfqyEwKDRwssx2HtoT0PJcuCaZrQdB0JwwhSEkJs2Aya2Q3kcjmosoxEh+2NVVUF4Q1eOpUeaieXTQjBixcv8Msvv2CMN09q2BdjL5GD0EIT273fheSgWCggt7mJ06dONf1ektSAT8eBT8dZs6g3Gyyq8HAZmFnbNrhkD3AJgS9TyA3kNLbK3i6bHtRfFoFfWEMoHOhh6YfTQ8DhPlbmWQlRqg3AsW1WecCrk6jvQ9N16JrWUl+UVvUOiqIglUwGJnEW93iJArEBanRu13XZeEW53qBYKuH5ixc4fvw4erlr7fuED5ocCH9sYW6h6TpOnjyJ+w8eYGpqqiy0Lx6AhhMaD+dLEe1zC1x8KPHKg1Yh7EVd22bmSIoSLadOCHRNg65prCTSNOHycqGSaULXNBiG0VJ/hmY9DtIdrFQQCOcMO1bS2OJERynF3bt38ezZMxw7dgzn6zVPCjtOtnS2nUHs7ojN2lR3CfPz8wBQphFpBUQirMvjZB/w354Azdss9fCQpyCKDiQePfAkoNFotvm6qVkVv3izyf783QsgoQKnhphT4+lhIM17D1SpPACYu6Km661/p22SO1mWYSQSKJVKMC0LsixHL9uOmDIR5wnj4aNHUBQFJ0+c2HVt0ePAB00OAAQ7Y8/zoEgSjk1N4cWLF3jw8CE+v3y57LXN7HSi7JpF4yQASLXZopgQgkwmA3dtDZu5HPr7+5tm8KqqsrA7Jwk2LxmywxUOTXZui1q9sZnLIRNTm+ZGUFW1oyWNrUx1nufh1o8/4t3bt/joo49wrEHzpPDY2nNpBbz/YsT5hQUMDA7G3syIpDXg0gRwaYLdy1frkB7OAS8W4c/m6r7XkQGPMDKp1oswlBzgzhz7QwBvshfO6X5YR3tBs8lgF62rKnRu1d705wj9HYMTRJkDarFUQrpBlVdwDSFxdTWUNaYKzRUbuRxmZmZw/vx5KPw+vG/YJweyzGpdPQ8Kz5OfOXMGP96+jeNTU0FpXdzTj+M4sEymUI6rRXEqncbm5mbgRd5KG2rRiyGTTsMzDFbhYFksT5/PQ5YkaLwcKWo0oVFZI6UUuc1NjGSzTV9vK9BUdUs8tQtgWRZu3LiBjc1NXLl6FSMjIw3fUzah7SFyEEQOdkE76U7dNc91sbiwgNN1hM1xgEgScHQAysEM5MIE/LwFvC6xFMSTZcAsH9825ymaw4SM9eATwFEARwXc1XXg79fh/xGQDQXaoSFop7Igp1lUpJk0atn1Iz43WYCVNPqex5o1cf1Bzd4ZobRWvbOL9KMkSWXRiPv37yORSODI4cMApfvk4H1EWJRIeMj54MGDePbsGe7fv4+vvv46YJhNgbPraqxUdBoDWClRXI6AMjdM2sjlkC8UMBp1sQ3lEsuOx6smEokETF6z7HkeSrzaQZIk6JoGTddr6huEKVI9di481rvVA11VVYBSeDxitJO1yblcDn+6fh2+aJ7U3x+04K2HTjX56jTiLmPcjXdhcXERnudhdHS0K+cLtFNJFeTKEGtB7frAq7XAV8Gbz8Hhs/22lAIHBSMDjgI4CgUomxqoDyg+kLAAddMFFueBW/Os+cDhPtAzw4woTDSZFmxQKdAsCCFIJpPIFwrwPA+maVbVMDVTAuzYTAyq8p4P8H0sr6xgfn4eFy9eZHqgfXLwfkI8WK7rAsIpTJJw9tw5XL9+HQtzcxgZG2tJvFZLmFYUJkeKgmTMArx0Og2FEORtG7bjNG6oEiFnK8tyUAbpOA4zVHIcuJ4HzzRRMk3IihLkHiujIPVaxgK8UoF2puFSLaiqCmrbsGw79u8g6oK1vLyMmzdvwjAMXP3qqyDSE0XQuBcrFYAOeBzsQpI0OzuLnp6ejrp9hhHsgimF73mQZBlEYS2oMTUI/Hen4MyvgTxZgPJ8HfLDdcBhpXkUgKtskQIKCuozQiD7gOYCqsP+vQ0+gOl19uf//Qzo1YHTw6CnhkBODQFVmkWFEe7OGBckSULCMFDkJkmyomzbfIkqKklUc9UYQx6PQgBbGwoK4N69e+jr69tyQ+Ti7vcNHzw5EI6Ctm0DXBBICMHoyAiGh4dx/8EDZIWJSbOoMvCKxeJWh8UWwv6NIEkSNF2H6jjI8cqFquDCyXp2pZUghAQpBUppQBJsy4LrOCydUSpBURSmXFZVSLxVrCSsWasgl8sBktS27qIZ6LoelDQi7gqJCAvWzMwMfvrpJwwNDeHzzz8vy2c2U+Wxt6jBljtiXGmFdiMocfZDAVhKYW5uDidOnoztmI0gyoZBCDzf316G7PuwDQJ8PAr96lEAEtxnS3CeLMJ5uQJ/tciGrM/SDZoDKC6gNNtscsMCbr4BufkGkAEcGWCixjPDwOj2Z7tT0S9VVaF7HuvDUCpBkWv4OQhCVeM4dihqIOavt+/eYXVtDb/61a9Yefd7GjUA9skB++I5g3U8DzIQLJznzp7F7777DjOvXweWtQ1RQQjCgjwh7gPQ0Ba5Vfi+j2QqhZJpsvrfatGDkJlRqzs4Qgh0XWetoZPJLXtmx4EjiALY/dU0ra7wL5fLsfvRxV2wxt3aPM+D67qxNqWqp7GgdKt50qFDh3DhwoXt4yBKHnaPWieLBSGW73oXRg3m5ubgeh4OdtljX5ZlSK5bdScu5hyARUhLjgN/3AAdnwT95iDIhgltehPqkzUoz9YAJ45mUQCer7I/f/ME6De2qh9ODAJaC6k8nwLfvwF+nGOhjY9HgV9NAsr2eVTXdfZsex4KxWLZ/BLFPMynNNAkiciD7/t4cP8+stksssPDLM1A6e4zU4sJHzw5EItciVtxBkOWUvQPDODAxAQePHiAiQMHouWm64SoSlxnYHSwQ6InWqDqOnwA65ubGAo7dwl1boyLiiRJzDPBMFgfB9F9zXVZZMFxIBECRZahcqIQXtQ2czn0dDGlIKCqKigQVGPEhhr31/d93LlzB69fv8aZs2dx8sSJlhf3vdpXIcgxx0GMYxCzxR05mJ2dRX9fH5JdbqMtSVKQvgvD41bpjmVBUVX2Wfn4VBUFqqpC6ekBDmaBa2Cuis9XmQHToyVgJaZmUWsm8KdZ4E+zoDIBpgaYp8LJAWA44r36nx6AfP9m6/8v10FvvQP+TxeBTHlVCCEEiWQyaHlvmiaSiUTVVEa179/h9tKicy8AvH71Crl8Hpd4FZtI/9WzoN7L+ODJAYCAHFiWBUPTyib2M2fP4m//9m9x+/ZtXLp0qfnJmE8+BWF0pCgdzU9R3welFJmeHhTyeeQLhTJLZcqvqVOQZRkJWUbCMOC5LiyedvA8DxalrE2sJEHjEQVFUZDb2MDEwYMdu6Za0DUtIC+JmAyRamlTguZJy8u4ePEiJicnax6DRFisglfsMXIQu8/BLoJtWZhfWMDZs2e7fm4RffI9L/AjEBVRpmkClELjintNVWuTYU3eSgUAwGJhiyg8j6dZFPEo6yvxZBnE80CHklsGTFMDgFplEza7WU4MxLHeboL+5ffA//kiMFCeHpR46rZQKDCtlCyXtaeuFbmllJYJEQFgY2MDd+/dw+TkJPq4Hba4E/uRg/cY4su1XRdU01i4ie9K0qkULl28iB9u3UImk2mpPKlUKgWCvE7vKAQrTqdSzNaUuyb2VfF37zRkRUGSiy5d12WtVi0LvufB8n32b1650Qn9RSOIRjAepZ0zRAJQKBZx4/p1mKaJL7/8EkNDQ/XfEGFHvBerFUSOFoiHHMRxD+KkKO/m5kApxYGJiRiPGh0OJ7rhEl3LsiBJEpLJZKRGbtuQTbE/3xxmpZHPV7it8zKw3lqzKAEClscny0Xg718Df/8aVJUZQRApiEG+4P88V/s4SwXQ//tNRhDGyiOQorlcyTQDg6RqEeBwIzbX8wItlqooME0TN27cQDqV2nLODT2j++TgPYYsy4H5j+u6UBUFhO+yKYADBw4gl8vh4YMHyGQyTfXsdl03YKHpdLrjYWChriWShEwmA8u2sb6+jkwq1diGt4NQFAVpThQCIaNts7Ijn1m8ra2vs9QD39l0KvUShqZpoFwr0QlysLa2hhs3bkCSZVy7di1yRUajcPeeTCvsUW+GqHgzO4uhwUEYHbYAB9hi5vJ2w67rwuVk23FdKKoKVVEgSxJbuHjTtbbHiqEA50bYHwCYy3GiIJpFNX9ICeWVOcTxWJTi0RIAgI6kGEn4ZaHuccimBfqXPwD/x8+Y/XMImqbB5doi0zQDJ9pa7qNhIaLv+7hx8yY838dXV69ClmVQft0Cehe+753APjng0HWdMW/PC1r7ItQk5tTp08jn8/jx1i2kkkn0c3OkRiiVSsHxu1FP7/O+4zKfEDY2NuB5HtY2Nsq1BzsEiZDAiTGVSLAW1YTASCRYODQkBCKEQFEUqJwodIIs6JoWCEVbaftaD3Nzc/jh1i308uZJzewwovZn2EtLrB8iNO3eZ9EIrG2SEdP3bZZKWFhcxIULF2I5XiUoJwNikRNdAgEE4mJJlqFJEtKpFFRVRalYhMSthDtiOjWWYX/+wVGg5DLjpUecLORqN4sKg0UPao90slAAFgrRjlVyQP/dLeD/8Alwqty22tB15Hn5tRAgB9ErXrEgAYH3CcDIwY8//oiN9XV89fXXgWdCQCr4eDb2IwfvN3RdRz6fZ0IU8WXz3RsBm4Q//fRT5AsFXL9+HX/2Z3+GRINQuMtZPeF1sHGLn6pBXC946U1fXx+Wl5awubmJnp6e2AyXWgYvu/L5xO55HiQA2eFhUEqDkkjHdctyp+ytW2RBVdVYyJaYJFwAruO0b3fLv9/nL17g3t27GBsfx6WLF5u/1kaphT0YOYizjDFw19slePv2LSRCMDE+HsvxqO8HC9k2MsCjmoIwK4IAyDJsx2HzDH92KKXdeeYTCvDJKPtDAbzdZP0fHi4Dr9drM912upRVO5zjgf4/7gD/u/PAhTEA7H7JsgyFR4etkACZiBJr3wckKYjyKoqCp0+f4u2bN7j8+efo7+/fOgm//2L07ZcyvufQNA2E1wkHrnkVlqCyLOPqlSv43Xff4fr167j2zTd1d7MiaqBpWnA8Hx20beVixHB0L5FIQDcMeKUSVldXMRrBmrebsEwTasg4Key0KCZGh/9dRhZKJZYT5CkIVVFaJguapsEzTVgxkAMK4O7du3j+/DmOHz+Oc+fOdWQB38tphViueZf1VJidncVwNtvy+KFc9+KFCIFYuCjvfChIgMLHemVYnAhXVt+H7XnMX6TC9rcrIGBdHg+wFtTI21tRhUfLQMEJvTRmdgCAeD7of/gFKLrArw5CkmVQ34eh68Hmo6x8WTjEhqKWi0tLePTwIU6fOYPxCsIXGCiB6aq6fn+7hPfzU7UAUdJoeh5cx2ELTShyIGAYBq5evYo//P73uHXrFq5cuVJ1sgs/4HooEtHISrgdUN+Hz33Awxjo74fFfQ+KxWJtY6QugYScyUzLgl5jQhUToQF2z8TE6XDRFfX9ICVAwMJ9qqIEOdeoO1RNVQN7aNpGbtbzPHz//fd49+4dPv7kExw7erSl4wBbTWFqhb2bsYDdLfB3IaERFuftXFMhn8fq6io+u3gx8nvC4zmIDIR0TpRSKHxhF6SgZodODomnazxK4VgWKKW7w7kvrQEXJ4DPxplXwewGIwkPF4FX6x05JaEA/p8P4C/mgf/+VBCxrIweCGoiOvNSSpHL5/HznTs4cPAgTpw4se3YEvc3AN5fMSKwTw7KoOs6zGIRjutCfOXVpoy+3l5cunwZN65fx/3793H+/Pltr9kWNQgdr1P7HbG7livCiIqqIp3JYGNzE6trazAMY8cb3whzKMs0I4XlREpB4aWglFIWduVEwXVdUM+D6XkgnCyIyUBoFmp9ZkVRIBMCnxA4jlNW7hQVlmXh+vXrWFtfx9WrV2Px1Q9CnlWwe/bM0RFnWiFOgt0uVXnz5g0kScLY2FjN11DRy0MICHnJYfj3Eie3MicElU6HjSDIg2PbjIjxyNqugPi+JAIc6mN//tEUsGkBDxZAH7JmUaQUbzM06Q+vQefywP/lEgBsix6EybXtODAtC3fu3EFvby8+/fTTqqQxvGHcFeSrQ9gnByEIFui6blnIsprj3djoKM6fP4979+4hk8ng8OHDwe+qRg0EePQgShvjZuDznQhQffLt7e1FoVCAbds7VtoYhogemJbV0gMmyoxURUECW2FZEVXwXJdNxqYJi4dbwY2YZD7xin8TQqDpOtxSCbZtN00ONjc3cePGDXieh2vXrsV3b+uEzqO4vO027NpUSGgn2ApmZ2cxOjYGRVGCck0x/kQ7eJ+nBgAEEQKJkIAICM1AOyChaJymqntjV9ujA5cngEvjrELs5XpQAUHm6regjgrybAX0hzfA5QPbogci2uJ4HhzHwd27dyFLEq5cuVJ1Hq0cu9o+OfgwoCgKZFUF5QuMoijBA1cNU8ePI5fP46effkIqlcLwMFPImrwVc2XUoFMQE48Ii1WrIZckCb09PVhdW8PGxsaOlzYCbHI0SyWkY+ipIPQHYqckSr2ccNiWV0MQxwl2DCIdQcC7Q3JCF3z3DbC0tISbN28imUziq6++inVCjhJlahRqDtBmGkI464Wb/IQjG5Xpt2rXHZvHQVyVChytRvN838f62ho2Nzdx7Ngx5LgbH0JEIHx/JElihJST2nbJQCUkQhgx9jxA0/YEORCknYBtcKSpQdCj/cD/6gTougn8366D5KNVPtTF9VngMitBD0cPRBm1bVl48OABivk8rl27VvXe0YrxD+ynFT4o6LoOm1sph4Um1aIHBMDHH3+MfC6Hmzdv4ttvv4WuaXC4YrjmwCG12zk3C59uFQKJsG0tQpLJZJAvFGBa1q4obSSEwLLtjpQCSZIUNIkCtnK8wR9OHqjvg3oeKE8peNwARdc0yJIUmKaIP+HdhGieNDw8jMuXL0NV1TJVeduoJ7qrjBw00CeUva6N6wkbGVWO30ZHFuNzWymjuHbauENocJ4uRh/CY0dEAsQ4efn6NSRFQbqnBy6vqgEhbLxIEiRJgsw9ByITuRZB+Bimvr+nFi1BziRJAuVmcZRSwPHiIQYAcps5zD17htGREWQymSB6IFILz1+8wPLyMi5dvFizm6bEReVhdLNZXLexTw4qYBgGTEliD7qoa61TgihLEj6/cgXfffcdbly/jotclNQoaiCmtnboQVmoEhEEX4SUlTZm0ukdnUREH4ZulAKFNQth+L4f5IJBKQrFIjzHAZVlOLycLBCs8d2fJEl49eoVnj9/jslDh3Dhk0+C77pe06VmUbPXPaXw+R/x/7K/K7Bbgvji80iyvP15qiQaNNRSFwiMZ4RYrx4ZahZicaKUlqUBwoSg8s6Ka5ifn8dINotEIhGQSdEhsdsQxABATZFvNxG1dDv8OvFvSZLgxyhWXDqi4/GjR3hw/z6SiQSGR0ZY+o8QrKyu4s3btzh54gTG6pSiCmM8MVZlWUZvX19s17jbsE8OKqBpGqgsw7NtZqkpws91dnG6puGLL77Ab3/7W/x05w4++uijxotum9EDr9776kxMiUQCRiIBr1jE2tpaLMK5VmHbNiTsrKhHLPbCOwFghCGTyZRHG0KLxf0HDzA/N4ejx47h8KFD2NjYgMz9EigQ7BIlrpAOWupGRLA75/Xq1b7NwH9jt+XvayBcYhslrRCkLELj3A/9btsYFwtMgwiKKA0UZb/CT8BxHPieV1YGLM4vTMUkHg0QBGBzYwPFQgGffvLJjgvTRJkvgPa9OmJC5Lmt4nWCIJA4ukMCoMcHcfR/fwmHfR/Ly8uYn5/H/MICZl69gqQooGA+K0frVBcRSSqvEKIUmd7eHRd2dxL75KACkiRB1XX4tg03pFxvlJfMpNO4cOECfrx9Gz/dvo0vv/qqcclgi7XavpgEKxBV8NXf1wezVELRNFk70x0qbTRNExSMsLRbThYHZFmGqiiwuZOaoetlam/btnHz5k2srq7ikwsXMJLNMtEZ1zX44Vx4aCIh4GVmnCjIfGcpiAkJkYjgHjQgpXuulDE8Ztu85mqLTlCK5vvwwb0BfB8erqFUPQAAjGhJREFUpaCeB0/8rMp7PUrh83SQqHIRqQDx72qE5s3btzAMI9Aa7SSsUIWOzBeynX6eooLWGuMHe1uLevUboGkd6DOAXx0ETrJeJpIksXbL2SzOU4oHDx7gxfQ0iCTh0KFDdSs7qs3/UV1y9yr2yUEV6LrOOnm5bmTluk8pMpkMLl28iHv37uG3v/sdvrh6FQMNBlC1FqL1EIRVq/0uItEQpY2bm5tYW1tDYodKGy3LAiiFoetBb/SdhqZpTLlcoYUoFov40/XrsC1rW/OkMg8G1y2rmaZCsQ62OBFK4YjJsMrkTfiCFI46iEk/HI3Yawh3Y2xm0QruIf9bRHDCP/fDi37o2CK6UiaalCRI4LoHfj+Fm6gsy5Gvj1KK2TdvWJOlHf4+qO/D4kRbtA/eUXLQ5KYnCNdX/nyyF/SLgyDXZ6u+j6oyMJ4GxnuA8QwwkQEZ7wHV6ws9fUrxy88/4+XLlxjKZtHf3w9d12veL2EsVfm8DuwCO/pOYp8cVIFhGMhLEhOsVTxktXLKLnfWymQy+LNvv8X1Gzfw+9//HpcuXWrYqKkZtbTveQ13XlEmhd7eXhSLRVg7WNooqjoMwwjUyju921FVFSiVWGc23qlNNE9SFAVff/31tuZJQs8gKwpUsXCFfu+HSILIa4d/JhY48F2uz0mE+J4D8ih0D4Qgx1uAEy5+C983QShE+D2sCA9+X/E7AGVpiij9D0QYPxAoYit0H44UCOc527YhyTJKvIXwtveGjil0FWHCKxZ7L7zo8/MRQoKFPUyiwpEZQQTE5wqeZUoDbUnUqMby8jJM02yqCVunYFkWAECRJEiqCpsT1D1DIuuQCfKPzwInhkAfLQGWCwylGCE40AMMJplvAkcUQiRapy8tLeHs2bPw+Xev1IsahFMKQBDt7EaDrZ3EPjmoAlVVQWQZlKvXwz7cAKoOZEEOVEWBbhj4+quvcPunn/D9998jn8/j1MmTNSceQpghUKNpyavCXssg0goNjgOwnWhPTw/WVld3rLTRNE2oqhpMYrsheiDLMjRFCZwX19bWcOvWLfT29uLKlStbWpLQQiImjjKRYAgSIUCNVrFhhHfHgkRQz4MrwuWhklXPdUEJCQRzbaHK5BwmCQCQy7Gac9EoK7zwB68L7d7DkykhBJbjwDZNyKoaWGXXBaVBuFks+GJnrwDBYk9CBKBZYrlNFBwiVeI+1zrm7OxsUw3YOgXf82BycqAbBmvRjPaEzm2hlVRpve+NEOCTUZALY7UFusFLa5uGAUCxUMCfrl9HyTRx9epVqKqK5eVlKJpW1ymzchwQ4L0WIgrsk4Ma0BMJ2Ja1raQRqB49ECVsYoGVFQWXLl1COp3G/fv3kc/nceHCheoLBCGQaoTWBBouAC0sqpl0Gvl8HqZpYm19vSxU3g1YFQZIBOho74moUDUNtuvi2fPneP70KSYOHMBnn322VZEg7nXMRKYWiSjTmFDmtOfySENS2D0LsZ24rtAOPhzJKCtDFO8RC3HoM4mJWLxPRFJ8z9vKz4cnUkGWxALLvSNEFMP1PMiqCk1Voel6WTSjLHoRimpI2EqzlN2PdslQDQRkoUoKhHLiRwiB73l4++YNjhw5suOaD8uyAh2Lqiis3TAXsu4IWnkmIrynrMSx6iHqRw1WVlZw8+ZNyIqCb65dg6woyOfzkFUVCh9f4Y2gQK1j7jQp7Ab2yUEN6LoOU5JgO07QqhOovnBRgJXCAWWDixCCM2fOIJ3J4PaPP6JQKODq1atVdQx1Bz46tBMgodLGXA6ZTKarpY2WZZWdj5DO9p6ICkWW8fTJE8zMzuL41FRgj71T11WWduLhc9GgSte0+BeocLifEwjH80AIQTKVQk9PT1PpBwBAsQhZkmAYRlvK/k4Rg1oIf+dClLiwuAjbcXDw4MGuXkslfM+DxbsIinsqrrHb9wlAywLraIeuf2ypIvQfxszsLH66fRt9fX24cuVKQAx83y/rWVFJDsIdbiuvpTfcpfE9xR5JSnUfhmEAsgyflznVg+u6Qd6zWmRg8uBBfPXVV9jY3MRvf/vbIERbhjqTrNip1UV4d9kERO5M5rn1bsKM2FehWxC58Zvff483b97g5MmTODo1Ff39Hbquru9NebieiPK9UDQjbAYlwvmREDJAahWVWo7Y0OQ1Tb98if7+fvT09rLFeIdIo2makICgOROwFbHZiSvqOHnm47LaeWr97OGjR/jx1i0cOHAAX331FTRdZ5oXICDZKicEbsU8K/Hme5XI9PR0rBPjgQMH8O/+3b8r+9n169eRTCbx+vXrjpyzFvbJQQ1IkoRkOg2KLeGcQGVuyw1FDUTuqhJDQ0P49ptvIEkSfve732FxcXHba6pNUQ11BhxlZ2xysuvv64MsSUFpY7dgmuY2d8SqNewdRFgvUCqV8N1332FpcRFXPv8cE+PjsC0reh+MTk2OjXKyewBBtUIbIjmRoogbzRyzUCxicX4+qIkX4WwJ3Z1MPdeF7TjwgbJnSDw/XU8rtPPdNDOG6faus7V0Ard+/BGPHz3CmTNnWBMlSYJj2/BcFwRsvqbAlr+JEKWGzlUNfR2MGnz++ee4detW6BIo/uIv/gL/7J/9Mxw6dKhj562GfXJQB+lMBpDloItaGOHh6FamFGoM9nQ6jWvXrqG/vx9//OMf8fLVq/IXVEQPWgoNtrBYiNJGRZKwurratZCkaZpVQ8yNhEXtQpgMiTyy5/vY2NjA7777DpZl4etr1zA+MQGZkz3Hjmbh2rFKi4pJas95HCDUkXEXXnMzO95XL19CUdVtVQoi9UfAJtVOf0rTNEHABNBKKFq5I2mFdqMnTb63Ul9Q+Vkt08Qf/vAHvHv7FpcvX8YJLganvh9s9HTDYBoSSlmfCz7neNX0NBXn7uug3uDKlStl5OA//If/gNnZWfyLf/EvOnbOWtgnB3UgyzI0bhAkyoUExAIW1huoEUJNGndTPHz4MH768Ufcu3u3jOULgVazIVTx2lYXqN7eXiiKAtd1sbm52dIxmoHnebBtu6rGgaBzi4hQoYcrCxYXF/H73/8emqrim2++QR9XIuu6DhACMyI56FbkYOfdIJpDuB9Dp/sLtIKoZNTzfbx89QqHJifrVp4Ez2L4T4xjQ3R9pdjuLirub1fHSJufrekqkxAZqdS8bG5u4nfffYd8oYCvv/oK4xMTwe8s3spaliTomsYqfUKpM6AxOdB1fVspc5y4cuUKHj16hHw+j0KhgH/5L/8l/vW//texNKdrFvuCxAZIZDJwcjnYtg3DMMrKsAhCegOEGh41qJeWJAmffPIJMpkM7t69i3yhgEuXLrHIAxcm+jF2nYuCcGnj+sYGMul0R0sbbb7g1hVANlF3XvMQKF+cAJQdUzRPyvLmSeF6Z11VUQRYOSHv0tnoXJ1CNcHq7tuDV0d4Z9dOWqGTOe0o9/Ld27ewLAuH69js1j4BCXZi7e7pg91vlbJQkXrpVuQgav+Eemjp3aEIiVjIFxYW8P333yPBO6QmQs6vvufB5hs8wzAAQgI/EXEPHd6lsd5n6rQQ8bPPPoMkSfjpp5/w61//GsPDw/gn/+SfdPSctbBPDhogkUigoGnwbBu2ZZVVLgBsQAHbqxQagRCCqakppFIp/PDDD/j9d9/hs4sXg11rLeFNLUS1Tq4HUdroWRaWlpc72nfBsqyqOx8BQgjQ5D0QCPclqPVuSikePXqEx48f48jhw/jkk0+27WqJJEHXdVimCdOykN7BFtc7JTKLA3FFDer5DnQD0y9fYmhoCJkWd3GVEYVWqpBcx4HPNyTViLUwehIGUp2+X3EQtlauUJg8EUmC5/t4+uQJHj58iJGREbbRqjA1ElbtiqJAUVXmJ8K7sUqKEkR2GnVV7e8wOUgmkzh//jz++q//Gn/1V3+F//pf/+uOmVntvhjfLkQilQLAFrSwOI0QEgymVtWrY2NjuHbtGjzfx29/8xvcu3sXLhfMNIU4dlWEYHBwEIokoWSaWN/YaP+YNWByl7xYSycpa+4TWOrWeJnv+7h9+zYeP36Mc2fP4pMLF2ouXKK7neM40YWJHUYcRLCbiEtv0NHP2+DYG5ubWF5extEjR2I5nRhJUpNCPtM04YONy2qLRtgdc6dLgqOilesUUdqVlRX85je/wcOHD3HixAlcvXJlGzEQtuYEQIJvRoL0AZizpHAZFWZjtdANf4MrV67gL//yL/EP/+E/xDfffNPx89XCfuQgAox0GsXNTRaaqvDcd3mr33ZKW/r6+vBnf/ZnePb8Oe7fv4+Z2VlcuHABIyMjTacX2p0+NU1Db18f1tfXg74LnfA+CFsn10LYgKYewt32Gt0rx7Zx4+ZNrK2t4fLlyw3tb0WbZ9d1YVeYNlW5kLrHags7WDLXLsKmQnsVL6enoRsGxuu09G0Fwb3h//frpNIc2w4WtXotmUXFQkctlGMcj02TPkJgWxYePHyIFy9eBPNnTzULeEqDuUbTdVaeCDATMUKC/wOMcHhgc3o1L5p0JtOVjpcff/wxVFXFv/k3/6bj56qHfXIQAURRoGsaSqUSq83XtPIBzetv24Esy6yf+Ogo7ty5g7//4x9x6NAhnD9/PlLzJ7FAxrG76unpCbo2Li0vY3xsLPZJxrKsMuvkWmi0AxLiwiglkMI+1bZtfPnllxiM2DjFMAzkCwWYtg2d94Gohlrd5WKHiBx0/kyxwI8hrdDpXXC9cea4Ll7PzGDq2LGOCSrDkQSgii6B0sAm2dD1us+NxJtLdeyO8Xu1E+OPUop3797h559/hus4+Oijj3D02LGar7c4oZIIKSNUPk8Hh++jBLAGaTtQwhjGf/yP/xH/9J/+U0w14bHSCeyTgwiQJAlGOs3yVr4PJ9TKOU74vo90Oo0vv/wSs7OzuHv3Lubn5nDu/HkcmpzsqkBxcHAQ1twcHNfF2tpa5IU0KkzTjByRIJK0Zecr9ARhBXyE+7K6uoobN25AVVVcu3atKfWvqqpByNFxXWi1okTdXsD2yE48SCvswkqFAHW+u9nZWXiui8MxpRTqXgb/W+gSBEmwbTswQ9PqNAkCuuB1EDMxiPrUlIpF/Pzzz3g3P4/RkRF88sknW6LDKtVd1PeDKjPdMMqIned5TEQeFpjLMlBHc9DJlILv+1haWsK///f/Hs+ePcN/+S//pWPniop9chARkqIwS2XThGVZZeRA5PjC/2+2w2Blo5rJyUlkR0Zw7949/Pjjj5iZmcGFCxe6VtIiKwoGBwawsrKCjc1NJJJJJGPsQuZ5XqTST6BcvLWt8iAC3r17hx9v3WL2qTXsq+uen+86TNOEbZrQan0HHY4ckBZI0W6AWKRavt4WvvOmUeO7o5RienoaI2Nj28TInYaoggJQtsg1jLYBnbtnHRjjjco8fd/Hy5cvcf/+fciKgsuXLmF8YmJb9LbyukzLAqWUlaRXPPOe74OSkKNtmExVGaeyLHe02dIf/vAH/Nmf/RlOnTqFv/7rv0ZPT0/HzhUV++QgIoiqQjcMmJYV1BmX6Qwoa14TDKsmJ8JqYjdD13Hp4kVMTk7ipzt38He//jXOnDqFEydObAtvdmIiSKZSKJkm/Hwey8vLmBgbi628MSp5ChsWeU2q1SmlePH8Oe7eu4cDBw7g4sWLLe9edV2HaVlBuVPVzoKdXsD2qOagXXfEbqRralWDrK6tYWNjA+fOnu3o+euhZJqg3BmwntYgQKdcRjuVTqhzrRsbG/jpp5+wsrKCI0eP4tzZs1Xz/qIyQ8yDwkcFQFVS53keCL+nlFLIDe5Zp1MK33zzzc70w6iDXRzn212QVRVSiIEKf+7wcCqbYJosQ6wXAhzJZvG/+PM/x/GjR/HgwQP85je/werqatXXxr2b7O/vh6aq8D0PyzXO2RJ8v2H+1q/YJTdqeRwG9X388ssvuHvvHk6ePIlLly61FdaWuQc7ISRodrPtnC0fvTnsNYpA26xW6EZ8pNY9nX7xAqlkEtmRkS5cxXZ4ngebk4NEIhH0vKi3GRD3K85xQoHY0wn14HkeHjx4gN/+9rewbRvXrl3DhQsXagoCK+c9MT9rqlp13vB9Hz54rxBJ2upmWgMfQhfGSuxHDpoAUVUYug7bsuA6zraa2Eadw2ohSj2yIss4f/48Dhw8iNs//YTvfvtbHJ2awrmzZ1ndbvgaYoQkSRgYGMDi4iIKxSJyvHtju/ApLVMKh9FK6iAM13Xxww8/YGFhARcuXGCtdWOArutweNVCooowseMTp/hu95B98m53RxSoFjmwbBtv377F6TNnduKSQAEUSyWAEGaTzLUGFCw/TsDMfWo+8zFGW1qd21rB4uIi7ty5g2KxiJOnTuHkyZORo4wETJ8h+ifUqi4SkYOAGIRQeSZZkjA4PNzKR9nT2CcHTUAyDEiWBUVV4TpO2Q5y2wCLOHELN8RIryesxfK333yD6elpPHj4EO/evcOFjz/G4NBQE5+kOeiGgUxPDzY2NrC8sgLDMIJmJa2iKiHiPgW1QpcEjKzUC7+Zponr168jn8/jiy++wEiMOz5RXSE6dYaFYd3czYdFa7sdcbgjdqNev9q9fP36NSjQ9YY3ArZlBYZH1ULjFKxzYMebLHWJGFi2jfv37uHVq1cYHBzElatX0ZPJRPYXEWmFcP+EaoQ0bIAUpQQ9OzbW9ny3F7FPDpqALMvwNQ2GriPvONv6LQDY8mmPOKCbFS4SQiBJEo5NTWFsfBy//PILrt+8ibHRURw9cqRjg7ivtxeWaaJkWVhcXsbYyEhbYXrf94Mwc7gzolBp1wIBC09XmzA2Nzdx/fp1UEpx7do19Fare24DQphYEqLUHZgwdu/euzrajhp0Q4wIrmsoOy3Fy+lpTExMdKQyqRF83iRIEINa948CgGjTTGksluPbT9J5Lc3MzAzu3rsH3/Pw6aefYvLQoWCxb2Z+NE2zrH9CNXieB9HkrlGqUiIEEwcPNvVx3hfsk4MmIRsGFNuGrChB29TKRSKq1S2llPW5b/FhTiaTuHrlCt6+fYuf79zBwvw8Dh89itOnT8c/oXH3xLm5OdiWhY2NjbasRMMComABiXwp23cyi4uL+P7775FKJnH1iy86piwXFSuu68LzvPJ+Gl3CXowcVBVwRkGXdq2V93JxcRGFQgGfXbzY8XNXQ8k0Ab54aRFKfikQzCOxjosO3n8KYGlxEQ8fPcLC4iImxsfx0ccfB6kAgu2krR4cx4Ft25AICfonVIPr+wCvYqi8nkoMDA/XNz57j7FPDpqEpCiAosDQdRRcF7Zt19ytR2K9LRCDsuYqhGDiwAH09fXhwYMHeDk9jVevXuHo0aM4fvx4rANbUVX0DwxgdXUVa+vrSCQSLR/f5+y91V1hOL3w6tUr/Pzzz1WbJ8UNSZKgqips24Zl21vlnd3M/+8hzYHfbhljl1A5Cqenp9HT04OBHRCiOa4L13GYCDHUPCgSuOpeisE+uVMWzBTA/NwcHj95gtWVFfT29uKLq1cxEurlEnWDJeB7HkqlEgDmhFhvDnAsC0SSaldeCZJFCA58oFEDYJ8ctAQ1kQB1HBbqoxSO42xj1xIhqN/Co/1carjVrKbrOH78OI4cPYr5+XlMv3iBFy9e4PDhwzh54kTzk0wNpNNpmKUS8qUSlpaXMTE+3nR6gVIK1/fbspwWYdRHDx/i8ZMnOHLkCD75+OOuiN50XYdt27Btm4V80Z28OIAyQrC7l1uGwACpiUqTMLoVjwnfy2KphPn5eXz08cddOvsWKKXBIqcbRmulw6HFrZ2dv0jzxQWfUrx7+xaPHz/G+sYGhgYH8cWvfoVsNgsvpJugTZJfSimKpVLgadCo3NOybcD3a75OnLWnrw/pDrZn3u3YJwctQFJVEFmGruvIYav9cCUIIXXTBu1OfGFmL/L3iqLg7NmzOHHiBKZfvMCz58/xYnoahw8dwokTJ2KpNBgYHIQ9NwfLcbCyuorhiGJISinTCvDSzXa89l3Pw+3btzEzM4Nz587h+PHjXdudqqq6lVay7Wi153Fil+/Cw2i3jNH3/a6ToFevXoHIMg7uwK7RtCxQXuZrtNjTJLzrjtqfZPtBSENzoqjwfB+zMzN4+uQJNvN5ZLNZfP311xji80bltUmhTU8UmKYZWCSnksm6pZ7U91lUhpDtmqEK99FGfVfed+yTgxYhJxLQXJe1DPW8qi19CQDRPrXqwhXDwycmAsJFSUKop6oqTp46hampKbx69QpPnz7F61evcODgQZw4cSJoDd0KJElC/8AAlpeWkMvnkTCMhs6NYWIAfp2t7vIty8LNmzexuraGK1euxN4MJwp0TUPR82BZVvfJAcduD9UDgNemAVK3P6FPKV6+fInJgwfbimy1AtHci1KKZJ2cedPgaYbIJjsx6Qxcz8PrV6/w9NkzFAoFjI2N4bOLF7d7BlREw5o5s8MjeABgcGIA1BYti+6qkiRt02WFX51KJtEfs2X8XsM+OWgRiq7DLRSQTCaRy+VQKBSQSCTKhVd1bG7jCkMTwfBFCNHzgp0HwGyQj01N4ciRI5iZmcGTp0/x29/8BqNjYzh16lTLOdVEIoF0JoPNzU2srK5C1/W62ovKiYk26XYokM/ncf3GDdiWha+++gqDg4OgddozdwqiEZfneXBdt+WweUvYQ5oDyr1AdntHRnF1c3NzME0zttbMUUGxJUJUVTUW3Qyt+HejMmCAzSftphMc18XL6Wk8e/YMpmVhYmICV69erW0JHJoLm3mOPdfdSsHoepkde63jmPwebyMGlAa+NbIsf7AVCmHsk4M2oCQSSJgmCoUCHMdBqVRCOpUKfk9C7LVSnBjrYlaRY6zmEyDJMg4fOYJDhw7hzZs3ePzkCX73u98hm83i1KlTLDXQ5ATe39cX9JpYXlnBWEhQBCBYtKsRIb+FtMLyygpu3rgBVdPwzTffbEUrQo2ZugUiSdB0HZZlwbQsJGPSdLxP8EOkravkqQVQ/tw8e/YMg4OD1dv/dhC2ZQUi3US7IuKwjXsIIsJIQxG8ba9pgxjYto0XL17g+fPncFwXhyYncfzEicZRRWyfHxuB+j7TGQBQFWWbMLranCMJd1NKt0X7vBCJTSYSGMpmI1/L+4p9ctAGJL5bThgGisVi0JApnMsKhnuVOupYrwVbEQrf92tOxkSScHByEgcPHsS7d+/w+PFj/OEPf8DA4CBOnTzJFvioDykvb1yYn4dpmlhfXw/SFUEaoQaaTSu8efMGt378EQP9/bhy5UpZR0eCzimr68HQdVimCcdxmCNblxwAw2VruxnhhkutRImimt/EheWVFaysrODq1atdPa/wNADYmGp3HIl0Zs3ft6pDqAHTNPGca5s838fRI0dwfGoqugia0qZ1BqVSic1zklS1bLlyPiCEwHVdOI4DCmyLHLgiaqAoGDtwYHd3EO0S9slBG5AkCWoqBSWXg6pp8DwPxWIRSk/P1q6Y5++25dLinvh4TbTIqUV5/fjEBMbHx7GwuIgnjx/jxvXr6O3txclTp3BgYiLSAqRpGvr6+rC2vh6UN6qa1nAnH1WQSCnF02fP8OD+fRw4eBCffvoplCrER+gtupmHF93ebMdBybZZnrgbELu7XU4Q2m241O1GU08eP0Zvby9GKyJgnUaJWyRLPBoVCxrdO07Y2om4FYpFPHv6FC9fvoQkyzh69CimpqYit2IPLhXNRVIt04TjugCAZB2DqIAg8HlBaBNkRdmmJ/Fcl0UUdB0jY2NNXf/7in1y0CZkXm6kaxoc1wX1fZRKJaQq+oyLaVyw2WbDaFEg8aYsTU2qhGBkZAQjIyNYWV7G4ydP8MP33+NhJoMTJ05gcnKy4eSe6elByTRRKBaxsLiI0ZGRhs5jPhoL6nzePOnly5c4ceIEzp49W/M9wu2s253NDMOAbdtwbBu+pu3vOELw26xU6CbWVlexsLiIy5cudfW8juPAdV0mQgylJNuCiAxEemnzUYRcPo+nT57g9cwMFEXByVOncOzo0ZpNkRqiiXO7rguTO9MmGpR6hsXaFIBp2wAh0Cv0HD7lHV8lCRMHDnRdiLpbsX8X2oQkSdBTqTIzJJtb66qqWhbeali90CaIJJXpHJrF4NAQfjU0hPW1NTx+8gS3f/wR9+/dw8SBAzh06BAG+vtr7lYH+vthWRZsx8HS8jJGstn6n7GBINFxHPxw6xYWFxZw4dNPceTw4YbXL6yXu7nfVBQFqqrCt22mPeiQM2M17PYlNzBA2uV6A4BFDdLpNMYnJrp2Tkpp0D1QN4zYdBlBVCnCPBC8osHrbdvGm7dvMfP6NVZ4f5WzZ8/iyJEjbS+mNKLlM/V9lIpFAKzbYqMoS+VGzOZ21JUkRjRpkmUZB3eoj8ZuxD45iAFGTw82eTtjVdPgOg6KpRJ6eIvfbcO+Q+HScK+CdnLwfTyvn8vlMPP6NWZmZjA9PY10Oo3JyUlMTk4iFd7lUApJUTA0NISFhQWYXKBYz/9A5AuroVgq4caNGyi00DyJ8MZI3UwviOiBZZowDKNrO+XdXsoYWCe3cJ3d1I9sbm7i3fw8Pvroo67eU5OXLUpteBq0Aypy/cLCvIIgeJ6H+YUFzMzMYH5uDj6lyGazuHjpEjM/a4PMlEVOI6YXi8ViUIZoRCDhFFvPiOe6cD2P6Q0q7rXrefABjI6M7Egfjd2KfXIQAxRVhWIYcE0TsizD8zz4ngfTNLeJZYLHoAMNUoTXQVgI1s4km8lkcPbcOZw9exZLy8usFPLJEzx8+BCDg4M4NDmJiYkJKJoW5OsGBwexvLKCQqEAVVXRV0P1XasT5frGBq5fvw4C4Otr12q+vxYImI9/N8VsgSkSF5Z1K3qwu6nBluagFYFd5E6lMeDxkydIJhKY7GL5muu6sPhONplOx68f4enMeghbLIfnipWVFczMzuLN7Cws20Z/Xx/OnjuHAwcOxGLHTn2fRZOaeEYty4LreSBgHgRRxobEU6yUvx+EQJNlKBXl5qJ98+Eul6/uduyTg5igpVJwTROu4yCRSKBYKMC0LKiaBkWWy2qHCSFB6VScE6DESxnFuQRzbnsXRgiGh4cxPDyMTz75BHNzc5iZmcFPP/+M23fuYGx0FJMHD2J0bAypVAqu62J9YwNrGxtQFKWsvFOg2uQ/Pz+PH374Aal0Gl988UXrJV0xmbg0g8RORA/2SOSgFR1Gt4hBoVDA2zdvcO78+a5Wm5RME4S79MWd445y7yrFiPl8HrOzs5iZmUE+n4eu6zh0+DAOTU4iU8ufoAVQUaUUCvk3ghPqgJtIJCJFLAg7eECQhE5BrYgaUErhex56+vpi7+K617FPDmJCIpVCcW0NruchqShQVJWlF4pFZKrV+daoRW4HYnILIgf85zTGxVKWZRw4cAATExMolUp48+YNZmdmcOPmTWiahgMHDmBychLpVAr5XA7Ly8tQZHl7HTLKa99fvnzJmieNjODzy5fb7rsgExK483UDKp/kXceBVSVi1BGIevVdSBIot8gG2qhW6AKePHkCVdNw+PDhrqUybMsKmqZ1suNfrU9DwIibE9IRrK6uQlEUjI+P48Knn2JoaKgj92ObYLqRKDncUEnTIokeg41R6GeWbYMC28SIouph4uDBXT1OdwL75CAmaJoGomnwTRO+57Gujbz+3bQsNglUPmwx73Al7pZYqdeXgG0/axfU92HoOqaOHcPUsWPI5fOYmZnBzMwMXk5PI5FMYmhoCL29vVhcWsLY6GiZgyLlnvmUUtx/8ADPnj7FkSNH8PHHH8fzkMZQqtUsDMNAwfNg2TYTmHV60Sakro/8TiJcNdJsFKBbn6dUKuH169c4c/YsZFmGyxeKTiLwNKC0zO43boSbslWef+7dO6YjmJ8HAGSzWVy6dAljY2PlVUYxe4dUjWLWOX5lQ6WoRKqSGDiOExhMCU2BKH32XBfJVCro87CPLeyTg5hACIGWTMKybTiOA8MwoCcSMEslmKbJ8tJiZ9/BawAhgO9vS1nEaRLke9v7TWbSaZw9cwZnzpzB8vJyEKKcmZlBMpXCwuIizp4+HTgJinz0D7du4e2bNzh//jympqZiDScL8tGtnbWmqijxXhu2IIQdxk6YP0VBkMvmFTRNvLFreoNnz55BVhQcjVAJEwcomDeA8CTpmPhNEINQ6H5lZQWzMzN48+YNbMdBf18fzp8/jwMHDtT0JSDgAt84CHaNcVpv5IYbKiUTiYZjQog7g8/Nfx7oDVQ12HiI1KvreRgfGWnam+FDwD45iBG6rsNSVdapT9ehaRoc24bneSgVi0il09vL7UT0IIZFLOxE5/l+mVmQKG+idbpERkE1YlB2DQCGh4YwPDSEjz7+GO/evsXz58/x+tUrvHr1CuNjYzh06BCo7+PF9DTMUgmXL1/uSAc0Apa68LpVvcCtbwvcLVPX9Y6ct6NmWjGhVb1Bq26KzcKyLLx8+RLHjx+HoqpdKX81eVQRhHTebptSFIpFzM7OYpbrCJKJBI4cPYrJgwejd2flC27bBKHWOK3x87KGShF1BlJlJJbPqRYvFw3IGCcGjuNATyQwODRUsy/Mh4x9chAjkskk8vk8PG7TqWkaEokE8vk8UydbVvWSpYoSxHYgyTJc36/60AU7gRYXlEbEoBKKJGHy4EGMjIzg7du3WFxawtraGr6/eRO+76NYKOA47xDZCVMooPvVC5qmocR3PIIkfoho1QCpW1Tn+YsXAICjx4515XwO77joU4p0h9IJnutiZWUFCwsLmJubw8bGBmRFwcT4OD777DMMDA62pnNqszS63rNd7YjbGipFWLirHp1vhmzHAaW0TG9AKYXtODh28iRSqdSuLwveCeyTgxghSRLS6TQ2XRclnkqQZBm6rsO0rCC9UHUgih1Tm4uYiEzUY/qtPOjthK51TcPo6ChkRUF2eBiqquLGjRtQVRVPnjwJDGiGs1lks1kMDw3FHpLvWvidi8yKxSJM3mujYxMPTyMF6ZNOgNfAi/EU9TytRg66QQ4cx8GLFy9w5MiRrQY8HRwbgggDrHdCHB0X+YGxvrGBxcVFLC4uYnl5Gb7nQTMM9Pf1YXJyEoePHIEiyzuTeuI797rjv+K6fG5BTwEofO6MdCpUJwiO47A0lSSx+87P5zgOhrJZpNPpho2hPlTsk4OYkUqlUCgU4Pk+ixQYBjRdh81FMUWeXuiYEZLIqdUjB0BzYqOQ8rxVJBMJ9PX2Yn1jA7brQtN1HOENWpZXVtgEt7CA6elpEAD9/f2MKAwPY2hoqL3qBU66Ojo9hoidzqMHfiiC1NFTo/aiSn0fPv/+/PC/xf3gKS0a+n/gdR/KWefzeVCwkjcx2QdOfJygkNC/S6USq0snhAllJYnZexMS/F0NPheqdhIvpqfheR6OT00FP+sUgaMAitzVT2pCVFf9YBSFQgFLi4tYWFzE0tISbNuGLMsYHhrC2bNnkc1mmTC2WAQhJDZiIL5fP2JasrJksebrQv/2PQ+FQoEZHckykhH8DISRU61rFnoDXdPKTOIkRcHo+Dgymcx+1KAG9slBzCCEIJPJYN3zgi6NkiQhmUwil8vBcRzYllV799Bm9ECQgygTQlSr4bj6FfT29MB1XeRyORBCUCqVoKoqxkZHg3bPJdNku6ClJbyemcGTp08hSRIGBweRHR7GyMgI+vr6WsplS2BajI5MBhXlWYauo8SNsGpGi2I4l+/7cD0PHu/r4XExakAEQiHhssiUuJ4QaQpKX8U5xOvDBCB8GQCIIBf8/2IHZzsOqO/DdRyUQh4fwbk4SagkDqJHRqcmbNd18fzZMxw6dCiSy167EKI6Sikzx2ryc1mmiaXlZSwtLGBhcRFFvugPDAzg6NGjyGaz6O/vL3sebNveWsxp6y2YqyFKdcy2sVb/xcybpYIYREm91CMGABtrgb9BaHPhuC4mue3zfqv12tgnBx1AoDPwfVi2zRqE8BBZyTRRLBbRk8kA9QZ/iwLFcNvmuq8D8z8g9XbUtH7b5VbQ398P1/OgqSpyuRxsxylrcZ0wDByanMShyUlQSpHL57G0uIjFpSU8efIEDx48gKppyA4PIzsygmw2i3TEnCEhpGv6A13TAgGa47pln7EV+NysxfM8lEyTNXtyXaiKwtJI/HU0vBCHxpAsFuDwQgyU7fqDahds7RSB8pRMOp1Gb0/PluWuOBc7YRCBEHlewzCCKJXv+6yShr/W57a1wWcUP6cUiiRBUhTIkgRZliHLciwlrq9evYJt2zh54sS239UKTbcKx3UDP/9UKhVJVOe6LlaWl7G0tISFhQVsbGwAlCLT24uxsTFkRSStzniilLJnG/G7aDbaUIiKgcjRCkEMQtbIUTUZUoPIhOs4sLm/gbBMppSit78fyVQKPT09+1GDOtgnBx0AIQQ9PT1YXV2F5XnQeR8B4cHvOg7yhQLStRTDoV1dswQhsFCOGDmol14Qk3WckAhhmgJdh+U4zAOhRhdHQgh6Mhn0ZDI4duwYfEqxtraGxcVFLC0u4ueffwb1fSSTSWRHRjDC0xCNQrdRIybtgHC//BIvZW2GHISjAZ7vw/e8wDoWYDtD1/NYyBhbC79ECCS+65YjhPBb+lz8mI2uX3zeamIvn6c4KKXlkQ7fZ61zeSme67rwsEV8CN9VKpIEWVEgceIQ9fP5vo+nT5/i4MGDHd8xUkpRKhZBeUi75mLu+2xMLy1hcWEByysroL4PPZHASDaLqePHkR0aairKQSkFfB9ShxT49aoXmiIGnCAWisWg10o6lYpEDIQDYj3ki0VQSqFpGjQeOSA8naCqaldKjfcy9slBh2AYBjRNY5a6rosEF6alUilsbm7Csm3IxSIStSapFisYZFkGCGnK0EUi2zs5Coe7TvBqiRCk0mkUl5fheR4Wl5YwMjLSUNkuEYLBgQEMDgzg9KlTcF0Xy8vLTK+wtISXL1+CEILenh6MjIxgOJvFQH9/mahJ7I7jNkeqNk2JSJHnutsiJGH4lMJ1Xbi8fW+YCATH5jlcWZahqypUbktt8PrvsEZgpxF0Y6xBTCROZgBA3JFA84At8uDxSInnefB4rtv3fTi+D9t1g88rKwoURYHCIwy1npfXr1/DNE2cPHmy6u/jGusUzJaZAtvNe3wfuVwOS8vLWFxYwNLyMhzHgaIoGB4cxEcffYTh4WGk0+mWSB0V0b4OVf/wk1SdM8T5o8Lz/daJQZRj5/MAIUjxOZYCGB8bC1K/+1GD+tgnBx1EJpPBysoKLEqD6IHoNbC5ucnyhzyiUBWkeYtlsWMUk2u1HXk1lD3sHSQGAhoXCMmEwLJtrDTo4lgNiqJgdHQUo1yvYJomlpaWsLi0hNnZWTx5+hSEECS4GLKnt5f93dODDA+NdxIiemCaZln0ICAD/I8XInLiimRZDkLqkixDkeWyidNx3Y7m5tuBJ7oxNpMGCOWoBXkIi1BFdEGQBRFlEOkW2/NQ4ouWIAqKogTjn1KKZ0+fYpyL0DoJS5SyOg5818X8/Dw2NzawvraGzVwuMHkaGBjA8akpDHPdQLvfZbCRqLBP7xTCEYRmq4EoX7wFMUhFTCWIqF/dz0YICoUCM5sKza99g4NIpFLQNG0/ahAB++Sgg9B1nRkjWRYsACIwqOk6EskkiqUSCvk8ZEK2NQQJ0KRAUSiUbR6ajkoOAE4QuJCt09A0DY7rYmhoCEvLyygUClBUFf1tND8xDAMHDx7EwYMHQSkzgVlfX8fGxgY2NjYw8/o1nvD6aUmW0ZPJoJeThl7+J+7KAp2TA8eykAOCcHml+E8sZoqqbiMCkRASH+40aChyEBWNUj1CqFg5nj3PC0gWXBc+eHte14VvmpA5WViYn0e+UMCly5eb/0ANIKo5NjY2sLa2hrXVVeTy+cAmWZIkNsb6+jB56BB6e3rQ198fe8MlSZJAeZqGonMVGAJlmpMmiUG+UIATIgbNtH9uRAx8z0O+WASECBSAZhgYGBwEAPTE2EjqfcY+OegwMpkMLMuC6brMb59PnEYiAZcb5eTyeWQkKTaXLkVRYPMQtd7kYkd5yL3TS4yqqnBsG8lkMihxXN/YCMLl7YIQgnQqhXQqhQMTE8HPbcfBxvo6Njc3WefItTXMvH4dNGlKJBLo7e1FH+/S1tPTg0w63ZJpjeu6cGwblm0znwvbDiYrscMVDZvaNcXZDaRAwONmWc1EDlqlo4Iw6LrONAxcnyEiMkIc+fTZMwwMDkJRVVi2zTxIWrhnjuMwsrm+jo3NzWAsedx4TDcMpFIpTIyPY2BwEL29vS2nCJoBwRYpC1pld+Gc4nxRzyWIgcfnmMjEoNE5+CaKUsqEwK4LQkhQITI2MQFCSJDu3Udj7JODDkO4JJZKJZR8Hyk+iIVfOPV9OK6LfC6HTCZTXbgkHoqINcaKooAQUhaujoxw6Vvz744MTdMC4V1vby8rccznsbS8zEo/O1Rmpqlq0H4aYIuS7/vI5/NY39jAJp/0X79+jWKpFDgsZnp70R9KTfT29lbtEOdzwmfZNnzPA+UkgPB6a0VRkIxoB9sQFWNht/RZ8EPpgSigiMfEiYiUgqIAIbIwPT2NQqmEM2fOBI2PSsUiFE2DxvUblQsPpRT5QoEt/py4bmxsoMQ9C4gkobenBz19fTh48CB6e3sDkSQhpCuEIPy5w/4QQUlpp7sM8rSnXEN/UAnq+8iLqgRCkIxYwcFOVZ8YhMdPnqcUjEQCkiQhOzICmUdpOp1Sep+wTw66gEwmA5OXnxnJJGTOaokkIZVKIZfPw/M85PN5ZHp62I6r2sMQrjuvA0VRQEJK8MisHluTdBxujfUg2Ltj21ASCfT398PzPBRLJSwuLiKbzXaMIIRBwBaxTCbDJo5QjwfLsoIIwyaPMrx+/TowEEolk0F0QeflqqqiQNP1YKJWVRVqMgkjkYBtmoFb2/sMETmISg46VT0ixv2zZ88wyduM244Dx7bhgqUfNotFWLYN13VRyOeRy+WwubmJjY2NrWhAIoG+nh4cPHAAvX196O3pYYt/6PNZ3AGVApFLa+PCNuMoft2dvILAQyHiPEHD4kOwFveRz1X/QsqIgW1ZrHyREKQSCeiJBHoHBuB5HhKJxH4PhSawTw66AEVRkEqlkM/nkSuV0KPrkLgoifLwdy6fh8d3sOl0urpWIGIFAyEEsqIEudeoD8Q29t9BgiCuyXEcJDjDF/qDUqmEhaUlZAcHkYohxdAItRYnXdfLogwAm+RyPL+8urqKtfV1TE9Psxxn6Hi6rsMwDKSSSSQSCRiGweqteWOu3t7eIMLTLOp+Iy36Y8QFypXyQHORg05ch2maePjwIRzHQSqVwsOHD1nUoFRi9tamyUpF+eLq+D7SqRR6e3owPj6Ovr4+9PT1NUzNua7LiAGlwVjuBiojBgLCg6JTBEVUxwTHbzBPCGLgcWKQ4nbFUaIN9T5BNcfGHHfw1LlN9cj4OOvsKEn7WoMmsU8OuoRMJgPHcWBZFnKWhYyqQgI3IpJlpNNp5HM5uK6LYrGIZCoFmZDtE33ECgZZUUCaIAcUqF7eJyaCmEmCiBzYjhP8TJIkDA8NYWVlBYViEYsrKxgGYtEgNELkkDxhPeEzmQyS6TQOcPGjx90AXc+DxRcgsRAtr6ygVCqxxjuhQ6myjAQnDwnDgJFIsH+L/yeTMDStuUhDBMvaTkJEDdilRCQHTV6vyxvziPsr/m2WSiiUSijxrpji2JRSPH78GIlEAslkEoZhoLe3F8lEAgbfTSqKwrwXQik8RdMa6iZ83w/skVVN62o+u5o2SES1OtHdUlgiV/u2ankfVBKDZCoFSZLgRmjiJoF5XNT6FH4FEfa4IykApBIJ9A0MBKLP/v7+psTZ+9gnB10DIQT9/f1YXl5mIUzbRkpRArW6LMssulAowLZtSDxnVjOCIHZoNSYAhTvneREeQnYJtSdo4aIY51QjLIUd3pZVQFglA0ChWMTS8jIopch0uDlKQ0Mo3ivDtKzAAwKSBN0wgp1lo52Q6JpXLBbheh4odzsslUrI5fNYXFpCyTQDF0HhUmgkk0gYRrCYEV7ml0wkWDoj5CIoyhvlkLtgt3ayQKjhUo2JmALbyhHdsJ9B6I8gymLhL3Ii4LrulvsjpczQJpFAMpFAb08PRkdGYBgGZmdnsbGxgW+//TZSBMrhIl6Lu096/DmVVRW6plUl2aVSKbiWbpXHkXo+HaExGCc58CmFXIMYsNNW8TyoQgxkWY5EXqUGuqdqR8hzXwNVVZFIp9Hb3w8A6O3t/WC7o7aDfXLQRUiShIGBAUYQfB+W60JXlGA3qagqEolE0NFPkmXmByDL2x+SRroDbobkcMV2vVdTIOgzXxUiWhHjjlTVNIDSoGd7GIIgEElCPp/H8uoqKKXMcrqDqEYQxG7E4jas8H3WQCeVghbqmRCl/4SsKOgfGICmaaC+j57e3m07U0opq27gi2GwO+Z/b2xsoFAqlYtNCQkiO6LaRHyXhFKQkGdCtT8K91II2xRX/k600J2dncX8wkJg5SwWdhoycrJ5nwfKPQhcTgRc14XHDZ4C6+7QTjcwe8LW5C9SMolEAsPDw8H/BVEyDION9Qqsra/jzp07+OSTTyIRA7HAK6oKRVXh8d4otm0zLUyhwJ5HXQ++d8uyWMkkpcikUi1VP7SCes2pyjRDMaIeMRDnC8L8/DoKpVJQlRAQAzROI9V1eK1B4KnvB8ZThmFgaHgYMm/e1I3U5PuIfXLQZSiKgr6+PqyursL0fYCXVQnoug7q+8FiIBEClU+cUmWaoU4EQZZlSITA48Yx1SbQAFHz1OI1MZAE4Z0fTiuEIUkShkQEIZ/HytoaqO+jtw0fhCgQd8HheWTLtgNHRUVRYCQSUKo0UooqzFL54uM4Dkql0raUCSGsaZOh6+jr66t6jHw+D9O2YfCoQbATDy3Yrvg/t2CudBv0XLfMVMixrOC9fug1wXsdBz6lePb8OXMkrDBokmWZpbIkidkFKwo0TQsIhlxBQAQJEZ4O1X4u8+hXs6AA7t27h0wmg8OHD7dwBAQLi6HrQfWJ0DFYpglZUeBYVlAu142QtYgY1LsnQVohrmiR0DlFeKnQm1CwTpSCCKZCxCB4XQ1INRb/gBTUeG+BWyVLkoT+gQGk0mlomtbx+eJ9xj452AEYhoGenh5sbm7CdF1IrhuU2gDMA8Hzfdi2jUKxiAyfND1KIaFiV1BnUVcUheXCXbcuOfBCu94bN27gr/7qr/Bv/+2/DRanv/of/0e8fPUK/+pf/SskRGe5GAiCxhfJehgaHIRECHK5HFY3NkAB9HXwgfd5KNSyrKB6Q1UUGKlUXdOaZvLmiUSC7bB5GLtpMxzCnN9URakqlourNDCMldVV/PrXv8Y3167VJC0AKyNzHQfJZLJh/j2IGsR6pcDc3ByWl5fxxdWrbe+gJVmGkUgwMzPeUdX3fWysr4OCtSLvhs4g7GNQD3FGDpr9bgghgCShkM8HFuCVxAConn6jIm1RY9w2Gs85HjVIGAbGJiYgy3IsrpMfMt7vmqpdjHQ6zRZaRUG+VGJh/RCSySRURQnc13wRjqVVOiXW2NGLh7Ke30HlI3f1yhWMjY7ib/7mbwAA/+k//Sfcv38f//yf/3N2vaFztrv8aJoGmwvH6mFgYICp+yUpMC6KG5RSlEolrG9swHEcUEKgahp6eNlawwW8iUlIFukiQlDk4fqWrjmGa4mKqCHzptwReZOwOOFTivv372N4eBgj3FY7Dggr7Ew6HZSjik+Y54thJ9FMMyOC9glXK4JG3/dRLBTgcAfQZDIZKaJCfb86MeBzTKNPXiqV4POU1aHDh6EoCgYGBvYFiG1inxzsIPr6+pgwT1WRLxTKHg7RpEmW5cCkJ9g5cHOXsoepSmWDMHep14RpW66cEPxv//E/xnfffYe/+Zu/wd/+7d/i//o//A/o5+Ke8pe2RxCEhXIU9PH6ckWSsLG5idUYCYLtONjc3GRNkrila28mg0yVXU9cEF32hAd/S6i1YHBBY7chqjaAaO6IndjTTU9PI5fP4/y5c/EfnFIUSyUmHk4m0TcwAEmW4VOKQi6HYqkUu/V4s1qfWMoYWzDT8lyXkSTXhUwIkslkVUJdedyaLZ6buAZBzlKZDAaGhoJ5dR/tYZ8c7CBE8xXFMOCDdXIr+z3vVCZJEusyFiIQovSubHGv1B1wMyTR5a4StcLPFy5cwPj4OP7zf/7P+Iu/+AtMhOyHq32GVqFpWsO0Qhh9fX2BiG9zcxPLq6stnxtg6ZRcPo98Pg+HL6ipVAqZTCYgBRKi7dqaLfWUJCnoqBgo3qOiwT0nEctd40aQE46464w79eG4Lh4/eoRDk5PorZP6aBXhSolUKsWqIzIZJlCUZdaKPZdjJjwxfLZWHC+D+aFFzUGgnWniubZtm21ufD8oy64VaQt/GkEMKi6gqbSYbVnse3Ec/P/be5MYSbLzzvNv++JLrJmxZGbkVpmsjbUlRbJIUKIA3QRRB10F6NJ97wF06zlOXwj1QRCgszANTAOtQQ9AQAKEaQnsniJZ3CqTtbCqyKqsyqzKPVZfbDd7c7D3Xpi5m7ubL5GVlfX9gEBkRoTb4ou9v33L/7t46dJxRJaYGxIHXzAiN6bZNpIokvasApV/2BTeeeAN/B5AOYpQiCAoigLNMMAmRA8Gefvtt3Hv7l1k3Np4IjNGEIyaaYUiy0tL+fPFc5u7e3tT75fxO8Cjo6N8ch5jsEwTS+32cA6f5/cnMoNIsi0r7xvnHQqL5IvItYqogbAQHofoTFgkH3zwAZIswwsvvLDQ7QJAEIYI41g6Y4rFT1FVuK6LZqMhO4T8IMhrL2axL+fUrTEYZK65CuJzXDeFxAs0fT7kSEyc1cbV5hTOSS3WLvHr1rRiqMujFUsrK9je3iajowVC4uAJwDRNLK+tQTFNBGE4tGBqmiYtWaMKAVGKIhQ/bDj2O6ibE/3000/xd3/3d/h3//7f44UXX8T//Y//WOtxs1yMTMOY6QLabrexuroKVVXR7/fx8NGj2uHcJEnyQtAgQMr9JdqtFlx+Fz+KE1lqFQUO7433pwhJy2P5As2OqmAFcTCRBYuXvufho48+wtUrVxbuNxBHkTTXcWy7cqaGrutoNptwbVt+Hr1eb+qokOjtnznywKM30z67s9YXhPx5sWxbGhyNP7yK4+PP1yxmWIdHR0gZw5WrV8cWyhLTQ+LgCcF1XTRXVqAC8Pr9IYEgPBCA/C6mP1CjIEizLL9Ii77tMWZIg4/f3d3F3/zN3+AHP/gBXn/9dfzFX/wFfvmrX+HTTz+tdxJTXmBMw5BOdtPSarWwtroKTVXhBwEe7e5OXFzDMESn20XMn4um66I1yqp6gJMK1QsfCyiKXIDqMrbvfL7DmolppjEu2nHz3XffhWVZuHrlykyPH3U0SZKgz4tGLdMcb6ajKDAtC0utFizDADQNcZKg3+/X8sFgjI1u5avJtOOaRaRgmj2mSXIcGVEUONx1srjPSi+CwaiGktvHz3K+LMvw6NEjIMuwsrKCZ65ceaxmX18F6Nl8glhaWYHZaACKgj53hitiWRZc1wWQ5/n6xSJFjigSTLlCN0TkgJshFSl+KPv9Pn74wx/i2muv4c/+7M8AAJcvX8ZLL72Ef/xv/63+SUwhENxGA2EYTlV3UKTZbGJ1bQ0az9s/GhFBYIyh3+/ng19Y7qjXarWmbkFbRBX48EbzPnkFuXipFeGp6TfxuFMLMqRd4yK9SGmwt7+PO3fu4Pnnnhsb0h5H1TOVpmk+4Q95ca9TMyKhqCoc10WTf1YzxianGRYgDAB+c4B60ZtpRIQgjuO8viBNZU1U1edolEAU+5NpkxnON0tTHB4e5tc/VcWr165N3w5MTISe0ScIRVGwtrWFvc8+QxiG8LmRiOu68kNlWRZULh5iPua4WTH6VAFk5b2qacjEnAX+IWJAyUmv0Wjghz/84dAx/fVf//WsJzPxgy/yg91uF6urqzPtpsmd6XZ3d+EHAR4+eoTTp07J1jsxzEqY/7jcVW8mlIIT4eCvZtsiAEhXviSOEQTBxFkSdff1uEc4Z1NEDhaVEmEA3n7nHbTbbeycPz/Xdkr/5wXACiC7E6aNjOmGgXazmdtl8+3Ztj0UfVhExADIRUjGI4cTw/uYXhgIAyggT6M4rjt6PwOffzHFUaYQxN9MSZqm6Pd6ODg8hKJpOH/hAs4WJqkSi4MiB08Ymq5jaX0dDr+bjEWEoPBBM/jgH5W744mRz4OIxUFVVTBFQToYPTipO8tieHHMn7WaTSgAOt3uXLtzXRfrp05BV1WEQYAHDx4gYwxRHOPo6CifY8D3N3c+uqJlFMDxwJ4ZESmjOI5njqQMIi/CjwnZxjgpTbPA992dO3dwsL+Pr3/96/NFSooLM480ZXzRnkUYCERBsWkYUPj70+MRrHxXixEGQGGuhaqOFQfTehhkXNgIYWBa1sT6guLWpUhlbKYiS0GcJPD6fXR6vdyAqtHAa9/4xszbI8ZD4uAJxHBdOK4Lt9kEeJeCMEISaJqW58v5NLRutzs0xEigGwbAWDm//zjuKPlFaNSedF1Ho9lEt9OZe1eu4+D06dPQVBVRHOP27ds4OjrKL/CqilartbDeZwUVpkBzPp8a9+1XeLX7pP0D9TzqH1diISvUuUzsVJhjgSiSZhnefecdbGxs4PTp0wvZJhhDn9/pq8gjanNbEfO+f9e2AT6RUHgCLDK6k6UpwItsRx+KMpUXQ5qm6HPXSwD5ELAJxbvAsAtiJszbZhRZURjC7/fzNGQYwrQsXL16leYmnCAkDp5AVE2DwW1Zhc9BEscyPF78u1arJZ0U+4VRtUVMPno2SVPEUYSMsRN3dCsy7kKytLSEzgLEAZDbUp8+fRpJHKPf7+PR3h5URZEiatEU7/gWkd93bBtQ8nkY4YKiB4+r7qBYjDhun4tMc9y8eROe7+PrX//6wrbp+7405nIr0nXzYHKHRSEsvTnbHQcZV28g0gjTpBNifs3JRH1Bs1lp1z0KsZ95X/MgCOAHQT6zwfdh2jbarRaefe65ubZLjIfEwROKzvN5umGgySvq0yxDr9stXVAUVZVDRhhj8DyvstVRDAsSUxAVHnF4bGFn0cc88ONWq7UwcQDki5RIuQi75XksiidRuhDPeRFUVDWv+saE1kZx0Z1rb4tl0qhmwaIGAgVBgA/efx8XL15EawHTOhnyLqAojgHGSl4Gi0Tjgl7X9XwOQb9fe6z6JDLud1JlLKRguvdLEATw+v08EsHbNOsUexZrmVghdVKnW2NoW4zB9zxEYQgFefRA13Woqornnn8+j4gSJwaJgycUVVVhLy/nRkaFC0rG8lkLxVZHYbUsqqmrWh1FEZR0b+MWq4xxK+bHdF4Kb18StNtt6Tw3Lx7v8NA1DefOnZPmUY92d3FweDj39qsopRgWcJduW1Z+cWdMjkmu2ieAWmLkcaUWivnucSwicsAAXL9xI18kFnT3GHEvA4a8/uPE7Hd52qXpunIiZZ8XHs+LiByURiOLRbrme3OwvsCwLDTq+BegLAzmFcosy+B5HsI4zotCdV2On9+5cAHnL16ca/vEZEgcPMFohgFL3BXx8LhhGHkltefJD7DAdhw0eGdDFEWleQy6rss7oYiPIQb44qaqYNxi+XGIhOJlSnQszBs98Hw/Dz0yltdruC42NjZyxzZFQefoCA8ePlzYXdogCwvfKwpcnkedp82zvMmTlwcyrTApDL8AcXDnzh3cu3sXL7/yynjfgZokSQLf86AAsCd5GcwKF+NFk7KG60JXVdm6PMvdtaCqU0G2DdZ8/YfqCxxnojkYuHmRaEus+ttp501kaYqe5yFJkvwmyXXR6/UARcHS0hJeefXVqbZHzAaJgyccw3FgilZGRUGz0ZAXL8/34fE55gLTsmR7X5Ik6Ha78sJtWRagKJVWvWL7UiScdMEi398iOhZ830fg+2BZBoeP1813oWBtbS23W9Y0hEGA+/fvz2y8NI5F3qHrug6TRxC8Koe9JzCtUGvg0gJEShhFuHHjBra2t8fO/KiLGBgERclHc5+ELz9jQMVwIUVV0Wg0pEDo1TRLqqIYuZllWNhgfUGj2Rwvkvi5jLVrFh0KMxRApmma11S5rmzp1nUd3/7ud8nT4DFB4uBLgNlsQheFQPzO0nVd2YHgDaQQdMNAs9WCxgc2iToFk9cdpElSOcZZQbmI6HGIBN0w5upYCIIAvu8jFcKgolWx1Wrh1KlT0HUdaZri/oMH6FfMqJiXRbooOrYt5y6M7F54QuyT5Z0jxqcVFvFeevvtt8GyDK++8src28qyDD3+PtA0TRqMLZwxYXYhEDQhEGaMIIh6A03TpvYQCCvqC8YNTmLIRYFowxzJlJ0YcRyj3+shYwymrqPpunlnR78PqCpeee21hdSXEPUgcfAlQFEUWEtLUDVNftgsy8pz6shHDhcjBAAq6xTiOIZpmqXCxFH7EzDegiQn7p0AS0tL6Ha7Uy8eYRTlPeNjhIHAtm1sbGzA4u2CJ1GHUBRXc29LVfP+euQ1JPPWZJxkakG875QxnQoM84uD+/fv47PPPsPXX3pp7GtdB5FbB2NQhTBY9HNUc3vCaVDjf9/3vKmjQrJTYYqogTAUEk6shmmOrC8Qr59MH4wwAys9hrHcqXUCYoCTx8/bMAxp/HZwcAAoCs5fuIDzFy7UPjdifkgcfElQVRU2FwgCwzTRbLWgKkpuhtTtwi+kGUT7kWkYstVRFAzVGStbMi85QZHQbrfR6XTySvaa207TVJrJWLZdy9xI13VsbGzkrY2Kgk6ngwcPHiy8DkEBFvIc6YYBwzRzR8xieuExtSfWJauZUpjnqOMkwfXr13H69Gmcn8MJEYDs6hHH3XDd8XfAszBlUZ6IIIj22GnmbCiqKj1Qatkm8+3LzidFyesLCk6shT8uRYbk7xfUdSIiA2EYgiG/6WnwTq1up4MkTbG8vEx1Bl8AJA6+RGiGAWtgJKmu62i327KVMQjD/EPF7zQVnoawef4wThIpDMYVu8lipoGLQEkkLIhSx8IIB8JBPN9HmqbQNK225z2Qn9fq6ipW+dCmIAwXV4dQKABTVXUhw4Vcx5EXf7FgzDSV8QRTEHWKEed9Lt59913ESYJX51wkRMQg5YZBzUbjOBS/CAYLD6dA1TS4jpOL9xrRIgbIWoaUfyYn1RskvMaiaIPcHKgvEBMSxWcdmC3yNC45ItJlfV7noKoqmq4rCyDDMES314Nl23iFZid8IZA4+JJhWBbMRqO0OIu7DlGImHLHRFGsqCiKrOAX+BWDnaqQl4SBi4OoSViEUBB5xF63e7yfMc6KYRjKtMis4eBms4nTp0/D4HUI9x48yMPMC2SaSMi4bYgLph8EuXnVDOc7rWXuNNRpY5znWXi0u4tPPvkEL7zwwlx1AUVhwBhDo9C7vwixqwBT59kH0Q0DlmFA0TR4vLWycl/iteQL+EiPA06WZfB8Xy7G4MOhGsWppIzJmoKq/UzLKCdMIVBEO7ZpmnmEk9dVZVmGg4MD6IaBrz3/PNbW1qbeNzE/JA6+hFjNJvSKu2XDNNHiUQSAjyjudGRrksU7GUxdR5pl6Bwd1bpjFoV2oyqSGWN5znNGodBqtfKOhYGixKr9JTydwBiDbdszVWYLLMvC5uZm7i2AfBE6ODiYuWK8auldxBhZwzTz9IKqwvM8eaF+nEOVxjFJHDBgZpGUJAl+/etfY21tDZcuXZrxCI+FgTjWVqHobiHCYIE2yLZt52mOimJUhlwwFp0OM54qHDVTQXQixPyzbpgmWsI4DYV6AiCPfFSf4FTnUDmyOcvg+758HVRFQbPZhOu6pZRUt9NByhjOnD+Pi+Rn8IVB4uBLit1uQ60Itam8kK3ZbEIVcxd6vdwUKctgmCaWlpdhmSZSrtCn6rEecZFQcByOlF0ONS+Wuq6j0WhUex2IFku+LZ8fq6Zp8w9RQh4KP72xgXa7DU1V0el28ejRo4XWIagzhpmLuI4D8EFbQtDNssVFywkhDIEaHgcz8Nv334cfBHjttddm3oYYvSwW0WajMfNo5yqkMFhgMaqIiEVhKO2cpTAYeC+Jz9tgzYdoC/T4Z1/RNDSaTTiOk3ubFAoMq2CjhEINsoHPj5gPIyJ+pq5L6/fiPkQ64fTmJi5dukTphC8QEgdfUkSBYuUFifdst1utkjNihw9n0jQNq2trsG0bcRwjDAJ0eTfDJMTeJg7XEeHOmu2Qbd6xMHK/qoogCBDHcT6RbYFtZ4qiYGVlpVSHcG/Bfgjz2gYrqgrXtmWniahOn2obWLxbYnHg0iKiJEX29vfx0Ucf4YXnn0ez2ZxpG2KBZCchDE4wgqPrOizThKpp8H0/FwaFfRZJk0R2XYjjCcMwH+4kooa2LaMlxQjfuM+xOia1N5aCUGJZBt/z4Ikpl/zmxeU3L4PncXBwgOX1dZw5e3bmMe7EYiBx8CVG03U4y8sjBYK4A2kWpjf2+n30+30Yug6XT1hj4K5kPMIwKYowrfOatGges6CJjoUxG0EYhsgYgzNnOmEUxTqEjNch9KaoQxj3fMiFeY6FxLQsOSMjCIKZphsuuu5gUqfCrN0taZbhrV//GivLy3jmmWdmOjYRMRB1N6L4cCHULJydB8e2ZXtjGIYj9yecTVVVRZok6Pf7CHxf+hY0Wi05MEk8F3WY9Z2apimyLJPpjIgLFFFbYJjmkEjNsgy7e3twms2FGVwR80Hi4EuObpqwl5fHXoANHsKzC1GEbrcLTdOgaRos05QhevG7cT4IReoa/4iJcCzLZH1CkXa7DY9bplYhhIGmaXP3uI9jsA5hd3cX+3PUIRQRRYHzLCmi3SxN00qny4mI3PKCmNSpMGvE5IMPPkCv18Nr167NJGik8yFjsqV31DHOdOe/oLHTI+GLuM0ndUZxPPI4U14YLCa3DrYnCoOlOvtcBBmfiyBajVVeMN3gx1IpDHZ3Ydo2ts6cwYULF2TdFPHFQeLgKcAwTVjLy6MvcnxRclwXrVYLmqYhYwxxkiD0fURRBMuyjn/Hi7fqRBGK26+LqE/ICvMcWq0WGHjHQgVRFCFLU1j8rkNUhp8Eg3UI3W4XDx89QryAOoSxxZ01UFUVbqMhowfplIuUoigL7emfWIw4w4JzeHiIDz/8EM8+95ycvTENaZKg2+vJ42rWGBxUF/m6nWDUQFqZIzcEEt4HcYVwzhhDHEXo93oIecpNtCcKw7Na+8x3PPexR2GIbr8vj1UUQVsjBlllWYbd/X1ohoGts2dx8eLFk3OqJKaCxMFTgmnbsJeWxgoEMAadRxEc24auaYCioN/vo9vrSVdFh7fOiShC3TvUWS8wLMukHfT+/v7QHUzC7Z4Z8tC63N8JVusP1iFEUYS7d+6MnQFRu2J9ToFgmSY0TYPCX7tZGGxZYxVfGY4H+oiWVfk4voClaQqmKNIrgIk8tfg+5WuUMYZfX7+OdruNq1evTn1eSZKg1+/nIkjTak0UrMVj7BAp7UNRjl1NB2pgMm6NLpwFNZ5GnOWc5z0rkc7o8foOVdPQbDZlCrBq+6JlUVVVbJ87h4sXL85cW0IsHhIHTxGm48But0ff7YtaAfACpVYLjuuCMYbO0RGOjo4qowhev58PZZl0lyoWvcK+6mIYBtbX13Hv/v1SIaMorkoZg21ZQyHJkyiyKyLqEEzDgAJgf38f9x88GFm8Oc2xKDNWg4tws4K8CjwYUzhZMrQBkBbrP0TRaOFvil9yYS+8b0rbzTIkwk5XLEaDi6ii5G56NUPbv/vd73B0eIhr165NvcAJb36GPPojnPYmMm7BnyJHPzMT9mGZJsBft4SPVw95gbHHixVt287z+VOMml7EWUlRwAuaGWMwbVvWd4w7r8PDQ2SKgjNcGMwSJSJODuoTecowXRdZliHsdkcb3/BFXFNVrK6sSCvigI88DsIQFi8eEnPu4zhGp9MpTT0ciciri4rlmndbm1tbeO+993LHND5HgmVZHj5PUxi8L7vqclNauGrtrT6iDqHT6aDT6SAMQ9y5dw8rS0totVqlBUjUVtRCUWp51Fc9TtO0fE4E8qmUhmFAE+1pyJ+PDAPP/cBiPy9poVNhrHXywJ3wqN93ul28/8EHuHLlCpaXl6c6ljiOZRRF5xGDuov6OMm76DbFih2MN07iwss0DIRRBN/3AUDW5jCW24dPnTphDGyOc0q5KE0KIlnVNJnympS6Ojg8RJKmOHP+PM5fuIClpaWZj4U4GShy8BRiN5uwWq38jnDcH/L2s+XlZRmKZCx3W/N9X7YWigFOwpO+1+tNleuue5He2tpClmV4tLsrfxZyq2fdMOTxpdlkZ8ZFX8oVJZ8lv7m5CceyoAE4PDrCg4cPSy2PUwsTLuCmrgNQlNwYibfl9fp9JFmGlEcC0knPzwIWOxFJ0usWvI0+GDAAv/7Vr+A6Dp579tmpHh5FkRQGhmFMJQwADEcOiq14Ux1JfURdAQa7OQr/lmkc3nUQRREODw8RC68A08zbHRVlsh/AYJRqxterGCkQwsDgNxINXiw76b18xM3Xts+dw87ODlZWVmY6FuJkIXHwlGI3m7AaDWmrOg5d12FZFgzDgK7rcBsNqDyl4Ps+er0eDMOQtQhxHKPb6chIQ10mXbBb/ALz4P59+bOYiwOrUL2sFC7cg14KQ5GFBd/xGYaBjc1NrPBahDiOcf/+fRwcHiLLspkX3WlazAoPgqXrSHmxWsDvKuvub97qdDH2u8qMa1refvttHHU6+IM/+IO81a1m/UYYhrlrpKKUpvnNhVi0T4JipKBCFEi3Qv7/LMvg87HkogtBUZQ8YsVrhnRdnxw1mNWzgJOMEAWtVksWEDJgojDodLvwfR9ndnZwbmcH6+vrcxwVcZKQOHiKcdptmK5b2Too4dEDh+dnRWtau9UaEglhGMIwTRlFEMKhjpug9EbAaJGgKAo2Nzdx7/59eYEUUYKxd0b8wjdYqwCcXNFiq9XC1tYWXO421+l0cO/BAznQZlpqdTHwBSVLU7A0RcYYFF3PRzvzdFBSw8iquM95GOmMOKXw+Pyzz3Dz44/x8ssvY3V1Vb52Km97G3WUYRgi8H0oAMw5hIFYqGcdmFRzJ8fbF1G3Yo2HOA6O+Mx1u105sdAwDDh8AqmmqkiSJI+qjflszCuNhSjoF0SBWRAFqqYhTVMoqjpWGDDG0OMFi9s7Ozhz9ixOnz4959ERJwmJg6ccd3kZluPkxiQjLnwKv/tw+EQ4MfbZMs0hkRCFYe6LzheEJEnQ7XbrRxGESBiRa93a2pJ3KFmW5ZXPSn33PemngGNr35MYMw3kEZdTp05hbW0NuqYhTRLcf/gQ+/v7c81nqFzgsgxpmkpnxGIBoGmaebGmoqDneUPWtaN3tiBxMPjaiJB5DbrdLt66fh1nz53DxQsXqo9RGfaHCPnddIZ8GNk8wkDhaZGTqi1QADk9sSgEKiv40xSeEAVRVOpCaLfbMAxDvqeTJAHLsrHiYNZ3fZIk6Pd6laLA4aJAnJsw9xr3+fd8H51OB9vnzmH7zBlsbW3NeGTE44IKEr8CONwDIfJ9YMRwFhV5B0MURYjjGEEQyAuuZZowDQMR/3lx8ckYg8KjCGEUwbas2v3VCiAnF4rLyvr6OnRNw4MHD3B+ZwfAfJ79xRSEuICpilIqQpunrRAAGo0GbNvG/sEB+r0eev0+PN/H6upqPhNh2mPmxyOsiVNu/VtcuAan5dmOgyRNZXFps9mcuNDN05YnalOA4denbkogiWO8+eabcF03H8U86TXgd95hEMiJorZtTzWye/AcxhYDzrbRUlGq6AiZ9P7K0hRBGEo3QSB/Xm2e7gOOixDTNJVRA0VVj8XBwL5nIUkShEFQMiMzTROWZUlBIFAU5fi9OU4YeB4Oj46wfe4ctra2yP3wSwJFDr4CKIoCZ3kZhm2X76bLfyTvUMQ89WK6QIiEdquVFy/yC4XKe92jOEaaJPA8Dx0RCq170S10Vei6jtMbG7h//37etsUmz6ifhuLFc9CMabClbxo0TcOp9XWsnzoFXdPAsgyPHj7E7u6uzM3XpTiXIhEX3zF/K85LFIQl/O6zFrMWpvH3hjrYrsY7TCbCGN66fh2B7+Pb3/pWrQE7jDH0PS/33eDtnLMKg+Id71yIWoFCVEAUAteZX5BxMdcp2Azruo5mo4HWQGtisWA4ThIgy6AbRqkLZSGRAv5+rYoUAPmioeBYcAPVEQpFURD4Pg6PjrB15gw2Nzdx9uzZGY+QeNxQ5OArgqqqcFdW0N/bQxrHSLMsz+kWFmYFx8WJQRDA8zy0Wi15dyXuaE3ThGEYiOMYfhBAR2F+AmPQGIOXpgiCABaPJEzTZrW5uYkbN24gKoRVF424XJfSG4OhXlHhXQhpT7oDdF0XhmHg8PAwn4jnefCDAKsrK2g0GhOPK2MMjPeyi/1VFSvKiEhhcROtZH0+/U7XtJJpVCUzLo7SNrkqpVCDjz7+GHc+/xzf+ta30Gy1au2v73lyPkej0YBpGEO5+rpII6cpHys+B4PvE/E7sYBP2m6apgiDAFFBOOq6DtuyRgolVVWhqSpSxqT4Ng1j9lQIT00EYVgSsKMiBUAuDEQLZJqmY2sagiDA/sEBTm9tYWNzEzs7OwsfzkWcHCQOvkKoqorG2poUCOJuR4gE8DYkx3EQRlEeYowiaVlcpEokiIUsSRLEXHyIEcN1RIJY8LY2N3GdMTx8+DDvCjjBsa3yvCoWW6CQjpA/OBYMKCzaRYGlqSrWVlfRbDSwt7+POEmwu7eHvudhZWUFRsX5SKOigbtuIcgGl5pSuqSAoeuwbTsXd0EATdcnRl6GFrsazDOmeW9vD++++y6euXIF2zVCzHEco+95eZsc9+nXijlv/r6bSSQMPqZ4F15Y9IvibHAvIrwvIlHjqBIFBhfkdaInqqYhThIkSQJV03KX0ylJkwRxHOfzGgrvt7GioFDLAxyLJICnFlEQR1mGKIqwt7eH9c1NbGxt4cKFCyQMvmSQOPiKMSgQgPyCpWqarAFQGYPrOOh7HgLfz90Bx3QYmKYJ0zQRRRGiKCqJBM/3ZcufiEpYljX2QtFoNNBut7G7u4vllZWF9ORPYpJIKFIKpxbqGESEQeSYTcvC1tYWjg4P0el2Efg+7gUBVpaX84iM3CCr1/EBlFIio47Ttm0kfAHp9/toNZvjByDNcAed8cWtJA5qFPQFQYBf/PznWF1dxYsvvjh+J4zBDwKEYZgXzXLXw6pzEeI2S9Oh98tge6ssPCykAoQAVI7/qLztKvjrXSdSkCQJwjAszUcwdR3WlBNGNT55MUvTfDhRzc8GyzJEcYyYp//kKXCDJZOPhx5EdFgMnl1RxCqF76IrodPpYG1jA5tbW7h06RIJgy8hJA6+ggiBEHQ6iPgdmQjXqrxg0bIsWZzo+35pGIqs8B64IAqRkPE7hzCKoOs6Ul5shSBAEIYwDQM2b8kaddHY3trCzZs3oVy9eqL2yINMIxKO/1QZWmCKvgvtpSXYjpNHEaIIe/v76Pf7WFtdzZ+fGjn60gW4cHyjFqWG66LLOz483x+b0pj6jpuxvBYCA+Kg4j0xuJ9f/uIXYAC++c1vjhV9jDH0+30ZurZsW3ZkjEIBH1ucZbKeQBFhfv5/kYYQ28kKC3vt91nhuWcYn2oSYftkTlFQXKQTLiTrGB8lSSI/x0V0w4DF25KrBEYpYjXw++L7VXh7CJF8uL+PKI6xxT0MKGLw5YXEwVcUVVXhLi9DN034nY4ML8oogqLAdV1pF2xZ1nEot3ChqrosqqoqF3+RmhDphzCKcuMa34dlmnBdF7bjDOWuNzc38eGHH6LX66FdlZOucZc6D4MioeruafSDlaEFxzRNbG5soNvp4Ig/p5/dvYuG40gHyuOHK3I70qdhsOaAfx91TIqqouG66PR6uUFSEMix3JV/P2ZbgxRtk0sX/gki47333sPu7i6+973vjT2WhBe2iveX22jAECZY4nUo3rUXogDCoU+07Yr3dfHIBgsoa1EQxLU6MapEgWGUPkcTURSoKNg7cxGfpCk0TatMTwGj0waarsMwjDwSOGLBlikzVL8filGzYiFxHEXYOziAbdvYOXcOm1tb2NjYIGHwJYbEwVcc03WhmSa8gwOkcXwcRWAMKvfvLxUnFqizNOu6npsmOU5+weKzGgIuEHzfh2macFwXzWZTioS1tTXouo793V1sbW4Ob/gxpBqAskgQCyib0EEwaqFVFAXtpSU4rotHu7tIuBV1r99Hk6dSND5TAkBJkDBxN6wcz60QlfFioWYDgkTVNLi2nc/N8H35WlQxTeygZJssNzBerN27exe/+93v8OKLL2L91KmRfxeGIbwgyCviRX2Bqsq8dnF/xToQoFD3IQRCjVRNHW8D6Z0xQRQwxqQALqaJTMOAPSKXX7GzvOhPbBPlz5kYbqSraml7k9IGhmGMr92pKHqtIuPFsqJLSVEU9Ho9dDodrJ46hVMbGzh79iwNUXoKIHFAQNP1PM3Q7SLiHvVCJFi2jZDfAYnixCpkqHbExbZYm+C6LqIokpX8IU9BdDsduK6LVqsFwzCwtr6O3f39keZNctuALJY6acmgAHn4HGMWiwk5fE3TcPrUKfi+j6NOB1EYSve4ZquFdrNZ6R0gkKmLQgtmcX/FPRumCSNJEMUxur2enJYnzwW8+jzLAF5UN/gayn3x/cR8fLYihAy/g2QDx6CwfLhPr9vFL3/5S2xtbeGZZ56pfN4YY/B8HwmvWdEMQ7pPFo+1Lgp/nmWUo4oxwqAo8MbWn/B6ERG6L9aEGKYJe0Quv3KfY+7YBRH3NzB4C+OsaYPSfgH5nh6HfK35OWdpisOjIyRJgu2dHayfOoXz58/XKqwknnzoVSQA8DTD0hJ0y4J/eJg7E6oqwAWC7/tjixOLoXAAYy+8g2kHz/PQ7/flAtbt9WDbNlaWl3H37l2EQZC3bI1gqEgPJysShuoSBiIJ4/YtFnQAcBwHjuPA6/dx1OkgjiL0ul30ez20ms08kjJiYZHPt8j5jolmuNwhM00S+NwgqfgaKsXXqhC1kMeM8p1slqYAYzLKI+pVlMHngN+9//znP4dlWbh27Vrle0cYN2X8HMR7oxZsvPGPKOCrem6qug5EK+KkSEpREBTFq6rkA7Gsmu270xbbJnEsRzd3ut2p0waDqGOeu0GkCGVMphEc18UWdz3c2NiY6lyIJxsSB0QJ07ahr6+jz9MMqqrmzok8etDtdtFqtSZf1Gpe9HRdR7vdRqvVQhAE6Ha78LkDnsYHy9y+dQtXrlyRkxknUapMx8kJBbndSZEEcSyMVRYfuo1G7k/Q7+Po6AhxkuCo00GXdxq0K7oNxPMgLtilwruhA1XQaDTQ6XSQ8kE+szg3CkRBnBAu6oh9M8Zw/fp19Hs9fP+P/7hk6COIkwQej1ZByY2cqv6uatt17rSBfNEc1w0iREExNVNFlqaIkgRxFJVeRwX53ANT3KlPoNh+WQcRnQiCAH3PQxRFedcGpkgbFPfP7/5ZXWGgKEh5xAIAur0eOt0u1k6dwqnTp7Gzs5M7chJPFSQOiCFUnmYIu12E/T50RUGj2US320UURXl4utmcesxwlZmPQFEUeScdxzG63S7SJIHrOPj87l20l5ZkqNR2HJh8guQkxIV4nomJdfYhzgHIC8iqznXSvIVGowHHdXPHPD7vvtPp5EWZPJIgRIJcGAtDfMTPqxYdVVXRbDTQ6/UQhSF0XR+OxtRYrLIsk7aqaiFyUCUGb926hdu3b+Mb165haWlp6PdhGML3/bxGgLcp1i3WG4pUTfp73n9fZFRKpEiWZUjiGBFvDS1i6jp004Sh6xPfW9JPBDiONIx5jLBITuJYOoX6vp8XI/IUnTRMqvscFNJdrM5jRBcCF1ZZluFgfx9pluHMzg5Onz6Nc+fOURrhKYVeVaISVVXhLC1B42kGE8gFQqeTC4RCBKHukit60SctQoZh5HMJXBfdbhfvf/ABPN+Hw8OZfc/LFzddh2nb+UXaMEYuLGKhnqYifx5UJbeiLhYv1hmdLR7bbDTgum6ebjg6QpqmOOx00O310Gq10Gw0SnfNLMukCY8Ms1cs2DpvIRUFpmqjMXxhn/D6ZDzdpGpaLg5GpI/29vZw48YNXLx4ETvnz5d+xxiD53kyT15n1PI4YVkHMU+j2JpXqrwf2FecJEiiqGRWBEC+7+pGsUTxXvH1qjqPjHchJHGMJEkqhWQcx9A1De3l5Xp36sXnbBoxpRQcQ/lXGIbY29uD22xie2sL29vbNFXxKYfEATEWkWbwDg9hMwbG7z7jKILvebC4V0FtkVC8a5qwWFqWhXPnzuHWrVs42NvDuZdfhu958i4ujiJ4QVC6YBuGkX+vuJsrtbMhv8M/sZSDOD9etzGpqHIQVVHQbDbhNhrodbt5JCXLcHh0hG63m1eDiy4FDJyHSDNUCATbtpFkGZIoygsgm82yy96YFlUgv6PVC66LVemMw8ND/PQnP8Ha2hpeeumloccLG2TwaJE9xuJZCrsFRH3UgQLFweMuFvcVf6OpKgzThKnrtYsLRVfJuKNOk0S6HQ5GJYDjTh9d1xFFETRNg2Wa+fTUcYjaiWmfMy4KFHbseMiyDN1uF0edDk5tbGCdRwsojfD0Q+KAmIiq62iuryPodMC6XYgBOH4QQFFVWKaJDJhNJIj/YvhCqigKLMvC+QsX8P777+Oll17C2vo60iRBGMcIgwBxFB0PGioIBVXToPMCLUPXh/KxYn/FToe67Vx1ENtVAKQYvlusm+ZQFQXtdhvNVutYJKQpDg4OEMYxXMdB03WhDnaRjCoIVRQ0XRc9Xune5wKh6DOhjBFuInev806FwTv6breLN954A81WC69/+9ulaE4Yhvl7hh9HqypyMXS4870exemVsoOC/1+cTxTHiKNouLCQ1xFMneoYQZZliHlkICnk8OU++YRF3TCgi8gMf5wQLSZPY4xi0Oa45oGXRAFw3Ja5v7+PDMC58+dlmyKlEb4a0KtM1MZut6GbJnBwgIwx+LzLQFVVGLqeV+JjSpHAEQvG4KKkGwa2t7fx8ccf4/cffYSXX34Zmq7D1XW4jpPf7cWxLJhMuOEPQ37nVRQGBhcLxZAwG9w/Z+5CRn4uVfMSABynAYDhHv4KiiKhy1MMWRDkRYZpitXVVTQKLpbinFhVFIEX/vW4A6HwWSh2H4xa6KTHQUVkxvM8vPHGG7BtG9/5znfyiYHg3Qi+jzRJ8jZFXUfDdSvD8vOmD/LTU+S2iu8nBXn0QFgZ+0EwsrBQG5w2OeI4qwZgFf9GvCdjbnk8eJy6puViYMwMjJgLA4VHMAaFbjFlVkybTKRCFAg8z8P+/j7cZhOn+ZjlU2P8KYinDxIHxFToto32qVNQVRUZH6rU4613uq4f98RjBpFQcYE1+EVz5+xZfPzJJ3ju2WdLkwZF2FUKBX4hFe1eYRyD8QFEqa7n3va+n9+l8Ts0jX8VGTzmWRetUXdwxS2Jws5ROXAM/O3S0hJazSYePHyITqeDJI6xv7eHTqeDpXa7ZHUtogCKouRhZlG4yAsUhcWyiCAU8+OV51Mo4isShiHeeOMNKIqC7373u7AsC4wxBGGYz0bgx2LbNqwKG+R50wfFCIE8x8K2E1Hgx/06soJoE6LRGDNDZGg/Ff/OsixvGS3saxCNC1YhBuoUMgZhiCiOZdqstH+RIhm7laGTGCkK/CDAweEh4ijCqY0NnNrYwM7OTuk9RXw1IHFATI2m62idOgWoKg52dxFFUb64tFry7nMukVDcF08PnDl3Dp/cuiUFQhVFB8CYu8UJRznR5x8lCVTkEYksyxAN7Evjk+40TZM20gBKx5/VEArSb77G3AT5mPyBAHA8A2DE36qahna7Dcs05YKXxDH29vZweHSEhnCcLIieUkhdUXKB0GyiJwRCr4eG6EIZk1oQz4+4W46iCG+88QaSOMYfff/7eccJ91QQi5BuGHAcZ0iEzSoKSpGegQhB8Y5diILSYxUFuqpCN83JhYVK2bFQUBQCGReiVdEDhacnxHtzWjvhKIryYsUkgW3buYAZOL7ajBEFYRii0+nkxb6ahu1z53Dm7FlsbW1RGuErCr3qxEyoqoqlU6eg6Tp2791DFMd5BKHVKrU4zisSxMz62DRx9uxZfPTRR7j6zDMTe7qNwl1WzHPKEa+Oz7gRURTHeY6WMblopWlaEgyqqkJTVTn6WCvkguUxojoFMU0v+9BjUb4zHbXwKKqKVruNddPEEW97TLlBTqfTgWXbaDYacGz7OJVR8GUQI5B7/T5SEUFoNMa+RpqmyTRFmqb46c9+Bt/z8L0//EM4fJpnzJ0OoeQzOswKZ83BVE6d56QkWvh3sXgKIVDlaSBEpq5psoiyskhUFPPJ//KogxACWZb3/I84RlVVpcAc10FTl1BEDbiwmKZ1UVJDFARhCJZlMAwDz774Ii5cuFD5mhFfHUgcEHPRXFmBqmm4f/t2nr/mAmGouBBlJ73iHfkkLMtCGIayc+HTW7fwzOXLtS2ThVBwAURxnLeoDdjNios+P6jScWVZVhq1qyhKLhSEYOALwhBKffe5Ogzmt5VCjYCqaVhZWcHS8jI8bsUcRRHCIEAYBFA0DQ3HQaPRkBd9kafWNC1PMfBix77nHY9GrlhAhTlVmqb42Ztv4ujwEN/73vfgOA663a7ctmmapcmbg6mZOs9NVYRAhu15NKjKWEoXYoB/lV5PoPT6i9+lWZbPKIgiJDwyMGo+g4K8UFe89uJrkQWtCT+3IAzhOk5lOmbc49k4URBF6BwdIQyC/H2aZVhZXcU3vv1t6kQgAJA4IBaA225j8/x53Lt1K19ceHh61GVMVLkzQBrDjLvoiVx1mqbY3trC737/e1y6fFma8cjcco1jNbm9rBAKYqFBkgz5y4sIQ9WxVeWUtYHFQjjQLWK5qMp1C0FSXBpFC2Sz2UQUx+j3evA8TxYe9vp9GIaBRqORzy7QtHwOQSHFkCQJPN+H6zjlu3W+X4OnZH71q19h99EjvP766zAtCx4f/62qKlzXLU+aFNuZ4lzFeyTjBX0pf84H7/gV5M+9FANjFmkG5K2laYpUCIAkQcKFwajjKQoAET1alBBgQP5eHkjl+EGQG1bxaIc1puWzcLCyMwM1RAEUBY5tY/vcOTz7wguUQiAk9E4gFoLbamHr4kXcvXlTWuI2Go2xjylGE4DjCv6qi65pmgjDEDvnz+PuvXu48/nnOHf2bOniV/x3XaGAQoFXsZhslN3uYHi/mDpIkwTFRwljG7GQiDtLRVWh8kV0niI8WTwoCg6PD1Ken8mjCYHvo9fvIwgCxHGMw8NDHB4ewuHRBMe2oet67qLY7yOOY/iKIm2WE75wimN96/p13L1zB69duwbLtuX8AllwOPi8TToZUXHPmDQCEtGBqudcG4wMFPfFUwFChGZ8ymhWEAVhFKGKwTSSOioqtADka3d84PJ3ogvH9304jQbsMVEDWd8ypkYljKJ8/Dp3pBSOpK1WC1tnzmDn0qWFiR3i6YDEAbEw3EYD25cu4d6nnyKKIiiqCkfcfdZgXNpBRA+WWi2sr6/jdx9+iLMD4qCICJmL8KosxhuDuCsUYfdiIaMQDYP3lmLhkkV8x79AhuPoA4ChyXnyWPmCBOSL0+DXKAEh7ZoHqvMH79BVxuC6LlzXRZam6PZ66Pf7SHjRoO95eXuo66LBv/r9PiLeZeA4DjIeJdE0De+9+y5u37qFF154AUvLy7Lg0OYCow7iecl4Hl98pXwk8OB5ioiAEFjCGTJJEll0KrYxqetDpCFE0anOxYB4vk+KoVdwzDGKLg+Dd9RUzZsoigLx/0GEKAh8X4pJ23GwvLQEXdexdeYMts6dm+e0iKcUEgfEQnEbDWycP48Ht28jDEOkaQrXdY9NdsZUwQtKaQd+QVOU3E8+NAxcOH8ev/r1r/Hw4UNsjLFwFZdKpSIMXSvfLRalwoI32K6W8jvUwbHJipJP5xMeBsX9yfPjCxnLMnlnPu5YFCW3ZVYKi5jYf5qmsgBwMPpSHNqk6TqWlpextLSEIAzh9Xq5B0Gaotvp5EWMlgXTssB4q6qiqnk+njHcuXMHt2/fxtWrV7G5uQkAecHhQMhbpFyyNM3bBge+FxGLW9FUSRXRFVEoyoVAMcUxtptDRGgKAkvj31M2bN60aEqpAgxHnMaR8Oc9CILcQdK2j4+12L44ZpshtzgPRKqnIAoMXtS4c+kS1si7gBiBwmYtpyaIMXieh4eff47I96EgFw1i0M+seXiFj9/tdrv4+S9+AcMw8Iff+97MxygjCzNvIadYLS8iDYJowHlPoABQNO04lz/Qisf/MfbYGGPodDqAogwVgZa6QgZEQ+l3vOjQ8314/T6SOJa2u2maQtU0OJaFnufh+vXrAICdnZ184A6/oxXiKEvTfOEtpALEXbz8XjjP4sItvxfz+SNEwLiFv/izUUQjZhfMS+n5nuOy2vd9HB4cIM0yNJtNNPgsjTpmWWEYotvrIfA8+ZpLUWAYeRpD03DpyhW0l5dnPkbi6YciB8SJ4Louzl2+jAd37qB/eIherwfbtivTDHXFghgwZJgmLly4gN/cuIG9gwOsrazMdIzKwHfpLle4CNcREKqqwjRNFBu/RCpC1/XciInPV2A8bM4AOe1uFsSxitByJiIHRZFRegAr2UQP3RMwBtuyEGsawiCAHwR5u2eSYDeOsbu3BwZgqdXKx2v7PjRdhx8E8vHFdIaCwuLPBzUVIwIymsGOZzmIyIdaWOSLtRmyZmOOO34xNnvWLQw9riqCMYcwSLMMPT791LJtOXdiVJQkyzI53dIPQyBJwPhz6zgOllotGdVhjMFpNHDx8mXYZGpETIAiB8SJwhjD4f4+9h88QBrH0DQNjYJV70zbBNA5OsIbP/0pGGP4kz/5ExgnVDRW3Oco4TBugBNjDNFA8VsGXl/BBUOxYK74vVisOYp+r4eUMbiOA13XhxZ/OV1v4JjE98EoRTEN4gcBet0u7t+7h/3DQwDAxuYmltptGIYBy7Jg2TYc08wXcl2Hxu/+xZ28EAzFxb/479LvHgMZY0NtrINUCYB5Fvw6iK0fHBzIaNDq2hqsCq+BLMvgBwEC35f+BMX3pj0gCsAYoKrYPHMGm9vbVHhI1ILEAfFYCMMQD+7cQdjtggF5v31FkVUxijAuopBmGe7evYs333wTZ8+dw7XXXpPtckph0XkcFD9AshCSX6wz5KmFWRYXcacvxj1L0cDvfpFlsvXQsu28kHLg3EVkQRpTiZRCsdOBmwKJQr+MOy7GcYybN2/iwYMHaLfbaLVauUufacI0zeNtqypMy4LDOxWKLXfFy8u4mQ2Pi5infr4IATDIYFSq3+9jb38fSZpieWmp5DeQpmkeHeCCQAgq4XHh2DZcx4HtOOXnmDE4zSYuXLpE0QJiKkgcEI+NNE2xt7uL7t4eUj5hznXd0XfdGL/AJ0mC377/Pn77/vv4g298A+cKVdeimFHeqS7uNKaCAbIWoZSeKOTUi99Fd8VgLUKl2yJj8IIAURDAtm3YjlN+jNjfQMh/cBtCKMRJgsD3866MNMW7776L/cNDfO3qVWxvb0NRVURBcHw+ijJUUyHcJoVIcLjlb4nC+RUjLzJ0Xjz/Ucdf+JnCWLkjpeJvxREGUTRUoPq4EKJxcCAUkHtuPHz0CHEcw200sLy0lHeT+H7udxBF0tcDjEHTdTiOA8d1YXGhNoiqqtjg0QKCmBYSB8RjhTGGXq+H/YcPEfb7uWlPo1Grl1z6IRR+FoYhfvqzn2H/4ADf//730Rrj7lZqkZzjHKYl5X4HJ/FRC8MQvufBtKzaw3EGbZmTOEbAF30oCsIgwDtvvw0/DPGtb34TtmWBAWi2WkiTBL1eL3dWVFU4ros0SfIwNx+hLTpNhDDRdR2mZcHmX1VteY+DlI9MfpxI0VKorag6rocPHyKMIjDk9TphGCLh7cBCNOlcELiOM9QdUt4pg9tu4/ylS7Bt+2ROjHjqIXFAfCGEYYj93V14h4dIkwQuvwOqS/FCu394iP/vf/0vuI0Gvvud70zstRdjjAdnQJwUIg2QzFGAOIqYuyDquo5mqzXy7watkBljiLkoKBboBb6Pt956C7qu4/XvfAc2dz5U+eRLII+E9Hs9GTFo8omcAOSkzjAM82mCUVQaF80Y90QQYsG2T8xkqAhjDPEYO+SF7QfHEZtxrZaCJE1x/+HD3LUwio6FMk/zmKaZC4JGA3qN50lVVWydPYvTW1sLOBviqwyJA+ILI8syHB4eontwgLDfh6nrcFy3tGjXgTGGT2/dwi9++UtcuXIFz37ta1PbwMr2vmKb3wJJswxpwRBpYdvl/gSKqmJpaQkAjkPzFZX0okBSeFCIrgLTsrC7u4u3fv1rLC8v49uvvw7LNOUQJcuyYBTEW5Zl6Hue9DMYupvlgoAxhiAIpKlPFIZDxZH6gPWxGGdsLGBwkXyeRPRmwc+/jGbx/H8VGRdicdH5kZs39T1P2lu3Wi1YfB6FzSME05x/s93GuQsX8vQSQcwJtTISXxiqqmJ1dRWmaeLw4ABBt4tupwPbtmFWWPCOQlEUnD9/Ho8ePcJHH3+MpXYbG5ubecEjz18zRYFSuIMdRIR9izl+ZYGRBQV5DYQYhrMIRH8/FKW0SEmKnRXcMjgMQzkvQtQGmIaB33/0Ed57912c29nBtddek+ZDYvEvCgMGyHHPXr+PKI7heR4yxo7D2IXR3Y7jwOELVpqmuVAIAoRhiDiOkXLfgTAMC4fO+GbyNsiicBBfRs0RyML0aF5hMFgsW2zDFHMa4jhGLAQAFwPSoIojIgue5yHwfSiMYX1tDetra8MFhTVQVRXbOzs4tbEx1/kRRBGKHBBPBFEU4eDgAH6/j9jzoGQZTF7UVjeSkCQJ/vVf/xVJluG1115Dw3WHcq5DeV9xx1cjYlA1SbLuZVy0LAJ8TsGkjx1PfchjHlNNf3R0hCzL0G63h+40i6JAnKeqqrkAM02wLMNb16/j9u3beO655/Dss8/K8xNRCSgKlpaWRs6bEG11AGSRaaUIqzj+NE3zKYgFi2o5bZHvb/BRJSMlMR6ZT8kUIkJEHRjy94WYt1AX8VqVCgj5ORXv/otf0q8Bw50IYtyyEDRRFCHg0Ztms4nllZWpBaiiKFhbX8fmmTMw6gxlIogpIHFAPDEwxuB5Hnq9HoJeD5HngWWZHP1bxxvh6OgI//pv/4bNrS1c5gVZJfvZMfsutveVbGqH/1j+syQYxhU7ivZDvj2x8InH1clPj6Lb6SDhi4xwLEziGFEc5zMu+HFpXBQYvLo9CkO8+eab2D84wGuvvYadnZ3j80Lu7+97HgzTRKPRGJpCWRRaURSh73kA8nHJjUajZNs8+FzUgTEmw+9FwRDzaZpyjoI4Dv48Fjs0RI2BSOlUvQ/kbAJAukOOc6cUi744u+LzoOs6dMOAoevQdF2OCxfvXTEd0/d9hEEA07axsrw8VfpAUVWsrq9jY3u73qRGgpgBEgfEE4fIU/f7ffSPjhD5PrI0hanrsGw794Yfw0cff4wbN27g61//OpZXVvIRxa772HrsZc4fBfGA4YhBuqD8txiSpOs6VE0rCQLR9iYiBYJet4uf/PSnSOIY3379daytrQ1tt9frIYljOTthUByUWjMBxEmCPu9kUBUlN7safK0Kfgrz+goUIw3FEH5RUMgoiBAHKLSKAtLfoXhOk5ATIbkI0LkImFTnEvNOjySO4QcBTMtCq9EY33lQQFVVrJAoIB4TJA6IJ5ooitDr9dA5OEDs+2BJIhc7wzAqL+YMwM9++lM82tvDH3zjGzAMA6qqotFsTl3suEhEBTsA2ZNfNXeh9vayDFEco9vtwvM8mKYJi6dRdFXN71pNc2jRevToEX7+85/Dsix85zvfGR6trShAluHw6AhgDC2erhgUB+Kcis9oxo2ZhPBpNhrQR7UuDnoZLADxnLJC8adILWDgWB+nIZOIrAjhKyIKk8aaM8agahrW1texceZMSeARxElC4oD4UpAkCfr9Pg53d/NIQpJAU1U5QXBw0Q/DEP/v//gfcBwHL774Yl64pihwHecL67MHY0gHPm7iDjorWOAWXQwxcGcraghE5buC3EAnDAJYto12uw3TNCvD1HEc47e//S0+/ugjnDp9Gt/61rdGLjZJkqDX7Za6IKrEQfVpMvT4SGgAMPg46JFphuENVP+44v/CPEnst6rwsFjv8bhhjOUphDDMO0XiWIq1drs9WqDw2pCV1VVsnDlDkQLisUPigPhSkWUZ+v0+DnZ3EfZ6yLIMmqLAtKx8USwsQHv7+/jJT34CwzDw8ssvwzRNpGl67Mz4BUQRinlygRAIg1XtxcdEUYQoiuTfiL/TdT0XCFEEwzDQXloaCpUDwN27d3Hj+nXESYIXnn8ely9frlysRaog4EWGpmnC5Xe3dcWBOKeAGyMJhL1yqVixePkpiCOGPLqS8b+ZNGJZzqKouJxlfIbF4yaOY3g8JZbwGgld15FmGVqt1kjfAlXTclGwvS0jQQTxuCFxQHwpEXdk+48ewe9288IzxqDxqnDRK+8HAX7yk58gDEN84xvfgG3bMuTtum7lfIcTPW5g5F0sA2Q4XAgCUXwnFkbGGEyRLuCFbmmWoXN0BIV3FcgKe0VB4Hm48Zvf4O7du9ja3sbLL7+MBndSHFpsC7n4bqeDNE3zUdumKWc7DBZqDtYdDJImCTxuycz44ui4bj5hccbnbxAxLnpUimlUl8VJwVg+AjvirZkicqFy0dNsNocjO7wtdWl1FZskCognABIHxJce3/dxtLeHXqeDlE9AFEVvKvJitN/cuIGDw0O8+uqrWF1dRcznBxg8ivC4ahGKi6wYtSwNkni/f8LvNBUcL+CifmBUb//R4SEyxvI7Ul1HlmX45JNP8O5778HQNLz8yiv5fIQJd9+KoiDNMnSPjmQLoxzINOMiyxhDGEUIfF/e2Vuii2SG7QlBkvICz3GXsMedUhCeD2KipqqqSLl1tqqqsotDvN8U5B4SK+vrWF1fJ1FAPDGQOCCeGrIsQ+j76B0dod/tIgqC4xHEWYb3f/tb3Hv4EM9cvowzZ87kOXt+oW7wO+STgPGUQSaMcnhffMZnGVQ8AFCUvAWuptlPr9fLh/a4LoIgwPW33sL+wQEuXryIF198cWydxWDIXqQURAsjgLnEgSDNMvieJ+cbqJomR01Pi5hQOZiiKM4weJxRg4y34cZxLIdPqaoqjZ1E8aGcZKlpaC8vY3VtDe3l5cdyjAQxDSQOiKeWOAzROzyE1+sh5kY7v//973Hzk0+wvb2NK888IwcOKYqSW9c6TjkXXNHmNmSGNOBvUBQCaZZVOvOJ1IZwKlRVFZqmQVNV6QpYrOTP0nRsQZ/v+/A8D7dv38ann36KVquFV199tbJFcZDB1ECn00GWpnAaDTnvopY4EE6UE/Y3eHc9aTpnkWxCpKB8OAVvCVG3UOuR9RF21J7vS28Eh6euoihClmUlrw2n0cDK2hpW1tZmEkUE8bggcUA89WRZhtDzcmOlIMDNmzdx48YNrK2t4fnnn0eSJPlEPF64ZhjGUHGjpOhUOMq1sOLnRQEgrIk1VZU2wxMRhXojog137t7Fb65fRxhFeP6553Dl6tVa1sKDDLoiyloHzB85KJLxlr4wCKQvgu04I4dvTSMKBGmaVrorFjtBgELtBJ+gWPkaCxtuHIupiA+XSrMMyLJ8oJRtIwwCRDwy5LouXC4IVtfX4dScnEkQXzQkDoivFEkcI+j1cOvmTfz0Jz+B7Th4/dvfhq7r6Pf7eVgY+cJiGAYs04Sm68cLU6Ftrvi9iMrv/oUQEPMPijDGZq+g53a+Gb9rffvtt/HZ7dtYXlnB1559Ftubm/XbBgeoSikAixcHgoQXLKbcftjgHha6rs8kCAQnlVKQg6v4NEsgFzbCnEu0cGaMYXNrC5vb22gvL88k1Ajii4TEAfGV5c5nn+Gff/QjqIzhlVdewdbWFrIsQxAE+ahhoGTfrE5hcTsJ2Xo3SyEkY9jb28PNmzfx+eefQ9d16QaZpSlazeZo46EJiJSCO1CDMY04kFbUNffJGEMYhnnbH2NAlkHVtHy2hmHMJHQW3b7IGEMcRXLENeOdMZZtwzSMfH5FEEAzDLRXVnDx4kU4EwyOCOJJhsQB8ZWm1+vh//nv/x33PvsM66ur+NqVKzh//jwAnLhImDZ6EIchbn32GT65eRO9bhduo4GLFy/i/PnzsEwTPT5e2bHtmareR6UUgNkiB3W8CQQZgCxJ8lQD7zgRYXzTsmBVOD2O3C4WFzUYJwoMXUcYhgijCI7rYnl1Fe2VFayuri5s1DRBfFGQOCAIAHfu3MFP33gDNz/6CG3XxZUrV/DM5cvQdb1SJJjcZ2BesjQdHz1gDLt7e/jkk09w5/PPwRjD9vY2Ll68iFOnTg11Gfi+D8Mw0Gw0SqkMMZFRUOVPIIYBGZYlvRDk4zFfWkHk+lnxa9QgJG4LXQzdsyyDpuu1ogmLiBpkfMBTGIZIsgwKb0W0bBuapslx0812G0tra2g2m2g0GnBmGLlMEE8iJA4IosD+/j7efPNNvPOb38DWdVy+cAFXrlyRLYKiJoFlGVRVlUJhnmhC1QCmUVGCnfPnYY+w0k2SBN1uF2rB8ngQ0eqnYlgcjEopADNGDsT+CoV805IkCSJ+d85PYGw0QcxRmGWBltMsowhRHENBXgipKQosx4GmqvCDAIwxtJaWsLS2hkajgWazSfbGxFMHiQOCqMDzPPzyl7/Er37xCyhpivM7O7j6zDNYWlpCFMeIo+h44WMMOr+rNQ2j2rtgDDK9kGXY3d+vFSUYtZ2joyMwxtDmw5IGfz/K0TCKIvT7faiqWun5nwFg3MxH1hOw47HG4xb/4sCpWRkbTTBN6LwbJBvVQTKGNE0RhWHeeigKTbMsn7RomlC4iZOiKFhaXcXS6ipc15UjsgniaYTEAUGMIY5j/OY3v8HPfvYzBN0utk+fxtLSEtxGA5ZlweCLk2EYMsduiLTDiBx5FEXodbvo9Xrodrvodjo44v9nWVYrSjAKYYZk2zYcx5E/HycMgDxqkKbp0OMEoiZgVhYhEARD0QQAYCwfiY28W0SIBVVVoek6VEUppSKk2AhDJHGMjBtVAZAW3EAeOTAtC8tra2i222g2m9X2xwTxlEHigCBqkGUZPvzwQ7zz9tvYPzhA9+gIaRzniw93M2w4DhzHge04sHneXtN1BNygqNft4qjXQ8LrFwDAcRy0mk00mk24rovl5WWsra3NnLcuRgBEakGIllEf9TiO0ev1oCgK2u12Zdvd3OJA+DQssoOAL/BxkiCNYyQisjGwXzHYSlFVMG5OFfLIj5hbYds2nEYDtm3nHhfc60LnQq/RaOQ229SSSHxFIHFAEDPAuInPwcEBDg8P5ff93V0cHB6i3+sBaQpNVWEaBtrNJpqtFtqtFtpLS2jzu9CiG+M8ff3F4zrqdMCyDK1mE1qNCv9ut4skSUZGDYD5xYE4thO52PBFXgy1SrMsn4SYJIjjWKaBElFMalnQuGGR22zKeRRiWJemaaV/U5SA+CpC4oAgToA0TbG3t4coiqBpGqIwRBwECH0fSRTJYkZD16EbhowUZNzgaB76/T6iKJK2xOOoEzUAqsXBj//n/8TVq1exvbVV+9gYt1ie9xxLx8a7ExTGkPKiwjhJEEcRNF2H7bpwGg0YlgVN02AYBlzXhc07DzRNow4DghiAzL0J4gTQNA2nT58GwHvl4zjv4Q/DvA0uDBF6Hvq+D9bvQ9c0OWRJ4XMV5HLFF9K6C5hlWXLc8ySvATEYyDTNIWHwwQcf4J/+6Z/wyaefYnd3F//bf/gPuHbtmvz9xx9/jM8/+wx/+Zd/WfNZOT6HqQVC8W/5lEggrz9I4jj/zqdaWo6DZrsNp9WCbduwLEt+URSAIOpB4oAgThhFUWTLI5BHFYRICMMwr5QPAkS+j5APJFI1DaqiQBPhbW7BLOYCKOUdHP+bd04oioIsyxDH8chpk3EcI45jmXMHgP/jP/0n/O//8T8CyIXDzs4O/uiP/gh/85//89Djr732Gv7P//JfphIHQN7VIM6j5Ecw0PJYlA6ioyNNU6QiZZAkYHzstu26WGo0YPOIgBADRiEqQxBEfUgcEMRjRtO0fCAPD/kXowpxHOd3wlGURxeCAF6/D0VRZOW9pml5pEFV8wp8MXGwUPBnGAaCIIDnedA1Lf+7whChNEnQ9zwwAJZpHt/RF+oCXn75Zbz88suV58AAvPDCCzg6PMTtzz7DzrlzcnCReLw4HtElUdUtIYoFB38mRID84lEBRVXhNpuwG428dZQXEJqmKQUBFQ0SxPyQOCCILxjDMGAYBlqtlqygF3f1URThaH8fvf19ZIwh48V1QhCofLiToijQFAWKiDjwn6Vpik6vh1azeVzXkKbodrvIsgy6rsOyrJJngxgxLZwMFQBJmiIVfgxcYGi6jhdefBFvvfUWzp49W/I9AArDqcT/j3+Rn0uWDX2laZp3FLDh8cqGbWPzzBm43F9AfJEYIIjFQ+KAIJ4gFEWRlfOic2B9fT3v7RfRhDhGHIZIkiT3+88ypHGcL668GC9LUyRpCt/zAABhEOTpBUVBzM1+dE2DZduynQ+KItMRInUhBIWqqseLdWF88bVr1/Bv//Zv+NM//dNcDPCfC2GQ8XkEmThO/l1R1XxipWFANwwYvOZC03UoPEJiGgYM7iEhogKUIiCIxwOJA4L4EiAEAwrdB6KmQNxxV30FQYDD/f28ziFNwdI0D88rCgzLQsSLFsXCbhgGOt2ujB4oXDCsLC0hiiIcHh4epwEUBZcvX8b/9V//Kx49eoRGs5mLCC40VB7JMAwDqmgV5N0ZoktAjLYe/BJ1EwRBfDGQOCCILymqqo719BcpirW1NXS73Txkzxd213WhaVo5ncAYPn/0CJt8KmWWZTIF8P4nn0BzXWyePw9VLP6qivfeew+fPXiAy88/L62EhaCQdRKFRb/4f4IgnlxIHBDEU4pIUSwvL2N5ebnWY3q9Hra3t4dEw7179+C6Ls6cOSO3rSgK/v7v/x7f/OY35c8Jgng6oEoegiCGUBQFnufhnXfewbvvvoskSXDr1i288847uHPnjkwf/OhHP8Kf//mff9GHSxDEgiGHRIIgJN///vfx4x//GADw4x//GH/8x3889Dd/9Vd/hX/4h3/AJ598gmeffRa7u7totVqP+UgJgjhJSBwQBDETf/u3f4t//ud/xr/8y7980YdCEMSCobQCQRAz8aMf/Qg/+MEPvujDIAjiBKDIAUEQBEEQJShyQBAEQRBECRIHBEEQBEGUIHFAEARBEEQJEgcEQRAEQZQgcUAQBEEQRAkSBwRBEARBlCBxQBAEQRBECRIHBEEQBEGUIHFAEARBEEQJEgcEQRAEQZQgcUAQBEEQRAkSBwRBEARBlCBxQBAEQRBECRIHBEEQBEGUIHFAEARBEEQJEgcEQRAEQZQgcUAQBEEQRAkSBwRBEARBlCBxQBAEQRBECRIHBEEQBEGUIHFAEARBEEQJEgcEQRAEQZQgcUAQBEEQRAkSBwRBEARBlCBxQBAEQRBECRIHBEEQBEGUIHFAEARBEEQJEgcEQRAEQZQgcUAQBEEQRAkSBwRBEARBlCBxQBAEQRBECRIHBEEQBEGUIHFAEARBEEQJEgcEQRAEQZQgcUAQBEEQRAkSBwRBEARBlCBxQBAEQRBECRIHBEEQBEGUIHFAEARBEEQJEgcEQRAEQZQgcUAQBEEQRAkSBwRBEARBlCBxQBAEQRBECRIHBEEQBEGUIHFAEARBEEQJEgcEQRAEQZQgcUAQBEEQRAkSBwRBEARBlCBxQBAEQRBECRIHBEEQBEGUIHFAEARBEEQJEgcEQRAEQZQgcUAQBEEQRAkSBwRBEARBlCBxQBAEQRBECRIHBEEQBEGU+P8B3liLedSl2tgAAAAASUVORK5CYII=", - "text/plain": [ - "
" - ] - }, - "execution_count": 19, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "plot_bloch_vector([0,1,0], title='My Bloch Sphere')" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### plot_bloch_vector() からの出力の調整\n", - "\n", - "`plot_bloch_vector` 関数は、レンダリングされた可視化の `matplotlib.Figure` を返します。 Jupyter ノートブックはこの戻り値の型を理解して適切にレンダリングすることができますが、Jupyter の外部で実行すると、これは自動的には機能しません。 ただし、`matplotlib.Figure` クラスには、可視化の表示と保存のどちも行えるメソッドがネイティブで備わっています。 返されたオブジェクトに `.show()` を呼び出すと、イメージを新しいウィンドウで開くことができます(構成済みの matplotlib バックエンドがインタラクティブであることが前提です)。 または `.savefig('out.png')` を呼び出すと、図を現在作業中のディレクトリーの `out.png` に保存できます。 `savefig()` メソッドはパスを取るため、出力の保存場所とファイル名の調整が可能です。" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## 次のステップ\n", - "\n", - "\n", - " - [Grover's Algorithm(グローバーのアルゴリズム)](https://learning.quantum.ibm.com/tutorial/grovers-algorithm)チュートリアルで、回路の可視化の例をご覧ください。\n", - " - [Explore gates and circuits with the Quantum Composer(Quantum Composer によるゲートと回路の探索)](https://learning.quantum.ibm.com/tutorial/explore-gates-and-circuits-with-the-quantum-composer)チュートリアルで、単純な回路を可視化します。\n", - " - [Qiskit 可視化ツール API ドキュメント](/api/qiskit/visualization)をご覧ください。\n", - "" - ] - } - ], - "metadata": { - "anaconda-cloud": {}, - "celltoolbar": "Tags", - "description": "Create visualizations of circuits and plot job data using the Qiskit visualization module ", - "kernelspec": { - "display_name": "Python 3.10.6 64-bit ('quantum')", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.8.17" - }, - "title": "Visualize circuits", - "varInspector": { - "cols": { - "lenName": 16, - "lenType": 16, - "lenVar": 40 - }, - "kernels_config": { - "python": { - "delete_cmd_postfix": "", - "delete_cmd_prefix": "del ", - "library": "var_list.py", - "varRefreshCmd": "print(var_dic_list())" - }, - "r": { - "delete_cmd_postfix": ") ", - "delete_cmd_prefix": "rm(", - "library": "var_list.r", - "varRefreshCmd": "cat(var_dic_list()) " - } - }, - "types_to_exclude": [ - "module", - "function", - "builtin_function_or_method", - "instance", - "_Feature" - ], - "window_display": false - }, - "vscode": { - "interpreter": { - "hash": "e6bd4a3f608106bb98e03db025c716fec5b1c45149c5607eb898d72d2cb3836e" - } - }, - "widgets": { - "application/vnd.jupyter.widget-state+json": { - "state": { - "914030e209ab418f8c633dd6e8b5e4f2": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "ba8e23e94da44f7d9d779cb1bbdb0f79": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_f214fd1835684365922b79d6a28add28", - "placeholder": "​", - "style": "IPY_MODEL_914030e209ab418f8c633dd6e8b5e4f2", - "tabbable": null, - "tooltip": null, - "value": "

Circuit Properties

" - } - }, - "f214fd1835684365922b79d6a28add28": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": "0px 0px 10px 0px", - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - } - }, - "version_major": 2, - "version_minor": 0 - } - } - }, - "nbformat": 4, - "nbformat_minor": 1 -} \ No newline at end of file diff --git a/translations/ja/build/classical-feedforward-and-control-flow.ipynb b/translations/ja/build/classical-feedforward-and-control-flow.ipynb deleted file mode 100644 index f7f07e4c36..0000000000 --- a/translations/ja/build/classical-feedforward-and-control-flow.ipynb +++ /dev/null @@ -1,382 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# 古典的なフィードフォワードと制御フロー\n", - "\n", - "このガイドでは、古典的なフィードフォワードと制御フローを実行するために Qiskit で利用可能な機能について説明します。 これらの特徴は総称して「動的回路」と呼ばれることがあります。古典的なフィードフォーワードとは、回路の途中で量子ビットを測定し、測定結果に依存する追加の量子演算を実行することを指します。 Qiskit は古典的なフィードフォワードに 4 つの制御フロー構造体をサポートしており、それぞれ [`QuantumCircuit`](../api/qiskit/qiskit.circuit.QuantumCircuit) のメソッドとして実装されています。 以下は、構造体と対応するメソッドです。\n", - "\n", - "- If 文 - [`QuantumCircuit.if_test`](../api/qiskit/qiskit.circuit.QuantumCircuit#if_test)\n", - "- Switch 文 - [`QuantumCircuit.switch`](../api/qiskit/qiskit.circuit.QuantumCircuit#switch)\n", - "- For ループ - [`QuantumCircuit.for_loop`](../api/qiskit/qiskit.circuit.QuantumCircuit#for_loop)\n", - "- While ループ - [`QuantumCircuit.while_loop`](../api/qiskit/qiskit.circuit.QuantumCircuit#while_loop)\n", - "\n", - "これらの各メソッドは[コンテキストマネージャー](https://docs.python.org/3/reference/datamodel.html#with-statement-context-managers)を返し、通常は `with` 文で使用されます。 このガイドの残りの部分では、これらの各構造体とその使用方法について説明します。\n", - "\n", - "\n", - " 量子ハードウェアでの古典的なフィードフォワードと制御フロー演算には、プログラムに影響を与える可能性のある制限がいくつかあります。 詳細については、[古典的なフィードフォワードと制御フローに関するハードウェアの考慮事項と制限](/run/dynamic-circuits-considerations)をご覧ください。\n", - "\n", - "\n", - "## If 文\n", - "\n", - "if 文は、古典ビットまたはレジスターの値に基づいて、演算を条件的に実行するために使用します。\n", - "\n", - "以下の例では、量子ビットにアダマールゲートを適用して測定しています。 結果が 1 である場合は、量子ビットに 0 の状態に戻す効果のある X ゲートを適用します。 その後でもう一度、量子ビットを測定します。 測定結果は 100% の確率で 0 になります。" - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAbIAAACuCAYAAABTEIhIAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAcFUlEQVR4nO3deXQUZd728W91J509EEA2ySIhQWAgomFRtoCigvqIoCziIyIDMuPCKILCYQ7vjDIqio6ogwtqdB5FHGVGRgZEBwQR0LAoomAEZJWAQZYkZKG76/0jpiWr6U4nnWquzzk5pGu582u6q6+uu+6qMkzTNBEREbEoW6ALEBERqQsFmYiIWJqCTERELE1BJiIilqYgExERS1OQiYiIpSnIRETE0hRkIiJiaQoyERGxNAWZiIhYmoJMREQsTUEmIiKWpiATERFLU5CJiIilKchERMTSFGQiImJpCjIREbE0BZmIiFiagkxERCxNQSYiIpamIBMREUtTkImIiKUpyERExNIUZCIiYmkKMhERsTQFmYiIWJqCTERELE1BJiIilqYgExERS1OQiYiIpYUEugARqZlpwqHj8MMJKCwBlzvQFUlt2G0Q4YD4ZtCmaaCrCW4KMpFG6sRp+DQbtu6H3LxAVyN10boJpCVAv1SIDg90NcHHME3TDHQRIlLe8QJ49iM4lh/oSsSfWjeBOy+HmIhAVxJcdIxMpJFRiAWvnJPw3H8hrzDQlQQXdS2KNDLvbak6xOIioUUMhNgbvibxntMFR0/ByQqhlXMS/rMNRvUKTF3BSEEm0oiUOOGbQ+WntW4CY3pDQnMwjMDUJb5xm7D3R3hjQ/kvJ9sOwI09SgeESN3pv1GkEfnmByhx/fLYMGDyIEhsoRCzIpsB7VvCpIzy0wuKYffRgJQUlLRH1giZZvkPMytw2P37QWuaJqdPn/Zfg/UsMjISww//AXsqfLiltIKmkXVu1nJM0+S021obQaTNXu17oFWT0mH4B376Zdruo5Dauvr2rLYNgP+2A28pyBqhEhc8sDjQVXjnsVEQ5sd30+nTp4mOjvZfg/UsPz+fqKioOrdzuqT84/Pj6tykJZ12u4hb9WGgy/DK8UGDibJXvxGcH1c+yCq+1hVZbRsA/20H3lLXokgj4qywE+Lw45eD1atX07t3b2JiYjAMg8zMTP81Lr+q4mt5xhmYOoKR9shEgkxGRgabNm0iP/+X0QXHjx9n+PDhtGvXjnnz5hEZGclll10WwCpF/EdBJnIOyMrK4sSJE7z88ssMHz480OWI+JW6FkXOATk5OQA0a9YswJWI+J/2yESCXFJSEvv27QNg4MCBnum6Op0ECwWZSJD761//yvLly3nxxReZOXMmnTp1CnRJIn6lIBMJcsOGDePEiRO8+OKLDB48mIyMjECXJOJXOkYmIiKWpiATERFLU5CJiIilKchEasFms9GuXbtAlyESUAkJCYEuoUoa7PGzlStX8uSTT5KVlUVhYSHJycncfPPNTJ06FYfDEejyxAcOh4NLLrnE8xMfH09YWBglJSUcOXKEzZs3s3nzZrKysigoKKi2HZvNxsKFCxkyZAgZGRl8++23DfgsRHxns9lIS0sjPT2dSy65hPbt2xMeHo7T6eTYsWNs3bqVzZs389lnn3HixIka25o1axYPPvgg11xzDWvWrGmYJ1BLCjJg3rx53H///QAkJiaSkJDA9u3bmTlzJu+//z4fffQRERG6N7lVJCYmcscddzBhwgRatmxZ7XJjxowBIC8vj9dff50FCxbw9ddfl1umLMTGjx8PlH7h6dixI0VFRfX3BETqqEWLFkyYMIHJkyeTlJRU7XI33ngjAMXFxfzjH//gb3/7Gxs2bKi03KxZs3jooYcAWLZsGampqfzwww/1Ursvzvmuxc8//5xp06Z5LqK6d+9etm7dys6dO+nQoQPr169nxowZgS5TaiEyMpL58+ezZ88eZsyYUWOInS0mJoY777yT7du3s3jxYlq0aAFUDrEzZ85w7733KsSk0bLb7cyYMYMDBw7w6KOP1hhiZwsLC+OWW25h/fr1rF69mvbt23vmnR1iAH/84x8bVYiBgoyHHnoI0zQZP34848aN80xPTk7m5ZdfBmDBggUcPWq9u+Ad/OZjnr7FYPOyJ6pd5ulbDN574toGrKp+9OnTh23btnH33Xdjs5W+rUtKSnj77bf53e9+R8+ePYmNjSU0NJTo6GjS0tK4/fbbeeWVV8pdXHfkyJF8/fXXjBgxolKIjR49miVLlgTk+Xnj448/LvecAG677TZM0zwnzyFzvZLJmSuH4l6xstI80zRx3v8AZ675H8zv9zZ8cX7UqVMnNmzYwF/+8hfCw8MBcLvdLF++nD/84Q/069ePuLg4HA4HERERdOzYkZtvvpn58+eTm5vraScjI4Nt27Zx5513Vgqx++67j6eeeqrBn9uvCbogy83NZfr06XTo0IHw8HDi4+OZMmUKBQUFTJgwAcMwePbZZ4HSLqWVK0vf3BMnTqzUVv/+/UlNTaWkpISlS5c26POQ2rvppptYvXo1ycnJQOl9nGbPnk1CQgKjRo3i+eefJysri7y8PJxOJwUFBWzbto1XX32VCRMmcP7553PPPfdw7NgxAFq2bMk777xjyRCTymz/OxaSEnG98BLmj7nl5rmX/Atz21fY/vcWjAuSAlOgH/Tp04cNGzbQo0cPAFwuF/PnzyclJYWhQ4fy9NNPs27dOk6cOMGZM2coKioiOzubRYsWMWXKFNq1a8ett97K999/D0BUVBTPPvusJUIMgizIvvjiC7p27crjjz9OTk4OnTt35syZM8yfP59Ro0axY8cOAC666CIAtm7dSklJCWFhYaSnp1fZZt++fQHYuHFjgzwH8c4NN9zAokWLCA0NBWDdunWkpaXx5z//mSNHjtSqjVOnTvHMM8/QuXPnSmHlcrkUYhZnhIYSMm0qFBXhevKvnunmgYO4M1/HuLAjtptGBK7AOurZsycrVqygSZMmAHzzzTdcdtllTJkyhT179tSqjeLiYv7+97/TrVs3nnvuuUrzG3OIQRAFWW5uLtdddx05OTlMnTqVw4cPs2XLFnJycnjsscdYtmwZWVlZGIZBt27dAMjOzgZKBweEhFQ97qXsW37ZstJ4dO7cmUWLFmG32wFYuHAhAwYMYNeuXT61l5uby8mTJ8tNs9vtlbrpxHqMlA7YRo/E3LwF97LlmC4XrrlPgGlinzYV4+f3kNW0aNGCf//73547Sa9YsYIePXrw+eef+9Refn6+504JZ2vsx4WDJsjuueceDh48yF133cUTTzxBTEyMZ9706dNJS0vD6XSSlJREbGwsUHqzQYC4uOrvJ182r2xZK3KWnKYwL7fKH6uy2+1kZmYSFhYGQGZmJpMmTcLtdvvUXsWBHS7XL7dqXrhwoec9I9ZlGzsG2rfH9dJC3M89j/ltNrbbbsWIt+75gc8995xnUNPq1asZNmwYp0+f9rm9isfEysydO7fWA0cCISiCbMeOHZ7RZo888kiVy1xyySUApKWleaaVfcuo6Tyxsg/KwsJCf5Xb4Da+O5sXf3delT9Wde+993qOB+zYsYPJkyf7fFuSqkYnjhw5kg8//BCA+Ph45s6d65/CJWCMkBBCpt0HJWdwv78M4zddsA0fFuiyfHbDDTcwcuRIAI4dO8bo0aMpLi72ub2qBnY8//zzAERHR7Nw4cK6FVyPguI8skWLFuF2uxk7dqxnF7uisvPAzg6yspE9JSUl1bZd9sbw9Tyy9PT0KnfVa2IPjeCGh7/z6e9V5TcDJ5HS66Yq5/3z0cF++RupKSm4zvgv7Gvas3I4HJ7z/lwuF+PHj/d5A64qxMqOiW3atInt27cTExPD7bffzuzZs6s97paSkuIZLVkXvcYuIL7bdZ7HTz35JBM/erLO7VqN6XDAC5WP1dRZVBSEhoLTidEjHcMPr1mZ1JRUjBo+S9Ku+3+k9P2t5/Gbi97k/hunV7v8r/UunH1a0F133VWnkdXVjU6Mjo5myJAhJCYmcvnll9OjRw+ysrKqbacu20Hr1q3ZtGmTT+sGRZCtWrUKKH/TwIoOHjwIlA+y2nQb1qb7sSY5OTkcOnTIq3VCwiJ9+lvVado6hYTfXOHXNiv64fAPOIt979LwxvDhw2nVqhUA7777Lp999plP7dQUYgD79+/nmWeeYebMmYSGhvLb3/6WOXPmVNnW4cOHfaqhoop7/qfyTnn9/gkK4WGE+rlJ0zRxzXsKnGcgIR73m29hG9Afo20bv7T/w+EfoKj6L1TJFY61ni4o8Pm1TU9P9/RIbNmyhbfeesundqD6EIPSY2Z/+tOfeOWVVwD4/e9/79lequKv7cBbQRFkZXe/TUxMrHK+0+nk008/BcoHWWpqqmd9p9NZ5YCP3bt3l1vWW61bt/Z6HXuo9a4i0rZNW7/vkVW3UUyaNMnze1UjrGrj10KszAsvvMCDDz6IzWZj0qRJ1QZZmzZt/LJHVnHPPzYmlvPPP7/O7VqN6XDwo5/bdP9rKeaX27CNH4ft0t4477wb17ynsD/xGIZh1Ln9tm3a1rhHVrG3KDIqqsbXtr63Aag5xMq89dZbzJs3j7i4OEaPHs2UKVM4depUle3VZTvw5bOyTFAEWdl18qo7jrV48WJyc3OJiYnhggsu8Ezv3r07DoeD4uJiNm3aRO/evSutu27dOgB69erlU22+7CoXO+GBxT79uYDJ/u47wvz4biooKKiymzgkJIRLL70UgO+//561a9d63XZtQwxK98pWrVrFFVdcQUJCAgkJCezfv7/Sct999x1RUVFe11JR5ifwxVnN33vffQzJvK/O7VpNgctJ3KoP/daeeegQ7lcyMTqmYht5I4bdju2WsbhffQ33v5Ziv+H6Ov+N7O+yibJXvxEs2QRrz7pM581jbmbp0zdXu3x12wBAv379gNJDH77ujdX2ZOfCwkIWL17M5MmTCQ8PJz093dMLVpG/tgNvBcVgj7Ik37JlS6V5hw8fZtq0aQB069at3DevmJgYBg8uPUb00ksvVVp37dq1ZGdn43A4uP76ur/Rpe46d+7sObbpy7l93oRYmbP/TtmgIbEO0+3G9fiT4HZjn3afZ6i9beSNGKkpuF/JxPwhMF1ivoiOjvb0EG3bts2nUYreXrGjsW8DQRFkV1xRevznscceK3e+V1ZWFgMHDvRcfqXsROizzZo1C8MwePXVV3nttdc803fv3s2ECRMAuOOOO2p93T6pX927d/f8vnnzZq/W9SXEoPxe9cUXX+zV35TAc7+zBPObHdjG3YJx1m1IDLsd+/33gduFa95TPo96bWjdunXzdN95uw2A9yEGjX8bCIogmz59Os2bN+fAgQN06dKFrl27kpKSQs+ePWnfvj2DBg0Cyh8fK9O7d28effRRTNPktttuIykpie7du3PhhReya9cuevXqxaOPPtrQT0mq0axZM8/vVXXxVcfXEAM4cOCA53dfB/1IYJj79+N+7e8YnS7ENmJ4pflGUiK2W8ZifrUd97+scRm65s2be373ZhsA30IMGv82EBTHyNq1a8cnn3zCtGnTWLNmDXv37qVz58688MILTJw40XN1jqqCDH45YXrevHlkZWVx5MgRUlNTGTt2LFOnTvWcS2Y17TpnMOX/av6W+WvzG5u3336brVu3Eh4ezhdffFHr9ZKTkxkxovQyRN5eO3HXrl0MHTqUoqIirz84JLCMhARCl71X4zL2MaOwjxnVQBXV3aeffsqAAQOIiIjw6io2TZs2LTdIxJvLTuXn53PNNddQVFTUKC+gbphW2Z/2UX5+PrGxsRiGQV5eHpGR/h3aXh+sONjjsVE0yGCPuujduzfvv/8+kyZN8vu1E/Pz8+tlsMdVXWFItzo3azn+HuzREI4PGuzVYI/eyTC68vgyj/rYBpKTk1m9ejVPPfVUvVw70V/bgbeCYo+sJl9//TWmaZKammqJEJP6s3HjRi644ALy8vICXYpIQOzevZsuXboE3TYQFMfIavLVV18B1Xcryrkl2DZgEW8F4zagIBMREUtTkImIiKUF/TGy6s5AFxGR4BD0e2QiIhLcFGQiImJpCjIREbE0BZmIiFiagkxERCxNQSYiIpamIBMREUtTkImIiKUpyEQakRB7+cclzsDUIf5X8bUMDfrLUTQc/Vc2Qg576W1RrMRh//VlvBEZGUl+fr5f2nr8hbc4VXCa2KhIpt0xutppdeGvOytEOso/PviTX5q1nEibneODBge6DK9E2mreCCq+lhVf60rt+XEbgMrveX9vA+C/7cBbCrJGyDD8e28vKzIMw2/3NXKEheM448IRFu5ps6ppjUFyy/L3rNp1FI4XQFzjKbFBGIZR4729rCbnJBw8Xn5acsua1/HnNgCV3/ONdRvwhboWRRqRTm3L792aJixYBXuOgjuob4EbnNxu+C4HXlxdfnp02K8HmdRe8HzlEQkCjhDo0g627vtl2tFTMP9DiI2AFtGVj6NJ43TGBT/mQX5R5Xnd4sGu3Qi/UZCJNDLXXwwHjkFuhcMjpwpLf8Ta2jSBobqrlF/pO4FII9M0Eu4aXLr3JcGlTRO48wqIDg90JcFFe2QijVDTSLj7Slj/HXy5v3SwgFhX2zi4KAEu66AQqw8KMpFGqkkEDOlW+vPky0vIKyjEERbBpQOGs/7jJRQXFxIWFsFlGcMDXapUIcQGEQ5IaAbnxQa6muCmIBOxgKKiQgoLCwi1Q8aFsP6/hRQXFRAWUvpY5FymY2QiImJpCjIREbE0BZmIiFiagkxERCxNQSYiIpamIBMREUtTkImIiKUpyERExNIUZCIiYmkKMhERsTQFmYiIWJqCTERELE1BJiIilqYgExERS1OQiYiIpSnIRETE0hRkIiJiaQoyERGxtJBAFyDiT4dycikoLCo3zelyef7N/v5gtdMAHKEhJLVr3UDVivjf0WMnOHEqv9L0iu/56rYBw4DkxPOxGUbDFOwHCjIJKqcLi3jl7f/Uel7FaTdc1VdBJtZmmry+5AOcTleVsyu+5ys+7t+zGylJ7eq9TH9S16IElZQL2nHpxV18Wrdj+3h6pnXyc0UiDatliziGDOjl07qtWsQxuF+6nyuqfwoyCTpDMnpxXrMmXq0TGRHGiCEDMCzUnSJSnUsv6UKHxPO9WsduszHqukGEhlivo05BJkHHERrCyGsHetXHf8NV/YiNjqzHqkQajs0wuGnoAMLDHLVeZ3C/dNq2bF6PVdUfBdnPVq5cydVXX03z5s2JjIyka9euPPLII5SUlAS6NPFBfJuWDOpzca2Wvfg3KXTt2L6eKxJpWE1ioxl2Zd9aLZvUrjX9e3ar54rqj4IMmDdvHldddRUffPABMTExdOzYkZ07dzJz5kwGDhxIYWFhoEsUHwy8tDvxbc6rcZmmsdH8zxV9GqgikYaV1imZbhfW/CXN4Qhl5DUZ2GzWjQPrVu4nn3/+OdOmTcMwDDIzM9m7dy9bt25l586ddOjQgfXr1zNjxoxAlyk+sNtsjLx2IKEh9irnG8BN12R41f0iYiWGYTDsyr41dptfd/mlNGsa24BV+d85H2QPPfQQpmkyfvx4xo0b55menJzMyy+/DMCCBQs4evRooEqUOjivWVOGDuxd5bw+PbqSnNC2gSvy3uHDh1m1/J+8NG82D0+fTKtWrXjxyT/z1eYNnFHXt/yKyIhwbhwyoMp5nTokkt61YwNX5H9BG2Rut5t33nmHYcOG0bZtW8LCwmjbti2DBg3i6aefpqSkhLy8PFauXAnAxIkTK7XRv39/UlNTKSkpYenSpQ39FMRPenfvTOoF5c+LadUijqv69whQRbXjdruZNWsWCQkJ/HfZu/z0Yw6Fp/M5evQo+/Zk859/ZDL3j/ewfPnyQJcqjVxq+3guvbhzuWlRkeGMuLp/UIzUDcogO3r0KIMGDeKmm27ivffeIzQ0lIsuuojQ0FBWr17NjBkzsNvtbN26lZKSEsLCwkhPr/rcib59Sw+Wbty4sSGfgviRYRjcOGQAkeFhwM/DjK8d2KiHGZumyV133cWcOXNwOp3VLne6IJ/rrruO9957rwGrEysaktGbFmedljLi6v5ER0UEsCL/CbogKygoYOjQoaxZs4YBAwbw5Zdfsm/fPj777DP27dvH9u3befDBB7Hb7WRnZwOQmJhISDUfasnJyQCeZcWaYmOiGHZVP+DnYcatWgS4opq9+eabLFiwoFbLulwuxowZw6FDh+q5KrEyR2gIo34+LSW9W0c6pyQFuiS/abxfSX00depUNm/eTN++fVm5ciUOR/kD+V26dKFLl9IrPxw/fhyAuLi4atsrm1e2rLeeeW0Jefka9dhYhDkcfLppO+s3fx3oUmr0t7l/9Gr5wsJCbp14N5dfM6KeKpJg4XCE8u3uA/zluTcCXUo5MdER3D1uuE/rBlWQ7dy5k4ULFxIWFsYbb7xRKcQqKioqvbhsTcuFhZV2R/k6BD8vv5BT+QU+rSv1o7iRD5A4fGAvh/Z/7/V6n69bxcV9B2O3Vz1KU6RMUXHj3ga8FVRB9uabb+Jyubj11ltJSEj41eXDw8MBajzpubi4GICICN/6kmOig6MPWhrOjtzDPq2Xn3cSw1VCbJPG3W0qUpW6fFYGVZB99NFHAAwdOrRWy9em27A23Y818XVXWc5d84pyWLrYt3XH33glnTrpwsdybgmqIDtw4AAA7dvX7nJDqampAOzbtw+n01nlgI/du3eXW9ZbOkYm3srassPndV/753+JXbXFj9WINAwdI/tZQUHpsajaHs/q3r07DoeD4uJiNm3aRO/elU+cXbduHQC9evl2WwQdIxNvtUnogGEYmKbp1Xot28Rj2kL1fpNzTlAFWXx8PMePH2f9+vX06fPr18+LiYlh8ODBLFu2jJdeeqlSkK1du5bs7GwcDgfXX3+9TzXpGJl4KzY6igu7XsyObZu9Wu+yjCtpEhNdT1WJ1K86fVaaQWT27NkmYDZp0sT84IMPys07ePCgOWfOHDM7O7vc9A0bNpiGYZiGYZiZmZme6bt27TI7dOhgAubdd9/dIPWLlNmwYYMZEhJiArX6ad++vZmfnx/oskUCwjBNL/svGrH8/HwGDBjAli2lxwhat25NfHw8P/30E3v27MEwDE6dOkVUVFS59ebOncsDDzwAlJ4cHRcXx/bt23E6nfTq1YtVq1YRGal7VUnDeuONNxg3bhwuV9W3rC/Tpk0bPv74Y5+P44pYXVBd2SM6OppPPvmEhx9+mLS0NE6ePMn27dtxu90MGzaM1157rVKIAUyfPp0VK1YwePBgTp48yc6dO0lNTWXOnDmsWbNGISYBMXbsWJYtW0bXrl2rnG8YBtdeey0bN25UiMk5Laj2yESCkWmarF+/nkWLFnHkyBFCQ0Pp0KEDt99+O0lJSYEuTyTgFGQiImJpQdW1KCIi5x4FmYiIWJqCTERELE1BJiIilqYgExERS1OQiYiIpSnIRETE0hRkIiJiaQoyERGxNAWZiIhYmoJMREQsTUEmIiKWpiATERFLU5CJiIilKchERMTSFGQiImJpCjIREbE0BZmIiFiagkxERCxNQSYiIpamIBMREUtTkImIiKUpyERExNIUZCIiYmkKMhERsTQFmYiIWJqCTERELE1BJiIilqYgExERS1OQiYiIpSnIRETE0hRkIiJiaQoyERGxNAWZiIhYmoJMREQsTUEmIiKWpiATERFLU5CJiIilKchERMTSFGQiImJp/x895KN8ddIKqwAAAABJRU5ErkJggg==", - "text/plain": [ - "
" - ] - }, - "execution_count": 1, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "from qiskit.circuit import QuantumCircuit, QuantumRegister, ClassicalRegister\n", - "\n", - "qubits = QuantumRegister(1)\n", - "clbits = ClassicalRegister(1)\n", - "circuit = QuantumCircuit(qubits, clbits)\n", - "(q0,) = qubits\n", - "(c0,) = clbits\n", - "\n", - "circuit.h(q0)\n", - "circuit.measure(q0, c0)\n", - "with circuit.if_test((c0, 1)):\n", - " circuit.x(q0)\n", - "circuit.measure(q0, c0)\n", - "circuit.draw(\"mpl\")\n", - "\n", - "# example output counts: {'0': 1024}" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "`with` 文には、それ自体がコンテキストマネージャーであるアサインターゲットを指定できます。このコンテキストマネージャーは格納されて、後で if ブロックの内容が*実行されない*場合に実行される else ブロックを作成するために使用されます。\n", - "\n", - "以下の例では、2 つの量子ビットと 2 つの古典ビットを使ってレジスターを初期化します。 最初の量子ビットにアダマールゲートを適用して測定します。 結果が 1 であれば、2 つ目の量子ビットにアダマールゲートを適用しますが、そうでない場合は、2 つ目の量子ビットに X ゲートを適用します。 最後に、2 つ目の量子ビットも測定します。" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkEAAAEvCAYAAABCEhUaAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAAArK0lEQVR4nO3deXwV9b3/8ffJvoMhVBIDREgoECDUABJkCxexDauhUXlAWbRwlYvaVqHiUuRx3SgooFYLSoUrCvwE2kii94HKIk0vGKECEpB9SUiEsGYj2zm/PyinZIPkcE4mOfN6Ph55kJn5znc+ISc573znOzMWm81mEwAAgMl4GF0AAACAEQhBAADAlAhBAADAlAhBAADAlAhBAADAlAhBAADAlAhBAADAlAhBAADAlAhBAADAlAhBAADAlAhBAADAlAhBAADAlAhBAADAlAhBAADAlAhBAADAlAhBAADAlAhBAADAlAhBAADAlAhBAADAlAhBAADAlAhBAADAlAhBAADAlAhBAADAlAhBAADAlAhBAADAlAhBAADAlAhBAADAlAhBAADAlAhBAADAlAhBAADAlAhBAADAlAhBAADAlAhBAADAlAhBAADAlAhBAADAlAhBAADAlAhBAADAlLyMLgDOY7NJZZVGV9EwPp6SxeK8/mw2m4qLi53XYSMICAiQxZn/CQCAeiEEuZGySun3a4yuomHmPSj5OvFVWFxcrKCgIOd12AgKCwsVGBhodBkAYDqcDgMAAKZECAIAAKZECAIAAKZECAIAAKZECAIAAKZECAIAAKZECAIAAKZECAIAAKZECAIAAKZECAIAAKZECAJczMODHzMAaIp4dlg1x48f11dffaXMzExlZmZq7969Ki8v16RJk7R8+XKjy0MjsVgsio6OVnx8vKKjo+Xn56fKykpduHBB3333nXbt2qXLly/ftJ8BAwZoyZIlGjFihI4ePdoIlQMA6osQVM2iRYu0ePFio8uAQXr16qXp06crOTlZLVq0uGHb3bt367333tOHH35YayAaMGCAPv/8cwUGBmrz5s265557lJ2d7arSAQANxDh9NWFhYUpKStKcOXO0YcMGTZ8+3eiS0Aj69OmjHTt2KDMzU1OmTLlpAJKkuLg4vf3228rJydG8efPk7+9v33Z9AJKkvXv36uzZsy6rHwDQcIwEVfP8889XWd6+fbtBlRgnO2uL1r2SqP7j5it++NO1tlk8waKonsM1+um0Rq7OuXx9fTV37lw9/fTT8vT0tK+/ePGitmzZop07d2rv3r0qKCiQp6enIiMjFR8fr7vvvlu9evWSJAUFBWnWrFkaM2aMpkyZIk9PzyoBKD09XWPHjlVpaakhXyMAoHZuH4Ly8/P1xz/+UevXr1d2drZat26t5ORkvfLKK3riiSf0l7/8RW+99ZZmzJhhdKloZK1atdJnn32mPn362Nft2bNHixcv1urVq1VcXFzrfh988IEkKTY2Vo899pgeeeQR+fn5qVOnTtq2bZvKy8vl6+sriQAEAE2ZW4eg7777Tr/4xS+Ul5enwMBAde3aVadPn9abb76pI0eO6Pz585Kknj17GlsoGt1tt92mTZs2qUePHpKk0tJSvfjii5o/f74qKyvr1ce+ffs0Y8YMvfXWW/rggw+UkJAgDw8PAhAANBNuOycoPz9fI0eOVF5enp566inl5uZq165dysvL07x585Senq7MzExZLBb7GyHMwcPDQ6mpqfbv++nTp9WnTx+99tpr9Q5A1/vhhx80e/ZslZWVVVm/bNkyAhAANGFuG4KeeOIJZWdna8aMGVqwYIGCg4Pt22bNmqW4uDhVVFQoKipKISEhBlbadFWUFaukIL/Wj+bst7/9rQYMGCBJysvL06BBg7Rnzx6H+xswYIDS09Pl4+NTZf0777yj0NDQW6oVAOA6bnk6bP/+/VqzZo3CwsL06quv1tomPj5eu3fvVlxcnFOOeezYMT355JPavHmzvLy8NHLkSC1cuFCtWrVySv9G2L5ujravm2N0GU7VqVMnvfTSS5Ikq9WqlJQUHT582OH+ql8Flp6eLkkaPny42rRpozfffFMTJky49cIBAE7nliFo1apVslqtGj9+vIKCgmptc+1yZmeEoIKCAiUmJio0NFSrVq1SSUmJZs2apREjRigjI8PhOwb36tVLeXl59W7v6e2v+1865NCxatMtcZpi7k6pddtfX7vXKcfoFBOjyvISp/QlXQ02N/KHP/xBfn5+kqTFixfr73//u8PHqi0AjR07VqGhodq3b59uu+02jR8/Xq+++qr27dtXZz8xMTHcVRoAHNSmTRt9++23Du3rliFo06ZNkqTExMQ621y7aZ0zQtDSpUuVk5Ojr7/+Wu3atZMkRUZGql+/fvr00081ZswYh/rNy8tTTk5Ovdt7+QY4dJy6tGwTo3bdhjq1z+pO555WRWntV2E5W+vWrZWScjXUnTt3rsbtEBqirgBUWlqq3NxczZ07V4sWLZIkPfroo3r88cfr7Cs3N9fhOgAAjnPLEHTixAlJUvv27WvdXlFRoYyMDEnOCUFpaWnq37+/PQBJUkJCgjp06KANGzY4HILatGnToPae3v43b9TERIRHOH0kqK5Q8fDDD9vn7SxbtqzOS+Bv5kYB6Jrly5fr5ZdfVmBgoCZOnKhnnnlGRUVFtfYXHh7OSBAAOKih75XXc8sQdO3NpqSk9jfXNWvWKD8/X8HBwbrzzjtv+XhZWVn2EYbrxcbGKisry+F+Gzq8V1oh/X6Nw4czxMFDh+TrxFdhUVFRnadA77vvPvvnS5Yscaj/+gQgSbp06ZJWr16tRx55RCEhIerbt6+++uqrWvs8dOiQvT8AQONxyz8/r6XCXbt21diWm5urmTNnSpJ69Oghi8Vyy8e7cOGCWrZsWWN9aGio/V5EMJbFYtFdd90l6eqpUEceZlrfAHTN1q1b7Z/Hx8c7UDUAwJXcMgQNHXp1Hsu8efN08OBB+/rMzEwlJiYqP//qJd7cJNE8OnToYH8e2M6dOxu8f0MDUPXjXHvEBgCg6XDLEDRr1iy1atVKp06dUmxsrLp3766YmBj16dNHHTp00JAhQyTVPh8oIyNDYWFh9o833nhDkrR69eoq66/NKZKu3n344sWLNfo6f/4894lpIiIiIuyfXx+M68ORAFT9OOHh4Q06JgDA9dxyTlBkZKS2bdummTNnauvWrTp+/Li6du2qJUuWaOrUqerYsaOk2kNQeXm5zp07V2N9aWlplTe98vJy++ddunSpde5PVlaWBg4c6IwvqVFFdh2sJ1fabtjmZtubmpMnT+qFF16Qn5+ftm3bVu/9AgICtHbtWocehlpRUaHXXntNpaWlOnbsmMO1AwBcw2Kz2ZrXu9ktKiwsVEhIiCwWiwoKChQQcOuXlS9YsEDPPvusjh49qsjISEnSjh071LdvX61fv17333//LR+jPprjxOh5D6rRJkY7avDgwUpPT9fmzZtd8iywwsJCJkYDgAHc8nTYjezbt082m00xMTFOCUCSNG3aNIWHh2v06NFKS0vT2rVrNW7cOPXp00ejR492yjFgnC1btmjAgAE8DBUA3IzpQtDevXslOef+QNeEhIRo06ZNCg8P10MPPaRf//rX6tevn9LS0rj/i5vYtWsXAQgA3Ixbzgm6EVeEIEnq2LGj0tLSnNonAABwHdMNU7gqBAEAgObFdCNB154rBgAAzM10I0EAAAASIQgAAJgUIQgAAJgSIQgAAJgSIQgAAJgSIQgAAJgSIQgAAJgSIQgAAJgSIQgAAJiSxWaz2YwuAs5hs0lllUZX0TA+npLF4rz+bDabiouLndbf/CWrdbmoWCGBAZr5nw/VWHaGgIAAWZz5nwAAqBfTPTbDnVkskq/Jv6MWi0WBgYFO68/H108+5ZXy8fVTYGBgjWUAQPPF6TAAAGBKhCAAAGBKhCAAAGBKhCAAAGBKhCAAAGBKhCAAAGBKhCAAAGBKhCAAAGBKhCAAAGBKhCAAAGBKJn/IAgC4H6tNKi6tui7AV/LgEXVAFYQgwA3ZbFLeJem7k9LRM1JxmVTRzB6uC8dZrdLZwqrrWgdJHoz9Nwu+3lKQr9Q5QoprK7UIMLoi90UIAtzMsbPS6u3Sj5eNrgRNSfVQhKYv67T012+l6NulCfdILfyNrsj98HcB4EaOnZX+vIkABLgLm6RDP0p/+lK6VGJ0Ne6HEAS4iZwLVwNQaYXRlQBwtjOXrwahK+VGV+JeOB0GuIm/H6wZgFr4Sz3bSxEtJR8viXmx5nClXFq9o+q6h+6W/LyNqQf1Z7Vd/Tk+8qO0N7vqz/SZy9L32VKvO42rz90QggA3UGmV9pyquq5rhPTwQMnL05iaYJzCK5KqhaBukVKQnyHlwAEJ0dLFYumtL6Rz183n+u4kIciZOB0GuIGjZ6SiapdEJ/ciAAHNWcsA6b7uVdcdOC2VckrMaRgJAtzAmYKqy+EtpLBgY2oxms0mlTWj2wH4eEoWzlM6jc1mU7G1Gb0AJAV4eMpSx4ugW2TV5QqrdKFYatOi7v5sNpuKi4udWKHrBQQE1Pl/4EqEIMANXCmruuzM+4ps3rxZs2fP1r59+1RYWKgPPvhAkydPdt4BnKysUvr9GqOrqL95D0q+zeQ3scVi0aRJk7R8+XKjS6lTsbVSt236wugyGuTCkHsV6Fn7iyDA5+rr4/q5QSVltTa1Ky4uVlBQkBMrdL3CwkIFBgY2+nE5HQa4Aaut6rKnAz/ZgwcPrvGL88KFC0pOTlZRUZFef/11ffjhhxo4cOAtVIqmZsuWLbJYLHV+eHk1k4Tmxqr/PFf/eYfjeHUDqFNmZqYuXryoZcuWKTk52ehy4ELjxo1TUlJSjfUe3GYabowQBKBOeXl5kqTQ0FCDK4Gr3XXXXZowYYLRZQCNiogPoFZRUVGaNGmSJCkxMdF+egS4Xnp6ugYNGqSwsDD5+/urXbt2Sk5O1sGDB6u0y83N1WOPPaZ27drJx8dHERERmjZtms6cOWNQ5QAjQQDqsGjRIn3++edaunSpnn32WXXp0sXokuBCxcXFys/Pr7Hex8dHISEhte6zdetWjRo1St26ddPs2bPVsmVLnT59Wl9++aUOHz6sTp06SZJOnjyphIQElZWV6ZFHHlHHjh11+PBhvfvuu9q8ebO+/fZbtWhxg8udABchBAGo1ZgxY3Tx4kUtXbpU9957rwYPHmx0SXChOXPmaM6cOTXWDx8+XGlpabXuk5qaKqvVqi+++EI/+clP7OtfeOGFKu0ef/xxlZeX65///KciI/99zXdKSor69u2rhQsX6sUXX3TOFwI0ACEIAKBp06YpJSWlxvrWrVvXuc+10Zt169Zp6tSptV5JdunSJaWlpWnKlCny8/OrMtoUFRWl6Ohobdy4kRAEQxCCAACKiYnR0KFDG7TPjBkzlJqaqunTp+v3v/+9+vfvr5///OcaN26cPTz98MMPslqtWrZsmZYtW1ZrPx06dLjl+gFHEIIAAA5p1aqVMjMztW3bNn3xxRf6+uuv9dvf/lZz5szRZ599poSEBNlsV29qM2HCBPtE++r8/f0bs2zAjhAEAHCYp6enBg8ebJ8ztmfPHsXHx+ull15Senq6oqOjZbFYVFZW1uCRJsDVuES+muPHj2vZsmV69NFHFR8fLx8fH1kslib9mAAAMEJtV5N17txZ/v7+On/+vKSro0VJSUlav369tm/fXqO9zWbT2bNnXV4rHOfl5aXIyEhFR0erffv2DX4kR+vWrfXkk0+6qLpbw0hQNYsWLdLixYuNLgMAGtWuXbu0cuXKWreNGTOm1je+qVOnKjs7W8OGDVP79u1VUlKiNWvWqKCgQBMnTrS3e/fdd9W/f38NHDhQEydO1M9+9jNZrVYdPXpUqampmjhxIhOjmxCLxaJhw4Zp9OjRio+PV48ePeTn51elzaFDh7Rz505t2bJFH3/8sQoKCmrtq3Xr1tq0aZO6deum8PBwPfPMM43xJdQbIaiasLAwJSUlqXfv3urVq5c+//xzvfPOO0aXBQAutWrVKq1atarWbYcOHVJ0dHSN9b/61a+0fPlyrVixQmfPnlVISIi6du2qtWvXauzYsfZ2bdu21c6dOzVv3jylpqZq5cqV8vPzU9u2bTVy5Eg98MADLvu6UH/+/v6aPn26HnvsMXXs2PGGbWNiYhQTE6OHHnpICxYs0IcffqjXX39dR44csbe5PgBJVx/NMn/+fJ07d86lX0dDEIKqef7556ss1zZ8C7ijLVu21Fg3efJk054Kzs7aonWvJKr/uPmKH/50rW0WT7AoqudwjX669vvoNAeDBw+2T16+mertkpOT6/1MubCwMM2fP1/z589vcI1GqfzLcllX/z95/u438vj5sCrbbDabKmc+I9v+/fJ6+01Z7owypkgn6devnz744AP7DS6v98MPP2jfvn0qKiqSt7e3oqKiFBcXZ5/QHhQUpMcee0yTJ0/Ws88+qzfffFOtWrWqEoBOnjypxMTEJhWAJBPMCcrPz9esWbMUHR1t/8vjySefVFFRkR555BFZLBa9/fbbRpcJAGhiPH41Xopqr8ol78l2tur8J+v6v8m2Z688fjWh2Qegl156Sdu2basSgDZu3Kjk5GSFhISoc+fOGjt2rCZOnKhx48YpISFBISEh6t27t9599137qTB/f38tXLhQGRkZ2rp1a40AdPToUUO+vhtx6xD03XffqXv37po/f77y8vLUtWtXlZeX680339SDDz6o/fv3S5J69uxpbKEAgCbH4u0tr5lPSVeuqPKNRfb1tlPZsi7/H1k6/1QeKWPr7qCJs1gsWrp0qZ577jl5eFyNA//3f/+n2NhY3XffffrrX/9a51yfiooKffvtt5o+fbruuOOOKnNp+/bta3/MTlMOQJIbh6D8/HyNHDlSeXl5euqpp5Sbm6tdu3YpLy9P8+bNU3p6ujIzM2WxWNSjRw+jywUANEGWmGh5PPSAbDt3yZr+uWyVlar84wLJZpPnzKdk8fQ0ukSHLViwQFOnTpUkVVZWatasWerfv7+ysrIa1E9BQYF+85vfaNSoUSovL7evLysr06hRo5psAJLcOAQ98cQTys7O1owZM7RgwQIFBwfbt82aNUtxcXGqqKhQVFRUnQ8HBICKsmKVFOTX+gFz8Bg/TurQQZXvvS/rn/4s2w8H5TF5oixtI2++cxOVlJSk3/3ud5KuBqBrk5atVqtD/bVu3VqvvPKKvL297et8fHya7KXx17jlxOj9+/drzZo1CgsL06uvvlprm/j4eO3evVtxcXG3fLzs7Gy99tpr+uabb7R7926VlZXVe6IhgKZt+7o52r6u5oNFYR4WLy95zfydKh7/jaxp6bJ0i5VH8hijy3JYy5Yt9d5779mXZ8yYoU8++cTh/qpfBXb69GkFBwcrODhYU6ZM0dq1a/XZZ5/dct2u4JYhaNWqVbJarRo/fnydN3W6NqvdGSHo8OHDWrdunXr37i0fHx9lZGTccp8AmoZuidMUc3fNB4tK0l9fu7eRq4FhAgMlb2+pokKW3r1k8Wi+J1Lmzp2riIgISdJnn32mP//5zw73VT0AXZsDNHjwYPuz4t5991117NhRFRUVt168k7llCNq0aZMkKTExsc422dnZkpwTggYOHKjc3FxJ0osvvui0ENSrVy/l5eU5pS845v4pv1FgUIhy83IVGRlZY7mp+Ong/1L3X8y2L3/xxUbNnfCwgRUZx9PbX/e/dMhp/bVsE6N23Vz3uIdOMTGqLC9xap8+gaEa9Yc9Vdb1iOuhsqLzTj1OU2Tz8ZGW/Mm5fdpsqnx9oVRRLrVrK+vHq+UxaKAsEeFO6b9TTCdZysrq3D5qzvfyCWhpXx6bnKz849/U2f5Gp7SCgoI0ZcoUSVJRUZGmTZvW8IL/pa4AdPToUR09elTjxo3T0KFD1a5dO40aNUrr16+vs6+YmBj75OyGatOmjb799luH9nXLEHTixAlJUvv27WvdXlFRYQ8qzghBjn7jbiYvL085OTku6Rv1Y62stP+bk5NTY7mpCL98ucrylStXmlR9jcnLN8DoEhrkdO5pVZQWO7VP/+DSGuvycnPNMY/Jz1feN2/VINa/fSrb7j3ymDJJHgl9VfFfj6vy9YXyXDBPFovllvs/nXtaulLze2Y/frVQczb/rE47+PM9YcIE+xzZlStXOvx74kYB6Jp58+bZnxc3ffr0G4agawMJjc0tQ1BRUZEkqaSk9r+u1qxZo/z8fAUHB+vOO+9szNIapE2bNkaXYHoe/7ryw8PTU3fccUeN5aai+uR+Pz+/JlVfY/L0bl5PJI8Ij3DJSFB1bcLDVRbi69TjNEU2Hx8580lktpwcWf+yXJafdpLHA7+UxdNTHhPGy/rBCln/9qk87x99y8eICI+44UhQ9T+0W4e1lqWw7p9vq9VaZ6gYN26c/XNHn4ZQnwAkSV999ZUOHjyoTp066T/+4z90++2368cff6y1z/Dw8FsaCXKUW4agNm3a6MKFC9q1a5cSEhKqbMvNzdXMmTMlST169HBKincVR4f34Dyv/OkjXS4sUnibcGVnZ9dYbiq++F5K3/3v5XvvHab/93LTqa8xlVZIv19jdBX1d/DQIfk6+Tdx4RXp+XVV1+3ZvUdBfrW3dydFlRW6bdMXTunLZrWqcv4bktUqz5m/s18O7/HAL2XL+Iesf1kuj7v73PJpsYOHDirQs+4XwbOfSMXXZaR169er40/q7q+oqKjW+bAeHh6Kj4+XJB07dkx79uyp0eZm6huApKunEVNTU+3vufHx8XVOkD506JACAwMbXM+tar4zu27g2vDbvHnzdPDgQfv6zMxMJSYm2p98zE0SAQB1sa5dL1vWfnlMmiBLu3b29RZPT3k+/TvJWqnK1xc2m6uBf/rTn9qDxs6dOxu8f0MC0DXXH+daAGtK3DIEzZo1S61atdKpU6cUGxur7t27KyYmRn369FGHDh00ZMgQSbXPB8rIyFBYWJj944033pAkrV69usp6rgADAPdlO3lS1hUfytKlszzG1nw+miWqvTwmjJdt7/ey/u1TAypsuM6dO9s/37179w1a1uRIAJKuPrnhmmt3kW5K3PJ0WGRkpLZt26aZM2dq69atOn78uLp27aolS5Zo6tSp9qfj1haCysvLa33AW2lpqUpLS6u0A+C+IrsO1pMrb/wX/s22o/mytGsn7/TUG7bxHPegPMc92EgV3bry8nIdPXpU/v7+DbryODQ01KEAJEnnz5/XmTNnVFJSogsXLjhcu6u4ZQiSribOtLSaT3YuLCzU8ePH5eHhYf+GXq8hT1QGAKC5SEtLq/V98WYuX76sAwcOqFu3bg1+FtjZs2d1++23N/iYjcVtQ1Bd9u3bJ5vNpk6dOikgwHmX0q5du1aS7M9cubYcFRWlXr16Oe04AAA0poqKCo0bN055eXlauHBhk34WWEOZLgTt3btXknPuD3S9lJSUWpcnTZqk5cuXO/VYAAA0poqKCj3++ONGl+F0hCAn4RQaAADNi1teHXYjrgpBAACgeTHdSNC154oBAABzM91IEAAAgEQIAgAAJkUIAgAApkQIAgAApkQIAgAApkQIAgAApkQIAgAApkQIAgAApkQIAtyAxVJ1mae4AO7DWu3n2VJ7MziAEAS4Ad9q934vKjWmDgDOVVEplZZXXefnbUwt7sh0j80A3FHLgKrLp85LhVekID9j6jGSj6c070Gjq6g/H0+jK3AvAR6eujDkXqPLaJAAj7pfBAdypeoDuyH+N+kvIECFhYW3Xti/zF+yWpeLihUSGKCZ//lQjWVnCAgIuHkjFyAEAW6gU7jk7SmVV15dttqkr7KkUT+rearM3VksNUfGYB4Wi0WBnu7xAiivlDbvr7quQ+ub/3FjsVgUGBjotDp8fP3kU14pH18/BQYG1lhuztzjlQKYnK+X1PUOaffJf6/bvF86WyDd1V66I/TqiIPZApFZ1XY69FKJVGFt/FrQMDabVFImHTkj7TgiZV+ouj2unTF1uStCEOAm+nasGoIk6fvsqx/A/M+MrgC3ys9b6kkIciomRgNuokuE9ODdRlcBwBX8vKVHh0gtjJk647YYCQLcSEL01X8/+abmZbUAmqcAH2laohQVZnQl7ocQBLiZhGipR1tp7ynpnyelY2ekskqjqwLQEAE+V0d3e7aTOkdcvfABzkcIAtxQoK/UN1rKzFivloUlCgr017TxyVry0XoVFl1d/s/xyUaXCaAW3p6SJ5NVGgUhCHBjBYUlulxYJOnqnIKiohIVFBbJIm64BgBkTQAAYEqEIAAAYEqEIAAAYEqEIAAAYEqEIAAAYEqEIAAAYEqEIAAAYEqEIAAAYEqEIAAAYEqEIAAAYEqEIAAAYEqEIAAAYEqEIAAAYEqEIAAAYEqEIAAAYEqEIAAAYEqEIAAAYEqEIAAAYEpeRhcANAVHTp7Wjn9m1VhfcuWK/d+PU7+ssXxNgL+fRg7tJ08P/q4AgOaCEARIirqjjT7fvEPZeWdr3V5eUak9B47WuTx+9FACEAA0M/zWBiR5enrowRGJ8vbybPC+P4uNVvfOHVxQFQDAlQhBwL+0btVSvxh8d4P2aREcqFFD73FRRQAAVyIEAdfpe1esYqIi690+Zfhg+fv5urAiAICrEIKqOX78uJYtW6ZHH31U8fHx8vHxkcVi0eTJk40uDY3Aw2LRL5MG1SvY9O/VXdHt72iEqgAArsDE6GoWLVqkxYsXG10GDNQiOFBjhvXXqk+/qrPNT1rdpvsG9W7EqgAAzkYIqiYsLExJSUnq3bu3evXqpc8//1zvvPOO0WWhkcV16aisQ8e1e/+RGts8PTz04MhEeXs1jx+fs3k5Ol1SpA0bQpRz6piCWrY2uiQAaBKax2/xRvT8889XWd6+fbtBlcBoo4f117FTebpcWFRl/dD+8brj9jCDqqqf8vJyrVy5Uu/88b+Vc/KYJOnDJa9LksJuj1DCwHtVPOV+BQQEGFkmABjKNHOCrFar1q5dqzFjxigiIkK+vr6KiIjQkCFDtHjxYpWVlRldIpqYAD9fpQwfVGVd+ztu18C74wyqqH4KCws1YsQIPfzww/YAdL38H09rwycrlJiYqLNna78vEgCYgSlC0JkzZzRkyBClpKQoNTVV3t7e6tmzp7y9vbV582bNnj1bnp4Nvz8M3F9MVKT6xXeTJPl4e+mB4YlN+qaIFRUVSklJ0caNG2/a9ptvvtHw4cNVXFzcCJUBQNPTdH+bO0lRUZGSkpK0detWDRo0SLt379aJEye0Y8cOnThxQt9//72eeeYZQhDq9ItBfdQ6tKVGDElQq9tCjC7nhtauXav//d//rXf7zMxMLV261IUVAUDT5fZzgp566int3LlT/fv318aNG+Xj41Nle2xsrGJjYw2q7sbeWrFeBYUlRpcBXT2d+sXfd+rLjF1Gl3JD7y387wbv8/Kr81TkFSaLxeKCigA0dwVFxfZ/X/nTRzWWjRYc5K/HJyU7tK9bh6ADBw7o/fffl6+vrz766KMaAcjZjh07pieffFKbN2+Wl5eXRo4cqYULF6pVq1YO9VdQWFJjUi5Ql4vnzur4kR8avF/+mTwdyNqrO9p3dEFVANyFzWar8p5Ufbk5cusQ9PHHH6uyslITJ05Uu3btXHqsgoICJSYmKjQ0VKtWrVJJSYlmzZqlESNGKCMjQx4OzCMJDvJ3QaVwV+dyTzq8b/mVYoUEBTqxGgDuoqCoWDabTRaLRcGBATWWjXYr75VuHYK+/PJLSVJSUpLLj7V06VLl5OTo66+/tgeuyMhI9evXT59++qnGjBnT4D4dHd6DOX399dd6f/HLDu2b/PMBeuCBB5xcEQB38MqfPtLlwiIFBwbo2f8aX2O5OXPrEHTq1ClJUocOrn/Cd1pamvr3719lxCkhIUEdOnTQhg0bHApBzAlCQ5zPP+Pwvpt2ZOnwWePP7QNoepgT1EwVFV09V1lS4vogkZWVpZSUlBrrY2NjlZWV5VCfzAlCQ3j5BartnZ106tjBBu0X2vp2tWgdzmsNwA0xJ6iZadu2rS5cuKB//OMfuueee1x6rAsXLqhly5Y11oeGhuqHHxo+WVViThAa7p7EYVrdwBCUMGiYWgQHuagiAM0dc4Kaqfvvv1979uzRyy+/rLi4OA0bNsy+LScnRytWrFBKSopiYmIMrLJuzAlCQ1VUPKiCH48pPT29Xu379u2rT/5nifz9CdwAaufOc4Lc+maJTz/9tO666y5dunRJ9913n8LDw9WnTx9FR0erbdu2euGFFxQREVFln4yMDIWFhdk/3njjDUnS6tWrq6zPyMiost9tt92mixcv1qjh/PnzCg0NddnXCFzPy8tLa9asqdfFAP369VNaWhoBCIBpuXUICgoK0rZt2/TSSy8pLi5Oly5d0vfffy+r1aoxY8ZoxYoVCgysellweXm5zp07Z/+4Np+otLS0yvry8vIq+3Xp0qXWuT9ZWVnq0qWL675IoJrAwEClpqZq5cqVSkhIqLE9Li5OS5cu1VdffeXwPawAwB249ekwSQoICNBzzz2n5557rl7tBw8eLJvN1uDjjBgxQs8++6yys7MVGRkpSdqxY4eOHDmi+fPnN7g/4FZ4eXlp/PjxGj9+vA4cOKATJ07IZrMpIiJC3bt35+7QACAThKDGMm3aNL311lsaPXq05s6dqytXrmjWrFnq06ePRo8ebXR5MLHOnTurc+fORpcBAE2OW58Oa0whISHatGmTwsPD9dBDD+nXv/61fc6FI3eLBgAArsVIkBN17NhRaWlpRpcBAADqgSEKAABgSoQgAABgSoQgAABgSoQgAABgSoQgAABgSoQgAABgSoQgAABgSoQgAABgSoQgAABgSoQgAABgSoQgAABgSoQgAABgSoQgAABgSoQgAABgSoQgAABgSoQgAABgSoQgAABgSoQgAABgSoQgAABgSoQgAABgSoQgAABgSoQgAABgSoQgAABgSoQgAABgSoQgAABgSoQgAABgSoQgAABgSoQgAABgSoQgAABgSoQgAABgSoQgAABgSoQgAABgSoQgAABgSoQgAABgSoQgAABgSoQgAABgSoQgAABgSoQgAABgSl5GFwAAAIz349nzulRYXGN9RWWl/d+Dx7JrLF/j4WFRx3YRslgsjVOwE1hsNpvN6CIAAICxcn7M15/+56+yWh2LBUPvidfQ/vFOrsq1OB0GAAB0x+1hurd/L4f2jQxvrcSEnzm5ItcjBAEAAEnSwLvj1C7i9gbt4+3lqQeHJ8rTs/lFiuZXMQAAcAlPDw89MGKwfLzrP2U4KbGvWrdq6bqiXIgQVM3x48e1bNkyPfroo4qPj5ePj48sFosmT55sdGkAALhc2G0tNHxIQr3adrozUn1/1tXFFbkOV4dVs2jRIi1evNjoMgAAMEyfuM7af/iEDhw5WWcbfz9f/fIXg5rV1WDVMRJUTVhYmJKSkjRnzhxt2LBB06dPN7okAAAalcVi0difD1SAv2+dbe4f1l8hwYGNWJXzMRJUzfPPP19lefv27QZVAgCAcYKDApR830Ct/NsXNbb17BqtHl06GlCVc5lmJMhqtWrt2rUaM2aMIiIi5Ovrq4iICA0ZMkSLFy9WWVmZ0SUCANCkdPvpnbqrW6cq61oEB2rUvfcYVJFzmSIEnTlzRkOGDFFKSopSU1Pl7e2tnj17ytvbW5s3b9bs2bPl6elpdJkAADQ5o4b2U8uQIPtyStJgBfjVfZqsOXH7EFRUVKSkpCRt3bpVgwYN0u7du3XixAnt2LFDJ06c0Pfff69nnnmGEAQAQC38fH30wPDBski6J76boqPuMLokp3H7OUFPPfWUdu7cqf79+2vjxo3y8fGpsj02NlaxsbEGVXdjb61Yr4LCEqPLAABAvr4+2nPgqPb+cMzoUqoIDvLX45OSHdrXrUPQgQMH9P7778vX11cfffRRjQDkTNnZ2Xrttdf0zTffaPfu3SorK9OtPpatoLBElwuLnFQhAAC35kqpe82fdesQ9PHHH6uyslITJ05Uu3btXHqsw4cPa926derdu7d8fHyUkZFxy30GB/k7oTIAANzXrbxXunUI+vLLLyVJSUlJLj/WwIEDlZubK0l68cUXnRKCHB3eAwAAN+fWIejUqVOSpA4dOrj8WB4ezp9jzpwgAABujDlBdSgqujqfpqSkeQYJ5gQBAOA6bh2C2rZtqwsXLugf//iH7rmn+d3YiTlBAADcGHOC6nD//fdrz549evnllxUXF6dhw4bZt+Xk5GjFihVKSUlRTEyMgVXWjTlBAAC4jsV2q9dxN2GFhYUaNGiQdu3aJUlq06aN2rZtq/Pnz+vo0aOyWCy6fPmyAgP//QC4jIwMjR492r5cXFyskpIS+fr6Kijo33fMTE1NrXN06cUXX9TcuXNv+RJ5AADgOm49EhQUFKRt27Zp4cKF+uSTT3Tw4EFdunRJbdq00ZgxY5ScnFwlAElSeXm5zp07V6Ov0tJSlZaWVmkHAACaL7ceCTIKI0EAADR9bj0S1NjWrl0rScrKyqqyHBUVpV69ehlWFwAAqImRICeyWCy1rp80aZKWL1/euMUAAIAbYiTIiciTAAA0H86/zTEAAEAzQAgCAACmRAgCAACmRAgCAACmRAgCAACmRAgCAACmRAgCAACmRAgCAACmRAgCAACmRAgCAACmRAgCAACmRAgCAACmRAgCAACmRAgCAACmRAgCAACmRAgCAACmRAgCAACmRAgCAACmRAgCAACmRAgCAACmRAgCAACmRAgCAACmRAgCAACmRAgCAACmRAgCAACmRAgCAACmRAgCAACmRAgCAACmRAgCAACmRAgCAACmRAgCAACmRAgCAACmRAgCAACmRAgCAACmRAgCAACmRAgCAACmRAgCAACmRAgCAACm9P8BfOZgQHPUG5IAAAAASUVORK5CYII=", - "text/plain": [ - "
" - ] - }, - "execution_count": 2, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "qubits = QuantumRegister(2)\n", - "clbits = ClassicalRegister(2)\n", - "circuit = QuantumCircuit(qubits, clbits)\n", - "(q0, q1) = qubits\n", - "(c0, c1) = clbits\n", - "\n", - "circuit.h(q0)\n", - "circuit.measure(q0, c0)\n", - "with circuit.if_test((c0, 1)) as else_:\n", - " circuit.h(q1)\n", - "with else_:\n", - " circuit.x(q1)\n", - "circuit.measure(q1, c1)\n", - "\n", - "circuit.draw(\"mpl\")\n", - "\n", - "# example output counts: {'01': 260, '11': 272, '10': 492}" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "単一の古典ビットに対する条件付けの他に、複数のビットで構成される古典レジスターの値に条件を設定することも可能です。\n", - "\n", - "以下の例では、2 つの量子ビットにアダマールゲートを適用して測定しています。 結果が `01` であれば、つまり最初の量子ビットが 1 で 2 つ目の量子ビットが 0 であれば、3 つ目の量子ビットに X ゲートを適用します。 最後に、3 つ目の量子ビットを測定します。 わかりやすくするために、if 条件では 3 つ目の古典ビットの状態を 0 に指定したことに注意してください。 回路の描画では、条件は、条件が設定される古典ビットに円で示されます。 黒い円は 1 の条件付けを示し、白い円は 0 の条件付けを示します。" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgEAAAGwCAYAAAAwmLYsAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAABC8ElEQVR4nO3deVyVZf7/8ddhUwFRURMREMF9w0QdwxUzRcNxKR3HJW2xKXVsMbFlpqnfd7KcbMy0HM2wpswslzSxkVBTMjPU0UxzQdQUYVxQERAROL8/GBgRUA6ew4Fzv5+PBw+5t+v+HFnOm+u+7us2mc1mMyIiImI4TvYuQEREROxDIUBERMSgFAJEREQMSiFARETEoBQCREREDEohQERExKAUAkRERAxKIUBERMSgFAJEREQMSiFARETEoBQCREREDEohQERExKAUAkRERAxKIUBERMSgFAJEREQMSiFARETEoBQCREREDEohQERExKAUAkRERAxKIUBERMSgFAJEREQMSiFARETEoBQCREREDEohQERExKAUAkRERAxKIUBERMSgFAJEREQMSiFARETEoBQCREREDEohQERExKAUAkRERAxKIUBERMSgFAJEREQMSiFARETEoBQCREREDEohQERExKAUAkRERAxKIUBERMSgXOxdgFiX2Qw5efauwjJuzmAyWacts9lMVlaWdRqrJO7u7pis9R8gImIBhQAHk5MHM1fYuwrLzP4d1LDSd2JWVhaenp7WaaySZGRk4OHhYe8yRMSAdDlARETEoBQCREREDEohQERExKAUAkRERAxKIUBERMSgFAJEREQMSiFARETEoBQCREREDEohQERExKAUAkRERAxKIeAGZrOZ7du3M3PmTMLCwvD29sbV1ZVGjRoRGRnJunXr7F2iVLLatWtzzz33cN999zFgwAB69uxJ/fr1y328k5MTb7/9Nu3atbNhlSIiFWMym81mexdRVWzatIn+/fsDYDKZCA4Opk6dOiQmJnL58mUAHnnkEZYsWVJlH/hyLdfYzw7IzMy842cH9O3bl4kTJ9K9e3datWpV6j4nT54kISGBZcuW8dVXX5GXV/KpTU5OTnz44YeMHz+es2fP0q9fPw4cOFBiPz07QETsRT0BNzCbzQQFBTF//nzOnj3L0aNH2bVrFxcuXGDu3LmYTCaio6NZuHChvUsVKzOZTDz22GMcPHiQLVu2MGHChDIDAEDTpk158MEHWbNmDcePH2fmzJm4ubkVbb8xAADUrVuXwMBAW78MERGLqCfgBunp6dSqVQtXV9dStz/xxBMsWrSIkJAQ9u7dW7nFlZO1egJOH/yWVbPC6fn7Nwm9/7lS95k3zkRgp/sZ+tz6OzqXvXsCgoKC+OCDD+jbt2+x9dnZ2fz000/s2bOHs2fPYjabqVevHp06daJz584lzvPzzz8zceJE/v3vfxcLADk5OYwcObLMy0nqCRARe3H4RwmfP3+ev/3tb6xevZrTp0/TsGFDRowYwaxZs5g2bRrR0dHMnz+fqVOn4uXldcu2Bg4cyKJFizh8+HAlVS+2NmLECP75z38WexPeunUr7733Hl9++SU5OTmlHufk5MR9993Hk08+SWRkJM7OzrRv354ffviBvXv30qVLF+D2AUBExJ4cOgTs3buXQYMGkZqaioeHB23btuXMmTO88847HDt2jLS0NAA6depUrvays7MBcHd3t1XJUonGjh3LRx99hLOzMwDHjx/n0UcfZcuWLbc9Nj8/n40bN7Jx40Y6dOjAhx9+SOfOnXFxcVEAEJFqw2HHBJw/f54hQ4aQmprK9OnTSUlJYc+ePaSmpjJ79mxiYmJISEjAZDLRsWPHcrW5YkVBP3uvXr1sWbpUgoiICD788MOiAPDxxx/ToUOHcgWAm+3fv5977rmH/fv3F1sfHR2tACAiVZrDhoBp06Zx+vRppk6dypw5c6hdu3bRtqioKEJCQsjNzSUwMPC2lwEANmzYwNq1a4uON4rcnCyuXjlf6kd15e3tzdKlS3FxKegIe++995gwYQKZmZkVas/JyYklS5bQoUOHYusnTpxI69at77heERFbccjLAb/88gsrVqygQYMGvP7666XuExoayr59+wgJCblte8eOHSsa5DVt2jTCwsJK7HP8+HGeeuoptmzZgouLC0OGDGHu3LkW3VNeFf2w6i/8sOov9i7DqubPn4+Pjw8A69evZ+rUqVR0fOzNdwHk5OTwr3/9i9/+9rfUrFmTpUuX0qNHD/Lz861Wv4iItThkCFi+fDn5+fmMHTu2zJHitWrVArhtCEhNTSUiIoK0tDQGDBjAnDlzSuxz5coVwsPD8fb2Zvny5Vy9epWoqCgiIyPZvn07Tk4V63Dp0qULqampFh3j7FqL4X89WqHzlaZ9+OO0+M3IUreteeM+q5yjZYsW5F2/apW2bvdmGxYWxpgxYwBIS0tj0qRJVg0AI0eOJDY2lr1799KqVSu6d+/O+PHj+eijj8psp0WLFhX+HhER8fHxYdeuXRU61iFDwObNmwEIDw8vc5/Tp08Dtw4BhW/8iYmJ9OjRgzVr1pR6++DixYtJTk5m27ZtBAQEAODn50dYWBjr1q1j2LBhFXodqampJCcnW3SMSw3rDlqs69OCgPb9rdrmzc6knCH3WpZNz1FoypQpRZ/PnDnT4pBVqKwAUDgG4PHHH2fr1q1F57xVCEhJSalQDSIid8ohQ8DJkyeBggldSpObm8v27duBskNAeno6ERER7N+/n86dOxMTE1PmXQHr16+nZ8+eRQEA4J577iEoKIivvvqqwiGgsMvaEs6utSp0Lnvybexr1Z6Ast5U77rrLh588EEAzp07x8cff1yhc9wuAABs27aN3bt3ExoaSteuXenSpUuZSb1x48bqCRCRCqvIe0UhhwwBhQO8rl4t/Y1lxYoVnD9/ntq1a9OsWbMS27OysoiMjCQhIYE2bdqwceNG6tSpU+b5Dh48yMiRJbvM27Vrx8GDByv4KqhQ9051nDb4yNGjlTJZ0P333180q190dDTXrl2zuP3yBIBCCxcuZMmSJQA88MADZX49jx49qsmCRMQuHPLPj8JUtGfPnhLbUlJSmDFjBgAdO3Ys8QyAnJwchg8fTnx8PMHBwcTFxdGgQYNbnu/ixYvUrVu3xHpvb++iuQjE/grv3wf4+uuvLT7ekgBw8zlCQ0MtPp+IiK05ZAgofAjQ7NmzOXLkSNH6hIQEwsPDOX++4Pa2mycJysvLY8yYMcTGxuLn50dcXBy+vr6VVrfY1o1vxP/+978tOtbSAABw5syZojEHCgEiUhU55OWAqKgoPv30U06dOkW7du1o3bo12dnZJCYmMmjQIAIDA9m4cWOJ8QCff/45q1atAsDNzY1x48aVeY6VK1cW9TjUq1ePS5culdgnLS0Nb29v670wuSPNmzcH4MSJE6Snp5f7uIoEgEL79+/Hx8cHb29v6tWrx8WLFytWvIiIDThkCPDz8yM+Pp4ZM2awdetWTpw4Qdu2bVm0aBGTJk0iODgYKDko8MZrxElJSSQlJZV5jsIphAHatGlT6rX/gwcP0rt37zt9OXbh17YvT31y61vnbre9qtm2bRt169blzJkzFh33zjvvVCgAQMElKTc3tzLHp4iI2JPhniKYkZGBl5cXJpOJK1euWOU5AHPmzOHFF18kKSkJPz8/AHbu3En37t1ZvXo1w4cPv+NzlFd1HBho76cI3k5oaChxcXG4u7vb5FkAeoqgiNiL4UJA4Ztzq1atOHTokFXaTE9Pp0OHDjRo0IBXX32V7OxsoqKiaNiwITt27KjU278UAqwfAqAgCPj6+vLVV19ZvW2FABGxF4ccGHgrhQ95Kc90weXl5eXF5s2bady4MaNHj+axxx4jLCyM9evX6/5vB7F7926bBAAREXtyyDEBt2KLEAAQHBzM+vXrrdqmiIiILRnuz1RbhQAREZHqxnA9AYXPFRARETE6w/UEiIiISAGFABEREYNSCBARETEohQARERGDUggQERExKIUAERERg1IIEBERMSiFABEREYNSCBARETEowz1F0NGZzZCTZ+8qLOPmDCaTddoym81kZWVZpzHgzUWfkZ6ZhZeHOzP+MLrEsjW4u7tjstZ/gIiIBQw3bbCjM5ms91je6shkMln1sbxuNWridj0Ptxo18fDwKLEsIlKd6XKAiIiIQSkEiIiIGJRCgIiIiEEpBIiIiBiUQoCIiIhBKQSIiIgYlEKAiIiIQSkEiIiIGJRCgIiIiEEpBIiIiBiUQoCIiIhBKQSIiIgYlEKAiIiIQSkEiIiIGJRCgIiIiEEpBIiIiBiUQoCIiIhBKQSIiIgYlIu9CxDrMpshJ8/eVVjGzRlMJntX4TjMZjNZWVn2LqPc3N3dMekbQMQuFAIcTE4ezFxh7yosM/t3UEPfiVaTlZWFp6envcsot4yMDDw8POxdhogh6XKAiIiIQSkEiIiIGJRCgIiIiEEpBIiIiBiUQoCIiIhBKQSIiIgYlEKAiIiIQSkEiIiIGJRCgIiIiEEpBIiIiBiUQsANzGYz27dvZ+bMmYSFheHt7Y2rqyuNGjUiMjKSdevW2btEkWrH29ubNm3a2LsMESmFZmy/webNm+nfvz8AJpOJ4OBggoKCSExMJCYmhpiYGB555BGWLFmiB56IQ2vWrBn9+vUjNDSU0NBQfHx8cHNz49q1ayQnJ7Nr1y52795NXFwcZ86cKbMdb29vNm3aRJMmTQgPD+fAgQOV+CpE5HYUAm5gNpsJCgrimWeeYfTo0TRo0ACAvLw85s+fz7PPPkt0dDShoaFMnjzZztWKWJeTkxODBw9m8uTJDBo0qMz9mjZtSlhYGAC5ubmsXbuWhQsXsmnTpmL7FQaATp06AfDJJ5/QuXNnzGazzV6DiFhGlwNu0K1bNw4dOsTUqVOLAgCAs7MzTz/9NI8//jgAixcvtleJleb0wW+ZN87E7pg5Ze4zb5yJtXMiK7EqsZVWrVqxfft2vvrqq1IDQGpqKidPnuTs2bPF1ru4uPDAAw8QFxfHxo0b8ff3B0oGgDNnzjBq1CgFAJEqxuFDwPnz54mKiqJ58+bUrFkTf39/nnrqKTIzM3n00UcxmUwsWLAAAC8vL1xdXctsa+DAgQAcPny4UmoXqQzPPPMMe/fupXv37kXrjh8/zp/+9Cf69OmDl5cXjRs3JjAwkEaNGlGvXj3uvfde/u///q/YpYABAwbw888/M2XKlBIBoG/fvhw9erSyX5qI3IZDXw7Yu3cvgwYNIjU1FQ8PD9q2bcuZM2d45513OHbsGGlpaQBFv6xuJzs7GwB3d3dblSxSqd555x3++Mc/Fi0fOXKE6dOns2HDBvLz80s95tKlS2zevJnNmzfz//7f/+PBBx/kzTffxM/PDy8vr6JQDQoAIlWdw/YEnD9/niFDhpCamsr06dNJSUlhz549pKamMnv2bGJiYkhISMBkMtGxY8dytblixQoAevXqZcvSRSrFW2+9VSwA/P3vf6dTp06sX7++zABws9zcXD777DPat2/PsmXLim1LT09XABCp4hw2BEybNo3Tp08zdepU5syZQ+3atYu2RUVFERISQm5uLoGBgXh5ed22vQ0bNrB27dqi440iNyeLq1fOl/oh1dfo0aN59tlngYKBrxMmTGD69OlcvXq1Qu05OzvTrl27Yuu8vLzw8/O741pFxHYc8nLAL7/8wooVK2jQoAGvv/56qfuEhoayb98+QkJCbtvesWPHGD9+PFAQLgpHRhc6ffo0b7zxBj/++CP79u0jJyfHYQZA/bDqL/yw6i/2LkOsqFGjRsW67J944gn++c9/Vri9mwcBpqenFwXrDz74gA4dOpCZmXlHNYuIbThkCFi+fDn5+fmMHTsWT0/PUvepVasWwG1DQGpqKhEREaSlpTFgwADmzCk5Wj4xMZFVq1bRtWtX3Nzc2L59+52/iCqiffjjtPjNyFK3rXnjvkquRqzh7bffpn79+gB8/vnnLFmypMJtlXYXQHh4OIsWLaJv3740a9aMv/71rzzzzDPWKF1ErMwhQ8DmzZsBCA8PL3Of06dPA7cOAYVv/ImJifTo0YM1a9aUevdA7969SUlJAeCVV16xWgjo0qULqampFh3j7FqL4X+13jXYuj4tCGjf32rtlaZlixbkXa9YN7StDX/4aTw8vUhJTcHPz6/EclV0q+v5TZs2ZdSoUQCcO3eOKVOmVPg8pQWAwjEAjzzyCPv378fDw4NJkybxyiuvcPny5VLbadGiBU5ODntlUsTmfHx82LVrV4WOdcgQcPLkSaDgF15pcnNzi96oywoB6enpREREsH//fjp37kxMTEyZdwXY6hdYamoqycnJFh3jUqP63blwJuUMudey7F1GqfLz8or+TU5OLrFc3Tz++ONF36/z5s3j/PmKje24VQCAglsMly5dytSpU/Hw8OChhx5i/vz5pbZVGKBFpPI5ZAgovP5Y1iCnFStWcP78eWrXrk2zZs1KbM/KyiIyMpKEhATatGnDxo0bqVOnjk1rLo2Pj4/Fxzi71rJBJbbl29i3yvYEODk7F/3bpEmTEstVUX5+fplvrA8//DAA169fr/BlgNsFgEILFy5k6tSpADzyyCNlhoDGjRurJ0DkDlTkvaKQQ4YAHx8fLl68yJ49e7jnnnuKbUtJSWHGjBkAdOzYscQzAHJychg+fDjx8fEEBwcTFxdXbPbAylSR7p1ruTBzhQ2KsaEjR49So4p+J856dxnpGZk09mnM6dOnSyxXRZmZmaWOhQkMDKRx48YAxMXF8Z///MfitssbAAAOHjzIv//9b+6++246duyIh4dHqQMEjx49ioeHh8W1iMidc8j4XfgQoNmzZ3PkyJGi9QkJCYSHhxd1gd48SVBeXh5jxowhNjYWPz8/4uLi8PX1rbS6RWwpNDS06POEhASLj7ckANx8Hicnp3JPyiUilaeK/v11Z6Kiovj00085deoU7dq1o3Xr1mRnZ5OYmMigQYMIDAxk48aNJcYDfP7556xatQoANzc3xo0bV+Y5Vq5ceUddMCKV7cZJsfbs2WPRsRUJAAC7d+8u+jwkJMSh7pwRcQQOGQL8/PyIj49nxowZbN26lRMnTtC2bVsWLVrEpEmTCA4OBkoOCrx27VrR50lJSSQlJZV5jsIphB2VX9u+PPXJrec6uN12qVpuHNdiyV0nFQ0AQLFLDjdO2CUiVYNDhgCANm3asH79+hLrMzIyOHHiBE5OTrRv377YtokTJzJx4sRKqlCkcv35z3/mrbfeombNmpw6darcx/n7+xfdaWPpswA2bdpEixYtyM7O5uLFixWqW0Rsx2FDQFkOHDiA2WymZcuWVn0Q0MqVK4GCwVA3LgcGBtKlSxernUekoq5cucKVK1csPm7fvn3cd999fPTRRwwfPtyiZwFkZGSQmJho8TlFpHIYLgTs378fuP1MgZYaOXJkqcsTJkzgww8/tOq5RCrb7t276dixY7kfLCQi1YNCgJU4yrMCRMqiACDieBzyFsFbsVUIEBERqW4M1xNQ+FwBERERozNcT4CIiIgUUAgQERExKIUAERERg1IIEBERMSiFABEREYNSCBARETEohQARERGDUggQERExKIUAERERg1IIEBERMSjDTRvs6NycYfbv7F2FZdyc7V2BY3F3dycjI8Mqbb256DPSM7Pw8nBnxh9Gl7nuTljzkd4iYhmFAAdjMkENfVUNzWQy4eHhYZW23GrUxO16Hm41aha1Wdo6EamedDlARETEoBQCREREDEohQERExKAUAkRERAxKIUBERMSgFAJEREQMSiFARETEoBQCREREDEohQERExKAUAkRERAxKE8yKiEO7ngeXsuBqDuSb7V2NlIeLE7i7QV0PcDLZuxrHphAgIg4nJxd+OQN7f4UDyQXLUv3UdYeQAOgUAIENCp6NItalECAiDiXrGizcDKfS7F2J3KlLWbD1UMFH71YwPFRBwNo0JkBEHIYCgOPadhjW7AazLulYlXoCRMRhfLaz7ADg7FTwIVWcGa7nl/5mv+0wNKkHvwmu/LIclUKAiDiErJyC6/83qlML7msPHf2hdk11JVcX+WZIvQR7TsKmg8UDwe4TCgHWpBAgIg7h59OQl/+/ZWcnmNofGnrZryapGCcT+NYr+KjrDisT/rft6H/gSnZBqJM7pxAgIg7h0Jniy60bGzMAmM1msvLz7F2GRdydnDGV0U3TLQjW7YGc/74ksxkOp0CXZmW3ZzabycrKskGltuPu7l7m/4EtKQSIiEO4kl18Ofgu67W9ZcsWXnjhBQ4cOEBGRgZLly5l4sSJ1juBFWXl51Fv8zf2LsMiF/vdh4dz6W9Hbi7QtEFBD0ChjOxSdy2SlZWFp6enFSu0vYyMDDw8PCr9vAoBIuIQbp4LoJab5W307duXXbt2kZGRUbTu4sWLjBgxAj8/P9566y3c3d0JCwu7w2rFEjVdiy9f07wPVqMQICIOyVodqwkJCVy6dIkPPviAESNGWKlVsYQGdNqObpgREbmF1NRUALy9ve1ciYj1qSdARKQMgYGBnDx5EoDw8PCi9WbNWCMOQiFARKQMb7/9Nl9//TWLFy/mxRdfpE2bNvYuScSqFAJERMowbNgwLl26xOLFi7nvvvvo27evvUsSsSqNCRARETEohQARERGDUggQERExKIUAERERg1IIuInZbGb79u3MnDmTsLAwvL29cXV1pVGjRkRGRrJu3Tp7lygiItWMk1PVfLvV3QE32bx5M/379wfAZDIRHBxMUFAQiYmJxMTEEBMTwyOPPMKSJUvs8rAHERGpHC4uLrRt25bQ0FD8/f2pUaMGOTk5nDt3jj179rBv3z6uXr1623YmTJjAE088QUREBJcvX66EystPIeAmZrOZoKAgnnnmGUaPHk2DBg0AyMvLY/78+Tz77LNER0cTGhrK5MmT7VytiIhYk8lkon///kyePJmBAwdSq1atMvfNzc1lx44d/OMf/2DlypXk5OSU2GfChAlER0fj5OREbGws4eHhVeoJh1Wzf8KOunXrxqFDh5g6dWpRAABwdnbm6aef5vHHHwdg8eLF9ipRRGzk22+/LfbwIICJEydiNpsNOUdAXvSHXB8wmPx/xZbYZjabyX1uJtfv/y3m4ycqvzgbGDp0KIcPHyY2NpZhw4bdMgBAQU9Br169WLZsGadOneKpp54q1u1/YwAA2LFjR5UKAGCQEHD+/HmioqJo3rw5NWvWxN/fn6eeeorMzEweffRRTCYTCxYsAMDLywtXV9cy2xo4cCAAhw8frpTaRUTsxWn8WAhsSt6i9zGfO19sW/7qLzH/tB+n8eMwNQu0T4FW4u3tzbJly/jyyy9p0aJF0fozZ87w2Wef8dxzzxEZGcm9995LREQEkydPJjo6utj7wF133cXbb7/N1q1bad68eYkAMG/ePJ5++unKfmm35fCXA/bu3cugQYNITU3Fw8ODtm3bcubMGd555x2OHTtGWloaAJ06dSpXe9nZBQ+ydnd3t1XJIiJVgsnVFZcZ08md9gx5f38bl9f/CoD51GnyP/wnptatcBr5gJ2rvDMtW7bkm2++ISAgoGjdt99+y7x58/jqq6/Iy8u75fE9e/ZkypQpjB49umh5//79uLm5VfkAAA7eE3D+/HmGDBlCamoq06dPJyUlhT179pCamsrs2bOJiYkhISEBk8lEx44dy9XmihUrAOjVq5ctSxcRqRJMLZrjNHoU5t17yI/5GnNeHnl/mwNmM84zpmNydrZ3iRXWokULtm3bVhQA0tLSGDduHOHh4Xz55Ze3DQAA3333Hb///e/p3bs3iYmJANSsWbNaBABw8BAwbdo0Tp8+zdSpU5kzZw61a9cu2hYVFUVISAi5ubkEBgbi5eV12/Y2bNjA2rVri44XETECp7G/h6Ag8t5fQv67/8B8+AhOEx/C5O9n79IqrE6dOsTGxtKoUSOgoNe4ffv2LFu2rELtxcfH8+abbxZ7wuT169d5//33rVKvrThsCPjll19YsWIFDRo04PXXXy91n9DQUABCQkJu296xY8cYP348UBAuwsLCim1fuXIlDzzwAE2bNsXd3Z3WrVvz0ksvlRhkJCJS3ZhcXHCZ8SzkXCd/fQym9u1wGjHM3mXdkblz5xIYGAjAvn37CA8PJyUlpcLtTZgwgYULFxa7ddzV1ZWlS5fiXIV7Sxw2BCxfvpz8/HzGjh2Lp6dnqfsUjvy8XQhITU0lIiKCtLQ0BgwYwJw5c0rsM2fOHJydnZk1axZff/01Tz75JAsXLiQiIoL8/Pw7f0EiIvbk4QH/HTRt6toFUxWd/KY8Bg0axMMPPwxAeno6Q4YM4dKlSxVu7+ZBgAsWLOCXX34BoGvXrlW659hhBwZu3rwZgPDw8DL3OX36NHDrEFD4xp+YmEiPHj1Ys2ZNqXcPfPXVVzRs2LBouU+fPjRs2JCxY8fy3Xff0bt3b4tfQ5cuXUhNTbX4OLGe4Q8/jYenFympKfj5+ZVYdnSlvd6q+n8QPmUd9QM6Fy0/N+M5TiR8ZseK7MPs5gaL3rVum2YzeW/NhdzrEOBP/qef4dSnNybfxlZpv2WLlphKuce+UPdxi/HrMLhoec6cN3l007wy97/dH16zZs0q+vzZZ5/l1KlTFlRbXFl3AXTr1o3vv/8eZ2dnXnjhBRYsWMCVK1fKbKdFixYVnlXQx8eHXbt2VehYhw0BJ0+eBKBp06albs/NzWX79u1A2SEgPT2diIgI9u/fT+fOnYmJiSnzroAbA0ChLl26AJCcnGxx/VDQA1HRY8U68v87MCg/L4/k5OQSy46utNdbVf8Pbp6o5dLFi1WqvkpTswZl3+RcMflfrsO87yecHp6A0z3dyZ3yR/LemovznNlWmTn1TMoZyL5W5vbsm2blS09Pr/DXtnv37kV3gyUkJPDBBx9UqB0oOwAA/Pjjj0RHRzNp0iRq167NuHHjWLhwYZlt3cmliDvhsCEgMzMToMwpHVesWMH58+epXbs2zZo1K7E9KyuLyMhIEhISaNOmDRs3bqROnToW1bBlyxYA2rRpY2H1BXx8fCp0nFiP03+v5Tk5O9OkSZMSy46utNdbVf8P3Nzcii3XrVevStVXWcxubpyzZnvJyeRHf4ipVUucRj2IydkZp3FjyV/6EflfrsN5+NA7PodvY99b9gTUvGnSHi8vr1t+bfPz88t8U33yySeLPi+cH6YiyjMPwIIFC5g0aRIAkydPvmUIaNy48R31BFSUyXzjUEYH0rZtW3755RcWLFjAlClTim1LSUkhNDSUlJQUevTowXfffVdse05ODkOGDCE2Npbg4GC2bduGr6+vRedPTk7m7rvvJjQ0lK+//vqOX4/Yx6x3l5GekYmXpwcvThlbYtnRlfZ6q+r/wdx/wckL/1se/Rvo3tx+9dhLZl4u9TZ/Y5W2zPn55D07A/PRRFwWzsf031vpzHl55D31LOaTv+Ky6L07vixwsd99eDiX/Tdp9Db46YYe+0EdYWCHstvLzMwscyxYamoqjRo14tKlS/j4+HDtWtk9EGWxZCKgHTt20L17dwB8fX3LDCcZGRl4eHhYXMudqr4jO26j8CFAs2fP5siRI0XrExISCA8P5/z5gtmvbp4kKC8vjzFjxhAbG4ufnx9xcXEWB4CMjAyGDh2Km5sb0dHRd/ZCRETsJH/laswHf8FpwriiAABgcnbG+blnIT+PvLfmUl3+lmzSpEnRLYE7d+60eQAA2Lp1a9HnhXekVSUOezkgKiqKTz/9lFOnTtGuXTtat25NdnY2iYmJDBo0iMDAQDZu3FhiPMDnn3/OqlWrgILuxXHjxpV5jpUrV5bohrl69SpDhgzh+PHjxMfH07ixdQbOiIhUJvOvv5L/0ceY2rTG6YERJbabApta/bKArd34Jrx7926Lj6/IVMA3nic0NJT169dbfF5bctgQ4OfnR3x8PDNmzGDr1q2cOHGCtm3bsmjRIiZNmkRwcDBQclDgjckwKSmJpKSkMs9ROIVwoevXr/Pggw+ya9cuNm3aRNu2ba34ikREKo8pIADXmLW33Mf597/D+fe/q6SK7tyNvbo39hCXR0WfBXDjeariH4UOGwKgYEBeaakrIyODEydO4OTkRPv27YttmzhxIhMnTrT4XIVzEmzatIkNGzbQrVu3ipYtIiI2kJCQwMsvv0ytWrXYt29fuY8LCgpiyZIlFZoK+MyZM7zxxhtkZ2dX+DY+W3LoEFCWAwcOYDabadmypdUeBDRlyhS++OILnn/+edzd3fnhhx+KtgUHB5d6C6GIiFSe3bt3V+gyQFJSEo8//jhLlixh/vz5Fj0L4Ny5c7zwwgsWn7OyGDIE7N+/HyjfdMHlVXgHwBtvvMEbb7xRbNvSpUsr1LsgIiJVw9KlS/nll1+K/YHnCBQCrOTEiRNWa0tERKoeRwsA4MC3CN6KLUKAiIhIdWPInoDC5wqIiIgYmSF7AkREREQhQERExLAUAkRERAxKIUBERMSgFAJEREQMSiFARETEoBQCREREDEohQERExKAUAkRERAxKIUBEHILzTb/NcvPtU4dYX25e8eWbv9ZScYacNlhEHE8tt+LL567Ypw57c3dy5mK/++xdhkXcnZzL3GY2l/xa3vy1LtGeuzsZGRlWqKzAm4s+Iz0zCy8Pd2b8YXSJZWuw1mPtLaUQICIOwbcuHEj+3/JPp2BYZzCZ7FaSXZhMJjycHedXe+rlkiHAt+6tjzGZTHh4eFitBrcaNXG7nodbjZp4eHiUWK7O1KkiIg6hU9PiyxczYfUuyNNlgWrrSjYs21F8XV13aNrAPvU4IseJiyJiaL51oWHt4n81xh+B3SegrS/U8wDnsnudpaowQ04enLkIR1Ih31x8c0gAOBmsd8eWFAJExCGYTBDZCT76rvgbR1YO7Dphr6rEmuq6Q+9W9q7CsehygIg4jJAAGN9Dfyk6orruMKU/1Pe0dyWORT0BIuJQ7m4Krs7wzQE4ed7e1cidcnWGNr4w5O6Cyz1iXQoBIuJw2vsVfFzMhIUfr+bq1as4u9YioOMITv60mrzrBctNO46wd6lSClfngtsAgxpC2yZQ09XeFTkuhQARcVj1PIC8q1zPyaSWGzzSG2btv0p6Tibu/10WMTKNCRARETEohQARERGDUggQERExKIUAERERg1IIEBERMSiFABEREYNSCBARETEohQARERGDUggQERExKIUAERERg1IIEBERMSiFABEREYNSCBARETEohQARERGDUggQERExKIUAERERg1IIEBERMSiFABEREYNysXcBIlVBfn4+eXn5pWwxF/17/XpuKcv/4+TshLOTcrWIVB8KASJAzvVc3o5eyaX0jFK3p2dk8ee/R5e57ObmytMPP4B3XS+b1yoiYi36s0UEqFnDjVH398VUweN/e2+YAoCIVDsKASL/FRTgS69uHS0+rm2LpoR2aGmDikREbEshQOQGA3p1xaehd7n393SvxYiBvTGZKtqHICJiPwoBNzCbzWzfvp2ZM2cSFhaGt7c3rq6uNGrUiMjISNatW2fvEsXGXFycGRUZXu4BfiMG9cbTo5aNqxIRsQ2FgBts3ryZnj178re//Y0ffviB+vXrExISwrVr14iJiWHo0KE8+uijmM3m2zcm1ZbvXfUZ0LvLbffr2rE1bZs3rYSKRERsQyHgBmazmaCgIObPn8/Zs2c5evQou3bt4sKFC8ydOxeTyUR0dDQLFy60d6liY726diTQz6fM7d51axPZr3slViQiYn26RfAG3bp149ChQ7i6uhZb7+zszNNPP82hQ4dYtGgRixcvZvLkyXaqUiqDk5MTo+7vy9tLV5GTc73YNpPJxKj7w6lRw81O1Ul55eXl8cv+PezdtYPca9ns3bqWtKx8WoV0w8vTw97lididYXoC8vPzWblyJcOGDcPX15caNWrg6+tLv379mDdvHjk5OXh5eZUIADcaOHAgAIcPH66sssWOvOt68dt7w0qs7/ObkFv2EkjV8M9//pOgoCA+WfR3ft69g0M//5svvviCTTGrWPjGC3wWPZ9z587Zu0wRuzJECDh79iz9+vVj5MiRrF27FldXVzp16oSrqytbtmzhhRdewNnZ+bbtZGdnA+Du7m7rkqWKCO3QkrYt/nfdv/Fd9enfM9SOFUl5zJo1iwkTJvDrr7+Wut2cn8/+PTsJCwsjJSWlkqsTqTocPgRkZmYyePBgtm7dSp8+fdi3bx8nT55k586dnDx5kp9//pnnn3++XCFgxYoVAPTq1cvWZUsVYTKZGDGwN57utXBxduZ3keG4lON7Rexn5cqVvPTSS+XaNzExkSFDhpCfX9qU0SKOz+HHBEyfPp3du3fTs2dPYmNjcXMrfh23Xbt2tGvX7rbtbNiwgbVr1wIQFRVlk1qlavL0qMWIQb25kHbZojkEpPKZzWZee+01i47ZvXs3GzduZNCgQTaqSqTqMpkd+H63Q4cO0b59e1xcXDhy5AgBAQEVaufYsWN069aNtLQ0pk2bxrx580rd7/jx4zz11FNs2bIFFxcXhgwZwty5c6lfv36Fzjv/o9VcybhaoWPF+sxms+EmBbqSmVX0umt7uJe5rqr4Nekoi/7+qsXHtWp/Nw89Md0GFYkjuPl7vqr9DNT2rMUfJ4yo0LEO3RPw6aefkpeXx0MPPVThAJCamkpERARpaWkMGDCAOXPmlLrflStXCA8Px9vbm+XLl3P16lWioqKIjIxk+/btOFXg6XJXMq6SnpFZobpFrMlsNpf4Xixtnb3t37urQscdPbiPy1cyDBfyxDI3f89XxZ8BSzl0CIiLiwNg8ODBFTq+8I0/MTGRHj16sGbNmjLvHli8eDHJycls27atKHD4+fkRFhbGunXrGDZsmMXnr+2pmejEvqpbT4A5//rtdypFfn4+Nd1cqFGjppUrEkdQHXoCKsqhLwf4+/tz+vRpdu/eTefOnS06Nj09nf79+5OQkEDnzp3ZvHkzderUKXP/8PBwALZs2VJsfXBwMH379uWDDz6w/AWI2Nmsd5eRnpGJl6cHL04ZW+a6quLFF1/k9ddft/g4k8nE9evXyzVAWIzn5u/5qvwzYCmH7gnIzCzoprl61bLr6llZWURGRpKQkECbNm3YuHHjLQMAwMGDBxk5cmSJ9e3atePgwYMWnb+QxgSIvV3JzCr6d9a7y8pcV1X8er5iPy++Ac2Y/Y/PrFyNOIqbv+er2s+AxgSUwd/fn4sXL/L999/To0ePch2Tk5PD8OHDiY+PJzg4mLi4OBo0aHDb4y5evEjdunVLrPf29q7w5EIaEyBVRXUZE+Ab2JLadepx5fJFi47r2LVnlXstUvVoTEA1M3z4cH766Sdee+01QkJCGDBgQNG25ORkPvroI0aOHEmLFi2AgilGx4wZQ2xsLH5+fsTFxeHr62uv8jUmQOyuuo0JAAjrO4CNa1eUe3/P2nXoFtYHN7caNqxKqjONCaimMjIy6NOnD3v27AHAx8cHf39/0tLSSEpKwmQykZ6ejodHwRziy5cvZ8yYMQAEBQXRuHHjMtteuXIlPj7/mzq2UaNGjBw5kgULFhTb77e//S3nzp1jx44d1n55IjZX3cYEQEGYHzVqFKtXr77tvu7u7mzZsoVu3bpVQmVSXWlMQDXl6elJfHw8c+fO5YsvvuDIkSNcvnwZHx8fhg0bxogRI4oCAMC1a9eKPk9KSiIpKanMtgunEC7Upk2bUq/9Hzx4kN69e1vh1YhIeTg7O/PZZ5/x1FNPsWjRojJnA6xXvyGx/9pAly63f2y0iKNy+GmD3d3deemll9i7dy9ZWVlkZWWRlJTE6tWrGTduXLF9J06ciNlsLtdHYGBgsWMjIyP57rvvOH36dNG6nTt3cuzYMYYMGVIZL1VE/svV1ZX33nuP48eP03fgULwb+uDh6UVAQAAt24XwwEOTefYvbykAiOE5dE9AZXr88ceZP38+Q4cO5dVXXyU7O5uoqCi6devG0KFD7V2eiCEFBARw35CR/CZ8cImu3IpM4CXiaPRTYCVeXl5s3ryZxo0bM3r0aB577DHCwsJYv369ftmIiEiVpJ4AKwoODmb9+vX2LkNERKRc9CeqiIiIQSkEiIiIGJRCgIiIiEEpBIiIiBiUQoCIiIhBKQSIiIgYlEKAiIiIQSkEiIiIGJRCgIiIiEEpBIiIiBiUQoCIiIhBKQSIiIgYlEKAiIiIQSkEiIiIGJRCgIiIiEEpBIiIiBiUQoCIiIhBKQSIiIgYlEKAiIiIQSkEiIiIGJRCgIiIiEEpBIiIiBiUQoCIiIhBKQSIiIgYlEKAiIiIQSkEiIiIGJRCgIiIiEEpBIiIiBiUQoCIiIhBKQSIiIgYlEKAiIiIQSkEiIiIGJRCgIiIiEEpBIiIiBiUQoCIiIhBKQSIiIgYlEKAiIiIQSkEiIiIGJRCgIiIiEG52LsAEakatu3cx+nUc8XWXc3OLvr307VxZa4DaN60Cd06tamkakXEGhQCRASA1s2bEvvdLnJz80psu56bx0+Hkspc516zBpH3hlVKnSJiPbocICIA3FW/LoP7/qZCxw4f2AsvT3crVyQitqYQICJFunduR4vAJhYdc3e7FnRoHWSjikTElhQCbmA2m9m+fTszZ84kLCwMb29vXF1dadSoEZGRkaxbt87eJYrYlJPJxIOD+1KrZo1y7V+ntgdD7+th46pExFYUAm6wefNmevbsyd/+9jd++OEH6tevT0hICNeuXSMmJoahQ4fy6KOPYjab7V2qiM3Uqe3BsHK+sY+6P5yaNdxsXJGI2IpCwA3MZjNBQUHMnz+fs2fPcvToUXbt2sWFCxeYO3cuJpOJ6OhoFi5caO9SRWwqpG1zQtoE33Kfnl06ENzUt5IqEhFb0N0BN+jWrRuHDh3C1dW12HpnZ2eefvppDh06xKJFi1i8eDGTJ0+2U5UilWPogJ4cP5VKekZmiW131a/HwD5d7VCV5fLycjl1/Cim/Fz+9a/6XEo7j5NbLXuXJVIlGCYE5Ofns3r1aj755BN+/PFHLly4QP369WndujVDhw7lySefxMvL65ZtDBw4kEWLFnH48OFKqlrEftxr1mDk4D588PmGYuudnZz43ZBwXF2q9q+P//znP7z33nv8/e15ZKRfBmDZ+29jMpkIatWenv0igLH2LVLEzqr2T7GVnD17llGjRrF161YAAgIC6NSpE6mpqWzZsoUffviBqVOn3rad7P9OkuLurluhxBhaNPMjLLQd3+8+ULSuf89QmjRqYMeqbm/fvn0MGjSIlJQUABo0aEDz5s3JzMxk//79HDtU8OFdI5e33noLk8lk54pF7MPhxwRkZmYyePBgtm7dSp8+fdi3bx8nT55k586dnDx5kp9//pnnn38eZ2fn27a1YsUKAHr16mXrskWqjIg+v6Ghd10AmjZpRJ/fhNi3oNs4fvw4AwYMICUlhdatW7NixQqSk5PZsWMHP/30E4cPH2bKlCkAzJ07lz/96U92rljEfhw+BEyfPp3du3fTs2dPYmNj6dixY7Ht7dq14+WXX75tOxs2bGDt2rUAREVF2aRWkarIzdWF30UW3AUw6v5wnJyq9q+NF198kbNnz3L33XezY8cORo0ahZvb/+5gaNmyJQsWLOD9998HYNasWRw7dsxe5YrYlcnswPe7HTp0iPbt2+Pi4sKRI0cICAioUDvHjh2jW7dupKWlMW3aNObNm1din9OnT/PGG2/w448/sm/fPnJycu74VsL5H63mSsbVO2pDxFry8/OrfADISL/M3/48jby8PPbs2cPdd999y/0HDx7M119/Tc97BzNo+JhKqlKqmyuZWZjNZkwmE7U93Ess21ttz1r8ccKICh3r0GMCPv30U/Ly8njooYcqHABSU1OJiIggLS2NAQMGMGfOnFL3S0xMZNWqVXTt2hU3Nze2b99+J6UDcCXjaqkjs0WkdAnff0teXh7du3e/bQAAePLJJ/n666/Z80M8Pe4bWgkVSnVmNpuL/U6+ebk6cugQEBdX8ISzwYMHV+j4wjf+xMREevTowZo1a0rcPliod+/eRYOQXnnlFauEgNqeuo1JxBLXsjKA8o/bKdwvK/MKtWq44uqqiY+kpOrQE1BRDh0CTp06BUBQkOXzmqenpxMREcH+/fvp3LkzMTExt7wrwBbdpBXt3hExqgtJe9i++etyX4q7cb/nnxxDjRrlmy5ZjGXWu8tIz8iktoc7L04ZW2K5OnPoEJCZWdBNc/WqZdfVs7KyiIyMJCEhgTZt2rBx40bq1KljixJvSWMCRCxz+ORZAOLj48u1f+F+Hp5evLVkpc3qkurtSmZW0b+z3l1WYtneNCagDP7+/ly8eJHvv/+eHj3KNxd6Tk4Ow4cPJz4+nuDgYOLi4mjQwD73RGtMgIhlmrUJwcl5OTt37mT37t2Ehobecv93330XgPah3fWzJrelMQHVzPDhw/npp5947bXXCAkJYcCAAUXbkpOT+eijjxg5ciQtWrQAIC8vjzFjxhAbG4ufnx9xcXH4+tpvbnSNCRCxjJenBx3u/g37dn3Pww8/zLfffou3t3ep+y5cuJDY2FhMJhM9wyPw8vSo5GqlunDkMQEOfYtgRkYGffr0Yc+ePQD4+Pjg7+9PWloaSUlJmEwm0tPT8fAo+OFfvnw5Y8YU3CYUFBRE48aNy2x75cqV+Pj4lLrtlVde4dVXX9XTBkXs4OTJk3Tv3p3U1FRatGjByy+/zIMPPkjNmjUBOHjwIPPmzWPx4sUAvPzyy7z66qv2LFmquMIxAF6eHsXGBBQuV2cO3RPg6elJfHw8c+fO5YsvvuDIkSNcvnwZHx8fhg0bxogRI4oCAMC1a9eKPk9KSiIpKanMtgunEBaRqqVp06Z88803DBo0iKNHjzJ+/HimTZtGs2bNyMzMLPbsj6ioKF555RX7FStiZw4dAqBgnv+XXnqJl1566bb7Tpw4kYkTJ9q+KBGxqfbt27Nnzx4WLVrEnLfmcvFiGhcvXgTAZDLRom0IPftFMHv263auVMS+HD4EVKaVKwtGFx88eLDYcmBgIF26dLFbXSJG1LBhQ/70pz9h9grgyOGDmPJzmfDgIGJ/OIjJpYbGAIigEGBVI0eOLHV5woQJfPjhh3aoSEScnZ1pEhCEl6cH9957LzsPpVb7Ed0i1qIQYEUaCCgiItVJ1X4aiIiIiNiMQoCIiIhBKQSIiIgYlEKAiIiIQSkEiIiIGJRCgIiIiEEpBIiIiBiUQoCIiIhBKQSIiIgYlEKAiIiIQSkEiIiIGJRCgIiIiEEpBIiIiBiUQoCIiIhBKQSIiIgYlEKAiIiIQSkEiIiIGJRCgIiIiEEpBIiIiBiUQoCIiIhBKQSIiIgYlEKAiIiIQSkEiIiIGJRCgIiIiEEpBIiIiBiUQoCIiIhBKQSIiIgYlEKAiIiIQSkEiIiIGJRCgIiIiEEpBIiIiBiUQoCIiIhBKQSIiIgYlEKAiIiIQSkEiIiIGJRCgIiIiEEpBIiIiBiUQoCIiIhBKQSIiIgYlIu9CxAREakKzvznPBlZ2SXW5+blFf175PjpEsuFXF2caebfuHKKtRKFABERESD7Wg5LP9+AuYztWVezif58Q5nLQ+4Nq3YhQJcDREREgKAAX3p27VihY5s3bcI9oe2sXJHtKQSIiIj814DeXWjUoJ5Fx9Ss4cbIwX1wMplsVJXtKASIiIj8l6uLC78b0g9np/K/PQ4b0JM6Xp42rMp2FAJuYjab2b59OzNnziQsLAxvb29cXV1p1KgRkZGRrFu3zt4lioiIDfneVZ/7enUp174dWwfRqW1zG1dkOxoYeJPNmzfTv39/AEwmE8HBwQQFBZGYmEhMTAwxMTE88sgjLFmyBFM17PoREZHb692tI4eO/cqJ06ll7uPl6c6wAT0rsSrrU0/ATcxmM0FBQcyfP5+zZ89y9OhRdu3axYULF5g7dy4mk4no6GgWLlxo71JFRMRGnJycGHl/X9zcXMvc58HBfXGvVbMSq7I+k9lsLutuCENKT0+nVq1auLqW/oV/4oknWLRoESEhIezdu7dyixMRiyQlJTHxD9PY/+8fyc7KpG4dLzzqNKBD1x507hrGn6c9ZO8SpYpL2HeIVf/aVmL9PZ3bMfS+HnaoyLoM1ROQn5/PypUrGTZsGL6+vtSoUQNfX1/69evHvHnzyMnJwcvLq8wAADBw4EAADh8+XFlli4iFcnJymDRpEs2bNyc+LoZLF86RfTWL1NRUjh3+mS8/WcRbrzzLjz/+aO9SpYrr0rEVbZo3LbauoXcdBvX9jZ0qsi7DhICzZ8/Sr18/Ro4cydq1a3F1daVTp064urqyZcsWXnjhBZydnW/bTnZ2wWxS7u7uti5ZRCogNzeXkSNHsmTJEsxmMwMHDmTVqlUcPHiQhIQEXnzxRRo2bMjlixfo27cvO3bssHfJUoWZTCYeiOiNh3tBt7+TycSoyHDcXB1jSJ1jvIrbyMzMZPDgwezevZs+ffrwzjvv0LHj/yaEOHDgAKtWrSpXCFixYgUAvXr1slm9IlJxb775JuvWraNmzZqsXr2aQYMGFdvepUsXXnjhBUaMGME333zD0KFDOXHihIK9lMnToxYjInrz8epY+oV1xr/xXfYuyWoMMSag8Dp+z5492bRpE25ubhVqZ8OGDdx///0AbN++nbCwMGuWWcL8j1ZzJeOqTc8h4kjy8nJ58+VnuHL5Iu+//z6PPfZYmftmZmbSvn17Tpw4wfCxk+hyT59KrFSqo5yc67i6ulS5O8Nqe9bijxNGVOhYh+8JOHToEEuWLKFGjRosW7aswgHg2LFjjB8/HoBp06aVGgBWrlzJ8uXL2bVrF+fOnSMgIIAHHniAF154AU9PyyeSuJJxlfSMzArVK2JEh3/ew5XLF7nrrruKfl7L4uHhweTJk4mKimLHtxtp2aF894WLsWXn5Ni7BKty+BDw6aefkpeXx0MPPURAQECF2khNTSUiIoK0tDQGDBjAnDlzSt1vzpw5BAQEMGvWLPz8/Ni7dy+vvvoqW7duZdu2bThZMAMVFKQ7ESm/i2fPADBixAhq1Khx2/1Hjx5NVFQU/zlzCk/3Whb/jIpUBXfyXuHwISAuLg6AwYMHV+j4wjf+xMREevTowZo1a8q8e+Crr76iYcOGRct9+vShYcOGjB07lu+++47evXtbdO6Kdu+IGNV/jvzI1lioW7duufavV69gjniz2cwzj4zAw8PDhtWJVD0OHwJOnToFQFBQkMXHpqenExERwf79++ncuTMxMTG3HDx0YwAo1KVLQRdjcnKyxefXmAARy+w/WvDzfuLEiXLtX7ifk5Mzby9dU+Wu9YqUh8YE3EJmZsE19atXLXszzcrKIjIykoSEBNq0acPGjRupU6eOxeffsmULAG3atLH4WI0JELGMX7NWAKxZs4YLFy5Qv379W+6/ZMkSAIJatedKZpbN6xOpahw+BPj7+3Px4kW+//57evQo3+xOOTk5DB8+nPj4eIKDg4mLi6NBgwYWnzs5OZk///nPRERE0KlTJ4uP15gAEcvUbtMOX/9Azpw6wf/93//x9ttvl7nv0aNHiY6OBqBn+EC8PHUpQKqnO3qvMDu4v/zlL2bAXKdOHfPGjRuLbTt9+rT5tddeMx85cqRoXW5urvmBBx4wA2Y/Pz/z8ePHK3TeK1eumENDQ81NmjQxnzlz5k5egohYYPXq1WbADJhnzJhhzsjIKLHPjh07zP7+/mbA3K1bN3NeXp4dKhWxP4efJyAjI4M+ffqwZ88eAHx8fPD39yctLY2kpCRMJhPp6elFA4KWL1/OmDFjgIJxBI0bNy6z7ZUrV+Lj41Ni/dWrVxk8eDA//fQT8fHxtG3b1gavTETK8uabbxIVFQVAnTp1GD9+PK1btyYzM5PVq1ezc+dOAFq1asXWrVtp1KiRPcsVsRuHvxzg6elJfHw8c+fO5YsvvuDIkSNcvnwZHx8fhg0bxogRxUcEX7t2rejzpKQkkpKSymy7cArhG12/fp0HH3yQXbt2sWnTJgUAETuYMWMGTZo04eWXX+bYsWMsWLCg2HZXV1dGjhzJ/Pnz8fb2tlOVIvbn8D0BlSk/P5/Ro0ezbt06NmzYQL9+/exdkoih5efnExsbWzRQsGbNmrRv356HH35Yf/2LoBBgVU8++ST/+Mc/eP755xk6dGixbcHBwaXeQigiImIvCgFWFBgYyMmTJ0vdtnTpUiZOnFi5BYmIiNyCQoCIiIhBaaJsERERg1IIEBERMSiFABFxCEePHiUsLIyWLVvStWtXDhw4cMv9T5w4Qd++falTp06FZvQUcQQKASLiEP7whz/w+OOPc+TIEWbOnHnbgbheXl789a9/5dNPP62cAkWqIIUAEan2zp49y65duxg3bhwADzzwAKdOneLw4cP4+fkVTfo1Z84cIiIiyM/Px9vbm549e+rxwWJoCgEiUu2dOnWKxo0b4+JSMAmqyWQiICCA5ORk3nzzTUaNGsW3337Lu+++y8cff4yTk371iYABpg0WEWP7/e9/z5YtWxg4cCCbNm3SpF0iN1AcFpFqz9/fn5SUFHJzcwEwm838+uuvBAQEkJuby88//4y3tzfJycl2rlSkalEIEJFq76677qJz58588sknAKxatQo/Pz+aN2/O888/T6tWrYiPj+e5554jMTHRztWKVB2aMVBEHMLhw4eZOHEiFy5cwMvLi6VLl3Ly5Emef/55fvzxR9zd3fniiy94/fXX+f7778nPz6dly5Zcu3aNy5cvc9dddzF+/Hhef/11e78UkUqjECAiImJQuhwgIiJiUAoBIiIiBqUQICIiYlAKASIiIgalECAiImJQCgEiIiIGpRAgIiJiUAoBIiIiBqUQICIiYlAKASIiIgalECAiImJQCgEiIiIGpRAgIiJiUAoBIiIiBqUQICIiYlAKASIiIgalECAiImJQCgEiIiIGpRAgIiJiUAoBIiIiBqUQICIiYlAKASIiIgalECAiImJQCgEiIiIGpRAgIiJiUAoBIiIiBqUQICIiYlD/H46AXYtheKn4AAAAAElFTkSuQmCC", - "text/plain": [ - "
" - ] - }, - "execution_count": 3, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "qubits = QuantumRegister(3)\n", - "clbits = ClassicalRegister(3)\n", - "circuit = QuantumCircuit(qubits, clbits)\n", - "(q0, q1, q2) = qubits\n", - "(c0, c1, c2) = clbits\n", - "\n", - "circuit.h([q0, q1])\n", - "circuit.measure(q0, c0)\n", - "circuit.measure(q1, c1)\n", - "with circuit.if_test((clbits, 0b001)):\n", - " circuit.x(q2)\n", - "circuit.measure(q2, c2)\n", - "\n", - "circuit.draw(\"mpl\")\n", - "\n", - "# example output counts: {'101': 269, '011': 260, '000': 252, '010': 243}" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Switch 文\n", - "\n", - "switch 文は、古典ビットまたはレジスターの値に基づいて、アクションを選択するために使用します。 if 文に似ていますが、分岐ロジックにより多くの case を指定できます。 以下の例では、量子ビットにアダマールゲートを適用して測定しています。 結果が 0 であれば、量子ビットに X ゲートを適用し、結果が 1 であれば、Z ゲートを適用します。 測定結果は 100% の確率で 1 になります。" - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAnMAAACuCAYAAABdj4vWAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAo5ElEQVR4nO3deVyU5f7/8dfMsBiIC26A4L4LSK6VKIJLpZlpqaWG5vl+W6xjWS7p8ZieTphttpyvR39x3DI9lXS0Y5maIJWVSypuneMuLqDhjuACM78/iEkElGVguIf38/HwIXPfc1/zGb2Z+z33dd3XbbLZbDZERERExJDMzi5AREREREpOYU5ERETEwBTmRERERAxMYU5ERETEwBTmRERERAxMYU5ERETEwBTmRERERAxMYU5ERETEwBTmRERERAxMYU5ERETEwBTmRERERAxMYU5ERETEwBTmRERERAxMYU5ERETEwBTmRERERAxMYU5ERETEwBTmRERERAxMYU5ERETEwBTmRERERAxMYU5ERETEwBTmRERERAxMYU5ERETEwBTmRERERAxMYU5ERETEwBTmRERERAxMYU5ERETEwBTmRERERAxMYU5ERETEwBTmRERERAzMzdkFiIgUxGqDjKt5l3l5gtnknHrEubQ/iBROYU7EAC5mwoFTcPkqXM92djXl4+p1WLM777J7g8HT3Tn1iHNpfzAedwt4eUDTelDDy9nVuDaTzWazObsIEckv2wo/HoDtR+HQadAvqogYVePaENYQujYHN4uzq3E9CnMiFVC2FZb8kBPkRERcRZsAGN1dgc7RdAGESAWjICcirmrvSZj/LWRVkuEi5UVj5kQqmB1HCw5ynm5QvyZ4uIGpEgz6zsqG/afyLmteT9/oKyvtD8Zis8G1LDh5Hq5cz7tu70nYdBC6tnBKaS5JYU6kgtmRnPexuwWGdoF2DXJ+rizSr8DUuLzLRoZD1SrOqUecS/uDMWVlw54TsPRHuJr1+/IdyQpzjqRuVpEK5Mp1+OVk3mUPdYCOjStXkBMR1+BmyfkiOrRL3uUHTsOlK86pyRXpzFwFZbPBNQONKfCwOLbrz2azkZGR4bgGy4GXlxemUv4jHDsDWdbfH5tNcGeDUhYmhmSz2ciwGuhDAPAyW0r9OyC/c6V9IDgwZ4jItd/OztlscORXCAkqvK3KehwoCYW5CupaNkz6xNlVFN2soTljuhwlIyODqlWrOq7BcpCeno63t3ep2si4lvexb9WciVGl8smwZlMzfp2zyyiWc1G98bbosOIorrQPeLhB3Wpw/Ozvy27+vLtZZT0OlIS6WUUqkJsnBPYop67VI0eOYDKZmD59ukPb3bBhAyaTiYULFzq0XRExnps/zyrLBOjlQWFOpCL77Wz9oUOHePLJJ2nVqhVeXl7UrFmT1q1bM3LkSBISEsrkpc+fP8/06dPZsGFDmbRfFjIyMnj33Xfp1q0bvr6+uLu7U69ePfr27cvChQvJysq6fSPiErQvVDzqgS87Oh8uUsFt3bqViIgI3N3diY6Opm3btmRmZrJ//37Wrl2Lj48PkZGRpXqNhg0bkpmZiZvb7x8J58+fZ8aMGQD06NGjVO2XhwMHDtCvXz/27dtHr169mDx5MrVr1+b06dN88803PPHEE+zdu5c33njD2aVKGdO+IJWNwpxIBTdjxgwyMjLYsWMH7dq1y7c+NTW11K9hMpmoUsW4czxkZmbywAMPcOjQIeLi4hg0aFCe9ZMmTWLLli1s2bLFSRVKedG+IJWRullFKrj9+/dTq1atAoMcgJ+fHwCRkZE0atQoz7ply5ZhMpnybfv3v/8dk8nEpk2bgPxj5jZs2EDjxo2BnDBpMpkwmUz52o+Li6NHjx7UqFEDLy8vWrZsydixY7l2Lf/I5gULFtC2bVs8PT1p2LChQ8+KxMbG8t///peXXnop38E7V6dOnRgzZoz98dq1axk6dChNmjThjjvuoEaNGvTp04fExMR82+7Zs4fBgwdTv359PD098fPzIzIyki+//DLP865evUpMTAxt27alSpUq1KhRg/79+7N9+3aHvVe5Ne0LUhnpzJxIBde0aVP++9//8vnnnxd6cAKIiopi2rRpHDx4kKZNmwKwfv16zGYzu3btIi0tjdq1awMQHx9PtWrV6NixY4FttW7dmtmzZzNu3DgGDhxof90bryz705/+RExMDG3atGHcuHH4+/tz8OBB4uLi+Mtf/oKHh4f9uXPnzuXUqVP84Q9/oEaNGixZsoRJkyYRGBjIsGHDSv1vtHz5cgCefPLJIm+zcOFCzp49S3R0NIGBgZw4cYLY2Fh69uxJQkIC3bp1A+DMmTNERUUB8PTTT9OwYUPS0tLYunUrmzZtol+/fgBcv36d++67jx9++IHHH3+c5557jgsXLvDhhx/StWtXvv3220L/vcVxtC9IZaQwJ1LBTZ06lXXr1vHwww/TvHlzwsPD6dSpEz169KB169b25+WGufj4eHuYi4+PZ9iwYSxZsoT4+HiGDBmCzWZjw4YNdO/eHYul4Mtl69Wrx0MPPcS4ceMIDQ1lxIgRedZv3ryZmJgYIiMj+eqrr/J00b7++uv52ktOTuaXX36hevXqAIwePZqGDRvywQcfOCTM7d69m2rVqtGkSZMib/Phhx/mm0Lg6aefpm3btsycOdN+AN+4cSOnT5/mk08+YciQIYW297e//Y0NGzbw9ddfc++999qXjxkzhuDgYMaPH2+oi0mMSvuCVEbqZhWp4O6++25+/vlnRo4cyYULF1iwYAFjxoyhTZs2dO/enUOHDgHQuXNnqlatSnx8PABHjx7l8OHDPPbYYwQHB7N+/XoA+1m63DMMJfHxxx8DMHPmzHxj7XK7ZG/0xBNP2IMc5Eysedddd7F///4S13Cjixcv4uPjU6xtbjx4p6enc+bMGSwWC126dLF3PwP2ulevXs3FixcLbW/JkiW0atWKDh06kJaWZv9z7do1evfuzffff09mZmYx35kUl/YFqYx0Zk7EAEJCQuxztR09epTExERiY2P57rvvGDBgAD///DMeHh6Eh4fbpypZv349bm5udO/enaioKL766isAe9grTZjbv39/gWPxClPQWZJatWpx5syZEtdwo2rVqnHp0qVibXPw4EH+9Kc/sWbNGs6fP59n3Y1hNCIigujoaBYuXMjHH39Mp06d6NWrF0OHDqVNmzb25/3yyy9kZmZSp06dQl8zLS2NoKBbTHkvpaZ9QSojhTkRg2nYsCHR0dE8/vjjdOvWjY0bN7J582bCw8OJiori66+/Zs+ePcTHx9OpUyeqVq1KVFQU77//PsnJycTHx1O7dm1CQ0NLVUdBZ+AKU1h3rqMEBwfz7bffcujQoSJ1r6Wnp9O9e3cuX77MCy+8QEhICD4+PpjNZmbOnGkPvLkWLVrEhAkTWL16Nd999x1vv/02r732Gu+++y7PPfcckHProZCQEN55551CX/dWB3dxDO0LUhkpzIkUUYMGDUhOTnZ2GXYmk4kuXbqwceNGTpw4Afx+tm39+vXEx8fzhz/8AciZJ85isbB27Vq+/fZbevfufdsgdqv1LVq0YPXq1SQlJdG5c2cHvaOSe/jhh/n222+JjY0lJibmts9fv349J0+eZP78+TzxxBN51k2dOrXAbYKDgwkODmbChAmcP3+eLl268PLLL/Pss89iMplo3rw5v/76K1FRUZjNGsHiLNoXpCzVr1+f1NRUsrMr1u0rtJcBX3zxBc888wydO3e2X27u4+NDWFgYU6ZMIS0tzdklSgm1atWKESNGMHv2bFavXk1iYiIJCQmsXLmSV199lYceegh/f//btjN48GD279+f78O+PKxbt67A2eozMzNZu3YtgL2L584776RmzZrMnTuXlJQUe7irXr067du3Z/bs2Vy4cKFIXay5V66ePXs237rcixamTJlS4DQkNputiO/OMf7nf/6Hli1b8tZbb7Fy5coCn/Pzzz8zZ84c4PczhTfXuXbt2jxjpCDn/Vut1jzLatSoQePGjcnIyODKlSsAREdHk5qaWujZmFOnThX/jUmxaV+Qm9WrV48HH3yQGTNmsGLFChISEkhMTOTrr7/m/fffJzo6Ok83eWGaNWvGTz/9xKJFiypcSNeZOeCdd94hMTERDw8PAgICCA0N5fTp0+zcuZOkpCRiY2NZu3YtYWFhzi5VisDb25thw4YxZsyYW/6fPfjggwBYrVa+/vpr5syZw+rVq/N9WA8ePJilS5fi5uZGbGws+/fv5/vvvy/Lt5DHuHHjOHPmDA8++CAhISF4eXlx7Ngxli5dyr59+4iOjiYkJAQAs9lMREQEK1asoEqVKtxzzz32dqKiopg1a5b959upVasWzZo145///CdNmzalXr16eHt7079/fzp37sykSZOYNWsW7du3Z+jQofj5+XH48GGWL1/O5s2bqVGjRpn8exTEy8uLVatW0a9fPx566CH69OlD7969qVWrFr/++isJCQmsWbOGiRMnAhAeHo6fnx8vvfQSR44cITAwkB07dvDRRx8REhLCrl277G0vXryY2bNnM3DgQJo1a4a7uzuJiYmsWbOGIUOGcMcddwDw/PPPs27dOiZMmEB8fDxRUVFUq1aN5ORk1q9fT5UqVcrs1mvyO+0LAjk9C3369GHMmDH069ev0KEeN15tvHv3bubMmcOSJUvyjbts1qwZCQkJBAYGMnz4cA4dOsS0adPK9D0Uh8IcOdMkTJs2jfDw8DxzY+3atYthw4axe/duhg0bxt69e51YpRTFiBEjeO+99/D19S3yNmazmb59+9K3b1/27t3L6NGj7d/IbwxyAPPnz2fjxo1lUnth3nnnHVauXMn3339PXFwc58+fp3r16oSGhjJp0iRGjRqV5/lRUVGsWLGCe+65B09PT/vynj17MmvWLOrXr0/Lli2L9Noff/wx48aNY8qUKWRkZNCwYUP69+8P5ExB0q5dO/72t7/xxhtvYLVaCQoKom/fvnh5eTns/RdVs2bN2L59O/PmzSMuLo7XXnuN9PR0fH196dixI4sWLbKfUaxRo4b9gP7BBx+QlZVFhw4d+Oqrr/jHP/6R5wDeo0cPtm/fzqpVq0hJScFisdC4cWPeeust+xgpAHd3d7788kvmzJnDRx99xCuvvAJAQEAAnTt3ZuTIkeX7D1KJaV+o3O68804WLFhQ5Au0cgUHBzNnzhxmzpzJ+PHjiY2NBfIGOYCdO3fy3nvvObzu0jDZyrs/xGA2b95Mly5dANi7d2+eeb3K0tUsmPRJ6ds5vncDcTGRhD/2Jh36jS/wOe+NMNEorB8Dxq8q8evMGgqeDvxqcPny5TwT1N5OvXr1+PDDD+1BI9dPP/3EypUr+fnnn0lKSuL8+fOYTCb8/Pxo3749nTp14rHHHstzZ4Ps7GzeeustkpKSWLx4sT3IxcbG8uSTTxbahZienp5vrqri2noYlvzw++OAmjCxb6maNKz0KzA1Lu+yvz4MVY1717FiuZydRc34daVuJ3v+Qqz//BTLiy9gvq9PnnU2m43sCS9j++UX3P72PqbGjUr1WueieuNtKZtzBJVxf3DUPnC9T9E+RCxvvo65XekujLrVPvDBOjh4+vfHj3SC8BaFt1Xc44Cbmxt//vOfmTJlSp77TB87doxly5axefNmtm3bxsmTJ7HZbFSrVo3Q0FA6dOjAgw8+SHh4eJ721qxZw1//+leWLVuWJ8hFRUUVeiW+I44DJeGSZ+bS0tJ44403+Pzzzzl+/Dh16tRh0KBBxMTEMHbsWObPn88HH3yQ55tUYW4MbxkZGWVZtpRQ48aN+eabb/Jcufbpp58ya9Ystm3bVuA2R48e5ejRo/zrX/9i6tSp3HfffUyfPp1OnTphsViYNGkSVqvVPi7idkFOpKIyPz4c60+byJ73IaYO7THVqW1fZ/18BbaduzCPHlXqICcVl2ViwV/kAWypqVgXL4Hq1TD9FliMyNPTk08++YQBAwbYlyUlJfHKK6+watWqAi9YSEtLIz4+nvj4eN58801CQ0OZMGGCfZL0e++9l549e9qD4e2CnDO5XJjbsWMH999/P6mpqXh7e9OmTRtOnjzJ+++/z8GDB+2DuYs6/i23S83b27vIXVNSfoKCgtiwYQMNGjQAcm46//TTTxc68LkgVquVr776ijVr1jBhwgT+8pe/4O7ubg9y8+fPV5ATwzK5u+M24SWyxo4j+513cZv5VwBsx45jXbgYU6uWmAc/7OQqpSyZexU8RtZ25QrZL7wEZjOWKS9jqlX04SkViZubG59++ql9HPT169d57bXXiImJ4fr160VuZ+fOnTz++OMsXbqU+fPn4+fnZw9y//nPfypskAMXu5o1LS2N/v37k5qayksvvURKSgrbtm0jNTWVWbNm8eWXX7JlyxZMJtMt59iyWq2kpKSwePFi+3ikmJiYYp3ulbLn5ubGihUr7EFuz549tG/fvlhB7kbZ2dkcPHgw35QcmZmZCnJiaKbmzTA/OgTbz9uwfrkaW3Y22W+8BTYblgkvYSrjeQClYsp++104dBjz/4zGfGeYs8spsZiYGHuQS09P57777mPGjBnFCnI32r9/f74L4UwmE+np6aWutay4VJgbO3Ysx48f57nnnuOtt97Kc0uXiRMn0q5dO7KysmjUqBHVqlXLt/3cuXMxmUxYLBYCAgIYOXIkgYGB/Pvf/2bs2LHl+VYcLutaBpmX0gr8Y1STJ0+mffv2QM4vX1RUFCkpKSVu7+aLHXKnA3n22WeJjIwsfcEiTmQe/hg0aUL2h7FY/28utv/uwzwqGlOQcbvWpOSyP12OLfFbTBHdsTwyyNnllNhdd93FSy+9BMDVq1fp379/vomeiyP3YoeAgAAA+3QzLVu2ZMaMGaUvuIy4TJj75Zdf+OSTT6hduzYzZ84s8DkdOnQAKPQKF39/f7p27UqXLl0ICAjAZDKxc+dOli5dyoULF8qs9vLwU9wr/L9n6hT4x4jatm3Ln//8ZyAndD366KOcPn36NlsV7uYgFxsby4svvmhf/49//MM+7YCIEZnc3HCb8CJcu4511ZeYgttiHvSQs8sSJ7Bu2451/kJo3AjLiy84u5wSc3d3Z8GCBfYhMdOmTWPDhg0lbq+gq1Z79uzJ1atXARg/frw9R1Q0LjNmbtmyZVitVoYPH15od2juwbiwMDdgwIA8gyd37drFs88+y7Jly0hOTi7x3GIdO3YkNTW1WNtY3O9g4F8dcxNygODIJ2neZXCB6/71eu9St9+ieXOyrzvuxtE3n+K+2fjx43F3dwdypsgo7EKHoigoyD355JNAzmzyERERNG7cmEcffZQFCxYU2k7z5s1LPZFkUNhAujz2gf3x3j17CHzy3lts4bo8vH15cNrOPMtC24Vy7XL+SYxdkc3DA+b9n2Mb9fYGd3fIysLUqSMmB0982qJ5C0wFTCLtCJVxfyiLfcCWeorsmFng5YXbK3/GdIdjLwe+1T4Q8dRy6jS5y/54ypQpHPppcaFt3e44MHDgQFq1agXApk2bePvtt0tQcY6CglzuGLnp06czc+ZMLBYLEydOZOjQoYW2U5rjgJ+fH1u3bi3Rti4T5nJPq96qO+z48eNA4WHuZiEhIXz55Zc0adKEjRs38s0339CrV69i15aammq/3VJRuXk6dp6uGn7NaRBc/NqL6mTKSbKuls/Vvr6+vjz66KMAnDt3rki37ClMYUEud4zcxIkT7XPOjRkz5pZhrjRdvLmqNsx7YLp+/Xqx9x1XcYfP1XzLUlNSDD00oFiqeOLuwOZsNhvZb8+GrOvQIAjr0n9ijuiOKeD2d0ApqpMpJ+FK/v83R6iU+4Oj94ErV8ia8Sqkp2P5yysO/b/Pdat9IPcMV64LF86X6vNtzJgx9p8nT55c4lts3SrIAbz99ts8//zz+Pn5MXDgQPz9/Qv9vHfEcaAkXCbMHT16FMi5CXlBsrKy7FemFmciQR8fHyIiIoiLiyMpKalEYc7Pz6/Y21jcjdWlF+Af4PAzc4X9UowYMYIqVXK+TS5YsIDMzJK97u2CHOTMM7h161Y6duxIx44dCQsLY8eOHQW25+/vX+ozczVr5r2azN3dnfr165eqTaPy8M5/ZZ2fvz/XqnkW8GzXY/Pw4FcHtmdd8QW2pJ2YnxiJ+e67yHr2j2S/PRvLW7Nue5/eogrwDyjTM3M3c/X9wdH7QPbs9+HgIcwjH8fcuZMDW/7drfaBGycxB6hevcYtP99udRxo0aIFERERQM4wq5LeUeN2QQ5yvlTHxsYydepU3N3dGTVqVKHDuUpzHChJVsjlMmHu8uXLAIUe2D/55BPS0tLw8fGhcePGxWo7dyB8SVN/SU6bOmrS4PKyb//+cps0uFu3bvafFy5cWKL2ixLkbnyNjh072l+7sDC3f/9+h08a3KZtWxb+dka5siloktidSTtdepLYGzlqwlgA24kTWOcvxNSyBeYhj2CyWDCPGI51wSKsK77AMnDA7Rspgn3795XrpMGuvj84ch/IXv45toQNmO6+C/OwRx3SZkFutQ/cPGlwTEwM4S0K71kp6+NAUYLcja8xdepU+2sXFuYccRwoCZe5ACI30RY0diolJYUJEyYAEBoaWqxvoWfPniUxMREo+tx0UrZyB6Cmp6ezZ8+eYm9fnCAHOXeRuPm1RYzCZrWS/eY7YLVimfCifRoS85BHMLVojnX+QmwnndM1JOXDuiMJa+x8CAzEMnG8w87EOtONn8U3fkYXVXGCHMDBgwdJS0vL99oVhcuEudzuz1mzZrFv3z778i1bthAZGWn/T7g5kG3dupVp06Zx4MCBfG1u376d+++/n/PnzxMSEkLPnj3L7g1IkdSoUcN+ZnX79u23HSB7s+IGOci5EObab90GuVOhiBiFdfnn2Pb+gnnkCEy/zckIYLJYsIx/EazZZL89W3MpuijbmbNkvzYTrFbM3bpi+/EnrN/EF/jHduiws8stshuP5du3by/WtsUNcrlye9nq1q1b4Ya/uEw368SJE1m6dCnHjh2jbdu2tGrViitXrnDgwAHuv/9+GjVqxJo1a/KNl0tPT+fVV1/l1VdfpW7dugQFBWGxWDh+/DgnT54EcvrmV6xYgUUTazpdzZo17T8fO3asWNuWJMgBXLt2jdOnTxMYGJjn9UUqOltyMtZFH2Fq3Qrzw/nnEjM1algm3a1ScdiOH4cLFwGwLrv12B3ziGFYmhRvGJKz1KpVC8jpPbt06VKRtytpkIO8x5yaNWtWqIvTXCbMBQYG8t133zFhwgQSExM5cuQIbdq0Yd68efzv//4vTZs2BfJf/NCuXTvee+89EhIS2L17N/v27ePKlSv4+vrSq1cvBg4cyOjRo+0D7o0msE0Pnl9y67Byu/UVSUpKCt27d6dKlSr8+mvRhwabTCZeeOGFYge5XNHR0ZjN5go9A7jIzUwNGuD+5a3viGJ5bCiWxwqfakGMzdwuFPPar5xdhsMNHz6c6tWrF/tig+HDh5coyAF88MEHLF++nMzMTA4frlhnMV0mzAG0bt2aVatW5Vuenp7OkSNHMJvNBAcH51lXs2ZNxo4da/g7PFQWV65c4bvvviv2djabjb59+7Ju3TqSkpKKfa/Vkl4pJSIijlfS+dhmzJiBr68vPXr0KPa9Vnft2sWuXbtK9LplzaXCXGH27NmDzWajRYsWeHk5dv42MY4LFy4QFRXF5cuXNT5IRKSSev755/Hx8SlW92xFVynCXG6SLs78cuKa1E0qIiKuFOTAha5mvRWFOREREXFVCnMiIiIiBlYpullz79sqIiIi4moqxZk5EREREVelMCciIiJiYApzIiIiIgamMCciIiJiYApzIiIiIgamMCciIiJiYApzIiIiIgamMCdSkekWsiLiInRL7LKjMCdSgbhb8j6+lu2cOkREHO3mz7ObP++k5CrFHSCMyMMCs4Y6u4qi83DwL6WXlxfp6ekOa+/Nef/k4uUMqnl7MeGpR/M9dgQvL6/St+GR9/HZdLh8Fbw9S920GIyX2cK5qN7OLqNYvMw6OjuSK+0D17Lg9IWbnutR4FN/X19JjwMloTBXQZlM4FmJ/3dMJhPe3t4Oa8/Dswoe17Px8KyCt7d3vscVRYNaOd9Wr//2DdZqg+1HIbyFc+uS8mcymfC2VOIPAXGpfWDnsbxn5swmaFzn1ttU1uNASaibVaQC8XSH1gF5l634GTYdhKtZzqlJRKSkrmXBtiPw6ea8y5vVg6pVnFKSS3KNyC/iQsIa5HyLzZVlhWU/QdwW8K+RE/gqgyxr/mXzvwM3fQWtlLQ/GM/VLEg9X/AX0XYNyr0cl6YwJ1LBhDWAPSfg5yN5l1/LhqNnnFJShXHotLMrkIpE+4MxBQdClybOrsK16DuNSAVjNsPwu6FDI2dXIiLiWMGBMCoc3HStjEPpzJxIBZQb6JrVy7kA4sCpnIshpHDnUvezbt5IMi+l4XFHdfo8tZBagW2dXZY4wYbFYzm07QsupR1l2GvbqdMwzNklVWomoEndnF6Hu5spyJUFhTmRCspszvngu7sZvLfgc85fysTD8w7ujhjEDxs+5+rVTDw97+CeHoOcXWqF8OKop4h+4knuGziKxDXLWRY7irmfbXF2WeIEja2PEDB5In8cHk5ka2jW2tkVVU4eFvDyhCZ1oNodzq7GtSnMiRjA5YxMMjMv426BHq3gh/WZXL1yGU+3nMeV3enTpzmwdyubv1+LmxtEtHyYv898jkC3AzRr1szZ5Uk569GqOwAT3KFjYwjT74i4OI2ZExHDO3bsGP7+/ri55Xw/NZlMNGjQgOTkZCdXJiJS9hTmRERERAxMYU5EDC8oKIiUlBSysnImtLLZbCQnJ9OggSazEhHXpzAnIoZXt25d2rdvz5IlSwCIi4sjMDBQ4+VEpFJQmBMRlzBv3jzmzZtHixYteP3111mwYIGzSxIneeqppwgMDOT48ePce++9CvXi8nQ1q4i4hJYtW/Ljjz86uwypAObNm+fsEkTKlc7MiYiIiBiYwpyIiIiIgSnMiYiIiBiYwpyIiIiIgSnMiYiIiBiYwpyIiIiIgSnMiYiIiBiYwpyIiIiIgSnMiYiIiBiYwpyIiIiIgSnMiYiIiBiYwpyIiIiIgbk5uwARR7pwMZ1TZ87nW56VnW3/e9/h4/ke36hR/Xp4eLiXea0iIuJ417OyOHwsNd/y4hwH6vhWp2Z1n7Iv1kEU5sSluHu4s/yrRC6mXy5wfUbmFeZ/+lWhj1s2CaJ5o/plXqeIiJQNN4uFzTt+Yfe+wwWuv91xwNurCuNGDy7zOh1J3aziUryqeDK4X0SJt334/ghMJpODqxIRkfJiMpkYeG83qnrfUaLtH76ve4m3dRaFOXE5zRsFck+H4GJvN/DeblSr6lUGFYmISHny9qrCI/cX/4t9x9CWtGneyPEFlTGFOXFJ90d0po5vjSI//862zQlp1aTsChIRkXLVqmkDuoS1LvLzfav70D/q7jKsqOwozAFffPEFzzzzDJ07d6Z+/fp4enri4+NDWFgYU6ZMIS0tzdklSjG5u7sx9IFIzObbd5lW9/FmQO+u5VCViIiUp76Rd1GrZrXbPs8EDHkgEk9Pj7IvqgwozAHvvPMOc+fOJSkpCQ8PD0JDQ/H19WXnzp3MnDmTNm3asGPHDmeXKcUU6F+Hnvd0uO3zhvSLpIpBf4FFRKRwnh7uDO0Xedux0N27tKNRoF85VeV4CnPA6NGjWb9+PZcuXeLw4cNs2bKFo0ePkpSURHBwML/++ivDhg1zdplSAj3uDiPIv26h68M7htC0YUA5ViQiIuWpQf16RN4VVuh6/7q16B3esfwKKgMmm81mc3YRFdnmzZvp0qULAHv37qV166L3v0vFkHb2Au8tjOP69aw8y+vWqskfRw3E3a1iz9Bz5coVHn9qHD99+w3nzpzGw82CxaMKLYM70DWyD7P+9EdnlygiUqFlZ1uZ89EKTpzKO2zKYjHzx5GD8Kvj66TKHMOlz8xZrVaWL1/OQw89REBAAJ6engQEBBAVFcV7773HtWvXbtvGjeEtIyOjLMuVMlLbtzr9Iu/Ks8xiNjO0f2SFD3Jr164lKCiI5YvncvzIAS5fusi5c+dIO5XCxvWreHPaC7z88stYrVZnlyoiUmFZLGaGPBCJm5slz/J7u3c2fJADFw5zp0+fJioqisGDB7Ny5Urc3d0JCwvD3d2dhIQEJk+ejMViuW07GzduBMDb25uWLVuWddlSRrqEtaZlkyD7417hHahfr7YTK7q9VatW0bdv31tegGOzWpk1axZPPfUUOskuIlK4erVrcl9EZ/vjxkH+hHcKcWJFjuOSYe7y5cv07duXxMREIiIiSEpK4ujRo2zatImjR4+ye/duXn755ULDnNVqJSUlhcWLFzNq1CgAYmJiqFq1ajm+C3Ekk8nEw/dH4FXFk4b16xHRpZ2zS7ql1NRUhg4dSvZvt5u5ndjYWBYuXFi2RYmIGNw9HYJp1rA+nh7uDOnXA7OLTBLvkmPmnn76aebNm0d4eDjr16/Hw6NoVyrOnTuXZ555Js+yDh06MH36dB544IES1/PBos+5lJ5Z4u3Fca5nZWExmzGbK/b3mISvV/LNqs+KtY1f/QY89/JruoOFiMgtWK1Wsq3WCjfMxqfqHfxx5KASbVux3okD/Oc//yE2NhZPT08+/vjjIgc5AH9/f7p27UpWVhbHjh0jJSWFnTt3snTpUrp160b16tVLVNOl9MxC7xUqcjOr1cqm774p9napJ5L5Ze8uAhs2LYOqRERcSyZXnV2Cw7hcmFu6dCnZ2dlER0fToEGDYm07YMAABgwYYH+8a9cunn32WZYtW0ZycjLff/99iWryqWqse7yJc128cI5LF86VaNvzv6bQpm2ogysSEZGyVpqs4HLdrPfccw8//vgjn332GY888kip27t06RJNmjQhLS2NdevW0atXLwdUKVK4AwcO0Lx58xJtGxMTw+TJkx1ckYiIVGQud2bu2LFjADRp4pj7bPr4+BAREUFcXBxJSUklCnMaMyfFcTn9Uom3/SlpHzH/97EDqxERkfKgMXM3uHw5Z2xaZqbjwlNWVs5ks0W9svBmGjMnxWPGP7ARKcePFG8zkwn/Bs20r4mIVDIuF+aCgoI4d+4cP/zwA127lv7m6WfPniUxMRGAsLCwErWhMXNSXPf06EPckv9XrG1atAmlQcNGZVOQiIiUKY2Zu8H06dOZMWMG1atX59NPP6VPnz72dSdOnGDRokUMHjzYPiZp69atfPHFF0RHR9OsWbM8bW3fvp2nn36azZs3ExISwvbt24s00bBIaWVmZhIaGsqBAweK9HyLxUJCQgLdunUr48pERKSicbkwl56eTkREBNu2bQPAz8+PoKAgzp49y6FDhzCZTFy8eBFvb28ANmzYQGRkJAB169YlKCgIi8XC8ePHOXnyJAAtWrRg9erVDhuHJ1IUBw4coEePHpw4ceKWzzObzcyfP5+RI0eWU2UiIlKRuFyYg5x7qM6ePZvPPvuMffv2ATmhLiwsjEGDBjFixAj7c8+dO8dHH31EQkICu3fv5tSpU1y5cgVfX19CQkIYOHAgo0ePpkqVKs56O1KJHT9+nOeee45///vfBd5/tW3btrzxxhv07dvXCdWJiEhF4JJhTsTVJCcnM3/+fPbt28f169epW7cujz76KOHh4brjg4hIJacwJyIiImJgFfsGlSIiIiJySwpzIiIiIgamMCciIiJiYApzIiIiIgamMCciIiJiYApzIiIiIgamMCciIiJiYApzIiIiIgamMCciIiJiYApzIiIiIgamMCciIiJiYApzIiIiIgamMCciIiJiYApzIiIiIgamMCciIiJiYApzIiIiIgamMCciIiJiYApzIiIiIgamMCciIiJiYApzIiIiIgamMCciIiJiYApzIiIiIgamMCciIiJiYApzIiIiIgamMCciIiJiYApzIiIiIgamMCciIiJiYApzIiIiIgamMCciIiJiYApzIiIiIgamMCciIiJiYApzIiIiIgamMCciIiJiYApzIiIiIgamMCciIiJiYApzIiIiIgamMCciIiJiYApzIiIiIgamMCciIiJiYApzIiIiIgb2/wH1XJb0jX4wswAAAABJRU5ErkJggg==", - "text/plain": [ - "
" - ] - }, - "execution_count": 4, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "qubits = QuantumRegister(1)\n", - "clbits = ClassicalRegister(1)\n", - "circuit = QuantumCircuit(qubits, clbits)\n", - "(q0,) = qubits\n", - "(c0,) = clbits\n", - "\n", - "circuit.h(q0)\n", - "circuit.measure(q0, c0)\n", - "with circuit.switch(c0) as case:\n", - " with case(0):\n", - " circuit.x(q0)\n", - " with case(1):\n", - " circuit.z(q0)\n", - "circuit.measure(q0, c0)\n", - "\n", - "circuit.draw(\"mpl\")\n", - "\n", - "# example output counts: {'1': 1024}" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "以下の例は単一の古典ビットを使用しているため、可能な case が 2 つしかありません。そのため、if-else 文を使って同じ結果を達成することができます。 switch の case は、以下の例で示すように、主に複数のビットで構成される古典レジスターの値で分岐する場合に有用です。 ここでは、前の case がどれも実行されない場合に実行されるデフォルトの case を構築する方法も示しています。 switch 文では、1 つのブロックのみが実行されることに注意してください。 フォールスルーはありません。\n", - "\n", - "以下の例では、2 つの量子ビットにアダマールゲートを適用して測定しています。 結果が 00 または 11 であれば、3 つ目の量子ビットに Z ゲートを適用します。 結果が 01 であれば Y ゲートを適用します。 前の case がどれも一致しない場合は、X ゲートを適用します。 最後に、3 つ目の量子ビットを測定します。" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0IAAAGwCAYAAACEm9VPAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAABTKElEQVR4nO3deVxU9f7H8fcMmwKighYiuJsLIl5FKzNZSlOTq2bYrnbLfpnack3MlpveXG+2aqlpLqWVpd5SsjLFLTUXTHMpd01Q3Bc2ZZn5/cF1kgAFHBiY83o+Hjxkzjnf7/kMc4R5zznf7zFZrVarAAAAAMBAzI4uAAAAAADKGkEIAAAAgOEQhAAAAAAYDkEIAAAAgOEQhAAAAAAYDkEIAAAAgOEQhAAAAAAYDkEIAAAAgOEQhAAAAAAYDkEIAAAAgOEQhAAAAAAYDkEIAAAAgOEQhAAAAAAYDkEIAAAAgOEQhAAAAAAYDkEIAAAAgOEQhAAAAAAYDkEIAAAAgOEQhAAAAAAYDkEIAAAAgOEQhAAAAAAYDkEIAAAAgOEQhAAAAAAYDkEIAAAAgOEQhAAAAAAYDkEIAAAAgOEQhAAAAAAYDkEIAAAAgOEQhAAAAAAYDkEIAAAAgOEQhAAAAAAYDkEIAAAAgOEQhAAAAAAYDkEIAAAAgOEQhAAAAAAYDkEIAAAAgOEQhAAAAAAYDkEIAAAAgOG4OroA2JfVKmXmOLqK4nF3kUwm+/RltVqVnp5un87KiKenp0z2+gEAAACgSAhCTiYzRxo+39FVFM+EByQPOx2J6enp8vb2tk9nZSQ1NVVeXl6OLgMAAMBQuDQOAAAAgOEQhAAAAAAYDkEIAAAAgOEQhAAAAAAYDkEIAAAAgOEQhAAAAAAYDkEIAAAAgOEQhAAAAAAYDkEIAAAAgOEQhAAAAAAYDkGoCKZPny6TySSTyaSIiAhHl4MyVKVKFd1+++3q1KmTOnfurA4dOsjPz6/I7c1ms959910FBweXYpUAAAAoLldHF1DeJScnKzY21tFloAxFRESof//+uu2229SkSZMCtzly5Ig2b96sefPmacmSJcrJycm3jdls1uzZs/XYY4/poYceUlRUlHbt2lXa5QMAAKAIOCN0HUOGDNHFixfVvXt3R5eCUmQymfTkk09q9+7dWrlypfr161doCJKkunXr6v7779d///tfHTp0SMOHD5e7u7tt/dUhSJKqVaumevXqlfbTAAAAQBFxRugaFi9erAULFmjIkCHy9fVVXFyco0sqM4m7V2nh2Eh1eOhNtbn3xQK3ee9Rk+q1ulc9XqzYP5cGDRro448/znfZ46VLl/Trr79q69atOnnypKxWq6pXr65WrVqpdevW8vb2liQFBQVp/PjxevTRR9W/f3/98ssveUJQZmamYmJi9O2335b1UwMAAEAhnP6M0OnTpxUbG6tGjRqpUqVKCgoK0nPPPae0tDQ98cQTMplMmjx5cr52KSkpGjRokAICAjR69GgHVI6ycN999+nXX3/NE4JWr16tBx54QFWrVtWtt96qgQMH6vXXX9fIkSP13HPPKTw8XFWrVlWXLl30zTff2C6La9GihX7++Wdt3LgxXwhavHixI54eAAAACuHUZ4S2bdumrl27Kjk5WV5eXmrevLmOHTum999/XwcOHNDZs2clSa1atcrXdsSIEUpMTNSXX34pHx+fMq4cZeGRRx7RnDlz5OLiIkk6dOiQnnjiCa1cufK6bS0Wi3744Qf98MMPCgkJ0ezZs9W6dWu5uroqLCxMEiEIAACgPHPaM0KnT59WdHS0kpOTNXToUB0/flxbt25VcnKyJkyYoG+//VabN2+WyWRSy5Yt87TdsGGDpkyZoq5duyomJsZBzwClqUuXLpo9e7YtBH366acKCQkpUgj6qx07duj222/Xjh078iyfOXMmIQgAAKCcctog9OyzzyoxMVGDBw/WxIkTVaVKFdu62NhYhYaGKjs7W/Xq1ctzxicrK0sDBgyQh4dHgZfMGU12ZroyUk4X+FVR+fr6atasWXJ1zT0h+uGHH6pfv35KS0srUX9ms1kzZsxQSEhInuX9+/dX06ZNb7heAAAA2J9TXhr322+/af78+apRo4bGjRtX4DZt2rTR9u3bFRoammf5+PHjtWvXLo0ZM0YNGjQo8j4PHTqk5557TitXrpSrq6uio6P1zjvvFOueM+XRzwtf188LX3d0GXY1adIk+fv7S5Li4uI0ePBgWa3WEvX119nhMjMz9f333+vvf/+7KlWqpFmzZumOO+6QxWKxW/0AAAC4cU4ZhD7//HNZLBY98sgjtpm9/qpy5cqSlCcI7dmzR2PGjFGzZs00bNiwIu8vJSVFkZGR8vX11eeff66MjAzFxsaqe/fuWrdunczmkp14CwsLU3JycrHauLhVVq/R+0q0v4K0iHxKjW8t+PLA/47vZJd93NK4sXKyMuzS1/UCR/v27fXwww9Lks6ePasBAwbYNQTFxMRo2bJl2rZtm5o0aaLbbrtNjz32mObMmVNoP40bNy7xMQIAAGB0/v7+2rJlS7HbOWUQio+PlyRFRkYWuk1iYqKkvEFo4MCBunz5sqZOnSo3N7ci7++jjz5SUlKS1qxZozp16kiSAgMD1b59ey1evFg9e/YswbPIvZlrUlJSsdq4eniWaF+FqebfWHVa3G3XPv/q2PFjyr6cXqr7uGLQoEG274cPH17soHlFYSHoypigp556SqtXr7bt81pB6Pjx4yWqAQAAACXnlEHoyJEjknJvelmQ7OxsrVu3TlLeILR161aZzWb16dMnX5vU1FRJ0vr1622XVe3du1c+Pj6Ki4tThw4dbCFIkm6//XY1aNBAS5YsKXEQurKf4nBxq1yifTlSQK0Au54RKixY3HTTTbr//vslSadOndKnn35aon1cLwRJ0po1a5SQkKA2bdqobdu2CgsLK/STilq1anFGCAAAoIRK8p5ZctIgdGXQe0ZGwW+u58+fr9OnT6tKlSqqX79+nnUWi0UnTpwotO+srCzb+iuXYe3evbvA2eWCg4O1e/fuEj0HSSU6xXc5Wxo+v8S7dIi9+/bJw05HYlpaWqGXQ957771yd3eXlDuj2+XLl4vdf1FC0BVTpkzRjBkzJEm9e/cu9PXct2+fvLy8il0LAAAASs4pP4a+kgq3bt2ab93x48dt439atmwpk8lkW3f+/HlZrdYCv15/PXfCgPDwcNuyatWqSZLOnTtn+/5qvr6+tnsVwfGu3N9Hkr777rtity9OCPrrPtq0aVPs/QEAAKD0OGUQuvvu3DEtEyZM0N69e23LN2/erMjISJ0+nTv1c0E3UoXzujqM/PLLL8VqW9wQJEnHjh2zjUEiCAEAAJQvThmEYmNj5efnp6NHjyo4OFghISFq3Lix2rVrpwYNGigqKkqS8k2dXVLVq1fX+fPn8y0/e/asfH197bIP3LhGjRpJkg4fPqyLFy8WuV1JQtAVV26y6uvrq+rVq5egagAAAJQGpxwjFBgYqLVr12rYsGFavXq1Dh8+rObNm2vatGkaMGCAGjZsKMl+QahZs2YFjgXavXu3OnbsaJd9lLXA5hF6bu61p5W+3vryZs2aNapWrZqOHTtWrHbvv/9+iUKQlHt5pru7e6Hj1QAAAOAYJmtJb6JSQaWmpsrHx0cmk0kpKSny9Lzx6aYnTpyol19+WQcPHlRgYKAkaePGjbrtttu0aNEi9erV64b3UVQVcbKECQ+oTCZLKKk2bdpo+fLl8vT0LFYIKqrU1FQmSwAAAChjhgtCVwJKkyZN9Pvvv9ulz4sXLyokJEQ1atTQqFGjdOnSJcXGxqpmzZrasGFDmU6NTBCyfxCScsNQQECAlixZYve+CUIAAABlzynHCF3LlTEb9rosTpJ8fHwUHx+vWrVq6cEHH9STTz6p9u3bKy4ujvvDOImEhIRSCUEAAABwDKccI3QtpRGEJKlhw4aKi4uza58AAAAASofhTleUVhACAAAAUHEY7oxQfHy8o0sAAAAA4GCGOyMEAAAAAAQhAAAAAIZDEAIAAABgOAQhAAAAAIZDEAIAAABgOAQhAAAAAIZDEAIAAABgOAQhAAAAAIZDEAIAAABgOCar1Wp1dBGwH6tVysxxdBXF4+4imUz26ctqtSo9Pd0+nUl6c9oXupiWLh8vTw37vwfzPbYHT09Pmez1AwAAAECRuDq6ANiXySR5GPhVNZlM8vLyslt/7h6V5J6VI3ePSvLy8sr3GAAAABUTl8YBAAAAMByCEAAAAADDIQgBAAAAMByCEAAAAADDIQgBAAAAMByCEAAAAADDIQgBAAAAMByCEAAAAADDIQgBAAAAMByCEAAAAADDIQgBAAAAMByCEAAAAADDIQgBAAAAMByCEAAAAADDIQgBAAAAMByCEAAAAADDIQgBAAAAMByCEAAAAADDcXV0AbAvq1XKzHF0FcXj7iKZTI6uwnlYrValp6c7uowi8/T0lIkDAAAAlDGCkJPJzJGGz3d0FcUz4QHJgyPRbtLT0+Xt7e3oMoosNTVVXl5eji4DAAAYDJfGAQAAADAcghAAAAAAwyEIAQAAADAcghAAAAAAwyEIAQAAADAcghAAAAAAwyEIAQAAADAcghAAAAAAwyEIAQAAADAcghAAAAAAwyEIFcH06dNlMplkMpkUERHh6HKACsXX11fNmjVzdBkAAAB5uDq6gPIuOTlZsbGxji4DKFP169dXVFSU2rRpozZt2sjf31/u7u66fPmykpKStGXLFiUkJGj58uU6duxYof34+vpqxYoVql27tiIjI7Vr164yfBYAAACFIwhdx5AhQ3Tx4kV1795dcXFxji4HKDVms1ndunXTM888o65duxa6Xd26ddW+fXtJUnZ2tr755htNmTJFK1asyLPdlRDUqlUrSdLcuXPVunVrWa3WUnsOAAAARcWlcdewePFiLViwQIMGDVKbNm0cXU6ZSty9Su89alLCtxML3ea9R036ZmL3MqwKpaVJkyZat26dlixZUmAISk5O1pEjR3Ty5Mk8y11dXdW7d28tX75cP/zwg4KCgiTlD0HHjh1Tnz59CEEAAKDccPogdPr0acXGxqpRo0aqVKmSgoKC9NxzzyktLU1PPPGETCaTJk+enK9dSkqKBg0apICAAI0ePdoBlQNl44UXXtC2bdt022232ZYdOnRIr776qsLDw+Xj46NatWqpXr16uvnmm1W9enXdddddeuONN/JcFte5c2ft3LlTgwYNyheCIiIitG/fvrJ+agAAAIVy6kvjtm3bpq5duyo5OVleXl5q3ry5jh07pvfff18HDhzQ2bNnJcn2hu1qI0aMUGJior788kv5+PiUceVA2Xj//fc1ZMgQ2+O9e/dq6NChWrp0qSwWS4Ftzp8/r/j4eMXHx+vf//637r//fr355psKDAyUj49Png8WCEEAAKC8ctozQqdPn1Z0dLSSk5M1dOhQHT9+XFu3blVycrImTJigb7/9Vps3b5bJZFLLli3ztN2wYYOmTJmirl27KiYmxkHPAChdb731Vp4Q9Pbbb6tVq1aKi4srNAT9VXZ2tr744gu1aNFC8+bNy7Pu4sWLhCAAAFBuOW0QevbZZ5WYmKjBgwdr4sSJqlKlim1dbGysQkNDlZ2drXr16uU545OVlaUBAwbIw8OjwEvmjCY7M10ZKacL/ELF9eCDD+qf//ynJCknJ0f9+vXT0KFDlZGRUaL+XFxcFBwcnGeZj4+PAgMDb7hWAACA0uCUl8b99ttvmj9/vmrUqKFx48YVuE2bNm20fft2hYaG5lk+fvx47dq1S2PGjFGDBg2KtL/ExESNHz9emzZt0vbt25WZmek0g8J/Xvi6fl74uqPLgB3dfPPNeUL+008/rU8++aTE/f11YoSLFy/aPlz4+OOPFRISorS0tBuqGQAAwN6cMgh9/vnnslgseuSRR+Tt7V3gNpUrV5akPEFoz549GjNmjJo1a6Zhw4YVeX/79+/XwoUL1bZtW7m7u2vdunU39gTKkRaRT6nxrQVfHvjf8Z3KuBrYw7vvvis/Pz9J0pdffqkZM2aUuK+CZoeLjIzUtGnTFBERofr162v06NF64YUX7FE6AACA3ThlEIqPj5ckRUZGFrpNYmKipLxBaODAgbp8+bKmTp0qNze3Iu+vY8eOOn78uCRp5MiRdgtCYWFhSk5OLlYbF7fK6jXafmMyqvk3Vp0Wd9utv4Lc0rixcrJKdklWaev1+PPy8vbR8eTjCgwMzPe4PLrW+J66deuqT58+kqRTp05p0KBBJd5PQSHoypigf/zjH9qxY4e8vLw0YMAAjRw5UhcuXCiwn8aNG8tsdtqrdAEAQCnz9/fXli1bit3OKYPQkSNHJOW+6StIdna2LaxcHYS2bt0qs9lse6N4tdTUVEnS+vXr5e/vLyl3hi0fH59SexOXnJyspKSkYrVx9fAslVpK07Hjx5R9Od3RZRTIkpNj+zcpKSnf44rmqaeesh2v7733nk6fLtlYr2uFICl3+u1Zs2Zp8ODB8vLyUt++fTVp0qQC+7ryIQIAAEBZcsogdGU8QmEDv+fPn6/Tp0+rSpUqql+/fp51FotFJ06cKLTvrKws2/qizqxVUlcCV3G4uFUuhUpKV0CtgHJ7Rsjs4mL7t3bt2vkel0cWi6XQcPH4449Lyj2OS3pJ3PVC0BVTpkzR4MGDJUn/+Mc/Cg1CtWrV4owQAAAosZK8Z5acNAj5+/vr3Llz2rp1q26//fY8644fP24b/9OyZUuZTCbbuvPnzxfa58iRIzVq1CiFh4dr1apVpVF2PiU5xXc5Wxo+vxSKKUV79+2TRzk9Esd+ME8XU9NUy7+WEhMT8z0uj9LS0gocG1evXj3VqlVLkrR8+fJrBv7CFDUESdLu3bv1yy+/6G9/+5tatmwpLy+vAidN2Ldvn7y8vIpdCwAAwI1wyo9h7747d0zLhAkTtHfvXtvyzZs3KzIy0nY5UEE3UgWcVZs2bWzfb968udjtixOC/rofs9nM/zcAAFCuOGUQio2NlZ+fn44eParg4GCFhISocePGateunRo0aKCoqChJyjd1NuDMrr5x8NatW4vVtiQhSJISEhJs3/P/DQAAlCfl9IKkGxMYGKi1a9dq2LBhWr16tQ4fPqzmzZtr2rRpGjBggBo2bCiJN2bXEtg8Qs/Nvfa9kK63HuVL1apVbd8XZzbCkoYgSXkuv7v6psYAAACO5pRBSJKaNWumuLi4fMtTU1N1+PBhmc1mtWjRosj9jRw5UiNHjrRjhUDZeu211/TWW2+pUqVKOnr0aJHbBQUF2WZgLE4IkqQVK1aocePGunTpks6dO1eiugEAAEqD0wahwuzatUtWq1W33HKLPD3tN9X0ggULJOUOEL/6cb169RQWFma3/QAllZKSopSUlGK32759uzp16qQ5c+aoV69eRQ5BUu4HD/v37y/2PgEAAEqb4YLQjh07JNn/sriYmJgCH/fr10+zZ8+2676AspaQkKCWLVuW+pTxAAAAZYUgZCdWK+Nl4NwIQQAAwJk45axx11JaQQgAAABAxWG4M0Lx8fGOLgEAAACAgxnujBAAAAAAEIQAAAAAGA5BCAAAAIDhEIQAAAAAGA5BCAAAAIDhEIQAAAAAGA5BCAAAAIDhEIQAAAAAGA5BCAAAAIDhEIQAAAAAGI6rowuAfbm7SBMecHQVxePu4ugKnIunp6dSU1Pt0teb077QxbR0+Xh5atj/PVjoshvh6el5w30AAAAUF0HIyZhMkgevqqGZTCZ5eXnZpS93j0pyz8qRu0clW58FLQMAAKhouDQOAAAAgOEQhAAAAAAYDkEIAAAAgOEQhAAAAAAYDkEIAAAAgOEQhAAAAAAYDkEIAAAAgOEQhAAAAAAYDkEIAAAAgOEQhAAAAAAYjqujCwCA0pSVI51PlzIyJYvV0dWUDatVysjKu6yym2QyOaYeOBbHA67gWKgY3FwkT3epmievTWkjCAFwOpnZ0m/HpG1/SLuSch8DAFCR+HlLoXWkv9WRgvwcXY1zIggBcCrpl6Up8dLRs46uBACAkjuTKsXvzv26J0Tq2tLRFTkfxggBcBqEIACAM/phh/Tdr46uwvlwRgiA0/hiY+EhyMWc+2UEVmvu2KirublwrblRcTzgCo6FCuB/r1FBQ1p/2CHVri61DCrzqpwWQQiAU0jPzB0PdLWqlaVOLXL/aFSpZJw/9qmXpFcX5l32ek/Ju5JDyoGDcTzgCo6FisFilZLOSVsOSat/z7su4RBByJ4IQgCcws5EKcfy52MXszT4bqmmj+NqAgCguMwmKcg398vbQ/p2+5/rdh+TLmdJHm6Oq8+ZEIQAOIXfj+V93LQWIciorFar0i0519+wHPE0u8hklFOWpYzXH850DNzeKHds0JXbP2TlSPtPSsG1r92f1WpVenp6KVRaOjw9PR3yf4AgBMAppFzK+7jhTWWz38OHD6t+/fp6/fXXNXLkSLv1u2rVKkVGRmrWrFnq37+/3fo1gnRLjqrH/+joMorlXFQnebnwJ9keeP3hTMeAdyWpVrXcS+WuSL2Ub7N80tPT5e3tbb8CS1lqaqq8vLzKfL8GGToMwNn99V5Bld1z/z148KCeeuopNW3aVJ6enqpevbqaNWumfv36aeXKlaVSy/nz5zVy5EitWrWqVPq3t/T0dL377ru688475evrKzc3N918883q1q2bZs+erexsbsRkJBwPuBrHg+NV+stlcJf5kdsNHz8AcEomSVu2bFF4eLjc3NzUt29fBQcHKyMjQ/v27dOyZctUpUoVRUZG3tB+6tatq4yMDLm6/vnr9Pz58xo1apQkKSIi4ob6L2379+/Xvffeq7179+ruu+/WiBEjVKNGDZ08eVLLly/X448/rt27d+s///mPo0tFGeB4wNU4HsoHM1dNlhqCEACnNWrUKKWnp2vbtm0KDQ3Ntz45OfmG92EymVSpUsWccikjI0Pdu3fXwYMHtXDhQt1333151g8fPlybN2/W5s2bHVQhyhLHA67G8QAj4NI4AE5r37598vPzKzAESZK/v78kKTIyUvXq1cuz7vPPP5fJZMrXdsqUKTKZTNq4caOk3DFCJpPJNj5o1apVql+/vqTcIGYymWQymfL1v3DhQkVERKhatWry9PRUkyZN9OyzzyozMzNfnbNmzVJwcLA8PDxUt25du336OmPGDO3Zs0dDhw7N9ybnirZt2+qZZ56xPV62bJkeeOABNWjQQJUrV1a1atXUuXNnrV69Ol/bXbt2KSYmRrVr15aHh4f8/f0VGRmpb7/9Ns92ly9f1tixYxUcHKxKlSqpWrVqio6O1i+//GKX54mi4XjA1TgeYAScEQLgtBo2bKg9e/Zo0aJFhf4hl6SoqCj961//0oEDB9SwYUNJ0ooVK2Q2m7Vjxw6dPn1aNWrUkCTFx8fLx8dHYWFhBfbVrFkzvfPOO3rhhRfUq1cv236vHrT6yiuvaOzYsWrevLleeOEF1apVSwcOHNDChQv173//W+7u7rZtp06dqhMnTuiJJ55QtWrVNHfuXA0fPlyBgYF6+OGHb+jns2DBAknSU089VeQ2s2fP1tmzZ9W3b18FBgYqKSlJM2bM0F133aWVK1fqzjvvlCSdOXNGUVFRkqSnn35adevW1enTp7VlyxZt3LhR9957ryQpKytLXbp00fr16/XYY49p8ODBunDhgqZPn6477rhDa9asKfRnDfvieMDVOB5gBAQhAE7r1Vdf1Y8//qjevXurcePG6tChg9q2bauIiAg1a9bMtt2VIBQfH28LQvHx8Xr44Yc1d+5cxcfHq0+fPrJarVq1apU6duwoFxeXAvd58803q2fPnnrhhRfUsmVLPfroo3nWb9q0SWPHjlVkZKSWLl2a57K68ePH5+vvjz/+0G+//aaqVatKkv7xj3+obt26mjRp0g0HoZ07d8rHx0cNGjQocpvp06fnm9nn6aefVnBwsMaNG2d7o7Nu3TqdPHlS8+fPV58+fQrtb/LkyVq1apW+//573XPPPbblzzzzjFq0aKEXX3yxwkw6UdFxPOBqHA8wAi6NA+C0br/9diUkJKhfv366cOGCZs2apWeeeUbNmzdXx44ddfDgQUlSu3bt5O3trfj4eEnSkSNHdOjQIT300ENq0aKFVqxYIUm2s0NXPsksiXnz5kmSxo0bl29s0ZXL6K72+OOP20KQlHuvhdtuu0379u0rcQ1XXLx4UVWqVClWm6vf5KSmpurMmTNycXHRrbfeartcUJKt5u+++04XL14stL+5c+eqadOmatOmjU6fPm37yszMVKdOnfTTTz8pIyOjmM8MJcHxgKtxPMAIOCMEwKmFhIRo9uzZknIDzurVqzVjxgytXbtWPXr0UEJCgtzd3dWhQwfbdNorVqyQq6urOnbsqKioKC1dulSSbEHpRoLQvn37Chx7VJiCPo318/PTmTNnSlzDFT4+PkpJSSlWmwMHDuiVV17RDz/8oPPnz+dZd3WICw8PV9++fTV79mzNmzdPbdu21d13360HHnhAzZs3t23322+/KSMjQzVr1ix0n6dPn1ZQUFCx6kTxcTzgahwPMAKCEADDqFu3rvr27avHHntMd955p9atW6dNmzapQ4cOioqK0vfff69du3YpPj5ebdu2lbe3t6KiovT+++/rjz/+UHx8vGrUqKGWLVveUB0FnfkpTGGX4NlDixYttGbNGh08eLBIl7+kpqaqY8eOSktL0/PPP6+QkBBVqVJFZrNZ48aNswXFK+bMmaNhw4bpu+++09q1a/XWW29pzJgxevfddzV48GBJuXc/DwkJ0dtvv13ofq/1Jgj2w/GAq3E8wAgIQgAMx2Qy6dZbb9W6deuUlJQk6c+zPCtWrFB8fLyeeOIJSbn3AXJxcdGyZcu0Zs0aderU6boh5lrrb7nlFn333Xfavn272rVrZ6dnVDK9e/fWmjVrNGPGDI0dO/a6269YsULHjh3TzJkz9fjjj+dZ9+qrrxbYpkWLFmrRooWGDRum8+fP69Zbb9VLL72kQYMGyWQyqXHjxjp16pSioqJkNnO1tiNxPOBqHA8wAo6qIpo+fbrtU9zyfoNEALl+/PHHAu96npGRoWXLlkmS7TKMv/3tb6pevbqmTp2q48eP24JR1apV1bp1a73zzju6cOFCkS6LuzJD3NmzZ/OtuzLBwcsvv1zgVNlWq7WIz+7GPfnkk2rSpIkmTpyob775psBtEhIS9OGHH0r68+zUX2tctmxZnuv/pdznbrFY8iyrVq2a6tevr/T0dF26dEmS1LdvXyUnJxf6ie+JEyeK/8RQIhwPuBrHA+ytPIZZzggVQXJysmJjYx1dBoBieuGFF3TmzBn9/e9/V0hIiDw9PXX06FF99tln2rt3r/r27auQkBBJub+gw8PD9fXXX6tSpUpq3769rZ+oqChNmDDB9v31+Pn5qVGjRvriiy/UsGFD3XzzzfLy8lJ0dLTatWun4cOHa8KECWrdurUeeOAB+fv769ChQ1qwYIE2bdqkatWqlcrP4688PT0VFxene++9Vz179lTnzp3VqVMn+fn56dSpU1q5cqV++OEH2++/Dh06yN/fX0OHDtXhw4cVGBiobdu26dNPP1VISIh27Nhh6/uTTz7RO++8o169eqlRo0Zyc3PT6tWr9cMPP6hPnz6qXLmyJOm5557Tjz/+qGHDhik+Pl5RUVHy8fHRH3/8oRUrVqhSpUq2sVsoXRwPuBrHAyTJ3d1dISEhatOmjfz9/eXu7q7MzEwlJycrISFBO3bsKPBDvb+KjY1VZGSkevbsqcuXL5dB5UVDECqCIUOG6OLFi+revbvi4uIcXQ6AInr77bf1zTff6KefftLChQt1/vx5Va1aVS1bttTw4cPVv3//PNtHRUXp66+/Vvv27eXh4WFbftddd2nChAmqXbu2mjRpUqR9z5s3Ty+88IJefvllpaenq27duoqOjpaUO012aGioJk+erP/85z+yWCwKCgpSt27d5OnpabfnXxSNGjXSL7/8omnTpmnhwoUaM2aMUlNT5evrq7CwMM2ZM8d2FqtatWq2Nz6TJk1Sdna22rRpo6VLl+rjjz/O80YnIiJCv/zyi+Li4nT8+HG5uLiofv36mjhxou36f0lyc3PTt99+qw8//FCffvqpXn/9dUlSQECA2rVrp379+pXpz8PoOB5wNY4HY3JxcVF0dLQGDhyoiIiIPPe2+6vMzEytWrVKH374oeLi4pSTk5Nvm9jYWNuHiV9//bW6d+9e4HaOYLKW5XUYFdDixYvVo0cPDRkyRL6+vho1apTCw8OZt94gxn4wTxdT0+Tj7aWXBz2S77GzK+j5ltefwTvfS0eumkjtwVul2xo5rh5HSr0kvbow77LRvSXvSgVv72zScrJVPf7HG+4nq3O3Im3n8uZ4mUNvbAKNc1Gd5OVSOp9NGu14sNfrL0nZ/x4j6/oNcpk4QeYWwfnWW3buUs6Lw2Vqf7tc//VKifdTmq//1YxyLNjrGMiZOVuWL76Uyz+fl7lL5zzrrFarcoa9JOtvv8l18vsy1a93Q/u61jHwwXJp31VXAd4XJnW8zmdyaWlpeW7kXVT9+/fXG2+8ocDAwGK3PXr0qF577TXNmTPHtuzqECRJI0aMKPCeeampqfnuQVUWDHFG6PTp0/rPf/6jRYsWKTExUTVr1tR9992nsWPH6tlnn9XMmTM1adKkPJ9CSFJKSooGDRqkgIAAjR49+pqzlgAAnItL7IuFrrMmJ8vyyVypqo9MJXjDgIrB5dnByt65SzkT35ZpygcyVf4zMVgvXVLOxLclHx+5PDf4Gr2gojI/9ogsP29UzrTpMrVpLVPNGrZ1lkVfy/rrDpn/0f+GQ1B5ULt2bX300Ufq1i3vB0CHDx/WmjVrlJCQoH379unSpUuqVKmSGjdurLCwMN15552qV6+eJCkoKEizZ89WTEyMnnrqKT366KNFCkGO5PRBaNu2beratauSk5Pl5eWl5s2b69ixY3r//fd14MAB22DmVq1a5Ws7YsQIJSYm6ssvv5SPj08ZVw4AcCTz3QWPB7NeuqSc54dKZrNcXn5JJj/fMq4MZcVUrapcnhusnFGjZZnxsVyGDLKts3w8Szp2XC4jX5Ppqpsew3mY3NzkOmyosp99QTlvvyvXcaMlSdajibLM/kSmpk1kjunt4CpvXFhYmL7//nv5+fnZlsXFxWnSpEn68ccfC5zE57vvvpOUO0tqp06dNGTIEHXv3l2SdO+992rv3r15zvCUxxAkOfmscadPn1Z0dLSSk5M1dOhQHT9+XFu3blVycrImTJigb7/9Vps3b5bJZMp3X5ANGzZoypQp6tq1q2JiYhz0DAAA5U3OW+9KBw/J/OQ/ZP5bK0eXg1JmvqO9THdHyRK3VJZftkmSLNt/lWVxnEx33yVz+9sdWyBKlalxI5kf7CNrwlZZvv1O1pwc5fxnomS1ymXYUJlK8V5vZSEsLEwrVqywhaBjx46pe/fuio6O1rJly647k6nVatWyZcsUHR2t6OhoHTt2TJIqRAiSnDwIPfvss0pMTNTgwYM1ceJEValSxbYuNjZWoaGhys7OVr169fKc8cnKytKAAQPk4eGhyZMnO6J0AEA5lPPlAllXr5EpvKNc7r/P0eWgjLg887Tk56ect96R9cyZ3DDs5yeXQU87ujSUAfMjD0kNGihn+gxZPpgq6569MvfvK1NQxb4stnbt2vr+++9t74FXrVql4OBgffvttyXqLy4uTh999FGeZWlpafr0009vuNbS4rRB6LffftP8+fNVo0YNjRs3rsBt2rRpI0kKDQ3Ns3z8+PHatWuXXn311SLdTVmSFixYoN69e6tu3bry9PRU06ZN9corryg1NfXGnggAoFywbP1Flpmzpfr15PLP5x1dDsqQyds79zU/eUrZTw+STpyQy9DnZXLA4G6UPZOrq1yH/VPKzJIl7luZWgTLfF9PR5d1w6ZPn247E7Rq1Sp17dpV58+fL3F/sbGxGjlyZJ5lXl5e+cJReeK0Qejzzz+XxWLRI488UuisGVfmqb86CO3Zs0djxoxRs2bNNGzYsCLvb+LEiXJxcdHYsWP13XffaeDAgZoyZYq6dOmS76ZhAICKxZp8QjljJ0iennJ9/bU8g+ZhDOaw1jJ36ypduChz1y4yt2nt6JJQlry8JDc3SZKpbZhM5fDmoMXRv39/de3aVZKUlJSkXr162W5kWxJ/nR3u3//+t+0yuW7duuW7XUV54bSTJcTHx0uSIiMjC90mMTFRUt4gNHDgQF2+fFlTp06V2/8O+KJYsmSJatasaXscHh6umjVr6pFHHtFPP/2kjh07FvcpKCwsTMnJycVuB/vp9fjz8vL20fHk4woMDMz32NkV9HzL688gctBi+dX5843Ji8Ne1OHNXziwIsdx9/LV3//1a55lLUNbKjPtrIMqKltWd3dp2gf26+/SJWWPekNKTZXLv1+XKaCW3fq+4pbGt8hUhJsSloTRjgd7v/5XMzVvKi39LvdfOyrN1/9qRjkW7P47wGpVzlvvSNlZUp0gWT77Qubwjnb9XXCtY6DjgPm6qdEdtsevvfaaDqyfdc3+rvUhvKurq0aPHm17/NRTT93wmaCCZofbvHmzlixZIkl644039OmnnxZ6/6DGjRvLfAPh0t/fX1u2bCl2O6cNQkeOHJEk1a1bt8D12dnZWrdunaS8QWjr1q0ym83q06dPvjZXLnNbv369/P39JUl79+6Vj49PnhB0RVhYmKTcpF0SycnJJW4L+7D87z+sJSdHSUlJ+R47u4Keb3n9Gfz1ztbnz50rV/WVpcpV8t+1O/n4cWWknHZANQ5QyUNF/xjr+nLeeV86cFDmfo/J3K6tHXv+07Hjx6RLpXO3dcMdD3Z+/ctCab7+VzPMsWDnY8Dy9WJZt/8q8+P9ZL79NmUPGqKct96Ry8QJMplMdtnHtY6By5fzLr9w/vwN/X2Ljo5W7dq1JeV+kL906dIS93Wt+wTFxcVpyZIlio6OVmBgoKKjo/X1118X2M/x48dLXMONcNoglJaWJknKyMgocP38+fN1+vRpValSRfXr18+zzmKx6MSJEwW2k3InU7iy/lqJe+XKlZKkZs2aFav2K66ELTiO+X+zwZhdXFS7du18j51dQc+3vP4M/nrn62rVq5er+sqSu1f+6Zz9a9VSpo+HA6ope1Z3d52yU185CxbJunKVTLffJvPDD9qp1/wCagWU6hmhv3Lm48Ger39ZKc3X/2pGORbseQxYk5JkmTlbpia3yNznfplcXGR+9BFZZs2R5evFcunVwy77udYx4OGR9/WpWq3adf++WSyWQsPFwIEDbd9PmjSpmJX+qSg3S508ebKio6MlSc8880yhQahWrVo3fEaoJJw2CPn7++vcuXPaunWrbr8979SWx48ft43/admyZZ40f61TgyNHjtSoUaMUHh6uVatWXXP/SUlJeu2119SlS5cC71FUFCU5xQf7GvvBPF1MTVMt/1pKTEzM99jZFfR8y+vP4J3vpSNn/nw88c2Juq3RRMcV5EAF3T3+1+2/Ot3d4wtjr7vKW7Ztl2XGTCkwUC6xL9rtk9+C7N23t9C7yt8oox0P9nr9y1Jpvv5XM8qxYK9jwGqxKOfNtyWLRS7D/mmbKtvc535Z162XZeZsmW9tZ5dL5K51DHywXNp31efzb7zxhjo2eeOa/aWlpRU4Rt7Dw0MRERGSpEOHDmn58uUlqrcoIUiSfvzxRx06dEj169dXeHi43N3d813BIUn79u3LM+V2WanYI72u4e6775YkTZgwQXv37rUt37x5syIjI3X6dO5p4JKGlGtJTU1Vjx495O7urpkzZ9q9fwBA6bKeOaucMeMki0XmO++QdcPPsiyPL/DLevCQo8sFUAosCxbJuvs3mfs9KlOdOrblJhcXubz4T8mSkzul+nXutVOehISE2MbAr1mzpkS1FzUESbnjq9auXSsp98qNkJCQElRdepz2jFBsbKw+++wzHT16VMHBwWratKkuXbqk/fv3q2vXrqpXr55++OGHfFNn36iMjAxFR0fr0KFDWrt2rWrVsv+gWgBA6bImJkoXLkqSLJ/Pv+a25kcflkuD+tfcBkDFYv3jD1nmfCpTs6Yy985/zzBTvbqlcolcabty6xhJSkhIKHb74oSgq/fTt29f2/5Lst/S4rRBKDAwUGvXrtWwYcO0evVqHT58WM2bN9e0adM0YMAANWzYUFL+ewjdiKysLN1///3asmWLVqxYoebNm9utbwBA2TGHtpR5WckHEMM5mTt3krlzJ0eXgTJgqlNHbt9+c81tXB56QC4PPVBGFdlHQECA7furr5gqipKEICn31jRXlLcTBE4bhKTcSQri4uLyLU9NTdXhw4dlNpvVokWLIvc3cuTIfDeKuuLKPYtWrFihpUuXql27diUtGwAAALC7+Ph45eTkqFKlStq/f3+R2916660lCkGStH//fo0bN06XLl3S6tWri11zaXLqIFSYXbt2yWq16pZbbpGnp6dd+hw0aJC++uorvfTSS/L09NTPP/9sW9ewYcMCp9cGAAAAysrq1atLFEY2btyol19+WWPHji1WCJKkAwcO6OWXXy72PsuCIYPQjh07JNn3srjvvvtOkjR+/Ph8B8esWbPK7R11AQAAgOsZN26cVq5cmefD/oqOIGQnhw8ftltfAAAAQHnjTCFIcuLps6+lNIIQAAAAgIrDkGeE4uPjHV0CAAAAAAcy5BkhAAAAAMZGEAIAAABgOAQhAAAAAIZDEAIAAABgOAQhAAAAAIZDEAIAAABgOAQhAAAAAIZDEAIAAABgOAQhAAAAAIZDEALgFFz+8tss2+KYOgAAsKesnLyPXUyOqcMZuTq6AACwh8rueR+fSnFMHXA8T7OLzkV1cnQZxeJpdnF0CU6D1x/OdAxYrNKZ1LzL/vr3rsD+PD2Vmpp6/Q2L4M1pX+hiWrp8vDw17P8eLHTZjfD09LzhPkqCIATAKQRUk3Yl/fn416NSz9aSiU/ODMdkMsnLhT9vRsXrD2c6Bg6dklIu5V0WUP367Uwmk7y8vOxSg7tHJbln5cjdo5Ktz4KWVURcGgfAKbSqm/fxuTRp0RYph0vkAAAV0Lk0af7GvMtqVZX8qzqmHmfkHHEZgOEFVJNqVsl7SdzavVLCYal5gFTdS3IxyNUnmdn5l8X/JrnzG9+QOB5wBcdCBWDNfZ2OnpX2n5Ss1ryrQ+sW3Awlw6EPwCmYTFL3VtKcn3Kvqb4iPVPacthRVZUf8bsdXQHKE44HXMGxUHHUqCK1b+ToKpwLl8YBcBqhdaTH7pDMjAsqknPJ+/TlqPaa8+It+vy1tjqTuKtI7f47vrPmjmipeS+30lf/vlMnD/9SypWiLKz65FnNfL6e3nvUpFNHtjm6HJQz056uoYunDl9zmwMJ3+iT2Gaa93IrnT66o8T7eu9Rky6nnZck/fL9u0o7n1zivpxFjSrS4Lsln8qOrsS5cEYIgFP5W13JzUX6cZd05LSjqynf4mf+n1pEPqXmHftr36YFWjatvx56Y/N123Ub8qU8vKpJkvZv/q9+/Ki/Hhm7vZSrRWlr3O5+tbk3Vl+90cHRpaCC2rFiqm7t+S81af+Q3fr85ft3FdgsQl7V/O3WZ0Xi7iI1ry31bCNVc8zEak6NIATA6bQIzP06lyZN+XSRMjIy5OJWWXVa3qcjvy5STlbu47ot73N0qQ5z8dxJnT68RTGTlsnFVQoJ7K2f5g7Wzab9ujnwetdeVPuzn50XVNndpJZBpVouykDLoI6SpG9cpcY3S3V4TQ1t27rFWjB1uFxc3dSiXRe5ukhNa0k5Ofv0+aTnlXLupLKzLqtj9FO6677B+uy9Z5W8b63STv6ufasn6eUP1+ujNx5R8tE9ysnKVPWbgvR47Meq6uev08cPa+STrTT52/OSpEvpqRrUtYo+Xv3ndc3BtaXlC/+t9PPHtGLqA3L3qKx/vDRbdRq3cswPpAy5uUieHlKjm6RmAYzhKk38aAE4repeknIylJWZpsru0j86SmN3ZOhiZpo8//fYqBISjqpOYC0NiLryZ8CkaQ3r6Fb/PxTV8foXofft21crV66UJC1dulQhIaVYLMrUvz1yP31u1crRlcBRTp48qWG9HtfatWvVvHlzffTRR/r+izPqHZajBx54SF/OnaumTZsqPT1dt912m55/5FYtX/i+IiJ+1fPPP6+ePXtKkqI/e1c1a9aUJI0fP157fhipqVOn6vBhaazLn7+DU1OlQfrz8ROSHr1DGnzvv1Qvfqa+/nq+WnFAohQQhAAAxfbJJ59IkubMmaPhw4dr6dKlDq4IgL38/PPPatmypZo3by5JeuKJJzRkyBBdvnxZu3bt0oMP/nkDzZSUFO3evVtt27bN189nn32mTz/9VJcuXdKlS5dUo0aNMnsOQFEQhADAgIKCgnT8+HFlZ2fL1dVVVqtVf/zxh+rUqVOsfvr166enn35aZ86ckZ+fXylVC8CRTP+7M7XVapWvr6+2bdt23TY//fST3n//fW3YsEE33XSTFi9erH/961+SJFdXV+Xk5Ni2vXTpUmHdAKWKWeMAwIBuuukmtW7dWnPnzpUkLVy4UIGBgWrUKPeyuL59++q///1vvnbnz5/XsWPHbI+//vpr+fn5ydfXt2wKB1Dqbr/9dv3666/6/fffJUkzZ85UZmamPDw85OPjo1mzZtm23b9/v86ePZuvj3PnzqlKlSry8/NTZmampk2bZlvn7+8vq9Wq3btz5+6+coa5ID4+Prpw4YK9nhqQB0EIAAxq2rRpmjZtmm655RaNHz8+z5ubLVu2KCgo/2j5CxcuqGfPngoJCVFoaKgmT56suLg42yfGqLj+7//+T4GBgUpMTNQ999xjC8Uwnpo1a2rmzJnq1auXQkNDtW/fPvn5+cnV1VVxcXFatGiRWrZsqeDgYD3xxBPKyMjI10eXLl3UpEkTNWnSRHfeeWeeMT6urq6aNGmSunfvrrZt2yorK6vQWp599lkNGDBArVq1KtKZKKA4uDQOAAyqSZMm2rBhQ77lp06dUu3atRUWFpZvXd26dbVp06ayKA9l7OpP7IEePXqoR48etscTJkywfb9kyZIC26xatcr2vZubm+bPn59n/ZgxY2zfP/7443r88cdtj4cPH2773mr9c/a4J598Uk8++WTxnwBQBJwRAgDkUbNmTf3444+OLgMAgFJFEAIAAABgOAQhAAAAAIZDEAIAAABgOAQhAAAAAIZDEAIAAABgOAQhAAAAAIZDEAIAAABgOAQhAAAAAIZDEAIAAABgOAQhAAAAAIZDEAIAAABgOAQhAAAAAIbj6ugCgPLAYrEoJ8dSwBqr7d+srOwCHv/J7GKWi5nPFgAAACoCghAgKTMrW+/OXKDzF1MLXH8xNV2vvT2z0Mfu7m56/vHe8q3mU+q1AgAA4Mbx8TUgqZKHu/rcGyFTCdv//a72hCAAAIAKhCAE/E+DOgG6s13LYrdr3riu2oTcUgoVAQAAoLQQhICrdL6zrfxr+hZ5e2/Pyrrvno4ymUp6LgkAAACOQBAqgunTp8tkMslkMikiIsLR5aAUubq6qE/3yCJPenBf147y9qpcylUBAADA3ghC15GcnKzY2FhHl4EyFHCTnzp3DLvudm1bNlXzRnXLoCIAAADYG0HoOoYMGaKLFy+qe/fuji4FZejOti1VL9C/0PW+1aqoe9RtZVgRAAAA7Inps69h8eLFWrBggYYMGSJfX1/FxcU5uiSUEbPZrD73RujdWQuVmZmVZ53JZFKfeyPl4eHuoOpQVDk5Ofptx1Zt27JB2Zcvadvqb3Q23aImoe3k4+3l6PIAAIADGeaMkMVi0YIFC9SzZ08FBATIw8NDAQEBioqK0nvvvafMzMw826ekpGjQoEEKCAjQ6NGjHVQ1HMm3mo/+flf7fMvDbw295tkilA+ffPKJGjRooLnT3tbOhA36fecv+uqrr7Ti24WaMn6Evpg5SadOnXJ0mQAAwEEMEYROnjypqKgoxcTE6JtvvpGbm5tatWolNzc3rVy5UiNGjJCLi0ueNiNGjFBiYqLeffdd+fhwfxijahNyi5o3/nMcUK2b/HR3hzYOrAhFMXbsWPXr109//PFHgeutFot2bN2o9u3b6/jx42VcHQAAKA+cPgilpaWpW7duWr16tcLDw7V9+3YdOXJEGzdu1JEjR7Rz50699NJLeYLQhg0bNGXKFHXt2lUxMTEOrB6OZjKZdN89HeXtWVmuLi56oHukXP8SmlG+LFiwQK+88kqRtt2/f7+io6NlsVhKuSoAAFDeOP0YoaFDhyohIUEdOnTQsmXL5O6ed1xHcHCwgoODbY+zsrI0YMAAeXh4aPLkyWVdLsohb6/Kuq9rR505e6FY9xhC2bNarRozZkyx2iQkJOiHH35Q165dS6kqAABQHjl1EPr99981Y8YMeXh4aN68eflCUEHGjx+vXbt2acyYMWrQoEGx9nfo0CE999xzWrlypVxdXRUdHa133nlHfn5+Jap/0pxFSknNKFFb2J/VatXazTscXUaZSklLt/079oN5hS4rL/44uE/btm0rdrsXYl/RLwfP2r8gAAAquIrwXqCKd2UN6Xdfsds5dRD67LPPlJOTo759+6pOnTrX3X7Pnj0aM2aMmjVrpmHDhhVrXykpKYqMjJSvr68+//xzZWRkKDY2Vt27d9e6detkLuINOvP0mZqhi6lpxW4H2JvVas13LBa0zNF2bNtSonb7dm/XhZRUmUwmO1cEAIBzqCjvBYrDqYPQ8uXLJUndunUr0vYDBw7U5cuXNXXqVLm5uRVrXx999JGSkpK0Zs0aW+gKDAxU+/bttXjxYvXs2bNY/Um56RZwpJS0dFmtVplMJlXx8ix0WXlhtWRdf6MCWCwWVXJ3lYdHJTtXBABAxVYR3guU9D2zyWq1Wu1cS7kRFBSkxMREJSQkqHXr1tfdvlq1akpJSVHNmjXzrUtNTVVaWprc3Nzk65s7TmTv3r22GeUiIyMlSStXrszTrmHDhoqIiNDHH398o08HKHNjP5ini6lp8vH20suDHil0WXnx8ssva9y4ccVuZzKZlJWVlW/2SAAAjK6ivRcoDqc+I5SWlnuqLiOj6ONsLBaLTpw4Uej6rKws2/qrZ5ravXt3gTPMBQcHa/fu3UXe/9UYIwRHqwjXBV/tj9Ml+/8SUKe+Jkz9ws7VAABQ8VWE9wKMESpAUFCQzp07p/Xr1+uOO+647vbnz58vdN3IkSM1atQohYeHa9WqVfnWnzt3TtWqVcu33NfXV3v27ClG1X9ijBDKi4pyXXBAvVtUpWp1pVw4V6x2Ldt2KHfPBQCA8qSivBcoDqcOQr169dKvv/6qMWPGKDQ0VJ07d7atS0pK0pw5cxQTE6PGjRs7sMrCMUYIjlYRrgv+q/YRnfXDN/OLvL13lapq1z5c7u4epVgVAAAVU0V4L1DS98xOHYRefPFFLVmyRFu3btU999wjf39/BQUF6ezZszp48KBMJpOee+45u+yrevXqBZ5ROnv2rG1MUXGV5BQfYE9XrgGu4uWZ77rgq5eVJ8OfflB9+mRp0aJF193W09NTK5YvU7t27cqgMgAAKp6K+F6gqIo/p3MF4u3trbVr12r06NEKDQ3VhQsXtHPnTlksFvXs2VNz5syRl5eXXfbVrFmzAscC7d69W82aNbPLPgBcn4uLi7744gsNHDjwmtPWV/erqdWrVxOCAAAwKKcOQlLuJ76vvPKKtm3bpvT0dKWnp+vgwYNatGiRHn300SL3M3LkSFmt1gLHB0lS9+7d9dNPPykxMdG2bOPGjTpw4ICio6Nv9GkAKAY3Nzd9+OGHOnTokCLu6SHfmv7y8vZRnTp1dEtwqHr3fUb/fP0thYWFObpUAADgIE59aVxZeuqppzRp0iT16NFDo0aN0qVLlxQbG6t27dqpR48eji4PMKQ6deqoU3SMbo3sZpvi88rp/JLc5BgAADgP3gnYiY+Pj+Lj41WrVi09+OCDevLJJ9W+fXvFxcXxhgsAAAAoZzgjZEcNGzZUXFyco8sAAAAAcB2cqgAAAABgOAQhAAAAAIZDEAIAAABgOAQhAAAAAIZDEAIAAABgOAQhAAAAAIZDEAIAAABgOAQhAAAAAIZDEAIAAABgOAQhAAAAAIZDEAIAAABgOAQhAAAAAIZDEAIAAABgOAQhAAAAAIZDEAIAAABgOAQhAAAAAIZDEAIAAABgOAQhAAAAAIZDEAIAAABgOAQhAAAAAIZDEAIAAABgOAQhAAAAAIZDEAIAAABgOAQhAAAAAIZDEAIAAABgOAQhAAAAAIZDEAIAAABgOAQhAAAAAIZDEAIAAABgOAQhAAAAAIZDEAIAAABgOAQhAAAAAIZDEAIAAABgOAQhAAAAAIZDEAIAAABgOAQhAAAAAIZDEAIAAABgOAQhAAAAAIZDEAIAAABgOK6OLgBA+bBm43YlJp/Ksyzj0iXbv599s7zQZZLUqG5ttWvVrIyqBQAAuDEEIQCSpKaN6mrZT1uUnZ2Tb11Wdo5+/f1gocs8K3mo+13ty6ROAAAAe+DSOACSpJv8qqlbxK0latvrnjvl4+1p54oAAABKD0EIgM1trYPVuF7tYrX5W3BjhTRtUEoVAQAAlA6CUBFMnz5dJpNJJpNJERERji4HKDVmk0n3d4tQ5UoeRdq+ahUv9eh0RylXBQAAYH8EoetITk5WbGyso8sAykzVKl7qWcRw0+feSFXycC/ligAAAOyPIHQdQ4YM0cWLF9W9e3dHlwKUmdDmjRTarOE1t+kQFqKGdQPKqCIAAAD7Ighdw+LFi7VgwQINGjRIbdq0cXQ5QJnq0bmDfLy9Clx3k1913RPetowrKpmcnGwdPbRPu7dv0ffff6/zZ087uiQAAFAOGGb6bIvFokWLFmnu3LnatGmTzpw5Iz8/PzVt2lQ9evTQwIED5e7+5yU+KSkpGjRokAICAjR69Gi9/fbbDqweKHuelTwU0y1cH3+5NM9yF7NZD0RHys21fP/6OHHihD788EO9/e57Sr14QZI0b/q7ksmkhk1aqENUF0mPOLRGAADgOOX7nYydnDx5Un369NHq1aslSXXq1FGrVq2UnJyslStX6ueff9bgwYPztBkxYoQSExP15ZdfysfHxxFlAw7XuH6g2rcJ1vqEXbZld3doo9o313BgVde3fft2de3aVcePH8+/0mrVgd936MDvO+Trka233npLJpOp7IsEAAAO5fRBKC0tTd26dVNCQoLCw8P1/vvvq2XLlrb1u3bt0sKFC+Xi4mJbtmHDBk2ZMkVdu3ZVTEyMI8oGyo0u4bdq36EknTp7XnVr36zwW0MdXdI1HTp0SJ07d9bJkyevu+0777yjypUra8yYMWVQGQAAKE+cfozQ0KFDlZCQoA4dOmjZsmV5QpAkBQcH61//+pftcVZWlgYMGCAPDw9Nnjy5rMsFyh13N1c90D13drg+90bKbC7fvzZefvnlIoWgK8aOHasDBw6UYkUAAKA8cuozQr///rtmzJghDw8PzZs3L88YoMKMHz9eu3bt0pgxY9SgQdFvEpmYmKjx48dr06ZN2r59uzIzM2W1Wm+kfE2as0gpqRk31AdgL64uLpr22RJHl3FNqRcv6Kuvvip2u/7/96y69nq4FCoCAKBiS0lLt/079oN5hS5zpCrelTWk333FbufUQeizzz5TTk6O+vbtqzp16lx3+z179mjMmDFq1qyZhg0bVqx97d+/XwsXLlTbtm3l7u6udevWlbRsm5TUDF1MTbvhfgCj2Lx+lXJycordbuvPa3VHpx6lUBEAAM7BarXme19a0LKKxKmD0PLlyyVJ3bp1K9L2AwcO1OXLlzV16lS5ubkVa18dO3a0DcweOXKkXYJQFe/KN9wHYCSX01NL1C49LUWVPdzk5sbNYQEAuFpKWrqsVqtMJpOqeHkWusyRSvqe2amD0NGjRyWpyJe4bd26VWazWX369Mm3LjU19w3W+vXr5e/vL0nau3evbUa50hg3UZJTfICRnTm4VevivytR25cGPiwPDw87VwQAQMU29oN5upiapipennp50COFLquInDoIpaXlnqrLyCj6OBuLxaITJ04Uuj4rK8u23mKx3FiB18EYIaB49hwp+iQJV/Py9tFbMxbYuRoAACo+xghVUEFBQTp37pzWr1+vO+6447rbnz9/vtB1I0eO1KhRoxQeHq5Vq1bZr8hrYIwQUDz1m4XK7PK5LMUcJ9SizW38XwMA4BoYI1TB9OrVS7/++qvGjBmj0NBQde7c2bYuKSlJc+bMUUxMjBo3buzAKgvHGCGgeHy8vRTyt1u1fcv6ojcymdQhsot8vL1KrzAAACooxghVUC+++KKWLFmirVu36p577pG/v7+CgoJ09uxZHTx4UCaTSc8995yjyywUY4SA4nukewfddtttSk5OLtL2/3rtNY16/YVSrgoAgIrJmccIle87I94gb29vrV27VqNHj1ZoaKguXLignTt3ymKxqGfPnpozZ468vPgUGHAmdevW1Y8//qjAwMDrbhsbG6uRI0eWflEAAKDcceozQpLk6empV155Ra+88soN9TNy5EjeMAEVRIsWLbR161ZNmzZNE996RxfOn7WtM5lMatw8VB2iumjChHEOrBIAADiS0wehsrRgQe6sU7t3787zuF69egoLC3NYXYAR1axZU6+++qqsPnW0d89umSzZ6nd/Vy37ebdMrh6MCQIAwOAIQnYUExNT4ON+/fpp9uzZDqgIgIuLi2rXaSAfby/ddddd2vh7coWe4QYAANgHQciOrFaro0sAAAAAUAROPVkCAAAAABSEIAQAAADAcAhCAAAAAAyHIAQAAADAcAhCAAAAAAyHIAQAAADAcAhCAAAAAAyHIAQAAADAcAhCAAAAAAyHIAQAAADAcAhCAAAAAAyHIAQAAADAcAhCAAAAAAyHIAQAAADAcAhCAAAAAAyHIAQAAADAcAhCAAAAAAyHIAQAAADAcAhCAAAAAAyHIAQAAADAcAhCAAAAAAyHIAQAAADAcAhCAAAAAAyHIAQAAADAcAhCAAAAAAyHIAQAAADAcAhCAAAAAAyHIAQAAADAcAhCAAAAAAyHIAQAAADAcAhCAAAAAAyHIAQAAADAcAhCAAAAAAyHIAQAAADAcAhCAAAAAAyHIAQAAADAcAhCAAAAAAyHIAQAAADAcAhCAAAAAAzH1dEFAAAAAHC8P46d1KXLmXmWZefk2P7deyix0GWSVMnDXXUCbiqjam8cQQgAAACAzl9I0WeLVxS4Lj3jkmZ+ufSayx7ucXeFCkJcGgcAAABALZs1VKvmjUrU9m/BjdSyaQM7V1S6CEIAAAAAJEl/73SHqlbxKlabqlW89Pe77yilikoPQQgAAACAJMmzkodiukUUq03MvRGqXMmjdAoqRQShIpo+fbpMJpNMJpMiIiIcXQ4AAABQKhrVq6072rQo0rZ3hLVQo7q1S7mi0kEQKoLk5GTFxsY6ugwAAACgTHQJb6eb/Kpdc5ub/KqrS8d2ZVNQKSAIFcGQIUN08eJFde/e3dGlAAAAAKXOzc1VfbpHymw2FbjebDbpgehIublV3EmoK27lZWTx4sVasGCBhgwZIl9fX8XFxTm6JABFdPDgQX3/9efa8csmXUpP06TRL8qrag2FtL1Drdu2d3R5AACUa4H+NXXXHW3049ot+dZ16hCm2jfXcEBV9mOoM0IWi0ULFixQz549FRAQIA8PDwUEBCgqKkrvvfeeMjPz3kAqJSVFgwYNUkBAgEaPHu2gqgEUV2ZmpgYMGKBGjRpp7fJvdf7MKV3KSFdycrIO7Nmpr+dO01sj/6lNmzY5ulQAAMq1iNta5bs3UJ2Am9Xx1lAHVWQ/hglCJ0+eVFRUlGJiYvTNN9/Izc1NrVq1kpubm1auXKkRI0bIxcUlT5sRI0YoMTFR7777rnx8fBxUOYDiyM7OVkxMjGbMmCGr1VrodhfOnVFERIQ2bNhQhtUBAFCxuJjN6tP9z0vg3N1c1ad7hFzMFT9GVPxnUARpaWnq1q2bVq9erfDwcG3fvl1HjhzRxo0bdeTIEe3cuVMvvfRSniC0YcMGTZkyRV27dlVMTIwDqwdQHG+++aYWL15cpG0zMjLUo0cPpaenl3JVAABUXDWqV1X3qNskSfdG3a4a1as6uCL7MMQYoaFDhyohIUEdOnTQsmXL5O7unmd9cHCwgoODbY+zsrI0YMAAeXh4aPLkyWVdrs2kOYuUkprhsP0DFU1OTrbenPBmsdqcOnVKjz71vMJuDy+lqgAAqPisVqs83N21/KcErVi31dHl5FHFu7KG9Luv2O2cPgj9/vvvmjFjhjw8PDRv3rx8Iagg48eP165duzRmzBg1aNCgyPtasGCBPv/8c23ZskWnTp1SnTp11Lt3b40YMULe3t7Frj0lNUMXU9OK3Q4wqj07tyrlwrlit9uw6gfdEhJWChUBAOBcLv9lTH1F5vRB6LPPPlNOTo769u2rOnXqXHf7PXv2aMyYMWrWrJmGDRtWrH1NnDhRderU0dixYxUYGKht27Zp1KhRWr16tdasWSNzMa+lrOJduVjbA0Z37uSxErU7ceyovD0rF/v/KAAAcLySvmd2+iC0fPlySVK3bt2KtP3AgQN1+fJlTZ06VW5ubsXa15IlS1SzZk3b4/DwcNWsWVOPPPKIfvrpJ3Xs2LFY/ZXkFB9gZCf2btLqZcVvZ7Va9cI/7pOXl5f9iwIAAOWS0weho0ePSlKRL3HbunWrzGaz+vTpk29damqqJGn9+vXy9/eXJO3du9c2o9zVIeiKsLDcy22SkpKKXTtjhIDi2bHvaInamc0uenfWf2UyFXzTOAAAUH4xRqgQaWm5Y2wyMooeKCwWi06cOFHo+qysLNt6i8Vyzb5WrlwpSWrWrFmR938FY4SA4gms36RE7Ro0aaGUNGaOAwDASJw+CAUFBencuXNav3697rjjjutuf/78+ULXjRw5UqNGjVJ4eLhWrVp13b6SkpL02muvqUuXLmrVqlXRi/4fxggBxVOlWbACgurp2NHDxWrXIfIe+XhzWRwAABURY4QK0atXL/36668aM2aMQkND1blzZ9u6pKQkzZkzRzExMWrcuLFd95uamqoePXrI3d1dM2fOLFEfjBECiq95bS/dd1/R/++0a9dOH08ax0QJAAAYjNP/5X/xxRfVunVrXbhwQffcc49q1aqldu3aqVGjRgoKCtJrr72mgIAAu+4zIyND0dHROnTokJYtW6ZatWrZtX8AhevVq5f+85//FGnbJk2aaPHixYQgAAAMyOn/+nt7e2vt2rUaPXq0QkNDdeHCBe3cuVMWi0U9e/bUnDlz7DpTVFZWlu6//35t2bJF3333nZo3b263vgEUzbBhwzRv3jw1bNiwwPVubm56+OGHtX79et18881lXB0AACgPTFar1eroIpyFxWLRgw8+qMWLF2vp0qWKiopydEmAoVksFi1btkz//e9/debMGVWqVEktWrTQ448/TgACAMDgCEJ2NHDgQE2dOlUvvfSSevTokWddw4YNC5xeGwAAAEDZIwjZUb169XTkyJEC182aNUv9+/cv24IAAAAAFIggBAAAAMBwnH6yBAAAAAD4K4IQAAAAAMMhCAFwCvv27VP79u11yy23qG3bttq1a9c1t581a5ZatWpl+6pRo0axbsQKAAAqNsYIAXAKUVFR6tu3r/r3768FCxZowoQJ2rx5c5Hbt2jRQqNGjVLv3r1LsUoAAFBecEYIQIV38uRJbdmyRY8++qgkqXfv3jp69Kj27NmjwMBAHTx4UJI0ceJEdenSRRaLJU/7jRs36uTJk/r73/9e5rUDAADHIAgBqPCOHj2qWrVqydXVVZJkMplUp04dJSUl6c0331SfPn20atUqffDBB/r0009lNuf91ffxxx/rsccek5ubmyPKBwAADuDq6AIAoDQ99NBDWrlype655x6tWLEi342N09LS9MUXX+jnn392UIUAAMAROCMEoMILCgrS8ePHlZ2dLUmyWq36448/VKdOHWVnZ2vnzp3y9fVVUlJSvrZfffWVgoOD1bx587IuGwAAOBBBCECFd9NNN6l169aaO3euJGnhwoUKDAxUo0aN9NJLL6lJkyZau3atXnzxRe3fvz9P248//lhPPPGEI8oGAAAOxKxxAJzCnj171L9/f505c0Y+Pj6aNWuWjhw5opdeekmbNm2Sp6envvrqK40bN07r169XpUqVtGfPHoWFhenYsWOqUqWKo58CAAAoQwQhAAAAAIbDpXEAAAAADIcgBAAAAMBwCEIAAAAADIcgBAAAAMBwCEIAAAAADIcgBAAAAMBwCEIAAAAADIcgBAAAAMBwCEIAAAAADIcgBAAAAMBwCEIAAAAADIcgBAAAAMBwCEIAAAAADIcgBAAAAMBwCEIAAAAADIcgBAAAAMBwCEIAAAAADIcgBAAAAMBwCEIAAAAADIcgBAAAAMBwCEIAAAAADIcgBAAAAMBwCEIAAAAADIcgBAAAAMBwCEIAAAAADIcgBAAAAMBwCEIAAAAADOf/AVwGUTO2PrlkAAAAAElFTkSuQmCC", - "text/plain": [ - "
" - ] - }, - "execution_count": 5, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "qubits = QuantumRegister(3)\n", - "clbits = ClassicalRegister(3)\n", - "circuit = QuantumCircuit(qubits, clbits)\n", - "(q0, q1, q2) = qubits\n", - "(c0, c1, c2) = clbits\n", - "\n", - "circuit.h([q0, q1])\n", - "circuit.measure(q0, c0)\n", - "circuit.measure(q1, c1)\n", - "with circuit.switch(clbits) as case:\n", - " with case(0b000, 0b011):\n", - " circuit.z(q2)\n", - " with case(0b001):\n", - " circuit.y(q2)\n", - " with case(case.DEFAULT):\n", - " circuit.x(q2)\n", - "circuit.measure(q2, c2)\n", - "\n", - "circuit.draw(\"mpl\")\n", - "\n", - "# example output counts: {'101': 267, '110': 249, '011': 265, '000': 243}" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## For ループ\n", - "\n", - "for ループは、一連の古典値を反復処理し、反復ごとに何らかの演算を実行するために使用します。\n", - "\n", - "以下の例では、for ループを使用し、量子ビットに 5 つの X ゲートを適用して測定しています。 奇数の数の X ゲートを実行するため、全体の効果は量子ビットを 0 状態から 1 状態に反転させることになります。" - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAATEAAACuCAYAAABeIjpKAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAanUlEQVR4nO3deVxU9f7H8dcMwyruqICAK6AggrlliYblflO7ltrDUrpGt5tdJUst6978aVdTSs2s1DJzKelXufS4Zl1uuZb+BAU1cQHMlUW9irKIMDPn9weXyZFFGYaZOePn+Xj4kDlzzpnPsLzne77ne85XoyiKghBCqJTW3gUIIURdSIgJIVRNQkwIoWoSYkIIVZMQE0KomoSYEELVJMSEEKomISaEUDUJMSGEqkmICSFUTUJMCKFqEmJCCFWTEBNCqJqEmBBC1STEhBCqJiEmhFA1CTEhhKpJiAkhVE1CTAihahJiQghVkxATQqiahJgQQtUkxIQQqiYhJoRQNQkxIYSqSYgJIVRNQkwIoWoSYkIIVZMQE0KomoSYEELVdPYuQNzZTT1k5MK1G3CzzN7ViLvlroOGnhDiCx6u9q7GeUmIObCj52H/KUjPhjKDvasRltJpobM/9GwPXQPtXY3z0SiKoti7CFHZzuOw6YC9qxDWNjwSBnaxdxXORfrEHJAEmPPaegiSfrV3Fc5FDicdzNWiqgNMq4GAZuDlBhqN7esStaMoUFwK56+A8bZjna2HIDIIWjayT23ORkLMwaSdrbxsYDj07wTeHravR9RN0U3YcxK2HTZfnnYWBslhpVXI4aSDuT3EureF4VESYGrVwB0GR8D9HcyXV/VhJSwjLTEHYjDCmcvmy7q3tUspdqcoCsVGdZ2S9dK6oKnmWL97O9iX9fvj7KtQUlb90AtFUSguLq6HKuuPl5dXte+/PkmIOZDi0srLAprZvg5HUGw00PSnJHuXUStXBwykgUvVf1IBTSsvK75ZfYgVFxfj7e1txerqX2FhIQ0aNLD568rhpAPRV9HwcJOPGadQ1c9Rxv5Zh4SYSs2ePRuNRlPlPw8P6UBzNHJCuf7I57zKzZkzh3bt2pktc3FxsVM1QtiehJjKDR06lB49etTb/gsKCmjYsGG97V+IupLDyXvAJ598wn333YenpyeNGzdm0KBB7Nmzp9J6Go2G2NhYfvzxR/r27Yu3tzePPvqoHSoW4u5JS0zlrl27xuXL5uMyvL29Tf1iM2fOZOHChfTq1Yt58+ZRUFDAypUriYmJYcuWLQwbNsxs25SUFL755hvi4uKYOHGizd6HEJaSEFO5Rx55pNKyjz76iOeff54TJ06QkJDAgw8+yE8//YSbmxsAzz77LGFhYbzwwgtkZWWZ9aEdPXqUpKSkKvcrhCOSEFO5Dz74gJCQELNlnTt3BmDLli0oisKMGTNMAQbg7+/PM888w5IlS0hNTTXrU4uMjJQAE6oiIaZyvXr1qrZj/7fffgMgPDy80nMVy06dOmW2/e2BKISjk459YcbLy8veJQhRKxJiTqx9+/ZAeT/X7dLT083WEeJOWrZsibu7u73LqEQOJ4HY2FjWrFlT4zrHjh2jU6dONqrIOkaMGMHMmTNJSEhg6NChuLqWX6iXk5PD6tWradOmDd26dbNzlaI+NWvWjN69e9O9e3e6detG06ZN0el0lJSUkJWVRUpKCgcOHODQoUPUdJNnX19ftm/fzunTpxk1ahQ3b9604buomYTYLYKDg2nZsmWVz6nxMCs0NJTp06ezcOFC+vXrx9ixY01DLAoLC/n8889ldL+Tio6O5i9/+QujR482O6lzq4EDB5q+zsrKYvny5axevZr//Oc/ZutVBFinTp3o1KkTy5YtIy4url7rrw0JsVvMmjWL2NhYe5dhVQsWLKBjx458+OGHvPrqq7i5udG7d2+++OILoqOj7V2esLLg4GA+/fRT+vbtW6vtOnToQEJCAnPmzOHvf/87ixYtwmg0mgUYlJ8seuutt+qjdItJn5hKzZ49G0VR7uqSo7i4OFJTUykpKeH69eskJSVVGWCKovDZZ5/VQ7X2Y/j0M8oGDcP4/b8qPacoCvpXZlI2fATKb6dtX5yVxcfHc+jQIbMAu3jxIu+99x5PPvkkISEheHp64ubmRrNmzejXrx8vvfQS//rX798bT09PEhIS2LNnDw888EClAIuJieHMmTM2f281ccoQu3z5MjNmzKBjx454eHgQGBjI1KlTKSoqYtKkSWg0GpYtW2bvMoUNaJ8eD23bYFjxMcol8ysbjBs3oxw+gvbpp9C0a2ufAq1Aq9Xy8ccfs3jxYjw9PQHIzMxk/PjxBAYGEh8fT2JiIhkZGZSUlFBWVsbVq1fZvXs3S5YsYfDgwQQHB/Phhx9iNBoB6NOnD7t27XL4AAMnDLG0tDQiIiJISEggNzeXsLAwysrKWLp0KWPHjuXYsWMAREVFVdr266+/ZtSoUQwYMIAxY8awaNEiLl26ZON3IKxJ4+qKbvrLUFKCYdES03Ll3HmMn61F0ykU7ROj7VegFaxcuZJnn33W9Pi9994jMjKSL774gtLSKu60WYXMzEwmT55MdHQ0WVnlt6Ct6C+9cOGCwwYYOFmIXb58mUcffZTc3FxefvllcnJyOHjwILm5uSxYsICtW7eSnJyMRqOha9eulbbfunUrW7ZsYfv27Xz11Ve8/PLLtGvXjvXr19vh3Qhr0QR3RDtuDMqBgxi3bkMxGDAsfAcUBZfpL6NR8cmNl156iUmTJgFQWlrKE088QXx8vMW3tj516hQGg/ndGnU6HdevX69zrfXFqUJsypQpnD9/nhdffJF33nnH7BYyM2bMIDIyEr1eT9u2bWnU6Pf5skJCQli8eDFpaWnk5+dTVFTErl27GDRoEEVFRUyYMIGtW7fa4y0JK9GOfxLat8fw8ScYP1iOcuIk2tgJaAID7F2axUJCQvjHP/4BgNFoZPz48Xz99dcW76+iE7/iqo2SkhIAWrVqxZIlS+pcb31xmhA7duwYX375JT4+PsyfP7/Kdbp37w6UXx94q1mzZhEfH09kZCSNGzfGy8uL6Ohovv/+e0aOHImiKMTHx9c4jkY4No1Oh276NCgtw/jPrWi6hKP94yh7l1Unq1atMvWBLV261CoBdmsfWP/+/cnPzwdgwoQJDB06tM411wenGWKxYcMG06dRdRMsVPzAbw+x6mg0GhYsWMCWLVvIzMzkyJEjVR6G3kmPHj3Izc2943qeTfwZ/tp+s2WdQkPRlxbV+jXVTnFzgxUfWHenDRqAqyvo9Wh69kCjte5neEhwCJrq+qA0Wh5/23yetoce6k/BpawqV6/oYK9OdHS06SxkZmYms2bNqn3B/1VVgFX0gcXHx5vOWL/22mts27at2v0EBwejtfB76uvrS0pKikXbOk2I/fTTTwDExMRUu8758+eBuw8xKB8w2qxZM65cuUJGRoZFIZabm8uFCxfuuF7Dksq/ANk52ZSVFNb6NVXPw51qJgKyiKIoGN5dDPoyCArE+EUi2v790Pj7We01snOyoaTqkewaTeWfbV5eHldz7vx7UZUXXnjB9PWbb77JjRs3LNpPTQEGsGbNGqZPn054eDjR0dFERERw5MiRKveVk5NjUQ115TQhVvFNb9OmTZXP6/V6fv75Z6B2IQaYLtfR6/UW1ebr63tX63k2qbyev5//PdsSs+Z5YePmb1EOHUb7zES0fe5HP/mvGN5djMs7C6w2V6K/n3+NLbHbtWrVCi9t1R9QRqOx2lBo3rw5o0eXn1G9ePGixYeRdwqwCh9++CEffFDeKo6Li2PKlClV7s/Pz69OLTFLOU2IFRWV/6FX94n05ZdfcvnyZRo2bFhpYo2aXLp0iYsXLwIQEGBZJ/DdNpOvFsH/bDZfdvzEiWrnJnRmRQa91eadVC5cwPjpZ2hCQ9COeRyNiwvap8ZjXL0G4+ZvcXlspFVe52TGyWrnnTQaYdoG82U7duykVeOq91VUVFRtt0jv3r1NH6y1GUZxq7sNMIB169axdOlSXFxcarzKIyMjQ+adrIuKJD948GCl53Jycpg+fToAXbt2rdUn77vvvouiKDRu3JiePXtap1hhM4rRiCFhERiNuEyfZhpOoR3zOJqQYIyffoaSbZ/DIEtVnKAC2LdvX623r02AQflkMRV3PQkPD3e4KQGdJsQq7ka6YMECTp48aVqenJxMTEyM6T70tw9yTUpK4tVXXzUN8KtQXFzMnDlzWLhwIVDeqVndhbTCcRm/3oiSfgztxKfQBAWZlmtcXHB5ZRoYDRjeXayqM8+33nnkwIEDtdq2tgFWoeJowtXVlS5dutSy4vrlNCE2Y8YMmjdvzrlz5wgPDyciIoLg4GB69epF+/btGTBgAFC5P6yoqMh0kbS/vz89e/ake/fu+Pj48Oabb6IoCs899xwzZsywx9sSdaCcPYtxzTo0nTuhHf3HSs9r2rZB+9R4lCO/Ytz8rR0qtEyzZs1MX589e7aGNc1ZGmAA586dM33dtGnTWlRb/5ymTywgIIDdu3czffp0du7cyenTpwkLC2PFihXExcXRoUMHoHKIde/enTfeeIO9e/eSmZlJeno6BoOBVq1a0adPH+Li4nj44Yft8ZZEHWmCgnDduqXGdVyeHIvLk2NtVJF1TJkyBR8fHzw8PGrVHzZixAiLr4Vcv349v/zyCzdu3ODw4cMW1V1fnCbEoHyCjH/+85+VlhcWFnL69Gm0Wm2lpnBgYCBz5861VYlC1JmlIbJy5UqaN29OXFxcra+FzMjIICMjw6LXrW9OczhZk6NHj6IoCsHBwaq8uaEQ1jJ//nwiIyMd9mJuS9wTIVYxOK+248McmdFovOOobiGqUlBQYO8SrEpCTEVmz57N6NGjGTx4MF26dCEnJ4dXXnmFnj17EhUVRb9+/Thx4oRpfY1Gw7x58+jVqxft2rVj9erVpud++eUXoqKiiIiI4E9/+hORkZHs2LEDKL/CYMyYMfTq1YuIiAjeeOMNW79VIe6ahJjK7N27l7Vr15Kenk7r1q2ZOXMmycnJpKWl8cILLzB16lSz9d3d3dm/fz/btm1jypQp6PV6SktLGTt2LIsXL+bIkSM8/fTTZv0sEydOZPLkyezfv5/U1FRSUlL46quvbP1WhbgrTtWxX52K6yqdwbBhw2jVqpXpcVJSEu+//z4FBQUYjUauXLlitv748eMB6NSpEzqdjtzcXK5cuYJOpzNdZxoTE2M6e1tUVMSPP/5IXl6eaR+FhYVmLTwhHMk9EWLO5NZLUc6ePcuLL75IcnIyHTp04PDhw/Tr189s/VtHV7u4uFR7/WfFVQwVgz737dvncCOzhajKPXE46ayuXbuGq6srfn5+KIpy1/MGhIaGUlZWxs6dOwHYuXMnmZmZQHlIxsTE8Pbbb5vWz87ONt0BRAhHIy0xFYuIiGDcuHGEh4fTvHlzRo0adVfbubu7k5iYyOTJkzEajXTv3p3Q0FCaNGkCwOeff860adPo0qULGo2GBg0asGLFCosvgBeiPmkUNV005uSquovF22Ool7tYFBQUmG7fnZyczIgRI8jKynKYcXTWvIuFrVwdMLBWd7F47Q9YdBcLR1VYWGiXu1hIS+we9c0337B4cfmFzzqdjnXr1jlMgAlRGxJi96jY2Finm+1c3JukY18IoWoSYkLYgHQ81x8JMQeiq2IO11LLbusvHExVP0dX9c7Z61CkT8yBeFVx49hzVyC8te1rsTcvrQtXBwy0dxm14qWtPpXOX6m8zMu9hn15eVFYaL1ZrhJWJHK9qJhGDbyY/udxlR5bg71ODEmIORAXLbT1gdOXf1+W8tu9GWIajaba4QpqlPyb+ePWTWseOlMxPs9a3Nw9cCsz4ObuQYMGDSo9VjM5nHQwUUHmj1PPwLcHocCyaQWFnRWWwHeHYP8p8+W3/5yF5Zzno85JRAbB5tsmbPrpGGw/Dn5NoIEbWGmaRFGPFAVulEJ2Phir6NWXELMeCTEH07QBjO4B39w2VaWiQPZV+9QkrGtEN2jRyN5VOA85nHRA0aHlQSacz4huMCDM3lU4F2mJOajoUPBpCMmn4NcL5afor+ZmkLRiIjcKLuPm2ZhBf/6M5gHhd9zXp/FtcdG5o3PzBKDniNcIuV9dM/yomZsLhLWGHu2gi1xDb3USYg6ss3/5v1I9ZF2Ep0f/mQnPPMeQx2LZ+cPXbPgkluVfJd9xP4lu8NayL+nYOar+ixYmHq7QyAM6tgI3+UurN/KtVQE3HTTXXeTk0RT27f4XOh30Dx3NR/NfJECXSceOHWvc3sO1vBUQ1clGBQthQ9InphLnzp3Dz88Pna78c0ej0RAUFHTXM0BPmDCBiIgIJk2axKVLl+qzVCFsSkLsHrBr1y4OHz7MwYMH8fHxYeLEifYuSQirkcNJlQgMDCQnJwe9Xo9Op0NRFM6ePUtQ0J0HHFWs4+rqSnx8PCEhIfVdrhA2Iy0xlWjZsiX33Xcf69evB8pvahgQEGDqD5swYQKbNm2qtF1RURH5+fmmxxs2bKBbt242qVkIW5CWmIqsWLGC2NhY5s2bR6NGjcwmw01JSWHKlCmVtsnLy2P06NEYDAYURaF9+/asXbvWlmULUa8kxFQkNDSUvXv3Vlp+6dIlWrduTY8elUfItm/fntTUVFuUJ4RdyOGkE2jRogVJSeqaVEMIa5EQE0KomoSYEELVJMSEEKomISaEUDUJMSGEqkmICSFUTUJMCKFqEmIOYteuXYwcOZI2bdqg0Wh466237F2SEDX67rvviIqKwt3dnbZt27Jo0SK71CEh5iAKCwsJCwtj4cKF+Pr62rscIWqUkpLCyJEjGTp0KGlpacyePZtZs2axfPlym9cilx05iGHDhjFs2DAAZs6caedqhKjZokWL6NmzJ/Pnzwegc+fOHD16lLfffpvnn3/eprVIS0wIUWs///wzQ4YMMVs2ZMgQzpw5w/nz521ai7TEhHAiRqORrDPZ3D7Vpd5gMP1/8rfzlR7fqmljb1o0a1Lj6+Tk5FTq9qh4nJOTQ0CA7WZEkRATwolotVrSM8+w9+DRKp8vvlHCp//7XbWPXV11TH1mdL3XaU1yOCmEkxn6UG9aNGts0bZ/GHA/Pk3vvK2fnx+5ublmy/Ly8kzP2ZKEmBBOxs1Vx5g/xKDVaGq1XWj7QHpFdr6rdR988EF++OEHs2Xff/89bdq0semhJEiIOYzCwkLS0tJIS0ujtLSU3Nxc0tLSyMzMtHdpQoUC/Voy4IH77np9L093Hh/aH81dBt9LL73E/v37ef311zl+/Dhr1qzh/fff59VXX7W0ZItpFEW5vQ/wnnH69GnatWtX4zpjx44lMTGx3mvZsWMHMTExlZb379+fHTt21PvrC+djMBhZ/vkWzuXceYq+p0YNpEtozX8Lt9u6dSuzZs3i+PHj+Pr6MnXqVKZNm2ZpuRaTEGvXDnd39ypv7QzwyCOPMHv2bNsWJoSVXLqSz9LV31CmN1S7zn1dghkzvPIHqFrI2UnKTw3v2bPH3mXclXM5F2netDFeHu72LkWoQItmTRgWcz9bkn6u8vkmjbwZ8ciDNq7KuqRPTEX0BgPrNyWx4KMvOHshz97lCJW4v1sYIe0qd7ZrgCeGP4SHu5vti7Iipwwxg8HAunXrGDRoEC1atMDd3Z2goCCGDBnCJ598gsFQfdPakR04coJrBUW4ubni17K5vcsRKqHRaHh8aH88b2u99+3ZlQ5B/naqynqcrk/s+vXrjBo1iu3btwPg7+9P69atyc7OJjs7G0VRuHr1Kk2aNDH1iTVt2pQnnniCrKws3Nzc6NChAyNGjGDgwIF2fje/0xsMJKxI5FpBEY8+/AAP9uhi75KEyhw+lsUX3/4IQCufprw48TFcdervUVL/O7jNpEmT2L59OwEBAaxdu9bsjF9eXh6rVq3C1dXVbJurV6+ycuVKs2XLli3j4YcfJjExER8fH5vUXpOKVlhDby96RXaydzlChbp27kB65hmOHD/F2D/EOEWAgZO1xA4cOECPHj3Q6XSkpqbSpUvNrZXz58/z+uuvM27cOMLCwvDz8yMvL4+NGzfyt7/9jYKCAvr06cPu3btxcXGxuK7312ykoPCGxduDQkHRDRRFwcPdDbfbQliIu6UoCmV6vcP9DjX09uSvE/9o0bbOEcX/tXnzZgCGDx9+xwADCAgIYM2aNWbLAgMDmTp1Kvfffz99+/Zl7969bNiwgaeeesriugoKb3C9sMji7W9VcrOUkpulVtmXuHc50++QU4VYeno6AH369Knzvnr37s3jjz9OYmIiGzdurFOINfT2rEMl0goTzq8ufyNOFWLXr18HoHFjyy5+vd0DDzxAYmIiGRkZddqPpc1kgP9LO8amH3bT0NuLGc+Nw9XVqX5kQtSZU/1FNGrUCIBr165ZZX8VJwD0en2d9mN5n1h5KwygrExPwsov61SHEI5K+sT+Kzw8nI0bN7J3716r7O/o0fJ7MtX1qnxr9IlJX5gQVXOqEHvssceYO3cu3333Henp6YSFhVm8r9zcXNavXw9Q5/Filh3vS1+YuHfUqd9YcTJjxoxRACUoKEjZsWOH2XO5ubnKvHnzlMLCQkVRFOW5555TNm3apNy8edNsvZSUFCU8PFwBFF9fXyU/P99m9VfYl5quzHx7hfLWsnVKaWmZzV9fCLVwqnFiUN65P3LkSNPta1q3bo2/vz85OTlcuHDBbMR+VFQUhw4dws3NjeDgYLy9vcnNzeXMmTNA+R0qv/3222rvcFFf9AYD76z8kvzrhTI6X4g7cLprJxs1asS///1vVq1axUMPPURxcTGHDh1Cq9UyePBgVq1aRcOGDQF47bXXiI2NJTQ0lLy8PA4cOEB+fj69e/dm7ty5/PrrrzYPMIADR06Sf71QRucLcRecriXmDFKPZrBtx376946UVpgQdyAh5qDK9Ho0aNDpLL/cSYh7gYSYEELVnK5PTAhxb5EQE0KomoSYEELVJMSEEKomISaEUDUJMSGEqkmICSFUTUJMCKFqEmJCCFWTEBNCqJqEmBBC1STEhBCqJiEmhFA1CTEhhKpJiAkhVE1CTAihahJiQghVkxATQqiahJgQQtUkxIQQqiYhJoRQNQkxIYSqSYgJIVRNQkwIoWoSYkIIVZMQE0KomoSYEELVJMSEEKomISaEUDUJMSGEqkmICSFUTUJMCKFqEmJCCFWTEBNCqJqEmBBC1STEhBCqJiEmhFA1CTEhhKpJiAkhVO3/AYeRQL7D3xKEAAAAAElFTkSuQmCC", - "text/plain": [ - "
" - ] - }, - "execution_count": 6, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "qubits = QuantumRegister(1)\n", - "clbits = ClassicalRegister(1)\n", - "circuit = QuantumCircuit(qubits, clbits)\n", - "(q0,) = qubits\n", - "(c0,) = clbits\n", - "\n", - "with circuit.for_loop(range(5)) as _:\n", - " circuit.x(q0)\n", - "circuit.measure(q0, c0)\n", - "\n", - "circuit.draw(\"mpl\")\n", - "\n", - "# example output counts: {'1': 1024}" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## While ループ\n", - "\n", - "while ループは、何らかの条件が満たされる間、命令を繰り返すために使用します。\n", - "\n", - "以下の例では、2 つの量子ビットにアダマールゲートを適用して測定しています。 次に、測定結果が 11 である間この手順を繰り返す whilte ループを作成します。 その結果、最終測定は 11 になることはありません。残りの可能性はほぼ同じ頻度で発生されるようになります。" - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkEAAAEvCAYAAABCEhUaAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAAA76UlEQVR4nO3deVxTV94G8CchJJAACkglirgA7ggVBHeIte7UpRXrq2PHylhtabXTunVTu1gR3ldtrVOsWq3a6pSijtixHQUtdVcUUVsVURAELa5sAoG8fzCkRBZJSAjkPt/Px4/cNb+InDyce+65Io1GowERERGRwIjNXQARERGROTAEERERkSAxBBEREZEgMQQRERGRIDEEERERkSAxBBEREZEgMQQRERGRIDEEERERkSAxBBEREZEgMQQRERGRIDEEERERkSAxBBEREZEgMQQRERGRIDEEERERkSAxBBEREZEgMQQRERGRIDEEERERkSAxBBEREZEgMQQRERGRIDEEERERkSAxBBEREZEgMQQRERGRIDEEERERkSAxBBEREZEgMQQRERGRIDEEERERkSAxBBEREZEgMQQRERGRIDEEERERkSAxBBEREZEgScxdABGRKRUUA3mPgOJSQGPuYojoicQiQGYNtLAFbKxN+1oMQURkcR4UAckZwNl04NofDD9EzZGVGOjiCvi2B3q6AXKp8V9DpNFo2D4QkcW49gfwZTxQrDZ3JURkLC3lQPhQoJW9cc/LMUFEZDEYgIgs0/1CYM1+IDfPuOdlTxARWYTiUmDxTuBRac3bra0AkahxayIi/ZWXA+rymre5tgAWjDbezzLHBBGRRbiQVT0AebYGgrsCnV0BKVs7omajsAS4mAUcuABkP/hzfc4DIOse4OZknNfh5TAisghnM3SX2zsDs1QVAyoZgIiaF7kU8O8IhD9bcZdYVckZNR9jCDYNFkSjAUrKzF2FfqRGvkSh0WhQWFhovBM2ArlcDhGv0zSIRgP8flN3XT9PQGJlnnrMSejtANsAy6KQAb07AAm//bnut5vAaF/jnJ8hyIKUlAELdpi7Cv1ETAJkRvxfWFhYCDs7O+OdsBHk5+dDoVCYu4xmrURd/YPfo7V5ajE3obcDbAMsj2dr3RCU98h45+blMCJq9mq6G8zWxJOsdejQAcHBwfXad9OmTRCJRDh48KB23cGDByESibBp0yaT1EdkKR7/WTbm3Z8MQURkkWq6urBw4UKIRCLs37+/2rbly5dDJBJh4MCB1bap1WrY29vD29vbFKUSUR1MeaWQIYiIBEOlUgGATo9MpYSEBEgkEpw8ebLamJKTJ08iPz9fe7y+/vKXv6CoqAiDBw826HgiMg2GICISjIEDB8La2rpaCFKr1Th8+DD+8pe/oKSkBEeOHNHZXrl/fS9/Pc7Kygo2NjYQi9nkEjUl/IkkIsFQKBTo06cPTpw4odPbc/LkSRQUFGDmzJlo3bo1EhISdI6rHL8TFBRU7Zy///47Ro8eDXt7e7Ro0QIvvPACcnJydPapaUxQbTQaDf7xj3/Az88PcrkcdnZ2UKlU1WoiooZjCCIiQVGpVCgtLcXhw4e16w4ePAg7Ozv4+/sjKChIJ6xU9hL16tULzs7OOufKyspCcHAw3N3dERkZif/5n/9BbGwspk2bZnB9f/nLXxAeHg5PT0+sWLECS5cuxYMHD/Dss8/iX//6l8HnJaLqeIs8EQmKSqXCJ598goSEBDz77LMAKkLQgAEDIJFIEBwcjDlz5qCgoAAKhULbS1TTpbDU1FTs2LEDoaGh2nVisRhr167FpUuX0KVLF71q27lzJ7Zt24bo6GjMnDlTu37OnDno27cv5syZg5CQEM4pQ2Qk7AkiIkHp378/pFKptrensqen8lJXUFCQTk9R5X41DYpu06aNTgACgCFDhgAArly5ondtW7duhb29PcaNG4fc3Fztn/v37yMkJATXr1836LxEVDP2BBGRoNja2qJv3744cuQICgoKcO7cORQUFGhDUPfu3eHi4oKEhAQMGzYMBw8ehFgsrvHOrk6dOlVbV3nJ7M6dO3rX9ttvvyEvLw+tW9c+0+OtW7fQuXNnvc9NRNUxBBGR4KhUKvzyyy/49ddfkZSUBLlcjj59+mi3Dx48GAcPHtT2Evn4+MDR0bHaeaysan8uh0aj0bsujUYDFxcXfPvtt7Xu07NnT73PS0Q1YwgiMjGxWIzy8nJzl0FVqFQqLF26FAkJCThz5gz69esHa+s/p6UNCgrC3//+dyQkJKCgoMDg+YH05eXlhcuXL6Nv377N7tEPVDu2AU0XQ1Addu3ahQ0bNuDUqVO4e/cunJyc0LVrV4waNQrz5s0zd3lkQiKRCJ6envDz84OnpydsbGxQVlaGe/fu4ezZs0hKSsLDhw+feJ5BgwYhOjoaY8aMQVpaWiNUTvXRt29f2NjY4D//+Q8uXbqEBQsW6GwPCgqCWq3Gxx9/DMDw+YH0NW3aNOzZsweLFi3C559/Xm37rVu36rxURsZlb2+Pp59+Gk8//TQcHR0hkUhQXFyMtLQ0nD59GpcvX35iuLGyssK2bdtw/fp1LFy4sJEqp/piCKpBSUkJpkyZgpiYGAAV1/3btWuHW7duITExESkpKQxBFsrf3x+vvvoqJkyYgBYtWtS5b3JyMr766its2bKlxkA0aNAg/Pvf/4ZCoUBCQgIGDBiAzMxMU5VOepDJZOjfvz/i4+MBoNr8P97e3nBycsIvv/wCKyurRpvp+YUXXsD06dOxZs0aJCUlYcyYMWjVqhUyMzNx9OhRpKamMkybmJ2dHaZMmYKZM2fC19e3zgku8/LysHv3bqxduxZHjx6ttr0yAE2aNAkAUFpaivfff99ktZP+eHdYDcLCwhATE4MRI0YgNTUVV69exYkTJ5Ceno7c3Fxs3LjR3CWSkQUEBOD48eM4efIkpk+f/sQABAA+Pj5Ys2YNsrKyEBERAVtbW+22qgEIAFJSUvDHH3+YrH7SX+UlLhsbGwQGBupsE4lEGDRoEADA19e3Xv8fjGXjxo345ptvIBaL8emnn+L111/H5s2bYWdnh08//bTR6hAaqVSKDz/8EFlZWfjyyy/Ru3fvJ87wbW9vj6lTp+LIkSNISkrS/p8Bqgeg4uJinbmpqGkQaQwZvWfBfv75ZwwfPhyBgYH49ddfIZE0n86yYjWwYEfDz5N58SB+WKbCwMmR8Bv9do37rJ4qQgff0Rj7dlyDXitiEiAz4j9xQUGBXmMpZDIZli5dirfffltnkOv9+/dx8OBBnD59GikpKcjLy4OVlRXc3Nzg5+eHwMBA+Pv765zr8uXLmD59OqysrHQC0N69e/H888+juLi4xhry8/O1+5JhHhYBH8TqrvvkBUAhM0895iT0dkDfNgAA/Pz8sGnTpmqDzs+ePYtjx47h9OnTSE9PR1lZGRQKBXr27Al/f38EBwfDyclJu395eTk+//xzvP/++/jqq690AtC4ceOwb9++Gl+fbUDdrv0BrP75z2Uba2B5aO3766P5fMIbKDc3FytWrEBsbCwyMzPh4uKCCRMmYNmyZXjjjTewceNGfP755wgPDwcArFy5EgDw3nvvNasARPpzdnbGjz/+iICAAO26c+fOYfXq1di+fXu1h2hW+vrrrwEAPXr0wOzZszFjxgzY2Nigc+fOSExMRGlpKWSyik/fJwUgIjKvKVOmYNOmTdr2vqSkBJs3b8batWtx9uzZGo/Zs2cPgIpexIkTJ2LOnDnw8/ODWCzGnDlz8NJLL6Fly5YAnhyAyLws+nLY2bNn4e3tjcjISOTk5KB79+4oLS3FZ599hkmTJuG3334DUNHdDQBFRUXYv38/xGIxVCoVjh8/jlmzZmHo0KEYN24cli9fjtzcXDO+IzIWR0dHxMfHawNQcXExFi1ahN69e2Pjxo21BqCqLly4gPDwcPj6+mrHA4jFYgYgombipZdewtatW7UBKCkpCf7+/pg5c2atAaiqR48eYcuWLQgICMCbb76JoqIiAGAAakYsNgTl5uYiJCQEOTk5eOutt5CdnY2kpCTk5OQgIiICe/fuxcmTJyESidCrVy8AFQNd1Wo1nJ2dsWbNGvTr1w/R0dE4cOAAdu/ejUWLFsHLy4sPMmzmxGIxdu/erf2+37x5EwEBAVi+fDnKysr0Pt+lS5ewaNEilJSU6KzfsGEDAxBREzVkyBBs2LBBu7x27VoEBgYiJSVF73NVXgZ7/LMhPT0dBw4caHCtZDoWG4LeeOMNZGZmIjw8HFFRUbC3t9dumz9/Pnx8fKBWq9GhQwc4ODgAALKzswEA9+7dw8KFCzFq1ChcuHABxcXFOHfuHIYMGYL79+9jwoQJgrjLR11SiKK83Br/NGdvvvmmdgBjTk4OgoKCcO7cOYPPN2jQIOzduxdSqVRn/dq1a3XGCxA1R5bYDtjb22Pjxo3acYCrV6/Ga6+9BrVabdD5KgdBjxo1CsCfE2V27twZixYtMk7RZBIWOejlt99+w44dO9CqVata76bw8/NDcnIyfHx8tOsKCgoAVDxLyMPDAzt37tROoObt7Y09e/bAw8MDOTk5WLVqFaKiorTHXrt2DXPmzEFCQgIkEglCQkKwcuXKak+dbk6O/bAYx35YbO4yjKpz587auV/Ky8sxceJEpKamGny+x+8C27t3LwBg9OjRcHV1xWeffYapU6c2vHAiM7HEdmDFihVo3749ACA+Ph5vvvmmweeq6S6wt956C6tWrYJEIsF7772H3bt3Izk52Si1k3FZZAj67rvvUF5ejilTptR6l0Dl7cxVQ5CNjY326/DwcJ0ZZAFALpdj9uzZWLx4Mfbt26cNQXl5eVCpVHBycsJ3332HoqIizJ8/H2PGjMHhw4efeJtlbfz9/ZGTk1Pv/a2sbTH+Y+M9XLGnaia8AifWuG3n8meN8hqdvbxQVlpklHMBeOLEZR988IH2+7x69Wr8+uuvBr9WTQHo+eefh5OTEy5cuABHR0dMmTIFn376KS5cuFDreby8vAz+P0IVZHYuCHn/jM46b++eKCm8b56CzEjo7cCT2oCOHTti5syZACruypoxY4ZBjzgBag5AlWOAWrdujffffx/W1tZYsmQJxo8fX+t52AbUzbm9H1Sv7tYu5+U9hJtbd+2yq6srTp06ZdC5LTIEVU6AVtdU95WXs6qGoKrPBurWrVuNx1Wuv3btmnbdunXrkJWVhV9++QXu7u4AADc3N/Tv3x//+te/MG7cOIPeR05ODrKysuq9v0QmN+h1atPS1QvuPYca9ZyPu5l9E+riJw9CNgYXFxdMnFjRmN+5cwfvvfeeweeqLQAVFxcjOzsbS5cuxapVqwAAs2bNwuuvv17ruSovw5Lh5C2qX8bIzs7Go/y7ZqjGvNgO1O2VV17RBo7ly5fj+vXrBp2nrgAEAB999BGmT58ONzc3hISEoF27drhx40aN52IbULdyubvucrlGr8/GulhkCEpPTwcAbXfn4yofigjohqCuXbtqv358fEelyl6EqgNo4+LiMHDgQG0AAoB+/fqhU6dO2LNnj8EhyNXVVa/9raxtn7xTE9NG2cboPUG1NSgvv/yy9vu6YcOGet0BVpO6AlClTZs24ZNPPoFCocC0adOwcOFC7eXWxymVSv4W2EAyO5dq65RKJUoKm9/PREMJvR2oqw2QSqWYMWMGgIpb4detW2fQazwpAAEVs0OvW7cOH374IaysrDBz5sxaZ4tmG1A3Zxfdn2+xWIS2bdtql/X9rKzKIkNQ5YdN5e2Kj9uxYwdyc3Nhb2+Pjh07ate3bdsW7u7uyMjIQFpaWo09SVevXgVQ0dNT6eLFi9oehqp69OiBixcvGvw+9O3eM9YkaY3p8pUrjTZZ4vDhw7VfR0dHG3T++gQgAHjw4AG2b9+OGTNmwMHBAX379q31LpErV65worQGqmmyxJSU85wssZkwZjtQVxvQu3dvtGrVCgCwc+dOg2Zxr08AqvTVV1/hww8/BAAMGzas1hDENqBuj0+WaG/vYLSbkywyelamwqSkpGrbsrOztc/96tWrF0Qikc720NCKaSg3b95c7ViNRoNNmzYBqLi9stK9e/e080JU5eTkhLt3hdcd3xSJRCL07t0bQMWlUEOev1TfAFTp0KFD2q/9/PwMqJqIjKnqz2HVn8/60icAARVDGi5dugSg4vPm8XGmZH4WGYKGDq24fh0REYHLly9r1588eRIqlUo74WHlJIlVzZs3Dw4ODkhMTMRHH32kveylVquxYMECJCcnQyaTNehuAmp8nTp10j7/6fTp03ofr28Aevx1Hn/EBhE1vqohSN92QN8A9Pjr2NjYoEePHnpWTKZmkSFo/vz5cHZ2xo0bN9CjRw94e3vDy8sLAQEB6NSpk7YXp+p4oEpPPfUUtm/fDplMhg8++ABKpRKBgYFwdXVFZGQkJBIJ1q9frzNw2tHREffv3692rrt373KemCaiTZs22q+rBuP6MCQAPf46SqVSr9ckIuMztB0wNAAB0PYEAWwHmiKLHBPk5uaGxMREzJs3D4cOHcL169fRvXt3REdH429/+xs8PDwA1ByCAGDkyJE4c+YMli1bhgMHDuDMmTNwcnJCaGgoFixYoL2sUqlbt241jv25ePEiBg8ebPw3aGJu3YMxZ2vdt4w+aXtTk5GRgffffx82NjZITEys93FyuRwxMTF6ByCgovdw+fLlKC4u1rmbkKg5sMR24JtvvsGxY8dgY2OD/Pz8eh/36quvGhSAACAxMRHLli1DUVFRg+YkI9MQ3FPk8/Pz4eDgAJFIhLy8PMjlDb+dNCoqCu+88w7S0tK0A6aPHz+Ovn37IjY2ts75IYypOQ6INPdT5OsjODgYe/fuRUJCgkmeBcYnSDccnyL/J6G3A6ZoAyQSCb777juEhISY5FlgbAPqZsqnyFvk5bC6XLhwARqNBl5eXkYJQAAwc+ZMKJVKjB07FnFxcYiJicHkyZMREBCAsWPHGuU1yHwOHjyIQYMG8WGoRAKlVqsxefJkDBw4kA9DtTCCC0GVD8er7VKYIRwcHBAfHw+lUokXX3wRYWFh6N+/P+Li4jj3g4VISkpiACISMLVabfCsxNR0WeSYoLqYIgQBgIeHB+Li4ox6TiIiIjIdwXVTmCoEERERUfMiuJ6gyueKERERkbAJrieIiIiICGAIIiIiIoFiCCIiIiJBYggiIiIiQWIIIiIiIkFiCCIiIiJBYggiIiIiQWIIIiIiIkFiCCIiIiJBEtyM0ZZMagVETDJ3FfqRWhn3fHK5HPn5+UY7X2T0djwsKISDQo55r7xYbdkY5HK5Uc5DBLAdYBtA+mAIsiAiESAT+HdUJBJBoVAY7XxSmQ2kpWWQymygUCiqLRM1NUJvB9gGkD54OYyIiIgEiSGIiIiIBIkhiIiIiASJIYiIiIgEiSGIiIiIBIkhiIiIiASJIYiIiIgEiSGIiIiIBIkhiIiIiASJIYiIiIgEiSGIiIiIBIkhiIiIiASJIYiIiIgEiSGIiIiIBIkhiIiIiASJIYiIiIgEiSGIiIiIBIkhiIiIiARJYu4CyHg0GqCkzNxV6EdqBYhE5q7Ccmg0GhQWFpq7DL3I5XKI+J/AaNgOENuB+mMIsiAlZcCCHeauQj8RkwAZ/xcaTWFhIezs7Mxdhl7y8/OhUCjMXYbFYDtAbAfqj5fDiIiISJAYgoiIiEiQGIKIiIhIkBiCiIiISJAYgoiIiEiQGIKIiIhIkBiCiIiISJAYgoiIiEiQGIKIiIhIkBiCiIiISJAYguqwa9cuhISEQKlUQiaTQalUQqVSITIy0tylETUaJycndOjQAZ06dYJSqdT7+T5hYWHo2LGjiaojIlOTSCRwc3ODp6cn2rdvr/cjOVxcXDBnzhwTVdcwfFpLDUpKSjBlyhTExMQAADp16oR27drh1q1bSExMREpKCubNm2fmKolMQ6lUYtq0aejXrx/8/Pzg5uams/3Bgwc4c+YMTp06he3bt+P06dO1nmvOnDlYtWoVMjIyEBwcjGvXrpm6fCJqIJFIhGHDhmHs2LHw8/NDr169YGNjo7PPlStXcPr0aRw8eBDffvst8vLyajyXi4sL4uPj0bNnTyiVSixcuLAx3kK9sSeoBmFhYYiJicGIESOQmpqKq1ev4sSJE0hPT0dubi42btxo7hKJjC4wMBDff/89MjIysHz5cowdO7ZaAAKAFi1aIDg4GG+//TZOnTqFY8eOYerUqdV6iCoDEAC4u7vjueeea4y3QUQGsrW1xVtvvYUrV65g3759mD17NgICAqoFIADw8vLCiy++iC+//BI3b97E2rVr4eHhobNP1QAEAJMnT4azs3OjvJf6Ygh6zM8//4wtW7YgMDAQe/bsqfZNbdmypcU35pkXD2L1VBFO742qdZ/VU0XYHTWmEasiU5HL5Vi9ejWOHTuGF154ARLJnx3E9+/fR0JCAr799lts27YNcXFxuHHjhs7xgYGB2LJlC+Lj49GpUycAugEIAJYsWYLVq1c3yvsh42A7ICz9+/fH2bNnERUVVe1z79KlS4iNjcWWLVuwfft2HDt2DEVFRdrtdnZ2mD17NlJSUjB37lyIxeJqASgjIwMqlQp37txp1Pf1JBZ/OSw3NxcrVqxAbGwsMjMz4eLiggkTJmDZsmV44403sHHjRnz++ecIDw8HAKxcuRIA8N577+l8GBBZop49e2LXrl06jV5OTg7WrVuHbdu24cqVK9BoNNWOc3FxwdixY/Hqq6/i6aefBgAEBwfj3Llz2LVrF6ZMmaLdd8mSJVi6dKnp3wwRGeTjjz/GokWLIBb/2S/y888/48svv8T+/ftrvNQlkUjg6+uLl19+GVOnToW9vT1sbW2xcuVKTJo0CS1atEC3bt0A/BmA0tLSGu091ZdFf8qfPXsWI0eORE5ODhQKBbp3746bN2/is88+w9WrV3H37l0AgK+vLwCgqKgI+/fvh1gshkqlwvHjx/H1118jNTUVdnZ26Nu3L8LCwtCqVSszvisi4/Dz88N//vMfODo6AgAKCwvx7rvv4osvvkBpaWmdx/7xxx9Yv3491q9fj2eeeQZfffUVOnbsCIVCwQBE1EyIRCJER0fjb3/7m3bd0aNHERYWhosXL9Z5rFqtxqlTp3Dq1CksWLAAH330kXbwc9++fbX7NeUABFjw5bDc3FyEhIQgJycHb731FrKzs5GUlIScnBxERERg7969OHnyJEQiEXr16gUASE5OhlqthrOzM9asWYN+/fohOjoaBw4cwO7du7Fo0SJ4eXkhISHBzO+OqGG6dOmCn376SRuATp06BR8fH6xateqJAehxBw4cgLe3N44ePaqzfufOnQxARE1YVFSUNgCVlZVh/vz5GDhw4BMD0OPy8vIwd+5cPPfcczrtR0lJCZ577rkmG4AACw5Bb7zxBjIzMxEeHo6oqCjY29trt82fPx8+Pj5Qq9Xo0KEDHBwcAADZ2dkAgHv37mHhwoUYNWoULly4gOLiYpw7dw5DhgzB/fv3MWHCBGRmZprlfTUmdUkhivJya/xDzZdEIsG2bdu0AxQPHTqE4OBgpKamGnzOsLAw9OvXT2fd8OHD4enp2aBayfzYDlimUaNG4e9//zuAigA0efJkREZGory83KDzubi4YNmyZbC2ttauk0qlTfbW+EoWeTnst99+w44dO9CqVSt8+umnNe7j5+eH5ORk+Pj4aNcVFBQAqOjm8/DwwM6dO7XfUG9vb+1A6ZycHKxatQpRURUDBjMzM7F8+XKcOHECycnJKCkpqXEcRXNz7IfFOPbDYnOXQUY2f/58+Pn5AQAuXryIkJAQ7f99Qzw+CPr06dPw8/ODXC7Hxo0bERQUZBE/D0LFdsDytGzZEl999ZV2OTw8HN9//73B53t8EPTNmzdhb28Pe3t7TJ8+HTExMfjxxx8bXLcpWGQI+u6771BeXo4pU6bUOqmTra0tAOiEoKq3AYaHh+skWqDiLprZs2dj8eLF2LdvnzYEpaam4ocffkCfPn0glUpx+PBhY78ls+ipmgmvwIk1btu5/NlGroaMoV27dli8uOIDTa1W46WXXqp1fo/6qOkusKioKCQnJ8PDwwODBg3CtGnTsHnz5oaWTmbCdsDyLF26FG3atAEA/Pjjj/jyyy8NPldtd4EFBwdjw4YNAIB//OMf8PDwgFqtbnjxRmaRISg+Ph4AoFKpat2n8nJW1RBUOT4CgHZU++Mq11ed9G3w4MHaS2lLliwxWgjy9/dHTk5Ovfe3srbF+I+vGOW1AaClqxfcew412vlq0tnLC2WlRU/e0UzGT58LhZ0DsnOy4ebmVm25qXlSV/bMmTMhlUoBVNwJeerUKYNfq6YAVDkGKCwsTDt27o033qgzBHl5eenclWIImZ0LQt4/o7PO27snSgrvN+i8zRHbAeNqbm0AUHc7YGdnh+nTpwOouPoxc+ZMg1+ntgCUlpaGtLQ0TJ48GUOHDtXOExYbG1vruepqB5zb+0H16m7tcl7eQ7i5ddcuu7q6GtyWWWQISk9PBwC0b9++xu1qtVobVKqGoK5du2q/rvygeFxlb1FZWZl2XUMb8Nrk5OQgKyur3vtLZHKT1GFKN7NvQl1caO4yalX+3+9zeVkZsrKyqi03J1KpVDsIsrS0FP/3f/9n8LnqCkAAcPDgQZw4cQIBAQHo3bs3AgMDcfz48RrPVfkLREPIW1T/DTM7OxuP8u82+NzNDdsB47KkNgCA9nZ2ANi6davB76GuAFQpIiICQ4dWBOhXX321zhBUVztQLnfXXS7XGO3f3iJDUOX4hqqTOVW1Y8cO5Obmwt7eXueZRm3btoW7uzsyMjKQlpZWY0/S1atXAaBRfgNwdXXVa38ra1sTVWI6bZRtmuxvgAAgtrLS/t22bdtqy01NeXl5rY2JSqVC69atAQCxsbF69TJW9aQAVGnt2rUICAgAUDFTbG0hSKlUGqUnqKbzlhQ2v5+JhmI7YFzNrQ0A6m4HJk+erP167dq1Bp2/PgEIqLhz9PLly+jcuTOeeeYZtG7dGrdu3arxnHW1A84uuj/fYrFI599e38/KqiwyBLm6uuLevXtISkqqdsdKdna29rlfvXr1qjbVf2hoKKKiorB582bMmDFDZ5tGo8GmTZsAAEOGDDHdG/gvfbv3itXAgh0mKsZELl+5AlkT/l+47ItteJhfAKWrEpmZmdWWm5qCgoJax8H16dNH+/Xu3btr3OdJ6huAHn8Nf3//Ws955coVKBQKg+qp9LAI+OCxXzJTUs5DIWvQaZsltgPG1dzaAKD2dkAsFmtvirh27RrOnTun97nrG4CAis/M3bt3az9z/fz8ah0gXVc7cO0PYPXPfy7b2zsY7d/eIm+Rr+x+i4iIwOXLl7XrT548CZVKhdzcils7KydJrGrevHlwcHBAYmIiPvroI+1lL7VajQULFiA5ORkymQxvvvmm6d8IkRFVNn6A/gEb0C8AARWP3KjsOfX19TXZZWMiqp8uXbpog0ZdDz6ujT4BqFLV16naBjUVFtkqzZ8/H87Ozrhx4wZ69OgBb29veHl5ISAgAJ06ddL24lQdD1Tpqaeewvbt2yGTyfDBBx9AqVQiMDAQrq6uiIyMhEQiwfr162sdOE3UVFWOeSsoKNB7TiB9A1Cls2fPAgAUCgXc3d3r3pmITKrquNfk5GS9jjUkAAF/tgFA7TccmVMT7YBsGDc3NyQmJmLevHk4dOgQrl+/ju7du2unB698TlJNIQgARo4ciTNnzmDZsmU4cOAAzpw5AycnJ4SGhmLBggXo3bt3Y76dRufWPRhzttY9r8uTtlPTc+vWLSgUCjx48ECveXvCw8MNCkBAxV2YWVlZePToEaz+O5aCmge2A5antLQUaWlpsLW11WtMoJOTk0EBCADu3r2L27dvo6ioCPfu3TO4dlOxyBAEVCTOuLi4auvz8/Nx/fp1iMVi7Te0tuO3bNliyhKJGlVwcLBBx6WkpKCwsBByuVzvZ4HNnTsXc+fONeh1ici44uLiavxcfJKHDx/i999/R8+ePfV+Ftgff/yhvSGjKbLYEFSbCxcuQKPRoHPnzpDLjXcraUxMDABon7lSudyhQ4c6B4USNXWHDh3CqFGj0L9//1pnYCciy6VWqzF58mTk5ORg5cqVTfpZYPoSXAhKSUkBUPulMENNnDixxuWXXnpJe0cZUXN16NAhHDp0yNxlEJGZqNVqvP766+Yuw+gYgoyEz0YiIiJqXizy7rC6mCoEERERUfMiuJ6gyueKERERkbAJrieIiIiICGAIIiIiIoFiCCIiIiJBYggiIiIiQWIIIiIiIkFiCCIiIiJBYggiIiIiQWIIIiIiIkFiCCKiZk9Uw7pyPsmGyCKY8meZIYiImj2ZdfV1BcWNXwcRGd/jP8u2Nfy8G0pwj82wZFIrIGKSuavQj9TK3BVYFrlcjvz8fKOdLzJ6Ox4WFMJBIce8V16stmwMcrm8weeQSgC5FCgs+XPd7zcB1xYNPnWzw3aALK0d+O2m7nKLhjcZWgxBFkQkAmT8jgqaSCSCQqEw2vmkMhtIS8sgldlAoVBUW25KeroBJ9L+XD58BfDvCNjZmK8mc2A7QJbUDtx+CJzN0F3X08145+ePChFZBF933RD0Rx6w6iegryfQVVnRUyTmAADSk0bz59/3C6svC0Fj/xuUlQN5j4ALmcDRq0BRie52X3fjvRZDEBFZhM6ugKMCuFfw57rcfCDubMUfIkPIHlUMvH/4CFiys/qyEDSlfwOv1kAre+Odj78XEZFFkFgBrz0DOBpxvAARNR3tnIDpg417ToYgIrIYreyB14YCznbmroSIjKl9K2D2MxWXtY2Jl8OIyKK0sgfeCQGu3gbOpgPns4C8IoDTBhE1H2JRxeXtXu2Ap9tX9AKJapoQrIEYgojI4liJK8YI/fRTLGzyi+CisMXfpkwAAERvi0V+QRHsFLZ45b/riGrzv+uAvHzAwRZ4K7T6shA09r+BCBXTXpgi9DyOIYiILFZefhEe5leMlLb57wRrBQVFyMsvgKjKOqLaiKr8bWNdfVkILPnfgGOCiIiISJAYgoiIiEiQGIKIiIhIkBiCiIiISJAYgoiIiEiQGIKIiIhIkBiCiIiISJAYgoiIiEiQGIKIiIhIkBiCiIiISJAYgoiIiEiQGIKIiIhIkBiCiIiISJAYgoiIiEiQGIKIiIhIkBiCiIiISJAYgoiIiEiQGIKIiIhIkCTmLoCoKbiacRPHz1ystr7o0SPt39/u3l9tuZLc1gYhQ/vDSszfK4iao3KNBnvjjyIvv1BnfX3bAADw8+6CLp3aNU7BZBQMQUQAOrR1xb8TjiMz548at5eqy3Du97Ral6eMHcoARNSMiUUieHVww6aYfTVuf1Ib0LqVIzq5K01eJxkXW20iAFZWYkwao4K1xErvY5/u4Qnvrp1MUBURNaauHu4I9O2m93FWYjEmhQyBtYT9Cs0NQxDRf7k4t8TI4EC9jmlhr8BzQweYqCIiamyjVH3h7Oig1zHPDvJHm6ecTVQRmRJDEFEVfXv3gFcHt3rvP3F0MGxtZCasiIgak0xqjUmjVRCJRPXav4ObKwYH9DJxVWQqDEF12LVrF0JCQqBUKiGTyaBUKqFSqRAZGWnu0shExCIRXhgVVK9gM9DfG57t2zZCVUTUmNzbtoaqr+8T95NKrTFxdDDEHA/YbPE7V4OSkhJMnDgR48ePR1xcHORyOXx8fCCVSpGYmIiIiAhzl0gm1MJegXHDBta5z1POjhge1KeRKiKixvbMAD+0bd2qzn1ChvSDc0v9Lp1R08IQVIOwsDDExMRgxIgRSE1NxdWrV3HixAmkp6cjNzcXGzduNHeJZGI+3Tzg082jxm0VgyBVHATZTBQW5CP1txTs2rUL8fHxKC5+ZO6SqBmwshIjdIwKklpulujm2R7+vbo0clVkbGzFH/Pzzz9jy5YtCAwMxJ49eyB57IOuZcuWeO6558xUHTWmscMG4tqNHDzML9BZP3Tgk39DJPM7deoUvv/mS6QkHUOZWo2vv6hYL7OxQY+n+yJo6GjzFkhNXutWjhgRFIC4A0d11ivkNnh+xOB6jxuipkswPUHl5eWIiYnBuHHj0KZNG8hkMrRp0wZDhgzB6tWrUVJSAgBYuXIlAOC9996rFoBIWOQ2MkwcHaSzrn3b1hgc6GOmiqi+oqOjERgYiLMnfkWZWq2zrfjRIyQdPYg1Ee9i7969ZqqQmov+fj2rjf2bMGIw7BS2ZqqIjEkQIej27dsYMmQIJk6ciN27d8Pa2hq+vr6wtrZGQkICFi1aBCsrKxQVFWH//v0Qi8VQqVQ4fvw4Zs2ahaFDh2LcuHFYvnw5cnNzzf12qBF5dXBDf7+eAACptQSho1WcFLGJ27ZtG2bNmoXy8vI69ystKcGECROQmJjYSJVRc1R5s4SNTAoA8Pfugh5eHcxbFBmNxXd1FBQUYNSoUTh9+jSCgoLw2WefoVevP29nvHDhAn744QdYWVkhOTkZarUaLi4uWLNmDRYtWgSNRqPdd/fu3YiIiEBsbCxUKpU53g6ZwcigAFy5lolBfbz1nj+EGldhYSFef/31eu9fUlKC8PBwnD17lpc2qFYtHewwbthA/PzLSYQ808/c5ZARiTRVP+Ut0KxZsxAdHY2BAwfiwIEDkEqlte67c+dOTJgwARKJBGq1GqNHj8aKFSvg6emJS5cuYe7cuYiPj0fLli2RkpICN7f6zydjiM83xyIvv8ikr0H1U15eDpFIJLgPyryCQmg0GohEItgr5NWWm5rTRw8hdttXeh83880P0N6jswkqIkuh0Wig0WgEeTt8U28H7O1s8fpLEww61qJ7gn7//XesX78eMpkM27ZtqzMAARW9RgCgVqvh4eGBnTt3wtraGgDg7e2NPXv2wMPDAzk5OVi1ahWioqJ0jr927RrmzJmDhIQESCQShISEYOXKlXB2Nmwm0bz8omqDconMQaPR6PxffHy5qTh55JBBxx37NR6OrTnnE1Fdmks7oA+LDkHffvstysrKMG3aNLi7uz9xfxsbG+3X4eHh2gBUSS6XY/bs2Vi8eDH27dunE4Ly8vKgUqng5OSE7777DkVFRZg/fz7GjBmDw4cPG/Tbg70dB96ReTX13wAfV5B336DjivIfwMFOYdxiiCxEU28HGvJZadEhaP/+/QCAUaNG1Wt/R0dH7dfdutX8EL3K9deuXdNZv27dOmRlZeGXX37RBi43Nzf0798f//rXvzBu3Dh9yze4e4/IWJZ9sQ0P8wtgr5DjndemVFtuajauXIy7ubf1Ps6jfdsm+X6ImoLm1g7ow6JD0I0bNwAAnTrV7wnfXbt21X5d26Wzyt6isrIynfVxcXEYOHCgTo9Tv3790KlTJ+zZs8egEMQxQWRueQWF2r+XfbGt2nJTUy6u+5J3bXIfFjfJ90PUFDT1doBjgmpROcanqKh+QaJt27Zwd3dHRkYG0tLSarwD7OrVqwBQbVD0xYsXMXHixGr79+jRAxcvXtS3dAAcE0RNR3MZC9DNNxDXrvym93Fdffo0yfdD1JQ0l3ZAHxYdgtq1a4d79+7hyJEjGDBgQL2OCQ0NRVRUFDZv3owZM2bobNNoNNi0aRMAYMiQITrb7t27h5YtW1Y7n5OTEy5dumRQ/RwTRObW1McCPC6g32Ak7I1BUWF+vY9RurVH1+7egrvzj6i+mno7wDFBtRg/fjzOnTuHTz75BD4+Phg2bJh2W1ZWFjZv3oyJEyfCy8tLu37evHlYt24dEhMT8dFHH+Gdd96BlZUV1Go13nnnHSQnJ0Mmk+HNN980ef0cE0Tm1hzHAnRtI8eLL75Yr31tbGzwwz+/Q79+nPuFqDbNsR2oL4ue8ODtt99G79698eDBAwwfPhxKpRIBAQHw9PREu3bt8P7776NNmzY6xzz11FPYvn07ZDIZPvjgAyiVSgQGBsLV1RWRkZGQSCRYv359tYHTjo6OuH//frUa7t69CycnJ1O+TSKqYtKkSdiwYQOsrGp+8GUlqcwGu3btYgAiEjCLDkF2dnZITEzExx9/DB8fHzx48ADnz59HeXk5xo0bh82bN0OhqH5b7MiRI3HmzBlMnToVEokEZ86cgUQiQWhoKI4fP46pU6dWO6Zbt241jv25ePFirXeaEZFpvPzyyzh16hT8+gVBItGd6sLGVg7/gc/g9UXLMHz4cDNVSERNgUVfDgMq5vZ599138e677+p1XLdu3bBly5Z67z9mzBi88847yMzM1A6aPn78OK5evYrIyEi9XpuIGs7X1xcTpvwNA54di4L7uRj3bD84ODgg/nQqHpWoOS8QEVl2T1BjmjlzJpRKJcaOHYu4uDjExMRg8uTJCAgIwNixY81dHpFg2coV6NS5O8aMGYPBgwdDKpWZuyQiaiIYgozEwcEB8fHxUCqVePHFFxEWFob+/fsjLi5OkM+aISIiauos/nJYY/Lw8EBcXJy5yyAiIqJ6YBcFERERCRJDEBEREQkSQxAREREJEkMQERERCRJDEBEREQkSQxAREREJEkMQERERCRJDEBEREQkSQxAREREJEkMQERERCRJDEBEREQkSQxAREREJEkMQERERCRJDEBEREQkSQxAREREJEkMQERERCRJDEBEREQkSQxAREREJEkMQERERCRJDEBEREQkSQxAREREJEkMQERERCRJDEBEREQkSQxAREREJEkMQERERCRJDEBEREQkSQxAREREJEkMQERERCRJDEBEREQkSQxAREREJEkMQERERCRJDEBEREQkSQxAREREJEkMQERERCRJDEBEREQkSQxAREREJEkMQERERCRJDEBEREQmSxNwFEJH5lZSqcT0zp9p6dVmZ9u/L1zKrLVf1lHNLtHSwM32xRGQSt/64iwf5hdXW17cdEItF8HBvA5FI1DgFGwFDEBHBWmKFo0kX8Ftqeo3bC4seYeM/f6x12V5hi7kzJpq8TiIyHXV5OTbF/Bvl5Zoatz+pHRg6wA+e7duavE5j4uUwIoJIJMLzIwZDIbcx6PgXRgZBYWvYsUTUNLRt3QrPDvQ36Fg3pQtU/Z42ckWmxxBERAAAO4UtJowYrPdxgb7d0MXD3QQVEVFjGxzoA/c2rfU6xlpihUmjVbCyan6RovlVTEQm08OrA/y9u9R7f2dHB4xW9TVhRUTUmKzEYoSOCYbUuv6jZUap+sLFuaXpijIhhqA67Nq1CyEhIVAqlZDJZFAqlVCpVIiMjDR3aUQmE/JMPzi1sH/ifiKRCJNGqyCVWjdCVUTUWFo5tsDoIf3qtW/njm7o+3R3E1dkOgxBNSgpKcHEiRMxfvx4xMXFQS6Xw8fHB1KpFImJiYiIiDB3iUQmI5NJMXF0MJ50f4eq39Nwb6tftzkRNQ8BPl3R9QmXuW1tZHhhZFCzuhvscQxBNQgLC0NMTAxGjBiB1NRUXL16FSdOnEB6ejpyc3OxceNGc5dIZFId2ykxONCn1u1tXVvhmf69G7EiImpMlTdLyG1lte4zfthAONgrGrEq42MIeszPP/+MLVu2IDAwEHv27IGHh4fO9pYtW+K5554zU3VEjefZgf5wdXGqtl7STAZBajQapF2+iF3bohHx3utwdHRE+/btEbvtK+RkZZi7PKImz95OjgnDa75Zwre7J3p186hxW3Mi0mg0NU8IYGHKy8sRGxuLrVu34sSJE7hz5w6cnZ3RtWtXjB07FrNnz4ZUKsXIkSOxb98+7NmzB2PGjDF32URmlfPHXXy+ORZlZeXadSHP9McA/55mrOrJ0tPTMX78eJw5c6bWfby6eeP44UNwdHRsxMqImp9/7j2IpPOXtcst7BWY8/ILkNvU3kvUXAgiBN2+fRuhoaE4dOgQAMDd3R2urq7IyclBRkYGbG1tkZeXh5KSEjg4OKC8vBwPHz7E+fPn8fXXXyM1NRV2dnbo27cvwsLC0KpVKzO/I6LG88vxZPx48DgAwLN9W7w8aRTETXgMQHp6Ovr374+bN28+cV8fHx8cOnQILVq0aITKiJqnR8UlWLUxBvcf5gMAwiaNhmeH5jUpYm2adn+2ERQUFGDUqFE4dOgQgoKCkJycjPT0dBw/fhzp6ek4f/48Fi5cCCsrKyQnJ0OtVsPZ2Rlr1qxBv379EB0djQMHDmD37t1YtGgRvLy8kJCQYO63RdRoBvbxRsd2StjIpJg4KqhJByCNRoPQ0NB6BSAASE5OxmuvvWbiqoiaNxuZFKH/vVligF9PiwlAgAB6gmbNmoXo6GgMHDgQBw4cgFQqrXXfnTt3YsKECZBIJFCr1Rg9ejRWrFgBT09PXLp0CXPnzkV8fDxatmyJlJQUuLm5mbT2zzfHIi+/yKSvQVQf5eXlKCsvh7WkaT9pJ+NaKqL/d4lex4jFVpj30So4tOBlMaK6lJSWwloiaXJ3g9nb2eL1lyYYdGzTbtEa6Pfff8f69eshk8mwbdu2OgMQUNFrBABqtRoeHh7YuXMnrK0r5kDx9vbWDpTOycnBqlWrEBUVpT02MzMTy5cvx4kTJ5CcnIySkhI0NF/m5RfhYX5Bg85BZExFKDZ3CXX6NX6f3seUl5fh8MH/YMAzo01QEZFleVRcYu4SjMqiQ9C3336LsrIyTJs2De7uT57W38bmz2cfhYeHawNQJblcjtmzZ2Px4sXYt2+fTghKTU3FDz/8gD59+kAqleLw4cMNrt/ezrbB5yASktvZht31lZuTCQe75n2rL5FQNeSz0qJD0P79+wEAo0aNqtf+Ve8S6datW437VK6/du2azvrBgwcjOzsbALBkyRKjhCBDu/eIhGpd5LsGHdf2KUe889oUI1dDRE2dRYegGzduAAA6depUr/27du2q/bq2S2eVvUVlZWU668Vi448x55ggIv0Uqw27BJ1z5yGWfbHNyNUQUWPgmKBaVI7xKSqqX5Bo27Yt3N3dkZGRgbS0NKhUqmr7XL16FQBMPiga4JggIn118Opu0ESI7h7d+LNGJEAWHYLatWuHe/fu4ciRIxgwYEC9jgkNDUVUVBQ2b96MGTNm6GzTaDTYtGkTAGDIkCHGLrcajgki0s9A1XAcO/QToMdNCTa2cgQMCIJU2vwnfiMSogZ9Vmos2OLFizUANC1atND89NNPOtsyMzM1n3zyieby5cs662/duqVxcHDQANB8+OGHGrVardFoNJrS0lLNvHnzNAA0MplMc/HixSe+LhE1vmnTpmkA1PvPxx9/bO6SichMLHqeoPz8fAQFBSEpKQkA4Orqinbt2uHu3btIS0uDSCTCw4cPoVDo3hXy73//G+PHj0dxcTFcXFzQsWNHXL16FXfu3IFEIsHXX3+NqVOn1vq6S5YswdKlSxt8izwR6e/Ro0cYM2YMDhw48MR9p0+fjg0bNjS5eU+IqHFY9IzRdnZ2SExMxMcffwwfHx88ePAA58+fR3l5OcaNG4fNmzdXC0AAMHLkSJw5cwZTp06FRCLBmTNnIJFIEBoaiuPHj9cZgIjIvGxsbLB37178/e9/h52dXY37uLi4ICIiggGISOAsuifIXNgTRNQ05OXlYevWrTh27Bjy8/Ph4OCAYcOGYcKECZDJOAaISOgYgowoJiYGAPDPf/4T33//Pb7//nsAQIcOHeDv72/O0oiIiOgxDEFGVFu3+ksvvaS9q4yIiIiaBou+Rb6xMU8SERE1HxY9MJqIiIioNgxBREREJEgMQURkEa5cuYL+/fujc+fO6NOnDy5cuFDn/kePHoWvry98fX3Ro0cPvPLKKyguLm6kaomoKWAIIiKL8Morr2DmzJm4fPkyFixYgL/+9a917u/j44OTJ0/i7NmzSElJwe3bt7F27drGKZaImgSGICJq9m7fvo1Tp05pJzJ9/vnncePGDVy6dAlubm5IS0sDAERFRWHEiBEoLy+HXC6HtbU1AKCkpARFRUWcOJFIYBiCiKjZu3HjBpRKJSSSihteRSIR3N3dkZWVhcjISISGhuLgwYP44osvsGXLFojFFU3f9evX4ePjg1atWqFFixZ49dVXzfk2iKiRMQQRkUWbPHkyevfujeHDh2PLli1wcXHRbuvQoQOSk5ORk5OD4uJixMbGmrFSImpsDEFE1Oy1a9cO2dnZUKvVACrm7MrIyIC7uzvUajXOnz8PJycnZGVl1Xi8nZ0dXnzxRWzbtq0xyyYiM2MIIqJm76mnnkLv3r2xdetWAMAPP/wANzc3eHp6YuHChejSpQsSExPx9ttvIzU1FQCQmpqK0tJSABVjgnbu3IlevXqZ7T0QUePjYzOIyCJcunQJf/3rX3Hnzh04ODjg66+/Rnp6OhYuXIgTJ05ALpfj+++/x6effoojR47gm2++wWeffQYrKyuo1Wo888wzWLFiBWxsbMz9VoiokTAEERERkSDxchgREREJEkMQERERCRJDEBEREQkSQxAREREJEkMQERERCRJDEBEREQkSQxAREREJEkMQERERCRJDEBEREQkSQxAREREJEkMQERERCRJDEBEREQkSQxAREREJEkMQERERCRJDEBEREQkSQxAREREJEkMQERERCRJDEBEREQkSQxAREREJEkMQERERCRJDEBEREQkSQxAREREJEkMQERERCRJDEBEREQkSQxAREREJEkMQERERCRJDEBEREQnS/wOFcijdb5yHiAAAAABJRU5ErkJggg==", - "text/plain": [ - "
" - ] - }, - "execution_count": 7, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "qubits = QuantumRegister(2)\n", - "clbits = ClassicalRegister(2)\n", - "circuit = QuantumCircuit(qubits, clbits)\n", - "\n", - "q0, q1 = qubits\n", - "c0, c1 = clbits\n", - "\n", - "circuit.h([q0, q1])\n", - "circuit.measure(q0, c0)\n", - "circuit.measure(q1, c1)\n", - "with circuit.while_loop((clbits, 0b11)):\n", - " circuit.h([q0, q1])\n", - " circuit.measure(q0, c0)\n", - " circuit.measure(q1, c1)\n", - "\n", - "circuit.draw(\"mpl\")\n", - "\n", - "# example output counts: {'01': 334, '10': 368, '00': 322}" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## 次のステップ\n", - "\n", - "\n", - " - [Repeat until success(成功するまで繰り返す)](https://learning.quantum.ibm.com/tutorial/repeat-until-success) チュートリアルで、動的回路の例をご覧ください。\n", - " - [回路ライブラリー API](/api/qiskit/circuit_library) リファレンスをご覧ください。\n", - "\n" - ] - } - ], - "metadata": { - "description": "Use Qiskit for classical feedforward and control flow, otherwise referred to as dynamic circuits", - "kernelspec": { - "display_name": "documentation--fuetTj0", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.10.13" - }, - "title": "Classical feedforward and control flow (a.k.a. dynamic circuits)" - }, - "nbformat": 4, - "nbformat_minor": 2 -} \ No newline at end of file diff --git a/translations/ja/build/index.mdx b/translations/ja/build/index.mdx deleted file mode 100644 index dee8984ba9..0000000000 --- a/translations/ja/build/index.mdx +++ /dev/null @@ -1,22 +0,0 @@ ---- -title: はじめに -description: Qiskit 量子回路、演算子、波形パルス、または OpenQASM を使用して量子プログラムをビルドします。 ---- - -# はじめに - -ビルドフェーズでは、解決しようとしている問題を表す量子プログラムを作成します。 量子プログラムの基本は、ゲート、測定、およびリセットを含む演算で構成される量子回路です。量子回路が量子コンピューター内の量子ビットを操作します。 回路は、要件に応じて Qiskit または OpenQASM を使って作成できます。 - -すべてのタスクでは 1 つ以上の[量子回路](circuit-construction)を作成する必要があります。 いくつかのタスクでは、さらに[量子演算子](operators-overview)を構築して、推定または測定する量子状態のプロパティを定義する必要もあります。 - -Qiskit では、抽象、仮想、物理、スケジュール、およびパルスプログラムという様々な抽象レベルで回路(およびある程度、演算子)を操作することができます。 最も抽象的なレベルは[回路ライブラリー](circuit-library)のタスク指向レンズです。 演算は、演算子、等値関数、および古典/ブール関数を使った抽象的な数学で、演算を表現することもできます。 仮想回路の場合、数学的抽象化は具体的なゲートセットの観点で具象表現を帯びます。 物理レベルでは、それらの命令は特定の物理量子ビットにマッピングされ、命令はターゲットハードウェアプラットフォームの接続性とネイティブゲートセットを反映するように書き直されます。 スケジュール回路はタイミング情報を導入し、[パルスプログラム](pulse)はチャンネル上の信号を表します。 - -Qiskit と [OpenQASM](introduction-to-qasm) は、古典値に対するリアルタイム計算を含めるように、許容される演算のセットを拡張する拡張回路の概念をさらにサポートしています。 このより豊富な回路ファミリーを操作するための Qiskit のツールは、[古典的なフィードフォワードと制御フロー](classical-feedforward-and-control-flow)に関するセクションにあります。 - -## 次のステップ - - - - [回路ライブラリー](circuit-library)のトピックを詳しく読み、回路を構築し始めます。 - - [Grover's Algorithm(グローバーのアルゴリズム)](https://learning.quantum.ibm.com/tutorial/grovers-algorithm)チュートリアルで、回路の使用例をご覧ください。 - - [Explore gates and circuits with the Quantum Composer(Quantum Composer によるゲートと回路の探索)](https://learning.quantum.ibm.com/tutorial/explore-gates-and-circuits-with-the-quantum-composer)チュートリアルで、単純な回路を操作します。 - diff --git a/translations/ja/build/interoperate-qiskit-qasm2.mdx b/translations/ja/build/interoperate-qiskit-qasm2.mdx deleted file mode 100644 index 22cd9ce5f9..0000000000 --- a/translations/ja/build/interoperate-qiskit-qasm2.mdx +++ /dev/null @@ -1,146 +0,0 @@ ---- -title: OpenQASM 2 と Qiskit -description: OpenQASM 2 と Qiskit 間でのコード変換 ---- - -# OpenQASM 2 と Qiskit - -Qiskit には、量子プログラムの OpenQASM 表現と [QuantumCircuit](../api/qiskit/qiskit.circuit.QuantumCircuit) クラスを変換するためのツールが備わっています。 - -## Qiskit への OpenQASM 2 プログラムのインポート - -現在、OpenQASM 2 から Qiskit にインポートするために使用できる高レベル関数には 2 つあります。 ファイル名を取る `qasm2.load()` 関数と、プログラム自体を文字列として取る `qasm2.loads()` 関数です。 - -```python -import qiskit.qasm2 -qiskit.qasm2.load(filename, *, include_path=('.',), include_input_directory='append', custom_instructions=(), custom_classical=(), strict=False) -``` - -詳細については、[OpenQASM 2 Qiskit API](/api/qiskit/qasm2) をご覧ください。 - -### 例: OpenQASM 2 プログラムを文字列としてインポートする - -`qasm2.loads()` を使用して、OpenQASM 2 プログラムを文字列として QuantumCircuit にインポートします。 - -```python -import qiskit.qasm2 -program = ''' - OPENQASM 2.0; - include "qelib1.inc"; - qreg q[2]; - creg c[2]; - - h q[0]; - cx q[0], q[1]; - - measure q -> c; -''' -circuit = qiskit.qasm2.loads(program) -circuit.draw() -``` - -![出力](/images/build/qasm2.png) - -### 例: OpenQASM 2 プログラムをファイルからインポートする - -`load()` を使用して、OpenQASM 2 プログラムをファイルから QuantumCircuit にインポートします。 - -```python -import qiskit.qasm2 -circuit = qiskit.qasm2.load("myfile.qasm") -``` - - -## カスタム量子命令 - -カスタム命令に関する情報の反復可能なオブジェクトを引数 `custom_instructions` として渡すことで、OpenQASM 2 言語の量子コンポーネントを拡張できます。 これらの命令に互換可能な定義があるファイルでは、指定されたコンストラクターが、他の処理している `qiskit.qasm2` が使用される場所に使用されます。 解析されたプログラムで定義された命令とは異なるパラメーター数や量子ビット数を持つカスタム命令は指定できません。 引数の反復可能オブジェクトの各要素は、以下のように、特定のデータクラスである必要があります。 - -#### `qiskit.qasm2.CustomInstruction(name, num_params, num_qubits, constructor, builtin=False)` - -CustomInstruction クラスは、解析中に定義する必要のあるカスタム命令に関する情報を指定します。 - -`constructor` フィールドはシグネチャー `*args -> Instruction` を持つ呼び出し可能なオブジェクトであり、各 `num_params` args は浮動小数点値です。 ほとんどの組み込みの Qiskit ゲートクラスはこの形式です。 - -`builtin` フィールドはオプションです。 `true` にセットすると、インクルードされた OpenQASM 2 ファイルに定義がない場合でも、構文解析内で命令が定義されて使用可能になります。 `builtin` としてマークされた命令は、不透明またはゲート宣言を必要としませんが、互換可能な宣言をサイレントに無視します。 - -### 例: カスタム量子命令を使用する - -`qasm2.loads()` を使用して、OpenQASM 2 プログラムを文字列として QuantumCircuit にインポートしますが、カスタム量子命令を使用します。 インポート元が指定された命令に対して出力するゲートオブジェクトに影響を与えたい場合があります。 `include "qelib1.inc"` 文で定義されるゲートは、適切な Qiskit circuit-library ゲートに自動的に関連付けられますが、これを閣僚することができます。 - -```python -from qiskit.circuit import Gate -from qiskit import qasm2 - -class MyGate(Gate): - def __init__(self, theta): - super().__init__("my", 2, [theta]) - -class Builtin(Gate): - def __init__(self): - super().__init__("builtin", 1, []) - -program = ''' - opaque my(theta) q1, q2; - qreg q[2]; - my(0.5) q[0], q[1]; - builtin q[0]; - ''' -customs = [ - qasm2.CustomInstruction(name="my", num_params=1, num_qubits=2, constructor=MyGate), - # 'builtin=True' にセットすると、命令は宣言が使用可能であることを要求しません。 - qasm2.CustomInstruction("builtin", 0, 1, Builtin, builtin=True), -] -circuit = qasm2.loads(program, custom_instructions=customs) -``` - - -## カスタム古典関数 - -反復可能なオブジェクトを引数 `custom_classical` に渡すことで、古典式(引数からゲート)に行われた処理を拡張することができます。 これには、名前(有効な OpenQASM 2 識別子)、使用するパラメーター数(num_params)、および関数を実装する Python コーラブルが必要です。 Python コーラブルは `num_params` の位置浮動小数点引数を受け入れられる必要があり、浮動小数点または整数(浮動小数点に変換されます)を返す必要があります。 組み込み関数はオーバーライドできません。 - -#### `qiskit.qasm2.CustomClassical` - -`CustomClassical` クラスは、数式で定義されるカスタム古典関数に関する情報を提供します。 - -指定された `callable` は、`num_params` の浮動小数点数を取り、浮動小数点数を返す Python 関数である必要があります。 `name` は OpenQASM 2 プログラムでそれを参照する識別子です。 これは定義済みのゲートと競合できません。 - -### 例: カスタム古典命令を使用する - -`qasm2.loads()` を使用して、OpenQASM 2 プログラムを文字列として QuantumCircuit にインポートしますが、カスタム古典命令を使用します。 ゲートへの引数の記述中に使用される新しい古典関数を、プログラムの本体(定数畳み込み)と定義されたゲートのボディ(オンデマンドで計算)の両方に追加できます。 ここでは、Python バージョンの `atan2(y, x)` を指定します。これは数学的には $\\atan(y/x)$ ですが、角度の象限と無限大、およびカスタム `add_one` 関数を正しく処理します。 - -```python -import math -import qiskit.qasm2 - -program = ''' - include "qelib1.inc"; - qreg q[2]; - rx(atan2(pi, 3 + add_one(0.2))) q[0]; - cx q[0], q[1]; -''' - -def add_one(x): - return x + 1 - -customs = [ - # `atan2` は 2 つのパラメーターを取り、`math.atan2` はそれを実装します。 - qasm2.CustomClassical("atan2", 2, math.atan2), - # `add_one` はパラメーターを 1 つしか取りません。 - qasm2.CustomClassical("add_one", 1, add_one), -] -circuit = qasm2.loads(program, custom_classical=customs) -``` - - -## 厳格モード - -デフォルトでは、このパーサーは公式の仕様よりも若干リラックスされています。 エラーが発生することなく、パラメーターリストでの末尾のコンマの使用、不要な(空ステートメント)セミコロンの使用、`OPENQASM 2.0;` バージョンステートメントの省略が可能である他、いくつかの QoL 改善も含まれています。 ただし、`strict=True` を使って "仕様書" モードを使用することができます。 - -## 次のステップ - - - - [Explore gates and circuits with the Quantum Composer(Quantum Composer によるゲートと回路の探索)](https://learning.quantum.ibm.com/tutorial/explore-gates-and-circuits-with-the-quantum-composer)チュートリアルで、OpenQASM コードを生成する方法を学習します。 - - [OpenQASM 2 Qiskit API](/api/qiskit/qasm2) リファレンスをご覧ください。 - - [プログラムの検証](../verify/)のトピックをご覧ください。 - - [OpenQASM Live Specification(OpenQASM の公開仕様)](https://openqasm.com/)にアクセスしてください。 - diff --git a/translations/ja/build/interoperate-qiskit-qasm3.mdx b/translations/ja/build/interoperate-qiskit-qasm3.mdx deleted file mode 100644 index 593a6e313a..0000000000 --- a/translations/ja/build/interoperate-qiskit-qasm3.mdx +++ /dev/null @@ -1,132 +0,0 @@ ---- -title: OpenQASM 3 と Qiskit -description: OpenQASM 3 と Qiskit 間でのコード変換 ---- - -# OpenQASM 3 と Qiskit - -Qiskit には、量子プログラムの OpenQASM 表現と QuantumCircuit クラスを変換するためのツールが備わっています。 これらのツールは開発の探索フェーズにあり、OpenQASM 3 で表現される動的回路機能に対する Qiskit のサポートが高まるにつれて進化し続ける予定であることに注意してください。 - - -この関数はまだ探索段階にあります。 したがって、構文と機能が今後変化する可能性があります。 - - -## Qiskit への OpenQASM 3 プログラムのインポート - -この関数を使用するには、パッケージ `qiskit_qasm3_import ` をインストールする必要があります。 以下のコマンドを使ってインストールします。 - -```python -pip install qiskit-qasm3-import -``` - -現在、OpenQASM 3 から Qiskit にインポートするために使用できる高レベル関数には 2 つあります。 ファイル名を取る `load()` 関数と、プログラム自体を文字列として取る `loads()` 関数です。 - -```python -import qiskit.qasm3 -qiskit.qasm3.load(file_name) -``` - -```python -import qiskit.qasm3 -qiskit.qasm3.loads(program-string) -``` - -この例では、OpenQASM 3 を使って量子プログラムを定義し、`loads()` を使って直接これを QuantumCircuit に変換しています。 - -```python -import qiskit.qasm3 - -program = """ - OPENQASM 3.0; - include "stdgates.inc"; - - input float[64] a; - qubit[3] q; - bit[2] mid; - bit[3] out; - - let aliased = q[0:1]; - - gate my_gate(a) c, t { - gphase(a / 2); - ry(a) c; - cx c, t; - } - gate my_phase(a) c { - ctrl @ inv @ gphase(a) c; - } - - my_gate(a * 2) aliased[0], q[{1, 2}][0]; - measure q[0] -> mid[0]; - measure q[1] -> mid[1]; - - while (mid == "00") { - reset q[0]; - reset q[1]; - my_gate(a) q[0], q[1]; - my_phase(a - pi/2) q[1]; - mid[0] = measure q[0]; - mid[1] = measure q[1]; - } - - if (mid[0]) { - let inner_alias = q[{0, 1}]; - reset inner_alias; - } - - out = measure q; -""" -circuit = qiskit.qasm3.loads(program) -circuit.draw("mpl") -``` - -![出力](/images/build/interoperate-qiskit-qasm3/qasm3circ.png) - -## OpenQASM 3 へのエクスポート - -文字列にエクスポートする `dumps()` またはファイルにエクスポートする `dump()` を使用して、Qiskit コードを OpenQASM 3 にエクスポートできます。 - -### `dumps()` の使用例 - -```python -from qiskit import QuantumCircuit -from qiskit.qasm3 import dumps - -qc = QuantumCircuit(2) -qc.h(0) -qc.cx(0,1) -qc.measure_all() - -dumps(qc) -``` - -出力: - -`'OPENQASM 3;\ninclude "stdgates.inc";\nbit[2] meas;\nqubit[2] q;\nh q[0];\ncx q[0], q[1];\nbarrier q[0], q[1];\nmeas[0] = measure q[0];\nmeas[1] = measure q[1];\n'` - -### `dump()` の使用例 - -```python -from qiskit import QuantumCircuit -from qiskit.qasm3 import dump - -qc = QuantumCircuit(2) -qc.h(0) -qc.cx(0,1) -qc.measure_all() - -f = open("my_file.txt", 'w') -dump(qc, f) -f.close() -``` - -詳細については、API リファレンスの [OpenQASM 3 へのエクスポート](/api/qiskit/qasm3#exporting-to-openqasm-3)のセクションをご覧ください。 - -## 次のステップ - - - - [Explore gates and circuits with the Quantum Composer(Quantum Composer によるゲートと回路の探索)](https://learning.quantum.ibm.com/tutorial/explore-gates-and-circuits-with-the-quantum-composer)チュートリアルで、OpenQASM コードを生成する方法を学習します。 - - [OpenQASM 3 Qiskit API](/api/qiskit/qasm3) リファレンスをご覧ください。 - - [プログラムの検証](../verify/)のトピックをご覧ください。 - - [OpenQASM Live Specification(OpenQASM の公開仕様)](https://openqasm.com/)をご覧ください。 - diff --git a/translations/ja/build/introduction-to-qasm.mdx b/translations/ja/build/introduction-to-qasm.mdx deleted file mode 100644 index 7e948b4c23..0000000000 --- a/translations/ja/build/introduction-to-qasm.mdx +++ /dev/null @@ -1,52 +0,0 @@ ---- -title: OpenQASM の導入 -description: OpenQASM(オープンな量子アセンブリ言語)の導入 ---- - -# OpenQASM の導入 - -OpenQASM(オープンな量子アセンブリ言語)は、IBM 量子システムと互換性のある、マシンに依存しないプログラミングインターフェースであり、量子回路を記述するための命令型プログラミング言語です。 OpenQASM は量子回路モデルを使用して、量子プログラムをパラメーター化された演算(ゲート、測定、リセットなど)とリアルタイムの古典的計算の順序付きシーケンスとして表現します。 OpenQASM は、量子アルゴリズムのほかに、量子系の特徴づけ、検証、またはデバッグを意図した回路を記述することができます。 - -量子系の開発のニーズが進化するにつれ、OpenQASM の機能リストも拡大し、最新バージョンである [OpenQASM 3](https://arxiv.org/abs/2104.14722) には、古典的フィードフォワードフロー制御、ゲート修飾子、パルス実装などの拡張機能が組み込まれています。 - -OpenQASM はその多用途性により、様々なオーディエンスの選択肢となっています。 OpenQASM 3 論文[^1] の序文には、以下のような例があります。 - -> 「OpenQASM は高水準言語ではないが、多くのユーザーは表現力のあるドメイン固有言語を用いて単純な量子回路を手で書きたいと考えている。 回路のコンパイルを研究する研究者は、最適化と合成アルゴリズムに情報を渡すために、中間表現に記録された上位情報を必要としている。 実験者は、比較的高いレベルで回路を書く利便性を好むが、多くの場合、回路のあらゆる箇所で、タイミングまたはパルスレベルゲートの記述を手動で変更する必要がある。 古典的なコントローラーと波形ジェネレーターをデザインするハードウェアエンジニアは、ハードウェアの制約を考慮してコンパイルし、コントローラーが利用できる明示的な回路構造を作成できる実用的な言語を好む。」 - -OpenQASM は、独立した量子ソフトウェアツールの間で共通する交換フォーマットです。 回路を構築するためのツール、トランスパイル用の別のツール、などのようにさ様々なツールの使用を好む開発者にとって、OpenQASM はそれらのツールの橋渡しとして機能する_リンガフランカ_なのです。 - - Qiskit には、OpenQASM と [`QuantumCircuit`](../api/qiskit/qiskit.circuit.QuantumCircuit) クラスの間で変換する方法が備わっています([OpenQASM 2 と Qiskit](interoperate-qiskit-qasm2) および [OpenQASM 3 と Qiskit](interoperate-qiskit-qasm3) をご覧ください)。 - -詳細については、[OpenQASM Live Specification(OpenQASM の公開仕様)](https://openqasm.com/)をご覧ください - -## OpenQASM コードの例: cat の状態 - -```qasm3 - -OPENQASM 3; -include "stdgates.inc"; - -const n = 3; // 量子ビットの数 -qubit[n] q; // n 量子ビットのレジスター 'q' -bit[n] c; // 古典ビットのレジスター 'c' - -h q[0]; // アダマール -for k in [0:n-1] { - cnot q[k], q[k+1]; // 制御量子ビット q[k] からターゲット量子ビット q[k+1] までの制御 NOT -} - -c = measure q; // 量子レジスターを測定 -``` - -[^1]: Andrew W. Cross et al. "OpenQASM 3: A broader and deeper quantum assembly language," _ACM Transactions on Quantum Computing_, Volume 3, Issue 3 (2022). https://doi.org/10.48550/arXiv.2104.14722 - -## 次のステップ - - - -- [Explore gates and circuits with the Quantum Composer(Quantum Composer によるゲートと回路の探索)](https://learning.quantum.ibm.com/tutorial/explore-gates-and-circuits-with-the-quantum-composer)チュートリアルで、OpenQASM コードを生成する方法を学習します。 -- [OpenQASM 3 の機能表](qasm-feature-table)をご覧ください。 -- [OpenQASM 3 Qiskit API](/api/qiskit/qasm3) リファレンスをお読みください。 -- [OpenQASM 2 Qiskit API](/api/qiskit/qasm2) リファレンスをお読みください。 -- [OpenQASM Live Specification(OpenQASM の公開仕様)](https://openqasm.com/)にアクセスしてください。 - diff --git a/translations/ja/build/operators-overview.ipynb b/translations/ja/build/operators-overview.ipynb deleted file mode 100644 index 1de7c7f311..0000000000 --- a/translations/ja/build/operators-overview.ipynb +++ /dev/null @@ -1,1070 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Operators module overview" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "The `Operator` class is used in Qiskit to represent matrix operators acting on a quantum system. It has several methods to build composite operators using tensor products of smaller operators, and to compose operators.\n", - "\n", - "### Creating Operators\n", - "\n", - "The easiest way to create an operator object is to initialize it with a matrix given as a list or a Numpy array. For example, to create a two-qubit Pauli-XX operator:" - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": { - "ExecuteTime": { - "end_time": "2019-08-21T09:02:56.554914Z", - "start_time": "2019-08-21T09:02:54.249612Z" - } - }, - "outputs": [], - "source": [ - "import numpy as np\n", - "\n", - "from qiskit import QuantumCircuit, ClassicalRegister, QuantumRegister\n", - "from qiskit import BasicAer\n", - "from qiskit.quantum_info.operators import Operator, Pauli\n", - "from qiskit.quantum_info import process_fidelity\n", - "\n", - "from qiskit.extensions import RXGate, XGate, CXGate" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": { - "ExecuteTime": { - "end_time": "2019-08-21T09:02:56.572857Z", - "start_time": "2019-08-21T09:02:56.566140Z" - } - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Operator([[0.+0.j, 0.+0.j, 0.+0.j, 1.+0.j],\n", - " [0.+0.j, 0.+0.j, 1.+0.j, 0.+0.j],\n", - " [0.+0.j, 1.+0.j, 0.+0.j, 0.+0.j],\n", - " [1.+0.j, 0.+0.j, 0.+0.j, 0.+0.j]],\n", - " input_dims=(2, 2), output_dims=(2, 2))\n" - ] - } - ], - "source": [ - "XX = Operator([[0, 0, 0, 1], [0, 0, 1, 0], [0, 1, 0, 0], [1, 0, 0, 0]])\n", - "XX" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Operator Properties\n", - "\n", - "The operator object stores the underlying matrix, and the input and output dimension of subsystems. \n", - "\n", - "* `data`: To access the underlying Numpy array, we may use the `Operator.data` property.\n", - "* `dims`: To return the total input and output dimension of the operator, we may use the `Operator.dim` property. *Note: the output is returned as a tuple* `(input_dim, output_dim)`, *which is the reverse of the shape of the underlying matrix.*" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": { - "ExecuteTime": { - "end_time": "2019-08-21T09:02:56.589962Z", - "start_time": "2019-08-21T09:02:56.585681Z" - } - }, - "outputs": [ - { - "data": { - "text/plain": [ - "array([[0.+0.j, 0.+0.j, 0.+0.j, 1.+0.j],\n", - " [0.+0.j, 0.+0.j, 1.+0.j, 0.+0.j],\n", - " [0.+0.j, 1.+0.j, 0.+0.j, 0.+0.j],\n", - " [1.+0.j, 0.+0.j, 0.+0.j, 0.+0.j]])" - ] - }, - "execution_count": 3, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "XX.data" - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": { - "ExecuteTime": { - "end_time": "2019-08-21T09:02:56.615497Z", - "start_time": "2019-08-21T09:02:56.611146Z" - } - }, - "outputs": [ - { - "data": { - "text/plain": [ - "(4, 4)" - ] - }, - "execution_count": 4, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "input_dim, output_dim = XX.dim\n", - "input_dim, output_dim" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Input and Output Dimensions\n", - "\n", - "The operator class also keeps track of subsystem dimensions, which can be used for composing operators together. These can be accessed using the `input_dims` and `output_dims` functions.\n", - "\n", - "For $2^N$ by $2^M$ operators, the input and output dimension will be automatically assumed to be M-qubit and N-qubit:" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": { - "ExecuteTime": { - "end_time": "2019-08-21T09:02:56.804167Z", - "start_time": "2019-08-21T09:02:56.798857Z" - } - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Input dimensions: (2, 2)\n", - "Output dimensions: (2,)\n" - ] - } - ], - "source": [ - "op = Operator(np.random.rand(2 ** 1, 2 ** 2))\n", - "print('Input dimensions:', op.input_dims())\n", - "print('Output dimensions:', op.output_dims())" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "If the input matrix is not divisible into qubit subsystems, then it will be stored as a single-qubit operator. For example, if we have a $6\\times6$ matrix:" - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": { - "ExecuteTime": { - "end_time": "2019-08-21T09:02:57.764881Z", - "start_time": "2019-08-21T09:02:57.760401Z" - } - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Input dimensions: (6,)\n", - "Output dimensions: (6,)\n" - ] - } - ], - "source": [ - "op = Operator(np.random.rand(6, 6))\n", - "print('Input dimensions:', op.input_dims())\n", - "print('Output dimensions:', op.output_dims())" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "The input and output dimension can also be manually specified when initializing a new operator:" - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": { - "ExecuteTime": { - "end_time": "2019-08-21T09:02:58.292849Z", - "start_time": "2019-08-21T09:02:58.287354Z" - } - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Input dimensions: (4,)\n", - "Output dimensions: (2,)\n" - ] - } - ], - "source": [ - "# Force input dimension to be (4,) rather than (2, 2)\n", - "op = Operator(np.random.rand(2 ** 1, 2 ** 2), input_dims=[4])\n", - "print('Input dimensions:', op.input_dims())\n", - "print('Output dimensions:', op.output_dims())" - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "metadata": { - "ExecuteTime": { - "end_time": "2019-08-21T09:02:58.779572Z", - "start_time": "2019-08-21T09:02:58.774878Z" - } - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Input dimensions: (2, 3)\n", - "Output dimensions: (2, 3)\n" - ] - } - ], - "source": [ - "# Specify system is a qubit and qutrit\n", - "op = Operator(np.random.rand(6, 6),\n", - " input_dims=[2, 3], output_dims=[2, 3])\n", - "print('Input dimensions:', op.input_dims())\n", - "print('Output dimensions:', op.output_dims())" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "We can also extract just the input or output dimensions of a subset of subsystems using the `input_dims` and `output_dims` functions:" - ] - }, - { - "cell_type": "code", - "execution_count": 9, - "metadata": { - "ExecuteTime": { - "end_time": "2019-08-21T09:03:02.187313Z", - "start_time": "2019-08-21T09:03:02.183719Z" - } - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Dimension of input system 0: (2,)\n", - "Dimension of input system 1: (3,)\n" - ] - } - ], - "source": [ - "print('Dimension of input system 0:', op.input_dims([0]))\n", - "print('Dimension of input system 1:', op.input_dims([1]))" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Converting classes to Operators\n", - "\n", - "Several other classes in Qiskit can be directly converted to an `Operator` object using the operator initialization method. For example:\n", - "\n", - "* `Pauli` objects\n", - "* `Gate` and `Instruction` objects\n", - "* `QuantumCircuit` objects\n", - "\n", - "Note that the last point means we can use the `Operator` class as a unitary simulator to compute the final unitary matrix for a quantum circuit, without having to call a simulator backend. If the circuit contains any unsupported operations, an exception will be raised. Unsupported operations are: measure, reset, conditional operations, or a gate that does not have a matrix definition or decomposition in terms of gate with matrix definitions." - ] - }, - { - "cell_type": "code", - "execution_count": 10, - "metadata": { - "ExecuteTime": { - "end_time": "2019-08-21T09:03:02.854419Z", - "start_time": "2019-08-21T09:03:02.842387Z" - } - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Operator([[0.+0.j, 0.+0.j, 0.+0.j, 1.+0.j],\n", - " [0.+0.j, 0.+0.j, 1.+0.j, 0.+0.j],\n", - " [0.+0.j, 1.+0.j, 0.+0.j, 0.+0.j],\n", - " [1.+0.j, 0.+0.j, 0.+0.j, 0.+0.j]],\n", - " input_dims=(2, 2), output_dims=(2, 2))\n" - ] - } - ], - "source": [ - "# Create an Operator from a Pauli object\n", - "\n", - "pauliXX = Pauli('XX')\n", - "Operator(pauliXX)" - ] - }, - { - "cell_type": "code", - "execution_count": 11, - "metadata": { - "ExecuteTime": { - "end_time": "2019-08-21T09:03:03.064145Z", - "start_time": "2019-08-21T09:03:03.058953Z" - } - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Operator([[1.+0.j, 0.+0.j, 0.+0.j, 0.+0.j],\n", - " [0.+0.j, 0.+0.j, 0.+0.j, 1.+0.j],\n", - " [0.+0.j, 0.+0.j, 1.+0.j, 0.+0.j],\n", - " [0.+0.j, 1.+0.j, 0.+0.j, 0.+0.j]],\n", - " input_dims=(2, 2), output_dims=(2, 2))\n" - ] - } - ], - "source": [ - "# Create an Operator for a Gate object\n", - "Operator(CXGate())" - ] - }, - { - "cell_type": "code", - "execution_count": 12, - "metadata": { - "ExecuteTime": { - "end_time": "2019-08-21T09:03:03.353613Z", - "start_time": "2019-08-21T09:03:03.345462Z" - } - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Operator([[0.70710678+0.j , 0. -0.70710678j],\n", - " [0. -0.70710678j, 0.70710678+0.j ]],\n", - " input_dims=(2,), output_dims=(2,))\n" - ] - } - ], - "source": [ - "# Create an operator from a parameterized Gate object\n", - "Operator(RXGate(np.pi / 2))" - ] - }, - { - "cell_type": "code", - "execution_count": 13, - "metadata": { - "ExecuteTime": { - "end_time": "2019-08-21T09:03:47.550069Z", - "start_time": "2019-08-21T09:03:47.408126Z" - } - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Operator([[ 0.70710678+0.j, 0.70710678+0.j, 0. +0.j, ...,\n", - " 0. +0.j, 0. +0.j, 0. +0.j],\n", - " [ 0. +0.j, 0. +0.j, 0.70710678+0.j, ...,\n", - " 0. +0.j, 0. +0.j, 0. +0.j],\n", - " [ 0. +0.j, 0. +0.j, 0. +0.j, ...,\n", - " 0. +0.j, 0. +0.j, 0. +0.j],\n", - " ...,\n", - " [ 0. +0.j, 0. +0.j, 0. +0.j, ...,\n", - " 0. +0.j, 0. +0.j, 0. +0.j],\n", - " [ 0. +0.j, 0. +0.j, 0.70710678+0.j, ...,\n", - " 0. +0.j, 0. +0.j, 0. +0.j],\n", - " [ 0.70710678+0.j, -0.70710678+0.j, 0. +0.j, ...,\n", - " 0. +0.j, 0. +0.j, 0. +0.j]],\n", - " input_dims=(2, 2, 2, 2, 2, 2, 2, 2, 2, 2), output_dims=(2, 2, 2, 2, 2, 2, 2, 2, 2, 2))\n" - ] - } - ], - "source": [ - "# Create an operator from a QuantumCircuit object\n", - "circ = QuantumCircuit(10)\n", - "circ.h(0)\n", - "for j in range(1, 10):\n", - " circ.cx(j-1, j)\n", - "\n", - "# Convert circuit to an operator by implicit unitary simulation\n", - "Operator(circ)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Using Operators in circuits\n", - "\n", - "Unitary `Operators` can be directly inserted into a `QuantumCircuit` using the `QuantumCircuit.append` method. This converts the `Operator` into a `UnitaryGate` object, which is added to the circuit.\n", - "\n", - "If the operator is not unitary, an exception will be raised. This can be checked using the `Operator.is_unitary()` function, which will return `True` if the operator is unitary and `False` otherwise." - ] - }, - { - "cell_type": "code", - "execution_count": 14, - "metadata": { - "ExecuteTime": { - "end_time": "2019-08-21T09:03:49.196556Z", - "start_time": "2019-08-21T09:03:49.161398Z" - }, - "tags": [ - "nbsphinx-thumbnail" - ] - }, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXEAAADuCAYAAADPwDeGAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAgDklEQVR4nO3de1xU5b4/8M8ww00ugqCionIRDFAERbeAW0XAvKBYpHsnpZ3ctrt40nKDvdwdy/PbP81LtrdWpqW/LprHEmt7i8RENPKumCEiAqJcRiVI5M5czh/G/BwHlBlmGJ7h8/4H1rPWetZ3FD4861lr1kjUarUaREQkJCtzF0BERIZjiBMRCYwhTkQkMIY4EZHAGOJERAJjiBMRCYwhTkQkMIY4EZHAGOJERAJjiBMRCYwhTkQkMIY4EZHAGOJERAJjiBMRCYwhTkQkMIY4EZHAGOJERAJjiBMRCYwhTkQkMIY4EZHAGOJERAJjiBMRCYwhTkQkMIY4EZHAGOJERAJjiBMRCYwhTkQkMIY4EZHAGOJERAJjiBMRCYwhTkQkMIY4EZHAGOJERAJjiBMRCYwhTkQkMIY4EZHAGOJERAKTmbsAah+1Wg1FXYO5y7BYMntbSCSSDj+uWq2GUqns8OO2h1QqNcu/VVfHEBecoq4B232fMXcZFisxfxusu9l1+HGVSiVSUlI6/LjtkZCQAJmMkdLROJ1CRCQwhjgRkcAY4kREAmOIExEJjCFORCQwhjgRkcAY4kREAmOIExEJjCFORCQwhjgRkcAY4kRdRFVVFW7evAm5XI7Kykqo1Wq99j948CDKy8tNVB0Zig86ILJQ5eXlOHbsGPLy8lBYWIjKykqt9d26dYO3tzd8fHwQGRkJLy+vVvv65ptvsHPnTuzbtw/Lli2Du7u7iauntmKIE1mYnJwcHDhwAGfOnHnoaLu2thbZ2dnIzs7G3r174efnh8mTJyM8PFzraYTNAQ4At27dQlZWFmJiYkz+OqhtLH46pby8HMnJyRg0aBDs7OzQv39/LFy4EDU1NZg3bx4kEgnef/99c5dJ1G51dXX45JNPsHz5cpw+fVorwB0cHBAUFISIiAhERkYiNDQUPXr00No/Ly8P69evx4oVK3D79m0A2gEOALNnz2aAdzIWPRLPysrC5MmTIZfL4eDggMDAQJSWlmL9+vXIz89HRUUFACAkJMS8hZqaRILA+VMx+NlYOHr2RP2vVSjc+xOyVu/ks8gtREFBAdatW6c1Z+3q6oro6GhERkbCw8OjxWd9V1ZW4syZM0hLS8P169cBABcvXkRSUhJCQ0Nx/PhxzbazZ8/G9OnTTf9iSC8WG+Ll5eWYNm0a5HI5Fi9ejLfeegtOTk4AgNWrV2PJkiWQyWSQSCQIDg42c7WmNeq/n0PgX6ai6MBJ/PLRXrj49UPgvClwG+KN72f9N6DnBS7qXHJzc/HOO++grq4OAGBra4vZs2cjOjr6kc/3dnV1RWxsLGJiYpCVlYWPP/4YFRUVqK+vZ4ALwmKnU1599VUUFxdjwYIFWLt2rSbAASA5ORnDhg2DQqGAl5cXnJ2dzVipabn4eyLg+cm4tv8E0uetQd72Qzj99mc49fZn6DNmKLxnRJq7RGqHoqIirQD38/PDmjVr8Pjjj+v1AQ0SiQShoaFYu3YtBg4cqLUuMjKSAd6JWWSI5+TkYOfOnXB3d8fKlStb3GbEiBEAgGHDhmm1FxYWYvr06XBycoKrqyvmzJmDX3/91eQ1m4r3E2MgsbLCpY/3a7XnbT+Eptp6+CaMNVNl1F5NTU3YsGGDJsCDg4Px5ptvolevXgb3+f3336OoqEir7dy5c7y1sBOzyBDfsWMHVCoVEhMT4ejo2OI29vb2ALRD/O7du4iKikJxcTF27NiBzZs349ixY4iLi4NKpeqQ2o3NPWQQVEolys/nabUrG5pQ8cs1uIf4mqkyaq+UlBQUFxcDALy8vPD666/D1tbW4P4evIjZfMthXV0dNm3apPd95dQxLDLEDx8+DACIiopqdZvmH/77Q3zz5s0oKSnBt99+i7i4OMycORNffvklTpw4gT179pi2aBPp1tsVDRV3oWpU6KyrlVfAzq07rKwt9tKIxSorK9P8TEqlUrz88suwszP8s0Bbugtl2bJlmjtYLl68iBMnTrSvaDIJi/ztbT4dfHBur5lCoUBmZiYA7RDft28fxowZgwEDBmjawsPD4ePjg71792LGjBkG1RMWFga5XG7Qvo9irbbCWxjV6nqpvS2UjU0trlM23GuX2dugsUk35Anw9/NHk6Tjz8JsbGxanQoEgLS0NM3Z4YwZM7R+ZvXVUoA3z4H/5S9/werVqwEAqampCA8Pb7Uff39/NDY2GlxHV+fh4YEzZ87ovZ9FhnhNTQ0AaOYKH7Rz506Ul5fDyckJ3t7emvZLly5h5syZOtsHBQXh0qVLBtcjl8tRUlJi8P4PYyORAr1bX6+sa4C1Q/cW10ltrQEAijr+4rWmtKwUjWplhx/3YdMiDQ0NyMjIAABYW1tj0qRJBh/nYQEOAKGhofD09ERxcTFyc3NRVFTU6uCotLQUDQ28ZbWjWWSIe3h4oLKyEufOndMZOZSVlSEpKQnAvQtB9987W1lZCRcXF53+evTogdzc3HbVYyrWaivgIQPF2puV6O7vCSsbmc6USjePHqj/9Q5UHIW3qm+fvmYbibfmwoULmoFKRESE1p1X+nhUgAP37lqZOHEitm7dCgDIzMxsNcT79u3LkXg7GJoTFhniMTExyMnJwapVqxAbGwt/f38AwOnTp/Hss89qrrR31Jt8DDlFaqum2nps932m1fXlWVfRb3wI3EP9cOtkjqZdamuNHkO8cPNETqv7EnAl7wqsuxk+12wohUKBlJSUFtfl5+drvg8LCzOo/7YE+P3HaA7xgoKCVvu8cuWKXrc1knFY5IXN5ORkuLm54caNGwgKCsLQoUPh5+eHUaNGwcfHBxMmTACge3uhq6srfvvtN53+KioqdN6iLIrCf/8EtUqFwPlTtdr9EmNg3c0OBbuPmqkyMlRhYaHmex8fH7331yfAgXu/F81nqIWFhbxLpZOxyBD39PTEsWPHMHXqVNjZ2eHatWvo0aMHNm3ahP379+PKlSsAdEM8ICCgxbnvS5cuISAgoENqN7bfLl/H5f+XCq+poxG1JQl+s6MR9tYcjHp7LuQ/ZaNg94/mLpH0VFpaCgBwdHTUe3Chb4AD96ZUmqdQampqcOfOHT0rJlOy2HOfgIAA7Nu3T6e9uroa165dg5WVFYYMGaK1Li4uDkuXLkVxcTE8PT0BACdPnkR+fj7WrFnTIXWbwqlln6L6xm34PxMDz+jhqK+oQs7W73B+9U6+5V5A3bt3h0qlgouLS4vPQ2nNnj179A7wZm5ubnB1dYWNjQ2Uyo6/0Eutk6i72LnRyZMnMXr0aAwePBiXL1/WWldVVYWhQ4fC3d0dy5cvR319PZKTk9GzZ08cP34cVlad78TlUXPi1D6J+ds63Zy4obKysvDuu++iqanJJM9CSUhI4Jy4GXS5f/GLFy8C0J1KAQBnZ2ccPnwYCxcuxJ///GfIZDLExcXhvffe65QBTqSPkJAQLF68GMXFxYiLizN3OWQkDPEH+Pr6tjgNQ2QJQkJCLP/Ry11MlxtePirEiYhE0uVG4s3PVSEisgRdbiRORGRJGOJERAJjiBMRCYwhTkQkMIY4EZHAGOJERAJjiBMRCYwhTkQkMIY4EZHAGOJERAJjiBMRCazLPTuFSARSqRQJCQlG62/Npp24W1MDJwcHJP31TzrLxiCVSo3SD+mHIU7UCUkkEqN+wIIagEp976tMJtNZJnFxOoU61Jh/voLnynaZuwwii8EQJy2DZo3Hc2W7MGjW+BbXO3r2xHNluzDmn68Y7ZgDJo1EyOJZRuuPqCthiFOHyvzbR/jC62mttgGTRiHkbwxxIkMwxKlDqRVKKBuaOux4EpkUUlvrDjseUUfjFQ1qF0fPnnjq9EZkrf0K5RfyEbJ4JlwfG4CGOzUoSDmKsyu2Q61UabYf889XMOhPUfi0z1MAgEkpy+EREQQAWnPlPy58H1e/OoLug/oiYN4U9A4PgmM/d0ikVvgtrxi5nx1E3pc/aNUSsngWQv42C9+OWwS/2dHwmhYB+94uOJS4AmM/eBV38svwXfybOq8h6KXpGLlsDr574r9w80SOKf6ZiEyGIU5G0S86FIOfexy5nx9E3o7DGDBpJIa8HI+GOzW4uH53q/td+FcKYCWBx+hAHF3wL037rdO5AACPiCHoPToQxWlnUX3jFmT2tvCaFo7Id1+CnZszLm74RqfPsR8shKK+Edmb9gJqNaqLb+PqVxkY8tJ0OPv2RVV+qdb2fk9PwJ2rJQxwEhJDnIzCZXB//Hvca6guvg0AyP38IOLT1yHg+ckPDfGyoz/D98k/AqMDUZByTGd9/tcZyP38oFZb9uZ9mLTrbQxdMAO/bNwDtUKptb6xqhbfz1qudQZwZVsahrw0HX5PT8DZf2zTtPcaORgufp4483++MOh1E5kb58TJKK6nntYEeDN55i/o1tsVsm52BverqGvQfC+1tYatqyNsXR1RknEBNs4O6D6on84+lz7epxXgAFBVUAb5T9kYNHMcJNL//2Pv93Q0VE0KXP3qiME1EpkTR+JkELVarbVcXXRTZ5uGymoAgG0PRyhq6w06jqybHUL+Ngte08Ph2K+nznpbFwedtjsFZS32lbstDeM+XIT+sSNwPfU0ZA528JoejhuHzqK+/I5B9RGZG0OctCjqGwEAUnvbFtfLut1rV/6+XbMHR773k0BicD1jP1yI/rEjcGXbIchPXEJD5V2olSp4Rg9H0F+nQSLRPZlU1ja00BNQtP8E6iuq4Pd0NK6nnoZ3fCSsHeyRt/2HFrcnEgFDnLRUX78FAHDx052mAIDufp4AgLu/b2cMD47qm9k4d0P/2BHI33UUx5ds1lrX94/Beh9H1ahA/tcZCJg3Bfa9XeH39ATUlP6KkvQsQ8om6hQ4J05afr1YgOqS2/CeEQn73q5a66ysZQh4fjLUKhVuHDxjtGMqau5Ntdi4OGq1q5pH9xLtkbx9Lxf4JUYbdKwr2w/BSiZF2JvPoFfYYFz9Kh1qVetnEUSdHUfipEWtVOHEko8RtTUJ8YffRd6Xh3G3SA67ni7wnh4B18cG4MK/UnRu02uP2+fyEDAPCF85Hzd+OAt1kxK3z+Wh+sYtlGZcgG/CH6Gsb0B5Vj4cPXvC/9lYVF+/Bbseznof605eCW6ezIHvU+OgVqmQt+Ow0V4HkTkwxElH8Q/ncGD6mxj6ygwMmjUOtq5OUNQ24NdfCnHkhXdxbe9xox6v4Jsf0WOIN7zjIzFw2mhYSaX33uxz4xaOLliPEUsT0T82DINmjkdVYRnOvbMD6iYFxvxrgUHHy92Wht5/CEBZZrZm+ohIVBJ1axOSJISm2nps933G3GUIxWtaOMZvXoyMl95D4beZD902MX8brNtxi2RnseKD7aiqroGzowOWvpKos0zi4pw4dTmP/cck1P96B0UHTpq7FKJ243QKdQl2bs7o88eh6P2HAHiEB+Hs/90GVaPC3GURtRtDnLoEF//+GLfxNTT8Vo3Ln32PXz7aa+6S6BHUajWUSuWjN+wkpFIpJBLD3xNhKIY4dQny49maJyeSGJRKJVJSUsxdRpslJCSY5aPuOCdORCQwhjgRkcAY4kREAmOIExEJjCFORCQwhjgRkcAY4kREAmOIExEJjCFORCQwhjgRkcAY4kREbaBQKFBZWWnuMnTw2SlEZLEaGhpQUFCAgoICFBYWorKyEgqFAjKZDK6urvDx8YG3tzd8fX1hY2PTaj8KhQLvvfcebty4gWXLlsHd3b0DX8XDMcSJyOKUlpYiLS0NGRkZqK2tbXW7H3/8EQDg4OCA8ePHIzY2Fh4eHlrbNAf42bNnAQCrVq3CqlWrYGXVOSYyOkcVJlZeXo7k5GQMGjQIdnZ26N+/PxYuXIiamhrMmzcPEokE77//vrnLJKJ2qq6uxocffojXX38d33333UMD/H41NTXYv38/Fi1ahE2bNmn2ezDAbWxsMGfOnE4T4EAXGIlnZWVh8uTJkMvlcHBwQGBgIEpLS7F+/Xrk5+ejoqICABASEmLeQk1o6H8+AbehPnAL9oHTwN6ovnELu0a9bO6yiIzq/Pnz2Lx5s9a8tbW1NUaPHo2AgAB4e3vDw8MD1tbWaGpqQllZGQoKCpCTk4NTp06hqakJAJCeno4LFy5g/vz5OHTokFaAJyUlYejQoWZ5fa2x6BAvLy/HtGnTIJfLsXjxYrz11ltwcnICAKxevRpLliyBTCaDRCJBcHCwmas1nRFLE1FfcRcVFwtg49zN3OUQGV1aWhq2bt2K5o8Mtre3x5NPPomoqCg4OjrqbC+TyeDj4wMfHx/ExMSgqqoK6enp+Oabb1BfX4+KigqsWrVKs31nDXDAwkP81VdfRXFxMRYsWIC1a9dqrUtOTsaXX36JCxcuwNvbG87Ozmaq0vR2/eFlzae6x6evg7WD+B/8S9Tshx9+wJYtWzTLw4YNwwsvvAA3N7c29+Hs7Iz4+HhERETgo48+QnZ2tmadTCbrtAEOWPCceE5ODnbu3Al3d3esXLmyxW1GjBgB4N5/erPm0B81ahRsbW3N8nFLxtYc4ESWJjc3F5988olmedq0aXjjjTf0CvD7ubq6ws5Oe5CjVCrRrVvnPYO12BDfsWMHVCoVEhMTWzydAu6dcgHaIX716lWkpKTAw8MDI0eO7JBaiUh/DQ0N2Lhxo2YKZerUqZg9e7bBA68HL2I2X7xUq9XYuHGjZs68s7HYED98+DAAICoqqtVtiouLAWiH+NixY1FWVoY9e/YgJibGtEUSkcG+/vpryOVyAICfnx8SExONFuA2NjZITk6Gt7c3gHtZsXv3buMUbmQWOydeVFQEABg4cGCL6xUKBTIzMwFoh7gpbh0KCwvT/LAZm7XaCm9hlEn6JsDfzx9NEpW5y2i3J/5jERwcnVEmL4Onp6fOcmdkY2PT6lRoTU0NDh48CODeHSgvvviiwb+7LQV48xy4q6srli5dCqVSidTUVMTHx+tMtzTz9/dHY2OjQTUAgIeHB86cOaP3fhYb4jU1NQCAurq6Ftfv3LkT5eXlcHJy0vy1NRW5XI6SkhKT9G0jkQK9TdI1ASgtK0WjWmnuMtpNpVRqvpaUlOgsd0a2tratrsvIyNAEZlRUFPr162fQMR4W4MC9QeDYsWORnp6Ouro6/Pjjj62eoZeWlqKhocGgOtrDYkPcw8MDlZWVOHfuHMLDw7XWlZWVISkpCQAQHBxs8ouXD74DzJis1VaA+APFTqtvn74WMRK3kko1X/v166ez3Bk97G3wzdOlADBx4kSD+n9UgN/ff3p6uua4rYV437592z0SN4TFhnhMTAxycnKwatUqxMbGwt/fHwBw+vRpPPvssygvLwfQMW/yMeQUqa2aauux3fcZk/Xf1V3JuwLrbuLfkrnig+2oqq5BH48+KC4u1lnujBQKBVJSUnTaq6urNTX7+voaNB3U1gAHAG9vbwwYMADXr19HYWEh6uvrW5xSuXLlCmSyjo9Ui72wmZycDDc3N9y4cQNBQUEYOnQo/Pz8MGrUKPj4+GDChAkAtOfDiajzKyws1Hzv5+en9/76BPiDx1Gr1bh27ZrexzQlix2Je3p64tixY0hKSkJGRgauXbuGwMBAbNq0CfPnz4evry+ArhHiPk+NhaNnTwCAnZszrKxlCF6UAACoLr6Ngl1HzVkekV7uD1EfHx+99jUkwAFoXTcrLCzEY489ptdxTcliQxwAAgICsG/fPp326upqXLt2DVZWVhgyZIgZKutY/k9HwyMiSKtt+JKnAQDyn7IZ4iSU6upqzff6vKnH0AB/8DjNN010FhYd4q3Jzs6GWq2Gv79/i+/E2rVrFwDg0qVLWsteXl4ICwvruEKNJDXhLXOXQGQ00dHRCA4ORmNjIwYMGNDm/YqKivDzzz8D0P9ZKL6+vliyZAlsbGzQq1cvg+o2lS4Z4hcvXgTQ+lTKzJkzW1yeO3cuPv30U5PWRkQP16tXL4OC1NfXF4sXL8aGDRuwaNEivZ6F4uzsjNDQUL2P2REY4i1ofhsvEVmWkJAQbNiwoVM/C0VfFnt3ysM8KsSJyHJZUoADXXQkfv8bBYiIRNYlR+JERJaCIU5EJDCGOBGRwBjiREQCY4gTEQmMIU5EJDCGOBGRwBjiREQCY4gTEQmMIU5EJDCGOBGRwLrks1MsiczeFon528xdhsWS2bf+ietkWlKpFAkJCUbpa82mnbhbUwMnBwck/fVPrba1h/T3D5/uaAxxwUkkEov4IF+iB0kkEqN98LAagEp972tzny21iYjTKUREAmOIExEJjCFORCQwhjgRkcAY4kREAmOIExEJjCFORCQwhjgRkcAY4kREAmOIExEJjCFORCQwhjgRkcAY4kREAmOIExEJjCFORCQwhjgRkcAY4kREAmOIExEJjCFORCQwhjgRkcAY4kREAmOIExEJjCHeCaxZswbh4eFwdXWFi4sLxowZg9TUVHOXRfRQBw4cQEhICGxtbeHl5YV169aZu6QOdfToUcTHx2PgwIGQSCT4xz/+YZY6GOKdwOHDh/H8888jPT0dp06dQkREBOLi4pCZmWnu0ohadObMGcTHx2Py5MnIysrC22+/jaVLl+Kjjz4yd2kdprq6GoGBgVi9ejU8PDzMVofMbEcmje+++05refXq1UhNTcXu3bsRGRlppqqIWrdu3TqMHDkSK1euBAAEBAQgOzsb77zzDl588UUzV9cxpkyZgilTpgAAlixZYrY6GOKdkEqlQlVVFRwcHMxdCgmmobEJRSU3ddoVSqXm65XCYp3l+/V2d0V3p4f/7GVmZmLevHlabZMmTcLatWtRXFwMT0/P9ryMdrlechP1jU1abS293tb+DextbdC/b68Oqrb9GOKd0IoVK/Dbb7/hhRdeMHcpJBhraxmOnbqAvGslLa6vravH1q8OtLrs4uyIRc8/9cjjlJWV6UwhNC+XlZWZNcQr7tzF/+w93OK6B19vS23PzIhFf5NWaFycE+9kPvzwQ6xYsQK7du0y6y8CiclKIsFTU8bD3s7WoP1nThkPO1sbI1fVsUICByH4MR+D9h0+xB9DBnsbuSLTYoh3ImvXrkVSUhL27NmDmJgYc5dDguru5IAZsfpfSxkzcih8B/Zt07Z9+vSBXC7Xart586ZmnbnNmDgGzo7d9NrHxdkR02MiTFSR6TDEO4lly5Zh+fLlOHDgAAOc2m1Y4CAMC/Bt8/a93V3x+NiRbd4+MjIS33//vVZbamoqBg4c2CnOILvZ2+GpKePbvL0EwKypYp6FMMQ7gUWLFmHNmjX44osvMHjwYMjlcsjlcty5c8fcpZHA4ieOgbPjoy+OS62sMCsuCtaytl8ie+2113Dq1Cn8/e9/x+XLl/HZZ59hw4YNeOONN9pTslH5e3sifHhQm7YdMzIYPgPadhbSrLq6GllZWcjKykJjYyPkcjmysrJw9epVQ8o1mEStVqs79IikQyKRtNg+d+5cfPrppx1bDFmUvMJibHngQt6DHh87ElHhoXr3vX//fixduhSXL1+Gh4cHFi5ciNdff93QUk2isUmBDZ+m4HZF6wOi3u6uWDD3Cb3+iAHAkSNHEBUVpdM+btw4HDlyRN9SDcYQJ7Jwew5l4qez2S2uG9ivN/46exqsrCz3pPxG2S1s/OLfULUQdVIrK7wy9wn07eVmhsqMw3L/5yzUV/uP4Oipn81dBglk0rg/oGcPF512G2sZZk2NsugAB4D+fXphQsTwFtfF/jFM6AAHGOJCkd+uwLlfrsDeTryLL2Q+NtYy/CkuClZW2tN2cdERcHN1NlNVHSsqPBT9+/TUavPy9MDYUcFmqsh4GOL3USqV+OKLLzBx4kT07NkTtra2GDBgACZNmoRPPvkEyt/f4WUuP2SeRY/uThge5G/WOkg8nn16IjpihGY5YNAAjAwebMaKOpZU2nzxVgoAsLGxxsyp4y3iLET8V2AkVVVViI2NxZw5c5CWlgYbGxsMGzYMKpUKBw8exPz583H37l2z1Se/XYGLuYWIigiFVMr/NtLf+PAQ9O/TCw72dnhy0thWL6hbqp49XDAlajQAYNqEcLi5WMZZCC9s/m7mzJmad0l+/vnnWledb968iS1btmDhwoUGPc9kw2e7cbe6rl311dbXQ6lUwcnBHvfuaiXSn1Klgkql0vtODEuhVqvR2KSAjbWs0/0Rc3K0x3/OfVLv/RjiAM6ePYuwsDDIZDKcP38eQ4YMMWr/Kz7YjqrqGqP2SUSWxdnRAUtfSdR7v6755/gB3377LQBg6tSpRg9w4N5f2PbgKJzI8hmaEwxxAJcuXQIAhIeHm6R/Q06RmslvV+CfW3chYfJYjAx+zIhVEZElYIjj3kVNAOjevbtJ+m/PnHhtfT0kEgnSjp1B2rGzRq6MiDoLQ+fEGeIAnJ3vXaU21bNK7lbXtXtOvKq61kjVEJElYYgDCAoKwu7du3H8+HGT9G/oXBfnwom6DkNzgnenADh//jyGDx8Oa2trZGVlITAw0NwlcS6ciNqE7xoBEBoailmzZqGpqQmTJ09GRkaG1vqbN29i5cqVqKnpuNsE+e5MImoLjsR/V1VVhfj4eM0jJPv164e+ffuirKwMJSUlUKvVqKyshIuLi8lr4SiciNqKI/HfOTs749ChQ9iyZQvGjx+P2tpaXLhwAVZWVnj88cexZcsWODk5dUgtdrY2GDsqmKNwInokjsSJiATGkTgRkcAY4kREAmOIExEJjCFORCQwhjgRkcAY4kREAmOIExEJjCFORCQwhjgRkcAY4kREAmOIExEJjCFORCQwhjgRkcAY4kREAmOIExEJjCFORCQwhjgRkcAY4kREAmOIExEJjCFORCQwhjgRkcAY4kREAmOIExEJjCFORCQwhjgRkcAY4kREAmOIExEJjCFORCQwhjgRkcAY4kREAmOIExEJjCFORCQwhjgRkcAY4kREAmOIExEJjCFORCQwhjgRkcAY4kREAmOIExEJjCFORCSw/wXdRo3lpmSn4gAAAABJRU5ErkJggg==", - "text/plain": [ - "
" - ] - }, - "execution_count": 14, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "# Create an operator\n", - "XX = Operator(Pauli('XX'))\n", - "\n", - "# Add to a circuit\n", - "circ = QuantumCircuit(2, 2)\n", - "circ.append(XX, [0, 1])\n", - "circ.measure([0,1], [0,1])\n", - "circ.draw('mpl')" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Note that in the above example we initialize the operator from a `Pauli` object. However, the `Pauli` object may also be directly inserted into the circuit itself and will be converted into a sequence of single-qubit Pauli gates:" - ] - }, - { - "cell_type": "code", - "execution_count": 15, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "{'11': 1024}" - ] - }, - "execution_count": 15, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "from qiskit.transpiler.preset_passmanagers import generate_preset_pass_manager\n", - "backend = BasicAer.get_backend('qasm_simulator')\n", - "circ = generate_preset_pass_manager(optimization_level=1, backend=backend).run(circ)\n", - "job = backend.run(circ)\n", - "job.result().get_counts(0)" - ] - }, - { - "cell_type": "code", - "execution_count": 16, - "metadata": { - "ExecuteTime": { - "end_time": "2019-08-21T09:04:12.017240Z", - "start_time": "2019-08-21T09:04:11.989825Z" - } - }, - "outputs": [ - { - "data": { - "text/html": [ - "
     ┌────────────┐┌─┐   \n",
-              "q_0: ┤0           ├┤M├───\n",
-              "     │  Pauli(XX) │└╥┘┌─┐\n",
-              "q_1: ┤1           ├─╫─┤M├\n",
-              "     └────────────┘ ║ └╥┘\n",
-              "c: 2/═══════════════╩══╩═\n",
-              "                    0  1 
" - ], - "text/plain": [ - " ┌────────────┐┌─┐ \n", - "q_0: ┤0 ├┤M├───\n", - " │ Pauli(XX) │└╥┘┌─┐\n", - "q_1: ┤1 ├─╫─┤M├\n", - " └────────────┘ ║ └╥┘\n", - "c: 2/═══════════════╩══╩═\n", - " 0 1 " - ] - }, - "execution_count": 16, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "# Add to a circuit\n", - "circ2 = QuantumCircuit(2, 2)\n", - "circ2.append(Pauli('XX'), [0, 1])\n", - "circ2.measure([0,1], [0,1])\n", - "circ2.draw()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Combining Operators\n", - "\n", - "Operators may be combined using several methods. \n", - "\n", - "### Tensor Product\n", - "\n", - "Two operators $A$ and $B$ may be combined into a tensor product operator $A\\otimes B$ using the `Operator.tensor` function. Note that if both $A$ and $B$ are single-qubit operators, then `A.tensor(B)` = $A\\otimes B$ will have the subsystems indexed as matrix $B$ on subsystem 0, and matrix $A$ on subsystem 1." - ] - }, - { - "cell_type": "code", - "execution_count": 17, - "metadata": { - "ExecuteTime": { - "end_time": "2019-08-21T09:04:14.208734Z", - "start_time": "2019-08-21T09:04:14.201058Z" - } - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Operator([[ 0.+0.j, 0.+0.j, 1.+0.j, 0.+0.j],\n", - " [ 0.+0.j, -0.+0.j, 0.+0.j, -1.+0.j],\n", - " [ 1.+0.j, 0.+0.j, 0.+0.j, 0.+0.j],\n", - " [ 0.+0.j, -1.+0.j, 0.+0.j, -0.+0.j]],\n", - " input_dims=(2, 2), output_dims=(2, 2))\n" - ] - } - ], - "source": [ - "A = Operator(Pauli('X'))\n", - "B = Operator(Pauli('Z'))\n", - "A.tensor(B)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Tensor Expansion\n", - "\n", - "A closely related operation is `Operator.expand`, which acts like a tensor product but in the reverse order. Hence, for two operators $A$ and $B$ we have `A.expand(B)` = $B\\otimes A$ where the subsystems indexed as matrix $A$ on subsystem 0, and matrix $B$ on subsystem 1." - ] - }, - { - "cell_type": "code", - "execution_count": 18, - "metadata": { - "ExecuteTime": { - "end_time": "2019-08-21T09:04:14.899024Z", - "start_time": "2019-08-21T09:04:14.891072Z" - } - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Operator([[ 0.+0.j, 1.+0.j, 0.+0.j, 0.+0.j],\n", - " [ 1.+0.j, 0.+0.j, 0.+0.j, 0.+0.j],\n", - " [ 0.+0.j, 0.+0.j, -0.+0.j, -1.+0.j],\n", - " [ 0.+0.j, 0.+0.j, -1.+0.j, -0.+0.j]],\n", - " input_dims=(2, 2), output_dims=(2, 2))\n" - ] - } - ], - "source": [ - "A = Operator(Pauli('X'))\n", - "B = Operator(Pauli('Z'))\n", - "A.expand(B)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Composition\n", - "\n", - "We can also compose two operators $A$ and $B$ to implement matrix multiplication using the `Operator.compose` method. We have that `A.compose(B)` returns the operator with matrix $B.A$:" - ] - }, - { - "cell_type": "code", - "execution_count": 19, - "metadata": { - "ExecuteTime": { - "end_time": "2019-08-21T09:04:15.655155Z", - "start_time": "2019-08-21T09:04:15.648295Z" - } - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Operator([[ 0.+0.j, 1.+0.j],\n", - " [-1.+0.j, 0.+0.j]],\n", - " input_dims=(2,), output_dims=(2,))\n" - ] - } - ], - "source": [ - "A = Operator(Pauli('X'))\n", - "B = Operator(Pauli('Z'))\n", - "A.compose(B)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "We can also compose in the reverse order by applying $B$ in front of $A$ using the `front` kwarg of `compose`: `A.compose(B, front=True)` = $A.B$:" - ] - }, - { - "cell_type": "code", - "execution_count": 20, - "metadata": { - "ExecuteTime": { - "end_time": "2019-08-21T09:04:16.460560Z", - "start_time": "2019-08-21T09:04:16.452319Z" - } - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Operator([[ 0.+0.j, -1.+0.j],\n", - " [ 1.+0.j, 0.+0.j]],\n", - " input_dims=(2,), output_dims=(2,))\n" - ] - } - ], - "source": [ - "A = Operator(Pauli('X'))\n", - "B = Operator(Pauli('Z'))\n", - "A.compose(B, front=True)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Subsystem Composition\n", - "\n", - "Note that the previous compose requires that the total output dimension of the first operator $A$ is equal to total input dimension of the composed operator $B$ (and similarly, the output dimension of $B$ must be equal to the input dimension of $A$ when composing with `front=True`).\n", - "\n", - "We can also compose a smaller operator with a selection of subsystems on a larger operator using the `qargs` kwarg of `compose`, either with or without `front=True`. In this case, the relevant input and output dimensions of the subsystems being composed must match. *Note that the smaller operator must always be the argument of* `compose` *method.*\n", - "\n", - "For example, to compose a two-qubit gate with a three-qubit Operator:" - ] - }, - { - "cell_type": "code", - "execution_count": 21, - "metadata": { - "ExecuteTime": { - "end_time": "2019-08-21T09:04:17.113510Z", - "start_time": "2019-08-21T09:04:17.105398Z" - } - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Operator([[ 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 1.+0.j, 0.+0.j, 0.+0.j,\n", - " 0.+0.j],\n", - " [ 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, -1.+0.j, 0.+0.j,\n", - " 0.+0.j],\n", - " [ 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 1.+0.j,\n", - " 0.+0.j],\n", - " [ 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,\n", - " -1.+0.j],\n", - " [ 1.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,\n", - " 0.+0.j],\n", - " [ 0.+0.j, -1.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,\n", - " 0.+0.j],\n", - " [ 0.+0.j, 0.+0.j, 1.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,\n", - " 0.+0.j],\n", - " [ 0.+0.j, 0.+0.j, 0.+0.j, -1.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,\n", - " 0.+0.j]],\n", - " input_dims=(2, 2, 2), output_dims=(2, 2, 2))\n" - ] - } - ], - "source": [ - "# Compose XZ with a 3-qubit identity operator\n", - "op = Operator(np.eye(2 ** 3))\n", - "XZ = Operator(Pauli('XZ'))\n", - "op.compose(XZ, qargs=[0, 2])" - ] - }, - { - "cell_type": "code", - "execution_count": 22, - "metadata": { - "ExecuteTime": { - "end_time": "2019-08-21T09:04:17.324353Z", - "start_time": "2019-08-21T09:04:17.315952Z" - } - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Operator([[0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.-1.j, 0.+0.j, 0.+0.j],\n", - " [0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.-1.j, 0.+0.j, 0.+0.j, 0.+0.j],\n", - " [0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.-1.j],\n", - " [0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.-1.j, 0.+0.j],\n", - " [0.+0.j, 0.+1.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j],\n", - " [0.+1.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j],\n", - " [0.+0.j, 0.+0.j, 0.+0.j, 0.+1.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j],\n", - " [0.+0.j, 0.+0.j, 0.+1.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j]],\n", - " input_dims=(2, 2, 2), output_dims=(2, 2, 2))\n" - ] - } - ], - "source": [ - "# Compose YX in front of the previous operator\n", - "op = Operator(np.eye(2 ** 3))\n", - "YX = Operator(Pauli('YX'))\n", - "op.compose(YX, qargs=[0, 2], front=True)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Linear combinations\n", - "\n", - "Operators may also be combined using standard linear operators for addition, subtraction and scalar multiplication by complex numbers. " - ] - }, - { - "cell_type": "code", - "execution_count": 23, - "metadata": { - "ExecuteTime": { - "end_time": "2019-08-21T09:04:18.829988Z", - "start_time": "2019-08-21T09:04:18.812834Z" - } - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Operator([[-1.5+0.j, 0. +0.j, 0. +0.j, 0. +0.j],\n", - " [ 0. +0.j, 1.5+0.j, 1. +0.j, 0. +0.j],\n", - " [ 0. +0.j, 1. +0.j, 1.5+0.j, 0. +0.j],\n", - " [ 0. +0.j, 0. +0.j, 0. +0.j, -1.5+0.j]],\n", - " input_dims=(2, 2), output_dims=(2, 2))\n" - ] - } - ], - "source": [ - "XX = Operator(Pauli('XX'))\n", - "YY = Operator(Pauli('YY'))\n", - "ZZ = Operator(Pauli('ZZ'))\n", - "\n", - "op = 0.5 * (XX + YY - 3 * ZZ)\n", - "op" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "An important point is that while `tensor`, `expand` and `compose` will preserve the unitarity of unitary operators, linear combinations will not; hence, adding two unitary operators will, in general, result in a non-unitary operator:" - ] - }, - { - "cell_type": "code", - "execution_count": 24, - "metadata": { - "ExecuteTime": { - "end_time": "2019-08-21T09:04:19.151814Z", - "start_time": "2019-08-21T09:04:19.147497Z" - } - }, - "outputs": [ - { - "data": { - "text/plain": [ - "False" - ] - }, - "execution_count": 24, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "op.is_unitary()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Implicit Conversion to Operators\n", - "\n", - "Note that for all the following methods, if the second object is not already an `Operator` object, it will be implicitly converted into one by the method. This means that matrices can be passed in directly without being explicitly converted to an `Operator` first. If the conversion is not possible, an exception will be raised." - ] - }, - { - "cell_type": "code", - "execution_count": 25, - "metadata": { - "ExecuteTime": { - "end_time": "2019-08-21T09:04:20.045005Z", - "start_time": "2019-08-21T09:04:20.039841Z" - } - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Operator([[0.+0.j, 1.+0.j],\n", - " [1.+0.j, 0.+0.j]],\n", - " input_dims=(2,), output_dims=(2,))\n" - ] - } - ], - "source": [ - "# Compose with a matrix passed as a list\n", - "Operator(np.eye(2)).compose([[0, 1], [1, 0]])" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Comparison of Operators\n", - "\n", - "Operators implement an equality method that can be used to check if two operators are approximately equal. " - ] - }, - { - "cell_type": "code", - "execution_count": 26, - "metadata": { - "ExecuteTime": { - "end_time": "2019-08-21T09:04:20.821642Z", - "start_time": "2019-08-21T09:04:20.815611Z" - } - }, - "outputs": [ - { - "data": { - "text/plain": [ - "True" - ] - }, - "execution_count": 26, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "Operator(Pauli('X')) == Operator(XGate())" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Note that this checks that each matrix element of the operators is approximately equal; two unitaries that differ by a global phase will not be considered equal:" - ] - }, - { - "cell_type": "code", - "execution_count": 27, - "metadata": { - "ExecuteTime": { - "end_time": "2019-08-21T09:04:21.146256Z", - "start_time": "2019-08-21T09:04:21.141242Z" - } - }, - "outputs": [ - { - "data": { - "text/plain": [ - "False" - ] - }, - "execution_count": 27, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "Operator(XGate()) == np.exp(1j * 0.5) * Operator(XGate())" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Process Fidelity\n", - "\n", - "We may also compare operators using the `process_fidelity` function from the *Quantum Information* module. This is an information theoretic quantity for how close two quantum channels are to each other, and in the case of unitary operators it does not depend on global phase." - ] - }, - { - "cell_type": "code", - "execution_count": 28, - "metadata": { - "ExecuteTime": { - "end_time": "2019-08-21T09:04:22.171481Z", - "start_time": "2019-08-21T09:04:22.147477Z" - } - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Process fidelity = 1.0\n" - ] - } - ], - "source": [ - "# Two operators which differ only by phase\n", - "op_a = Operator(XGate()) \n", - "op_b = np.exp(1j * 0.5) * Operator(XGate())\n", - "\n", - "# Compute process fidelity\n", - "F = process_fidelity(op_a, op_b)\n", - "print('Process fidelity =', F)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Note that process fidelity is generally only a valid measure of closeness if the input operators are unitary (or CP in the case of quantum channels), and an exception will be raised if the inputs are not CP." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Next steps\n", - "\n", - "\n", - " - See an example of using operators in the [Grover's Algorithm](https://learning.quantum.ibm.com/tutorial/grovers-algorithm) tutorial.\n", - " - Explore the [Operator API](/api/qiskit/qiskit.quantum_info.Operator#operator) reference.\n", - "" - ] - } - ], - "metadata": { - "anaconda-cloud": {}, - "celltoolbar": "Tags", - "description": "Use the Qiskit quantum information module to construct and manipulate operators", - "kernelspec": { - "display_name": "Python 3 (ipykernel)", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.11.4" - }, - "title": "Operators module overview", - "varInspector": { - "cols": { - "lenName": 16, - "lenType": 16, - "lenVar": 40 - }, - "kernels_config": { - "python": { - "delete_cmd_postfix": "", - "delete_cmd_prefix": "del ", - "library": "var_list.py", - "varRefreshCmd": "print(var_dic_list())" - }, - "r": { - "delete_cmd_postfix": ") ", - "delete_cmd_prefix": "rm(", - "library": "var_list.r", - "varRefreshCmd": "cat(var_dic_list()) " - } - }, - "types_to_exclude": [ - "module", - "function", - "builtin_function_or_method", - "instance", - "_Feature" - ], - "window_display": false - } - }, - "nbformat": 4, - "nbformat_minor": 4 -} \ No newline at end of file diff --git a/translations/ja/build/pulse.ipynb b/translations/ja/build/pulse.ipynb deleted file mode 100644 index b529c053d4..0000000000 --- a/translations/ja/build/pulse.ipynb +++ /dev/null @@ -1,1033 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Pulse schedules\n", - "\n", - "## Overview\n", - "\n", - "Most quantum algorithms can be described with circuit operations alone. When you need more control over the low-level program implementation, you can use _pulse gates_. Pulse gates remove the constraint of executing circuits with basis gates only and let you override the default implementation of any basis gate.\n", - "\n", - "Pulse gates let you map a logical circuit gate (for example, `X`) to a Qiskit Pulse program, called a `ScheduleBlock`. This mapping is referred to as a _calibration_. A high-fidelity calibration is one that faithfully implements the logical operation it is mapped from (for example, whether the `X` gate calibration drives $|0\\rangle$ to $|1\\rangle$).\n", - "\n", - "A schedule specifies the exact time dynamics of the input signals across all input _channels_ to the device. There are usually multiple channels per qubit, such as drive and measure. This interface is more powerful, and requires a deeper understanding of the underlying device physics.\n", - "\n", - "It's important to note that pulse programs operate on physical qubits. A drive pulse on qubit $a$ does not enact the same logical operation on the state of qubit $b$. In other words, gate calibrations are not interchangeable across qubits. This is in contrast to the circuit level, where an `X` gate is defined independently of its qubit operand.\n", - "\n", - "This page shows you how to add a calibration to your circuit.\n", - "\n", - "**Note:** Not all providers support pulse gates." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Build your circuit\n", - "\n", - "Let's start with a very simple example, a Bell state circuit." - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXEAAADuCAYAAADPwDeGAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAeZ0lEQVR4nO3de1iU5d4v8O/AcJKDcnRQRMDAEEVItEAzUfCMuiSrraXvrrR2y60uTexyrW2HvbYmmmu92bK0tFq9vUaFthQPiUmKvKZ5wAxQPADKYagRkvNhDu8fxGyRQZlhTvfw/VxXF85z/E0M37mf+7mf55FoNBoNiIhISHaWLoCIiAzHECciEhhDnIhIYAxxIiKBMcSJiATGECciEhhDnIhIYAxxIiKBMcSJiATGECciEhhDnIhIYAxxIiKBMcSJiATGECciEhhDnIhIYAxxIiKBMcSJiATGECciEhhDnIhIYAxxIiKBMcSJiATGECciEhhDnIhIYAxxIiKBMcSJiATGECciEhhDnIhIYAxxIiKBMcSJiATGECciEhhDnIhIYAxxIiKBMcSJiATGECciEhhDnIhIYAxxIiKBMcSJiAQmtXQB1JlGowGamy1dhn6cnCCRSCxdhc3QaDRQqVSWLkMv9vb2/AxYAEPcGjU3Q/nUIktXoRfpl58Czs6WLsNmqFQqpKenW7oMvSQnJ0MqZaSYG7tTiIgExhAnIhIYQ5yISGAMcSIigTHEiYgExhAnIhIYQ5yISGAMcSIigTHEiYgExhAnIhIYQ5yol6ipqUFlZSXkcjmqq6vb7tGjhyNHjkChUJioOjIUb3RAZKMUCgWys7Nx9epVFBUVobq6usP8Pn36IDg4GCEhIRg7diyCgoK63NbevXuRlpaGjIwMrFu3Dj4+PiaunrqLIU5kYwoKCnDw4EGcPXv2vq3thoYG5OXlIS8vD/v370doaCimTZuG2NjYDncjbA9wAPjll1+Qm5uLhIQEk78P6h6bD3GFQoHU1FTs2bMHpaWl8PX1xdy5c7F+/XosW7YMu3btwtatW7F06VJLl0omolKpceDELew9VoLbvzXD2ckeI0I98eLcofD37WPp8oymsbERn3/+OY4ePdppnqurK4KCgtC3b19IJBI0NDSgpKQEVVVV2mWuXr2Kq1evIisrC0uWLIGvr2+HAAeA+fPnM8CtjE2HeG5uLqZNmwa5XA5XV1cMGzYM5eXlePfdd3H9+nXtBzgqKsqyhZrIccUvSDz1Pd4eFomVQx7WuYzj/i8x3c8f3zz6uJmrM4+PvynEG++fx82K+g7TvzpShLc+uIAnE4Px3tpYePcT+za6N27cwJYtWzr0WXt6emLSpEkYO3YsZDKZznt9V1dX4+zZs8jMzMTNmzcBAJcuXcLq1asRHR2NU6dOaZedP38+Zs2aZfo3Q3qx2RBXKBRISkqCXC7HqlWr8Prrr8Pd3R0AkJqaijVr1kAqlUIikSAyMtLC1ZIpvPXBBby+7XyX85UqDb44fAPnC27j+MfTIfMRs1V+5coVvP3222hsbAQAODk5Yf78+Zg0adID7+/t6emJxMREJCQkIDc3Fx9++CGqqqrQ1NTEABeEzY5OWbZsGUpLS7F06VJs3rxZG+AAkJKSgpEjR0KpVCIoKAgeHh4WrJRM4YtD1+8b4HcrLLmD2cuOQq3Wb7SGNSgpKekQ4KGhodi0aROmTJmi1wMaJBIJoqOjsXnzZgwePLjDvLFjxzLArZhNhnhBQQHS0tLg4+ODDRs26Fxm1KhRAICRI0d2mF5UVIRZs2bB3d0dnp6eWLhwIW7fvm3ymsl4NBoN/t+HF/Va58zPv+LoD2Umqsg0WltbsXXrVm2AR0ZG4i9/+Qv8/PwM3ua3336LkpKSDtPOnz/PoYVWzCZDfPfu3VCr1ViwYAHc3Nx0LuPi4gKgY4jX1tYiPj4epaWl2L17N3bs2IHs7GzMnDkTarXaLLWbQoNKBUVzs87/bNHJ85X4+Vr1gxe8x7a0AhNUYzrp6ekoLS0FAAQFBWHlypVwcnIyeHv3nsRsH3LY2NiI7du36z2unMzDJvvEjx07BgCIj4/vcpn2D//dIb5jxw6UlZXhxIkTCAwMBAAEBAQgLi4O+/btw5w5c0xXtAm9dSUPb13Js3QZZnM4p9Sg9Q6dLIVGoxHiYb8VFRXYt28fgLYHFL/yyitw7sEzTrsahfLqq6+iqqoKly5dwg8//IDY2Nge107GZZMh3n44eG/fXjulUomcnBwAHUM8IyMD48aN0wY4AMTGxiIkJAT79+83OMRjYmIgl8u7vbyLnR3yo4z3x/JiYAiSBwzSOW/aD8eNso+wsDA0WsnRym99pgPOj+q9XkurGgGDgiGB0gRV6cfR0bHLrkAAyMzM1B4dzpkzp8NnVl+6Ary9D/zFF19EamoqAODw4cP3DfGwsDC0tLQYXEdvJ5PJcPbsWb3Xs8kQr69vG07W3ld4r7S0NCgUCri7uyM4OFg7PT8/H/Pmzeu0fEREBPLz8w2uRy6Xo6ys+/2tfeztgSiDd9fJQ25umOTb33gb1KG8vBwNKpVJ99FtsmrAkEapRoXyspIHL2cG9+sWaW5uxvHjbV++Dg4OmDp1qsH7uV+AA0B0dDQCAgJQWlqKK1euoKSkpMvGUXl5OZpttIvOmtlkiMtkMlRXV+P8+fOdWg4VFRVYvXo1gLYTQXcfOldXV6Nfv36dtufl5YUrV670qB59uNiJd6piwIABVtMSb3S4g6oHL9aJg6ocfgMHGr0eQzg6OnY57+LFi9qGSlxcXIeRV/p4UIADbaNWJk+ejF27dgEAcnJyugzxAQMGsCXeA/rmRDubDPGEhAQUFBRg48aNSExMRFhYGADgxx9/xHPPPac9026ui3z0PUTSNDVB+dQiE1VjGoWFhZD0oE/WmFpb1Rg8NQ0Vvzbotd7OjQvwXNIbpilKT0qlEunp6TrnXb9+XfvvmJgYg7bfnQC/ex/tIX7jxo0ut1lYWKjXsEYyDvGafN2QkpICb29v3Lp1CxERERgxYgRCQ0MxZswYhISEYOLEiQA6Dy/09PTEb7/91ml7VVVV8PLyMkfpZAQODnb449Pheq3j79sH8yYHP3hBK1BUVKT9d0hIiN7r6xPgQNvfRfsRalFREUepWBmbDPGAgABkZ2djxowZcHZ2RnFxMby8vLB9+3YcOHAAhYWFADqHeHh4uM6+7/z8fISH6xcKZFlrno/ErAndO9nn1keKfe8mwNlJjFZkeXk5AMDNzU3vxoW+AQ60dam0d6HU19fjzp07elZMpmSTIQ60BXJGRgZqa2tRW1uL06dPY8mSJaivr0dxcTHs7OwwfPjwDuvMnDkTJ0+e1A4/BIDTp0/j+vXrSEpKMvdboB6QSu3w1TsTseTJobjfiMGQAHec+HgGYiJ8zVdcD/Xt2xdeXl7w8/PTazjkvn379A7wdt7e3vD09ET//v2hspYT2AQAkGh62bHR6dOn8dhjj2Ho0KG4fPlyh3k1NTUYMWIEfHx88Oabb6KpqQkpKSnw9fXFqVOnYGemE44i9olLv/zUavrE71VcVosdX1/B3mPFKCy+A7UGcHK0Q/qWSZg6NgD29tbXlrlfn7ihcnNz8c4776C1tdUk90JJTk5mn7gFWN+n18QuXboEoHNXCgB4eHjg2LFj8Pf3xzPPPIMXX3wRcXFxyMjIMFuAk/EFDXTH+uUxKPjXk9pbz/r0c8aM8YFWGeCmEhUVhVWrVuHZZ5/lvVBsSK/72rxfiAPAkCFDkJGRYc6SiMwmKirKZm+93Fv1nmbI7x4U4kREIul1LfH2+6oQEdmCXtcSJyKyJQxxIiKBMcSJiATGECciEhhDnIhIYAxxIiKBMcSJiATGECciEhhDnIhIYAxxIiKBMcSJiATW6+6dIgQnJ0i//NTSVejnPk9nJ/3Z29sjOTnZaNvbtD0NtfX1cHd1xeqXnu702hjs7e2Nsh3SD0PcCkkkEsBKH7BA5iGRSIz6gAUNALWm7adUKu30msTF7hQiIoExxImIBMYQJyISGEOciEhgDHEiIoExxImIBMYQJyISGEOciEhgDHEiIoExxImIBMYQJyISGEOciEhgDHEiIoExxImIBMYQJyISGEOciEhgDHEiIoHxkR5EZJU0Gg1UKpWly+g2e3v7tqdymRlDnIiskkqlQnp6uqXL6Lbk5GSLPOqO3SlERAJjiBMRCYwhTkQkMIY4EZHAGOLUa6jVGqg1GgBtIx+IbAFHp5DNulz0G/Z+V4Jz+Qqcy1eguLxOO69C0YjHF2Vg1DAfPP5IfyRNCISjg70FqyUyDEOcbIparcHe74qxLa0Ax85UdLmcRgOcvFCJkxcq8e+f56G/twsWJw/FK0+Hw9+3jxkrJuoZdqeQzSgqrUXC4kN4ctWx+wa4LpW3G/HXHbkIn5OOj78pZHcLCYMhTjbh039dxYjkPcj6Ub/wvted2hY8vy4bM5ceQXVNs5GqIzIdhjgJ751PL+Hf/s8J1DcqjbbNg9mlmPD8Qfxa1Wi0bRKZAkOchPZ+WgFefeeMSbb9U2EVprz8LWrqWkyyfRKLUqlEdXW1pcvohCc2SVi5l29j2cZTJt3Hhcu38adNp7HzzcdNuh8yjebmZty4cQM3btxAUVERqquroVQqIZVK4enpiZCQEAQHB2PIkCFwdHTscjtKpRJ/+9vfcOvWLaxbtw4+Pj5mfBf3xxAnIbW0qrDoLyegVOp3AvLH3bMg8+kDuaIBo//Hvm6ts2tvIZ5MCMK0xwcZUipZQHl5OTIzM3H8+HE0NDR0udzJkycBAK6urpgwYQISExMhk8k6LNMe4OfOnQMAbNy4ERs3boSdnXV0ZFhHFSamUCiQkpKChx56CM7Ozhg0aBCWL1+O+vp6vPDCC5BIJHjvvfcsXSbp4e+f5eGnwiq915P59EFAf1fIfPQbRrjkrRy0tIpzW9Teqq6uDtu2bcPKlStx6NCh+wb43err63HgwAGsWLEC27dv1653b4A7Ojpi4cKFVhPgQC9oiefm5mLatGmQy+VwdXXFsGHDUF5ejnfffRfXr19HVVVbEERFRVm2UOo2pVKN977IN+s+Syvrsfe7Ejw9NcSs+6Xuu3DhAnbs2NGh39rBwQGPPfYYwsPDERwcDJlMBgcHB7S2tqKiogI3btxAQUEBzpw5g9bWVgBAVlYWLl68iMWLF+Po0aMdAnz16tUYMWKERd5fV2w6xBUKBZKSkiCXy7Fq1Sq8/vrrcHd3BwCkpqZizZo1kEqlkEgkiIyMtHC11F0Hsm/hlrze7Pv9xxf5DHErlZmZiV27dmnH97u4uGDu3LmIj4+Hm5tbp+WlUilCQkIQEhKChIQE1NTUICsrC3v37kVTUxOqqqqwceNG7fLWGuCAjXenLFu2DKWlpVi6dCk2b96sDXAASElJwciRI6FUKhEUFAQPDw8LVkr6+Gz/NYvsN/t8JYrLai2yb+rad999h507d2oDfOTIkdi8eTOSkpJ0BrguHh4emD17NjZt2oSIiIgO86RSqdUGOGDDIV5QUIC0tDT4+Phgw4YNOpcZNWoUgLZferv20B8zZgycnJws8rglur8zP/9qsX3/mKew2L6psytXruCjjz7Svk5KSsJrr70Gb29vg7bn6ekJZ2fnDtNUKhX69LHeWzHYbIjv3r0barUaCxYs6PLb2MXFBUDHEL927RrS09Mhk8kwevRos9RK3ffL7UaLdKW0O5fPELcWzc3NeP/997Ut8BkzZmD+/PkGN7zuPYnZfvJSo9Hg/fff1/aZWxubDfFjx44BAOLj47tcprS0FEDHEB8/fjwqKiqwb98+JCQkmLZI0lvedctebJF3zfou9uitvvrqK8jlcgBAaGgoFixYYLQAd3R0REpKCoKDgwG0ZcWePXuMU7iR2eyJzZKSEgDA4MGDdc5XKpXIyckB0DHETTF0KCYmRvtho55pdAgD3BfonNc+Bvx+ZD4u2p+3Mp/pcrmuxpEf+e4EAgKe16Ni6/CH/7kCrm4eqJBXICAgoNNra+To6NhlV2h9fT2OHDkCoG0Eyssvv2zw366uAG/vA/f09MTatWuhUqlw+PBhzJ49u1N3S7uwsDC0tBh+da9MJsPZs2f1Xs9mQ7y+vu2Qu7FR970v0tLSoFAo4O7urv22NRW5XI6ysjKT7qPXcPcG3HXPah8D3h1Se7tuL3u3luYmIX+XapVK+7OsrKzTa2vk5OTU5bzjx49rAzM+Ph4DBw40aB/3C3CgrRE4fvx4ZGVlobGxESdPnuzyCL28vBzNzea/aZrNhrhMJkN1dTXOnz+P2NjYDvMqKiqwevVqAEBkZKTJT17eewUYGa5Z6o6ueqXligdf2CHzcYHU3g5KlRpyRdc3t+pqW86OdvA2MDAsyc7eXvtz4MCBnV5bo/tdBt/eXQoAkydPNmj7Dwrwu7eflZWl3W9XIT5gwIAet8QNYbMhnpCQgIKCAmzcuBGJiYkICwsDAPz444947rnnoFC0RYE5LvIx5BCJdPu1qhF+E/5T57zuXEZ/K/MZBPR3hVzRiEGJX+i9/xX/ax42LE/Vez1LW/+Pz1FTVw9/mT9KS0s7vbZGSqUS6enpnabX1dVpax4yZIhB3UHdDXAACA4ORmBgIG7evImioiI0NTXp7FIpLCyEVGr+SLXZE5spKSnw9vbGrVu3EBERgREjRiA0NBRjxoxBSEgIJk6cCKBjfzhZP18vFwyS6d8NYiyjwq3nxke9VVFRkfbfoaGheq+vT4Dfux+NRoPi4mK992lKNhviAQEByM7OxowZM+Ds7Izi4mJ4eXlh+/btOHDgAAoLCwEwxEX06Ahfi+179HCGuKXdHaIhIfpdQWtIgAPocN7s7i8Ra2Cz3SkAEB4ejoyMjE7T6+rqUFxcDDs7OwwfPtwClVFPLEwKxdeZxWbf7xMxMgwe0MVZVTKburr//8BrfS7qMTTA791P+6AJa2HTId6VvLw8aDQahIWF6bwS6+uvvwYA5Ofnd3gdFBSEmJgY8xVKOk1/PACB/q64WWHeP6ZXng436/5It0mTJiEyMhItLS0IDAzs9nolJSX46aefAOh/L5QhQ4ZgzZo1cHR0hJ+fn0F1m0qvDPFLly4B6LorZd68eTpfL1q0CJ988olJa6MHs7e3w7L5ESZ7oo8ugf6u+MPEILPtj7rm5+dnUJAOGTIEq1atwtatW7FixQq97oXi4eGB6OhovfdpDgxxHfikc+u3bH4E/vPgdZwvuG2W/X34+jg4ONjsKaReIyoqClu3brXqe6Hoq1d+Kh8U4mT9HBzs8PH/HQ8HqX4fYbmiAaWV9d0aU95ucfJQTI6zzqsaSX+2FOBAL22J332hAIkrMswL2/4ch8Vvnuz2Ot19JFu7mAgfvPPqGH1LIzKbXtkSJ9vxYvJQ/D3lUZNsO/phbxzaNgXurl1fOUhkaQxxEt7yZ4fjPzY8AXdXB6Ntc9aEQGTtnA4fT903OyKyFgxxsgkLZjyEn/fMRWLsgB5tx9PDEf+x4Ql88+8J6OvOFjhZv17ZJ062KdDfDd9+MBX7v7+JbWkF+Pa/un93voF+ffDSvIfx0pMPw8/bxYRVEhkXQ5xsikQiwaz4wZgVPxjXbtbgm2MlOJevwLkCBa7fqoVa3TZ8tJ+7I6If9saoYT54/JH+mP74IEj1HOlCZA0Y4mSzHgr0wKv/1vGCjtZWNeztJbCz47NTyTYwxKlX4QU7ZGv4iSYiEhhDnIhIYAxxIiKBMcSJiATGE5tEZJXs7e2RnJxslG1t2p6G2vp6uLu6YvVLT3c5rSfsf3/4tLkxxInIKkkkEqM9eFgDQK1p+9m+TV3TRMTuFCIigTHEiYgExhAnIhIYQ5yISGAMcSIigTHEiYgExhAnIhIYQ5yISGAMcSIigTHEiYgExhAnIhIYQ5yISGAMcSIigTHEiYgExhAnIhIYQ5yISGAMcSIigTHEiYgExhAnIhIYQ5yISGAMcSIigTHEiYgExhC3Aps2bUJsbCw8PT3Rr18/jBs3DocPH7Z0WUT3dfDgQURFRcHJyQlBQUHYsmWLpUsyqxMnTmD27NkYPHgwJBIJ/vrXv1qkDoa4FTh27Bief/55ZGVl4cyZM4iLi8PMmTORk5Nj6dKIdDp79ixmz56NadOmITc3F2+88QbWrl2LDz74wNKlmU1dXR2GDRuG1NRUyGQyi9UhtdieSevQoUMdXqempuLw4cPYs2cPxo4da6GqiLq2ZcsWjB49Ghs2bAAAhIeHIy8vD2+//TZefvllC1dnHtOnT8f06dMBAGvWrLFYHQxxK6RWq1FTUwNXV1dLl0KCaW5pRUlZZafpSpVK+7OwqLTT67v19/FEX/f7f/ZycnLwwgsvdJg2depUbN68GaWlpQgICOjJ2+iRm2WVaGpp7TBN1/vt6v+Bi5MjBg3wM1O1PccQt0Lr16/Hb7/9hiVLlli6FBKMg4MU2Wcu4mpxmc75DY1N2PXlwS5f9/Nww4rnn3zgfioqKjp1IbS/rqiosGiIV92pxRf7j+mcd+/71TXt2TmJGGTSCo2LfeJWZtu2bVi/fj2+/vpri/4hkJjsJBI8OX0CXJydDFp/3vQJcHZyNHJV5hU17CFEPhxi0LqPDA/D8KHBRq7ItBjiVmTz5s1YvXo19u3bh4SEBEuXQ4Lq6+6KOYn6n0sZN3oEhgwe0K1l/f39IZfLO0yrrKzUzrO0OZPHwcOtj17r9PNww6yEOBNVZDoMcSuxbt06vPnmmzh48CADnHps5LCHMDJ8SLeX7+/jiSnjR3d7+bFjx+Lbb7/tMO3w4cMYPHiwVRxB9nFxxpPTJ3R7eQmAp2aIeRTCELcCK1aswKZNm/DZZ59h6NChkMvlkMvluHPnjqVLI4HNnjwOHm4PPjlub2eHp2bGw0Ha/VNkf/rTn3DmzBn8+c9/xuXLl/Hpp59i69ateO2113pSslGFBQcg9pGIbi07bnQkQgK7dxTSrq6uDrm5ucjNzUVLSwvkcjlyc3Nx7do1Q8o1mESj0WjMukfqRCKR6Jy+aNEifPLJJ+YthmzK1aJS7LznRN69powfjfjYaL23feDAAaxduxaXL1+GTCbD8uXLsXLlSkNLNYmWViW2fpKOX6u6bhD19/HE0kV/0OtLDAC+//57xMfHd5r+xBNP4Pvvv9e3VIMxxIls3L6jOfivc3k65w0e2B8vzU+CnZ3tHpTfqvgF73/2L6h1RJ29nR3+uOgPGODnbYHKjMN2f3M26ssD3+PEmZ8sXQYJZOoTj8LXq1+n6Y4OUjw1I96mAxwABvn7YWLcIzrnJT4eI3SAAwxxoch/rcL5nwvh4izeyReyHEcHKZ6eGQ87u47ddjMnxcHb08NCVZlXfGw0Bvn7dpgWFCDD+DGRFqrIeBjid1GpVPjss88wefJk+Pr6wsnJCYGBgZg6dSo++ugjqH6/wstSvss5B6++7ngkIsyidZB4Avx9MSlulPZ1+EOBGB051IIVmZe9ffvJW3sAgKOjA+bNmGATRyHivwMjqampQWJiIhYuXIjMzEw4Ojpi5MiRUKvVOHLkCBYvXoza2lqL1Sf/tQqXrhQhPi4a9vb8tZH+JsRGYZC/H1xdnDF36vguT6jbKl+vfpge/xgAIGliLLz72cZRCE9s/m7evHnaqyT/+c9/djjrXFlZiZ07d2L58uUG3c9k66d7UFvX2KP6GpqaoFKp4e7qgrZRrUT6U6nVUKvVeo/EsBUajQYtrUo4Okit7kvM3c0F/3vRXL3XY4gDOHfuHGJiYiCVSnHhwgUMHz7cqNtf/4/PUVNXb9RtEpFt8XBzxdo/LtB7vd75dXyPb775BgAwY8YMowc40PYN2xNshRPZPkNzgiEOID8/HwAQGxtrku0bcojUTv5rFf6+62skTxuP0ZEPG7EqIrIFDHG0ndQEgL59+5pk+z3pE29oaoJEIkFm9llkZp8zcmVEZC0M7RNniAPw8Gg7S22qe5XU1jX2uE+8pq7BSNUQkS1hiAOIiIjAnj17cOrUKZNs39C+LvaFE/UehuYER6cAuHDhAh555BE4ODggNzcXw4YNs3RJ7Asnom7hVSMAoqOj8dRTT6G1tRXTpk3D8ePHO8yvrKzEhg0bUF9vvmGCvDqTiLqDLfHf1dTUYPbs2dpbSA4cOBADBgxARUUFysrKoNFoUF1djX79+pm8FrbCiai72BL/nYeHB44ePYqdO3diwoQJaGhowMWLF2FnZ4cpU6Zg586dcHd3N0stzk6OGD8mkq1wInogtsSJiATGljgRkcAY4kREAmOIExEJjCFORCQwhjgRkcAY4kREAmOIExEJjCFORCQwhjgRkcAY4kREAmOIExEJjCFORCQwhjgRkcAY4kREAmOIExEJjCFORCQwhjgRkcAY4kREAmOIExEJjCFORCQwhjgRkcAY4kREAmOIExEJjCFORCQwhjgRkcAY4kREAmOIExEJjCFORCQwhjgRkcAY4kREAmOIExEJjCFORCQwhjgRkcAY4kREAmOIExEJjCFORCQwhjgRkcAY4kREAmOIExEJjCFORCSw/wZqhNdGerWw6wAAAABJRU5ErkJggg==", - "text/plain": [ - "
" - ] - }, - "execution_count": 1, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "from qiskit import QuantumCircuit\n", - "\n", - "circ = QuantumCircuit(2, 2)\n", - "circ.h(0)\n", - "circ.cx(0, 1)\n", - "circ.measure(0, 0)\n", - "circ.measure(1, 1)\n", - "\n", - "circ.draw('mpl')" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Build your calibrations\n", - "\n", - "Define a calibration for the Hadamard gate on qubit 0.\n", - "\n", - "In practice, the pulse shape and its parameters would be optimized through a series of calibration experiments. For this demonstration, the Hadamard will be a Gaussian pulse. You _play_ the pulse on the _drive_ channel of qubit 0.\n", - "\n", - "For more information on calibrations, see the [Qiskit Experiments tutorial.](https://qiskit.org/ecosystem/experiments/tutorials/calibrations.html)" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [], - "source": [ - "from qiskit import pulse\n", - "from qiskit.pulse.library import Gaussian\n", - "from qiskit.providers.fake_provider import FakeValencia\n", - "\n", - "backend = FakeValencia()\n", - "\n", - "with pulse.build(backend, name='hadamard') as h_q0:\n", - " pulse.play(Gaussian(duration=128, amp=0.1, sigma=16), pulse.drive_channel(0))" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Let's draw the new schedule to see what we've built." - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABFcAAADeCAYAAAD4ru/+AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAABSfUlEQVR4nO3dd3xN9x/H8deVJcsOYsUWahN7772rZlEdqNWq0Ynqr6pVqqhWUdRWtar2qr1iRwS1t0gkMiW5vz80t27vDYmbYbyfj0cfj+Y7zvncc++Nez/5fL/HYDQajYiIiIiIiIiIyFNJl9YBiIiIiIiIiIg8z5RcERERERERERGxgZIrIiIiIiIiIiI2UHJFRERERERERMQGSq6IiIiIiIiIiNhAyRURERERERERERsouSIiIiIiIiIiYgMlV0REREREREREbKDkioiIiIiIiIiIDZRcSSKDwYDBYCBTpkwEBwdbHfPVV19hMBgYNWpUqsb2LLlw4QIGg4E6deqkaRw9e/bEYDCwbdu2NI3jWTB79uxke13GH+vR/1xdXcmVKxd16tRh+PDhnDx50vagnwF16tTBYDBw4cKFtA4l0WJjY1myZAkffPABtWrVwtXVFYPBQM+ePROcExwczIIFC+jcuTMFChTA0dERd3d3KleuzKRJk3jw4EGCcwMCAujVqxdeXl6meT4+PkycOJHo6Ogkxx8UFMSgQYPw8vLCyckJLy8vBg8enODv3Kf1PD63IiIiIvJsUnLlKd27d48JEyakdRgiaapQoUL06NGDHj160Lp1a0qWLMnJkyf5+uuvKVmyJN26dSMkJCStw3wsg8FA/vz50zqMZBUaGsprr73Gt99+y44dOwgPD3/inPHjx9O1a1cWL15M5syZadeuHZUqVeLo0aMMHjyYevXqWT3O7t27KVeuHLNnz8bV1ZU2bdpQrVo1Tp48yfvvv0+jRo2IiYlJdOx37tyhUqVKfP/999jb29OmTRvc3d2ZNGkSlStX5u7du0m6Fkn1rCSGRUREROT5ouTKUzAYDKRPn55JkyYRFBSU1uGIpJkaNWowe/ZsZs+ezYIFC9iwYQO3bt1i9erV5M+fn/nz59OqVavHVj086+bOncupU6fInTt3WoeSaA4ODnTv3p1Jkyaxe/dufvnllyfOcXV1ZdiwYVy4cAFfX18WLVrE5s2bOX78OPny5WPnzp188cUXFvP69+9PeHg4Y8eOxc/PjyVLlrB+/XrOnj1LwYIF2b59O7/++muiYx88eDBnz56lXbt2nD59msWLF3PixAkGDBhAQEAA77//fpKuhYiIiIhIalBy5SmkS5eOt99+m5CQEMaPH5/W4Yg8UwwGAy1atGDfvn3kypWL7du3M23atLQO66nly5cPb29vHBwc0jqURHN1dWXu3LkMHDiQqlWrkj59+ifO+fDDDxk3bhz58uUzay9SpAhfffUVAAsXLjTru3//PocPH8bFxYVhw4aZ9eXKlYv+/fsDcODAgUTFff36dRYuXIijoyM//PAD9vb2pr5vvvkGDw8P5s2bx61btxJ1PBERERGR1KLkylMaMWIEzs7OTJ48mcDAwETNuX79Ol9//TW1a9cmd+7cODo6kjNnTtq1a5fgl4/8+fNjMBgAmDp1KiVLlsTZ2ZkCBQrw9ddfYzQaAfD19aVly5ZkyZIFNzc3WrduzcWLF60e02g0snDhQurVq0fmzJlJnz49xYsXZ9SoUYlaPpBUERERjBgxwrR/QuHChRk3bpwp9kft2LGD/v37U7p0aTJnzoyzszPe3t6MGDHisfstzJo1i7Jly+Ls7EzOnDnp2bMnN27cSHB8Us+zbds2054Vt27donfv3uTMmRNXV1dq1KjB7t27TWN//PFHSpcujbOzM3nz5mXUqFHExcUlaww3btzgzTffJE+ePNjb2/Pdd9+Zxu3atYsGDRrg7u5OpkyZaNy4Mfv27UvwWqSU7Nmz8/nnnwPw/fffm/U9aS8ca0t1Ht0zJiAggE6dOpEjRw7SpUvHihUrADh79iyjRo2iatWq5MyZE0dHR/LkycPrr79OQECA1eMBXLx40Wz/mEeXhDxuXw4/Pz+6du2Kp6cnjo6O5M6dm9dff53Tp09bjH30+bt79y59+/bF09MTJycnSpYsyaxZsx5zNdNWmTJlALh27ZpZu4ODA+nSPfmfkaxZsybqPOvWrSMuLo6aNWuSI0cOsz4nJydatmxJbGwsf/75ZyIjf7j/zPjx4/H29iZ9+vTkzZuXQYMGWV2uNmrUKAoUKADA9u3bzV4Tj9uvRkREREREyZWn5OnpSZ8+fQgNDeWbb75J1JyVK1cyfPhwbt68SenSpWnbti25cuVi+fLlVK9enQ0bNiQ497333mPo0KF4eXnRoEEDAgMDGT58OKNGjWLXrl3UrFmTa9eu0bBhQzw9PVm1ahX169cnIiLC7DhxcXF07dqVLl26cODAAcqWLUuzZs0ICwtj9OjR1K1b12JO/B4E8V9EkyI6OppGjRrx888/U7FiRerWrcvVq1cZMWIEn376qcX4oUOHMnPmTJydnalfvz7169cnJCSEcePGUaNGDe7fv28xZ8SIEfTu3Rs/Pz9q1apFrVq1WLt27WP3Z3ia88DDjTarVq3K5s2bqVOnDqVKlWLXrl00bNiQkydPMmjQIN5//33y5s1LgwYNuHfvHqNHj062xwpw+/ZtfHx8WLNmDVWrVqVp06a4uLgA8Mcff1CnTh02b95MiRIlaNq0KZcvX6ZWrVrs2bMnwecppXTs2JF06dJx7tw5rly5kizHPH36ND4+Puzfv5+6devSsGFDU1XJjBkz+PzzzwkLC8PHx4dWrVqRIUMGfv31V3x8fDh27JjpOIULF6ZHjx7Aw0qP+L1jevToQZMmTZ4Yx+bNm6lYsSILFizA09OT9u3bkz17dn799VcqVqzIjh07rM4LDg6matWqrFq1ipo1a1K9enX8/f3p3bs3M2bMsBg/atSoNP9y//fffwOQM2dOs3YnJydq1apFeHg4X3/9tVnftWvXmDp1qmmJUmIcPXoUgPLly1vtj29/9Hl8km7dujF06FAuX75Mo0aN8PHxYc6cOdSrV4+oqCizsWXLlqV9+/YA5MiRw+w1UaNGjUSfU0REREReQkZJEsBoZ2dnNBqNxhs3bhhdXFyMrq6uxlu3bpnGjB071ggYR44caTb32LFjxhMnTlgcc926dUZHR0djoUKFjHFxcWZ9Xl5eRsCYK1cu49mzZ03tp06dMjo5ORldXFyM+fPnN06bNs3UFxUVZaxXr54RMM6aNcvseF9//bURMNapU8d4/fp1szm9e/c2Asbhw4ebzTl//rwRMCbl5fLonNq1axvv3btn6jtw4IDRzs7O6OLiYgwNDTWb9+effxqDg4PN2iIjI41vv/22ETCOHj3arG/Pnj1Gg8FgzJgxo9HX19fUHhoaaroGgHHr1q02nWfr1q2mY3Xr1s0YHR1t6hs5cqQRMJYoUcLieTp58qTR0dExWR7rozG0bdvWGBERYdYfEhJi9PDwsHje4+LijMOHDzfN/e/r8mn88ssvRsDYo0ePJ44tXLiwETCuX7/e1NajRw+rz0s8wOjl5WX1nICxf//+xpiYGIt5e/bsMf79998W7bNmzTICxrp16ybqXI+qXbu2ETCeP3/e1Hb//n1jjhw5jIBxypQpZuMnTJhgBIx58uQxe44eff46depkjIyMNPUtX77cCBjz5ctncf7411dirnVCFi5caNMxGjRoYASMAwYMsOjz9/c35s2b1wgYixcvbnz11VeNjRs3Njo7OxsLFixo3LBhQ6LP07ZtWyNgnDRpktX+FStWGAFju3btEnW8RYsWma7ro8/fzZs3jSVLljQ9H4/2xf/uql27dqLjFhERERFRciWJHk2uGI1G45AhQ4yAcciQIaa2hJIrj9O1a1cjYDx27JhZe3xyZcaMGRZz4r+I1KhRw6Jv5cqVFl+mHjx4YMyWLZvR1dXVeOPGDYs54eHhxpw5cxozZ85sjI2NNbVfuXLFWKxYMWOxYsUS/Xjiv6CkS5fO6O/vb9HfokWLx365thabvb29sXz58mbtr7/+uhEwfvbZZxZzTp48aTQYDMlynvgvxhkyZDDevXvXrC84ONh0nsc9T8kVg5OTk/HKlSsW8+ITCLVq1bLoi46ONubJkydNkitVqlQxAsZFixaZ2mxJrnh4eBjDwsKSHHP16tWNBoPBIqH1NMmV+GtdtWpVq3MqVKhgBIzz5s0ztT36Grpz547FnPgv+4+ex2g0GidPnmwsVqyYccSIEU9+kAmwJbkybdo0I2DMlCmT8erVq1bHXLx40Vi+fHlTsgIwGgwGY+/evROcY03Dhg2NgPHnn3+22r9x40YjYGzYsGGijlerVi2rSWaj0Whcu3atkisiIiIikmz+3S1Qnsrw4cP58ccfmTZtGkOHDrXYJ+C/oqKiWLduHfv37+f27dtER0cDcPz4cQDOnDlDqVKlLOY1atTIoq1gwYJP7Lt+/bqpzdfXlzt37tCwYUOrcTo7O1OhQgXWrFnDmTNnKFasGAC5c+fG39//sY8rIV5eXqbjPKpo0aIW8cW7evUqq1evxt/fn5CQENN+JY6Ojpw5c8ZsbPzSi06dOlkcp0SJEpQpU4YjR45YjS0p54lXsWJFMmfObNaWMWNGsmTJQmBgYKKfC1tiKF++vNU71zzuWjg4ONChQwezvVlSi/GfvXWeZlmZNQ0aNDAtg7Lm/v37rF69miNHjnD37l3TnYquX7+O0Wjk3LlzCS47Saz4a921a1er/d26dePQoUPs2LHDYkyFChWs7kFStGhRTpw4wfXr1832m+nfv79pY9jUtmPHDgYNGoTBYGDWrFnkypXLYsyWLVto3749efPmZcuWLVSsWJHAwEBmzpzJl19+yebNm9m/fz8eHh6pGvuDBw/Yu3cvAK+99ppFf5MmTcicObPu+CYiIiIiyULJFRt5eHjw7rvv8vXXX/PVV18xceLEBMceP36cVq1aWd0YM15oaKjVdmtfpt3c3J7Y9+ieAvHn3bhx4xO/6N65c8dqUiSp8uTJY7Xd3d3dIj6ACRMmMGLEiETfujd+g00vLy+r/fnz57eaXEnqeeIldDteNzc3AgMDE/1c2BLDf+/mEi8x1yIt3LlzB4AsWbIky/ESevzw8It+p06duH37doJjEnqPJUX8tU7omsa3X7161aIvqe+JtHLixAlat25NdHQ033//PW3btrUYc/fuXV599VUePHjA2rVrTa9/d3d3xowZw71795g8eTLjx49n3LhxTzxn/HsloY21w8LCTMd/ksDAQKKjo/Hw8EgwGefl5aXkioiIiIgkC21omwyGDh2Km5sbP/74o9XqBHj41/uOHTty4cIF+vTpw5EjR0yVCkajkQ8//NA0zprH3ZEjMXfrAExVEfEbeT7uv8Te3eNJEhsbwN69exkyZAguLi7Mnj2bCxcuEBkZifHh8jU8PT2TJSZbzvOkx5PYx2tLDIm5re6zIiQkxLQZaokSJRI1x9qdlR6V0OO/f/8+HTt25M6dO3z22Wf4+fkRFhZmeo917twZSPg9lpwel7xMynsirZw/f55GjRoRFBTEqFGjGDBggNVxa9as4e7du1SpUsVqYvHVV18F4K+//krUeeMTZwltfhzfnlACUUREREQkrahyJRlky5aNAQMGMHbsWMaOHWu1dN7f3x9/f38qVqzItGnTLPrjv4CmpPi/mHt7ezN79uwUP19SLV++HID//e9/pru4xIuIiLB6a2VPT08uXLjAxYsXKV68uEW/tdtRP815kltKxBCfkEnoFtwJtaekJUuWYDQaKVq0qNn7wtHREcDqHZEuX778VOfasWMHgYGBdOjQgdGjR1v0J+d7LP6xJHRN46vEEqp0epZdv36dhg0bcv36dQYNGsTIkSMTHBuf7MiYMaPV/vj2xFaHxN/y2dfX12p/fHvp0qWfeKysWbPi6OjI7du3iYiIwNnZ2WLMpUuXEhWXiIiIiMiTPPt/Qn1ODBkyBHd3d6ZPn251KUD8lwtrSwKCgoLYuHFjisfo4+NDxowZ2b59e4K3KE5Lj7tGS5cutVpxULNmTeDhl/j/8vf3t7ok6GnOk9xSIobHXYuYmBiWLVuW5GPa4tatW3z22WcADBo0yKwvPhEUEBBgMe9p3wuPu6Znz55N8Au7g4MDMTExSTpX/LVeuHCh1f558+aZjXteBAUF0bhxY86dO0evXr0eu8wR/r018+HDh4mNjbXoP3DgAJD4JWlNmjQhXbp07Nixg1u3bpn1RUVFsXr1auzs7GjWrNkTj+Xg4EDlypUB6++JDRs2WP09GJ/4S+prQkRERERebkquJJOsWbMycOBAoqKimDlzpkV/4cKFSZcuHVu2bDHbqDQyMpI+ffqkSrLDycmJYcOGERoaSrt27az+Jf/q1av8+uuvFm3e3t54e3unaHzxm9zOnDnTbB8SPz8/hg8fbnVOnz59APjuu+84evSoqT0sLIwBAwZYTVI8zXmSW0rE8Oqrr5I1a1a2bdvGnDlzTO1Go5GRI0cm+Ff6CxcuYDAYkm3DWaPRyJ9//knlypW5fv069erV4+233zYbU7t2bQCmTZtGYGCgqf3IkSOmhExSxV/T33//3WzPleDgYHr37p3g3ja5cuXi5s2bBAcHJ/pcHTt2JEeOHOzcuZPp06eb9X3//fccPHiQ3Llz0759+6Q/kP+YMmUK3t7epqWDKSU8PJzmzZtz/PhxOnbsyM8///zE10STJk1wcnLi/PnzfPrpp2ZLuk6fPm16Ljt06GA2L6HH5OnpSefOnYmOjqZfv35mCY5hw4Zx+/ZtunXrRvbs2RP1mPr27Qtg8fq/c+cOQ4cOtTonW7ZsODg4cO7cOasJIxERERERa7QsKBkNGTKEyZMnExISYtGXPXt2evfuzc8//0yZMmWoV68ezs7O7Nixg9jYWHr27JkqS3VGjBiBv78/v/76K8WLF6dcuXIUKFCA6OhoTp8+jZ+fH6VLl6Z79+6mOQ8ePOD06dMpHluvXr349ttvWb16NcWKFcPHx4e7d++yfft22rRpw/79+y2WYVSrVo0PPviA8ePH4+PjQ7169UzVOU5OTrRs2ZLVq1fbfJ5n4bE+ibu7OzNnzqR9+/b07NmTadOmUbBgQY4ePcqZM2d46623+Pnnny3mxX8htrdP+q+DnTt30rNnTwCio6MJDAw03ZUKoHv37kydOtXi2HXr1qV27dps376dEiVKUL16de7cucO+ffsYOHAg48ePT3IsFStWpGHDhmzcuJGiRYtSp04dALZt20a2bNlo3bo1K1eutJjXqlUrJk+eTPny5alWrRrp06enWLFiCX75BnB1dWX+/Pm0bNmSd955h+nTp1O0aFH8/f05fPgwbm5uLFy4MFn2x7lz5w6nT59OcD+nhPTr189UrROfwFqzZg1VqlQxjYm/mw7Axx9/zJ49e7Czs8Pe3p7evXtbPe6jv6c8PT0ZP348AwcOZOzYsSxevJhy5coRGBjInj17iIqKolmzZqbXSGIe03fffcfevXtZtmwZ3t7eVKxYkZMnT3LixAmKFCnChAkTEn0NOnfuzPLly1m6dCklSpSgfv362Nvbs2XLFgoWLEiVKlXMrgE8rFxp0qQJq1evpkyZMpQvXx5HR0eqV69Or169En1uEREREXm5qHIlGWXOnJnBgwcn2D9t2jS+/fZbChQowObNm9mxYwcNGjTg4MGDqbZBY7p06Zg7dy4rV66kYcOGnD9/nmXLlrFz507Sp0/P0KFDmTVrVqrE8l9Zs2blwIEDdOnShejoaFatWsXVq1cZM2ZMgssvAL755ht+/vlnihcvzrZt29i2bRsNGzZkz549Vu9Q87TnSU4pFUPr1q3ZunUrdevW5cSJE6xZswZPT0+2b99OtWrVrM6Jr/h5/fXXk3y+c+fOMWfOHObMmcOKFSs4fvw4JUqUYNiwYZw4cYK5c+davbOLwWBg5cqV9OnTB4PBwJ9//sndu3eZNGkS33zzTZLjiLdy5Uo+/vhjPDw8WLt2LYcOHaJTp07s3buXTJkyWZ0zduxY+vfvT0xMDIsXL2bmzJmsWbPmieeqX78+Bw4coHPnzly5coXffvuNGzdu0K1bNw4ePJjmS4L8/PzYt28f+/bt4+zZswCmBFb8f4+KX1YVGxvLggULTM/rf//7r/79+7NlyxbatGlDeHg4K1euxNfXl3LlyjF16lRWrVqVpMRdtmzZ2L9/PwMGDCA6Oprly5dz7949Bg4cyP79+5N816kFCxYwbtw4cufOzbp169i7dy9dunRhy5YtODk5WZ0zY8YMunfvTmBgIAsWLGDmzJls3749SecVERERkZeLwZgaG0yIyDNr4MCB/PjjjwQEBKTZ7ZpFRERERESeZ6pcEXnJbd26lV69eimxIiIiIiIi8pRUuSIiIiIiIiIiYgNVriSC0WjkflhYqtyiV0RERERERESeL7pbUCKEhYdTt1FzVv++FFdXl7QOR0REREREREQS4O7mmurnVOWKiIiIiIiIiIgNlFwREREREREREbGBkisiIiIiIiIiIjZQckVERERERERExAZKroiIiIiIiIiI2EDJFRERERERERERGyi5IiIiIiIiIiJiAyVXRERERERERERsoOSKiIiIiIiIiIgNlFwREREREREREbGBkisiIiIiIiIiIjZQckVERERERERExAZKroiIiIiIiIiI2EDJFRERERERERERGyi5IiIiIiIiIiJiAyVXRERERERERERsoOSKiIiIiIiIiIgNlFwREREREREREbGBkisiIiIiIiIiIjZQckVERERERERExAZKroiIiIiIiIiI2EDJFRERERERERERGyi5IiIiIiIiIiJiAyVXRERERERERERsoOSKiIiIiIiIiIgNlFwREREREREREbGBkisiIiIiIiIiIjZQckVERERERERExAZKroiIiIiIiIiI2MA+rQMQERERsdXJi3aper5XvGJT9XwiIiLybFNyRURERJ4JqZ0gsYUtsSoxIyIi8uJRckVERERSzfOUQEkpj7sGSryIiIg8n5RcERERkWSlBMrTU+JFRETk+aQNbUVEREREREREbKDKFREREUkyVaekPlW1iIiIPLuUXBERERGrlEB5fijxIiIikra0LEhERERERERExAaqXBEREXmJqTrlxaeqFhERkZSnyhURERERERERERuockVEROQFpsoUeZwnvT5U2SIiIpI4qlwREREREREREbGBKldERESec6pOkZSi/VpEREQSR5UrIiIiIiIiIiI2UOWKiIjIc0DVKfKsUVWLiIjIv1S5IiIiIiIiIiJiA1WuiIiIPCNUnSIvClW1iIjIy0aVKyIiIiIiIiIiNlDlioiISCpSdYq87FTVIiIiLyJVroiIiIiIiIiI2ECVKyIiIslM1SkiT0dVLSIi8rxS5YqIiIiIiIiIiA2UXBERERERERERsYGWBYmIiDwFLf0RSV1aMiQiIs8yVa6IiIiIiIiIiNhAlSsiIiJWqDJF5PnxpPerKltERCSlqXJFRERERERERMQGqlwREZGXlqpTRF4O2q9FRERSmipXRERERERERERsoMoVERF5oak6RUQeR1UtIiKSHFS5IiIiIiIiIiJiAyVXRERERERERERsoGVBIiLy3NPSHxFJCVoyJCIiiaXKFRERERERERERG6hyRUREnguqThGRZ4mqWkRE5FGqXBERERERERERsYEqV0RE5Jmh6hQReRGoqkVE5OWjyhURERERERERERuockVERFKNKlNE5GX3pN+DqmwREXk+qXJFRERERERERMQGqlwREZFkpeoUEZGnp/1aRESeT6pcERERERERERGxgSpXREQkyVSdIiKS+lTVIiLy7FJyRURErFICRUTk+aHEi4hI2tKyIBERERERERERG6hyRUTkJabqFBGRF5+qWkREUp4qV0REREREREREbKDKFRGRF5yqU0REJCGqahERSR5KroiIPOeUPBERkZTwpH9flHwREfmXkisiIs8BJVBERORZo6oXEZF/ac8VEREREREREREbPNeVKwaDwexne3t7MmbMiKenJxUqVKBly5a0bt0ae/uEH2ZERARjx45l0aJFXLp0iSxZstCkSRPGjBlD7ty5U/ohiIiYqDpFREReFKpqEZGXjcFoNBrTOoinFZ9c6dGjBwBxcXHcu3ePgIAATp8+jdFopHDhwsyfP59KlSpZzI+MjKRu3brs3bsXT09PatasyYULF9i/fz8eHh7s3buXggULcj8sjLqNmrP696W4urqk6mMUkReLEigiIiIJU+JFRJKDu5trqp/zua5ciTd79myLtnPnzvHRRx+xZMkS6taty65duyhbtqzZmC+++IK9e/dStWpVNmzYgJubGwATJkxgyJAhvPHGG2zbti3lH4CIvFCUQBEREXk6qngRkefVC1G58riH8OabbzJz5kzKlSuHr6+vqT06Oprs2bNz7949fH19KVeunNm8MmXKcOzYMQ4ePEgxb29VroiIGSVQREREnh1KvIjIo1S5kgK+/fZbFi1axOHDh9m5cyc1atQAYNeuXdy7d49ChQpZJFYAOnTowLFjx1i9ejXFvL1TO2wRSQVKkIiIiLwYbPk3XYkZEUkOL3xyJWPGjDRt2pTffvuNrVu3mpIrR48eBaB8+fJW58W3Hzt2LHUCFZEUoQSKiIiIPI6WIolIcnjhkysAZcuW5bfffuPUqVOmtkuXLgGQJ08eq3Pi2y9evJjyAYrIEylJIiIiIqntaT9/KCkj8vJ5KZIr2bJlAyAoKMjUdv/+fQBcXKzvoeLq+nCNVmhoaApHJ/JiURJEREREXnYp9XlISRuRZ9dLkVyJ3/A2fgPcp3X8+DHSp0+fHCGJpJrLwZnTOgQRERERSQZ/n0/d8+XNFPTkQSLPoJo1qqf6OV+K5MqdO3cAyJIli6kt/rbL4eHhVueEhYUB4O7ubmpr0qQxcbHKFouIiIiIiIg8q9LipsgvRXLl8OHDAJQoUcLUli9fPgCuXLlidU58u5eXl6lt3br1qlwRERERERERETMvfHLl3r17rF+/HoC6deua2suUKQOAr6+v1Xnx7aVLlza1lSpVGldX63u0iIiIiIiIiMjLKV1aB5DShgwZQlhYGD4+PlStWtXUXr16dTJmzMi5c+c4cuSIxbzffvsNgJYtW6ZWqCIiIiIiIiLyHHphkyt///03r732GjNnzsTV1ZWZM2ea9Ts6OtK/f38A3n33XdMeKwATJkzg2LFj1K5dmwoVKqRq3CIiIiIiIiLyfHkhlgX17NkTgLi4OEJCQggICMDf3x+j0UiRIkVYsGABpUqVspj3ySefsGnTJnbv3k2RIkWoWbMmFy9eZN++fXh4eDBr1qxUfiQiIiIiIiIi8rwxGNNiG91k8t9bK9vb25MhQwZy5cpFhQoVaN26Na1atcLOLuH7zEdERDB27FgWLFjA5cuXyZIlC02aNGHMmDHkyZMHgPthYdRt1JzVvy/VnisiIiIiIiIizzB3N9dUP+dznVxJLUquiIiIiIiIiDwf0iK58sLuuSIiIiIiIiIikhqUXBERERERERERscEzm1xZt24dZcuWJX369BgMBoKDg9M6JBEREREAVq5cSdkypbl69WpahyIiIiLPgGfybkGBgYF07NiRV155halTp+Lk5ISra+qvmRIREZGUcfXKFebOncuePXu4desmALly5aKijw8dOrxK0aJF0zhCERERkcR7JpMrBw4cIDQ0lDFjxtCgQYO0DkdERESS0V/btzNs2FDs7e1p2qwZxYoWw5DOwIXzF9i8eRNLlyxhzZ9ryZUrV1qHmqAWLVrQpEkTHB0d0zoUEREReQY8k8mVW7duAZApU6Ynjg0PD8fFRXfwEREReR5cvnyZ4cOHkStXLn6a/jMeHh5m/YMGD2bJ4sWkS/fMrlwGwM7ODjs7u7QOQ0RERJ4RSfrkMmrUKAwGA2fPnqVnz55kypSJjBkz0qtXL8LDw83GxsTEMGbMGAoVKoSTkxP58+fno48+Iioq6rHnqFOnDj169ADAx8cHg8FAz549TX0lS5bk0KFD1KpVCxcXFz766CMAoqKiGDlyJIULF8bJyYm8efMybNgwi/NFRUXx3nvv4eHhgbu7O61ateLKlSsYDAZGjRqVlMshIiIiSTT7l1+IiIhg9OjPLRIrAPb29nTp2pWcOXMCEBAQwKeffkLzZk2p5FOR+vXqMvKzzyz2Yvv0009o2rSJxfGmTfuBsmVKm7Xt2bOHnj16UKNGdapWqUzrVi35/vtJZmMWLlhAu7ZtqVK5EjVrVKdL5078+ecaU7+1PVe2bt1K//7v0rBBfXwqVqBF82ZM/+knYmNjzY7du/cbtG/XlnPnzvFm795UqVyJhg0a8MsvsxJ3EUVEROSZ81SVKx07dqRAgQKMHTsWX19fZsyYQfbs2Rk3bpxpzJtvvsmcOXPo0KEDQ4YMYd++fYwdO5ZTp06xfPnyBI/98ccfU6xYMaZPn87nn39OgQIFKFSokKk/MDCQpk2b0qlTJ7p160aOHDmIi4ujVatW7Ny5k7fffpvixYtz/PhxJk6cSEBAACtWrDCLa968eXTp0oVq1aqxZcsWmjdv/jSXQURERJLor7/+Im++fJQqXfrJg4G9e/Zw9coVWrduQ9ZsWTl37hy/L1vGuXNn+XXefAwGQ5LOf/bsWQYO6E+RokXp17cfjo6OXLp8iaNHjpjGLFv2G+PGfUWDhg3p0rUr0VFRnDkTwPHjx2nWLOHPDKtWrsTF2YVu3bvj4uzC/gP7+eGHqdwPu8/77w8xGxsSEsq7/fpSr359GjVuxKaNG5n03XcUKVKEGjVqJukxiYiISNp7quRKuXLlmDlzpunnwMBAZs6caUquHD16lDlz5vDmm2/y888/A9CvXz+yZ8/O+PHj2bp1K3Xr1rV67IYNG3L16lWmT59O06ZNqVixoln/jRs3+PHHH3nnnXdMbfPmzWPTpk1s376dGjVqmNpLlixJnz592L17N9WqVePo0aPMmzePfv36MXXqVADeffddunbtyrFjx57mUoiIiEgi3b9/n9u3b1G3bj2LvpCQELMKD2dnZ9KnT0/H117j9X8qWuOVLlWaESOGc/iwL+XLV0hSDHv37uHBgwdMnfoDmTNntjpmx44dFCpUiPHjv03Sscd+9RXp06c3/fxqx458kWEMSxYvpn//AWb7s9y+fYsvvvgfLVq2BKBt23Y0bdKYFcuXK7kiIiLyHHqqBc19+vQx+7lmzZoEBgYSEhICwJ9//gnA+++/bzZuyJCHf7VZs2YNT8vJyYlevXqZtS1dupTixYvj7e3NnTt3TP/Vq/fww9vWrVvN4ho4cKDZ/MGDBz91PCIiIpI4YWH3Aazulfbmm72pW6e26b/FixcBmCUroqKiCAoKMlW9nDp1KskxuLtnAGDb1q3ExcUlMMadm7duceLEiSQd+9FYw8LCCAoKolz58kRGRnL+/HmzsS4uLjRv0cL0s4ODAyVLluTKlStJOqeIiIg8G56qciVfvnxmP8f/5ScoKIgMGTJw8eJF0qVLR+HChc3G5cyZk0yZMnHx4sWnDBdy585tsTP/mTNnOHXqlNW12/DvBrnxcT26zAigWLFiTx2PiIiIJI6LiyuAxT5tAJ9+8ilh4eEEBgby8Ucfmtrv3bvHjz9OY/26ddy9e9dszv3Q+0mOoXHjxiz//XdGjx7F999PolKlytSrX5+GDRuaNtHt1esN9u3dS7euXcibLx9Vq1aladNmlCtX7rHHPnv2LFOnTOHAgf3cv28e2/37oWY/58iRw2JJk3uGDAQEBCT5MYmIiEjae6rkSkK74xuNRrOfk7oOOjGcnZ0t2uLi4ihVqhQTJkywOidv3rzJHoeIiIgkjbu7Ox4eHpw9d9aiL74a5dENYgGGDf2Ao0eP8nqPHngX88bZxQVjXBz9+vUlzvhv5YkB65854mLNq1PSp0/PrF9+4cCB/ez4awe7d+9i/fp1LKtUiWk//oSdnR0FCxZk5cpV/PXXX+zatYvNmzaxZPFi3n7nHfr1e9fqeUJCQniz9xu4urrSt18/8ubJi6OTE6dO+THpu++IizP/jJTQ3ZCMVltFRETkWZcit2L28vIiLi6OM2fOULx4cVP7zZs3CQ4OxsvLK1nPV6hQIY4ePUr9+vUfm9CJj+vcuXNm1SqnT59O1nhERETEuho1a7L89985fvw4pUqVeuzYkJAQ9u3bR9++/XjnkSXJ1ipgM2TIQGhoqEX79evXLNrSpUtH5cpVqFy5CjCUGTN+ZsrkyRw4cIAqVaoA4OziQuMmTWjcpAkPHjzg/ffeY+aMGfTu/SZOTk4Wxzx48CDBwcF8O2ECFSr8u1/c1ata5iMiIvIyeKo9V56kWbNmAHz33Xdm7fGVJcl9d56OHTty9epV0+a5j4qIiCAsLAyApk2bAvD999+bjflvnPCwZNnf3587d+4ka6wiIiIvs549e5E+fXpGjfyMwMBAywGPVMHGV3cY/1PPMX/+PItpefLm5X5oqNmymtu3b7Nlyxazcffu3bOYW6yYNwDR0dEAFrd5dnBwoGChghiNRmJiYqw+Lrv4WB8J9cGDByxZvMTqeBEREXmxpEjlSpkyZejRowfTp08nODiY2rVrs3//fubMmUObNm0SvFPQ0+revTtLliyhT58+bN26lerVqxMbG4u/vz9Llixh/fr1VKxYkbJly9K5c2d++OEH7t27R7Vq1di8eTNnz1qWJ+/fv5+6desycuRIPhg6NFnjFREReVl5eXkx9qtxfDhiOK1bt6JZs2YULVoMjEauXr3K2rV/ki5dOnJkz4GbmxsVKlRg9i+/EBMTQ/bs2dmzew9Xr121OG6TJk2Y9N1E3n9vMJ27dCEyMpKlS5bg5eVltvHtTz/9iO+hQ9SsWQvPXJ7cvXuXJYsXkyNHDtOeKn37vEPWbNkoW7YsWbNk5fz5v1m0aBE1a9bE1dXV6uMqU7YsGTJk4NNPP6FL5y5gMLDmj9UWiSERERF5MaVIcgVgxowZFCxYkNmzZ7N8+XJy5szJhx9+yMiRI5P9XOnSpWPFihVMnDiRuXPnsnz5clxcXChYsCCDBg2iaNGiprGzZs3Cw8OD+fPns2LFCurVq8eaNWu0L4uIiEgqqVu3Lkt/W8bcuXPYs2cPK1eswGAw4OnpSc2aNenwakfT8t0vx37FuK++YvGiRRiBqlWrMnXqDzRsUN/smJkyZWLCxO/4dvw3fDdxIrlz52bAwEFcunTRLLlSp3Ydrl27xooVKwgODiJTpsxUqFiBvn374e7uDkD7Dq+y9s81zPv1V8LDw8mRIwedu3ThrbfeTvAxZcqUie8nT2HCt+OZOnUK7u4ZaN68OZUqV6Zf3z4JzhMREZEXg8H4311oX1IGg4GRI0cyatQoi777YWHUbdSc1b8vxdXV8vaRIiIiIiIiIvJscHezXmmaklJkzxURERERERERkZeFkisiIiIiIiIiIjZQckVERERERERExAYptqHt80Zbz4iIiIiIiIjI01DlioiIiIiIiIiIDZRcERERERERERGxgZIrIiIiIiIiIiI2UHJFRERERERERMQGSq6IiIiIiIiIiNhAyRURERERERERERsouSIiIiIiIiIiYgP7tA7geWA0GgEIDw9P40hERERERERE5HEMBnB1ccFgMKTaOZVcSYTw8AgAXuvWI40jEREREREREZEn2fDHcjJnzpxq51NyJRE8smXlj+VLcXFxTtXMl63CwsJp0fZV/li+FFdXl7QORyRV6fUvLzu9B+Rlpte/vMz0+peXXfx7wN7BIVXPq+RKIqRLl44c2T3SOoyn5urqgpura1qHIZIm9PqXl53eA/Iy0+tfXmZ6/cvLLrULI7ShrYiIiIiIiIiIDZRcERERERERERGxgZIrLzBHBwfeeqMHjqm81kzkWaDXv7zs9B6Ql5le//Iy0+tfXnZp9R4wGOPvMywiIiIiIiIiIkmmyhURERERERERERsouSIiIiIiIiIiYgMlV0REREREREREbGCf1gFI8ouMimL23Pls3LyFGzdvksE9A1WrVKLPW2+Q3cMjrcMTsUlkZCR79x9gx649HDl6nBs3b5AunR158+Smbu1adO30Ki4uLmZzfKrXeeJxK5Yvx7TJE1MoapHk807/QfgePppg/6Rvx1GtSuXHHqPfoPc5cNAXgD+WLyFH9uzJGqNISjp5yp95CxZx5OhxgoKDcXZOT+GCBWnZohktmzXBYDCYxl64eInde/Zx8tQpTvr5c/XaNQBW/raQXJ6eafUQRB7rlP9p9h04yEk/f/xOneLW7TsAHNi17bHzVq9Zy2/LV3L+wgUc7B0o+UoJ3ujZnTKlSlodHx0dzcIlv7Fx81YuXb5MTEwsHtmy4lOxAj27dyVP7lzJ/dBEniipr//tO3axddtf+AcEcCcwkPv3w8jg7k5x72J0aNeamtWrJeq8M36Zy08zZgEw+rOPaNa4UZJjV3LlBRMVFUW/Ae9x/KQf2bJmpVaNGly/cYPVa9ayc9ceZk3/Qb8o5bm2bsMm/jduPAAF8ntRq0Z17oeFcfz4SabP/IUNmzbz09RJZMmc2TSnedPGCR5v1569BAffo2yZ0ikeu0hyqlenFs7OzhbtT0qir16zlgMHfTEYDGhPe3nebNm6nY9GjiY2Ng7vYkUpW6Y0wcHBHD56jCPHjrP/wCG+GPWJafyy5StZtHRZGkYsknQzZ89l+45dSZrz7XeTWbR0GU5OTlSpVJGo6Gj2HTjIvgMH+OqL0dSpVdNsfFRUFH3/+c7g7u5G+bJlcXR05HRAACtXr2HT5q1MmzyR4t7FkvOhiTxRUl//f65bz9btOyhYID8lS5TAxcWZ69dvsHvvPnbv3UfP7l15t89bjz3GhYuX+GXurzZ/NlJy5QUza86vHD/pR6mSrzBl4jemv+DPX7SE7yb/wJix4/hpyqQ0jlLk6dnb29O2dUs6d+xAgfxepvY7dwIZPHQEpwPOMGHSFL4Y9ampb9QnH1o9VmhoKBs3bwGgaeOGKRu4SDIb1L9vkv/yHhQUzKQp06hSyYeLly5x/cbNFIpOJPnFxMQw7tvviI2NY8zIT2jSqIGp7/yFi7zVdwDrN26iTcvmVKxQDoDChQryerfOvOLtTfHixRjw3lAuXrqcVg9BJFFKlXyFwoUKUaK4NyWKF6N1h05ERz9IcPy+AwdZtHQZGTNmYNZPP5Avbx4Ajp04SZ/+g/n8y3FUKFcWd3d305zlq/7g+Ek/ShT3Zup343FzcwMgNjaWCZOmsGTZciZO/oHpU/W9QVJXUl//b/TozofDhpApY0az9hMn/Xh30BDmzFtA44b1KVyooNX5RqORL7/+Fjc3N0q9UiLJic1Hac+VF8iDBw9Ysmw5AMOHDDZbGtG1U0eKFC6E7+GjnPI/nVYhitisRbMmfDRsiFliBSBbtqwMGzIYgK3b/+LBg4R/CcfbtHU70dEPKPVKCdMHEZEX2beTphAZGcnwf94rIs+TC5cucTcoCK98ec0SK/CwkrHJP0lyP39/U3vrls0Z0Pcd6tWtjWfOnKkar8jT6tGtC33eeoNaNaqRLWvWJ45fsGgp8PBL5qOfZ0qXfIV2bVoRGnqflX/8aTbn8JGHy0u7dnrVlFgBsLOz45033wDA75Q/Iqktqa//YkWLWCRWAEq+UoKG9etiNBo56Hs4wfkrVq/h8JGjDO7fz+y98DSUXHmBHD12gvv3w8iTOxfFihax6K9XpzYAO3btTu3QRFJF0cKFAIiOfsC9eyFPHL92/UYAmjZJ+ppKkefN7r37WL9xE716dCNPntxpHY5Ikjk6OCZqXMYMGVI4EpFnR2RUFAd9H+6hVb9ubYv++gl8/ndIxPspY0a9l+T5Zm//cKGOg731BTt3AgOZ/MOP+FQsnyxV7FoW9AIJOHsWAO9iRa32exd7mHA5c/bvVItJJDVd+WejQnt7ezJkcH/s2Bs3bnLk6DHs7e1pWL9uaoQnkqxWrv6TeyEhpDMYyJcvL3Vq1iBnzhxWx0ZERDBu/ETye+Xj9a6dUzlSkeSRO5cneXLn4uKly6zbsMliWdC69RvJ4O5Ondo1H3MUkRfLxYuXiI5+QOZMmaxuTh7/+f/sfz7/V6lUkfUbNzF/0VKqValstiwoflPP1i2apXD0Iinn7Lm/2bh5K/b29lT2qWh1zLffTSYqKooRH7yfLOdUcuUFcvPmLSDhzQzj22/c1Bp7eTEtWvJw08KqlSvh6Pj4v8is3bAJo9FItSqVrZYSijzrZs351eznSVOm0bvn67zZ63WLsT/O+IVr12/w45TvcHBwSK0QRZKVnZ0doz75kPeGfcino79g/qIl5M2Tm6CghxvaFiyQn5Efj1DlirxUbsR//s9u/fO/s7Mz7u5uhISGEhYWjqvrw20DmjZuyJ59+9mwaQutOnSiTKmSODo64n86gMC7QXTv0onePS3/PRF5Vv21czdbtm0nJiaWmzdvcuzESezt7fh4+AdWK3Z37NrNpi3beLt3r2TbHkDJlRdIeEQEAOnTO1ntd3ZO/3BceHiqxSSSWnbt3suqP/7E3t6ePm+98cTx8UuCmjXRRrbyfClXpgytWzandMmSZMuWlZs3b7Fl63ZmzvmVn2bMwtXVhc4dO5jG+58OYPHS32jetDEVypVNu8BFkkGZ0qX4acokhn74Kf6nA/A/HQCAg4MDlXwqkDuXbq8sL5eIJ3z+B3BOn57Q0PuEh/+bXLGzs+Pzzz4mZ44czJ2/kJ2795rGexcrik/F8tjZ2aVs8CLJ6MzZs6xZu970s5OTE0MGD6CZleX/4eHhjPv2O/LlzUuPbslX0as9V0TkuXfh4kU++/x/GI1GBr7bh6JFCj92vP/pAM5fuIC7uxs1q1dLpShFkkeft96gWeNG5Mmdi/ROTnjly0uvHt0YP/YLAH6eNZvIqCjgYXn3F199g5ubG4P7903LsEWSxfqNm+n5Vh9y5PBg9s/T+GvTWpYtmkeLZk2Yv3AJfQe+T3R0dFqHKfLMCwkJpd+g91mybDlDBg9gzYqlbF67mvFffUFQcDCDPxjBhk1b0jpMkUTr3fN1Duzaxs4t61n46yxaNm/Kl+PGM2TExxY3uvjhpxncvHmLEUPfe2K1e1IoufICcXF2BiAyMspqf0RE5MNxj9xFSOR5d+v2bQa+P4yQ0FC6dOpo9hf7hMRXrdSvWydZf6GKpKUqlX0o7l2M0ND7nDzpB8DCJb9xOuAMA/v1IVOmTGkboIiNLl2+wqgvxpIpY0Ymfj2WV0oUx9nZmXx58/DRsCHUqF4V/9MBrFqzNq1DFUk1zk/4/A8QEWn5HWDC91PwPXyUvm/3ptOr7cnu4UGGDO7UrlmDr//3OUajkUlTfiAmJiZlH4BIMnNycqJwwYIMHzKY1zq0Y+euPSz+7XdT/0m/Uyz9fQXNmjTCp0L5ZD23lgW9QHLkeLiJ1a3bt632x7fnzGF9w0OR5829kBD6Dx7K9Rs3adm8aaL+Mh8bG2v6S0xy7Aou8izJlzcPp/xPcyfwLvBwPbHBYOCPtetZs2692djAuw/HfPjJKBwcHejRrQvVqlRO9ZhFEmvDpi3ExMRQtXIlq38oalivLjt37eHwkaN0aNs6DSIUSX054z//37L++T8iIoLQ0PtkcHc3LQl69LOQtTsMlSjuTS5PT65eu8aVq9fI75UvhaIXSVlNmzRi8W+/89eOXXTr/BoAu/bsJS4ujrPn/uad/oPMxl+4eAmAX+bMY+XqNVStXIme3bsm+nxKrrxAihZ+uBQifv3xf/mfPgNAkcIFUy0mkZQSHh7OoCHDOX/hAnVr1+Lj4R9gMBieOO/AQV/uBAbimTMH5cqUToVIRVJPSGgoAOnTpze1GY1GDh85muCc4/9UubRo2iRlgxOxUfwfiVz/uavJf7m6ugL/vg9EXgZeXvlwdHQgKDiYW7dvW9zYIv7zf+FHPv8HBQWblkm4uVp/P7m5PXw/her9JM+x+JtWBAUHW/QFnDmb4LwLFy9x4eIlPHPmTNL5lFx5gZQpXRI3N1euXL3G6YAzFCtaxKx/y7btANpjQp570dHRDBnxCSf9TlGlsg//G/1pojddW7vh4ZKgpo0bJioZI/K8CAoK5sjRY8C/t978acqkBMe3av8a12/c5I/lS6zevlPkWZM1SxYATvmfttrvd8ofgFxJ/DAs8jxL7+RExfLl2b13H5u2bKPLa6+a9W+28vk/QwZ3HBwcePDgAaf8T1OxQjmzOffDwrh46TJAkr9cijxLfA8fASBP7lymtrd79+Lt3r2sjh/1xVjWrF3P6M8+olljy41wn0R7rrxAHBwc6Ni+LQBfT5hk2j0cYP6iJZw5e47y5cpQ3LtYWoUoYrPY2Fg+HjmGg4d8KVemNN98OSbRt5aNjIxk2/YdADR9il+YImnt6PETbPtrB7GxsWbt165fZ+hHnxAREUmtGtWVLJEXUu2a1QE4fOQovy1fadZ3/MRJFi5ZCkA9K8scRF5kXTo9TKjMmvMrly5fMbUfO3GS5StX4e7uRusWzUztjo6OVK1cCYCJk6dy506gqS8qKopx4ycSGRlJmdIP70on8qwKCgpm+ao/iPxnX6FH7dt/kMk//ARAy2ZNUyUeVa68YN7o0Z39Bw5x7PgJ2r3WjbJlSnPjxg1O+J0ic6ZMfPrh8LQOUcQmS5YtZ9tfDxMkGTNm5KvxE62OG9y/r8UGntv+2kl4RAQlintr/bA8ly5dusznX44ja9YseBctipubGzdu3sDfP4Co6GgKFsjPxyM+SOswRVKEd7GidOv8GvMWLmbc+IksXbacggXyc/vOHY6f8CMuLo62rVtS2aeiaY7/6QDGPfLvxI0bNwEY+uGnOP6TmG/dsjltWrVI3Qcj8hg7d+9h5i9zTT8/ePBwU9leb/27t1zvXq9To1pVACr7VKTTq+1ZtHQZXXu+SWWfCjx4EMO+AwcBI599NBx3d3ezc7w3oB8n/PwIOHOWDp27U6rkKzg5OeJ36jS379whY4YMjBj6fso/WJH/SMrrPyIygi/HjWfCpCkUL1aU7Nk9iIiI5NLly6b9U7q89mqqJd2VXHnBODk5MW3Kd8yeO5/1GzexfcdOMmRwp0WzJvR56w39NVOee4+u/Y1Psljzdu+eFsmV+LsEaSNbeV6VfKUE7du25qTfKfxO+RMSGoqzc3qKFilM/Xp1aN+2NemdnNI6TJEUM6h/X0qXKsnvK1Zx6vRpLl66jKuLC+XLlqFNqxY0bljfbHxYWBgn/E5ZHOfRtfZVq1RK8bhFkiIoKNjq6/bRtqCgYLO+IYMHULRIYZYuW86+A4dwcLCnkk8Fevd8nTKlSlocK0+e3CyYM5O58xaye+8+Dh85ihEjObJn59V2bejRvYu+N0iaSMrrP0vmzAzs14dDh4/w9/nz+PmfxmiMI1vWrDRqUI92rVtSoXw5i2OlFIPRaDSm2tlERERERERERF4w2nNFRERERERERMQGSq6IiIiIiIiIiNhAyRURERERERERERsouSIiIiIiIiIiYgMlV0REREREREREbKDkioiIiIiIiIiIDZRcERERERERERGxgZIrIiIiIiIiIiI2UHJFREQkiQ4eOsywjz6jWesOVK3dgHpNWtC+U3dGfDKSJb/9zv3799M6RHkKh3wP41O9DqO+GJumcbzTfxA+1etw7fr1NI3jaX3+5Thq1m/C3aCgRM+ZPvMXfKrXYfWatUk61wcjPqZxi7aEh4cnNUwREZFkpeSKiIhIEvw8aw59B77H1u1/4ebmSo1qVans44OTkyNbt+/gm4nfc/7CxVSLZ9QXY/GpXodDvodT7ZxiG5/qdWjV/rW0DiNFnD33N2vWrufVdm3Ikjmzzcdr1f41fKrXSbD/zV49uBsUxNz5i2w+l4iIiC3s0zoAERGR58Up/9P8PGs29vb2jB0zkjq1apr13wkMZO36jbi7u6VRhPIiGP3JR0RGRZLdwyOtQ0myadNnki5dOrp1SZ3kkXexolSp7MP8RUvo1LE9mTJmTJXzioiI/JcqV0RERBJp6/YdGI1GGtSrY5FYAciWNSvdu3Qiv5dXGkQnL4qcOXOQ38sLe/vn629gN27eYufuPVSp7JMsVSuJ1bRxQyIjI1mzdn2qnVNEROS/nq9/tUVERNJQUHAwAJkzZUrU+OjoaJq16UBkZBRrV/6Gu7u7xZijx0/wZp/+lCtbhulTJwFgNBpZt2ETy1as5PLlq9wPu0+mTJnwypeXOrVq0rF9WwCz5RJ9BrxndtyVvy0kl6en6efde/ex5LflnDx1irCwcDw8slGnZg169ehm8df+UV+MZc3a9fw4eSIxsbHM/GUupwPO4OTkRK2a1Rncvy9ubm7cDQrix59nsXPXHu6F3KNwoUIM7PcOFcqXS9T1iRcTE8PK1WtYu2Ej5/4+z4PoB3h4ZKNsmdJ0bN+W4t7F2Lx1GyM+GUXjhvX5YtSnVo/zv3HjWbHqDz79aDitmjc1tUdERLBk2XI2b9nGpctXiI2LI0d2D3wqVqDTq+3xypc3UXEm5Rpas3rNWj7/chwA12/cNHv+ypcrw09THj7/7/QfhO/hoxbPoU/1OnjmzMHvi+cz+9cFrFm7jtu37+DpmZPuXTubHvOBQ77M/GUu/qcDSGeXjprVq/HewHetxhgTE8OK1Wv4c+16/j5/gZiYGPLly0uLZk3o2L5tkhI8q9f8SVxcHI0b1E9wzPYdu5jz63wCzp4jvZMT5cuV5d0+b1mMO+R72Ow1/ei18syZg1XLFpt+rlOzBk5OTqxY9QddO3VMdLwiIiLJSckVERGRRMqRPTsAW7b/Rc/Xuz7xr/OOjo40b9qEBYuWsHbDJlNS5FErVv0BQNtWLUxt30/9kXkLF+Po6EC5MmXIlCkjgYF3OXv2b65cuWo6TvOmjTl67DhXrl6jSmUfsmbJYjqGi7Oz6f8nT/uJufMW4uDgQInixciWNStnzp5jweKl/LVzFzN+nGI2N97Wv3by2+/LKfXKK1StUonjJ/1YuXoNl69cYdwXo3nj7XeJi4ulbJlSXL9+gxN+pxg4ZBhzZvxE4UIFE3VNIyIiGPTBCA4fOYqzc3rKlC6Fu5sb16/fYN2GTbi5ulLcuxi1a9Yga9YsbN3+F8H37lkkCsLDw9mwcTOurq40ql/X1H7nTiDvDh7C3+cvkMHdnfLlyuLo6MDVa9f5fcUq8ubJnajkytNew0flzZOb5k0bs2btepyd01OvTm1TX36vfIm6XgAffjqag76+VCxfjjy5c+N75Ahj/knauLo48/HIMZR6pQRVKvtw/MRJ/ly3gWvXrjP9h+8xGAym40RGRfHeByM46HuYjBkyUPKVEjg6OnLS7xQTv5/KId8jfDN2DOnSJa7QeceuPQBUKFfWav+y5Sv5avxEDAYDZcuUJlvWLJw46UfPt/pQs3o1s7FZs2ahedPGbNm2nYiISJo3bWzqy5TJ/Ll3cXGhhHcxDh89xpWr18iTO1ei4hUREUlOSq6IiIgkUpNGDZj963xu3rxFu45dqVO7JmVLl6K4dzEKFyqInZ2dxZx2rVuycPFSVqz6wyK5cj8sjE1btpHB3Z16dWoBEBUVxZJlv+Pq4sL8OTPJnevfyoWYmBiOn/Az/Tzqkw8Z9cVYrly9Rs9uXaxWjGzaso258xZSqGABvhk7hrx58gAPq2Omz5zNjF/m8O13k/ny85EWc5cuW8634/5HjWpVAQgLC6d3n3fxPXyUt98dTOlSr/DZR8NN1Q3Tps9k1pxfmbdgMaM+/TBR1/Tb7yZz+MhRypUtw7gvRpM5cyZTX+Ddu1y/fgMAe3t7WjVvxi9z5/Hnug10ee1Vs+Ns2LSF8IgI2rdtTfr06U3tn435H3+fv0CDenX59MOhuLi4mPquXb9OWNiT7zJjyzV8VNkypSlbpjRr1q4nU8aMjPokcdfoUddv3MTFxYXfF803XauDhw7Td+B7TPtpBg9iHjD+qy9Mz9n9sDB6v/MuR44d55DvESpW+Pc1MmnKNA76HqZh/bp8NGwIbm4P9woKCwvn45Gf89fOXSxfuZr2bVs/Ma7w8HACzpzBI1s2PDyyWYn7BhO/n4q9vT0Tvv6SqpUrAQ9f06P/9xVr1280G5/fy4tRn3yI7+EjREREPvFalSjhzeGjx/A9clTJFRERSRPac0VERCSR8uTOxYSvvyRHjuyEhYezZu16/jduPN16vUXD5q35avxE7twJNJvjlS8vFcqX48zZc5w85W/Wt37DJiIjI2napBFOTk4AhIWHEx39gNy5c5klVuBhgqFc2dJJinnWnF8B+GL0p6akAIDBYODt3j0pWqQwW7ZtJ/ifJU+PatywvulLOoCrqwtt/qmwuXX7Nh8MHmi2bKR7l9cwGAz4HjmSqNhu377DH2vX4ejowOhPPzRLrABkzZKFkq+UMP3ctnUL0qVLx4pVayyOtXL1w7ZHK4BO+p3iwEFfsmTOzCcjzBMrALk8PSlSuNAT47TlGqaE9wf1N7tWFSuUo1jRItwJDKRalcpmz5mbqyttW7cEMHte7gYFsWLVH+TIkZ3PPh5hSqzAw+f5kw+H4uDgwLIVqxIV0/kLF4mNjUuwCmjVH2uJio6mcYP6psQKPHxNDxk8wCwh9jTy53tY+RNw5qxNxxEREXlaSq6IiIgkQaWKFVi+eD5ffzmG9m1a4V2sKHZ2doSG3mfZ8pV07fkmFy5eMpvTvk0r4N8lQPFWWEkIZMmcmezZPQg4c5bJ037iytVrTx3r3aAgzpw9R768eShc0HKZjsFgoEypksTGxnHqdIBFf5VKPhZt8Qmf4t7FyJDBfA8ZNzc3MmRw507g3UTFd+jwEWJj46hauRKeOXM+cbxnzpxUrVyJ8xcucPT4CVP72XN/c8LvFMW9i1GsaBFT+/4DhwBo1KAerq4uFsdLDFuvYXKzt7e3uuwm/nl53HP26PNyyPcIMTExVK1cifT/JPYelS1rVvLmyc3Zc38TGRX1xLjuBgUBWN1XCODI0WMANGxQz6IvU8aMVKlU8YnneJwMGTIApFqCS0RE5L+0LEhERCSJHBwcqFu7JnVrP7xjUGhoKBs2beGHn2ZwNyiIbyZMYuqkb03j69R6uF/Iho2beW9AP1xcXPA/HYD/6QBKlXyFQgULmB1/1Ccf8vFnnzN33kLmzluIZ84clC9bloYN6lG9auVExxm/pObS5StmG4JaExx8z6LN2vKO+L1cslvpi++/dy8kUfHdvHULgNy5cydqPEC7Nq3YtWcvK1b9QZlSJYF/k1ZtHklSPXr8PEk4/n/Zeg2TW9asWawuP3P+53l53HMWHR1tart+4+HjWrHqD4uk33+FhISQ/gm3hb5/P+zhuVycrfbfvnMHeLgZrTWJSa49TnzyLDT0vk3HEREReVpKroiIiNjI3d2d9m1bky1bNj4Y8TGHDh8mMjLStNTh0f1CNmzaQptWLUxVK/9NCAD4VCjP70vms3PXHvbs28+hw0dYs249a9atp16dWoz73+eJiisuLg54+IXcWkXDo6x96U33yOan/2V4TF9Kql61MjlyZGfTlm0MGTwAB3t71q7fiIuz82PvUvO0bL2Gye1xz0li+uPFP66iRQo/cWmUo4PDE4/n5uYKQHh4RKLOn9zC/knuuLu7PWGkiIhIylByRUREJJn4/LNZaGxsHKGh9832kWjbugVz5i1gxeo1NGnUgPUbN1nc2eZRbq6uNGnUgCaNGgBw/MRJRnw6ii3b/mLX7r1Ur1blifFkz/6w2uBpN09NafF3X7p69Wqi59jZ2dGmZQt+mjGLdRs24eriQkhoKK1bNrdY+hN//CtJOP5/PevX8GnFP66ypUsx9P1BNh8v/s5ZISHWq5ayZc3KxUuXuX7jJgUL5Lfov37jpk3nDwkNBSBTIm+TLiIikty054qIiEgiGY3Gx/ZfvvLwS7yDg4PF7WLj9ws56XeKadNncv9+GE0aNUj0Rp6lSr5Cs8aNADh3/ryp3eGfqoKY2FiLOTmyZye/Vz7OX7jIxUuXE3We1FShXFns7NKxd98Bbty8leh5bVo2x87O7uGSltWWt7KOV8mnAvDPnYTCn3xXIGtS4hra29sTa+X5Sk0Vy5fDzi4dO3fvISYmxubjFSyQHzs7uwSvUdkyDzdi3rRlq0XfvZAQ9h04YHWe6fX9hBjP/7PPUdEihRMds4iISHJSckVERCSRfvx5JpOmTOPKFctKiFu3bzP2mwkA1KpRzfSl8FHt/tnYdsHipYD1hMCNGzdZvWYtkZGRZu1RUVEc8j0M/FuRAeCRLStAgl9qe/d8nbi4OIZ//BmnA85Y9Affu8fyJ+y5kVI8PLLRrEljoqKjGf3FWILvme9ZcjcoiBMn/SzmZcuWlVo1qnM64Ay+h49SpHAhXilR3GLcKyWKU7F8Oe4GBfHl198SEWG+ZOXa9eucPff3E+NM7mvokS0rgXeDCP2n2iItZPfwoGXzZly7foOPR35O4F3LTYgvX7nClq3bE3U8Z2dn0x2Lbt2+bdHfsnlTHB0dWLdhE/sOHDS1x8TEMHHSVCIiIi3mwMPnGhJ+fcfz8zsFQPmyZRIVr4iISHLTsiAREZFECg+PYNHSZcxbuJh8efNSsIAXjo6O3Lp1mxN+p4iJiSFvnty8P6i/1fnx+4XcvHnL4s428e6FhPD5l+P4esIkinsXI7uHB5GRERw7fpKg4GCKexczbaQLULN6NWb8Mpfvp0xj/4GDZMr4sGKmf793yJQxI00aNeDv8xf4Ze48Xu/9DkWLFCZP7lwYjUauXL3G2XPncHZ2tproSQ1DBg3g4qXLHPQ9TKv2r1GuTBlcXV24ceMm/gFnaN+mldntmOO1b9OKrdv/AqzvWxNv9Gcf0W/g+6zfuJm9+w5QpnQpHB0duHL1GgFnzjKof18KF7K8C9Cjkvsa1qpRncW//U63N96mdMlXcHJ0xCtfPrp37ZSo+cllyOABXL9+gy3b/mLPvv0ULVKYnDlyEBERyfkLF7h85Sq1a1anXt3aiTpejWpV8DvlzyHfIzRt3NCsL3cuTwb178c3EyYx8P1hlCtTmqxZs3DipB8hoaE0adSAdRs2WRyzVo3q+B4+Sr9B71OxfDmc06cnY6aMDOj7jmlMeHg4p/xPk98rH3ly57LtooiIiDwlJVdEREQSqXfP7hQvXoy9+w5w5uw5Dh89xv37Ybi5uvJKCW9q16hBh3atTXdu+S87OzvKly3D2vUbE0wI5Mmdm8ED+nHgoC/nL1zAz+8U6Z3Tk8vTk56vd6Vd65Y4Ojqaxhf3Lsbnn33M/EVL2Lv/IFH/3Db3jZ7dTYmWfu+8SZXKPixdtpyjx05w9tzfuLq6kN3Dg/ZtWlO/Xp3kvVBJ4Orqwo+TJ7JsxSrWbdjEkaPHiI2LwyNbVpo0akDzpo2tzitbphT29vbY2dnR9J99aazJ7uHBnBk/sXDJb2zZtp19Bw5ily4d2bN70KFta2pWr5qoOJPzGr7b5y2MRiPbd+5i4+atxMbGUr5cmVRPrqR3cmLSt+NYt2ETf6xdz5kzZznp50/mTJnImTMHTRs3opGVWycnpGXzZsycPZf1GzdbJFcAOrZvS3aPbMz5dQEn/E7h5OhIubKl6d/3bTZs2mL1mK91aEdISCgbNm1my7a/iImJwTNnDrPkyra/dhIVHf3YJJuIiEhKMxiftIBcREREkkVkZCTN2nQgNiaWP1cus9iAVRJv/cbNfDJqDM2bNn6hNpp93g398BN27NrDH8uXkC1r1lQ554D3hnLk2HFW/77YlFAUERFJbdpzRUREJJUsXbaC0ND7NG/aWIkVG8TExDBn3gIAXm3fNo2jkUe989YbGI1G5i1cnCrn8z8dwN79B+jaqaMSKyIikqa0LEhERCQFBd+7x5QffiIwKIjde/bh4uxMj+5d0jqs59L2HbvYvmMnJ/1O8ff5C9SpVYNXinundVjyiMIFC9K8aWOWLV/F6107m27RnFJm/DKHLJkz83oqL6kSERH5Ly0LEhERSUHXrl+ndYfOODg4ULhgAQb170uF8uXSOqzn0vSZv/DzrDlkcHenapXKDH1/IBkzZEjrsERERESUXBERERERERERsYX2XBERERERERERsYGSKyIiIiIiIiIiNlByRURERERERETEBkquiIiIiIiIiIjYQMkVEREREREREREbKLkiIiIiIiIiImIDJVdERERERERERGyg5IqIiIiIiIiIiA2UXBERERERERERscH/AcXZ36MXzirjAAAAAElFTkSuQmCC", - "text/plain": [ - "
" - ] - }, - "execution_count": 3, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "h_q0.draw()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Link your calibration to your circuit\n", - "\n", - "All that remains is to complete the registration. The circuit method `add_calibration` needs information about the gate and a reference to the schedule to complete the mapping:\n", - "\n", - "`QuantumCircuit.add_calibration(gate, qubits, schedule, parameters)`\n", - "\n", - "The `gate` can be either a `circuit.Gate` object or the name of the gate. Usually, you'll need a different schedule for each unique set of `qubits` and `parameters`. Since the Hadamard gate doesn't have any parameters, there is no need to supply any." - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": {}, - "outputs": [], - "source": [ - "circ.add_calibration('h', [0], h_q0)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Lastly, note that the transpiler will respect your calibrations. Use it as you normally would (our example is too simple for the transpiler to optimize, so the output is the same)." - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "['id', 'rz', 'sx', 'x', 'cx', 'reset']\n" - ] - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAdoAAADuCAYAAACeeMagAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAnT0lEQVR4nO3deVxU5f4H8M8s7IuAiKCICEqKC5q4IYp4ETfUCpd+mdrVrH5tdlOpvNVLbv3c9aqtble9dSO62u2iuWdp4YYiaqIi6IiDjIohMIjAMOf3BzGJrDPM4czg5/169dKZszxfXo18znPO8zwjEwRBABEREYlCLnUBRERELRmDloiISEQMWiIiIhExaImIiETEoCUiIhIRg5aIiEhEDFoiIiIRMWiJiIhExKAlIiISEYOWiIhIRAxaIiIiETFoiYiIRMSgJSIiEhGDloiISEQMWiIiIhExaImIiETEoCUiIhIRg5aIiEhEDFoiIiIRMWiJiIhExKAlIiISEYOWiIhIRAxaIiIiETFoiYiIRMSgJSIiEhGDloiISEQMWiIiIhExaImIiETEoCUiIhIRg5aIiEhEDFoiIiIRMWiJiIhExKAlIiISEYOWiIhIRAxaIiIiETFoiYiIRMSgJSIiEpFS6gKIBEEASkulLsMy2dlBJpNJXQXVQhAEVFRUSF2GURQKBT9PEmDQkvRKS6GbPEPqKiyS8putgL291GVQLSoqKrB9+3apyzBKbGwslEr+2m9uvHVMREQkIgYtERGRiBi0REREImLQ0iPtUN4t2O74BquyLta5j+2Ob/DE8Z+bsSoiakkYtERERCJi0BIREYmIQUtERCQiTqgiAnCvogJ5XDSDiETAoCUC8LdL5/G3S+elLoOIWiAGLRGA5/0CENuuQ63bRh871MzVEFFLwqAlAtDZ2Rl/atNW6jLoESYIAu7evYvS0lLIZDI4ODjA1dW10cfrdDrs3LkTo0ePhp2dnYiVkrEYtFZk3759WLVqFVJSUlBSUoLAwEA888wzmDt3LmxtbaUuj4iMpFKpkJycjCtXruDq1au4d+9ete3u7u7o1KkTunTpgiFDhsDT07PW8+h0Onz88cc4duwYzp8/j3nz5jFsLQiD1kqsXLkS8+bNAwB07NgRfn5++PXXX7FgwQLs3LkTBw4cgIODg8RVElFDBEHA0aNHsXv3bly+fLneffPz85Gfn4/U1FR88803CA0NxZgxY9CtWzfDPg+GLABcvHgR165dQ1BQkKg/BzUeg9YKnDhxAvPnz4dMJsPmzZsxY0blN91kZWVh1KhROHLkCN555x2sXr1a2kKJTFR8rxxf7crCjym50N7TwdlRiaF9vTF1bCBcnFrO3Zrbt29j/fr1OHfuXI1t7u7u8Pf3h6OjIwRBQEFBAVQqFYqLiwFUBnRKSgpSUlIQFRWFqVOnwsbGplrI2tjYYO7cuQxZC8OgtQIffPABBEHAzJkzDSELAIGBgdi0aRMiIiLw2WefYcGCBfDy8pKwUiLj6HR6LPwsFR9/fQEFRWXVtiXsvoK4v6fgfyd3xYevhsLGxrqn/R89ehTr1q3D/fv3De/5+flhxIgRCA0Nhbu7e41jBEGARqPBkSNHcODAAeTn5wMADhw4gNOnT8PHxwe//vorgD9Ctnfv3s3y81DjWc0nNy8vD3FxcejcuTPs7e3RoUMHzJkzB8XFxZg1axZkMhk+/vhjqcs0EATBLOcpKirCvn37AACzZ8+usX3o0KEICgpCWVkZkpKSzNImUXPQ6fSYNO8g/m/DmRohW6WouBzLNp/DE2/sR1m5dX3J+oMOHjyItWvXGkLWw8MDb731FpYuXYoRI0bUGrIAIJPJ4OPjg9jYWHz00UeYOXOm4dnrnTt3GLJWwiqCNi0tDT179sTy5cuh0WgQHByM8vJyrF27FlOmTMGFCxcAQNQP2bBhwyCTyaBSqRrc9+zZs+jTpw8yMzOb3O7p06dRVlYGOzs7hIaG1rpPeHg4ABhuH1HjRXh6oWzcZLwZ2LXOfcrGTcZ3A4Y0Y1WPhrdXp+C7g9cate+un9V4c/lxkSsSx9GjR7FhwwbDxXd4eDhWrFiBPn36QCaTNfo8SqUS0dHRWLJkCZydnattmzZtGkPWgll80Obl5WHcuHHQaDSYO3cucnNzkZqaCo1Gg6VLl+L7779HSkoKZDIZevXqJXW5AIDNmzfjzJkziIyMxJUrV5p0royMDACVA6CUytrv9AcGBlbbl8jS3bl7H58kXjDqmPXbLuHmnRKRKhJHXl4e1q9fbwjZsWPH4pVXXoGjo6NJ59PpdEhMTIRWq632/r59+1BeXt7kekkcFh+0r7/+OtRqNV599VWsWLECLi4uhm1xcXEICQmBTqeDv7+/UXPOxLRy5UpMmzYNarUakZGRjeoF16XqmUxdt5Ye3Fa1L5Gl2/Lfy7hfatyt4HKdHpu+vSRSReYnCALWrVuHkpLKi4Pw8HA8++yzRvViH/Tw6GKlUmkYk6FWq7F9+3bzFE5mZ9FBe+HCBSQmJsLT0xOLFy+udZ++ffsCAEJCQqq9f/XqVYwfPx4uLi5wd3fH9OnTcefOnSbXpFaroVKp6v0vOzsbCxcuxPDhw5GdnY3IyEhkZ2eb1F7VM5365slWPbOp+gdNZOn2JKtNOm73L6YdJ4WjR48aRhd7eHhg5syZZgtZGxsbzJs3D3PnzoVCoQAAJCUl4caNG+YpnszKokcdJyQkQK/XY+rUqTWeSVSpmjv6YNAWFRUhMjISHh4eSEhIQElJCeLi4hATE4Pk5GTI5aZfXwwZYvyzOpVKhWeffRaHDx82+lh7e3sAQFlZ7YNFAKD098XwTZ1HGxoaCo1GY9Kx5uAglyO99yDJ2rdkQUFBKNHrpS7D7G65zgaUvkYfdyzlDHx9XxKhIuPZ2trW2QEAgL179xr+PmvWrCbdLq5tCk/VM9knnngC27dvh16vx4EDBzB9+vQ6z1U1cJKM5+3tjZMnT5p0rEUH7cGDBwEAkZGRde6jVlde4T4YtOvXr0dOTg4OHz4MPz8/AICvry/CwsKQlJSEJ554wuSaevbs2ehVmO7cuWO4bfzgBHNjNOa2cGNuL9dHo9EgJyfHpGPNwVGhAHpL1rxFu3HjBu5VWO9o2zrZFgO1XzvXS1dWLOln9UH1rbx07do1XLpUeZvb19cXjz/+uEltNBSyADBq1CgkJSWhvLwchw4dwpQpU+qs7caNG4YLc2o+Fh20165Vjkjs2LFjrdt1Oh2Sk5MBVA/anTt3Ijw83BCyADBo0CAEBARgx44dTQrapKQk+Pv7N7ifWq1GREQEAGDKlCn49NNPTWqvauL5tWvXoNPpah0QlZWVVW1fY3l7e5t0nLk4NOEOQ0vXrl27FtmjLVDchhaPGX2ck/w23Nq3F6Ei49V3wX3kyBHD36Ojo026ZdyYkAUAFxcXDBo0CIcPH0ZxcTHOnDmD/v3713rOdu3asUdroqb8nrTooK1aEaWuZ4+JiYnIy8uDi4sLOnXqZHg/PT0dkyZNqrF/9+7dkZ6eLk6xD8jJyTGMOJ44cSK+/PJLw3MUY/Xp0we2trYoLS3FyZMnMXDgwBr7/PLLLwCAAQMGmNSGqbdDzEW4fx+6yTMa3rERfi0sQL/D+7BjwBBEtRHnAuJQ3i2MOPoTNvbuh+kdKj93aQX5GHB4P/YPGoahnuZbNCQjIwOy3x8ftCRZ1wvRJebfMHa6+cm9y9G10wZxijKSTqercwBS1cUvgDqn5TV07saEbJV+/foZHk1lZWXVGbQZGRl1zl4g8Vh0V6LqCiI1NbXGttzcXMyfPx8A0KtXr2pXjPn5+XBzc6txjIeHB3777Tdxin1AfHw8MjMz8eSTTyIhIaFJH2wXFxeMGDECALBhQ81fMIcPH0ZGRgZsbW0xYcIEk9tpKeLOpyHM3VO0kK1L71buGO/dHnHpZ8y2WElLFtjBFeOH+TW84wNGDfZF105u4hRkRoIg4OrVqwAANzc3eHh4GHW8sSELoFpHo6ptshwWHbRRUVEAgKVLl1abI5qSkoLIyEjk5eUBEHehiioRERGIjY2Fk5NTg/uuWbMG8fHxSExMNMvV47vvvmtY53jr1q2G97OysjBr1iwAwIsvvvjIL7947Lc8HMi7iTmB0qzz+npAEFIL8rH7Vq4k7Vubf/xtKLp2atWofTv7uWLrh0NFrsg8CgoKDHfj6nrsVRdTQhYAWrdubRgwainPsOkPFh20cXFxaN26Na5fv47u3bujZ8+e6NKlC/r374+AgAAMHz4cQM2pPe7u7rh7926N8/32229GX11WiY+Px7Zt29CmTZsG93VwcMD7778PGxsbk9p62MCBA7FkyRIIgoDnnnsO/v7+6NOnD7p27YrMzEwMGDAAS5YsMUtb1uxzVRY8be0w2stHkvbDPTzh7+CE9deyGt6Z4NHKDj9vicHw/vX//xra1xu/bI2BV2vr+HYqvV6Ptm3bwt3dHa1btzbqOFNCFqhcqtHLywseHh613s0jaVn0zXpfX1/8/PPPmD9/Pg4dOgSVSoXg4GCsW7cOs2fPNqyI9HDQduvWrdZnsenp6Rg61Dquih9WtTjHypUrkZKSgps3byIoKAhTp07F3LlzH/nvntTp9UjS5GBMWx/YPDS4qkxfgbVXLuPrnGxc1hbBRi5HZydnTO/gj5c7dQEA3LhfgtVZl3Aw7xayS4pRUlGBTo7OmNahI94MfAwKWcPXpDKZDCO82mJz9lVodeVwVprnQqsl83S3xw8bx+BUeh4+S7yAH1Nyocopgl4AHO0V+OkfY9GvR8MXt5bEw8MDa9asMfo4uVyOgIAAHDt2zKS1ixctWmR0m9Q8LDpogcrQ3LlzZ433tVotVCoV5HI5evToUW1bTEwMFixYALVaDV/fyrl6x48fR1ZWFpYvX94sdYth5MiRGDlypNRlWKTUgnxoK3To51b9jkWZvgJjjx3GoTu3MaJNWzzj6wd7uQK/Fhbgu9wcQ9CeK7yL73JzMMGnPQIcnVAuCNh3S4O/XjiHq8XF+DSkcQNaBrh7YsO1K0j+LQ8jJepZW6O+wZ7YGF85R903KgE5t+7B3dXO6kK2qcaPHw+5XA5fX1+uXdyCWHzQ1uX8+fMQBAFBQUE1JoK/8MIL+OijjzBhwgTEx8fj/v37iIuLQ//+/TlgqIW6UFQIAAhwqj45c+2Vyzh05zbiOnfFh92qr4Wtf2DQ0tDWbXDpT2OqDap7PSAIz6Uexz+yr+K9x7rDx77hW5eBjpXP8NOLChm0ZJKYmBipSyAzs+hntPWpWtrs4dvGAODq6oqDBw/Cx8cHTz/9NJ5//nmEhYVh586dTVoViizX7bLKSfgeNtXnNibkXIO7jS3eDepe4xj5A6HqoFAaQrZMX4HfykqRV1qKEV7e0EPAqbuNW0faw7byFv6t0vsN7ElEjwqr7dHWF7RA5Tfa1HbLmVqmqsh8eGJNplaLkFZusG9gHrNOr8eyzIv4Uq1CVrG2xnnyyxs3yV/4/UhT17QlopanxQYtPVra/D4Y7LdGBuLD5qen4ZOrmZjUrgPe7hIML1s72MjlOF2QjwUXzhoCtCH5v6+608b20R6cRkR/sNqgrVoHmQgAurtUzsfMLC6q9n4XZxdc0hahtKICdvX0av+lvoYhHm3wr77Vv9wg66HzNSTrnrZaPUREfGBJLULvVm5wVdrgeH71lb/+p70f8svLsOhyzeleD67gpICsRq+1WKfDmiuXjarjeP4dKGUyhHk0fv4kEbVsVtujJXqQQibHEz7tkaTJqdZ7fS2gC76/eQOLL1/Aqbv5iGrTFvYKBdKLCpChLcKeQcMAAE+188WGa1fwzKmj+JOnF26WlmLr9as1BlfVR/h9SlC0lzfn0BKRAYOWWowXOwbin9dV+P5mLp5qVzl/2lauwK6BEfh71iV8nZON9y6eg71cgc5Ozpjh98f6sMuDe8NFaYNtN65jhyYHHRwcMcsvAKFuHhh17FCj2v/5zm1cK7mHNT1N+0o0ImqZGLTUYvRzb43oNt746GqGIWgBwF6hwDtBwXgnKLjOYx2VSiwJDsGS4JqD68rGTa72OsLTq8Z7ALD26mU83spdsiUgicgy8RkttShLu4fgWP4d7L+ladZ2TxfkY4cmB8uCQzi1h4iqYY+WWpTuLq1QElPzu4jF1qeVO0pr6eUSEbFHS0REJCIGLRERkYgYtERERCLiM1qSnp0dlN9slboKy/SIf8+wJVMoFIiNjTXb+ZavS0RRcTFcnJww/8UpNV6bg6KBNb9JHAxakpxMJgPs7aUug8goMpkMSqX5foUKAPRC5Z9KpbLGa7JevHVMREQkIgYtERGRiBi0REREImLQEhERiYhBS0REJCIGLRERkYgYtERERCJi0BIREYmIQUtERCQiBi0REZGIGLREREQiYtASERGJiEFLREQkIgYtERGRiBi0REREImLQEhERiYhBS0REJCKl1AUQEZH1EQQBFRUVUpdhFIVCAZlM1uztMmiJiMhoFRUV2L59u9RlGCU2NhZKZfPHHm8dExERiYhBS0REJCIGLRERkYgYtERERCJi0BKRxdDp9NALgtRlEJkVRx0TkSQEQcAvqTex94gap9Lv4FR6Hm7n3zdsz719D6Ne2oO+wZ6IDmuPoX29JZmaQdRUDFoialb3SnTY8t8MfJp4Aeez7ta5n14A9h7Jwd4jOVi08Qy6Bbjhfyd3xcwnguDkaNN8BRM1EW8dE1GzST59E70n/wevLDpab8jW5sKVu3h9yTH0mvgfHDqZK06BRCJg0BKR6PR6AW+vTsGQ53bi8rXCJp3riroIw2buwpvLj6GiQm+mConEw6AlIlHpdHpMW3AIS/9xFuYc5/T3L87j6bgfUV7OsCXLxqAlItEIgoAX/vYLvtqVJcr5t+1X4bn3DkPgSGUCUFBQgNLSUqnLqIGDoayESqXCDz/8gJSUFKSkpODcuXMoLy/HjBkzsGXLFqnLI6rV1qTL2PzdZVHb+GpXFob29caLk7qK2g6JQ6vV4vLly7h69SpUKhW0Wi0qKipga2uLtm3bolOnTggICEDHjh0hl9fdN7x79y4++OADeHh4YN68ebCzs2vGn6J+DForsXr1aqxZs0bqMogaLedmMd5Ydtzo41ISxsPb0xGavHvo9z9JjTpm3soTGBnWHv7tXYxuj5qfIAi4dOkS9u3bh+PHj9f5LUDnzp0z/N3LywtRUVEYNmwYXF1dq+1XFbI5OTnIycnBpk2b8PLLL4v6MxiDQWslPD09MWbMGPTr1w+hoaHYvXs3Pv30U6nLIqrTG8uOoaCozOjjvD0d4dvWyahjtPfK8fqSY0j6aITR7VHz0mg0+Pzzz3Hx4kWjjrt16xa++uor/Pvf/8bEiRMRExMDhUJRLWSByt+VsbGxYpRuMgatlXj33XervT527JhElRA1LDtXi29/uNasbe44lI2s64UI7ODa8M7U7ARBwJ49e5CQkICysj8uwFxcXDB48GB07twZAQEB8PT0hFwux/3793H9+nVcuXIFZ8+exZkzZwAA5eXlSEhIwIkTJzBt2jRs2LChWsi+9957aNu2rSQ/Y12sajBUXl4e4uLi0LlzZ9jb26NDhw6YM2cOiouLMWvWLMhkMnz88cdSl2nAARr0qFr374vQ65v/8/9Z4oVmb5MaptfrsXHjRmzdutUQsl5eXnj55ZfxySef4LnnnkN4eDjatWsHW1tbKJVKODs7o1u3bhg7dizeeecdrF69GtHR0YbVwbKyshAfH2/xIQtYUdCmpaWhZ8+eWL58OTQaDYKDg1FeXo61a9diypQpuHCh8h9Y7969Rath2LBhkMlkUKlUDe579uxZ9OnTB5mZmaLVQ2Spvtgpzef+i52ZvMC1MIIgYNOmTfjhhx8M740cORLLli3D0KFDYWtr26jzeHt7Y+bMmYiPjzeEadX/azc3N4sNWcBKgjYvLw/jxo2DRqPB3LlzkZubi9TUVGg0GixduhTff/89UlJSIJPJ0KtXL6nLBQBs3rwZZ86cQWRkJK5cuSJ1OUTNJvf2PVzXFEvS9q3f7iM7VytJ21S7PXv2GEJWoVDgtddew5///GfY29ubdD4vLy8oFIpq71VUVMDR0bHJtYrFKoL29ddfh1qtxquvvooVK1bAxeWPkYVxcXEICQmBTqeDv79/jdFoUlm5ciWmTZsGtVqNyMjIRvWCiVqCU+l5krZ/8ry07dMfNBoNEhISDK9feeUVDB482OTzVQ18unHjBgBAqawcZlRUVITNmzc3rVgRWXzQXrhwAYmJifD09MTixYtr3adv374AgJCQEMN7VcHcv39/2NnZmfVbP9RqNVQqVb3/ZWdnY+HChRg+fDiys7MRGRmJ7Oxss9VAZKnOZ+VL3P5dSdunSoIgYN26dYZnstHR0QgLCzP5fLWNLn7//ffh5FQ5Qv3IkSM4efJk0wsXgcWPOk5ISIBer8fUqVPh7Oxc6z4ODg4AqgdtZmYmtm/fjn79+sHW1hbJyclmq2nIkCFGH6NSqfDss8/i8OHDZqvDXEJDQ6HRaKQug1qIQodIwGFYrduq5sjWx9vTwfDn9f1P17lfXfNsl69ci/Uf7m98wRbiyT+/ASdnV+RqcuHr61vjtaWxtbWts/MDABkZGYaxM15eXnjmmWdMbqu2kK16Jvvcc8/hk08+AQD897//RWhoaJ3nCQoKqjbi2Rje3t4mB7nFB+3BgwcBAJGRkXXuo1arAVQP2qFDhyI3t/IbPhYuXGjWoO3Zs2ejH+DfuXPHcNu4W7duZqvBnDQajeEDTNRkXoWAQ+2bjJkjq1TIjZ5PCwDaoiJob1rf51n/+6IN+ooK5OTk1HhtaRpaeWn//j8udmJjY01+JltfyAJAeHg4duzYgezsbMMKU506dar1XDdu3JBkiUaLD9pr1yrn4nXs2LHW7TqdzhCiDwZtfUt1NVVSUhL8/f0b3E+tViMiIgIAMGXKFItdYMLb21vqEqgFKbK3R13fz6PJu9fg8d6eDlAq5NBV6KHJK6lzv7rO5eJsB1dl+8aUalHkvw/wkSsUaN++fY3Xlqa+zoZWqzXM9Xd2dsagQYNMaqOhkAUAmUyG6OhobNy4EQDwww8/4Pnnn6/1fO3atWtSj9ZUFh+0xcWVoxdLSmr/B5eYmIi8vDy4uLjUeRUjhZycHMOI44kTJ+LLL7+sMVLOUljqcw2yTt8fzkbMq7Xfum3MkorX9z8N37ZO0OSVoMOIr41uf8vn/4enovyNPk5qiz75Fwq1xfDx9oFara7x2tLodDps37691m1ZWVnQ6XQAgLCwsEbfAXxQY0K2Snh4ODZv3oyKiop6V5zKyMgwDKBqThY/GKrqKiI1NbXGttzcXMyfPx8A0KtXL7MOeGqq+Ph4ZGZm4sknn0RCQoIk/3OJpNA32FPi9ltL2j6h2pTGLl26GH28MSELwLCAEVDZybl//74JVYvH4oM2KioKALB06VJkZGQY3k9JSUFkZCTy8iqH8ou5UEWViIgIxMbGGka51WfNmjWIj49HYmIiQ5YeKd6ejvDzMf7Zqjm0be0AP5/aB01S83lwOmNAQIBRxxobsg+3IwgCrl+/blzBIrP4oI2Li0Pr1q1x/fp1dO/eHT179kSXLl3Qv39/BAQEYPjw4QCqP58VS3x8PLZt24Y2bdo0uK+DgwPef/992NjYmKXt5ORkeHp6Gv5btWoVAODrr7+u9r45B30RmWr6OON7MeZpt7NF3dl6VGm1fywa0rp14+8wmBqyD7fzYPuWwOK7Wr6+vvj5558xf/58HDp0CCqVCsHBwVi3bh1mz56NwMBAAM0TtFIqLy/HnTt3arxfWlpabRRdeXl5c5ZFVKsXJj6GRRvPNOt6xzIZ8NJkfietJZg+fToKCwtRXl5u1PPZ1NRUk9cuDgsLQ2BgIGxtbeHn52dS3WKx+KAFKqfF7Ny5s8b7Wq0WKpUKcrkcPXr0kKCy5jNs2DCu4UpWo4O3MyZF+yNxz9Vma3P8MD8E+FrGynCPurpmiTRk+PDh0Gq12Ldvn9FrF/v4+MDHx8ekdsVmFUFbl/Pnz0MQBAQFBdW6zuW2bdsAAOnp6dVe+/v71zupmYiabtW8AdibnIO7JnwnrbFcnGyw9m3TppCQZRk/fjyioqIseu1iY1l10J47dw5A3beNJ02aVOvrGTNmYMuWLaLWRvSoa+flhLVvD8T0vxq3GlrV/NjGzLmtsmreAA6CakFaUsgCLTxoeauVSFrPxnTGz6k3sWH7pUYf05i5tg+aPq4zZj0VZGxpRM3G4kcd16ehoCUiaclkMnz2bhimj+ssyvmfHhWATfFDONKYLJpV92ir1kEmIsulUMix+YOh6ODthMWbzpplJLJMBsyb0ROL54RCobDq/gI9AvgJJSLRyeUyfPhaKI78MwbdAtyadK6gjq3wy9YYLHuzP0OWrIJV92iJyLoM6OWF1MQJ+HJnFj5JTEfaxd8afWzPLu545elgTB/XGQ72/NVF1oOfViJqVvZ2Sjwf+xhmPRWE42dvY9/RHJxKz8Op9DzcuH0PglB5a9jb0xF9u7VG32BPjBjUHmG9vfgslqwSg5aIJCGTyTAwxAsDQ7wM7wmCAJ1OgFIpY6hSi8GgJSKLIZPJYGPDgKWWhSMJiIiIRMSgJSIiEhGDloiISEQMWiIiIhFxMBQRERlNoVAgNjbWbOdbvi4RRcXFcHFywvwXp9R4bQ4KhcIs5zEWg5aIiIwmk8mgVJovQgQAeqHyT6VSWeO1NeOtYyIiIhExaImIiETEoCUiIhIRg5aIiEhEDFoiIiIRMWiJiIhExKAlIiISEYOWiIhIRAxaIiIiETFoiYiIRMSgJSIiEhGDloiISEQMWiIiIhExaImIiETEoCUiIhIRg5aIiEhEDFoiIiIRMWiJiIhExKAlIiISEYOWiIhIRAxaIiIiETFoiYiIRMSgpQYtX74cgwYNgru7O9zc3BAeHo49e/ZIXRYRNWDXrl3o3bs37Ozs4O/vj1WrVkldUrM6fPgwJkyYgI4dO0Imk+HDDz+UpA4GLTXo4MGDmDlzJn788UecOHECYWFhiImJQXJystSlEVEdTp48iQkTJmD06NFIS0vDwoULsWDBAnz++edSl9ZstFotgoODsWzZMnh7e0tWh1Kylslq7N69u9rrZcuWYc+ePfj2228xePBgiaoiovqsWrUK/fr1w+LFiwEA3bp1w/nz57FkyRK89NJLElfXPMaMGYMxY8YAAN566y3J6mDQktH0ej0KCwvh5OQkdSlEVqegqBg38/JrvK+rqDD8mXFVXeP1gzq2bws7W5t620lOTsasWbOqvTdq1CisWLECarUavr6+TfkxTKYXBGSpciA89L4xP7+7qzPatHZrhmrNg0FLRlu0aBHu3r2LF154QepSiKyOna0Ntu8+hIKi4lq33yu5j398s6vO1138fdF58ugG28nNza1xu7TqdW5urmRBK5fJcPFKNpJP/lrr9oZ+fhulAq//OVb0Os2Jz2jJKJ9++ikWLVqEbdu2SfYPlcia2dvZYvLYSJOOdbC3w8QxEZDLZGauqnmNGtofXib2SMdEDkQbD9OOlQqDlhptxYoVmD9/PpKSkhAVFSV1OURWK7BjO4SH9jT6uCeiw9HKpXGPbHx8fKDRaKq9d/PmTcM2KdnYKDElZjjkcuMuGII6+WJgn2CRqhIPg5Ya5f3330d8fDx27drFkCUyg5ER/eDV2r3R+4d0C0RIt8BG7z948GDs3bu32nt79uxBx44dLeJuVHtvT0QN7tvo/R3s7TBxdARkVtibZ9BSg9544w0sX74cX3zxBR577DFoNBpoNBoUFBRIXRqR1bJRKjFlXCQU8oZ/Dbs6O2FCdLhR5//LX/6CEydO4K9//SsuXryIrVu34qOPPsLbb79taslmFzGwN/zatW3Uvk9Gh8O1kb35KlqtFmlpaUhLS0NZWRk0Gg3S0tKQmZlpSrkmkwmC8PDgL6Jq6rqCnDFjBrZs2dK8xRC1MD8ePY29h1Pq3WfWlDHo4m98L/T777/HggULcPHiRXh7e2POnDl48803TS1VFHn5BVi7eTvKynV17tM7uDOeHjfc6HP/9NNPiIys+Tw8IiICP/30k9HnMxWDlohIQnq9Huu+2oFrOTdr3R7WtwfGR4U1c1XN63jaBfxn78+1bmvl4oQ3Zk6Eg71dM1dlPrx1TGaVeS0H6xN24N79UqlLIbIKcrkck8dGwtam5mzLNh5uGB3RX4Kqmlf/kK7oGuhX67ZJY4ZZdcgCDFoyI0EQcOCXUygr08HBzlbqcoisRmt3V8QMH1TtPblchikxkbCpJYBbGplMhthRQ+HoUD1QB/ftgc7+7SWqynwYtFamoqICX3zxBaKjo9GmTRvY2dnBz88Po0aNwsaNG1Hx+2oqUsjKvgGVWoOo8L5WOTKQSEr9HurV/SmsL3x92khYUfNycXbEUyOHGl57tXbDqBbSm2fQWpHCwkKMGDEC06dPx/79+2Fra4uQkBDo9Xrs27cPs2fPRlFRkSS1VfVmfb3b4LGADpLUQGTNZDIZYkcPhZODPTr4eGHYoN5Sl9TsejzWCY/3CPq9Nz+8xfTmORjKikyaNMmwItM///nPaqPpbt68iU2bNmHOnDlGr0H80dZvUaQtaVJtuooK3Cu5D0cHOygVLeMfB5EUynU6yOXyRk37aYkEQUC5Tgdbm/rXcm5uLs4OeG3GUyYdy6C1EqdOnUJoaCiUSiVOnz6NHj16mO3ciz75Fwq1ta+7SkRElXOZF7wy1aRj2fWwEt999x0AYOzYsWYNWaDySq0p2JslopauKb8n+VvRSqSnpwMABg0a1MCexjP1dghQeZtn3Vc7oNNV4JXpT3AQFBHRQxi0VqKwsBAA0KpVK7OfuynPaB/szS7+9CszV0ZEZBma8oyWQWslXF1dAUCU9YWLtCVNfkZ7r6QUABepICJ6GIPWSnTv3h3ffvstjh49avZzm/rsgc9miehR0ZRntBx1bCVOnz6Nxx9/HDY2NkhLS0NwsLTfychns0REjfNoTtSyQn369MHkyZNRXl6O0aNH49ChQ9W237x5E4sXL0ZxcfNM0+EqUEREjcMerRUpLCzEhAkTDF/v1L59e7Rr1w65ubnIycmBIAjIz8+Hm5ubqHWwN0tE1Hjs0VoRV1dXHDhwAJs2bcKwYcNw7949nDlzBnK5HCNHjsSmTZvg4uIieh0CgD7dO2NURH+GLBFRA9ijJSIiEhF7tERERCJi0BIREYmIQUtERCQiBi0REZGIGLREREQiYtASERGJiEFLREQkIgYtERGRiBi0REREImLQEhERiYhBS0REJCIGLRERkYgYtERERCJi0BIREYmIQUtERCQiBi0REZGIGLREREQiYtASERGJiEFLREQkIgYtERGRiBi0REREImLQEhERiYhBS0REJCIGLRERkYgYtERERCJi0BIREYmIQUtERCQiBi0REZGIGLREREQiYtASERGJiEFLREQkIgYtERGRiBi0REREImLQEhERiYhBS0REJCIGLRERkYgYtERERCJi0BIREYmIQUtERCQiBi0REZGI/h9fiyq69ftu2QAAAABJRU5ErkJggg==", - "text/plain": [ - "
" - ] - }, - "execution_count": 5, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "from qiskit.providers.fake_provider import FakeHanoi\n", - "from qiskit.transpiler.preset_passmanagers import generate_preset_pass_manager\n", - "\n", - "backend = FakeHanoi()\n", - "passmanager = generate_preset_pass_manager(optimization_level=1, backend=backend)\n", - "circ = passmanager.run(circ)\n", - "\n", - "print(backend.configuration().basis_gates)\n", - "circ.draw('mpl', idle_wires=False)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Notice that `h` is not a basis gate for the mock backend `FakeHanoi`. Since you added a calibration for it, the transpiler will treat the gate as a basis gate, _but only on the qubits for which it was defined_. A Hadamard applied to a different qubit would be unrolled to the basis gates.\n", - "\n", - "### Custom gates\n", - "\n", - "This demonstrates the same process for nonstandard, completely custom gates, including a gate with parameters." - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAWMAAACuCAYAAADjw2w/AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAcBUlEQVR4nO3deVhTV/4G8DcQErYgCioiigJu4EIr7gvSuoDWFdQ6LjNT7YzTRcdx7eK0/VVtq9ap2lad1k5ta61WbMepWPe9KkUFF1QEBEGIgAJhDwn5/UFNmwaEREiO8f08Tx/NXc793uvTNzfnnnuvRKfT6UBERFZlZ+0CiIiIYUxEJASGMRGRABjGREQCYBgTEQmAYUxEJACGMRGRABjGREQCYBgTEQmAYUxEJACGMRGRABjGREQCYBgTEQmAYUxEJACGMRGRABjGREQCYBgTEQmAYUxEJACGMRGRABjGREQCYBgTEQmAYUxEJACGMRGRABjGREQCYBgTEQmAYUxEJACGMRGRABjGREQCYBgTEQmAYUxEJACGMRGRABjGREQCYBgTEQmAYUxEJACGMRGRABjGREQCYBgTEQlAau0CHic6nQ6asgprl0FkROokh0QiaZS2dTodtFpto7TdGOzt7RvtWDwIw9iCNGUV2Oo/zdplEBmZmvIVHJwdG6VtrVaL6OjoRmm7MURGRkIqtXw0spuCiEgADGMiIgEwjImIBMAwJiISAMOYiEgADGMiIgEwjImIBMAwJmF59QtC8PxJkLk5W7sUq2sW1A7B8yfB1ae5tUuhRsIwJmF59Q9C8IJJkLm5WLsUq2sW1A7BCybBtU0La5dCjYRhTEQkAN4OLZiASUMwcO1L2DfxLbTo1Qkd/vA0HD3ckH/1FmKXfobc8zfQsl8gnlwyBc26tkdlURmubdmHi//aCQAYc3A1ZO4u2NnrBUCnM2jb95l+CPtkPk7MWY+Ub4+ZVJfvqD7o8txINAtqBzuZFCW383D7aALi/u8LVFVq9HX/OOENKE9fMVg3PPotuLZpjp29X9BPax7SCT3mRcGjazvI3FxQnl+E/MR0JKz5Frnnb2DgBy8iYHIYACDq5w369eJX70D8+zsAAK4+zfHE4mfhHdoDMjcXlGTfRdrun5DwwU5oy9T6dYLnT0Lwgkn4LvTv6DRtKNqNGQCZmzNy4pJw5pVPoErJQtuRfdDj75FoEtAa5XmFuLhuF5K+OmjSMbqv04zhCHx+FFzbtEDJ7TwkfroHmpJyo+Pj1LIpgmaPhvfAbnDxaQ6powxFt+4geccxXNmwG7qqKoP6ASB811v67SRvP4KTf/8IAGAnkyJo9hj4TRgEN9+W0FZU4s7Zq7iwajvuXb5p1n7YKrVajdLSUri7u1u7FAMMY0H1fG0qJPZ2SPx0D+wdpAiaPRrDvlmKk3PWo//7LyBp6wGkRp9AuzH98eSiZ1F86w5So08gaetB9F0xC96h3ZF1NMGgzY5/eArqwhKk/e+0SbU8sWQKesyNRP71DFz59w8oy8mHwtcLvqP6IH7VN1BXakxqz83fG8O3L0VZTgESP41BWW4hnJo3QYvendE0qB1yz9/A9S8PwEHhDN+RfRD7z/+g/J4KAJCfeAsA4OLjiVF734VM4YxrW/ZBlZoNr/5B6D5nAlr06oR9E9+CTltlsN1Ba19CZUk5Lq7bBUcPNwTNHo3h217H+ZXfIOT16bi+ZR8qCorRYcrT6L9qNgqSMpETe82kfev64jiEvD4NeRdTcO6drZA6ydH1hbEov6syWrZZoC98R/bBrb2xKEq7AzsHe7QOC0bI69Og8G2B04v+DQBIjzkLp5bu6DR9OBLWRqPwRiYAoCjtDgBAIrXHsK9fR4uQTkjZeQzXPtsLmZszOkwdipG7l2Hv+H/ibkKKSfshmvLycqSkpODmzZtITU1FYWEhNBoNpFIpPDw80L59e/j5+cHPzw8ODg61tqNWq/H+++8jNzcXS5cuRdOmTS24Fw/GMBaUxN4Oe0a9iqpfgq4gKRNPb1mCIf+ejz2jX9P/z3Vj22FE/bwBnf8UjtToE0iNPo6QpdPRYcrTBmHs7O2BVoO7I+nLA9CWq2vcZk08gwPQY24ksk9ewsFpK6CtqNTPO7f8K7P2rfWQYDg4O2Lf3z5AXnxyjcvknktCfmK6PqyKM3MN5j/5ylQ4eTbBganLcfvwBQDA9S37UJKZi64vjEXApCG4se2wwTplOQU49Md39Z8r7hWhz7Ln0HfFLHw/ZB5Ks+4CAG7u/gmT4jai85/CTQpjmbsrgudPxL3EdOwd87r+WN3YegjjT641Wl55OhHRfV40mJb4yR4MWv8yOvzhacSv3oGynALkX01HblwSOk0fjuxjF41+eXR5LgKtBnTF/ilvG/ybX/t8H8YeXYNe/5yBHyPfqPd+iCQjIwMHDhzAiRMnUFZWVutyx48fBwAoFAqEhYVh6NChaNHCsH/9fhAnJFQfo1WrVmH58uVWeUJbTWyuzzgvLw+LFi1CQEAAHB0d0aZNG8ydOxclJSWYOXMmJBIJPvzwQ2uXWadrW/brgxgA7py9CgDIvXDD4CynqlKDvAvJcPNrBQBQq0qRtvsntB3RC/KmrvrlOkwOg529vVFA1cUvchAA4NyKrw2C+GGoVSUAgDbhvWAvr/0splYSCdoOD8HdS6n6IL7v4vrvUKXVom1EH6PVEjfHGHy+f0wz9sfpgxgAKu6qUJiSpT+m9eU9uDukTnJc37LP4FiV5RYgddcJo+V/+6Vo5yCFzN0V8mYK3D4aDzt7e3j08K/Xdv0iB6HgRibuXkyFvJlC/5+dTIqsYxfRondn2DvKTNoXa1OpVFi3bh0WLlyI/fv3PzCIf6uoqAi7d+/G3LlzsXnzZpSXlwMwDmJHR0fMmDFDmCAGbOzMOD4+HhEREVAqlXBxcUFgYCCysrKwbt06pKSk4N69ewCA4OBg6xZaD8Xpdww+qwurA6z4Vo7RsurCYjg2c9N/vv7VQQRMDoN/VCgSP9kDAAh4Ngx3L93E3YupJtXh1r4VdFVVyE9MM3EPanfzv6fgHzkYPeZGIugvzyD3XBJuH03Azf+eRElmXp3rO3q4wcHVCQXXM4zmqQuKUXanAApf41EHRse0oLh6eo3HtAQuPp713SUAgKJt9TYLU7KM5tU0TWJvh24vj4d/VCjc2ntBYmd4biR3dzVapybuHXwgdZJjypX/1LqMvJnC4AtHZHFxcfjkk09QWFionyaXy9G3b1906tQJ/v7+aNmyJaRSKdRqNbKzs5GamorExETExsZCq9VCp9PhwIEDSEhIwKxZs7Bnzx6DIF6yZAk6d+5srV2skc2EcV5eHkaPHg2lUon58+fjjTfegEKhAACsXLkSixcvhlQqhUQiQffu3a1cbd1+399Z1/Tfyo27jvyr6egw5SkkfrIHrQZ1g6JtS5x55VPzatHpoPvdxcCalqmNRGoYMlVqDfY/+zY8gwPgHRYMrz5d8MTCyQiePxHHX1yLW3tjzaqzLqYe08Y+a+r15p8QOGskbn5/ChfXRqP8rgpVlRp4dPNDyNLpJm3/XmI6fn7z81rnV9TQZy2imJgYfPHFF/rPLi4uiIyMRGhoKFxcjIc4SqVS+Pv7w9/fH8OGDUNBQQEOHTqE3bt3o6KiAjk5OVixYoV+eVGDGLChMJ4zZw4yMzPx0ksvYfXq1QbzFi1ahK+//hoJCQlo37493NzcamnFdiRtPYQ+y56DZ3AAOkx5GpqyCqTuOm5yO6rULPg8/SSaBbartX8XACp+OcuUNTU+m3Nt0wI6jfGbHvLik5EXn4yLqO7THnNgFZ5YPEUfxrUFfPldFdRFpXDv1MZonqyJC5xauuPelbR67F3DKs6o7tdu4u8N5anLBvOa+HsbLe8fNRjK01dw7G//Mpju1t64e+RBX3aqm0o4ergh++RloxE0j5K9e/caBHHPnj0xa9Ysky6yubu7IzIyEgMGDMCGDRtw/fp1/TwHBwdhgxiwkT7jq1evYvv27fD09MQ777xT4zI9e/YEAPTo0cOSpVlNys5j0JRVoOsLY+Eb0RvpMWehVpWa3E7qrpMAgCdf+QPsHGr/7lalZgMAvAd1M5jeftwAuLTyMJgmb6YwWr806y7K76oMfpprSqr7+4wCXqdDxoFz8Ojmh9ZhwQazur00Hnb29ri19+yDd6wRZB1PgLZcjU5/HGHQF+7U3B1+EwYZLa+rqgJ+d/YrdZIj8PlRRstqSms5FgBSvj0G55ZNEfTX0TXW5ejZxKT9sIZLly5hy5Yt+s9RUVFYsGCB2aMdmjVrBrlcbjBNq9XCycnpoepsTDZxZrxt2zZUVVVh6tSpcHWtuZ/t/j/C4xLG6sISpO85A/+oUADVV/TNkRefjEvrv0O3l8dj9P6VuLn7J5TlFEDRtgV8R/XFnpFLoFaVQpWShaxjCeg4fRggkeDelTQ0C2oH34jeUKVmw87BXt9mj79Hwju0BzIOnKvur5VI0GZ4CNw7+ODSh9/rl8s9nwQACHltGlJ3nYC2ohL5126h4HoGzr+zFd6Du+OpzxZVD227qYRX30C0HzcAytNXkLzjqNnHzlwV+cWIX/Mter46FRG7lyE1+gSkTjJ0nDYMqtRseAYHQIdfz1zTfziDTjOGI3TjPGSduASn5k3Q4dmnUJFfZNR2XnwKqrRadJ87AfImLtCUVqDoVg7yLtxA4qd74B3aHb3emIFWA7si++RlVBaXwqW1J1oN7AZtRSX2Rb1pwSNhmrKyMmzatEn/efz48YiKijK7vfsX6y5evAig+p12Wq0WVVVV2LBhA5YtW2aV1yrVRbyKzHD4cPUIgbCwsFqXycysHpv5uIQxUH0hzz8qFKrUbKPhUKY4t2Ir7iWmofOfI9DthbGAnQSlWXdx+/B5aH5zc8WJl9ejz/KZ8JswCP5Rg3Hn7DX8GPUm+r37F7i2+fWZCrf2/gynFk3Rfkx/OHo2gbZcDdVNJU7N34AbX//6pZHz83XEvf0lOs0Yjv6rZ8POQVp908f1DJRk5mHPyFfwxKLJ8IscDJmbM0qz7+Hiul1I+GBnvfrWG8Ol9d+hsqgMXWaNRM9Xp6Lkdh4uf/xfQCKBZ3CAwc0osW9+jsriMrQb0x9tR/RCSdZdJH11AHnxKRjxreFQtJLbeTg172N0e2kc+r77POxlDtU3fVy4AZ1Gi4PTVqDzn8LhHzUYwQurbxApU+YjNz4ZKVb4YjLFtm3bkJdXfeE2MDAQEydONLutmkZNLFiwAJ9//jkyMzORlpaG//3vfxg/fnyD1N6QJLq6rsw8Atq0aYPMzExcuHChxpESGo0GrVq1Ql5eHlJSUuDn52fWdkJCQqBUKs2u00Fnhzeqepu9vqk8gwPwzN53cW7FVlxa/53FtkvG+ix7Dl1mjsT27rNQlltg7XKMvGUXi0pJ43yByWSyWrsPCwsL8eKLL0Kj0UAul2PVqlVG44Prq6Ygvt9HnJKSgqVLl6KqqgoKhQIfffQRZLKah/u98sorUKvrPxb/97y8vBAXF2fyejZxZlxSUj3sq7axiNu3b0deXh4UCgXat29v9naUSiVu375t9voyiT3Q0uzVTdb5uQho1ZVI/uaI5Tb6mLOXOxiNx3Zq4Q7/iaHIv5ouZBADQFZ2FtQ644usDeH3fbe/dfToUWg01ePphw0b1ihBDAD+/v7o168fTp06haKiIpw5cwaDBw+usa2srCxUVFSYVcfDsIkw9vLyQn5+Ps6fP49+/foZzMvOzsbChQsBAN27d3+o4UpeXl4PVaeDzg5o5F/PUid5df9rpzbwjxyEpK8O1hgATs3d62xLXVRq0t16tkrm7gr7B1y8BABNuRqVRaXw6h+EkKXTkR5zFiXZ9+Dapjk6Th0KqYsjzi3faqGKTefdyrtRz4xrotPpcOhQdbeURCLB0KFDzWq/riC+b/jw4Th16hQA4NChQ7WGsbe390OfGZvDJsJ46NChuHr1Kt577z0MGzYMHTt2BAD8/PPPmD59ur4/6mFv9jDnp8dvVZaWY6v/tIdqoy6OHm4I3TgPlcVlSPvhDOLe/rLG5SZfrHvM8cm5H1rlQphontq8EF79gx64zP2H9qhuKlGUfgcdpw6FvKkC2go18hJScWn9LmSfuGShik2XdCMJDs6OjdK2RqNBdHS00fT8/Hzk5FTfcNO5c2ezQqy+QQwAHTt2hJeXF5RKJZKTk1FZWVnjcyySkpKscoHPJsL4/jjijIwMBAUFoXPnzigvL0dycjIiIiLQrl077Nu377G4eFecmYvPW9V9JXrfpLfqXKamO9weRz+/tQWyJg9+pnLpnXwAQFGaEof/vNISZT3yUlN/vRu0Q4cOJq9vShAD1WffAQEBUCqV0Gq1yMjIMPv6UWOwiTD28fHBiRMnsHDhQhw7dgxpaWkIDAzEpk2b8Pzzz8Pfv/oe/8chjOtL5LM00Zh6CznVT1pamv7vpoaiqUH82+2cPFk9dv7mzZsM48bQpUsX/PDDD0bTi4uLkZaWBjs7O3Tt2tUKlRFRTYqLi/V/9/DweMCShswNYgDw9Pz1eSP3L/yLwmbCuDZXrlyBTqdDx44d4ezMd6kRiSI8PBwhISGorKyEt7fx7eK1SUlJweXL1bebm/qsiY4dO2Lx4sWQyWRo2dKCQ5vqwebD+NKl6p/j7KIgEouXl5dZF+26dOmCefPmYePGjViwYIFJz5pwd3fHE088YfI2LYFhTBY17Jul1cPqqqpQWVKOs69/VuNrgVx9mmPg2pfQrGs7FN/Kwe5hC2tsb8S3b8Cjmx++7vzHOrctdXZE2OYF8OjuBzt7+3qtQ2IKCQnBunXrbOrXLsOYLOrYX97XP7CobURvDPzgReweusBoOXVxGc6/tw0yhTOeXDKlxrYC//oMitLvwKNb/S7CVGk0uPTh91AXFCM8uu7RJCQ2WwpiwEae2vYghw8fhk6nw6hRxk/CIsv77ZPjZArnWh/5qC4oRk7sNWhKa74Tyr2jD9qG9zbpNu8qtQbKU5f1D+onEonNnxmTeAauexmtfrmJ4sC0FXUsbUwitUf/1X/DqfkfW+2BQEQNzebPjEk8J+esx7chs3H+vW0Ied30OxKD509EesxZFN4w/zkhRKJhGJPVpHx7DF79gwxenFofXv2C0GVmBKJiP0bEf5fBQeGEqNiPIfew/Te4kO1iNwVZjMzNGfZOcpT9cutw2/BeqMgvRkV+cR1rGto7bqn+764+zTHm4Grs7P2Cftr4E2uxb+JbKFXea5jCiSyAYUwW4+DmjCH/ng+powy6Kh3K76pwaMavz7ntv3o2MvbHIWN/HOydZJhwcj3s5VI4KJwx8dwmpEQfw/kVXz9wG44ebpA3ddW/k+/3xhx6v/rt0gonTDy3CcqfLuPEy+sbdD+JzGETD5d/VFjiqW2PO99n+qFJgDcufmD8lDCq3dSUryz+1DZRRUZG8qltRA8r/YfT1i6ByCy8gEdEJACGMRGRABjGREQCYBgTEQmAoyksSKfTQVNm+bfOEtVF6iR/qJf1PohOp4NW2zBvnl61aTuKSkqgcHHBwr9OrnXaw7C3t2+0Y/EgHE1hQRKJpNGGDxGJSiKRNNhQMR2AKl31n/fbrGnao4jdFEREAmAYExEJgGFMRCQAhjERkQAYxkREAmAYExEJgGFMRCQAhjERkQAYxkREAmAYExEJgGFMRCQAhjERkQAYxkREAmAYExEJgGFMRCQAhjERkQAYxkREAmAYExEJgGFMRCQAhjERkQAYxkREAmAYN7Djx49j7Nix8PX1hUQiwbJly6xdEhHVISYmBsHBwZDL5WjXrh3WrFlj8RoYxg2suLgYgYGBWLlyJby8vKxdDhHVIS4uDmPHjkVERATi4+Px5ptv4tVXX8XGjRstWofUolt7DIwcORIjR44EACxevNjK1RBRXdasWYNevXrhnXfeAQB06dIFV65cwbvvvovZs2dbrA6eGRPRY+3UqVMIDw83mBYeHo709HRkZmZarA6eGRORkNIzlaio1BhM02i1+j+TbmbWOg0AnJ3k8PFqXud2srOzjboU73/Ozs6Gj4+P+TthAoYxEQkp524Bon88XuO80rJyfLYj5oHT/hwV/vvVhMZuCiISUkj3TugS0NasdfsEd0En//qt26pVKyiVSoNpd+7c0c+zFIYxEQlJIpFgQvhguDg7mrSeR1M3jArrW+/lBwwYgH379hlM+/HHH+Hr62uxLgqAYdzgiouLER8fj/j4eKjVaiiVSsTHxyM5OdnapRE9chQuzpgQPrjey0skEkweFQaZzKHe68ybNw+xsbF47bXXcO3aNWzZsgXr16/HkiVLzCnZbBKdTqez6BZt3NGjRxEWFmY0PTQ0FEePHrV8QUQ2YGfMMcRdul7nck/1fxLDB4WY3P6ePXvw6quv4tq1a/Dy8sLcuXPxj3/8w5xSzcYwJiLhlVeosfY/0cgvLKp1mdZennhh2jjY2z+aP/gfzaqJ6LHiKJdh0qghkNQyXyq1x+RRYY9sEAMMY6vZtvsQfjp32dplED0y2rdphcF9etQ4LyK0D1p4NrVwRQ3LJsNYq9Xiyy+/xPDhw9G8eXPI5XK0bdsW4eHh+PTTT6H9ZZC4tWRk5yDhagqcnUy7Skz0uBs2MARezZsZTAvwbY1+PYOsVFHDsbk+Y5VKhXHjxuHIkSMAAG9vb7Ru3RpZWVnIysqCTqdDfn4+3N3drVbj5zt/xN18FebNjIKdnU1+HxI1GmXuPazfsgtabRUc5TLMey4KTdxcrV3WQ7O5JJg5cyaOHDkCHx8fHD58GLdv30ZsbCwyMzORnZ2N5cuXw8Gh/sNeGlpGdg6updzC0wOeZBATmcGreTOMGNQLADBu+ECbCGLAxs6Mz507h5CQEEilUly4cAFdu3Zt0PbXb9mFouKyh2qjtKwcVVVVcHVxAmq9HEFED6LT6aCu1EBuwnhiS1G4OuHlP04weT2bejbF999/DwAYNWpUgwcxABQVl0FVXNIgbamKSxukHaLHWYVabe0SGoxNhXFiYiIAoF+/fo3SvsLV6aHW51kxke0zNydsKoxVKhUAoEmTJo3Svjk/Pe7LyM7BR198j2dHP4XgwIAGrIqIbIFNhbGbmxsAoLCwsFHaf5g+49KycthJJIg5cgYxR842cGVEJAr2GQMICgrCrl27cPr06UZpvyH6jNlXTEQ1sakwHj9+PN5++23ExMQgMTERgYGBDdq+uX1B7CsmenyYmxM2NbQNACZPnowdO3agbdu2+OKLLxAaGqqfd+fOHXz22WeYM2cOXFxcLFIP+4qJqD5sLoxVKhXGjh2rf1xl69at4e3tjezsbNy+fdvid+Dxbjsiqg+bSwc3NzccPHgQmzdvxpAhQ1BaWoqEhATY2dlhxIgR2Lx5MxQKhUVq4d12RFRfNndmLJJ7hUU4eyERIwb3YhgT0QMxjImIBMDTNSIiATCMiYgEwDAmIhIAw5iISAAMYyIiATCMiYgEwDAmIhIAw5iISAAMYyIiATCMiYgEwDAmIhIAw5iISAAMYyIiATCMiYgEwDAmIhIAw5iISAAMYyIiATCMiYgEwDAmIhIAw5iISAAMYyIiATCMiYgEwDAmIhIAw5iISAAMYyIiATCMiYgEwDAmIhIAw5iISAAMYyIiATCMiYgEwDAmIhIAw5iISAAMYyIiATCMiYgEwDAmIhIAw5iISAAMYyIiATCMiYgEwDAmIhIAw5iISAD/D4Ti6lp8ZPUEAAAAAElFTkSuQmCC", - "text/plain": [ - "
" - ] - }, - "execution_count": 6, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "from qiskit import QuantumCircuit\n", - "from qiskit.circuit import Gate\n", - "\n", - "circ = QuantumCircuit(1, 1)\n", - "custom_gate = Gate('my_custom_gate', 1, [3.14, 1])\n", - "# 3.14 is an arbitrary parameter for demonstration\n", - "circ.append(custom_gate, [0])\n", - "circ.measure(0, 0)\n", - "\n", - "circ.draw('mpl')" - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": {}, - "outputs": [], - "source": [ - "with pulse.build(backend, name='custom') as my_schedule:\n", - " pulse.play(Gaussian(duration=64, amp=0.2, sigma=8), pulse.drive_channel(0))\n", - "\n", - "circ.add_calibration('my_custom_gate', [0], my_schedule, [3.14, 1])\n", - "# Alternatively: circ.add_calibration(custom_gate, [0], my_schedule)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "If you use the `Gate` instance variable `custom_gate` to add the calibration, the parameters are derived from that instance. Remember that the order of parameters is significant." - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAdoAAACuCAYAAACRIMzMAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAjMUlEQVR4nO3deVyU5d4/8M8szLDLaoAICgoKIqgoigvivpOKmWv+zMo2rcejncxKf5lZLmU+p1OZ2qKZptTxuGSSu6GCiiioCAjIqiDIzjAwzx/E5DhsA9wMy+f9evnSudfvjMpnrvu6r+sWqVQqFYiIiEgQYn0XQERE1JYxaImIiATEoCUiIhIQg5aIiEhADFoiIiIBMWiJiIgExKAlIiISEIOWiIhIQAxaIiIiATFoiYiIBMSgJSIiEhCDloiISEAMWiIiIgExaImIiATEoCUiIhIQg5aIiEhADFoiIiIBMWiJiIgExKAlIiISEIOWiIhIQAxaIiIiATFoiYiIBMSgJSIiEhCDloiISEAMWiIiIgExaImIiATEoCUiIhIQg5aIiEhADFoiIiIBMWiJiIgExKAlIiISEIOWiIhIQAxaIiIiATFoiYiIBMSgJSIiEhCDloiISEAMWiIiIgFJ9V0AtU0qlQrK4lJ9l0HVEBtIITGQoqy4FFCp9F2OXokkEkjlBlCWKKCqqNB3OY0iNZJDJBI12/lUKhXKy8ub7XxNQSKRNOtnVEWkUrXz/2kkiLKiEux2navvMqgaPsuegc8/nsH+/i+jIOWBvsvRq27PDMeQLa/ht2nvIyMsWt/lNMqc+F0wMDZstvMplUocOHCg2c7XFKZPnw6ptPnbl2zRUrtQ9QP12Iw16NjfHd1nj4ShtTlybibj0rs78ODKHTw1yAN9/zkLVr26oiy/GLe+O4aoT/cDAKaEboTMwgT7+7+i1Qp0njQIgduW4eySrYj/+bROdTlP9EPPhRNg5dkFYpkUhalZSD11DRH//3tUlClrDYJxB9bAtLMt9g94Rb3M1tcd3m8Gw7pXF8jMTVCSk4+cmCRc2/wzHly5gyGfvYpuMwMBAMHh/1bvF7lxHyI37QMAmDraos9bz8IhwBsycxMUpmcj8eCfuPbZfpQXK9T7VAX2LwFvwH3uKHSZMhgyc2Pcj4jFhbe3IS8+DU4T/OD9xnR06NYJJVmPEPV5CGJ3her0GVVxnz8GHi9MhGnnjihMzULMN4ehLCzR+nyMnrKE5+LJcBjiBRNHW0gNZchPzkTcvtOI/vdBdcu1qn4AGBeyRn2euL0nce6NfwEAxDIpPBdPgcu0oTB3fgrlpWXIvHgTVzfsxcMbdxv0Pqj9YdBSu9LvnTkQScSI+eYwJAZSeC6ejNE/vYtzS7bCf9MriN19HAkHzqLLFH/0XfEsCpIzkXDgLGJ3h2LgukVwCOiNtFPXNI7pNnsEFI8KkfjfMJ1q6fPPWfBeOh05t+8h+utDKL6fAzNnOzhP9EPkhp+gKFPqdDxzVweM2fsuiu/nIuabIyh+8AhGth3QcUAPWHp2wYMrd3D7h+MwMDOG8wQ/XHpvJ0oe5gEAcmKSAQAmjjaYeHQ9ZGbGuPXdMeQlpMPO3xO9l0xDx/7uODZjDVTlmpdYh255DWWFJYj6PASG1ubwXDwZY/aswpVPfoLvqnm4/d0xlOYWoPuskfDfsBi5sSm4f+mWTu+t16tPw3fVXGRFxePyR7shNZKj1ytBKMnO09rWysMZzhP8kHz0EvITMyE2kKBToA98V82FmXNHhK34GgCQdOQijJ6ygPu8Mbi25QAe3UkBAOQnZgIARFIJRv+4Ch193RG//zRu7TgKmbkxus8ZhQkH1+Lo1PeQfS1ep/dB7RODltoVkUSMwxNXouKvEMuNTcHI7/6J4V8vw+HJ76h/cN7ZcwLB4f9GjwXjkHDgLBIOnIHvu/PQfdZIjaA1drCG/bDeiP3hOMpLFNWeszo2Pt3gvXQ60s9dR+jcdSgvLVOvu/zhrga9t07DfWBgbIhjL3+GrMi4ard5cDkWOTFJ6iB68tJx37fnwMimA47P+RCpJ64CAG5/dwyFKQ/Q65UgdHtmOO7sOaGxT/H9XPzx3Hr169KH+fBbuxAD1y3Cr8PfRFFaNgDg7sE/8UzEl+ixYJxOQSuzMIXPshl4GJOEo1NWqT+rO7v/wNRzW7S2zwiLwQG/VzWWxWw7jKFbX0f32SMRuXEfiu/nIudmEh5ExMJ93hikn47SumLQc+F42A/uhd9nfaDxd37r22MIOrUZ/d+bj9+mv1/v90HtF+86pnbl1ne/q0MWADIv3gQAPLh6R6N1UlGmRNbVOJi72AMAFHlFSDz4J5zG9ofc0lS9XfeZgRBLJFrhUxeX6UMBAJfX/agRso2hyCsEAHQe1x8SuYHuBxCJ4DTGF9nXE9QhWyVq6y+oKC+H03g/rd1ith/ReF31md77PUIdsgBQmp2HR/Fp6s+0vhyG9YbUSI7b3x3T+KyKH+QiIeSs1vaPf+ERG0ghszCF3MoMqaciIZZIYO3tWq/zukwfitw7KciOSoDcykz9SyyTIu10FDoO6AGJoUyn90LtE1u01K4UJGVqvFY8qgynguT7WtsqHhXA0Mpc/fr2rlB0mxkI1+AAxGw7DADo9mwgsq/fRXZUgk51mHe1h6qiAjkxiTq+g5rd/c95uE4fBu+l0+H54iQ8uByL1FPXcPc/51CYklXn/obW5jAwNULu7Xta6xS5BSjOzIWZc0etdVqfaW5B5fJqP9NCmDja1PctAQDMnCrP+Sg+TWtddctEEjG8Xp8K1+AAmHe1g0is2Z6QW5hq7VMdi+6OkBrJMSt6Z43byK3MNL5MEFWHQUvtypP9i3Utf9yDiNvIuZmE7rNGIGbbYdgP9YKZ01O48PY3DatFpUJdN/3Xtl4k1QyQCoUSvz/7AWx8usEh0Ad2fj3RZ/lM+CybgTOvbkHy0UsNqrMuun6mQg+v6L96ATwWTcDdX88jassBlGTnoaJMCWsvF/i+O0+n8z+MSUL46m9rXF9aTR8x0ZMYtEQ6iN39B/zWLoSNTzd0nzUSyuJSJISc0fk4eQlpcBzZF1YeXWrsTwWA0r9ahzJL7VaYaeeOUCm1xzFmRcYhKzIOUajsQ55yfAP6vDVLHbQ1hXdJdh4U+UWwcO+stU7WwQRGT1ngYXRiPd5d0yq4V9mP3MHVARnnb2is6+DqoLW9a/AwZIRF4/TLn2osN++qfcm6ti8yeXczYGhtjvRzN9r9eGNqHPbREukgfv9pKItL0euVIDiPH4CkIxehyCvS+TgJIecAAH3fng2xQc3fd/MS0gEADkO9NJZ3fXowTOytNZbJrcy09i9Ky0ZJdp7G5VJlYQmAasJbpcK945dh7eWCToE+Gqu8XpsKsUSC5KMXa39jAkg7cw3lJQq4PzdWo+/ZyNYCLtOGam2vqqgAnmi1So3k8Hhhota2yqIaPgsA8T+fhvFTlvB8aXK1dRnadNDpfVD7xRYtkQ4UjwqRdPgCXIMDAFTe+doQWZFxuL71F3i9PhWTf/8Edw/+ieL7uTBz6gjniQNxeMI/ocgrQl58GtJOX4PbvNGASISH0Ymw8uwC5/EDkJeQDrGBRH1M7zemwyHAG/eOX67sHxWJ0HmMLyy6O+L6//6q3u7BlVgAgO87c5EQchblpWXIuZWM3Nv3cOWj3XAY1hsjdqyoHN5zNwN2Az3Q9enByAiLRty+Uw3+7BqqNKcAkZt/Rr+VczD+4FokHDgLqZEMbnNHIy8hHTY+3aDC3y3OpEMX4D5/DAK+fBNpZ6/DyLYDuj87AqU5+VrHzoqMR0V5OXovnQZ5BxMoi0qRn3wfWVfvIOabw3AI6I3+78+H/ZBeSD93A2UFRTDpZAP7IV4oLy3DseDVzfhJUGvFoCXS0e1doXANDkBeQnqjZhO6vG43HsYkosf/Gw+vV4IAsQhFadlIPXEFyscmhjj7+lb4ffg8XKYNhWvwMGRevIXfgldj0PoXYdrZVr1d8tFwGHW0RNcp/jC06YDyEgXy7mbg/LJ/486Pf38huB9+GxEf/AD3+WPgv3ExxAbSygkrbt9DYUoWDk94G31WzITL9GGQmRujKP0hoj4PwbXP9terL1sI17f+grL8YvRcNAH9Vs5BYWoWbnzxH0Akgo1PN42JNC6t/hZlBcXoMsUfTmP7ozAtG7G7jiMrMh5jf9YcjlOYmoXzb34Br9eexsD1L0AiM6icsOLqHaiU5Qiduw49FoyDa/Aw+CyvnNyiOCMHDyLjEK+HLx3UOnEKRhJEW56C0canGyYdXY/L63bj+tZf9F1Ou+a3diF6Pj8Be3svQvGDXH2Xo1ecghF48OABbG1ta1zPKRipTr///js2b96M8PBwFBcXw9XVFbNnz8ayZcsgk3E8X3PpsXA8yhVliPvppL5LaTckcgOt8cZGHS3gOiMAOTeT2n3ItmYZGRmIj49HQkICUlNTUVJSApFIBENDQzg6OsLV1RWurq61BigAREVFYcOGDZgxYwamTJnSTNXXD4O2ldi0aRP+8Y9/AACcnZ3h5OSEGzduYOXKlTh06BBCQ0NhZGSk5yrbLqmRvLK/070zXKcPReyu0Gp/uBvZWtR5LEV+kU6zSLVVMgtTSGq5EQwAlCUKlOUXwc7fE77vzkPSkYsoTH8I0862cJszClITQ1z+cHczVUxNRaFQ4MKFCzh+/Dju3LlT43ZXr/49cYqHhwfGjBkDX19frVZpVciWlZXhxx9/hJ2dHQYMGCBY/bpi0LYCly5dwvLlyyESibBz504899xzAID4+HiMGzcOf/75J95++2189tln+i20DTO0NkfAl2+irKAYiYcuIOKDH6rdbmZU3WNqzy39X73cVNTSjNi+HHb+nrVuUzXBf97dDOQnZcJtzijILc1QXqpA1rUEXN8agvSz15upYmoKERER2L59O3JycnTaLyYmBjExMbCxscFLL70EL6/KO/EfD1kA6N+/P/r27dvkdTcG+2hbgcmTJ+PQoUNYuHAhtm/frrHuzJkzCAgIgEwmw71799Cxo/bMPfrQlvtoa2P/xDCc6uTevofi+7nCF9PCWfd2gayDSa3bFGXm4FFsSjNV1Lq19D7agoICfPvttzh37pzGcicnJ/j5+cHFxQXOzs4wM6scppaXl4fExEQkJCQgLCwMaWmas4CNGjUKPj4+2LJli0bILl26tMZ+WH310baaoM3KysInn3yCkJAQpKSkwNbWFtOmTcO6deuwZMkS7NixA1u3bsVrr72m71IBVA6Eb4oZcPLz82FjYwOFQoGwsDAMHDhQaxt3d3fExsZi27ZtWLRoUaPP2RTaa9AS6UtLDtqcnBysW7cO9+79Pb2nj48Ppk6dCjc3tzp/VqpUKty4cQMhISG4efOmerlIJFJPOlJXyAL6C9pWMWFFZGQkvLy8sGHDBmRkZMDDwwNlZWX4/PPPMXPmTPUH7+PjI1gNw4cPh0gkQmJiYp3bRkVFoU+fPoiLq3nGn/q6evUqFAoF5HI5fH19q91myJAhAIALFy40+nxERE0pLy8Pa9euVYesiYkJXnnlFbz11ltwd3evV4NEJBLBy8sL7777LhYuXAgDg8qJS6pCtm/fvnWGrD61+KDNysrC5MmTkZGRgWXLliE9PR1XrlxBRkYGPv74Yxw+fBjh4eEQiUTo3bu3vssFAOzcuRPXrl1DYGAgEhJ0m2z+SbGxlZMLODs71/iPyNXVVWNbar8s3Dtj/r29sB8m3P8Fu0GeWJC+H92eGa5eZuXZBc+l7sNTgzwEOy+1PhUVFdiyZQtSU1MBADY2Nvjwww8xbNiwBl3xE4vFsLOz05o6UyKRtNiQBVpB0C5ZsgQpKSl47bXXsHHjRvX1ewBYsWIFvL29oVQq0aVLF5ibm9dypOazadMmzJs3DykpKQgMDKxXK7gmVTcMWFpa1rhN1Tpdby6gtqf/mgW4H34L6WeimvW8D6MTkfxbOPq//1yznpdattDQUERHV07qYmlpiffeew92dnYNPl7VjU9KZeWjLiWSypnRwsPDERYW1viCBdKig/bmzZvYu3cvbGxs8NFHH1W7Tb9+/QAA3t7eGsvv3r2LKVOmwMzMDJaWlpg/fz6ysxv/OKuUlBQkJibW+is5ORmrV6/GiBEjkJycjMDAQCQnJzfofCUlf83FWss4WblcDgAoLi5u0DmobbDt54ZOAd6I/uqQXs4fs+0QbLxd4TiyZd3xSfqRlZWF3bv/Hnr18ssvN+pmzeruLl68eLF6/Y4dO5Cfrz3NZkvQctvaAPbs2YOKigrMmTMHpqbVP0Oyauzo40Gbn5+PwMBAWFlZYc+ePSguLsaKFSswadIknD9/HmJxw79fDB2qPYl5XRITEzF37lycOaP7U14MDStvblAoah53WVpaCgANHkfr6+uLjIyMBu1bEwOVGO+j5Yxjaw96LBiLkuxHSPnjil7On3nhJvKTM+E+f4zeamjP3Lq7oUzUfFNkymSyGhtAAHDs2DH1z6YRI0Y0qmuvupBdunQpJBIJwsPDcenSJeTn5+PEiRMICgqq8Thubm61/iytjZ2dHSIiIhq0b4sO2hMnTgAAAgMDa9wmJaXy1v/Hg/brr79Gamoqzpw5AycnJwCAo6Mj/P39cfDgQTz99NMNrsnLy6veszBlZ2erLxv37NmzQeerz2Xh+lxerk1GRoa6D6WpyEQS4KkmPSTVQiQRw2ncANw7flnr0XliAyk8XpgIl6lDYO7qgIoyJfLuZiBu70nc2vkbAMDoKUt4Lp4MhyFeMHG0hdRQhvzkTMTtO43ofx+sfCJOPaSduobus0ZAamyofjIONY+09DQoVNqPTRRK1ZW06igUCpw8WTlzmlQqxcyZMxt8nppCtqpPdvbs2QgPD4dKpUJoaCgmT55cY2MqLS1NHf7NqUUHbVJSEoDKG4Gqo1Qqcf78eQCaQXvo0CEMGTJEHbIAMGjQILi4uOC///1vo4L24MGD6NKlS53bpaSkICCg8gkvM2fOxBdffNGg87m5uQGo/CyUSmW1Hf7x8fEa2+qqMX0mNTFQiQH9zD/fLln3doWBqZHWs23FBlKM3rMK9oN7IfVUJOIPnEV5qQKWPZ3gPMFPHbRWHs5wnuCH5KOXkJ+YCbGBBJ0CfeC7ai7MnDsibMXX9arjfsRtuM8fg6f8eiD1ZGRTv02qhYO9Q7O3aGty6dIlFBRUPkt54MCB6NChYY8UrCtkgcqfX97e3oiMjMSDBw9w/fp1ra7EKg4ODo1q0TZUiw7awsJCADX3Pe7duxdZWVkwMzND165d1ctjYmIwY8YMre09PT0RExMjTLGPSU1NVd9xHBwcjF27dqk77XXVp08fyGQylJaWIiIiotpxtFUDwP38/Bp0joZeDqkNx9E2Lws3RwBAfqJmF4DHCxNhP7gXoj4PwZWPftTc6bG7PjPCYnDA71WN1THbDmPo1tfRffZIRG7cV69JNvKTMv+qpzODtpnF3oltMeNob926pf5zVYNDV/UJ2cfPERkZqT53TUEbGxvLcbRPqvoGceWKdn9Peno6li9fDgDo3bu3xq3iOTk5sLCw0NrHysoKDx8+FKbYx6xZswZxcXGYOnUq9uzZ06i/WDMzM4wePRoAsG3bNq31Z86cQWxsLGQyWa19E9S2GVpX3nFfmlugsdxl2lCU5uTj2uaftXd6bIjE43Mviw2kkFmYQm5lhtRTkRBLJLD2dq1XHVXPfOVD0du3u3fvqv9cNfxQF7qELAB0795d/efGDqkUQotu0Y4aNQo3b97Exx9/jNGjR6svjYaHh2PevHnIysoCIOxEFVUCAgJgY2MDE5Pap4wDgC1btsDR0RFvv/12k3x7WrVqFY4cOYKdO3di2LBhGnMdP//88wCAl156qcVMv0jNTz2u8ImxieYu9nh4I1HryTdPEknE8Hp9KlyDA2De1Q6iJ/q45BbV34yofSBRVUH1257anIqKCvUoC3t7exgbG+u0v64hCwDW1tYwMzNDfn5+o4ZTCqVFt2hXrFgBa2tr3Lt3D56envDy8kL37t0xYMAAuLi4YMSIEQC0h/ZYWloiNzdX63gPHz6ElZVVg2pZs2YN9u/fX+ejmoDKu3/fe+899ewljTVw4ECsX78eKpUKCxYsQJcuXdCnTx/06NEDcXFx8PPzw/r165vkXNQ6lWbnAdAhEJ/Qf/UC9H1rFh5ev4tzb/wLx+d8iGPPrFE/PKG+kwtUnb/kr3qo/SktLVWHpLW1tU77NiRkgcp/n1XnquobbkladIvW0dERZ8+exfLly3H69GkkJibCw8MDX331FV544QX1JYkng7Znz57V9sXGxMRg2LBhzVJ7U6uanGPTpk0IDw9HZmYm3NzcMGfOHCxbtqzWOwCp7cu5XTm9nXlXe43lefFp6NDNAWKZFBUKZY37uwYPQ0ZYNE6//KnG8iePVxfzLnZ/1dOwcePU+slkMrz//vtQKBQ6t2Z/++03nUO2yoIFC6BQKJqsgdOUWnTQApWheeiQ9gD8goICJCYmQiwWo1evXhrrJk2ahJUrVyIlJQWOjpU3iVy8eBHx8fHYsGFDs9QthLFjx2Ls2LH6LoNaoIfX70KRVwjbft01lseHnEX/9+bD+41gXP3kpxr3V1VUaF12lhrJ4fHCRJ3qsO3nhooyJe5fuq3TftR2SCSSBg9nXLp0KTZs2AAjIyOd5y7u0aNHg87ZHFp80NYkOjoaKpUKbm5uWt+aXnzxRWzduhVBQUFYs2YNSkpKsGLFCgwYMIA3DFGbpKqoQFlRKZzGD8CU0A0oKyjBxVU7cPObI+g8xhfebwbDxscVqaevQWokh/v8sTCy7YDcW8k4OHo5kg5dgPv8MQj48k2knb0OI9sO6L10OsTS+t0tLzU2ROD2f8BhaG+oKio4hpYaRC6XY8WKFRCLxS167mJdteg+2tpcv175sOfqbuM2NzfHiRMnYG9vj2effRaLFi2Cv78/Dh061KhZoYhasnOvfQ6xRIJrn+5H9Ff/xZDPXkVFmRLHn/0AV9b/CGMHG/T752z0ejkIZQVFiN11XL3vpdXf4sYX/4FtPzcMXLsQHosmIudmksbdyLWpUCqRcuIqRBIxymu5RE1UF5lM1qZCFmjFLdraghaovKW8ukvORG1V+vkbSD15FR4vTMKdH/9Q3/lbXlqGqC0hiNoSorG93SBPdPR1r9ymWIGID35AxAc/wMLNEQM/fhHn3/gXJh/7BN/aB2vslxEWrbWsQqGE3SAPPIxJgmknGwHfJVHr02qbd3UFLVF7VK5QouOAHvB9dx7OvL5V5/1FUgn8N76MsBVfQVVe/1mGrHp1hdPY/ojaUr8HgRO1J622RVs1DzIR/e3Ego8BAK4zAuC7ai5C567TaX+fZTOQdOQiHt1Jhalj3UPZqjy8cRffdXpGp32I2otW26IloprF/3wadv6ekFvqNq7WbpAnej4/HsGXvsD4/6yFgZkRgi99Abl1y3jWM1Fr1GpbtET0N5m5MSRGchRnVj7JyWlcf5TmFKA0R7fB+0efflf9Z1NHW0wJ3Yj9A15RL5t6dguOzViDogzhpzIlaisYtERtgIG5MYZ/vQxSQxlUFSqUZOfhj/l/PyvUf+Ni3Ps9Avd+j4DESIZp57ZCIpfCwMwYMy5/hfgDp3Fl3Y+1nKFyPmW5panWfMpVpvyxCYbW5jAwM8KMy18h488bONuAfmKitkakUnFSUmp6fHpP2+M8aRA6dHNA1Ge84aklmhO/q8U8vaelmj59ul6GDrFFS0T1knQoTN8lELVKvBmKiIhIQAxaIiIiATFoiYiIBMSgJSIiEhDvOiZBqFQqKItL9V0GUbshNZJD9MSjDoWkUqlQXl7eZMfb8NVe5BcWwszEBMtfmqn1uilIJJJm/Yyq8K5jEoRIJGrWoQZE1LxEIlGTDpVRAahQVf4ulUq1XrdmvHRMREQkIAYtERGRgBi0REREAmLQEhERCYhBS0REJCAGLRERkYAYtERERAJi0BIREQmIQUtERCQgBi0REZGAGLREREQCYtASEREJiEFLREQkIAYtERGRgBi0REREAmLQEhERCYhBS0REJCAGLRERkYAYtERERAJi0BIREQmIQUtERCQgBi3Vy5kzZxAUFARnZ2eIRCKsXbtW3yUREdXqyJEj8PHxgVwuR5cuXbB582a91MGgpXopKCiAh4cHPvnkE9jZ2em7HCKiWkVERCAoKAjjx49HZGQkVq9ejZUrV+LLL79s9lqkzX5GapUmTJiACRMmAADeeustPVdDRFS7zZs3o3///vjoo48AAD179kR0dDTWr1+PxYsXN2stbNESEVGbc/78eYwbN05j2bhx45CUlISUlJRmrYUtWiIiajYFhcVIu5+ttVxZXq7+PfZuitbrxzna28LYUF7redLT07W6uapep6enw9HRscHvQVcMWiIiajZymQEO/fEn7mfnVru+qLgEO/YdqfF1Z3tbLJ4bJHSZTYqXjomIqNkYGEjxzKRAiMUi3feVSvDMpEBIxHVHl729PTIyMjSWZWZmqtc1JwYtERE1K0c7W4wc3E/n/SaOGARbK4t6bTt48GAcO3ZMY9lvv/0GZ2fnZr1sDPDSMdVTQUEB4uLiAAAKhQIZGRmIjIyEqakpunXrpufqiKi1GT7QB7fjk5Gcdr9e27t17Qw/n571Pv6bb74Jf39/vPPOO5g3bx4uXryIrVu34tNPP21oyQ0mUqlUqmY/K7U6p06dQmBgoNbygIAAnDp1qvkLIqJWLyvnEbbsPICyMmWt2xkbyvHGwmCYm5nodPzDhw9j5cqVuHXrFuzs7LB06VL8z//8T2NKbhAGLRER6c3FyBj8cuxcrdvMDhqF3j1cmqmipsc+WiIi0psB3j3h7tK5xvV9PLu16pAFGLTUxA6fuICjpy7quwwiaiVEIhGmjw+AsZH2uNgOZiaYMmqwHqpqWgzaVqa8vBw//PADxowZA1tbW8jlcjg5OWHcuHH45ptvUP7XIG99eJRfiLAr0ZDJDPRWAxG1Puamxpg6dqjW8hkTh8OojokpWgP20bYieXl5ePrpp3Hy5EkAgIODAzp16oS0tDSkpaVBpVIhJycHFhYWeqnvYOh5XI2Ow1uLZ8FQLtNLDUTUeu07fBJXbtwBAAz27YXJI/31XFHT4PCeVuT555/HyZMn4ejoiO+//17jLuDMzExs374dBgb6aU0+yi/EpchbCPTvw5AlogaZMmowEpLTITMwwLhhA/RdTpNhi7aVuHz5Mnx9fSGVSnH16lX06tWryY699bsQ5BcUN+oYJaWlUJQpYWZqDBF0n/GFiAgAlMpyiESARCLRdykazEyN8Ppz0xq0L1u0rcSvv/4KAJg4cWKThiwA5BcUI6+gsImOVdQkxyEiaisYtK1ETEwMAGDQoEFNfmwzU6NG7c/WLBG1dY35OcmgbSXy8vIAAB06dGjyYzf0cghQ2Te74aufMHqoL0b6923CqoiI2gYGbSthbm4OAHj06FGTH7sxfbQlpaVQlpfjwtUYXLx6s4krIyJqGdhH2w54enoiJCQEYWFhTX7spuijZd8sEVH1GLStxNSpU/HBBx/gyJEjiImJgYeHR5Mdu6F9D+ybJaL2ojF9tBze04rMnDkT+/btg5OTE77//nsEBASo12VmZmLHjh1YsmQJTEx0e8JFQ1T1zQb692HfLBFRLRi0rUheXh6CgoLUj6Xr1KkTHBwckJ6ejtTU1GadGYqzQBER1Q/nOm5FzM3NERoaiu3bt2P48OEoKirCtWvXIBaLMXbsWGzfvh1mZmaC11E1C9SQ/l4MWSKiOrBFSzorLCrB6YuRGOHfl0FLRFQHBi0REZGAeOmYiIhIQAxaIiIiATFoiYiIBMSgJSIiEhCDloiISEAMWiIiIgExaImIiATEoCUiIhIQg5aIiEhADFoiIiIBMWiJiIgExKAlIiISEIOWiIhIQAxaIiIiATFoiYiIBMSgJSIiEhCDloiISEAMWiIiIgExaImIiATEoCUiIhIQg5aIiEhADFoiIiIBMWiJiIgExKAlIiISEIOWiIhIQAxaIiIiATFoiYiIBMSgJSIiEhCDloiISEAMWiIiIgExaImIiATEoCUiIhIQg5aIiEhADFoiIiIBMWiJiIgExKAlIiISEIOWiIhIQAxaIiIiATFoiYiIBMSgJSIiEtD/AWbnf5fXrE49AAAAAElFTkSuQmCC", - "text/plain": [ - "
" - ] - }, - "execution_count": 8, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "circ = passmanager.run(circ)\n", - "circ.draw('mpl', idle_wires=False)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Normally, if you tried to transpile `circ`, you would get an error. There was no functional definition provided for `\"my_custom_gate\"`, so the transpiler can't unroll it to the basis gate set of the target device. You can show this by trying to add `\"my_custom_gate\"` to another qubit that hasn't been calibrated." - ] - }, - { - "cell_type": "code", - "execution_count": 9, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\"HighLevelSynthesis was unable to synthesize Instruction(name='my_custom_gate', num_qubits=1, num_clbits=0, params=[3.14, 1]).\"\n" - ] - } - ], - "source": [ - "circ = QuantumCircuit(2, 2)\n", - "circ.append(custom_gate, [1])\n", - "\n", - "\n", - "from qiskit import QiskitError\n", - "try:\n", - " circ = passmanager.run(circ)\n", - "except QiskitError as e:\n", - " print(e)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "To link a custom gate to your circuits, you can also add to `Target` and transpile. A pass manager pass implicitly extracts calibration data from the target and calls `add_calibration`. This is convenient if you need to attach a calibration to multiple circuits or manage multiple calibrations." - ] - }, - { - "cell_type": "code", - "execution_count": 10, - "metadata": {}, - "outputs": [], - "source": [ - "from qiskit.providers.fake_provider import FakePerth\n", - "from qiskit.circuit import QuantumCircuit, Gate\n", - "from qiskit.pulse import builder, DriveChannel\n", - "from qiskit.transpiler import InstructionProperties\n", - "\n", - "backend = FakePerth()\n", - "\n", - "custom_gate = Gate(\"my_gate\", 1, [])\n", - "qc = QuantumCircuit(1, 1)\n", - "qc.append(custom_gate, [0])\n", - "qc.measure(0, 0)\n", - "\n", - "with builder.build() as custom_sched_q0:\n", - " builder.play([0.1] * 160, DriveChannel(0))\n", - "\n", - "backend.target.add_instruction(\n", - " custom_gate, \n", - " {(0,): InstructionProperties(calibration=custom_sched_q0)},\n", - ")\n", - "\n", - "# Re-generate the passmanager with the new backend target\n", - "passmanager = generate_preset_pass_manager(optimization_level=1, backend=backend)\n", - "qc = passmanager.run(qc)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Build pulse schedules\n", - "\n", - "Pulse gates define a low-level, exact representation for a circuit gate. A single operation can be implemented with a pulse program, which is comprised of multiple low-level instructions. Regardless of how the program is used, the syntax for building the program is the same." - ] - }, - { - "attachments": {}, - "cell_type": "markdown", - "metadata": {}, - "source": [ - "**Important:** For IBM devices, pulse programs are used as subroutines to describe gates. IBM devices do not accept full programs in this format. " - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "A pulse program, which is called a `ScheduleBlock`, describes instruction sequences for the control electronics. Use the Pulse Builder to build a `ScheduleBlock`, then initialize a schedule:" - ] - }, - { - "cell_type": "code", - "execution_count": 11, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "ScheduleBlock(, name=\"my_example\", transform=AlignLeft())" - ] - }, - "execution_count": 11, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "from qiskit import pulse\n", - "\n", - "with pulse.build(name='my_example') as my_program:\n", - " # Add instructions here\n", - " pass\n", - "\n", - "my_program" - ] - }, - { - "attachments": {}, - "cell_type": "markdown", - "metadata": {}, - "source": [ - "You can see that there are no instructions yet. The next section explains each of the instructions you might add to a schedule, and the last section will describe various _alignment contexts_, which determine how instructions are placed in time relative to one another." - ] - }, - { - "attachments": {}, - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### `ScheduleBlock` Instructions\n", - "\n", - " - [delay(duration, channel)](#delay)\n", - " - [play(pulse, channel)](#play)\n", - " - [set_frequency(frequency, channel)](#set_frequency)\n", - " - [shift_phase(phase, channel)](#shift_phase)\n", - " - [shift_frequency(frequency, channel)](#shift_frequency)\n", - " - [set_phase(phase, channel)](#set_phase)\n", - " - [acquire(duration, channel, mem_slot, reg_slot)](#acquire)\n", - "\n", - "Each instruction type has its own set of operands. As you can see above, they each include at least one `Channel` to specify where the instruction will be applied.\n", - "\n", - "**Channels** are labels for signal lines from the control hardware to the quantum chip.\n", - "\n", - " - A `DriveChannel` is typically used for _driving_ single-qubit rotations.\n", - " - A `ControlChannel` is typically used for multi-qubit gates or additional drive lines for tunable qubits. \n", - " - A `MeasureChannel` is specific to transmitting pulses that stimulate readout.\n", - " - An `AcquireChannel` is used to trigger digitizers which collect readout signals.\n", - " \n", - "`DriveChannel`s, `ControlChannel`s, and `MeasureChannel`s are all `PulseChannel`s; this means that they support _transmitting_ pulses, whereas the `AcquireChannel` is a receive channel only and cannot play waveforms.\n", - "\n", - "In the following examples, you can create one `DriveChannel` instance for each `Instruction` that accepts a `PulseChannel`. Channels take one integer `index` argument. Except for `ControlChannel`s, the index maps trivially to the qubit label." - ] - }, - { - "cell_type": "code", - "execution_count": 12, - "metadata": {}, - "outputs": [], - "source": [ - "from qiskit.pulse import DriveChannel\n", - "\n", - "channel = DriveChannel(0)" - ] - }, - { - "attachments": {}, - "cell_type": "markdown", - "metadata": {}, - "source": [ - "The pulse `ScheduleBlock` is independent of the backend it runs on. However, you can build your program in a context that is aware of the target backend by supplying it to `pulse.build`. When possible you should supply a backend. By using the channel accessors `pulse._channel()` you ensure you are only using available device resources." - ] - }, - { - "cell_type": "code", - "execution_count": 13, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "5\n" - ] - } - ], - "source": [ - "from qiskit.providers.fake_provider import FakeValencia\n", - "\n", - "backend = FakeValencia()\n", - "\n", - "with pulse.build(backend=backend, name='backend_aware') as backend_aware_program:\n", - " channel = pulse.drive_channel(0)\n", - " print(pulse.num_qubits())\n", - " # Raises an error as backend only has 5 qubits\n", - " #pulse.drive_channel(100)" - ] - }, - { - "attachments": {}, - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### `delay`\n", - "\n", - "One of the simplest instructions is `delay`. This is a blocking instruction that tells the control electronics to output no signal on the given channel for the duration specified. It is useful for controlling the timing of other instructions.\n", - "\n", - "The duration here and elsewhere is in terms of the backend's cycle time (1 / sample rate), `dt`. It must take an integer value.\n", - "\n", - "To add a `delay` instruction, pass a duration and a channel, where `channel` can be any kind of channel, including `AcquireChannel`. Use `pulse.build` to begin a Pulse Builder context. This automatically schedules the delay into the schedule `delay_5dt`." - ] - }, - { - "cell_type": "code", - "execution_count": 14, - "metadata": {}, - "outputs": [], - "source": [ - "with pulse.build(backend) as delay_5dt:\n", - " pulse.delay(5, channel)" - ] - }, - { - "attachments": {}, - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Any instruction added after this delay on the same channel will execute five timesteps later than it would have without this delay.\n", - "\n", - "### `play`\n", - "\n", - "The `play` instruction is responsible for executing _pulses_. It's straightforward to add a play instruction:\n", - "\n", - "```\n", - "with pulse.build() as sched:\n", - " pulse.play(pulse, channel)\n", - "```\n", - "\n", - "Let's clarify what the `pulse` argument is and explore a few different ways to build one.\n", - "\n", - "#### Pulses\n", - "\n", - "A `Pulse` specifies an arbitrary pulse _envelope_. The modulation frequency and phase of the output waveform are controlled by the [`set_frequency`](#set_frequency) and [`shift_phase`](#shift_phase) instructions.\n", - "\n", - "There are many methods available for building pulses, such as those available in the Qiskit Pulse `library`. Take for example a simple Gaussian pulse -- a pulse with its envelope described by a sampled Gaussian function. We arbitrarily choose an amplitude of 1, standard deviation $\\sigma$ of 10, and 128 sample points.\n", - "\n", - "**Note**: The amplitude norm is arbitrarily limited to `1.0`. Each backend system may also impose further constraints. For instance, a minimum pulse size of 64. Any additional constraints are provided through [Target.](../api/qiskit/qiskit.transpiler.Target)" - ] - }, - { - "cell_type": "code", - "execution_count": 15, - "metadata": {}, - "outputs": [], - "source": [ - "from qiskit.pulse import library\n", - "\n", - "amp = 1\n", - "sigma = 10\n", - "num_samples = 128" - ] - }, - { - "attachments": {}, - "cell_type": "markdown", - "metadata": {}, - "source": [ - "##### Parametric pulses\n", - "You can build a Gaussian pulse by using the `Gaussian` parametric pulse. A parametric pulse sends the name of the function and its parameters to the backend, rather than every individual sample. Using parametric pulses makes the jobs much smaller to send. IBM Quantum backends limit the maximum job size that they accept, so parametric pulses might allow you to run larger programs.\n", - "\n", - "Other parametric pulses in the `library` include `GaussianSquare`, `Drag`, and `Constant`. See the [full list in the API reference](../api/qiskit/pulse#parametric-pulse-representation).\n", - "\n", - "\n", - "**Note**: The backend is responsible for deciding how to sample the parametric pulses. It is possible to draw parametric pulses, but the samples displayed are not guaranteed to be the same as those executed on the backend." - ] - }, - { - "cell_type": "code", - "execution_count": 16, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABBcAAADeCAYAAABmFOheAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAABX1ElEQVR4nO3dd1gU1xoG8HfpvQhSBBXFCFhAFOyKFXsv0ajRaBKNGmssiTXGq9FYkqgxmtg1drERFQtgwYKiWBA72MBK77s79w/cDevuwsJSLO/vefLcy5yZM9+UXXe+OUUkCIIAIiIiIiIiIqIi0inrAIiIiIiIiIjo/cbkAhERERERERFphckFIiIiIiIiItIKkwtEREREREREpBUmF4iIiIiIiIhIK0wuEBEREREREZFWmFwgIiIiIiIiIq0wuUBEREREREREWmFygYiIiIiIiIi0UujkgkgkgkgkgpWVFRITE1Wu8/PPP0MkEmH27Nlahvd+k50r2X86OjqwsrJCs2bN8Pfff0MQhLIO8YO1fv36UrsHb926hfHjx8PLywvW1tbQ19eHra0tmjZtiunTpyMqKqrEYygrISEhSve5sbExHBwc0KhRI4wdOxbnzp0r6zCLxZAhQyASiRASElLWoRRKYGAgpk2bhjZt2sDKygoikQgtWrRQu356ejr27t2LYcOGwc3NDUZGRjA1NYWXlxfmzJmD1NRUtds+ffoUo0ePRrVq1WBoaAgTExN4enpi1qxZSElJKXTsGRkZmDlzJqpXrw4jIyNUqFABQ4cOxZMnTwpdV37e12tLRERE9C7RK+qGSUlJWLJkCebMmVOc8XyQBg8eDACQSCS4d+8ezpw5g9OnT+P48ePYunVrGUf37gkJCUHLli0xePBgrF+/vqzDUUsQBMycORPz58+HRCKBo6MjmjRpAktLS7x+/RqXLl3CmTNnMG/ePMyfPx9Tpkwp65BLjL29Pdq3bw8AEIvFeP36NSIjI3Hu3Dn8/vvv8Pf3x4YNG+Dg4FDGkarn4uKC2NjYDy7pN2DAACQlJWm8/j///IOvvvoKAODh4YGuXbsiOTkZYWFhmDVrFrZu3YrQ0FDY2dkpbHfnzh00adIEL168gIuLCzp37ozMzEyEhYVhzpw52LVrF8LCwmBpaalRHJmZmWjVqhXOnTsHR0dHdOvWDTExMVi3bh0OHjyIc+fOoWrVqpqfiCIQiUSoXLkyYmJiSnQ/RERERB8EoZAACCKRSDAyMhIsLCyE169fK60zf/58AYAwa9aswlb/QQEgqDrFQUFBgp6engBAOHDgQBlE9m4LDg4WAAiDBw8uch2JiYnCzZs3hRcvXhRfYG+ZNGmSAECwt7cX9u3bp1QulUqFY8eOCU2bNhWGDRtWYnGUJdm18vPzU1l+8uRJoU6dOgIAwd3dXUhKSirdAAuhcuXKKj+vMk+fPhVu3rwppKWllWJU2hs6dKjwyy+/CMHBwUJQUFC+10sQBGH9+vXC119/LURFRSksf/r0qeDt7S0AEPr376+0XY8ePQQAwsiRIwWxWCxfnpiYKDRs2FAAIMycOVPjuKdNmyYAEBo1aiSkpKTIly9evLjAYyiswYMHCwCE4OBgheUAhMqVKxfbfoiIiIg+ZEUac0FHRwdff/01kpOTsWjRIu2yGx+htm3bYtCgQQCAvXv3lm0wHyhLS0u4u7vD1ta2ROo/e/YsFi1aBFNTU4SGhqJr165K64hEIrRu3RonT57EqFGjSiSOd12zZs1w5swZ1K5dG9HR0e91VylHR0e4u7vDxMSkrEMplDVr1uC7775DixYtYG5uXuD6gwcPxqpVq+Dh4aGw3NHREStWrAAA7NmzB9nZ2QrlJ0+eBADMmDEDurq68uWWlpaYPHkyACA8PFyjmLOzs7F8+XIAwIoVK2BmZiYvmzBhAjw9PREaGopLly5pVB8RERERlbwiD+g4depUGBsbY9myZXj16pVG28TFxWHhwoXw8/ODk5MTDAwM4ODggJ49e6r90eni4gKRSAQg90dmrVq1YGxsjCpVqmDhwoXyJswRERHo0qULypUrBzMzM3Tr1g2xsbEq6xQEAVu3bkWrVq1gbW0NIyMjeHh4YPbs2UhPTy/C2Sg8b29vAMCjR48AAImJiVi2bBnatWuHypUrw9DQEDY2Nmjfvj2OHj2qso4WLVpAJBIhJiYG//zzDxo2bAhzc3NYWVnJ1wkMDMTQoUPh4eEBCwsLed/pefPmISsrS6nOvGMV3Lt3D3379oWtrS0sLCzQoUMH+fgBYrEY8+bNk/eFrlatmvzBQ5VHjx5h9OjRcHV1hZGREcqVK4fOnTsjLCxMYb0hQ4agZcuWAIANGzYo9OWXPZjGxMTI+40nJydjwoQJqFKlCvT19TFu3Dil43ib7Pq3bdsWNjY2MDIygouLC/r27Yvjx4+rPYa8Fi9eDEEQMHbsWLi5ueW7rkgkkl9vmczMTKxZswbdunVD1apVYWxsDCsrKzRv3hzbtm1TWU/e6/22vOfk7WPdsmULmjZtCnt7exgZGaFixYpo06ZNvterOJmYmGDp0qUAgNWrVyMzM1NeNnv2bIhEIrXdX/J+/mVk4zwMGTIE8fHx+PLLL+Hs7Aw9PT38+uuvAAr3XSOrT/Z9kfeec3Fxka+XX7/8R48eYfjw4fLPrp2dndrvtbzXKiMjA1OnTpVvV61aNSxYsOCd7Zrh5eUFAMjKylL63jc0NCxwexsbG432c+bMGSQlJcHV1VXpswMAvXv3BgAcOHBAo/pk1q5dizp16sjHBZHdQ2+TfX8AQGxsrMI9kd94FUREREQfsyKPueDo6IgRI0Zg6dKl+OWXX/Dzzz8XuM2+ffswZcoUuLm5wdPTExYWFrhz5w4CAgJw8OBBHDx4EP7+/iq3HT9+PFatWoWWLVuiSpUqCA0NxZQpU5CWlgZ/f3/4+/vD3d0dbdu2RUREBPbv348bN27g2rVrMDY2ltcjlUoxcOBAbN26FWZmZvDx8YG1tTUuXryIH3/8EYcOHUJISIjCNjExMahSpQoAFNuPftngZrIf5OfOncOYMWPg4uICNzc3NGrUCA8fPkRQUBCCgoLw999/Y+jQoSrrmj9/Pv7++280adIEnTt3licsAGDYsGHIyMhArVq14OnpiaSkJFy4cAHTpk3D8ePHERQUpPCWUebBgweoX78+7O3t0aZNG0RFReHw4cO4dOkSrl69ihEjRsjHRqhatSqCg4MxevRoGBgYyPtry5w9exadOnVCQkIC3Nzc0KlTJ7x48QJHjhzB4cOHsWXLFnz66acAgKZNmyI+Ph5HjhyBq6srmjZtKq+nTp06CvVmZGTAz88PsbGx8PPzQ926dWFtbZ3veZdIJOjfvz927twJAwMDNGnSBPb29nj06BECAwORnZ2N1q1bF1iHLOHTv3//fNdVJyYmBl9++SUqVKgANzc31K9fH/Hx8QgLC8OpU6eK7S3/5MmTsWjRIhgaGqJ58+awtbVFfHw8rl69irt375Zai4rWrVujfPnyePHiBcLDw9GsWTOt63zx4gV8fX0hFovRtGlTZGZmylsVFOa7xsHBAYMHD8auXbuQlpYmHyMFgEYtX65du4ZWrVrh5cuXcHNzQ8+ePfHw4UMEBATgwIED+Oeff9CnTx+l7bKzs+Hv74+oqCi0aNECaWlpCA0NxdSpU5GSkoK5c+cqrL9+/Xp88cUX8PPzK7OBB+/fvw8A0NfXR7ly5RTK/P39sX79evz000/4/fff5d8rSUlJWLhwIQCo/Q57W2RkJACgbt26Kstly69evapx7FOnTsWCBQugr6+Pli1bwtLSEocOHUJwcLA8aSJTrVo1DB48GBs2bICpqak8mQEA7u7uGu+TiIiI6KNS2H4UAARdXV1BEAQhPj5eMDExEUxNTYXnz5/L11E35sLVq1eF69evK9V5+PBhwcDAQHB1dRWkUqlCmawfdIUKFYS7d+/Kl9+8eVMwNDQUTExMBBcXF2HlypXysqysLKFVq1YCAGHt2rUK9S1cuFAAILRo0UKIi4tT2GbYsGECAGHKlCkK2zx48EDt+An5UbeNVCoVGjVqJAAQpk2bJgiCINy/f184e/as0roRERGClZWVYGFhodDvWBAEwc/PTwAgGBkZCSEhISpj2Lt3r5Cenq6wLDk5WejcubMAQNiwYYNC2bp16+RxT506VX49pFKpMGTIEAGAUKNGDaFWrVoK1/zYsWMq+ycnJSUJjo6Ogq6urrB582aFsvDwcMHa2lowMzNTqKugMRfyXo9GjRoJCQkJSuvIjuPte/Cnn36SH8P9+/cVyhITE9Wex7zu3LkjABAMDQ0FiURS4PqqvHz5Ujh69KjS/X7//n3BxcVF0NHRER48eKBQJrveby8XhP/OSd5+6BkZGYKhoaFgbm6udKw5OTnCyZMnixR7XgWNuZBXmzZtBADCqlWr5MtmzZolABDWrVunchtV4yDI9glA6NGjh5CRkaG0nTbfNeqo6pcvlUqF2rVrCwCEyZMnK9S5a9cuQUdHRzAzMxOePn0qX573/vXz81MYhyI8PFzQ1dUVTExMlD7vsntam7EGzp49q1UdX375pQBA6NKli1JZXFyc/Fy4uLgIvXr1Ejp16iRYWVkJDg4OSp///IwfP14AIIwfP15l+ZUrVwQAQt26dTWq7+zZs4JIJBIsLS2FiIgI+fKUlBT5vxVvX1tB4JgLRERERIVR5G4RQO4I8d988w3S0tKwYMGCAtevXbs2atasqbS8Xbt26NOnD+7du4fr16+r3HbOnDlwdXWV/+3u7o6OHTsiPT0dzs7OGDFihLzMwMAAY8eOBQCEhobKl4vFYixcuBCmpqbYtm2bwsj1BgYGWLZsGRwcHLB69WpIpVJ5mb6+Ptzc3Aps/l4QiUSCO3fuYOjQoTh79iwMDQ3xxRdfAACqVKmChg0bKm3j7e2NUaNGITk5GcHBwSrrHTZsGPz8/FSWdevWTaEVBgCYm5vLm6nv27dP5XZVq1bFnDlz5E2DRSIRxo8fDwCIiorCr7/+ivLly8vXb926Nby9vREbG6vQbH/t2rWIi4vDuHHjMGDAAIV9+Pj4YMaMGUhNTcXmzZtVxlGQ33//XaEbSH6ys7OxePFieVyy1igylpaWas9jXrLm4NbW1tDRUf4InT17FkOGDFH6Ly8bGxu0adNGqcl/lSpVMG3aNEil0kI3+X5bcnIysrKy4OrqqnSsenp6xdJ6oDBkrQASEhKKpT5DQ0MsW7YMRkZGSmXafNcURkhICK5du4ZKlSph7ty5CtezV69e6N69O1JTU7F27VqlbXV0dLBq1SpYWFjIl/n4+KBDhw5IT0/HxYsXFda3tLSEm5sbKlWqpHXcRfHvv/9izZo10NfXx08//aRU7uDggJCQEPj7+yMmJga7d+9GYGAgEhMT0bhxY9SrV0/jfcmmu1Q3voWpqSkAaDy95cqVK+XdmPJ2szAzM8OyZcuUPodEREREVHhF7hYhM2XKFPz5559YuXIlJk2aBHt7+3zXz8rKwuHDh3HhwgW8ePFCPijYtWvXAOROZ1a7dm2l7VR1l5BNQ5ZfWVxcnHxZREQEXr58ibZt26qM09jYGPXq1UNgYCDu3LkjTyY4OTkhOjo63+PKj6ofrubm5tiwYYNCwkQikeD48eMICwtDXFycfEyEO3fuKPzv21QNJpjXnTt38O+//+Lu3btIS0uDVCqVd+9QV2eLFi2gr6+vsEx2TvX19VX2O65atSouX76MuLg4eV/1oKAgAEDPnj1V7kf2gHvhwoV8j0EVR0dH+Pj4aLz+xYsXkZiYCC8vLzRo0KDQ+9PUvXv3sGHDBqXlqsYVOH36NEJCQvDkyRNkZmZCEAT5Pavu2mjKzs4Ozs7OuHLlCqZOnYqvv/66xKfuy4/sniuuB7m6devCyclJbXlRv2sK49SpUwCAvn37Kn1eAGDQoEHYs2ePfL28KleurDJhWb16dQCK310A0KNHD/To0UOreIsqOjoaAwcOhCAI+OWXX5S6EQC5XRQ6deoEXV1d7Nu3D82bN0daWhp27dqF77//HiEhIQgLC9M6SVsUsvPfr18/pbIaNWrAy8sLV65cKeWoiIiIiD4sWicXypcvj1GjRmHhwoX4+eef5W/EVbl27Rq6du2a75zh6t5EqXqIkI0gnl9Z3kELZfs9evRogQ84sv7TxUHWh1tHRwcWFhaoXbs2evbsqTA+wOPHj9G5c2d5X2NV1J0bdW8yBUHAd999h6VLl6odK6Io59vBwUHlOA35nfMmTZqo3I/My5cv8y1XpbBvcGVjUeRN6BSFbFC6hIQESKVSpdYLAwcOxMCBA+V/GxkZKQ2emZSUhJ49e+LEiRNq96PpW9n8bNiwAf369cOCBQuwYMECVK5cGX5+fujXrx86dOigdf2FIbvGb/fVL6r8rr823zWF8fTpUwBQGPgxL9nyJ0+eKJU5Ozur3EY2o4OqAVfLwpMnT9C+fXskJCRgwoQJ8lZheeXk5KB37954+vQpwsPD5WMiWFlZYezYsZBIJJg4cSJmzpyJ7du3F7hP2XeJugF209LSAECj2S+A/65T5cqVVZa7uLgwuUBERESkJa2TCwAwadIk/PHHH/jzzz/lU469TRAE9O3bFzExMRgxYgRGjBiBqlWrwszMDCKRCD/88APmz5+v9iFYVfNzTcryknV1qFatWoEPu5qOaq4JdSPh5/Xll18iMjISvXr1wuTJk+Hm5gZzc3Po6Ohg9erVGD58uNpzo6pZOABs374dS5YsQcWKFbF06VI0atQI5cuXh76+PrKzs2FoaFii5xv475z37t1b3pRZlaIMkqbuuEtalSpVYG5ujpSUFERFRaFWrVqFrmPKlCk4ceIE/Pz88OOPP6JWrVqwsrKCrq4ugoKC0K5du0INHpq3G09erVq1wt27d3Hw4EEcPnwYISEh2LhxIzZu3IhevXph165dhY69KARBkCfOatSoofF26o4LUH/9tf2uKU75JTEL8zkqK69fv4a/vz9iY2PxxRdfqJ16+Ny5c7hz5w5cXV1VDsLYp08fTJw4UT5dZUFkiaPHjx+rLJctV5csICIiIqLSVyzJBVtbW3z77beYP38+5s+fjwoVKiitEx0djejoaPj4+GDlypVK5bJRyEuS7E2hu7u7Rg/8pSUtLQ1Hjx6Fvb09tm/frtQqoKjnJiAgAEBuf+NOnToVS52F5ezsjFu3bmHq1KmF6nNdEipWrAggt9uCNnR1deHv74/du3dj27ZtSqP6ayIgIAC6urrYv3+/Qp97QP21MTAwAPBff/S88s4Q8jYLCwt89tln+OyzzwDkPgj26dMHu3fvxr///ouOHTsWOv7COn78OF6+fAlzc3OF+yC/Y5JIJCqnCSxIaX7XyL7r1E17K2s5kV/3jXdVamqqfPrZnj174q+//lKbLJE97FtaWqosly3XdLwNWbeLiIgIleWy5Z6enhrV5+joiJiYGMTGxsLDw0OpXN31IyIiIiLNFdurs4kTJ8Lc3ByrV69W2QRY9qNSVVPghIQE+dR+JcnX1xeWlpYIDQ3F69evS3x/mkpKSoJUKoWjo6NSYiEnJ0eeJCis/M75jh07ilRnYbVt2xYACnUMsgdOsVhcrLHUq1cPVlZWiIyMLNIYD3lNnDgRAPDrr7/i1q1bhd4+ISEBFhYWSokFQP21cXR0BADcvn1bqawwn5+GDRti0KBBAFAsgxoWJD09HRMmTAAAjBgxQj79KpD/MQUHByMnJ6fQ+yvqd01R7jvZmCE7d+6ERCJRKpcNVFrag2dqKysrC926dcOFCxfQrl07bN26VWVXKBnZ4Li3bt1S2d0kPDwcgPruI29r0qQJLC0tce/ePZXdFWQtbrp06aJRfbLzr+qzFR0drbZLhL6+frF/DxERERF9qIotuWBjY4MxY8YgKysLa9asUSqvVq0adHR0cOLECYWB6jIzMzFixIhSedg3NDTE5MmTkZKSgp49e6p8g/nkyRNs2rRJaZm7u3uJzW9uZ2cHS0tLXL9+HWfOnJEvl0gkmDJlisoHL03IBoZbvXq1QhPwU6dO4ZdfftEuaA0NHz4cdnZ2WLhwodIsHEDug9yRI0cUHnJlb4OL8tCeH0NDQ/mMF8OGDVN6W5mUlKQwu0h+GjVqhO+++w5paWnw8/NTO+vGhQsXVD50Vq9eHQkJCUr9z5cuXap2VhDZTBaLFy9W6It+4sQJ/Prrr0rrP3z4EOvXr1fqt56ZmSnfh6w1h4xIJIJIJMp3rILCOH36NJo0aYJr166hZs2amDFjhkJ58+bNAeQ+hOfd54MHDzBmzJgi7bOo3zVFue9atGiB2rVrIyYmBjNnzlT4nAUEBGDPnj0wMzPD0KFDi3QseQUEBMDd3R2ff/651nXlRyKRoH///jhx4gSaNWuGPXv2yBMv6jRq1Ah2dnZIS0vD6NGjFcaLePr0qfxz17t3b4Xt1B2TgYEBRo8eDQAYNWqUfIwFAFiyZAmuXr0KPz8/jVtDyWYT+vXXXxXGtUlLS8O3336rtotMhQoV8OzZMyQmJmq0HyIiIqKPWbF0i5CZOHEili1bhuTkZKUyOzs7DBs2DH/99Re8vLzQqlUrGBsb49SpU5BIJBgyZEipdFWYOnUqoqOjsWnTJnh4eMDb2xtVqlRBdnY2bt26haioKHh6esrf7AK5rQeK+0E3Lz09PUyePBnTpk2Dn58fWrVqhXLlyuH8+fN49uwZRo0ahRUrVhS63jFjxmD9+vX4448/EBISAk9PTzx58gSnT5/GxIkT1fafLk5WVlbYt28funTpguHDh2Pu3LmoVasWrK2tER8fj4iICCQmJiIgIEA+doGLiws8PT1x8eJF1K9fHzVr1oSuri66du1a4MwYBfnhhx9w+fJl7N27F9WrV0ezZs1gZ2eHR48eISIiAm3bttVoOkoAWLhwIQwNDTF//nx0794dDg4O8PHxgYWFBV6+fIl79+7h3r17EIlE8i4JMt9//z0GDhyIfv36YcWKFXB2dkZkZCSio6Mxfvx4lQOj9u/fHwsXLkRYWBg8PDzg6+uLx48fIzw8HBMmTFC6nq9fv8YXX3yBUaNGwcfHB87OzkhLS0NYWBhevHgBHx8fhVk83p5+tTCio6Pl022KxWIkJCQgMjJS3oqpffv2WL9+vdIAfK6urvj888+xceNG1KlTB82bN0d6ejrOnTsnn2q2sE3Wi/pd07VrV4SGhqJ169Zo2bIlTE1NYWtri59//lntvkQiEbZs2YKWLVti3rx5CAgIQJ06dfDw4UOcOXMGenp6WLNmjbyFhjaSkpJw69YthSl0NfHTTz8hMDAQwH/dTyIiIhSmvg0ICJDHuHz5cnlLI1tbW4wcOVJlvYsWLZJPL2pkZIRVq1ahT58+2LhxI44fPw4fHx9kZGTg7NmzSElJQd26dTF16lSNj2n69Ok4duwYwsLC8Mknn6BZs2aIjY3F+fPnUb58eZXTe6rTuHFjfPfdd1i0aBF8fX3RqlUreSs2Q0NDdOnSReXUr127dsWyZctQt25dNG7cGEZGRnBzc8OkSZM03jcRERHRR0MoJACCrq6u2vKZM2cKAAQAwqxZsxTKxGKxsHjxYqFGjRqCkZGRYG9vLwwYMECIiYkRZs2aJQAQ1q1bp7BN5cqVBXVhqttGEAThwYMHAgDBz89P5bb79u0TOnXqJNjZ2Qn6+vqCnZ2dUK9ePWHy5MnCpUuXVNZV2NNV2G02bNggeHt7CyYmJoKNjY3QrVs3ITIyUli3bp3K8+nn5ycAEB48eKC2zps3bwpdunQR7OzsBBMTE8Hb21tYvXq1PL7KlSsrrK9uX3mP6e1tZAYPHiwAEIKDg5XK4uLihMmTJws1a9YUTExMBBMTE8HV1VXo1q2bsH79eiElJUVh/Tt37gjdu3cXbGxsBB0dHYWYCrq2BR2HRCIR1q9fLzRv3lywtLQUDA0NBRcXF6Fv374qYy/IzZs3hbFjxwq1a9cWLC0tBT09PcHGxkZo1KiRMHnyZOHGjRsqtwsMDBQaNmwomJubC1ZWVkKbNm2EkJAQITg4WAAgDB48WGmbx48fC/379xesra0FY2NjwcfHR9i5c6fKc5KcnCwsXrxY6Nixo+Di4iIYGRkJNjY2go+Pj7B06VIhLS1Noe6IiAgBgNCqVSuNj10Wa97/DA0NBTs7O6Fhw4bCmDFjhLNnz+ZbR1ZWljB16lShYsWKgoGBgeDq6irMnTtXEIvFKj//+Z0fmaJ81+Tk5AjTp08XXF1dBX19faV7Pb/7OzY2Vvjqq6+EihUrCvr6+oKtra3QvXt34fz580rrFnT/qotPdk/nd9+rIos7v//yfofI9l+YbWQiIiKEzz77THB2dhb09fUFU1NToU6dOsK8efOE9PR0pfULOqb09HRhxowZgqurq2BgYCA4ODgIQ4YMER49elSocyDz119/CZ6envJ7dODAgcKTJ0/UXtvU1FRh9OjRQsWKFQU9Pb0inX8iIiKij4VIEEphyHQieuctWbIEEydOlHdlICIiIiIi0hSTC0QEIHdwvOzsbBw5cqSsQyEiIiIiovcMkwtEREREREREpBWNZosQBAGpaWlqR9QmIiIiIiIioo+XRrNFpKWno6V/JxzYsxOmpiYlHRMRERERERERFZG5mWmp71OjlgtEREREREREROowuUBEREREREREWmFygYiIiIiIiIi0wuQCEREREREREWmFyQUiIiIiIiIi0gqTC0RERERERESkFSYXiIiIiIiIiEgrTC4QERERERERkVaYXCAiIiIiIiIirTC5QERERERERERaYXKBiIiIiIiIiLTC5AIRERERERERaYXJBSIiIiIiIiLSCpMLRERERERERKQVJheIiIiIiIiISCtMLhARERERERGRVphcICIiIiIiIiKtMLlARERERERERFphcoGIiIiIiIiItMLkAhERERERERFphckFIiIiIiIiItIKkwtEREREREREpBUmF4iIiIiIiIhIK0wuEBEREREREZFWmFwgIiIiIiIiIq0wuUBEREREREREWmFygYiIiIiIiIi0wuQCEREREREREWmFyQUiIiIiIiIi0opeWQdAREREJetZgggSofDbWZoIMDUq/niIiIjow8PkAhER0XtOIgVuPdZVWy4UIbEAAAmpgEhNWTlzKRysi1gxERERfXCYXCAiInoPZGYDT1+r7s0oCEVPIORLANRVm5Smg/Qs1aXGBgIcyzHxQERE9DFhcoGIiOgdIc0nSSCWAhlZ6toRlD6xBBBLVMejowNIpOqTC7oc8YmIiOiDw+QCERHROyIpTYSnr97/J++0DBGiH6nupqGvJ6C6k7SUIyIiIqKS9v7/giEiIiIiIiKiMsWWC0RERKXoVbIICWmquxNIJKUcTBnIkYhwN079u42qDlLovDu9P4iIiEhDTC4QERGVIrEEyMr+iJ+ehY/8+ImIiD5QTC4QEREVsxxx7uCMqoilfLDOT3YOIFJzivT1wFYNRERE7ygmF4iIiIpZXIIOUtL5FFwU9+JUDwQJAK6OEhgZlGIwREREpDEO6EhEREREREREWmHLBSIioiLIEQNqej6o7RJB2smRADpi1WV6OoAOX5kQERGVGSYXiIiIiiDmuQ6yc9j1oTQ9fK6+y4SzrRSWpszqEBERlRXm+ImIiIiIiIhIK0wuEBEREREREZFW2C2CiIhIjXtx6nPwOWJ2iXiXPEsU4WWy6mtibSagnDm7TBAREZUkJheIiIjUyMxmAuF9kSMWIUdNmZgjbBIREZU4dosgIiIiIiIiIq2w5QIREX20pFIgLauso6CSlp0jQkqG6tYL+rqAkUEpB0RERPQBYnKBiIg+WjmS/Kc3pA9DUpoISWmqr7OlqQBnW2kpR0RERPThYbcIIiIiIiIiItIKkwtEREREREREpBV2iyAiog9aRjbwKll1Ll3C1vAfvfQs4PFL1feHvq4Ae2vONEFERKQJJheIiOiDliMWISmNU0qSajliEZLEqsuMDAB7MLlARESkCXaLICIiIiIiIiKtMLlARERERERERFphtwgiInrvvUwW4Vmimnw5W7VTEWVmi3DjoeopLHVEgEdFSSlHRERE9O5icoGIiN57ggAmEahkqLmvBA7jQUREpIDdIoiIiIiIiIhIK2y5QERE74X0LCBbrPp1cVYOXyNTKROAxHxmIbEwFqDDVzhERPQRYXKBiIjeCwmpOkhMZRKB3g2CADx5qT57YOIkgQGTC0RE9BHhP3tEREREREREpBUmF4iIiIiIiIhIK+wWQURE74zHL3WQmaO6LEfNeAtE76LY5zoQqbllK5STwsSwdOMhIiIqaUwuEBHROyNbDGRlM4lA77/sfAYZlUpLMRAiIqJSwm4RRERERERERKQVtlwgIqJS9TpFBEFNmVhSqqEQlYnkDBGyxKrLTA0FGBmUbjxERETFgckFIiIqVc8SddgsnD5qCSnqG446lJPCyEBd+o2IiOjdxW4RRERERERERKQVtlwgIqJiJRWAjKyyjoLo/ZSdA6Rlqi7T0wUM9Us3HiIiIk0xuUBERMVKKgVinumWdRhE76XXKTp4naK6zNpcigrl2GWCiIjeTewWQURERERERERaYcsFIiIqNLFEfdcHiSAq3WCIPhI5YhFS0lW3XNDVBUwMSzkgIiKiPJhcICKiQsvKAR6+YNcHotKUmiFCaobqz52pkQAXe07DQkREZYfdIoiIiIiIiIhIK2y5QEREKqVlAolpqnPQYkkpB0NE+crKAZ68Uv151dUR4GDNgSCJiKhkMblAREQqZYtFSEzl+AlE7wOxRITEVNVlerpgcoGIiEockwtERB+xHDEgUdNNO0dcurEQUckQIEJmtvpyQ31AxDwiERFpickFIqKP2KsUEV4lc/gdog+ZRALci1M/AKt7RQl0mVwgIiItMblARPSBEwSADaKJKD9SNV8SIrBVAxERaYbJBSKiD9zDFzpIzeDTARGpFv1IfauGqg4SGBuWYjBERPTeYnKBiOgDkCNW3zpB3RtJIqKC5EhE0BWr/hLR1cn9j4iICGBygYjogxDzXAfZOWydQETF69EL9dkDJ1sprEyZvSQiolxMLhARvQcEAXiRrD55IJYwsUBEpSslXYRsNbPKmBgKMDMq3XiIiKhsMblARPSOEAT100IKAvAike2PiejdkZwuAtJVJzZtLKQw0lfdqkEkYncKIqIPEZMLRETviKyc/KeLIyJ6X7xK1sGrZNVlFiYCKpZXk0klIqL3FpMLRESlKCUdePpa9Ss7AezaQEQfvpQMEW49Vv09aKAPVLFn4oGI6H3E5AIRURFIpLldFVR5nSpCQorqH85SAZDydzMRfcQEQf04MWIpcOuxuhZcAlwd1X+B6urkdrkgIqKyweQCEZEaSWkiiNX8jk1KEyEji79iiYiKlQCIJeoKRfkkHoDyllLoqik2NxZgwF+9REQlil+zRPTek0qhNgkgCLlNcNV5nSJS2wJBIlVfRkRE75YXSepHiXyhC4ig+gvd1AgwMlBdZqCnvkxHBOhxmBwiIjkmF4iKoKQeOPOtNp/CgsLJL151ZUIB26mb1QAAJBL14wdIpLldA1QRS9TXK5GKkKNmyjNpPk1staHD0cyJiD4Y6v5dSs0EUjML/2+ICAL01fySFgEwVJOUAABDvTcrqaCXT/cOHR0BOmrKRCKoLQPyL8uvO0m+ZeqLCigssLhI2C2GqGwxuUBUBCX1j5c2/0i/e4o7A8MmBERERERE7yq+lyMiIiIiIiIirTC5QERERERERERaYXKBiIiIiIiIiLTC5AIRERERERERaYXJBSIiIiIiIiLSCpMLRERERERERKQVJheIiIiIiIiISCtMLhARERERERGRVphcICIionzV8fLEypV/lHUYRERE9A7TK+sAiIiIStO+ffswa+YM+d8GBgZwcHBEo0aN8PXw4bCxsSnD6ErWlStXcPZsGAYMGAgLC4syiyM7Oxu7d+3CkSNHcO/eXWRkZMDa2ho1atRA+w4d4O/fDrq6umUWHxERERUekwtERPRRGjlyFJycnJCVnYXLly9j584dOH36FHbt3gNjY+OyDq9EREZewao//0TXrt0KlVw4fyG82B72X79+jdGjRiIqKgqNGzfGV199DQtLS7x69RLnz53D91On4tHDR/h6+PBi2R8RERGVDiYXiIjoo9SkaVPUrFkTANCzZy9YWVph06aNCAkJRocOHYtcr1QqRU5ODgwNDYsr1DKR9ziK81imT/sB0dHRWLx4CVq3aaNQNmzYl7hx4wZiYmKKbX9ERERUOjjmAhEREQDf+vUBAE+ePAEAbNiwHp9/Pgh+zZuhQX1f9O/3KY4eDVLaro6XJ+bPm4fAwED07NED9X19cObMmSLVERQUhJ49uqNBfV98Pmgg7ty5DQDYtXMnunTuhPq+Phg2bKg8xryuXb2Kkd+MQNMmjdGwQX0MG/oFLl++LC9fufIPLF2yBADQqWMH1PHyRB0vT3ld+R2HqjEXnj17htmzZqFtm9bw9amHjh3a439zf0JOTo7acxwZGYmwsDD06tVLKbEgU7NmTXTq1En+d05ODv5YsQL9+30qP7YvhgxG+IULCtuFh4ejjpcnwsPDFZY/efIEdbw8sW/fPvmyly9fYuaMGfBv2wa+PvXQpnUrjBs7RuV5JSIiIs2w5QIRERGAx48eAQCsLK0AAP9s2QK/Fi3QsWMn5OTk4MjhQ5j03Xf4fdlyNG/eXGHb8PALCAo6gn79+sPK2goVKlQodB2XL0cgNDQEn37aDwCwZu0ajPn2Wwwe8gV2bN+Ovn0/RXJyMtavX4fZs2bir7/XyLe9cP48Ro0aCY8aNTB8+AiIdETYv28fvv7qS6xdtx61a9dG69ZtEBsbi8OHDuG7SZNgbWUNAChnbV3gcbzt+fPnGDhgAFJSktGrd29UcamC58+f49ixo8jIyIC+vr7K7UJDQwAAHTt11uSSAABSU1MRELAH7dt3QM+evZCWnoa9AQH45psR2LzlH7i7u2tcl8zEiRNw79499O/XHxUqVMDrhNc4d/Ys4uPj4OTkVOj6iIiIiMkFIiL6SKWmpiAhIQHZ2Vm4cvkKVq9eBSMjIzR789C/b/8BGBkZydfv168f+vf7FJs3bVRKDMTExGDnrt1wdXVVWF7YOgL27pM/3JpbWGDuT3Pw91+rsW//AZiamgIAJFIJ1q5ZgydPnsDJyQmCIGDu3Lnw9fXFij9WQiQSAQB69+6DXj17YMXy5fhz1SpUr14dHh4eOHzoEFq2bKXyIVrdcbzt999/w6tXL7Fp8xZ51xIAGDlqFARBULtdzIMYAEC1atUUlmdlZSE9PV3+t66urnxMCAsLC/x76LBCwqJnz17o0b0btm3ditk//phvrG9LTk5G5JUrGD9hAgYPHiJfPmzYl4Wqh4iIiBQxuUBERB+l4V9/rfC3Y4UKmDdvPuzt7QFAISmQnJwMiUQC77p1cfjQIaW66tWrp/KBvDB11G/QQOGBv3bt2gCA1q3byBMLucs9AQBPHj+Gk5MTbkVH4+HDWHz19VdITExUqjPw4EFIpVLo6BTcE1LdceQllUoREhyM5n5+CokFGVlyQ5W0tFQAgImJicLynTt3YNEvv8j/dnV1xe49AQByEw2ywSSlUilSUlIglUpRo0ZN3Lx5s8BjepuRkRH09fVxMfwievToWaazZhAREX1ImFwgIqKP0vc//IDKlV2gq6sLGxsbuLi4KDyAnwwNxV9/rcatW7eQnZ0tX67q4dnJyVnlPgpTh6ODg8LfZmZmAAAHNcuTU5IBALEPHwIAZkyfrvZYU1NTNXqIVncceSUkJCA1NVWp9YEmTExykyTp6ekwNzeXL2/Tpi2qVfsEALBk8SJIJBKF7fbv34dNGzfiwYMHEIvFeeItfBcGAwMDjB03DksWL0arli3g6emJZs2bo0uXrrC1tS10fURERJSLyQUiIvoo1apVW+WbdwCIiLiEsWPHoG69evjhh2mwLW8LPT197Nu3F4f+/VdpfVWzKRS2Dh0d1VM96uiqbnEg634gSKUAgPETJsDNTfX4A5pOrVnSM1xUqVIFwcHA3bt34e3tLV/u4OAgT6KYW1ggMSFBXhZ48CBmzpiBli1bYfDgIShXrhx0dHWxds3fePT4sXw9dS0mpG/OT14DBw6Cn18LBJ84gbCwMPyxYgXWrlmDv/76G+4eHsV1uERERB8VJheIiIjecuzYMRgaGmLlyj9hYGAgX75v395SrUMTzhUrAgBMTc3QsGHDfNcVQX2XBU1ZW1vDzMwMd+/eLfS2zZo3x9q1a/Dvv4EKyYX8HD12FM7OzliydKlCAuHt2StkLTNSUlIUlsc9faqy3ooVK+LzwYPx+eDBiI2Nxad9+2Djxo2YN39+YQ6JiIiI3uBUlERERG/RfdOKIG/z/CdPniD4xIlSrUMTNWrUQMWKFbFxwwaFQRFlXr9+Lf//shYMbz+AF4aOjg5atGyJk6GhuHHjhlJ5fgM6ent7o2HDRtizezeCg4NVr/TW9rpvuqrkrffa1au4GhmpsJ6joyN0dXURcemSwvIdO7Yr/J2RkYGsrCyFZRUrVoSpqSmyc7JBRERERcOWC0RERG9p1qwZNm3aiFEjv0GHDh3x+vVrbN++DZUqVcLt27dLrQ5N6OjoYOas2Rg9aiR69eyBrt26wc7ODs+fP8fF8HCYmpri92XLAQAeNWoAAJYvX4b27dpDT08Pfn5+MH5rgMWCfPvtGJw7exbDhn6ROxVllap4+fIFjgYFYd36DfmO7zBv3jyMHPkNxo8biyZNm6Jhg4Ywt7DAq1cvcf7cOVy6dAlNmjaVr9+suR+OHz+OCePHoWmz5nj65Al27tyBqlWrIj0jQ76eubk52rZti23btkIkEsG5ojNOnjyJhDzJFQCIjY3F8K+/gr+/P6pWdYWuni5OHD+BV69eoX379oU6D0RERPQfJheIiIjeUr9BA8ye/SPWrl2LX35ZCCcnJ4wdNx5Pnz7RODFQHHVoytfXFxs2bsJfq1dh+7ZtSE9Ph42tLWrXqo3evXvL16tVqxZGjRqNnTt3IOzMGUilUgT+ewhOhUwu2NvbY9PmLVixYjn+DQxEWloa7Ozs0KRJ0wLHdyhnY4MNGzdh166dOHLkCFat+hOZmZmwsrJCjRo1MG/+fLRr999Dfrdu3fDq1Uvs2rULYWFhqFq1Kv43bz6OHg3CxYsXFeqeMvV7iMVi7Ny5AwYGBvD3b4fx4yegd6+e8nUcHBzQvn0HXLhwHgcPHoSunh6quLhg4S+L0KZN20KdByIiIvqPSMiv/eIbqWlpaOnfCQf27ISpaeF+gBARERERERFR6TE3My14pWLGMReIiIiIiIiISCtMLhARERERERGRVphcICIiIiIiIiKtMLlARERERERERFphcoGIiIiIiIiItMLkAhERERERERFphckFIiIiIiIiItIKkwtEREREREREpBUmF4iIiIiIiIhIK0wuEBEREREREZFWmFwgIiIiIiIiIq3oabKSIAgAgPT09BINhoiIiIiIiIi0IxIBpiYmEIlEpbZPjZIL6ekZAIBPBw4u0WCIiIiIiIiISHtBBwNgbW1davvTKLlQ3tYGBwN2wsTEuFQzH9pKS0tH5x59cDBgJ0xNTco6HKJSxfufPma8/+ljx88Afcx4/9PHTvYZ0NPXL9X9apRc0NHRgb1d+ZKOpcSYmprAzNS0rMMgKhO8/+ljxvufPnb8DNDHjPc/fexKu2EAB3QkIiIiIiIiIq0wuUBEREREREREWvmgkwsG+vr4auhgGJRyXxOidwHvf/qY8f6njx0/A/Qx4/1PH7uy+gyIBNk8k0RERERERERERfBBt1wgIiIiIiIiopLH5AIRERERERERaYXJBSIiIiIiIiLSil5ZB1ASMrOysH7jFhw9fgLxz57BwtwCjRrWx4ivhsKufPmyDo+oyDIzM3HuQjhOnTmLK5HXEP8sHjo6uqjo7ISWfs0xoF8fmJiYKGzj26RFgfX61PXGymVLSyhqouI1fPRYRFyOVFv+2+IFaNywQb51jBw7AeEXIwAABwN2wN7OrlhjJCpJN25GY/M/23Al8hoSEhNhbGyEalWrokvnjujSsb3CvOYxsQ8RdvY8bty8iRtR0Xjy9CkAYN+urajg6FhWh0CUr5vRt3A+/CJuREUj6uZNPH/xEgAQfiYk3+0OBB7CroB9eBATA309fdSqWQNDhwyCV+1aKtfPzs7G1h27cPR4MB4+egSxWILytjbw9amHIYMGwNmpQnEfGlGBCnv/h546g+CQk4i+fRsvX71CamoaLMzN4eHuht49u6FZk8Ya7ffvdRux6u+1AIAfZ/6Aju38Cx37B5dcyMrKwshvx+PajSjY2tigedOmiIuPx4HAQzh95izWrv6DXxT03jocdAz/W7AIAFDFpTKaN22C1LQ0XLt2A6vXrEPQseNYteI3lLO2lm/TqUM7tfWdOXsOiYlJqOPlWeKxExW3Vi2aw9jYWGl5QUnkA4GHEH4xAiKRCBzTmN43J4JD8cOsHyGRSOHuVh11vDyRmJiIy5FXceXqNVwIv4S5s6fL198dsA/bdu4uw4iJCm/N+o0IPXWmUNss/nUZtu3cDUNDQzSs74Os7GycD7+I8+Hh+Hnuj2jRvJnC+llZWfjmzTODubkZ6tapAwMDA9y6fRv7DgTi2PFgrFy2FB7ubsV5aEQFKuz9/+/hIwgOPYWqVVxQq0YNmJgYIy4uHmHnziPs3HkMGTQAo0Z8lW8dMbEPsW7jJq1/G31wyYW1Gzbh2o0o1K5VE8uX/iJ/i7tl2w78uuwP/DR/AVYt/62MoyQqGj09PfTo1gX9+/ZGFZfK8uUvX77CuElTcev2HSz5bTnmzp4hL5s9/XuVdaWkpODo8RMAgA7t2pZs4EQlYOzobwr95jUhIRG/LV+JhvV9EfvwIeLin5VQdETFTywWY8HiXyGRSPHTrOlo799GXvYgJhZfffMtjhw9hu5dOsGnnjcAoJprVXw+sD9qurvDw8MN346fhNiHj8rqEIg0UrtWTVRzdUUND3fU8HBDt979kJ2do3b98+EXsW3nblhaWmDtqj9QqaIzAODq9RsYMXoc5sxbgHredWBubi7fJmD/QVy7EYUaHu5Y8esimJmZAQAkEgmW/LYcO3YHYOmyP7B6BZ8bqHQV9v4fOngQvp88EVaWlgrLr9+IwqixE7Fh8z9o17Y1qrlWVbm9IAiYt3AxzMzMULtmjUIn9vL6oMZcyMnJwY7dAQCAKRPHKTQPH9CvLz6p5oqIy5G4GX2rrEIk0krnju3xw+SJCokFALC1tcHkieMAAMGhJ5GTo/4LSOZYcCiys3NQu2YN+T/CRB+6xb8tR2ZmJqa8+bwQvU9iHj7E64QEVK5UUSGxAOS2Zmv/JlEcFR0tX96tSyd8+81wtGrpB0cHh1KNl6ioBg/8DCO+GormTRvD1samwPX/2bYTQO5DVt7fNJ61aqJn965ISUnFvoP/Kmxz+Upu97oB/frIEwsAoKuri+FfDgUARN2MBlFpK+z971b9E6XEAgDUqlkDbVu3hCAIuBhxWe32ew8E4vKVSIwbPVLhs1AUH1RyIfLqdaSmpsHZqQLcqn+iVN6qhR8A4NSZsNIOjajEVa/mCgDIzs5BUlJygesfOnIUANChfeH7UxG9j8LOnceRo8fwxeCBcHZ2KutwiArNQN9Ao/UsLSxKOBKid0dmVhYuRuSOodO6pZ9SeWs1v//1Nfg8WVrys0TvNz293I4K+nqqOyy8fPUKy/74E74+dYulJfMH1S3i9t27AAB3t+oqy93dchMOd+7eL7WYiErL4zeDdOnp6cHCwjzfdePjn+FK5FXo6emhbeuWpREeUbHbd+BfJCUnQ0ckQqVKFdGiWVM4ONirXDcjIwMLFi2FS+VK+HxA/1KOlKh4OFVwhLNTBcQ+fITDQceUukUcPnIUFubmaOHXLJ9aiD4ssbEPkZ2dA2srK5WD88p+/9996/d/w/o+OHL0GLZs24nGDRsodIuQDWrXrXPHEo6eqOTcvXcfR48HQ09PDw18fVSus/jXZcjKysLU7yYUyz4/qOTCs2fPAagfzEu2PP4Z+9jSh2fbjtwBuxo1qA8Dg/yz8YeCjkEQBDRu2EBlMyqi98HaDZsU/v5t+UoMG/I5vvzic6V1//x7HZ7GxePP5b9CX1+/tEIkKla6urqYPf17jJ/8PWb8OBdbtu1ARWcnJCTkDuhYtYoLZk2bypYL9FGJl/3+t1P9+9/Y2Bjm5mZITklBWlo6TE1zu013aNcWZ89fQNCxE+jaux+8ateCgYEBom/dxqvXCRj0WT8MG6L87wnRu+rk6TCcCAmFWCzBs2fPcPX6Dejp6WLalO9Uttg8dSYMx06E4OthXxRbF+kPKrmQnpEBADAyMlRZbmxslLteenqpxURUGs6EncP+g/9CT08PI74aWuD6si4RHdtzIEd6/3h7eaFbl07wrFULtrY2ePbsOU4Eh2LNhk1Y9fdamJqaoH/f3vL1o2/dxvadu9CpQzvU865TdoETFQMvz9pYtfw3TPp+BqJv3Ub0rdsAAH19fdT3rQenCpxekj4uGQX8/gcAYyMjpKSkIj39v+SCrq4u5sycBgd7e2zcshWnw87J13d3qw5fn7rQ1dUt2eCJitGdu3cReOiI/G9DQ0NMHPctOqroAp2eno4Fi39FpYoVMXhg8bXo/KDGXCD6GMXExmLmnP9BEASMGTUC1T+plu/60bdu40FMDMzNzTSe95boXTLiq6Ho2M4fzk4VYGRoiMqVKuKLwQOxaP5cAMBfa9cjMysLQG7z1rk//wIzMzOMG/1NWYZNVCyOHD2OIV+NgL19eaz/ayVOHjuE3ds2o3PH9tiydQe+GTMB2dnZZR0m0TsvOTkFI8dOwI7dAZg47lsE7t2J44cOYNHPc5GQmIhx301F0LETZR0mkcaGDfkc4WdCcPrEEWzdtBZdOnXAvAWLMHHqNKXB3v9Y9TeePXuOqZPGF9jiuTA+qOSCyZv5zjMzs1SWZ2Rk5q6XZxYJovfZ8xcvMGbCZCSnpOCzfn0V3taqI2u10Lpli2L9MiEqaw0b+MLD3Q0pKam4cSMKALB1xy7cun0HY0aOgJWVVdkGSKSlh48eY/bc+bCytMTShfNRs4YHjI2NUamiM36YPBFNmzRC9K3b2B94qKxDJSo1xgX8/geAjEzlZ4Alvy9HxOVIfPP1MPTr0wt25cvDwsIcfs2aYuH/5kAQBPy2/A+IxeKSPQCiYmZoaIhqVatiysRx+LR3T5w+cxbbd+2Rl9+Iuomde/aiY3t/+NarW6z7/qC6Rdjb5w7i8vzFC5XlsuUO9qoH/CJ6nyQlJ2P0uEmIi3+GLp06aPRWViKRyLPwxTEiLNG7plJFZ9yMvoWXr14DyO1PKBKJcPDQEQQePqKw7qvXuet8P3029A30MXjgZ2jcsEGpx0ykqaBjJyAWi9GoQX2VL0ratmqJ02fO4vKVSPTu0a0MIiQqfQ6y3//PVf/+z8jIQEpKKizMzeVdIvL+HlI1w0QND3dUcHTEk6dP8fjJU7hUrlRC0ROVrA7t/bF91x6cPHUGA/t/CgA4c/YcpFIp7t67j+GjxyqsHxP7EACwbsNm7DsQiEYN6mPIoAEa7++DSi5Ur5bbHFzW//Bt0bfuAAA+qVa11GIiKgnp6ekYO3EKHsTEoKVfc0yb8h1EIlGB24VfjMDLV6/g6GAPby/PUoiUqHQlp6QAAIyMjOTLBEGQz2euyrU3rRw6d2hfssERaUn2ksRUzTzkpqamAP77HBB9DCpXrgQDA30kJCbi+YsXSgO7y37/V8vz+z8hIVHeTNzMVPXnycws9/OUws8TvcdkA7cnJCYqld2+c1ftdjGxDxET+xCODg6F2t8HlVzw8qwFMzNTPH7yFLdu34Fb9U8Uyk+EhAIA+5nTey07OxsTp07HjaibaNjAF//7cYbGAw4dCsrtEtGhXVuNkhFE75OEhERcibwK4L+px1Yt/03t+l17fYq4+Gc4GLBD5fRlRO8am3LlAAA3o2+pLI+6GQ0AqFDIH4NE7zMjQ0P41K2LsHPncexECD77tI9C+XEVv/8tLMyhr6+PnJwc3Iy+BZ963grbpKalIfbhIwAo9MMV0bsk4vIVAICzUwX5sq+HfYGvh32hcv3Zc+cj8NAR/DjzB3RspzwQZEE+qDEX9PX10bdXDwDAwiW/yUePBYAt23bgzt17qOvtBQ93t7IKkUgrEokE02b9hIuXIuDt5Ylf5v2k8bR6mZmZCAk9BQDoUIQvC6J3QeS16wg5eQoSiURh+dO4OEz6YToyMjLRvGkTJgvog+TXrAkA4PKVSOwK2KdQdu36DWzdsRMA0EpFM2+iD9ln/XITCms3bMLDR4/ly69ev4GAffthbm6Gbp07ypcbGBigUYP6AICly1bg5ctX8rKsrCwsWLQUmZmZ8PLMnZWI6F2VkJCIgP0HkflmXJG8zl+4iGV/rAIAdOnYoVTi+aBaLgDA0MGDcCH8Eq5eu46enw5EHS9PxMfH43rUTVhbWWHG91PKOkSiItuxOwAhJ3MTBJaWlvh50VKV640b/Y3S4HUhJ08jPSMDNTzc2XeQ3lsPHz7CnHkLYGNTDu7Vq8PMzAzxz+IRHX0bWdnZqFrFBdOmflfWYRKVCHe36hjY/1Ns3rodCxYtxc7dAahaxQUvXr7EtetRkEql6NGtCxr4+si3ib51Gwvy/FsRH/8MADDp+xkweJOc7talE7p37Vy6B0OUj9NhZ7Fm3Ub53zk5uYMqfvHVf+NLDfviczRt3AgA0MDXB/369MK2nbsxYMiXaOBbDzk5YpwPvwhAwMwfpsDc3FxhH+O/HYnrUVG4fecuevcfhNq1asLQ0ABRN2/hxcuXsLSwwNRJE0r+YIneUpj7PyMzA/MWLMKS35bDw6067OzKIyMjEw8fPZKPn/DZp31KLen8wSUXDA0NsXL5r1i/cQuOHD2G0FOnYWFhjs4d22PEV0P5Novea3n7/cmSDKp8PWyIUnJBNksEB3Kk91mtmjXQq0c33Ii6iaib0UhOSYGxsRGqf1INrVu1QK8e3WBkqH6uc6L33djR38Czdi3s2bsfN2/dQuzDRzA1MUHdOl7o3rUz2rVtrbB+WloarkfdVKonb1/bRg3rl3jcRIWRkJCo8r7NuywhIVGhbOK4b1H9k2rYuTsA58MvQV9fD/V962HYkM/hVbuWUl3Ozk74Z8MabNy8FWHnzuPylUgIEGBvZ4c+Pbtj8KDP+NxAZaIw9385a2uMGTkCly5fwf0HDxAVfQuCIIWtjQ3827RCz25dUK+ut1JdJUUkCIJQansjIiIiIiIiog/OBzXmAhERERERERGVPiYXiIiIiIiIiEgrTC4QERERERERkVaYXCAiIiIiIiIirTC5QERERERERERaYXKBiIiIiIiIiLTC5AIRERERERERaYXJBSIiIiIiIiLSCpMLRERUaBcvXcbkH2aiY7feaOTXBq3ad0avfoMwdfos7Ni1B6mpqWUdIhXBpYjL8G3SArPnzi/TOIaPHgvfJi3wNC6uTOMoqjnzFqBZ6/Z4nZCg8Tar16yDb5MWOBB4qFD7+m7qNLTr3APp6emFDZOIiKhYMblARESF8tfaDfhmzHgEh56EmZkpmjZuhAa+vjA0NEBw6Cn8svR3PIiJLbV4Zs+dD98mLXAp4nKp7ZO049ukBbr2+rSswygRd+/dR+ChI+jTszvKWVtrXV/XXp/Ct0kLteVffjEYrxMSsHHLNq33RUREpA29sg6AiIjeHzejb+Gvteuhp6eH+T/NQovmzRTKX756hUNHjsLc3KyMIqQPwY/Tf0BmVibsypcv61AKbeXqNdDR0cHAz0oneeLuVh0NG/hiy7Yd6Ne3F6wsLUtlv0RERG9jywUiItJYcOgpCIKANq1aKCUWAMDWxgaDPusHl8qVyyA6+lA4ONjDpXJl6Om9X+9A4p89x+mws2jYwLdYWi1oqkO7tsjMzETgoSOltk8iIqK3vV//ahMRUZlKSEwEAFhbWWm0fnZ2Njp2743MzCwc2rcL5ubmSutEXruOL0eMhncdL6xe8RsAQBAEHA46ht179+HRoydITUuFlZUVKleqiBbNm6Fvrx4AoNBcfMS34xXq3bdrKyo4Osr/Djt3Hjt2BeDGzZtIS0tH+fK2aNGsKb4YPFDpbe/sufMReOgI/ly2FGKJBGvWbcSt23dgaGiI5s2aYNzob2BmZobXCQn486+1OH3mLJKSk1DN1RVjRg5HvbreGp0fGbFYjH0HAnEo6Cju3X+AnOwclC9vizpenujbqwc83N1wPDgEU6fPRru2rTF39gyV9fxvwSLs3X8QM36Ygq6dOsiXZ2RkYMfuABw/EYKHjx5DIpXC3q48fH3qoV+fXqhcqaJGcRbmHKpyIPAQ5sxbAACIi3+mcP3qenth1fLc6z989FhEXI5Uuoa+TVrA0cEee7ZvwfpN/yDw0GG8ePESjo4OGDSgv/yYwy9FYM26jYi+dRs6ujpo1qQxxo8ZpTJGsViMvQcC8e+hI7j/IAZisRiVKlVE547t0bdXj0IlOA4E/gupVIp2bVqrXSf01Bls2LQFt+/eg5GhIep618GoEV8prXcp4rLCPZ33XDk62GP/7u3yv1s0awpDQ0Ps3X8QA/r11TheIiKi4sTkAhERaczezg4AcCL0JIZ8PqDAt7MGBgbo1KE9/tm2A4eCjsmTAnnt3X8QANCja2f5st9X/InNW7fDwEAf3l5esLKyxKtXr3H37n08fvxEXk+nDu0QefUaHj95ioYNfGFTrpy8DhNjY/n/X7ZyFTZu3gp9fX3U8HCDrY0N7ty9h3+278TJ02fw95/LFbaVCT55Grv2BKB2zZpo1LA+rt2Iwr4DgXj0+DEWzP0RQ78eBalUgjpetREXF4/rUTcxZuJkbPh7Faq5VtXonGZkZGDsd1Nx+UokjI2N4OVZG+ZmZoiLi8fhoGMwMzWFh7sb/Jo1hY1NOQSHnkRiUpLSg3J6ejqCjh6Hqakp/Fu3lC9/+fIVRo2biPsPYmBhbo663nVgYKCPJ0/jsGfvflR0dtIouVDUc5hXRWcndOrQDoGHjsDY2AitWvjJy1wqV9LofAHA9zN+xMWICPjU9YazkxMirlzBT2+SFqYmxpg26yfUrlkDDRv44tr1G/j3cBCePo3D6j9+h0gkkteTmZWF8d9NxcWIy7C0sECtmjVgYGCAG1E3sfT3FbgUcQW/zP8JOjqaNfQ8deYsAKCedx2V5bsD9uHnRUshEolQx8sTtjblcP1GFIZ8NQLNmjRWWNfGphw6dWiHEyGhyMjIRKcO7eRlVlaK197ExAQ13N1wOfIqHj95CmenChrFS0REVJyYXCAiIo2192+D9Zu24Nmz5+jZdwBa+DVDHc/a8HB3QzXXqtDV1VXapme3Lti6fSf27j+olFxITUvDsRMhsDA3R6sWzQEAWVlZ2LF7D0xNTLBlwxo4VfjvzbVYLMa161Hyv2dP/x6z587H4ydPMWTgZypbDBw7EYKNm7fCtWoV/DL/J1R0dgaQ2zpi9Zr1+HvdBiz+dRnmzZmltO3O3QFYvOB/aNq4EQAgLS0dw0aMQsTlSHw9ahw8a9fEzB+myN9ur1y9Bms3bMLmf7Zj9ozvNTqni39dhstXIuFdxwsL5v4Ia2sredmr168RFxcPANDT00PXTh2xbuNm/Hs4CJ992kehnqBjJ5CekYFePbrByMhIvnzmT//D/QcxaNOqJWZ8PwkmJibysqdxcUhLK3iWAW3OYV51vDxRx8sTgYeOwMrSErOna3aO8oqLfwYTExPs2bZFfq4uXrqMb8aMx8pVfyNHnINFP8+VX7PUtDQMGz4KV65ew6WIK/Cp99898tvylbgYcRltW7fED5Mnwswsd6yQtLR0TJs1BydPn0HAvgPo1aNbgXGlp6fj9p07KG9ri/LlbVXEHY+lv6+Anp4eliych0YN6gPIvad//N/POHTkqML6LpUrY/b07xFx+QoyMjILPFc1arjjcuRVRFyJZHKBiIjKBMdcICIijTk7VcCShfNgb2+HtPR0BB46gv8tWISBX3yFtp264edFS/Hy5SuFbSpXqoh6db1x5+493LgZrVB2JOgYMjMz0aG9PwwNDQEAaenpyM7OgZNTBYXEApD7gO1dx7NQMa/dsAkAMPfHGfKHYgAQiUT4etgQVP+kGk6EhCLxTZePvNq1bS1/SAUAU1MTdH/TwuL5ixf4btwYhWbzgz77FCKRCBFXrmgU24sXL3Hw0GEYGOjjxxnfKyQWAMCmXDnUqllD/nePbp2ho6ODvfsDleradyB3Wd4WIDeibiL8YgTKWVtj+lTFxAIAVHB0xCfVXAuMU5tzWBImjB2tcK586nnDrfonePnqFRo3bKBwzcxMTdGjWxcAULgurxMSsHf/Qdjb22HmtKnyxAKQe52nfz8J+vr62L13v0YxPYiJhUQiVdsKZP/BQ8jKzka7Nq3liQUg956eOO5bhYRQUbhUym35cfvOXa3qISIiKiomF4iIqFDq+9RDwPYtWDjvJ/Tq3hXubtWhq6uLlJRU7A7YhwFDvkRM7EOFbXp17wrgvy4QMntVPBCXs7aGnV153L5zF8tWrsLjJ0+LHOvrhATcuXsPlSo6o1pV5W4KIpEIXrVrQSKR4uat20rlDev7Ki2TJTw83N1gYaE4hoSZmRksLMzx8tVrjeK7dPkKJBIpGjWoD0cHhwLXd3RwQKMG9fEgJgaR167Ll9+9dx/Xo27Cw90NbtU/kS+/EH4JAODfphVMTU2U6tOEtuewuOnp6ansdiC7Lvlds7zX5VLEFYjFYjRqUB9GbxJbedna2KCisxPu3ruPzKysAuN6nZAAACrHFQGAK5FXAQBt27RSKrOytETD+j4F7iM/FhYWAFBqCR4iIqK3sVsEEREVmr6+Plr6NUNLv9wZI1JSUhB07AT+WPU3Xick4Jclv2HFb4vl67donjteQNDR4xj/7UiYmJgg+tZtRN+6jdq1asK1ahWF+mdP/x7TZs7Bxs1bsXHzVjg62KNunTpo26YVmjRqoHGcsi4FDx89VhgQT5XExCSlZaqat8vGcrBTUSYrT0pK1ii+Z8+fAwCcnJw0Wh8AenbvijNnz2Hv/oPwql0LwH9Jm+55kjR563cuRP1v0/YcFjcbm3Iqu98Yv7ku+V2z7Oxs+bK4+Nzj2rv/oFLS623JyckwKmBazNTUtNx9mRirLH/x8iWA3MEYVdEkuZQfWfIoJSVVq3qIiIiKiskFIiLSmrm5OXr16AZbW1t8N3UaLl2+jMzMTHlT77zjBQQdO4HuXTvLWy28/UAMAL716mLPji04feYszp6/gEuXryDw8BEEHj6CVi2aY8H/5mgUl1QqBZD7QKrqjXZeqh76dPIM/vc2UT5lJalJowawt7fDsRMhmDjuW+jr6eHQkaMwMTbOd5aCotL2HBa3/K6JJuUysuOq/km1AruGGOjrF1ifmZkpACA9PUOj/Re3tDfJDXNzswLWJCIiKhlMLhARUbHxfTNYnkQiRUpKqkI/8h7dOmPD5n+w90Ag2vu3wZGjx5RmNsjLzNQU7f3boL1/GwDAtes3MHXGbJwIOYkzYefQpHHDAuOxs8t921zUwQNLmmz2jSdPnmi8ja6uLrp36YxVf6/F4aBjMDUxQXJKCrp16aTU9UFW/+NC1P+2d/0cFpXsuOp41sakCWO1rk82c0pysupWK7Y2Noh9+Ahx8c9QtYqLUnlc/DOt9p+ckgIAsNJwmlgiIqLixjEXiIhIY4Ig5Fv+6HHuQ6y+vr7SdHmy8QJuRN3EytVrkJqahvb+bTQeyK52rZro2M4fAHDvwQP5cv03b5XFEonSNvZ2dnCpXAkPYmIR+/CRRvspTfW860BXVwfnzocj/tlzjbfr3qUTdHV1c5v0H1CeylOmvm89AG9mkkgveFYIVUriHOrp6UGi4nqVJp+63tDV1cHpsLMQi8Va11e1igt0dXXVnqM6XrkDkR47EaxUlpScjPPh4Sq3k9/fBcT44M04J9U/qaZxzERERMWJyQUiItLYn3+twW/LV+LxY+U34c9fvMD8X5YAAJo3bSx/KMqr55uBHf/ZvhOA6gfi+PhnOBB4CJmZmQrLs7KycCniMoD/3sgDQHlbGwBQ+1A3bMjnkEqlmDJtJm7dvqNUnpiUhIAC+tyXlPLlbdGxfTtkZWfjx7nzkZikOGbB64QEXL8RpbSdra0Nmjdtglu37yDiciQ+qeaKmjU8lNarWcMDPnW98TohAfMWLkZGhmKT/adxcbh7736BcRb3OSxva4NXrxOQ8uZte1mwK18eXTp1xNO4eEybNQevXisPwvno8WOcCA7VqD5jY2P5jBXPX7xQKu/SqQMMDPRxOOgYzodflC8Xi8VY+tsKZGRkKm0D5F5rQP39LRMVdRMAULeOl0bxEhERFTd2iyAiIo2lp2dg287d2Lx1OypVrIiqVSrDwMAAz5+/wPWomxCLxajo7IQJY0er3F42XsCzZ8+VZjaQSUpOxpx5C7BwyW/wcHeDXfnyyMzMwNVrN5CQmAgPdzf5QJIA0KxJY/y9biN+X74SF8Ivwsoyt8XE6JHDYWVpifb+bXD/QQzWbdyMz4cNR/VPqsHZqQIEQcDjJ09x9949GBsbq0x0lIaJY79F7MNHuBhxGV17fQpvLy+YmpogPv4Zom/fQa/uXRWmo5Tp1b0rgkNPAlA9boXMjzN/wMgxE3Dk6HGcOx8OL8/aMDDQx+MnT3H7zl2MHf0NqrkqzwKRV3Gfw+ZNm2D7rj0YOPRreNaqCUMDA1SuVAmDBvTTaPviMnHct4iLi8eJkJM4e/4Cqn9SDQ729sjIyMSDmBg8evwEfs2aoFVLP43qa9q4IaJuRuNSxBV0aNdWocypgiPGjh6JX5b8hjETJsPbyxM2NuVw/UYUklNS0N6/DQ4HHVOqs3nTJoi4HImRYyfAp643jI2MYGlliW+/GS5fJz09HTejb8GlciU4O1XQ7qQQEREVEZMLRESksWFDBsHDww3nzofjzt17uBx5FampaTAzNUXNGu7wa9oUvXt2k4/c/zZdXV3UreOFQ0eOqn0gdnZywrhvRyL8YgQexMQgKuomjIyNUMHREUM+H4Ce3brAwMBAvr6HuxvmzJyGLdt24NyFi8h6M23g0CGD5ImGkcO/RMMGvti5OwCRV6/j7r37MDU1gV358ujVvRtat2pRvCeqEExNTfDnsqXYvXc/Dgcdw5XIq5BIpShva4P2/m3QqUM7ldvV8aoNPT096OrqosObcSlUsStfHhv+XoWtO3bhREgozodfhK6ODuzsyqN3j25o1qSRRnEW5zkcNeIrCIKA0NNncPR4MCQSCep6e5V6csHI0BC/LV6Aw0HHcPDQEdy5cxc3oqJhbWUFBwd7dGjnD38VU0eq06VTR6xZvxFHjh5XSi4AQN9ePWBX3hYbNv2D61E3YWhgAO86nhj9zdcIOnZCZZ2f9u6J5OQUBB07jhMhJyEWi+HoYK+QXAg5eRpZ2dn5JpmIiIhKmkgoqAMtERFRMcnMzETH7r0hEUvw777dSgMQkuaOHD2O6bN/QqcO7T6ogRbfd5O+n45TZ87iYMAO2NrYlMo+vx0/CVeuXsOBPdvlCTUiIqLSxjEXiIio1OzcvRcpKano1KEdEwtaEIvF2LD5HwBAn149yjgaymv4V0MhCAI2b91eKvuLvnUb5y6EY0C/vkwsEBFRmWK3CCIiKlGJSUlY/scqvEpIQNjZ8zAxNsbgQZ+VdVjvpdBTZxB66jRuRN3E/QcxaNG8KWp6uJd1WJRHtapV0alDO+wO2I/PB/SXT1FZUv5etwHlrK3xeSl3KSEiInobu0UQEVGJehoXh269+0NfXx/VqlbB2NHfoF5d77IO6720es06/LV2AyzMzdGoYQNMmjAGlhYWZR0WEREREZMLRERERERERKQdjrlARERERERERFphcoGIiIiIiIiItMLkAhERERERERFphckFIiIiIiIiItIKkwtEREREREREpBUmF4iIiIiIiIhIK0wuEBEREREREZFWmFwgIiIiIiIiIq0wuUBEREREREREWvk/0xJY8mvd5U4AAAAASUVORK5CYII=", - "text/plain": [ - "
" - ] - }, - "execution_count": 16, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "gaus = pulse.library.Gaussian(num_samples, amp, sigma,\n", - " name=\"Parametric Gaus\")\n", - "gaus.draw()" - ] - }, - { - "attachments": {}, - "cell_type": "markdown", - "metadata": {}, - "source": [ - "##### Pulse waveforms described by samples\n", - "\n", - "A `Waveform` is a pulse signal specified as an array of time-ordered complex amplitudes, or _samples_. Each sample is played for one cycle, a timestep `dt`, determined by the backend. You must know the value of `dt` to determine a program's real-time dynamics. The (zero-indexed) $i^{th}$ sample plays from time `i*dt` up to `(i + 1)*dt`, modulated by the qubit frequency." - ] - }, - { - "cell_type": "code", - "execution_count": 17, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABBcAAADeCAYAAABmFOheAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAABQfUlEQVR4nO3dd1QUVxsG8GeBpTelKipWwEZTFAUVGxbsJZr42WJiSTRqjCUxsSXGaCwxmmgSe2LX2EWsWLBLsQAqKjaaKEhvy3x/4G5YdxcXliL6/M4xJ8ydO/NOWdh55xaRIAgCiIiIiIiIiIhKSKuiAyAiIiIiIiKiyo3JBSIiIiIiIiLSCJMLRERERERERKQRJheIiIiIiIiISCNMLhARERERERGRRphcICIiIiIiIiKNMLlARERERERERBphcoGIiIiIiIiINMLkAhERERERERFppNjJBZFIBJFIBHNzcyQnJytd56effoJIJMKcOXM0DK9yCgkJgUgkgp2dndLy/Px8mJubQyQSYfTo0UrXOXPmDEQiERo3bixbtmHDBtn5V/Vvw4YNxYpVEATs3r0bgwYNQu3atWFoaAgDAwPUrl0bffr0wV9//YWUlJRibbMyGTFihNz509LSgpmZGWrXro2ePXti0aJFiI+Pr+gwS4VIJELt2rUrOoxiSUxMxNq1azF69Gi4urpCR0fnjff5w4cPsWLFCnTt2hW2trYQi8WwtLRE165dsX///iL3d+zYMfj5+cHKygpisRgWFhbw9fXFnj17ShT/rVu3MHDgQFhZWcHAwABNmzbFL7/8gvz8/BJtT5XKeG2JiIiI6N2iU9KKL1++xNKlSzFv3rzSjOed4OLiAlNTU8TExOD+/fuoW7euXPmNGzfw8uVLAMC5c+eUbuPs2bMAgDZt2iiU1atXD97e3krr1a9fX+04Y2Ji0K9fP1y6dAkikQguLi5o3rw5tLW18eTJE/j7+2Pfvn2YMWMGgoKC4OTkpPa2KxsvLy/ZuUtPT0dsbCxOnDiBgwcP4rvvvsO8efMwbdo0iESiCo5UucDAQLRv3x7Dhw8vdoLpbXbu3Dl88sknxaozZMgQBAUFQU9PD56enrC1tcX9+/cREBCAgIAATJ48GUuXLlWo98svv2Dy5MkQiURo1aoVatasicePH+P48eM4duwYvvnmG8yfP1/tOC5cuICOHTsiMzMTLVq0QO3atXHmzBlMnjwZ58+fx/bt28v0ftqwYQNGjhyJ2bNnv7eJXiIiIiIqPyVKLohEIujp6WH58uWYPHkyqlSpUtpxVWpaWlpo3bo1jhw5gnPnzikkF6SJAxcXF1y/fh3Pnz+HhYWF0nWUJRe8vb01foBMSUlBu3btEBUVhe7du2PFihUKcaalpWHt2rX44YcfkJiYqNH+3naffPIJRowYIbcsMzMTa9aswYwZMzBjxgy8fPkSP/74Y8UEWAoiIiIgFosrOoxisbGxwWeffYbmzZvDw8MDv/76K/76668i69SoUQMrVqzA8OHDYWJiIlt+6NAh9OnTB8uWLUPXrl3h6+srK3v27BlmzJgBsViMY8eOoV27drKyM2fOwNfXFwsWLMCoUaMUPifK5ObmYsiQIcjMzMTSpUsxefJkAAWfKV9fX+zcuRPdu3dXuOeIiIiIiCqrEo25oKWlhdGjRyMlJQWLFy8u7ZjeCdKkgLKWCefOnYNYLMakSZMgCAKCgoLkyvPz83HhwgW57ZS2adOmISoqCl26dMH+/fuVPjAZGxtj4sSJuHHjhloPVO8aAwMDTJgwAYcOHYK2tjYWLFiAsLCwig6rxJycnFCvXr2KDqNYWrVqhd9++w0jR45EkyZNoKX15l9Z27Ztw/jx4+USCwDg5+eHjz/+GACwdetWubJLly4hOzsbHTp0kEssAEDbtm3RpUsXCIKAq1evqhX3nj178ODBA7i4uMgSC0DBZ2rlypUAgCVLlqi1LSIiIiKiyqDEAzrOmDEDBgYGWLFiBZ4/f65WndjYWCxatAjt2rWDnZ0ddHV1YWtri379+uHKlStK69SuXVvWdPi3335DkyZNYGBggDp16mDRokUQBAEAEBwcjJ49e6Jq1aowNjZG79698fDhQ6XbFAQBW7duRYcOHVClShXo6+ujYcOGmDNnDjIyMkpwNhRJkwLSFgiFnT17Fu7u7ujcubPSdcLCwpCSkoJatWqhVq1apRJPYYmJibLxG3799Vdoa2sXub6trS2qV68utywqKgpz5sxBq1atYGtrC11dXdSoUQPDhg3DnTt3FLYRHR0NkUgEHx8fpfuYM2eO0r700jfKjRo1grGxMczMzODg4IBhw4bh8uXLxTrukvLx8cGHH34IAFixYoVcWeH783WBgYEQiUQKb6el4zwEBgYiICAA7du3l43BIR3H5OzZsxg/fjycnZ1RpUoVGBgYwMnJCTNmzFAY62TEiBFo3749AGDjxo1yY0gUbg5fVL/8w4cPo3PnzrLPg6Ojo9J9AfLX6saNG+jVqxeqVKkCIyMjtGvXDufPn1d+It8CLi4uAAq6BBWmp6enVv3XWxipcujQIQDAgAEDFMrc3d1Rt25d3Lx5E9HR0WptDwBevHiB8ePHo3r16tDX10ejRo2wfPly2e/Awnx8fDBy5EgAwNy5czUal4WIiIiISB0lTi5Uq1YNY8eORWpqKn7++We16uzbtw/Tp09HfHw8nJ2d0bdvX1SvXh179uyBl5cXjh49qrLu5MmTMXXqVNjb26NTp054/vw5pk+fjjlz5iAoKAht2rRBTEwMOnfujGrVqmH//v2y/s6F5efnY8iQIfjoo49w5coVuLq6onv37khPT8fcuXPRvn17hTrSB+Pi9I9u0aIF9PT0cPv2bbkuBffv30dMTAy8vb1hZ2cHe3t7hdYNRXWJKA2nTp1CdnY23N3d4eDgUKJtrFmzBvPmzUN6ejo8PDzQq1cvmJqa4u+//4aHhweuX7+ucZypqalo2bIlFi5ciLS0NHTu3Bm+vr6oUqUKtm3bhsOHD2u8D3UNHjwYQMG5Ky1btmxBt27dkJ6ejm7dusHDw0N2j02dOhVr166FgYEBOnbsiI4dOyIlJQULFy6Et7c30tLSZNvx9vZGly5dABSMxzF8+HDZP1dX1zfGsWDBAvj5+SEwMBDNmjVDnz59kJGRgYULF6Jly5YqB7S8evUqPD09ER0djS5duqBBgwY4c+YMOnbsiJs3byqs7+PjU+EPt/fv3wdQkDArrEWLFjA3N8fJkydx+vRpubIzZ84gICAADRo0UPszKW3h4u7urrRculzdz0lSUhK8vb3x22+/QRAE9O7dG3Z2dvjqq6/wxRdfKKzftWtXeHl5AShIqBS+J4ozLgsRERERkdqEYgIgaGtrC4IgCHFxcYKhoaFgZGQkJCQkyNZZsGCBAECYPXu2XN3r168LN2/eVNjmkSNHBF1dXaFevXpCfn6+XJm9vb0AQKhevboQFRUlWx4RESHo6ekJhoaGQu3atYVVq1bJyrKzs4UOHToIAIR169bJbW/RokUCAMHHx0eIjY2VqzNq1CgBgDB9+nS5Og8ePBAACMU9Xd7e3gIAYe/evbJlGzduFAAIe/bsEQRBED766CNBV1dXyMjIkK0zcOBAAYCwevVque2tX79eACAMHz68WHG8bubMmQIA4ZNPPinxNi5cuCDcv39fYfm6desEAEL79u3llkvPYbt27ZRub/bs2QIAYf369Qrb6tWrlyCRSOTWT0hIEG7cuFHi+KWGDx+usF9lnjx5IrsHsrOzZcul96cyp06dUnq9pPsEIGzbtk1p3cOHDwvJyclyy7KysoTRo0cLAIS5c+eqta/CAAj29vZyyy5fvixoaWkJxsbGwsWLF+X2Jb0P+/fvL1dHeq0ACMuXL5crmzRpkgBAGDp0qML+27Vrp9a5LsqYMWNKvI2kpCTByspKACDs3r1boXz37t2Cnp6eIBKJBC8vL2HQoEGCl5eXIBKJBG9vb6X3uypVqlQRAAhhYWFKy6Xn6ddff1Vre2PHjhUACF27dhXS09Nlyy9duiQYGxsrvbbS3xev/x4mIiIiIioLJW65ABQMtjZu3Dikp6dj4cKFb1y/adOmclMrSnXp0gUDBw7EvXv3lL7xBIB58+bJ9Rd3cnJC9+7dkZGRgRo1amDs2LGyMl1dXUycOBEA5N5C5uXlYdGiRTAyMsK2bdvk3l7q6upixYoVsLW1xZ9//ik3VZxYLIajoyMcHR3feIyFKesaIf1/6VtFLy8v5OTk4NKlS7J1pC0ZVL0lfb3pu/Sfqi4Hr5N2Y7G0tFRa/vPPP2PEiBFy/9asWSO3jqenJ+rUqaNQd+TIkfDy8kJgYKBsRoySevbsGQCgQ4cOCn3trays0KRJE422XxyFz1VSUlKpbNPPzw+DBg1SWtatWzeYmZnJLdPT08Mvv/wCHR0d7Nu3r1RiWLlyJfLz8zFhwgS0bNlSbl8rV66EgYEB9uzZg8ePHyvU9fLyUnhr/u233wIoeNv/ulq1asHR0VHhuMrL2LFj8ezZM3h6eqJv374K5f369YO/vz8sLCwQFBSE7du3IygoCCYmJvD19VU5tawy0pYlhoaGSsuNjIwAFLTOeZP09HRs3LgRWlpaWLlypdw2W7Rogc8//1ztuIiIiIiIykqJp6KUmj59OlavXo1Vq1Zh6tSpsLGxKXL97OxsHDlyBJcvX8azZ8+Qk5MDoGB6RgC4e/cumjZtqlCv8MjuUtJBBosqi42NlS0LDg5GYmIiOnfurDROAwMDNGvWDIcOHcLdu3dlyQQ7OztERkYWeVzKtGnTBgsWLJDr9nDu3Dk4ODjAysoKwH9JhnPnzsHHxwf37t1DbGwsLCws0LBhQ6XbVTUVZWlNFRkQEIATJ04oLH99SsC0tDQcOHAAoaGhePHiBXJzcwEUnHNBEHDv3j2VzcLV0axZMwAFyQ4bGxv4+fkpDNJXXoRC/dpLa/rAXr16FVn+9OlTHDhwAJGRkUhJSZElvHR1dXH37t1SiUGa7BoyZIhCmbW1NXx9fbFv3z4EBQXJuoZIKfvcWVhYoGrVqnKfO6lNmzaVSswlsXDhQmzfvh1Vq1bF5s2blV7DJUuWYNq0aejTpw/mzJmDunXr4v79+5g1axZmzZqFS5cu4eDBg+Ue+7Vr12TTWSobkPPDDz9UK7lLRERERFSWNE4uWFlZ4fPPP8eiRYvw008/YdmyZSrXlQ7+VtQgZqre5Cl7a2hsbPzGsuzsbNky6X6PHTv2xgfExMTEYrdUeF3r1q2hpaWF4OBgZGZmIi0tDZGRkbIR64GC1hympqayBIT0Yc/b21tljJpORSkdlE7V9JLHjx+X/f+2bdtkgxkWdvLkSQwePFjWukAZdd7KFqVjx46YPHkyfvnlF3z44YfQ0dGRDYT58ccfl+sMFoXPVWlNvVrUYJ1Lly7FjBkzZAmbsiId2FDVQI/S5U+fPlUoq1GjhtI6JiYmePHiRanEVxr++ecffP311zAyMsKhQ4eU3jeBgYH46quv4O7ujp07d8payjRt2hS7du1C8+bNcejQIfj7+6Nbt25v3KexsTGSkpJUDhCbnp4OAGoly6TXyN7eXmm5qmtHRERERFSeNOoWITV16lQYGxtj9erVSt9YAgVvfj/44ANER0dj7NixCA0Nlb2NFQQBX3/9tWw9pYEWMQWdOtPTAZC9+a1fv77cAGfK/qk7KnxRzMzM4OzsjNzcXFy8eFGWQCjc6kBLSwuenp64cOECJBJJmQ/mCPw3Yn5ISEiJ6qelpeGDDz5AYmIiZs2ahfDwcKSnp8uupTQZoepaKlO4G0phS5cuRUREBBYuXIj27dvj5s2bmD9/PpycnLB79+4SxV8S0nPVoEEDiMViteqoOiYpfX19pcsvXryIKVOmwNDQEBs2bEB0dDSysrIgCAIEQUC1atWKF7wGikrCqfu5q0gHDx7EyJEjIRaL8e+//8LT01Ppen///TcAoG/fvgrHpa2tjX79+gFQ3t1DGWni6MmTJ0rLpctVJQyIiIiIiCobjVsuAAX90SdMmIAFCxZgwYIFCtMWAkBkZCQiIyPRvHlzrFq1SqFcOop7WZK+aXVyciq3EevbtGmD0NBQnDt3Tjat3+tdGqQzZVy/fv2N4y2Uhvbt20NPTw/BwcG4e/cuGjRoUKz6Z8+exfPnzzFgwADMnTtXoVzZtdTV1QUAuVkOClPWp1/K0dER06ZNw7Rp05CVlYWVK1di6tSpGDduHPr371+s2Etq+/btACCb8lGq8HFJW8tIFXVMRdmzZw8AYP78+Rg+fLhcWWZmJuLi4kq0XWWqV6+OBw8e4OHDh2jUqJFCubS1T3HGG3hbnD59GgMHDoQgCNiyZYvSbhxS0od9VeNBSJerO96Gi4sLwsLCEBwcjO7duyuUBwcHAwCcnZ3fuC1pMknV1LqqlhMRERERladSe/U4ZcoUmJiY4M8//1TahFr6pVxZU+qkpCQcO3astEJRycPDA2ZmZjh9+nS5NduWJgnOnTuHs2fPwsbGRuFhXjruwr///os7d+7AyMhIo7EK3sTS0hIjRoyAIAiYMGECJBJJseoXdS2joqJkD06v71NHRwcPHjxAXl6eXFlubq7C9H+q6Ovr46uvvkK1atXw7NkzJCQkFCv2kggMDMS2bdsgEokwYcIEuTLpg9+dO3cU6pX0ni7q/O7cuVNpixBpkuP1c/sm0vtz69atCmXPnj1DQEAARCKR7B6tLIKDg9GrVy9kZ2djzZo1b0xCSQd3vXr1qtLyK1euAFC/C4Kfnx8AYNeuXQplISEhuH//Ppo0aaLW9po1awYDAwNcu3ZNaeJu27ZtSuuV9J4gIiIiIiqJUksuWFhY4IsvvkB2djbWrl2rUF6/fn1oaWnh5MmTcoPRZWVlYezYseXysK+np4dp06YhNTUV/fr1U/pF/enTp7Im0oWXOTk5lWjAROnD2/nz5xESEqL0Ia1ly5bQ1tbGb7/9BqBgJgYdnVJpVKLSwoULUa9ePQQEBKBXr15Kz0VOTo7Shy0HBwcABcmQwmMuJCcnY9SoUUrHCdDV1UWrVq3w4sUL2XECBQ8+U6ZMwYMHDxTq7N27FxcvXlRYfu3aNcTHx8PY2Bjm5uay5Rs2bCjWrBlvIm0l4efnB4lEgu+++05hhop27doBABYsWCCXpNm6davSB3Z1SM/v2rVr5c5leHg4pk+frrSOtLXQ7du3i7Wvzz//HFpaWvj111/lrnVOTg4mTJiAzMxM9OvXDzVr1izuYSgYNmwYnJycZC0zysrt27fRtWtXpKSkYPny5RgxYsQb6/Tp0wcAsHnzZoVBG/ft24ctW7ZAS0tLYZYJVcfUt29f1KlTB2FhYXLj0KSnp8tmd5gyZYpax2NsbIyhQ4dCIpHIronU1atXsXLlSqX1SnpPEBERERGVRKk+wU6ZMgUrVqxASkqKQpm1tTVGjRqFv/76Cy4uLujQoQMMDAxw9uxZSCQSjBgxoly6KsyYMQORkZH4+++/0bBhQ7i5uaFOnTrIycnB7du3ER4eDmdnZwwdOlRWJzc3t8Rf0G1tbVG/fn1ERUUBUOwSARQ8PLi4uMje+JdllwgpMzMznDlzBv369cPhw4fh7+8PFxcXWRIoJiYGN27cwMuXL1GlShW5pt3NmzdH586dcezYMTg4OMge5gMDA2FpaYnevXsrnSpx1qxZ6NKlCyZNmoTt27fD1tYW165dQ0ZGBoYPH46NGzfKrR8YGIjly5fDzs4Obm5uMDU1RUxMDM6ePYv8/HzMnTtX9nYW+G+MA3XHRChszZo1CAwMBABkZGQgLi5OFpuenh4WLVqEr776SqHe559/jtWrV2PXrl1o1KgRnJ2dcffuXdy8eRMTJ04scoBTVUaOHIklS5bgwIEDcHR0hIeHB168eIHTp0+jT58+uHz5skJT+Nq1a8PZ2RlXr15FixYt0LhxY2hra6NXr15FzkrRokULfP/995g5cyZatWoFHx8fWFpaIigoCI8fP0aDBg3kkkGaePToEW7fvl3sKUoLj5MgTUJ9//33WL16NQDA3d0dv//+u2wd6UCjVlZWuHbtmtLkgpOTE2bMmCH7uU+fPhg4cCB27tyJnj17onnz5qhTpw4ePHggS7rMnz9fYZBXVcckFovxzz//oFOnTvjyyy+xfft22Nvb4+zZs4iNjcWAAQMUurwUZcGCBTh9+jQOHz6MevXqoW3btkhKSsLJkycxZswYpdfI09MT1tbW2LVrF3x8fFC3bl1oaWnh448/RuvWrdXeNxERERGRWoRiAiBoa2urLJ81a5YAQAAgzJ49W64sLy9PWLJkidCoUSNBX19fsLGxEYYMGSJER0cLs2fPFgAI69evl6tjb28vqApTVR1BEIQHDx4IAIR27doprbtv3z7Bz89PsLa2FsRisWBtbS00a9ZMmDZtmnDt2jWl2yrB6RIEQRBGjhwpq3/58mWl60yYMEG2zokTJ5Sus379egGAMHz48BLFoUx+fr6wa9cuYcCAAULNmjUFfX19QV9fX6hZs6bQs2dPYdWqVUJycrJCvYyMDGHmzJlCgwYNBD09PaFmzZrC2LFjhcTERGH48OECAOHUqVMK9Q4ePCh4eHgIenp6QtWqVYUPPvhAePDggdJrGRISIkyZMkXw8PAQrK2tBT09PcHe3l7o2bOncPz4cYVtf/HFFwIAYdOmTWofvzRW6T+RSCSYmJgI9vb2gp+fn7Bo0SIhPj6+yG1EREQIPXr0EExMTAQjIyOhbdu2wsmTJ4VTp04pvV5FnR+px48fCx999JFgZ2cn6OvrCw0bNhR++uknIS8vT+Vn4u7du0KfPn0ECwsLQUtLS+EzCECwt7dXur+DBw8KHTt2FMzMzARdXV2hfv36wrRp04QXL14orFvU504QVH9m27VrV2Q9VQpfH2X/Xv+MS/dfnDqCUPBZWLt2rdC2bVvB3Nxc0NHRESwtLYXu3bsL/v7+SmN70zHdvHlT6N+/v2BhYSHo6+sLjRs3FpYuXSpIJJJinQNBEITExERh3Lhxgq2traCnpyc4OTkJixcvFvLz81Ve2ytXrgidO3cWzMzMBJFIVKLzT0RERESkDpEgFGNIf6K3mLOzM3JycnDr1i1oa2tXdDhERERERETvjbLt2E9UThITE3Hz5k1s3ryZiQUiIiIiIqJyxpYLRERERERERKQRtWaLEAQBaenpSqfAIyIiIiIiIqL3m1rdItIzMtDe1w8H/t0JIyPDso6JiIiIiIiIiErIxNio3PepVssFIiIiIiIiIiJVmFwgIiIiIiIiIo0wuUBEREREREREGmFygYiIiIiIiIg0wuQCEREREREREWmEyQUiIiIiIiIi0giTC0RERERERESkESYXiIiIiIiIiEgjTC4QERERERERkUaYXCAiIiIiIiIijTC5QEREREREREQaYXKBiIiIiIiIiDTC5AIRERERERERaYTJBSIiIiIiIiLSCJMLRERERERERKQRJheIiIiIiIiISCNMLhARERERERGRRphcICIiIiIiIiKNMLlARERERERERBphcoGIiIiIiIiINMLkAhERERERERFphMkFIiIiIiIiItIIkwtEREREREREpBEmF4iIiIiIiIhII0wuEBEREREREZFGmFwgIiIiIiIiIo0wuUBEREREREREGmFygYiIiIiIiIg0wuQCEREREREREWlEp6IDICIiorKVlgVAUF6WkS1CXr7yMn0xoKujvKJYB9ATl058REREVPkxuUBERFTJ5QvAy3SRyvK4JC3kq0gglJSRgQAzQxWJB20Bxgaluz8iIiJ6uzG5QEREVMkJAhDzvHx7OqZnipCeqTyhYWwgwNiglLMZRERE9FZjcoGIiKgSyMwBHiZoV3QYaknPEiHyifJYxdoC6lVj4oGIiOhdw+QCERFRJSAIgERS0VGop6hYtVT33iAiIqJKjMkFIiKit0RyugixL97tiZxy80SIeKy6BYZjDQkTEERERJUQkwtERERvCUFAqQ+8+DZ6H46RiIjofcPkAhERUTlKzyqY/lGZrBy+sn+eovocVDEWoFM5hp0gIiJ67zC5QEREVI7SMkVITHm3uz5oIiFZ9bkxMZAwuUBERPSW4rcbIiIiIiIiItIIWy4QERGVsuepIpVdHDJzyjmYd0jCSy1oq3gtUtU4HwZ65RsPERER/YfJBSIiolKWniVCagbHTyhtRZ1TY30RDPSEcoyGiIiICmO3CCIiIiIiIiLSCFsuEBERlUByuggSFVMq5uSVbywEpGWJkKfiehjoCjBklwkiIqIyxeQCERFRCTx7KUJOLrs+vC2S00QAlF8PK/N8GLLLBBERUZlitwgiIiIiIiIi0ghbLhAREakg8GX3u0Eo+lqK2ACFiIhIY0wuEBERqRD+SLuiQ6BS8OylFp69VF5mZiSghqWKwRqIiIhIbewWQUREREREREQaYXKBiIiIiIiIiDTCbhFERPTekuQXTClJ76/sXOB5qvJ7QFsLMDfiwBtERETqYHKBiIjeW3kSIO4FG/G9z7JyRIh7oTy5oK8rMLlARESkJn6jIiIiIiIiIiKNMLlARERERERERBphtwgiInqnpWcB8cnKc+n5bPFORcjOE+F+nPJ7RyQC6thwCksiIiIpJheIiOidJskXITObgzZS8Qn5UHnviNj2k4iISA7/NBIRERERERGRRthygYiIKj1JfsE/VWVEpU4AcvJUF4u1C7pOEBERvS+YXCAiokrvRaoICSrGVSAqC4IA3H2qrbK8gZ0EuvyWRURE7xF+EyMiIiIiIiIijTC5QEREREREREQaYYM9IiKqFFIyRMjMVl6WkcPO7fR2SUwRQVvFbWluLEBPXL7xEBERlTUmF4iIqFJIzRQhOY1JBKocklJVNw410pcwuUBERO8cdosgIiIiIiIiIo2w5QIREb01ipo2UhDKLw6ispQviCDJV35Di0SAFhvoEBFRJcTkAhERvTUeJmghM5tPVvRue/xMdcNR26r5sDBhJo2IiCofdosgIiIiIiIiIo0wuUBEREREREREGmG3CCIiKlfRCVrIVzG2QlYuu0TQ++15iggv05V/DkwNBViasssEERG9nZhcICKicpWZLVKZXCB63+XmiZCbp7xMX5eJBSIienuxWwQRERERERERaYQtF4iIqFRJ8oHHiapz1ypm4COiN0jLFCE6QXmXCQOxAJsq/HAREVHFYXKBiIhKlSAA6ZkcO4GotBXVZQKC7D9EREQVgt0iiIiIiIiIiEgjbLlARETFlpENPH6mKj/NVgtE5S0jW4TbT5R/JnW0gXrVOIoqERGVLSYXiIio2AQByJMwiUD0tij6M8nuEkREVPaYXCAiIqWyc4GsHOUPK9m55RwMEZVYviDCy3TVyUATQwFazBUSEZGGmFwgIiKlMrJFiHnOoXmIKrv8fOBJETO4ONWUsDcTERFpjMkFIqL3WL5Q0JxaVRkRvfvyixiOQUsEiJh4ICIiNTC5QET0HktIFuF5ClsnEL3P7jzVVllW11YCA71yDIaIiCotJheIiN5xRbVAUNVqgYgIKPj9oep3iAhs1UBERP9hcoGI6B33+JkW0jL5BEBExRcdr7pVg51lPsyNmKEkIqICTC4QEb0D0rNUt0KQcHp7IioD2TlAmopeVWIdQE9cvvEQEVHFYnKBiOgdEPNCCzm5bJ1AROUnMUULiSnKyyzN8mFjzlYNRETvEyYXiIgqAUEAohNUD7yYm8fEAhG9PV6mi5CRrfz3kpGeAGsmHoiI3jlMLhARvSXyJEByuvIv44IAZGQxgUBElUNungi5ecrLJBJAS0WuVFsLqGLMxAMRUWXE5AIRUTnKyQPSVSQJ8iRAQjKnhSSid1t2rgjxScp/D+poF51YYOKBiOjtxeQCEVEpS8+CyubA2bkivFTROoGI6H2XJxEh5rnq35F5RYxQW9VEgDbzs0REFYbJBSIiFXLzVM/vnpwuQqaKBEJOHsdAICIqC0W17krNFKCl4ldvVRMBemLlv9B1tMGkBBFRKWBygYjeafkCkJGlujw5XQuqGtmmZYqQz2kciYgqBVUJX0B1dzQA0NMVVE6bqacjwFBP+V8JLS3AUK9YIRIRvdOYXCAqZYIG3UFLXLWIikVts6hYBUF1XUEoum5eEQ/kEolI5XYlEkCiolAiKWguq7Qsv6C7gSolPa8iEaCtXcLKRERUKeRJRMiTKC9Lhwgv0lTXLeovT1GJB12xAJGKymJtqCzTFgkQqWhlIULRLTBUDaIJQGWLD0B1LIX3W7LCUq/2xliJqGwxuUBUyjT5w1biqpXqj6kmg3FxIC8iIiIiorcRe5gRERERERERkUaYXCAiIiIiIiIijTC5QEREREREREQaYXKBiIiIiIiIiDTC5AIRERERERERaYTJBSIiIiIiIiLSCJMLRERERERERKQRJheIiIiIiIiISCNMLhARERERERGRRnQqOgAiIqL3RUBAAKZPm4qlS5ehQ8eOcmUfDByAO3fu4K+/1sCjRQu5sq5dfGFtY4NNm/4GAHTr1hWxMTFK93Hp8hXo6ekVGUdaWhq2bt2CUydP4tGjR8jOzoalpSWaNnVGj5490bZtWw2OkoiIiN5HTC4QERGVEzc3NwBASEiIXHIhLS0NUVFR0NHRQWhoqFxyIS4uDnFxcejStavcthwdnTBs2DCFfYjF4iJjePToET4bNxaxsbFo36EDevToCUNDQ8TFx+Hc2bP4YsJ4/PDDfPTo2VOTQyUiIqL3DJMLRERE5cTa2hp2dnYICQmWW349LAyCIKBT584KZdKfpYmJwtvy69GjWPvPy8vDl5Mn4fnz51izdp3CNseOHYfz588jP19SrO0SERERccwFIiKicuTm5obIyEhkZWXJloWGhqJevXrw9vLG9Rs3kJ+f/19ZSChEIhFcXd2Uba5Yjh07iqioKIwePUYhsSDVunVreHu3kf388uVLLF2yGAP690Mrz5bwat0Kn382Drdv35art2/fPri6OOPp06dyy69cuQJXF2dcuXJFtuzhw4eY8uVkdOzQHi08msO3cydMnzYNqampGh8jERERVQy2XCAiIipHrm7uOHjwIG7cuAEPDw8AQGhoCFxcXOHi6oq01FRERUXBwcHhVVko6tSpA3Nzc7nt5OXlISkpSW6Zvr4+DAwMVO779OnTAIDufn5qx/vkyROcOnUKnTv7orqdHV48f45du3Zi1KiP8e+/e2Btba32tgAgNzcXn40bi5ycXAz+8ENYWlgiISEBZ86cQWpqKkxMTIq1PSIiIno7MLlARERUjqQtBkJDQuDh4YG8vDzcuHEDPXv1Qs2aNWFhYYGQkGA4ODggPT0dUVF30btPH4XtXLhwHu192sktGzN2LMaN+0zlvqMfPICJiQlsbGzklmdmZCArO1v2s1gshrGxMQCgQYMG2Lf/ALS0/mvs6NejB/r26Y29e/Zg9JgxxTr+e/fu4enTp/h58WJ07uwrFzsRERFVXkwuEBERlaO6devC3NxcNpbCnTt3kJmZCRcXVwCAi4srQkNDMWjQYISFhUEikSjtwtC0aVN8Pn6C3LIaNWoUue/09HQYGhoqLF+xcgW2bN4s+7lNm7ZYsXIlAEBXV1e2XCKRIDU1FYaGhqhduzYiIiLUO+hCTF4lLc6fPw9v7zZFtrQgIiKiyoPJBSIionIkEong4uKCa8HByM/PR2hICKpWrYpatWoBAFxcXbBt2zYABd0lAMDNzV1hO+bmVeDp6VmsfRsaGiE5OVlh+aAPBqFt24JWEDO/+VquLD8/H5s3b8aOHdsR8/QpJJL/Bns0MzMr1v4BwK5GDQwdOgx//70J/ocPw83NHe18fODn58cuEURERJUYB3QkIiIqZ65ubkhLTcXdu3cRGhoqa7UAFLRciI2JQXx8PEJDQmBlZf3GFgnqqlOnNlJTUxEfHy+33L52bXh6esLT0xO6enpyZWvXrMGSxT+jmXszzJ//I35ftRqr//gT9erVQ74gyNYTiZTvU9nME1O++go7d+3CqFGfIDs7C4sW/oT+/foiPj5O84MkIiKiCsHkAhERUTmTtkQICQlBaGgIXN1cZWWNGjWCrq4url69ihs3bsiVaarNq9YJhw8fUrvOsePH4OHhgTlz56Jrt25o3bo1PD09FWZ2MDU1BQCF5bExsUq326CBAz4dPRrr1m/AuvUbkJCQgJ07dxbncIiIiOgtwuQCERFROWvcuDH09PRw+PAhJCQkyLVc0NXVhVPDhti+fRsyMzPhVgpTUEr5+vqibt16+OvPP3H9epjylQq1RgAAbS2t1xfh6NGjSEhIkFtWo0ZNAEDwtWuyZRKJBLt375JbLy0tDXl5eXLLGjRoAC0tLeTk5BTncIiIiOgtwjEXiIiIyplYLEbjxo0RHBwMXV1dNGrUSK7c1cUFmzZtAgC4uZdeckEsFmPZsmUYN24sRo4YgQ4dO8LdzR0GBgZISEhA4OlAxMbGwrtNG1mdNm3b4s8//sCs776Di6sLou5G4fDhQwpdNerXrw9nZ2f8+utyvEx5CTNTMxwJOCI3RgMAXL58GT8t+BGdfX1hb28PSZ4EBw8ehJaWFjp16lRqx0pERETli8kFIiKiCuDq5obg4GA0fNUNQq7M1Q2bNm2CkZERHBwcS3W/9rVrY/uOndi6ZQtOnjyBoHPnkJubCwsLCzRp2hRjx4xF23b/TXH5ySefIiszE/7+/jh6NABOTg2xYuVKLF++XGHbPy74Cd9/Pw/r162DiYkJ+vTtCw+PFhg7ZrRsHUcHB7Ru7YUzp08jISEB+vr6cHBwwG+//w5nZ5dSPVYiIiIqPyJBeL2xo6K09HS09/XDgX93wshIcQorIiIiIiIiIno7mBgblfs+OeYCEREREREREWmEyQUiIiIiIiIi0giTC0RERERERESkESYXiIiIiIiIiEgjTC4QERERERERkUaYXCAiIiIiIiIijTC5QEREREREREQaYXKBiIiIiIiIiDTC5AIRERERERERaYTJBSIiIiIiIiLSCJMLRERERERERKQRHXVWEgQBAJCRkVGmwRARERERERGRZkQiwMjQECKRqNz2qVZyISMjEwAw6H/DyzQYIiIiIiIiItLc0YN7UKVKlXLbn1rJBStLCxzcsxOGhgblmvnQVHp6Bnr0HYiDe3bCyMiwosMhKle8/+l9xvuf3nf8DND7jPc/ve+knwEdsbhc96tWckFLSws21lZlHUuZMTIyhLGRUUWHQVQheP/T+4z3P73v+Bmg9xnvf3rflXfDAA7oSEREREREREQaYXKBiIiIiIiIiDTyTicXdMVifPrxcOiWc18TorcB7396n/H+p/cdPwP0PuP9T++7ivoMiATpPJNERERERERERCXwTrdcICIiIiIiIqKyx+QCEREREREREWmEyQUiIiIiIiIi0ohORQdQFrKys7Fh02YcO3EScfHxMDUxRSvPFhj76cewtrKq6PCISiwrKwsXL1/B2aALCA27gbj4OGhpaaNmDTu0b9cWQwYPhKGhoVwdDy+fN263ubsbVq1YVkZRE5WuMeMnIjgkTGX58iUL0dqzZZHb+Gzil7hyNRgAcHDPDthYW5dqjERl6VZEJP7Zsg2hYTeQlJwMAwN91K9bFz17dEfP7l3l5jWPfvgI5y9cwq2ICNwKj8TTmBgAwL5dW1G9WrWKOgSiIkVE3salK1dxKzwS4RERSHiWCAC4EhRYZL0Dh/yxa88+PIiOhlhHjCaNG+HjEUPh0rSJ0vVzcnKwdccuHDtxCo8eP0ZengRWlhbwaN4MI4YOQQ276qV9aERvVNz7//TZIJwKPIPIO3eQ+Pw50tLSYWpigoZOjhjQrzfaeLVWa79r1m/CH2vWAQDmzvoG3bv4Fjv2dy65kJ2djc8mTMaNW+GwtLBAW29vxMbF4cAhf5wLuoB1f/7OXxRUaR05ehzzFy4GANSpbY+23l5IS0/HjRu38Ofa9Th6/AT++G05qlapIqvj162Lyu0FXbiI5OSXcHVxLvPYiUpbB5+2MDAwUFj+piTygUP+uHI1GCKRCBzTmCqbk6dO45vZcyGR5MPJ0QGuLs5ITk5GSNh1hF6/gctXruGHOd/K1t+9Zx+27dxdgRETFd/aDZtw+mxQseos+WUFtu3cDT09PXi2aI7snBxcunIVl65cwU8/zIVP2zZy62dnZ2Pcq2cGExNjuLu6QldXF7fv3MG+A4dw/MQprFqxDA2dHEvz0IjeqLj3/+EjATh1+izq1qmNJo0awdDQALGxcTh/8RLOX7yEEUOH4POxnxa5jeiHj7B+098afzd655IL6zb+jRu3wtG0SWOsXPaz7C3u5m078MuK3/H9goX4Y+XyCo6SqGR0dHTQt3dPfPjBANSpbS9bnpj4HJOmzsDtO3exdPlK/DDnO1nZnG+/Vrqt1NRUHDtxEgDQrUvnsg2cqAxMHD+u2G9ek5KSsXzlKni28MDDR48QGxdfRtERlb68vDwsXPILJJJ8fD/7W3T17SQrexD9EJ+Om4CAY8fRp6cfmjdzAwDUr1cXw/73IRo7OaFhQ0dMmDwVDx89rqhDIFJL0yaNUb9ePTRq6IRGDR3Re8Bg5OTkqlz/0pWr2LZzN8zMTLHuj99Rq2YNAMD1m7cwdvwkzPtxIZq5ucLExERWZ8/+g7hxKxyNGjrht18Ww9jYGAAgkUiwdPlK7Ni9B8tW/I4/f+NzA5Wv4t7/Hw8fiq+nTYG5mZnc8pu3wvH5xCnY+M8WdOncEfXr1VVaXxAE/LhoCYyNjdG0caNiJ/YKe6fGXMjNzcWO3XsAANOnTJJrHj5k8AdoUL8egkPCEBF5u6JCJNJIj+5d8c20KXKJBQCwtLTAtCmTAACnTp9Bbq7qX0BSx0+dRk5OLpo2biT7I0z0rluyfCWysrIw/dXnhagyiX70CC+SkmBfq6ZcYgEoaM3W9VWiODwyUra8d08/TBg3Bh3at0M1W9tyjZeopIb/7yOM/fRjtPVuDUsLizeuv2XbTgAFD1mFv9M4N2mMfn16ITU1DfsOHparExJa0L1uyOCBssQCAGhra2PMJx8DAMIjIkFU3op7/zs6NFBILABAk8aN0LljewiCgKvBISrr7z1wCCGhYZg0/jO5z0JJvFPJhbDrN5GWlo4adtXh6NBAobyDTzsAwNmg8+UdGlGZc6hfDwCQk5OLly9T3ri+f8AxAEC3rsXvT0VUGZ2/eAkBx45j5PD/oUYNu4oOh6jYdMW6aq1nZmpaxpEQvT2ysrNxNbhgDJ2O7dsplHdU8f1frMbnycyMnyWq3HR0CjoqiHWUd1hIfP4cK35fDY/m7qXSkvmd6hZxJyoKAODk6KC03MmxIOFwN+p+ucVEVF6evBqkS0dHB6amJkWuGxcXj9Cw69DR0UHnju3LIzyiUrfvwGG8TEmBlkiEWrVqwqeNN2xtbZSum5mZiYWLl6G2fS0MG/JhOUdKVDrsqldDDbvqePjoMY4cPa7QLeJIwDGYmpjAp12bIrZC9G55+PARcnJyUcXcXOngvNLv/1Gvff/3bNEcAceOY/O2nWjt2VKuW4R0ULvePbqXcfREZSfq3n0cO3EKOjo6aOnRXOk6S35ZgezsbMz46stS2ec7lVyIj08AoHowL+nyuHj2saV3z7YdBQN2tWrZArq6RWfj/Y8ehyAIaO3ZUmkzKqLKYN3Gv+V+Xr5yFUaNGIZPRg5TWHf1mvWIiY3D6pW/QCwWl1eIRKVKW1sbc779GpOnfY3v5v6Azdt2oGYNOyQlFQzoWLdObcyeOYMtF+i9Eif9/m+t/Pu/gYEBTEyMkZKaivT0DBgZFXSb7talMy5cuoyjx0+i14DBcGnaBLq6uoi8fQfPXyRh6EeDMWqE4t8TorfVmXPncTLwNPLyJIiPj8f1m7ego6ONmdO/Utpi82zQeRw/GYjRo0aWWhfpdyq5kJGZCQDQ19dTWm5goF+wXkZGucVEVB6Czl/E/oOHoaOjg7GffvzG9aVdIrp35UCOVPm4ubigd08/ODdpAktLC8THJ+DkqdNYu/Fv/LFmHYyMDPHhBwNk60fevoPtO3fBr1sXNHNzrbjAiUqBi3NT/LFyOaZ+/R0ib99B5O07AACxWIwWHs1gV53TS9L7JfMN3/8BwEBfH6mpacjI+C+5oK2tjXmzZsLWxgabNm/FufMXZes7OTrAo7k7tLW1yzZ4olJ0NyoKh/wDZD/r6elhyqQJ6K6kC3RGRgYWLvkFtWrWxPD/lV6LzndqzAWi91H0w4eYNW8+BEHAF5+PhUOD+kWuH3n7Dh5ER8PExFjteW+J3iZjP/0Y3bv4ooZddejr6cG+Vk2MHP4/LF7wAwDgr3UbkJWdDaCgeesPP/0MY2NjTBo/riLDJioVAcdOYMSnY2FjY4UNf63CmeP+2L3tH/To3hWbt+7AuC++RE5OTkWHSfTWS0lJxWcTv8SO3XswZdIEHNq7Eyf8D2DxTz8gKTkZk76agaPHT1Z0mERqGzViGK4EBeLcyQBs/Xsdevp1w48LF2PKjJkKg73//scaxMcnYMbUyW9s8Vwc71RywfDVfOdZWdlKyzMzswrWKzSLBFFllvDsGb74chpSUlPx0eAP5N7WqiJttdCxvU+p/jIhqmieLT3Q0MkRqalpuHUrHACwdccu3L5zF198Nhbm5uYVGyCRhh49foI5PyyAuZkZli1agMaNGsLAwAC1atbAN9OmwNurFSJv38H+Q/4VHSpRuTF4w/d/AMjMUnwGWPrrSgSHhGHc6FEYPLA/rK2sYGpqgnZtvLFo/jwIgoDlK39HXl5e2R4AUSnT09ND/bp1MX3KJAwa0A/ngi5g+65/ZeW3wiOw89+96N7VFx7N3Et13+9Utwgbm4JBXBKePVNaLl1ua6N8wC+iyuRlSgrGT5qK2Lh49PTrptZbWYlEIsvCl8aIsERvm1o1ayAi8jYSn78AUNCfUCQS4aB/AA4dCZBb9/mLgnW+/nYOxLpiDP/fR2jt2bLcYyZS19HjJ5GXl4dWLVsofVHSuUN7nAu6gJDQMAzo27sCIiQqf7bS7/8Jyr//Z2ZmIjU1DaYmJrIuEYW/DymbYaJRQydUr1YNT2Ni8ORpDGrb1yqj6InKVreuvti+61+cORuE/304CAAQdOEi8vPzEXXvPsaMnyi3fvTDRwCA9Rv/wb4Dh9CqZQuMGDpE7f29U8kFh/oFzcGl/Q9fF3n7LgCgQf265RYTUVnIyMjAxCnT8SA6Gu3btcXM6V9BJBK9sd6Vq8FIfP4c1Wxt4ObiXA6REpWvlNRUAIC+vr5smSAIsvnMlbnxqpVDj25dyzY4Ig1JX5IYqZiH3MjICMB/nwOi94G9fS3o6oqRlJyMhGfPFAZ2l37/r1/o+39SUrKsmbixkfLPk7FxwecplZ8nqsSkA7cnJScrlN25G6WyXvTDR4h++AjVbG2Ltb93Krng4twExsZGePI0Brfv3IWjQwO58pOBpwGA/cypUsvJycGUGd/iVngEPFt6YP7c79QecMj/aEGXiG5dOquVjCCqTJKSkhEadh3Af1OP/bFyucr1e/UfhNi4eBzcs0Pp9GVEbxuLqlUBABGRt5WWh0dEAgCqF/PLIFFlpq+nh+bu7jh/8RKOnwzER4MGypWfUPL939TUBGKxGLm5uYiIvI3mzdzk6qSlp+Pho8cAUOyHK6K3SXBIKACghl112bLRo0Zi9KiRStef88MCHPIPwNxZ36B7F8WBIN/knRpzQSwW44P+fQEAi5Yul40eCwCbt+3A3ah7cHdzQUMnx4oKkUgjEokEM2d/j6vXguHm4oyff/xe7Wn1srKyEHj6LACgWwl+WRC9DcJu3ETgmbOQSCRyy2NiYzH1m2+RmZmFtt5eTBbQO6ldGy8AQEhoGHbt2SdXduPmLWzdsRMA0EFJM2+id9lHgwsSCus2/o1Hj5/Ill+/eQt79u2HiYkxevfoLluuq6uLVi1bAACWrfgNiYnPZWXZ2dlYuHgZsrKy4OJcMCsR0dsqKSkZe/YfRNarcUUKu3T5Klb8/gcAoGf3buUSzzvVcgEAPh4+FJevXMP1GzfRb9D/4OrijLi4ONwMj0AVc3N89/X0ig6RqMR27N6DwDMFCQIzMzP8tHiZ0vUmjR+nMHhd4JlzyMjMRKOGTuw7SJXWo0ePMe/HhbCwqAonBwcYGxsjLj4OkZF3kJ2Tg7p1amPmjK8qOkyiMuHk6ID/fTgI/2zdjoWLl2Hn7j2oW6c2niUm4sbNcOTn56Nv755o6dFcVify9h0sLPS3Ii4uHgAw9evvoPsqOd27px/69OpRvgdDVIRz5y9g7fpNsp9zcwsGVRz56X/jS40aOQzerVsBAFp6NMfggf2xbeduDBnxCVp6NENubh4uXbkKQMCsb6bDxMREbh+TJ3yGm+HhuHM3CgM+HIqmTRpDT08X4RG38SwxEWamppgx9cuyP1ii1xTn/s/MysSPCxdj6fKVaOjoAGtrK2RmZuHR48ey8RM+GjSw3JLO71xyQU9PD6tW/oINmzYj4NhxnD57DqamJujRvSvGfvox32ZRpVa43580yaDM6FEjFJIL0lkiOJAjVWZNGjdC/769cSs8AuERkUhJTYWBgT4cGtRHxw4+6N+3N/T1VM91TlTZTRw/Ds5Nm+DfvfsRcfs2Hj56DCNDQ7i7uqBPrx7o0rmj3Prp6em4GR6hsJ3CfW1bebYo87iJiiMpKVnpfVt4WVJSslzZlEkT4NCgPnbu3oNLV65BLNZBC49mGDViGFyaNlHYVo0adtiycS02/bMV5y9eQkhoGAQIsLG2xsB+fTB86Ed8bqAKUZz7v2qVKvjis7G4FhKK+w8eIDzyNgQhH5YWFvDt1AH9evdEM3c3hW2VFZEgCEK57Y2IiIiIiIiI3jnv1JgLRERERERERFT+mFwgIiIiIiIiIo0wuUBEREREREREGmFygYiIiIiIiIg0wuQCEREREREREWmEyQUiIiIiIiIi0giTC0RERERERESkESYXiIiIiIiIiEgjTC4QEVGxXb0WgmnfzEL33gPQql0ndOjaA/0HD8WMb2djx65/kZaWVtEhUglcCw6Bh5cP5vywoELjGDN+Ijy8fBATG1uhcZTUvB8Xok3HrniRlKR2nT/XroeHlw8OHPIv1r6+mjETXXr0RUZGRnHDJCIiKlVMLhARUbH8tW4jxn0xGadOn4GxsRG8W7dCSw8P6Onp4tTps/h52a94EP2w3OKZ88MCeHj54FpwSLntkzTj4eWDXv0HVXQYZSLq3n0c8g/AwH59ULVKFY2316v/IHh4+ags/2TkcLxISsKmzds03hcREZEmdCo6ACIiqjwiIm/jr3UboKOjgwXfz4ZP2zZy5YnPn8M/4BhMTIwrKEJ6F8z99htkZWfB2sqqokMptlV/roWWlhb+91H5JE+cHB3g2dIDm7ftwOAP+sPczKxc9ktERPQ6tlwgIiK1nTp9FoIgoFMHH4XEAgBYWlhg6EeDUdvevgKio3eFra0NatvbQ0encr0DiYtPwLnzF+DZ0qNUWi2oq1uXzsjKysIh/4By2ycREdHrKtdfbSIiqlBJyckAgCrm5mqtn5OTg+59BiArKxv++3bBxMREYZ2wGzfxydjxcHN1wZ+/LQcACIKAI0ePY/fefXj8+CnS0tNgbm4O+1o14dO2DT7o3xcA5JqLj50wWW67+3ZtRfVq1WQ/n794CTt27cGtiAikp2fAysoSPm28MXL4/xTe9s75YQEO+Qdg9YplyJNIsHb9Jty+cxd6enpo28YLk8aPg7GxMV4kJWH1X+twLugCXqa8RP169fDFZ2PQzN1NrfMjlZeXh30HDsH/6DHcu/8AuTm5sLKyhKuLMz7o3xcNnRxx4lQgZnw7B106d8QPc75Tup35Cxdj7/6D+O6b6ejl1022PDMzEzt278GJk4F49PgJJPn5sLG2gkfzZhg8sD/sa9VUK87inENlDhzyx7wfFwIAYuPi5a6fu5sL/lhZcP3HjJ+I4JAwhWvo4eWDarY2+Hf7Zmz4ewsO+R/Bs2eJqFbNFkOHfCg75ivXgrF2/SZE3r4DLW0ttPFqjclffK40xry8POw9cAiH/QNw/0E08vLyUKtWTfTo3hUf9O9brATHgUOHkZ+fjy6dOqpc5/TZIGz8ezPuRN2Dvp4e3N1c8fnYTxXWuxYcIndPFz5X1WxtsH/3dtnPPm28oaenh737D2LI4A/UjpeIiKg0MblARERqs7G2BgCcPH0GI4YNeePbWV1dXfh164ot23bA/+hxWVKgsL37DwIA+vbqIVv262+r8c/W7dDVFcPNxQXm5mZ4/vwFoqLu48mTp7Lt+HXrgrDrN/DkaQw8W3rAompV2TYMDQxk/79i1R/Y9M9WiMViNGroCEsLC9yNuoct23fizLkgrFm9Uq6u1Kkz57Dr3z1o2rgxWnm2wI1b4dh34BAeP3mChT/MxcejP0d+vgSuLk0RGxuHm+ER+GLKNGxc8wfq16ur1jnNzMzExK9mICQ0DAYG+nBxbgoTY2PExsbhyNHjMDYyQkMnR7Rr4w0Li6o4dfoMkl++VHhQzsjIwNFjJ2BkZATfju1lyxMTn+PzSVNw/0E0TE1M4O7mCl1dMZ7GxOLfvftRs4adWsmFkp7DwmrWsINfty445B8AAwN9dPBpJyurbV9LrfMFAF9/NxdXg4PR3N0NNezsEBwaiu9fJS2MDA0wc/b3aNq4ETxbeuDGzVs4fOQoYmJi8efvv0IkEsm2k5WdjclfzcDV4BCYmZqiSeNG0NXVxa3wCCz79TdcCw7Fzwu+h5aWeg09zwZdAAA0c3NVWr57zz78tHgZRCIRXF2cYWlRFTdvhWPEp2PRxqu13LoWFlXh160LTgaeRmZmFvy6dZGVmZvLX3tDQ0M0cnJESNh1PHkagxp21dWKl4iIqDQxuUBERGrr6tsJG/7ejPj4BPT7YAh82rWBq3NTNHRyRP16daGtra1Qp1/vnti6fSf27j+okFxIS0/H8ZOBMDUxQQeftgCA7Oxs7Nj9L4wMDbF541rYVf/vzXVeXh5u3AyX/Tzn268x54cFePI0BiP+95HSFgPHTwZi0z9bUa9uHfy84HvUrFEDQEHriD/XbsCa9Rux5JcV+HHebIW6O3fvwZKF8+HduhUAID09A6PGfo7gkDCM/nwSnJs2xqxvpsvebq/6cy3Wbfwb/2zZjjnffa3WOV3yywqEhIbBzdUFC3+YiypVzGVlz1+8QGxsHABAR0cHvfy6Y/2mf3D4yFF8NGig3HaOHj+JjMxM9O/bG/r6+rLls76fj/sPotGpQ3t89/VUGBoayspiYmORnv7mWQY0OYeFubo4w9XFGYf8A2BuZoY536p3jgqLjYuHoaEh/t22WXaurl4LwbgvJmPVH2uQm5eLxT/9ILtmaenpGDXmc4Rev4FrwaFo3uy/e2T5ylW4GhyCzh3b45tpU2BsXDBWSHp6BmbOnocz54KwZ98B9O/b+41xZWRk4M7du7CytISVlaWSuOOw7NffoKOjg6WLfkSrli0AFNzTc+f/BP+AY3Lr17a3x5xvv0ZwSCgyM7PeeK4aNXJCSNh1BIeGMblAREQVgmMuEBGR2mrYVcfSRT/CxsYa6RkZOOQfgPkLF+N/Iz9FZ7/e+GnxMiQmPperY1+rJpq5u+Fu1D3cioiUKws4ehxZWVno1tUXenp6AID0jAzk5OTCzq66XGIBKHjAdnN1LlbM6zb+DQD4Ye53sodiABCJRBg9agQcGtTHycDTSH7V5aOwLp07yh5SAcDIyBB9XrWwSHj2DF9N+kKu2fzQjwZBJBIhODRUrdiePUvEQf8j0NUVY+53X8slFgDAompVNGncSPZz3949oKWlhb37Dylsa9+BgmWFW4DcCo/AlavBqFqlCr6dIZ9YAIDq1aqhQf16b4xTk3NYFr6cOF7uXDVv5gZHhwZIfP4crT1byl0zYyMj9O3dEwDkrsuLpCTs3X8QNjbWmDVzhiyxABRc52+/ngqxWIzde/erFdOD6IeQSPJVtgLZf9Af2Tk56NKpoyyxABTc01MmTZBLCJVE7VoFLT/u3I3SaDtEREQlxeQCEREVS4vmzbBn+2Ys+vF79O/TC06ODtDW1kZqahp279mHISM+QfTDR3J1+vfpBeC/LhBSe5U8EFetUgXW1la4czcKK1b9gSdPY0oc64ukJNyNuodaNWugfl3FbgoikQguTZtAIslHxO07CuWeLTwUlkkTHg2dHGFqKj+GhLGxMUxNTZD4/IVa8V0LCYVEko9WLVugmq3tG9evZmuLVi1b4EF0NMJu3JQtj7p3HzfDI9DQyRGODg1kyy9fuQYA8O3UAUZGhgrbU4em57C06ejoKO12IL0uRV2zwtflWnAo8vLy0KplC+i/SmwVZmlhgZo17BB17z6ysrPfGNeLpCQAUDquCACEhl0HAHTu1EGhzNzMDJ4tmr9xH0UxNTUFgHJL8BAREb2O3SKIiKjYxGIx2rdrg/btCmaMSE1NxdHjJ/H7H2vwIikJPy9djt+WL5Gt79O2YLyAo8dOYPKEz2BoaIjI23cQefsOmjZpjHp168htf863X2PmrHnY9M9WbPpnK6rZ2sDd1RWdO3WAV6uWascp7VLw6PETuQHxlElOfqmwTFnzdulYDtZKyqTlL1+mqBVffEICAMDOzk6t9QGgX59eCLpwEXv3H4RL0yYA/kva9CmUpCm8/RrF2P7rND2Hpc3CoqrS7jcGr65LUdcsJydHtiw2ruC49u4/qJD0el1KSgr03zAtZlpaesG+DA2Ulj9LTARQMBijMuokl4oiTR6lpqZptB0iIqKSYnKBiIg0ZmJigv59e8PS0hJfzZiJayEhyMrKkjX1LjxewNHjJ9GnVw9Zq4XXH4gBwKOZO/7dsRnngi7gwqXLuBYSikNHAnDoSAA6+LTFwvnz1IorPz8fQMEDqbI32oUpe+jTKjT43+tERZSVJa9WLWFjY43jJwMxZdIEiHV04B9wDIYGBkXOUlBSmp7D0lbUNVGnXEp6XA4N6r+xa4iuWPzG7RkbGwEAMjIy1dp/aUt/ldwwMTF+w5pERERlg8kFIiIqNR6vBsuTSPKRmpom14+8b+8e2PjPFuw9cAhdfTsh4NhxhZkNCjM2MkJX307o6tsJAHDj5i3M+G4OTgaeQdD5i/Bq7fnGeKytC942l3TwwLImnX3j6dOnatfR1tZGn5498MeadThy9DiMDA2RkpqK3j39FLo+SLf/pBjbf93bfg5LSnpcrs5NMfXLiRpvTzpzSkqK8lYrlhYWePjoMWLj4lG3Tm2F8ti4eI32n5KaCgAwV3OaWCIiotLGMReIiEhtgiAUWf74ScFDrFgsVpguTzpewK3wCKz6cy3S0tLR1beT2gPZNW3SGN27+AIA7j14IFsufvVWOU8iUahjY22N2va18CD6IR4+eqzWfspTMzdXaGtr4eKlK4iLT1C7Xp+eftDW1i5o0n9AcSpPqRYezQC8mkki482zQihTFudQR0cHEiXXqzw1d3eDtrYWzp2/gLy8PI23V7dObWhra6s8R64uBQORHj95SqHsZUoKLl25orSe7P5+Q4wPXo1z4tCgvtoxExERlSYmF4iISG2r/1qL5StX4ckTxTfhCc+eYcHPSwEAbb1byx6KCuv3amDHLdt3AlD+QBwXF48Dh/yRlZUltzw7OxvXgkMA/PdGHgCsLC0AQOVD3agRw5Cfn4/pM2fh9p27CuXJL19izxv63JcVKytLdO/aBdk5OZj7wwIkv5Qfs+BFUhJu3gpXqGdpaYG23l64fecugkPC0KB+PTRu1FBhvcaNGqK5uxteJCXhx0VLkJkp32Q/JjYWUffuvzHO0j6HVpYWeP4iCamv3rZXBGsrK/T0646Y2DjMnD0Pz18oDsL5+MkTnDx1Wq3tGRgYyGasSHj2TKG8p1836OqKceTocVy6clW2PC8vD8uW/4bMzCyFOkDBtQZU399S4eERAAB3Vxe14iUiIipt7BZBRERqy8jIxLadu/HP1u2oVbMm6taxh66uLhISnuFmeATy8vJQs4Ydvpw4Xml96XgB8fEJCjMbSL1MScG8Hxdi0dLlaOjkCGsrK2RlZeL6jVtISk5GQydH2UCSANDGqzXWrN+EX1euwuUrV2FuVtBiYvxnY2BuZoauvp1w/0E01m/6B8NGjYFDg/qoYVcdgiDgydMYRN27BwMDA6WJjvIwZeIEPHz0GFeDQ9Cr/yC4ubjAyMgQcXHxiLxzF/379JKbjlKqf59eOHX6DADl41ZIzZ31DT774ksEHDuBi5euwMW5KXR1xXjyNAZ37kZh4vhxqF9PcRaIwkr7HLb19sL2Xf/ifx+PhnOTxtDT1YV9rVoYOmSwWvVLy5RJExAbG4eTgWdw4dJlODSoD1sbG2RmZuFBdDQeP3mKdm280KF9O7W2593aE+ERkbgWHIpuXTrLldlVr4aJ4z/Dz0uX44svp8HNxRkWFlVx81Y4UlJT0dW3E44cPa6wzbbeXggOCcNnE79Ec3c3GOjrw8zcDBPGjZGtk5GRgYjI26htXws17KprdlKIiIhKiMkFIiJS26gRQ9GwoSMuXrqCu1H3EBJ2HWlp6TA2MkLjRk5o5+2NAf16y0buf522tjbcXV3gH3BM5QNxDTs7TJrwGa5cDcaD6GiEh0dA30Af1atVw4hhQ9Cvd0/o6urK1m/o5Ih5s2Zi87YduHj5KrJfTRv48YihskTDZ2M+gWdLD+zcvQdh128i6t59GBkZwtrKCv379EbHDj6le6KKwcjIEKtXLMPuvftx5OhxhIZdhyQ/H1aWFujq2wl+3boorefq0hQ6OjrQ1tZGt1fjUihjbWWFjWv+wNYdu3Ay8DQuXbkKbS0tWFtbYUDf3mjj1UqtOEvzHH4+9lMIgoDT54Jw7MQpSCQSuLu5lHtyQV9PD8uXLMSRo8dx0D8Ad+9G4VZ4JKqYm8PW1gbduvjCV8nUkar09OuOtRs2IeDYCYXkAgB80L8vrK0ssfHvLbgZHgE9XV24uTpj/LjROHr8pNJtDhrQDykpqTh6/AROBp5BXl4eqtnayCUXAs+cQ3ZOTpFJJiIiorImEt7UgZaIiKiUZGVloXufAZDkSXB4326FAQhJfQHHTuDbOd/Dr1uXd2qgxcpu6tff4mzQBRzcswOWFhblss8Jk6ci9PoNHPh3uyyhRkREVN445gIREZWbnbv3IjU1DX7dujCxoIG8vDxs/GcLAGBg/74VHA0VNubTjyEIAv7Zur1c9hd5+w4uXr6CIYM/YGKBiIgqFLtFEBFRmUp++RIrf/8Dz5OScP7CJRgaGGD40I8qOqxK6fTZIJw+ew63wiNw/0E0fNp6o3FDp4oOiwqpX7cu/Lp1we49+zFsyIeyKSrLypr1G1G1ShUMK+cuJURERK9jtwgiIipTMbGx6D3gQ4jFYtSvWwcTx49DM3e3ig6rUvpz7Xr8tW4jTE1M0MqzJaZ++QXMTE0rOiwiIiIiJheIiIiIiIiISDMcc4GIiIiIiIiINMLkAhERERERERFphMkFIiIiIiIiItIIkwtEREREREREpBEmF4iIiIiIiIhII0wuEBEREREREZFGmFwgIiIiIiIiIo0wuUBEREREREREGmFygYiIiIiIiIg08n+2gmXDJUSD9QAAAABJRU5ErkJggg==", - "text/plain": [ - "
" - ] - }, - "execution_count": 17, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "import numpy as np\n", - "\n", - "times = np.arange(num_samples)\n", - "gaussian_samples = np.exp(-1/2 *((times - num_samples / 2) ** 2 / sigma**2))\n", - "\n", - "gaus = library.Waveform(gaussian_samples, name=\"WF Gaus\")\n", - "gaus.draw()" - ] - }, - { - "attachments": {}, - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Regardless of which method you use to specify your `pulse`, `play` is added to your schedule the same way:" - ] - }, - { - "cell_type": "code", - "execution_count": 18, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABFcAAADeCAYAAAD4ru/+AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAABW1klEQVR4nO3dd1QUVxsG8GfpHZSmYkFFxQqI2FAEOzZsMRo1WBLFFlts0ahRE6Mx+pmYorHHXoI1drF3ASuo2BsoSK8ue78/cDeuu0tbiujzO4dz5N65M+/MzuDuu7dIhBACRERERERERESULzrFHQARERERERERUUnG5AoRERERERERkRaYXCEiIiIiIiIi0gKTK0REREREREREWmByhYiIiIiIiIhIC0yuEBERERERERFpgckVIiIiIiIiIiItMLlCRERERERERKQFJleIiIiIiIiIiLTA5EoeSSQSSCQSWFlZIS4uTu02P/74IyQSCWbOnFmksb1PHjx4AIlEAm9v7zy18/b2hkQiwYMHDwolroI+rhACq1evhpeXF0qXLg1jY2NUqVIFn332GW7cuFEgscnvOfmPvr4+bGxsULduXQwYMADbt2+HVCotkGMVp9WrV5fI5+by5cv48ccf0b17d5QvX17xOmkik8lw8uRJTJw4Ee7u7jA3N4ehoSGqVq2KgIAA3L9/X2Pb9PR0zJs3D/Xr14eZmRkMDQ1RuXJlfPnll7h3716+4l+9ejUaNmwIMzMzlC5dGh06dMCZM2fyta/sjlESX1siIiIiotxiciWf4uPjsXDhwuIOg4pRWloaOnTogIEDB+LGjRvw9PRE586dUbp0aWzZsgUhISEFejx/f3/4+/ujT58+8PT0hFQqxdq1a9GzZ0/UrFkTFy5cKNDjFbQBAwZAIpHg2LFjxR1KgZo9ezamTJmCwMBAPH36NMft7927By8vL/z000949uwZWrZsiY4dOyI9PR1Lly6Fi4sLTp06pdIuLS0N3t7emDx5Mu7fv48WLVqgU6dOAIDly5fD1dUVly9fzlPsY8aMwcCBA3H9+nW0bt0aDRs2xKFDh+Dl5YUdO3bkaV/5UVzJVCIiIiKigqZX3AGURBKJBIaGhli8eDHGjh2LUqVKFXdIVAwCAgKwf/9+fPnll1i8eDGMjY0Vdc+fP8fr168L9HirV69WKbt79y6++eYbbNmyBT4+Pjh9+jRcXV0L9LhFpVu3bmjcuDFsbGyKO5Q8adKkCerVqwcPDw94eHjA0dER6enpGreXSCRo06YNJk+eDB8fH0Uvl/T0dAQEBGD16tXo27cvIiIioK+vr2i3bNkynDt3Dh4eHjh06BAsLS0BAJmZmRgzZgyWLFmCcePG4fjx47mK+/Dhw1i8eDGsra1x9uxZVKtWDQBw9uxZeHt7Y+DAgfD29oaVlVU+rwwRERER0ceDPVfyQUdHB0OGDEFCQgIWLFhQ3OFQMbhw4QLWrFmDhg0bYunSpUqJFQAoW7YsKlasWOhxVK1aFZs3b8bgwYORkpKCQYMGFfoxC4ulpSWcnZ1LXHJl0qRJmDVrFjp37owyZcrkuH3VqlVx8OBBtGzZUmn4kKGhIX7//XdYWlri0aNHKkNzTpw4AQAYN26cIrECALq6upg1axYA4OLFi7mOW97zbtq0aYrECpCVLAoICEBcXBxWrFiR6/0REREREX3MmFzJp8mTJ8PY2Bi//vorYmJictXm+fPnmD9/Plq0aAEHBwcYGBigTJky6N69u8YPRY6OjooPYL/99hvq1KkDY2NjVK5cGfPnz4cQAgAQHBysGJJiZmYGPz8/PHz4UO0+hRDYuHEjWrZsiVKlSsHIyAg1a9bEzJkzkZKSko+rkb2EhASMHj0aFSpUUBxr0aJFkMlkedrPzZs30bdvX5QtWxYGBgZwcHDA559/jlu3bmlsExYWhsGDB8PR0RGGhoaws7ODp6cnFixYkKt5SuLj4+Hl5QWJRIJRo0Yprvdff/0FABg5cmS282sUlZ9//hmmpqYICQlRGlJy7NgxSCQSDBgwQG07TUN1JBIJHB0dkZGRgVmzZsHZ2RmGhobo2rUrgKwhKitWrICfnx+qVKkCY2NjWFlZwcvLC5s2bVI5jkQiwZo1awBA0VtD/iMfEpLdvBwpKSmYPXu24v63tLTUeCxA+blZvnw56tWrB2NjY5QpUwZDhw7VOF9ScTM2Nkb16tUBAM+ePVOqMzQ0zLG9tbV1ro6TmpqKo0ePAgB69uypUi8v2717d672J3f69Gm0bt0a5ubmsLKyQrt27XD+/HmV7eRzMsl72VSuXFnpniAiIiIiKmmYXMmnsmXLIiAgAImJifjpp59y1Wbnzp2YNGkSoqKiUK9ePXTr1g3lypVDYGAgPD09cfDgQY1tx44diwkTJqBSpUpo3bo1YmJiMGnSJMycOROnT59G8+bN8ezZM7Rp0wZly5bFrl270KpVK6SmpirtRyaToW/fvvjss89w8eJFuLq6okOHDkhOTsZ3330HHx8flTbyD0L5+dCTnp6Oli1bYu3atWjYsCHatGmDhw8fYty4cXnqZXHkyBE0aNAAGzZsQNmyZdGjRw/Y2dnh77//RoMGDXDy5EmVNlu3boWbmxtWrlwJExMTdOvWDe7u7nj8+DEmTJiApKSkbI8ZFRUFb29vnDx5EtOnT8evv/6quAbyD6ZNmzbF3bt3MWfOHAwdOhTTpk1TO19GYbO0tISvry8AICgoqED2KZPJ0LVrV8yfPx9Vq1aFn58fypYtCyDrnvjiiy9w6dIlODo6ws/PD66urjh37hz69OmjkiDx9/dH1apVAQDt2rVTzB/j7+8PMzOzbONITEyEl5cXpk+fjhcvXqBTp07w9PTEhQsX0KdPH4wePVpj24kTJ2LEiBEoW7YsfH19IYTAsmXL0KVLF0WiTE6b+7ygyGQyRVL03V4wbdu2BZDV4yQ+Pl5RnpmZienTpwMABg8enKvj3Lp1C+np6bC1tUX58uVV6uvXrw8AuHr1aq5j37NnD7y9vXHkyBHUqlULvr6+ePz4Mby8vHD27Fmlbc3MzODv7w97e3sAQI8ePZTuCSIiIiKiEkdQngAQurq6QgghIiMjhYmJiTA1NRUvXrxQbDN37lwBQMyYMUOp7dWrV8X169dV9rl//35hYGAgqlatKmQymVJdpUqVBABRrlw5ERERoSgPCwsThoaGwsTERDg6Ooo//vhDUZeeni5atmwpAIiVK1cq7W/+/PkCgPD29hbPnz9XajN48GABQEyaNEmpzf379wUAkZfb5e029erVEy9fvlTURUREiHLlygkAIjAwUKldixYtBABx//59RVlSUpKwt7cXAMSSJUuUtl+4cKEAIMqXLy9SU1MV5bdv3xZGRkZCT09PrF+/XqmNTCYTBw4cEGlpaRqPe//+feHk5CQkEon45ZdflNqnpqYqzm3ZsmXC0NBQ8bv859NPPxXp6em5vl7Zye21nzNnjgAg+vTpoygLCgoSAIS/v7/aNv7+/gKACAoKUntMJycn8eTJE5V20dHR4tChQyr3671794Sjo6PQ0dFReg2zO5bcqlWr1D43I0eOFACEj4+PSEhIUJSHhYUJOzs7AUDs3r1bqY38uSlTpowIDw9XlL98+VI4OTkJAOLIkSNKbfJzn6sjvx/yY926dQKAsLW1Vbo/hRBCKpWK3r17CwDCyspKdOzYUfTo0UM4OjoKY2NjMWHCBCGVSnN1nJ07dwoAws3NTeM2VlZWAoDSNdckISFB2NraqvzNkclkYtKkSYrr+u5rq+55JyIiIiIqidhzRQv29vYYNmwYkpOTMW/evBy3r1u3LmrXrq1S3q5dO3zyySe4e/curl+/rrbtrFmzFN/8A4CzszM6dOiAlJQUlC9fHgEBAYo6AwMDxbf5b09uKZVKMX/+fJiammLTpk1K34wbGBjg119/RZkyZbBs2TKlITv6+vqoUaMGatSokeM5qrNgwQKleTSqVq2Kb7/9FgCwZMmSHNtv2bIFUVFRaNKkCUaMGKFUN3bsWLi7u+PJkyfYvn27onzRokVIS0vDF198gc8++0ypjUQiQdu2bTUOs5Cv/PPgwQP8/fffGDVqlFL920NKhg8fjo4dOyIsLAxxcXH4559/YGNjg82bN2Pq1Kk5nltBkl/j2NjYAtvn3Llz4eDgoFJubW2N1q1bq/TyqFy5MqZOnQqZTJbnISXqJCcnY8WKFdDR0cHvv/8Oc3NzRZ2zszOmTZsGAFi8eLHa9rNnz1a6b21sbBTPinwOEzlt73NtPX78GGPGjAGQ9by/e3/q6upi3bp1mDhxIuLi4rB3715s374dDx48QM2aNdGqVSvo6urm6ljyXlsmJiYatzE1NQWQ1XMoJ9u2bcPLly/h5eWFgQMHKsolEglmz56ttncMEREREdGHhMkVLU2aNAmmpqb4448/EBUVleP26enp2LlzJ6ZOnYohQ4ZgwIABGDBgAK5duwYAuHPnjtp28iEBb6tSpUqOdc+fP1eUBQcHIzo6Gk2bNlV0x3+bsbEx3N3dERsbqxSHg4MDwsPDER4enuP5vat06dJo06aNSnmfPn0AAGfOnMlx7hX5kJ++ffuqre/Xr5/SdkDWSigAMHTo0DzFe+7cOXh5eSE2NhaBgYFqj/l2vM7Ozti6dSucnZ1haWmJbt26KeYWWbJkCRISEvJ0fG2IN8NcCmpYi0QiQefOnbPd5tSpU5gzZw6GDRuGgQMHYsCAAdi6dSsAzfdyXly+fBmpqamoX78+nJ2dVer79+8PIGuuD3X3kbpnQz6nydvPBqDdfa6t5ORkdO/eHdHR0ejatatSslQuNjYWrVq1wpIlS7B48WI8efIEr169wo4dO/Dy5Ut06NABmzdvLvLYgf+evd69e6vU6evrq53XhYiIiIjoQ8KlmLVka2uLESNGYP78+fjxxx+xaNEijdteu3YNXbp0UUzgqY6mb4nV9R6Qz1WRXd3bS8LKj3vo0KEcP4BHR0cXyDf4lSpVUltuaWkJKysrxMXFITY2NtuJOOUTezo6Oqqtl5c/ffpUUfb48WMAUOrtkxv9+/eHVCrF5s2b0alTJ7XbvD1HyOeffw4dHeUcZYcOHWBnZ4cXL17gwoULaN26dZ5iyK/o6GgAWQmtgmBnZ6exd098fDy6d++umHtGndz0eMhJTq+9lZUVLC0tER8fr/Y+UtdjQt77JbvlkovS69ev8cknn+DSpUto1qwZNmzYoHa7sWPH4vjx41i0aBG++uorRbmfnx8cHBzQsGFDjB8/Ht27d1dawlkd+T2c3QTWycnJAKDUW0gT+euk6XnX9PoREREREX0o2HOlAEyYMAFmZmb4888/Vb4NlxNCoFevXnjw4AECAgIQGhqKhIQEyGQyCCEwZcoUxXbqvPsBPrd1b5N/s+/k5KQ0eaS6n9yuOvI+KMgJSOU9aqZPn47IyEi121hYWKBUqVIAck74vHjxosBiy0lISAgAoFatWrluk12vISMjI411kyZNwtGjR9GiRQscO3YM0dHRkEqlEELgwIEDADTfywUtu9c/t89GcZHJZPD398e+ffvg6uqK3bt3qyzrDWRNWrtx40YA6lf3adCgASpXroynT5/i3r17OR5Xvkz4kydP1NYnJycjLi4OpUqVylVyhYiIiIjoY8eeKwXAxsYGo0aNwty5czF37lyUK1dOZRv5cIMGDRrgjz/+UKnPzQcibcm/xXd2dsbq1asL/XgA8OjRI7XlCQkJiIuLUyzhmx359dS0tLS8R87bPXgqVKiAO3fu4O7du3B1dc11vLNmzUK5cuUwb948tGzZEseOHYOdnZ3Kdq6urggKCtI4v8mrV68AIMeVcApKfHy8Iqnh4+OjKDcwMAAAjSsjyXv45FVgYCB0dXWxa9cuWFhYKNUV5L2c02sfHx+vuI/kCa+SZNSoUdi4cSOqV6+OAwcOaHwWXrx4gYyMDABZvb7UkZfnZs6dGjVqwNDQEC9fvsTTp09Ver8FBwcDAOrVq5er85CvIqXpddJUTkRERET0oXi/v9YtQcaPHw9zc3MsW7ZMaXiKnPwDj7phCrGxsTh06FChx+jh4QFLS0scP35c8eG/sMXExODIkSMq5Zs2bQIANGnSJMdJOJs3bw4Aim/u37Vu3Tql7QAohuIsW7YszzH/+OOP+PrrrxEWFoaWLVvi5cuXKtt06dIFAHDs2DGVukePHikSPm5ubnk+fn6MHz8eycnJ8PDwQJMmTRTl8g+9t2/fVmnz6tUrxYfovIqNjYWFhYVKYgXImoBYHXmiRyqV5vo47u7uMDY2xuXLl9XO4SJ/7T09Pd/7XirvmjZtGn7//XdUrFgRhw4dUpvEkytdurTi+l26dEmlPiEhAbdu3QKgeWjO24yNjdGyZUsAUMyR87Zt27YBQI5z7sjJnz11r71UKlWabPpt+bkniIiIiIjeRyXr08h7zNraGl999RXS09OxYsUKlXonJyfo6Ojg6NGjSh8S09LSEBAQUCTJDkNDQ0ycOBGJiYno3r272h4GT58+xd9//61S5uzsrHZC0dz4+uuvERMTo/j9/v37mDVrFgCorP6jTq9evWBvb49Tp06pJEt++eUXXLp0CQ4ODujRo4eifMyYMTAyMsJff/2lMsmnEAKHDh3Kds6Nn376CePGjcONGzfQqlUrxXwmcoMGDVKsCrRr1y5FeUpKCoYPHw6pVIoOHTqgQoUKSu28vb0hkUgKrOfQvXv38Omnn2LFihUwNTVVufcqV66MihUr4tq1a9i5c6eiPDk5GUOGDMn3hLvVq1dHbGysyrVdtGgRgoKC1LaR90KRJwFyw9TUFIMGDYJMJsOIESMU84AAWQmjOXPmAIDSHCT5pe19nheLFi3C999/jzJlyuDw4cOKYTqaGBoaon379gCAcePGKQ0/TEtLw/Dhw5GSkgJPT09FQg3I/pzGjRsHAJgzZ47S36SzZ89i6dKlsLKywuDBg3N1Pp988gmsra1x7NgxxYTOQNazNmPGDI092PJzTxARERERvZeKbxXokgmA0NXVVVv36tUrYWFhIQAIAGLGjBlK9V9++aUAIIyNjUXHjh1Fz549hb29vbCxsREDBgwQAMSqVauU2lSqVEloeplmzJihto0QQty/f18AEC1atFAqz8zMFP379xcAhIGBgWjUqJHo3bu36N69u6hdu7aQSCTCxcVF7b7ycrvI2zRu3FjUr19fWFlZie7du4vOnTsLExMTAUD069dPpV2LFi0EAHH//n2l8sOHDwtjY2MBQLi7u4s+ffoINzc3AUCYmZmJEydOqOxr48aNQl9fXwAQtWrVEr179xa+vr6iQoUKAoCIjY3N8bijR48WAES9evVEdHS0Ut3+/fuFvr6+kEgkonHjxqJbt26iXLlyAoBwdHQUT548UYmpefPmAoBYt25drq+l/Nr7+/sLf39/0b9/f+Hn5ydq1qwpJBKJACCqVasmLl68qLb9ihUrFPetj4+P6Ny5s7C3txfVqlUTfn5+AoAICgpSOWalSpU0xrRu3TpFXM2bNxd9+vQRtWrVEjo6OmLs2LGKeN926dIlIZFIhJGRkfDz8xODBw8WgwcPVlzXVatWqX1uEhIShLu7uwAg7OzsxCeffCI6dOggjIyMBADx1VdfqcSX3XMTFBSkNr783OdCCLFnzx7RqFEjxY/8NXm7bM+ePYrtQ0JCFNs0adJE8bq++3Py5Eml40RERAh7e3sBQJibm4u2bdsKPz8/xT1XunRpce3atTydk/z+NjExEX5+fsLX11fo6ekJXV1dERgYmKfrsGPHDqGrq6s4d/k9oa+vr/jb9+5ru337dgFAWFhYiJ49eyruCSIiIiKikobJlTzKLrkihBDTp0/XmFyRSqXi559/FrVq1RJGRkbC3t5e9O3bVzx48EBjoqSgkytyO3fuFB07dhR2dnZCX19f2NnZCXd3dzFx4kRx+fJltfvKT3KlRYsWIi4uTgwfPlyUK1dOGBgYiBo1aogFCxYIqVSq0k5TkkMIIa5fvy769Okj7O3thb6+vihbtqzo16+fCA8P1xjHlStXRL9+/YSDg4PiPD09PcXPP/8sXr9+navjjho1SgAQrq6uIiYmRqkuNDRUdO/eXdjY2Ah9fX1RpUoVMXbsWPHy5UuV/WRmZopSpUqJUqVKibi4uGyunjL5tZf/6OnpidKlS4s6deoIf39/8c8//6i9lm9btWqVqFOnjjAwMBD29vbiiy++ENHR0cLf3z9fyRUhhNi7d69o3LixMDc3F1ZWVqJ169bi2LFjGpMXQgixfv16Ub9+fUWi7O1rrim5IoQQSUlJ4rvvvhO1atUShoaGwtzcXDRr1kxs2LBBbWxFmVyRx53dz9vPqPz4eWkjFxkZKcaOHSucnZ2FkZGRMDQ0FE5OTmLEiBHi8ePHKtvn5pxWrVol3N3dhYmJibCyshLt27cXp0+fztM1kDtx4oTw8fERpqamwsLCQrRq1UqcOXMm29d20aJFitc1P9efiIiIiOh9IBGiiJb0IPrIBQcHw93dHXPmzMHUqVOLOxwiIiIiIiIqIJxzhaiIBAUFKebmISIiIiIiog8He64QEREREREREWmBPVdyQQiBpORkMA9FRERERERERO/SK+4ASoLklBT4tO2I3f9shampSXGHQ0REREREREQamJuZFvkx2XOFiIiIiIiIiEgLTK4QEREREREREWmByRUiIiIiIiIiIi0wuUJEREREREREpAUmV4iIiIiIiIiItMDkChERERERERGRFphcISIiIiIiIiLSApMrRERERERERERaYHKFiIiIiIiIiEgLTK4QEREREREREWmByRUiIiIiIiIiIi0wuUJEREREREREpAUmV4iIiIiIiIiItMDkChERERERERGRFphcISIiIiIiIiLSApMrRERERERERERaYHKFiIiIiIiIiEgLTK4QEREREREREWmByRUiIiIiIiIiIi0wuUJEREREREREpAUmV4iIiIiIiIiItMDkChERERERERGRFphcISIiIiIiIiLSApMrRERERERERERaYHKFiIiIiIiIiEgLTK4QEREREREREWmByRUiIiIiIiIiIi0wuUJEREREREREpAUmV4iIiIiIiIiItKBX3AEQERERFaa0DECaqb4uXSpB+mv1dfq6gLGBUFsnkQCmRgUUIBEREZV4TK4QERFRiZeQIkGmTH1dbJIEqemSAj2enq6AnZXmxIuVqfo6IiIi+jAxuUJEREQl3ot4CdIzCjaBkh1ppgTPYtQfLyu5oqGrDBEREX2QmFwhIiKiEuH2Ux3IhPqEhqZeK8VBCCD8ia7G+iplMmHAd2BEREQfFP7XTkRERCWCNFMCUUJG22Sy4woREdFHhckVIiIiei9kSIG7zzX3+CgpiZWcZHeOFWwzYcaJcomIiEocJleIiIjovSF7j4b3FJZsz/EDSSARERF9bJhcISIioiKTIQXik9XPm/IxJFZyEp+ig9QM9RkWMyMBY8MiDoiIiIhyhckVIiIiKjIZr4EXcTrFHcZ7Ky5JAkB98kmnlAzGhuzaQkRE9D7iuxsiIiIiIiIiIi2w5woREREVqKTUrOEt6rzmKjr5Fp8iQdpr9b1aTI0ErEzZq4WIiKi4MLlCREREBSr9teTN8BYqSKnpEqSmq6+TQMDKtGjjISIiov9wWBARERERERERkRbYc4WIiIjyLCktq4eKOsnp7LVS1NJfSxCTqL5OXxewMOGQISIiosLE5AoRERHlWUKyBLFJ7AD7vkhJlyBFQ1LLxEgwuUJERFTI+K6IiIiIiIiIiEgL7LlCREREagl2dvhgZPdaSjiKi4iISGtMrhAREZFaD17oICWNn7xLupQ0CW4+0lVbp6crUKO8rIgjIiIi+vBwWBARERERERERkRaYXCEiIiIiIiIi0gKHBREREX3EYpMkkGmYj0OaWbSxUNGTCQliEjUP/SplJqDDkWFEREQ5YnKFiIjoI/YiTgJpJj89f6xkMiDyleaOzFammQBvDyIiohxxWBARERERERERkRaYXCEiIiIiIiIi0gKHBREREX3AZLKsJZU1kco45oM0e5jNvVOutAxGBkUYDBER0XuMyRUiIqIPmACQms4ECuVPdveO0DARMhER0ceIw4KIiIiIiIiIiLTAnitEREQlnExoXjZZJivaWOjj8TpTAl2p+u4rujpZP0RERB8LJleIiIhKuPQM4F6kbnGHQR+Zxy81Z08cbGSwMuW4ISIi+njwOwUiIiIiIiIiIi0wuUJEREREREREpAUOCyIiIioBUjOAhGT1K7e8zuRqQPR+iU+WID1DfZ2pkYCZcdHGQ0REVNiYXCEiIioB0l9LEJ3ADqdUMiSlSpCUqiHpJ5HBzJjzsRAR0YeF79KIiIiIiIiIiLTAnitERETvCZkM0PR9PpdUpg+FEEBmNvczl3AmIqKSiMkVIiKi98TLBAmi4/nJkj5sMQk6iElQX2dhIlDBlplEIiIqefgOjoiIiIiIiIhIC0yuEBERERERERFpgcOCiIiIilBUrATJ6RqWVJYWcTBE75mkNAnuRar/7k9fD6hgwyFDRET0fmJyhYiIqAhlSCVI1ZBcIfrYyWTQ+HzIZFy+mYiI3l8cFkREREREREREpAX2XCEiIipgT2N08DpTfV16BnutEOVHRqYED16o/15QAqCSHYcMERFR8WFyhYiIqIClpgPpr5lEISpIQgYkp2p4rvi4ERFRMeOwICIiIiIiIiIiLbDnChERUT7ceqL5+wmpjF+jExUpkf0zWbmMDAZ810tERIWI/80QERHlg1QmAbh4CdF7Q5qpOakp+KwSEVEhY3KFiIhIjUwZkKRpfgeAiRWiEiQpVYK0DPV1JoYC+nxHTEREWuJ/JURERGpIM4En0ZyajOhDEBmr+VmuaJvJ5AoREWmN/5UQEdFHSwhApqEHiqZyIvqwyIQEmRoeeIkE0OEUSkRElAtMrhAR0UcrKRV49FK3uMMgomKUXQ81+1Iy2Fgw00pERDljcoWIiD5oQmieHkWAX0kTkWbZ9W4D2KuFiIj+U6KTKxKJ8v9oenp6sLS0RNmyZeHu7o7OnTvDz88PenqaTzM1NRVz587Fpk2b8OjRI5QuXRrt27fH7Nmz4eDgUNinQEREhSwmUYKobOZbICLS5EWcDl7Eqa+zMhNwsJYVaTxERPT+kghRchenkydX/P39AQAymQzx8fG4ffs2bt26BSEEnJycsH79ejRs2FClfVpaGnx8fHDu3DmULVsWzZs3x4MHD3DhwgXY2tri3LlzqFKlCpKSk+HTtiN2/7MVpqYmRXqORESUs7SMrAlo1YlP0UFcEr9eJqKCZWYsYG2uPrmiqwMYGxZxQEREpGBuZlrkxyzRPVfkVq9erVJ29+5dfPPNN9iyZQt8fHxw+vRpuLq6Km0zZ84cnDt3Dk2aNMHBgwdhZmYGAFi4cCHGjx+PQYMG4dixY4V/AkREpJWYRCZQiKhoJaVKkJSqfs4mE0OBymXYq4WI6GPyQfRcye4UvvjiC6xYsQJubm4IDg5WlGdkZMDOzg7x8fEIDg6Gm5ubUjsXFxdcvXoVly5dQg1nZ/ZcISIqZs9fSZD2Wn0CJeO1RGPPFSKioqajAxgZqH9/qqsDVLRl4oWIqDAVR8+VD34Q+s8//wxTU1OEhITg1KlTivLTp08jPj4eVatWVUmsAEDPnj0BALt37y6yWImIPnYxiRJEJ6j/SUyVICVN/Q8TK0T0PpHJoPHvVVKa5r9z0QkSyJh3ISIqkT6IYUHZsbS0hK+vL7Zt24agoCA0a9YMAHDlyhUAQP369dW2k5dfvXq1aAIlIvoIyAQQn6x5+E5UnA4EP1gQ0QdMyJDtJNsSiUzjKkTmxgJ6XD2eiOi99MEnVwDA1dUV27ZtQ1hYmKLs0aNHAIDy5curbSMvf/jwYeEHSET0AcmQak6gyAQQHf/Bd5okIsq3yFea/0aWMpNBX8O7d3NjASODQgqKiIhy9FEkV2xsbAAAsbGxirKkpCQAgImJ+jlUTE2zxmglJiYWcnRERO8naSaQqaEXSUq6RGMCJVMGpGVwclkiooIWm6Q58RKXLKCvoVeLqZGAhYn6OWB0JNCYsCEiotz7KP6Uyie8lU+Am1/Xrl2FkZFRQYRERFRk0qV60DTvd5pUH5ky9W/WX2fq4bWGOiIi+jDoSmQw1JOqrZNIBEz0MzS2NdJX346IqLg1b+ZZ5Mf8KJIr0dHRAIDSpUsryuTLLqekpKhtk5ycDAAwNzdXlLVv3w6yTM6aSFRo8pkAlSCbdhIJkE29RJLNuHcdzQPbdXQ0//nU0dUDNOxXR0cPEg1tdXR0oaNnqL5Oogs9Q82znhualNZYl935ExER5Z/mFTszUuMhhPr3zdLXqZBlvlZbJ8t8rbFOiEyNdRBCcx0AmSybRJCQZbP6qMi2TuO3F1ktNR8zOyV3MVei90ZxLIr8USRXQkJCAAC1atVSlFWsWBEA8OTJE7Vt5OWVKlVSlO3ff4A9V4iIiIiIiIhIyQefXImPj8eBAwcAAD4+PopyFxcXAEBwcLDadvLyevXqKcrq1q0HU1P1c7QQERERERER0cfpgx9MP378eCQnJ8PDwwNNmjRRlHt6esLS0hJ3795FaGioSrtt27YBADp37lxUoRIRERERERFRCfTBJlfu3buHTz/9FCtWrICpqSlWrFihVG9gYICRI0cCAEaMGKGYYwUAFi5ciKtXr6JFixZwd3cv0riJiIiIiIiIqGT5IIYFDRgwAAAgk8mQkJCA27dvIzw8HEIIVKtWDRs2bEDdunVV2k2bNg2HDx/GmTNnUK1aNTRv3hwPHz7E+fPnYWtri5UrVxbxmRARERERERFRSSMRxTGNbgF5d2llPT09WFhYoFy5cnB3d4efnx+6dOkCXV3NK36kpqZi7ty52LBhAx4/fozSpUujffv2mD17NsqXLw8ASEpOhk/bjtj9z1bOuUJERERERET0HjM307zKZmEp0cmVosLkChEREREREVHJUBzJlQ92zhUiIiIiIiIioqLA5AoRERERERERkRbe2+TK/v374erqCiMjI0gkEsTFxRV3SEREREREREREKt7L1YJiYmLQq1cv1K5dG7/99hsMDQ1halr0Y6aIiIio4Bw4cACTJk7AwoWL0LJVK6W6Xp/0xO3bt/HXX8vh0bChUl37dm1hZ2+PtWv/BgD4+rbH82fP1B7j/IWLMDQ0zDaOpKQkbNy4AUFHj+LRo0dIT0+HjY0N6tath06dO8PLy0uLsyQiIqKP0XuZXLl48SISExMxe/ZstG7durjDISIiogLg5uYGAAgJCVFKriQlJSEiIgJ6enoIDQ1VSq5ERkYiMjIS7dq3V9pXjRrO+Pzzz1WOoa+vn20Mjx49wvBhAXj+/Dl8WrZEp06dYWJigsioSJw6eRJfjRqJOXO+R6fOnbU5VSIiIvrIvJfJlRcvXgAArKysctw2JSUFJiZcwYeIiOh9Z2dnBwcHB4SEBCuVX71yBUIItG7TRqVO/rs8MfP2vjp26pSn40ulUowbOwYxMTFYvmKlyj4DAobhzJkzkMky87RfIiIiojzNuTJz5kxIJBJERERgwIABsLKygqWlJQYOHIiUlBSlbaVSKWbPno2qVavC0NAQjo6O+Oabb5Cenp7tMby9veHv7w8A8PDwgEQiwYABAxR1derUweXLl+Hl5QUTExN88803AID09HTMmDEDTk5OMDQ0RIUKFTBx4kSV46Wnp2Ps2LGwtbWFubk5unTpgidPnkAikWDmzJl5uRxERESUR25ubggPD0daWpqiLDQ0FFWrVkUzz2a4eu0aZDLZf3UhoZBIJHB1dVO3uzw5dOggIiIiMGTIUJXEilzTpk3RrFlzxe/x8fFY+PMC9OzRHU0aN4Jn0yYYMXwYbt26pdRu586dcHWph6dPnyqVX7x4Ea4u9XDx4kVF2cOHDzF+3Fi0aumDhh4N0LZNa0yaOBGJiYlanyMREREVj3z1XOnVqxcqV66MuXPnIjg4GMuXL4ednR3mzZun2OaLL77AmjVr0LNnT4wfPx7nz5/H3LlzERYWhsDAQI37njp1KmrUqIFly5Zh1qxZqFy5MqpWraqoj4mJga+vL3r37o1+/frB3t4eMpkMXbp0walTpzBkyBDUrFkT165dw6JFi3D79m3s2LFDKa5169bhs88+Q9OmTXH06FF07NgxP5eBiIiI8sjVrT727NmDa9euwcPDAwAQGhoCFxdXuLi6IikxEREREahevfqbulBUrlxZpTerVCpFbGysUpmRkRGMjY01Hvv48eMAgA55+H//yZMnCAoKQps2bVHOwQGvYmKwbdtWDB48CP/8Ewg7O7tc7wsAXr9+jeHDApCR8Rq9+/SBjbUNXrx4gRMnTiAxMRHm5uZ52h8RERG9H/KVXHFzc8OKFSsUv8fExGDFihWK5MqVK1ewZs0afPHFF/jrr78AAMOHD4ednR0WLFiAoKAg+Pj4qN13mzZt8PTpUyxbtgy+vr5o0KCBUn1kZCT+/PNPDB06VFG2bt06HD58GMePH0ezZs0U5XXq1EFAQADOnDmDpk2b4sqVK1i3bh2GDx+O3377DQAwYsQI9O3bF1evXs3PpSAiIqI8kPcYCQ0JgYeHB6RSKa5du4bOXbqgQoUKsLa2RkhIMKpXr47k5GRERNyBX9euKvs5e/YMfLxbKJUNDQjAsGHDNR77wf37MDc3h729vVJ5akoK0t7q6aqvrw8zMzMAQLVq1bBz127o6PzX2bdjp07o1tUPOwIDMeSt9yO5cffuXTx9+hQ/LViANm3aKsVOREREJVe+lmIOeOcNQPPmzRETE4OEhAQAwL///gsAGDdunNJ248ePBwDs3bs3P4cFABgaGmLgwIFKZVu3bkXNmjXh7OyM6OhoxU/Lli0BAEFBQUpxffXVV0rtx4wZk+94iIiIKPeqVKkCKysrxVwqt2/fRmpqKlxcXAEALi6uCA0NBZD1ZU1mZqbaITx169bFn0uXKf107twl22MnJyernaft1yW/wse7heJnyuTJijoDAwNFYiUzMxNxcXEwMTGBo6MjwsLC8nz+5m+SNmfOnEFqamqe2xMREdH7KV89VypWrKj0e6lSpQAAsbGxsLCwwMOHD6GjowMnJyel7cqUKQMrKys8fPgwn+ECDg4OMDAwUCq7c+cOwsLCYGtrq7aNfIJceVxvDzMCgBo1auQ7HiIiIso9iUQCFxcXXA4OhkwmQ2hICEqXLq14b+Hi6oJNmzYByBouBABubvVV9mNlVQqNGzfO07FNTEwRFxenUv5pr0/h5ZXVC2bqN1OU6mQyGdavX48tWzbj2dOnyMz8b7JbS0vLPB0fABzKl0f//p/j77/XYt+//8LNrT5aeHujY8eOHBJERERUguUruaKrq6u2XAih9LtEIsnP7rOlbiy1TCZD3bp1sXDhQrVtKlSoUOBxEBERUf64urnh+PHjuHPnDkJDQxW9VoCsniuLFi5EVFQUQkNCYGtrh/LlyxfIcStXdsStW+GIiopSGhpUydERlRwdAQAGhoZKbVYsX47ffluCrl27YcTwEbCwtISOjg5+mj8Psrfe92h6y6Nu5aHxX3+NLn5dcCzoGM6ePYP5837EyhXL8fe6dbC3L6P9iRIREVGRK5SlmCtVqgSZTIY7d+6gZs2aivKoqCjExcWhUqVKBXq8qlWr4sqVK2jVqlW2CR15XHfv3lXqrfLujP9ERERUeOQ9UUJCQhAaGoK+/fop6mrVqgUDAwNcunQJ165dQ7PmzTXtJs+ae7XA/v378e+/ezFw4KBctTl0+BA8PDww87vvlMoTExNh9abnLgBYWFgoyt/2/NlztfutVq06qlWrji+HDEFoaCgG+H+OrVu3YuTIUXk5JSIiInpP5GvOlZx06NABAPC///1PqVzes6SgV+fp1asXnj59qpg8922pqalITk4GAPj6+gIAfvnlF6Vt3o0TAFJSUhAeHo7o6OgCjZWIiOhjV7t2bRgaGuLff/fixYsXSj1XDAwM4FyzJjZv3oTU1FS4FcASzHJt27ZFlSpV8deyZbh69Yr6jd7phauro/NuEQ4ePKgYcixXvnxWL9ngy5cVZZmZmdi+fZvSdklJSZBKpUpl1apVg46ODjIyMvJyOkRERPQeKZSeKy4uLvD398eyZcsQFxeHFi1a4MKFC1izZg26du2qcaWg/Orfvz+2bNmCgIAABAUFwdPTE5mZmQgPD8eWLVtw4MABNGjQAK6urujTpw9+//13xMfHo2nTpjhy5AgiIiJU9nnhwgX4+PhgxowZ+HrChAKNl4iI6GOmr6+P2rVrIzg4GAYGBqhVq5ZSvauLC9auXQsAcKtfcMkVfX19LFq0CMOGBWDggAFo2aoV6rvVh7GxMV68eIFjx4/h+fPnSr1lmnt5YdnSpZj+7bdwcXVBxJ0I/PvvXpWhSk5OTqhXrx5++WUx4hPiYWlhif0H9ivN0QJkvb/4ce4PaNO2LSpVqoRMaSb27NkDHR0dtG7dusDOlYiIiIpWoSRXAGD58uWoUqUKVq9ejcDAQJQpUwZTpkzBjBkzCvxYOjo62LFjBxYtWoS1a9ciMDAQJiYmqFKlCkaPHo3q1asrtl25ciVsbW2xfv167NixAy1btsTevXs5LwsREVERcnVzQ3BwMGq+GQakVOfqhrVr18LU1BTVqxfspPOVHB2xectWbNywAUePHsHpU6fw+vVrWFtbo07duggYGgCvFv8t8fzFF18iLTUV+/btw8GDB+DsXBO/LlmCxYsXq+z7h7k/YvbsWVi1ciXMzc3RtVs3eHg0RMDQIYptalSvjqZNPXHi+HG8ePECRkZGqF69On77/XfUq+dSoOdKRERERUci3p2F9iMlkUgwY8YMzJw5U6UuKTkZPm07Yvc/W2FqqrqEIxERERERERG9H8zNTIv8mIUy5woRERERERER0ceCyRUiIiIiIiIiIi0wuUJEREREREREpIVCm9C2pOHUM0RERERERESUH+y5QkRERERERESkBSZXiIiIiIiIiIi0wOQKEREREREREZEWmFwhIiIiIiIiItICkytERERERERERFpgcoWIiIiIiIiISAtMrhARERERERERaUGvuAMoCYQQAICUlJRijoSIiIiIiIiIsiORAKYmJpBIJEV2TCZXciElJRUA8Gk//2KOhIiIiIiIiIhycnBPIEqVKlVkx2NyJRdsbayxJ3ArTEyMizTzpa3k5BR06vYJ9gRuhampSXGHQ1SkeP/Tx47PAH3MeP/Tx4z3P33s5M+Anr5+kR6XyZVc0NHRgb2dbXGHkW+mpiYwMzUt7jCIigXvf/rY8Rmgjxnvf/qY8f6nj11Rd4zghLZERERERERERFpgcoWIiIiIiIiISAtMrnzADPT18eUgfxgU8VgzovcB73/62PEZoI8Z73/6mPH+p49dcT0DEiFfZ5iIiIiIiIiIiPKMPVeIiIiIiIiIiLTA5AoRERERERERkRaYXCEiIiIiIiIi0oJecQdABS8tPR2r167HoSNHERkVBQtzCzRp3BABXw6Cna1tcYdHpJW0tDScu3ARJ0+fReiVa4iMioSOji4qlHeATwsv9O39CUxMTJTaeHh657jfBvXd8MeviwopaqKCM3TkaASHXNFYv/jneWjauFG2+xg+ehwuXgoGAOwJ3AJ7O7sCjZGoMN0IC8e6DZsQeuUaYuPiYGxsBKcqVdC5Uwd07tAeEolEse2Dh49w5ux53AgLw42b4Xj67BkAYOe2jShXtmxxnQJRtsLCb+H8xUu4cTMcN8PC8OJlNADg4ulj2bbbvXcftgXuxP0HD6Cvp486tWth0ID+cKlbR+32GRkZ2LhlGw4dCcKjx48hlWbC1sYaHg3cMaB/X5R3KFfQp0aUo7ze/8dPnkbQsRMIv30b0TExSEpKhoW5OWo610DP7n5o7tk0V8ddvmotli5fCQD4bvo36NCubZ5jZ3LlA5Oeno7ho8bi2o2bsLG2hlezZngeGYnde/fh1OmzWLnsd/6hpBJt/8HD+H7eAgBAZcdK8GrmiaTkZFy7dgPLVqzCwcNHsPS3xShdqpSiTUffdhr3d/rsOcTFxcPVpV6hx05UkFp6e8HY2FilPKck+u69+3DxUjAkEgk4pz2VNEeDjuObGd8hM1MG5xrV4epSD3FxcQi5chWhV6/hwsXLmDNzmmL77YE7sWnr9mKMmCjvVqxei+MnT+epzc//+xWbtm6HoaEhGjdsgPSMDJy/eAnnL17Ej3O+g7dXc6Xt09PTMezNZwZzczPUd3WFgYEBbt2+jZ279+LwkSD88esi1HSuUZCnRpSjvN7//+4/gKDjJ1GlsiPq1KoFExNjPH8eiTPnzuPMufMY0L8vRgR8me0+Hjx8hFVr/9b6vRGTKx+YlWv+xrUbN1G3Tm0sWfST4hv89Zu24H+//o7Zc+dh6ZLFxRwlUf7p6emhm19n9OnVE5UdKynKo6NjMGbCZNy6fQcLFy/BnJnfKupmTpuidl+JiYk4dOQoAMC3XZvCDZyogI0eOSzP37zHxsZh8ZI/0LihBx4+eoTnkVGFFB1RwZNKpZj38/+QmSnD7BnT0L5ta0Xd/QcP8eWwUThw6DC6du6IBu5uAACnqlXweb8+qO3sjJo1a2DU2Al4+OhxcZ0CUa7UrVMbTlWrolZNZ9SqWQN+PXsjI+O1xu3PX7yETVu3w9LSAiuX/o6KFcoDAK5ev4GAkWMw64d5cHdzhbm5uaJN4K49uHbjJmrVdMZv/1sAMzMzAEBmZiYWLl6CLdsDsejX37HsN35uoKKV1/t/kH9/TJk4HlaWlkrl12/cxIjR47Fm3Qa0a9MKTlWrqG0vhMAP83+GmZkZ6taulefE5ts458oH5PXr19iyPRAAMGn8GKWhEX1790I1p6oIDrmCsPBbxRUikdY6dWiPbyaOV0qsAICNjTUmjh8DAAg6fgKvX2v+Iyx3OOg4MjJeo27tWoo3IkQfsp8XL0FaWhomvXlWiEqSB48e4VVsLCpVrKCUWAGyejK2f5Mkvxkerij369wRo4YNRUufFihbpkyRxkuUX/79PkPAl4Pg1awpbKytc9x+w6atALI+ZL79fqZendro3rULEhOTsHPPv0ptQkKzhpf27f2JIrECALq6uhj6xSAAwM2wcBAVtbze/zWqV1NJrABAndq10KaVD4QQuBQcorH9jt17ERJ6BWNGDld6FvKDyZUPyJWr15GUlIzyDuVQo3o1lfqW3i0AACdPnynq0IiKRHWnqgCAjIzXiI9PyHH7fQcOAQB82+d9TCVRSXPm3HkcOHQYA/37oXx5h+IOhyjPDPQNcrWdpYVFIUdC9P5IS0/HpeCsObRa+bRQqW+l4f2/fi6eJ0tLPktUsunpZQ3U0ddTP2AnOiYGv/7+Jzwa1C+QXuwcFvQBuR0RAQBwrlFdbb1zjayEy52Ie0UWE1FRevJmokI9PT1YWJhnu21kZBRCr1yFnp4e2rTyKYrwiArUzt3/Ij4hAToSCSpWrADv5s1Qpoy92m1TU1Mxb8EiOFaqiM/79iniSIkKhkO5sijvUA4PHz3G/oOHVYYF7T9wCBbm5vBu0TybvRB9WB4+fISMjNcoZWWldnJy+fv/iHfe/zdu2AAHDh3G+k1b0bRxI6VhQfJJPf06dSjk6IkKT8Tdezh0JAh6enpo5NFA7TY//+9XpKenY/LX4wrkmEyufECiol4A0DyZobw8Mopj7OnDtGlL1qSFTRo1hIFB9t/I7Dt4GEIING3cSG1XQqL33co1fyv9vnjJHxg84HN8MfBzlW3/XL4Kz55H4s8l/4O+vn5RhUhUoHR1dTFz2hSMnTgF3343B+s3bUGF8g6Ijc2a0LZKZUfMmDqZPVfooxIpf/9vp/79v7GxMczNzZCQmIjk5BSYmmZNG+Dbrg3Onr+Ag4ePokvP3nCpWwcGBgYIv3UbMa9i0f+z3hg8QPX/E6L31YlTZ3D02HFIpZmIiorC1es3oKeni6mTvlbbY/fk6TM4fPQYhgweWGDTAzC58gFJSU0FABgZGaqtNzY2ytouJaXIYiIqKqfPnMOuPf9CT08PAV8OynF7+ZCgDu05kS2VLG4uLvDr3BH16tSBjY01oqJe4GjQcaxY8zeWLl8JU1MT9OnVU7F9+K3b2Lx1Gzr6toO7m2vxBU5UAFzq1cXSJYsxYcq3CL91G+G3bgMA9PX10dDDHQ7luLwyfVxSc3j/DwDGRkZITExCSsp/yRVdXV3Mmj4VZeztsXb9Rpw6c06xvXON6vBoUB+6urqFGzxRAboTEYG9+w4ofjc0NMT4MaPQQc3w/5SUFMz7+X+oWKEC/PsVXI9ezrlCRCXeg4cPMX3W9xBC4KsRAahezSnb7cNv3cb9Bw9gbm6G5p5NiyhKooIR8OUgdGjXFuUdysHI0BCVKlbAQP9+WDB3DgDgr5WrkZaeDiCre/ecH3+CmZkZxowcVpxhExWIA4eOYMCXAbC3t8Xqv/7AicP7sH3TOnTq0B7rN27BsK/GISMjo7jDJHrvJSQkYvjocdiyPRDjx4zC3h1bcWTfbiz4cQ5i4+Iw5uvJOHj4aHGHSZRrgwd8jounj+HU0QPY+PdKdO7oix/mLcD4yVNVFrr4felyREW9wOQJY3Ps7Z4XTK58QEyMjQEAaWnpautTU9OytntrFSGiku7Fy5f4atxEJCQm4rPevZS+sddE3mullY93gf5BJSpOjRt5oKZzDSQmJuHGjZsAgI1btuHW7Tv4angArKysijdAIi09evwEM+fMhZWlJRbNn4vatWrC2NgYFSuUxzcTx6OZZxOE37qNXXv3FXeoREXGOIf3/wCQmqb6GWDhL0sQHHIFw4YMRu9PesDO1hYWFuZo0bwZ5n8/C0IILF7yO6RSaeGeAFEBMzQ0hFOVKpg0fgw+7dkdp06fxeZt/yjqb9wMw9Z/dqBD+7bwcK9foMfmsKAPiL191iRWL16+VFsvLy9jr37CQ6KSJj4hASPHTMDzyCh07uibq2/mMzMzFd/EFMSs4ETvk4oVyiMs/BaiY14ByBpPLJFIsGffAezdf0Bp25hXWdtMmTYT+gb68O/3GZo2blTkMRPl1sHDRyGVStGkUUO1XxS1aemDU6fPIiT0Cnp28yuGCImKXhn5+/8X6t//p6amIjExCRbm5oohQW+/F1K3wlCtms4oV7Ysnj57hidPn8GxUsVCip6ocPm2b4vN2/7BiZOn0a/PpwCA02fPQSaTIeLuPQwdOVpp+wcPHwEAVq1Zh52796JJo4YY0L9vro/H5MoHpLpT1lAI+fjjd4XfugMAqOZUpchiIiosKSkpGD1+Eu4/eACfFl6YOulrSCSSHNtdvBSM6JgYlC1jDzeXekUQKVHRSUhMBAAYGRkpyoQQCAm9orHNtTe9XDr5ti/c4Ii0JP+SyPTNqibvMjU1BfDfc0D0MahUqSIMDPQRGxeHFy9fqixsIX//7/TW+//Y2DjFMAkzU/XPk5lZ1vOUyOeJSjD5ohWxcXEqdbfvRGhs9+DhIzx4+Ahly5TJ0/GYXPmAuNSrAzMzUzx5+gy3bt9BjerVlOqPHjsOAJxjgkq8jIwMjJ88DTduhqFxIw98/923uZ50bd/BrCFBvu3a5CoZQ1RSxMbGIfTKVQD/Lb25dMlijdt36fEpnkdGYU/gFrXLdxK9b6xLlwYAhIXfUlt/MywcAFAuj2+GiUoyI0NDNKhfH2fOncfho8fw2aefKNUfUfP+38LCHPr6+nj9+jXCwm+hgbubUpuk5GQ8fPQYAPL84ZLofRIcEgoAKO9QTlE2ZPBADBk8UO32M+fMxd59B/Dd9G/QoZ3qRLg54ZwrHxB9fX306tENADB/4WLF7OEAsH7TFtyJuIv6bi6o6VyjuEIk0lpmZiamzpiNS5eD4eZSDz/9MDvXS8umpaXh2PGTAADffPzBJCpuV65dx7ETJ5GZmalU/uz5c0z4ZhpSU9Pg1cyTyRL6ILVo7gkACAm9gm2BO5Xqrl2/gY1btgIAWqoZ5kD0Ifusd1ZCZeWav/Ho8RNF+dXrNxC4cxfMzc3g16mDotzAwABNGjUEACz69TdER8co6tLT0zFvwSKkpaXBpV7WqnRE76vY2DgE7tqDtDfzCr3t/IVL+PX3pQCAzh18iyQe9lz5wAzy748LFy/j6rXr6P5pP7i61ENkZCSu3wxDKSsrfDtlUnGHSKSVLdsDcexEVoLE0tISPy5YpHa7MSOHqUzgeezEKaSkpqJWTWeOH6YS6dGjx5j1wzxYW5eGc/XqMDMzQ2RUJMLDbyM9IwNVKjti6uSviztMokLhXKM6+vX5FOs2bsa8BYuwdXsgqlR2xMvoaFy7fhMymQzd/DqjkUcDRZvwW7cx763/JyIjowAAE6Z8C4M3iXm/zh3RtUunoj0ZomycOnMWK1atVfz++nXWpLIDv/xvbrnBAz9Hs6ZNAACNPBqg9yc9sGnrdvQd8AUaebjj9Wspzl+8BEBg+jeTYG5urnSMsaOG4/rNm7h9JwI9+/RH3Tq1YWhogJtht/AyOhqWFhaYPGFc4Z8s0Tvycv+npqXih3kLsHDxEtSsUR12drZITU3Do8ePFfOnfPbpJ0WWdGdy5QNjaGiIP5b8D6vXrseBQ4dx/OQpWFiYo1OH9gj4chC/zaQS7+2xv/IkizpDBg9QSa7IVwniRLZUUtWpXQs9uvnhxs0w3AwLR0JiIoyNjVC9mhNatfRGj25+MDI0LO4wiQrN6JHDUK9uHfyzYxfCbt3Cw0ePYWpigvquLujapRPatWmltH1ycjKu3wxT2c/bY+2bNG5Y6HET5UVsbJza+/btstjYOKW68WNGoXo1J2zdHojzFy9DX18PDT3cMXjA53CpW0dlX+XLO2DDmhVYu24jzpw7j5DQKxAQsLezwyfdu8K//2f83EDFIi/3f+lSpfDV8ABcDgnFvfv3cTP8FoSQwcbaGm1bt0R3v85wr++msq/CIhFCiCI7GhERERERERHRB4ZzrhARERERERERaYHJFSIiIiIiIiIiLTC5QkRERERERESkBSZXiIiIiIiIiIi0wOQKEREREREREZEWmFwhIiIiIiIiItICkytERERERERERFpgcoWIiIiIiIiISAtMrhAREeXRpcshmPjNdHTw64kmLVqjZftO6NG7PyZPm4Et2/5BUlJScYdI+XA5OAQent6YOWduscYxdORoeHh649nz58UaR37N+mEemrdqj1exsblus2zFKnh4emP33n15OtbXk6eiXaduSElJyWuYREREBYrJFSIiojz4a+UaDPtqLIKOn4CZmSmaNW2CRh4eMDQ0QNDxk/hp0S+4/+BhkcUzc85ceHh643JwSJEdk7Tj4emNLj0+Le4wCkXE3XvYu+8APuneFaVLldJ6f116fAoPT2+N9V8M9Mer2FisXb9J62MRERFpQ6+4AyAiIiopwsJv4a+Vq6Gnp4e5s2fA26u5Un10TAz2HTgEc3OzYoqQPgTfTfsGaelpsLO1Le5Q8uyPZSugo6ODfp8VTfLIuUZ1NG7kgfWbtqB3rx6wsrQskuMSERG9iz1XiIiIcino+EkIIdC6pbdKYgUAbKyt0f+z3nCsVKkYoqMPRZky9nCsVAl6eiXrO7DIqBc4deYsGjfyKJBeK7nl264N0tLSsHffgSI7JhER0btK1v/aRERExSg2Lg4AUMrKKlfbZ2RkoEPXnkhLS8e+ndtgbm6uss2Va9fxRcBIuLm6YNlviwEAQgjsP3gY23fsxOPHT5GUnAQrKytUqlgB3l7N0atHNwBQGi4RMGqs0n53btuIcmXLKn4/c+48tmwLxI2wMCQnp8DW1gbezZthoH8/lW/7Z86Zi737DuDPXxdBmpmJFavW4tbtOzA0NIRXc0+MGTkMZmZmeBUbiz//WolTp88iPiEeTlWr4qvhQ+Fe3y1X10dOKpVi5+692HfwEO7eu4/XGa9ha2sDV5d66NWjG2o618CRoGOYPG0m2rVphTkzv1W7n+/nLcCOXXvw7TeT0KWjr6I8NTUVW7YH4sjRY3j0+AkyZTLY29nCo4E7en/SA5UqVshVnHm5hurs3rsPs36YBwB4Hhml9PrVd3PB0iVZr//QkaMRHHJF5TX08PRG2TL2+Gfzeqz+ewP27tuPly+jUbZsGfTv20dxzhcvB2PFqrUIv3UbOro6aO7ZFGO/GqE2RqlUih279+LffQdw7/4DSKVSVKxYAZ06tEevHt3ylODZvfdfyGQytGvdSuM2x0+expq/1+N2xF0YGRqivpsrRgR8qbLd5eAQpXv67WtVtow9dm3frPjdu3kzGBoaYseuPejbu1eu4yUiIipITK4QERHlkr2dHQDg6PETGPB53xy/nTcwMEBH3/bYsGkL9h08rEiKvG3Hrj0AgG5dOinKfvntT6zbuBkGBvpwc3GBlZUlYmJeISLiHp48earYT0ffdrhy9RqePH2Gxo08YF26tGIfJsbGin//+sdSrF23Efr6+qhVswZsrK1xJ+IuNmzeihOnTmP5n0uU2soFnTiFbf8Eom7t2mjSuCGu3biJnbv34vGTJ5g35zsMGjICMlkmXF3q4vnzSFy/GYavxk/EmuVL4VS1Sq6uaWpqKkZ/PRkhoVdgbGwEl3p1YW5mhufPI7H/4GGYmZqipnMNtGjeDNbWpRF0/ATi4uNVEgUpKSk4eOgITE1N0baVj6I8OjoGI8aMx737D2Bhbo76bq4wMNDH02fP8c+OXahQ3iFXyZX8XsO3VSjvgI6+7bB33wEYGxuhpXcLRZ1jpYq5ul4AMOXb73ApOBgN6ruhvIMDgkNDMftN0sbUxBhTZ8xG3dq10LiRB65dv4F/9x/Es2fPsez3XyCRSBT7SUtPx9ivJ+NScAgsLSxQp3YtGBgY4MbNMCz65TdcDg7FT3NnQ0cndx2dT54+CwBwd3NVW789cCd+XLAIEokEri71YGNdGtdv3MSALwPQ3LOp0rbW1qXR0bcdjh47jtTUNHT0baeos7JSfu1NTExQy7kGQq5cxZOnz1DeoVyu4iUiIipITK4QERHlUvu2rbH67/WIinqB7r36wrtFc7jWq4uazjXgVLUKdHV1Vdp09+uMjZu3YseuPSrJlaTkZBw+egwW5uZo6e0FAEhPT8eW7f/A1MQE69esgEO5/3ouSKVSXLt+U/H7zGlTMHPOXDx5+gwD+n2mtsfI4aPHsHbdRlStUhk/zZ2NCuXLA8jqHbNsxWosX7UGP//vV/wwa4ZK263bA/HzvO/RrGkTAEBycgoGB4xAcMgVDBkxBvXq1sb0byYpejf8sWwFVq75G+s2bMbMb6fk6pr+/L9fERJ6BW6uLpg35zuUKmWlqIt59QrPn0cCAPT09NClYwesWrsO/+4/iM8+/URpPwcPH0VKaip6dPODkZGRonz67O9x7/4DtG7pg2+nTICJiYmi7tnz50hOznmVGW2u4dtcXerB1aUe9u47ACtLS8yclrtr9LbnkVEwMTHBP5vWK67VpcshGPbVWPyxdDleS19jwY9zFK9ZUnIyBg8dgdCr13A5OBQN3P+7RxYv+QOXgkPQppUPvpk4HmZmWXMFJSenYOqMWThx6jQCd+5Gj25+OcaVkpKC23fuwNbGBra2NmrijsSiX36Dnp4eFs7/AU0aNQSQdU9/9/2P2HfgkNL2jpUqYea0KQgOCUVqalqO16pWLWeEXLmK4NArTK4QEVGx4JwrREREuVTeoRwWzv8B9vZ2SE5Jwd59B/D9vAXoN/BLtOnohx8XLEJ0dIxSm0oVK8C9vhvuRNzFjbBwpboDBw8jLS0Nvu3bwtDQEACQnJKCjIzXcHAop5RYAbISDG6u9fIU88o1fwMA5nz3rSIpAAASiQRDBg9A9WpOOHrsOOLeDHl6W7s2rRQf0gHA1NQEXd/0sHnx8iW+HvOV0rCR/p99ColEguDQ0FzF9vJlNPbs2w8DA3189+0UpcQKAFiXLo06tWspfu/m1wk6OjrYsWuvyr527s4qe7sH0I2bYbh4KRilS5XCtMnKiRUAKFe2LKo5Vc0xTm2uYWEYN3qk0rVq4O6GGtWrITomBk0bN1J6zcxMTdHNrzMAKL0ur2JjsWPXHtjb22H61MmKxAqQ9TpPmzIB+vr62L5jV65iuv/gITIzZRp7Ae3asw/pGRlo17qVIrECZN3T48eMUkqI5YdjxayeP7fvRGi1HyIiovxicoWIiCgPGjZwR+Dm9Zj/w2z06NoFzjWqQ1dXF4mJSdgeuBN9B3yBBw8fKbXp0bULgP+GAMntUJMQKF2qFOzsbHH7TgR+/WMpnjx9lu9YX8XG4k7EXVSsUB5OVVSH6UgkErjUrYPMTBnCbt1WqW/c0EOlTJ7wqelcAxYWynPImJmZwcLCHNExr3IV3+WQUGRmytCkUUOULVMmx+3LlimDJo0a4v6DB7hy7bqiPOLuPVy/GYaazjVQo3o1RfmFi5cBAG1bt4SpqYnK/nJD22tY0PT09NQOu5G/Ltm9Zm+/LpeDQyGVStGkUUMYvUnsvc3G2hoVyjsg4u49pKWn5xjXq9hYAFA7rxAAhF65CgBo07qlSp2VpSUaN2yQ4zGyY2FhAQBFluAiIiJ6F4cFERER5ZG+vj58WjSHT4usFYMSExNx8PBR/L50OV7FxuKnhYvx2+KfFdt7e2XNF3Lw0BGMHTUcJiYmCL91G+G3bqNundqoWqWy0v5nTpuCqdNnYe26jVi7biPKlrFHfVdXtGndEp5NGuU6TvmQmkePnyhNCKpOXFy8Spm64R3yuVzs1NTJ6+PjE3IVX9SLFwAABweHXG0PAN27dsHps+ewY9ceuNStA+C/pFXXt5JUb++/fB72/y5tr2FBs7YurXb4mfGb1yW71ywjI0NR9jwy67x27NqjkvR7V0JCAoxyWBY6KSk561gmxmrrX0ZHA8iajFad3CTXsiNPniUmJmm1HyIiovxicoWIiEhL5ubm6NHNDzY2Nvh68lRcDglBWlqaYqjD2/OFHDx8FF27dFL0Wnk3IQAAHu718c+W9Th1+izOnr+AyyGh2Lv/APbuP4CW3l6Y9/2sXMUlk8kAZH0gV9ej4W3qPvTqvDX56bsk2dQVJs8mjWBvb4fDR49h/JhR0NfTw74Dh2BibJztKjX5pe01LGjZvSa5qZeTn1f1ak45Do0y0NfPcX9mZqYAgJSU1Fwdv6Alv0numJub5bAlERFR4WByhYiIqIB4vJksNDNThsTEJKV5JLr5dcKadRuwY/detG/bGgcOHVZZ2eZtZqamaN+2Ndq3bQ0AuHb9BiZ/OxNHj53A6TPn4Nm0cY7x2Nll9TbI7+SphU2++tLTp09z3UZXVxddO3fC0uUrsf/gYZiamCAhMRF+nTuqDP2R7/9JHvb/rvf9GuaX/Lxc69XFhHGjtd6ffOWshAT1vZZsrK3x8NFjPI+MQpXKjir1zyOjtDp+QmIiAMAql8ukExERFTTOuUJERJRLQohs6x8/yfoQr6+vr7JcrHy+kBs3w/DHshVISkpG+7atcz2RZ906tdGhXVsAwN379xXl+m96FUgzM1Xa2NvZwbFSRdx/8BAPHz3O1XGKkrubK3R1dXDu/EVERr3IdbuunTtCV1c3a0jLbtWlrOUaergDeLOSUErOqwKpUxjXUE9PD5lqXq+i1KC+G3R1dXDqzFlIpVKt91elsiN0dXU1XiNXl6yJmA8fDVKpi09IwPmLF9W2U9zfOcR4/808R9WrOeU6ZiIiooLE5AoREVEu/fnXCixe8geePFHtCfHi5UvM/WkhAMCrWVPFh8K3dX8zse2GzVsBqE8IREZGYffefUhLS1MqT09Px+XgEAD/9cgAAFsbawDQ+KF28IDPIZPJMGnqdNy6fUelPi4+HoE5zLlRWGxtbdChfTukZ2TguzlzERevPGfJq9hYXL9xU6WdjY01vJp54tbtOwgOuYJqTlVRu1ZNle1q16qJBvXd8Co2Fj/M/xmpqcpDVp49f46Iu/dyjLOgr6GtjTViXsUi8U1vi+JgZ2uLzh074NnzSEydMQsxr1QnIX785AmOBh3P1f6MjY0VKxa9ePlSpb5zR18YGOhj/8HDOH/xkqJcKpVi0eLfkJqaptIGyHqtAc33t9zNm2EAgPquLrmKl4iIqKBxWBAREVEupaSkYtPW7Vi3cTMqVqiAKpUrwcDAAC9evMT1m2GQSqWoUN4B40aPVNtePl9IVNQLlZVt5OITEjDrh3mYv3AxajrXgJ2tLdLSUnH12g3ExsWhpnMNxUS6ANDcsymWr1qLX5b8gQsXL8HKMqvHzMjhQ2FlaYn2bVvj3v0HWLV2HT4fPBTVqzmhvEM5CCHw5OkzRNy9C2NjY7WJnqIwfvQoPHz0GJeCQ9Clx6dwc3GBqakJIiOjEH77Dnp07aK0HLNcj65dEHT8BAD189bIfTf9Gwz/ahwOHDqCc+cvwqVeXRgY6OPJ02e4fScCo0cOg1NV1VWA3lbQ19CrmSc2b/sH/QYNQb06tWFoYIBKFSuif9/euWpfUMaPGYXnzyNx9NgJnD1/AdWrOaGMvT1SU9Nw/8EDPH7yFC2ae6KlT4tc7a9Z08a4GRaOy8Gh8G3XRqnOoVxZjB45HD8tXIyvxk2Em0s9WFuXxvUbN5GQmIj2bVtj/8HDKvv0auaJ4JArGD56HBrUd4OxkREsrSwxathQxTYpKSkIC78Fx0oVUd6hnHYXhYiIKJ+YXCEiIsqlwQP6o2bNGjh3/iLuRNxFyJWrSEpKhpmpKWrXckaLZs3Qs7ufYuWWd+nq6qK+qwv2HTikMSFQ3sEBY0YNx8VLwbj/4AFu3gyDkbERypUtiwGf90V3v84wMDBQbF/TuQZmTZ+K9Zu24NyFS0h/s2zuoAH9FYmW4UO/QONGHti6PRBXrl5HxN17MDU1gZ2tLXp09UOrlt4Fe6HywNTUBH/+ugjbd+zC/oOHEXrlKjJlMtjaWKN929bo6NtObTtXl7rQ09ODrq4ufN/MS6OOna0t1ixfio1btuHoseM4f/ESdHV0YGdni57d/NDcs0mu4izIazgi4EsIIXD81GkcOhKEzMxM1HdzKfLkipGhIRb/PA/7Dx7Gnn0HcOdOBG7cDEcpKyuUKWMP33Zt0VbN0smadO7YAStWr8WBQ0dUkisA0KtHN9jZ2mDN3xtw/WYYDA0M4OZaDyOHDcHBw0fV7vPTnt2RkJCIg4eP4OixE5BKpShbxl4puXLsxCmkZ2Rkm2QjIiIqbBKR0wByIiIiKhBpaWno0LUnMqWZ+HfndpUJWCn3Dhw6gmkzZ6Ojb7sPaqLZkm7ClGk4efos9gRugY21dZEcc9TYCQi9eg27/9msSCgSEREVNc65QkREVES2bt+BxMQkdPRtx8SKFqRSKdas2wAA+KRHt2KOht429MtBEEJg3cbNRXK88Fu3ce7CRfTt3YuJFSIiKlYcFkRERFSI4uLjseT3pYiJjcWZs+dhYmwM//6fFXdYJdLxk6dx/OQp3LgZhnv3H8Dbqxlq13Qu7rDoLU5VqqCjbztsD9yFz/v2USzRXFiWr1qD0qVK4fMiHlJFRET0Lg4LIiIiKkTPnj+HX88+0NfXh1OVyhg9chjc67sVd1gl0rIVq/DXyjWwMDdHk8aNMGHcV7C0sCjusIiIiIiYXCEiIiIiIiIi0gbnXCEiIiIiIiIi0gKTK0REREREREREWmByhYiIiIiIiIhIC0yuEBERERERERFpgckVIiIiIiIiIiItMLlCRERERERERKQFJleIiIiIiIiIiLTA5AoRERERERERkRaYXCEiIiIiIiIi0sL/ARUgQG9f8FydAAAAAElFTkSuQmCC", - "text/plain": [ - "
" - ] - }, - "execution_count": 18, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "with pulse.build() as schedule:\n", - " pulse.play(gaus, channel)\n", - "schedule.draw()" - ] - }, - { - "attachments": {}, - "cell_type": "markdown", - "metadata": {}, - "source": [ - "You may also supply a complex list or array directly to `play`." - ] - }, - { - "cell_type": "code", - "execution_count": 19, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABFcAAADeCAYAAAD4ru/+AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAABUD0lEQVR4nO3dd1gUV9sG8HvpHZQuIHawAiJ2BBtF7Bq7wZZoLLFrjIkaY2I0lthL7L13o2DB3lCaBUUUrICiNGkKzPsH7r6su0hZiuD9uy6v7+WcOTPPzg75dm/OnBEJgiCAiIiIiIiIiIgKRam0CyAiIiIiIiIiKssYrhARERERERERKYDhChERERERERGRAhiuEBEREREREREpgOEKEREREREREZECGK4QERERERERESmA4QoRERERERERkQIYrhARERERERERKYDhChERERERERGRAhiuFJBIJIJIJIKBgQHi4+PlbvPXX39BJBJh1qxZJVrblyQyMhIikQiurq4FGufq6gqRSITIyMhiqauojlulShXJtZDbv2rVqilcl/g85vynrq4OExMTODo6Yvjw4Th16hQEQVD4WKVt1qxZEIlE2LRpU2mXUiDnz5/Hb7/9Bi8vLxgbG0MkEqFKlSr5Gvvu3Tv89ttvaNCgAXR0dKCvr4969eph1KhRePfundwxly9fRocOHVCxYkXo6OigcePG2LJlS6HrP3r0KFxcXKCnpwc9PT24urri+PHjhd6fPOfOnYNIJMKgQYOKdL9ERERERF8KldIuoKxKSEjAokWLMHv27NIuhUpBz549ERsbK7fv/PnziIyMhLOzc5EdT1tbGz179gQAZGZmIj4+Hnfu3MHatWuxdu1aODo6YseOHahVq1aRHbOoubq64vz584iIiMh3+FAWjB07FsHBwQUeFxERgbZt2yIiIgLVqlWDp6cn0tPT8eDBA6xcuRLTpk2Djo6O1Jj9+/ejd+/eyMrKQqtWrWBkZIQzZ87A29sbISEhWLBgQYFq+OeffzB+/HioqKigXbt2UFdXh6+vLzp27Ihly5Zh9OjRBX5dBTFo0CBs3rwZfn5+BQ5iiYiIiIi+JAxXCkE8e2DJkiUYP348KlSoUNolUQnL7UtsVlYWLC0tAQADBw4ssuMZGRnJndERHByMCRMm4OzZs2jVqhX8/f1hZWVVZMctSaNHj0afPn1gbm5e2qUUiJubG7755hs4OTnB0tISdevWzXNMeno6PD098fTpU6xevRrDhw+X6r9z5w4qVqwo1fb27VsMGTIEmZmZ2L9/P7p37w4AiImJQcuWLbFw4UJ07Ngx3yHFgwcPMGnSJKirq8PPzw/NmjUDAISFhaF58+YYP348PDw8UKNGjXztj4iIiIjoa8bbggpBSUkJ33//PRITEwv8l2Iq386cOYOoqChYWFigTZs2xX48Ozs7+Pr6ws3NDTExMRg7dmyxH7O4GBkZwdbWFvr6+qVdSoHMnz8f06dPh5ubm0wgkpslS5bgwYMHmDBhgkywAgD16tWDlpaWVNu6deuQmJiILl26SIIVADA1NcX8+fMBAAsXLsx33UuWLEFmZiZGjBghCVYAoFatWpg+fToyMjKwZMmSfO+PiIiIiOhrxnClkH766Sdoampi2bJlePPmTb7GREVFYf78+XBxcYGFhQXU1NRgZmaG7t27w9/fX+4Y8doeALBixQrUq1cPmpqaqFq1KubPny9ZayMgIACdOnWSrMPQpUsXPHnyRO4+BUHAzp070aZNG1SoUAEaGhqoXbs2Zs2ahZSUlEKcjc9LTEzE2LFjYWVlJTnW4sWLkZWVVaD93Lt3D/3794e5uTnU1NRgYWGBb7/9Fg8ePMh1TGhoKIYOHYoqVapI1ipp0aIFFixYgIyMjDyPmZCQgFatWkEkEmHMmDF5rm2ybds2AEC/fv2gpFQyv17KyspYvnw5RCIRDh06hKdPn0r6Nm3a9Nn1f+StNZNzvZzExERMmDABVatWhaqqKsaNGwcAiI+Px7Jly+Du7g5ra2uoq6vD0NAQHh4eOHXqlNQxxPs7f/48AKBq1apSa8iIfW7NlTdv3mDy5MmoWbMmNDQ0ULFiRXh4eMDX11fu6xKve5KZmYl58+ahVq1aUFdXh5WVFaZOnYr09PR8nNni8++//wIAxowZk+8x4nVQxLeH5eTl5QUNDQ2cPn0aaWlpCu9P3Hb06NF81wcAd+/eRdeuXVGhQgXo6urC2dkZJ0+elLutSCTC5s2bAQCtW7eWuiZKes0lIiIiIiJFMVwpJHNzc4wYMQJJSUn4+++/8zXm8OHDmDp1KmJiYtCgQQN069YNlSpVwsGDB9GiRYtcvygCwPjx4zF58mRYW1ujXbt2ePPmDaZOnYpZs2bh8uXLcHZ2xsuXL9G+fXuYm5vjyJEjaNu2LVJTU6X2k5WVhf79+6Nfv37w9/eHvb09OnTogOTkZPz2229o3bq1zJici6oWVHp6Otq0aYMtW7agcePGaN++PZ48eYIJEyZgyJAh+d7PmTNn0KhRI+zYsQPm5ubo0aMHTExMsHXrVjRq1AgXL16UGbN37144ODhgw4YN0NLSQrdu3eDo6Ihnz55h8uTJuS4YKhYTEwNXV1dcvHgRM2bMwLJlyz57DlJTU3Hw4EEAwIABA/L92opCzZo14ejoCEEQJCGGolJTU+Hi4oJNmzbB3t4enTt3ltwCd+3aNfz4448ICwuDjY0NunXrBhsbG/j6+sLd3R0bNmyQ7EdHRwfe3t4wNTUFAPTo0QPe3t6Sf3l58eIFGjdujAULFuD9+/fo2rUrHBwccPr0abi7u2Px4sW5ju3Xrx/mzJkDGxsbuLm5ISkpCfPnz8fQoUNlthUvulrc68E8e/YM4eHhsLS0hJWVFS5fvoypU6dixIgRmDdvHsLDw+WOE6/r0rBhQ5k+NTU11KtXD2lpaQgLC8uzhvj4eEkI5+DgINNvZWUFIyMjPHnyBImJifl6XTdv3kTTpk1x+PBhWFpaomPHjkhNTUWHDh2wd+9eme29vb1RvXp1AIC7u7vUNfHpWjNERERERF88gQoEgKCsrCwIgiBER0cLWlpagra2tvDq1SvJNnPnzhUACDNnzpQaGxISIty5c0dmnydPnhTU1NSE6tWrC1lZWVJ91tbWAgChUqVKQnh4uKQ9NDRUUFdXF7S0tIQqVaoIq1atkvSlp6cLbdq0EQAIGzZskNrf/PnzBQCCq6urEBUVJTVm6NChAgBh6tSpUmMiIiIEAEJBLpecYxo0aCC8fv1a0hceHi5UqlRJACAcPHhQapyLi4sAQIiIiJC0vXv3TjA1NRUACMuXL5faftGiRQIAwdLSUkhNTZW0h4WFCRoaGoKKioqwfft2qTFZWVmCj4+PkJaWlutxIyIihBo1aggikUhYunRpvl7zjh07JK+3qIjPo7W1dZ7bDhs2TAAgTJs2TdK2ceNGudeimLzznfO9a9asmRAXFycz7vHjx8LVq1dl2gMCAgQDAwNBT09PSEpKyvNYOc2cOVMAIGzcuFGqvWPHjgIAoV+/fkJ6erqk/eLFi4KWlpagrKwsBAYGSo0R11+7dm2p6/zx48eCgYGBAEDq90kQBMHPzy/f5zo3UVFRee7j5MmTAgChcePGwsiRIyW1iv+pqKgICxYskBqTkJAg6U9ISJC7365duwoAhCNHjuRZZ3BwsABAqFChQq7b2NvbCwCEkJCQPPeXlZUl1KlTRwAgzJgxQ6pvxYoVktq9vb2l+ry9vQUAgp+fX57HICIiIiL6knHmigJMTU3xww8/IDk5GfPmzctz+/r168td7NLd3R3ffPMNHj16hDt37sgdO3v2bMlfeQHA1tYWHTp0QEpKCiwtLTFixAhJn5qammTtjZyzGDIyMjB//nxoa2tj165dMDMzkxqzbNkymJmZYe3atVK37KiqqsLGxgY2NjZ5vkZ5FixYACMjI8nP1atXx6+//goAWL58eZ7j9+zZg5iYGDRr1gyjRo2S6hs/fjwcHR3x/Plz7N+/X9K+ePFipKWlYdiwYejXr5/UGJFIBDc3N6irq8s93t27d9GiRQtERkZi69at+b51Y+vWrQCKdiHbghCf47i4uCLb59KlS2FgYCDTXrVqVTRt2lSm3cHBAaNGjUJiYiL8/PwUPv7jx49x7Ngx6OjoYNmyZVBTU5P0tWzZEiNGjEBmZiZWrFiRa/05r/OqVatKZhV9OttJS0sLNjY2Ur9nxUH8/gQEBGD16tWYNWsWnj17hqioKMl/RyZNmiT1OOScs6w+XYtFTFtbGwCQlJSUZw3i/eW2r4Lu79y5c7h37x6qVauGGTNmSPWNHDkSTZo0yXMfRERERERlGcMVBU2dOhXa2tpYtWoVYmJi8tw+PT0dhw8fxvTp0/H9999j0KBBGDRoEG7fvg0AePjwodxxbm5uMm3VqlXLsy8qKkrSFhAQgNjYWDRv3lxyi0ZOmpqacHR0RFxcnFQdFhYWuH//Pu7fv5/n6/tUxYoV0b59e5n2vn37AgCuXLmS59or4i/B/fv3l9sv78vy6dOnAUDuYqGfc+3aNbRq1QpxcXE4ePBgrsf81KtXr3Dq1CkoKSnJhDklRfi4Hkxhbt+Sx9zcHI0aNcq1PzMzE76+vpg1axaGDx8uuZbFoUpu13JBXLp0CQDg4eEhd7FYcZAl77YwVVVVtG7dWqZd/LjqnL8bANC4cWPcv38fZ86cUbjuzxFf7xkZGRg+fDhmzpwJS0tLmJmZYcqUKRg/fjwA4M8//yzWOoqS+Pz37NkTysrKMv3i33ciIiIiovKKj2JWkLGxMUaNGoX58+fjr7/++uz6D7dv30bnzp0/u1hjbn8ltrCwkGkTr0vwub6cC3eKj3vq1Kk8v4DHxsYWeqZKTtbW1nLb9fX1YWBggPj4eMTFxcHQ0DDXfbx8+RIAcl0LQ9z+4sULSduzZ88AoMCzEAYOHIiMjAzs3r0bHTt2zPe4Xbt2ISMjA+3bt0elSpUKdMyiEhsbCwD5fmJNXipXrpxr3/Pnz9GxY0fJOiDy5GfGQ14K896LmZmZyf2ir6urCwCltqhtzvVEBg8eLNM/ePBg/P3337h+/TrS0tKgoaEhNSYlJQV6enoy45KTkwH8//Xlp4bPLWBdkP2J36fcft+Lex0bIiIiIqLSxpkrRWDy5MnQ0dHB6tWrZf4aLiYIAnr16oXIyEiMGDECQUFBSExMRFZWFgRBwLRp0yTbyfO5J8/k96k04r+Y16hRQ2rxSHn/Phd2fGmKaqYG8P+/sM+YMQPR0dH5Hid+SlBJL2SbU2BgIACgTp06+R7zuVlDGhoaufYNGzYMwcHB6NGjB65fv474+HhkZmZCEASsWbMGQO7XclH63HtfUk9rKqicAYS80EHclpmZibdv3wIA9PT0JI+ofv78udz9ittzCzhyEgdncXFxkhBFkf0REREREX3tOHOlCBgZGWHMmDGYO3cu5s6dK3fmgvi2mkaNGmHVqlUy/Y8fPy72Oi0tLQFkr9ci73G3xSHnY4FzSkxMRHx8PDQ1NeWu6ZGT+Hzm9mhp8YycnDN4rKys8PDhQzx69Aj29vb5rnf27NmoVKkS5s2bhzZt2uDcuXMwMTH57JiwsDD4+/tDS0sL3bt3z/exitLDhw8RGBgIJSUltGrVStIuXqMktycjiWf4FERycjJOnToFU1NT7N69W2Z2SFFey4V57790tra20NDQQFpaGuLi4mBsbCzVLw5UAOlZLnZ2drhw4QICAgJkArQPHz7gzp070NDQkNz29DkGBgaoXLkynj59isDAQLRs2VKq/9mzZ4iNjYW1tbXcWTKfMjc3B5D7+5RbOxERERFRefFl/mm3DJo4cSJ0dXWxdu1aubcoiBexFAccn/adOnWq2Gt0cnKCvr4+zp8/L/UFrji9efNG7hoWu3btAgA0a9ZM7q0bOTk7OwMAdu7cKbdfPGtEvB0AtGvXDgCwdu3aAtf8119/YdKkSQgNDUWbNm3w+vXrz24vPn63bt1K5RGymZmZGD16NARBQI8ePaSuMfGXXnmP5w0LC8s1/PqchIQEZGVlwdzcXOa9+/Dhg+Rx1J8SBz0ZGRn5Ppb4S//JkycRHx8v0y/vvf/Sqaurw93dHUD2QrCfEi9CXa1aNalgw8vLCwCwb98+mTHHjh1DWloa2rVr99kZRzl9bn/itk6dOuVrX+Lzv3//frmzocS/758qzDVBRERERPQlYrhSRAwNDfHjjz8iPT0d69evl+mvUaMGlJSUcPbsWamFPtPS0jBixIgSCTvU1dUxZcoUJCUloXv37nJnGLx48ULy1Jucbba2trC1tS3UcSdNmoQ3b95Ifo6IiMDs2bMBQObpP/L06tULpqamuHTpkkxYsnTpUty8eRMWFhbo0aOHpH3cuHHQ0NDAv//+i927d0uNEQQBp06d+uyaG3///TcmTJiAu3fvom3btpL1TOTZvn07gPw9JahKlSoQiURyv1QXRkhICNzc3ODr6wtzc3P8888/Uv1OTk7Q0tLCiRMncOvWLUl7bGwshg0bludiwvKYmJhAX18fd+7cweXLlyXtmZmZmDp1qtwgB/j/LJQHDx7k+1jVqlWDl5cXkpKSMHbsWHz48EHSd/XqVaxatQrKysr5uo7ycuPGDdja2qJt27YK7ysvU6ZMAQD8/vvvUucrIiJC8iStnE8AA7JvxdLT08Phw4dx4MABSfurV68k+5s4caLMscS/u5+GvmPHjoWysjJWr16Na9euSdofPnyIP/74AyoqKpKnjuXF1dUVtra2ePToEebMmSPVt2bNGly9elXuuMJcE0REREREX6TSewp02QRAUFZWltv39u1bQU9PTwAgABBmzpwp1f/dd98JAARNTU3By8tL6Nmzp2BqaioYGRkJgwYNEgAIGzdulBpjbW0t5PY2zZw5U+4YQRCEiIgIAYDg4uIi1Z6ZmSkMHDhQACCoqakJTZo0Efr06SN0795dqFu3riASiQQ7Ozu5+yrI5SIe07RpU6Fhw4aCgYGB0L17d6FTp06ClpaWAEAYMGCAzDgXFxcBgBARESHVfvr0aUFTU1MAIDg6Ogp9+/YVHBwcBACCjo6OcOHCBZl97dy5U1BVVRUACHXq1BH69OkjeHp6ClZWVgIAIS4uLs/jjh07VgAgNGjQQIiNjZU5xuXLlwUAgpmZmZCRkZHneREf+9KlS3luKwj/P4/a2tqCt7e34O3tLQwYMEDo1KmTUK1aNcn74uTkJDx8+FDuPmbMmCEAEDQ0NAR3d3fBw8NDqFChgtC8eXOhWbNmMq87t2snpz/++EPyu9C+fXuhd+/eQpUqVQRNTU1h1KhRcq///fv3CwAEPT09oWfPnsLQoUOFoUOHSvpzu56fP38uVK1aVQAgWFtbC3369BHatm0rKCsrCwCEhQsXytQn3laejRs3yq3Pz8/vs+Ny8++//wpNmjQRmjRpIjRs2FDqd0v879atWzLjxO+LlpaW0L59e8HDw0PQ1dUVAAienp5yr6d9+/YJSkpKgkgkElq3bi307NlTMDAwEAAIEyZMkFuf+Br59NoWBEFYtGiRAEBQUVERPD09hS5dukh+z5YuXVqg83Dt2jVBW1tbACDUr19f6Nu3r+Dk5CSIRCJh5MiRAgDB29tbaszNmzcFkUgkaGhoCF26dJFcE/J+14iIiIiIvmQMVwroc+GKIPz/C5O8L28ZGRnCwoULhTp16ggaGhqCqamp0L9/fyEyMjLXL5ZFHa6IHT58WPDy8hJMTEwEVVVVwcTERHB0dBSmTJki80VQkXDFxcVFiI+PF0aOHClUqlRJUFNTE2xsbIQFCxbI/fKYW8ghCIJw584doW/fvoKpqamgqqoqmJubCwMGDBDu37+fax3BwcHCgAEDBAsLC8nrbNGihbBw4ULhw4cP+TrumDFjBACCvb298ObNG6m+H374QQAgjB8/Ps9zEhsbK4hEIqFWrVr5CmIEQfrci/+pqqoKRkZGQsOGDYXvv/9e8PX1FbKysnLdR1ZWlvD3338LNWrUEFRVVQVLS0th4sSJQnJystzXnZ9wRRAEYfPmzYKDg4OgpaUlGBoaCl26dBGCg4NzDS8EQRAWL14s1KlTR1BXV5e5pj53PcfGxgoTJ04UqlevLqipqQkGBgaCm5ub4OPjI7e2kgxXxHV/7p+fn5/csfv37xecnZ0FXV1dQVNTU7C3txcWL14sdW1+6tKlS4KHh4dgYGAgaGlpCY0aNRI2bdqU6/afC1cEQRCOHDkiODs7Czo6OoKOjo7g7OwsHD16tCCnQCIkJETo1KmToK+vL2hrawvNmjUTjh07Jjm3n4YrgiAI27dvFxo2bCgJdT5XKxERERHRl0okCCXwSA8iwoEDB9CjRw9s27YN/fv3L+1yiIiIiIiIqIhwzRWiEuLn54fatWtLHvdMRERERERE5QNnrhARERERERERKYAzV/JBEAS8S04GcygiIiIiIiIi+pRKaRdQFiSnpKC1mxeOHtgLbW2t0i6HiIiIiIiIiHKhq6Nd4sfkzBUiIiIiIiIiIgUwXCEiIiIiIiIiUgDDFSIiIiIiIiIiBTBcISIiIiIiIiJSAMMVIiIiIiIiIiIFMFwhIiIiIiIiIlIAwxUiIiIiIiIiIgUwXCEiIiIiIiIiUgDDFSIiIiIiIiIiBTBcISIiIiIiIiJSAMMVIiIiIiIiIiIFMFwhIiIiIiIiIlIAwxUiIiIiIiIiIgUwXCEiIiIiIiIiUgDDFSIiIiIiIiIiBTBcISIiIiIiIiJSAMMVIiIiIiIiIiIFMFwhIiIiIiIiIlIAwxUiIiIiIiIiIgUwXCEiIiIiIiIiUgDDFSIiIiIiIiIiBTBcISIiIiIiIiJSAMMVIiIiIiIiIiIFMFwhIiIiIiIiIlIAwxUiIiIiIiIiIgUwXCEiIiIiIiIiUgDDFSIiIiIiIiIiBTBcISIiIiIiIiJSAMMVIiIiIiIiIiIFqJR2AURERERERERUMu4+Uc73tnWtM4uxkvKF4QoRERERERHRF64goQiVPIYrRERERERERKWAgUn5wXCFiIiIiIiIqIAYjFBODFeIiIiIiIjoq8JghIoawxUiIiIiIiIq0xiWUGljuEJERERERESlhsEIlQcMV4iIiIiIiKjIMCyhrxHDFSIiIiIiIgLAYISosBiuEBERERERlQMMRohKD8MVIiIiIiKiLxQDE6KygeEKERERERFREWMoQvR1YbhCRERERESUA4MRIioohitERERERFTuMTAhouLEcIWIiIiIiL5oDEaI6EvHcIWIiIiIiEoUwxIiKm8YrhARERERUb4xGCEiksVwhYiIiIjoK8FghIioeDBcISIiIiIqoxiWEBF9GRiuEBERERGVAgYjRETlB8MVIiIiIqICYjBCREQ5MVwhIiIiIgIDEyIiKjyGK0RERERUpjEUISKi0sZwhYiIiIi+OAxMiIioLGG4QkRERERFisEIERF9bRiuEBEREZEEgxEiIqKCY7hCREREVI4xLCEiIip+DFeIiIiIvlAMRoiIiMoGhitERERExYDBCBER0deD4QoRERFRPjAsISIiotwwXCEiIqJyj8EIERERFSeGK0RERFQmMTAhIiKiLwXDFSIiIipxDEaIiIioPGG4QkRERPnGUISIiIhIFsMVIiKirxwDEyIiIiLFMFwhIiIqwxiMEBEREZU+hitERESlhMEIERERUfnAcIWIiKiIMCwhIiIi+joxXCEiIgKDESIiIiIqPIYrRERU5jEYISIiIqLSxHCFiIi+OAxLiIiIiKgsYbhCRERFisEIEREREX1tGK4QEVGeGJgQEREREeWO4QoRUTnHYISIiIiIqHgxXCEi+kIxFCEiIiIiKhsYrhARlSAGJkRERERE5Q/DFSKifGIwQkRERERE8jBcIaKvAoMRIiIiIiIqLgxXiKhMYlhCRERERERfCoYrRFTiGIwQEREREVF5wnCFiIoEAxMiIiIiIvpalelwRSQSSf2soqICfX19mJubw9HREZ06dUKXLl2gopL7y0xNTcXcuXOxa9cuPH36FBUrVoSHhwd+//13WFhYFPdLICp1DEWIiIiIiIgUIxIEQSjtIgpLHK54e3sDALKyspCQkICwsDA8ePAAgiCgRo0a2L59Oxo3biwzPi0tDa1bt8a1a9dgbm4OZ2dnREZG4saNGzA2Nsa1a9dQrVo1vEtORms3Lxw9sBfa2lol+hqJPofBCBERERERFZe61pmlXUKh6Opol/gxy/TMFbFNmzbJtD169Ag///wz9uzZg9atW+Py5cuwt7eX2mbOnDm4du0amjVrBl9fX+jo6AAAFi1ahIkTJ2LIkCE4d+5c8b8AohwYmBAREREREZUt5WLmyudewrBhw7B+/Xo4ODggICBA0v7+/XuYmJggISEBAQEBcHBwkBpnZ2eHkJAQ3Lx5Eza2tpy5QvnCYISIiIiIiMoLzlzJv3Ixc+VzFi5ciF27diEwMBCXLl1Cy5YtAQCXL19GQkICqlevLhOsAEDPnj0REhKCo0ePwsbWtqTLphLGUISIiIiIiIgKq9yHK/r6+vD09MS+ffvg5+cnCVeCg4MBAA0bNpQ7TtweEhJSMoVSkWNgQkRERERERCWh3IcrAGBvb499+/YhNDRU0vb06VMAgKWlpdwx4vYnT54Uf4Ekg8EIERERERERlRVfRbhiZGQEAIiLi5O0vXv3DgCgpSV/DRVt7ex7tJKSkoq5uq8DwxIiIiIiIiIqr76KcEW84K14AdzCun07BBoaGkVRUpnyLL5CaZdAREREREREJexDjgkKZYlzyxYlfsyvIlyJjY0FAFSsWFHSJn7sckpKitwxycnJAABdXV1Jm4eHO7Iyy+ZqyURERERERERfg9J4KPJXEa4EBgYCAOrUqSNpq1y5MgDg+fPncseI262trSVtJ0/6fJUzV4iIiIiIiIgod+U+XElISICPjw8AoHXr1pJ2Ozs7AEBAQIDcceL2Bg0aSNrq128AbW35a7QQERERERER0ddJqbQLKG4TJ05EcnIynJyc0KxZM0l7ixYtoK+vj0ePHiEoKEhm3L59+wAAnTp1KqlSiYiIiIiIiKgMKrfhyuPHj9G7d2+sX78e2traWL9+vVS/mpoaRo8eDQAYNWqUZI0VAFi0aBFCQkLg4uICR0fHEq2biIiIiIiIiMqWcnFb0KBBgwAAWVlZSExMRFhYGO7fvw9BEFCzZk3s2LED9evXlxn3yy+/4PTp07hy5Qpq1qwJZ2dnPHnyBNevX4exsTE2bNhQwq+EiIiIiIiIiMoakVAay+gWkU8frayiogI9PT1UqlQJjo6O6NKlCzp37gxlZeVc95Gamoq5c+dix44dePbsGSpWrAgPDw/8/vvvsLS0BAC8S05GazcvHD2wl2uuEBEREREREX3BdHW0S/yYZTpcKSkMV4iIiIiIiIjKhtIIV8rtmitERERERERERCWB4QoRERERERERkQK+2HDl5MmTsLe3h4aGBkQiEeLj40u7JCIiIvoKHDt6FF27dEYjx4Zo2bJFaZdDREREZcAXGa68efMGvXr1gqamJlasWIGtW7dCW7vk75kiIiKiwvHx8YG9XQOcPXNGpq/XNz1hb9cA/jduyPR5uLvh228HlkSJckVERGDGjF9haWWFX2fMxK+/zii1WoiIiKjs+CIfxezv74+kpCT8/vvvaNeuXWmXQ0RERAXk4OAAAAgMDESbtm0l7e/evUN4eDhUVFQQFBQEp8aNJX3R0dGIjo6Gu4dHidcrdtPfH1lZWZgyZSoqV65canUQERFR2fJFzlx59eoVAMDAwCDPbVNSUoq5GiIiIiooExMTWFhYIDAwQKo9JDgYgiCgXfv2Mn3in8XBTGl4+/YtAEBXV7fI9pmamlpk+yIiIqIvU4HClVmzZkEkEiE8PByDBg2CgYEB9PX1MXjwYJmQIyMjA7///juqV68OdXV1VKlSBT///DPS09M/ewxXV1d4e3sDAJycnCASiTBo0CBJX7169XDr1i20atUKWlpa+PnnnwEA6enpmDlzJmrUqAF1dXVYWVlhypQpMsdLT0/H+PHjYWxsDF1dXXTu3BnPnz+HSCTCrFmzCnI6iIiI6DMcHBxw//59pKWlSdqCgoJQvXp1tGzREiG3byMrK+v/fYFBEIlEsLd3wKFDh/DdsKFo7eoCp0aO6N6tK/bs2S21/zGjR8Org6fcY387cAD69e0j1Xb82DH07dMbTRo7oZVzS0ydMgXR0dGSfk9PD6xatRIA0NrVBfZ2DSQ/A8Du3bvQvVs3ODVyRPt2bfHnn38gMTFR6hhDhw5Bj+7dcO/ePQwZPAhNmzTGsmVL8eLFC9jbNcDmzZuwa9cueHXwRNMmjTFi+HBER0dDEASsXbMGbu3boUljJ4wb+yMSEhIKeMaJiIiotBTqtqBevXqhatWqmDt3LgICArBu3TqYmJhg3rx5km2GDRuGzZs3o2fPnpg4cSKuX7+OuXPnIjQ0FAcPHsx139OnT4eNjQ3Wrl2L2bNno2rVqqhevbqk/82bN/D09ESfPn0wYMAAmJqaIisrC507d8alS5fw/fffo3bt2rh9+zYWL16MsLAwHDp0SKqubdu2oV+/fmjevDnOnj0LLy+vwpwGIiIi+gx7h4Y4duwYbt++DScnJwBAUFAg7OzsYWdvj3dJSQgPD0etWrU+9gWhatWqMDAwwN49e1C9enW4uLpCRVkF58+fx59//IGsLAF9+mSHJu7u7vjll+m4c+cO6tWrJznuy5cvERISgvETJkja/v13LVauWAE3N3d0694dcW/jsGvXTgwZPAi7du+Bnp4eJk+egmNHj+Ls2TOYPv0XaGlpoebH2latWok1q1ejSdOm6NWrFyIjI7F37x7cvXMXmzZvhqqqquRYCQkJGDXyB3h4eKKDV0cYGhpK+v47/h8+fPiAPn37ITEhAZs2bcSUyZPg1Lgxbt68icGDh+Dps6fYtXMnFi1ciN9mzy6+N4iIiIiKTKHCFQcHB6xfv17y85s3b7B+/XpJuBIcHIzNmzdj2LBh+PfffwEAI0eOhImJCRYsWAA/Pz+0bt1a7r7bt2+PFy9eYO3atfD09ESjRo2k+qOjo7F69WoMHz5c0rZt2zacPn0a58+fR8uWLSXt9erVw4gRI3DlyhU0b94cwcHB2LZtG0aOHIkVK1YAAEaNGoX+/fsjJCSkMKeCiIiIciG+vScoMBBOTk7IyMjA7du30alzZ1hZWcHQ0BCBgQGoVasWkpOTER7+EF26dgUArN+wARoaGpJ99enbFyN/GIFtW7dIwhXX1q2hpqYGX5+TUuGKr68PRCIR3NzcAWSHLatXrcKo0aMxbNh3ku3atm2LPn16Y8+e3Rg27Du0adMGDx7cx9mzZ9CufXtUqFABQPatQhvWr0ezZs2xYuVKKCllT/ytUrUq/pr7J44fP46uH+sGgNjYWPzyy6/o+c03krYXL14AAF69isGRo8cktx1lZmViw/r1SEtPx44dO6Gikv3RLC4uDv/9dxzTf/kFampqir8ZREREVKwKtebKiBEjpH52dnbGmzdvJFNj//vvPwDAhBx/MQKAiRMnAgCOHz9emMMCANTV1TF48GCptr1796J27dqwtbVFbGys5F+bNm0AAH5+flJ1/fjjj1Ljx40bV+h6iIiISL5q1arBwMBAspZKWFgYUlNTYWdnDwCws7NHUFAQgOw/zGRmZkoCmZzBSlJSEuLi4uDYqBGeP3+OpKQkAICOjg5atGgJX19fCIIg2d7Xxwf1GzSAubk5AODMmTPIysqCm5s74uLiJP8MjYxQuXJl+Pv7f/Z1XL9+DR8+fED/Af0lwQoA9OjRAzo6Orh08YLU9mpqapKQ6FPt3dyk1nOpX78BAMDLy0sSrGS318eHDx8k69ARERHRl61QM1c+XT1f/JeduLg46Onp4cmTJ1BSUkKNGjWktjMzM4OBgQGePHlSyHIBCwsLmb/gPHz4EKGhoTA2NpY7RvzBRFxXztuMAMDGxqbQ9RAREZF8IpEIdnZ2uBUQgKysLAQFBqJixYqSzxF29nbYtWsXgOzbhQDAwaEhgOynDK1etRLBwcFSa7YA2U8cEgcU7u7u8PM7i+DgYNjb2+PZs2e4d+8eJk+ZItn+6dMnEAQBnTt1lFtnzlBDnqiXUQCAKlWqSrWrqqrCwsISL6OipNpNTEykbhPKydzMXOpnHR0dAICZqdkn7dmv79M1XYiIiOjLVKhwRVlZWW57zr8aAdkfqoqapqamTFtWVhbq16+PRYsWyR1jZWVV5HUQERFR3uwdHHD+/Hk8fPgQQUFBklkrQPbMlcWLFiEmJgZBgYEwNjaBpaUlnj17huHff4cqVati0qTJMDUzg6qqKi5dvIht27ZKLYLr4uICDQ0N+Pr6wN7eHr6+PlBSUkL79m6SbYQsASKRCCtWrISSnM8wWlqyny0Uoa6unmufkrL8ScO5tX/62YqIiIi+TIUKV/JibW2NrKwsPHz4ELVr15a0x8TEID4+HtbW1kV6vOrVqyM4OBht27b9bKAjruvRo0dSs1UePHhQpPUQERFRtpwzUYKCAtF/wABJX506daCmpoabN2/i9u3baOnsDAA4f/4c3r9/jyVLlkpu7QEAf/8bMvvX1NJCq1YuOOV7CpMmTYaPjw8cGjaEiYmJZBtLK0sIggALCwtYV6lS4NdgXim7hsjICFhaWkraP3z4gBcvX6BpkyYF3icRERGVL4VacyUvHTp0AAD8888/Uu3imSVF/XSeXr164cWLF5LFc3NKTU1FcnIyAMDTM/txjUuXLpXa5tM6ASAlJQX3799HbGxskdZKRET0Nalbty7U1dXx33/H8erVK6mZK2pqarCtXRu7d+9CamoqHOyz11tRVsqeXZJz1kZSUhKOHD4s9xju7u54/foVDhw4gLAHD+Du7i7V37ZtOygrK2P1mtUyM0EEQUB8fPxnX0OTJk2hqqqKnTt2SI0/ePAA3iUloaVzqzzPAxEREZVvxTJzxc7ODt7e3li7di3i4+Ph4uKCGzduYPPmzejatWuuTwoqrIEDB2LPnj0YMWIE/Pz80KJFC2RmZuL+/fvYs2cPfHx80KhRI9jb26Nv375YuXIlEhIS0Lx5c5w5cwbh4eEy+7xx4wZat26NmTNnYtLkyUVaLxER0ddCVVUVdevWRUBAANTU1FCnTh2pfns7O2zZsgUA4NAwO1xp1rwZVFVVMfbHMejR8xukpqTgwIH9qFCxIl6/fi1zjJbOztDW1sbiRQuhrKyMdm3bSfVbWVlh1KjRWLp0CV6+fInWrVtDW0sbL168wNmzZ9GjZw94ew/K9TVUrFgRQ4YOxZrVqzHyhx/g4uqKJ5GR2LNnN+rWrVfkfzQiIiKisqdYwhUAWLduHapVq4ZNmzbh4MGDMDMzw7Rp0zBz5swiP5aSkhIOHTqExYsXY8uWLTh48CC0tLRQrVo1jB07FrVq1ZJsu2HDBhgbG2P79u04dOgQ2rRpg+PHj3NdFiIiomJi7+CAgIAA1P54G5BUn70DtmzZAm1tbdSqlX3LbpUqVbFgwUKsWLEcixcthKGhIb7p1QsVKlTErJkzZPavrq4OFxdX/PffcTRp2hQVDQ1lthkydCisra2xbdtWrFm9GkD2QvvNmjWDq4trnq/hhx9GokKFiti9aycW/D0f+vr66N6jB8aM+THXxWuJiIjo6yESuFIagOzFd2fOnIlZs2bJ9L1LTkZrNy8cPbAX2tpaJV8cEREREREREeWLro52iR+zWNZcISIiIiIiIiL6WjBcISIiIiIiIiJSAMMVIiIiIiIiIiIFFNuCtmUNl54hIiIiIiIiosLgzBUiIiIiIiIiIgUwXCEiIiIiIiIiUgDDFSIiIiIiIiIiBTBcISIiIiIiIiJSAMMVIiIiIiIiIiIFMFwhIiIiIiIiIlIAwxUiIiIiIiIiIgWolHYBZYEgCACAlJSUUq6EiIiIiIiIiD5HJAK0tbQgEolK7JgMV/IhJSUVANB7gHcpV0JEREREREREefE9dhAVKlQoseMxXMkHYyNDHDu4F1pamiWafCkqOTkFHbt9g2MH90JbW6u0yyEqUbz+6WvH3wH6mvH6p68Zr3/62ol/B1RUVUv0uAxX8kFJSQmmJsalXUahaWtrQUdbu7TLICoVvP7pa8ffAfqa8fqnrxmvf/ralfTECC5oS0RERERERESkAIYrREREREREREQKYLhSjqmpquK7Id5QK+F7zYi+BLz+6WvH3wH6mvH6p68Zr3/62pXW74BIED9nmIiIiIiIiIiICowzV4iIiIiIiIiIFMBwhYiIiIiIiIhIAQxXiIiIiIiIiIgUoFLaBVDRS0tPx6Yt23HqzFlEx8RAT1cPzZo2xojvhsDE2Li0yyNS2PZdexAUfBuPHj/G27h4vH//HoYVK6Khgx0G9uuDGtWr5bmPkWMnwP9mAADg2ME9MDUxKe6yiYpUXFw8Nm/fgYuXriImJgbq6uowNzeDk2NDjB39g2S7zj16Iyo65rP7qlTJHIf37izukonyLfT+A1z3v4m79+7jXmgoXr2OBQD4Xz732XFHj5/AvoOHEREZCVUVVdSrWwdDBg2EXf16MtumpqbC7/xF3L0Xiruh9xH2MBwfPnzAd0O88f3QwcXxsojypaDX//mLl+F37gLuh4Uh9s0bvHuXDD1dXdS2tUHP7l3g3KJ5vo67buMWrFm3AQDw24yf0cHdrUheD1FBFPa//xkZGdiz/yB8Tp3BkydPkSVkwdjICHYN6sv9HpyVlYVDR47h2H8n8TgiEunv36NiBQM42Gd/n7CpVbPAtTNcKWfS09Mxcsx43L57D0aGhmjVsiWioqNx9PgJXLp8FRvWroSlRaXSLpNIIRu3bENaahpq1KiO6tWyg5THEZH476QvfE+fxfw/Z3/2g8TR4yfgfzMAIpEIXNObyqLQ+w8wZsJkJCQkolrVKmjl3ALJySmIiIzEzj17pcKVNq1dEB+fIHc/gUHBeBkVDYcGDUqqdKJ8Wb9pC85fvFygMQv/WYZde/dDXV0dTRs3Qvr797jufxPX/f3x15zf4NrKWWr7p8+eY+bvfxZl2URFoqDX/38nfeB3/iKqVa2CenXqQEtLE1FR0bhy7TquXLuOQQP7Y9SI7z67j8gnT7Fxy1Z+NqJSV5j//ickJmLMuEkIfRAGI0NDODVyBAA8f/ECR4+fQGcvT6lwRRAETJ0+E+cuXIS6ujoc7BpAR0cbjx5HwOfUGZzxO48Fc+egRfOmBaqD4Uo5s2HzVty+ew/169XF8sV/Q0tLC0D2X/r/WbYSv8+dhzXLl5RylUSKWfjXH7C1qQV1dXWp9r0HDmH+wn8w56+/cfzgXqioyP4nLi4uHkuWr0LTxk548vRpnn/RJ/rSxMXF48eJU5Ce/h4L/voDLs4tpPrv3guV+nnc6JFy95OVlQWvrt8AADw92hdPsUSFVL9eXdSoXh11atuiTm0bdOnZB+/ff8h1++v+N7Fr737o6+thw5qVqGxlCQAIuXMXI0aPw+w/58HRwR66urqSMdpaWujSscPHY9ji0pVrkr/aE5Wmgl7/Q7wHYtqUiTDQ15dqv3P3HkaNnYjN23bAvX3bXGf2CoKAP+cvhI6ODurXrVPgL7ZERamg178gCPhp+kyEPgjDd0O8McR7oNR3gOcvXkJHW0tqzIVLV3DuwkVUMjfDulXLYWxsJOnbsn0nlq1cg/mL/sHh5rsKVDvXXClHPnz4gD37DwIApk4cJwlWAKB/n16oWaM6AgKDEXr/QWmVSFQk7BrUlwlWAOCb7l1haVEJb9/GISLyidyxC5csR1paGqZOHFfMVRIVjzXrNyI+PgE/jhohE6wAQN06tfO1H/+bAYh98wYmxkZwcmxY1GUSKcR7QD+M+G4IWrVsDiNDwzy337FrL4DsL5niYAUAGtSri+5dOyMp6R0OH/tPaoylpQV+mTYF3bt2hq1NLaioKBftiyAqpIJe/za1asoEKwBQr24dtG/bGoIg4GZAYK7jDx09jsCgYIwbPRI6OjoK1U6kqIJe/6fPnsPNgEC0a+OK74cOlvnjqqVFJRgYGEi1BQYHAwC6dekkFawAwMB+faCjo42XUdF4GxdXoNoZrpQjwSF38O5dMiwtKsm9R6yNqwsA4OLlKyVdGlGJEf8HVVVVdtbKlWvX4XPqNAZ7D4ClpUVJl0aksLT0dJz0OQVNTQ108vJUaF8nfE4BANzbt4OSEj8OUNmVlp6OmwHZa2i1be0i09+Wn3/oKyb5XCRnNi8AxL55g2UrV8OpUUN4unMWI5U9h44cAwD06tE932PUVNVy7ROJRBCJRFBWVoKOtnaBauFtQeVIWHg4AMDWppbcflub7MDlYfjjEquJqCT9d9IXT54+Q2UrS1hZWkr1paamYt6CxahiXRnf9u9bShUSKSY09AGSU1Jg36A+NNTVcfnqddzwv4n09+9R2coS7du0lvkLjDxp6ek4d+EiAPDDNJV5T548xfv3H1DBwEDu4uTizz/h/PxDX5nwR49x6owfVFRU0MSpkdxtFv6zDOnp6fhp0oQSro5IcRkZGQgOuQ1lZWXUrWOLh+GPcPrsOcTFx8PYyAguzi1Qq2YNmXFNGjfCxi3bcPDwUXh5uMvcFpSU9A5enu5QU8s9hJGH4Uo5EhPzCgByfSKQuD06hmtMUPmwdfsuPIqIQFpaGiIin+BxRCSMjYwwZ9avUFaWnt69et1GvIyKxurl/0BVVbWUKiZSTERkJACgQoUKmPTTdJn74leuWYdfp02Be/u2n93P+QuXkJySgpo1qqNmjerFVS5RiYgWf/4xkf/5R1NTE7q6OkhMSkJycgq0P7n3nqi8uHDpCs6eO4+MjEzExMQg5M5dqKgoY/rUSXJn7F68fAWnz57D90MHS91OR1RWPH/xMvspPxUrYMfuvVi1dj2ysrIk/f9u2IQ+3/TAhLGjpcY5OthjYL8+2LpjF7r17g8H+wbQ0c5e0PbZ8xfo2MEDUyeNL3A9DFfKkZTUVACAhobsWhQAoKmpkb1dSkqJ1URUnK7euCF5nDIAmJuZYtavP6O2rY3UdvcfhGH33n3w8nSHo4N9CVdJVHQSk5IAABcuXYayshKmTByHdq1dkZaehj37DmLbzt2YNWcuqlhX/uwjBP876QuAs1aofEjN4/MPAGhqaCAp6R1SUhiuUPn1MDwcx0/4SH5WV1fHxHFj0MFD9pHKKSkpmLfwH1S2soL3AM7opbIp6ePnooSERKxY/S96du+K/n16QUdHGxcuXsbfi5di5559sLS0QK8e3aTG/jhqBIyNjbBk+Spcu+4vabeytEATp0bQkLO+Y154kzURlVkrlyyC/+VzOHvyKNauWAorS0sMHzUWGzZvlWyTmZmJOX/9DR0dHYzL8XhaorJIyMp+PGZmZiaGDxuCb7p3RYUKBjA3M8PY0T+gXRtXZGRkYOuO3bnu421cHK7734SSkhI82rcrqdKJiKiYDR30Lfwvn8Olsz7YuXUDOnl54s95CzDxp+n48EH6aSsr16xDTMwr/DR5fIFvfSD6UmQJ//9c1LxpE0ydOC57AVt9fXTu2AE/jhoBANi8dbvUuPfv32Par79hyfKVGPztABzetxPnfP/DqqWLoaamhl9/m4Ot2wv2pCCA4Uq5oqWpCQBIS0uX25+ampa9nRb/YkPli66uLhzsG2DJwnmobVMLq//dgLuh9wEAO/fsw4Owh/hx5AiZlcKJyhpNLU3J/+7UQXZB244f2wKDgnLdh+/ps8jMzISTY8N8rc9C9KXTzOPzDwCkpvEzEH091NXVUaNaNUydOA69e3bHpctXsXvfAUn/3Xuh2HvgEDp4uPFpcVSmib//ApC70H+nDh4AgFevY/Hs+XNJ+6at23H6rB++6d4Nw4cNRiVzc2hra6GRowP++fsvaGpqYO2GTYiPjy9QPbwtqBwxNc1exO3V69dy+8XtZqamJVYTUUlSUVFB+7ZtEPogDBcvXUHd2ra4ePkKRCIRjp3wwfGTPlLbv3n7FgAw7ZdZUFVThfeAfmjetElplE6UL+Zm2f/91tDQQIUKBjL9lczNAABv4+Jz3Yf4KUG8JYjKCzPx559X8j//pKamIinpHfR0dXlLEH11PD3csHvfAVy4eBkD+vYGAFy+eg1ZWVkIf/QYw0ePldo+8slTAMDGzdtw+OhxNGvSGIMG9i/xuonyQ/y5CADMP34GyklDQwMVK1TA27g4vI2Llzzw4r+T2Z+F5D1hzszMFHXr1MHNWwEIfRCGZk0a57sehivlSK0a2Ssh338QJrf//oOHAICaNaqVWE1EJU3fQB8ApJJmQRAQGBSc65jbd+8BADp6ehRrbUSKsqmZvY5Keno63r9/LzOVOzExEYD0X3JyevL0Ge6F3oeGhgZauzgXb7FEJcTaujLU1FQRFx+PV69fyyzsL/78U4Off+grZKCf/bkoTs5f4MMehuc6LvLJU0Q+eQpzM9kvrERfCh0dHVSqZI6XL6OQlJgk05+VlYWkd+8ASH82Ek860NHRkb/fj49gFq/pkl8MV8oRuwb1oKOjjecvXuJB2EOZxQzPnjsPAHBu0bw0yiMqEQGBQQAAC4tKAIA1y5fkum3nHr0RFR2DYwf3yH18J9GXxszMFDVrVMfD8EcICAxG0yZOUv0BgdkhYq1cFrMVz1pxbdWSt0dQuaGhro5GDRviyrXrOH32HPr1/kaq/ww//9BXTPy5yPLj5yIA+H7oYHw/dLDc7WfNmYvjJ3zw24yf0cFddiFcoi9NqxbNsWvvftwKDJL5XHT77j18+PAB6urqsK5sJWk3rFgR0TExuHf/AWpUlw7eMzMzEfYwO5QvaLjINVfKEVVVVckqyPMXLZGsng8A23ftwcPwR2joYCfzJBWisiQ45DauXLsu9Zg1IPs597v3HsAJn1NQV1dH+7ZtSqlCouL1bf/spzosWbEKsbFvJO0Pwh5i+649AIAeXTvLHXvS9zQAyH1yBFFZ1q9PdqCyYfNWPH32//vqQ+7cxcHDR6Crq4MuHTuUVnlExSYuLh4HjxxD2sd1hXK6fuMmlq1cA0D+Ol1E5UHf3j2hqqqKvfsP4vadu5L2+Ph4LFqyHED2eiw5Z/u6tGoJAFizbgOePH0mac/MzMTKNevwMioa5mamBf7ezJkr5cwQ74G44X8LIbfvoHvvAbC3a4Do6GjcuReKCgYG+HXa1NIukUghT589x+w/58HAQB+2NrWgr6ePhIQEhD96jNg3b6CupoaZ03+S3INPVN54uLXDtRv+OH7CB70GeKNBvXpIT09HyJ07eP/+A7p27oh2bVxlxgXfvoMXL1/C0LAiGjdyLPnCiQrg0pWrWL9xi+TnDx8yAACDv/v/U9+GDv4WLZs3AwA0cWqEPt/0wK69+9F/0DA0cXLEhw8ZuO5/E4CAGT9Pha6ursxxJk/7RRJSvn6T/X8PHz2Oq9duAACMjAzx99w5xfIaiXJTkOs/NS0Vf85bgEVLlqO2TS2YmBgjNTUNT589k6yf0q/3N2gjZ20Joi9RQf/7X8ncHD9NGo85f/2N70eNRf16daGjrY2QO3eQkJAIW5taGPPD91LHGDb4W1y7fgNPnj5DP+8haFCvHvT0dPEgLBwvXr6Euro6fv15KlRUChaXMFwpZ9TV1bFq+T/YtGU7fE6dxvmLl6Cnp4uOHTww4rshvPWByryGDvYY/O0ABAQFITz8MeITEqCqqgJzMzO0be2C3t90lyxWRVRezZz+E+wa1MfBQ0dwKzAIIhFgU6sWunfphI4d5K8dJL4lyL1dWygrK5dkuUQFFhcXjzv3QmXac7bFfbJw88RxY1CrZg3s3X8Q1/1vQVVVBY2dHDF00Lewq19P7nEehD1EVHSMVNur17F49ToWgPRiiUQlpSDXf8UKFfDjyBG4FRiExxERuHf/AQQhC0aGhnBr1wbdu3SCY0OHkiqdSGGF+e9/544dYFHJHJu27cDde6FIT0+HRaVK6N2zOwb07S15qpyYgb4+Nq9bg+27duPchUu4GxqKDx8yYGRoCC9Pd3gP6IeqVawLXLtIED4+HJqIiIiIiIiIiAqMa64QERERERERESmA4QoRERERERERkQIYrhARERERERERKYDhChERERERERGRAhiuEBEREREREREpgOEKEREREREREZECGK4QERERERERESmA4QoRERERERERkQIYrhARERXQzVuBmPLzDHTo0hPNXNqhjUdH9OgzED/9MhN79h3Au3fvSrtEKoRbAYFwauGKWXPmlmodw0ePhVMLV7yMiirVOgpr9p/z4NzWA2/j4vI9Zu36jXBq4Yqjx08U6FiTfpoO947dkJKSUtAyiYiIihTDFSIiogL4d8Nm/PDjePidvwAdHW20bN4MTZycoK6uBr/zF/H34qWIiHxSYvXMmjMXTi1ccSsgsMSOSYpxauGKzj16l3YZxSL80WMcP+GDb7p3RcUKFRTeX+ceveHUwjXX/mGDvfE2Lg5btu9S+FhERESKUCntAoiIiMqK0PsP8O+GTVBRUcHc32fCtZWzVH/smzc44XMKuro6pVQhlQe//fIz0tLTYGJsXNqlFNiqteuhpKSEAf1KJjyytamFpk2csH3XHvTp1QMG+volclwiIqJPceYKERFRPvmdvwhBENCujatMsAIARoaGGNivD6pYW5dCdVRemJmZooq1NVRUytbfwKJjXuHSlato2sSpSGat5Jene3ukpaXh+AmfEjsmERHRp8rW/9cmIiIqRXHx8QCACgYG+dr+/fv36NC1J9LS0nHi8D7o6urKbBN8+w6GjRgNB3s7rF2xBAAgCAJO+p7G/kOH8ezZC7xLfgcDAwNYV7aCaytn9OrRDQCkbpcYMWa81H4P79uJSubmkp+vXLuOPfsO4m5oKJKTU2BsbARX55YY7D1A5q/9s+bMxfETPli9bDEyMjOxfuMWPAh7CHV1dbRyboFxo3+Ajo4O3sbFYfW/G3Dp8lUkJCagRvXq+HHkcDg2dMjX+RHLyMjA4aPHccL3FB49jsCH9x9gbGwEe7sG6NWjG2rb2uCM3zn89MssuLdvizmzfpW7nz/mLcChI8fw689T0dnLU9KempqKPfsP4szZc3j67Dkys7JgamIMp0aO6PNND1hXtspXnQU5h/IcPX4Cs/+cBwCIio6Rev8aOthhzfLs93/46LEICAyWeQ+dWrjC3MwUB3Zvx6atO3D8xEm8fh0Lc3MzDOzfV/Ka/W8FYP3GLbj/IAxKykpwbtEc438cJbfGjIwMHDp6HP+d8MHjiEhkZGSgcmUrdOzggV49uhUo4Dl6/D9kZWXBvV3bXLc5f/EyNm/djrDwR9BQV0dDB3uMGvGdzHa3AgKlrumc58rczBRH9u+W/Ozq3BLq6uo4dOQY+vfple96iYiIihLDFSIionwyNTEBAJw9fwGDvu2f51/n1dTU4OXpgR279uCE72lJKJLToSPHAADdOneUtC1dsRrbdu6GmpoqHOzsYGCgjzdv3iI8/DGeP38h2Y+XpzuCQ27j+YuXaNrECYYVK0r2oaWpKfnfy1atwZZtO6Gqqoo6tW1gZGiIh+GPsGP3Xly4dBnrVi+XGivmd+ES9h04iPp166JZ08a4ffceDh89jmfPn2PenN8w5PtRyMrKhL1dfURFRePOvVD8OHEKNq9bgxrVq+XrnKampmLspJ8QGBQMTU0N2DWoD10dHURFReOk72noaGujtq0NXJxbwtCwIvzOX0B8QoJMUJCSkgLfU2egra0Nt7atJe2xsW8watxEPI6IhJ6uLho62ENNTRUvXkbhwKEjsLK0yFe4UthzmJOVpQW8PN1x/IQPNDU10MbVRdJXxbpyvs4XAEz79TfcDAhAo4YOsLSwQEBQEH7/GNpoa2li+szfUb9uHTRt4oTbd+7iv5O+ePkyCmtXLoVIJJLsJy09HeMn/YSbAYHQ19NDvbp1oKamhrv3QrF46QrcCgjC33N/h5JS/iY6X7x8FQDg6GAvt3//wcP4a8FiiEQi2Ns1gJFhRdy5ew+DvhsB5xbNpbY1NKwIL093nD13HqmpafDydJf0GRhIv/daWlqoY2uDwOAQPH/xEpYWlfJVLxERUVFiuEJERJRPHm7tsGnrdsTEvEL3Xv3h6uIM+wb1UdvWBjWqV4OysrLMmO5dOmHn7r04dOSYTLjyLjkZp8+eg56uLtq4tgIApKenY8/+A9DW0sL2zethUen/MxcyMjJw+849yc+zfpmGWXPm4vmLlxg0oJ/cGSOnz57Dlm07Ub1aVfw993dYWVoCyJ4ds3b9JqzbuBkL/1mGP2fPlBm7d/9BLJz3B1o2bwYASE5OwdARoxAQGIzvR41Dg/p1MePnqZLZDavWrseGzVuxbcduzPp1Wr7O6cJ/liEwKBgO9naYN+c3VKhgIOl78/YtoqKiAQAqKiro7NUBG7dsw38nfdGv9zdS+/E9fRYpqano0a0LNDQ0JO0zfv8DjyMi0a5Na/w6bTK0tLQkfS+jopCcnPdTZhQ5hznZ2zWAvV0DHD/hAwN9fcz6JX/nKKeo6BhoaWnhwK7tknN181YgfvhxPFatWYcPGR+w4K85kvfsXXIyhg4fhaCQ27gVEIRGjv+/RpYsX4WbAYFo37Y1fp4yETo62WsFJSenYPrM2bhw6TIOHj6KHt265FlXSkoKwh4+hLGREYyNjeTUHY3FS1dARUUFi+b/iWZNGgPIvqZ/++MvnPA5JbV9FWtrzPplGgICg5CampbnuapTxxaBwSEICApmuEJERKWCa64QERHlk6VFJSya/ydMTU2QnJKC4yd88Me8BRgw+Du09+qCvxYsRmzsG6kx1pWt4NjQAQ/DH+Fu6H2pPh/f00hLS4OnhxvU1dUBAMkpKXj//gMsLCpJBStAdsDgYN+gQDVv2LwVADDnt18loQAAiEQifD90EGrVrIGz584j/uMtTzm5t28r+ZIOANraWuj6cYbNq9evMWncj1K3jQzs1xsikQgBQUH5qu3161gcO3ESamqq+O3XaVLBCgAYVqyIenXrSH7u1qUjlJSUcOjIcZl9HT6a3ZZzBtDde6HwvxmAihUq4JefpIMVAKhkbo6aNarnWaci57A4TBg7WupcNXJ0gE2tmoh98wbNmzaRes90tLXRrUsnAJB6X97GxeHQkWMwNTXBjOk/SYIVIPt9/mXaZKiqqmL/oSP5qiki8gkyM7NynQV05NgJpL9/D/d2bSXBCpB9TU8cN0YqECuMKpWzZ/6EPQxXaD9ERESFxXCFiIioABo3csTB3dsx/8/f0aNrZ9ja1IKysjKSkt5h/8HD6D9oGCKfPJUa06NrZwD/vwVI7JCcQKBihQowMTFG2MNwLFu1Bs9fvCx0rW/j4vAw/BEqW1miRjXZ23REIhHs6tdDZmYWQh+EyfQ3bewk0yYOfGrb2kBPT3oNGR0dHejp6SL2zdt81XcrMAiZmVlo1qQxzM3M8tze3MwMzZo0RkRkJIJv35G0hz96jDv3QlHb1gY2tWpK2m/43wIAuLVrA21tLZn95Yei57CoqaioyL3tRvy+fO49y/m+3AoIQkZGBpo1aQyNj8FeTkaGhrCytED4o8dIS0/Ps663cXEAIHddIQAICg4BALRv10amz0BfH00bN8rzGJ+jp6cHACUWcBEREX2KtwUREREVkKqqKlq7OKO1S/YTg5KSkuB7+ixWrlmHt3Fx+HvREqxYslCyvWur7PVCfE+dwfgxI6GlpYX7D8Jw/0EY6teri+rVqkrtf9Yv0zB9xmxs2bYTW7bthLmZKRra26N9uzZo0axJvusU31Lz9NlzqQVB5YmPT5Bpk3d7h3gtFxM5feL+hITEfNUX8+oVAMDCwiJf2wNA966dcfnqNRw6cgx29esB+H9o1TVHSJVz/5YF2P+nFD2HRc3QsKLc2880P74vn3vP3r9/L2mLis5+XYeOHJMJ/T6VmJgIjTweC/3uXXL2sbQ05fa/jo0FkL0YrTz5Cdc+RxyeJSW9U2g/REREhcVwhYiISEG6urro0a0LjIyMMOmn6bgVGIi0tDTJrQ451wvxPX0WXTt3lMxa+TQQAAAnx4Y4sGc7Ll2+iqvXb+BWYBCOn/TB8ZM+aOPaCvP+mJ2vurKysgBkfyGXN6MhJ3lfepVyLH76KdFn+opTi2ZNYGpqgtNnz2HiuDFQVVHBCZ9T0NLU/OxTagpL0XNY1D73nuSnX0z8umrVrJHnrVFqqqp57k9HRxsAkJKSmq/jF7Xkj+GOrq5OHlsSEREVD4YrRERERcTp42KhmZlZSEp6J7WORLcuHbF52w4cOnocHm7t4HPqtMyTbXLS0daGh1s7eLi1AwDcvnMXP/06C2fPXcDlK9fQonnTPOsxMcmebVDYxVOLm/jpSy9evMj3GGVlZXTt1BFr1m3ASd/T0NbSQmJSErp08pK59Ue8/+cF2P+nvvRzWFji12XfoD4mTxir8P7ET85KTJQ/a8nI0BBPnj5DVHQMqlWtItMfFR2j0PETk5IAAAb5fEw6ERFRUeOaK0RERPkkCMJn+589z/4Sr6qqKvO4WPF6IXfvhWLV2vV49y4ZHm7t8r2QZ/16ddHB3Q0A8CgiQtKu+nFWQUZmpswYUxMTVLGujIjIJ3jy9Fm+jlOSHB3soayshGvX/REd8yrf47p28oKysnL2LS1HZR9lLdbYyRHAxycJpeT9VCB5iuMcqqioIFPO+1WSGjV0gLKyEi5duYqMjAyF91etahUoKyvneo7s7bIXYj591k+mLyExEdf9/eWOk1zfedQY8XGdo1o1a+S7ZiIioqLEcIWIiCifVv+7HkuWr8Lz57IzIV69fo25fy8CALRq2VzypTCn7h8Xtt2xey8A+YFAdHQMjh4/gbS0NKn29PR03AoIBPD/GRkAYGxkCAC5fqkdOuhbZGVlYer0GXgQ9lCmPz4hAQfzWHOjuBgbG6GDhzvS37/Hb3PmIj5Bes2St3FxuHP3nsw4IyNDtGrZAg/CHiIgMBg1a1RH3Tq1ZbarW6c2GjV0wNu4OPw5fyFSU6VvWXkZFYXwR4/zrLOoz6GxkSHevI1D0sfZFqXBxNgYnbw64GVUNKbPnI03b2UXIX72/DnO+p3P1/40NTUlTyx69fq1TH8nL0+oqanipO9pXPe/KWnPyMjA4iUrkJqaJjMGyH6vgdyvb7F790IBAA3t7fJVLxERUVHjbUFERET5lJKSil1792Pbzt2obGWFalWtoaamhlevXuPOvVBkZGTAytICE8aOljtevF5ITMwrmSfbiCUkJmL2n/Mwf9ES1La1gYmxMdLSUhFy+y7i4uNR29ZGspAuADi3aI51G7dg6fJVuOF/Ewb62TNmRo8cDgN9fXi4tcPjiEhs3LIN3w4djlo1a8DSohIEQcDzFy8R/ugRNDU15QY9JWHi2DF48vQZbgYEonOP3nCws4O2thaio2NwP+whenTtLPU4ZrEeXTvD7/wFAPLXrRH7bcbPGPnjBPicOoNr1/1h16A+1NRU8fzFS4Q9DMfY0T+gRnXZpwDlVNTnsFXLFti97wAGDPkeDerVhbqaGqwrV8bA/n3yNb6oTBw3BlFR0Th77gKuXr+BWjVrwMzUFKmpaYiIjMSz5y/g4twCbVq75Gt/LZs3xb3Q+7gVEARP9/ZSfRaVzDF29Ej8vWgJfpwwBQ52DWBoWBF37t5DYlISPNza4aTvaZl9tmrZAgGBwRg5dgIaNXSApoYG9A30MeaH4ZJtUlJSEHr/AapYV4alRSXFTgoREVEhMVwhIiLKp6GDBqJ2bRtcu+6Ph+GPEBgcgnfvkqGjrY26dWzh0rIlenbvInlyy6eUlZXR0N4OJ3xO5RoIWFpYYNyYkfC/GYCIyEjcuxcKDU0NVDI3x6Bv+6N7l05QU1OTbF/b1gazZ0zH9l17cO3GTaR/fGzukEEDJUHLyOHD0LSJE/buP4jgkDsIf/QY2tpaMDE2Ro+uXdC2jWvRnqgC0NbWwupli7H/0BGc9D2NoOAQZGZlwdjIEB5u7eDl6S53nL1dfaioqEBZWRmeH9elkcfE2Bib163Bzj37cPbceVz3vwllJSWYmBijZ7cucG7RLF91FuU5HDXiOwiCgPOXLuPUGT9kZmaioYNdiYcrGurqWLJwHk76nsaxEz54+DAcd+/dRwUDA5iZmcLT3Q1uch6dnJtOXh2wftMW+Jw6IxOuAECvHt1gYmyEzVt34M69UKirqcHBvgFG//A9fE+flbvP3j27IzExCb6nz+DsuQvIyMiAuZmpVLhy7sIlpL9//9mQjYiIqLiJhLxuICciIqIikZaWhg5deyIzIxP/Hd4vswAr5Z/PqTP4Zdbv8PJ0L1cLzZZ1k6f9gouXr+LYwT0wMjQskWOOGT8ZQSG3cfTAbkmgSEREVNK45goREVEJ2bv/EJKS3sHL053BigIyMjKwedsOAMA3PbqVcjWU0/DvhkAQBGzbubtEjnf/QRiu3fBH/z69GKwQEVGp4m1BRERExSg+IQHLV67Bm7g4XLl6HVqamvAe2K+0yyqTzl+8jPMXL+HuvVA8joiEa6uWqFvbtrTLohxqVKsGL0937D94BN/27yt5RHNxWbdxMypWqIBvS/iWKiIiok/xtiAiIqJi9DIqCl169oWqqipqVKuKsaN/gGNDh9Iuq0xau34j/t2wGXq6umjWtAkmT/gR+np6pV0WEREREcMVIiIiIiIiIiJFcM0VIiIiIiIiIiIFMFwhIiIiIiIiIlIAwxUiIiIiIiIiIgUwXCEiIiIiIiIiUgDDFSIiIiIiIiIiBTBcISIiIiIiIiJSAMMVIiIiIiIiIiIFMFwhIiIiIiIiIlIAwxUiIiIiIiIiIgX8D8Vqfb+YaT8jAAAAAElFTkSuQmCC", - "text/plain": [ - "
" - ] - }, - "execution_count": 19, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "with pulse.build() as schedule:\n", - " pulse.play([0.001*i for i in range(160)], channel)\n", - "schedule.draw()" - ] - }, - { - "attachments": {}, - "cell_type": "markdown", - "metadata": {}, - "source": [ - "The `play` instruction gets its duration from its `Pulse`: the duration of a parametrized pulse is an explicit argument, and the duration of a `Waveform` is the number of input samples.\n", - "\n", - "### `set_frequency`\n", - "\n", - "As explained previously, the output pulse waveform envelope is also modulated by a frequency and phase. Each channel has a default frequency listed in the `backend.defaults`.\n", - "\n", - "A channel's frequency can be updated at any time within a `ScheduleBlock` by the `set_frequency` instruction. It takes a float `frequency` and a `PulseChannel` `channel` as input. All pulses on a channel following a `set_frequency` instruction are modulated by the given frequency until another `set_frequency` instruction is encountered or until the program ends.\n", - "\n", - "The instruction has an implicit duration of `0`. \n", - "\n", - "**Note**: The frequencies that can be requested are limited by the total bandwidth and the instantaneous bandwidth of each hardware channel. In the future, these will be reported by the `backend`." - ] - }, - { - "cell_type": "code", - "execution_count": 20, - "metadata": {}, - "outputs": [], - "source": [ - "with pulse.build(backend) as schedule:\n", - " pulse.set_frequency(4.5e9, channel)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### `shift_frequency`\n", - "\n", - "The `shift_frequency` instruction shifts the `frequency` of a pulse `channel`." - ] - }, - { - "cell_type": "code", - "execution_count": 21, - "metadata": {}, - "outputs": [], - "source": [ - "d0 = pulse.DriveChannel(0)\n", - "\n", - "with pulse.build() as pulse_prog:\n", - " pulse.shift_frequency(1e9, d0)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "\n", - "The `shift_frequency` and `set_frequency` instructions change the frequency of following pulses and also change the channel's frame of reference. Because a qubit oscillates at its transition frequency, the controller needs to sync with its oscillation; otherwise, an unwanted Z drive is continuously applied. Usually, because the frame is matched with the drive's frequency, and drive matches with the transition's frequency, the Z drive is eliminated when the qubit frequency is calibrated properly. When you apply the `shift_frequency` instruction, it changes the drive frequency and impacts the frame. In other words, it accumulates the phase (Z) as a function of shifted frequency and duration of the program. Specifically, when you shift the frequency by `df` and spend `dt` on that frame, the qubit may experience a phase rotation of `df * dt`. The programmer needs to take this into account to control their qubits precisely. \n", - "\n", - "Note also that these instructions are localized in the pulse gate in IBM devices. This means that accumulated phase and frequency shifts are not carried over. Each pulse gate always starts from the hardware default setting. This behavior is backend-dependent.\n", - "\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### `set_phase`\n", - "\n", - "The `set_phase` instruction sets the phase of a pulse channel." - ] - }, - { - "cell_type": "code", - "execution_count": 22, - "metadata": {}, - "outputs": [], - "source": [ - "d0 = pulse.DriveChannel(0)\n", - "\n", - "with pulse.build() as pulse_prog:\n", - " pulse.set_phase(np.pi, d0)" - ] - }, - { - "attachments": {}, - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### `shift_phase`\n", - "\n", - "The `shift_phase` instruction will increase the phase of the frequency modulation by `phase`. Like `set_frequency`, this phase shift will affect all following instructions on the same channel until the program ends. To undo the affect of a `shift_phase`, the negative `phase` can be passed to a new instruction.\n", - "\n", - "Like `set_frequency`, the instruction has an implicit duration of `0`." - ] - }, - { - "cell_type": "code", - "execution_count": 23, - "metadata": {}, - "outputs": [], - "source": [ - "with pulse.build(backend) as schedule:\n", - " pulse.shift_phase(np.pi, channel)" - ] - }, - { - "attachments": {}, - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### `acquire`\n", - "\n", - "The `acquire` instruction triggers data acquisition for readout. It takes a duration, an `AcquireChannel`, which maps to the qubit being measured, and a `MemorySlot` or a `RegisterSlot`. The `MemorySlot` is classical memory where the readout result will be stored. The `RegisterSlot` maps to a register in the control electronics that stores the readout result for fast feedback.\n", - "\n", - "The `acquire` instruction can also take custom `Discriminator`s and `Kernel`s as keyword arguments. The `Kernel` subroutine integrates a time series of measurement responses and generates an IQ data point, which will be classified into a quantum state by the discriminator. This indicates that if you use a custom measurement stimulus, as in a measurement pulse, you might need to update the kernel setting to not deteriorate the measurement SNR." - ] - }, - { - "cell_type": "code", - "execution_count": 24, - "metadata": {}, - "outputs": [], - "source": [ - "from qiskit.pulse import Acquire, AcquireChannel, MemorySlot\n", - "\n", - "with pulse.build(backend) as schedule:\n", - " pulse.acquire(1200, pulse.acquire_channel(0), MemorySlot(0))" - ] - }, - { - "attachments": {}, - "cell_type": "markdown", - "metadata": {}, - "source": [ - "After adding `ScheduleBlock` instructions, you need to understand how to control when they're played.\n", - "\n", - "## Pulse Builder\n", - "Below are the most important Pulse Builder features for learning how to build schedules. This is not an exhaustive list. For more details about using the Pulse Builder, refer to the [Pulse API reference.](/api/qiskit/pulse)\n", - "\n", - "### Alignment contexts\n", - "The builder has alignment contexts that influence how a schedule is built. Contexts can also be nested. Try them out, and use `.draw()` to see how the pulses are aligned.\n", - "\n", - "Regardless of the alignment context, the duration of the resulting schedule is as short as it can be while including every instruction and following the alignment rules. This still allows some degrees of freedom for scheduling instructions off the \"longest path\". The examples below illustrate this.\n", - "\n", - "### `align_left`\n", - "The builder has alignment contexts that influence how a schedule is built. The default is `align_left`." - ] - }, - { - "cell_type": "code", - "execution_count": 25, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABFcAAAFdCAYAAADG/YI8AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAABvW0lEQVR4nO3dd3gU5dfG8Tu9QyghEErovST0FuldmgUFRUB5lQ6Cgg1B0R+iSBEpokiRjkgTpAkC0nsNVXovKSSBhCTz/oFZs2QDSTaN8P1cF5dm6tmZ2X12z5znGRvDMAwBAAAAAAAgRWwzOgAAAAAAAICnGckVAAAAAAAAK5BcAQAAAAAAsALJFQAAAAAAACuQXAEAAAAAALACyRUAAAAAAAArkFwBAAAAAACwAskVAAAAAAAAK5BcAQAAAAAAsALJlWSysbGRjY2NPD09FRwcbHGZr776SjY2Nho+fHi6xpbZxB2rtDRv3jxVqVJFrq6usrGxUeHChdN0f5bMmDHD4vkePny4bGxsNGPGjHSPCSmX0ectbv/x/3l4eKhgwYJq2rSphg8frnPnzmVIbKmtcOHCaf4ZkdqOHz+uUaNGqUGDBsqdO7ccHByUN29evfDCC9qyZctj17106ZK6desmHx8fOTs7q2TJkho2bJju37+f6Dr37t3Tp59+qpIlS8rZ2Vk+Pj568803dfny5RTFHxQUpP79+8vX11dOTk7y9fXVgAEDEm3PUqp+/fqysbHJMtcqAADAk5BcSaGQkBCNGTMmo8N4pu3evVuvv/66jh8/rqZNm6pLly566aWXJCnDEi1AaqlUqZK6dOmiLl26qFWrVipevLh27typzz77TMWKFdPAgQMVFRWV0WEm6ty5c7KxsVH9+vUzOpRU1bhxY33wwQfas2eP/P399cILL8jLy0tLlixRvXr1NG7cOIvrnT59Wv7+/poxY4Zy5cqltm3bKiYmRp9//rkaN26syMjIBOvcv39fDRs21IgRIxQWFqa2bduqYMGCmj59uvz9/fXPP/8kK/Zbt26pevXq+u6772Rvb6927drJw8ND48ePV40aNXTnzp2UHJIky6rXBAAAgERyJUVsbGzk7Oys8ePHKygoKKPDeWatWLFCsbGxmjBhgpYuXaoZM2Zo9OjRGR2WSZ8+fRQYGKj27dtndCh4CrVr104zZszQjBkzNH/+fG3cuFG3b9/WL7/8ohw5cmjs2LHq1q1bRodplT///FOBgYEZHUaylC5dWrNmzdLNmze1bt06LViwQIcPH9aUKVNkGIbee+89HTt2LMF6Xbt21a1bt9SvXz8dPnxYCxYs0IkTJ9S+fXtt3bpVI0eOTLDOF198oR07dqhWrVo6efKkFixYoJ07d+rbb7/VzZs39eabbyYr9gEDBuj06dN64YUXdOLECS1YsEBHjhxR3759dfLkSQ0cODDFxwUAAOBZR3IlBWxtbfX2228rNDQ0U/2Yf9ZcunRJklS0aNEMjsSy3Llzq3Tp0sqePXtGh4Iswt7eXq+//rr+/vtvubu7a+7cuVq+fHlGh5VixYoVU+nSpTM6jGRZv369OnfuLGdnZ7Pp77zzjpo2baqYmBgtWrTIbN6uXbu0detW5cmTR19//bVpur29vSZPniwHBwd99913io6ONs2LiorS999/L0maOHGi3N3dTfMGDhyoihUratOmTdq7d2+S4r569armzZsnR0dHTZo0Sfb29qZ533zzjby8vDR79mzduHEj6QcDAAAAJiRXUuiDDz6Qi4uLJkyYoNu3bydpnatXr+rrr79WvXr1lD9/fjk6Opr66u/evdviOvHHJJg4caLKly8vFxcXFSlSRF9//bUMw5Ak7du3T61bt1bOnDnl7u6utm3b6vz58xa3aRiG5s2bp4YNGypHjhxydnZWmTJlNHz4cEVERKTgaKSOiIgIjRw5Uv7+/nJ3d5e7u7tq1qypmTNnmi0XN8bJ9OnTJUkNGjQwjU0RN0+Szp8/bzZuRVJK0eOOzauvvqqSJUvKzc1NHh4eql69uiZNmqTY2Ngkv57Hjd1x7tw5derUSV5eXnJzc1PVqlU1f/78RMvm42/r8OHDatOmjXLkyCE3NzfVq1dP27ZtS3JccaKjozV58mTVqlVL2bJlk4uLi/z8/DRu3DizH3kxMTGqU6eObGxsNGnSpATb2bJli+zs7OTj42P2Xjhw4IAGDx6sKlWqyMvLS05OTipatKh69eqlK1euWDwmca89PDxcAwcOVMGCBeXi4qLKlStrxYoVpmUXLVqkGjVqyM3NTd7e3urXr5/u3buXYJtx7x/DMDR+/HiVLVtWzs7Oyp8/v/r165fscSaSeszSWunSpTVgwABJ0nfffWc273FjXSTl+tq1a5eef/555cqVSzY2Njpw4ICk5J3P4cOHq0iRIpKkTZs2mb0Pu3btalrucWOubN++XW3btjXtq3DhwoleO/HHPbpw4YLpveXi4qKqVauaXTtpqVKlSpKUIMaVK1dKklq3bi0nJyezed7e3goICFBQUJD+/vtv0/StW7cqJCRExYoVk7+/f4J9xXWBTOprW716tWJjYxUQECBvb2+zeU5OTmrdurViYmK0atWqJG1PevjZMHr0aJUuXVrOzs4qWLCg+vfvr9DQ0ATLJvWaAAAAeFqRXEmhfPnyqUePHrp7966++eabJK2zbNkyDRkyRNevX1fFihXVvn17+fj4aMmSJapTp47Wrl2b6Lrvvvuu3n//ffn6+qpx48a6ffu2hgwZouHDh2vr1q0KCAjQlStX1KRJE+XLl0/Lly9Xo0aNEvzgjI2N1WuvvaZOnTpp9+7d8vPzU8uWLRUeHq7PPvtMDRo0SLBO3A+ytBx48saNG6pVq5Y++ugjXbt2TfXq1dNzzz2n48ePq2vXrurbt69p2eLFi6tLly4qVqyYJKlZs2amsSni5kmSm5ubaXqXLl3UvHnzJ8YRGRmpTp06af369cqbN69at26tmjVr6ujRo+rdu3eyy/AtOX36tKpXr6558+bJ09NTbdq0kZubmzp16pToeA1x9uzZo5o1a+rcuXNq1qyZSpQooc2bN6tRo0Y6cuRIkmO4d++emjZtql69eunkyZOqWbOmmjRpoqtXr+rdd9/Viy++aEok2dnZ6ZdffpGHh4fee+89HT9+3LSdkJAQde7cWYZhaObMmcqVK5dp3ldffaWxY8dKkurWrauWLVvKMAxNnjxZVatWtfgjWXp4x75Ro0aaM2eOatasqZo1a+rgwYNq37691q9fr7Fjx6pTp07y8PBQs2bNFBMTowkTJqh79+6Jvt6+ffvq/fffV4ECBUxjXUyYMEH16tWz+EPQ2mOWHl599VVJ0rZt21Jt7JXNmzerbt26OnfunJo2barnnntOtrYPm4nknE8/Pz+9+OKLkh4mD+K/D+vWrfvEOGbPnq2AgAAtX75cpUqV0gsvvCAnJydNnjxZlStXNrsG4zt37pyqVaumXbt2qVGjRvL399fevXvVrl07i5+vXbt2TdXBx+PGQMmbN6/Z9IMHD0qSKleubHG9uOmHDh2yap3HSe3tSdLrr7+u999/XxcvXlTTpk1VrVo1zZw5Uw0bNkwwhoy11wQAAECmZyBZJBl2dnaGYRjGtWvXDFdXV8PNzc24ceOGaZmRI0cakoxhw4aZrXvo0CHjyJEjCba5evVqw9HR0ShWrJgRGxtrNs/X19eQZPj4+BinT582TQ8MDDScnJwMV1dXo3DhwsbkyZNN8yIjI42GDRsakoyff/7ZbHtff/21IcmoX7++cfXqVbN13nrrLUOSMWTIELN1zp49a0gyknu5JGedli1bGpKM/v37G/fv3zdNv3btmlG1alVDkvHHH3+YrdOlSxdDkrFx40aL+/b19U1WvIZhGA8ePDCWLFliREVFmU2/ceOGKY5NmzaZzZs+fbrF8z1s2DBDkjF9+nSz6Y0aNTIkGT169DCio6NN01evXm04ODgYkox69epZ3JYkY/z48WbzBgwYYEgyOnfunOTX2atXL0OS8corrxjBwcGm6aGhoaZzEf+aMgzDmDFjhiHJ8Pf3NyIjIw3DMIxOnToZkowBAwYk2MeGDRuMa9eumU2LiYkxPvvsM0OS0a1bN7N58a+zhg0bGmFhYaZ5cce4ePHiRo4cOYzdu3eb5l2+fNnIkyePIck4c+aM2Tbj3j/ZsmUz9uzZY5p+9+5d03ukf//+Zuskdt5ScsxSIm7/j15Pj4qJiTGcnJwMScaJEydM0+vVq2dIMs6ePZtgnbhj/Ljra9SoURb3l9Lz+ei+4os7P/FduHDBcHFxMezs7Ixly5aZ7SvuWq9atarZOnHXhyRj0KBBRkxMjGne2LFjDUlGQEBAgv3HfYY86VgnxenTp03nI/61ZhiG4e/vb0gyez3xjRs3zpBkDBw40DTt3XffNSQZ7777rsV1Dhw4YEgyKleunKT42rdvb/HzI87SpUsNScYLL7yQpO3Nnz/fkGQUKlTI7Fq7fv26Ub58edP5iD8vKdcEAADA04rKFSt4e3urZ8+eCg8P16hRo564fIUKFVSuXLkE05s1a6aXX35ZZ86cSbT64PPPPzdVakgPuwW0bNlSERERKlCggHr06GGa5+joqP79+0t6WH4dJzo6Wl9//bXc3Nw0f/58s7urjo6OmjBhgvLmzaupU6ea3YF3cHBQqVKlVKpUqSe+xpQ4cOCAVq1apWrVqmnMmDFmZfPe3t6aOnWqJGny5Mlpsv/44p6g4eDgYDbdy8vLNODksmXLUrz906dP688//5Snp6e++eYb2dnZmeY1a9ZMHTp0eOz6derUUb9+/cymffLJJ5IeVh0kxY0bN/Tjjz+anjoSf0wYDw8PTZs2TY6OjgmOd5cuXfTyyy9r//79+uSTTzRnzhzNnTtX5cuX11dffZVgPw0aNEjQ/cDW1laffvqp8ufPn+hYIba2tpo8ebLc3NxM09544w3lzp1bp0+fVu/evVW1alXTPB8fH7322muPPQZ9+vRRlSpVTH+7u7trwoQJsrGx0bRp0x77KFwp5ccsLdna2ipHjhySlGoDa1eoUEHvv/++xXkpPZ/J9dNPP+nevXvq0KGD2rRpY7avr776Sj4+PtqzZ4+2bt2aYN0iRYrof//7n6naRnp47nPkyKEdO3YkqPDJly+fSpUqpdy5c1sVc3R0tLp27arIyEi98sorZteaJIWFhUmSXF1dLa4fd63fvXvXqnUeJ7W3F9dFcPjw4WZPZsuTJ0+SqzkBAACyEvsnL4LHGTJkiKZMmaLJkyfr/fffT/Dj41GRkZFavXq1du3apZs3b5q+7B8+fFiSdOrUKVWoUCHBek2bNk0wLW4g18fNu3r1qmnavn37dOvWLTVp0sRinC4uLqpSpYpWrlypU6dOmZIp+fPnT7QMPzXEleu3a9fO7EdRnLgxWHbt2pVmMTzqwIEDWrt2rc6fP6+IiAgZhmH60XHq1KkUbzfuB2Hz5s3NBqiM88orr2jOnDmJrm/pXOfKlUs5c+Y0O9eP89dff+nBgwdq3ry5XFxcEszPmzevSpQoocOHD+vevXtmy/zwww/avn27vv32W7m6usrJyUlz5sxJMI5EnNu3b2v58uU6cuSIgoODFRMTI0l68OCBbt++rTt37ihnzpxm6xQuXFglS5Y0m2ZraytfX1/dunUrydd7fHFdaOIrW7asKlWqpAMHDmj//v2qVauWxXUl645ZWjL+HXMptbrsPf/884/dVkrOZ3Jt2bJFkkwJs/icnJz08ssva/z48dqyZYvq1KljNr9+/fpydHQ0m2Zvb68iRYpo3759un37tvLly2eaN3LkSItP6Umufv366e+//1bRokUtjkuU1Tx48EA7duyQ9PAz61HNmzdXjhw5eJoeAAB4ppBcsZKXl5d69+6tr7/+2mxMAkviBiK1NNBknMTuGubPnz/BtLgf54+bF7/fe9x+161b98QfY7du3UqzSpVHxcX18ccf6+OPP050uSdVF6SGqKgode3aVfPmzUt0maTe2bUk7sd/wYIFLc4vVKjQY9cvUKCAxekeHh66c+dOkmKIO94//vijfvzxx8cue+fOHbPrK0eOHJo4caLatm2rsLAwjRo1ShUrVrS47rx58/T222+b7phbcvfu3QQ/xi1dz1Lyr/f4fH19LU4vXLiwDhw4kOj4L3GsOWZpJTY21vTj1dqERpzHXX8pPZ/JFXcu4ldDxBc3/fLlywnmPe79ISV+fVjjyy+/1OTJk+Xt7a01a9ZYfP1x12diA4aHh4ebxZnSdR4nNbd3+/ZtRUVFycvLK9FKGF9fX5IrAADgmUJyJRW8//77mjRpkqZMmaLBgwdbXMYwDHXo0EHnzp1Tjx491KNHDxUtWlTu7u6ysbHRRx99pJEjR5ruRD/KUkVHUubFF9fVp3jx4gnu+D4q/sCkaS0urrp165p1fcoIY8aM0bx581ShQgV9/fXXqly5snLkyCEHBwedPHlSpUqVSvQcpYeknuvHiTvefn5+pqebJMZSRcqCBQtM/5/YY2DPnz9vegLIuHHj1KpVK+XPn99U0VG7dm1t377d4rF80mtMjWOQXNYes7Rw9OhRRUVFydXVNdFExKOeNODuo48XjmPN+Uxtj0sMp/e1MWXKFH3yySfKnj27Vq9ereLFi1tcrlChQtq/f7/p8fGPipsePwkYl+hKzjqPk9rbAwAAgDmSK6kgd+7c6tu3r6nE3MfHJ8Eyx48f1/Hjx1W1alWL4zLEPWUiLcXd1S1durTFxwNnlLi42rVrp0GDBmVoLEuWLJH08C79o+PjpMY5iuuScPHiRYvzE5uemuKOd926dTVhwoRkrTtv3jzNnTtX5cqVk6OjoxYuXKhWrVrpjTfeMFtu1apVioqK0nvvvWca/ye+9Lje4zt//rzF7nZxjyu39J6Nz5pjllbiklx169aVvf1/H+Vx3WIsVZik9PpKz/Pp4+OjEydO6Pz58xbHqIqrIkqP6qDHmT9/vnr37i1XV1etXLlSfn5+iS5bqVIlLVu2TPv27bM4P256/CqwuCRectZ5nNTcXq5cueTo6KibN28m2g3uwoULSYoLAAAgq2BA21QyaNAgeXh4aOrUqRbL1ePKoy2VrQcFBWndunVpHmO1atWUPXt2bdq0KcldSNJDkyZNJP2X2EgNDg4Oio6OTvZ6jztPCxcutDqu2rVrS5LWrFljKsNP7X08SYMGDWRnZ6fff/9dDx48SPJ6Fy9eVK9eveTk5KS5c+dq9uzZcnZ2Vt++fXX27FmzZR93HDdv3qzr169b9yKSydJxPX78uA4cOCB3d/fH/jCWUn7M0srx48dNj+1+NNkRl8A7efJkgvVS+jmTkvMZl+RJ7vswICBAkix2zYuKitKiRYvMlssIq1at0htvvCF7e3stWbLkiZWArVq1kiStWLEiQdek69eva8uWLcqRI4fZdurUqaPs2bPrzJkzOnDgQIJt/vrrr5Kk1q1bJynm5s2by9bWVlu2bNGNGzfM5kVGRmrFihWys7NTy5Ytn7gtBwcH1ahRQ5Ll99batWsttjEpvSYAAACeBiRXUkmuXLnUr18/RUZGatq0aQnmFy9eXLa2ttqwYYPZgKj3799Xjx490iXZ4eTkpMGDB+vu3bt64YUXLN5tvnz5sn755ZcE00qXLq3SpUunSVw1atRQkyZNtHXrVvXu3VuhoaEJljl48KBWr16d5G36+Pjo+vXrCg4OTlYscQOpTpkyxWz6r7/+qlmzZiVrW5aUKFFCjRo1UlBQkIYMGWLWTWPdunWaP3++1ft4kvz58+vNN9/UuXPn1LFjR4s/jE+fPq3Fixeb/o6NjdUbb7yh4OBgffnll6pYsaLKli2rUaNGKTQ0VJ07dzYNbir9dxxnz55tlkS6fPmy2ZOt0suECRO0f/9+098RERHq27evDMNQt27dnjgAbUqOmfRwIFwbG5skd9t5kujoaM2ZM0cBAQEKDw/XG2+8keDHcL169SRJ3377rdn4Ghs2bDAlZJIrJeczd+7ccnBw0JkzZ8yujSd566235OLiovnz52vlypWm6bGxsfroo490+fJlValS5YkJjaT48MMPVbp0aX3//fdJXmfr1q166aWXZBiGFixYYHGA5UdVr15dderU0Y0bNzRkyBDT9OjoaPXq1UsPHjxQv379zJ5S5ujoqD59+kiSevfubXbcx4wZo0OHDqlevXoJnkz0/fffq3Tp0vrwww/NpufLl08dO3ZUVFSUevXqZZbgGDx4sG7evKnXX39defLkSdJx6NmzpyRp2LBhZlUqt27dSvSJUym9JgAAAJ4GdAtKRYMGDdKECRMsJgfy5Mmjt956Sz/++KMqVaqkhg0bysXFRVu2bFFMTIy6du2aLl11PvjgAx0/fly//PKLypQpI39/fxUpUkRRUVE6ceKEjh07pooVK6pz586mdR48eKATJ06keJ81a9ZMdF737t3VvXt3zZ49W82bN9ekSZM0d+5c+fn5ycfHRyEhITp06JAuXryo/v37q3nz5knaZ5s2bTRhwgRVrlxZtWvXlrOzs0qVKpXol/44gwcP1urVq/XBBx9o0aJFKlmypE6dOqU9e/bovffe0+jRo5P12i2ZPHmy6tSpo4kTJ2rt2rWqWrWqrly5oi1btqhXr176/vvvEzzxJLWNHz9e586d0+LFi7V69Wr5+fmpUKFCCg8P17Fjx3T69Gm1bdtWL774oiRp9OjR+uuvv9SoUSMNHDjQtJ2+fftq5cqVWrt2rUaOHGl6LHSbNm1Urlw57dmzxzTGz/3797Vx40b5+fmpdu3a2rZtW5q+xvhef/111ahRQw0bNlT27Nm1efNmXbt2TeXKldOIESOStI3kHjPpvzFOHn20d1IsXbrU1AXm/v37unnzpvbs2aPQ0FDZ2tpq0KBBFp9007FjR3399dfatm2bypQpo2rVqunSpUvavXu3Bg4cmKJrOCXn09HRUc2bN9eKFStUqVIlVa5cWY6OjqpTp466deuW6L4KFSqkH374QV27dlXr1q1Vp04dFSxYUPv27dOJEyfk7e2t2bNnJ/s1WHL16lWdOHFCt27dSvI6zz//vO7du6ciRYpo6dKlWrp0aYJl6tatq+7du5tNmz59umrVqqXx48drw4YNKlu2rHbv3q1//vlHtWvXTpAMkR4+Zn39+vXatm2bSpQooYCAAJ0/f147d+6Ul5eXfv755wTr3Lp1SydOnLD45Kxx48Zpx44dWrx4sUqXLq2qVavq6NGjOnLkiEqUKKExY8Yk+Th07NhRS5Ys0aJFi1S2bFk1atRI9vb22rBhg4oWLaqaNWuanigUJ6XXBAAAwFPBQLJIMuzs7BKd/+mnnxqSDEnGsGHDzOZFR0cb3377rVG2bFnD2dnZ8Pb2Nl577TXj3LlzxrBhwwxJxvTp083W8fX1NRI7TYmtYxiGcfbsWUOSUa9ePYvrLlu2zGjVqpWRJ08ew8HBwciTJ49RpUoVY/DgwcbevXstbiu5l0vcOo/7F/8Y3bt3z/juu++M2rVrG9mzZzccHR2NggULGvXq1TO++eYb4+LFi2bb79KliyHJ2LhxY4J9h4WFGX369DEKFixo2NvbP/ZYPGr79u1Gw4YNjRw5chgeHh5G7dq1jcWLFyd6TKdPn27xfD/u/Pzzzz9Gx44djVy5chkuLi6Gv7+/8csvvxh///23Icl49dVXk7wtw3j8dZKY6OhoY+bMmUbDhg2NnDlzGg4ODoaPj49Rq1Yt47PPPjNOnDhhGIZh7N+/33B0dDRy5MhhXLp0KcF2rly5YuTKlcuwt7c3du7caZp+584do2fPnkbhwoUNJycno2jRosaQIUOM8PBwo169eoYk4+zZs6bln3TNWlonTmLnIO64xMTEGKNHjzZKly5tODk5Gfny5TN69+5t3LlzJ8G2Hnesk3rM4owZM8aQZHz++ecWX5MlcfuP/8/Nzc3Inz+/0aRJE2P48OHGuXPnHruNS5cuGR07djRy5MhhuLi4GFWrVjUWLVqU6DF+0vVlGMk/n4ZhGNevXzc6d+5s5M2b17CzszMkGV26dDHNf9x1u3XrVqN169ZGrly5DAcHB6NQoUJGz549LV6DiZ3/OInFF/cZkth6liTlcy3+a4zvwoULRteuXY28efMajo6ORvHixY2hQ4ca9+7dS3R/ERERxtChQ41ixYoZjo6ORt68eY2uXbsm+DyME3cuE4vh9u3bRt++fY2CBQuaPmP79etnBAUFJfkYxHnw4IExatQoo2TJkoajo6Ph4+Nj9OrVywgODk7xNQEAAPC0sjGMDHz0CQAzX331lT788EN99dVXZt0HkDKFCxfW+fPnM+wJT23atNHWrVt17ty5JD8yFwAAAMDThzFXgHR2//59HTt2LMH0jRs36n//+5/s7e316quvZkBkSE0xMTHavHmz3nvvPRIrAAAAQBbHmCtAOgsODla5cuVUqlQplShRQs7Ozjp16pQOHjwo6eH4Jr6+vhkcJaxlZ2eX7AGVAQAAADydSK4kgWEYCo+IkJurq2xsbDI6HDzlsmfPrvfee0/r1q3Ttm3bFBoaKk9PT7Vo0UJ9+/ZVixYtMjpEAAAAAEAyMOZKEoSFh6tB01Za8dsiubm5ZnQ4AAAAAAAgER7ubum+T8ZcAQAAAAAAsALJFQAAAAAAACuQXAEAAAAAALACyRUAAAAAAAArkFwBAAAAAACwAskVAAAAAAAAK5BcAQAAAAAAsALJFQAAAAAAACuQXAEAAAAAALACyRUAAAAAAAArkFwBAAAAAACwAskVAAAAAAAAK5BcAQAAAAAAsALJFQAAAAAAACuQXAEAAAAAALACyRUAAAAAAAArkFwBAAAAAACwAskVAAAAAAAAK5BcAQAAAAAAsALJFQAAAAAAACuQXAEAAAAAALACyRUAAAAAAAArkFwBAAAAAACwAskVAAAAAAAAK5BcAQAAAAAAsALJFQAAAAAAACuQXAEAAAAAALACyRUAAAAAAAArkFwBAAAAAACwAskVAAAAAAAAK5BcAQAAAAAAsALJFQAAAAAAACuQXAEAAAAAALCCfUYHAABPo6Pn7dJ1f+V8Y9J1fwAAAACSjuQKACRBeidTnrR/ki0AAABA5kFyBQAekdGJlKSwFCMJFwAAACBjkFwB8Mx7GpIpSUF1CwAAAJAxSK4AeKZklURKUlDdAgAAAKQPkisAsqxnKZGSVCRcAAAAgNRHcgVAlkEyJWXoTgQAAABYxzajAwAAAAAAAHiaUbkC4KlElUraoesQAAAAkDwkVwA8FUimZCy6DgEAAACJo1sQAAAAAACAFahcAZDpUKWS+dF1CAAAAPgPlSsAAAAAAABWoHIFQIaiSiXroJoFAAAAzyqSKwDSFcmUZwsD4QIAAOBZQLcgAAAAAAAAK1C5AiDNUKWCR9F1CAAAAFkRlSsAAAAAAABWoHIFQKqhUgUpwbgsAAAAeNpRuQIAAAAAAGAFkisAAAAAAABWoFsQgBShCxDSCoPeAgAA4GlD5QoAAAAAAIAVqFwBkCRUqiAjMegtAAAAMjMqVwAAAAAAAKxA5QqABKhSQWbHuCwAAADITKhcAQAAAAAAsAKVK8AzjioVZBVUswAAACCjULkCAAAAAABgBSpXgGcMlSp4lvCUIQAAAKQHKlcAAAAAAACsQOUKkIVRpQKYY1wWAAAApAUqVwAAAAAAAKxA5QqQhVCpAiQf47IAAADAWlSuAAAAAAAAWIHkCgAAAAAAgBXoFgQ8pegCBKQNBr0FAABAclG5AgAAAAAAYAUqV4CnBJUqQMahmgUAAACPQ+UKAAAAAACAFahcATIhqlSAzI9HOAMAACAOlSsAAAAAAABWoHIFyGBUqQBZA+OyAAAAPLuoXAEAAAAAALAClStAOqNSBXh2MC4LAADAs4HKFQAAAAAAACtQuQKkIapUAMTHuCwAAABZE8kVIBWRTAGQXHQdAgAAePrRLQgAAAAAAMAKVK4AKUSVCoC0QNchAACApw+VKwAAAAAAAFagcgVIAqpUAGQkqlkAAAAyN5IrgAUkUwBkdgyECwAAkHnQLQgAAAAAAMAKVK7gmUeVCoCsgK5DAAAAGYfkCp45JFMAPCvoOgQAAJA+6BYEAAAAAABgBSpXkKVRpQIA/6HrEAAAQNoguYIshWQKACQPXYcAAACs91QnV2xsbMz+tre3V/bs2ZUvXz5VqVJFrVu3Vtu2bWVvn/jLvHfvnkaOHKn58+frwoULypkzp5o3b64RI0Yof/78af0SYAUSKQCQ+qhuAQAASD4bwzCMjA4ipeKSK126dJEkxcbGKiQkRCdPntSJEydkGIaKFy+uOXPmqHr16gnWv3//vho0aKAdO3YoX758CggI0Llz57Rr1y55eXlpx44dKlq0qMLCw9WgaSut+G2R3Nxc0/U14iESKQCQuZBwAQAAmZWHu1u67/OprlyJM2PGjATTzpw5o48++kgLFy5UgwYNtHXrVvn5+Zkt88UXX2jHjh2qVauW1q5dK3d3d0nSmDFjNGjQIL355pv666+/0v4FIAGSKQCQudGdCAAA4D9ZonLlcS+he/fumjZtmvz9/bVv3z7T9KioKOXJk0chISHat2+f/P39zdarVKmSDh06pD179qhU6dJUrqQhEikAkDWRcAEAABkhIypXsvyjmL/99lu5ublp//79+vvvv03Tt27dqpCQEBUrVixBYkWSXnrpJUnSihUr0i3WZ8XR83Zm/wAAWROf9wAA4FmRJboFPU727NnVokUL/frrr9q4caPq1q0rSTp48KAkqXLlyhbXi5t+6NCh9Ak0i+LLNAAgDoPlAgCArCrLJ1ckyc/PT7/++qsCAwNN0y5cuCBJKlCggMV14qafP38+7QN8SpE4AQBYKyltCQkYAACQ2T0TyZXcuXNLkoKCgkzTwsLCJEmurpbHUHFze9hH6+7du2kc3dOBRAoAIKNQ8QIAADK7ZyK5EjfgbdwAuDBH4gQA8LSh4gUAAGQmz0Ry5datW5KknDlzmqbFPXY5IiLC4jrh4eGSJA8PD9O0w4cPydnZOa3CTBMXg3NkdAgAAGSIf84+eZmCnkFPXggAADxVAurWSfd9PhPJlf3790uSypYta5pWqFAhSdKlS5csrhM33dfX1zStefNmio3hLhgAAAAAAJlVXO+V9JTlkyshISFas2aNJKlBgwam6ZUqVZIk7du3z+J6cdMrVqxomrZ69ZqnrnIFAAAAAACkrSyfXBk0aJDCw8NVrVo11apVyzS9Tp06yp49u86cOaMDBw7Iz8/PbL1ff/1VktS6dWvTtAoVKsrNzfIAuAAAAAAA4Nlkm9EBpJV//vlHr7zyiqZNmyY3NzdNmzbNbL6jo6P69OkjSerdu7dpjBVJGjNmjA4dOqR69eqpSpUq6Ro3AAAAAAB4umSJypWuXbtKkmJjYxUaGqqTJ0/q+PHjMgxDJUqU0Ny5c1WhQoUE633yySdav369tm3bphIlSiggIEDnz5/Xzp075eXlpZ9//jmdXwkAAAAAAHja2BgZMdJLKnn00cr29vbKli2bfHx8VKVKFbVt21Zt2rSRnV3ij2u8d++eRo4cqblz5+rixYvKmTOnmjdvrhEjRqhAgQKSpLDwcDVo2korfltEtyAAAAAAADIxD3e3dN/nU51cSS8kVwAAAAAAeDpkRHIly465AgAAAAAAkB5IrgAAAAAAAFiB5AoAAAAAAIAVSK4AAAAAAABYgeQKAAAAAACAFTJtcmX16tXy8/OTs7OzbGxsFBwcnNEhAUCGWbZsmfwqVdTly5czOhQAAAAAj7DP6AAsuX37tjp06KBy5cpp4sSJcnJykptb+j9KCUDWcfnSJc2aNUvbt2/XjRvXJUk+Pj6qWq2aXnrpZZUsWTKDIwQAAADwtMqUyZXdu3fr7t27GjFihBo3bpzR4QB4ym3etEmDB78ve3t7tWjZUqVKlpKNrY3OnT2nP/9cr0ULF2rlqj/k4+OT0aEm6vnnn1fz5s3l6OiY0aEAAAAAeESmTK7cuHFDkuTp6fnEZSMiIuTq6prGEQF4Wl28eFFDhgyWj4+Pfpj6o7y8vMzm9x8wQAsXLJCtbabtJSlJsrOzk52dXUaHAQAAAMCCZP2aGD58uGxsbHT69Gl17dpVnp6eyp49u7p166aIiAizZaOjozVixAgVK1ZMTk5OKly4sD766CNFRkY+dh/169dXly5dJEnVqlWTjY2NunbtappXvnx57d27V88995xcXV310UcfSZIiIyM1bNgwFS9eXE5OTipYsKAGDx6cYH+RkZF699135eXlJQ8PD7Vp00aXLl2SjY2Nhg8fnpzDAeApMGP6dN27d0+fffZ5gsSKJNnb26vTa68pb968kqSTJ09q6NBP1KplC1WvVlWNGjbQsE8/TTDu09Chn6hFi+YJtjd58iT5VapoNm379u3q2qWL6tato1o1a6htm9b67rvxZsvMmztXL7Rvr5o1qiugbh116viqVq1aaZpvacyVjRs3qk+f3mrSuJGqVa2i51u11NQfflBMTIzZtt966029+EJ7nTlzRt3feks1a1RXk8aNNX36z0k7iAAAAAAeK0WVKx06dFCRIkU0cuRI7du3Tz/99JPy5MmjUaNGmZbp3r27Zs6cqZdeekmDBg3Szp07NXLkSAUGBmrJkiWJbvvjjz9WqVKlNHXqVH3++ecqUqSIihUrZpp/+/ZttWjRQq+++qpef/11eXt7KzY2Vm3atNHff/+tt99+W2XKlNHhw4c1duxYnTx5UkuXLjWLa/bs2erUqZNq166tDRs2qFWrVik5DACeAps3b1bBQoVUoWLFJy8sacf27bp86ZLatm2nXLlz6cyZM/pt8WKdOXNav8yeIxsbm2Tt//Tp0+rXt49KlCypXj17ydHRURcuXtDBAwdMyyxe/KtGjfpKjZs0UafXXlNUZKROnTqpw4cPq2XLxD+fli9bJlcXV73eubNcXVy1a/cuTZo0UWHhYRo4cJDZsqGhd9W7V081bNRITZs11fp16zR+3DiVKFFCdesGJOs1AQAAADCXouSKv7+/pk2bZvr79u3bmjZtmim5cvDgQc2cOVPdu3fXjz/+KEnq1auX8uTJo9GjR2vjxo1q0KCBxW03adJEly9f1tSpU9WiRQtVrVrVbP61a9c0ZcoUvfPOO6Zps2fP1vr167Vp0ybVrVvXNL18+fLq0aOHtm3bptq1a+vgwYOaPXu2evXqpYkTJ0qSevfurddee02HDh1KyaEAkImFhYXp5s0batCgYYJ5oaGhZhUeLi4ucnZ2VodXXtEb/1bPxalYoaI++GCI9u/fp8qVqyQrhh07tuvBgweaOHGScuTIYXGZLVu2qFixYho9+ttkbXvkV1/J2dnZ9PfLHTroi2wjtHDBAvXp09dsfJabN2/oiy++1POtW0uS2rd/QS2aN9PSJUtIrgAAAABWStEgAz169DD7OyAgQLdv31ZoaKgkadWqVZKkgQMHmi03aNDDO6krV65USjk5Oalbt25m0xYtWqQyZcqodOnSunXrlulfw4YPf1Bt3LjRLK5+/fqZrT9gwIAUxwMg8woPD5Mki+Myde/+lhrUr2f6t2DBfEkyS1ZERkYqKCjIVPUSGBiY7Bg8PLJJkv7auFGxsbGJLOOh6zdu6MiRI8nadvxYw8PDFRQUJP/KlXX//n2dPXvWbFlXV1e1ev55098ODg4qX768Ll26lKx9AgAAAEgoRZUrhQoVMvs77m5sUFCQsmXLpvPnz8vW1lbFixc3Wy5v3rzy9PTU+fPnUxiulD9//gRPyzh16pQCAwMtjqcg/TdAblxc8bsZSVKpUqVSHA+AzMvV9eEj3B8dE0qShn4yVOEREbp9+7Y+/uhD0/SQkBBNmTJZa1av1p07d8zWCbsbluwYmjVrpiW//abPPhuu774br+rVa6hho0Zq0qSJaRDdbt3e1M4dO/T6a51UsFAh1apVSy1atJS/v/9jt3369GlN/P577d69S2Fh5rGFhd01+9vb2ztBlyaPbNl08uTJZL8mAAAAAOZSlFxJ7IkVhmGY/Z3csQmSwsXFJcG02NhYVahQQWPGjLG4TsGCBVM9DgCZn4eHh7y8vHT6zOkE8+KqUeIPECtJg99/TwcPHtQbXbqodKnScnF1lREbq169eirW+K/yxEaWP99iY8yrU5ydnfXz9OnavXuXtmzeom3btmrNmtVaXL26Jk/5QXZ2dipatKiWLVuuzZs3a+vWrfpz/XotXLBAb7/zjnr16m1xP6Ghoer+1ptyc3NTz169VLBAQTk6OSkw8JjGjxun2Fjzz+PEnoZkWJwKAAAAIDnS5FHMvr6+io2N1alTp1SmTBnT9OvXrys4OFi+vr6pur9ixYrp4MGDatSo0WMTOnFxnTlzxqxa5cSJE6kaD4DMo25AgJb89psOHz6sChUqPHbZ0NBQ7dy5Uz179tI78bo/Wqq2y5Ytm+7evZtg+tWrVxJMs7W1VY0aNVWjRk1J7+unn37U9xMmaPfu3apZs6YkycXVVc2aN1ez5s314MEDDXz3XU376Se99VZ3OTk5Jdjmnj17FBwcrG/HjFGVKv+NTXX5Mt18AAAAgPSWojFXnqRly5aSpHHjxplNj6ssSe2n83To0EGXL182DZ4b37179xQeHi5JatGihSTpu+++M1vm0Tilh90Ijh8/rlu3bqVqrADSV9eu3eTs7Kzhwz7V7du3Ey4Qr+IurrrDeKSeY86c2QlWK1CwoMLu3jXrVnPz5k1t2LDBbLmQkJAE65YqVVqSFBUVJUkJHvPs4OCgosWKyjAMRUdHW3xddnGxxgv1wYMHWrhgocXlAQAAAKSdNKlcqVSpkrp06aKpU6cqODhY9erV065duzRz5ky1a9cu0ScFpVTnzp21cOFC9ejRQxs3blSdOnUUExOj48ePa+HChVqzZo2qVq0qPz8/dezYUZMmTVJISIhq166tP//8U6dPJ+wysGvXLjVo0EDDhg3Te++/n6rxAkg/vr6+GvnVKH34wRC1bdtGLVu2VMmSpSTD0OXLl/XHH6tka2sr7zzecnd3V5UqVTRj+nRFR0crT5482r5tuy5fuZxgu82bN9f4cWM18N0B6tipk+7fv69FCxfK19fXbODbH36Yon179yog4Dnl88mnO3fuaOGCBfL29jaNqdKzxzvKlTu3/Pz8lCtnLp09+4/mz5+vgIAAubm5WXxdlfz8lC1bNg0d+ok6dewk2dho5e8rEiSGAAAAAKS9NEmuSNJPP/2kokWLasaMGVqyZIny5s2rDz/8UMOGDUv1fdna2mrp0qUaO3asZs2apSVLlsjV1VVFixZV//79VbJkSdOyP//8s7y8vDRnzhwtXbpUDRs21MqVKxmXBcjCGjRooEW/LtasWTO1fft2LVu6VDY2NsqXL58CAgL00ssdTF0F/zfyK4366istmD9fhqRatWpp4sRJatK4kdk2PT09NWbsOH07+huNGztW+fPnV99+/XXhwnmz5Er9evV15coVLV26VMHBQfL0zKEqVauoZ89e8vDwkCS9+NLL+mPVSs3+5RdFRETI29tbHTt10v/939uJviZPT099N+F7jfl2tCZO/F4eHtnUqlUrVa9RQ7169kh0PQAAAACpz8Z4dBTaZ5SNjY2GDRum4cOHJ5gXFh6uBk1bacVvi+TmlvCRrgAAAAAAIHPwcLdc/Z2W0mTMFQAAAAAAgGcFyRUAAAAAAAArkFwBAAAAAACwQpoNaPu0YegZAAAAAACQElSuAAAAAAAAWIHkCgAAAAAAgBVIrgAAAAAAAFiB5AoAAAAAAIAVSK4AAAAAAABYgeQKAAAAAACAFUiuAAAAAAAAWIHkCgAAAAAAgBVIrgAAAAAAAFiB5AoAAAAAAIAV7DM6AAB4Gh09b5eu+yvnG5Ou+wMAwBq0kwCeNSRXACAJ0vtL4pP2z5dIAEBmQjsJ4FlHcgXAMy+jvxCmRFJi5oslAMBaT2MbKdFOAkh/JFcAPFOe1i+JKWHptfJFEgDwOLSTtJMAUoYBbQEAAAAAAKxA5QqALOtZuvuWVNylAwDEoZ1MiHYSQEqRXAGQZfAlMWUYBBAAng20kylDOwkgKUiuAHgq8QUx7XDXDgCefrSTaYd2EoAljLkCAAAAAABgBSpXADwVuAOXsSiJBoDMjXYyY9FOAqByBQAAAAAAwApUrgDIdLj7lvnR3xwAMg7tZOZHOwk8e0iuAMhQfEHMOvgiCQCpj3Yy66CdBLI2ugUBAAAAAABYgcoVAOmKO3DPFgb4A4DkoZ18ttBOAlkHlSsAAAAAAABWoHIFQJrh7hseRX9zAPgP7SQeRTsJPL2oXAEAAAAAALAClSsAUg134JAS9DcH8KygnURK0E4CTwcqVwAAAAAAAKxA5QqAFOHuG9IK/c0BZAW0k0grtJNA5kTlCgAAAAAAgBVIrgAAAAAAAFiBbkEAkoTyZmQkBvMDkNnRTiIj0U4CGY/KFQAAAAAAACtQuQIgAe6+IbNjMD8AGYl2Epkd7SSQ/qhcAQAAAAAAsAKVK8AzjrtvyCq4SwcgLdBOIqugnQTSFpUrAAAAAAAAVqByBXjGcAcOzxKengAguWgn8SyhnQRSD5UrAAAAAAAAVqByBcjCuPsGmKO/OYD4aCcBc7STQMpRuQIAAAAAAGAFKleALIQ7cEDy0d8ceHbQTgLJRzsJJA2VKwAAAAAAAFagcgV4SnH3DUgb9DcHsgbaSSBt0E4CllG5AgAAAAAAYAWSKwAAAAAAAFagWxDwlKC8Gcg4lEADmRttJJCxGPQWoHIFAAAAAADAKlSuAJkQd+CAzI+7dEDGoZ0EMjcqPvEsonIFAAAAAADAClSuABmMu29A1sBdOiBt0E4CWQPtJLI6KlcAAAAAAACsQOUKkM64Awc8OxiXBUg+2kng2UE7iayE5AqQhviCCCA+SqIBc7STAOKjncTTjG5BAAAAAAAAVqByBUhF3IEDkFyURONZQjsJILloJ/G0oHIFAAAAAADAClSuACnE3TcAaYH+5sgqaCcBpAXaSWRWVK4AAAAAAABYgcoVIAm4+wYgI3GXDpkd7SSAjEQ7icyA5ApgAV8SAWR2DPCHjEQ7CSCzo51EeqNbEAAAAAAAgBWoXMEzj7tvALICSqKRVmgnAWQFtJNIayRX8MzhSyKAZwUl0UgJ2kkAzwraSaQmkivI0viCCAD/4a4dHkU7CQD/oZ2ENRhzBQAAAAAAwApUriBL4Q4cACQPJdHPFtpJAEge2kkk1VOdXLGxsTH7297eXtmzZ1e+fPlUpUoVtW7dWm3btpW9veWXuXfvXq1bt067du3Srl27dPnyZUmSYRhpHjusxxdEAEh9lERnHbSTAJD6aCeRGBvjKc4kxCVXunTpIkmKjY1VSEiITp48qRMnTsgwDBUvXlxz5sxR9erVE6zfrl07LVu2LMH0Rw9JWHi4GjRtpRW/LZKbm2savBI8CV8QASBz4Ytk5kI7CQCZC+1kxvJwd0v3fT7VlStxZsyYkWDamTNn9NFHH2nhwoVq0KCBtm7dKj8/P7NlatWqpYoVK6patWqqVq2aChcurMjIyPQJGo/Fl0QAyNwok85YtJMAkLnRTj57skTlyuNeQvfu3TVt2jT5+/tr3759j92es7OzIiMjqVxJZ3xBBICsiS+SqYN2EgCyJtrJtJMRlStZPrkSEhKi/PnzKzw8XFu2bFHdunUTXZbkSvrgSyIAPJv4Epk0tJMA8GyinUw9dAtKA9mzZ1eLFi3066+/auPGjY9NriD18QURABCHQQATop0EAMShnXy6ZfnkiiT5+fnp119/VWBgYEaHkqXwhRAAYK2ktCVP6xdL2kkAgLWycjuZ1TwTyZXcuXNLkoKCgjI4kqcHXwgBAJlFZvxiSTsJAMgsMmM7+Sx6JpIrcWOoxI3RAnN8QQQAPO3SspSadhIA8LSjy1HaeyaSK7du3ZIk5cyZ06rtHD58SM7OzqkRUrq5GJwjo0MAACBD/HM2oyMAACDzSko7WdDz6ez9EVC3Trrv85lIruzfv1+SVLZsWau207x5M8XGkN0DAAAAACCzyoiHImf55EpISIjWrFkjSWrQoIFV21q9es1TV7kCAAAAAADSVpZPrgwaNEjh4eGqVq2aatWqZdW2KlSoKDc311SKDAAAAAAAZAW2GR1AWvnnn3/0yiuvaNq0aXJzc9O0adMyOiQAAAAAAJAFZYnKla5du0qSYmNjFRoaqpMnT+r48eMyDEMlSpTQ3LlzVaFChQTrrVy5UiNGjDD9HRUVJUmqWbOmadrQoUNVr379NI0fAAAAAAA8vbJEcmXmzJmSJHt7e2XLlk0+Pj5644031LZtW7Vp00Z2dpYfoXjz5k3t3LkzwfT4027evJk2QQMAAAAAgCzBxsiIYXSfMmHh4WrQtJVW/LaIMVcAAAAAAMjEPNzd0n2fWXbMFQAAAAAAgPRAcgUAAAAAAMAKJFcAAAAAAACsQHIFAAAAAADACpk2ubJ69Wr5+fnJ2dlZNjY2Cg4OzuiQACDDLFu2TH6VKury5csZHQoAAJkO7SSAjJYpH8V8+/ZtdejQQeXKldPEiRPl5OQkN7f0H+0XQNZx+dIlzZo1S9u3b9eNG9clST4+PqparZpeeulllSxZMoMjBAAg49BOAoB1MuWjmFevXq0WLVpo3bp1aty4cUaHw6OYgafc5k2bNHjw+7K3t1eLli1VqmQp2dja6NzZc/rzz/W6evWqVq76Qz4+PhkdaqJiYmIUHR0tR0dH2djYZHQ4AIAshHYSQFaTEY9izpSVKzdu3JAkeXp6PnHZiIgIubqS8ABg2cWLFzVkyGD5+Pjoh6k/ysvLy2x+/wEDtHDBAtnaZtpekpIkOzs72dnZZXQYAIAshnYSAFJHsj4lhw8fLhsbG50+fVpdu3aVp6ensmfPrm7duikiIsJs2ejoaI0YMULFihWTk5OTChcurI8++kiRkZGP3Uf9+vXVpUsXSVK1atVkY2Ojrl27muaVL19ee/fu1XPPPSdXV1d99NFHkqTIyEgNGzZMxYsXl5OTkwoWLKjBgwcn2F9kZKTeffddeXl5ycPDQ23atNGlS5dkY2Oj4cOHJ+dwAHgKzJg+Xffu3dNnn32e4AujJNnb26vTa68pb968kqSTJ09q6NBP1KplC1WvVlWNGjbQsE8/TTDu09Chn6hFi+YJtjd58iT5VapoNm379u3q2qWL6tato1o1a6htm9b67rvxZsvMmztXL7Rvr5o1qiugbh116viqVq1aaZpvqS/5xo0b1adPbzVp3EjVqlbR861aauoPPygmJsZs22+99aZefKG9zpw5o+5vvaWaNaqrSePGmj7956QdRABAlkU7STsJIHWkqHKlQ4cOKlKkiEaOHKl9+/bpp59+Up48eTRq1CjTMt27d9fMmTP10ksvadCgQdq5c6dGjhypwMBALVmyJNFtf/zxxypVqpSmTp2qzz//XEWKFFGxYsVM82/fvq0WLVro1Vdf1euvvy5vb2/FxsaqTZs2+vvvv/X222+rTJkyOnz4sMaOHauTJ09q6dKlZnHNnj1bnTp1Uu3atbVhwwa1atUqJYcBwFNg8+bNKliokCpUrPjkhSXt2L5dly9dUtu27ZQrdy6dOXNGvy1erDNnTuuX2XOSXWp8+vRp9evbRyVKllSvnr3k6OioCxcv6OCBA6ZlFi/+VaNGfaXGTZqo02uvKSoyUqdOndThw4fVsmXin0/Lly2Tq4urXu/cWa4urtq1e5cmTZqosPAwDRw4yGzZ0NC76t2rpxo2aqSmzZpq/bp1Gj9unEqUKKG6dQOS9ZoAAFkH7eRDtJMArJWi5Iq/v7+mTZtm+vv27duaNm2aKbly8OBBzZw5U927d9ePP/4oSerVq5fy5Mmj0aNHa+PGjWrQoIHFbTdp0kSXL1/W1KlT1aJFC1WtWtVs/rVr1zRlyhS98847pmmzZ8/W+vXrtWnTJtWtW9c0vXz58urRo4e2bdum2rVr6+DBg5o9e7Z69eqliRMnSpJ69+6t1157TYcOHUrJoQCQiYWFhenmzRtq0KBhgnmhoaFmd65cXFzk7OysDq+8ojf+rZ6LU7FCRX3wwRDt379PlStXSVYMO3Zs14MHDzRx4iTlyJHD4jJbtmxRsWLFNHr0t8na9sivvpKzs7Pp75c7dNAX2UZo4YIF6tOnrxwdHU3zbt68oS+++FLPt24tSWrf/gW1aN5MS5cs4UsjADyjaCdpJwGknhR1nuzRo4fZ3wEBAbp9+7ZCQ0MlSatWrZIkDRw40Gy5QYMeZohXrlyplHJyclK3bt3Mpi1atEhlypRR6dKldevWLdO/hg0fNhQbN240i6tfv35m6w8YMCDF8QDIvMLDwyTJ4rhM3bu/pQb165n+LVgwX5LMvoRFRkYqKCjIdDcvMDAw2TF4eGSTJP21caNiY2MTWcZD12/c0JEjR5K17fixhoeHKygoSP6VK+v+/fs6e/as2bKurq5q9fzzpr8dHBxUvnx5Xbp0KVn7BABkHbST/6GdBGCtFFWuFCpUyOzvuCxzUFCQsmXLpvPnz8vW1lbFixc3Wy5v3rzy9PTU+fPnUxiulD9/frMssySdOnVKgYGBFvuJSv8NkBsXV/xuRpJUqlSpFMcDIPNydX04SvijY0JJ0tBPhio8IkK3b9/Wxx99aJoeEhKiKVMma83q1bpz547ZOmF3w5IdQ7NmzbTkt9/02WfD9d1341W9eg01bNRITZo0MQ0O2K3bm9q5Y4def62TChYqpFq1aqlFi5by9/d/7LZPnz6tid9/r927dykszDy2sLC7Zn97e3snKNX2yJZNJ0+eTPZrAgBkDbST/6GdBGCtFCVXEhuJ+9GnOqfFY9BcXFwSTIuNjVWFChU0ZswYi+sULFgw1eMAkPl5eHjIy8tLp8+cTjAv7i5b/IHvJGnw++/p4MGDeqNLF5UuVVourq4yYmPVq1dPxRr/3VGzkeXPt9gY87tuzs7O+nn6dO3evUtbNm/Rtm1btWbNai2uXl2Tp/wgOzs7FS1aVMuWLdfmzZu1detW/bl+vRYuWKC333lHvXr1trif0NBQdX/rTbm5ualnr14qWKCgHJ2cFBh4TOPHjVNsrPnncWJPeTAsTgUAPAtoJ/9DOwnAWmnyKGZfX1/Fxsbq1KlTKlOmjGn69evXFRwcLF9f31TdX7FixXTw4EE1atTosQmduLjOnDljVq1y4sSJVI0HQOZRNyBAS377TYcPH1aFChUeu2xoaKh27typnj176Z143R8tVdtly5ZNd+/eTTD96tUrCabZ2tqqRo2aqlGjpqT39dNPP+r7CRO0e/du1axZU5Lk4uqqZs2bq1nz5nrw4IEGvvuupv30k956q7ucnJwSbHPPnj0KDg7Wt2PGqEqV/8amunyZ8mUAQNLRTgJA6kiTB9a3bNlSkjRu3Diz6XGVJan9dJ4OHTro8uXLpsFz47t3757Cw8MlSS1atJAkfffdd2bLPBqn9LA88vjx47p161aqxgogfXXt2k3Ozs4aPuxT3b59O+EC8Sru4u5aGY/cp5ozZ3aC1QoULKiwu3fNyoVv3rypDRs2mC0XEhKSYN1SpUpLkqKioiQpweMrHRwcVLRYURmGoejoaIuvyy4u1nihPnjwQAsXLLS4PAAAltBOAkDqSJPKlUqVKqlLly6aOnWqgoODVa9ePe3atUszZ85Uu3btEn1SUEp17txZCxcuVI8ePbRx40bVqVNHMTExOn78uBYuXKg1a9aoatWq8vPzU8eOHTVp0iSFhISodu3a+vPPP3X6dMJSyF27dqlBgwYaNmyY3nv//VSNF0D68fX11civRunDD4aobds2atmypUqWLCUZhi5fvqw//lglW1tbeefxlru7u6pUqaIZ06crOjpaefLk0fZt23X5yuUE223evLnGjxurge8OUMdOnXT//n0tWrhQvr6+ZgP6/fDDFO3bu1cBAc8pn08+3blzRwsXLJC3t7epr3jPHu8oV+7c8vPzU66cuXT27D+aP3++AgIC5ObmZvF1VfLzU7Zs2TR06Cfq1LGTZGOjlb+vSPCFFwCAx6GdBIDUkSbJFUn66aefVLRoUc2YMUNLlixR3rx59eGHH2rYsGGpvi9bW1stXbpUY8eO1axZs7RkyRK5urqqaNGi6t+/v0qWLGla9ueff5aXl5fmzJmjpUuXqmHDhlq5ciXjsgBZWIMGDbTo18WaNWumtm/frmVLl8rGxkb58uVTQECAXnq5g6mr4P9GfqVRX32lBfPny5BUq1YtTZw4SU0aNzLbpqenp8aMHadvR3+jcWPHKn/+/Orbr78uXDhv9qWxfr36unLlipYuXarg4CB5euZQlapV1LNnL3l4eEiSXnzpZf2xaqVm//KLIiIi5O3trY6dOun//u/tRF+Tp6envpvwvcZ8O1oTJ34vD49satWqlarXqKFePXskuh4AAI+inQQA69kYj45C+4yysbHRsGHDNHz48ATzwsLD1aBpK634bZHc3BI+qg4AAAAAAGQOHu6Wq9rSUpqMuQIAAAAAAPCsILkCAAAAAABgBZIrAAAAAAAAVkizAW2fNgw9AwAAAAAAUoLKFQAAAAAAACuQXAEAAAAAALACyRUAAAAAAAArkFwBAAAAAACwAskVAAAAAAAAK5BcAQAAAAAAsALJFQAAAAAAACuQXAEAAAAAALACyRUAAAAAAAArkFwBAAAAAACwgn1GB/A0MAxDkhQREZHBkQAAAAAAgMexsZHcXF1lY2OTbvskuZIEERH3JEmvvN4lgyMBAAAAAABPsvb3JcqRI0e67Y/kShJ45c6l35cskqurS7pmvqwVHh6h59u/rN+XLJKbm2tGhwOkK65/POt4D+BZxvWPZxnXP551ce8BeweHdN0vyZUksLW1lXcer4wOI8Xc3Fzl7uaW0WEAGYLrH8863gN4lnH941nG9Y9nXXoXRjCgLQAAAAAAgBVIrgAAAAAAAFiB5EoW5ujgoP97s4sc07mvGZAZcP3jWcd7AM8yrn88y7j+8azLqPeAjRH3nGEAAAAAAAAkG5UrAAAAAAAAViC5AgAAAAAAYAWSKwAAAAAAAFawz+gAkPruR0Zqxqw5WvfnBl27fl3ZPLKpVs3q6vF/byqPl1dGhwekquCQEHXo1EVBwcEqkN9HSxbONZsfGxurg4eOaMvWbdq9d58uXLioB9HRyuPlpRrVquiN1zspv0++DIoeSJmjgcc1e+58HTh4WEHBwXJxcVbxokXV+vmWat2yuWxsbBJd98GDB3qta3edPXdedna22rF5QzpGDjxZ4PET2rl7j44eO65jgYG6cfOWJGn31r8SLJsan/F/bd6ixUuX6/iJk4qIiJCnp6fKli6l117tIL9KFdPiJQKPlZz3QHzR0dFauHiJ1qz7U+fPX1CsESuv3LlVqWIFi78DYmNjtXT57/p91Wr9c/acIqOilDOHp/z9Kqlzp1dVqmSJtHqJgEX379/Xjl27tWXrdh04eFjXrl+Tra2dChbIrwb1ntNrr74sV1dXs3WuXb+hLVu36eixQB09FqjzFy7KMAxNmTBWVSr7P3Z/Bw8d1s8zZ+vI0WN6EP1ARQoXVocX26tVi2Ypip/kShYTGRmpXn3f1eGjx5Q7Vy49V7eurl67phUr/9DfW7fr56mTVCC/T0aHCaSacRMmKTgkJNH5l69c0du9+0mScuXKqapVKsvW1lbHAgP127IVWrPuT40b/RVfoPHU2LBxkz4a9pliYmJVulRJ+VWqqODgYO0/eEgHDh3Wrt179cXwTxJdf/qs2Tp3/kI6Rgwkz7QZs7Rpy9YkLWvNZ3xsbKy+HDVay39fJRcXZ1WqWEEe7u66dv2Gtm7faXp/AektOe+BOCGhoeo74D0Fnjip3LlyqVrVKpKkS5cva8XKP9SmVQuz5IphGBry8TD9tXmLnJyc5F+potzd3XTmn7Nas+5P/blxk0aP/EJ1atdM1dcGPM7qtev15ajRkqQihX31XN06CgsP1+HDRzV12nStXf+nfpg4Xjlz5DCts+GvTRr73cRk7yvu+1RsrCF/v4ryzJ5du/fu0/AvRurUmTMa0KdXsrdJciWL+XnmLzp89JgqlC+n78d+Y8rszZm/UOMmTNKIkaP0w/fjMzhKIHXs2rNXK/9Yo/ZtW2vJshUWl7GRjWpUq6ounTupamV/0x39qKgojfxmjH5ftVpDP/tSSxbOkb09H4nI3KKjozXq23GKiYnViGGfqHnTxqZ5Z8+d1//17Ks169arXetWqlol4d2as+fOa8Yvc9WuzfOJvmeAjFahfDkVL1ZMZcuUVtkypdT2pVcVFfXA4rLWfMb/NH2mlv++SgF1amvYJx8oe7ZspnmhoXcfm7gH0lJy3gPSw0TJBx8PU+CJk/q/N7vozS6dza73S5evyN3N/G7/5r+36a/NW+STL69+mvy9vLxym+bNmjNPEyb9oK/HjNOy2vNT/wUCibC3t1f7tq3VscNLKlLY1zT91q3bGvD+Bzpx8pTGjP9eXwwfapqX38dHHTu89O/7pbS+GTNeO3btfux+QkJD9fnIrxUTE6tRX36uhvWfkyTdvnNH/9ezr+bMW6iA2rWeWPnyKMZcyUIePHighYuXSJKGDBpgVjL12qsdVKJ4Me3bf1CBx09kVIhAqrkfGamRX3+rIoUL6/WOryS6XIEC+fX9uNGqVqWyWVcJR0dHDXnvXbm7u+na9es6ePhIeoQNWOXchQu6ExQk30IFzRIr0sM7PM2bNZEkHTt+PMG6hmHof6NGy8PdXX16vJ0u8QIp0eX1Turxf2/qubq1lTtXrscum9LP+Os3bmjGL3OV19tb/xsxzCyxIknZsnmoUMECqfeigGRIzntAktZv+Et79u1X44b19fZb3RIkEgvk95Gnp6fZtP0HD0qS2rdtbZZYkaTOnV6Vu7ubrly9pjtBQda9GCAZnm/ZXB8NHmSWWJGk3LlzafCgAZKkjZs268GD/5KN9QLqaGD/PmretPHDz+3Ee0abLFuxUuHh4aoXUMeUWJGkXDlzqm+vHpKk2fMXJjt+kitZyMFDRxQWFq4C+X0s9pFsWL+eJGnL1m3pHRqQ6n78eYYuX7mqD98fKHt7uxRtw9nJSYUKFpT0MCMOZHaODo5JWu7RH4qS9NvS5Tpw6LD69+2pbNk8Ujs0INN53Gf8yj/W6MGDB2rbupWcnZwyIjwg1Sxd/rskqcOLLyR5nce1JzY2NrKxsZGdna3c3dysjg9IDSWLF5MkRUU9UEhIqFXb+nvbDklSwwb1EsyrW7umnBwdtXv3XkVGRiZruyRXspCTp09LkkqXKmlxfulSDxMup07/k24xAWnh1OkzmjNvoVq3aiF/v5T3h4+NjdW1a9clPcxUA5ldfp98KpDfR+cvXNTqtevN5p09d16r16xTNg8P1a8XYDbv1q3b+n7KVFWrWlktmzVNz5CBDPO4z/jde/dLkipWKKdbt27rl7nzNfLrbzVh0g/atmOnDMNI93iBlIiOjtbBQ4dlZ2encmVL69TpM5o8dZr+9/W3+vHnmTp56rTF9WpUrypJWrJshW7+O2BunFlz5unu3TA1b9pEjo5JS+oDae3SlSuSHnYdsvYm0am4380lE/5udnBwUNGiRRQZFaULFy8la7sMMJCFXL9+Q5ISfSJQ3PRr16+nW0xAaouNjdUXX30jDw939e31jlXbWrPuT90JClIOT09VrFAulSIE0o6dnZ2Gf/Kh3h38oYZ+9oXmzF+oggXyKyjo4YC2RYsU1rCPP0hQufL1mPGKiorSkEHvZlDkQPp73Gf82XPnHv737HkN+fhThYWFm+bNmjNPVfz99M3IEfLwoMoLmduly1cePuUnZw7NXbBIk6dOU2xsrGn+jz/P0Ksvv6iB/fuYrVfF30+dO72qX+bOV/tXXpO/X0W5uz0c0Pbipct6vmVzDXmPNgOZx/yFiyVJtWpUtyrpFxYebvrMz5PH8u9m7zxeCjx+QlevXVeJfytmkoLKlSwk4t49SZKzs+XyVhcX54fLRUSkW0xAalvw6286Fnhc/Xr1kGf27CnezrXrNzTmu+8lSe9078adGTw1KlWsoB++H6/8Pj46fuKk1v25UXv27Zetra2qV6uS4LGzm7b8rY2bNqvL653kW6hgBkUNpK8nfcbfvXtXkjR2wkSVKFZMs6f/qL/WrtLE8d/Kxyef9u4/YHpiBZCZxV3LISGhmjjlR73Qro2WLJyrdauWaeiHg+Xk5KR5C381jcsYX7/ePTSwfx9FR0drx87dWr/hL509d1758nqrRrWqdJlDprF12w4t/32V7O3t1eP/3rRqW/ci7pn+P7Fr3Nk5Zb+bSa4AeGpcu3ZdU6ZOU2X/SmrdqkWKt3Pv3j0N/miogoNDVP+5unqxfdtUjBJIW2vW/amu/9dD3t5emvHjZG1e/4cWz5+t51s215x5C9Wz30BFRUVJksLDI/T1mPEqVLCgunZ+LYMjB9JHUj7jY2MfdvvJ5uGh8d+OUqmSJeTm5qrqVavo21FfysbGRn9u3KTzFy6md/hAssT+24UtJiZGtWvW0JBBAx4OYJs9u9o831L9ej8cnHPmL3PM1ouKitKHQz/T+O8nqdsbr2vZr/P019pVmvzdWDk6OmroZ1/olzk8KQgZ79z58/r08y9lGIb69e6hkiWKZ3RIiSK5koW4urhIku7ftzzwzr179x8u5+pqcT6Q2Y0aM04PoqP14fsDU7yN6OhoffDJcAUePyG/ihU0It6j3IDM7sLFSxr+xUh5Zs+usV+PVLmyZeTi4qJCBQvoo8GDVLdOLR0/cVLLV/4hSZr0w4+6ceOmhrw3gOosPBOS+hkf952pUcP6cvn3/+MUL1pUZcuUliTtP3AwbQMGrOQa7/q1dOOpdcvmkqQbN2/p4qX/xo+Y8cscrd+wUS+/0F7vdO8mn3z55ObmqqpV/DXum6/k4uKsqT/PUHBwcJq/BiAxN27eVL+BgxV69646vdpBHTu8ZPU2XVz/e8/cT2TA2vv3U/a7mTFXshBv7zySHl6ElsRNz+vtnW4xAanp763b5eHhrpHfjDGbHhX58C79zZu39E6f/pKkLz/7NMHjC2NjYzX8i5HatmOnSpYorjFf/4+SVzxV1q7foOjoaNWqUd1ig9+kYQP9vXW79h84qJfat9WWrdvk5OioaTNmadqMWQmWj4mJNb1nBvbrY/FJc8DTIjmf8Xnzeiv07l355M1rcX6+vHl19FiggoKC0zBiwHr58v73vT5fvoTXs7Ozs3LmyKE7QUG6ExSsggUePmJ81ep1kqRGFp6Wkjevt8qVLas9e/cp8MRJ1apRPY2iBxIXEhqqPgPe19Vr19W6VQsN6NMzVbbr7uYmd3c3hYWF68aNm3IvkvCJWNdvPPzdHP/9lRQkV7KQksUflkgdP3HS4vzjJ05JkkoUL5puMQGp7e7dMO3bb/lOYmRUlGleXLeI+L4Z+53WrPtThQoW1ISx3zBQIZ46cUlyN3d3i/Pd/n1kZui/ffAl8/eFJXHzwsLCUitMIEMk5zO+VMkSOnnqtNl7Jb7Q0IeP+Yx/hxPIjNzd3eXjk09XrlzV3dCE13NsbKzu/vv5Hr/KJa49cU+kPYl7BPPdRN4jQFqKiIhQ/0FDdPbcOTWo95w+HvKebGxsUm37JYoX1/4DB3X85EkVLVLYbF50dLT++eesnBwdVahggWRtl+RKFlKpYnm5u7vp0uUrOnHyVII7kBv+2iRJCqhTOyPCA6y2e+tfFqdfuXpVbV/qqAL5fbRk4VyLy0ye+pN+/W2p8np7a+K40cqZI0caRgqkjbjHyQYeP2Fx/rHA45Jkuhu/fPGCRLdVrU592dnZasfmDakcJZD+kvsZ/1zd2lqx8g/ts9DtJyIiQidOPrwhVaoE1VzI/J6rU1vzFy3W3v0HVLNGNbN5h48e04MHD+Tk5GQ2qHmunDl17fp1HTt+QsWLmd94jYmJ0clTD98D+RKp7gLSSlRUlAZ98ImOHgtUzRrV9OVnQ2VnZ5eq+6hbu6b2HzioDRs3qWWzpmbztmzdrsioKNWtU0tOyaxwZ8yVLMTBwUEdXmwv6eFjN+/d+28k5DnzF+rU6TOq7F9JZUqXyqgQgQwxd/4i/TxztnLlyqmJ479V3mSW+AGZRb2AOpIejgPx65JlZvMOHzmqeQsXSZIaWijzBrKqlHzGB9SprSKFfXXo8BEt+m2paXpMTIzGTpikkNBQFStaRH6VKqRh5EDq6PjKS3JwcNCixUt0+MhR0/Tg4GCNGf/wqVmtW7UwG3ur3nN1JUk//PSz2cDNMTExmvTDT7py9Zry5fXmdwPSVUxMjD4eNkJ79u6Tf6WK+uZ/I+Tg4JDq+2nbupXc3Ny0actWbfhrs2n6naAgTZg0RZL0+qsdkr1dG8P4d4hpZAmRkZHq0WeAjhwLVO5cueRXqaKuXbumI8cClcPTUz9PnaQC+X0yOkwgVT2ucuXEyVPq/ObbMgxDFcqXS7S8r13rVvKrVDE9wgWsMv77yZo972FFStEihVW0SGHdvHVLh48cU2xsrNq3ba2PBg964naoXEFm9fe27Zo2/b8xgo4GHpdhGCpftoxp2lvd3lDd2rWs+ow/cfKU3ukzQOHh4SpRvJgKFsivEydP6/KVK8qePZumTBiX4I4+kB6S8x6Is/z3Vfriq29kZ2enCuXLyd3NTYeOHFFISKhKlyqpH74fZzZWV3BIiLr36KPzFy7K0dFBFcuXV7ZsHqb3gJOTk8Z+M1LVqlROnxcNSJq38FdTQrD+cwFyc7M8oOyAPj3l6ekpSbp167be//AT07xzFy4oLCxcRQr7yu3fa75O7Vrq3u0Ns21s2LhJH376mQzDUBV/P2XPnk279uzV3bth6vRqB73bt1ey46dbUBbj5OSkyd+P04xZc7Rm3Xpt2vK3smXz0PMtm6vH/70p7zx5MjpEIF2FhYUpLod8+MhRszs68VXx9yO5gqdC/z49VbFCef22dLkCT5zQ+QsX5ebqqsp+ldSuzfNq1qRRRocIWCUoKFhHjgUmmB5/WtxAs9Z8xpcqWUJzZvykH6fN0I7du3X23HnlzJlDbVu30ltdO9MdAhkmOe+BOG2eb6n8Pvk0Y/ZcHT0WqMjISOX38dErL72g1zu+kuCpWJ7Zs2vmTz9ozvwF+mvz3zoaGKgHD6KVO1cutWrRTF1e76QihX3T5PUBiYk/xs9fm7ckutzbb3U1JVeiHkRZfL+cPXfe9P++voUSzG/YoJ6mThyvaTN/0ZGjx/TgQbSKFPZVhxfb6/l/n7KVXFSuAAAAAAAAWIExVwAAAAAAAKxAcgUAAAAAAMAKJFcAAAAAAACsQHIFAAAAAADACiRXAAAAAAAArEByBQAAAAAAwAokVwAAAAAAAKxAcgUAAAAAAMAKJFcAAEimPXv3a/BHn6pl25dUq15jNWz+vF58tbM++GSYFv76m8LCwjI6RKTA3n37Va1OfQ3/YmSGxvFOn/6qVqe+rly9mqFxpNTn/xulgEbNdScoKMnrTJ02XdXq1NeKlX8ka1/vffCxmj3fXhEREckNEwCAVEVyBQCAZPjx55nq2e9dbdy0We7ubqpbu5ZqVKsmJydHbdy0Rd+M/U5nz51Pt3iGfzFS1erU1959+9Ntn7BOtTr11ebFVzI6jDRx+sw/WvnHGr38QjvlzJHD6u21efEVVatTP9H53bt10Z2gIM2aM9/qfQEAYA37jA4AAICnReDxE/rx5xmyt7fXyBHDVP+5ALP5t27f1h9r1snDwz2DIkRW8NknH+l+5H3l8fLK6FCSbfLUabK1tdXrndIneVS6VEnVrFFNc+Yv1KsdXpRn9uzpsl8AAB5F5QoAAEm0cdMWGYahxg3rJ0isSFLuXLnUudOrKuzrmwHRIavIm9dbhX19ZW//dN0Du3b9hv7etl01a1RLlaqVpGrRrInu37+vlX+sSbd9AgDwqKer1QYAIAMFBQdLknJ4eiZp+aioKLVs95Lu34/UH8t+lYeHR4JlDh4+ou49+sjfr5KmThwvSTIMQ6vXrtfipct08eJlhYWHydPTU76FCqr+cwHq8GJ7STLrLtGj77tm21326zz55Mtn+nvbjp1a+OsSHQ0MVHh4hLy8cqt+QF116/J6grv9w78YqZV/rNGUCWMVHROjadNn6cTJU3JyctJzAXU0oE9Pubu7605QkKb8+LP+3rpdIaEhKl6smPr1ekdVKvsn6fjEiY6O1rIVK/XH2nU6889ZPYh6IC+v3PKrVFEdXmyvMqVL6c+Nf+mDT4arWZNG+mL4UIvb+XLUaC1d/ruGfjREbVq1ME2/d++eFi5eoj83/KULFy8pJjZW3nm8VK1qFb368ovyLVQwSXEm5xhasmLlH/r8f6MkSVevXTc7f5X9K+mH7x+e/3f69Ne+/QcTnMNqdeorX15v/bZgjmb8Mlcr/1itmzdvKV++vOr8WkfTa969d5+mTZ+l4ydOytbOVgF1auvdfr0txhgdHa2lK1Zq1R9r9M/Zc4qOjlahQgX1fMvm6vBi+2QleFasXKXY2Fg1a9wo0WU2bdmqmb/M0cnTZ+Ts5KTK/n7q3eP/Eiy3d99+s2s6/rHKl9dbyxcvMP1dP6CunJyctHT573rt1Q5JjhcAgNREcgUAgCTyzpNHkrRh02Z1feO1J96dd3R0VKsWzTV3/kL9sXa9KSkS39Llv0uS2rd53jTtu4lTNHveAjk6Osi/UiV5embX7dt3dPr0P7p06bJpO61aNNPBQ4d16fIV1axRTbly5jRtw9XFxfT/Eyb/oFmz58nBwUFly5RS7ly5dOr0Gc1dsEib/96qn6Z8b7ZunI2b/9avvy1RhXLlVKtmdR0+ekzLVqzUxUuXNOqLz/Tm270VGxsjv0oVdPXqNR05Fqh+gwZr5k8/qHixokk6pvfu3VP/9z7Q/gMH5eLirEoVK8jD3V1Xr17T6rXr5e7mpjKlS6leQF3lypVTGzdtVnBISIJEQUREhNau+1Nubm5q2qiBafqtW7fVe8Ag/XP2nLJ5eKiyv58cHR10+cpV/bZ0uQoWyJ+k5EpKj2F8BQvkV6sWzbTyjzVycXFWw/r1TPMK+xZK0vGSpA+HfqY9+/apamV/FcifX/sOHNCIf5M2bq4u+njYCFUoV1Y1a1TT4SNHtWr1Wl25clVTJ30nGxsb03buR0bq3fc+0J59+5U9WzaVL1dWjo6OOnosUGO/m6i9+w7om5EjZGubtELnLVu3S5Kq+PtZnL94yTJ9NXqsbGxs5FeponLnyqkjR4+p6//1UECd2mbL5sqVU61aNNOGvzbp3r37atWimWmep6f5uXd1dVXZ0qW0/+AhXbp8RQXy+yQpXgAAUhPJFQAAkqh508aa8cscXb9+Qy90eE316wXIr2IFlSldSsWLFZWdnV2CdV5o21rzFizS0uW/J0iuhIWHa/2Gv5TNw0MN6z8nSYqMjNTCxb/JzdVVc2ZOU36f/yoXoqOjdfjIMdPfwz/5UMO/GKlLl6+o6+udLFaMrN/wl2bNnqdiRYvom5EjVLBAAUkPq2OmTpuhn6bP1LfjJuh/nw9LsO6ixUv07agvVbd2LUlSeHiE3urRW/v2H9TbvQeoYoVy+vSjIabqhslTp+nnmb9o9twFGj70wyQd02/HTdD+Awfl71dJo774TDlyeJrm3b5zR1evXpMk2dvbq02rlpo+a7ZWrV6rTq+8bLadtes3KOLePb3Yvq2cnZ1N0z8d8aX+OXtOjRs20NAP35erq6tp3pWrVxUe/uSnzFhzDOPzq1RRfpUqauUfa+SZPbuGf5K0YxTf1WvX5erqqt/mzzEdqz1796tnv3c1+Yef9CD6gUZ/9YXpnIWFh+utd3rrwKHD2rvvgKpW+e8aGf/9ZO3Zt19NGjXQR4MHyd394VhB4eER+njY59r891YtWbZCL7Zv+8S4IiIidPLUKXnlzi0vr9wW4r6msd9NlL29vcZ8/T/VqlFd0sNr+rMvv9Ifa9aZLV/Y11fDP/lQ+/Yf0L179594rMqWLa39Bw9p34GDJFcAABmCMVcAAEiiAvl9NObr/8nbO4/CIyK08o81+nLUaL3e7f/UpFVbfTV6rG7dum22jm+hgqpS2V+nTp/R0cDjZvPWrF2v+/fvq0XzpnJycpIkhUdEKCrqgfLn9zFLrEgPEwz+fhWTFfPPM3+RJH3x2VBTUkCSbGxs9PZbXVWyRHFt+GuTgv/t8hRfsyaNTD/SJcnNzVXt/q2wuXHzpt4b0M+s20jnTq/IxsZG+w4cSFJsN2/e0u9/rJajo4M+G/qhWWJFknLlzKny5cqa/m7f9nnZ2tpq6fKVCba1bMXDafErgI4eC9TuPfuUM0cOffKBeWJFknzy5VOJ4sWeGKc1xzAtDOzfx+xYVa3ir1IlS+jW7duqXbOG2Tlzd3NT+7atJcnsvNwJCtLS5b/L2zuPPv34A1NiRXp4nj/58H05ODho8dLlSYrp7LnziomJTbQKaPnvfygyKkrNGjcyJVakh9f0oAF9zRJiKVG40MPKn5OnTlu1HQAAUorkCgAAyVC9ahUtWTBHX/9vhF5s10alS5WUnZ2d7t4N0+Ily/Ra1+46d/6C2Tovtmsj6b8uQHGWWkgI5MyRQ3nyeOnkqdOaMPkHXbp8JcWx3gkK0qnTZ1SoYAEVL5qwm46NjY0qVSivmJhYBZ44mWB+zerVEkyLS/iUKV1K2bKZjyHj7u6ubNk8dOv2nSTFt3f/AcXExKpWjerKlzfvE5fPlzevatWorrPnzung4SOm6afP/KMjxwJVpnQplSpZwjR91+69kqSmjRvKzc01wfaSwtpjmNrs7e0tdruJOy+PO2fxz8vefQcUHR2tWjWqy/nfxF58uXPlUsEC+XX6zD+6Hxn5xLjuBAVJksVxhSTpwMFDkqQmjRsmmOeZPbtqVq/6xH08TrZs2SQp3RJcAAA8im5BAAAkk4ODgxrUC1CDeg+fGHT37l2tXb9Bk374SXeCgvTNmPGaOP5b0/L1n3s4XsjadX/q3b695OrqquMnTur4iZOqUL6cihUtYrb94Z98qI8//VyzZs/TrNnzlC+vtyr7+alJ44aqU6tGkuOM61Jz4eIlswFBLQkODkkwzVL3jrixXPJYmBc3PyQkNEnxXb9xQ5KUP3/+JC0vSS+0a6Ot23do6fLfValCeUn/Ja3axUtSxd9+gWRs/1HWHsPUlitXTovdz1z+PS+PO2dRUVGmaVevPXxdS5f/niDp96jQ0FA5P+Gx0GFh4Q/35epicf7NW7ckPRyM1pKkJNceJy55dvdumFXbAQAgpUiuAABgJQ8PD73Yvq1y586t9z74WHv379f9+/dNXR3ijxeydv0GtWvzvKlq5dGEgCRVq1JZvy2co7+3btf2nbu0d/8BrVy9RitXr1HD+s9p1JefJymu2NhYSQ9/kFuqaIjP0o9e23iDnz7K5jHz0lKdWjXk7Z1H6zf8pUED+srB3l5/rFknVxeXxz6lJqWsPYap7XHnJCnz48S9rpIlij+xa5Sjg8MTt+fu7iZJioi4l6T9p7bwf5M7Hh7uT1gSAIC0QXIFAIBUUu3fwUJjYmJ1926Y2TgS7ds+r5mz52rpipVq3rSx1qxbn+DJNvG5u7mpedPGat60sSTp8JGj+mDocG34a7O2btuhOrVrPjGePHkeVhukdPDUtBb39KXLly8neR07Ozu1a/28fvjpZ61eu15urq4KvXtXbVu3StD1J277l5Kx/Udl9mOYUnGvy69iBb0/sL/V24t7clZoqOWqpdy5cun8hYu6eu26ihYpnGD+1WvXrdp/6N27kiTPJD4mHQCA1MaYKwAAJJFhGI+df/HSwx/xDg4OCR4XGzdeyNFjgZo8dZrCwsLVvGnjJA/kWaF8ObVs1lSSdObsWdN0h3+rCqJjYhKs450njwr7FtLZc+d1/sLFJO0nPVXx95Odna127Nyta9dvJHm9dq1byc7O7mGXlhUJH2Udp3q1KpL+fZJQxJOfCmRJWhxDe3t7xVg4X+mpamV/2dnZ6u9t2xUdHW319ooWKSw7O7tEj5FfpYcDMa/fsDHBvJDQUO3cvdvieqbr+wkxnv13nKOSJYonOWYAAFITyRUAAJJoyo/TNP77ybp0KWElxI2bNzXymzGSpOfq1jb9KIzvhX8Htp27YJEkywmBa9eua8XKP3T//n2z6ZGRkdq7b7+k/yoyJMkrdy5JSvRH7Vtd31BsbKyGfPypTpw8lWB+cEiIljxhzI204uWVWy2bN1NkVJQ++2KkgkPMxyy5ExSkI0ePJVgvd+5ceq5uHZ04eUr79h9UieLFVK5smQTLlStbRlUr++tOUJD+9/W3unfPvMvKlatXdfrMP0+MM7WPoVfuXLp9J0h3/622yAh5vLzUulVLXbl6TR8P+1y37yQchPjipUvasHFTkrbn4uJiemLRjZs3E8xv3aqFHB0dtHrteu3cvcc0PTo6WmPHT9S9e/cTrCM9PNdS4td3nGPHAiVJlf0qJSleAABSG92CAABIooiIe5q/aLFmz1ugQgULqmgRXzk6OurGjZs6cixQ0dHRKlggvwb272Nx/bjxQq5fv5HgyTZxQkJD9fn/RunrMeNVpnQp5fHy0v3793To8FEFBQerTOlSpoF0JSmgTm39NH2Wvvt+snbt3iPP7A8rZvr0ekee2bOredPG+ufsOU2fNVtvvPWOSpYorgL5fWQYhi5dvqLTZ87IxcXFYqInPQzq31fnL1zUnn371ebFV+RfqZLc3Fx17dp1HT95Si+2a2P2OOY4L7Zro42bNkuyPG5NnM8+/Ui9+g3UmnV/asfO3apUsYIcHR106fIVnTx1Wv379FTxYgmfAhRfah/D5+rW0YJff9Prb76tiuXLycnRUb6FCqnza68maf3UMmhAX129ek0b/tqs7Tt3qWSJ4srr7a179+7r7LlzunjpsuoF1FHDBvWStL26tWvqWOBx7d13QC2aNTGbl98nn/r36aVvxoxXv4GD5V+ponLlyqkjR48p9O5dNW/aWKvXrk+wzefq1tG+/QfVq/9AVa3sLxdnZ2X3zK6+Pd8xLRMREaHA4ydU2LeQCuT3se6gAACQQiRXAABIore6dlaZMqW0Y+dunTp9RvsPHlJYWLjc3dxUrmxp1atbVy+90Nb05JZH2dnZqbJfJf2xZl2iCYEC+fNrQN9e2r1nn86eO6djxwLl7OIsn3z51PWN1/RC29ZydHQ0LV+mdCl9/unHmjN/oXbs2qPIfx+b+2bXzqZES693uqtmjWpatHiJDh46otNn/pGbm6vyeHnpxXZt1ahh/dQ9UMng5uaqKRPGavHS5Vq9dr0OHDykmNhYeeXOpeZNG6tVi2YW1/OrVEH29vays7NTi3/HpbEkj5eXZv70g+Yt/FUb/tqknbv3yM7WVnnyeOml9m0VUKdWkuJMzWPYu8f/yTAMbfp7q9b9uVExMTGq7F8p3ZMrzk5OGv/tKK1eu16//7FGp06d1tFjx5XD01N583qrRbOmamrh0cmJad2qpabNmKU16/5MkFyRpA4vtlcer9ya+ctcHTkWKCdHR/n7VVSfnm9r7foNFrf5yksvKDT0rtau/1Mb/tqs6Oho5cvrbZZc+Wvz34qMinpskg0AgLRmYzypAzkAAEgV9+/fV8t2LykmOkarli1OMAArkm7Nuj/1yfARatWiWZYaaPZp9/6Hn2jL1u36fclC5c6VK1322ffd93Xg0GGt+G2BKaEIAEB6Y8wVAADSyaLFS3X3bphatWhGYsUK0dHRmjl7riTp5RfbZ3A0iO+d/3tThmFo9rwF6bK/4ydOaseu3Xrt1Q4kVgAAGYpuQQAApKHgkBB9P+kH3Q4K0rbtO+Xq4qIunTtldFhPpU1btmrTlr919Fig/jl7TvWfq6tyZUpndFiIp3jRomrVopkWL1muN17raHpEc1r5afpM5cyRQ2+kc5cqAAAeRbcgAADS0JWrV9X2pY5ycHBQ8aJF1L9PT1Wp7J/RYT2Vpk6brh9/nqlsHh6qVbOG3h/YT9mzZcvosAAAAEiuAAAAAAAAWIMxVwAAAAAAAKxAcgUAAAAAAMAKJFcAAAAAAACsQHIFAAAAAADACiRXAAAAAAAArEByBQAAAAAAwAokVwAAAAAAAKxAcgUAAAAAAMAKJFcAAAAAAACs8P+RvDZOWPQ9NAAAAABJRU5ErkJggg==", - "text/plain": [ - "
" - ] - }, - "execution_count": 25, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "with pulse.build(backend, name='Left align example') as program:\n", - " with pulse.align_left():\n", - " gaussian_pulse = library.Gaussian(100, 0.5, 20)\n", - " pulse.play(gaussian_pulse, pulse.drive_channel(0))\n", - " pulse.play(gaussian_pulse, pulse.drive_channel(1))\n", - " pulse.play(gaussian_pulse, pulse.drive_channel(1))\n", - "\n", - "program.draw()" - ] - }, - { - "attachments": {}, - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Notice how there is no scheduling freedom for the pulses on `D1`. The second waveform begins immediately after the first. The pulse on `D0` can start at any time between `t=0` and `t=100` without changing the duration of the overall schedule. The `align_left` context sets the start time of this pulse to `t=0`. You can think of this like left-justification of a text document.\n", - "\n", - "\n", - "### `align_right`\n", - "`align_right` does the opposite of `align_left`. It chooses `t=100` in the above example to begin the Gaussian pulse on `D0`. Left and right are also sometimes called \"as soon as possible\" and \"as late as possible\" scheduling, respectively." - ] - }, - { - "cell_type": "code", - "execution_count": 26, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABFcAAAFdCAYAAADG/YI8AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAABwbElEQVR4nO3dd3gUVRfH8d8mpFdq6L1LCb0GCNJbaCJFBQSVokhR7IKCL1aKigrSBQSUJiIgSJUiSC+hF+k1hSQQSDLvH5iVZTeQZNP5fp6HR3OnnZ3Z2dk9c+4dk2EYhgAAAAAAAJAsDukdAAAAAAAAQGZGcgUAAAAAAMAOJFcAAAAAAADsQHIFAAAAAADADiRXAAAAAAAA7EByBQAAAAAAwA4kVwAAAAAAAOxAcgUAAAAAAMAOJFcAAAAAAADsQHIliUwmk0wmk3x9fRUaGmpzno8//lgmk0kjR45M09gymvh9Ff/PwcFBPj4+ql27tsaPH6+7d+/aXK5Xr14ymUxav3693TGk5LpSS9GiRWUymazaTSaTihYtmvYBwS7pfdwePO+cnJyUK1cuVaxYUb169dLChQsVExOTbvGllBkzZmS6z9moqCgtWbJEffr0UZkyZeTq6ioPDw9VrlxZH374oSIiIh66/IwZM1SzZk15enoqR44catWqlbZs2fLQZTZv3qxWrVopR44c8vT0VM2aNTVr1qxkv4Zly5apYcOG8vb2lre3txo1aqTly5cne322rF+/XiaTSb169UrR9QIAAKQmkivJFBYWprFjx6Z3GJlCz5491bNnT/Xo0UOVKlXSjh07NGTIELVs2TJD/sgbOXKkTCaTZsyYkd6hAMkWf95169ZN9erVU0xMjGbNmqXOnTurXLly2r59e3qH+FCZITGaVHPnzlWHDh00bdo0OTo6ql27dgoICNCpU6c0YsQI1ahRQ1euXLG57ODBg9W7d28dOHBATZo0Uc2aNbV69Wo1aNBAS5YssbnMwoUL1bBhQ61cuVKVKlVSixYtdOzYMfXs2VOvvfZakuMfP3682rVrpy1btqhevXpq3Lixtm/frjZt2ujrr79O8vqSKiu+JwAAQNaRLb0DyIxMJpNcXFw0YcIEDRkyRNmzZ0/vkDK0B5MUf/31lxo1aqQ//vhD8+bN0zPPPGMxfcyYMXrzzTdVuHDhNIwy4wkODpaTk1N6h4FMylZy8MSJE3r77be1YMECBQYGavPmzfL390/z2FJChw4dVLt2beXKlSu9Q0k0Jycnvfjiixo8eLDKlStnbr948aJat26t3bt3a/DgwZo7d67FcmvWrNGECROUM2dObd26VaVKlZIkbd26VY0aNVLv3r3VqFEj+fr6mpe5ceOGnn/+ecXGxmrhwoXq2LGjJOny5cuqX7++vvjiC7Vp00aNGjVKVOxHjhzRa6+9JhcXF61bt0516tSRJB09elR169bVkCFD1KJFC5UsWdKOPQQAAJB5UbmSDA4ODnrxxRcVHh6uzz//PL3DyXRq1aplLvdetWqV1fR8+fKpbNmycnd3T+PIMpayZcuqRIkS6R0GspASJUpo/vz56tOnj6KiovT888+nd0jJ5uPjo7Jly2aq5ErPnj01adIki8SKdO8zb+LEiZKkRYsW6c6dOxbT46sk3333XXNiRZLq1Kmjfv36KTQ0VFOnTrVYZsqUKQoPD1dQUJA5sSJJfn5++vTTTyVJX3zxRaJjnzBhgmJjY9WvXz9zYkWSSpcurXfeeUcxMTGaMGFCotcHAACQ1ZBcSaY333xTbm5u+uqrr3T9+vVELXPx4kV9+umnatiwoQoUKCBnZ2flzZtXHTt21I4dO2wuc/94HBMnTlSFChXk5uamYsWK6dNPP5VhGJKkXbt2qW3btuZ+9UFBQTpz5ozNdRqGoR9//FGNGzdW9uzZ5erqqnLlymnkyJGKiopKxt5IuieeeEKSbJbAP6z0e9++fWrbtq18fX3l5eWlBg0aaPXq1Ynqo79x40Y1btxYXl5e8vb2VuvWrXXo0CGLeYoWLaoPPvhAktS7d2+LsSsSU4p+/PhxjRw5UnXq1FHevHnl7OysggUL6rnnntPRo0cfufz9Ehq7wzAMTZ48WZUrV5abm5vy5s2rPn366MqVKwnuu/h1xcbG6pNPPlHp0qXl4uKiQoUK6Y033lB0dHSSYpPuVdb06tVLhQoVkouLi/z8/NS1a1cdPHjQYr7ffvtNJpNJJUqU0M2bN61eS/PmzWUymTRmzBhz++3btzV16lQFBQWpePHicnNzk6+vrxo0aKB58+bZjOf+175mzRo1aNBAXl5eypMnj1544QWFhYVJuveee+mll1SgQAG5urqqZs2aNo/t/WN6HDlyRJ06dVLOnDnl4eGhevXq6bfffku1fZbavvjiC3l4eGj37t36888/ze2POo8e9f66c+eOPvzwQ5UtW1YuLi5q3769pKQfT5PJpJkzZ0qSAgMDLc7D06dPS3r4mCtRUVEaNWqU+fPSx8fnoe+d+z9np0yZokqVKpnPrZdeeinB8bVSUuXKlSVJ0dHRFteUW7duae3atZKkzp07Wy0X37Zs2TKL9vhxUGwt07p1a7m6umrNmjW6fft2ouJ72PoSiuFRDh48qPbt2yt79uzy8vJSQECAVq5caXPexLwnAAAA0pWBJJFkODo6GoZhGEOGDDEkGW+88YbFPGPGjDEkGSNGjLBo//bbbw1JRpkyZYwWLVoYXbp0MapUqWJIMpycnIxVq1ZZba9IkSKGJGPw4MGGm5ub0apVK6NNmzaGl5eXIcl4//33jT///NNwd3c3qlatanTp0sUoWbKkIckoUaKEERUVZbG+2NhYo1u3boYkw9PT02jUqJHRoUMHo1ChQoYko2bNmlbLnDp1ypBkJPXt8rBl/ve//xmSjGeeecZqWs+ePQ1Jxrp16yzat2zZYri7uxuSjEqVKhldu3Y1atSoYTg4OBivvPKKIcno2bOnzXUNHTrUcHR0NGrVqmV06dLFKF26tCHJyJkzp3Hx4kXz/MOGDTMqV65sSDLq1atn9OzZ0/wvODj4ka/5jTfeMEwmk1GxYkWjTZs2RqdOnYxy5coZkgxvb29j7969VsvEH2Nb+69IkSJW7YMHDzYkGc7Ozkbz5s2NLl26GHnz5jWKFi1qtGvXzua+i19Xly5dDE9PT6NNmzZGmzZtDB8fH0OS0aNHj0e+tvstXrzYcHFxMSQZ/v7+RufOnY1atWoZJpPJcHd3NzZs2GAx/8CBAw1JRq9evSzax40bZ0gyGjRoYMTGxprbg4ODDUlG/vz5jcDAQOPpp582GjZsaDg5Odk8twzjv2M9aNAgw9HR0ahfv77RuXNno2DBgoYko2HDhsbVq1eN4sWLG0WKFDGefvppo1atWoYkw8XFxdi3b5/F+qZPn25+j/r4+BjFihUzunbtajRo0MAwmUyGyWQypk2bZhVHQsctqfssuRJ7rnbu3NmQZHz44YfmtnXr1tk8j+IldG5KMgoVKmS0bNnS8PDwMFq1amU89dRTRr9+/QzDSPrx7Nmzp1GiRAlDktG8eXOL8/Dq1auGYfx3fB5cNjw83KhWrZohycidO7fRuXNno2XLluZ9P2jQIKvXFX8Ovv7664azs7PRrFkzo0OHDkaePHkMSUZAQIARFxdnsUxyPxcTsn//fvO14Pbt2+b23bt3m1+LLREREYYkI3v27Bbt8ef2wYMHbS5XvXp1Q5LNz6QHhYSEmF9rRESEzXly5cplSDLCwsIeuT7DMIwdO3YYnp6ehiSjQoUKRteuXY1q1aoZJpPJGDBggNX7MDHvCQAAgPREciWJ7k+uXLp0yXB3dzc8PDyMK1eumOdJKLmyb98+48CBA1brXLlypeHs7GyUKFHC6gt8/Jf+/PnzG8ePHze3BwcHGy4uLoa7u7tRtGhR49tvvzVPi46ONho3bmxIsvrx9+mnnxqSjEaNGlkkFaKjo40+ffrYTBalRnKlQYMGhiRj9uzZVtNs/YCLjY01J0Q++ugji/mnTJli3lZCyRUHBwdj8eLF5vaYmBijU6dOhiTjvffes1hmxIgRhiRj+vTpSXq9hmEYW7duNU6ePGnVPm3aNEOSERgYaDUtKcmVTZs2GZKMHDlyGPv37ze3R0ZGGs2bNzfvB1s/fiUZ5cqVszjuJ0+eNHx9fQ1JFu+vhzl16pTh4eFheHp6GqtXr7aYtmLFCsPJyckoVKiQER0dbW6PiooyJ5l++uknwzDunQ8uLi6Gj4+Pcfr0aYv1XLt2zVi9erXV+XDy5EmjaNGihoODg3Hq1CmLafcf619//dXcHh4eblSoUMGQZJQvX9545plnjDt37pinv/vuu4Yk47nnnrNYX/yP9/hpd+/eNU9btmyZ4ejoaLi7uxvnzp2zWM7WcUvOPkuuxJ6ro0ePNiQZ3bp1M7fZk1yRZJQsWdJqfxiGfcfzwW3FSyi58vLLL5vPtfDwcHN7cHCwOVmybNkyi2Xiz8G8efMahw8fNrdfvXrVnKz+448/LJZJ6eRK3759DUlG27ZtLdqXLl1qSDKqVKmS4LLx53D86w0LCzPHllCyo3379oYk45dffnlkbHv37rWZwLmfv7+/IckqSWlLXFycUb58efMNgvtNnDjxkZ/nCb0nAAAA0hPdguzg5+en/v37KzIyUp988skj569YsaK5O8z9mjdvrqeeekonTpzQgQMHbC774YcfWoy/UbZsWbVq1UpRUVEqWLCg+vXrZ57m7OysV199VZK0YcMGc3tMTIw+/fRTeXh4aN68ecqbN6/FMl999ZXy5s2ryZMnKy4uzjzNyclJZcqUUZkyZR75Gh8mLi5OJ06cUP/+/bVx40YFBQXp6aefTtSya9eu1dGjR1WqVCm9+eabFtP69OmjevXqPXT5bt26mbsoSJKjo6PeeustSfe6C6WU2rVrq1ixYlbtvXv3Vr169bR+/Xpz95Tk+O677yRJQ4YMUYUKFczt7u7u+vLLL+Xg8PBT+ssvv7Q47sWKFTMPKLxp06ZExTB+/HhFRkZqzJgxatKkicW0Fi1aqH///jp79qzF41nd3Nw0Z84cOTs766WXXtKJEyfUo0cPRUdHa+LEiSpSpIjFenLmzKkmTZpYPaK6WLFieueddxQXF5dgF4Tu3burdevW5r+9vLz0wgsvSJLOnTunL7/80mKg4Ndee00mk8niXLmfp6enxo8fr2zZ/hv/u02bNurcubOioqI0ffr0h+0uScnbZ6ktfqySkJCQFFvnmDFjVKBAAat2e45nUkRGRmrq1KlycHDQN998Iy8vL/O0smXL6t1335WkBMcGGTVqlMXnXK5cucyfrQ9+TqTU56J0r+vc1KlT5eTkpFGjRllMi38888PGoPLw8JAkc7e7+x/pnNByDy7zMMmJ4WHWr1+vQ4cOqXjx4nr//fctpg0YMEC1atV65DoAAAAyGp4WZKc33nhD3333nb799lu9/vrr8vPze+j80dHRWrlypbZv366rV6+aBy7cv3+/JOnYsWOqWLGi1XLNmjWzaitevPgjp128eNHctmvXLl27dk1Nmza1Gaebm5uqVaum5cuX69ixY+YfDQUKFNDhw4cf+roe5sEfVJL0wgsvaNKkSTan2bJ582ZJUqdOnWwmEJ5++mnzPLbY2kelS5eWZLmPUkJERISWLVumPXv26MaNG7p79655O4Zh6MSJE6patWqy1h3/Gp966imraaVLl5a/v7927dplc1knJycFBgbaXC4+vsT4/fffJclikMz7BQQE6Msvv9T27dvVoUMHc3uVKlU0evRoDR8+XFWrVlV4eLi6deumHj16JLitP//8U+vXr9f58+d1+/ZtGYZhjvPYsWM2l3nY+VC9enWrp3v5+PgoR44cCb7+Zs2a2XwiWLdu3TR//vxEJaWSu89Sk/HveE2JPQcfxWQyqW3btg+dJznHMyl27typW7duqXr16ipbtqzV9GeffVaDBg3S5s2bFRcXZ/VZkpTPCXs/F+MdPnxYzzzzjAzD0GeffWYeeyUriz9nOnfuLEdHR6vp3bp1019//ZXWYQEAANiF5IqdcufOrYEDB+rTTz/Vxx9/rHHjxiU47/79+9WuXbuHDr6X0F0/W3eDPT09Hznt/oFK47e7evXqR/6gunbtWorckZXuPSFDujeo5d69e3X48GF9//33qlu37kMHoL1f/A+bQoUK2Zz+qMc2FyxY0Kot/q52cgZzTcjatWvVtWtXXb16NcF5EnNnNyGJ2Q8JJVfy5s1r84dMUvdD/PvI1vvufteuXbNqGzZsmObPn6+dO3cqX758+uabb2wuGxYWpo4dO5oH8rQlpc6V+OkJDUz9YFVNvPjBhi9cuJBgjPHs2WepJX5bOXLkSJH15cmTRy4uLjan2XM8kyL+WNgaCFqSfH195ePjo7CwMIWEhChnzpwW09PqcyLe+fPn1aJFC4WEhGjo0KHmisP7xb93HzbYeGRkpEWs8cvEL+ft7f3IZR4mOTE8TPxxetS5BQAAkJmQXEkBr7/+ur755ht99913Gj58uM15DMNQly5ddPr0afXr10/9+vVT8eLF5enpKZPJpLfffltjxowx301+0MO6ezyqK0i8+K4+JUuWfGQ3mgd/dNhjxowZFn9/9tlnGj58uAYOHKjAwMAEv2CnpMTuI3tERESoS5cuunHjht5//3117dpVRYoUkZubm0wmk7p3764ff/wxwWOc2lJqH8S/j+KTZgmxVdp/6NAhc9e369ev6/Tp0/L397ea74033tDatWvVsGFDffDBB6pQoYJ8fX3l6Oio33//Xc2bN0/VcyWl2bPPUsvu3bslSeXLl0/0Mvd3F3yQq6trgtPsOZ4p7WGJ5bR8f9y4cUPNmjXTmTNn1Lt3b33++ec254tPHJ87d87m9MjISIWGhpqfuCNJ3t7e5iTSuXPnbB7j+PUl5vM3PoaQkBBFRkaauwAld30AAABZEcmVFJArVy698sorGjNmjMaMGaP8+fNbzXP48GEdPnxY1atX17fffms1/eTJk6keZ/xd2bJly1olPNLS66+/rjVr1uj333/XBx98oGnTpj1ymXz58kmSzp49a3N6Qu1padOmTbp+/bo6d+5sfpzz/VLiGOfLl0+nT5/W2bNnbVYWpcV+KFiwoE6cOKEvvvgiSUm46Oho8zgrzzzzjGbPnq0ePXpo586dVj/MFy9eLEdHR/3yyy9Wd93T4ly5X0KPNI9vt3W+Pyi5+yy1hIWFadWqVZJk0VXM2dlZkuWYHfdL7vsrrY5n/LFI6JiFhYUpNDRUbm5uNrt6pZWIiAi1bNlShw4dUseOHfX9998nmPQpU6aMXFxcdPXqVZ0/f96q+im+Uq1SpUoW7ZUrV9bGjRu1a9cuq+TK3bt3deDAAbm6upq7PT2Mr6+vChcurH/++Ue7d+9W/fr1LaafPXtW165dU5EiRWxWyTwo/vP8UecWAABAZsKAtilk2LBh8vLy0uTJk3X+/Hmr6fGDRtoqOw8JCdHq1atTPcYaNWrIx8dHGzZs0I0bN1J9ew/z8ccfS5J++OGHRH2Rjq+0Wbx4sc073AsWLEix2OJ/YMbExCRpuYcd4+PHjyfYXScp4vfDwoULbW4jvhohNTVt2lTSvWORFG+99Zb27dunrl276ocfftBzzz2nQ4cO6fXXX7eaNyQkRN7e3jZ/qKXksU6M33//XaGhoVbt8+bNkySrH5q2JHefpZZhw4YpMjJSNWrUUJ06dczt8T96jx49arXMjRs3kv0eTs7xTM55WK1aNbm5uWnnzp02x3CZPXu2pHvnUXpVMUVHRysoKEjbt29X8+bN9eOPP9rsrhfPzc1NjRs3liT99NNPVtN//vlnSbIa7yZ+UOf46ff79ddfdfv2bTVp0uShFUeJXV9CMSQkICBA0r3PMVvVUPHn1oOS+9kMAACQFkiupJCcOXNq0KBBio6O1tSpU62mlyxZUg4ODlq7dq3Fl/7bt2+rX79+aZLscHFx0fDhw3Xz5k117NjR5h3j8+fP64cffrBqK1u2rM0BIpOrSpUqat++vfkJRo/SuHFjlSpVSkeOHLGaf8aMGYl+0k1ixN/9PnLkSJKWi78DvGjRIosxV0JDQ9WnTx/zwLb2eOmllyRJY8eO1aFDh8ztt27d0qBBgx7abSOlDBs2TG5ubnrttde0aNEiq+nR0dH6+eefLbox/PHHHxo/frwKFSpkrtz66quvVLRoUX399ddauXKlxTpKly6tkJAQzZ8/36J93LhxWrduXSq8qoRFRERo6NChFj/oVqxYoQULFsjNzU29e/d+5DqSs88kqVGjRjKZTClWaXby5Ek9/fTTmjp1qjw8PKw+q4oVK6bChQtr//79Wrp0qbk9MjJSL774osLDw5O13eQcz+Schx4eHnr++ecVFxengQMHmscBke4ljEaPHi1JGjRoUFJfgpXkfC7GxsaqW7duWrt2rQICArRo0SJzwuBhhg4dKkkaPXq0xfVj69atmjRpknx9fdWnTx+LZfr27Stvb28tXbrU4j135coVc/fVYcOGWW0r/jU9eJPg1VdflaOjo7777jtt27bN3H7s2DF99NFHypYtm80xY2xp1KiRypYtqxMnTpiPSbxJkyZp69atNpdL7mczAABAmkinR0BnWpIMR0dHm9Nu3LhheHt7G5IMScaIESMspr/wwguGJMPNzc1o3bq10blzZ8PPz8/IlSuX0atXL0OSMX36dItlihQpYiR0mEaMGGFzGcMwjFOnThmSjIYNG1q0x8bGGs8++6whyXB2djZq1apldO3a1ejYsaPxxBNPGCaTyahcubLNdSX17fKoZfbs2WOYTCbD1dXVuHjxorm9Z8+ehiRj3bp1FvNv2bLFcHd3NyQZlStXNrp162bUrFnTMJlMxsCBAw1JxgsvvGCxTELruj/GIkWKWLSdP3/ecHV1NRwdHY0WLVoYzz//vNGnTx/j8OHDj3zNTZs2NSQZvr6+Rvv27Y327dsbvr6+RsmSJY2goCCbsSR0jG3FZhiGMXjwYEOS4eLiYrRo0cLo0qWLkS9fPqNIkSJG27ZtDUnG5s2bE7UuwzCM6dOn23y/PsySJUvMx6JkyZJG27Ztja5duxoBAQGGh4eHIcnYvXu3YRj3zosCBQoYDg4OVq9906ZNhoODg5E3b17j6tWr5vbZs2eb3z8BAQFGt27djPLlyxsODg7GkCFDDElGz549Ldb1sGO9bt06m8vEs3UM4vdLjx49DB8fH6NYsWJG165djYYNGxomk8mQZHz//fdW60poXydln8ULCAgwJBmzZ8+2Gbct8futZ8+eRs+ePY1nn33WCAoKMsqVK2eOu1SpUsaOHTtsLj916lTz51xgYKDRtm1bw8/PzyhVqlSC7+GHvb8MI3nH8++//zZ/PgQFBRl9+vQx+vTpY1y7ds0wjITft+Hh4Ua1atUMSUaePHmMp556ymjVqpXh6upqSDIGDRpkFd/DPmcTeu8k53Nx/Pjx5mU6dOhgPkYP/rv/XIj36quvGpIMd3d3IygoyGjZsqWRLVs2w9HR0Vi8eLHN7f3888+Gg4ODYTKZjMDAQKNz586Gr6+vIckYOnSozWXi4zt16pTVtLFjxxqSjGzZshktW7Y0goKCDDc3N0OS8eWXXyZ6PxiGYWzbts38vq9YsaLRrVs3o0aNGobJZDIGDBiQrPcEAABAeiK5kkQPS64YhmG8//77CSZXYmJijC+++MIoX7684erqavj5+Rk9evQwTp8+nWCiJKWTK/GWLl1qtG7d2siTJ4/h5ORk5MmTx6hWrZoxfPhwY+fOnTbXldLJFcMwjI4dOxqSjNdff93c9rAfyXv27DHatGljeHt7Gx4eHka9evWMFStWmH+8vfnmmxbzJye5YhiGsWrVKqNevXqGp6en+XUktI77RUVFGe+8845RqlQpw8XFxShUqJDRr18/49q1awnGktTkSlxcnPHdd98ZFStWNFxcXIw8efIYPXv2NC5evGg0adLEkGSVCErp5IphGMbx48eNAQMGGKVKlTJcXV0NLy8vo0yZMkbXrl2NBQsWGNHR0YZhGEaXLl2sjvH93nrrLUOSERQUZNG+fPlyo3bt2oaXl5fh6+trNGnSxFi/fn2CP3ZTK7kyYsQI49ChQ0ZQUJCRPXt2w83NzahTp46xbNkym+t62L5O7D4zjHuJ0OzZsxvZs2c3QkNDba4voe3f/y9btmxGjhw5jAoVKhg9e/Y0Fi1aZMTExDx0HdOnTzcqVKhgODs7G35+fkbfvn0f+h5+VHLFMJJ+PA3DMObMmWNUrVrV/AP+/h/9D3vfRkREGB988IFRvnx5w8XFxfDy8jLq169vzJ0712ZsaZVcif/MftQ/W4mN+NdcrVo1w93d3fD19TVatGhhlUh90J9//mm0aNHC8PX1Ndzd3Y3q1asbM2bMSHD+R8Xwyy+/GAEBAYanp6fh6elpBAQEJHguPMq+ffuMtm3bGj4+PoaHh4dRp04d49dff032ewIAACA9mQwjnR5dAqSgfv36adKkSZo3b56efvrp9A4nXURERKhYsWK6ffu2QkNDHzqOAx5txowZ6t27t0aMGKGRI0em+fZ37dqlatWqafTo0XrnnXfSfPsAAAAAEo8xV5Bp3LhxQ6dPn7Zqnz9/vqZMmSJfX1+1adMm7QNLY8HBwYqKirJoCw8P14svvqhr166pa9euJFaygHXr1pnHcgIAAACQsfEoZmQaR48eVZ06dVSpUiUVL15c0r1Ew5EjR+To6KhJkybJw8MjnaNMfRMmTNDs2bNVrVo15cuXT9euXdPu3bt148YNFS9eXP/73//SO0SkgGHDhtkccBQAAABAxkNyJREMw1BkVJQ83N1lMpnSO5zHVvHixTVw4ECtXbtW69atU2RkpHLlyqWOHTvqtddes3ikbFbWsWNHXbp0STt37tT27dsl3XvKS9++fTV8+HDlzJkznSMEAAAAgMcLY64kQkRkpAKbtdayRT/Jw8M9vcMBAAAAAAAJ8PJM+x4NjLkCAAAAAABgB5IrAAAAAAAAdiC5AgAAAAAAYAeSKwAAAAAAAHYguQIAAAAAAGAHkisAAAAAAAB2ILkCAAAAAABgB5IrAAAAAAAAdiC5AgAAAAAAYAeSKwAAAAAAAHYguQIAAAAAAGAHkisAAAAAAAB2ILkCAAAAAABgB5IrAAAAAAAAdiC5AgAAAAAAYAeSKwAAAAAAAHYguQIAAAAAAGAHkisAAAAAAAB2ILkCAAAAAABgB5IrAAAAAAAAdiC5AgAAAAAAYAeSKwAAAAAAAHYguQIAAAAAAGAHkisAAAAAAAB2ILkCAAAAAABgB5IrAAAAAAAAdiC5AgAAAAAAYAeSKwAAAAAAAHYguQIAAAAAAGAHkisAAAAAAAB2ILkCAAAAAABgB5IrAAAAAAAAdiC5AgAAAAAAYIds6R0AAAAAgKzl4BnHNN3eE0Vi03R7APAgkisAAAAA7JLWyZRHbZ9kC4C0RnIFAAAAQKKldyIlMWzFSMIFQGoiuQIAAADApsyQSEksqlsApCaSKwAAAAAkZa1kyqNQ3QIgJZFcAQAAAB5Dj1MiJbFIuABILpIrAAAAwGOAZEry0J0IQGI4pHcAAAAAAAAAmRmVKwAAAEAWQ5VK6qHrEABbSK4AAAAAmRzJlPRF1yEAdAsCAAAAAACwA5UrAAAAQCZClUrGR9ch4PFD5QoAAAAAAIAdqFwBAAAAMiiqVLIOqlmArI3kCgAAAJBBkEx5vDAQLpB10C0IAAAAAADADlSuAAAAAOmAKhU8iK5DQOZF5QoAAAAAAIAdqFwBAAAA0gCVKkgOxmUBMgcqVwAAAAAAAOxAcgUAAAAAAMAOdAsCAAAAUhhdgJBaGPQWyJioXAEAAAAAALADlSsAAACAnahUQXpi0Fsg/VG5AgAAAAAAYAcqVwAAAIAkoEoFGR3jsgBpj8oVAAAAAAAAO1C5AgAAACSAKhVkFVSzAKmLyhUAAAAAAAA7ULkCAAAA/ItKFTxOeMoQkHKoXAEAAAAAALADlSsAAAB4LFGlAlhiXBYg+ahcAQAAAAAAsAOVKwAAAHgsUKkCJB3jsgCJQ+UKAAAAAACAHUiuAAAAAAAA2IFuQQAAAMhy6AIEpA4GvQVso3IFAAAAAADADlSuAAAAIFOjSgVIXwx6C1C5AgAAAAAAYBcqVwAAAJCpUKkCZGyMy4LHEZUrAAAAAAAAdqByBQAAABkWVSpA1kA1C7I6KlcAAAAAAADsQOUKAAAAMgwqVYDHB08ZQlZC5QoAAAAAAIAdqFwBAABAuqBKBcD9GJcFmRnJFQAAAKQJkikAkoquQ8gs6BYEAAAAAABgBypXAAAAkOKoUgGQGug6hIyKyhUAAAAAAAA7ULkCAAAAu1ClAiA9Uc2CjIDkCgAAAJKEZAqAjI6BcJHW6BYEAAAAAABgBypXAAAAkCCqVABkBXQdQmojuQIAAAAzkikAHhd0HUJKolsQAAAAAACAHahcAQAAeExRpQIA/6HrEOxBcgUAAOAxQTIFAJKGrkNIrEydXDGZTBZ/Z8uWTT4+PsqXL5+qVaumtm3bKigoSNmyJfwyb926pTFjxmjevHn6559/lCNHDrVo0UKjRo1SgQIFUvslAAAApAoSKQCQ8qhuQUJMhmEY6R1EcsUnV3r27ClJiouLU1hYmI4ePaojR47IMAyVLFlSc+bMUc2aNa2Wv337tgIDA7Vt2zbly5dPAQEBOn36tLZv367cuXNr27ZtKl68uCIiIxXYrLWWLfpJHh7uafoaAQAAHoVECgBkLCRc0peXp0eabzNTV67EmzFjhlXbiRMn9Pbbb2vBggUKDAzU5s2b5e/vbzHP6NGjtW3bNtWpU0e///67PD09JUljx47VsGHD9Pzzz2v9+vWp/wIAAACSgGQKAGRsdCd6/GSJypWHvYS+fftq6tSpqlKlinbt2mVuv3PnjvLkyaOwsDDt2rVLVapUsViucuXK2rdvn/7++2+VKVuWyhUAAJAuSKQAQNZEwiX1pEflSpZ/FPMXX3whDw8P7d69W3/++ae5ffPmzQoLC1OJEiWsEiuS1LlzZ0nSsmXL0ixWAACAg2ccLf4BALImPu+zlizRLehhfHx81LJlS/38889at26d6tevL0nau3evJKlq1ao2l4tv37dvX9oECgAAHjt8mQYAxGOw3MwtyydXJMnf318///yzgoODzW3//POPJKlgwYI2l4lvP3PmTOoHCAAAshwSJwAAeyXmWkICJmN4LJIruXLlkiSFhISY2yIiIiRJ7u62x1Dx8LjXR+vmzZupHB0AAMjsSKQAANILFS8Zw2ORXIkf8DZ+AFwAAIDEInECAMhsqHhJe49FcuXatWuSpBw5cpjb4h+7HBUVZXOZyMhISZKXl5e5bf/+fXJ1dU2tMAEAQBo7G5o9vUMAACBdnDz16HkK+YY8eqYMKKB+vTTf5mORXNm9e7ckqXz58ua2woULS5LOnTtnc5n49iJFipjbWrRorrhYsnsAAAAAAGRU8b1X0lKWT66EhYVp1apVkqTAwEBze+XKlSVJu3btsrlcfHulSpXMbStXrqJyBQAAAAAAWMjyyZVhw4YpMjJSNWrUUJ06dczt9erVk4+Pj06cOKE9e/bI39/fYrmff/5ZktS2bVtzW8WKleThYXsAXAAAAAAA8HhySO8AUsvJkyf19NNPa+rUqfLw8NDUqVMtpjs7O+vll1+WJA0cONA8xookjR07Vvv27VPDhg1VrVq1NI0bAAAAAABkLlmicqVXr16SpLi4OIWHh+vo0aM6fPiwDMNQqVKlNHfuXFWsWNFquXfffVdr1qzRli1bVKpUKQUEBOjMmTP666+/lDt3bk2bNi2NXwkAAAAAAMhsTEZ6jPSSQh58tHK2bNnk7e2t/Pnzq1q1agoKClK7du3k6JjwY6hu3bqlMWPGaO7cuTp79qxy5MihFi1aaNSoUSpYsKAkKSIyUoHNWmvZop/oFgQAAAAAQAbm5emR5tvM1MmVtEJyBQAAAACAzCE9kitZdswVAAAAAACAtEByBQAAAAAAwA4kVwAAAAAAAOxAcgUAAAAAAMAOJFcAAAAAAADskGGTKytXrpS/v79cXV1lMpkUGhqa3iEBAAAAyICWLl0q/8qVdP78+fQOBcBjKlt6B2DL9evX1aVLFz3xxBOaOHGiXFxc5OGR9o9SAgAAAB4H58+d06xZs7R161ZduXJZkpQ/f35Vr1FDnTs/pdKlS6dzhACQsWXI5MqOHTt08+ZNjRo1Sk2aNEnvcAAAAIAsa+OGDRo+/HVly5ZNLVu1UpnSZWRyMOn0qdP64481+mnBAi3/bYXy58+f3qEmqE2bNmrRooWcnZ3TOxQAj6kMmVy5cuWKJMnX1/eR80ZFRcnd3T2VIwIAAACynrNnz+qNN4Yrf/78mjT5e+XOndti+quDB2vB/PlycMiwowlIkhwdHeXo6JjeYQB4jCXpU3LkyJEymUw6fvy4evXqJV9fX/n4+Kh3796KioqymDcmJkajRo1SiRIl5OLioqJFi+rtt99WdHT0Q7fRqFEj9ezZU5JUo0YNmUwm9erVyzytQoUK2rlzpxo0aCB3d3e9/fbbkqTo6GiNGDFCJUuWlIuLiwoVKqThw4dbbS86OlpDhgxR7ty55eXlpXbt2uncuXMymUwaOXJkUnYHAAAAkKnNmD5dt27d0gcffGiVWJGkbNmyqXuPHsqbN68k6ejRo3rvvXfVulVL1axRXU82DtSI99+3Gh/xvffeVcuWLazW9+2338i/ciWLtq1bt6pXz56qX7+e6tSupaB2bfXllxMs5vlx7lx17NBBtWvVVED9eurerat++225ebqtMVfWrVunl18eqKZNnlSN6tXUpnUrTZ40SbGxsRbr7tPneXXq2EEnTpxQ3z59VLtWTTVt0kTTp09L3E4EACWzcqVLly4qVqyYxowZo127dmnKlCnKkyePPvnkE/M8ffv21cyZM9W5c2cNGzZMf/31l8aMGaPg4GAtXrw4wXW/8847KlOmjCZPnqwPP/xQxYoVU4kSJczTr1+/rpYtW6pr16565pln5Ofnp7i4OLVr105//vmnXnzxRZUrV0779+/XuHHjdPToUS1ZssQirtmzZ6t79+6qW7eu1q5dq9atWydnNwAAAACZ2saNG1WocGFVrFTp0TNL2rZ1q86fO6egoPbKmSunTpw4oUULF+rEieP6YfYcmUymJG3/+PHjGvTKyypVurQG9B8gZ2dn/XP2H+3ds8c8z8KFP+uTTz5Wk6ZN1b1HD92JjtaxY0e1f/9+tWqV8Pf4X5Yulbubu5559lm5u7lr+47t+uabiYqIjNDQocMs5g0Pv6mBA/qr8ZNPqlnzZlqzerUmjB+vUqVKqX79gCS9JgCPp2QlV6pUqaKpU6ea/75+/bqmTp1qTq7s3btXM2fOVN++ffX9999LkgYMGKA8efLo888/17p16xQYGGhz3U2bNtX58+c1efJktWzZUtWrV7eYfunSJX333Xd66aWXzG2zZ8/WmjVrtGHDBtWvX9/cXqFCBfXr109btmxR3bp1tXfvXs2ePVsDBgzQxIkTJUkDBw5Ujx49tG/fvuTsCgAAACBTioiI0NWrVxQY2NhqWnh4uEWFh5ubm1xdXdXl6af13L9V5vEqVaykN998Q7t371LVqtWSFMO2bVt19+5dTZz4jbJnz25znk2bNqlEiRL6/PMvkrTuMR9/LFdXV/PfT3XpotHeo7Rg/ny9/PIrFuOzXL16RaNHf6Q2bdtKkjp06KiWLZpryeLFJFcAJEqyOk/269fP4u+AgABdv35d4eHhkqTffvtNkjR06FCL+YYNu5chXr58uZLLxcVFvXv3tmj76aefVK5cOZUtW1bXrl0z/2vc+N6FYt26dRZxDRo0yGL5wYMHJzseAAAAIDOKjIyQJJvjF/bt20eBjRqa/82fP0+SLJIV0dHRCgkJMVe9BAcHJzkGLy9vSdL6desUFxeXwDxeunzlig4cOJCkdd8fa2RkpEJCQlSlalXdvn1bp06dspjX3d1drdu0Mf/t5OSkChUq6Ny5c0naJoDHV7IqVwoXLmzxd3yWOSQkRN7e3jpz5owcHBxUsmRJi/ny5s0rX19fnTlzJpnhSgUKFLAaBfzYsWMKDg622U9U+m+A3Pi47u9mJEllypRJdjwAAABAZuTu7iFJVmMnStJ7776nyKgoXb9+Xe+8/Za5PSwsTN99961WrVypGzduWCwTcTMiyTE0b95cixct0gcfjNSXX05QzZq11PjJJ9W0aVPzILq9ez+vv7Zt0zM9uqtQ4cKqU6eOWrZspSpVqjx03cePH9fEr7/Wjh3bFRFhGVtExE2Lv/38/Ky6NHl5e+vo0aNJfk0AHk/JSq4kNBK3YRgWfye1z2ViuLm5WbXFxcWpYsWKGjt2rM1lChUqlOJxAAAAAJmZl5eXcufOreMnjltNi69GuX+AWEka/vpr2rt3r57r2VNly5SVm7u7jLg4DRjQX3HGf5UnJtn+HRAXa1md4urqqmnTp2vHju3atHGTtmzZrFWrVmphzZr69rtJcnR0VPHixbV06S/auHGjNm/erD/WrNGC+fP14ksvacCAgTa3Ex4err59npeHh4f6DxigQgULydnFRcHBhzRh/HjFxVn+bknoaUiGzVYAsJYqj2IuUqSI4uLidOzYMZUrV87cfvnyZYWGhqpIkSIpur0SJUpo7969evLJJx+a0ImP68SJExbVKkeOHEnReAAAAIDMoH5AgBYvWqT9+/erYsWKD503PDxcf/31l/r3H6CX7hsmwFZVure3t27evGnVfvHiBas2BwcH1apVW7Vq1Zb0uqZM+V5ff/WVduzYodq1a0uS3Nzd1bxFCzVv0UJ3797V0CFDNHXKFPXp01cuLi5W6/z7778VGhqqL8aOVbVq/43heP483XwApI5UeWB9q1atJEnjx4+3aI+vLEnpp/N06dJF58+fNw+ee79bt24pMjJSktSyZUtJ0pdffmkxz4NxSvfKIw8fPqxr166laKwAAABARtGrV2+5urpq5Ij3df36desZ7qtMj6/uMB6o55gzZ7bVYgULFVLEzZsW3WquXr2qtWvXWswXFhZmtWyZMmUlSXfu3JEkq8c8Ozk5qXiJ4jIMQzExMTZfl2N8rPeFevfuXS2Yv8Dm/ABgr1SpXKlcubJ69uypyZMnKzQ0VA0bNtT27ds1c+ZMtW/fPsEnBSXXs88+qwULFqhfv35at26d6tWrp9jYWB0+fFgLFizQqlWrVL16dfn7+6tbt2765ptvFBYWprp16+qPP/7Q8ePWpZDbt29XYGCgRowYoddefz1F4wUAAAAygiJFimjMx5/orTffUFBQO7Vq1UqlS5eRDEPnz5/XihW/ycHBQX55/OTp6alq1appxvTpiomJUZ48ebR1y1adv3Dear0tWrTQhPHjNHTIYHXr3l23b9/WTwsWqEiRIhYD306a9J127dypgIAGypc/n27cuKEF8+fLz8/PPKZK/34vKWeuXPL391fOHDl16tRJzZs3TwEBAfLw8LD5uir7+8vb21vvvfeuunfrLplMWv7rMqvEEACklFRJrkjSlClTVLx4cc2YMUOLFy9W3rx59dZbb2nEiBEpvi0HBwctWbJE48aN06xZs7R48WK5u7urePHievXVV1W6dGnzvNOmTVPu3Lk1Z84cLVmyRI0bN9by5csZlwUAAACPpcDAQP3080LNmjVTW7du1dIlS2QymZQvXz4FBASo81NdzF3q/zfmY33y8ceaP2+eDEl16tTRxInfqGmTJy3W6evrq7HjxuuLzz/T+HHjVKBAAb0y6FX9888Zi+RKo4aNdOHCBS1ZskShoSHy9c2uatWrqX//AfLy8pIkder8lFb8tlyzf/hBUVFR8vPzU7fu3fXCCy8m+Jp8fX315Vdfa+wXn2vixK/l5eWt1q1bq2atWhrQv1+CywFAcpmMB0ehfUyZTCaNGDFCI0eOtJoWERmpwGattWzRT/LwsH5UHQAAAAAAyBi8PG1XtaWmVBlzBQAAAAAA4HFBcgUAAAAAAMAOJFcAAAAAAADskGoD2mY2DD0DAAAAAACSg8oVAAAAAAAAO5BcAQAAAAAAsAPJFQAAAAAAADuQXAEAAAAAALADyRUAAAAAAAA7kFwBAAAAAACwA8kVAAAAAAAAO5BcAQAAAAAAsAPJFQAAAAAAADuQXAEAAAAAALBDtvQOAAAyo4NnHNN0e08UiU3T7QEAYA+ukwAeNyRXACAR0vpL4qO2z5dIAEBGwnUSwOOO5AqAx156fyFMjsTEzBdLAIC9MuM1UuI6CSDtkVwB8FjJrF8Sk8PWa+WLJADgYbhOcp0EkDwMaAsAAAAAAGAHKlcAZFmP0923xOIuHQAgHtdJa1wnASQXyRUAWQZfEpOHQQAB4PHAdTJ5uE4CSAySKwAyJb4gph7u2gFA5sd1MvVwnQRgC2OuAAAAAAAA2IHKFQCZAnfg0hcl0QCQsXGdTF9cJwFQuQIAAAAAAGAHKlcAZDjcfcv46G8OAOmH62TGx3USePyQXAGQrviCmHXwRRIAUh7XyayD6ySQtdEtCAAAAAAAwA5UrgBIU9yBe7wwwB8AJA3XyccL10kg66ByBQAAAAAAwA5UrgBINdx9w4Pobw4A/+E6iQdxnQQyLypXAAAAAAAA7EDlCoAUwx04JAf9zQE8LrhOIjm4TgKZA5UrAAAAAAAAdqByBUCycPcNqYX+5gCyAq6TSC1cJ4GMicoVAAAAAAAAO5BcAQAAAAAAsAPdggAkCuXNSE8M5gcgo+M6ifTEdRJIf1SuAAAAAAAA2IHKFQBWuPuGjI7B/ACkJ66TyOi4TgJpj8oVAAAAAAAAO1C5AjzmuPuGrIK7dABSA9dJZBVcJ4HUReUKAAAAAACAHahcAR4z3IHD44SnJwBIKq6TeJxwnQRSDpUrAAAAAAAAdqByBcjCuPsGWKK/OYD7cZ0ELHGdBJKPyhUAAAAAAAA7ULkCZCHcgQOSjv7mwOOD6ySQdFwngcShcgUAAAAAAMAOVK4AmRR334DUQX9zIGvgOgmkDq6TgG1UrgAAAAAAANiB5AoAAAAAAIAd6BYEZBKUNwPphxJoIGPjGgmkLwa9BahcAQAAAAAAsAuVK0AGxB04IOPjLh2QfrhOAhkbFZ94HFG5AgAAAAAAYAcqV4B0xt03IGvgLh2QOrhOAlkD10lkdVSuAAAAAAAA2IHKFSCNcQcOeHwwLguQdFwngccH10lkJSRXgFTEF0QA96MkGrDEdRLA/bhOIjOjWxAAAAAAAIAdqFwBUhB34AAkFSXReJxwnQSQVFwnkVlQuQIAAAAAAGAHKleAZOLuG4DUQH9zZBVcJwGkBq6TyKioXAEAAAAAALADlStAInD3DUB64i4dMjqukwDSE9dJZAQkVwAb+JIIIKNjgD+kJ66TADI6rpNIa3QLAgAAAAAAsAOVK3jscfcNQFZASTRSC9dJAFkB10mkNpIreOzwJRHA44KSaCQH10kAjwuuk0hJJFeQpfEFEQD+w107PIjrJAD8h+sk7MGYKwAAAAAAAHagcgVZCnfgACBpKIl+vHCdBICk4TqJxMrUyRWTyWTxd7Zs2eTj46N8+fKpWrVqatu2rYKCgpQtm+2XuXPnTq1evVrbt2/X9u3bdf78eUmSYRipHjvsxxdEAEh5lERnHVwnASDlcZ1EQkxGJs4kxCdXevbsKUmKi4tTWFiYjh49qiNHjsgwDJUsWVJz5sxRzZo1rZZv3769li5datX+4C6JiIxUYLPWWrboJ3l4uKfCK8Gj8AURADIWvkhmLFwnASBj4TqZvrw8PdJ8m5m6ciXejBkzrNpOnDiht99+WwsWLFBgYKA2b94sf39/i3nq1KmjSpUqqUaNGqpRo4aKFi2q6OjotAkaD8WXRADI2CiTTl9cJwEgY+M6+fjJEpUrD3sJffv21dSpU1WlShXt2rXroetzdXVVdHQ0lStpjC+IAJA18UUyZXCdBICsietk6kmPypUsn1wJCwtTgQIFFBkZqU2bNql+/foJzktyJW3wJREAHk98iUwcrpMA8HjiOply6BaUCnx8fNSyZUv9/PPPWrdu3UOTK0h5fEEEAMRjEEBrXCcBAPG4TmZuWT65Ikn+/v76+eefFRwcnN6hZCl8IQQA2Csx15LM+sWS6yQAwF5Z+TqZ1TwWyZVcuXJJkkJCQtI5ksyDL4QAgIwiI36x5DoJAMgoMuJ18nH0WCRX4sdQiR+jBZb4gggAyOxSs5Sa6yQAILOjy1HqeyySK9euXZMk5ciRw6717N+/T66urikRUpo5G5o9vUMAACBdnDyV3hEAAJBxJeY6Wcg3c/b+CKhfL823+VgkV3bv3i1JKl++vF3radGiueJiye4BAAAAAJBRpcdDkbN8ciUsLEyrVq2SJAUGBtq1rpUrV2W6yhUAAAAAAJC6snxyZdiwYYqMjFSNGjVUp04du9ZVsWIleXi4p1BkAAAAAAAgK3BI7wBSy8mTJ/X0009r6tSp8vDw0NSpU9M7JAAAAAAAkAVlicqVXr16SZLi4uIUHh6uo0eP6vDhwzIMQ6VKldLcuXNVsWJFq+WWL1+uUaNGmf++c+eOJKl27drmtvfee08NGzVK1fgBAAAAAEDmlSWSKzNnzpQkZcuWTd7e3sqfP7+ee+45BQUFqV27dnJ0tP0IxatXr+qvv/6yar+/7erVq6kTNAAAAAAAyBJMRnoMo5vJRERGKrBZay1b9BNjrgAAAAAAkIF5eXqk+Taz7JgrAAAAAAAAaYHkCgAAAAAAgB1IrgAAAAAAANiB5AoAAAAAAIAdMmxyZeXKlfL395erq6tMJpNCQ0PTOyQASDdLly6Vf+VKOn/+fHqHAgBAhsN1EkB6y5CPYr5+/bq6dOmiJ554QhMnTpSLi4s8PNJ+tF8AWcf5c+c0a9Ysbd26VVeuXJYk5c+fX9Vr1FDnzk+pdOnS6RwhAADph+skANgnQz6KeeXKlWrZsqVWr16tJk2apHc4PIoZyOQ2btig4cNfV7Zs2dSyVSuVKV1GJgeTTp86rT/+WKOLFy9q+W8rlD9//vQONUGxsbGKiYmRs7OzTCZTeocDAMhCuE4CyGrS41HMGbJy5cqVK5IkX1/fR84bFRUld3cSHgBsO3v2rN54Y7jy58+vSZO/V+7cuS2mvzp4sBbMny8HhwzbS1KS5OjoKEdHx/QOAwCQxXCdBICUkaRPyZEjR8pkMun48ePq1auXfH195ePjo969eysqKspi3piYGI0aNUolSpSQi4uLihYtqrffflvR0dEP3UajRo3Us2dPSVKNGjVkMpnUq1cv87QKFSpo586datCggdzd3fX2229LkqKjozVixAiVLFlSLi4uKlSokIYPH261vejoaA0ZMkS5c+eWl5eX2rVrp3PnzslkMmnkyJFJ2R0AMoEZ06fr1q1b+uCDD62+MEpStmzZ1L1HD+XNm1eSdPToUb333rtq3aqlataoricbB2rE++9bjfv03nvvqmXLFlbr+/bbb+RfuZJF29atW9WrZ0/Vr19PdWrXUlC7tvryywkW8/w4d646duig2rVqKqB+PXXv1lW//bbcPN1WX/J169bp5ZcHqmmTJ1WjejW1ad1KkydNUmxsrMW6+/R5Xp06dtCJEyfUt08f1a5VU02bNNH06dMStxMBAFkW10mukwBSRrIqV7p06aJixYppzJgx2rVrl6ZMmaI8efLok08+Mc/Tt29fzZw5U507d9awYcP0119/acyYMQoODtbixYsTXPc777yjMmXKaPLkyfrwww9VrFgxlShRwjz9+vXratmypbp27apnnnlGfn5+iouLU7t27fTnn3/qxRdfVLly5bR//36NGzdOR48e1ZIlSyzimj17trp37666detq7dq1at26dXJ2A4BMYOPGjSpUuLAqVqr06Jklbdu6VefPnVNQUHvlzJVTJ06c0KKFC3XixHH9MHtOkkuNjx8/rkGvvKxSpUtrQP8BcnZ21j9n/9HePXvM8yxc+LM++eRjNWnaVN179NCd6GgdO3ZU+/fvV6tWCX8+/bJ0qdzd3PXMs8/K3c1d23ds1zffTFREZISGDh1mMW94+E0NHNBfjZ98Us2aN9Oa1as1Yfx4lSpVSvXrByTpNQEAsg6uk/dwnQRgr2QlV6pUqaKpU6ea/75+/bqmTp1qTq7s3btXM2fOVN++ffX9999LkgYMGKA8efLo888/17p16xQYGGhz3U2bNtX58+c1efJktWzZUtWrV7eYfunSJX333Xd66aWXzG2zZ8/WmjVrtGHDBtWvX9/cXqFCBfXr109btmxR3bp1tXfvXs2ePVsDBgzQxIkTJUkDBw5Ujx49tG/fvuTsCgAZWEREhK5evaLAwMZW08LDwy3uXLm5ucnV1VVdnn5az/1bPRevUsVKevPNN7R79y5VrVotSTFs27ZVd+/e1cSJ3yh79uw259m0aZNKlCihzz//IknrHvPxx3J1dTX//VSXLhrtPUoL5s/Xyy+/ImdnZ/O0q1evaPToj9SmbVtJUocOHdWyRXMtWbyYL40A8JjiOsl1EkDKSVbnyX79+ln8HRAQoOvXrys8PFyS9Ntvv0mShg4dajHfsGH3MsTLly9Xcrm4uKh3794WbT/99JPKlSunsmXL6tq1a+Z/jRvfu1CsW7fOIq5BgwZZLD948OBkxwMg44qMjJAkm+My9e3bR4GNGpr/zZ8/T5IsvoRFR0crJCTEfDcvODg4yTF4eXlLktavW6e4uLgE5vHS5StXdODAgSSt+/5YIyMjFRISoipVq+r27ds6deqUxbzu7u5q3aaN+W8nJydVqFBB586dS9I2AQBZB9fJ/3CdBGCvZFWuFC5c2OLv+CxzSEiIvL29debMGTk4OKhkyZIW8+XNm1e+vr46c+ZMMsOVChQoYJFllqRjx44pODjYZj9R6b8BcuPjur+bkSSVKVMm2fEAyLjc3e+NEv7gmFCS9N677ykyKkrXr1/XO2+/ZW4PCwvTd999q1UrV+rGjRsWy0TcjEhyDM2bN9fiRYv0wQcj9eWXE1SzZi01fvJJNW3a1Dw4YO/ez+uvbdv0TI/uKlS4sOrUqaOWLVupSpUqD1338ePHNfHrr7Vjx3ZFRFjGFhFx0+JvPz8/q1JtL29vHT16NMmvCQCQNXCd/A/XSQD2SlZyJaGRuB98qnNqPAbNzc3Nqi0uLk4VK1bU2LFjbS5TqFChFI8DQMbn5eWl3Llz6/iJ41bT4u+y3T/wnSQNf/017d27V8/17KmyZcrKzd1dRlycBgzorzjjvztqJtn+fIuLtbzr5urqqmnTp2vHju3atHGTtmzZrFWrVmphzZr69rtJcnR0VPHixbV06S/auHGjNm/erD/WrNGC+fP14ksvacCAgTa3Ex4err59npeHh4f6DxigQgULydnFRcHBhzRh/HjFxVl+Hif0lAfDZisA4HHAdfI/XCcB2CtVHsVcpEgRxcXF6dixYypXrpy5/fLlywoNDVWRIkVSdHslSpTQ3r179eSTTz40oRMf14kTJyyqVY4cOZKi8QDIOOoHBGjxokXav3+/Klas+NB5w8PD9ddff6l//wF66b7uj7aq7by9vXXz5k2r9osXL1i1OTg4qFat2qpVq7ak1zVlyvf6+quvtGPHDtWuXVuS5OburuYtWqh5ixa6e/euhg4ZoqlTpqhPn75ycXGxWufff/+t0NBQfTF2rKpV+29sqvPnKV8GACQe10kASBmp8sD6Vq1aSZLGjx9v0R5fWZLST+fp0qWLzp8/bx489363bt1SZGSkJKlly5aSpC+//NJingfjlO6VRx4+fFjXrl1L0VgBpK1evXrL1dVVI0e8r+vXr1vPcF/FXfxdK+OB+1Rz5sy2WqxgoUKKuHnTolz46tWrWrt2rcV8YWFhVsuWKVNWknTnzh1Jsnp8pZOTk4qXKC7DMBQTE2PzdTnGx3pfqHfv3tWC+Qtszg8AgC1cJwEgZaRK5UrlypXVs2dPTZ48WaGhoWrYsKG2b9+umTNnqn379gk+KSi5nn32WS1YsED9+vXTunXrVK9ePcXGxurw4cNasGCBVq1aperVq8vf31/dunXTN998o7CwMNWtW1d//PGHjh+3LoXcvn27AgMDNWLECL32+uspGi+AtFOkSBGN+fgTvfXmGwoKaqdWrVqpdOkykmHo/PnzWrHiNzk4OMgvj588PT1VrVo1zZg+XTExMcqTJ4+2btmq8xfOW623RYsWmjB+nIYOGaxu3bvr9u3b+mnBAhUpUsRiQL9Jk77Trp07FRDQQPny59ONGze0YP58+fn5mfuK9+/3knLmyiV/f3/lzJFTp06d1Lx58xQQECAPDw+br6uyv7+8vb313nvvqnu37pLJpOW/LrP6wgsAwMNwnQSAlJEqyRVJmjJliooXL64ZM2Zo8eLFyps3r9566y2NGDEixbfl4OCgJUuWaNy4cZo1a5YWL14sd3d3FS9eXK+++qpKly5tnnfatGnKnTu35syZoyVLlqhx48Zavnw547IAWVhgYKB++nmhZs2aqa1bt2rpkiUymUzKly+fAgIC1PmpLuaugv8b87E++fhjzZ83T4akOnXqaOLEb9S0yZMW6/T19dXYceP1xeefafy4cSpQoIBeGfSq/vnnjMWXxkYNG+nChQtasmSJQkND5OubXdWqV1P//gPk5eUlSerU+Smt+G25Zv/wg6KiouTn56du3bvrhRdeTPA1+fr66suvvtbYLz7XxIlfy8vLW61bt1bNWrU0oH+/BJcDAOBBXCcBwH4m48FRaB9TJpNJI0aM0MiRI62mRURGKrBZay1b9JM8PKwfVQcAAAAAADIGL0/bVW2pKVXGXAEAAAAAAHhckFwBAAAAAACwA8kVAAAAAAAAO6TagLaZDUPPAAAAAACA5KByBQAAAAAAwA4kVwAAAAAAAOxAcgUAAAAAAMAOJFcAAAAAAADsQHIFAAAAAADADiRXAAAAAAAA7EByBQAAAAAAwA4kVwAAAAAAAOxAcgUAAAAAAMAOJFcAAAAAAADskC29A8gMDMOQJEVFRaVzJAAAAAAA4GFMJsnD3V0mkynNtklyJRGiom5Jkp5+pmc6RwIAAAAAAB7l918XK3v27Gm2PZIriZA7V079uvgnubu7pWnmy16RkVFq0+Ep/br4J3l4uKd3OECa4v2Pxx3nAB5nvP/xOOP9j8dd/DmQzckpTbdLciURHBwc5Jcnd3qHkWweHu7y9PBI7zCAdMH7H487zgE8znj/43HG+x+Pu7QujGBAWwAAAAAAADuQXAEAAAAAALADyZUszNnJSS8831POadzXDMgIeP/jccc5gMcZ7388znj/43GXXueAyYh/zjAAAAAAAACSjMoVAAAAAAAAO5BcAQAAAAAAsAPJFQAAAAAAADtkS+8AkPJuR0drxqw5Wv3HWl26fFneXt6qU7um+r3wvPLkzp3e4QEpKjQsTF2691RIaKgKFsivxQvmWkyPi4vT3n0HtGnzFu3YuUv//HNWd2NilCd3btWqUU3PPdNdBfLnS6fogeQ5GHxYs+fO0569+xUSGio3N1eVLF5cbdu0UttWLWQymRJc9u7du+rRq69OnT4jR0cHbdu4Ng0jBx4t+PAR/bXjbx08dFiHgoN15eo1SdKOzeut5k2Jz/j1Gzdp4ZJfdPjIUUVFRcnX11fly5ZRj65d5F+5Umq8ROChknIO3C8mJkYLFi7WqtV/6MyZfxRnxCl3rlyqXKmizd8BcXFxWvLLr/r1t5U6eeq0ou/cUY7svqriX1nPdu+qMqVLpdZLBGy6ffu2tm3foU2bt2rP3v26dPmSHBwcVahgAQU2bKAeXZ+Su7u7xTKXLl/Rps1bdPBQsA4eCtaZf87KMAx999U4Vata5aHb27tvv6bNnK0DBw/pbsxdFStaVF06dVDrls2TFT/JlSwmOjpaA14Zov0HDylXzpxqUL++Ll66pGXLV+jPzVs1bfI3Klggf3qHCaSY8V99o9CwsASnn79wQS8OHCRJypkzh6pXqyoHBwcdCg7WoqXLtGr1Hxr/+cd8gUamsXbdBr094gPFxsapbJnS8q9cSaGhodq9d5/27Nuv7Tt2avTIdxNcfvqs2Tp95p80jBhImqkzZmnDps2Jmteez/i4uDh99Mnn+uXX3+Tm5qrKlSrKy9NTly5f0eatf5nPLyCtJeUciBcWHq5XBr+m4CNHlStnTtWoXk2SdO78eS1bvkLtWre0SK4YhqE33hmh9Rs3ycXFRVUqV5Knp4dOnDylVav/0B/rNujzMaNVr27tFH1twMOs/H2NPvrkc0lSsaJF1KB+PUVERmr//oOaPHW6fl/zhyZNnKAc2bObl1m7foPGfTkxyduK/z4VF2eoin8l+fr4aMfOXRo5eoyOnTihwS8PSPI6Sa5kMdNm/qD9Bw+pYoUn9PW4z8yZvTnzFmj8V99o1JhPNOnrCekcJZAytv+9U8tXrFKHoLZavHSZzXlMMqlWjerq+Wx3Va9axXxH/86dOxrz2Vj9+ttKvffBR1q8YI6yZeMjERlbTEyMPvlivGJj4zRqxLtq0ayJedqp02f0Qv9XtGr1GrVv21rVq1nfrTl1+oxm/DBX7du1SfCcAdJbxQpPqGSJEipfrqzKlyujoM5ddefOXZvz2vMZP2X6TP3y628KqFdXI959Uz7e3uZp4eE3H5q4B1JTUs4B6V6i5M13Rij4yFG98HxPPd/zWYv3+7nzF+TpYXm3f+OfW7R+4yblz5dXU779Wrlz5zJPmzXnR331zSR9Ona8ltadl/IvEEhAtmzZ1CGorbp16axiRYuY269du67Br7+pI0ePaeyErzV65HvmaQXy51e3Lp3/PV/K6rOxE7Rt+46HbicsPFwfjvlUsbFx+uSjD9W4UQNJ0vUbN/RC/1c058cFCqhb55GVLw9izJUs5O7du1qwcLEk6Y1hgy1Kpnp07aJSJUto1+69Cj58JL1CBFLM7ehojfn0CxUrWlTPdHs6wfkKFiygr8d/rhrVqlp0lXB2dtYbrw2Rp6eHLl2+rL37D6RF2IBdTv/zj26EhKhI4UIWiRXp3h2eFs2bSpIOHT5staxhGPrfJ5/Ly9NTL/d7MU3iBZKj5zPd1e+F59Wgfl3lypnzofMm9zP+8pUrmvHDXOX189P/Ro2wSKxIkre3lwoXKphyLwpIgqScA5K0Zu16/b1rt5o0bqQX+/S2SiQWLJBfvr6+Fm279+6VJHUIamuRWJGkZ7t3laenhy5cvKQbISH2vRggCdq0aqG3hw+zSKxIUq5cOTV82GBJ0roNG3X37n/JxoYB9TT01ZfVolmTe5/bCfeMNlu6bLkiIyPVMKCeObEiSTlz5NArA/pJkmbPW5Dk+EmuZCF79x1QRESkChbIb7OPZONGDSVJmzZvSevQgBT3/bQZOn/hot56faiyZXNM1jpcXVxUuFAhSfcy4kBG5+zknKj5HvyhKEmLlvyiPfv269VX+svb2yulQwMynId9xi9fsUp3795VUNvWcnVxSY/wgBSz5JdfJUldOnVM9DIPu56YTCaZTCY5OjrI08PD7viAlFC6ZAlJ0p07dxUWFm7Xuv7csk2S1DiwodW0+nVry8XZWTt27FR0dHSS1ktyJQs5evy4JKlsmdI2p5ctcy/hcuz4yTSLCUgNx46f0JwfF6ht65aq4p/8/vBxcXG6dOmypHuZaiCjK5A/nwoWyK8z/5zVyt/XWEw7dfqMVq5aLW8vLzVqGGAx7dq16/r6u8mqUb2qWjVvlpYhA+nmYZ/xO3buliRVqviErl27rh/mztOYT7/QV99M0pZtf8kwjDSPF0iOmJgY7d23X46OjnqifFkdO35C306eqv99+oW+nzZTR48dt7lcrZrVJUmLly7T1X8HzI03a86PunkzQi2aNZWzc+KS+kBqO3fhgqR7XYfsvUl0LP53c2nr381OTk4qXryYou/c0T9nzyVpvQwwkIVcvnxFkhJ8IlB8+6XLl9MsJiClxcXFafTHn8nLy1OvDHjJrnWtWv2HboSEKLuvrypVfCKFIgRSj6Ojo0a++5aGDH9L730wWnPmLVChggUUEnJvQNvixYpqxDtvWlWufDp2gu7cuaM3hg1Jp8iBtPewz/hTp0/f+++pM3rjnfcVERFpnjZrzo+qVsVfn40ZJS8vqryQsZ07f+HeU35yZNfc+T/p28lTFRcXZ57+/bQZ6vpUJw199WWL5apV8dez3bvqh7nz1OHpHqriX0meHvcGtD177rzatGqhN17jmoGMY96ChZKkOrVq2pX0i4iMNH/m58lj+3ezX57cCj58RBcvXVapfytmEoPKlSwk6tYtSZKrq+3yVjc313vzRUWlWUxASpv/8yIdCj6sQQP6ydfHJ9nruXT5isZ++bUk6aW+vbkzg0yjcqWKmvT1BBXIn1+HjxzV6j/W6e9du+Xg4KCaNapZPXZ2w6Y/tW7DRvV8pruKFC6UTlEDaetRn/E3b96UJI37aqJKlSih2dO/1/rff9PECV8of/582rl7j/mJFUBGFv9eDgsL18TvvlfH9u20eMFcrf5tqd57a7hcXFz044KfzeMy3m/QwH4a+urLiomJ0ba/dmjN2vU6dfqM8uX1U60a1ekyhwxj85Zt+uXX35QtWzb1e+F5u9Z1K+qW+f8Teo+7uibvdzPJFQCZxqVLl/Xd5KmqWqWy2rZumez13Lp1S8Pffk+hoWFq1KC+OnUISsEogdS1avUf6vVCP/n55daM77/VxjUrtHDebLVp1UJzflyg/oOG6s6dO5KkyMgofTp2ggoXKqRez/ZI58iBtJGYz/i4uHvdfry9vDThi09UpnQpeXi4q2b1avrik49kMpn0x7oNOvPP2bQOH0iSuH+7sMXGxqpu7Vp6Y9jgewPY+vioXZtWGjTw3uCcM3+YY7HcnTt39NZ7H2jC19+o93PPaOnPP2r977/p2y/HydnZWe99MFo/zOFJQUh/p8+c0fsffiTDMDRoYD+VLlUyvUNKEMmVLMTdzU2SdPu27YF3bt26fW8+d3eb04GM7pOx43U3JkZvvT402euIiYnRm++OVPDhI/KvVFGj7nuUG5DR/XP2nEaOHiNfHx+N+3SMnihfTm5ubipcqKDeHj5M9evV0eEjR/XL8hWSpG8mfa8rV67qjdcGU52Fx0JiP+PjvzM92biR3P79/3glixdX+XJlJUm79+xN3YABO7nf9/61deOpbasWkqQrV6/p7Ln/xo+Y8cMcrVm7Tk917KCX+vZW/nz55OHhrurVqmj8Zx/Lzc1Vk6fNUGhoaKq/BiAhV65e1aChwxV+86a6d+2ibl06271ON/f/zpnbCQxYe/t28n43M+ZKFuLnl0fSvTehLfHtef380iwmICX9uXmrvLw8NeazsRbtd6Lv3aW/evWaXnr5VUnSRx+8b/X4wri4OI0cPUZbtv2l0qVKauyn/6PkFZnK72vWKiYmRnVq1bR5wW/aOFB/bt6q3Xv2qnOHIG3avEUuzs6aOmOWps6YZTV/bGyc+ZwZOuhlm0+aAzKLpHzG583rp/CbN5U/b16b0/PlzauDh4IVEhKaihED9suX97/v9fnyWb+fXV1dlSN7dt0ICdGNkFAVKnjvEeO/rVwtSXrSxtNS8ub10xPly+vvnbsUfOSo6tSqmUrRAwkLCw/Xy4Nf18VLl9W2dUsNfrl/iqzX08NDnp4eioiI1JUrV+VZzPqJWJev3PvdfP/5lRgkV7KQ0iXvlUgdPnLU5vTDR45JkkqVLJ5mMQEp7ebNCO3abftOYvSdO+Zp8d0i7vfZuC+1avUfKlyokL4a9xkDFSLTiU+Se3h62pzu8e8jM8P/7YMvWZ4XtsRPi4iISKkwgXSRlM/4MqVL6eix4xbnyv3Cw+895vP+O5xARuTp6an8+fPpwoWLuhlu/X6Oi4vTzX8/3++vcom/nngmcD2JfwTzzQTOESA1RUVF6dVhb+jU6dMKbNhA77zxmkwmU4qtv1TJktq9Z68OHz2q4sWKWkyLiYnRyZOn5OLsrMKFCiZpvSRXspDKlSrI09ND585f0JGjx6zuQK5dv0GSFFCvbnqEB9htx+b1NtsvXLyooM7dVLBAfi1eMNfmPN9OnqKfFy1RXj8/TRz/uXJkz56KkQKpI/5xssGHj9icfij4sCSZ78b/snB+guuqUa+RHB0dtG3j2hSOEkh7Sf2Mb1C/rpYtX6FdNrr9REVF6cjRezekypSimgsZX4N6dTXvp4XauXuPateqYTFt/8FDunv3rlxcXCwGNc+ZI4cuXb6sQ4ePqGQJyxuvsbGxOnrs3jmQL4HqLiC13LlzR8PefFcHDwWrdq0a+uiD9+To6Jii26hft7Z279mrtes2qFXzZhbTNm3equg7d1S/Xh25JLHCnTFXshAnJyd16dRB0r3Hbt669d9IyHPmLdCx4ydUtUpllStbJr1CBNLF3Hk/adrM2cqZM4cmTvhCeZNY4gdkFA0D6km6Nw7Ez4uXWkzbf+CgflzwkySpsY0ybyCrSs5nfEC9uipWtIj27T+gnxYtMbfHxsZq3FffKCw8XCWKF5N/5YqpGDmQMro93VlOTk76aeFi7T9w0NweGhqqsRPuPTWrbeuWFmNvNWxQX5I0aco0i4GbY2Nj9c2kKbpw8ZLy5fXjdwPSVGxsrN4ZMUp/79ylKpUr6bP/jZKTk1OKbyeobWt5eHhow6bNWrt+o7n9RkiIvvrmO0nSM127JHm9JsP4d4hpZAnR0dHq9/JgHTgUrFw5c8q/ciVdunRJBw4FK7uvr6ZN/kYFC+RP7zCBFPWwypUjR4/p2edflGEYqljhiQTL+9q3bS3/ypXSIlzALhO+/lazf7xXkVK8WFEVL1ZUV69d0/4DhxQXF6cOQW319vBhj1wPlSvIqP7cslVTp/83RtDB4MMyDEMVypczt/Xp/Zzq161j12f8kaPH9NLLgxUZGalSJUuoUMECOnL0uM5fuCAfH29999V4qzv6QFpIyjkQ75dff9Pojz+To6OjKlZ4Qp4eHtp34IDCwsJVtkxpTfp6vMVYXaFhYerb72Wd+eesnJ2dVKlCBXl7e5nPARcXF437bIxqVKuaNi8akPTjgp/NCcFGDQLk4WF7QNnBL/eXr6+vJOnatet6/a13zdNO//OPIiIiVaxoEXn8+56vV7eO+vZ+zmIda9dt0FvvfyDDMFStir98fLy1/e+dunkzQt27dtGQVwYkOX66BWUxLi4u+vbr8Zoxa45WrV6jDZv+lLe3l9q0aqF+Lzwvvzx50jtEIE1FREQoPoe8/8BBizs696tWxZ/kCjKFV1/ur0oVK2jRkl8UfOSIzvxzVh7u7qrqX1nt27VR86ZPpneIgF1CQkJ14FCwVfv9bfEDzdrzGV+mdCnNmTFF30+doW07dujU6TPKkSO7gtq2Vp9ez9IdAukmKedAvHZtWqlA/nyaMXuuDh4KVnR0tArkz6+nO3fUM92etnoqlq+Pj2ZOmaQ58+Zr/cY/dTA4WHfvxihXzpxq3bK5ej7TXcWKFkmV1wck5P4xftZv3JTgfC/26WVOrty5e8fm+XLq9Bnz/xcpUthqeuPAhpo8cYKmzvxBBw4e0t27MSpWtIi6dOqgNv8+ZSupqFwBAAAAAACwA2OuAAAAAAAA2IHkCgAAAAAAgB1IrgAAAAAAANiB5AoAAAAAAIAdSK4AAAAAAADYgeQKAAAAAACAHUiuAAAAAAAA2IHkCgAAAAAAgB1IrgAAkER/79yt4W+/r1ZBnVWnYRM1btFGnbo+qzffHaEFPy9SREREeoeIZNi5a7dq1GukkaPHpGscL738qmrUa6QLFy+maxzJ9eH/PlHAky10IyQk0ctMnjpdNeo10rLlK5K0rdfefEfN23RQVFRUUsMEACBFkVwBACAJvp82U/0HDdG6DRvl6emh+nXrqFaNGnJxcda6DZv02bgvder0mTSLZ+ToMapRr5F27tqdZtuEfWrUa6R2nZ5O7zBSxfETJ7V8xSo91bG9cmTPbvf62nV6WjXqNUpwet/ePXUjJESz5syze1sAANgjW3oHAABAZhF8+Ii+nzZD2bJl05hRI9SoQYDF9GvXr2vFqtXy8vJMpwiRFXzw7tu6HX1beXLnTu9QkuzbyVPl4OCgZ7qnTfKobJnSql2rhubMW6CuXTrJ18cnTbYLAMCDqFwBACCR1m3YJMMw1KRxI6vEiiTlyplTz3bvqqJFiqRDdMgq8ub1U9EiRZQtW+a6B3bp8hX9uWWrateqkSJVK4nVsnlT3b59W8tXrEqzbQIA8KDMddUGACAdhYSGSpKy+/omav47d+6oVfvOun07WiuW/iwvLy+refbuP6C+/V5WFf/KmjxxgiTJMAyt/H2NFi5ZqrNnzysiMkK+vr4qUriQGjUIUJdOHSTJortEv1eGWKx36c8/Kn++fOa/t2z7Swt+XqyDwcGKjIxS7ty51Cigvnr3fMbqbv/I0WO0fMUqfffVOMXExmrq9Fk6cvSYXFxc1CCgnga/3F+enp66ERKi776fpj83b1VYeJhKliihQQNeUrWqVRK1f+LFxMRo6bLlWvH7ap04eUp379xV7ty55F+5krp06qByZcvoj3Xr9ea7I9W86ZMaPfI9m+v56JPPteSXX/Xe22+oXeuW5vZbt25pwcLF+mPtev1z9pxi4+Lklye3alSvpq5PdVKRwoUSFWdS9qEty5av0If/+0SSdPHSZYvjV7VKZU36+t7xf+nlV7Vr916rY1ijXiPly+unRfPnaMYPc7V8xUpdvXpN+fLl1bM9uplf846duzR1+iwdPnJUDo4OCqhXV0MGDbQZY0xMjJYsW67fVqzSyVOnFRMTo8KFC6lNqxbq0qlDkhI8y5b/pri4ODVv8mSC82zYtFkzf5ijo8dPyNXFRVWr+Gtgvxes5tu5a7fFe/r+fZUvr59+WTjf/HejgPpycXHRkl9+VY+uXRIdLwAAKYnkCgAAieSXJ48kae2Gjer1XI9H3p13dnZW65YtNHfeAq34fY05KXK/Jb/8Kknq0K6Nue3Lid9p9o/z5ezspCqVK8vX10fXr9/Q8eMnde7cefN6Wrdsrr379uvc+QuqXauGcubIYV6Hu5ub+f+/+naSZs3+UU5OTipfroxy5cypY8dPaO78n7Txz82a8t3XFsvGW7fxT/28aLEqPvGE6tSuqf0HD2npsuU6e+6cPhn9gZ5/caDi4mLlX7miLl68pAOHgjVo2HDNnDJJJUsUT9Q+vXXrll597U3t3rNXbm6uqlyporw8PXXx4iWt/H2NPD08VK5sGTUMqK+cOXNo3YaNCg0Ls0oUREVF6ffVf8jDw0PNngw0t1+7dl0DBw/TyVOn5e3lpapV/OXs7KTzFy5q0ZJfVKhggUQlV5K7D+9XqGABtW7ZXMtXrJKbm6saN2ponla0SOFE7S9Jeuu9D/T3rl2qXrWKChYooF179mjUv0kbD3c3vTNilCo+UV61a9XQ/gMH9dvK33XhwkVN/uZLmUwm83puR0dryGtv6u9du+Xj7a0KT5SXs7OzDh4K1rgvJ2rnrj36bMwoOTgkrtB50+atkqRqVfxtTl+4eKk+/nycTCaT/CtXUq6cOXTg4CH1eqGfAurVtZg3Z84cat2yudau36Bbt26rdcvm5mm+vpbH3t3dXeXLltHuvft07vwFFSyQP1HxAgCQkkiuAACQSC2aNdGMH+bo8uUr6tilhxo1DJB/pYoqV7aMSpYoLkdHR6tlOga11Y/zf9KSX361Sq5EREZqzdr18vbyUuNGDSRJ0dHRWrBwkTzc3TVn5lQVyP9f5UJMTIz2Hzhk/nvku29p5OgxOnf+gno9091mxciates1a/aPKlG8mD4bM0qFChaUdK86ZvLUGZoyfaa+GP+V/vfhCKtlf1q4WF988pHq160jSYqMjFKffgO1a/devThwsCpVfELvv/2Gubrh28lTNW3mD5o9d75GvvdWovbpF+O/0u49e1XFv7I+Gf2Bsmf3NU+7fuOGLl68JEnKli2b2rVupemzZuu3lb+r+9NPWazn9zVrFXXrljp1CJKrq6u5/f1RH+nkqdNq0jhQ7731utzd3c3TLly8qMjIRz9lxp59eD//ypXkX7mSlq9YJV8fH418N3H76H4XL12Wu7u7Fs2bY95Xf+/crf6DhujbSVN0N+auPv94tPmYRURGqs9LA7Vn337t3LVH1av99x6Z8PW3+nvXbjV9MlBvDx8mT897YwVFRkbpnREfauOfm7V46TJ16hD0yLiioqJ09Ngx5c6VS7lz57IR9yWN+3KismXLprGf/k91atWUdO89/cFHH2vFqtUW8xctUkQj331Lu3bv0a1btx+5r8qXL6vde/dp1569JFcAAOmCMVcAAEikggXya+yn/5OfXx5FRkVp+YpV+uiTz/VM7xfUtHWQPv58nK5du26xTJHChVStahUdO35CB4MPW0xb9fsa3b59Wy1bNJOLi4skKTIqSnfu3FWBAvktEivSvQRDFf9KSYp52swfJEmjP3jPnBSQJJPJpBf79FLpUiW1dv0Ghf7b5el+zZs+af6RLkkeHu5q/2+FzZWrV/Xa4EEW3Uae7f60TCaTdu3Zk6jYrl69pl9XrJSzs5M+eO8ti8SKJOXMkUMVnihv/rtDUBs5ODhoyS/Lrda1dNm9tvsrgA4eCtaOv3cpR/bsevdNy8SKJOXPl0+lSpZ4ZJz27MPUMPTVly32VfVqVVSmdCldu35ddWvXsjhmnh4e6hDUVpIsjsuNkBAt+eVX+fnl0fvvvGlOrEj3jvO7b70uJycnLVzyS6JiOnX6jGJj4xKsAvrl1xWKvnNHzZs8aU6sSPfe08MGv2KREEuOooXvVf4cPXbcrvUAAJBcJFcAAEiCmtWrafH8Ofr0f6PUqX07lS1TWo6Ojrp5M0ILFy9Vj159dfrMPxbLdGrfTtJ/XYDiLbGREMiRPbvy5Mmto8eO66tvJ+nc+QvJjvVGSIiOHT+hwoUKqmRx6246JpNJlStWUGxsnIKPHLWaXrtmDau2+IRPubJl5O1tOYaMp6envL29dO36jUTFt3P3HsXGxqlOrZrKlzfvI+fPlzev6tSqqVOnT2vv/gPm9uMnTurAoWCVK1tGZUqXMrdv37FTktSsSWN5eLhbrS8x7N2HKS1btmw2u93EH5eHHbP7j8vOXXsUExOjOrVqyvXfxN79cuXMqUIFC+j4iZO6HR39yLhuhIRIks1xhSRpz959kqSmTRpbTfP18VHtmtUfuY2H8fb2lqQ0S3ABAPAgugUBAJBETk5OCmwYoMCG954YdPPmTf2+Zq2+mTRFN0JC9NnYCZo44Qvz/I0a3Bsv5PfVf2jIKwPk7u6uw0eO6vCRo6pY4QmVKF7MYv0j331L77z/oWbN/lGzZv+ofHn9VNXfX02bNFa9OrUSHWd8l5p/zp6zGBDUltDQMKs2W9074sdyyWNjWvz0sLDwRMV3+coVSVKBAgUSNb8kdWzfTpu3btOSX35V5YoVJP2XtGp/X5Lq/vUXTML6H2TvPkxpOXPmsNn9zO3f4/KwY3bnzh1z28VL917Xkl9+tUr6PSg8PFyuj3gsdERE5L1tubvZnH712jVJ9wajtSUxybWHiU+e3bwZYdd6AABILpIrAADYycvLS506BClXrlx67c13tHP3bt2+fdvc1eH+8UJ+X7NW7du1MVetPJgQkKQa1apq0YI5+nPzVm39a7t27t6j5StXafnKVWrcqIE++ejDRMUVFxcn6d4PclsVDfez9aPX4b7BTx9kesi01FSvTi35+eXRmrXrNWzwK3LKlk0rVq2Wu5vbQ59Sk1z27sOU9rBjkpjp8eJfV+lSJR/ZNcrZyemR6/P09JAkRUXdStT2U1rkv8kdLy/PR8wJAEDqILkCAEAKqfHvYKGxsXG6eTPCYhyJDkFtNHP2XC1ZtlwtmjXRqtVrrJ5scz9PDw+1aNZELZo1kSTtP3BQb743UmvXb9TmLdtUr27tR8aTJ8+9aoPkDp6a2uKfvnT+/PlEL+Po6Kj2bdto0pRpWvn7Gnm4uyv85k0FtW1t1fUnfv3nkrD+B2X0fZhc8a/Lv1JFvT70VbvXF//krPBw21VLuXLm1Jl/zuripcsqXqyo1fSLly7btf3wmzclSb6JfEw6AAApjTFXAABIJMMwHjr97Ll7P+KdnJysHhcbP17IwUPB+nbyVEVERKpFsyaJHsizYoUn1Kp5M0nSiVOnzO1O/1YVxMTGWi3jlyePihYprFOnz+jMP2cTtZ20VK2KvxwdHbTtrx26dPlKopdr37a1HB0d73VpWWb9KOt4NWtUk/Tvk4SiHv1UIFtSYx9my5ZNsTaOV1qqXrWKHB0d9OeWrYqJibF7fcWLFZWjo2OC+8i/8r2BmNesXWc1LSw8XH/t2GFzOfP7+xExnvp3nKPSpUomOmYAAFISyRUAABLpu++nasLX3+rcOetKiCtXr2rMZ2MlSQ3q1zX/KLxfx38Htp07/ydJthMCly5d1rLlK3T79m2L9ujoaO3ctVvSfxUZkpQ7V05JSvBHbZ9ezykuLk5vvPO+jhw9ZjU9NCxMix8x5kZqyZ07l1q1aK7oO3f0wegxCg2zHLPkRkiIDhw8ZLVcrlw51aB+PR05eky7du9VqZIl9ET5clbzPVG+nKpXraIbISH636df6NYtyy4rFy5e1PETJx8ZZ0rvw9y5cur6jRDd/LfaIj3kyZ1bbVu30oWLl/TOiA91/Yb1IMRnz53T2nUbErU+Nzc38xOLrly9ajW9beuWcnZ20srf1+ivHX+b22NiYjRuwkTdunXbahnp3rGWEn5/xzt0KFiSVNW/cqLiBQAgpdEtCACARIqKuqV5Py3U7B/nq3ChQiperIicnZ115cpVHTgUrJiYGBUqWEBDX33Z5vLx44VcvnzF6sk28cLCw/Xh/z7Rp2MnqFzZMsqTO7du376lffsPKiQ0VOXKljEPpCtJAfXqasr0Wfry62+1fcff8vW5VzHz8oCX5OvjoxbNmujkqdOaPmu2nuvzkkqXKqmCBfLLMAydO39Bx0+ckJubm81ET1oY9uorOvPPWf29a7fadXpaVSpXloeHuy5duqzDR4+pU/t2Fo9jjtepfTut27BRku1xa+J98P7bGjBoqFat/kPb/tqhypUqytnZSefOX9DRY8f16sv9VbKE9VOA7pfS+7BB/Xqa//MiPfP8i6pU4Qm5ODurSOHCerZH10Qtn1KGDX5FFy9e0tr1G7X1r+0qXaqk8vr56dat2zp1+rTOnjuvhgH11DiwYaLWV79ubR0KPqydu/aoZfOmFtMK5M+nV18eoM/GTtCgocNVpXIl5cyZQwcOHlL4zZtq0ayJVv6+xmqdDerX067dezXg1aGqXrWK3Fxd5ePro1f6v2SeJyoqSsGHj6hokcIqWCC/fTsFAIBkIrkCAEAi9en1rMqVK6Ntf+3QseMntHvvPkVERMrTw0NPlC+rhvXrq3PHIPOTWx7k6Oioqv6VtWLV6gQTAgULFNDgVwZox9+7dOr0aR06FCxXN1flz5dPvZ7roY5BbeXs7Gyev1zZMvrw/Xc0Z94Cbdv+t6L/fWzu872eNSdaBrzUV7Vr1dBPCxdr774DOn7ipDw83JUnd251ah+kJxs3StkdlQQeHu767qtxWrjkF638fY327N2n2Lg45c6VUy2aNVHrls1tLudfuaKyZcsmR0dHtfx3XBpb8uTOrZlTJunHBT9r7foN+mvH33J0cFCePLnVuUOQAurVSVScKbkPB/Z7QYZhaMOfm7X6j3WKjY1V1SqV0zy54urioglffKKVv6/RrytW6dix4zp46LCy+/oqb14/tWzeTM1sPDo5IW1bt9LUGbO0avUfVskVSerSqYPy5M6lmT/M1YFDwXJxdlYV/0p6uf+L+n3NWpvrfLpzR4WH39Tva/7Q2vUbFRMTo3x5/SySK+s3/qnoO3cemmQDACC1mYxHdSAHAAAp4vbt22rVvrNiY2L129KFVgOwIvFWrf5D744cpdYtm2epgWYzu9ffelebNm/Vr4sXKFfOnGmyzVeGvK49+/Zr2aL55oQiAABpjTFXAABIIz8tXKKbNyPUumVzEit2iImJ0czZcyVJT3XqkM7R4H4vvfC8DMPQ7B/np8n2Dh85qm3bd6hH1y4kVgAA6YpuQQAApKLQsDB9/c0kXQ8J0Zatf8ndzU09n+2e3mFlShs2bdaGTX/q4KFgnTx1Wo0a1NcT5cqmd1i4T8nixdW6ZXMtXPyLnuvRzfyI5tQyZfpM5cieXc+lcZcqAAAeRLcgAABS0YWLFxXUuZucnJxUsngxvfpyf1WrWiW9w8qUJk+dru+nzZS3l5fq1K6l14cOko+3d3qHBQAAQHIFAAAAAADAHoy5AgAAAAAAYAeSKwAAAAAAAHYguQIAAAAAAGAHkisAAAAAAAB2ILkCAAAAAABgB5IrAAAAAAAAdiC5AgAAAAAAYAeSKwAAAAAAAHYguQIAAAAAAGCH/wOnmL9XCQCMeAAAAABJRU5ErkJggg==", - "text/plain": [ - "
" - ] - }, - "execution_count": 26, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "with pulse.build(backend, name='Right align example') as program:\n", - " with pulse.align_right():\n", - " gaussian_pulse = library.Gaussian(100, 0.5, 20)\n", - " pulse.play(gaussian_pulse, pulse.drive_channel(0))\n", - " pulse.play(gaussian_pulse, pulse.drive_channel(1))\n", - " pulse.play(gaussian_pulse, pulse.drive_channel(1))\n", - "\n", - "program.draw()" - ] - }, - { - "attachments": {}, - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### `align_equispaced(duration)`\n", - "\n", - "If the duration of a particular block is known, you can also use `align_equispaced` to insert equal duration delays between each instruction." - ] - }, - { - "cell_type": "code", - "execution_count": 27, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABFcAAAFdCAYAAADG/YI8AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAABvI0lEQVR4nO3dd3RU1dfG8WfSO4EQEjrSkRZ6lyItdASRoj/AiogKIthAsL0IKkVEFEGKoPQqSpOmgIJ0JPQeOoSEJBBS7vsHZmTIBJJMkkn5ftZiac5te+6UM7PvPueaDMMwBAAAAAAAgDRxsHcAAAAAAAAA2RnJFQAAAAAAABuQXAEAAAAAALAByRUAAAAAAAAbkFwBAAAAAACwAckVAAAAAAAAG5BcAQAAAAAAsAHJFQAAAAAAABuQXAEAAAAAALAByZVUMplMMplM8vX11Y0bN6yu8+mnn8pkMmnkyJGZGhuyjxIlSshkMtn9+In/nJyclC9fPpUvX149e/bUzJkzdfv2bbvFl142btwok8mkPn362DuUFIuNjdWaNWs0YMAAVapUSR4eHnJ3d1eFChX05ptv6sqVKw/cfsWKFWrcuLF8fHzk4+OjJk2aaOXKlQ/c5p9//tGTTz4pf39/ubu7q3Llyho/frwSEhLS9Bi2bNmiNm3aKF++fPLy8lLt2rU1a9asNO0rOadOnZLJZFKTJk3Sdb8AAABAWpBcSaPw8HCNHTvW3mEANunSpYt69+6tXr16qXHjxnJzc9P8+fPVp08flShRQr/++qu9Q3ygkSNHymQyacaMGfYOJd1s2rRJrVq10qRJkxQVFaXg4GC1aNFCV69e1RdffKEqVaro8OHDVrcdP368OnTooK1bt6pBgwZq1qyZtm/frnbt2umrr76yus22bdtUq1YtLVy4UCVLllSHDh109epVDRo0SN27d5dhGKmKf9GiRWrcuLFWrVqlKlWqqHXr1jp69Kh69+6tN998M9XnI7Vy4msCAAAAWZ+TvQPIjkwmk1xdXTVhwgQNGjRIefPmtXdIQJp8/vnnKlGihEXbxYsX9fHHH2vSpElq166dVq5cqdatW9snQBvVrl1bISEhypMnj71DSTEHBwd169ZNgwcPVu3atc3t4eHheuqpp7R69Wr17dtXW7dutdju8OHDevPNN+Xq6qoNGzaoXr16kqQjR46ofv36GjRokFq3bq3SpUubt4mNjVWvXr1069YtjR07VoMGDZIkRUZGqmXLllqwYIHatGmT4sqf69ev69lnn1V8fLwWLVqkJ554QpJ06dIlNWzYUF988YXatWtHtQkAAAByHCpX0sDBwUEvvviiIiIi9Pnnn9s7HCBdBQYG6quvvtJHH32khIQE9e3bVzExMfYOK008PDxUvnx5FSxY0N6hpFizZs00b948i8SKJOXJk0fff/+9pLvVJqdPn7ZYPmHCBMXHx6tfv37mxIoklS1bVu+9957i4uI0YcIEi22WLFmikydPqmrVqubEiiR5eXmZK12++OKLFMc+depURUREqGPHjubEiiQFBARozJgxqd4fAAAAkF2QXEmjt99+W+7u7po4caKuXbuWom0uXLigMWPGqHHjxipcuLBcXFwUGBioJ554Qjt27LC6zb1zc0yaNEmVKlWSu7u7HnnkEY0ZM8Zcsr9r1y61b9/ePMdBx44dk/z4SmQYhn766Sc1a9ZMefPmlZubmypUqKCRI0cqOjo6DWcjeWfPntWAAQNUqlQpubm5KV++fGrXrl2Sq+579uyRq6ur8uXLp3PnziXZzwsvvCCTyaSXXnopyePo3r27ypYtK09PT3l7e6t27dr6+uuvrc4Xce+QgZ07dyo4OFi+vr7Kly+funXrZj52VFSUhg4dqhIlSsjNzU2VKlXSwoULk+zv3jk9Lly4oD59+iggIEDu7u6qXr16muaZSOk5y2jvvPOOihcvrosXL2rBggXm9ofNdZHcsIzE17JhGJo4caKqVq0qDw8PBQUFSUr981miRAl98MEHkqS+fftazCGzceNGSQ+ecyUuLk4TJ05UjRo15OXlZZ4bZPLkyYqPj0+yfpMmTWQymXTq1CktXbpUdevWlaenp/Lly6cePXpYfd2mt0KFCsnf31+SdP78eYtlifOqdO3aNcl2iW0rVqxI8TbVq1dXyZIldeDAAZ06dSpF8T1of23btpWbm5vWrVuXqvl8zp49q2eeeUb+/v7y8PBQjRo1NHv2bKvrpuQ1AQAAAGQIA6kiyXB0dDQMwzAGDRpkSDLeeusti3VGjRplSDJGjBhh0T558mRDklGuXDmjdevWRrdu3Yxq1aoZkgxnZ2dj9erVSY5XvHhxQ5IxcOBAw93d3WjTpo3Rrl07w9vb25BkvP/++8Yff/xheHh4GNWrVze6detmlC5d2pBklCpVyoiOjrbYX3x8vNGjRw9DkuHl5WU0adLE6Ny5s1G0aFFDklG7du0k25w8edKQZKT25bJ161Yjb9685sf8xBNPGI0aNTKcnJwMR0dHY+7cuRbrf/bZZ4Yko1mzZkZCQoK5fcmSJYYko2zZskZkZKS5/datW4Ykw8/Pz2jUqJHx1FNPGc2bNzc8PDwMSUbv3r2TxDRixAhDktGvXz/D1dXVqFGjhsU5K1u2rHHjxg2jVq1aRoECBYyuXbsaTZo0MUwmk2EymYxVq1ZZ7G/Dhg2GJKN9+/ZGsWLFjICAAKNbt25GixYtDCcnJ6uvA8P473m19ZylVeLxT548+cD13nzzTUOS8eyzz5rbEl8PjRs3trpN4jmePn261WO++OKLhrOzs9G8eXPjqaeeMjp37mwYRuqfz8GDBxtVq1Y1JBkNGjQwevfubf4XEhJiGMZ/z8/928bFxRlt2rQxJBk+Pj5Gp06djI4dO5rfV507dzbi4+MttmncuLEhyRgyZIjh6OhoNGnSxOjatav5vVOmTJkk7x3DMMzvnYed65QICwszv65OnDhh0Z54nHvfI/fKnz+/IckIDw83tyWev5UrV1rdpmvXroYkY9myZSmKL0+ePIYk459//rG6vGbNmoYkY+/evSna34kTJ4zAwEBDklGyZEmje/fuRqNGjQyTyWQMGDAgyeswJa8JAAAAICOQXEmle5MrFy9eNDw8PAxPT0/j8uXL5nWSS67s27fPOHDgQJJ9rlq1ynBxcTFKlSplkVQwjP9+kBYqVMg4duyYuT0kJMRwdXU1PDw8jBIlShiTJ082L4uJiTGaNWtmSDK+//57i/2NGTPGkGQ0adLEuHDhgsU2zz33nNVkUVqSK+Hh4UbBggUNR0dHY/bs2RbLduzYYeTNm9fw8vKyOG8JCQnmuD/77DPDMAzj/PnzRv78+Q1nZ2djx44dFvuJjY01lixZYty5c8ei/fLly+YfcZs2bbJYlvjDX5LFObtz547RvHlzQ5Lx6KOPGs2aNbP4kTp16lRDkvHYY49Z7C/xx7sko0WLFhbbbN++3fDy8jIcHByMnTt3WmxnLbmSlnOWVilNrsyePduQZNSrV8/cZmtyJX/+/FbfB7Y8n/cfK1FyyZXPP//ckGRUrFjRuHjxorn9/PnzRrly5QxJxsSJEy22SUyueHh4GFu3bjW3R0VFGfXr1zckGdOmTUsSQ3omVz7++GNDklG5cmWL9r179xqSjLx58ya7bVBQkCHJ2Ldvn7ktMZGXXLJj4MCBhiTjyy+/fGhs4eHh5sd6bwLnXp06dTIkGcuXL3/o/gzDMFq3bm1O7sXGxprbly9fbjg6Olp9HT7sNQEAAABkBIYF2SAgIEAvv/yyoqKiNHr06IeuX7lyZVWsWDFJe6tWrfTkk0/q+PHjOnDggNVtP/zwQ5UqVcr8d/ny5dWmTRtFR0erSJEi6tevn3mZi4uLXn/9dUl37zySKC4uTmPGjJGnp6fmzp2rwMBAi20mTpyowMBATZkyxWIIhrOzs8qVK6dy5co99DEm+v7773XhwgUNHDhQvXr1slhWs2ZNDR8+XJGRkRbl/SaTSTNnzlTevHn13nvvaffu3erTp4+uXr2qESNGqGbNmhb7cXJyUqdOneTs7GzR7u/vr1GjRkmSli1bZjW+hg0bWpwzZ2dnvfrqq5KkQ4cOafLkyfL09DQv79Onj/Lnz69t27YpNjY2yf4cHBw0ceJEi21q1aqlV155RQkJCfr6668feL6ktJ2zjJY/f35JUlhYWLrt86233rL6PrDl+UytL7/8UpI0duxYBQQEmNsLFiyozz77TJKSzE+SaNCgQRZzmnh4eOiNN96QJG3evDnJ+onvnfsfV2rt3r1bH3/8sSQl+byJjIw0x5KcxNfmzZs3U7ydtW2Sk7iv9NrfiRMntGrVKvn4+Gjs2LFycvpv/vX27dtbHXoEAAAA2At3C7LRW2+9pW+++UaTJ0/WkCFDLH6oWRMTE6NVq1Zp+/btunLliu7cuSNJ2r9/vyTp6NGjqly5cpLtWrZsmaStZMmSD1124cIFc9uuXbt09epVtWjRwmqc7u7uqlGjhlauXKmjR4+akymFCxfWoUOHHvi47rdmzRpJspjU8l6NGjWSJG3fvt2ivUiRIvr222/VrVs3NWnSRBEREWrYsKHefvvtZI+1Z88erVmzRqdPn1Z0dLQMwzD/eDt69KjVbR50zkqUKKGyZctaLHN0dFTx4sW1c+dOXb16NckEqUFBQVaTTz169NDo0aP1+++/Jxt/orSes4xk/DunT+K8P+mhQ4cOD1yeluczNc6cOaMzZ87I39/f6uugXbt28vX11bFjx3Tx4kWLJKRk/bWT+Hq59/2WKLXvHWsuXbqkJ554Qrdv39bAgQMVHBxs8z6zuj/++EOS1Lp1a6t3e+rRo4fmzZuX2WEBAAAAVpFcsZG/v79eeeUVjRkzRp9++qnGjRuX7Lr79+9Xhw4dHjg5ZHJXdAsXLpykzcvL66HL7r3LS+Jx165d+9Afy1evXk1Vpcr9Eo/VoEGDhx7nfk8++aQ6d+6sJUuWyMPDQz/88IMcHR2TrHfnzh316dNHP/30U7L7T6/zee9ya3fOKV68uNVtEm9zfP/ko9bYcs4ySuKx8uXLl277LFasmNV2W57P1Eh8LpJ7zkwmk4oXL64bN24oNDQ0SXKlSJEiSbbx9vaWZP21YaubN2+qTZs2OnXqlJ588kmrd9tJfG0+aELqqKgoi1gTtwsLC0t2O2vbJCcxhsQ4fHx8bNrfw56n+28hDgAAANgTyZV0MGTIEH399df65ptvNHToUKvrGIahbt266dSpU+rXr5/69eunkiVLysvLSyaTSe+++65GjRplrhS4n4ND8iO4HrTsXolDfUqXLv3QH/B+fn4p2ufDjtW1a1eLoTL3K1++fJK2CxcumCs9oqOjdfDgQas/pMaOHauffvpJlStX1pgxY1S9enXlzZtXzs7OOnLkiMqVK5eh5zO92XLOMsru3bslSY8++miKt7F2l6Z7ubm5WW235flMbw9KPmbm6+P27dvq0KGDdu3apZYtW2r27NlWj5+YsAoLC1NUVJTV10/i3YzuTVYUK1ZMYWFhOnfunKpUqZKibZLj4+OjPHnyKDw8XOfOnbP6mknN/gAAAIDshORKOsifP79effVVjRo1SqNGjVKhQoWSrHPo0CEdOnRINWvW1OTJk5MsP3HiRIbHmXjFvXz58kluk5sRxzp8+LDefvtt1ahRI8XbGYahvn376urVq+rRo4fmz5+vZ599Vvv37zffgjbRkiVLJEk//fRTkjk8MuN83iu5214ntlt7Tdwvrecso8THx5tvP920aVNzu4uLiyTLOTbudfbs2TQdL7Oez8TnIrnn7N5lyVUxZYa4uDg99dRT2rhxo+rXr6/Fixebz/39fH19VaxYMZ05c0a7d+9Ww4YNLZafPXtWV69eVfHixS0qSqpWraq9e/dq165datOmTZL97tq1S5KsJl6sqVq1qjZv3qxdu3YlSa7ExsbqwIEDcnNzSzLszprEoXcPe28BAAAAWQET2qaTwYMHy9vbW1OmTFFoaGiS5YkTglobUhAWFqa1a9dmeIy1atVSnjx5tGnTJl2/fj1Dj9WiRQtJ//1gTqmJEydq9erVatCggX744Qe99957unTpkp577rkk6z7onM6fPz8NUafdnj17rM4HMnfuXElK8mPXmrSes4zyf//3fzpz5owKFy6sLl26mNvz588vJycnnTx5UnFxcRbbxMbGWkyinBppeT4Tkw33x/EgxYoVU7FixXTlyhX99ttvSZavXLlSYWFhKl26dJIhQZklMcm4fPlyBQUFaeXKlQ+sZpKktm3bSpI5IXavxLb27duneJvdu3frxIkTqlSpUoqH4Dxofz///LNu376t5s2bJ1u9dK/E98yqVasUERGRZHnie+t+aXlNAAAAALYiuZJO/Pz89NprrykmJkbTpk1Lsrx06dJycHDQ+vXrLX6E3759W/369cvwZIckubq6aujQobp586aeeOIJq9UAoaGh+uGHH5K0lS9fPlXDUV566SUVKFBAY8aMSXL3IenuD5/Vq1db3B3p4MGDeuutt+Tt7W2eZ2X48OGqXbu2VqxYoW+++cZiH4lXv+9vX7hwoWbNmpXiWNNDQkKCXn31VYu5K3bu3KmvvvpKJpNJL7/88kP3kZZzJt29k5HJZNLIkSPT5bFcvHhRr776qt5//305Ojpq+vTpFhUTLi4uqlevnq5fv65JkyZZxDd48GCdPHkyTcdNy/OZWIVy+PDhVB0r8c5Qb7zxhq5cuWJuv3jxooYMGSJJ5jtu2SrxvWMt6ZqcgQMHavbs2SpfvrzWrFkjX1/fh27z+uuvy9HRUd98843+/PNPc/vRo0f1ySefyMnJKclj6ty5sx555BHt3bvXYr6oqKgovfLKK5LuJo7v9/jjj6t8+fJJJld+/vnn5ePjo2XLlmnx4sXm9suXL5uHTFrbnzWlSpVSy5YtFRERocGDBys+Pt687JdfftGCBQusbpfW1wQAAABgE7vdBDqbkmQ4OjpaXXb9+nXDx8fHkGRIMkaMGGGx/IUXXjAkGe7u7kbbtm2Nrl27GgEBAUb+/PmNPn36GJKM6dOnW2xTvHhxI7mnacSIEVa3MQzDOHnypCHJaNy4sUV7fHy88cwzzxiSDBcXF6NOnTpG9+7djSeeeMKoWLGiYTKZjKpVq1rdV2pfLtu2bTPy589vSDKKFi1qBAcHGz179jSaNWtm+Pr6GpKMJUuWGIZhGDExMUZQUJAhyZg5c6bFfo4cOWJ4enoaHh4exqFDh8ztmzZtMhwdHQ1JRo0aNYwePXoYNWvWNCQZb775ptXHn5Zzlqhx48aGJOPkyZPmtg0bNhiSjHbt2hlFixY1AgMDjW7duhmtWrUynJ2dDUnGsGHDkuwruec1NecsUeLz+fHHH1uN25rE43fp0sXo3bu38b///c/o3LmzERQUZD6ngYGBxqpVq6xuv3btWsPBwcGQZNSrV8/o3LmzUaxYMSN//vxG7969U/1aNoy0PZ+hoaGGm5ub4ejoaLRu3dp49tlnjeeee878Okl8fnr37m2xXVxcnBEcHGxIMvLkyWN07tzZ6NSpk+Ht7W1IMjp16mTEx8dbbGPt+U/0oNdO4nvH2nbWLF261LxNixYtjN69e1v9FxISkmTbsWPHGpIMJycnIzg42OjYsaPh7u5uSDK+/PJLq8fbsmWLeZ06deoY3bp1MwoWLGhIMrp27WokJCQk2SbxudywYUOSZQsXLjQcHBwMk8lkNG3a1Ojatav5tfvGG2+k6BwkOn78uBEQEGBIMkqVKmV0797deOyxxwyTyWS88soraXpNAAAAABmB5EoqPSi5YhiG8f777yebXImLizO++OIL49FHHzXc3NyMgIAAo1evXsapU6eS/dGf3smVRMuWLTPatm1rFChQwHB2djYKFChg1KhRwxg6dKixc+dOq/tKSy7uwoULxtChQ42KFSsaHh4ehoeHh1GqVCmjY8eOxowZM4ybN28ahmEYQ4YMMSQZTz75pNX9fPvtt+Yf3Xfu3DG3b9u2zWjWrJmRN29ew9vb26hfv76xaNGiZB9/RiVXevfubYSGhhpPP/204e/vb7i6uhpVq1a1ehzDePDzmtJzlqhKlSqGk5OTcfz4cav7e9DxE/85ODgYvr6+Rrly5Yzu3bsbM2fONG7duvXAffz8889GrVq1DFdXVyNfvnxGt27djJMnT6bptZwotc+nYRjG6tWrjQYNGhheXl7mx5P4oz+55IphGEZsbKwxYcIEo1q1aubzXLNmTWPSpElGXFxckvUzK7kyffp0i+cmuX/WEhuGYRjLly83GjVqZHh5eRleXl5Go0aNjBUrVjzwmAcOHDC6dOli+Pn5GW5ubkbFihWNsWPHJkkwJXpQcsUwDOOPP/4wWrdubfj6+prP64wZM1L0+O936tQpo2fPnubYgoKCjBkzZqT5NQEAAABkBJNhZNLtN4AcaOPGjWratKl69+6d4ZMEW3Pt2jX5+/vrueee03fffZfpxwcAAAAAMOcKkK1t3LhRzs7OGjZsmL1DAQAAAIBci1sxA9lYly5dFBMTY+8wAAAAACBXo3IlBQzDUGRUlBhBBQAAAAAA7secKykQGRWlpi3basXiBfL09LB3OAAAAAAAIBneXp6ZfkwqVwAAAAAAgIWzZ89q4Ouv6ezZs/YOJVsguQIAAAAAACz4+vrqyW7d5Ovra+9QsgUmtAUAAAAAABa8vb3VoEFDe4eRbVC5AgAAAAAALNyKjtb+fft0Kzra3qFkCyRXAAAAAACAhavXrum776bo6rVr9g4lW2BYEAAAAAAAsFCwYEF98n+j5O7ubu9QsgWSKwAAAAAAwIKTk5O8vb3tHUa2wbAgAAAAAABg4fq1a5o9+wddZ1hQipBcAQAAAAAAFmLj4nTlyhXFxsXZO5RsgWFBAAAAAADAQkBAgAYNesPeYWQbVK4AAAAAAADYgOQKAAAAAACwcO7cOQ0Z8qbOnTtn71CyBZIrAAAAAADAgo+Pj4KD28jHx8feoWQLzLkCAAAAAAAs+Pj4qFmzZvYOI9ugcgUAAAAAAFi4deuWDh06pFu3btk7lGyB5AoAAAAAALBw9epVfT3pK129etXeoWQLDAsCAAAAAAAWAgMDNXLkB/JmzpUUIbkCAAAAAAAsODs7K5+fn73DyDYYFgQAAAAAACxcv35d8+fP0/Xr1+0dSrZAcgUAAAAAAFi4c+eOTp48qTt37tg7lGyBYUEAAAAAAMBCYGCg3nrrbXuHkW1QuQIAAAAAAGADkisAAAAAAMBCaGiohr33rkJDQ+0dSrZAcgUAAAAAAFjw8vJSo0aPycvLy96hZAvMuQIAAAAAACzkyZNHrVq3tncY2QaVKwAAAAAAwEJMTIxOnjypmJgYe4eSLZBcAQAAAAAAFi5fvqxxY7/Q5cuX7R1KtsCwIAAAAAAAYCEwMFDvvPue8ufPb+9QsgWSKwAAAAAAwIKzs7MKFixo7zCyDYYFAQAAAAAAC2FhYVq6ZInCwsLsHUq2QHIFAAAAAABYuH37tg4cOKDbt2/bO5RsgWFBAAAAAADAQsGCBTVs+HB7h5FtULkCAAAAAABgAypXAAAAAKSrf047ZurxKhaPz9TjAbnBhQsX9N13U/TCCy8ysW0KkFwBAAAAYJPMTqY87PgkWwDbubu7KygoSO7u7vYOJVsguQIAAAAgxeydSEkJazGScAFSx9fXVx06dLR3GNkGyRUAAAAAVmWHREpKUd0CpE5sbKwuX76sAgUKyNnZ2d7hZHkkVwAAAABIylnJlIehugV4sIsXL+qzMaM1ZOhbKlq0qL3DyfJIrgAAAAC5UG5KpKQUCRfgPwUKFNDgN4eoQIEC9g4lWyC5AgAAAOQCJFPShuFEyK1cXV1VvHhxe4eRbTjYOwAAAAAAAJC1hIeH65dfVio8PNzeoWQLVK4AAAAAOQxVKhmHoUPILSIjI7Vt2zZVrRqkPHny2DucLI/kCgAAAJDNkUyxL4YOIScqXLiwPvroY3uHkW0wLAgAAAAAAMAGVK4AAAAA2QhVKlkfQ4eQE1y8eFEzpk9Xn759FRgYaO9wsjwqVwAAAAAAgAVXV1eVLlNGrq6u9g4lW6ByBQAAAMiiqFLJOahmQXaTN29ede3a1d5hZBskVwAAAIAsgmRK7sJEuMjKYmNjdePGDfn6+srZ2dne4WR5DAsCAAAAAAAWLl68qI8+/EAXL160dyjZApUrAAAAgB1QpYL7MXQIWYm/v79efe01+fv72zuUbIHkCgAAAAAAsODm5qYyZcraO4xsg+QKAAAAkAmoVEFaMC8L7CUiIkI7tm9Xrdq15ePjY+9wsjzmXAEAAAAAABZuRkRo7do1uhkRYe9QsgUqVwAAAAAAgIXCRYro09Fj7B1GtkFyBQAAAEhnDAFCRmHSWyBrYlgQAAAAAACwcOnSJY394nNdunTJ3qFkC1SuAAAAADaiUgX2xKS3yAjOTk4KDCwoZyfSBinBWQIAAAAAABby+fmpZ69e9g4j2yC5AgAAAKQCVSrI6piXBekhLi5OUVFR8vT0lBPVKw/FnCsAAAAAAMDChQsXNHzYe7pw4YK9Q8kWSD8BAAAAyaBKBTkF1SxIrfx+fnrxpX7K7+dn71CyBZIrAAAAAADAgruHhypVqmTvMLINkisAAADAv6hUQW7CXYbwIDdv3tTu3btVrVo1eXt72zucLI85VwAAAAAAgIXw8HAtWbxY4eHh9g4lW6ByBQAAALkSVSqAJeZlwb2KFCmicePH2zuMbIPKFQAAAAAAABtQuQIAAIBcgUoVIPWYlyX3unz5subPn6du3Z5SgQIF7B1OlkflCgAAAAAAsODo6CgvLy85OpKYTgkqVwAAAAAAgAU/Pz/16dPX3mFkGyRXAAAAkOMwBAjIGEx6m3skJCQoJiZGrq6ucnBg0MvDcIYAAAAAAICF0NBQvTV0iEJDQ+0dSrZA5QoAAACyNapUAPti0tucyc/PT337Pis/Pz97h5ItkFwBAAAAAAAWPDw8VK16dXuHkW2QXAEAAEC2QqUKkLUxL0vOEBUVpQMH9qtSpcry9PS0dzhZHnOuAAAAAAAAC9evX9ec2bN1/fp1e4eSLVC5AgAAgCyLKhUgZ6CaJfspUqSIxo2fwJ2CUojkCgAAAAAAsGAymeToSII7pUiuAAAAIMugUgXIPbjLUNZ25coVLVm8WJ2feEL+/v72DifLo74HAAAAAADABlSuAAAAwC6oUgFwL+ZlyVr8/f314ksv2TuMbIPkCgAAADIFyRQAqcXQIfsxDEMJCQlycHCQyWSydzhZHsOCAAAAAACAhXPnzmnQwNd17tw5e4eSLVC5AgAAgHRHlQqAjMDQocyTL18+9Xr6aeXLl8/eoWQLJFcAAAAAAIAFT09P1alT195hZBskVwAAAGATqlQA2BPVLBkjOjpahw8dUrny5eXh4WHvcLI8kisAAABIFZIpALI6JsK13bVr1zR9+vcaMvQtkispQHIFAAAAAABYKFy4sEaP+Uyurq72DiVbILkCAACAZFGlAiAnYOhQ6jk4OMjd3d3eYWQbJFcAAABgRjIFQG7B0KEHu3btmlasWK727TvIz8/P3uFkeQ72DgAAAAAAAGQt8fHxioyMVHw8SaeUoHIFAAAgl6JKBQD+w9AhSwUKFNCAAa/aO4xsg+QKAABALkEyBQBSh6FDSKlsPSzIZDJZ/HN2dlb+/PlVuXJl9enTR4sWLVJcXNwD93Hr1i29//77Klu2rNzc3FSoUCE9++yzCg0NzaRHAQAAkP7+Oe2Y5B8AwDa56bP13LlzGjRwoM6dO2fvULIFk2EYhr2DSCuTySRJ6t27tyQpISFB4eHhOnLkiA4fPizDMFS6dGnNmTNHtWvXTrL97du31bRpU/35558qWLCgGjVqpFOnTmn79u3y9/fXn3/+qZIlSyoyKkpNW7bVisUL5OnJ/b0BAEDWkpO/3ANAdpQTKlxu3ryp3bt3q1q1avL29rZ3OKni7eWZ6cfMEckVaw/h+PHjevfddzV//nx5eHhoy5YtCgoKslhn2LBh+uSTT1SvXj2tWbNGXl5ekqSxY8dq8ODBaty4sTZu3EhyBQAAZCkkUwAge8kJyZbshORKKj0ouZLo+eef17Rp01StWjXt2rXL3H7nzh0VKFBA4eHh2rVrl6pVq2axXdWqVbVv3z79/fffKle+PMkVAABgFyRSACBnyuoJl1vR0Tp+4oRKlSwpd4/s9TvYHsmVbD3nSkp88cUX8vT01O7du/XHH3+Y27ds2aLw8HCVKlUqSWJFkrp27SpJWrFiRabFCgAAkFvG8gNAbpfVP++vXrumKd9+o6vXrtk7lGwhx98tKE+ePAoODtbChQu1YcMGNWzYUJK0d+9eSVL16tWtbpfYvm/fvswJFAAA5DpZ8cs0AMA+stqtoAsWLKiPPv5Enp6ZXwWSHeX45IokBQUFaeHChQoJCTG3nTlzRpJUpEgRq9sktp8+fTrjAwQAADkOiRMAgK1S0pdkVALGyclJefLkyZB950S5IrmSP39+SVJYWJi5LTIyUpLkkczYscTs3M2bNzM4OgAAkN2RSAEA2EtGVbxcv3ZNq1atUuvWrZXPz8/m/eV0uSK5kjjhbeIEuAAAAClF4gQAkN2kR8VLbFycLl68oNi4uPQKK0fLFcmVq1evSpLy5ctnbku87XJ0dLTVbaKioiTJ4n7e+/fvk5ubW0aFCQAAMtnZG3ntHQIAAHZx4uTD12n2eHNduHBBFy5cyPiA0lGjhg0y/Zi5Irmye/duSdKjjz5qbitWrJgk6dy5c1a3SWwvXry4ua1161ZKiM/at8sCAAAAACA3Sxy9kplyfHIlPDxcq1evliQ1bdrU3F61alVJ0q5du6xul9hepUoVc9uqVaupXAEAAAAA5HiXL13SvHlz9dRT3VUgIMDe4WR5OT65MnjwYEVFRalWrVqqV6+eub1BgwbKkyePjh8/rj179igoKMhiu4ULF0qS2rdvb26rXLmKPD2tT4ALAAAAAEBOERERIUdHR9WqXVs+Pj72DifLc7B3ABnlxIkTeuqppzRt2jR5enpq2rRpFstdXFw0YMAASdIrr7xinmNFksaOHat9+/apcePGqlGjRqbGDQAAAACAvfn4+Ojx5s1JrKRQjqhc6dOnjyQpISFBEREROnLkiA4dOiTDMFSmTBn9+OOPqly5cpLthg0bpnXr1mnr1q0qU6aMGjVqpNOnT+uvv/6Sv7+/vv/++0x+JAAAAAAA2N/t27d19uwZFS1ajOkxUsBk2GOml3Ry/62VnZyc5OPjo0KFCqlGjRrq2LGjOnToIEfH5G9DdevWLY0aNUo//vijzp49q3z58ql169b66KOPVKRIEUlSZFSUmrZsqxWLFzAsCAAAAACQ4509e1afjRmtIUPfUtGiRe0dTqp4e3lm+jGzdXIls5BcAQAAAADkJrGxsbpx44Z8fX3l7Oxs73BSxR7JlRwxLAgAAAAAAKQfZ2dn+fv72zuMbCPHTmgLAAAAAADSJiwsTAsXLlRYWJi9Q8kWSK4AAAAAAAALMTExOnb0qGJiYuwdSrbAsCAAAAAAAGAhMDBQb7/zjr3DyDaoXAEAAAAAALBBlk2urFq1SkFBQXJzc5PJZNKNGzfsHRIAAACALGjZsmUKqlpFoaGh9g4FyDFCQ0M1fPgw3lcplCWHBV27dk3dunVTxYoVNWnSJLm6usrTM/NvpQQAAADkBqHnzmnWrFnatm2bLl++JEkqVKiQataqpa5dn1TZsmXtHCGAzObl5aV69erJy8vL3qFkCybDMAx7B3G/VatWKTg4WGvXrlXz5s3tHY4io6LUtGVbrVi8QJ6eHvYOBwAAAEg3mzdt0tChQ+Tk5KTgNm1Urmw5mRxMOnXylH77bZ0uXLiglb/8qkKFCtk71GTFx8crLi5OLi4uMplM9g4HgJ15e2V+cUaWrFy5fPmyJMnX1/eh60ZHR8vDg4QHAAAAkFpnz57VW28NVaFChfTtlO/k7+9vsfz1gQM1f948OThk2dkEJEmOjo5ydHS0dxgAcrFUfUqOHDlSJpNJx44dU58+feTr66s8efKob9++io6Otlg3Li5OH330kUqVKiVXV1eVKFFC77777kNv49SkSRP17t1bklSrVi2ZTCb16dPHvKxSpUrauXOnHnvsMXl4eOjdd9+VdPc2USNGjFDp0qXl6uqqokWLaujQoUmOFxMTo0GDBsnf31/e3t7q0KGDzp07J5PJpJEjR6bmdAAAAADZ2ozp03Xr1i198MGHSRIrkuTk5KSevXopMDBQknTkyBENHz5MbdsEq3atmnq8WVONeP/9JPMjDh8+TMHBrZPsb/LkrxVUtYpF27Zt29Snd281bNhA9erWUccO7fXllxMs1vnpxx/1ROfOqluntho1bKCePbrrl19Wmpdbm3Nlw4YNGjDgFbVo/rhq1ayhdm3baMq33yo+Pt5i388996y6PNFZx48f1/PPPae6dWqrRfPmmj79+5SdRABQGitXunXrpkceeUSjRo3Srl27NHXqVBUoUECjR482r/P8889r5syZ6tq1qwYPHqy//vpLo0aNUkhIiJYsWZLsvt977z2VK1dOU6ZM0YcffqhHHnlEpUqVMi+/du2agoOD1b17dz399NMKCAhQQkKCOnTooD/++EMvvviiKlSooP3792vcuHE6cuSIli5dahHX7Nmz1bNnT9WvX1/r169X27Zt03IaAAAAgGxt8+bNKlqsmCpXqfLwlSX9uW2bQs+dU8eOneSX30/Hjx/X4kWLdPz4Mf0we06qh+QcO3ZMr706QGXKllX/l/vLxcVFZ86e0d49e8zrLFq0UKNHf6rmLVqoZ69euhMTo6NHj2j//v1q0yb57/HLly2Th7uHnn7mGXm4e2j7ju36+utJioyK1BtvDLZYNyLipl7p/7KaPf64WrZqqXVr12rC+PEqU6aMGjZslKrHBCB3SlNypVq1apo2bZr572vXrmnatGnm5MrevXs1c+ZMPf/88/ruu+8kSf3791eBAgX0+eefa8OGDWratKnVfbdo0UKhoaGaMmWKgoODVbNmTYvlFy9e1DfffKOXXnrJ3DZ79mytW7dOmzZtUsOGDc3tlSpVUr9+/bR161bVr19fe/fu1ezZs9W/f39NmjRJkvTKK6+oV69e2rdvX1pOBQAAAJAtRUZG6sqVy2ratFmSZRERERYVHu7u7nJzc1O3p57S//6tMk9UpXIVvf32W9q9e5eqV6+Rqhj+/HObYmNjNWnS18qbN6/VdX7//XeVKlVKn3/+Rar2PerTT+Xm5mb++8lu3fSxz0eaP2+eBgx4VS4uLuZlV65c1scff6J27dtLkjp3fkLBrVtp6ZIlJFcApEiaBk/269fP4u9GjRrp2rVrioiIkCT98ssvkqQ33njDYr3Bg+9miFeuXKm0cnV1Vd++fS3aFixYoAoVKqh8+fK6evWq+V+zZnc7ig0bNljE9dprr1lsP3DgwDTHAwAAAGRHUVGRkmR1/sLnn39OTZs0Nv+bN2+uJFkkK2JiYhQWFmauegkJCUl1DN7ePpKkjRs2KCEhIZl1vHXp8mUdOHAgVfu+N9aoqCiFhYWpWvXqun37tk6ePGmxroeHh9q2a2f+29nZWZUqVdK5c+dSdUwAuVeaKleKFStm8XdiljksLEw+Pj46ffq0HBwcVLp0aYv1AgMD5evrq9OnT6cxXKlw4cIWWWZJOnr0qEJCQqyOE5X+myA3Ma57hxlJUrly5dIcDwAAAJAdeXjcvZvG/XMnStLwYcMVFR2ta9eu6b133zG3h4eH65tvJmv1qlW6fv26xTaRNyNTHUOrVq20ZPFiffDBSH355QTVrl1HzR5/XC1atDBPotu377P6688/9XSvniparJjq1aun4OA2qlat2gP3fezYMU366ivt2LFdkZGWsUVG3rT4OyAgIMmQJm8fHx05ciTVjwlA7pSm5EpyM3Hff1fnjLgNmru7e5K2hIQEVa5cWWPHjrW6TdGiRdM9DgAAACA78/b2lr+/v44dP5ZkWWI1yr0TxErS0CFvau/evfpf794qX6683D08ZCQkqH//l5Vg/Fd5YpL13wEJ8ZbVKW5ubvp++nTt2LFdv2/+XVu3btHq1au0qHZtTf7mWzk6OqpkyZJatmy5Nm/erC1btui3des0f948vfjSS+rf/xWrx4mIiNDzzz0rT09Pvdy/v4oWKSoXV1eFhBzUhPHjlZBg+bslubshGVZbASCpDLkVc/HixZWQkKCjR4+qQoUK5vZLly7pxo0bKl68eLoer1SpUtq7d68ef/zxByZ0EuM6fvy4RbXK4cOH0zUeAAAAIDto2KiRlixerP3796ty5coPXDciIkJ//fWXXn65v166Z5oAa1XpPj4+unnzZpL2CxfOJ2lzcHBQnTp1VadOXUlDNHXqd/pq4kTt2LFDdevWlSS5e3ioVevWatW6tWJjY/XGoEGaNnWqnnvuebm6uibZ599//60bN27oi7FjVaPGf3M4hoYyzAdAxsiQG9a3adNGkjR+/HiL9sTKkvS+O0+3bt0UGhpqnjz3Xrdu3VJUVJQkKTg4WJL05ZdfWqxzf5zS3fLIQ4cO6erVq+kaKwAAAJBV9OnTV25ubho54n1du3Yt6Qr3VKYnVncY99VzzJkzO8lmRYoWVeTNmxbDaq5cuaL169dbrBceHp5k23LlykuS7ty5I0lJbvPs7OyskqVKyjAMxcXFWX1cjomx3hNqbGys5s+bb3V9ALBVhlSuVK1aVb1799aUKVN048YNNW7cWNu3b9fMmTPVqVOnZO8UlFbPPPOM5s+fr379+mnDhg1q0KCB4uPjdejQIc2fP1+rV69WzZo1FRQUpB49eujrr79WeHi46tevr99++03HjiUthdy+fbuaNm2qESNG6M0hQ9I1XgAAACArKF68uEZ9OlrvvP2WOnbsoDZt2qhs2XKSYSg0NFS//vqLHBwcFFAgQF5eXqpRo4ZmTJ+uuLg4FShQQNu2blPo+dAk+23durUmjB+nNwYNVI+ePXX79m0tmD9fxYsXt5j49ttvv9GunTvVqNFjKliooK5fv6758+YpICDAPKfKy/1ekl/+/AoKCpJfPj+dPHlCc+fOVaNGjeTp6Wn1cVUNCpKPj4+GDx+mnj16SiaTVv68IkliCADSS4YkVyRp6tSpKlmypGbMmKElS5YoMDBQ77zzjkaMGJHux3JwcNDSpUs1btw4zZo1S0uWLJGHh4dKliyp119/XWXLljWv+/3338vf319z5szR0qVL1axZM61cuZJ5WQAAAJArNW3aVAsWLtKsWTO1bds2LVu6VCaTSQULFlSjRo3U9clu5iH1/zfqU43+9FPNmztXhqR69epp0qSv1aL54xb79PX11dhx4/XF559p/LhxKly4sF597XWdOXPaIrnSpHETnT9/XkuXLtWNG2Hy9c2rGjVr6OWX+8vb21uS1KXrk/r1l5Wa/cMPio6OVkBAgHr07KkXXngx2cfk6+urLyd+pbFffK5Jk76St7eP2rZtq9p16qj/y/2S3Q4A0spk3D8LbS5lMpk0YsQIjRw5MsmyyKgoNW3ZVisWL5CnZ9Jb1QEAAAAAgKzB28t6VVtGypA5VwAAAAAAAHILkisAAAAAAAA2ILkCAAAAAABggwyb0Da7YeoZAAAAAACQFlSuAAAAAAAA2IDkCgAAAAAAgA1IrgAAAAAAANiA5AoAAAAAAIANSK4AAAAAAADYgOQKAAAAAACADUiuAAAAAAAA2IDkCgAAAAAAgA1IrgAAAAAAANiA5AoAAAAAAIANnOwdAABkR/+cdszU41UsHp+pxwMAwBb0kwByG5IrAJACmf0l8WHH50skACAroZ8EkNuRXAGQ69n7C2FapCRmvlgCAGyVHftIiX4SQOYjuQIgV8muXxLTwtpj5YskAOBB6CfpJwGkDRPaAgAAAAAA2IDKFQA5Vm66+pZSXKUDACSin0yKfhJAWpFcAZBj8CUxbZgEEAByB/rJtKGfBJASJFcAZEt8Qcw4XLUDgOyPfjLj0E8CsIY5VwAAAAAAAGxA5QqAbIErcPZFSTQAZG30k/ZFPwmAyhUAAAAAAAAbULkCIMvh6lvWx3hzALAf+smsj34SyH1IrgCwK74g5hx8kQSA9Ec/mXPQTwI5G8OCAAAAAAAAbEDlCoBMxRW43IUJ/gAgdegncxf6SSDnoHIFAAAAAADABlSuAMgwXH3D/RhvDgD/oZ/E/egngeyLyhUAAAAAAAAbULkCIN1wBQ5pwXhzALkF/STSgn4SyB6oXAEAAAAAALABlSsA0oSrb8gojDcHkBPQTyKj0E8CWROVKwAAAAAAADYguQIAAAAAAGADhgUBSBHKm2FPTOYHIKujn4Q90U8C9kflCgAAAAAAgA2oXAGQBFffkNUxmR8Ae6KfRFZHPwlkPipXAAAAAAAAbEDlCpDLcfUNOQVX6QBkBPpJ5BT0k0DGonIFAAAAAADABlSuALkMV+CQm3D3BACpRT+J3IR+Ekg/VK4AAAAAAADYgMoVIAfj6htgifHmAO5FPwlYop8E0o7KFQAAAAAAABtQuQLkIFyBA1KP8eZA7kE/CaQe/SSQMlSuAAAAAAAA2IDKFSCb4uobkDEYbw7kDPSTQMagnwSso3IFAAAAAADABiRXAAAAAAAAbMCwICCboLwZsB9KoIGsjT4SsC8mvQWoXAEAAAAAALAJlStAFsQVOCDr4yodYD/0k0DWRsUnciMqVwAAAAAAAGxA5QpgZ1x9A3IGrtIBGYN+EsgZ6CeR01G5AgAAAAAAYAMqV4BMxhU4IPdgXhYg9egngdyDfhI5CckVIAPxBRHAvSiJBizRTwK4F/0ksjOGBQEAAAAAANiAyhUgHXEFDkBqURKN3IR+EkBq0U8iu6ByBQAAAAAAwAZUrgBpxNU3ABmB8ebIKegnAWQE+klkVVSuAAAAAAAA2IDKFSAFuPoGwJ64Soesjn4SgD3RTyIrILkCWMGXRABZHRP8wZ7oJwFkdfSTyGwMCwIAAAAAALABlSvI9bj6BiAnoCQaGYV+EkBOQD+JjEZyBbkOXxIB5BaURCMt6CcB5Bb0k0hPJFeQo/EFEQD+w1U73I9+EgD+Qz8JWzDnCgAAAAAAgA2oXEGOwhU4AEgdSqJzF/pJAEgd+kmkVLZOrphMJou/nZyclCdPHhUsWFA1atRQ+/bt1bFjRzk5WX+YO3fu1Nq1a7V9+3Zt375doaGhkiTDMDI8dtiOL4gAkP4oic456CcBIP3RTyI5JiMbZxISkyu9e/eWJCUkJCg8PFxHjhzR4cOHZRiGSpcurTlz5qh27dpJtu/UqZOWLVuWpP3+UxIZFaWmLdtqxeIF8vT0yIBHgofhCyIAZC18kcxa6CcBIGuhn7Qvby/PTD9mtq5cSTRjxowkbcePH9e7776r+fPnq2nTptqyZYuCgoIs1qlXr56qVKmiWrVqqVatWipRooRiYmIyJ2g8EF8SASBro0zavugnASBro5/MfXJE5cqDHsLzzz+vadOmqVq1atq1a9cD9+fm5qaYmBgqVzIZXxABIGfii2T6oJ8EgJyJfjLj2KNyJccnV8LDw1W4cGFFRUXp999/V8OGDZNdl+RK5uBLIgDkTnyJTBn6SQDInegn0w/DgjJAnjx5FBwcrIULF2rDhg0PTK4g/fEFEQCQiEkAk6KfBAAkop/M3nJ8ckWSgoKCtHDhQoWEhNg7lByFL4QAAFulpC/Jrl8s6ScBALbKyf1kTpMrkiv58+eXJIWFhdk5kuyDL4QAgKwiK36xpJ8EAGQVWbGfzI1yRXIlcQ6VxDlaYIkviACA7C4jS6npJwEA2R1DjjJerkiuXL16VZKUL18+m/azf/8+ubm5pUdImebsjbz2DgEAALs4cdLeEQAAkHWlpJ8s6ps9R380atgg04+ZK5Iru3fvliQ9+uijNu2ndetWSognuwcAAAAAQFZlj5si5/jkSnh4uFavXi1Jatq0qU37WrVqdbarXAEAAAAAABkrxydXBg8erKioKNWqVUv16tWzaV+VK1eRp6dHOkUGAAAAAAByAgd7B5BRTpw4oaeeekrTpk2Tp6enpk2bZu+QAAAAAABADpQjKlf69OkjSUpISFBERISOHDmiQ4cOyTAMlSlTRj/++KMqV66cZLuVK1fqo48+Mv99584dSVLdunXNbcOHD1fjJk0yNH4AAAAAAJB95YjkysyZMyVJTk5O8vHxUaFChfS///1PHTt2VIcOHeToaP0WileuXNFff/2VpP3etitXrmRM0AAAAAAAIEcwGfaYRjebiYyKUtOWbbVi8QLmXAEAAAAAIAvz9vLM9GPm2DlXAAAAAAAAMgPJFQAAAAAAABuQXAEAAAAAALAByRUAAAAAAAAbZNnkyqpVqxQUFCQ3NzeZTCbduHHD3iEBgN0sW7ZMQVWrKDQ01N6hAACQ5dBPArC3LHkr5mvXrqlbt26qWLGiJk2aJFdXV3l6Zv5svwByjtBz5zRr1ixt27ZNly9fkiQVKlRINWvVUteuT6ps2bJ2jhAAAPuhnwQA22TJWzGvWrVKwcHBWrt2rZo3b27vcLgVM5DNbd60SUOHDpGTk5OC27RRubLlZHIw6dTJU/rtt3W6cOGCVv7yqwoVKmTvUJMVHx+vuLg4ubi4yGQy2TscAEAOQj8JIKexx62Ys2TlyuXLlyVJvr6+D103OjpaHh4kPABYd/bsWb311lAVKlRI3075Tv7+/hbLXx84UPPnzZODQ5YdJSlJcnR0lKOjo73DAADkMPSTAJA+UvUpOXLkSJlMJh07dkx9+vSRr6+v8uTJo759+yo6Otpi3bi4OH300UcqVaqUXF1dVaJECb377ruKiYl54DGaNGmi3r17S5Jq1aolk8mkPn36mJdVqlRJO3fu1GOPPSYPDw+9++67kqSYmBiNGDFCpUuXlqurq4oWLaqhQ4cmOV5MTIwGDRokf39/eXt7q0OHDjp37pxMJpNGjhyZmtMBIBuYMX26bt26pQ8++DDJF0ZJcnJyUs9evRQYGChJOnLkiIYPH6a2bYJVu1ZNPd6sqUa8/36SeZ+GDx+m4ODWSfY3efLXCqpaxaJt27Zt6tO7txo2bKB6deuoY4f2+vLLCRbr/PTjj3qic2fVrVNbjRo2UM8e3fXLLyvNy62NJd+wYYMGDHhFLZo/rlo1a6hd2zaa8u23io+Pt9j3c889qy5PdNbx48f1/HPPqW6d2mrRvLmmT/8+ZScRAJBj0U/STwJIH2mqXOnWrZseeeQRjRo1Srt27dLUqVNVoEABjR492rzO888/r5kzZ6pr164aPHiw/vrrL40aNUohISFasmRJsvt+7733VK5cOU2ZMkUffvihHnnkEZUqVcq8/Nq1awoODlb37t319NNPKyAgQAkJCerQoYP++OMPvfjii6pQoYL279+vcePG6ciRI1q6dKlFXLNnz1bPnj1Vv359rV+/Xm3btk3LaQCQDWzevFlFixVT5SpVHr6ypD+3bVPouXPq2LGT/PL76fjx41q8aJGOHz+mH2bPSXWp8bFjx/TaqwNUpmxZ9X+5v1xcXHTm7Bnt3bPHvM6iRQs1evSnat6ihXr26qU7MTE6evSI9u/frzZtkv98Wr5smTzcPfT0M8/Iw91D23ds19dfT1JkVKTeeGOwxboRETf1Sv+X1ezxx9WyVUutW7tWE8aPV5kyZdSwYaNUPSYAQM5BP3kX/SQAW6UpuVKtWjVNmzbN/Pe1a9c0bdo0c3Jl7969mjlzpp5//nl99913kqT+/furQIEC+vzzz7VhwwY1bdrU6r5btGih0NBQTZkyRcHBwapZs6bF8osXL+qbb77RSy+9ZG6bPXu21q1bp02bNqlhw4bm9kqVKqlfv37aunWr6tevr71792r27Nnq37+/Jk2aJEl65ZVX1KtXL+3bty8tpwJAFhYZGakrVy6radNmSZZFRERYXLlyd3eXm5ubuj31lP73b/VcoiqVq+jtt9/S7t27VL16jVTF8Oef2xQbG6tJk75W3rx5ra7z+++/q1SpUvr88y9Ste9Rn34qNzc3899Pduumj30+0vx58zRgwKtycXExL7ty5bI+/vgTtWvfXpLUufMTCm7dSkuXLOFLIwDkUvST9JMA0k+aBk/269fP4u9GjRrp2rVrioiIkCT98ssvkqQ33njDYr3Bg+9miFeuXKm0cnV1Vd++fS3aFixYoAoVKqh8+fK6evWq+V+zZnc7ig0bNljE9dprr1lsP3DgwDTHAyDrioqKlCSr8zI9//xzatqksfnfvHlzJcniS1hMTIzCwsLMV/NCQkJSHYO3t48kaeOGDUpISEhmHW9dunxZBw4cSNW+7401KipKYWFhqla9um7fvq2TJ09arOvh4aG27dqZ/3Z2dlalSpV07ty5VB0TAJBz0E/+h34SgK3SVLlSrFgxi78Ts8xhYWHy8fHR6dOn5eDgoNKlS1usFxgYKF9fX50+fTqN4UqFCxe2yDJL0tGjRxUSEmJ1nKj03wS5iXHdO8xIksqVK5fmeABkXR4ed2cJv39OKEkaPmy4oqKjde3aNb337jvm9vDwcH3zzWStXrVK169ft9gm8mZkqmNo1aqVlixerA8+GKkvv5yg2rXrqNnjj6tFixbmyQH79n1Wf/35p57u1VNFixVTvXr1FBzcRtWqVXvgvo8dO6ZJX32lHTu2KzLSMrbIyJsWfwcEBCQp1fb28dGRI0dS/ZgAADkD/eR/6CcB2CpNyZXkZuK+/67OGXEbNHd39yRtCQkJqly5ssaOHWt1m6JFi6Z7HACyPm9vb/n7++vY8WNJliVeZbt34jtJGjrkTe3du1f/691b5cuVl7uHh4yEBPXv/7ISjP+uqJlk/fMtId7yqpubm5u+nz5dO3Zs1++bf9fWrVu0evUqLapdW5O/+VaOjo4qWbKkli1brs2bN2vLli36bd06zZ83Ty++9JL693/F6nEiIiL0/HPPytPTUy/376+iRYrKxdVVISEHNWH8eCUkWH4eJ3eXB8NqKwAgN6Cf/A/9JABbZcitmIsXL66EhAQdPXpUFSpUMLdfunRJN27cUPHixdP1eKVKldLevXv1+OOPPzChkxjX8ePHLapVDh8+nK7xAMg6GjZqpCWLF2v//v2qXLnyA9eNiIjQX3/9pZdf7q+X7hn+aK3azsfHRzdv3kzSfuHC+SRtDg4OqlOnrurUqStpiKZO/U5fTZyoHTt2qG7dupIkdw8PtWrdWq1at1ZsbKzeGDRI06ZO1XPPPS9XV9ck+/z7779148YNfTF2rGrU+G9uqtBQypcBAClHPwkA6SNDbljfpk0bSdL48eMt2hMrS9L77jzdunVTaGioefLce926dUtRUVGSpODgYEnSl19+abHO/XFKd8sjDx06pKtXr6ZrrAAyV58+feXm5qaRI97XtWvXkq5wT8Vd4lUr477rVHPmzE6yWZGiRRV586ZFufCVK1e0fv16i/XCw8OTbFuuXHlJ0p07dyQpye0rnZ2dVbJUSRmGobi4OKuPyzEx1ntCjY2N1fx5862uDwCANfSTAJA+MqRypWrVqurdu7emTJmiGzduqHHjxtq+fbtmzpypTp06JXunoLR65plnNH/+fPXr108bNmxQgwYNFB8fr0OHDmn+/PlavXq1atasqaCgIPXo0UNff/21wsPDVb9+ff322286dixpKeT27dvVtGlTjRgxQm8OGZKu8QLIPMWLF9eoT0frnbffUseOHdSmTRuVLVtOMgyFhobq119/kYODgwIKBMjLy0s1atTQjOnTFRcXpwIFCmjb1m0KPR+aZL+tW7fWhPHj9MaggerRs6du376tBfPnq3jx4hYT+n377TfatXOnGjV6TAULFdT169c1f948BQQEmMeKv9zvJfnlz6+goCD55fPTyZMnNHfuXDVq1Eienp5WH1fVoCD5+Pho+PBh6tmjp2QyaeXPK5J84QUA4EHoJwEgfWRIckWSpk6dqpIlS2rGjBlasmSJAgMD9c4772jEiBHpfiwHBwctXbpU48aN06xZs7RkyRJ5eHioZMmSev3111W2bFnzut9//738/f01Z84cLV26VM2aNdPKlSuZlwXIwZo2baoFCxdp1qyZ2rZtm5YtXSqTyaSCBQuqUaNG6vpkN/NQwf8b9alGf/qp5s2dK0NSvXr1NGnS12rR/HGLffr6+mrsuPH64vPPNH7cOBUuXFivvva6zpw5bfGlsUnjJjp//ryWLl2qGzfC5OubVzVq1tDLL/eXt7e3JKlL1yf16y8rNfuHHxQdHa2AgAD16NlTL7zwYrKPydfXV19O/Epjv/hckyZ9JW9vH7Vt21a169RR/5f7JbsdAAD3o58EANuZjPtnoc2lTCaTRowYoZEjRyZZFhkVpaYt22rF4gXy9Ex6qzoAAAAAAJA1eHtZr2rLSBky5woAAAAAAEBuQXIFAAAAAADABiRXAAAAAAAAbJBhE9pmN0w9AwAAAAAA0oLKFQAAAAAAABuQXAEAAAAAALAByRUAAAAAAAAbkFwBAAAAAACwAckVAAAAAAAAG5BcAQAAAAAAsAHJFQAAAAAAABuQXAEAAAAAALAByRUAAAAAAAAbkFwBAAAAAACwgZO9A8gODMOQJEVHR9s5EgAAAAAA8CAmk+Tp4SGTyZRpxyS5kgLR0bckSU893dvOkQAAAAAAgIdZ8/MS5c2bN9OOR3IlBfzz++nnJQvk4eGeqZkvW0VFRatd5yf185IF8vT0sHc4QKbi9Y/cjvcAcjNe/8jNeP0jt0t8Dzg5O2fqcUmupICDg4MCCvjbO4w08/T0kJenp73DAOyC1z9yO94DyM14/SM34/WP3C6zCyOY0BYAAAAAAMAGJFcAAAAAAABsQHIlB3NxdtYLz/aWSyaPNQOyAl7/yO14DyA34/WP3IzXP3I7e70HTEbifYYBAAAAAACQalSuAAAAAAAA2IDkCgAAAAAAgA1IrgAAAAAAANjAyd4BIP3djonRjFlztPa39bp46ZJ8vH1Ur25t9XvhWRXw97d3eEC6uhEerm49eyvsxg0VKVxIS+b/aLE8ISFBe/cd0O9btmrHzl06c+asYuPiVMDfX3Vq1dD/nu6pwoUK2il6IG3+CTmk2T/O1Z69+xV244bc3d1UumRJtW/XRu3btJbJZEp229jYWPXq87xOnjotR0cH/bl5fSZGDjxcyKHD+mvH3/rn4CEdDAnR5StXJUk7tmxMsm56fMZv3Py7Fi1drkOHjyg6Olq+vr56tHw59ereTUFVq2TEQwQeKDXvgXvFxcVp/qIlWr32N50+fUYJRoL88+dX1SqVrf4OSEhI0NLlP+vnX1bpxMlTirlzR/ny+qpaUFU907O7ypUtk1EPEbDq9u3b+nP7Dv2+ZZv27N2vi5cuysHBUUWLFFbTxo+pV/cn5eHhYbHNxUuX9fuWrfrnYIj+ORii02fOyjAMfTNxnGpUr/bA4+3dt1/fz5ytA/8cVGxcrB4pUULdunRW2+BWaYqf5EoOExMTo/6vDtL+fw4qv5+fHmvYUBcuXtSKlb/qjy3b9P2Ur1WkcCF7hwmkm/ETv9aN8PBkl4eeP68XX3lNkuTnl081a1SXg4ODDoaEaPGyFVq99jeN//xTvkAj21i/YZPeHfGB4uMTVL5cWQVVraIbN25o99592rNvv7bv2KmPRw5Ldvvps2br1OkzmRgxkDrTZszSpt+3pGhdWz7jExIS9Mnoz7X851/k7u6mqlUqy9vLSxcvXdaWbX+Z319AZkvNeyBReESEXh34pkIOH1F+Pz/VqllDknQuNFQrVv6qDm2DLZIrhmHorfdGaOPm3+Xq6qpqVavIy8tTx0+c1Oq1v+m3DZv0+aiP1aB+3XR9bMCDrFqzTp+M/lyS9EiJ4nqsYQNFRkVp//5/NGXadK1Z95u+nTRB+fLmNW+zfuMmjftyUqqPlfh9KiHBULWgKvLNk0c7du7SyI9H6ejx4xo4oH+q90lyJYf5fuYP2v/PQVWuVFFfjfvMnNmbM3e+xk/8Wh+NGq1vv5pg5yiB9LH9751a+etqde7YXkuWrbC6jkkm1alVU72f6ama1auZr+jfuXNHoz4bq59/WaXhH3yiJfPnyMmJj0RkbXFxcRr9xXjFxyfooxHD1Lplc/Oyk6dO64WXX9XqtevUqX1b1ayR9GrNyVOnNeOHH9WpQ7tk3zOAvVWuVFGlS5XSoxXK69EK5dSxa3fduRNrdV1bPuOnTp+p5T//okYN6mvEsLeVx8fHvCwi4uYDE/dARkrNe0C6myh5+70RCjl8RC8821vP9n7G4vV+LvS8vDwtr/Zv/mOrNm7+XYUKBmrq5K/k75/fvGzWnJ808etvNWbseC2rPzf9HyCQDCcnJ3Xu2F49unXVIyWKm9uvXr2mgUPe1uEjRzV2wlf6eORw87LChQqpR7eu/75fyuuzsRP05/YdDzxOeESEPhw1RvHxCRr9yYdq1uQxSdK169f1wsuvas5P89Wofr2HVr7cjzlXcpDY2FjNX7REkvTW4IEWJVO9undTmdKltGv3XoUcOmyvEIF0czsmRqPGfKFHSpTQ0z2eSna9IkUK66vxn6tWjeoWQyVcXFz01puD5OXlqYuXLmnv/gOZETZgk1Nnzuh6WJiKFytqkViR7l7had2qhSTp4KFDSbY1DEP/N/pzeXt5aUC/FzMlXiAtej/dU/1eeFaPNayv/H5+D1w3rZ/xly5f1owfflRgQID+76MRFokVSfLx8VaxokXS70EBqZCa94AkrVu/UX/v2q3mzZroxef6JkkkFilcSL6+vhZtu/fulSR17tjeIrEiSc/07C4vL0+dv3BR18PCbHswQCq0a9Na7w4dbJFYkaT8+f00dPBASdKGTZsVG/tfsrFxowZ64/UBat2y+d3P7eRHRpstW7FSUVFRatyogTmxIkl++fLp1f79JEmz585PdfwkV3KQvfsOKDIySkUKF7I6RrJZk8aSpN+3bM3s0IB09933MxR6/oLeGfKGnJwc07QPN1dXFStaVNLdjDiQ1bk4u6Rovft/KErS4qXLtWfffr3+6svy8fFO79CALOdBn/Erf12t2NhYdWzfVm6urvYID0g3S5f/LEnq1uWJFG/zoP7EZDLJZDLJ0dFBXp6eNscHpIeypUtJku7ciVV4eIRN+/pj65+SpGZNGydZ1rB+Xbm6uGjHjp2KiYlJ1X5JruQgR44dkySVL1fW6vLy5e4mXI4eO5FpMQEZ4eix45rz03y1bxusakFpHw+fkJCgixcvSbqbqQayusKFCqpI4UI6feasVq1ZZ7Hs5KnTWrV6rXy8vdWkcSOLZVevXtNX30xRrZrV1aZVy8wMGbCbB33G79i5W5JUpXJFXb16TT/8OFejxnyhiV9/q61//iXDMDI9XiAt4uLitHfffjk6Oqrio+V19NhxTZ4yTf835gt99/1MHTl6zOp2dWrXlCQtWbZCV/6dMDfRrDk/6ebNSLVu2UIuLilL6gMZ7dz585LuDh2y9SLR0cTfzWWT/m52dnZWyZKPKObOHZ05ey5V+2WCgRzk0qXLkpTsHYES2y9eupRpMQHpLSEhQR9/+pm8vb30av+XbNrX6rW/6XpYmPL6+qpK5YrpFCGQcRwdHTVy2DsaNPQdDf/gY82ZO19FixRWWNjdCW1LPlJCI957O0nlypixE3Tnzh29NXiQnSIHMt+DPuNPnjp1978nT+ut995XZGSUedmsOT+pRrUgfTbqI3l7U+WFrO1c6Pm7d/nJl1c/zlugyVOmKSEhwbz8u+9nqPuTXfTG6wMstqtRLUjP9OyuH36cq85P9VK1oCry8rw7oe3Zc6Fq16a13nqTPgNZx9z5iyRJ9erUtinpFxkVZf7ML1DA+u/mgAL+Cjl0WBcuXlKZfytmUoLKlRwk+tYtSZKbm/XyVnd3t7vrRUdnWkxAepu3cLEOhhzSa/37yTdPnjTv5+Klyxr75VeSpJee78uVGWQbVatU1rdfTVDhQoV06PARrf1tg/7etVsODg6qXatGktvObvr9D23YtFm9n+6p4sWK2ilqIHM97DP+5s2bkqRxEyepTKlSmj39O21c84smTfhChQoV1M7de8x3rACyssTXcnh4hCZ9852e6NRBS+b/qLW/LNPwd4bK1dVVP81faJ6X8V6vvdJPb7w+QHFxcfrzrx1at36jTp46rYKBAapTqyZD5pBlbNn6p5b//IucnJzU74VnbdrXrehb5v9P7jXu5pa2380kVwBkGxcvXtI3U6aperWqat82OM37uXXrloa+O1w3boSryWMN1aVzx3SMEshYq9f+pj4v9FNAgL9mfDdZm9f9qkVzZ6tdm9aa89N8vfzaG7pz544kKSoqWmPGTlCxokXV55ledo4cyBwp+YxPSLg77MfH21sTvhitcmXLyNPTQ7Vr1tAXoz+RyWTSbxs26fSZs5kdPpAqCf8OYYuPj1f9unX01uCBdyewzZNHHdq10Wuv3J2cc+YPcyy2u3Pnjt4Z/oEmfPW1+v7vaS1b+JM2rvlFk78cJxcXFw3/4GP9MIc7BcH+Tp0+rfc//ESGYei1V/qpbJnS9g4pWSRXchAPd3dJ0u3b1ifeuXXr9t31PDysLgeyutFjxys2Lk7vDHkjzfuIi4vT28NGKuTQYQVVqayP7rmVG5DVnTl7TiM/HiXfPHk0bswoVXy0gtzd3VWsaBG9O3SwGjaop0OHj2j5yl8lSV9/+50uX76it94cSHUWcoWUfsYnfmd6vFkTuf/7/4lKlyypRyuUlyTt3rM3YwMGbORxz+vX2oWn9m1aS5IuX7mqs+f+mz9ixg9ztG79Bj35RGe99HxfFSpYUJ6eHqpZo5rGf/ap3N3dNOX7Gbpx40aGPwYgOZevXNFrbwxVxM2b6tm9m3p062rzPt09/nvP3E5mwtrbt9P2u5k5V3KQgIACku6+CK1JbA8MCMi0mID09MeWbfL29tKoz8ZatN+JuXuV/sqVq3ppwOuSpE8+eD/J7QsTEhI08uNR2vrnXypbprTGjvk/Sl6RraxZt15xcXGqV6e21Q6/RbOm+mPLNu3es1ddO3fU71u2ytXFRdNmzNK0GbOSrB8fn2B+z7zx2gCrd5oDsovUfMYHBgYo4uZNFQoMtLq8YGCg/jkYorCwGxkYMWC7goH/fa8vWDDp69nNzU358ubV9bAwXQ+7oaJF7t5i/JdVayVJj1u5W0pgYIAqPvqo/t65SyGHj6hendoZFD2QvPCICA0YOEQXLl5S+7bBGjjg5XTZr5enp7y8PBUZGaXLl6/I65Gkd8S6dPnu7+Z7318pQXIlBylb+m6J1KHDR6wuP3T4qCSpTOmSmRYTkN5u3ozUrt3WryTG3LljXpY4LOJen437UqvX/qZiRYtq4rjPmKgQ2U5iktzTy8vqcs9/b5kZ8e8YfMnyfWFN4rLIyMj0ChOwi9R8xpcrW0ZHjh6zeK/cKyLi7m0+773CCWRFXl5eKlSooM6fv6CbEUlfzwkJCbr57+f7vVUuif2JVzL9SeItmG8m8x4BMlJ0dLReH/yWTp46paaNH9N7b70pk8mUbvsvU7q0du/Zq0NHjqjkIyUslsXFxenEiZNydXFRsaJFUrVfkis5SNUqleTl5alzoed1+MjRJFcg12/cJElq1KC+PcIDbLZjy0ar7ecvXFDHrj1UpHAhLZn/o9V1Jk+ZqoWLlyowIECTxn+ufHnzZmCkQMZIvJ1syKHDVpcfDDkkSear8csXzUt2X7UaNJGjo4P+3Lw+naMEMl9qP+Mfa1hfK1b+ql1Whv1ER0fr8JG7F6TKlaGaC1nfYw3qa+6CRdq5e4/q1qllsWz/PwcVGxsrV1dXi0nN/fLl08VLl3Tw0GGVLmV54TU+Pl5Hjt59DxRMproLyCh37tzR4LeH6Z+DIapbp5Y++WC4HB0d0/UYDevX1e49e7V+wya1adXSYtnvW7Yp5s4dNWxQT66prHBnzpUcxNnZWd26dJZ097abt279NxPynLnzdfTYcVWvVlUVypezV4iAXfw4d4G+nzlbfn75NGnCFwpMZYkfkFU0btRA0t15IBYuWWaxbP+Bf/TT/AWSpGZWyryBnCotn/GNGtTXIyWKa9/+A1qweKm5PT4+XuMmfq3wiAiVKvmIgqpWzsDIgfTR46mucnZ21oJFS7T/wD/m9hs3bmjshLt3zWrfNthi7q3GjzWUJH079XuLiZvj4+P19bdTdf7CRRUMDOB3AzJVfHy83hvxkf7euUvVqlbRZ//3kZydndP9OB3bt5Wnp6c2/b5F6zduNrdfDwvTxK+/kSQ93b1bqvdrMox/p5hGjhATE6N+AwbqwMEQ5ffzU1DVKrp48aIOHAxRXl9ffT/laxUpXMjeYQLp6kGVK4ePHNUzz74owzBUuVLFZMv7OrVvq6CqVTIjXMAmE76arNk/3a1IKflICZV8pISuXL2q/QcOKiEhQZ07tte7Qwc/dD9UriCr+mPrNk2b/t8cQf+EHJJhGKr0aAVz23N9/6eG9evZ9Bl/+MhRvTRgoKKiolSmdCkVLVJYh48cU+j588qTx0ffTByf5Io+kBlS8x5ItPznX/Txp5/J0dFRlStVlJenp/YdOKDw8AiVL1dW33413mKurhvh4Xq+3wCdPnNWLi7OqlKpknx8vM3vAVdXV437bJRq1aieOQ8akPTT/IXmhGCTxxrJ09P6hLIDB7wsX19fSdLVq9c05J1h5mWnzpxRZGSUHilRXJ7/vuYb1K+n5/v+z2If6zds0jvvfyDDMFSjWpDy5PHR9r936ubNSPXs3k2DXu2f6vgZFpTDuLq6avJX4zVj1hytXrtOm37/Qz4+3mrXprX6vfCsAgoUsHeIQKaKjIxUYg55/4F/LK7o3KtGtSCSK8gWXh/wsqpUrqTFS5cr5PBhnT5zVp4eHqoeVFWdOrRTqxaP2ztEwCZhYTd04GBIkvZ72xInmrXlM75c2TKaM2Oqvps2Q3/u2KGTp04rX7686ti+rZ7r8wzDIWA3qXkPJOrQro0KFyqoGbN/1D8HQxQTE6PChQrpqa5P6OkeTyW5K5ZvnjyaOfVbzZk7Txs3/6F/QkIUGxun/H5+ahvcSr2f7qlHShTPkMcHJOfeOX42bv492fVefK6POblyJ/aO1ffLyVOnzf9fvHixJMubNW2sKZMmaNrMH3Tgn4OKjY3TIyWKq1uXzmr37122UovKFQAAAAAAABsw5woAAAAAAIANSK4AAAAAAADYgOQKAAAAAACADUiuAAAAAAAA2IDkCgAAAAAAgA1IrgAAAAAAANiA5AoAAAAAAIANSK4AAAAAAADYgOQKAACp9PfO3Rr67vtq07Gr6jVurmat26lL92f09rARmr9wsSIjI+0dItJg567dqtWgiUZ+PMqucbw04HXVatBE5y9csGscafXh/41Wo8db63pYWIq3mTJtumo1aKIVK39N1bHefPs9tWrXWdHR0akNEwCAdEVyBQCAVPju+5l6+bVB2rBps7y8PNWwfj3VqVVLrq4u2rDpd3027kudPHU60+IZ+fEo1WrQRDt37c60Y8I2tRo0UYcuT9k7jAxx7PgJrfx1tZ58opPy5c1r8/46dHlKtRo0SXb5831763pYmGbNmWvzsQAAsIWTvQMAACC7CDl0WN99P0NOTk4a9dEINXmskcXyq9eu6dfVa+Xt7WWnCJETfDDsXd2Oua0C/v72DiXVJk+ZJgcHBz3dM3OSR+XLlVXdOrU0Z+58de/WRb558mTKcQEAuB+VKwAApNCGTb/LMAw1b9YkSWJFkvL7+emZnt1VonhxO0SHnCIwMEAliheXk1P2ugZ28dJl/bF1m+rWqZUuVSspFdyqhW7fvq2Vv67OtGMCAHC/7NVrAwBgR2E3bkiS8vr6pmj9O3fuqE2nrrp9O0a/Llsob2/vJOvs3X9Az/cboGpBVTVl0gRJkmEYWrVmnRYtXaazZ0MVGRUpX19fFS9WVE0ea6RuXTpLksVwiX6vDrLY77KFP6lQwYLmv7f++ZfmL1yif0JCFBUVLX///GrSqKH69n46ydX+kR+P0spfV+ubieMUFx+vadNn6fCRo3J1ddVjjRpo4ICX5eXlpethYfrmu+/1x5ZtCo8IV+lSpfRa/5dUo3q1FJ2fRHFxcVq2YqV+XbNWx0+cVOydWPn751dQ1Srq1qWzKpQvp982bNTbw0aqVYvH9fHI4Vb388noz7V0+c8a/u5b6tA22Nx+69YtzV+0RL+t36gzZ88pPiFBAQX8VatmDXV/souKFyuaojhTcw6tWbHyV334f6MlSRcuXrJ4/qpXq6pvv7r7/L804HXt2r03yXNYq0ETFQwM0OJ5czTjhx+18tdVunLlqgoWDNQzvXqYH/OOnbs0bfosHTp8RA6ODmrUoL4GvfaK1Rjj4uK0dMVK/fLrap04eUpxcXEqVqyo2rVprW5dOqcqwbNi5S9KSEhQq+aPJ7vOpt+3aOYPc3Tk2HG5ubqqerUgvdLvhSTr7dy12+I1fe+5KhgYoOWL5pn/btKooVxdXbV0+c/q1b1biuMFACA9kVwBACCFAgoUkCSt37RZff7X66FX511cXNQ2uLV+nDtfv65ZZ06K3Gvp8p8lSZ07tDO3fTnpG83+aZ5cXJxVrWpV+frm0bVr13Xs2AmdOxdq3k/b4Fbau2+/zoWeV906teSXL595Hx7u7ub/nzj5W82a/ZOcnZ31aIVyyu/np6PHjuvHeQu0+Y8tmvrNVxbbJtqw+Q8tXLxElStWVL26tbX/n4NatmKlzp47p9Eff6BnX3xFCQnxCqpaWRcuXNSBgyF6bfBQzZz6rUqXKpmic3rr1i29/ubb2r1nr9zd3VS1SmV5e3npwoWLWrVmnbw8PVWhfDk1btRQfn75tGHTZt0ID0+SKIiOjtaatb/J09NTLR9vam6/evWaXhk4WCdOnpKPt7eqVwuSi4uzQs9f0OKly1W0SOEUJVfSeg7vVbRIYbUNbqWVv66Wu7ubmjVpbF5WonixFJ0vSXpn+Af6e9cu1axeTUUKF9auPXv00b9JG08Pd7034iNVrvio6tappf0H/tEvq9bo/PkLmvL1lzKZTOb93I6J0aA339bfu3Yrj4+PKlV8VC4uLvrnYIjGfTlJO3ft0WejPpKDQ8oKnX/fsk2SVKNakNXli5Ys06efj5PJZFJQ1SrK75dPB/45qD4v9FOjBvUt1vXzy6e2wa20fuMm3bp1W22DW5mX+fpaPvceHh56tHw57d67T+dCz6tI4UIpihcAgPREcgUAgBRq3bK5ZvwwR5cuXdYT3XqpSeNGCqpSWRXKl1PpUiXl6OiYZJsnOrbXT/MWaOnyn5MkVyKjorRu/Ub5eHurWZPHJEkxMTGav2ixPD08NGfmNBUu9F/lQlxcnPYfOGj+e+SwdzTy41E6F3pefZ7uabViZN36jZo1+yeVKvmIPhv1kYoWKSLpbnXMlGkzNHX6TH0xfqL+78MRSbZdsGiJvhj9iRrWrydJioqK1nP9XtGu3Xv14isDVaVyRb3/7lvm6obJU6bp+5k/aPaP8zRy+DspOqdfjJ+o3Xv2qlpQVY3++APlzetrXnbt+nVduHBRkuTk5KQObdto+qzZ+mXVGvV86kmL/axZt17Rt26pS+eOcnNzM7e//9EnOnHylJo3a6rh7wyRh4eHedn5CxcUFfXwu8zYcg7vFVS1ioKqVtHKX1fLN08ejRyWsnN0rwsXL8nDw0OL584xn6u/d+7Wy68N0uRvpyo2Llaff/qx+TmLjIrScy+9oj379mvnrj2qWeO/18iErybr71271eLxpnp36GB5ed2dKygqKlrvjfhQm//YoiXLVqhL544PjSs6OlpHjh6Vf/788vfPbyXuixr35SQ5OTlp7Jj/U706tSXdfU1/8Mmn+nX1Wov1SxQvrpHD3tGu3Xt069bth56rRx8tr91792nXnr0kVwAAdsGcKwAApFCRwoU0dsz/KSCggKKio7Xy19X6ZPTnerrvC2rRtqM+/Xycrl69ZrFN8WJFVaN6NR09dlz/hByyWLZ6zTrdvn1bwa1bytXVVZIUFR2tO3diVbhwIYvEinQ3wVAtqEqqYv5+5g+SpI8/GG5OCkiSyWTSi8/1UdkypbV+4ybd+HfI071atXjc/CNdkjw9PdTp3wqby1eu6M2Br1kMG3mm51MymUzatWdPimK7cuWqfv51lVxcnPXB8HcsEiuS5JcvnypVfNT8d+eO7eTg4KCly1cm2deyFXfb7q0A+udgiHb8vUv58ubVsLctEyuSVKhgQZUpXeqhcdpyDjPCG68PsDhXNWtUU7myZXT12jXVr1vH4jnz8vRU547tJcniebkeFqaly39WQEABvf/e2+bEinT3eR72zhA5Oztr0dLlKYrp5KnTio9PSLYKaPnPvyrmzh21av64ObEi3X1NDx74qkVCLC1KFLtb+XPk6DGb9gMAQFqRXAEAIBVq16yhJfPmaMz/faQunTqofLmycnR01M2bkVq0ZJl69Xlep06fsdimS6cOkv4bApRoqZWEQL68eVWggL+OHD2miZO/1bnQ82mO9XpYmI4eO65iRYuodMmkw3RMJpOqVq6k+PgEhRw+kmR53dq1krQlJnwqlC8nHx/LOWS8vLzk4+Otq9eupyi+nbv3KD4+QfXq1FbBwMCHrl8wMFD16tTWyVOntHf/AXP7seMndOBgiCqUL6dyZcuY27fv2ClJatm8mTw9PZLsLyVsPYfpzcnJyeqwm8Tn5UHP2b3Py85dexQXF6d6dWrL7d/E3r3y+/mpaJHCOnb8hG7HxDw0ruthYZJkdV4hSdqzd58kqUXzZkmW+ebJo7q1az70GA/i4+MjSZmW4AIA4H4MCwIAIJWcnZ3VtHEjNW18945BN2/e1Jp16/X1t1N1PSxMn42doEkTvjCv3+Sxu/OFrFn7mwa92l8eHh46dPiIDh0+osqVKqpUyUcs9j9y2Dt67/0PNWv2T5o1+ycVDAxQ9aAgtWjeTA3q1UlxnIlDas6cPWcxIag1N26EJ2mzNrwjcS6XAlaWJS4PD49IUXyXLl+WJBUuXDhF60vSE506aMu2P7V0+c+qWrmSpP+SVp3uSVLdu/8iqdj//Ww9h+nNzy+f1eFn7v8+Lw96zu7cuWNuu3Dx7uNauvznJEm/+0VERMjtIbeFjoyMunssD3ery69cvSrp7mS01qQkufYgicmzmzcjbdoPAABpRXIFAAAbeXt7q0vnjsqfP7/efPs97dy9W7dv3zYPdbh3vpA169arU4d25qqV+xMCklSrRnUtnj9Hf2zZpm1/bdfO3Xu0ctVqrVy1Ws2aPKbRn3yYorgSEhIk3f1Bbq2i4V7WfvQ63DP56f1MD1iWkRrUq6OAgAJat36jBg98Vc5OTvp19Vp5uLs/8C41aWXrOUxvD3pOUrI8UeLjKlum9EOHRrk4Oz90f15enpKk6OhbKTp+eov6N7nj7e31kDUBAMgYJFcAAEgntf6dLDQ+PkE3b0ZazCPRuWM7zZz9o5auWKnWLZtr9dp1Se5scy8vT0+1btlcrVs2lyTtP/CP3h4+Uus3btaWrX+qQf26D42nQIG71QZpnTw1oyXefSk0NDTF2zg6OqpT+3b6dur3WrVmnTw9PBRx86Y6tm+bZOhP4v7PpWL/98vq5zCtEh9XUJXKGvLG6zbvL/HOWRER1quW8vv56fSZs7pw8ZJKPlIiyfILFy/ZdPyImzclSb4pvE06AADpjTlXAABIIcMwHrj87Lm7P+KdnZ2T3C42cb6Qfw6GaPKUaYqMjFLrls1TPJFn5UoV1aZVS0nS8ZMnze3O/1YVxMXHJ9kmoEABlSheTCdPndbpM2dTdJzMVKNakBwdHfTnXzt08dLlFG/XqX1bOTo63h3SsiLprawT1a5VQ9K/dxKKfvhdgazJiHPo5OSkeCvPV2aqWb2aHB0d9MfWbYqLi7N5fyUfKSFHR8dkz1FQ1bsTMa9bvyHJsvCICP21Y4fV7cyv74fEePLfeY7Klimd4pgBAEhPJFcAAEihb76bpglfTda5c0krIS5fuaJRn42VJD3WsL75R+G9nvh3Ytsf5y2QZD0hcPHiJa1Y+atu375t0R4TE6Odu3ZL+q8iQ5L88/tJUrI/ap/r8z8lJCTorffe1+EjR5MsvxEeriUPmXMjo/j751eb1q0Uc+eOPvh4lG6EW85Zcj0sTAf+OZhku/z5/fRYwwY6fOSodu3eqzKlS6nioxWSrFfx0QqqWb2aroeF6f/GfKFbtyyHrJy/cEHHjp94aJzpfQ798/vp2vUw3fy32sIeCvj7q33bNjp/4aLeG/Ghrl1POgnx2XPntH7DphTtz93d3XzHostXriRZ3r5tsFxcnLVqzTr9teNvc3tcXJzGTZikW7duJ9lGuvtcS8m/vhMdPBgiSaoeVDVF8QIAkN4YFgQAQApFR9/S3AWLNPuneSpWtKhKPlJcLi4uunz5ig4cDFFcXJyKFimsN14fYHX7xPlCLl26nOTONonCIyL04f+N1pixE1ShfDkV8PfX7du3tG//Pwq7cUMVypczT6QrSY0a1NfU6bP05VeTtX3H3/LNc7diZkD/l+SbJ49at2yuEydPafqs2frfcy+pbJnSKlK4kAzD0LnQ8zp2/Ljc3d2tJnoyw+DXX9XpM2f1967d6tDlKVWrWlWenh66ePGSDh05qi6dOljcjjlRl04dtGHTZknW561J9MH776r/a29o9drf9OdfO1S1SmW5uDjrXOh5HTl6TK8PeFmlSyW9C9C90vscPtawgeYtXKynn31RVSpVlKuLi4oXK6ZnenVP0fbpZfDAV3XhwkWt37hZ2/7arrJlSiswIEC3bt3WyVOndPZcqBo3aqBmTRunaH8N69fVwZBD2rlrj4JbtbBYVrhQQb0+oL8+GztBr70xVNWqVpGfXz4d+OegIm7eVOuWzbVqzbok+3ysYQPt2r1X/V9/QzWrV5O7m5vy+ObRqy+/ZF4nOjpaIYcOq0TxYipSuJBtJwUAgDQiuQIAQAo91+cZVahQTn/+tUNHjx3X7r37FBkZJS9PT1V8tLwaN2york90NN+55X6Ojo6qHlRVv65em2xCoEjhwhr4an/t+HuXTp46pYMHQ+Tm7qZCBQuqz/966YmO7eXi4mJev0L5cvrw/fc0Z+58/bn9b8X8e9vcZ/s8Y0609H/pedWtU0sLFi3R3n0HdOz4CXl6eqiAv7+6dOqox5s1Sd8TlQqenh76ZuI4LVq6XKvWrNOevfsUn5Ag//x+at2yudoGt7K6XVDVynJycpKjo6OC/52XxpoC/v6aOfVb/TR/odZv3KS/dvwtRwcHFSjgr66dO6pRg3opijM9z+Er/V6QYRja9McWrf1tg+Lj41W9WtVMT664ubpqwhejtWrNOv3862odPXpM/xw8pLy+vgoMDFBwq5ZqaeXWyclp37aNps2YpdVrf0uSXJGkbl06q4B/fs384UcdOBgiVxcXVQuqogEvv6g169Zb3edTXZ9QRMRNrVn3m9Zv3Ky4uDgVDAywSK5s3PyHYu7ceWCSDQCAjGYyHjaAHAAApIvbt2+rTaeuio+L1y/LFiWZgBUpt3rtbxo28iO1DW6Voyaaze6GvDNMv2/Zpp+XzFd+P79MOearg4Zoz779WrF4njmhCABAZmPOFQAAMsmCRUt182ak2ga3IrFig7i4OM2c/aMk6ckune0cDe710gvPyjAMzf5pXqYc79DhI/pz+w716t6NxAoAwK4YFgQAQAa6ER6ur77+VtfCwrR121/ycHdX72d62jusbGnT71u06fc/9M/BEJ04eUpNHmuoihXK2zss3KN0yZJqG9xKi5Ys1/969TDfojmjTJ0+U/ny5tX/MnlIFQAA92NYEAAAGej8hQvq2LWHnJ2dVbrkI3p9wMuqUb2avcPKlqZMm67vvp8pH29v1atbR0PeeE15fHzsHRYAAADJFQAAAAAAAFsw5woAAAAAAIANSK4AAAAAAADYgOQKAAAAAACADUiuAAAAAAAA2IDkCgAAAAAAgA1IrgAAAAAAANiA5AoAAAAAAIANSK4AAAAAAADYgOQKAAAAAACADf4fR7Pj5pUjXqEAAAAASUVORK5CYII=", - "text/plain": [ - "
" - ] - }, - "execution_count": 27, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "with pulse.build(backend, name='example') as program:\n", - " gaussian_pulse = library.Gaussian(100, 0.5, 20)\n", - " with pulse.align_equispaced(2*gaussian_pulse.duration):\n", - " pulse.play(gaussian_pulse, pulse.drive_channel(0))\n", - " pulse.play(gaussian_pulse, pulse.drive_channel(1))\n", - " pulse.play(gaussian_pulse, pulse.drive_channel(1))\n", - "\n", - "program.draw()" - ] - }, - { - "attachments": {}, - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### `align_sequential`\n", - "\n", - "This alignment context does not schedule instructions in parallel. Each instruction will begin at the end of the previously added instruction." - ] - }, - { - "cell_type": "code", - "execution_count": 28, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABFcAAAFdCAYAAADG/YI8AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAABsmUlEQVR4nO3dd3QUVRvH8d+md0IJoYO00Am9Rrr0jlQVFFSaCqLYBduLoIKICCJVQaU3ERCkKV16Cb33FhKSQEKSef/ArCy7gSSbzvdzjue4d2bu3JmdvWSeee4dk2EYhgAAAAAAAJAsDundAAAAAAAAgMyM4AoAAAAAAIAdCK4AAAAAAADYgeAKAAAAAACAHQiuAAAAAAAA2IHgCgAAAAAAgB0IrgAAAAAAANiB4AoAAAAAAIAdCK4AAAAAAADYgeBKEplMJplMJvn6+urmzZs21/n8889lMpk0fPjwNG0bMo8iRYrIZDKl+/7j/3NyclKOHDlUqlQpde/eXTNmzNCdO3fSrX0pZd26dTKZTOrVq1d6NyVJpk+frq5du6p06dLKkSOHXFxclC9fPnXq1EkbN2586LZLly5VvXr15OPjIx8fH9WvX1/Lli176DYHDhzQ008/LT8/P7m7u6t8+fL6+uuvFRcXl6z2b9y4US1atFCOHDnk5eWl6tWr68cff0xWXQk5deqUTCaT6tevn6L1AgAAAMlBcCWZQkNDNXr06PRuBmCXjh07qmfPnurRo4fq1asnNzc3zZkzR7169VKRIkW0fPny9G7iQw0fPlwmk0nTp09P76akqG+//Vbz58+Xu7u76tatq3bt2snPz0/z589XUFCQJk6caHO7r7/+Wm3atNGmTZtUp04dNWzYUNu2bVOrVq307bff2txm8+bNqlatmubNm6eiRYuqTZs2unbtmgYPHqyuXbvKMIwktX3+/PmqV6+eVqxYoQoVKqhZs2Y6evSoevbsqTfeeCPJ5yKpsuo1AQAAgIzNKb0bkBmZTCa5urpq7NixGjx4sLJnz57eTQKS5csvv1SRIkUsyi5duqRPP/1U48ePV6tWrbRs2TI1a9YsfRpop+rVqys4OFjZsmVL76Ykyfjx41WmTBl5e3tblC9ZskQdOnTQ4MGD1alTJ+XKlcu87PDhw3rjjTfk6uqqtWvXqlatWpKkI0eOqHbt2ho8eLCaNWum4sWLm7e5e/euevToodu3b2v06NEaPHiwJCk8PFxPPfWU5s6dqxYtWiQ68+fGjRt64YUXFBsbq/nz56tDhw6SpMuXL6tu3br66quv1KpVK7JNAAAAkOWQuZIMDg4OeumllxQWFqYvv/wyvZsDpKg8efLo22+/1SeffKK4uDg9//zzioqKSu9mJYuHh4dKlSqlvHnzpndTkqRGjRpWgRVJatOmjerXr687d+5o06ZNFsvGjh2r2NhY9e3b1xxYkaSSJUvqvffeU0xMjMaOHWuxzcKFC3Xy5ElVrFjRHFiRJC8vL3Omy1dffZXodk+ePFlhYWFq27atObAiSf7+/ho1alSS6wMAAAAyC4IryfT222/L3d1d48aN0/Xr1xO1zcWLFzVq1CjVq1dP+fPnl4uLi/LkyaMOHTpo+/btNre5f26O8ePHq1y5cnJ3d9cTTzyhUaNGmVP2d+7cqdatW5vnOGjbtq1Onz5ts07DMPTLL7+oYcOGyp49u9zc3FS6dGkNHz5ckZGRyTgbCTt79qwGDhyoYsWKyc3NTTly5FCrVq2sbgx3794tV1dX5ciRQ+fOnbOq58UXX5TJZNLLL79sdRxdu3ZVyZIl5enpKW9vb1WvXl3fffedzfki7h8ysGPHDjVv3ly+vr7KkSOHOnfubN53RESEhg4dqiJFisjNzU3lypXTvHnzrOq7f06PixcvqlevXvL395e7u7sqV66crHkmEnvOUts777yjwoUL69KlS5o7d665/FFzXSQ0LCP+WjYMQ+PGjVPFihXl4eGhwMBASUn/PosUKaKPPvpIkvT8889bzCGzbt06SQ+fcyUmJkbjxo1TlSpV5OXlZZ4bZMKECYqNjbVav379+jKZTDp16pQWLVqkmjVrytPTUzly5FC3bt1sXrepwdnZWZLk4uJiUR4/r0qnTp2stokvW7p0aaK3qVy5sooWLar9+/fr1KlTiWrbw+pr2bKl3NzctHr16iTN53P27Fk9++yz8vPzk4eHh6pUqaKZM2faXDcx1wQAAACQKgwkiSTD0dHRMAzDGDx4sCHJeOuttyzWGTFihCHJGDZsmEX5hAkTDElGQECA0axZM6Nz585GpUqVDEmGs7OzsXLlSqv9FS5c2JBkDBo0yHB3dzdatGhhtGrVyvD29jYkGR9++KHx999/Gx4eHkblypWNzp07G8WLFzckGcWKFTMiIyMt6ouNjTW6detmSDK8vLyM+vXrG+3btzcKFixoSDKqV69utc3JkycNSUZSL5dNmzYZ2bNnNx9zhw4djKCgIMPJyclwdHQ0fv31V4v1v/jiC0OS0bBhQyMuLs5cvnDhQkOSUbJkSSM8PNxcfvv2bUOSkTNnTiMoKMjo0qWL0bhxY8PDw8OQZPTs2dOqTcOGDTMkGX379jVcXV2NKlWqWJyzkiVLGjdv3jSqVatm5M6d2+jUqZNRv359w2QyGSaTyVixYoVFfWvXrjUkGa1btzYKFSpk+Pv7G507dzaaNGliODk52bwODOO/79Xec5Zc8fs/efLkQ9d74403DEnGCy+8YC6Lvx7q1atnc5v4czxt2jSb+3zppZcMZ2dno3HjxkaXLl2M9u3bG4aR9O9zyJAhRsWKFQ1JRp06dYyePXua/wsODjYM47/v58FtY2JijBYtWhiSDB8fH6Ndu3ZG27Ztzb+r9u3bG7GxsRbb1KtXz5BkvPnmm4ajo6NRv359o1OnTubfTokSJax+O4ZhmH87jzrXibF69WrDxcXFyJ49uxESEmIuDwkJMe/n/t/I/XLlymVIMkJDQ81l8edv2bJlNrfp1KmTIclYvHhxotqXLVs2Q5Jx4MABm8urVq1qSDL27NmTqPpOnDhh5MmTx5BkFC1a1OjatasRFBRkmEwmY+DAgVbXYWKuCQAAACA1EFxJovuDK5cuXTI8PDwMT09P48qVK+Z1Egqu7N2719i/f79VnStWrDBcXFyMYsWKWQQVDOO/G9J8+fIZx44dM5cHBwcbrq6uhoeHh1GkSBFjwoQJ5mVRUVFGw4YNDUnG1KlTLeobNWqUIcmoX7++cfHiRYttevfubTNYlJzgSmhoqJE3b17D0dHRmDlzpsWy7du3G9mzZze8vLwszltcXJy53V988YVhGIZx4cIFI1euXIazs7Oxfft2i3ru3r1rLFy40IiOjrYov3Llivkmbv369RbL4m/8JVmcs+joaKNx48aGJKNMmTJGw4YNLW5SJ0+ebEgynnzySYv64m/eJRlNmjSx2Gbbtm2Gl5eX4eDgYOzYscNiO1vBleScs+RKbHBl5syZhiSjVq1a5jJ7gyu5cuWy+Tuw5/t8cF/xEgqufPnll4Yko2zZssalS5fM5RcuXDACAgIMSca4ceMstokPrnh4eBibNm0yl0dERBi1a9c2JBlTpkyxaoM9wZWpU6caPXv2NLp06WI+B9myZbMK8u3Zs8eQZGTPnj3BugIDAw1Jxt69e81l8YG8hIIdgwYNMiQZ33zzzSPbGhoaaj7W+wM492vXrp0hyViyZMkj6zMMw2jWrJk5uHf37l1z+ZIlSwxHR0eb1+GjrgkAAAAgNTAsyA7+/v7q16+fIiIiNHLkyEeuX758eZUtW9aqvGnTpnr66ad1/Phx7d+/3+a2H3/8sYoVK2b+XKpUKbVo0UKRkZEqUKCA+vbta17m4uKi1157TZK0fv16c3lMTIxGjRolT09P/frrr8qTJ4/FNuPGjVOePHk0adIkiyEYzs7OCggIUEBAwCOPMd7UqVN18eJFDRo0SD169LBYVrVqVX3wwQcKDw+3SO83mUyaMWOGsmfPrvfee0+7du1Sr169dO3aNQ0bNkxVq1a1qMfJyUnt2rUzD5OI5+fnpxEjRkiSFi9ebLN9devWtThnzs7OeuWVVyRJhw4d0oQJE+Tp6Wle3qtXL+XKlUubN2/W3bt3repzcHDQuHHjLLapVq2aBgwYoLi4OH333XcPPV9S8s5ZaoufMDUkJCTF6nzrrbds/g7s+T6T6ptvvpEkjR49Wv7+/ubyvHnz6osvvpAkq/lJ4g0ePNhiThMPDw+9/vrrkqQNGzZYrR//23nwuBJj48aNmjFjhmbPnq1//vlHOXLk0NSpU9W0aVOL9cLDw81tSUj8tXnr1q1Eb2drm4TE15VS9Z04cUIrVqyQj4+PRo8eLSen/+Zfb926tc2hRwAAAEB64W1Bdnrrrbc0ceJETZgwQW+++abFjZotUVFRWrFihbZt26arV68qOjpakrRv3z5J0tGjR1W+fHmr7Z566imrsqJFiz5y2cWLF81lO3fu1LVr19SkSROb7XR3d1eVKlW0bNkyHT161BxMyZ8/vw4dOvTQ43rQH3/8IUkWk1reLygoSJK0bds2i/ICBQro+++/V+fOnVW/fn2FhYWpbt26evvttxPc1+7du/XHH3/o9OnTioyMlGEY5pu3o0eP2tzmYeesSJEiKlmypMUyR0dHFS5cWDt27NC1a9esJkgNDAy0GXzq1q2bRo4cqb/++ivB9sdL7jlLTca/c/rEz/uTEtq0afPQ5cn5PpPizJkzOnPmjPz8/GxeB61atZKvr6+OHTumS5cuWQQhJdvXTvz1cv/vLV5Sfzv3mzx5siZPnqzw8HAdPnxYo0aNUseOHfXiiy9q0qRJya43M/j7778lSc2aNbP5tqdu3bpp9uzZad0sAAAAwCaCK3by8/PTgAEDNGrUKH3++ecaM2ZMguvu27dPbdq0eejkkAk90c2fP79VmZeX1yOX3f+Wl/j9rlq16pE3y9euXUtSpsqD4vdVp06dR+7nQU8//bTat2+vhQsXysPDQz/99JMcHR2t1ouOjlavXr30yy+/JFh/Sp3P+5fbenNO4cKFbW4T/5rjCxcuJNjGePacs9QSv68cOXKkWJ2FChWyWW7P95kU8d9FQt+ZyWRS4cKFdfPmTZ0/f94quFKgQAGrbeLf7JNab1Xy8vJSlSpVNHv2bN25c0c//PCDmjZtqo4dO5qXS3rohNQREREWbY3fLiQkJMHtbG3zsDbGi4yMlI+Pj131Pep7evAV4gAAAEB6IriSAt5880199913mjhxooYOHWpzHcMw1LlzZ506dUp9+/ZV3759VbRoUXl5eclkMundd9/ViBEjzJkCD3JwSHgE18OW3S9+qE/x4sUfeQOfM2fORNX5qH116tTJYqjMg0qVKmVVdvHiRXOmR2RkpA4ePGjzRmr06NH65ZdfVL58eY0aNUqVK1dW9uzZ5ezsrCNHjiggICBVz2dKs+ecpZZdu3ZJksqUKZPobWy9pel+bm5uNsvt+T5T2sOCj+l1fcR75plntGTJEi1evNgcXIkPWIWEhCgiIsLm9RP/NqP7gxWFChVSSEiIzp07pwoVKiRqm4T4+PgoW7ZsCg0N1blz52xeM0mpDwAAAMhMCK6kgFy5cumVV17RiBEjNGLECOXLl89qnUOHDunQoUOqWrWqJkyYYLX8xIkTqd7O+CfupUqVsnpNbmrs6/Dhw3r77bdVpUqVRG9nGIaef/55Xbt2Td26ddOcOXP0wgsvaN++ffLz87NYd+HChZKkX375xWoOj7Q4n/dL6LXX8eW2rokHJfecpZbY2Fjz66cbNGhgLo9/BfD9c2zc7+zZs8naX1p9n/HfRULf2f3LEspiSk/x8+BcvXrVXObr66tChQrpzJkz2rVrl+rWrWuxzdmzZ3Xt2jUVLlzYIqOkYsWK2rNnj3bu3KkWLVpY7Wvnzp2SZDPwYkvFihW1YcMG7dy50yq4cvfuXe3fv19ubm5Ww+5siR9696jfFgAAAJARMKFtChkyZIi8vb01adIknT9/3mp5/ISgtoYUhISEaNWqVanexmrVqilbtmxav369bty4kar7atKkiaT/bpgTa9y4cVq5cqXq1Kmjn376Se+9954uX76s3r17W637sHM6Z86cZLQ6+Xbv3m1zPpBff/1Vkqxudm1J7jlLLf/73/905swZ5c+f35whId27uXdyctLJkycVExNjsc3du3ctJlFOiuR8n/GBngfb8TCFChVSoUKFdPXqVf35559Wy5ctW6aQkBAVL17cakhQRhB/fu+f4FqSWrZsKUnmgNj94stat26d6G127dqlEydOqFy5cokegvOw+n777TfduXNHjRs3TjB76X7xv5kVK1YoLCzMann8b+tBybkmAAAAAHsRXEkhOXPm1KuvvqqoqChNmTLFannx4sXl4OCgNWvWWNyE37lzR3379k31YIckubq6aujQobp165Y6dOhgMxvg/Pnz+umnn6zKSpUqlaThKC+//LJy586tUaNGWb19SLp347Ny5UqLtyMdPHhQb731lry9vc3zrHzwwQeqXr26li5dqokTJ1rUEf/0+8HyefPm6ccff0x0W1NCXFycXnnlFYu5K3bs2KFvv/1WJpNJ/fr1e2QdyTln0r03GZlMJg0fPjxFjuXSpUt65ZVX9OGHH8rR0VHTpk0z37BK925ea9WqpRs3bmj8+PEW7RsyZIhOnjyZrP0m5/uMz0I5fPhwkvYV/2ao119/3SID5NKlS3rzzTclyfzGLXvF/3ZsBV1tCQ4O1pw5c8yTXcczDEO//vqrRo0aJZPJpJ49e1osf+211+To6KiJEydqy5Yt5vKjR4/qs88+k5OTk9UxtW/fXk888YT27NljMV9URESEBgwYIOle4PhBjRo1UqlSpawmV+7Tp498fHy0ePFiLViwwFx+5coV85BJW/XZUqxYMT311FMKCwvTkCFDFBsba172+++/a+7cuTa3S+41AQAAANgl3V4CnUlJMhwdHW0uu3HjhuHj42NIMiQZw4YNs1j+4osvGpIMd3d3o2XLlkanTp0Mf39/I1euXEavXr0MSca0adMstilcuLCR0Nc0bNgwm9sYhmGcPHnSkGTUq1fPojw2NtZ49tlnDUmGi4uLUaNGDaNr165Ghw4djLJlyxomk8moWLGizbqSerls3rzZyJUrlyHJKFiwoNG8eXOje/fuRsOGDQ1fX19DkrFw4ULDMAwjKirKCAwMNCQZM2bMsKjnyJEjhqenp+Hh4WEcOnTIXL5+/XrD0dHRkGRUqVLF6Natm1G1alVDkvHGG2/YPP7knLN49erVMyQZJ0+eNJetXbvWkGS0atXKKFiwoJEnTx6jc+fORtOmTQ1nZ2dDkvH+++9b1ZXQ95qUcxYv/vv89NNPbbbblvj9d+zY0ejZs6fx3HPPGe3btzcCAwPN5zRPnjzGihUrbG6/atUqw8HBwZBk1KpVy2jfvr1RqFAhI1euXEbPnj2TfC0bRvK+z/Pnzxtubm6Go6Oj0axZM+OFF14wevfubb5O4r+fnj17WmwXExNjNG/e3JBkZMuWzWjfvr3Rrl07w9vb25BktGvXzoiNjbXYxtb3H+9h1078b8fWdrbEtzlbtmxGw4YNje7duxstWrQwihQpYkgyHBwcjDFjxtjcdvTo0YYkw8nJyWjevLnRtm1bw93d3ZBkfPPNNza32bhxo3mdGjVqGJ07dzby5s1rSDI6depkxMXFWW0T/12uXbvWatm8efMMBwcHw2QyGQ0aNDA6depkvnZff/31RJ2DeMePHzf8/f0NSUaxYsWMrl27Gk8++aRhMpmMAQMGJOuaAAAAAFIDwZUkelhwxTAM48MPP0wwuBITE2N89dVXRpkyZQw3NzfD39/f6NGjh3Hq1KkEb/pTOrgSb/HixUbLli2N3LlzG87Ozkbu3LmNKlWqGEOHDjV27Nhhs67kxOIuXrxoDB061Chbtqzh4eFheHh4GMWKFTPatm1rTJ8+3bh165ZhGIbx5ptvGpKMp59+2mY933//vfmmOzo62ly+efNmo2HDhkb27NkNb29vo3bt2sb8+fMTPP7UCq707NnTOH/+vPHMM88Yfn5+hqurq1GxYkWb+zGMh3+viT1n8SpUqGA4OTkZx48ft1nfw/Yf/5+Dg4Ph6+trBAQEGF27djVmzJhh3L59+6F1/Pbbb0a1atUMV1dXI0eOHEbnzp2NkydPJutajpfU79MwDGPlypVGnTp1DC8vL/PxxN/0JxRcMQzDuHv3rjF27FijUqVK5vNctWpVY/z48UZMTIzV+mkVXLly5Yrx8ccfGw0bNjQKFChguLq6Gu7u7kaJEiWMF154wer3+aAlS5YYQUFBhpeXl+Hl5WUEBQUZS5cufeg2+/fvNzp27GjkzJnTcHNzM8qWLWuMHj3aKsAU72HBFcMwjL///tto1qyZ4evraz6v06dPT9TxP+jUqVNG9+7dzW0LDAw0pk+fnuxrAgAAAEgNJsNIo9dvAFnQunXr1KBBA/Xs2TPVJwm25fr16/Lz81Pv3r31ww8/pPn+AQAAAADMuQJkauvWrZOzs7Pef//99G4KAAAAADy2eBUzkIl17NhRUVFR6d0MAAAAAHiskbmSCIZhKDwiQoygAgAAAAAAD2LOlUQIj4hQg6daaumCufL09Ejv5gAAAAAAgAR4e3mm+T7JXAEAAAAAALADwRUAAAAAAAA7EFwBAAAAAACwA8EVAAAAAAAAOxBcAQAAAAAAsAPBFQAAAAAAADsQXAEAAAAAALADwRUAAAAAAAA7EFwBAAAAAACwA8EVAAAAAAAAOxBcAQAAAAAAsAPBFQAAAAAAADsQXAEAAAAAALADwRUAAAAAAAA7EFwBAAAAAACwA8EVAAAAAAAAOxBcAQAAAAAAsAPBFQAAAAAAADsQXAEAAAAAALADwRUAAAAAAAA7EFwBAAAAAACwA8EVAAAAAAAAOxBcAQAAAAAAsAPBFQAAAAAAADsQXAEAAAAAALADwRUAAAAAAAA7EFwBAAAAAACwA8EVAAAAAAAAOxBcAQAAAAAAsAPBFQAAAAAAADsQXAEAAAAAALADwRUAAAAAAAA7EFwBAAAAAACwg1N6NwBAxnXgtGOK1FO2cGyK1AMAAAAAGRHBFQBmKRVMeVi9BFoAAAAAZDUEV4DHXGoFVBKzPwItAAAAALICgivAYyitAyoJIdACAAAAICsguAI8JjJKQCUhBFoAAAAAZFYEV4AsLKMHVBJCoAUAAABAZkJwBchiMmtAJSEEWgAAAABkdA7p3QAAAAAAAIDMjMwVIAvIatkqCSGLBQAAAEBGRHAFyKQel4BKQgi0AAAAAMgoGBYEAAAAAABgBzJXgEzkcc9WSQhZLAAAAADSE5krAAAAAAAAdiBzBcjgyFZJGrJYAAAAAKQ1gitABkRAJWUQaAEAAACQFhgWBAAAAAAAYAcyV4AMgmyV1EUWCwAAAIDUQuYKAAAAAACAHchcAdIR2Srp48HzTiYLAAAAAHuQuQIAAAAAAGAHgisAAAAAAAB2YFgQkMYYCpTxMNktAAAAAHuQuQIAAAAAAGAHMleANEC2SuZBFgsAAACApCJzBQAAAAAAwA5krgCphGyVzI8sFgAAAACJQeYKAAAAAACAHchcAVIQ2SpZF1ksAAAAABJC5goAAAAAAIAdyFwB7ES2yuOHLBYAAAAA9yNzBQAAAAAAwA5krgDJQLYK4pHFAgAAAIDMFQAAAAAAADuQuQIkApkqSAyyWAAAAIDHE5krAAAAAAAAdiC4AgAAAAAAYAeGBQEJYCgQ7MEQIQAAAODxQeYKAAAAAACAHchcAe5DtgpSA1ksAAAAQNZG5goAAAAAAIAdyFzBY49sFaQlslgAAACArIfMFQAAAAAAADuQuYLHEtkqyAjIYgEAAACyBjJXAAAAAAAA7EDmCh4bZKsgIyOLBQAAAMi8yFwBAAAAAACwA5kryNLIVkFmRBYLAAAAkLkQXEGWQ0AFWQmBFgAAACDjY1gQAAAAAACAHchcQZZAtgoeB2SxAAAAABkTmSsAAAAAAAB2IHMFmRbZKnickcUCAAAAZBwEV5CpEFABrBFoAQAAANIXw4IAAAAAAADsQOYKMjyyVYDEe/D3QiYLAAAAkPoIriBDIqACpAyGDAEAAACpj2FBAAAAAAAAdiBzBRkG2SpA6iKLBQAAAEgdBFeQrgioAOmDQAsAAACQcjL1sCCTyWTxn7Ozs3LlyqXy5curV69emj9/vmJiYh5ax+3bt/Xhhx+qZMmScnNzU758+fTCCy/o/PnzaXQUj58Dpx3N/wFIf/wmAQAAAPuYDMMw0rsRyWUymSRJPXv2lCTFxcUpNDRUR44c0eHDh2UYhooXL65Zs2apevXqVtvfuXNHDRo00JYtW5Q3b14FBQXp1KlT2rZtm/z8/LRlyxYVLVpU4RERavBUSy1dMFeenh5peoxZBTdtQOZDRgsAAAAyI28vzzTfZ5YYFjR9+nSrsuPHj+vdd9/VnDlz1KBBA23cuFGBgYEW63z66afasmWLatWqpT/++ENeXl6SpNGjR2vIkCF64YUXtG7dutQ/gCyKgAqQuTF0CAAAAEicLJG58rBD6NOnj6ZMmaJKlSpp586d5vLo6Gjlzp1boaGh2rlzpypVqmSxXcWKFbV37179888/CihVisyVRCKgAmR9BFoAAACQkaVH5kqmnnMlMb766it5enpq165d+vvvv83lGzduVGhoqIoVK2YVWJGkTp06SZKWLl2aZm3NjO6fq4HACvB44DcPAAAAWMrywZVs2bKpefPmkqS1a9eay/fs2SNJqly5ss3t4sv37t2byi3MfLixAhCP/gAAAADIInOuPEpgYKDmzZun4OBgc9mZM2ckSQUKFLC5TXz56dOnU7+BGRQ3SwCSIqE+g2FEAAAAyOoei+BKrly5JEkhISHmsvDwcEmSh4ftOVQ8Pe+N0bp161Yqty5jIaACIKUxMS4AAACyusciuBI/4W38BLggiAIgfZDdAgAAgKzosQiuXLt2TZKUI0cOc1n8a5cjIyNtbhMRESFJ8vb2Npft27dXbm5uqdXMVHH2Zvb0bgIAPNKJk7bLC/qG2F4AAAAAJCCobp003+djEVzZtWuXJKlMmTLmskKFCkmSzp07Z3Ob+PLChQuby5o1a6q4WJ6uAgAAAACQUcWPXklLWT64EhoaqpUrV0qSGjRoYC6vWLGiJGnnzp02t4svr1ChgrlsxYqVmS5zBQAAAAAApK4sH1wZMmSIIiIiVK1aNdWqVctcXqdOHWXLlk3Hjx/X7t27FRgYaLHdvHnzJEmtW7c2l5UvX0GenrYnwAUAAAAAAI8nh/RuQGo5ceKEunTpoilTpsjT01NTpkyxWO7i4qKBAwdKkgYMGGCeY0WSRo8erb1796pevXqqUqVKmrYbAAAAAABkLlkic6VXr16SpLi4OIWFhenIkSM6dOiQDMNQiRIl9PPPP6t8+fJW273//vtavXq1Nm3apBIlSigoKEinT5/W1q1b5efnp6lTp6bxkQAAAAAAgMzGZKTHTC8p5MFXKzs5OcnHx0f58uVTlSpV1LZtW7Vp00aOjgm/dvj27dsaMWKEfv75Z509e1Y5cuRQs2bN9Mknn6hAgQKSpPCICDV4qqWWLpjLsCAAAAAAADIwby/PNN9npg6upBWCKwAAAAAAZA7pEVzJsnOuAAAAAAAApAWCKwAAAAAAAHYguAIAAAAAAGAHgisAAAAAAAB2ILgCAAAAAABghwwbXFmxYoUCAwPl5uYmk8mkmzdvpneTAKSQxYsXK7BiBZ0/fz69mwIAAAAAdnNK7wbYcv36dXXu3Flly5bV+PHj5erqKk/PtH+VEpBRnT93Tj/++KM2b96sK1cuS5Ly5cunqtWqqVOnp1WyZMl0biEAAAAAPD4yZHBl+/btunXrlj755BM1btw4vZsDZCgb1q/X0KFvysnJSc1btFBAyQCZHEw6dfKU/vxztebOmaNlvy9Xvnz50rupCWrVqpWaNWsmFxeX9G4KAAAAANgtQwZXrly5Ikny9fV95LqRkZHy8PBI5RYBGcPZs2f11ltDlS9fPn0/6Qf5+flZLH9t0CDNmT1bDg4ZdsSfJMnR0VGOjo7p3QwAAAAASBFJugMbPny4TCaTjh07pl69esnX11fZsmXT888/r8jISIt1Y2Ji9Mknn6hYsWJydXVVkSJF9O677yoqKuqh+6hfv7569uwpSapWrZpMJpN69eplXlauXDnt2LFDTz75pDw8PPTuu+9KkqKiojRs2DAVL15crq6uKliwoIYOHWq1v6ioKA0ePFh+fn7y9vZWmzZtdO7cOZlMJg0fPjwppwNIc9OnTdPt27f10UcfWwVWJMnJyUnde/RQnjx5JElHjhzRBx+8r5Ytmqt6tapq1LCBhn34odUcRh988L6aN29mVd+ECd8psGIFi7LNmzerV8+eqlu3jmrVrKG2bVrrm2/GWqzzy88/q0P79qpZo7qC6tZR925d9fvvy8zLbc25snbtWg0cOEBNGjdStapV1KplC036/nvFxsZa1N279wvq2KG9jh8/rj69e6tmjepq0rixpk2bmriTCAAAAAApLFmZK507d9YTTzyhESNGaOfOnZo8ebJy586tkSNHmtfp06ePZsyYoU6dOmnIkCHaunWrRowYoeDgYC1cuDDBut977z0FBARo0qRJ+vjjj/XEE0+oWLFi5uXXr19X8+bN1bVrVz3zzDPy9/dXXFyc2rRpo7///lsvvfSSSpcurX379mnMmDE6cuSIFi1aZNGumTNnqnv37qpdu7bWrFmjli1bJuc0AGluw4YNKliokMpXqPDolSVt2bxZ58+dU9u27ZQzV04dP35cC+bP1/Hjx/TTzFkymUxJ2v+xY8f06isDVaJkSfXv118uLi46c/aM9uzebV5n/vx5GjnyczVu0kTde/RQdFSUjh49on379qlFi4R/a0sWL5aHu4eeefZZebh7aNv2bfruu/EKjwjX668PsVg3LOyWBvTvp4aNGumppk9p9apVGvv11ypRooTq1g1K0jEBAAAAgL2SFVypVKmSpkyZYv58/fp1TZkyxRxc2bNnj2bMmKE+ffrohx9+kCT1799fuXPn1pdffqm1a9eqQYMGNutu0qSJzp8/r0mTJql58+aqWrWqxfJLly5p4sSJevnll81lM2fO1OrVq7V+/XrVrVvXXF6uXDn17dtXmzZtUu3atbVnzx7NnDlT/fv31/jx4yVJAwYMUI8ePbR3797knAogzYSHh+vq1Stq0KCh1bKwsDCLDA93d3e5ubmpc5cueu7fTLB4FcpX0Ntvv6Vdu3aqcuUqSWrDli2bdffuXY0f/52yZ89uc52//vpLxYoV05dffpWkukd8/rnc3NzMn5/u3Fmf+nyiObNna+DAVyzmZ7l69Yo+/fQztWrdWpLUvn0HNW/WVIsWLiS4AgAAACDNJWtihr59+1p8DgoK0vXr1xUWFiZJ+v333yVJr7/+usV6Q4bce/q8bNkyJZerq6uef/55i7K5c+eqdOnSKlWqlK5du2b+r2HDezeha9eutWjXq6++arH9oEGDkt0eIK1ERIRLks05hvr06a0G9euZ/5s9+1dJsghWREVFKSQkxJz1EhwcnOQ2eHv7SJLWrV2ruLi4BNbx1uUrV7R///4k1X1/WyMiIhQSEqJKlSvrzp07OnnypMW6Hh4eatmqlfmzs7OzypUrp3PnziVpnwAAAACQEpKVuVKoUCGLz/FPsENCQuTj46PTp0/LwcFBxYsXt1gvT5488vX11enTp5PZXCl//vxWbxg5evSogoODbc5BIf03QW58u+4fZiRJAQEByW4PkFY8PO69jvzB+Y0k6YP3P1BEZKSuX7+u9959x1weGhqqiRMnaOWKFbpx44bFNuG3wpPchqZNm2rhggX66KPh+uabsapevYYaNmqkJk2amCfRff75F7R1yxY906O7ChYqpFq1aql58xaqVKnSQ+s+duyYxn/7rbZv36bwcMu2hYffsvjs7+9vNaTJ28dHR44cSfIxAQAAAIC9khVcSegtH4ZhWHxO6nwOieHu7m5VFhcXp/Lly2v06NE2tylYsGCKtwNIa97e3vLz89Ox48eslsVno9w/QawkDX3zDe3Zs0fP9eypUgGl5O7hISMuTv3791Oc8V/miUm2f6txsZbZKW5ubpo6bZq2b9+mvzb8pU2bNmrlyhWaX726Jkz8Xo6OjipatKgWL16iDRs2aOPGjfpz9WrNmT1bL738svr3H2BzP2FhYerT+wV5enqqX//+KligoFxcXRUcfFBjv/5acXGWfUtCb0MybJYCAAAAQOpKlVcxFy5cWHFxcTp69KhKly5tLr98+bJu3rypwoULp+j+ihUrpj179qhRo0YPDejEt+v48eMW2SqHDx9O0fYAqaVuUJAWLligffv2qXz58g9dNywsTFu3blW/fv318n1D+Wxljvn4+OjWrVtW5RcvXrAqc3BwUI0aNVWjRk1Jb2ry5B/07bhx2r59u2rWrClJcvfwUNNmzdS0WTPdvXtXrw8erCmTJ6t37z5ydXW1qvOff/7RzZs39dXo0apS5b95ls6fZ5gPAAAAgIwvWXOuPEqLFi0kSV9//bVFeXxmSUq/nadz5846f/68efLc+92+fVsRERGSpObNm0uSvvnmG4t1HmyndG/oxaFDh3Tt2rUUbStgj169npebm5uGD/tQ169ft17hvuyx+OwO44F8jlmzZlptVqBgQYXfumUxrObq1atas2aNxXqhoaFW2wYElJIkRUdHS5LVa56dnZ1VtFhRGYahmJgYm8flGN/W+5p69+5dzZk9x+b6AAAAAJCRpErmSsWKFdWzZ09NmjRJN2/eVL169bRt2zbNmDFD7dq1S/BNQcn17LPPas6cOerbt6/Wrl2rOnXqKDY2VocOHdKcOXO0cuVKVa1aVYGBgerWrZu+++47hYaGqnbt2vrzzz917Jj1MItt27apQYMGGjZsmN54880UbS+QXIULF9aIz0fqnbffUtu2bdSiRQuVLBkgGYbOnz+v5ct/l4ODg/xz+8vLy0tVqlTR9GnTFBMTo9y5c2vzps06f+G8Vb3NmjXT2K/H6PXBg9Ste3fduXNHc+fMUeHChS0mvv3++4nauWOHgoKeVN58eXXjxg3NmT1b/v7+5jlV+vV9WTlz5VJgYKBy5sipkydP6Ndff1VQUJA8PT1tHlfFwED5+Pjogw/eV/du3SWTSct+W2oVGAIAAACAjChVgiuSNHnyZBUtWlTTp0/XwoULlSdPHr3zzjsaNmxYiu/LwcFBixYt0pgxY/Tjjz9q4cKF8vDwUNGiRfXaa6+pZMmS5nWnTp0qPz8/zZo1S4sWLVLDhg21bNky5mVBptGgQQPNnTdfP/44Q5s3b9biRYtkMpmUN29eBQUFqdPTnc3D3v434nON/Pxzzf71VxmSatWqpfHjv1OTxo0s6vT19dXoMV/rqy+/0Ndjxih//vx65dXXdObMaYvgSv169XXhwgUtWrRIN2+GyNc3u6pUraJ+/frL29tbktSx09Na/vsyzfzpJ0VGRsrf31/dunfXiy++lOAx+fr66ptx32r0V19q/Phv5e3to5YtW6p6jRrq369vgtsBAAAAQEZgMh6chfYxZTKZNGzYMA0fPtxqWXhEhBo81VJLF8yVp6f1a3ABAAAAAEDG4O1lO2M+NaXKnCsAAAAAAACPC4IrAAAAAAAAdiC4AgAAAAAAYIdUm9A2s2HqGQAAAAAAkBxkrgAAAAAAANiB4AoAAAAAAIAdCK4AAAAAAADYgeAKAAAAAACAHQiuAAAAAAAA2IHgCgAAAAAAgB0IrgAAAAAAANiB4AoAAAAAAIAdCK4AAAAAAADYgeAKAAAAAACAHZzSuwEAAACp4cBpxxSpp2zh2BSpBwCSgj4MyFwIrgAAgCwjpW5GEqqTmxQAqSm1+zCJfgxILQRXAABAppMaNyD27JebFQBJkV592MP2TT8G2IfgCgAAyBTS82bkUchuAfAoGbkPk+jHAHsxoS0AAAAAAIAdyFwBAAAZVkZ/0msLT38BxMuMfZhEPwYkB8EVAACQoWTWmxFbuEEBHj9ZqQ+T6MeAxCK4AgAA0lVWuxFJCG/sALKux7Efow8DLDHnCgAAAAAAgB3IXAEAAGnucXnK+zA8AQYyt8e9H6MPAyyRuQIAAAAAAGAHMlcAAECaeNyf8j4MT4CBzIF+zDb6MIDgCgAASEXciCQdNylAxkI/ljT0YXhcMSwIAAAAAADADmSuAACAFMVT3pTDE2AgfdCPpQz6MDxOyFwBAAAAAACwA5krAADAbjzlTX08AQZSF/1Y6qIPQ1ZH5goAAAAAAIAdyFwBAADJwlPe9MMTYMB+9GHphz4MWRGZKwAAAAAAAHYgcwUAACQaT3ozHp4AA4lHH5bx0IchqyBzBQAAAAAAwA4EVwAAAAAAAOzAsCAAAPBQpNFnHqTXA9bowzIP+jBkZmSuAAAAAAAA2IHMFQAAYIUnvZkfT4DxOKMPy/zow5DZkLkCAAAAAABgBzJXAACAJJ70ZmU8AcbjgD4s66IPQ2ZA5goAAAAAAIAdyFwBAOAxxpPexw9PgJGV0Ic9fujDkFGRuQIAAAAAAGAHMlcAAHjM8KQX8XgCjMyIPgzx6MOQkZC5AgAAAAAAYAcyVwAAeAzwpBePwhNgZGT0YXiUB68R+jGkNTJXAAAAAAAA7EDmCgAAWRRPepFcZLEgI6APgz3ox5DWyFwBAAAAAACwA8EVAAAAAAAAOzAsCACALIQ0eqQ0UuuRlujDkBrox5AWyFwBAAAAAACwA5krAABkcjzpRVrh6S9SA30Y0hL9GFILmSsAAAAAAAB2IHMFAIBMiCe9SG88/YU96MOQEdCPISWRuQIAAAAAAGAHMlcAAMgkeNKLjIqnv0gM+jBkZPRjsBfBFQAAMihuRJAZPXjdcpPyeKMfQ2ZEoAXJwbAgAAAAAAAAO5C5AgBABsJTXmQ1PAF+/NCPISuhD0NikbkCAAAAAABgBzJXAABIZzzlxeOCJ8BZF/0YHgf0YXgYMlcAAAAAAADsQOYKAADpgKe8eNzxBDjzox/D44w+DA8iuAIAQBrhRgSwjZuUzIN+DLBGHwaJYUEAAAAAAAB2IXMFAIBUxFNeIGl4Apzx0I8BiUcf9vgiuAIAQArjRgRIGdykpA/6MCBl0Ic9XgiuAACQArgZAVIXNympiz4MSF30YVkfc64AAAAAAADYgcwVAACSiSe9QPrgCXDKoA8D0gd9WNaUqYMrJpPJ4rOTk5OyZcumvHnzqkqVKmrdurXatm0rJyfbh7ljxw6tWrVK27Zt07Zt23T+/HlJkmEYqd52AEDmxM0IkLFwk5I09GFAxkIflnWYjEwcSYgPrvTs2VOSFBcXp9DQUB05ckSHDx+WYRgqXry4Zs2aperVq1tt365dOy1evNiq/MFTEh4RoQZPtdTSBXPl6emRCkcCAMjIuBkBMh9uUv5DHwZkPvRh9vH28kzzfWbqzJV406dPtyo7fvy43n33Xc2ZM0cNGjTQxo0bFRgYaLFOrVq1VKFCBVWrVk3VqlVTkSJFFBUVlTaNBgBkaNyMAJnb4/40mD4MyNwe9z4sM8oSmSsPO4Q+ffpoypQpqlSpknbu3PnQ+tzc3BQVFUXmCgA8prgZAbK+rHyTQh8GZH1ZuQ9LSemRuZLlgyuhoaHKnz+/IiIi9Ndff6lu3boJrktwBQAeP9yMAI+vrHCTQh8GPN6yQj+WGhgWlAqyZcum5s2ba968eVq7du1DgysAgMcDNyMApMybdk8fBiBeZu3HsqIsH1yRpMDAQM2bN0/BwcHp3RQAQBriBgRAYiXUX6TnzQp9GICkyIj92OPksQiu5MqVS5IUEhKSzi0BAKQGbkAApJa0uFmhDwOQmgi6pI3HIrgSP4dK/BwtAIDMjRsRAOntwX4oqTcp9GMA0htDilLWYxFcuXbtmiQpR44cdtWzb99eubm5pUSTAACJcPZm9vRuAgAkyomT6d0CAEi+hPqwgr6Zc/RHUN06ab7PxyK4smvXLklSmTJl7KqnWbOmioslogcAAAAAQEaVHi9FzvLBldDQUK1cuVKS1KBBA7vqWrFiJZkrAAAAAADAQpYPrgwZMkQRERGqVq2aatWqZVdd5ctXkKenRwq1DAAAAAAAZAUO6d2A1HLixAl16dJFU6ZMkaenp6ZMmZLeTQIAAAAAAFlQlshc6dWrlyQpLi5OYWFhOnLkiA4dOiTDMFSiRAn9/PPPKl++vNV2y5Yt0yeffGL+HB0dLUmqWbOmueyDDz5Qvfr1U7X9AAAAAAAg88oSwZUZM2ZIkpycnOTj46N8+fLpueeeU9u2bdWmTRs5Otp+1d3Vq1e1detWq/L7y65evZo6jQYAAAAAAFmCyUiPaXQzmfCICDV4qqWWLpjLnCsAAAAAAGRg3l6eab7PLDvnCgAAAAAAQFoguAIAAAAAAGAHgisAAAAAAAB2ILgCAAAAAABghwwbXFmxYoUCAwPl5uYmk8mkmzdvpneTAAAAJEmLFy9WYMUKOn/+fHo3BQCSjD4MSHkZ8lXM169fV+fOnVW2bFmNHz9erq6u8vRM+9l+AQBA6jh/7px+/PFHbd68WVeuXJYk5cuXT1WrVVOnTk+rZMmS6dxCAEgYfRiAB2XIVzGvWLFCzZs316pVq9S4ceP0bg6vYgYAIAVtWL9eQ4e+KScnJzVv0UIBJQNkcjDp1MlT+vPP1bp48aKW/b5c+fLlS++mJig2NlYxMTFycXGRyWRK7+YASEP0YUDGlx6vYs6QmStXrlyRJPn6+j5y3cjISHl4EPAAACAzOHv2rN56a6jy5cun7yf9ID8/P4vlrw0apDmzZ8vBIcOOXJYkOTo6ytHRMb2bASCN0YcBSEiSfvXDhw+XyWTSsWPH1KtXL/n6+ipbtmx6/vnnFRkZabFuTEyMPvnkExUrVkyurq4qUqSI3n33XUVFRT10H/Xr11fPnj0lSdWqVZPJZFKvXr3My8qVK6cdO3boySeflIeHh959911JUlRUlIYNG6bixYvL1dVVBQsW1NChQ632FxUVpcGDB8vPz0/e3t5q06aNzp07J5PJpOHDhyfldAAAgCSaPm2abt++rY8++tjqpkSSnJyc1L1HD+XJk0eSdOTIEX3wwftq2aK5qlerqkYNG2jYhx9azcX2wQfvq3nzZlb1TZjwnQIrVrAo27x5s3r17Km6deuoVs0aatumtb75ZqzFOr/8/LM6tG+vmjWqK6huHXXv1lW//77MvNzWfAVr167VwIED1KRxI1WrWkWtWrbQpO+/V2xsrEXdvXu/oI4d2uv48ePq07u3ataoriaNG2vatKmJO4kA0g19GH0YkJBkZa507txZTzzxhEaMGKGdO3dq8uTJyp07t0aOHGlep0+fPpoxY4Y6deqkIUOGaOvWrRoxYoSCg4O1cOHCBOt+7733FBAQoEmTJunjjz/WE088oWLFipmXX79+Xc2bN1fXrl31zDPPyN/fX3FxcWrTpo3+/vtvvfTSSypdurT27dunMWPG6MiRI1q0aJFFu2bOnKnu3burdu3aWrNmjVq2bJmc0wAAAJJow4YNKliokMpXqPDolSVt2bxZ58+dU9u27ZQzV04dP35cC+bP1/Hjx/TTzFlJTmc/duyYXn1loEqULKn+/frLxcVFZ86e0Z7du83rzJ8/TyNHfq7GTZqoe48eio6K0tGjR7Rv3z61aJHw3wxLFi+Wh7uHnnn2WXm4e2jb9m367rvxCo8I1+uvD7FYNyzslgb076eGjRrpqaZPafWqVRr79dcqUaKE6tYNStIxAUg79GH30IcB1pIVXKlUqZKmTJli/nz9+nVNmTLFHFzZs2ePZsyYoT59+uiHH36QJPXv31+5c+fWl19+qbVr16pBgwY2627SpInOnz+vSZMmqXnz5qpatarF8kuXLmnixIl6+eWXzWUzZ87U6tWrtX79etWtW9dcXq5cOfXt21ebNm1S7dq1tWfPHs2cOVP9+/fX+PHjJUkDBgxQjx49tHfv3uScCgAAkEjh4eG6evWKGjRoaLUsLCzM4umou7u73Nzc1LlLFz33b0ZrvArlK+jtt9/Srl07VblylSS1YcuWzbp7967Gj/9O2bNnt7nOX3/9pWLFiunLL79KUt0jPv9cbm5u5s9Pd+6sT30+0ZzZszVw4CtycXExL7t69Yo+/fQztWrdWpLUvn0HNW/WVIsWLuTGBMig6MPow4CHSdZgwL59+1p8DgoK0vXr1xUWFiZJ+v333yVJr7/+usV6Q4bci3guW7ZMyeXq6qrnn3/eomzu3LkqXbq0SpUqpWvXrpn/a9jwXse3du1ai3a9+uqrFtsPGjQo2e0BAACJExERLkk250rr06e3GtSvZ/5v9uxfJcniD/2oqCiFhISYnxgHBwcnuQ3e3j6SpHVr1youLi6Bdbx1+coV7d+/P0l139/WiIgIhYSEqFLlyrpz545Onjxpsa6Hh4datmpl/uzs7Kxy5crp3LlzSdongLRDH/Yf+jDAWrIyVwoVKmTxOT5qGhISIh8fH50+fVoODg4qXry4xXp58uSRr6+vTp8+nczmSvnz57eImkrS0aNHFRwcbHPco/TfBLnx7bp/mJEkBQQEJLs9AAAgcTw87s3c/+A8bZL0wfsfKCIyUtevX9d7775jLg8NDdXEiRO0csUK3bhxw2Kb8FvhSW5D06ZNtXDBAn300XB9881YVa9eQw0bNVKTJk3ME1A+//wL2rpli57p0V0FCxVSrVq11Lx5C1WqVOmhdR87dkzjv/1W27dvU3i4ZdvCw29ZfPb397caDuDt46MjR44k+ZgApA36sP/QhwHWkhVcSWhm6Qff6pwar/Vyd3e3KouLi1P58uU1evRom9sULFgwxdsBAACSxtvbW35+fjp2/JjVsvgnufdPrihJQ998Q3v27NFzPXuqVEApuXt4yIiLU//+/RRn/PfU1iTbf3PExVo+2XVzc9PUadO0ffs2/bXhL23atFErV67Q/OrVNWHi93J0dFTRokW1ePESbdiwQRs3btSfq1drzuzZeunll9W//wCb+wkLC1Of3i/I09NT/fr3V8ECBeXi6qrg4IMa+/XXiouz/BspoTeJGDZLAWQE9GH/oQ8DrKXKq5gLFy6suLg4HT16VKVLlzaXX758WTdv3lThwoVTdH/FihXTnj171KhRo4cGdOLbdfz4cYtslcOHD6doewAAgG11g4K0cMEC7du3T+XLl3/oumFhYdq6dav69euvl+8bkmwrA9bHx0e3bt2yKr948YJVmYODg2rUqKkaNWpKelOTJ/+gb8eN0/bt21WzZk1JkruHh5o2a6amzZrp7t27en3wYE2ZPFm9e/eRq6urVZ3//POPbt68qa9Gj1aVKv/NF3f+PCnyQFZCHwYgIanyAvYWLVpIkr7++muL8vjMkpR+O0/nzp11/vx58+S597t9+7YiIiIkSc2bN5ckffPNNxbrPNhO6V6636FDh3Tt2rUUbSsAAI+zXr2el5ubm4YP+1DXr1+3XuG+LNj4J6PGA89CZ82aabVZgYIFFX7rlkVK+tWrV7VmzRqL9UJDQ622DQgoJUmKjo6WJKtXpDo7O6tosaIyDEMxMTE2j8sxvq33NfXu3buaM3uOzfUBZE70YQASkiqZKxUrVlTPnj01adIk3bx5U/Xq1dO2bds0Y8YMtWvXLsE3BSXXs88+qzlz5qhv375au3at6tSpo9jYWB06dEhz5szRypUrVbVqVQUGBqpbt2767rvvFBoaqtq1a+vPP//UsWPWqX3btm1TgwYNNGzYML3x5psp2l4AAB5XhQsX1ojPR+qdt99S27Zt1KJFC5UsGSAZhs6fP6/ly3+Xg4OD/HP7y8vLS1WqVNH0adMUExOj3Llza/OmzTp/4bxVvc2aNdPYr8fo9cGD1K17d925c0dz58xR4cKFLSaN/P77idq5Y4eCgp5U3nx5dePGDc2ZPVv+/v7m+Qj69X1ZOXPlUmBgoHLmyKmTJ0/o119/VVBQkDw9PW0eV8XAQPn4+OiDD95X927dJZNJy35banVTBSBzow8DkJBUCa5I0uTJk1W0aFFNnz5dCxcuVJ48efTOO+9o2LBhKb4vBwcHLVq0SGPGjNGPP/6ohQsXysPDQ0WLFtVrr72mkiVLmtedOnWq/Pz8NGvWLC1atEgNGzbUsmXLmJcFAIA00qBBA82dN18//jhDmzdv1uJFi2QymZQ3b14FBQWp09OdzcN3/zfic438/HPN/vVXGZJq1aql8eO/U5PGjSzq9PX11egxX+urL7/Q12PGKH/+/Hrl1dd05sxpixuT+vXq68KFC1q0aJFu3gyRr292ValaRf369Ze3t7ckqWOnp7X892Wa+dNPioyMlL+/v7p1764XX3wpwWPy9fXVN+O+1eivvtT48d/K29tHLVu2VPUaNdS/X98EtwOQ+dCHAbDFZDw4C+1jymQyadiwYRo+fLjVsvCICDV4qqWWLpgrT0/rV68BAAAAAICMwdvLdpZWakqVOVcAAAAAAAAeFwRXAAAAAAAA7EBwBQAAAAAAwA6pNqFtZsPUMwAAAAAAIDnIXAEAAAAAALADwRUAAAAAAAA7EFwBAAAAAACwA8EVAAAAAAAAOxBcAQAAAAAAsAPBFQAAAAAAADsQXAEAAAAAALADwRUAAAAAAAA7EFwBAAAAAACwA8EVAAAAAAAAOzildwMyA8MwJEmRkZHp3BIAAAAAAPAwJpPk6eEhk8mUZvskuJIIkZG3JUldnumZzi0BAAAAAACP8sdvC5U9e/Y02x/BlUTwy5VTvy2cKw8P9zSNfNkrIiJSrdo/rd8WzpWnp0d6NwdIU1z/eNzxG8DjjOsfjzOufzzu4n8DTs7OabpfgiuJ4ODgIP/cfundjGTz9PSQl6dnejcDSBdc/3jc8RvA44zrH48zrn887tI6MYIJbQEAAAAAAOxAcAUAAAAAAMAOBFeyMBdnZ734Qk+5pPFYMyAj4PrH447fAB5nXP94nHH943GXXr8BkxH/nmEAAAAAAAAkGZkrAAAAAAAAdiC4AgAAAAAAYAeCKwAAAAAAAHZwSu8GIOXdiYrS9B9nadWfa3Tp8mX5ePuoVs3q6vviC8rt55fezQNSTEjITc2Y9bP++nuzLl++LFdXV+XNm0fVqlTWawP7mdfbuXuPfl/xhw4dPqKrV68p7NYtebi7q0TxYmrTqoWaN20ik8mUjkcCWAo+dFhbt/+jAwcP6WBwsK5cvSZJ2r5xndW6cXFx2rN3v/7auEnbd+zUmTNndTcmRrn9/FSjWhU990x35c+X96H7W7fhL81ftESHDh9RZGSkfH19VaZUgHp07azAihVS4xCBh0rKbyDe1avXNO3Hmdq8dZsuX7kqBwcHFSyQX/WfDNIz3brI09PDaps7d+5o1q9ztHLVGl24cEFubm4qU6aUevbopiqVK6XW4QEJunPnjrZs266/Nm7W7j37dOnyJTk4OKpggfxqUO9J9ej6tDw8LK/lSVOm6YepMxKs87lnuumVfi9blJ06fVrr/9qozVu26diJEwoPj1C2bD6qUK6cund5WpUC6fuRfmb9Oke79+zT8RMndCPkpqKjo5UzRw5VrlRRz3bvquLFilqsf+nyFf21cZMOHAzWgYPBOn3mrAzD0MRxYxLsy3fs3KW+rwxOsA3lypTWtB8mJKndBFeymKioKPV/ZbD2HTioXDlz6sm6dXXx0iUtXbZcf2/crKmTvlOB/PnSu5mA3YIPHdYrr7+p0NAwFX2iiJ4MqqOIiEidPHVKv8yZaxFc2fD3Ri1eukyFChZUyZLF5ePtratXr2n33r3asWu3Nm3Zqk+Hf5CORwNYmjL9R63/a2Oi1j1/4YJeGvCqJClnzhyqWqWyHBwcdDA4WAsWL9XKVX/q6y8/txkkiYuL02cjv9SS336Xu7ubKlYoL28vL126fEUbN29VqYCSBFeQLpLyG5CkM2fPqU/fgQq5eVP58uZR3dq1FB0drb3792vytBn6c+16Tf3+W3l5eZm3iYyMVN9XBiv40GFl8/FRtWpVFBEeoe3/7NSWrdv1/ttvqk2rFqlxeECCVvyxWp+N/FKS9ESRwnqybh2FR0Ro374DmjRlmv5Y/ae+Hz9WObJnt9q2YoVyKpA/v1V56YAAq7IBrw3RlavX5OHurnJly8jHx0cnT53Sug1/af1ff2vQK/3VvcvTKX+AQCJM+3Gm7ty+o+LFi6lY0XuBlBMnT+n3FX/oj9VrNOp/HyuoTm3z+mvWrdeYb8Yna18F8udTxQrlbZRb/5YeheBKFjN1xk/ad+Cgypcrq2/HfGGObM/6dY6+HvedPhkxUt9/OzadWwnYJyTkpl4dMlRRUdH68vPPVC+ojsXyAweDLT63adlCPbp0lp9fLovys+fO6aX+r2nlqj/VtEkji04aSE/ly5VV8WLFVKZ0KZUpHaC2nboqOvquzXVNMqlGtarq+Wx3Va1cyZyFFR0drRFfjNZvv6/QBx99poVzZsnJyfKf/cnTZmjJb78rqE5tDXv/bWXz8TEvCwu7pZuhoal3kMBDJOU3IEnjvvteITdvqlOHdnpj0CtydHSUJIWHh+vV14dq34GDmvXrXL3c53nzNuMn/qDgQ4dVOqCkxn41Stmz+0qS9uzbr1cHv6nPvxyjalUrK2+ePKl6rMD9nJyc1L5ta3Xr3ElPFClsLr927boGvfm2Dh85qtFjv7X5UKhtq5Zq3bJ5ovZTuHAhDej7kho1qCdXV1dz+YJFSzTii9H6ZvwE1axeTUWfKGL3MQFJ9dXnn6lUQEmLa1OS5i5YpFFffa1PP/9CyxbONf9dkz9fPnXr3OnffzNK6YvRY7Vl2/ZE7atihfIa/v47KdJu5lzJQu7evas58xdKkt4aMsgiZbBH184qUbyYdu7ao+BDh9OriUCK+H7KNN28GapXB/S1CqxIUtkypS0+F32iiFVgRZIKFiigTh3aSpL+2bErdRoLJEPPZ7qr74sv6Mm6tZUrZ86HrlugQH59+/WXqlalssXwNhcXF731xmB5eXnq0uXL2rNvv8V2l69c0fSfflYef3/975NhFoEVSfLx8VahggVS7qCAJEjKb0CSdu3ZI0nq3etZc2BFkry8vPRsj26SpIPBh8zld+/e1ZJlyyVJQwa/ag6sSFLF8uXU5emOunv3rn6ZPS8lDgdItFYtmundoUMsAiuSlCtXTg0dMkiStHb9Bt29m3CwMTG+GztaLZo9ZXXz2qFdG9WsXk2xsXH6c+06u/YBJFfFCuWtrk1JerpDOxXIn083boTo5KnT5vJ6QXX0+msD1eypxvf+dkmn0f4EV7KQPXv3Kzw8QgXy51NAyRJWyxvWrydJ+mvjprRuGpBi7kRFacXKVXJ3d0v005mHiY94OzmTyIesx83VVYUKFpR076nn/ZYtX6m7d++qbeuWcrPxBwyQmbg4uzxynWzZ/gsgnjx1Wnfu3JGLi7MqlCtrtW6VyoGSpPV/J35oEpDaShYvJkmKjr6r0NCwVNtPiX/3c/WBfzeAjCD+b3fnDPi3e8ZrEZLtyLFjkqRSASVtLi8VcC/gcvTYiTRrE5DSgoMPKyIyUoEVysvN1VUbN2/Vtu3/KCo6WoUKFlCThg1sZqnYcunyFS1YtESSVKdWzdRsNpAu4uLidOnSZUlSzhw5LJZt/zdbq0L5srp27bqW/7FK586dl5eXl6pUDlStGtWZ6BmZRo3qVfXb7ys0ZfpPVsOCfpr1i6R7Q0Tj3b5zR5Lk5ell8zr3zZZNknThwkWFR0TIy9MztQ8BeKRzFy5Iundz6ePjbbX8n527dOToMUVHRyt3bj/VrllDpUtZz7fyKOf/3c+D/24A6e33FX/o9JmzKlSwgAoWSJns2rPnzuvbCZMUGhYm32zZFFihvGrVrC4Hh6TnoRBcyUIuX74iSQm+ESi+/NLly2nWJiClnTx1SpKUPXt2vfH2e1YTHn73/WR98M5QNW3SyGrbvfsPaMGiJYqLi9PVa9e1Z+8+xcbGqt9LvVU5sGJaNB9IUytX/akbISHK7uurCuUtn87H/5ZOnjytt977UOHhEeZlP876RVUqBeqLEZ/I29v6D3ggoxnQ90UdOnxE8xYs0qbNW1QqoKSio6O1Z99+ubi46OMP31PVKv+9MSK7r68kKeTmTd2JirLK3jp/4aL5/y9dvqziRS3fTAGkh1/nzJck1apRXS4u1tlav6/4w+LzxB+mqmH9JzXsvbet3jCUkHPnzuvvTZslSU/WZS46pK+fZv2q4ydP6s6dOzp56rROnDwlv1y59OnwDyyGgNpj77792vvA0OnixYpq5GcfJ3l4NMGVLCTy9m1Jkpub7fRud3e3e+tFRqZZm4CUFnbrlqR7bwBydHTQ0CGD1LhBfd2JuqM58xZq5i+zNfzTESpSuJDV8Lhz589r2fKV5s+Ojg56uc/zeqZbl7Q8BCBNXLp8RaO/+VaS9HKf563+EL/1729pzLjxqlCurIYMekUF8ufXgeBgfTbyS+3YtVufjfxSn3/6UZq3HUiqXDlzauK3X+v9YZ9oy7btunDxknlZg3pPqnQpy6zeggXyK1fOnLp2/bqW/b5CHdu3tVi+dNnv5v+PjLyduo0HEmHjpi1a8tvvcnJyUt8XX7BYVqBAfr02sJ9q16yhvHn8FXbrlnbt3qtx303UmnUbFBcXpy9GfPrIfcTExOijzz5XdPRdNWnUIFlZL0BK2rxtm7b/s9P8OW8efw3/4N0UuTa9vLz0bPeualj/SRX8N4hy5OgxTfh+svYdOKhXBr+hWdMnW7xl7lGYcwVApmLEGZKk2NhYvdznBT3doZ2yZ/dV3jx59NrAfmrcsL5iYmL008+zrbZt0fQpbd+4TpvWrdK8X35Sz2e6a/K0H/XygNcUFnYrrQ8FSDW3b9/W0Hc/0M2boar/ZF2rG0dJivv3t+Tj7a2xX41UQMkS8vT0UPWqVfTVyM9kMpn059r1On3mbFo3H0iyo8eOq3vP3jp95oy+/PwzrVmxVMsWzdXrrw3Upi1b1afvKzp1+ox5fZPJpJ7PdpckfTN+opYsW67QsDBduHhRX349Tn9v2mJ+KurA8Diks1OnT+vDjz+TYRh6dUBflSxR3GJ5i6ZP6ZluXVT0iSJyd3eXf+7cavZUY82Y/L2yZfPRug1/a9/+A4/cz5dfj9PuvfuUP18+vfXG4NQ6HCDRvhs7Wts3rtOaFUs1afw3KliggF4e8JqmzvjJ7roDSpbQqwP6qlzZMsrm46NsPj6qVqWyfpgwTpUqVtCFi5c0d8HiJNVJcCUL8XB3lyTduRNlc/nt2/fGFyc2LRDIiNw93M3/37qF9YS2rf4t27V7d4J1ODs7q3Chgur3Uh8N6Pui9h8M1veTp6Z4W4H0EBMTo7ffH67gQ4cVWKG8PrHxuk7pv38zGjWsL3d3d4tlxYsWVZnSpSRJu3bvSd0GA3a6d80P07Vr1zXqf5+oXlAdeXt7K7efn7p17qR+L/VWaFiYvp88zWK7Lp06qEunDoq8fVuf/G+kGjdvo7adumnOvAXq91Jv+fw7JI6hcUhPV65e1auvD1XYrVvq3rWzunXulOhtc+XKaf5bafPWbQ9dd+qMnzR/4WLlyJFd48aMsnqDHJCevL29VSmwgsZ+NVKlA0pq4g9TdeC+N8ClJEdHRz33zL23zG3Z9vDfzYMIrmQh/v65Jd3rhG2JL8/j759mbQJSWt48965fNzc3i1dnxsuXN48k6UbIzUTV16LpU5J4IwSyhri4OA3/dIQ2bdmqkiWKa/So/yX4JqA8//6W8uXJY3N53n/LQxL5WwLSy779B3Xm7Dnly5vH5qT+jRrUl/Tf65rjmUwmvTH4Vc2c9oNe6t1L7dq00gs9n9FPUyfpmW5dFHYrTK6ursqfL28aHAVgLTQsTAMHvamLly6rdcvmGjSwX5LriB/ucO36jQTXmb9wsSZMmiIvL09989WoFJsoFEhpTk5OatKooQzD0F9/p94bcON/A9euJfy7sYU5V7KQksXvpQgeOnzE5vJDh49KkkoUZ1I2ZF4BJe7NoxIVFaXo6GireSTCwu69mtDjgSfxCfHx8ZaDg4NucgOJLOCLMd9o5ao/VahgQY0b88VDn7gHlCyhI0ePmecxelD8b+n+bDEgI4p/eJTQuHgvr3tv+rmVwLUeULKE1RxdO3fvUWxsnKpUKmd+7SeQliIjI/XakLd08tQpNaj3pN57641kvcEt/rp3d3OzufyP1X9q1OixcnNz09dffG71WwAymmy+997mdvPmzVTbh/l34277d5MQMleykIoVysnLy1Pnzl/Q4SNHrZavWbdekhRUh5m/kXnlyeOvEsWLyTAM7dxlPVwhvqxkIv842L1nr+Li4pQ/f74UbSeQ1iZMmqx5CxYpj7+/xn/9pXJkz/7Q9ePfArHTxrCfyMhI878j8QFNIKOKf13s6TNnFBFhPWn/wX9Tx/MmkKVly5x5CyRJ7du2ToEWAkkTHR2tIW+/rwMHg1WzRjV99lHy3oxiGIbWrf9LkhQQYN2Xb9y0RcM+GSFHR0d98b9PVLFCebvbDqS2nbt2S1Kq/u2+Zt0GSVKpJAYbCa5kIc7Ozurcsb0kadTosbp9+7/Z7Wf9OkdHjx1X5UoVmfkbmd5zPe6Ngxw7foKuXbtuLj985Khm/TpHktSxXRtz+U+zfrU5Ye2B4EP6bOSXkqTWLa3nbwEyi59/naupM2YqZ84cGj/2K/OQn4cJqlNbTxQprL379mvugkXm8tjYWI0Z951Cw8JUrOgTCqzIH9vI2MqXK6Mc2bPr9u07+mL0WEVHR5uXXb16TWO+GS9JatSgnsV2N0JCdOnSZYuymJgYfT95mv5cu15VK1dS44b1U739wP1iY2P13rBP9M+OnapUsYK++N8ncnZ2TnD9kJCbmjN/oVVgMTIyUp9/MVr7DwYrZ84caljvSYvle/bu01vvD5NhGPrfxx+qZo1qqXI8QFLt2btPm7ZsVVxcnEV5TEyMZs9doOUrV8nV1VVNGjW0az8/z56rS5evWJQZhqEFi5bo59lzZTKZbL4Q4GFMhmEYdrUKGUpUVJT6Dhyk/QeDlStnTgVWrKBLly5p/8FgZff11dRJ36kAT+iRBQz/dISWLV8pb28vVShXTlFRUdq7f7+io++qXZtWeu+tN8zrVqtTX87OzgooUVx58+bR3bsxOn/hgo4eOy5JatywgT4Z9h6p38gw/t60WVOm/Wj+fCD4kAzDULkypc1lvZ9/TnVr19LhI0f17AsvyTAMlS9XVoUK2h4r3651SwVWrGBRdvjIUb08cJAiIiJUongxFSyQX4ePHNP5CxeULZuPJo77WsWLMZQUaS8pvwFJWrfhL739/nDFxsYqt18ulS4VoKioaO3bf0ARkZEqFVBS33/7tcWk/jt27lK/V19XQMkSypc3jwxD2rf/gK5dv66AkiU0fuxXTOqJNPfLnHkaPfZbSVL9J4Pk6Wn7RRSDBvaTr6+vLly8qLadusnD3V1lSpdSzpw5dfPmTR06ckShoWHy9vbSmFEjrLJSGjZrpVu3wpUvX15VeuDfhniBFcqrXZtWKXuAwCMsXbZcH/9vpHx9s6lUQEll88mm0NBQHTt+QteuX5eri4uGvf+OmjRqYN7m2rXrevOd982fT505o/DwCD1RpLA8/+3369SupT7PP2dep03HLrpy9aoCSpZUvrx5FR0drWMnTujChYtycHDQkNcGqnOnDklqO3cSWYyrq6smfPu1pv84SytXrdb6v/6Wj4+3WrVopr4vviD/3LnTu4lAihj23tuqWKG8Fi5aoh27dstkkgJKllSHtq3VqkUzi3XfHPyq/tm5W0eOHtPxkycVExOr7L7ZVC+ojlq1aKb6Twal01EAtoWE3NT+g8FW5feXxU80Gx4ervjnJPv2H0jwdZtVKgVaBVcCSpbQrOmT9cOU6dqyfbtOnjqtHDmyq23rlurd69kkDaMAUlJSfgPSvZvQGZMn6qefZ2vXnj3auHmrnJ2dVLBAATVu2EDdunSymtw5f/78atm8qfbu269NW7bJwWRS4UIF9Uz3Lurcsf1DswWA1HL/3EDrNvyV4Hov9e4lX19fZfPJpuee6ab9Bw7qzNmz2rt/vxwcHJUvbx61atFM3bs8rdx+fjb2Ey5JunDhoi5cuJjgfgiuIK1VrhSo5597Rjt379axYyd0MzRUzs5Oypsnjxo1qKcuT3ewmnQ5+m60zX8zTp46bf7/woULWSzr0bWLtmzfrhMnT+nkqVOKiYlVrpw51LxpE3V5uqPK/vvWxKQgcwUAAAAAAMAOzLkCAAAAAABgB4IrAAAAAAAAdiC4AgAAAAAAYAeCKwAAAAAAAHYguAIAAAAAAGAHgisAAAAAAAB2ILgCAAAAAABgB4IrAAAAAAAAdiC4AgBAEv2zY5eGvvuhWrTtpFr1Gqths1bq2PVZvf3+MM2Zt0Dh4eHp3UQkw46du1StTn0N/3REurbj5YGvqVqd+rpw8WK6tiO5Pv7fSAU1aqYbISGJ3mbSlGmqVqe+li5bnqR9vfH2e2raqr0iIyOT2kwAAFIUwRUAAJLgh6kz1O/VwVq7foO8vDxVt3Yt1ahWTa6uLlq7/i99MeYbnTx1Os3aM/zTEapWp7527NyVZvuEfarVqa82HbukdzNSxbHjJ7Rs+Uo93aGdcmTPbnd9bTp2UbU69RNc3uf5nroREqIfZ/1q974AALCHU3o3AACAzCL40GH9MHW6nJycNOKTYar/ZJDF8mvXr2v5ylXy9vZKpxYiK/jo/Xd1J+qOcvv5pXdTkmzCpClycHDQM93TJnhUKqCkataoplm/zlHXzh3lmy1bmuwXAIAHkbkCAEAirV3/lwzDUOOG9a0CK5KUK2dOPdu9q4oULpwOrUNWkSePv4oULiwnp8z1DOzS5Sv6e9Nm1axRLUWyVhKredMmunPnjpYtX5lm+wQA4EGZ619tAADSUcjNm5Kk7L6+iVo/OjpaLdp10p07UVq+eJ68vb2t1tmzb7/69B2oSoEVNWn8WEmSYRha8cdqzV+0WGfPnld4RLh8fX1VuFBB1X8ySJ07tpcki+ESfV8ZbFHv4nm/KF/evObPm7Zs1Zx5C3UgOFgREZHy88ul+kF19XzPZ6ye9g//dISWLV+piePGKCY2VlOm/ajDR47K1dVVTwbV0aCB/eTl5aUbISGa+MNU/b1xs0LDQlW8WDG92v9lValcKVHnJ15MTIwWL12m5X+s0vETJ3U3+q78/HIpsGIFde7YXqVLBejPtev09vvD1bRJI306/AOb9Xw28kstWvKbPnj3LbVp2dxcfvv2bc2Zv1B/rlmnM2fPKTYuTv65/VStahV1fbqjChcqmKh2JuUc2rJ02XJ9/L+RkqSLly5bfH+VK1XU99/e+/5fHviadu7aY/UdVqtTX3nz+GvB7Fma/tPPWrZ8ha5evaa8efPo2R7dzMe8fcdOTZn2ow4dPiIHRwcF1amtwa8OsNnGmJgYLVq6TL8vX6kTJ08pJiZGhQoVVKsWzdS5Y/skBXiWLvtdcXFxatq4UYLrrP9ro2b8NEtHjh2Xm6urKlcK1IC+L1qtt2PnLotr+v5zlTePv5bMn23+XD+orlxdXbVoyW/q0bVzotsLAEBKIrgCAEAi+efOLUlas36Dej3X45FP511cXNSyeTP9/OscLf9jtTkocr9FS36TJLVv08pc9s34iZr5y2y5uDirUsWK8vXNpuvXb+jYsRM6d+68uZ6WzZtqz959Onf+gmrWqKacOXKY6/Bwdzf//7gJ3+vHmb/I2dlZZUoHKFfOnDp67Lh+nj1XG/7eqMkTv7XYNt7aDX9r3oKFKl+2rGrVrK59Bw5q8dJlOnvunEZ++pFeeGmA4uJiFVixvC5evKT9B4P16pChmjH5exUvVjRR5/T27dt67Y23tWv3Hrm7u6lihfLy9vLSxYuXtOKP1fLy9FTpUgGqF1RXOXPm0Nr1G3QzNNQqUBAZGak/Vv0pT09PPdWogbn82rXrGjBoiE6cPCUfb29VrhQoFxdnnb9wUQsWLVHBAvkTFVxJ7jm8X8EC+dWyeVMtW75S7u5uali/nnlZkcKFEnW+JOmdDz7SPzt3qmrlSiqQP7927t6tT/4N2nh6uOu9YZ+ofNkyqlmjmvbtP6DfV/yhCxcuatJ338hkMpnruRMVpcFvvK1/du5SNh8flStbRi4uLjpwMFhjvhmvHTt364sRn8jBIXGJzn9t3CxJqlIp0Oby+QsX6/Mvx8hkMimwYgXlyplD+w8cVK8X+yqoTm2LdXPmzKGWzZtqzbr1un37jlo2b2pe5utr+d17eHioTKkA7dqzV+fOX1CB/PkS1V4AAFISwRUAABKp2VONNf2nWbp8+Yo6dO6h+vWCFFihvEqXClDxYkXl6OhotU2Htq31y+y5WrTkN6vgSnhEhFavWScfb281rP+kJCkqKkpz5i+Qp4eHZs2Yovz5/stciImJ0b79B82fh7//joZ/OkLnzl9Qr2e628wYWb1mnX6c+YuKFX1CX4z4RAULFJB0Lztm0pTpmjxthr76epz+9/Ewq23nzl+or0Z+prq1a0mSIiIi1bvvAO3ctUcvDRikCuXL6sN33zJnN0yYNEVTZ/ykmT/P1vAP3knUOf3q63HatXuPKgVW1MhPP1L27L7mZddv3NDFi5ckSU5OTmrTsoWm/ThTv6/4Q927PG1Rzx+r1yjy9m11bN9Wbm5u5vIPP/lMJ06eUuOGDfTBO2/Kw8PDvOzCxYuKiHj0W2bsOYf3C6xYQYEVK2jZ8pXyzZZNw99P3Dm638VLl+Xh4aEFv84yn6t/duxSv1cHa8L3k3U35q6+/PxT83cWHhGh3i8P0O69+7Rj525VrfLfNTL22wn6Z+cuNWnUQO8OHSIvr3tzBUVEROq9YR9rw98btXDxUnVs3/aR7YqMjNSRo0fllyuX/Pxy2Wj3JY35ZrycnJw0etT/VKtGdUn3rumPPvtcy1eusli/SOHCGv7+O9q5a7du377zyHNVpkwp7dqzVzt37yG4AgBIF8y5AgBAIhXIn0+jR/1P/v65FREZqWXLV+qzkV/qmedfVJOWbfX5l2N07dp1i20KFyqoKpUr6eix4zoQfMhi2co/VuvOnTtq3uwpubq6SpIiIiMVHX1X+fPnswisSPcCDJUCKySpzVNn/CRJ+vSjD8xBAUkymUx6qXcvlSxRXGvWrdfNf4c83a9pk0bmm3RJ8vT0ULt/M2yuXL2qNwa9ajFs5NnuXWQymbRz9+5Ete3q1Wv6bfkKubg466MP3rEIrEhSzhw5VK5sGfPn9m1bycHBQYuWLLOqa/HSe2X3ZwAdOBis7f/sVI7s2fX+25aBFUnKlzevShQv9sh22nMOU8Prrw20OFdVq1RSQMkSunb9umrXrGHxnXl5eqp929aSZPG93AgJ0aIlv8nfP7c+fO9tc2BFuvc9v//Om3J2dtb8RUsS1aaTp04rNjYuwSygJb8tV1R0tJo2bmQOrEj3rukhg16xCIglR5FC9zJ/jhw9Zlc9AAAkF8EVAACSoHrVKlo4e5ZG/e8TdWzXRqUCSsrR0VG3boVr/sLF6tGrj06dPmOxTcd2bST9NwQo3iIbAYEc2bMrd24/HTl6TOMmfK9z5y8ku603QkJ09NhxFSpYQMWLWg/TMZlMqli+nGJj4xR8+IjV8prVq1mVxQd8SpcKkI+P5RwyXl5e8vHx1rXrNxLVvh27dis2Nk61alRX3jx5Hrl+3jx5VKtGdZ08dUp79u03lx87fkL7DwardKkABZQsYS7ftn2HJOmpxg3l6elhVV9i2HsOU5qTk5PNYTfx38vDvrP7v5cdO3crJiZGtWpUl9u/gb375cqZUwUL5Nex4yd0Jyrqke26ERIiSTbnFZKk3Xv2SpKaNG5otcw3WzbVrF71kft4GB8fH0lKswAXAAAPYlgQAABJ5OzsrAb1gtSg3r03Bt26dUt/rF6j776frBshIfpi9FiNH/uVef36T96bL+SPVX9q8Cv95eHhoUOHj+jQ4SMqX66sihV9wqL+4e+/o/c+/Fg/zvxFP878RXnz+KtyYKCaNG6oOrVqJLqd8UNqzpw9ZzEhqC03b4Zaldka3hE/l0tuG8vil4eGhiWqfZevXJEk5c+fP1HrS1KHdm20cfMWLVrymyqWLyfpv6BVu/uCVPfXXyAJ9T/I3nOY0nLmzGFz+Jn7v9/Lw76z6Ohoc9nFS/eOa9GS36yCfg8KCwuT2yNeCx0eHnFvXx7uNpdfvXZN0r3JaG1JTHDtYeKDZ7duhdtVDwAAyUVwBQAAO3l7e6tj+7bKlSuX3nj7Pe3YtUt37twxD3W4f76QP1avUbs2rcxZKw8GBCSpWpXKWjBnlv7euFmbt27Tjl27tWzFSi1bsVIN6z+pkZ99nKh2xcXFSbp3Q24ro+F+tm56He6b/PRBpocsS011atWQv39urV6zTkMGvSJnJyctX7lKHu7uD31LTXLZew5T2sO+k8Qsjxd/XCVLFH/k0CgXZ+dH1ufl5SlJioy8naj9p7SIf4M73t5ej1gTAIDUQXAFAIAUUu3fyUJjY+N061a4xTwS7du20oyZP2vR0mVq9lRjrVy12urNNvfz8vRUs6caq9lTjSVJ+/Yf0NsfDNeadRu0cdMW1ald85HtyZ37XrZBcidPTW3xb186f/58ordxdHRUu9at9P3kqVrxx2p5engo7NYttW3d0mroT3z955JQ/4My+jlMrvjjCqxQXm++/prd9cW/OSsszHbWUq6cOXX6zFldvHRZRZ8oYrX84qXLdu0/7NYtSZJvIl+TDgBASmPOFQAAEskwjIcuP3vu3k28s7Oz1eti4+cLOXAwWBMmTVF4eISaPdU40RN5li9XVi2aPiVJOn7ypLnc+d+sgpjYWKtt/HPnVpHChXTy1GmdPnM2UftJS1UqBcrR0UFbtm7XpctXEr1du9Yt5ejoeG9Iy1LrV1nHq16tiqR/3yQU+ei3AtmSGufQyclJsTa+r7RUtXIlOTo66O9NmxUTE2N3fUWfKCJHR8cEz1FgxXsTMa9es9ZqWWhYmLZu325zO/P1/Yg2nvx3nqOSJYonus0AAKQkgisAACTSxB+maOy3E3TunHUmxJWrVzXii9GSpCfr1jbfFN6vw78T2/48e64k2wGBS5cua+my5bpz545FeVRUlHbs3CXpv4wMSfLLlVOSEryp7d3rOcXFxemt9z7U4SNHrZbfDA3VwkfMuZFa/PxyqUWzpoqKjtZHn47QzVDLOUtuhIRo/4GDVtvlypVTT9ato8NHjmrnrj0qUbyYypYpbbVe2TKlVbVyJd0ICdH/Rn2l27cth6xcuHhRx46feGQ7U/oc+uXKqes3QnTr32yL9JDbz0+tW7bQhYuX9N6wj3X9hvUkxGfPndOatesTVZ+7u7v5jUVXrl61Wt66ZXO5uDhrxR+rtXX7P+bymJgYjRk7Xrdv37HaRrr3XUsJX9/xDh4MliRVDqyYqPYCAJDSGBYEAEAiRUbe1q9z52vmL7NVqGBBFX2isFxcXHTlylXtPxismJgYFSyQX6+/NtDm9vHzhVy+fMXqzTbxQsPC9PH/RmrU6LEqXSpAuf38dOfObe3dd0AhN2+qdKkA80S6khRUp7YmT/tR33w7Qdu2/yPfbPcyZgb2f1m+2bKp2VONdeLkKU37caae6/2ySpYorgL588kwDJ07f0HHjh+Xu7u7zUBPWhjy2is6feas/tm5S206dlGlihXl6emhS5cu69CRo+rYro3F65jjdWzXRmvXb5Bke96aeB99+K76v/q6Vq76U1u2blfFCuXl4uKsc+cv6MjRY3ptYD8VL2b9FqD7pfQ5fLJuHc2et0DPvPCSKpQrK1cXFxUuVEjP9uiaqO1TypBBr+jixUtas26DNm/dppIliiuPv79u376jk6dO6ey586oXVEcNG9RLVH11a9fUweBD2rFzt5o3bWKxLH++vHptYH99MXqsXn19qCpVrKCcOXNo/4GDCrt1S82eaqwVf6y2qvPJunW0c9ce9X/tdVWtXEnubm7K5ptNr/R72bxOZGSkgg8dVpHChVQgfz77TgoAAMlEcAUAgETq3etZlS4doC1bt+vosePatWevwsMj5OXpqbJlSqle3brq1KGt+c0tD3J0dFTlwIpavnJVggGBAvnza9Ar/bX9n506eeqUDh4Mlpu7m/Llzatez/VQh7at5eLiYl6/dKkAffzhe5r16xxt2faPov59be4LvZ41B1r6v9xHNWtU09z5C7Vn734dO35Cnp4eyu3np47t2qpRw/ope6KSwNPTQxPHjdH8RUu04o/V2r1nr2Lj4uSXK6eaPdVYLZs3tbldYMXycnJykqOjo5r/Oy+NLbn9/DRj8vf6Zc48rVm3Xlu3/yNHBwflzu2nTu3bKqhOrUS1MyXP4YC+L8owDK3/e6NW/blWsbGxqlypYpoHV9xcXTX2q5Fa8cdq/bZ8pY4ePaYDBw8pu6+v8uTxV/OmT+kpG69OTkjrli00ZfqPWrnqT6vgiiR17theuf1yacZPP2v/wWC5urioUmAFDez3kv5YvcZmnV06dVBY2C39sfpPrVm3QTExMcqbx98iuLJuw9+Kio5+aJANAIDUZjIeNYAcAACkiDt37qhFu06KjYnV74vnW03AisRbuepPvT/8E7Vs3jRLTTSb2b35zvv6a+Nm/bZwjnLlzJkm+3xl8JvavXefli6YbQ4oAgCQ1phzBQCANDJ3/iLduhWuls2bElixQ0xMjGbM/FmS9HTH9uncGtzv5RdfkGEYmvnL7DTZ36HDR7Rl23b16NqZwAoAIF0xLAgAgFR0MzRU3373va6HhGjT5q3ycHdXz2e7p3ezMqX1f23U+r/+1oGDwTpx8pTqP1lXZUuXSu9m4T7FixZVy+ZNNX/hEj3Xo5v5Fc2pZfK0GcqRPbueS+MhVQAAPIhhQQAApKILFy+qbaducnZ2VvGiT+i1gf1UpXKl9G5WpjRpyjT9MHWGfLy9VatmDb35+qvK5uOT3s0CAAAguAIAAAAAAGAP5lwBAAAAAACwA8EVAAAAAAAAOxBcAQAAAAAAsAPBFQAAAAAAADsQXAEAAAAAALADwRUAAAAAAAA7EFwBAAAAAACwA8EVAAAAAAAAOxBcAQAAAAAAsMP/AaiEXhvaXlz3AAAAAElFTkSuQmCC", - "text/plain": [ - "
" - ] - }, - "execution_count": 28, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "with pulse.build(backend, name='example') as program:\n", - " with pulse.align_sequential():\n", - " gaussian_pulse = library.Gaussian(100, 0.5, 20)\n", - " pulse.play(gaussian_pulse, pulse.drive_channel(0))\n", - " pulse.play(gaussian_pulse, pulse.drive_channel(1))\n", - " pulse.play(gaussian_pulse, pulse.drive_channel(1))\n", - "\n", - "program.draw()" - ] - }, - { - "attachments": {}, - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Phase and frequency offsets\n", - "\n", - "The builder can help temporarily offset the frequency or phase of pulses on a channel." - ] - }, - { - "cell_type": "code", - "execution_count": 29, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABF8AAADeCAYAAADrea8KAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAABrCklEQVR4nO3dd1gURx8H8O/Re++KqKigqICKXUFjQ1RswR5806yxxpoYNWqMGjUmdmONFY29d+y9K4oVG1iQXgXm/YPchfMOOMoB4vfzPD4JU3bn9vZudn83OyMRQggQEREREREREZFaaBR3A4iIiIiIiIiISjMGX4iIiIiIiIiI1IjBFyIiIiIiIiIiNWLwhYiIiIiIiIhIjRh8ISIiIiIiIiJSIwZfiIiIiIiIiIjUiMEXIiIiIiIiIiI1YvCFiIiIiIiIiEiNGHwhIiIiIiIiIlIjBl/ySCKRQCKRwMzMDNHR0UrL/Prrr5BIJJg0aVKRtq2kevfuHSZNmoQ6derA3Nwc+vr6qFChAgIDA3H27Nkc616+fBmtWrWCmZmZ7Ng/efIEAJCQkIAhQ4bA0dERWlpaPOYfuePHj0MikaBv377Fuv+s//T19WFnZ4cGDRpg6NChOHfuXLG0rbD17dsXEokEx48fL+6mqOzVq1dYvnw5OnXqhLJly0JHRwdmZmbw9vbG6tWrIYTItm5SUhJ++uknVKlSBXp6enBwcMCXX36JFy9e5LjPVatWoW7dujAyMoKFhQXatm2LM2fO5Kv96enpmDt3LmrUqAF9fX1YW1sjICAAISEh+dpediZNmgSJRIJVq1YV6naJiIiIqGAYfMmnmJgYzJkzp7ibUeIdOXIElSpVwuTJk/HkyRM0adIE/v7+MDExwZo1a9CwYUMMGzYMGRkZCnXj4uLQoUMHHD58GLVq1cIXX3yBwMBAGBkZAQDGjRuHP//8E3p6eggICEBgYCA8PDzU/pqKO0hA6mVra4vAwEAEBgaiS5cuqFWrFp4+fYo//vgDDRo0QOvWrREREVHczcxR+fLlIZFIirsZhWrkyJH4+uuvsXv3bjg6OqJz586oUaMGTp06hb59+yIgIADp6ekK9ZKTk9G8eXNMmTIF8fHx8Pf3h6OjI1auXAlPT088evRI6f6GDRuG//3vf7h16xZatGiBunXr4tChQ2jatCm2b9+ep7ZnZGTg888/x4gRI/D8+XP4+fnBzc0NW7ZsQZ06dXDhwoX8HJI8KY3nBBEREdFHRVCeABASiUTo6ekJExMT8e7dO4Uy06dPFwDExIkTi76BJciFCxeEjo6OkEgk4ueffxapqaly+SdPnhRly5YVAMSIESMU6h85ckQAEH369FG6fUdHR6Gvry/i4uLU0v7sHDt2TAAQgYGBRbrf0q64j6t0/97e3krzT5w4ITw8PAQA4erqKmJiYoq2gXng5OQkcvp6f/nypQgJCREJCQlF2KqCGTJkiJg2bZp4/fq1XPqFCxeEiYmJACCWLFmiUO+HH34QAESDBg3kvitmz56d7ft96NAhAUBYWlqK0NBQWfqZM2eEjo6OMDMzE1FRUSq3fdmyZQKAqFy5soiIiJClb9myRQAQlSpVEu/fv1d5ezmZOHGiACBWrlwpl57bOUFERERE6sWRL/mgoaGBb7/9FrGxsfjtt9+KuzklkhACgYGBSE1NxcSJEzFhwgRoa2vLlWncuDEOHjwIPT09zJ07V+GRjufPnwMAKlasqHQfz58/h42NjWwkDJE6NWnSBKdPn0aNGjVw9+7dj/oRN3t7e7i6usLAwKC4m6KyefPmYfz48bC2tpZL9/LywtixYwEAGzZskMtLTU3F/PnzAQALFiyQ+64YMWIEatasieDgYFy+fFmunnRU448//ojKlSvL0hs0aID+/fsjOjoay5cvV7nt0u3NnDkTtra2svQuXbqgQ4cOePDgAXbs2KHy9oiIiIjo48PgSz6NHTsW+vr6+PPPPxEZGalSnfDwcMycORPe3t4oU6YMdHR0YGdnh86dO+PixYtK62QdKr5gwQJUr15dNmfKzJkzZfMcXLlyBe3bt4eFhQWMjIzg7++PsLAwpdsUQmDDhg1o3rw5zM3Noaenh6pVq2LSpElITEzMx9FQtG/fPoSEhMDBwQHjx4/PtlzVqlUxaNAgCCFkNyhPnjyBRCJBYGAgAGDy5MmyOTj69u0LHx8fSCQSCCEQFhYmN0eHVFhYGAYMGIAqVarAwMAAFhYWcHNzQ79+/XDv3j2Fdjx79gyDBw+Gs7Mz9PT0YGFhgXbt2inM79C3b180a9YMALB69Wq5feflZnz//v3w8/ODtbU1dHV1UbFiRYwYMULhXBozZgwkEgkCAgIUtvH27Vs4ODhAU1MTp06dkqWXhPMs65wi+/btQ+PGjWFkZARzc3N07twZd+/eVflY5fWYqZOBgQHmzp0LAFi6dCmSk5NlebnNtaHssY+sj7BFRETg66+/RtmyZaGlpYXff/8dQN7eT+n2pO9J1vOzfPnysnI5zfny7Nkz9OvXD05OTtDV1YWNjU225470s+rj44OkpCSMHTtWVq9SpUqYMWNGjnOxFBZ3d3cAwMuXL+XST58+jZiYGDg7O8PT01OhXteuXQEAu3btkqUlJSXh6NGjcvm51cnJ48ePERISAn19ffj5+RV4e1I7d+5EgwYNYGBgAEtLS3Tp0gWhoaEK5VQ9J4iIiIhIvRh8ySd7e3v0798fcXFxmDVrlkp1duzYgTFjxuDVq1eoWbMmOnXqBAcHB2zbtg2NGjXCwYMHs607fPhwjBo1Ck5OTmjRogUiIyMxZswYTJo0CadPn0aTJk3w8uVLtGzZEvb29ti5cyc+++wzJCUlyW0nIyMDvXr1Qs+ePXHx4kV4eHigbdu2SEhIwOTJk9GsWTOFOtIbrLzMF7Bnzx4AwOeff64w4uVDvXr1AgAcPHgQGRkZMDIyQmBgIBo1agQg88ZKOgdH48aN0aZNG1lgxtDQUJYnTXv27Blq1aqFxYsXAwDatm0Lb29v6OrqYtmyZQqT/J49exbu7u5YsGABtLW14efnh+rVq+PAgQNo2rQpNm3aJCvbuHFjtG7dGgDg7Owst29V55sZO3YsfH19cfjwYbi4uKBDhw7Q0tLC3LlzUa9ePbx69UpWdsqUKfD09MTmzZuxevVque188803CA8Px7hx49C4cWNZekk4z6Q2b94MPz8/pKamon379rJ21K9fH9evX1fpeOX1mKnbZ599BmtrayQkJGQbzMqrN2/ewMvLC3v27EGDBg3g6+srG5WSl/fTzs4OgYGBMDQ0BAC581NZIOFDN2/eRK1atbB06VLo6+ujc+fOqFy5MrZt24aGDRti8+bNSuulpqaiVatWWLZsGerUqYNmzZrhxYsXGDt2LCZMmKBQftWqVbKgTWGQzttiZ2cnly49x2rVqqW0njT9xo0bsrR79+4hJSUF1tbWKFu2rEp1ciJtQ/Xq1ZV+F+Z1ewCwePFi+Pv74/z58/Dy8kLLli1x+fJl1K1bFw8fPpQrW9BzgoiIiIgKSTE+8vRRAiA0NTWFEEJEREQIAwMDYWhoKDcPQXZzvty4cUPcunVLYZv79+8XOjo6wtnZWWRkZMjlSZ/Td3BwEA8ePJClh4SECF1dXWFgYCDKly8vFi1aJMtLSUkRzZs3FwDEihUr5LY3c+ZMAUD4+PiI8PBwuTpfffWVACDGjBkjV+fx48cCQJ7mC2jUqJEAIP7+++9cy75//17o6OgIAHKvceXKlTnOnQNAODk5KaT/9NNPAoAYPHiwQl5YWJjcPmJiYoS9vb3Q1NQUa9eulSt78eJFYW5uLoyMjOTe34LMTRIUFCQAiOrVq4v79+/L0jMyMmTt7tatm1ydO3fuCH19fWFsbCwePXokhBBi6dKlAoDw8vJSmCuiJJxngYGBsnNm6dKlcq9zzJgxAoDw8PCQq5Pdcc3PMcuP3OZ8yapFixYKc4xkN9eGlLI5N6T7BCA6deokkpKSFOoV5P3MjvT9OXbsmCwtIyND1KhRQwAQo0ePltvmli1bhIaGhjAyMhIvX76UpWf9bvD29pabB+fixYtCU1NTGBgYKMzLJP1sq3Ksc5OamiqqVq0qAIjZs2fL5Q0fPlwAEMOHD1da99q1awKAqFWrlixtx44dAoDw9PTMdp9mZmYCgIiNjc21ffPmzZO9v8pER0cLAMLCwiLXbQkhxJMnT4Senp7Q1tYW+/fvl6WnpqaKXr16yd4PzvlCREREVLJw5EsB2NraYsCAAUhISMCMGTNyLV+jRg24ubkppLdu3Rqff/45Hj58iFu3bimt+/PPP8PZ2Vn2t6urK9q2bYvExESULVsW/fv3l+Xp6Ohg6NChAIDg4GBZelpaGmbOnAlDQ0Ns3LhR7ldiHR0d/Pnnn7Czs8PSpUvlVh/S1taGi4sLXFxccn2NUtJHQT6cn0EZLS0tmJubA8h8lKag3rx5AwBo0aKFQl65cuXkjuOKFSsQHh6OYcOGyUbgSNWpUwcTJkxAfHw81q5dW+B2AcC0adMAZM5NUalSJVm69LElDw8PbNmyRe44VK1aFb/99hvi4uLQq1cvhISEYPjw4TAwMMDatWuhpaUlt4/iPs+yatiwIb755hu51zllyhSULVsW165dk3tcKjv5OWbqZmVlBQCIiooqlO3p6urKVu76UEHez7w4fvw4bt68iXLlymHq1KlyI926dOmCjh07Ij4+HitWrFCoq6GhgSVLlsDExESWVqdOHfj6+iIxMRGXLl2SK29qagoXFxeUK1euwO2eMGECQkJCUKFCBbnzEwDi4+MBINu5baSjQeLi4lSuk1297OSnDTlZsWIFkpOT0aNHD9koPCDze3revHkf1Tw+RERERJ8SrdyLUE7GjBmDxYsXY9GiRRg1apTcZIrKpKSkYP/+/bhw4QLevHmD1NRUAJnD/QHg/v37qFGjhkK9Vq1aKaRJJ6LNKS88PFyWduXKFbx9+xYtW7ZU2k59fX3Url0be/bswf3792XBljJlyuRrjo7iUrt2bQDA+PHjoampiRYtWii9qQUge2Sjc+fOSvObNGkCAIWyFOzr169x/fp1VK5cGdWrV1fIl0gkaNSoEa5du4bLly/L3VgNHDgQe/fuxZ49e1C/fn0kJCRgyZIlqFKlitJ9Fed5llX37t0V0rS1tdG1a1f8/vvvOHnypNwjUx8qyDFTJ/HvPCaFtXRvrVq1UKZMmWzz8/t+5sXJkycBAAEBAUofj+nTpw+2bt0qK5eVk5OT0uCs9Pz88Pzo1KkTOnXqVKD2AsDGjRsxc+ZM6OnpYf369Z9E4EF6/JV9tiwtLdGqVas8L4VNREREROrH4EsBWVtbY9CgQZg5cyZ+/fVX2WScyty8eRMdOnTAkydPsi2T3a+fym7MpCt35JSXkpIiS5Pu99ChQ7neNL59+zZPI10+ZGlpCeC/USg5SUtLk40gkI4oKIi+ffvi4MGDCAoKQvv27aGnpwcvLy+0adMGX375pdyIH+kxkc4vk53CGFUh3df9+/dVOv4fWr58OcqXL4/Y2Fj4+vri22+/VVq3uM+zrJycnJSmSyf6/HCC1A8V9Jipi3RfFhYWhbK9nEaAFOT9zAvpe5HdJKzS9BcvXijkKZsbBQCMjY0BZH9+FMTRo0fRt29faGhoYMOGDahfv75CGen5md1E4gkJCXLtVKVOdvWyk5825ET6PuX22SIiIiKikoXBl0IwatQoLFy4EIsXL8bo0aOVlhFCICAgAE+ePEH//v3Rv39/VKxYEUZGRpBIJBg/fjymT5+e7cogGhrZPyGWU15W0keJKlWqlGuwQRo8yS93d3ecPn0aly5dQu/evXMse+vWLaSmpsLU1BQVKlQo0H4BQFNTE5s2bcLYsWOxY8cOHD16FOfPn8fJkyfx66+/Yv/+/WjYsCGA/45J165dZcP/lXF1dS1wu6T7srOzy3WEhrIbq507d8pW17l37x7i4+MVltkuCedZYSroMVMHIYRsEtVq1aqpXC/ro3wfym5kVkHfz8KUU/CrqM+Nixcvwt/fH6mpqVi+fDk6duyotJw0qCVdtv5D0vSs505udRISEhAdHQ1zc3OVAib5aQMRERERlT4MvhQCKysrfPfdd5g+fTqmT58OBwcHhTJ3797F3bt3UadOHSxatEghX7pahzpJf512dXXNdjncwtK2bVssXLgQW7ZswaxZs3Jc8Wj9+vUAMh9rKcybOE9PT3h6emLSpEmIjY3FpEmTMHfuXAwbNkz2GFHZsmVx7949jB07Vva4krpIj7+VlVWej//9+/dl87y0adMGW7duxZAhQxTm3ygJ51lW2S13Lk1X9lnJqiDHTF2OHDmCt2/fwtjYWO6c0dHRAfDfHB9ZpaenIyIiIs/7Ksr3U/peZPeeSUfe5PR4VFG4c+cOfH19ER8fj7lz5+J///tftmWlS1BfuXJFab40vWbNmrI0FxcX6Orq4s2bN3jx4oXC61VWJyfSNty6dQvv379X+C7M6/bs7e1x7949hIWFKQ3+Zff+qUtGRgZ++eUXrFy5Ek+fPkW5cuUUVlwiIiIqbdj/UX5wwt1CMnLkSBgbG2Pp0qVKh+VLH6tRNjw/KioKhw4dUnsbvby8YGpqiuDgYLx7906t+/L19YWrqytevHiBX3/9Ndty9+7dw/z58yGRSDBixAi1tcfExATTp0+HRCKRm5y0ZcuWAIBt27apvC3pTXZaWlqe2lC2bFm4urrizp07CA0NVbleWloaevfujYSEBMyZMwdr166Fq6srVq5ciX/++UeubEk4z7IKCgpSSEtLS5O1O6f5XoD8HzN1SUxMlJ2n/fv3h66urizP3t4eAJS289ixY3j//n2e95ff9zM/56h0fqPNmzcjPT1dIV866bS0XHF48uQJWrVqhcjISEyaNAnDhg3LsXyjRo1gamqKhw8f4tq1awr5W7ZsAQC0b99elqavr4/mzZsDgNKltZXVyUmFChVQtWpVJCUlYc+ePQXenvT4K/tsvXv3Ltul5PN6TixcuBASiQT16tXLtdxPP/2Ezp07Y8WKFViyZIlK21dVfHw8Jk6ciDZt2sDCwgISiSTHQGxKSgrGjBkDBwcH6Ovro169enn63lO1fkH2I11qXSKRKJ10XAgBR0dHSCQStGvXTqHehxNYS/n4+CidG4uIiFRXUvo/dchLn1pU/WlB9/XR9anFtczSxwpZlpr+0A8//CAACH19fYUlkl+9eiU0NDSEiYmJCA0NlaUnJSWJgICAfC0PmtPSttIlYD9cynXatGmy9IcPHyrUe/78uVizZo1CmouLi3BxcVHajuxcuHBB6OjoCIlEIqZNm6awJPLp06eFo6NjtkvB5nep6TVr1oibN28qpG/btk0AEFWqVJGlRUVFCRsbG6GtrS2WLFki0tPT5eq8f/9e7N+/X2570mNbp06dnF6+UuvWrZMtm3z16lWF/Ldv38otzSyEEBMmTBAARPv27WVply5dEtra2sLCwkK8ePFCll5SzrOsS00vX75cLm/8+PECgKhZs6ZcenZLTefnmAkhZPt//Pix0tf1odyWmj558qTw8PAQAISbm5vCMsMPHjwQAIS5ubncPh89eiRbCvnDY5zbsuX5fT+9vb0FAKVLVAuR+1LT48ePl1tqeuvWrTkuNZ3dMcvu3Nm6datwcXERffr0UVpPmVevXonKlSsLAGLkyJEq15N+Lzds2FDEx8fL0mfPnp1t2w8dOiQACEtLS7njfubMGaGrqyvMzMxEVFSUXJ3z588LFxcX0bx5c4XtLVu2TAAQlStXFq9evZKl//PPPwKAqFSpksL3Y3YePXokdHV1hba2tjh06JAsPTU1VXzxxRf5Pic+1LBhQ6GjoyMAyC3x/qFatWqJVq1aqbTN/JCeY+XKlRM+Pj45LucuhBDdu3cXWlpa4vvvvxdLliwRDRo0EFpaWuLkyZMq7U/V+gXZj7Rv09PTEwMGDFDIl34v6OrqCj8/P4V6Fy9eVLpdb29v4ebmptLrJCIi5UpK/6cOeelTi6o/Lei+PrY+lcGXPMop+PLu3TthYmIiu/j9MGjwzTffyIIzfn5+omvXrsLW1lZYWVmJvn37FslNcXp6uujTp48AIHR0dES9evVE9+7dRefOnYWbm5uQSCTC3d1d6bbyE6s7dOiQMDc3FwCElZWV6NChg+jWrZtwd3eXbfO7775TCHoIkf/gi7+/vwAgnJ2dRceOHUWPHj1E/fr1hUQiERoaGiIoKEiu/NmzZ4WVlZUAIBwdHYWvr6/o2bOnaN68uTAzMxMAxLZt2+Tq1KxZUwAQXl5eom/fvuKrr74SO3bsUOmYSIMPGhoaolatWuLzzz8XXbt2FZ6enkJTU1OYmprKyp45c0ZoamoKW1tb8fr1a7ntSANpLVu2lLtRLgnnmfTmfsCAAUIikYi6deuKHj16CDc3NwFAmJiYiCtXrsjVySkQkZdjJkTmeS49v54/f670dX1Iun9bW1sRGBgoAgMDRa9evUTbtm1FmTJlZNtr06aNiIiIULoN6c2vqampaN++vfjss8+EoaGh+Pzzz5Ue49yCL0Lk7/2UBhZsbW1F9+7dxVdffSXGjBkjy1cWfBFCiBs3bghLS0sBQFStWlX06NFDNGrUSAAQWlpaYtOmTXLl8xt8kX62s6unTMeOHQUAYWBgIHt/PvynLCiTlJQk6tWrJwAIe3t7ERAQIPvb2tpaaRBaCCGGDh0q25+/v7/w9fUVWlpaQlNTU+H7QIj/3ktl30np6emiU6dOsuBc165dhY+Pj5BIJEJfX1+cO3dO5eMghBDz58+XfR58fHxE9+7dRfny5YWpqano1atXvs6JrB49eiQAiJ9//lloa2uLSZMmKS2XlJQkNDU1xdSpU/PU/rxITk4W4eHhQgghLl68mOOF4vnz5wUAMWvWLLk2Ojs7iwYNGuS6L1XrF3Q/0vO/c+fOwsrKSiHw9s0334jatWsLJyenEnGhSET0qShJ/Z86qNqnFlV/Whj7+tj6VAZf8iin4IsQQvz000/ZBl/S0tLE7NmzRbVq1YSenp6wtbUVvXr1Ek+ePMn2JqWwb4qlduzYIfz8/GSjPmxsbETt2rXF6NGjxeXLl5VuKz/BFyEyRyb89NNPwtPTU5iYmAhdXV1Rrlw50adPH3HmzJls6+U3+BIcHCwGDRokPDw8hKWlpdDT0xMVK1YU3bt3z/YDFh4eLkaPHi3c3NyEgYGBMDAwEM7OzsLf31+sWrVKxMXFyZW/f/++6Nixo7C0tBQaGho5tlOZ4OBg8fnnnwsHBwehra0tLC0tRc2aNcXgwYNFcHCwEEKIuLg4UbFiRQFA7NmzR2Eb6enponHjxgKAmDNnjiy9JJxnWW/ud+3aJRo0aCAMDAyEqamp8Pf3F7dv31bYVm6BCFWOmdSVK1cEAKWjELIj3X/Wf7q6usLGxkbUr19fDBkyRJw9ezbHbaSkpIixY8cKR0dHoaOjI5ydncXUqVNFWlpavoMv+Xk/379/L3788Ufh7OwstLW1FT4r2QVfhBAiLCxMfPPNN8LR0VFoa2sLKysr0bFjR3H+/HmFskUZfJGO3Mjpn7LvAyGESExMFBMmTBDOzs5CR0dH2NnZib59+4pnz57luM+VK1eK2rVrCwMDA2FmZibatGkjTp8+rbRsTsEXIf57H93c3ISenp6wtLQUXbt2VfpZUMW2bdtEvXr1hL6+vjA3Nxf+/v4iJCQk3+dEVlOmTBGampoiIiJCtG3bVlSuXFmhzJdffqlw/OvXr5+v16Kq3IIvo0aNEpqamiImJkYu/ZdffhEAxNOnT3Pcvqr1C7of6fm/efNmIZFIxN69e2V5KSkpwtzcXMyePbvAF4pZ+25l/4iISF5J7f/UIac+taj608LYV1H0qYXZn7L3JaJCl9PNfVGQ/sp/6tSpYtk/0cfM1dVVNGvWTAghxKpVqwQAceHCBbkyR44cEf369RMAxLx588Tff/8tTpw4IVcmNTVVvHnzRqV/ykY/fii34EuLFi1E1apVFdIPHz4sAIidO3fmuH1V6xd0P1kv+Bo2bCj3+N327duFhoaGePHiRbYXiocPH1Z6DBs2bCgXfImPjxd///233L8VK1YIU1NTYW1tnWMbiYg+RSW1/1OHnPrUoupPC2NfRdGnFmZ/ytWOiKjUOXbsGFq1apXrkupEJO/y5cu4e/eubDLjjh07QkdHB+vWrYOXl5esXPPmzXHkyBEYGhpi8ODBSleqO336NJo1a6bSfh8/fozy5csXqO3h4eGyia+zkqa9fPmyUOoXdD9Z9ezZE+PGjUNSUhL09fWxbt06eHt757gSXIsWLbLNc3Nzk/2/oaEhevfuLZc/aNAgxMfHF/nk60REJd3H3P8VtqLqTwtjX1mpq08tzP6UwRciKnV27dpV3E0g+iitW7cOWlpa6NKlCwDA1NQUbdq0wcaNGzF79mxoamrKyt64cQNubm5KLzyBzGW2Vb0osbOzK3Dbk5KS5FYgk9LT05PlF0b9gu4nq4CAAAwbNgy7d+9GmzZtsHv3bvzxxx851lmwYAGqVKmikD5y5EilK5VJrVmzBgsXLsTs2bNVvikgIvpUlOT+LyMjA6mpqSptT1dXFxKJRKWy2Smq/rQw9pVVUfWpBelPGXxRgRACCYmJMDQwKPDJTEREVBKlp6dj48aNaN68OaysrGTp3bp1w86dO3HkyBG0atVKln79+nW0bt062+2Zm5vn+ItSYdPX10dKSopCenJysiy/MOoXdD9ZWVtbo0WLFli/fj0SExORnp6Orl275linbt26qFOnjkK6ubk53r59q7TOtWvX0L9/f/To0QMjRoxQuX1ERJ+Ckt7/nThxQuWb/JCQELi6uhZof0XVnxbGvrIqij61oP0pgy8qSEhMRLNWfti1dTMMDQ2KuzlEJd6f8xfgz/kLAABx8QnF3BoiUsXRo0cRHh6OH3+cIPe5bdb8M+jr62PVqtVo0DDzUb7o6Gg8e/YMlatUyfYznpqaiqioKJX2bWVlJferojIJiZm/fiUnpyjdp42NDV68eKGQ9/DRIwCAublFjt9HqtYv6H6Sk1NkrycuPgGdOnfBkO8G48WLl2jZshU0tbQRF58AIQTS0tJl2/qw3ofS09ORkZGhkBcVFYVOnTujUqVKmPv7PH4nExF9oKT3f2Udy2HRosUqbc/I2ESl7/mc+tSi6k8LY1859am+vr4wMzPLtm5eRUVFoUuXLqhSpQr++uuvfG2DwRciIiJC0KZN0NbWRrv27eXSjYyM0KpVK+zevUv2HPXtW7cAANWrV892e+fPn4Nf27Yq7fvmrdtwcnLKf+MB1KhREydOnEBsbCxMTExk6ZcuXsrMr1mzUOoXdD8fat++PYYNHYKLFy9g1erVeaqbm4yMDHz99VeIiY7Bzp27YGDAH5CIiD5U0vs/W1tb9PpgzhF1Kqr+tDD29aGsfeqmTZvyVDcnGRkZ6NWrF6Kjo3H48OF896fKH1QjIiKiT0ZSUhJ27dqJZs2aw9zcXCG/U+fOiIuLw969ewAAN2/dBAC4uWV/8Vm9eg3s2LlLpX+2trYFfg3+HTsiPT0dq1aulKWlpKRg7bq1qFPHC2XLlgUAJCYmIvTePUR+MJxY1fqqllOVkZER5sz9HePGj4evr2oX66qaPv0XHDl8GCtWrixxEzoSEZUEpaH/K2x56eeU9al5qa/OPrX9B8G0gpg8eTIOHDiADRs2oEKFCvneDke+EBERfeL27t2DuLg4AMCc2bMV8hOTEgEAQZuC0KVLV9y+dRsODg6wsLDIdpvm5uaFMrHrkiWLERMTg/DwcADAvn178eLlCwBAv379YWpqCgDw8vJCp06dMGnSRLx58wYVK1bE+vXr8TQsDAv+fQwSAC5fvgS/tm0xdtw4jB//gyxd1fqqlsuLXr165ateTm7fvoWZM2agUaNGePPmDTZu3CiX371790LfJxHRx6Yk93/qoEqfmpd+Tlmfmpf66uxT8zJfTE5u3ryJKVOmoGnTpnj9+jXWrl0rl//hSkg5YfCFiIjoExe0KQgAcPDgARw8eCDbcocPH0JkZCRu3b4FtxyGXBemP//4A0+fPpX9vXPnTuzcuRMA0K1bd1nwBQCWLF0GxylTsHHjBkRHR8OtenUEbd6CRo0bq7QvVesXdD9F4d27dxBC4NSpUzh16pRCPoMvREQlu/9TB1X71KLqTwtjX+oWGRkJIQSCg4MRHByskJ+X4ItECCEKs3GlUXxCAifcJSIiIiIiIvoIGBsZFncTFHDOFyIiIiIiIiIiNWLwhYiIiIiIiIhIjRh8ISIiIiIiIiJSIwZfiIiIiIiIiIjUiMGXEur3uXNRu5YnMjIyirsparF8+V+oVtUVKSkpxd0UIiIiIiKiT8bHcq9Z2u4ZGXzJh24BAbC1sZatCa/MV199CUsLc0RGRsLE2CjXf7/8Mk1WNzY2FnPnzsXw4SOgoVHwtygk5A6+6NMbNWtUh62NNco7lUOb1q2wb+9elerHx8dj2rSp6NSpI8qVc4SJsRHWfbC+uTKzZs2EibER6tX1Usjr1as3UlNTsWLF8jy/HiIiIiIiotKouO41ec+oflrF3YCPUUC3AOzbtxe7du1Cz549FfITExOxd88etGjREpaWlli67K9stzV9+i94/OgR6tT572T7+++/kZ6ehq6ff14o7X369Bni4uPRo2dP2NvZIzEpETt37EC3bgGYN+8P/O/LL3OsHxkZiRm//gpHR0fUqF4dJ0+ezHWfL168wOzffoOhofIlvvT09NCzZy8smD8f/fsPgEQiyddrIyIiIiIiKi2K616T94zqJxFCiOJuREkXn5CAZq38sGvrZhgaGiApKQmVnCuibr162LZtu0L5zZuD8NWXX2LlqlXo0qVrtttdvWoVvvtuMPr1749Zs36TpTdsUB9u1atjWQ4fpIJKT09H0yaNkZycjMtXruZYNiUlBdHR0bC1tcWVK1fg490UixYtRq/evbOt07dvICLfvkV6ejoiIyNx/sJFhTJXr16Fd9Mm2LV7N7y9fQr6koiIiIiIiD5qJele82O+ZzQ2Uh7QKU587Cgf9PX10b59BwQfP443b14r5G8O2gxjY2O0beuX7TZCQu5g9OhRcHd3x9Sp/w0De/LkCW7dugUfn2ZqabuUpqYmypQpi5iYmFzL6urqwtbWVuVtnz51Cju2b8evM2bkWM7T0xPm5hbYs2ePytsmIiIiIiIqrUrSvSbvGQsXgy/5FNCtG9LS0rB161a59Hfv3uHIkcNo16499PX1ldZNTExE4BdfQFNTEytWroKurq4s7/z58wAADw/3Qm9zQkICIt++xaNHjzB//nwcOnQQ3j4+hbqP9PR0jBr1PQIDA+HmVj3X8h4e7jh/7lyhtoGIiIiIiOhjVZz3mrxnVB/O+ZJP3t7esLOzw+agzejXr78sffv2bXj//j0CunXLtu6o77/H3bt3sXjJUlSuXFkuLzT0HgDAyal8obf5h/HjsGLFCgCAhoYGOnTogN9+m12o+1i+/C88e/YMO3fuUql8+fLlsXHjxkJtAxERERER0ceqOO81ec+oPgy+5JOmpia6dOmKBQvmIywsDE5OTgCAzUFBsLGxgU820cGgoCD8/fcadO/RQ+kESu/evYOWlhaMjIwU8jIyMpCamqpS+3R1dRUmJBo4cBD8O3ZCeHg4tm3divT0dLx/r9r2VBEZGYlpU6dh9OgxsLK2VqmOmZk5kpKSkJiYCAMDg0JrCxERERER0ceoOO41pXjPqD587KgApBHHzUFBADJnaz5z5gy6dO0KTU1NhfIPHjzA8GFDUalSZcyZMzfP+zt9+hRsrK1U+nc/NFShfhUXFzRr1gw9e/bE5i1bEJ+QgICAABTWnMtTp/wMcwtz9OvfP/fC/5Lu+2OfuZqIiIiIiKiwFPW9phTvGdWHI18KwNPTE1WqVMGWLZvx/ahR2LJ5M4QQCAhQHAaWkpKC//UNRGpqKlauWpVttNHCwgJpaWmIi4uDsbGxXF6VKi5YtGixSm2ztbPLtUxH/44YOnQIHty/j8pVqqi03ew8ePAAK1euxK8zZiA8PFyWnpycgvfv0xAWFgZjY2NYWFjI1YuOjoKBgUG2zywSERERERF9aor6XjM7vGcsPAy+FFBAt26YOmUKbt26hc2bg+DsXAm1a9dWKPfDD+Nx/fp1zJg5E+7u2U9wVKWKCwAgLCwM1avLTz5ka2ub41JdeZWUnAQAiImNLfC2wsNfIiMjA6NHjcLoUaMU8mtUd8OAgQMxY8ZMufSwsDC4uLgUeP9ERERERESlSVHea2aH94yFh8GXAgoIyPxATJs6FTdu3MC48eMVyuzauRNLlyxB27Z+GDBgYI7bq1u3LgDg6pUrKn8gcvPmzWtYW9vIpb1//x4bN2yAvr4+XF1dAWTOjP382TNYWlrC0soqT/uoVrUa1q/foJA+ZcrPiI+Px4wZM1GhYgWF/GvXriOgW0Ce9kVERERERFTaFeW9Ju8Z1Y/BlwIqX7486tWrjz17dgOAwjCwiIgIDBo8CJqamvD28c52luYKFSqgXr16qFChAqpVq4Zjx4+hzxdfFEobhw4Zgri4ODRs1AgO9g549foVgjZtQmhoKH75ZbpsWNrly5fg17Ytxo4bh/Hjf5DbxpIlixETEyMbHrZv3168ePkCANCvX39YWlmhXfv2CvteuHABACjNu3r1KqKi3sHPL/s16omIiIiIiD5FRXmvyXtG9WPwpRAEdAvA+fPnULtOHTg7O8vl3b8fiuioKADAmNGjs91Gz569UK9ePQBA7z5f4JdpU5GUlFQoz7V17tIFf69Zg+V//YV3797ByNgYnh4e+PnnKWir4kn85x9/4OnTp7K/d+7ciZ07dwIAunXrDlNT0zy3a/u2bXB0dIS3t0+e6xIREREREZV2RXWvyXtG9ZOIwpq2uBSLT0hAs1Z+2LV1MwwN1b+0VUxMDGrWqIEpU6bgi8BAte+vOKSkpKC6WzUMHzECAwcOKu7mEBERERERlXof071mQe4ZjY0M1dSq/ONS0yWQqakphg0bhnnzfkdGRkZxN0ct1q79G9ra2vjqq6+LuylERERERESfhI/pXrO03TN+1CNfPlznW0tLC6amprC3t0ft2rXRvn17+Pv7Q0sr+6erkpKSMH36dGzcuBFPnz6FhYUF2rRpgylTpqBMmTIAin7kizpFRkaifTs/3Lp1K9syly5dRpVSMJs0ERFRXrGfJCIiyt7H0k+WxJEvpWLOl8B/h0tlZGQgJiYGoaGhWLNmDVavXo1KlSph3bp1spmds0pOTkbz5s1x7tw52Nvbw9/fH0+ePMHKlSuxe/dunDt3DhUrVizql6NWd+7czvGDQkRE9CljP0lERJQ99pP5VyqCL6tWrVJIe/jwIcaPH4+goCA0a9YMp0+fhoeHh1yZqVOn4ty5c2jQoAEOHjwom8F5zpw5GDlyJL788kscP35c/S+gkD1//hxly5ZVqayRkRFWr/kbTuXKydLKV1Bc3ouIiKi0YD9JRESUPfaT6lFq53xxdnbGpk2b8NVXXyExMRFffvmlXH5qairmz58PAFiwYIEs8AIAI0aMQM2aNREcHIzLly8XabsLatOmTahX1wvnz5/Ptay2tjbi4+Px04Qf4VCmDKq4uKCKiwt0dHSKoKVERERFj/0kERFR9thPqk+pDb5IzZ49G4aGhrh69SpOnTolSz99+jRiYmLg7OwMT09PhXpdu3YFAOzatavI2lpQkW/fYuSI4YiLi8P06b/kWv7P+QsgkUhw+/ZtzJwxowhaSEREVHzYTxIREWWP/aR6lfrgi6mpKXx9fQEAx44dk6Vfv34dAFCrVi2l9aTpN27cUHMLC8/8+fMRGxsLAwMDLFy4KNfybdu2xYCBAwEAS5YsRnR0tJpbSEREVHzYTxIREWWP/aR6lfrgCwDZXC8hISGytKdPnwJAts+ySdPDwsLU27hCtGvXTgBAz1694ODgoFKdkSNHQkNDA0lJSThy5LA6m0dERFSs2E8SERFlj/2ken0SwRcrKysAQFRUlCwtPj4eAGBgoHzpaEPDzKWp4uLi1Ny6wpGUlITQ0FAAQMuWrVSuZ21tgxo1agAAblz/eEb5EBER5QX7SSIiouyxn1S/UrHaUW6EEAAAiURSzC1Rn8jISNn/5zQzdbVqbtgUtBkAZJMM29s74Pr163j79q16G0lERFRM2E8SERFlj/2k+n0SwRfpSWBhYSFLk54oiYmJSuskJCQAAIyNjWVpN2/egJ6enrqaWSBxcbGy/79+/TrS09OzLWtvbw8AsvXZX79+DQBISk7CtWvX1NdIIiKiYsJ+koiIKHulrZ9s0rhRcTdBwScRfLl69SoAoFq1arK0cv+uQ/78+XOldaTpTk5OsrQ2bVojI4eTsKQYOKB/jvnl3NrJ/l8IgRf3MoeHHTl5Bxfu/KrWthERERU39pNERETZy62fzM6WzZuxZfPmQm5N/kiffilJSn3wJSYmBgcOHAAANGvWTJbu7u4OALhy5YrSetL0mjVrytL27z9QYke+AMCUn3/GoUMH4erqiqXL/lKpzskTJ/DDD3sAAIvm/QQHhzIAgGfR5mprJxERUWFzNIvKtcyUn1PZTxIR0SdJvf3keADAxk2bZP0kKZKIkhgSUpF0DpecXsLXX3+N5cuXw8vLCxcuXJClp6amwsbGBjExMbh69apsRSQpd3d33LhxA5cuXYKLqyuatfLDrq2bYWiofILekuDy5cto3swHQgjMmTsXX3/9TY7lY2Ji4OPtjYcPH8DXty02BQXlaX+3wzQL0FoiIiLVuDkVzqhT9pNERFQafaz9pDoZGxkWdxMUlNqRL48ePcK4ceMQFBQEQ0NDLF++XC5fR0cHgwcPxrRp0zBo0CAcPHhQtsLRnDlzcOPGDXh7e6N27dqI/3f+l5Kudu3a+OKLQKxevQpjRo+GgYEhevbsqbRs5Nu36NGjBx4+fABjY2NMnTo1z/tT5UPOC08iIspJYV0wqoL9JBERfWxKcz/5qSkVI18CAwMBABkZGYiNjUVoaCju3r0LIQQqV66M9evXo06dOgr1k5OT4ePjg/Pnz8Pe3h5NmjRBWFgYzp8/D2tra5w7dw4VK1ZEfELCRzHyBQBSUlLQqaM/Tp06BQBo08YX/QcMgKenJwwMDPA0LAy7du3CH3/Mw7t376Cjo4O/166Dr69vkbWRF5pERJ+moryAzA77SSIiKqnYTxaekjjypVQEX6S0tLRgYmICBwcH1K5dG/7+/ujQoQM0NbO/iElKSsL06dOxfv16PHv2DBYWFmjTpg2mTJkiW2LrYwq+AJkfmGFDh2LdurU5lnNwcMCKFSvRsFHxzgTNi0wiotKpJFxEKsN+koiISgL2k+rD4MtH6mMLvkidO3sWCxcuwJEjRxAXFydLr1q1KgICumHAwIEwMPg4Xg8vPImISpaSesGYF+wniYhIXdhPFi8GXz5SH2vwRSojIwNv375BYmISbGxsSuwHJK94oUlEVDRKwwVkTthPEhFRQbCfLHlKYvCl1E64S//R0NCAjY1tcTej0Cn7kuOFJhFRwZT2C0hl2E8SEZGq2E9SfmkUdwOys3//fnh4eEBPTw8SiQTR0dHF3ST6CLg5pcv9Iyotgo9sQ68Obnjz6kVxN4VKGX5vflr4flNpxX6S1IXfm1RYSuTIl8jISAQEBMDNzQ0LFiyArq6ubBloIqL8eB3xHHu3r8LNa2fw7u0rAICVrQOq1aiLz1oHoFwFl2JuIRERUfFhP0lEpF4lcs6X/fv3w9fXF4cOHUKLFi2Kuzkf/ZwvJI9Drj89Vy4ex/yZ30NDUxONvP1QroIrJBIJXj5/jEtnD+Ptm5eYu+wgrG0cirup2cpIT0daehq0tXUUVnojUhV/sSNVsJ/89LCfJMrEfrL04JwvKnr9+jUAwMzMLNeyiYmJH8WEP1RyfPilyovM0u1V+FPMn/U9LG3sMX7KCphbWMvl9+g7Aof2boRGCb9Q09DUhI4mz1XKG15EUn6wn/y0sJ+kTxn7SSpKeQq+TJo0CZMnT8b9+/cxdepUbN++HUIIdO7cGQsWLJALgqSlpWH69OlYtWoVnj9/Dnt7e/Ts2RMTJ06Erq5utvvw8fFBcHAwAMDLywsAEBgYiFWrVsHHxwdv377F6tWrMXz4cFy6dAnffvstfv/9d6SkpOCXX37BunXr8OzZM9jY2KBHjx6YMmWK3P5SUlIwduxYrF27FsnJyWjWrBkWLlwIR0dHTJw4EZMmTcrLIaFSgBMSlm67t65ASnIS+g2ZpnBBCQCamlpo07637O+nj+9h747VuHv7MqLfvYaBoTE8ajdFj/99D2MTM1m5xb+PR8iti5j31yG57f2zfgG2blyIdTtvy9JuXj2DrRsX4vnTB0hPT4OFpS28GrREty+Gycoc2L0OR/ZtwptXL6ClrQNbe0f4+n+BRt7tAGQ+y7503o/4fdlBWNuWAQBcOncUxw5uxpNHIYiPjYaFlR2aNveH/+ffQiPLBejU8X0RFxuF70bPxqolU/Hw3k0YGpmgdfveaN/lqwIdXyo5eAFJ6sJ+snRjP8l+8lPBfpKKW75GvgQEBKBChQqYPn06rly5gr/++gs2NjaYMWOGrMzXX3+N1atXo2vXrhg5ciTOnz+P6dOnIyQkBNu2bct22z/88ANcXFywdOlS/Pzzz6hQoQKcnZ1l+ZGRkfD19UX37t3Ru3dv2NraIiMjAx06dMCpU6fw7bffomrVqrh58ybmzp2L0NBQbN++Xa5da9euRc+ePdGwYUMcPXoUfn5++TkMVIrxV7/S4+rFYNjal0Mll5oqlb957SxeRzyH92cdYWpuhRdPH+DogS14/uwBJs/akOehzM+fPsBvUwaiXPkq6NJzMLS1dfAq/ClCQ67Kyhw9sBlrlv6Cug1boU373kh9n4pnT0LxMPSm7KJSmZNHt0NXzwBt/QOhq2eAOzfOY8v6+UhKSkDP/30vVzYhPhYzJ/WDV4MWqN+oDS6cOYiNq+fAsXwVeNRukqfXRCUDLyKpOLGfLD3YT2ZiP1n6sJ+kkiZfwRdPT08sX75c9ndkZCSWL18uC75cv34dq1evxtdff41ly5YBAAYOHAgbGxv89ttvOHbsGJo1a6Z02y1btsSLFy+wdOlS+Pr6ok6dOnL5ERERWLx4Mfr16ydLW7t2LQ4fPozg4GA0btxYll69enX0798fZ86cQcOGDXH9+nWsXbsWAwcOxIIFCwAAgwYNQq9evXDjxo38HAoiKsESE+MR9e416tT/TCEvIT4WGRn/dcq6uvrQ0dVDy7bd4depr1zZSi7umP/bKNy7cwWubrXz1IabV88gLe09Rk9aAmMTc6Vlrl06gbLlKmHo2Ll52vagkTOho6sn+7uFbzcsXzgZh/duxOe9h0BbW0eWF/XuNfoPn44mzToAAHxadsbQr1vi+KF/eFFJRPSJYj/JfpKIik6+lpru37+/3N9NmjRBZGQkYmNjAQB79+4FAIwYMUKu3MiRIwEAe/bsyc9uAQC6urr43//+J5e2efNmVK1aFa6urnj79q3sX/PmzQEAx44dk2vXkCFD5OoPGzYs3+2hT8OHS8wxkv5xSEqMBwDo6inOCzX1h77o37ux7N+hvRsAQO4iLTU1BXGxUajk4g4AePLwTp7bYGBkDAC4fO4oMjIylJcxNMa7yFd4eP9mnradta1JiQmIi42Ca7XaSElJwsvnj+TK6ukboLFPe9nfWto6qFi5Bt5EPM/TPql48DuISjqeox8n9pP/YT/5ceN3EH0M8jXypVy5cnJ/m5tnRqmjoqJgYmKCsLAwaGhooFKlSnLl7OzsYGZmhrCwsHw2FyhTpgx0dHTk0u7fv4+QkBBYWys+pwr8N4GvtF1ZH2MCABcXLp1Hecdn4Es+ff3MWc5TkhMV8r4aOAnJSQmIiY7EwjljZOnxcdHYunERzp7Yh9iYSLk6iYlxeW5Dg8a+OH7wHyyb/xM2rpkLN/f68GrQAnUbtoKGRmb8u32Xr3Dr+jn8NLI7bO3LoYZnQzRs6geXarVy3Pbzpw+wee0fuH3jvOwCWtbWBPm/LSztFIaCGxqZ4NmT0Dy/JlIvXjBSacF+suRjP/kf9pMfD/aT9LHKV/BFM5uZxD9ctVody7zp6+srpGVkZKBGjRqYM2eO0jqOjo6F3g4iKvkMDI1hZmGNZ2H3FfKkz7a/efVCLv2PmSNxP+Qa/Dr/D04VXKGnZwAhMjBjUj+IjP++47L7fss6RBvI/NVtwvQ1uHPzAq5dCsb1K6dw7uQ+uNWsh7GTl0FDUxNlHJ3x26LduHoxGDeunMLFM4dweO9GdOo+AF17Dla6n4T4WEwZFwh9AyN07TkYNvaO0NHWxeOHd7Bx9RwIIf/rofQC9kMCQmk6ERGVfuwn/8N+kojUTS1LTTs5OSEjIwP3799H1apVZemvXr1CdHQ0nJycCnV/zs7OuH79Oj777LMcAz7Sdj18+FButMu9e/cKtT306eIEhCWPR52mOH7wHzwMvQHnKjlPJpgQH4Pb18+hS89B6Nx9oCw94qXiaD1DIxMkJij+wvf2TbhCmoaGBqq710d19/ro/dUY7AhaiqC183Dn5gVU92gAANDTM0CDJr5o0MQXae9TMXf6MOwIWooOXb+Bjo7iCnEhty4iPi4aw8bNQ9Xq/82N9foVh0d/bPgLHn1K2E+WPOwnqaRjP0mlRb7mfMlN27ZtAQC///67XLp0ZEphry4UEBCAFy9eyCb3zSopKQkJCQkAAF9fXwDAH3/8IVfmw3YCQGJiIu7evYu3b98Walvp08LnT4tf+85fQVdXH0v/mICYKMXPc9YRexINzX/T5Mvs27lGoZ6NnSMSE+Lw9PF/wduod29w6dxhuXLxcdEKdZ0qugIA3r9PBQDExcqX0dLWQRnHihAQSE9LU/q6/vuF7r/Gpr1PxeG9G5WWp5KB3wlE8viZKH7sJ6kk4XcClWZqGfni7u6OwMBALF26FNHR0fD29saFCxewevVqdOzYMduVjvKrT58+CAoKQv/+/XHs2DE0atQI6enpuHv3LoKCgnDgwAHUqVMHHh4e6NGjBxYuXIiYmBg0bNgQR44cwYMHDxS2eeHCBTRr1gwTJ07E96NGFWp7iajo2Dk4YeDImVjw2yh8P7AdGnr7wam8CwSAN6+e40zwHkg0NGBhaQsDAyO4utXBnq0rkJ7+HhYWtrh57YzSX8kaNGmLjavnYO70oWjdrhdSUpJxZN9G2DmUl5twcNvGRbh7+zI86jSFlY0DYqPf4dC+jbCwspM9q/7rxG9gZm6FKq6eMDWzxIvnj3Boz3p41mkKfQNDpa+rsqsnDI1MsPj38WjdrhckEglOHdvF4dFERJQn7CeJiIqGWoIvAPDXX3+hYsWKWLVqFbZt2wY7OzuMGzcOEydOLPR9aWhoYPv27Zg7dy7WrFmDbdu2wcDAABUrVsTQoUNRpUoVWdkVK1bA2toa69atw/bt29G8eXPs2bOH88JQkeGQ66JXp35z/PrnNuzdvgo3r55B8OFtkEACKxsHeNTxxme+AXCqkPkr26DvZ2L1kl9waM9GAAI1PBpi9MQlGNzXR26bxiZmGD7uD6xdMRMbVs2GtW1ZdPtiOCJehsldVNaq2wxvXr9E8OFtiIuNgrGJOVyr10HXnoNhYJi5wsNnrT/H6eA92LtjNVKSE2FhaYtW7XqhYzf5leU+3P/3ExZi3YpZ2Lz2TxgamaCRTzu4udfHjInfFvoxpPzhL3ZEecd+suixn6Tiwn6SPiUS8eEsuZ8oiUSCiRMnYtKkSQp58QkJaNbKD7u2boahoeJSfEQFwYtKotKLF5VEBcd+kqj0Yj9J6mJspHxUXHFS28gXIlINl+IkKh14AUmkHuwniUoH9pP0qWPwhagE4oUmUcnHi0ii4sNHk4hKNvaRRIrUstoRERERERERERFl4siXf3HqGyrp+CsfUfHhL3hEJRtHjBIVL/aTRLnjyBciIiIiIiIiIjXiyBeijxR/5SNSD/56R1Q6sJ8kUg/2k0T5w5EvRERERERERERqxJEvRKUI54Uhyjv+gkf06WA/SZR37CeJCgdHvhARERERERERqRFHvhCVYnzenUgef70joqzYTxLJYz9JpD4c+UJEREREREREpEYc+UL0ieHz7vQp4S94RJRX7CfpU8J+kqjocOQLEREREREREZEaceQL0SeOz7tTacFf74hIHdhPUmnBfpKoeHHkCxERERERERGRGnHkCxEp4K98VNLx1zsiKk7sJ6mkYz9JVPIw+EJEKuEEhFSceBFJRCUd+0kqTuwniUo+PnZERERERERERKRGHPlCRPnCIdekLvz1johKA/aTpC7sJ4k+Thz5QkRERERERESkRhz5QkSFhs+7U37wFzwi+lSwn6T8YD9JVDpw5AsRERERERERkRpx5AsRqQ2fd6cP8dc7IqL/sJ+kD7GfJCq9OPKFiIiIiIiIiEiNOPKFiIoUn3f/tPAXPCKivGE/+WlhP0n06WDwhYiKFYdclx68gCQiKnzsJ0sP9pNEnzY+dkREREREREREpEYc+UJEJQ5/5Sv5+OsdEVHxYT9Z8rGfJKIPMfhCRB8FPgNfvHgRSURUsrGfLF7sJ4koN3zsiIiIiIiIiIhIjTjyhYg+ShxyrT789Y6I6OPHflJ92E8SUX4w+EJEpQaHXOcPLyKJiD4N7Cfzh/0kERUGBl+IqNTir36KeAFJRERS7CcVsZ8kInVh8IWIPimf0oUmLyCJiCivPqXRMewniagoMfhCRJ+80nKhyYtIIiIqbKXpRwv2k0RUnBh8ISL6wMdwockLSCIiKi7sJ4mI8o7BFyIiFfAijoiIKHvsJ4mIcqZR3A0gIiIiIiIiIirNGHwhIiIiIiIiIlIjBl+IiIiIiIiIiNSIwRciIiIiIiIiIjVi8IWIiIiIiIiISI0YfCEiIiIiIiIiUiMGX4iIiIiIiIiI1IjBFyIiIiIiIiIiNWLwhYiIiIiIiIhIjRh8ISIiIiIiIiJSIwZfiIiIiIiIiIjUiMEXIiIiIiIiIiI1YvCFiIiIiIiIiEiNGHwhIiIiIiIiIlIjBl+IiIiIiIiIiNSIwRciIiIiIiIiIjVi8IWIiIiIiIiISI0YfCEiIiIiIiIiUiMGX4iIiIiIiIiI1IjBFyIiIiIiIiIiNWLwhYiIiIiIiIhIjRh8ISIiIiIiIiJSIwZfiIiIiIiIiIjUiMEXIiIiIiIiIiI1YvCFiIiIiIiIiEiNGHwhIiIiIiIiIlIjBl+IiIiIiIiIiNSIwRciIiIiIiIiIjVi8IWIiIiIiIiISI20irsBHwMhBAAgMTGxmFtCRERERERERDmRSABDAwNIJJLibooMgy8qSExMAgB06x1YzC0hIiIiIiIiotwc3L0N5ubmxd0MGQZfVGBtZYnd2zbDwEC/REXOcpOQkIh2nT7H7m2bYWhoUNzNISpSPP/pU8fPAH3KeP7Tp4znP33qpJ8BLW3t4m6KHAZfVKChoQFbG+vibka+GRoawMjQsLibQVQseP7Tp46fAfqU8fynTxnPf/rUlbSBE5xwl4iIiIiIiIhIjRh8ISIiIiIiIiJSIwZfSjEdbW1882UgdErYs25ERYHnP33q+BmgTxnPf/qU8fynT11J/QxIhHQdZSIiIiIiIiIiKnQc+UJEREREREREpEYMvhARERERERERqRGDL0REREREREREaqRV3A2gwpeckoJVa9bh0JGjiHj1CibGJmhQvy76f/MlbKyti7t5RIUqOiYGAT0DERUdjbJlHLAtaL1cfkZGBq7fuIWTp8/g4uUrePr0Gd6npcHG2hr1vGrji949UcbBvphaT5Q/t0PuYu36jbh2/SaioqOhr6+HShUron27tmjftg0kEkm2dd+/f49efb/G4ydh0NTUwLkTR4uw5US5C7l7D+cvXsLtO3dxJyQEr9+8BQBcPH1coWxhfMcfP3ES/2zfibv3QpGYmAgzMzNUc3VBr+4B8HCvqY6XSJSjvHwGskpLS0PQP9tw4NARhIU9RYbIgLWVFdxr1lB6H5CRkYHtO3dj9979ePT4CVJSU2FhbgZPD3f06dkdLlUqq+slEimVnJyMcxcu4uTps7h2/SYiXkVAQ0MTjmXLoJl3U/Tq/jkMDAzk6kS8eo2Tp8/g9p0Q3L4TgrCnzyCEwOI/56J2Lc8c93f9xk2sWL0Wt27fwfu096hQvjwCunSCn29rtbw+Bl9KmZSUFAz8bjhu3r4DK0tLNG3cGOEREdi1Zx9OnT6LFUsXomwZh+JuJlGh+f3PhYiOick2/8XLl/h20BAAgKWlBerUrgUNDQ3cCQnB1h27cODQEfz+26+8wKaPxtFjwRg/cTLS0zPg6lIFHu41ER0djavXb+DajZu4cPEypk76Mdv6K9esxZOwp0XYYqK8Wb5qDYJPnlapbEG+4zMyMjBtxm/YuXsv9PX14F6zBoyNjBDx6jVOnz0v+3wRFbW8fAakYmJj8d2w7xFyLxRWlpbwqlMbAPD8xQvs2rMPHfx85YIvQgiM+WEijp84CV1dXXi614SRkSEePnqMA4eO4MixYPw2fSoaNaxfqK+NKCf7Dx7GtBm/AQAqlHdC08aNEJ+QgJs3b2Pp8pU4ePgIliyYBwtzc1mdo8eDMfePBXnel/R6KiNDwNOjJsxMTXHx8hVMmjod9x8+xLDBAwvtdUkx+FLKrFj9N27evoMa1d0wf+4sWWRw3cYg/P7nQkyZPgNL5s8r5lYSFY4Lly5jz74D6OTfHtt27FJaRgIJ6nnVQWCfnqhTy1M2IiA1NRXTZ83B7r37MWHyNGwLWgctLX4lUsmWlpaGGbN/R3p6BqZM/BFtWrWQ5T1+EoZvBnyHA4cOo2N7P9Sprfhrz+MnYVj193p07NAu288MUXGrUd0NlZydUa2qK6pVdYF/1+5ITX2vtGxBvuP/WrkaO3fvRZNGDTHxx7EwNTGR5cXGxuUY2CdSp7x8BoDMQMrYHyYi5F4ovvkyEF8G9pE735+/eAkjQ/nRAidOncHxEyfhYG+HvxbNh7W1lSxvzboN+HPhEsyc8zt2NNxY+C+QKBtaWlro5N8ePQK6okJ5J1n627eRGDZqLO6F3secefMxddIEWV4ZBwf0COj67+fFFbPmzMO5Cxdz3E9MbCx+nj4T6ekZmDHtZzT3aQoAiHz3Dt8M+A7rNgShScMGuY6cySvO+VKKvH//HkH/bAMAjBk5TG5IVq/uAahcyRlXrl5HyN17xdVEokKTnJKC6TNno0L58ujdo1u25cqWLYP5v/8Gr9q15B7F0NHRwZjvh8PIyBARr17h+s1bRdFsogJ58vQp3kVFwamco1zgBcj8hahN65YAgDt37yrUFULglxm/wdjICIP7f1sk7SXKj8DePdH/my/RtHFDWFla5lg2v9/xr16/xqq/18PO1ha/TJkoF3gBABMTY5RzLFt4L4ooD/LyGQCAw0eP49KVq2jR3AfffvU/hUBj2TIOMDMzk0u7ev06AKCTf3u5wAsA9OnZHUZGhngZHoF3UVEFezFEedCubRuMHz1SLvACAFZWlhg9chgA4FjwCbx//18w0rtJI4wYOhhtWrXI/N7O/slrmR279iAhIQHeTRrJAi8AYGlhge8G9gcArN0YVPAX9AEGX0qR6zduIT4+AWXLOCh9RrO5jzcA4OTpM0XdNKJCt2zFKrx4GY5xo0ZAS0szX9vQ09VFOUdHAJkRdaKSTkdbR6VyH95IAsDW7Ttx7cZNDP1uAExMjAu7aUQlTk7f8Xv2HcD79+/h394Perq6xdE8okKzfeduAEBAl84q18mpP5FIJJBIJNDU1ICRoWGB20dUGKpUcgYApKa+R0xMbIG2derMOQBA82beCnmNG9aHro4OLl68jJSUlALt50MMvpQioQ8eAABcXaoozXd1yQzI3H/wqMjaRKQO9x88xLoNQWjv5wtPj/w/j5+RkYGIiFcAMiPdRCVdGQd7lC3jgLCnz7D/4GG5vMdPwrD/wCGYGBvDx7uJXN7bt5GYv3gpvOrUQtvWrYqyyUTFJqfv+IuXrwIAatZww9u3kfh7/UZMnzkbfy5cgjPnzkMIUeTtJcqPtLQ0XL9xE5qamnCr5or7Dx5i0dLl+GXmbCxbsRqh9x8orVevbh0AwLYdu/Dm3wl9pdas24C4uHi0adUSOjqqBf2J1O35y5cAMh9NKuiPSPel981VFO+btbW1UbFiBaSkpuLps+cF2s+HOMFBKfLq1WsAyHZFI2l6xKtXRdYmosKWkZGBqb/OgrGxEb4b2K9A2zpw6AjeRUXB3MwMNWu4FVILidRHU1MTk34ch+Gjx2HC5KlYtzEIjmXLICoqc8LdihXKY+IPYxVGvsycMw+pqakYM3J4MbWcqOjl9B3/+MmTzP8+DsOYH35CfHyCLG/Nug2o7emBWdOnwNiYo8SoZHv+4mXmKkUW5li/aTMWLV2OjIwMWf6yFavQ/fMuGDF0sFy92p4e6NOzO/5evxGduvWCp0dNGBlmTrj77PkLtGvbBmO+Z59BJcfGoH8AAA3q1S1QUDA+IUH2nW9jo/y+2dbGGiF37yE84hUq/zvipjBw5EspkpiUBADQ01M+fFZfXy+zXGJikbWJqLBt2rIVd0LuYsjA/jAzNc33diJevcacP+YDAPp9/T/+skMfDfeaNbBk/jyUcXDA3XuhOHTkGC5duQoNDQ3U9aqtsKxu8MlTOBZ8AoG9e8KpnGMxtZqoaOX2HR8XFwcAmPvnAlR2dsbalctw/OBeLJg3Gw4O9rh89ZpsxQ2ikkx6LsfExGLB4mXo3LEDtgWtx6G9OzBh3Gjo6upiQ9AW2byQWQ0Z1B8jhg5GWloazp2/iMNHj+PxkzDY29minlcdPpJHJcbpM+ewc/deaGlpof83XxZoW0mJSbL/z+4c19NTz30zgy9E9NGIiHiFxUuXo5anO9r7+eZ7O0lJSRg9fgKio2Pg07QxunTyL8RWEqnXgUNH0Peb/rC1tcaqZYtw4vA+/LNxLdq1bYN1G4IwYMgIpKamAgASEhIxc848lHN0RN8+vYq55URFQ5Xv+IyMzMeKTIyNMW/2DLhUqQxDQwPUrVMbs2dMg0QiwZFjwQh7+qyom0+UJxn/PiKXnp6OhvXrYczIYZkT7JqaokO7thgyKHPy0NV/r5Orl5qainETJmPe/IX43xe9sWPLBhw/uBeL/pgLHR0dTJg8FX+v40pHVPyehIXhp5+nQQiBIYP6o0rlSsXdpHxj8KUUMdDXBwAkJyufGCgpKTmznIGB0nyikm7GnN/xPi0N40aNyPc20tLSMPbHSQi5ew8eNWtgSpal6ohKuqfPnmPS1OkwMzXF3JnT4VatKvT19VHOsSzGjx6Jxo0a4O69UOzcsw8AsHDJMrx+/QZjvh/G0V30SVD1O156zfRZcx/o//v/UpUqVkS1qq4AgKvXrqu3wUQFZJDl/FX2w1T7tm0AAK/fvMWz5//NX7Hq73U4fPQYPu/cCf2+/h8c7O1haGiAOrU98fusX6Gvr4elK1YhOjpa7a+BKDuv37zBkBGjERsXh57dA9AjoGuBt6lv8N9nJjmbCXWTk9Vz38w5X0oRW1sbAJknqTLSdDtb2yJrE1FhOnX6LIyNjTB91hy59NSUzF/537x5i36DhwIApk3+SWF5xoyMDEyaOh1nzp1HlcqVMGfmLxxSSx+Vg4ePIi0tDQ3q1VV6QdCyeTOcOn0WV69dR9dO/jh5+gx0dXSwfNUaLF+1RqF8enqG7DMzYshgpSvlEX0s8vIdb2dni9i4ODjY2SnNt7ezw+07IYiKilZji4kKzt7uv+t6e3vF81lPTw8W5uZ4FxWFd1HRcCybuYT63v2HAACfKVntxc7OFm7VquHS5SsIuReKBvXqqqn1RNmLiY3F4GGjEB7xCu39fDFs8IBC2a6RoSGMjAwRH5+A16/fwKiC4oper15n3jdn/XwVBgZfSpEqlTKHYN29F6o0/+69+wCAypUqFlmbiApbXFw8rlxV/ktkSmqqLE/62EVWs+b+gQOHjqCcoyP+nDuLEynSR0caRDc0MlKab/jvkqCx/84BAMh/LpSR5sXHxxdWM4mKRV6+412qVEbo/Qdyn5WsYmMzlzHN+gspUUlkZGQEBwd7vHwZjrhYxfM5IyMDcf9+v2cdJSPtT4yy6U+kS0zHZfMZIVKnxMREDB05Bo+fPEEz76b4Ycz3kEgkhbb9ypUq4eq167gbGoqKFcrL5aWlpeHRo8fQ1dFBOceyhbZPgMGXUsW9ZnUYGRni+YuXuBd6X+EXzKPHgwEATRo1LI7mERXYxdPHlaa/DA+Hf9ceKFvGAduC1ists2jpX9iydTvsbG2x4PffYGFursaWEqmHdLnckLv3lObfCbkLALJf83f+synbbXk18oGmpgbOnThayK0kKnp5/Y5v2rghdu3ZhytKHitKTEzEvdDMH6xcKnM0GJV8TRs1xMbN/+Dy1WuoX89LLu/m7Tt4//49dHV15SZdt7SwQMSrV7hz9x4qOcv/MJueno7Q+5mfAftsRocRqUtqaipGjv0Rt++EoH49L0ybPAGampqFuo/GDevj6rXrOHosGG1bt5LLO3n6LFJSU9G4UQPoFvIIec75Uopoa2sjoEsnAJnLiiYl/TeT87qNQbj/4CFqebqjqqtLcTWRqFis37gZK1avhaWlBRbMmw27Qh5CSFRUvJs0ApA5D8WWbTvk8m7euo0NQZsBAM2VDCMnKq3y8x3fpFFDVCjvhBs3b2Hz1u2y9PT0dMz9cyFiYmPhXLECPNxrqLHlRIWjR7eu0NbWxuZ/tuHmrduy9OjoaMyZl7nqV3s/X7m5v7ybNgYALPlrhdzE0unp6Vi45C+8DI+AvZ0t7xuoSKWnp+OHiVNw6fIVeLrXxKxfpkBbW7vQ9+Pf3g+GhoYIPnkaR4+fkKW/i4rCnwsXAwB6dw8o9P1KhPh3imwqFVJSUtB/8DDcuhMCK0tLeLjXREREBG7dCYG5mRlWLF2IsmUciruZRIUqp5Ev90Lvo8+X30IIgRrV3bIdPtixvR883GsWRXOJCmTe/EVYuyFzREvFCuVRsUJ5vHn7Fjdv3UFGRgY6+bfH+NEjc90OR75QSXXqzFksX/nfHEW3Q+5CCIHq1arK0r763xdo3LBBgb7j74XeR7/Bw5CQkIDKlZzhWLYM7oU+wIuXL2FqaoLFf/6uMCKAqCjk5TMgtXP3Xkz9dRY0NTVRo7objAwNcePWLcTExMLVpQqWzP9dbq6w6JgYfN1/MMKePoOOjjZqVq8OExNj2WdAV1cXc2dNh1ftWkXzookAbAjaIgsY+jRtAkND5RPeDhs8AGZmZgCAt28jMWrcj7K8J0+fIj4+ARXKO8Hw33O+UcMG+Pp/X8ht4+ixYIz7aTKEEKjt6QFTUxNcuHQZcXHx6Nk9AMO/G1jor4+PHZUyurq6WDT/d6xasw4HDh1G8MlTMDExRru2bdD/my9ha2NT3E0kKlLx8fGQxphv3rot94tQVrU9PRh8oY/C0MEDULNGdWzdvhMh9+4h7OkzGBoYoJaHOzp2aIfWLT8r7iYSFUhUVDRu3QlRSM+aJp0ItyDf8S5VKmPdqr+wbPkqnLt4EY+fhMHCwhz+7f3wVd8+fNyCik1ePgNSHdq1RRkHe6xaux6374QgJSUFZRwc0K1rZ/Tu0U1hVS8zU1Os/msJ1m3chOMnTuF2SAjev0+DlaUl/HxbI7B3T1Qo76SW10eUnaxzDB0/cTLbct9+1VcWfEl9n6r08/L4SZjs/52cyinkN2/mjaUL5mH56r9x6/YdvH+fhgrlnRDQpRPa/btKWGHjyBciIiIiIiIiIjXinC9ERERERERERGrE4AsRERERERERkRox+EJEREREREREpEYMvhARERERERERqRGDL0REREREREREasTgCxERERERERGRGjH4QkRERERERESkRgy+EBERERERERGpEYMvREREeXTp8lWMHv8T2vp3RQPvFmjeph26dO+DsT9ORNCWrYiPjy/uJlI+XL5yFV6NfDBp6vRibUe/wUPh1cgHL8PDi7Ud+fXzLzPQ5LM2eBcVpXKdpctXwquRD3bt2ZenfX0/9ge0btcJiYmJeW0mERFRkWLwhYiIKA+WrViNAUOG41jwCRgZGaJxwwao5+UFXV0dHAs+iVlz/8DjJ2FF1p5JU6fDq5EPLl+5WmT7pILxauSDDl26FXcz1OLBw0fYs+8APu/cERbm5gXeXocu3eDVyCfb/K//F4h3UVFYs25jgfdFRESkTlrF3QAiIqKPRcjde1i2YhW0tLQwfcpE+DRtIpf/NjIS+w4cgrGxUTG1kEqDyT+OR3JKMmysrYu7KXm2aOlyaGhooHfPogkuubpUQf16Xli3MQjdA7rAzNS0SPZLRESUVxz5QkREpKJjwSchhECL5j4KgRcAsLK0RJ+e3VHeyakYWkelhZ2dLco7OUFL6+P6jSzi1WucOnMW9et5FcqoF1X5tm6J5ORk7Nl3oMj2SURElFcfV69ORERUjKKiowEA5mZmKpVPTU1F245dkZycgn07tsDY2FihzPWbt/B1/8Hw9HDH0gXzAABCCOw/eBj/bN+BZ89eID4hHmZmZnAq5wifpk0Q0KUTAMg9jtH/u+Fy292xZQMc7O1lf585dx5BW7bhdkgIEhISYW1tBZ8mjfG/wN4KowUmTZ2OPfsOYPGfc5GWno7lK9fgXuh96OrqommTRhg2eACMjIzwLioKi5etwKnTZxETG4NKzs4YMrAfatfyVOn4SKWlpWHHrj3Yd/AQHj56jPep72FtbQUP95oI6NIJVV1dcOTYcYz9cRJat/wMUydNULqdaTN+w/aduzFh/Bh08POVpSclJSHon204cvQ4nj57jvSMDNjaWMOrTm10/7wLnMo5qtTOvBxDZXbt2Yeff5kBAAiPeCX3/tXydMeS+Znvf7/BQ3Hl6nWF99CrkQ/s7WyxddM6rPp7Pfbs2483b97C3t4OfXr1kL3mi5evYPnKNbh7LxQamhpo0qghhg8ZpLSNaWlp2L5rD/buO4BHj58gLS0N5co5ol3bNgjo0ilPAaBde/YiIyMDrVt8lm2Z4JOnsfrvdQh98BB6urqo5emBQf2/USh3+cpVuXM667Gyt7PFzn82yf72adIYurq62L5zN3p1D1C5vUREREWJwRciIiIV2drYAACOBp9A3y965frrvo6ODvx822D9xiDsO3hYFjTJavvO3QCATh3aydL+WLAYazdsgo6ONjzd3WFmZorIyHd48OARnj9/IduOn29rXL9xE89fvET9el6wtLCQbcNAX1/2/38uWoI1azdAW1sb1aq6wMrSEvcfPMT6TZtx4tRp/LV4vlxdqWMnTmHL1m2o4eaGBvXr4ubtO9ixaw+ePX+OGVMn48tvByEjIx0e7jUQHh6BW3dCMGTkaKz+awkqOVdU6ZgmJSVh6PdjcfXadejr68G9Zg0YGxkhPDwC+w8ehpGhIaq6usC7SWNYWlrgWPAJRMfEKAQSEhMTcfDQERgaGqLVZ81k6W/fRmLQsJF49PgJTIyNUcvTAzo62njxMhxbt++EY9kyKgVf8nsMs3IsWwZ+vq2xZ98B6OvrobmPtyyvvFM5lY4XAIybMBmXrlxBnVqeKFumDK5cu4Yp/wZ1DA308cPEKajhVg3163nh5q3b2Lv/IF6+DMfShX9AIpHItpOckoLh34/FpStXYWpigupu1aCjo4Pbd0Iw948FuHzlGmZNnwINDdUGSp88fRYAUNvTQ2n+P9t24Nff5kIikcDDvSasLC1w6/Yd9P2mP5o0aihX1tLSAn6+rXH0eDCSkpLh59talmdmJv/eGxgYoJqrC65ev4HnL16ibBkHldpLRERUlBh8ISIiUlGbVi2w6u91ePXqNToH9IKPdxN41KyBqq4uqORcEZqamgp1Ovu3x4ZNm7F9526F4Et8QgIOHz0OE2NjNPdpCgBISUlB0D9bYWhggHWrl6OMw38jH9LS0nDz1h3Z35N+HIdJU6fj+YuX6Nu7p9IRJ4ePHseatRvgXLECZk2fAseyZQFkjq5ZunwV/lq5GrN//xO//DxRoe7mf7Zh9oxpaNywAQAgISERX/UfhCtXr+PbQcNQs4Ybfho/RjY6YtHS5Vix+m+sXb8JkyaMU+mYzv79T1y9dh2eHu6YMXUyzM3NZHmR794hPDwCAKClpYUOfm2xcs1a7N1/ED27fS63nYOHjyIxKQldOvlDT09Plv7TlGl49PgJWjRvhgnjRsHAwECW9zI8HAkJua+SU5BjmJWHe014uNfEnn0HYGZqikk/qnaMsgqPeAUDAwNs3bhOdqwuXb6KAUOGY9GSv/A+7T1++3Wq7D2LT0jAV/0G4dqNm7h85Rrq1P7vHJk3fxEuXbmKlp81w/jRI2FklDlXUUJCIn6Y+DNOnDqNbTt2oUsn/1zblZiYiND792FtZQVraysl7Y7A3D8WQEtLC3Nm/oIG9eoCyDynJ0/7FfsOHJIrX97JCZN+HIcrV68hKSk512NVrZorrl6/gSvXrjP4QkREJRLnfCEiIlJR2TIOmDPzF9ja2iAhMRF79h3AtBm/off/vkFLP3/8+ttcvH0bKVfHqZwjatfyxP0HD3E75K5c3oGDh5GcnAzfNq2gq6sLAEhITERq6nuUKeMgF3gBMgMQnh4189TmFav/BgBMnTxBFjQAAIlEgm+/6osqlSvh6PFgRP/7SFVWrVt+JruJBwBDQwN0/HeEzus3b/D9sCFyj6X06dkNEokEV65dU6ltb968xe59+6Gjo43JE8bJBV4AwNLCAtXdqsn+7uTfDhoaGti+c4/CtnbsykzLOoLo9p0QXLx0BRbm5vhxrHzgBQAc7O1RuZJzru0syDFUhxFDB8sdqzq1PeFSpTLeRkaiYf16cu+ZkaEhOvm3BwC59+VdVBS279wNW1sb/PTDWFngBch8n38cNwra2tr4Z/tOldr0+EkY0tMzsh1FtHP3PqSkpqJ1i89kgRcg85weOew7uYBZfpQvlzlyKPT+gwJth4iISF0YfCEiIsqDunVqY9umdZj5yxR06dgBri5VoKmpibi4ePyzbQd69f0aT8KeytXp0rEDgP8eMZLariRgYGFuDhsba4Tef4A/Fy3B8xcv893Wd1FRuP/gIco5lkWlioqPAUkkErjXqI709AyE3AtVyK9f10shTRoQqurqAhMT+TlsjIyMYGJijLeR71Rq3+Wr15CenoEG9erC3s4u1/L2dnZoUK8uHj95gus3b8nSHzx8hFt3QlDV1QUuVSrL0i9cvAwAaNWiOQwNDRS2p4qCHsPCpqWlpfSxHun7ktN7lvV9uXzlGtLS0tCgXl3o/Rv4y8rK0hKOZcvgwcNHSE5JybVd76KiAEDpvEYAcO36DQBAyxbNFfLMTE1Rv26dXPeRExMTEwAosgAYERFRXvGxIyIiojzS1tZGM+8maOadueJRXFwcDh4+ioVL/sK7qCjMmjMPC+bNlpX3aZo5X8nBQ0cw/LuBMDAwwN17obh7LxQ1qrvBuWIFue1P+nEcfvjpZ6xZuwFr1m6AvZ0tanl4oGWL5mjUoJ7K7ZQ+svP02XO5CUuViY6OUUhT9viIdC4ZGyV50vyYmFiV2vfq9WsAQJkyZVQqDwCdO3bA6bPnsH3nbrjXqA7gv6BWxyxBrKzbL5uH7X+ooMewsFlaWih9vE3/3/clp/csNTVVlhYekfm6tu/crRAU/FBsbCz0cln2Oj4+IXNfBvpK89+8fQsgc7JcZVQJvuVEGlyLi4sv0HaIiIjUhcEXIiKiAjI2NkaXTv6wsrLC92N/wOWrV5GcnCx7lCLrfCUHDx9Fxw7tZKNePgwYAIBX7VrYGrQOp06fxdnzF3D56jXs2X8Ae/YfQHOfppgx7WeV2pWRkQEg84Zd2YiIrJTdFGtkmZz1Q5Ic8tSpUYN6sLW1weGjxzFy2HfQ1tLCvgOHYKCvn+MqO/lV0GNY2HJ6T1TJl5K+riqVK+X66JWOtnau2zMyMgQAJCYmqbT/wpbwb/DH2Ngol5JERETFg8EXIiKiQuL172Sm6ekZiIuLl5vHopN/O6xeux7bd+1Bm1YtcODQYYWVebIyMjREm1Yt0KZVCwDAzVu3MXbCJBw9fgKnz5xDo4b1c22PjU3maIX8Tu6qbtLVo168eKFyHU1NTXRs3w5L/lqB/QcPw9DAALFxcfBv76fwaJF0+8/zsP0PlfRjmF/S1+VRswZGjRha4O1JV/6KjVU+6snK0hJhT58hPOIVKlYor5AfHvGqQPuPjYsDAJipuAw8ERFRUeOcL0RERCoSQuSY/+x55k2+tra2wnK40vlKbt8JwaKlyxEfn4A2rVqoPNFojepuaNu6FQDg4ePHsnTtf0clpKWnK9SxtbFBeadyePwkDGFPn6m0n6JU29MDmpoaOHf+IiJevVa5Xsf2ftDU1Mx8ZGaX4lLdUnW9agP4dyWkxNxXNVJGHcdQS0sL6Urer6JUp5YnNDU1cOrMWaSlpRV4exUrlIempma2x8jDPXOi6MNHjynkxcTG4vzFi0rryc7vXNr4+N95lqpUrqRym4mIiIoSgy9EREQqWrxsOebNX4TnzxVHUrx+8wbTZ80BADRt3FB205hV538n3l2/aTMA5QGDiIhX2LVnH5KTk+XSU1JScPnKVQD/jegAAGsrSwDI9qb3q75fICMjA2N++An3Qu8r5EfHxGBbLnN+qIu1tRXatmmNlNRUTJ46HdEx8nOmvIuKwq3bdxTqWVlZomnjRrgXeh9Xrl5H5UrOcKtWVaGcW7WqqFPLE++iovDLzNlISpJ/JOZleDgePHyUazsL+xhaW1ki8l0U4v4drVEcbKyt0d6vLV6GR+CHiT8j8p3iJMnPnj/H0WPBKm1PX19ftuLS6zdvFPLb+/lCR0cb+w8exvmLl2TpaWlpmDtvAZKSkhXqAJnvNZD9+S11504IAKCWh7tK7SUiIipqfOyIiIhIRYmJSdi4+R+s3bAJ5RwdUbGCE3R0dPD69RvcuhOCtLQ0OJYtgxFDByutL52v5NWr1wor80jFxMbi519mYOaceajq6gIba2skJyfhxs3biIqORlVXF9lEvwDQpFFD/LVyDf6YvwgXLl6CmWnmiJvBA/vBzNQUbVq1wKPHT7ByzVp88VU/VKlcCWXLOEAIgecvXuLBw4fQ19dXGggqCiOHfoewp89w6cpVdOjSDZ7u7jA0NEBExCvcDb2PLh07yC03LdWlYwccCz4BQPm8OVKTfxqPgUNG4MChIzh3/iLca9aAjo42nr94idD7DzB08ABUclZcxSirwj6GTRs3wqYtW9H7y29Rs7obdHV04FSuHPr06q5S/cIycth3CA+PwNHjJ3D2/AVUqVwJdra2SEpKxuMnT/Ds+Qt4N2mE5s28Vdpe44b1cSfkLi5fuQbf1i3l8so42GPo4IGYNWcehowYDU/3mrC0tMCt23cQGxeHNq1aYP/BwwrbbNq4Ea5cvY6BQ0egTi1P6OvpwdTMFN8N6Ccrk5iYiJC791DeqRzKlnEo2EEhIiJSEwZfiIiIVPRV3z6oWtUF585fxP0HD3H1+g3ExyfAyNAQbtVc4d24Mbp29petPPMhTU1N1PJwx74Dh7INGJQtUwbDvhuIi5eu4PGTJ7hzJwR6+npwsLdH3y96obN/e+jo6MjKV3V1wc8//YB1G4Nw7sIlpPy7LPCXffvIAjED+32N+vW8sPmfbbh+4xYePHwEQ0MD2Fhbo0tHf3zW3KdwD1QeGBoaYPGfc/HP9p3Yf/Awrl2/gfSMDFhbWaJNqxbw822ttJ6Hew1oaWlBU1MTvv/Oi6OMjbU1Vv+1BBuCtuDo8WCcv3gJmhoasLGxRtdO/mjSqIFK7SzMYzio/zcQQiD41GkcOnIM6enpqOXpXuTBFz1dXcybPQP7Dx7G7n0HcP/+A9y+cxfmZmaws7OFb+tWaKVkaejstPdri+Wr1uDAoSMKwRcACOjSCTbWVlj993rcuhMCXR0deHrUxOAB3+Lg4aNKt9mta2fExsbh4OEjOHr8BNLS0mBvZysXfDl+4hRSUlNzDMIREREVN4nI7QF2IiIiKhTJyclo27Er0tPSsXfHPwoTxJLqDhw6gh8nTYGfb+tSNRHux27UuB9x8vRZ7N4WBCtLyyLZ53fDR+HajZvYtXWTLOBIRERU0nDOFyIioiKy+Z/tiIuLh59vawZeCiAtLQ2r164HAHzepVMxt4ay6vfNlxBCYO2GTUWyv7v3QnHuwkX06h7AwAsREZVofOyIiIhIjaJjYjB/4RJERkXhzNnzMNDXR2CfnsXdrI9S8MnTCD55CrfvhODR4yfwadoYblVdi7tZlEWlihXh59sa/2zbiS969ZAtQa0uf61cDQtzc3xRxI9sERER5RUfOyIiIlKjl+Hh8O/aA9ra2qhUsQKGDh6A2rU8i7tZH6Wly1di2YrVMDE2RoP69TBqxBCYmpgUd7OIiIiIcsXgCxERERERERGRGnHOFyIiIiIiIiIiNWLwhYiIiIiIiIhIjRh8ISIiIiIiIiJSIwZfiIiIiIiIiIjUiMEXIiIiIiIiIiI1YvCFiIiIiIiIiEiNGHwhIiIiIiIiIlIjBl+IiIiIiIiIiNSIwRciIiIiIiIiIjX6P6dkj8/mRBFQAAAAAElFTkSuQmCC", - "text/plain": [ - "
" - ] - }, - "execution_count": 29, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "with pulse.build(backend, name='Offset example') as program:\n", - " with pulse.phase_offset(3.14, pulse.drive_channel(0)):\n", - " pulse.play(gaussian_pulse, pulse.drive_channel(0))\n", - " with pulse.frequency_offset(10e6, pulse.drive_channel(0)):\n", - " pulse.play(gaussian_pulse, pulse.drive_channel(0))\n", - "\n", - "program.draw()" - ] - }, - { - "attachments": {}, - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Next steps\n", - "\n", - "\n", - "\n", - "- Review the [Pulse API](/api/qiskit/pulse) reference.\n", - "- See the [Qiskit Experiments](https://qiskit.org/ecosystem/experiments/) documentation.\n", - "" - ] - } - ], - "metadata": { - "description": "Learn low-level pulse waveform programming using the Qiskit pulse module", - "kernelspec": { - "display_name": "Python 3 (ipykernel)", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.11.4" - }, - "title": "Pulse schedules" - }, - "nbformat": 4, - "nbformat_minor": 4 -} \ No newline at end of file diff --git a/translations/ja/build/qasm-feature-table.mdx b/translations/ja/build/qasm-feature-table.mdx deleted file mode 100644 index 0d16e6b420..0000000000 --- a/translations/ja/build/qasm-feature-table.mdx +++ /dev/null @@ -1,78 +0,0 @@ ---- -title: OpenQASM 3 feature table -description: A list of the OpenQASM 3 language features ---- - -# OpenQASM 3 feature table - -Below is a list of the `OpenQASM 3` language features. - -For more details on these capabilities, see the [OpenQASM 3.X Live Specification](https://openqasm.com/) . - -Key: - -- ❌ Not supported -- 🟡 Partial support -- ✅ Supported - -| Feature | Support | Comments | -| ------------------------------ | ------- | ------------------------------------------------------------------------------------------------------------------------- | -| comments | ✅ | | -| QASM version string | ✅ | | -| `include` | ✅ | | -| unicode names | ✅ | | -| `qubit` | 🟡 | Only supports physical qubits, and no arrays. | -| `bit` | ✅ | | -| `bool` | ✅ | | -| `int` | ✅ | Some support for comparisons against integers and casting. | -| `uint` | ❌ | | -| `float` | ❌ | | -| `angle` | ❌ | | -| `complex` | ❌ | | -| `const` | ❌ | | -| `pi`/`π`/`tau`/`τ`/`euler`/`ℇ` | ❌ | | -| Aliasing: let | ❌ | | -| register concatenation | ❌ | | -| casting | 🟡 | Casting between arrays of bits, int, and bool is supported | -| `duration` | ✅ | | -| `durationof` | ❌ | | -| `ns`/`µs`/`us`/`ms`/`s`/`dt` | ✅ | | -| `stretch` | ❌ | | -| `delay` | ✅ | | -| `barrier` | ✅ | | -| `box` | ❌ | | -| Built-in `U` | ✅ | | -| `gate` | ✅ | No support for non-basis gates | -| `gphase` | ❌ | | -| `ctrl @`/ `negctrl @` | ❌ | | -| `inv @` | ❌ | | -| `pow(k) @` | ❌ | | -| `reset` | ✅ | | -| `measure` | ✅ | | -| bit operations | ✅ | | -| boolean operations | ✅ | | -| arithmetic expressions | ❌ | | -| comparisons | ✅ | | -| `if` | ✅ | | -| `else` | ✅ | | -| `else if` | ❌ | | -| `for` loops | 🟡 | Discrete sets and negative stepping is not supported. | -| `while` loops | ❌ | | -| `continue` | ❌ | | -| `break` | ❌ | | -| `return` | ❌ | | -| `extern` | 🟡 | Only for certain extern subroutines exposed by systems. It is currently not possible for clients to submit these. | -| `def` subroutines (classical) | ❌ | | -| `def` subroutines (quantum) | ❌ | | -| `input` | ❌ | | -| `output` | ❌ | | - -## Next steps - - - - Learn how to generate OpenQASM code in the [Explore gates and circuits with the Quantum Composer](https://learning.quantum.ibm.com/tutorial/explore-gates-and-circuits-with-the-quantum-composer) tutorial. - - See the [OpenQASM 3 Qiskit API](/api/qiskit/qasm3) reference. - - See the [OpenQASM 2 Qiskit API](/api/qiskit/qasm2) reference. - - Review the [Verify your program](../verify/) topic. - - Visit the [OpenQASM Live Specification](https://openqasm.com/). - diff --git a/translations/ja/build/specify-observables-pauli.mdx b/translations/ja/build/specify-observables-pauli.mdx deleted file mode 100644 index 60df217a06..0000000000 --- a/translations/ja/build/specify-observables-pauli.mdx +++ /dev/null @@ -1,165 +0,0 @@ ---- -title: パウリ基底での観測量の指定 -description: 様々なパウリ基底で回路を測定します。計算基底で対角線ではない観測量を測定するために必要です。 ---- - -# パウリ基底での観測量の指定 - -量子力学では、観測量は測定可能な物理的特性に対応します。 -例えば、スピンのシステムを考えた場合、システムのエネルギーの測定や、磁化やスピン間の相関関係など、スピンのアラインメントに関する情報の取得に関心を持つ場合があります。 - -量子コンピューターで $n$ 量子ビット観測量 $O$ を測定する場合、これを以下のようにパウリ演算子のテンソル積の合計として表す必要があります。 - -$$ -O = \\sum\_{k=1}^K \\alpha_k P_k,~~ P_k \\in {I, X, Y, Z}^{\\otimes n},~~ \\alpha_k \\in \\mathbb{R}, -$$ - -ここで、それぞれ以下を意味します。 - -$$ -I = \\begin{pmatrix} -1 & 0 \\ 0 & 1 -\\end{pmatrix} -~~ -X = \\begin{pmatrix} -0 & 1 \\ 1 & 0 -\\end{pmatrix} -~~ -Y = \\begin{pmatrix} -0 & -i \\ i & 0 -\\end{pmatrix} -~~ -Z = \\begin{pmatrix} -1 & 0 \\ 0 & -1 -\\end{pmatrix} -$$ - -そして、$O^\\dagger = O$ のように、観測量がエルミートであるという事実を使用します。 $O$ がエルミートでない場合でも、パウリの和として分解することはできますが、係数 $\\alpha_k$ が複雑になります。 - -多くの場合、観測量は、対象のシステムを量子ビットにマッピングした後に、この表現に自然に指定されます。 -例えば、スピン 1/2 システムは、イジング・ハミルトニアンにマッピングできます。 - -$$ -H = \\sum_{\\langle i, j\\rangle} Z_i Z_j - \\sum_{i=1}^n X_i, -$$ - -ここで、インデックス $\\langle i, j\\rangle$ は、相互に作用するスピンで実行され、スピンは $X$ の横磁場の影響を受けます。 -添え字インデックスは、パウリ演算子が動作する量子ビットを示します。すなわち $X_i$ は量子ビット $i$ に $X$ 演算子を適用し、残りは変更されないままになります。 -Qiskit では、このハミルトニアンは以下のように構築できます。 - -```python -from qiskit.quantum_info import SparsePauliOp -# 量子ビットの数を定義します -n = 12 - -# 単一パウリ項を ("Paulis", [インデックス], 係数) として定義します -interactions = [("ZZ", [i, i + 1], 1) for i in range(n - 1)] # we assume spins on a 1D line -field = [("X", [i], -1) for i in range(n)] - -# 演算子を作成します -hamiltonian = SparsePauliOp.from_sparse_list(interactions + field, num_qubits=n) -``` - -エネルギーを測定する場合は、観測量がハミルトニアンそのものです。 または、$Z$ 方向に沿って -観測量に合わせてスピンの回数をカウントすることで、平均磁化などのシステム -プロパティを測定することに -関心があるかもしれません。 - -$$ -O = \\frac{1}{n} \\sum\_{i=1} Z_i -$$ - -パウリ演算子ではなく行列で指定された観測量については、これらを量子コンピューターで評価するために、まずパウリ基底で再作成する必要があります。 -パウリ行列はエルミート $2^n \\times 2^n$ 行列の基底を成すため、そのような表現をいつでも見つけることができます。 -観測量 $O$ を以下のように展開します。 - -$$ -O = \\sum\_{P \\in {I, X, Y, Z}^{\\otimes n}} \\mathrm{Tr}(O P) P, -$$ - -ここで、合計はすべての可能な $n$ 量子ビットパウリ項に渡って計算され、$\\mathrm{Tr}(\\cdot)$ は内積として機能する行列のトレースです。 -この分解は、以下のように `SparsePauliOp.from_operator` メソッドを使用して、行列からパウリ項に実装できます。 - -```python -import numpy as np -from qiskit.quantum_info import SparsePauliOp - -matrix = np.array([[-1, 0, 0.5, -1], - [0, 1, 1, 0.5], - [0.5, 1, -1, 0], - [-1, 0.5, 0, 1]]) - -observable = SparsePauliOp.from_operator(matrix) -print(observable) -``` - -これは以下を出力します。 - -``` -SparsePauliOp(['IZ', 'XI', 'YY'], coeffs=[-1. +0.j, 0.5+0.j, 1. +0.j]) -``` - -つまり、行列はパウリ項として、$O = -Z_1 + 0.5 X_2 + Y_2 Y_1$ のように記述できるということです。 - - - テンソル積の順序は、$q_n \otimes q_{n-1} \otimes \cdots \otimes q_1$ として量子ビットにマッピングされていることを覚えておきましょう。 - - - - 観測量がエルミートである場合(つまり $O^\dagger = O$)、パウリ係数は実数です。 - しかし、複素数値係数を使用できる場合、パウリに関してその他あらゆる複素行列を分解することもできます。 - - -## パウリ基底の測定 - -測定は、量子状態を計算基底 ${|0\\rangle, |1\\rangle}$ に投影します。 これは、$I$ 項と $Z$ 項でのみ構成されるパウリなど、この基底で対角線である観測量のみを測定できることを意味します。 -したがって、任意のパウリ項を測定するには、それらを対角化するための基底の変更が必要です。 これを行うには、以下の変換を実行します。 - -$$ -\\begin{aligned} - X &\\rightarrow Z = H X H \\ - Y &\\rightarrow Z = H S^\\dagger Y S H, -\\end{aligned} -$$ - -ここで、$H$ はアダマールゲートで、$S = \\sqrt{Z}$ は位相ゲートと呼ばれることがあります。 -[Estimator](../api/qiskit/qiskit.primitives.Estimator) を使用して期待値を計算している場合、基底の変換が自動的に実行されます。 - -以下は、量子回路を用意し、X 基底で量子ビット 0、Y 基底で量子ビット 1、 -Z 基底で量子ビット 2 を手動で測定する方法を -示した例です。 -前の方程式で示した変換を適用し、以下の回路を取得します。 - -```python -from qiskit.circuit import QuantumCircuit - -# X 基底で q0、Y 基底で q1、Z 基底で q2 を測定 -# する回路を作成します -circuit = QuantumCircuit(3) -circuit.ry(0.8, 0) -circuit.cx(0, 1) -circuit.cx(1, 2) -circuit.barrier() - -# アダマールゲートで X を対角化します -circuit.h(0) - -# アダマールを S^\dagger として Y を対角化します -circuit.h(1) -circuit.sdg(1) - -# Z 基底はデフォルトであるため、ここではアクションは不要です - -# measure all qubits -circuit.measure_all() -circuit.draw() -``` - -![出力](/images/build/paulibasis.png) - -## 次のステップ - - - - [Variational quantum eigensolver(変分量子固有ソルバー)](https://learning.quantum.ibm.com/tutorial/variational-quantum-eigensolver)チュートリアルで回路分解の例をご覧ください。 - - [SparsePauliOp API](/api/qiskit/qiskit.quantum_info.SparsePauliOp#sparsepauliop) リファレンスをお読みください。 - diff --git a/translations/ja/build/unitary-synthesis.mdx b/translations/ja/build/unitary-synthesis.mdx deleted file mode 100644 index fad16fa650..0000000000 --- a/translations/ja/build/unitary-synthesis.mdx +++ /dev/null @@ -1,66 +0,0 @@ ---- -title: Synthesize unitary operations -description: On the implementation of arbitrary unitary matrices on qubits ---- - -# Synthesize unitary operations - -A unitary operation describes a norm-preserving change to a quantum system. -For $n$ qubits this change is described by a $2^n \\times 2^n$ dimensional, complex matrix $U$ whose adjoint equals the inverse, that is $U^\\dagger U = \\mathbb{1}$. - -Synthesizing specific unitary operations into a set of quantum gates is a fundamental task used, for example, in the design and application of quantum algorithms or in compiling quantum circuits. - -While efficient synthesis is possible for certain classes of unitaries – like those composed of Clifford gates or having a tensor product structure – most unitaries do not fall into these categories. -For general unitary matrices, synthesis is a complex task with computational costs that increase exponentially with the number of qubits. -Therefore, if you know an efficient decomposition for the unitary you would like to implement, it will likely be better than a general synthesis. - - - If no decomposition is available, Qiskit provides you with the tools to find one. - However, note that this generally generates deep circuits that may be unsuitable to run on noisy quantum computers. - - -```python -import numpy as np -from qiskit import QuantumCircuit - -U = 0.5 * np.array([ - [1, 1, 1, 1], - [-1, 1, -1, 1], - [-1, -1, 1, 1], - [-1, 1, 1, -1] -]) - -circuit = QuantumCircuit(2) -circuit.unitary(U, circuit.qubits) -``` - -## Re-synthesis for circuit optimization - -Sometimes it is beneficial to re-synthesize a long series of single- and two-qubit gates, if the length can be reduced. For example, the following circuit uses three two-qubit gates. - -![output](/images/build/unitary-synthesis/unitary_target.png) - -However, after re-synthesizing with the following code, it only needs a single CX gate. - -```python -from qiskit.quantum_info import Operator - -# compute unitary matrix of target_circuit -U = Operator(target_circuit) - -# re-synthesize -better_circuit = QuantumCircuit(2) -better_circuit.unitary(U, range(2)) -better_circuit.decompose().draw() -``` - -![output](/images/build/unitary-synthesis/unitary_resynth.png) - -Qiskit's [transpile](../api/qiskit/compiler#qiskit.compiler.transpile) function automatically performs this re-synthesis for a sufficiently high optimization level. - -## Next steps - - - - See an example of circuit decomposition in the [Grover's Algorithm](https://learning.quantum.ibm.com/tutorial/grovers-algorithm) tutorial. - - For more information about the Qiskit transpiler, visit the [Transpile section](../transpile/index). - diff --git a/translations/ja/run/_toc.json b/translations/ja/run/_toc.json deleted file mode 100644 index 3d39037251..0000000000 --- a/translations/ja/run/_toc.json +++ /dev/null @@ -1,136 +0,0 @@ -{ - "title": "Run", - "collapsed": true, - "children": [ - { - "title": "Introduction", - "url": "/run" - }, - { - "title": "Run with primitives", - "children": [ - { - "title": "Introduction to primitives", - "url": "/run/primitives" - }, - { - "title": "Get started with primitives", - "url": "/run/primitives-get-started" - }, - { - "title": "Primitives examples", - "url": "/run/primitives-examples" - } - ] - }, - { - "title": "Configure runtime options", - "children": [ - { - "title": "Configure runtime compilation", - "url": "/run/configure-runtime-compilation" - }, - { - "title": "Configure runtime error mitigation", - "url": "/run/configure-error-mitigation" - }, - { - "title": "Advanced runtime options", - "url": "/run/advanced-runtime-options" - } - ] - }, - { - "title": "Execution modes", - "children": [ - { - "title": "About sessions", - "url": "/run/sessions" - }, - { - "title": "Run jobs in a session", - "url": "/run/run-jobs-in-session" - }, - { - "title": "Run jobs in a batch", - "url": "/run/run-jobs-batch" - } - ] - }, - { - "title": "Manage jobs", - "children": [ - { - "title": "Monitor a job", - "url": "/run/monitor-job" - }, - { - "title": "Estimate job run time", - "url": "/run/estimate-job-run-time" - }, - { - "title": "Minimize job run time", - "url": "/run/minimize-time" - }, - { - "title": "Maximum execution time", - "url": "/run/max-execution-time" - } - ] - }, - { - "title": "Quantum Serverless workloads", - "url": "/run/quantum-serverless" - }, - { - "title": "Hardware", - "children": [ - { - "title": "Processor types", - "url": "/run/processor-types" - }, - { - "title": "System information", - "url": "/run/system-information" - }, - { - "title": "Get backend information with Qiskit", - "url": "/run/get-backend-information" - }, - { - "title": "Native gates and operations", - "url": "/run/native-gates" - }, - { - "title": "Retired systems", - "url": "/run/retired-systems" - }, - { - "title": "Hardware considerations and limitations for classical feedforward and control flow", - "url": "/run/dynamic-circuits-considerations" - } - ] - }, - { - "title": "Understand the platform", - "children": [ - { - "title": "Instances", - "url": "/run/instances" - }, - { - "title": "Fair-share queue", - "url": "/run/fair-share-queue" - }, - { - "title": "Manage cost", - "url": "/run/manage-cost" - }, - { - "title": "Reserve system time", - "url": "/run/reserve-system-time" - } - ] - } - ] -} \ No newline at end of file diff --git a/translations/ja/run/advanced-runtime-options.mdx b/translations/ja/run/advanced-runtime-options.mdx deleted file mode 100644 index 6c9638b4e6..0000000000 --- a/translations/ja/run/advanced-runtime-options.mdx +++ /dev/null @@ -1,167 +0,0 @@ ---- -title: Advanced runtime options -description: Specify options when building with Qiskit runtime primitives ---- - -# Advanced Qiskit Runtime options - -When calling the primitives, you can pass in options by using the `Options` class or when using the `run` method. In the `Options` class, commonly used options, such as `resilience_level`, are at the first level. Other options are grouped into different categories: - -![The image shows the top-level options categories: transpilation, resilience, execution, environment, and simulation.](/images/build/options.png "Option categories") - - - This section focuses on Qiskit Runtime primitive [Options](../api/qiskit-ibm-runtime/qiskit_ibm_runtime.options.Options) (imported from `qiskit_ibm_runtime`). While most of the `primitives` interface is common across implementations, most `Options` are not. Consult the - corresponding API references for information about the `qiskit.primitives` and `qiskit_aer.primitives` options. - - -## Instantiate the Options class - -In the example below, we create an instance of the `Options` class. `optimization_level` is a first-level option and can be passed as an input parameter. Options related to the execution environment are passed using the `environment` parameter. - -```python -from qiskit_ibm_runtime import Options - -options = Options(optimization_level=3, environment={"log_level": "INFO"}) -``` - -The `Options` class supports auto-complete. Once you create an instance of the `Options` class, you can use auto-complete to see what options are available. If you choose one of the categories, you can use auto-complete again to see what options are available under that category. - -```python -from qiskit_ibm_runtime import Options - -options = Options() -options.resilience_level = 1 -options.execution.shots = 2048 -``` - -## Pass options to a primitive - -### Options class - -When creating an instance of the `Estimator` or `Sampler` class, you can pass in the `options` you just created. Those options will then be applied when you use `run()` to perform the calculation. Example: - -```python -estimator = Estimator(session=backend, options=options) -result = estimator.run(circuit, observable).result() -print(f">>> Metadata: {result.metadata[0]}") -``` - -### Run() method - -You can pass in options by using the `run()` method. This overwrites the options you specified when creating the `Estimator` or `Sampler` instance for that particular execution. - -Because most users will only overwrite a few options at the job level, it is not necessary to specify the category the options are in. The code below, for example, specifies `shots=1024` instead of `execution={"shots": 1024}` (which is also valid). - -```python -estimator = Estimator(session=backend, options=options) -result = estimator.run(circuit, observable, shots=1024).result() -print(f">>> Metadata: {result.metadata[0]}") -``` - -## Commonly used options - -There are many available options, but the following are the most commonly used: - -### Shots - -For some algorithms, setting a specific number of shots is a core part of their routines. Previously, shots could be set during the call to `backend.run()`. For example, `backend.run(shots=1024)`. Now, that setting is part of the execution -options ("second level option"). This can be done during the primitive setup: - -```python -from qiskit_ibm_runtime import Estimator, Options - -options = Options() -options.execution.shots = 1024 - -estimator = Estimator(session=backend, options=options) -``` - -If you need to modify the number of shots set between iterations (primitive calls), you can set the -shots directly in the `run()` method. This overwrites the initial `shots` setting. - -```python -from qiskit_ibm_runtime import Estimator - -estimator = Estimator(session=backend) - -estimator.run(circuits=circuits, observables=observables, shots=50) - -# other logic - -estimator.run(circuits=circuits, observables=observables, shots=100) -``` - -For more information about the primitive options, refer to the -[Options class API reference](../api/qiskit-ibm-runtime/qiskit_ibm_runtime.options.Options). - -### Runtime compilation - -The Qiskit Runtime primitives expect to be called with circuits already suitable for execution on the target system. This implies that the user has already transpiled their circuits to respect the native gate set and connectivity constraints of the target system. - -The Qiskit Runtime primitives may perform additional runtime compilation to optimize circuits, with the degree of optimization controlled by an optimization level option. The optimization level you choose affects the compilation strategy, with higher levels invoking more expensive or aggressive optimizations. - -See the Optimization level table in the -[Runtime compilation topic](configure-runtime-compilation#set-the-optimization-level) for further details. - - - In the currently deployed Qiskit Runtime primitives, optimization levels 2 and 3 behave identically to level 1. If you want to use more advanced optimization, use the Qiskit transpiler locally, set [`skip_transpilation=True`](../api/qiskit-ibm-runtime/qiskit_ibm_runtime.options.TranspilationOptions#skip_transpilation), and then pass the transpiled circuits to the primitives. For instructions see the [Submit pre-transpiled circuits](https://learning.quantum.ibm.com/tutorial/submitting-user-transpiled-circuits-using-primitives) tutorial. - - -The optimization level option is a "first-level option", and can be set as follows: - -```python -from qiskit_ibm_runtime import Estimator, Options - -options = Options(optimization_level=1) - -# or.. -options = Options() -options.optimization_level = 1 - -estimator = Estimator(session=backend, options=options) -``` - -Turning off all optional runtime compilation steps requires a "second-level option", as follows: - -```python -from qiskit_ibm_runtime import Estimator, Options - -options = Options() -options.transpilation.skip_transpilation = True - -estimator = Estimator(session=backend, options=options) -``` - -For more information and a complete list of advanced transpilation options, see the Advanced transpilation options table in the -[Runtime compilation topic](configure-runtime-compilation#transpilation-table). - -### Error mitigation - -You might want to leverage different error mitigation methods and see how these affect the performance of your -algorithm. These can also be set through the `resilience_level` option. The method selected for each level is -different for `Sampler` and `Estimator`. You can find more information in the -[Configure error mitigation topic](configure-error-mitigation). - -The configuration is similar to the other options: - -```python -from qiskit_ibm_runtime import Estimator, Options - -options = Options(resilience_level = 2) - -# or... - -options = Options() -options.resilience_level = 2 - -estimator = Estimator(session=backend, options=options) -``` - -## Next steps - - - - Find more details about the `Estimator` methods in the [Estimator API reference](../api/qiskit-ibm-runtime/qiskit_ibm_runtime.Estimator#estimator). - - Find more details about the `Sampler` methods in the [Sampler API reference](../api/qiskit-ibm-runtime/qiskit_ibm_runtime.Sampler#sampler). - - Find all available options in the [Options API reference](../api/qiskit-ibm-runtime/qiskit_ibm_runtime.options.Options). - - Find details about [runtime compilation](../run/configure-runtime-compilation) and [error mitigation](../run/configure-error-mitigation). - diff --git a/translations/ja/run/circuit-execution.mdx b/translations/ja/run/circuit-execution.mdx deleted file mode 100644 index 61876ef7eb..0000000000 --- a/translations/ja/run/circuit-execution.mdx +++ /dev/null @@ -1,28 +0,0 @@ ---- -title: System circuit execution -description: Explanatory content on fixed and dynamic repetition rate execution ---- - -# System circuit execution - -## Fixed repetition rate execution - -Most IBM Quantum systems execute circuits at a fixed rate. Although this _repetition rate_ varies by system, the underlying execution model is the same, and is described here. First, consider three circuits sent to a system using separate jobs, one for each circuit. The example below shows what happens for jobs of varying lengths. Because of the fixed repetition rate, there is a variable amount of _idle time_ that occurs before the start of a circuit in order to make the entire duration match that given by the system repetition rate. - -![With fixed-rate execution, shorter jobs result in longer idle time.](/images/run/fixed_single_circuit1.png "Idle time versus job length") - -The situation changes somewhat when the same circuits are batched into a single job. In this case the circuits included in the job are executed by iterating over the circuits for each shot requested; the execution is column-wise over a matrix of circuits and shots (see below). - -![The first column represents shot0. The circuits are run in order from 0 through 3. The second column represents shot 1. The circuits are run in order from 0 through 3. The remaining columns follow the same pattern. ](/images/run/circuits_shots_matrix1.png "Column-wise execution matrix") - -Matrix of four circuits in a job showing the execution pattern over the circuits. - -When submitting batches of circuits to the systems, the circuits are executed differently than they would be if executed separately. Namely, the initialization of the circuit, that is, prepare the ground state, and measurements (if any) are aligned over all circuits. - -![The image shows three circuits. Although they are different lengths, they take the same amount of time to complete because they were submitted in a batch.](/images/run/fixed_batch_circuit1.png) - -Therefore, each circuit is equal in duration to the longest circuit in the batch, and there is a common idle time that is placed in front of all circuits to match the repetition rate. - -## Dynamic repetition rate execution - -Some IBM Quantum systems allow for dynamic repetition rate execution. These systems are identified in Qiskit using `backend.configuration().dynamic_reprate_enabled`, and return a value of `True`. On these systems, it is possible to manually set the above idle time by setting the `rep_delay` of the submitted job. One can see from the above figures that by reducing the idle time one can potentially see a greater throughput of circuits on the systems that support dynamic repetition rates. See the the next section on conditional reset for more detailed usage examples. diff --git a/translations/ja/run/configure-error-mitigation.mdx b/translations/ja/run/configure-error-mitigation.mdx deleted file mode 100644 index 74501763bf..0000000000 --- a/translations/ja/run/configure-error-mitigation.mdx +++ /dev/null @@ -1,307 +0,0 @@ ---- -title: Configure error mitigation -description: Configure error mitigation with Qiskit Runtime ---- - -# Configure error mitigation for Qiskit Runtime - -Error mitigation techniques allow users to mitigate circuit errors by -modeling the device noise at the time of execution. This typically -results in quantum pre-processing overhead related to model training and -classical post-processing overhead to mitigate errors in the raw results -by using the generated model. - -The error mitigation techniques built in to primitives are advanced -resilience options. To specify these options, use the `resilience_level` -option when submitting your job. - -The resilience level specifies how much resilience to build against -errors. Higher levels generate more accurate results, at the expense of -longer processing times. Resilience levels can be used to configure the -cost/accuracy trade-off when applying error mitigation to your primitive -query. Error mitigation reduces errors (bias) in results by processing -the outputs from a collection, or ensemble, of related circuits. The -degree of error reduction depends on the method applied. The resilience -level abstracts the detailed choice of error mitigation method to allow -users to reason about the cost/accuracy trade that is appropriate to -their application. - -Given this, each level corresponds to a method or methods with -increasing level of quantum sampling overhead to enable you experiment -with different time-accuracy tradeoffs. The following table shows you -which levels and corresponding methods are available for each of the -primitives. - - -Error mitigation is task specific so the techniques you are able to -apply vary based whether you are sampling a distribution or generating -expectation values. - - -| Resilience Level | Definition | Estimator | Sampler | -| ---------------- | ----------------------------------------------------------------------------------------------------- | -------------------------------------------------------------------------- | --------------------------------------- | -| 0 | No mitigation | None | None | -| 1 [Default] | Minimal mitigation costs: Mitigate error associated with readout errors | Twirled Readout Error eXtinction (TREX) | Matrix-free Measurement Mitigation (M3) | -| 2 | Medium mitigation costs. Typically reduces bias in estimators, but is not guaranteed to be zero-bias. | Zero Noise Extrapolation (ZNE) | - | -| 3 | Heavy mitigation with layer sampling. Theoretically expected to deliver zero-bias estimators. | Probabilistic Error Cancellation (PEC) | - | - - - -Resilience levels are currently in beta so sampling overhead and -solution quality will vary from circuit to circuit. New features, -advanced options, and management tools will be released on a rolling -basis. Specific error mitigation methods are not guaranteed to be -applied at each resilience level. - - - - - If using an IBM Cloud Qiskit Runtime service instance with Q-CTRL performance management enabled, there is no need to specify runtime optimization or resilience levels, as the strategy includes an automatic preset. - - Setting `optimization_level` or `resilience_level` equal to 0 will result in an - execution error. Levels 1, 2, and 3 are permitted but will not impact performance. - Setting other options will likewise not impact performance, and it may result in a - runtime warning. For more information visit the [Q-CTRL documentation](https://docs.q-ctrl.com/q-ctrl-embedded). - - -## Configure the Estimator with resilience levels - -
-Resilience Level 0 - -No error mitigation is applied to the user program. - -
- -
-Resilience Level 1 - -Level 1 applies error mitigation methods that particularly address -readout errors. In the Estimator, we apply a model-free technique known -as Twirled Readout Error eXtinction (TREX). It reduces measurement error -by diagonalizing the noise channel associated with measurement by -randomly flipping qubits through X gates immediately before measurement, -and flipping the corresponding measured bit if an X gate was applied. A -rescaling term from the diagonal noise channel is learned by -benchmarking random circuits initialized in the zero state. This allows -the service to remove bias from expectation values that result from -readout noise. This approach is described further in [Model-free -readout-error mitigation for quantum expectation -values](https://arxiv.org/abs/2012.09738). - -
- -
-Resilience Level 2 - -Level 2 uses the Zero Noise Extrapolation method (ZNE) which computes an -expectation value of the observable for different noise factors -(amplification stage) and then uses the measured expectation values to -infer the ideal expectation value at the zero-noise limit (extrapolation -stage). This approach tends to reduce errors in expectation values, but -is not guaranteed to produce an unbiased result. - -![This image shows a graph. The x-axis is labeled Noise amplification factor. The y-axis is labeled Expectation value. An upward sloping line is labeled Mitigated value. Points near the line are noise-amplified values. There is a horizontal line just above the X-axis labeled Exact value. ](/images/optimize/resiliance-2.png "Illustration of the ZNE method") - -The overhead of this method scales with the number of noise factors. The -default settings sample the expectation value at three noise factors, -leading to a roughly 3x overhead when employing this resilience level. - -
- -
-Resilience Level 3 - -Level 3 enables the Probabilistic Error Cancelation (PEC) method. This -approach mitigates error by learning and inverting a sparse noise model -that is able to capture correlated noise. PEC returns an unbiased -estimate of an expectation value so long as learned noise model -faithfully represents the actual noise model at the time of mitigation. -In practice, the experimental procedure for learning the noise model has -ambiguities due to certain error terms that cannot be independently -distinguished. These are resolved by a symmetry assumption, which -depending on the true underlying noise may lead a biased estimate of the -mitigated expectation values due to using an imperfect noise model. - -The Qiskit Runtime primitive implementation of PEC specifically -addresses noise in self-inverse two-qubit gates, so it first -_stratifies_ each input circuit into an alternating sequence of -simultaneous 1-qubit gates followed by a layer of simultaneous 2-qubit -gates. Then it learns the noise model associated with each unique -2-qubit gate layer. - -
-Stratified circuit illustration. There are arbitrary single-qubit gates between each `layer`. Each layer is defined by a block that crosses multiple qubit wires. -
This is an example of a stratified circuit, where the layers of -two-qubit gates are labeled layer 1 through n. Note that each Un is composed -of two-qubit gates on the native connectivity graph of the quantum -processor. The open boxes represent arbitrary single-qubit -gates.
-
- -The overhead of this method scales with the number of noise factors. The -default settings sample the expectation value at three noise factors, -leading to a roughly 3x overhead when employing this resilience level. - -PEC uses a quasi-probability method to mimic the effect of inverting the -learned noise. This requires sampling from a randomized circuit family -associated with the user's original circuit. Applying PEC will increase -the variability of the returned expectation value estimates unless the -number of samples per circuit is also increased for both input and -characterization circuits. The amount of samples required to counter -this variability scales exponentially with the noise strength of the -mitigated circuit. - -How this works: - -When estimating an unmitigated Pauli observable $\\langle P\\rangle$ the -standard error in the estimated expectation value is given by - -$\\frac{1}{\\sqrt{N\_{\\text{shots}}}}\\left(1- \\langle P\\rangle^2\\right)$ - -where $N_{\\text{shots}}$ is the number of shots used to estimate -$\\langle P\\rangle$. When applying PEC mitigation, the standard error -becomes -$\\sqrt{\\frac{S}{N_{\\text{samples}}}}\\left(1- \\langle P\\rangle^2\\right)$ -where $N\_{\\text{samples}}$ is the number of PEC samples. - -The sampling overhead scales exponentially with a parameter that -characterizes the collective noise of the input circuit. As the Qiskit -Runtime primitive learns the noise of your circuit, it will return -metadata about the sampling overhead associated with that particular -layer. Let's label the overhead of layer $l$ as $\\gamma_l$. Then the -total sampling overhead for mitigating your circuit is the product of -all the layer overheads, that is: - -$S = \\prod_l \\gamma_l$ - -When the Estimator completes the model-learning phase of the primitive -query, it will return metadata about the total sampling overhead for -circuit. - -Depending on the precision required by your application, you will need -to scale the number of samples accordingly. The following plot -illustrates the relationship between estimator error and number of -circuit samples for different total sampling overheads. - -![This image shows that the error decreases as the number of samples increases. The accuracy is best with a high sampling overhead (1000) and worst with a low sampling overhead (1.1).](/images/optimize/sampling-overhead.png) - -Note that the number of samples required to deliver a desired accuracy -is not known before the primitive query because the mitigation scaling -factor is discovered during the learning phase of PEC. - -We suggest starting with short depth circuits to get a feel for the -scaling of the sampling overhead of PEC before attempting larger -problems. - -
- -## Example - -The Estimator interface lets users seamlessly work with the variety of -error mitigation methods to reduce error in expectation values of -observables. The following code uses Zero Noise Extrapolation by simply -setting `resilience_level 2`. - -```python -from qiskit_ibm_runtime import QiskitRuntimeService, Estimator, Options - -service = QiskitRuntimeService() -options = Options() -options.resilience_level = 2 -options.optimization_level = 3 -backend = service.backend("ibmq_qasm_simulator") - -estimator = Estimator(options=options, backend=backend) -job = estimator.run(circuits=[psi1], observables=[H1], parameter_values=[theta1]) -psi1_H1 = job.result() -``` - - - -As you increase the resilience level, you will be able to use additional methods to improve the accuracy of your result. However, because the methods become more advanced with each level, they require additional sampling overhead (time) to generate more accurate expectation values. Note that higher resilience levels do not guarantee better quality. Higher levels only mean greater overhead. Each method has its strengths and weaknesses. For example, TREX (Twirled Readout Error eXtinction) is good for shallow circuits because of its readout error mitigation, whereas ZNE (Zero Noise Extrapolation) is good for deeper circuits. PEC can mitigate arbitrary errors but may not work in practice because of its large overhead. - - - -## Configure Sampler with resilience levels - -The Sampler default resilience setting (level 1) enables readout error -mitigation to allow users to generate mitigated quasi-probability -distributions. - -
-Resilience Level 1 - -Level 1 uses matrix-free measurement mitigation (M3) routine to mitigate -readout error. M3 works in a reduced subspace defined by the noisy input -bit strings that are to be corrected. Because the number of unique bit -strings can be much smaller than the dimensionality of the full -multi-qubit Hilbert space, the resulting linear system of equations is -nominally much easier to solve. - -![Illustration of the M3 method.](/images/optimize/m3.png "M3 method") - -
- -```python -from qiskit_ibm_runtime import QiskitRuntimeService, Sampler, Options - -service = QiskitRuntimeService() -options = Options() -options.resilience_level = 1 -options.optimization_level = 3 -backend = service.backend("ibmq_qasm_simulator") - -sampler = Sampler(backend, options=options) -``` - -## Advanced resilience options - -You can tune advanced options to configure your resilience strategy -further. These methods can be used alongside resilience levels where you -change the specific options of interest and let your previously set -resilience level manage the rest. - -As a part of the beta release of the resilience options, users will be -able configure ZNE by using the following advanced options. We will soon -add options to tune other resilience levels that include PEC. - -| Options | Inputs | Description | -| ----------------------------------------------------------------------------------------------- | ------------------------------- | -------------------------------------------------------------------------------------------------------------------------------- | -| `options.resilience.noise_amplifier(Optional\[str\])`
select your amplification strategy | `TwoQubitAmplifier` [Default] | Amplifies noise of all performing local gate folding. | -| | `CxAmplifier` | Amplifies noise of all CNOT gates by performing local gate folding. | -| | `LocalFoldingAmplifier` | Amplifies noise of all gates by performing local gate folding. | -| | `GlobalFoldingAmplifier` | Amplifies noise of the input circuit by performing global folding of the entire input circuit. | -| `options.resilience.noise_factors(Optional[Sequence[float]])` | (1, 3, 5)[Default] | Noise amplification factors, where [1] represents the baseline noise. They all need to be greater than or equal to the baseline. | -| `options.resilience.extrapolator(Optional\[str\])` | `LinearExtrapolator`\[Default] | Polynomial extrapolation of degree one. | -| | `Quadratic Extrapolator` | Polynomial extrapolation of degree two and lower. | -| | `Cubic Extrapolator` | Polynomial extrapolation of degree three and lower. | -| | `Quartic Extrapolator` | Polynomial extrapolation of degree four and lower. | - -### Example of adding `resilience_options` with the Estimator primitive - -```python -from qiskit_ibm_runtime import QiskitRuntimeService, Estimator, Options - -service = QiskitRuntimeService() -options = Options() -options.optimization_level = 3 -options.resilience_level = 2 -options.resilience.noise_factors = (1, 2, 3, 4) -options.resilience.noise_amplifier = 'CxAmplifier' -options.resilience.extrapolator = 'QuadraticExtrapolator' -backend = service.backend("ibmq_qasm_simulator") - -estimator = Estimator(options=options, backend=backend) -job = estimator.run(circuits=[psi1], observables=[H1], parameter_values=[theta1]) -psi1_H1 = job.result() -``` - -## Next steps - - - - Walk through an example that uses error mitigation in the [Cost function lesson](https://learning.quantum.ibm.com/course/variational-algorithm-design/cost-functions#primitives) in IBM Quantum Learning. - - Learn more about [Q-CTRL](https://docs.q-ctrl.com/q-ctrl-embedded). - diff --git a/translations/ja/run/configure-runtime-compilation.mdx b/translations/ja/run/configure-runtime-compilation.mdx deleted file mode 100644 index f29592c465..0000000000 --- a/translations/ja/run/configure-runtime-compilation.mdx +++ /dev/null @@ -1,129 +0,0 @@ ---- -title: Configure runtime compilation -description: How to use runtime compilation techniques ---- - -# Configure runtime compilation for Qiskit Runtime - -Runtime compilation techniques optimize and transform your circuit to minimize errors. Runtime compilation adds some classical pre-processing overhead to your overall runtime. Therefore, it is important to achieve a balance between perfecting your results and ensuring that your job completes in a reasonable amount of time. - -Primitives let you employ runtime compilation by setting the optimization level (`optimization_level` option) and by choosing advanced runtime compilation options. - -## Set the optimization level - -The `optimization_level` setting specifies how much optimization to perform on the circuits. Higher levels generate more optimized circuits, at the expense of longer compile times. - - - In current primitive versions, optimization levels 2 and 3 behave identically to level 1. - - - - - - - - - - - - - - - - - - -``` - - -
Optimization LevelEstimator & Sampler
0 - No optimization: typically used for hardware characterization or debugging - -``` - - Basis translation - - Layout (as specified) - - Routing (stochastic swaps) -
1, 2, 3 - Light optimization: - - - Layout (trivial → vf2 → SabreLayout if routing is required) - - Routing (SabreSWAPs if needed) - - 1Q gate optimization - - Error suppression: dynamical decoupling -
- - - The primitives expect circuits in a form suitable to execute on the target system. You may use the Qiskit transpiler locally to translate abstract circuits into this target circuit form. - -At present, the primitives will attempt low-cost transformations if given a circuit that is not already in target form, but in the future, primitives will error on such circuits. It is therefore recommended that users take advantage of the local compilation capabilities of the Qiskit transpiler wherever possible. - - For instructions on preparing circuits for primitive queries, see the [Submit pre-transpiled circuits](https://learning.quantum.ibm.com/tutorial/submitting-user-transpiled-circuits-using-primitives) tutorial. - - - - If using an IBM Cloud Qiskit Runtime service instance with Q-CTRL performance management enabled, there is no need to specify runtime optimization or resilience levels, as the strategy includes an automatic preset. - - Q-CTRL defaults to `optimization_level=3` and `resilience_level=1`. - Setting `optimization_level` or `resilience_level` equal to 0 will result in an - execution error. Levels 1, 2, and 3 are permitted but will not impact performance. - Setting other options will likewise not impact performance, and it may result in a - runtime warning. For more information visit the [Q-CTRL documentation](https://docs.q-ctrl.com/q-ctrl-embedded). - - -### Example: configure Estimator with optimization levels - -```python -from qiskit_ibm_runtime import QiskitRuntimeService, Estimator, Options -from qiskit.circuit.library import RealAmplitudes -from qiskit.quantum_info import SparsePauliOp - -service = QiskitRuntimeService() -backend = service.backend("ibmq_qasm_simulator") -options = Options(optimization_level=1) - -psi = RealAmplitudes(num_qubits=2, reps=2) -H = SparsePauliOp.from_list([("II", 1), ("IZ", 2), ("XI", 3)]) -theta = [0, 1, 1, 2, 3, 5] - -estimator = Estimator (options=options, backend=backend) - -job = estimator.run(circuits=[psi], observables=[H], parameter_values=[theta]) -psi1_H1 = job.result() -``` - - - If the optimization level is not specified, the service uses `optimization_level = 1`. - - -### Example: configure Sampler with optimization levels - -```python -from qiskit_ibm_runtime import QiskitRuntimeService, Sampler, Options - -service = QiskitRuntimeService() -backend = service.backend("ibmq_qasm_simulator") -options = Options(optimization_level=1) - -sampler = Sampler(options=options, backend=backend) -``` - - -## Advanced runtime compilation options - -You also have the ability to tune a variety of advanced options to configure your runtime compilation strategy further. These methods can be used alongside optimization levels. They allow you to change the options of interest and let your optimization level manage the rest. - -| Options | Description | -| --------------------------------------------------------------- | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | -| options.transpilation.skip_transpilation (bool) | Directs the service to execute the primitive query with the bare minimum about of runtime compilation necessary | -| options.transpilation.initial_layout(Union\[dict, List, None]) | (Deprecated) Initial position of virtual qubits on physical qubits. | -| options.transpilation.layout_method (Optional\[str]) | (Deprecated) Name of layout selection pass. One of `trivial`, `dense`, `noise_adaptive`, `sabre`. | -| options.transpilation.routing_method (Optional\[str]) | (Deprecated) Name of routing pass: `basic`, `lookahead`, `stochastic`, `sabre`, `none`. | -| options.transpilation.approximation_degree (Optional\[float]) | (Deprecated) Heuristic dial used for circuit approximation (1.0=no approximation, 0.0=maximal approximation). Defaults to no approximation for all optimization levels | - -## Next steps - - - - Try a tutorial that uses optimization levels, such as the [Variational quantum eigensolver](https://learning.quantum.ibm.com/tutorial/variational-quantum-eigensolver) tutorial. - - Learn how to transpile locally in the [Transpile](../transpile/) section. - - Try the [Submit pre-transpiled circuits](https://learning.quantum.ibm.com/tutorial/submitting-user-transpiled-circuits-using-primitives) tutorial. - diff --git a/translations/ja/run/dynamic-circuits-considerations.ipynb b/translations/ja/run/dynamic-circuits-considerations.ipynb deleted file mode 100644 index c669c1856d..0000000000 --- a/translations/ja/run/dynamic-circuits-considerations.ipynb +++ /dev/null @@ -1,65 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Hardware considerations and limitations for classical feedforward and control flow\n", - "\n", - "[Classical feedforward and control flow](/build/classical-feedforward-and-control-flow) shows how to use Qiskit to build circuits that involve classical feedforward and control flow, also known as dynamic circuits. When actually running such circuits on quantum hardware, there are several considerations and limitations to be aware of. Many of these limitations exist because the underlying technology supporting these features is in an early stage of development, and we hope to be able to address them in the future.\n", - "\n", - "## Primitives do not currently support classical feedforward and control flow\n", - "\n", - "Currently, circuits with classical control flow cannot be executed with the Qiskit Runtime primitives. The only way to run them on hardware is to use the `backend.run` function, where `backend` is an IBMBackend object. Furthermore, when using `backend.run` to execute such circuits, you must pass the `dynamic=True` argument. For example:\n", - "\n", - "```python\n", - "job = backend.run(circuit, dynamic=True)\n", - "```\n", - "\n", - "## Memory limits and latency in control hardware\n", - "\n", - "![Diagram showing control hardware architecture](/images/run/rta-architecture.png)\n", - "\n", - "Running circuits on quantum processors involves not only the qubits themselves, but also a system of classical electronics and computers to generate and receive waveforms and orchestrate the control logic. When a job is submitted to the IBM Quantum service, it is processed into multiple classical programs that must be distributed between two kinds of units: central controllers and qubit controllers (see diagram above). A job may fail if it exceeds certain limitations of these controllers. There are two kinds of limitations to be aware of:\n", - "\n", - "- **Limited working memory**. This primarily affects the central controllers, and jobs will fail if they cause this memory limit to be exceeded.\n", - "- **Latency caused by classical computation**. Running circuits that use classical feedforward and control flow involves performing classical computation during the course of the circuit execution. Due to the limited coherence time of qubits, there is a limited time budget for performing these computations. A job may fail at compile time if the compilation detects that the classical computation overhead is too large.\n", - "\n", - "The memory requirements and classical latencies of a job are affected by the following factors:\n", - "\n", - "- **Number of circuits**. When multiple circuits are submitted in a single job, they become concatenated into a single large circuit, with qubit initialization operations between them. Qubit initialization is implemented as a conditional reset on all qubits used in the large circuit.\n", - " - Central controller: Memory usage scales proportionally with the number of circuits.\n", - "- **Amount of control flow**.\n", - " - Central controller: Memory usage scales proportionally with the number of control flow decisions.\n", - " - Qubit controller: A control flow construct with too many or too large logic branches may not be realizable.\n", - "- **Resets**.\n", - " - Central controller: Memory usage scales proportionally with the number of resets.\n", - "- **Measurements**.\n", - " - Central controller: Memory usage scales proportionally with the number of measurements used by the central controller for control flow." - ] - } - ], - "metadata": { - "description": "Article on hardware considerations and limitations for classical feedforward and control flow", - "kernelspec": { - "display_name": "Python 3", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.10.13" - }, - "title": "Hardware considerations and limitations for classical feedforward and control flow" - }, - "nbformat": 4, - "nbformat_minor": 2 -} \ No newline at end of file diff --git a/translations/ja/run/estimate-job-run-time.mdx b/translations/ja/run/estimate-job-run-time.mdx deleted file mode 100644 index dba27c46c5..0000000000 --- a/translations/ja/run/estimate-job-run-time.mdx +++ /dev/null @@ -1,70 +0,0 @@ ---- -title: Estimate job run time -description: Estimate how long a job that uses a primitive will take to run ---- - -# Estimate job run time - -After submitting a job to the IBM Quantum channel, you can see an estimation for how much _quantum time_ the job will take to run by using `job.usage_estimation`. Alternatively, you can [view this information on the IBM Quantum Platform user interface](#view-usage). - -Quantum time is the duration, in seconds, a quantum system is committed to fulfilling a user request. - - - - This only applies to jobs that use primitives. - - This is not yet available on the IBM Qiskit Runtime on Cloud channel. - - -Example: - -```python -from qiskit import QuantumCircuit -from qiskit_ibm_runtime import QiskitRuntimeService, Sampler - -service = QiskitRuntimeService() - -# Create a new circuit with two qubits (first argument) and two classical -# bits (second argument) -qc = QuantumCircuit(2, 2) - -# Add a Hadamard gate to qubit 0 -qc.h(0) - -# Perform a controlled-X gate on qubit 1, controlled by qubit 0 -qc.cx(0, 1) - -# Measure qubit 0 to cbit 0, and qubit 1 to cbit 1 -qc.measure(0, 0) -qc.measure(1, 1) - -# Run on the least-busy system you have access to -backend = service.least_busy(simulator=False,operational=True) - -# Create a Sampler object -sampler = Sampler(backend) - -# Submit the circuit to the sampler -job = sampler.run(qc) - -print(job.usage_estimation) -``` - -Output: - -```python -{'quantum_seconds': 4.1058720028432445} -``` - - -## View the estimated job usage on IBM Quantum Platform - -You can view the estimated usage (how much quantum time the job will take to run) in two places on IBM Quantum Platform: - -- On the [Jobs table](https://quantum.ibm.com/jobs) in the Usage column. From the Home page, click _View all_ on the Recent jobs table. The Usage column shows the estimated usage for pending jobs, or actual usage for completed jobs. -- On the job's details page. From the [Dashboard](https://quantum.ibm.com/) or [Jobs table](https://quantum.ibm.com/jobs), click the job ID to open the job details page. The estimated usage is shown in the Status Timeline. - -## Next steps - - - - Review these tips: [Minimize job run time](minimize-time). - - Set the [Maximum execution time](max-execution-time). - diff --git a/translations/ja/run/fair-share-queue.mdx b/translations/ja/run/fair-share-queue.mdx deleted file mode 100644 index bb34337d3b..0000000000 --- a/translations/ja/run/fair-share-queue.mdx +++ /dev/null @@ -1,69 +0,0 @@ ---- -title: Fair-share queue -description: How the IBM Quantum fair-share queue determines order of jobs submitted to quantum systems ---- - -# Fair-share queue - -When you submit a job to a quantum system, it enters the scheduler for the specific system, joining the pool of jobs (from all users) that are waiting to be executed on that system. The order in which these jobs are executed is, by default, determined by a fair-share formula. As discussed below, this algorithm attempts to balance the workload between different [instances](instances) according to the allocated system access amount over a given time window. In practice, this means that jobs from various instances are interweaved in a non-trivial manner, and the order in which jobs complete is not necessarily the order in which they were submitted. Because the queue order is calculated dynamically as new jobs arrive, it is generally impossible to guarantee when a fair-share job will be executed. - -## Fair-share terms - -- **Provider:** An entity providing access to quantum computing. IBM Quantum Platform and IBM Cloud® are providers of Qiskit Runtime services. -- **Instance:** A combination of hub/group/project. -- **Hub:** Represents the top level of an organization such as an academic, industry, or research partner. -- **Group:** A mid-level structure to which access shares can be allocated by the hub for one or more collections of users (projects). -- **Project:** The base-level construct to which shares are allocated from the overarching group, and to which users are directly assigned. -- **Access share:** (This documentation uses the simplified term “share”.) A relative amount of access to IBM Quantum computing services assigned to a specific hub, group and project. The portion of access is determined by the specific allotment of shares divided by the total number of shares distributed. IBM Quantum assigns to each hub a share of the overall computational capacity of the IBM Quantum Premium Plan. Hub administrators then assign fractions of their share pool to each of their groups. Finally, group administrators assign fractions (also called shares) of their share pool to each of their projects. -- **Scheduling window:** The fair-share algorithm accounts for usage over a rolling time window. Only execution time accumulated within that window is accounted for the purpose of fairness. The length of that window is currently 28 days. When the fair-share algorithm is invoked, it takes into account usage starting 28 days ago. -- **Time used:** For every group and project, during the scheduling window, we account for all usage on all the systems of the IBM Quantum Premium Plan. These include all successful jobs, as well as jobs returning known select errors. It does not account for canceled jobs, even when partially executed. -- **Fair-share algorithm:** For each group and project, the duration of the scheduling window is used to convert shares into an equivalent amount of time that an instance would receive under ideal conditions. The ratio between the time used and the shares equivalent time is used as the basis for scheduling jobs. - -## Shares and administration - -A hub’s entitlement determines its proportional share of the IBM Quantum Premium Plan computational capacity. IBM Quantum assigns shares to hubs. Hub administrators then decide what portion of these shares to assign to each of their groups. Similarly, group administrators will decide what portion of shares to assign to each of their projects. - -![Screenshot of the Administrator user interface.](/images/migration/admin-UI1.png "Administrator user interface") - -Hub administration user interface. This is used to assign shares to groups. The entire hub share pool is distributed to the underlying groups, and the hub administrator can control the percent distribution by specifying a share value for each group. In this example, Group 5 receives 2 shares of their hub share pool, over a total of 5 shares across all groups. That means that Group 5 receives 40% of the shares pool that the hub was granted. - -The fair-share algorithm takes into consideration how these shares are distributed across groups and projects to determine job prioritization. - -The scheduling algorithm combines a group’s shares with the shares of its hub, to determine the total fraction of computational power allocated to that group. For example, assume you have set up the following allocations: - -![Two hubs are shown: A, and B. Hub A has allocated 20% to Group A and 40% to group B. Hub B has allocated 30% to group C and 10% to group D.](/images/migration/allocation.png "Allocation example") - -To compute the 60% for Hub-A, start with the 3 shares of Hub-A and divide between all the shares at the hub level (3 + 2 = 5 shares in total). This results in 3/5 = 0.6 = 60%. When computing the fraction per group, repeat the calculation inside each hub; the fractions for Group-A and Group-B would therefore be 33% and 67%, then apply these percentages to the Hub-A fraction, which results in 20% and 40%. - -## How the fair-share queue works - -The fair-share scheduling algorithm select jobs to execute on a quantum system in a dynamic order so that no instance can monopolize the system. When a quantum system is ready for additional work, it requests the next job from the fair-share scheduler. The scheduler selects the next job by first identifying the group that has used the least amount of their share within the scheduling window. If the group has more than one project, and both have jobs waiting to be executed, then the scheduler identifies the project that has used the least of their share within the scheduling window. Finally, if the project has submitted more than one job, the scheduler will select the oldest job first. Thus, within a project, the scheduler works on a first-in-first-out (FIFO) basis. - -In the following example, we have seven instances arranged between two different hubs. As jobs flow through the system, each group and project consumes some fraction of its effective allotted share. The first image below describes the state at time t1. In between brackets we report the consumption as a fraction of the allotted shares. The fair-share algorithm first identifies the group with the smallest number in between brackets, then the project with the least number in the brackets, and finally it selects the oldest job submitted by that project. - -![This image shows how a job might flow through the queue. It shows Group A from Hub A being selected because it has (0.0), then Project B, which is part of Group A is selected because it also has (0.0), then the first job for that project is run. ](/images/migration/fairshare3.png "Fair-share queue example") - -A snapshot view of consumption (in brackets) relative to the assigned shares. This scenario has seven different H/G/Ps arranged into hubs, groups, and projects. The next selected group and or project is the one with the smallest consumed fraction of the assigned shares. In this example, the Hub-A/Group-1/Project-Y is selected, and the oldest job (first submitted) in the project is executed. - -When the system is ready for an additional job, it repeats the selection. In the following image we represent the state of the queue at time t2. Notice that Group A and Project B consumption were updated to account for the previous consumption accrued between t1 and t2. - -![This image shows how a job might flow through the queue. It shows Group D from Hub D being selected because it has (0.1), which is now the smallest value for the groups, then Project F, which is part of Group D is selected because it has (0.0), then the first job for that project is run.](/images/migration/fairshare4.png "Fair-share queue example 2") - -Recomputed fair-share priorities reflecting the previous job execution. A new H/G/P (Hub-B/Group-2/Project-N) is selected based on these updated values. - -Note that when a user sends jobs to a specific IBM Quantum system, the fair-share algorithm accounts takes into account usage across all systems available to the user in the IBM Quantum Premium Plan when determining fairness. - -## What is my job’s position in the queue? - -As described above, all jobs submitted to the scheduler through the same project will execute in FIFO order. However, global execution order is governed by the fair-share algorithm. Consequently, the time between job submission and job execution can fluctuate depending on usage pattern of the instances which have jobs actively waiting for the system. - -A wait-time estimate is provided through IBM Quantum Platform and via Qiskit. The computed time is the result of a scheduling simulation that predicts one possible execution pattern, given the current fair-share ordering of all the jobs waiting for that system and the approximate runtime of each job. The dynamic nature of the fair-share algorithm means that this estimated time is not fixed and can vary, sometimes dramatically. This wait time is also subject to limitations inherent in estimating the execution time for Qiskit Runtime jobs. For these jobs, where an accurate estimation of time is not feasible, the maximum allowed runtime is used as a proxy. In practice, this means that the duration for a Qiskit Runtime job can be over-estimated by up to eight hours, the maximum allowed Qiskit Runtime job duration for Premium Plan users. - -The job’s position in the queue is listed in the **Queue position** column on the [Jobs page](https://quantum.ibm.com/jobs). - -## Next steps - - - - Try the [Grover's algorithm](https://learning.quantum.ibm.com/tutorial/grovers-algorithm) tutorial. - - Learn how to [Monitor a job](monitor-job). - diff --git a/translations/ja/run/get-backend-information.ipynb b/translations/ja/run/get-backend-information.ipynb deleted file mode 100644 index 740561296c..0000000000 --- a/translations/ja/run/get-backend-information.ipynb +++ /dev/null @@ -1,328 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Get backend information with Qiskit\n", - "\n", - "This page explains how to use Qiskit to find information about your available backends." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## List backends\n", - "\n", - "To view the backends you have access to, you can either view a list on the [Compute resources page,](https://quantum.ibm.com/services/resources?tab=yours) or you can use the [`QiskitRuntimeService.backends()`](../api/qiskit-ibm-runtime/qiskit_ibm_runtime.QiskitRuntimeService#backends) method. This method returns a list of [`IBMBackend`](../api/qiskit-ibm-runtime/qiskit_ibm_runtime.IBMBackend) instances:" - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "[,\n", - " ,\n", - " ,\n", - " ,\n", - " ,\n", - " ,\n", - " ,\n", - " ,\n", - " ,\n", - " ,\n", - " ,\n", - " ,\n", - " ]" - ] - }, - "execution_count": 1, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "# Initialize your account \n", - "from qiskit_ibm_runtime import QiskitRuntimeService\n", - "service = QiskitRuntimeService()\n", - "\n", - "service.backends()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "The [`QiskitRuntimeService.backend()`](../api/qiskit-ibm-runtime/qiskit_ibm_runtime.QiskitRuntimeService#backend) method (note that this is singular: *backend*) takes the name of the backend as the input parameter and returns an [`IBMBackend`](../api/qiskit-ibm-runtime/qiskit_ibm_runtime.IBMBackend) instance representing that particular backend:" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "" - ] - }, - "execution_count": 2, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "service.backend(\"ibmq_qasm_simulator\")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Filter backends\n", - "\n", - "You can also filter the available backends by their properties. For more general filters, you can make advanced functions using a lambda function. Refer to the [API documentation](../api/qiskit-ibm-runtime/qiskit_ibm_runtime.QiskitRuntimeService#backends) for more details.\n", - "\n", - "Let’s try getting only backends that fit these criteria:\n", - "\n", - "* Are real quantum devices (`simulator=False`)\n", - "* Are currently operational (`operational=True`)\n", - "* Have at least 5 qubits (`min_num_qubits=5`)" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "[,\n", - " ,\n", - " ,\n", - " ,\n", - " ,\n", - " ,\n", - " ,\n", - " ,\n", - " ,\n", - " ,\n", - " ,\n", - " ]" - ] - }, - "execution_count": 3, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "service.backends(simulator=False, operational=True, min_num_qubits=5)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "A similar method is [`QiskitRuntimeService.least_busy()`](../api/qiskit-ibm-runtime/qiskit_ibm_runtime.QiskitRuntimeService#least_busy), which takes the same filters as `backends()` but returns the backend that matches the filters and has the least number of jobs pending in the queue:" - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "" - ] - }, - "execution_count": 4, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "service.least_busy(operational=True, min_num_qubits=5)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Static backend information\n", - "\n", - "Some information about a backend does not change regularly, such as its name, version, the number of qubits it has, and the types of features it supports. This information is available as attributes of the `backend` object.\n", - "\n", - "The following cell builds a description of a backend." - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Name: ibm_kyoto\n", - "Version: 2\n", - "No. of qubits: 127\n", - "\n" - ] - } - ], - "source": [ - "backend = service.backend(\"ibm_kyoto\")\n", - "\n", - "print(\n", - " f\"Name: {backend.name}\\n\"\n", - " f\"Version: {backend.version}\\n\"\n", - " f\"No. of qubits: {backend.num_qubits}\\n\"\n", - ")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "For a full list of attributes, see the [`IBMBackend` API documentation](/api/qiskit-ibm-runtime/qiskit_ibm_runtime.IBMBackend)." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Dynamic backend information\n", - "\n", - "Backends can also have properties that change whenever the backed is calibrated, such as qubit frequency and operation error rates. Backends are usually calibrated every 24 hours, and their properties update after the calibration sequence completes. These properties can be used when optimizing quantum circuits or to construct noise models for a classical simulator.\n", - "\n", - "\n", - "### Qubit properties\n", - "\n", - "The `backend.qubit_properties` method returns information about the qubits' physical attributes. This includes the qubit frequency in GHz and decay times (`t1` and `t2`) in µs." - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "IBMQubitProperties(t1=0.00016855861574467424, t2=2.3453094185862303e-05, frequency=4908867208.080845, anharmonicity=-308028796.19250304)" - ] - }, - "execution_count": 6, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "backend.qubit_properties(0) # properties of qubit 0" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Instruction properties\n", - "\n", - "The `backend.target` attribute is a `qiskit.transpiler.Target` object: an object that contains all the information needed to transpile a circuit for that backend. This includes instruction errors and durations. For example, the following cell gets the properties for an [`ecr` gate](/api/qiskit/qiskit.circuit.library.ECRGate) acting between qubits 1 and 0." - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "InstructionProperties(duration=6.6e-07, error=0.020534632893441818, calibration=Schedule ecr)" - ] - }, - "execution_count": 7, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "backend.target[\"ecr\"][(1,0)]" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "The following cell shows the properties for a measurement operation (including the readout error) on qubit 0." - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "InstructionProperties(duration=1.4e-06, error=0.11159999999999992, calibration=Schedule measure)" - ] - }, - "execution_count": 8, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "backend.target[\"measure\"][(0,)]" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Next steps\n", - "\n", - "\n", - " - Try the [Grover's algorithm](https://learning.quantum.ibm.com/tutorial/grovers-algorithm) tutorial.\n", - " - Review the [IBMProvider backend API](/api/qiskit-ibm-provider/qiskit_ibm_provider.IBMProvider#backend) reference.\n", - " - Review the [QiskitRuntime backend API](/api/qiskit-ibm-runtime/qiskit_ibm_runtime.QiskitRuntimeService#backend) reference.\n", - "" - ] - } - ], - "metadata": { - "description": "Find and filter available backends, get configuration and calibration data programmatically.", - "kernelspec": { - "display_name": "Python 3", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3" - }, - "title": "Get backend information with Qiskit" - }, - "nbformat": 4, - "nbformat_minor": 4 -} \ No newline at end of file diff --git a/translations/ja/run/index.mdx b/translations/ja/run/index.mdx deleted file mode 100644 index 9b15e88d9f..0000000000 --- a/translations/ja/run/index.mdx +++ /dev/null @@ -1,21 +0,0 @@ ---- -title: Introduction -description: Overview of the Run section, where you'll find information on IBM Quantum systems and executing jobs on them ---- - -# Introduction - -IBM Quantum maintains the world’s most advanced fleet of quantum systems, with seven [utility-scale](https://www.ibm.com/blog/announcement/new-ibm-quantum-systems-on-the-ibm-cloud/) quantum systems, and more on the way. These systems demonstrate unparalleled reliability, with >95% uptime across the fleet of quantum systems - and unmatched stability, with two-qubit gate error fluctuations no larger than 0.001 over timescales measured in months[^1]. - -## The run phase - -In the run phase, you send your quantum program to be executed on a quantum system. This section provides information about IBM Quantum hardware and how to connect to the instances that provide access to quantum systems. You can find details about estimating job run time and cost, running within a session, reserving time on a system, and more. - -The steps during the run phase are: - -1. Using your account credentials, authenticate to the channel of your choice ([IBM Quantum Platform](../start/setup-channel#ibm-quantum-platform) or [IBM Cloud](../start/setup-channel#ibm-cloud)). -2. Choose a system or simulator. -3. Send a job to a system or simulator. -4. View job results. - -[^1]: Median 2Q gate errors measured over all accessible Eagle processors from July 20 to September 20, 2023. diff --git a/translations/ja/run/instances.mdx b/translations/ja/run/instances.mdx deleted file mode 100644 index 4f5c1690b1..0000000000 --- a/translations/ja/run/instances.mdx +++ /dev/null @@ -1,109 +0,0 @@ ---- -title: Instances -description: What IBM Quantum Platform instances are and how to use them ---- - -# Instances - -Access to IBM Quantum Platform services is controlled by the **instances** (previously called providers) to which you are assigned. An instance is defined by a hierarchical organization of **hub**, **group**, and **project**. A hub is the top level of a given hierarchy (organization) and contains within it one or more groups. These groups are in turn populated with projects. The combination of hub/group/project is called an instance. Users can belong to more than one instance at any given time. - - - IBM Cloud instances are different from IBM Quantum Platform instances. IBM Cloud does not use the hub/group/project structure for user management. This section describes instances in IBM Quantum Platform. To view and create IBM Cloud instances, visit the [IBM Cloud Quantum Instances page](https://cloud.ibm.com/quantum/instances). Click the name of an instance to see details such as your CRN for that instance, what compute resources (programs, systems, and simulators) are available to you by using that instance, and what jobs you have run on that instance. - - -![Alice, Bob, and Charlie are all in Hub A. Hub A has Group 1 and 2. Alice and Bob are in Group 1. Charlie is in Group 2. Group 1 has Project X and Y. Alice is in both projects. Bob is only in project X. Group 2 has Project Z. Charlie is in project Z. Therefore, Charlie's instance is Hub-A/Group-2/Project-Z.](/images/run/providers1.jpg "Hub / group / project hierarchy") - -The hub/group/project hierarchy that makes up an IBM Quantum instance. - -Users with a public account automatically belong to the ibm-q/open/main [open plan](#open-plan). For organizations outside of IBM, designated hub or group administrators assign users to instances. - -To see the instances to which you have access, look at the bottom of your [Account page](https://quantum.ibm.com/account). - -![Screenshot of the Account page.](/images/run/find-providers1.png "Instances on the Account page") - -## Find your instances - -You can view a list of your instances on your [account settings page](https://quantum.ibm.com/account), or you can use [the `instances()` method](../api/qiskit-ibm-runtime/qiskit_ibm_runtime.QiskitRuntimeService#instances). - -## Switch instances - -If you have access to run on multiple instances, the [IBM Quantum interface](https://quantum.ibm.com/) menu bar contains a dropdown that lets you switch between instances. The IBM Quantum Platform dashboard, Compute resources, and Jobs pages display information such as usage metrics, jobs, and systems based on the selected instance. - - - The instance switcher does not appear in the Administration application. - - -If you switch to a different instance, it is remembered the next time you log on and, assuming that it's still a valid instance, information pertaining to that instance is displayed. By default, the first premium instance you have access to is used. If you do not have any premium instances, the first open instance is shown. - - -The first instance is determined alphabetically. - - -## Instances and jobs - -When you execute a task using an IBM Quantum service (for example, sending circuits to a quantum system or simulator), a **job** instance is returned to you. Regardless of which service is being used, a job can track the progress of the submission through IBM Quantum, and retrieve the final result(s) of the computation. Because services are coupled to instances, the jobs created from these services are also tied to the specific instance being used. Therefore, **if a user is removed from an instance, their jobs and the associated results are no longer accessible**. - -## Open plan - -By default, users who sign up for an IBM Quantum account are assigned to the Open plan and the Open plan's instance, `ibm-q/open/main`. To guarantee that everyone can use the IBM Quantum systems allocated to the plan fairly, **an individual can have no more than three jobs running and/or in the queue (across all systems) at the same time.** Submitting more than three jobs at a time will return error [#3458](../errors#3458), and additional jobs will be canceled. - -Those using the Open plan instance have up to 10 minutes total of system execution time per month, which resets at 00:00:00 UTC on the first of each calendar month. Open plan users can track their system execution time on the [Platform dashboard,](https://quantum.ibm.com/) [Jobs,](https://quantum.ibm.com/jobs) and [Account](https://quantum.ibm.com/account) pages. - - -## Connect to an instance - -You can specify an instance when initializing the service or provider, or when choosing a system. You can copy the service-level code by clicking the three dots by the instance name on the Instances section of the [Account overview page](https://quantum.ibm.com/account). - -### qiskit-ibm-runtime - -```python - -# Optional: List all the instances you can access. -service = QiskitRuntimeService(channel='ibm_quantum') -print(service.instances()) - -# Optional: Specify it at service level. This becomes the default unless overwritten. -service = QiskitRuntimeService(channel='ibm_quantum', instance="hub1/group1/project1") -backend1 = service.backend("ibmq_manila") - -# Optional: Specify it at the backend level, which overwrites the service-level specification when this backend is used. -backend2 = service.backend("ibmq_manila", instance="hub2/group2/project2") - -sampler1 = Sampler(backend=backend1) # this will use hub1/group1/project1 -sampler2 = Sampler(backend=backend2) # this will use hub2/group2/project2 -``` - -### qiskit-ibm-provider - -```python -from qiskit_ibm_provider import IBMProvider - -provider = IBMProvider(instance="hub1/group1/project1") -backend1 = provider.get_backend("ibmq_manila") -backend2 = provider.get_backend("ibmq_manila", instance="hub2/group2/project2") - -job1 = backend1.run(...) # this will use hub1/group1/project1 -job2 = backend2.run(...) # this will use hub2/group2/project2 -``` - - -If you do not specify an instance, the code will select one in the following order: - -1. If your account only has access to one instance, it is selected by default. -2. If your account has access to multiple instances but only one can access the requested system, the instance with access is selected. -3. In all other cases, the code selects the first instance other than `ibm-q/open/main` that has access to the system. - - -## Leaving an instance - -To leave an instance, visit the instance list on your [Account page.](https://quantum.ibm.com/account) Select the instance you wish to leave, then select the overflow menu and choose _Leave instance_. - -![Screenshot of the Account page.](/images/run/leaving1.png "Leave instance") - -## Next steps - - - - Try the [Grover's algorithm](https://learning.quantum.ibm.com/tutorial/grovers-algorithm) tutorial. - - Review the [IBMProvider instances method](/api/qiskit-ibm-provider/qiskit_ibm_provider.IBMProvider#instances) reference. - - Review the [QiskitRuntimeService instances method](/api/qiskit-ibm-runtime/qiskit_ibm_runtime.QiskitRuntimeService#instances) reference. - diff --git a/translations/ja/run/manage-cost.mdx b/translations/ja/run/manage-cost.mdx deleted file mode 100644 index d30d078f1d..0000000000 --- a/translations/ja/run/manage-cost.mdx +++ /dev/null @@ -1,79 +0,0 @@ ---- -title: Manage cost -description: How to manage costs of running jobs on systems when using the Standard plan for IBM Quantum on IBM Cloud. ---- - -# Manage cost - -The IBM Cloud Quantum Standard plan is not free, except when running jobs on simulators. Use the information in this topic to help you understand how much you’re paying and how to limit your costs. - - - The information in this topic only applies to those who are using the Standard plan for IBM Quantum on IBM Cloud. There are no costs associated with IBM Quantum Platform Open plan. - - -## Set a cost limit - -An instance administrator can limit how much is spent. To set cost limits, navigate to the [IBM Cloud Instances page](https://cloud.ibm.com/quantum/instances), then click the instance and set the **Cost limit**. The cost limit refers to the total cost of all jobs run with this instance since it was created, and it will always be greater than or equal to the Total cost. After the instance reaches the specified number of total seconds, no further jobs can be run and no more cost is incurred. - -``` - - The cost limit is always specified in US dollars (USD), then converted to runtime seconds. However, for monthly billing purposes, you are charged in your local currency, specified on your IBM Cloud account. Because currency exchange rates can fluctuate, the cost for X runtime seconds might be different when initially calculated in USD than when you’re actually charged in your local currency. As a result, if your local currency is not USD, the total amount charged for the number of seconds specified in this field could vary from the dollar amount you specify. - -``` - -## How to remove a cost limit - -An instance administrator can remove the cost limit. To do so, navigate to the [IBM Cloud Instances page](https://cloud.ibm.com/quantum/instances), then open the instance and click the edit button by the **Cost limit**. Delete the value and click **Save**. - -### What happens when the cost limit is reached - -When the instance’s cost limit is reached, the currently running job is stopped. Its status is set to Canceled with a reason of Ran too long. Any available partial results are kept. - -No further jobs can be submitted by using this instance until the cost limit is increased. - -## How to see what you’re being charged - -You are sent a monthly invoice that provides details about your resource charges. You can check how much has been spent at any time on the [IBM Cloud Billing and usage page](https://cloud.ibm.com/billing). - -Additionally, you can determine cost per instance or per job at any time. - -### View instance cost - -To determine how much has been billed to an instance during the current billing cycle, from the [Instances page](https://cloud.ibm.com/quantum/instances), click the instance to open its details page. - -These are the fields relevant to cost: - -- **Billing cycle usage**: The amount of _quantum time_ used by this instance during the current billing cycle. Quantum time is the duration a quantum system is committed to fulfilling a user request. -- **Billing cycle cost**: The total cost of running jobs during the current billing cycle. -- **Total usage**: The amount of quantum time used by this instance since it was created. -- **Total cost**: The total cost of running jobs on this instance since it was created. Only administrators can set this value. - -You can view your billing cycle on the [Billing and usage page](https://cloud.ibm.com/billing). - -### View job cost - -To determine how much has been billed to each job associated with an instance, from the [Instances page](https://cloud.ibm.com/quantum/instances), click the instance to open its details page. Next, on the left side, click Jobs. - -These are the columns relevant to cost: - -- **Usage**: The amount of quantum time used by this job. Quantum time is the duration a quantum system is committed to fulfilling a user request. -- **Cost**: The total cost of running this job. - -## Estimate the cost - -You can estimate how long a job will run, and therefore its cost, by estimating the job run time. For details, see the [Estimate job run time](estimate-job-run-time) topic. - -## Set up spending notifications - -You can set up spending notifications to get notified when your account or a particular service reaches a specific spending threshold that you set. For information, see the [IBM Cloud account Type description](https://cloud.ibm.com/docs/account?topic=account-accounts). IBM Cloud spending notifications must be used with other methods of cost management for several reasons: - -- The notifications trigger only _after_ cost surpasses the specified limit. -- Cost is submitted to the billing system hourly. Therefore, a long delay might occur between the job submission and the spending notification being sent. -- The billing system can take multiple days to get information to the invoicing system, which might cause further delay in notifications. For more information about how the IBM Cloud billing system works, see [Setting spending notifications](https://cloud.ibm.com/docs/billing-usage?topic=billing-usage-spending). - -## Next steps - - - - Review the [Qiskit Runtime plans](https://cloud.ibm.com/docs/quantum-computing?topic=quantum-computing-plans) available on IBM Cloud. - - Review suggestions to [minimize job quantum time.](minimize-time) - diff --git a/translations/ja/run/max-execution-time.mdx b/translations/ja/run/max-execution-time.mdx deleted file mode 100644 index 024504cebc..0000000000 --- a/translations/ja/run/max-execution-time.mdx +++ /dev/null @@ -1,64 +0,0 @@ ---- -title: Maximum execution time for a Qiskit Runtime job or session -description: Describes how long a Qiskit Runtime job or session can run. ---- - -# Maximum execution time for a Qiskit Runtime job or session - -To ensure fairness and help control costs, there is a maximum amount of time each Qiskit Runtime job and session can run. If a job exceeds this time limit, it is forcibly canceled and a `RuntimeJobMaxTimeoutError` exception is raised. If a session exceeds its limits, any queued jobs are canceled but any jobs that are already running are not. - - -## Job maximum execution time - -The maximum execution time for a job is the smaller of these values: - -- The value set for max_execution_time -- The system-determined job timeout value - - - As of August 7, 2023, the `max_execution_time` value is based on _quantum time_ instead of wall clock time. Quantum time is the duration a quantum system is committed to fulfilling a user request. - - Simulator jobs continue to use wall clock time because they do not have quantum time. - - -Set the maximum execution time (in seconds) on the job options by using one of the following methods: - -```python -# Initiate the Options class with parameters -options = Options(max_execution_time=360) -``` - -```python -# Create the options object with attributes and values -options = {"max_execution_time": 360} -``` - -You can also find how much quantum time completed jobs have used by returning the job metrics as follows: - -```python -# Find quantum time used by the job -print(f"Quantum time used by job {job.job_id()} was {job.metrics()['usage']['quantum_seconds']} seconds") -``` - - -### System maximum execution time - -The system calculates an appropriate job timeout value based on the input circuits and options. This system-calculated timeout is capped at 3 hours to ensure fair device usage. If a `max_execution_time` is also specified for the job, the lesser of the two values is used. - -For example, if you specify `max_execution_time=5000` (approximately 83 minutes), but the system determines it should not take more than 5 minutes (300 seconds) to execute the job, then the job is canceled after 5 minutes. - -## Session maximum execution time - -When a session is started, it is assigned a maximum session timeout value. After this timeout is reached, the session is terminated, any jobs that are already running continue running, and any queued jobs that remain in the session are put into a failed state. For instructions to set the session maximum time, see [Specify the session length](run-jobs-in-session#specify-length). - -## Other limitations - -- Inputs to jobs cannot exceed 64MB in size. -- Open plan users can use up to 10 minutes of system execution time per month (resets at 00:00 UTC on the first of each month). System execution time is the amount of time that the system is dedicated to processing your job. You can track your monthly usage on the [Platform dashboard,](https://quantum.ibm.com/) [Quantum Platform Jobs page,](https://quantum.ibm.com/jobs) and [Account](https://quantum.ibm.com/account) page. - -## Next steps - - - - [Estimate job run time](estimate-job-run-time). - - Review these tips: [Minimize job run time](minimize-time). - diff --git a/translations/ja/run/minimize-time.mdx b/translations/ja/run/minimize-time.mdx deleted file mode 100644 index 8682b1e1a5..0000000000 --- a/translations/ja/run/minimize-time.mdx +++ /dev/null @@ -1,21 +0,0 @@ ---- -title: Minimize job run time -description: How to minimize the amount of quantum time spent processing and running a job. ---- - -# Minimize job run time - -There are several ways you can limit the amount of quantum time spent processing and running a job: - -- Run only as many iterations and shots as you need: The time your workload takes (and therefore, its cost) depends on how many jobs you create in a session and how many shots are run in each job. Therefore, you can manage your cost by running only as many jobs and shots as you need. - -- Set limits on execution time: You can limit how long each job or session runs. For details, see [Maximum execution time for a Qiskit Runtime job or session](max-execution-time). - -- Use only the necessary settings for error suppression, error mitigation, and optimization, because higher values can cause your jobs to run longer. See [Algorithm tuning options](advanced-runtime-options), [Configure runtime compilation](configure-runtime-compilation), and [Configure error mitigation](configure-error-mitigation) for details. - -## Next steps - - - - [Estimate job run time](estimate-job-run-time). - - Explore error mitigation in the [Cost functions](https://learning.quantum.ibm.com/course/variational-algorithm-design/cost-functions) course. - diff --git a/translations/ja/run/monitor-job.mdx b/translations/ja/run/monitor-job.mdx deleted file mode 100644 index 3969c80967..0000000000 --- a/translations/ja/run/monitor-job.mdx +++ /dev/null @@ -1,49 +0,0 @@ ---- -title: Monitor a job -description: How to monitor a job submitted to IBM Quantum Platform or IBM Quantum on IBM Cloud ---- - -# Monitor a job - -Jobs are listed on the Jobs page for your quantum service channel: - -- IBM Cloud channel: From the IBM Cloud console quantum [Instances page](https://cloud.ibm.com/quantum/instances), click the name of your instance, then click the Jobs tab. -- IBM Quantum channel: In IBM Quantum Platform, open the [Jobs page](https://quantum.ibm.com/jobs). - -Use the job instance to check the job status or retrieve the results by calling the appropriate command: - -| | | -| ----------------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | -| job.result() | Review job results immediately after the job completes. Job results are available after the job completes. Therefore, job.result() is a blocking call until the job completes. | -| job.job_id() | Return the ID that uniquely identifies that job. Retrieving the job results at a later time requires the job ID. Therefore, it is recommended that you save the IDs of jobs you might want to retrieve later. | -| job.status() | Check the job status. | -| job = service.job(\) | Retrieve a job you previously submitted. This call requires the job ID. | - - -## Retrieve job results at a later time - -Call `service.job(\)` to retrieve a job you previously submitted. If you don’t have the job ID, or if you want to retrieve multiple jobs at once; including jobs from retired systems, call `service.jobs()` with optional filters instead. See [QiskitRuntimeService.jobs](../api/qiskit-ibm-runtime/qiskit_ibm_runtime.QiskitRuntimeService#jobs). - - - service.jobs() returns only Qiskit Runtime jobs. To retrieve other jobs, use [qiskit-ibm-provider](../api/qiskit-ibm-provider/qiskit_ibm_provider.IBMBackend#ibmbackend) instead. - - -## Example - -This example returns the 10 most recent runtime jobs that were run on `my_backend`: - -```python -from qiskit_ibm_runtime import QiskitRuntimeService - -# Initialize the account first. -service = QiskitRuntimeService() - -service.jobs(backend_name=my_backend) -``` - -## Next steps - - - - Try the [Grover's algorithm](https://learning.quantum.ibm.com/tutorial/grovers-algorithm) tutorial. - - Review the [Qiskit tools documentation](/api/qiskit/tools) in the Qiskit Terra API reference. - diff --git a/translations/ja/run/native-gates.mdx b/translations/ja/run/native-gates.mdx deleted file mode 100644 index e70db29044..0000000000 --- a/translations/ja/run/native-gates.mdx +++ /dev/null @@ -1,103 +0,0 @@ ---- -title: Native gates and operations -description: Summary of the native gates and operations supported by IBM Quantum systems ---- - -# Native gates and operations - -Each [processor family](processor-types) has a native gate set. By default, the systems in each family only support running the gates and operations in the native gate set. Thus, every gate in the circuit must be translated (by the transpiler) to the elements of this set. - -You can view the native gates and operations for a system either [with Qiskit](#native-gates-with-qiskit) or on the IBM Quantum Platform [Compute resources page](#native-gates-on-platform). - - -The terms native gates and basis gates are often used interchangeably. However, you can specify a different set of basis gates to use, while the native gate set never changes. For information about changing the basis gates, see the [Represent quantum computers](../transpile/representing_quantum_computers#basis-gates) topic. - - -## Find the native gate set for a system - - -### With Qiskit - -```python - -from qiskit_ibm_runtime import QiskitRuntimeService - -service = QiskitRuntimeService(channel="ibm_quantum") - -for backend in service.backends(): - config = backend.configuration() - if "simulator" in config.backend_name: - continue - print(f"Backend: {config.backend_name}") - print(f" Processor type: {config.processor_type}") - print(f" Supported instructions:") - for instruction in config.supported_instructions: - print(f" {instruction}") - print() -``` - - -### On IBM Quantum Platform - -Select any system on the [Compute resources](https://quantum.ibm.com/services/resources) tab. The default gates for that system are listed under Details. Note that the non-unitary operations are not listed here; use the method in Qiskit described above to see all native gates and operations for a system. - -## Tables of gates and operations, by processor family - -### Heron - -| Name | Notes | -| :----------------------------------------------------- | :----------------------------------------------------------------------------------------------------------------------------- | -| [CZ](/api/qiskit/qiskit.circuit.library.CZGate) | two-qubit gate | -| [RZ](/api/qiskit/qiskit.circuit.library.RZGate) | single-qubit gate | -| [SX](/api/qiskit/qiskit.circuit.library.SXGate) | single-qubit gate | -| [X](/api/qiskit/qiskit.circuit.library.XGate) | single-qubit gate | -| [ID](/api/qiskit/qiskit.circuit.library.IGate) | single-qubit gate wait cycle | -| [reset](/api/qiskit/qiskit.circuit.library.Reset) | single-qubit gate, non-unitary; not the same as the initialization done at the start of a circuit to prepare the all 0's state | -| [if_else](/api/qiskit/qiskit.circuit.IfElseOp) | control flow for classical feedforward | -| [for_loop](/api/qiskit/qiskit.circuit.ForLoopOp) | control flow for classical feedforward | -| [switch_case](/api/qiskit/qiskit.circuit.SwitchCaseOp) | control flow for classical feedforward | -| [measure](/api/qiskit/qiskit.circuit.library.Measure) | | -| [delay](/api/qiskit/qiskit.circuit.Delay) | | - -### Eagle - -| Name | Notes | -| :----------------------------------------------------- | :----------------------------------------------------------------------------------------------------------------------------- | -| [ECR](/api/qiskit/qiskit.circuit.library.ECRGate) | two-qubit gate | -| [RZ](/api/qiskit/qiskit.circuit.library.RZGate) | single-qubit gate | -| [SX](/api/qiskit/qiskit.circuit.library.SXGate) | single-qubit gate | -| [X](/api/qiskit/qiskit.circuit.library.XGate) | single-qubit gate | -| [ID](/api/qiskit/qiskit.circuit.library.IGate) | single-qubit gate wait cycle | -| [reset](/api/qiskit/qiskit.circuit.library.Reset) | single-qubit gate, non-unitary; not the same as the initialization done at the start of a circuit to prepare the all 0's state | -| [if_else](/api/qiskit/qiskit.circuit.IfElseOp) | control flow for classical feedforward | -| [for_loop](/api/qiskit/qiskit.circuit.ForLoopOp) | control flow for classical feedforward | -| [switch_case](/api/qiskit/qiskit.circuit.SwitchCaseOp) | control flow for classical feedforward | -| [measure](/api/qiskit/qiskit.circuit.library.Measure) | | -| [delay](/api/qiskit/qiskit.circuit.Delay) | | - -### Falcon - -| Name | Notes | -| :----------------------------------------------------- | :----------------------------------------------------------------------------------------------------------------------------- | -| [CX](/api/qiskit/qiskit.circuit.library.CXGate) | two-qubit gate | -| [RZ](/api/qiskit/qiskit.circuit.library.RZGate) | single-qubit gate | -| [ID](/api/qiskit/qiskit.circuit.library.IGate) | single-qubit gate wait cycle | -| [reset](/api/qiskit/qiskit.circuit.library.Reset) | single-qubit gate, non-unitary; not the same as the initialization done at the start of a circuit to prepare the all 0's state | -| [if_else](/api/qiskit/qiskit.circuit.IfElseOp) | control flow for classical feedforward | -| [for_loop](/api/qiskit/qiskit.circuit.ForLoopOp) | control flow for classical feedforward | -| [switch_case](/api/qiskit/qiskit.circuit.SwitchCaseOp) | control flow for classical feedforward | -| [measure](/api/qiskit/qiskit.circuit.library.Measure) | | -| [delay](/api/qiskit/qiskit.circuit.Delay) | | - - - -The `init_qubits` flag, set as a [primitive execution option,](/api/qiskit-ibm-runtime/qiskit_ibm_runtime.options.ExecutionOptions) controls whether qubits are reset to the zero state at the start of each circuit. Its default value is `True`, indicating that the qubits should be reset. If `False`, the qubits will begin in the final state from the previous shot, and you must manually insert [resets](/api/qiskit/qiskit.circuit.library.Reset) if you want to reset them to the zero state. If a job consists of multiple circuits, then the shots are executed in a "round-robin" fashion. That is, each circuit will be executed in sequence to obtain one shot from each circuit. This process is then repeated until the requested number of shots has been obtained from all circuits. - - - -## Next steps - - - - Read about basis gates in the [Represent quantum computers](../transpile/representing_quantum_computers#basis-gates) topic. - - Apply your knowledge of basis gates to one of these [workflow example tutorials.](https://learning.quantum.ibm.com/catalog/tutorials?category=workflow-example) - diff --git a/translations/ja/run/primitives-examples.mdx b/translations/ja/run/primitives-examples.mdx deleted file mode 100644 index d77802e075..0000000000 --- a/translations/ja/run/primitives-examples.mdx +++ /dev/null @@ -1,287 +0,0 @@ ---- -title: Primitives examples -description: Practical examples of primitive usage ---- - -# Primitives examples - -The examples in this section illustrate some common ways to use primitives. Before running these examples, follow the instructions in [Install and set up.](../start/install) - - - These examples all use the primitives from Qiskit Runtime, but you could use the base primitives instead. - - -## Estimator examples - -Efficiently calculate and interpret expectation values of the quantum operators required for many algorithms with Estimator. Explore uses in molecular modeling, machine learning, and complex optimization problems. - -### Run a single experiment - -Use Estimator to determine the expectation value of a single circuit-observable pair. - -```python -import numpy as np -from qiskit.circuit.library import IQP -from qiskit.quantum_info import SparsePauliOp, random_hermitian -from qiskit_ibm_runtime import QiskitRuntimeService, Estimator - -service = QiskitRuntimeService() - -backend = service.get_backend("ibm_brisbane") - -n_qubits = 127 - -mat = np.real(random_hermitian(n_qubits, seed=1234)) -circuit = IQP(mat) -observable = SparsePauliOp("Z" * n_qubits) - -estimator = Estimator(backend) -job = estimator.run(circuit, observable) -result = job.result() - -print(f" > Observable: {observable.paulis}") -print(f" > Expectation value: {result.values}") -print(f" > Metadata: {result.metadata}") -``` - -### Run multiple experiments in a single job - -Use Estimator to determine the expectation values of multiple circuit-observable pairs. - -```python -import numpy as np -from qiskit.circuit.library import IQP -from qiskit.quantum_info import SparsePauliOp, random_hermitian -from qiskit_ibm_runtime import QiskitRuntimeService, Estimator - - -service = QiskitRuntimeService() - -backend = service.get_backend("ibm_brisbane") - -n_qubits = 127 - -rng = np.random.default_rng() -mats = [np.real(random_hermitian(n_qubits, seed=rng)) for _ in range(3)] -circuits = [IQP(mat) for mat in mats] -observables = [ - SparsePauliOp("X" * n_qubits), - SparsePauliOp("Y" * n_qubits), - SparsePauliOp("Z" * n_qubits), -] - -estimator = Estimator(backend) -job = estimator.run(circuits, observables) -result = job.result() - -print(f" > Expectation values: {result.values}") -``` - -### Run parameterized circuits - -Use Estimator to run three experiments in a single job, leveraging parameter values to increase circuit reusability. - -```python -import numpy as np -from qiskit.circuit.library import RealAmplitudes -from qiskit.quantum_info import SparsePauliOp -from qiskit_ibm_runtime import QiskitRuntimeService, Estimator - -service = QiskitRuntimeService() - -backend = service.get_backend("ibm_brisbane") - -circuit = RealAmplitudes(num_qubits=127, reps=2) -# Define three sets of parameters for the circuit -rng = np.random.default_rng(1234) -parameter_values = [ - rng.uniform(-np.pi, np.pi, size=circuit.num_parameters) for _ in range(3) -] -observable = SparsePauliOp("Z" * 127) - -estimator = Estimator(backend) -job = estimator.run([circuit] * 3, [observable] * 3, parameter_values) -result = job.result() - -print(f" > Expectation values: {result.values}") -``` - -### Use sessions and advanced options - -Explore sessions and advanced options to optimize circuit performance on quantum systems. - -```python -import numpy as np -from qiskit.circuit.library import IQP -from qiskit.quantum_info import SparsePauliOp, random_hermitian -from qiskit_ibm_runtime import QiskitRuntimeService, Session, Estimator, Options - -n_qubits = 127 - -rng = np.random.default_rng(1234) -mat = np.real(random_hermitian(n_qubits, seed=rng)) -circuit = IQP(mat) -mat = np.real(random_hermitian(n_qubits, seed=rng)) -another_circuit = IQP(mat) -observable = SparsePauliOp("X" * n_qubits) -another_observable = SparsePauliOp("Y" * n_qubits) - -options = Options() -options.optimization_level = 2 -options.resilience_level = 2 - -service = QiskitRuntimeService() - -backend = service.get_backend("ibm_brisbane") - -with Session(service=service, backend=backend) as session: - estimator = Estimator(session=session, options=options) - job = estimator.run(circuit, observable) - another_job = estimator.run(another_circuit, another_observable) - result = job.result() - another_result = another_job.result() - -# first job -print(f" > Expectation values job 1: {result.values}") - -# second job -print(f" > Expectation values job 2: {another_result.values}") -``` - -## Sampler examples - -Generate entire error-mitigated quasi-probability distributions sampled from quantum circuit outputs. Leverage Sampler’s capabilities for search and classification algorithms like Grover’s and QVSM. - -### Run a single experiment - -Use Sampler to determine the quasi-probability distribution of a single circuit. - -```python -import numpy as np -from qiskit.circuit.library import IQP -from qiskit.quantum_info import random_hermitian -from qiskit_ibm_runtime import QiskitRuntimeService, Sampler - -service = QiskitRuntimeService() - -backend = service.get_backend("ibm_brisbane") - -n_qubits = 127 - -mat = np.real(random_hermitian(n_qubits, seed=1234)) -circuit = IQP(mat) -circuit.measure_all() - -sampler = Sampler(backend) -job = sampler.run(circuit) -result = job.result() - -print(f" > Quasi-probability distribution: {result.quasi_dists}") -print(f" > Metadata: {result.metadata}") -``` - -### Run multiple experiments in a single job - -Use Sampler to determine the quasi-probability distributions of multiple circuits in one job. - -```python -import numpy as np -from qiskit.circuit.library import IQP -from qiskit.quantum_info import random_hermitian -from qiskit_ibm_runtime import QiskitRuntimeService, Sampler - -service = QiskitRuntimeService() - -backend = service.get_backend("ibm_brisbane") - -n_qubits = 127 - -rng = np.random.default_rng() -mats = [np.real(random_hermitian(n_qubits, seed=rng)) for _ in range(3)] -circuits = [IQP(mat) for mat in mats] -for circuit in circuits: - circuit.measure_all() - -sampler = Sampler(backend) -job = sampler.run(circuits) -result = job.result() - -print(f" > Quasi-probability distribution: {result.quasi_dists}") -``` - -### Run parameterized circuits - -Run three experiments in a single job, leveraging parameter values to increase circuit reusability. - -```python -import numpy as np -from qiskit.circuit.library import RealAmplitudes -from qiskit_ibm_runtime import QiskitRuntimeService, Sampler - -service = QiskitRuntimeService() - -backend = service.get_backend("ibm_brisbane") - -circuit = RealAmplitudes(num_qubits=127, reps=2) -circuit.measure_all() -# Define three sets of parameters for the circuit -rng = np.random.default_rng(1234) -parameter_values = [ - rng.uniform(-np.pi, np.pi, size=circuit.num_parameters) for _ in range(3) -] - -sampler = Sampler(backend) -job = sampler.run([circuit] * 3, parameter_values) -result = job.result() - -print(f" > Quasi-probability distribution: {result.quasi_dists}") -``` - -### Use sessions and advanced options - -Explore sessions and advanced options to optimize circuit performance on quantum systems. - -```python -import numpy as np -from qiskit.circuit.library import IQP -from qiskit.quantum_info import random_hermitian -from qiskit_ibm_runtime import QiskitRuntimeService, Sampler, Session, Options - -n_qubits = 127 - -rng = np.random.default_rng(1234) -mat = np.real(random_hermitian(n_qubits, seed=rng)) -circuit = IQP(mat) -circuit.measure_all() -mat = np.real(random_hermitian(n_qubits, seed=rng)) -another_circuit = IQP(mat) -another_circuit.measure_all() - -options = Options() -options.optimization_level = 2 -options.resilience_level = 0 - -service = QiskitRuntimeService() - -backend = service.get_backend("ibm_brisbane") - -with Session(service=service, backend=backend) as session: - sampler = Sampler(session=session, options=options) - job = sampler.run(circuit) - another_job = sampler.run(another_circuit) - result = job.result() - another_result = another_job.result() - -# first job -print(f" > Quasi-probability distribution job 1: {result.quasi_dists}") - -# second job -print(f" > Quasi-probability distribution job 2: {another_result.quasi_dists}") -``` - -## Next steps - - - - [Specify advanced runtime options.](advanced-runtime-options) - - Practice with primitives by working through the [Cost function lesson](https://learning.quantum.ibm.com/course/variational-algorithm-design/cost-functions#primitives) in IBM Quantum Learning. - diff --git a/translations/ja/run/primitives-get-started.mdx b/translations/ja/run/primitives-get-started.mdx deleted file mode 100644 index 5780ddfafb..0000000000 --- a/translations/ja/run/primitives-get-started.mdx +++ /dev/null @@ -1,142 +0,0 @@ ---- -title: Get started with primitives -description: Use Qiskit Runtime Estimator and Sampler ---- - -# Get started with primitives - -The steps in this topic describes how to set up primitives, explore the options you can use to configure them, then invoke them in a program. - - - These examples all use the primitives from Qiskit Runtime, but you could use the base primitives instead. - - - -## Get started with Estimator - -### 1. Initialize the account - -Since Qiskit Runtime `Estimator` is a managed service, you will first need to initialize your account. You can then select the simulator or real system you want to use to calculate the expectation value. - -Follow the steps in the [Install and set up topic](../start/install) if you don't already have an account. - -```python -from qiskit_ibm_runtime import QiskitRuntimeService - -service = QiskitRuntimeService() -backend = service.backend("ibm_brisbane") -``` - -### 2. Create a circuit and an observable - -Just like the section before, you will need at least one circuit and one observable as inputs to the `Estimator` primitive. - -```python -import numpy as np -from qiskit.circuit.library import IQP -from qiskit.quantum_info import SparsePauliOp, random_hermitian - -n_qubits = 127 - -mat = np.real(random_hermitian(n_qubits, seed=1234)) -circuit = IQP(mat) -observable = SparsePauliOp("Z" * n_qubits) -print(f">>> Observable: {observable.paulis}") -``` - -### 3. Initialize the Qiskit Runtime Estimator - -Here we are initializing an instance of `qiskit_ibm_runtime.Estimator` instead of `qiskit.primitives.Estimator` to use Qiskit Runtime's implementation of the `Estimator`. - -When you initialize the `Estimator`, you'll need to pass in the system or simulator you previously selected as the target device (or simulator). You could also do this within the `session` parameter. - -```python -from qiskit_ibm_runtime import Estimator - -estimator = Estimator(backend=backend) -``` - -### 4. Invoke the Estimator and get results - -You can then invoke the `run()` method to calculate expectation values for the input circuits and observables. - -```python -job = estimator.run(circuit, observable) -print(f">>> Job ID: {job.job_id()}") -print(f">>> Job Status: {job.status()}") -``` - -```python -result = job.result() -print(f">>> {result}") -print(f" > Expectation value: {result.values[0]}") -print(f" > Metadata: {result.metadata[0]}") -``` - - -## Get started with Sampler - -### 1. Initialize the account - -Since Qiskit Runtime `Sampler` is a managed service, you will first need to initialize your account. You can then select the simulator or real system you want to use to calculate the expectation value. - -Follow the steps in the [Install and set up topic](../start/install) if you don't already have an account set up. - -```python -from qiskit_ibm_runtime import QiskitRuntimeService - -service = QiskitRuntimeService() -backend = service.backend("ibm_brisbane") -``` - -### 2. Create a circuit - -Just like the section before, you will need at least one circuit as the input to the `Sampler` primitive. - -```python -import numpy as np -from qiskit.circuit.library import IQP -from qiskit.quantum_info import random_hermitian - -n_qubits = 127 - -mat = np.real(random_hermitian(n_qubits, seed=1234)) -circuit = IQP(mat) -circuit.measure_all() -``` - -### 3. Initialize the Qiskit Runtime Sampler - -Here we are initializing an instance of `qiskit_ibm_runtime.Sampler` instead of `qiskit.primitives.Sampler` to use Qiskit Runtime's implementation of the `Sampler`. - -When you initialize the `Sampler`, you'll need to pass in the simulator or system you previously selected as the target device (or simulator). You could also do this within the `session` parameter. - -```python -from qiskit_ibm_runtime import Sampler - -sampler = Sampler(backend=backend) -``` - -### 4. Invoke the Sampler and get results - -You can then invoke the `run()` method to generate a quasi-probability distribution for the input circuits and quantum states. - -```python -job = sampler.run(circuit) -print(f">>> Job ID: {job.job_id()}") -print(f">>> Job Status: {job.status()}") -``` - -```python -result = job.result() -print(f">>> {result}") -print(f" > Quasi-probability distribution: {result.quasi_dists[0]}") -print(f" > Metadata: {result.metadata[0]}") -``` - -## Next steps - - - - Review detailed [primitives examples.](primitives-examples) - - Practice with primitives by working through the [Cost function lesson](https://learning.quantum.ibm.com/course/variational-algorithm-design/cost-functions#primitives) in IBM Quantum Learning. - diff --git a/translations/ja/run/primitives.mdx b/translations/ja/run/primitives.mdx deleted file mode 100644 index e0f9a96578..0000000000 --- a/translations/ja/run/primitives.mdx +++ /dev/null @@ -1,90 +0,0 @@ ---- -title: Introduction to primitives -description: Introduction to primitives in Qiskit and Qiskit Runtime, and an explanation of available primitives ---- - -# Introduction to primitives - -Computing systems are built upon multiple layers of abstraction. Abstractions allow us to focus on a -particular level of detail relevant to the task at hand. The closer you get to the hardware, -the lower the level of abstraction you'll need (for example, you could -want to manipulate electrical signals), and vice versa, the more complex the task you want to perform, -the higher-level the abstractions will be (for example, you could be using a programming library to perform -algebraic calculations). - -In this context, a primitive is the smallest processing instruction, the simplest building block from which -one can create something useful for a given abstraction level. - -The recent progress in quantum computing has increased the need to work at higher levels of abstraction. -As we move towards larger systems and more complex workflows, the focus shifts from interacting with individual -qubit signals to viewing quantum devices as systems that perform tasks we need. - -The two most common tasks quantum computers are used for are sampling quantum states and calculating expectation values. -These tasks motivated the design of _the first two Qiskit primitives: Sampler and Estimator_. - -In short, the computational model introduced by the Qiskit primitives moves quantum programming one step closer -to where classical programming is today, where the focus is less on the hardware details and more on the results -you are trying to achieve. - -## Implementation of Qiskit primitives - -The Qiskit primitives are defined by open-source primitive base-classes, from -which different providers can derive their own Sampler and Estimator implementations. Among the implementations -using Qiskit, you can find reference primitive implementations for local simulation in the `qiskit.primitives` module. -Providers like IBM’s Qiskit Runtime enable access to appropriate systems through native implementations of -their own primitives. - -## Benefits of Qiskit primitives - -For Qiskit users, primitives allow you to write quantum code for a specific system without having to explicitly -manage every detail. In addition, because of the additional layer of abstraction, you may be able to more easily -access advanced hardware capabilities of a given provider. For example, with Qiskit Runtime primitives, -you can leverage the latest advancements in error mitigation and suppression by toggling options such as -`optimization_level` and `resilience_level`, rather than building your own implementation of these techniques. - -For hardware providers, implementing primitives natively means you can provide your users with a more “out-of-the-box” -way to access your hardware features. It is therefore easier for your users to benefit from your hardware's -best capabilities. - -## Estimator - -The Estimator primitive computes expectation values of observables with respect to states prepared by quantum circuits. -The Estimator receives circuit-observable pairs (with the observable expressed as a -weighted sum of Pauli operators) as inputs, and returns the computed expectation values per pair, as well as their -variances. Different Estimator implementations support various configuration options. The circuits -can be parametrized, as long as the parameter values are also provided as input to the primitive. - -## Sampler - -The Sampler primitive samples from the classical output registers resulting from execution of quantum circuits. -For this reason, the inputs to the Sampler are (parametrized) quantum circuits, for which it returns the corresponding -quasi-probability distributions of sampled bitstrings. Quasi-probability distributions are similar to regular -probabilities, except they may include negative values, which can occur when using certain error mitigation techniques. - -## How to use Qiskit primitives - -The `qiskit.primitives` module enables the development of primitive-style quantum programs and was specifically -designed to simplify switching between different types of systems. The module provides three separate classes -for each primitive type: - -1. `Sampler` and `Estimator` - -These classes are reference implementations of both primitives and use Qiskit’s built-in simulator. They leverage Qiskit’s `quantum_info` module in the background, producing results based on ideal statevector simulations. - -2. `BaseSampler` and `BaseEstimator` - -These are abstract base classes that define a common interface for implementing primitives. All other classes in the `qiskit.primitives` module inherit from these base classes, and developers should use these if they are interested in developing their own primitives-based execution model for a specific system provider. These classes may also be useful for those who want to do highly customized processing and find the existing primitives implementations too simple for their needs. - -3. `BackendSampler` and `BackendEstimator` - -If a provider does not support primitives natively, you can use these classes to “wrap” any system into a primitive. Users can write primitive-style code for providers that don’t yet have a primitives-based interface. These classes can be used just like the regular Sampler and Estimator, except they should be initialized with an additional `backend` argument for selecting which system to run on. - -The Qiskit Runtime primitives provide a more sophisticated implementation (such as with error mitigation) as a cloud-based service. - -## Next steps - - - - Read [Get started with primitives](primitives-get-started) to implement primitives in your work. - - Review detailed [primitives examples.](primitives-examples) - - Practice with primitives by working through the [Cost function lesson](https://learning.quantum.ibm.com/course/variational-algorithm-design/cost-functions#primitives) in IBM Quantum Learning. - diff --git a/translations/ja/run/processor-types.mdx b/translations/ja/run/processor-types.mdx deleted file mode 100644 index c780a659e5..0000000000 --- a/translations/ja/run/processor-types.mdx +++ /dev/null @@ -1,126 +0,0 @@ ---- -title: Processor types -description: Information on IBM Quantum hardware and features of different processors ---- - -# Processor types - -Processor types are named for the general technology qualities that go into builds, consisting of the family and revision. Family (e.g., Falcon) refers to the size and scale of circuits possible on the chip. This is primarily determined by the number of qubits and the connectivity graph. Revisions (e.g., r1) are design variants within a given family, often leading to performance improvements or tradeoffs. Segments are comprised of chip sub-sections, and are defined within a given family. For instance, segment H of a Falcon consists of seven qubits arranged as seen in the illustration below. Segment H on a Hummingbird, if implemented, could be entirely different. - -![Illustration of segment H on a Falcon processor.](/images/run/processor-types/seg-h.png "Illustration of segment H on a Falcon processor") - -## Heron - -![Heron processor icon](/images/run/processor-types/heron.svg) - -Quantum volume: 512 - -At 133 qubits, Heron is an [Eagle](#eagle)-sized upgrade to [Egret](#egret) that pulls in substantial innovations in signal delivery that were previously deployed in [Osprey](#osprey). The signals required to enable the fast, high-fidelity two-qubit and single-qubit control are delivered with high-density flex cabling. - -- [View available Heron systems](https://quantum.ibm.com/services/resources?tab=systems&type=Heron) - -- [Native gates and operations](native-gates): `cz, id, delay, measure, reset, rz, sx, x, if_else, for_loop, switch_case` - -## Osprey - -![Osprey processor icon](/images/run/processor-types/osprey.svg) - -Osprey is nearly quadruple the size of Eagle at 433 qubits. The larger chip sizes have required further enhancements to device packaging, as well as custom flex cabling in the cryostat to fit the greater I/O requirements within the same wiring footprint. - -- [View available Osprey systems](https://quantum.ibm.com/services/resources?tab=systems&type=Osprey) - -## Eagle - -![Eagle processor icon](/images/run/processor-types/eagle.svg) - -Quantum volume: 128 - -At 127 qubits, the Eagle processor family incorporates more scalable packaging technologies than previous generations. In particular, signals pass through multiple chip layers so as to allow for high-density I/O without sacrificing performance. - -See [this blog post](https://research.ibm.com/blog/127-qubit-quantum-processor-eagle) for more about the Eagle processor family. - -- [View available Eagle systems](https://quantum.ibm.com/services/resources?tab=systems&type=Eagle) - -- [Native gates and operations](native-gates): `ecr, id, delay, measure, reset, rz, sx, x, if_else, for_loop, switch_case` - - - `r3` (December 2022) Eagle r3 is a version of the 127-qubit processor with enhanced coherence properties but otherwise similar design parameters to Eagle r1. - - `r1` (December 2021) At the qubit level, Eagle r1 uses similar design elements and parameters to Falcon r5.11, enabling similarly fast readout. Gate speeds and error rates should also be similar. - - - -## Hummingbird - -![Hummingbird processor icon](/images/run/processor-types/hummingbird.svg) - -Quantum volume: 128 - -Using a heavy-hexagonal qubit layout, the Hummingbird family allows up to 65 qubits. - -- [View available Hummingbird systems](https://quantum.ibm.com/services/resources?tab=systems&type=Hummingbird) - - - `r3` (December 2021) This version of Hummingbird with 65 qubits has enhanced coherence properties. - - `r2` (August 2020) Released in 3Q 2020, this revision contains 65 qubits. Improvements previously demonstrated on Falcons, like readout multiplexing, space-efficient qubit-qubit couplers, and flip-chip technology enhanced the capabilities of the Hummingbird family and led to a scalable 65Q design. - - `r1` (October 2019) This revision is the first attempt at supporting a large (>50) number of qubits on a chip. - - - -## Egret - -![Egret processor icon](/images/run/processor-types/egret.svg) - -Quantum volume: 512 - -Egret brings the innovations of tunable couplers onto a 33-qubit platform, resulting in faster and higher-fidelity two-qubit gates. - -- [View available Egret systems](https://quantum.ibm.com/services/resources?tab=systems&type=Egret) - - - `r1` (December 2022) The first realization of the Egret processor has demonstrated the highest Quantum Volume among IBM Quantum systems and a substantial improvement in two-qubit gate error rates ([https://research.ibm.com/blog/quantum-volume-256](https://research.ibm.com/blog/quantum-volume-256)). This new quantum processor boasts a substantial speedup and fidelity improvement (many gates approaching 99.9%) in two-qubit gates while reducing spectator errors. - - -## Falcon - -![Falcon processor icon](/images/run/processor-types/falcon.svg) - -Quantum volume: 128 - -The Falcon family of devices offers a valuable platform for medium-scale circuits, and also serves as a valuable platform for demonstrating performance and scalability improvements before they’re pushed onto the larger devices. - -- [View available Falcon systems](https://quantum.ibm.com/services/resources?tab=systems&type=Falcon) - -- [Native gates and operations](native-gates): `cx, id, delay, measure, reset, rz, sx, x, if_else, for_loop, switch_case` - - - `r8` (September 2021) In addition to the features of r5.11, Falcon r8 has enhanced coherence properties. - - `r5.11` (January 2021) In addition to the filtering in r5.10, design improvements target speed-ups in qubit state readout. An essential requirement for quantum error correction demonstrations is fast readout. To enable this, the paradoxical requirements of stronger readout coupling yet protection from qubit relaxation is accomplished with advanced filtering techniques and fine tuning of various components’ couplings on-chip. This revision, combined with the latest in control electronics, enables mid-circuit measurements. - - `r5.10` (December 2020) This revision pioneered advanced on-chip filtering techniques that eventually led to the faster qubit state readout in r5.11. The filters reduce qubit relaxation and preserve lifetime. Additionally, space-saving “direct-couplers” are used to couple qubits together, essential for scaling to larger bird families. - - `r4` (April 2020) Adding to the capabilities of r1, the r4 is the first revision in the large birds to deploy multiplexed readout. Previous designs required an independent signal pathway on the chip, as well as in the dilution refrigerator and control electronics for qubit state readout. - - `r1` (February 2020) The first generation of the Falcon family, r1 is a 28Q offering independent readout, contrasting to the multiplexed configurations in the other revisions. The flip-chip technology allowed scaling to a larger number of qubits. The heavy-hex connectivity graph is employed for the first time here, optimal for our two-qubit gate of choice, cross-resonance. - - - -## Canary - -![Canary processor icon](/images/run/processor-types/canary.svg) - -The Canary family comprises small designs containing anywhere from 5 to 16 qubits. It uses an optimized 2D lattice. That is, all of the qubits and readout resonators are on the same layer. - -- [View available Canary systems](https://quantum.ibm.com/services/resources?tab=systems&type=Canary) - - - `r1.3` (December 2019) A stripped-down offering containing only a single qubit. - - `r1.1` (May 2017) Using the similar design processes to r1, r1.1 extends the design to include 16 qubits. - - `r1` (January 2017) Initial 5Q design with resonators and qubits all on a single lithography layer. - - diff --git a/translations/ja/run/quantum-serverless.mdx b/translations/ja/run/quantum-serverless.mdx deleted file mode 100644 index dd78a25b6d..0000000000 --- a/translations/ja/run/quantum-serverless.mdx +++ /dev/null @@ -1,167 +0,0 @@ ---- -title: Run workloads remotely with Quantum Serverless -description: Run workloads remotely with Quantum Serverless ---- - -# Run workloads remotely with Quantum Serverless - -Premium users can build, deploy, and run their workloads remotely on classical compute made available through the IBM Quantum Platform. - -Try out the tutorials in [IBM Quantum Learning](https://learning.quantum.ibm.com/catalog/tutorials?topics=qiskit-patterns) (note: these are accessible in the Premium Plan once you have logged into your IBM Quantum account) and explore more of the features of Quantum Serverless in the [documentation](https://qiskit-extensions.github.io/quantum-serverless/). - - - This is an experimental feature, subject to change. - - -## Qiskit Patterns with Quantum Serverless - -Creating utility-scale quantum applications generally requires a variety of compute resource requirements. You can use Quantum Serverless to easily submit quantum workflows for remote, managed execution. These quantum workflows can typically be implemented within a common pattern, called a Qiskit Pattern. A Qiskit Pattern is an intuitive, repeatable set of steps for implementing a quantum computing workflow. - -Steps in a Qiskit Pattern: - -1. Map classical inputs to a quantum problem -2. Optimize problem for quantum execution -3. Execute using Qiskit Runtime primitives -4. Post-process, return result in classical format - -Once you have built a Qiskit Pattern, you can use Quantum Serverless to deploy it and submit it for managed execution. Overall, the process of creating quantum software and submitting it for managed execution on a remote cluster can be broken down into three steps: - -1. Build the Qiskit Pattern -2. Deploy to the Quantum Serverless -3. Run remotely on Quantum Serverless - -## Build a Qiskit Pattern - -Here is an example of computing the expectation value using the Qiskit Runtime Estimator primitive. This Python script should be saved in your working directory. (Warning! All contents of the working directory will be shipped to the cluster for execution.) - -```python -# source_files/my_qiskit_pattern.py - -from qiskit.transpiler.preset_passmanagers import generate_preset_pass_manager -from qiskit.circuit.random import random_circuit -from qiskit.quantum_info import SparsePauliOp -from qiskit_ibm_runtime import QiskitRuntimeService, Estimator -from quantum_serverless import save_result - -service = QiskitRuntimeService() -backend = service.least_busy(simulator=False) - -# Step 1: Map quantum circuits and operators -abstract_circuit = random_circuit(2, 2, seed=1234) -observable = SparsePauliOp("IY") - -# Step 2: Optimize the circuit for quantum execution -pm = generate_preset_pass_manager(optimization_level=3, backend=backend) -target_circuit = pm.run(abstract_circuit) -target_observable = observable.apply_layout(target_circuit.layout) - -# Step 3: Execute the target circuit -estimator = Estimator(backend) -job = estimator.run(target_circuit, target_observable) -result = job.result() - -# Step 4: Postprocess the results -print(result) - -# save results of program execution -# note: saved items must be serializable -save_result(result.values) -``` - -Please refer to our guides on how to configure your pattern to [accept input arguments](https://qiskit-extensions.github.io/quantum-serverless/getting_started/basic/02_arguments_and_results.html) and [handle external python dependencies](https://qiskit-extensions.github.io/quantum-serverless/getting_started/basic/03_dependencies.html). - -After creating a workflow, authenticate to the `IBMServerlessProvider` with your IBM Quantum token, which can be obtained from your [IBM Quantum account](https://quantum.ibm.com/account), and upload the script. - -```python -# Authenticate to the IBM serverless provider -from quantum_serverless import IBMServerlessProvider -serverless = IBMServerlessProvider("YOUR_IBM_QUANTUM_TOKEN") - -# Deploy the pattern -from quantum_serverless import QiskitPattern -serverless.upload( - QiskitPattern( - title="My-Qiskit-Pattern", - entrypoint="my_qiskit_pattern.py", - working_dir="./source_files/" - ) -) -``` - -## Run a Qiskit Pattern remotely on Quantum Serverless - -Finally, the pattern is ready to run remotely. - -```python -# Run pattern remotely -job = serverless.run("My-Qiskit-Pattern") - -# Retrieve status, logs, results -job.status() -job.logs() -job.result() -``` - -## Migration guide - -Qiskit Runtime custom programs can be easily migrated to Quantum Serverless via this [migration guide](https://qiskit-extensions.github.io/quantum-serverless/migration/migration_from_qiskit_runtime_programs.html). - -## Resource management (alpha) - -Premium Plan users have access to an alpha release of resource management functionality through Quantum Serverless. This enables automatic selection of quantum hardware for your workloads. - -The example below demonstrates how to use `IBMQPUSelector` to automate the process of selecting which qubits will be used from a set of available systems. This illustrates how the selectors can be used within a four-step Qiskit Pattern. - -Instead of manually selecting a system, step 2 of the Qiskit Pattern optimizes the circuits for execution by using the QPU selectors from Quantum Serverless to automatically allocate a system according to desired criteria. Here, `IBMLeastNoisyQPUSelector` finds the system, among the ones available to you through your IBM Quantum account, that yields the least-noisy qubit subgraph for the input circuit. You can also use the `IBMLeastBusyQPUSelector` to find a system that can support the circuit width but with the shortest queue. - -For each `IBMQPUSelector`, the context is set in the constructor. All `IBMQPUSelectors` require Qiskit Runtime credentials. The `IBMLeastNoisyQPUSelector` requires a circuit and transpile options specifying how the circuit should be optimized for each system when determining the most optimal QPU and qubit layout. All `IBMQPUSelector`s implement a `get_backend` method, which retrieves the optimal system with respect to the given context. The `get_backend` method also allows for additional filtering of the systems. It is implemented using the same interface as the [QiskitRuntimeService.backends method](/api/qiskit-ibm-runtime/qiskit_ibm_runtime.QiskitRuntimeService#backends). - -Then, in step 3 of the pattern, you execute the target circuit on the system chosen by the selector. Since you optimized your circuit for the system in step 2, you can skip transpilation in the primitives by setting `skip_transpilation=True`. - -```python -# source_files/my_qiskit_pattern_resource_management.py - -from qiskit_ibm_runtime import QiskitRuntimeService, Session, Sampler, Options -from qiskit.circuit.random import random_circuit -from quantum_serverless_tools.selectors import IBMLeastNoisyQPUSelector - -service = QiskitRuntimeService() - -# Step 1: Map quantum circuits and operators -abstract_circuit = random_circuit( - num_qubits=5, depth=4, measure=True, seed=1234 -) - -# Step 2: Optimize the circuit for quantum execution with automatically selected system -selector = IBMLeastNoisyQPUSelector( - service, circuit=abstract_circuit, transpile_options={"optimization_level": 3} -) -backend = selector.get_backend(min_num_qubits=127) -target_circuit = selector.optimized_circuit - -## Alternatively, one can automatically select a system according to most available: -# from qiskit.transpiler.preset_passmanagers import generate_preset_pass_manager -# from quantum_serverless_tools.selectors import IBMLeastBusyQPUSelector -# -# backend = IBMLeastBusyQPUSelector(service).get_backend(min_num_qubits=127) -# pm = generate_preset_pass_manager(optimization_level=3, backend=backend) -# target_circuit = pm.run(abstract_circuit) - -# Step 3: Execute the target circuit -with Session(service, backend=backend) as session: - sampler = Sampler( - options=Options( - execution={"shots": 1024}, transpilation={"skip_transpilation": True} - ) - ) - result = sampler.run(target_circuit).result().quasi_dists[0] - -# Step 4: Postprocess the results -print(result) - -# save results of program execution -# note: saved items must be serializable -save_result(result) -``` - -After creating this pattern, you can deploy and run it remotely with Quantum Serverless as described above. diff --git a/translations/ja/run/reserve-system-time.mdx b/translations/ja/run/reserve-system-time.mdx deleted file mode 100644 index c186965ddb..0000000000 --- a/translations/ja/run/reserve-system-time.mdx +++ /dev/null @@ -1,39 +0,0 @@ ---- -title: Reserve system time -description: Reserve time on a system as an IBM Quantum Network member ---- - -# Reserve system time - - - This feature is available only to organizations that belong to the [IBM Quantum Network](https://www.ibm.com/quantum/network). Educators and researchers can also make reservations and access other benefits by signing up for one of the special programs we offer. Go to the [Educators program sign-up form](https://quantum.ibm.com/programs/educators) or the [Researchers program sign-up form](https://quantum.ibm.com/programs/researchers) for more information. - - -Under standard operating conditions, IBM Quantum systems accept jobs according to the dynamic priority assigned by the [fair-share queuing system](fair-share-queue). - -![A job enters the queue and joins other jobs from various instances. The job that entered the queue first exits the queue and is sent to a backend.](/images/run/normal_queue_with_providers1.jpg "Normal device-queuing operation") - -While this system attempts to balance workloads for the benefit of all users, there are often use cases where you may require limited-time access at a higher priority level. IBM Quantum provides an option to gain elevated access to specific systems over a specified period of time: **Dedicated mode**. Depending on your hub configuration, if you are a hub admin or group admin, you can reserve time in advance on a particular system with the **Systems Reservations** tool. - -Example use cases for dedicated mode include the following: - -- In-class demonstrations -- Iterative and near-time compute algorithms -- Jobs involving detailed noise analysis -- Time-critical projects - - - System time accumulated while using system reservations counts toward an instance’s fair-share allocation amount. - - -If you need sole access to a specific quantum system for a given instance, select dedicated mode when making a reservation (only available to members of the [IBM Quantum Network](https://www.ibm.com/quantum/network)). - -![A job enters the queue and joins other jobs from various instances. The jobs that are sent from Instance 2 are all processed in their own dedicated queue while jobs from other instances wait in the normal queue.](/images/migration/dedicated_queue1.jpg "Instance #2 in dedicated mode") - -The standard fair-share queue is always blocked when the device is in dedicated mode. - -![A job enters the queue and joins other jobs from various instances. There are no jobs from Instance 2. Because the backend is in dedicated mode for instance 2, no jobs are processed. All jobs wait in the normal queue.](/images/migration/dedicated_queue_no_jobs1.jpg "Dedicated mode with no dedicated jobs") - -Dedicated mode with no dedicated jobs from instance #2 leaves the device idle. - -This allows users to implement algorithms where input circuits are conditioned on previous results, such as iterative and near-time compute methods, without having to wait for other users’ results to process. If the dedicated instance has multiple users, then a single user’s jobs may be queued behind those of other users in the instance, as the execution is first-in first-out. diff --git a/translations/ja/run/retired-systems.mdx b/translations/ja/run/retired-systems.mdx deleted file mode 100644 index 02e1794d66..0000000000 --- a/translations/ja/run/retired-systems.mdx +++ /dev/null @@ -1,92 +0,0 @@ ---- -title: Retired systems -description: A list of IBM Quantum systems that are now retired ---- - -# Retired systems - -The following IBM Quantum® systems have been retired. For the full list of available systems, see the [Compute resources page.](https://quantum.ibm.com/services/resources?services=systems) By default, the information is shown in the card view, but you can use the view switchers (![view-switcher icon](/images/run/view-switcher1.png)) at the top right to change to a sortable table view. - - - To retrieve jobs from a retired system, see [these instructions.](#retrieve) - - -| System name | Qubit count | Retirement date (Year - month - day) | -| ----------------- | ----------- | ------------------------------------ | -| ibm_ithaca | **65** | 2024-01-24 | -| ibm_nairobi | **7** | 2023-11-28 | -| ibm_lagos | **7** | 2023-11-28 | -| ibm_perth | **7** | 2023-11-28 | -| ibm_auckland | **27** | 2023-11-09 | -| ibmq_guadalupe | **16** | 2023-10-27 | -| ibmq_lima | **5** | 2023-09-26 | -| ibmq_belem | **5** | 2023-09-26 | -| ibmq_quito | **5** | 2023-09-26 | -| ibmq_manila | **5** | 2023-09-26 | -| ibmq_jakarta | **7** | 2023-09-26 | -| ibm_seattle | **433** | 2023-09-07 | -| ibm_washington | **127** | 2023-06-03 | -| ibmq_oslo | **7** | 2023-05-04 | -| ibmq_geneva | **27** | 2023-05-04 | -| ibmq_montreal | **27** | 2023-04-11 | -| ibmq_toronto | **27** | 2023-04-11 | -| ibmq_armonk | **1** | 2022-07-07 | -| ibmq_brooklyn | **65** | 2022-06-28 | -| ibmq_bogota | **5** | 2022-06-17 | -| ibmq_santiago | **5** | 2022-06-17 | -| ibmq_casablanca | **7** | 2022-03-02 | -| ibmq_sydney | **27** | 2022-01-11 | -| ibmq_dublin | **27** | 2021-11-16 | -| ibmq_manhattan | **65** | 2021-09-22 | -| ibmq_5_yorktown | **5** | 2021-08-09 | -| ibmq_16_melbourne | **15** | 2021-08-09 | -| ibmq_paris | **27** | 2021-06-30 | -| ibmq_rome | **5** | 2021-06-30 | -| ibmq_athens | **5** | 2021-06-30 | -| ibmq_berlin | **27** | 2020-12-31 | -| ibmq_boeblingen | **20** | 2021-01-31 | -| ibmq_ourense | **5** | 2021-01-15 | -| ibmq_vigo | **5** | 2021-01-15 | -| ibmq_valencia | **5** | 2021-01-15 | -| ibmq_rochester | **53** | 2020-10-31 | -| ibmq_cambridge | **28** | 2020-10-31 | -| ibmq_almaden | **20** | 2020-08-31 | -| ibmq_singapore | **20** | 2020-08-31 | -| ibmq_johannesburg | **20** | 2020-08-31 | -| ibmq_essex | **5** | 2020-08-31 | -| ibmq_burlington | **5** | 2020-08-31 | -| ibmq_london | **5** | 2020-08-31 | - - -## Retrieve a job from a retired system - -To retrieve jobs from a retired system, you can use code similar to this, depending on the provider from which the job was sent: - -### For a job run from IBM Provider - -```python -from qiskit_ibm_provider import IBMProvider - -provider = IBMProvider(instance="hub/group/project") - -#If you want to retrieve a list of jobs -jobs = provider.backend.jobs(backend_name=) - -#If you want to retrieve a specific job you have the id for -job = provider.backend.retrieve_job() -``` - -### For a job run from Qiskit Runtime - -```python -from qiskit_ibm_runtime import QiskitRuntimeService - -# Load your IBM Quantum account(s). Replace "hub/group/project" with your desired instance -service = QiskitRuntimeService(channel="ibm_quantum", instance="hub/group/project") - -# Retrieve a single job by id -job = service.job() - -# Retrieve a batch of jobs. Filtering options can be found in the QiskitRuntimeService.jobs api reference -jobs = service.jobs(backend_name=) -``` diff --git a/translations/ja/run/run-jobs-batch.mdx b/translations/ja/run/run-jobs-batch.mdx deleted file mode 100644 index ab5855f951..0000000000 --- a/translations/ja/run/run-jobs-batch.mdx +++ /dev/null @@ -1,37 +0,0 @@ ---- -title: Run jobs in a batch -description: How to run jobs in batch mode. ---- - -# Run jobs in a batch - -Batch mode can shorten processing time if all jobs can be provided at the outset. If you want to submit iterative jobs, use [sessions](sessions) instead. Using batch mode has these benefits: - -- The jobs' classical computation, such as compilation, is run in parallel. Thus, running multiple jobs in a batch is significantly faster than running them serially. -- There is no delay between job, which can help avoid drift. - - - When batching, jobs are not guaranteed to run in the order they are submitted. - - -![This diagram illustrates jobs submitted in a batch. It shows five jobs, numbered 0 through 4, in a queue. The jobs are a mix of Estimator and Sampler.](/images/run/batch.png "Figure 1: Batch execution") - -The following example shows how you can divide up a long list of circuits into multiple jobs and run them as a batch to take advantage of the parallel processing. - -```python -jobs = [] -with Batch(backend) as batch: - estimator = Estimator(batch) - # calls within this context are part of the batch. - for obs_set in observable_sets: - jobs.append(estimator.run(circuits, observables=obs_set)) -``` - -For a full example, see the following tutorials: - -## Next steps - - - - Try the [CHSH inequality](https://learning.quantum.ibm.com/tutorial/chsh-inequality) tutorial. - - Try the [Grover's algorithm](https://learning.quantum.ibm.com/tutorial/grovers-algorithm) tutorial. - diff --git a/translations/ja/run/run-jobs-in-session.mdx b/translations/ja/run/run-jobs-in-session.mdx deleted file mode 100644 index 9d77d25b41..0000000000 --- a/translations/ja/run/run-jobs-in-session.mdx +++ /dev/null @@ -1,180 +0,0 @@ ---- -title: Run jobs in a session -description: Run a job in a session ---- - -# Run jobs in a session - -There are several ways to set up and use [sessions](sessions). It is recommended that you do not run a session with a single job in it. - -## Set up to use sessions - -Before starting a session, you must [set up Qiskit Runtime](../start/install) and initialize it as a service: - -```python -from qiskit_ibm_runtime import QiskitRuntimeService, Session, Sampler, Estimator - -service = QiskitRuntimeService() -``` - -## Open a session - -You can open a runtime session by using the context manager `with Session(...)` or by initializing the `Session` -class. The session starts when its first job begins execution. - - - If the first session job is canceled, subsequent session jobs will all fail. - - -**Session class** - -```python -from qiskit_ibm_runtime import Session, Sampler, Estimator - -session = Session(service=service, backend="ibmq_qasm_simulator") -estimator = Estimator(session=session) -sampler = Sampler(session=session) -``` - -**Context manager** - -The context manager automatically opens and closes the session. - -```python -with Session(service=service, backend="ibmq_qasm_simulator"): - estimator = Estimator() - sampler = Sampler() -``` - -When you start a session, you must specify a system or simulator. This can be done by specifying its name or by passing a `backend` object. - -**Specify a system or simulator by name** - -```python -service = QiskitRuntimeService() -with Session(service=service, backend="ibmq_qasm_simulator"): - ... -``` - -**Pass a `backend` object** - -```python -backend = service.get_backend("ibmq_qasm_simulator") -with Session(backend=backend): - ... -``` - - -## Session length - -You can define the maximum session timeout with the max_time parameter. This should exceed the longest job's execution time and be within the system's limits. - -```python -with Session(service=service, backend=backend, max_time="25m"): - ... -``` - -There is also an interactive timeout value (ITTL, or interactive time to live) that cannot be configured. If no session jobs are queued within that window, the session is temporarily deactivated. To determine a session's ITTL, follow the instructions in [Determine session details](#session-details) and look for the `interactive_timeout` value. - - -## Close a session - -A session automatically closes when it exits the context manager. With qiskit-ibm-runtime 0.13 or later releases, when the session context manager is exited, the session is put into "In progress, not accepting new jobs" status. This means that the session finishes processing all running or queued jobs until the maximum timeout value is reached. After all jobs are completed, the session is immediately closed. This allows the scheduler to run the next job without waiting for the session interactive timeout, thereby reducing the average job queuing time. You cannot submit jobs to a closed session. - -```python -with Session(service=service, backend=backend) as session: - estimator = Estimator() - job1 = estimator.run(...) - job2 = estimator.run(...) - -# The session is no longer accepting jobs but the submitted job will run to completion. -result = job1.result() -result2 = job2.result() -``` - -If you are not using a context manager, it's good practice to manually close the session once all the necessary results have been retrieved. With qiskit-ibm-runtime 0.13 or later releases, when a session is closed with `session.close()`, it no longer accepts new jobs, but the already submitted jobs will still run until completion and their results can be retrieved. Prior to qiskit-ibm-runtime 0.13, when a session is closed with `session.close()`, any jobs that are already running continue to run, but any queued jobs remaining in the session are put into a failed state. - -```python -session = Session(backend=backend) -estimator = Estimator(session=session) -job1 = estimator.run(...) -job2 = estimator.run(...) -print(f"Result1: {job1.result()}") -print(f"Result2: {job2.result()}") - -# Manually close the session. Running and queued jobs will run to completion. -session.close() -``` - - -Note that when you cancel the root job in the session (the job which has the same ID as the session), the session closes and fails any remaining queued jobs in the session. - - - -## Cancel a session - -Canceling a session immediately closes it, failing all queued jobs and preventing new submission. Use the `session.cancel()` method to cancel a session. Any jobs that are already running continue to run but queued jobs are put into a failed state and no further jobs can be submitted to the session. This is a convenient way to quickly fail all queued jobs within a session. - -```python -with Session(service=service, backend=backend) as session: - estimator = Estimator() - job1 = estimator.run(...) - job2 = estimator.run(...) - # You can use session.cancel() to fail all pending jobs, for example, - # if you realize you made a mistake. - session.cancel() -``` - -## Invoke multiple primitives in a session - -A session can handle multiple primitives, allowing for various operations within a single session. The following example shows how you can create both an instance of the `Sampler` class and one of the `Estimator` class and invoke their `run()` methods within a session. - -````python -from qiskit_ibm_runtime import Session, Sampler, Estimator - -with Session(backend=backend): - sampler = Sampler() - estimator = Estimator() - - result = sampler.run(sampler_circuit).result() - print(f">>> Quasi-probability distribution from the sampler job: {result.quasi_dists[0]}") - - result = estimator.run(circuit, observable).result() - print(f">>> Expectation value from the estimator job: {result.values[0]}") - ``` - -## Check session status - -You can query a session's status to understand its current state by using `session.status()` or on the Jobs page for your channel. - -Session status can be one of the following: - -- `Pending`: The session has not started or has been deactivated. The next session job needs to wait in the queue like other jobs. -- `In progress, accepting new jobs`: The session is active and accepting new jobs. -- `In progress, not accepting new jobs`: The session is active but not accepting new jobs. Job submission to the session is rejected, but outstanding session jobs will run to completion. The session is automatically closed once all jobs finish. -- `Closed`: The session's maximum timeout value has been reached or the session was explicitly closed. - - -## Determine session details - -For a comprehensive overview of a session's configuration and status, use the `session.details() method`. - -``` python -from qiskit_ibm_runtime import QiskitRuntimeService - -service = QiskitRuntimeService() - -with Session(service=service, backend="ibmq_qasm_simulator") as session: - estimator = Estimator() - job = estimator.run(circuit, observable) - print(session.details()) -```` - - You can also view session details on the [Quantum Platform Jobs page](https://quantum.ibm.com/jobs) or on the IBM Cloud Jobs page, which you access from your [Instances page](https://cloud.ibm.com/quantum/instances). - -## Next steps - - - - Try an example in the [Quantum approximate optimization algorithm (QAOA)](https://learning.quantum.ibm.com/tutorial/quantum-approximate-optimization-algorithm) tutorial. - - Review the [Session API](https://docs.quantum.ibm.com/api/qiskit-ibm-runtime/qiskit_ibm_runtime.Session) reference. - diff --git a/translations/ja/run/sessions.mdx b/translations/ja/run/sessions.mdx deleted file mode 100644 index 690c841304..0000000000 --- a/translations/ja/run/sessions.mdx +++ /dev/null @@ -1,85 +0,0 @@ ---- -title: Sessions -description: An overview of sessions and when to use them. ---- - -# Introduction to Qiskit Runtime sessions - -A session is a Qiskit Runtime feature that lets you efficiently run multi-job iterative workloads on quantum computers. Using sessions helps avoid delays caused by queuing each job separately, which can be particularly useful for iterative tasks that require frequent communication between classical and quantum resources. - - -The queuing time does not decrease for the first job submitted within a session. Therefore, a session does not provide any benefits when running a single job. Additionally, sessions do not work on simulators because simulators do not have a queue. - - -## Advantages of using sessions - -There are several benefits to using sessions: - -- Efficiency: Multiple jobs from a single algorithm run can be run sequentially without interruptions. -- Flexibility: You can submit jobs, check results, and submit new jobs within an active session without needing to start a new one. - -## How sessions work - -The basic workflow for sessions is as follows: - -1. The first job in a session enters the normal queue. -2. When the first job starts running, the _maximum timeout_ clock starts. -3. Subsequent jobs within the session are prioritized over others, reducing wait times. -4. The _interactive timeout_ runs between the jobs in a session. Every session has an interactive timeout value (ITTL, or interactive time to live). If there are no session jobs queued within the ITTL window, the session is temporarily deactivated and normal job selection resumes. A deactivated session can be resumed for the next job\* if the session has not reached its maximum timeout value. -5. If the maximum timeout value is reached, the sessions end and any remaining queued jobs fail. - - - - -* The job must go through the normal queue to reactivate the session. - - -To find the maximum session timeout value for a session, follow the instructions in [Determine session details](run-jobs-in-session#session-details). - - - There might be a limit imposed on the ITTL value depending on whether your hub is Premium, Open, and so on. - - -For instructions to start a session, see [Run a job in a session](run-jobs-in-session). - - -## End a session - -A session can end in the following circumstances: - -- The maximum timeout is reached, resulting in the cancelation of all queued jobs. -- The session is manually canceled, resulting in the cancelation of all queued jobs. -- The session is manually closed. The session stops accepting new jobs but continues to run queued jobs with priority. - -## Usage patterns - -Sessions run iteratively. This is useful for algorithms that require classical post-processing, where jobs submitted within the interactive time-out are processed immediately. If you want to submit jobs in a batch instead, see [Run jobs in a batch.](run-jobs-batch) - -Example: Run an iterative workload that uses the classical SciPy optimizer to minimize a cost function. In this model, SciPy uses the output of the cost function to calculate its next input. - -```python -def cost_func(params, ansatz, hamiltonian, estimator): - # Return estimate of energy from estimator - - energy = estimator.run(ansatz, hamiltonian, parameter_values=params).result().values[0] - return energy - -x0 = 2 * np.pi * np.random.random(num_params) - -session = Session(backend=backend) - -estimator = Estimator(session=session, options={"shots": int(1e4)}) -res = minimize(cost_func, x0, args=(ansatz, hamiltonian, estimator), method="cobyla") - -# Close the session because we didn't use a context manager. -session.close() -``` - -## Next steps - - - - Try an example in the [Quantum approximate optimization algorithm (QAOA)](https://learning.quantum.ibm.com/tutorial/quantum-approximate-optimization-algorithm) tutorial. - - Review the [Session API](https://docs.quantum.ibm.com/api/qiskit-ibm-runtime/qiskit_ibm_runtime.Session) reference. - diff --git a/translations/ja/run/system-information.mdx b/translations/ja/run/system-information.mdx deleted file mode 100644 index 7601cd7399..0000000000 --- a/translations/ja/run/system-information.mdx +++ /dev/null @@ -1,101 +0,0 @@ ---- -title: System information -description: Information about IBM Quantum system calibration, properties, and versioning ---- - -# System information - -IBM Quantum offers both open and premium access to a wide variety of quantum systems. All quantum systems deployed by IBM Quantum are based on superconducting qubit technology, as the control and scalability of this technology pave a clear path to achieving quantum advantage with these systems. You can see the full details of all IBM Quantum systems on the [Compute resources page.](https://quantum.ibm.com/services/resources?tab=systems) - -Note that the words "system" and "backend" are often used interchangeably. - -## System versioning - -Each system has a version number in the form X.Y.Z (major.minor.revision). A circuit compiled for a given system version number is guaranteed to run on that system. If the revision number changes, the circuit will continue to run. If the major or minor number changes, the circuit is not guaranteed to run, although it may do so. The conditions under which a version number may change are listed below: - -### Major version - -The major version will increment for system changes such as: - -- Sample changes. -- Major changes to the control electronics. -- Moving the system to a new location, if significant behavior changes result. - -### Minor version - -The minor version will increment for changes such as: - -- Warmup / cool-down cycles. -- Swapping out some electronics, if the replacement appreciably affects operation. -- Changing the direction of a controlled-NOT gate. -- Dropping a gate for some duration of time due to calibration issues, and corrections cannot readily be done in software. - -### Revision version - -The revision version number will increment for fixes that do not break the existing compiled circuit. These changes include: - -- Manual calibrations to improve fidelities. -- Small electronics changes that don’t affect operation. -- System software updates. - -## System configuration values - -The following is a subset of system configuration values available in IBM Quantum and from [Qiskit](/api/qiskit/qiskit.providers.models.BackendConfiguration). - -These values are shown on both the Systems and Simulators tabs of the [Compute resources page](https://quantum.ibm.com/services/resources?services=systems) and the details page for each system. - -- **Name** - The unique name assigned to a specific quantum system or simulator. Systems hosted on IBM Cloud® have names that begin with `ibmq_*` (older systems) or `ibm_*` (newer systems). All quantum systems are given a city name, e.g., `ibmq_johannesburg`. This name does not indicate where the actual quantum system is hosted. They are named after IBM locations around the world. -- **Qubits** - The number of qubits in a system. For physical quantum systems, this is the number of physical qubits in the device. For simulators, this number need not be uniquely defined, and instead can depend on the simulation method and/or the amount of memory available. -- **EPLG** - Error per layered gate in a chain of 100 qubits. Error per layered gate measures the average gate process error in a layered chain of $N$ qubits ($N$=100 here). It is derived from a similar quantity known as the layer fidelity (LF) where EPLG$\_{100}$ = 1-LF$^{\\frac{1}{99}}$ and layer fidelity is the process fidelity of the layered chain of $N$ qubits. For details, see the paper [Benchmarking quantum processor performance at scale](https://arxiv.org/abs/2311.05933). -- **CLOPS** - Circuit layer operations per second, and also known as CLOPS_v, is a measure of how many layers of a Quantum volume circuit (virtual circuit) a QPU (quantum processing unit) can execute per unit of time. Find more information about this metric in the paper [Quality, Speed, and Scale: three key attributes to measure the performance of near-term quantum computers](https://arxiv.org/abs/2110.14108). -- **CLOPS_h** -- A measure of how many layers of a 100x100 circuit (hardware-aware circuit) a QPU (quantum processing unit) can execute per unit of time. -- **QV** - Quantum volume. This value is another metric for system quality based on passing a fidelity threshold for a set of random, square all-to-all connected circuits. Provided as the peak value measured on a system of devices. For details, see the paper [Validating quantum computers using randomized model circuits](https://arxiv.org/abs/1811.12926). -- **Status** - The system status. -- **Total pending jobs** - The total number of jobs that you have submitted to this system. -- **Processor type** - Reflects the system topology and indicates the approximate qubit count. -- **Features** - Additional information about the system, such as whether it can be reserved and whether it supports pulse inputs. - -**Additional information available on the details page for each system** - -To access the details page, click the name of the system on the **Compute resources** page. - -- **Version** - The version number of a system in the form `major.minor.revision`. See [System versioning](#system-versioning) for details on how this number is assigned. - -- **Calibration data** (Available for systems only) - Download the calibration data as a .csv file or click the arrow to display the Topology diagram, Individual qubit readout graph, or the Calibration data table. You can customize the data that is shown, depending on the view you have open. For example, on the Topology diagram, you can choose the data you want to see for connections and qubits. The colored bars associated with the diagram or graph indicate the range that is shown, with the average value marked. The color maximum and minimum change depending on the system. - - > - **Topology diagram** or **coupling map** - A diagram that indicates the pairs of qubits that support two-qubit gate operations between them. This is also called the coupling map or connectivity. Qubits are represented as circles and the supported two-qubit gate operations are displayed as lines connecting the qubits. - > - **Individual qubit properties** - Shows the selected property for each qubit on the system. You can view the frequency, T1, T2, Anharmonicity, probability measurements, error rates, and so on. - -- **Your access instance** - Instances that you can use. Click the arrow on the right to expand or collapse this section. For each instance, you can see the following information: - - - **Max shots** - The maximum number of times you can execute a single circuit on a system. The number of shots taken determines the precision of the output probability distribution over repeated executions. - - **Max circuits** - The maximum number of quantum circuits that you can submit to this system at one time. - - **Max qubits per pulse gate** - The maximum number of qubit arguments allowed to a gate. - - **Max channels per pulse gate** - The maximum number of channels you can refer to within a pulse schedule. Typically each qubit is associated with a drive channel, a measure channel, an acquisition channel, and then auxiliary control channels for things like cross resonance. - - **Usage** - Click the link to see the jobs that you have run on this system. - -## View system configuration - -View system configuration values by selecting a system on the [Compute resources page.](https://quantum.ibm.com/services/resources?services=systems) The three tabs in the Calibration data section let you choose how to view the calibration data; the Map view tab is automatically selected. - -### Expanded card for a sample system - -![An expanded card for a sample system.](/images/run/exp-card.png "Expanded card for a sample system") - -### System tabs - -Click the download icon in the upper right of any tab to download a CSV file of calibration data. - -**Graph view tab.** - -![The graph view tab shows the calibration data as a graph.](/images/run/graph-view1.png "Graph view tab") - -**Table view tab** - -![The table view tab shows the calibration information as numerical data.](/images/run/table-view.png "Table view tab") - -## Find system information from other channels - -To find your available systems and simulators on **IBM Cloud**, view the [IBM Cloud Compute resources page.](https://cloud.ibm.com/quantum/resources/your-resources) You must be logged in to see your available compute resources. You are shown a snapshot of each system. To see full details, click the system name. You can also search for systems from this page. - -To find your available systems and simulators on **IBM Quantum Platform**, view the [Platform Compute resources page.](https://quantum.ibm.com/services/resources) You are shown a snapshot of each system. To see full details, click the system name. You can also sort, filter, and search from this page. diff --git a/translations/ja/start/_toc.json b/translations/ja/start/_toc.json deleted file mode 100644 index 69fe285478..0000000000 --- a/translations/ja/start/_toc.json +++ /dev/null @@ -1,40 +0,0 @@ -{ - "title": "開始", - "collapsed": true, - "children": [ - { - "title": "はじめに", - "url": "/start" - }, - { - "title": "インストール", - "children": [ - { - "title": "Qiskit のインストールとセットアップ", - "url": "/start/install" - }, - { - "title": "IBM 量子チャンネルの選択とセットアップ", - "url": "/start/setup-channel" - } - ] - }, - { - "title": "Hello World", - "url": "/start/hello-world" - }, - { - "title": "高度なセットアップ", - "children": [ - { - "title": "ソースから Qiskit をインストール", - "url": "/start/install-qiskit-source" - }, - { - "title": "Qiskit をローカルで構成", - "url": "/start/configure-qiskit-local" - } - ] - } - ] -} diff --git a/translations/ja/start/configure-qiskit-local.mdx b/translations/ja/start/configure-qiskit-local.mdx deleted file mode 100644 index 80547bec15..0000000000 --- a/translations/ja/start/configure-qiskit-local.mdx +++ /dev/null @@ -1,60 +0,0 @@ ---- -title: Qiskit をローカルで構成 -description: ローカルマシンに Qiskit を構成します ---- - -# Qiskit をローカルで構成 - -Qiskit のインストールと起動が完了したら、Qiskit のデフォルトの動作を変更するために実行できるいくつかのオプションがあります。 - -## ユーザー構成ファイル - -Qiskit のローカル構成は主にユーザー構成ファイルで行われます。 これは Qiskit のデフォルトの設定を変更するために使用できる .ini 形式のファイルです。 - -例: - -```text -[default] -circuit_drawer = mpl -circuit_mpl_style = default -circuit_mpl_style_path = ~:~/.qiskit -state_drawer = hinton -transpile_optimization_level = 3 -parallel = False -num_processes = 15 -``` - -デフォルトでは、このファイルは `~/.qiskit/settings.conf` にありますが、QISKIT_SETTINGS 環境変数を使ってこのパスを上書きすることができます。 - -## 利用可能なオプション - -- `circuit_drawer`: 回路ドロワーのデフォルトのシステムを変更します。 `latex`、`mpl`、`text`、または `latex_source` に設定できます。 出力 kwarg が明示的に設定されていない場合、このドロワーシステムが使用されます。 -- `circuit_mpl_style`: 回路ドロワーの mpl 出力システムに使用されるデフォルトのスタイルシートです。 有効な値は `default` または `bw` です。 -- `circuit_mpl_style_path`: mpl 出力モードを使用しているときに、回路ドロワーが JSON スタイルシートを検索するために使用するパス。 -- `state_drawer`: 状態可視化の描画メソッドのデフォルトシステムを変更するために使用されます。 有効な値は `repr`、`text`、`latex`、`latex_source`、`qsphere`、`hinton`、または `bloch` です。 出力 kwarg が [qiskit.quantum_info.DensityMatrix.draw](../api/qiskit/qiskit.quantum_info.DensityMatrix#densitymatrix) メソッドに明示的に設定されていない場合、指定された出力メソッドが使用されます。 -- \`transpile_optimization_level: [qiskit.compiler.transpile](../api/qiskit/compiler#circuit-and-pulse-compilation-functions) および [qiskit.execute.execute](../api/qiskit/execute#executing-experiments) のデフォルトの最適化レベルを変更します。 0~3 の整数を指定します。 -- `parallel`: 並列での実行をサポートする演算で Python マルチプロセッシングが有効であるかどうか。 例えば、複数の [qiskit.circuit.QuantumCircuit](../api/qiskit/qiskit.circuit.QuantumCircuit#quantumcircuit) オブジェクトのトランスパイル。 この設定は、QISKIT_PARALLEL 環境変数で上書きできます。 ブール値を指定します。 -- `num_processes`: 並列実行が有効である場合に、並列演算に対して起動する並列プロセスの最大数。 この設定は、QISKIT_NUM_PROCS 環境変数で上書きできます。 0 より大きい整数値を指定します。 - - - * 回路ドロワーの設定は、[qiskit.circuit.QuantumCircuit.draw](../api/qiskit/qiskit.circuit.QuantumCircuit) および [qiskit.visualization.circuit_drawer](../api/qiskit/qiskit.visualization.circuit_drawer#qiskitvisualizationcircuit_drawer) に適用されます。 - * 状態可視化の描画メソッドは [qiskit.quantum_info.Statevector.draw](../api/qiskit/qiskit.quantum_info.Statevector#statevector) および [qiskit.quantum_info.DensityMatrix.draw](../api/qiskit/qiskit.quantum_info.Statevector#statevector) です。 - - -## 環境変数 - -Qiskit のデフォルトの動作を変更するには、以下の環境変数を設定してください。 - -- QISKIT_PARALLEL: Python マルチプロセッシングを有効にし、特定の演算を並列化します。例えば、Qiskit の複数の回路を使ったトランスパイルなどです。 ブール値を指定します。 -- QISKIT_NUM_PROCS: 並列実行が有効である場合に、並列演算に対して起動する並列プロセスの最大数。 0 より大きい整数値を指定します。 -- RAYON_NUM_THREADS: Qiskit でマルチスレッド演算を実行するためのスレッド数。 デフォルトでは、マルチスレッドコードは論理 CPU ごとに 1 つのスレッドを起動します。 Qiskit が使用するスレッド数を調整するには、これに整数値を設定します。 例えば、RAYON_NUM_THREADS=4 と設定すると、マルチスレッド関数に 4 つのスレッドが起動します。 -- QISKIT_FORCE_THREADS: マルチスレッドコードが常に複数のスレッドで実行することを指定します。 デフォルトでは、並列プロセスですでに実行している Qiskit のセクションで祭りスレッドコードを実行している場合、Qiskit は複数のスレッドを起動しない代わりに関数を順次に実行します。 これは、限られた CPU リソースの潜在的なオーバーロードを回避するためです。 ただし、マルチプロセスのコンテキストにおいても複数のスレッドの使用を強制する場合は、QISKIT_FORCE_THREADS=TRUE に設定します。 - -## 次のステップ - - - - [回路を構築](../build/)する方法を学習します。 - - [Hello World プログラムを実行](hello-world)します。 - - [Grover's Algorithm(グローバーのアルゴリズム)](https://learning.quantum.ibm.com/tutorial/grovers-algorithm)などのチュートリアルを試します。 - オープンソースの Qiskit SDK に貢献したい場合は、[貢献ガイドライン](https://github.com/Qiskit/qiskit/blob/main/CONTRIBUTING.md)をお読みください。 - diff --git a/translations/ja/start/hello-world.ipynb b/translations/ja/start/hello-world.ipynb deleted file mode 100644 index e0639b5e7b..0000000000 --- a/translations/ja/start/hello-world.ipynb +++ /dev/null @@ -1,301 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "id": "552b1077", - "metadata": {}, - "source": [ - "# Hello World\n", - "\n", - "この Hello World の例は、単純な量子プログラムを作成して量子系でそれを実行します。 インストールとセットアップがまだ完了していない場合は、[インストールとセットアップ](install)および [IBM Quantum プラットフォームのセットアップ](setup-channel#set-up-to-use-ibm-quantum-platform) の手順を実行してください。\n", - "\n", - "量子コンピューターの操作には、[Jupyter](https://jupyter.org/install) 開発環境を使用することをお勧めします。 推奨される追加の可視化サポートを必ずインストールしてください(`pip install qiskit[visualization]`)。また、zsh ユーザーは `'qiskit[visualization]'` を単一引用符で囲む必要があることに注意してください。\n", - "\n", - "量子コンピューティングの全般について学ぶには、IBM Quantum Learning の [Basics of quantum information(量子情報の基礎)コース](https://learning.quantum.ibm.com/course/basics-of-quantum-information) をご覧ください。\n", - "\n", - "\n", - "以下は、量子プログラムを書くための 4 つのステップです。\n", - "\n", - "1. 問題を量子ネイティブフォーマットにマッピングする\n", - "2. 回路および演算子を最適化する\n", - "3. 量子 primitive 関数を使って実行する\n", - "4. 結果を分析する\n", - "\n", - "## ステップ 1. 問題を量子ネイティブフォーマットにマッピングする\n" - ] - }, - { - "cell_type": "markdown", - "id": "85fe979e", - "metadata": { - "raw_mimetype": "text/restructuredtext" - }, - "source": [ - "量子プログラムでは、*量子回路*は量子命令を表すためのネイティブ形式であり、*演算子*は測定される観測量を表します。 回路を作成する際は通常、新しい [`QuantumCircuit`](/api/qiskit/qiskit.circuit.QuantumCircuit#quantumcircuit) オブジェクトを作成してから、そのオブジェクトに順に命令を追加します。\n" - ] - }, - { - "cell_type": "markdown", - "id": "21f7a26c", - "metadata": {}, - "source": [ - "以下のコードセルは、*ベル状態*という特定の 2 量子ビットのエンタングル状態を生成する回路を作成します。\n", - "\n", - "\n", - " Qiskit は $n^{th}$ の値が $1 \\ll n$ または $2^n$ である LSb 0 ビット番号付けを使用します。 紙面上では通常、最上位桁を左、最下位桁を右にして数字を書くため(世界のほとんどの地域で使用されているヒンドゥーアラビア記数法)、右から左に増加するインデックスでビットがラベル付けされています。 この LSb 0 方式は数学をより簡単にし、現代のデジタル電子工学においては最も一般的に使用されている方式ではありますが、一部の分野では逆の方式である MSb 0 も見られます。 $n$ ビットレジスターで $i^{th}$ インデックスを LSb 0 または MSb 0 に変換する場合は、単純に $i \\rightarrow n-i-1$ とすることができます。 これは作成者やソフトウェアパッケージによって異なるため、注意してください!\n", - "\n" - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "id": "930ca3b6", - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAPEAAACuCAYAAADnE+srAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAAANdElEQVR4nO3df0yUeWLH8fcMroICyoDpuIIiCpbfbGTZxXqmGLxbolg3rak9626ybvaPxmhSz9k/mtQ1aWrZmiY1Jlf9o9mkf1DatZu60Ow1V67RZV2KR7nzhF2UE48BxtsRlB+COjL9Y6ory6AMzq/vw+eVGMPM8zzfr5E3zzPP88xg8/v9fkTEWPZYT0BEXowiFjGcIhYxnCIWMZwiFjGcIhYxnCIWMZwiFjGcIhYxnCIWMZwiFjGcIhYxnCIWMZwiFjGcIhYxnCIWMZwiFjGcIhYxnCIWMZwiFjGcIhYxnCIWMZwiFjGcIhYxnCIWMZwiFjGcIhYxnCIWMZwiFjGcIhYxnCIWMZwiFjGcIhYxnCIWMZwiFjGcIhYxnCIWMdyiWE9AZvL74cGjWM8iNIsTwGaL9SwWJkUchx48gvcbYj2L0NT9MSzRd1NM6HBaxHCKWMRwiljEcIpYxHCKWMRwiljEcIpYxHCKWMRwiljEcIpYxHCKWMRwiljEcIpYxHCWj9jr9eJyudiwYQOJiYlkZWVx+PBhxsfHOXDgADabjdOnT8d6mhJhvkfQ81v4ZR90DcDweKxnFD6WfvNYR0cHNTU1eDweli1bRkFBAQMDA5w6dYqenh6GhoYAKCsri+1EI8Td+d+c++sqtvzJ37Jpx4+CLvP3f2oju2wHf/CjxijPLjruTkBLN1y6DqOT3z5uAwpWw/c2wu+uitn0wsKyEXu9Xmpra/F4PBw5coRjx46RkpICwIcffsj777/PokWLsNlslJSUxHi2EgnuITj7MxiZnPmcH7jaH/izLR9qXzH3Qw0sezh96NAh3G43Bw8e5OTJk08CBnC5XJSWluLz+cjOziY1NTWGM5VI+GYUftwcPODvau6Cz65Efk6RYsmIu7q6aGhoICMjgxMnTgRdZtOmTQCUlpZOe/zGjRvs2rWLlJQU0tLSeOutt7h9+3bE5yzh1dgB4/fnvvx/XoHbYxGbTkRZ8nC6vr6eqakp9u3bR3JyctBlkpKSgOkRj46OUlVVhcPhoL6+nomJCVwuFzt37qSlpQW73cyfeb4H95gY9cZ6GlFz9x5c6QttHT/wxbXAYbVpLBlxc3MzAFVVVbMu43a7gekRnz17lv7+fi5cuMCaNWsAyMzMZPPmzZw/f57du3dHbtIR9OW5Y3x57lispxE1P++FKX/o67X9WhHHjZs3bwKwdu3aoM/7fD5aWlqA6RE3NjayZcuWJwEDVFZWkpOTw6effjrviMvLy/F4PHNePuGlJN78q2vzGiuYoqr3yH1tT9DnPvmb7WEZIy83l0cPJ8KyrRdVWnuc3C0HQl5vZBKy1mTjn/JFYFbP5nQ6uXz58rzWtWTE4+OBi4ATE8G/qRoaGvB6vaSkpLBu3bonj3d2drJnz8xv9sLCQjo7O+c9H4/HQ39//5yXX7Rk6bzHCmaFM5c1RdVh3eZ3DQwO4Lt/L6JjzNX6sdF5r9vf78Y/ZdbnBVsyYqfTyfDwMO3t7VRWVk57bnBwkKNHjwJQUlKC7anrCsPDw6xYsWLG9hwOB19//fULzScUCS8lzXusWHl51ctxsye2+0bmtd7EiIeXV4X2fxUuoX6PPM2SEVdXV9PV1UVdXR3bt28nLy8PgLa2Nvbv34/XGzjJE62bPEI9TLrvM+9zp7uvXYubz52+OwHHPwn9dfGuSidn/v9ciUnMPN36HC6Xi/T0dPr6+igsLKS4uJjc3FwqKirIyclh27ZtwMzLS2lpady5c2fG9oaGhnA4HNGYuoTB8iQoyQptHZsNKjdEZj6RZsmIMzMzuXjxIjt27CAxMZHe3l4cDgdnzpyhqamJ7u5uYGbE+fn5QV/7dnZ2kp+fH5W5S3jUvgLJiXNf/o1icAS/Ghn3LBkxBIJsbGxkdHSU0dFRWltbee+99xgfH6e3txe73U5RUdG0dXbu3Mnnn3/+5PITQGtrKz09PdTW1kb7nyAvID0Z/mxbYK/8PNsL4ftFz18uXtn8fv88rqiZq7W1lddff52NGzfy1VdfTXtuZGSE4uJiMjIyOH78OJOTk7hcLlauXMmlS5eidrOHia+J4/V3MY1OBm7i+OJa4LXy00qy4Ht5kBubc1lhY9k98WyuXAncJPvdQ2mA1NRUmpubWbVqFXv37uXdd99l8+bNNDY2Gnu31kKXkgg/KIa/3A2Hvw9LF3/7+DtbzQ8YLHp2+lmeFTHA+vXraWy05tvyFrIEO6xbCS8lBL62G/qOpWAW3O7leRGLmGbB7Ykf31ctYhULbk8sYjWKWMRwiljEcIpYxHCKWMRwiljEcIpYxHCKWMRwiljEcIpYxHCKWMRwC+7eaRMsTgi8P9ckixNiPYOFSxHHIZstPt9gL/FJh9MihlPEIoZTxCKGU8QihlPEIoZTxCKGU8QihlPEIoZTxCKGU8QihlPEIoZTxCKGU8QihlPEIoZTxCKGU8QihlPEIoZTxCKGU8QihlPEIoZTxCKGU8QihlPEIoZTxCKG00eUi6WNTEDfUODP7TG49yDw+MQD+LIHshzgXA4JBu/ObH6/3x/rSYiE08NH8IvfwOfd0Ot9/vJLF8Nr6+H3ciEjJfLzCzdFLJbh98PlG/Dv7TB2f37beGUt/GE5JCeGd26RpIjFEu5OwL+0wtX+F99W8hL4owooW/Pi24oGRSzG89yFH/9XIORw+kExvFEc+AV38UwntsRovx2B0z+Fscnwb/snVwJ/15SEf9vhZPA5OVno7j+Esz+LTMCP/eRK4HV2PNOeWIz1aQd4x0Jb58/fgNSkwKWnv/tsbuv822XIdcLypJCnGBULYk/s9XpxuVxs2LCBxMREsrKyOHz4MOPj4xw4cACbzcbp06djPU0JwfVbgUtIoUpNghVLA3/P1b0H8K//E/pY0WL5PXFHRwc1NTV4PB6WLVtGQUEBAwMDnDp1ip6eHoaGhgAoKyuL7UQlJI9fr0bLr9zgHoJMR3THnQtL74m9Xi+1tbV4PB6OHDnC4OAg7e3teDwe6urqaGpqoq2tDZvNRklJnJ+9kCdu3YVrt6I/bsu16I85F5aO+NChQ7jdbg4ePMjJkydJSfn2dhyXy0VpaSk+n4/s7GxSU1NjOFMJxRfXYzPuz2/A5MPYjP0slo24q6uLhoYGMjIyOHHiRNBlNm3aBEBpaemTxx5HX1FRwZIlS7DF+0XCBeh6DPbCAA8ewW9ux2bsZ7FsxPX19UxNTbFv3z6Sk5ODLpOUFDi78XTE169f59y5czidTl599dWozFXm7uEjGLwTu/HdQ7EbezaWjbi5uRmAqqqqWZdxu93A9Ii3bt3K4OAg58+fp7q6OrKTlJAN3oGpGN5j2BeHEVv27PTNmzcBWLt2bdDnfT4fLS0twPSI7fbw/1wrLy/H4/GEfbsLkXNjFVve+aegzz2+BvwsqYnf/v3Bm7MvN9t15M9+eoG/2PvDOc527pxOJ5cvX57XupaNeHx8HICJieA31DY0NOD1eklJSWHdunURnYvH46G/Pwx35guLf+furM89vgY8F3b73Jd92kOfP+7+Ly0bsdPpZHh4mPb2diorK6c9Nzg4yNGjRwEoKSmJ+Mkrp9MZ0e0vJGnLZ3/D78gc3gCRmhgIeGoKRp5xu+Zs21qU4Gf16tXPHyhEL/I9YtmIq6ur6erqoq6uju3bt5OXlwdAW1sb+/fvx+sNvFs8Gjd5zPcwSWa6dRdONAZ/bi63UX7wZmAPPDIJH3wS+vi7a36ffz7uDn3FCLLsiS2Xy0V6ejp9fX0UFhZSXFxMbm4uFRUV5OTksG3bNmD662GJfytTYUkMdz1ZumMrejIzM7l48SI7duwgMTGR3t5eHA4HZ86coampie7uwI23itgsdhusTovd+FnpsRt7NpY9nAbIz8+nsXHmsdfY2Bi9vb3Y7XaKiopiMDN5EUWZ8Otvoj/u8qTY/gCZjaUjns3Vq1fx+/3k5eWxdOnMU5Qff/wxAJ2dndO+zs7Opry8PHoTlaAqcuA/fgG+qeiOW5kbn5+KuSAjvnIl8BaY2Q6l9+zZE/Trt99+m48++iiic5PnS06EsrXRfbO+3QaV66M3XigUcRD62LH4V1MCv+yDB77ojLetAJbP47pyNMThwUHkPS9iiX/pybDrleiM5Vwe+MC8eLUg98SP76sWs23Ohc5+6ByY+zqPb+KYy40hAC8lwA8rYVFC6POLFn1krRjtvg/+oRluROBsdYIdDmyFgvDfoBVWiliMd/8h/ONF+HowfNtcsgje2QobV4Vvm5GiiMUSpqbgQjc0dQTec/wi8pyw9zVwBH8betxRxGIp34zA+f+FX/UHfjdTKNKToboQXl8f/7/14WmKWCxpeBwuXQ9chro1MnvQy5ZAzsrASbKNqwLXg02jiMXy7vugfyjwQfO+R4ETVkmLITMN0paZtdcNRhGLGG5B3uwhYiWKWMRwiljEcIpYxHCKWMRwiljEcIpYxHCKWMRwiljEcIpYxHCKWMRwiljEcIpYxHCKWMRwiljEcIpYxHCKWMRwiljEcIpYxHCKWMRwiljEcIpYxHCKWMRwiljEcIpYxHCKWMRwiljEcIpYxHCKWMRwiljEcIpYxHD/B4nXoRy3dQ/QAAAAAElFTkSuQmCC", - "text/plain": [ - "
" - ] - }, - "execution_count": 1, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "from qiskit import QuantumCircuit\n", - "\n", - "# Create a new circuit with two qubits (first argument) and two classical\n", - "# bits (second argument)\n", - "qc = QuantumCircuit(2)\n", - "\n", - "# Add a Hadamard gate to qubit 0\n", - "qc.h(0)\n", - "\n", - "# Perform a controlled-X gate on qubit 1, controlled by qubit 0\n", - "qc.cx(0, 1)\n", - "\n", - "# Return a drawing of the circuit using MatPlotLib (\"mpl\"). This is the\n", - "# last line of the cell, so the drawing appears in the cell output.\n", - "# Remove the \"mpl\" argument to get a text drawing.\n", - "qc.draw(\"mpl\")" - ] - }, - { - "cell_type": "markdown", - "id": "0c957de9", - "metadata": { - "raw_mimetype": "text/restructuredtext" - }, - "source": [ - "利用可能な演算については、ドキュメンテーションの [`QuantumCircuit`](/api/qiskit/qiskit.circuit.QuantumCircuit#quantumcircuit) をご覧ください。\n" - ] - }, - { - "cell_type": "markdown", - "id": "f3ef4248-7938-44c1-85f1-edc997f0edcd", - "metadata": {}, - "source": [ - "以下のコードセルは、`quantum_info` を使用して 2 量子ビットパウリ演算子 Z を量子ビット 1 に、Z を量子ビット 2 に作成します。 状態がエンタングルの場合、量子ビット 1 と量子ビット 2 の相関は 1 になります。\n" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "id": "c57b261c-b757-4432-beab-61b526c98a41", - "metadata": {}, - "outputs": [], - "source": [ - "from qiskit.quantum_info import Pauli\n", - "\n", - "ZZ = Pauli('ZZ')\n", - "ZI = Pauli('ZI')\n", - "IZ = Pauli('IZ')\n", - "XX = Pauli('XX')\n", - "XI = Pauli('XI')\n", - "IX = Pauli('IX')" - ] - }, - { - "cell_type": "markdown", - "id": "83bf9151-3bc9-40d2-8615-31570238b08e", - "metadata": {}, - "source": [ - "## ステップ 2. 回路および演算子を最適化する\n", - "\n", - "この例の場合、回路と演算子が単純であるため、最適化は不要です。 " - ] - }, - { - "cell_type": "markdown", - "id": "9acac1d4", - "metadata": {}, - "source": [ - "## ステップ 3. 量子 primitive 関数を使って実行する\n", - "\n", - "\n", - "量子コンピューターはランダムな結果を生成する場合があるため、回路を何度も実行することで、出力のサンプルを収集することがよくあります。 観測量の値は、`Estimator` クラスを使って推定することが可能です。 `Estimator` は 2 つの [primitive](../run/primitives-get-started) の 1 つであり、もう 1 つは量子コンピューターからデータを取得するために使用できる `Sampler` です・ " - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "id": "69a8d872", - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "EstimatorResult(values=array([0.01795728, 0.03257367, 0.02751255, 0.01213789, 0.98291386,\n", - " 0.97229465]), metadata=[{'variance': 1.0931623420576193, 'shots': 5008, 'readout_mitigation_num_twirled_circuits': 16, 'readout_mitigation_shots_calibration': 8192}, {'variance': 1.092423762099776, 'shots': 5008, 'readout_mitigation_num_twirled_circuits': 16, 'readout_mitigation_shots_calibration': 8192}, {'variance': 1.0256330625131442, 'shots': 5008, 'readout_mitigation_num_twirled_circuits': 16, 'readout_mitigation_shots_calibration': 8192}, {'variance': 1.0262426744136923, 'shots': 5008, 'readout_mitigation_num_twirled_circuits': 16, 'readout_mitigation_shots_calibration': 8192}, {'variance': 0.16516750416031306, 'shots': 5008, 'readout_mitigation_num_twirled_circuits': 16, 'readout_mitigation_shots_calibration': 8192}, {'variance': 0.18593026938419716, 'shots': 5008, 'readout_mitigation_num_twirled_circuits': 16, 'readout_mitigation_shots_calibration': 8192}])" - ] - }, - "execution_count": 3, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "from qiskit_ibm_runtime import QiskitRuntimeService, Estimator, Options\n", - "\n", - "service = QiskitRuntimeService()\n", - "\n", - "# Run on the least-busy backend you have access to\n", - "backend = service.least_busy(simulator=False, operational=True)\n", - "\n", - "options = Options()\n", - "options.resilience_level = 1\n", - "options.optimization_level = 3\n", - "\n", - "# Create an Estimator object\n", - "estimator = Estimator(backend, options=options)\n", - "\n", - "# Submit the circuit to Estimator\n", - "job = estimator.run(circuits=[qc]*6, observables=[IZ, IX, ZI, XI, ZZ, XX], shots = 5000)\n", - "\n", - "# Once the job is complete, get the result\n", - "job.result()" - ] - }, - { - "cell_type": "markdown", - "id": "e3ac728c", - "metadata": {}, - "source": [ - "\n", - " 実際のデバイスでのキュー時間は異なる場合があります。 結果をより素早く取得するには、`backend =` の行を以下に置き換えてください。\n", - "\n", - " ```python\n", - "\n", - " # シミュレーターで実行します\n", - "\n", - " backend = service.get_backend(\"ibmq_qasm_simulator\")\n", - "\n", - " ```\n", - "\n" - ] - }, - { - "cell_type": "markdown", - "id": "dc5ce1eb", - "metadata": {}, - "source": [ - "`values` プロパティは、指定した観測量ごとの期待値のリストです。" - ] - }, - { - "cell_type": "markdown", - "id": "0d5ea9a0", - "metadata": {}, - "source": [ - "## ステップ 4. 結果を分析する\n", - "\n" - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "id": "57a82991-3ae9-400f-b8be-f8eb1fea79c5", - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjcAAAGwCAYAAABVdURTAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAAA+z0lEQVR4nO3deXyU5b3///fs2UMgELZIWBIFRaggCIooRnE5KJ6qHKTCoS6nrVqU028FUbH1KFoL4qlYXKq0v1rBavVQsVikQlCwFBBXZIcgkEACZCPrzPX7I5khMQGSMJl7ZvJ6Ph7zIPc998x8ZrjJvLmW+7IZY4wAAACihN3qAgAAAIKJcAMAAKIK4QYAAEQVwg0AAIgqhBsAABBVCDcAACCqEG4AAEBUcVpdQKj5fD4dOHBAiYmJstlsVpcDAACawRijkpISde/eXXb7qdtm2l24OXDggNLT060uAwAAtMK+ffvUs2fPUx7T7sJNYmKipNoPJykpyeJqAABAcxQXFys9PT3wPX4q7S7c+LuikpKSCDcAAESY5gwpYUAxAACIKoQbAAAQVQg3AAAgqhBuAABAVCHcAACAqEK4AQAAUYVwAwAAogrhBgAARBVLw01OTo7GjRun7t27y2az6Z133jntY1atWqULLrhAHo9H/fr106JFi9q8TgAAEDksDTdlZWUaNGiQFixY0Kzjd+/ereuuu06XX365Nm/erPvuu0933HGH3n///TauFAAARApLl1+45pprdM011zT7+IULF6p3796aO3euJKl///766KOP9Mwzz2js2LFtVSYAAIggETXmZt26dcrOzm6wb+zYsVq3bt1JH1NZWani4uIGNwAAEL0iKtzk5eUpLS2twb60tDQVFxervLy8ycfMmTNHycnJgVt6enooSgUAABaJqHDTGjNnzlRRUVHgtm/fPqtLAgCEms8r7V4jffFm7Z8+r9UVoQ1ZOuampbp27ar8/PwG+/Lz85WUlKTY2NgmH+PxeOTxeEJRHgAgHH29VPrbz6WSgyf2JXWXrn5KGnC9dXWhzURUy82IESO0cuXKBvtWrFihESNGWFQRACCsfb1UemNyw2AjScUHa/d/vdSautCmLA03paWl2rx5szZv3iypdqr35s2blZubK6m2S2ny5MmB43/0ox9p165d+vnPf65vvvlGzz//vN544w3df//9VpQPAAhnPq+0/AFJpok7jYwk73sP6FhpuSqqvTKmqePQImHS/Wdpt9SGDRt0+eWXB7anT58uSZoyZYoWLVqkgwcPBoKOJPXu3VvLli3T/fffr2effVY9e/bUyy+/zDRwAEBje9dKxQdOerdNRo7SA/rRE8/pE98A2WxSrMuhWJdDMS6HYt2OE9tuh2Jd9tptd939/lv9bffJHm8P/Ox0RFSnSfOFUfefzbSzqFpcXKzk5GQVFRUpKSnJ6nIAAG3lizelt24/7WE/rbpHS30jQ1BQLZfD1nQYahSO7PUClLM2XDUjSMW6HfI47bLZbCF7T4Huv0atZHU13PKHMw44Lfn+jqgBxQAANFtC2umPkfTM7WP1RM+RKq/yqqLaq/Jqr8qr6v6s9qqiyqvjddsV372vwbZPFfXua/B81V75mxKqvUbV3hqVVNS04ZvXdwKQ/TRB6rutVP5j7I2Or3+My2E/bfefZJOWz5DOuU6yO9r0PfsRbgAA0anXSCmpu0zxQdma/OK1SUnd5eh9sRLsDiV42u4r0Rijyhpfo/BUG458DYJUk+Go/vGBbV+jsFVV4wu8pn9fW3LabRrl+kav2k7e/ScZqXh/bTdh71FtWk+grpC8CgAAoWZ31I73eOM2+Yxkb9BLU7dx9ZMhaU2w2Wq7omJcDnVow9fx+kzj1qfvtEI1HZ58p22Zqv+zry4r1viMEqsLJXcziivNP/0xQUK4AQBELdN/nB5y/1x3V76s7jpy4o6k7rXBJsquc+Ow2xTvcSq+jVuhqrw+VdQFIrPbLb3z3Okf2MxuwmAg3AAAotaewuN6rXiw3nT8RpunJCi2sqD2S7bXyJCN/4g2NptNHqdDHqdDyXJJ54+R/tG99tpBp+j+U6/QDdom3AAAolbOtsOSpAt6pSo26yKLq4lSge6/yart7qsfcELb/RcoKWSvBABAiK2uCzejz+5scSVRbsD1tdO9k7o13J/UPSjTwFuKlhsAQFSqrPFq3c5CSdKlmYSbNjfg+trp3nvX1g4etrD7j3ADAIhKG/YcVXm1V50TPerfLdHqctoHuyNk071PWYbVBQAA0Bb8XVKXZnYO7dV6YTnCDQAgKuUw3qbdItwAAKJOXlGFvskrkc0mjeqXanU5CDHCDQAg6uRsr221Ob9nB6XEN+fyuYgmhBsAQNQJTAHPokuqPSLcAACiitdn9NH2AknS6Cy6pNojwg0AIKp89u0xFZVXKynGqUE9O1hdDixAuAEARBX/LKlLMlPldPA11x7xtw4AiCqMtwHhBgAQNY4dr9Jn+45Jki4l3LRbhBsAQNT4aEeBfEbKSktQt+RYq8uBRQg3AICosXrriSUX0H4RbgAAUcEYE7h4H0sutG+EGwBAVNiaX6L84krFuOy6MKOj1eXAQoQbAEBU8E8Bv6hPJ8W4HBZXAysRbgAAUYEp4PAj3AAAIt7xqhr9a/dRSUwBB+EGABAFPtlVqCqvTz1TYtUnNd7qcmAxwg0AIOLlbKtdKPPSrM6y2WwWVwOrEW4AABGP8Taoj3ADAIhouYXHtbugTE67TSP7drK6HIQBwg0AIKKtrrtw3wW9UpQY47K4GoQDwg0AIKL5l1ygSwp+hBsAQMSqqvFp3c7awcSEG/gRbgAAEWvj3qMqq/IqNcGtAd2SrC4HYYJwAwCIWP6FMkdldpbdzhRw1CLcAAAiFuNt0BTCDQAgIh0qqdDXB4slSZdkplpcDcIJ4QYAEJHW1F2VeGCPZKUmeCyuBuGEcAMAiEj+qxJfmkWrDRoi3AAAIo7XZ7Rmu3+8TReLq0G4IdwAACLOl/uLdPR4tRI8Tn3vrA5Wl4MwQ7gBAEScnLouqYv7dZLLwVcZGuKMAABEnBOrgNMlhcYINwCAiFJUXq1P9x2TxGBiNI1wAwCIKGt3FMjrM+rbOV49U+KsLgdhiHADAIgo/iUXLuWqxDgJwg0AIGIYY1hyAadFuAEARIydh0t1oKhCbqddw3t3srochCnCDQAgYqyqa7UZ3rujYt0Oi6tBuCLcAAAixokp4HRJ4eQINwCAiFBR7dX63UckEW5waoQbAEBE+GRXoSprfOqWHKN+XRKsLgdhjHADAIgIOdsKJNW22thsNourQTgj3AAAIsLqbYck0SWF0yPcAADC3rdHj2vn4TI57DaN7MeSCzg1wg0AIOz5u6S+l95BybEui6tBuLM83CxYsEAZGRmKiYnR8OHDtX79+lMeP3/+fJ199tmKjY1Venq67r//flVUVISoWgCAFXK2seQCms/ScLNkyRJNnz5ds2fP1qZNmzRo0CCNHTtWhw4davL4P/3pT5oxY4Zmz56tLVu26He/+52WLFmiBx98MMSVAwBCpdrr08c7TgwmBk7H0nAzb9483XnnnZo6daoGDBighQsXKi4uTq+88kqTx69du1YXX3yxbr31VmVkZOiqq67SxIkTT9vaAwCIXJ/mHlNJZY1S4lw6r0ey1eUgAlgWbqqqqrRx40ZlZ2efKMZuV3Z2ttatW9fkY0aOHKmNGzcGwsyuXbv03nvv6dprrz3p61RWVqq4uLjBDQAQOfxdUqMyO8thZwo4Ts9p1QsXFBTI6/UqLS2twf60tDR98803TT7m1ltvVUFBgS655BIZY1RTU6Mf/ehHp+yWmjNnjn7xi18EtXYAQOisZrwNWsjyAcUtsWrVKj3xxBN6/vnntWnTJv3lL3/RsmXL9Nhjj530MTNnzlRRUVHgtm/fvhBWDAA4EwWllfpif5Ek6dJMpoCjeSxruUlNTZXD4VB+fn6D/fn5+eratWuTj3n44Yd122236Y477pAkDRw4UGVlZbrrrrs0a9Ys2e2Ns5rH45HH4wn+GwAAtLmPttcOJB7QLUldkmIsrgaRwrKWG7fbrSFDhmjlypWBfT6fTytXrtSIESOafMzx48cbBRiHo3bJe2NM2xULALAEU8DRGpa13EjS9OnTNWXKFA0dOlTDhg3T/PnzVVZWpqlTp0qSJk+erB49emjOnDmSpHHjxmnevHn63ve+p+HDh2vHjh16+OGHNW7cuEDIAQBEB5/PKGd7bbhhCjhawtJwM2HCBB0+fFiPPPKI8vLyNHjwYC1fvjwwyDg3N7dBS81DDz0km82mhx56SPv371fnzp01btw4Pf7441a9BQBAG/n6YLEKSqsU73ZoSK8Uq8tBBLGZdtafU1xcrOTkZBUVFSkpKcnqcgAAJ7Hgwx16+v2tyu6fppenDLW6HFisJd/fETVbCgDQfvjH24zOYpYUWoZwAwAIOyUV1dq496gkaXRWF4urQaQh3AAAws7anYWq8RlldIrTWZ3irC4HEYZwAwAIOye6pJglhZYj3AAAwooxhiUXcEYINwCAsLK7oEzfHi2X22HXRX06WV0OIhDhBgAQVvytNhf2TlG8x9LLsSFCEW4AAGElsORCJl1SaB3CDQAgbFRUe7VuV6EkafTZhBu0DuEGABA2Nuw5qopqn9KSPDo7LdHqchChCDcAgLCxetshSbVdUjabzeJqEKkINwCAsMEUcAQD4QYAEBYOFpVrW36p7Dbpkn6sJ4XWI9wAAMKCf5bU+T07KCXebXE1iGSEGwBAWMjZViCJJRdw5gg3AADL1Xh9WrO9bj0ppoDjDBFuAACW++zbIhVX1Cg51qVBPTtYXQ4iHOEGAGA5/yypSzJT5bAzBRxnhnADALCcfzDxaJZcQBAQbgAAljpaVqXPvj0mievbIDgINwAAS320o0DGSGenJaprcozV5SAKEG4AAJbyj7dhlhSChXADALCMMSYw3uZSxtsgSAg3AADLfJNXokMllYp1OTQ0I8XqchAlCDcAAMv4u6Qu6tNRMS6HxdUgWhBuAACWCUwBZ5YUgohwAwCwRFlljf6154gkafTZXSyuBtGEcAMAsMQnuwpV7TVK7xirjE5xVpeDKEK4AQBYYnW9LimbjSUXEDyEGwCAJZgCjrZCuAEAhNyegjLtKTwup92mkf1SrS4HUYZwAwAIuZztta02Q3qlKMHjtLgaRBvCDQAg5HJYcgFtiHADAAipqhqf1u4slMR4G7QNwg0AIKQ27D2i41VepSZ4NKBbktXlIAoRbgAAIeWfAn5pVqrsdqaAI/gINwCAkMrZViCJJRfQdgg3AICQOVRcoS0Hi2WzSZcwBRxthHADAAiZnO21rTYDeySrU4LH4moQrQg3AICQWc0q4AgBwg0AICS8PqOPtvsHExNu0HYINwCAkPhif5GOHq9WYoxT30vvYHU5iGKEGwBASKzeWttqc3HfVDkdfP2g7XB2AQBCwr+eFEsuoK0RbgAAba7oeLU+zT0qifE2aHuEGwBAm/t4Z4F8RurXJUE9OsRaXQ6iHOEGANDm/ONtmAKOUCDcAADalDEmMN6GLimEAuEGANCmth8q1cGiCnmcdg3v3dHqctAOEG4AAG0qp+6qxMP7dFKMy2FxNWgPCDcAgDbFkgsINcINAKDNlFd59c/dRyRJo7NYBRyhQbgBALSZT3YXqqrGpx4dYtW3c4LV5aCdINwAANqMfwr4pVmpstlsFleD9oJwAwBoM4ElFxhvgxCyPNwsWLBAGRkZiomJ0fDhw7V+/fpTHn/s2DHdfffd6tatmzwej7KysvTee++FqFoAQHPtO3Jcuw6XyWG3aWQ/xtsgdJxWvviSJUs0ffp0LVy4UMOHD9f8+fM1duxYbd26VV26dGl0fFVVla688kp16dJFb775pnr06KG9e/eqQ4cOoS8eAHBK/labC87qoKQYl8XVoD2xNNzMmzdPd955p6ZOnSpJWrhwoZYtW6ZXXnlFM2bMaHT8K6+8oiNHjmjt2rVyuWr/oWRkZISyZABAM7HkAqxiWbdUVVWVNm7cqOzs7BPF2O3Kzs7WunXrmnzM0qVLNWLECN19991KS0vTeeedpyeeeEJer/ekr1NZWani4uIGNwBA26r2+rR2Z6EkllxA6FkWbgoKCuT1epWWltZgf1pamvLy8pp8zK5du/Tmm2/K6/Xqvffe08MPP6y5c+fqf/7nf076OnPmzFFycnLglp6eHtT3AQBobNPeoyqtrFHHeLfO655sdTloZywfUNwSPp9PXbp00YsvvqghQ4ZowoQJmjVrlhYuXHjSx8ycOVNFRUWB2759+0JYMQC0T/7xNqMyU2W3MwUcoWXZmJvU1FQ5HA7l5+c32J+fn6+uXbs2+Zhu3brJ5XLJ4TixNkn//v2Vl5enqqoqud3uRo/xeDzyeDzBLR4AcEosuQArWdZy43a7NWTIEK1cuTKwz+fzaeXKlRoxYkSTj7n44ou1Y8cO+Xy+wL5t27apW7duTQYbAEDoHS6p1Jf7a8c3jsok3CD0LO2Wmj59ul566SX9/ve/15YtW/TjH/9YZWVlgdlTkydP1syZMwPH//jHP9aRI0c0bdo0bdu2TcuWLdMTTzyhu+++26q3AAD4jo921LbanNs9SZ0TaTlH6Fk6FXzChAk6fPiwHnnkEeXl5Wnw4MFavnx5YJBxbm6u7PYT+Ss9PV3vv/++7r//fp1//vnq0aOHpk2bpgceeMCqtwAA+I4TSy7QagNr2IwxxuoiQqm4uFjJyckqKipSUlKS1eUAQFTx+YwufPwDFZZVafFdF+miPp2sLglRoiXf3xE1WwoAEN6+OlCswrIqJXicuuCsFKvLQTtFuAEABI1/CviIvp3kdvIVA2tw5gEAgoYlFxAOCDcAgKAorqjWptyjkgg3sBbhBgAQFGt3FKrGZ9QnNV7pHeOsLgftGOEGABAU/qsSMwUcViPcAADOmDFGOSy5gDBBuAEAnLGdh8u0/1i53A67hvfpaHU5aOcINwCAM+ZvtRnWu6Pi3JZe/B4g3AAAztyJ8TapFlcCtCLc7Nu3T99++21ge/369brvvvv04osvBrUwAEBkqKj26p+7CyVJo7O6WFwN0Ipwc+utt+rDDz+UJOXl5enKK6/U+vXrNWvWLP3yl78MeoEAgPC2fvcRVVT71DUpRllpCVaXA7Q83Hz55ZcaNmyYJOmNN97Qeeedp7Vr1+q1117TokWLgl0fACDM5dTrkrLZbBZXA7Qi3FRXV8vj8UiSPvjgA11//fWSpHPOOUcHDx4MbnUAgLC3OjAFnC4phIcWh5tzzz1XCxcu1Jo1a7RixQpdffXVkqQDBw6oUyeWtgeA9uTAsXJtP1Qqu026pB+DiREeWhxunnrqKb3wwgu67LLLNHHiRA0aNEiStHTp0kB3FQCgffB3SQ1O76DkOJfF1QC1Wnwxgssuu0wFBQUqLi5WSkpKYP9dd92luDjWEgGA9oQlFxCOWnWdG2OMNm7cqBdeeEElJSWSJLfbTbgBgHakxuvTRzsKJLHkAsJLi1tu9u7dq6uvvlq5ubmqrKzUlVdeqcTERD311FOqrKzUwoUL26JOAECY2bzvmEoqatQhzqXze3awuhwgoMUtN9OmTdPQoUN19OhRxcbGBvbfeOONWrlyZVCLAwCEL/94m0v6pcphZwo4wkeLW27WrFmjtWvXyu12N9ifkZGh/fv3B60wAEB4W80q4AhTLW658fl88nq9jfZ/++23SkxMDEpRAIDwdqSsSp/vL5LEYGKEnxaHm6uuukrz588PbNtsNpWWlmr27Nm69tprg1kbACBMrdl+WMZI53RNVFpSjNXlAA20uFtq7ty5Gjt2rAYMGKCKigrdeuut2r59u1JTU/X666+3RY0AgDCTs41ZUghfLQ43PXv21GeffabFixfr888/V2lpqW6//XZNmjSpwQBjAEB08vkM420Q1locbiTJ6XTqBz/4QbBrAQBEgC15xSoorVSsy6EhGSmnfwAQYi0ON3/4wx9Oef/kyZNbXQwAIPz5u6RG9u0kj9NhcTVAYy0ON9OmTWuwXV1drePHjweuUEy4AYDotnrbIUnMkkL4avFsqaNHjza4lZaWauvWrbrkkksYUAwAUa60skYb9x6VxHgbhK9WrS31XZmZmXryyScbteoAAKLLup2FqvYandUxThmp8VaXAzQpKOFGqh1kfODAgWA9HQAgDOUwSwoRoMVjbpYuXdpg2xijgwcP6rnnntPFF18ctMIAAOGHKeCIBC0ON+PHj2+wbbPZ1LlzZ40ZM0Zz584NVl0AgDCzp6BMuUeOy+WwaUTfTlaXA5xUi8ONz+drizoAAGHO32oztFdHxXtadZk0ICSCNuYGABDd/ONtmAKOcNes6D19+vRmP+G8efNaXQwAIDxV1ni1dmehJMbbIPw1K9x8+umnzXoym812RsUAAMLThj1HVV7tVedEj/p3S7S6HOCUmhVuPvzww7auAwAQxgJdUpmd+Y8swh5jbgAAp7U6MN4m1eJKgNNr1XD3DRs26I033lBubq6qqqoa3PeXv/wlKIUBAMJDfnGFvskrkc0mjcpkvA3CX4tbbhYvXqyRI0dqy5Ytevvtt1VdXa2vvvpK//jHP5ScnNwWNQIALORvtTm/Zwd1jHdbXA1wei0ON0888YSeeeYZ/fWvf5Xb7dazzz6rb775RrfccovOOuustqgRAGChwJILmXRJITK0ONzs3LlT1113nSTJ7XarrKxMNptN999/v1588cWgFwgAsI7XZ7Rme4EkafTZdEkhMrQ43KSkpKikpESS1KNHD3355ZeSpGPHjun48ePBrQ4AYKnPvz2movJqJcY4NahnB6vLAZql2eHGH2IuvfRSrVixQpJ08803a9q0abrzzjs1ceJEXXHFFW1TJQDAEv7xNqMyU+V0MMEWkaHZs6XOP/98XXjhhRo/frxuvvlmSdKsWbPkcrm0du1aff/739dDDz3UZoUCAEKv/vVtgEjR7HCzevVqvfrqq5ozZ44ef/xxff/739cdd9yhGTNmtGV9AACLHDtepc37jkliPSlElma3MY4aNUqvvPKKDh48qN/85jfas2ePRo8eraysLD311FPKy8tryzoBACH20Y4C+YyU2SVB3TvEWl0O0Gwt7kCNj4/X1KlTtXr1am3btk0333yzFixYoLPOOkvXX399W9QIALBAYAo4rTaIMGc0Oqxfv3568MEH9dBDDykxMVHLli0LVl0AAAsZY+otuUC4QWRp1fILkpSTk6NXXnlFb731lux2u2655RbdfvvtwawNAGCRbfmlyi+uVIzLrmG9O1pdDtAiLQo3Bw4c0KJFi7Ro0SLt2LFDI0eO1P/+7//qlltuUXx8fFvVCAAIsdXbDkmSLurTSTEuh8XVAC3T7HBzzTXX6IMPPlBqaqomT56sH/7whzr77LPbsjYAgEVyttVelZgp4IhEzQ43LpdLb775pv7t3/5NDgcpHgCi1fGqGq3ffUQSSy4gMjU73CxdurQt6wAAhIl/7jqiKq9PPTrEqk8qQw4QebiWNgCgAf8sqdFnd5bNZrO4GqDlwiLcLFiwQBkZGYqJidHw4cO1fv36Zj1u8eLFstlsGj9+fNsWCADtyGqWXECEszzcLFmyRNOnT9fs2bO1adMmDRo0SGPHjtWhQ4dO+bg9e/boZz/7mUaNGhWiSgEg+uUWHtfugjI57TaN7NfJ6nKAVrE83MybN0933nmnpk6dqgEDBmjhwoWKi4vTK6+8ctLHeL1eTZo0Sb/4xS/Up0+fUz5/ZWWliouLG9wAAE1bvb221eaCs1KUFOOyuBqgdSwNN1VVVdq4caOys7MD++x2u7Kzs7Vu3bqTPu6Xv/ylunTp0qyLBs6ZM0fJycmBW3p6elBqB4BolFNvvA0QqSwNNwUFBfJ6vUpLS2uwPy0t7aQLcX700Uf63e9+p5deeqlZrzFz5kwVFRUFbvv27TvjugEgGlXV+LR2R+31bVhPCpGs1csvWKGkpES33XabXnrpJaWmpjbrMR6PRx6Pp40rA4DItyn3qMqqvOoU79aAbklWlwO0mqXhJjU1VQ6HQ/n5+Q325+fnq2vXro2O37lzp/bs2aNx48YF9vl8PkmS0+nU1q1b1bdv37YtGgCiVP2FMu12poAjclnaLeV2uzVkyBCtXLkysM/n82nlypUaMWJEo+PPOeccffHFF9q8eXPgdv311+vyyy/X5s2bGU8DAGcgJxBumtcyDoQry7ulpk+frilTpmjo0KEaNmyY5s+fr7KyMk2dOlWSNHnyZPXo0UNz5sxRTEyMzjvvvAaP79ChgyQ12g8AaL7DJZX66kDtbNJRXN8GEc7ycDNhwgQdPnxYjzzyiPLy8jR48GAtX748MMg4NzdXdrvlM9YBIKqtqZsCfl6PJKUmME4Rkc1mjDFWFxFKxcXFSk5OVlFRkZKSGDAHAJI0bfGn+r/NB3T35X31/8aeY3U5QCMt+f6mSQQA2jmfz2jN9top4Cy5gGhAuAGAdu7LA0U6UlalBI9TF/RKsboc4IwRbgCgnVu9tXa8zci+neRy8LWAyMdZDADtXM52llxAdCHcAEA7VlxRrU25xyQx3gbRg3ADAO3Y2h0F8vqM+nSOV3rHOKvLAYKCcAMA7Zh/yQUWykQ0IdwAQDtljFHOtrop4IQbRBHCDQC0UzsPl2r/sXK5nXZd1LuT1eUAQUO4AYB2alXdFPDhvTsq1u2wuBogeAg3ANBO5dRdlZjxNog2hBsAaIcqqr36565CSYy3QfQh3ABAO/TP3UdUWeNTt+QYZXZJsLocIKgINwDQDvmXXBid1Vk2m83iaoDgItwAQDvkX3KBLilEI8INALQz+4+Va8ehUjnsNl3cL9XqcoCgI9wAQDuTU3dV4sHpHZQc67K4GiD4CDcA0M7UH28DRCPCDQC0I9Venz7ewZILiG6EGwBoRzbvO6aSyhqlxLk0sEey1eUAbYJwAwDtiL9L6pLMznLYmQKO6ES4AYB2xD8FnPE2iGaEGwBoJwpLK/XF/iJJ0qWZTAFH9CLcAEA78dGOAhkj9e+WpC5JMVaXA7QZwg0AtBNMAUd7QbgBgHbA5zPK2e6fAk6XFKIb4QYA2oGvDxaroLRScW6HhvbqaHU5QJsi3ABAO+CfJTWybye5nfzqR3TjDAeAdoDxNmhPCDcAEOVKKqq1ce9RSSy5gPaBcAMAUW7dzkLV+IwyOsWpV6d4q8sB2hzhBgCi3OpttV1StNqgvSDcAEAUM8YEwg3jbdBeEG4AIIrtLijTt0fL5XbYdVGfTlaXA4QE4QYAolhOXavN0IwUxXucFlcDhAbhBgCiGF1SaI8INwAQpSqqvfpk1xFJDCZG+0K4AYAotWHPUZVXe9Ul0aNzuiZaXQ4QMoQbAIhS/iUXLs3qLJvNZnE1QOgQbgAgSrHkAtorwg0ARKGDReXaml8im026pF+q1eUAIUW4AYAotGZbgSRpUM8OSol3W1wNEFqEGwCIQiy5gPaMcAMAUabG69NHO2pbbhhvg/aIcAMAUeazb4tUVF6t5FiXBvVMtrocIOQINwAQZfxLLlzSL1VOB7/m0f5w1gNAlGHJBbR3hBsAiCJHy6r0+bfHJEmjspgCjvaJcAMAUeSjHQXyGenstER1S461uhzAEoQbAIgiJ6aA02qD9otwAwBRwhgTGEw8OquLxdUA1iHcAECU+CavRIdKKhXjsmtoRorV5QCWIdwAQJTwt9qM6NNJMS6HxdUA1iHcAECUYMkFoBbhBgCiQFlljTbsOSqJ69sAYRFuFixYoIyMDMXExGj48OFav379SY996aWXNGrUKKWkpCglJUXZ2dmnPB4A2oNPdhWqyutTesdY9U6Nt7ocwFKWh5slS5Zo+vTpmj17tjZt2qRBgwZp7NixOnToUJPHr1q1ShMnTtSHH36odevWKT09XVdddZX2798f4soBIHz4x9tcmtlZNpvN4moAa9mMMcbKAoYPH64LL7xQzz33nCTJ5/MpPT1d9957r2bMmHHax3u9XqWkpOi5557T5MmTT3t8cXGxkpOTVVRUpKSkpDOuHwDCwWVPf6g9hcf14m1DdNW5Xa0uBwi6lnx/W9pyU1VVpY0bNyo7Ozuwz263Kzs7W+vWrWvWcxw/flzV1dXq2LFjk/dXVlaquLi4wQ0AosnewjLtKTwup92mEX07WV0OYDlLw01BQYG8Xq/S0tIa7E9LS1NeXl6znuOBBx5Q9+7dGwSk+ubMmaPk5OTALT09/YzrBoBw4u+SGtIrRYkxLourAaxn+ZibM/Hkk09q8eLFevvttxUTE9PkMTNnzlRRUVHgtm/fvhBXCQBtiyngQENOK188NTVVDodD+fn5Dfbn5+era9dT9xn/+te/1pNPPqkPPvhA559//kmP83g88ng8QakXAMJNVY1Pa3cWSmIKOOBnacuN2+3WkCFDtHLlysA+n8+nlStXasSIESd93K9+9Ss99thjWr58uYYOHRqKUgEgLG3Ye0THq7xKTXBrQDcmSQCSxS03kjR9+nRNmTJFQ4cO1bBhwzR//nyVlZVp6tSpkqTJkyerR48emjNnjiTpqaee0iOPPKI//elPysjICIzNSUhIUEJCgmXvAwCskLOtQFLtFHC7nSnggBQG4WbChAk6fPiwHnnkEeXl5Wnw4MFavnx5YJBxbm6u7PYTDUy//e1vVVVVpZtuuqnB88yePVuPPvpoKEsHAMv5x9uMPpsuKcDP8uvchBrXuQEQLQ4VV2jYEytls0kbZmWrUwLjCxG9IuY6NwCA1svZXtslNbBHMsEGqIdwAwARqv6SCwBOINwAQATy+ozWbGe8DdAUwg0ARKAv9hfp6PFqJXqcGpzewepygLBCuAGACOTvkrq4X6pcDn6VA/XxLwIAIhBLLgAnR7gBgAhTdLxan+YelSRdmpVqcTVA+CHcAECE+XhngXxG6ts5Xj1T4qwuBwg7hBsAiDD+8Tajs7pYXAkQngg3ABBBjDEsuQCcBuEGACLIjkOlOlhUIY/TruG9O1pdDhCWCDcAEEH8rTbD+3RSjMthcTVAeCLcAEAECUwBz2SWFHAyhBsAiBDlVV79c/cRSdJljLcBTopwAwAR4pPdhaqq8al7coz6dk6wuhwgbBFuACBC5NSbJWWz2SyuBghfhBsAiBAnxtvQJQWcCuEGACLAviPHtetwmRx2m0b2YzAxcCqEGwCIADnba1ttLjirg5JjXRZXA4Q3wg0ARIAcuqSAZiPcAECYq/b69PGOQkksuQA0B+EGAMLcp7nHVFpZo47xbp3XPdnqcoCwR7gBgDC3etshSdKozFTZ7UwBB06HcAMAYY4p4EDLEG4AIIwVlFbqy/3FkqRRWUwBB5qDcAMAYWxN3RTwAd2S1CUxxuJqgMhAuAGAMJazrUASs6SAliDcAECY8vkM17cBWoFwAwBh6uuDxSosq1K826EhvVKsLgeIGIQbAAhT/llSI/ulyu3k1zXQXPxrAYAwFZgCnkWXFNAShBsACEMlFdXatPeoJGk0422AFiHcAEAYWruzUDU+o96p8TqrU5zV5QARhXADAGHI3yU1mi4poMUINwAQZowxWr3VP96GqxIDLUW4AYAws6ugTPuPlcvtsOuiPp2sLgeIOIQbAAgz/labC3unKM7ttLgaIPIQbgAgzORsZ7wNcCYINwAQRiqqvfpkV6EkaXRWF4urASIT4QaRpapMejS59lZVZnU1QND9a88RVVT71DUpRllpCVaXA0Qkwg0AhJH6s6RsNpvF1QCRiXADoDFayCzjH2/DkgtA6xFuACBMHDhWrm35pbLbpEv6cX0boLUINwAQJnLqrko8KL2DOsS5La4GiFyEm2ChGT80fN4TP+9d23AbiHBMAQeCg3CDyPH1UmnBsBPbr90kzT+vdj+CixAZcjVen9ZsL5DEeBvgTBFuEBm+Xiq9MVkqOdhwf/HB2v0EnOAhRIZOvRbfL3YfUElFjZJjXRrUs4PVlQERjet6IyxV1nhVWlGj0soalRyvVOa7/09uGTWeGGtkZFP5X/+fPqy+QE6nUy6HTU67Xc56f7oC2zY5HXY57Ta5HE3vs9vUfqfg+kOkTMP9/hB5yx+kAddbUlq087faXJKZKoe9nZ5/QJAQboLlu834fcdIdod19VjA6zMqq6oJhJLSyno/V9SopLJGZXX7SwL7q1VW6VVJZY1KK6sDx1d7T3y5XmT/WovdeSd9XZuM4srz9P8teV2f+AYE5b3UD0guh10Ou00ufwjyByK7vfa4umDkD1P+xzocJx7jctjk+M5jXHabHIHXaCKQ+X+u97oue10tjoaBrP6+2uc98br+1zxtYPN5peUPqFGwker22aTlM6Rzrmt353YofLTTf1ViuqSAM0W4CYavl0p/+/mJ7ddukpK6S1c/Ffb/yzXGqLLGp5KKJoJHZbVKK/0tKNWNAop/u7TusWVVwR+XEed2qJ+rVGrGU4/oXK1KTwfVeI1qfEY1Xp9qfEbVXp+8PqNqr1GNz6ca74l9Nb6mvsilaq9RtdcrVQf5DVnIblMg/DQVyIaYrzT3+IFTPIORivfr3b++pZJuFykxxqkEj1OJMS4lxjgD2/Fup+y0PLTYl/uPSYoh3ABBQLg5UxY149d4fSqr9Ko00FJSHQglZQ1aRuq1otTbLqmoCbSynOwLvrVcDpsSPE4lxDiV4HEp0eNUvMehhBhX3Zdh7RdgQoxTiYHjnIr3nPiCTKg7xmG3Sbvjpd/PP+3rThs/StN6X9yiWo3xB6F6wafuT29dMPIHpOaEJv/91f7jmthX/zHV3nr7/Md5jby+Jl63XjBrVPN3nqOpv1KfkapqfKqS1FRaPN9+UGrG7OO///MzLfXFn/R+m01KcNf9XcacCD8NgpDnxH0JHqeSYhpuJ8Y45XHao797sF6L71DbNyroMlJpSTEWFgREB8LNmWhhM74xRhXVPpXU6375bvioH1Dqt4wEQkvddnl18FtJEjzOeqHE2Wg7MaY2gCTUCyHf3U6IccrjDHKXRa+RtS1hxQfV9Gdtq72/18gWP7XNVtud43JIUvR0tfh8JwKRP0DV+OoFrSYCWex+SSueO+1zZ/Xrp2xHF5VUnDhfSypqw3WNz8gYqaTuXFVR69+Dy2FrEHaaaiVKjHEpIaYuHHkahiP/MU5HmM6b+E6L7x/cv1JxeRfp67lh3+ILhDubMSa4/20Pc8XFxUpOTlZRUZGSkpLO7Ml2r5F+/2+nPewe12PKqT5bpZU1Tf6P+ky4nfbGrR/1A0qMUwnuhgElweNSvMcR+Dkhxqk4lyO8uxICLWRSw4BTVzMDXc+cz1s7K+p0IfK+L5occ1O/i9MfduoHn/rbpZU1Kq6oC/B12yV126VVNQrmb6VYl6NhK1KD8HMiLNXfPhGYarfj3I7gtiKdpMXXyFZ7RnM+A4205PublpszUZrfrMPsZfkq9vUNbNtsta0kJ+2S8biU4HEEunX83TdNtZq4nWH6v9JgG3B97S/8v/284XTwpO7S1U/yRRAMdkftOLE3Jqs2NDYRIq9+8qSDiW02m2JcDsW4HOqc6Gl1Gb66gemnDEcVdeGosnE4Kq7rpq2o9kmSyqu9Kq/26lBJZatrsvv/zTboYnMqoV4323dbk2r3u+oFq7pWzVO0+NoYuA0EBeHmTCSkNeuwn46/RNN6jwqEmVhXkP8X2F4MuF7qc5n0ZHrt9qQ32+WstDYVBiHSbrfVhQjXGT1PVY0vMP6sxD8mre7nRuGown+cP0SdCFRen5HPSMV1jzkTboddl3m+0Yu+0w/c1t61Uu9RZ/R6QHtFuDkTzRwL0m/oVXwBB0v9z7HXSD7XthAlIdLttMvtdCslvvVrNNUfJxcIR3Xhp/g72w3CUYNuudo/JanK61NMRUGzBm43t2UYQGNhEW4WLFigp59+Wnl5eRo0aJB+85vfaNiwYSc9/s9//rMefvhh7dmzR5mZmXrqqad07bXXhrDiOmfYjA+ELUKkpNqutli3Q7Fuh7oktv55fD4TmNlYs9Mp/fX0A7eb2zIMoDHLB2wsWbJE06dP1+zZs7Vp0yYNGjRIY8eO1aFDh5o8fu3atZo4caJuv/12ffrppxo/frzGjx+vL7/8MsSV1/E34yd2bbg/qTuDAgFIqu1qS4pxqXuHWJ31veza3w9NXG+7lk1K6tGq2X8Aalk+W2r48OG68MIL9dxztf+T8fl8Sk9P17333qsZM2Y0On7ChAkqKyvTu+++G9h30UUXafDgwVq4cGGj4ysrK1VZeWIgYXFxsdLT04MzW6q+iuKIb8YHAqrKpCe61/784AHJffLr2qAVmP0HtFhLZktZ2nJTVVWljRs3Kjs7O7DPbrcrOztb69ata/Ix69ata3C8JI0dO/akx8+ZM0fJycmBW3p6evDeQH004wNoLlp8gTZlabgpKCiQ1+tVWlrDvuW0tDTl5TW9llBeXl6Ljp85c6aKiooCt3379gWneCCaueOlR4tqb7TatI0B10t3rz+xPenN2msIEWyAMxYWA4rbksfjkcfT+mtuAECbocUXaBOWttykpqbK4XAoP7/hlMf8/Hx17dq1ycd07dq1RccDAID2xdJw43a7NWTIEK1cuTKwz+fzaeXKlRoxYkSTjxkxYkSD4yVpxYoVJz0+ZGjGBwAgLFjeLTV9+nRNmTJFQ4cO1bBhwzR//nyVlZVp6tSpkqTJkyerR48emjNnjiRp2rRpGj16tObOnavrrrtOixcv1oYNG/Tiiy9a+TYAAECYsDzcTJgwQYcPH9YjjzyivLw8DR48WMuXLw8MGs7NzZXdfqKBaeTIkfrTn/6khx56SA8++KAyMzP1zjvv6LzzzrPqLQBA6/hbfAEEleXXuQm1oK4KDgAAQiJirnMDAAAQbIQbAAAQVQg3AAAgqhBuAABAVCHcAACAqEK4AQAAUYVwAwAAogrhBgAARBXCDQAAiCqEGwAAEFUINwAAIKoQbgAAQFQh3AAAgKhCuAEAAFHFaXUBoWaMkVS7dDoAAIgM/u9t//f4qbS7cFNSUiJJSk9Pt7gSAADQUiUlJUpOTj7lMTbTnAgURXw+nw4cOKDExETZbLagPndxcbHS09O1b98+JSUlBfW5cQKfc2jwOYcGn3Po8FmHRlt9zsYYlZSUqHv37rLbTz2qpt213NjtdvXs2bNNXyMpKYl/OCHA5xwafM6hweccOnzWodEWn/PpWmz8GFAMAACiCuEGAABEFcJNEHk8Hs2ePVsej8fqUqIan3No8DmHBp9z6PBZh0Y4fM7tbkAxAACIbrTcAACAqEK4AQAAUYVwAwAAogrhBgAARBXCTSv953/+p8aPH69Vq1bJZrOd9Hb55ZdbXWrE83/WXq9XI0eO1L//+783uL+oqEjp6emaNWuWRRVGvuacx3v27JHNZtPmzZutLjdiNecc5nNuveacx5dddtkpj1m9erXVbyPsNec8fu+99+R2u7Vp06YGx8ydO1epqanKy8tr2yINWmXKlCnmhhtuMJWVlebgwYONbi+88IKx2WzmjTfesLrUiOf/rI0xZuvWrSY2Ntb88Y9/DNx/2223mfPPP99UVlZaVGHka855vHv3biPJfPrpp1aXG9FOdw7zObdec87jwsLCRvfv3bvXnHfeeWbo0KGmvLzc6rcREZrzu/j222835557rqmoqDDGGPPVV1+ZmJgYs3jx4javj3DTSvW/cL/r66+/NomJiWbWrFmhLSpKffezfvbZZ01KSoo5cOCAeeedd4zL5TKbN2+2rsAo9d3zmC/d4DnVOcznHFzN+X18xx13mK5du5p9+/aFsLLId7rfxcXFxaZXr17mgQceMNXV1Wbo0KHm5ptvDklthJtWOlm4OXr0qMnMzDTjxo0zPp8v9IVFoe9+1j6fz1x22WXmiiuuMF26dDGPPfaYdcVFqabOY750g+dU5zCfc/A05/fxggULjNvtNh9//HGIq4t8zfldvHLlSuN0Os0tt9xi0tLSTEFBQUhqa3cLZ7Yln8+nW2+9VU6nU6+99lrQVx1HLZvNpt/+9rfq37+/Bg4cqBkzZlhdUlThPG57nMNtrznncU5Oju677z49//zzGjlypAVVRrbmnMdjxozRTTfdpMWLF2vJkiXq1KlTSGpjQHEQPfjgg1q3bp3+7//+T4mJiVaXE9VeeeUVxcXFaffu3fr222+tLieqcB6HBudw2zrdeZybm6ubbrpJd911l+644w4LKowOpzuP9+/fr+XLlysuLk5r1qwJWV2EmyBZvHixfv3rX2vx4sXKzMy0upyotnbtWj3zzDN69913NWzYMN1+++0yrCISFJzHocE53LZOdx6Xl5frxhtv1Lnnnqv58+eHvsAo0Zzz+M4779SQIUP07rvv6re//W3oZqOFpPMrCtUfB/Lpp5+auLg48/TTT1tbVJSq/1mXlZWZzMxMc++99xpjascnJCQkmOeff97CCqPD6c5jxoIEx+nOYT7nM9Oc38e33nqrycjIMIcPHw5hZdGlOb+LX3rpJZOYmGj27NljjDHmnnvuMX369DGlpaVtXh/hppX8X7iHDx82vXr1Mtdee22TUxAPHTpkdakRr364+elPf2r69etnysrKAvcvXLjQJCQkmN27d1tTYBRoznnMl25wnO4c5nNuveacx7/61a+My+Uyy5cvb/KY48ePW/02IsLpzuM9e/aYxMRE88ILLwTuLysrM3379jX33HNPm9dHuGkl/xfuokWLjKST3nr16mV1qRHP/1mvWrXKOBwOs2bNmkbHXHXVVWbMmDHMUGul5pzHfOmeueacw7t27eJzbqXmnMcZGRmnPObVV1+1+m2Eveacx2PGjDFXXXVVo/vXrFljHA6HWbVqVZvWaDOGjl4AABA9GFAMAACiCuEGAABEFcINAACIKoQbAAAQVQg3AAAgqhBuAABAVCHcAACAqEK4AQAAUYVwAyDoMjIyInZBwssuu0z33XffKY+J5PcHtAeEGwAtsm/fPv3whz9U9+7d5Xa71atXL02bNk2FhYVWlwYAkgg3AFpg165dGjp0qLZv367XX39dO3bs0MKFC7Vy5UqNGDFCR44csaQur9crn89nyWsDCD+EGwDNdvfdd8vtduvvf/+7Ro8erbPOOkvXXHONPvjgA+3fv1+zZs0KHFtSUqKJEycqPj5ePXr00IIFCwL3GWP06KOP6qyzzpLH41H37t3105/+NHB/ZWWlfvazn6lHjx6Kj4/X8OHDtWrVqsD9ixYtUocOHbR06VINGDBAHo9HL7/8smJiYnTs2LEGNU+bNk1jxoyRJBUWFmrixInq0aOH4uLiNHDgQL3++uuN3mdNTY3uueceJScnKzU1VQ8//LBOtQzfsWPHdMcdd6hz585KSkrSmDFj9NlnnwXu/+yzz3T55ZcrMTFRSUlJGjJkiDZs2NDszx1AyxBuADTLkSNH9P777+snP/mJYmNjG9zXtWtXTZo0SUuWLAmEgKefflqDBg3Sp59+qhkzZmjatGlasWKFJOmtt97SM888oxdeeEHbt2/XO++8o4EDBwae75577tG6deu0ePFiff7557r55pt19dVXa/v27YFjjh8/rqeeekovv/yyvvrqK02aNEkdOnTQW2+9FTjG6/VqyZIlmjRpkiSpoqJCQ4YM0bJly/Tll1/qrrvu0m233ab169c3eD+///3v5XQ6tX79ej377LOaN2+eXn755ZN+NjfffLMOHTqkv/3tb9q4caMuuOACXXHFFYGWrEmTJqlnz57617/+pY0bN2rGjBlyuVyt+WsA0BxtuuY4gKjxySefGEnm7bffbvL+efPmGUkmPz/f9OrVy1x99dUN7p8wYYK55pprjDHGzJ0712RlZZmqqqpGz7N3717jcDjM/v37G+y/4oorzMyZM40xxrz66qtGktm8eXODY6ZNm2bGjBkT2H7//feNx+MxR48ePen7uu6668x///d/B7ZHjx5t+vfvb3w+X2DfAw88YPr37x/Y7tWrl3nmmWeMMcasWbPGJCUlmYqKigbP27dvX/PCCy8YY4xJTEw0ixYtOmkNAIKLlhsALWJO0T1T34gRIxptb9myRVJtS0d5ebn69OmjO++8U2+//bZqamokSV988YW8Xq+ysrKUkJAQuK1evVo7d+4MPJ/b7db555/f4DUmTZqkVatW6cCBA5Kk1157Tdddd506dOggqbYl57HHHtPAgQPVsWNHJSQk6P3331dubm6D57noootks9ka1L59+3Z5vd5G7/Ozzz5TaWmpOnXq1KDe3bt3B+qdPn267rjjDmVnZ+vJJ59s8D4ABJ/T6gIARIZ+/frJZrNpy5YtuvHGGxvdv2XLFqWkpKhz586nfa709HRt3bpVH3zwgVasWKGf/OQnevrpp7V69WqVlpbK4XBo48aNcjgcDR6XkJAQ+Dk2NrZBAJGkCy+8UH379tXixYv14x//WG+//bYWLVoUuP/pp5/Ws88+q/nz52vgwIGKj4/Xfffdp6qqqhZ+GieUlpaqW7duDcYE+flD1aOPPqpbb71Vy5Yt09/+9jfNnj1bixcvbvJzBHDmCDcAmqVTp0668sor9fzzz+v+++9vMO4mLy9Pr732miZPnhwIHJ988kmDx3/yySfq379/YDs2Nlbjxo3TuHHjdPfdd+ucc87RF198oe9973vyer06dOiQRo0a1eI6J02apNdee009e/aU3W7XddddF7jv448/1g033KAf/OAHkiSfz6dt27ZpwIABDZ7jn//8Z6PaMzMzG4UtSbrggguUl5cnp9OpjIyMk9aVlZWlrKws3X///Zo4caJeffVVwg3QRuiWAtBszz33nCorKzV27Fjl5ORo3759Wr58ua688kr16NFDjz/+eODYjz/+WL/61a+0bds2LViwQH/+8581bdo0SbWznX73u9/pyy+/1K5du/THP/5RsbGx6tWrl7KysjRp0iRNnjxZf/nLX7R7926tX79ec+bM0bJly05b46RJk7Rp0yY9/vjjuummm+TxeAL3ZWZmasWKFVq7dq22bNmi//qv/1J+fn6j58jNzdX06dO1detWvf766/rNb34TqP27srOzNWLECI0fP15///vftWfPHq1du1azZs3Shg0bVF5ernvuuUerVq3S3r179fHHH+tf//pXg6AHIMisHvQDILLs2bPHTJkyxaSlpRmXy2XS09PNvffeawoKCgLH9OrVy/ziF78wN998s4mLizNdu3Y1zz77bOD+t99+2wwfPtwkJSWZ+Ph4c9FFF5kPPvggcH9VVZV55JFHTEZGhnG5XKZbt27mxhtvNJ9//rkxpnZAcXJy8klrHDZsmJFk/vGPfzTYX1hYaG644QaTkJBgunTpYh566CEzefJkc8MNNwSOGT16tPnJT35ifvSjH5mkpCSTkpJiHnzwwQYDjOsPKDbGmOLiYnPvvfea7t27Bz6TSZMmmdzcXFNZWWn+4z/+w6Snpxu32226d+9u7rnnHlNeXt7Sjx5AM9mMaeboQAAAgAhAtxQAAIgqhBsAABBVCDcAACCqEG4AAEBUIdwAAICoQrgBAABRhXADAACiCuEGAABEFcINAACIKoQbAAAQVQg3AAAgqvz/AUTBK1hc4kUAAAAASUVORK5CYII=", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "import matplotlib.pyplot as plt\n", - "import numpy as np\n", - " \n", - "# data\n", - "data = ['IZ', 'IX', 'ZI', 'XI', 'ZZ', 'XX']\n", - "values = job.result().values\n", - " \n", - "# creating error bars\n", - "error = []\n", - "for case in job.result().metadata:\n", - " error.append(2*np.sqrt(case['variance']/case['shots']))\n", - " \n", - "# plotting graph\n", - "plt.plot(data, values)\n", - "plt.errorbar(data, values, yerr = error, fmt ='o')\n", - "plt.xlabel('Observables')\n", - "plt.ylabel('Values')\n", - "plt.show()" - ] - }, - { - "cell_type": "markdown", - "id": "b9a76788-3c34-4382-88f1-fc7ce9dc7234", - "metadata": {}, - "source": [ - "ここでは、量子ビット 0 と 1 では、X と Z の独立した値はいずれもゼロであるのに対し、相関関係は 1 であることがわかります。 これは量子エンタングルメントの特徴です。" - ] - }, - { - "cell_type": "markdown", - "id": "e7c24c81", - "metadata": {}, - "source": [ - "## 次のステップ\n", - "\n", - "\n", - " - [回路を構築](../build/)する方法をさらに詳しく学習します。\n", - " - [ワークフローのサンプルチュートリアル](https://learning.quantum.ibm.com/catalog/tutorials?category=workflow-example)の 1 つを試します。\n", - "\n" - ] - } - ], - "metadata": { - "celltoolbar": "Raw Cell Format", - "description": "Get started using Qiskit with IBM Quantum hardware in this Hello World example", - "kernelspec": { - "display_name": "Python 3 (ipykernel)", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.11.1" - }, - "title": "Hello world" - }, - "nbformat": 4, - "nbformat_minor": 5 -} \ No newline at end of file diff --git a/translations/ja/start/index.mdx b/translations/ja/start/index.mdx deleted file mode 100644 index f36c526efd..0000000000 --- a/translations/ja/start/index.mdx +++ /dev/null @@ -1,51 +0,0 @@ ---- -title: はじめに -description: IBM Quantum の入門ドキュメンテーション -in_page_toc_max_heading_level: 2 ---- - -# はじめに - -量子コミュニティーは 2016 年以降、クラウドで量子コンピューティングを探求してきました。 現在では、_有用な量子計算を実証する_ことを新しい課題としています。 - -ユーザーは IBM Quantum を通じて、作業に使用できる高性能かつ実用規模 (>100 量子ビット) の量子系や、スケーラブルで柔軟な量子ソフトウェアにアクセスすることができます。 無料プランを試すことも、使用量に応じた有料プランまたはプレミアムプランでプログラムを実行することも、量子コンピューティングに関わる有用な作業を今すぐ開始できます。 - -ドキュメンテーションの主なセクションは、Qiskit で量子回路と演算子を構築してから、回路の実行用に単純化された Qiskit Runtime primitive インターフェースを使ってトランスパイルと量子系での実行を行うという、一般的な量子ユーザーの作業工程に基づいています。 Qiskit と Qiskit Runtime を併用すると、高度なランタイムコンパイル、エラー抑制、および誤り軽減技法を使用してシームレスに回路を実行できます。 - -IBM Quantum をはじめてご利用になる場合は、ここから始めるのが適切です。 このセクションのトピックに従って準備を整えてから、[構築](../build)に進んで最初の量子回路を作成しましょう。 このページの上部にあるタブに従って、セクションを順に進めてください。 - -特定の内容をお探しですか? - -- [インストール](install): インストールとセットアップの手順に従って、ツールとプラットフォームの使用を開始します。 - -- [構築](../build): primitive および動的回路や中間回路の測定などの高度なメソッドを使って量子回路のデザインと開発を行います。 こちらには、回路ライブラリも用意されています。 - -- [トランスパイル](../transpile): 様々なエラー認識レベルを使って、ハードウェアで効率的に実行するように回路のコンパイルと最適化を行います。 - -- [検証](../verify): 量子回路を検証して評価します。 - -- [実行](../run): セッションなどのジョブ構成オプションを使ってハードウェアで実行します。 - -- **API リファレンス**: 上記の API リファレンスドロップダウンメニューから、[Qiskit](/api/qiskit)、[Qiskit Runtime IBM Client](/api/qiskit-ibm-runtime)、[Qiskit IBM Runtime Rest API](/api/runtime/)、および [Qiskit IBM プロバイダー](/api/qiskit-ibm-provider) の API リファレンスをご覧ください。 [エラーコードレジストリー](../errors) も提供されています。 - -## コミュニティー - -量子コミュニティーに参加すると、他のユーザーとアイデアを交換しながら、他のユーザーが何に取り組んでいるかを知ることができます。 - -- [Slack](https://ibm.co/joinqiskitslack) に参加 -- [LinkedIn](https://www.linkedin.com/showcase/ibm-quantum/) をフォロー -- [GitHub](https://github.com/qiskit) に貢献 -- [YouTube](https://www.youtube.com/qiskit) および [Medium](https://medium.com/qiskit) を閲覧 - -## 次のステップ - - - - [Qiskit のインストールとセットアップ](install)を行います。 - - [Hello World プログラムを実行](hello-world)します。 - - IBM Quantum Learning で以下のようなハンズオン形式のチュートリアルを詳しくご覧ください。 - - [Variational Quantum Eigensolver(変分量子固有ソルバー)](https://learning.quantum.ibm.com/tutorial/variational-quantum-eigensolver) - - [Quantum Approximate Optimization Algorithm(量子近似最適化アルゴリズム)](https://learning.quantum.ibm.com/tutorial/quantum-approximate-optimization-algorithm) - - [Grover's algorithm(グローバーのアルゴリズム)](https://learning.quantum.ibm.com/tutorial/grovers-algorithm) - - [Basics of quantum information(量子情報の基礎)](https://learning.quantum.ibm.com/course/basics-of-quantum-information) コースを受講します。 - - [IBM Quantum Learning の全チュートリアル](https://learning.quantum.ibm.com/catalog?content=tutorials)のリストを確認します。 - diff --git a/translations/ja/start/install-qiskit-source.mdx b/translations/ja/start/install-qiskit-source.mdx deleted file mode 100644 index 5290504484..0000000000 --- a/translations/ja/start/install-qiskit-source.mdx +++ /dev/null @@ -1,155 +0,0 @@ ---- -title: ソースから Qiskit をインストール -description: Qiskit の開発バージョンのインストール方法を学習します。 ---- - -# ソースから Qiskit および Qiskit Runtime をインストール - -ソースから Qiskit をインストールすることで、Python Package Index(PyPI)リポジトリーのバージョンを使用する代わりに、現在開発中のバージョンにアクセスすることができます。 これにより、Qiskit コードの最新バージョンの検査と拡張をより効果的に行えます。 - -## 新しい仮想環境の作成とアクティベート - -1. Python だけがインストールされた最小環境を作ります。 - - ```` - - - ```shell - python3 -m venv /path/to/virtual/environment - ``` - - - - ```shell - python3 -m venv /path/to/virtual/environment - ``` - - - - ```text - python3 -m venv c:\path\to\virtual\environment - ``` - - - ```` - -2. 新しい環境をアクティベートします。 - - ```` - - - ```shell - source /path/to/virtual/environment/bin/activate - ``` - - - - ```shell - source /path/to/virtual/environment/bin/activate - ``` - - - - ```text - c:\path\to\virtual\environment\Scripts\Activate.ps1 - ``` - - - ```` - -## Rust コンパイラーをインストール - -Qiskit をコンパイルするには、Rust コンパイラーがお使いのシステムにインストールされている必要があります。 Rust コンパイラーをインストールするには、クロスプラットフォーム Rust インストーラー [rustup](https://rustup.rs/) か、[別のインストール方法](https://forge.rust-lang.org/infra/other-installation-methods.html)を使用します。 - -## Qiskit をインストール - -以下の手順にしたがって、Qiskit をインストールします。 - -1. Qiskit リポジトリーをクローンします。 - -```bash -git clone https://github.com/Qiskit/qiskit.git -``` - -2. `qiskit` ディレクトリーに変更します。 - -```bash -cd qiskit -``` - -3. (オプション)テストまたはリントチェックを実行する場合は、開発者要件をインストールします。 - -```bash -pip install -r requirements-dev.txt -``` - -4. `qiskit` をインストールします。 - -- **標準インストール**: - - ```bash - pip install . - ``` - -- **編集可能モード**: このモードでは、プロジェクトにコード変更があっても、Qiskit を再インストールする必要がありません。 - - ```bash - pip install -e . - ``` - - 編集可能モードでは、コンパイルされた拡張機能は最適化なしで _デバッグモード_ にビルドされます。 このため、コンパイル済みのコードの実行時パフォーマンスに影響があります。 最適化を有効にしてコンパイル済みの拡張機能をビルドするには、以下のコマンドを実行して _リリースモード_ でバイナリーをビルドし直します。 - - ```bash - python setup.py build_rust --release --inplace - ``` - - - Qiskit で Rust コードを使用している場合は、ローカル変更を行うたびに拡張コードを再ビルドする必要があります。 編集可能モードでは、Rust 拡張機能はインストールコマンドが実行されるときにのみビルドされるため、Rust コードへのローカルの変更は、`build_rust` を再実行しない限り、インストール済みのパッケージに反映されません(`--release` の有無に関係なく、リリースまたはデバッグモードでビルドするかどうかによって決まります)。 - - -## Qiskit Runtime をインストール - -Qiskit Runtime をインストールするには、以下の手順を実行します。 - -1. Qiskit Runtime リポジトリーをクローンします。 - -```bash -git clone https://github.com/Qiskit/qiskit-ibm-runtime.git -``` - -2. `qiskit_ibm_runtime` ディレクトリーに変更します。 - -```bash -cd qiskit_ibm_runtime -``` - -3. (オプション)テストまたはリントチェックを実行する場合は、開発者要件をインストールします。 グローバルの Python インストールを汚染しないように、[仮想環境](https://docs.python.org/3/library/venv.html)を使用することをお勧めします。 - -```bash -pip install -r requirements-dev.txt -``` - -4. `qiskit-runtime` をインストールします。 グローバルの Python インストールを汚染しないように、[仮想環境](https://docs.python.org/3/library/venv.html)を使用することをお勧めします。 - -- **標準インストール**: - - ```bash - pip install . - ``` - -- **編集可能モード**: このモードでは、プロジェクトにコード変更があっても、Qiskit を再インストールする必要がありません。 - - ```bash - pip install -e . - ``` - - 編集可能モードでは、コンパイルされた拡張機能は最適化なしで _デバッグモード_ にビルドされます。 - -## 次のステップ - - - - オープンソースの Qiskit SDK に貢献するには、[貢献ガイドライン](https://github.com/Qiskit/qiskit/blob/main/CONTRIBUTING.md)をお読みください。 - - [回路を構築](../build/)する方法を学習します。 - - [Hello World プログラムを実行](hello-world)します。 - - [Grover's Algorithm(グローバーのアルゴリズム)](https://learning.quantum.ibm.com/tutorial/grovers-algorithm)などのチュートリアルを試します。 - diff --git a/translations/ja/start/install.mdx b/translations/ja/start/install.mdx deleted file mode 100644 index f0ed155728..0000000000 --- a/translations/ja/start/install.mdx +++ /dev/null @@ -1,334 +0,0 @@ ---- -title: インストールとセットアップ -description: Qiskit および Qiskit Runtime を様々なオペレーティングシステムにインストールし、セットアップします ---- - - -# Qiskit のインストールとセットアップ - -ローカル環境でもクラウド環境でも、すべてのユーザーは最初に Qiskit をインストールする必要があります。 実際のシステムでの実行を希望する場合は、次に、IBM 量子システムにアクセスするために、IBM Quantum Platform か IBM Cloud のいずれかを選択する必要があります。 - - -## Install and set up Qiskit with the Qiskit Runtime client - -1. Python をインストールします。 Check the "Programming Language" section on the [Qiskit PyPI project page](https://pypi.org/project/qiskit/) to determine which Python versions are supported by the most recent release. ダウンロード手順については、[Python Beginners Guide(Python 初心者ガイド)](https://wiki.python.org/moin/BeginnersGuide/Download) をご覧ください。 - - Qiskit と他のアプリケーションを分離するには、[Python 仮想環境](https://docs.python.org/3.10/tutorial/venv.html) を使用することをお勧めします。 また、Qiskit の操作には、[Jupyter](https://jupyter.org/install) 開発環境の使用をお勧めします。 - - 1. Python だけがインストールされた最小環境を作ります。 - - - - ```shell - python3 -m venv /path/to/virtual/environment - ``` - - - - ```shell - python3 -m venv /path/to/virtual/environment - ``` - - - - ```text - python3 -m venv c:\path\to\virtual\environment - ``` - - - - 2. 新しい環境をアクティベートします。 - - - - ```shell - source /path/to/virtual/environment/bin/activate - ``` - - - - ```shell - source /path/to/virtual/environment/bin/activate - ``` - - - - ```text - c:\path\to\virtual\environment\Scripts\Activate.ps1 - ``` - - - -2. [pip をインストール](https://pip.pypa.io/en/stable/installation/) します。 - -3. 以下のパッケージをインストールします。 - - - 常に最新のバージョンを維持するには、以下のコマンドを定期的に実行し直すか、[Qiskit リリースノート](../api/qiskit/release-notes) および [Qiskit Runtime リリースノート](../api/qiskit-ibm-runtime/release-notes) を確認してください。 - - - ```shell - pip install qiskit - ``` - - ```shell - pip install qiskit-ibm-runtime - ``` - - `pip list` を実行して、仮想環境内のアクティブなパッケージを確認します。 - - 可視化機能や Jupyter Notebook を使用する場合は、可視化サポートを追加して Qiskit をインストールすることをお勧めします。 **zsh ユーザー**は、`'qiskit[visualization]'` を単一引用符で囲む必要があることに注意してください。 - - ```shell - pip install qiskit[visualization] - ``` - - zsh ユーザー: - - ```shell - pip install 'qiskit[visualization]' - ``` - -ローカルで作業し、Qiskit に組み込まれたシミュレーターを使用する予定である場合は、インストールはこれで完了です。 IBM 量子システムでジョブを実行する場合は、次に[アクセスチャンネルを選択](setup-channel)してセットアップを完了させます。 - -## トラブルシューティング - -
- - Jupyter notebook での "No Module 'qiskit'" エラー - - ``pip install qiskit`` を使い、Anaconda に仮想環境をセットアップしている場合、 - Jupyter Notebook でチュートリアルを実行する際に、``No Module 'qiskit'`` エラーが - 発生する場合があります。 Qiskit のインストールまたは仮想環境のセットアップ - を完了していない場合は、[インストール](#qiskit-install) の手順を実行してください。 - - このエラーは、Qiskit がインストールされていない環境に Qiskit パッケージ - をインポートしようとした場合に発生します。 Jupyter Notebook を Anaconda-Navigator から - 起動した場合、Jupyter Notebook は仮想環境ではなく - ベース(ルート)環境で実行している可能性が - あります。 Anaconda-Navigator の **Applications on** ドロップダウンメニューから - 仮想環境を選択してください。 このメニューには - Anaconda 内のすべての仮想環境が表示されるため、 - Qiskit がインストール済みで Jupyter Notebook を起動できる環境を選択 - できます。 - -
- -
- - インストール中のコンパイルエラー - - Qiskit は、``pip install qiskit`` を実行する際に自動的にインストールされる - 多数のオープンソース Python パッケージに依存しています。 お使いのシステムの - プラットフォームと Python バージョンによっては、特定のパッケージから - そのシステム用に事前にビルドされたバイナリーが提供されない可能性があります。 Qiskit がサポートしている - プラットフォームのリストについては、[オペレーティングシステムのサポート](#operating-system-support) をご覧ください。 - 一部には追加のコンパイラーが必要な場合があります。 プリコンパイルされたバイナリーを - 使用できない場合、``pip`` はソースからパッケージのコンパイルを試みるため、 - 手動によるインストールが必要な追加の依存関係が必要となる場合が - あります。 - - `pip install qiskit` の出力に以下のような行が含まれている場合: - -``` -Failed building wheel for SOME_PACKAGE -... -build/temp.linux-x86_64-3.5/_openssl.c:498:30: fatal error -compilation terminated. -error: command 'x86_64-linux-gnu-gcc' failed with exit status 1 -``` - - ソースからコンパイルするのに必要なライブラリをインストールする方法について、 - インストールに失敗したパッケージ(この例では `SOME_PACKAGE`)のドキュメン - テーションを確認してください。 - -
- - -## オペレーティングシステムのサポート - -Qiskit はできるだけ多くのオペレーティングシステムをサポートすることに努めていますが、利用できるテストリソースとオペレーティングシステムの可用性に制限があるため、すべてのオペレーティングシステムをサポートすることはできません。 Qiskit のオペレーティングシステムのサポートは、それぞれにサポートレベルの異なる 3 つのティアに分けられています。 これらに含まれないオペレーティングシステムについては、Qiskit のインストールはおそらく可能ではありますが、未検証であり、Qiskit(および Qiskit の依存関係)をソースからビルドする必要があります。 - -また、Qiskit は CPython のみをサポートしています。 他の Python インタープリターでの実行はサポートされていません。 - -
- - ティア 1 - - ティア 1 オペレーティングシステムは、提案されるすべての変更が正しく機能することを保証するために、開発プロセスの一環として完全に検証済みです。 プリコンパイルのバイナリーは、リリースプロセスの一環として、ビルドとテストを経て PyPI に公開されています。 通常、機能する Python 環境がインストールされている限り、これらのオペレーティングシステムに Qiskit をインストールできます。それ以上の依存関係をインストールする必要はありません。 - - ティア 1 オペレーティングシステム: - -- Linux x86_64([manylinux 2014](https://www.python.org/dev/peps/pep-0599/) パッケージ仕様と互換性のあるディストリビューション)。 -- macOS x86_64(10.12 以降) -- Windows 64 ビット -
- -
- - ティア 2 - - ティア 2 オペレーティングシステムは、開発プロセスの一環として検証されていません。 ただし、プリコンパイルのバイナリーは、リリースプロセスの一環としてビルドとテストを経て PyPI に公開されているため、これらのパッケージは機能する Python 環境だけでインストールできることが期待されています。 - - ティア 2 オペレーティングシステム: - -- Linux AArch64([manylinux 2014](https://www.python.org/dev/peps/pep-0599/) パッケージ仕様と互換性のあるディストリビューション) -
- -
- - ティア 3 - - ティア 3 オペレーティングシステムは、開発プロセスの一環として検証されていません。 プリコンパイルのバイナリーは、リリースプロセスの一環としてビルドされて PyPI に公開されていますが、検証はされていません。 機能する Python 環境だけではインストールできない可能性があり、インストールプロセスで、C/C++ コンパイラーまたはソースから依存関係をビルドするための追加のプログラムが必要となる場合があります。 これらのオペレーティングシステムのサポートはベストエフォートに限定されています。 - - ティア 3 オペレーティングシステム: - -- Linux ppc64le([manylinux 2014](https://www.python.org/dev/peps/pep-0599/) パッケージ仕様と互換性のあるディストリビューション) -- Linux s390x([manylinux 2014](https://www.python.org/dev/peps/pep-0599/) パッケージ仕様と互換性のあるディストリビューション) -- macOS ARM64(10.15 以降) -- Linux i686([manylinux 2014](https://www.python.org/dev/peps/pep-0599/) パッケージ仕様と互換性のあるディストリビューション) -- Windows 32 ビット -
- -## Qiskit バージョン管理 - -Qiskit のバージョン番号は[セマンティックバージョニング](https://semver.org/)に従います。 -The version number is comprised of three primary components: the major, minor, and -patch versions. For example, in version number `X.Y.Z`, `X` is the major version, -`Y` is the minor version, and `Z` is the patch version. - -重大な API の変更は、メジャーバージョンリリースに予約されています。 The **minimum** -period between major version releases is one year. Minor versions introduce -new features and bug fixes without breaking API compatibility, and are -periodically (currently every three months) published for **only** the -current major version. Patch versions provide fixes for bugs identified in -the most recent minor version of each actively supported release series (that is, the -major version). We support at most two release series at a time, which occurs -only during the period of overlap following a new major version release, -described in more detail below. - -
- - Release schedule - - -A tentative release schedule is included below: - -![Tentative Qiskit release schedule](/images/start/install/release_schedule.png) - -For an up-to-date release schedule, refer to the Qiskit Github project's [milestones list](https://github.com/Qiskit/qiskit/milestones), which will always contain the current release plan. - -With the release of a new major version, the previous major version is supported -for at least six months; only bug and security fixes are accepted during this time and only patch releases are published for this major version. A final -patch version is published when support is dropped, and that release -also documents the end of support for that major version series. A longer -support window is needed for the previous major version as this gives downstream -Qiskit consumers and their users a chance to migrate their code. -Downstream libraries that -depend on Qiskit should not raise their minimum required Qiskit version to a new -major version immediately after its release because the library's user base needs time -to migrate to the new API changes. Having an extended support window -for the previous major Qiskit version gives downstream projects time to ensure -compatibility with the next major version. Downstream projects can provide -support for two release series at a time to give their users a migration path. - -For the purposes of semantic versioning, the Qiskit public API is considered -any documented module, class, function, or method that is not marked as private -(with an underscore `_` prefix). However, there can be explicit exceptions made for -specific documented APIs. In such cases, these APIs will be clearly documented -as not being considered stable interfaces yet, and a user-visible warning will be -actively emitted on any use of these unstable interfaces. Additionally, in some -situations, an interface marked as private is considered part of the public -API. Typically this only occurs in two cases: either an abstract interface -definition where subclasses are intended to override/implement a private method -as part of defining an implementation of the interface, or advanced-usage -low-level methods that have stable interfaces but are not considered safe to use, -as the burden is on the user to uphold the class/safety invariants themselves -(the canonical example of this is the `QuantumCircuit._append` method). - -The supported Python versions, minimum supported Rust version (for building -Qiskit from source), and any Python package dependencies (including the minimum -supported versions of dependencies) used by Qiskit are not part of the backwards -compatibility guarantees and may change during any release. Only minor or major -version releases will raise minimum requirements for using or building Qiskit -(including adding new dependencies), but patch fixes might include support for -new versions of Python or other dependencies. Usually the minimum version of a -dependency is only increased when older dependency versions go out of support or -when it is not possible to maintain compatibility with the latest release of the -dependency and the older version. - -
- -
- - Upgrade strategy - -When a new major version is released, the recommended upgrade path -is to first upgrade to the most recent minor version on the previous major -version. Shortly before a new major version, a final minor version will -be published. This final minor version release `X.Y+1.0.0` is equivalent to -`X.Y.0` but with warnings and deprecations for any API changes that are -made on the new major version series. - -For example, immediately proceeding the 1.0.0 release, a 0.46.0 release will be -published. The 0.46.0 release will be equivalent to the 0.45.0 release but with -additional deprecation warnings that document the API changes that were made as -part of the 1.0.0 release. This pattern will be used for any future major -version releases. - -Qiskit users should first upgrade to this final minor -version to see any deprecation warnings and adjust their Qiskit -usage before trying a potentially breaking release. The previous -major version will be supported for at least six months to give sufficient time -to upgrade. A typical pattern to manage this is to pin the maximum version to -avoid using the next major release series until you're sure of compatibility. -For example, specifying `qiskit<2` in a requirements file when the current -major Qiskit version is 1 ensures that you're using a version of Qiskit -that doesn't have breaking API changes. - -Capping the version less than the next major version -ensures that you see any deprecation warnings before a -major version release. -Without the cap, `pip` installs -the newest version available by default. - -
- -
- -Pre-releases - -For each minor and major version release, Qiskit publishes pre-releases that -are compatible with [PEP440](https://peps.python.org/pep-0440/). Typically -these are release candidates of the form `X.Y.0rc1`. The `rc` releases -will have a finalized API surface and are used to test a prospective release. - -Note that when one of the PEP440 pre-release suffixes (such as `a`, `b`, or `pre`) are -published, it does not have the same guarantees as an `rc` release, and is -only a preview release. The API might change between these pre-releases -and the final release with that version number. For example, `1.0.0pre1` might have -a different final API than `1.0.0`. - -
- -
- -Post-releases - -If there are issues with a release's packaging, a post-release might be -issued to correct this. These will follow the form `X.Y.Z.1` where the fourth -integer indicates that it is the first post-release of the `X.Y.Z` release. -For example, the qiskit-terra (the legacy package name for Qiskit) 0.25.2 -release had some issue with the sdist package publishing, and a post-release -0.25.2.1 was published that corrected this issue. The code was identical, and -0.25.2.1 only fixed the packaging issue for the release. -
- -## 次のステップ - - - - [IBM 量子チャンネルの選択とセットアップ](setup-channel)を行います。 - - [Qiskit をローカルで構成](configure-qiskit-local)します。 - - [Hello World](hello-world) の手順に従って、量子プログラムを作成して実行します。 - - [ワークフローのサンプルチュートリアル](https://learning.quantum.ibm.com/catalog/tutorials?category=workflow-example)の 1 つを試します。 - diff --git a/translations/ja/start/setup-channel.mdx b/translations/ja/start/setup-channel.mdx deleted file mode 100644 index 184e5c6d8f..0000000000 --- a/translations/ja/start/setup-channel.mdx +++ /dev/null @@ -1,197 +0,0 @@ ---- -title: IBM Quantum チャンネルの選択とセットアップ -description: Qiskit および Qiskit Runtime ジョブを送信するための IBM Quantum Platform または IBM Cloud 上の IBM Quantum のインストールおよびセットアップ手順 ---- - -# IBM Quantum チャンネルの選択とセットアップ - -IBM 量子システムには、IBM Quantum Platform または IBM Cloud _チャンネル_を使ってアクセスすることができます。 _チャンネル_ とは、IBM Quantum サービスにアクセスするために使用する方法を説明するために使用される用語です。 - -### IBM Quantum Platform - -IBM Quantum Platform にはオープン(無料アクセス)プランとプレミアム(エンタープライズサブスクリプション)プランがあります。 詳細は、[IBM Quantum アクセスプラン](https://www.ibm.com/quantum/access-plans)をご覧ください。 - -`qiskit-ibm-runtime` クライアントを使ってローカル(お使いのノートパソコンまたはその他のデバイス)でリクエストすることも、[IBM Quantum Lab](https://lab.quantum.ibm.com)(Jupyter Notebook 環境)または [IBM Quantum Composer](https://quantum.ibm.com/composer/files/new)(仮想回路作成ツール)などのクラウド環境を使用することもできます。 ローカル環境からリクエストするには、[Qiskit Runtime Client による Qiskit のインストールとセットアップ](install#local)および[IBM Quantum プラットフォームを使用するためのセットアップ](#iqp)を実行する必要があります。 - - - [IBM Quantum Lab](https://lab.quantum.ibm.com) と [IBM Quantum Composer](https://quantum.ibm.com/composer/files/new)は自己完結型のツールであり、セットアップは不要です。 - - -利用可能なプラン: - -- **オープンプラン** - 世界最高の量子システムで、量子回路を無料で実行します(月間最大量子時間は 10 分です)。 - -- **プレミアムプラン** - エンタープライズ量子時間サブスクリプションを使用して、世界最高の量子システムで量子回路を実行します。 - -### IBM Cloud - -IBM Cloud は、従量課金制のアクセスプランを提供しています。 詳細は、[IBM Quantum アクセスプラン](https://www.ibm.com/quantum/access-plans)をご覧ください。 - -IBM Cloud にはライト(無料アクセス)プランと標準(従量課金制アクセス)プランがあります。 詳細は、IBM Cloud の [Qiskit Runtime プラン](https://cloud.ibm.com/docs/quantum-computing?topic=quantum-computing-plans)をご覧ください。 - -このチャンネルではクラウドベースの開発環境はサポートされていません。 そのため、[Qiskit と Qiskit Runtime のインストールとセットアップ](install#local)および [IBM Cloud を使用するためのセットアップ](#cloud)が必要となります。 - -利用可能なプラン: - -- **標準(従量課金制)プラン** - 世界最高の量子システムで量子回路を実行し、使用した量子時間に対してのみ支払います。 - -- **ライトプラン**: 無料のシミュレーターを使用して、量子回路のデバッグと量子回路について学習します。 - - -## IBM Quantum Platform を使用するためのセットアップ - -クラウドベースの IBM 量子システムを使用するには、アクセスするための資格情報が必要です。 - -1. ユーザーアカウントをまだお持ちでない場合は、[IBM Quantum ログインページ](https://quantum.ibm.com/login)でアカウントを取得します。ユーザーアカウントは、IBM Quantum サービスにアクセスを提供する 1 つ以上の[インスタンス](../run/instances)(hub / group / project の形式)に関連付けられます。 また、各アカウントには一意のトークンが関連付けられるため、Qiskit から IBM Quantum にアクセスできるようになります。 このセクションの手順では、デフォルトのインスタンスを使用します。 特定のインスタンスを選択するための手順については、[インスタンスへの接続](../run/instances#connect-instance)をご覧ください。 - - - [IBM Quantum アカウントページ](https://quantum.ibm.com/account)の Instances セクションには、アクセスできるインスタンスがリスト表示されています。 - - -2. [IBM Quantum アカウントページ](https://quantum.ibm.com/account)から IBM Quantum トークンを取得し、Python を起動します。 例: - - ```shell - python3 - ``` - -3. IBM Cloud API キーと CRN を指定して `QiskitRuntimeService` を呼び出し、サービスに対する認証を行います。 - - ```python - from qiskit_ibm_runtime import QiskitRuntimeService - - service = QiskitRuntimeService(channel="ibm_quantum", token="") - - ``` - - また、オプションで `save_account()` メソッドを使うと、後で簡単にアクセスできるように、サービスを初期化する前に資格情報を保存することができます。 - - ```python - from qiskit_ibm_runtime import QiskitRuntimeService - - # IBM Quantum アカウントを保存し、デフォルトにアカウントに設定します。 - QiskitRuntimeService.save_account(channel="ibm_quantum", token="", set_as_default=True) - - # 保存した資格情報を読み込みます。 - service = QiskitRuntimeService() - ``` - - - 資格情報をディスクに保存すると、以降で `QiskitRuntimeService()` を使ってアカウントを初期化することができます。 `channel` パラメーターはアカウントタイプを区別します。 チャンネルごとに複数のアカウントを保存している場合は、アカウントを区別できるように `name` パラメーターを使用することを検討してください。 - - チャンネルごとに複数のアカウントを保存している場合は、アカウントを区別できるように `name` パラメーターを使用することを検討してください。 - - 資格情報は `$HOME/.qiskit/qiskit-ibm.json` に保存されます。 このファイルを手動で編集しないでください。 - - 資格情報を保存しない場合は、新しいセッションを開始するたびにその情報を指定する必要があります。 - - `channel` パラメーターを使うと、様々なアカウントタイプを区別することができます。 アカウントを初期化すると、IBM Quantum Platform と IBM Cloud アカウントの資格情報が保存されている場合のデフォルトのアカウントは IBM Cloud です。 - - - アカウントの資格情報はプレーンテキストで保存されるため、信頼できるデバイスを使用している場合にのみ保存するようにしてください。 - - - - 別のチャンネルやアカウント名を指定しない場合に使用されるデフォルトのアカウントは IBM Cloud です。 - - -4. セットアップを検証します。 Sampler を使用して単純な回路を実行し、環境が適切にセットアップされていることを確認します。 - - ```python - from qiskit import QuantumCircuit - from qiskit_ibm_runtime import QiskitRuntimeService, Sampler - - # 空の回路を作成します - example_circuit = QuantumCircuit(2) - example_circuit.measure_all() - - # QiskitRuntimeService を初期化する際に、過去に資格情報を保存していない場合はその情報を指定する必要があります。 - service = QiskitRuntimeService() - backend = service.backend("ibmq_qasm_simulator") - job = Sampler(backend).run(example_circuit) - print(f"job id: {job.job_id()}") - result = job.result() - print(result) - ``` - - -## IBM Cloud を使用するためのセットアップ - -1. Python を開始します。 例: - - ```shell - python3 - ``` - -2. IBM Cloud アカウントをまだお持ちでない場合は、[IBM Cloud 登録ページ](https://cloud.ibm.com/registration)でアカウントをセットアップします。 - -3. 必要であれば、サービスインスタンスを作成します。 [IBM Cloud Instances ページ](https://cloud.ibm.com/quantum/instances)を開きます。 1 つ以上のインスタンスが表示される場合は、次の手順に進みます。 そうでない場合は **Create instance** をクリックします。 インスタンスの作成時には、インスタンスに名前やタグを付け、リソースグループを指定し、パフォーマンス戦略を選択することができます。 次に、ページの右下にあるボックスをオンにしてライセンス契約に同意し、**Create** をクリックします。 - - - 組織の Qiskit Runtime を Cloud にセットアップする必要がある管理者は、[組織向けの Qiskit Runtime の計画](https://cloud.ibm.com/docs/quantum-computing?topic=quantum-computing-quickstart-org)をご覧ください。 - - - - パフォーマンス戦略を選択する際は、2 つのオプションを利用できます。 1 つは IBM(デフォルト)で、もう 1 つは Q-CTRL の戦略です。 IBM のパフォーマンス戦略では、[Qiskit Runtime](../api/qiskit-ibm-runtime) で提供されるすべての標準オプションを活用できますが、Q-CTRL 戦略では自動プリセットが使用されます。 Q-CTRL のオプションの詳細については、[Q-CTRL ドキュメンテーション](https://docs.q-ctrl.com/q-ctrl-embedded)をご覧ください。 - - -4. アクセス資格情報を見つけます。 - 1. API キーを見つけます。 [API keys ページ](https://cloud.ibm.com/iam/apikeys)から、API キーを表示または作成し、認証に使用できるように安全な場所にコピーします。 - 2. クラウドリソース名(CRN)を見つけます。 [Instances ページ](https://cloud.ibm.com/quantum/instances)を開き、インスタンスをクリックします。 開いたページで、アイコンをクリックして CRN をコピーします。 認証に使用できるように安全な場所に保存してください。 - -5. 保存した資格情報または IBM Cloud API キーと CRN を指定して `QiskitRuntimeService` を呼び出し、サービスに対する認証を行います。 - - ```python - from qiskit_ibm_runtime import QiskitRuntimeService - - service = QiskitRuntimeService(channel="ibm_cloud", token="", instance="") - ``` - - - ステップ 3 で Q-CTRL パフォーマンス管理を含めるようにインスタンスをセットアップした場合は、`QiskitRuntimeService()` を初期化する際に、`channel_strategy="q-ctrl"` 引数を追加する必要があります。 Q-CTRL パフォーマンス管理戦略についての詳細は、[Q-CTRL ドキュメンテーション](https://docs.q-ctrl.com/q-ctrl-embedded)をご覧ください。 - - - オプションで `save_account()` メソッドを使うと、後で簡単にアクセスできるように、サービスを初期化する前に資格情報を保存することができます。 - - ```python - from qiskit_ibm_runtime import QiskitRuntimeService - - # アカウントをディスクに保存します。 - QiskitRuntimeService.save_account(channel="ibm_cloud", token="", instance="", name="") - - # 保存された資格情報を読み込みます - service = QiskitRuntimeService(name="") - ``` - - - 資格情報をディスクに保存すると、以降で `QiskitRuntimeService()` を使ってアカウントを初期化することができます。 `channel` パラメーターはアカウントタイプを区別します。 アカウントを初期化すると、IBM Quantum Platform と IBM Cloud アカウントの両方の資格情報が保存されている場合のデフォルトのアカウントは IBM Cloud です。 - - チャンネルごとに複数のアカウントを保存している場合は、アカウントを区別できるように `name` パラメーターを使用することを検討してください。 - - 資格情報は `$HOME/.qiskit/qiskit-ibm.json` に保存されます。 このファイルを手動で編集しないでください。 - - 資格情報を保存しない場合は、新しいセッションを開始するたびにその情報を指定する必要があります。 - - - アカウントの資格情報はプレーンテキストで保存されるため、信頼できるデバイスを使用している場合にのみ保存するようにしてください。 - - -6. セットアップを検証します。 Sampler を使用して単純な回路を実行し、環境が適切にセットアップされていることを確認します。 - -````python - from qiskit import QuantumCircuit - from qiskit_ibm_runtime import QiskitRuntimeService, Sampler - - # 空の回路を作成します - example_circuit = QuantumCircuit(2) - example_circuit.measure_all() - - # QiskitRuntimeService を初期化する際に、過去に資格情報を保存していない場合はその情報を指定する必要があります。 - service = QiskitRuntimeService() - backend = service.backend("ibmq_qasm_simulator") - job = Sampler(backend).run(example_circuit) - print(f"job id: {job.job_id()}") - result = job.result() - print(result) - ``` - -## 次のステップ - - -- [Qiskit をローカルで構成](configure-qiskit-local)します。 -- [Hello world](hello-world) の手順に従って、量子プログラムを作成して実行します。 -- [クラウドで IBM Quantum の使用を開始](https://cloud.ibm.com/docs/quantum-computing?topic=quantum-computing-get-started)します。 -- [ワークフローのサンプルチュートリアル](https://learning.quantum.ibm.com/catalog/tutorials?category=workflow-example)の 1 つを試します。 - - -```` diff --git a/translations/ja/support.mdx b/translations/ja/support.mdx deleted file mode 100644 index 85341de24f..0000000000 --- a/translations/ja/support.mdx +++ /dev/null @@ -1,104 +0,0 @@ ---- -title: Getting help -description: How to find answers to questions or problems you encounter while using IBM Quantum (Platform, or on IBM Cloud) or Qiskit Runtime ---- - -# Getting help - -## IBM Quantum Support - -Members of the IBM Quantum Network can reach out to IBM Quantum Support if they have technical difficulties, questions, or concerns. Ask your administrator or IBM representative for IBM Quantum Support contact information. - -## Qiskit - -For help with Qiskit, access our Slack community: [Qiskit Slack](https://qisk.it/join-slack). - -## Qiskit Runtime - -- Join the qiskit-runtime channel within the [Qiskit Slack workspace](https://qisk.it/join-slack). - -## Open-source governance - -The following pages are resources for anyone interested in contributing code to Qiskit. - -- [Code of conduct](https://github.com/Qiskit/qiskit/blob/main/CODE_OF_CONDUCT.md) -- [Contributing guide](https://github.com/Qiskit/qiskit/blob/main/CONTRIBUTING.md) -- [Deprecation policy](https://github.com/Qiskit/qiskit/blob/main/DEPRECATION.md) -- [Maintainers guide](https://github.com/Qiskit/qiskit/blob/main/MAINTAINING.md) - -## Other discussions - -Discuss quantum information science and development with the larger quantum computing field on the [Quantum Computing Stack Exchange](https://quantumcomputing.stackexchange.com/questions/) site. Be sure to read the ["How do I ask a good question?"](https://quantumcomputing.stackexchange.com/help/how-to-ask) guide, and make use of tags such as `qiskit`, `ibm-runtime`, and `ibm-quantum-services` for best results. - -For questions specific to programming, visit [Stack Overflow](https://stackoverflow.com/) and use the tag `qiskit`. - -## Frequently asked questions - -
- - How do I cite Qiskit in my research? - - -Cite Qiskit by using the included [BibTeX file](https://github.com/Qiskit/qiskit/blob/main/CITATION.bib). - -
- -
- - How do I cite an IBM Quantum system in my research? - - -For research papers, we encourage authors to acknowledge IBM Quantum using: - -> We acknowledge the use of IBM Quantum services for this work. The views expressed are those of the authors, and do not reflect the official policy or position of IBM or the IBM Quantum team. - -Paper references should be cited as follows: - -> IBM Quantum. https://quantum.ibm.com/, 2021 - -Systems in the paper should be referenced by their unique name (i.e., `ibmq_vigo`) and optionally -adding the version (i.e., `ibmq_vigo` v1.0.2). We also encourage referencing the processor. -For example: - -> In this paper we used `ibmq_vigo`, which is one of the IBM Quantum Canary processors. - -An example of citing an IBM Quantum program: - -> IBM Quantum (2022). Estimator primitive (Version x.y.z) [computer software]. https://quantum.ibm.com/ - -
- -
- - How do I cite IBM Quantum Composer in my research? - - -An example of citing IBM Quantum Composer: - -> IBM Quantum Composer. 2023. url: https://quantum.ibm.com/composer - -
- -
- - Why do I receive the error message `AttributeError: QuantumCircuit object has no attribute 'save_state'` when using `save_*`method on a circuit? - - -The `save_*` instructions are part of Qiskit Aer project, -a high performance simulator for quantum circuits. These instructions do not -exist outside of Qiskit Aer and are added dynamically to the -[QuantumCircuit](/api/qiskit/qiskit.circuit.QuantumCircuit#quantumcircuit) class by Qiskit Aer on import. If you would like to -use these instructions you must first ensure that you have imported -`qiskit_aer` in your program before trying to call these methods. You -can refer to [qiskit_aer.library](https://qiskit.org/ecosystem/aer/apidocs/aer_library.html) for the details of these custom -instructions included with Qiskit Aer. -
- -
- - Why do my results from real devices differ from my results from the simulator? - - -The simulator models an ideal environment, without noise or decoherence. When jobs are run on the real devices, noise from the environment and decoherence cause the qubits to behave differently than in an ideal environment. - -
diff --git a/translations/ja/transpile/_toc.json b/translations/ja/transpile/_toc.json deleted file mode 100644 index cda563113c..0000000000 --- a/translations/ja/transpile/_toc.json +++ /dev/null @@ -1,60 +0,0 @@ -{ - "title": "Transpile", - "collapsed": true, - "children": [ - { - "title": "Introduction", - "url": "/transpile" - }, - { - "title": "Transpiler stages", - "url": "/transpile/transpiler-stages" - }, - { - "title": "Transpile with pass managers", - "url": "/transpile/transpile-with-pass-managers" - }, - { - "title": "Create a pass manager for dynamical decoupling", - "url": "/transpile/dynamical-decoupling-pass-manager" - }, - { - "title": "Write a custom transpiler pass", - "url": "/transpile/custom-transpiler-pass" - }, - { - "title": "Use the transpile function", - "children": [ - { - "title": "Default settings and configuration options", - "url": "/transpile/defaults-and-configuration-options" - }, - { - "title": "Set optimization level", - "url": "/transpile/set-optimization" - }, - { - "title": "Represent quantum computers", - "url": "/transpile/representing_quantum_computers" - }, - { - "title": "Commonly used parameters for transpilation", - "url": "/transpile/common-parameters" - } - ] - }, - { - "title": "Qiskit transpiler service", - "children": [ - { - "title": "Transpile circuits remotely with the Qiskit transpiler service", - "url": "/transpile/qiskit-transpiler-service" - }, - { - "title": "AI transpiler passes", - "url": "/transpile/ai-transpiler-passes" - } - ] - } - ] -} diff --git a/translations/ja/transpile/ai-transpiler-passes.mdx b/translations/ja/transpile/ai-transpiler-passes.mdx deleted file mode 100644 index 54cedbbb97..0000000000 --- a/translations/ja/transpile/ai-transpiler-passes.mdx +++ /dev/null @@ -1,60 +0,0 @@ ---- -title: AI transpiler passes -description: What are the AI transpiler passes and how to use them ---- - -# AI transpiler passes - -​ -The AI-powered transpiler passes are experimental passes that work as a drop-in replacement of "traditional" qiskit passes for some transpiling tasks. They often produce better results than existing heuristic algorithms (such as lower depth and CNOT count), but are also much faster than optimization algorithms such as Boolean satisfiability solvers. The AI transpiler passes run on the cloud and are available to IBM Quantum Premium Plan users. - - - This is an experimental feature available only to the IBM Quantum Premium Plan. - The AI-powered transpiler passes are in alpha release status, subject to change. - - -The following passes are currently available: - -**Routing passes** - -- `AIRouting`: Layout selection and circuit routing - -The following passes will be available in Q1 2024. - -**Circuit synthesis passes** - -- `AICliffordSynthesis`: Clifford circuit synthesis -- `AILinearFunctionSynthesis`: Linear function circuit synthesis -- `AIPermutationSynthesis`: Permutation circuit synthesis - -To use the AI transpiler passes through our cloud services, install the `qiskit-transpiler-service` package (see instructions [here](qiskit-transpiler-service#install-transpiler-service)). - -## AI routing pass - -The `AIRouting` pass acts both as a layout stage and a routing stage. It can be used within a `PassManager` as follows: - -```python -from qiskit.transpiler import PassManager -from qiskit_transpiler_service.ai.routing import AIRouting -from qiskit.circuit.library import EfficientSU2 - -ai_passmanager = PassManager([ - AIRouting(target="ibm_sherbrooke", optimization_level=2, layout_mode="optimize") -]) - -circuit = EfficientSU2(120, entanglement="circular", reps=1).decompose() - -transpiled_circuit = ai_passmanager.run(circuit) -``` - -Here, the `target` determines which system to route for, the `optimization_level` (1, 2, or 3) determines the computational effort to spend in the process (higher usually gives better results but takes longer), and the `layout_mode` specifies how to handle the layout selection. -The `layout_mode` includes the following options: - -- `keep`: This respects the layout set by the previous transpiler passes (or uses the trivial layout if not set). It is typically only used when the circuit must be run on specific qubits of the device. It often produces worse results because it has less room for optimization. -- `improve`: This uses the layout set by the previous transpiler passes as a starting point. It is useful when you have a good initial guess for the layout; for example, for circuits that are built in a way that approximately follows the device's coupling map. It is also useful if you want to try other specific layout passes combined with the `AIRouting` pass. -- `optimize`: This is the default mode. It works best for general circuits where you might not have good layout guesses. This mode ignores previous layout selections. - - - - Learn [how to transpile circuits](https://learning.quantum.ibm.com/tutorial/submit-transpiled-circuits) as part of Qiskit Patterns workflows using Qiskit Runtime. - - Review the [Qiskit transpiler service API documentation.](https://cloud-transpiler-experimental.quantum-computing.ibm.com/docs) - diff --git a/translations/ja/transpile/common-parameters.mdx b/translations/ja/transpile/common-parameters.mdx deleted file mode 100644 index 6bc6c665e9..0000000000 --- a/translations/ja/transpile/common-parameters.mdx +++ /dev/null @@ -1,113 +0,0 @@ ---- -title: Commonly used parameters for transpilation -description: Commonly used parameters such as approximation degree ---- - -# Commonly used parameters for transpilation - -Following are some of the more commonly used parameters for local transpilation using the `transpile()` method. - - -## Approximation degree - -You can use the approximation degree to specify how closely you want the resultant circuit to match the desired (input) circuit. This is a float in the range (0.0 - 1.0), where 0.0 is maximum approximation and 1.0 (default) is no approximation. Smaller values trade output accuracy for ease of execution (that is, fewer gates). The default value is 1.0. - -In two-qubit unitary synthesis (used in initial stages of all levels and for optimization stage with optimization level 3), this value specifies the target fidelity of the output decomposition. That is, how much error is introduced when a matrix representation of a circuit is converted to discrete gates. If the approximation degree is a lower value (more approximation), the output circuit from synthesis will differ more from the input matrix, but will also likely have fewer gates (because any arbitrary two-qubit operation can be decomposed perfectly with at most three CX gates) and is easier to run. - -When the approximation degree is less than 1.0, circuits with one or two CX gates might be synthesized, leading to less error from the hardware, but more from the approximation. Since CX is the most expensive gate in terms of error, it might be beneficial to decrease the number of them at the cost of fidelity in synthesis (this technique was used to increase quantum volume on IBM devices: [Validating quantum computers using randomized model circuits](https://arxiv.org/abs/1811.12926)). - -As an example, we generate a random 2-qubit `UnitaryGate` which will be synthesized in the initial stage. Setting the `approximation_degree` less than 1.0 might generate an approximate circuit. We must also specify the `basis_gates` to let the synthesis method know which gates it can use for the approximate synthesis. - -```python -from qiskit import QuantumCircuit, transpile -from qiskit.circuit.library import UnitaryGate -from qiskit.quantum_info import random_unitary - -UU = random_unitary(4, seed=12345) -rand_U = UnitaryGate(UU) - -qc = QuantumCircuit(2) -qc.append(rand_U, range(2)) -approx_qc = transpile(qc, approximation_degree=0.85, basis_gates=["sx", "rz", "cx"]) -print(approx_qc.count_ops()["cx"]) -``` - -This yields an output of `2` because the approximation requires fewer CX gates. - - -## Seed transpiler - -The seed transpiler argument sets the random seed for the stochastic parts of the transpiler, used for reproducibility. Due to the stochastic nature of the transpiler if you run `transpile()` multiple times with the same configuration you are not guaranteed to get the same output each time. So if you are experimenting with transpilation and require the same transpiled output every time you can do so by setting the `seed_transpiler` argument. - -Example: - -```python -optimized_1 = transpile(qc, seed_transpiler=11, optimization_level=1) -``` - - -## Initial layout - -Specifies the initial position of virtual qubits on physical qubits. If this layout makes the circuit compatible with the `coupling_map` constraints, it will be used. The final layout is not guaranteed to be the same, as the transpiler might permute qubits through swaps or other means. Multiple formats are supported: - -```` -* Layout instance -* Dict - - virtual to physical: - ```python - {qr[0]: 0, - qr[1]: 3, - qr[2]: 5} - ``` - - physical to virtual: - ```python - {0: qr[0], - 3: qr[1], - 5: qr[2]} - ``` - -* List - - virtual to physical: - ```python - [0, 3, 5] # virtual qubits are ordered (in addition to named) - ``` - - physical to virtual: - ```python - [qr[0], None, None, qr[1], None, qr[2]] - ``` -```` - - -## *_method - -These options influence how the transpiler works and are used to try and get better, different, or specific output from the transpiler. - -- `init_method` (str) - The plugin to use for the initialization stage. - -- `layout_method` (str) - The layout selection pass (`trivial`, `dense`, `noise_adaptive`, `sabre`). This can also be the external plugin name to use for the layout stage. - -- `optimization_method` (str) - The plugin to use for the optimization stage. - -- `routing_method` (str) - Name of routing pass (`basic`, `lookahead`, `stochastic`, `sabre`, `none`). This can also be the external plugin name to use for the routing stage. - -- `scheduling_method` (str) - Name of scheduling pass. This can also be the external plugin name to use for the scheduling stage. - - `as_soon_as_possible`: Schedule instructions greedily: as early as possible on a qubit resource (alias: `asap`). - - `as_late_as_possible`: Schedule instructions late. That is, keep qubits in the ground state when possible (alias: `alap`). - -- `translation_method` (str) - Name of translation pass (`unroller`, `translator`, `synthesis`). This can also be the external plugin name to use for the translation stage. - -- `unitary_synthesis_method` (str) - The name of the unitary synthesis method to use. By default `default` is used. - - - To see a list of all installed plugins for a given stage you can run [`list_stage_plugins("stage_name")`](https://docs.quantum.ibm.com/api/qiskit/transpiler_plugins#plugin-api). For example if you want to see a list of all installed plugins for the routing stage run `list_stage_plugins(routing)`. - - -## Next steps - - - - Review the [Default options and configuration settings](defaults-and-configuration-options) topic. - - Learn how to [Set the optimization level.](set-optimization) - - Try the [Submit transpiled circuits](https://learning.quantum.ibm.com/tutorial/submit-transpiled-circuits) tutorial. - - Review the [Transpile API documentation.](/api/qiskit/transpiler) - - diff --git a/translations/ja/transpile/custom-transpiler-pass.ipynb b/translations/ja/transpile/custom-transpiler-pass.ipynb deleted file mode 100644 index 16ee7f9bcf..0000000000 --- a/translations/ja/transpile/custom-transpiler-pass.ipynb +++ /dev/null @@ -1,321 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Write a custom transpiler pass\n", - "\n", - "Qiskit lets you create custom transpilation passes and run them in the `PassManager` object or add them to a `StagedPassManager`. Here we will demonstrate how to write a transpiler pass, focusing on building a pass that performs [Pauli twirling](https://arxiv.org/abs/quant-ph/0606161) on the noisy quantum gates in a quantum circuit. This example uses the DAG, which is the object manipulated by the `TransformationPass` type of pass.\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "
\n", - " \n", - " Background: DAG representation\n", - " \n", - "\n", - "Before building a pass it is important to introduce the internal representation of quantum circuits in Qiskit, the [directed acyclic graph (DAG)](../api/qiskit/qiskit.dagcircuit.DAGCircuit) (see [this tutorial](https://qiskit.org/ecosystem/rustworkx/tutorial/dags.html) for an overview). To follow these steps, install the `graphivz` library for the DAG plotting functions. Use a Python package manager (such as `pip` or `conda`) to install `pydot` and your system's native package manager (for example, `apt`, `brew`, `yum`, or `dnf`) for `graphivz`.\n", - "\n", - "In Qiskit, within the transpilation stages, circuits are represented using a DAG. In general, a DAG is composed of *vertices* (also known as \"nodes\") and directed *edges* that connect pairs of vertices in a particular orientation. This representation is stored using `qiskit.dagcircuit.DAGCircuit` objects that are composed of invididual `DagNode` objects. The advantage of this representation over a pure list of gates (that is, a *netlist*) is that the flow of information between operations is explicit, making it easier to make transformation decisions. \n", - "\n", - "This example illustrates the DAG by creating a simple circuit that prepares a Bell state and applies an $R_Z$ rotation, depending on the measurement outcome.\n", - "\n", - "```python\n", - " from qiskit import QuantumRegister, ClassicalRegister, QuantumCircuit\n", - " import numpy as np\n", - " \n", - " qr = QuantumRegister(3, 'qr')\n", - " cr = ClassicalRegister(3, 'cr')\n", - " qc = QuantumCircuit(qr, cr)\n", - "\n", - " qc.h(qr[0])\n", - " qc.cx(qr[0], qr[1])\n", - " qc.measure(qr[0], cr[0])\n", - " qc.rz(np.pi/2, qr[1]).c_if(cr, 2)\n", - " qc.draw(output='mpl', style='iqp')\n", - "\n", - "```\n", - "![The circuit's DAG consists of nodes that are connected by directional edges. It is a visual way to represent qubits or classical bits, the operations, and the way that data flows. ](/images/transpile/custom-transpiler-pass/DAG_circ.png \"DAG\")\n", - "\n", - "Use the `qiskit.tools.visualization.dag_drawer()` function to view this circuit's DAG. There are three kinds of graph nodes: qubit/clbit nodes (green), operation nodes (blue), and output nodes (red). Each edge indicates data flow (or dependency) between two nodes.\n", - "\n", - "```python\n", - "from qiskit.converters import circuit_to_dag\n", - "from qiskit.tools.visualization import dag_drawer\n", - "\n", - "dag = circuit_to_dag(qc)\n", - "dag_drawer(dag)\n", - "```\n", - "![](/images/transpile/custom-transpiler-pass/DAG.png)\n", - "
" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Transpiler passes\n", - "\n", - "Transpiler passes are classified as analysis or transformation passes. Passes in general work with the [DAG](../api/qiskit/qiskit.dagcircuit.DAGCircuit) and the `property_set`, a dictionary-like object for storing properties determined by analysis passes. Analysis passes work with the DAG but cannot modify it. This contrasts with transformation passes, which do modify the DAG, and can read (but not write to) `property_set`. " - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Create a `PauliTwirl` transpiler pass\n", - "\n", - "The following example constructs a transpiler pass that adds Pauli twirls. [Pauli twirling](https://arxiv.org/abs/quant-ph/0606161) is an error suppression strategy that randomizes how qubits experience noisy channels, which we assume to be two-qubit gates in this example (because they are much more error-prone than single-qubit gates). The Pauli twirls do not affect the two-qubit gates' operation. They are chosen such that those applied *before* the two-qubit gate (to the left) are countered by those applied *after* the two-qubit gate (to the right). In this sense, the two-qubit operations are identical, but the way they are performed is different. One benefit of Pauli twirling is that it turns coherent errors into stochastic errors, which can be improved by averaging more.\n", - "\n", - "Transpiler passes act on the [DAG](../api/qiskit/qiskit.dagcircuit.DAGCircuit), so the important method to override is `.run()`, which takes the DAG as input. Initializing pairs of Paulis as shown preserves the operation of each two-qubit gate. This is done with the helper method `build_twirl_set`, which goes through each two-qubit Pauli (as obtained from `pauli_basis(2)`) and finds the other Pauli that preserves the operation. \n", - "\n", - "From the DAG, use the `op_nodes()` method to return all of its nodes. The DAG can also be used to collect runs, which are sequences of nodes that run uninterrupted on a qubit. These can be collected as single-qubit runs with `collect_1q_runs`, two-qubit runs with `collect_2q_runs`, and runs of nodes where the instruction names are in a namelist with `collect_runs`. The `DAGCircuit` has many methods for searching and traversing a graph. One commonly used method is `topological_op_nodes`, which provides the nodes in a dependency ordering. Other methods such as `bfs_successors` are used primarily to determine how nodes interact with subsequent operations on a DAG. \n", - "\n", - "In the example, we want to replace each node, representing an instruction, with a subcircuit built as a mini DAG. The mini DAG has a two-qubit quantum register added to it. Operations are added to the mini DAG by using `apply_operation_back`, which places the `Instruction` on the mini DAG's output (whereas `apply_operation_front` would place it on the mini DAG's input). The node is then substituted by the mini DAG by using `substitute_node_with_dag`, and the process continues over each instance of `CXGate` and `ECRGate` in the DAG (corresponding to the two-qubit basis gates on IBM backends)." - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": {}, - "outputs": [], - "source": [ - "from qiskit.dagcircuit import DAGCircuit\n", - "from qiskit.circuit import QuantumCircuit, QuantumRegister, Gate\n", - "from qiskit.circuit.library import CXGate, ECRGate\n", - "from qiskit.transpiler import PassManager\n", - "from qiskit.transpiler.basepasses import TransformationPass\n", - "from qiskit.quantum_info import Operator, pauli_basis\n", - "\n", - "import numpy as np\n", - "\n", - "from typing import Iterable, Optional" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": {}, - "outputs": [], - "source": [ - "class PauliTwirl(TransformationPass):\n", - " \"\"\"Add Pauli twirls to two-qubit gates.\"\"\"\n", - "\n", - " def __init__(\n", - " self,\n", - " gates_to_twirl: Optional[Iterable[Gate]] = None,\n", - " ):\n", - " \"\"\"\n", - " Args:\n", - " gates_to_twirl: Names of gates to twirl. The default behavior is to twirl all\n", - " two-qubit basis gates, `cx` and `ecr` for IBM backends.\n", - " \"\"\"\n", - " if gates_to_twirl is None:\n", - " gates_to_twirl = [CXGate(), ECRGate()]\n", - " self.gates_to_twirl = gates_to_twirl\n", - " self.build_twirl_set()\n", - " super().__init__()\n", - "\n", - " def build_twirl_set(self):\n", - " \"\"\"\n", - " Build a set of Paulis to twirl for each gate and store internally as .twirl_set.\n", - " \"\"\"\n", - " self.twirl_set = {}\n", - "\n", - " # iterate through gates to be twirled\n", - " for twirl_gate in self.gates_to_twirl:\n", - " twirl_list = []\n", - "\n", - " # iterate through Paulis on left of gate to twirl\n", - " for pauli_left in pauli_basis(2):\n", - "\n", - " # iterature through Paulis on right of gate to twirl\n", - " for pauli_right in pauli_basis(2):\n", - "\n", - " # save pairs that produce identical operation as gate to twirl\n", - " if (Operator(pauli_left) @ Operator(twirl_gate)).equiv(Operator(twirl_gate) @ pauli_right):\n", - " twirl_list.append((pauli_left, pauli_right))\n", - "\n", - " self.twirl_set[twirl_gate.name] = twirl_list\n", - "\n", - " def run(\n", - " self,\n", - " dag: DAGCircuit,\n", - " ) -> DAGCircuit:\n", - " \n", - " # collect all nodes in DAG and proceed if it is to be twirled\n", - " twirling_gate_classes = tuple(gate.base_class for gate in self.gates_to_twirl)\n", - " for node in dag.op_nodes():\n", - " if not isinstance(node.op, twirling_gate_classes):\n", - " continue\n", - "\n", - " # random integer to select Pauli twirl pair\n", - " pidx = np.random.randint(0, len(self.twirl_set[node.op.name]),)\n", - " twirl_pair = self.twirl_set[node.op.name][pidx]\n", - "\n", - " # instantiate mini_dag and attach quantum register\n", - " mini_dag = DAGCircuit()\n", - " register = QuantumRegister(2)\n", - " mini_dag.add_qreg(register)\n", - "\n", - " # apply left Pauli, gate to twirl, and right Pauli to empty mini-DAG\n", - " mini_dag.apply_operation_back(twirl_pair[0].to_instruction(), [register[0], register[1]])\n", - " mini_dag.apply_operation_back(node.op, [register[0], register[1]])\n", - " mini_dag.apply_operation_back(twirl_pair[1].to_instruction(), [register[0], register[1]])\n", - "\n", - " # substitute gate to twirl node with twirling mini-DAG\n", - " dag.substitute_node_with_dag(node, mini_dag)\n", - "\n", - " return dag" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Use the `PauliTwirl` transpiler pass\n", - "\n", - "The following code uses the pass created above to transpile a circuit. Consider a simple circuit with `cx`s and `ecr`s." - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAQUAAACoCAYAAADpY/sVAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy89olMNAAAACXBIWXMAAAsTAAALEwEAmpwYAAAUaUlEQVR4nO3dfVRUdcIH8O/MMCCIhIiJ4hsvDsrIcBYsFc3RdhexZdeXRGN3aUV6QKVa83F7eVws01gz11jbSmt7ZHs6UUI8rUcRH/cIk0plSIGoNJkgUqSIio4gAjPPH+bkT16FGe4d+H7OmeOZ39y593tg/HJ/d2buVVgsFguIiH6klDoAEckLS4GIBCwFIhKwFIhIwFIgIgFLgYgELAUiErAUiEjAUiAiAUuBiAQsBSISsBSISMBSICIBS4GIBCwFIhKwFIhIwFIgIgFLgYgELAUiErAUiEjAUiAiAUuBiAQsBSISsBSISMBSICIBS4GIBE5SByACgM9TduDi8XJJM3hp/TB5fbykGeSApUCycPF4Oc59ekLqGAROH4joDiwFIhKwFIhIwFIgIgFLgYgELAUiErAUiEjAUiAiAT+8ZActLWbsK/gOh4rOwQILJocMRfSM0XByYgeT/Mm6FMxmM7Zs2YLt27fj7NmzCAoKwtatW5GYmAi9Xo+33npL6oitFB6vQczqA6j4zgQAUACwABg+1A0ZL8+EftJwSfM5Gr+50zA+PgqDg8fAydUF745aLHWkPk/Wf7oSEhKwfv16JCUlYe/evVi0aBFiY2Nx+vRphIeHSx2vlbLyy3gwYS8qq69Zxyw//nuuth6zl+3D0RMXpAnnoBrrTChLz8WRtelSR+k3ZLunkJGRgfT0dOTn50Ov1wMAZs2ahaKiImRnZyMsLEzihK299PZXuHa9CWZz68fMZqCp2Yzn3yjC7r9H9n44B/V9fjEAwGeqVuIk/Yds9xRSU1MRFRVlLYRbAgMDoVarodPpAAAVFRXQ6/XQaDQICQnBwYMHpYiLq9du4MPc8jYL4Raz2YKcg2dRXVPfe8GI7pIsS6GqqgqlpaWIiYlp9VhlZSW0Wi1cXFwAAElJSVi8eDGMRiO2b9+ORx55BDdu3Oh0GwqFwqY3j8G+aGruoBF+ZLEAI8YE23z7jn4zGAx3/0KxMYPBIPnPwZ63rpJtKQCAj4+PMN7Q0ACDwWCdOly4cAGHDh1CQkICACAiIgIjRoxAXl5e7wYGAPP1ri/b0mC/HEQ9JMtS8Pb2BgAYjUZhfNOmTaiurrYeZKysrMSwYcOsew0A4OfnhzNnznS6DYvFYttb81XMum84lMr2G1mpBEI1XjBf/8H223fw253TRCno9XrJfw72vHWVLA80+vv7Q6fTITU1FV5eXvD19UVWVhZycnIAQJbvPADAswk65H1R3e7jZjPwX/8Rele7cv2dQqmEUq2C0vnmS1XlogYAtDQ2SRmrT5PlnoJSqURmZia0Wi2WL1+O+Ph4eHt7Izk5GSqVynqQcfTo0Th37hwaGxutzy0vL8eYMWMkyR0ZMRLb106DUnHz8wm33OqATU/dh0Wz/SXJ5qgCFs5AXEUGIj9IgdJJhbiKDMRVZMB95FCpo/VZCsvd7FdILC4uDsXFxSgpKbGORUZGYt68eVixYgUKCgqwcOFCVFRUwNnZWbKc3569gm07y7D5n8cAAE/8NhjLF03ABH9PyTLJ3d4FayU/HduwqcGYk/2ipBnkQJZ7Cu0pLCxsNXXYtm0bPvjgA2g0GiQmJiIjI0PSQgCAgFEeeOU/77fe3/rsVBYCOQxZHlNoi8lkgtFoxIoVK4Rxf39/fPLJJxKlIup7HKYU3N3d0dLSInUMoj7PoaYPRGR/LAUiErAUiEjAUiAiAUuBiAQsBSISsBSISMBSICIBS4GIBCwFIhI4zMecie4U9dE6DA3XwNzcLIzviV6Dy2WVEqVyfCwFcmjFaVkoSfuoR+tQOKlgaeb3am5hKVCfpHBSYeKKuQiM0cPNxwsNF+pwdMN7OLPnM0xPS4ZC7QRLUzNGRU5C+a4CfPbs21JHlg2WAvVJYc/EYlRkOPITt+DSyTNwG+4FF89B1sfHRk/BwSdew+FVb0Lpwv8Gt+NPgxya7skFmLjsN8LY++P/gPHxs2FIehWXTt48iW999UXUV1+0LnP+SBkqdhUAAFoaOr8kQH/CUiCHVrI1u9UxhQFDPKAe6Iq609+3+zzT2Rp7R3NYfEuS+pzrtVfQVH8dHn7tX8zX0tGlvPo5lgL1SV+n78OklDh4Bo0CALgN98LgCdKc5dvRcPpADi105UKEPD5PGDMsS0PRxgw0mRrw4I6n4XqvJxrOX0bhhvesxxiofSwFcli5Dz/f4ePFr2ah+NWsVuOHVr5ur0h9AqcPRCTgnkIf9HnKDlw8Xi7Z9r20fpi8Pl6y7VPPsBT6oIvHyyW/2hI5Lk4fiEjAUiAiAacPdmA2W/Dt2SvW+ydPX4ZmjAdUKnYw3XTh0nV8XVGHG00tcHdTI9jfEwPd1FLHAsBSsBmz2YJ9h6uwLbMM+YXVuGJqsj4WPO8jDHR1wgNhPkiKCUL0jNFwcmJB9DfGijpsyzyJj/5dgcrqa8JjCgWgDRiMuOhALJ2vgffgARKlZCnYRPHXtYhPOYgvy2rbXeZaQzNyD1ch93AVxvvdg/T1MzBZd28vpiSpXL12A09v+QLbMsvaXcZiAUpPXcIzaV/ghTeL8NKTk/Dkb4Ml2bvkn6seejurDJMe+VeHhXCnsvI6RDy6G5vTj9kxGcnB1+WXEbrw4w4L4U4NjS1Y9crniEzKxRVT73+Dk6XQA9szy5D44mE0t1ju+rlmswV/2nIEG98ptkMykoNTlVegX5qD8u+uduv5B45UY/ayXJjqmzpf2IZYCt1UdOICklMLOlzGUpIAS0lCh8s897dCGAqrbRmNZKCpyYxFqw/gXG1Du8t05fXxWUkN/vTXI7aO1yGWQjc0N5sRv/YgWrqxh9CWpWsPouF6c+cLksN4Jb3krqaUHdmWWYa8I+2fG8LWZF0KZrMZmzdvxrhx4zBgwACEhobCYDAgKCgIiYmJkuXac/AsSowXO1+wi05XXcWH+07bbH0krYbrzfjru6U2XedfenGaKet3HxISEpCdnY2UlBSEh4ejoKAAsbGxqKmpwapVqyTL9eaHJ22+zjc+PIklczU2X+/tFEolwtf8DoGLZ0Ll4ozvDMX49OntaLzYvTlvb3DEzJn/V46LdY02Xef+T7/HN2fqMG7MPTZdb1tku6eQkZGB9PR07Nq1C6tXr8asWbOwZs0aTJ06Fc3NzQgLC5MkV1OTGfmFP9h8vV+UXkDdVfseaQ55Yh5Gzb4Pux96DjvDkgAAD7z2pF232VOOmPnfn9lnV//Akd459iTbUkhNTUVUVBT0er0wHhgYCLVaDZ1OBwBYu3YtNBoNlEolsrJaf3fe1k6cvoTGG/a5RoCt5qDt0fz+lyh9/WOYKs+j6Wo9jq7/H4x88GcYONLbrtvtCUfMXHTygl3WW3i8d84rKcvpQ1VVFUpLS/HUU0+1eqyyshJarRYuLi4AgKioKCxZsgRLly69q20oFIruhRsUAoz9ozDU2RHk9h5X6N4R7s+KnA9c/rx7uW7zjNcMjHceKow5e7jBfeRQ1Jb8dOzi6plzuHHlGryCx+Jale1eyAaDAQ/d5c9X6sxA93K3KXgroHKz3rXV6+Mf6Vn4x7oZ3Y5lsXTtwLhsSwEAfHx8hPGGhgYYDAbMmTPHOhYREdGr2ezLBi/Idji5uwIAblypF8ZvXKmHepCr3bbbE46Y2a5sUVhdIMtS8Pa+uWtoNBrx0EMPWcc3bdqE6upqhIeH93gbXW3NOx05VoPJv9sljN3Z6NZt/PgXoL3H75S7OxOzp43sVq7b7V2wttX5FJpNN98vd/ZwE8adPdzQdLX999K7Q6/XY2O24a6eI3VmoHu52zIuOhOnKn/6QpytXh9xsfPxbmpaj/N1Rpal4O/vD51Oh9TUVHh5ecHX1xdZWVnIyckBAJuUQneFjBsMlUphs88o3C5swhCbr/OWG1fqYaqqgVeIPy4erwAAuI++F84eA3HphDxPZuqImQHgZ+OHCKVgK+HB9nt93E6WBxqVSiUyMzOh1WqxfPlyxMfHw9vbG8nJyVCpVNaDjFJwHeCE+ycO7XzBuxQ09h4M9bLvLrHxvf0ISZ4L91H3Qu3uikl/jsN3eV/CVCXfC6M4YuYZ4T6dL9QND4TZZ713kuWeAgBoNBrk5eUJY3FxcQgODoarq7TzycSFQfi0+LxN15kUM96m62vLsdc+hvM97ojO3QiVsxrff1KCTx7favft9oQjZv7drwLw9JYjaGi03btUk7TeCAvunXdcZFsKbSksLMSUKVOEsZSUFOzYsQM1NTU4duwYVq5cCYPBgICAALvlWDzbHyl/L0LVuWudL9wFQzxdsGTuOJusqyMWsxmFL76Lwhfftfu2bMURMw/2cMFjDwfhtfdtd57M1X8Isdm6OiPL6UNbTCYTjEZjqw8trV+/HlVVVWhsbERtbS2qqqrsWgjAzSnE289Pt9n6/v7cVAz2cLHZ+kh6Lz0RjjEj3G2yrl/rR2PRbD+brKsrHGZPwd3dHS0t9vnQUHdETR+JPy0JwSsdnBOhK0eVH1ugweIof1tGIxkYNNAZGS/PxM8f29vuNKIrrw8/30F46/lp3f9cTTc4zJ6CHL381H1Y9ejEbj8/Yb4G21J69xdOvWdq6DDseT0SgwZ279yL48Z4IO+dOfDxdut8YRtiKfSAQqHAX1dPxv+m/RzDhnT94OdgD2e89xc93n5hOk/m2sfNun8ESrLm48H7278CdluWxYzH0Q/mYsyIQXZK1j6HmT7I2bwHx2LmpOFI/9c3eHNnGYxn6tpcbuwIdyxbNB4J84MkPTEn9a6xvoOw/6052HvoLN748CRyD38Hs7n151xcB6gQOycAyYsn9No7DW1hKdiIp4cLVsZNxB9/r8X35+tx9MQF/FDbALPZgmFDXBEe7I1RPgM5VeinlEoFfjVjNH41YzRM9U34qqwWDyzZAwD454YZ0Gm8oA0YDLVa+j1HloKNKRQK+A4bCN9hA6WOQjLl7qbG9Ns+iPTob+z/dvTdkL6WiEhWWApEJOD0gWTBS9t7H86RcwY5YCmQLExeHy91BPoRpw9EJOCeAiHqo3UYGq6BuVm89sSe6DW4XFYpUSqSCkuBAADFaVkoSfuoR+tQOKlgaZbP91Ooe1gK1CGFkwoTV8xFYIwebj5eaLhQh6Mb3sOZPZ9heloyFGonWJqaMSpyEsp3FeCzZ9+WOjL1EEuBOhT2TCxGRYYjP3ELLp08A7fhXnDx/Onz+GOjp+DgE6/h8Ko3oXThy6kv4G+RAAC6Jxdg4rLfCGPvj/8DxsfPhiHpVVw6efOciPXVF1Ff/dMl884fKUPFrpsX2m1p6P3LppPtsRQIAFCyNbvVMYUBQzygHuiKutPtX/HIdFa+50qk7uFbktSu67VX0FR/HR5+7X/t12I292Ii6g0sBerQ1+n7MCklDp5BowAAbsO9MHjCGIlTkT1x+kAAgNCVCxHy+DxhzLAsDUUbM9BkasCDO56G672eaDh/GYUb3rMeY6C+h6VAyH34+Q4fL341C8Wvtr5476GVr9srEkmI0wciErAUiEjAUiAiAUuBiAQsBSISsBSISMBSICIBS4GIBCwFIhKwFIhIwFIgIgFLgYgEsi4Fs9mMzZs3Y9y4cRgwYABCQ0NhMBgQFBSExMREqeMRdYvFYsHBoz9Y7z/3ty9grGj7SuVSkPW3JBMSEpCdnY2UlBSEh4ejoKAAsbGxqKmpwapVq6SO51D85k7D+PgoDA4eAydXF7w7arHUkfqlmosNmPvHf+PT4vPWsZf/uwQb3ynBYws0eGPNNMmvPC3bUsjIyEB6ejry8/Oh1+sBALNmzUJRURGys7MRFhYmcULH0lhnQll6LlQDXBDxSpLUcfql5mYzopbvw5dltcK4xXLz339kG+GsVuH1NRESpPuJbKcPqampiIqKshbCLYGBgVCr1dDpdLh06RKio6Oh0WgQGhqKyMhInDp1SqLE8vZ9fjHKPz4M05lzUkfpt3blV6LoZK21BNqybedJVP1wrfdCtUGWpVBVVYXS0lLExMS0eqyyshJarRYuLi5QKBRYuXIljEYjiouLER0djfh4XpOQ5Omfu76BUqnocBmzBXg/59teStQ22ZYCAPj4+AjjDQ0NMBgM1qmDp6cnfvGLX1gfj4iIQHl5eZe2oVAo+uzNYDDY6DfRPQaDQfKfgRxvu3LyYTZ3sJsAABYznvnzS3bZflfJshS8vb0BAEajURjftGkTqqurER4e3ubz0tLSMG/ePHvHI+qe5quApZOzXyuUQLOpd/K0Q5YHGv39/aHT6ZCamgovLy/4+voiKysLOTk5ANBmKaxbtw6nTp3CgQMHurQNS0cTOwe3d8FanPv0hGTb1+v12Jgt7d6KHGXkfIvfPpvf4TIKBfBt0QfwGzmow+XsSZZ7CkqlEpmZmdBqtVi+fDni4+Ph7e2N5ORkqFQq6HQ6YfkNGzZg9+7dyM3NhZubm0Sp5U2hVELloobS+ebfAZWLGioXtcSp+peHfzkWE/zugbKD/3WP/jpQ0kIAZLqnAAAajQZ5eXnCWFxcHIKDg+Hq6modW7duHXJycrB//354enr2ckrHEbBwBqb/7XHr/biKDABA1n3LYariVZ56g7Nahf1vzcGcFftw7JtLUCkVsODmHqvZDMREjsW2lGkSp5RxKbSlsLAQU6ZMsd4/fvw4XnjhBQQEBGDmzJnW8a+++qr3w8ncqZ35OLUzX+oY/Z7vsIH4cuc87D1UhQ/3nUbd1SaMHOaGpfM1mKQdKnU8AA5UCiaTCUajEStWrLCOabXaPn1sgPomlUqJaP1oROtHSx2lTQ5TCu7u7mhpaZE6BlGfJ8sDjUQkHZYCEQlYCkQkYCkQkYClQEQClgIRCVgKRCRwmM8pUNd5af369fapZxQWfiSQiG7D6QMRCVgKRCRgKRCRgKVARAKWAhEJWApEJGApEJGApUBEApYCEQlYCkQkYCkQkYClQEQClgIRCVgKRCRgKRCRgKVARAKWAhEJWApEJPh/aU3vA3jyRTMAAAAASUVORK5CYII=", - "text/plain": [ - "
" - ] - }, - "execution_count": 6, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "qc = QuantumCircuit(3)\n", - "qc.cx(0, 1)\n", - "qc.ecr(1, 2)\n", - "qc.ecr(1, 0)\n", - "qc.cx(2, 1)\n", - "qc.draw('mpl', style='iqp')" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "\n", - "To apply the custom pass, build a pass manager using the `PauliTwirl` pass and run it on 50 circuits. " - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": {}, - "outputs": [], - "source": [ - "pm = PassManager([PauliTwirl()])\n", - "twirled_qcs = [pm.run(qc) for _ in range(50)]" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Each two-qubit gate is now sandwiched between two Paulis." - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA9wAAACoCAYAAAASC+ZXAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy89olMNAAAACXBIWXMAAAsTAAALEwEAmpwYAAAmMUlEQVR4nO3deXRUVb728acqE4GAEAKCzAECJBAuCaCIELBtiF5uo4ADKmrAFwTUC14cEEERRZumlRZ9Ha5oGrmGZnpBUXECIghKM5jIZEQgEJnCmJQJZKh6/+CaNjIkgarap3K+n7VqLeucysmz9/q5Uz/OqVMOj8fjEQAAAAAA8Cqn6QAAAAAAAFRHNNwAAAAAAPgADTcAAAAAAD5Aww0AAAAAgA/QcAMAAAAA4AM03AAAAAAA+AANNwAAAAAAPkDDDQAAAACAD9BwAwAAAADgAzTcAAAAAAD4AA03AAAAAAA+QMMNAAAAAIAP0HADAAAAAOADNNwAAAAAAPgADTcAAAAAAD5Aww0AAAAAgA/QcAMAAAAA4AM03AAAAAAA+AANNwAAAAAAPkDDDQAAAACAD9BwAwAAAADgAzTcAAAAAAD4AA03AAAAAAA+QMMNAAAAAIAP0HADAAAAAOADNNwAAAAAAPhAsOkA1d23k9/V8W17TMeotMi4Vrp6WorpGLYSSDVCfQDwhkBa9yRza5/pebLruKuKv40ALoaG28eOb9ujw+u3m44BC6NGANgN617l2HWe7DpuANUTl5QDAAAAAOADNNwAAAAAAPgADTcAAAAAAD5Aww0AAAAAgA/QcAMAAAAA4AM03AAAAAAA+AANNwAAAAAAPkDDDQAAAACADwSbDgBcjuJitz5Yna2N24/K6XAoqWsj3XBNEzmdDtPRAAAAANicpRtut9utl156SW+++ab279+vdu3a6ZVXXtHIkSOVlJSkt956y3TEy+JwOpU46S61ub2PgsJC9XN6htY/9qbOHM83HS0gfPHNz7p7YroOHyuUQ5JH0vS3M9S6WW0tfukP6tyuvumIl4X6AGA3rQb2VPuUZNWLbaHg8DDNbXa76UiWY+c5svPYAQQuS19SPmLECE2bNk2jRo3SJ598ottuu01Dhw7V7t27lZiYaDreZev00M1q1r+blt80UQsSRkmSes1+2HCqwLA+47BuGvOZck+clnS22f7V3p9d6jP8Y/20P89MOC+hPgDYzZlTLu1MXaENU1JNR7EsO8+RnccOIHBZ9gx3WlqaUlNTtXr1aiUlJUmS+vbtq82bN2vJkiVKSEgwnPDyxdz9R2W8tFCufUckSZumvafB37ymWk2j9EvOUcPprO2p2ZtU6vbI7facs6/U7VGeq0h/fidTbz19nYF03kF9ALCbA6szJEmNesQZTmJddp4jO48dQOCy7Bnu6dOnKzk5uazZ/lWbNm0UEhKi+Ph4SdLevXuVlJSkmJgYderUSWvWrDERt8pC69RURNMGOpa5u2xbfvZhFeX9osjYluaCBYDsA/laueHgeZvtX7k90nvLd+n0mRI/JvMe6gMAAAAIfJY8w52Tk6OtW7dq/Pjx5+zbt2+f4uLiFBYWJkkaNWqUbr/9do0ZM0br1q3Trbfeqj179ig0NPSiv8Ph8M9NtR6P7K32oQ3O2R4cES5JKsorKLe9KK9AIbXD/ZLtfNLT03WTn+bmktVsI7V+osKXnT5TqvCIBlLJSd9nugznqxHqA0B1dqG/jVZlau0zPU92HXdV8bcRsCeP58In/37Lkme4c3JyJEmNGjUqt72wsFDp6elll5MfPXpUa9eu1YgRIyRJ1157ra666iqtWrXKv4EvQYmrUNLZM5m/FVqnporzC01EChylBRW/RpI8Hsl92rdZfIT6AAAAAAKfJRvuqKgoSVJWVla57TNmzNDBgwfLbpi2b98+XXnllWVnuyWpVatWys7OrvB3eDwevzx+f0n8r4ryCuTKyVVkp+iybRHNGyq0Ti2d2F5xfl9JSkry29xc6sNdmKN2La/Qxf4xOcjp0I29mslTWmg876XUCPXBgweP6vy40N9GqzK19pmeJ7uOu6r428iDhz0flWXJS8qjo6MVHx+v6dOnKzIyUk2aNNGiRYv08ccfS1K1uEO5JGXN+1ydxg7Uoa+36syJfHV9aph+XrVFrpxc09EszeFw6Mn7O+vep766wP6z/6DyWEq8n5N5F/UBwG4cTqecIUFyhp59exIUFiJJKj1TbDKWpdh5juw8dgCBy5INt9Pp1MKFCzVq1CiNHj1a9evX17333quxY8fqySefLLthWvPmzXX48GGdOXOm7Cz3nj171KJFC5PxK+372UsVekWEBqx4UUGhITrwVaa+evAV07ECwj1/aqt9h1ya/Orm/22w/7XP6XBoztRe6tOtsbmAXkB9ALCb1kN667q/PVj2fNjeNEnSom6j+cfG/2XnObLz2AEELks23JIUExNzzmexhw0bptjYWIWHn71pVFRUlHr27Kk5c+aU3TTt559/Vt++fU1ErjKP262Nz87Vxmfnmo4SkJ4a2UW3XN9Sry/Yodfm75AkPTEiXqOGtFfLJrUNp7t81AcAu9m1YLV2LVhtOoal2XmO7Dx2AIHLkp/hvpCNGzeeczn5G2+8ofnz5ysmJkYjR45UWlpahXcoR/UR16aeXn3y2rLnL/xnt2rRbAMAAAAIfJY9w/17LpdLWVlZGjNmTLnt0dHR+uqr83+WFwAAAAAAUwKm4Y6IiFBpaanpGAAAAAAAVEpAXVIOAAAAAECgoOEGAAAAAMAHaLhtps1tfTRo3eyy5z3+PFJXPz/CYCJYCfUBwG5Y93Ax1AeAyxUwn+G2m+TFU9UgMUbukhJ5St3Kzz6izL8tUvZH33r196x//C2vHg/+QX0AsBvWPVwM9QHAqjjDbWEZsxbpf9oMU1psivYsXaukNx5RnejGpmPBIqgPAHbDuoeLoT4AWBENdwDwlLq1M/VTOYODVK9Dc/37Ry9o6I5U3bF1jpJeH68a9euUvTZ58VTFjxtc7ufvO7hIDbu3P++xr5s1VtfOfMCn+eFb1AcAu2Hdw8VQHwCshIY7ADhDgtU+JVmlRcUqzD2lb558W/M7Dteyvv+l8Eb11H3acNMRYRD1AcBuWPdwMdQHACvhM9wWFv/wIHV84E8qLS5R/p5DWnX/TB3ZsLNsf2HuSW19bZl6vjzGYEqYQn0AsBvWPVwM9QHAimi4LSzzlSXKnLW43Lb68dFKmHinImNbKCg8TA6HQyER4YYSwiTqA4DdsO7hYqgPAFbEJeUBJun18Tr2/W4t6fmw3o+5R+mjZ5XbX+wqVHDNsLLn4VfW83NCmER9ALAb1j1cDPUBwDQa7gATUjtcxXkFKnYVqlaTKHV66OZy+49l7lbz5O4Kq19HwbVqKOGJoWaCwgjqA4DdsO79S/LiqRq2N0137Xqv3KNu++amoxlDfQAwjUvKA8y6R99Ut6fvUfy4wTq164B+WpSuK7t3KNu/7a3lqhfbQoPXv6rTx/K06bl5anvH9QYTw5+oDwB2w7pXXsasRedcVl1VjuAgeUpKvZTILOoDgGkOj8fjMR2iOvtk0BQdXr/ddIxKu7JHrG5c8qzpGFXmiJ8jSfJkjjCcpOoCqUYCtT4AWEsgrXuSubWvqvOUvHiqDqzJPG/D7QgOUscxA9Xm1iTVbBSpwqOntOm5ecr+6BtdN2usHCHB8hSXqFm/rtrzwTp988R/B8y4TeNvI4CL4Qw3AABANZfw+FA165eo1SNf0okd2arZOFJhdWuX7W854BqteWi2vn7kdTnDeHsIAN7CigoAAFBN/PrVWL/1fvt71T6lv9JHvawTO7IlSQUHj6vg4PGy1xzZsFN7P1gnSSotLPJfYACo5mi4AQAAqonzfTVWjfp1FFIrXKd2H7jgz7n25/o6GgDYEncpBwAAqMZOH8tTccFp1WnV+IKv8bjdfkwEAPZBww0AAFDN/ZD6qbpOHqa67ZpJkmo2jlS9Di0MpwKA6o9LygEAAKqJzuOGqNODN5fblv7ALG1+MU3FrkJd/+5jCm9YV4VHTmrjc/PKPtMNAPANGu4A1+8fU7Tm4dkqPHxCzfp1Vd85j2rdo29q1/yVatyrk5ond9e3k+aYjgkDYu6+QdG39Dr7xCE1SIzRztRP9c+nUyWd/fqY9AdeVmHuSWMZAcBXGvWIU9M/Jurwtzu0/9N/KrxhXfX+v+P06ZBnTEfzmRWDn77o/oyXFynj5UXnbF877jVfRbKUBokxandPP639z1cVFllbfd+eoOL8Qv1z6t+Vt/ugujx+h45v3avsj74xHRVANcIl5QFuy4z56vLYHXIEOdVxzEAtTBilmDv/oOBaNdT5kVv13V8XmI4IQ7LmfaEVg5/WisFPa++H67X1tWWq07KRardspOhBvXRgTSbNNoBqzeF0qOPoP8kRHKQuj92hLTPmm44Eg3I3ZckZEqzIjq30b/91mzJmLdam6f+jhIl3quZV9dUgIYZmG4DXcYY7wOVuylKH4Teq+7Th2rPsaxXmntSOdz9R8qJntPfD9TpzPN90RBgW0ayhogf10opBT6tOdGN1nTJMYfVq6/Ohz5mO5nffTn5Xx7ftMR2jUiLjWunqaSlGfrfpeTI1dtPjriqTNRIoSgrPaPeSNbp6WopCaoXryIadpiPBsM0vvK+k18ep8OgpHfwqU5J05qRLfd+eoG8nvWM4nf+x7qEigVQjVq0PGu5qYPML76v/4me0YfLZPxSH1m1Tr9kPafWolwwngxX0+MsofTtpjtzFJTr5w34V5xUo54vNKj1tv+9ZPb5tjw6v3246huXZdZ7sOu7qLmveF7pl7d/0+Z3Pm44CC3DtP6KQ2uH64b3Py7YdWrtVTZI66+iWHw0mM4N1DxWhRi4fl5RXA66cXBUcOi5P6dmv9Ojy2B3a8mKa4h8eZDgZTGt3b38d/W6XjmXuLtvm2p8r1/4jBlMBgP943G4VHDzOugdJUvSQ3tr/+Sa1vfN6OYKccgQ51X54svZ+uF7Rg3uZjgegGqLhrmbqxbZQSES4vn91qUKvqKW6MU1NR4IhEU0bqPWQ3sr460LTUQAAMC6oRqja39Nf381coL0frlfMXTeo3b39tWfZOm2Z+Q+1u6e/nKFc/AnAu2i4q5nEJ+/S5hfelyRtfjFNCRPvNJzIt0pL3dr+04my57v25cnt9hhMZB0dxw5Ujfp11G/+ZCUvnqrkxVNVq0mU6VgAABgR98B/6If3PlPp6SL98PfP1H74jWp7R1/9MPczlRYW6ce0leow4ibTMVGNFJ4u0ebtR7VqwwGt3XxIh44WmI4EA/hnvGrik4GTJUlf3D29bFveTwe0MmWGqUg+U1zs1rJV2Xpr8U59veWICk6XlO1rO2Chrqgdqr7dGmv0be11wzVN5HQ6DKY155uJb593O3euB2AHh9Zv06H12yRV/HVZsIfMWYvL/ttdXKJlfcaX279r/kp/R0I1dCq/SO8t36XUZT/qux+OqbS0/Imgxg1qamCf5hpzewd1iok0lBL+RMONgLJ28yENf3qNfszOu+BrTuUXaenKbC1dma1uHaOUOq23YlvX82NKAAAA2InH41Hqsh81fsa3OuW68I1pD+YW6I2FO/XGwp0aemO0Zk/sofp1a/gxKfyNS8oREDwej55/6zv1Tvnoos327/1z61F1uW2p/r7MfnceBQAAgO+dPlOiIY+s1PApay7abP9e2ie7FXfLEm3cluvDdDCNhhsB4dk3tuipVzfJcwkfzy4qduu+yV8pdVmW94MBAADAtoqKSzVo/Jda8uXeS/r5w8cK9Yf7P9Hm7Ue9GwyWQcMNy/tsXY6eeX3LRV/jyRwhT+aIi75m1LNfa+uPx70ZDQAAADb2/FsZ+mRtzkVfU9H71LxfinXrhJX6paDY2/FgATTcsDRXQbHuf2atV45VVOxWypQ13MUcAAAAly0z67imv/2dV461Oydfk2Zv8sqxYC2Wbrjdbrdmzpyptm3bqkaNGurcubPS09PVrl07jRw50nQ8+MG85bu0/9AvXjvexm1H9fn6n712PAAAANjTjHczVVLqvRM5byzcoWMnT3vteLAGS9+lfMSIEVqyZIkmT56sxMRErVu3TkOHDlVubq4eeeQR0/EuS6uBPdU+JVn1YlsoODxMc5vdbjqSJb2+YKcPjrlD/Xs29fpxvYn68C+H06nESXepze19FBQWqp/TM7T+sTd15ni+6WiWYtd5suu4TWCuK8eu82TXcZvA+5CKHT1xWgs/2+PVY54pcuvdpT9qwn2dvHpcb6M+qsayZ7jT0tKUmpqqDz74QBMmTFDfvn01adIk9ejRQyUlJUpISDAd8bKcOeXSztQV2jAl1XQUy8o9XqjMLO9/5nrlhoOWv6yc+vCvTg/drGb9u2n5TRO1IGGUJKnX7IcNp7Ieu86TXcdtAnNdOXadJ7uO2wTeh1RszeZDKip2e/24X357wOvH9Dbqo2os23BPnz5dycnJSkpKKre9TZs2CgkJUXx8vCRpypQpiomJkdPp1KJFi0xEvSQHVmdoz9Kv5co+bDqKZW3afswnx83/pVg/Zp/yybG9hfrwr5i7/6itry2Va98RFecXaNO099T0+i6q1TTKdDRLses82XXcJjDXlWPXebLruE3gfUjFNvnoruKbth+V51K+lsePqI+qseQl5Tk5Odq6davGjx9/zr59+/YpLi5OYWFhkqTk5GTdd999Gj58eJV+h8Ph8ErWijwe2VvtQxv45Xd5Q3p6um7y09xUqN51UtP7ym2q6E7kF9rviJ9T7nn7Tj2kX7x/ufqlCKQasVR9XILzzXVonZqKaNpAxzJ3l23Lzz6sorxfFBnbUr/kmPmaDpNzbXqeTI3d9LirKpD/f2SuK8f0PNl13FVV3f5ftDJLzXXTFKlez3KbvPE+NffEaTmDQiRP6eVn9IJAqhF/10dl/2HEsg23JDVq1Kjc9sLCQqWnp+vGG28s23bttdf6NRv8ySILKqq14IhwSVJRXkG57UV5BQqpHW4ikiXZdZ7sOm4TmOvKses82XXcsDJfvk/lPXB1YslLyqOizl4alJWVVW77jBkzdPDgQSUmJl727/B4PH55/P6SeKtLSkry29xU9Fi6+L1z8jni55z3Udn9v8rY/LXx8QVijVipPrw11yWuQklnz578VmidmirOL/TLvJ6Pybk2PU+mxm563FUVyP8/MteBMU92HXdVVbf/F63MSnM9Ydyoc/J5431qnYgQuUuLjI8vEGvE3/VRWZZsuKOjoxUfH6/p06dr7ty5+vLLLzV69Gi98847kuSVhhvWl9Chvk+OWyMsSLHRdX1ybASeorwCuXJyFdkpumxbRPOGCq1TSye2ZxtMZi12nSe7jtsE5rpy7DpPdh03rMtX71MTOkT57aOv8A9LNtxOp1MLFy5UXFycRo8erZSUFEVFRWns2LEKCgoqu2FaIHM4nQoKC5Ez9OxV/UFhIQoKCzGcylqaXllLLa+K8Ppxe8Q3VHCwJUu/DPXhX1nzPlensQMV0ayhQiLC1fWpYfp51Ra5cnJNR7MUu86TXcdtAnNdOXadJ7uO2wTeh1SsZ5cr5Yu+uFfCld4/qJdRH1Vjyc9wS1JMTIxWrVpVbtuwYcMUGxur8PDA/6xO6yG9dd3fHix7PmxvmiRpUbfR/OH4Xw6HQyOHtNeTr2z06nFHDmnn1eP5AvXhX9/PXqrQKyI0YMWLCgoN0YGvMvXVg6+YjmU5dp0nu47bBOa6cuw6T3Ydtwm8D6lY88YRuvG6pvp4TY7Xjul0OjTilhivHc9XqI+qsWzDfT4bN27UNddcU27b5MmT9e677yo3N1fff/+9xo0bp/T0dLVu3dpQysrZtWC1di1YbTqG5d0/KEZ/fidTp1xFXjleqya1NeiGll45li9RH/7lcbu18dm52vjsXNNRLM2u82TXcZvAXFeOXefJruM2gfchlTPh3k5ebbhv69dKLa6q7bXj+Qr1UTXWvq72N1wul7KyspSQkFBu+7Rp05STk6MzZ87o2LFjysnJsXyzjcprEBmuWY9f7bXjvfNsL4WGBHnteAAAALCnvt2v8toZ6fp1wzTr8WsqfiECTsCc4Y6IiFBpqTW+jw7+de+f2urLbw9o3vKfLvia892J/Pcmj/o39enW2JvRAAAAYGN/nXC1/rntqDKzjl/wNRW9Tw0Ocmju80m6sn7gf2wW5wqYM9ywL4fDoXem9tawAW0u+RgTR3TW1DEJFb8QAAAAqKQraofqi7eSL/mu5WGhTi2Yeb1u6tXMy8lgFTTcCAghIU79/fneeufZXroiIrTSP3dVg5pa/uofNf0/u/IVCwAAAPC6BpHh+nruAD2W0klOZ+Xfb3brGKXN/7hZt/yhpe/CwTgabgQMh8OhlJtjlPXhED3/UKKaN651wdd2iK6rV564RjuWDda/927ux5RA5bS5rY8GrZtd9rzHn0fq6udHGEwEK6E+ANhNoK97NcKC9efx3bV1ySA9ODRWdSIu/DVZfbo11sKZ12vd3P9QbOt6fkwZ2AK1RgLmM9zArxrWD9eT/+ffNPH+zso+4NLmHcd05HihnE6HrmpQU4mxUWrcoKbpmKgmkhdPVYPEGLlLSuQpdSs/+4gy/7ZI2R9969Xfs/7xt7x6PPgH9QHAblj3Lq5DdF3NnthDLz96tXbuOamMrOO6e2K6JGnVnJvUpX19XVG78ldrBiJqpDwabgQsh8Ohlk1qq2UT6399AgJbxqxFypy1WI4gp+JG/YeS3nhES5PGKW/3QdPRYAHUBwC7Yd2rWHCwUx3bRqpj28iyhttON++lRv6FS8oBoJI8pW7tTP1UzuAg1evQXP/+0QsauiNVd2ydo6TXx6tG/Tplr01ePFXx4waX+/n7Di5Sw+7tz3vs62aN1bUzH/BpfvgW9QHAblj3UBFqhIYbACrNGRKs9inJKi0qVmHuKX3z5Nua33G4lvX9L4U3qqfu04abjgiDqA8AdsO6h4pQI1xS7nORca1MR6iSQMtbHQTSnAdSVm+Kf3iQOj7wJ5UWlyh/zyGtun+mjmzYWba/MPektr62TD1fHmMwJUyhPqou0NYSU3lNz5Ndx11VgZbXG1j3UBFq5F9ouH3s6mkppiPA4qgR68t8ZYkyZy0ut61+fLQSJt6pyNgWCgoPk8PhUEhEuKGEMIn6qDrWvcqx6zzZddyBhHUPFaFG/oVLygHgEiS9Pl7Hvt+tJT0f1vsx9yh99Kxy+4tdhQquGVb2PPxKvvbDTqgPAHbDuoeK2LVGaLgB4BKE1A5XcV6Bil2FqtUkSp0eurnc/mOZu9U8ubvC6tdRcK0aSnhiqJmgfpC8eKqG7U3TXbveK/eo27656WjGUB8A7IZ1DxWxa41wSTkAXIJ1j76pbk/fo/hxg3Vq1wH9tChdV3bvULZ/21vLVS+2hQavf1Wnj+Vp03Pz1PaO6w0m9q1fv/7jcjiCg+QpKfVSIrOoDwB2w7qHiti1Rhwej8djOgQA+MMng6bo8PrtpmNUypU9YnXjkmeN/O6qzlPy4qk6sCbzvA23IzhIHccMVJtbk1SzUaQKj57SpufmKfujb3TdrLFyhATLU1yiZv26as8H6/TNE/9tbOyBVB+S2RoBUD2w7vmHI36OJMmTOcJwkqoLpBqxan1whhsA4DMJjw9Vs36JWj3yJZ3Yka2ajSMVVrd22f6WA67Rmodm6+tHXpczjD9JAACgeuHdDQDgsv369R+/9X77e9U+pb/SR72sEzuyJUkFB4+r4ODxstcc2bBTez9YJ0kqLSzyX2AAAAA/oOEGAFy28339R436dRRSK1yndh+44M+59uf6OhoAAIAx3KUcAOATp4/lqbjgtOq0anzB13jcbj8mAgAA8C8abgCAz/yQ+qm6Th6muu2aSZJqNo5UvQ4tDKcCAADwDy4pBwBcts7jhqjTgzeX25b+wCxtfjFNxa5CXf/uYwpvWFeFR05q43Pzyj7TDQAAUJ3RcAOAF/T7xxSteXi2Cg+fULN+XdV3zqNa9+ib2jV/pRr36qTmyd317aQ5pmP6xIrBT190f8bLi5Tx8qJztq8d95qvIlmOnesDgH39du1rfWuS2tzeV58OeUaS1O2Ze3Vw7VblfLHJbEgYEXP3DYq+pdfZJw6pQWKMDq/frm+efFt5uw+qy+N36PjWvcr+6BuzQb2AS8oBwAu2zJivLo/dIUeQUx3HDNTChFGKufMPCq5VQ50fuVXf/XWB6YgwiPoAYEe/Xfti7rpBB9Iz1PrWJEU0a6g6ra+i2baxrHlfaMXgp7Vi8NPa++F6bX1tmTY8naqEiXeq5lX11SAhplo02xINNwB4Re6mLAXXCFX3acO1Z9nXKsw9qR3vfqLkRc8o5/NNOnM833REGER9ALCj3699299arpi7b1DXKcO0efr7puPBAiKaNVT0oF7KeHmRTv6wX2dOutT37Qna/GKa6WheQ8MNAF6y+YX31fQPXfTD3M8kSYfWbVNkp1bau3y94WSwAuoDgB39du0rPVOsH//nS5WeKeZeHpAk9fjLKH07aY7cxSWSpENrtyo86god3fKj4WTeQ8MNAF7iyslVwaHj8pSe/aqrLo/doS0vpin+4UGGk8EKqA8AdvT7tc+1P1eu/UcMp4IVtLu3v45+t0vHMndLkhxBTrUfnqy9H65X9OBehtN5Dw03APhAvdgWCokI1/evLlXoFbVUN6ap6UiwEOoDAGBnEU0bqPWQ3sr468Kybe3u7a89y9Zpy8x/qN09/eUMrR7396bhBgAfSHzyLm1+4ezn0za/mKaEiXcaTgQroT4AAHbWcexA1ahfR/3mT1by4qn60+d/UdzIAWc/elBYpB/TVqrDiJtMx/SK6vHPBgBgEZ8MnCxJ+uLu6WXb8n46oJUpM0xFgoVQHwDs6Ne1T5IOrd+mQ+u3GUwDK/hm4tsX3b9r/ko/JfE9znADAAAAAOADNNwAAAAAAPgADTcAAAAAAD5Aww0AAAAAgA/QcAMAAAAA4AOWbrjdbrdmzpyptm3bqkaNGurcubPS09PVrl07jRw50nQ8AAAAADiv7AP5eub/bi57/tm6HLndHoOJYIKlvxZsxIgRWrJkiSZPnqzExEStW7dOQ4cOVW5urh555BHT8QBUA60G9lT7lGTVi22h4PAwzW12u+lIlmTnebLz2AHYk8PpVOKku9Tm9j4KCgvVz+kZWv/YmzpzPN90tIDgdnv0xKx/6q9//16/7a/7P/CpOrWtp+Wv9lPzxhHmAnoBNVJ5lj3DnZaWptTUVH3wwQeaMGGC+vbtq0mTJqlHjx4qKSlRQkKC6YgAqoEzp1zambpCG6akmo5iaXaeJzuPHYA9dXroZjXr303Lb5qoBQmjJEm9Zj9sOFXgmPbmFv0ltXyz/attP51Q3xEfy1VQ7P9gXkSNVJ5lG+7p06crOTlZSUlJ5ba3adNGISEhio+P14kTJzRgwADFxMSoc+fO6tevn3bt2mUoMYBAdGB1hvYs/Vqu7MOmo1ianefJzmMHYE8xd/9RW19bKte+IyrOL9Cmae+p6fVdVKtplOlolncqv0h/fifzgvvdbml3Tr7mLQ/snoUaqTxLNtw5OTnaunWrbr311nP27du3T3FxcQoLC5PD4dC4ceOUlZWljIwMDRgwQCkpKQYSAwAAAIEvtE5NRTRtoGOZu8u25WcfVlHeL4qMbWkuWID4fyv3qvBM6UVf43RI7y790U+JvI8aqRpLfoY7JydHktSoUaNy2wsLC5Wenq4bb7xRklS3bl3dcMMNZfuvvfZazZgxo1K/w+FweCktgEDxeGRvtQ9tYDpGpaSnp+smQ+uU6XkyNXbT464qkzUCoHo437oXHBEuSSrKKyi3vSivQCG1w/2W7XwCYt2LSpYaD7noS9weacPmnXI4Bvop1KULpBrxd314PJW7AZ4lz3BHRZ29FCErK6vc9hkzZujgwYNKTEw878/NmjVLN998s6/jAQAAANVSiatQ0tmzmL8VWqemivMLTUQKLKWuil/jcUsllXidRVEjVWPJhjs6Olrx8fGaPn265s6dqy+//FKjR4/WO++8I0nnbbinTp2qXbt2VfoMt8fj4cGDh80ev78nhJUlJSXZdp5Mjd30uKvKZI3w4MGjejzOt+4V5RXIlZOryE7RZdsimjdUaJ1aOrE925/L3DkCYd07tucLhYZU0GI5nJr1zG3Gs1a3GvF3fVSWJRtup9OphQsXKi4uTqNHj1ZKSoqioqI0duxYBQUFKT4+vtzrn3vuOS1fvlwrVqxQzZo1L3BUADiXw+lUUFiInKFnP2ETFBaioLAQw6msx87zZOexA7CnrHmfq9PYgYpo1lAhEeHq+tQw/bxqi1w5uaajWV7kFWEad3fcBfc7nQ41aVhT9w2M8WMq76NGKs+Sn+GWpJiYGK1atarctmHDhik2Nlbh4f/6bMDUqVP18ccf6/PPP1fdunX9nBJAoGs9pLeu+9uDZc+H7U2TJC3qNpo/Gr9h53my89gB2NP3s5cq9IoIDVjxooJCQ3Tgq0x99eArpmMFjOkPd9UpV7HeXLhTDsfZe0c5JJW6PWreuJY+fT1ZV9QONR3zslAjlWfZhvt8Nm7cqGuuuabs+bZt2/TMM8+odevW6tOnT9n27777zv/hAASkXQtWa9eC1aZjWJ6d58nOYwdgTx63WxufnauNz841HSUgBQU59cbknnpoaKz+e/EP2p2Tr1rhwRp0Q0vd3LeFQiq65DwAUCOVFzANt8vlUlZWlsaMGVO2LS4urkrXzwMAAACAP8S1qadZj19T8QtRrQVMwx0REaHS0ot/px0AAAAAAFYR+NczAAAAAABgQTTcAAAAAAD4AA03AAAAAAA+QMMNAAAAAIAP0HADAAAAAOADNNwAAAAAAPgADTcAAAAAAD4QMN/DDQCXKzKulekIlWYyq+l5MvX7TY+7qgItLwDrCbR1JNDyVgeBNOdWzerweDwe0yEAAAAAAKhuuKQcAAAAAAAfoOEGAAAAAMAHaLgBAAAAAPABGm4AAAAAAHyAhhsAAAAAAB+g4QYAAAAAwAdouAEAAAAA8AEabgAAAAAAfICGGwAAAAAAH6DhBgAAAADAB2i4AQAAAADwARpuAAAAAAB8gIYbAAAAAAAfoOEGAAAAAMAHaLgBAAAAAPABGm4AAAAAAHyAhhsAAAAAAB+g4QYAAAAAwAf+P66GqgWU2vt4AAAAAElFTkSuQmCC", - "text/plain": [ - "
" - ] - }, - "execution_count": 8, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "twirled_qcs[-1].draw('mpl', style='iqp')" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "The operators are the same if `Operator` from `qiskit.quantum_info` is used:" - ] - }, - { - "cell_type": "code", - "execution_count": 9, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "True" - ] - }, - "execution_count": 9, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "np.alltrue([Operator(twirled_qc).equiv(qc) for twirled_qc in twirled_qcs])" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Next steps\n", - "\n", - "\n", - " - To learn how to use the `transpile` function, start with the [Transpilation default settings and configuration options](defaults-and-configuration-options) topic.\n", - " - Try the [Submit transpiled circuits](https://learning.quantum.ibm.com/tutorial/submit-transpiled-circuits) tutorial.\n", - " - Review the [Transpile API documentation.](https://docs.quantum-computing.ibm.com/api/qiskit/transpiler)\n", - "" - ] - } - ], - "metadata": { - "description": "Learn how to write your own transpiler pass using Qiskit, including DAG circuit representation", - "kernelspec": { - "display_name": "qiskit-stable", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.9.13" - }, - "title": "Write your own transpiler pass" - }, - "nbformat": 4, - "nbformat_minor": 2 -} \ No newline at end of file diff --git a/translations/ja/transpile/defaults-and-configuration-options.mdx b/translations/ja/transpile/defaults-and-configuration-options.mdx deleted file mode 100644 index d68d75bd78..0000000000 --- a/translations/ja/transpile/defaults-and-configuration-options.mdx +++ /dev/null @@ -1,217 +0,0 @@ ---- -title: Transpilation defaults and configuration options -description: Default settings and configuration options ---- - -# Transpilation default settings and configuration options - -Abstract circuits need to be transpiled because systems have a limited set of basis gates and cannot execute arbitrary operations. The transpiler's function is to change arbitrary circuits so that they can run on a specified system. This is done by translating the circuits to the supported basis gates, and by introducing SWAP gates as needed, so that the circuit's connectivity matches that of the system. - -You can pass circuits and a system to the `transpile()` function and use all default settings, or you can use parameters to fine tune the transpilation. - -## Basic usage without parameters - -In this example, we pass a circuit and target system to the transpiler without specifying any further parameters. - -Create a circuit and view the result: - -```python -from qiskit import transpile -from qiskit import QuantumCircuit -from qiskit.circuit.library import GroverOperator, Diagonal -from qiskit_ibm_runtime import QiskitRuntimeService -from qiskit.providers.fake_provider import FakeSherbrooke - -# Create circuit to test transpiler on -oracle = Diagonal([1] * 7 + [-1]) -qc = QuantumCircuit(3) -qc.h([0, 1, 2]) -qc = qc.compose(GroverOperator(oracle)) - -# Add measurements to the circuit -qc.measure_all() - -# View the circuit -qc.draw(output='mpl') -``` - -![Original circuit](/images/transpile/defaults-and-configuration-options/original-circuit.png "Original circuit") - -Transpile the circuit and view the result: - -```python -# Specify the system to target -backend = FakeSherbrooke() - -# Transpile the circuit -transpiled_circ = transpile(qc, backend) - -# View the transpiled circuit -transpiled_circ.draw(output='mpl') -``` - -![Transpiled circuit](/images/transpile/defaults-and-configuration-options/transpiled-circuit.png "Transpiled circuit") - -## All available parameters - -Following are all of the available parameters for the `transpile()` method. There are two classes of arguments: those that describe the target of compilation, and those that influence how the transpiler works. - -All parameters except `circuits` are optional. For full details, see the [Transpiler API documentation](/api/qiskit/transpiler#transpiler-api). - -`circuits` (`_CircuitT`) - One or more circuits to transpile. This is the only required parameter. - -### Parameters used to describe the compilation target: - -These arguments describe the system that the input circuit will be run on. For example, they may be used to ensure that the returned circuit can be run on the specified system, where the transpiler maps the circuit's virtual qubits to the physical qubits which may have limited connectivity as specified in the `coupling_map`, `basis_gates` that specify which single- and two-qubit gates are calibrated for the system, and possibly their error rates. - -Many of these parameters are described in detail in [Commonly used parameters for transpilation](common-parameters). - -
- - **System (`Backend`) parameters** - - -**Backend parameters** - If you specify `backend`, you don't need to specify `target` or any other backend options. Likewise, if you specify `target`, you don't need to specify `backend` or any other backend options. - -- `backend` (Backend) - If this is set, the transpiler compiles the input circuit to this device. If any other option is set that impacts these settings, such as `coupling_map`, it overrides the settings from `backend`. -- `target` (Target) - A backend transpiler target. Normally this is specified as part of the backend argument, but if you manually constructed a Target object, you can specify it here. This overrides the target from `backend`. -- `backend_properties` (BackendProperties) - Properties returned by a system, including information on gate errors, readout errors, qubit coherence times, and so on. Find a system that provides this information by running `backend.properties()`. -- `dt` (float | None) - Backend sample time (resolution) in seconds. If `None` is specified (default), `backend.configuration().dt` is used. -- `ignore_backend_supplied_default_methods` (bool) - If set to `True`, any default methods specified by a system are ignored. Some systems specify alternative default methods to support custom compilation target-specific passes / plugins that support system-specific compilation techniques. If you prefer that these defaults are not used, this option disables those system-specific defaults. -- `instruction_durations` (List\[Tuple\[str, Iterable[int], float, Iterable[float], str]] | List\[Tuple\[str, Iterable[int], float, Iterable[float]]] | List\[Tuple\[str, Iterable[int], float, str]] | List\[Tuple\[str, Iterable[int], float]] | InstructionDurations) - Durations of instructions. Applicable only if `scheduling_method` is specified. The gate lengths defined in `backend.properties` are used by default. They are overwritten if `instruction_durations` is specified. The `instruction_durations` format must be as follows. The instruction_durations must be given as a list of tuples [(instruction_name, qubits, duration, unit), …]. | \[(`cx`, [0, 1], 12.3, `ns`), (`u3`, [0], 4.56, `ns`)] | \[(`cx`, [0, 1], 1000), (`u3`, [0], 300)] If `unit` is omitted, the default is `dt`, which is a sample time depending on system. If the time unit is `dt`, the duration must be an integer. -- `timing_constraints` (Dict[str, int] | None) - An optional control hardware restriction on instruction time resolution. This information is provided by the system configuration. If the system doesn’t have any restriction on the instruction time allocation, `timing_constraints` is `None` and no adjustment is performed. A system might report a set of restrictions, namely: - \- `granularity`: An integer value representing the minimum pulse gate resolution in units of dt. A user-defined pulse gate should have duration that is a multiple of this granularity value. - \- `min_length`: An integer value representing the minimum pulse gate length in units of dt. A user-defined pulse gate should be longer than this length. - \- `pulse_alignment`: An integer value representing a time resolution of gate instruction starting time. Gate instructions should start at time that is a multiple of this value. - \- `acquire_alignment`: An integer value representing a time resolution of measure instruction starting time. Measure instruction should start at time that is a multiple of this value. -
- -
- - **Layout and topology parameters** - - -- `basis_gates` (List[str] | None) - List of basis gate names to unroll to. For example ['u1', 'u2', 'u3', 'cx']. If `None`, do not unroll. -- `coupling_map` (CouplingMap | List\[List[int]]) - Directed coupling map (possibly custom) to target in mapping. If the coupling map is symmetric, both directions need to be specified. These formats are supported: - - CouplingMap instance - - List, must be given as an adjacency matrix, where each entry specifies all directed two-qubit interactions supported by the system. For example:\[[0, 1], [0, 3], [1, 2], [1, 5], [2, 5], [4, 1], [5, 3]] -- `inst_map` (List[InstructionScheduleMap] | None) - Mapping of circuit operations to pulse schedules. If `None`, the system’s `instruction_schedule_map` is used. -
- -### Parameters used to influence how the transpiler works: - -These parameters impact specific transpilation stages. Some of them might impact multiple stages, but have only been listed under one stage for simplicity. If you specify an argument, such as `initial_layout` for the qubits you want to use, that value overrides all the passes that could change it. In other words, the transpiler won't change anything that you manually specify. For details about specific stages, see [Transpiler stages](transpiler-stages). - -
- - **Initialization stage** - - -- `hls_config` (HLSConfig) - An optional configuration class `HLSConfig` that is passed directly to the `HighLevelSynthesis` transformation pass. This configuration class lets you specify the lists of synthesis algorithms and their parameters for various high-level objects. -- `init_method` (str) - The plugin name to use for the initialization stage. By default, an external plugin is not used. You can see a list of installed plugins by running `list_stage_plugins()` with `init` for the stage name argument. -- `unitary_synthesis_method` (str) - The name of the unitary synthesis method to use. By default, `default` is used. You can see a list of installed plugins by running `unitary_synthesis_plugin_names()`. -- `unitary_synthesis_plugin_config` (dict) - An optional configuration dictionary that is passed directly to the unitary synthesis plugin. By default this setting has no effect because the default unitary synthesis method does not take custom configuration. Applying a custom configuration should only be necessary when a unitary synthesis plugin is specified with the `unitary_synthesis` argument. As this is custom for each unitary synthesis plugin, refer to the plugin's documentation for how to use this option. -
- -
- - **Translation stage** - - -- `translation_method` (str) - Name of translation pass (`basis_translator`, `translator`, or `synthesis`) This can also be the external plugin name to use for the translation stage. You can see a list of installed plugins by running `list_stage_plugins()` with `translation` for the `stage_name` argument. The default value is `basis_translator`. -
- -
- - **Layout stage** - - -- `initial_layout` (Layout | Dict | List) - Initial position of virtual qubits on physical qubits. If this layout makes the circuit compatible with the `coupling_map` constraints, it will be used. The final layout is not guaranteed to be the same, as the transpiler might permute qubits through swaps or other means. For full details, see the [Initial layout section.](common-parameters#initial-layout) -- `layout_method` (str) - Name of layout selection pass (`trivial`, `dense`, `noise_adaptive`, or `sabre`). This can also be the external plugin name to use for the layout stage. You can see a list of installed plugins by running `list_stage_plugins()` with `layout` for the `stage_name` argument. The default value is `sabre`. -
- -
- - **Routing stage** - - -- `routing_method` (str) - Name of routing pass (`basic`, `lookahead`, `stochastic`, `sabre`, or `none`). This can also be the external plugin name to use for the routing stage. You can see a list of installed plugins by running `list_stage_plugins()` with `routing` for the `stage_name` argument. The default value is `sabre`. -
- -
- - **Optimization stage** - - -- `approximation_degree` (float, in the range 0-1 | None) - Heuristic dial used for circuit approximation (1.0 = no approximation, 0.0 = maximal approximation). The default value is 1.0. Specifying `None` sets the approximation degree to the reported error rate. See the [Approximation degree section](common-parameters#approx-degree) for more details. -- `optimization_level` (int) - How much optimization to perform on the circuits. Integer in the range (0 - 3). Higher levels generate more optimized circuits, at the expense of longer transpilation time. The default is `1`. See the [Set optimization topic](set-optimization) for more details. -- `optimization_method` (str) - The plugin name to use for the optimization stage. By default an external plugin is not used. You can see a list of installed plugins by running `list_stage_plugins()` with `optimization` for the `stage_name` argument. -
- -
- - **Scheduling stage** - - -- `scheduling_method` (str) - Name of the scheduling pass. This can also be the external plugin name to use for the scheduling stage. You can see a list of installed plugins by running `list_stage_plugins()` with `scheduling` for the `stage_name` argument. - - 'as_soon_as_possible': Schedule instructions greedily, as early as possible on a qubit resource. (alias: `asap`) - - 'as_late_as_possible': Schedule instructions late, that is, keeping qubits in the ground state when possible. (alias: `alap`). This is the default. -
- -
- - **Transpiler execution** - - -`callback` (Callable\[[BasePass, DAGCircuit, float, PropertySet, int], Any]) - A callback function is one that is called after each pass execution. This is useful for debugging. Since the transpiler substantially transforms a circuit, the callback mechanism helps you understand what the transpiler is doing after each pass. For example, if you see an unexpected circuit, you can write a callback to draw the circuit and print the pass name after each pass. - -The function is called with these keyword arguments: - -- `pass_`: the pass being run. -- `dag`: the dag output of the pass. -- `time`: the time to execute the pass. -- `property_set`: the property set. -- `count`: the index for the pass execution. - - - The arguments passed expose the internals of the pass manager and are subject to change as the pass manager internals change. If you intend to reuse a callback function over multiple releases, verify that the arguments being passed are the same. - - - To use the callback feature, define a function that will take in kwargs dict and access the variables. For example: - -```python -def callback_func(**kwargs): - pass_ = kwargs['pass_'] - dag = kwargs['dag'] - time = kwargs['time'] - property_set = kwargs['property_set'] - count = kwargs['count'] - ... -transpile(circ, callback=callback_func) -``` - -- `seed_transpiler` (int) - Sets random seeds for the stochastic parts of the transpiler. -- `output_name` (str | List[str]) - A list with strings to identify the output circuits. The length of the list should be the same length as the circuits parameter. -
- - -The following default values are used if you don't specify any of the above parameters. - -```python -qiskit.compiler.transpile(unitary_synthesis_method='default', translation_method='basis_translator', layout_method='sabre', routing_method='sabre', approximation_degree=1.0, optimization_level=1.0, scheduling_method='as_late_as_possible') -``` - - - -## Next steps - - - - Learn how to [Set the optimization level](set-optimization). - - Review more [Commonly used parameters](common-parameters). - - Learn how to [Set the optimization level when using Qiskit Runtime.](../run/advanced-runtime-options) - - Visit the [Transpile with pass managers](transpile-with-pass-managers) topic. - - For examples, see [Representing quantum computers.](representing_quantum_computers) - - Try the [Submit transpiled circuits](https://learning.quantum.ibm.com/tutorial/submit-transpiled-circuits) tutorial. - - Learn [how to transpile circuits](https://learning.quantum.ibm.com/tutorial/submit-transpiled-circuits) as part of Qiskit Patterns workflows using Qiskit Runtime. - - Review the [Transpile API documentation](/api/qiskit/transpiler). - diff --git a/translations/ja/transpile/dynamical-decoupling-pass-manager.ipynb b/translations/ja/transpile/dynamical-decoupling-pass-manager.ipynb deleted file mode 100644 index d3321cc168..0000000000 --- a/translations/ja/transpile/dynamical-decoupling-pass-manager.ipynb +++ /dev/null @@ -1,286 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Create a pass manager for dynamical decoupling\n", - "\n", - "This page demonstrates how to use the [`PadDynamicalDecoupling`](/api/qiskit/qiskit.transpiler.passes.PadDynamicalDecoupling) pass to add an error suppression technique called _dynamical decoupling_ to the circuit.\n", - "\n", - "Dynamical decoupling works by adding pulse sequences (known as _dynamical decoupling sequences_) to idle qubits to flip them around the Bloch sphere, which cancels the effect of noise channels, thereby suppressing decoherence. These pulse sequences are similar to refocusing pulses used in nuclear magnetic resonance. For a full description, see [A Quantum Engineer's Guide to Superconducting Qubits](https://arxiv.org/abs/1904.06560).\n", - "\n", - "Because the `PadDynamicalDecoupling` pass only operates on scheduled circuits and involves gates that are not necessarily basis gates of our target, you will need the [`ALAPScheduleAnalysis`](/api/qiskit/qiskit.transpiler.passes.ALAPScheduleAnalysis) and [`BasisTranslator`](/api/qiskit/qiskit.transpiler.passes.BasisTranslator) passes as well.\n", - "\n", - "This example uses `ibm_brisbane`, which was initialized previously. Get the `target` information from the `backend` and save the operation names as `basis_gates` because the `target` will need to be modified to add timing information for the gates used in dynamical decoupling." - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": {}, - "outputs": [], - "source": [ - "from qiskit_ibm_runtime import QiskitRuntimeService\n", - "\n", - "service = QiskitRuntimeService()\n", - "backend = service.backend(\"ibm_brisbane\")\n", - "\n", - "target = backend.target\n", - "basis_gates = list(target.operation_names)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Create an `EfficientSU2` circuit as an example. First, transpile the circuit to the backend because dynamical decoupling pulses need to be added after the circuit has been transpiled and scheduled. Dynamical decoupling often works best when there is a lot of idle time in the quantum circuits - that is, there are qubits that are not being used while others are active. This is the case in this circuit because the two-qubit `ecr` gates are applied sequentially in this ansatz." - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/kjs/.local/share/virtualenvs/documentation--fuetTj0/lib/python3.10/site-packages/qiskit/visualization/circuit/matplotlib.py:282: UserWarning: Style JSON file 'iqp.json' not found in any of these locations: /home/kjs/.local/share/virtualenvs/documentation--fuetTj0/lib/python3.10/site-packages/qiskit/visualization/circuit/styles/iqp.json, iqp.json. Will use default style.\n", - " self._style, def_font_ratio = load_style(self._style)\n" - ] - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAADEYAAAM+CAYAAACtreVyAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd3RU1drH8d+kAgk9gUCQEmqAEJpEBYUgFhCkiSgiIF6wYRQpXjtYkKoCKqCCwMWLKAiXKr0GlR4QkBIIMQ0NTXravH/wJhDSkymZOd/PWqzFnDbP3ufZ+5w9c3bGZDabzQIAAAAAAAAAAAAAAAAAAAAAAHBALvYOAAAAAAAAAAAAAAAAAAAAAAAAoLCYGAEAAAAAAAAAAAAAAAAAAAAAABwWEyMAAAAAAAAAAAAAAAAAAAAAAIDDYmIEAAAAAAAAAAAAAAAAAAAAAABwWEyMAAAAAAAAAAAAAAAAAAAAAAAADouJEQAAAAAAAAAAAAAAAAAAAAAAwGExMQIAAAAAAAAAAAAAAAAAAAAAADgsJkYAAAAAAAAAAAAAAAAAAAAAAACHxcQIAAAAAAAAAAAAAAAAAAAAAADgsJgYAQAAAAAAAAAAAAAAAAAAAAAAHJbVJka0a9dOr776qtX3Ka7HAAAAAAAAAAAAAAAAAAAAAAAA1leoiREJCQl65ZVXVKdOHZUoUUKVK1dW69atNW3aNF25csXSMVrUgAEDZDKZZDKZ5OHhoTp16uj9999XSkqKvUMDAAAAAAAAAAAAAAAAAAAAAAAF5FbQHU6cOKHWrVurXLlyGjNmjIKCguTp6akDBw7oq6++kr+/vx599FFrxGoxDz/8sL799ltdv35dK1eu1EsvvSR3d3e98cYb9g4NAAAAAAAAAAAAAAAAAAAAAAAUQIF/MeLFF1+Um5ubdu3apccff1yBgYEKCAhQ165dtWLFCnXp0iXb/a5fv66wsDBVqlRJJUqUUJs2bbRz584s26WkpGjIkCEqW7asfHx89M4778hsNkuSfv75Z7Vp00blypVTxYoV1blzZ0VGRha0CPL09JSfn59q1KihF154QR06dNDSpUszbZOWlqaRI0eqQoUK8vPz06hRozLW5SeOhQsXKigoSCVLllTFihXVoUMHXb58OePYH3/8sWrVqqWSJUsqODhYCxcuLHA5AgMDM3794vZ/n3/+eYGPBwAAAAAAAAAAAAAAAAAAAACAoynQxIgzZ85ozZo1eumll+Tl5ZXtNiaTKdvlI0eO1KJFizRnzhzt2bNHderU0UMPPaSzZ89m2m7OnDlyc3PTjh07NHnyZH3yySf65ptvJEmXL1/Wa6+9pl27dmn9+vVycXFR9+7dlZaWVpBiZFGyZEklJSVlicPLy0u//fabxo8fr/fff19r167NVxzx8fF68sknNXDgQB0+fFibNm1Sjx49MiZ4fPzxx5o7d66mT5+ugwcPaujQoerbt682b96c8f6zZ8/OsS7TLVq0SJK0fv16xcfHKyoqSi4uLvrxxx81aNCgItUJAAAAAAAAAAAAAAAAAAAAAACOwK0gGx8/flxms1n169fPtNzHx0fXrl2TJL300ksaN25cpvWXL1/WtGnTNHv2bHXs2FGS9PXXX2vt2rWaOXOmRowYkbHtHXfcoU8//VQmk0n169fXgQMH9Omnn2rQoEHq2bNnpuPOmjVLvr6+OnTokBo3blyQokiSzGaz1q9fr9WrV+vll1/OtK5JkyZ67733JEl169bV559/rvXr1+uBBx7IM474+HilpKSoR48eqlGjhiQpKChI0o1fzhgzZozWrVunu+++W5IUEBCgbdu2acaMGWrbtq0kqWzZslnq+XanT5+Wm5ubWrduLU9PT+3evVtpaWm699575enpWeD6AAAAAAAAAAAAAAAAAAAAAADA0RToFyNysmPHDu3bt0+NGjXS9evXs6yPjIxUcnKyWrdunbHM3d1drVq10uHDhzNte9ddd2X6pYS7775bx44dU2pqqo4dO6Ynn3xSAQEBKlOmjGrWrClJio6OLlC8y5cvl7e3t0qUKKGOHTuqd+/eGjVqVKZtmjRpkul1lSpV9Ndff0lSnnEEBwfr/vvvV1BQkHr16qWvv/5a586dk3RjcsmVK1f0wAMPyNvbO+Pf3LlzFRkZmfF+3bt31x9//JFrOQ4cOKB69eplTIKIiIhQpUqVVLly5QLVBwAAAAAAAAAAAAAAAAAAAAAAjqpAvxhRp04dmUwmHTlyJNPygIAASVLJkiUtF1k2unTpoho1aujrr79W1apVlZaWpsaNGyspKalAxwkNDdW0adPk4eGhqlWrys0tazW4u7tnem0ymZSWlpavOFxdXbV27Vpt375da9as0dSpU/XWW2/pt99+06VLlyRJK1askL+/f6b3KOivPOzfvz/jlyikGxMjbn0NAAAAAAAAAAAAAAAAAAAAAICzK9AvRlSsWFEPPPCAPv/8c12+fDnf+9WuXVseHh4KDw/PWJacnKydO3eqYcOGmbb97bffMr3+9ddfVbduXZ0/f15HjhzR22+/rfvvv1+BgYEZv8JQUF5eXqpTp46qV6+e7aSI3Jw5cyZfcZhMJrVu3VqjR4/W3r175eHhocWLF6thw4by9PRUdHS06tSpk+nfHXfcUaBY9u/fn+mXLSIiIrL80gUAAAAAAAAAAAAAAAAAAAAAAM6sQBMjJOnLL79USkqKWrZsqQULFujw4cM6cuSI5s2bpz/++EOurq5Z9vHy8tILL7ygESNG6Oeff9ahQ4c0aNAgXblyRc8++2ymbaOjo/Xaa6/pyJEjmj9/vqZOnapXXnlF5cuXV8WKFfXVV1/p+PHj2rBhg1577bXCl7yQ8hPHb7/9pjFjxmjXrl2Kjo7WTz/9pL///luBgYEqXbq0hg8frqFDh2rOnDmKjIzUnj17NHXqVM2ZMyfjGIsXL1aDBg1yjCMtLU0HDx7MNBEiMjJSNWvWtHiZAQAAAAAAAAAAAAAAAAAAAAAorgr2cwm68esPe/fu1ZgxY/TGG28oJiZGnp6eatiwoYYPH64XX3wx2/3Gjh2rtLQ0Pf3007p48aJatmyp1atXq3z58pm269evn65evapWrVrJ1dVVr7zyigYPHiyTyaTvv/9eYWFhaty4serXr68pU6aoXbt2hSp4Ybm4uOQZR5kyZbRlyxZ99tln+ueff1SjRg1NmjRJHTt2lCR98MEH8vX11ccff6wTJ06oXLlyat68ud58882MY1y4cEFHjhzJMY7IyEhduXIl08SIoKAgvffee2rRooVat25t+cIDAAAAAAAAAAAAAAAAAAAAAFDMmMxms9neQQAAAAAAAAAAAAAAAAAAAAAAABSGi70DAAAAAAAAAAAAAAAAAAAAAAAAKCwmRgAAAAAAAAAAAAAAAAAAAAAAAIfFxAgAAAAAAAAAAAAAAAAAAAAAAOCwmBgBAAAAAAAAAAAAAAAAAAAAAAAcFhMjAAAAAAAAAAAAAAAAAAAAAACAw2JiBAAAAAAAAAAAAAAAAAAAAAAAcFhMjAAAAAAAAAAAAAAAAAAAAAAAAA6LiREAAAAAAAAAAAAAAAAAAAAAAMBhMTECAAAAAAAAAAAAAAAAAAAAAAA4LCZGAAAAAAAAAAAAAAAAAAAAAAAAh8XECAAAAAAAAAAAAAAAAAAAAAAA4LCYGAEAAAAAAAAAAAAAAAAAAAAAABwWEyMAAAAAAAAAAAAAAAAAAAAAAIDDYmIEAAAAAAAAAAAAAAAAAAAAAABwWEyMAAAAAAAAAAAAAAAAAAAAAAAADouJEQAAAAAAAAAAAAAAAAAAAAAAwGExMQIAAAAAAAAAAAAAAAAAAAAAADgsJkYAAAAAAAAAAAAAAAAAAAAAAACHxcQIAAAAAAAAAAAAAAAAAAAAAADgsJgYAQAAAAAAAAAAAAAAAAAAAAAAHBYTIwAAAAAAAAAAAAAAAAAAAAAAgMNiYgQAAAAAAAAAAAAAAAAAAAAAAHBYTIwAAAAAAAAAAAAAAAAAAAAAAAAOi4kRAAAAAAAAAAAAAAAAAAAAAADAYTExAgAAAAAAAAAAAAAAAAAAAAAAOCwmRgAAAAAAAAAAAAAAAAAAAAAAAIfFxAgAAAAAAAAAAAAAAAAAAAAAAOCw3OwdAJAfZrOUlGrvKArGw1UymYp2DLNZSku2TDz25OJumbowYg6kc8RcsMR5v5XR68Do5Zccrx+wZB8gGTsHHLHs6YzcDxi57Lcycjsw+nVA4n6wMDngiOUsjMLWDW3AMseyFcZElq8DAAAAAAAAAAAAAMgJEyPgEJJSpdcX2DuKghnXW/IsYgtLS5Y2TrFMPPYUGia5ehTtGEbNgXSOmAuWOO+3MnodGL38kuP1A5bsAyRj54Ajlj2dkfsBI5f9VkZuB0a/DkjcDxYmBxyxnIVRmLqhDThebjAmsnwdAAAAAAAAAAAAAEBOXOwdAAAAAAAAAAAAAAAAAAAAAAAAQGExMQIAAAAAAAAAAAAAAAAAAAAAADgsJkYAAAAAAAAAAAAAAAAAAAAAAACHxcQIAAAAAAAAAAAAAAAAAAAAAADgsJgYAQAAAAAAAAAAAAAAAAAAAAAAHBYTIwAAAAAAAAAAAAAAAAAAAAAAgMNiYgQAAAAAAAAAAAAAAAAAAAAAAHBYbvYOAID1RERu0vDpoZmWlfDwUjXfeurQ/Gl1a/2yXF3pBpyZ0XPA6OWXqAOj4/yDHAA5AKPngNHLD3LA6OUHAAAAAAAAAAAAYBx88wkYQGjTJ9WqQSeZZda5iwlau3uupi97TdF/HdbQx76yd3iwAaPngNHLL1EHRsf5BzkAcgBGzwGjlx/kgNHLDwAAAAAAAAAAAMD5MTECMIC6/s3VoUXfjNdd7nlRz45voFU7vtEzD3+kct6+dowOtmD0HDB6+SXqwOg4/yAHQA7A6Dlg9PKDHDB6+QEAAAAAAAAAAAA4PyZGwHAm9zVZ7FivzDNb7Fi2VNLDSw1q3KWt+xcq7kyk4R6AIAfIAaOXX6IOjN4PGP38gxwAOWD064BEDhi9/LQBcsDo5QcAAAAAAAAAAADgfJgY4cSWLl2qVatWaffu3YqNjVViYqI8PDxUu3ZtderUSa+99pp8fHwy7RMVFaVatWrl6/ijRo3Se++9Z43QreafxGjd+9Qnat5xqL1Dsbv4M5GSpDKlKtg5EtsiB24yag6kM3r5JePWAf3ADUY9/7iJHIBRc4DrwE1GzYF0Ri0/beAmo+ZAOqOXHwAAAAAAAAAAAIBzYWKEE/vkk0+0efNmeXh4qGrVqmrSpIn++usv7d+/XxEREfrmm2+0Zs0aNW3aNGOfEiVKqHXr1jke8+LFi9q/f78k6Z577rF2ESzu5N5lCmjWxd5h2Ny15Cu6cDlRZrNZ5y4maNkv03U8dq8a3NFK1Xzr2Ts8myIHjJkDRi+/RB3cyoj9AOcf5ADIgZuMeB2QyAGjl/9WtAFj5oDRyw8AAAAAAAAAAADA+TExwokNHDhQ7777rtq0aSMPD4+M5QcOHFCfPn30+++/q0+fPjp06FDGOj8/P23bti3HY44fP1779+9XtWrVdP/991s1fms4n3BMwQ+8ZO8wbG7umvc0d03mX/do07iHXu7+hZ0ish9y4CYj5YDRyy9RB7cyYj/A+Qc5AHLgJiNeByRywOjlvxVt4CYj5YDRyw8AAAAAAAAAAADA+TExwon169cv2+VBQUGaOXOmQkJCdPjwYR0+fFiBgYH5OubcuXMlSU8//bRcXFwsFqstJF27JI8Spe0dhl08EjJY9zXppZS0ZJ2MP6AFm8Yp8UKMPNxLZGxz4MRWvTmzY5Z9U1KTlJaWqtXjU20ZslWQA8bNAaOXX6IO0hm1HzDC+Z+/4WMdi92jYzG7lXD2pCqXr6F5b0bZO6xiw9lzIC0tTYu3TdaKX2co4VyUynn56r7gx9X/ofdV0sPL3uEVC86eA/ll1OuARA4YvfzpaAPGzQGjlx8AAAAAAAAAAACA83P6iRGJiYkaP368fvrpJ8XExMjX11c9evTQmDFjFBYWplmzZmnq1KkaMmSIvUOVJJnNZplMJqu/z60TIa5cuZKvfXbv3q2DBw9Kkvr372+VuKwp+sBaVQ960N5h2IW/T101r9dBktSqQUc1rtVGQ79so8mLntdbfb+XJAUF3KtlH13KtF/ihTi9NKWlut5TPNpHUZEDxs0Bo5dfog7SGbUfMML5n7XqTZUuVUF1/Zvr8tXz9g6n2HH2HJi2bKiWbJui1o2767G2wxR9+rCWbJuiyNi9Gjd4ncNN6LUGZ8+B/DLqdUAiB4xe/nS0AePmgNHLDwAAAAAAAAAAAMD5OfUTQvv27VNQUJAmTJighIQENWzYUMnJyZoyZYp69+6tw4cPS5KaNm1qtRjatWsnk8mkqKioPLfdv3+/mjVrpuPHj1stnnTh4eGSJC8vL9WvXz9f+8yZM0eSFBISku99ipP4Y+GqUu+eTMvCF7ypyX1NOrh5VpbtzWazFn7YTp8P8FTin7/bKkybaFTzHnVo/rQ2RSzQwajt2W6TlHJdo+f2UOOabdTn/jdtHKF1kAM3GTUH0hm9/JJx64B+4AZnPP9z/x2pn0af0bjBa1WxTFV7h1PsOVMORCUc1P/Cp6pN4x4a1f8ndQoZpOcf/UTPd/lE+yI3alPE9/YOsVhyphwoCK4DNxk1B9IZtfy0gZuMmgPpjF5+AAAAAAAAAAAAAM7HaSdGJCYmqkuXLkpISNCwYcMUHx+vPXv2KCEhQePGjdOKFSu0c+dOmUwmNWnSxN7hSpK+/fZbRUREKDQ0VCdOnLD48dPS0hQfH6+5c+dqwIABkqQxY8bI29s7z32Tk5M1f/58ScrY15GY09JkNpvl4uKaafldPUepYrXG2vLda7p4JibTur0/f6bYPzYrpMdo+dzR2Jbh2sRTHd6Ri4ur5qx+N9v1kxc9r6TkaxrRe7ZtA7MSciAro+XA7Yxefsl4dUA/kJmznf8qFQPsHYLDcZYc2Lhvvsxms3rc+2qm5Z1CBqmEeymt2zPPPoE5AGfJgfziOpCV0XLgdkYrP20gK6PlwO2MXn4AAAAAAAAAAAAAzsVpJ0aEhYUpJiZGQ4YM0cSJE1W6dOmMdSNHjlRwcLBSUlJUs2ZNlSlTxo6R3jRp0iQ9/fTTiomJUWhoaL5+ZSI/pk+fLpPJJFdXV1WtWlX9+/dXtWrVtGzZMoWFheXrGCtWrFBiYqI8PT3Vu3dvi8RlSwkndsivdqssy13dPPTgc3OUcv2y1n3zbMbyc3FH9MuPb8mvdohadB5hy1Btxt+njkKDn9De4+t14MTWTOsWb5ui3w4v1+gBS1TCo5SdIrQsciAro+XA7Yxefsl4dUA/kJnRzj+ycpYcOPLnTrmYXFS/eub27eFeQgFVm+ronzvtFFnx5yw5kF9cB7IyWg7czmjlpw1kZbQcuJ3Ryw8AAAAAAAAAAADAuTjlxIjDhw9rwYIF8vHx0ccff5ztNi1atJAkBQcHZ1p+8uRJPfrooypdurTKly+vfv366cyZM0WOKSYmRlFRUbn+i46O1qhRo9S+fXtFR0crNDRU0dHRRX7vKlWqqHXr1goJCVHVqlVlMpm0f/9+/fe//9WFCxfydYy5c+dKkh599FGVL1++yDFZU+wfW5SWmpJp2amIn1WjycPZbl+pVnO17PKGog+s0YENXyktLVWrZ/ST2WzWg8/NyfLXNJ3Jk/e/JReTi+asufnXIfcd36hvVryud57+UX4VatovuCIgB/LPWXMgv4xefsl564B+IH+c9fwj/5whB878E6cyXj7ycPPMss6nrL8uXE5UckqSHSJzDM6QA9nhOpB/zpoD+eWs5acN5J+z5kB+Gb38AAAAAAAAAAAAAJyHm70DsIb58+crLS1NTz31lLy9vbPdpmTJkpIyT4y4ePGiQkNDVaFCBc2fP19Xr17VyJEj1blzZ4WHh8vFpfDzSO69994C7xMVFaW+fftqy5YthX5fSeratau6du2a8frAgQN66aWXNH/+fEVHR2vbtm257n/mzBmtWLFCkjRgwIAixSJJLVu2VEJCQoH2cXUvqe4fHstzu6O/LtC6b/6lLq8t1R0NQzOWX796QZ6lyua4X6tu7+jEnqXa9t/h+vvUPp2O3KF7+0xS+ar1CxTnrerVravU5KuF3l+SPNxK6qsheZc7J8G122ntBHOO62tUDtTq8akZrxPORunDeY9rUOcJCq7drtDve7u69eoqKaVodWHUHEhX2FywZw5Y4rzfqjB1YO82YMk6IAccrx+wZB8gGbsNFPV6aE/27gecpQ/IrezXk67IPZtJETf2K3Fjm+QrcnfzsEgsBWXvduAsOSA53nVA4n6wMDlg6T7f3tfCnBSmbmgDxmgDuXG0ewHJ8nUAAAAAAAAAAAAAwLn5+flp165dhdrXKSdGbNiwQZIUGhqa4zYxMTGSMk+M+OqrrxQbG6stW7aoevXqkqRq1arpnnvu0dKlS9WtW7dCxxQUFCQPj/w9jHXmzBlFRUVJkgIDAwv9nrnFsmLFCgUEBCg8PFzr1q1Thw4dctx+/vz5SkpKkp+fnx566KEiv39CQoJiY2MLtI+bZ6l8bVfvrt46f/q4Tuy5+QDIP4nRKuNTI9f9XN3c9eBzc/T9u3fqwPppqlqvjZo9/GqBYrxdXHycUq5fKdIxSrjnr9yWcC3pit6b3U13N3xU3VoPseix4+PidC25aHVh1BxIZ4tcsHQOWOK838radWCNNmDJOiAHHK8fsGQfIBm7DdjyemhpjtQPFOc+ILeye3qU0tVLf2W7Linl2o1t7JhDjtQOinMOSI53HZC4HyxMDtizz7fmmOh2hakb2oAx2kBuHO1eQLJ8HQAAAAAAAAAAAABATpxyYsSpU6ckSTVqZP+lf0pKisLDwyVlnhixfPlytWnTJmNShCTdfffdCggI0LJly4o0MWLp0qWqWbNmntvFxMSobdu2kqTevXvryy+/LPR75qZ06dJq27atFi1apIiIiFwnRsyZM0eS9NRTT8nV1bXI7+3n51fgfVzdS+Z729otu2vZpEfVtu+nkqSTe5epVrMuee7nWaqsXN09lZaarJpNO8lUhF8IkaSqVapa5BcjbGXrgUU6ER+h2MSj2hSxIMv6mcMPqVL56tnsmbcqVata5Bcj8suZciCdLXLB0jlgifN+K2vXgTXagCXrgBxwvH7Akn2AZOw2YMvroaU5Uj9QnPuA3MpesUxVRZ8+pKSU6/K47ZcjEi/EqqyXj91+LUJyrHZQnHNAcrzrgMT9YGFywJ59vjXHRLcrTN3QBozRBnLjaPcCkuXrAAAAAAAAAAAAAIBzK8xz5umccmLE5cuXJUlXr2b/xeuCBQuUmJio0qVLq1atWhnLDx06pF69emXZvlGjRjp06JB1gr1FbGysQkNDdeLECT322GOaN2+eRSYi5CQlJUWSlJqamuM2hw4dyvg5kgEDBljkfQvz8ybXU6TXs34nn62K/g0lk0lnYg6qYrVGOn/6uIIr1851H7PZrLVfPaO0lCRVqBqoHf/7UHVDHle5PPbLzdFjx+RZxBaWmiRtnFK0Y+TXAy2e1gMtnrbKsY8dPSbXIj6PaNQcSGeLXLB0DljivN/K2nVgjTZgyTogBxyvH7BkHyAZuw3Y8npoaY7UDxTnPiC3ste/407tPrpGR6J3KCjg3ozlScnXdCJun4IC7rNMEIXkSO2gOOeA5HjXAYn7wcLkgD37fGuOiW5XmLqhDRijDeTG0e4FJMvXAQAAAAAAAAAAAADkpGh/+q+YSp8psmfPnizr4uPjNWLECElSkyZNZDKZMtadO3dO5cqVy7JPhQoVdPbsWesEe4vRo0fr+PHj6t69u+bPny83N+vNWzl79qw2b94sSWratGmO282dO1eS1Lx5czVu3Nhq8VhaQLMuOrFnqZKuXZJHidJ5bh+xZqpiDm9Sq+7vqVPYjzKnpmjd1wNlNpttEC2sgRwAQD8AGEO74N4ymUz6aetnmZav/O1rXUu+ovbNnrJPYLA7rgMwOtoAAAAAAAAAAAAAAMBInHJiRIcOHSRJ48aN09GjRzOW79y5U6GhoUpMTJSU+4QAS2nbtq169uwpLy+vPLedPHmyRo8erQULFhR5UsSuXbv07rvv6vjx41nW7d27Vx07dtT58+cVFBSk+++/P9tjpKWlad68eZKk/v37FykeW6vV/MYDINEH1qh64wdy3fZcwjGF//CGKgfcqZZdXlfFao0U0mOUYv/Yoog1U20TMCyOHABAP2Asa3f/R9+t+1DfrftQ5y//rcvXLmS8Xrv7P/YOD1ZUq0qQHr3nJW37/SeNmtNDK3/7RtOXDdP0Za+pSUBbtW/Wx94hwk64DsDoaAMAAAAAAAAAAAAAACNxyokRI0eOVMWKFfXnn3+qUaNGCgoKUt26ddWqVSsFBASoffv2kqTg4OBM+5UvX17nz5/PcryzZ8+qQoUKhYpl9OjRWrhwoXx9ffPctmTJknr33Xfl7u5eqPe61aVLl/TBBx+obt26qly5slq2bKmQkBD5+/urefPm2rFjh+rVq6clS5bI1dU122OsW7dOsbGxcnd3V58+jvVAmX/9e3U+4Zgidy1WlXr35LidOS1Na2cMkDktVQ8+N0cuLjfqokXnkapUq6XCf3hD509H2ipsWBA5AIB+wFh+3jFTs1e/o9mr39H5S3/p0tXzGa9/3jHT3uHByl549DMN7jxRp04f1OeLX9Kmfd+rW+uX9eHA5XJxccohD/KB6wCMjjYAAAAAAAAAAAAAADASp3xKqFq1atq6daseeeQRlShRQlFRUapQoYJmzJihFStWZPyKxO0TIwIDA3Xo0KEsxzt06JACAwNtErulBAcHa/LkyerWrZvKlCmjo0ePau/evUpNTVWHDh30xRdfKCIiQgEBATkeY86cOZKkRx55RD4+PrYK3SJcXN1Uo8lDN/7vkv3ED0nas3KS4o9t110931cF/5vn2MXFVQ8+N1vm1BSt+3qgzGaz1WOGZZEDAOgHjGXSC5u0doI523+TXthk7/BgZa4ururVdpi+HXlEK8de1/fvxOr5Rz9RSU9ve4cGO+I6AKOjDQAAAAAAAAAAAAAAjMQpJ0ZINyY5LF++XBcvXtTFixf122+/afDgwbp8+bKioqLk4uKixo0bZ9qnc+fO2rZtm2JiYjKW/fbbb4qMjFSXLl1sXYQiKV++vMLCwrR48WIdO3ZM//zzj5KSkpSQkKC1a9fqxRdfVIkSJXI9xnfffSez2azFixfbKGrLqt2imwJadM1x/dnYw/pl0Tvyq3OXmncalmV9xWqNFNJjlGL/2KKINVOtGCmshRwAQD8AAMbGdQBGRxsAAAAAAAAAAAAAABiFm70DsLWDBw/KbDarXr16KlWqVKZ1gwcP1tSpU9W1a1eNHj1a165d08iRI9WqVSt17ZrzgwQonuqG9Mp1fQX/QA359lqu29z56Bu689E3LBlWkUTGRejThYN05fpFVS5XQ68/+R+V8/bVAyNMqunXWP/qNE4hgZ0kSTF/H9OEBf114XKivEqU1Yjes1XTr5Ekafj0UJ2Ii1DfB95Vj3tftWOJrMsZcwBAwdAPAICxcR1wfPkdAyUlX9NH3z2hU6cPydO9pMp5V1JYj2ny96mT6Xg/7/xWk34YqFH9F6t1426SnHt8RBsAAAAAAAAAAAAAABiF4SZGHDhwQJIUHBycZV2ZMmW0YcMGvfLKK3riiSfk5uamzp0769NPP5WLi9P+uAYcyIQFAzT88W9Vx7+pft4xS18tH66RT8yRJH364lZ5lyyXse3kRc+pU8hgPXTnAG3Zv1ATFgzQF6/slCRNfH6jxn8/IF/vOWxaO43oPVt+FWpauDSwtde/elDnLibIZHJRqRKl9VLXKarj38zeYVlUdg/OnTp9UG9+01HVfOtr7OA1Ku9dST/vmKVFWz9V9F+H9VzniZkegJu56k2FH/hJ7m6ecnV11zMPf6Q76z8kSVq05VMt3f6FSnh4a8Zr++xTSACwkS37F+q3wyt06eq5PB80BgBrKcgYqFPIYLVq0FEmk0lLwj/XJz/+S5Ne2JSxPuFslFb99rUCq9+V6T0YHxkHY6KbY6JZq97SL4eWysXkKkl6ov2/Fdr0iYzjLN3+pZaET5Wri5tcTC6a+vJv8nAvoa+Wj9CmiAWq699cowcssVMpAQAAAAAAAAAAACArJkbcpnbt2lq+fLktQwLy5XjsXpX09FYd/6aSpAda9teM5cOUnJKUZdtzl/7S0ZhdGjtojSTp3qCe+nzxEMUmHrf4g4yXrp7XoEmNdT35qnzL3qHk1OtKOHNC97d4WsN6fWPR90LRvPP0DxkPjm07sFgTFgzQjNci7BuUhWX34NxDdz6jar71M01kqFuthd7u+4O+3/BxlmME1bpXfTu8I0/3koqMi9Br0+7T9+/EqaSHl3reN1R1/Jvpy/+9artC2QhtGeQAbhf++2K1bfK4XF3dc33QGM6BPgDFMQcKMgbycC+R8et5khRY/S4t3Dwx43VaWpo++fFfeqnbVM1YNsyqcRfHusQNjIn2ZWz3eLsRGtjxI0lS4oVYPTshUM3rdlBZLx9t//1/Wr/nO00d8qu8SpbV+Ut/y9XVXZI0uPME1ajcSNsPLrFD6QAAAAAAAAAAAAAgZ0yMABxE/NmTOhl/QM990jRj2fWkK0r8JzbLtn+f/1MVylSRq+uNJm4ymVSpfHX9dT7a4hMjvEuWU/umfVTSs7T6PvCOdh5ZrfkbxvDATzF061/TvXztgiSTJOd5cCunB+faN3sqy7a1q964BphMWX8NqFWDjhn/r+UXJJnNunDpb5Ws4GWdwIsJ2jLIAWPJq+9PSU3Wwahwjeg9W27//yCklPVBYzgP+gAUxxwoyBjodou3TdbdjbpmvF605RM1qtla9aq1sEaomRTHusQNjIluurUurl6/JLPMSjOnSZJ+2DxBTz/wnrxKlpUklfP2tXrsAAAAAAAAAAAAAFBUhpsYsWHDBnuHABRag+ohGjtodcbrx0ZZ5+GEcfP76UT8fklS3JnjemtmJ7m5ekiSRg9YIr8KNTNtfzxun7q3CZMkHYvZrTpVm1klLhTduPn9FBG5UZL00bMrJTnPg1tFeXAuJ6t3fSu/CgGqXL6GBSK0r7Cpdys28Vi266YN3atK5e6gLTs5cgC3yqvv33d8oxrWuCfTpAgp64PGcBz0AXDUHCjMGOi/68coLvG4xj+3XpJ0MuF3bT2wSJ+8uKVQMRR0fCQxRirOGBPdtHjbFC3d/oUSz8doaK9vVN67kiQp+vQhHY3Zpf+sHa3k1Ot6oEW/jHwGAAAAAAAAAAAAgOLKcBMjAEdVpUKA/jofnfH68rV/dC3psnzK+GfZ1rfcHTr7T7xSU1Pk6uoms9msv85Fq1K56vl6r9efnJvx/2HT2mlE79nZPuyT7kTcPtXxv/Ggz7GY3bq70aP5LBVsLf3crtk1R1+vfF1j/v9BIGd5cMuSk4f2HFuv/6wdrXGD1spkMlkiPLua8vIveW5DW3Zu5ICxFPUB6O0Hl6h14+6Z9rv9QWM4FvoAOGIOFGQMlO7HTRO17fefNH7wOpXwKCVJ+v3EVp0+F6UB4+pKks5eTNBnCwfr7D/x6nLPC3nGUdDxkVT86hI3MSa6qXubMHVvE6bIuAiNnd9XLes9qDJeFZWalqKEsyf1yYtbdOnqOQ2b1lZVKgToroadbVEEAAAAAAAAAAAAACgUF3sHACB/6vg3lZuLu3YfXStJWrb9S7UN7i13N48s25b3rqQ6/s21bs88SdLWA4vkU66a/H3qWDyuxAuxkskkn7I3Hk46kbBftfyCLP4+sKwHW/ZXxPGN+ufyGUlZH9xK/78jKcyDczmJiNysiT88ow+eWaY7KtW3ZJjFFm0Z5IBzmfLyL1o0OjHbf5XK3SEp577fbDZr15HVatWgY8bx0h80HvOvVRkPGsO50AegOOZAQcZAkrRw8yfauG++xg1aK++S5TKWd7nnBS14N17z3ozSvDejFFj9Lr362Ff5mhRRGMWxLpEVY6KbalcNlk8Zf0VEbpIkVSpXXaHNnpSri6vKevmoVYNOOhz9qzVDBwAAAAAAAAAAAIAiY2IE4EDe6POdZq56Q/3H1lFE5CYN7jwhx21f7TlDK36doQHj6un7jWM14vFvrRLT8di9mf6SpneJclr6y5dWeS8U3qWr55V4IS7jdfjvS1TGq6JKl6rgNA9uFfTBuZzsP7FF475/Wu8P+J9qVw22RqjFEm0Z5ICx5Nb3//HnDlWvHKiSnt6Scn7QGM6FPgDFNQfyOwb6+3yMZiwfpktXz2v49FA990lTvTwlxMbR3lBc69LoGBNldur0oYz/xyVG6njcXlWv3FCSFNqsj3b98bMk6XryVUVEblJAFeOMjQAAAAAAAAAAAAA4Jjd7BwAg/2pVCdKXr+zK17Z3VKqvKS//UuT3nPTCplzX39Wws+5q2Dnj9Rev7Czye8LyLl+7oA/+00vXk6/KxeSisl6++uCZ5TKZTDk+uDWs1zd2jLhw3ujznSb88Iym/PSCqlaso3/3maeohN+zbLd652zNXv22Ll05p+0Hl+jHzRP1wTPLVMe/mSb9+KySU65rwoJnMrb/95P/Ua0qjvdgVEHQlkEOGEtufX/474t1T6Nukm4+aFylQoCGTw+VJHm4eWpq2G/2CBtWRB+A4poD+R0D+ZarprUTzPk6Zl5jnKLuW1zr0ugYE2X29YqRSjh7Uq4u7nJ1ddOQbp+rRuVASdJj972mzxY9p2cnNJTJZFKboJ5qG9zL1kUBAAAAAAAAAAAAgAJhYgTgBMp7V9awaW01sOPHCgnslOf2w6eH6vTZKDWu1doG0aE4qFy+hj4P25HtOmd6cCu/D849dOcAPXTngGzXzXn9mIWjAoDiJ7e+/9dDyzTh+Y2SCvagMQDYUkHHQLlhfGQMjIky+3Dg8hzXebiX0Mgn5lgyLAAAAAAAAAAAAACwOiZGAE7gh/cSCrT9xP9/2BEwAjdXD128ckbPfdJUYwevUXnvSoU+1qItn2rlb1+rYpmqFowQAIqXb4YftHcIAJCngo6BcsP4CM7OkmOir5aP0C+HlqphjXssGCEAAAAAAAAAAAAAFB0TIwAATq1RzXv037f/tMixet43VD3vG2qRYwEAAACALVhyTDS48wQN7jzBIscCAAAAAAAAAAAAAEtysXcAAAAAAAAAAAAAAAAAAAAAAAAAhcXECAAAAAAAAAAAAAAAAAAAAAAA4LBMZrPZbO8ggLyYzVJSqr2jKBgPV8lkKtoxzGYpLdky8diTi7tl6sKIOZDOEXPBEuf9VkavA6OXX3K8fsCSfYBk7BxITZI2Tin6cewhNExy9bDMsRwtByzZB5ADjnf+Ja4DEveDhckBRyxnYRS2bmgDljmWrTAmsnwdAAAAAAAAAAAAAEBO3OwdAJAfJpPkacBsNZks9zClozNqDqQjF6gDo5dfoh8gB0AOGBvnn+uAUXLAKOUsDNoAuUEdAAAAAAAAAAAAAEDOXOwdAAAAAAAAAAAAAAAAAAAAAAAAQGEZ+G8NAgAAADCSiMhNGj49NMf1Li6uWj0uxYYRAQAAAAAAAAAAAAAAALAEJkYAAAAAMJTQpk+qVYNOWZa7uPCDegAAAAAAAAAAAAAAAIAjYmIEAAAAAEOp699cHVr0tcqxzWazriVdVklPb6scHwAAAAAAAAAAAAAAAEBWTIwAAAAAgGxs3b9IS8KnKjJun1JSk+Rb7g61rPeQBneeKHc3D0VEbtLw6aEa/vi3upZ0WUu3f6H4M5F6ov0b6vfgKHuHDwAAAAAAAAAAAAAAABgGEyMAAAAAGMq15Cu6cDkxy3I3Vw95lSgjSZq16i3N3zBGNSo3VM97h6pCmSqKOxOpbQcWqf9D78vdzSNjv5+2fqaLV86oY8ggVSjtJ99yd9isLAAAAAAAAAAAAAAAAACYGAEAAADAYOaueU9z17yXZXlI4CP6cOBy/RG9Q/M3jFHT2qH66NmV8nAvkbHNvzqNzbLf3+ejNXPkHyrvXcmqcQMAAAAAAAAAAAAAAADIHhMjAAAAABjKIyGDdV+TXlmWl/X2lSSt3/udJGlgp48zTYqQJJPJlGW/Di36MSkCAAAAAAAAAAAAAAAAsCMmRgAAAAAwFH+fumper0OO62MTj8lkMql2leB8Ha+abz1LhQYAAAAAAAAAAAAAAACgEFzsHQAAAAAAFDcmmaRsfh0iO57upawcDQAAAAAAAAAAAAAAAIDcMDECAAAAAG5Rzaee0sxpOhEXYe9QAAAAAAAAAAAAAAAAAOQDEyMAAAAA4Bbtm/WRJM1a9aaSU5KyrDebzbYOCQAAAAAAAAAAAAAAAEAu3OwdAAAAAADY0rHYPVq3e16261o37qYG1Vupd+jrWrBxnF78rLnaBvdWhTJ+ij97Ulv3L9TnYTvkXbKcbYMGAAAAAAAAAAAAAAAAkCMmRgAAAAAwlI375mvjvvnZrpv9+jH5e9bRvzqNVUCVYP0v/HP9sHm8zGlp8i13h1o16CRP91I2jhgAAAAAAAAAAAAAAABAbkxms9ls7yAAAACAnKQmSRun2DuKwgkNk1w97B2F4yMHAAAAAAAAAAAAAAAAAOTGxd4BAAAAAAAAAAAAAAAAAAAAAAAAFBYTIwAAAAAAAAAAAAAAAAAAAAAAgMNiYgQAAAAAAAAAAAAAAAAAAAAAAHBYbvYOAMgPs1lKSrV3FAXj4SqZTEU7htkspSVbJh57cnG3TF0YMQfSOWIuWOK838rodWD08kuO1w9Ysg+QyAHA6BytD5ToByXL9YOOWPZ0lr4fcqR2QBso3Pl3xHIWRmHrxpHagMS4mDEh4wEAAAAAAAAAAADYDhMj4BCSUqXXF9g7ioIZ11vyLGILS0uWNk6xTDz2FBomuXoU7RhGzYF0jpgLljjvtzJ6HRi9/JLj9QOW7AMkcgAwOkfrAyX6Qcly/aAjlj2dJa8FjtYOaAOFO/+OWM7CKEzdOFobkBgXMyZkPAAAAAAAAAAAAADbcbF3AAAAAAAAAAAAAAAAAAAAAAAAAIXFxAgAAAAAAAAAAAAAAAAAAAAAAOCwmBgBAAAAAAAAAAAAAAAAAAAAAAAcFhMjAAAAAAAAAAAAAAAAAAAAAACAw2JiBAAAAAAAAAAAAAAAAAAAAAAAcFhMjAAAAAAAAAAAAAAAAAAAAAAAAA6LiREAAAAAAAAAAAAAAAAAAAAAAMBhudk7AADWExG5ScOnh2ZaVsLDS9V866lD86fVrfXLcnWlG3BmRs8Bo5dfog6MjvMPwOjoB2F0tAHqAOSA0csPAAAAAAAAAAAA4+BbL8AAQps+qVYNOskss85dTNDa3XM1fdlriv7rsIY+9pW9w4MNGD0HjF5+iTowOs4/AKOjH4TR0QaoA5ADRi8/AAAAAAAAAAAAnB8TI2A4k/uaLHasV+aZLXYsa6rr31wdWvTNeN3lnhf17PgGWrXjGz3z8Ecq5+1rx+hsjxwwXg4YvfwSdXA7o/UDnH8At6MfpB80OtqA8doAdZCZ0dqARA4YvfwAAAAAAAAAAABwfkyMcGJLly7VqlWrtHv3bsXGxioxMVEeHh6qXbu2OnXqpNdee00+Pj7Z7puYmKgJEyZo5cqVOnHihFJSUuTn56f77rtPQ4cOVfPmzW1cGsv4JzFa9z71iZp3HGrvUOyqpIeXGtS4S1v3L1TcmUhDfflNDtxg5ByQKL9k7DqgHzD2+QdAPyjRDxodbYA2IBm7DmgDNxg5ByTKDwAAAAAAAAAAAOfjYu8AYD2ffPKJpk+froiICHl4eKhJkyaqUKGC9u/fr48//lgNGzbUvn37sux35MgRBQUFafz48Tp06JCqVKmiwMBAnT17VvPmzVOrVq303Xff2b5AFnBy7zIFNOti7zCKhfgzkZKkMqUq2DkS2yIHbjJqDqQzevkl49YB/cANRj3/AOgH09EPGhdt4AbagHHrgDZwk1FzIJ3Ryw8AAAAAAAAAAADnwsQIJzZw4ECtX79eFy9e1MmTJ7Vz506dOnVKERERaty4sf7++2/16dMny34vvPCCEhISVL9+fR08eFDHjx/Xvn37lJCQoMGDBys1NVXPP/+8zp49a4dSFc35hGMq51fH3mHY3LXkK7pwOVHnL/2tk/EHNOWnl3Q8dq8a3NFK1Xzr2Ts8myIHjJkDRi+/RB3cyoj9AOcfwK3oB+kHjY42YMw2QB3cZMQ2IJEDRi8/AAAAAAAAAAAAnJ+bvQOA9fTr1y/b5UFBQZo5c6ZCQkJ0+PBhHT58WIGBgZKkixcvatOmTZKkCRMmqEGDBhn7eXl56YsvvtBPP/2kxMREbdmyRd26dbN2MSwm6doleZQobe8w7GLumvc0d817mZa1adxDL3f/wk4R2Qc5YNwcMHr5JeognVH7Ac4/nN38DR/rWOweHYvZrYSzJ1W5fA3NezPK3mEVS/SDNzlTP0gbyD/awE3O1Abygzq4wahtQCIHjF5+AAAAAAAAAAAAOD+nnxiRmJio8ePH66efflJMTIx8fX3Vo0cPjRkzRmFhYZo1a5amTp2qIUOG2DtUSZLZbJbJZLL6+6RPhJCkK1euZPz/+vXrMpvNkqSAgIAs+7m5ualGjRpKTExUcnKy1eO0pOgDa1U96EF7h2EXj4QM1n1NeiklLVkn4w9owaZxSrwQIw/3EhnbHDixVW/O7Jhl35TUJKWlpWr1+FRbhmwV5IBxc8Do5Zeog3RG7Qc4/3B2s1a9qdKlKqiuf3Ndvnre3uEUa/SDztkP0gbyjzbgnG0gP6iDG4zaBiRywOjlBwAAAAAAAAAAgPNz6okR+/btU8eOHZWQkCAvLy81bNhQcXFxmjJliiIjI3X27FlJUtOmTa0WQ7t27bR582adPHlSNWvWzHXb/fv3q1+/flq4cKHq1KljtZgkKTw8XNKNX4GoX79+xnIfHx/5+/srNjZW27dvV6NGjTLtd/bsWf3xxx9ycXFR8+bNrRqjpcUfC1frJ8ZlWha+4E3tWvaxOgyaqUZtB2ZaZzabteijUCUc/0VPfLBbPnc0tmW4FuXvU1fN63WQJLVq0FGNa7XR0C/baPKi5/VW3+8lSUEB92rZR5cy7Zd4IU4vTWmprvcUj4lDRUUOGDcHjF5+iTpIZ9R+gPMPZzf335GqUvHGpN5BExvratKlPPYwLvpB5+wHaQP5RxtwzjaQH9TBDUZtAxI5YPTyAwAAAAAAAAAAwPm52DsAa0lMTFSXLl2UkJCgYcOGKT4+Xnv27FFCQoLGjRunFStWaOfOnTKZTGrSpIm9w5Ukffvtt4qIiFBoaKhOnDhh8eOnpaUpPj5ec+fO1YABAyRJY8aMkbe3d6btxowZI5PJpBEjRujbb7/V6dOndfnyZYWHh6tz5866fPmyXnvtNdWuXdviMVqLOS1NZrNZLi6umZbf1XOUKlZrrC3fvaaLZ2Iyrdv782eK/WOzQnqMdugv/rPTqOY96tD8aW2KWKCDUduz3SYp5bpGz+2hxjXbqM/9b9o4QssjBzIzYg7cyujll4xZB/QDNxnx/MO5pT8QjtzRD97kbP0gbSB/aAM3OVsbKAwj1gFtIDMj5sCtjF5+AAAAAAAAAAAAOB+nnRgRFhammJgYDRkyRBMnTlTp0qUz1o0cOVLBwcFKSUlRzZo1VaZMGTtGetOkSZP09NNPKyYmRqGhoYqKirLIcadPny6TySRXV1dVrVpV/fv3V7Vq1bRs2TKFhYVl2b5fv35avHix6tatq4EDB8rPz0/e3t5q06aN4uLiNHfuXE2YMMEisdlKwokd8qvdKstyVzcPPfjcHKVcv6x13zybsfxc3BH98uNb8qsdohadR9gyVJt5qsM7cnFx1ZzV72a7fvKi55WUfE0jes+2bWBWQg5kZbQcuJ3Ryy8Zrw7oBzIz2vkHQD94O/pB46ENZEYbMF4d0AayMloO3M7o5QcAAAAAAAAAAIBzccqJEYcPH9aCBQvk4+Ojjz/+ONttWrRoIUkKDg7OWJY+kaJVq1by9PSUyWSyWEwxMTGKiorK9V90dLRGjRql9u3bKzo6WqGhoYqOji7ye1epUkWtW7dWSEiIqlatKpPJpP379+u///2vLly4kGV7s9msyMhI/f3333JxcVHNmjXVpEkTlSpVSqdOndKMGTN0+PDhIsdlLbF/bFFaakqmZaciflaNJg9nu32lWs3Vsssbij6wRgc2fKW0tFStntFPZrNZDz43J8tfUnQW/j51FBr8hPYeX68DJ7ZmWrd42xT9dni5Rg9YohIepewUYeGRA/njzDmQH0Yvv+TcdUA/kDdnPv8A6Afzg37QudEG8kYbcO46oA3kjzPnQH4YvfwAAAAAAAAAAABwLk45MWL+/PlKS0vTU089JW9v72y3KVmypKTMEyOOHz+uRYsWyc/PT3feeadFY7r33ntVq1atPP/Vrl1bGzZskCRFRUWpb9++RX7vrl27atu2bfr1118VGxuriIgI3XXXXZo/f74eeeSRLNu/8MILGjZsmCpVqqTDhw/r5MmTioiIUGJiokaMGKHw8HDdfffd+vPPP4scm6Ud/XWB/jfxEcUeyfxl7vWrF+RZqmyO+7Xq9o58qgdr23+Ha9Ocl3U6cofu6fWRyletb+2Q7erJ+9+Si8lFc9bc/MuA+45v1DcrXtc7T/8ovwo17RdcIZEDBeOMOVAQRi+/5Jx1QD+Qf854/gHQDxYE/aBzog3kH23AOeuANlAwzpgDBWH08gMAAAAAAAAAAMB5mMxms9neQVhamzZtFB4eriVLlqhr167ZbtOtWzf973//008//aTu3btLktLS0uTicmOuyKhRozR69GgVtXratWunzZs3KygoSB4eHvna58yZM4qKipIkDR48WDNmzChSDNm5ePGiAgIClJiYqLVr16pDhw6SpIiICDVr1kxubm46duyYatSokWXfDh06aP369Xr++ec1bdq0Ar93y5YtlZCQUKB9XN1LqvuHx/K17Y7/faSrFxPVtu+nkqR/EqMVuesnNXv41Vz3+/tUhL5/906lpSarar02euztzTK5FH7u0OK36yo1+Wqh95ckD7eS+mpI/sptCQlnozRkyp3q+8B76tZ6iMWOO/jzukpKKVpdGDUH0tkqFyyZA5Y477eyRR1Yug1Ysg7IAcfrByzZB0jGbgO2vh5akqXbgVEVJAcGTWysq0mXNO/NKOsGlU+WyoGC9IES/WBhOUM/6KxtQOJewChtwN7XfWuNi29XmLpxtDYgMS5mTMi9MAAAAAAAAAAAAArGz89Pu3btKtS+bhaOpVg4deqUJGX7UL8kpaSkKDw8XFLmX4xwKcIXvXlZunSpatasmed2MTExatu2rSSpd+/e+vLLL60ST+nSpdW2bVstWrRIERERGRMjwsPDZTabVbdu3Rzr78EHH9T69eu1c+fOQr13QkKCYmNjC7SPm2epfG9bu2V3LZv0aMaX/yf3LlOtZl3y3M+zVFm5unsqLTVZNZt2KtIX/5IUFx+nlOtXinSMEu75L3dRXUu6ovdmd9PdDR+1+MMf8XFxupZctLowag6ks0UuWDoHLHHeb2XtOrBGG7BkHZADjtcPWLIPkIzdBmx5PbQ0S7cDoyIHCtYHSvSDhUE/aB2W7Ae5FzBGG7BnvltzXHy7wtSNo7UBiXExY0LuhQEAAAAAAAAAAGA7Tjkx4vLly5Kkq1ez/4tkCxYsUGJiokqXLq1atWrZMrRcxcbGKjQ0VCdOnNBjjz2mefPmydXV1Wrvl5KSIklKTU3NWHbx4sV873/t2rVCva+fn1+B93F1L5nvbSv6N5RMJp2JOaiK1Rrp/OnjCq5cO9d9zGaz1n71jNJSklShaqB2/O9D1Q15XOXy2C83VatUtcgvRtjK1gOLdCI+QrGJR7UpYkGW9TOHH1Kl8tULdewqVata5Bcj8suZciCdLXLB0jlgifN+K2vXgTXagCXrgBxwvH7Akn2AZOw2YMvroaVZuh0YFTlQsD5Qoh8sDPpB67BkP8i9gDHagD3z3Zrj4tsVpm4crQ1IjIsZE3IvDAAAAAAAAAAAgIIpzHPm6ZxyYoSfn5/OnTunPXv26O677860Lj4+XiNGjJAkNWnSRCaTyR4hZmv06NE6fvy4unfvrvnz58vNzXqn5+zZs9q8ebMkqWnTphnL69WrJ0k6duyYTp06le2vRqxZs0aSVL9+/UK9d2F+3uR6ivR61u9jcxTQrItO7Fmq0j415FGidJ7bR6yZqpjDm3R3r49Uu0VXzX+7udZ9PVA939pU6Bw5euyYPIt4ClOTpI1TinaM/HqgxdN6oMXTVjn2saPH5OpRtGMYNQfS2SIXLJ0Dljjvt7J2HVijDViyDsgBx+sHLNkHSMZuA7a8HlqapduBUZEDBe8DJfrBgqIftA5L9oPcCxijDdgz3605Lr5dYerG0dqAxLiYMSH3wgAAAAAAAAAAALAdF3sHYA0dOnSQJI0bN05Hjx7NWL5z506FhoYqMTFRUuYJAdbStm1b9ezZU15eXnluO3nyZI0ePVoLFiwo8qSIXbt26d1339Xx48ezrNu7d686duyo8+fPKygoSPfff3/GugcffFCVKlVScnKyevXqlan+rl69qpEjR2r9+vWSpH79+hUpRmuq1fzGl//RB9aoeuMHct32XMIxhf/whioH3KmWXV5XxWqNFNJjlGL/2KKINVNtEzAsjhwAQD8AGMfa3f/Rd+s+1HfrPtT5y3/r8rULGa/X7v6PvcOzG/pB46ANZI82AKOjDQAAAAAAAAAAAAAwEqecGDFy5EhVrFhRf/75pxo1aqSgoCDVrVtXrVq1UkBAgNq3by9JCg4Otnoso0eP1sKFC+Xr65vntiVLltS7774rd3f3Ir/vpUuX9MEHH6hu3bqqXLmyWrZsqZCQEPn7+6t58+basWOH6tWrpyVLlsjV1TVjPy8vL3333Xfy8vLSzp07FRgYqICAAAUHB8vHx0cTJkyQJL300kvq2rVrkeO0Fv/69+p8wjFF7lqsKvXuyXE7c1qa1s4YIHNaqh58bo5cXG7URYvOI1WpVkuF//CGzp+OtFXYsCByAAD9AGAcP++Yqdmr39Hs1e/o/KW/dOnq+YzXP++Yae/w7IZ+0DhoA9mjDcDoaAMAAAAAAAAAAAAAjMQpJ0ZUq1ZNW7du1SOPPKISJUooKipKFSpU0IwZM7RixYqMX0GwxcQIewkODtbkyZPVrVs3lSlTRkePHtXevXuVmpqqDh066IsvvlBERIQCAgKy7NuhQwft379fQ4YMUb169ZSQkKDDhw+rbNmy6tq1q5YvX67PP//cDqXKPxdXN9Vo8tCN/7u45rjdnpWTFH9su+7q+b4q+Afe3N/FVQ8+N1vm1BSt+3qgzGaz1WOGZZEDAOgHAOOY9MImrZ1gzvbfpBc22Ts8u6EfNA7aQPZoAzA62gAAAAAAAAAAAAAAI3GzdwDWEhgYqOXLl2dZfunSJUVFRcnFxUWNGze2Q2S2Ub58eYWFhSksLKxQ+wcEBGjq1KkWjsq2arfoJplMOa4/G3tYvyx6R3517lLzTsOyrK9YrZFCeozS9h/eVMSaqWr6UOHqEvZDDgCgHwBgdPSDMDraAIyONgAAAAAAAAAAAADAKJx2YkRODh48KLPZrHr16qlUqVJZ1i9cuFCSdOjQoUyva9asqZYtW9ouUBRZ3ZBeua6v4B+oId9ey3WbOx99Q3c++oYlwyqSyLgIfbpwkK5cv6jK5Wro9Sf/o3LevnpghEk1/RrrX53GKSSwkyTpiyVh+uXQUp0+d0rTXt2rOv5NM44zfHqoTsRFqO8D76rHva/apzA24Iw5AKBg6AcAGB39IIyONuD48jsOTkq+po++e0KnTh+Sp3tJlfOupLAe0+TvU0eS1HdMTbm7ecrDraQk6cn2b6hd096SnHuMTBsAAAAAAAAAAAAAYBSGmxhx4MABSVJwcHC263v16pXt6/79+2v27NlWjQ3Iy4QFAzT88W9Vx7+pft4xS18tH66RT8yRJH364lZ5lyyXse29TR7T4+1GauiXbbIcZ+LzGzX++wH5es9h09ppRO/Z8qtQ0wIlgD29/tWDOncxQSaTi0qVKK2Xuk5RHf9m9g7LorJ7aOrU6YN685uOquZbX2MHr1F570r6eccsLdr6qaL/OqznOk/M9PDTrFVv6ZdDS+VicpUkPdH+3wpt+oQk6avlI7QpYoHq+jfX6AFL7FBCAABgK1v2L9Rvh1fo0tVzOT5oDTiLLfsXau+x9Xrh0U9znVxgDwUZB3cKGaxWDTrKZDJpSfjn+uTHf2nSC5sy1r/11IJMfzQgHWNk42BcfHNcnNvYd9Ts7oo/ezLjmCcT9mtU/yW6p9GjWrTlUy3d/oVKeHhrxmv77FFEAAAAAAAAAAAAIFtMjLiN2Wy2ZThAvh2P3auSnt4ZD3E80LK/ZiwfpuSUpGy3bxJwn03iunT1vAZNaqzryVflW/YOJadeV8KZE7q/xdMa1usbm8SA/Hnn6R8yHhradmCxJiwYoBmvRdg3KAvL7qGph+58RtV862d6YKNutRZ6u+8P+n7Dx1mO8Xi7ERrY8SNJUuKFWD07IVDN63ZQWS8fDe48QTUqN9L2g0tsVCLboS2DHACAzMJ/X6y2TR6Xq6t7rg9aA84g/PfF6tCin6S8JxfYUkHGwR7uJTJ+QVGSAqvfpYWbJ9oq1Ey4ryq+GBfvy9gut7HvqAGLM7Y78ucuvfnNw7qz/sOSpJ73DVUd/2b68n+v2rJYAAAAAAAAAAAAQJ6YGAE4iPizJ3Uy/oCe+6RpxrLrSVeU+E+s/YKS5F2ynNo37aOSnqXV94F3tPPIas3fMIaHPYqhW/+S6uVrFySZJDnPQzs5PTTVvtlTWbatXfXGNcBkcsmy7tZ6unr9kswyK82cZpWYixPaMsgBAEaS1/1PSmqyDkaFa0Tv2XJzdc/Yz54PWgNFkVvOv9JjWqZ8Ly6TC6SijYMXb5usuxt1zbRs/Pf9ZJZZDe5opWc7jVU5b19LhyyJ+6rijHHxTfkd+/68Y6bub95X7m4e1gobAAAAAAAAAAAAsAjDTYzYsGGDvUMACq1B9RCNHbQ64/Vjo6zzEMe4+f10In6/JCnuzHG9NbOT3FxvfAE+esAS+VWomWn743H71L1NmCTpWMxu1anazCpxoejGze+niMiNkqSPnl0pyXke2rHk5KHF26Zo6fYvlHg+RkN7faPy3pUsGKl9hE29W7GJx7JdN23oXlUqdwdt2cmRAwBwU173P/uOb1TDGvdkmhQhZf+gNeAIcsv5XUfWZJvvUvHI+cKMg/+7foziEo9r/HPrM5Z98sIWVSpfXSmpyfr257c1fkF/jfn/MVFeCjpGlhgnF2eMi2/Ka+x7PfmqNu6br09f3GrNsAEAAAAAAAAAAACLMNzECMBRVakQoL/OR2e8vnztH11LuiyfMv4Wf6/Xn5yb8f9h09ppRO/Z2T7oke5E3D7V8b/xkMexmN26u9GjFo8JlpF+btfsmqOvV76e8SCQszy0Y6nJQ93bhKl7mzBFxkVo7Py+alnvQZXxqmipMO1iysu/5LkNbdm5kQMAjKSok8G2H1yi1o27Z9ovuwetAUeSU85nl+9S8cj5woyDf9w0Udt+/0njB69TCY9SGcsrla8uSXJzdVePe1/VM+Pr5TuOgo6RJe6rijPGxTflNfbdsn+hqvnWU60qQVaNGQAAAAAAAAAAALAEF3sHACB/6vg3lZuLu3YfXStJWrb9S7UN7i13Nw+7xpV4IVYymeRT9saDKScS9quWH1+YF3cPtuyviOMb9c/lM5KyPrST/n9HYo3JQ7WrBsunjL8iIjdZIMLijbYMcgCAM5ny8i9aNDox23+Vyt0hKef7H7PZrF1HVqtVg44Zx0t/0HrMv1ZletAacCTZ5Xx2+S4Vn5wv6Dh44eZPtHHffI0btFbeJctlLL+adFmXrp7PeL1x73yrPvTOfZVjYFx8U05j3593zNTDdz5rjVABAAAAAAAAAAAAi2NiBOBA3ujznWauekP9x9ZRROQmDe48IcdtP1v4nJ78sJr+vhCjN755SP3H1rFKTMdj92Z6oMS7RDkt/eVLq7wXCu/S1fNKvBCX8Tr89yUq41VRpUtVcJqHdiw1eejU6UMZ/49LjNTxuL2qXrmhRWMtjmjLIAcAGElu9z9//LlD1SsHqqSnt6ScH7QGHElOOX97vkvFL+fzOw7++3yMZiwfpktXz2v49FA990lTvTwlRJJ0/uJpDZ8eqsGTmmjQpCDtP7FZI5+Ym+1xLIH7quKJcXFmeY19YxOP62jMLoU2e9L6gQMAAAAAAAAAAAAW4GbvAADkX60qQfrylV352vbVx2ZY5D0nvbAp1/V3Neysuxp2znj9xSs7LfK+sKzL1y7og//00vXkq3Ixuaisl68+eGa5TCZTjg/tDOv1jR0jLpw3+nynCT88oyk/vaCqFevo333mKSrh9yzbrd45W7NXv61LV85p+8El+nHzRH3wzDLV8W+mr1eMVMLZk3J1cZerq5uGdPtcNSoH2qE0tkVbBjkAwEhyu/8J/32x7mnUTdLNB62rVAjQ8OmhkiQPN09NDfvNHmEDhZZTzpf18snId6l45nx+x8G+5app7QRztuuqVAzQ9KF7LRJPXmNkifuq4opxcWZ5jX1/3jlL9wb1lFeJMrYMHwAAAAAAAAAAACg0JkYATqC8d2UNm9ZWAzt+rJDATnluP3x6qE6fjVLjWq1tEB2Kg8rla+jzsB3ZrnOmh3by+9DUQ3cO0EN3Dsh23YcDl1s4KgAAUNzkdv/z66FlmvD8Rkm5P2gNOJKccv5fExtl5LvkWDlf0HFwbhgjGwPj4szyGvs+23GMpUICAAAAAAAAAAAAbIKJEYAT+OG9hAJtP/GWB18AZ+fm6qGLV87ouU+aauzgNSrvXanQx/pq+Qj9cmipGta4x4IRAgCA4uSb4QftHQJgM46c7wUdB+eGMTKcnSXHxYu2fKqVv32timWqWjBCAAAAAAAAAAAAoOiYGAEAcGqNat6j/779p0WONbjzBA3uPMEixwIAAAAAwBYsOS7ued9Q9bxvqEWOBQAAAAAAAAAAAFiSi70DAAAAAAAAAAAAAAAAAAAAAAAAKCwmRgAAAAAAAAAAAAAAAAAAAAAAAIdlMpvNZnsHAeTFbJaSUu0dRcF4uEomU9GOYTZLacmWiceeXNwtUxdGzIF0jpgLljjvtzJ6HRi9/JLj9QOW7AMkY+dAapK0cUrRj2MPoWGSq4e9o3B8jpj/6SzVDhytD5ToByX6Qcmy/aCjtQPaQOHagCOWszAKWzeO1AYkxsWMCS3bDwIAAAAAAAAAAAC5cbN3AEB+mEySpwGz1WTiYcp0Rs2BdOQCdWD08kv0A+QAjIz8pw+UyAPQDozSBoxSzsKgDRg7N4xefgAAAAAAAAAAACAvLvYOAAAAAAAAAAAAAAAAAAAAAAAAoLAM/HfmAAAAAAAwlojITRo+PTTH9S4urlo9LsWGEQEAAAAAAAAAAAAAABQdEyMAAAAAADCY0KZPqlWDTlmWu7jww5IAAAAAAAAAAAAAAMDxMDECAAAAAACDqevfXB1a9LXKsc1ms64lXVZJT2+rHB8AAAAAAAAAAAAAAOB2TIwAAAAAAADZ2rp/kZaET1Vk3D6lpCbJt9wdalnvIQ3uPFHubh6KiNyk4dNDNfzxb3Ut6bKWbv9C8Wci9UT7N9TvwVH2Dh8AAAAAAAAAAAAAABgEEyMAAAAAADCYa8lXdOFyYpblbq4e8ipRRpI0a9Vbmr9hjGpUbqie9w5VhTJVFHcmUtsOLFL/h96Xu5tHxn4/bf1MF6+cUceQQapQ2k++5e6wWVkAAAAAAAAAAAAAAACYGAEAAAAAgMHMXfOe5q55L8vykMBH9OHA5fojeofmbxijprVD9dGzK+XhXiJjm391Gptlv7/PR2vmyD9U3ruSVeMGAAAAAAAAAAAAAADIDhMjAAAAAAAwmEdCBuu+Jr2yLC/r7StJWr/3O0nSwE4fZ5oUIUkmkynLfh1a9GNSBAAAAAAAAAAAAAAAsBsmRgAAAAAAYDD+PnXVvF6HHNfHJh6TyWRS7SrB+TpeNd96lgoNAAAAAAAAAAAAAACgwFzsHQAAAAAAACh+TDJJ2fw6RHY83UtZORoAAAAAAAAAAAAAAICcMTECAAAAAABkUs2nntLMaToRF2HvUAAAAAAAAAAAAAAAAPLExAgAAAAAAJBJ+2Z9JEmzVr2p5JSkLOvNZrOtQwIAAAAAAAAAAAAAAMiRm70DAAAAAAAAtnUsdo/W7Z6X7brWjbupQfVW6h36uhZsHKcXP2uutsG9VaGMn+LPntTW/Qv1edgOeZcsZ9ugAQAAAAAAAAAAAAAAcsDECAAAAAAADGbjvvnauG9+tutmv35M/p519K9OYxVQJVj/C/9cP2weL3NamnzL3aFWDTrJ072UjSMGAAAAAAAAAAAAAADImclsNpvtHQQAAACQk9QkaeMUe0dROKFhkquHvaMA4OjoBwEAAAAAAAAAAAAAAHLnYu8AAAAAAAAAAAAAAAAAAAAAAAAACouJEQAAAAAAAAAAAAAAAAAAAAAAwGExMQIAAAAAAAAAAAAAAAAAAAAAADgsN3sHAOSH2Swlpdo7ioLxcJVMpqIdw2yW0pItE489ubhbpi6MmAPpHDEXLHHeb2X0OjB6+SXH6wcs2QdI5AAAAI52LTT6vZBkufshRzv3t7L0mMCoOSA5Zh4U5vw7YjkLo7B1QxuwzLFsxeifDTEmBgAAAAAAAADAtpgYAYeQlCq9vsDeURTMuN6SZxFbWFqytHGKZeKxp9AwydWjaMcwag6kc8RcsMR5v5XR68Do5Zccrx+wZB8gkQMAADjatdDo90KS5e6HHO3c38qSeWDkHJAcMw8Kc/4dsZyFUZi6oQ04Xm4Y/bMhxsQAAAAAAAAAANiWi70DAAAAAAAAAAAAAAAAAAAAAAAAKCwmRgAAAAAAAAAAAAAAAAAAAAAAAIfFxAgAAAAAAAAAAAAAAAAAAAAAAOCwmBgBAAAAAAAAAAAAAAAAAAAAAAAcFhMjAAAAAAAAAAAAAAAAAAAAAACAw2JiBAAAAAAAAAAAAAAAAAAAAAAAcFhMjAAAAAAAAAAAAAAAAAAAAAAAAA7Lzd4BALCeiMhNGj49NNOyEh5equZbTx2aP61urV+WqyvdgDMzeg4YvfwSdWB0nH8AgNFxLQRg9H7A6OUHOWD08gMAAAAAAAAAYCR84g8YQGjTJ9WqQSeZZda5iwlau3uupi97TdF/HdbQx76yd3iwAaPngNHLL1EHRsf5BwAYHddCAEbvB4xefpADRi8/AAAAAAAAAABGwMQIGM7kviaLHeuVeWaLHcua6vo3V4cWfTNed7nnRT07voFW7fhGzzz8kcp5+9oxOtsjB4yXA0Yvv0Qd3M5o/QDnHwBgdFwLMzPavRCyMmIOGL0fMHr5b0cbMF4OGL38AAAAAAAAAAAYARMjnNjSpUu1atUq7d69W7GxsUpMTJSHh4dq166tTp066bXXXpOPj0+2+/7999+aMGGCli1bpqioKJUoUUJBQUF6/vnn1adPHxuXxHL+SYzWvU99ouYdh9o7FLsq6eGlBjXu0tb9CxV3JtJQX/yRAzcYOQckyi8Zuw7oB4x9/gEAkIx9LeReCOTADUbuByRjl582cIORc0Ci/AAAAAAAAAAAOCMmRjixTz75RJs3b5aHh4eqVq2qJk2a6K+//tL+/fsVERGhb775RmvWrFHTpk0z7Xf48GF16NBBcXFxcnd3V+PGjXXt2jVt27ZNW7du1fr16zVz5kz7FKqITu5dpoBmXewdRrEQfyZSklSmVAU7R2Jb5MBNRs2BdEYvv2TcOqAfuMGo5x8AgHRGvRZyLwRy4Caj9gPpjFp+2sBNRs2BdEYvPwAAAAAAAAAAzoaJEU5s4MCBevfdd9WmTRt5eHhkLD9w4ID69Omj33//XX369NGhQ4cy1qWmpqpnz56Ki4tTmzZt9OOPP8rPzy9jv86dO2vWrFm66667NGjQIJuXqajOJxxT8AMv2TsMm7uWfEUXLifKbDbr3MUELftluo7H7lWDO1qpmm89e4dnU+SAMXPA6OWXqINbGbEf4PwDAIyOa+FNRrwXQmZGzQGj9wNGL/+taAPGzAGjlx8AAAAAAAAAACNgYoQT69evX7bLg4KCNHPmTIWEhOjw4cM6fPiwAgMDJUkrV67U4cOH5enpqf/85z8ZkyLS9/viiy/UpUsXjRo1SgMHDpSrq6tNymIJSdcuyaNEaXuHYRdz17ynuWvey7SsTeMeern7F3aKyD7IAePmgNHLL1EH6YzaD3D+AcD5paWlafG2yVrx6wwlnItSOS9f3Rf8uPo/9L5KenjZOzy741p4gzPfC83f8LGOxe7RsZjdSjh7UpXL19C8N6PsHVax48w5kBej9wNGL3862oBxc8Do5QcAAAAAAAAAwAicfmJEYmKixo8fr59++kkxMTHy9fVVjx49NGbMGIWFhWnWrFmaOnWqhgwZYu9QJUlms1kmk8nq75M+EUKSrly5kvH/bdu2SZJatmypmjVrZtmvc+fO8vLyUlxcnLZu3ap27dpZO1SLiT6wVtWDHrR3GHbxSMhg3dekl1LSknUy/oAWbBqnxAsx8nAvkbHNgRNb9ebMjln2TUlNUlpaqlaPT7VlyFZBDhg3B4xefok6SGfUfoDzDwDOb9qyoVqybYpaN+6ux9oOU/Tpw1qybYoiY/dq3OB1cnFxsXeIdsW18AZnvheatepNlS5VQXX9m+vy1fP2DqfYcuYcyIvR+wGjlz8dbcC4OWD08gMAAAAAAAAAYAROPTFi37596tixoxISEuTl5aWGDRsqLi5OU6ZMUWRkpM6ePStJatq0qdViaNeunTZv3qyTJ09mO9HgVvv371e/fv20cOFC1alTx2oxSVJ4eLgkycvLS/Xr189Ynl4n/v7+Oe7r7++vo0ePavv27Q41MSL+WLhaPzEu07LwBW9q17KP1WHQTDVqOzDTOrPZrEUfhSrh+C964oPd8rmjsS3DtSh/n7pqXq+DJKlVg45qXKuNhn7ZRpMXPa+3+n4vSQoKuFfLPrqUab/EC3F6aUpLdb2neEwcKipywLg5YPTyS9RBOqP2A5x/AHBuUQkH9b/wqWrTuIfe678oY7lfhVr64n9h2hTxvdo362PHCO2Pa+ENznwvNPffkapSMUCSNGhiY11NupTHHsbkzDmQF6P3A0YvfzragHFzwOjlBwAAAAAAAADACJz2T0YmJiaqS5cuSkhI0LBhwxQfH689e/YoISFB48aN04oVK7Rz506ZTCY1adLE3uFKkr799ltFREQoNDRUJ06csPjx09LSFB8fr7lz52rAgAGSpDFjxsjb2ztjm3LlykmSYmNjczxO+rojR45YPEZrMaelyWw2y8XFNdPyu3qOUsVqjbXlu9d08UxMpnV7f/5MsX9sVkiP0Q79pWd2GtW8Rx2aP61NEQt0MGp7ttskpVzX6Lk91LhmG/W5/00bR2h55EBmRsyBWxm9/JIx64B+4CYjnn8AcGYb982X2WxWj3tfzbS8U8gglXAvpXV75tknsGLMiNdCZ78XSp8UgZw5ew4UlBH7gVsZsfy0gcyMmAO3Mnr5AQAAAAAAAABwRk47MSIsLEwxMTEaMmSIJk6cqNKlS2esGzlypIKDg5WSkqKaNWuqTJkydoz0pkmTJunpp59WTEyMQkNDFRUVZZHjTp8+XSaTSa6urqpatar69++vatWqadmyZQoLC8u07Z133ilJ2rVrl06dOpXlWCtXrtTly5clSefOnbNIfLaQcGKH/Gq3yrLc1c1DDz43RynXL2vdN89mLD8Xd0S//PiW/GqHqEXnEbYM1Wae6vCOXFxcNWf1u9mun7zoeSUlX9OI3rNtG5iVkANZGS0Hbmf08kvGqwP6gcyMdv4BwJkd+XOnXEwuql8983XOw72EAqo21dE/d9opsuLNaNdC7oVADmRltH7gdkYrP20gK6PlwO2MXn4AAAAAAAAAAJyNU06MOHz4sBYsWCAfHx99/PHH2W7TokULSVJwcHDGsoULF6pnz56qUaOGSpUqpQYNGuitt97SpUuXsj1GQcTExCgqKirXf9HR0Ro1apTat2+v6OhohYaGKjo6usjvXaVKFbVu3VohISGqWrWqTCaT9u/fr//+97+6cOFCpm27du2qatWq6fr163riiSf0559/ZqzbuXOnnn/++YzXV65cKXJs1hD7xxalpaZkWnYq4mfVaPJwtttXqtVcLbu8oegDa3Rgw1dKS0vV6hn9ZDab9eBzc7L8FTln4e9TR6HBT2jv8fU6cGJrpnWLt03Rb4eXa/SAJSrhUcpOERYeOZA/zpwD+WH08kvOXQf0A3lz5vMPAEZz5p84lfHykYebZ5Z1PmX9deFyopJTkuwQWfHmzNdC7oVADuSPM/cD+eHM5acN5I8z50B+GL38AAAAAAAAAAA4G6ecGDF//nylpaXpqaeekre3d7bblCxZUlLmiRETJ06Uq6urxowZo1WrVumFF17QtGnT9PDDDystLa1IMd17772qVatWnv9q166tDRs2SJKioqLUt2/fIr2vdGOyw7Zt2/Trr78qNjZWERERuuuuuzR//nw98sgjmbb19PTUDz/8oLJly+rXX39VrVq1FBgYqFq1aqlVq1a6cuWKevToIUmZfoWjuDj66wL9b+Ijij2S+Yus61cvyLNU2Rz3a9XtHflUD9a2/w7Xpjkv63TkDt3T6yOVr1rf2iHb1ZP3vyUXk4vmrLn5V9H2Hd+ob1a8rnee/lF+FWraL7hCIgcKxhlzoCCMXn7JOeuAfiD/nPH8A4ARXU+6IvdsJkVIkodbiRvbJBfPie325ozXQu6FQA4UjDP2AwXhjOWnDRSMM+ZAQRi9/AAAAAAAAAAAOBM3ewdgDekTC0JDQ3PcJiYmRlLmiRHLli2Tr69vxuu2bdvK19dXTz31lLZt26b77ruv0DEFBQXJw8MjX9ueOXNGUVFRkqTAwMBCv2dusaxYsUIBAQEKDw/XunXr1KFDh4z1d999t/bu3auxY8dq9erVOnHihMqXL68BAwbo/fff15gxYyRJfn5+hXr/li1bKiEhoUD7uLqXVPcPj+W5Xb27euv86eM6sWep7mh44/z/kxitMj41cj++m7sefG6Ovn/3Th1YP01V67VRs4dfLVCMWWKpW1epyVeLdAwPt5L6akje5c5JcO12WjvBnOP6GpUDtXp8asbrhLNR+nDe4xrUeYKCa7cr9Pverm69ukpKKVpdGDUH0hU2F+yZA5Y477cqTB3Yuw1Ysg7IAcfrByzZB0jGbgNFvR7ak6XbAQBjyqsf9PQopauX/sp2XVLKtRvbuNvnLx3b+36IeyHnGBNxL3CDkXNAMs6YyNL5bu8xQU4KUze0AWO0gdwY/V4AAAAAAAAAAAAj8PPz065duwq1r1NOjDh16pQkqUaN7L/sSklJUXh4uKTMEyNunRSRrmXLlpKk2NjYIsW0dOlS1axZM8/tYmJi1LZtW0lS79699eWXXxbpfXNSunRptW3bVosWLVJERESmiRGSVKtWLc2YMSPbfQ8ePCjpZt0UVEJCQoHr080z/w/x1G7ZXcsmPaq2fT+VJJ3cu0y1mnXJcz/PUmXl6u6ptNRk1WzaSSaXov2gSlx8nFKuF+2vspaw4cNL15Ku6L3Z3XR3w0fVrfUQix47Pi5O14r4F2qNmgPpbJELls4BS5z3W1m7DqzRBixZB+SA4/UDluwDJGO3AVteDy3N0u0AgDHl1Q9WLFNV0acPKSnlujxu++WIxAuxKuvlI3e3/E3UtzRHuh/iXqj4jom4F7jByDkgGWdMZM98t+ZnQ7crTN3QBozRBnJj9HsBAAAAAAAAAACQO6ecGHH58mVJ0tWr2f81pgULFigxMVGlS5dWrVq1cj3Wxo0bJVnnlxtuFxsbq9DQUJ04cUKPPfaY5s2bJ1dXV6u9X0pKiiQpNTU1jy1vSkxM1C+//CI3Nzd16tSpUO9bmF+acHUvme9tK/o3lEwmnYk5qIrVGun86eMKrlw7133MZrPWfvWM0lKSVKFqoHb870PVDXlc5fLYLzdVq1S1yC9G2MrWA4t0Ij5CsYlHtSliQZb1M4cfUqXy1Qt17CpVq1rkFyPyy5lyIJ0tcsHSOWCJ834ra9eBNdqAJeuAHHC8fsCSfYBk7DZgy+uhpVm6HQAwprz6wfp33KndR9foSPQOBQXcm7E8KfmaTsTtU1BA4X/9sKgc6X6Ie6HiOybiXuAGI+eAZJwxkT3z3ZqfDd2uMHVDGzBGG8iN0e8FAAAAAAAAAAAwgsI8Z57OKSdG+Pn56dy5c9qzZ4/uvvvuTOvi4+M1YsQISVKTJk1kMplyPE5sbKzeeecdPfzww2ratKk1Q5YkjR49WsePH1f37t01f/58ublZ7/ScPXtWmzdvlqQCle3tt99WSkqKnnrqKVWpUqVQ712Ynze5niK9nvW7qBwFNOuiE3uWqrRPDXmUKJ3n9hFrpirm8Cbd3esj1W7RVfPfbq51Xw9Uz7c25ZojuTl67Jg8i3gKU5OkjVOKdoz8eqDF03qgxdNWOfaxo8fkWsQ/UGvUHEhni1ywdA5Y4rzfytp1YI02YMk6IAccrx+wZB8gGbsN2PJ6aGmWbgcAjCmvfrBdcG/N3zBGP239LNPEiJW/fa1ryVfUvtlTNogye450P8S9UPEdE3EvcIORc0AyzpjInvluzc+GbleYuqENGKMN5Mbo9wIAAAAAAAAAACB3Rfst8GKqQ4cOkqRx48bp6NGjGct37typ0NBQJSYmSsp9QsClS5fUtWtXeXh4aNasWYWOpW3bturZs6e8vLzy3Hby5MkaPXq0FixYUORJEbt27dK7776r48ePZ1m3d+9edezYUefPn1dQUJDuv//+TOtXrlyp8PDwTMvOnz+vV199VTNmzJCvr68mTZpUpPisrVbzG198Rh9Yo+qNH8h123MJxxT+wxuqHHCnWnZ5XRWrNVJIj1GK/WOLItZMtU3AsDhyAAD9AADAKGpVCdKj97ykbb//pFFzemjlb99o+rJhmr7sNTUJaKv2zfrYO0TYgdHuhdbu/o++W/ehvlv3oc5f/luXr13IeL1293/sHZ5dGC0HgNvRBgAAAAAAAAAAAIzFKSdGjBw5UhUrVtSff/6pRo0aKSgoSHXr1lWrVq0UEBCg9u3bS5KCg4Oz3f/q1avq0qWLTp48qTVr1hT6lxGkG78CsXDhQvn6+ua5bcmSJfXuu+/K3d290O+X7tKlS/rggw9Ut25dVa5cWS1btlRISIj8/f3VvHlz7dixQ/Xq1dOSJUvk6uqaad81a9aoTZs2Klu2rIKDgxUcHKzKlStr8uTJ8vf31/r161W5cuUix2hN/vXv1fmEY4rctVhV6t2T43bmtDStnTFA5rRUPfjcHLm43KiLFp1HqlKtlgr/4Q2dPx1pq7BhQeQAAPoBAICRvPDoZxrceaJOnT6ozxe/pE37vle31i/rw4HL5eLilEN/5MFo90I/75ip2avf0ezV7+j8pb906er5jNc/75hp7/Dswmg5ANyONgAAAAAAAAAAAGAsTvl0RLVq1bR161Y98sgjKlGihKKiolShQgXNmDFDK1asyPgViewmRiQnJ+uxxx7Trl27tGrVKjVs2NDW4VtEcHCwJk+erG7duqlMmTI6evSo9u7dq9TUVHXo0EFffPGFIiIiFBAQkGXfbt266YknnpCPj4+OHTumkydPqmHDhnr//fd1+PBhBQUF2aFEBePi6qYaTR668X8X1xy327NykuKPbdddPd9XBf/Am/u7uOrB52bLnJqidV8PlNlstnrMsCxyAAD9AADASFxdXNWr7TB9O/KIVo69ru/fidXzj36ikp7e9g4NdmK0e6FJL2zS2gnmbP9NemGTvcOzC6PlAHA72gAAAAAAAAAAAICxuNk7AGsJDAzU8uXLsyy/dOmSoqKi5OLiosaNG2dal5aWpqeeekrr16/XypUr1apVK1uFa3Hly5dXWFiYwsLCCrxvu3bt1K5dO8sHZWO1W3STTKYc15+NPaxfFr0jvzp3qXmnYVnWV6zWSCE9Rmn7D28qYs1UNX2o4HUJ+yIHANAPAAAAI+NeCOQAjI42AAAAAAAAAAAAYBxOOzEiJwcPHpTZbFa9evVUqlSpTOteeukl/fjjj/r3v/+tUqVK6ddff81YV7t2bfn6+to6XBRB3ZBeua6v4B+oId9ey3WbOx99Q3c++oYlw4INkQMA6AcAAICRcS8EcgBGRxsAAAAAAAAAAAAwDsNNjDhw4IAkKTg4OMu6VatWSZLGjh2rsWPHZlr37bffasCAAVaPD8hNZFyEPl04SFeuX1TlcjX0+pP/UTlvXz0wwqSafo31r07jFBLYSUnJ1/TRd0/o1OlD8nQvqXLelRTWY5r8fepIkoZPD9WJuAj1feBd9bj3VfsWCkCxtGX/Qv12eIUuXT2XY18CAAAAAM5gy/6F2ntsvV549NNcP0+xB0t9FpSUcl0zlg3TrqOr5eFWQrWrBOvffeZJ4nMiAAAAAAAAAAAAOAcmRtwiKirKxtEABTNhwQANf/xb1fFvqp93zNJXy4dr5BNzJEmfvrhV3iXLZWzbKWSwWjXoKJPJpCXhn+uTH/+lSS9skiRNfH6jxn8/IF/vOWxaO43oPVt+FWpatjCwude/elDnLibIZHJRqRKl9VLXKarj38zeYVlUdg+MnDp9UG9+01HVfOtr7OA1Ku9dST/vmKVFWz9V9F+H9Vznidk++HHq9GG9NLmFOoUM1otdP5MkLdryqZZu/0IlPLw147V9Ni2brYX/vlhtmzwuV1f3HPsSAAAAAHAG4b8vVocW/STl/nmKPVjqs6CZK/8tk8mk2SOPymQy6ew/CRn78TmRcfDZ0M3Phmateku/HFoqF5OrJOmJ9v9WaNMnJEkxfx/TZ4sG6+KVc0pOuaZWgY9o8CMT5OLiYqjPhgAAAAAAAAAAcDRMjAAcxPHYvSrp6a06/k0lSQ+07K8Zy4cpOSUpy7Ye7iUUEtgp43Vg9bu0cPNEq8R16ep5DZrUWNeTr8q37B1KTr2uhDMndH+LpzWs1zdWeU8UzjtP/5DxwMS2A4s1YcEAzXgtwr5BWVh2D4w8dOczquZbP9OX1XWrtdDbfX/Q9xs+zvY4KanJ+mzRYLVu3D3T8p73DVUd/2b68n+vWrEU1pdXu01JTdbBqHCN6D1bbq7uGftZsy+B/dGfAwCMjOsg4Nxya+Ov9JiWafxjq89T8sNSnwVdTbqsn3fM1H/fjpHJZJIkVSjjZ7W46VOLLz4b2pex3ePtRmhgx48kSYkXYvXshEA1r9tBZb189PWKEWrduLu6twlTUvI1vTTlTu2sc79CAjs5zWdDAAAAAAAAAAA4I8NNjNiwYYO9QwAKJf7sSZ2MP6DnPmmasex60hUl/hOb576Lt03W3Y26WiUu75Ll1L5pH5X0LK2+D7yjnUdWa/6GMXzRXQzd+lckL1+7IOnGwxDO8sBCTg+MtG/2VJZta1e9MTnOZHLJ9ljz1r6v+5r00sUrZ3Xp6nlrhWw3ebXbfcc3qmGNezJNipCs25fA/ujPAQBGxnUQcG65tfFdR9ZkO/6R7D8GstRnQfGJkSpdqoLmbxijPcfWydO9pJ5+YJSa173fKnHTpxZffDZ00611cfX6JZllVpo5TZJkkkmXr16QJF1PvqrU1GRVLFPF6vEDAAAAAAAAAICiMdzECMCRNageorGDVme8fmyUb577/Hf9GMUlHtf459bn+33Gze+nE/H7JUlxZ47rrZmd5ObqIUkaPWCJ/CrUzLT98bh96t4mTJJ0LGa36lRtlu/3gm2Nm99PEZEbJUkfPbtSkvM8sFCUB0ZudTj6Nx069YvGDV6r/6wdbeEobSNs6t2KTTyW7bppQ/eqUrk7cm232w8uyfJrGYXpS1C8FDUvAABwZFwHAeTUxrMb/0jFZwxkic+CUtNSdPrcKdWo1FD/6jRWx2P36vWvHtA3ww+qfOnKeR6voJ8TSXxWVJzx2dBNi7dN0dLtXyjxfIyG9vpG5b0rSZJe6PqZ3pnVRct+naZLV87pqQ7vqI4/OQwAAAAAAAAAQHHHxAjAQVSpEKC/zkdnvL587R9dS7osnzL+Oe7z46aJ2vb7Txo/eJ1KeJTK93u9/uTcjP8Pm9ZOI3rPzvZL7nQn4vZlfDl4LGa37m70aL7fC7aVfm7X7Jqjr1e+rjH//wW4szywUJgHRm51LemKpv70ot7pt1Amk8nS4dnMlJd/yXObnNqt2WzWriOrNeiR8RnbFrYvQfFSlLwAAMDRcR0EkF0bz278IxWfMZClPguqVL66XEwuat/8xl/Nr+PfTH4Vaulk/IF8TYwo6OdEEn1qccZnQzd1bxOm7m3CFBkXobHz+6plvQdVxquilm7/UqHNntST7d/QuUt/acT0UNW/4061qPeALYoAAAAAAAAAAAAKycXeAQDInzr+TeXm4q7dR9dKkpZt/1Jtg3vL3c0j2+0Xbv5EG/fN17hBazP9NLylJV6IlUwm+ZS98aX8iYT9quUXZLX3g2U82LK/Io5v1D+Xz0jK+sCCI/4VvMI8MHK7+DOR+ut8tEZMD1XfMTX109bPtHrnLI3/vr81Qrab3NrtH3/uUPXKgSrp6S3Jdn0J7I/+HABgZFwHAeeWUxu/ffwjFa8xkKU+Cyrr5aOmde7XriM3HhaPP3tSCWdPqnrlQKvETZ/qGPhs6KbaVYPlU8ZfEZGbJElLt3+hB1rc+CyovHcltWrQKWMdAAAAAAAAAAAovpgYATiQN/p8p5mr3lD/sXUUEblJgztPyHa7v8/HaMbyYbp09byGTw/Vc5801ctTQqwS0/HYvZn+gpx3iXJa+suXVnkvFN6lq+eVeCEu43X470tUxquiSpeq4DQPLBT0gZHs1KoSpIWj/ta8N6M0780o9bj3VT1050CNfGKOtcK2i9zabfjvi3VPo26SbNuXwP7ozwEARsZ1EHBuObXxW8c/UvEcA1nqs6BXe07Xj5snaNCkII2a3U2v9pyR8TmApdGnFk98NpTZqdOHMv4flxip43F7Vb1yQ0k3JljsOvKzJOlq0mXti9yomn6NbVACAAAAAAAAAABQFG72DgBA/tWqEqQvX9mV53a+5app7QSzRd5z0gubcl1/V8POuqth54zXX7yy0yLvC8u6fO2CPvhPL11PvioXk4vKevnqg2eWy2Qy5fjAwrBe39gx4sJ5o893mvDDM5ry0wuqWrGO/t1nnqISfs+y3eqdszV79du6dOWcth9coh83T9QHzyxzyL+GWBi5tdtfDy3ThOc3SrJsX4Lij/4cAGBkXAcB55ZTG//XxEYZ4x+peI6BLPVZUJWKAZp4S1kLK6/PiST61OKKz4Yy+3rFSCWcPSlXF3e5urppSLfPVeP/f0Vl5BNzNHXxEC3eNlnJqUm6u+GjCm36hK2LAgAAAAAAAAAACoiJEYATKO9dWcOmtdXAjh8rJLBTntsPnx6q02ej1LhWaxtEh+Kgcvka+jxsR7brnOmBhfw+MPLQnQP00J0D8tyu34Ojih6Ug/lm+EF7hwAAAAAANuHI45+CfhaUGz4nMgY+G8rsw4HLc1xXx7+ZJg8Jt2RYAAAAAAAAAADABpgYATiBH95LKND2lvgLgYCjcHP10MUrZ/TcJ001dvAalfeuVOhjLdryqVb+9rUqlqlqwQgBAAAAACiYgn4WlBs+J4Kz47MhAAAAAAAAAACMgYkRAACn1qjmPfrv239a5Fg97xuqnvcNtcixAAAAAAAAYH18NgQAAAAAAAAAgDG42DsAAAAAAAAAAAAAAAAAAAAAAACAwmJiBAAAAAAAAAAAAAAAAAAAAAAAcFgms9lstncQQF7MZikp1d5RFIyHq2QyFe0YZrOUlmyZeOzJxd0ydWHEHEjniLlgifN+K6PXgdHLLzleP2DJPkAydg6kJkkbpxT9OPYQGia5etg7CgCOzhGvAemMfD9k9HshyXL3Q9wL3GDkHJAcrw+QCtcPOGI5C6OwdUMbsMyxbMXonw1ZuvwAAAAAAAAAACB3bvYOAMgPk0nyNGC2mkw8TJnOqDmQjlygDoxefol+gBwAAOPiGnCD0evB6PdCIAeM0gcYpZyFQRsgN6gDAAAAAAAAAACQGwN/lQQAAACjiYjcpOHTQ3Nc7+LiqtXjUmwYEQAAsCXuBQAAAAAAAAAAAADAOTExAgAAAIYT2vRJtWrQKctyFxcXO0QDAABsjXsBAAAAAAAAAAAAAHAuTIwAAACA4dT1b64OLfpa5dhms1nXki6rpKe3VY4PAACKjnsBAAAAAAAAAAAAAHAuTIwAAAAAcrB1/yItCZ+qyLh9SklNkm+5O9Sy3kMa3Hmi3N08FBG5ScOnh2r449/qWtJlLd3+heLPROqJ9m+o34Oj7B0+AAAoIu4FAAAAAAAAAAAAAMAxMDECAAAAhnMt+YouXE7MstzN1UNeJcpIkmatekvzN4xRjcoN1fPeoapQporizkRq24FF6v/Q+3J388jY76etn+nilTPqGDJIFUr7ybfcHTYrCwAAKDjuBQAAAAAAAAAAAADAuTAxAgAAAIYzd817mrvmvSzLQwIf0YcDl+uP6B2av2GMmtYO1UfPrpSHe4mMbf7VaWyW/f4+H62ZI/9Qee9KVo0bAABYBvcCAAAAAAAAAAAAAOBcmBgBAAAAw3kkZLDua9Iry/Ky3r6SpPV7v5MkDez0caYHISXJZDJl2a9Di348CAkAgAPhXgAAAAAAAAAAAAAAnAsTIwAAAGA4/j511bxehxzXxyYek8lkUu0qwfk6XjXfepYKDQAA2AD3AgAAAAAAAAAAAADgXFzsHQAAAABQHJlkkrL5i9DZ8XQvZeVoAACArXEvAAAAAAAAAAAAAACOg4kRAAAAwG2q+dRTmjlNJ+Ii7B0KAACwA+4FAAAAAAAAAAAAAMCxMDECAAAAuE37Zn0kSbNWvanklKQs681ms61DAgAANsS9AAAAAAAAAAAAAAA4Fjd7BwAAAADY2rHYPVq3e16261o37qYG1Vupd+jrWrBxnF78rLnaBvdWhTJ+ij97Ulv3L9TnYTvkXbKcbYMGAAAWw70AAAAAAAAAAAAAADgXJkYAAADAcDbum6+N++Znu27268fk71lH/+o0VgFVgvW/8M/1w+bxMqelybfcHWrVoJM83UvZOGIAAGBJ3AsAAAAAAAAAAAAAgHMxmc1ms72DAAAAAHKSmiRtnGLvKAonNExy9bB3FAAAODbuBQAAAAAAAAAAAAAAeXGxdwAAAAAAAAAAAAAAAAAAAAAAAACFxcQIAAAAAAAAAAAAAAAAAAAAAADgsJgYAQAAgP9j776jo6rWPo7/JpVeQ0cIvZPQsVCCgIKAggVFmgXQK3JRBC/Y4FpDU8ACVvByL0ZBkaJSpIMKCAREFEIMMYGgoRMIafP+kTeBkD6Zkpn9/azFWmROmWfv8+yTc/Y+OwcAAAAAAAAAAAAAAAAAALfl4+oAgIKwWqWkVFdHUTh+3pLFUrR9WK1SWrJ94nElL1/71IWJOZDBHXPBHsf9WqbXgenll9zvPGDPc4BEDgAAAJjO9OtBd7sfkOx3T+COxz4D98W0AZPvi205/u5WxqIobP3QBtwzP/g9QN8YAAAAAAAA4ExMjIBbSEqVng1zdRSFEzpY8i9iC0tLljbOtU88rhQyTvL2K9o+TM2BDO6YC/Y47tcyvQ5ML7/kfucBe54DJHIAAADAdKZfD7rb/YBkv3sCdzz2Gbgvpg2YfF9sy/F3tzIWRWHrhzbgnvnB7wH6xgAAAAAAAABn8nJ1AAAAAAAAAAAAAAAAAAAAAAAAALZiYgQAAAAAAAAAAAAAAAAAAAAAAHBbTIwAAAAAAAAAAAAAAAAAAAAAAABui4kRAAAAAAAAAAAAAAAAAAAAAADAbTExAgAAAAAAAAAAAAAAAAAAAAAAuC0mRgAAAAAAAAAAAAAAAAAAAAAAALfFxAgAAAAAAAAAAAAAAAAAAAAAAOC2fFwdAADHCT+6Sc/MD8nyWQm/0qpdpbF6th2mu25+Ut7enAY8mek5YHr5JerAdBx/AAAAs3E9CNPRBmB6DphefpADEnUAAAAAAAAAmISePsAAIcEPqGPTvrLKqjMX4rTu5081f+XTiv7rkJ66531XhwcnMD0HTC+/RB2YjuMPAABgNq4HYTraAEzPAdPLD3JAog4AAAAAAAAAEzAxAjBAo1pt1bPd0Myf+9/0Dz0yvam+3fmhHrr9VVUoU8WF0cEZTM8B08svUQem4/gDAACYjetBmI42ANNzwPTygxyQqAMAAAAAAADABEyMgHHmDLXYbV//XGy1276cqaRfaTWt21lb9y/V8VNHjevwJwfIAdPLL1EHpp8HTD/+AAAApjP9etD0+wHQBmgD5IDp5ZdoB+QAdQAAAAAAAAB4IiZGGOaDDz7Q6NGjJUndunXTpk2bcl137dq1mj17tnbt2qXLly+rQYMGGjJkiCZMmCA/Pz8nRWxf5+Oj1eXB2Wrb5ylXh+JyJ04dlSSVK1XJxZE4Fzlwlak5kMH08kvm1gHngXSmHn8AAACkM/V6kPsBZKAN0AZMzYEMJpefdpDO5BzIQB0AAAAAAAAAnoWJEQaJi4vTpEmTCrTurFmz9Mwzz0iS6tatqzp16uiXX37RlClTtGrVKq1fv14lS5Z0ZLgO8cfelarfpr+rw3C6xORLOpcQL6vVqjMX4rTyh/mKiN2rpjd0VO0qjV0dnlORA2bmgOnll6iDa5l4HuD4AwAAmI3rwatMvB8AbeBaprYB03PA9PJfz8R2QA5QBwAAAAAAAIAJmBhhkCeffFLnz59Xv379tGrVqlzX27lzpyZOnCiLxaJPPvlEI0aMkCQdPXpUt99+u3bs2KHJkyfrrbfeclLk9nM27oiCej3h6jCc7tO1L+nTtS9l+eyWloP05MB3XBSR65ADV5mUA6aXX6IOrmXieYDjDwAAYDauB68y8X4AtIFrmdoGTM8B08t/PRPbATlAHQAAAAAAAAAmYGKEIVasWKGlS5fqySefVKVKlfKcGPHyyy/LarXq4YcfzpwUIUkNGjTQRx99pG7duum9997TlClTVLVqVWeEbxdJiRflV6Ksq8NwiTs6jVbX1vcqJS1Zf5w4oLBNoYo/FyM/3xKZ6xyI3KopH/XJtm1KapLS0lK1ZnqqM0N2CHLA3BwwvfwSdZDB1PMAxx8AAHi6tLQ0fbVtjlb/uEBxZ6JUoXQVdQ26TyNu+7dK+pV2dXgux/VgOk++H6AN5I02kM6T20B+TM8B08t/LVPbATlAHQAAAAAAAAAm8PiJEfHx8Zo+fbq+/PJLxcTEqEqVKho0aJBee+01jRs3Th9//LHmzZunsWPHujpUSZLVapXFYrHrPi9cuKAnnnhCNWvW1CuvvKLZs2fnue7atWslSaNGjcq2vGvXrmrcuLEOHz6sFStW6NFHH7VrrI4UfWCd6rTq7eowXKJWQCO1bdxTktSxaR+1rHeLnnr3Fs1Z9pieG/qZJKlV/S5a+erFLNvFnzuuJ+a21503FY/2UVTkgLk5YHr5Jeogg6nnAY4/AADwdO+tfErLt83VzS0H6p5uExR98pCWb5uro7F7FTp6vby8vFwdoktxPZjOk+8HaAN5ow2k8+Q2kB/Tc8D08l/L1HZADlAHAAAAAAAAgAk8ekRs3759atWqlWbMmKG4uDg1b95cycnJmjt3rgYPHqxDhw5JkoKDgx0WQ/fu3WWxWBQVFZXvuvv371ebNm0UERFh1xgmT56smJgYvfXWWypXrlye6+7du1dJSUny9/dX+/btc1znlltukST9+OOPdo3T0U4c2a4ajW/K8tn2sCmaM9Sig5s/zra+1WrV0le66+2R/or/8xdnhekULQJvUs+2w7QpPEwHo3bkuE5SyhVN+3SQWgbeoiG3TnFyhI5BDlxlag5kML38krl1wHkgnanHHwAAeKaouIP6evs83dJykKaO+FJ9O43SYwNm67H+s7Xv6EZtCv/M1SEWO6ZeD3rq/QBtoPBoA1d5Qhuwhak5kMHk8tMO0pmcAxmoAwAAAAAAAMDzeOzEiPj4ePXv319xcXGaMGGCTpw4oT179iguLk6hoaFavXq1du3aJYvFotatW7s6XEnSJ598ovDwcIWEhCgyMtIu+/zhhx/03nvvqU+fPrr33nvzXf/w4cOSpLp168rHJ+cXijRo0CDLuu7AmpYmq9UqLy/vLJ93vnuqKtduqS3/fVoXTsVkWbb3u7cU+9tmdRo0TQE3tHRmuE7xYM8X5OXlrUVrXsxx+ZxljykpOVETBy90bmAOQg5kZ1oOXM/08kvm1QHngaxMO/4AAMBzbdy3RFarVYO6jM/yed9Oo1TCt5TW71nsmsCKOdOuBz35foA2YBvaQDpPaAO2Mi0Hrmdi+WkHWZmYA9ejDgAAAAAAAADP4rETI8aNG6eYmBiNHTtWM2fOVNmyZTOXTZo0SUFBQUpJSVFgYGC+b1FwllmzZmnYsGGKiYlRSEhIgd4ykZfk5GSNGjVK/v7+evvttwu0zZkzZyRJFStWzHWdjGUZ67qDuMidqt6gY7bPvX381HvMIqVcSdD6Dx/J/PzM8d/1wxfPqXqDTmrXb6IzQ3WaWgENFRJ0v/ZGfK8DkVuzLPtq21z9dGiVpo1crhJ+pVwUoX2RA9mZlgPXM738knl1wHkgK9OOPwAA8Fy//7lLXhYvNamT9VrPz7eE6tcM1uE/d7kosuLNtOtBT74foA3YhjaQzhPagK1My4HrmVh+2kFWJubA9agDAAAAAAAAwLN45MSIQ4cOKSwsTAEBAXr99ddzXKddu3aSpKCgoMzPtm7dqp49e6pGjRry9/dX7dq1NXjwYB06dKjIMcXExCgqKirPf9HR0Zo6dap69Oih6OhohYSEKDo62ubvfOONN3Tw4EE9//zzql+/foG2SUxMlCT5+fnluo6/v78k6fLlyzbH5kixv21RWmpKls+OhX+nuq1vz3H9qvXaqn3/yYo+sFYHNryvtLRUrVkwXFarVb3HLMr216M8yQO3Picvi5cWrb3615D2RWzUh6uf1QvDvlD1SoGuC64IyIGC89QcKCjTyy95bh1wHigYTz3+AADALKfOH1e50gHy8/HPtiygfC2dS4hXckqSCyIr/jz1etC0+wHagO1oA+ncvQ0UhafmQEF5cvlpBwXjyTlQUNQBAAAAAAAA4Dl8XB2AIyxZskRpaWl68MEHVaZMmRzXKVmypKSsEyPOnDmjVq1aacyYMapatapiYmL0+uuv68Ybb9Qvv/yi2rVr2xxTly5dCr1NVFSUhg4dqi1bthR6299//12vvvqqmjVrpokTC/6XjEqUKCFJSkrKfbD0ypUrkq7WYWG1b99ecXFxhdrG27ekBr5yJN/1Dv8YpvUfPqr+T6/QDc1DMj+/cvmc/EuVz3W7jne9oMg9K7Ttf8/o72P7dPLoTnUZMksVazYpVJzXatyokVKTizZ5xM+npN4fm3+5cxPUoLvWzbDmurxutWZaMz018+e401F6ZfF9GtVvhoIadLf5e6/XqHEjJaUUrS5MzYEMtuaCK3PAHsf9WrbUgavbgD3rgBxwv/OAPc8BktltoKi/D13J3u0AAAAT5XctcCXpknxzeCA8fdv0fo4ryZfk65P7H4FwFFffE3jK9aDkfvcDkv3uCWgD6WgD5raBDO6WA7Ycf3vf/7q6DeSlsPVT0DYgFZ92YHobkFz/e0Byv/MAAAAAAAAAYLrq1atr9+7dNm3rkRMjNmzYIEkKCQnJdZ2YmBhJWSdGDBgwQAMGDMiyXocOHdSkSRMtW7ZM//znP22OqVWrVnm+heFap06dUlRUlCSpWbNmNn3f448/ritXrmj+/Pny9fUt8HYVK1aUlD5JJDcZyzLWLay4uDjFxsYWahsf/4K9prhx58E6ezJCkXuuDnicj49WuYC6eW7n7eOr3mMW6bMXO+jA9++pZuNb1Ob28YWK8XrHTxxXypVLRdpHCV/nvZ45MemSXlp4l25sPkB33TzWrvs+cfy4EpOLVhem5kAGZ+SCvXPAHsf9Wo6uA0e0AXvWATngfucBe54DJLPbgDN/H9qbvdsBAAAmyu9awN+vlC5f/CvHZUkp6W/G9HfR9YQ73RMU5+tByf3uByT73RPQBtLRBsxtAxncLQdsOf6uvP91ZP9wTgpbPwVtA1LxaQemtwHJvX4PSMXjPAAAAAAAAADAdh45MeLYsWOSpLp1c+7kTklJ0fbt2yVlnRiRk8qVK0uSfHyKVlUrVqxQYGBgvuvFxMSoW7dukqTBgwfr3Xfften79uzZIy8vL913333Zll28eFGStGPHDlWvXl2SdPjwYZUrV06NGzeWlF6HKSkpOZb76NGjkpS5bmFlfGdhePsW/O0UDdoP1MpZA9Rt6JuSpD/2rlS9Nv3z3c6/VHl5+/orLTVZgcF9ZfHyKnSc16pZo6Zd3hjhLFsPLFPkiXDFxh/WpvCwbMs/euZXVa1Yx6Z916hZ0y5vjCgoT8qBDM7IBXvngD2O+7UcXQeOaAP2rANywP3OA/Y8B0hmtwFn/j60N3u3AwAATJTftUDlcjUVffJXJaVckd91fzU//lysypcOcMlfypfc656gOF8PSu53PyDZ756ANpCONmBuG8jgbjlgy/F35f2vI/uHc1LY+ilMG5CKRzswvQ1I7vV7QCoe5wEAAAAAAADAdLY8Z57BIydGJCQkSJIuX865szEsLEzx8fEqW7as6tWrl215amqq0tLSdOzYMU2ePFnVq1fPcYKBvcXGxiokJESRkZG65557tHjxYnl7e9u8v7S0NJ08eTLX5cnJyZnL09LSJElt2rSRn5+frly5ot27d6tz587Zttu2bZskqVOnTjbFZcvrTa6kSM9m74POUeVazSWLRadiDqpy7RY6ezJCQdUa5LmN1WrVuvcfUlpKkirVbKadX7+iRp3uU4V8tsvL4SNH5F/EFpaaJG2cW7R9FFSvdsPUq90wh+z7yOEj8i7i+LupOZDBGblg7xywx3G/lqPrwBFtwJ51QA6433nAnucAyew24Mzfh/Zm73YAAICJ8rsWaHJDB/18eK1+j96pVvW7ZH6elJyoyOP71Kp+VydEmTN3uicozteDkvvdD0j2uyegDaSjDZjbBjK4Ww7Ycvxdef/ryP7hnBS2fgrTBqTi0Q5MbwOSe/0ekIrHeQAAAAAAAACA7Yr2J5+KqYyZInv27Mm27MSJE5o4caIkqXXr1rJYLNnW6datm/z8/NSoUSPt27dPGzZsUJUqVRwbtKRp06YpIiJCAwcO1JIlS4r0loqzZ8/KarXm+O+ll16SlF7OjM8qVKggSSpbtqx69eolSfrggw+y7XfLli06fPiw/Pz8dOedd9ocn6PVb9NfkXtWKCnxovxKlM13/fC18xRzaJM6DnxJfcd9IWtqitZ/8LCsVqsTooUjkAMAOA8AAACYoXvQYFksFn259a0sn3/z0wdKTL6kHm0edE1gcCmT7gdoA8iJSW0AyA3tAAAAAAAAAADM4pETI3r27ClJCg0N1eHDhzM/37Vrl0JCQhQfHy9JCg4OznH7jz76SD/++KOWLFmicuXKqXfv3oqOjrYplm7duunuu+9W6dKl8113zpw5mjZtmsLCwoo0KaKonn/+eVksFn3yySdatGhR5udHjx7VI488IkkaM2aMqlat6qoQ81WvbfqAR/SBtarTslee656JO6Ltn09Wtfod1L7/s6pcu4U6DZqq2N+2KHztPOcEDLsjBwBwHgAAADBDvRqtNOCmJ7Ttly81ddEgffPTh5q/coLmr3xaret3U482Q1wdIlzApPsB2gByYlIbAHJDOwAAAAAAAAAAs3jkxIhJkyapcuXK+vPPP9WiRQu1atVKjRo1UseOHVW/fn316NFDkhQUFJTj9k2aNFGnTp10//336/vvv9eFCxc0ffp0m2KZNm2ali5dWqA3TpQsWVIvvviifH19bfoue+ncubPeeOMNWa1WjRw5UoGBgWrTpo2aNm2qiIgIderUSW+88YZLY8xPrSZddDbuiI7u/ko1Gt+U63rWtDStWzBS1rRU9R6zSF5e3pKkdv0mqWq99tr++WSdPXnUWWHDjsgBAJwHAAAAzPH4gLc0ut9MHTt5UG9/9YQ27ftMd938pF55eJW8vDyy+wv5MO1+gDaA65nWBoCc0A4AAAAAAAAAwCweOSpWu3Ztbd26VXfccYdKlCihqKgoVapUSQsWLNDq1asz3yKR28SIa1WoUEENGzZURESEo8MuViZNmqTvvvtOvXr10rlz5/Tbb7+pcePGevXVV7V582aVKlXK1SHmycvbR3Vb35b+//8fxMjJnm9m6cSRHep8979VqVazq9t7eav3mIW8KtuNkQMAOA8AAACYw9vLW/d2m6BPJv2ub964os9eiNVjA2arpH8ZV4cGFzHtfoA2gOuZ1gaAnNAOAAAAAAAAAMAsHjkxQpKaNWumVatW6cKFC7pw4YJ++uknjR49WgkJCYqKipKXl5datmyZ737++usv/f7772rQoIETonaOqVOnymq1atOmTXmud9ttt2nt2rU6c+aMLl++rIMHD2rKlCny9/d3TqBF1KDdXarf7s5cl5+OPaQflr2g6g07q23fCdmW86ps90cOAOA8AAAAAJiL+wGYjjYA0A4AAAAAAAAAwCQ+rg7A2Q4ePCir1arGjRtne+vB0KFD1bBhQwUHB6tChQo6cuSI3nzzTfn4+Oipp55yUcSwVaNO9+a5vFKtZhr7SWKe63QYMFkdBky2Z1hFcvR4uN5cOkqXrlxQtQp19ewD/1GFMlXUa6JFgdVb6tG+oerUrK8k6dn3e+vMhThZLF4qVaKsnrhzrhrWaiNJemZ+iCKPh2torxc1qMt4F5bIsTwxBwAUDucBAAAAwFzcD8B0tAH3V9D+4KTkRL363/t17OSv8vctqQplqmrcoPdUK6Chziec0sQFt2bu80ryJZ04HakvXvpL5UpV8vi+YtoBAAAAAAAAAJjDuIkRBw4ckCQFBQVlW9a5c2d9+umnmjNnjhITE3XDDTcoJCREU6ZMUd26dZ0dKpDNjLCReua+T9SwVrC+2/mx3l/1jCbdv0iS9OY/tqpMyQqZ674w7PPMn7cd+EozwkZqwdPhkqSZj23U9M9GFug7J7zXXRMHL1T1SoF2LAlcIa/JMp4ip8HiYycPasqHfVS7ShO9MXqtKpapqu92fqxlW99U9F+HNKbfzCyDvtM/G6k9R9apfOkqkqR2jXtpdL8ZkqT3V03UpvAwNarVVtNGLndBCZ1ny/6l+unQal28fCbHQXUAAAAAnmPL/qXae+R7PT7gzVwfrAUAOF9h+oP7dhqtjk37yGKxaPn2tzX7i0c16/FNKle6shY8vS9zvS82zdT+yM0qV6qSJPqKTUMf8dU+4o+/fU4//LpCXhZvSdL9Pf6lkOD7JUkxfx/RvK/+obMX/1JqWoqG9nxR3YMHS5KWbXlTK3a8oxJ+ZbK0LQAAAAAAAACux8SIa4wdO1Zjx451dkhAgUTE7lVJ/zJqWCtYktSr/QgtWDVBySlJOa5/7aBYQuI5SRaHxHXx8lmNmtVSV5Ivq0r5G5ScekVxpyJ1a7thmnDvhw75Ttgmr8kyniKnweLbOjyk2lWaZBmkalS7nZ4f+rk+2/B6jvu5r/vEHP9C3uh+M1S3WgvtOLjcMQUoRrb/8pW6tb5P3t6+OQ6qw/NwPgcAADDX9l++Us92wyXl/mAt4Om4JzJbcTz+hekP9vMtkfkmYUlqVqezlm6emeN+v931kR7pk3OfmD0Ux7rEVfQR78tc777uE/Vwn1clSfHnYvXIjGZq26inypcO0Iywkbqtw0Pq2+lRnb34t56Y014t692igPK1dHfXp9SwVhu9+/V41xQQAAAAAAAAQK6YGAG4iROn/9AfJw5ozOzgzM+uJF1S/PnYXLcJXTJc4Uc3SpJefeQbh8RVpmQF9QgeopL+ZTW01wva9fsaLdnwGoNcxVBuk2U8ZbAyt8HiHm0ezLZug5rpvwMsFi9nhlhs5HfMU1KTdTBquyYOXigfb9/M7fIaVIf743wOAADgufK6B/jnoPeyXP8X9MFawNNwT2S24nj8bekPzvDVtjm6scWd2T4/GLVDFy+dUedm/ewZahbFsS5xFX3EV11bF5evXJRVVqVZ0yRJkSfC1bFp+jVRhTJVVL9mkDbtC9M93Z52eBkAAAAAAAAA2M64iREbNmxwdQiAzZrW6aQ3Rq3J/PmeqVXyXP/ZBz6VJK3dvUgffPOsXivg5IjQJcMVeWK/JOn4qQg991Ff+Xj7SZKmjVye7VXpEcf3aeAt4yRJR2J+VsOanvXqbU+S02QZTxmsLMpg8fW+2jpH3+38WFUr1tHI217JHEjzFPkd830RG9W87k1ZJkVIuQ+qwz2Mm3ejYuOP5Ljsvaf2qmqFGzifAwAAeKi87gF2/742x+t/iXsAeBbuiczmrse/sP3BkvS/71/T8fgITR/zfbZl3+38SL3aDZe3d8GHhgrbVyzRX1zc0Ud81Vfb5mrFjncUfzZGT937oSqWqSop/Y3D3+9ZrMEhk3TiVKR+jdqh6hUDnVACAAAAAAAAAEVh3MQIwF3VqFRff52Nzvw5IfG8EpMSFFCuVr7b9m4/QnOWPabzCadUrnTlfNfPmFAhSRPe666JgxfmOMCVIfL4PjWslT64dSTmZ93YYkC+3wHXyG2yjKcMVtoyWHy9h/u8qkpla8jLy0vbDnyl5z7qo4XPHlFJ/zL2DNWhijrYv+Pgct3ccmCW7fIaVId7mPvkD/muw/kcAADAc+V2D5DT9b/EPQA8D/dEZnPH429Lf/AXm2Zq2y9favro9SrhVyrLsstXLmrz/s/19rhdhYqjsH3FUvGrS2RFH/FVA28Zp4G3jNPR4+F6Y8lQtW/cW+VKV9akwYu0YOUEjZkdrGoV66pNo1vl7cWQKgAAAAAAAFDcebk6AAAF07BWsHy8fPXz4XWSpJU73lW3oMHy9fHLtu7Fy2cVf+545s/bf1mucqUrq2ypSnaPK/5crGSxKKB8+oBcZNx+1aveyu7fA/vq3X6EwiM26nzCKUnZBysz/u9OijJ56FoB5WvJyyv91+MtrQaqVIly+vPv3+0aq6PNffIHLZsWn+O/qhVukJT7Mbdardr9+xp1bNonc38Zg+qvPfpttkF1eA7O5wAAAJ4tp3uAnK7/Je4BYCbuicxWHI9/YfqDJWnp5tnauG+JQketU5mSFbIt3xQepvo1glSnalNHhl0s6xI5o4/4qgY1gxRQrpbCj26SJFWvFKiXRizTgqf36d8Pfa2Ey+dUt3oLR4YOAAAAAAAAwA6YGAG4kclD/quPvp2sEW80VPjRTRrdb0aO6yUkntPURXdp1KxWGjM7SF9vf1svP7RKFovF7jFFxO7N8pejypSooBU/vGv370HR5DVZxlMGKws7WJybv8/GZP7/12M/6nzCKdWq3NCusbpaXsf8tz93qk61ZplvyMhvUB2eg/M5AACA58rtHuD663+JewCYi3sisxXX41/Q/uC/z8ZowaoJunj5rJ6ZH6Ixs4P15NxOWdb5budHur3jIw6PubjWJegjvt6xk79m/v94/FFFHN+rOtWaS5LOXDiptLQ0SdKu39fo2F+/qkebIU4oAQAAAAAAAICi4L2vgBupV6OV3v3n7nzXq1axrt4et9Mu3znr8U15Lu/cvJ86N++X+fM7/yzcq9jhHAmJ5/Tyf+7VleTL8rJ4qXzpKpmTZXIbrJxw74cujNg2k4f8VzM+f0hzv3xcNSs31L+GLFZU3C/Z1luza6EWrnleFy+d0Y6Dy/XF5pl6+aGValirjWaEjdSZiyflZfGWv29JvTDsC5UuWd4FpXGcvI759l++0k0t7pJ0dVC9RqX6emZ+iCTJz8df88b95Iqw4WCczwEAADxXbvcA5UsHZF7/S9wDwGzcE5mtuB7/gvYHV6lQW+tmWPNcZ87YHUWOJ7++Yqn41iXoI77eB6snKe70H/L28pW3t4/G3vW26lZrJkn64deVCtv4hry8vFW5XE29+sg38vct6eyiAAAAAAAAACgkJkYAHqBimWqa8F43PdzndXVq1jff9Z+ZH6KTp6PUst7NTogOxUFek2U8abCyoIPFt3UYqds6jMxx2fQx6+0cVfGT1zH/8deVmvHYRkkFG1QHAAAAUPzldg/w6MwWmdf/EvcAAOAuCtsfnBf6is1BH3FWrzy8KtdlfTs9qr6dHrVnWAAAAAAAAACcgIkRgAf4/KW4Qq0/85qHHgBP5+PtpwuXTmnM7GC9MXqtKpapavO+3l81UT/8ukLN695kxwiLlw+fOejqEAAAAAA4Cdf/AOCeCtsfnBf6imECe/YRL9vypr756QNVLlfTjhECAAAAAAAAsAcmRgAAPFqLwJv0v+f/tMu+RvebodH9ZthlXwAAAAAAAAAAx7NnH/HdXZ/S3V2fssu+AAAAAAAAANiXl6sDAAAAAAAAAAAAAAAAAAAAAAAAsBUTIwAAAAAAAAAAAAAAAAAAAAAAgNuyWK1Wq6uDAPJjtUpJqa6OonD8vCWLpWj7sFqltGT7xONKXr72qQsTcyCDO+aCPY77tUyvA9PLL7nfecCe5wDJ7BxITZI2zi36flwhZJzk7efqKAAAcG/ueB2UgXsC+5bfne4HJPvdE3A9nI42YG4byOBuOWDL8Xe3MhZFYeuHNuCe+cG1kH1zAAAAAAAAAEDefFwdAFAQFovkb2C2Wiw8TJnB1BzIQC5QB6aXX+I8QA4AAABTcR2UzvR6MP1+ALQB2oAZOWBCGW1FGyA/TC8/AAAAAAAAgPx5uToAAAAAAAAAAAAAAAAAAAAAAAAAWxn+93UAAAAAAAAAwAzhRzfpmfkhuS738vLWmtAUJ0YEAAAAAAAAAAAA2AcTIwAAAAAAAADAICHBD6hj077ZPvfy4gXDAAAAAAAAAAAAcE9MjAAAAAAAAAAAgzSq1VY92w11yL6tVqsSkxJU0r+MQ/YPAAAAAAAAAAAA5ISJEQAAAAAAAACAbLbuX6bl2+fp6PF9SklNUpUKN6h949s0ut9M+fr4KfzoJj0zP0TP3PeJEpMStGLHOzpx6qju7zFZw3tPdXX4AAAAAAAAAAAAMAgTIwAAAAAAAADAIInJl3QuIT7b5z7efipdopwk6eNvn9OSDa+pbrXmurvLU6pUroaOnzqqbQeWacRt/5avj1/mdl9ufUsXLp1Sn06jVKlsdVWpcIPTygIAAAAAAAAAAABITIwAAAAAAAAAAKN8uvYlfbr2pWyfd2p2h155eJV+i96pJRteU3CDEL36yDfy8y2Ruc6jfd/Itt3fZ6P10aTfVLFMVYfGDQAAAAAAAAAAAOSGiREAAAAAAAAAYJA7Oo1W19b3Zvu8fJkqkqTv9/5XkvRw39ezTIqQJIvFkm27nu2GMykCAAAAAAAAAAAALsXECAAAAAAAAAAwSK2ARmrbuGeuy2Pjj8hisahBjaAC7a92lcb2Cg0AAAAAAAAAAACwiZerAwAAAAAAAAAAFC8WWaQc3g6RE3/fUg6OBgAAAAAAAAAAAMgbEyMAAAAAAAAAAJlqBzRWmjVNkcfDXR0KAAAAAAAAAAAAUCBMjAAAAAAAAAAAZOrRZogk6eNvpyg5JSnbcqvV6uyQAAAAAAAAAAAAgDz5uDoAAAAAAAAAAIDzHIndo/U/L85x2c0t71LTOh01OORZhW0M1T/eaqtuQYNVqVx1nTj9h7buX6q3x+1UmZIVnBs0AAAAAAAAAAAAkAcmRgAAAAAAAACAQTbuW6KN+5bkuGzhs0dUy7+hHu37hurXCNLX29/W55uny5qWpioVblDHpn3l71vKyREDAAAAAAAAAAAAebNYee85AAAAirHUJGnjXFdHYZuQcZK3n6ujAAAAgDvjehgAAAAAAAAAAADIn5erAwAAAAAAAAAAAAAAAAAAAAAAALAVEyMAAAAAAAAAAAAAAAAAAAAAAIDbYmIEAAAAAAAAAAAAAAAAAAAAAABwWz6uDgAoCKtVSkp1dRSF4+ctWSxF24fVKqUl2yceV/LytU9dmJgDGdwxF+xx3K9leh2YXn7J/c4D9jwHSOQAAAAAALOZfE/kjmXPYHLfiOn9IhL9o7bkgDuW0xa21g1twD77chbGCOgfBQAAAAAAcDYmRsAtJKVKz4a5OorCCR0s+RexhaUlSxvn2iceVwoZJ3n7FW0fpuZABnfMBXsc92uZXgeml19yv/OAPc8BEjkAAAAAwGwm3xO5Y9kzmNw3Ynq/iET/qC054I7ltIUtdUMbcL/cYIyA/lEAAAAAAABn83J1AAAAAAAAAAAAAAAAAAAAAAAAALZiYgQAAAAAAAAAAAAAAAAAAAAAAHBbTIwAAAAAAAAAAAAAAAAAAAAAAABui4kRAAAAAAAAAAAAAAAAAAAAAADAbTExAgAAAAAAAAAAAAAAAAAAAAAAuC0mRgAAAAAAAAAAAAAAAAAAAAAAALfFxAgAAAAAAAAAAAAAAAAAAAAAAOC2fFwdAADHCT+6Sc/MD8nyWQm/0qpdpbF6th2mu25+Ut7enAY8mek5YHr5JerAdBx/AAAAACbjngjkAEzPAdPLD3LA9PIDAAAAAACYhp4ewAAhwQ+oY9O+ssqqMxfitO7nTzV/5dOK/uuQnrrnfVeHBycwPQdML79EHZiO4w8AAADAZNwTgRyA6TlgevlBDphefgAAAAAAAFMwMQLGmTPUYrd9/XOx1W77cqRGtdqqZ7uhmT/3v+kfemR6U32780M9dPurqlCmigujcz5ywLwcML38EnVwPdPOAxx/AAAAACbjngjkQFam9YtI5IDp5b8ebcC8HDC9/AAAAAAAAKZgYoSBPvjgA40ePVqS1K1bN23atCnbOlFRUfr++++1a9cu7dq1SwcOHFBycrJGjBihhQsXOjdgOzofH60uD85W2z5PuToUlyrpV1pN63bW1v1LdfzUUaM6fMmBdCbngET5JbPrgPOA2ccfAAAAALgngsk5QL9IOpNzQDK7/LSBdCbngET5AQAAAAAAPBUTIwwTFxenSZMm5bveW2+9pTlz5jghIuf6Y+9K1W/T39VhFAsnTh2VJJUrVcnFkTgXOXCVqTmQwfTyS+bWAeeBdKYefwAAAACQuCeCuTlAv8hVpuZABlPLTxu4ytQcyGB6+QEAAAAAADwREyMM8+STT+r8+fPq16+fVq1alet6AQEB6tu3rzp06KD27dvr22+/1bvvvuvESB3jbNwRBfV6wtVhOF1i8iWdS4iX1WrVmQtxWvnDfEXE7lXTGzqqdpXGrg7PqcgBM3PA9PJL1MG1TDwPcPwBAAAAmIx7IpADV5nYLyKRA6aX/1q0ATNzwPTyAwAAAAAAmIKJEQZZsWKFli5dqieffFKVKlXKc2LE888/n+XnH3/80dHhOVxS4kX5lSjr6jBc4tO1L+nTtS9l+eyWloP05MB3XBSRa5AD5uaA6eWXqIMMpp4HOP4AAACAZ1uy4XUdid2jIzE/K+70H6pWsa4WT4lydVjFhgn3RGlpafpq2xyt/nGB4s5EqULpKuoadJ9G3PZvlfQr7erwXM6EHCgIU/tFJHLA9PJnoA2YmwOmlx8AAAAAAMAURkyMiI+P1/Tp0/Xll18qJiZGVapU0aBBg/Taa69p3Lhx+vjjjzVv3jyNHTvW1aFKkqxWqywWi133eeHCBT3xxBOqWbOmXnnlFc2ePduu+3cH0QfWqU6r3q4OwyXu6DRaXVvfq5S0ZP1x4oDCNoUq/lyM/HxLZK5zIHKrpnzUJ9u2KalJSktL1Zrpqc4M2SHIAXNzwPTyS9RBBlPPAxx/AAAAwLN9/O0UlS1VSY1qtVXC5bOuDqfYMeGe6L2VT2n5trm6ueVA3dNtgqJPHtLybXN1NHavQkevl5eXl6tDdCkTcqAgTO0XkcgB08ufgTZgbg6YXn4AAAAAAABTePzEiH379qlPnz6Ki4tT6dKl1bx5cx0/flxz587V0aNHdfr0aUlScHCww2Lo3r27Nm/erD/++EOBgYF5rrt//34NHz5cS5cuVcOGDe0Ww+TJkxUTE6PPP/9c5cqVs9t+3cmJI9t18/2hWT7bHjZFu1e+rp6jPlKLbg9nWWa1WrXs1RDFRfyg+1/+WQE3tHRmuHZVK6CR2jbuKUnq2LSPWta7RU+9e4vmLHtMzw39TJLUqn4XrXz1Ypbt4s8d1xNz2+vOm4rHpKGiIgfMzQHTyy9RBxlMPQ9w/AEAAADP9um/jqpG5fqSpFEzW+py0sV8tjCLp98TRcUd1Nfb5+mWloP00ohlmZ9Xr1RP73w9TpvCP1OPNkNcGKHreXoOFJSp/SISOWB6+TPQBszNAdPLDwAAAAAAYAqP/jNR8fHx6t+/v+Li4jRhwgSdOHFCe/bsUVxcnEJDQ7V69Wrt2rVLFotFrVu3dnW4kqRPPvlE4eHhCgkJUWRkpF32+cMPP+i9995Tnz59dO+999pln+7GmpYmq9UqLy/vLJ93vnuqKtduqS3/fVoXTsVkWbb3u7cU+9tmdRo0za07u3PSIvAm9Ww7TJvCw3QwakeO6ySlXNG0TwepZeAtGnLrFCdHaH/kQFYm5sC1TC+/ZGYdcB64ysTjDwAAAHiyjEkRKBhPuyfauG+JrFarBnUZn+Xzvp1GqYRvKa3fs9g1gRVjnpYDBUG/SFYm5sC1TCw/bSArE3PgWqaXHwAAAAAAwFN59MSIcePGKSYmRmPHjtXMmTNVtmzZzGWTJk1SUFCQUlJSFBgYWGzeojBr1iwNGzZMMTExCgkJUVRUVJH2l5ycrFGjRsnf319vv/22fYJ0Q3GRO1W9Qcdsn3v7+Kn3mEVKuZKg9R8+kvn5meO/64cvnlP1Bp3Urt9EZ4bqNA/2fEFeXt5atObFHJfPWfaYkpITNXHwQucG5iDkQHam5cD1TC+/ZF4dcB7IyrTjDwAAAADX8qR7ot//3CUvi5ea1Ml6z+vnW0L1awbr8J+7XBRZ8eZJOVAQ9ItkZ1oOXM+08tMGsjMtB65nevkBAAAAAAA8kcdOjDh06JDCwsIUEBCg119/Pcd12rVrJ0kKCgrKdT99+vSRxWLR1KlTixxTTEyMoqKi8vwXHR2tqVOnqkePHoqOjlZISIiio6Nt/s433nhDBw8e1PPPP6/69c34y3Gxv21RWmpKls+OhX+nuq1vz3H9qvXaqn3/yYo+sFYHNryvtLRUrVkwXFarVb3HLMr214M8Ra2AhgoJul97I77XgcitWZZ9tW2ufjq0StNGLlcJv1IuitB25EDBeHIOFITp5Zc8uw44D+TPk48/AAAAAOTHk+6JTp0/rnKlA+Tn459tWUD5WjqXEK/klCQXRFa8eVIOXI9+kYLx5BwoCE8uP22gYDw5BwrC9PIDAAAAAAB4Io+dGLFkyRKlpaXpwQcfVJkyZXJcp2TJkpJynxjx+eefa9++fXaLqUuXLqpXr16+/xo0aKANGzZIkqKiojR06FCbvu/333/Xq6++qmbNmmniRM/8azbXO/xjmL6eeYdif8/agXnl8jn5lyqf63Yd73pBAXWCtO1/z2jToid18uhO3XTvq6pYs4mjQ3apB259Tl4WLy1ae/Wv4eyL2KgPVz+rF4Z9oeqVAl0XnI3IgcLxxBwoDNPLL3lmHXAeKDhPPP4AAAAAUFCeck90JemSfHOYFCFJfj4l0tdJvuTMkNyGp+TAtegXKRxPzIHC8MTy0wYKxxNzoDBMLz8AAAAAAICn8XF1AI6SMbEgJCQk13ViYmIk5Twx4vz58xo/frxmzpxp88SE67Vq1Up+fn4FWvfUqVOKioqSJDVr1sym73v88cd15coVzZ8/X76+vjbtwxHat2+vuLi4Qm3j7VtSA185ku96jTsP1tmTEYrcs0I3NE8/9ufjo1UuoG7e+/fxVe8xi/TZix104Pv3VLPxLWpz+/hCxZgtlkaNlJp8uUj78PMpqffH5l/u3AQ16K51M6y5Lq9brZnWTE/N/DnudJReWXyfRvWboaAG3W3+3us1atxISSlFqwtTcyCDrbngyhywx3G/li114Oo2YM86IAfc7zxgz3OAZHYbKOrvQ1eydzsAAACAebgeTsc9Ue5l9/crpcsX/8pxWVJKYvo6vq75a9cm54Dp/SIS/aO25IC9z/muPg/mxpa6oQ2Y0Qby4m6/ByT6BgEAAAAAAGxRvXp17d6926ZtPXZixLFjxyRJdevm3NGZkpKi7du3S8p5YsRzzz2nxo0b68EHH7TbxIgVK1YoMDAw3/ViYmLUrVs3SdLgwYP17rvv2vR9e/bskZeXl+67775syy5evChJ2rFjh6pXry5JOnz4sMqVK2fTdxVGXFycYmNjC7WNj3/BB+4atB+olbMGqNvQNyVJf+xdqXpt+ue7nX+p8vL29VdaarICg/vK4lW0F6ocP3FcKVeK9pfYSjhxwDIx6ZJeWniXbmw+QHfdPNau+z5x/LgSi/hX6UzNgQzOyAV754A9jvu1HF0HjmgD9qwDcsD9zgP2PAdIZrcBZ/4+tDd7twMAAACYh+vhdNwT5a5yuZqKPvmrklKuyO+6N0fEn4tV+dIB8vUp2B/ssTeTc8D0fhGJ/lFbcsCV53xHjhFcz5a6oQ2Y0Qby4m6/ByT6BgEAAAAAAJzNYydGJCQkSJIuX875r3CEhYUpPj5eZcuWVb169bIs2717tz744AP9/PPPDo/zerGxsQoJCVFkZKTuueceLV68WN7e3jbvLy0tTSdPnsx1eXJycubytLQ0m7+nMDImYhSGt2/JAq9buVZzyWLRqZiDqly7hc6ejFBQtQZ5bmO1WrXu/YeUlpKkSjWbaefXr6hRp/tUIZ/t8lKzRk27vDHCWbYeWKbIE+GKjT+sTeFh2ZZ/9Myvqlqxjk37rlGzpl3eGFFQnpQDGZyRC/bOAXsc92s5ug4c0QbsWQfkgPudB+x5DpDMbgPO/H1ob/ZuBwAAADAP18PpuCfKXZMbOujnw2v1e/ROtarfJfPzpORERR7fp1b1uxY5BluZnAOm94tI9I/akgOuPOc7cozgerbUDW3AjDaQF3f7PSDRNwgAAAAAAGALW54zz+CxEyOqV6+uM2fOaM+ePbrxxhuzLDtx4oQmTpwoSWrdurUsFkvmstTUVI0ZM0Zjx45VixYtnBqzJE2bNk0REREaOHCglixZIh8f2w/R2bNnc102depUTZs2Td26ddOmTZts/g5b2PJ6kysp0rPZ+yBzVb9Nf0XuWaGyAXXlV6JsvuuHr52nmEObdOO9r6pBuzu15Pm2Wv/Bw7r7uU1Z8qMwDh85Iv8itrDUJGnj3KLto6B6tRumXu2GOWTfRw4fkXcR/yidqTmQwRm5YO8csMdxv5aj68ARbcCedUAOuN95wJ7nAMnsNuDM34f2Zu92AAAAAPNwPZyOe6Lcl3cPGqwlG17Tl1vfyjIx4pufPlBi8iX1aPNg0YOwkck5YHq/iET/qC054MpzviPHCK5nS93QBsxoA3lxt98DEn2DAAAAAAAAzla0d8AWYz179pQkhYaG6vDhw5mf79q1SyEhIYqPj5ckBQcHZ9nu7bff1smTJzV16lS7xdKtWzfdfffdKl26dL7rzpkzR9OmTVNYWFiRJkWYrl7b9A7v6ANrVadlrzzXPRN3RNs/n6xq9Tuoff9nVbl2C3UaNFWxv21R+Np5zgkYdkcOAOA8AAAAAMAU637+j/67/hX9d/0rOpvwtxISz2X+vO7n/7g6PDhYvRqtNOCmJ7Ttly81ddEgffPTh5q/coLmr3xaret3U482Q1wdIlyAfhGYjjYAAAAAAAAAmMdjJ0ZMmjRJlStX1p9//qkWLVqoVatWatSokTp27Kj69eurR48ekqSgoKDMbeLj4/XCCy/oxRdfVEpKis6ePZv51oXExESdPXtWaWlphY5l2rRpWrp0qapUqZLvuiVLltSLL74oX1/fQn+PPW3fvl0BAQGZ/2bPni1J+uyzz7J8vn37dpfGmZtaTbrobNwRHd39lWo0vinX9axpaVq3YKSsaanqPWaRvLy8JUnt+k1S1Xrttf3zyTp78qizwoYdkQMAOA8AAAAAMMV3Oz/SwjUvaOGaF3T24l+6ePls5s/f7fzI1eHBCR4f8JZG95upYycP6u2vntCmfZ/prpuf1CsPr5KXl8cOAyAP9IvAdLQBAAAAAAAAwDweOyJSu3Ztbd26VXfccYdKlCihqKgoVapUSQsWLNDq1asz3yJx7cSImJgYXbhwQWPGjFHFihUz/0npb56oWLGioqOjXVIeZ0tOTtapU6cy/12+fFmSdOXKlSyfJycnuzjSnHl5+6hu69vS////ndg52fPNLJ04skOd7/63KtVqdnV7L2/1HrNQ1tQUrf/gYVmtVofHDPsiBwBwHgAAAABgilmPb9K6GdYc/816fJOrw4MTeHt5695uE/TJpN/1zRtX9NkLsXpswGyV9C/j6tDgIvSLwHS0AQAAAAAAAMA8Pq4OwJGaNWumVatWZfv84sWLioqKkpeXl1q2bJn5ecOGDbVx48Zs64eEhGjEiBEaOXKkqlev7tCYnWXq1KmaOnVqrsu7d+/u9p28DdrdJVksuS4/HXtIPyx7QdUbdlbbvhOyLc94VfKOz6cofO08Bd82znHBwiHIAQCcBwAAAAAAgKnoF4HpaAMAAAAAAACAWTx6YkRuDh48KKvVqsaNG6tUqVKZn5cpU0bdu3fPcZvAwMBcl6F4atTp3jyXV6rVTGM/ScxznQ4DJqvDgMn2DKtIjh4P15tLR+nSlQuqVqGunn3gP6pQpop6TbQosHpLPdo3VJ2a9c2yzXe7PtGszx/W1BFf6eaWd0mSnpkfosjj4Rra60UN6jLe+QVxEk/MAQCFw3kAAAAAAACYin4R91fQMYGk5ES9+t/7dezkr/L3LakKZapq3KD3VCugoSTpp0PfaOGa55WWlqa0tBTd232iercfIcmzxwtoAwAAAAAAAIBZvFwdgCscOHBAkhQUFOTiSIDCmRE2UuPvfl8fTzykbkH36f1Vz2Que/MfW7NNiog7HaVvf/pAzep0zvL5zMc2qnPzAQX6zgnvdVfc6agixw44w9Hj4Ro7t6MentFMkz+4XWcv/q3wo5t0x+SSGjM7WGcu/iVJ+m7nxxo1q5Vue9ZHX259K9t+Vux4Vw/PaKZRs1ppzOwgJSWnD469v2qihrxaRy8tvMuJpQIAAAAAAM62Zf9SzQh7SC8tvEsjQxtrzOwgPft+L8XGR7g6NAAGKcyYQN9Oo/XJpN+14Olw3djiTs3+4lFJktVqVeiSoZp430IteHqfXn54ld5aNkaXEi9IYrwAnqeg4wQZjp08pH5TSundr8dnfpaWlqa3lz+p4a830Ig3Gmr59rczly3b8qZGvNFQY2YHO6lEAAAAAAAAKCgj3xhR2IkRVqvVkeEABRIRu1cl/cuoYa1gSVKv9iO0YNUEJack5bh+WlqaZn/xqJ64a54WrMz+Cmh7uXj5rEbNaqkryZdVpfwNSk69orhTkbq13TBNuPdDh30vCu/Z93vrzIU4WSxeKlWirJ64c64a1mrj6rDsakbYSD1z3ydqWCtY3+38WO+veka3dXhItas00YKn92Wu16h2Oz0/9HN9tuH1bPvY8cvX+n7PfzVv7I8qXbK8zl78W97evpKk0f1mqG61FtpxcLmTSgQAAAAAAFxh+y9fqVvr++Tt7auOTfvIYrFo+fa3NfuLRzXr8U2uDg+AAQozJuDnWyLLJIlmdTpr6eaZV1ewWHQx8awk6VLieZUrVVm+Pv4OiZsxg+LLhDECqeDjBJKUkpqst5aN1s0tB2b5/Ps9i3Xs5K/65NnDSkg8p8ffbKPgBiEKrN5Cd3d9Sg1rtckykQIAAAAAAADFAxMjADdx4vQf+uPEgSx/geZK0iXFn4/Ncf1lW2arReDNaly7nUPjKlOygnoED1FJ/7Ia2usF7fp9jZZseI0BjmLohWGfq0zJCpKkbQe+0oywkVrwdLhrg7Kj3AYKe7R5MNu6DWqmn/8tluwvTvp88wwN6/WSSpcsL0mqUKaK44IuRhiwBDkAAAAAwBT53f+kpCbrYNR2TRy8UD7//8cSpBweNIbH4J4YxTEHCjsmcK2vts3RjS3ulCRZLBY9/2CYpi0apBJ+pXXx8hm9NPxL+fr4OSRuxgyKL08fI5AKN04gSYvX/VtdW9+rC5dO6+Lls5mfbwoPU99Oo+Tt5a1ypSqpe9Bgbdy3RA/d/ooTSgEAAAAAAABbGTkxYsOGDa4OAbBJ0zqd9MaoNZk/3zM15we2/4j7RVsPLNPsf2yx6XtClwxX5In9kqTjpyL03Ed95eOdPkgybeRyVa8UmGX9iOP7NPCWcZKkIzE/q2FNz/sLQ54gY8BDkhISz0mySCqeg362KMpA4bWiT/6qwzG79Z9105ScekW92g3PzG9PxoAlyAEAAAAApsjv/mdfxEY1r3tTlkkRUtYHjeFZuCdGcc2Bgo4JXOt/37+m4/ERmj7me0lSamqK/vv9K3ppxJdqXb+rfv9zl178ZIDen3BA5UsH5Lu/wo4XSIwZFFeePkYgFW6c4FD0T/r12A8KHb1O/1k3Lcuyv85Gq1qFupk/V6sUqEPHfnRY3AAAAAAAALAPIydGAO6oRqX6+utsdObPCYnnlZiUoIBytbKt+0vkVp08E6WRoY0kSacvxOmtpaN1+vwJ9b/p8Xy/69kHPs38/4T3umvi4IU5Dm5kiDy+L/N1y0diftaNLQYUtFhwstAlwxV+dKMk6dVHvpFUfAf9bGHLQOH1UtNSFHf6D83+xxZdvHxGE97rphqV6qtz8372DNXpxs27UbHxR3Jc9t5Te1W1wg0MWHo4cgAAAACAKYp6/7Pj4HLd3HJglu2uf9AY7oV7YrhjDhRmTCDDF5tmatsvX2r66PUq4VdKUvokhVPnj6t1/a6SpCY3dFBA+dqKiN2rdo175RtHYccLJMYMijNPHyOQCjZOkJh0SfO+/IdeGL5UFovFmeEBAAAAAADAgZgYAbiJhrWC5ePlq58Pr1O7xr20cse76hY0OMfXXfe/6fEsEyAmvNddg7qM180t77J7XPHnYiWLRQHl0wdjIuP2a8itz9n9e2AfGYNYa3cv0gffPKvX/n/go7gN+tnCloHCnFStUEchbR6Qt5e3ypcOUMemfXUo+ke3nxgx98kf8l2HAUvPRg4AAAAAMEVR7n+sVqt2/75Go+6YnrluTg8aw71wTwx3zIHCjAlI0tLNs7Vx3xKFjl6f5c0AVSvcoNMXTujYyUOqW62ZYuMjdOLUUd1QpYlD4mbMoHjz5DECqeDjBCdOHdVfZ6M1cX6IpPS3Zlitabp4+Ywm3b9IVSvU0cmzx9RcN0qSTp6OUtWKdZxXEAAAAAAAANjEy9UBACi4yUP+q4++nawRbzRU+NFNGt1vhqtDUkTs3iwd5GVKVNCKH951YUQoiN7tRyg8YqPOJ5ySlH3QL+P/7uTagUJJ+Q4U5iakzRDt/u07SdKV5MsKP7pJ9WsE2T3e4ianAct61Vu5OCo4EzkAAAAAwBR53f/89udO1anWTCX9y0i65kHjUeuyPGgMz8I9MYprDhR0TODvszFasGqCLl4+q2fmh2jM7GA9ObeTJKli2Woaf/f7emXxfRozO0hTFw3U2IFvO+whb8YM3IMnjhFIBR8nqFejlZZO/VuLp0Rp8ZQoDeoyXrd1eFiT7l8kSera+l5989MHSk1L1flLp7UpPEzdgwY7vTwAAAAAAAAoHN4YAbiRejVa6d1/7i70drMe32Tzd+a3befm/bL8Jf13/rnL5u+C41y8fFaJSZcUUL6mJGn7L8tVrnRllS1VyaP+gtfkIf/VjM8f0twvH1fNyg31ryGLFRX3S7b11uxaqIVrntfFS2e04+ByfbF5pl5+aKUa1mqje7o+rbeWjdEjM5rLYrHollZ3q1vQvS4ojXPlNmDprq9LR+GRAwAAAABMkdf9z/ZfvtJNLe6SdPVB4xqV6uuZ//+L0n4+/po37idXhA0H4p4YxTUHCjomUKVCba2bYc11eY82D6hHmweKHE9BxhoYMyieTBkjkAo+TpCXnu2G6fc/d2lkaCNZZNHdXZ9WvRqunywFAAAAAACAvDExAvAAFctU04T3uunhPq+rU7O++a7/zPwQnTwdpZb1bnZCdCgOEhLP6eX/3KsryZflZfFS+dJV9PJDq2SxWIrtoJ8tCjpQeFuHkbqtw8gcl/n5lsj8q1AmYcAS5AAAAAAAU+R1//Pjrys147GNkvJ/0Bieg3tiuFsOFHZMIC+MF5jBlDECybY/Mja899QsP3t7eWvcoHfsGBUAAAAAAACcgYkRgAf4/KW4Qq0/8/8Hd2GOahXr6u1xO3Nc5m6DfoXl4+2nC5dOaczsYL0xeq0qlqlq877eXzVRP/y6Qs3r3mTHCAEAAAAAQHHx4TMHXR0CAOSrsGMCeWG8wAwmjxFI9h0nWLblTX3z0weqXK6mHSMEAAAAAACAPTAxAgDg0VoE3qT/Pf+nXfY1ut8Mje43wy77AgAAAAAAAAAAjmfPcYK7uz6lu7s+ZZd9AQAAAAAAwL68XB0AAAAAAAAAAAAAAAAAAAAAAACArZgYAQAAAAAAAAAAAAAAAAAAAAAA3BYTIwAAAAAAAAAAAAAAAAAAAAAAgNuyWK1Wq6uDAPJjtUpJqa6OonD8vCWLpWj7sFqltGT7xONKXr72qQsTcyCDO+aCPY77tUyvA9PLL7nfecCe5wDJ7BxITZI2zi36flwhZJzk7efqKAAAAODO3PFeIAP3xdwT2fOeyN1ywPR+EYn+UVtywB3LaQtb64Y2YJ99OQtjBPavAwAAAAAAAOTNx9UBAAVhsUj+BmarxcLDlBlMzYEM5AJ1YHr5Jc4D5AAAAABgJu4F0lEPMD0H6Bcx4/ibUk5b0AbIDeoAAAAAAAAA+fFydQAAAAAAAAAAAAAAAAAAAAAAAAC2YmIEAAAAAAAAAAAAAAAAAAAAAABwW0yMAAAAAAAAAAAAAAAAAAAAAAAAbouJEQAAAAAAAAAAAAAAAAAAAAAAwG0xMQIAAAAAAAAAAAAAAAAAAAAAALgtJkYAAAAAAAAAAAAAAAAAAAAAAAC3xcQIAAAAAAAAAAAAAAAAAAAAAADgtpgYAQAAAAAAAAAAAAAAAAAAAAAA3BYTIwAAAAAAAAAAAAAAAAAAAAAAgNtiYgQAAAAAAAAAAAAAAAAAAAAAAHBbTIwAAAAAAAAAAAAAAAAAAAAAAABui4kRAAAAAAAAAAAAAAAAAAAAAADAbTExAgAAAAAAAAAAAAAAAAAAAAAAuC0mRgAAAAAAAAAAAAAAAAAAAAAAALfFxAgAAAAAAAAAAAAAAAAAAAAAAOC2mBgBAAAAAAAAAAAAAAAAAAAAAADcFhMjAAAAAAAAAAAAAAAAAAAAAACA2/JxdQBAQVitUlKqq6MoHD9vyWIp3DZWq5SW7Jh4ihMvX9vqxoQcyI075oYtxzkvpteB6eUH4H7nAUf8HjD5WgAAAAAAAAAAAAAwjbuNkV7PXmOm7lgP9n5mxvSxYhNywB3LaCsTnp+kDfDsoKueHWRiBNxCUqr0bJiroyic0MGSfyFbWFqytHGuY+IpTkLGSd5+hdvGlBzIjTvmhi3HOS+m14Hp5QfgfucBe58DTL8WAAAAAAAAAAAAAEzjbmOk17PXmKk71oM9x4sZKzYjB9yxjLYy4flJ2gDPDrrq2UEv538lAAAAAAAAAAAAAAAAAAAAAACAfTAxAgAAAAAAAAAAAAAAAAAAAAAAuC0mRgAAAAAAAAAAAAAAAAAAAAAAALfFxAgAAAAAAAAAAAAAAAAAAAAAAOC2mBgBAAAAAAAAAAAAAAAAAAAAAADcFhMjAAAAAAAAAAAAAAAAAAAAAACA22JiBAAAAAAAAAAAAAAAAAAAAAAAcFs+rg4AgOOEH92kZ+aHZPmshF9p1a7SWD3bDtNdNz8pb29OA57M9BwwvfwSdQCYjnMAAAAAAAAAAAAAAJiJ8WKzcfypA9Nx/M2sA88qDYAchQQ/oI5N+8oqq85ciNO6nz/V/JVPK/qvQ3rqnvddHR6cwPQcML38EnUAmI5zAAAAAAAAAAAAAACYifFis3H8qQPTcfzNqgMmRgAGaFSrrXq2G5r5c/+b/qFHpjfVtzs/1EO3v6oKZaq4MDo4g+k5YHr5JeoAMB3nAAAAAAAAAAAAAAAwE+PFZuP4Uwem4/ibVQdMjPBwI0eO1KJFi/Jc59ChQ2ratGnmz1arVTt27NCKFSu0detW/fbbb7pw4YIqVaqkDh06aPTo0RowYICjQ3eYOUMtdtvXPxdb7bYvZyrpV1pN63bW1v1LdfzUUY86qRUEOUAOmF5+iToATGf6OYBrAQAAAAAAAAAAAACmYrzY7PFi04+/RB3QBsw+/pJn1wETIwzRqFEjVa1aNcdlpUqVyvLzhg0b1LNnT0mSxWJRgwYNVL9+fUVERGj16tVavXq1Hn74YX344YeyWOx3gnSG8/HR6vLgbLXt85SrQ3G5E6eOSpLKlark4kicixy4ytQcyGB6+SXqADCdqecArgUAAAAAAAAAAAAAmI7xYrPHi009/tcytQ5oA+lMPf7X8tQ6YGKEIaZMmaKRI0cWaF2r1ar69evrqaee0v3336+AgABJUmpqqubNm6enn35aH3/8sdq1a6d//OMfDoza/v7Yu1L12/R3dRhOl5h8SecS4mW1WnXmQpxW/jBfEbF71fSGjqpdpbGrw3MqcsDMHDC9/BJ1AJiOc8BVpl4LAAAAAAAAAAAAADAT48VXmThezPGnDq5FGzDz+JtUB0yMQDYdO3bUb7/9Jl9f3yyfe3t7a/z48frtt9+0YMECvf/++243MeJs3BEF9XrC1WE43adrX9Kna1/K8tktLQfpyYHvuCgi1yEHrjIpB0wvv0QdwPOlpaXpq21ztPrHBYo7E6UKpauoa9B9GnHbv1XSr7Srw3M5zgFXmXotAAAAAEhS+NFNemZ+SK7Lvby8tSY0xYkRAQAAAAAAFA1jxfljvPgqE8eLOf7UwbVoA+lMO/4m1YFbT4yIj4/X9OnT9eWXXyomJkZVqlTRoEGD9Nprr2ncuHH6+OOPNW/ePI0dO9bVoRaK1WqVxWJx2feXK1cuz+W33XabFixYoN9//91JEdlHUuJF+ZUo6+owXOKOTqPVtfW9SklL1h8nDihsU6jiz8XIz7dE5joHIrdqykd9sm2bkpqktLRUrZme6syQHYIcMDcHTC+/RB3A87238ikt3zZXN7ccqHu6TVD0yUNavm2ujsbuVejo9fLy8nJ1iC7FOSCdydcCAAAAwLVCgh9Qx6Z9s31u+r0TAAAAAABwP4wV54/x4nSmjhdz/KmDDLQBc4+/SXXgthMj9u3bpz59+iguLk6lS5dW8+bNdfz4cc2dO1dHjx7V6dOnJUnBwcGuDVRS9+7dtXnzZv3xxx8KDAzMc939+/dr+PDhWrp0qRo2bGi3GJYuXarly5fr/PnzCggIUOfOnTVs2DBVqVKl0PtKTEyUJJUqVcpu8TlD9IF1qtOqt6vDcIlaAY3UtnFPSVLHpn3Ust4teurdWzRn2WN6buhnkqRW9bto5asXs2wXf+64npjbXnfe5F6Ti3JDDpibA6aXX6IO4Nmi4g7q6+3zdEvLQXppxLLMz6tXqqd3vh6nTeGfqUebIS6M0PU4B6Qz+VoAAAAAuFajWm3Vs91Qh+zbarUqMSlBJf3LOGT/AAAAAAAAGRgrLhjGi9OZOl7M8acOMtAGzD3+JtWBW06HjI+PV//+/RUXF6cJEyboxIkT2rNnj+Li4hQaGqrVq1dr165dslgsat26tavDLZRPPvlE4eHhCgkJUWRkpN32u3r1an399dfauHGjvvjiC02YMEH16tXT4sWLC72vsLAwSVKXLl3sFp8znDiyXTUa35Tls+1hUzRnqEUHN3+cbX2r1aqlr3TX2yP9Ff/nL84K0ylaBN6knm2HaVN4mA5G7chxnaSUK5r26SC1DLxFQ26d4uQIHYMcuMrUHMhgevkl6gCeZeO+JbJarRrUZXyWz/t2GqUSvqW0fk/hr3c8nannAK4FAAAAgMLZun+ZJrzXXXe9UEH9ppTSQ9Ob6J3l45SckiRJCj+6Sb0mWrRm10J9vf0dPTKjue6YXEJfbJ7p4sgBAAAAAIAJGCu2DePFV5k4Xmzq8b+WqXVAG0hn6vG/lifXgVtOjBg3bpxiYmI0duxYzZw5U2XLXn21y6RJkxQUFKSUlBQFBgaqXLlyLoy08GbNmqVhw4YpJiZGISEhioqKKtL+GjdurDfffFP79u3T2bNnlZCQoC1btqh3795KSEjQ8OHDtXr16gLv75tvvtHXX38tKb2u3YU1LU1Wq1VeXt5ZPu9891RVrt1SW/77tC6cismybO93byn2t83qNGiaAm5o6cxwneLBni/Iy8tbi9a8mOPyOcseU1JyoiYOXujcwByEHMjOtBy4nunll6gDeI7f/9wlL4uXmtTpmOVzP98Sql8zWIf/3OWiyIo3084BXAsAAAAAVyUmX9K5hPhs/xISz2eu8/G3z+nf/7lH5xL+1t1dntLjA97STS3u0s7fvtGV5EtZ9vfl1rcUtvENdQ++X0/cNU9N63RydpEAAAAAAICBGCu2HePF6UwdLzbt+OfEtDqgDWRl2vHPiafWgdtNjDh06JDCwsIUEBCg119/Pcd12rVrJ0kKCgrK/CxjIkXHjh3l7+8vi8WS47YFXc8WMTExioqKyvNfdHS0pk6dqh49eig6OlohISGKjo62+TunTJmi8ePHKygoSOXLl1epUqXUpUsXfffdd7rzzjtltVo1fvx4Wa3WfPd19OhRDRs2TFL65JSbbropny2Kj7jInareoGO2z719/NR7zCKlXEnQ+g8fyfz8zPHf9cMXz6l6g05q12+iM0N1mloBDRUSdL/2RnyvA5Fbsyz7attc/XRolaaNXK4SfqVcFKF9kQPZmZYD1zO9/BJ1AM9x6vxxlSsdID8f/2zLAsrX0rmE+My/ZoqrTDsHcC0AAAAAXPXp2pd0z9Qq2f69/r8hkqTfondqyYbXFNwgRO/+82cN6/2S7ug8WqPuCNXCZ4+odInyWfb399lovTP+Zw3r9aLu6DxaHZv2cUWxAAAAAACAYRgrth3jxelMHS827fjnxLQ6oA1kZdrxz4mn1oHbTYxYsmSJ0tLS9OCDD6pMmTI5rlOyZElJWSdGREREaNmyZapevbo6dOiQ6/4Lup4tunTponr16uX7r0GDBtqwYYMkKSoqSkOHDrVrHJJksVgUGhoqKb3MBw4cyHP9uLg43X777Tp9+rR69+6tmTOL76vQY3/borTUlCyfHQv/TnVb357j+lXrtVX7/pMVfWCtDmx4X2lpqVqzYLisVqt6j1mUbYacJ3ng1ufkZfHSorVXZ3zti9ioD1c/qxeGfaHqlQJdF1wRkAMF56k5UFCml1+iDuAZriRdkm8OHV2S5OdTIn2d6/6aKdJ56jmAawEAAAAgb3d0Gq3QUeuy/Xvo9lclSd/v/a8k6eG+r8vPt0SWbS0WS7Y/KNSz3XBVLFPVOcEDAAAAAAD8P8aKi4bx4nSmjhd76vEvDE+tA9pAwXjq8S8MT6wDH1cHUFgZEwZCQkJyXScmJv11LtdOjOjatatOnDghSZo6daq2b9+e47YFXc8WrVq1kp+fX4HWPXXqlKKioiRJzZo1s1sM12rSpIkqVaqk06dP68iRI2rdunWO62VMhoiIiNDNN9+sr776Sr6+vjZ/b/v27RUXF1eobbx9S2rgK0fyXe/wj2Fa/+Gj6v/0Ct3Q/GqOXLl8Tv6lyue6Xce7XlDknhXa9r9n9PexfTp5dKe6DJmlijWbFCrOazVu1EipyZcLtY2fT0m9Pzb/chZUUIPuWjcj97eB1K3WTGump2b+HHc6Sq8svk+j+s1QUIPudovjeo0aN1JSSuHqxpQcyI2tueHKHLDlOOfFljpwdRuwZx2QAzBZfvnv71dKly/+leOypJTE9HV8XTN72dXnAU86B5h+LQAAAABz2bvPUJJqBTRS28Y9c10eG39EFotFDWoE5brOtWpXaZzj5/QNAAAAAACAonDnsWLJfn0jpj8zUtCxYqn4jBfbe6zY3Z4XkAqfA47oB3V1HeTGhOcnaQOuf2ZIct/fA9WrV9fu3btt2tbtJkYcO3ZMklS3bt0cl6ekpGROZrh2YoSXV8FejlHQ9WyxYsUKBQYG5rteTEyMunXrJkkaPHiw3n33XYfFlDHBISUlJcfl58+f1+23364DBw6obdu2Wr16tUqVKtrFYlxcnGJjYwu1jY9/wb6zcefBOnsyQpF7rp7Uz8dHq1xAzvmSwdvHV73HLNJnL3bQge/fU83Gt6jN7eMLFeP1jp84rpQrhZtxXMKFF+KJSZf00sK7dGPzAbrr5rEO/a4Tx48rsZCzsU3Jgdw4IzfsnQO2HOe8OLoOHNEG7FkH5ABMll/+Vy5XU9Enf1VSypVsr0iNPxer8qUD5OtTsMmp9uZO54Hifg4w/VoAAAAA5nJVn6FFFum6N0PkJrcHDOgbAAAAAAAAReHOY8WS/fpGTH9mpKBjxVLxGS+291ixuz0vIBU+B1z57KTE85O0Ade3gbyY/nugMNxuYkRCQoIk6fLlnGeRhIWFKT4+XmXLllW9evWcGZpdxMbGKiQkRJGRkbrnnnu0ePFieXs75jU0f//9t/76K33GbO3atbMtv3Tpkvr166ddu3apWbNmWrNmjcqXz33GWEFVr1690Nt4+5Ys8LoN2g/UylkD1G3om5KkP/auVL02/fPdzr9UeXn7+istNVmBwX1lKeIkmZo1atr0xghX2XpgmSJPhCs2/rA2hYdlW/7RM7+qasU6dvmuGjVr2jTjsaDcOQdy44zcsHcO2HKc8+LoOnBEG7BnHZADMFl++d/khg76+fBa/R69U63qd8n8PCk5UZHH96lV/a6ODjFX7nQeKO7nANOvBQAAAGAuV/QZ1g5orF2/favI4+FqWqejzfuhbwAAAAAAABSFO48VS/brGzH9mZHCjBVLxWO82N5jxe72vIBU+Bxw5bOTEs9PSrQBV7eBvJj2e8CW58wzuN3EiOrVq+vMmTPas2ePbrzxxizLTpw4oYkTJ0qSWrduLUsB/5pVcTJt2jRFRERo4MCBWrJkiXx8HHeIZs2aJavVqvLly6tDhw5ZliUlJWngwIHaunWrGjRooPXr1ysgIMAu32vL602upEjPZm9nOapcq7lksehUzEFVrt1CZ09GKKhagzy3sVqtWvf+Q0pLSVKlms208+tX1KjTfaqQz3Z5OXzkiPwLefhSk6SNc23+yiLp1W6YerUb5pTvOnL4iLwLORnblBzIjTNyw945YMtxzouj68ARbcCedUAOwGT55X/3oMFasuE1fbn1rSydXd/89IESky+pR5sHnRBlztzpPFDczwGmXwsAAADAXK7oM+zRZoi+2jZHH387Ra8+8k22v6xotVoL1P9O3wAAAAAAACgKdx4rluzXN2L6MyOFGSuWisd4sb3Hit3teQGp8DngymcnJZ6fpA24vg3kxfTfA4VRtD+B6gI9e/aUJIWGhurw4cOZn+/atUshISGKj4+XJAUHB7sivBx169ZNd999t0qXLp3vunPmzNG0adMUFhZW5EkR69at07/+9S8dPXo0y+eXLl3Sv//9b02fPl2SNHnyZPn5Xc2+1NRUDRkyRGvXrlXt2rW1fv161axZs0ixOFv9Nv0VuWeFkhIvyq9E2XzXD187TzGHNqnjwJfUd9wXsqamaP0HD8tqtTohWjgCOQAA5qhXo5UG3PSEtv3ypaYuGqRvfvpQ81dO0PyVT6t1/W7q0WaIq0OEC3AtAAAAAOTuSOwerf95cY7/Ll+5qKZ1OmpwyLPaG/G9/vFWWy1e97K++ekDffTtFI0MbayExHOuLgIAAAAAAABjxcgV48UwHW0ApnK7v186adIk/e9//9Off/6pFi1aqGnTpkpMTFRERIT69OmjwMBArVmzRkFBQa4ONdO0adMKvG7JkiX14osv2uV7ExISFBoaqtDQUNWoUUO1atVSWlqaDh06pMuX019PMnr0aE2aNCnLdp9//rmWLVsmSfLz89PQoUNz/Y6lS5cW6ZUljlKvbX/t+HyKKtZoojote+W57pm4I9r++WRVq99B7fs/Ky8vb3UaNFU7Pp+i8LXzFHzbOOcEDbsiBwDALI8PeEvVKgbqm5/e185Dq1WudIDuuvlJjbjt3/Iqwqv94L64FgAAAAByt3HfEm3ctyTHZQufPaJa/g31aN83VL9GkL7e/rY+3zxd1rQ0Valwgzo27St/31JOjhgAAAAAACBnjBUjJ4wXw3S0AZjK7SZG1K5dW1u3btXEiRO1efNmRUVFqXnz5lqwYIFGjRqlBg3SX9tSnCZGuEq7du30/PPP64cfflBERIR+/fVXpaamqlq1arrxxhs1atQo3Xrrrdm2u3LlSub/IyMjFRkZmet3JCYmOiT2oqrVpIvOxh3R0d1fqdeYhbmuZ01L07oFI2VNS1XvMYvk5eUtSWrXb5Iidn2p7Z9PVmDwHTa/DgiuQw4AgFm8vbx1b7cJurfbBFeHgmKCawEAAAAgu6AG3bVuRsH/wlePNg+oR5sH7LY/AAAAAAAAe2OsGDlhvBimow3AVG45JbJZs2ZatWqVLly4oAsXLuinn37S6NGjlZCQoKioKHl5eally5auDtPlbrjhBr388stav369oqKilJCQoMTERB07dkyfffZZjpMiJGnkyJGyWq0F+hcYGOjcQhWQl7eP6ra+Lf3//3+izsmeb2bpxJEd6nz3v1WpVrOr23t5q/eYhbwOyI2RAwAAmI1rAQAAAAAAAAAAAAAwE+PFMB1tAKZyy4kRuTl48KCsVqsaNWqkUqWyv8p76dKlWrp0qX799dcsP+/evdum9VC8NWh3l+q3uzPX5adjD+mHZS+oesPOats3+4zhyrVbqNOgqYr9bYvC185zYKRwFHIAAACzcS0AAAAAAAAAAAAAAGZivBimow3ARD6uDsCeDhw4IEkKCgrKcfm9996b488jRozQwoULC70eirdGne7Nc3mlWs009pPEPNfpMGCyOgyYbM+wCuXo8XC9uXSULl25oGoV6urZB/6jCmWqqNdEiwKrt9SjfUPVqVlfSdI7y8fph19X6OSZY3pv/F41rBWcuZ+8lj0zP0SRx8M1tNeLGtRlvHML6GCekAOAq2zZv1Q/HVqti5fP6NjJX+XvW1IVylTVuEHvqVZAQ1eHB8AJPOE8wLUAAAAAAAAAAAAAAJiJ8eKC2bJ/qfYe+V6PD3hTr/73/mL1fEBhnp989v3eOnMhThaLl0qVKKsn7pyrhrXaSJKGvhYoXx9/+fmUlCQ90GOyugcPlsTzk7QBeBqjJkYU9FUuvPIFxcWMsJF65r5P1LBWsL7b+bHeX/WMJt2/SJL05j+2qkzJCpnrdml9j+7rPklPvXtLtv3ktWzmYxs1/bORBYpnwnvdNXHwQlWvFGhLceBieV38eYqcLoaPnTyoKR/2Ue0qTfTG6LWqWKaqPvp2irYf+FK+Pv7y9vbVQ7e/qg5N0l8d9vX2d7Tqx/nysngrLS1FfTuP1sBbxkmSlm15Uyt2vKMSfmW04Ol9Liyp423/5St1a32fvL191bFpH1ksFi3f/rZmf/GoZj2+ydXhAXACzgMAAAAAAAAAAAAAAHi27b98pZ7thkuS+nYaXayeDyjM85MvDPs88+dtB77SjLCRWvB0eOby5x4My/IHpTPw/KQ5eH7y6vOTGY6dPKQn5rRT306j9Y8735Ikzf3yCR2M2p65zp9//6ZRd0zXwFvGadO+MP1n3TSdOn9cy18+6+TSFYxREyMAdxIRu1cl/ctk/jLu1X6EFqyaoOSUpBzXb12/a677ymuZvV28fFajZrXUleTLqlL+BiWnXlHcqUjd2m6YJtz7odPiQHb5Xfx5gpwuhm/r8JBqV2mSZSJDq3pdNLTnC/L3Lamjx8P19Htd9dkLx1XSr7R6th2qO29+QpKUkHheo2a1VKt6XdSwVhvd3fUpNazVRu9+Pd41BbST/NppSmqyDkZt18TBC+Xj7Zu5XbM6nbV080wXRg7AXjgPAAAAAAAAAAAAAAAknvfydHkd338Oei/LswEZb1+QXP98QGGfn7x2kkRC4jlJFscHmQPaU/HF85P7sqybkpqst5aN1s0tB2b5fNygdzL/f/p8nIa9Xk/dWt8nSeoePFhN63TSY28GO7ooNvOoiREbNmxwdQiA3Zw4/Yf+OHFAY2YHZ352JemS4s/Hui6oAihTsoJ6BA9RSf+yGtrrBe36fY2WbHiNX+rFQG4Xf55yMZbbxXCPNg9mW7dj0z6Z/69XvZVktercxb9VslJplS5ZPnNZYlKCUlOTHR67s+XXTvdFbFTzujdleRhakr7aNkc3trjTFSEDsDPOAwAAAAAAAAAAAAAAiee9PF1ex3f372tzfDZAcv3zAbY8Pxm6ZLjCj26UJL36yDdZlk3/bLissqrpDR31SN83VKFMFYfETXsqvnh+MqvF6/6trq3v1YVLp3Xx8tkc11n78yK1b3KbKpWr7qCo7c+jJkYAnqZpnU56Y9SazJ/vmeqYX8Z5CV0yXJEn9kuSjp+K0HMf9ZWPt58kadrI5Tm+Firi+D4NvGWcJOlIzM9qWNOzXjfkznK6+POUizFbJxOt2f2Jqleqr2oV62Z+tmX/Un269iUdj4/QQ31ec7tXZo2bd6Ni44/kuOy9p/aqaoUb8mynOw4uzzYT9H/fv6bj8RGaPuZ7xwUOwG44DwAAAAAAAAAAAAAApKKPH8P95XZ8c3o2QCo+zwcU9vnJZx/4VJK0dvciffDNs3rt/5+Pm/34FlWtWEcpqcn65LvnNT1sROay/PD8pGfh+cl0h6J/0q/HflDo6HX6z7ppue5zza6PNbqf694cYwsmRgDFVI1K9fXX2ejMnxMSzysxKUEB5Wo5NY6MiwVJmvBed00cvDDHX+bXijy+L/NB8iMxP+vGFgMcGSIKIbeLP0+5GCvsxfCeI9/rP+umKXTUOlksV1+f1rX1Pera+h7FnY7S1EUD1blZP91QtYnD4ra3uU/+kO86ubVTq9Wq3b+v0ag7pmeu+8Wmmdr2y5eaPnq9SviVckzQAOyK8wAAAAAAAAAAAAAAQCra+DE8Q07HN6dnA6Ti83xAUZ6f7N1+hOYse0znE06pXOnKqlqxjiTJx9tXg7qM10PTGxc4Dp6f9Cw8PyklJl3SvC//oReGL83yzOT1DkRu1aUrF9SxaV+HxOooXq4OAEDOGtYKlo+Xr34+vE6StHLHu+oWNFi+Pn4ujixv8ediJYtFAeXTL0Ai4/arXvVWLo4K1+vdfoTCIzbqfMIpSdkvxtztDQlS4S+Gw49u1szPH9LLD63MddJD9UqBalqnk348tMohMbtKXu30tz93qk61ZirpX0aStHTzbG3ct0Sho9ZleZ0YAPfGeQAAAAAAAAAAAAAAIPG8l6fL7fhe/2yAVLyeDyjM85MXL59V/LnjmT9v/2W5ypWurLKlKulyUoIuXj6buWzj3iUOfeid9uQeTH5+8sSpo/rrbLQmzg/R0NcC9eXWt7Rm18ea/tmILOt9u/Mj9W43Qt5e3k6J3154YwRQjE0e8l/N+Pwhzf3ycdWs3FD/GrI413XfWjpGP/22WqcvxGnyh7eplH9ZLfpXRL7L7C0idm+WC4cyJSpoxQ/vut1rhTzNxctnlZh0SQHla0rKevGX08XYkFufc2W4Nrn2Yrhd4155Xgzvj9yi0M+G6d8jv1aDmkFZlh07+avqVmsuSTp78W/ti9igLq3udkoZnCWvdrr9l690U4u7JEl/n43RglUTVKNSfT0zP0SS5Ofjr3njfnJF2ADsiPMAAAAAAAAAAAAAAEDieS9Pl9vxLV86IPPZAKl4Ph9Q0OcnExLP6eX/3KsryZflZfFS+dJV9PJDq2SxWHT2wklN+/RupaWlyiqralSqr0n3f5rjfuyB9lQ88fzkVfVqtNLSqX9n/vzp2qm6ePms/nHnW5mfJSSe19YDS/Xe+L3OCt9umBgBFGP1arTSu//cXaB1x9+zwKZlhTHr8U35rtO5eT91bt4v8+d3/rnLLt+Nosnr4s+TLsZyuhiOivsl23qzvnhEySlXNCPsoczP/vXAf1SvRit9tXWODvyxVT7efpKsGtRlvNo17uXEUjheXu30x19XasZjGyVJVSrU1roZVqfHB8DxOA8AAAAAAAAAAAAAACSe9/J0uR3fR2e2yHw2QCqezwcU9PnJahXr6u1xO3NcVqNyfc1/yj4Pd/P8pPvi+cnC2bTvMzWq3U61qzRyQJSOxcQIwA1VLFNNE97rpof7vK5OzfoWaV/PzA/RydNRalnvZjtFh+Ior4s/T7oYK+jF8KJnj+S6zF4TidzVh88cdHUIAFyM8wAAAAAAAAAAAAAAAJ7NnZ8N4PlJFBbPT+ZueO+p2T67o/No3dF5tJ2ici4mRgBu6POX4uy2r5nXzPoEPJGPt58uXDqlMbOD9cbotapYpqrN+1q25U1989MHqlyuph0jBAAAAAAAAAAAAAAAAAAUBM9PAgVnz+cnN+0L03+/f0UVy1azY4T2xcQIAIBHaxF4k/73/J922dfdXZ/S3V2fssu+AAAAAAAAAAAAAAAAAAAAHMWez092Dx6s7sGD7bIvR/FydQAAAAAAAAAAAAAAAAAAAAAAAAC2YmIEAAAAAAAAAAAAAAAAAAAAAABwWxar1Wp1dRBAfqxWKSnV1VEUjp+3ZLEUbhurVUpLdkw8xYmXr211Y0IO5MYdc8OW45wX0+vA9PLDbO6Y/xlMPg844veAydcCAAAAMFdqkrRxrqujsE3IOMnbz9VRAAAAAAAAd+XO/SKS/fpG3G2sWLL/WLnpY8Um5IA7ltFWJjw/SRsw+5khyXXPDvo4/yuBwrNYJH8DstViYaAwN6bkQG7IDerA9PLDbOR/OtPrwfRrAQAAAAAAAAAAAABmYqyYsWITcsCEMhaF6e3A9PwwvfyF4eXqAAAAAAAAAAAAAAAAAAAAAAAAAGzFxAgAAAAAAAAAAAAAAAAAAAAAAOC2mBgBAAAAAAAAAAAAAAAAAAAAAADcFhMjAAAAAAAAAAAAAAAAAAAAAACA22JiBAAAAAAAAAAAAAAAAAAAAAAAcFtMjAAAAAAAAAAAAAAAAAAAAAAAAG6LiREAAAAAAAAAAAAAAAAAAAAAAMBtMTECAAAAAAAAAAAAAAAAAAAAAAC4LSZGAAAAAAAAAAAAAAAAAAAAAAAAt8XECAAAAAAAAAAAAAAAAAAAAAAA4LaYGAEAAAAAAAAAAAAAAAAAAAAAANwWEyMAAAAAAAAAAAAAAAAAAAAAAIDbYmIEAAAAAAAAAAAAAAAAAAAAAABwW0yMAAAAAAAAAAAAAAAAAAAAAAAAbouJEQAAAAAAAAAAAAAAAAAAAAAAwG0xMQIAAAAAAAAAAAAAAAAAAAAAALgtJkYAAAAAAAAAAAAAAAAAAAAAAAC3xcQIAAAAAAAAAAAAAAAAAAAAAADgtnxcHQBQEFarlJTq6igKx89bsliKtg+rVUpLtk88ruTla5+6MDEHMrhjLtjjuF/L9DowvfyS+50H7HkOkMgBAAAAAIDZ3O2+2PR+oQz2qgd3rAPT+8Yk+shtyQF3LKctbK0b2oB99uUspo8T0T8OAAAAAIDzMTECbiEpVXo2zNVRFE7oYMm/iC0sLVnaONc+8bhSyDjJ269o+zA1BzK4Yy7Y47hfy/Q6ML38kvudB+x5DpDIAQAAAACA2dztvtj0fqEM9qoHd6wD0/vGJPrIbckBdyynLWypG9qA++WG6eNE9I8DAAAAAOB8Xq4OAAAAAAAAAAAAAAAAAAAAAAAAwFZMjAAAAAAAAAAAAAAAAAAAAAAAAG6LiREAAAAAAAAAAAAAAAAAAAAAAMBtMTECAAAAAAAAAAAAAAAAAAAAAAC4LSZGAAAAAAAAAAAAAAAAAAAAAAAAt8XECAAAAAAAAAAAAAAAAAAAAAAA4LaYGAEAAAAAAAAAAAAAAAAAAAAAANyWj6sDAOA44Uc36Zn5IVk+K+FXWrWrNFbPtsN0181Pytub04AnMz0HTC+/RB2YjuMPAAAAADAZ98UgB2B6DphefpADppcfAAAAAADTcJcPGCAk+AF1bNpXVll15kKc1v38qeavfFrRfx3SU/e87+rw4ASm54Dp5ZeoA9Nx/AEAAAAAJuO+GOQATM8B08sPcsD08gMAAAAAYAomRsA4c4Za7Lavfy622m1fjtSoVlv1bDc08+f+N/1Dj0xvqm93fqiHbn9VFcpUcWF0zkcOmJcDppdfog6uZ9p5gOMPAAAAADAZ98UgB7IyrW9MIgdML//1aAPm5YDp5QcAAAAAwBRMjPBgI0eO1KJFi/Jc59ChQ2ratGmWz1asWKFvv/1WP//8s2JjYxUfHy8/Pz81aNBAffv21dNPP62AgABHhu4w5+Oj1eXB2Wrb5ylXh+JSJf1Kq2ndztq6f6mOnzpqVGcfOZDO5ByQKL9kdh1wHjD7+AMAAAAAwH0xTM4B+sbSmZwDktnlpw2kMzkHJMoPAAAAAICnYmKEARo1aqSqVavmuKxUqVLZPps9e7Y2b94sPz8/1axZU61bt9Zff/2l/fv3Kzw8XB9++KHWrl2r4OBgB0duf3/sXan6bfq7Ooxi4cSpo5KkcqUquTgS5yIHrjI1BzKYXn7J3DrgPJDO1OMPAAAAAIDEfTHMzQH6xq4yNQcymFp+2sBVpuZABtPLDwAAAACAJ2JihAGmTJmikSNHFnj9hx9+WC+++KJuueUW+fn5ZX5+4MABDRkyRL/88ouGDBmiX3/91QHROtbZuCMK6vWEq8NwusTkSzqXEC+r1aozF+K08of5iojdq6Y3dFTtKo1dHZ5TkQNm5oDp5Zeog2uZeB7g+AMAAAAATMZ9MciBq0zsG5PIAdPLfy3agJk5YHr5AQAAAAAwBRMjkM3w4cNz/LxVq1b66KOP1KlTJx06dEiHDh1Ss2bNnByd7ZISL8qvRFlXh+ESn659SZ+ufSnLZ7e0HKQnB77joohcgxwwNwdML79EHWQw9TzA8QcAAAAAz7Zkw+s6ErtHR2J+VtzpP1StYl0tnhLl6rCKDU+/L05LS9NX2+Zo9Y8LFHcmShVKV1HXoPs04rZ/q6RfaVeHVyx4eg4UlKl9YxI5YHr5M9AGzM0B08sPAADShR/dpGfmh+S63MvLW2tCU5wYEQAAsDePnxgRHx+v6dOn68svv1RMTIyqVKmiQYMG6bXXXtO4ceP08ccfa968eRo7dqyrQ5UkWa1WWSwWV4eRq2snQly6dMmFkRRe9IF1qtOqt6vDcIk7Oo1W19b3KiUtWX+cOKCwTaGKPxcjP98SmesciNyqKR/1ybZtSmqS0tJStWZ6qjNDdghywNwcML38EnWQwdTzAMcfAAAAADzbx99OUdlSldSoVlslXD7r6nCKHU+/L35v5VNavm2ubm45UPd0m6Dok4e0fNtcHY3dq9DR6+Xl5eXqEF3O03OgoEztG5PIAdPLn4E2YG4OmF5+AACQVUjwA+rYtG+2z7l/BgDA/Xn0xIh9+/apT58+iouLU+nSpdW8eXMdP35cc+fO1dGjR3X69GlJUnBwsMNi6N69uzZv3qw//vhDgYGBea67f/9+DR8+XEuXLlXDhg3tFsPSpUu1fPlynT9/XgEBAercubOGDRumKlWqFHpf27dvlySVLl1aTZo0sVuMznDiyHbdfH9ols+2h03R7pWvq+eoj9Si28NZllmtVi17NURxET/o/pd/VsANLZ0Zrl3VCmikto17SpI6Nu2jlvVu0VPv3qI5yx7Tc0M/kyS1qt9FK1+9mGW7+HPH9cTc9rrzpuIxcaioyAFzc8D08kvUQQZTzwMcfwAAAADwbJ/+66hqVK4vSRo1s6UuJ13MZwuzePJ9cVTcQX29fZ5uaTlIL41Ylvl59Ur19M7X47Qp/DP1aDPEhREWD56cA4Vhat+YRA6YXv4MtAFzc8D08gMAgKwa1Wqrnu2GOmTfVqtViUkJKulfxiH7BwAAefPYaY7x8fHq37+/4uLiNGHCBJ04cUJ79uxRXFycQkNDtXr1au3atUsWi0WtW7d2dbiSpE8++UTh4eEKCQlRZGSk3fa7evVqff3119q4caO++OILTZgwQfXq1dPixYsLtH1aWppOnDihTz/9VCNHjpQkvfbaaypTxn0u4KxpabJarfLy8s7yeee7p6py7Zba8t+ndeFUTJZle797S7G/bVanQdPcuqMzJy0Cb1LPtsO0KTxMB6N25LhOUsoVTft0kFoG3qIht05xcoT2Rw5kZWIOXMv08ktm1gHngatMPP4AAAAA4MkyJkWgYDzpvnjjviWyWq0a1GV8ls/7dhqlEr6ltH5PwcYBTONJOVBQ9I1lZWIOXMvE8tMGsjIxB65levkBAEDBbN2/TBPe6667XqigflNK6aHpTfTO8nFKTkmSJIUf3aReEy1as2uhvt7+jh6Z0Vx3TC6hLzbPdHHkAACYy2MnRowbN04xMTEaO3asZs6cqbJly2YumzRpkoKCgpSSkqLAwECVK1fOhZFeNWvWLA0bNkwxMTEKCQlRVFRUkfbXuHFjvfnmm9q3b5/Onj2rhIQEbdmyRb1791ZCQoKGDx+u1atX57r9/PnzZbFY5O3trZo1a2rEiBGqXbu2Vq5cqXHjxhUpNmeLi9yp6g06Zvvc28dPvccsUsqVBK3/8JHMz88c/10/fPGcqjfopHb9JjozVKd5sOcL8vLy1qI1L+a4fM6yx5SUnKiJgxc6NzAHIQeyMy0Hrmd6+SXz6oDzQFamHX8AAAAAAK7lKffFv/+5S14WLzWpk7XPw8+3hOrXDNbhP3e5KLLiz1NyoKDoG8vOtBy4nmnlpw1kZ1oOXM/08gMAYLLE5Es6lxCf7V9C4vnMdT7+9jn9+z/36FzC37q7y1N6fMBbuqnFXdr52ze6knwpy/6+3PqWwja+oe7B9+uJu+apaZ1Ozi4SAAD4fx45MeLQoUMKCwtTQECAXn/99RzXadeunSQpKCgo87NNmzbJYrFk+xccHFzkmGJiYhQVFZXnv+joaE2dOlU9evRQdHS0QkJCFB0dbfN3TpkyRePHj1dQUJDKly+vUqVKqUuXLvruu+905513ymq1avz48bJarTluX6NGDd18883q1KmTatasKYvFov379+t///ufzp07Z3Ncjhb72xalpaZk+exY+Heq2/r2HNevWq+t2vefrOgDa3Vgw/tKS0vVmgXDZbVa1XvMomx/OcZT1ApoqJCg+7U34nsdiNyaZdlX2+bqp0OrNG3kcpXwK+WiCG1HDhSMJ+dAQZhefsmz64DzQP48+fgDAAAAAJAfT7kvPnX+uMqVDpCfj3+2ZQHla+lcQnzmX7JEVp6SAzmhb6xgPDkHCsKTy08bKBhPzoGCML38AACY7NO1L+meqVWy/Xv9f0MkSb9F79SSDa8puEGI3v3nzxrW+yXd0Xm0Rt0RqoXPHlHpEuWz7O/vs9F6Z/zPGtbrRd3RebQ6Nu3jimIBAABJPq4OwBGWLFmitLQ0PfjggypTpkyO65QsWVJS1okRGd555x21bds28+fSpUsXOaYuXboUepuoqCgNHTpUW7ZsKfL3X8tisSg0NFRff/21IiIidODAAbVu3TrbenfeeafuvPPOzJ8PHDigJ554QkuWLFF0dLS2bdtm0/e3b99ecXFxhdrG27ekBr5yJN/1Dv8YpvUfPqr+T6/QDc1DMj+/cvmc/EuVz3W7jne9oMg9K7Ttf8/o72P7dPLoTnUZMksVazYpVJzXatyokVKTL9u8vST5+ZTU+2PzL7etHrj1OW3ct0SL1r6omY9tlCTti9ioD1c/q9ce/VbVKwXa5XsaNW6kpJSi1YWpOZDBUbngyBywx3G/liPqwNFtwJ51QA6433nAnucAiTYAAAAAAKZydB+hIxX3vhF36RfJq+xXki7JN4dJEenblUhfJ/mSfH387BJLYdmrHugbc7++MYk+cltywNnnfGeNE13PlrqhDZjRBvJi8rUAAAAmc8Q1wB2dRqtr63uzfV6+TBVJ0vd7/ytJerjv6/LzLZFlHYvFkm27nu2Gq2KZqjl+F9cEAAAUXvXq1bV7926btvXIiREbNmyQJIWEhOS6TkxMjKScJ0Y0b95cnTt3tmtMrVq1kp9fwQYeTp06paioKElSs2bN7BpHhiZNmqhSpUo6ffq0jhw5kuPEiOu1atVKq1evVv369bV9+3atX79ePXv2LPR3x8XFKTY2tlDb+PgX7C9xNO48WGdPRihyz9XOzvPx0SoXUDfP7bx9fNV7zCJ99mIHHfj+PdVsfIva3D6+UDFe7/iJ40q5cin/FfNQwrdof4EkqEF3rZuR8xtBJKlutWZaMz018+e401F6ZfF9GtVvhoIadC/Sd1/rxPHjSkwuWl2YmgMZbM0FV+aAPY77tWypA1e3AXvWATngfucBe54DJNoAAAAAAJiqqH2EruTqvhFP6RfJq+z+fqV0+eJfOS5LSklMX8eFOWSveqBvzP36xiT6yG3JAXuf813dP5gbW+qGNmBGG8iLydcCAACYzBH9IrUCGqlt49yfeYuNPyKLxaIGNbI/V5iT2lUa57qMawIAAJzLIydGHDt2TJJUt27OHVwpKSnavn27pJwnRjjCihUrFBgYmO96MTEx6tatmyRp8ODBevfddx0Wk6+vr6T0+iiosmXLqlu3blq2bJnCw8NtmhhRvXr1Qm/j7VuywOs2aD9QK2cNULehb0qS/ti7UvXa9M93O/9S5eXt66+01GQFBveVxcur0HFeq2aNmnZ5Y4SzJCZd0ksL79KNzQforpvH2nXfNWrWtMsbIwrKk3IggzNywd45YI/jfi1H14Ej2oA964AccL/zgD3PARJtAAAAAABM5cw+Qntzp76R4twvklfZK5erqeiTvyop5Yr8rntzRPy5WJUvHeCyt0VI9qsH+sbcr29Moo/clhxw5TnfkeNE17OlbmgDZrSBvJh8LQAAgMlcdY1skUXK4e0QOcnrDxJwTQAAQOHZ8px5Bo+cGJGQkCBJunw554uKsLAwxcfHq2zZsqpXr1625YMHD1Z8fLwqV66sAQMG6I033lBAQIBDY5ak2NhYhYSEKDIyUvfcc48WL14sb29vh3zX33//rb/+Sv8rUrVr1y7UthkTKVJTU/NZM2e2vN7kSor0bFjB1q1cq7lksehUzEFVrt1CZ09GKKhagzy3sVqtWvf+Q0pLSVKlms208+tX1KjTfaqQz3Z5OXzkiPyL2MJSk6SNc4u2j4LaemCZIk+EKzb+sDaFZ6/sj575VVUr1rFp30cOH5F3EcfeTM2BDM7IBXvngD2O+7UcXQeOaAP2rANywP3OA/Y8B0i0AQAAAAAwlTP7CO3NnfpGinO/SF5lb3JDB/18eK1+j96pVvW7ZH6elJyoyOP71Kp+V/sEYSN71QN9Y+7XNybRR25LDrjynO/IcaLr2VI3tAEz2kBeTL4WAADAZK64Rq4d0Fi7fvtWkcfD1bROxyLti2sCAACcyyMnRlSvXl1nzpzRnj17dOONN2ZZduLECU2cOFGS1Lp1a1mumdlZvnx5TZw4UV27dlWZMmX0ww8/6PXXX9ePP/6o3bt3q0SJEg6Ne9q0aYqIiNDAgQO1ZMkS+fg47vDMmjVLVqtV5cuXV4cOHQq83enTp7V582ZJUnBwsIOiK7r6bforcs8KlQ2oK78SZfNdP3ztPMUc2qQb731VDdrdqSXPt9X6Dx7W3c9typIjnqxXu2Hq1W6Yq8OwG3Kg8DwtBwrL9PJLnlcHnAcKx9OOPwAAAAAAheGu98XdgwZryYbX9OXWt7JMjPjmpw+UmHxJPdo86MLo3Iu75kBu6BsrPE/LgcLytPLTBgrP03KgsEwvPwAAuKpHmyH6atscffztFL36yDfZ3sRotVqNuUYEAMDdeOTEiJ49e+rQoUMKDQ1Vr1691LhxY0nSrl27NGzYMMXHx0vK/mB/mzZt1KZNm8yfu3fvrpYtW2rAgAFasmSJHnrooULH0q1bNwUEBKh06dL5rjtnzhzVrl1bkydPLvKkiHXr1un777/XqFGj1KDB1b9kcunSJc2cOVPTp0+XJE2ePFl+flcv3nbv3q0VK1Zo+PDhatiwYZZ97t27V4899pjOnj2rVq1a6dZbby1SjI5Ur21/7fh8iirWaKI6LXvlue6ZuCPa/vlkVavfQe37PysvL291GjRVOz6fovC18xR82zjnBA27IgcAcB4AAAAAAJhi3c//0V9njkmSzib8rZTUJP13/SuSpKoV6/KQnwerV6OVBtz0hL7e/ramLhqkjk37KvqvQ1q+ba5a1++mHm2GuDpEuAh9YzAdbQAAAAC5ORK7R+t/Xpzjsptb3qWmdTpqcMizCtsYqn+81VbdggarUrnqOnH6D23dv1Rvj9upMiUrODdoAABQIB45MWLSpEn63//+pz///FMtWrRQ06ZNlZiYqIiICPXp00eBgYFas2aNgoKC8t1Xv379VLp0ae3evdumiRHTpk0r8LolS5bUiy++WOjvyElCQoJCQ0MVGhqqGjVqqFatWkpLS9OhQ4d0+fJlSdLo0aM1adKkLNtdvHhRL7/8sl5++WVVrVpVN9xwg7y9vRUTE6Pjx49Lkho3bqzly5fL29vbLrE6Qq0mXXQ27oiO7v5KvcYszHU9a1qa1i0YKWtaqnqPWSQvr/Qytes3SRG7vtT2zycrMPiOIr0mF65BDgDgPAAAAAAAMMV3Oz/S/sjNWT5buOYFSVLr+t2YGOHhHh/wlqpVDNQ3P72vnYdWq1zpAN1185Macdu/5eXl5erw4CL0jcF0tAEAAADkZuO+Jdq4b0mOyxY+e0S1/Bvq0b5vqH6NIH29/W19vvn/2LvvuCrL/4/j78MUxIWgKO69wT3KgZmlmaZmNlwNLRt+LVfaUNs4smzacqRfo1ylVm7TrK8jFU2tEEUDxELFgSLr/P7wB4psOINz7tfz8fDxkHudz3Xfn+vi3Pd1XdwzZE5Pl3/56mrXqLc83b1tHDEAACgop5wYUa1aNW3fvl0TJkzQTz/9pKioKDVp0kTz5s3L8gaFgkyMyOBor79q3bq1XnzxRf366686evSoDh8+rLS0NFWuXFkdO3bUyJEjc3zjQ1BQkN59911t2bJFv//+u/766y8lJSXJ19dXPXr0UP/+/fXII4+oVKlSdihVwbm4uqlmizuu/d8l9wkce7+frVMRv+iW+0PlG9j4+v4urur5+AJDvibXWZADAGgHAAAAAABGMXv0VnuHADtydXHVoK7jNKjrOHuHghKEZ2MwOuoAAAAAbhZUt5s2zDQXePvuLR9Q95YPWOx4AADA+pxyYoQkNW7cWGvWrMm2/NKlS4qKipKLi4uaNWuW73G+++47JSYmql27dtYI02qqV6+uV199tdD7VahQQWPGjNGYMY7/Sti6re+R8nhAeTbmiH5d/pIC6nVQq97ZO4wqVmvKa3IdHDkAgHYAAAAAAAAARsWzMRgddQAAAAAAAMBYnHZiRG4OHToks9msBg0ayNs762uthgwZojp16qhVq1by8fHRr7/+qhkzZig4OFj333+/nSJGUdVvPyjP9b6BjfX0/KQ8t2nbd7La9p1sybCKJTI2XHOWjdTlqxdVuXxNTXrgS5X38dftE0yqFdBMj/UOVfvGvSVJQ96oJXc3T3m4eUmSHug+Wd2CB0uSxn8comOx4Rpy+8sa0HmsvYpjdc6YAwAKh3YAAAAAAAAARsWzMcdX0H6h5JQkvb7kfp04fVie7l4q71NJYwZ8pEC/etr9x4+av+5FpaYmy9PDW2MHzlPdqkGZn+HMfUbUAQAAAAAAAGMx3MSIgwcPSpKCgoKyrWvatKn++9//6p133tGVK1dUrVo1jRw5UlOnTpWHh4etQwWymRk2QuPvm696gcH6cdcX+mTNeE28f6Ekac6T2+XjVT7L9i88FKZ6gcHZjjPriS2a8dWIAn3muI+6acLgBQrwrVW84GF3kz7pqXMX42Qyuci7VBk91W+u6gW2tHdYFpVTJ9GJ04c05bNequbfUG+NWq8KPpX0464vtHz7HJ3854ge7zMrS2fPtAX9ders8cyfj8cd0LThq9SpaV8t3zZH3/3ygUp5+Gjec/ttX0AAAAAAAADYxLYDy7TzyFpdunIux4HGAGALhekX6t1+lNo16iWTyaRVO97X2988pmnDV+rNpQ/p7dHbVCugqQ4e2663/vuQPh3/e+Z+Be0zor/I8dFPdL2fKMOJ00f01Lut1bv9KD3Z7x1J0s4ja7Vw3cuKivtdfTqOzlwuiX4iAAAAAABKOCZG3GDy5MmaPJm/+IGS6WjMPnl5+mROdLi9zXDNWzNOKanJdo3r0pUEjZzdTFdTrsi/XHWlpF1V3Jljuq31UI0b9JldY0NWLw39OrOT5OeDKzUzbITmPRdu36AsLKdOojvaPqxq/g2zPKCuX621Xhzytb7a/Ga2Y0wbsTLz/3/+vUdTPrtTbRveKUka2OVZ1QtsqQ+/HWvtotgcdRnkAAAAAAAA1+34faW6trhPrq7u2QYazx691d7hwcJ4LoKSmAOF6RfycC+V+UZxSWpco4OW/TRLsWciVda7omoFNJUkNa/TWf8knFRE9F7Vr9bK4jGXxPOI6+gn2p9l29S0FL2zfJRuadY/y/JAv/oad98X2nbgG125einLOmfuJwIAAAAAwBkwMQJwEKfOHtfxUwf1+NvBmcuuJl9W/IWYXPeZ8dUwmWVWo+rt9Gjvt1Tex9/icfl4lVf34Afl5VlGQ25/Sbv/XKelm9/gAXcJdONfjkpMOi/JJMl5Oipy6yTq3vKhbNtmvCbcZHLJ85g/7vpct7UaInc3539rEHUZ5AAAAAAAwCjyex6WmpaiQ1E7NGHwArm5umfulzHQGM6H5yIoiTlQlH6hDCt/flcdm/ZTNb/6unD5jA5F/aKmtTrpl0Pf6fLVi4o7F2WViREl8TziOvqJslq84RV1aTFIFy+f1aUrCZnLq/k3kHRtkiQAAAAAAHAshpsYsXnzZnuHABRZoxrt9dbIdZk/3zst94kOb4/epkoVaig1LUXzf3xRM8KG641Hvy/Q54QuHaZjpw5IkmLPHNULn/eWm+u1geHTR6zK9prko7H71f/WMZKkiOjfVK+qc71215mELh2m8MgtkqTX/z8fnKWjojidRDm5mnJFW/Yv1Zwnt1soQvsa815HxcRH5Ljuo2f3qVL56tRlJ0cOAAAAAABwTX7Pw/Yf3aImNTtlmRQhXR9oDMfDcxE4ag4Upl8ow383vaHYxJuuZQAAwVNJREFU+KOa8fgmlfLw1stDl+nzHyYr6eolNa7ZUTUrN5GrS8G6iAvbXyTRZ1TS0U90zZGTO3X4xK8KHbVBX26YbsMoAQAAAACANRluYgTgqKr41tE/CSczf05MuqCk5ET5lQ3McftKFWpIktxc3TWg81g9PKNBgT9r0gOLMv8/7qNumjB4QY4PtzMci92veoHXHmxHRP+mjk37FvizYFsZ13b9noX69PtJmZNlnKWjoiidRLnZdmCZqvk3UO0qzS0Rmt3NfebXfLehLjs3cgAAAAAAYBTFHQD9y6FVuqVZ/yz73TjQGI6H5yJwxBwobL+QJH2zdZZ+/n2FZozaqFIe3pKk4HohCq4XIklKTr2qwa8EqGblJgWKobD9RVLJO4/Iin4iKSn5st5b8aReGrZMJpPJluEBAAAAAAArc7F3AAAKpl5gsNxc3PXbXxskSat/+VBdgwbL3c0j27ZXkhOzvPJ1y76lVnuAGX8+RjKZ5Ffu2oP4Y3EHVDvAOQaSO7OebYYr/OgWXUg8Iyl7R0XG/x1JUTqJ8vLjrs91Z9tHLRVeiUddBjkAAAAAAHAWc5/5Vcunx+f4r1L56pJyfx5mNpu15891ateoV+bxMgYav/HYD5kDjeFceC6CkpgDhekXkqRlP72tLfuXKnTkBvl4lc9cfubCqcz/L9n4qoLrdlegXz2rxFwSzyNyZuR+olNnIvVPwklN+DhEQ96opRXb39G63V9oxlfDbR0yAAAAAACwMCZGAA5k8oNL9PkPkzX8rXoKj9yqUX1m5rhdwsXTGv9xiEbNbqGRs5vrwLGfNPH+RTluW1xHY/ZlmXThU6q8vvv1Q6t8Foru0pUExZ+Pzfx5x++rVLZ0RZXx9nWajorCdhLlJSb+qP6K3qOQlg9YOswSi7oMcgAAAAAAYBR5PQ/74+9dqlG5sbw8fSTlPtAYzoXnIiipOVDQfqF/E6I1b804XbqSoPEfh+jxt4P1zNz2kqSF617WIzMaafhb9XT63AmNu+9zq8VbUs8j6Ce6Ue0qzbVs2r9aPCVKi6dEaUDnsbqj7SOaeP9Ce4QNAAAAAAAsyM3eAQAouNpVmuvD/+zJd7sqFevo42f3WeQzZ4/emuf6Dk36qEOTPpk/f/Cf3Rb5XFhWYtJ5vfrlIF1NuSIXk4vKlfbXqw+vkclkyrWjYtygz+wYcdFMfnCJZn79sOauGK2qFevp+QcXKyru92zbrdu9QAvWvahLl8/pl0Or9M1Ps/Tqw6sz/wLSj7u/UOfmA1W6VFlbF8FuqMsgBwAAAAAARpHX87Adv69Up6b3SLo+0LiKbx2N/zhEkuTh5qn3xuy0R9iwIp6LoKTmQEH7hfzLV9OGmeYc1z036FOLxJJff5FUcs8j6CcqjL0RmzQzbLguJ12QWWZtP7hMz/T/UJ2a9rVS1AAAAAAAwFKYGAE4gQo+lTXuo656pNebat+4d77bj/84RKfPRqlZ7VtsEB1KgsoVaur9MbtyXOdMHRUF7SS6o+0I3dF2RK7rH+31hgWjAgAAAAAAQEmS1/Ow/x1erZlPbJGU90BjALCnwvYL5YU+I2Ognyh3w3pOy/Jzq/q3aemL0RaMCgAAAAAA2AoTIwAn8PXUuEJtP+v/O/YAI3Bz9dDFy2f0+NvBemvUelXwqVTkYy3fNkff7/xUFctWtWCEAAAAAAAAKCk+G3/I3iEAQL4K2y+UF/qM4OzoJwIAAAAAwDiYGAEAcGpNa3XSf1/82yLHGtjlWQ3s8qxFjgUAAAAAAAAAAADrop8IAAAAAADjcLF3AAAAAAAAAAAAAAAAAAAAAAAAAEXFxAgAAAAAAAAAAAAAAAAAAAAAAOCwTGaz2WzvIID8mM1Scpq9oygcD1fJZCreMcxmKT3FMvHYk4u7Zc6FEXMggyPmgiWu+42Mfg6MXn7J8doBS7YBEjkAAAAAAEbliPeDGYz8bMSSZU9LlrbMtcyxbC1kjOTqUfzjONr1l3g2JvGMvCg54IjlLIqinhvqgGWOZStG7yfi+TgAAJbhyPfEkuXuiwEAQMG42TsAoCBMJsnTgNlqMvHlOINRcyADucA5MHr5JdoBcgAAAAAAjIn7wWs4D8bG9efZmFFywCjlLArqALnBOQAAAAAAAPlxsXcAAAAAAAAAAAAAAAAAAAAAAAAARcXECAAAAAAAAAAAAAAAAAAAAAAA4LCYGAEAAAAAAAAAAAAAAAAAAAAAABwWEyMAAAAAAAAAAAAAAAAAAAAAAIDDYmIEAAAAAAAAAAAAAAAAAAAAAABwWEyMAAAAAAAAAAAAAAAAAAAAAAAADouJEQAAAAAAAAAAAAAAAAAAAAAAwGExMQIAAAAAAAAAAAAAAAAAAAAAADgsJkYAAAAAAAAAAAAAAAAAAAAAAACHxcQIAAAAAAAAAAAAAAAAAAAAAADgsJgYAQAAAAAAAAAAAAAAAAAAAAAAHBYTIwAAAAAAAAAAAAAAAAAAAAAAgMNiYgQAAAAAAAAAAAAAAAAAAAAAAHBYTIwAAAAAAAAAAAAAAAAAAAAAAAAOi4kRAAAAAAAAAAAAAAAAAAAAAADAYTExAgAAAAAAAAAAAAAAAAAAAAAAOCwmRgAAAAAAAAAAAAAAAAAAAAAAAIfFxAgAAAAAAAAAAAAAAAAAAAAAAOCw3OwdAFAQZrOUnGbvKArHw1UymQq3j9kspadYJ56SxMW9aOfGCDmQG0fMjaJc57wY/RwYvfyS47UDlmwDJHIAAAAAAAAAAAAAMBpH7CO8kaX6Cx3xPFh6vIAj9ZVLlu8vNzqj54BR2gBHLGdRMHawaBwtPxg7yLgpe2FiBBxCcpo0KczeURRO6GDJs5A1LD1F2jLXOvGUJCFjJFePwu1jlBzIjSPmRlGuc16Mfg6MXn7J8doBS7YBEjkAAAAAAAAAAAAAGI0j9hHeyFL9hY54HizZV+pofeWS5fvLjc7oOWCUNsARy1kUjB0sGkfLD8YOMm7KXlzsHQAAAAAAAAAAAAAAAAAAAAAAAEBRMTECAAAAAAAAAAAAAAAAAAAAAAA4LCZGAAAAAAAAAAAAAAAAAAAAAAAAh8XECAAAAAAAAAAAAAAAAAAAAAAA4LCYGAEAAAAAAAAAAAAAAAAAAAAAABwWEyMAAAAAAAAAAAAAAAAAAAAAAIDDYmIEAAAAAAAAAAAAAAAAAAAAAABwWG72DgCA9YRHbtX4j0OyLCvlUVrV/BuoR6uhuueWZ+TqSjPgzIyeA0Yvv8Q5MDquPwAAAAAAAAAAAAAjoq8UgNHbAaOXH+SA0ctvVFxRwABCgh9Qu0a9ZZZZ5y7GacNvi/Tx6ud08p8jevbeT+wdHmzA6Dlg9PJLnAOj4/oDAAAAAAAAAAAAMCL6SgEYvR0wevlBDhi9/EbDxAgYzrtDTBY71n8Wmy12LGuqH9hKPVoPyfz57k5P6tEZjfTDrs/08J2vq7yPvx2jsz1ywHg5YPTyS5yDmxmtHeD6AwAAAAAAAAAAADAi+kqzM1p/ObIy4vU3ejtg9PLfjDpgvBwwevmNhokRTmzEiBFauHBhntscOXJEjRo1ynX9qlWr9Pnnn2vPnj06e/asfH191ahRI/Xu3VsTJkywdMhWdyH+pDo/9LZa9XrW3qHYlZdHaTWq2UHbDyxT7JlIQzXs5MA1Rs4BifJLxj4HtAPGvv4AAAAAAAAAAAAAjMvofaX0lxsb1/8ao7cDRi4/deAaI+eARPmdHRMjDKB+/fqqVKlSjuu8vb1zXJ6cnKyHHnpIy5YtkyTVqVNH1atX1+nTp7V9+3YdPHjQISdGHN+3WnVa3m3vMEqEU2ciJUllvX3tHIltkQPXGTUHMhi9/JJxzwHtwDVGvf4AAAAAAAAAAAAAjM3IfaX0lxsb1/86I7cDknHLTx24zqg5kMHo5XdmTIwwgClTpmjEiBGF2uexxx7TsmXLdOedd+r9999X3bp1M9clJCRo27ZtFo7SNhLiIhR0+1P2DsPmklIu63xivMxms85djNPqXz/W0Zh9alS9nar5N7B3eDZFDhgzB4xefolzcCMjtgNcfwAAAAAAAAAAAABGRF9pVkbsL8d1Rr3+Rm8HjF7+G1EHjJkDRi+/0TAxAtmsX79eX375pdq3b6/Vq1fLzS1rmpQvX159+/a1U3RFl5x0SR6lytg7DLtYtH6qFq2fmmXZrc0G6Jn+H9gpIvsgB4ybA0Yvv8Q5yGDUdoDrDwAAAAAAAAAAADin9PR0rfz5Xa393zzFnYtS+dL+6hJ0n4bf8Yq8PErbOzy7o6/0OmftL1+6+U1FxOxVRPRvijt7XJUr1NTiKVH2DqvEcdbrXxBGbweMXv4M1AHj5oDRy280DjsxIj4+XjNmzNCKFSsUHR0tf39/DRgwQG+88YbGjBmjL774Qu+9956efvppe4daKGazWSaTya4xzJkzR5L04osvZpsU4chOHtygGs172jsMu7ir/Sh1aTFIqekpOn7qoMK2hir+fLQ83EtlbnPw2HZN+bxXtn1T05KVnp6mdTPSbBmyVZADxs0Bo5df4hxkMGo7wPUHAAAAAAAAAAAAnNNHq5/Vqp/n6pZm/XVv13E6efqIVv08V5Ex+xQ6aqNcXFzsHaJd0Vd6nbP2l3/xwxSV8fZV/cBWSrySYO9wSixnvf4FYfR2wOjlz0AdMG4OGL38RuOQo97379+vXr16KS4uTqVLl1aTJk0UGxuruXPnKjIyUmfPnpUkBQcH2zdQSd26ddNPP/2k48ePq1atWnlue+DAAQ0bNkzLli1TvXr1LBbDsmXLtGrVKl24cEF+fn7q0KGDhg4dKn9//2zbXrlyRRs3XrspCgkJ0c6dOzV//nwdPXpUPj4+6tChgx577DH5+flZLD5bORWxQ7fcH5pl2Y6wKdqz+k31GPm5mnZ9JMs6s9ms5a+HKO7or7r/1d/kV72ZLcO1qEC/+mrVoIckqV2jXmpW+1Y9++Gtenf5E3phyFeSpOZ1Omv165ey7Bd/PlZPzW2jfp0ca4JRbsgB4+aA0csvcQ4yGLUd4PoDAAAAAAAAAAAAzicq7pC+3fGebm02QFOHL89cHuBbWx98O0Zbw79S95YP2jFC+6Ov9Dpn7S9f9HykqlSsI0kaOauZriRfymcPY3LW618QRm8HjF7+DNQB4+aA0ctvNA43JTg+Pl5333234uLiNG7cOJ06dUp79+5VXFycQkNDtXbtWu3evVsmk0ktWrSwd7iFMn/+fIWHhyskJETHjh2z2HHXrl2rb7/9Vlu2bNE333yjcePGqXbt2lq8eHG2bcPDw5WamqqKFSvq/fffV8eOHTVv3jxt2rRJ3377rSZPnqz69etry5YtFovPFszp6TKbzXJxcc2yvMPAaapYrZm2LXlOF89EZ1m378d3FPPHT2o/YLpD/1LLSdNandSj1VBtDQ/ToahfctwmOfWqpi8aoGa1btWDt02xcYSWRw5kZcQcuJHRyy8Z8xzQDlxnxOsPAAAAAAAAAAAAOJst+5fKbDZrQOexWZb3bj9Spdy9tXFv9rFBRmfUvlJn7i/PmBSB3Dnz9S8Ko7YDGYxYfupAVkbMgRsZvfzOzuEmRowZM0bR0dF6+umnNWvWLJUpUyZz3cSJExUUFKTU1FTVqlVLZcuWtWOkhTd79mwNHTpU0dHRCgkJUVRUVLGO16BBA82ZM0f79+9XQkKCEhMTtW3bNvXs2VOJiYkaNmyY1q5dm2WfU6dOSZLOnTun559/Xr1799ahQ4d09epVHThwQN27d1dCQoIGDBig6OjonD62RIo7tksBddtlW+7q5qGejy9U6tVEbfzs0czl52L/1K/fvKCAuu3Vus8EW4ZqMw/1eEkuLq5auO7lHNe/u/wJJackacLgBbYNzErIgeyMlgM3M3r5JeOdA9qBrIx2/QEAAAAAAAAAAABn8+ffu+ViclHDGln7QT3cS6lO1WD99fduO0VWshmxr5T+cmPj+mdnxHbgRkYrP3UgO6PlwM2MXn5n5lATI44cOaKwsDD5+fnpzTffzHGb1q1bS5KCgoIyl2VMpGjXrp08PT1lMply/Yzjx4+rb9++KlOmjCpUqKBhw4bpzJkzxY49OjpaUVFRef47efKkpk2bpu7du+vkyZMKCQnRyZMni/yZU6ZM0dixYxUUFKRy5crJ29tbnTt31o8//qh+/frJbDZr7NixMpvNmfskJiZKklJTU1W3bl2tXLlSTZo0kYeHh5o3b67Vq1crICBACQkJeuedd4p7Wqwi5o9tSk9LzbLsRPiPqtnizhy3r1S7ldrcPVknD67Xwc2fKD09TevmDZPZbFbPxxdmmyXoLAL96ikk6H7tO7pJB49tz7Ju5c9ztfPIGk0fsUqlPLztFGHRkQMF48w5UBBGL7/k3OeAdiB/znz9AQAAAAAAAAAAACM4cyFWZUv7ycPNM9s6v3KBOp8Yr5TUZDtEVrI5e18p/eXGxvUvGGdvB/LjzOWnDhSMM+dAQRi9/M7MoSZGLF26VOnp6XrooYfk4+OT4zZeXl6Ssk6MOHr0qJYvX66AgAC1bds21+NfvHhRISEhio6O1tKlS/XJJ59o+/bt6tOnj9LT04sVe+fOnVW7du18/9WtW1ebN2+WJEVFRWnIkCHF+tycmEwmhYaGSrp2bg4ePJi5rlSpUpn/f/rpp+Xu7p5lX29vb40ePVqS9OOPP1o8tuL6639h+nbWXYr5M2tDdfXKeXl6l8t1v3b3vCS/GkH6+b/jtXXhMzoduUudBr2uClUbWjtku3rgthfkYnLRwvXXZ73tP7pFn62dpJeGfqMA31r2C66IyIHCccYcKAyjl19yznNAO1Bwznj9AQAAAAAAAAAAAKO4mnxZ7jlMipAkD7drY4Cuply2ZUgOw1n7SukvNzauf+E4aztQUM5YfupA4ThjDhSG0cvvrNzsHUBhZEwYCAkJyXWb6OhoSVknRnTp0kWnTp2SJE2bNk07duzIcd9PPvlEMTEx2rZtm2rUqCFJqlatmjp16qTvvvtO99xzT5Fjb968uTw8PAq07ZkzZxQVFSVJaty4cZE/My8NGzaUr6+vzp49q4iICLVo0UKSVKFChcxtcvvsjOXHjx8v0me3adNGcXFxhdrH1d1L/V+LyHe7Bh0GK+H0UR3b+52qN7mWJxfiT6qsX828j+/mrp6PL9RXL7fVwU0fqWqDW9XyzrGFijFbLPXrKy3lSqH28XDz0idP51/Oggqq200bZppzXV+zcmOtm5GW+XPc2Si9tvg+jewzU0F1u1ksjpvVb1BfyamFOzdGyYHcFDU37JkDRbnOeSnKObB3HbDkOSAHHK8dsGQbIFEHAAAAAAAwKks/N7Ylng0AAAAAxZPf/YCnh7euXPonx3XJqUnXtnG33186ttQ9gdH7SgvaVy45X3+5I98TS5bLA0cbLyExbqoo156xg7kzeh2QHO93IWMHeTZaHAEBAdqzZ0+R9nWoiREnTpyQJNWsmXMjlZqamjnp4caJES4uBXsxxpo1a3TrrbdmToqQpI4dO6pOnTpavXp1sSZGfPfdd6pVq1a+20VHR6tr166SpMGDB+vDDz8s8mfmJ+NtEKmp118b1KhRo8z/5zaRI+OtEmlpaTmuz09cXJxiYmIKtY+bZ8Fv0uq26a/Vs/uq65A5kqTj+1ardsu7893P07ucXN09lZ6WolrBvWUqYN7kJvZUrFKvFm7WfSk73owmJV/W1AX3qGOTvrrnlqet+lmnYmOVVMi/SGCUHMiNLXLD0jlQlOucF2ufA2vUAUueA3LA8doBS7YBEnUAAAAAAACjsudz4+Li2QAAAABQPPndD1QsW1UnTx9WcupVedz05oj48zEqV9pP7m4F+0Ou1mCpewKj95UWpq9ccq7+cke+J5YslweONl5CYtxUUa49YwdzZ/Q6IDne70LGDvJs1F4camJEYmKiJOnKlZxn0ISFhSk+Pl5lypRR7dq1C338w4cPa9CgQdmWN23aVIcPHy708QorJiZGISEhOnbsmO69914tXrxYrq6uVvmsf//9V//8c23GeLVq1TKXBwYGqkaNGjp58qSOHTuW49s5IiMjs+1XGAEBAYXex9Xdq8DbVgxsIplMOhN9SBWrNVXC6aMKqlw3z33MZrM2fPKw0lOT5Vu1sXZ9+5rqt79P5fPZLy9Vq1Qt0hsj7GX7weU6dipcMfF/aWt4WLb1n48/rEoVauSwZ+FVqVq1SLM+C8qRcyA3tsgNS+dAUa5zXqx9DqxRByx5DsgBx2sHLNkGSNQBAAAAAACMyp7PjYuLZwMAAABA8eR3P9Cwelv99td6/Xlyl5rX6Zy5PDklScdi96t5nS7WDjFPlronMHpfaWH6yiXn6i935HtiyXJ54GjjJSTGTRXl2jN2MHdGrwOS4/0uZOwgz0aLoyjjzDM41MSIgIAAnTt3Tnv37lXHjh2zrDt16pQmTJggSWrRooVMJlOhj3/u3DmVL18+23JfX1/9+eefRYq5MKZPn66jR4+qf//+Wrp0qdzcrHd5Zs+eLbPZrHLlyqlt27ZZ1t13332aNWuWFi5cqEcffTTLOrPZrAULFkiSunfvXqTPLsrrTa6mSpOytzW5qtPybh3b+53K+NWUR6ky+W4fvv49RR/Zqo6DXlfd1v209MVW2vjpIxr4wtYi5ZIk/RURIc9CXsK0ZGnL3CJ9XLHd3nqobm891CafFfFXhFwL+QcJjJIDubFFblg6B4pynfNi7XNgjTpgyXNADjheO2DJNkCiDgAAAAAAYFT2fG5cXDwbAAAAAIonv/uBbkGDtXTzG1qx/Z0sEyO+3/mpklIuq3vLh2wQZe4sdU9g9L7SwvaVS87TX+7I98SS5fLA0cZLSIybKsq1Z+xg7oxeByTH+13I2EGejdpL8d71YmM9evSQJIWGhuqvv/7KXL57926FhIQoPj5ekhQcHGyP8HLUtWtXDRw4UKVLl85323fffVfTp09XWFhYsSdFbNiwQc8//3zm2x0yXL58Wa+88opmzJghSZo8ebI8PLLWvAkTJqhs2bLavn27Xn31VaWlpUmSUlNTNWnSJIWHh8vT01PPPvtssWK0ptqtrv1iO3lwvWo0uz3Pbc/FRWjH15NVuU5btbl7kipWa6r2A6Yp5o9tCl//nm0ChsWRAwBoBwAAAAAAAAAAAAA4s9pVmqtvp6f08+8rNG3hAH2/8zN9vHqcPl79nFrU6aruLR+0d4iwEyP1l2/47Ust2fialmx8TQmJ/yox6Xzmzxt++9Le4dmFka4/kBPqAGBcDjUxYuLEiapYsaL+/vtvNW3aVM2bN1f9+vXVrl071alTJ/MNBkFBQUU6foUKFZSQkJBt+dmzZ+Xr61ukY06fPl3Lli2Tv79/vtt6eXnp5Zdflru7e5E+60aJiYkKDQ1VvXr1VLVqVbVt21atW7eWn5+fpk6dKrPZrFGjRmnixInZ9q1UqZK++uoreXp66uWXX1aVKlXUvn17BQQEaObMmXJzc9Nnn32mxo0bFztOawls2FkJcRGK3LNSVRp0ynU7c3q6NswbIXN6mno+vlAuLq6SpNZ9JqpS7Tba8fVkJZyOzHV/lFzkAADaAQAAAAAAAAAAAADObnTfdzSqzyydOH1I7698Slv3f6V7bnlGrz2yRi4uDjU0DBZkpP7yH3d9rgXrXtKCdS8p4dI/unQlIfPnH3d9bu/w7MJI1x/ICXUAMC6H+vZbrVo1bd++XXfddZdKlSqlqKgo+fr6at68eVq7dm3mWySKOjGicePGOnz4cLblhw8fLtGTAHLSunVrvfjii7rtttvk4eGhw4cP69ChQ/L399fgwYO1ceNGzZs3L9fX/PTq1Uv79u3TkCFD5Obmpn379snNzU333Xefdu7cqSFDhti4RIXj4uqmmi3uuPb///9llZO938/WqYhf1GHgK/INvH6NXVxc1fPxBTKnpWrjp4/IbDZbPWZYFjkAgHYAAAAAAAAAAAAAgLNzdXHVoK7jNH/in/r+rav66qUYPdH3bXl5+tg7NNiRkfrLZ4/eqg0zzTn+mz16q73DswsjXX8gJ9QBwLjc7B1AYTVu3Fhr1qzJtvzSpUuKioqSi4uLmjVrVqRj9+nTR1OmTFF0dLSqVasmSdq5c6ciIyM1c+bMYsVta9WrV9err75arGM0btxYX37puK8Tq9v6HimXiR+SdDbmiH5d/pIC6nVQq97jsq3PeCXSL19PUfj69xR8xxjrBQurIAcA0A4AAAAAAAAAAAAAAIyI/nJj4/rD6KgDgDE53MSI3Bw6dEhms1kNGjSQt7d3tvXLli2TpMw3QmT8XKtWLbVp00aSNGrUKL333nvq16+fpk+frqSkJE2cOFHt2rVTv379bFQSWEr99oPyXO8b2FhPz0/Kc5u2fSerbd/JlgwLNkQOAKAdAAAAAAAAAAAAAAAYEf3lxsb1h9FRBwBjcpqJEQcPHpQkBQUF5bh+0KBBOf48fPhwLViwQJJUtmxZbd68Wf/5z390//33y83NTX369NGcOXPk4uJiveCBXETGhmvOspG6fPWiKpevqUkPfKnyPv66fYJJtQKa6bHeoWrfuLck6YNVY/Tr4e90+twJfTR2n+oFBmceJ/rfCM0MG67zifEqXaqcJgxeoFoBTSVJ4z8O0bHYcA25/WUN6DzWDqUEUBJtO7BMO4+s1aUr53Ti9GF5unupvE8ljRnwkQL96tk7PAAAAAAAAAAAAAAAAKBYth1Ypn0RmzS67xy9vuT+EjVGpjBjByd90lPnLsbJZHKRd6kyeqrfXNULbJnleD/unq/ZXz+iacNX6pZm90hi7CAA52OYiRFms7lAx6lbt67WrFljsbiA4pgZNkLj75uveoHB+nHXF/pkzXhNvH+hJGnOk9vl41U+c9vOLe7Vfd0m6tkPb812nHeXP67e7UfpjrYjtO3AMs0MG6EP/rNbkjTriS2a8dWIAsUz7qNumjB4gQJ8axW3aLCDgnwBdnQ53RCcOH1IUz7rpWr+DfXWqPWq4FNJn/8wRTsOrpC7m6dcXd318J2vq23DOyRJK3+eq+//94lkMskkk+7rNlE9Wg+RJG3dH6YvN0zXmQuxWvVqgh1Lan07fl+pri3uk6uru9o16iWTyaRVO97X2988ptmjt9o7PAAAAAAAAAAAAAAAAKBYdvy+Uj1aD5Mk9W4/qkSNkSnM2MGXhn6d+fPPB1dqZtgIzXsuPHN93Nko/bDzUzWu0SHLZzB20FgYP3h9/GCGE6eP6Kl3W6t3+1F6st87mcu3H1iuRRumSf8/9vzVR9YowLeWlm+bo+9++UClPHw077n9ti0cCsQwEyMAR3M0Zp+8PH0y3/xwe5vhmrdmnFJSk3PcvkWdLjkuP3fpH/0VvUdvjVwvSercfKDeX/m0YuKPWmVG66UrCRo5u5muplyRf7nqSkm7qrgzx3Rb66EaN+gzi38eCi6/L8DOIKcbgjvaPqxq/g2zfBFpXruzhvR4SZ7uXoqMDddzH3XRVy/FysujtGpWbqp3ntqh0l7l9E/C3xo9p6Wa1Oyoqn511S14sBrVaK8n5gTbrYyWkF89TU1L0aGoHZoweIHcXN0z92tco4OW/TTLjpHDmmi/AQAAAAAAAAAAABgRfaWA88qrfv9nwEdZxsdkvH1Bsv8YmcKOHbxxkkRi0nlJpsyf09PT9fY3j+mpe97TvNXjrBg17WlJx/jB/Vm2TU1L0TvLR+mWZv2zLD8as0/zf3xBMx7fLL9yVXU56aJcXFwlSQO7PKt6gS314bdjbVQiFJbTTIzYvHmzvUMALOrU2eM6fuqgHn87OHPZ1eTLir8QU6jj/Jvwt3zLVpGr67XqbjKZVKlCDf2TcNIqEyN8vMqre/CD8vIsoyG3v6Tdf67T0s1v8MWmBMjtC7CzfCHN7Yage8uHsm3brlGvzP/XDmgumc06f+lfefmWVqv6t2Wuq1S+unzLBOjf83+rql9dq5fBVvKrp/uPblGTmp2yTIqQpJU/v6uOTfvZI2TYAO03AAAAAAAAAAAAACOirxRwXnnV7z1/rs9xfIxk/zEyRRk7GLp0mMIjt0iSXn/0+8zly7e9raa1blGDaq2tFm8G2tOSjfGDWS3e8Iq6tBiki5fP6tKVhMzly36arYFdnpNfuaqSJO9SZawdOizIaSZGAM6oUY32emvkusyf753mb/MYQpcO07FTByRJsWeO6oXPe8vN1UOSNH3EqhxfjXU0dr/63zpGkhQR/ZvqVXWu1y05spy+ADvLF9KiTiZat2e+AnzrqHKFmtnW7f1roy5eOacG1dtaOlyrGvNeR8XER+S47qNn96lS+ep51tNfDq3KNhP2v5veUGz8Uc14fJP1AodVFTcvAAAAAAAAAAAAAMAR0VcKGFtu9Tun8TFSyRkjU9ixg5MeWCRJWr9noT79fpLeePR7HY/7XdsPLtfbT24rUgyMHXQ+jB+85sjJnTp84leFjtqgLzdMz7LuxD+HVdm3lp77qKsuJ11Qh8Z9NLTnNLn+/1sjULIxMQIooar41tE/CSczf05MuqCk5ET5lQ0s1HH8y1fX2QunlJaWKldXN5nNZv1z7qQqla9RoP0zvjBJ0riPumnC4AU5fqG50bHY/aoXeO0LTUT0b+rYtG+hYob15PQFWHKeL6SFvSHYG7FJX26YrtCRG2QymbKsO37qoGZ9/bBeHBImL4/SVonXWuY+82u+2+RWT81ms/b8uU4j75qRue03W2fp599XaMaojSrl4W2doGF1xckLAAAAAAAAAAAAAHBU9JUCxpZT/c5pfIxUcsbIFGfsYM82w/Xu8id0IfGMfj+2XafPRWlEaH1J0tmLcXpn2SidvXBKd3cane+xGDvofBg/KCUlX9Z7K57US8OWZRszKElpaak6GrNPbz72o9LN6Xp5fl+t/vUj3XPL01aNHZbhYu8AAOSsXmCw3Fzc9dtfGyRJq3/5UF2DBsvdzaNQx6ngU0n1Altp497FkqTtB5fLr3w1BfrVs3jMkhR/PkYymeRX7tqXsGNxB1Q7oLlVPgtF17PNcIUf3aILiWckZf9CmvF/R1LYG4LwyJ806+uH9erDq1W9UsMs606cPqwXv+ijcfd9oWa1b7Vq3PaQVz394+9dqlG5sbw8fSRJy356W1v2L1XoyA1ZXqcG50P7DQAAAAAAAAAAAMCI6CsFnFdu9fvm8TFSyRojU5ixg5euJCj+fGzmzzt+X6WypSuqjLev7u40WmEvn9LiKVFaPCVKjWt00Nh7PynQpIiioD11HEYeP3jqTKT+STipCR+HaMgbtbRi+ztat/sLzfhquCSpUoUa6tx8oDzdveTlUVq3NhugP078z6ZlQdExMQIowSY/uESf/zBZw9+qp/DIrRrVZ2au276z7HE98Fo1/Xs+WpM/u0PD37o+8WHswHla+795GhHaQF9teUsT7ptvtZiPxuzLMlvQp1R5fffrh1b7PBRMXl+AneULaWFuCA4c26bQr4bqlRHfqm7VoCzrTpw+ohc+762x936i1g1ut0nstpZXPd3x+0p1anqPJOnfhGjNWzNOl64kaPzHIXr87WA9M7e9PUKGDdB+AwAAAAAAAAAAADAi+koB55Vb/b5xfIxUMsfIFHTsYGLSeU1beI9Gzm6ux98O0rc73terD6/J8S/hWxvtacnF+MHraldprmXT/s2cMDSg81jd0fYRTbx/oSSpe8sH9dtf65Wenq60tFT99td61blpjCFKLjd7BwAgd7WrNNeH/9lToG3H3jsv13XVKzUs0GsB8zN79NZ8t+nQpI86NOmT+fMH/9ld7M9F8SUmnderXw7S1ZQrcjG5qFxp/8wvwLl9IR036DM7Rlw0kx9coplfP6y5K0arasV6ev7BxYqK+z3bdrO/eVQpqVc1M+zhzGXPP/DltTr37RglJp3XZ2sn6bO1kyRJj90VqrYN77BZOawtr3r6v8OrNfOJLZIk//LVtGGm2ebxwT5ovwEAAAAAAAAAAAAYEX2lgPPKrX4/Nqtp5vgYqWSOkSno2MHKFWrq/TG7CnTMgoz/K86+tKclF+MHC65b0P2KiN6rx2Y3lavJVc1qd1b/W/9jpYhhaUyMABxQBZ/KGvdRVz3S6021b9y7WMca/3GITp+NUrPat1goOpREeX0BdqYvpAW9IVg4KSLXdaGjNlgyJIfz2fhD9g4BAAAAAAAAAAAAAAAAsBpHHh/D2EEUBeMHczes57QsP7u4uOjxu2fp8btnWTAy2AoTIwAH9PXUOIsda9YNM18BZ+Tm6qGLl8/o8beD9dao9argU6nIx9q6P0xLNr2mCmUqWzBCAAAAAAAAAAAAAAAAAMgfYweBwrHk+MHl2+bo+52fqmLZqhaMEJbExAgAgFNrWquT/vvi3xY5VrfgweoWPNgixwIAAAAAAAAAAAAAAAAAANZjyfGDA7s8q4FdnrXIsWAdLvYOAAAAAAAAAAAAAAAAAAAAAAAAoKiYGAEAAAAAAAAAAAAAAAAAAAAAAByWyWw2m+0dBJAfs1lKTrN3FIXj4SqZTIXbx2yW0lOsE09J4uJetHNjhBzIjSPmRlGuc16Mfg6MXn7J8doBS7YBEjkAAAAAAIBRpSVLW+baO4qiCRkjuXrYOwoAAADAcTny/YBkuXsCo/eVOlpfuWS5/nJHvPY3slQeGDkHJMfMg6KOj3O0chYFYweLxtHyg7GDjJuyFzd7BwAUhMkkeRogW00mOolyY5QcyA25wTkwevkl2gFyAAAAAAAAAAAAAIARGb2v1Mh95Ua/9hmMnAOScfLAKOUsCqPXAYn8MHr5UXAGbyoAAAAAAAAAAAAAAAAAwLmFR27V+I9Dcl3v4uKqdaGpNowIAAAAsCwmRgAAAAAAAAAAAAAAAACAAYQEP6B2jXpnW+7i4mKHaAAAAADLYWIEAAAAAAAAAAAAAAAAABhA/cBW6tF6iFWObTablZScKC9PH6scHwAAAMgLEyMAAAAAAAAAAAAAAAAAAJm2H1iuVTveU2TsfqWmJcu/fHW1aXCHRvWZJXc3D4VHbtX4j0M0/r75SkpO1He/fKBTZyJ1f/fJGtZzmr3DBwAAgAExMQIAAAAAAAAAAAAAAAAADCAp5bLOJ8ZnW+7m6qHSpcpKkr744QUt3fyGalZuooGdn5Vv2SqKPROpnw8u1/A7XpG7m0fmfiu2v6OLl8+oV/uR8i0TIP/y1W1WFgAAAOBGTIwAAAAAAAAAAAAAAAAAAANYtH6qFq2fmm15+8Z36bVH1uiPk7u0dPMbCq4botcf/V4e7qUyt3ms91vZ9vs34aQ+n/iHKvhUsmrcAAAAQH6YGAEAAAAAAAAAAAAAAAAABnBX+1Hq0mJQtuXlfPwlSZv2LZEkPdL7zSyTIiTJZDJl269H62FMigAAAECJwMQIAAAAAAAAAAAAAAAAADCAQL/6atWgR67rY+IjZDKZVLdKUIGOV82/gaVCAwAAAIrFxd4BAAAAAAAAAAAAAAAAAABKBpNMUg5vh8iJp7u3laMBAAAACoaJEQAAAAAAAAAAAAAAAAAAVfNroHRzuo7Fhts7FAAAAKBQmBgBAAAAAAAAAAAAAAAAAFD3lg9Kkr74YYpSUpOzrTebzbYOCQAAACgQN3sHAAAAAAAAAAAAAAAAAACwvoiYvdr42+Ic193S7B41qtFOg0MmKWxLqJ58p5W6Bg2Wb9kAnTp7XNsPLNP7Y3bJx6u8bYMGAAAACoCJEQAAAAAAAAAAAAAAAABgAFv2L9WW/UtzXLdgUoQCPevpsd5vqU6VIH274319/dMMmdPT5V++uto16i1Pd28bRwwAAAAUjMnM+80AAAAAAAAAAABKpLRkactce0dRNCFjJFcPe0cBAAAAOC5Hvh+QuCcAAACAbbnYOwAAAAAAAAAAAAAAAAAAAAAAAICiYmIEAAAAAAAAAAAAAAAAAAAAAABwWEyMAAAAAAAAAAAAAAAAAAAAAAAADsvN3gEABWE2S8lp9o6icDxcJZOpeMcwm6X0FMvEY08u7pY5F0bMgQyOmAuWuO43Mvo5MHr5JcdrByzZBkjkAAAAAAAAAAAAMB5H7B/JQF+hZcvvSP2EkuX7Co3O6DlglDbAEctZFEU9N9QByxzLVhg3xZgRAPbBxAg4hOQ0aVKYvaMonNDBkmcxa1h6irRlrmXisaeQMZKrR/GOYdQcyOCIuWCJ634jo58Do5dfcrx2wJJtgEQOAAAAAAAAAAAA43HE/pEM9BVarvyO1k8oWb6v0OiMngNGaQMcsZxFUZRzQx1wvNxg3BRjRgDYh4u9AwAAAAAAAAAAAAAAAAAAAAAAACgqJkYAAAAAAAAAAAAAAAAAAAAAAACHxcQIAAAAAAAAAAAAAAAAAAAAAADgsJgYAQAAAAAAAAAAAAAAAAAAAAAAHBYTIwAAAAAAAAAAAAAAAAAAAAAAgMNiYgQAAAAAAAAAAAAAAAAAAAAAAHBYTIwAAAAAAAAAAAAAAAAAAAAAAAAOy83eAQCwnvDIrRr/cUiWZaU8SquafwP1aDVU99zyjFxdaQacmdFzwOjllzgHRsf1BwAAAAAAAAAAMCb6iQAYvR0wevlBDhi9/ACMiVYNMICQ4AfUrlFvmWXWuYtx2vDbIn28+jmd/OeInr33E3uHBxsweg4YvfwS58DouP4AAAAAAAAAAADGRD8RAKO3A0YvP8gBo5cfgLEwMQIwgPqBrdSj9ZDMn+/u9KQendFIP+z6TA/f+brK+/jbMTrYgtFzwOjllzgHRsf1BwAAAAAAAAAAMCb6iQAYvR0wevlBDhi9/ACMhYkRMJx3h5gsdqz/LDZb7Fi25OVRWo1qdtD2A8sUeybScF9uyAFywOjllzgHRm8HjH79AQAAAAAAAAAAjMro/URG7ycEOSDRDhi9/NQBcsDo5Qfg3JgYYQAjRozQwoUL89zmyJEjatSokaKiolS7du0CHXfatGmaOnWqJUK0mQvxJ9X5obfVqtez9g7F7k6diZQklfX2tXMktkUOXGfUHMhg9PJLxj0HtAPXGPX6AwAAAAAAAAAAGJ1R+4noJwQ5cJ1R24EMRi0/deA6o+ZABqOXH4DzYmKEgdSvX1+VKlXKcZ23t7ckqVSpUrrllltyPcbFixd14MABSVKnTp0sH6SVHd+3WnVa3m3vMGwuKeWyzifGy2w269zFOK3+9WMdjdmnRtXbqZp/A3uHZ1PkgDFzwOjllzgHNzJiO8D1BwAAAAAAAAAAMCb6ia4zYj8hsjJqDhi9HTB6+W9EHTBmDhi9/ACMhYkRBjJlyhSNGDEiz20CAgL0888/57p+xowZOnDggKpVq6bbbrvNwhFaX0JchIJuf8reYdjcovVTtWh91rd73NpsgJ7p/4GdIrIfcuA6I+WA0csvcQ5uZMR2gOsPAAAAAAAAAABgTPQTXWfEfkJkZdQcMHo7YPTy34g6cJ2RcsDo5QdgLEyMQKEsWrRIkjR06FC5uLjYOZrCSU66JI9SZewdhl3c1X6UurQYpNT0FB0/dVBhW0MVfz5aHu6lMrc5eGy7pnzeK9u+qWnJSk9P07oZabYM2SrIAePmgNHLL3EOMhi1HeD6AwAAAAAAAAAAZ5Wenq6VP7+rtf+bp7hzUSpf2l9dgu7T8DtekZdHaXuHZ3f0E13jzP2ESze/qYiYvYqI/k1xZ4+rcoWaWjwlyt5hlTjOnAP5MXo7YPTyZ6AOGDcHjF5+AMZimIkR8fHxmjFjhlasWKHo6Gj5+/trwIABeuONNzRmzBh98cUXeu+99/T000/bO1RJktlslslksncYWfz22286dOiQJGn48OF2jqbwTh7coBrNe9o7DLsI9KuvVg16SJLaNeqlZrVv1bMf3qp3lz+hF4Z8JUlqXqezVr9+Kct+8edj9dTcNurXqWTUi+IiB4ybA0Yvv8Q5yGDUdoDrDwAAAAAAAAAAnNVHq5/Vqp/n6pZm/XVv13E6efqIVv08V5Ex+xQ6aqPD/dFHS6Of6Bpn7if84ocpKuPtq/qBrZR4JcHe4ZRYzpwD+TF6O2D08megDhg3B4xefgDGYoi7v/3796t58+aaOXOm4uLi1KRJE6WkpGju3LkaPHiwjhw5IkkKDg62WgzdunWTyWRSVFRUvtseOHBALVu21NGjRy0aw7Jly3TPPfeoe/fuuu+++/T222/r33//LfD+CxculCS1b99eDRs2tGhstnAqYoeqNOiUZdmOsCl6d4hJh376Itv2ZrNZy17rpvdHeCr+799tFaZNNK3VST1aDdXW8DAdivolx22SU69q+qIBalbrVj142xQbR2gd5MB1Rs2BDEYvv2Tcc0A7cI1Rrz8AAAAAAAAAAHAuUXGH9O2O93RrswGaNnyFercfqSf6vq0n7n5b+yO3aGv4V/YOscQxaj+RM/cTLno+Uiumn1HoqA2qWLaqvcMpsZw5BwrLqO1ABqOWnzpwnVFzIIPRyw/AuTn9xIj4+HjdfffdiouL07hx43Tq1Cnt3btXcXFxCg0N1dq1a7V7926ZTCa1aNHC3uFKkubPn6/w8HCFhITo2LFjFjvu2rVr9e2332rLli365ptvNG7cONWuXVuLFy/Od9+UlBQtXbpUkjRixAiLxWQr5vR0mc1mubi4ZlneYeA0VazWTNuWPKeLZ6KzrNv34zuK+eMntR8wXX7Vm9kyXJt4qMdLcnFx1cJ1L+e4/t3lTyg5JUkTBi+wbWBWQg5kZ7QcuJnRyy8Z7xzQDmRltOsPAAAAAAAAAACcz5b9S2U2mzWg89gsy3u3H6lS7t7auDf/8RBGZLR+ImfvJ6xSsY69QyjxnD0HisJo7cDNjFZ+6kB2RsuBmxm9/ACcl9NPjBgzZoyio6P19NNPa9asWSpTpkzmuokTJyooKEipqamqVauWypYta8dIr5s9e7aGDh2q6OhohYSEFOgtE3lp0KCB5syZo/379yshIUGJiYnatm2bevbsqcTERA0bNkxr167N8xhr165VfHy8PD09NXjw4GLFYw9xx3YpoG67bMtd3TzU8/GFSr2aqI2fPZq5/Fzsn/r1mxcUULe9WveZYMtQbSbQr55Cgu7XvqObdPDY9izrVv48VzuPrNH0EatUysPbThFaFjmQndFy4GZGL79kvHNAO5CV0a4/AAAAAAAAAABwPn/+vVsuJhc1rJG1D8jDvZTqVA3WX3/vtlNkJZvR+onoJwQ5kJ3R2oGbGa381IHsjJYDNzN6+QE4L6eeGHHkyBGFhYXJz89Pb775Zo7btG7dWpIUFBSUZfnGjRvVoUMHlSpVSpUqVdITTzyh8+fPFzum6OhoRUVF5fnv5MmTmjZtmrp3766TJ08qJCREJ0+eLPJnTpkyRWPHjlVQUJDKlSsnb29vde7cWT/++KP69esns9mssWPHymw253qMRYsWSZL69u2rChUqFDkWW4j5Y5vS01KzLDsR/qNqtrgzx+0r1W6lNndP1smD63Vw8ydKT0/TunnDZDab1fPxhdlmyjqTB257QS4mFy1cf33m5/6jW/TZ2kl6aeg3CvCtZb/gioEcKDhnzYGCMnr5Jec9B7QDBeOs1x8AAAAAAAAAABjDmQuxKlvaTx5untnW+ZUL1PnEeKWkJtshspLPWfuJ6CcEOVBwztoOFJSzlp86UHDOmgMFZfTyA3BObvYOwJqWLl2q9PR0PfTQQ/Lx8clxGy8vL0lZJ0b89NNPuvPOO9WvXz9NnTpV0dHRmjx5sv78809t3rxZJpOpyDF17ty50PtERUVpyJAh2rZtW5E/Nycmk0mhoaH69ttvdfToUR08eFAtWrTItt2ZM2cy3ygxYsSIYn9umzZtFBcXV6h9XN291P+1iHy3++t/Ydr42WO6+7nvVL1JSObyq1fOy9O7XK77tbvnJR3b+51+/u94/Xtiv05H7lLnB2erQtWGhYrzRg3q11daypUi7y9JHm5e+uTp/Mudm6C63bRhZu4TXmpWbqx1M9Iyf447G6XXFt+nkX1mKqhutyJ/7s3qN6iv5NTinQuj5kCGouaCPXPAEtf9RkU5B/auA5Y8B+SA47UDlmwDJOoAAAAAAABGVdznxPbEswEAAFBc+X0Xupp8We45TIq4tm+pa9ukXJa7m4dV4suLvfsKnamfyNH6CSXL9RU68v2AZLk8MHIOSMYZL2DpfLd3O5ibopwb6oAx6kBejP5dAICxBAQEaM+ePUXa16knRmzevFmSFBISkus20dHRkrJOjHjllVdUv359ffPNN3JxufZSjYoVK2rgwIFau3at+vTpU+SYmjdvLg+Pgt1wnzlzRlFRUZKkxo0bF/kz89KwYUP5+vrq7NmzioiIyHFixNKlS5WcnKyAgADdcccdxf7MuLg4xcTEFGofN8+CvZKpQYfBSjh9VMf2Xv9ydyH+pMr61cxzP1c3d/V8fKG+ermtDm76SFUb3KqWd44tVIw3iz0Vq9Srl4t1jFLutnsVVVLyZU1dcI86Numre2552qLHPhUbq6SU4p0Lo+ZABlvkgqVzwBLX/UbWPgfWqAOWPAfkgOO1A5ZsAyTqAAAAAAAARmXL58SWxrMBAABQXPl9F/L08NaVS//kuC45NenaNnb6PuVIfYUlvZ/I0foJJcv1FTry/YBkuTwwcg5IxhkvYM98t+a4qZsV5dxQB4xRB/Ji9O8CAFBQTj0x4sSJE5KkmjVz/sWempqqHTt2SMo6MWLnzp16+OGHMydFSFLPnj0lSatWrSrWxIjvvvtOtWrVyne76Ohode3aVZI0ePBgffjhh0X+zPy4u7tLunY+crJw4UJJ0kMPPSRX1+K/GisgIKDQ+7i6exV427pt+mv17L7qOmSOJOn4vtWq3fLufPfz9C4nV3dPpaelqFZwb5luuP5FUbVKVYu8McJWth9crmOnwhUT/5e2hodlW//5+MOqVKFGkY5dpWpVi7wxoqCcKQcy2CIXLJ0DlrjuN7L2ObBGHbDkOSAHHK8dsGQbIFEHAAAAAAAwKls+J7Y0ng0AAIDiyu+7UMWyVXXy9GElp16Vx01vjog/H6Nypf3s8rYIybH6Ckt6P5Gj9RNKlusrdOT7AclyeWDkHJCMM17AnvluzXFTNyvKuaEOGKMO5MXo3wUAGEtRxplncOqJEYmJiZKkK1dyblzDwsIUHx+vMmXKqHbt2pnLXV1ds73Vwd3dXSaTSYcOHbJewP8vJiZGISEhOnbsmO69914tXrzYIhMScvLvv//qn3+u/fWEatWqZVt/+PDhzNeRjBgxwiKfWZTXm1xNlSZl/32bo4qBTSSTSWeiD6litaZKOH1UQZXr5rmP2WzWhk8eVnpqsnyrNtaub19T/fb3qXw+++Xlr4gIeRazhqUlS1vmFu8YBXV766G6vfVQqxw74q8IuRbzWZNRcyCDLXLB0jlgiet+I2ufA2vUAUueA3LA8doBS7YBEnUAAAAAAACjsuVzYkvj2QAAACiu/L4LNazeVr/9tV5/ntyl5nU6Zy5PTknSsdj9al6niw2izJkj9RWW9H4iR+snlCzXV+jI9wOS5fLAyDkgGWe8gD3z3Zrjpm5WlHNDHTBGHciL0b8LAEBBFW9aXwmXMWNk79692dadOnVKEyZMkCS1aNFCJpMpc12DBg20c+fOLNvv3r1bZrNZZ8+etWLE10yfPl1Hjx5V//79tXTpUrm5WW/+yuzZs2U2m1WuXDm1bds22/pFixZJklq1aqVmzZpZLQ5Lq9Pybh3b+52Sky7Jo1SZfLcPX/+eoo9sVbv+U9V7zDcyp6Vq46ePyGw22yBaWAM5AIB2AAAAAAAAAAAAwLl1Cxosk8mkFdvfybL8+52fKinlsrq3fMg+gcGu6CcEOQCjow4AAIzKqSdG9OjRQ5IUGhqqv/76K3P57t27FRISovj4eElScHBwlv3GjBmjHTt26LXXXlN8fLz279+vJ598Uq6urnIp4iuiunbtqoEDB6p06dL5bvvuu+9q+vTpCgsLK/akiA0bNuj5559XZGRkluWXL1/WK6+8ohkzZkiSJk+enO0tGenp6Vq8eLEkafjw4cWKw9Zqt7r25e7kwfWq0ez2PLc9FxehHV9PVuU6bdXm7kmqWK2p2g+Yppg/til8/Xu2CRgWRw4AoB0AAAAAAAAAAABwbrWrNFffTk/p599XaNrCAfp+52f6ePU4fbz6ObWo01XdWz5o7xBhB0brJ9zw25dasvE1Ldn4mhIS/1Vi0vnMnzf89qW9w7MLo+UAcDPqAADAqJx6YsTEiRNVsWJF/f3332ratKmaN2+u+vXrq127dqpTp466d+8uSQoKCsqy35AhQzRp0iS9+uqr8vf3V5s2bRQSEqLg4GBVqVKlSLFMnz5dy5Ytk7+/f77benl56eWXX5a7u3uRPutGiYmJCg0NVb169VS1alW1bdtWrVu3lp+fn6ZOnSqz2axRo0Zp4sSJ2fbduHGjYmJi5O7urgcfdKyHBYENOyshLkKRe1aqSoNOuW5nTk/XhnkjZE5PU8/HF8rFxVWS1LrPRFWq3UY7vp6shNORue6PkoscAEA7AAAAAAAAAAAA4PxG931Ho/rM0onTh/T+yqe0df9XuueWZ/TaI2uK/Mcv4diM1k/4467PtWDdS1qw7iUlXPpHl64kZP78467P7R2eXRgtB4CbUQcAAEbl1HeA1apV0/bt23XXXXepVKlSioqKkq+vr+bNm6e1a9dmvkXi5okRJpNJb731luLj4xUeHq7Tp09r9uzZioiIUKdOuX9RKIlat26tF198Ubfddps8PDx0+PBhHTp0SP7+/ho8eLA2btyoefPmyWQyZdt34cKFkqS77rpLfn5+tg69WFxc3VSzxR3X/v//X9hysvf72ToV8Ys6DHxFvoGNr+/v4qqejy/gtWAOjBwAQDsAAAAAAAAAAADg/FxdXDWo6zjNn/invn/rqr56KUZP9H1bXp4+9g4NdmK0fsLZo7dqw0xzjv9mj95q7/Dswmg5ANyMOgAAMCo3ewdgbY0bN9aaNWuyLb906ZKioqLk4uKiZs2a5bhvmTJl1KJFC0nSp59+qitXrujhhx+2aryWVr16db366qtF2nfJkiVasmSJhSOynbqt75FymPCR4WzMEf26/CUF1OugVr3HZVuf8VqwX76eovD17yn4jjHWCxZWQQ4AoB0AAAAAAAAAAAAAjId+QpADMDrqAADAiJx+YkRuDh06JLPZrAYNGsjb2zvLuj179mjDhg1q1aqVUlNTtXHjRs2dO1ezZs1S3bp17RQxCqt++0F5rvcNbKyn5yfluU3bvpPVtu9kS4ZVLJGx4ZqzbKQuX72oyuVratIDX6q8j79un2BSrYBmeqx3qNo37i1J2v3Hj5q/7kWlpibL08NbYwfOU92q196OMv7jEB2LDdeQ21/WgM5j7Vgi63LGHABQOLQDAAAAAAAAAAAAgPHQTwhywPEVZpzUpE966tzFOJlMLvIuVUZP9ZureoEt813nzGOoqAMAACMy7MSIgwcPSpKCgoKyrfP09NTq1av15ptvKjU1Vc2bN1dYWJjuvfdeW4cJZDEzbITG3zdf9QKD9eOuL/TJmvGaeP9CSdKcJ7fLx6u8JOni5XN6c+lDenv0NtUKaKqDx7brrf8+pE/H/y5JmvXEFs34akSBPnPcR900YfACBfjWskKJYEt53eg5i5xuik+cPqQpn/VSNf+GemvUelXwqaTPf5iiHQdXyN3NU66u7nr4ztfVtuG1VwjuPLJWC9e9rKi439Wn42g92e+dzOMv3zZH3/3ygUp5+Gjec/vtU0gb2XZgmXYeWatLV87pxOnD8nT3UnmfShoz4CMF+tWzd3gAAAAAAAAAAAAAAKCYth1Ypn0RmzS67xy9vuT+EjU+oKDjpCTppaFfZ/7888GVmhk2QvOeC893HWOojINxU9fHTWU4cfqInnq3tXq3H5U5PmrR+mn67pcPVLFsoCSpVkBTTX5wiSRjjZsC4LiYGJHDxIjmzZvrl19+sXVIQJ6OxuyTl6eP6gUGS5JubzNc89aMU0pqcrZtY89Eqqx3RdUKaCpJal6ns/5JOKmI6L2qX62VReO6dCVBI2c309WUK/IvV10paVcVd+aYbms9VOMGfWbRz0Lx5HWj5yxyuim+o+3DqubfMMsX8ua1O2tIj5fk6e6lyNhwPfdRF331Uqy8PEor0K++xt33hbYd+EZXrl7KcvyBXZ5VvcCW+vDbsbYtmB3s+H2lura4T66u7mrXqJdMJpNW7Xhfb3/zmGaP3mrv8GAFtOcAAAAAAAAAAADGRD8RYFw7fl+pHq2HSZJ6tx9VYsYHFGaclKQskyQSk85LMhVonaXRnpZcjJvan2Xb1LQUvbN8lG5p1j/bcbq3fCjLH5LNYKRxUwAcFxMjcpgYAZREp84e1/FTB/X428GZy64mX1b8hZhs21bzq68Ll8/oUNQvalqrk3459J0uX72ouHNRFp8Y4eNVXt2DH5SXZxkNuf0l7f5znZZufoMv8yVQbjd6znJTlttNcfeWD2Xbtl2jXpn/rx3QXDKbdf7Sv/LyLa1q/g0kXbv5d1b5XfPUtBQditqhCYMXyM3VPXO/xjU6aNlPs+wYOayJ9hwAAAAAAAAAAMCY6CcCnFde4wP+M+CjLGMD2jfunbmfvccHFGacVIbQpcMUHrlFkvT6o98XeJ0l0Z6WXIybymrxhlfUpcUgXbx8VpeuJNguUACwMsNOjNi8ebO9QwAKrVGN9npr5LrMn++d5p/jdqW9yunlocv0+Q+TlXT1khrX7KialZvI1aVgVT506TAdO3VAkhR75qhe+Ly33Fw9JEnTR6zK9kq4o7H71f/WMZKkiOjfVK+qc71mzJnkdKPnLDdlRbkplqR1e+YrwLeOKleoaeUIS478rvn+o1vUpGanLJMiJGnlz++qY9N+9ggZFjDmvY6KiY/Icd1Hz+5TpfLVac8BAAAAAAAAAACcEP1EgHHlNT5gz5/rcxwbIJWM8QEFHSeVYdIDiyRJ6/cs1KffT9IbN0yAyGtdXgo7hkpiHFVJxripa46c3KnDJ35V6KgN+nLD9Gzrtx34RuGRW1TWu6Ie6vGSguuFWDN0ALAow06MABxNFd86+ifhZObPiUkXlJScKL+ygTluH1wvJPNLSXLqVQ1+JUA1Kzcp0Gdl3AxI0riPumnC4AU5fpHPcCx2v+oFXvsSHxH9mzo27Vugz4Ht5Xaj5yw3ZYW9Kd4bsUlfbpiu0JEbZDJZ71WJtlbcB5u/HFqV7VV5/930hmLjj2rG45usFzisau4zv+a7De05AAAAAAAAAACA86GfCDC23MYH5DQ2QCoZ4wMKO07qRj3bDNe7y5/QhcQzKlu6YoHX5aSwY6gk2tOSjHFTUlLyZb234km9NGxZjmOl+nR4Qg/e9oLcXN31+/Edmr6wv97/z25D/cFZAI6NiRGAg6gXGCw3F3f99tcGtW5wu1b/8qG6Bg2Wu5tHjtufuXBKFctWkSQt2fiqgut2V6BfPYvHFX8+RjKZ5Ffu2o3HsbgDevC2Fyz+ObCsm2/0nOGmrLA3xeGRP2nW1w/r1YdXq3qlhrYK0yaK82DTbDZrz5/rNPKuGZnbfrN1ln7+fYVmjNqoUh7e1gkadkd7DgAAAAAAAAAAYEz0EwHOLafxATmNDZBKzviAwoyTunQlQUnJl+VXrqokacfvq1S2dEWV8fbNc5010J46BiOPmzp1JlL/JJzUhI+v/cHlS1cSZDan69KVc5p4/0L5lg3I3LZZ7VtUN7Cl/vp7DxMjADgMJkYADmTyg0s08+uHNXfFaFWtWE/PP7g4120XrntZvx/frrT0VDWu2VHj7vvcKjEdjdmXZZasT6ny+u7XDx3udWLOLq8bPWe5KSvMTfGBY9sU+tVQvTLiW9WtGmSHaO0rr2v+x9+7VKNyY3l5+kiSlv30trbsX6rQURvl41XeXiHDBmjPAQAAAAAAAAAAjIl+IsB55TY+4OaxAVLJGx9Q0HFSiUnn9eqXg3Q15YpcTC4qV9pfrz68RiaTKc911kB7WjIxbuq62lWaa9m0fzN/XrR+mi5dSdCT/d6RJP2bEC3/8tUkSdH/Rigydr9qV2lus3IAQHExMQJwILWrNNeH/9lToG2fG/SpRT5z9uitea7v0KSPOjTpk/nzB//ZbZHPhWXldaPnTDdlOd0UR8X9nm272d88qpTUq5oZ9nDmsucf+FK1qzTX3ohNmhk2XJeTLsgss7YfXKZn+n+oTg44Gzw3eV3zHb+vVKem90i6drMzb804VfGto/H/P1Pcw81T743ZaY+wYWW05wAAAAAAAAAAAMZEPxHgvHIbH1CutF/m2ACpZI4PKOg4qcoVaur9MbsKva6w8htDJdGellSMmyq4+T++oIjo3+Ti4iZXF1c90/8DVfNvYKWIAcDymBgBOIEKPpU17qOueqTXm2rfuHe+24//OESnz0apWe1bbBAdSoK8bvSc6aasoDfFCydF5LquVf3btPTFaEuGVeLkdc3/d3i1Zj6xRZLkX76aNsw02zw+AAAAAAAAAAAAAABQfLmND3hsVtPMsQGSY40PKOw4qbwwhsoYGDeVu2E9p2X5eeL9Cy0YEQDYHhMjACfw9dS4Qm0/64YbG8DZubl66OLlM3r87WC9NWq9KvhUKvKxlm+bo+93fqqKZataMMKS5bPxh+wdAgAAAAAAAAAAAAAAsCJHHhtQ2HFSeWEMFZwd46YAGA0TIwAATq1prU7674t/W+RYA7s8q4FdnrXIsQAAAAAAAAAAAAAAAADAWhg3BcBoXOwdAAAAAAAAAAAAAAAAAAAAAAAAQFExMQIAAAAAAAAAAAAAAAAAAAAAADgsk9lsNts7CCA/ZrOUnGbvKArHw1UymYp3DLNZSk+xTDz25OJumXNhxBzI4Ii5YInrfiOjnwOjl19yvHbAkm2ARA4AAAAAAGBUacnSlrn2jqJoQsZIrh72jgIAADgyvgtdY/R+IkfrJ5Qs11foiNf+RpbKAyPngOSYeVCUa++I5SyKop4b6oBljmUrjJtizAgA+3CzdwBAQZhMkqcBs9VkotMog1FzIAO5wDkwevkl2gFyAAAAAAAAAAAAwJiM3k9k5H5Co1/7DEbOAck4eWCUchYFdYDc4BwAQMG42DsAAAAAAAAAAAAAAAAAAAAAAACAojLwPEIAAAAAAAAAAABjCI/cqvEfh+S63sXFVetCU20YEQAAgG3xfQgAAAAAnBsTIwAAAAAAAAAAAAwiJPgBtWvUO9tyFxdeMg4AAIyB70MAAAAA4JyYGAEAAAAAAAAAAGAQ9QNbqUfrIVY5ttlsVlJyorw8faxyfAAAAEvg+xAAAAAAOCcmRgAAAAAAAAAAACCL7QeWa9WO9xQZu1+pacnyL19dbRrcoVF9ZsndzUPhkVs1/uMQjb9vvpKSE/XdLx/o1JlI3d99sob1nGbv8AEAAIqN70MAAAAA4FiYGAEAAAAAAAAAAGAQSSmXdT4xPttyN1cPlS5VVpL0xQ8vaOnmN1SzchMN7PysfMtWUeyZSP18cLmG3/GK3N08Mvdbsf0dXbx8Rr3aj5RvmQD5l69us7IAAAAUBd+HAAAAAMA5MTECAAAAAAAAAADAIBatn6pF66dmW96+8V167ZE1+uPkLi3d/IaC64bo9Ue/l4d7qcxtHuv9Vrb9/k04qc8n/qEKPpWsGjcAAICl8H0IAAAAAJwTEyMAAAAAAAAAAAAM4q72o9SlxaBsy8v5+EuSNu1bIkl6pPebWQYBSpLJZMq2X4/WwxgECAAAHArfhwAAAADAOTExAgAAAAAAAAAAwCAC/eqrVYMeua6PiY+QyWRS3SpBBTpeNf8GlgoNAADAJvg+BAAAAADOycXeAQAAAAAAAAAAAKDkMMkk5fDXkHPi6e5t5WgAAABsj+9DAAAAAOB4mBgBAAAAAAAAAAAASVI1vwZKN6frWGy4vUMBAACwC74PAQAAAIBjYmIEAAAAAAAAAAAAJEndWz4oSfrihylKSU3Ott5sNts6JAAAAJvi+xAAAAAAOCY3ewcAAAAAAAAAAAAA24iI2auNvy3Ocd0tze5RoxrtNDhkksK2hOrJd1qpa9Bg+ZYN0Kmzx7X9wDK9P2aXfLzK2zZoAAAAC+L7EAAAAAA4JyZGAAAAAAAAAAAAGMSW/Uu1Zf/SHNctmBShQM96eqz3W6pTJUjf7nhfX/80Q+b0dPmXr652jXrL093bxhEDAABYFt+HAAAAAMA5mcy84w8AAAAAAAAAAKBESkuWtsy1dxRFEzJGcvWwdxQAAMCR8V0IAAAAAFBQLvYOAAAAAAAAAAAAAAAAAAAAAAAAoKiYGAEAAAAAAAAAAAAAAAAAAAAAABwWEyMAAAAAAAAAAAAAAAAAAAAAAIDDcrN3AEBBmM1Scpq9oygcD1fJZCreMcxmKT3FMvHYk4u7Zc6FEXMggyPmgiWu+42Mfg6MXn7J8doBS7YBEjkAAAAAAAAAAEbkiM+GMxi5n8TofSSS5ftJjM7oOeBobYBUtHbAEctZFEU9N9QByxzLVhgzQn85AAD2wMQIOITkNGlSmL2jKJzQwZJnMWtYeoq0Za5l4rGnkDGSq0fxjmHUHMjgiLlgiet+I6OfA6OXX3K8dsCSbYBEDgAAAAAAAACAETnis+EMRu4nMXofiWT5fhKjM3oOOFobIBWtHXDEchZFUc4NdcDxcoMxI/SXAwBgDy72DgAAAAAAAAAAAAAAAAAAAAAAAKComBgBAAAAAAAAAAAAAAAAAAAAAAAcFhMjAAAAAAAAAAAAAAAAAAAAAACAw2JiBAAAAAAAAAAAAAAAAAAAAAAAcFhMjAAAAAAAAAAAAAAAAAAAAAAAAA6LiREAAAAAAAAAAAAAAAAAAAAAAMBhMTECAAAAAAAAAAAAAAAAAAAAAAA4LDd7BwDAesIjt2r8xyFZlpXyKK1q/g3Uo9VQ3XPLM3J1pRlwZkbPAaOXX+IcGB3XHwAAAAAAAABgVDwjB2D0dsDo5Qc5YPTyAwBgRPxmBwwgJPgBtWvUW2aZde5inDb8tkgfr35OJ/85omfv/cTe4cEGjJ4DRi+/xDkwOq4/AAAAAAAAAMCoeEYOwOjtgNHLD3LA6OUHAMBImBgBw3l3iMlix/rPYrPFjmVN9QNbqUfrIZk/393pST06o5F+2PWZHr7zdZX38bdjdLZHDhgvB4xefolzcDOjtQNcfwAAAAAAAACAUfGMPCuj9ZEgOyPmgNHbAaOX/2bUAePlgNHLDwCAkTAxwomNGDFCCxcuzHObI0eOqFGjRtmWx8fHa+bMmfr+++917NgxpaamKiAgQF26dNGzzz6rVq1aWStsq7oQf1KdH3pbrXo9a+9Q7MrLo7Qa1eyg7QeWKfZMpKG+4JMD1xg5ByTKLxn7HNAOGPv6AwAAAAAAAACMzcjPyOkjATlwjZHbAcnY5acOXGPkHJAoPwAAzoyJEQZQv359VapUKcd13t7e2Zb9+eef6tatm+Li4uTi4qLatWvLx8dHkZGRWrx4sZYuXaqFCxfqoYcesnboFnd832rVaXm3vcMoEU6diZQklfX2tXMktkUOXGfUHMhg9PJLxj0HtAPXGPX6AwAAAAAAAABg1Gfk9JGAHLjOqO1ABqOWnzpwnVFzIIPRyw8AgLNiYoQBTJkyRSNGjCjw9qNHj1ZcXJwaNmyoVatWZb5RIjExUc8995w++eQTPfHEE+rVq5d8fR3ry2FCXISCbn/K3mHYXFLKZZ1PjJfZbNa5i3Fa/evHOhqzT42qt1M1/wb2Ds+myAFj5oDRyy9xDm5kxHaA6w8AAAAAAAAAMCqekV9nxD4SZGXUHDB6O2D08t+IOmDMHDB6+QEAMBImRiCLixcvauvWrZKkmTNnZk6KkKTSpUvrgw8+0IoVKxQfH69t27bpnnvusU+gRZCcdEkepcrYOwy7WLR+qhatn5pl2a3NBuiZ/h/YKSL7IAeMmwNGL7/EOchg1HaA6w8AAAAAAAAAzis9PV0rf35Xa/83T3HnolS+tL+6BN2n4Xe8Ii+P0vYOz+54Rn6NM/eRLN38piJi9ioi+jfFnT2uyhVqavGUKHuHVeI4cw7kx+jtgNHLn4E6YNwcMHr5AQAwEqefGBEfH68ZM2ZoxYoVio6Olr+/vwYMGKA33nhDY8aM0RdffKH33ntPTz/9tL1DlSSZzWaZTCa7ff7Vq1dlNpslSXXq1Mm23s3NTTVr1lR8fLxSUlJsHV6xnDy4QTWa97R3GHZxV/tR6tJikFLTU3T81EGFbQ1V/PloebiXytzm4LHtmvJ5r2z7pqYlKz09TetmpNkyZKsgB4ybA0Yvv8Q5yGDUdoDrDwAAAAAAAADO66PVz2rVz3N1S7P+urfrOJ08fUSrfp6ryJh9Ch21US4uLvYO0a54Rn6NM/eRfPHDFJXx9lX9wFZKvJJg73BKLGfOgfwYvR0wevkzUAeMmwNGLz8AAEbi1BMj9u/fr169eikuLk6lS5dWkyZNFBsbq7lz5yoyMlJnz56VJAUHB1sthm7duumnn37S8ePHVatWrTy3PXDggIYNG6Zly5apXr16Foth2bJlWrVqlS5cuCA/Pz916NBBQ4cOlb+/f7Zt/fz8FBgYqJiYGP3yyy9q2rRplvVnz57VH3/8IRcXF7Vq1cpiMdrCqYgduuX+0CzLdoRN0Z7Vb6rHyM/VtOsjWdaZzWYtfz1EcUd/1f2v/ia/6s1sGa5FBfrVV6sGPSRJ7Rr1UrPat+rZD2/Vu8uf0AtDvpIkNa/TWatfv5Rlv/jzsXpqbhv161QyJg4VFzlg3BwwevklzkEGo7YDXH8AAAAAAAAAcE5RcYf07Y73dGuzAZo6fHnm8gDf2vrg2zHaGv6Vurd80I4R2h/PyK9x5j6SRc9HqkrFa3/4ceSsZrqSfCmfPYzJmXMgP0ZvB4xe/gzUAePmgNHLDwCAkTjtn4aIj4/X3Xffrbi4OI0bN06nTp3S3r17FRcXp9DQUK1du1a7d++WyWRSixYt7B2uJGn+/PkKDw9XSEiIjh07ZrHjrl27Vt9++622bNmib775RuPGjVPt2rW1ePHiHLd/4403ZDKZNGHCBM2fP1+nT59WYmKiduzYoT59+igxMVHPPfec6tata7EYrc2cni6z2SwXF9csyzsMnKaK1Zpp25LndPFMdJZ1+358RzF//KT2A6Y79M1NTprW6qQerYZqa3iYDkX9kuM2yalXNX3RADWrdasevG2KjSO0PHIgKyPmwI2MXn7JmOeAduA6I15/AAAAAAAAAHBGW/Yvldls1oDOY7Ms791+pEq5e2vj3pz7hI3MiM/Inb2PJGNSBHLn7DlQWEZsB25kxPJTB7IyYg7cyOjlBwDAmTntxIgxY8YoOjpaTz/9tGbNmqUyZcpkrps4caKCgoKUmpqqWrVqqWzZsnaM9LrZs2dr6NChio6OVkhIiKKioop1vAYNGmjOnDnav3+/EhISlJiYqG3btqlnz55KTEzUsGHDtHbt2mz7DRs2TCtXrlT9+vX1yCOPKCAgQD4+Prr11lsVGxurRYsWaebMmcWKzdbiju1SQN122Za7unmo5+MLlXo1URs/ezRz+bnYP/XrNy8ooG57te4zwZah2sxDPV6Si4urFq57Ocf17y5/QskpSZoweIFtA7MSciA7o+XAzYxefsl454B2ICujXX8AAAAAAAAAcEZ//r1bLiYXNayR9fm3h3sp1akarL/+3m2nyEo2oz0jp48E5EB2RmsHbma08lMHsjNaDtzM6OUHAMBZOeXEiCNHjigsLEx+fn568803c9ymdevWkqSgoKAsy7dv367bbrtNfn5+Kl++vDp06KAVK1YUO6bo6GhFRUXl+e/kyZOaNm2aunfvrpMnTyokJEQnT54s8mdOmTJFY8eOVVBQkMqVKydvb2917txZP/74o/r16yez2ayxY8fKbDZn2c9sNisyMlL//vuvXFxcVKtWLbVo0ULe3t46ceKE5s2bpyNHjhT3lFhNzB/blJ6WmmXZifAfVbPFnTluX6l2K7W5e7JOHlyvg5s/UXp6mtbNGyaz2ayejy/MNlvcWQT61VNI0P3ad3STDh7bnmXdyp/naueRNZo+YpVKeXjbKcKiIwcKxplzoCCMXn7Juc8B7UD+nPn6AwAAAAAAAIBRnLkQq7Kl/eTh5pltnV+5QJ1PjFdKarIdIivZnPkZOX0kIAcKxpnbgYJw5vJTBwrGmXOgIIxefgAAnJVTToxYunSp0tPT9dBDD8nHxyfHbby8vCRlnRgRHh6u22+/Xa6urlqwYIHCwsJUvXp13XvvvVqzZk2xYurcubNq166d77+6detq8+bNkqSoqCgNGTKkWJ+bE5PJpNDQUEnS0aNHdfDgwSzrR48erXHjxqlSpUo6cuSIjh8/rvDwcMXHx2vChAnasWOHOnbsqL///tvisRXXX/8L07ez7lLMn1m/sF69cl6e3uVy3a/dPS/Jr0aQfv7veG1d+IxOR+5Sp0Gvq0LVhtYO2a4euO0FuZhctHD99dnP+49u0WdrJ+mlod8owLeW/YIrInKgcJwxBwrD6OWXnPMc0A4UnDNefwAAAAAAAAAwkqvJl+Wew6QISfJwK3Vtm5TLtgzJYTjjM3L6SEAOFI4ztgOF4Yzlpw4UjjPmQGEYvfwAADgjN3sHYA0ZEwtCQkJy3SY6OlpS1okRYWFhMplMWrVqlby9r8327NGjh+rUqaMlS5aoT58+RY6pefPm8vDwKNC2Z86cUVRUlCSpcePGRf7MvDRs2FC+vr46e/asIiIi1KJFC0nXJod88skncnd31zfffKOaNWtm7uPl5aUZM2Zo79692rRpk9544w199NFHhf7sNm3aKC4urlD7uLp7qf9rEflu16DDYCWcPqpje79T9SbXrv+F+JMq61czz/1c3dzV8/GF+urltjq46SNVbXCrWt45tlAxZoulfn2lpVwp1jE83Lz0ydP5lzs3QXW7acNMc67ra1ZurHUz0jJ/jjsbpdcW36eRfWYqqG63In/uzeo3qK/k1OKdC6PmQIai5oI9c8AS1/1GRTkH9q4DljwH5IDjtQOWbAMk6gAAAAAAAEZV3OfE9sSzAQAovvx+D3h6eOvKpX9yXJecmnRtG3f7/KVje/eT0EfiHH2lfBe6xsg5IBmnr9TS+W7vvsLcFOXcUAeMUQfy4mjfBSTuiQEAKKqAgADt2bOnSPs65cSIEydOSFKWQf03Sk1N1Y4dOyRlnRiRnJwsDw+PzLdJSJKrq6vKlCmj9PT0YsX03XffqVatWvluFx0dra5du0qSBg8erA8//LBYn5sXd3d3SdfOR4YdO3bIbDarfv36uZ6/nj17atOmTdq9e3eRPjcuLk4xMTGF2sfNs+AP6+q26a/Vs/uq65A5kqTj+1ardsu7893P07ucXN09lZ6WolrBvWVyKd4LVWJPxSr1avH++kopGz6kTEq+rKkL7lHHJn11zy1PW/TYp2JjlVTMv0Rj1BzIYItcsHQOWOK638ja58AadcCS54AccLx2wJJtgEQdAAAAAADAqGz5nNjSeDYAAMWX3++BimWr6uTpw0pOvSqPm94cEX8+RuVK+8ndrWB/wM/SHKmfhD6SkttXyneha4ycA5Jx+krtme/WHDNys6KcG+qAMepAXhztu4DEPTEAAPbglBMjEhMTJUlXruQ84zIsLEzx8fEqU6aMateunbl86NCh+uCDDzRu3DhNmjRJbm5umjdvniIiIqw6QSFDTEyMQkJCdOzYMd17771avHixXF1drfJZ//77r/7559pfDqlWrVrm8osXLxb4GElJSUX67ICAgELv4+rulf9G/69iYBPJZNKZ6EOqWK2pEk4fVVDlunnuYzabteGTh5Wemizfqo2169vXVL/9fSqfz355qVqlqkXeGGEr2w8u17FT4YqJ/0tbw8Oyrf98/GFVqlCjSMeuUrWqRd4YUVDOlAMZbJELls4BS1z3G1n7HFijDljyHJADjtcOWLINkKgDAAAAAAAYlS2fE1sazwYAoPjy+z3QsHpb/fbXev15cpea1+mcuTw5JUnHYvereZ0u1g4xV47UT0IfScntK+W70DVGzgHJOH2l9sx3a44ZuVlRzg11wBh1IC+O9l1A4p4YAICiKso48wxOOTEiICBA586d0969e9WxY8cs606dOqUJEyZIklq0aCGTyZS5LigoSJs2bdKAAQM0Z861WcOlS5fWN998oy5drP/AaPr06Tp69Kj69++vpUuXys3Nepdn9uzZMpvNKleunNq2bZu5vEGDBpKkiIgInThxIse3Rqxfv16S1LBhwyJ9dlFeb3I1VZqU/Ttnruq0vFvH9n6nMn415VGqTL7bh69/T9FHtqrjoNdVt3U/LX2xlTZ++ogGvrA1S44Uxl8REfIs5iVMS5a2zC3eMQrq9tZDdXvroVY5dsRfEXIt5h+iMWoOZLBFLlg6Byxx3W9k7XNgjTpgyXNADjheO2DJNkCiDgAAAAAAYFS2fE5saTwbAIDiy+/3QLegwVq6+Q2t2P5OlokR3+/8VEkpl9W95UM2iDJnjtRPQh9Jye0r5bvQNUbOAck4faX2zHdrjhm5WVHODXXAGHUgL472XUDinhgAAHso3ju/SqgePXpIkkJDQ/XXX39lLt+9e7dCQkIUHx8vSQoODs6yX0REhAYPHqy2bdvq+++/17p16zRw4EDdf//92rx5c5Fi6dq1qwYOHKjSpUvnu+27776r6dOnKywsrNiTIjZs2KDnn39ekZGRWZZfvnxZr7zyimbMmCFJmjx5sjw8rn8D69mzpypVqqSUlBQNGjQoy/m7cuWKJk6cqE2bNkmShg0bVqwYral2q2s3OCcPrleNZrfnue25uAjt+HqyKtdpqzZ3T1LFak3VfsA0xfyxTeHr37NNwLA4cgAA7QAAAAAAAAAAwNnVrtJcfTs9pZ9/X6FpCwfo+52f6ePV4/Tx6ufUok5XdW/5oL1DhB0YrY9kw29fasnG17Rk42tKSPxXiUnnM3/e8NuX9g7PLoyWA8DNqAMAAADG5JQTIyZOnKiKFSvq77//VtOmTdW8eXPVr19f7dq1U506ddS9e3dJ194QcaMpU6bI29tbK1euVK9evdSzZ08tXLhQ7du317hx44oUy/Tp07Vs2TL5+/vnu62Xl5defvllubu7F+mzbpSYmKjQ0FDVq1dPVatWVdu2bdW6dWv5+flp6tSpMpvNGjVqlCZOnJhlv9KlS2vJkiUqXbq0du/ercaNG6tOnToKCgqSn5+fZs6cKUl66qmn1K9fv2LHaS2BDTsrIS5CkXtWqkqDTrluZ05P14Z5I2ROT1PPxxfKxcVVktS6z0RVqt1GO76erITTkbnuj5KLHABAOwAAAAAAAAAAMILRfd/RqD6zdOL0Ib2/8ilt3f+V7rnlGb32yBq5uDjlkADkw2h9JD/u+lwL1r2kBeteUsKlf3TpSkLmzz/u+tze4dmF0XIAuBl1AAAAwJic8ilItWrVtH37dt11110qVaqUoqKi5Ovrq3nz5mnt2rWZb0G4eWLEwYMHFRQUlO1tDW3atNGRI0dsFr8ltG7dWi+++KJuu+02eXh46PDhwzp06JD8/f01ePBgbdy4UfPmzcvxdW89evTQgQMH9PTTT6tBgwaKi4vTkSNHVK5cOfXr109r1qzR+++/b4dSFZyLq5tqtrjj2v///6YlJ3u/n61TEb+ow8BX5BvY+Pr+Lq7q+fgCmdNStfHTR2Q2m60eMyyLHABAOwAAAAAAAAAAMAJXF1cN6jpO8yf+qe/fuqqvXorRE33flpenj71Dg50YrY9k9uit2jDTnOO/2aO32js8uzBaDgA3ow4AAAAYk1v+mzimxo0ba82aNdmWX7p0SVFRUXJxcVGzZs2yrAsICND+/fuVmpqaZXLE7t27FRgYaPWYLal69ep69dVXi7x/nTp19N57jv06uLqt75FymPiR4WzMEf26/CUF1OugVr2zvxEk49V4v3w9ReHr31PwHWOsFyysghwAQDsAAAAAAAAAAACMiD4SkAMwOuoAAACA8TjtxIjcHDp0SGazWQ0aNJC3t3eWdU899ZTuu+8+9e/fX48//rhcXV313//+Vz/99JPeffddO0WMoqrfflCe630DG+vp+Ul5btO272S17TvZkmEVS2RsuOYsG6nLVy+qcvmamvTAlyrv46/bJ5hUK6CZHusdqvaNe0uSdh75XgvWvaj09HSlp6dqULcJ6tlmuCRp/MchOhYbriG3v6wBncfasUTW5Yw5AKBwaAcAAAAAAAAAAIAR0UcCcsDxFWaMyKRPeurcxTiZTC7yLlVGT/Wbq3qBLZWckqTXl9yvE6cPy9PdS+V9KmnMgI8U6FdPknOPH6EOAAAAGI/hJkYcPHhQkhQUFJRt3aBBg7R69WqFhoZq+PDhSktLU4MGDbRkyRI9+OCDtg4VyGZm2AiNv2++6gUG68ddX+iTNeM18f6FkqQ5T26Xj1d5SZLZbFbo0iGa9cRW1anaQnFno/TIzEa6tdkAeZcqo1lPbNGMr0YU6DPHfdRNEwYvUIBvLesUCjaT24MQZ5LTg6ETpw9pyme9VM2/od4atV4VfCrp8x+maMfBFXJ385Srq7sevvN1tW147TWa6enp+vC7/2jXke9lMpnUv/NY3XPL05Kk5dvm6LtfPlApDx/Ne26/HUtqfdsOLNPOI2t16cq5XB+SAQAAAAAAAAAAAIAj23ZgmfZFbNLovnPynEBgDwUdIyJJLw39OvPnnw+u1MywEZr3XLgkqXf7UWrXqJdMJpNW7Xhfb3/zmGaP3ipJjB8xEMaMXB8zkuHE6SN66t3W6t1+lJ7s906WY5279I9GzW6uJjU7avqIVZKkrfvD9OWG6TpzIVarXk2wXcEAAECBMTHiJn369FGfPn1sGRJQIEdj9snL00f1AoMlSbe3Ga55a8YpJTU55x1MJl1KSpAkXU66oLLeFeXu5mnxuC5dSdDI2c10NeWK/MtVV0raVcWdOabbWg/VuEGfWfzzUHR5PQhxFjk9GLqj7cOq5t8wy0SG5rU7a0iPl+Tp7qXI2HA991EXffVSrLw8SmvT3sU6cfqw5k/6S4lJ5zV6TksF1w1RrYCmGtjlWdULbKkPvx1rtzLayo7fV6pri/vk6uqe60MyOBfacwAAAAAAAACAEfF8HDC2Hb+vVI/WwyTlPYHA1go7RuTGSRKJSeclmSRJHu6lMt8qIUmNa3TQsp9mWSts2tQSjDEj+7Nsm5qWoneWj9ItzfrneKx3lz2uDo376MLlM5nLugUPVqMa7fXEnGArlgIAABQHEyMAB3Hq7HEdP3VQj78dnLnsavJlxV+IybatyWTSiw+FafrCASrlUVqXrpzT1GEr5O7mYfG4fLzKq3vwg/LyLKMht7+k3X+u09LNb3BDWwLl9iDEWR5M5PZgqHvLh7Jt265Rr8z/1w5oLpnNOn/pX3n5ltbW8DD1bj9Sri6uKuvtq25Bg7Vl/1I9fOdrtiqK1eV3zVPTUnQoaocmDF4gN1f3zP2s/ZAM9kV7DgAAAAAAAAAwIp6PA84tr77R/wz4KEu/qC0nEOSnMGNEMoQuHabwyC2SpNcf/T7HbVb+/K46Nu1n0VhvRJtacjFmJKvFG15RlxaDdPHyWV26kpBl3Q+7PleAb23VrtJCvxxaZd3AAQCARRluYsTmzZvtHQJQZI1qtNdbI9dl/nzvNP8ct0tLS9WSTa9p6vAValGni/78e7dent9Xn4w7qHKl/fL9nNClw3Ts1AFJUuyZo3rh895yc702qWL6iFXZXot4NHa/+t86RpIUEf2b6lV1rlftOZOcHoQ4y4OJojwYkqR1e+YrwLeOKleoKUn6J+GkKpevmbm+sm8tHTnxP6vEbC/5XfP9R7eoSc1OWSZFSNZ/SAbrGvNeR8XER+S47qNn96lS+eq05wAAAAAAAAAAp8PzccDY8uob3fPn+hz7RaWS0Tda0DEiGSY9sEiStH7PQn36/SS9cdPkiP9uekOx8Uc14/FNBY6hsONHJMaQlGSMGbnmyMmdOnziV4WO2qAvN0zPdpw1v36st5/cpq37w6wdNgAAsDDDTYwAHFUV3zr6J+Fk5s+JSReUlJwov7KB2bY9GrtfZy7EqkWdLpKkhtXbyq9cNR2N2afWDW7P97MybpYladxH3TRh8IIcb2YzHIvdr3qB125kI6J/U8emfQtaLNhYbg9CnOXBRGEfDO2N2KQvN0xX6MgNMplM1g7PZor7gP+XQ6uyvS6yKA/JULLMfebXfLehPQcAAAAAAAAAOBuejwPIrW80p35RqWT0jRZmjMjNerYZrneXP6ELiWdUtnRFSdI3W2fp599XaMaojSrl4V3gOAo7fkSiTS3JGDMiJSVf1nsrntRLw5ZlGydiNps1++tH9HT/9+Xp7mX1eAEAgOUxMQJwEPUCg+Xm4q7f/tqg1g1u1+pfPlTXoMFyd/PItm2l8tV19uIpnTh9RDUrN1ZM/FGdOhOp6v4NLR5X/PkYyWSSX7lrN9/H4g7owdtesPjnwLJufhDiDA8mCvtgKDzyJ836+mG9+vBqVa90vW5UKl9DpxNOqIk6SpJOn41SpQo1rBu8hRXnAb/ZbNaeP9dp5F0zMrct6kMyOBbacwAAAAAAAACAEfF8HHB+OfWN5tQvKpWcvtHCjBG5dCVBScmX5VeuqiRpx++rVLZ0RZXx9pUkLfvpbW3Zv1ShozbKx6u8VeOmTXUMRh4zcupMpP5JOKkJH4dIulZ/zOZ0XbpyTk/1m6tjpw7o9cWDJUlXrl7S1ZTLmjDvNs3kj0gCAOAQmBgBOJDJDy7RzK8f1twVo1W1Yj09/+DiHLerUKayxg78RK8tvk8uJhelm9P1dP/3rTK4+2jMviwzxX1Kldd3v37ocK/Uc3Z5PQhxlgcThXkwdODYNoV+NVSvjPhWdasGZVnXpcUgfb/zU3VpMUiJSee1NTxMrz2yxlbFsIm8rvkff+9SjcqN5eXpI8m2D8lgX7TnAAAAAAAAAAAj4vk44Nxy6xu9uV9UKnl9owUdI5KYdF6vfjlIV1OuyMXkonKl/fXqw2tkMpn0b0K05q0Zpyq+dTT+/weCe7h56r0xO60SM21qycSYketqV2muZdP+zfx50fppunQlQU/2e0eStGL6mcx163Yv0C+HVmn6iFW2KAIAALAAJkYADqR2leb68D97CrRt95YPqHvLB4r9mbNHb81zfYcmfdShSZ/Mnz/4z+5ifyYsL68HIc70YCKnB0NRcb9n2272N48qJfWqZoY9nLns+Qe+VO0qzdWj9VD9+fdujQitL5NMGtjlOdWu0tyWxbC6vK75jt9XqlPTeyTJ5g/JYF+05wAAAAAAAAAAI+L5OODccusbLVfaL7NfVCqZfaMFHSNSuUJNvT9mV47r/MtX04aZZovEk9/4EYk2taRizAgAADAKJkYATqCCT2WN+6irHun1pto37p3v9uM/DtHps1FqVvsWG0SHkiCvByHO9GCioA+GFk6KyHWdq4urxgz4wJJhlTh5XfP/HV6tmU9skWTZh2QAAAAAAAAAAAAAYGu59Y0+NqtpZr+o5Fh9o4UdI5IXxo8YA2NGcjes57Rc193RdoTuaDuieEEBAACbYmIE4AS+nhpXqO1n3XBzDzg7N1cPXbx8Ro+/Hay3Rq1XBZ9KRT7W8m1z9P3OT1WxbFULRliyfDb+kL1DAAAAAAAAAAAAAACrcuR+0cKOEckL40fg7Cw5ZmTr/jAt2fSaKpSpbMEIAQCAJTExAgDg1JrW6qT/vvi3RY41sMuzGtjlWYscCwAAAAAAAAAAAAAAANZjyTEj3YIHq1vwYIscCwAAWIeLvQMAAAAAAAAAAAAAAAAAAAAAAAAoKiZGAAAAAAAAAAAAAAAAAAAAAAAAh8XECAAAAAAAAAAAAAAAAAAAAAAA4LBMZrPZbO8ggPyYzVJymr2jKBwPV8lkKt4xzGYpPcUy8diTi7tlzoURcyCDI+aCJa77jYx+Doxefsnx2gFLtgESOQAAAAAAgFGlJUtb5to7iqIJGSO5etg7CgBwbPweuMbRnpEbvY9Eslw/iaNd+xtZuq/QqDkgOWYeFOX6O2I5i6Ko54Y6YJlj2QpjRugvBwDAHtzsHQBQECaT5GnAbDWZ6DTKYNQcyEAucA6MXn6JdoAcAAAAAAAAAAAYldGfkRu5j8To1z6DkXNAMk4eGKWcRUEdIDc4BwAAoCAM/JURAAAAAAAAAAAAAABjCI/cqvEfh+S63sXFVetCU20YEQAAAAAAgOUwMQIAAAAAAAAAAAAAAIMICX5A7Rr1zrbcxcXFDtEAAAAAAABYBhMjAAAAAAAAAAAAAAAwiPqBrdSj9RCrHNtsNispOVFenj5WOT4AAAAAAEBumBgBAAAAAAAAAAAAAACy2H5guVbteE+RsfuVmpYs//LV1abBHRrVZ5bc3TwUHrlV4z8O0fj75ispOVHf/fKBTp2J1P3dJ2tYz2n2Dh8AAAAAABgMEyMAAAAAAAAAAAAAADCIpJTLOp8Yn225m6uHSpcqK0n64ocXtHTzG6pZuYkGdn5WvmWrKPZMpH4+uFzD73hF7m4emfut2P6OLl4+o17tR8q3TID8y1e3WVkAAAAAAAAyMDECAAAAAAAAAAAAAACDWLR+qhatn5ptefvGd+m1R9boj5O7tHTzGwquG6LXH/1eHu6lMrd5rPdb2fb7N+GkPp/4hyr4VLJq3AAAAAAAAHlhYgQAAAAAAAAAAAAAAAZxV/tR6tJiULbl5Xz8JUmb9i2RJD3S+80skyIkyWQyZduvR+thTIoAAAAAAAB2x8QIAAAAAAAAAAAAAAAMItCvvlo16JHr+pj4CJlMJtWtElSg41Xzb2Cp0AAAAAAAAIrMxd4BAAAAAAAAAAAAAACAksMkk/R/7d17fM71/8fx57WjORtjzPmU85ynIiZUi4hKidIBHXx9lVN8FTo6JjoqRPTVihTxdQo5VQgjKbOZtZMMcxgz267fH/ttzM7bddh1fR73283tZtfncL3e7+v1fmuvd+/rk8PTIXLi6V7aytEAAAAAAADkj40RAAAAAAAAAAAAAABAklSzSmOlmdMUHhNi71AAAAAAAAAKjI0RAAAAAAAAAAAAAABAktS9zSBJ0uL/TdL1lORsx81ms61DAgAAAAAAyJebvQMAAAAAAAAAAAAAAAC2ERp9QFt+W57jsTtb9FOT2h01MHCCgrfN0AvvtVVX/4HyLu+r2HMntfPwSn0waq/KelW0bdAAAAAAAAD5YGMEAAAAAAAAAAAAAAAGse3QCm07tCLHY0smhMrPs6GeDZqu+tX99f3uD/T1TzNlTkuTT8Va6tgkSJ7upW0cMQAAAAAAQP5MZp5zCQAAAAAAAAAAUCKlJkvb5ts7iqIJHCW5etg7CgBwbPw7AAAAAAAAUDAu9g4AAAAAAAAAAAAAAAAAAAAAAACgqNgYAQAAAAAAAAAAAAAAAAAAAAAAHBYbIwAAAAAAAAAAAAAAAAAAAAAAgMNys3cAQEGYzVJyqr2jKBwPV8lkKt49zGYp7bpl4rEnF3fL9IURcyCDI+aCJT73mxm9D4zefsnx5gFLzgESOQAAAAAAAABjcsS6WAZL1cccsQ+MXh+WLF8jNjpHywHWCIo2DzhiO4uiqH3jSGNAYr3c6OvlrBMCAADAHtgYAYeQnCpNCLZ3FIUzY6DkWcwRlnZd2jbfMvHYU+AoydWjePcwag5kcMRcsMTnfjOj94HR2y853jxgyTlAIgcAAAAAAABgTI5YF8tgqfqYI/aB0evDkuVrxEbnaDnAGkHR5gFHbGdRFKVvHG0MSKyXG329nHVCAAAA2IOLvQMAAAAAAAAAAAAAAAAAAAAAAAAoKjZGAAAAAAAAAAAAAAAAAAAAAAAAh8XGCAAAAAAAAAAAAAAAAAAAAAAA4LDYGAEAAAAAAAAAAAAAAAAAAAAAABwWGyMAAAAAAAAAAAAAAAAAAAAAAIDDYmMEAAAAAAAAAAAAAAAAAAAAAABwWGyMAAAAAAAAAAAAAAAAAAAAAAAADsvN3gEAsJ6QsO0a+0lgltdKeZRRTZ/G6tF2iPrd+S+5ujINODOj54DR2y/RB0bH5w8AAAAAAAAYF/VBAEafB4zefpADRm8/AAAAjIf/ugUMILD1Y+rYJEhmmXX+Upw2//aFPln7siL/OaaXHvrU3uHBBoyeA0Zvv0QfGB2fPwAAAAAAAGBc1AcBGH0eMHr7QQ4Yvf0AAAAwDjZGwHDmDTZZ7F7/Xm622L2sqZFfW/VoNzjz5z53vKBnZjbR//Yu1FP3vqWKZX3sGJ3tkQPGywGjt1+iD25ltHmAzx8AAAAAAAAwLuqDWRmtPozsjJgDRp8HjN7+WzEGjJcDRm8/AAAAjIONEU5u6NChWrp0aZ7nHDt2TE2aNMny2pkzZzRr1iytXbtWERERKlWqlFq2bKnnnntOgwYNsmbIVnUxPlJdHn9Xbe97yd6h2JWXRxk1qdNJOw+vVMzZMEP9kksOpDNyDki0XzJ2HzAPGPvzBwAAAAAAAIzOyPVB6sMgB9IZeR6QjN1+xkA6I+eARPsBAADgvNgYYRCNGjVS1apVczxWunTpLD8fO3ZMPXr0UExMjNzd3dWiRQslJSVp165d2rlzp3788UctWrTIFmFb3MmDa1W/TR97h1EixJ4NkySVL+1t50hsixy4wag5kMHo7ZeM2wfMA+mM+vkDAAAAAAAAMG59kPowyIEbjDoPZDBq+xkDNxg1BzIYvf0AAABwTmyMMIhJkyZp6NCh+Z6XmpqqAQMGKCYmRp07d9Y333wjX19fSdKRI0fUu3dvLV68WJ06ddKwYcOsHLXlJcSFyr/ni/YOw+aSrl/RhcR4mc1mnb8Up7U/f6IT0QfVpFZH1fRpbO/wbIocMGYOGL39En1wMyPOA3z+AAAAAAAAgHFRH7zBiPVhZGXUHDD6PGD09t+MMWDMHDB6+wEAAGAcbIxAFuvXr9exY8fk6empZcuWZW6KkKSWLVvqww8/VJ8+fTR16lQ9/fTTcnV1tWO0hZOcdFkepcrZOwy7+GLTFH2xaUqW1zq36K9/PfihnSKyD3LAuDlg9PZL9EEGo84DfP4AAAAAAABwZmlpaVq9a57W/bJAcecjVLGMj+7yf0RP3vO6vDzK2Ds8u6M+mM6Z68Mrtr6j0OgDCo36TXHnTqpapTpaPinC3mGVOM6cA/kx+jxg9PZnYAwYNweM3n4AAAAYhyE2RsTHx2vmzJn69ttvFRUVJR8fH/Xv319vv/22Ro0apcWLF+v999/XyJEj7R2qJMlsNstkMtnlvXft2iVJat++verWrZvteO/evVWmTBnFxMRo586d6tatm20DLIbII5tVu2Uve4dhF/cHDNddrR5WStp1nYw9ouDtMxR/IUoe7qUyzzkSvlOTFt2X7dqU1GSlpaVq48xUW4ZsFeSAcXPA6O2X6IMMRp0H+PwBAAAAAADgzD5e+5K+2zVfd7Z4UA91HaPI08f03a75Cos+qBnDt8jFxcXeIdoV9cF0zlwfXvy/SSpX2luN/Noq8WqCvcMpsZw5B/Jj9HnA6O3PwBgwbg4Yvf0AAAAwDqffGHHo0CHdd999iouLU5kyZdSsWTPFxMRo/vz5CgsL07lz5yRJrVu3tloM3bp1008//aSTJ0/muNngZocPH9YTTzyhlStXqmHDhhaLYeXKlfruu+908eJFValSRZ06ddKQIUPk4+OT5byM/vDz88v1Xn5+fjp+/Lj27NnjUBsjYkN3685HZ2R5bXfwJO1f+456DFuk5l2fznLMbDZr1VuBijvxsx594zdVqdXCluFalF+VRmrbuIckqWOT+9SiXme99FFnzVv1nP4z+CtJUsv6XbT2rctZrou/EKMX57dX3ztKxqah4iIHjJsDRm+/RB9kMOo8wOcPAAAAAAAAZxURd1Tf735fnVv015QnV2W+7utdTx9+P0rbQ75S9zaD7Bih/VEfTOfM9eEvXglT9cr1JUnDZrfQ1eTL+VxhTM6cA/kx+jxg9PZnYAwYNweM3n4AAAAYh1N/PUp8fLz69OmjuLg4jRkzRrGxsTpw4IDi4uI0Y8YMrVu3Tvv27ZPJZFKrVq3sHa4k6fPPP1dISIgCAwMVHh5usfuuW7dO33//vbZt26ZvvvlGY8aMUb169bR8+fIs51WsWFGSFB0dneu9Mo799ddfFovP2sxpaTKbzXJxcc3yeqcBU1W5Zgvt+PJlXTobleXYwQ3vKfrPnxTQf5pD/4Kfk+Z171CPtkO0PSRYRyP25HhOcso1Tfuiv1rU7axBd0+ycYSWRw5kZcQcuJnR2y8Zsw+YB24w4ucPAAAAAAAA57Tt0AqZzWb17zI6y+tBAcNUyr20thxYnvOFBmbE+qCz14czNkUgd86eA4VlxHngZkZsP2MgKyPmwM2M3n4AAAA4L6feGDFq1ChFRUVp5MiRmj17tsqVK5d5bPz48fL391dKSorq1q2r8uXL2zHSG+bMmaMhQ4YoKipKgYGBioiIKNb9GjdurLlz5+rQoUNKSEhQYmKiduzYoV69eikxMVFPPPGE1q1bl3l+hw4dJEn79+/XqVOnst1v/fr1SkxMlCSdP3++WLHZUlz4Xvk26JjtdVc3D/UasVQp1xK1ZeEzma+fj/lLP3/zH/k2CFC73uNsGarNPN7jVbm4uGrpxtdyPD5v1XNKvp6kcQOX2DYwKyEHsjNaDtzK6O2XjNcHzANZGe3zBwAAAAAAgHP66+99cjG56LbaWWt/Hu6lVL9Gax3/e5+dIivZjFYfpD4MciA7o80DtzJa+xkD2RktB25l9PYDAADAOTntxohjx44pODhYVapU0TvvvJPjOe3atZMk+fv7Z77WrVs3mUymHP8899xzxYopKipKERERef6JjIzU1KlT1b17d0VGRiowMFCRkZFFfs9JkyZp9OjR8vf3V4UKFVS6dGl16dJFGzZsUN++fWU2mzV69GiZzWZJUt++fVWzZk1du3ZNjz76qP7+++/Me+3bty9LH1y5cqXonWFF0X/uUFpqSpbXToVsUJ1W9+Z4ftV6bdW+z0RFHtmkI1s/VVpaqjYueEJms1m9RizN9o0JzsKvSkMF+j+qgyd+1JHwnVmOrd41X78e+0HThn6nUh6l7RRh0ZEDBePMOVAQRm+/5Nx9wDyQP2f+/AEAAAAAAGAcZy/GqHyZKvJw88x2rEoFP11IjNf1lGQ7RFayOXN9kPowyIGCceZ5oCCcuf2MgYJx5hwoCKO3HwAAAM7JaTdGrFixQmlpaXr88cdVtmzZHM/x8vKSlHVjxEcffaSff/45y5/JkydLknr37l2smLp06aJ69erl+6dBgwbaunWrJCkiIkKDBw8u1vvmxGQyacaMGZKkEydO6MiRI5IkT09Pff3116pQoYJ++eUX1atXT02bNlW9evXUsWNHXblyRf3795ekLE/gKCmO/xKs72ffr+i/sv7Sdu3qBXmWrpDrdR37vaoqtf21679jtX3pv3Q6bK/uePgtVapxm7VDtqvH7v6PXEwuWrrpxjcAHDqxTQvXTdCrQ76Rr3dd+wVXRORA4ThjDhSG0dsvOWcfMA8UnDN+/gAAAAAAADCWa8lX5J7DpghJ8nArlX7O9ZL5ZV/25oz1QerDIAcKxxnngcJwxvYzBgrHGXOgMIzefgAAADgfN3sHYC0ZGwsCAwNzPScqKkpS1o0RzZo1y3beW2+9JR8fH917b8675wuqZcuW8vDwKNC5Z8+eVUREhCSpadOmxXrf3Nx2223y9vbWuXPnFBoaqlatWkmSbr/9dh08eFDTp0/Xxo0bFR4erkqVKmno0KF6/fXX9fbbb0uSfH19i/S+7du3V1xcXKGucXX30oNvhuZ7XuNOA5Vw+oTCD6xRrWbpn/3F+EiVr1In7/u7uavXiKX66rUOOvLjx6rRuLPa3Du6UDFmi6VRI6Vev1qse3i4eenTkfm3Ozf+Dbpp8yxzrsfrVGuqjTNTM3+OOxehN5c/omG9Z8m/Qbciv++tGjVupOSU4vWFUXMgQ1FzwZ45YInP/WZF6QN7jwFL9gE54HjzgCXnAIkxAAAAAACAURW3TmxP1AZgCfmNAU+P0rp6+Z8cjyWnJKWf426fbzq21BigPux49WHJcjVi/h1I52g5UBLWCCTHmwcsne/2XifJTVH6xtHGgMR6udHXy/ldAAAAAEXl6+ur/fv3F+lap90YcerUKUlSnTo5/3KXkpKi3bt3S8q6MeJWZ86c0YYNG/TCCy/Iza143bVmzRrVrVs33/OioqLUtWtXSdLAgQP10UcfFet98+Lu7i4pvT9uVq9ePS1YsCDHa44ePSopfYNDUcTFxSk6OrpQ17h5Frxg3aD9g1o75wF1HTxXknTy4FrVa9Mn3+s8S1eQq7un0lKvq27rIJlcivdAlZjYGKVcK943EJWyYaE+KfmKpizpp9ubPaB+d4606L1jY2KUVMxvYzJqDmSwRS5YOgcs8bnfzNp9YI0xYMk+IAccbx6w5BwgMQYAAAAAADAqW9aJLY3aACwhvzFQuXwNRZ7+Q8kp1+Rxy5Mj4i9Eq0KZKnJ3K9gXl1mapcYA9WHHqw9LlqsR8+9AOkfLAUdbI5BKxjxgz3y35nr5rYrSN442BiTWy42+Xs7vAgAAALAHp90YkZiYKEm6ejXn3cfBwcGKj49XuXLlVK9evVzvs2LFCqWkpGjIkCFWifNW0dHRCgwMVHh4uB566CEtX75crq6uVnmvM2fO6J9/0r9Bp2bNmgW6Jj4+Xj///LPc3NwUFBRUpPctypMmXN29CnxuZb9mksmks1FHVblmcyWcPiH/ag3yvMZsNmvzp08pLSVZ3jWaau/3b6pRwCOqmM91ealRvYZFnhhhKzuPrFJ4bIii449re0hwtuOLxv6hqpVqF+ne1WvUsMgTIwrKmXIggy1ywdI5YInP/WbW7gNrjAFL9gE54HjzgCXnAIkxAAAAAACAUdmyTmxp1AZgCfmNgdtqddBvxzfpr8i9alm/S+brydeTFB5zSC3r32XtEHNlqTFAfdjx6sOS5WrE/DuQztFywNHWCKSSMQ/YM9+tuV5+q6L0jaONAYn1cqOvl/O7AAAAAIqqKP+feQan3Rjh6+ur8+fP68CBA7r99tuzHIuNjdW4ceMkSa1atZLJZMr1PsuWLVPTpk2L/HSEwpo2bZpOnDihBx98UCtWrCj2UyryMmfOHJnNZlWoUEEdOnQo0DWTJ09WSkqKHn/8cVWvXr1I71uUx5tcS5EmZP+9K1f12/RR+IE1KleljjxKlcv3/JBN7yvq2Hbd/vBbatCur1ZMbqstnz2tAf/Znmd+5OV4aKg8i/nxpSZL2+YX7x4F1bPdEPVsZ50NQKHHQ+VazC9jMmoOZLBFLlg6Byzxud/M2n1gjTFgyT4gBxxvHrDkHCAxBgAAAAAAMCpb1oktjdoALCG/MdDNf6BWbH1b3+58L8vGiPW/fqak61fUvc3jNogyZ5YaA9SHHa8+LFmuRsy/A+kcLQccbY1AKhnzgD3z3Zrr5bcqSt842hiQWC83+no5vwsAAADAHor33LsSrEePHpKkGTNm6Pjx45mv79u3T4GBgYqPj5cktW7dOtd7/Pnnn9q/f3+xnxbRtWtXDRgwQGXKlMn33Hnz5mnatGkKDg4u9qaIzZs365VXXlFYWFiW169cuaLXX39dM2fOlCRNnDhRHh43fhtZv369du/eneWahIQEjR49WgsWLJCPj4/mzJlTrNisrV7b9F/yI49sUu0WPfM893xcqHZ/PVHV6ndQ+z4TVLlmcwX0n6roP3coZNP7tgkYFkcOAGAeAAAAAAAAAJxfveot9cAdL2rX799q6tL+Wv/rQn2ydow+WfuyWtXvqu5tBtk7RNiB0erDm39bpi+3vKkvt7yphMQzSky6kPnz5t+W2Ts8uzBaDgC3YgwAAAAAMCKn3Rgxfvx4Va5cWX///beaN2+uli1bqlGjRurYsaPq16+v7t27S5L8/f1zvceyZctkMpn0+OPF+yaZadOmaeXKlfLx8cn3XC8vL7322mtyd3cv1ntKUmJiombMmKGGDRuqRo0a6tChg9q1a6cqVapoypQpMpvNGj58uMaPH5/luk2bNqlz586qUKGC/P395e/vr2rVqmnevHny8/PTjz/+qGrVqhU7Pmvyu62LEuJCFbZ/tao3viPX88xpadq8YKjMaanqNWKpXFxcJUnteo9X1XrttfvriUo4HZbr9Si5yAEAzAMAAAAAAACAMTz/wHsa3nu2Tp0+qg9Wv6jth75Svzv/pTef/kEuLk67HIo8GK0+vGHvIi3Z+KqWbHxVCZf/0eWrCZk/b9i7yN7h2YXRcgC4FWMAAAAAgBE5bSWwZs2a2rlzp+6//36VKlVKERER8vb21oIFC7Ru3brMp0jktjHCbDbryy+/VLdu3VS7dm1bhm4x7dq10+TJk3X33XfLw8NDf/zxh44ePSofHx8NHDhQW7Zs0YIFC7I99rBfv3569NFHVaVKFYWGhurkyZNq1qyZXn/9dR07dkwtW7a0U4sKzsXVTXVa3ZP+9///xT0nB9bPUWzoHnUa8Lq8/ZreuN7FVb1GLJE5NUVbPntaZrPZ6jHDssgBAMwDAAAAAAAAgDG4urjq4a5j9Pn4v7R++jV99Wq0nnvgXXl5lrV3aLATo9WH5zy/XZtnmXP8M+f57fYOzy6MlgPArRgDAAAAAIzIzd4BWFPTpk31ww8/ZHv98uXLioiIkIuLi1q0aJHjtTt27NCpU6c0ZcoUa4dpNbVq1dIbb7xR6Ou6deumbt26WT4gG2vQrp90y6aPm52LPqafV70q34ad1DZoTLbjGY+H3PP1JIVsel+t7xllvWBhFeQAAOYBAAAAAAAAADAm6sMgB2B0jAEAAAAARuPUGyNyc/ToUZnNZjVu3FilS5fO8Zxly5bJy8tLDz30kI2jg6U0Cng4z+Pefk018vOkPM/p8MBEdXhgoiXDgg2RAwCYBwAAAAAAAADAmKgPgxyA0TEGAAAAABiNITdGHDlyRJLk7++f4/GkpCStXLlS/fr1U7ly5WwZGpCnsJgQzV05TFeuXVK1inU04bFlqljWRz3HmVTXt4WeDZqhgKZBuph4VuMW3J153bXrVxR7LlzfTPlH5Ut7a+wngQqPCdHgnq+pf5fR9msQgBJrx+GV+vXYOl2+el6nTv8hT3cvVSxbVaP6fyy/Kg3tHR4AAAAAAAAAAAAsYMfhlToY+qOef2Cu3vry0RK1LlTQ9XFJmvBpL52/FCeTyUWlS5XTi33nq6FfG0nSh9+N0s9/rNHp86f08eiDaujXOvM9WDsHAAAAAOfBxogclCpVSgkJCTaMCCiYWcFDNfaRz9XQr7U27F2sT38Yq/GPLpUkzX1hp8p6VZQklS9TWQtePpR53TfbZ+tw+E8qX9pbkjT7uW2a+dXQAr3nmI+7adzAJfL1rmvBlsAe8ioGOouciqOnTh/VpIX3qabPbZo+fJMqla2qDXsXa9XOuYr855hG9J6dpcgZdSZU769+QQmX/1FqWooG93hN3VoPlCSt2jFXa/Z8qFIeZbOMMWe0+/fV6trqEbm6uqtjk/tkMpn03e4P9O43z2rO89vtHR4AAAAAAAAAAAAsYPfvq9Wj3ROSpKCA4SVqXaig6+OS9OqQrzN/3nVktWYFD9WCl0MkSV1aPaRHuo3XSx91zvYerJ0bB+vlN9bLM5w6fUwvzmunoIDheqHve5Kk73d/qB9++UQuJlelpaUoqNNwPdh5lCRjrZcDAADAMbExAnAQJ6IPysuzbOa3V/Rs/6QW/DBG11OS8732f/sW6Zn73rFKXJevJmjYnBa6dv2qfCrU0vXUa4o7G6672w3RmIcXWuU9UTR5FQOdRU7F0Xs6PKWaPrdlKcw0qtlOkwd/ra+2Zh8Xs4KH6p4OTyko4FklXD6jF+e1V4t6nVWlgp8G3PWSGvq10Uffj7Zdo6wgv3GbknpdRyN2a9zAJXJzdc+8rmntTlr502w7Rg5rYj4HAAAAAAAAjInaIODc8hrj/+7/cZY1oYynL0j2Xxcq7Pr4zZskEpMuSDJl/tyq/l1WjDQr5tSSi/XyQ1nOTUm9rvdWDdedLR7M8nqPtoPV984XJUmJSRc1bE4LtazXRQ392jjNejkAAACclyE3RmzdutXeIQCFFnvupE7GHtGId1tnvnYt+YriL0bned3RiD26fOW8OjXtbZW4ynpVVPfWg+TlWU6De76qfX9t1Iqtb1PUKYFyKwY6S3Eut+Jo9zaPZzu3QY30jXEmk0u2Y+GxIerYJL3oW7Gsj+rX8Nf2Q8F6qOvL1gvexvIbt4dObFOzOndk2RQhSat3zdPtzfvaI2TYAPM5AAAAAAAAYEzUBgHnltcY3//XphzXhCT7rwsVZX18xoonFBK2TZL01jPrrR1ijphTSy7Wy7Navvl13dXqYV26ck6XryZkvl7Gq0Lm35OSE5Waet2aYQMAAAAWZciNEYCjalI7QNOHbcz8+aGpPvles2HvIvVs94RcXQs+3GeseELhsYclSTFnT+g/i4Lk5uohSZo29LtsjwY9EXMo89GJoVG/qWEN53rcpDPJqRjoLMW5om4eulWjmu3044HlGhg4XrFnw/VHxB75Vqpr2WCtbNT7tys6PjTHYx+/dFBVK9bKc9zuOfpdtm8G+e+Pbysm/oRmjvjReoHDqoqbFwAAAAAAAAAcE7VBALmN8ZzWhKSSsy5U2PXxCY99IUnatH+pPls/QW9bYHNEYdfOJdbPSzLWy9Mdi/xVf5z6WTOGb9ayzdOyHd9xeKW+2DRFMfEn9NR9b6uhHzkMAAAAx8DGCMBBVPeur38SIjN/Tky6qKTkRFUp75frNVevXdZPh7/WB6P2Feq9MgpGkjTm424aN3BJjgWdDOExhzJ/EQ6N+k23N3+gUO8H28mtGOgsxbmibB661fiBS7Vg7RiNeLe1qlWqozaN7pari2P9czn/Xz/ne05u49ZsNmv/Xxs17P6Zmed+s322dv3+rWYO36JSHqWtEzSsrjh5AQAAAAAAAMBxURsEkNMYz2lNSCo560JFWR/P0Kv9k5q36jldTDyr8mUqFyuOwq6dS8ypJRnr5VJS8hW9/+0LevWJlTKZTDne565WD+muVg8p7lyEpi59UJ2a9latqrdZLW4AAADAUlzsHQCAgmno11puLu767fhmSdLaPR+pq/9Aubt55HrN9pBg1a/ur9pVm1gtrvgL0ZLJpCoV0gtQ4XGHVc+3pdXeD5bRq/2TCjmxTRcTz0rKXpxzxG98KE5x9Ga+3nU15clVWvDyIb3+1PdKvHpBdXybWzpcu8pr3P75917VrtZUXp5lJUkrf3pX2w6t0Ixhm7M8XhbOh/kcAAAAAAAAMCZqg4Bzy22M37omJJWsdaHCrI9fvpqg+AsxmT/v/v07lS9TWeVKe9ss3gzMqY7ByOvlsWfD9E9CpMZ9EqjBb9fVtzvf08Z9izXzqyez3dPXu66a1A7QL8d+sHr8AAAAgCWwMQJwIBMHfalF/5uoJ6c3VEjYdg3vPSvP8zfsXaR7Oz5j1ZhORB/M8m0JZUtV1JqfP7Lqe6Lw8ioGOktxriibh3Jy/tJppaWlSZL2/bVRp/75Q93bDLJ4vPaU17jd/ftq3dG8nyTpTEKUFvwwRpevJmjsJ4Ea8W5r/Wt+gD1Chg0wnwMAAAAAAADGRG0QcG65jfGb14SkkrkuVND18cSkC5q6tJ+GzWmpEe/66/vdH+iNp37I/Db891aO0GNv1tSZC1GauPAePTm9odViZk4tmVgvv6Fe9ZZaOfWMlk+K0PJJEerfZbTu6fC0xj+6VJJ06vQfmecmXD6jQye2qn71VrZrCAAAAFAMbvYOAEDB1aveUh/9e3+Bz583ck+x33PO89vzPN6pWW91atY78+cP/72v2O8Jy0tMuqA3lj2sa9evysXkogplfDKLgbkV58Y8vNCOERfNxEFfatbXT2n+t8+rRuWGemXQckXE/Z7tvI37lmjJxsm6fOW89hz9Tt/8NFtvPLVWDf3a6Oc/1ip423S5uLiqcvkaeuuZ9fJ097JDa6wnr3H7yx9rNeu5bZIkn4o1tXmW2ebxwT6YzwEAAAAAAABjojYIOLfcxvizs5tnrglJJXNdqKDr49Uq1dEHo/bmenz0QwssEk9+a+cSc2pJxXp5wa3eOU9HTu6Um6uHJLP6dxmtdo17WidgAAAAwMLYGAE4gUplq2nMx1319H3vKKBpUL7nj/0kUKfPRahFvTttEB1KgryKgc5UnCtocfSeDkN1T4ehOR4LCnhWQQHPWjgyx7Fw7FF7hwAAAAAAAAAAAAArc+Q1ocKuj+eFtXNjYL08d0/0mprlZ0ttJAIAAADsgY0RgBP4ekpcoc6ffdM3fwDOzs3VQ5eunNWId1tr+vBNqlS2apHvtWrHXK3/9TNVLl/DghECAAAAAAAAAAAAKKjCro/nhbVzODvWywEAAGAkbIwAADi15nXv0H8n/22Rew246yUNuOsli9wLAAAAAAAAAAAAAABrYr0cAAAARuJi7wAAAAAAAAAAAAAAAAAAAAAAAACKio0RAAAAAAAAAAAAAAAAAAAAAADAYZnMZrPZ3kEA+TGbpeRUe0dROB6ukslUvHuYzVLadcvEY08u7pbpCyPmQAZHzAVLfO43M3ofGL39kuPNA5acAyRyAAAAAAAAo0pNlrbNt3cURRM4SnL1sHcUcHSMAWqDkuPVhyXL1Ygd8fPPYOl1EkfKAdYIivb5O2I7i6KofeNIY0Bivdzo6+WsEwIAAMAe3OwdAFAQJpPkacBsNZlYNMpg1BzIQC7QB0Zvv8Q8QA4AAAAAAAAAxkRt0Nj1YT7/dEbOAck4eWCUdhYFY4DcoA8AAACA/LnYOwAAAAAAAAAAAAAAAAAAAAAAAICiMvB+cgAAAAAAAAAAAABGERK2XWM/Ccz1uIuLqzbOSLFhRAAAAAAAAAAshY0RAAAAAAAAAAAAAAwjsPVj6tgkKNvrLi4udogGAAAAAAAAgCWwMQIAAAAAAAAAAACAYTTya6se7QZb5d5ms1lJyYny8ixrlfsDAAAAAAAAyBkbIwAAAAAAAAAAAADgFjsPr9J3u99XWMwhpaQmy6diLbVvfI+G954tdzcPhYRt19hPAjX2kc+VlJyoNXs+VOzZMD3afaKe6DXV3uEDAAAAAAAAhsLGCAAAAAAAAAAAAACGkXT9ii4kxmd73c3VQ2VKlZckLf7ff7Ri69uqU62ZBnR5Sd7lqyvmbJh2HVmlJ+95Xe5uHpnXfbvzPV26clb3BQyTdzlf+VSsZbO2AAAAAAAAAEjHxggAAAAAAAAAAAAAhvHFpin6YtOUbK8HNL1fbz79g/6M3KsVW99W6waBeuuZ9fJwL5V5zrNB07NddyYhUovG/6lKZataNW4AAAAAAAAAuWNjBAAAAAAAAAAAAADDuD9guO5q9XC21yuU9ZEk/XjwS0nS00HvZNkUIUkmkynbdT3aPcGmCAAAAAAAAMDO2BgBAAAAAAAAAAAAwDD8qjRS28Y9cj0eHR8qk8mkBtX9C3S/mj6NLRUaAAAAAAAAgCJysXcAAAAAAAAAAAAAAFCSmGSScng6RE483UtbORoAAAAAAAAA+WFjBAAAAAAAAAAAAAD8v5pVGivNnKbwmBB7hwIAAAAAAACggNgYAQAAAAAAAAAAAAD/r3ubQZKkxf+bpOspydmOm81mW4cEAAAAAAAAIB9u9g4AAAAAAAAAAAAAAGwlNPqAtvy2PMdjd7bopya1O2pg4AQFb5uhF95rq67+A+Vd3lex505q5+GV+mDUXpX1qmjboAEAAAAAAADkiY0RAAAAAAAAAAAAAAxj26EV2nZoRY7HlkwIlZ9nQz0bNF31q/vr+90f6OufZsqcliafirXUsUmQPN1L2zhiAAAAAAAAAPkxmXnWKwAAAAAAAAAAQImUmixtm2/vKIomcJTk6mHvKODoGAMAAAAAAAAACsLF3gEAAAAAAAAAAAAAAAAAAAAAAAAUFRsjAAAAAAAAAAAAAAAAAAAAAACAw3KzdwBAQZjNUnKqvaMoHA9XyWQq3j3MZintumXisScXd8v0hRFzIIMj5oIlPvebGb0PjN5+yfHmAUvOARI5AAAAAAAAjMvR6kIStSGJ2pAlMQaMMwYcsZ1FUdS+caRxwBhgnYx/BwEAAADA9tgYAYeQnCpNCLZ3FIUzY6DkWcwRlnZd2jbfMvHYU+AoydWjePcwag5kcMRcsMTnfjOj94HR2y853jxgyTlAIgcAAAAAAIBxOVpdSKI2JFEbsiTGgHHGgCO2syiK0jeONg4YA6yT8e8gAAAAANiei70DAAAAAAAAAAAAAAAAAAAAAAAAKCo2RgAAAAAAAAAAAAAAAAAAAAAAAIfFxggAAAAAAAAAAAAAAAAAAAAAAOCw2BgBAAAAAAAAAAAAAAAAAAAAAAAcFhsjAAAAAAAAAAAAAAAAAAAAAACAw2JjBAAAAAAAAAAAAAAAAAAAAAAAcFhsjAAAAAAAAAAAAAAAAAAAAAAAAA7Lzd4BALCekLDtGvtJYJbXSnmUUU2fxurRdoj63fkvuboyDTgzo+eA0dsv0QdGx+cPAAAAAABgXNSGYHSMAfoA5IDR2w8AAAAARsNveIABBLZ+TB2bBMkss85fitPm377QJ2tfVuQ/x/TSQ5/aOzzYgNFzwOjtl+gDo+PzBwAAAAAAMC5qQzA6xgB9AHLA6O0HAAAAAKNgYwRgAI382qpHu8GZP/e54wU9M7OJ/rd3oZ669y1VLOtjx+hgC0bPAaO3X6IPjI7PHwAAAAAAwLioDcHoGAP0AcgBo7cfAAAAAIyCjREwnHmDTRa717+Xmy12L1vy8iijJnU6aefhlYo5G2a4Qg85QA4Yvf0SfWD0ecDonz8AAAAAADA2akPUhoyOMcAYMHofGH0MSOSA0dsPAAAAAM6KjREG8d1332nRokXav3+/zp07J29vbzVp0kRBQUEaN25cjtds2rRJ7777rvbt26erV6+qQYMGGjRokMaMGSMPDw8bt8AyLsZHqsvj76rtfS/ZOxS7iz0bJkkqX9rbzpHYFjlwg1FzIIPR2y8Ztw+YB9IZ9fMHAAAAAADGRm0oHbUh42IMpGMMGLcPGAM3GDUHMhi9/QAAAADgjNgY4eSSk5P1+OOPa+XKlZKk+vXrq1atWjp9+rR27typI0eO5LgxYs6cORo7dqwkqU6dOqpdu7Z+//13TZo0ST/88IO2bNkiLy8vm7bFEk4eXKv6bfrYOwybS7p+RRcS42U2m3X+UpzW/vyJTkQfVJNaHVXTp7G9w7MpcsCYOWD09kv0wc2MOA/w+QMAAAAAAKSjNkRtyOgYA8YcA/TBDUYcAxI5YPT2AwAAAIBRsDHCyT377LNauXKl7r33Xn3wwQdq0KBB5rGEhATt2LEj2zV79+7VuHHjZDKZ9Pnnn+vJJ5+UJIWFhenee+/Vnj17NHHiRL333nu2aobFJMSFyr/ni/YOw+a+2DRFX2yakuW1zi36618PfminiOyHHLjBSDlg9PZL9MHNjDgP8PkDAAAAAACkozaUjtqQcTEG0hltDNAHNxhxDEjkgNHbDwAAAABGwcYIJ7Zp0yYtW7ZMAQEBWrt2rdzcsn7cFStW1AMPPJDtujfeeENms1lPP/105qYISWrQoIEWLVqkrl276uOPP9akSZNUtWpVq7fDUpKTLsujVDl7h2EX9wcM112tHlZK2nWdjD2i4O0zFH8hSh7upTLPORK+U5MW3Zft2pTUZKWlpWrjzFRbhmwV5IBxc8Do7ZfogwxGnQf4/AEAAAAAcF4rtr6j0OgDCo36TXHnTqpapTpaPinC3mGVSNSGnLM2xBgoOMaAc46BgqAP0hl1DEjkgNHbDwAAAABG4fQbI+Lj4zVz5kx9++23ioqKko+Pj/r376+3335bo0aN0uLFi/X+++9r5MiR9g5VkmQ2m2UymSxyr7lz50qSJk+enG1TRG4uXbqkTZs2SZKGDRuW7fhdd92lxo0b6/jx41qzZo2effZZi8RqC5FHNqt2y172DsMu/Ko0UtvGPSRJHZvcpxb1Ouuljzpr3qrn9J/BX0mSWtbvorVvXc5yXfyFGL04v7363lEyxkdxkQPGzQGjt1+iDzIYdR7g8wcAAAAAwHkt/t8klSvtrUZ+bZV4NcHe4ZRo1IacszbEGCg4xoBzjoGCoA/SGXUMSOSA0dsPAAAAAEbhYu8ArOnQoUNq2bKlZs2apbi4ODVr1kzXr1/X/PnzNXDgQB07dkyS1Lp1a6vF0K1bN5lMJkVEROR77uHDh9WmTRudOHGi2O979epVbdmyRS4uLgoMDNSvv/6q5557Tj169FC/fv00ffp0xcfHZ7vu4MGDSk5Olqenp9q3b5/jvTt37ixJ+uWXX4odpy3Fhu5W9cZ3ZHltd/AkzRts0tGfFmc732w2a+Wb3fTBUE/F//27rcK0ieZ171CPtkO0PSRYRyP25HhOcso1Tfuiv1rU7axBd0+ycYTWQQ7cYNQcyGD09kvG7QPmgXRG/fwBAAAAAHBGX7wSpm+nndWM4ZtVuXwNe4dTolEbSudstSHGQMExBtI52xgoCqP2AWPgBqPmQAajtx8AAAAAnJXTboyIj49Xnz59FBcXpzFjxig2NlYHDhxQXFycZsyYoXXr1mnfvn0ymUxq1aqVvcOVJH3++ecKCQlRYGCgwsPDi3WvkJAQpaSkqHLlyvrggw90++23a8GCBfrxxx/1/fffa+LEiWrUqJG2bduW5brjx49LkurUqZPrUyYaNGiQ5VxHYE5Lk9lslouLa5bXOw2Yqso1W2jHly/r0tmoLMcObnhP0X/+pID+01SlVgtbhmsTj/d4VS4urlq68bUcj89b9ZySrydp3MAltg3MSsiB7IyWA7cyevsl4/UB80BWRvv8AQAAAABwVtUr17d3CA6B2lBWzlQbYgwUDGMgK2caA0VltD5gDGRntBy4ldHbDwAAAADOyGk3RowaNUpRUVEaOXKkZs+erXLlymUeGz9+vPz9/ZWSkqK6deuqfPnydoz0hjlz5mjIkCGKiopSYGBggZ4ykZvY2FhJ0vnz5/XKK68oKChIR48e1bVr13T48GF1795dCQkJ6t+/v6KibhR4zp8/L0mqVKlSrvfOOJZxriOIC98r3wYds73u6uahXiOWKuVaorYsfCbz9fMxf+nnb/4j3wYBatd7nC1DtRm/Kg0V6P+oDp74UUfCd2Y5tnrXfP167AdNG/qdSnmUtlOElkUOZGe0HLiV0dsvGa8PmAeyMtrnDwAAAAAAjI3aUFbUhoyHMZAVY8B4fcAYyM5oOXAro7cfAAAAAJyRU26MOHbsmIKDg1WlShW98847OZ7Trl07SZK/v3+2Y6tXr9Ydd9yhMmXKqEKFCrrzzjt19OjRYsUUFRWliIiIPP9ERkZq6tSp6t69uyIjIxUYGKjIyMgivV9iYqIkKSUlRQ0aNNDq1avVrFkzeXh4qGXLllq7dq18fX2VkJCg9957L/O6pKQkSZKHh0eu9/b09JQkXb16tUixWVv0nzuUlpqS5bVTIRtUp9W9OZ5ftV5bte8zUZFHNunI1k+VlpaqjQuekNlsVq8RS7N9a4gzeezu/8jF5KKlm258C8ahE9u0cN0EvTrkG/l617VfcMVADhScs+ZAQRm9/ZLz9gHzQME46+cPAAAAAACMjdpQwVAbcl6MgYJhDDhvHzAGCs5Zc6CgjN5+AAAAAHA2bvYOwBpWrFihtLQ0Pf744ypbtmyO53h5eUnKvjFi/vz5GjNmjF566SW98cYbunbtmn799ddibwLo0qVLoa+JiIjQ4MGDtWPHjkJfW6pUqcy/jxw5Uu7u7lmOly5dWs8//7ymTJmiDRs2aPbs2VmuS05OzvXe165dk3SjDwurffv2iouLK9Q1ru5eevDN0HzPO/5LsLYsfFZ9Xl6jWs0CM1+/dvWCPEtXyPW6jv1eVfiBNdr137E6c+qQToftVZdBc1Spxm2FivNmjRs1Uur14uWNh5uXPh2Zf7tz49+gmzbPMud6vE61pto4MzXz57hzEXpz+SMa1nuW/Bt0K/L73qpR40ZKTileXxg1BzIUNRfsmQOW+NxvVpQ+sPcYsGQfkAOONw9Ycg6QGAMAAAAAABhVcevE9mSp2kBB60IStaGbOUttiDHAGJCMMwYsne/27oPcFKVvWCMw9jqR0dsPAAAAAEbi6+ur/fv3F+lap9wYsXXrVklSYGBgrudERUVJyroxIiwsTOPGjdPcuXM1cuTIzNeDgoKKHVPLli3zfArDzc6ePauIiAhJUtOmTYv0fpUqVcr8e273yHj95MmT2a47f/58rvfOOHbzexRGXFycoqOjC3WNm2fBHk/ZuNNAJZw+ofADNwpdF+MjVb5KnTyvc3VzV68RS/XVax105MePVaNxZ7W5d3ShYrxVTGyMUq5dKdY9Srnb7rGcSclXNGVJP93e7AH1u3Nk/hcUQmxMjJKuF68vjJoDGWyRC5bOAUt87jezdh9YYwxYsg/IAcebByw5B0iMAQAAAAAAjMqWdWJLs1RtoKB1IYnaUFGV5NoQY4AxIBlnDNgz3625VnirovQNawTGXicyevsBAAAAAAXjlBsjTp06JUmqUyfn4kZKSop2794tKevGiMWLF8vd3V3Dhg2zeExr1qxR3bp18z0vKipKXbt2lSQNHDhQH330UZHer0mTJpl/z21DRsbTIVJTb3wDQuPGjSWl92FKSorc3LKnSFhYWJZzC8vX17fQ17i6F/zpFA3aP6i1cx5Q18FzJUknD65VvTZ98r3Os3QFubp7Ki31uuq2DpLJxaXQcd6sRvUaFnlihK3sPLJK4bEhio4/ru0hwdmOLxr7h6pWql2ke1evUcMiT4woKGfKgQy2yAVL54AlPvebWbsPrDEGLNkH5IDjzQOWnAMkxgAAAAAAAEZlyzqxpVmqNlCYupBEbagoSnJtiDHAGJCMMwbsme/WXCu8VVH6hjUCY68TGb39AAAAAGAkRfn/zDM45caIxMRESdLVqzn/khkcHKz4+HiVK1dO9erVy3x9z549uu2227R8+XK9+eab+vvvv9WoUSO99tpreuyxx6wed3R0tAIDAxUeHq6HHnpIy5cvl6ura5Hu5efnp9q1aysyMlLh4eE5Pj0jY4NDzZo1M19r06aNPDw8dO3aNe3fv1+dOnXKdt2uXbskSQEBAUWKrSiPN7mWIk3IXnvIUWW/ZpLJpLNRR1W5ZnMlnD4h/2oN8rzGbDZr86dPKS0lWd41mmrv92+qUcAjqpjPdXk5Hhoqz2KOsNRkadv84t2joHq2G6Ke7YZY5d6hx0PlWrAHpuTKqDmQwRa5YOkcsMTnfjNr94E1xoAl+4AccLx5wJJzgMQYAAAAAADAqGxZJ7Y0S9UGClMXkqgNFUVJrg0xBhgDknHGgD3z3ZprhbcqSt+wRmDsdSKjtx8AAAAAUDDF+zr0Eipjp8iBAweyHYuNjdW4ceMkSa1atZLJZMpy7Pjx45o4caJee+01bdiwQa1bt9agQYO0ZcsWq8c9bdo0nThxQg8++KBWrFiR49MaCuORRx6RJC1dujTbMbPZrCVLlkiSunfvnvl6uXLl1LNnT0nSZ599lu26HTt26Pjx4/Lw8FDfvn2LFZ811W/TR+EH1ig56bI8SpXL9/yQTe8r6th2dXxwioJGfSNzaoq2fPa0zGazDaKFNZADAJgHAAAAAAAAjIvaEIyOMQCjYwwAAAAAAGA8TrkxokePHpKkGTNm6Pjx45mv79u3T4GBgYqPj5cktW7dOst1aWlpunz5sj799FM99dRT6tGjh/773/+qVatWeuONN4oUS9euXTVgwACVKVMm33PnzZunadOmKTg4uNibIiRp3LhxKl++vHbu3Kk33nhDqampkqSUlBRNmDBBISEh8vT01EsvvZTlusmTJ8tkMunzzz/PsqkiLCxMzzzzjCRpxIgRqlq1arFjtJZ6bdMLXZFHNql2i555nns+LlS7v56oavU7qH2fCapcs7kC+k9V9J87FLLpfdsEDIsjBwAwDwAAAAAAACPY/NsyfbnlTX255U0lJJ5RYtKFzJ83/7bM3uHZDbUh42AM5IwxAKNjDAAAAAAAYDxOuTFi/Pjxqly5sv7++281b95cLVu2VKNGjdSxY0fVr18/8wkJ/v7+Wa7z9vaWdGNjhSSZTCb16NFDv//+e5FimTZtmlauXCkfH598z/Xy8tJrr70md3f3Ir3XrapWraqvvvpKnp6eeu2111S9enUFBATI19dXs2bNkpubmxYuXKimTZtmua5Tp06aPn26zGazhg4dqrp166pNmzZq0qSJTpw4oYCAAE2fPt0iMVqL321dlBAXqrD9q1W98R25nmdOS9PmBUNlTktVrxFL5eLiKklq13u8qtZrr91fT1TC6TBbhQ0LIgcAMA8AAAAAAAAj2LB3kZZsfFVLNr6qhMv/6PLVhMyfN+xdZO/w7IbakHEwBnLGGIDRMQYAAAAAADAep9wYUbNmTe3cuVP333+/SpUqpYiICHl7e2vBggVat25d5lMkbt0Y0bx581zvmZSUZNWYreW+++7TwYMHNXjwYLm5uengwYNyc3PTI488ol9//VWDBw/O8brx48drw4YN6tmzpy5cuKA///xTjRs31ltvvaWffvpJpUuXtnFLCsfF1U11Wt2T/vf/L17l5MD6OYoN3aNOA16Xt9+NDSIuLq7qNWIJj0h1YOQAAOYBAAAAAABgBHOe367Ns8w5/pnz/HZ7h2c31IaMgzGQM8YAjI4xAAAAAACA8TjlxghJatq0qX744QddunRJly5d0q+//qrhw4crMTFRERERcnFxUYsWLbJc07dvX0nSpk2bMl9LS0vT5s2b1aFDB5vGb0lNmzbVsmXLFBMTo+TkZMXFxSk4OFht27bN87p77rlHmzZt0vnz53X16lUdPXpUkyZNkqenp40iL54G7fqpfru+uR4/F31MP696Vb4NO6lt0Jhsx3lEquMjBwAwDwAAAAAAABgXtSEYHWMARscYAAAAAADAWNzsHYCtHT16VGazWY0bN8721IM+ffqoS5cuGj58uM6ePavatWtr4cKFOnr0qDZv3myniFFUjQIezvO4t19Tjfw87yeBdHhgojo8MNGSYRVLWEyI5q4cpivXLqlaxTqa8NgyVSzro57jTKrr20LPBs1QQNMgSVJyyjUtWDtG+49vlIdbKTWo7q9XBi2XJI39JFDhMSEa3PM19e8y2o4tsi5nzAEAhcM8AAAAAAAAYFzUhmB0jAHHV5i1wQmf9tL5S3EymVxUulQ5vdh3vhr6tZEkRZ0J1azgJ3UhMV5lSlXQuIFLVNe3uSTnXjdkDAAAAAAAYCyG2xhx5MgRSZK/v3+2YyaTSWvWrNGECRM0adIkXbx4Uf7+/lq/fr26d+9u61CBbGYFD9XYRz5XQ7/W2rB3sT79YazGP7pUkjT3hZ0q61Ux89xF61+RyWTSkvHHZTKZdO5iXOax2c9t08yvhhboPcd83E3jBi6Rr3ddC7YE9pBXQdxZ5LRAcOr0UU1aeJ9q+tym6cM3qVLZqtqwd7FW7ZyryH+OaUTv2VkK/VFnQvXequG6dOW8rqckqWPT+zX8/llycXHRqh1ztWbPhyrlUVYLXj5kt3YCAAAAAAAAgDXtOLxSvx5bp8tXz+vU6T/k6e6limWralT/j+VXpaG9wwMsasfhlToY+qOef2Cu3vry0RKV84VZG3x1yNeZP+86slqzgodqwcshkqR5q0YoKGC47ukwVDsOr9Ss4KH68N/7JLFuaCSsFd5YK8xw6vQxvTivnYIChuuFvu9Jklbvmq/1v3wqmUwyyaRHuo1Xj3aDJUnbDwVr2eZpOnsxRt+9kWCHFgIAAAAA8sLGiFtUrFhRCxYs0IIFC2wZFpCvE9EH5eVZVg39WkuSerZ/Ugt+GKPrKcnZzr2anKgNexfpv5OjZDKZJEne5X2tEtflqwkaNqeFrl2/Kp8KtXQ99Zrizobr7nZDNObhhVZ5TxRNXgVxZ5HTAsE9HZ5STZ/bsmxkaFSznSYP/lpfbX0n2z0+WzdOd7Z4UA92HqXk60l6cX4H7Wt4twKaBmnAXS+poV8bffT9aNs1ykYYyyAHAAAAAAAAkGH376vVtdUjcnV1V8cm98lkMum73R/o3W+e1Zznt9s7PMCidv++Wj3aPSFJCgoYXmJyvjBrg5KybJJITLogKX2N8Pzlf3Q8ar+mD9skSerScoA+WD1S0fEnrLLpg1pzycVa4aEs56akXtd7q4brzhYPZnm9TrXmeu/F3SrjVUH/JPyt5+e2UbM6t6tGlQbq1nqgmtQO0HNzW9uuUQAAAACAAmNjBOAgYs+d1MnYIxrxbuvM164lX1H8xejs58aHqVxpb63Y+rYOhG6Rp7uXhvScqraN7rZ4XGW9Kqp760Hy8iynwT1f1b6/NmrF1rcpbJZAuRXEnaVAndsCQfc2j2c7t0GN9H8DTCaXbMdMMinx6gVJ0rXrV5Wael2Vy1e3XuAlBGMZ5AAAAAAAAIAx5FcTTkm9rqMRuzVu4BK5ubpnXte0diet/Gm2HSMHiiavnP93/4+z5HtA06DM6+yd84VZG8wwY8UTCgnbJkl665n1kqQzCX/Lu3x1ubqm/68BJpNJVSvV1j8JkVbZGEGtueRirTCr5Ztf112tHtalK+d0+WpC5us3r6lXrVhL3uV8debC36pRpYE1wwcAAAAAWIDhNkZs3brV3iEARdakdoCmD9uY+fNDU31yPC81LUWnz59SnarN9GzQdJ2IPqgJn/bUwrFHValctXzfZ8aKJxQee1iSFHP2hP6zKEhurh6SpGlDv8v2eNwTMYf0YOdRkqTQqN/UsIZzPXLVmeRUEHeWAnVRFghy8nzf9/Tq4j5a+8vHunzlvB7v8apTPEZ41Pu3Kzo+NMdjH790UFUr1mIsOzlyAAAAAAAAAFL+NeFDJ7apWZ07smyKkKTVu+bp9uZ97REyUCx55fz+vzblmO9Sycj5gq4NZpjw2BeSpE37l+qz9RP09v+vBRVHYdcNJdYOSzLWCtMdi/xVf5z6WTOGb9ayzdNyveeB41t06ep5Na7VwRohAwAAAAAszHAbIwBHVd27vv5JiMz8OTHpopKSE1WlvF+2c6tWqi0Xk4u6t03/9ouGfm3k611PJ2OPFGhjREbRVJLGfNxN4wYuybGomSE85lDm/zgeGvWbbm/+QEGbBRvLrSDuLAXqwi4Q5GTNno8U2OYxPdZ9os5f/kfjPgnUbbU6qF3jnpYM1ebm/+vnfM9hLDs3cgAAAAAAAMAYivsFGXuOfqc7WzyY5br//vi2YuJPaOaIH60XOGBFueV8TvkulYycL8za4K16tX9S81Y9p4uJZ+VTsZbOXYxVamqKXF3dZDab9c/5SFWtWLtAcRR23VCi1lySsVYoJSVf0fvfvqBXn1gpk8mU671Oxh7R7K+f0uTBwfLyKGOVeAEAAAAAluVi7wAAFExDv9Zyc3HXb8c3S5LW7vlIXf0Hyt3NI9u5FcpUUeuGd2v/X+lFn9hzJxV37qRqV2tq8bjiL0RLJpOqVEgvwobHHVY935YWfx9YVq/2TyrkxDZdTDwrKXuB2hGfkFCcBYKbrdnzoXq2e1KSVKlsVXVsEqSQsO2WDLVEYiyDHAAAAAAAAHAO8//1s1ZNi8/xT9WKtSTlXhM2m83a/9dGdWxyX+b9vtk+W7t+/1ZvP/s/lfIobfsGARaQU87nlO9Sycn5wqwNXr6aoPgLMZk/7/79O5UvU1nlSnurUtmqaujXVlsOLJck7TyySlUq1pRflYZWiZtas2Mw8lph7Nkw/ZMQqXGfBGrw23X17c73tHHfYs386snMc06d/kOTF/fWmEcWq0W9zjZrAwAAAACgeNgYATiQiYO+1KL/TdST0xsqJGy7hveeleu5owd8om9+mqVhc1pq6pJ+Gj1gQWYB0pJORB/M8o0hZUtV1JqfP7L4+6B48iqIO0uBujALBHmp7l1f+//aIEm6mpyoQ2HbVNe3hcXjLWkYyyAHAAAAAAAAjCGvmvCff+9V7WpN5eVZVpK08qd3te3QCs0YtlllvSraK2SgWHLL+VvzXSp5OV/QtcHEpAuaurSfhs1pqRHv+uv73R/ojad+yPw2/NEDFmjdLws0dEZjfbVtusY98rnVYqbWXDKxVnhDveottXLqGS2fFKHlkyLUv8to3dPhaY1/dKkk6dTpY/rPoiCNfuhTh3+iPAAAAAAYjZu9AwBQcPWqt9RH/95foHOrV66v2c9tK/Z7znl+e57HOzXrrU7Nemf+/OG/9xX7PWF5iUkX9Mayh3Xt+lW5mFxUoYxPZkE8twL1mIcX2jHiopk46EvN+vopzf/2edWo3FCvDFquiLjfs523cd8SLdk4WZevnNeeo9/pm59m642n1qqhXxuNf3Sp3l89Uqt3zdP11GTd3uwBBbZ+1A6tsS3GMsgBAAAAAAAAY8irJrz799W6o3k/SdKZhCgt+GGMqnvX19hPAiVJHm6een/Ur/YIGyiy3HK+QpkqmfkulcycL+jaYLVKdfTBqL25Hq9V9TbN/9fPxY4nv3VDiVpzScVaYcF99P0oJSZd0MJ1E7Rw3QRJ0rP3z1CH2+6xRsgAAAAAAAtiYwTgBCqVraYxH3fV0/e9o4CmQfmeP/aTQJ0+F6EW9e60QXQoCfIqiDtTgbqgCwT3dBiqezoMzfFYQ782mjdyt4UjAwAAAAAAAICSIa+a8C9/rNWs///SJZ+KNbV5ltnm8QGWllvOPzu7eWa+S46V84VdG8wL64bGwFph7p7oNTXLzzOGb7ZgRAAAAAAAW2JjBOAEvp4SV6jzLfEkCcBRuLl66NKVsxrxbmtNH75JlcpWLfK9Vu2Yq/W/fqbK5WtYMEIAAAAAAAAAKBkWjj1q7xAAm3HkfC/s2mBeWDeEs7PkWuH2Q8H68sc3ValcNQtGCAAAAACwFDZGAACcWvO6d+i/k/+2yL0G3PWSBtz1kkXuBQAAAAAAAAAAAMC6LLlW2K31QHVrPdAi9wIAAAAAWJ6LvQMAAAAAAAAAAAAAAAAAAAAAAAAoKjZGAAAAAAAAAAAAAAAAAAAAAAAAh2Uym81mewcB5MdslpJT7R1F4Xi4SiZT8e5hNktp1y0Tjz25uFumL4yYAxkcMRcs8bnfzOh9YPT2S443D1hyDpDIAQAAAAAAjMoRawIZLFUbcLS6kERtSLLs5+9obc/AGLDc/RwxD4ry+TtiO4uiqH3jSOOAMcA6GWskAAAAAGB7bIwAAAAAAAAAAAAAAAAAAAAAAAAOy8XeAQAAAAAAAAAAAAAAAAAAAAAAABQVGyMAAAAAAAAAAAAAAAAAAAAAAIDDYmMEAAAAAAAAAAAAAAAAAAAAAABwWGyMAAAAAAAAAAAAAAAAAAAAAAAADouNEQAAAAAAAAAAAAAAAAAAAAAAwGGxMQIAAAAAAAAAAAAAAAAAAAAAADgsNkYAAAAAAAAAAAAAAAAAAAAAAACHxcYIAAAAAAAAAAAAAAAAAAAAAADgsNgYAQAAAAAAAAAAAAAAAAAAAAAAHBYbIwAAAAAAAAAAAAAAAAAAAAAAgMNiYwQAAAAAAAAAAAAAAAAAAAAAAHBYbIwAAAAAAAAAAAAAAAAAAAAAAAAOi40RAAAAAAAAAAAAAAAAAAAAAADAYbExAgAAAAAAAAAAAAAAAAAAAAAAOCw2RgAAAAAAAAAAAAAAAAAAAAAAAIfFxggAAAAAAAAAAAAAAAAAAAAAAOCw2BgBAAAAAAAAAAAAAAAAAAAAAAAcFhsjAAAAAAAAAAAAAAAAAAAAAACAw2JjBAAAAAAAAAAAAAAAAAAAAAAAcFhsjAAAAAAAAAAAAAAAAAAAAAAAAA6LjREAAAAAAAAAAAAAAAAAAAAAAMBhsTECAAAAAAAAAAAAAAAAAAAAAAA4LDZGAAAAAAAAAAAAAAAAAAAAAAAAh8XGCAAAAAAAAAAAAAAAAAAAAAAA4LDYGAEAAAAAAAAAAAAAAAAAAAAAABzW/wFGkFfv6FBx+wAAAABJRU5ErkJggg==", - "text/plain": [ - "
" - ] - }, - "execution_count": 2, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "from qiskit.transpiler.preset_passmanagers import generate_preset_pass_manager\n", - "from qiskit.circuit.library import EfficientSU2\n", - "\n", - "qc = EfficientSU2(12, entanglement=\"circular\", reps=1)\n", - "pm = generate_preset_pass_manager(1, target=target, seed_transpiler=12345)\n", - "qc_t = pm.run(qc)\n", - "qc_t.draw(\"mpl\", style=\"iqp\", fold=-1, idle_wires=False)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "A dynamical decoupling sequence is a series of gates that compose to the identity and are spaced regularly in time. For example, start by creating a simple sequence called XY4 consisting of four gates." - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": {}, - "outputs": [], - "source": [ - "from qiskit.circuit.library import XGate, YGate\n", - "\n", - "X = XGate()\n", - "Y = YGate()\n", - "\n", - "dd_sequence = [X, Y, X, Y]" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Because of the regular timing of dynamical decoupling sequences, information about the `YGate` must be added to the `target` because it is *not* a basis gate, whereas the `XGate` is. We know *a priori* that the `YGate` has the same duration and error as the `XGate`, however, so we can just retrieve those properties from the `target` and add them back for the `YGate`s. This is also why the `basis_gates` were saved separately, since we are adding the `YGate` instruction to the `target` although it is not an actual basis gate of `ibm_brisbane`." - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": {}, - "outputs": [], - "source": [ - "from qiskit.transpiler import InstructionProperties\n", - "\n", - "y_gate_properties = {}\n", - "for qubit in range(target.num_qubits):\n", - " y_gate_properties.update(\n", - " {\n", - " (qubit,): InstructionProperties(\n", - " duration=target[\"x\"][(qubit,)].duration,\n", - " error=target[\"x\"][(qubit,)].error,\n", - " )\n", - " }\n", - " )\n", - "\n", - "target.add_instruction(YGate(), y_gate_properties)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Ansatz circuits such as `EfficientSU2` are parameterized, so they must have value bound to them before being sent to the backend. Here, assign random parameters." - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": {}, - "outputs": [], - "source": [ - "import numpy as np\n", - "\n", - "rng = np.random.default_rng(1234)\n", - "qc_t.assign_parameters(rng.uniform(-np.pi, np.pi, qc_t.num_parameters), inplace=True)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Next, execute the custom passes. Instantiate the `PassManager` with `ALAPScheduleAnalysis` and `PadDynamicalDecoupling`. Run `ALAPScheduleAnalysis` first to add timing information about the quantum circuit before the regularly-spaced dynamical decoupling sequences can be added. These passes are run on the circuit with `.run()`." - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": {}, - "outputs": [], - "source": [ - "from qiskit.transpiler import PassManager\n", - "from qiskit.transpiler.passes.scheduling import (\n", - " ALAPScheduleAnalysis,\n", - " PadDynamicalDecoupling,\n", - ")\n", - "\n", - "dd_pm = PassManager(\n", - " [\n", - " ALAPScheduleAnalysis(target=target),\n", - " PadDynamicalDecoupling(target=target, dd_sequence=dd_sequence),\n", - " ]\n", - ")\n", - "qc_dd = dd_pm.run(qc_t)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Use the visualization tool [`timeline_drawer`](/api/qiskit/qiskit.visualization.timeline_drawer) to see the circuit's timing and confirm that a regularly-spaced sequence of `XGate`s and `YGate`s appear in the circuit." - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABI4AAANoCAYAAACm0aGIAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd3gU1foH8O9sTS8kEEIAE8CA4CX0JihIk94EBaWKKIIKPy8q3qs3oCIoXEGq5WKu1EvvSC9GAekY6VUgJLQkkLLZMvP7Y2Fh2Z2BhE12N/v9PA+PMu9uOHMye3bed86cESRJkkBERERERERERPQAlbsbQEREREREREREnomFIyIiIiIiIiIicoqFIyIiIiIiIiIicoqFIyIiIiIiIiIicoqFIyIiIiIiIiIicoqFIyIiIiIiIiIicoqFIyIiIiIiIiIicoqFIyIiIiIiIiIicoqFIyIiIiIiIiIicoqFIyIiIiIiIiIicoqFIyIiIiIiIiIicoqFIyIiIiIiIiIicoqFIyIiIiIiIiIicoqFIyIiIiIiIiIicoqFIyIiIiIiIiIicoqFIyIiIiIiIiIicoqFIyIiIiIiIiIicoqFIyIiIiIiIiIicoqFIyIiIiIiIiIicoqFIyIiIiIiIiIicoqFIyIiIiIiIiIicoqFIyIiIiIiIiIicoqFIyIiIiIiIiIicoqFIyIiIiIiIiIicoqFIyIiIiIiIiIicoqFIyIiIiIiIiIicoqFIyIiIiIiIiIicoqFIyIiIiIiIiIicoqFIyIiIiIiIiIicoqFIyIiIiIiIiIicoqFIyIiIiIiIiIicoqFIyIiIiIiIiIicoqFIyIiIiIiIiIicoqFIyIiIiIiIiIicoqFIyIiIiIiIiIicoqFIyIiIiIiIiIicoqFIyIiIiIiIiIicsqnC0dJSUkQBMH2R6PRICYmBgMGDMDXX38tG7t8+bLiey9fvuzuXfNo7DsiIiIiIiIqDoXN+x9WE/AlGnc3wBOMHTsWcXFxMBgM2L17N5KSkrBu3TrZWHJyMj744APFeEpKCvz8/Ny5Wx6PfUdERERERETFoaB5/8NqAr6Ut7JwBKBdu3aoV68eAGDw4MGIjIzEhAkTFGMHDx5UjK9atQq9evVyw954D/YdERERERERFYfC5P1KMV/KW336VjU5zZo1e2js6tWrivEzZ864vmElHPuOiIiIiIiIisOj5P1KMV/KW1k4cuL8+fMPjQUGBirGw8PDXdyqko99R0RERERERMXhUfJ+pZgv5a28VQ1AVlYWrl+/DoPBgD179mDMmDHQaDQwm81OY3q9HgkJCbLv1ev16Nixo5v3yvOx74iIiIiIiKg4FDTvf1hNwJfyVhaOALRq1cru77GxsejXrx8mTZrkNDZ37lykpqbKvnfu3LkoX7580Ta6BGDfERERERERUXEoaN7/sJqAL+WtLBwBmD59OuLj45GVlYXZs2dj586d0Gg0sjG9Xq/43vvjJI99R0RERERERMWhoHn/o9YEfIEgSZLk7ka4S1JSEgYOHIi9e/faVkm3WCxo2rQpjh8/jszMTKexv/76Cx9//DGGDh0qGz9x4gSCgoLctm+eTKnf2XdERERERETkKoXN+x9WE/ClvJWLYz9ArVbjiy++QGZmpt32Ll26IDQ0FIcOHUJqaiqGDh1qFwsKCkJoaCgOHjyI1NRUjBo1yiEeFBSEwMBACIKAXbt2FdcueYW7/Z6amopp06bZtrPviIiIiIiIyJUeJe+/Gzty5IhDLDU1FcHBwbbctKTnrSwcOdG8eXPExcUBAPLz8wEAK1euRHZ2NvLy8lCmTBnbtLX7Y9nZ2XjttdcQHh6O5cuXw2AwOMQHDBiA7t27o0GDBsW/Yx6uefPmaNCgASZPnsy+IyIiIiIioiLzsLw/ODgYAPDkk086xMqUKQO9Xo+aNWvaxUpq3srCkYx27doBANasWWO3fdSoUYiJiYHZbHZ4z6hRo3D+/HnMmDED6enpSEpKchpfsGAB1Gp1kbXdm40aNYp9R0REREREREVOKe8PDw8HAKxbt84hFhMTg/z8fMyZM8chVhLzVhaOZNStWxcAMGfOHFgsFgBAYmIi9u/fj+TkZJQuXRoAHGJLly5Fr169ULlyZUycONFpXKfTuWGPvEP37t3Zd0RERERERFTklPL+jz76SDaWnJzsU3mrTy+OXRATJ07EsmXLsHHjRocFsJRijxIneew7IiIiIiIiKg6FzftLet6qefhLaObMmViwYAG2bt3qcBAoxR4lTvLYd0RERERERFQcCpv3+0Le6lUzjtLS0tzy71atWhX5+fl29yguW7YMCQkJirGHvZeUse+IiIiIiIioOBQ273dl3lq2bNnH24kiwsIREREREREREZGbeWrhiItjExERERERERGRUz6/xpHfgUvw2/eXw3ZTXATyq5ZB0M/HHGJisB9ud3kaoXP3Of2ZWf0b4PSWKJjzWZcrqIrNM3Dtj0Dk3ShZq9AXh+h6txBSId/dzSAnMsxmtD993GlsfZVqCNP4/FBMVCB9zp3GuXyDw/bPylVAy5BQN7SIyHtNTEvF0sybDtt7hJXC38uWc0OLiLzX1ltZ+EfqRYftsTo9FlR60g0tokcRsPMMdMfTHbbn/60cLKF+CEg+6xAzR4ciu1ON4mieR/D5bEWVmQf1bcdkW7yZA/Vtg9OYymCGKsfoNAYAyDEiL0MDSIKrm1vimXNVyM/SwpSjfviLyY6RfeaxrplNuGwyOY1dN5tZOCIqoGN5ebhhMTtsT5X5nBGRvLPGfKffUWeNvBhFVFCXTUann6d871kdxiepb+Y6ze3VmbkAJKcxSZdTDC3zHD4/JUYwOp54WrdbIBgtzmMmC4R85+8DABhEFo0KSTSpYDGx7wpDZL95rBxRVIg5H2eISF62zOdGbjsRycu2OP/c5Fjkv7uIyLlsmXM+uc8ZeQbBVIiagEwdoaRi4cjk/MMtmCyASf4DLhjkr2pKBlaUC0s0CxDNLIAUBvvNc+UqFo54Yk5UEKIkyV65VfqsEZFzcp+bXImfJ6KCkvs8GSQJImcdeS6ZmgCMFmtdwAm57SUVC0dmmV+4SZQtKgFQnHEkKbyPlIkWARILIIXCfvNceQrJrFKMiBwZFJJZAz9PRAVmkElm+f1EVHBK30P8THku2eKQ2QKYZSaayGwvqXy+cKR0IMgWlQDZKWsAIBofu1U+SzQDksgCSGGIFvabp1JKdHnPO1HBGET5z0w+Z0gQFZhcopvPJJeowJQKRzzn81xyRSDBLD+ZRDCLgA/9Tn2+cCR7kFhEQOHebqXCkcS1OQuN6/QUnsTCkcfKV0p0eWJOVCBKJ+VKRSUick6u4Kp00YOInFMqDvHihgeTmz1kEa11ATkW3znv8PlH+QgWETfybqPd4i/QLb4BRjfqag1YRAjme7EakeWx6PgumO4uvDnR/udoVWrZ2GeD1iDxv91gtjivKG36yncOuId5cNbMnmNr2XePiPUHz2VUOFEw+tCVCiJXUPrM8KScqODkLm7w+4mo4JS+h5QuJJJ73V8TcMj7H6CU92u1WphknvB65coVVza52BV6xtGqVavQuHFjBAQEICIiAj169MDJkyeRmJgIQRCQlJTkwmYWIYuIxcd3o0fVhhjdqCv6r52O4K/749T1VMB8Lxai85c9eAAoxuZt/ky28EH2RLP9Ifn78fXsu0fEGUee66f3P4SpQxdIly45xH7+/ntER0dj06ZNbmgZkXfp06cPWtesCSkjwyEm5eRgZbuOaN++PURW0okeybBhw3CxbXun30835y3g9xNRAfTp0wfLW7aR/Y7qUL8+v6M8lcU1eb9c0agkKFThaNasWejSpQv27NmD+vXro3Xr1ti/fz8aNGiAM2fOuLqNRUqwiFh4/Ff0fuoZHEw/jzHP9ESAVofhm/4DwXwvdj7rqt373u/SD/XLVsbvfcehR3wDu9g7Pd7CksRrWJJ4DdPf3YeTl/bZxV9p9bEtviTxWpHvo6c7ffkg8ow5AICHPUmZfSePhSPP1frv7wF+elimTLPbLl1Jw5ZZ36JDhw5o3bq1m1pH5D3Gjx8Pk8kEy6zvHGLi7CQYMzPx1VdfQaXy+TvxiR7JmDFjIMh8P2XPmcfvJ6ICGD9+PESF76isjAx+R3mIP/74A7m5uba/318TuJZ7y+61H7Z+2Zb3t6xYwy72f2+9jZSUFKSkpKBTp052sZEjR9piKSkpRbczxaTAR+2FCxcwcuRIaLVarF+/Hjt27MDChQtx6tQpdOzYEXPnzi2KdhaZs1dToVVpIEkS2i8ZhwHrZ+CTJi9i+8WjmLJ+oS224dwRAECwzh8A8OXKn5BnNqJWVCx2XT4FAFAL1sR96tKZOHphF0IDI5H08z8hCNZuLh1aHgCwYMvntnhoYGRx73KB3S3qFIX0jAv44LvWGP19W+TlZ8s+GYx993C8Q8Nz6UqFQ/3aIEiHj0DcuNm23TJ1OlQaDT799FM3to7Ie1SsWBG93x4OadsOiPsO2LaLJ05CXLseFV9+CTVq1FD4CUR0v8jISGgHO/9+glrN7yeiAqhYsSLiBg2Q/Y7qOmgQv6M8wMWLF/HSSy/h5ZdfRk5ODiBJOHsjzZb3rzlj/d2F6gMAAOM3LUSe2Yhwv0Bs++sogHs1ga9nTsP+/fsRERGBAwes74uKigIATJkyxRaLiIgo7t10uQIXjmbPng2DwYDevXujbdu2tu1arRZTpkxBQECAw3v++9//ol69eggLC0NgYCDq1KmDhQsX2r2mefPmEATB6Z+ivB9wwaEd6P3UM/hgxzzcyMtGgEaPIQkt0SQmHp+vnYtOVeqiz+pvIMJ6T+rw2m1QNjAMAHDx9g3M/XMnUnOs0xErBEeibEAoJEiYsvRNbNr3E/ae+BnVKjYEALzQ4DV0bjIMoiRi6vJhMJoMLtuP61mXMXHRIPQcE4X2H+oxeGIN/Pz7bKevm7ToNbz0aTm0/1CPvuPiMGXpUJjM1kfB/bQxEa1HCbiQfhTj5vVBt0/CMXJ6U5e180Hfrvk7buXegF4bAJ3GT/aJauy7h+PT6DyXUZIgtGsLoUZ1WL7/AdKtWxC37YC0bz+aDXsL0dHR7m4ikdfoMHAgUCkOlmnTIRmNkCwW62yJMmVQYdAAdzePyKtIkgTxBeffT6oB/VC2bFl3N5HIq0S/1Ev2O6rn8GHubh4BGDt2LDIyMuDv7w+9Xg+IEuYfTbbVBAx3lkl5q1Zru7y/9+opDjUBSZLwwQcfYPHixbh8+TIA4NVXX8XAgQMhiiJGjx4Ng8F1eas7Fbhw9MsvvwAAXn75ZYdYREQE2rRp47A9IyMDXbt2xdy5c7Fy5Uo0adIEvXv3xooVK2yvmTFjBnbt2mX3p27duqhZs6bLkiqz2eywbcWx3Xi2/FNYfvJ3qAQB01oPglatwfTWg5Fnysemc0ewN+3e7XdqlRoru48CAGTl52LElv/aYh0q18HKHu8DAG7cSsWMVe8ivnw9xJX9m+01b3SciNJhFXAt8yL2HFvrkv3KuJ2Od6Y2woFTm9GlyXAM7TIF5SKqYNLi17Dsl8m2113PSsXwbxpg+6GFaJ7wEt7q8g1a1u2LI2d3IN+Ua/czP53TE/mmXAx6YRzaN3zdJe10aHf2Vfz6xzKoBBVG9JgFtVoDyfFXZMO+U/bgwuLkOYySBEEQoH73bSAnF5ZvpsHy7XcQ4p/E0716urt5RF7FolZbP0tp6RDnLYC4ajVw+jTU7wyDWa93d/OIvIrS95Oqc0eYuEA2UYGYFL6jBD8/dzfP512/fh1r166FSqXCl19+CY1GA1hELD/5u60mcDejejDv35d21vZz7o+lpaXh448/RmTkvbthPvnkE5QrVw6pqanYvPnebE5vVuCnqqWmpgIAnnjiCafx2NhYh20jRoyw+3urVq1w6NAhzJs3D127dgUAVK9e3e41GRkZOHLkCBITEwvaRAfHjh3D1KlTsWPHDvz+++8IDAwEAOzfvx9RAaEYvGEWJAB1ysShUph1alm2MQ9PhEdhw/nDAIAwfSAy8623HRktZoQHBCEjNxu3jXm2fyfcLxC1o+KQEFcTh88dQU5eFkb0+BY/7703e0Wn9cNzNXthyc5JOHx2O5rV7PHY+zf753/AIlnw/cg/EBJonQbXqfGb+Hxeb/y0MREdGr0BvdYfs9ePRsbtNHzz9h5UrVDP9v4BbcdCeuDEoFJ0Aj56Zf5jt03JH2d3QpREVKvYENERlQAAosKsGfadMt6q5rlMd345QuwTUL3YHeLCRYBKBfWnY2ASWPAjKgijJEH1VDVInTpAXLwU0GohtHgOqnp1FZ9gSESO7haGnH0/CSoVjJIEnZvbSORNjJIo+x2Vz0KsWx07dgwffvghJElCzZo1bfWMA/v2IyrwXk0g0j8E1/Os6xwZLWaE+wUhw5ANAHb/XzsqDnVq1MSBP4/g1q1b6NixI1avXg0A8PPzQ+fOnTFr1izs2rULHTt2LP4ddjG3rcwVERGhuOr48uXLYTKZ8NJLLz32vxUSEoIhQ4YgIyMD69ats21funQpelZthEbRTwIA1PctVDb/aDLqVXjS9vdSfkEYWqs16kdXxvyjyYgvY11zR6NSAwCqhEWhfnRlAEDZcOsMKZ3WD7Fln0bNSs+hc5NhqFrBuoh2TKT159689fi34EmShOQ/lqLxU50gQUJWznXbn3rxbZFjyMKpSwcgiiJ+/XMFGlXvZFf4uEt4IHnt2PjNx27bw9y8nQYAKFsqzrbtwdut2HePjreqeS7j/Y9fDQmx/jciAoh9gldziQro7mdGNaA/EBIMCALUbw6xixHRo7H7zDzw/QQAZn6miArk7jmfs+8ofp7cKyQkBHXr1gUAqNVq2/Yly5ehV9XGtppAmD7ALu+vGlnO9tr48GhbDABi7tzOq9fr0a5dOwwcOBC1a9cGAMTFWXPc9PT0ot+5YlDgGUfR0dE4ceIELly44DBLCLAuni3HbDYjNzcX69evx6ZNm7B06VLZ1/7vf/9D3bp1Ubly5YI20UFMTAxiYmLQsGFDLF++HD179oTJZMLOnTsxrfO/MP9oMgDgbKb1l2qymLHh3GGk52YhJigcl7MzkJaTgSmtBsJkMWPklv/i4u0b1tfeeQzYk+HRaFepNi7euoGtR7YCAPJNeVi0/Uu80uqfeC7h3u0oufnWCqafLuix9y0z5xqy8zKxds93WLvHcQV/AMjMvoqsnGvINdxCbNmnH+nn3l/MKSp+OuvMr1zDvZXrH7xY/FxCT/bdI+KFds9lunM/tHT1GsQ586wn5OcvQFy0BKa333Zz64i8y90TbyEwAEL58pCybkEID7eLEdGjuVs4cvb9pH6lN4z8TBEViBny31G8uOFeMTExiI+PB3CvZmEymfDLr8mY1jXRVhPIzM9xmvcDwM2825jSaiAA4OKtG9iwcxsAwGAw4Pz58xg3bpzttdnZ1plJd+928nYFLhw1a9YM27dvx6JFi9CuXTu72M2bN7Fx40an70tLS7OtVaRWqzFjxgyH9991/fp1bN261a7jXaFbt274xz/+gevXr+PAgQNo2rQpNFotni5d0frv5t3GpVvXcejaBVju3PM9o/VgdFn+FXLNRvx6+TgyDDmwSJJtYawqYVE4nZmO5MvHYTAb8e6WJIiiNYOvFF0T87d8judr97HdigUAh05bC0txj1iIUCLd+bda1nkVber2d/qauHI1gQIOVHqt/2O37WHurv305/lfYTQZoNP6QXjIHDj2nTze8eS5tHfulrZMnwkA0Hz+KSzffgdxwf+Q2707EFPBnc0j8ipqhbFOw4GQqEDufmacfT+pnm8O7VN/U3o7ET1AA/nvIX5HuV+1atUAADdu3MDly5fx559/4pnGTaBVa2RrAuJ9ueCpzDQcu3EJT0WUx7tbkmCxWPPJ6tWr45tvvkH37t1tt8AlJyfb/ZversC3qg0cOBB6vR7z5s2zW+jJZDJh5MiR1kfaOREZGYm9e/di69ateO+99zB8+HDZGUdLly6F2WxGr169Cto8RZ06dYIgCFi1ahWWLFmCF198EVAJqBMVh4rB1vVthm3+EV/uWYULt67h4xdexQuVaqFcUBgAoOeKr20xiyhCLajwnxfehAABt40GvP7zd1hzZj8sogUqlRrvdp8FjUaHqcvvraD/5/nfsO/kBqhUajT9W/fH3qfQoNII0AdDFC2oE9/K6Z/woDIIDSyNAL8QnE9Leex/01Xiy9dF2VJxyDFkYfGOiQAAQSVfpGHfKRPUvIrhqbSCADH5N0i7dkPVvy+E0pFQD30D0Giwa8JX7m4ekVfRKVxh0PKknKhAdArfT5apM/iZIiogpc8MP0/ul5CQgJiYGADAhx9+iCVLlqBnd+u6uXI1AYskQgUB0XeesNZj+b+x4tReW96vVqsxYcIEaLVajB49GgCwd+9ebN++HWq1Gu3bty/+HS0CBS4cxcXFYdKkSTCZTGjbti1atGiB3r17Iz4+HitXrsQrr7zi9H0ajQb16tVDixYtMGHCBPTv39/WsQ9atGgRGjVqJLsAd2GFh4ejefPmmD9/Pk6dOoV69epB0qggCAK+eM7a7vVnD+L3K6dRq0wshj7bGYIg4Kvm/QBYq497Uk/b1jUaXPN5NC5fFa/WaAYA+N/x36C6MyB0aDgE1WMbY0DbT7H3xM/YcXgxzqWlYOycFyFJEjo0HGI3C6mw1Co1mv6tB5L/WIpzTgobmdnXAAAqlQrP1OiK3UdX48TFfQ6ve3CB5+IgCAIGtx8PAPhpUyI2758LlUzhiH33cA+brUVulJcHy4xZQJXKUHXpBAAQIiKg6t8Xf/32m20hPSJ6OJ3CibdSUYmIHOXn5Mh+P0n79mPTmjVubiGRd9Gr5L+H9CwcuZ0gCPjkk08AAJs3b8a+fftQt349W+zBmsDdvP/1hJaY2MJaEzidmYb+a6fbYq+++irq1auH999/H9u2bcOsWbPw+uuvQ5IkvPrqqy6vabhLoc6whg0bhuXLl6N+/frYs2cPNmzYgISEBOzevRtVqlR5pJ9Rq1YtnD171mF7eno6duzY4ZJFsZ3p1q0b/vzzT3To0MG64c6Hu2e1RmgTWxMAIEoSwvQB+PXCMdw25qFj5TpoeGexLAkSzKIF8WUr4OMmPZBnMmJY7bZQ3zlZFSUJoYEhaFKjK3INt9G2/iBULPMUJi0ahOFT6uPmrSuoWqE+3ug0yWX7NLj9eJQKicY73zTEjJUjsHb3d1i4dTw+ndMLg76sanvdoHbjEBZUBn+f+RxmrhqJtbu/w5yNY/D6xKeRY8hyWXsK4rmEXuja9B2IogUTFvbFR1N74/CZHcg13Ea+KQ9nUg/j+7Uf4O1vGrDvHkJptha5157pM4GbN6F+920I9y3Gp+rcEVFPVcMnn3xiuw+aiJQpXbFVKioRkaOvv/xS9vsJVapgbGIiv5+ICoAzjjxf586d0bx5cwDAlStXMHjoG9h58V7e36icNe8XpTt5f+kYfNykBzpWroOeVRsDAPLMRphFC6rEVcJ7772HvLw8NGjQAKVLl8aYMWOQnp6OWrVq4V//+pe7dtPlCrzG0V1du3ZF165dC/0P//bbb4iNjXXYvmTJEoiiiJ49ezq+yQXatm2LwMBA9OhhnZIm3bdYwuhGXbHx/BEAwPaLR7F96geyP+dk2kWUnznUaSwr5xZG/9DWaazZ33rg771+dOk6OOHBUZj6zu+Yu2ksklOWYfWuGQgJiMATUTUwuMME2+siQ2Mw9e09SNrwMbYemIec/FuIDIlB/WrtoNcGuKw9BfVW58kICyqDnzb+C9t+X4Ftv69w+jr2nTIVb1XzSIcPH8bBRYug6tQBqqrxdjFBrUaHf/4TSX37Yfz48fjss8/c1Eoi76FUHOJJOdGjO3z4MJKSkqDp1AGCk+8nvxHDcfWd/+P3E1EBcFasd/jhhx9QvXp1mM1mrF23DmuxTva1J69dls37T587i5o1azpsj42NxeLFi+Hv7561b4uCILn4PpvExESMGTMGP/74IwYMGAAAaNGiBXr06IFq1arBYDBg5cqV+OGHH/Ddd9/h9ddft3v/s88+CwDYuXOnw89OS0tzSRsPHDiAOnXqAADCZu+GOiPPFvv9ymmE6gMwed9arP/rD6RmXgcAhOj8UbPME+j/9LPYnXoK6y/+gdSMe7HnKlbHW7XboHxwBMZd+B2b9v2K61mXAQABfiGoVbkFujQZjjrxrVyyDyXRxasnsOrgBCTv3ci+K4Sg6HzEtsxwdzPIie+upeOztFSnsU+iYzA4skwxt4jIex3Jy0XH0yecxloFh2B27OM/jZXIlzz152HkiI6PZg1SqXC0RoIbWkTkvQadP4PNt285ja2tUhV/8/eMC85krQmEhIRg1qxZ2L5yPS5n3wRgn/fvSj+Dn88eQmrWDVvsuYrV0blKXexOPYV16cdwJd1aowgODkaTJk0waNAgW02jMMqWLfv4O1cECj3jqCASEhIwdepUXLx4EYGBgahevTpWr16Njh072r0uNTUVycnJmDp1apG2527RCAAktX3lt0G09Va7mW1eR/5TURBSLsNkMSNQ52d7Tf+nmyOvbnmofz/vEAOA8R3GYtDZqjCZjTCLJvjrSsYj+IpahTJV8c9h05BxOoB9VwhcHNtzKV1h4q01RAWjtEYEr+YSFZxOEODs0Tb8PBEVHM/5vMfdmsDEiRMR/kRnmPPyHXL7Vxu1hRjmD+nCdac1gZtDn0G+BjCbzQgIKNlFwWIpHE2ePBmTJ09+6OvKlStne5R9sVE7/3BLggBJo4JerYFO7dhNkkYNnUzszjpZ0Gp00ELn0uaWdCqt9ffPvis4rnHkuXQqJrpErqJ04q1X+KwRkXN6QQXA4rCdSS5RwSl9D+l5zue51Crnub1agKQWZPN+qFXQ6TTQ6Up+3uryozcxMRGSJNluU/N0D844slFbC0ey79OqZWPFU44rmbhOT+EJCockuZfSiQJPzIkKRunzxJNyooKTS3SVLnoQkXM85/NOcjUBSa0CNPJJ1v3rJZd0Pn+GJVcckjRq2dlIACDp5A8gQfvYzfJZgoaFo8Ji0c1zKV198lN4bCsROVL+PPnOCRyRq8glun4sxBIVmNLt1Dzn82ByE0Y0KvmJJoBivaCk8Z09lSNbOFIpzzhSKBypdDxxLSy1lrdcFRYLR55LeYYExwuiglBKZjnjiKjg5IqxTHKJCk6v8LnhOZ/nkp9MIl8TkDQqwId+pz7/jSDJTT3TqhRvR5P08vejCSwcFZqgljjrqJDYb54rQOEkwp8n5kQFopTMMtElKjh/2RlHPJ8lKiil8zqe83kuubxf0qgBrULhyIf41t46IckdCFo1oFQ48pO/H03w4xdtYak1ElQsgBQK+81zKRWOAnkSQVQgakGQvWqr9FkjIufkPjeBKi6eSFRQcp8nP0GAisVYzyVTE4BOLV9UUlrzuATy+TMsSed85pCkVcvejiZp1YozjuCnAgQm8YWh0opQa9l3haFiv3kspeJQAE/MiQosSOZzE8TCEVGBBamdf54CfWjtDiJXkfseYiHWs0naQtQEFJauKYl8/vlfYogeopPZQ5Ywf4iBzmNisB5igNZpDAAQoIU+xAyzwYMOJgmwmOyr3GqtBHhY4VvjJ0IXZIbZ4EEnK17Sd1p/x0fpkmeI1GgRLnNiHqnx+WGYqMBi9XqI+Y7F8igtn05BVFAxWp3T76gYbcl/vDSRq0XJfJ5i9Xo3tIYelSXUz3lNIMQPYpDzmBjqXxxN8xiCJEleM00hLS3N3U3wWpZ8Aee2lLLbFtfyJtR6r/n1uw37joiIiIiIiIpa2bJl3d0EpzxoWgcREREREREREXkSFo6IiIiIiIiIiMgpr1pcw1OnbXkDkwG49MCtmWWioqD1c097vAn7joiIiIiIiHwVZxwREREREREREZFTLBwREREREREREZFTLBwREREREREREZFTLBwREREREREREZFTLBwREREREREREZFTLBwREREREREREZFTLBwREREREREREZFTLBwREREREREREZFTLBwREREREREREZFTLBxRoSQlJUEQBNsfjUaDmJgYDBgwAJcvX1aMf/3114rvpcJ52O+EiIiIiIiI7mHe+mg07m4AebexY8ciLi4OBoMBu3fvRlJSEpKTk/HBBx/IxtetW6f43pSUFPj5+blzt7wa+5WIiIiIiOjRMW9VxsIRPZZ27dqhXr16AIDBgwcjMjISEyZMwMGDBxXjSrFVq1ahV69ebtibkoH9SkRERERE9OiYtyrjrWrkUs2aNQMAXL16VTGuFDtz5ozrG+bD2K9ERERERESPjnmrPRaOyKXOnz8PAAgMDFSMK8XCw8Nd3Crfxn4lIiIiIiJ6dMxb7fFWNXosWVlZuH79OgwGA/bs2YMxY8ZAr9cjISFBNq7RaGA2m2Xf27FjRzfvlXdjvxIRERERET065q3KWDiix9KqVSu7v8fGxmLu3LlITU2Vjffr1w+TJk2SfW/58uWLttElHPuViIiIiIjo0TFvVcbCET2W6dOnIz4+HllZWZg9ezZ27twJvV6vGNdoNI/0Xioc9isREREREdGjY96qjIUjeiwNGjSwrTDftWtXNG3aFH369MHHH38sG//2228V33vixAkEBQW5YW9KBvYrERERERHRo2PeqoyLY5PLqNVqfPHFF0hNTcWWLVts27t06YKgoCCEhobi4MGDyMzMtHtfly5dEBoaikOHDiE1NRXBwcHYtWuX3XuDgoIQGBgIQRBsMXq4+38n06ZNs21nvxIRERERETm6m0Mxb72HM47IpZo3b44GDRpg48aNtm0rV660/f+wYcOQlJSE3Nxc5OfnO8SjoqKQlZWFmjVrOn1vWloaGjRoUNS7UaLc/Z1MnjwZI0aMgJ+fH/uViIiIiIhIRvPmzREXF4dz584xbwVnHFERGDVqFG7duuV0+/nz59GvXz8AwJo1axziMTExyM/Px5w5c5y+d8GCBVCr1UXX+BJq1KhRSE9PR1JSksN29isREREREZG9du3aAWDeCrBwREWge/fuKF26NADAYrEAABITE7F//34sXboU9evXBwDMmTPHIZ6cnIzKlStj4sSJTt+r0+ncsEfer3v37uxXIiIiIiKiR1S3bl0AzFsBQJAkSXJ3I6jomQzAgcX22+r0BLR+Rf9vT5w4EcuWLcPGjRudLh6mFH/Ye4uDO/uuqHhCvxIREREREXkLT89bixLXOKIiNXPmTCxYsABbt251+gFSij/svVQ47FciIiIiIqJH5+t5q1fNOEpLS3N3E7yWJV/AuS2l7LbFtbwJtb5of/1Vq1ZFfn6+3f2dy5YtQ0JCwkPjD3tvcXFX3xUVT+lXIiIiIiIib1BceWvZsmVd0l5XY+HIR5S04kdxYt8RERERERFRUfPUwhFvVaNCE3KN0Fy97bBd0mlgLhME7aVMZ++CKbYUNH9lQBBFh6ipXCjybvvBnO8567aLJgEWo2C3LTtNB5XWswpH/uFm6HNvQ3Xb4BCzhPojXx8EQyY/8gWl8RfhH252dzN8yvn8fFww5jtsj9ZqEe/n74YWERWPvTnZyHXy3ZjgH4AwDcdvKplyLBbsy81x2K4VBDQJCnZDi4iKB893PIf6Ro5sDgWNGuob2Q4x0V8HS5TvjFE8C6FC0529gaANxx22W8L8cbvT0whZesTp+24Mb4qQJYchOJnsltWrFlL/iELeTa3L2+tKF38Jd3cTHJRrmIWKJ/+A/vhVh5ghoRyulquNtAMhbmiZdwssm4+4VhnuboZPmX3jKpJuXHfY3jE0DDMqxrmhRUTF482/zuGa2bFQPbNiLDqEet73DpErpBjy0Pf8GYftKgBnn64FlSA4vomoBOD5jufw330B+uPpDtsNCeVgCfNH4A7HMcpUNhi3XqlXHM3zCJ4zrYO8jmAwyWw3Q8h3HgMA1e18p0Wju+99cHYPPRqLUYBgcD4zxtqv/LgXBvut+GXdeaTpo24nKil47JMvyrI4P3cRAWQ7mYFHVFJwzPcccrmrYDDL5leqfN+6I4EZERWaYHI+qAkmCwSj/ICnypUvKgkmCyxmFo4KQzSrZPtdMFlgMbFfC0Pk8VjscmQSBWe38BCVFEZRhFHmogqPfSrJcizyx3eOyASaSq5smWOfY37xU8qhZHNehXy3JGLhiApNMDkf1ASLqPhBkpupBACCWYTERL1QJLMAwSwzsJkt7NdCYr8VvzyZEya57UQlQZ4kf3zz2KeSjMc++Sq5Y5/HffETzDJ5rULhCDLvKalYOKLCkylSAIBglJ+6p1hUMlsgWpioF4ZogfwAZhLZr4XEfit+LByRLzKI8g9cMPDYpxJMaWznsU8lmdzxzfMdN1AoDikVlXwJC0dUaHIfIqDwhSPJKAISE/XCEC2C/MBmFiGxAFIokm99J3iEfJkrcHLbiUoCpePbwGOfSrB8mVs0HxYj8nY83/Ecgsxtg4JZlL0wL4gSoHDRp6ThU9Wo0OQ+YID9bWzrzhxEz5X/hunufeoT7V+7otuoe/EHYgCgUWthtji/vW3TV77zYX0YySLI/04sIu5fJmDPsbVI/G839usj4Iyj4pcv8yUst52oJFA6vnnsU0mWzxlH5KN4vuM5lC6+359fPSyv1Wq1MJmc51dXrlxxSVvdpdAzjlatWoXGjRsjICAAERER6NGjB06ePInExEQIgoCkpCQXNpM8klnCjbzbaPDTR/hi9wr7mMlii43btezeh8uJDecOKcblihtkTxIFwCw6/Z0IFtEav+P34+vZr49KEsALP8Vn2LBhONqqLaRLlxxiWfMXIDo6Gps2bXJDy4iKTp8+fdA+IQFSRoZDTMrJwfy27dC+fXuITKKphBk2bBgmNWjkdMy3LFyE7k/Gc8ynEqdPnz6oVq0acm7ccIhJOTlI7/kSx/ziZnGeQ8Ei2uVXD8tr5YpGJUGhCkezZs1Cly5dsGfPHtSvXx+tW7fG/v370aBBA5w5c8bVbSQPJVhELD6+Gz2qNsQLcbXwyupvEPx1f5y8eQWC6V6sbtlKdu8b1a0/xj37MkY37IrUt2Zh/rFf7eKvtPoYSxKvYUniNcSXrysbW5J4rcj30ZtIFvnfyen0S4q3qrFfld1fdKOiNWbMGAh+frBMmWa3XbqShry589GhQwe0bt3aTa0jKhrjx4+HyWSCZdZ3DjFxdhIMmZn46quvoFJxhQEqWcaMGQONzJgvzluAem3bcMynEmf8+PEwGo24Om2GQ0ycnQQp6xbH/GImmGVyqKuX7PKriiGRdu8bOewdpKSkICUlBb1797aPjRxpi6WkpBTn7hSJAh+NFy5cwMiRI6HVarF+/Xrs2LEDCxcuxKlTp9CxY0fMnTu3KNpJnsgiYuHxX/Fs+Wpov2QczmVdhb9Gh+Gb/gPBbMHC47+i91PP4Eq2/RXUSSvm4KeUnXgt4Xkcv5GKrPxcAIBObb1zcsGWz3H0wi7k5t/GmdTDAIDSoeXtYqGBkQgNtP/geqI8Y06x/VuiRZD/naz+1q5wlGO4BQDQafwBeF+/AsXbt1znqPhERkYi6PXXIB0+AnHjZtt2y9TpgFqNsWPHurF1REWjYsWKeGn4cEjbdkDcd8C2XTxxEuLa9ajS52XUqFHDjS0kKhqRkZGo9/Zw2TG/10ej3dg6oqJRsWJFvPfee8jdus3pmK/q0Q3Vq1d3Ywt9kEWSzaGE+/KrVaf3271tysxp2L9/PyIiImyzjfz8/KyxKVNssYiIiGLfJVcrcOFo9uzZMBgM6N27N9q2bWvbrtVqMWXKFAQEBDi857///S/q1auHsLAwBAYGok6dOli4cKHT19WsWROBgYGIjY3F+++/j9zc3II2kYrJufTL0Ko0mLJ/PW7kZSNMH4jPmr2E7RePYsqaBdCqNKgYEokN548AAML1gQAAURJxLusqygSEoPfqKbafZ7SY0axaPYiSiKnLh2HK0jchCNZD9IUGr6Fzk2G2mNFkcNl+XM+6jImLBqHnmCi0/1CPwRNr4OffZzt93aRFr+GlT8uh/Yd69B0XhylLh8JkNgIAftqYiNajBFxIP4px8/qg2yfhGDm9qcva+TCSRcLZjHSnv5MdF/7E2uSfbK/94+wOAECnxm8WWb8CJadvRc44Klbqdm0h1KgOy/c/QLp1C+K2HZD27YdqQD9ElC3r7uYRFYkXBg4AKsXBMm06JKMRksVinYVRpgwqDRrk7uYRFZm4Lp1lx/zA0mXc3TyiIvHGG29ALTPmq17tAyMXhi8+ooSzGWmyOdS/ty6xxYyi9QFQLSpaC3uiKGL06NEwGAzYtWsXAKBfv34YOHCgXawkKHDh6JdffgEAvPzyyw6xiIgItGnTxmF7RkYGunbtirlz52LlypVo0qQJevfujRUrVthes2zZMgwYMADt2rXD6tWr8f777+Pbb7/FyJEjC9pEKiYLf9+CDpVqY8WpvVAJAqa1HoTXE1qiSUw8xq3+CZ2q1MX3hzYj707y3/upZ9Co3JMQAORbzPi/rT8hPTfL9vPKB0fgz0unEBFSDtcyL2L/yY2oVrGhLf5Gx4koHVYB1zIvYs+xtS7Zh4zb6XhnaiMcOLUZXZoMx9AuU1AuogomLX4Ny36ZbHvd9axUDP+mAbYfWojmCS/hrS7foGXdvjhydgfyTfbFzU/n9ES+KReDXhiH9g1fd0k7H4VgETH/aLLM76QqZiz+ELdybmDboYW4mvkXACDAL6RI+hUoWX3LGUfFywRA/e7bQE4uLN9Mg+Xb7yDEPwlV544w8USKSiizWm097tPSIc5bAHHVauD0aajfGQaLXufu5hEVGRMkjvnkczQaDXQj3nE65gt+fjz2i9NDcqhxmxaiRcXqWH7yd9tbmpSrikblnoRKUCE1NRXjxo3D5cuXAQDBwcH45JNPUK5cOaSmpmLz5s1y/7JXKfBT1VJTUwEATzzxhNN4bGysw7YRI0bY/b1Vq1Y4dOgQ5s2bh65duwIA/ve//6Fp06aYMGECAOD555/H1atXMXXqVHz77bcFbSa5mNlshkZjf7isPPwbRtZ6AaIkoUF0FVQKiwIATG89GLWT3sfOv45ix8WjtteX8g/CzDavo3bS+wCAn/7cCQAo7R+Ca3m30KFSbcxO2Y6ocOvPCQsqg7iyf0PKOWuxUqf1w3M1e2HJzkk4fHY7mtXs8dj7Nfvnf8AiWfD9yD8QEmidQtip8Zv4fF5v/LQxER0avQG91h+z149Gxu00fPP2HlStUM/2/gFtx0J6YGCvFJ2Aj16Z/9htexiLxQy1+r7fiVnC8pO/Y2S9Dk5+J6+h/px/YMqyoUg59wvCAssgM+cqgKLpV8C7+/ZBXOOoeJkkCULsE1C92B3iwkWASgX1p2MgqFS8AkcllkmSoHqqGqROHSAuXgpotRBaPAdVvbo87qlEUx7zuTgwlVxitapQORnzAXDcL0IP5rWCqJxD1U56H6tPH4AEQKNSwyxaIAgCZrZ5HXV/+hCQgLlz5yIyMhLXr18HYL1drXPnzpg1axZ27dqFjh07umNXXcptK27dfx8gYP0FhoSE2L0mNDSUq8m72bFjx/DWW28hISEBOTn31pTZv38/ygSHYvrBDQCAmOBStli2MQ9PlIrCqjP7kWXMAwBUCYtC/ejKyDbmoUxwGADrrWkAUCW8LIbWao32lWvjzZav4tL1kwCAuLJPI6Fyc3RuMgxVKzSw/juRTwIAbt56/McZSpKE5D+WovFTnSBBQlbOddufevFtkWPIwqlLByCKIn79cwUaVe9kV9i4SxDsiwodG7/52G1Tcu7KHxg3rw9e+jQaefnZtu1/nt6N+FLRuH2nz2NDS9tiNSLLo1fL/8POI4uRmXMNPZ79vyLrV8B7+1YOC0fFxyxJsI36d78TIiKAWOvFCp5IUUl1N0FWDegPhAQDggD1m0PuxHjcU8llO7455pMPuXu+42zMB3jsFwXZvHbfPkQFyue18RHlsD/9LADgqVIxGFqrNepHV0aNyPJo3rAJAMBgMOCNN97AwIEDUbt2bQBAXFwcACA9Pb1Y9q+oFXjGUXR0NE6cOIELFy44XbTrwoULsu81m83Izc3F+vXrsWnTJixdutQW69+/P3r27Illy5ahdevWOHHiBKZOnYqhQ4cWtInkQiEhIRgyZAhWrFiBdevWoWfPngCApUuXoufTzXDxyiUcSD+HMzfTbO+ZfzQZdSvE48LNex+SJ8Oj0a5Sbby7+UeUDyuNq7czoVNrYLSYEaYPwJRWAwEA+0/vsb2nVHA5PJfQE88l9LRty823Lurspwt67H3LzLmG7LxMrN3zHdbucXySDQBkZl9FVs415BpuIbbs04/0c8uWinvstikJ9A9Dj2dHYvvhhUhOWY7WdfsCAH7e/T+8Ur0ZbubdBgDczs+ze19ogHXR64iQcujx7EhoNfdufXBlvwLe27dyeKta8bk7NVu6eg3inHnW5OH8BYiLlkD9Sm+YePWZSqi7x74QGAChfHlIWbcghIfbxYhKIpMkyY75TJ6ppLp7scDZmA+A5ztFQDavXb4Mvao2xoVb15zmtY3LV8XJG9a7rsoFhdnyVgDQqNUAAH9/fwwZMgQ63b38KjvbeoE/MDCwyPetOBS4cNSsWTNs374dixYtQrt27exiN2/exMaNG52+Ly0tDdHR0QAAtVqNGTNm2L2/c+fOmDlzJl5++WXbTKRXX30Vn3/+eUGbSC4UExODmJgYNGzYEMuXL0fPnj1hMpmwc+dOTOk/Hn8GnsC43Stw9MYlGMxGqAUVNpw7jPS8W6gRWQF/Xr8IAPgt9SRu5+diw7nDOH/L+rj3uzOOfks9CYPZiGu5tzFp/ffw1wUhz5iNrBzHx8IfOr0VgHU20uOS7sxma1nnVbSp29/pa+LK1QQKeNKi1/o/dtuUlAmrgDJhFfB0XDNsOzgfrev2hdliwt4T2/HTKx/jyDXr+kV3+9VPo8PFWzeQtH4MYss+jfNpKVi0/Uu80uqftp/pyn4FvLdvyf0kWI8Jy/SZAADN55/C8u13EBf8D6rnm0OsyqeMUMmkNByKTJ6pBJMkhTE/KtrNrSMqGg8b1lk2cj3ZvPa3XzG1ayKOXPvLeV6bm4VKYVE4m5mO7ReP2eVXW35LBgDk5uZi+vTpduszJydbY9WqVXPL/rpagW9VGzhwIPR6PebNm2e30JPJZMLIkSPtpn3dLzIyEnv37sXWrVvx3nvvYfjw4XYzjrZs2YIRI0bgo48+wvbt2/H9999jw4YNeP/99wuxW+Rq3bp1wy+//ILr169j27ZtaNq0KTQ6HepExSHCLwhmScSnvy3DhvOHYZEkCIKA1T3eR+0ysQCArPxcDN/8I3LNRoiSBBUEvBCXAOFO7N971+LdLUmwiBbkGbMBCDh8djuu3Dhra8Of53/DvpMboFKp0fRv3R97n0KDSiNAHwxRtKBOfCunf8KDyiA0sDQC/EJwPi3lsf9NV3q+Vh8cOLUZmdnXsPfEz6hX9Vlo1RrUiYpDXGhpW78CwLtbkgAA415bj2dr9sT8LZ/b+tbV/Qp4f98+SHDbTb2+RyuoICb/BmnXbqj694VQOhLqoW8AGg0sU2dAL/C2QSqZtArHtl7FQYhKrhs7d8qP+Tz2qYRSGvMB8HynCD2Y1z7TuIkth5LLazf1+gcCtXrkW0z45y//AwD0WzsNFtEClUqFli1b4ptvvrHdfbV3715s374darUa7du3d+fuukyBR+O4uDhMmjQJJpMJbdu2RYsWLdC7d2/Ex8dj5cqVeOWVV5y+T6PRoF69emjRogUmTJiA/v37Y/To0bb4e++9h169eiExMRHPPfccBg8ejClTpuDrr7/GlSuuWXeFCq9Tp04QBAGrVq3CkiVL8OKLLwIqAYIgYNyzfQAAE39fjfe3zcOFW9fwccd+KB8cgR/bv2X7GQuO/Yq0nEwAwOsJLTGr7RD43bldauyvS7DmzH5o7iz23LpuX2g1ekxdPgwAcC4tBWPnvAhJktCh4RBER1R67H1Sq9Ro+rceSP5jKc45KVxkZltnPKlUKjxToyt2H12NExf3ObzuwQWci8uzCT0hCAK2H/4fNu+fg7aNrb8HQRDwWbPeAIBPf1uK/9v6E9ac2Y9BnRJROqw8hnaeDI1Gh6nLhxVJvwLe37cPElSe0Q5fYMjOhmXGLKBKZai6dAIACBERUPXvC2nffmxZ67on/xF5Eq1KPkl4WIJB5K2ys7Nx9N+TZcf8Yxs3ubeBREXkYeO6huN+kXkwr+3Zw/pgILm89pPne6NCSCQmPGetc3yzfz36r5mOXy+fAAD07dsXEydOhFarxejRo3H8+HG8/vrrkCQJr776quxDxbxNocr4w4YNw/Lly1G/fn3s2bMHGzZsQEJCAnbv3o0qVao80s+oVasWzp69N5vk5MmTSEhIsHtNQkICLBYLzp8/X5hmkguFh4ejefPmmD9/Pk6dOoV69epBUlsPn4E1myM2pDQkSDidmYZQfQBqlK+M28Y8xIWWQaXQMnY/K9Q/EJ2r1EOwzg+Jz1jvLRXv3J6SbchBhdJV8XrHr/Bqq0+w98TP+OTHLnj7mwa4eesKqlaojzc6TXLZfg1uPx6lQqLxzjcNMWPlCKzd/R0Wbh2PT+f0wqAvq9peN6jdOIQFlcHfZz6HmatGYu3u7zBn4xi8PvFp5BiyXNaegggJKIV68W2xfs8P+OvqMfwtvpEt1rNaIwyv0xYWScS0Az8jVB+AKuVrItdwG8EB4ejY6E3sPfEz3ppct0j6FfDuvn2QoHZ3C3zHhAkTgJs3oX73bQjqex2v6twRqFIFXyaOsd0zTlSS6BSmNuqYQFAJNX78eBiuX5cd89dM+JJjPpVIgiAoju1K3wn0eB7Ma+vWr2+LOctr/1YuFreNeehb41nULmNdb3XB8V8BAJWfiMN7772H0NBQ9OvXD9u2bUObNm2Qnp6OWrVq4V//+pdb9rEoFHiNo7u6du2Krl27Fvof/u233xAbG2v7e4UKFXDw4EG71xw4cAAASkyVztt169YNb731Ft577z3rBvW9AW1s017ot246AOutZx2nyN9imJWXgw5Lx8vGL147gV5jomx/33V0FQCg2d964O+9fnTpOjfhwVGY+s7vmLtpLJJTlmH1rhkICYjAE1E1MLjDBNvrIkNjMPXtPUja8DG2HpiHnPxbiAyJQf1q7aDXBrisPQXVonYffDG/D/q2/pfd7wMAJrXoh71XzmLPlVPIys/FyMltHN5vthjRuHpnfNh7rsvXD/L2vr0fZxwVj8OHDyMpKQn6Th0hVo23iwlqNdTvDsf1d/8P48ePx2effeamVhIVDaUEgjOOqCS6O+bHv9gdZ2XG/Nsc86kE0wmC7ALwvGBQtOzyWrV9Xz+Y17abLV/8OXPhHGrWrGm37e6dWdOmTYO/f8lZn7XQhaOCaNGiBXr06IFq1arBYDBg5cqVmD9/Pr777t7TloYMGYIPPvgA5cqVw/PPP4+TJ0/in//8Jzp37oxy5coVRzPpIdq2bYvAwED0uDOdT7rvQ1YxJAIA0LFyHUQFhmL9xT+QmnEdABCg1iHXYgQAvFK9KbSlQ7Fp/y5czr5p9/NbPvE0ysVWxvpD+3A96zIAQK8LRL4xB8/U6IpP+i0pkv0KDyqDt7tNw9vdpim+rkx4Rbz/8n9l4/3aJKJfm0QXt05Zkxpd4K8PQss6rwIPzIo5mH4O+9LOoPdTz8Dfzw+rzx/HtQxrvwb4haByuVpIOZeMqFKxCPALLpL2eXPf3k9Qs3BUHBISEnDp0iXUOvoHbt5ZPP9+qqrxOH/pElQ8maIS6P4kQTNxwgMxXnmmkufumP+Pyxdx9uZ1h7iqajxm/JmCzmHhTt5N5P3uXhR4cMwHWDgqanZ5rSBAEgDhzun+/XltmeBw/HzuEFKzbgAAAjV65JjzAQDVI8ojQ2PGlXTrU9iCg4NRo0YN7NmzB+XLl0dQkGueVu0piqVwlJCQgKlTp+LixYsIDAxE9erVsXr1anTs2NH2mhEjRkClUuH777/Hv//9b0RFRaFPnz749NNPi6OJ9AgCAgKwaNEixMXdeST6fTNcmpSvhuRXxqJBtPVWRUNCOagO/AWTxYxAnR9+v3LaFsurXR7+By/BaDHb4ndl1qyEfukNYTIbYRZN8NeVjMcXFhU/XQAmDNmMmMgqENQGSGoVBIv1OQx1ylZC3ntzAQBioA6DYjvhVhrYr4XAnK14yZ0saQWBRSMqsZSSBC6SSiUZj33yVdaLAhaH7TzfKXpO81qzNYe6P68VA3SwhPlDunjDIW8FgJtvNEG+ToDZbEZAgGfcKVFUiqVwNHnyZEyePFnxNWq1GiNHjrR7hB15njp16tj+X9LYZ9N3C0N3Yzq1Bro7i10/GANgF79LpbEOklqNDlroXNv4Euqpig0BACq1dRaY4Pj9A0mtgkotQavRs18LQcUZR8VKJ7NIMK++UUmmU3h6lNxngqgkUDq+eexTSSZ3XsPzneJhl9eqVRDuFI6Ae7mrpBYAjeA0bwUAqFXQ6bTQ6Up+fuXy6+iJiYmQJAkDBgxw9Y8mT6OWP3wkjfxqwpJW/n2Chgl6YQkqCdDI9K1a4ALPhSYB/P4uVnK35fBEikoypZkVvFWNSjKl41vPY59KML3MBQOe77iBXF6rUdkeCOWMpPad3xVHYyo0xQ+RVqFKoZOPCdrHaZFvE9SS7O9E0qi4Tk8hCWqA39/Fy0/2Chy/sqjkUkqQebsOlWTKRVMe+1Ry8XzHczx4J41tu1q5cKQ0kaKk8Z09JdeTm90CQFIoDolKRSWNCgALHIWh0kD2dyJp1FDxyWCFwtvUip/cFTg/3rJAJZjS8e2ncBsbkbdTOr557FNJxvMdD6Iw40g2vxIEFo6IHoVcZRYAJJ3C8ll6hRhnxhSaoJLkbxFUq3gbYCHxeCx+clef/XgFjkowpeObM46oJFOebcdxn0ounu94DtkZRxqVfH6lkAuXRL61t+RScrejSSoBkkJxSFQqHGlV1pkzVGAqjSQ/6GlVnDlTSCoW3IpdgMwVOH9eeaYSTGlmBY99KsnkxnyAxz6VbHLHN4/74ieb12rUsuvzKq3bWxL51t6SS8l+wLTyHzAAkALkV52XtGqoNKJsnOSpNJLsLYKSVg2VlgWQwmDhqPjJJRFKyQWRt9MLAuRu5A5Q8ekGVHIpje1BHPepBAvk+Y7HkC0O6dSAQs7rS3hUUqHJzSqS9BrlGUeBesWfqdYxUS8MlU5U/J2oWTgqFBbcil+w2vkXcYjMdqKSQBAEhWOfp2tUcimN7UEc96kE4/mO55DNoXQaiDJLsCjluyWRb+0tuZS5XChyG1R02C4G6SGG+TuNQRAgBWiR2yQOMFscf2ZEIEpVzYXxNgfMggosbUK+EAVLmL9DzFwhDIFB+Yis4VnrZEgWAZnn/ey2hcUaPGpdIb8ws7ub4HPahYQhTO349ZTgH+CG1hAVn7dLl8VNi+OYU5PHPpVgVfR+GFY6ymG7XhCg4fpeVILxfMdz5D8lk0OVD4Por0Wu0UnOG+ZbvydBkiTPydAeIi0tzd1N8FqWfAHntpSy2xbX8ibUeq/59VMJxOOSiIiIiIjIqmzZsu5uglOc+0xERERERERERE6xcERERERERERERE551RpHnjptyxuYDMAlrf22MlFR0Po5fz1RceBxSURERERE5Nk444iIiIiIiIiIiJxi4YiIiIiIiIiIiJxi4YiIiIiIiIiIiJxi4YiIiIiIiIiIiJxi4YiIiIiIiIiIiJxi4YiIiIiIiIiIiJxi4YiIiIiIiIiIiJxi4YiIiIiIiIiIiJxi4YjIwyQlJUEQBNsfjUaDmJgYDBgwAF9//XWhYpcvX3b3bnk0pT5n3xERERERlUyFzb18LUfQuLsBROTc2LFjERcXB4PBgN27dyMpKQnr1q0rVCw5ORkpKSnw8/Nz5y55PPYdEREREZHvYX6ljIUjIg/Vrl071KtXDwAwePBgREZGYsKECYWOrVq1Cr169XLDnngP9h0RERERke9hfqWMt6oReYlmzZo9VuzMmTMub1NJx74jIiIiIvI9zK/ssXBE5CXOnz//WLHw8HDXNsgHsO+IiIiIiHwP8yt7vFWNyENlZWXh+vXrMBgM2LNnD8aMGQONRgOz2VzgmF6vR8eOHd29Sx6PfUdERERE5HuYXylj4YjIQ7Vq1cru77GxsejXrx8mTZpU4NjcuXNRvnz5Im+zt2PfERERERH5HuZXylg4IvJQ06dPR3x8PLKysjB79mzs3LkTGo2mUDG9Xu/OXfEa7DsiIiIiIt/D/EqZIEmS5O5GUNEzGYADi+231ekJaH3j6YFeJSkpCQMHDsTevXttq/dbLBY0bdoUx48fR2ZmZoFjf/31F06cOIGgoCC37ZcznnJcKvW5p/YdERERERE9nsLmXr6WI3BxbCIvoFar8cUXXyAzM9Nue5cuXRAaGopDhw7ZYkeOHHGIpaamIjg4GLt27bLFgoKCEBQUhMDAQAiCYIuR1d0+T01NxbRp02zb2XdERERERCXXo+RevpZf8VY1Ii/RvHlzxMXF4dy5c8jPzwcArFy50hYPCQnB7du38eSTTzrEoqKikJWVhZo1azrEhg0bhrS0NDRo0KA4dsOrNG/eHA0aNMDkyZMxYsQI+Pn5se+IiIiIiEq4h+VevpZfccYRkRdp164dAGDNmjV220eNGmV7HOS6descYjExMcjPz8ecOXMcYufPn8eCBQugVquLsOXea9SoUUhPT0dSUpLDdvYdEREREVHJpJR7+Vp+xcIRkRepW7cuAGDOnDmwWCwAgMTEROzfvx8fffSRbCw5ORmVK1fGxIkTHWJLly6FTqdzw954h+7du7PviIiIiIh8jFLu5Wv5FRfH9hGesggxudbEiROxbNkybNy40WFhtsLGipM3Hpee0ndERERERFR8vCG/Kipc44jIS82cORMLFizA1q1bHQanwsZIGfuOiIiIiMj3+Hp+5VUzjtLS0tzdBK9lyRdwbkspu21xLW9CrfeaXz89oGrVqsjPz7e7d3bZsmVISEgodKy4edtx6Ul9R0RERERExaO48quyZcu6pL2uxsKRj/C2BJ18A49LIiIiIiIiK08tHHFxbCIiIiIiIiIicoprHBF5GklC0Jo/AdFx1k1Oy3j4778IVWaeQ8xQtwLU13OgvXDTIWasUho3wisi41RAkTS5sCQRMN62f0zlpd9CIXhQSds/0oSyZdLh/9s5h5gUoMOt5tVw+bdQN7TM+1VolulRv2tvJEkS3rp4HhYnk4fHlCuPaG3JeqIHeaf3L/2FTIvZYfvfo6IR7+fvhhYR2RubegmXTEaH7W9ERqFuYKAbWkRk79/pV3Dc4Hj+/0qpSDwXHOKGFpUs+sOXoT3vmEOZqkRCDNRDf/iyQ8wSGYS8Z+KKo3kegYUjIg8j5JuhP3nNacxQryJ0J69BfcvgEDNXDIfmYib0p687xCS9BnliZdy66MGPK7vj9mXPaqPZoEKMJtd5v2pUMDeq7hX96onMBhW0AaK7m+HVskURa7MyncZeiyzDwhG5nSRJWJZ5E0Ynxc1uYaVYOCKPsCYrE2lmk8P2Z4NCWDgij7DpVhb+dFI4eto/gIUjF9BeyJDNocRwf6cxc1aeTxWOeK2XyMMIRotCzAzB6HjV1hbLl4tZIJoEl7TP14gmQb5fzSLE/GJuUAnCY/LxZYvy40W2RT5GVFyMkuS0aAQoH79Exem2zLHIY5Q8xS2Z7/Tb/K53Cfn8ygIh33kfy20vqVg4IvIwioUjk0U+brRAMMkMbCYLRDM/7oVhMQuy/QoAooELeReWaGbh6HHlWORnbOWInM1F7percBwqHb9ExUWSJNnjlOMoeQq5Y1RpjKVHJ5dfCUazYn7lS5hJEnkas8IglG+B4GTtI8A6+0V2YDNbmKQXkmRRLhxJ+SwcFZZo4TH5uPIk+RNGA08myQPkKRyHSscvUXHJlyTIfZNzHCVPITdeGjiOuoRgdt6PglkEWDgCwMIRkceRG7gA5QFKMIsQZK7eCmYRkm+NbS4jWgRA4aq45LgkAj0iFjMfn1JSk8+TSfIASklNPpNy8gCKxyjHUfIQcuMli5uuIchcuBfMonxuZhEBmVuxSyIWjog8jGLhSOb+WwCAWbT+kYlxdkfhSGZB8XfCwlHhSTwmH1u+wgmLQWZ2IlFxylc4Dg0+dMJNnkvxGOU4Sh7ALEmQu/7LY9RFFHIo2QvzEpw+Bbuk4lPViDyNWcSNvNtot/gLdItvgNGNutpCd2cc3Y3XiCyPRcd3wSSzeKNWpZaNadRamC3Oqx6bvvKdQfBhJFGw+5049PlE+9ez7x6dJLJw9LiUZmzwSjl5AqXj0Mgr5eQBlI5RjqPkCZS+6408Rl1CsDjPvwSLWKA8QKvVwmRynl9duXKlCPeg6BV6xtGqVavQuHFjBAQEICIiAj169MDJkyeRmJgIQRCQlJTkwmYS+Q7BImLx8d3oUbUhRjfqiv5rpyP46/44efMKBJP1y+Fu/HRGmmxhCIBiTK5oRE6Y7/1OQnT+iv26cOt4tB4lYPfRNcXYQO/Eh9U8vml/HwVThy6QLl1yiP3yn9mIjo7Gpk2b3NAyIqBPnz54sXYdSBkZDjEpJwdJbV5A+/btIbKARG70z3felR1HU5L+y3GU3KpPnz6oU6OG7Di6s1MXjqOuYJGc5l+n0i/Z5WYPywPkikYlQaEKR7NmzUKXLl2wZ88e1K9fH61bt8b+/fvRoEEDnDlzxtVtJPItFhELj/+K3k89AwDoV+M5+Gt0GL7pP7aFsxce/xVNY6phX9pZu7d+1KQ76petjN/7jkPLijXsYgM6f4QlidewJPEanq3Z0y72SquPbbElideKcOe8w+nLB5FnzLm3wSzZ/U7u92bPkbZ+m/7uPszdPBbN/tYDjap3LMYWeyfeqvb4un8wCvDTwzJlmt126UoafvvuO3To0AGtW7d2U+vI140fPx5mkwmWWd85xMTZSTBkZuKrr76CSsWVE8h9hvzjI9lx9Ph/fuQ4Sm41fvx4GI1G2XHUlJnFcdQFhPvyr4Pp5zHmmZ4I0Orw9upZdrnZ+ayrdu/7v2HvICUlBSkpKejUqZNdbOTIkbZYSkpKce5OkSjwEXbhwgWMHDkSWq0W69evx44dO7Bw4UKcOnUKHTt2xNy5c4uinUQ+4/xfF6BVaVAxJBIXsq7h1bXfIMI/ENsvHsX8HetxJjMdWpUG/0peBMud6amh+gAAwLjfliHPbES4XyC2/XUUABCs8wcA/HfVFzh6YRdCAyNx/K89AIBSwdEAgAVbPrfFQgMji3uXC8WusONC6RkX8MF3rTH6+7bIy88GAJy7csn2O7kr7E6ff7t4sq3vkn7+J9RqLd7qMqVI2lYciqpfneGtao9PH14K6tcGQTp8BOLGzbbtlqnToVJr8Omnn7qxdeTrKlasiK7DhkHatgPivgO27eKJkxDXrkd8n96oUaOGwk8gKnqBERGy46ig4ThK7lWxYkW8NuJd2XG0dK+eHEcflyThzPUr0Ko0kCQJ7ZeMw4D1M/BJkxex4/yf+HrzYltsw7kjAO7lV1/PmIr9+/cjIiICBw5Yfz9RUVEAgClTpthiERER7tk3Fypw4Wj27NkwGAzo3bs32rZta9uu1WoxZcoUBAQEOLznv//9L+rVq4ewsDAEBgaiTp06WLhwocPrZsyYgcqVK8PPzw8JCQlYs4a3epDvWbRlnW1mywc75uFGXjZiQ8qgcbl4/HPRt/jP4S2oEh6FnZeO2d7zVq3WKBscDgC4ePsGeq+eAvHOw2WH126DsoFhkCBhytI3sWnfT7ia+RcAoEOjIejcZBhEScTU5cNgNBlcui/Xsy5j4qJB6DkmCu0/1GPwxBr4+ffZTl83adFreOnTcmj/oR59x8VhytKhMJmNAICfNiai9SgBF9KPYty8Puj2SThGTm/q0rbe9e2av+NW7g3otQHQafwAAP/btdlhttGw2m0d+nXviZ8xsO1niAyNKZK23eWN/eoMn/T3+IySBKFdWwg1qsPy/Q+Qbt2CuG0HpH37UWfom4iOjnZ3E8nHtRrQH6gUB8u06ZCMRkgWi3VmR5kyeHLwIHc3j0hxHI19fTDHUXK7Fwe9JjuORgzo5+7meT9RwoKjyej91DO23CtAo8eQhJZoUr4qxm1aiE5V6qLP6m8c8ytJwgcffIDFixfj8uXLAIBXX30VAwcOhCiKGD16NAwG1+ZX7lLgwtEvv/wCAHj55ZcdYhEREWjTpo3D9oyMDHTt2hVz587FypUr0aRJE/Tu3RsrVqywvWbu3Ll4++238corr2DVqlWoU6cOunXrht27dxe0iURew2x2fEra6uSt6FG1Ia7mZGH5yd+hEgRMb/MaZrQZjFt5Ofju8BasPLXP7j1qlRpLB3wCAMjKz7W7hU2tUmNF91EAgBu3UjFj1bsICyxji7/RcSJKh1XAtcyL2HNsrcv2LeN2Ot6Z2ggHTm1GlybDMbTLFJSLqIJJi1/Dsl8m2153PSsVw79pgO2HFqJ5wkt4q8s3aFm3L46c3YF8U67dz/x0Tk/km3Ix6IVxaN/wdZe11dbm7KtIPrIUKkGFET1mQa22Pj9g1cFf0KNqQ7vXCoKAlQ/0a3z5eujcZJjL22XXRi/sVzmccfT4jJIIQRCgfvdtICcXlm+mwfLtdxDin0SVni+6u3lEsKhV1uMzLR3ivAUQV60GTp+G+p1hEHV6dzePSHEcjeze1d3NI4KoMI5a9BxHC8oh/7KIWH7ydzxb/ilb7jWt9SBo1RpMb/Uack352HTuCPam3VuSR61S2/KAtLQ0fPzxx4iMvHdnwieffIJy5cohNTUVmzdvRklQ4KeqpaamAgCeeOIJp/HY2FiHbSNGjLD7e6tWrXDo0CHMmzcPXbt2BQCMHTsWgwYNwtixYwEAbdq0wZ9//omxY8di3bp1BW0mkUc7duwYpk6dih07duD3339HYGAgAGD//v14slxF/HXrOt7ePBsSgDpl4lApzDrlsWed5zB/7xbbz4n0D8H1vFsAAJPJiHB9IDLyrbcahfsFIcNgvdWqTlQcqj1RH8cv7EVOXhaa1eyJnUcWAQB0Wj88V7MXluychMNnt6NZzR4u2cfZP/8DFsmC70f+gZBA6/TMTo3fxOfzeuOnjYno0OgN6LX+mL1+NDJup+Gbt/egaoV6tvcPaDsW0gOPaq4UnYCPXpnvkvY96NyVPzBl2VBIkPBkTF1ER1QCABy9sBtPlomx3Q54v9pRcXi6Um2knD2InLwsjOjxbZHfY+5t/aqEDwJ5fKY7v0sh9gmoXuwOceEiQKWC+tMxMLIuRx7AKElQPVUNUqcOEBcvBbRaCC2eg6peXT4NiDyCSVQYR93cNiLA+l3PcfTxyeVfB/btR1RgKAZvmOWQe2Ub8xAfGYMN5w8DsM+vakfFoc7TNXEg5Qhu3bqFjh07YvXq1QAAPz8/dO7cGbNmzcKuXbvQsaP3r33qtlW0IiIibKuO5+bm4vTp0w4Lz7Vs2RJbtmxBfn6+O5pIVGRCQkIwZMgQZGRk2BVGly5dipeebYswfSAaRT8JAFDfV4g4e936GMcgrfUWqjB9AIbWao360ZWx4OB2VI0oZ3ttfHi0LQYAZcIrArAWip6p0RWdmwxD1QoNAAAxkdZ/6+Yt1zwmUpIkJP+xFI2f6gQJErJyrtv+1ItvixxDFk5dOgBRFPHrnyvQqHonu+LGXYJgn/l2bPymS9rnTKB/GJ56ojEAQKVS27ZvOTAXL9d+3vb3ZhWesuvXsqWst6XptH6ILft0kbUP8M5+VcIZR4/PdH8RMCTE+t+ICCD2CZgfKBASuYPxznGoGtAfCAkGBAHqN4cAeOD4JXITo9I4Ch6j5H75CuOokePoI5PLv5YsX4ZeVRs7zb3mH01G4/Lxtr8/mF/FRJUFAOj1erRr1w4DBw5E7dq1AQBxcXEAgPT09KLdsWJS4BlH0dHROHHiBC5cuIDq1as7xC9cuCD7XrPZjNzcXKxfvx6bNm3C0qVLAQAGgwGSJEGn09m9Xq/Xw2g04ty5c6hWrVpBm0rksWJiYhATE4OGDRti+fLl6NmzJ0wmE3bu3IkvPxuA0P2X8VSEtSBxNjP9zn+vYs/5Y6geUR5Hb1gfGZuZn4MprQbCZDFjxLafcCnruu3fuJl3G1NaDQQAXLx1A7v+sFbA8015uHLzDN7udu/pIbn51llLfrogl+xfZs41ZOdlYu2e77B2j+NTIAAgM/sqsnKuIddw65ELLmVLxbmkfc6UCauAJ6KsY9qVG9Zb/cwWEw6e2oz/dpgAZFhv73qxaiO8WLURAGu/7ji0EYC1Xxdt/xKvtPpnkbXRG/tVCZ+q9vjunjBKV69BnDMPiH0COH8B4qIlMA11T0GQ6H622RyBARDKl4eUdQtCuHVNPhaOyBMojqODBri3cUS4b3Yxx9HHIpd//fJrMqZ1TcT8o8kA7uVeJosZG84dRnpuFmKCwnE5O8Mhv9qwcxsAaz3j/PnzGDdunO3fy862zky6O7PJ2xW4cNSsWTNs374dixYtQrt27exiN2/exMaNG52+Ly0tzba4nFqtxowZM2zvL1WqFMLDw7F3717brWsAsHfvXtvPJSqJunXrhn/84x+4fv06Dhw4gKZNm0Kr1QIAni5tnSF0Pe82Lt26jr5rpkItqLDmxQ8weP232PpXii126NoFiJII8b4vj1OZaTh24xKeiiiPd7ckwXJnJeJK0TUxf8vneL52H9vtWIdObwUAxLloxowkWqfNtqzzKtrU7e/0NXHlagIF/LLTa/0fu21K4sr+DQCQlXMN1zIu4vSVQ6hV5XloNFqnr393SxIsony/upq39qssFU92Hpca1uKbZfpMAIDm809h+fY7iAv+h7zOnYEniuZYJHpUaoX6sFpg8Zjc7+4x6mwcNb/QFoh3vFBOVJzUijGOowXlkH81bgKtWuOQex26dgEWSYIgCJjRejC6LP/KMb+yWM/Nq1evjm+++Qbdu3e3LemTnGwtRJWUCTAFvlVt4MCB0Ov1mDdvnt1CTyaTCSNHjkROjvNHOUdGRmLv3r3YunUr3nvvPQwfPtw24wgA3njjDUybNg1r1qxBRkYGZs6caStCFfWaIUTu0qlTJwiCgFWrVmHJkiV48cUXAY31C6BOVBwqBlvXsHlx5dfYm3YGQ5p2RPngCPyn3b2ZBMM2/4gv96zChcxrsEgiVBAQHRgGAOix/N9YcWov1pzZD1G0QKVS493us6DR6DB1uXUR5z/P/4Z9JzdApVKj6d+6u2S/QoNKI0AfDFG0oE58K6d/woPKIDSwNAL8QnA+LcUl/+7jii9fF2XCrF8aU5YNxeb9c9CqTl9A4zgGPaxfi4K39qscgUP7Y9OqBIjJv0HatRuq/n0hlI6EeugbgEaDlImT3N08IugUPuhaFo7IA+gElew4mj75G3c3jwg6hVyY42jBOeRf3az5z/25ly2/unUNn7TojRcq1UKF4FIA7PMri2iBWq3GhAkToNVqMXr0aADWCTDbt2+HWq1G+/bt3bOjLlbg0/a4uDhMmjQJJpMJbdu2RYsWLdC7d2/Ex8dj5cqVeOWVV5y+T6PRoF69emjRogUmTJiA/v372zoWAP75z3+iRYsW6NSpE0qVKoXPP/8c//jHPwAAZcuWLeTuEXm28PBwNG/eHPPnz8epU6dQr149SGrrx1IQBHzxnPXzdCD9HLQqNb540Xo/c0xwKfSt8SwAYP3Zg/j9ymlo7qzL83pCS0xsYX005+nMNPRfO90W69BwCKrHNsaAtp9i74mfsXjHJIyd8yIkSUKHhkNcNlNGrVKj6d96IPmPpTjnpHiRmX0NgLUo/EyNrth9dDVOXNzn8LoHF3EuaoIgYEjHrwAAe46vxdELu1A9trHtd3LXbWMe3t40W7ZfdxxeXCTt89Z+lSNwxtFjk3JzYZkxC6hSGaounQAAQkQEVP37Im3XbtsijUTuolNIapjwkCcQc3Jkx9Hbe37nOEpux3HUtRzyr/r1AdjnXnfzq1plYvFWk/YQBAHjn3sVgGN+9eqrr6JevXp4//33sW3bNsyaNQuvv/46JEnCq6++KvtQMW9TqOu9w4YNw/Lly1G/fn3s2bMHGzZsQEJCAnbv3o0qVao80s+oVasWzp6998jwwMBArFixAqmpqUhJScG5c+cQHByMMmXKOH1SG1FJ0a1bN/z555/o0KGDdcN9VxV6VmuECncq3ybRgn4/foGdF4/htjEPU54fgECN9RGcoiTBLFpQtVQ0Pm7SAx0r10HPqtaFnvPMRphFCyqWrYq+bRKRb8rD07FNER4Uhe/W/B03b11B1Qr18UYn185OGNx+PEqFROOdbxpixsoRWLv7OyzcOh6fzumFQV9Wtb1uULtxCAsqg7/PfA4zV43E2t3fYc7GMXh94tPIMWS5tE2P4rmEXqhXtS0A4HrWJYz96UUkn/0Dt415yDMZcfjqBbRa+BnSc7NgFi14ulItW991bjIMT8bUwcxVI5BruF0k7fPWfnWGhaPHt23qNODmTajffRuC+t5kdlXnjoioVhWffPKJ7R57InfQquSTGj0THvIAiydPkR1HA+PjOY6S2ykVh/QKYyzJuz//ku67p7pntUZoE1sTgDW/CvMLwK8XT+C2Mc9pflUlrhLee+895OXloUGDBihdujTGjBmD9PR01KpVC//617/csn9FocBrHN3VtWtXu/WICuq3335zWhCKjo5GdHQ08vPz8eOPP2LAgAGF/jeIvEHbtm0RGBiIHj16AIDd4HUg7Swu374JlSAAErDyYDJWHkyW/Vknbl5B+ZlDncb+SjuBXmOiHLaXi6iML4dscfk6N+HBUZj6zu+Yu2ksklOWYfWuGQgJiMATUTUwuMME2+siQ2Mw9e09SNrwMbYemIec/FuIDIlB/WrtoNcGuLRNj+qTvkvR/V+lYBHN+OWPpfjlj6VOX9ftyQb48B/zceuate/UKjXe7TEL70xthB83/BPDukxxedu8uV8fpFK6aZ8e6vDhw9i18H9QdeoAVdV4u5igVqPZR6OxasAgjB8/Hp999pmbWkm+jlfKyZMdPnwY6+fNkx1Hq77/Hg4NGcpxlNxKaRxVuh2Y5NnlXw/cWTC6UVdsPH8EALD9r6PY/oP8g29OnzuLmjVrOmyPjY3F4sWL4e/vpnVEi4AgufiehcTERIwZM8au6NOiRQv06NED1apVg8FgwMqVK/HDDz/gu+++w+uvvw4AWLVqFVJTU1G1alWkpqZi8uTJuH37Nvbs2YPQ0FAA1gW2qXAs+QLObSllty2u5U2o9bzi7wkOHDiAOnXqAAD0KVcQtOG4Xfz3K6cRqg/ApDPbsGn/LlzOti4YH6LzR80yT6D/08/i11t/YdOR3+1iz1Wsjs5V6mJX+hmsPn8c1zIuAwAC/EJQq3ILdGkyHHXiWxXjnnqPY3/tQZBfGJbsnIRDJ5YjNdP6xLq7/fpW7TZo+cTfcKrx80g961iQo4cr1yALpeLz3N0Mr7Y04yZGXnL+NNM3IsvgH9ExxdwiInvbb99Cv/NnnMZeDCuFf1coGVP4yXsdyctFx9MnnMaeDw5BUmzlYm4Rkb3LRiMan/jTaayWfwBWVanqNEbK7s+/Sn29HYJ4Ly++m3t9fXA9fj57CKlZNwDY51e7U09hXfoxXEm31iiCg4PRpEkTDBo0CM8++2yh2+Wpy/QUesZRQSQkJGDq1Km4ePEiAgMDUb16daxevRodO3a0vUatVmPatGk4c+YMgoKC0KlTJ4wfP95WNCIqye4OWgAc1tMBgAbR1ltAp7R4H/71L8NoMcNkMSNQ52d7Te9KEdD+lQFTvtEh1rdRG7wW2wlZVwCzaIK/rmQ8FrIoPVWxIQBg5IvfoUFEb6j/uOTQrwBvt3ocAmccPTalKepKVyiJiovilXLeYkEeQOmWSY6j5Ak4c7No3J9/Qa0C7jwpGbiXe83oPBSWcH9IF2445AH9n26Om282Qb5WgNlsRkCAZ8zoLyrFUjiaPHkyJk+erPiaDh063FvjhciXOXmC112S1hrTqTXQqe0/vpJGBUmjgs7sJKZWQVBL0Gr00ELn+jaXdBqV0z4HAEHLL+zCYtHt8SlNUdfziaTkAZQSHj1vsSAPwGOUPJ1SkZ3f9a4hqVUQTBbH7RoVJLV8HgC1CjqdFjpdyc+vXH6kJSYmQpIkrk1EVEjOZhzZaBViapXDPbr3/0yVmkl6oQiSYjGPs2YKT+Ax+dh4pZw8nVJSw2OUPIFScYiz4sgTKB6jHEddQ+O8HyWF/MoW9xG+s6dEXkJSKFKIWvlJgpJaJf9ejYoFjkJSqR9SONIWY2NKGBYzH59S4YhXyskTKB2jfrxSTh5A6ZZfjqPkCfhdX/RkC0BK+RWgmCOUNL6zp0TeQmkA0slXf+7eqiYX4+yOwhHUkuIXhqrkz0wtMixmPj6lxJuP6CVPoHiM8ko5eQA/hcTbj8coeQBBEGTHSz9+17uEpHF+UippVLK5maQWAB8aI1g4IvIwSkUKSaeGbPlHqwZkBz01Z3cUkkoj/2UCAILOd74wXE2l4TH5uJSScn9ehSQPoJiUc8YReQCl2yn9eYySh5AbL3mMuohc/qVVKRSVfOsKKI80Ig8jaRVmFek01gKRs5jCjCNo1UzSC0mlUZ5xJOhZOCosFjMfn9IJYwBPJskDKB2HPEbJE2gEQXadGCbl5CnkLgbxIpFryOVfkkZtezjRo76npOKRRuRhJKXb0bRq2bikU0PSO18DSdKqodIySS8MlUaU71dBgEpfzA0qQXhMPr4gpaTchxZsJM+lVBwKZFJOHiJI5fzcisVN8hRBaufHKMdR11DMr+TWmGXhiIjcSdLLr7Ys+Wkh+jmPS35aSH7OBzbRXwO1TnRJ+3yNWi/J9qvkr4Faz+JHYfGYfHwhag3k5ryFOXtsLFExUwkCQmUSHh6j5CnCZI7RcB6j5CHkjtEwDY9RV1DMr/xl8iuZ/KCkEiRJ8pqsJy0tzd1N8FqWfAHntpSy2xbX8iaTXg+lumVwul0M0kPIM0KwOP7eRH8tBLMIwWRxiEk6NSwaHcwG3lZVUCqNBI3GAlWu0SEmqQSIgXqYcjyrBi8aBVz8NcxuW4VnMqHSedbnXRfEwpErpBqNcNaTZbVaaHxo0UbyXGkmI8xOhp8yGg10vFpOHuCqyQSjk5QoUqPhWlzkEa6bTTCIjsdoKY0aATIz5ujRCQYTBKPzHEpSq6DKMznGNCpIAa5/Sk7ZsmVd/jNdwbfKZEReQgzxk41JgXrZBbIlrRqSv/OKuQoSdEGeVTjwHirZ34kAzyuAWPIFhyeWaQNFFopLqHI6PtqPPFtZLY9R8mxltPKzvYk8QaSGx2hRst65Id/Hoo/dluYMS+hEREREREREROSUV8048tRpW97AZAAuPVBELRMVBa38xBYi8lL8vBMRERERkatwxhERERERERERETnFwhERERERERERETnFwhERERERERERETnFwhERERERERERETnFwhERERERERERETnFwhERERERERERETnFwhERERERERERETnFwhERERERERERETnFwhERERERERERETnFwhER+YSkpCQIgmD7o9FoEBMTgwEDBuDrr78uVOzy5cvu3i2Pp9Tv7D8iIiIiKmrMAx6fxt0NICIqTmPHjkVcXBwMBgN2796NpKQkrFu3rlCx5ORkpKSkwM/Pz5275BXYf0RERETkTswDCo+FIyLyKe3atUO9evUAAIMHD0ZkZCQmTJhQ6NiqVavQq1cvN+yJd2H/EREREZE7MQ8oPN6qRkQ+rVmzZo8VO3PmjMvb5AvYf0RERETkTswDHh0LR0Tk086fP/9YsfDwcNc2yEew/4iIiIjInZgHPDreqkZEPiUrKwvXr1+HwWDAnj17MGbMGGg0GpjN5gLH9Ho9Onbs6O5d8grsPyIiIiJyJ+YBhcfCERH5lFatWtn9PTY2Fv369cOkSZMKHJs7dy7Kly9f5G0uCdh/REREROROzAMKj4UjIvIp06dPR3x8PLKysjB79mzs3LkTGo2mUDG9Xu/OXfEq7D8iIiIicifmAYUnSJIkubsRVPRMBuDAYvttdXoCWt94eiARkpKSMHDgQOzdu9f2VASLxYKmTZvi+PHjyMzMLHDsr7/+wokTJxAUFOS2/XLGkz7vSv3uqf1HRERERCWHL+UBRYWLYxORz1Kr1fjiiy+QmZlpt71Lly4IDQ3FoUOHbLEjR444xFJTUxEcHIxdu3bZYkFBQQgKCkJgYCAEQbDF6J67/Z6amopp06bZtrP/iIiIiKg4MA8oGN6qRkQ+rXnz5oiLi8O5c+eQn58PAFi5cqUtHhISgtu3b+PJJ590iEVFRSErKws1a9Z0iA0bNgxpaWlo0KBBceyG12nevDkaNGiAyZMnY8SIEfDz82P/EREREVGxYR7w6DjjiIh8Xrt27QAAa9assds+atQo22M2161b5xCLiYlBfn4+5syZ4xA7f/48FixYALVaXYQt926jRo1Ceno6kpKSHLaz/4iIiIioqDEPeDQsHBGRz6tbty4AYM6cObBYLACAxMRE7N+/Hx999JFsLDk5GZUrV8bEiRMdYkuXLoVOp3PD3niP7t27s/+IiIiIyG2YBzwaLo7tIzxpsVwiTzdx4kQsW7YMGzdudFjwrrCx4uStn3dP6T8iIiIi8k3engcUFa5xRER0n5kzZ2LBggXYunWrw6Bf2Bg9HPuPiIiIiNyJeYA8r5pxlJaW5u4meC1LvoBzW0rZbYtreRNqvdf8+omKRdWqVZGfn293T/KyZcuQkJBQ6Fhx88bPuyf1HxERERH5Hk/IA8qWLft4O1FEWDjyEd6YSBJR4fDzTkRERETkfTy1cMRb1YjIdxjNEMyiw2ZJqwYEQDBaHGMaFaBWQcg3O/48lQBRr4UlXyiK1haaxShAemA3zfkCPO0ygcZPgpBngrOGSX4aWMxqh/2gh1NpJahKzkM8XMogisgVHQ8qnSAgqAQ9+YSKR6bZDGdDVKhaDbXgWd8L5Nk4NpErcWwqBJMFgslJHqBVA4IAwegkD1CrIOl9p5ziO3tKRD4vaP0x6E9fd9ie2/AJQKNCwK/nHGLGuFIw1CqPkOVHHGJigA5XBzTDiaVliqS9rnRqlee18amX0lH6+11Ov6izetXC2WOVkXu1ZD2RojiUa5iFUk/mubsZHunHG9fwRVqqw/ZnAoOwoNKTbmgReStJktDgeAoMTgrfSyo9iQaBJXONCyoas29cw3gnY1PToGDMj6vihhaRt5IkCfWPpyDfydi0rNKTqMexyanALSfh96fj3U15tWMghgUgcNsph5ipXChu9a5THM3zCCwcEZHPUBlMstsltcppTMgzQZB5n2AwwWLglZvCsuTCadEIAFQGs8fN5PIWFqPzY5mADLOTK4YAMi3Oj0MiOfmS5LRoBPB4ooKTHZtkthPJyZNEp0UjAMjg2CRLlSeTI+SZIenl8wBfwsIREfkMZ7ei2barnX/JCkaL/PtECWK+h93/5U1y5U9gBKMZopkFkMIQTSy4yXF2KwgAZIs8maaCUTpmspmcUQHlyI5NvF+bCibbIn/M5PC7TpbchUzBaFaI+VZ/snBERD5DbuCHyQJBlCkcmUX59wGQ8l3RMt8k5SucEJtEiGYWQAqD/SZPrnCUx+SMCkjuWAKsV/yJCiJXJqHn2EQFpTg28XiSJXuur5AHCGYWjoiISiYnC2MDd74sZCYOCSaL4heDZOSMo8JS6jvBbIHIGfqFIlpYOJIjl9DzZJoKysDkjFzIIHPxiscSFVS+QuGax5MCk3yOIJcHKF1YLol4HwAR+QxnT1QDAMEiAXJTey2ibMEJAETfur3ZpRSn+JpESCyAFAr7TV6+zEmz0dMeOUgeT259I4DHExWcQSbZN3L2GhWQUlFbbu0jAgSZPEBQyAMEi+T0ycAlFWccEZHvkCsOmS24P9Ved+Ygeq78N0wyU8e1KvW92ET7mEathdnivJq06Svf+XJ5FJLJvj8e1u/sv0fDJQzkyZ0050sSREmCio8ppkckV4QElBM3ImfkjieDJEGSJAgcm+gRKRW1OTYpuK849Dh5gFarhcnkPA+4cuWKS5rqLoWecbRq1So0btwYAQEBiIiIQI8ePXDy5EkkJiZCEAQkJSW5sJlERI9PMIu4kXcbDX76CF/sXnFv+50ZR3dj43Ytk/2yAKAYkysakRMm+9/HhnOHFPuWHg1nHDk3bNgwbGveEtKlSw4xy8JFiClXDps2bXJDy8jb9OnTB73r1IWUkeEQk3JyML1Va7Rv3x4ikzR6BMOGDcOOFq1kx6ZyHJvoEfXp0wevKIxN0zg2ybo/R3icPECuaFQSFKpwNGvWLHTp0gV79uxB/fr10bp1a+zfvx8NGjTAmTNnXN1GIqLHJ0kQRAmLj+9Gj6oN8UJcLbyy+hsEf90fp9IvQjCLtljFkEi7t77f6VWMe/ZljG7YFZ0q17GLDe01EksSr2FJ4jW8UH+QXeyVVh/bYksSrxX5LnqD05cPIs+YAwAQzPd+H6MbdcXmC3/Yvfb+/nul5T/RepSA3UfXuKPZXkUSWThyZsyYMVDp9bBMmWa3XbqSBnHeArRt3x6tW7d2U+vIm4wfPx5mkwmWWd85xMTZSTBkZOKrr76CSsUVIejhODaRq4wfPx4mpbEpk2PTXX/88Qdyc3Ntfxcs8nnAh21els0DRg5/BykpKUhJSUHv3r3tYyNH2mIpKSlFtzPFpMBHzYULFzBy5EhotVqsX78eO3bswMKFC3Hq1Cl07NgRc+fOLYp2EhE9njtTUBce/xXPlq+G9kvG4VzWVfhrdHhn+UzAItpiq07vt3vrxDXz8VPKTrxQKQEbzh2xi327ZAqOXtiF0MBImO7MNtJp/AEAC7Z8bouFBtp/CXmqu0WdopCecQEffNcao79vi7z8bMBs7fPeTz0DAGhSrioAQK+23kV9t/9y829jyc5JaPa3HmhUvWORta8oFWW/PkjipC2nIiMjEf3mEEiHj0DcuNm23TJ1OqBWY1RiovsaR16lYsWK6DzsLUjbdkDcd8C2XTxxEuLa9ajxSh/UqFHDjS0kbxIZGYmyb74uOza9z7GJHtHDxqan+3BsAoCLFy/ipZdewssvv4ycnDvnZ/flAWvOWPtOuLOQxZebFsnmAVNmTMP+/fsRERFhm23k5+dnjU2ZYotFREQU094VnQIXjmbPng2DwYDevXujbdu2tu1arRZTpkxBQECA4vv/+OMPaDQalC9f3iF26NAhNGvWDP7+/oiLi8O0adOc/AQiooITRAlnMtOhVWkwZf963MjLRpg+EJ81ewk7zqXg6+3LbDHjncd5tahYHQAgSiLOZV3F1/vWOsZEEVOXD4PRZMAfZ3cAADo1fhOdmwyDKN2LudL1rMuYuGgQeo6JQvsP9Rg8sQZ+/n2209dNWvQaXvq0HNp/qEffcXGYsnQoTGYjAOCnjYloPUrAhfSjGDevD7p9Eo6R05u6tK33+3bN33Er9wb02gDoNH64kHoBWpXGdmUnQKsDAORbzGhWrZ6t/6YsfRNqtRZvdZlSZG0DvLdfH8QZR/KCOrSDUKM6LN//AOnWLYjbdkDatx+qAf0QFhXl7uaRF2nRvz9QKQ6WadMhGY2QLBbrjJEyZVDj9dfc3TzyMkEd2suOTeFlOTbRo2vRv5/C2DTY3c3zCGPHjkVGRgb8/f2h1+sBScLZm2m2PMBw50LwC3EJAB6eB4wePRoGgwG7du0CAPTr1w8DBw60i5UEBV4c+5dffgEAvPzyyw6xiIgItGnTBitWrJB9/4gRI5xW3K5du4bWrVujQYMGWLNmDQ4cOIARI0YgNDQUffv2LWgziYjsWUTMP5qMDpVq48Od86ESBExrPQhxoWUw7/iv+Hzb//B+g04Y8+sS21ualKuKPLMJe1JPId9ixopT+xxjV87gWuZF/GfdaFzN/AsAEOAXgpdbfIhdR1fhWuZF7Dm2Fs1q9nDJbmTcTsc7UxsBgoAuTYYjNKg09h5fj0mLX0Nu/i10bzYCAHA9KxXDv2mAnLxMtG80BBVKV8P1W5fxy5ElyDflQqvR2X7mp3N6IibySQx6YRwkFM0C1BnZV/HrH8ugElQY0WMW1GoNlu9caZttdL/ywRH489IpRISUw7XMi7iWeRHDunyDyNCYImkb4L396gzXOJJnlAD1u2/D/NbbsHwzDVLKnxDin4Sqc0eYfOjJKPT4zGoV1O++DcvIv0OctwAICwVOn4Z63KcQ9Xp3N4+8jElhbOJT+qggLGq17NgkcWzC9evXsW7dOqhUKnz55ZfQaDSA2WKXIwgAJAB1ouKQkZ+jmAf8fuUMUlNTMW7cOFy+fBkAEBwcjOHDh2PDhg1ITU3F5s2b0bGjd86Yv1+BZxylpqYCAJ544gmn8djYWNn3rlixAmfPnsWgQYMcYrNmzYIgCFi8eDFatmyJUaNGYciQIfj0008L2kQiIpjNZru/CxYRy0/+jgj/YIiShHplK6NSWBQEQcCMF15Hrikfq08fgARAo1Jb3yMImNnmdbuU/8HY3RR97Z7vEBZYxvY6ndYPz9XsBQA4fHa7y/Zr9s//gEWyYNaIg3i19cfo1PhNjB24Es1rvYyfNiYi35Rnfd360ci4nYaJQ3dgaOev0bHxGxjQdiz+M+ooAv1C7X5mpegEjBmwAp2aDEXnJm+5rK33O3x6G0RJRHyF+oiOqAQA+HnvRvSo2tDhtR0q1cbtvBz464IAAGFBZdC5ybAiaddd3tqvznDNS3kmSYIQ+wRUL3aHtDMZyMyC+t23IahUyOdjr6kATJIE1VPVoOrUAeLipRCT5kBo8RxU9eoy0acCy5dE2bHJKPJ4okeXLyqNTfye2717N0RRRK1atWz1DMEi2eUIpQOs53OPkgfcTQTmzp2LyMh7y1L4+fmhc+fOAGCbieTtim1lLKPRiL///e8YP368dUrYAzZs2ID27dvb3erWs2dPnDp1CmfPni2uZhKRlzt27BjeeustJCQk3LtvGcC+/QcQFRiK6Qc3AABigkvZYrcNeXgitDT2p1vHmvjwaAyt1Rr1oysj25iHMkFhttc+VSrGFqsRWR6Nnm4OAMg35aHHs/+Hzk2GoWqFBtZ/I/JJAMDNW655/KYkSUj+YykaP9UJEiRk5Vy3/akX3xY5hiycunQAoiji1z9XoFH1TqhaoZ7Dz3nwsb4dG7/pkvY5c+7KHxg3rw8mLbZOjy5bKg4AcPTCblSKikWo/t6Y36zCUxhaqzXaV66NN5/vg0vXTwIA4so+XaQLOXpjvyrhrWrybLOKQkKs/42IAGKfsI8RPYK7x4tqQH8gJBgQBKjfHGIXI3pUymMTk316dByb5B07dgxTp04FAJQrV862ff++fXY5QmxIafs8IPDehcEH84DmjZoAAAwGA9544w0MHDgQtWvXBgDExVnPedPT04tl/4pagW9Vi46OxokTJ3DhwgVUr17dIX7hwgWn75s8eTJKly6Nl156CYlOFnk7efKkwxSuatWqAQBOnDiBSpUqFbSpROSDQkJCMGTIEKxYsQLr1q1Dz549AQBLVy1Hr6qNceHWNRxIP4czN9Ns71mQshP1y1bGhSzrk8/UgoAprQYCAN7d/CPKh0bianYmAKBcUJgtBty78uCnDUCPZ0fa3aqUm3/LGrszc+ZxZeZcQ3ZeJtbu+Q5r9zg+MQMAMrOvIivnGnINtxBb9ulH+rl3izlFIdA/DD2eHYlthxYCAHIN1j7ZcmAuuje0H/NfrNoIL1ZtBAA4cHq3bXup4HIoSt7Yr0q4OLY8oyRCunoN4px51qTs/AWIi5ZA/Upvnz+hpoK5OwtECAyAUL48pKxbEMLDAQAmzhChAjJKEscmcom7s4qcjU2+PhsyJCQELVu2xJEjR+wmpixdbp8jGMxGuzygQkgEruZkAZDPA/z9/TFkyBDodPfygOzsbABAYGBgke9bcShw4ahZs2bYvn07Fi1ahHbt2tnFbt68iY0bNzq8Jz09HZ9//jl+/vln2Z+bkZGBsLAwu23hdw7yjIyMgjaTiHxUTEwMYmJi0LBhQyxfvhw9e/aEyWTCzl2/YWq3RBy59hfG7V6BozcuwWA2Qi2osOHcYaTnZKFSWBTOZqYj5bp97PydghIAbL94DAazEX4aHS7euoHkP7YCAAymHCza/iVeafVP22sPnbbG4h6x0PAw0p17kFrWeRVt6vZ3+pq4cjWBAp4Y6LX+j902OWXCKqBMWAVUKVcLp1MP4s/zvyLXcBsHT23G130GAudPOrzn4q0bmLj+B/jrgpBnzEZWzjUnP9l1vLFfFUmccSTHAsAyfSYAQPP5p7B8+x3EBf+D6vnmMFd60r2NI69iUVi3zFyMa5pRyWCRJIWxKd7NrSNvonTtyOLjhaOYmBi0adMGX3/9NU6cOAGDwQC1Wo2dvyVjalf5HEEpD9jyWzIAIDc3F9OnT8fIkSNtr01OtsbuTobxdgWe+z9w4EDo9XrMmzcPmzffe2SkyWTCyJEj7W4Nueujjz7CCy+8gMaNGz9ea4mIHlG3bt3wyy+/4Pr169i2bRuaNmwMrVqDOlFxiPALglkS8elvy7Dh/GFYJAmCSsCmXv+ATqWBBAn/t/UnbDh/GLlmI0RIEAD4a3TIt5jwz1/+BwDot3YaRNECQVChQbX2mL/lc1y5Yb2C8ef537Dv5AaoVGo0/Vt3l+xTaFBpBOiDIYoW1Ilv5fRPeFAZhAaWRoBfCM6npbjk33WF9o2s06RzDFn4ZtlQ1KryPDT3XZW537tbkiCKFuQZswEIOHx2u61fi4I396szgsq3TwyViL/+BmnXbqj694VQOhLqoW8AGg0sU2dAJ7DgRo9Oq3C8KMWInJF+3SU7NmlVPJ7o0Sl9l3FsAhISEhAeHg6LxYJJkyZh27ZteKZxE9kc4WF5gEW0QKVSoWXLlvjmm29sd1/t3bsX27dvh1qtRvv27d24x65T4MJRXFwcJk2aBJPJhLZt26JFixbo3bs34uPjsXLlSrzyyit2r09JScHcuXPx4YcfIjMzE5mZmTAYDJAkCZmZmTAarY8vDg8PR1ZWlt17MzMzbTEiooLo1KkTBEHAqlWrsGTJErzYtRsA6zo0457tAwCY+PtqvL9tHi7cuoZ/PfcSKoRE4tNmLwEAfjiyFe9uTkJaTiYAYEhCK3zV/FUAwDf716P/mun49fIJAEDHRm9g5IvfQ6PRYeryYTiXloKxc16EJEno0HCIbTHox6VWqdH0bz2Q/MdSnHNSvMjMtl4RUalUeKZGV+w+uhonLu5zeJ3khitOzyX0gurOdN4tB+cjNLA0JCfrFq04tRdrzuyHWmWdENu6bl9oNXpMXV50i2N7c786IxTb6oXeJTs7GznTZgBVKkPVpRMAQIiIgKp/X0j79uO39evd3ELyJkrJGYuQVBDZ2dnIna4wNq3j2ESPjkVtZYIg4OOPPwYATJ8+HZMnT0bP7j1ssftzhEfNA/r27YuJEydCq9Vi9OjROH78OF5//XVIkoRXX31V9qFi3qZQp5fDhg3D8uXLUb9+fezZswcbNmxAQkICdu/ejSpVqti99vTp0zAajahTpw7Cw8MRHh6OCRMmIDU1FeHh4Zg9ezYAID4+HsePH7d7792/V61atTDNJCIfFh4ejubNm2P+/Pk4deoU6tW7t5jxwJrNERtSGhIknM5MQ6g+AE9HxeK2MQ9v1mqNEJ31FqOLt28AAJ4sHYOPm/RA3xrPonYZ67o1C47/CgCILVsZfdskIjggHB0bvYm9J37GW5Pr4uatK6haoT7e6DTJpfs1uP14lAqJxjvfNMSMlSOwdvd3WLh1PD6d0wuDvrw3Vg5qNw5hQWXw95nPYeaqkVi7+zvM2TgGr098GjmGLIV/oWiEBJRCg6rtEBIYCUDC3M1jMXTWSOy8eAy3jXnIMxnx2+WTGLRuJgQIyM7PQdUK9fFuj1kY0PZT7D3xM3YcXlxk7fPWfnVGUHtGAcvTjB8/HuKNm9YnFanVtu2qzh2BKlUw49PPbOsRED2MVqFCy8IRFcTDxqbpn37KsYkemVJxSMcrSwCA3r17o0KFCpAkCQcPHsTM/3xvOx99+akmKBcYDgnSvTwgopxsHlD5iVi89957CA0NRb9+/bBt2za0adMG6enpqFWrFv71r3+5bT9drcBrHN3VtWtXdO3a9aGva9q0KbZt22a3LSkpCWvXrsXixYsRH2+9b7dt27aYNm0a8vLy4O9vTdqWLFmCJ598kgtjE1GhdOvWDW+99Rbee+89QG3/ZTm2aS/0WzcdAJCVn4t2c8fI/pxT1y6j/MyhTmPn086g15gou21mixGNq3fGh73nunydm/DgKEx953fM3TQWySnLsHrXDIQEROCJqBoY3GGC7XWRoTGY+vYeJG34GFsPzENO/i1EhsSgfrV20GsDFP6FotOidh/sPrYGCZVb4I9zO7F+3yas37fJ6Ws71mmB17uthF7rj85NhmHTvv9i5qoRqF/1BQT4Bbu8bd7crw/irWqODh8+jKSkJIR26YzcqvbrhQhqNdTvDsfNd/8P48ePx2effeamVpI3UZ5xxOSMHs3dsSmkSyfkcWwiF1Acm3jbo82HH36IYcOGQRAErF2/DmuxTva1p26kyuYBZy6cR82aNe223b0za9q0aba6RkkgSC6eW5+YmIgxY8bgxx9/xIABA2Rf88MPP+DSpUu2bdeuXUP16tXRqFEjjBgxAgcPHsTo0aMxe/Zs9O3bFwCQlpbm9OfRw1nyBZzbUspuW1zLm1DrmWBQyZWbm4uaNWti06ZNiIupgIipv9hiv106juYLx6Jj5TooE1oKP58+iNRb1isLAWodci3W22irR5RHpsWA1MzrAIBAjR455nxb7IZkQfrNK9b3+YWgcrlaSDmXjC7PDMewLlOKc3c9nsGYi15jozBzxEGIogWb9n+Mnb9vweXsm7bXxIaWxsw2g1Hvhc44dLORbfuJi3vxztRG6Mx+faiAMkZUanPz4S/0QS1PHsOpfIPT2O/VaqCs1vm6W0QPWp2ZgWEXzzuN9Q6PwITyFYu3QeTVnj95DKdlxqa91Z5GlFZbzC0ib7UqMwPDZcamV0pF4IsYjk3AvRzhhx9+wJo1a7B95Xrb+ejdPKBhdBXUiHoCP587hNQsa47wYB6QoTHjSrq1RhEcHIwaNWpgz549GDRoUKGLvWXLlnXBHrpeoWccuVrp0qWxadMmDB8+HB06dEBUVBT+/e9/24pGREQFFRAQgEWLFiEuLg6wiHaxJuWrIfmVsWgQXQWWMH9IahXEq1kwWcwI1Pnh9yun0SDaeuttftUyEI6m2mL3O9WkBS6cKAWzaIK/rmQ8brOo+OkCMGHIZsREWvt13NDPEVOnG4wWs0Pf3nrgdquqFepjw5d8zvyj4IwjeXrOEiEX0StcuVeKETmjNDYpxYgexO+5R3M3R6hTpw6aN2+OUuU7wWQ0OuQBor/Wmidcuuk0D8gY0hgGvQpmsxkBAZ4x87youKVwlJiYiMTERIfttWrVsj22jojIFerUqWP9Hycn8ncLQ5JaANQCdGoNdGqNXQwAJI0K+vti91OpBWg1OmjBmQqP4qmKDe/9RWP9neic9K3gMZc1vA8LR/L0ThZkv4vr0lBB6BUSMC5ASwXFJ2GRqyjdjsbvOXu2HAHWc32dxTEPkNQqQKNyeq56N67T6aCTeVJwSeLysmNiYiIkSZK9TY2IyC0EAZJGZshTq+RjACStWjbmOfM2vY+g0OeCQpeTMhX7TpbSSbNSUYnoQUrHkh+v6lMB6RTGH45NVBBKs4o4e02BWqZvNCpr8UiGUv5Q0vjOnhKRz5Mb+O9eTShoDABUXHag0CStQuGIBblC41PV5MmdNAtgDZgKRnn2Gk+vqWDkxiY1AA2TfSoAxVvVWISUVZgcAYDDw3dKMt/ZUyIiuYFfK381QdIoz0YSWDgqPK3CybBWBQgsgBQGC0fy5JJ9P0EFgckZFYBScubHNY6ogORuffRjok8FpFTU9uP3nDy5c32FGUeSAKdLYZRUHI2IyGcoXU2QNDL392hUilcTWDgqPEGn8BWkVUGlYQGkMFQsHMmSS/a5mDEVlFJCr7T+EZEzcsVGHktUUEq3yrIQKU/uIrHiBWS1CvChYhyPHiLyGXK3RklatfytahqV4hpHgt53vjBcTqHvJI2aBZBC4hpH8gJkOsefJ9NUQP5MzsiF5MYgzl6jglL6PuP6a/LkLiBLGhUgkwcoroFaAvGWfiLyHUoDv9xsJJ1a8YtBxcJRoQl+8v0qadUQOOOoUFRa0d1N8FhyJ9SBTPSpgAIUjhmlGJEzcseMXLGbSI7i2ORD6/EUlNy5vqTTyMd8rHDEo4eIfIaoc14rl3RqSHqZmFYDSSd/FUKld1nzfI4QoIJcaUjSqaHWsnBUGLzFT16wbOHIt07+6PEFqeWPmWAmZ1RAQTJjkNyYRSQnWGFskjvOCPJ5gE4tnwfIbC+pOOOIiHyGqWK49fFJDzBHhwAqFYxPhDvGyoXCEh7gNCYF6KDxFxEUnV8UzS3x1H4SjPGlIeSbHWJimD+CyuVD4+c5s2ckEci7Yb+olX+ECZ4289sv3LE/yepp/wA8GxTssD3BP8ANrSFvphEEvBASilzRcYyqqOMVBSqYv8mMTbU4NlEBaQUBbUNCkedkbHpCp3NDi7yDuXwoBKPj+ZO5XCjEIJ3TPMBSxvEzW5IJkiR5zaXJtLQ0dzfBa1nyBZzbUspuW1zLm1DrvebXT0TkVhxHiYiIiKgolS1b1t1NcMrDrpMSEREREREREZGnYOGIiIiIiIiIiIic8qo1jjx12pY3MBmAS/ZLc6BMVBS0fu5pDxGRt+E4SkRERES+iDOOiIiIiIiIiIjIKRaOiIiIiIiIiIjIKRaOiIiIiIiIiIjIKRaOiIiIiIiIiIjIKRaOiIiIiIiIiIjIKRaOiIiIiIiIiIjIKRaOiIiIiIiIiIjIKRaOiIiIiIiIiIjIKRaOiIiIiIiIiIjIKRaOiIio0JKSkiAIgu2PRqNBTEwMBgwYgMuXLyvGv/76a8X3kryH9TsRERERWRX2fJTnqvdo3N0AIiLyfmPHjkVcXBwMBgN2796NpKQkJCcn44MPPpCNr1u3TvG9KSkp8PPzc+dueTz2HREREdGjKej5KM9V72HhiIiIHlu7du1Qr149AMDgwYMRGRmJCRMm4ODBg4pxpdj/s3ff8VGU+R/AP7M1PYQEQggtglQl1FAExaMJBEJXFBEQKzZ+Hire6QU9ERVOEFDO8zAKCEfvCAgCRiE0ASO9hBYSCJCe3ezuzO+PJQvL7gxJSLLt8369eCnz3VmeeaY9z3efeWbNmjUYPny4C7bGc7DuiIiIiEqnPO1RpZgvtbf4qBoREVW4rl27AgCuXLmiGFeKnT59uuIL5uVYd0RERESlU5r2qFLMl9pbTBwREVGFS0tLAwAEBgYqxpViYWFhFVwq78e6IyIiIiqd0rRHlWK+1N7io2pERHTPcnJykJWVBYPBgJSUFEyePBl6vR6xsbGycY1GA7PZLLtufHy8i7fK/bHuiIiIiEqnrO1RtlVvYeKIiIjuWY8ePez+3qBBAyxYsADp6emy8VGjRmH69Omy69apU6dyC+0FWHdEREREpVPW9ijbqrcwcURERPdszpw5aNy4MXJycjBv3jzs3LkTer1eMa7RaEq1Lslj3RERERGVTlnbo2yr3iJIkiS5uhBU+UwG4MBS+2VthgFa33h7IBFVkqSkJIwZMwZ79+61vW3CYrGgS5cuOH/+PN577z289NJLTuPHjh1Ddna27LrHjx9HUFCQy7btTu50Hb1bvbtb3RERERG5ilK7Sak96mlt1crEybGJiKhCqdVqfPzxx0hPT8fWrVttyxMSEhAUFITQ0FD8/vvvyM7OtlsvISEBoaGhOHjwINLT0xEcHIxdu3bZrRsUFITAwEAIgmCLkdXt9T579mzbctYdERERkb2SdpNSe7QkdvjwYYeYr7VV+agaERFVuG7duiEuLg6bN2+2LVu9erXt/8ePH4+kpCQUFhbCaDQ6xCMjI5GTk4OWLVs6XTcjIwNxcXGVvRkep6TeZ8yYgTfeeAN+fn6sOyIiIiInunXrhpiYGJw9e9ZpezQkJAR5eXm4//77HWK+1lbliCMiIqoUEydORG5urtPlaWlpGDVqFABg3bp1DvHo6GgYjUbMnz/f6bqLFi2CWq2uvMJ7sIkTJyIzMxNJSUkOy1l3RERERLf06dMHgPP2aFhYGABgw4YNDjFfa6sycURERJVi8ODBqFGjBgDr8+AAkJiYiP3792P58uVo3749AGD+/PkO8eTkZDRs2BDTpk1zuq5Op3PBFnmGwYMHs+6IiIiISqFt27YAnLdH3333XdmYr7VVOTm2j3CnSV2JyDdNmzYNK1aswObNm51OJKgUv9u6VcFTr6PuUHdEREREnqC87VFvb2951BxHGRkZri6Cx7IYBZhM1e2WXcm8DrWeeUMiqnzfffcdFi5ciGXLliE/Px/5+fmljt9t3ariiddRd6k7IiIiIndX3vZoRba3atWqdU/bUFk8asQRE0flZzEKOLvVvsMT0929OzxE5D2aNGkCo9Fo96z3ihUrEBsbe9f43datKp54HXWXuiMiIiJyd+Vtj1Zke4uJowrAxFH5eWKHh4jInfA6SkRERESVyV0TRx71qBoREbkf1Y1C6E9ccVgu+utgbFoT/r9fdLpeUVx9+P1+EYLJ4hAztIhCdlYojPnu8zYKyQyYi+zfKZF1NACCm91JQ+oYYSpUoei61tVF8TiBNYsRWNPk6mJUqWtmExZdv+awXCsIeKFGpAtKRFXpQGEBfsvPc1jeSO+Hx0KrVX2BqEqtvHEdl0zFDst7hISiqZ+/C0pEVcUkSfj31UynsWcjasJf5Vvv0NKmXYMm0/FaaIoKheSnge6s433SEuKP4ma+c590s+YuERF5Gu2lHAQkn3VYbgnSwxwV4jQGAIYHohCw4zQE0XHEjrlmMLKORaHomnu/keJqarCri+BArZFQmKVFThob/WVVvUmBzyWOThmN+DTzstPYmPAa0PlY58HXbMrNxldXHRP/XYKCmTjyAV9lZeKYweCw3E+lYuLIy101mWSv/X1Cq6Gh3s3f/FHB9H9kOP0R1PBgFCzV/J22Zc01g3wqccTWABER3RPBaHa6XGU0y8YAQMgvdpo0KvlOSzFvUeVhKRZgKRZcXQyPJPrgMZdjcRzxVyJPlI+Rd8iV2f9yy8m7yO1npesCeQel67svnv9CsfP2qqDQllVq43oj32shERFRhXL2qFnJcqWbqqpIfmSHYLJANDP5UR6iRYBo5u29PHzxmCtU6DwUiGIVloRcoVBmHysdF+Q95M5x7n/vp3R998Vrv1Cs0JaVbef6Vj2xZUlERPdG5oYKKP8aIxiVEkeiT3biK4JoFiCx7spFtPhevRUpdBCUYuQd5PYx971vMMjuf770wdvx2m9PMMsnh2QTRDLreCsmjoiI6J4IFvkGhtwvOACgMirccM0WSD7Yia8IkkUAfywuH19MVhoUOohKMfIOcokD7nvvJ0oSjDIv15Y7Lsh7KO1jn9z/ZufbLJgtEORiHHFERERUenI3VEA5cQSZ58kBACYRkuh7nfiKIJoFnxw5UxEkH0y4GSSFzoNCjLyDQSZxYOS+93pySSNrjPvf2yld331x/8u2Zc2i7MgiQZIAH0qy8a1qRER0b8wirhXloc/SjzGocRwmdRxoCwkmiy3WIqIOlhzbBVPJcJhp9l+zatBEDFv9r1vxO2jUWpgtzh9v2/IZfx0vIYmCXdIt5eh6JH43iHVXCr6YrCxWGFlS7IOdB19TLNPpUUoqkHdQSg5w/3s/pWu/L+5/wSLKt1fvoFWpZduyWq0WJpPz9tbly87fYucpyj3iaM2aNejUqRMCAgIQHh6OIUOG4MSJE0hMTIQgCEhKSqrAYhIRkbsSLCKWHtuNIU06YFLHgXhm/RwEf/4MTly/DMFsscVCdP6yN2EAeHbjV4pxucQH2ZMssHvMb8+xjay7UvK1kVrjx4/HZ3EdIF286BCzLF6C4fc3wZYtW1xQMqoKTz75JPb1iYd044ZDrDg/H7Gxsejbty9EH/pF3Ze8+eprMPVLcHr+H0/6HlFRUTz/vdSTTz6JNzt2cnruSwUFSHzkUd87981iqdurijGZpJE3KFfiaO7cuUhISEBKSgrat2+Pnj17Yv/+/YiLi8Pp06cruoxEROTOzCIWH/sVI5o9hN8z0zD5oWEI0Orwypb/AiaLLZZrLLJb7a1Bo9C+VkPseXoKdo/8J24YCuziT/V4D8sSr2LO6/ugUqmdxkr++LpTl35HUbG1/kRRUHzkinUnz9ceVZs8eTI0fn6wzJxtt1y6nAFx4SK07dULPXv2dFHpqLJNnToVotkMy9yvHWLivCRcv34dn332GVQqzmzhjV77+98AP73T8//Mt0no168fz38vNXXqVJhNxbLnfmF2ttef+3/88QcKCwttfxcst9qyVwtz7T77Ts8nbO3V7vVa2MUmjH8NqampSE1NRf/+/e1jEybYYqmpqZW3MVWkzEfDuXPnMGHCBGi1WmzcuBE7duzA4sWLcfLkScTHx2PBggWVUU4iInJTZzMvQavSQJIk9F02BaM3fon3Ow/F9gtHMHPtD9CqNKgXEoGfz/8JAFAL1lEdn678HkXmYrSKbIC3ti+ECPuh0Yu2foQj53Yh6ce/QyVYE0c1QuvYxUIDIxAaGFGFW1s+JUmdypB54xze/ronJv2nN4qM+ZAsgtNHrlh3d+drj6pFREQg7tVXIB06DHHzT7bllllzALUaQ999x4Wlo8pWr149VH/maUg/74C474BtuXj8BMT1GzH6uefQokULhW8gTxYUHg71s2Odnv+CRoMPP/zQhaWjylSvXj08+uKLsud+3MiRXn3uX7hwAY8//jieeOIJFBRY2xinsy7b2rLrTlvrJFQfAACYumUxiszFCPMLxM/njwAAgnX+AIAZX87C/v37ER4ejgMHrOtFRkYCAGbOnGmLhYeHV+k2VoYyJ47mzZsHg8GAESNGoHfv3rblWq0WM2fOREBAgOL6f/zxBzQaDerUqWO3fN++fRg1ahQaNWoEQRDw97//vaxFIyIiF1i8eytGNHsIb+9YiGtF+QjQ6PF8bHd0jm6Mj1d9h/6N2uJ/x35DeoF1SHTd4AjUCggFAFzIu4YFf+7EzotHbd9XJ7g6/LQ6iJKIz/43BnuP/4im9ToAAB6LexYDOo+HKImYtXI8ik2GCtuOrJxLmLZkLIZNjkTfd/QYN60Fftwzz+nnpi95Fo9/WBt939Hj6SkxmLn8JZjMxQCA7zcnoudEAecyj2DKwicx6P0wTJjTpcLKead/r/srcguvQa8NgE7jB9HiPAHCurs7X0scAUDMwAEQWjSH5T/fQMrNhfjzDkj79kM1ehQCa9Z0dfGokgUMGwLcFwPL7DmQioshWSzWESg1a+L5CW+4unhUiYpFCUKf3k7P/6hxYxEVFeXqIlIlajfyKdlzv8MLz7m6eJXqgw8+wI0bN+Dv7w+9Xg+IIhYdSba1ZQ03H+9/uVVP1AqsBsDaXh2xdqbtR85XWvdCrcBqkCQJb7/9NpYuXYpLly4BAEaOHIkxY8ZAFEVMmjQJBkPFtbdcqcyJo19++QUA8MQTTzjEwsPD0atXL8X133jjDacZt19//RW7d+9Gly5dEBoaWtZiERFRFTCbHd+EtvpgMh6u0wwrT+yBShAwu+dYaNUazOk5DkXFRuw8fwT/t/U72+f7NWyD1UPeAgDkGAvxxm0xAOh3XxtYRBF6rT/yCq+hdnhDxNR60BZ/IX4aalSri6vZF5BydH2FbNeNvEy8NqsjDpz8CQmdX8FLCTNRO7wRpi99Fit+mWH7XFZOOl75Ig7bDy5Gt9jH8XLCF+je9mkcPrMDRlOh3Xd+OH8YjKZCjH1sCvp2qJxG2I38K/j1jxVQCSq8MWQu1GqN3fxGd2LdKfO1R9UAwCQB6tdfBQoKYfliNiz//hpC4/uhGhAPI1/J7vVMgsq6/zMyIS5cBHHNWuDUKahfGw+Nn5+ri0eVqFiSIAiC0/O/2qAEVxePKplFrZY99yU/vauLV2mysrKwfv16qFQqfPrpp9BoNIBFwsoTe2xt2ZJWlFqlxqrBEwFY26v7Ms7YvketUmP1zVhGRgbee+89RETcGsX9/vvvo3bt2khPT8dPP90a0efJyvxWtfT0dABA/fr1ncYbNGggu+6qVatw5swZjB07FvPnz7eLvfrqq3j99dfv+h1ERFT1jh49ilmzZmHHjh3Ys2cPAgMDAQD79+9HZFA1jNs0FxKANjVjcF816xDd/OIi1K8eiTWn99t9V5hfIIotZlQLCEJ2YT7yiq1zH9UMCMWVwhzUCAjBS92fxBebvwcA3F+nLQThVjJEp/XDIy2HY9nO6Th0Zju6thxyz9s378e/wSJZ8J8JfyAk0PrjRv9OL+KjhSPw/eZE9Ov4AvRaf8zbOAk38jLwxaspaFK3nW390b0/gHTHW0jui4rFu0/9cM9lU/LHmZ0QJRFN63VAVPh9AAClF2Gx7pT54oijYkmE0KA+VEMHQ1y8BFCpoP5wMgSVim9V8wHFkghVs6aQ+veDuHQ5oNVCePQRqNq1ZeLQy5Wc387OfxN871roa4olSfbcV3rjmic7evQo3nnnHUiShJYtW9ryGQf27UNkYKitLRvhH4KsIus8RyaLGWF+QbhhyAcAu/9vHRmD1g+0xO+ph5Gbm4v4+HisXbsWAODn54cBAwZg7ty52LVrF+Lj46t+gytYlc14VVxcjL/+9a+YOnWqdUjYnQXx4sm3iIg8XUhICJ5//nncuHEDGzZssC1fvnw5hsZ2Rceo+wEA6tuu5T8cSUbbek3svqdRtUi0j2qIH44ko0lkXQCA5ubE1w2rReKlVj3RPqohwgKq2dYxm01oed8jGNB5PJrUjQMAREdY/73ruff+alNJkpD8x3J0atYfEiTkFGTZ/rRr3BsFhhycvHgAoiji1z9XoWPz/naJjxK3J7cAIL7Ti/dctru5npcBAKhVPca27M4RR6y70pNEAb72FmJTyQaHhFj/Gx4ONKhvHyOvVXxzH6tGPwOEBAOCAPWLzwPg/vd2dvv3jvOf+977mXzw3A8JCUHbtm0BAGr1rZeuLFuxAsObdLK1ZavpA2zt0R+OJKNJRG3bZxuHRdliAFAnshYAQK/Xo0+fPhgzZgxat24NAIiJsbbNMjMzK3/jqkCZRxxFRUXh+PHjOHfuHJo3b+4QP3funNP1ZsyYgRo1auDxxx9HYmJimQtKRESuEx0djejoaHTo0AErV67EsGHDYDKZsHPnTswY8wmW5BkBAGeyrTdHk8WMTWcPIbMoFy0i6uLPrAsAgPvDotCj/oOYsPU7XMi7Zv3szdeaVtMHYGaPMbiQew1Pfvc2woJr4UZeBjJunMUjscPwSOwwW3kKjdZfgvx0Qfe8bdkFV5FflI31KV9jfYrjG0YAIDv/CnIKrqLQkIsGtR4o1ffensypLH4668ivQsOtN4DcmThi3ZWNJAKC+u6f8xbFkgTpylWI8xdaE0Zp5yAuWQb1UyNsSQXyXiUdRCEwAEKdOpByciGEhQEAR5x5uZJ97+z8Nz7ztItLR5WtWPHc985rf3R0NBo3bgzgVs7CZDLhl1+TMXtgIn44kgwAyDYWYGaPMTBZzHbtVQC4XpSHmT3GAAAu5F7Dpp0/AwAMBgPS0tIwZcoU22fz860jk0pG6Xu6MieOunbtiu3bt2PJkiXo06ePXez69evYvHmzwzqZmZn46KOP8OOPP5a/pERE5HKDBg3C3/72N2RlZeHAgQPo0qULtGotHqhRDwCQVZSHi7lZOHj1HCw3509YO+Qt9FnyMY7fSMfOi0ex7vR+WCTJNsFgo2qROJWdieRLx2AwF+P1rUkAgHo1muJGXgbSMlJx+doZ26NYAHDw1DYAQEwpExFKJNHaOereZiR6tX3G6WdiardEWYei6LX+91y2uymZ++nPtF9RbDJAp/XD3Z4wYN0pE3zsCQ0BgGXOVwAAzUcfwvLvryEu+h9Uf+kGIZKT43o7pcPdx04Fn1Oyf52d/5aePYFmD8qvTB7PV8/vpk2bAgCuXbuGS5cu4c8//0SXTp2hVWtk27LibW2Yk9kZOHrtIpqF18HrW5NgsVjbQc2bN8cXX3yBwYMH2x6BS05Otvs3PV2Znw8bM2YM9Ho9Fi5caDfRk8lkwoQJE2yvtLvdu+++i8ceewydOnW6t9ISEZFL9e/fH4IgYM2aNVi2bBmGDh0KqAW0iYxBvWDr/Dbjf/oWn6aswbncq3iv79OoExyOxQOsc9gVmIz4688LcC73KiyiCLWgwn8fexECBOQVG/Dcj19j3en9eKJDPxw+uwOCoIJO64dZK8fbyvBn2m/Yd2ITVCo1ujw4+J63KTSoBgL0wRBFC9o07uH0T1hQTYQG1kCAXwjSMlLv+d+sKI3rtEWt6jEoMORg6Y5pAABBLZ+kYd2Vgo+1prN2/AJp126onnkaQo0IqF96AdBoYJn1JXS+lkXzQVqFfawTOI2EN9MKAsTk35ye/zlfzHJ18aiSKZ37ei++9sfGxiI6OhoA8M4771jbsoOs7SG5tqxFEqGCgKibb1gbsvJfWHVyr/WHUNECtVqNTz75BFqtFpMmTQIA7N27F9u3b4darUbfvn2rfkMrQZnvCDExMZg+fTpMJhN69+6NRx99FCNGjEDjxo2xevVqPPXUU3afT01NxYIFC/DOO+8gOzsb2dnZMBgMkCQJ2dnZKC4urrCNISKiyhUWFoZu3brhhx9+wMmTJ9GuXTtIahUEQcDHj1iv/xvP/I49l0+hVc0GePEv1jeztKhRF9FB1QFYX2mqutkoGdfyL+hUpwlGtugKAPjfsd8QFVgNaw9ugyRJiO/4AsY89hH2Hv8ROw4txdmMVHwwfygkSUK/Ds/bjUIqL7VKjS4PDkHyH8tx1kliIzv/KgDrXHwPtRiI3UfW4viFfQ6fu3OC56ogCALG9Z0KAPh+SyJ+2r8Agsp5OVh3dyeoJJ8acZSfn4/Uf30ONGoIVUJ/AIAQHg7VM09D2rcfxzZ7x5tgSJ5Sckir8qGTwQeZCgpg+XKu0/O/aM9e2yS/5J2UfhhQSip5OkEQ8P777wMAfvrpJ+zbtw/t2rWzxe5sy5bMw/lcbHdMe3QUAOBUdgaeWT/HFhs5ciTatWuHt956Cz///DPmzp2L5557DpIkYeTIkbIvFfM05fopYfz48Vi5ciXat2+PlJQUbNq0CbGxsdi9ezcaNWpk99lTp06huLgYbdq0QVhYGMLCwvDJJ58gPT0dYWFhmDdvXoVsCBERVY1Bgwbhzz//RL9+/awL1NZbybCmHdGrQUsAgChJqKYPwG9pR5FXXIQiUzFeiO1h+w5RklAtIAgDGrVDXnERZv5lNPRq69PTlwuycSX3GurWaIKneyWid/uxqFezGaYvGYtXZrbH9dzLaFK3PV7oP73Ctmlc36moHhKF177ogC9Xv4H1u7/G4m1T8eH84Rj76a0Jvsf2mYJqQTXx168ewVdrJmD97q8xf/NkPDftARQYciqsPGXxSOxwDOzyGkTRgk8WP433v34ch07vQKEhD0ZTEU6nH8J/1r+NV7+IY93dhdJoLW80depUGLKyoH79VQi3TRSqGhAPNGqE9Z9+apujgbyTTiE55M2jDghYNGMGcP260/Pfv/H9eP/993n+ezGlpLHOy19aNWDAAHTr1g0AcPnyZTz78ovYecHaXo1v2AYda1snyRYlCWbRgsY1ovFe5yGIb9gGw5pYn6AqMhfDLFrQKOY+vPnmmygqKkJcXBxq1KiByZMnIzMzE61atcI//vEPV21mhSvzHEclBg4ciIEDB971c126dMHPP/9stywpKQnr16/H0qVLbRNUERGRZ+jduzcCAwMxZIj1Ve6S+lbnYlLHgdicdhgAsP3CEWyf/lfZ78kuzEe/5VNl4xeuHsfwyZEOy7s+OAR/Hf5thc6DExYciVmv7cGCLR8gOXUF1u76EiEB4agf2QLj+n1i+1xEaDRmvZqCpE3vYduBhSgw5iIiJBrtm/aBXhtQYeUpq5cHzEC1oJr4fvM/sGP/SuzYv9Lp51h3ynzpyZxDhw4hKSkJTYYOwekm9m0xQa2G+vVXkPf6/2Hq1Kn45z//6aJSUmXz1VEHvu7QoUNYM38BVP37QeXk/K//1zdx4sWXef57MaURhb5w7n/zzTdo3rw5zGYz1m/cgPXYIPvZE1cvoc5XLzmNnTp7Bi1btnRY3qBBAyxduhT+/q6bs7GiCVIFjw9PTEzE5MmT8e2332L06NGyn/nmm29w8eJF27KrV69ix44dAICXX34ZDz/8MJ544gkEBgbaJuHOyMioyKL6FItRwNmt1e2WxXS/DrXet35dJaKKceDAAbRp0wYAELzyMHRnbr1xYs/lUwjVB2DGvvXYeOEPpN/IAgCE6PzRsmZ9/K3TINQJDse0M9vx077fcCn/ui3+SL3mGNCoLXYWZmDjof3IyrkEAAjwC0Grho8iofMraNO4B8i5C1eOY9XeT/Hb75tYd+WgCbCg6eCrri5GlfpH+kV8e835Ns+u2wADqoVVcYmoKj18/AjSio1OY382b4lgtQ+9YtDHnDEa0O3EUaexdgGBWNGQP+57s2+yruCDy5ecxt6KjMIrNWtVcYmq3oEDBxASEoK5c+di++qNdu3RljXr45kHHsauzNP48cxBpOdcs8VK2qq7009iQ+ZRXM605iiCg4PRuXNnjB07Fg8//HC5y1WrlnvWfblHHFW0P//8E8OG3Xpd8PLly7F8+XLUr18faWlprisYERE5KEkaAYCkth+mERdlfWT5q17PoahVbaj3n4fJYkagzs/uc190fwv+7S6i2GJ2iA9+sAFGXekEk7kYZtEEf513vMq0stWt2QSTxn2JwiwtjEVm1l0Zyc0P5c044sS3Ke1j7n/vpvioEve911N6FNVXzv2Stuy0adNQvW5/mIzFDu3Rpzv0gqWaP6Tz1xxizzzQDddf6AyjToDZbEZAgHuMnq4sLhmUnZiYaDfaCAC6desGSZIc/jBpRETk5tQKtxKNGjq1xiFpBACS1rqe0/jNnzW0Gh0TH2UkqCQIKtZdeXj5tA5OKXUQ2Xn0fkqdR85x5N2Uzm+9Lz2366OUEoe+uP8ljcppe1RSqyCpnccAAGoVdDqd1yeNgEpIHCUmJkKSJNnH1IiIyLtIGvlbiaSVf8xBKSZofG/kR0UR1L43yXNF8cV60ytky5QmTibvILf/dYIAgYkjr6ZXOL957ns/7v87yP0IqhYApXauQszb+M6WEhFR5VAYcSTqFBJHCjHBh27EFU2llqDywQRIRfDJxJFCcsDPB3919jVy+5/73vspjSrh/vd+3P/25BJAkkbtMCWDHaWYl/GdLSUiokqh+GtLOUccQavyyflmKoKglnwyAVIRfDHhptR5UBqNRN5Bbv/75IgDH6OUNOb+937c//bkkkOSwogjSSUAPlRXbBEQEdE9UXxUTS//DgbFmEYFFR9XKxeVhiOOyssXE27+Cskhfx/81dnX+Mnsf+577ycIAvxkkgfc/95P7twHfHT/y7VltWqF0Ui+VU++tbVERFTxtDI3VEH5cTSlxBE0as5zVE6CWmLSrZxUbvOu2aqjlDjy86FfUn2Vv8w+5mgz3yB3/islFcg7BChe+31v/8uNgpc0KvkR8koj572Q7x0VRERUoSSt8962pFVD0sn3xMUArfx36tRMfpSTSsPEUXn5Yr0pdR6CVL7VKPZFgTL7OMgHO46+SG7/B3L/ez3la7/v7X+5HzolrUY+qcTEERERUemJfjKJIz8tJD+F5FCg3vrsuNN1NVDrxAopn69R60Wodb6XAKkIvnjMharlG77BCjHyDnL7X+m4IO/B/e+7QtTyP+yFKsS8ldwoeMlPoxjzJYIkSR7TuszIyHB1ETyWxSjg7Nbqdstiul+HWu8xu5+I3JRQYIQ2PddhuajXwFw7BLqz152uV9woAtqz1yFYHDvrprrVUJAXAFMRf98oq4BwEyzFKhjz3KfhL5oEXPkjyG5ZzQfzodK61z3IL9QMfajF1cWoUvkWC37Jz3NYrhEE9AwJdUGJqCqdNRpwzGBwWF5bq0VsQKALSkRVKaUgH9fNZoflLf0DEK3TuaBEVFVEScKm3Bynse7BIdD52Kgj9ZV8qHOKHJZbwgIg6dTQZDreJ8UALczR1Sq8LLVq1arw76wITBz5CCaOiIjIVXgPIiIiIro7d00c+VYqkYiIiIiIiIiISs2jHsxz1+ybJzAZgIt3TDVSMzISWj/XlIeIiHwH70FEREREnosjjoiIiIiIiIiIyCkmjoiIiIiIiIiIyCkmjoiIiIiIiIiIyCkmjoiIiIiIiIiIyCkmjoiIiIiIiIiIyCkmjoiIiIiIiIiIyCkmjoiIiIiIiIiIyCkmjoiIiIiIiIiIyCkmjoiIiIiIiIiIyCkmjmQkJSVBEATbH41Gg+joaIwePRqXLl26a5yIiIiIiIiotNjHrBxK9fr555+XK+Zr+0Pj6gK4uw8++AAxMTEwGAzYvXs3kpKSkJycjLffflsxnpqaCj8/PxeXnoiIiIiIiDwJ+5iVw1m9btiwoVwxX9sfTBzdRZ8+fdCuXTsAwLhx4xAREYFPPvkEv//+u2J8zZo1GD58uMvKTURERERERJ6HfczKIVev5Y350v7go2pl1LVrVwDAlStXFOOnT5+usjIRERERERGRd2Ifs3KU1Gt5Y760P5g4KqO0tDQAQGBgoGI8LCysikpERERERERE3op9zMpRUq/ljfnS/uCjaneRk5ODrKwsGAwGpKSkYPLkydDr9YiNjVWMx8fHu7jkRERERERE5GnYx6wczupVo9HAbDaXOeZr+4OJo7vo0aOH3d8bNGiABQsWID09XTFep06dKisjEREREREReQf2MSuHs3odNWoUpk+fXuaYr+0PJo7uYs6cOWjcuDFycnIwb9487Ny5E3q9vtRxIiIiIiIiotJiH7NyOKtXjUZTrpiv7Q8mju4iLi7ONoP6wIED0aVLFzz55JN47733FOPHjx9HUFCQy8pNREREREREnod9zMrhrF7//e9/lyvma/uDk2OXgVqtxscff4z09HRs3brVtjwhIQFBQUEIDQ3F77//jvT0dEycONEhHhQUhMDAQAiCgF27drliE4iIiIiIiMhD3N4HnT17tm05+5j3pqRes7Oz7ZYnJCQgNDQUBw8etMUOHz7sEEtPT0dwcLCtzr19fzBxVEbdunVDXFwcNm/ebFu2evVq5OfnIz8/H88++yzCwsKwcuVKGAwGh/jo0aMxePBgxMXFuWoTiIiIiIiIyEOU9EFnzJjBPmYF6tatG2JiYgAARqMRwK16LSoqQnBwMADg/vvvd4jVrFkTer0eLVu2tIt56/5g4qgcJk6ciNzcXKfL09LS8OWXXyIzMxNJSUlO44sWLYJara6i0hIREREREZEnmzhxIvuYlaBPnz4AgHXr1tktnzhxIsLCwgAAGzZscIhFR0fDaDRi/vz5DjFv3B9MHJXD4MGDUaNGDQCAxWIBACQmJmL//v1Yvnw5hg8fjoYNG2LatGlO4zqdzmVlJyIiIiIiIs8yePBg9jErQdu2bQEA8+fPd6jXd999VzaWnJzsU/tDkCRJcnUhPN20adOwYsUKbN682enkWHeLVwWTATiw1H5Zm2GA1s8lxSEiIh/CexAREVHFcoc+pjdSqtfyxrwB36p2j7766issWrQI27Ztc3qA3C1OREREREREVFrsY1YOpXotb8xbeNSIo4yMDFcXwUGTJk1gNBrtnl9csWIFYmNjSxWvKhajgLNbq9sti+l+HWq9x+x+IiLyULwHERERVRx36WN6G6V6LW+srGrVqnVvG1FJmDjyEWy0ExGRq/AeRERERHR37po44uTYRERERERERETkFOc4UqA5fwNBPx51WC4G+yEv4QGELtjndL2cZ+JwamskzEb3yctJEmA22Jfn5PoICIKLCiSjXrcb8A8zu7oYdIf04mIMOXPCaeznxs3hp3KfY53InU26dB7b83Idlj8XURNjI2q6oEREnuePokI8f+6Mw/JAlRo/NW7mghIReaYXzp3B4aJCh+Xv1KqNhGrVnaxBrhaalAKh2OKwPC/hQZw9UQdFWd71Jq+qENU2F7XSjkB3LNMhZnywNiyhfghIdrznmKNCkd+/RVUU0S0wcaRAnWeAOs/osFxlMENVUOw0BgAoKEbRDQ0guVlW5g7mQvXdP1TFzIUqIMzVpaA7XTWbcMlkchq7bjajtpe9bpKospwyGp2eS+eKi11QGiLPdNkkd08ywSRJ0Lrbr2JEbuqYweD0XLrIe5J7MovQXHNM9AGAqsAIY7YGpgL369+5u+ICNdTXC5327dXZhQAkpzFJV1AFpXMfHCagwFk2FwAEkwWCUWFUjEF0+6SRuxJNPCTdUZ4oysbyRefnCRE5yrc4P18KeB4RlVqBzHl0txgR2ZNrw+UrtPvIdYRi+f6nUGxhP6qcRJMAweS8boVii3xOQGF/eCMeXUpM8o0PweB89AUASAZO9lleopkJN3dUqNCAKGLjgqjU5M4lpXOMiOwVSvLnC88lotKTa8PxPHJPgll+vwjFFvajykk0C4BJpm6LLRBkcgJyy70VE0cKBLkDCFAccSQprEfKRAsveO7IwMQRUYUwyHR4eR4RlZ7iPUkhqURE9uTOJd6T3JNSokIwi+xHlZNoEeSTQ2YLIJOwU0rkeSMmjhQIZoWTU2bIGgCIfCy43CTfStx6DKNCQ9wocYQdUWnJNdJ5HhGVnlLiyMgOL1GpmCUJcj+DK7X7yIUUEhWSyQKJiaNykSyCbBJIMIuyg0kEs2h9A5WPYOJIiUV5OKAcSf4pNroLDrF0TwZR/qKo1IAnInty5xLPI6LSMyg01JViRHSL0n1Hqd1HrqM4wsXEfVZeolmQT8pZRAgKOQFYfKfe+VY1BYJZxLWiPPRZ+jEGNY7DpI4Db8VMFlusRUQdLDm2C6aSCeam2X/PP8euQ+J3g2C2OM8obfnMdw64u5FEJo7cEUccEVWMYplzqZjnEVGpyZ1HAFDMJCxRqSjdd5TOMXIhi33fNLZGfQxb/a9bfdA7sI9ZOpIoQLitbh369nfQqtSy/X6tVguTzJuoL1++XJHFrnLlHnG0Zs0adOrUCQEBAQgPD8eQIUNw4sQJJCYmQhAEJCUlVWAxXcQiYemx3RjSpAMmdRyIZ9bPQfDnz+DE9cuA2WKLhej8ZQ8sAFj40z9lk0Zkj8/muqf/vTMJpn4JkC5edIit+/prREVFYcuWLS4oGZFnePLJJ9G0aVOYb9xwiEkFBTiUMBh9+/aFyE4vkaLx48djTofOTu9HlsVLMOj+xrwfEd3Fk08+iY4tWkCSuSdtix/Ae5IbEiyiXd904vb5in3QnhMF7D6yrgpL6JkkC4Db6vZufXvFmEzSyBuUK3E0d+5cJCQkICUlBe3bt0fPnj2xf/9+xMXF4fTp0xVdRpcRLCIWH/sVI5o9hN8z0zD5oWEI0Orwypb/QjDdiuUai+zWe23Iy1iWeBXLEq9izuv7cOLiPrv4Uz3es8WXJV6tyk1ye/yBwz11e/P/AD89LDNn2y2XLmfgx6/mol+/fujZs6eLSkfk/qZOnYri4mJY5n7tEBPnJcGck4PPPvsMKhWfICdSMnnyZKj9/Jzej8SFi9C+dy/ej4juYurUqTCZTLL3JFM270nu4o8//kBhYaH1L+Zb/U8A6Fy7id1nS/qYc17fB53GH10fHIKOzeOrusge4dSl31FUXADg1oijkrq9Wphr99l3ej6B9rUaYs/TU9C9Xgu72P+9/CpSU1ORmpqK/v3728UmTJhgi6WmplbuBlWBMl8Nzp07hwkTJkCr1WLjxo3YsWMHFi9ejJMnTyI+Ph4LFiyojHK6xNmMi9CqNJAkCX2XTcHojV/i/c5Dsf3CEcxc+wO0Kg3qhUTg5/N/AgDUgnW0zKzlX+HIuV0IDYxA0o9/hyBYq7lGaB0AwKKtH9nioYERrtm4Mig5qaoCJ3VzT9qwMKifHQvp0GGIm3+yLbfMmgOVRoMPP/zQhaUjcn/16tXDyxMmQPp5B8R9B2zLxeMnIK7fiNBhQ9GiRQuFbyAiAIiIiEDrV152ej+CWo3h705yYemIPEO9evXwzGuvyd6Taj0+nPckN3DhwgU8/vjjeOKJJ1BQUIC08+ds/U8ACNDq7D5f0sdM+vHv0Gi0eDlhpiuKXSEqs/+ZeeMc3v66Jyb9pzeKjPkQzcCZaxm2fv+609ZzIlQfAACYumUxiszFCPMLxM/njwAAgnX+AIDPv5qN/fv3Izw8HAcOWNeLjIwEAMycOdMWCw8Pr7TtqSplThzNmzcPBoMBI0aMQO/evW3LtVotZs6ciYCAAId1kpKSIAiCw5/t27fbPrNkyRL069cPUVFRCA0NxcMPP4zk5OTybVUFWbzrJ4xo9hDe3rEQ14ryEaDR4/nY7ugc3Rgfr/4O/Ru1xf+O/Yb0Auswz7rBEagVEAoJEmYufxFb9n2Pvcd/RNN6HQAAj8U9iwGdx0OURMxaOR7FJkOFlTUr5xKmLRmLYZMj0fcdPcZNa4Ef98xz+rnpS57F4x/WRt939Hh6SgxmLn8JJrP1VXDfb05Ez4kCzmUewZSFT2LQ+2GYMKdLhZXzbjjHkXsySRKEPr0htGgOy3++gZSbC/HnHZD27cdfXhmPqKgoVxeRyO09OW4ccF8MLLPnQCouhmSxWEdN1KwJ/1FPubp4RB6jXsIAp/cj1ehRCKpZ09XFI/IIg58dK3tPqjl6lKuLRwA++OAD3LhxA/7+/tDr9Vi6Zb1ttNHt6gSHQ6/VQZREfPa/Mdh7/EeM6f1PRIRGV2r5PLX/+e91f0Vu4TXotQHQafwAi4QfjiTb+v2Gm1PMvNyqJ2oFVgMAXMi7hhFrZ0KEdd6oV1r3Qq3AapAkCW+//TaWLl2KS5cuAQBGjhyJMWPGQBRFTJo0CQZDxfX5XanMiaNffvkFAPDEE084xMLDw9GrVy/ZdZOTk7Fr1y7bnzZt2thiM2bMQEREBObMmYOlS5ciOjoa3bt3x6FDh8paxHIxmx1fSLn6YDIertMMK0/sgUoQMLvnWGjVGszpOQ5FxUbsPH8Eb2773vb5fg3bYPWQtwAA13LT8eWa19G4TjvE1HrQ9pkX4qehRrW6uJp9ASlH11dI2W/kZeK1WR1x4ORPSOj8Cl5KmIna4Y0wfemzWPHLDNvnsnLS8coXcdh+cDG6xT6OlxO+QPe2T+PwmR0wmgrtvvPD+cNgNBVi7GNT0LfDcxVSztKQ5B8ZJRcyShIEQYD69VeBgkJYvpgNy7+/htD4frR+fLiri0fkEUS12noOZWRCXLgI4pq1wKlTUL82Hma93tXFI/IYxRKc3o9UA+JRzLdBEZWKReGeZOI9yeUyMjKwYcMGqFQqfPrpp9BoNFi78ycMadLB4bP97msNURSh1/ojr/Aaaoc3xIDO4yu1fJ7a/7yRfwXJh5dDJajwxpC5UKs1gEXEyhN7bP3+kmEMapUaqwdPBADkGAuxL+OM7Xtuj2VkZOC9995DRMStJ4nef/991K5dG+np6fjpp1ujYz1Zmd+qlp6eDgCoX7++03iDBg1k1+3QoQM0Guf/5Nq1a+2GcPXo0QMPPvgg5syZg6+/dnz+tqIcPXoUs2bNwo4dO7Bnzx4EBgYCAPbv34/IoGoYt2kuJABtasbgvmrWYWf5xUVoHFkHa07vh0q4NUImzC8QrSNjEBvTEofOHkZBUQ7eGPJv/Lj3VuZVp/XDIy2HY9nO6Th0Zju6thxyz9sw78e/wSJZ8J8JfyAk0FqH/Tu9iI8WjsD3mxPRr+ML0Gv9MW/jJNzIy8AXr6agSd12tvVH9/4A0h1vVrgvKhbvPvXDPZetrDjiyD2Zbk4+JTSoD9XQwRAXLwFUKqg/nIxigfuMqDRMkghVs6aQ+veDuHQ5oNVCePQRqNq1ZWeXqAxMkuT0fiSoVHzTJ1EpFUuS/D2Jk466TEnfdMuWLRBFEW3atEH9+vWxf/9+NIqub3t86nY1AkLwYvenMGvzdwCA++u0rfT5qTyx/3n28h+YueIlSJBwf3RbRIXfBwD48+RuRAaG2vr9Ef4hyCqyznNUbDEjzC8INwz5AGD3/60jY9CmRUsc+PMwcnNzER8fj7Vr1wIA/Pz8MGDAAMydOxe7du1CfLznzzXlNjOe3fncn0qlwgMPPICzZ89W6r8bEhKC559/Hjdu3MCGDRtsy5cvX46hsV3RMep+AID6tpPvhyPJ6NCgmXV9nfXkbVQtEu2jGgIAaoVZH9vRaf3QoNYDaHnfIxjQeTya1I0DAERHWL/zeu69v5JPkiQk/7EcnZr1hwQJOQVZtj/tGvdGgSEHJy8egCiK+PXPVejYvL/dSVtCuKPzH9/pxXsuW3nwPuWe7F7ZGhJi/W94ONCgPsxspBOVSsl5pBr9DBASDAgC1C8+DwAwg+cRUWmV/Jhx5/3ILkZEikwK9yQT23YuU9I3LSiwzvFTr149ANa+6eOP9rH7bNe6zfBSq55oH9UQ1QOq2ZabzZX7Zi9P7X8G+ldDs/qdAAAqldq2fFPKYgxv0snW76+mD7DV6w9HktEkorbts43DomwxAIiuVQsAoNfr0adPH4wZMwatW7cGAMTExAAAMjMzK3W7qkqZRxxFRUXh+PHjOHfuHJo3b+4QP3funOy60dHRuHbtGpo3b473338fQ4cOlf2sxWLB3r177eZRqgzR0dGIjo5Ghw4dsHLlSgwbNgwmkwk7d+7EjHGfYUmuEQBwJtu6w00WMzadPYTMoly0iKiLP7MuAADuD4tCn/ta40LuNWw7vA0AYDQVYcn2T/FUj7/jkdhhtn+z0GjNYPrpgu65/NkFV5FflI31KV9jfYrzkVnZ+VeQU3AVhYZcNKj1QKm+t1b1mHsuW3lwxJF7KkkOSVeuQpy/0NpATzsHcckymF5/3cWlI/IMJeeREBgAoU4dSDm5EMLCAFgb6dLNR0KJSJlJkpzej9RPjeCPGUSldLd7ErlGSd/0vvvuw+nTp5GXl2frm37y2Tjgt1t97aFNOmJok464kHsNT373NsKCa+FGXgYyblTuwAtP7X/WrFYX9SOt+YvL16yPnZktJuw9th3fP/UefjhinV8521iAmT3GwGQxY8LW73Ah75rtO64X5WFmjzEAgAu517Bp588AAIPBgLS0NEyZMsX22fx868ikkieaPF2ZE0ddu3bF9u3bsWTJEvTpY5/1vH79OjZv3uywTlRUFD766CN06NABRUVF+O9//4thw4Zh1apVSEhIcPrvzJ49G+fPn8fLL79c1iKWy6BBg/C3v/0NWVlZOHDgALp06QKNVosHalizvFlFebiYm4WDV8/BcrNxv3bIWxi38d/Ydj4VyZeOwWAuxutbkyCK1l+77otqiR+2foS/tH7SNhQOAA6esiaWYkp5EimRbv5b3duMRK+2zzj9TEztlkAZbwB6rf89l608BBVvVO5Ic7Mza5nzlfXvH30Iy7+/hrjofygYOhSIqtzJ94i8gUYhKaSB4y9vROScRhCc3o9Uf+kGDe9HRKWiVrjlaHk/crm+ffti1qxZSElJwaZNm9ClSxdodVqnn319axIAoF6NpriRl4G0jFRcvnbGrv9ZkTy5/1ky93BOwVVcvXEBpy4fRNsmD0Or1sj2+8XbtuNkdgaOXruIZuF18PrWJFgs1rpo3rw5vvjiCwwePNg2pU/Ji76aNm1a6dtVFcr8qNqYMWOg1+uxcOFCu4meTCYTJkyYYBtWd7vevXvj3XffRffu3REfH4+VK1eiS5cudhm526WkpOCdd97B3//+dzz44INOP1PR+vfvD0EQsGbNGixbtsw6GkqtQpvIGNQLtj5GN/6nb/Fpyhqcy72K9+JHoU5wOP7b50UIEJBXbMBzP36Ndaf3wyJaoFKp8frgudBodJi18tbkZH+m/YZ9JzZBpVKjy4OD77ncoUE1EKAPhiha0KZxD6d/woJqIjSwBgL8QpCWkXrP/2ZlEtzm4Um6nVYQICb/BmnXbqieeRpCjQioX3oB0Giwfeonri4ekUfQKTTEtbz4EZXa9R2/OL0fWWZ9yXOJqJR0CucKE0eu9+KL1se28vPzMW3aNAwdOhSS2nGfrTq5F+tO78cTnfrj8NkdEAQVdFo/u/5nRfPk/mfjOm1Rs5o1QTRzxUv4af98PNZxBADI9vstkggVBETdfMPakJX/stW7RbRArVbjk08+gVarxaRJkwAAe/fuxfbt26FWq9G3b9+q39BKUOa7a0xMDKZPnw6TyYTevXvj0UcfxYgRI9C4cWOsXr0aTz1VulcKJyQk4ODBgw7L09LSkJCQgP79++Mf//hHWYtXbmFhYejWrRt++OEHnDx5Eu3atYOkVkEQBHz8iHWbNp75HXsun0Krmg3wwl8GAgCig6tjZIuuAID/HfvNNll2vw7Po3mDThjd+0PsPf4jdhxairMZqfhg/lBIkoR+HZ6vkCywWqVGlweHIPmP5Tjr5KTMzr8KwDpn1EMtBmL3kbU4fmGfw+funJzMVTjiyE0VFsHy5VygUUOoEvoDAITwcKieeRppv/5mmwiOiOQpdWh1KjbSiUojPz8fRz6f4fR+JO3bjyNORr4TkSOlHzOUkkpUNapXr24bQHH8+HGkpaUBd7QV8oqL8H/bvkPT6rWx9sBPkCQJ8R1fwJjHPrL1PyuDJ/c/BUHA8/GfAQBSjq3HkXO78MD9nWyxO/v9mptzIT0X2x3THh0FADiVnYFn1s+xxUaOHIl27drhrbfews8//4y5c+fiueeegyRJGDlypOxLxTxNua4K48ePx8qVK9G+fXvb8LnY2Fjs3r0bjRo1KndhsrOz0a9fPzRo0ADfffddlQ/bHzRoEP7880/069fPuuDmGM5hTTuiV4OWAABRklBNH4BdZ48gr7gIRaZijG/dG+qbF1hRkhAaGILOLQai0JCH3u3Hol7NZpi+ZCxemdke13Mvo0nd9nih//QKK/e4vlNRPSQKr33RAV+ufgPrd3+Nxdum4sP5wzH20ya2z43tMwXVgmrir189gq/WTMD63V9j/ubJeG7aAygw5FRYee6FoL77Z6jq/f7VXOD6dahffxWC+tZOUg2IR1SzZnj//fdtz/ESkXPKjXQmjohKY+rUqTBmZTm9H6FRI6yc+gnvR0SloDSqiPck9/DSSy/Z/v/VV1/FM/98CzsvHLX1QV/e/F9cyruOszlXcCX3mq2POaDzeNwf3QZfrXkDhYa8SimbJ/c/H4kdjnZNrPMoZ+VcxN/+/ZStXuMbtkHH2tZJskVJglm0oHGNaLzXeQjiG7bBsCbWJFORuRhm0YJGMffhzTffRFFREeLi4lCjRg1MnjwZmZmZaNWqVZUOhKlsZZ7jqMTAgQMxcODAcq0rSRJWrlxpm3EcAIqLizF48GAUFhZi27Zt8Pev+jl2evfujcDAQAwZMsS64LbhgJM6DsTmtMMAgO0XjmD7tDdlvyenIBeTvnE+qXfXB4fgr8O/rdBnOMOCIzHrtT1YsOUDJKeuwNpdXyIkIBz1I1tgXL9bjxFFhEZj1qspSNr0HrYdWIgCYy4iQqLRvmkf6LWOr3Z0BY44cj+HDh3CH0uWQtW/H1RNGtvFBLUag95/D3OfGompU6fin//8p4tKSeT+lEYVsZFOdHeHDh1CUlISGg8djDNO7kfq119B7uv/x/sRUSkoPz7Ne5I7KOmbPvXUU/jvf/+Ltb9sxVpsdfic0WJGfNtH8dzA1bY+5utD5uK1WR3x7aa/Y3zCzAovm6f3P99/ejkG/6M6LKIZ2/evwvb9q2Q/e+LqJdT56iWnsVNnz6Bly5YOyxs0aIClS5e6JKdRWQSpgseIJSYmYvLkyfj2228xevRoAMDQoUMRFxeHli1bwmg04ptvvsH69euxZs0axMfHAwDGjRuHb7/9Fv/5z3/s3tam1+ttCaaMjIyKLKpTBw4cQJs2bQAAQWv/hP7EFVtsz+VTCNUHYMa+9dh44Q+k38gCAITo/PFIveZ4uXUv1AkOx5Rze7Bl36/IyrkEAAjwC0Grho8iofMraNO4R6Vvgyer3qQAtdtXTmacyu/zzMv4/Irz8+/j6Lp4qnpEFZeIyPMUihY0/fOw01iMTo8dTRzfVOotLEYBZ7dWt1sW0/061Hr+WEBl9+6lC1hwPctp7Jv696FXSGgVl4jI86QZjXj4xBGnsbiAQCxr2NhpjKpWSd/01KlT+PrTGdj288+4lH8dgH0ftF2/BBy82sHFpfUsR8+nIMivGlbt+xT7966yq9eWNevjmQcexq7M0/jxzEGk51yzxR6p1xwDGrXF7vST2JB5FJczrX2k4OBgdO7cGWPHjsXDDz9c7nLVqlXr3jeuEpR7xFFZNG7cGN988w0uXrwIAGjdujXWrVtnN1HUTz/9BFEU8eyzz9qtW79+fesznVWkJGkEANDYZ9vjoqyP4X3V6zkUta0D9Z40mCxmBOr87D43td8HGHumCUzmYphFE/x13vEKvqrAR6rdEx+xIbp3SnNG8DwiKj2l80XPc4moVPRKo2BVbJC7i5K+aaNGjfD5pMkIaTIExRazQx80V8MfYsqqWT1rou3d5+agVafeMBcZHep1ZMfeEKv5QzqX5RB75oFuuP7SQzBqALPZjIAA93iCp7JUSeJoypQpsm9QK1GVyaHScjZzvS2mUUOn1kCndqzCm/NkQavRQQtdZRXPK6nUvOi5I71CA0LPbB9RqWgEASoAopMYJ8cmKj0mjojuHc8jz1PSN3XaB62SXr13EtQA1Crn9aoWIKkF2X4/1CrodBrodN7f56/wHl9iYiIkSbI9pubJJI1C4kirMIszT9xy4xxH7kkpOcSREkSlJ3cu8Q02RKWn9GMGR0oQlY5y247nkVtSGNSg4guGyk1QSbIDRiS1CtDIV66k9p1+EK8KSpRGHOnkDyBBWxmF8Q0CRxy5JT+F0RB+bKQTlZrcowF+TMASlZrSaAieS0Slo5SAVWr3kesoDWqAlvusvFQaCZCrW41K8SkkpXyBt/GdLS0HxRFHCokjlY4nbnmpOFrLLSn9KsVGOlHp+cmcS0zAEpWe0vmi1Bkmolu0ggC53gynIXBTCn1TQavmkxvlJKgl2X6/pFEpxuBD/SBeFRQoPY4m6eUzHAITR+XGEUfuSamRzg4vUen5y5wvPI+ISk/uPALkk7NE5Ij3JM+i2DfVqKwjZ6jMVGpJtm4ljRrQKiSOfIhvbW1ZKZ2cfvLPowl+TByVl5oXPLcUoNCAUIoRkT258yWQ5xFRqQUoJId4LhGVnlziiOeRe7rb0zBMHJWPSiPJJoegU8snlZTmPPZCvCookHscTdKqFUccwU8FCDxxy0Oldfa+IXK1YIUGRBBn4yMqtSC18/MlkOcRUakFypxHd4sRkT25NhwTR+5J0sn3PyWtmv2oclJpJUha53UradXyOQGFqWu8EWeUUSAG6iE6GVkkBushBmidxgAAAVroQ8wwG3zrYKoIGj9e8NxRuEaLMJnGeJiGlxGi0qqr1eGEk3OptpZvVSAqrUiNxuk9KUilhtaH5psgulcNdHpkW8wOy2vxnuSeNCpYQvwgFFscQmKgDrogi3v1PyXAYrK/Jqu1EuBml2ltgAhLqJ/Tvr0lxA9ikPOYGOpfFcVzG4IkSR4zNCYjI8PVRSAiIqIyshgFnN1a3W5ZTPfrUOs9pglCREREZcB7f/nUqlXL1UVwiuMQiYiIiIiIiIjIKSaOiIiIiIiIiIjIKY+anMRdh20RERGRPJMBuHjH9AA1IyOh9XNNeYiIiKhy8d7vXTjiiIiIiIiIiIiInGLiiIiIiIiIiIiInGLiiIiIiIiIiIiInGLiiIiIiIiIiIiInGLiiIiIiIiIiIiInGLiiIiIiIiIiIiInGLiiIiIiIiIiIiInGLiiIiIiIiIiIiInGLiiIiIiIiIiIiInGLiiIiIyAWSkpIgCILtj0ajQXR0NEaPHo1Lly4pxj///HPFdUne3eqdiIiIvEt521Rsb92icXUBiIiIfNkHH3yAmJgYGAwG7N69G0lJSUhOTsbbb78tG9+wYYPiuqmpqfDz83PlZrk91h0REZFvKWubiu2tW5g4IiIicqE+ffqgXbt2AIBx48YhIiICn3zyCX7//XfFuFJszZo1GD58uAu2xnOw7oiIiHxLedpUSjFfajPwUTUiIiI30rVrVwDAlStXFONKsdOnT1d8wbwc646IiMi3lKZNpRTzpTYDE0dERERuJC0tDQAQGBioGFeKhYWFVXCpvB/rjoiIyLeUpk2lFPOlNgMfVSMiInKhnJwcZGVlwWAwICUlBZMnT4Zer0dsbKxsXKPRwGw2y64bHx/v4q1yf6w7IiIi31LWNhXbW7cwcURERORCPXr0sPt7gwYNsGDBAqSnp8vGR40ahenTp8uuW6dOncottBdg3REREfmWsrap2N66hYkjIiIiF5ozZw4aN26MnJwczJs3Dzt37oRer1eMazSaUq1L8lh3REREvqWsbSq2t24RJEmSXF0IIiIiX5OUlIQxY8Zg7969tjd1WCwWdOnSBefPn8d7772Hl156yWn82LFjyM7Oll33+PHjCAoKctm23clkAA4stV/WZhigdcEbbO9W7+5Wd0RERJ7IU+79Sm0qT2tvVSZOjk1EROQm1Go1Pv74Y6Snp2Pr1q225QkJCQgKCkJoaCh+//13ZGdn262XkJCA0NBQHDx4EOnp6QgODsauXbvs1g0KCkJgYCAEQbDFyOr2ep89e7ZtOeuOiIjIO5Xc+5XaVCWxw4cPO8R8rb3FR9WIiIjcSLdu3RAXF4fNmzfblq1evdr2/+PHj0dSUhIKCwthNBod4pGRkcjJyUHLli2drpuRkYG4uLjK3gyPU1LvM2bMwBtvvAE/Pz/WHRERkRfr1q0bYmJicPbsWadtqpCQEOTl5eH+++93iPlae4sjjoiIiNzMxIkTkZub63R5WloaRo0aBQBYt26dQzw6OhpGoxHz5893uu6iRYugVqsrr/AebOLEicjMzERSUpLDctYdERGR9+nTpw8A522qsLAwAMCGDRscYr7W3mLiiIiIyM0MHjwYNWrUAGB9lh4AEhMTsX//fixfvhzt27cHAMyfP98hnpycjIYNG2LatGlO19XpdC7YIs8wePBg1h0REZEPadu2LQDnbap3331XNuZr7S1Ojk1EROTmpk2bhhUrVmDz5s1OJ2FUit9t3argThNkloU71B0REZEn8sZ7v7u3tyoT5zgiIiJyY1999RUWLVqEbdu2OW2IKMXvti7JY90RERH5lvK2qXyhzeBRI44yMjJcXQQiIqIq1aRJExiNRrvn5FesWIHY2Ni7xu+2blWxGAWc3VrdbllM9+tQ6923CeIudUdEROSJvO3eX1XtrVq1at3bRlQSJo6IiIioUnli45GIiIjKj/f+8nHXxBEfVSMiInIVkwXaS9kOiyVBgLl+dWjOXYfg5PcdU3Q1qK8VQGUwOcTMNYJgMAeguMB93uQhmgRYigW7ZfkZOqi07tV41AdbAJUEYw6bR2Wl9RfhF2Z2dTEqzK78PBQ7OffaBgQiyIvekuMNJEnCL/l5cHY16RAYBD8V3wXkTsyShF/z85zGugQFQy0ITmPkGgZRREpBvsNylQB0DQpxQYkqh/paAVR5BoflllB/QKOG+ppjHYj+Olgig6uieG6BLSMiIiIX0WTlI2T5Yaexa692ReiyQ05jOU+2QeDm49BkFTjE8rs3xoXC5sg+41+hZa1oF34Jc3URHIQ3LYBaL+LKId9pCFaU4GgD6j+a7epiVAhJkvB02mmniaNFMY3wUBCPD3dSIIoYmXbaaWxTo6Zo5u/e10Jfk24qxtMy+2tP0xaopfWuN1F5uuMGg+z+OtEi1msSs/67z0F/LNNhuSG2NizV/BG4w7EOTLWCkftUu6oonlvwjj1NRETkgQSD/AgNVa7jL1+3rye3rspogsXIX2zLw1IswGJk06g8LMXeU29Fkug0aQQAOTdfuUzuI1thn+RYvGcUnLdQOod4frkfpXPIm/aXYHQcwQ3crb3lW9cX77nLExEReRihWL7RpSp03ogBAMFkgVAs02AptkA0M3FUHqJZxborJ2+qt3yLKBsrEL2no+QtlPZJvii/L8k1ChX2SQH3l9tR2ieFXnQ9lGuPCSYLBJNMTKEN5434qBoREZGLCGb5Rofcr18AAJMIwey8MSeYRa/qxFcl0QwIKtZdeXjTMVckyXeUDOzYuh2lfVLE/eV2lPYJ95f78ZX9JdumUkgcQWYdb8XEERERkasoNDoEo0JSqdgMQXT+KI1gFiFavKcTX5UkiwDJt35ArDDedMwxEeFZDAoviDYoJAHJNXwlEeEtlM4hpXPP4ygkh5SSSr6Ej6oRERG5iFxjBFAeAq0YM1sgeVEnviqJFsGrEiBVyZuOOaNCZ0gpRq6hlOgzyCTYyXWMCokIpRi5hlHhHPKmEZiCzCPKglmU/ZFPECXAh64xHHFERETkKkqJozt+ydpw+ncMW/0vmEQLMM3x81qV2hpzQqPWwmxx/ujbls98p9FzN9YRR7fqI+XoeiR+N4h1VwreNFLLqNAZUoqRazAR4VmUExG8probXzm/bv8hz6695YRde+uO9phWq4XJ5LzNcPny5Qopq6uUe8TRmjVr0KlTJwQEBCA8PBxDhgzBiRMnkJiYCEEQkJSUVIHFJCIi8j6CRcS1ojzEff8uPt69yj5mstjFNp09KNuIAaAYk0t8kD1JFCCJt0bO7Dm2kXVXSt40Uuuz/3sTpn4JkC5edIj9Nu9bREVFYcuWLS4oGd3pySefxEvtO0C6ccMhJhUU4JNHu6Nv374QmfBzG9+99bbs+bXx6695frmRJ598ElMf6ip7fr30UBfvOb9ua49N2bWi3O0tuaSRNyhX4mju3LlISEhASkoK2rdvj549e2L//v2Ii4vD6dOnK7qMREREXkmwiFh6bDeGNOmASR0HYsDyTxH8+SicuH4ZgsliF/vh6K92677bcRCmPPwEJnUYiKbVa9vFRvb6O5YlXsWyxKt4rP1Yu9hTPd6zxZYlXq30bXR3py79jqLiAgCAaFFOgLDuFEgCvOXH5xHvvA346WGZOdtuuXQ5A3u+/g/69euHnj17uqh0dLupU6fCbDLBMvdrh5g4LwmF2dn47LPPoFJxdg530Wvim7Ln1+a5/+b55UamTp0Ki8L5lXfDc8+vP/74A4WFhba/C+Zb7bF6IRF2n32n1xO29lb/hm3sYhPGv4bU1FSkpqZixIgR9rEJE2yx1NTUytuYKlLmvXzu3DlMmDABWq0WGzduxI4dO7B48WKcPHkS8fHxWLBgQWWUk4iIyPtYRCw+9itGNHsI53KuIuXyCVhEES9t/o9dLPnCMeQYrQ0cndr6lPnUlFX4PnUnWtaoj2PX0wEAAqxJjx+2TMGRc7sQGhgB080RMzqNPwBg0daPbLHQwIg7S+R2SpI6lSHzxjm8/XVPTPpPbxQZ82+OOHL8XI3QOgA8r+6Ayq2/O3lL4si/enWonx0L6dBhiJt/si23zJoDlUaDDz/80IWlo9vVq1cPvV56EdLPOyDuO2BbLh4/AXH9RrQZ+RRatGjhwhLSnbRhYTy/PES9evUQ9/xzsufXo8+M8sjz68KFC3j88cfxxBNPoKDg5j3SImHxsV/xcJ2mWHfauq0lbapPtyzB96k78dh9sdh09rDdd838ajb279+P8PBw22gjPz8/a2zmTFssPDy8irau8pQ5cTRv3jwYDAaMGDECvXv3ti3XarWYOXMmAgICHNZJSkqCIAgOf7Zv3277zHfffYd27dqhWrVqCAwMRJs2bbB48eLybRUREZEHOHvpIrQqDeqFRODtHQtxw1CI+8Oi8MvFY5i55gdbbMTambZ1ii1mdGvaCqIk4WzOFby+7Vtb7LGYWACAKImYtXI8ik0G/HFmBwCgf6cXMaDzeLtYRcnKuYRpS8Zi2ORI9H1Hj3HTWuDHPfOcfm76kmfx+Ie10fcdPZ6eEoOZy1+CyVwMAPh+cyJ6ThRwLvMIpix8EoPeD8OEOV0qrJx3+ve6vyK38Br02gDoNH435zhyHHH0WNyzlVZ3gOfW351uf8zPkxVLEoQ+vSG0aA7Lf76BlJsL8ecdkPbtR8sXX0BUVJSri0i36TTqaeC+GFhmz4FUXAzJYrGOZqlZE22ee87VxaM7KJ1fj4x/meeXm2n21JOy51f3l150dfHK5YMPPsCNGzfg7+8PvV4PiBLO3MiAVqXBzP0bYbj5g9vtbaqzOVfw+b71KBbNAIBH6zW3xkQRkyZNgsFgwK5duwAAo0aNwpgxY+xi3qDMk2P/8ssvAIAnnnjCIRYeHo5evXph1apVTtdNTk6GWq22/b158+a2/79x4wYGDhyIVq1awc/PD6tWrcKIESPg5+eHgQMHlrWYREREbu9/yZsxotlDuFKQg1Un90IlCFgx6E08++NcfLz6O3z40HD85+BPyCzMsa1TJzgcf1w4g2CdH/KKDbhSmGuLtYmMwXXRgD3nT+Bq9gX8d8MkXMk+DwAI8AvBE4++g11H1uBq9gWkHF2Pri2H3PM23MjLxGuzOgKCgITOryA0qAb2HtuI6UufRaExF4O7vgEAyMpJxytfxKGgKBt9Oz6PujWaIiv3En45vAxGUyG0Gp3tOz+cPwzREfdj7GNTIKFyJku9kX8Fv/6xAipBhTeGzIVarYEkirLJjxfip1V43QGeW3/OWJNunj+5bbEkQhAEqF9/FeaXX4Xli9mQUv+E0Ph+NBhaMfudKo5FpYb69VdhmfBXiAsXAdVCgVOnoJ7yISQ/3d2/gKqUSZJkz6/Yx4e7unh0B4taJXt+CXo/VxevzLKysrBhwwaoVCp8+umn0Gg0gMmCH44ko999rfHOzh9QcidrExmDG8YCpKSfhNFixqqT+2zf07l2ExSZTdhz+TTS09MxZcoUXLp0CQAQHByMV155BZs2bUJ6ejp++uknxMfHu2aDK1CZE0fp6dbh8PXr13cab9Cggey6HTp0sO4cJ9544w27v/fo0QMHDx7EwoULmTgiIiKPZzabHe6Ba/btxPZB72LTmUMQJQlxUY3QMKwW5vQch9ZJb2Hn+SPYefEoAKCGfwiuFuWi332tMS91O25Pb5TEBEHArEGvosPMVwEA61O+RrXAmsguuAIA0Gn98EjL4Vi2czoOndleIcmPeT/+DRbJgv9M+AMhgdah2P07vYiPFo7A95sT0a/jC9Br/TFv4yTcyMvAF6+moEnddrb1R/f+ANIdrzi/LyoW7z71wz2XTckfZ3ZClEQ0rdcBUeH3AXB8q9rtKqPuAM+tP2e8YX5UwNqxBQChQX2ohg6GuHgJoFJB/eFkmLxjUJVXKZZEqJo1hdS/H8SlywGtFsKjj0DVrq3iG7zINZTPL55g7sYkSbLnV7EHPp+8e/duiKKINm3a2PIZgihh5Yk9mNCuH0RJQs2AUFwpzIEgCPiq13NonfSWbX2NSg2zaLHF2n7/DiABCxYsQEREBLKysgBYH1cbMGAA5s6di127dnlF4sitZ7K6/VlBIiIiT3T06FG8/PLLiI2NvfUsPYD9+/ejZkgYXtkyDy9stk482SC0BgAgv7gIjSPrYM3p/ci+ObdRTGhNvNSqJ/o2bI1hbR5BscVs+65GYbXwUqueaB/VEE1r1Efb+3sBAIymIgx5+P8woPN4NKkbBwCIjrgfAHA9995fCytJEpL/WI5OzfpDgoScgizbn3aNe6PAkIOTFw9AFEX8+ucqdGze3y7pUUK4o7MQ36nyh79fz8sAANSqHmNbdudb1Vre90il1R3g2fXnjDc9qmYTEmL9b3g40KC+fYzcQsk+UY1+BggJBgQB6hefB3ArSUHuw6hwfnF/uZ9iUf788rTr4dGjRzFr1iwAQO3at14qsn/fPkQGhmLO75sAAA1CatjaVPnFRagZGGr7bLPq0bZYi4g66NahMwDAYDDghRdewJgxY9C6dWsAQEyMtX2RmZlZJdtX2co84igqKgrHjx/HuXPn7B41K3Hu3DnZdaOjo3Ht2jU0b94c77//PoYOHerwGbPZjMLCQmzcuBFbtmzB8uXLy1pEIiIitxESEoLnn38eq1atwoYNGzBs2DAAwPLlyzG07SNoLYZhybHfAAB5xiIAwA9HktGhQTOcyLyIEJ0fcosNMJiLMbPHGADAxwfW2f0b1fQBtliRRYD65gTaftoADHl4gt1jTIVG66Ntfrqge9627IKryC/KxvqUr7E+xfGtKwCQnX8FOQVXUWjIRYNaD5Tqe29P5lQWP10gAKDQkGu3/PYfUB+JHYZHYofZ/l6RdQd4dv05I8m/odijlHSUpCtXIc5fCDSoD6Sdg7hkGUwvPO/i0tGdbCNYAgMg1KkDKScXQliYXYzch+nmRdbZ+VX82qsuLh3dyehF51dISAi6d++Ow4cP48yZM7bly1euwPAmnXAu9yoOZJ61a2+9/tO3qBsSjisF1ikDagdVs8UAQHNzGh5/f388//zz0Olutbfy8/MBAIGBgZW+bVWhzImjrl27Yvv27ViyZAn69OljF7t+/To2b97ssE5UVBQ++ugjdOjQAUVFRfjvf/+LYcOGYdWqVUhISLB9LiMjwzYhmlqtxpdffunwbxAREXmS6OhoREdHo0OHDli5ciWGDRsGk8mEnTt34l8TZiEwLRuxNRvg4JU0/JZ+AnnGQmw6ewiZRbloEVEXf2ZdAAAcuXYRBnMx0vOzkXLuGAI1ehSYjQCA39JPwGAuhp9Ghws5V7H32EYAgMFUgCXbP8VTPf5uK8/BU9sAADGlTEIokW4+m9S9zUj0avuM08/E1G4JlLFxqdf633PZ7iam1oMAgD/TfkWxyQCd1jpXg1JRK7LuAM+uP+e8Y8RRybxQljlfAQA0H30Iy7+/hrjofyiIjwdiGrmyeHQHpbND9II5t7xNyR5xdn5lDxoM1K7rusKRE/LnkKc9qBYdHY1evXrh888/x/Hjx2EwGKBWq7Hzt18xa2AiDl89jym7V9naW2pBhU1nDyEt56rtO7ZfOHqrvZV7DVt/SwYAFBYWYs6cOZgwYYLts8nJ1ljTpk2rdkMrSZkfVRszZgz0ej0WLlyIn3669QpFk8mECRMm2A3DL9G7d2+8++676N69O+Lj47Fy5Up06dIFU6ZMsftcREQE9u7di23btuHNN9/EK6+8whFHRETkFQYNGoRffvkFWVlZ+Pnnn9GlSxdodFoAwLiWfwEA5BgL8cpP38Jyc/LQtUPewpDGHQAAZknEh7+twNPrZkElCLakUcl6/9q7HgDw3LJPIUoWCIIKcU374oetH+HyNesva3+m/YZ9JzZBpVKjy4OD73mbQoNqIEAfDFG0oE3jHk7/hAXVRGhgDQT4hSAtI/We/82K0rhOW9SqHoMCQw6W7phmWy6onX++ousO8Oz6c0ZQeUcnXSuoICb/BmnXbqieeRpCjQioX3oB0Ghwavq/XF08uoNWYV4cneDWs3L4JJ0gyJ5fuz/91NXFozsonV96D5yTKjY2FmFhYbBYLJg+fTp+/vlnPNSpM7RqDdpExiDcL8jW3tqUdgiF5mKIkCAA8NfoYLSY8Pdf/gcAGLV+NiyiBSqVCt27d8cXX3xhe/pq79692L59O9RqNfr27evCLa44Zb6axsTEYPr06TCZTOjduzceffRRjBgxAo0bN8bq1avx1FNPlep7EhIScPDgQbtlGo0G7dq1w6OPPopPPvkEzzzzDCZNmlTWIhIREbmd/v37QxAErFmzBsuWLbM+rq223oaHNukI9c0OzqKjv+Jc7lX8vf8zqBMcjul/GQU/tTXBNG3PGuzNOA39zb+PbN4V/jcfQ/vwt+V4Zt0c7Dp3BAAQ3/EFTBj6H2g0OsxaOR5nM1LxwfyhkCQJ/To8b5sQ+l6oVWp0eXAIkv9YjrNOkhrZ+dZf6VQqFR5qMRC7j6zF8Qv7HD535+TOVUEQBIzrOxUA8P2WRPy0fwEEleQ0+VEZdQd4dv054y2JI7GoEJYv5wKNGkKV0B8AIISHQ/XM08janYK1a9e6uIR0O51C51Wp00uuIRXKn18XftvF88vNKCVfNR54fgmCgPfeew8AMGfOHMyYMQPDhgyxxaY8/CQAYNqetXj9pyRkFGQDAJ6P7YHPuo0EAHyxfyOeWTcHv146DgB4+umnMW3aNGi1WkyaNAnHjh3Dc889B0mSMHLkSNmXinmacqXhx48fj5UrV6J9+/ZISUnBpk2bEBsbi927d6NRo4obvtuqVSu75w+JiIg8VVhYGLp164YffvgBJ0+eRLt27SDdTBxV9w9C75hYhPvdmjvnt9Op2HnhKIJ1fpjcxfqK4pJueaHJiCbVozD1kSeR+JB1Dh6LJGLRsV8BAHUiGuPpXokIDghDfMcXsff4j3h5Rltcz72MJnXb44X+0ytsu8b1nYrqIVF47YsO+HL1G1i/+2ss3jYVH84fjrGfNrF9bmyfKagWVBN//eoRfLVmAtbv/hrzN0/Gc9MeQIEhp8LKUxaPxA7HwC6vQRQt+GTx05j83VAcPr0DhYY8GE1FOJ1+CP9Z/zZe/SKuUuoO8Oz6u5PcaC1Ps+WLWcD161C//ioE9a2NUg2IR7UmTfD+++/b5q4g11NKHHniiAhvt+/LubLnV2Szpjy/3IzyiD7PPL9GjBiBunXrQpIk/P777/jqm/9g54WjyCsuwhPNOqN2YBgkSLiQdw0AcH94bbzXeQiebvEwWte0ziFY0t5qWD8Gb775JkJDQzFq1Cj8/PPP6NWrFzIzM9GqVSv84x//cNl2VrQyz3FUYuDAgRg4cGC51pUkCStXrrTNOC7nt99+Q4MGDcr1bxAREbmbQYMG4eWXX8abb75pXaC+1eh6otlD2HDmdwCACgLW/J6MNb8ny37X8euXUeerl5zGLmadwPDJkXbLzJZidGo+AO+MWFChc+CEBUdi1mt7sGDLB0hOXYG1u75ESEA46ke2wLh+n9g+FxEajVmvpiBp03vYdmAhCoy5iAiJRvumfaDXBlRYecrq5QEzUC2oJr7f/A/8cngFfjm8wunnuj44BH8d/m2Fzx/k6fV3O28YcXTo0CH8smgxVP37QdWksV1MUKvRbtJb2Db2OUydOhX//Oc/XVRKup1WYUQERxy5l0OHDuHQkqWy51efv/8d3z89iueXG9GrlEb0ee6joO+88w7Gjx8PQRCwfuMGrMcG2c+evJYu2946fe4sWrZsabes5Mms2bNnw9/fVXMOVrxyJ47KYujQoYiLi0PLli1hNBrxzTffYNeuXVizZo3tM48++iiGDBmCpk2bwmAwYPXq1fjhhx/w9dfO3zJCRETkaXr37o3AwEAMuTksumTEEQDUC64OAHiqeRe803Egpp35GT/t24VL+dftvqNT7fvRpFFjbDlwK+an1sJgMaFOcHX0fKA91h5JRVbOJQBAgF8IGtZuhdSzyYis3gABfsEVvl1hQTXx6qDZeHXQbMXP1Qyrh7ee+E42PqpXIkb1Sqzg0ikTBAFPdf8bHn5wKJb/Og17jmzE1exbddeq4aNI6PwK2jTuUWll8OT6u53KC0YcxcbG4j9/puLF82edxmu3eACXLl2q4lKREt1tHVvNtE/uiHlux9YbxcbG4t0D+/Bp5mWn8QYP8vxyN7cnX+88v/wUkkru7rHHHkNgYCC++eYbrFu3DttXb7S1qQLUOhRaitEhqhFaRNbHj2cPIj3HOvro9heTNA+vgxsaMy5nZgAAgoOD0aJFC6SkpKBOnToICqqYN7C6iypJHDVu3BjffPMNLl68CABo3bo11q1bZzdRVGxsLGbNmoULFy4gMDAQzZs3x9q1axEfH18VRSQiIqp0AQEBWLJkCWJibr4u/bbEUec6TZH81AeIi7I+8v1Fj7fh3+4iii1mmCxmBOr8sOfyKcRFNYLhwSj4xV22i5Uorh+GkeZeMBrMMIsm+Ou84zWwla1uzSaYOPIrqHUS8q5KrLty8IYRR8BdHn3y4I6St1LaX576KI030yuMUuFk5u5HaZ948vlV0h5r06YNunXrhup1+8NkLHZob4kBOliq+UO6cM2hvQUA11/oDKNOgNlsRkCAe4z+rSxVkjiaMmWKwxvU7jRjxgzMmDGjKopDRETkMm3atLH9v6S2b3SVJI0AQNJYG2s6tQY6tcYuLmnUDjEbtQqCBGg1Omihq/DyezNBDQhqiXVXHoIEb+nzKScivGQjvYhyIsJzO7beSqeQfFWKkWt48/XQvj2mct7eUguARnDe3gIAtQo6nRY6nfe3GSp8bycmJkKSJIwePbqiv5qIiMi7aORvwyXJIacxrcJ6apXXjPyoaiqV9yQ/qpo31Zte4fEmJiLcj/Lk2F50YHoJTmbuWXzmeqiW2U6Nym5agTvd+QOgN6uSEUdERETkSLExolOIKSSOoFFBEJk4Kg9BLUGlZt2VhzfVmx8fffIoSo8P8tFC98NH1TyLUjJPKankaSSZH/IktXLiSDbh5IV8Z0uJiIjcjNKoIujkf9uRdFqF71R5VSe+KglqQNCw7spD8KJjTqkz5OdFHSVv4aeQbFCKkWsoJfN4frkfpUSfUpLd4yiMOJIbHS4JAhNHREREVAUUHlUTtQqDgrUqSDLtNUmt8oq3W7mCiiOOys2bEkdMRHgWpWQDRxy5H+Xzi/vL3Si9Oc0nRhxpVPI/8im04byRb20tERGRG5FrqACA5Kcw4kirBuQaMlo1R82Uk0rDxFF5qbzomFNKRPh7UUfJWyjtE+4v9xPA/eVRFM8vL0qkS1rnbSpJo5adHkBx2gAv5FtbS0RE5EYknfzQINFf4XE0nVp2XUmr9qpOfFVSaSTWXTl5U70FKnSUlDq95BpKHdtADr90O0rnkNK5R66hdA4FetFjWrLJIZ0akEsqySz3Vt6zt4mIiDyMpDCPkRisV1xPbl1Jr4FaJ95z2XyRSidCpfOeBEhVUmu9p94CVSrZBnKI2rc6Cp4gVKFjG8z95XaU9gn3l/sJVjq/vCgxK+ll2lQ6DUSF9pYv8a2tJSIiciOW6gEojKvnGFCpgAAdCjs2AETHJJClegCK2taBKtfgEDPVCUVosQHaQEsllNi7BdUqhkojQXKzvJtkEZCd5me3rFoDg1vNK+Rf3ezqIlQYlSDgzcgoFDo595r4+TlZg1wpVK3GKzUi4exsqKfTVXl5SFmUVofxNSKdxmpq5EfakmvE6PVO95ca3jVCzNgsEpZq/g7LzXWqQfTXorDYsa0mVguoiqK5DUGSJPdpddxFRkaGq4tAREREVKUsRgFnt1a3WxbT/TrUeo9pwhERkY/hvat8atWq5eoiOOU9aUIiIiIiIiIiIqpQTBwREREREREREZFTHjXHkbsO2yIiIiKqLCYDcPGOqT9qRkZCy+l2iIjITfHe5V044oiIiIiIiIiIiJxi4oiIiIiIiIiIiJxi4oiIiIiIiIiIiJxi4oiIiIiIiIiIiJxi4oiIiIiIiIiIiJxi4oiIiIiIiIiIiJxi4oiIiIiIiIiIiJxi4oiIiIiIiIiIiJxi4oiIiIiIiIhskpKSIAiC7Y9Go0F0dDRGjx6Nzz//vFyxS5cuuXqz3J5SvbP+Kkd5j3Vf2x8aVxeAiIiIiIiI3M8HH3yAmJgYGAwG7N69G0lJSdiwYUO5YsnJyUhNTYWfn58rN8kjsP6qHo9nZUwcERERERERkYM+ffqgXbt2AIBx48YhIiICn3zySblja9aswfDhw12wJZ6F9Vf1eDwr46NqREREREREdFddu3a9p9jp06crvEy+gPVX9Xg822PiiIiIiIiIiO4qLS3tnmJhYWEVWyAfwfqrejye7fFRNSIiIiIiInKQk5ODrKwsGAwGpKSkYPLkydBoNDCbzWWO6fV6xMfHu3qTPALrr+rxeFbGxBERERERERE56NGjh93fGzRogFGjRmH69Ollji1YsAB16tSp9DJ7A9Zf1ePxrIyJIyIiIiIiInIwZ84cNG7cGDk5OZg3bx527twJjUZTrpher3flpngU1l/V4/GsTJAkSXJ1IYiIiIjIOZMBOLDUflmbYYDWN94ATEQukJSUhDFjxmDv3r22t0lZLBZ06dIFx44dQ3Z2dplj58+fx/HjxxEUFOSy7XJ3SvXuafXnKfeu8h7rnrY/7hUnxyYiIiIiIiJFarUaH3/8MbKzs+2WJyQkIDQ0FAcPHrTFDh8+7BBLT09HcHAwdu3aZYsFBQUhKCgIgYGBEATBFqNbSuo9PT0ds2fPti1n/VWe0hzrvnY881E1IiIiIiIiuqtu3bohJiYGZ8+ehdFoBACsXr3aFg8JCUFeXh7uv/9+h1hkZCRycnLQsmVLh9j48eORkZGBuLi4qtgMj9OtWzfExcVhxowZeOONN+Dn58f6q2R3O9Z97XjmiCMiIiIiIiIqlT59+gAA1q1bZ7d84sSJtteTb9iwwSEWHR0No9GI+fPnO8TS0tKwaNEiqNXqSiy5Z5s4cSIyMzORlJTksJz1VzmUjnVfO56ZOCIiIiIiIqJSadu2LQBg/vz5sFgsAIDExETs378f7777rmwsOTkZDRs2xLRp0xxiy5cvh06nc8HWeI7Bgwez/qqY0rHua8czJ8cmIiIicmOeMsEoEfmmadOmYcWKFdi8ebPDRMHljdHduXv9eeO9y5ePZ85xRERERERERGX21VdfYdGiRdi2bZtDZ7m8Mbo71l/V8/Xj2aNGHGVkZLi6CERERERVymIUcHZrdbtlMd2vQ633mCYcEXmpJk2awGg02s3lsmLFCsTGxpY7RnfnCfXnbfeuqjqea9WqVSHlrWhMHBERERG5MW9rfBMRkffjvat83DVxxMmxiYiIiIiIiIjIKc5xRERERERERHb89p6HJj3HYXlxs0hAEKA74vg0iLl2KEz1w+C/K80hJgXqkPtwU1zaFVoZxfV6dbtmI/jHI4DJ4hArfLghLp+vCWO2+3TvJREozrN/Hf3F30IhuNnQlfBmBah+OQ3atOsOMVOjCIiBeugPXXKIWSKCUPRQTFUU0S24z5FFREREREREbkF39hq0F7Idlouh/gAA/aksh5jKaIYYpHcaE3VqmNs3R+4FD36tlgtZDID+aKbTmLFlbeRd0MOQra3iUpVN3iX32/eBkcXQnrvh9JiV9BqIYf5OY+acIiaOiIiIiIiIyHcJxY4jW6zLzfLrGM2ycaHYAkuxUCFl80VioSgbE4otsJhYt+VhMQmKx6xglDkPZJZ7KyaOiIiIiIiIyI584sgCyOQoBJNFfj0AooETI5fbXRJHotnNngHzEKJZUEySCk4eDQQgu9xbMXFERERERERE9swyHWazfAIDJhGCzHoAIBUzcVRuxQqJI7MFovxAMFIgmQXZY1owi07nlAKYOCIiIiIiIiIfJ5sgUkgMCRZRMbEkme61VL5LUkgcSSYRkoWPqpWHaBFkk52CWeF4toiAJAGCb9Q7E0dERERERERkR3EUhtyjamYRYOKoUghKo7XMEmR3CimSLIL8MWsWIVhkzgMJgCgBat+odyaOiIiIiIiIyJ5FxLWiPPRZ+jEGNY7DpI4DbcsB2GItIupgybFdMInOR21oVepbsWn2MY1aC7PFeTZpy2d8rO12ktlitz9ia9THsNX/kq131l/piKJ1pJyzY12wWBOhssf6HcezVquFyeT8eL58+XIlbkXlK/cMWmvWrEGnTp0QEBCA8PBwDBkyBCdOnEBiYiIEQUBSUlIFFpOIiIiIiIiqhCRBECUsPbYbQ5p0wKSOA/HM+jkI/vwZnMq4AMFyKxai85dNXgBQjMkljcgJs/3+mLh9vmLd9pwoYPeRdVVYQM8kWQTA4vxYP5l5EYJFLP2xLpM08gblShzNnTsXCQkJSElJQfv27dGzZ0/s378fcXFxOH36dEWXkYiIiIiIiKrKzUd3Fh/7FSOaPYTfM9Mw+aFhCNDq8NqKrwCLaIul5VyxW/Xt+KfQvlZD7Hl6CrrXa2EXe3HY/2FZ4lUsS7yKh1sOs4s91eM9W2xZ4tXK3T4PcerS7ygqLrD+xSzZ6hwAOtduYvfZkvqb8/o+6DT+6PrgEHRsHl/VRfY4kkWAcNvxfPux/urauYrH+v+Nfw2pqalITU1F//797WITJkywxVJTU6tykypFmRNH586dw4QJE6DVarFx40bs2LEDixcvxsmTJxEfH48FCxZURjmJiIiIiIioCggWEaezM6FVaSBJEvoum4LRG7/E+52HYseZP/D59hW22KazhwEAwTp/AMAn6xaiyFyMML9A/Hz+iF3s30s/x5FzuxAaGIFj51MAANWDowAAi7Z+ZIuFBkZU9SaXiy2pUwkyb5zD21/3xKT/9EaRMR/nL6VBq9KgXoi1bgK0OrvPl9Rf0o9/h0ajxcsJMyutbJWtMuv1TpJFwumsy86P9bQ/8flPS2WP9c+/nIX9+/cjPDwcBw4cAABERkYCAGbOnGmLhYeHV9n2VJYyJ47mzZsHg8GAESNGoHfv3rblWq0WM2fOREBAgMM6SUlJEATB4c/27dvtPmcymfDPf/4T9913H/R6PRo0aICPP/647FtFRERERERE5WOR8MORZIxo9hDe3rEQ14ryEaDR4/nY7uhUtyk++vl/6N+oLZ5c+wVEWOfSeaV1L9QKrAYAuJB3DSPWznSISZAwc/mL2LLve1zJPg8A6NfxeQzoPB6iJGLWyvEoNhkqdFOyci5h2pKxGDY5En3f0WPctBb4cc88p5+bvuRZPP5hbfR9R4+np8Rg5vKXYDIXAwC+35yInhMFnMs8gikLn8Sg98MwYU6XCi3r7f697q/ILbwGvTYAOo0fVu5YYxttdLs6weHQa3UQJRGf/W8M9h7/EWN6/xMRodGVVjbAc+vVgQgskjnWO9dpgilbFsse65Ik4e2338bSpUtx6dIlAMDIkSMxZswYiKKISZMmwWCo2OPZVcqcOPrll18AAE888YRDLDw8HL169ZJdNzk5Gbt27bL9adOmjV386aefxr///W+8++672LRpE/7xj39A8JHX2xEREREREbmC2Wy2+7tgEbHyxB48XKcZVp7YA5UgYHbPsdCqNZjT93kUmozYcvYw9mbcmqZErVJj9eCJAIAcYyH2ZZxxGruWm44v17yOaoE1bfEX4qehRrW6uJp9ASlH11fYdt3Iy8RrszriwMmfkND5FbyUMBO1wxth+tJnseKXGbbPZeWk45Uv4rD94GJ0i30cLyd8ge5tn8bhMztgNBXafeeH84fBaCrE2MemoG+H5yqsrLfLyk3Hr3+sgEpQ4Y0hc6FWa7Bx72YMadLB4bP97msNURSh1/ojr/Aaaoc3xIDO4yulXCU8tV4BwGKxP9YlsyR/rPd49q7HekZGBt577z1ERNwaJff++++jdu3aSE9Px08//VRp21KVyvxWtfT0dABA/fr1ncYbNGggu26HDh2g0Tj/J9evX48VK1bg8OHDaNq0KQCgW7duZS0eERERERERlcLRo0cxa9Ys7NixA3v27EFgYCAAYN+B/YgMDMW4TXMhAWhTMwb3VbM+gpNfVID6oTWwKe0QAKCaPhDZRuujRcUWM8L8g3CjKB8AEOYXhBsG6/+3jozBA/e1RuqZ31FQlIOuLYdh5+ElAACd1g+PtByOZTun49CZ7ejackiFbN+8H/8Gi2TBfyb8gZBA6+NC/Tu9iI8WjsD3mxPRr+ML0Gv9MW/jJNzIy8AXr6agSd12tvVH9/4AkmT/drL7omLx7lM/VEj57nT28h9YtO1jpBxdB1ES0bReB0SF34cj53bjvsgGCNU7Pt1TIyAEL3Z/CrM2fwcAuL9OW6hU5X4HVql4Wr0Ct+r2wMktmD/pLPz1QQCA1JO75Y/14iI0joi2Het3Hs9tHmiJA6mHkZubi/j4eKxduxYA4OfnhwEDBmDu3LnYtWsX4uM9f66pyj2iyiApKQl/+ctfbEkjIiIiIiIiqjwhISF4/vnncePGDWzYsMG2fPmaVRjepBM6Rt0PAFDfloj4IfUXtK/V0Pb36n5BeKlVT7SPaogfjiSjcY06tljjsChbDABqVbc+PqXT+uGhFgMxoPN4NKkbBwCIjrD+W9dzK+a15ZIkIfmP5ejUrD8kSMgpyLL9ade4NwoMOTh58QBEUcSvf65Cx+b97ZIbJe58Aia+04sVUj5nAv2rYcjDE1BotCYnalWPAQBsPbAAgzvYJx+61m1mq9vqNx8RBACzuXLf7OWJ9QrcqtvcwmtITl1pW75592L5Y/1IMjrVaWz7+53Hc3RkLQCAXq9Hnz59MGbMGLRu3RoAEBNj3XeZmZmVul1VpcwjjqKionD8+HGcO3cOzZs3d4ifO3dOdt3o6Ghcu3YNzZs3x/vvv4+hQ4faYnv27MGAAQPw8ssv4/vvv4cgCBgwYABmz56NsLCwshaTiIiIiIiIFERHRyM6OhodOnTAypUrMWzYMJhMJuzc9StmDZqMH44kAwDOZFs7vyaLGZtPH0RmQQ6ig8JwKf8GMgpuYGaPMTBZzJiw9TtcyLtm+/7rRXmY2WMMAOBC7jXsOLgZAGA0FeHy9dN4ddBs22cLjbkAAD9dUIVsW3bBVeQXZWN9ytdYn/K188/kX0FOwVUUGnLRoNYDpfrekmROZahZrS5qVquLOjXux8WrJ1BoyIXZYsLvJ3/C508+A6Sdsn12aJOOGNqkIy7kXsOT372NsOBauJGXgYwbZyutfIBn1itwq24fiOmKn3//AT3bPg2zxYS9x37G90+95/RY33T2EDILbx3rdx7Pm3b+DAAwGAxIS0vDlClTbP9efr41+Vcyis/TlTlx1LVrV2zfvh1LlixBnz597GLXr1/H5s2bHdaJiorCRx99hA4dOqCoqAj//e9/MWzYMKxatQoJCQkArM8GJiUloVWrVli2bBmysrLw5ptvYsyYMVi1alX5to6IiIiIiIgUDRo0CH/729+QlZWFAwcOoEtcJ2jVGjxQox4AIKsoDxdzs3Dw6jlYJAmCIODLnuOQsPIzFJqL8eulY7hhKIBFkiDe9gjSyewMHL12Ec3C6+D1rUmwiBYAwH1RLfHD1o/wl9ZPIir8PgDAwVPbAAAxpUw03I0kigCA7m1GolfbZ5x+JqZ2S+COR6buRq/1v+ey3U2XB4Zg8c8fI/XsL9j15xq0avQXaO94i1qJ17cmAQDq1WiKG3kZSMtIxeVrZ2z1WtE8uV4B4C+tnsTsVa8gO/8qjp7fjXaNHy71se5wPFusddG8eXN88cUXGDx4sG1Kn+RkayLKW56oKvOjamPGjIFer8fChQvtHdvQpAAAu0ZJREFUJnoymUyYMGECCgocX53Xu3dvvPvuu+jevTvi4+OxcuVKdOnSxS4jJ4oiJEnCqlWr8Nhjj2HkyJGYM2cOVq9ejZMnT5Zz84iIiIiIiEhJ//79IQgC1qxZg2XLlmFowiAAQJvIGNQLts5hM/6nb/Fpyhqcy72Kfzw8HI/d1wq1g6oBAIat+twWs0giVBAQdfPxqSEr/4VVJ/di3en9EEULVCo1Xh88FxqNDrNWWidx/jPtN+w7sQkqlRpdHhxcIdsUGlQDAfpgiKIFbRr3cPonLKgmQgNrIMAvBGkZqRXy71aEoY+8CQAoNObh+83/QI82TwMqx5dGldTrE5364/DZHRAEFXRaP1u9VgZPrlcAeDh2mPUN74f+h5/2z0fvjiMAyB/r7z86Ao/d1wp1g6sDsD+eLaIFarUan3zyCbRaLSZNmgQA2Lt3L7Zv3w61Wo2+ffu6ZkMrWJkTRzExMZg+fTpMJhN69+6NRx99FCNGjEDjxo2xevVqPPXUU6X6noSEBBw8eND297CwMDz44IMIDw+3LSuZHPvo0aNlLSYRERERERGVQlhYGLp164YffvgBJ0+eRPu2bQFY56H5+BFr/27jmd+x5/IptIqMwcsd+kIQBHzWbRQA6yiNlPRT0KjUAIDnYrtj2qPW2KnsDDyzfo4t1q/D82jeoBNG9/4Qe4//iKU7puOD+UMhSRL6dXi+wkbKqFVqdHlwCJL/WI6zTpIX2flXAQAqlQoPtRiI3UfW4viFfQ6fu3MS56oQGhiO+6OtbyBPy/wT6ddOQ1Lbd93ziovwf9u+Q9PqtbH2wE+QJAnxHV/AmMc+wt7jP2LHoaWVUjZPrlcACAmojnaNe2Njyjc4f+UoHry/EwCZY71mA7zc2XqsT31kJADH43nkyJFo164d3nrrLfz888+YO3cunnvuOUiShJEjR8q+VMzTlGty7PHjx2PlypVo3749UlJSsGnTJsTGxmL37t1o1KhRuQrSrFkz2YOnsmeFJyIiIiIi8mWDBg3Cn3/+iX79+tklKYY17YheDVoCAERJQjX/APx68TjyiosQ37ANOtycVFiCBLNoQeOadfBe5yGIb9gGw5pYO+VF5mKYRQtiohrh6V6JMJqK8ECDLggLisTX6/6K67mX0aRue7zQf3qFbtO4vlNRPSQKr33RAV+ufgPrd3+Nxdum4sP5wzH20ya2z43tMwXVgmrir189gq/WTMD63V9j/ubJeG7aAygw5FRomUpr6CN/tf3/J4ufxotf/R92XjiKvOIiFJmK8fLm/+JS3nWczbmCK7nXbPU3oPN43B/dBl+teQOFhrxKKZsn1ysAPNr6SZy5fAhdHxwCSXNrJJfDse4XgF8v3DrW7zyeG8XchzfffBNFRUWIi4tDjRo1MHnyZGRmZqJVq1b4xz/+4ZLtqwxlnuOoxMCBAzFw4MByrStJElauXGmbcRwA+vbtiw8++ABZWVmIiIgAAGzbtg2CIOCBByrmOVciIiIiIiJy1Lt3bwQGBmLIkCHAHaNbJnUciM1phwEA29P+xPY0+Q7xiSsXUeerl5zGzl4+heGTIx2W1w5viE+f31rh89yEBUdi1mt7sGDLB0hOXYG1u75ESEA46ke2wLh+n9g+FxEajVmvpiBp03vYdmAhCoy5iAiJRvumfaDXBlRomUqrc4sE+OuC0KfDc1j16xfYuHcLNu7d4vA5o8WM+LaP4rmBq2319/qQuXhtVkd8u+nvGJ8ws8LL5sn1CtysW30QurcZqXysnz+C7d/8XfZ7Tp09g5YtWzosb9CgAZYuXQp//6qZt6kqCFIFjxFLTEzE5MmT8e2332L06NEAgKFDhyIuLg4tW7aE0WjEN998g/Xr12PNmjWIj7e+VjA7OxstWrRAgwYNMGnSJGRlZeGtt97CY489hu+//x6AdQJtIiIiIl9iMQo4u7W63bKY7teh1rtmmD8Rea8DBw6gTZs2QLEZ4bN+sYvtuXwKofoAfH54E348cQDpuda3p4Xo/NGyZn0888DD2J1+EhvP/4H07Cxb7JF6zTGgUVvsTj+JdRePIfP6ZQBAgF8IWjV8FAmdX0Gbxj2qdkM9xNHzKWhWrwMuXDmOLfvfw849W3Ep/zqAW3X7cuteaNd3AA5mdXRxaT1LSd0G1jKi7R8rIYi37qm2Y/33jfjxzEGk59w61m8/njdkHsXlTGuOIjg4GJ07d8bYsWPx8MMPl7tctWrVurcNqyTlHnFUFo0bN8Y333yDixcvAgBat26NdevW2U0UVa1aNWzbtg2vvPIKhg8fjoCAAAwfPhzTpk2riiISERERERH5tDZtrPPq3DkKAwDioqxTksweMh4QBIiZOTBZzAjU+dk+88wD3WBoFglV6iWnsTe7/AVpR8NgFk3w13nHa8orU7N6HQAAdWs2wcfj/4nabQah2GJ2qNucKunVe5eSuhVUkvV4v/nGP+DWsf7lgJdgCfOHdO6a0+P5+oudYdQKMJvNCAhw3QiqqlAlh9iUKVPs3qAmp0mTJtiyxXH4HREREREREVURlQAJgON7vGDtZAsCdGoNdGon3UmNSj6mFqDV6KCF81fLkwKNNZnnrG5VTByVm0oNSGoVBJPFISZpVJDUSsezCjqdFjqd9x/PFT7rdGJiIiRJsj2mRkRERERERB5EEGyJijtJahUktdOU0s2YfBdTpa2Q0vkmmf0BAJDZH3R3gloCNPLHs7PRd3ZxH+E7W0pERERERESlItsp1qrkk0oa+Zh13QoomK/SyieHBNZruQlqSf5YV6usx7QcpZiX8Z0tJSIiIiIiotJRGnGkUcuuo9TRFvhIVbkJOoV61aqsc/VQmanUkuzxrJQIldSCdWSej+CpS0RERERERHYkrUxnWmY5cHNOGLmkEgCV3nc62hVOoe4krdo6ckZk/ZaVSg35kUNa+eNZ6Tj3RkwcERERERERkR25kUOSRi0za/bNpJJCYklg4qj89Apz7WhVUGkkiKYqLI+XEDSSfJJUo4aklTkPFI5zb8RH1YiIiIiIiMiOpJPpGOvUiqOR5NaT1Cqo9BVVOh/krzDSS6uGSstH1cpDrRXlj1mdGpJWZqyNjyWOOOKIiIiIiIiI7Eh+zmdcFv00snO7SP5aiDLrSX4aqHVihZXP12gCBetr4y2OdSj5aVm35aTWSQrHrBaSv/OUiejnW6kUQZIkj0lNZmRkuLoIRERERFXKYhRwdmt1u2Ux3a9DrfeYJhwReSChsBiC2UmSQq+BJAAqg9kxplFB0mmgKix2jKkEiIF6mArc66EXsVjAhV+r2S2r+1A2VDo3usYKgC5QhCrPADgplhiog9mkgei4S+guNH4i1GYThGKLQ0zSqa0j5YocnwGUNCpIAboKL0+tWrUq/Dsrgm+lyYiIiIiIiOiupACdsxyFjaiT70qKIX5OlwsAdEHuNTLGYhQg3PHUkTZQdMvkvBjsvF4BQKN2r3r1JJJGKzvCDgBEH3sszRn3SvcSEREREREREZHb8KgRR+46bIuIiIiospgMwMU7fgitGRkJrfwPz0REVEq8xhLdHUccERERERERERGRU0wcERERERERERGRU0wcERERERERERGRU0wcERERERERERGRU0wcERERERERERGRU0wcERERERERERGRU0wcERERERERERGRU0wcERERERERERGRU0wcERERERERERGRU0wcERERERGRR0pKSoIgCLY/Go0G0dHRGD16ND7//PNyxS5duuTqzXJrSnXOuiNPU95riK8d6xpXF4CIiIiIiOhefPDBB4iJiYHBYMDu3buRlJSEDRs2lCuWnJyM1NRU+Pn5uXKT3B7rjrwJrxPKmDgiIiIiIiKP1qdPH7Rr1w4AMG7cOEREROCTTz4pd2zNmjUYPny4C7bEc7DuyJvwOqGMj6oREREREZFX6dq16z3FTp8+XeFl8nasO/ImvE7YY+KIiIiIiIi8Slpa2j3FwsLCKrZAPoB1R96E1wl7fFSNiIiIiIg8Wk5ODrKysmAwGJCSkoLJkydDo9HAbDaXOabX6xEfH+/qTXJ7rDvyJrxOKGPiiIiIiIiIPFqPHj3s/t6gQQOMGjUK06dPL3NswYIFqFOnTqWX2dOx7sib8DqhjIkjIiIiIiLyaHPmzEHjxo2Rk5ODefPmYefOndBoNOWK6fV6V26Kx2DdkTfhdUKZIEmS5OpCEBEREZFzJgNwYKn9sjbDAK1vvAGYSFFSUhLGjBmDvXv32t56ZLFY0KVLFxw7dgzZ2dlljp0/fx7Hjx9HUFCQy7bLnSnVuSfWHa+xvq281xBPPNbvBSfHJiIiIiIir6FWq/Hxxx8jOzvbbnlCQgJCQ0Nx8OBBW+zw4cMOsfT0dAQHB2PXrl22WFBQEIKCghAYGAhBEGwxsiqp8/T0dMyePdu2nHVHnqg01xBfu07wUTUiIiIiIvIq3bp1Q0xMDM6ePQuj0QgAWL16tS0eEhKCvLw83H///Q6xyMhI5OTkoGXLlg6x8ePHIyMjA3FxcVWxGR6lW7duiIuLw4wZM/DGG2/Az8+PdUce627XEF+7TnDEEREREREReZ0+ffoAANatW2e3fOLEibbXaG/YsMEhFh0dDaPRiPnz5zvE0tLSsGjRIqjV6kosueeaOHEiMjMzkZSU5LCcdUeeRuka4mvXCSaOiIiIiIjI67Rt2xYAMH/+fFgsFgBAYmIi9u/fj3fffVc2lpycjIYNG2LatGkOseXLl0On07lgazzD4MGDWXfkNZSuIb52neDk2ERERERujBO3ElWMadOmYcWKFdi8ebPDhLbljZEyT6g7XmOptHz5OsE5joiIiIiIyKt99dVXWLRoEbZt2+bQqStvjJSx7sib+Pp1wqNGHGVkZLi6CERERERVymIUcHZrdbtlMd2vQ633mCYckcs1adIERqPRbs6RFStWIDY2ttwxUuYpdcdrLJVGVV0natWqVSHlrWhMHBERERG5MXZqiIgqD6+x5E7cNXHER9WIiIiIiMhjCUUmwMlv4ZK/FoLRDIhOYnoNYBEhmEXHmFYNUaWGaBIqpbzeTFADapXFWu93UgkQ9VpYjO5Vr5ZiAdIdh4HZKDg7pFxHADR3SWTlWSwwOSl0oEoFvap878QSJQnZNyd+vqM4CNOUP5VQKFpgcHJe+qkEBKjK/yayG2YznNVSNbUaKkHhuDNZIJgct1PSqgFBgFDs5HhWq6zXER/hO1tKRERERETexWRB9S+TnYayR8chaE0qNNcLHWJ5fZpBl3Yd+qOZDrGitnVwvmYsMg6EVHhxvV1wtAGN6p1CyKo/HGJikA5XRnbF8ZU1XVCysjm5xv3K2PyJDKgUeu+j0k5jf2GBw/LJUXUwJqJGuf7NY4YiPHbquMNyAcCpB1pBq5SMUfDB5Uv44fo1h+VPVg/H1Oh65fpOkySh1dE/nCaOfmzUBM39A2TXDdx6An5/Oj7dVNQ6GmK1AAT+fNLx36sditwRbcpVVk9UvtQjERERERGRi6kMTkYC3CQUmaAymGTXE4qcxwSDGZZidpPKw1KsgkqhXs2s13KzGJXrLtvi/Fy4IbO8NG44GW0EABKAnHv5XrPz75VbXho5FuejjQA4HTV1O7ljVlWkdJ1wvtxb8cwlIiIiIiLP5OwRkpuEYguEYucdRqHYLB8zmmHhY2rlYjEJ8vVqFiEaq7hAXuRux2SBxfGxSwAoEMufjFFaN1/m37uX772XsiqVJ/8u3+vsMTXg5nVCNlb+snoiJo6IiIiIiMgjOZujyBYzmeXjMnOalHynaGbiqDxEswDI1CsASEZ3mjjIs0gW5WOyUHR+rBc5mUuotOS+EwAMd04MVQHfW6Tw792N0rp3+165awHMosJ1gokjIiIiIiIityfb4QMAo3xMMDufGLvkO+/WSSfnJLOgmMwTmTgqt7slM+USOYX3MIrH2QTWJe4lyWOohMSRUiLrrskzk/y1QC5BpHjt8UJMHBERERERkUdSHHGk8CiJYBEBuREDFhEiE0flIomC8kiM8k+L4/MkUf6YFCUJxTKvgZNbXhpGhWSM8Z6SPM7LZLyHssolowCg+C6jowSZx9ys1wm5mOT0bY7eim9VIyIiIiIiz6Qwr4nKZJ+l2HD6dwxb/S+YZEZgaFVq2ZhGrYXZ4nwy3C2f+U7n8W5Ei2C3TxzqfJr951l3pac04kgpOaSUULkbpeSQXPLnXr73nsp6L3Ugl4C+Y2Ti3Y5nrVYLk8n5deLy5cvKZXBz9zTiaM2aNejUqRMCAgIQHh6OIUOG4MSJE0hMTIQgCEhKSqqgYhIREREREdkTzCKuFeUh7vt38fHuVfbBmyOOSuJTdq2QTQwBUIzJJY3InmSx3yd3q3MqPaVBM6+98gpM/RIgXbzoEDvx3XxERUVhy5YtZfr3nnzySXz8UFdIN244lqWgAC8+9BD69u0LsYzJnvHjx+NMrz5Oy5q1cFG5y/psu/ayZf30Lz0Uyyp3HREsImAp/fEslzTyBuVOHM2dOxcJCQlISUlB+/bt0bNnT+zfvx9xcXE4ffp0RZaRiIiIiIjIkUXE0mO7MaRJB0zqOBADln+K4M9H4cT1y7aRAiXxQnOx3arvdh6MKQ8/gUkdBqJ/wzZ2sdED3sWyxKtYlngVj7Ufaxd7qsd7ttiyxKuVu30e4NSl31FUXHDzbwJglmx13rbWfXaffWn4BLu6W7xtKnpOFLD7yLqqL7iHUXp8csJ77wF+elhmzrZbLl3OwNlvk9CvXz/07NmzTP/e1KlTYTaZYJn7tWNZ5iUh70Y2PvvsM6hUZUspTJ48GYJMWXPnL6iUshZlK5dVuO068lhMKzy19gsEf/4MTmVetIvVC4mwW2/CK68hNTUVqampGDFihH1swgRbLDU1tUzb447KlTg6d+4cJkyYAK1Wi40bN2LHjh1YvHgxTp48ifj4eCxYsKCiy0lERERERGRHsIhYfOxXjGj2EM7lXEXK5f9n777DoyjXNoDfszU9hIQSEkoooSmhhiIoSofQy5EqIIICFg7Hgh4RRBGPoFLF8mmUItI70lsUQpMmHUIEQgKB9Lplvj8WFpbdGchmk91N7t915VLmmd1958nsOzNP3nnnAgxGI17b9r359pNl5/5ATf+KOJ18zfQamC7AZxxYg19O70Pn6hHYGnfS4n1/2TADZ+IPwN87CLp7o400Kk8AwK87PzXH/L0tLyRd1YPCjmMlpcTj3e86YNL3nZCTl2laqH/wO7nvfs6/XTnbnLvsvAws3vEx2jzdFy3qRRVJ+4paUeXVFrkJ230DA6F8eSTEEydh3LbDvNwwdz4ElQrTpk0r8OdVqVIFkaNfgbh7L4xHjpmXG89fgHHTFrzw0jDUr1+/wO8bFBQEj1Ev22wrlEq729pl7GuSbW04eJB8W+/1I8+G1kHXldMRl3YLnioNxm/4FjCI5tj6S0ctXjZ7wTwcPXoUgYGB5tFGHh4eptjs2eZYYGBggbfJ1dhVOPrxxx+Rm5uLgQMHolOnTublarUas2fPhpeXl9VroqOjIQiC1c+ePXsAAG3btrUZFwTB7e8HJCIiIiIix4u7dg1qhQpV/ILw7t4lSMnNRq2AYOy/fg5L927B5dQkqBUqvLUr2vyazmERAEwTCsel3cJXRzYh32iaD+n5KvXuxYyYu2Yc8nW5OHVlLwCge8tX0aPVOIuYIyWn3cDM5SPRf2oFdH1Pi1Ez6+P3Qz/aXG/W8pfxr2mV0PU9LYZOD8PsVa9Bd29E1S/bpqDD2wLik85g+pJB6D05ABPmt3ZoW+/7duN/kJ59B1q1FzQq0wXzlZvXzb+T+7pUbwgAMBof5G7u6rFQKtUY23N2kbTtPnfMqy1yk2Pni0YIXTpBqF8Phu9/gJieDuPuvRCPHEXFUSMRHBxs12fWHzwIqB4Gw7z5EPPzIRoMppFC5cuj3Wuv2rspgERb1SOG2d3WZ4YNlWxrw1dekX6hKOLK3USoFSrMProFd3IyUUbrjU/a/At74//GVztXmGNW/YTRiEmTJiE3NxcHDhwAAAwbNgwjRoywiJUEdk2OvX//fgDAiy++aBULDAxEx44dsXbtWpuvjYmJgVKpNP+7Xj1T0hcsWID09HSLdcePHw+dTmf3zkNERERERCXXip2bMLDuM7iVlYa1Fw9DIQhY3XsiXv59If674luMqNsGIT4B2HvtjPk1jSuE4a4xF4fizyHPoMfai0fMsVaVaiPHoENswmXcTr2G/9s8CbdS/wEAeHn44cXn38OBM+txO/UaYs9uQpsGfR2yHSkZSXhjbgtAENCz1Xj4+5TD4XNbMGvFy8jOS0efNm8BAJLTEjB+TiSyclLRtcVoVC5XB8npN7D/5Erk6bKhVmnM7zltUX+EBNXCyM7TIcLxk1CnZN7CH6dWQyEo8FbfhVAqTZeWy2N3Wow2AoBG5avhbm4mYm8+yOvh879jXM85CPIPcXjbzG10w7xKkZvjKF8UIQgClG++Dv3Y12GYMw/i6b8hhNeCX6+edn+mXqmE8s3XYZjwHxiX/AqU8QcuXYJy+jQI90bWFJRRFKEHbLZV7B4F8d62FJRBId1WeGhlXmjE0jMx6Fa9Ed7btxQKQcC8DiMR5l8eS8/+genbl+GdyO6Y+sdK80taVaqNHL0Oh25eRkJCAqZPn44bN24AAHx9fTF+/Hhs3boVCQkJ2LFjB6Ki3HNE3cPsKhwlJCQAAKpWrWozXq1aNcnXNm/eHCqV9cfeLyDdl5KSgpMnT2LKlCn2NJGIiIiIiEoQvV5vdR2x/o9d2NtjEnZcPQWjKCIyuCZqBFTE/A6jELnofXx3YifuX4KW8/TD7Zx0CIKA+X3Ho+mX483vo1IooTcaIAgCvun4CppEvwcRwKbY71DGuzxSs24BADRqDzzXYABW7puFE1f2OKxw9OPvH8AgGvD9hFPw8zbd1tK95av4dMlA/LJtCrq1GAOt2hM/bpmElIxEzHk9FrUrNzW/fninjyE+8lSp6sEReH/wUoe0z5ZTV/bBKBpRp0pzBAc+mMto3fH92NPvvxbrmvP684O8hoc2RY9W44qsfYB75lWK3K1q95+qJlSrCkW/PjAuWw4oFFBOmwpdwWswZjrRCEXdOhC7d4NxxSpArYbw/HNQNG2CfKN9RTO5tgoKBfJFEVo7Ckc6UZRu60NVt0f7EcEgYs2FQ5jQtJu5D6lepgIAYH6Hl9Eo+h1suHQMImz0E7+8B4jA4sWLERQUhOTkZACm29V69OiBhQsX4sCBAyWicFSop6oVpTVr1kCn0+Ff//qXs5tCREREREROcvbsWYwdOxYRERHIynowp8zRo0dRq1IV/JOejC8OrQcAhPiWBQDUDwpF/8bPIT0/B2n5OQCAMP/yeK1hBzQLroHM7CxU8PI3v1fdsiHmWP3AUDSpY5qcN0+Xg77P/hs9Wo1D7cqRps8IqgUAuJvumOk0RFFEzKlVaFm3O0SISMtKNv80De+ErNw0XLx+DEajEX/8vRYt6nW3KG7c9+gojaiWhbiV6DHibp7Cst0zAABB/qHm5WfiD6JWuVD4a01Tl7SpXPdBXoNC0eKptgBMeX2r77cFnli5INwxr3LkRhzpHi7i+PmZ/hsYCFSrCp3MY+of536RRzH8JcDPFxAEKF8dbfpMO0dbWbTnkbZaxQvUVqNkW/NFUbofOXIEFbz9Mf+vrQAe9CEAkJmfg/DAEBxNugLgkX4iKBRtW7QCAOTm5mLMmDEYMWIEGjVqBAAICwsDACQlJdm1Pa7GrhFHwcHBOH/+POLj461GCgGmybOlhISE4M6dO6hXrx4mT56Mfv362Vzvt99+Q5MmTVCjRg17mkhERERERCWAn58fRo8ejbVr12Lz5s3o378/AGDVqlX4V5tOKJPqjc5hETiWFIfLdxPNr7uSbCrs+Gk8kJ6fi1x9Pma3HwEAeH3/IoT6BiIpOw0AUMmnjDkGAEqF6TLJQ+2Fvs9OsLhVKTvPNL2Gh8bHIduXmnUbmTmp2BT7HTbFWj8VCgBSM28hLes2snPTUa3iU0/0vhXLhjmkfbZ4e5ZBZJ2uuHj9KBKSL5mX7zy2GIMbPm/+d7/aLdCvdgvzv1UK05QlHmqvJ94Oe7ljXuU8bo4jABBv3YZx0RJTEeZqPIzLV0L30lC7P9M8OsjbC0JoKMS0dAgBAaaYxKPtH/+e0m1VDh5o/kxHtlUnitL9yJo1GFC7JeLTb1v1IUvPxKBlaDgu3DHdhvZoP3F/f/b09MTo0aOh0TzoJzIzTZPFe3t727U9rsauEm+bNm0AAMuXL7eK3b17F9u2bbNaHhwcjE8//RRLly7F2rVrUaNGDfTv3x/r1q2zWjc5ORm7du3iaCMiIiIiolIuJCQEDRs2RPPmzbFmzRoAgE6nw759+9CxYQtU9gtE95qmkSJn7lxHrj4fV1JvIfbqWdQLDEV6fq5FTGfQY9uFY/grKc78GXuunUXuvUmQr6XfwaGzvwMAcnVZWL7nfxbtOX5pFwAgzEGFD/HeBXi7xkPw+Svbbf7UD3vmMe9iTav2dEj7bClfpjJa1usBAIhP+hv5ulzoDTr8dXEHOoY3tvmaa+l3EHPKlDtbeXU0d8yrHLl6iuH+f+d/AwBQfToNwrOtYfz1N+TdSLD7Mw0yH2qQjDzuPe/910ZbxZs3ZT9TjlwZyyCK0v3InzEYUr+NVR+iM+ixNe4EVp7503zr2qP9xM4/YwAA2dnZmD9/vsVnxsSYYnXq1LFre1yNXYWjESNGQKvVYsmSJdix48Ej9HQ6HSZMmGAx9Ou+Tp064f3330e7du0QFRWFNWvWoHXr1pg+fbrVuqtWrYJer8eAAQPsaR4REREREZUwvXv3xv79+5GcnIzdu3ejdevWUN37C3/jCmEI9PCBXjRi2p+rMXTjXCgFBTb2exd9w5sDgDm29eoJZOvyYIQIAYCnSoM8gw7/3f8bAGDYpnkwGg0QBAUi63TF0p2f4uYd060qf1/9E0cubIVCoUTrp/s4ZLv8fcrBS+sLo9GAxuHtbf4E+JSHv3c5eHn44WriaYd8bmGFhzaBn1cgDEY9Fm2fisPnf0fDmi+YfyePkstrUXDXvEoRZK7c1YIAY8yfEA8chOKloRDKBUH52hhApULm3Hl2f6ZaZq4hjR3zEN1/nVRbDXMXQK2w733l2vpw7NF+5JmWraBWqqz6kK1XT8Bwb6Lu7QM+gLdaa9VPGIwGKBQKtGvXDnPmzDHfeXX48GHs2bMHSqUSXbt2tWt7XI1dhaOwsDDMmjULOp0OnTp1wvPPP4+BAwciPDwc69atw+DBg5/ofXr27Injx49bLV++fDlatGghOfk2ERERERGVLt27d4cgCFi/fj1WrlxpmvJCabogFAQB058dBACYeWg9Didexug2UQj1DcSsF4bBQ6m+F9uAN3dEIykzFQAwOqI9vmg7BAAw5+gWvLRxPv64cR4AENViDCb0+x4qlQZz14xDXOJpfLyoH0RRRLfmoy0mhC4MpUKJ1k/3RcypVYizUbxIzbwNAFAoFHimfi8cPLMB568dsVrv0Umci5ogCHilm2nU0G97PseSHZ+gfeOh5t/Jw+Yc2SKZ16LirnmVIiik26HPyoJhwUKgZg0oenY3rR8YCMVLQ5F36Ag2bNhg12dqZKpVKjsLR3kybRWPHMX2jZvsel/5wtGD7Xi0H+nfxzTBvWUfsgHv7F6C+PTbmPzCQFT2C8Lnz5lqHI/2E0OHDsXMmTOhVqsxadIknDt3Dq+88gpEUcSQIUNKTE3D7tnIxo0bhzVr1qBZs2aIjY3F1q1bERERgYMHD6JmzZp2NygpKQl79+7lbWpERERERGQWEBCAtm3bYunSpbh48SKaNm0KUfngcmZEg7ao4hdknrL3eloy9l07C1+NB6a2Nt3JIELEtYw7AIDwgIr4sFVfDK3/LBqVN81b8+u5PwAAlcuHY2jHKfD1CkBUi1dx+PzvGPt1E9xNv4nalZthTPdZDt22UV1noKxfMN6Y0xwL1r2FTQe/w7JdMzBt0QCM/F9t83oju0xHGZ/y+M83z+Gb9ROw6eB3WLRtKl6Z+RSyctMc2qYn0TlyJCoEVIMoijh/7RBW7puFmLjTyMjPQY4uHyduxWPirkV4e88iAEC9sAiM6T4LQf6VMLzTNBw+/zv2nlhRZO1z17zaIlc4WvzVV8Ddu1C++ToEpdK8XNEjCtrwWpg8ebJ5zp2CKIoRR7O/+EKyrahZE59OmVKkbX20H2nS7MGE6CMatEU1v3IQIeJSaiL8tV54OrgaMvJzbPYTNapWw8SJE+Hv749hw4Zh9+7d6NixI5KSktCwYUN89NFHBd4OV2XX5Nj39erVC7169bLrtaIoYs2aNeZZx+9buXIljEajebIqIiIiIiIiwHSbydixYzFx4kTTAqXl38FrB1TCP+mmR2KvP/4H1h//Q/K9LqQkIvSb12zGrt26gAFTK1gs0xvy0bJeD7w3cLHD57kJ8K2AuW8cwuLtHyPm9GpsOLAAfl6BqFqhPkZ1+9y8XpB/COa+HovorR9i17ElyMpLR5BfCJrV6QKt2suhbXpSIzt/is9+HQxAwP5Tq9Dl1Cqb67WtXA8zJq9GRrIpdz1ajcP2Iz/jm/VvoVntzvDy8HV429w5r49SKG0vP3HiBDYsWgxF925Q1A63iAlKJUInTkDca+MxY8YMfPLJJwX6TK1sMabgY1BOnDiBX6KjJduqenM8br/5b4e3VfvI7W8W/cgjfcjHrQdg2GbTfEVpedno8pN08edy/FU0aNDAYtn9u7LmzZsHT0/nzIdVFApVOCqIfv36ITIyEg0aNEBeXh5++OEHHDhwAOvXr7dY77fffkPr1q0REhJSXE0jIiIiIiI30KlTJ3h7e6NvX9PtJeJDt0UdS7yCnfGnoFYosbbP21hx6xS2HzuAG5l3AQBahQp5Rj0qevujc0RLbD95yBzzVmmRpc8DANQrF4rbOhG3U01PUvLy8EONSg1xOi4GFcpWK5ICBwAE+JTH673n4fXe8nPSlA+ognde/FkyPqzjFAzrOMXBrZPW6qle8NT6YPLQVdh/aiWOn1+DhFRT8c5bpUW2Pg9RNZtgVa+JOO/tgwxTCEqFEm/2XYg35rbAT1v/i3E9ZxdJ+9w1r4+SGnEUERGBmMuX8eyFMzbj/vXq4saNG3Z95sOjeFQzP7eI2TPiKCIiAtevX0et08eRZ+MWQI86tXHR7rY+KAA92tZHRyNZ9COPFJWq+AUCAKJqNEZ53wD8HnccCWmmUYoW/URgKFJUetxMMj2FzdfXF/Xr10dsbCxCQ0Ph4+OYpy66imIrHIWHh+OHH37A9evXAQCNGjXCxo0bLSaLSkhIQExMDObOnVtczSIiIiIiIjfh5eWF5cuXIyzs3iPRHxot0LhideT+ZwkO3byEyOCaaN29MzwjE5Bv0ENn0MNb42GO5VcPhDruLnR6nTl2n9FHgyOVeyD9lgi9UQdPTcl4nHZR8dB44fPRO1C3SnM0rd0Rzf3/BcXZBKu8AtajZmpXboat/7P3+VyliyAx4giQL+LYMzLI/FqF9GvtvVXt/mttFY60hWlrAXLwaD8iKhUQDKbnsrUKrYOYwR8jMrgmjJ5qGMp4Qrx+1+b+nDK6JXK1Cuj1enh5ucbItKJSbIWj6dOn23yC2sMqVaoEo1HuQXpERERERFSaNW784HHvotL6QjMy+N58qyrThaRGqYJGqbKIiUoFoBSgER/EzO+pUEBQilCrNFDD9hPCyFLdKs0f/EOtsMj5w4Riu/oseeTmOHr0ViyLWCELPJIxO59+ZnpfBQDr6365eYoeRy4Htt7Xoh9RPSgcAY/0Eyrp/VlUKqDRaKCReJJgSWJ/SU/GlClTIIoihg8fXhRvT0REREREBKikL2dEjcwQDZUCosRrRZWpcER2EETZ3wkLR/aT2yflRhUVZhSP7LxBhRrJZPt95Yo/j31PmfZ4yIycAmDzSYAATP2EjeL0fVJ9SElUeraUiIiIiIhKFLmLOqikC0emEUcSr1UqoGDhyC4KpSj7OxHUxdiYEkau9iE7iXUhijHaIrpVTaroVJjb6uQn8pZvq9Q+e3/EkSS5/qeEKT1bSkREREREJYrcX/yNhRpxVNiWlU6CEvIjjlg4spugki5mqgUBUqURj0IVYwoxikf2fW231qOIilyPzYHUPisz4kgUYDWxdknGwhEREREREbkn2VvVpO+LEpXShSPwVjW7CUpRtpgnqEvPhbajyY2CEwRBshhTmNu/5Ao5hSkcSb22MEUuudc+LgdyRWTJ/VmpAAox6srdsHBERERERERuSZS5HQ0apWlUgK3XqRWSt7KJKt6qZi+FUpT9nQglfw7hIvO4YqbXo4+su8eziIoxHoUomnhKFY4KUYzylCtyPSYHUvusqFIAaomYxPKSioUjIiIiIiJyS6JafsSR1MWdqFbKxFRQyNwWRNIUKlH2glrhUXpGaDja4/ZJL4mii1ch5uGRek8A8JYoVBXmfeU+7/HvKd0e78e8r2Rf8Jg+pDRh4YiIiIiIiNySqJW5HU2rlLxdTdSoJJ+6JmqVUKhZOLKHQi1C1NrOq1GjhELDvNpL+Zh90keiQORTiAKPr1KmGFOIgpSPRCFHavkTvadMe3xktgOQ7kdEjVK6n5CbQ60E4gMRiYiIiIjILYkeauRXKwuI1hfVBl8P6GoEwpCaYx0L8oZObwAMRquYPtgfnmV08AnOK5I220s0Ajl3LGeX9gzUoRB3IjmcV7l8GMp6I79qgFXM6K2F2tPocnl1F0qt9b76sOd8/FBeZT37eD0PT7s/M0StwbM+vtZtgQD/QhSkIr19kGow2FxuLz+FEs/7+MEA674gVC1/j6Q+1B9Cvt56eSV/GH00NvdnQ3nrvJRkgija6GVdVGJiorObQERERFSsDHkC4naWtVgW1u4ulFq3OYUjIgdgX0BU8lWsWNHZTbDJherTRERERERERETkSlg4IiIiIiIiIiIim9xqjiNXHbZFREREVFR0ucD1R6atKF+hAtQezmkPETkH+wIichaOOCIiIiIiIiIiIptYOCIiIiIiIiIiIptYOCIiIiIiIiIiIptYOCIiIiIiIiIiIptYOCIiIiIiIiIiIptYOCIiIiIiIiIiIptYOCIiIiIiIiIiIptYOCIiIiIiIiIiIptYOCIiIiIiIiIiIptYOCIiIiIiKkLR0dEQBMH8o1KpEBISguHDh+Orr76SjN24cUP2tTdu3HD2prk05o6IHqcw/XNponJ2A4iIiIiISoOPP/4YYWFhyM3NxcGDBxEdHY3NmzdLxmJiYvDuu+/Kxk+fPg0PDw9nbpbLY+6I6HHs6Z9LUx/CwhERERERUTHo0qULmjZtCgAYNWoUgoKC8Pnnn8vG/vrrL9n4+vXrMWDAACdsjftg7ojocezpn0tTH8Jb1YiIiIiInKBNmzaPjd26dUs2fvnyZcc3rIRj7ojocZ6kfy5NfQgLR0RERERETnD16tXHxry9vWXjAQEBDm5VycfcEdHjPEn/XJr6EN6qRkRERERUDNLS0pCcnIzc3FzExsZi6tSpUKlU0Ov1NmNarRYRERGSr9VqtYiKinLyVrk+5o6IHsee/rk09SEsHBERERERFYP27dtb/LtatWoYNmwYZs2aZTO2ePFiJCQkSL528eLFCA0NLdpGlwDMHRE9jj39c2nqQ1g4IiIiIiIqBvPnz0d4eDjS0tLw448/Yt++fVCpVJIxrVYr+9qH4ySNuSOixylM/1wasHBERERERFQMIiMjzU/m6dWrF1q3bo1vv/1WMjZo0CB8+OGHsvHz58/Dx8fHCVvjPpg7Inoce/rn0tSHcHJsIiIiIqJiplQq8dlnnyE1NdViec+ePeHv74/jx48jISEBr732mkXMx8cH/v7++Ouvv5CQkIC3337bKu7j4wNvb28IgoADBw4U1ya5hft5T0hIwLx588zLmTsiuu9J+2dfX19zP1HS+xAWjoiIiIiInKBt27YICwsDAOTl5QEA1q1bh8zMTOTk5KB8+fLmWyUejmVmZuLll19GQEAA1qxZg9zcXKv48OHD0adPH0RGRhb/hrm4tm3bIjIyEl9//TVzR0Q2PUn/rNVq0aBBA4tYSe1DWDgiIiIiInKSLl26AAA2btxosfztt99GSEgI9Hq91WvefvttXL16FQsWLEBSUhKio6Ntxn/99Vcolcoia7s7e/vtt5k7IpL1uP45Ly8PixYtsoqVxD6EhSMiIiIiIidp0qQJAGDRokUwGAwAgClTpuDo0aOIiYlBuXLlAMAqtmrVKgwYMAA1atTAzJkzbcY1Go0Ttsg99OnTh7kjIlmP659LUx8iiKIoOrsRRERERGSbLhc4tsJyWeP+gNrDOe2hojVz5kysXr0a27Zts5p0VS72JHGS5g65Y19A5FyF6Z/dnVs9VS0xMdHZTSAiIiIqVoY8ATpdWYtlt5LuQqnl3/5Kmp9//hlLlizBypUrzXNlPEnsSeIkzV1yx76AyHkK0z8XRMWKFR3RXIdzqxFHLBwRERFRaWPIExC30/JiMawdLxZLotq1ayMvL89iXozVq1cjIiJCNva415I8d8kd+wIi5ylM/1wQLBw5AAtHREREVNrwYpGIAPYFRKWBqxaO3OpWNSIiIiIid6S8kwXNpdtWy43eWuTXDILHiRtWMRECciOrwOPoNQgGo1U89+lKSEnyQ35WyXlyT3Hxr5wLnzu3oLqdYRXTVfJHhlc5ZNzUOqFl0kQ9oM+xfLZR8lkvCC50Refhp4dflTyHvFd8fh42pKZYLS+jVGFIYJBDPsNRMg0GRN+x/n4DwNhyFaAQhGJukbzvb99Cnmjdp7xYNhBBKrUTWiRtZcodJOp0Vss7+PmjtoenQz5DffUOVEk2+oJgf4geKmji7ljFDH6eyK9bwSGf7w5cqJshIiIiIiqZVNdT4RUTZ7XcUMYThkBvmzEAyG0QDO+9l23GdJX8cfvvYOSlutaFnjtQaY0IPHsT2ovWF/u5EZWQUCEUt074OqFlBXP7tGu10btinsMKR39lZ+F/STetlge6YOHoWn6+zbYCwMCygQh0oWKMXhQxLdG6UA0Ajb28EeTjOm0FgAW3k3Apz3qf8lEoHVY40p5KhPbCLavluU8Hw1DG02b/rC/vU6oKR4rHr0JERERERIUh5Oollwt5tmMAoMyQvggX8vQw5vN03h5GnQBFnvUoBoB5LQxH5i3j3iPOH5VutL3cmeTalC6xHc6SKdMeV2srAKQVw34g5Ev0z3nS/bNcv10SsUckIiIiIipigs72RY6gN0jGAECRbbu4cf89jXrXugXGXRh0CiBf4neSz7zay5F5yzJa30oFADpRhM7FpunNkim4SG2Hs8i1J9vF2gpItynLoYUjib5AJ90/CzrXy1VRYuGIiIiIiKiICXqpwpERkPhrNwBA5q/ags7IAoedRMO93NuiN8JoYF7t4ci85cgUMeRizpBjY74gc8zV2iqXV5ntcAZRFCXbm2N0XPFQsn/WGaULRBKvKalYOCIiIiIiKmKSRQpI/7UbeMztEDojRCMLHPYwGgTJ34mgN8BYuu5CcRhH5i3XjYoxuTJFDLntcAZ3yqtOFCHVolxHtlWmL5DsJzjiiIiIiIiIHMrOwpFCZjSSUedat+u4E9EgyI4CEzniyC6OLGTKFWNsPRHMmeSKMXLb4QxyBZc8Fysc5crckujIfUBu9KHUyCJBFAEXy1dR4lPViIiIiIiKmKA34k5OBrqs+Ay9wyMxqUWvBzGdwRyrHxSK5ecOQHd//o6Zlu+ztvfb6L/uS1P8kRgAqJRq6A2250Xa/oVrXcA6k9EgAHpROu+PYO6ejCMLbvkyhYF8FyvGyLVHbjucIV+mGCMXcwa53OU58lY1g+3+WTAYLWKP65/VajV0Otv9782btp+65y7sHnG0fv16tGzZEl5eXggMDETfvn1x4cIFTJkyBYIgIDo62oHNJCIiIiJyYwYjVpw7iL61m2NSi154adN8+H71Ei7cvQlBZzDH/DSeksULAHh5yzeycamiEVkSDQKEh34nj8v7sl0z0OFtAQfPbCzGVrof0SjAEbWHcePG4ZdWbSBev24VMyxbjjZhYdi+fXvhP8gBBg0ahI9bPQMxJcUqJmZl4d+tn0XXrl1hdJHRKV9OnAhdt542cxvzfz8iODjYJXI7aNAgtKr/lGRef+/W3XF51dvuny8mXi9QPyFVNCoJ7CocLVy4ED179kRsbCyaNWuGDh064OjRo4iMjMTly5cd3UYiIiIiIrcmGIxYdu4PDKz7DP5Kuoqpz/SHl1qD8dv/D4L+QSw9L8fide/0HoZmFWvg0NDpODjkE6TkZlnEB7f/ECun3Mb8N49AoVDajN3/Ke0u3fgLOfmm/IkGAA/9Th41vPv75rzNf/MIFu/4GG2e7osW9aKKudXuR3TAnMFTp06F0kMLw+x5lu99MxHGJb/imc6d0KFDh8J/kAPMmDEDBp0OhoXfWcWMP0YjMzUVX3zxBRQK15gl5l/vvgtI5PbQd9+jW7duLpHbGTNmQCeT13wH5lWqf359w7eAXjTHrqbdsnjdhHFv4PTp0zh9+jS6d+9uGZswwRw7ffp0odvobAXOcnx8PCZMmAC1Wo0tW7Zg7969WLZsGS5evIioqCgsXry4KNpJREREROS2riTegFqhgiiK6LpyOoZvWYDJrfphz7Uz+HrDUqgVKlTxC8Luf/4GACgF0y0//1vzC3L0+WhYoRre2bMERlgO5/h156c4E38A0b//FwrBVDgq5x9qEfP3DoK/d1Axbq197hd1ikJSSjze/a4DJn3fCTl5mRANwJW7iea831dG6wUA+HnDZ+bcRf/+XyiVaoztObvI2lfUijK3j3LEPEdBQUGoO3YsxBMnYdy2w7zcMHc+oFRi5H//W+jPcJQqVaqg5ZjREHfvhfHIMfNy4/kLMG7agmeHDUX9+vWd2EJL2rJloXx5pM3cCioVpk2b5sTWPVClShW89MYbknkNeXGAw/J6Ofmmzf5579XT+GrnCnNsa9xJAICvxhMA8PWCuTh69CgCAwNx7JipjRUqVAAAzJ492xwLDAx0SDudqcCFox9//BG5ubkYOHAgOnXqZF6uVqsxe/ZseHl5Wb0mOjoagiBY/ezZs8divZ9//hkNGjSAt7c3qlWrhnfeeQfZ2dkF3yoiIiIiIhfy26FdGFj3Gby7dwnu5GTCS6XF6Ih2aBUSjs/W/YzuNZvgt3N/IiHLdFtGZd8gVPTyBwBcy7iDxX/vw77rZ83vF+pbFlq1BkbRiC9+G4HD539HnSrNAQCdI19Gj1bjYBSNmLtmHPJ1uQ7bjuS0G5i5fCT6T62Aru9pMWpmffx+6Eeb681a/jL+Na0Sur6nxdDpYZi96jXo9PkAgF+2TUGHtwXEJ53B9CWD0HtyACbMb+2wdj7q243/QXr2HWjVXtCoPACDEUvPxFiNNhrXqBMqepeBCBGzV72K7Ud+weHzv2NEp08Q5B9SZO0D3De3j3LUBNkVe0RBqF8Phu9/gJieDuPuvRCPHIVi+DD4lC/vkM9wlKcHDwKqh8Ewbz7E/HyIBoNpRE/58mjz6hhnN89CvmiE0KWTzdw2fO1VBAcHO7uJZr1eHimZ14rDX3LMhxiN+PVeX2DVP4fWxvRtv6J7zSYYtGGOuXA/vlFHUz8hinj33XexYsUK3LhxAwAwZMgQjBgxAkajEZMmTUJuruP6X2cqcOFo//79AIAXX3zRKhYYGIiOHTtKvjYmJgYHDhww/zRu3NgcW716NYYPH44uXbpgw4YNeOedd/Dtt99iwoQJBW0iEREREZHT6PXWT0Jbd/IPPBtaF2suHIJCEDCvw0iolSrM7zAKOfl52PfPGfx758/m9bvVaIx1fd8BAKTlZeOth2IA0K16YxiNRmjVnsjIvoNKgTUQVvFpc3xM1EyUK1MZt1OvIfbsJodsV0pGEt6Y2wLHLu5Az1bj8VrP2agUWBOzVryM1fu/Nq+XnJaA8XMisef4MrSN+BfG9pyDdk2G4uSVvcjTWf5ReNqi/sjTZWNk5+no2vwVh7TTqt2ZtxBzchUUggJv9V0IpVIFwSBizYVD6Fu7ucW6giBgbX9T3u+kJ2DB+jcRHtoUPVqNK5K2mdvoprm1xRG3qgGADoDyzdeBrGwY5syD4dvvIITXgqJHFHQuNomzXqk0tTUxCcYlv8K4fgNw6RKUb4wDPDyc3TwLOlGEIAg2cxvWr4+zm2fBoJDOq0Grtes9rfrne32B7f75ZWTr8rA97iQOJz6YkkepUGJdn7cBAImJifjwww8RFPRg5OLkyZNRqVIlJCQkYMeOHSgJCvxUtYSEBABA1apVbcarVasm+drmzZtDpbL9kb/99htat26Nzz//HADwwgsv4NatW5g7dy6+/fbbgjaTiIiIiKhYnT17FnPnzsXevXtx6NAheHt7AwCOHj2K8j7+GLV1IUQAjcuHoXoZ0+0Mmfk5qFq2AtZfPmrxXgEe3sg36FHGywep2ZnIyDfNfVTeyx+3stNQzssPr7YfgrlbowEAtUKbQBAejPTQqD3wXIMBWLlvFk5c2YM2DfoWevt+/P0DGEQDvp9wCn7eplsvurd8FZ8uGYhftk1BtxZjoFV74sctk5CSkYg5r8eiduWm5tcP7/QxxEcu+KsHR+D9wUsL3TYpcTdPYfbq1yBCRK2QJggOrA4AOHXhIMLLBsNfa323RKOgaqhTtRnOxR9GVk4a3ur7bZHPT+OOuZVidNCIo3yjEUK1qlD06wPjsuWAQgHltKkQFAoXfPqXCEXdOhC7d4NxxSpArYbw/HNQNG2CfBeZFPu++7mzlVud4Lin4jlCvmiUzmsB9wGp/vnYkSOo4C3RP+flIDwoBFuvngAABHj4ICU3EwDQqEIYGj3VAH+dPon09HRERUVhw4YNAAAPDw/06NEDCxcuxIEDBxAV5f5zo7nGDF0wVf78/Pwslvn7+7vM7PNERERERHL8/PwwevRopKSkYPPmzeblq1atQr+n26BFcC0AgPKhIsTSMzFoUjnc4n1qlqmAZsE1sPRMDGpXqAwAUN2b+LpGmQp4rWEHNAuugQDvMubX6PU6NKj+HHq0GofalSMBACFBps+7m174x0CLooiYU6vQsm53iBCRlpVs/mka3glZuWm4eP0YjEYj/vh7LVrU625R2LhPeOTCNKrlq4VumxxvzzKoW7UlAFhMHr714G8YXK+N+d9tKtc151UAUD6gCgBTAa5axaeKtI3umlspjnr6vHlU0f1rxMBAoFpVy5iL0N3baMXwlwA/X0AQoHx19L2Yq7X1ofY8kltXbasj8irVP69cvRoDareU7J9bhj7on8MDgs39BACEVqgIANBqtejSpQtGjBiBRo0aAQDCwsIAAElJSQVqp6sq8Iij4OBgnD9/HvHx8ahXr55VPD4+XvK1ISEhuHPnDurVq4fJkyejX79+5thLL72E/v37Y/Xq1ejQoQPOnz+PuXPn4rXXXitoE4mIiIiIil1ISAhCQkLQvHlzrFmzBv3794dOp8O+ffswe+hn+C3LNAfNlVTThYTOoMfWuBNIyklH/aDK+Dv5GgCgVkAw2ld9GhN2/oxrGXdM6957BHQZrRdmtx+Ba+l3MOjndxHgWxEpGYlITInDcxH98VxEf3N7svPSAQAeGp9Cb1tq1m1k5qRiU+x32BRr/ZQjAEjNvIW0rNvIzk1/4mJLxbJhhW6bnPJlKqNqBdM1y807VwAAeoMOh8/uwc+DPzSv1692C/Sr3QIAcC39Dg6cMo0cyNPlYPme/2Fw+6KbjNldcytFNDhm1IpOFCHeug3joiWmgtHVeBiXr4Ry8EDkOao65SDmUTzeXhBCQyGmpUMICLCIuYq8ewMzbOU2f4yrzcckl9eC7QNS/fP+P2Iwr9cULD0TA8BG/5ydhhCfANzITMHdnAzMbj8CgKmf2LpvNwAgNzcXV69exfTp082fl5lpGpl0f2STuytw4ahNmzbYs2cPli9fji5duljE7t69i23btlm9Jjg4GJ9++imaN2+OnJwc/N///R/69++PtWvXomfPngCAHj164JtvvsGLL74InU4HwDSx1KeffmrPdhEREREROUXv3r3xwQcfIDk5GceOHUPr1q2hVqnxVDnTKJbknAxcT0/G8dvxMNybb2RD33fQZflnOJ+SgH3Xz2Lj5aMwiKJ5MtaaZSrgUmoSYm6cQ64+H2/ujAYAVClXBykZibiaeBo371wx34oFAMcv7QIAhDlgxIx472KzXeMh6NjE9qS0YZUaAAW8SNaqPQvdtse5P/dTWtZt3E65hks3j6NJ7WehVtq+FHpzZzQM9ybqqR7cAEt3fooXGg2yyK0juXNubXLg3U6G+d8AAFSfToPh2+9g/PU3KF5oC0Wo7WlTnEVuk13r5q8HI9Ns5TanexQQVsOZzbMgn1f7MmvVP7dsBbVSJds/L+gwCj3XfIGLqYk4e+c66gaGmvoJg+m7W69ePcyZMwd9+vQxT+kTE2MqRNWpU8eudrqaAt+qNmLECGi1WixZssRioiedTocJEyYgK8v6UY+dOnXC+++/j3bt2iEqKgpr1qxB69atLSpyO3fuxFtvvYX3338fe/bswffff4+tW7finXfesXPTiIiIiIiKX/fu3SEIAtavX4+VK1eiX79+EBUCGlcIQxVf0/w143b8hP/Frkd8+m182HUoQn0DsazHmwCALF0e/rN7MeLTb8NgNEIpKPB/nV+FAAEZ+bl45ffvsPHyUfyrZQ+cjNsLQVBAo/bA3DUPJnD+++qfOHJhKxQKJVo/XfgJb/19ysFL6wuj0YDG4e1t/gT4lIe/dzl4efjhauLpQn+mo4SHNkH5MqaLwtmrX8OOo4vQpbn1g34AYO3Fw9h4+SiMRgMUCiXe7LMQKpXGIreO5s65tUWhcMwIm8z9MRAPHITipaEQygVB+doYQKWCYe4CqF1sLh6NIH1ZrXG5tgowxvxpM7fnZn7l7OZZkPs925tXq/65t6l/lOqfJz//IjpXb4jKvmUBAH3XfGnuJwxGA5RKJT7//HOo1WpMmjQJAHD48GHs2bMHSqUSXbt2taudrqbAhaOwsDDMmjULOp0OnTp1wvPPP4+BAwciPDwc69atw+DBg5/ofXr27Injx4+b/z1x4kQMGDAAU6ZMwXPPPYdRo0Zh9uzZ+Oqrr3DzZuHvyyYiIiIiKg4BAQFo27Ytli5diosXL6Jp06aAUgFBEPDZc6Zz5S1X/sKhm5fQsHw1vPp8DwBA/XKVEeJjuji5lnEHinsXRqMavICWobUxpL5pTp7fzv2JYO8y2HhsO0RRRFSLMRjR+VMcPv879p5YgbjE0/h4UT+IoohuzUc7ZKSMUqFE66f7IubUKsTZKFykZt4GACgUCjxTvxcOntmA89eOWK336ATOxUEQBIyO+gIAEHtuE87EH8DTtVpYrZeRn4PXt/9onk+qW/PRqFetJYZ3mmbObVFw59zaIlNDeWKZmZmInz0HqFkDip7dTe8bGAjFS0MhHjmKE1u3Fv5DHEiuwKF2REIcSMzOhmHBQpu5vX3woHmCZ1cgVxyyt3hos38GJPvnsa26QRAEzHhuCADgUmoiXto039xPDBkyBE2bNsU777yD3bt3Y+HChXjllVcgiiKGDBki+VAxd2PXXjxu3DisWbMGzZo1Q2xsLLZu3YqIiAgcPHgQNWvWtKshFy5cQEREhMWyiIgIGAwGXL161a73JCIiIiJyht69e+Pvv/9Gt27dAACi0nSR079OC3Ss1gAAYBRFlNF64c+4c8jIz0GOLh9jItqb38Moiijj5YMeNZsiIz8Hs18YDu2926tuZqXiVvodVC5XG0M7TkGnZiNRpXxdzFo+EuNnN8Pd9JuoXbkZxnSf5bBtGtV1Bsr6BeONOc2xYN1b2HTwOyzbNQPTFg3AyP/VNq83sst0lPEpj/988xy+WT8Bmw5+h0XbpuKVmU8hKzfNYe0piOciBqBp7U4AgOS065j03RDsu3bWnPcTt+LRftknSMpOg95oQJ2qTc2569FqHGqFNMY3699Cdm5GkbTPnXP7KEFZ+ALWjBkzkJ98B8o3X4egfDCpuaJHFFCzJn6d/pl5DhlXIFfg0Chca8TR9rnzgLt3beY2oE5tTJ482WVyq5F5mmFh8vpw/ywqH3yGVf/s4YU/rp1HRn4Oomo0Rv/apon2c/T50BsNqBlWHRMnTkROTg4iIyNRrlw5TJ06FUlJSWjYsCE++ugju9voago8x9F9vXr1Qq9evex6rSiKWLNmjXnGcQCoXLky/vrrL4v1jh07BgAlpkpHRERERKVDp06d4O3tjb59+5oWPHRxMqlFL2y7ehIAsOfaGez56j+S75OanYluq2ZIxq/dPo8BUytYLW/zdF/8Z8BPDp3nJsC3Aua+cQiLt3+MmNOrseHAAvh5BaJqhfoY1e1z83pB/iGY+3osord+iF3HliArLx1BfiFoVqcLtGovh7WnoCYPXYU+H5WFwajH7qPrsPvoOpvr9a7THGPGboEyz5Q7pUKJN/suxBtzW+Cnrf/FuJ6zHd42d8/tw4RC3qp24sQJREdHo0qf3rhZ2/KJg4JSCeWb45H65r8xY8YMfPLJJ4X6LEeRK2K40q1qJ06cwB+/LoOiezcobOS2xXvvYevIl10mt7IFuUKM5LLon5WW72PRP/9zBnt+kJ4Y/1LcFTRo0MBqebVq1bBixQp4ejppnrEiIIgOHtM4ZcoUTJ06FT/99BOGDx8OAOjXrx8iIyPRoEED5OXl4YcffsCmTZuwfv16REVFAQBmzZqFd999F++99x5eeOEFXLhwAf/973/xzDPPYN06U6eemJjoyKYSERERuTxDnoC4nWUtloW1uwul1jVuSyFpx44dQ+PGjQEAviuOQ/NPijl26OYl+Gu98PWRTdhy7RQSUpIBAH4aTzQoXxUftOyNUN9AzLqyB9uP/IkbmXfN8eeq1EOPmk2wNycJvx8/guS0GwAALw8/NKzxPHq2Go/G4e1B1s7+EwsfjzJYd+R/OHJ4rVVexzbqiOfrNsbhKj2Rm6J2cmvdU90BSVBqCt8/jYm/gi3ptkdRraheC829C/+0QEeZlXQTs2/Zvlb9tFJlDA0MKuYWSduQmoJx167ajL1UNgjTQioXb4NkXMjNQfuL52zGWnr74Lfqtex+74f757Jf7oHwUFnkfv/81V9b8PuV40hIMz3d8uH+92DCRWxOOoubSabfu6+vL1q1aoWRI0fi2WeftbtdFStWtPu1RcnuEUcFER4ejh9++AHXr18HADRq1AgbN260mCjqrbfegkKhwPfff48vv/wSFSpUwKBBgzBt2rTiaCIRERERkUPdvygBACgt/3IeGWya3uGbjq8gp0ElKP/6BzqDHt4aD4v1Zrd/B55NryPfoLeK94yoiZcSm0Gnz4feqIOnpmQ89rko1a3SHAAwafR8NGrWATqdziqvBoXCIbdblVaOyp3ciBKtC43iAR43Msa12qqVGx3lYrfVye0DhZ0g3ap/1j/Yb+/3zwt6vAZDGU+I/9yx6ideeqot7o5phTyNAL1eDy8v1xjxV1SKpXA0ffp0iyeo2aJUKjFhwgRMmDChOJpERERERFRsRJVSOqhWQKNUQWPj8fCiynThZCsu3PunWqWBGhqHtbU0EJQioFRAY7SRd5XCIRM8l1aOyp273P4FuFfhSP4JcK6148vlTuvAtooqBQS90Xq5UgFRKd0/Q6mARqOGRlPy+1+H7xlTpkyBKIrm29SIiIiIiEo9pfRpt6iWLirJxYRi+RNwyaRQPCjKPUpUKqDgiCO7CAoRjqqTyBUGXK3AIdtWFxvFIzday9WKXMU2Okqqf1YKgEQ/AUj3ISVR6dlSIiIiIiInkbvAsLtwxCl47CYoRYunKVlQ8VY1ezkyb3IFDg+Zp205g1yBw8PVilwyuXO5vMrkzpF5lSwiq5TS/QQg+weBkqb0bCkRERERkbPYO+JIIzfiyLVGB7gTQSlKjiQQlSwc2cuhhSO5R7G72sgYufmYXK4Y404jjopnH5AqDokyI45EhQC42GiyouRaezERERERUQkkO+JIK33PmVwMGhY47KVQiRDVEheEat6qZi9H5s1DpjDg6WLFGLn2eLrYiCO5UUWulle1IEhOyuzQtkr1z2qlzGgk18pVUStdW0tERERE5ASSRQqVQnbEkVGuqKRSQqFigcMeCqUoPWE582o3hQPn3fJyowKHXHs8XGxUimxeXazIBUjn1pG31Un1wbL9s0y/XRK53p5BRERERFTCSF6YqJWAzO1o8JJ+Wo+oYYHDXqYRRxK/E+bVbgqV9ZOp7OWlsP370QoCVC52S5VcMcZbYjucRbatLjhnj9R+4OPIwpFEHyyqVfJ9dyniensGEREREVEJI3rYnsla9FDDKBEDAIOfB6RKGKJWBaXGcRfqpYlSK0L0sD08xqhVQalh4cgejsybn9L2hbnUcmfyl2lTGRdrr49CKVkE8Lf1yHknk8qtXM4LSuqWYNFDJRsrTQRRFN2mV0xMTHR2E4iIiIiKlSFPQNzOshbLwtrdhVLrNqdwBEDIzIP6ZrrVcqOHCvqKftBcvWsVEwHoapWD+nIyBKP171tXJQCZaZ7Q57rO34KNOgG3TvlYLCv/dCYUatfaX72CdPDISIMyPdcqZijrhRytH3Lulq4LQ0dQexngFaR3yHsl63U4nJVltdxHqUAbHz+HfIaj5BqN2J1h/f0GgM5+/hBcbITUjvQ06GyUAVr7+MLXxQpdsVmZuKu33qcaenkhWC09IrMglLcyoUzLsVpuCPCCqFFClZRhFTN6qaEPKeOQz39YxYoVHf6ejsDCEREREZELY+GI3An3VyIi+7lq4ch1/jxBREREREREREQuxa3GX7pq9Y2IiIioqOhygeuPTIFTvkIFqD2c0x4iOdxfiYhKHo44IiIiIiIiIiIim1g4IiIiIiIiIiIim1g4IiIiIiIiIiIim1g4IiIiIiIiIiIim1g4IiIiIiIiIiIim1g4IiIiIiIiIiIim1g4IiIiIiIiIiIim1g4IiIiIiIiIiIim1g4IiIiIiIiIiIim1g4IiIiIiIAQHR0NARBMP+oVCqEhIRg+PDh+Oqrr+yK3bhxw9mb5dLkcs7cEREVLXuPe6Wtf1Y5uwFERERE5Fo+/vhjhIWFITc3FwcPHkR0dDQ2b95sVywmJganT5+Gh4eHMzfJ5TF3RETOw2ObPBaOiIiIiMhCly5d0LRpUwDAqFGjEBQUhM8//9zu2Pr16zFgwAAnbIn7YO6IiJyHxzZ5vFWNiIiIiGS1adOmULHLly87vE0lHXNHROQ8PLZZYuGIiIiIiGRdvXq1ULGAgADHNqgUYO6IiJyHxzZLvFWNiIiIiCykpaUhOTkZubm5iI2NxdSpU6FSqaDX6wsc02q1iIqKcvYmuTzmjojIeXhsk8fCERERERFZaN++vcW/q1WrhmHDhmHWrFkFji1evBihoaFF3mZ3x9wRETkPj23yWDgiIiIiIgvz589HeHg40tLS8OOPP2Lfvn1QqVR2xbRarTM3xW0wd0REzsNjmzxBFEXR2Y0gIiIiItt0ucCxFZbLGvcH1EXwBODo6GiMGDEChw8fNj9BxmAwoHXr1jh37hxSU1MLHPvnn39w/vx5+Pj4OL7BJYBczt0xd8W5vxIRFZa9xz137J8Lg5NjExEREZEkpVKJzz77DKmpqRbLe/bsCX9/fxw/ftwcO3nypFUsISEBvr6+OHDggDnm4+MDHx8feHt7QxAEc4xM7uc8ISEB8+bNMy9n7oiIit6THPdK27GNt6oRERERkay2bdsiLCwMcXFxyMvLAwCsW7fOHPfz80NGRgZq1aplFatQoQLS0tLQoEEDq9i4ceOQmJiIyMjI4tgMt9K2bVtERkbi66+/xltvvQUPDw/mjoiomDzuuFfajm0ccUREREREj9WlSxcAwMaNGy2Wv/322+ZHEm/evNkqFhISgry8PCxatMgqdvXqVfz6669QKpVF2HL39fbbbyMpKQnR0dFWy5k7IqKiJXfcK23HNhaOiIiIiOixmjRpAgBYtGgRDAYDAGDKlCk4evQo3n//fclYTEwMatSogZkzZ1rFVq1aBY1G44StcQ99+vRh7oiInETuuFfajm2cHJuIiIjIhbnqZMMzZ87E6tWrsW3bNqvJQe2NkTx3yJ2r7q9ERIVVmo9tnOOIiIiIiArkm2++wa+//opdu3ZZnSDbGyN5zB0RkfOU9mObW404SkxMdHYTiIiIiIqVIU9A3M6yFsvC2t2FUuu8U7jatWsjLy/PYv6G1atXIyIiwu4YyXOX3Lni/kpEVFjFdWyrWLGiQ9rraCwcEREREbkwXoiTO+H+SkRkP1ctHHFybCIiIiIiIiIisolzHBERERGRmffWc1DH37VanhNZFYLBCI+j16xiuupByK8ZBO9t56xiRn8P3OneFFe2BhZJe0s2EeE9biPg51hAb7SKZvRugLgzoci5q3ZC22wTRUCfa/m36YubgiAITmqQhOBm6fALzSv2z33xykXE51t/7mchVdDW16/Y21Pc7uh1iLp03mbs91p14K8s+ZenO9LT8GGCdT9aXeuBJWE1ndCi4jczMQGrUq2PM33LlMV/KlYq9vZ47bsMzbkkq+V5T1eCwd8DXjFXrGL6YH9kdq9fHM1zCSX/m0lERERET0x5JwvKDOsLW2VqDgSD0WbMeDcLigwfmzEh3wB9rgK6LKVVjB7PmGWEMiXHZkyRlY/cVJXL51af7Xrtc1bOzuTmIPXeo7sflqDLd0Jril+yXo8bOp3N2B29vlQUjm7o8m3mIN99ZpAptMv5eTZzcMVGUbU4KO9mSxz3sgGINmOiJqsYWuY6Sv43k4iIiIiemJBvfVELAILOAEEvEcs3SL8uXw9jvosNN3EjYo70xaSQr4dRx9zaw1l5yzJajxwDgCyD7eUlTabMdmZK5KakybRRODQtLx3bDwBZEjlw1vdA0OltL3/Msa004RxHRERERGQm6KQLR9BJnNTrDNKvEwFjfun5S7qjibnSF1KCzgCjgYUjexj1xZ83nShCJzGqJMto+/tT0mSL0tuZLVFMKGlyJApkOaIRbvTcqkLJlshBtuik4pnUsS1f5tgmsbykYuGIiIiIiMwEG3PpADAVh6RGHOmNNufguU8sHXfhFI18mQspndEpBZCSwBl5kyoYAKaiQWmQY5QujJSWHOTKFIfkYiWJ1HbKfUeKkmRxSG+QPLZJHitLKBaOiIiIiOgBqeKQwSh5oizopWMAYLQ9pQk9CbnCkd4IiCwc2UM0Fn/ecmUuivNkCiolCXPwuByUjmKEVA6ctf2yxzaJ0UiC3mh6GkApwcIREREREZkJEnNMyI4q0kuPRgIAUVd6Tq4dTZS6hQLMa2EYnTA9SZ7MiBq5WEkit525pSQHcttZ2nPgtO2XOrYZjJLHRFO89PTBnBybiIiIiExEEYJBxJ2cDHRZ8Rl6h0diUotepti9UUX3Y/WDQrH83AHoJOZmUSuUD2IzLWMqpRp6g+1hSNu/KD0n4k9C0Fn+PiLKVUX/dV9K5p35ezLOGHEk99Ss0vJELdkclJIRR3LbmVda9gOJHDjreyAYjDaPe4JBBAwyx71Hjm1qtRo6iacG3rx5swi3oOgVasTR+vXr0bJlS3h5eSEwMBB9+/bFhQsXMGXKFAiCgOjoaAc1k4iIiIiK3L2/rK44dxB9azfHpBa98NKm+fD96iVcSrwGGIzmmJ/GU7J4AUA2JlU0Iht0Rovfx9t7FsnmtsPbAg6e2ViMDXRPohMmFf/ozbeg69YT4vXrVrGTP0UjODgY27dvL/Z2FZdBgwbhvy1aQUxJsYqJWVn473Nt0bVrVxhL8O1a48aNw6o2z9ncBwzLlqNF1Wolfh+oU6cOcu7csYqJWVm43vdfztkHDEabx72Lidch6Atw3JMoGpUEdheOFi5ciJ49eyI2NhbNmjVDhw4dcPToUURGRuLy5cuObCMRERERFQPh3rD7Zef+wMC6z+CvpKuY+kx/eKk1eGPVAggGozl2Ne2WxWvf7TYYzSrWwKGh09GuSn2L2Kv9/o2VU25j5ZTbeLZBf4vY4PYfmmMrp9wu2g10E5du/IWc/CwAgPhQzgGgVaXaFuvez9/8N49Ao/JEm6f7okW9qGJvs7txxh0xo95/H/DQwjB7nmVbbibizP/9hG7duqFDhw7F37BiMmPGDBh0OhgWfmcVM/4YjazUVHzxxRdQKErubCpTp06FUmt7HzAu+RVtOncu8ftAfn4+0hYstIoZf4yGMS3NKfvAw8e2h497r29cCMgc9/499nWcPn0ap0+fRvfu3S1iEyZMMMdOnz5dnJtTJOz6jcTHx2PChAlQq9XYsmUL9u7di2XLluHixYuIiorC4sWLHd1OIiIiIipqBiMupyZBrVBBFEV0XTkdw7cswORW/bD3yil8uW+NObY17iQAwFfjCQD4fNMS5OjzEeDhjd3/nLGIfbvyK5yJPwB/7yCc+ycWAFDWNxgA8OvOT80xf++g4t5iu9wv6hSFpJR4vPtdB0z6vhNy8jIRfyMeaoUKVfxMufFSayzWv5+/6N//C5VKjbE9ZxdZ24paUeb1UUYnjDjyDCwL5csjIZ44CeO2HeblhrnzoVCpMG3atGJvU3GqUqUKWr86BuLuvTAeOWZebjx/AcZNW9Bi6BDUr19f5h3cX1BQEKqPfdXmPgClEq98+F8ntq7oValSBRMnToRu9x6b+4C6b+/i3wdEEVfuJNo+7l39G1/tXCF53Pvqm3k4evQoAgMDceyYaXsqVKgAAJg9e7Y5FhgYWLzbVATsKhz9+OOPyM3NxcCBA9GpUyfzcrVajdmzZ8PLy8vqNdHR0RAEwepnz5495nUWLFiAGjVqwMPDAxEREdi4kcNsiYiIiIqLYDBi6ZkYDKz7DN7duwR3cjLhpdJidEQ7tKxSB5/u+Q3dazbBoA1zYIRpdNL4Rh1R0bsMAOBaxh0M3DDbKiZCxOxVr2L7kV9wK/UfAEC3FqPRo9U4GEUj5q4Zh3xdrkO3JTntBmYuH4n+Uyug63tajJpZH78f+tHmerOWv4x/TauEru9pMXR6GGaveg06fT4A4JdtU9DhbQHxSWcwfckg9J4cgAnzWzu0rQ/7duN/kJ59B1q1FzQqD6zZt8E82uhhob6B0Ko1MIpGfPHbCBw+/ztGdPoEQf4hRdY2wH3z+ihnzHGkE0UIXTpBqF8Phu9/gJieDuPuvRCPHEXY6FEIDg4u9jYVt0ZDBgPVw2CYNx9ifj5Eg8E0+qZ8ebQaM9rZzSsWQd2jbO4DiuHD4Hev6FCSjR49WnIfEIcMgljc8xwZRcnjXquQ2pi+fZnkcU8URbz77rtYsWIFbty4AQAYMmQIRowYAaPRiEmTJiE317HHNmexq3C0f/9+AMCLL75oFQsMDETHjh0lXxsTE4MDBw6Yfxo3bgwAWLx4MV5//XUMHjwY69evR+PGjdG7d28cPHjQniYSERER0WPo9Y88WsogYs2FQ3g2tC7WXDgEhSBgXoeRUCtVmN91NLJ1+dgedxKHEx9MS6BUKLGuz9sAgLS8bBxJvGIzdic9AQvWv4ky3uXN8TFRM1GuTGXcTr2G2LObHLZdKRlJeGNuCxy7uAM9W43Haz1no1JgTcxa8TJW7//avF5yWgLGz4nEnuPL0DbiXxjbcw7aNRmKk1f2Ik+XbfGe0xb1R54uGyM7T0fX5q84rK0PS05PwB+nVkMhKPBW34VQKlXYcng7+tZubrVut+qNYDQaoVV7IiP7DioF1kCPVuOKpF33uWtebXHGrWr5RiMEQYDyzdeBrGwY5syD4dvvIITXQrnevYq/QU6gUyhM25+YBOOSX2FcvwG4dAnKN8ZB1Gqd3bxioRNFm/uAokcU8kvBU9WMSqXkPiB4eEBXxIUj6+OeUfq41+FlZOvyZI97iYmJ+PDDDxEU9GDE7OTJk1GpUiUkJCRgx44dKAnseqpaQkICAKBq1ao249WqVZN8bfPmzaFSWX/sxx9/jJEjR+Ljjz8GAHTs2BF///03Pv74Y2zevNmeZhIRERGRDWfPnsXcuXOxd+9eHDp0CN7e3gCAo8eOooK3P0ZtXQgRQOPyYahexvQX8IzcbFTzK4etV08AAMpovZGaZ7q1KN+gR4CnD1JyMgEAAR4+SMk1/X+jCmF4qnpjnL5yDFk5aWjToD/2nVwOANCoPfBcgwFYuW8WTlzZgzYN+jpk+378/QMYRAO+n3AKft6mWwS6t3wVny4ZiF+2TUG3FmOgVXvixy2TkJKRiDmvx6J25abm1w/v9LHVX72rB0fg/cFLHdK+R8XdPIVfd32G2LMbYRSNqFOlOYIDq+NM/EHUqFAV/lrr0fzlvPwwpv0QzNsaDQCoFdqkyOcFcbe8ynHG5Nj3L4iFalWh6NcHxmXLAYUCymlToROKvz3OoBNFKOrWgdi9G4wrVgFqNYTnn4OiaZNS80QxnSja3AcEhaJUPFlObh8ATE9W0zzmPewhddw7dkT6uJeZn4PwoBDzce/RY1vj+g1w7O+TSE9PR1RUFDZs2AAA8PDwQI8ePbBw4UIcOHAAUVHuP++cS8w8lp2djUuXLllNBNauXTvs3LkTeXl5TmoZERERUcnj5+eH0aNHIyUlxeIPdCvXr8WA2i3RIrgWAED5UCHi15P70LRidfO/y3r44LWGHdAsuAaWnolBeLlQcyw8INgcA4AKZU23T2nUHnimfi/0aDUOtStHAgBCgkyfdTfdMY8qFkURMadWoWXd7hAhIi0r2fzTNLwTsnLTcPH6MRiNRvzx91q0qNfdorhxn/DIhXxUy1cd0j5bvD3LoO+zE5CdZ7ogqVg2DACw89hi9GnezWLdNpXrmnNb1quMebleX7RP83HHvMpxxsAOi8KIn5/pv4GBQLWq0JeiogkAKIa/BPj5AoIA5aujLWIlnfmR84/sA0DpyIHcPgCgyL4Lkse9Naslj3tLz8SgZUi4+d+PHttCKlYEAGi1WnTp0gUjRoxAo0aNAABhYaZ+PCkpqUi2p7jZNeIoODgY58+fR3x8POrVq2cVj4+Pl3xtSEgI7ty5g3r16mHy5Mno168fcnNzIYoiNBrL2qJWq0V+fj7i4uJQp04de5pKRERERI8ICQlBSEgImjdvjjVr1qB///7Q6XTYF/sn5vaeiqVnYgAAV1JNJ7w6gx7brhxHUmYaQnwCcCMzBYlZKZjdfgR0Bj0m7PwZ1zIePF75bk4GZrcfAQC4ln4H+45vBQDk6XJw8+5lvN77wROFsvPSAQAeGh+HbFtq1m1k5qRiU+x32BRr/fQmAEjNvIW0rNvIzk1HtYpPPdH73i/mFIXyZSqjfJnKCC1XC9dvX0B2bjr0Bh3+urgDswcNA64+uEWiX+0W6Fe7Ba6l38Ggn99FgG9FpGQkIjElrsjaB7hnXuU4Y46j+xfE4q3bMC5aYioWXI2HcflK5I8cUeztcQbzqCtvLwihoRDT0iEEBAAouoKBq9GLos19QDl4YKkqHNnaB4CHCmsOJnXc2/9HDOb1mmLzuLc17gSSsh8c9x49tm3dtxsAkJubi6tXr2L69Onmz8vMNP0h4P7IJndnV+GoTZs22LNnD5YvX44uXbpYxO7evYtt27ZZvSY4OBiffvopmjdvjpycHPzf//0f+vfvj7Vr16Jnz54ICAjA4cOH0atXL/NrDh8+bH5PIiIiInKs3r1744MPPkBycjKOHTuG1pEtoVaq8FS5KgCA5JwMXE9PxvHb8TAYRQiCgAUdRqHnmi+Qrc/HHzfOISU3CwZRhPGhk/2LqYk4e+c66gaG4s2d0TAYDQCA6sENsHTnp3ih0SAEB5pGLx2/tAsAEPaEhYbHEY2moSTtGg9BxyYv2VwnrFIDoIAXJ1q1Z6Hb9jitn+qLZbs/w+m4/Tjw93o0rPkCVGq1zXXf3BkNAKhSrg5SMhJxNfE0bt65Ys6ro7lzXm0RFMV/ga66N9rKMP8b078/nQbDt9/B+OtvMHbpDITXLfY2FTeVzC15crGSRCkINvcBxQttoa7inEJqcXrc71ldxPvBo8e9Z1q2kj7uiZbHPatjm8HUL9arVw9z5sxBnz59zNP5xMSYClElZQCMXbeqjRgxAlqtFkuWLLGY7Emn02HChAnIyrJ+lGanTp3w/vvvo127doiKisKaNWvQunVrc1VuzJgxmDdvHjZu3IiUlBR888035gJUUd+vTURERFQade/eHYIgYP369Vi5ciX69+gFAGhcIQxVfE1z2Izb8RP+F7se8em38VGbAehcvSEq+ZQBAPRf+5U5ZhCNUEBA8L0nrPVd8yXWXjyMjZePwmg0QKFQ4s0+C6FSaTB3jWkS57+v/okjF7ZCoVCi9dN9HLJN/j7l4KX1hdFoQOPw9jZ/AnzKw9+7HLw8/HA18bRDPtcR+j03EQCQnZeBX7Z9hPaNhwJK6/Pg+3n9V8vuOBm3F4KggEbtYc5rUXDnvNoiOOHyQiMIMMb8CfHAQSheGgqhXBCUr40BVCokfDW7+BvkBBqZokBRFwxcRc7+GJv7gGHuglKRA7l9ACj6/cDquNfHNLee1HFv8gsD0bl6Q1T2LQvA8thmMBqgVCrx+eefQ61WY9KkSQBMA2D27NkDpVKJrl27Fun2FBe7usywsDDMmjULOp0OnTp1wvPPP4+BAwciPDwc69atw+DBg5/ofXr27Injx48DAP773//i+eefR/fu3VG2bFl8+umn+OCDDwAAFe/dO0hEREREjhMQEIC2bdti6dKluHjxIpo2Mc1JIwgCPnvOdD635cpfOHTzEhpWDMPYyC4QBAFftB0GwPSX2diES1AplACAVyLaYebzptil1ES8tGm+Odat+WjUq9YSwztNw+Hzv2PF3ln4eFE/iKKIbs1HO2ykjFKhROun+yLm1CrE2ShepGbeBmD6w+Qz9Xvh4JkNOH/tiNV6xf5IaAD+3oGoFWJ64vDVpL+RcOcy8MgfUDPyc/DvXT+jTtlK2HhsB0RRRFSLMRjR+VMcPv879p5YUSRtc+e82iIoi78dhqwsGBYsBGrWgKJnd1M7AgOheGko0mIPmSfWLcnkigLaUlA0yczMxI05c23uA+KRozi69Xcnt7DoPa4w9LjCUmE9etxr0kzmuFe+Gsa26gZBEDDjuSEArI9tQ4YMQdOmTfHOO+9g9+7dWLhwIV555RWIooghQ4ZIPlDM3dhdax83bhzWrFmDZs2aITY2Flu3bkVERAQOHjyImjVrFvj9vL29sXbtWiQkJOD06dOIi4uDr68vypcvL/uUNiIiIiKyX+/evfH333+jW7dugOLBCXv/Oi3QsVoDAIBRFOHv6Y0/Es4jIz8HUTUao/m9iURFiNAbDQgvH4oPW/VFVI3G6F+7JQAgR58PvdGAsEo1MbTjFOTpcvBUtdYI8KmA7zb+B3fTb6J25WYY032WQ7dpVNcZKOsXjDfmNMeCdW9h08HvsGzXDExbNAAj/1fbvN7ILtNRxqc8/vPNc/hm/QRsOvgdFm2bildmPoWs3DSHtulJ9XvuP+b//3zZUIz+ZiL2XTuLjPwc5OjyMXbb/+FGxl3Epd3CrfQ75vz1aDUOtUIa45v1byE7N6NI2ubOeX2UM0YcrZo9G7h7F8o3X4egVJqXK3pEwad2OCZPnmyeF6Wkkh9xVPLvMpkxYwbyk+/Y3AdQsyZ+/vSzUr0PAMUz8szyuPdgv3v0uFfGwwt/XDtnPu49emyrGVYdEydORE5ODiIjI1GuXDlMnToVSUlJaNiwIT766KMi35biYtccR/f16tXLYk6ighBFEWvWrDHPOn5fcHAwgoODkZeXh59++gnDhw8vTBOJiIiISEanTp3g7e2Nvn37QlRZXrhNatEL266eBADsjTuNvXHStx9duHUdod+8ZjMWl3AJA6ZWsFpeKbAG/jd6p8PnuQnwrYC5bxzC4u0fI+b0amw4sAB+XoGoWqE+RnX73LxekH8I5r4ei+itH2LXsSXIyktHkF8ImtXpAq3ay6FtelKt6veEp8YHXZq/grV/zMGWw9ux5fB2q/XyDHpENX0Br/Rca87fm30X4o25LfDT1v9iXE/H3/rkznl9VHHPcXTixAlsXbIUiu7doKgdbhETlEo89c7bOPTKGMyYMQOffPJJsbatOGlkpiBRK0r2iKMTJ04gOjoaoX16IcnGPqB8czxS3/x3id8HBEGARhBsToKtEQSrJy8WhYePe1Baft7Dx709/5zBnu//K/k+l+KuoEGDBlbLq1WrhhUrVsDT0zlzuBUFQSyC8aJTpkzB1KlTLQo//fr1Q2RkJBo0aIC8vDz88MMP2LRpE9avX4+oqCisX78eCQkJqF27NhISEvD1118jIyMDsbGx8Pf3BwAkJiY6uqlERERELs2QJyBuZ1mLZWHt7kKpddwp3LFjx9C4cWMIuTqUnR9jETt08xL8tV748tRWbD1/FAnppoeW+Gk80aB8Vbz01LM4mHARW/45hYTUZHPsuSr10KNmExxMuIiN188h6e5NAICXhx8a1ngePVuNR+Pw9g7bhpLk7D+xqFulOa7dOo/txz7EvtiduJH5IO/PVamHsY06onH33jiZ1MzJrXVPPpVyUe2F1GL9zOPZWehx+YLNWGc/f3xXtWgmNnclC28nYXpigs3Y5OAQjAoqX8wtKn7Dr17Grox0m7HNNWvjKU/XKK4Wpbp/n0DWvQn3H+ajUOBM/YhiacP94x4AlP16DwTDg2Pq/ePeV39twe9XjiMhzfTU0EePbZuTzuJmkqlG4evri1atWmHkyJF49tln7W6Xq07TU6gRRwURHh6OH374AdevXwcANGrUCBs3bjRPFqVUKjFv3jxcvnwZPj4+6N69O2bMmGEuGhERERFR0bh/8izamIg5Mtg0BcH8/q8DeiOMt9OhM+jhrfEwr/PSU22RV6c8hL8TbMYmtG6Pf876Q2/UwVNTMh5NXJTqVmkOAKhcvjY+HzsNFRv1Rr5Bb5XbNKXUO9DjKJyQO7lbdIp6XhdXIbedpWGOI0B+O0vTfmD9OC1AU4y3K94/7gGmY59gMJj/bT7u9RwLYxlPiPHJNo9td197BnkqQK/Xw8urZBf8iq1wNH36dPMT1Gzp1q2b6R5DIiIiInIOlfRJu6hUQBABjVIFjVL1SEyAqFRAayMGAAoVoFZpoIbG4U0u8dSmC0lbeS++M/mSxxmTY8tdFBfnBbMzyW2nljmAtpQ8TdyUA4ON5U4qnClttwdKAaJSsN3/3nudRqOCRlPyj21FsmdOmTIFoihyfiIiIiIidyKYTpJtUiqs5kC6T1QqZItOLHDYTyrnAKBQu8YTytxRcc9xBABamTl8NCV8fp/7mAP5HJSaUVcSOXDWPmBrtK15uUp6eKLk8bIEKh0lTSIiIiJ6IpIn0CrFvb/K2qCSLioBgEJdek6uHU4tc7ouFyNZCicUM+VG1HiUktE2zAFzAEjnwGnbL3X8Uikkj4kApI+JJVDp2VIiIiIiejypUUUyxSFRpYQo81dZoeSP4i8ygkb6dF1QCYDAUUf2cLURR3KxksSDOXhMDkrH5blUDjyctP3Sxza5454CKCUjxAAWjoiIiIjoIZIFIJUSotp2TFTJ36rGwlEhaOVuAVRAoWLhyB7OyJuXzIzcnqVkpImnTGGg1ORAdp6n0lGIkMqBh5O2X/rYppQc2Sk3yrYkKl1bS0RERESyJE+gNdIn0FDLFJUEQKEpHRdDRUHwkJmwXKOEwgmTPJcEzigcqQUBaokLY29nPObNCbwE6e30UpaOHEgVzzwFBRSlpHDkJZEDp30PpI5tGpljm8TykoqFIyIiIiIyEzXSJ8mixvbEMKJGKf06jQoKDYsb9hI8pS8kRY2SE2TbyVl585a4YPYqJXOl+Mhsp1RuShofiQKZXG5KGm+JHHg7KQeiWuLYppY7tpWuwhGfcUFEREREZkZ/TxhTcqyX+2kBvRFGD7VVzODvCaOP1mbM6O8BlYcRSq2xSNprNxEw6CyLMkq1CLjUH/xFKLwVMPhoIeit82f00kLja4Ahv/RccDqKytPGo7eLQZhGi6v5eVbLK6isvzslUaBKhQCJokGgrcedl0AVVWqbOaiq0TqhNc4RqtbYzEGI2jn3NRv8PWwf2/w8YPSxHTP6exZH01yGIIqi2/yZIjEx0dlNICIiIipWhjwBcTvLWiwLa3cXSq3bnMK5JOaViIhcTcWKFZ3dBJv45wkiIiIiIiIiIrKJhSMiIiIiIiIiIrLJrW4kddVhW0RERERFRZcLXH9keoXyFSpA7eGc9pQUzCsREdGT4YgjIiIiIiIiIiKyiYUjIiIiIiIiIiKyiYUjIiIiIiIiIiKyiYUjIiIiIiIiIiKyiYUjIiIiIiIiIiKyiYUjIiIiIiIiIiKyiYUjIiIiIiIiIiKyiYUjIiIiIiIiIiKyiYUjIiIiIiIiIiKyiYUjIiIicjvR0dEQBMH8o1KpEBISguHDh+Orr76yK3bjxg1nb5bbkvt9MK9EROSq7D2fKG3HNpWzG0BERERkr48//hhhYWHIzc3FwYMHER0djc2bN9sVi4mJwenTp+Hh4eHMTXJrzCsREbkjnjPIY+GIiIiI3FaXLl3QtGlTAMCoUaMQFBSEzz//3O7Y+vXrMWDAACdsScnAvBIRkTviOYM83qpGREREJUabNm0KFbt8+bLD21SaMa9EROSOeM5giYUjIiIiKjGuXr1aqFhAQIBjG1TKMa9EROSOeM5gibeqERERkdtKS0tDcnIycnNzERsbi6lTp0KlUkGv1xc4ptVqERUV5exNcmvMKxERuSOeM8hj4YiIiIjcVvv27S3+Xa1aNQwbNgyzZs0qcGzx4sUIDQ0t8jaXZMwrERG5I54zyGPhiIiIiNzW/PnzER4ejrS0NPz444/Yt28fVCqVXTGtVuvMTSkRmFciInJHPGeQJ4iiKDq7EUREREQFER0djREjRuDw4cPmJ50YDAa0bt0a586dQ2pqaoFj//zzD86fPw8fHx+nbZctulzg2ArLZY37A2oXegKw3O+DeSUiIldl7/mEqx7bigonxyYiIqISQalU4rPPPkNqaqrF8p49e8Lf3x/Hjx83x06ePGkVS0hIgK+vLw4cOGCO+fj4wMfHB97e3hAEwRyjx7v/+0hISMC8efPMy5lXIiJyZU9yPlHazhl4qxoRERGVGG3btkVYWBji4uKQl5cHAFi3bp057ufnh4yMDNSqVcsqVqFCBaSlpaFBgwZWsXHjxiExMRGRkZHFsRklRtu2bREZGYmvv/4ab731Fjw8PJhXIiJyeY87nyht5wwccUREREQlSpcuXQAAGzdutFj+9ttvmx+du3nzZqtYSEgI8vLysGjRIqvY1atX8euvv0KpVBZhy0umt99+G0lJSYiOjrZazrwSEZGrkjufKG3nDCwcERERUYnSpEkTAMCiRYtgMBgAAFOmTMHRo0fx/vvvS8ZiYmJQo0YNzJw50yq2atUqaDQaJ2yN++vTpw/zSkREbkfufKK0nTNwcmwiIiIq0WbOnInVq1dj27ZtVpNY2hsrTiVtEmfmlYiI3JE7nDMUFc5xRERERCXWN998g19//RW7du2yOpGzN0b2Y16JiMgdlfZzBrcacZSYmOjsJhAREZEbqV27NvLy8izmGVi9ejUiIiLsjhU3Q56AuJ1lLZaFtbsLpdZtTuHMmFciInJHxXXOULFiRYe019FYOCIiIiJyYSxwFA3mlYiIXI2rFo54qxoRERG5H1GEOv6uzZAuNACqWxkQ8vVWMX15XyiydVBk5lrFDGW8kKv2Rl6aa50eGXUCDPmCxbLMRA0UatcpcKg9jfD0yIEqKd0qJqpV0AX7IzPRtSYKdYe8CgLgE5zv7GbIStLpcC43x2p5GaUKEV5eTmhRyWAURezPzLAZa+XjC7Ug2IzR4/2dk41kvfXxoZbWA5VK2ITGxemWToezNvoCf6USDb28ndCiJ6e8kwVFho3zAn9PQKWE8k6mVczoqYGhgm9xNM8luNaZEREREdETEHL18Ft10mYsdXgkfDadgTLd+iQwo0tdaC7ehvZSslUsp0koEgMb4tYJ1z8RvLY/wNlNsOAbkotawTfgu+mMVczgo0XSwDaI31XWxitdi6vlFQDqvZgIhQufsW9KS8GUmzeslj/l4YnNteo4oUUlwx29HkOvXrYZ2xteF2FazuJur6k3b+BglnUh4D8VgvFGedcc7eEOtqan4oOE61bLa2s9sD28rhNa9OQ8D8ZDey7JanluRCUYynjCe6/1d1FX0Rfpg5sWR/NcgsLZDSAiIiIqKCHP+q/F5liuDkKuzmZMkauHQuK1Qq4ehjyeGtnDkK+AkGs7r4pcHQz5zKu9XD13afceQ/2ky+nJyOWPuS2cNIPtvkpqOT0Zd+4LhDzb5wxCrl762CZzHlISufaRiIiIiMgGW7ehPRwTdBInqjoDhHzbMUFngFHP2z/sYdQLkjkX9EYYXftuK5dm1Ln2PpltNNpcniWxnJ5MllH6Ypu5LZxMA/fZopApkT+pPsKVyJ0XSB7bJF5TUrFwRERERG5H0EmfiAp5BggS09QIegMgdRLIwpHd5ApHAGDMd515g9yN0eDa+2SOxEWh1HJ6MnL5Y24LJ1fkPlsUJPsCiXy7EkFvu41yhSNIvKakYuGIiIiI3I9e5i99Mn8FFHRG6RNEvRGii1+kuyqjQZDMKwCIHHFkN1ffJ6UuCnNEI9zo4c0uJ1cmdyxwFE6uRP5yjdxfC0MqrzpRhN7V+wKZ4pBcUak0YeGIiIiI3I4gcasBACjkbmOTOQmE3ujyoztclWgQZP/6KnLEkd1cfRRcnkwRI9/VLxZdmFxe89xgBIcry5PYL5nXwpHLn9z+7AqkzikEvVHy2CYYRaAUFRtd+BkNRERERLbJjW55dMTR5st/of+6L6GTmDNErVBKxlRKNfQG25Nmbv+i9JwwPo5okC/miQ/V8mLPbsKUn3szr0/I1UccSV2E349pi7EtJcnj8kr2MYqiZEFTasQMPZnH7bPexdiWgpIbifzwsc3qfGKm5fpqtRo6ne1j282bNx3SVmexe8TR+vXr0bJlS3h5eSEwMBB9+/bFhQsXMGXKFAiCgOjoaAc2k4iIiOghBiPu5GQg8pf38dnBtRah+8PH78enH1gtWRgCIBuTKm6QJaNBkP2dPFw4OnRuC/NaAK58LTtu3DhsfvZ5iNetH8FtWLYctUNDsX37die0zL0NGjQIbzVvATElxSomZmVh6nPPo2vXrjC68s7hosaOHw9dt54299m4XxYjODiY+6wdBg0ahI3tO0rus881buza+6zU8ctgGnH0xOcTEkWjksCuwtHChQvRs2dPxMbGolmzZujQoQOOHj2KyMhIXL582dFtJCIiIrIg6EWsOHcQfWs3x6QWvdBj1f/g+9UwXLh70zQBNmCOZ+stJ9h5v0VvTH/2RUxq3gvdazS2iL3U/X2snHIbK6fcRudmIy1ig9t/aI6tnHK7aDfQ3YimOY7u57xzWEMM3jAHvl+9hAt3b1oUjh7FvMpz5RFHU6dOhUKrhWH2PIvl4s1EGJf8ihe6dEGHDh2c1Dr3NWPGDOh1OhgWfmcVM/4YjazUVHzxxRdQKDjrSEG9M/lDwMP2Pnst+md069aN+6wdZsyYAaNOL7nPpqSkuPQ+K3X8unTrOgTDg1gVvyCL100Y9wZOnz6N06dPY+DAgZaxCRPMsdOnTxfn5hSJAv/m4uPjMWHCBKjVamzZsgV79+7FsmXLcPHiRURFRWHx4sVF0U4iIiKiBwxGLDv3BwbWfQbxabcRe/MCDEYjXtv2PQS9abj8snN/oKZ/RZxOvgYAEGC6AJ8Ruxa/nN6HztUjsDXupMXbLto4A2fiD8DfOwi6e6NiNCpPAMCvOz81x/y9LU8eXVVOflbxfZje9Dt5NrQOuq6cjri0W/BUaTB++/9BfOgPtFm56QCY1yclGl23cBQUFITKr42BeOIkjNt2mJcb5s4HlEq8+dFkJ7bOfVWpUgUvvDoG4u69MB45Zl5uPH8Bxk1bEDlkCOrXr+/EFrov37KBUL480uY+K6hUmDZtmhNb576qVKmCKiOHS+6zA15+2bX3WYNo+/i14VsIhgfHtvWXjlq8bPY383D06FEEBgaaRxt5eHiYYrNnm2OBgYHFvkmOVuDC0Y8//ojc3FwMHDgQnTp1Mi9Xq9WYPXs2vLy8bL5Op9Phk08+QfXq1aHValGtWjV89tlnFuscP34cbdq0gaenJ8LCwjBv3jyb70VERESl29Xr/0CtUKGKXxDe3bsEKbnZqBUQjP3Xz2Hp3i24nJoEtUKFt3ZFm1/TOSwCgGmOi7i0W/jqyCbkG01DYZ6vUu9ezIi5a8YhX5eLU1f2AgC6t3wVPVqNs4g5UnLaDcxcPhL9p1ZA1/e0GDWzPn4/9KPN9WYtfxn/mlYJXd/TYuj0MMxe9Rp090ZU/bJtCjq8LSA+6QymLxmE3pMDMGF+a4e2Vc6VmzegVqgw++gW3MnJRBmtNz5p8y/suXYGa3f9Zl6PeS0Y0cUf3FMmqiuE+vVg+P4HiOnpMO7eC/HIUSiGD4N/hQrObp7bihw6BKgeBsO8+RDz8yEaDKZRMuXLI3L0KGc3z23liyKELp1s7rNBL49AcHCws5votsr37ye5zw5+43VnN0+aUcSVlESbx6+98X/jy10rzTGrcwajEZMmTUJubi4OHDgAABg2bBhGjBhhESsJCjw59v79+wEAL774olUsMDAQHTt2xNq1a61iQ4cOxR9//IGPPvoINWvWRFxcHJKSkszx27dvo0OHDoiMjMTGjRtx7NgxvPXWW/D398fQoUML2kwiIiIqwZbv2oyBdZ/Braw0rL14GApBwOreE/Hy7wvxwYpvMaJuG4T4BGDvtTPm1zSuEIa7xlwcij+HPIMeay8eMcdaVaqNHIMesQmXcDv1Gv5v8yTcSv0HAODl4YcXn38PB86sx+3Ua4g9uwltGvR1yHakZCThjbktAEFAz1bj4e9TDofPbcGsFS8jOy8dfdq8BQBITkvA+DmRyMpJRdcWo1G5XB0kp9/A/pMrkafLhlqlMb/ntEX9ERJUCyM7T4eI4ptE97dDO9GteiO8t28pFIKAeR1GIsy/PJaejcGXi6bgh4kDcfTidua1gFx5xBEA6AEo33wd+rGvwzBnHsTTf0MIrwVFjyg+Va0QDEollG++DsOE/8C45FegjD9w6RKU06dBvDeigQpOJ4oQBMHmPuvVs4ezm+fWdDL7rMKV91mDEUvPxEgcv/7A9O3L8E5kd0z9Y6X5Ja0q1UaOXodDNy8jISEB06dPx40bNwAAvr6+GD9+PLZu3YqEhATs2LEDUVFRzto6hylw4SghIQEAULVqVZvxatWqWS3btGkTVq9ejZMnT6JOnToAgLZt21qss3DhQgiCgBUrVsDLywvt2rVDXFwcpk2bxsIRERFRKabX66FSWZ6yrP9zN/b2mIQdV0/BKIqIDK6JGgEVMb/DKEQueh/fndiJ+5fb5Tz9cDsnHYIgYF7f8Wj25Xjz+6gUSuiNBgiCgG86jUKTn96DCGBT7Hco410eqVm3AAAatQeeazAAK/fNwokrexxW4Pjx9w9gEA34fsIp+HmbhrJ3b/kqPl0yEL9sm4JuLcZAq/bEj1smISUjEXNej0Xtyk3Nrx/e6WOIj1ycVw+OwPuDlzqkfVIMBj2USsvfyboTMfh3RGfz76N6GdNok/kdRqHZog8we/VrOB23n3ktIJl5WF2CThQhVKsKRb8+MC5bDigUUE6bCkGhQH4pelS1o+WLIhR160Ds3g3GFasAtRrC889B0bQJC3KFkH/vkfG29tl8167Rujydm+yzj55TCEYRay4cwoSm3Wwcv15Go+h3sOHSMYh45Jyh4yto8st7gAgsXrwYQUFBSE5OBmC6Xa1Hjx5YuHAhDhw4UCIKR8UyO1V0dDReeOEFc9HIlq1bt6Jr164Wt7r1798fFy9exJUrV4qjmURERORCzp49i7FjxyIiIgJZWQ/mlDl69ChqBVfBP+nJ+OLQegBAiG9ZAED9oFD0b/wc0vNzkJafAwAI8y+P1xp2QLPgGsjKyUIFL3/ze9UtG2KO1S8biia1TZOi5uly0PfZf6NHq3GoXTnS9BlBtQAAd9Md80hdURQRc2oVWtbtDhEi0rKSzT9NwzshKzcNF68fg9FoxB9/r0WLet0tihv3CYLl1U5Uy1cd0j5b4m6ewvQlg/CvacHIycs0Lz8TfxC1gkKQcS/n1fzLmWP1g0IxrMs47Du5AqlZt5nXAnL1EUfm4pCfn+m/gYFANdMfmHWiiz5ByQ3cL3Aohr8E+PkCggDlq6MBmC7QyT4WBYxH9lnmtXDu59bWPpvvAn2B5DnFkSOo4O2P+X9tBfDgfAIAMvNzEB5YCUeTTPUIi3OGoFC0bd4KAJCbm4sxY8ZgxIgRaNSoEQAgLCwMACzusnJnBR5xFBwcjPPnzyM+Ph716tWzisfHx1stO3ToEHr06IGxY8fil19+gSAI6NGjB+bNm4eAgAAAwIULF6wqcfcLTefPn0f16tUL2lQiIiJyY35+fhg9ejTWrl2LzZs3o3///gCAVatW4cXWHVEm3RudwyJwLCkOl+8mml93JdlUgPDTeCA9Pxe5+nzMbj8CAPD6/kUI9Q1EUnYaAKCSTxlzDACUCtOpkYfaC32fnWBxq1J2nmlSZw+Nj0O2LzXrNjJzUrEp9jtsirV+Eg0ApGbeQlrWbWTnpqNaxaee6H0rlg1zSPts8fYsg77PTsCeE8sQc3oNOjQxjQrfeWwxBjdsi/RbpqeiZeTlWLyujLfpRDzQrxLzWkCuXjjKE40Qb92GcdESU8HoajyMy1dCOXigS40ycDf3C3KCtxeE0FCIaekQ7l03scBhv/v7pK19Vjd0sJNb597Mo7ls7bMuMPpQ8pxizWoMqN0S8em3rc4nlp6JQcvQ2rhwx3TX1aPnDCqlEgDg6emJ0aNHQ6N5cGzLzDT9ccXb27vIt604FHjEUZs2bQAAy5cvt4rdvXsX27Zts1qemJiI6OhonDp1CitXrsQ333yDHTt2YMSIB0lPSUlBmTJlLF53v6iUkpJS0GYSERGRmwsJCUHDhg3RvHlzrFmzBoDpYRv79u1Dh4YtUNkvEN1rmkaKnLlzHbn6fFxJvYXYq2dRLzAU6fm5FjGdQY9tF4/hr6Q482fsuXYWufcmQb6WfgeHzv0OAMjVZWH5nv9ZtOf4pV0AgLAnLDQ8jmg0nWS3azwEn7+y3eZP/bBnCvy+WrWnQ9pnS/kylVG7cjM8FdYGu/8y3balN+jw18Ud6BjeBE+VqwIA+DPhgkVeF679HNUqPoXbqdeY14Jy/vWWLBGAYf43AADVp9MgPNsaxl9/g3jzpqs33aXJ5c7IzNrtfs3N1j6rT3DMqMfSSn6fdT7Jc4o//8CQ+m2szid0Bj22xp3AyjN/mm9de/ScYeefMQCA7OxszJ8/3+LzYmJMMbm7rtxJgQtHI0aMgFarxZIlS7Bjx4NHGOp0OkyYMMFi2Nd9RqMRoihi7dq16Ny5M4YMGYL58+dj3bp1uHjxYuG2gIiIiEq03r17Y//+/UhOTsbu3bvRunVrqLSmv+o1rhCGQA8f6EUjpv25GkM3zoVSUGBjv3fRN7w5AJhjW6+eQLYuD0aIEAB4qjTIM+jw3/2mJ34N2zQPRqMBgqBAZJ2uWLrzU9y8Yxqe/vfVP3HkwlYoFEq0frqPQ7bL36ccvLS+MBoNaBze3uZPgE95+HuXg5eHH64mnnbI5zrCCw0H4djFHUjNvI3D539Hw5ovQK3RoHGFMIT5l0NaXja+PLwJAPDmzmhAAKa/vAXPNujPvBaQoHTtIoEu5g+IBw5C8dJQCOWCoHxtDKBSwTB3ATSCa4+WcmVqmdxphGKZbaREUisEGGP+tLnP5s2d//g3IEny+6zr9AWPnlM807IV1EqV1fnE1qsnYLg3mfr2AR/AW621OmcwGA1QKBRo164d5syZY7776vDhw9izZw+USiW6du3qzM11mAL3OmFhYZg1axZ0Oh06deqE559/HgMHDkR4eDjWrVuHwYOth/gFBATg6aefRmBgoHnZ/cmxz549a14nLS3N4nWpqanmGBEREZVO3bt3hyAIWL9+PVauXIl+/foBStNJqCAImP7sIADAzEPrcTjxMkY/G4VQ30DMemEYPJTqe7ENeHNHNJIyUgEAoyPa44u2QwAAc45uwUsb5+OPG+cBAFEtxmBCv++hUmkwd804xCWexseL+kEURXRrPhrBgY65fV6pUKL1030Rc2oV4mwUL1IzTbd9KRQKPFO/Fw6e2YDz145YrffoJM7F4dmI/hAEAXtO/IYdRxehfeOhgFKAIAj4pM1AAMC0P1fh37t+wcbLRzG2z3soVyYUr/X4mnktIFeuEWRmZiJl7gKgZg0oenYHAAiBgVC8NBTikaM4uOV3J7fQfWllLrRVLnQR7m4MWVkwLFhoc5/VHT6CDRs2OLmF7kuuoOlKhaNHzyn69zU9lMHyfGID3tm9BPHptzH5hYGo7BeEz58z1TkePWcYOnQoZs6cCbVajUmTJuHcuXN45ZVXIIoihgwZIvlQMXdj16Fo3LhxWLNmDZo1a4bY2Fhs3boVEREROHjwIGrWrGm1ft26dSUPvgqFqQnh4eE4d+6cRez+v2vXrm1PM4mIiKgECAgIQNu2bbF06VJcvHgRTZs2hah4cAozokFbVPELMg+Tv56ajH3XzsJX44GprQcAAESIuJZxBwAQHlARH7bqi6H1n0Wj8qZ5a3499wcAoHL5cAztOAW+XgGIavEqDp//HWO/boK76TdRu3IzjOk+y6HbNqrrDJT1C8Ybc5pjwbq3sOngd1i2awamLRqAkf97cP4zsst0lPEpj/988xy+WT8Bmw5+h0XbpuKVmU8hKzdN5hOKhp9XWTQN74QtsT/gn1tnUa9aS4hK0++kf50WGN+4EwyiEfOO/Q5/rRdqV6uH7NwM5tUOrjziaMaMGdDfuQPlm69DuDfXBwAoekQBNWvi/z791DzPBxWMWuYiXK6oRPJ+mvUlcPeuzX1WU6sWJk+ezH3WTnLFIY3CdSrgj55TNGnWzBwb0aAtqvmVgwgRl1IT4a/1wtOVqiEjP8fmOUONqmGYOHEi/P39MWzYMOzevRsdO3ZEUlISGjZsiI8++sgp21gUCjw59n29evVCr169nmjdrl274uOPP0ZycjKCgoIAALt27YIgCHjqKdP97J06dcK8efOQk5MDT0/TPeQrV65ErVq1ODE2ERFRKde7d2+MHTsWEydONC1QWZ6E1g6ohH/STY/BXX/8D6w//ofke11ISUToN6/ZjF27dQEDplawWKY35KNlvR54b+Bih89zE+BbAXPfOITF2z9GzOnV2HBgAfy8AlG1Qn2M6va5eb0g/xDMfT0W0Vs/xK5jS5CVl44gvxA0q9MFWrWXzCcUnecbDcJnSwdhaId7J8bKBxcNs54fhsM3ryD25kWk5WXjlel9rV7PvD4ZQeGahaMTJ04gOjoaQb16Iq12uEVMUCqhfHM8Ut78N2bMmIFPPvnESa10XxqF9EW43C1BJO3EiRNYvWgRFN27QWFjn60w8S3cGPs691k7yRWOXG2ftTinUFq27ePWAzBss+m2xbS8bHT5Ubr4czk+Dg0aNLBYdv/OrHnz5pnrGiWB3YWjghgzZgzmzJmDnj17YtKkSUhOTsY777yDIUOGoFq1agCAV199FXPmzMGAAQPw1ltv4a+//sK3336LH3/8sTiaSERERC6sU6dO8Pb2Rt97Q8rFhy6qjiVewc74U1ArlFjb522suH0K248ewI3MuwAArUKFPKMeFb390blhK2w/EWuOeau0yNLnAQDqlauM2zojbqfeAAB4efihRqWGOB0Xgwplq8HLw7dIti3Apzxe7z0Pr/eeJ7te+YAqeOfFnyXjwzpOwbCOUxzcOmmt6veEp9YH7Rqbbvl7uJj3V1IcjiRexsC6z8BLrcGG6+dw665p4lnmtWBc6A/1FiIiInD9+nX0unQex3KyreKK2uHYc+Uyqms9nNA69/fwhbZq5ucWMa0r37/owiIiInA0Lg7Nztme18yvbl0cunGjmFtVcsjts650qxrwyDmFIEAUAOFejb6Kn2l6nagajVHeNwC/xx1HQpppxLLFOUNgKFJUetxMMj2FzdfXF/Xr10dsbCxCQ0Ph4+OYJ4W6imIpHJUpUwa7du3C+PHjMWDAAHh5eWHAgAGYOXOmeZ1y5cph+/btGD9+PLp164YKFSrgyy+/xNChQ4ujiUREROTCvLy8sHz5coSF3XskuvLBhVPjitWR+58lOHTzEiKDa6J1z87wbJaAfIMeOoMe3hoPcyyvZhC0LZMtYvcZ/DxwpFIUMm6L0Bt18NSUjEfoFhUPjRc+H70DIUH3pilQWf5OciYuNv97Qqv2+Oe8P/NqB1e+VQ2QvwWFkzjbT+52NLnRSCRPNq8uVtxwN3J9gasVO22eU+hNz35rFVoHMYM/RmRwTRi9NDCU8YR47Y7VOQMA3B3TCnkaAXq9Hl5erjFKtagUS+EIMM1TtH37dtl1GjZsaH5sHREREdHDGjdubP5/UWV9EhoZXPNezDRvhUapgkapsohBpYCoFKDBg5iZUgFBKUKt0kANTRFsQclTt4rpyXUQREAlfdElqMC82slVb1W7T3ZeE16I281dJhp2N3JFN62rDu9zE+7WF1icUygVEO4VjoCHzieUAqASLM4nLCgV0GjU0GhK/rHN4d+OKVOmQBRFDB8+3NFvTURERGSilDmFUUvHRKXCPImzVUwluPQTrFyZoIBkXgFAUEqG6DFcPXdyIwk4MsZ+WpnccSSX/ViQKzpu3RdIHb9U0ucMwL3CUinBXoeIiIjcjq0RR+aYWuZKW6WQPEEUlQooXPy2IFelUIryhSN1MTamhHH1fVKuwOFqt6e4E7nc8alq9lMJguQtN8xr4Xi4cV8gdU4h98cmAPJ/xCphSs+WEhERUckhc7Jm1EgXjkSVQrropFJCULn2RbqrEpSi1ZPuLOIaXpDZy9XnOGKBo2jI5c6Dt1QVitQtacxr4cj1BS6fW5kRR1LHNlEQWDgiIiIicmVyI46gkZ7CUVQqAJXtwpKo4ogjewlK0Ty3lC0Kjjiym6vvk1KjDLSCAAULR3aTu9CWG9lBj+chUeBw9VExrk5qv1SiGCdWtpPkiCOVQvrYJnceUgKVrq0lIiKiEkHudjRRK3OKqlZClJgDiYUj+ylUomReAY44KgxXH3HkxdEbRcJTrnDEAkehSOVWLuf0eFL7pYdCAcHFi8hS5xSiSuacQeaYVxKVrq0lIiKiEuFxhSPJk0C1Uvq1GiUUvFXNLgqVCEjlXKmAQlvMDSpBFGrX3ie9FLZ/7968CC8UqYIcAHhL5JyejFRu5XJOjye1X7pDXiWLQxql9LFNbj7FEsj1f4tEREREj5AbVSRqVBC1Eid6WpXka40aFRQa175Id1VKtQijRF5FrRIKtdFmjB5P6eKFI1+Ji0JfFjcKxU8pnT/fUjSvSlHwlcit1HJ6MlL7pdy+7CqkzgtEjQpGidvfZUc3l0Cla2uJiIioRBA91chuXhUQrS+qjf4eyGlWFUJWnlVMH+wHUaOEPsjbKqarEgBfrzyIrHEUmGdZPfS+fsiOrGIVE700UHsbEVQ/0wktc2+C4Pojjlr6+GJcuQpWyytrNE5oTckRpFLbzCsAhKiZ28IYUjYILbx9rJa39fFzQmtKjubePjb3WXfYX/PqVoChjKfVcn1oGRg91cjOtz62Gct4FUfTXIYgijbOuFxUYmKis5tARERERERERORwFStWdHYTbOI4RyIiIiIiIiIisomFIyIiIiIiIiIissmtblUjIiIiIiIiIqLiwxFHRERERERERERkEwtHRERERERERERkEwtHRERERERERERkEwtHRERERERERERkEwtHRERERERERERkEwtHRERERERERERkEwtHRERERERERERkEwtHRERERERERERkEwtHRERERERERERkEwtHRERERERERERkEwtHRERERERERERkEwtHRERERERERERkEwtHRERERERERERkEwtHRERERERERERkEwtHRERERERERERkEwtHRERERERERERkEwtHRERERERERERkEwtHRERERERERERkEwtHRERERERERERkEwtHRERERERERERkEwtHRERERERERERkEwtHRERERERERERkEwtHRERERERERERkEwtHRERERERERERkEwtHRERERERERERkEwtHRERERERERERkEwtHRERERERERERkEwtHRERERERERERkEwtHRERERERERERkEwtHRERERERERERkEwtHRERERERERERkEwtHRERERERERERkEwtHRERERERERERkEwtHRERERERERERkEwtHRERERERERERkEwtHRERERERERERkEwtHRERERERERERkEwtHRERERERERERkEwtHRERERERERERkEwtHRERERERERERkEwtHRERERERERERkk8rZDXhSoigiIyPD2c0gIiIiIiIiIioSvr6+EATB2c2w4DaFo4yMDPj7+zu7GUREREREREREReLWrVsoV66cs5thwW0KR76+vkhLS3Poe6anp6Ny5cq4du0a/Pz8HPreRKURv1NEjsXvFJHj8PtE5Fj8ThE51v3vlEajcXZTrLhN4UgQhCLrkPz8/NjZETkQv1NEjsXvFJHj8PtE5Fj8ThE5lqvdpgZwcmwiIiIiIiIiIpLAwhEREREREREREdlUqgtHWq0WH330EbRarbObQlQi8DtF5Fj8ThE5Dr9PRI7F7xSRY7nyd0oQRVF0diOIiIiIiIiIiMj1lOoRR0REREREREREJI2FIyIiIiIiIiIisomFIyIiIiIiIiIisomFIyIiIiIiIiIisqnUFY6MRiO++uor1KlTBx4eHqhcuTImTpyIrKwsZzeNqFidP38egwcPRt26deHv7w8vLy/UqVMH//73v3Hz5k2LdadMmQJBEGz+zJw50+q9pdb18fGRbEuvXr0QEBAAb29vtGnTBrt27SqS7SYqKnLfE0EQoFarLdYvyH5/7Ngx9OzZE4GBgfDw8ED9+vXx9ddfw2AwWK2r0+kwffp01K1bF1qtFoGBgejbty/OnTtXJNtN5AifffYZ+vfvj+rVq0MQBFSrVk12/djYWLRv3x6+vr7w8/ND586dcfz4ccn1Dxw4gJ49eyIoKAgeHh4ICwvDwIEDkZ+fL/ma7Oxsc3vGjx9vc50VK1agVatW8Pb2hq+vL9q0aYPNmzc/ySYTFamCfqce9u6770qet2VmZmLq1Kno0aMHQkNDIQgC2rZtK/leBT0m/fPPPxgzZgxq1qwJT09PhISEoHv37ti3b98Tt5+oKDzpd+rq1auy54OCIGDJkiXm9YcPHy67bq1atWTbJfd9BYDk5GS88847qFOnDry8vFCxYkW88MILWLduXYG2X1WgtUuACRMmYM6cOejduzcmTpyIs2fPYs6cOfjrr7+wY8cOKBSlrpZGpdT169dx8+ZN9O7dG6GhoVCpVDh16hS+++47LFu2DMePH0f58uUtXvPVV18hKCjIYlmTJk1svn+bNm0wevRoi2WPXjgDwOXLl9GqVSuoVCq888478Pf3x/fff49OnTphy5YtaN++fSG3lKh49OnTBzVr1rRafvLkSXzxxRfo3r27eVlB9vt9+/ahY8eO8Pf3xxtvvIFy5cph+/btmDBhAs6cOYPvvvvOvK4oiujZsye2bNmCXr164fXXX8ft27exYMECtGzZEn/88Qfq1atXtIkgssP777+PsmXLonHjxkhNTZVd9+DBg2jbti1CQkLw8ccfAwDmzZuHNm3a4M8//8TTTz9tsf5PP/2EUaNGoXnz5pg0aRLKlCmDhIQE7N+/H3q9HhqNxubnTJ48Gbdv35Zsx+eff4733nsPjRo1wrRp0wAAixcvRlRUFBYtWoTBgwcXIANEjlWQ79TDjh8/ji+//BI+Pj6w9fDt5ORkTJkyBRUqVECTJk2QlJQk+V4FPSYlJCSgSZMm0Ov1GDNmDGrVqoWEhAR8//33eP7557F+/Xp069atQHkgcpQn/U6VK1cOixYtshkbP348cnJy0KlTJ/OyMWPG2Lze2bVrF3766SeL88dHPe77mp2djVatWuHatWt45ZVX0KBBA9y9exfR0dHo1asXFixYgNdee01mqx8iliKnT58WBUEQ+/TpY7F8zpw5IgBxyZIlTmoZketYvny5CED8/PPPzcs++ugjEYAYFxf3RO8BQHzppZeeaN3+/fuLCoVC/Ouvv8zLMjIyxCpVqojh4eGi0WgsQOuJXM/o0aNFAOLGjRvNywqy30dERIienp7i5cuXbb7v/v37zcvWrFkjAhBHjx5tse7ly5dFT09PsV27dg7eOiLHeHj/rl+/vli1alXJdZs1ayb6+vqK169fNy+7fv266OvrK3bo0MFi3b///lvUaDTiyy+/XKDjydGjR0WlUinOmjVLBCCOGzfOIp6YmChqNBrxqaeeEvPz883L8/PzxaeeekoMCAgQ09LSnvjziBytIN+p+/R6vdi0aVOxe/fu4nPPPSd6e3tbrZObmyteu3bN/G9vb2/xueees/l+BT0mTZ8+XQQgrl271mL5xYsXRQBiz549H7sNREXFnu/Uw/78808RgNivX78nWr9jx44iAPH06dM240/yfV26dKkIQPz6668tlqekpIje3t5iRETEE7e/VA2v+fXXXyGKIt566y2L5a+88gq8vLywePFi5zSMyIVUrVoVAJCSkmIznp6eDr1e/0TvlZ+fj8zMTMl4VlYW1q9fj7Zt26Jhw4bm5T4+Phg1ahQuXLiAw4cPP3njiVxMVlYWli1bhtDQUHTu3Nm87En3+5SUFJw4cQLPPvssqlevbvHew4cPB2AaTXHf7t27AQAjRoywWLd69epo06YNdu7ciX/++cfRm0lUaI/u31IuXbqEw4cPo3///ggJCTEvDwkJQf/+/bFjxw4kJiaal8+cOROiKOJ///sfBEFAVlbWY49hBoMBr7zyCjp37ow+ffrYXOfPP/9Efn4+Bg8ebDGaVq1WY9CgQUhJSSnwbQBEjvSk36mHzZkzB2fOnMHcuXMl19FqtQgNDX2i9yvoMSk9PR0AUKlSJYv1K1asCIVCAW9v7yf6XKKiYM936mE//PADAGDUqFGPXTc+Ph47duxAixYtUL9+fZvrPMn3Veo75e/vD29v7wJ9p0pV4ejw4cNQKBSIjIy0WO7h4YGGDRvyApVKpdzcXCQnJ+P69evYtm0bxowZAwDo2rWr1boNGjSAv78/PDw80KpVK2zZskXyfVeuXAkvLy/4+vqifPnyeP3115GWlmaxzsmTJ5GXl4eWLVtavb5FixYAwO8lubUVK1YgPT0dw4cPh1KpBFCw/T4vLw8A4OXlZbXu/WUHDx40L3uS9WNjY+3eHiJnu//dkPr+iKKIo0ePmpdt2bIFderUwd69e1GzZk34+PjAy8sLXbt2xcWLF21+xldffYVz585h3rx5ku0o6HeTyNXFx8fjww8/xEcffWT+I2JhFfSY1LFjRwDA2LFjsWfPHty4cQOHDx/GwIED4ePjg4kTJzqkXUTFLTMzE8uXL0fVqlXRoUOHx67/008/wWg0ShaZnvT7+sILL0ClUmHSpEnYvHkzrl+/jlOnTuHll19GamoqPvjggyfehlJVOEpISEBQUBC0Wq1VLCQkBMnJybKTJBKVRD/88APKlSuHypUro1OnTkhNTcXixYvRpk0b8zplypTB6NGjMXfuXKxbtw6fffYZ4uPj/7+9Ow+rutj/AP4+7LLIjoCyuKCAgiuYyn7BUBIQU1sQQpRcrhb+LExK0FyuabcsDTMRtxbcEq+iIQnumJp63UJQcEElEDeQJWB+f/jwvR7PYTNUrPfreXh6mJnvzOc7nfEc5szMFwEBAVi9erVCna6uroiPj8emTZuwZs0a+Pj4SOdPPLoC6fr16wAg961xnbq0goKCFr5jomcnMTERMpkMY8eOldKa87pv164dTExMkJWVhfLycrmydd/kXr16VUqr+1bq8UO2Hzx4IH04f7Q80YumOePn7t27uHnzJgoKCjBq1CgMGzYMW7ZsQWxsLPbs2QM3Nze51UkAkJeXh7i4OMyaNavBw4TrG2uA8rFJ1NpNnDgRnTp1wrRp01qszua+J3l7e2PZsmXIy8uDt7c3OnToAFdXV2RnZyMrKwt9+vRpsdiInqXk5GSUlpYiIiKi0TOVa2trkZSUBF1dXYwePVppmaaOVzs7OyQnJ6OyshIBAQGwsrKCs7MzUlNTsWfPHqULBerztzoc+8GDB0onjYCHq47qytR3SCLRX1FwcDDs7e1RWlqKEydOYNu2bSguLpYr8/j2TgAYO3YsevTogejoaLz66qtyJ/k/vqIhLCwMzs7OiI2NxZIlS6TZ7QcPHgCA0nH56JgkehFlZ2fjwIED+Mc//oGOHTtK6c153ctkMkRHRyM2NhYhISGYM2cOTExMkJ6ejri4OKipqcmNkdDQUMydOxezZs2Cjo4OfH19UVxcjLi4OGlcc0zRi6w54+f+/fsAgJKSEsTGxmLu3LkAgOHDh8PGxgYRERH47LPPsHDhQqmOCRMmNOnDuJOTE/z8/JCSkoL3339f2oqzevVqaTUuxxq9KL7//nvs2rULBw4cgJpay/15+CTvSaampujXrx98fX3RtWtXXLhwAYsWLUJAQAD27t0LKyurFouP6FlZuXIlVFRUFLZtKrN7925cuXIFkZGRSp+U1tzxamBgAGdnZ4wbNw69evVCQUEBPv30UwQFBeHnn39Gz549m3QPf6sVR9ra2tKSycdVVFRIZYj+Tjp06ABfX18EBwdj9uzZWLNmDd5//30sWLCgweuMjY0xYcIE3LlzB4cOHWq0nffeew8aGhrYsWOHlFY33pSNS45JetElJiYCUNzL3tzX/YwZMxAbG4vMzEy4urpKf9QuXrwYhoaGaNu2rVTW0NAQ6enp6Ny5M6KiotCpUye4urriwYMHiImJAQC58kQvmuaMnzZt2kh5dWeC1XnzzTehqqqKzMxMKW39+vXYvXs3EhISlD4F9HHJyckICQnB4sWL4ejoCEdHR2zYsAHLli0DwLFGL4aSkhK8++67iIyMxMCBA1u07ua+J33zzTd44403sHjxYkyfPh2BgYGYPn060tPTcfXqVXzwwQctGh/Rs3Du3DlkZWXBz88P1tbWjZav7/Mj0Pzx+tNPP8HPzw9TpkxBXFwcgoKCMGnSJBw8eBDV1dWYPHlyk+/jbzVxZGlpieLiYqUfNgoKCmBiYsLVRvS35+zsjN69e+Orr75qtGzdMv7HVygpo66uLo3BOnUHtSnbjlaXpmw7AlFrV11djbVr18LY2BjDhw+Xy2vu615FRQVz585FcXExDh8+jEOHDqGwsBCvv/46iouLYW9vL1eHk5MTTpw4gZycHOzduxc5OTnIzMyU3vseL0/0ImnO+DEyMpImkczNzeXKqqurw8TERHoQRGVlJaZNm4ahQ4fC3Nwcubm5yM3NxeXLlwE83PaWm5sr9whmQ0NDbN68GTdu3MC+ffvw66+/4uLFi1KMHGv0Ipg9ezbKysowfvx46XWfm5uL8vJyCCGQm5v7p7ZdNuc9acGCBbC3t0ePHj0U6qg7q4zoRdPQRNDjbt26hZSUFPTo0UM69/JRzR2vCxcuhI6OjvSAljrm5uZwd3dHVlZWk4/q+VttVXNxcUFaWhp++eUXufNbKioqcPLkSXh4eDzH6Ihaj/LycpSUlDRaru5g0Xbt2jVatqKiAteuXZP7R9DJyQmampo4fPiwQvm6Q0X79evX1LCJWo3//Oc/KCwsxDvvvKOwpeZJX/c6Ojpy42fTpk0QQtS7P71Lly7o0qWL9PvOnTvRtm1bDBo06Inuiag1cHFxAQAcPnxY4UN4VlYWZDIZ+vbtC+DhVs9+/fph3759uHbtmtwfqJWVlSgqKpLGSHl5OYqKirBjxw65lbF11q9fj/Xr12PRokWYPn26XF67du3k3gdTU1MBKH/IBFFrc/nyZZSVlaF///5K8+3s7NC9e3ecOXPmT7XTlPekgoICdO7cWen11dXVTX6qL1FrUVVVhXXr1sHU1BRBQUGNll+7di2qqqoQGRmpNL+547WgoAC1tbUQQkAmk8mVra6uRk1NDWpra5t0L3+riaPRo0dj/vz5+Pzzz+Umjr755hs8ePAAb7755nOMjujZunnzpsI3sMDDQz3PnDkDLy8vAA//USkrK4O+vr5cuatXryIhIQHGxsZySyVv3boFY2NjhXo/+ugjVFdXY9iwYVKarq6udFjpqVOnpD22paWlWLlyJezs7BSegkj0Iqj7dknZG39LvO5v3bqFmTNnwsTEBBMmTGg0ni+//BJnzpxBXFwcH2dML7QuXbqgX79+2LhxIz7++GNpdc/169exceNG+Pj4yL23jRkzBvv27UNCQgKWLFkipa9YsQK1tbXS5I6Ojg42btyo0F5RUREmTZoEf39/REZGwtnZucH4jh07hpUrV8LT0xNubm4tcctET1VMTAxCQ0MV0uPi4nDp0iWsW7dO4TPgn1Xfe5KjoyP++9//IisrS+6LksOHD+PChQsICAho0TiInrZt27ahqKgI06ZNa9IW6MTERGhoaGDMmDFK85s7Xh0dHXHhwgVs3LgRo0aNktLz8vKwb98+ODk5SecDNkYmhBBNKvkXMWXKFCxduhTDhw/H0KFDcf78eXzxxRcYNGgQ9uzZ0+gp50R/FcOHD8eNGzfg4+MDGxsbVFRU4Pjx4/jhhx+gra2NzMxM9OrVC3fu3EHHjh0RHBwMBwcHGBoaIjs7GytXrkRpaSm+//57jBw5Uqo3OjoaWVlZ8Pb2hrW1NUpLS5GamoqMjAz0798fGRkZcudO5ObmwtXVFerq6oiOjkbbtm3xzTff4PTp09ixYwdefvnl59E9RE/s+vXrsLa2Rt++fRUOiq/TnNd9amoqFi1aBD8/P5ibm+Py5ctYuXIlbt++jW3btsHX11eu7qFDh6JTp05wdHSETCZDWloatm7dioCAAPz4449N+uBC9KytW7dO2hb25ZdfoqqqSnr0to2NjdyH6EOHDklPXJoyZYp0TWFhIQ4ePCh30GdNTQ28vb2xf/9+vPHGG3B3d8fp06fx9ddfw97eHllZWUoPH62Tn5+Pjh07YvLkyVi6dKlc3kcffYScnBy4urpCX18fv/76K5KSkmBhYYHMzEwe4kvPVXPGlDJeXl44duyY3NNw6yxdulTatlk3gVv3RUnPnj3lviRszntSSkoKQkJCoK2tjQkTJsDOzg45OTlISEhATU0NDhw4IK0oJHrWnmRMDRkyBLt27cK5c+fg4ODQYP1HjhzBSy+9hFGjRiE5OblZsdU3Xo8ePQoPDw/U1NRIh2Nfu3YNCQkJKCkpQUpKCl555ZWmNSL+Zqqrq8XixYtF165dhYaGhrC0tBTR0dHi/v37zzs0omcqOTlZBAQEiA4dOghNTU2hpaUlunXrJv75z3+Ky5cvS+UqKipEZGSk6NGjhzAwMBBqamrC3NxcjBgxQhw5ckSh3q1bt4rBgwcLS0tLoampKbS1tUXPnj3FvHnzRHl5udJYzp07JwIDA4W+vr5o06aNGDRokNi9e/dTu3eip2nevHkCgFixYkWD5Zr6uj979qzw9/cX5ubmQl1dXVhYWIjQ0FDx22+/Ka13zpw5onv37kJHR0fo6OiIfv36iWXLlonq6uoWuT+ip8HT01MAUPrj6empUP7QoUPCx8dH6OjoCF1dXTF48GBx/PhxpXWXlpaKmJgYYWNjI9TV1YWlpaWYPHmyKCkpaTSuvLw8AUBMnjxZIW/Lli1iwIABwtDQUGhqago7Ozvx/vvvi9u3bzf39olaXHPHlLLrdXR0lObZ2NjUW3d4eLhc2ea+J/3888/C399fGBkZCVVVVWFiYiJCQkLEiRMnmtkDRC2ruWPqypUrQkVFRQwcOLBJ9Y8fP14AEGlpaU8UW33j9ddffxUjRowQZmZmQlVVVRgYGIiXX35ZZGRkNKuNv92KIyIiIiIiIiIiahruyyIiIiIiIiIiIqU4cUREREREREREREpx4oiIiIiIiIiIiJTixBERERERERERESnFiSMiIiIiIiIiIlKKE0dERERERERERKQUJ46IiIiIiIiIiEgpThwREREREREREZFSnDgiIiIiakR+fj5kMhni4+P/0m0+iZiYGHTs2BFVVVWNls3MzIRMJsPq1aubVHdKSgo0NDSQk5PzJ6MkIiKiJ8WJIyIiolbk0qVLiIqKgr29PbS1tWFoaAgHBweEh4cjIyPjqbYdHx+PrVu3PtU2SF5+fj7i4+Nx8uTJ5x3KE8nLy8OSJUswa9YsaGhoPFEdJ0+eRHx8PPLz8xXygoKC4OTkhJiYmD8ZKRERET0ptecdABERET107NgxeHp6Ql1dHWFhYejevTvKy8uRk5ODtLQ06Onpwdvb+6m1P3v2bISHhyM4OPiptUHy8vPzMXv2bNja2qJXr15yeTY2NigvL4eaWuv9uPavf/0Lbdu2RWho6BPXcfLkScyePRteXl6wtbVVyH/nnXcQHh6Os2fPonv37n8iWiIiInoSrfeTCBER0d/M7Nmz8eDBA5w8eRI9e/ZUyL958+ZziIqeF5lMBi0trecdRr3u3buHb7/9FpGRkVBXV39q7YSEhGDixIlYvnw5vvzyy6fWDhERESnHrWpEREStRE5ODoyNjZVOGgGAubk5AKCqqgqmpqYYNGiQ0nKLFi2CTCbDvn37AAAVFRWIj49Ht27doK2tDQMDAzg5OeG9994D8L+zdABgzZo1kMlk0s+j0tPTMXjwYBgYGEBLSwvOzs5Yvny5Qvu2trbw8vLCqVOn4OvrC11dXZiZmeH//u//UF1djYqKCkyfPh3t27eHlpYWPDw8cP78+Sb3082bNzF16lR06tQJmpqaMDMzg5+fH3bv3g3g4fYmbW1t3Lt3T+Hao0ePQiaTYc6cOXLpmzdvhpeXFwwMDKCtrY1u3bph6tSpTTq3Jzk5GW5ubtDT04O2tjb69++PTZs2NXrd6tWrpRVkERERUp97eXkBUH7G0aNpGzZsQK9evdCmTRt06dIFSUlJAIArV67g1VdfhZGREfT09BAaGor79+8rtH/jxg1MnDgR1tbW0NDQgKWlJaKiovD77783GjsApKamoqysDEOHDlWan5KSgt69e0NLSwtWVlb46KOP8Mcff8iViY+PR0REBADA29tb6oO33npLKqOrqwt3d/cm9SkRERG1PK44IiIiaiU6d+6M7OxsbNmyBSEhIfWW09DQQHh4OD799FNkZ2ejW7ducvmrVq1C165d4eHhAQCYPHkyVq1ahbCwMEybNg3V1dXIycnBnj17AACmpqZYt24dxowZA3d3d0RFRSm0uWLFCkyYMAEvvfQSYmNjoaOjg927d2PixIm4ePEiFi1aJFf+2rVr8PPzw+jRo/Hqq68iLS0N//73v6GmpoazZ8+ivLwcM2bMQHFxMRYvXozg4GCcP38eKioNf6eVn5+PQYMGobCwEGFhYejXrx/KysqQlZWF9PR0+Pn5Yfz48di2bRu+//57vP3223LXJyYmQkVFBWPHjpXSYmNjMX/+fDg6OiI6OhoWFha4ePEiNm/ejDlz5jR4ds+HH36IefPmwd/fHx9//DFUVFTw448/YuTIkVi6dCkmT55c77UeHh6YOXMm5s+fj6ioKLi7uwMA2rVr12AfAMD27duxfPlyTJo0CUZGRkhMTMTYsWOhoaGBmTNnwsfHB/Pnz8fRo0exatUqaGlpYeXKldL1V65cwYABA1BVVYXIyEh07twZubm5SEhIQEZGBo4dOwZ9ff0GY9i7dy8AwMXFRSHvxx9/xIgRI2Bra4tZs2ZBTU0NSUlJ2LFjh1y5kJAQ3LhxAytWrMDMmTPh4OAA4OFYeNSAAQPw008/4bfffoO9vX2j/UNEREQtSBAREVGrcOjQIaGuri4ACDs7OxERESG++uorce7cOYWy2dnZAoB477335NIPHDggAIiFCxdKaYaGhmLIkCGNtg9AhIeHK6Rfv35daGpqitdff10hb+rUqUJFRUVcvHhRSrOxsREAxIYNG+TK9unTR8hkMhEYGChqa2ul9CVLlggAYteuXY3GOGTIkHrL1tTUCCGEqK6uFlZWVsLFxUUuv6ysTLRt21auL44cOSIACG9vb1FeXi5Xvra2VoozLy9PABBxcXFS/vHjxwUA8cEHHyjEEhQUJPT09MS9e/cavJ+MjAwBQCQlJSnkKWuzLk1bW1vk5+dL6b///rvQ1NQUMplMfPrpp3L1DB8+XKirq4v79+9LaYGBgcLU1FRcvXpVruzRo0eFqqqqXJv18fDwEIaGhgrpdf1vbGwsioqKpPQ7d+4Ia2trhftNSkoSAERGRka9ba1bt04AEJs2bWo0LiIiImpZ3KpGRETUSgwYMADHjx9HeHg47t69i6SkJEyaNAmOjo7w8PDApUuXpLJdu3aFp6cn1q5di+rqaik9MTERampqCA8Pl9L09fVx9uxZnDlz5oni2rRpEyorKxEZGYni4mK5n2HDhqG2thbp6ely17Rv3x4jR46US3Nzc4MQAlOmTJHbBle30qaxR66XlJRg165d8Pf3x8svv6yQX7daSVVVFWPHjsXRo0dx+vRpufu4d+8eIiMjpbRvv/0WALBgwQKF84SUbdd71LfffguZTIbw8HCFfgkMDMT9+/dx+PDhBu/pSQUHB8PGxkb63dTUFN26dYOKiorCKid3d3f88ccf0lPL7t69i+3btyMwMBBaWlpycdva2qJLly5IS0trNIaioiIYGRkppB8/fhxXr15FREQETExMpHR9fX1MmDDhie7X2NgYAJq8jY6IiIhaDieOiIiIWhEnJyesXr0ahYWFyM/Px5o1a+Du7o79+/cjKChI7sydqKgoFBYWYvv27QCA+/fvY8OGDXjllVfktjt9/vnnuH37NpycnNC5c2eMGzcOKSkpqK2tbVJMdecP+fr6wtTUVO7Hz88PAFBYWCh3TceOHRXqMTQ0VJpXl37r1q0G48jNzYUQAr1792405sjISKiqqiIxMVFKS0xMhJmZGQIDA6W0nJwcyGSyes+Vasj58+chhIC9vb1Cv9RNTj3eLy2lU6dOCmmGhoawsLCApqamQjrwv/7Nzs5GbW0tEhMTFeI2NTVFdnZ2k+KWyWQQQiik101wKttS5ujo2PjNKVHXTkMTeURERPR08IwjIiKiVsrGxgZhYWHS2UMHDx7EL7/8Ajc3NwDAiBEjMHXqVCQmJiI4OBjJyckoKyvDuHHj5OoJCgpCfn4+UlNTsXfvXqSnpyMxMRHu7u5IT09v8Awf4H9/tK9duxYWFhZKyzw+kaGqqlpvffXlKZuEeFJWVlbw9/fH+vXr8cknn+Dy5cvYt28fpk+frvAEsMZWFtVHCAGZTIadO3fWe09P6/Hx9bXXUL/X9W/df0NDQ+VWpj2qTZs2jcZgamqKU6dONVquJZSUlEhtEhER0bPFiSMiIqJWTiaToX///jh48CAKCgqkdE1NTYSFheGLL77A9evXkZiYiPbt28Pf31+hDiMjI4SGhiI0NBRCCMyYMQOffPIJUlJSFLaUPc7Ozg4AYGJiAl9f35a9uWbo0qULZDIZTp482aTyUVFR2LFjB7Zu3YoTJ04AgNw2NeDhlr+dO3fi1KlTcHV1bVY8dnZ22LVrF6ytraVDnZvreaygqevHqqqqP/X/s0ePHti7dy+Ki4vltqTVTSL+9ttvCtecO3dOIa0pfZCbmyu1SURERM8Wt6oRERG1Ert375Y7r6hOeXm5dObM41t9xo8fj5qaGsTExCArKwtvvfWW3KqTmpoa3LlzR+4amUwmbfeqW8kBPHzs+aO/1xk1ahQ0NTURFxeH8vJyhfy7d++isrKy6Tf6hIyMjDBkyBDs3LlT4UwlQHHFUkBAACwtLfH1119jzZo1GDRokML2qTfeeAMAMHPmTLltgPXV+agxY8ZI19bU1CjkN2W7l66uLgAo7fenxdjYGEOHDsWWLVuQlZWlkC+EQFFRUaP1eHl5AYBCHX379kWHDh2QlJSE4uJiKf3evXtYvny5Qj1N6YOsrCy0a9dO4QmCRERE9PRxxREREVErER0djVu3biEwMBBOTk7Q1tbG1atX8d133+HChQsICwuDk5OT3DUODg5wc3PD+vXrIZPJ5B4zDzw898jCwgKBgYHo3bs3zMzMkJeXh4SEBBgaGmLYsGFS2Zdeegnp6elYuHAhrK2tIZPJ8Nprr6FDhw5ISEjAuHHj4ODggDFjxsDGxgZFRUU4ffo0tm7dinPnzsHW1vap99HSpUsxcOBADBkyBOHh4ejbty/Ky8tx5MgR2NraYuHChVLZukOy586dCwCYP3++Qn2urq6IiYnBwoUL0adPH4wePRrm5ubIy8vDpk2b8Msvv8DAwEBpLC4uLoiPj0d8fDx69eqFkSNHwtLSEjdu3MDx48eRmpqqdDLqUY6OjtDT08NXX30FbW1tGBgYwMzMDD4+Pk/eSU2QkJAANzc3eHh4ICwsDL1790ZtbS0uXbqElJQUhIWFIT4+vsE6/P39oaenh9TUVLzyyitSuqqqKj777DOMGjUKrq6uGD9+PNTU1LBq1SoYGxvjypUrcvW4uLhARUUF8+bNw+3bt6Gjo4OOHTuif//+AIDS0lLs379f4bVNREREz8jzeJQbERERKfrpp5/EpEmThLOzszA2NhaqqqrCyMhIeHl5icTEROlx849bu3atACB8fHwU8iorK8WMGTOEi4uLMDIyEhoaGsLGxkZERESICxcuyJW9cOGC8PPzE3p6egKAePxjwoEDB0RwcLAwNTUV6urqwsLCQnh5eYnFixfLPcrexsZGeHp6KsQSFxcnAIi8vDy5dGWPnW/ItWvXxNtvvy2srKyEurq6MDMzE35+fiI9PV2hbH5+vlBRURF6enqitLS03jq/++47MXDgQKGrqyu0tbVFt27dxDvvvCMqKysbjXH79u1i8ODBwtDQUGhoaIgOHToIf39/kZCQ0KT72bFjh+jdu7fQ1NQUAKS+U9ZmQ3F4enoKGxsbhfT6HndfVFQkpk+fLuzs7ISmpqbQ19cXPXr0EFOnThVnz55tUuwTJ04URkZGUj89avPmzaJnz55Sn3z44YciLS1NABBJSUlyZVevXi0cHByEurq6ACDCw8Pl8gCI06dPNykmIiIialkyIVrwJEoiIiJ65jZs2IDRo0fju+++w+uvv/68w2lVbty4ASsrK0RGRuLrr79+3uH85eTn58Pe3h5Lly5VOJS9pfTp0we2trbYsmXLU6mfiIiIGsYzjoiIiF5wy5Ytg4mJCUJCQp53KK1OQkICampqEBUV9bxD+UuytbXFu+++i7lz5za6Le9JbN26FWfOnJHbgkhERETPFlccERERvYB+//13/Pzzz9i/fz8SEhKwYMECzJgx43mH1Wr88MMPuHLlCuLi4uDp6Yldu3Y975CIiIiIXkicOCIiInoBZWZmwtvbGwYGBnjttdfwxRdfQF1d/XmH1WrIZDJoaWnB3d0dSUlJaN++/fMOiYiIiOiFxIkjIiIiIiIiIiJSimccERERERERERGRUpw4IiIiIiIiIiIipThxRERERERERERESnHiiIiIiIiIiIiIlOLEERERERERERERKcWJIyIiIiIiIiIiUooTR0REREREREREpBQnjoiIiIiIiIiISClOHBERERERERERkVL/D5Nz/7DKv67oAAAAAElFTkSuQmCC", - "text/plain": [ - "
" - ] - }, - "execution_count": 7, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "from qiskit.visualization import timeline_drawer\n", - "\n", - "timeline_drawer(qc_dd, show_idle=False)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Lastly, because the `YGate` is not an actual basis gate of our backend, manually apply the `BasisTranslator` pass (this is a default pass, but it is executed before scheduling, so it needs to be applied again). The session equivalence library is a library of circuit equivalences that allows the transpiler to decompose circuits into basis gates, as also specified as an argument." - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "metadata": {}, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/kjs/.local/share/virtualenvs/documentation--fuetTj0/lib/python3.10/site-packages/qiskit/visualization/circuit/matplotlib.py:282: UserWarning: Style JSON file 'iqp.json' not found in any of these locations: /home/kjs/.local/share/virtualenvs/documentation--fuetTj0/lib/python3.10/site-packages/qiskit/visualization/circuit/styles/iqp.json, iqp.json. Will use default style.\n", - " self._style, def_font_ratio = load_style(self._style)\n" - ] - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAADpQAAAM+CAYAAACuJQPHAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd3hT5fvH8U+S7kKBQqHsvafsKaKAgIKKMhRQRAEFBFGG4AC/IsiWoYKCAjJEpgrKHjKUvUUoS2aFAmWUQkfy+4Mfgdpd0qbJeb+ui+uiOSP3c577fnLOSZ7EZLPZbAIAAAAAAAAAAAAAAAAAAAAAAAAAAIDbMjs7AAAAAAAAAAAAAAAAAAAAAAAAAAAAAKQvJpQCAAAAAAAAAAAAAAAAAAAAAAAAAAC4OSaUAgAAAAAAAAAAAAAAAAAAAAAAAAAAuDkmlAIAAAAAAAAAAAAAAAAAAAAAAAAAALg5JpQCAAAAAAAAAAAAAAAAAAAAAAAAAAC4OSaUAgAAAAAAAAAAAAAAAAAAAAAAAAAAuDkmlAIAAAAAAAAAAAAAAAAAAAAAAAAAALg5JpQCAAAAAAAAAAAAAAAAAAAAAAAAAAC4OSaUAgAAAAAAAAAAAAAAAAAAAAAAAAAAuDkmlAIAAAAAAAAAAAAAAAAAAAAAAAAAALi5dJtQ+thjj+ntt99O920y6z4AAAAAAAAAAAAAAAAAAAAAAAAAAAAyizRNKA0NDVWfPn1UokQJ+fj4KE+ePKpXr56++uor3bp1y9ExOlTnzp1lMplkMpnk5eWlEiVK6H//+59iYmKcHVqqjRgxQjVq1FDWrFmVO3duPfvsszpy5IizwwIAAAAAAAAAAAAAAAAAAAAAAAAAAJmMR2o3OHHihOrVq6fs2bNr+PDhqlixory9vXXgwAF9/fXXyp8/v1q1apUesTpMs2bN9N133+nOnTv69ddf1bNnT3l6emrQoEHODi1VNm7cqJ49e6pGjRqKiYnR4MGD1bRpU/3111/y9/d3dngAAAAAAAAAAAAAAAAAAAAAAAAAACCTSPUvlPbo0UMeHh7auXOn2rZtq7Jly6pYsWJ65plntHz5crVs2TLB7e7cuaPevXsrd+7c8vHxUf369bVjx45468XExKhXr17Kli2bcuXKpQ8//FA2m02StGLFCtWvX1/Zs2dXzpw59fTTT+v48eOpbYK8vb0VHByswoUL680331Tjxo31888/x1nHarVqwIABCgwMVHBwsIYOHWpflpI4Fi5cqIoVK8rX11c5c+ZU48aNFRERYd/3iBEjVLRoUfn6+qpy5cpauHBhqtuxYsUKde7cWeXLl1flypU1Y8YMnT59Wrt27bKvU7ZsWfsvsv733+TJk1P9nAAAAAAAAAAAAAAAAAAAAAAAAAAAwPWkakLp5cuXtWrVKvXs2TPRX8A0mUwJPj5gwAAtWrRIM2fO1O7du1WiRAk9+eSTunLlSpz1Zs6cKQ8PD23fvl0TJkzQuHHjNG3aNElSRESE3nnnHe3cuVNr166V2WzWc889J6vVmppmxOPr66uoqKh4cfj7+2vbtm0aNWqU/ve//2n16tUpiuPChQt68cUX1aVLFx0+fFgbNmxQ69at7RNjR4wYoVmzZmnKlCk6dOiQ+vbtq44dO2rjxo32558xY0aixzIx165dkyQFBgbaH1u0aJEkae3atbpw4YJOnTols9msBQsWqGvXrqk8UgAAAAAAAAAAAAAAAAAAAAAAAAAAwBV5pGblY8eOyWazqXTp0nEez5Url27fvi1J6tmzp0aOHBlneUREhL766ivNmDFDzZs3lyR98803Wr16taZPn67+/fvb1y1YsKDGjx8vk8mk0qVL68CBAxo/fry6du2q559/Ps5+v/32WwUFBemvv/5ShQoVUtMUSZLNZtPatWu1cuVKvfXWW3GWVapUSUOGDJEklSxZUpMnT9batWvVpEmTZOO4cOGCYmJi1Lp1axUuXFiSVLFiRUl3f6l1+PDhWrNmjerUqSNJKlasmDZv3qypU6eqYcOGkqRs2bLFO85JsVqtevvtt1WvXr04x+Lff/+Vh4eH6tWrJ29vb+3atUtWq1UNGjSQt7d3Ko8YAAAAAAAAAAAAAAAAAAAAAAAAAABwRan6hdLEbN++XXv37lX58uV1586deMuPHz+u6Oho1atXz/6Yp6enatasqcOHD8dZt3bt2nF+mbNOnToKCQlRbGysQkJC9OKLL6pYsWIKCAhQkSJFJEmnT59OVbzLli1TlixZ5OPjo+bNm6tdu3YaOnRonHUqVaoU5++8efPq4sWLkpRsHJUrV9YTTzyhihUrqk2bNvrmm2909epVSXcn5d66dUtNmjRRlixZ7P9mzZql48eP25/vueee099//53iNvXs2VMHDx7UDz/8EOfxAwcOqFSpUvbJo/v27VPu3LmVJ0+eFO8bAAAAAAAAAAAAAAAAAAAAAAAAAAC4tlT9QmmJEiVkMpl05MiROI8XK1ZMkuTr6+u4yBLQsmVLFS5cWN98843y5csnq9WqChUqKCoqKlX7adSokb766it5eXkpX7588vCIfxg8PT3j/G0ymWS1WlMUh8Vi0erVq7V161atWrVKkyZN0vvvv69t27bp5s2bkqTly5crf/78cZ4jrb8Y2qtXLy1btky///67ChQoEGfZ/v377b+OKt2dUPrg3wAAAAAAAAAAAAAAAAAAAAAAAAAAwP2l6hdKc+bMqSZNmmjy5MmKiIhI8XbFixeXl5eXtmzZYn8sOjpaO3bsULly5eKsu23btjh///nnnypZsqTCw8N15MgRffDBB3riiSdUtmxZ+69+ppa/v79KlCihQoUKJTiZNCmXL19OURwmk0n16tXTxx9/rD179sjLy0tLlixRuXLl5O3trdOnT6tEiRJx/hUsWDBVsdhsNvXq1UtLlizRunXrVLRo0Xjr7N+/P86vre7bty/er68CAAAAAAAAAAAAAAAAAAAAAAAAAAD3lrrZlJK+/PJL1atXT9WrV9fQoUNVqVIlmc1m7dixQ3///beqVasWbxt/f3+9+eab6t+/vwIDA1WoUCGNGjVKt27d0muvvRZn3dOnT+udd95R9+7dtXv3bk2aNEljx45Vjhw5lDNnTn399dfKmzevTp8+rffeey/tLU+jlMSxbds2rV27Vk2bNlXu3Lm1bds2Xbp0SWXLllXWrFnVr18/9e3bV1arVfXr19e1a9e0ZcsWBQQE6JVXXpEkLVmyRIMGDdLff/+daCw9e/bU3Llz9dNPPylr1qwKDQ2VJGXLlk2+vr6yWq06dOiQPvroI/s2x48fV+vWrdPhyAAAAAAAAAAAAAAAAAAAAAAAAAAAgMwq1RNKixcvrj179mj48OEaNGiQzp49K29vb5UrV079+vVTjx49Etzus88+k9VqVadOnXTjxg1Vr15dK1euVI4cOeKs9/LLLysyMlI1a9aUxWJRnz591K1bN5lMJv3www/q3bu3KlSooNKlS2vixIl67LHH0tTwtDKbzcnGERAQoN9//12ff/65rl+/rsKFC2vs2LFq3ry5JOmTTz5RUFCQRowYoRMnTih79uyqWrWqBg8ebN/HtWvXdOTIkSRj+eqrryQp3jH47rvv1LlzZx0/fly3bt2K84ukFStW1JAhQ1StWjXVq1fvIY8GAAAAAAAAAAAAAAAAAAAAAAAAAABwBSabzWZzdhAAAAAAAAAAAAAAAAAAAAAAAAAAAABIP2ZnBwAAAAAAAAAAAAAAAAAAAAAAAAAAAID0xYRSAAAAAAAAAAAAAAAAAAAAAAAAAAAAN8eEUgAAAAAAAAAAAAAAAAAAAAAAAAAAADfHhFIAAAAAAAAAAAAAAAAAAAAAAAAAAAA3x4RSAAAAAAAAAAAAAAAAAAAAAAAAAAAAN8eEUgAAAAAAAAAAAAAAAAAAAAAAAAAAADfHhFIAAAAAAAAAAAAAAAAAAAAAAAAAAAA3x4RSAAAAAAAAAAAAAAAAAAAAAAAAAAAAN8eEUgAAAAAAAAAAAAAAAAAAAAAAAAAAADfHhFIAAAAAAAAAAAAAAAAAAAAAAAAAAAA3x4RSAAAAAAAAAAAAAAAAAAAAAAAAAAAAN8eEUgAAAAAAAAAAAAAAAAAAAAAAAAAAADfHhFIAAAAAAAAAAAAAAAAAAAAAAAAAAAA3x4RSAAAAAAAAAAAAAAAAAAAAAAAAAAAAN8eEUgAAAAAAAAAAAAAAAAAAAAAAAAAAADfHhFIAAAAAAAAAAAAAAAAAAAAAAAAAAAA3x4RSAAAAAAAAAAAAAAAAAAAAAAAAAAAAN8eEUgAAAAAAAAAAAAAAAAAAAAAAAAAAADfHhFIAAAAAAAAAAAAAAAAAAAAAAAAAAAA3x4RSAAAAAAAAAAAAAAAAAAAAAAAAAAAAN8eEUgAAAAAAAAAAAAAAAAAAAAAAAAAAADfHhFIAAAAAAAAAAAAAAAAAAAAAAAAAAAA3x4RSAAAAAAAAAAAAAAAAAAAAAAAAAAAAN8eEUgAAAAAAAAAAAAAAAAAAAAAAAAAAADfHhFIAAAAAAAAAAAAAAAAAAAAAAAAAAAA3x4RSAAAAAAAAAAAAAAAAAAAAAAAAAAAAN8eEUgAAAAAAAAAAAAAAAAAAAAAAAAAAADfn4ewA4F5sNikq1tlRpI6XRTKZnB2F49hskjXa2VGknNnTscff6Dnoav0vpU8OGPkY0H5jjwESOWBkrtj3D3JUHrjicTBy2+9J7TFw5bamRlpyw2az6ZbVtV4M/cwWmVLZUHIgca54bBx7PkgNuBPGwYQZpf8lxsG0MEINSK7Zz2lBDaQe94bIAdpPDZADxm4/AAAAAAAAAAAAkseEUjhUVKw0cL6zo0idke0kbzeqBGu0tH6is6NIuUa9JYuX4/Zn9Bx0tf6XHJ8DRj8GRm+/0ccAiRwwMlfs+wc5Kg9c8TgYue33pPYYuHJbUyMtuXHLGqsc61anT0Dp5OrjTeRvSd2LITmQOFc8No48F6AG3AvjYMKM0v8S42BaGKEGJNfs57SgBlKPe0PkgNHbTw2QA0ZvPwAAAAAAAAAAAJJndnYAAAAAAAAAAAAAAAAAAAAAAAAAAAAASF9MKAUAAAAAAAAAAAAAAAAAAAAAAAAAAHBzTCgFAAAAAAAAAAAAAAAAAAAAAAAAAABwc0woBQAAAAAAAAAAAAAAAAAAAAAAAAAAcHNMKAUAAAAAAAAAAAAAAAAAAAAAAAAAAHBzTCgFAAAAAAAAAAAAAAAAAAAAAAAAAABwc0woBQAAAAAgGfuOb1CT/iat3DHD2aHAScgBGB01AHIARkcNAAAAAAAAAAAAAAAAd+Dh7AAAON++4xvUb0qjOI/5ePmrQFApNa7aSc/We0sWC8OFOzN6Dhi9/RLHwOjofxgdNeAe/tuPZpNZfj4ByhWQXyULVFOjKi+qeuknZTKZnBgl0hM5kHaMg+6BGgA5kHaMg+6BGkg7agDkAMfA6Oh/jgEAAAAAAAAAAICR8K4PALtGVV5UzTItZJNNV2+EavWuWZryyzs6ffGw+r7wtbPDQwYweg4Yvf0Sx8Do6H8YHTXgHh7sx8g7N3Tm0hFtPbhUq3fNUtWSjfVhpwXK4pvd2WEiHZEDacc46B6oAZADacc46B6ogbSjBkAOcAyMjv7nGAAAAAAAAAAAABgBE0oB2JXMX1WNq3W0/92ybg+9NqqMfts+Ta82+1TZswQ5MTpkBKPngNHbL3EMjI7+h9FRA+7hv/0oSW+0HKdvlg/Qot/HaficFzX89d+cFB0yAjmQdoyD7oEaADmQdoyD7oEaSDtqAOQAx8Do6H+OAQAAAAAAAAAAgBEwoRSZ1oSOJoftq89sm8P2ZSS+Xv4qU7i2Nu1fqPOXjxvuTWJykBwwevsljoHRxwGj9z9ADbgPi9miN1qO1ZEz27XjyAodPLlZFYrWlyRFRF7T3HXDtfnAIl0KPyM/nwA9UrKxujT7VHlzFktyv1arVfPWj9CuIyt19tJR3Yi8ohxZg1WrzFN6tdkwBfjnlCRdvXlRLw0roEcrtdGgl+bE28/ExT217M+vNOu9EwoOLOLw9oMcSCvGQfdBDYAcSBvGQfdBDaQNNcC9IXKAY0ANGLv/JY4BAAAAAAAAAACAO2JCKTKl62Gn1aDDOFVt3tfZoRjehcvHJUkBfoFOjiRjkYP3GTUH7jF6+yXjHgPGgbuM2v/APdSAe2lW4zUdPLlZ2w4vV4Wi9RUReU19vqiri+Gn9WSNLiqSp7yuXL+gn//4Um9NqqUv+uxUnhyFE91fTGyUFmwYrQYVn1ed8s/Ix8tfR8/s0Iod03Xw1GZ92WeXPD28lCNLbtUp10qbDyzWzchwZfHNbt9HVPRtrd87V4+UaJypJg+4K3Ig9RgH3Qs1AHIg9RgH3Qs1kHpGrgHuDd1l5By4x6jHgBq4y6j9/yCOAQAAAAAAAAAAgHthQikypZN7flGxR1o6OwzDuR19S9ciwmSz2XT1Rqh++WOKjp3bozIFa6pAUClnh5ehjJqDRs8Bo7df4hg8yIjjAP0Po6MG3F+xvJUkSWcvHZUkzVj1kS5cPqGJb/2p4vkq29drWqOzuo2tqJkrh2hA+xmJ7s/Tw1vzP7ogb0/f+w/WeUPlitTVuAWva+uhpWpYua0kqUWtbtp0YJHW7ZmrVnV72FffdGCRbkaGq0Wt1x3YUiSGHEga46D7owZADiSNcdD9UQNJowbi4t6QMXOAY3AfNWDM/ucYAAAAAAAAAAAAuD9DTigNCwvTqFGjtHjxYp09e1ZBQUFq3bq1hg8frt69e+vbb7/VpEmT1KtXL2eHaljhoSGq3KSns8MwnFmrhmjWqiFxHqtfobXeeu4LJ0XkPEbNQaPngNHbL3EMHmTEcYD+h9FRA+7PzydAknTrznXZbDat2z1HFYs9qlzZ8utaRJh9PR8vf5UpVFu7QlYluT+TyWSfPBBrjVXknRuKtcaoSonHJUmHT2+zTyCoVqqJggOLasX26XEmEKzYPl0BfjlVt/yzjmwqEkEOJI1x0P1RAyAHksY46P6ogaRRA3Fxb+guo+UAx+A+auAuo/U/xwAAAAAAAAAAAMD9GW5C6d69e9W8eXOFhobK399f5cqV0/nz5zVx4kQdP35cV65ckSRVqVLFuYEaWNTtm/LyyersMAzpqVrd9GilNoqxRuvkhQOav2Gkwq6dlZenj32dAyc2afD05vG2jYmNktUaq5WjYjMy5HRh5Bw0eg4Yvf0Sx+Aeo44D9L/7m7duhELO7VbI2V0KvXJSeXIU1uzBp5wdVqZhhBqwWq1asnmClv85VaFXTym7f5AerdxWrzz5P/l6+Ts7vHR36/Z1SZKfd4DCIy7p+q3L2nV0lV4YGpTg+maTOdl9btz3oxZuHKtj5/coJjY6zrKbkVft/zeZTGpe83V9t+J9HTu3VyXyV9GFyye078QGPVe/jzw9vB6iZY4X++0MWX/4UZZ33pa5WdM4y2w2m2L7vyfb4cPymDxRpqJFnBNkGpADSTPCOJga7lgH1EDKuWP/S+RAchgH76MG7qIGjFsD3Bsybg5wDO6iBozb/xwDAAAAAAAAAAAA92eoCaVhYWFq2bKlQkND9e6772rIkCHKmvXum6GjRo3SwIED5eHhIZPJpEqVKjk5WuM6fWC1ClVsmvyKcLj8uUqqaqnGkqSaZZqrQtH66vtlfU1Y9Ibe7/iDJKlisQb65dObcbYLu3ZePSdW1zN13eNXfY2cg0bPAaO3X+IY3GPUcYD+d3/f/jZYWf0CVTJ/VUVEhjs7nEzHCDXw1S99tXTzRNWr8JxeaPiuTv97WEs3T9Txc3s0stsamc3Jf2DelZ24sF+SVCB3aclmkyRVLdlY7R4bmKb9bTqwWMNmt1OZgjXVo9UEBWUvKC8PH8XaYjV4WjNZrdY46zer0UWzVg3Rih3T1Sv/JK3Y8a1sNpua13z94RqWDsydOsj65zbFTv1GpmpVZQrKZV9mXbxUtv0HZO7S2aUmkEjkQHKMMA6mhjvWATWQcu7Y/xI5kBzGwfuogZShBu5yxxrg3pBxc4BjcBc1YNz+5xgAAAAAAAAAAAC4P/f+tPB/9O7dW2fPnlWvXr00ZswY+2RSSRowYIAqV66smJgYFSlSRAEBAU6M1NguhGxR3lJ14zy2Zf5gTeho0qGN38Zb32azaeGwxzS5s7fCzhzMqDANoXyRumpctZM27JuvQ6e2JrhOVMwdfTyrtSoUqa+XnhicwRGmD3LwPqPmwD1Gb79k3GPAOHCXUfvfnc1677gWf3xZI7utVs6AfM4OJ9Nztxo4FXpIP22ZpPoVWmvoK4vVolZXvdFqnN5oOU57j6/Xhn0/ODvEdLdix3RJUq0yTymbf5Cy+GbXrdvXVbVU40T/JWXtru/l5eGj0W+sV8u6b6p2uadVtVRj5clROMH1AwOCVbtcS63bPUeRURFatXOGyhSqpSLB5R3e1odl8vSUR/93pdu3FTvuc/vjtjNnZZ0xS6YypWVu87zzAkwjciB13G0cTC13rANqIOXcsf8lciC1jDwOUgPUgGTsGuDe0F1GzoF7jHoMqIG7jNr/D+IYAAAAAAAAAAAAuB/DTCg9fPiw5s+fr1y5cmnEiBEJrlOtWjVJUuXKle2Pbdq0SY0bN1bevHnl7e2tAgUKqF27djp8+HCcbR977DGZTKYE/73xxhvp1zA3Y7NaZbPZZDZb4jxe+/mhylmggn6f845uXD4bZ9meFZ/r3N8bVav1x8pVsEJGhmsIHRp/KLPZopkrP0pw+YRFbygq+rb6t5uRsYGlE3IwPqPlwH8Zvf2S8Y4B40BcRut/d5c3ZzFnh+By3KkG1u+dJ5vNptYN3o7zeItaXeXj6ac1u2c7J7AMEGuN1dRf+ungyc2qWaaFKhStJ7PZrMcf6aC/z2zX7/sXJrjd1ZsXk9yv2WyRyWSSzXb/l6dsNpvmrhmW6DYtanXVjcirmrDoDYVdO5dpfo0qIaaSJWRu31a2XbtlXf6bbLGxih01RrLZZOn/rkwWS/I7ySTIgbRzp3EwLdylDqiBtHGX/pfIgYdh5HGQGqAGJGPWAPeG4jJiDvyX0Y4BNRCX0fo/IRwDAAAAAAAAAAAA9+Lh7AAyyrx582S1WtWhQwdlyZIlwXV8fX0lxZ1QevXqVVWsWFHdu3dX7ty5dfbsWY0YMUJ16tTRwYMHVaBAAUnSl19+qevXr8fZ3/LlyzVs2DA9/fTT6dQq9xN6YruCi9eM97jFw0tNu8/U/KG1tGbaa3pu4EpJ0tXzR/THgvcVXLyWqj3dP6PDNYT8uUqoUeX2Wrtnjg6c2KSKxRrYly3ZPFHbDi/T5N475OPl58QoHYccjM9oOfBfRm+/ZLxjwDgQl9H6H/gvd6qBI2d2yGwyq3ShuGOcl6ePiuWroqNndjgpMscKObdba3bdnRwbeeeGzlw6oq2Hlurfq/+oWqmmGvzSXPu6XZp9qkOntmjY7LZqWKmtyhauLQ+Ll/69+o+2//2rSuavpgHtZyT6XA0qvaBNBxap/9TH1bjay4qNjdaWQ0t1J+pWottUL/Wk8uQorLW7Z8vXO4saVWnvsLanB3OHF2X9Y5tiv5km8/ETsh05KnO312UqWMDZoSWKHHAsdxoH08rV6oAacCxX63+JHHA0o4+D1AA1YMQa4N5QXEbMgf8y2jGgBuIyWv8nhGMAAAAAAAAAAADgXgzzC6Xr1q2TJDVq1CjRdc6evfttug9OKG3VqpXGjx+vNm3aqGHDhurQoYMWL16sa9euadGiRfb1ypUrp9q1a8f5t3fvXgUFBalZs2bp1CrXdu7v32WNjYnz2D/7VqhwpYSPV+6iVVW95SCdPrBKB9Z9Las1Viunviybzaam3WfG+6ZkOM6LT7wvs8msmavuf/Pw3mPrNW35QH3YaYGCA4s4L7iHQA6mnLvmQEoZvf2S+x4DxoGUcdf+B1LKXWrg8vXzCvDPJS8P73jLcmXLr2sRYYqOiXJCZI61fu88jfyhk0bPf0XTfntPu0NWq1Kxhhr+2m/6rOtK+ftms6/r75tNn/fcopebfKxT/x7S9F8HadqvA/XHXz+rbKHaaln3zSSfq1GV9ur7wteKvHNTXy/rpx83jFLBoNIa0XVlotuYzWY1q/GaJKlhpbby9U74C48yC5OHhzz6vyNFRcu6bLlMFcrL3PpZZ4eVJHLA8dxlHEwrV6sDasCxXK3/JXIgPRh5HKQGqAHJvWuAe0Mp4845kFLuegyogZRx1/5PDY4BAAAAAAAAAACA+zDZbDabs4PICAULFtTZs2e1Z88eValSJd7ymJgY5c2bV2FhYTp+/LiKFSuW6L4uX76sXLlyafLkyerZs2eC61y6dEn58uVTjx49NGHChDTFXL16dYWGhqZpW2exePrquWEhya539M/5WjPtdbV852cVLHd/ku/G2X3VsOP4RLeLjYnWDx/V0PWLJ1S6XkcdWPuVGrw0VlVbvJPmmJd8UFKx0ZFp3j6z8fLw1de9ku+DhxF65ZR6Tayhjk2G6Nl6vR5qX90ml1RUjOOOv9FzMCP6X8rcOeBqNSA59hgYPQdSOgZImWcccPTrkNFrwMhS2/ddx1RQZNRNzR58Kv2CSgVH5YGRayC5tr88orhirNGa+/7peMtGzntZa3Z/ryX/u6osvtkfOpbUSu0xyKjXu/Qyf/0oTft1oCb03KpyReokul5acsPm5aVLU7942BDj7jP0X8V07yFFRsr86iuyvNjOofsP6t5TpqjUTWYmBxJn5HFQSp8akNK3DqgBxsHU5oCr97/EOPhfmX0czGw1ILl+HVADcXFviHtD3B+lBqgBaoD7wwAAAAAAAAAAAKkTHBysnTt3pmlbDwfHkmlFRERIkiIjE34zav78+QoLC1PWrFlVtGjReMtjY2NltVr1zz//aNCgQQoODlbbtm0Tfb558+YpJiZGnTp1SnPMoaGhOnfuXJq3dwYPb78UrVeqdjuF/3tMJ3bff5P6ethpBeQqnOR2Fg9PNe0+Uz98VEMH1n6lfKXq65Fmbz9UzOcvnFfMnVsPtY/MxMczZX2QVrejbmnIjGdVp1wrh7xJfuH8ed2OdtzxN3oOpnf/S5k/B1ytBiTHHgOj50BKxwAp84wDjn4dMnoNGFlG1H96clQeGLkGkmu7t5efIm9eTHBZVMztu+s4KY9SewxcOd9jY2O0/M+pKhpcMcnJA1Iac8PHW54PEd9/2Ww2xY4dL8VES4UKyjr3B5kbPipTvrwOe47zF85Lt++kahtyIHFGHgclObwGpPSvA2ogcYyDCXPl/pcYBxOSmcfBzFgDkmvXATUQH/eGuDfE/VFqgBqgBrg/DAAAAAAAAAAAkHEMM6E0ODhYV69e1e7du1WnTtwPaVy4cEH9+/eXJFWqVEkmkyne9g0bNtSWLVskSSVKlNC6desUFBSU6PN9//33Klu2rKpXr/5QMbsai6dvitctXv05/TK2lf1bjk/u+UVFH2mZ7Hbeftlk8fSWNTZaRaq0kMlsTnO8kpQvbz63+4XS9LTpwCKduLBP58KOasO++fGWT+/3l3LnKJTi/eXNl8/hv1CaUu6Yg+nd/1LmzwFXqwHJscfA6DmQmjFAyhzjgKNfh4xeA0aWEfWfnhyVB0augeTanjMgn07/+5eiYu7Iy8M7zrKwa+eUzT+XPD28HjqOtEjtMXDFfL9w5aQO//OHth76SReunNDgDvOS3SYtuWHz8tKltAaZAOvSn2Xbt1/mV1+RuU5txfR8S7Fjx8syZmSC185pkS9vvjT9KpmryagcMPI4KDm+BqT0rwNqIHGMgwlzxf6XGAeTkpnHwcxYA5Jr1gE1kDjuDXFviPuj1AA1QA1wfxgAAAAAAAAAACB1HmbeoWEmlDZu3FiHDx/WyJEj1aRJE5UqVUqStGPHDnXq1ElhYWGSpCpVqiS4/fTp0xUeHq6TJ09q9OjRatq0qbZs2aJCheK/Gfb3339r586dGj58+EPFnNafnXWmOzHSwPjvGyYoZ/5yksmky2cPKWeB8gr/95gq5yme5DY2m02rv35V1pgoBeYrq+0/DVPJWm2VPZntknI0JETeblQJsVHS+onpt/8m1TqpSbW0//Luf4UcDZHFgfMWjJ6D6d3/UubPAVerAcmxx8DoOZCaMUDKHOOAo1+HjF4DRpYR9Z+eHJUHRq6B5NpeumAN7Tq6SkdOb1fFYg3sj0dF39aJ83tVsdijDx9EGqX2GLhivu8/vlFjfnxV2fxzqWPjj9SoSvtkt0lLbkTExijHutVpjDIu27lzsn47Q6bSpWRu+4JMFovMHTvI+t1MWZf+LMtzzzjkeY6GHJW/JXUvhuRA4ow8DkqOrQEpY+qAGkgc42DCXLH/JcbBpGTWcTCz1oDkmnVADSSOe0PcG+L+KDVADVAD3B8GAAAAAAAAAADIOA/3s3ouZMCAAcqZM6fOnDmj8uXLq2LFiipZsqRq1qypYsWK6fHHH5ckVa5cOcHtS5curVq1aql9+/Zau3atbty4oVGjRiW47vfffy+TyaQOHTqkW3vcRbFHWurE7p8VdfumvHyyJrv+vlWTdPbwBtV8boha9F4gW2yM1nzTRTabLQOihTsiBwEwDgAwiscqt5PJZNLiTZ/HefzXbd/odvQtPf4I1y/p6ckanbV6tE0Lh17SK09+7OxwkmWzWhU7epxktcrS/x2ZLBZJujuZpFRJWb+dIdv5C06O0rW4Wg6AOnA0V6sB+t/xXC0HjI4acDxqIPPi3hCMjhoAAAAAAAAAAAAAjMUwE0oLFCigTZs26amnnpKPj49OnTqlwMBATZ06VcuXL9fRo0clJT6h9EHZs2dXiRIldOzYsXjLbDab5syZo8ceeyzBXy9FXEWr3n2T+vSBVSpUoUmS614NDdGWHwcpT7Eaqt5yoHIWKK9arYfq3N+/a9+qSRkTMNwOOQiAcQBGsnrX95qzZpjmrBmm8IhLirh9zf736l3fOzs8pLOieSuqVd2e2nxwsYbObK1ft03TlF/e1ZRf3lGlYg31+CMvOTtEZCLWhYtl++uwzK90lOmBa1uTxSJLv3cka6xix47nA8Nwa9SBsdH/MDpqAEbCvSEYHTUAAAAAAAAAAAAAGIthJpRKUtmyZbVs2TLduHFDN27c0LZt29StWzdFRETo1KlTMpvNqlChQrL7uXjxoo4cOaLixYvHW/b777/rn3/+UadOndKjCW4nf+kGCg8N0fGdS5S3VN1E17NZrVo9tbNs1lg17T5TZvPdb8Sv9vQA5S5aXVt+HKTwf49nVNhwI+QgAMYBGMmK7dM1Y+WHmrHyQ4XfvKibkeH2v1dsn+7s8JAB3mz1ubo9PUb//HtIk5f01Ia9P+jZem9pWJdlMpsNdXmIJNhOn5Z15vcylS0j8/Ot4y03FSksc8cOsh04KOvSn50QIZD+qANjo/9hdNQAjIZ7QzA6agAAAAAAAAAAAAAwFg9nB5AZHDp0SDabTaVKlZKfn1+cZR07dlSJEiVUpUoVZc+eXSEhIRo/frw8PDzUt2/fePv6/vvv5evrqxdeeCGjwndpZouHCld68u7///+N54Ts/nWsLoRsVb32IxWYv+z97c0WNe0+Q/M+qKo133TR8+9vkMlkSve44T7IQQCMAzCSsW9ucHYIcDKL2aI2Dd9Vm4bvOjsUZGKmQoXkufynJNexvNhOlhfbZVBEQMajDoyN/ofRUQMwGu4NweioAQAAAAAAAAAAAMBY+AkaSQcOHJAkVa5cOd6y2rVr69dff9Wrr76q5s2ba/To0WrQoIH27t2rEiVKxFn39u3bWrhwoZ599lllzZo1Q2J3B8WrPati1Z5JdPmVc4f1x6IPFVyitqq2iP/B95wFyqtW66E69/fv2rdqUjpGCndFDgJgHAAAAAAAADAu7g3B6KgBAAAAAAAAAAAAwDj4hVIlPaG0V69e6tWrV4r24+Pjo/DwcEeGZggla7VJcnlg/rLq9d3tJNep0WqQarQa5MiwDCMq5o6m/vKudh5dKS8PHxXPW1nvvTQ7zjqhV05p9PzOOnZ+j4JzFNXUd/bG24/NZtOAqU8o5NxuLf0kPGOCdxBy0Liiom/r0znt9c+/f8nb01fZs+RW79ZfKX+uuF8YcPLCAU1a0lPhNy/KYvZQ6UI19dZzX8jb01eStGrnTC3YOEZmk0Umk0mvNvtUtcq2cEaTkEaMAwAAAAAAAMbFvSFjOXspRKPnv6JrEWHy98mm/u1mqEhw+Tjr/HXqD01Y/KYkKdYarQpF6qvHsxPl5eGtFTu+05JNE+zrhl07q4rFHtXQVxZLkn5YP1Krd86Uh8VLXp4+6vnMRJUpVDPjGpgG1AAAAAAAAAAAAABgHEwoVdITSgF3N/3X92QymTRjwFGZTCZduR4abx0/nwC92myYIm5f07e/vZ/gfhb9Pl55cxZXyLnd6R0y0tnAr5vq6o1QmUxm+flkVc9nJqpE/kecHVa6aVGrm2qWaS6TyaSlWyZr3ILXNfbNDXHW8fTwUa9nJ6tYvkqKtcZqxNyXNH/9SL3cdKiu37qiL5a+pe8GHFVgQLAOntysj2e21oKhF53TIABAhvp9/0JtO7xcNyOvJvsFBcgYXyztrT/++ln/Xv1HX729RyXyV9H1iMvqP/UJ+zp3om/pwpUTWjDkogL8AjV37XCt3jVT58JCNOTlxapX4Vn7uldvXtSoeS/r/JXj8rJ4663WX6pSsUclSR2HF5Gnh7faNOyvFrVejxfLn38t04KNYzT2zQ0KvXJKO46sUMs6b9iXj5jbQXtC1uqxKu3V45nP0+2YGE1y57MrdnynsT920dBXltj7evT8V3Xo1BZ5e/rKxyuLejzzuUoXrCFJuh11S2MXvKajZ3bIZDKrS/PherTSC5Kkd796TBev/qOmNV5VpyYfxYvlZOhBffjt05o9+JRuRoZr2R9T1P7x9+zLv17WXxv2zVfJ/FX1ceel6XdQYCjUAMgBGBnnggBSYsKi7mpRq5uerNFZv+9fqNHzO+uLPjvirFMsX2V90WeHPCyeslqt+t+s5/XL1i/1/KN91azGq2pW41X7ul3HVNATj3SQJB07t1e/bP1S0/odkq93Fq3ZNVuTl/bS5N7bM7SNeDhGe58kNVL6RZ0AAAAAAAAAAADIvJhQKmndunXODgFwisioCK3YPl1zPzgrk8kkSQoMCI63XoBfoCoUra99xzckuJ9ToYe09dBS9Wv7nX7fvyA9Q0YG+LDTj8rim12StPnAEo2e31lT39nn3KDSiZenT5xfEi1bqLYWbhwTb70CQSXt/7eYLSpdoIZOhh6UJNlsVtlk0607NxSoYN2MDFeu7AXSP3gnuRkZrq5jK+hOdKSCshVUdOwdhV4+oSeqddK7baY5OzxkAHIAiGvLwSVqWKmtLBbPZL+gABmjQaUX1PaxAer7ZX37YwH+OTX1nb32vxdsGKP9JzYqwC9QklS1ZGM1qtJeY37sEm9/0399T2UL19aIrit05MwODZ35nL4fdFIeFk9J0vsd5qtE/irJxvXv1VNa9seUOJMIBr00R7NWDdXNyPC0NRYJSup8NvTKKf227RuVLVQ7zjb1Kjynd174RhaLh/78a5k++b6NZg8+JUlasHGMPC3emvneMV24clK9J9ZSleKNFOCfU5L0RqvxcSaeJOZmZLh+WP9ZnIlU3Z4ercJ5ymvroaUP3e70wOu+a6IGQA44DuOg6+FcMP1RF3D1HLh686KOnt2pz7qukiQ1qPi8Ji/ppXNhx+JMiPPx8rP/PyY2SneiI+3vozzo8OltCr95UXXKt5IkmUwmxVijdTsqQr7eWXTzdrhyZXPf+8Xuykjvk6RFSr6oEwAAAAAAAAAAAJkXE0oBA7sQdlxZ/QI1b91w7Q5ZI29PX3VqMlRVSz6R/Mb/LyY2WuMXdtU7babLbLakY7TIKPc+JCFJEbevSbr7IRlX/6BQSizZPEF1yj+T5DqRURH6bfs0dWk+QpKUzT+X+rSeoh4Tqiqrb6CioiM1stuajAjXKbL4ZtfjVV6Sr3dWdWzyoXYcWal564a7TQ4geeQAjCS5176Y2GgdOrVF/dvNsH+gXEr8CwqQMe79YlRSftsxXa/9/2u5JJUpVDPRdTfu+1EzBx6TJJUuWEM5A/Jp//GNqlqqcbx1Y2Kj9eVPfbQrZLWy+uZQhaIN7MsmLHpD/179R93HVVHuHIX0yas/p6ZZSIXEzmetVqvGLXhdPZ+dpKm/vBtnm7r//+FvSSpbuLbCrp1TbGyMLBYPbdw3X++0mS5JyhtYVJWKP6bNB5ck+EtkkjRr1VCt3TNH/t4BqlGmuf3xCYveUOSdG+o+roosFg992Weng1qcfnjdd03UAMgBx2EcdD2cC6Y/6gKungOXws8oMCCvLJa7b5GaTCblzlFIF8NPx/uFxdArpzRkxjM6f/m4apV9Si3r9Ii3vxXbp+uJap3s9wWK56us5xv0VacRRZXVL1CeFm+N6/F7+jcMDmXk90mSk9Iv6gQAAAAAAAAAAEDmxYRSwMBirTH69+o/Kpy7nF5v8ZmOndujgV830bR+h5Qja54U7eP71R+rfoXWKpynrEKvnErfgJFhRs57WfuOr5ckffrar5Jc/4NCyZm7drjOhx3TqO5rE10nOiZKn85up2qlmqp+xeckSRGR17Rk8wRNemu7Cucpqz/++kVDZz6n6f0Py9PDK6PCd5jek+roXFhIgsu+6rtHubMX1LHze/Vc/d6SpJCzu1Qi3yMZGSLSGTkA3Jfca9/eY+tVrnDdOJNJpZR9QQGc59Cprbp566pql3062XWvR1xWbGy0AgOC7Y/lyVFEF8NPJ7j+8j+/1plLRzTt3UOSpEHTnrQv6/P8FH3509txfh0L6Seh89lFv49T+SL1VKpAtSS3XbJpgmqWaWH/gPnF8NPKk6OwfXlwEjmw7fBy/b5/gb7ss0t+3lk1cl4n+7I+z0/RG+OruFwO8LrvmqgBkAOOwzjoXjgXTB73BUAO3BccWERT39mnyDs39dm8jtp8cLEaVWlvXx4ZFaENe3/QxLf+tD924cpJbT6wWDMGHlOubPm0dMtkDZvdTp/33OyMJuAhGPF9krTgPhgAAAAAAAAAAIDrYUIpYGC5cxSS2WTW41U7SJJK5H9EwYFFdfLCgRRPKN1/YqMuXj2tn7ZOVqw1RrfuXFfH4UU0ufcOZc8SlJ7hIx0NfHGWJGnVzpn65teBGv7/H5Zw1w8KLdgwRpsPLtaobmvk4+WX4DoxsdH6dHY7BWbNqx7PTLA/vitktfx9sqtwnrKSpDrlWmrsj13079V/VCCoZIbE70gT3/oj2XVOnN+rEvnv9n3I2V2q88Av2cD1kQMwkof9kOzWQ0tVr8JzcbZLyRcUwLlWbJ+uJtVetk+ScaQ9x9aqSbWX7V8q8WSNLlqxfbrDnwfJ++/5bNenRmnTgUXJ/jLQml2ztXH/jxr3Ztp+QWhPyFo1rNRW/j4BkqSnanfXwVOu/cFxXvddEzUAcsBxGAfdC+eCyeO+ANw9B4KyF9SV6xfsv8Rts9l08epp5c5eKNFtfL2z6LEq7bVu95w4E0p/37dAhfOUV+E85eyPbd6/SEXzVlSubPkkSU/WeFVfLH1L0TFRLvkFhEZmtPdJ7knJ/bJ7uA8GAAAAAAAAAADgmphQChhYNv9cqlLiCe08slK1yrbQhSsnFXrlpAr9/8S4lBjfY5P9/6FXTumN8VU0e/CpdIgWztC0+iuasOgNXY+4rAD/nC79QaHELNw4Tuv3ztPIbmuUxTd7guvExsbo09ntldUvUH1f+Fomk8m+LG9gMZ04v1dXrocqMCBYf536Q7HWmDgfqnAnYdfOSSaTcmXLL0k6EbpfLz3xvpOjQkYiB+BOHuZDsjabTTuPrFTXp0bZ103JFxTAuSLv3NTG/T9qcu8dKVo/wD+nLGYP++u8JP179VSSHzR+kEmm5FdCurp3Prv10E/69+opdR559ws/rtwI1ecLu+nK9QtqWfdNSdKGvfP1/ZqPNbrb2jhfsJM7eyH9e/Uf5QzIK0kKvXpK1Uo1TdHzP3je6Ip43Xd91ADIgYfDOOheOBd0DOoCrp4DObLkVon8VbVm92w9WaOzNh1YpFzZCyh/rhJx1jsXdkx5chSWh8VT0TFR2nJwiYrmrRRnnRU7pqtZzdfiPBacs5hW7vxOkXduytc7i7b9tUwFgkoxmdSFGeF9kgel5H6ZxH0wAAAAAAAAAAAAV2Z2dgAAnOvt56dowcbR6jq2oobOeFZvPz9VubLl19gFr2vroZ8lSbejbunFYQX0yfdtdPriX3pxWAFN/3WQkyNHergZGa6wa+ftf285uFQB/jmV1S8wwQ8KFQ2u6KxQHeJS+FlNXfaubkaGq9+URuo+roremlhLkjRj5Uf65Y8pkqQN++Zr88HFOnp2p94Y/4i6j6uiiYt7SpJKFqiqF594X/2nPq7u4ypr8tJe+qDjj/Ly9HFau9LTsXN74nzjehaf7Pr5jy+dGBEyGjkAI0nqte/vM9tVKE9Z+XpnkfTAFxR0XZ3oFxTA+Tbsm69ieSurUO4yKd6mQaU2Wvbn3XOCI2d2KOzaOVUq3jDBdauWbKy1u2crJjZa0TFRWrnzO/syP+8A3bp97eEagGQldj770uODNf+jC5o9+JRmDz6lsoVq6+0XvrZPotq470d9t/IDjeq2RrlzxJ0k8milNlr2/+eFF66c1P7jG1SvwrMJPv8jJRvr9/0LdOv2DdlsNi3/82v7Mj+fAEVFRyo6JsrBrU4/vO67HmoA5IBjMQ66F84FHYO6gDvkwNvPT9XyP6eq88hS+mH9Z+rf9m69Pvi+yN5j6/Tm+EfUfVxlvfn5I8qRJY86Nv7Qvo8zF4/o+Pm9eqxyuzj7rl/hOdUp10o9J1RX93GVtWTzBA16aW7GNQ4PzWjvk6QF98EAAAAAAAAAAABcG79QChhc3pzFNOaN9fEef7fNNPv/fbz8NO+Ds8nuKziwiJZ+Eu7I8JDBIm5f0yfft9Gd6EiZTWZl8w/SJ68uk8lkSvSDQg/miqsJyl5Aq0fbElzW+cn/2f//RNUOeqJqh0T307pBH7Vu0Mfh8WVGtcs9rdrlnrb//UWflP2qB9wHOQAjSeq1b8vBJapb/llJ97+gIG9gMfWb0kiS5OXhrUm9tzkjbMP7fGF3bft7ua7cCNWgaU/KzzurZr53TJK0Yvt0Na/VNd42c9YM07I/p+jazUsaF3pQk5f20ldv71H2LEHq+tRIfTavk14ZWVKeFi+99+JseVg8E3zuFrW66lToQb02ppyy+uZQhaINFHJ2lySpWN5KKhxcXl3HVFBwzmL65NWf0+8gGFhS57NJGTG3gwKzBuuj756xPza6+1oF+OdUm8f6a+yPXfTyiOIymy3q9dxkZfPPleB+apVtoSNntuvNCVXl7x2gGmWaSyfvLgvwC1Tjai+r+7hK8vHOoi/77HRYu9MLr/uuhxoAOeBYjIOuh3PB9EddwB1yoGDu0gn+CuOD97qfqt1NT9XuluQ+fh52I97jJpNJr7UYoddajHBMsMhwRnufJLW4DwYAAAAAAAAAAOD6mFAKALDLk6OwJvfenuAyd/igEAAAqZHUa9+ff/2i0f//pRxJfUEBMt7bL0xNdNmEXlsTfLxD4w/UofEHCS7LkTWPRnZblaLn9rB4qnfrhH+Zx2Lx0LAuy1K0H6RdUuezDxr75oY4f68YGZ3our5e/vqg4/wUx/By06F6uelQ+9+vNhtm//87bb5J8X6AtKAGQA7A6DgXBAA8LN4nSRr3wQAAAAAAAAAAAFyf2dkBAAAAAICrmdbvkHJkye3sMOBk2fyDNHJeR/26LW2/RDJibget3T1bfj4BDo4MGSWrX6Cm/zZI36/+X/IrJ+DrZf31w/oRyuKbw8GRARmDGgA5ACPjXBAAAAAAAAAAAAAAALgifqEUAAAAAIA0eNhfIhn00hwHRQJnGfrK4ofavtvTo9Xt6dEOigbIeNQAyAEYGeeCAAAAAAAAAAAAAADAFfELpQAAAAAAAAAAAAAAAAAAAAAAAAAAAG6OCaUAAAAAAAAAAAAAAAAAAAAAAAAAAABuzmSz2WzODgLuw2aTomKdHUXqeFkkk8nZUTiOzSZZo50dRcqZPR17/I2eg67W/1L65ICRjwHtN/YYIJEDRhYbJa2f6Owo0q5Rb8ni9fD7MXINuHIOpLb/XbGf0yItuWGz2XTL6lovhn5mi0ypbCg5kDhXPDaOPR+kBtwJ42DCjNL/EuNgWhihBiTX7Oe0oAZSj3tD5ADtpwbIAWO3HwAAAAAAAAAAAMnzcHYAcC8mk+RNVjmVyeSYyRiuyug5aPT+lzgGtN/YY4BEDgDUgDHQz4kzmUzyt7j/iyE5kDijHxtqAEbIAfo/aUY/PkaoAYl+TorRjw33hsgB2k8NkAPGbj8AAAAAAAAAAACSZ3Z2AAAAAAAAAAAAAAAAAAAAAAAAAAAAAEhfBv+OWgAAAADAf+07vkH9pjRKdLnZbNHKkTEZGBEAAAAAAAAAAAAAAAAAAACAh8WEUgAAAABAghpVeVE1y7SI97jZbHZCNAAAAAAAAAAAAAAAAAAAAAAeBhNKAQAAAAAJKpm/qhpX65gu+7bZbLodFSFf7yzpsn8AAAAAAAAAAAAAAAAAAAAAcTGhFAAAAADwUDbtX6SlWybp+Pm9iomNUlD2gqpe6kl1e3qMPD28tO/4BvWb0kj92n6n21ER+nnrF7pw+bjaPz5ILzcd6uzwAQAAAAAAAAAAAAAAAAAAAENgQikAAAAAIEG3o2/pWkRYvMc9LF7y9wmQJH372/uat264Cucpp+cb9FVgQF6dv3xcmw8s0itP/k+eHl727RZv+lw3bl1W81pdFZg1WEHZC2ZYWwAAAAAAAAAAAAAAAAAAAACjY0IpAAAAACBBs1YN0axVQ+I9XqvsUxrWZZn+Pr1d89YNV5XijfTpa7/Ky9PHvs7rLT6Lt92l8NOaPuBv5ciSO13jBgAAAAAAAAAAAAAAAAAAABAfE0oBAAAAAAl6qlY3PVqpTbzHs2UJkiSt3TNHktSlxYg4k0klyWQyxduucbWXmUwKAAAAAAAAAAAAAAAAAAAAOAkTSgEAAAAACcqfq6Sqlmqc6PJzYSEymUwqnrdyivZXIKiUo0IDAAAAAAAAAAAAAAAAAAAAkEpmZwcAAAAAAHBdJpmkBH6NNCHenn7pHA0AAAAAAAAAAAAAAAAAAACAxDChFAAAAACQJgVylZLVZtWJ8/ucHQoAAAAAAAAAAAAAAAAAAACAZDChFAAAAACQJo8/8pIk6dvfBis6JirecpvNltEhAQAAAAAAAAAAAAAAAAAAAEiEh7MDAAAAAABkTiHndmvNrtkJLqtX4VmVKVRT7RoN1Pz1I9Xj86pqWLmdAgOCdeHKSW3av1CTe29XFt/sGRs0AAAAAAAAAAAAAAAAAAAAgAQxoRQAAAAAkKD1e+dp/d55CS6bMTBE+b1L6PUWn6lY3sr6actk/bhxlGxWq4KyF1TNMi3k7emXwREDAAAAAAAAAAAAAAAAAAAASIzJZrPZnB0EAAAAgIcTGyWtn+jsKNKuUW/J4uXsKFybK+cA/Q8AAAAAAAAAAAAAAAAAAACkP7OzAwAAAAAAAAAAAAAAAAAAAAAAAAAAAED6YkIpAAAAAAAAAAAAAAAAAAAAAAAAAACAm2NCKQAAAAAAAAAAAAAAAAAAAAAAAAAAgJvzcHYAcD02m2SNdnYUGcPsKZlMzo4idWw2KSrW2VGknJfFscfYFfPTkXnmav0vkQOS43OA9jtmXxnF0a81Rh8HyAEAjIPGHQddse0PSs1xcPW2pkZq88Nms+mW1bUGAT+zRaZUFoFRciAt44MrHhvHXhNRA+6GcTBhRskBxsHUowbcS1prgGtCx+wro6TH/VEjHwOj14DkejlADXCPHAAAAAAAAACAjMaEUqSaNVpaP9HZUWSMRr0li5ezo0idqFhp4HxnR5FyI9tJ3g4ciVwxPx2ZZ67W/xI5IDk2B2i/sdsvMQ6QAwAYB407Drpi2x+UmuPg6m1NjdTmxy1rrHKsW51+AaWDq483kb8ldYOAUXIgLeODKx4bR54PUgPuh3EwYUbJAcbB1KMG3EtacoNrQtfLDUffGzP6MTB6DUiulwPUAPfIAQAAAAAAAADIaGZnBwAAAAAAAAAAAAAAAAAAAAAAAAAAAID0xYRSAAAAAAAAAAAAAAAAAAAAAAAAAAAAN8eEUgAAAAAAAAAAAAAAAAAAAAAAAAAAADfHhFIAAAAAAAAAAAAAAAAAAAAAAAAAAAA3x4RSAAAAAAAAAAAAAAAAAAAAAAAAAAAAN8eEUgAAAAAAAAAAAAAAAAAAAAAAAAAAADfHhFK4jH3HN6hJf5NW7pjh7FAAAAAAADAcrsuNjf6H0VEDIAdgdNQAAAAAAAAAAAAAALgHD2cHAPex7/gG9ZvSyP632WSWn0+AcgXkV8kC1dSoyouqXvpJmUwmJ0YJxPff3JUkHy9/FQgqpcZVO+nZem/JYmG4dGfkAMfA6O0HOQAAjIPugetyY6P/Hw7joOujBkAOpB1joHugBvAwjD4OGL39IAeM3n4AAAAAAAAAAIyGu/5wuEZVXlTNMi1kk02Rd27ozKUj2npwqVbvmqWqJRvrw04LlMU3u7PDBOJ5MHev3gjV6l2zNOWXd3T64mH1feFrZ4eHDEAOcAyM3n6QAwDAOOgeuC43Nvr/4TAOuj5qAORA2jEGugdqAA/D6OOA0dsPcsDo7QcAAAAAAAAAwCiYUAqHK5m/qhpX6xjnsTdajtM3ywdo0e/jNHzOixr++m9Oig6pMaGj476pvM9sm8P2lV7+m7st6/bQa6PK6Lft0/Rqs0+VPUuQE6NzDnLAeDlg9GNg9Pb/l9HGAIkcABAX4yDjoKviutzY6P+Hwzjo+qgBkANpxxjoHqgBx+Ga0HjjgNHb/1/UgPFywOjtBwAAAAAAAADAKJhQigxhMVv0RsuxOnJmu3YcWaGDJzerQtH6kqSIyGuau264Nh9YpEvhZ+TnE6BHSjZWl2afKm/OYknu12q1at76Edp1ZKXOXjqqG5FXlCNrsGqVeUqvNhumAP+ckqSrNy/qpWEF9GilNhr00px4+5m4uKeW/fmVZr13QsGBRRzefld0Pey0GnQYp6rN+zo7FKfx9fJXmcK1tWn/Qp2/fNxwb5KSA+SAxDEwcvsZA+4ycg4ARsc4eBfjoPvgutzY6P+0Yxx0D9QAyIG0YQx0H9RA6nFNeJfRxwEjt58auMvIOSDRfgAAAAAAAAAA3BUTSpGhmtV4TQdPbta2w8tVoWh9RUReU58v6upi+Gk9WaOLiuQpryvXL+jnP77UW5Nq6Ys+O5UnR+FE9xcTG6UFG0arQcXnVaf8M/Lx8tfRMzu0Ysd0HTy1WV/22SVPDy/lyJJbdcq10uYDi3UzMlxZfLPb9xEVfVvr987VIyUaZ5oPKmQGJ/f8omKPtHR2GE534fJxSVKAX6CTI8l45MBdRs6Be4x+DIzafsaA+4yaA4DRMQ7exzjoXrguNzb6P20YB90HNQByIPUYA90LNZByXBPeZ/RxwKjtpwbuM2oO3GP09gMAAAAAAAAA4I4MOaE0LCxMo0aN0uLFi3X27FkFBQWpdevWGj58uHr37q1vv/1WkyZNUq9evZwdqtsplreSJOnspaOSpBmrPtKFyyc08a0/VTxfZft6TWt0VrexFTVz5RANaD8j0f15enhr/kcX5O3pe//BOm+oXJG6GrfgdW09tFQNK7eVJLWo1U2bDizSuj1z1apuD/vqmw4s0s3IcLWo9boDW+r6wkNDVLlJT2eHkaFuR9/StYgw2Ww2Xb0Rql/+mKJj5/aoTMGaKhBUytnhZThywJg5YPRjYPT2P8iIY4BEDgC4j3GQcdBdcV1ubPR/8hgH3Rs1AHIgaYyB7o8aSDmuCY05Dhi9/Q+iBoyZA0ZvPwAAAAAAAAAARmG4CaV79+5V8+bNFRoaKn9/f5UrV07nz5/XxIkTdfz4cV25ckWSVKVKFecG6qb8fAIkSbfuXJfNZtO63XNUsdijypUtv65FhNnX8/HyV5lCtbUrZFWS+zOZTPYPKsRaYxV554ZirTGqUuJxSdLh09vsH1aoVqqJggOLasX26XE+rLBi+3QF+OVU3fLPOrKpLi3q9k15+WR1dhgZbtaqIZq1akicx+pXaK23nvvCSRE5Dzlwn9FywOjHwOjtv8eoY4BEDsD9zVs3QiHndivk7C6FXjmpPDkKa/bgU84OK9NhHHTfcZAa4Lo8NWK/nSHrDz/K8s7bMjdrGmeZzWZTbP/3ZDt8WB6TJ8pUtIhzgkwl+j957j4OpgY1YMwauMcd+18iB5LDGBiXO9YBNZAyXBMadxwwevvvoQaMmwNGbz8AAAAAAAAAAEZhqAmlYWFhatmypUJDQ/Xuu+9qyJAhypr17ptho0aN0sCBA+Xh4SGTyaRKlSo5OVr3dOv2dUmSn3eAwiMu6fqty9p1dJVeGBqU4PpmkznZfW7c96MWbhyrY+f3KCY2Os6ym5FX7f83mUxqXvN1fbfifR07t1cl8lfRhcsntO/EBj1Xv488PbweomXu5fSB1SpUsWnyK7qZp2p106OV2ijGGq2TFw5o/oaRCrt2Vl6ePvZ1DpzYpMHTm8fbNiY2SlZrrFaOis3IkNMNOWDcHDD6MTB6++8x6hggkQNwf9/+NlhZ/QJVMn9VRUSGOzucTItx0H3HQWqA6/LUMHfqIOuf2xQ79RuZqlWVKSiXfZl18VLZ9h+QuUtnl5lAItH/KeHu42BqUAPGrIF73LH/JXIgOYyBcbljHVADKcM1oXHHAaO3/x5qwLg5YPT2AwAAAAAAAABgFIaaUNq7d2+dPXtWvXr10pgxY+IsGzBggObOnat9+/apaNGiCggIcFKU7u3Ehf2SpAK5S0s2mySpasnGavfYwDTtb9OBxRo2u53KFKypHq0mKCh7QXl5+CjWFqvB05rJarXGWb9ZjS6atWqIVuyYrl75J2nFjm9ls9nUvObrD9cwN3MhZIvqtR8Z57Et8wdr5y8j1LjrdJVv2CXOMpvNpkWfNlLosT/U/pNdylWwQkaG6zD5c5VU1VKNJUk1yzRXhaL11ffL+pqw6A293/EHSVLFYg30y6c342wXdu28ek6srmfq9srwmNMLOWDcHDD6MTB6++8x6hggkQNwf7PeO668OYtJkrqOqaDIqJvJbGFMjIPuOw5SA1yXp4bJ01Me/d9VTO++ih33uTxGDJMk2c6clXXGLJnKlJa5zfNOjjJ16P/kufs4mBrUQPLcsQbuccf+l8iB5DAGxuWOdUANpAzXhMYdB4ze/nuoAePmgNHbDwAAAAAAAACAURhmQunhw4c1f/585cqVSyNGjEhwnWrVqmnfvn2qXLmy/bFNmzbp448/1qFDh3TlyhUFBQWpXr16Gjp0qMqWLRtn+02bNmno0KHat2+fYmJiVKZMGQ0YMECtW7dO17a5khU7pkuSapV5Stn8g5TFN7tu3b5uf2Mqtdbu+l5eHj4a/cZ6+Xj52R8/ffHvBNcPDAhW7XIttW73HL3W4jOt2jlDZQrVUpHg8ml6fndks1pls9lkNlviPF77+aE6uecX/T7nHRWq0FRZcxawL9uz4nOd+3uj6rYd4dJvEv9X+SJ11bhqJ63eNUvP1u+t8kXqxlsnKuaOPp7VWhWK1NdLTwx2QpSORw7cZ9QceJDRj4ER288YEJcRcwDu7d5EOiSOcTAudxsHqQGuy1PLVLKEzO3byjpnnqzLf5OpWVPFjhoj2Wyy9H9XJosl+Z1kIvR/6rnbOJha1EDS3L0G3K3/JXIgtYw+BkruVwfUQPK4JozL6OOAEdtPDcRlxBx4kNHbDwAAAAAAAACAuzI7O4CMMm/ePFmtVnXo0EFZsmRJcB1fX19JijOh9OrVq6pYsaImTpyoVatWaeTIkTp06JDq1Kmjs2fP2tfbt2+fmjRpIovFohkzZmj+/PkqWLCgXnjhBS1btix9G+cCYq2xmvpLPx08uVk1y7RQhaL1ZDab9fgjHfT3me36ff/CBLe7evNikvs1my0ymUyy2e5/y7XNZtPcNcMS3aZFra66EXlVExa9obBr5zLdN187W+iJ7QouXjPe4xYPLzXtPlMxdyK0Ztpr9sevnj+iPxa8r+DitVTt6f4ZGWqG6ND4Q5nNFs1c+VGCyycsekNR0bfVv92MjA0sHZEDcRkxB/7L6MfAaO1nDIjPaDkAGB3jYHyMg+6B6/K0M3d4USpWTLHfTJP1iymyHTkqc+eXZSpYIPmNMwn6/+EYfRykBhJnhBpwh/6XyIGHYfQxUHKPOqAGUo5rwviMPg4Yrf3UQHxGy4H/Mnr7AQAAAAAAAABwR4b5hdJ169ZJkho1apToOvcmiD44obRVq1Zq1apVnPVq1Kih0qVLa9GiRerTp48kaf78+TKZTFq6dKn8/O5+C3Pjxo1VrFgxzZkzR08//bRD25OZhZzbrTW7ZkuSIu/c0JlLR7T10FL9e/UfVSvVVINfmmtft0uzT3Xo1BYNm91WDSu1VdnCteVh8dK/V//R9r9/Vcn81TSg/YxEn6tBpRe06cAi9Z/6uBpXe1mxsdHacmip7kTdSnSb6qWeVJ4chbV292z5emdRoyrtHdZ2V3Pu79+Vt2RdmS33h4J/9q3QI837Jrh+7qJVVb3lIG1f+okOrPta5R97TSunviybzaam3WfG+7Zid5A/Vwk1qtxea/fM0YETm1SxWAP7siWbJ2rb4WWa3HtHnG9fdyXkQPLcPQdSwujHwJ3bzxiQMu6cA4DRMQ6mDOOg6+G63LFMHh7y6P+OYt56W9Zly2WqUF7m1s86O6xE0f+OZ/RxkBqYkehzGaEGXK3/JXLA0Yw+BkquVwfUQMpxTZgyRh8H3Ln91EDKuHMOpITR2w8AAAAAAAAAgDsyzC+U/vPPP5KkwoULJ7g8JiZGW7ZskRR3QmlCcubMKUny8Lj/5lpUVJS8vLzsv3IqSRaLRVmzZpXVao23D3e2fu88jfyhk0bPf0XTfntPu0NWq1Kxhhr+2m/6rOtK+ftms6/r75tNn/fcopebfKxT/x7S9F8HadqvA/XHXz+rbKHaaln3zSSfq1GV9ur7wteKvHNTXy/rpx83jFLBoNIa0XVlotuYzWY1q3H3m3MbVmorX++Ef7HW3R39c75+GvOUzh3ZFOfxO5HX5O2XLZGtpJrPfqhchSpr89x+2jDzLf17fLvqtvlUOfKVTu+QnebFJ96X2WTWzFX3v3l377H1mrZ8oD7stEDBgUWcF9xDIAdSzl1zIDWMfgzcsf2MAanjjjkAGB3jYOowDroWrsvTgb+/5OkpSTLVqC6TOfPeUqP/04fhx0FqIEGGqQEX6n+JHEgPhh8DJZeqA2ogZbgmTB2jjwPu2H5qIHXcMQdSw+jtBwAAAAAAAADA3ZhsNpvN2UFkhMDAQF29elVbt25VnTp14i2fM2eOOnbsqKxZs+ratWsymUxxlsfGxspqteqff/7RoEGDtHnzZu3fv19BQUGSpH379ql27dp68803NXDgQHl4eGjq1Kn6+OOPtXr1aj366KOpjrl69eoKDQ1NW4PTkZeHr77uFeLsMB7K/PWjNO3XgZrQc6vKFYmfD/d0m1xSUTGRGRjZw7N4+uq5YSnrn+0/farIG2Fq2HG8JOl62Gkd37lYjzR7O8ntLv2zTz98VEPW2GjlK1VfL3ywMc0foFnyQUnFRjvuGGdEfoZeOaVeE2uoY5MherZer4fenyPzLDX9L5EDaZWZcyCjxmhHHgPa79jXGld7HZAcOw4YOQdc/RzNFc+7MpvU5kDXMRUUGXVTswefSr+gUshZ50OMg2nnDuNgZqoBKXXHwdXHfCn9rsttXl66NPULR4R4f582m2IHDJLtr7+kvHmlfy/KY+qXMuXL65D9B3XvKVNUVKq2cfUcSM/7MkYeByVqwFWktAYk54+D6d3/EjngiuNgZr43xjjoGtKzBrgmNPa5kMQ4aPQakFwvB6gB7g0DAAAAAAAAAJAWwcHB2rlzZ5q29Uh+FfcQHBysq1evavfu3fEmlF64cEH9+/eXJFWqVCneZFJJatiwof0XTEuUKKF169bZJ5NKd3/VdO3atWrdurXGj7/7ppu/v78WLFiQpsmkkhQaGqpz586ladv05OPp5+wQHkpsbIyW/zlVRYMrJvuBrQvnz+t29K0MiswxPLxT3j/Fqz+nX8a2sr9RfHLPLyr6SMtkt/P2yyaLp7essdEqUqXFQ71JfP7CecXccdwxTu/8vB11S0NmPKs65Vo55A1SybF5lpr+l8iBtMjsOZARY7SjjwHtd+xrjau9DkiOHQeMnAOufo7miuddmY0r54CzzocYB9OGcTB9pOY4uHpb0/W63Mdbng8Z339Zl/4s2779Mr/6isx1aium51uKHTteljEjE7yHlFrnL5yXbt9J1TaunAPpfV/GyOOgJGrABaSmBiTnj4Pp3f8SOZCUzDgOZvZ7Y4yDmV961wDXhAY/FxLjoNFrQHK9HKAGuDcMAAAAAAAAAEBGM8yE0saNG+vw4cMaOXKkmjRpolKlSkmSduzYoU6dOiksLEySVKVKlQS3nz59usLDw3Xy5EmNHj1aTZs21ZYtW1SoUCFJUkhIiNq1a6caNWqoR48eslgsmjNnjtq3b69ly5bp8ccfT3XMwcHBaWtsOvPy8HV2CGly4cpJHf7nD2099JMuXDmhwR3mJbtN3nz5XO7bUC2eKe+fnPnLSSaTLp89pJwFyiv832OqnKd4ktvYbDat/vpVWWOiFJivrLb/NEwla7VV9mS2S0y+vPkc/q3D6WnTgUU6cWGfzoUd1YZ98+Mtn97vL+XOUShV+3RknqWm/yVyIC0yew5kxBjt6GNA+x37WuNqrwOSY8cBI+eAq56j3eOK512ZjSvngLPOhxgH04ZxMH2k5ji4alsz4rrc5uWlSw8T5H/3d+6crN/OkKl0KZnbviCTxSJzxw6yfjdT1qU/y/LcMw/9HPny5kvTr5K5moy6L2PkcVCiBjKztNSA5NxxMCP6XyIHkpIZx8HMfm+McTDzyqga4JrQ2OdCEuOg0WtAcr0coAa4NwwAAAAAAAAAQFo8zLxDw0woHTBggObOnaszZ86ofPnyKlOmjG7fvq1jx46pefPmKlKkiFauXKnKlSsnuH3p0qUlSbVq1VKzZs1UpEgRjRo1SpMnT5YkDR48WH5+flqyZIk8PO4e1qZNm+r06dN69913tWfPnlTHnNafnU1vsVHS+onOjiL19h/fqDE/vqps/rnUsfFHalSlfbLbhBwNkcUrA4JzoDsx0sD4790lqtgjLXVi98/KmquwvHyyJrv+vlWTdPbwBtVp86mKV3tG8z6oqjXfdNHz729I07exHw0JkbcDR6L0zs8m1TqpSbVODt2nI/Mstf0vkQOpldlzICPGaEcfA9rv2NcaV3sdkBw7Dhg5B1z1HO0eVzzvymxcOQeceT7EOJh6jIPpIzXHwVXbmhHX5RGxMcqxbvVDRHmfzWpV7OhxktUqS/93ZLJYJEnmti/ItmWrrN/OkLlWTZny5X2o5zkaclT+ltQNAq6YAxl1X8bI46BEDWRmaakByXnjYEb1v0QOJCUzjoOZ/d4Y42DmlVE1wDWhsc+FJMZBo9eA5Ho5QA1wbxgAAAAAAAAAgIxmdnYAGaVAgQLatGmTnnrqKfn4+OjUqVMKDAzU1KlTtXz5ch09elSSEp1Q+qDs2bOrRIkSOnbsmP2xAwcOqHLlyvbJpPdUr15dhw8fdmxjkCZP1uis1aNtWjj0kl558mNnh5NpFK16943i0wdWqVCFJkmuezU0RFt+HKQ8xWqoesuBylmgvGq1Hqpzf/+ufasmZUzAcDhyADA2xgDAWFbv+l5z1gzTnDXDFB5xSRG3r9n/Xr3re2eH5xSMg8ZCDTiXq12XWxculu2vwzK/0lGmQvd/XcVkscjS7x3JGqvYseNls9mcGKXrcLX+BzXgaK5WA/S/47laDoA6cLTMWgNcE8LoqAEAAAAAAAAAAADjMcyEUkkqW7asli1bphs3bujGjRvatm2bunXrpoiICJ06dUpms1kVKlRIdj8XL17UkSNHVLx4cftjwcHB2rt3r2JiYuKsu2PHDuXPn9/hbQEcJX/pBgoPDdHxnUuUt1TdRNezWa1aPbWzbNZYNe0+U2bz3W9jr/b0AOUuWl1bfhyk8H+PZ1TYcCByADA2xgDAWFZsn64ZKz/UjJUfKvzmRd2MDLf/vWL7dGeH5xSMg8ZCDSClbKdPyzrze5nKlpH5+dbxlpuKFJa5YwfZDhyUdenPTogQSF/UgLHR/wB1YCRcE8LoqAEAAAAAAAAAAADj8Uh+Ffd36NAh2Ww2lSpVSn5+fnGWdezYUSVKlFCVKlWUPXt2hYSEaPz48fLw8FDfvn3t6/Xs2VNt27bVc889p+7du8tisWju3LnauHGjJkyYkNFNAlLMbPFQ4UpP3v3//7/5m5Ddv47VhZCtqtd+pALzl72/vdmipt1naN4HVbXmmy56/v0NMplM6R43HIccAIyNMQAwlrFvbnB2CJkO46CxUANIKVOhQvJc/lOS61hebCfLi+0yKCIgY1EDxkb/A9SBkXBNCKOjBgAAAAAAAAAAAIzHUL9QmpgDBw5IkipXrhxvWe3atfXrr7/q1VdfVfPmzTV69Gg1aNBAe/fuVYkSJezrtWnTRr/88ovCw8P1yiuv6MUXX9SRI0c0Z84c9e7dO8PaAqRF8WrPqli1ZxJdfuXcYf2x6EMFl6itqi3ejbc8Z4HyqtV6qM79/bv2rZqUjpEivZADgLExBgAwOsZBAAAAADAurglhdNQAAAAAAAAAAACAsfALpUp6QmmvXr3Uq1evFO3n6aef1tNPP+3Q2ICMULJWmySXB+Yvq17f3U5ynRqtBqlGq0GODCvdRUXf1qdz2uuff/+St6evsmfJrd6tv1L+XCXirHfhykl9MusFxVpjZbXGqGCesur7/NfK6pdDkvTjhtFavXOmrDarCgaVVr923ymLb3YntCjtjJoDRpfSGjh54YAmLemp8JsXZTF7qHShmnrruS/k7ekrSVq963st3DhGVmussmfNo/5tv1PuHIWc0SSkEWMAAKNjHAQAAAAA4+Ka0NiiYu5o6i/vaufRlfLy8FHxvJX13kuz46wTeuWURs/vrGPn9yg4R1FNfWdvvP3YbDYNmPqEQs7t1tJPwjMmeAehBowrpe8T7TiyUtOWD7T/HR5xUYFZg/XV27t18sIBfTavk31ZxO1w3bp9XYv/dyXD2gEAAAAAAAAAAFKHCaVKekIpUueLpb31x18/69+r/+irt/eoRP4qkqSBXzfV1RuhMpnM8vPJqp7PTFSJ/I8k+ybV1ZsXNWreyzp/5bi8LN56q/WXqlTsUUlSx+FF5OnhrTYN+6tFrdfjxfLnX8u0YOMYjX1zg0KvnNKOIyvUss4b9uUj5nbQnpC1eqxKe/V45vN0PzbInFrU6qaaZZrLZDJp6ZbJGrfgdY19c0OcdXIG5NP4npvtk+e++KmPZq0eqp7PTNCuo6u1csd3mvTWNvn5ZNWcNcP07W/vq3frL5zQGjhKYmOWO0pJDXh6+KjXs5NVLF8lxVpjNWLuS5q/fqRebjpUpy/+rW+W9ddXffcoZ0Berdk1WxMWv6lPX1vunAYBAIAM9fv+hdp2eLluRl5N9sOHyBiJXZffu4b28rh7XfPi44P0WJV2kpI+/z17KUSj57+iaxFh8vfJpv7tZqhIcHlJUpP+JhUJrqDXW4xUrbIt4sWydMtkHT2zUwPaz9Cxc3t15tLfalSlvX15vymNdOL8PnVs8pFaN3g7HY+KsSTWn0n1ZVIfoicH4GqoAZADMDrOB5Feft+/UHtC1urNVuNTNAHNVUz/9T2ZTCbNGHBUJpNJV66HxlvHzydArzYbpojb1/Ttb+8nuJ9Fv49X3pzFFXJud3qHjAzA+0Qb4qxTo/STqlH6SfvfH3z7tCoXbyRJKpq3YpxJ1pOW9JLJZMqI0AEAAAAAAAAAQBoxoVTSunXrnB2C22hQ6QW1fWyA+n5ZP87jH3b60f6LjZsPLNHo+Z019Z19kpJ+k2r6r++pbOHaGtF1hY6c2aGhM5/T94NOysPiKUl6v8N8+4chkvLv1VNa9seUOBNKB700R7NWDdXNyPCHbjdck5enT5wPuZQtVFsLN46Jv56Ht/3/sdZY3Y6KkK9XFknSifP7VKFoffn5ZJUk1SzTQv2mPMaEUheX1JjlTlJaAwWCStr/bzFbVLpADZ0MPShJOhV6UEXzVlLOgLySpJplW2jU/Jd1PeKyAvxzpnMLMt7NyHB1HVtBd6IjFZStoKJj7yj08gk9Ua2T3m0zzdnhIQOQAwAQ15aDS9SwUltZLJ7JfvgQGSOx63Ip8WvopM5/Jyzqrha1uunJGp31+/6FGj2/s77os8O+7fgem+zbJuX4+b3aemhpnAkEY95Yr1E/dE5V+5C8xPozqb5M6kP0Rs8Bzv9cDzUAcsBxGANdE+eDSC9bDi5R42ovS0rZBDRXEBkVoRXbp2vuB2ftE+ACA4LjrRfgF6gKRetr3/ENCe7nVOghbT20VP3afqff9y9Iz5CRQXifKHFh185rT8havdv223jLoqJva92eORrdfb3DYwUAAAAAAAAAAI7DhFI41L1fD/2vBz9MEHH7mqS7b8om9ybVxn0/aubAY5Kk0gVrKGdAPu0/vlFVSzWO9xwxsdH68qc+2hWyWll9c6hC0Qb2ZRMWvaF/r/6j7uOqKHeOQvrk1Z8fpplwU0s2T1Cd8s8kuCw6Jkq9JtbUxfB/VDRvJX3S+W4OlSxQTT//8aWuXA9Vjqx5tHbPHN26c0PXb11RgF9gRoYPB0pszHL3D9ElVQP3REZF6Lft09Sl+QhJUrG8lXXs3G6dvXRUBYJKae3u2bLZbPr36j9uOaE0i292PV7lJfl6Z1XHJh9qx5GVmrduuFv0P1KGHABgJMmd+8TERuvQqS3q326G/Ut/pJR9+BDpJ7Hr8qQkdv579eZFHT27U591XSVJalDxeU1e0kvnwo4l+OtDt27f0LiFr+v4+b3K5h+kInnK2/czc9VHirh9Td3HVVHZwrX19vNTUt84pEhC/ZlUXwYG5E30Q/TkAOd/rogaADngOIyBronzQaRVUteAfVp/Fef6L7UT0DKrC2HHldUvUPPWDdfukDXy9vRVpyZDVbXkEyneR0xstMYv7Kp32kyX2WxJx2iRkXifKHGrds5QzTItlCNL7njLNh9crLyBxVL0hdAAAAAAAAAAAMB5mFCKDDNy3svad/zut5F++tqvCa7z4JtU1yMuKzY2Os43AefJUUQXw08nuO3yP7/WmUtHNO3dQ5KkQdOetC/r8/wUffnT25r6zl5HNAVuaO7a4Tofdkyjuq9NcLmnh5emvrNX0TFR+mLpW1r251S1azRAVUo0UpuG/fTBd0/LYrKoXoXnJEkWM8Orq0tozHLnD9ElVwPS3YnVn85up2qlmqp+xbu5XiCopPo8P0Ujf3hZsdYY1SrzlLL4ZnfZGug9qY7OhYUkuOyrvnuUO3tBHTu/V8/V7y1JCjm7SyXyPZKRISKdkQMAcF9y5z57j61XucJ140wmlVL24UM4x6gfXpZNNpUpWFOvtfhM2bME2ZcldP57KfyMAgPyymK5e25nMpmUO0chXQw/neAEgtlr/idPi7e+7f+3bt2+rrcm11aZgrWUI0tuvdL0f9p6aKk+7rw0/RuKeP2ZVF/eibqV6IfoyYG7OP9zPdQAyAHHYQx0L5wPIilJXQPuPLIqwes/ybWvAWOtMfr36j8qnLucXm/xmY6d26OBXzfRtH6HlCNrnhTt4/vVH6t+hdYqnKesQq+cSt+AkaF4nyg+m82mlTu+VY9nJia4/Lft09Ws5mvpFSIAAAAAAAAAAHAQ15ztAZc08MVZkqRVO2fqm18Havh/JpWm5E2qpOw5tlZNqr0sTw8vSdKTNbpoxfbpDxc0DGHBhjHafHCxRnVbIx8vvyTX9fTwUtMar2r8wq5q12iAJKlV3R5qVbeHJOmvf/5UULYC8vcJSPe4kb4SG7Pc8UN0KamBmNhofTq7nQKz5lWPZybEWfZopRf0aKUXJElXrodq/oaRypfAB8pcwcS3/kh2nRPn96pE/rv9HnJ2l+qUb5XeYSEDkQMAjORhJ9FvPbTU/oUq9zzsdR3Sz7g3f1fuHIUUExut71Z8oFHzX4lzXZ7cNXtK7Dm2Vm+0HC+TySR/32x6vMpLOn/5uMPagJT7b392fvKTRNdN6kP0qeWuOcD5n+uhBkAOOA5joPvgfBApkdg1YELXf5LrXwPmzlFIZpNZj1ftIEkqkf8RBQcW1ckLB1I8oXT/iY26ePW0fto6WbHWGN26c10dhxfR5N474kzahuvhfaL49p/YqKiY26pe+sl4yy5cOam///lTQ15elJ6hAgAAAAAAAAAABzA7OwAYT9Pqr2jfsfW6HnHZ/ti9N6mGv/6b/U2qAP+cspg9dOV6qH29f6+eUu7shVL0PCaZHBs43NLCjeO0fu88jey6Wll8sye4zr9X/9HtqFuSJKvVqt/3L1CxvJXsyy9fvyBJuh11SzNXfqS2jw1I97iRcf47Zv33Q3T3/u+qUlIDsbEx+nR2e2X1C1TfF76WyRR3fL1XA7HWWE37daBa1e2Z7ORsVxV27ZxkMilXtvySpBOh+1U0uKKTo0JGIgcAuJOJb/2hRR+HJfgvd/aCkhI/97HZbNp5ZKVqlmlu319C13XIPHLnuHst7WHxVOsGb+vgyU0Jrvfg+W9Q9oK6cv2CYmNjJN3t94tXT6f8utzEdbmz3evPoGwFEu3LpD5ETw5w/ufqqAGQAw+HMdC9cD6IlEjoGjCh6z/JPa4Bs/nnUpUST2jnkZWS7k6IC71yUoXylE3xPsb32KQ57/+j2YNPaXyPzfLzDtDswaeYTOpGeJ/ovt+2T1fT6p1lMVviLVu5/VvVq/BcsvsAAAAAAAAAAADOx4RSpLubkeEKu3be/veWg0sV4J9TWf0CJSX9JlWDSm207M8pkqQjZ3Yo7No5VSreMMHnqVqysdbunq2Y2GhFx0Rp5c7v7Mv8vAN06/Y1B7cMru5S+FlNXfaubkaGq9+URuo+roremlhLkjRj5Uf65Y+7uXfiwn71nlRb3cZWUvdxlXTt5iX1fGaifT/vfdNUr48pr+7jK6tC0fp6pl4vp7QHjpHUmOVuH6JLaQ1s2Ddfmw8u1tGzO/XG+EfUfVwVTVzc076fsT920Wujy+nVkaXk75NNXZoPd0p7MsKxc3vifNt4Fp/s+vmPL50YETIaOQDASJI69/n7zHYVylNWvt5ZJKXuw4fIeJFREboZGW7/e/2eefbXs6TOf3Nkya0S+atqze7ZkqRNBxYpV/YCyp/Ir9FXLdFYK3d8J5vNpojb17V+7zz7Mj+fAEVwXZ7uEuvP7En0ZVIfoicHOP9zNdQAyAHHYgx0H5wPIiUSuwb87/Wf5F7XgG8/P0ULNo5W17EVNXTGs3r7+anKlS2/xi54XVsP/Szp7heKvjisgD75vo1OX/xLLw4roOm/DnJy5EgvvE8U/30iSYqIvKYtBxarWY0u8fZjtVq1aucMNav5WobFDgAAAAAAAAAA0s7D2QHAvXy+sLu2/b1cV26EatC0J+XnnVWjuq/VJ9+30Z3oSJlNZmXzD9Inry6TyWSyv0mVN7CY+k1pJEny8vDWpN7bJEldnxqpz+Z10isjS8rT4qX3XpwtD4tngs/dolZXnQo9qNfGlFNW3xyqULSBQs7ukiQVy1tJhYPLq+uYCgrOWUyfvPpzxhwQZGpB2Qto9Whbgss6P/k/+//rlGupOuVaJrqfb9494PDY4DwRt68lOmYl9iG6d9tMc2LEaZfSGniiagc98f+/0pGQ4a//5vDYMqva5Z5W7XJP2//+os8OJ0YDZyAHABhJUuc+Ww4uUd3yz0pSstd1yFgJXZd/1nWVPp71vKzWWNlkU97AYhrQfpakpM9/Jent56dq9PzOmrduuPx8AtS/7XeJPneHxh9q3MLX1WV0GWXzD1KFIvUVFXNHklS1xBNauHGMuo2tpHJF6urt56ckuh+kXVL9mVRfvv38FI1d8Jqm/TpQZpPZ/iH6u8uMnQOc/7kWagDkgGMxBromzgeRVoldA2bzz2W//pPc7xowb85iGvPG+niPP3jf38fLT/M+OJvsvoIDi2jpJ+GODA9OwPtEdz34PpEk+ftm0y/DIxJc12w2a+4HZxweHwAAAAAAAAAASB9MKIVDvf3C1AQfn9x7e4KPJ/UmlSTlyJpHI7utStFze1g81bt1wt+ObrF4aFiXZSnaDwBjy5OjcKJjFh+iAwAARpLUuc+ff/2i0f//gdvkruuQsRK7Lp/Sd0+Cjyd1/itJBXOX1sS3/kjRc/v5ZNUHHecnuMzfN5sm9Nqaov0g7ZLqz6T6MrEP0Se33X+RA3A2agDkAMD5INIusWvA18eUt1//SVwDwv3xPhEAAAAAAAAAAHB3ZmcHAKRVNv8gjZzXUb9uS9s3vo6Y20Frd8+Wn0+AgyMDAAAAAPc2rd8h5ciS29lhwMlyZMmjd79qqG2Hf03T9v2mNNKBExvl4+Xv4MiQUcgBGB01AHIARkcNGAPXfwAAAAAAAAAAAIB74RdK4bIe9htfB700x0GRAAAAAABgPD8OCX2o7RP7JTi4DnIARkcNgByA0VEDAAAAAAAAAAAAAOB6+IVSAAAAAAAAAAAAAAAAAAAAAAAAAAAAN8eEUgAAAAAAAAAAAAAAAAAAAAAAAAAAADdnstlsNmcHAddis0nWaGdHkTHMnpLJ5OwoUsdmk6JinR1FynlZHHuMXTE/HZlnrtb/EjkgOT4HaL9j9pVRHP1aY/RxwMg5EBslrZ/48Ptxlka9JYuXs6Nwba6Y//dwPsQ4yDiYunHQFfs5rVKbHzabTbesrjUI+JktMqWyCIySA2kZH1zx2Dj2dZAacDeMgwkzSg4wDqYeNeBe0loDXBM6Zl8ZJT3ujxr5GBi9BiTXywFqwDXfkwcAAAAAAAAAwJV5ODsAuB6TiQ/7Z2Ymk+Rt4Mo2en4avf8lcoD2G7v9EuMAOQAjI//vYhwkD4yAfk6cyWSSv8X9BwFyIHFGPzbUAMgBGP3YUAPgmpDcMPoxMHoNSOSA0dsPAAAAAAAAAACSZ3Z2AAAAAAAAAAAAAAAAAAAAAAAAAAAAAEhfBv9+UgAAAAAAgLj2Hd+gflMaJbrcbLZo5ciYDIwIAAAAAAAAAAAAAAAAAADg4TGhFAAAAAAAIAGNqryommVaxHvcbDY7IRoAAAAAAAAAAAAAAAAAAICHw4RSAAAAAACABJTMX1WNq3VMl33bbDbdjoqQr3eWdNk/AAAAAAAAAAAAAAAAAADAfzGhFAAAAAAA4CFs2r9IS7dM0vHzexUTG6Wg7AVVvdST6vb0GHl6eGnf8Q3qN6WR+rX9TrejIvTz1i904fJxtX98kF5uOtTZ4QMAAAAAAAAAAAAAAAAAAINgQikAAAAAAEACbkff0rWIsHiPe1i85O8TIEn69rf3NW/dcBXOU07PN+irwIC8On/5uDYfWKRXnvyfPD287Nst3vS5bty6rOa1uiowa7CCshfMsLYAAAAAAAAAAAAAAAAAAAAwoRQAAAAAACABs1YN0axVQ+I9XqvsUxrWZZn+Pr1d89YNV5XijfTpa7/Ky9PHvs7rLT6Lt92l8NOaPuBv5ciSO13jBgAAAAAAAAAAAAAAAAAASAgTSgEAAAAAABLwVK1uerRSm3iPZ8sSJElau2eOJKlLixFxJpNKkslkirdd42ovM5kUAAAAAAAAAAAAAAAAAAA4DRNKAQAAAAAAEpA/V0lVLdU40eXnwkJkMplUPG/lFO2vQFApR4UGAAAAAAAAAAAAAAAAAACQamZnBwAAAAAAAOCqTDJJCfwaaUK8Pf3SORoAAAAAAAAAAAAAAAAAAIDEMaEUAAAAAAAgDQrkKiWrzaoT5/c5OxQAAAAAAAAAAAAAAAAAAIBkMaEUAAAAAAAgDR5/5CVJ0re/DVZ0TFS85TabLaNDAgAAAAAAAAAAAAAAAAAASJSHswMAAAAAAADIjELO7daaXbMTXFavwrMqU6im2jUaqPnrR6rH51XVsHI7BQYE68KVk9q0f6Em996uLL7ZMzZoAAAAAAAAAAAAAAAAAACARDChFAAAAAAAIAHr987T+r3zElw2Y2CI8nuX0OstPlOxvJX105bJ+nHjKNmsVgVlL6iaZVrI29MvgyMGAAAAAAAAAAAAAAAAAABInMlms9mcHQQAAACAhxMbJa2f6Owo0q5Rb8ni5ewoALgyxkEAAAAAAAAAAAAAAAAAAICkmZ0dAAAAAAAAAAAAAAAAAAAAAAAAAAAAANIXE0oBAAAAAAAAAAAAAAAAAAAAAAAAAADcHBNKAQAAAAAAAAAAAAAAAAAAAAAAAAAA3JyHswOA67HZJGu0s6PIGGZPyWRydhSpY7NJUbHOjiLlvCyOPcaumJ+OzDNX63+JHJAcnwO03zH7yiiOfq0x+jhADgAAjM7or4VGPhdyxb5/UGrywNXbmhqprQ+bzaZbVtcqAj+zRaZUFgE5kDhXPDaOvy52rTqgBpLGOJgwo+RAWsYHVzw2jj0fpgbcTVrOBYx6TXSPq+VHerxH4Ertl7gvYPQakHivkPeJAAAAAAAAAGQ0JpQi1azR0vqJzo4iYzTqLVm8nB1F6kTFSgPnOzuKlBvZTvJ24EjkivnpyDxztf6XyAHJsTlA+43dfolxgBwAABid0V8LjXwu5Ip9/6DU5IGrtzU1Ulsft6yxyrFudfoFlA6uPt5E/pbUFQE5kDhXPDaOviZytTqgBpLGOJgwo+RAWsYHVzw2jhwHqQH3k9r8MPI10T2ulh+OPhdytfZL3Bcweg1IvFfI+0QAAAAAAAAAMprZ2QEAAAAAAAAAAAAAAAAAAAAAAAAAAAAgfTGhFAAAAAAAAAAAAAAAAAAAAAAAAAAAwM0xoRQAAAAAAAAAAAAAAAAAAAAAAAAAAMDNMaEUAAAAAAAAAAAAAAAAAAAAAAAAAADAzTGhFAAAAAAAAAAAAAAAAAAAAAAAAAAAwM0xoRQAAAAAAAAAAAAAAAAAAAAAAAAAAMDNMaEULmPf8Q1q0t+klTtmODsUAAAAAAAAGAz3poyN/geoA6Oj/wHqAAAAAAAAAAAAAO7Bw9kBwH3sO75B/aY0sv9tNpnl5xOgXAH5VbJANTWq8qKql35SJpPJiVEC8f03dyXJx8tfBYJKqXHVTnq23luyWBgu3Rk5wDEwevtBDgAAjI3XQbgL7k0ZG/3/cHgtcA/UgbHR/w+HcdA9UAdIK6OPAUZvP8gBiWMAAAAAAAAAwFi42wmHa1TlRdUs00I22RR554bOXDqirQeXavWuWapasrE+7LRAWXyzOztMIJ4Hc/fqjVCt3jVLU355R6cvHlbfF752dnjIAOQAx8Do7Qc5AAAwNl4H4S64N2Vs9P/D4bXAPVAHxkb/PxzGQfdAHSCtjD4GGL39IAckjgEAAAAAAAAAY2BCKRyuZP6qalytY5zH3mg5Tt8sH6BFv4/T8DkvavjrvzkpOqTGhI6O+4bmPrNtDttXevlv7ras20OvjSqj37ZP06vNPlX2LEFOjM45yAHj5YDRj4HR2/9fRhsDJHIAAGBsvA7GZ8TzIXfAvSljo/8fDq8F7oE6MDb6/+EwDroH6sAxjHg9ZPQxwOjtT4jR6oAc4BgAAAAAAAAAMAYmlCJDWMwWvdFyrI6c2a4dR1bo4MnNqlC0viQpIvKa5q4brs0HFulS+Bn5+QTokZKN1aXZp8qbs1iS+7VarZq3foR2HVmps5eO6kbkFeXIGqxaZZ7Sq82GKcA/pyTp6s2LemlYAT1aqY0GvTQn3n4mLu6pZX9+pVnvnVBwYBGHt98VXQ87rQYdxqlq877ODsVpfL38VaZwbW3av1DnLx833JtD5AA5IHEMjNx+xoC7jJwDAAAY/XWQ8yH3wr0pY6P/087orwXuhDowNvo/7RgH3Qd1kDpcD91l9DHA6O2nDsgBiWMAAAAAAAAAwD0xoRQZqlmN13Tw5GZtO7xcFYrWV0TkNfX5oq4uhp/WkzW6qEie8rpy/YJ+/uNLvTWplr7os1N5chROdH8xsVFasGG0GlR8XnXKPyMfL38dPbNDK3ZM18FTm/Vln13y9PBSjiy5VadcK20+sFg3I8OVxTe7fR9R0be1fu9cPVKicaZ4gzazOLnnFxV7pKWzw3C6C5ePS5IC/AKdHEnGIwfuMnIO3GP0Y2DU9jMG3GfUHAAAQDL26yDnQ+6Je1PGRv+njZFfC9wRdWBs9H/aMA66F+ogZbgeus/oY4CR208d3GXkHLiHYwAAAAAAAADA3TChFBmqWN5KkqSzl45Kkmas+kgXLp/QxLf+VPF8le3rNa3RWd3GVtTMlUM0oP2MRPfn6eGt+R9dkLen7/0H67yhckXqatyC17X10FI1rNxWktSiVjdtOrBI6/bMVau6PeyrbzqwSDcjw9Wi1usObKnrCw8NUeUmPZ0dRoa6HX1L1yLCZLPZdPVGqH75Y4qOndujMgVrqkBQKWeHl+HIAWPmgNGPgdHb/yAjjgESOQAAMDZeB+My6vmQu+PelLHR/8njtcD9UQfGRv8nj3HQ/VEHKWPU6yGjjwFGb/9/GbEOyAGOAQAAAAAAAABjMOSE0rCwMI0aNUqLFy/W2bNnFRQUpNatW2v48OHq3bu3vv32W02aNEm9evVydqhux88nQJJ068512Ww2rds9RxWLPapc2fLrWkSYfT0fL3+VKVRbu0JWJbk/k8lkf4M21hqryDs3FGuNUZUSj0uSDp/eZn+TtlqpJgoOLKoV26fHeZN2xfbpCvDLqbrln3VkU11a1O2b8vLJ6uwwMtysVUM0a9WQOI/Vr9Babz33hZMich5y4D6j5YDRj4HR23+PUccAiRwAAHdntVq1ZPMELf9zqkKvnlJ2/yA9WrmtXnnyf/L18nd2eE7H6+B97no+NG/dCIWc262Qs7sUeuWk8uQorNmDTzk7rAzFvamUi/12hqw//CjLO2/L3KxpnGU2m02x/d+T7fBheUyeKFPRIs4JMpXo/+TxWnCfO9aARB2khjvmAP2fPMbB+9yxBiTqICXc9XooJYw+Bhi9/Q8yah2QAxwDAAAAAAAAAMZguAmle/fuVfPmzRUaGip/f3+VK1dO58+f18SJE3X8+HFduXJFklSlShXnBuqmbt2+Lkny8w5QeMQlXb91WbuOrtILQ4MSXN9sMie7z437ftTCjWN17PwexcRGx1l2M/Kq/f8mk0nNa76u71a8r2Pn9qpE/iq6cPmE9p3YoOfq95Gnh9dDtMy9nD6wWoUqNk1+RTfzVK1uerRSG8VYo3XywgHN3zBSYdfOysvTx77OgRObNHh683jbxsRGyWqN1cpRsRkZcrohB4ybA0Y/BkZv/z1GHQMkcgAA3N1Xv/TV0s0TVa/Cc3qh4bs6/e9hLd08UcfP7dHIbmtkNid/DerOeB28z13Ph779bbCy+gWqZP6qiogMd3Y4TsG9qZQzd+og65/bFDv1G5mqVZUpKJd9mXXxUtn2H5C5S2eXmkBC/yeP14L73LEGJOogNdwxB+j/5DEO3ueONSBRBynhrtdDKWH0McDo7X+QUeuAHOAYAAAAAAAAADAGQ00oDQsLU8uWLRUaGqp3331XQ4YMUdasd79VctSoURo4cKA8PDxkMplUqVIlJ0frnk5c2C9JKpC7tGSzSZKqlmysdo8NTNP+Nh1YrGGz26lMwZrq0WqCgrIXlJeHj2JtsRo8rZmsVmuc9ZvV6KJZq4ZoxY7p6pV/klbs+FY2m03Na77+cA1zMxdCtqhe+5FxHtsyf7B2/jJCjbtOV/mGXeIss9lsWvRpI4Ue+0PtP9mlXAUrZGS4DpM/V0lVLdVYklSzTHNVKFpffb+srwmL3tD7HX+QJFUs1kC/fHozznZh186r58Tqeqau+/yqMTlg3Bww+jEwevvvMeoYIJEDAODOToUe0k9bJql+hdYa8soi++PBgUX1xU+9tWHfD3r8kZecGKHz8Tp4n7ueD/0fe/cd3lT5/nH8k6S7UCiz7I1syh6KiDIEARUEUZYoS0VEERAX+BVBpoqooKCgKLIUFRSQvVT2RjZCgQKVltnSkfz+4EegdLdp0uS8X9fldUnOOen9nHPfzxlPnuSb14+qSP6ykqQ+E6opOvZqGlt4Hp5NpZ/J21teQwYrfuArSpj0kbzGjJIk2U6FyTrzG5kq3SNzp44ujjJjOP5p41xwmyfWgEQdZIQn5gDHP230g7d5Yg1I1EF6eOr9UHoYvQ8wevvvZNQ6IAfYBwAAAAAAAACMwVATSgcOHKiwsDANGDBAEyZMSLRs6NCh+v7777Vr1y6VKVNGQUFBLorSsy3dMkOS1KDSI8oTWFC5/PPqesxl+wP5jFq57Vv5ePlpfP/V8vMJsL9+8vw/ya6fLyhEDau006rt3+m5Nh9o+daZqlSygUqHVM3U3/dENqtVNptNZrMl0esNO47U8R2/at13r6pktZbKnb+4fdmOpR/p9D9r1bjzGLcdHEtO1dKN1bx2d/2x7Rs9dt9AVS3dOMk6sfE39O43HVSt9H16+qE3XBCl45EDtxk1B+5k9H1gxPbTByRmxBwAAE+1eucc2Ww2dWgyKNHrbRr00YzfXteK7bMNP6H0bkY9D3ry9dCtyaRGxrOpjDFVKC9zl86yfjdH1iW/y/RwSyWMmyDZbLIMGSyTxZL2m+QgHP+MM+q54BZPqwGJOsgoT8sBjn/G0Q96Vg1I1EFaPPl+KDOM3gcYtf3UwW1GzYE7sQ8AAAAAAAAAeCKzqwNwlgMHDmju3LkqUKCAxowZk+w6derUkSTVrFnT/tr69evVvHlzFSlSRL6+vipevLiefPJJHThwIMn2K1asUMOGDeXn56dChQqpf//+unTpUvY0yM0kWBM07dfXtPf4BtWv1EbVytwrs9msB2t11T+nNmvd7gXJbhd59Xyq72s2W2QymWSz3f52X5vNpu9XjEpxmzYN+uhKdKQ+XthfEZdO56hv/M0Jwo9tVki5+klet3j5qGW/WYq/cU0rpj9nfz3yzEH9Of9NhZRroDpthzgzVKfo2vxtmc0WzVr2TrLLP17YX7FxMRry5EznBpaNyIHEjJgDdzP6PjBa++kDkjJaDgCApzp4aovMJrPuKZn4POfj7aeyRUN16NQWF0WWsxnxPMj1kGfi2VTmmbs+JZUtq4Qvp8v66VTZDh6S+ZkeMpUonvbGOQTHP2uMeC64kyfUgEQdZIUn5ADHP2voB92/BiTqIL24H0rK6H2AEdtPHSRmxBy4G/sAAAAAAAAAgKcxzC+UzpkzR1arVV27dlWuXLmSXcff319S4gmlkZGRql69uvr166dChQopLCxMY8aMUaNGjbR3714VL35zsHTt2rV6+OGH9eijj2rEiBEKCwvT8OHDdfDgQa1atUomkyn7G5lDHD69XSu2zZYkRd+4olMXDmrTvkU6F/mv6lRsqTee/t6+7rMPv699JzZq1OzOalqjsyqXaigvi4/ORf6rzf/8pgrF6mhol5kp/q0mNZ7Q+j0LNWTag2pep4cSEuK0cd8i3Yi9nuI2dSu2UuHgUlq5fbb8fXOpWWgXh7Xd3Zz+Z52KVGgss+V2V/DvrqWq1fqVZNcvVKa26rYbrs2L3tOeVV+o6gPPadm0HrLZbGrZb1aSb2n1BMUKlFezml20csd32nNsvaqXbWJf9tOGyfr7wGJNGbgl0bdOuxNyIG2engPpYfR94Mntpw9IH0/OAQAwkv8un1FQYAH5ePkmWVYgTzHt/3eT4uJj5e3l44Loci5PPw9yPeSZeDblWCYvL3kNeVXxLw2SdfESmapVlbnDY64OK0Ucf8fz9HNBWtytBiTqwNHcLQc4/o5HP+heNSBRB+nF/VD6GL0P8PT2Uwdp8/QcSA/2AQAAAAAAAABPY5gJpatWrZIkNWvWLMV1wsLCJCWeUNq+fXu1b98+0Xr16tXTPffco4ULF+rll1+WJP3vf/9ThQoVNH/+fJnNN3/4NX/+/OrYsaOWLFmitm3bOrQ9OdnqnXO0euccmU1m+fnmUsE8xVWjbFM1C31K9So9nGjdQP88+ujFjVqwdqLW7p6nTft+lsXipQJ5iqta6fvUukHq38jbLLSLom9c0cJ1H+qLxa8pt3+wGlZpp+fafKCOI/Inu43ZbNbD9Z7TrOXvqGmNzvL3TX6Csac79NdcrZjeW+1e/UUlqtyuixvRl+QbkCfF7eo/9raObf9FG75/TRf+3alzRzerydMTFVz0HmeE7RJPPfSmVu+co1nL39GE/qslSTuPrNb0JcM0uvfvCslX2rUBZhI5kH6emgMZYfR94Intpw/IGE/MAQAwmhux1+WdzGRSSfLx8ru5Ttx1JpQmw1PPg1wPeS6eTWWDwEDJ21uKj5epXl2Z/v/5Z07E8c8ennouSDc3qgGJOsgWbpQDHP/sQT/oPjUgUQfpwf1Qxhi9D/DU9lMH6eepOZAR7AMAAAAAAAAAnsRks9lsrg7CGUqUKKGwsDDt2LFDoaGhSZbHx8erSJEiioiI0NGjR1W2bNkU3+u///5TgQIFNGXKFL344ouSpFy5cqlXr1765JNP7OtdvXpVuXPn1nPPPafp06dnOOa6desqPDw8w9tlNx8vf30x4LCrw8iSuavHafpvw/Txi5tUpXSjFNfrO6WCYuOjnRhZ1lm8/fX4qPQdn80/v6/oKxFq2u1DSdLliJM6uvVH1Xp4UKrbXfh3l354p56sCXEqWvE+PfHW2kx/eOCntyooIc5x+9gZ+Rl+8YQGTK6nbi1G6LF7B2T5/RyZZxk5/hI5kFk5OQec1Uc7ch/Qfseea9ztPCA5th8wcg64+zWaO153AchZ0uoH+0ysrqir5zV/xLkky977trPW7Z6v38bccNmEUnc6H+Tk62Ej3xNl9Nj3mVBN0bFXNfuNE1n+246QkTxw9+seKfueTdl8fHRh2qeOCPH2e9psShg6XLb9+6UiRaRz5+U17TOZihZxyPsX7PeiTLGxGdrG3XMgvcdfyngOGPme6BZH1wE1kD3oB28zYg5k5xiN0ftBasB9ZFcdGP35sOR+98WOvhZyt/ZLPBcweg1IjBUyPgIAAAAAAAAgM0JCQrR169ZMbWuYXyi9du2aJCk6OvmHsHPnzlVERIRy586tMmXKJFmekJAgq9Wqf//9V8OHD1dISIg6d+5sX26xWOTjk/hDp97e3jKZTNq3b1+mYg4PD9fp06cztW128vMOcHUIWZKQEK8lf01TmZDqaX5g6+yZM4qJu+6kyBzDyzf9x6dc3cf168T29gGy4zt+VZla7dLczjcgjyzevrImxKl0aJssDRKfOXtG8Tcct4+zOz9jYq9rxMzH1KhKe4cMjkmOzbOMHH+JHMiMnJ4DzuijHb0PaL9jzzXudh6QHNsPGDkH3P0azR2vuwDkLGn1g/mDiurkuf2Kjb8hn7t+qTTi0mnlCSzg0l8ndZfzQU6/HjbyPZGRrgXcva3Z+mzKz1feWYzvbtZFv8i2a7fMvXrK3Kih4l98SQkTP5RlwliZTKYsv/+Zs2ekmBsZ2sadcyAjx1/KeA4Y+Z7IzsF1QA04Hv1gYkbLgeweozF8P0gNuIXsrAOjPx+W3O++2NHXQu7WfonnAkavAYmxQsZHAAAAAAAAADibYSaUhoSEKDIyUtu3b1ejRokH5s6ePashQ4ZIkmrUqJHs4GfTpk21ceNGSVL58uW1atUqFSxY0L68YsWK+vvvvxNts2XLFtlsNl28eDHTMedEPl7+rg4hU85ePK4D//6pTft+1tmLx/RG1zlpblOkaFG3+yZIi3f6j0/+YlUkk0n/he1T/uJVFXXuiGoWLpfqNjabTX980UvW+FjlK1pZm38epQoNOitvGtulpGiRog7/xtXstH7PQh07u0unIw5pza65SZbPeG2/CgWXzNB7OjLPMnL8JXIgM3J6Djijj3b0PqD9jj3XuNt5QHJsP2DkHHDXa7Rb3PG6C0DOklY/eE+Jetp2aLkOntys6mWb2F+PjYvRsTM7Vb3s/dkdYqrc5XyQ06+HjXxPZKRrAXdtqzOeTdl8fHQhK0He/X6nT8v61UyZ7qkoc+cnZLJYZO7WVdavZ8m66BdZHn80y3+jaJGimfpVMneTmeMvZTwHjHxPdIsj64AacCz6weQZJQecNUZj9H6QGsjZnFEHRn8+LLnffbGjr4Xcrf0SzwWMXgMSY4WMjwAAAAAAAADIjKzMOzTMhNLmzZvrwIEDGjt2rFq0aKGKFStKujnps3v37oqIiJAkhYaGJrv9jBkzFBUVpePHj2v8+PFq2bKlNm7cqJIlbz4EHjhwoHr06KFRo0apf//+CgsL0wsvvCCLxSJzJr+NMrM/O5vdEmKl1ZNdHUXG7T66VhPm9VKewALq1vwdNQvtkuY2hw8dlsV1P1CTKTfipWFJxyxSVLZWOx3b/otyFyglH7/caa6/a/knCjuwRo06va9ydR7VnLdqa8WXz6rjm2sy9U3Uhw4flq8De6Lszs8WdbqrRZ3uDn1PR+ZZRo+/RA5kVE7PAWf00Y7eB7TfsecadzsPSI7tB4ycA+56jXaLO153AchZ0uoHH6j5pOasGq0f13+UaELpb39/qZi463qwVlcnRJkydzkf5PTrYSPfExnpWsBd2+qMZ1PXEuIVvOqPLER5m81qVcL4SZLVKsuQV2WyWCRJ5s5PyLZxk6xfzZS5QX2ZihbJ0t85dPiQAi0ZKwJ3zIHMHH8p4zlg5HuiWxxVB9SA49EPJs8oOeCsMRqj94PUQM7mjDow+vNhyf3uix19LeRu7Zd4LmD0GpAYK2R8BAAAAAAAAICzZW6moxsaOnSo8ufPr1OnTqlq1aqqXr26KlSooPr166ts2bJ68MEHJUk1a9ZMdvt77rlHDRo0UJcuXbRy5UpduXJF48aNsy/v1q2bhg0bpvfee08FCxZU3bp11axZM4WGhqpIkawNpMIxWtV7Rn+Mt2nByAvq2epdV4eTY5SpfXOA7OSe5SpZrUWq60aGH9bGecNVuGw91W03TPmLV1WDDiN1+p912rX8E+cEDIcjBwBjow8AABhFmSLV1b7xi9qw90eNnNVBv/09XVN/Haypv76qGmWb6sFaT7s6RLiIka6H/tj2rb5bMUrfrRilqGsXdC3mkv3ff2z71tXheTx3ezZlXfCjbPsPyNyzm0wlb/+yislikeW1VyVrghImfiibzebCKN2Hux1/UAPZwd3qgBxwLHc7/qAGskNOrAMj3Q8BKaEOAAAAAAAAAABGY5gJpcWLF9f69ev1yCOPyM/PTydOnFC+fPk0bdo0LVmyRIcOHZKU8oTSO+XNm1fly5fXkSNH7K+ZTCZ98MEHioiI0K5du3Tu3DlNnDhRhw8fVuPGjbOtXUBWFbuniaLCD+vo1p9UpGLKuWqzWvXHtGdksyaoZb9ZMptvfhN1nbZDVahMXW2cN1xR5446K2w4EDkAGBt9AADASJ5v/5H6tp2gf8/t05SfXtSanT/osXtf0qhnF8tsNswjEtzFSNdDSzfP0Mxlb2vmsrcVdfW8rkZH2f+9dPMMV4eHHMR28qSss76VqXIlmTt2SLLcVLqUzN26yrZnr6yLfnFBhED2ogZADsDoqAHjMNL9EJAS6gAAAAAAAAAAYDRerg7AmSpXrqzFixcnef3q1as6ceKEzGazqlWrlub7nD9/XgcPHlSDBg2SLMudO7dq1KghSfryyy8VHR2tXr16ZT14IJuYLV4qVaPVzf///0Gv5Gz/baLOHt6ke7uMVb5ilW9vb7aoZb+ZmvNWba348ll1fHONTCZTtscNxyEHAGOjDwAAGInFbFGnpoPVqelgV4eCHMRI10MTn1/j6hDgJkwlS8p7yc+prmN56klZnnrSSREBzkUNgByA0VEDxmGk+yEgJdQBAAAAAAAAAMBo+PkNSfv27ZPNZlOFChUUEBCQaFm3bt00cuRILVq0SGvWrNGXX36pBx54QF5eXnrllVfs623dulVjxozRsmXLtGTJEr3yyivq37+/xo4dq3Llyjm7SUCGlKvzmMrWeTTF5RdPH9CfC99WSPmGqt0m6Qev8xevqgYdRur0P+u0a/kn2Rgpsgs5ABgbfQAAADA6rocAAAAAGBX3QwB1AAAAAAAAAAAwFkP9QmlK9uzZI0mqWbNmkmUNGzbUN998o48//lgxMTEqUaKEmjVrpjfeeEOlSpWyr+fr66tff/1VY8aMUXx8vKpXr665c+fqiSeecFo7gMyq0KBTqsvzFausAV/HpLpOvfbDVa/9cEeGBSciBwBjow8AAABGx/UQAAAAAKPifgigDgAAAAAAAAAAxsKEUqU+oXTAgAEaMGBAmu9RvXp1bdq0yeGxAXCubqNLy9vLVz5e/pKkpx4crgdCn0y0jtVq1ReLX9OWg0tlMXspKDC/XnniSxUrUN4VIQMO8+migfpz/y86F/mvPh+0Q+WLhSZZJ/ziCY2f+4yOnNmhkOAymvbqTqfHmdOs271Afx9YoqvRkfr33H75evsrb65CGtjhc/oFAAAAAAAAAAA8wLrdC7Tj8Eo93/5Dvf9dF48YD4iNi0lXW7YcXKbpS4bZ/x117bzy5Q7R54O2S5KuXI/UlEUDdPDUFnlZvNWwSjv1bvOBU9sCAAAAAAAAAADSjwmlSn1CKdIvtQGnlyY3UGz8DUmS1RqvE+f2adoru1S2aA1J0i+bPtOijZ/IYvaS2WTWJy/9LR9vP8XEXtfE+c/p0KktMpnMerb1aN1f4+avvg7+/AGdj/xXLev1UvcW7ySJ53j4Xr39VVvNfuOErkZHafGfU9Xlwdfty79YPERrds1VhWK19e4zi7J/B8FtvNl1brIT6W75c/8v2ndio6a9ukteFm99t2KUvvr9Db3dfZ7zgkS2GvZFS0VeCZfJZFaAX269+OhklS9Wy9VhZbsmNZ5Q5weG6pXP7ktxnQC/IPV6eJSuxVzSV7+/6cTocq6Ne39S0xqdZbF4q36l1jKZTFq0cYomze+tic+vcXV4AAAAgKGk9EU5qd3npfblUmEXDmv83J66dC1CgX55NOTJmSodUlWS1GKISaVDqql3m7FqULlNklgWbZyiQ6e2amiXmTpyeqdOXfhHzUK72Je/NrWZjp3ZpW4t3lGHJoOyca8YR2afT6b2DJLnk3An1ADIAYDrQWSfjXt/UvM6PSRJbRr09ZjxgPS0pd49rVTvnlb2f7/1VVvVLNfM/u+J855V1dL3avjT30mSLl4Od0rsyD5GHSu9W3onXUtSbPwNTft1sLYeWiYfLz+VK1JTrz892wVRAwAAAAAAAEDamFAqadWqVa4OwWOkNOD0ycC/7eus271A3/7xrn0y6aa9P2vl9u/0yYC/FOifR1FXL8hi8ZYkzV87Qd4WX816/YjOXjyugZMbKLRcMwUF5pck9W//oe6t9liacV2NjtIPqz9I9EGFvm3Hq1Thqtq0b5HjdgAMwSSTYuNvKDYuRhazl67HXFbBPMVdHRYc6O3u85TLP68kacOenzR+7jOa9uou1wblBDXK3p/mOkEB+VStzH3adXRN9geUA1yNjlKfidV0Iy5aBfOUUFzCDYX/d0wP1emuwZ2mKz4hTvtObNSQJ2fK6//PXZJUuWRDLVg7wYWRI7uklRMAAHg6zoXI6VL6opy07vNS+nKpjxf2U5sGfdWq3jNat3uBxs99Rp++vMW+/MMX1tvfNzVHz+zUpn2LEk0gmNB/tcb98EyG2oe0Zeb5ZGrPII3+fJJ+3/1QAyAHHIt+0P1wPYjMSq3eX+7weaKxgDsnELvzeICPt1+G2xJx6Yx2HF6pwZ2/kiSdjjiiQ2Fb9U6PhfZ18gWFZE/AcBqjjpUmJ70TyGf89rpMJpNmDj0kk8nExGoAAAAAAAAAORoTSuEw6R1wWrp5hlrXf87+73lrx6t7ixEK9M8jScqbq6B92dpdc/VqpxmSpCL5yqhGuQe0Ye9PatOgd7IxfLN8pFbu+E6BvkGqV6m1/fWPF/ZX9I0r6jcpVBaLlz57eWvWGguPNu6HHrLJpkol6uu5Nh8kyklJalilnXYeXa0n/xcif9/cKpCnmCY+v9ZF0SI73Pnhj2sxlySZJPHhISPK5Z9XD4Y+LX/f3OrW4m1tObhMc1aNth/vnUdWq0qpxokmk0rSTxs+VqOqj7oiZGSztHICAABPx7kQOV1KX5ST0n1eaiKvntehsK36oM9ySVKT6h015acBOh1xJNlfI7kec0WTFvTW0TM7lSewoEoXrmp/n1nL39G1mEvqNylUlUs11KCOUzPeOKQps88nU3sGafTnk/T77oUaADngePSD7ofrQWRWavW+9eDyZMcCJM8aD0hPW5Zvnan6ldooOFchSdK/5/arQJ7imvzj8zoUtlW5A/KrzyNjDflrlp6EsdKb0nttFR17TUs3z9D3b4XJZLq5r5hYDQAAAAAAACAnY0Ipsk1yA07no05p97G1GvbUt/bXTp7br0NhW/XtH+8qLuGGWtTpocfvG/j/659U4eBS9nVDgkvrfNTJZP/e3weWaN3u+frs5W0K8M2tsXO625e93HGq+n8Yqmmv7nRgC+GJJj2/ToWCSyo+IU5fL31L4+b21Ojnfku0zqGwrToRvldz3j6tAN8gzfjtdX28sL9ef3q2i6JGdhg7p4d2HV0tSXr//3OADw95noGfNNLpiMPJLvv8lR0qlLeEjpzZaT8vHQ7bpvJFb38IYtO+Rbq32uOJtvt+5WidiTiicf1WZl/gyDZZzQkAANwd50J4suTu825J7sulLkSdUr6gIrJYbj5CNZlMKhRcUuejTiY7gWD2iv/J2+Krr4b8o+sxl/XSlIaqVKKBgnMVUs+W/9OmfYv07jOLsr2duC29zydTewbJ80nR77sxagDkgGPQD3oOrgeRlpTqPbmxAMmzxgPS0xabzaZlW77SC49Otr+WYI3XwVOb9Wzr0Rr0xDRt/ud3vfVVW81+40SyE3DhPhgrTSqlSddnI44qd0A+zVk1WtsPr5Cvt7+6txip2hUeckGUAAAAAAAAAJA2JpQiW6Q04LR8y0w1qNxWeQIL2F9LsMYr/OJxTXphna5GR2rw501VJF9ZNazSNkN/c8fhlWpao7MC/YIkSY807Ke9JzZkvTEwlELBJSVJXhZvdWgySL3GVUyyzh/bvlFo+Qft38zaom5Pvf5lS2eGCScY9tQ3kqTlW2fpy9+G2ScW8+EhzzL5pT/TXOfYmZ32b9I+HLZNjaq2l3TzgxNbDy5Tn0fG2dedv2aCNuz9UeP6rpCfT0D2BI1slZWcAADAE3AuhCdL6T4vPV8ulR47jqxU/3YfymQyKdA/jx4MfVpn/jvq0DYg/TLyfNJRPPX5JP2+e6IGQA44Dv2g5+B6EGlJrt6TGwuQPGs8IL1t2X1srWLjY1T3nlb21wrlLan8eYoptHwzSVL9Sq0VnxCrc5H/JjvxGu7DCGOl6flitVtSm3SdYI3Xuch/VapQFfVu84GOnN6hYV+00PTX9ik4d+Fsix8AAAAAAAAAMsvs6gDgeW4NOI3u/XuiASebzaZlW7/Ww/WfS7R+obwl1azWU7KYLcoTWED1K7XRgZN/2Zedi/zXvm545AkVylsyXXGYTCYHtAZGEh17TVejo+z/Xr1jTrIDYEXyldXOI6sUFx8rSfrrwGKVDqnmrDDhZC3r9tSuI6t1+dp/kpJ+mODW/8MzRVw6LZlMKpCnmCTpWPhulQmpLkn659RmlSxcWf6+uSRJC9ZO0uqdczS2zx/2CefwPKnlBAAARsC5EJ7g7vu8u79cau/x9ZKkgnlL6OLls0pIiJd089nW+ciTPJtyA5l5PpnSM0ijP5+k33dP1ADIAcehH/RMXA8iOSnV+91jAZJnjQdkpC2/b56hlnWfkcVssb9WsXgdBfoG6diZ3ZKkf05uls1mU8E7JuLBvXnyWOnkl/7Uwncjkv3vzsmkKV1b3VIouKTMJrMerN1VklS+WC2F5Cuj42f3OK0tAAAAAAAAAJARTCiFQ6U24LTjyColWONVp0KLRK83q/W0tv6zVJJ0Iy5au46uUdkiNSVJ99fopMV/TpUknb14XLuPrtG91R5L9m/XqtBc63bP1/WYK7LZbFry1xf2ZQF+QYqNi7ZPAASSE3XlnF6b2kx9J9ZQn4nVtfvYWg3tcvObVyfO761N+36RJLW/90WF5Cujfh/WVN+JNbTj8Eq93OFzV4YOB7oaHaWIS2fs/964d5GCAvMrd0A+j//w0EcL+umpUcV14VKYhk9vpZ4f3Pzm6DvzPyb2up4aVVzvfdtJJ8/v11OjimvGb8NdGXa2OnJ6R6KJ5bn88uqXPz+TJG3c+5MaV31MknQhKkzTFg/W1egovTa1mfpNCtVLkxu4ImRks9RyAgAAI+BcCHeU2n1eal8uFZyrkMoXq60V22dLktbvWagCeYun+Cs7tcs317ItX8tms+lazGWt3jnHvizAL0jXYi5lQ+twt8w8n0ztGaTRn0/S77sfagDkgGPRD3oGrgeRHinV+51jAZJnjQek1paZy97Rr//f/0vStehL2rjnRz1c79lE72EymTSkyyx9uKCP+k6soU9+elHv9FgoHy9fp7YFjmPksdLkpGfSdZ7AAgot/5C2Hlwm6eY1U/jF4ypZuLITIwUAAAAAAACA9PNydQDwHLcGnIrkK6vXpjaTJPl4+eqTgX9LkpZunqFWdXvJbE48j/mJ+1/VRwv76bnxVWQymXRf9Y5qWrOTJKnTA0M0cd6z6jGmnMxmiwY8PkV5Agsk+/cbVG6jg6c26/mPayvQN0j1KrWWjt9cFhSQT83r9FC/STXk55tLn728NZv2AtxZkfxlNfWVHckuG9xpuv3/fbx89WqnL50VFpzsWswlvfdtJ92Ii5bZZFaewIJ6r9dimUymFD9McGd+uLNBT0xL9vU72+fnE6A5b4U5KySXa1ilrRpWaWv/96cvb7H//1/7f9X4/qslSQXzFtcf421Ojw/Ol1pOAABgBJwLkdN9tKCf/v5niS5eCdfw6a0U4Jtb4/qtTPE+L+rKOb37TUdZrQmyyaYi+crav1xKkgZ1nKbxc5/RnFWjFeAXpCGdv07xb3dt/rYmLeitZ8dXUp7AgqpW+j7Fxt+QJNUu/5AWrJ2gvhNrqErpxhrUcWqK74PMy+zzydSeQRr9+ST9vnuhBkAOOB79oPvhehCZlVK9955Q1T4WIHnWeEBqbXmm1f8S/TvQP49+HX0t2XUrFq9jP9fA/Rl5rPRuaV1bTZzfW42qtFfjqu01qONUTZz/nKb/Nkxmk1mDOk6zT7wFAAAAAAAAgJyGCaVwmLQGz97o+n2yr/t4+2lol1nJLvP3CdRb3eamO4YeLUeqR8uR9n/3eniU/f+ZAAggPQoHl9KUgZuTXcaHh3Cn6a/tc3UIAAAAAO6S0hflpHSfl9qXS0lSiUL3aPJLf6brbwf45U7xOVagfx59PGBTut4HmZfZ55OpPYPk+STcCTUAcgDgehCOx1gAjIax0tvSura6cyJtkfxlNeGOyecAAAAAAAAAkJOZ014FyJlyB+TTjN+H69s//pf2ysn4YvEQ/bB6jHL5Bzs4MgAAAAAAAHi64FyFNfjzpvr7wG+Z2v61qc2059ha+fkEOjgyOAvPJ2F01ADIARgd14MAAAAAAAAAAABwR/xCKdzWyJ4/Zmn7vm3Hq2/b8Q6KBgAAAAAAAEYyb0R4lrbnl0vcH88nYXTUAMgBGB3XgwAAAAAAAAAAAHBH/EIpAAAAAAAAAAAAAAAAAAAAAAAAAACAh2NCKQAAAAAAAAAAAAAAAAAAAAAAAAAAgIcz2Ww2m6uDgHux2SRrnKujcA6zt2QyuTqKjLHZpNgEV0eRfj4Wx+5jd8xPR+aZux1/iRyQHJ8DtN8x7+Usjj7XGL0fMHIOJMRKqydn/X1cpdlAyeLj6igAuDN3PAfcyVHnA3fcD9wTcS0gZexawB3zPLMyWh82m03Xre5VBAFmi0wZLAJyIGXuuG8cf1/sXnVADaSOfjB5RsmBzPQP7rhvHHs9TA14msxcCxj1nugWd8uP7BgjcKf2SzwXMHoNSIwVuuPnUgAAAAAAAAC4Ny9XBwD3YzLxYf+czGSSfA1c2UbPT6Mff4kcoP3Gbr9EP0AOAIBxcQ64yej7wejXQkZh9DxPjclkUqDF84uAHEgZ+8YYdcBxTpkRjr9EDqTG6PuGGgD3ROQH7acGyAFjtx8AAAAAAAAA0sPgj9IBAAAA3G3X0TV6bWqzFJebzRYtGxvvxIgAAIAzcS0AAAAAAAAAAAAAAAAAAJ6JCaUAAAAAktUs9CnVr9Qmyetms9kF0QAAAGfjWgAAAAAAAAAAAAAAAAAAPAsTSgEAAAAkq0Kx2mpep1u2vLfNZlNM7DX5++bKlvcHAABZx7UAAAAAAAAAAAAAAAAAAHgWJpQCAAAAyJL1uxdq0cZPdPTMTsUnxKpg3hKqW7GV+radIG8vH+06ukavTW2m1zp/rZjYa/pl06c6+99RdXlwuHq0HOnq8AEAQBZxLQAAAAAAAAAAAAAAAAAA7oEJpQAAAACSFRN3XZeuRSR53cvio0C/IEnSV7+/qTmrRqtU4Srq2OQV5QsqojP/HdWGPQvVs9X/5O3lY9/ux/Uf6cr1/9S6QR/lyx2ignlLOK0tAAAg47gWAAAAAAAAAAAAAAAAAADPwoRSAAAAAMn6ZvkIfbN8RJLXG1R+RKOeXax/Tm7WnFWjFVqumd5/7jf5ePvZ1+nd5oMk212IOqkZQ/9RcK5C2Ro3AABwDK4FAAAAAAAAAAAAAAAAAMCzMKEUAAAAQLIeadBX99folOT1PLkKSpJW7vhOkvRsmzGJJpBIkslkSrJd8zo9mEACAIAb4VoAAAAAAAAAAAAAAAAAADwLE0oBAAAAJKtYgQqqXbF5istPRxyWyWRSuSI10/V+xQtWdFRoAADACbgWAAAAAAAAAAAAAAAAAADPYnZ1AAAAAADcl0kmKZlfIEuOr3dANkcDAACcjWsBAAAAAAAAAAAAAAAAAHAfTCgFAAAAkCnFC1SU1WbVsTO7XB0KAABwAa4FAAAAAAAAAAAAAAAAAMC9MKEUAAAAQKY8WOtpSdJXv7+huPjYJMttNpuzQwIAAE7EtQAAAAAAAAAAAAAAAAAAuBcvVwcAAAAAIGc6fHq7Vmybneyye6s9pkol6+vJZsM0d/VYvfBRbTWt+aTyBYXo7MXjWr97gaYM3Kxc/nmdGzQAAHAYrgUAAAAAAAAAAAAAAAAAwLMwoRQAAABAslbvnKPVO+cku2zmsMMq5ltevdt8oLJFaurnjVM0b+042axWFcxbQvUrtZGvd4CTIwYAAI7EtQAAAAAAAAAAAAAAAAAAeBaTzWazuToIAAAAAFmTECutnuzqKDKv2UDJ4uPqKAAAcF9cCwAAAAAAAAAAAAAAAAAA0mJ2dQAAAAAAAAAAAAAAAAAAAAAAAAAAAADIXkwoBQAAAAAAAAAAAAAAAAAAAAAAAAAA8HBMKAUAAAAAAAAAAAAAAAAAAAAAAAAAAPBwXq4OAO7HZpOsca6OwjnM3pLJ5OooMsZmk2ITXB1F+vlYHLuP3TE/HZln7nb8JXJAcnwO0H7HvJezOPpcY/R+gBwAAAAwNqNfD3I/4H7H/5aM5IE7tzOjMlMfNptN163uUwgBZotMGWwkOZAyd9w3jn825F41IGW8DtzxOGdWxmvA84+/RA6kxh33jdH7QWogddRAxnFfaOwcMHr7JWqAHHC/fcBYMQAAAAAAcAUmlCLDrHHS6smujsI5mg2ULD6ujiJjYhOkYXNdHUX6jX1S8nVgT+SO+enIPHO34y+RA5Jjc4D2G7v9Ev0AOQAAAGBsRr8e5H7A/Y7/LRnJA3duZ0Zlpj6uWxMUvOqP7AkoG0Q+2EKBlowVATmQMnfcN45+LuBuNSBlvA7c8ThnVkbzwwjHXyIHUuOO+8bo/SA1kDpqIOO4LzR2Dhi9/RI1QA643z5grBgAAAAAALiC2dUBAAAAAAAAAAAAAAAAAAAAAAAAAAAAIHsxoRQAAAAAAAAAAAAAAAAAAAAAAAAAAMDDMaEUAAAAAAAAAAAAAAAAAAAAAAAAAADAwzGhFAAAAAAAAAAAAAAAAAAAAAAAAAAAwMMxoRQAAAAAAAAAAAAAAAAAAAAAAAAAAMDDMaEUAAAAAAAAAAAAAAAAAAAAAAAAAADAwzGhFG5j19E1ajHEpGVbZro6FAAAAAAAAAAwFJ7PghyA0VEDIAdgdNQAAAAAAAAAAACewcvVAcBz7Dq6Rq9NbWb/t9lkVoBfkAoEFVOF4nXULPQp1b2nlUwmkwujBJK6O3clyc8nUMULVlTz2t312L0vyWKhu/Rk5AD7wOjtBzkAAABgdFwPwhPwfBbkQOZxHvAM1ADIgcyjH/QM1EDmUQMweg4Yvf0gB4zefgAAAAAAYDw86YDDNQt9SvUrtZFNNkXfuKJTFw5q095F+mPbN6pdobne7j5fufzzujpMIIk7czfySrj+2PaNpv76qk6eP6BXnvjC1eHBCcgB9oHR2w9yAAAAwOi4HoQn4PksyIHM4zzgGagBkAOZRz/oGaiBzKMGYPQcMHr7QQ4Yvf0AAAAAAMA4mFAKh6tQrLaa1+mW6LX+7SbpyyVDtXDdJI3+7imN7v27i6IDUnZ37rZr/IKeG1dJv2+erl4Pv6+8uQq6MDo4AznAPjB6+0EOAAAAGB3Xg/AEPJ8FOZB5nAc8AzUAciDz6Ac9AzWQedQAjJ4DRm8/yAGjtx8AAAAAABgHE0rhFBazRf3bTdTBU5u15eBS7T2+QdXK3CdJuhZ9Sd+vGq0NexbqQtQpBfgFqVaF5nr24fdVJH/ZVN/XarVqzuox2nZwmcIuHNKV6IsKzh2iBpUeUa+HRykoML8kKfLqeT09qrjur9FJw5/+Lsn7TP7xRS3+63N98/oxheQr7fD2u6uPu5kc9l4vz7Y57L2cxd8nUJVKNdT63Qt05r+jhnwwTA6QA0bfB0Zvv9H7AIkcAAAAMDqjXw9yT+A5eD4LciBzjH4e8CTUAMiBzKEf9BzUQOYYvQa4JyQHjN5+aoAcMHr7AQAAAACA52JCKZzq4XrPae/xDfr7wBJVK3OfrkVf0sufNtb5qJNqVe9ZlS5cVRcvn9Uvf36mlz5poE9f3qrCwaVSfL/4hFjNXzNeTap3VKOqj8rPJ1CHTm3R0i0ztPfEBn328jZ5e/koOFchNarSXhv2/Kir0VHK5Z/X/h6xcTFavfN71SrfPEcNTrna5YiTatJ1kmq3fsXVobjU2f+OSpKCAvK5OBLnIwduMnIO3GL0fWDU9tMH3GbUHAAAAMBNRr0e5J7AM/F8FuRAxhn1POCpqAGQAxlHP+hZqIGMM2oNcE94m1Fz4Bajtp8auM2oOXCL0dsPAAAAAAA8ExNK4VRli9SQJIVdOCRJmrn8HZ3975gmv/SXyhWtaV+vZb1n1Hdidc1aNkJDu8xM8f28vXw1952z8vX2v/1io/6qUrqxJs3vrU37Fqlpzc6SpDYN+mr9noVateN7tW/8gn319XsW6mp0lNo06O3Alrq/4zt+Vdla7VwdhlPFxF3XpWsRstlsirwSrl//nKojp3eoUon6Kl6woqvDczpywJg5YPR9YPT238mIfYBEDgAAABgd14O3GfWewNPxfBbkQOo4D3g+agDkQOroBz0fNZA6auA2o94TGj0HjN7+O1EDxswBo7cfAAAAAAAYhyEnlEZERGjcuHH68ccfFRYWpoIFC6pDhw4aPXq0Bg4cqK+++kqffPKJBgwY4OpQPU6AX5Ak6fqNy7LZbFq1/TtVL3u/CuQppkvXIuzr+fkEqlLJhtp2eHmq72cymeyDUwnWBEXfuKIEa7xCyz8oSTpw8m/7AFWdii0Ukq+Mlm6ekWiAaunmGQoKyK/GVR9zZFPdXlT4YdVs8aKrw3Cqb5aP0DfLRyR67b5qHfTS45+6KCLXIgduMloOGH0fGL39dzJiHyCRAwAAAEbH9eBtRr0n8HQ8nwU5kDrOA56PGgA5kDr6Qc9HDaSOGrjNqPeERs8Bo7f/TtTAbUbKAaO3HwAAAAAAGIfhJpTu3LlTrVu3Vnh4uAIDA1WlShWdOXNGkydP1tGjR3Xx4kVJUmhoqGsD9VDXYy5LkgJ8gxR17YIuX/9P2w4t1xMjCya7vtlkTvM91+6apwVrJ+rImR2KT4hLtOxqdKT9/00mk1rX762vl76pI6d3qnyxUJ3975h2HVujx+97Wd5ePllomWeJjbkqH7/crg7D6R5p0Ff31+ikeGucjp/do7lrxiriUph8vP3s6+w5tl5vzGidZNv4hFhZrQlaNi7BmSFnG3LAuDlg9H1g9PbfYtQ+QCIHAACAZ7Narfppw8da8tc0hUeeUN7Agrq/Zmf1bPU/+fsEujq8HIHrwZs89Z6AGuD5bEYkfDVT1h/myfLqIJkfbplomc1mU8KQ12U7cEBeUybLVKa0a4LMBHIgdZwHbqMGbjJaDdyJHLjJaDlAP3gbNXATNWDMGvDUe8L0MHoOGL39t1ADxs0Bo7cfAAAAAAAYh6EmlEZERKhdu3YKDw/X4MGDNWLECOXOffMB4Lhx4zRs2DB5eXnJZDKpRo0aLo7WMx07u1uSVLzQPZLNJkmqXaG5nnxgWKbeb/2eHzVq9pOqVKK+Xmj/sQrmLSEfLz8l2BL0xvSHZbVaE63/cL1n9c3yEVq6ZYYGFPtES7d8JZvNptb1e2etYR7m5J4/VLJ6y7RX9DDFClRQ7YrNJUn1K7VWtTL36ZXP7tPHC/vrzW4/SJKql22iX9+/mmi7iEtn9OLkunq0sef8qjE5YNwcMPo+MHr7bzFqHyCRAwAAwLN9/usrWrRhsu6t9rieaDpYJ88d0KINk3X09A6N7btCZnPaHxT2dFwP3uSp9wTUAM9nM8Lcvausf/2thGlfylSntkwFC9iXWX9cJNvuPTI/+4xbTSCRyIG0cB64jRpIH0+rgTuRA+njaTlAP3gbNZA+1MBNnlYDnnpPmB5GzwGjt/8WasC4OWD09gMAAAAAAOPw/E/I3GHgwIEKCwvTgAEDNGHCBPtkUkkaOnSoatasqfj4eJUuXVpBQUEujNRzLd0yQ5LUoNIjyhNYULn88+p6zGXVrtg8xf9Ss3Lbt/Lx8tP4/qvVrvHzalilrWpXbK7CwaWSXT9fUIgaVmmnVdu/U3TsNS3fOlOVSjZQ6ZCqDm+rOzt7eKOKVGyc6LWNc9/Qx91M2rf2qyTr22w2LRj1gKY846uIU3udFWa2q1q6sZrX7q41u+Zq34lNya4TG39D737TQdVK36enH3rDyRFmH3LgJiPnwC1G3wdGbT99wG1GzQEAAOB5ToTv088bP9F91TpoZM8f1aZBH/VvP0n9203SzqOrtWbXD64OMUcy6vWgJ94TUAM38Xw2/Uze3vIaMliKiVHCpI/sr9tOhck68xuZKt0jc6eOrgswk8iBjDHqeUCiBqgBcoAcuIl+kBqgBoxZA554T5hZRs2BW4zafmrgNqPmwC1Gbz8AAAAAAPBchplQeuDAAc2dO1cFChTQmDFjkl2nTp06kqSaNWum+D6tW7eWyWTSyJEjkyw7fvy42rdvr9y5cys4OFg9evTQf//955D43V2CNUHTfn1Ne49vUP1KbVStzL0ym816sFZX/XNqs9btXpDsdpFXz6f6vmazRSaTSTbb7W82tdls+n7FqBS3adOgj65ER+rjhf0Vcel0jvm205zCZrXKZrPJbLYker1hx5HKX7ya1n33qq78F5Zo2Y6lH+n0P2vVoMO7KlCimjPDzXZdm78ts9miWcveSXb5xwv7KzYuRkOenOncwLIROZCYEXPgbkbfB0ZrP31AUkbLAQAA4JlW75wjm82mDk0GJXq9TYM+8vMO0Irts10TmBsw2vWgp94TGL0GeD6bOaYK5WXu0lm2bdtlXfK7bAkJShg3QbLZZBkyWCaLJe03ySHIgcwz2nngTtQANUAOkAMS/SA1QA0YrQY89Z4wK4yWA3czWvupgaSMlgN3M3r7AQAAAACAZ/JydQDOMmfOHFmtVnXt2lW5cuVKdh1/f39JKU8onTdvnnbu3JnssitXrqhZs2bKly+f5syZo+joaA0dOlRt27bVxo0bZTYbZu6uDp/erhXbbn4AK/rGFZ26cFCb9i3Such/VadiS73x9Pf2dZ99+H3tO7FRo2Z3VtManVW5VEN5WXx0LvJfbf7nN1UoVkdDu8xM8W81qfGE1u9ZqCHTHlTzOj2UkBCnjfsW6Ubs9RS3qVuxlQoHl9LK7bPl75tLzUK7OKztniD82GaFlKuf5HWLl49a9puluSMbaMX05/T4sGWSpMgzB/Xn/DcVUq6B6rQd4uxws12xAuXVrGYXrdzxnfYcW6/qZZvYl/20YbL+PrBYUwZukZ9PgAujdCxyIDEj5sDdjL4PjNZ++oCkjJYDAADAMx08tUVmk1n3lEx8refj7aeyRUN16NQWF0WW8xntetBT7wmMVAM8n3Usc9enZP3zbyV8OV3mo8dkO3hI5r69ZSpR3NWhpYgccCyjnQfuRg1QA+QAOUA/SA1QA8aqAU+9J8wKo+XA3YzWfmogKaPlwN2M3n4AAAAAAOCZDDPLcdWqVZKkZs2apbhOWNjNb5BLbkLp5cuXNWjQIE2YMCHZbb/44gudPn1aixYtUtu2bdWpUyd9//33+uuvv/TLL784oAXuY/XOORr7Q3eNn9tT039/XdsP/6EaZZtq9HO/64M+yxTon8e+bqB/Hn304kb1aPGuTpzbpxm/Ddf034bpz/2/qHLJhmrX+PlU/1az0C565YkvFH3jqr5Y/JrmrRmnEgXv0Zg+y1Lcxmw26+F6z0mSmtboLH/f5CcYG8Hpf9bJmhCf6LV/dy1VqRoPJ7t+oTK1VbfdcJ3cs1x7Vn0hqzVBy6b1kM1mU8t+s5J8Q6OneOqhN2U2mTVr+e1vG9x5ZLWmLxmmt7vPV0i+0q4LLovIgfTx5BxIL6PvA09tP31A+nlqDgAAAOP47/IZBQUWkI+Xb5JlBfIU06VrEYqLj3VBZO7BU68HjXRPYKQa4PmsY5m8vOQ15FUpNk7WxUtkqlZV5g6PuTqsVJEDjuep54H0oAaoAXKAHJDoB6mBlFED7l0DRronzCpPzYH08tT2UwPp56k5kF5Gbz8AAAAAAPA8JpvNZnN1EM5QokQJhYWFaceOHQoNDU2yPD4+XkWKFFFERISOHj2qsmXLJlr+0ksvac+ePVqzZo1MJpNGjBihkSNH2pffmqi6evXqRNuVK1dODzzwgGbMmJHhmOvWravw8PAMb5fdfLz89cWAw64OI0vmrh6n6b8N08cvblKV0o1SXK/vlAqKjY92YmRZZ/H21+Oj0j4+h/6aqxXTe6vdq7+oRJXbE63Xzn5FTbt9mOJ2CfFx+uGderp8/pjuubeb9qz8XE2enqjabV7NVLw/vVVBCXGO28fOyM/wiyc0YHI9dWsxQo/dOyDL7+fIPEvv8ZfIgazIyTngrD7akfuA9jv2XONu5wHJsf2AkXPA3a/R3PG6CwCAnCSta4EeY8op3hqn7988mWTZ2Dk9tGL7t/rpf5HK5Z83G6NMmbtdE+XE60GJ5wKpHX9PqgF3v/aXsvf5rM3HRxemfZrVEBO/Z/g5xfd7QYqOlrlXT1meetJh712w34syxWZsMjM5kDKjnwck96sBKeN1QA2kLDuOv0Q/mB3oB28zej9IDVADjBMxTsRYKTVADTg2B9ztMyOMkQIAAAAAgMwKCQnR1q1bM7Wtl4NjybGuXbsmSYqOTv4BzNy5cxUREaHcuXOrTJkyiZZt3bpVX375pbZt25bi++/fv1+dOnVK8nrVqlW1f//+TMUcHh6u06dPZ2rb7OTnHeDqELIkISFeS/6apjIh1VMdnJKks2fOKCbuupMicwwv3/Qdn4oNn1TUuSM6tv32w/HLEScVVKBUqttZvLzVst8s/fBOPe1Z+bmKVrxPtR4elOl4z5w9o/gbjtvH2Z2fMbHXNWLmY2pUpb1DJhJKjs2z9B5/iRzIrJyeA87oox29D2i/Y8817nYekBzbDxg5B9z9Gs0dr7sAAMhJ0roW8PUJUPTV88kui42PubmOC68n3OmaKKdeD0o8F0jt+HtSDbj7tX+2P5/185V3FuK7m81mU8LED6X4OKlkCVm//0HmpvfLVLSIQ97/zNkzUsyNDG1DDqTM6OcBSW5XA1LG64AaSIWDj79EP5gd6AcTM3o/SA1QA4wTMU7EWCk1QA04Ngfc7TMjjJECAAAAAABXMMyE0pCQEEVGRmr79u1q1CjxoMTZs2c1ZMgQSVKNGjVkMpnsyxISEtSvXz8NGDBAVatWTfH9IyMjlTdv3iSv58uXTwcPHsx0zDmRj5e/q0PIlLMXj+vAv39q076fdfbiMb3RdU6a2xQpWtTtvgXO4p3+41Ou7uP6dWJ7+7crHt/xq8rUapfmdr4BeWTx9pU1IU6lQ9vIZDZnOt6iRYo6/Ncps9P6PQt17OwunY44pDW75iZZPuO1/SoUXDJD7+nIPMvI8ZfIgczI6TngjD7a0fuA9jv2XONu5wHJsf2AkXPAXa/RbnHH6y4AAHKStK4F8gcV1clz+xUbf0M+Xr6JlkVcOq08gQXk7eWTnSGmyp2uiXLq9aDEc4HUjr8n1YC7Xvs76/mszcdHFzIbZDKsi36RbddumXv1lLlRQ8W/+JISJn4oy4SxicYSMqtokaKZ+lUyd+SMHDD6eUByvxqQMl4H1EDKHH38JfpBR6IfTJ7R+0FqIHXUQMYxTmTsHDB6+yVqgBxwv8+MMEYKAAAAAAAyKyvzDg0zobR58+Y6cOCAxo4dqxYtWqhixYqSpC1btqh79+6KiIiQJIWGhibabsqUKTp37pxGjhzp5IiV6Z+dzW4JsdLqya6OIuN2H12rCfN6KU9gAXVr/o6ahXZJc5vDhw7L4rrPkWXKjXhpWNLnlcnKX6yKZDLpv7B9yl+8qqLOHVHNwuVS3cZms+mPL3rJGh+rfEUra/PPo1ShQWflTWO7lBw6fFi+DuyJsjs/W9TprhZ1ujv0PR2ZZxk5/hI5kBk5PQec0Uc7eh/Qfseea9ztPCA5th8wcg646zXaLe543QUAQE6S1rXAPSXqaduh5Tp4crOql21ifz02LkbHzuxU9bL3OyHKlLnTNVFOvR6UeC6Q2vH3pBpw12t/Zz2fvZYQr+BVf2QyysRsp0/L+tVMme6pKHPnJ2SyWGTu1lXWr2fJuugXWR5/NMt/49DhQwq0ZKwIyIGUGf08ILlfDUgZrwNqIGWOPP4S/aCj0Q8mz+j9IDWQOmog4xgnMnYOGL39EjVADrjfZ0YYIwUAAAAAAK6Qta9IcyNDhw5V/vz5derUKVWtWlXVq1dXhQoVVL9+fZUtW1YPPvigJKlmzZr2bSIiIvT222/rnXfeUXx8vKKiohQVFSVJiomJUVRUlKxWqyQpODjYvuxOFy9eVL58+bK9fUhbq3rP6I/xNi0YeUE9W73r6nByjLK12unY9l8UG3NVPn6501x/1/JPFHZgjeo/PkJtBs6XLSFeK758VjabzQnRIjuQA4Cx0QcAAAAYwwM1n5TJZNKP6z9K9Ppvf3+pmLjrerBWV9cEBpczyj0BNeB67vZ81ma1KmH8JMlqlWXIqzJZLJJ0czJJxQqyfjVTtjNnXRyle3G3HDA6asDx3K0GyAHHc7ccMDpqwPGogZzJKPeEQEqoAQAAAAAAABiRYSaUFi9eXOvXr9cjjzwiPz8/nThxQvny5dO0adO0ZMkSHTp0SFLiCaVhYWG6cuWK+vXrp+DgYPt/kjR27FgFBwfr5MmTkqTKlStr//79Sf7u/v37VblyZSe0EMicMrVvPhw/uWe5SlZrkeq6keGHtXHecBUuW0912w1T/uJV1aDDSJ3+Z512Lf/EOQHD4cgBwNjoAwAAAIyhTJHqat/4RW3Y+6NGzuqg3/6erqm/DtbUX19VjbJN9WCtp10dIlzEKPcE1AAyyrrgR9n2H5C5ZzeZSpa0v26yWGR57VXJmqCEiR/yoWF4LGoA5ACMjhqAURjlnhBICTUAAAAAAAAAIzLMhFLp5qTPxYsX68qVK7py5Yr+/vtv9e3bV9euXdOJEydkNptVrVo1+/rly5fX6tWrk/wnST179tTq1asVEhIiSWrbtq02bNigsLAw+/Z///23jh49qnbt2jm3oUAGFLuniaLCD+vo1p9UpGLjFNezWa36Y9ozslkT1LLfLJnNN7+Ft07boSpUpq42zhuuqHNHnRU2HIgcAIyNPgAAAMA4nm//kfq2naB/z+3TlJ9e1JqdP+ixe1/SqGcXy2w21GNC3MFI9wTUANLLdvKkrLO+lalyJZk7dkiy3FS6lMzdusq2Z6+si35xQYRA9qIGQA7A6KgBGImR7gmB5FADAAAAAAAAMCIvVweQE+zbt082m00VK1ZUQECA/fVcuXLpgQceSHab0qVLJ1rWt29fffLJJ3r00Uf17rvvKiYmRkOHDlX9+vX16KOPZnMLgMwzW7xUqkarm////w+8k7P9t4k6e3iT7u0yVvmK3f7VXbPZopb9ZmrOW7W14stn1fHNNTKZTNkeNxyHHACMjT4AAADAOCxmizo1HaxOTQe7OhTkIEa6J6AGkF6mkiXlveTnVNexPPWkLE896aSIAOeiBkAOwOioARiJke4JgeRQAwAAAAAAADAivnZd0p49eyRJNWvWzPR7BAUFadWqVSpSpIi6dOmi3r17q3Hjxlq8mG+3R85Xrs5jKlsn5YnPF08f0J8L31ZI+Yaq3SbpB+7yF6+qBh1G6vQ/67Rr+SfZGCmyCzkAGBt9AAAAAGBs3BMAAAAAgHFxTwijowYAAAAAAABgNPxCqTI+odRmsyX7erly5bR48WKHxQU4S4UGnVJdnq9YZQ34OibVdeq1H6567Yc7Miyn+HTRQP25/xedi/xXnw/aofLFQpNd7/jZPZqy6CVFXj0nSer18PtqUr2DfbnNZtPQaQ/p8OntWvRelBMidywj5wDSlt46gfuiDwAAAACMjXsCAAAAADAu7gmNbdgXLRV5JVwmk1kBfrn14qOTVb5YrUTr7D/xpz7+8XlJUoI1TtVK36cXHpssHy9f7Tq6Rm9Mb63iBe+xrz/5pT/l6+3v1HZkBTUAAAAAAAAAo2FCqRzzC6VIbOmWrzVx3rMa2fMn3VvtMY2f20v7TmyUr7e//Hxy6YVHP9I9JepJkmJir2vi/Od06NQWmUxmPdt6tO6v8USaywZ//oDOR/6rlvV6qXuLd5LEcDx8r97+qq1mv3FCV6OjtPjPqery4Ov25V8sHqI1u+aqQrHaeveZRdm/U5AjNanxhDo/MFSvfHZfiuvExF7XOzMf1bAu36hamfuUYE3QlesXE62zcN2HKpK/nA6f3p7dIcMJ0jNoZiTpqRMjW7d7gf4+sERXoyP177n98vX2V95chTSww+cqVqC8q8MDAAAA4CDrdi/QjsMr9Xz7D/X+d124/keOlNKXQqX0+uVr/2nItIfs29+Iu66zF49p/ojzCgrIp8ir5zVuTg+duXhUPhZfvdThM9Uoe78kqdvo0vL28lWnpkPUpkHvJLH8tX+x5q+doInPr1H4xRPacnCp2jXqb18+5vuu2nF4pR4I7aIXHv0o2/aJkcTGxaTYP42f20uHw7bJZDLLy+Kt59p8oNoVHkq0/Y4jq/T6Fy3Ur91EdWgySBLP6OF+qANj4/gDXA8CyLi3u89TLv+8kqQNe37S+LnPaNqruxKtU7ZoTX368hZ5WbxltVr1v2866tdNn6nj/a9IkooXvEfTXt3p5MiRXfi8RGJhFw5r/NyeunQtQoF+eTTkyZkqHVI10TqpXYcCAAAAAADkREwolbRq1SpXh+BRwi+e0O9/f6nKJRvaX7u32uN69YkvZbF46a/9i/Xet500+40TkqT5ayfI2+KrWa8f0dmLxzVwcgOFlmumoMD8qS6TpP7tP9S91R5LM6ar0VH6YfUHiQZp+7Ydr1KFq2rTvkWObD7czK0Bz9Ss2vG9KpdsqGplbk6ms5gtypuroH35ifB92rRvkV7r/LXW7Z6fbbHCedIzaGYk6akTI9u49yc1rdFZFou36ldqLZPJpEUbp2jS/N6a+PwaV4cHB7saHaU+E6vpRly0CuYpobiEGwr/75geqtNdgztNd3V4AAAAyEYb9/6k5nV6SJLaNOjL9T9ypJS+FCql14MC8yf60O/8NRO0+9haBQXkkyTN+O11VS7VUGP6LNXBU1s0ctbj+nb4cXlZvCVJb3ada5+MkJpzkSe0+M+piSYQDH/6O32zfKSuRkdlrrFIVkr90/PtP7Q/7zpyeoeGTntIC0ZGyGw2S5KuRV/SjN9eV/1KbRK9n9Gf0fMcwD1RB8bG8Xcs+kH3w/Vg9qIm4Ik5cOv8KEnXYi5JMiVZx88nwP7/8QmxuhEXLZMp6XrwDHxeIrGPF/ZTmwZ91areM1q3e4HGz31Gn768Jcl6PC8EAAAAAADuhAmlcCir1apJ83vrxcc+0bRfB9tfb1y1vf3/K5dqqIhLp5WQEC+LxUtrd83Vq51mSJKK5CujGuUe0Ia9P6lNg96pLkvON8tHauWO7xToG6R6lVrbX/94YX9F37iifpNCZbF46bOXt2ZH8+GhTp7bL28vX731VVtdiApT2SI11K/dROXNVVDxCXH6cEEfvdpphsxmi6tDhYOkNGjmiQOESF1axzw+IU77TmzUkCdn2j88IUmVSzbUgrUTXBg5sksu/7x6MPRp+fvmVrcWb2vLwWWas2o0fQAAAIAHSO36/+UOnye69m9Q+fZEA67/kZOk9KVQ6f2yqN+3zNBzrcfY/7121zzNGnZEknRPiXrKH1RUu4+uVe2KzZNsG58Qp89+flnbDv+h3P7BqlamiX3Zxwv761zkv+o3KVSFgkvqvV6/ZKRZSCcfb78U+6ekz7sS+2TRAD390FvasOfHRK8b/Rk9zwHcD3VgbBx/x6MfdD9cD2YvagKemgNj5/TQrqOrJUnvP/dbsuuEXzyhETMf1Zn/jqpB5UfUrtEL9mVnLx7V8x/VltlkUat6vdS+8QvJvgfcA5+XuC3y6nkdCtuqD/oslyQ1qd5RU34aoNMRRxL9+mhq16EAAAAAAAA5ERNK4VAL101S1dL3qmLxOimu89P6j1W/UhtZLDfT73zUSRUOLmVfHhJcWuejTqa57G5/H1iidbvn67OXtynAN7fGzuluX/Zyx6nq/2Foom9XBdIrwRqvHYdXaPJLfyl/UFF99fsbmvzj83qnxwJ9+8e7uq9aB5UqXFnhF0+4OlQ4UHKDZp46QIiUpXXMdx5ZrSqlGieaTCpJP234WI2qPuqKkJFFAz9ppNMRh5Nd9vkrO1QobwkdObNTj983UJJ0OGybyhet5cwQAQAAkE1Su/7fenB5stf+Etf/8Bz7TmzS1euRali5rSTp8rX/lJAQp3xBIfZ1CqfyfHbJX1/o1IWDmj54nyRp+PRW9mUvd5yqz34exPNZJ7u7f5r+2+tat2u+rkZH6p0eC+2/yrdu9wKZTWY1rto+yUQqntGL5wBujjowNo6/Y9APGgfXg4wRwLg5MOypbyRJy7fO0pe/DdPoZCaVhuQrrWmv7lL0jav6YE43bdj7o5qFdlH5YrU1580wBfrn0YWoML05o43yBBZQ05qdnd0MOBCfl7jpQtQp5QsqYv+Mm8lkUqHgkjofdTLRhNK78bwQAAAAAADkdEwohcMcD9+r9XsWatIL61JcZ8W22Vq7e54mPZ/yOpm14/BKNa3RWYF+QZKkRxr2094TGxz+d2A8hfKWVM1yzVQgTzFJ0kO1u9kHQHcfW6vzkSf186YpSrDG6/qNy+o2urSmDNyivLkKujJsZFFKg2aeOEBoZFkdFN60b5HurfZ4ou2+XzlaZyKOaFy/ldkXOLLN5Jf+THOdY2d2qnyxm3lwOGybGt3xS+wAAABwbyld/yd37S9x/Q/PsnTzDLWo08P+IcmM2nFkpVrU6SFvLx9JUqt6z2rp5hmODBEZkFz/1LvNB+rd5gNtP7RCXy4Zqo9e3Kgr1y/quxWjNPH5NVn+m576jJ7nAO6LOjA2jr/j0A8aB9eDjBGAHGhZt6c+Xthfl6/9p6DA/Mmu4++bSw+EdtGq7d+pWWgX+3lPkgrmLa5mtZ7SnuPrmVDq5ozyeYm0Pi+QGTwvBAAAAAAA7oAJpXCYvcfW61zkCT0ztoIk6eKVcH20oK8uXj6rdo2f15qdc/Xtinc1vu9KBecubN+uUN6SOhf5r/IHFZEkhUeeUJ2KLdNclhaTyeTI5sHAmtbsrN+3zNC1mMsK9AvS5n9+U9kiNSVJH76w3r5e+MUT6v9hqGa/ccJFkSI73D1o5skDhEaUlUFhm82mrQeXqc8j4+zrzl8zQRv2/qhxfVfIzycge4KGS0VcOi2ZTPYvGTgWvltPP/Smi6MCAACAoyR3/Z/ctb/E9T88S/SNq1q7e56mDNxify0oML8sZi9dvBxu/1Wqc5EnVChvyXS9p0k8n3WVtPqn2hWba8qiAToevkeRV8J18cpZ9f8wVJJ06VqE/tr/i6KuXtCzrd83/DN6ngO4L+rA2Dj+jkM/aBxcD6YPNQFPy4Gr0VGKib2uAnmKSpI27l2koMD8yh2QL9F6pyOOqHBwKXlZvBUXH6uNe39SmSI1JEn/XT6r4FyFZTabdT3miv7av1it6z/n9LYge3j65yXS+ryAt5evLl4+q4SEeFksXrLZbDofeTLFcyHPCwEAAAAAgLswuzoAeI52jZ/X3HfOavYbJzT7jROqXLKhBj3xhdo1fl5rd83T18ve0ri+K1QoOPFDtftrdNLiP6dKks5ePK7dR9fo3mqPpbnsbrUqNNe63fN1PeaKbDablvz1hX1ZgF+QYuOiFRcf6/iGw619tKCfnhpVXBcuhWn49Fbq+UF5SdLE+b21ad8vkqRCwSX11INvaNCUxuo7sYZ2HlmllztOdWXYyEZXo6MUcemM/d93DpolN0BYJqS6q0J1mpTqxAhSO+b/nNqskoUry983lyRpwdpJWr1zjsb2+UO5/PO6KmRksyOndyT6pt1cfnn1y5+fuTAiAAAAOEpK1/93X/tLXP/D86zZNVdli9RUyUKVEr3epEYnLf7r5nOwg6e2KOLSadUo1zTZ96hdoblWbp+t+IQ4xcXHatnWr+3LAnyDdD3mUvY1AHbJ9U/xCXE6HXHEvs4/Jzcr6up5FclXVg0qP6L5I87Zn+s3qf6EurV4R8+2fl8Sz+h5DuCeqANj4/g7Fv2gcXA9mD7UBDwtB67FXNLIWY+pz8Tq6jeppn7eOEXv9Vosk8mU6DMTO4+s0vMf1lK/STX1/Ee1FJyrsLo1f1uStH7PQvWddHP7gVMaqk7FFmpVr5crm4Us4PMSiQXnKqTyxWprxfbZkm7me4G8xVWsQNLPTPC8EAAAAAAAuBN+oRROMeb7rsqXO0TvfP2o/bXx/VYqKDC/Oj0wRBPnPaseY8rJbLZowONTlCewgCSluuxuDSq30cFTm/X8x7UV6BukepVaS8dvLgsKyKfmdXqo36Qa8vPNpc9e3prtbYZ7GPTEtGRfH9xpeqJ/t6jTXS3qdE/1vULyldai96IcFRpc5FrMJb33bSfdiIuW2WRWnsCC9kGzlAYI784XT5NSnRhBasd8496f1LjqY5KkC1FhmrZ4sIrkK6vXpjaTJPl4+eqTgX+7Imxko4ZV2qphlbb2f3/68pZU1gYAAIA7Sen6P09gAfu1v8T1P3K2jxb009//LNHFK+EaPr2VAnxza9brR1J8/Zalm2eodYM+Sd6vzyNj9cGc7uo5toK8LT56/anZ8rJ4J/u32zTooxPhe/XchCrK7R+samWa6HDYNklS2SI1VCqkqvpMqKaQ/GX1Xq9fsmcHGFxK/dP4/qs17oeeuh5zSWazl/x8AvV2jwXKHRCc5nsa/Rk9zwHcD3VgbBx/x6MfdD9cD2YvagKelgOFg0tpysDNyS67cwz8kYZ99UjDvsmu99i9A/TYvQOyJT44H5+XSGpQx2kaP/cZzVk1WgF+QRrS+fYXJkyc31uNqrRXhWK1eV4IAAAAAADcChNKkW0mPr/G/v9Lx8aluJ6/T6De6jY3w8uS06PlSPVoOdL+714Pj7L//6udvkz3+wAwrtQGzTxtgBBpS+2Y/7X/V43vv1qSVDBvcf0x3ub0+AAAAAA4TkrX/70nVLVf+0tc/yNnS+lLodL6sqiPB2xK9vXg3IU1tu/ydP1tL4u3BnZI/pd5LBYvjXp2cbreB5mXWv/08YCN6XqPoV1mJvo3z+jhbqgDY+P4A1wPAgCyhs9LJFWi0D2a/NKfyS67czItzwsBAAAAAIA7Mbs6ACCzcgfk04zfh+vbP/6Xqe2/WDxEP6weo1z+aX/7MAAAd5v+2j4F5yrk6jAAAAAAZDOu/YHk5QksqLFzuum3vzP3SyRjvu+qldtnK8AvyMGRwVl4Rg9QB0bH8YfRcT0IAAAAAAAAAIB74hdK4bZG9vwxS9v3bTtefduOd1A0AAAAAAAAAGAcWf0lkuFPf+egSOAqPKMHqAOj4/jD6LgeBAAAAAAAAADAPfELpQAAAAAAAAAAAAAAAAAAAAAAAAAAAB6OCaUAAAAAAAAAAAAAAAAAAAAAAAAAAAAezmSz2WyuDgLuxWaTrHGujsI5zN6SyeTqKDLGZpNiE1wdRfr5WBy7j90xPx2ZZ+52/CVyQHJ8DtB+x7yXszj6XGP0fsDIOZAQK62enPX3cZVmAyWLj6ujAADAfbnjddCdHHVN5I77gecCjmu/O18TZ+R62B3zPLMyUx82m03Xre5TCAFmi0wZbCQ5kDJ33DeOfzbkXjUgZbwO3PE4Z1bGa8Dzj79EDqTGHfeN0ftBaiB11EDGGf2+0Og5YPT2S9QAOeB++8AdP5sGAAAAAADcn5erA4D7MZn4sH9OZjJJvgaubKPnp9GPv0QO0H5jt1+iHyAHAACAUXEddJPR94PR7weMwuh5nhaTyaRAi2cXAjmQMvYNNWB0Rjj+EjmQGvaNMeqA45wy9g33hUbPAaO3X6IGyAH2AQAAAAAAQHqYXR0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAspeBv5MNAAAAAAAAAIDEdh1do9emNktxudls0bKx8U6MCAAAAAAAAAAAAAAAAHAMJpQCAAAAAAAAAHCXZqFPqX6lNkleN5vNLogGAAAAAAAAAAAAAAAAyDomlAIAAAAAAAAAcJcKxWqreZ1u2fLeNptNMbHX5O+bK1veHwAAAAAAAAAAAAAAAEgOE0oBAAAAAAAAAMik9bsXatHGT3T0zE7FJ8SqYN4Sqluxlfq2nSBvLx/tOrpGr01tptc6f62Y2Gv6ZdOnOvvfUXV5cLh6tBzp6vABAAAAAAAAAAAAAABgIEwoBQAAAAAAAADgLjFx13XpWkSS170sPgr0C5IkffX7m5qzarRKFa6ijk1eUb6gIjrz31Ft2LNQPVv9T95ePvbtflz/ka5c/0+tG/RRvtwhKpi3hNPaAgAAAAAAAAAAAAAAAEhMKAUAAAAAAAAAIIlvlo/QN8tHJHm9QeVHNOrZxfrn5GbNWTVaoeWa6f3nfpOPt599nd5tPkiy3YWok5ox9B8F5yqUrXEDAAAAAAAAAAAAAAAAKWFCKQAAAAAAAAAAd3mkQV/dX6NTktfz5CooSVq54ztJ0rNtxiSaTCpJJpMpyXbN6/RgMikAAAAAAAAAAAAAAABcigmlAAAAAAAAAADcpViBCqpdsXmKy09HHJbJZFK5IjXT9X7FC1Z0VGgAAAAAAAAAAAAAAABApphdHQAAAAAAAAAAAO7IJJOUzK+RJsfXOyCbowEAAAAAAAAAAAAAAABSx4RSAAAAAAAAAAAyqHiBirLarDp2ZperQwEAAAAAAAAAAAAAAADShQmlAAAAAAAAAABk0IO1npYkffX7G4qLj02y3GazOTskAAAAAAAAAAAAAAAAIFVerg4AAAAAAAAAAICc5vDp7VqxbXayy+6t9pgqlayvJ5sN09zVY/XCR7XVtOaTyhcUorMXj2v97gWaMnCzcvnndW7QAAAAAAAAAAAAAAAAQCqYUAoAAAAAAAAAwF1W75yj1TvnJLts5rDDKuZbXr3bfKCyRWrq541TNG/tONmsVhXMW0L1K7WRr3eAkyMGAAAAAAAAAAAAAAAAUmey2Ww2VwcBAAAAIGsSYqXVk10dReY1GyhZfFwdBQAAANyZO18Tcz0MAAAAAAAAAAAAAAAAZzC7OgAAAAAAAAAAAAAAAAAAAAAAAAAAAABkLyaUAgAAAAAAAAAAAAAAAAAAAAAAAAAAeDgmlAIAAAAAAAAAAAAAAAAAAAAAAAAAAHg4L1cHAPdjs0nWOFdH4Rxmb8lkcnUUGWOzSbEJro4i/Xwsjt3H7pifjswzdzv+EjkgOT4HaL9j3stZHH2uMXo/QA4AAAAAMDLuiYzNHY//LRnJA3duZ0Zlpj5sNpuuW93r4VCA2SJTBhpKDqTMHfeN45+PUgOexAj9YEaPv0QOpMYd9w39IP1gaqiBjGOslBxwt31ADVADRq8BieeDAAAAAOAKTChFhlnjpNWTXR2FczQbKFl8XB1FxsQmSMPmujqK9Bv7pOTrwJ7IHfPTkXnmbsdfIgckx+YA7Td2+yX6AXIAAAAAgJFxT2Rs7nj8b8lIHrhzOzMqM/Vx3Zqg4FV/ZE9A2STywRYKtKT/4RA5kDJ33DeOPg9QA57FCP1gRo+/RA6kxh33Df0g/WBqqIGMY6yUHHC3fUANUANGrwGJ54MAAAAA4ApmVwcAAAAAAAAAAAAAAAAAAAAAAAAAAACA7MWEUgAAAAAAAAAAAAAAAAAAAAAAAAAAAA/HhFIAAAAAAAAAAAAAAAAAAAAAAAAAAAAPx4RSAAAAAAAAAAAAAAAAAAAAAAAAAAAAD8eEUgAAAAAAAAAAAAAAAAAAAAAAAAAAAA/HhFIAAAAAAAAAAAAAAAAAAAAAAAAAAAAPx4RSuI1dR9eoxRCTlm2Z6epQAAAAAAAAAACAgTBGAXIARkcNgByA0VEDAAAAAAAAADyFl6sDgOfYdXSNXpvazP5vs8msAL8gFQgqpgrF66hZ6FOqe08rmUwmF0YJJHV37kqSn0+gihesqOa1u+uxe1+SxUJ36cnIAfaB0dsPcgAAAACAsXFPBE/AGAXIgczjPOAZqAGQA5lHP+gZqIHMowZg9BwwevtBDhi9/QAAAABgRNzlweGahT6l+pXayCabom9c0akLB7Vp7yL9se0b1a7QXG93n69c/nldHSaQxJ25G3klXH9s+0ZTf31VJ88f0CtPfOHq8OAE5AD7wOjtBzkAAAAAwNi4J4InYIwC5EDmcR7wDNQAyIHMox/0DNRA5lEDMHoOGL39IAeM3n4AAAAAMBImlMLhKhSrreZ1uiV6rX+7SfpyyVAtXDdJo797SqN7/+6i6JARH3dz3Ddzvjzb5rD3yi535267xi/ouXGV9Pvm6er18PvKm6ugC6NzDXLAeDlg9H1g9PbfzWh9gEQOAAAAADA27ongCRijADmQeZwHPAM1AHIg8+gHPQM1kHnUQGKMlRovB4ze/rtRA8bLAaO3HwAAAACMhAmlcAqL2aL+7Sbq4KnN2nJwqfYe36BqZe6TJF2LvqTvV43Whj0LdSHqlAL8glSrQnM9+/D7KpK/bKrva7VaNWf1GG07uExhFw7pSvRFBecOUYNKj6jXw6MUFJhfkhR59byeHlVc99fopOFPf5fkfSb/+KIW//W5vnn9mELylXZ4+93R5YiTatJ1kmq3fsXVobiMv0+gKpVqqPW7F+jMf0cN91CMHCAHJPaBkdtPH3CTkXMAAAAAALgngqdgjALkQOZwHvAc1ADIgcyhH/Qc1EDmGLkGGCu9ycg5IBm7/dTATUbOAYn2AwAAAIAnY0IpnOrhes9p7/EN+vvAElUrc5+uRV/Sy5821vmok2pV71mVLlxVFy+f1S9/fqaXPmmgT1/eqsLBpVJ8v/iEWM1fM15NqndUo6qPys8nUIdObdHSLTO098QGffbyNnl7+Sg4VyE1qtJeG/b8qKvRUcrln9f+HrFxMVq983vVKt88Rz2Yd7XjO35V2VrtXB2Gy53976gkKSggn4sjcT5y4CYj58AtRt8HRm0/fcBtRs0BAAAAAJC4J4JnYYwC5EDGcR7wLNQAyIGMox/0LNRAxhm1Bhgrvc2oOXCLUdtPDdxm1By4xejtBwAAAABPxYRSOFXZIjUkSWEXDkmSZi5/R2f/O6bJL/2lckVr2tdrWe8Z9Z1YXbOWjdDQLjNTfD9vL1/NfeesfL39b7/YqL+qlG6sSfN7a9O+RWpas7MkqU2Dvlq/Z6FW7fhe7Ru/YF99/Z6FuhodpTYNejuwpe4vKvywarZ40dVhOFVM3HVduhYhm82myCvh+vXPqTpyeocqlaiv4gUrujo8pyMHjJkDRt8HRm//nYzYB0jkAAAAAABj454Ino4xCpADqeM84PmoAZADqaMf9HzUQOqogdsYKzVmDhi9/XeiBoyZA0ZvPwAAAAAYiSEnlEZERGjcuHH68ccfFRYWpoIFC6pDhw4aPXq0Bg4cqK+++kqffPKJBgwY4OpQPU6AX5Ak6fqNy7LZbFq1/TtVL3u/CuQppkvXIuzr+fkEqlLJhtp2eHmq72cymewP5hOsCYq+cUUJ1niFln9QknTg5N/2h/N1KrZQSL4yWrp5RqKH80s3z1BQQH41rvqYI5vq1mJjrsrHL7erw3C6b5aP0DfLRyR67b5qHfTS45+6KCLXIQduM1oOGH0fGL39txi1D5DIAQAAAMCTzVk1RodPb9fhsG0Kv3hchYNLafYbJ1wdVo7CPZFns1qt+mnDx1ry1zSFR55Q3sCCur9mZ/Vs9T/5+wS6OjynYIwi/RK+minrD/NkeXWQzA+3TLTMZrMpYcjrsh04IK8pk2UqU9o1QWYCOZA6zgO3UQPGrIE7kQPGzAH6wduoAWrgFiPWAGOlxs0Bo7f/FmrAuDlg9PYDAAAAgJEYbkLpzp071bp1a4WHhyswMFBVqlTRmTNnNHnyZB09elQXL16UJIWGhro2UA91PeayJCnAN0hR1y7o8vX/tO3Qcj0xsmCy65tN5jTfc+2ueVqwdqKOnNmh+IS4RMuuRkfa/99kMql1/d76eumbOnJ6p8oXC9XZ/45p17E1evy+l+Xt5ZOFlnmWk3v+UMnqLdNe0cM80qCv7q/RSfHWOB0/u0dz14xVxKUw+Xj72dfZc2y93pjROsm28QmxsloTtGxcgjNDzjbkgHFzwOj7wOjtv8WofYBEDgAAAACe7Kvf31DugHyqUKy2rkVHuTqcHIl7Is/2+a+vaNGGybq32uN6oulgnTx3QIs2TNbR0zs0tu8Kmc1pP493d4xRpJ+5e1dZ//pbCdO+lKlObZkKFrAvs/64SLbde2R+9hm3mkAikQNp4TxwGzVwk9Fq4E7kwE1GywH6wduogZuoAWPWAGOlxs0Bo7f/FmrAuDlg9PYDAAAAgJEYakJpRESE2rVrp/DwcA0ePFgjRoxQ7tw3v01r3LhxGjZsmLy8vGQymVSjRg0XR+uZjp3dLUkqXugeyWaTJNWu0FxPPjAsU++3fs+PGjX7SVUqUV8vtP9YBfOWkI+XnxJsCXpj+sOyWq2J1n+43rP6ZvkILd0yQwOKfaKlW76SzWZT6/q9s9YwD3P28Ebd22Vsotc2zn1DW38do+Z9Zqhq02cTLbPZbFr4fjOFH/lTXd7bpgIlqjkzXIcpVqCCaldsLkmqX6m1qpW5T698dp8+Xthfb3b7QZJUvWwT/fr+1UTbRVw6oxcn19WjjT3nV43JAePmgNH3gdHbf4tR+wCJHAAAAAA82TevH1WR/GUlSX0mVFN07NU0tjAe7ok814nwffp54ye6r1oHjei50P56SL4y+vTngVqz6wc9WOtpF0boHIxRpJ/J21teQwYrfuArSpj0kbzGjJIk2U6FyTrzG5kq3SNzp44ujjLjyIHUcR64jRpIH0+rgTuRA+njaTlAP3gbNZA+1MBNnlYDjJUaNweM3v5bqAHj5oDR2w8AAAAARmKoCaUDBw5UWFiYBgwYoAkTJiRaNnToUH3//ffatWuXypQpo6CgIBdF6dmWbpkhSWpQ6RHlCSyoXP55dT3msv1BREat3PatfLz8NL7/avn5BNhfP3n+n2TXzxcUooZV2mnV9u/0XJsPtHzrTFUq2UClQ6pm6u97IpvVKpvNJrPZkuj1hh1H6viOX7Xuu1dVslpL5c5f3L5sx9KPdPqftWrceYxbPxS8W9XSjdW8dnf9se0bPXbfQFUt3TjJOrHxN/TuNx1UrfR9evqhN1wQpeORA7cZNQfuZPR9YMT20wckZsQcAAAAADzVrcmkSD/uiTzH6p1zZLPZ1KHJoESvt2nQRzN+e10rts82xIRSxigyxlShvMxdOsv63RxZl/wu08MtlTBugmSzyTJksEwWS9pvksOQAxlj9PMANZA2T68BciBtnp4D9IPUQFqoAc+rAcZKEzNiDtzJiO2nBhIzYg7cyejtBwAAAABPZnZ1AM5y4MABzZ07VwUKFNCYMWOSXadOnTqSpJo1a6b4Pq1bt5bJZNLIkSMTvX5romr9+vXl6+srk8nksNg9QYI1QdN+fU17j29Q/UptVK3MvTKbzXqwVlf9c2qz1u1ekOx2kVfPp/q+ZrNFJpNJNtvtb3W02Wz6fsWoFLdp06CPrkRH6uOF/RVx6XSO+abHnCL82GaFlKuf5HWLl49a9pul+BvXtGL6c/bXI88c1J/z31RIuQaq03aIM0N1iq7N35bZbNGsZe8ku/zjhf0VGxejIU/OdG5g2YgcSMyIOXA3o+8Do7WfPiApo+UAAAAAANyJeyLPcPDUFplNZt1TMvE9v4+3n8oWDdWhU1tcFJlzMEaReeauT0llyyrhy+myfjpVtoOHZH6mh0wliqe9cQ5CDmSe0c8D1AA1QA6QA/SD1EBqqAHPqwHGSpMyWg7czWjtpwaSMloO3M3o7QcAAAAAT2WYXyidM2eOrFarunbtqly5ciW7jr+/v6SUJ5TOmzdPO3fuTHbZkSNHtHDhQtWrV08+Pj7auHGjQ+J2R4dPb9eKbbMlSdE3rujUhYPatG+RzkX+qzoVW+qNp7+3r/vsw+9r34mNGjW7s5rW6KzKpRrKy+Kjc5H/avM/v6lCsToa2mVmin+rSY0ntH7PQg2Z9qCa1+mhhIQ4bdy3SDdir6e4Td2KrVQ4uJRWbp8tf99cahbaxWFtdzen/1mnIhUay2y53RX8u2uparV+Jdn1C5Wprbrthmvzove0Z9UXqvrAc1o2rYdsNpta9puV5NvpPEGxAuXVrGYXrdzxnfYcW6/qZZvYl/20YbL+PrBYUwZuSfRto+6EHEibp+dAehh9H3hy++kD0seTcwAAAAAA0sI9kWf47/IZBQUWkI+Xb5JlBfIU0/5/NykuPlbeXj4uiM6xGKNwLJOXl7yGvKr4lwbJuniJTNWqytzhMVeHlSpywLGMfh6gBqgBcoAcoB+kBqgBz60BxkrTx5NzID08uf3UQPp4cg6kh9HbDwAAAACeyjC/ULpq1SpJUrNmzVJcJywsTFLyE0ovX76sQYMGacKECclue//99+vs2bP65Zdf1Lx5cwdE7L5W75yjsT901/i5PTX999e1/fAfqlG2qUY/97s+6LNMgf557OsG+ufRRy9uVI8W7+rEuX2a8dtwTf9tmP7c/4sql2yodo2fT/VvNQvtolee+ELRN67qi8Wvad6acSpR8B6N6bMsxW3MZrMernfzm9Ka1ugsf9/kJxh7ukN/zdXPEx7R6YPrE71+I/qSfAPypLCVVP+xt1WgZE1t+P41rZn1ks4d3azGnd5XcNF7sjtkl3nqoTdlNpk1a/ntb1rbeWS1pi8Zpre7z1dIvtKuCy4LyIH089QcyAij7wNPbD99QMZ4Yg4AAAAAQHpxT+T+bsRel3cyk0klycfL7+Y6cSl/6N2dMEaRDQIDJW9vSZKpXl2ZzDl7eJEccDzDnweogRQZpQbIgZQZJQfoB6mBlFAD7lsDjJVmjCfmQEZ4YvupgYzxxBzICKO3HwAAAAA8kclms9lcHYQzlChRQmFhYdqxY4dCQ0OTLI+Pj1eRIkUUERGho0ePqmzZsomWv/TSS9qzZ4/WrFkjk8mkESNGaOTIkcn+rZEjR+rdd99VVndt3bp1FR4enqX3yA4+Xv76YsBhV4eRJXNXj9P034bp4xc3qUrpRimu13dKBcXGRzsxsqyzePvr8VHpOz6bf35f0Vci1LTbh5KkyxEndXTrj6r18KBUt7vw7y798E49WRPiVLTifXrirbWZHjT66a0KSohz3D52Rn6GXzyhAZPrqVuLEXrs3gFZfj9H5llGjr9EDmRWTs4BZ/XRjtwHtN+x5xp3Ow9Iju0HjJwD7n6N5o7XXQAAAMhZMnJN3GdCNUXHXtXsN05kb1Dp5G73BTnxngipH/8+E6sr6up5zR9xLsmy977trHW75+u3MTdc9gulGckDd7//lbJ3jMLm46ML0z7Naoi3389mU8LQ4bLt3y8VKSKdOy+vaZ/JVLSIw/5GwX4vyhQbm+71yYGUcR6gBtwF/eBtGT3+EjmQGvpB96sBiX6QGmCslLFSx+aAu31mhBqgBoxeAxLPBwEAAAAgs0JCQrR169ZMbevl4FhyrGvXrkmSoqOTv/GcO3euIiIilDt3bpUpUybRsq1bt+rLL7/Utm3bsj3OO4WHh+v06dNO/Zvp4ecd4OoQsiQhIV5L/pqmMiHVU30wL0lnz5xRjJt9K7uXb/qPT7m6j+vXie3tDwaP7/hVZWq1S3M734A8snj7ypoQp9KhbbL0UPDM2TOKv+G4fZzd+RkTe10jZj6mRlXaO+SBmOTYPMvI8ZfIgczI6TngjD7a0fuA9jv2XONu5wHJsf2AkXPA3a/R3PG6CwAAADmLO18Tu9N9QU69J0Lqxz9/UFGdPLdfsfE35HPXL5VGXDqtPIEFXDaZVMpYHrhzrUtOGKPw85V3FuK7m3XRL7Lt2i1zr54yN2qo+BdfUsLED2WZMFYmk8khf+PM2TNSzI10r08OpIzzgKgBN0A/mFhGj79EDqSGflBuVwMS/WBqqIGMY6yUHHC3z4xQA9SA0WtA4vkgAAAAALiCYSaUhoSEKDIyUtu3b1ejRokfyJ49e1ZDhgyRJNWoUSPRQ++EhAT169dPAwYMUNWqVZ0ec07k4+Xv6hAy5ezF4zrw75/atO9nnb14TG90nZPmNkWKFnW7b7+yeKf/+OQvVkUymfRf2D7lL15VUeeOqGbhcqluY7PZ9McXvWSNj1W+opW1+edRqtCgs/KmsV1KihYp6vBfp8xO6/cs1LGzu3Q64pDW7JqbZPmM1/arUHDJDL2nI/MsI8dfIgcyI6fngDP6aEfvA9rv2HONu50HJMf2A0bOAXe9RrvFHa+7AAAAkLO48zWxO90X5NR7IqR+/O8pUU/bDi3XwZObVb1sE/vrsXExOnZmp6qXvd8ZIaYoI3ngrrXurDEKm4+PLmQ2yLvf6/RpWb+aKdM9FWXu/IRMFovM3brK+vUsWRf9Isvjjzrk7xQtUjTDv0rmjpyRA5wHqIGcjH4weRk9/hI5kBr6QferAYl+MDXUQMYxVkoOuNtnRqgBasDoNSDxfBAAAAAAMisr8w4NM6G0efPmOnDggMaOHasWLVqoYsWKkqQtW7aoe/fuioiIkCSFhoYm2m7KlCk6d+6cRo4c6eSIlemfnc1uCbHS6smujiLjdh9dqwnzeilPYAF1a/6OmoV2SXObw4cOy+K6L2XPlBvx0rCkz2pSVLZWOx3b/otyFyglH7/caa6/a/knCjuwRo06va9ydR7VnLdqa8WXz6rjm2sy9Q2khw4flq8De6Lszs8WdbqrRZ3uDn1PR+ZZRo+/RA5kVE7PAWf00Y7eB7TfsecadzsPSI7tB4ycA+56jXaLO153AQAAIGdx52tid7ovyKn3REj9+D9Q80nNWTVaP67/KNGE0t/+/lIxcdf1YK2uTooyeRnJA3etdWeNUVxLiFfwqj8yGeVtNqtVCeMnSVarLENelclikSSZOz8h28ZNsn41U+YG9WUqWiTLf+vQ4UMKtKT/4RA5kDLOA9RATkY/mLyMHn+JHEgN/aD71YBEP5gaaiDjGCslB9ztMyPUADVg9BqQeD4IAAAAAK5gmAmlQ4cO1ffff69Tp06patWqqlSpkmJiYnTkyBG1bt1apUuX1rJly1SzZk37NhEREXr77bc1YcIExcfHKyoqyr4sJiZGUVFRCgoKktlsdkGLkFGt6j2jVvWecXUYOU6Z2u20ad4bCi5yj0pWa5HqupHhh7Vx3nAVLltPddsNk9lsUYMOI7Vp3hvatfwThbYa6Jyg4VDkAGBs9AEAAAAAjOKPbd/qfOS/kqSoaxcUnxCr71aMkiQVCi7l8A9CATlJmSLV1b7xi/p54xSNnNVB9Su10cnzB7Row2TVKNtUD9Z62tUhejx3G6OwLvhRtv0HZO7dS6aSt39ZxGSxyPLaq4p/8SUlTPxQlgljM/2hYaNxtxwwOmrA8dytBsgBx3O3HDA6asDxqIGcibFSGB01AAAAAACAMRlmJmTx4sW1fv16PfLII/Lz89OJEyeUL18+TZs2TUuWLNGhQ4ckKdGE0rCwMF25ckX9+vVTcHCw/T9JGjt2rIKDg3Xy5EmXtAdwlGL3NFFU+GEd3fqTilRsnOJ6NqtVf0x7RjZrglr2myWz+eY3kNZpO1SFytTVxnnDFXXuqLPChgORA4Cx0QcAAAAAMIqlm2do5rK3NXPZ24q6el5Xo6Ps/166eYarwwOy3fPtP1LfthP077l9mvLTi1qz8wc9du9LGvXsYr44E4nYTp6Udda3MlWuJHPHDkmWm0qXkrlbV9n27JV10S8uiBDIXtQAyAEYHTUAI2GsFEZHDQAAAAAAYEyG+YVSSapcubIWL16c5PWrV6/qxIkTMpvNqlatmv318uXLa/Xq1UnWb9asmXr27KlnnnlGISEh2RozkN3MFi+VqtHq5v///8O+5Gz/baLOHt6ke7uMVb5ilW9vb7aoZb+ZmvNWba348ll1fHMN30DqZsgBwNjoAwAAAAAYxcTn17g6BMClLGaLOjUdrE5NB7s6FORwppIl5b3k51TXsTz1pCxPPemkiADnogZADsDoqAEYCWOlMDpqAAAAAAAAYzLUhNKU7Nu3TzabTRUrVlRAQID99Vy5cumBBx5IdpvSpUsnWbZgwQJJ0v79+xP9u3Tp0qpbt67jAwccpFydx6RUHuZdPH1Afy58WyHlG6p2m6QfNspfvKoadBipTfPe0K7lnyi01cDsCxbZghwAjI0+AAAAAAAAAAAAAIARMVYKo6MGAAAAAAAwHiaUStqzZ48kqWbNmll6n06dOiX77549e2rmzJlZem8gO1Vo0CnV5fmKVdaAr2NSXade++Gq1364I8OCE5EDgLHRBwAAAAAAAAAAAAAwIsZKYXTUAAAAAAAAxsOEUmV8QqnNZsvQ60bSbXRpeXv5ysfLX5L01IPD9UDok4qNv6Fpvw7W1kPL5OPlp3JFaur1p2cn2nbplq81cd6zGtnzJ91b7TFJUuTV8xo3p4fOXDwqH4uvXurwmWqUvT/R3+rUdIjaNOidJJa/9i/W/LUTNPH5NQq/eEJbDi5Vu0b97cvHfN9VOw6v1AOhXfTCox9lzw6B24uNi9H733XRv+f2y9fbX3lzFdLADp+rWIHyrg4NcIhPFw3Un/t/0bnIf/X5oB0qXyw0xXVtNpuGTntIh09v16L3ouyv/7B6rP7YOkteFh/5ePvpxUcnq1LJ+tkfPAAAAAAAcKl1uxfo7wNLdDU6kudnyBFSetYVduGwxs/tqUvXIhTol0dDnpyp0iFV01yW0piHJLUYYlLpkGrq3WasGlRukySWRRun6NCprRraZaaOnN6pUxf+UbPQLvblr01tpmNndqlbi3fUocmgbNwrxpLaM/3Uxpy+Xzlaf2ybpdMRhzWix4/2cSqJsSq4F2rA2Dj+ANeDAJKXWp3f6ffNM/TD6g9ks1oVWv5BDezwmbws3gq/eELj5z6jI2d2KCS4jKa9utO+jdVq1ZdLhmrrwaVKsMaraul7NbDD5/L28tGWg8s0fckw+7pR184rX+4QfT5ouzOaDaQpI5+L+2v/Yn2x+DUl2BJUJqS6hjw5U4F+QeQ5AAAAALgps6sDyAkc9QuluOnNrnM17dWdmvbqTvuD9Bm/vS6TyaSZQw/py8F71LfthETbhF88od///lKVSzZM9PqM315X5VINNWvYYb325Nca8/3Tik+IS/S3khucutu5yBNa/OfURK8Nf/o7tb1jwApISZsGffX10IOa9uouNar6qCbNTzvn4N6GfdFSfSfWUL9JoXrlsyY6cnqHq0PKNk1qPKEPX9igwsGl0lx34boPVSR/uUSvHTm9U79u+kxTBm7WtFd36tHGAzRl0YDsChcAAAAAAOQgG/f+pHurPsbzM+QYKT3r+nhhP7Vp0Fczhx3Sk82GafzcZ9K1TEp+zOOWD19Yn+zkgbsdPbNTa3b+kOi1Cf1Xq2GV9hlrINIlpT4ptTGn2hWaa/Rzv6t6mfuTvB9jVXA31ICxcfxhdFwPAkhOWnUuSWcvHtfMZW/rw+fXa9brRxR59ZyW/PWFJCnAL0i9Hh6lN57+Psl2S7fM0JHT2/XZoO2aMeSATCazftrwsSSp3j2t7P3HtFd3qkKx2nqwVtdsbSuyzkifGZLS97m46BtXNXH+cxr5zCLNGnZY+YOK6rsV70kizwEAAADAXfELpZJWrVrl6hA8WnTsNS3dPEPfvxUmk8kkScoXFGJfbrVaNWl+b7342Cea9uvgRNuu3TVPs4YdkSTdU6Ke8gcV1e6ja1W7YvMkfyc+IU6f/fyyth3+Q7n9g1WtTBP7so8X9te5yH/Vb1KoCgWX1Hu9fsmOpsID+Xj7JRoAqlyyoRasnZDKFvAEb3efp1z+eSVJG/b8pPFzn9G0V3e5NqhscutbpNNyInyfNu1bpNc6f611u+fbXzeZTIq3xikm9pr8fXPpakyUCuQpnl3hutzV6Cj1mVhNN+KiVTBPCcUl3FD4f8f0UJ3uGtxpuqvDgxOQAwAAAACMIq37n/iEOO07sVFDnpwpL4u3fTuen8GVknvWFXn1vA6FbdUHfZZLkppU76gpPw3Q6YgjCvALSnFZRn9l93rMFU1a0FtHz+xUnsCCKl24qv3vz1r+jq7FXFK/SaGqXKqhBnWcmsa7IbNSe6af2phTpZL1U3xPI49V8SzM/VADxsbxdzz6QffD9WD2oibgjjmQWh9wZ52v371Ajaq0t3+mrW3D/pqzarQevfdFBQXkU7Uy92nX0TVJ3v/omV2qVaG5vL18JEn1KrXWt8tHqvMDQxKtF3HpjHYcXqnBnb/KppbCUYz0maH0fi5u8z+/q3zRWipZqJIkqX3jF/T6ly3Vt+34ROuR5wAAAADgPphQCocb90MP2WRTpRL19VybD3Tx8lnlDsinOatGa/vhFfL19lf3FiNVu8JDkqSF6yapaul7VbF4nUTvc/naf0pIiEs0+bRwcGmdjzqZ7N9d8tcXOnXhoKYP3idJGj69lX3Zyx2n6rOfB2naqzsd3FoYzU8bPlajqo+6Ogxks1sPhiXpWswlSTcnw7vj4IgjxCfE6cMFffRqpxkymy2JlpUrWlMdm7yi7mPKKHdAPnlbfDXphXUuijT75fLPqwdDn5a/b251a/G2thxcpjmrRnv08Udi5AAAAAAAo0jr/mfnkdWqUqpxosmkEs/PkPNciDqlfEFFZLHcHBIzmUwqFFxS56NOKtAvT4rLbn2w+O4xj7y5Cib7d2av+J+8Lb76asg/uh5zWS9NaahKJRooOFch9Wz5P23at0jvPrPIKW3Gbbf6pIyOOd1i9LEqnoW5P2rA2Dj+WUc/6Bm4HnQcagLumAOp9QF3Tig9H3Uy0a8bh+RL+1wpSRWK19GSv6bp0XsHyNfbX+t2zdO5yBNJ1lu+dabqV2qj4FyFst4oZCsjf2Yoped6d9dH4eDSunj5rBIS4u21JZHnAAAAAOBOmFAKh5r0/DoVCi6p+IQ4fb30LY2b21O9Wo3Such/VapQFfVu84GOnN6hYV+00PTX9inq2gWt37PQIZOPdhxZqRZ1eti/8a1VvWe1dPOMLL8vcMv3K0frTMQRjeu30tWhwAnGzumhXUdXS5Lef+43Se45OOII3/7xru6r1kGlCldW+MUTiZadvXhcG/b8qJnDjqhAnqJatHGKRs1+Uh+9uME1wWbRwE8a6XTE4WSXff7KDhXKW0JHzuzU4/cNlCQdDtum8kVrOTNEZDNyAAAAAIBRZPX+Z9O+Rbq32uOJtuP5GTxNcmMeo///WeHddhxZqf7tPpTJZFKgfx49GPq0zvx31MkR40539kmxcdFO+ZueOFbFszD3RQ0YG8ffcegHjc1o14OMk4EcyLhWdZ/R+ch/NfjzpvL19letCs1lObQ80To2m03LtnylFx6d7KIokVFG/MxQVp/rkecAAAAA4F6YUAqHKhRcUpLkZfFWhyaD1GtcRRUKLimzyawHa3eVJJUvVksh+cro+Nk9Oh1xWOciT+iZsRUkSRevhOujBX118fJZtWv8vCxmL128HG7/1tNzkSdUKG/JdMVi+v9vBwMcYf6aCdqw90eN67tCfj4Brg4HTjDsqW8kScu3ztKXvw2zDwwacXBk97G1Oh95Uj9vmqIEa7yu37isbqNLa8rALdqwe6HKFKmuAnmKSpJa1eulTxe9pLj4WPsHBtzJ5Jf+THOdY2d2qnyxm8f9cNg2NaraPrvDghORAwAAAACMIiv3PzabTVsPLlOfR8bZ1+X5GXKqgnlLJPrVDJvNpvORJ1Uob0kF+AWluExKfswjvUwmxihc6e4+yc8nIFNjTkGB+Q0/VsWzMPdEDRgbx9+x6AfdH9eD6cc4GTwxB1LrA+5UKG/JRJPAwy+m75xnMpnUo+VI9Wg5UpK0eucPKhVSNdE6u4+tVWx8jOre0yqZd0BOZLTPDKX1XK9Q3pLafugP+7/PRZ5I9Mu/EnkOAAAAAO7G7OoA4DmiY6/panSU/d+rd8xR+aK1lCewgELLP6StB5dJuvlrduEXj6tk4cpq1/h5zX3nrGa/cUKz3zihyiUbatATX6hd4+clSU1qdNLiv6ZKkg6e2qKIS6dVo1zTZP9+7QrNtXL7bMUnxCkuPlbLtn5tXxbgG6TrMZeyqeXwdAvWTtLqnXM0ts8fyuWf19XhwMla1u2pXUdW6/K1/yQlHRy59f+e7MMX1uu7N//V7DdO6MMXNijAN0iz3zihvLkKKiR/We07sVHRN65Kkv7ev1jFC1Z0y8mk6RFx6bRkMqlAnmKSpGPhu1UmpLqLo4IzkQMAAAAAjCK1+59/Tm1WycKV5e+bSxLPz5CzBecqpPLFamvF9tmSpPV7FqpA3uIqVqB8qstSGvNISe3yzbVsy9ey2Wy6FnNZq3fOsS8L8AvSNcYonCalPikjY053MvJYFc/C3BM1YGwcf8eiH/QMXA86DjUBd8yB1Or8Tk2qd9Sf+3/RxcvhstlsWvzXVD0Q2iXN94+Ni9GV65GSpEvXIvTDqg/U+YGhidb5ffMMtaz7jCxmi4NaBWcxwmeG0vNcr949D+vI6e06ef4fSdIvmz7TAzUT1wd5DgAAAADuhV8ohcNEXTmnd7/pKKs1QTbZVCRfWQ3tcvPbugZ1nKqJ85/T9N+GyWwya1DHafaHi6np88hYfTCnu3qOrSBvi49ef2q2vCzeya7bpkEfnQjfq+cmVFFu/2BVK9NEh8O2SZLKFqmhUiFV1WdCNYXkL6v3ev3iuIbDo12ICtO0xYNVJF9ZvTa1mSTJx8tXnwz828WRIbtcjY5STOx1+y9ubty7SEGB+ZU7IF+ygyNPP/SmK8PNso8W9NPf/yzRxSvhGj69lQJ8c2vW60c0cX5vNarSXo3T+DbR+6o9rkOntujFj+vK28tXfj6BGv70906K3vmOnN6RaKA4l19e/fLnZxrcaboLo4IzkQMAAAAAjCK1+5+Ne39S46qPSeL5GXKWlJ51Deo4TePnPqM5q0YrwC9IQzrfnuCS0rLUxjyS07X525q0oLeeHV9JeQILqlrp+xQbf0OSVLv8Q1qwdoL6TqyhKqUba1DHqdm7IwwstT4ptTGn71aM0uK/purS1QuaFL5XUxYN0OeDdihvroKGHqviWZj7oQaMjePvePSD7ofrwexFTcBdcyClOr/zcxFF8pdVz5bvatCn90qSapZ7QG0b9pMkxcReV69xFRUXf0PXYi7pqVHF1bx2dz3XZoyuxVzS4KkPyGwyy2qz6vH7XlajKu3sf/ta9CVt3POjvhi8x/kNR4YZ7TNDqV0/zlz2jvIHFVW7Rv0V4Jdbr3SarpEzH1OCNV6lQ6pp6JOz7O9DngMAAACA+zHZbDabq4OAe0mIlVZPdnUUUrfRpTWy5yKVLxaa6ff4ZvlIXY2O0guPfpTs8mYDJYub/cjejXhp2FxXR5F+Y5+UfB04tT2n5GdGODLP3O34SzkvB85F/qv3vu2kG3HRMpvMyhNYUH3bTlD5YqH6a/9i/bxxisb0WSpJevHjeipbtGaWB0ccmQNGrwGjt1+iHzByDrhj2+/kjtddAAAAyFnc+ZrY3e4Lek+oqvH9Vys4V6Esvxf3Ao5jlBrIKe1sMcSkn/4XmaVf5R33wzMqXyxUHZoMSnZ5ZurjWkK8glf9kemYXCHywRYKtKT/4VBOyQEp+8eqMpoDOWnfpJejzwPUgHPltBqQ3C8HMnr8pZyTAzlxvD6n7JuMoB90334wJ14P5pR9kxGMlTJW6ugccLd9QA3krBpw988MSe5XAxLPBwEAAADAFfiFUritPIEFNXZONz3eZJDaNOid4e3HfN9V/5z8W81qPZ0N0QFwV4WDS2nKwM3JLmtYpa0aVmlr//enL29xVlgAAAAAAAA5xvTX9rk6BMDlgnMV1uDPm+rZ1mPUoHKbDG//2tRmOnfxhKqVuTcbooOzMFYFo6MGjI3jD6PjehAAPA+fGQIAAAAAGAUTSuG2svpQZvjT3zkoEgAAAAAAAAAAYCTzRoRnafsJ/Vc7KBK4EmNVMDpqwNg4/jA6rgcBAAAAAAAAuCuzqwMAAAAAAAAAAAAAAAAAAAAAAAAAAABA9mJCKQAAAAAAAAAAAAAAAAAAAAAAAAAAgIdjQikAAAAAAP/H3n2HR1G1fRz/7W56ILTQe+g1oRdFioCAgghKEVBRKT4iFgQEHwUfEaQqr9gmdQABAABJREFUKCoKCIogUqVJk96kV5GO1ACB0AMpu+8fvCyE9GSTze58P9fFdZGdsufM3PeZmTNzZgEAAAAAAAAAAAAAAAAAAAA3Z7LZbDZnFwKuxWaTrFHOLkXGMHtKJpOzS5EyNpsUGePsUiSfl8Wx29gV49ORceZq+18iBiTHxwD1d8y6MoqjjzVGbweMHAMxkdLqcWlfj7M07C1ZvJxdCgAAALgyV7weuM9R1wWuuA1csQ82s3Ll68KUXBO6YpynVmryw2az6bbVtTqH/MwWmVJQUWIgYa64bRzfP0oOuBMjtIMp3f8SMZAYV9w2tIO0g4khB1KOe6XEgKttA3KAHDB6Dkj0DwIAAACAM3g4uwBwPSYTD/tnZiaT5G3gzDZ6fBp9/0vEAPU3dv0l2gFiAAAAADAurgfYBjAG4jxxJpNJ/hb37hwiBhLGtiEHQAwYHduGHDA6tg33SokBtgE5YOz9L7ENAAAAAADJY3Z2AQAAAAAAAAAAAAAAAAAAAAAAAAAAAJC+GFAKAAAAAAAAAAAAAAAAAAAAAAAAAADg5hhQCgAAAAAAAAAAAAAAAAAAAAAAAAAA4OYYUAoAAAAAAAAAAAAAAAAAAAAAAAAAAODmGFAKAAAAAAAAAAAAAAAAAAAAAAAAAADg5hhQCgAAAAAAAAAAAAAAAAAAAAAAAAAA4OYYUAoAAAAAAAAAAAAAAAAAAAAAAAAAAODmGFAKAAAAAAAAAAAAAAAAAAAAAAAAAADg5hhQCgAAAAAAAAAAAAAAAAAAAAAAAAAA4OYYUAoAAAAAAAAAAAAAAAAAAAAAAAAAAODmGFAKAAAAAAAAAAAAAAAAAAAAAAAAAADg5hhQCgAAAAAAAAAAAAAAAAAAAAAAAAAA4OYYUAoAAAAAAAAAAAAAAAAAAAAAAAAAAODmGFAKAAAAAAAAAAAAAAAAAAAAAAAAAADg5hhQCgAAAAAAAAAAAAAAAAAAAAAAAAAA4OYYUAoAAAAAAAAAAAAAAAAAAAAAAAAAAODmGFAKAAAAAAAAAAAAAAAAAAAAAAAAAADg5jycXQC4HptNskY5uxQZw+wpmUzOLkXK2GxSZIyzS5F8XhbHbmNXjE9Hxpmr7X+JGJAcHwPU3zHryiiueKwBnM0Vcz21UtpG2Gw23ba61smAn9kiUwobQqPEQGqOEa64bRx7LkAOuBvawfgZJQZoB1OOHHA/KW8HXW/bOPq62NX6xxzdNwYAAAAAAABjcsW+wfsc1UfoituA/lGeHeTZOWPngOTYPDByDLhi3e/jGVIAgDMwoBQpZo2SVo9zdikyRsPeksXL2aVImcgYqf9MZ5ci+Ya3l7wd2BK5Ynw6Ms5cbf9LxIDk2Big/sauP2AUrpjrqZXSNuK2NUY5Vq1IvwKlg/BGTeRvSdnJgFFiIDXHCFfcNo48FpID7od2MH5GiQHawZQjB9xPSuPDFbeNo6+LXa1/zNF9YwAAAAAAADAmV+wbvM9RfYSuuA3oH+XZQZ6dM3YOSI7NAyPHgCvW/T6eIQUAOIPZ2QUAAAAAAAAAAAAAAAAAAAAAAAAAAABA+mJAKQAAAAAAAAAAAAAAAAAAAAAAAAAAgJtjQCkAAAAAAAAAAAAAAAAAAAAAAAAAAICbY0ApAAAAAAAAAAAAAAAAAAAAAAAAAACAm2NAKQAAAAAAAAAAAAAAAAAAAAAAAAAAgJtjQCkAAAAAAAAAAAAAAAAAAAAAAAAAAICbY0ApXMaeY2vUpK9Jy7ZNcXZRAAAAYECcjxob+x8gD4yO/Q+jIwcAAAAAAAAAAAAAAADgDjycXQC4jz3H1uj97xra/zabzPLzCVBgQEGVKlRNDUM6qnqZp2QymZxYSiCuR2NXkny8/FUod2k1rtpFrR97SxYLzaU7IwbYBkavP+AuOB81NvZ/2nAsdA/kgbGx/9OGdtD1kQNpQw4AAAAAAAAAMCr6R42N/c82ADFg9PoDAIyJIxscrmFIR9Us20I22RRx94ZOXzqkTfvna8WOn1S1VGN91GWWsvhmd3YxgTgejt3wG6FaseMnfbfwPZ26eFDvPv+9s4uHDEAMsA2MXn/AXXA+amzs/7ThWOgeyANjY/+nDe2g6yMH0oYcAAAAAAAAAGBU9I8aG/ufbQBiwOj1BwAYCwNK4XClClZV42qdY33Ws+UY/bC4n+asG6Ohv3TU0Nf/cFLpgIQ9Grst6/5Hr40oqz+2TlTXZp8pe5bcTiwdMgIxwDYwev0Bd8H5qLGx/9OGY6F7IA+Mjf2fNrSDro8cSBtyAAAAAAAAAIBR0T9qbOx/tgGIAaPXHwBgLAwoRYawmC3q2XK0Dp3eqm2Hlmr/iQ2qWPxxSdKtiGuavmqoNuybo0tXT8vPJ0BVSjXWq80+U/5cQYmu12q1asbqYdpxaJnOXDqsGxFXlCNrPtUq+7S6NhuiAP9ckqTwmxf14pBCeqLyCxrw4i9x1jNu7ptatOVb/fTBceXLWczh9XdVYzubHLaut6fZHLaujOLr5a+yRWtr/d7ZOnf5mCEvBIgBYsDo28Do9QfcCeejxsb+Tz2Ohe6DPDA29n/q0Q66B3Ig9YyeA0bvGwMAAAAAAACMjP5RY/ePGn3/S2wDo+eARAwYvf4AAPfGgFJkqGY1XtP+Exv018HFqlj8cd2KuKa3x9fVxaun9FSNV1UsbwVduX5eCzZ/o7e+qqXxb29X3hxFE1xfdEykZq0ZqXqV2qpOhWfl4+Wvw6e3aem2Sdp/coO+eXuHPD28lCNLHtUp30ob9s3VzYiryuKb3b6OyKg7Wr17uqqUbJzpHthyputhp1Sv0xhVbf6us4viVOcvH5MkBfjldHJJMh4xcI+RY+A+o28Do9cfcDecjxob+z91OBa6F/LA2Nj/qUM76D7IgdQxag7QNwYAAAAAAACA/lFj948adf8/zKjbgBx4wKgxcJ/R6w8AcF8MKEWGCspfWZJ05tJhSdKU5R/r/OXjGvfWFpUoEGyfr2mNV9R9dCVNXTZI/TpMSXB9nh7emvnxeXl7+j74sE5PlS9WV2Nmva5NB+arfnA7SVKLWt21ft8crdo1Xa3q/sc++/p9c3Qz4qpa1HrdgTV1fSd2LVRQlZbOLkaGuhN1W9duhclmsyn8RqgWbv5OR8/uUtnCNVUod2lnFy/DEQPGjAGjbwOj1x8wAs5HjY39nzSOhe6PPDA29n/SaAfdGzmQNHLgASP2jQEAAAAAAABGRv/oA0bsH2X/sw0eZsQckIgBo9cfAGAshhxQGhYWphEjRmju3Lk6c+aMcufOrTZt2mjo0KHq3bu3Jk+erK+++kq9evVydlHdjp9PgCTp9t3rstlsWrXzF1UKekKB2Qrq2q0w+3w+Xv4qW6S2dhxZnuj6TCaT/YGtGGuMIu7eUIw1WiElG0mSDp76y/7QVrXSTZQvZ3Et3Top1kNbS7dOUoBfLtWt0NqRVXV5V0OPKLjJm84uRob6afkg/bR8UKzPHq/YRm89N95JJXIuYuAeo8WA0beB0esP92e1WjVvw1gt3jJBoeEnld0/t54IbqeXn/qffL38nV28DMH5aPLFTJ4i66+/yfLeOzI3axprms1mU0zfD2Q7eFAeX4+TqXgx5xQyhdj/SeNY+IA75oBEHqSEO8YA+z9ptIMPkAPkwH1GzQEj9o3dt+fYGr3/XcMEp5vNFi0bHp2BJQIAAAAAAEBa8bxA0ugffcCI/aPsf7bBw4yYAxIxYPT6AwCMxXADSnfv3q3mzZsrNDRU/v7+Kl++vM6dO6dx48bp2LFjunLliiQpJCTEuQV1U7fvXJck+XkH6OqtS7p++7J2HF6u5wfnjnd+s8mc5DrX7vlNs9eO1tFzuxQdExVr2s2IcPv/TSaTmtd8XT8u/VBHz+5WyYIhOn/5uPYcX6PnHn9bnh5eaaiZe4m8c1NePlmdXYwM93St7nqi8guKtkbpxPl9mrlmuMKunZGXp499nn3H12vgpOZxlo2OiZTVGqNlI2IyssjphhgwbgwYfRsYvf5wf98ufFfzN4zTYxWf0/P1++jUhYOav2Gcjp3dpeHdV8psTvrcy9VxPpp85i6dZN3yl2Im/CBTtaoy5Q60T7POnS/b3n0yv/qKywwgkdj/ycGx8AF3zAGJPEgJd4wB9n/SaAcfIAfIASPngFH7xh7VMKSjapZtEedzI1w7AgAAAAAAuBueF0ga/aP3GLV/lP3PNrjPqDkgEQNGrz8AwFgMNaA0LCxMLVu2VGhoqPr06aNBgwYpa9Z7J3wjRoxQ//795eHhIZPJpMqVKzu5tO7p+Pm9kqRCecpINpskqWqpxmrfoH+q1rd+31wNmdZeZQvX1H9ajVXu7IXl5eGjGFuMBk5sJqvVGmv+ZjVe1U/LB2nptknqVfArLd02WTabTc1rvp62irmZU/tWqEilpknP6GYKBpZS1dKNJUk1yzZXxeKP691vHtfYOT31YedfJUmVgupp4Wc3Yy0Xdu2c3hxXXc/WdZ9fNSYGjBsDRt8GRq8/3NvJ0AP6feNXerxiGw16eY7983w5i2v87721Zs+valTlRSeWMGNwPpp8Jk9PefTto+je7ypmzJfyGDZEkmQ7fUbWKT/JVLaMzC+0dXIpU4b9nzSOhQ+4Yw5I5EFKuGMMsP+TRjv4ADmQNHLgAXfLAaP2jT2qVMGqalytc7qs22az6U7kLfl6Z0mX9QMAAAAAAOABnhdIHvpH7zFq/yj7n21wn1FzQCIGjF5/AICxGOqVQr1799aZM2fUq1cvjRo1yj6YVJL69eun4OBgRUdHq1ixYgoICHBiSd3X0m2TJEm1yj6tbP65lcU3u27fua6qpRsn+C8xf+74WV4ePhrZc7Va1n1Dtcs/o6qlGytvjqLxzp8zIJ9ql2+pVTt/UUTkLS3fPkVli9RSsXwVHF5XV3b+yEblL1031mcbZw7U2M4mHVg7Oc78NptNs4c00NeveCvs9P6MKma6q1CsrhpX7aI1e2bqwMlN8c4TGX1Xn/zURhWLPa4XnxyYwSVMP8TAPUaOgfuMvg2MXn+4l9W7Z8hms6lNvXdifd6iVjf5ePpp5c5pzilYBuN8NGVMpUrK3KGdbDt2yrr4D9liYhQzYpRks8nSt49MFouzi5gi7P+UM/qx0N1yQCIPUsrdYoD9n3K0g+RAYsiBe9wxB+gbS5n1e+eoz7cN1Pqj7HpmoJ+6jiij8fN7Kyo6UpK059gaNelr0rJtU/T7xvF6bWR5PT3AR7PWjnJyyQEAAAAAAIyB5wVSh/7RB4zYP2rU/f8wo24DcuABo8bAfUavPwDAvRlmQOnBgwc1c+ZMBQYGatiwYfHOU61aNUlScHCw/bM1a9bIZDLF+RcSEhJr2dmzZ6tt27YqWrSo/Pz8VLZsWX344Ye6eTP2GyiMKsYaowkL39f+ExtUs2wLVSz+mMxmsxpV6aR/Tm/Vur2z410u/ObFRNdrNltkMplksz1427/NZtP0lUMSXKZFrW66ERGusXN6Kuza2Uz1CwCZgc1qlc1mk9kc+4HA2m0HK1ehilr3y3u6cflMrGm7ln6ps/+sVa02nyiwcMWMLG6669T4I5nNFk1d9nG808fO6anIqDvq235KxhYsHREDsRkxBh5l9G1g9PrDfRw6vU1mk1llitSM9bmXp4+CCoTo8OltTipZxuB8NPXMnTpKQUGK+WGirOO/k+3QYZlfeUmmwoWcXbRkY/+njdGPhe6QAxJ5kBbuEAPs/7ShHSQHEkIO3ONuOUDf2AN3om7r2q2wOP9u3blun2fyHx/qfz8/r2u3LqltvXf1RqsvVbdCa239Z4nuRt2Otb6567/UzNWfq0FIB73Z+iuVLVIro6sEAAAAAABgSEZ/XiAt6B+9x4j9o5Lx9n98jLYNyIG4jBYDjzJ6/QEA7svD2QXIKDNmzJDValWnTp2UJUuWeOfx9fWVFHtA6X3jx49X1apV7X/7+/vHmj5q1CgVKVJEQ4cOVaFChbR792598sknWrt2rdatWyez2TBjd3Xk7E6t3HHvjVURd2/o9KVD2nRgvi6E/6tqpZtq4IvT7fO+2uwzHTi5UUOmtVP9yu1UrmhteVi8dCH8X239Z4lKFaymfh2mJPhd9So/r/X75qjvhEZqXO0lxcREaeOB+bobeTvBZaqXfkp5cxTVnzunydc7ixqGdHBY3d1B6PGtyleiZpzPLR5eatpjqmYOrqWVE1/Tc/2XSZLCzx3S5lkfKl+JWqr2TN+MLm66KxhYUg2DO+jPXb9o3/H1qhRUzz5t3oZx+uvgIn3de5t8vPycWErHIgZiM2IMPMro28Do9Yf7uHz9nAL8A+Xl4R1nWmC2gvr7302Kio6Up4eXE0rnWJyPOpbJw0Mefd9T9FvvyLposUwVK8jcprWzi5Ug9r/jGf1Y6Go5IJEHjuZqMcD+dzzaQXIgIeSAe+YAfWMP/LR8kH5aPijO57XKPa0hry7SP6e2asaqoQop0VCfvbZEXp4+9nleb/F5nOUuXT2lSf3+UY4sedK13AAAAAAAAIjNSM8LOBr9o/cYsX9UMt7+j4/RtgE5EJfRYuBRRq8/AMB9GWZA6apVqyRJDRs2THCeM2fuvTEkvgGl5cuXV+3atRNcduHChcqdO7f97/r16yt37tzq1KmTNmzYoCeeeCK1RXc5q3fP0OrdM2Q2meXjnUW5sxVS5aD6ahjSUTXKNos1r79vNn355kbNXjtaa/f+pk0HfpfF4qHAbIVUsdjjal4r8Tf0NwzpoIi7NzRn3Rf6ftH7yuqbQ7XLt9RrLT5X20G54l3GbDarWY3XNHX5x6pfuZ18veMfYGwEZ/9Zp/yl6spsedAU/Ltnqao0fzfe+fMUr6rqLQdo6/xPtW/V96rQ4DUtm/CSbDabmvaYGueNPO6i45MfavXuGZq6/GON6rlakrT76GpNXNxfQ1//Q/lyFnNuAdOAGEged46B5DL6NjB6/eEe7kbelmc8N4ckycvj3kO/d6Nuu8UNIs5H04G/v+TpKUVHy1SjukyZ+IU57P/0YfhjoQvlgEQepAsXigH2f/qgHSQH4kMOuH4O0DeWuKdrddcTlV+I83m2LPfuhfy56xdJ0qsthsUaTCpJJpMpznKNq73EYFIAAAAAAAAnMNLzAumB/tF7jNY/ep+77v+UcNdtQA4kn7vGQHIZvf4AAPdkstlsNmcXIiMULlxYZ86c0a5duxQSEhJnenR0tPLnz6+wsDAdO3ZMQUFBkqQ1a9aoYcOGWr16tRo0aJCi7zx8+LDKlCmj6dOnq2PHjikuc/Xq1RUaGpri5dKbl4evvu91xNnFSJOZq0do4pL+GvvmJpUvVifB+bp/XUqR0REZWLK0s3j66rkhSe+fw1tmauXE19XyvQUqXP7BQOu1095V/c5fJLhcTHSUfv24hq5fPK4yj3XWvj+/Vb0XR6tqi/dSVd55/y2lmCjHbeOMiM/QKyfVa1wNdW4ySK0f65Xm9TkyzpK7/yViIC0ycwxkVBvtyG1A/V3vWIPMKan47za6kq7evKhZgy7Emfbpz+20bu8sLRl212k3iFKSC5yPJszm5aVLE8Y7oogP1mmzKabfANn+/lvKn1+6cFEeE76RqUB+h6w/d483ZYqMTNEyrh4D6Xk9YvRjITngOmgHHzBiDNAOxkY7SA4kJqXxYfQckIzdP+qo/b/n2Bq9/11DdX96pF5o8H6C8w2c1ELbDy3Vos9uxxlQGt/63npuvFrV/U+889A/AgAAAAAAkDaJ9Q250/MCiaF/1Nj9oxLPDpIDrpcDUua8T5CUzBgDGXn/MDO3AwAAY8mXL5+2b9+eqmUN8wult27dkiRFRMR/sJ05c6bCwsKUNWtWFS9ePM709u3bKywsTLly5VKrVq30+eefKzAwMNHvXL363hsoypUrl6oyh4aG6uzZs6laNj35eLr2T7LHxERr8ZYJKp6vUpIPbJ0/d053om5nUMkcw8M7efundO32unrhqI7vfHAxdD3slAICiya6nMXDU017TNWvH9fQvj+/VYHSj6tKs3dSXd5z588p+q7jtnF6x+edyNsaNKW16pRv5ZCLAMmxcZbc/S8RA6mV2WMgI9poR28D6u96xxpkTknFf66AAjp14W9FRt+V1yNvHg27dlbZ/AOd+rbRlOQC56OJ8PGWZxrL9yjr/AWy7dkrc9eXZa5TW9FvvqWY0V/IMmp4vL86lFLnzp+T7txN0TKuHAPpfT1i+GMhOeASaAdjM1oM0A7GRTtIDiQmpfFh+ByQsftHnZEbJpmkZLYF3omUj/4RAAAAAACAtEmsb8idnhdIDP2jxu4flXh2kBxwvRyQXO8+QWaNgYy6R5LZ2wEAAJLLMANK8+XLp/DwcO3cuVN16sR+UOf8+fPq27evJKly5cqxHoTKli2b+vbtqyeeeEJZsmTR5s2bNWzYMG3ZskXbt2+Xj0/8b90+e/asPvroIzVr1izeX0RNbpkzIy8PX2cXIVXOXzmhg/9u1qYDv+v8leMa2GlGksvkL1DA5d74YfFM/v4pUf05LRzdyv42nRO7Fqp4lZZJLuftl00WT29ZY6JULKSFTGZzqstbIH8Bh79hKj2t3zdHx8/v0dmww1qzZ2ac6ZPe/1t5chRJ0TodGWcp2f8SMZAamT0GMqKNdvQ2oP6ud6xB5pRU/JcpXEM7Di/XoVNbVSmonv3zyKg7On5utyoFPZHeRUxUSnKB89GE2by8dCkthXx0fWfPyjp5ikxlSsvc7nmZLBaZO3eS9cepss5fIMtzz6b5OwrkL5CqXyVzNRl1PWL0YyE5kLnRDsbPKDFAO5gw2kFyIDEpjQ+j54Bk7P7RjM6NQoGlte2fP3T83B6VLVIzTeuifwQAAAAAACBtEusbcqfnBRJD/6ix+0clnh0kB1wvByTXu0+QWWMgo+6RZPZ2AABgLGkZd2iYAaWNGzfWwYMHNXz4cDVp0kSlS5eWJG3btk1dunRRWFiYJMUZ/FmlShVVqVLF/neDBg1UsWJFtWrVSjNmzFDXrl3jfNfNmzf17LPPysvLS5MnT051mVP7s7PpLSZSWj3O2aVIub3H1mrUb12VzT9QnRt/rIYhHZJc5sjhI7I478VbqXI3Wuof9/w0XrkKlpdMJl0+c0C5ClXQ1QtHFZy3RKLL2Gw2rfi+q6zRkcpZoJy2/j5EpWq1U/YklkvI4SNH5O3Alii947NJtS5qUq2LQ9fpyDhLyf6XiIHUyOwxkBFttKO3AfV3vWMNMqek4r9BcHvNWDVUc9d/GesG0ZK/ftCdqNtqVKVTBpQyYSnJBc5HE3YrJlo5Vq1IQykfsFmtihk5RrJaZen7nkwWiyTJ3O552TZuknXyFJlr1ZSpQP40fc/hI4flb0nZyYArxkBGXY8Y/VhIDmRutIPxM0oM0A4mjHaQHEhMSuPD6DkgGbt/NKNzo1GVFzVvw1hN/mOgPnttSZxfsbDZbMn+JWP6RwAAAAAAANImsb4hd3peIDH0jxq7f1Ti2UFywPVyQHK9+wSZNQYy6h5JZm8HAABIrrS9EsOF9OvXT7ly5dLp06dVoUIFVapUSaVKlVLNmjUVFBSkRo0aSZKCg4OTXNczzzwjf3//eAd8RkREqGXLljpx4oSWL1+u/PnT9kAVHOepGq9oxUibZg++pJef+sTZxck0gqq01PGdCxR556a8fLImOf+e5V/pzME1qvncILXoPUu2mGit/OFV2Wy2DCgt0gMxAADGUDx/JbWq+6Y27J+rwVPbaMlfE/Xdwj76buF7qhxUX42qvOjsIro9Vzsftc6eK9vfB2V+ubNMRR68Oc9kscjy/nuSNUYxo7/gHCCZXG3/gxxID66WB8SAY7na/gc54GjkQOZF31jCjpzdqZU7psX7L+LuTZUtUlPtG/bXrqN/6j9fVtW0FZ9qyV8/aNIfA/XK8NK6deeas6sAAAAAAAAA8bwAEkb/KIyOHAAAAEZlmAGlhQoV0vr16/X000/Lx8dHJ0+eVM6cOTVhwgQtXrxYhw8flpS8AaX3Pfpm7aioKD3//PPavn27/vjjD5UvX96hdQDSQ/Gq9y6GTu1briIVmyQ6b3joEW38bYDyBtVQ9Zb9latQBdVqM1hn/1mnPcu/ypgCw+GIAQAwjjdafanuz4zSvxcO6Ot5b2rN7l/V+rG3NOTVRTKbDXNpgGSwnTol69SfZSpXVua2beJMNxUrKnPnTrLt2y/r/AVOKCGQvsgBEAMwOnIARkLfWMJW756h4b92iffflRuhkqTXW3yuAS9Ol59PNv22doS+/f0dbdw3VzXLtpC3p5+TawAAAAAAAID7eF4A8aF/FEZHDgAAAKNy0A+ku4Zy5cpp0aJFcT6/efOmTp48KbPZrIoVKya5ngULFujWrVuqWbOm/TOr1apOnTrpzz//1JIlS2JNAzKzgmXq6WroER3bPk9NekxJcD6b1aoVE16RzRqjpj2mymy2SJKqPdNPR7fN1cbfBqhYyNPKnrdEBpUcjkIMAIBxWMwWvVC/j16o38fZRUEmZypSRJ6Lf090HkvH9rJ0bJ9BJQIyFjkAYgBGRw7ASOgbiyu4RAOtGJn8t6k3qtJRjap0dNj6AAAAAAAA4Hg8L4D40D8KoyMHAACAUfFaIUkHDhyQzWZTqVKl5OcX+43ZnTt31scff6z58+dr5cqV+vTTT9W5c2eFhISoQ4cO9vnefPNNzZo1S++++678/Py0ZcsW+79Lly5ldJWAZDNbPFS08lP3/v//Fzjx2blktM4f2aTabf+nnAXLPVjebFHTHlNki4nWyh9elc3Gg0GuhhgAAAAAAACAUdE3BgAAAAAAAMCo6B+F0ZEDAADAqBhQKmnfvn2SpODg4DjTKlSooHnz5umll15S8+bNNXnyZHXr1k1r1qyRl5eXfb4//vhDkvT555+rTp06sf4tXrw4YyoCpFKJaq0VVO3ZBKdfOXtQm+d8pHwla6tqi7hvKMtVqIJqtRmss/+s057lX6VjSZFeiAEAAAAAAAAYFX1jAAAAAAAAAIyK/lEYHTkAAACMyMPZBcgMEhtQOmDAAA0YMCDJdZw8edLRxQIyTKlaLyQ6PWfBcur1451E56nRaoBqtEo6VzKb/t83VfiNUJlMZvn5ZNWbz45TyYJVYs1jtVr1/aL3te3QUlnMHgrwz6V3n/9BBQNL6vyVE/r0p+cVY42R1RqtwnnL6d223yurXw4n1Sh1jBwDRnTm0hGNnPmyrt0Kk79PNvVtP0XF8lWIM9+J8/v09fy3FH7zgiSpa7PPVK9SG1mtVv2wuJ+2H1qqGGu0KhR7TL3bfCtPj3svWvh19XCt2D5VHhYveXn66M1nx6lskZoZWseMtG7vbP11cLFuRoTr3wt/y9vTV9mz5FHvNt+qYGBJZxcPAAAAAIB04y7XxPSNAQAAAAAAADAq+keTZ93e2dp15E+90eoLffZLB5fuE39YZPRdTVjYR9sPL5OXh49K5A/WBy9OizXPrqOrNGnJB4q4e1Mmk0m1yj6t11p8LrPZ7BbP0JIDAADAiBhQqsQHlCL1xs/vrc1/L9CF8H/17Tu7VLJgiCKj7iR6IRV+86JGzHhJ564ck5fFW2+1+UaVg56QJHUeWkyeHt56oX5ftaj1epzv2/L3Is1aO0qj31ij0Csnte3QUrWs09M+fdj0Ttp15E81COmg/zz7ZYZsA2R+H3X5TVl8s0uSNuybp5EzX9GE9/bEmmfz3wt04ORGTXhvjzwsnvpl5RBN/mOgPurym3IFFNAXb26Qt6evJGn872/rpxWD9eazYzO6KnCg5Aw0dmVj5/RQi1rd9VSNV7Ru72yNnPmKxr+9LdY8dyJv6+Mpz6p/h59UsfjjirHG6MbtK5Kkpdsm6ejZnfrmnZ3ysHjqi9ndNW/DWLVr0FdHz+7Wwk3faOL7B+TrnUUrd0zT1/N76eveW51R1Qyxcf881a/cThaLp2qWbS6TyaT5G7/WmFmva/Qba5xdPMBw4jsHlRLvAN/2z1L9uOy/io6OlLeXn95pO0ElCty7NujzbQNdDP9Xfj7ZJElNq7+stk+8K4nz08wqoeN4Ysf3xGKAaxS4GnIAxACMjvPBjMU1MQAAAAAAAADACDbun6fG1V6SJLWo1d1t+sQnLflAJpNJU/odlslk0pXroXHmyeqbQx92+lX5cwUpMuqO+n3fWCt2/KSnarzCM7RuyN2fn31Ucn+gJaF7kMlZT2L3IgEAcBYGlEpatWqVs4vglupVfl7tGvTTu988HuvzxC6kJi35QOWK1tawbkt16PQ2DZ76nH4ecEIeFk9J0oedZsY5AYvPhfCTWrT5u1gPaA148Rf9tHywbkZcdVQV4QbuDyaVpFt3rkkyxZnHJJMio+8qMuqOLGYP3b5zXbmzFZIkeXl42+eLscboTuQt+XplSe9iI50lZ6Cxqwq/eVGHz2zX592WS5LqVWqrr+f10tmwo7HekrZq13SVK1JbFYvfa8MtZouyZ8ktSTp2bo+qlGps/0XSGmWb6+flg9WuQV+ZTCZFW6Pu5YJ3Ft28c1WB/58vruhmxFV1G11Rd6MilDtbYUXF3FXo5eN6sloX9XlhoqJjonTg5Eb1bT/FfqySpHJFamv22lFOLDlgXAmdgybUAX7jdriGzeikMW+sU7F8FbTv+Hp9Pr2Tfnh/v33Znq2+0GMVW8f7fZyfZj4JHccT+jypGDD6NUpSx0JkPuQAiAHHoh10PZwPOg7XxAAAAAAAAADwAPcM3Fti+/ftNt/G6g+vVa6FfTlX7hOPiLylpVsnafp/z8hkuvfsbM6AfHHme3gwoZenj0oUCNGF8JP3/uYZWrfjzs/Pxic5P9AiJXwPMqn1JOdeJAAAzsCAUqSb+79W8TAvT59EL6TW7vlNU/sflSSVKVxDuQIKaO+xtapaunGcdUXHROmb39/WjiMrlNU3hyoWr2efNnZOT10I/1c9xoQoT44i+rTrAkdWDW5m+IyXtOfYaknSZ68tiTO9dvmW2n1stdr/L598vbMqMFtBjX5jrX16VHSkeo2rqYtX/1Xx/JX16SvEm6tLaKCxO3QKXrp6WjkD8stiuXcKYDKZlCdHEV28eirWgNJTF/6Wp4e3/jv5GV26ekZB+SurR8vRyp4lt0oVqqbFWybo2cd6ydvTV+v2/GbvICpRIFht672rLsOKK6tfTnlavDXmP+ucUVWHyOKbXY1CXpSvd1Z1bvKRth1aphmrhtr39+6jq1W+aN1YD85K0rwNY1WnwrPOKDJgePGdgybWAX7u8jEF+OWyvxGuUlA9Xbx6SkfO7FSpQlVT9N2cn2YOCR3HE/o8qRgw+jVKUsdCZD7kAIgBx6IddD2cDzoO18QAAAAAAAAA8AD3DNxbYvt3+6Hl8faHS67dJ34+7Jiy+uXUjFVDtfPISnl7+qpLk8GqWurJBJe5cj1U6/fO1qevLrJ/xjO07sWdn599VHJ/oEWK/x5kctZzM+Kqw+5FAgDgSAwohVM9fCF1/dZlxcRExXq7Td4cxXTx6ql4l1285XudvnRIE/sckCQNmPiUfdrbbb/TN7+/ownv7U6/wsNt9O/4kyRp+fap+mFJfw19ZFDp4TPbdTJ0v2Z8dFZ+3gGatOQDjZ3TUx+8OE2S5OnhpQnv7VZUdKTGz39Li7ZMUPuG/TK8HnCs+AYaG6lTMMYarV1HVmrcW1uUK6CAJv8xUOPmvqGPX5qtp6q/oovh/6rPt/Xl7emrKqUay3L43oXw+SsntGHfXE3pf1SB2Qpo/savNWRae3355gYn1yh+vb+qo7NhR+Kd9u27u5Qne2EdPbdbzz3eW5J05MwOlSzw4I1rmw7M12MVn4u13PQ/h+pc2FGN6PFn+hUcQIok1gFeKLCUrt++rAMnN6lCsbradGCBbt+9odDwk/ZOu0lLPtCUZR+paN7yeq35MOXPFRTv93B+mnkk9MKQ+D5PLAby5ijKNYqU6LEQmRM5AGLAsWgHXR/ng/HjmhgAAAAAAAAAHkhrnylcX0L7N77+cMn1+8RjrNG6EP6viuYpr9dbfK6jZ3ep//dNNPH9A8qRNW+c+W/dua6Pfmypdg36qUzh6vbPeYbW/Rjl+dnk/kBLWtZTumC1JO9FAgDgDAwohdOk9UJq19E/1aTaS/L08JIkPVXjVS3dOsmRRYTBNK3+ssbO6anrty4rwD+X/fMVO35SSMlG9rfuNKn+sj74oWmc5T09vNS0Rld9MbsbF8NuIKGBxq7eKZg7e2FduX5eMTHRslg8ZLPZdDH8lPJkLxJrvjzZiyi4REMFZisoSXqyamf7g7Amk0kvNR2sl5oOliSt3v2riv7/25M27J2j4vkrKTBbAUnSUzW6avz8txQVHWlvrzOTcW9tTnKe4+d2q2TBe/v5yJkdqlOhlSTJZrNp+6Fl6vb0CPu8s9aM0ob9czWi+0r5ePmlT6EBpFhSHeAfd5mtSX8M0J27N1WuaB0VzVteFvO9S6X+HX9WnuyFZbPZ9Pum8frv5Gc0qe/f8X4P56eZR0LH8fg+9/fNlmgMpIS7xkBCx0JkXuQAiAHHoh10fZwPxo9rYgAAAAAAAAB4IC19pnAP8e3f+PrDJffoE8+To4jMJrMaVe0kSSpZsIry5SyuE+f3xRlQevvODQ2c2Ex1Kzyr5+u/F+/6eIbWfbjL87NJvSggIzjyfjwAAI5kdnYBYEz3L6SGvv6H/UIqwD+XLGYPXbkeap/vQvjJOIOcEmKSKV3KCvd1M+Kqwq6ds/+9cf98BfjnUla/nLHmy58zSLuPrlJUdKQkacvBRSqWr6Ik6UL4v7oTeVuSZLVatW7vLAXlr5xBNUBGaFr9Ze05ulrXb12WFLfT6P7/XUWOLHlUsmBVrdx57xd21++bo8DsheK8Tal+cDsdOrNNt+5clyRt/WeJgvIHS5Iio+7oxu1wSdK1W2H6ddXnatfgXgdQvlxBOnByoyLu3pQk/fX3IhXKXTpTDiZNjrBrZyWTyT6w9njoXhXPV0mS9M/prSqSt5x8vbNIkmavHaPVu2doeLcV9gHoADKHxDrAJSmkZEONeWOtvnlnh3q0HK3L18+paN7y95bNXljSvcH0rR/rpfNXjtuPCUnh/NT5Hj2OJ/R5QjHANUrix0JkfuQAiIG0ox10D5wPpg7XxAAAAAAAAADwAPcM3FtC+/fR/nDJffrEs/kHKqTkk9p+aJkk6fyVEwq9ckJF8paLNV/E3ZsaMLGZqpdppk6N/xtrGs/QujdXf3523FubNeeTsHj/5cleONYPtEhK8AdakpLUehK7FwkAgLMwoBQZLrELqXqVX9CiLd9Jkg6d3qawa2dVuUT9eNdTtVRj/blzmqJjohQVHall23+0T/PzDtDtO9fSrQ5wD7fuXNPgqa3VbXQl9RgTrN83fq1Puy6SyWTS6Fmva9OBBZKkVo+9qXw5i6vHF8HqPrqydh35U2+3+VaSdPz8XvX+qra6j66sHmMq69rNS3rz2XHOrBbSKLGBxu7SKfhO2wlavGWCXhleWr+u/lx9291rPx+O+zw5iqhjo4F65+u66j66snYfXaW3295rn2/duaa3x9fV66Mq6N1v6umZOj1Vp3xLSdLjFZ9TnfKt9ObY6uoxJljzNozVgBenO6eiDnD07K5Yb9HK4pNdCzZ/I0nauH+e6lZoLUm6dPWMJizqo5sRV/X+dw3VY0yI3hpXyxlFBhCPpDrAL18/b5/3l5WfKqREIxUMLKmYmGiF37hgn7Z+7xzlyJI31i+ZP4zzU+dL6DhuMpkTfZFIQjEgcY2S2LEQmQ85AGLA8WgH3QPng6nDNTEAAAAAAAAAPMA9A/eW0P59uD9ccr8+8XfafqdZa0eq2+hKGjyltd5pO0GB2QrGepZw7oaxOnR6qzbsm6seY0LUY0yIfvnzM0k8Q+tujPD87MOS+wMtaV1PYvfjAQBwFn4rG+nmy9k99Nc/i3XlRqgGTHxKft5ZNarnGk1Y1Ef5cwbp/e8aSpK8PLz1Ve+/JEndnh6uz2d00cvDS8nT4qUPOk6Th8Uz3vW3qNVNJ0P367VR5ZXVN4cqFq+nI2d2SJKC8ldW0XwV1G1UReXLFaRPuy7ImErDpeTNUVRf994a77Q+L0y0/9/Lw1vvvfBDvPPVKd/SPpAO7uHWnWv69OcXdDcqQmaTWdn8c9sHGifUafRwvLiCwnnKaNxbm+N8/mg9mlTroibVusSZL0fWvJrc92C86zaZTHqtxTC91mKYYwrrZLXLP6Pa5Z+x/z3+7W32/2/5e6FG9lwtScqdvZBWjLRlePkAxBXfOejUD47qnbbfafSs1zRxSX+ZTWZ7B7gkTV32sfafWK8Ya7TKFa2jPu0mSZIiY+7qw8lPKyr6rswmswL8A/W/RM4rOT91voSO47fvXk/w+C4lHAMS1yiJHQuR+ZADIAYcj3bQ9XA+6DhcEwMAAAAAAADAA9wzcG8J7d/XR1Ww94dL7tcnnj9XkEY9VL/7Hn6WsNOTH6rTkx/GuzzP0LoXIzw/+6h32k7QyJmvaMaqofLzCbD/QIt070da6pRvpboVWiV4DzI560nsfjwAAM7CgFKkm3eenxDv54ldSOXImlfDuy9P1vo9LJ7q3Sb+tztZLB4a8uqiZK0HAB6W2EBjOgXxsInvH3B2EQDEI6Fz0IQ6wCUl+OIIXy9/ffP29mR/N+enzpfYcTyhz6WEY0DiGgWuhRwAMQBwPphRuCYGAAAAAAAAABgB/eEwEiM+P5vQD7RIsQdWJ3QPMjnrSex+PAAAzmJ2dgGA5Mrmn1vDZ3TWkr9S9yaTYdM76c+d0+TnE+DgkgEAAMCIOD8FMQCjIwdADMDoyAEAAAAAAAAAAAAAAAC4Gn6hFC4jrW8yGfDiLw4qCQAAAMD5KYgBgBwAMQCjIwcAAAAAAAAAAAAAAADgaviFUgAAAAAAAAAAAAAAAAAAAAAAAAAAADfHgFIAAAAAAAAAAAAAAAAAAAAAAAAAAAA3Z7LZbDZnFwKuxWaTrFHOLkXGMHtKJpOzS5EyNpsUGePsUiSfl8Wx29gV49ORceZq+18iBiTHxwD1d8y6MoorHmuQObli/D8sJbng6nVNiZS2ETabTbetrnUy4Ge2yJTChtAoMZCaY4QrbhvHnguQA+6GdjB+RokB2sGUIwfcT8rbQdfbNo6+Lna1/jFH9o3FREqrxzlmXRmtYW/J4uXsUgAAAAAAALgu+oboH5WM3T8qEQNGr7/kejkgOTYPjBwDrlj3+3iGFADgDB7OLgBcj8nEgx2ZmckkeRs4s40en0bf/xIxQP2NXX8Ym5Hi30h1TSmTySR/i/ufDBADCTP6tiEHQAzA6NuGHADbhv4xAAAAAAAAwKjoH6V/1OgxYPT6S+SAkWPAyHUHACA1zM4uAAAAAAAAAAAAAAAAAAAAAAAAAAAAANIXA0oBAAAAAAAAAAAAAAAAAAAAAAAAAADcHANKAQAAAAAAAAAAAAAAAAAAAAAAAAAA3BwDSgEAAAAAAAAAAAAAAAAAAAAAAAAAANwcA0oBAAAAAAAAAAAAAAAAAAAAAAAAAADcHANKAQAAAAAAAAAAAAAAAAAAAAAAAAAA3BwDSgEAAAAAAAAAAAAAAAAAAAAAAAAAANwcA0oBAAAAAAAAAAAAAAAAAAAAAAAAAADcHANKAQAAAAAAAAAAAAAAAAAAAAAAAAAA3BwDSgEAAAAAAAAAAAAAAAAAAAAAAAAAANwcA0oBAAAAAAAAAAAAAAAAAAAAAAAAAADcHANKAQAAAAAAAAAAAAAAAAAAAAAAAAAA3BwDSgEAAAAAAAAAAAAAAAAAAAAAAAAAANwcA0oBAAAAAAAAAAAAAAAAAAAAAAAAAADcHANKAQAAAAAAAAAAAAAAAAAAAAAAAAAA3BwDSgEAAAAAAAAAAAAAAAAAAAAAAAAAANwcA0oBAAAAAAAAAAAAAAAAAAAAAAAAAADcHANKAQAAAAAAAAAAAAAAAAAAAAAAAAAA3JyHswsA12OzSdYoZ5ciY5g9JZPJ2aVIGZtNioxxdimSz8vi2G3sivHpyDhztf0vEQOS42OA+jtmXRnF0ccao7cDxAAAAAAAAMZl5H4BV6z7w1KyHVy9rimR0viw2Wy6bXWtzkE/s0WmFCYBMZAwV9w2ju8jd608IAcSRzsYP6PEQGraB1fcNo69V0oOuBvOBVLO1e6X88wMz4zwvIBjuVobINEOpMdxwJXqL9EOAAAAwDkYUIoUs0ZJq8c5uxQZo2FvyeLl7FKkTGSM1H+ms0uRfMPbS94ObIlcMT4dGWeutv8lYkBybAxQf2PXX6IdIAYAAAAAADAuI/cLuGLdH5aS7eDqdU2JlMbHbWuMcqxakX4FSgfhjZrI35KyzkFiIGGuuG0c3T/qanlADiSOdjB+RomB1LQPrrhtHNkOkgPuh3OBlHO1++U8M8MzIzwv4Fiu1gZItAOOzgFXq79EOwAAAADnMDu7AAAAAAAAAAAAAAAAAAAAAAAAAAAAAEhfDCgFAAAAAAAAAAAAAAAAAAAAAAAAAABwcwwoBQAAAAAAAAAAAAAAAAAAAAAAAAAAcHMMKAUAAAAAAAAAAAAAAAAAAAAAAAAAAHBzDCgFAAAAAAAAAAAAAAAAAAAAAAAAAABwcwwoBQAAAAAAAAAAAAAAAAAAAAAAAAAAcHMMKIXL2HNsjZr0NWnZtinOLgoAAAAAAAAAAAAMhPtUIAZgdOSAsbH/AfIAAAAAAAAA7sPD2QWA+9hzbI3e/66h/W+zySw/nwAFBhRUqULV1DCko6qXeUomk8mJpQTiejR2JcnHy1+FcpdW46pd1Pqxt2Sx0Fy6M2KAbWD0+oMYAAAAAADAyOgXcA/cpwIxkHq0g+6BHDA29n/a0A66B/Ig9cgBGD0GjF5/wOg5YPT6AwAAwJg4w4XDNQzpqJplW8gmmyLu3tDpS4e0af98rdjxk6qWaqyPusxSFt/szi4mEMfDsRt+I1Qrdvyk7xa+p1MXD+rd5793dvGQAYgBtoHR6w9iAAAAAAAAI6NfwD1wnwrEQOrRDroHcsDY2P9pQzvoHsiD1CMHYPQYMHr9AaPngNHrDwAAAGNhQCkcrlTBqmpcrXOsz3q2HKMfFvfTnHVjNPSXjhr6+h9OKh1SYmxnx72V8e1pNoetK708Grst6/5Hr40oqz+2TlTXZp8pe5bcTiydcxADxosBo28Do9f/UUZrAyRiAAAAAAAAI6NfwD1wnwrEQOrRDroHcsDY2P9pQzvoHsiD1CMHYuN+ufFiwOj1R2y0AcbLAaPXHwAAAMbCgFJkCIvZop4tR+vQ6a3admip9p/YoIrFH5ck3Yq4pumrhmrDvjm6dPW0/HwCVKVUY73a7DPlzxWU6HqtVqtmrB6mHYeW6cylw7oRcUU5suZTrbJPq2uzIQrwzyVJCr95US8OKaQnKr+gAS/+Emc94+a+qUVbvtVPHxxXvpzFHF5/V3Q97JTqdRqjqs3fdXZRnMbXy19li9bW+r2zde7yMcN1CBADxIDENjBy/WkD7jFyDAAAAAAAYHT0C7gP7lOBGEgd2kH3QQ4YG/s/9WgH3Qd5kDpGzgHul99j5BiQqL+R0QbcY/QcMHr9AQAA4N4YUIoM1azGa9p/YoP+OrhYFYs/rlsR1/T2+Lq6ePWUnqrxqorlraAr189rweZv9NZXtTT+7e3Km6NoguuLjonUrDUjVa9SW9Wp8Kx8vPx1+PQ2Ld02SftPbtA3b++Qp4eXcmTJozrlW2nDvrm6GXFVWXyz29cRGXVHq3dPV5WSjTNVp6yzndi1UEFVWjq7GE53/vIxSVKAX04nlyTjEQP3GDkG7jP6NjBq/WkDHjBqDAAAAAAAAPoF3A33qUAMpBztoHshB4yN/Z86tIPuhTxIOaPmAPfLHzBqDNxn9PobFW3AA0bPAaPXHwAAAO7LkANKw8LCNGLECM2dO1dnzpxR7ty51aZNGw0dOlS9e/fW5MmT9dVXX6lXr17OLqrbCcpfWZJ05tJhSdKU5R/r/OXjGvfWFpUoEGyfr2mNV9R9dCVNXTZI/TpMSXB9nh7emvnxeXl7+j74sE5PlS9WV2Nmva5NB+arfnA7SVKLWt21ft8crdo1Xa3q/sc++/p9c3Qz4qpa1HrdgTV1fVdDjyi4yZvOLkaGuhN1W9duhclmsyn8RqgWbv5OR8/uUtnCNVUod2lnFy/DEQPGjAGjbwOj1/9hRmwDJGIAAAAAAAAjo1/A/XGfCsRA4mgH3R85YGzs/6TRDro/8iBx5MAD3C83ZgwYvf54gDbAmDlg9PoDAADAWAw3oHT37t1q3ry5QkND5e/vr/Lly+vcuXMaN26cjh07pitXrkiSQkJCnFtQN+XnEyBJun33umw2m1bt/EWVgp5QYLaCunYrzD6fj5e/yhaprR1Hlie6PpPJZO+UjbHGKOLuDcVYoxVSspEk6eCpv+wds9VKN1G+nMW1dOukWB2zS7dOUoBfLtWt0NqRVXVpkXduyssnq7OLkeF+Wj5IPy0fFOuzxyu20VvPjXdSiZyHGHjAaDFg9G1g9PrfZ9Q2QCIGAAAAAADua8aqYTpydqeOnNmh0CsnlDdHUU0beNLZxcpU3L1fwGq1at6GsVq8ZYJCw08qu39uPRHcTi8/9T/5evk7u3gZgvtUyRczeYqsv/4my3vvyNysaaxpNptNMX0/kO3gQXl8PU6m4sWcU8hUIAYS5+7tYEqQA8bMgYe5Ywyw/5NGO/iAO+aARB4khRy4h/vlxo0Bo9f/vj3H1uj97xomON1stmjZ8OgMLFHGog0wbg4Yvf4AAAAwFkMNKA0LC1PLli0VGhqqPn36aNCgQcqa9d6F34gRI9S/f395eHjIZDKpcuXKTi6te7p957okyc87QFdvXdL125e14/ByPT84d7zzm03mJNe5ds9vmr12tI6e26XomKhY025GhNv/bzKZ1Lzm6/px6Yc6ena3ShYM0fnLx7Xn+Bo99/jb8vTwSkPN3MupfStUpFLTpGd0M0/X6q4nKr+gaGuUTpzfp5lrhivs2hl5efrY59l3fL0GTmoeZ9nomEhZrTFaNiImI4ucbogB48aA0beB0et/n1HbAIkYAAAAAAC4r8l/DFRWv5wqVbCqbkVcdXZxMiV37xf4duG7mr9hnB6r+Jyer99Hpy4c1PwN43Ts7C4N775SZnPS92RcHfepks/cpZOsW/5SzIQfZKpWVabcgfZp1rnzZdu7T+ZXX3GpASQSMZAUd28HU4IcuMdoOfAwd4wB9n/SaAcfcMcckMiDpJAD93C/3LgxYPT6P6phSEfVLNsizufu3n9AG2DcHDB6/QEAAGAshhpQ2rt3b505c0a9evXSqFGjYk3r16+fpk+frj179qh48eIKCAhwUind2/HzeyVJhfKUkWw2SVLVUo3VvkH/VK1v/b65GjKtvcoWrqn/tBqr3NkLy8vDRzG2GA2c2ExWqzXW/M1qvKqflg/S0m2T1KvgV1q6bbJsNpua13w9bRVzM+ePbNRjHYbH+mzjzIHavnCYGnebpAr1X401zWazac5nDRV6dLM6fLpDgYUrZmRxHaZgYClVLd1YklSzbHNVLP643v3mcY2d01Mfdv5VklQpqJ4WfnYz1nJh187pzXHV9WzdXhle5vRCDBg3Boy+DYxe//uM2gZIxAAAAAAAwH399MEx5c8VJEnqNqqiIiJvJrGE8bhzv8DJ0AP6feNXerxiGw16eY7983w5i2v87721Zs+valTlRSeWMGNwnyr5TJ6e8ujbR9G931XMmC/lMWyIJMl2+oysU36SqWwZmV9o6+RSphwxkDh3bgdTihxIHnfLgYe5Ywyw/5NGO/iAO+aARB4khRy4h/vlxo0Bo9f/UaUKVlXjap3TZd02m013Im/J1ztLuqw/LWgDjJsDRq8/AAAAjMUwA0oPHjyomTNnKjAwUMOGDYt3nmrVqmnPnj0KDg62f7ZmzRo1bNgwzrzBwcHavXu3/e/169frk08+0YEDB3TlyhXlzp1bjz32mAYPHqxy5co5vD6uaum2SZKkWmWfVjb/3Mrim12371y3X4Sl1J87fpaXh49G9lwtHy8/++enLv4T7/w5A/KpdvmWWrXzF73W4nMt3z5FZYvUUrF8FVL1/e7IZrXKZrPJbLbE+rx228E6sWuh1v3ynopUbKqsuQrZp+1a+qXO/rNWddsNc+kOkUdVKFZXjat20YodP6n1471VoVjdOPNERt/VJz+1UcVij+vFJwc6oZSORww8YNQYeJjRt4ER608bEJsRYwAAAAAA4J7uDyZF8rlTv8Dq3TNks9nUpt47sT5vUaubJi35QCt3TjPEgFLuU6WMqVRJmTu0k/WXGbIu/kOmZk0VM2KUZLPJ0rePTBZL0ivJZIiBlHGndjA1yIGkuXsOuFsMsP9TjnbQvXJAIg9Syog5wP3y2IwYAw8zev2Ta/3eOZq/8SsdO7db0TGRyp29sKqXfkrdnxklTw8v7Tm2Ru9/11Dvt/tRdyJvacGm8Tp/+Zg6NBqgl5oOdnbxY6ENiM3oOWD0+gMAAMC9mZ1dgIwyY8YMWa1WderUSVmyxP9WI19fX0mKNaD0vvHjx2vz5s32fz///HOs6eHh4apUqZLGjRun5cuXa/jw4Tpw4IDq1KmjM2fOOL5CLibGGqMJC9/X/hMbVLNsC1Us/pjMZrMaVemkf05v1bq9s+NdLvzmxUTXazZbZDKZZLM9eKOfzWbT9JVDElymRa1uuhERrrFzeirs2tlM85a/zCL0+FblK1EzzucWDy817TFV0XdvaeXE1+yfh587pM2zPlS+ErVU7Zm+GVnUDNGp8Ucymy2auuzjeKePndNTkVF31Lf9lIwtWDoiBmIzYgw8yujbwGj1pw2Iy2gxAAAAAAAAHnCXfoFDp7fJbDKrTJHY/T5enj4KKhCiw6e3OalkGYP7VKln7tRRCgpSzA8TZR3/nWyHDsv8yksyFS6U9MKZCDGQeu7SDqYWOUAOuEMMsP/ThnbQ9XNAIg/Swmg5wP3yuIwWA48ycv3vRN3WtVthcf7dunPdPs/kPz7U/35+XtduXVLbeu/qjVZfqm6F1tr6zxLdjboda31z13+pmas/V4OQDnqz9VcqW6RWRlcpSbQBcRk5ByTqDwAAAPdlmF8oXbVqlSTF+2uj990f+BnfgNLy5curdu3aCS7bqlUrtWrVKtZnNWrUUJkyZTRnzhy9/fbbqSm2SzpydqdW7pgmSYq4e0OnLx3SpgPzdSH8X1Ur3VQDX5xun/fVZp/pwMmNGjKtnepXbqdyRWvLw+KlC+H/aus/S1SqYDX16zAlwe+qV/l5rd83R30nNFLjai8pJiZKGw/M193I2wkuU730U8qbo6j+3DlNvt5Z1DCkg8Pq7mrO/rNO+UvVldnyoCn4d89SVWn+brzz5yleVdVbDtDW+Z9q36rvVaHBa1o24SXZbDY17TE1zpu53EHBwJJqGNxBf+76RfuOr1eloHr2afM2jNNfBxfp697bYr1p0pUQA0lz9xhIDqNvA3euP21A8rhzDAAAAAAAgMS5S7/A5evnFOAfKC8P7zjTArMV1N//blJUdKQ8PbycUDrH4j6VY5k8POTR9z1Fv/WOrIsWy1SxgsxtWju7WIkiBhzLXdrB1CIHyAFXiwH2v+PRDrpWDkjkgaO5cw5wvzx53DkGksPI9f9p+SD9tHxQnM9rlXtaQ15dpH9ObdWMVUMVUqKhPnttibw8fezzvN7i8zjLXbp6SpP6/aMcWfKka7mTizYgeYycAxL1BwAAgPsyzIDSf//9V5JUtGjReKdHR0dr48aNkuIfUJoauXLlkiR5eKRuM1evXl2hoaEOKYsjeXn46vteRxKcvnr3DK3ePUNmk1k+3lmUO1shVQ6qr4YhHVWjbLNY8/r7ZtOXb27U7LWjtXbvb9p04HdZLB4KzFZIFYs9rua1En8LX8OQDoq4e0Nz1n2h7xe9r6y+OVS7fEu91uJztR2UK95lzGazmtV4TVOXf6z6ldvJ1zv+X6yVpFKlSykyOiLRMmQ2Fk9fPTck4f1z3+EtM7Vy4utq+d4CFS7/YKD13Yhr8vbLluByNVt/pOM7F2jD9Pd16d/dunBsq+q9OFo5CpRJVXlLlyqlmCjHbeOk4jM1Oj75oVbvnqGpyz/WqJ6rJUm7j67WxMX9NfT1P5QvZ7E0rd+RcZbc/S8RAynhSjGQHvWX0ncbUH/HHmtc7TggObYdIAYAAAAAAEaVXtfEGcFR18ZG7hdIqu53I2/LM57BpPeWvffA592o204bUJqS7cB9qoTZvLykCeOTPX+y+ftLnp5SdLRMNarLZDY7bNWlS5WWKTIyRcsQAwkzcjt4X7rkATmQoMyWA7SDxt7/Eu0gOXCPkfPA6Dkgud79cld4ZkZynRig/o6t/9O1uuuJyi/E+TxbltySpD93/SJJerXFsFiDSSXJZDLFWa5xtZcSHEzqqO3gam2A5BrtgKvkgOR69Zd4bggAAACply9fPm3fvj1VyxpmQOmtW7ckSRER8Z90z5w5U2FhYcqaNauKFy8eZ3r79u0VFhamXLlyqVWrVvr8888VGBgYZ76YmBhZrVb9+++/GjBggPLly6d27dqlqsyhoaE6e/ZsqpZNTz6e8b9JJ7hEA60YaUv5+rz81LnJR+rc5KNE50to/S1qdVOLWt3ifJ5YWe4/NNG8ZuIdv+fPndOdqITfGpgZeXgn701HpWu319ULR3V854NOkethpxQQGP+g6/ssHp5q2mOqfv24hvb9+a0KlH5cVZq9k+rynjt/TtF3HbeNE4rPxCQVu0XzltOyETH2v0OvnNSQae3U7ZmRCi7RIDXFjMWRcZbc/S8RAw9zpxhITf0l524D6u/YY42rHQckx7YDxAAAAAAAwKhSe02cGTjq2tjI/QJJ1d3by08RNy/GOy0y+s69eZwYQynZDtynSoSPtzyTP3ey2Gw2xYz+QoqOkooUlnX6rzLXf0KmAvkdsv5z589Jd+6maBliIGFGbgftHJwH5EDS689MOWDkdpD9f4/h20ED54BEHkjkgOR698szwzMzkvvEAPV37HV9wcBSqlq6cYLTz4YdkclkUon8yfsBl0K5Syc4zVHbwdXaAClztAPukgOS69Vf4rkhAAAAOIdhBpTmy5dP4eHh2rlzp+rUqRNr2vnz59W3b19JUuXKlWO9HSlbtmzq27evnnjiCWXJkkWbN2/WsGHDtGXLFm3fvl0+PrHfrFS/fn37L52WLFlSq1atUu7cuVNd5szIy8PX2UVIk5iYaC3eMkHF81VS+WJ1Ep03f4ECLvfmH4tn8vdPierPaeHoVqrf+QtJ0oldC1W8Ssskl/P2yyaLp7esMVEqFtIiTW+fLJC/gMPfsJWe7kTe1qAprVWnfCu1fqyXQ9bpyDhLyf6XiIHUyOwxkBFttKO3AfV37LHG1Y4DkmPbAWIAAAAAAGBUrtx376hrYyP3CyRV91wBBXTqwt+KjL4rr0d+qTTs2lll8w902q+TSinbDq4c61L63qeyeXnpUloL+Ajr/AWy7dkrc9eXZa5TW9FvvqWY0V/IMmp4vL84k1IF8hdI1a+SubL0jAEjt4P3OToPyAHHox2MzWgxkN7Paxi9HSQHXAPnArEZ/X65qz0zI2XuGKD+Gd8+mmSSknk8SOxFVo7aDq7WBkiu1w5k5hyQXK/+Es8NAQAAIPXSMu7QMANKGzdurIMHD2r48OFq0qSJSpe+97ajbdu2qUuXLgoLC5MkhYSExFquSpUqqlKliv3vBg0aqGLFimrVqpVmzJihrl27xpp/0qRJunr1qk6cOKGRI0eqadOm2rhxo4oUKZLiMqf2Z2fTW0yktHqcs0uRcuevnNDBfzdr04Hfdf7KcQ3sNCPJZY4cPiKL856fSJW70VL/mcmbN1fB8pLJpMtnDihXoQq6euGogvOWSHQZm82mFd93lTU6UjkLlNPW34eoVK12yp7Ecgk5fOSIvB3YEqV3fK7fN0fHz+/R2bDDWrMn7oae9P7fypMjZfnuyDhLyf6XiIHUyOwxkBFttKO3AfV37LHG1Y4DkmPbAWIAAAAAAGBUrtp3Lznu2tjI/QJJ1b1M4RracXi5Dp3aqkpB9eyfR0bd0fFzu1Up6Im0FyINUrIdXDXWM+I+1a2YaOVYtSINpYzNdvasrJOnyFSmtMztnpfJYpG5cydZf5wq6/wFsjz3bJq/4/CRw/K3pKxzkBhImJHbwfscmQfkgGPRDsbPKDGQUc9rGL0dJAcyN84F4mf0++Wu9syMlLljgPpnbPtYKLC0tv3zh46f26OyRWqmaV2O2g6u1gZIrtcOZOYckFyv/hLPDQEAAMA5DDOgtF+/fpo+fbpOnz6tChUqqGzZsrpz546OHj2q5s2bq1ixYlq2bJmCg4OTXNczzzwjf39/bd++Pc6A0jJlykiSatWqpWbNmqlYsWIaMWKEvv7663SpF5Jv77G1GvVbV2XzD1Tnxh+rYUgHZxcpUwiq0lLHdy5Q1sCi8vLJmuT8e5Z/pTMH16jOC5+pRLVnNeO/VbXyh1fV9sM1Dnn7ZGbXpFoXNanWxdnFcChiIGXcMQZSyujbwN3qTxuQcu4WAwAAAAAAIPlctV+gQXB7zVg1VHPXfxlrQOmSv37QnajbalSlkxNLZwyudp/KZrUqZuQYyWqVpe97MlkskiRzu+dl27hJ1slTZK5VU6YC+Z1cUtfhajGQEFdtB1OKHHA8V8sBYsCxXG3/J4Z2kBxILXfJA3fLAe6Xp5y7xUBKGb3+D2tU5UXN2zBWk/8YqM9eWyJPj9gj4mw2W6bPC9qAlDN6Dhi9/gAAAHAfhhlQWqhQIa1fv159+/bV2rVrdfLkSZUvX14TJkxQt27dVKLEvTcEJWdA6X1JXQBmz55dJUuW1NGjR9NUdjjGUzVe0VM1XnF2MTKd4lVbatNvA5UjfxkVqdgk0XnDQ49o428DlDeohqq37C+z2aJabQZr028DtWf5Vwp5qnfGFBoORQwAxkYbAAAAAACAMazY8bMuhv8rSbp665KiYyL1y8ohkqQ8OYryIJSbK56/klrVfVO/b/xag6e2Uc2yLXTq4kHN3zBOlYPqq1GVF51dRLfnaveprLPnyvb3QZlf7ypTkQe/rGGyWGR5/z1Fv/mWYkZ/Icuo4YZ5aDatXC0GjI4ccDxXywFiwLFcbf+DHEgP5EHmxP1yIGFHzu7Uyh3T4p32WMXWKlukpto37K+Zq4frP19WVf3g9soZkE/nr5zQ+r2z9XXvrcrimz1jC51CtAEAAAAAjMowA0olqVy5clq0aFGcz2/evKmTJ0/KbDarYsWKSa5nwYIFunXrlmrWrJnofBcvXtShQ4dUq1atVJcZSG8Fy9TT1dAjOrZ9npr0mJLgfDarVSsmvCKbNUZNe0yV2Xzv7ZPVnumno9vmauNvA1Qs5Gllz1sig0oORyEGAGOjDQAAAAAAwBiWbp2kvcfXxvpsyrKPJEmVg+ozoNQA3mj1pfLmKKYlf32vrQcXK8A/UK0fe0svP/U/mc1mZxcPmYjt1ClZp/4sU7myMrdtE2e6qVhRmTt3kvXHqbLOXyDLc886oZRA+iEHQAzA6MgBGAn3y4GErd49Q6t3z4h32pT+R1TQu6Reb/G5gvIH6/eNX+u3tSNks1qVO3th1SzbQt6efhlc4pSjDQAAAABgVIYaUJqQAwcOyGazqXTp0vLzi30R27lzZwUFBalq1arKkiWLNm/erBEjRigkJEQdOnSINV/JkiUVEhKi7Nmz68iRI/riiy/k4eGhd999N6OrBCSb2eKhopWfuvf//+/oiM/OJaN1/sgmPdZhuHIWLPdgebNFTXtM0Yz/VtXKH15V2w/X8PZJF0MMAMZGGwAAAAAAgDGMfmONs4sAJ7OYLXqhfh+9UL+Ps4uCTM5UpIg8F/+e6DyWju1l6dg+g0oEZCxyAMQAjI4cgJFwvxyIK7hEA60YaUv2/I2qdFSjKh0dtr6MRBsAAAAAwKh43bCkffv2SZKCg4PjTKtQoYLmzZunl156Sc2bN9fkyZPVrVs3rVmzRl5eXvb5ateurSVLlqhr165q3ry5Ro4cqXr16mn37t0qWbJkhtUFSI0S1VorqFrCb4y8cvagNs/5SPlK1lbVFnEfNMlVqIJqtRmss/+s057lX6VjSZFeiAHA2GgDAAAAAAAAAAAAAABGxP1ywNhoAwAAAAAYEb9QqsQHlA4YMEADBgxIch29evVSr169HF42ICOUqvVCotNzFiynXj/eSXSeGq0GqEarpHMlMzhz6YhGznxZ126Fyd8nm/q2n6Ji+SrEmmfpth81b/1Y+99h186oUtATGvzy3Fjzjfj1Fa3YMVXz/heuLL7ZFXbtnEb91lUXwk/K0+KtgoGl9Hbb75Q9S+4MqVtqGS0GAMRGGwAAAAAAAAAAAAAAMCLulxvX+Pm9tfnvBboQ/q++fWeXShYMiTPPnmNrNHBicxXKXcb+2bi3Nsvb01dWq1XfL3pf2w4tlcXsoQD/XHr3+R9UMJAfIHEltAEAAAAAjIgBpUp8QClSJjL6riYs7KPth5fJy8NHJfIH64MXp2nbP0v147L/Kjo6Ut5efnqn7QSVKHBve9tsNv284hOt2jVdnh7eyuYfqFE9V0uSwm9e1IgZL+nclWPysnjrrTbfqHLQE5KkzkOLydPDWy/U76sWtV6PU5Ytfy/SrLWjNPqNNQq9clLbDi1Vyzo97dOHTe+kXUf+VIOQDvrPs1+m/8ZBpjF2Tg+1qNVdT9V4Rev2ztbIma9o/NvbYs3TrEZXNavR1f53t1EV9WSVTrHmWb9vrjwsnrE+s5gt6tz4I1Us/rgk6ftFffX9or7q12FK+lQG6aL/900VfiNUJpNZfj5Z9eaz41SyYBVnFyvDJKfD/Pqty+o74Un733ejbuv8leOaNeiiAvxy2j9fuu1Hjf7tVQ1+eZ4eq9g6A0oPAAAAAAAAZJx1e2frr4OLdTMiXP9e+Fvenr7KniWPerf5lgdIM4G/Di7RlGX/ldVqldUarRca9FXT6i/bp+86ukoffN9EPVqOVpt670iS7kTe1uhZr+nw6W0ymcx6tflQPVH5eUlSn28b6GL4v2pao6u6NPk4zvedCN2vjyY/o2kDT+pmxFUt2vydOjT6wD79+0V9tWbPTJUqWFWfvDI/XetuVAn1byd0D1NKPE64VwlXQw6AGABi43wQQGLqVX5e7Rr007vfPJ7ofIVyl9GE93bH+Xzz3wt04ORGTXhvjzwsnvpl5RBN/mOgPuryWzqVGEh/PDeX9HNzUtLbKalzEAAAAMDZGFAqadWqVc4ugtuYtOQDmUwmTel3WCaTSVeuh+rG7XANm9FJY95Yp2L5Kmjf8fX6fHon/fD+fknSvA3jdPz8Xv3QZ788Pbx05XporPWVK1pbw7ot1aHT2zR46nP6ecAJ+yC+DzvNTPCC7WEXwk9q0ebvYt2cGPDiL/pp+WDdjLjq0G2AzC385kUdPrNdn3dbLkmqV6mtvp7XS2fDjib4cM/BU3/p6s2LqlOh1YP13LigGauGalSP1fpj60T75zmy5lWOrHntf5ctUku/b/w6nWqD9PJRl9+UxTe7JGnDvnkaOfMVTXhvj3MLlYGS02Ee4J8rVmf5rDWjtPf42liDSUOvnNQff/2gckVqp2dxM9TNiKvqNrqi7kZFKHe2woqKuavQy8f1ZLUu6vPCxKRXAJdHDAAAAAAAgIdt3D9P9Su3k8XiqZplm8tkMmn+xq81ZtbrGv3GGmcXz9BsNpuGz+isUT3XKKhAZYVeOalXR5bV4xXbyM8nq25FXNOkJR+oZtkWsZabtXaUPC3emvrBUZ2/ckK9x9VSSImGCvDPJUnq2eqLZL0872bEVf26+vNYAwi6PzNSRfNW0KYD8x1ZVTwkof7t+O5hSknHidHvVdIf6nrIARADjkU76No4H3Q8cgLuFgP3X5KQWiaZFBl9V5FRd2Qxe+j2nevKna2Qg0oHOAfPzSVvoHli2ympcxAAAAAgM2BAKRwmIvKWlm6dpOn/PSOTySRJyhmQT4dOb1eAXy4Vy1dBklQpqJ4uXj2lI2d2qlShqpq1dqRG9lglTw8v+zL3rd3zm6b2PypJKlO4hnIFFNDeY2tVtXTjON8fHROlb35/WzuOrFBW3xyqWLyefdrYOT11Ifxf9RgTojw5iujTrgvSbTsgc7t09bRyBuSXxXKv+TOZTMqTo4guXj2V4IDSpVsn6clqXWL9GumY2d3U7ekRiV7gx1hj9PvGr1W3wrOOrQTS3f3OHkm6deeapHttmrt1jCckNR3mf2ybpNeaD7P/bbVaNWbW63qz9VeasLCPI4vnVFl8s6tRyIvy9c6qzk0+0rZDyzRj1VC32v9IHDEAAAAAAIBxJNUfGB0TpQMnN6pv+ymx+o/LFamt2WtHObHksDOZdPPOVUnS7TvXFeCXS54e3pKkr+b30otP/lcb9s2NtcjaPTP13guTJEn5cxZX5RINtGH/vHh/eU2Sflo+WH/u+kX+3gGqUba5/fOxc3oq4u4N9RgTIovFQ9+8vT0dKohHxde/ndA9TLtE4sTo9yrpD3U95ACIAceiHXQDnA86FDkBo8bA+SvH9MaXVWU2WfRUja5qVfc/kqTa5Vtq97HVav+/fPL1zqrAbAU1+o21Ti4tkDY8N5e85+YS2k52iZyDAAAAAJkBA0rhMOfDjimrX07NWDVUO4+slLenr7o0Gawyharr+u3LOnBykyoUq6tNBxbo9t0bCg0/qQKBJRV+44I2Hfhd6/fOliS1feI9NQhpr+u3LismJirWjYy8OYrp4tVT8X7/4i3f6/SlQ5rY54AkacDEp+zT3m77nb75/Z1Yv6YHJEdE5C2t2f2rxr21xf7Zkr8mKk/2IqpSslGCy9lsNn019z/K6ptDzz3+dkYUFQ42fMZL2nNstSTps9eWSDJux3hSDpzcpJu3w1W73DP2z+asG6MKxR5T6ULVnFiylOv9VR2dDTsS77Rv392lPNkL6+i53Xru8d6SpCNndqhkgSoZWUSkM2IAAAAAAADcl1R/4O6jq1W+aN1Yg0klad6GsarDiwadzmQy6b+dZuqTqW3k4+WvmxHhGvTSXHl6eGnd3tkym8yqW6FVnAEEF6+eUt4cRe1/50vk3tRfBxdr3d5Z+ubtHfLzzqrhM7rYp73d9jv1/CKEe1OZQEL3MKuWejLROOFe5T30h7o+cgDEQNrQDrouzgdTjnulIAbiKlmwqmZ8eEb+vtl06eoZfTiphbL5B6p+cDsdPrNdJ0P3a8ZHZ+XnHaBJSz7Q2Dk99cGL05xdbCBNeG4ueeLbTlLi5yAAAABAZsGAUjhMjDVaF8L/VdE85fV6i8919Owu9f++iSa+f0Afd5mtSX8M0J27N1WuaB0VzVteFrOHYqzRirFG625UhL7q/ZdCr5zU2+PrqnCessqdrVCKvn/X0T/VpNpL9ouup2q8qqVbJ6VHVeHCcmcvrCvXzysmJloWi4dsNpsuhp9SnuxF4p1/3Z5ZKpq3gormLW//bM+x1dp3fJ3+OrjI/ln3MZX1v1d+V8mC9zpJx//eWxevndYnL8+X2WxO30ohXfTv+JMkafn2qfphSX8N/f9OH1fvGE9O539KLd06SU2qvWT/5d8Tofu1ft8cjfnPujSV1RnGvbU5yXmOn9ttz/UjZ3aoToVW6V0sZCBiAAAAAAAA40jrg7KbDszXYxWfi7Xc9D+H6lzYUY3o8Wf6FRzJEhMTrV/+HKJBL89V5aAndOj0Nn38Yyt93Xubflk5RKPfWJPm79h15E/Vr9xO/j4BkqSna/fQ/pMb0rxeOFZi9zAD/HLFGyff99kn06O/LpIEd71XSX+o6yMHQAykDe2g6+J8MOW4VwpiIK77+S1JubMXUsMqHbXvxHrVD26nFTt+UkjJRvZfKmxS/WV98ENTJ5UUcByem0uehLZTQucg3/fZp2z+gWmrBAAAAOAgDCiFw+TJUURmk1mNqnaSJJUsWEX5chbXifP7VLV0Y4WUbChJioy+q/b/y6eiecsrwC+nfL2zqHHVzpKkfDmLqUKxx3To9DaVKBAsi9lDV66H2t94eSH8ZIID/x6V0psbMIYcWfKoZMGqWrlzmp6q8YrW75ujwOyFVDCwZLzzL902Sc1qvhbrswEv/hLr7yZ9Tfr+vb32zsHx83vrXNhRDX5lPm+VcgNNq7+ssXN66vqtywrwz+XyHePJ6fxPiYi7N7V272/6uvc2+2f7j6/XhfCTemV4KUnSlRuh+nJ2d125fl4t677h0O/PaGHXzkomkwKzFZQkHQ/dqxef/NDJpUJGIgYAAAAAAHAfaXlQ1mazafuhZer29Aj7vLPWjNKG/XM1ovtK+Xj5pU+hkWxHz+3W5evnVDnoCUlSmcI1FJitkI6c2aErN86r5xchkqRrt8K05e8Funrzkl5t/pnyZC+iC+H/KldAfklSaPhJVSudvAeCTSbuTWVGid3D9PfNHm+cHD27S9VKNzH8vUr6Q90DOQBiIPVoB10b54OOR07AiDFw+fp55ciSV2azWbfv3NCWvxep+f8/S5Y/Z5C2/rNEL9R/X54eXtpycJGK5avo5BIDjsNzc8nz6HZK6Bzk/jk2AAAAkBnws3lwmGz+gQop+aS2H1omSTp/5YRCr5xQkbzldPn6eft8v6z8VCElGtkH8DUM6ahth5ZKkq7fvqJDp7YqKH9lSVK9yi9o0ZbvJEmHTm9T2LWzqlyifrzfX7VUY/25c5qiY6IUFR2pZdt/tE/z8w7Q7TvXHF9puKR32k7Q4i0T9Mrw0vp19efq2+5erIye9bo2HVhgn+/0xUM6dm63GgS3T/a695/YqPkbv1Jo+Em9Na6WeowJ0eApzyW9IDKNmxFXFXbtnP3vjfvnK8A/l7L65Yy3Y7x4vkrOKmqmsGbPTAXlD1aRPGXtn7Ws+4Zmfnxe0wae1LSBJ1WuSG298/z3Lj+YVJKOnt0V6+16WXyya8Hmb5xYImQ0YgAAAAAAAONIrD/wn9NbVSRvOfl6Z5EkzV47Rqt3z9DwbivsLx+Ec+XJXlhXbpzXvxcOSpLOhh3V+cvHVLJgFc0adMHef1mv0vPq3ORjvdr8M0nSE5Vf0KLN9+5Nnb9yQnuPrdFjFVvH+x1VSjXWur2zdPvODdlsNi3e8r19mp9PgCKjIhQVHZm+FUWSEruHmVCcFM5dRhL3KukPdQ/kAIiB1KMddG2cDzoeOQF3i4EvZ/dQxyGFdOnaGQ2Y+JRe/vze84wPP0O2ft8cdR9TST3GBKv317VVrXQTPVWjqySp1WNvKl/O4urxRbC6j66sXUf+1NttvnVafYC04rm55ElsO0kJn4PcP8cGAAAAMgN+oRQO9U7b7zR61muauKS/zCaz3mk7QYHZCmrMrG7af2K9YqzRKle0jvq0m2Rf5rXmwzTyt65auOle51L7hv1VtkhNSVK3p4fr8xld9PLwUvK0eOmDjtPkYfGM97tb1Oqmk6H79dqo8srqm0MVi9fTkTM7JElB+SuraL4K6jaqovLlCtKnXRfEuw4YQ+E8ZeJ921SfFybGmW/BkBtJrm/FSJv9/xWLPxbrb7ieW3eu6dOfX9DdqAiZTWZl88+tT7sukslkSrBj/NHYcXVfzu6hv/5ZrCs3QjVg4lPy886qqR8clXSv07xO+Vaq+/9vmFu6dZKa1+rmzOJmqNrln1Ht8s/Y/x7/9rZE5oY7IgYAAAAAADCOxPoDN+6fp7oVWkuSLl09owmL+ih/ziC9/11DSZKXh7e+6v2XM4qN/5cja1690/Z7DZnWTmaTWVabVb2e+1p5ciT+q2ovNOir0b+9qpeGlZDZbFGv575WNv/AeOetVa6FDp3eqjfGVpW/d4BqlG0unbg3LcAvpxpXe0k9xlSWj3cWffP2dkdXEfFIqH87oXuYkhKNE6Pfq6Q/1PWQAyAGHIt20LVxPuh45ATcLQbeeX5CvJ8//BxQ68d6qfVjveKdz8vDW++98EO6lA1wBp6bS95zcyUKBCe4naTUn4MAAAAAGYkBpXCo/LmCNKrn6jifJ9ZxEuCfK8GbBTmy5tXw7suT9d0eFk/1bhP/G88sFg8NeXVRstYDwNjy5iiqr3tvjXeau3WMJyShDnMp7sDrsb02Jbm+0W+sSWuRAAAAAAAAgAyXWH/glr8XauT/3w/Jnb0QLxrMpBpV6ahGVTomOk+/DlNi/e3r5a//dp6Z7O94qelgvdR0sP3vrs2G2P/Pg8UZL6H+7YTuYUqJxwn3KuFqyAEQA0BsnA8CAJB8PDeX/OfmEtpO9yXnHAQAAABwJrOzCwCkVjb/3Bo+o7OW/JW6NxwNm95Jf+6cJj+fAAeXDAAAAAAAAAAAuLOJ7x9Qjix5nF0MZLCsfjk16Y8B+nnF/1K1/PeL+urX1cOUxTeHg0sGZ+BeJYyOHAAxACPifBAAAAAAAADugF8ohctK6xuOBrz4i4NKAgAAAAAAAAAAAHc3+OW5aVq++zMj1f2ZkQ4qDZyNe5UwOnIAxACMiPNBAAAAAAAAuAN+oRQAAAAAAAAAAAAAAAAAAAAAAAAAAMDNMaAUAAAAAAAAAAAAAAAAAAAAAAAAAADAzZlsNpvN2YWAa7HZJGuUs0uRMcyeksnk7FKkjM0mRcY4uxTJ52Vx7DZ2xfh0ZJy52v6XiAHJ8TFA/R2zrozi6GON0dsBYgAAAAAAYFSueE18n6OujV1xGziq7jGR0upxaV+PszTsLVm8kjevK+7n1EppfNhsNt22ulbnoJ/ZIlMKk4AYSJgrbhvH95G7Vh6QA4mjHYyfUWIgNe2DK24bx94rJQfcDecCKedq98t5ZoZnRhxZf1fuG0hJv0BiXK0NkGgH0uM44Er1l3huCAAAAM7h4ewCwPWYTI65eEf6MJkkbwNnttHj0+j7XyIGqL+x6y/RDhADAAAAAACj4pqYbWAU7OeEmUwm+Vvcv3OQGEgY28YYecB+TpgR9r9EDCTG6NuGHADbhvvlRo8Bo9cftAESeWD0+gMAAADJZXZ2AQAAAAAAAAAAAAAAAAAAAAAAAAAAAJC+GFAKAAAAAAAAAAAAAAAAAAAAAAAAAADg5hhQCgAAAAAAAAAAAAAAAAAAAAAAAAAA4OYYUAoAAAAAAAAAAAAAAAAAAAAAAAAAAODmGFAKAAAAAAAAAAAAAAAAAAAAAAAAAADg5hhQCgAAAAAAAAAAAAAAAAAAAAAAAAAA4OYYUAoAAAAAAAAAAAAAAAAAAAAAAAAAAODmGFAKAAAAAAAAAAAAAAAAAAAAAAAAAADg5hhQCgAAAAAAAAAAAAAAAAAAAAAAAAAA4OYYUAoAAAAAAAAAAAAAAAAAAAAAAAAAAODmGFAKAAAAAAAAAAAAAAAAAAAAAAAAAADg5hhQCgAAAAAAAAAAAAAAAAAAAAAAAAAA4OYYUAoAAAAAAAAAAAAAAAAAAAAAAAAAAODmGFAKAAAAAAAAAAAAAAAAAAAAAAAAAADg5hhQCgAAAAAAAAAAAAAAAAAAAAAAAAAA4OYYUAoAAAAAAAAAAAAAAAAAAAAAAAAAAODmGFAKAAAAAAAAAAAAAAAAAAAAAAAAAADg5hhQCgAAAAAAAAAAAAAAAAAAAAAAAAAA4OY8nF0AuA6bTbJGObsUzmH2lEwmZ5cieWw2KTLG2aVIPi+LY7etK8apI+PL1fa/RAxIjo8B6u+YdWUURx9jjN4OEAMAAAAAAAAAAAAAjMYV75PeZ+RnBnhewPHPDcHYyAHaQVerv8Tzo0bPAclxMeCKdb+P5+cAAMh4DChFslmjpNXjnF0K52jYW7J4ObsUyRMZI/Wf6exSJN/w9pK3A1siV4xTR8aXq+1/iRiQHBsD1N/Y9ZdoB4gBAAAAAAAAAAAAAEbjivdJ7zPyMwM8L+D454ZgbOQA7aCr1V/i+VGj54DkuBhwxbrfx/NzAABkPLOzCwAAAAAAAAAAAAAAAAAAAAAAAAAAAID0xYBSAAAAAAAAAAAAAAAAAAAAAAAAAAAAN8eAUgAAAAAAAAAAAAAAAAAAAAAAAAAAADfHgFIAAAAAAAAAAAAAAAAAAAAAAAAAAAA3x4BSAAAAAAAAAAAAAAAAAAAAAAAAAAAAN8eAUgAAAAAAAAAAAAAAAAAAAAAAAAAAADfHgFK4jD3H1qhJX5OWbZvi7KIAAAAAAAAAAAAAAAAAAAAAAAAAAOBSPJxdALiPPcfW6P3vGtr/NpvM8vMJUGBAQZUqVE0NQzqqepmnZDKZnFhKIK5HY1eSfLz8VSh3aTWu2kWtH3tLFgvNpTsjBtgGRq8/iAEAAAAAAAAAAAAAMCLuFQMwOqO3g0avP4gBiW0AAIARcWSHwzUM6aiaZVvIJpsi7t7Q6UuHtGn/fK3Y8ZOqlmqsj7rMUhbf7M4uJhDHw7EbfiNUK3b8pO8WvqdTFw/q3ee/d3bxkAGIAbaB0esPYgAAAAAAAAAAAAAAjIh7xQCMzujtoNHrD2JAYhsAAGAkDCiFw5UqWFWNq3WO9VnPlmP0w+J+mrNujIb+0lFDX//DSaVDSozt7Lhfk317ms1h60ovj8Zuy7r/0WsjyuqPrRPVtdlnyp4ltxNL5xzEgPFiwOjbwOj1f5TR2gCJGAAAAAAAAAAAAAAAI+JecWxGfF4AeJgRc8Do7aDR6x8fo+UBMcA2AADASBhQigxhMVvUs+VoHTq9VdsOLdX+ExtUsfjjkqRbEdc0fdVQbdg3R5eunpafT4CqlGqsV5t9pvy5ghJdr9Vq1YzVw7Tj0DKduXRYNyKuKEfWfKpV9ml1bTZEAf65JEnhNy/qxSGF9ETlFzTgxV/irGfc3De1aMu3+umD48qXs5jD6++KroedUr1OY1S1+bvOLorT+Hr5q2zR2lq/d7bOXT5muAshYoAYkNgGRq4/bcA9Ro4BAAAAAAAAAAAAADAqI98r5nkBGB05cI+R20GJ+pMHxIDENgAAwJ0xoBQZqlmN17T/xAb9dXCxKhZ/XLcirunt8XV18eopPVXjVRXLW0FXrp/Xgs3f6K2vamn829uVN0fRBNcXHROpWWtGql6ltqpT4Vn5ePnr8OltWrptkvaf3KBv3t4hTw8v5ciSR3XKt9KGfXN1M+Kqsvhmt68jMuqOVu+eriolGzOY9CEndi1UUJWWzi6G052/fEySFOCX08klyXjEwD1GjoH7jL4NjFp/2oAHjBoDAAAAAAAAAAAAAGBkRr1XzPMCMDpy4AGjtoP3Gbn+5ME9Ro6B+9gGAAC4JwaUIkMF5a8sSTpz6bAkacryj3X+8nGNe2uLShQIts/XtMYr6j66kqYuG6R+HaYkuD5PD2/N/Pi8vD19H3xYp6fKF6urMbNe16YD81U/uJ0kqUWt7lq/b45W7ZquVnX/Y599/b45uhlxVS1qve7Amrq+q6FHFNzkTWcXI0Pdibqta7fCZLPZFH4jVAs3f6ejZ3epbOGaKpS7tLOLl+GIAWPGgNG3gdHr/zAjtgESMQAAAAAAAAAAAAAARsS94geM+rwAcJ9Rc8Do7aDR6/8oI+YBMcA2AADASAw5oDQsLEwjRozQ3LlzdebMGeXOnVtt2rTR0KFD1bt3b02ePFlfffWVevXq5eyiuh0/nwBJ0u2712Wz2bRq5y+qFPSEArMV1LVbYfb5fLz8VbZIbe04sjzR9ZlMJvtg0hhrjCLu3lCMNVohJRtJkg6e+ss+oLRa6SbKl7O4lm6dFGtA6dKtkxTgl0t1K7R2ZFVdWuSdm/LyyersYmS4n5YP0k/LB8X67PGKbfTWc+OdVCLnIQYeMFoMGH0bGL3+9xm1DZCIAQAAAAAAAAAAAADuyWq1at6GsVq8ZYJCw08qu39uPRHcTi8/9T/5evk7u3hOx73ie4z8vIC7m7FqmI6c3akjZ3Yo9MoJ5c1RVNMGnnR2sTIdI+eA0dtBo9f/YUbNA2KAbQAAgJEYbkDp7t271bx5c4WGhsrf31/ly5fXuXPnNG7cOB07dkxXrlyRJIWEhDi3oG7q9p3rkiQ/7wBdvXVJ129f1o7Dy/X84Nzxzm82mZNc59o9v2n22tE6em6XomOiYk27GRFu/7/JZFLzmq/rx6Uf6ujZ3SpZMETnLx/XnuNr9Nzjb8vTwysNNXMvp/atUJFKTZ1djAz3dK3ueqLyC4q2RunE+X2auWa4wq6dkZenj32efcfXa+Ck5nGWjY6JlNUao2UjYjKyyOmGGDBuDBh9Gxi9/vcZtQ2QiAEAAAAAAAAAAAAA7unbhe9q/oZxeqzic3q+fh+dunBQ8zeM07GzuzS8+0qZzUk/p+XOuFd8j5GfF3B3k/8YqKx+OVWqYFXdirjq7OJkWkbOAaO3g0av/8OMmgfEANsAAAAjMdSA0rCwMLVs2VKhoaHq06ePBg0apKxZ771BZcSIEerfv788PDxkMplUuXJlJ5fWPR0/v1eSVChPGclmkyRVLdVY7Rv0T9X61u+bqyHT2qts4Zr6T6uxyp29sLw8fBRji9HAic1ktVpjzd+sxqv6afkgLd02Sb0KfqWl2ybLZrOpec3X01YxN3P+yEY91mF4rM82zhyo7QuHqXG3SapQ/9VY02w2m+Z81lChRzerw6c7FFi4YkYW12EKBpZS1dKNJUk1yzZXxeKP691vHtfYOT31YedfJUmVgupp4Wc3Yy0Xdu2c3hxXXc/WdZ9fNSYGjBsDRt8GRq//fUZtAyRiAAAAAAAAAAAAAID7ORl6QL9v/EqPV2yjQS/PsX+eL2dxjf+9t9bs+VWNqrzoxBI6H/eK7zHy8wLu7qcPjil/riBJUrdRFRUReTOJJYzJyDlg9HbQ6PV/mFHzgBhgGwAAYCSGeq1Y7969debMGfXq1UujRo2yDyaVpH79+ik4OFjR0dEqVqyYAgICnFhS97V02yRJUq2yTyubf25l8c2u23euq2rpxgn+S8yfO36Wl4ePRvZcrZZ131Dt8s+oaunGypujaLzz5wzIp9rlW2rVzl8UEXlLy7dPUdkitVQsXwWH19VV2axW2Ww2mc2WWJ/XbjtYuQpV1Lpf3tONy2diTdu19Eud/WetarX5xGUvBONToVhdNa7aRWv2zNSBk5vinScy+q4++amNKhZ7XC8+OTCDS5g+iIEHjBoDDzP6NjBi/WkDYjNiDAAAAAAAAAAAAABwL6t3z5DNZlObeu/E+rxFrW7y8fTTyp3TnFOwTMyI94p5XsC93R9MioSRA7EZsR18mFHrTx48YNQYeBjbAAAA92WYAaUHDx7UzJkzFRgYqGHDhsU7T7Vq1SRJwcHB9s/WrFkjk8kU519ISEi865g3b57q1q0rf39/ZcuWTY899pgOHDjg8Pq4mhhrjCYsfF/7T2xQzbItVLH4YzKbzWpUpZP+Ob1V6/bOjne58JsXE12v2WyRyWSSzfbgl0htNpumrxyS4DItanXTjYhwjZ3TU2HXzvLrpI8IPb5V+UrUjPO5xcNLTXtMVfTdW1o58TX75+HnDmnzrA+Vr0QtVXumb0YWNUN0avyRzGaLpi77ON7pY+f0VGTUHfVtPyVjC5aOiIHYjBgDjzL6NjBa/WkD4jJaDAAAAAAAAAAAAABwL4dOb5PZZFaZIrHvBXt5+iioQIgOn97mpJJlbka7V8zzAjA6ciAuo7WDjzJi/cmD2IwYA49iGwAA4J4MM6B0xowZslqt6tSpk7JkyRLvPL6+vpJiDyi9b/z48dq8ebP9388//xxnnnHjxqldu3Z6/PHHtWDBAs2YMUONGzdWRESEYyuTyR05u1Mrd0zTyh3TtHDTt/rm93f08uclNHvdaFUr3VQDX5xun/fVZp+pRIEQDZnWTp9N66C567/Ugk3f6IfF/dVtdCX9sKhfot9Vr/LzuhsVob4TGmn+xq81Z90X6vNdA52+dCjBZaqXfkp5cxTVnzunydc7ixqGdHBY3V3N2X/WyRoTHeuzf/csVdHKzeKdP0/xqqrecoBO7Vuufau+l9Uao2UTXpLNZlPTHlPjvJHIHRQMLKmGwR206+if2nd8faxp8zaM018HF+mTV+bLx8vPSSVMG2Igae4eA8lh9G3gzvWnDUged44BAAAAAAAAAAAAAO7v8vVzCvAPlJeHd5xpgdkK6tqtMEVFRzqhZJmbO98r5nkBGB05kDzu3A4mh7vXnzxImrvHQHKwDQAAcE+GGVC6atUqSVLDhg0TnOfMmTOS4h9QWr58edWuXdv+r1KlSrGmHzt2TH379tUXX3yhESNG6Mknn1SLFi30ySefqHr16g6sSea3evcMDf+1i0bOfFkT//hAO4+sUOWg+hr62h/6vNsy+ftms8/r75tNX765US81+UQnLxzQpCUDNHFJf23+e4HKFamtlnXfSPS7GoZ00LvPf6+Iuzf1/aL39duaESqcu4yGdVuW4DJms1nNatx7O079yu3k6x3/AGN3d3jLTP0+6mmdPRT75P5uxDV5+2VLYCmpZuuPFFgkWBumv681U9/ShWNbVfeFz5SjQJn0LrLTdHzyQ5lNZk1d/uDtOruPrtbExf31UZdZypezmPMKlwbEQPK5awykhNG3gTvWnzYgZdwxBgAAAAAAAAAAAAAYw93I2/KMZzCpJHl5+NybJ+p2RhbJZbjjvWKeF4DRkQMp447tYEq4a/3Jg+Rz1xhICbYBAADux2Sz2WzOLkRGKFy4sM6cOaNdu3YpJCQkzvTo6Gjlz59fYWFhOnbsmIKCgiRJa9asUcOGDbV69Wo1aNAgwfV/+OGHGjt2rC5fvixv7/g731KqevXqCg0Ndci6HMHLw1ff9zri7GI4xMzVIzRxSX+NfXOTyherk+T83b8upcho1/ilWYunr54bkrz9tPX3zxRxI0z1O38hSboedkrHts9VlWbvJLrcpX/36NePa8gaE6UCpR/X8/9dK5M5dePT5/23lGKiHLdtMyJOQ6+cVK9xNdS5ySC1fqxXmtfnyPhKyf6XiIHUyswxkFFttSO3AfV37DHG1Y4DkmPbAWIAAAAAAAAYkavfw6F/BAAAAEibpK4Juo2upKs3L2rWoAtxpn36czut2ztLS4bdlaeHV3oWM16u9sxAZr5XbPTnBYwuJfHfbVRFRUTe1LSBJ9O3UMnkqFwgB2gHXa3+Es+PGj0HJMfFQEb2EWfWbQAAgNHky5dP27dvT9WyHg4uS6Z169YtSVJERPwnGzNnzlRYWJiyZs2q4sWLx5nevn17hYWFKVeuXGrVqpU+//xzBQYG2qdv2rRJZcqU0bRp0zRkyBCdPn1apUqV0scff6yOHTumqsyhoaE6e/ZsqpZNDz6e7vFT9DEx0Vq8ZYKK56uUrMGkknT+3DndcZG38Hl4J38/laj+nBaObmW/GDyxa6GKV2mZ5HLeftlk8fSWNSZKxUJapKlD5Nz5c4q+67htm95xeifytgZNaa065Vs55CJIcmx8pWT/S8RAamT2GMiIttrR24D6O/YY42rHAcmx7QAxAAAAAAAAjMjV7+HQPwIAAACkTVLXBLkCCujUhb8VGX1XXo/8UmnYtbPK5h/olMGkkms9M5DZ7xUb/XkBo3PlvgFH5QI5QDvoavWXeH7U6DkgOS4GMuo4kJm3AQAASD7DDCjNly+fwsPDtXPnTtWpE3sQ4fnz59W3b19JUuXKlWUymezTsmXLpr59++qJJ55QlixZtHnzZg0bNkxbtmzR9u3b5ePjY1/H2bNnNWDAAA0fPlyFCxfWpEmT9OKLLyp37txq3LhxqsqcmXh5+Dq7CGly/soJHfx3szYd+F3nrxzXwE4zkr1s/gIFXObNJxbP5O+nXAXLSyaTLp85oFyFKujqhaMKzlsi0WVsNptWfN9V1uhI5SxQTlt/H6JStdopexLLJaRA/gIOf7tQelq/b46On9+js2GHtWbPzDjTJ73/t/LkKJKidToyvlKy/yViIDUyewxkRFvt6G1A/R17jHG144Dk2HaAGAAAAAAAAEbk6vdw6B8BAAAA0iapa4IyhWtox+HlOnRqqyoF1bN/Hhl1R8fP7ValoCfSu4gJcqVnBjL7vWKjPy9gdK7cN+CoXCAHaAddrf4Sz48aPQckx8VARh0HMvM2AADAaNIy7tAwA0obN26sgwcPavjw4WrSpIlKly4tSdq2bZu6dOmisLAwSVJISEis5apUqaIqVarY/27QoIEqVqyoVq1aacaMGerataskyWq16ubNm/r555/VunVrSdKTTz6pv//+W59++mmqBpSm9mdn00tMpLR6nLNLkXp7j63VqN+6Kpt/oDo3/lgNQzoke9kjh4/I4pyX8KXY3Wipf9zz8wQFVWmp4zsXKGtgUXn5ZE1y/j3Lv9KZg2tU54XPVKLas5rx36pa+cOravvhmliDsZPr8JEj8nZgS5TecdqkWhc1qdbFoet0ZHyldP9LxEBKZfYYyIi22tHbgPo79hjjascBybHtADEAAAAAAACMyNXv4dA/AgAAAKRNUtcEDYLba8aqoZq7/stYA0qX/PWD7kTdVqMqnTKglPFzpWcGMvu9YqM/L2B0rtw34KhcIAdoB12t/hLPjxo9ByTHxUBGHQcy8zYAAADJl/rfmHcx/fr1U65cuXT69GlVqFBBlSpVUqlSpVSzZk0FBQWpUaNGkqTg4OAk1/XMM8/I398/1oDPnDlzSlKsgaMmk0mNGzfW/v37HVwbpMZTNV7RipE2zR58SS8/9Ymzi5NpFK9672Lw1L7lKlKxSaLzhoce0cbfBihvUA1Vb9lfuQpVUK02g3X2n3Xas/yrjCkwHI4YAIyNNgAAAAAAAAAAAAAA3Fvx/JXUqu6b2rB/rgZPbaMlf03Udwv76LuF76lyUH01qvKis4sIJ+B5AWNZseNn/bJyiH5ZOURXb13SrTvX7H+v2PGzs4vnFOQAQB4AAAAYlWEGlBYqVEjr16/X008/LR8fH508eVI5c+bUhAkTtHjxYh0+fFhS8gaU3vfwm1QqVKiQ4Hx37txJfcGBdFawTD1dDT2iY9vnKX/pugnOZ7NatWLCK7JZY9S0x1SZzRZJUrVn+ilP8era+NsAXb1wLKOKDQciBgBjow0AAAAAAAAAAAAAAPf3Rqsv1f2ZUfr3wgF9Pe9Nrdn9q1o/9paGvLpIZrNhHiPEQ3hewFiWbp2kKcs+0pRlH+nqzYu6GXHV/vfSrZOcXTynIAcA8gAAAMCoDNUTVK5cOS1atEg3btzQjRs39Ndff6l79+66deuWTp48KbPZrIoVKya5ngULFujWrVuqWbOm/bNnn31WkrR8+XL7Z1arVStWrFCNGjUcXxnAQcwWDxWt/NS9////BV58di4ZrfNHNql22/8pZ8FyD5Y3W9S0xxTZYqK18odXZbPZ0r3McCxiADA22gAAAAAAAAAAAAAAcH8Ws0Uv1O+jH/sd0pLP7+rXj86qZ6sx8vXO4uyiwUl4XsBYRr+xRitG2uL9N/qNNc4unlOQAwB5AAAAYFSGGlCakAMHDshms6lUqVLy8/OLNa1z5876+OOPNX/+fK1cuVKffvqpOnfurJCQEHXo0ME+X8uWLVWvXj11795dP/zwg5YtW6b27dvrwIED+vjjjzO6SkCKlKjWWkHVnk1w+pWzB7V5zkfKV7K2qrboE2d6rkIVVKvNYJ39Z532LP8qHUuK9EIMAMZGGwAAAAAAAAAAAAAAgPHwvACMjhwAyAMAAAAj8nB2ATKDffv2SZKCg4PjTKtQoYKmT5+uL7/8UhERESpUqJC6deumQYMGycvLyz6fyWTSggUL1L9/fw0cOFDXr19XcHCwlixZokaNGmVYXYDUKFXrhUSn5yxYTr1+vJPoPDVaDVCNVgMcWSxkIGIAMDbaAAAAAAAAAAAAAAAAjIfnBWB05ABAHgAAABgRA0qV+IDSAQMGaMCA5J3gZs+eXRMmTNCECRMcWj4A6SMy6o4++6WD/r3wt7w9ff+PvfuOjqpa+zj+m5n0QOi9IyCd0JEiRbqAiFJUmoViAxUB0atw70WUqoAFFBAQRKReKVKUIiBdukhHaoDQCQkhmXn/4GUgpE2SSYY55/tZi7WYOSXPPufZ+5wze+8ZZc2UW33afa0COUvEWW/rgeWatGSg8/WViPPKnjmvvn7rTx07u0efzuriXBYRdUU3o65p/n8uZVg5gLT4cmEfbfzrZ527/I++fmuHShQITXC9X7ZM1o+rP5XDbldoiUbq0+4r+dh8Zbfb9c3id7X1wDLZrD4KCc6ht5/9Nl49MrLfd8/V5v1LdCPycrLtCQAAAAAAAAAAAAAAAAB4k993z9WOQ7/p1TafuTTm8mF26sIhjZzdTVcjwhUckEX9O05V0bzl4qxjt9v17ZIB2nZgmWLtMSpXtI76tPtavj53fojo/OUTGr/gdZ0KPyirxabWj72qtnXfjLOPET9218rt07TgP5eVKTBrRhUPAAAAcInV0wE8DJKaUIqkfbmwjzoPK6om/S06fHpnvOXLtn6nJv0t2rB3ofO9yzfOa9C3zdVteEn1GFVeu4/+Hm+7HYdXqdkAm+av+9z5XlT0TX088zl1+7SEug8vpd93z3Uu6/d1A3UZVkzfr/xPgnEeC9urzsOKSpJuRF7Rj6s+jbP8m8X99fzHhTV4aluXyw5jaFmzp74bcEAT39mlx8o9pTFzXom3TvVHm2niOzud/0oWqKJGlV+QJBXLVyHOspplWqlRlRcyuhhws4HfNFXP0RXVa0yo3v6qng6f3uHpkNJNvYrP6rPX1itPtiKJrnP20jFNXf6hPnt1naa9d1iXb5zTkk3fSJI2/vWz9h3foInv7NI3/XarcoknNOWX9zMq/IfChr0LVKdcW5faEwAAAAAAAAAAAAAAAADwJhv2LlDt8m0luTbm8mE2dl4vtazZU1MHHlTHhgM1cnb3eOss2zpZh0//qa/e+lOT+++XxWLVgvVjJUkOh0NDpj2txlW76rsBBzS5/1+qX6lDnO3X7ZkvH5tvRhQH6cBM40elO5Os+35RW92Hl9LrY6vreNi+BNfbvH+pXv28inqNCVWPUeW1Yts057Lk5hNICc8pAAAAnsMvlEpatWqVp0PwWvUqPqsODQbo7a/qxlsWdum4ftn8rcoUrhXn/clL31OZIrX0SY9lOnByq4ZMe1rfDzrmfHiKiLyqyUvfU43SLeNsN2ftKPna/DXtvcM6e+mY+oyrqdBHGiokOIckqXebz1Tn/x9Yk3Ij8op+XP2pOjV6z/lez1YjVSRPOf2xb2EKjwC8mZ9vgGqWuZdnZQrX0ty1o5LcJvzqGe049Jv6dZgSb1n07Sit2jFTI3utdnusyFgfdvnJ+a1g6/cs0MjZ3TXxnV2eDSqdVCz+eLLrrNs9V4+VbaPsIXklSa1q9dasVcP0VJ3XZZFF0TG3FH07Sjarj25GXVOuLAXTO+wMcyPyinqMLq9btyOVK0sh3Y69pbCLR/VE1S7q136SYmJva9/xDerfcWqcDwFdaU/gnZLLCQAAAAAAAAAAAACA8dBXDMDIkmrj+rb7Os74qJSOuXyYXL5xXgdPbdOnPVZIkupVeEZfLHhDp8MPx/mV1SNndqlyycbOXyStXrqFvl8xRB0a9NeOQ7/J18df9Su1d66fLXOee3/j+jnNWjVMo3qt1i9buD54IzONH5XuTbJuVr27ft89VyNnd9eXfbfGWcfhcGj4rM4a1XuNiuevqLBLx/XSyNKqW76dggIyJzmfQEp8TgEAAPAcJpQiTRKbiGS32zVmzit6ve14TVzUL86ytbt+0rSBhyVJjxaqrhwh+bX7yFpVKdVYkjR+4Rt6/ol/af2e+Q9sN1vvtJ8sScqXvZgqPtJA6/cuUMuaCX+70fQVQ/TbjpkK9g9R9dItnO+Pnddbkbeuq9eYUNlsPvqq77bUFR6Gs2D9WD1W7qkk11mxbapqlG6pbJlyx1u2fu985cteXCUKhKZThMgodz8MkKSIqKuSLJLM2zlw/sqJOL9gmjd7UZ2/ckKSVKtsa+08slod/5NXgf6ZlTNLAY1+da2nQnW7TIFZ1Sj0eQX6Z1bnJh9q64HlmrVqmPN87zy8WmWL1I73jXKutCfwTsnlBAAAAAAAAAAAAADAeOgrBmBkSbVx2w6sSHB8lOR9Y6QuXDmp7CH5ZLPdGT5vsViUO1thnb9yIs6E0pIFq2rJpol6qs4b8vcN1O+7ftK5y8clSf+c/0tZgnPp4xmddPLCAeXNVlS9Wo9WvhzFJUlj5vZQjydHKCggc4aXD+5hpvGjrk6yliRZLLoRdUWSdDPqmkKCcsjXx19S0j9sktScAgAA4DlMKEW6mPf7GJUrWkelClaN8/61iIuKjb3t/JU7ScqT7d7EpN93z5XVYlXtcm3iTSiNN6Hpvu0etHn/Ev2+e46+6rtdQf6ZNXxWF+eyvs9MUO/PQjXxnZ1pLSYM5IffhulM+GGN6PVbous4HA4t3zpFrz01LsHlv2yZrOY1Xk6vEJHBhs/qql1H7vza7McvL5VE50BCDp7apuNhezXrw9MK8g/R5KXvaey83nrv+RmeDs0lfcY/ptPhhxJc9vXbO5Q7ayEdPrNTT9ftI0k6dGq7SuSv7Fznj30LVaf803G2c6U9wcMrrTkBAAAAAAAAAAAAAPA+9BUDMLvE2riExkdJxh4j1axad52//I/6fV1f/r6BqlyysWwH70y4i42N0c4jqzTujU0qmrecFm2coP/O6KCv+m7T0s2TlDtrYVUu0cjDJUBamWX8qKuTrC0Wi/71wmz9e1o7BfgF60bkZQ3uOt/5K75JSWxOAQAA8CwmlMLtjoXt1bo98zTmtd9TtN2la2Ga+etQjX51TZpj2HHoN9Wv2EHBASGSpCdr9dLe4+vTvF8Y05w1o7R+73yN6PmrAvyCEl1v99G1io6JUrVHm8VbdvbSMf39zyYN7jovPUNFBhr43HRJ0opt0/Tt0oEa9v8fCpixcyB31sI6c/GI83XYpePKnbWwJGnl9ukKLdHI+a1cTap103vfNvVEmKky7s2Nya5z9MxOlShw5zwfOrVdj5VrI+nOJPNtB5arx5MjnOu62p7g4ZWWnAAAAAAAAAAAAAAAeCf6igGYXUJtXELjoyTvHSOVK2shXbp2VrGxMbLZfORwOHT+8gnnWLi7LBaLujYdoq5Nh0iSVu/8UUXylpMk5c5WWCXyV1bR/3/duGoXjV/wmmJib2vXkdXac/R3bd6/2LmvnmMq6j/d/+c8tvAORhk/mtwXZrgqNjZGM38bqsHd5qti8cd14ORWffRdG33Tb4+yBOdMdLvUzikAAADpjwmlcLu9R9fp3OXj6j68pCTp0vUwfT63py5dO6vWtV+VzeqjS9fCnL9Seu7ynYlJh05v16XrZ9X7s1BJ0tWIcG3662dduXFBL7X4WLmzFta5y/8oR0g+SVLY5eOqWsq1SUsWi8X9BYUhzF07Rqt3ztLwnr86J8Ql5pctk9W0WnfZrLZ4y5ZvmaI65Z9Odh/wPk2rddPYeb11LeKiQoJzmLJzoF6FZ/TWV3XVtckQZcucR4s3TVCD0E6SpHzZi2vL30vVvv678vXx06b9i1U0b3kPR+w+4VdPSxaLcmYpIEk6GrZbzz/xgSTp75NbVDhPGQX6Z5KUsvYE3iupnAAAAAAAAAAAAAAAGBN9xQCMLLE27sHxUZJ3j5HKlim3ShSool//nKFm1btr3Z55ypm1YJxfYpSk6NtRunU7UpmDsulqRLh+XPWpujf/rySpeukW+nbJAIVfPa2cWQpoy/6lKpy7jHxsvhr0/Mw4+2nS36Jv3tntdccJ93j7+NHkvjDD18ffpUnWh8/s1MVrZ1Sx+OOSpEcLVVfOLAV1+PQOVS3VJNH9JzenAAAAeA4TSuF2rWu/Gucmr9/XDdSu3luqU76tJKlexfZavGmCujYdogMntyr86mlVfKS+fGy+mjP4nHO7ET92V4kCoWpX7y1J0uMV22vxxgkqW6SWzl46pt1H1qhPu68SjKFyycaatGSAnnn8HQX6Z9KSTd84lwUFhCj6dqRux0TL18fP/QcAXuPClVOauLif8mUvrncnNJQk+fn4a3yfzZq6/CPlCMmv1o/1liRFRF7Vhj3z9U2/PfH2Y7fbtWLbVA3oND1D40f6uBF5RVHRN5UzS35J0oa9CxUSnEOZg7IbsnPg87m9tPnvJbp0PUyDJjVTkH9mTXvvsEbPeUWPlW2j2uXaKF+O4urW9N9668s6kqRKjzRQq1q9JElt6ryuE+f3q9dnleRj9VW2zHn11jMTPFkktzp8ekecbxHLFJBVP2/8Sv3aT9KGvQtUu1xbSUm3JzCWpHICAAAAAAAAAAAAAGBM9BUDMLLE2rgswTmd46MkY4yReuuZiRo5u7tmrRqmoIAQ9e/wnSTFGS8XEXVV/SY0kNVild1h19N1++qxsq0lSYF+werbboI+mPykJIeCA7Logxd+9GCJ4E5mGz/q6iTr3FkL6dL1s/rn3H4VyVNGp8MP6+zFIyqU69Ek95/cnAIAAOA5TChFmiQ2ESkpPZ4crk9ndVG34SXla/PTe8/NkI/NN9m/1b5Bf43+6SV1/eQRWa02vfH0F8oSnDPBdWuWaakDJ7fo1bFVFOwfouqlW0jH7iwLCcquxlW7qteYigrwz6Sv+m5LcblhDLmyFtTKkY4El3Vv9p84r4MDs2jRsIgE17VarfrhXyfdHh88IyLqqv77fXvduh0pq8WqLMG59N8XF8tisRiyc+CtZycm+P6DZWpZs4da1uwRbz0/H3+90/7bdIntYVCrbCvVKtvK+frLvlud/9/01yKN7L1aUtLtCYwlqZwAAAAAAAAAAAAAABgTfcUAjCyxNu6VUeWc46MkY4yRKpT70QR/tfH+8XLZMufRlP77E91HtUebqtqjTZP9W95+rMzIbONHpcQnWUtxJ1q/9cw3Gjqjg3Oi9RtPf6Hc2e78kmlq5hMAAADPYkIp0iSxiUj3G/3qmjivs2XOo+E9VyS73YBOU+O8DvQL1r86z3Y5tq5Nh6hr0yHO1y82H+r8v5EnPwFImzzZiuiLPlsSXEbnAO436d19ng4BAAAAAAAAAAAAAAAAANIF46NgNmYcP5rYJGsp7kTrRpWfU6PKzyW4nivzCaT4cwoAAIDnWD0dAOAOmYOya/Ivg/T9yv8kv3ICvlncXz+u/kSZArO5OTIAAAAAAAAAAAAAAAAAAAAAAAAAADyPXyiFIQzpNj9N2/dsNVI9W410UzQAAAAAAAAAAAAAAAAAAAAAAAAAADxc+IVSAAAAAAAAAAAAAAAAAAAAAAAAAAAAg2NCKQAAAAAAAAAAAAAAAAAAAAAAAAAAgMFZHA6Hw9NBwDs4HJL9tqej8Ayrr2SxeDoK1zgcUnSsp6NwnZ/NvcfWG/PUnfnlbedfIgck9+cA5XfPvjKKu68xZm8HyAEAAAAAAGBGsdHS6nGejiL1GvaRbH6ejgIAAADwXt78TODO5wFv6y9mvID7xw2Zmbfl//3cVReoA96XB+nRDnpT+SXGj5q9DkjubQO9rex3MX4OAICM5+PpAOA9LBY6872BxSL5m7hmmz1PzX7+JXKA8pu7/BLtADkAAAAAAAAAAAAAAOZk9v5is48XMDuz579EHZDIA8pPHTBzDpi57AAAIOVMftsIAAAAAAAAAAAAAAAAAAAkadeRNXp3QsNEl1utNi0fHpOBEQEAAAAAAMCdmFAKAAAAAAAAAAAAAAAAAACcGoY+pxqlW8Z732q1eiAaAAAAAAAAuAsTSgEAAAAAAAAAAAAAAAAAgFPJAlXUuGrndNm3w+FQVHSEAv0zpcv+AQAAAAAAkDgmlAIAAAAAAAAAAAAAAAAAgBRbt3ueFm4YryNndiomNlq5shZStVLN1LPVKPn6+GnXkTV6d0JDvdvhO0VFR+jnP77U2YtH1KnRIHVtOsTT4QMAAAAAAJgOE0oBAAAAAAAAAAAAAAAAAIBT1O2buhoRHu99H5ufggNCJElTfvlAs1YNU5E8ZfVMvbeVPSSfzlw8ovV75qlbs//I18fPud38dZ/r+s2LalGzh7JnzqtcWQtlWFkAAAAAAABwDxNKAQAAAAAAAAAAAAAAAACA0/QVgzV9xeB479cs86SGvrRYf5/Yolmrhin0kYb6+OWl8vMNcK7zSstP42134coJTR7wt7Jlyp2ucQMAAAAAACBpTCgFAAAAAAAAAAAAAAAAAABOT9bsqccrto/3fpZMuSRJv+2YKUl6qeUncSaTSpLFYom3XeOqXZlMCgAAAAAA8BBgQikAAAAAAAAAAAAAAAAAAHAqkLOkqpRqnOjy0+GHZLFY9Ei+Si7tr2CuUu4KDQAAAAAAAGlg9XQAAAAAAAAAAAAAAAAAAADAu1hkkRL4NdKE+PsGpXM0AAAAAAAAcAUTSgEAAAAAAAAAAAAAAAAAgMsK5iwlu8Ouo2d2eToUAAAAAAAApAATSgEAAAAAAAAAAAAAAAAAgMsaVX5ekjTll/d1OyY63nKHw5HRIQEAAAAAAMAFPp4OAAAAAAAAAAAAAAAAAAAAPDwOnf5Tv26fkeCyOuXbqnThGurYcKBmrx6u1z6vovqVOip7SF6dvXRM63bP1Rd9tihTYNaMDRoAAAAAAADJYkIpAAAAAAAAAAAAAAAAAABwWr1zllbvnJXgsqkDD6mAfwm90vJTFc9XSf/b8IV+WjtCDrtdubIWUo3SLeXvG5TBEQMAAAAAAMAVFofD4fB0EAAAAAAAAAAAAABSJzZaWj3O01GkXsM+ks3P01EAAAAA3subnwl4HgAAAAAAAMhYVk8HAAAAAAAAAAAAAAAAAAAAAAAAAAAAgPTFhFIAAAAAAAAAAAAAAAAAAAAAAAAAAACDY0IpAAAAAAAAAAAAAAAAAAAAAAAAAACAwfl4OgB4D4dDst/2dBSeYfWVLBZPR+Eah0OKjvV0FK7zs7n32Hpjnrozv7zt/EvkgOT+HKD87tlXRnH3Ncbs7QA5AAAAAAAAAAAAYD7e2Ed0l7v6irzxGNBX6v4xE2bgjbmeGqmpHw6HQzft3lUJgqw2WVJQULOcfym1OeB9x8e944aMXwck7zzPqUE7mDCznH+JdjA1zFAHJO88z6mR2jpg5mcib8yN9Hgu9qZjwOcC1AGzzyO4yxNjyZlQCpfZb0urx3k6Cs9o2Eey+Xk6CtdEx0oDZ3s6CtcN7yj5u7El8sY8dWd+edv5l8gByb05QPnNXX6JdoAcAAAAAAAAAAAAMB9v7CO6y119Rd54DOgrdf+YCTPwxlxPjdTUj5v2WGVbtTJ9Akonlxs1UbDN9UpglvMvpS4HvPH4uPNaYIY6IHnneU4N2sGEmeX8S7SDqWGGOiB553lOjdTkhtmfibwxN9z9XOxtx4DPBagDZp9HcJcnxpJbM/bPAQAAAAAAAAAAAAAAAAAAAAAAAAAAIKMxoRQAAAAAAAAAAAAAAAAAAAAAAAAAAMDgmFAKAAAAAAAAAAAAAAAAAAAAAAAAAABgcEwoBQAAAAAAAAAAAAAAAAAAAAAAAAAAMDgmlAIAAAAAAAAAAAAAAAAAAAAAAAAAABgcE0oBAAAAAAAAAAAAAAAAAAAAAAAAAAAMjgml8Bq7jqxRk/4WLd861dOhAAAAAAAAAAAAAAAAAABMgHFrIAdgdtQBkAMwO+oAAMBofDwdAIxj15E1endCQ+drq8WqoIAQ5QwpoJIFq6ph6HOq9mgzWSwWD0YJxPdg7kpSgF+wCuYqpcZVuqhtnTdls9FcGhk5wDEwe/lBDgAAAAAAAAAAAMCc6CeDETBuDeRA6nEdMAbqAMiB1KMdNAbqANLC7O2A2csPcsCs5TdeieBxDUOfU43SLeWQQ5G3ruvkhQP6Y+9Crdw+XVVKNtaHXeYoU2BWT4cJxHN/7l6+HqaV26drwqJ3dOL8fr397DeeDg8ZgBzgGJi9/CAHAAAAAAAAAAAAYE70k8EIGLcGciD1uA4YA3UA5EDq0Q4aA3UAaWH2dsDs5Qc5YLbyM6EUbleyQBU1rto5znu9W4/Rt0sGaN7vYzRs5nMa9sovHooOSNyDudu69mt6eURp/bJlkl5s/rGyZsrlweiQEcgBjoHZyw9yAAAAAAAAAAAAAOZEPxmMgHFrIAdSj+uAMVAHQA6kHu2gMVAHkBZmbwfMXn6QA2YrPxNKkSFsVpt6tx6tAye3aOuBZdp7bL3KF6srSYqIvKofVg3T+j3zdOHKSQUFhKhyycZ6qfnHypejeJL7tdvtmrX6E20/sFynLhzU9chLypY5r2qWflIvNh+qkOAckqTLN87r+aEF9XjF9hr0/Mx4+xk3/3Ut3vS1pr93VHmzF3V7+b3V2M4Wt+2r7wyH2/aVUQL9glW6SC2t2z1XZy4eMdwFwBXkADlg9mNg9vKbvQ2QyAEAAAAAAAAAAACYk9n7yegrNQ7GrYEcSB2zXweMhDoAciB1aAeNgzqQOjwT0Q6YvfzUAXLA6OVnQikyVPPqL2vvsfXavH+Jyherq4jIq+r7ZW2dv3JCzaq/pKJ5yunStbP6eeNXenN8TX3Zd5vyZCuS6P5iYqM1Z81I1avwjB4r95QC/IJ18ORWLds6WXuPr9dXfbfL18dP2TLl1mNl22j9nvm6EXklzk/VR9+O0uqdP6hyicYP1U2Yp10LP6F6L4xRlRZvezoUjzp78YgkKSQou4cjyXjkwB1mzoG7zH4MzFp+2oB7zJoDAAAAAAAAAAAAMDez9pPRV2pMjFsDOZByZr0OGBV1AORAytEOGgt1wHU8E91j9nbArOWnDtxj1hy4y8jlZ0IpMlTxfBUlSacuHJQkTV3xkc5ePKpxb27SI/krOddrWr27eo6uoGnLB2tAp6mJ7s/Xx1+zPzorf9/Ae28+1ltli9bWmDmv6I99C1W/UgdJUsuaPbVuzzyt2vGD2tR+zbn6uj3zdCPyilrWfMWNJfV+x3YsUvHKrT0dRoaKun1TVyPC5XA4dPl6mBZtnKDDp3eodKEaKpirlKfDy3DkgDlzwOzHwOzlv58Z2wCJHAAAAAAAAAAAAIA50U92j1n7So2OcWsgB5LGdcD4qAMgB5JGO2h81AHXmfWZyOztgNnLfz/qgDlzwGzlN+2E0vDwcI0YMULz58/XqVOnlCtXLrVr107Dhg1Tnz59NGXKFI0fP15vvPGGp0M1lKCAEEnSzVvX5HA4tOrPmapQ/HHlzFJAVyPCnesF+AWrdOFa2n5oRZL7s1gszpuwWHusIm9dV6w9RqElGkmS9p/Y7LwRq1qqifJmL6ZlWybHuRFbtmWyQoJyqHa5tu4sqte7EnZIlZq87ukwMtT0FYM1fcXgOO/VLd9Obz79pYci8ixy4A6z5YDZj4HZy38/M7YBEjkAAAAAAAAAAAAAc6Kf7B6z9pUaHePWQA4kjeuA8VEHQA4kjXbQ+KgDrjPrM5HZ2wGzl/9+1IF7zJQDZiu/KSeU7ty5Uy1atFBYWJiCg4NVtmxZnTlzRuPGjdORI0d06dIlSVJoaKhnAzWgm1HXJElB/iG6EnFB125e1PaDK/TskFwJrm+1WJPd59pdP2nu2tE6fGaHYmJvx1l2I/Ky8/8Wi0Utaryi75Z9oMOnd6pEgVCdvXhUu46u0dN1+8rXxy8NJTOW6Kgb8gvI7OkwMtyTNXvq8YrtFWO/rWNn92j2muEKv3pKfr4BznX2HF2n9ye3iLdtTGy07PZYLR8Rm5EhpxtywLw5YPZjYPby32XWNkAiBwAAAAAAAAAAAIzKbrdrwfqxWrJposIuH1fW4Fx6vFIHdWv2HwX6BXs6PI+jn+wOI/eVzlr1iQ6d/lOHTm1X2KVjypOtiGa8f9zTYWUYxq25LnbKVNl//Em2d96StXnTOMscDodi+78nx/798vlinCzFinomyFQgB5LGdeAe6sAdZqsD9yMH7jBbDtAO3kMduMNsdeAuIz8TJcfs7YDZy38XdcC8OWC28ptuQml4eLhat26tsLAw9evXT4MHD1bmzHcq+4gRIzRw4ED5+PjIYrGoYsWKHo7WeI6e3S1JKpj7UcnhkCRVKdlYHRsMTNX+1u2Zr6EzOqp0oRp6rc1Y5cpaSH4+AYp1xOr9Sc1lt9vjrN+8+kuavmKwlm2drDcKjNeyrVPkcDjUosbD9TPxnnZiz0oVrtA0+RUNpkDOkqpSqrEkqUbpFipfrK7e/qquxs7rrQ86/yhJqlC8nhZ9fCPOduFXz+j1cdX0VG3j/KIxOWDeHDD7MTB7+e8yaxsgkQMAAAAAAAAAAABG9fWit7Vw/TjVKf+0nq3fTyfO7dfC9eN05PQODe/5q6zW5AcLGxn9ZHcYua90yi/vK3NQdpUsUEURkVc8HU6GY9ya66xdXpB902bFTvxWlqpVZMmV07nMPn+hHLv3yPpSd6+aQCKRA8nhOnAPdcA1RqsD9yMHXGO0HKAdvIc64Bqj1YG7jPxMlByztwNmL/9d1AHz5oDZym+6T0L79OmjU6dO6Y033tCoUaOck0klacCAAapUqZJiYmJUtGhRhYSEeDBSY1q2dbIkqWbpJ5UlOJcyBWbVzahrqlKqcaL/kvLb9u/l5xOgkb1Xq3XtV1WrbCtVKdVYebIVSXD97CF5Vatsa636c6YioyO0YttUlS5cU0XzlnN7Wb3Z2UMblK9U7TjvbZj9vsZ2tmjf2inx1nc4HJo7tIG+6O6v8JN7MyrMdFeuaG01rtJFa3bN1r7jfyS4TnTMLf17ejuVL1pXzz/xfgZHmH7IgTvMnAN3mf0YmLX8tAH3mDUHAAAAAAAAAAAAjOR42D79b8N41S3fTkO6zVfLmj3Uu80Y9W49RjuPrNaaXT96OsSHjln7yYzcVzr9vSOa/++LGt5zpXKE5Pd0OBmOcWuus/j6yqd/PykqSrFjPne+7zh5Svap02Up/ais7Z/xXICpRA6kjFmvAxJ1gDpADpADd9AOUgfMWgeM/EyUUmZuByTzlp86cI9Zc+Auo5ffVBNK9+/fr9mzZytnzpz65JNPElynatWqkqRKlSo531uzZo0sFku8f6Ghoc51GjRokOA6FotFvXv3TtdyeYNYe6wmLnpXe4+tV43SLVW+WB1ZrVY1qvyC/j65Rb/vnpvgdpdvnE9yv1arTRaLRQ7HvW/wcDgc+uHXoYlu07JmD12PvKyx83or/Orph+5bPTzNYbfL4XDIarXFeb/WM0OUo2B5/T7zHV2/eCrOsh3LPtfpv9eqZrt/K2eh8hkZbrp7ofGHslptmrb8owSXj53XW9G3o9S/49SMDSwdkQNxmTEHHmT2Y2C28tMGxGe2HAAAAAAAAAAAADCa1TtnyeFwqF29t+K837JmDwX4BunXP2d4JrCHnNn6yYzeV5ovR3FPh+ARjFtLHUvJErJ26iDH9j9lX/KLHLGxih0xSnI4ZOvfTxabLfmdPCTIgdQz23XgftQB6gA5QA5ItIPUAfPVAaM/E6WGmdsByXzlpw7EZ7YceJCRy+/j6QAy0qxZs2S32/XCCy8oU6ZMCa4TGBgoKe6E0ru+/PJLValSxfk6ODjY+f+vvvpK165di7P+kiVLNHToULVq1cod4XuNQ6f/1K/b73zQHnnruk5eOKA/9i3Uucv/qGqppnr/+R+c677U/GPtO75BQ2d0UP2KHVSmSC352Px07vI/2vL3UpUsUFUDOk1N9G/Vq/is1u2Zp/4TG6lx1a6Kjb2tDfsW6lb0zUS3qVaqmfJkK6Lf/pyhQP9MahjayW1lN4Kwo1uU95Ea8d63+fipaa9pmj2kpn6d9LKeHrhcknT5zAFtnPOB8j5SU1Vb9c/ocNNdgZwl1LBSJ/22Y6b2HF2nCsXrOZctWD9Om/cv1hd9tirAL8iDUboXORCXGXPgQWY/BmYrP21AfGbLAQAAAAAAAAAAAKM5cHKrrBarHi0ctx/MzzdAxfOH6uDJrR6K7OFmtn4y+kq9H+PW3Mv6wnOyb9ys2G8nyXrkqBwHDsra8xVZChX0dGiJIgfcy2zXgQdRB6gD5AA5QDtIHTBbHeCZKD6ztwNmKz91ID6z5cCDjFx+U/1C6apVqyRJDRs2THSdU6fuzBZPaEJp2bJlVatWLee/ChUqJLqsVq1a2rlzp3LlyqXmzZu7uSQPt9U7Z2n4j100cnY3TfrlPf15aKUqFq+vYS//ok97LFdwYBbnusGBWfT56xvUtcm/dfzcPk1eOkiTlg7Uxr9+VpnCtdS69qtJ/q2GoZ309rPfKPLWDX2z+F39tGaECuV6VJ/0WJ7oNlarVc2rvyxJql+xgwL9E55cbAan//5d9tiYOO/9s2uZilRMOGdzF6uiaq0H6cSeFdqz6hvZ7bFaPrGrHA6HmvaaFu+bGIziuSc+kNVi1bQV975VYOfh1Zq0ZKA+7DJHebMX9VxwaUQOuMbIOeAqsx8Do5afNsB1Rs0BAAAAAAAAAAAAM7h47YxCgnPKz8c/3rKcWQroakS4bsdEeyCyh59R+8noKzUmxq25l8XHRz7935Gib8u+eIks5cvJ2q6tp8NKEjngfka9DriCOkAdIAfIAYl2kDqQOG+vAzwTuc7M7YBk3PJTB1xn1BxwlVHLb3E4HA5PB5FRChUqpFOnTmnHjh0KDQ2NtzwmJkb58uVTeHi4jhw5ouLFi0uS1qxZo4YNG2r16tVq0KCBS3/rwoULyp8/v1577TWNHTs2VfFWq1ZNYWFhqdo2Pfj5BOqbNw55Ogy3mL16hCYtHaixr/+hskUfS3b9nl+UVHRMZAZElnY230A9PTT583Rw02z9OukVtX7nZxUqe2+S9doZb6t+588S3S425rZ+/Ki6rp0/qkfrdNae375WvedHq0rLd1IV74J/lVTsbfcd24zI07BLx/XGuOrq3GSw2tZ5I837c2d+uXr+JXIgLR7mHMiottqdx4Dyu/ca423XAcm97QA5AAAAAAAAzMjb+3D4fAQAAKRVcvdDXT95RDH22/rhgxPxlg2f1VW//vm9FvznsjIFZk3HKBPmrnsh+snM3Vea0vPfY1R5RUbf0Iz3j6f5b6dVSvPA259/XB23lpr64fDz04WJX6Y1xLj7DDunmF6vSZGRsr7YTbbnOrp1/7l6vS5LtOsT+r39/EvpmwNmHzdlhjogeX89oB2Mi3aQdpB2kHYwManJDTM/E0k8F0ve1w7yuQB1wOzzCO5K7XHImzevtm3blqq/6ZOqrbxURESEJCkyMuGDPHv2bIWHhytz5swqVqxYvOUdO3ZUeHi4cuTIoTZt2ujTTz9Vzpw5E9zXrFmzFBMToy5duqQ63rCwMJ0+fTrV27tbgK/3/QRvQmJjY7Rk00QVy1vBpcmkknT2zBlF3U785+cfJj7+rp2nUrU66sq5wzr6572L4LXwEwrJWSTJ7Ww+vmraa5p+/Ki69vz2tfKXqqvKzd9Kdbxnzp5RzC33Hdv0ztOo6JsaPLWtHivbxm2Nvzvzy9XzL5EDqfWw50BGtNXuPgaU373XGG+7DkjubQfIAQAAAAAAYEbe3ofD5yMAACCtkrsf8vcLUuSN8wkui46JurOOh+6p3HUvRD+ZuftKvfmZIKV54M1lTcm4tVTVjwB/+aYhvgc5HA7Fjv5MirktFS4k+w8/ylr/cVny53Pb3zhz9owUdcvl9b35/EvpnwNmHzdlhjogeXc9oB2Mj3YwcbSDqWCCOiB5dz1I7zpg5mciiediyfvaQT4XoA6YfR7BXZ7oKzXVhNK8efPq8uXL+vPPP/XYY3EvwGfPnlX//v0lSRUrVpTFYnEuy5Ili/r376/HH39cmTJl0saNG/XJJ59o06ZN2rZtmwICAuL9re+//15lypRRtWrV0hTvw8TPJ9DTIaTJ2UvHtP+fjfpj3/909tJRvf/CLJe3zZc/v9d8M7bN1/Xz9Ei1p7VodBvntygc27FIxSq3TnY7/6Assvn6yx57W0VDW8pitaY63vz58rv91ynT07o983T07C6dDj+oNbtmx1s++d2/lDtb4RTt0535lZLzL5EDqfGw50BGtNXuPgaU373XGG+7DkjubQfIAQAAAAAAYEbe3ofD5yMAACCtkrsfyhGSXyfO/aXomFvy8/GPsyz86mllCc4pXx+/9AwxUe66F6KfzNx9pd78TJDSPPDGsqZm3Fpq6ofDz08XUhtkAuwLf5Zj125ZX+wm62O1FPP6m4od/Zlso4bHGV+ZFvnz5U/xL/N5o4zKAbOPmzJDHZC8sx7QDiaOdjBxtIMpZ4Y6IHlnPcioOmDmZyKJ52LJ+9pBPhegDph9HsFdqT0OaZl3aKoJpY0bN9b+/fs1fPhwNWnSRKVKlZIkbd26VV26dFF4eLgkKTQ0NM52lStXVuXKlZ2vGzRooPLly6tNmzaaNWuWXnzxxTjr//3339q2bZuGDRuWpnhT+7Oz6SU2Wlo9ztNRpN7uI2s16qcXlSU4pzo3/kgNQzu5vO2hg4dk80y/QYrdipEGxm+XEpSjQFnJYtHFU/uUo2A5XTl3WJXyPJLkNg6HQyu/eVH2mGhlz19GW/43VCVrdlDWZLZLzMFDh+TvxpYovfO0SdUualI19b88nBB35ldKzr9EDqTGw54DGdFWu/sYUH73XmO87TogubcdIAcAAAAAAIAZeXsfDp+PAACAtErufujRQtW1/eAKHTixRRWK13O+H307SkfP7FSF4o9nQJQJc9e9EP1k5u4r9eZngpTmgTeWNTXj1lJTPyJiY5Rt1cpURhmX4/Rp2adMleXRUrJ2eFYWm03Wzi/I/t002Rf+LNvTT7nl7xw8dFDBNtcrgTeefynjcsDs46bMUAck76wHtIOJox1MHO1gypmhDkjeWQ8yqg6Y+ZlI4rlY8r52kM8FqANmn0dwlyf6StM2FdrLDBgwQDly5NDJkydVrlw5VahQQSVLllSNGjVUvHhxNWrUSJJUqVKlZPfVqlUrBQcHJzjp8/vvv5fFYtELL7zg9jIg9ZpV766VIx2aO+SCujX7t6fDeWgUr9xaR//8WdFRN+QXkDnZ9XetGK9T+9eoxtOD1bLPHDliY/Trty/J4XBkQLRID+QAYG60AQAAAAAAAAAAADC6BpU6ymKxaP66z+O8v3Tzt4q6fVONKjPGx4zoK0VG8bZxaw67XbEjx0h2u2z935HFZpOkO5NJSpWUfcpUOc6c9XCU3sXbcsDsqAPu5211gBxwP2/LAbOjDrjfw1oHeCaC2VEHYGammlBasGBBrVu3Tk8++aQCAgJ0/PhxZc+eXRMnTtSSJUt08OBBSa5NKL3rwZ9rdzgcmjlzpho0aKDChVP+M7VARitW5c5F8MSeFSpcvkmS614OO6QNPw1SnuLVVa31QOUoWE412w3R6b9/164V4zMmYLgdOQCYG20AAAAAAAAAAAAAjK5YvgpqU/t1rd87X0OmtdPSzZM0YVE/TVj0jioWr69GlZ/3dIjwALP1la7c/r1m/jpUM38dqisRFxQRddX5euX27z0dHh4i9rnz5fhrv6zdOsty3xhIi80m27vvSPZYxY7+jEHTMCzqAMgBmB11wDzM9kwEPIg6ADMz1YRSSSpTpowWL16s69ev6/r169q8ebN69uypiIgIHT9+XFarVeXLl092Pz///LMiIiJUo0aNOO///vvv+ueff9Sli/t/whZIDwUeracrYYd0ZNsC5StVO9H1HHa7Vk7sLoc9Vk17TZPVeufbZqq2GqDcxappw0+DdOXckYwKG25EDgDmRhsAAAAAAAAAAAAAM3i1zefq2WqU/jm3T18seF1rdv6otnXe1NCXFstqNd0QKsh8faXLtkzW1OUfauryD3XlxnndiLzifL1sy2RPh4eHhOPECdmnfS9LmdKyPtMu3nJL0SKydn5Bjj17ZV/4swciBNIXdQDkAMyOOmAuZnsmAh5EHYCZ+Xg6gIfFvn375HA4VKpUKQUFBcVZ1rlzZxUvXlxVqlRRpkyZtHHjRo0YMUKhoaHq1KlTnHW///57BQYG6tlnn83I8IFUs9p8VKRiszv///8LW0L+XDpaZw/9oTqdhit7gTL3trfa1LTXVM36VxX9+u1LeuaDNfF+uRcPN3IAMDfaAAAAAAAAAAAAAJiBzWpT+/r91L5+P0+HgoeE2fpKR7+6xtMhwAtYCheW75L/JbmO7bmOsj3XMYMiAjIWdQDkAMyOOmAuZnsmAh5EHYCZ8fV6/2/Pnj2SpEqVKsVbVq5cOS1YsEBdu3ZVixYtNGXKFPXo0UNr1qyRn5+fc72oqCjNnTtXbdu2VebMmTMsdiCtHqnaVsWrPpXo8kun92vjvA+Vt0QtVWkZv2OFn+v2fuQAYG60AQAAAAAAAAAAAADMiL5SAAAAAGbGMxHMjjoAs+IXSv9fUhNKBw0apEGDBiW7j4CAAF25csXdoQHprmTN9kkuz16gjN74LirJdaq3GaTqbZKvJw+bLxf20ca/fta5y//o67d2qESB0ATXO3Z2j75Y+KYu3zgnSXqx+ceqV6Fdssu8hZlzwOxcqQNhl45r5OzuOnxmh/JmK6aJ7+x0Ltt1ZI3en9RCBXM96nxv3Jsb5e8bmAHRw11oAwAAAAAAAAAAAACYEX2lAAAAAMyMZyJz6zysqHx9/OXnc2fc93ONBqlBaNxfIF629TstWDfW+Tr86ilVKP64hnSbL0n6ac1Irdw2TXaHXYVyPap3O36nTIFZM6wMaUUdgFkxofT/JTWhFIlLaCJS9O0ofTyzk/4595f8fQOVNVNu9Wn3tQrkLCFJcjgc+n7lv7Vqxw/y9fFXluCcGtV7tSTp8o3zGjGrq85cOiI/m7/ebPeVKhZ/PNlldy9k7ev3V8uar8SLc9NfizVn7SiNfnWNwi4d19YDy9T6sd7O5Z/88IJ2HPpNDUI76bWnPk/no4aHSb2Kz6pDgwF6+6u6ia4TFX1TH019SgM7TVf5YnUVa4/V9ZuXkl0G7zXwm6a6fD1MFotVQQGZ9fpT41SiQGVPh5UuXKkDQQEherH5UEVEXdWUXz6It7xgrkfjTDI1m993z9Xm/Ut0I/Jyotc+AAAAAAAAAAAAAACQcVIzro3xacaR3LmWpB2HV+m9b5qoV+vRalfvLUl3xoKNnvOyDp7cKovFqpdaDNPjFZ+VJPX7uoHOX/5HTau/qC5NPor3N4+F7dWHU1ppxvvHdSPyihZvnKBOjd5zLv9mcX+t2TVbJQtU0b+7L0zX8gMS9cDsOP8A94Nwr993z9WOQ7/p1TafJdu+epsPXpid6I9ySVLz6i+qefUXna97jCqvJyq/IEnafnCllm/9TuPf3KyggMya+etQTfnlA/Vp92V6h410YqZ5FHedunBII2d309WIcAUHZFH/jlNVNG+5eOsldWySu764+kN4GYkJpf9v1apVng7BKyU2EallzZ6qUbqFLBaLFm74QmPmvKLRr66RJC1YP05Hz+7Wt/32ytfHT5euhTm3m7z0PZUpUkuf9FimAye3asi0p/X9oGPysfkmuUxK/kJ217nLx7V444Q4N2iDnp+p6SuG6EbklTQfE3iXuzf5SVm14weVKVxL5YvdyXOb1aasmXIluwze68MuPzm/GWX9ngUaObu7Jr6zy7NBpRNX6kBIUHaVL1ZXu46sSf+AvNCGvQtUv2IH2Wy+iV77YBw3Iq+ox+jyunU7UrmyFNLt2FsKu3hUT1Tton7tJ3k6PAAAAAAAAAAAACBd0E8Gb5OacW2MTzOWpM51RORVTV76nmqUbhlnmzlrR8nX5q9p7x3W2UvH1GdcTYU+0lAhwTkkSb3bfKY65dsm+7dvRF7Rj6s/jTORqmerkSqSp5z+2LfQXUVMV7T7xkA9MDfOf9rQDno/7gfhThv2LlDjql0lJZ1DRrf/xGZduXFej5VrI0k6emaXyherq6CAzJKkGqVb6t0JDZhQ6sXMNI/irrHzeqllzZ5qVr27ft89VyNnd9eXfbfGWy+5Y5NU2+DKj4BlNCaUIk0Smojk5xugmmXuPWCUKVxLc9eOcr6es3akRvZaJV8fP0lS9pC8zmVrd/2kaQMPS5IeLVRdOULya/eRtapSqnGSyx4UE3tbX/2vr7YfWqnMgdlUvlg957Kx83rr3OV/1GtMqHJnK6z/vvhzGo8CjO7Eub/k6+Ovf01ppQtXTql4vorq1Xq0smbKleQyeK+7F3pJioi6KskiiQ8IEnP20hG9+nkVWS02Nav+otrUfs3TIblNcuc8Jva29h3foP4dpzo/MJDiX/tgHJkCs6pR6PMK9M+szk0+1NYDyzVr1TBTtwEAAAAAAAAAAAAwPvrJ4G1SM66N8WnGkdy5Hr/wDT3/xL+0fs/8ONut3TVb77SfLEnKl72YKj7SQOv3LkjwV8gkafqKIfptx0wF+4eoeukWzvfHzuutyFvX1WtMqGw2H33Vd5s7i5chaPe9H/XA3Dj/aUc76P24H0RKJDVeuG+7r+OMFU4qh7zRiB+7yiGHSheqoZdbfprkPIhlWybriapdnGOmSxasqp83fqVL18KULXMe/bZjpm7euq5rNy8pJCh7RhUBbmS2eRSXb5zXwVPb9GmPFZKkehWe0RcL3tDp8MPxfnk4sWMjJX99ceVHwDIaE0qR7hasH6vHyj0lSYqIuqbL18/pj33/07rdcyVJzzz+jhqEdtS1iIuKjb0dZ4JpnmxFdf7KiSSXJWTJpm908sIBTeq3T5I0aFIz57K+z0zQV/97SxPf2enuosKgYu0x2nHoV417c5NyhOTXlF/e17j5r+qjrnOTXAbvNnxWV+06slqS9PHLSyXxAUFCShSoolkfnFJwYBZduHJKH0xuqSzBOVW/UgdPh+YWyZ3znYdXq2yR2nEmk0pxr33wLn3GP6bT4YcSXPb12zuUO2shHT6zU0/X7SNJOnRqu0rkr5yRIQIAAAAAAAAAAABuRz8ZzOj+vn3Gpxnb/ef6991zZbVYVbtcm3gTqc5fOaE82Yo4X+dNIgc271+i33fP0Vd9tyvIP7OGz+riXNb3mQnq/Vmo1+cA7b6xUA/MjfOfOrSDxsf9IO5KarzwtgMrEhwrLHn/eOExr/6u3NkKKyb2tr5b9i+NmN1Nw/5/3PyDIqMjtGbnjxr35ibne6ElGqp9/Xf1r+9ayWaxqU75pyVJNitT1byZmeZRXLhyUtlD8slmu5OzFotFubMV1vkrJ+JNKJUSPjYJ8Ya2gVqKdPXDb8N0JvywRvT6TdKdiXmx9hjduh2p8X02K+zScfX9srYK5S6tXFkKuu3v7jj8m5pU7er8FdRm1V/Ssi2T3bZ/mEvurIVV6ZGGypmlgCTpiSqdnTf9SS2Ddxv43HRJ0opt0/Tt0oHOm2M+IIgrOCDE+f9cWQuqYeXntOfYOq+ZUJrWTtE/9i10Pvzc9eC1D95l3Jsbk13n6JmdKlHgTh4cOrVdj5Vrk95hAQAAAAAAAAAAAOmKfjKYTVr79hmf5j3uP9eXroVp5q9DNfrVNWne745Dv6l+xQ7OsTNP1uqlvcfXp3m/DxPafeOgHpgb5z/1aAeNjftBPCix8cIJjRWWjDFeOHe2wpIkH5uv2tV7Sy+OKJXour/vmqMiecqpSJ6ycd5vU/s1tan9miTpr382KVeWgnHGl8P7GGkeRXJzBVIqsWNzP29pG5hQinQzZ80ord87XyN6/qoAvyBJUkhQdgX6Z1LjKp0lSXmzF1W5onV04ORWPZK/kmxWH126Fub8Zo9zl48rd9bCCgnOkegyV1ju+ylhIKXqV+qgX7ZOVkTUNQUHhGjL30tVPF+lZJfBGJpW66ax83rrWsRFhQTn4AOCB1y8dlbZMuWR1WrVzajr2vTXYrWo8bKnw3JZWjpFHQ6Hth1Yrh5PjnCum9C1D8YSfvW0ZLE4v0jgaNhuPf/EBx6OCgAAAAAAAAAAAEhf9JPBSBIc18b4NEN68FzvOrJal66fVe/PQiVJVyPCtemvn3XlxgW91OJj5c5aWOcu/6McIfkkSWGXj6tqqaYu/S2LxVg5QLtvHNQDc+P8px7toLFxP4iEJDReOKGxwpIxxgtHRkcoNva2MgVmlSSt3jEryQmCy7ZOVvMExohfvHZWOULyKSr6pqYt/0gdGgxIr5CRwYwwjyK5uQK+Pv66dO2sYmNjZLP5yOFw6PzlE8m2/Q8em7u8qW2wejoAGNPctWO0eucsDe+x0nmBuath6HPaemCZJOnazUs6cGKLiuerKEmqV7G9Fm+aIEk6cHKrwq+eVsVH6ie77EFVSjbWb3/OUEzsbd2Oidbybd85lwX5h+hm1FW3lhfe6/O5vfTc0IK6cPWUBk1qpm6f3vlZ6tFzXtEf+36WdOebN55r9L7e+qK2eo6uqJ2HV6nvMxOSXQbvdCPyisKvnnG+3rB3oUKCcyhzUPYEPyAolreCp0J1C1fqQFT0TT03tKD++317nTj/l54bWlCTlw6SJK3bM089x1RQrzGV1OeLWqpaqomaVX/RY+Vxt6TO+d8nt6hwnjIK9M8kKelrH4zj8OkdcR6YMwVk1c8bv/JgRAAAAAAAAAAAAED6o58MRpFU3z7j04wloXNds8yTmjP4nGa8f1wz3j+uehWeVecmH+mlFh9Lkh6v2F6LN97JgbOXjmn3kTWqU75tgvuvXLKxft89RzejrsvhcGjJpm+cy4ICQhR9O1K3Y6LTtYzpiXbfGKgH5sb5TxvaQePifhAJSWy88INjhSXjjBe+cv2c3p3QUD1HV1SP0RW0++haDeh059cX7x9HLkknzx/QkTM71aBSx3j7ee/bpnplVDn1+qySyherq6fqvJFhZYB7mW0ehSRly5RbJQpU0a9/zpB0Z25EzqwFVSBniTjrJXVs7vK2toFfKEWafD63lzb/vUSXrodp0KRmCvLPrFG912ji4n7Kl7243p3QUJLk5+Ov8X02S5JebvGJRv70ohb9ceemumPDgSpduIYkqceTw/XprC7qNrykfG1+eu+5GfKx+Sa77EEta/bQ8bC9enlUWWUOzKbyxerp0KntkqTi+SqqSN5y6jGqvPLmKK7/vvhzgvuAObz17MQE3+/XflKc102qdlGTql0SXDepZfA+EVFX9d/v2+vW7UhZLVZlCc6l/764WBaLJdEPCB7MF2/iSh0I8AvSrH+dSnC9tnXeUFsD3/gndc437F2g2uXaSpIuXDmV5LUPxlGrbCvVKtvK+frLvls9GA0AAAAAAAAAAACQMegng7dJzbg2xqcZR2rHcbRv0F+jf3pJXT95RFarTW88/YWyBOdMcN2aZVrqwMktenVsFQX7h6h66RbSsTvLQoKyq3HVruo1pqIC/DPpq77b3Fq+jEC77/2oB+bG+U872kHvx/0gUiKx8cJZgnM6xwpLxhovnC9HcU14e0eCyx4cG18o96P6eej1BNf9tt8et8cGzzDbPIq73npmokbO7q5Zq4YpKCBE/Tvc+4KA0XNe0WNl2+iR/JUSPTZS8m1DQtekae8dzvjC3ocJpUiTxCYirRzpSHSbkOAcid4UZcucR8N7rkjxsgf52HzVp13C3wJjs/lo6EuLXdoPAPPJk62IvuizJcFlfEBgPkmd801/LdLI3qslSbmyFkzy2gcAAAAAAAAAAAAAADJOasa1MT7NOFwdxzGg09Q4rwP9gvWvzrNd/jtdmw5R16ZDnK9fbD7U+f932n/r8n6A9EA9MDfOP8D9IFImsfHCr4wq5xwrLDFeGMZm1nkUhXI/qnFvbkxw2f0TZhM7NlLybUNi1yRPsno6AMAdsgTn0vBZnbV0c+pmt3/ywwv67c8ZCgoIcXNkAACjmvTuPmXLlNvTYQAAAAAAAAAAAAAAgHTG+DRkDsquyb8M0vcr/5Oq7b9Z3F8/rv5EmQKzuTkyIONQD8yN8w+z437QnBgrDMCo+IVSGEJaZ7cPen6mmyIBAAAAAAAAAAAAAAAAABgJ49MwpNv8NG3fs9VI9Ww10k3RAJ5BPTA3zj/MjvtBAICR8AulAAAAAAAAAAAAAAAAAAAAAAAAAAAABseEUgAAAAAAAAAAAAAAAAAAAAAAAAAAAIOzOBwOh6eDgHdwOCT7bU9H4RlWX8li8XQUrnE4pOhYT0fhOj+be4+tN+apO/PL286/RA5I7s8Byu+efWUUd19jzN4OkAMAAAAAAMCMYqOl1eM8HUXqNewj2fw8HQUAAPBm3nw/5K57IfrJzN1X6o3n/66U5oE3lzUlUlM/HA6Hbtq9qxIEWW2ypKCgZjn/UmpzwPuOj3vHDRm/DkjeeZ5Tg3YwYWY5/xLtYGqYoQ5I3nmeUyO1dcCsz0SSd+ZGejwXe9Mx4HMB6oDZ5xHc5Ymx5D4Z++fgzSwWOvO9gcUi+Zu4Zps9T81+/iVygPKbu/wS7QA5AAAAAAAAAAAAADOin8zcfaVmOv9mKmtKWSwWBduMXQk4/0kz+/ExQx2QOM9JMUMOcP6TZvbjY4Y6IHGek2LmZyKJ3JA4BtQBzr+Zy59SVk8HAAAAAAAAAAAAAAAAAAAAAAAAAAAAgPRl4rnXAAAAAAAAAAAAAO6368gavTuhYaLLrVablg+PycCIAAAAMhb3QwAAAAAAAACMjAmlAAAAAAAAAAAAAOJoGPqcapRuGe99q9XqgWgAAAAyHvdDAAAAAAAAAIyICaUAAAAAAAAAAAAA4ihZoIoaV+2cLvt2OByKio5QoH+mdNk/AACAO3A/BAAAAAAAAMCImFAKAAAAAAAAAAAAIFXW7Z6nhRvG68iZnYqJjVaurIVUrVQz9Ww1Sr4+ftp1ZI3endBQ73b4TlHREfr5jy919uIRdWo0SF2bDvF0+AAAAGnG/RAAAAAAAAAAb8KEUgAAAAAAAAAAAABxRN2+qasR4fHe97H5KTggRJI05ZcPNGvVMBXJU1bP1Htb2UPy6czFI1q/Z566NfuPfH38nNvNX/e5rt+8qBY1eyh75rzKlbVQhpUFAAAgNbgfAgAAAAAAAGBETCgFAAAAAAAAAAAAEMf0FYM1fcXgeO/XLPOkhr60WH+f2KJZq4Yp9JGG+vjlpfLzDXCu80rLT+Ntd+HKCU0e8LeyZcqdrnEDAAC4C/dDAAAAAAAAAIyICaUAAAAAAAAAAAAA4niyZk89XrF9vPezZMolSfptx0xJ0kstP4kzeUKSLBZLvO0aV+3K5AkAAOBVuB8CAAAAAAAAYERMKAUAAAAAAAAAAAAQR4GcJVWlVONEl58OPySLxaJH8lVyaX8Fc5VyV2gAAAAZgvshAAAAAAAAAEZk9XQAAAAAAAAAAAAAALyPRRYpgV/fSoi/b1A6RwMAAJDxuB8CAAAAAAAA4G2YUAoAAAAAAAAAAAAgRQrmLCW7w66jZ3Z5OhQAAACP4H4IAAAAAAAAgDdiQikAAAAAAAAAAACAFGlU+XlJ0pRf3tftmOh4yx0OR0aHBAAAkKG4HwIAAAAAAADgjXw8HQAAAAAAAAAAAACAh8uh03/q1+0zElxWp3xblS5cQx0bDtTs1cP12udVVL9SR2UPyauzl45p3e65+qLPFmUKzJqxQQMAALgR90MAAAAAAAAAjIgJpQAAAAAAAAAAAADiWL1zllbvnJXgsqkDD6mAfwm90vJTFc9XSf/b8IV+WjtCDrtdubIWUo3SLeXvG5TBEQMAALgX90MAAAAAAAAAjMjicDgcng4CAAAAAAAAAAAAQOrERkurx3k6itRr2Eey+Xk6CgAA4M28+X6IeyEAAAAAAAAAGcnq6QAAAAAAAAAAAAAAAAAAAAAAAAAAAACQvphQCgAAAAAAAAAAAAAAAAAAAAAAAAAAYHBMKAUAAAAAAAAAAAAAAAAAAAAAAAAAADA4H08HAO/hcEj2256OwjOsvpLF4ukoXONwSNGxno7CdX429x5bb8xTd+aXt51/iRyQ3J8DlN89+8oo7r7GmL0dIAcAAAAAAAAAAGbkjZ+P3+Wuz8m98RjQT+T+/mIz8MZcT43U1A+Hw6Gbdu+qBEFWmywpKKhZzr+U2hzwruPj/usAdcBIaAcTRg4kzduOD+0gdSApqa0DZn4m8sb8YPwonwtQB8w9jp7xs4DnMKEULrPfllaP83QUntGwj2Tz83QUromOlQbO9nQUrhveUfJ3Y0vkjXnqzvzytvMvkQOSe3OA8pu7/BLtADkAAAAAAAAAADAjb/x8/C53fU7ujceAfiL39xebgTfmemqkpn7ctMcq26qV6RNQOrncqImCba5XArOcfyl1OeBtx8fd1wHqgLHQDiaMHEiatx0f2kHqQFJSkx9mfybyxvxg/CifC1AH3JsD3nYMGD8LeI7V0wEAAAAAAAAAAAAAAAAAAAAAAAAAAAAgfTGhFAAAAAAAAAAAAAAAAAAAAAAAAAAAwOCYUAoAAAAAAAAAAAAAAAAAAAAAAAAAAGBwTCgFAAAAAAAAAAAAAAAAAAAAAAAAAAAwOCaUAgAAAAAAAAAAAAAAAAAAAAAAAAAAGBwTSgEAAAAAAAAAAAAAAAAAAAAAAAAAAAyOCaXwGruOrFGT/hYt3zrV06EAAAAAAAAAAAAAAAAApsCYHZADMDvqAMgBmB11AAAAwFh8PB0AjGPXkTV6d0JD52urxaqggBDlDCmgkgWrqmHoc6r2aDNZLBYPRgnE92DuSlKAX7AK5iqlxlW6qG2dN2Wz0VwaGTnAMTB7+UEOAAAAAAAAAABgVvQRwAgYswNyIPW4DhgDdQDkQOrRDhoDdQBpYfZ2wOzlBzlg9vIDZkWthts1DH1ONUq3lEMORd66rpMXDuiPvQu1cvt0VSnZWB92maNMgVk9HSYQz/25e/l6mFZun64Ji97RifP79faz33g6PGQAcoBjYPbygxwAAAAAAAAAAMCs6COAETBmB+RA6nEdMAbqAMiB1KMdNAbqANLC7O2A2csPcsDs5QfMhgmlcLuSBaqocdXOcd7r3XqMvl0yQPN+H6NhM5/TsFd+8VB0SImxnd33TUR9Zzjctq/08mDutq79ml4eUVq/bJmkF5t/rKyZcnkwOs8gB8yXA2Y/BmYv/4PM1gZI5AAAAAAAAAAAAGZFH0FcZuwnMgLG7IAcSD2uA8ZAHQA5kHq0g8ZAHXAfMz4Tmb0dMHv5H0QdMF8OmL38gNkwoRQZwma1qXfr0Tpwcou2HlimvcfWq3yxupKkiMir+mHVMK3fM08XrpxUUECIKpdsrJeaf6x8OYonuV+73a5Zqz/R9gPLderCQV2PvKRsmfOqZukn9WLzoQoJziFJunzjvJ4fWlCPV2yvQc/PjLefcfNf1+JNX2v6e0eVN3tRt5ffG10LP6F6L4xRlRZvezoUjwn0C1bpIrW0bvdcnbl4xHQ3QeQAOSBxDMxcftqAO8ycAwAAAAAAAAAAmJmZ+wjoJzIWxuyAHEgdM18HjIY6AHIgdWgHjYM6kHI8E91h9nbAzOWnDtxh5hyQKD9gdEwoRYZqXv1l7T22Xpv3L1H5YnUVEXlVfb+srfNXTqhZ9ZdUNE85Xbp2Vj9v/Epvjq+pL/tuU55sRRLdX0xstOasGal6FZ7RY+WeUoBfsA6e3KplWydr7/H1+qrvdvn6+Clbptx6rGwbrd8zXzciryhTYFbnPqJvR2n1zh9UuUTjh+ZB5GFwbMciFa/c2tNheNzZi0ckSSFB2T0cScYjB+4wcw7cZfZjYNby0wbcY9YcAAAAAAAAAADA7MzaR0A/kTExZgfkQMqZ9TpgVNQBkAMpRztoLNQB1/FMdI/Z2wGzlp86cI9Zc+Aus5cfMDJTTigNDw/XiBEjNH/+fJ06dUq5cuVSu3btNGzYMPXp00dTpkzR+PHj9cYbb3g6VMMpnq+iJOnUhYOSpKkrPtLZi0c17s1NeiR/Jed6Tat3V8/RFTRt+WAN6DQ10f35+vhr9kdn5e8beO/Nx3qrbNHaGjPnFf2xb6HqV+ogSWpZs6fW7ZmnVTt+UJvarzlXX7dnnm5EXlHLmq+4saTe70rYIVVq8rqnw8hQUbdv6mpEuBwOhy5fD9OijRN0+PQOlS5UQwVzlfJ0eBmOHDBnDpj9GJi9/PczYxsgkQMAAAAAAAAAAJgVfQT3mLWfyOgYswNyIGlcB4yPOgByIGm0g8ZHHXCdWZ+JzN4OmL3896MOmDMHzF5+wGxMN6F0586datGihcLCwhQcHKyyZcvqzJkzGjdunI4cOaJLly5JkkJDQz0bqEEFBYRIkm7euiaHw6FVf85UheKPK2eWAroaEe5cL8AvWKUL19L2QyuS3J/FYnE+iMTaYxV567pi7TEKLdFIkrT/xGbnw0jVUk2UN3sxLdsyOc7DyLItkxUSlEO1y7V1Z1G9WnTUDfkFZPZ0GBlu+orBmr5icJz36pZvpzef/tJDEXkOOXCP2XLA7MfA7OW/y6xtgEQOAAAAAAAAAACMyW63a8H6sVqyaaLCLh9X1uBcerxSB3Vr9h8F+gV7OryHAn0Edxi1n2jWqk906PSfOnRqu8IuHVOebEU04/3jng4rQzFmx3WxU6bK/uNPsr3zlqzNm8ZZ5nA4FNv/PTn275fPF+NkKVbUM0GmAjmQNK4D91AHzFkH7kcOmDMHaAfvoQ6Ysw7cZdRnIleYvR0we/nvog6YNwfMXn7AbEw1oTQ8PFytW7dWWFiY+vXrp8GDBytz5jsXuxEjRmjgwIHy8fGRxWJRxYoVPRytMd2MuiZJCvIP0ZWIC7p286K2H1yhZ4fkSnB9q8Wa7D7X7vpJc9eO1uEzOxQTezvOshuRl53/t1gsalHjFX237AMdPr1TJQqE6uzFo9p1dI2erttXvj5+aSiZsZzYs1KFKzRNfkWDebJmTz1esb1i7Ld17OwezV4zXOFXT8nPN8C5zp6j6/T+5Bbxto2JjZbdHqvlI2IzMuR0Qw6YNwfMfgzMXv67zNoGSOQAAAAAAAAAAMCYvl70thauH6c65Z/Ws/X76cS5/Vq4fpyOnN6h4T1/ldWafN+80dFHcIdR+4mm/PK+MgdlV8kCVRQRecXT4XgEY3ZcZ+3yguybNit24reyVK0iS66czmX2+Qvl2L1H1pe6e9UEEokcSA7XgXuoA3eYrQ7cjxy4w2w5QDt4D3XgDrPVgbuM+kzkCrO3A2Yv/13UAfPmgNnLD5iNqSaU9unTR6dOndIbb7yhUaNGxVk2YMAA/fDDD9q1a5eKFSumkJAQD0VpbEfP7pYkFcz9qORwSJKqlGysjg0Gpmp/6/bM19AZHVW6UA291mascmUtJD+fAMU6YvX+pOay2+1x1m9e/SVNXzFYy7ZO1hsFxmvZ1ilyOBxqUeOVtBXMYM4e2qA6nYbHeW/D7Pe1bdEnatxjssrVfynOMofDoXkfN1TY4Y3q9N/tylmofEaG6zYFcpZUlVKNJUk1SrdQ+WJ19fZXdTV2Xm990PlHSVKF4vW06OMbcbYLv3pGr4+rpqdqv5HhMacXcsC8OWD2Y2D28t9l1jZAIgcAAAAAAAAAAMZzPGyf/rdhvOqWb6fB3eY538+bvZi+/F8frdn1oxpVft6DET4c6CO4w6j9RNPfO6J8OYpLknqMKq/I6BvJbGE8jNlxncXXVz79+ymmz9uKHfO5fD4ZKklynDwl+9TpspR+VNb2z3g4ypQjB5LGdeAe6oBrjFYH7kcOuMZoOUA7eA91wDVGqwN3GfWZyBVmbwfMXv67qAPmzQGzlx8wG9NMKN2/f79mz56tnDlz6pNPPklwnapVq2rXrl2qVKmS8701a9aoYcOG8datVKmSdu7cGee9devWaciQIdq1a5diYmJUunRpDRgwQO3atXNrWbzZsq2TJUk1Sz+pLMG5lCkwq25GXXNeeFLqt+3fy88nQCN7r1aAX5Dz/RPn/05w/ewheVWrbGut+nOmXm75qVZsm6rShWuqaN5yqfr7RuSw2+VwOGS12uK8X+uZITq2Y5F+n/mOCpdvqsw5CjqX7Vj2uU7/vVa1O3zi1TeBDypXtLYaV+mildunq23dPipXtHa8daJjbunf09upfNG6ev6J9z0QpfuRA/eYNQfuZ/ZjYMby0wbEZcYcAAAAAAAAAAAYy+qds+RwONSu3ltx3m9Zs4cmL31Pv/45gwmlCTBjH4GR+4nuTiY1M8bspIylZAlZO3WQfeYs2Zf8IkvzpoodMUpyOGTr308Wmy35nTxkyIGUMeN14H7UgeQZvQ6QA8kzeg7QDlIHkmPEOmDkZ6LUMHs7YMbyUwfiMmMO3M/s5QeMLvnfojeIWbNmyW6364UXXlCmTJkSXCcwMFCS4kwovevLL7/Uxo0bnf++//77OMt37dqlJk2ayGazaerUqZo9e7YKFSqkZ599VosXL3Z/gbxMrD1WExe9q73H1qtG6ZYqX6yOrFarGlV+QX+f3KLfd89NcLvLN84nuV+r1SaLxSKH49632DgcDv3w69BEt2lZs4euR17W2Hm9FX719EP3zTaeFnZ0i/I+UiPe+zYfPzXtNU0xtyL066SXne9fPnNAG+d8oLyP1FTVVv0zMtQM8ULjD2W12jRt+UcJLh87r7eib0epf8epGRtYOiIH4jJjDjzI7MfAbOWnDYjPbDkAAAAAAAAAADCWAye3ymqx6tHCcT//9/MNUPH8oTp4cquHInv4ma2PgH4iY2LMTupZX3hOKl5csd9Okv3LCXIcOChr966yFCqY/MYPEXIg9cx2HXgQdYA6QA6QA7SD1IGkGLEO8EwUn9nbAbOVnzoQn9ly4EFmLz9gZKb5hdJVq1ZJUoK/NnrXqVOnJCU8obRs2bKqVatWotvOnj1bFotFCxcuVFDQnW9Zady4sYoXL66ZM2eqVatWaQnfqxw6/ad+3T5DkhR567pOXjigP/Yt1LnL/6hqqaZ6//kfnOu+1Pxj7Tu+QUNndFD9ih1Upkgt+dj8dO7yP9ry91KVLFBVAzpNTfRv1av4rNbtmaf+ExupcdWuio29rQ37FupW9M1Et6lWqpnyZCui3/6coUD/TGoY2sltZfc2p//+XflK1pbVdq8p+GfXMlVu8XaC6+cuVkXVWg/SloX/1Z5V36hcg5e1fGJXORwONe01Ld63kRhBgZwl1LBSJ/22Y6b2HF2nCsXrOZctWD9Om/cv1hd9tsb5diVvQg4kz+g54AqzHwMjl582wDVGzgEAAAAAAAAAgPFdvHZGIcE55efjH29ZziwF9Nc/f+h2TLR8ffw8EN3Dzch9BPQTGRNjdtzL4uMjn/7vKObNt2RfvESW8uVkbdfW02EliRxwLyNfB1xBHaAOkAPkAO0gdcDIdYBnIteYvR0wcvmpA64xcg64wuzlB4zMNL9Q+s8//0iSihQpkuDymJgYbdiwQVLCE0qTEx0dLT8/P+evnEqSzWZT5syZZbfbk9jSeFbvnKXhP3bRyNndNOmX9/TnoZWqWLy+hr38iz7tsVzBgVmc6wYHZtHnr29Q1yb/1vFz+zR56SBNWjpQG//6WWUK11Lr2q8m+bcahnbS289+o8hbN/TN4nf105oRKpTrUX3SY3mi21itVjWvfuebMepX7KBA/4R/sdboDm6arf+NelKnD6yL8/6tyKvyD8qSyFZSjbYfKmfhSlr/w7taM+1NnTuyRbXbf6xs+R9N75A95rknPpDVYtW0Ffe+WWPn4dWatGSgPuwyR3mzF/VccGlADrjOqDmQEmY/BkYsP21AyhgxBwAAAAAAAAAA5nAr+qZ8E5hMKkl+PgF31rmd+IBfszNiHwH9RMbFmJ10EBws+fpKkizVq8lifbiH25ED7mfE60CKUAcSZZY6QA4kziw5QDtIHUiMN9cBnolSxuztgBHLTx1IGSPmQEqYvfyAUVkcDofD00FkhOzZs+vy5cv6448/9Nhjj8VbPnPmTHXu3FmZM2fW1atXZbFYJElr1qxRw4YNlTt3boWHhytHjhxq06aNPv30U+XMmdO5/a5du1SrVi29+uqrGjhwoHx8fDRx4kT9+9//1sqVK/X444+nOOZq1aopLCws9YV2Mz+fQH3zxiFPh+EWs1eP0KSlAzX29T9Utmj8fHhQzy9KKjomMgMiSzubb6CeHuraedryv48VeT1c9Tt/Jkm6Fn5CR7bNV+XmbyW53YV/dunHj6rLHntb+UvV1bP/Wpvqh+QF/yqp2NvuO7YZkadhl47rjXHV1bnJYLWt80aa9+fO/ErJ+ZfIgdR6mHMgo9pqdx4Dyu/ea4y3XQck97YD5AAAAAAAADAjb+/D4fMRAEi7pK4FPUZX0JUb5zVn8Ll4y/77fQf9vnuOln5yy2O/UOqu6wB9BObuJ0rJ+e8xqrwio29oxvvH0/x33SGleeDt936ujtlJTf1w+PnpwsQv0xrivf05HIodMEiOv/6S8uWTzp2Xz8SvZMmfz21/I1ev12WJjnZ5fW8//1L65oC3jRlx93WAOuAdaAfjIgdoB2kHqQOJSU1+mPmZSOK52Ozll6gD5AD3AoDZ5M2bV9u2bUvVtj7Jr2IMefPm1eXLl/Xnn3/Gm1B69uxZ9e/fX5JUsWJF52RSScqSJYv69++vxx9/XJkyZdLGjRv1ySefaNOmTdq2bZsCAu58W2elSpX022+/qV27dvrsszsX1eDgYM2ZMydVk0klKSwsTKdPn07VtukhwNcYP0MdGxujJZsmqljeCi5NJpWks2fOKMpLvpHVx9/18/RItae1aHQb543gsR2LVKxy62S38w/KIpuvv+yxt1U0tGWabgLPnD2jmFvuO7bpnadR0Tc1eGpbPVa2jVsmEkruza+UnH+JHEiNhz0HMqKtdvcxoPzuvcZ423VAcm87QA4AAAAAAAAz8vY+HD4fAYC0S+pakCMkv06c+0vRMbfk98AvlYZfPa0swTk9NplUct91gD4Cc/cTefP9UErzwJvLmpIxO6mqHwH+8k1DfA+yL/xZjl27ZX2xm6yP1VLM628qdvRnso0aHmd8WVqcOXtGirrl8vrefP6l9M8Bbxsz4vZnIerAQ492MD5yIHG0g6lAHXjopXcdMPMzkcRzsdnLL1EHyAHuBQC4zjQTShs3bqz9+/dr+PDhatKkiUqVKiVJ2rp1q7p06aLw8HBJUmhoaJztKleurMqVKztfN2jQQOXLl1ebNm00a9Ysvfjii5KkQ4cOqWPHjqpevbpee+012Ww2zZw5U506ddLixYvVqFGjFMecN2/eVJY2ffj5BHo6hDQ5e+mY9v+zUX/s+5/OXjqq91+Y5fK2+fLn95pvPrD5un6echQoK1ksunhqn3IULKcr5w6rUp5HktzG4XBo5Tcvyh4Trez5y2jL/4aqZM0OyprMdonJny+/23+dMj2t2zNPR8/u0unwg1qza3a85ZPf/Uu5sxVO0T7dmV8pOf8SOZAaD3sOZERb7e5jQPnde43xtuuA5N52gBwAAAAAAABm5O19OHw+AgBpl9S14NFC1bX94AodOLFFFYrXc74ffTtKR8/sVIXiqfuSbHdx13WAPgJz9xN58/1QSvPAG8uamjE7qakfDj8/XUhtkA/u6/Rp2adMleXRUrJ2eFYWm03Wzi/I/t002Rf+LNvTT7nl7+TPlz/Fv0rmjTIqB7xtzIi7rwPUgYcX7WDiyIHE0Q6mHHXg4ZVRdcDMz0QSz8VmL79EHSAHuBcAzCYt8w5NM6F0wIAB+uGHH3Ty5EmVK1dOpUuXVlRUlA4fPqwWLVqoaNGiWr58uSpVqpTsvlq1aqXg4GBt27bNOaH0/fffV1BQkBYsWCAfnzuHtWnTpjpx4oT69eunHTt2pDjm1P7sbHqJjZZWj/N0FKm3+8hajfrpRWUJzqnOjT9Sw9BOLm976OAh2Tz3hawpcitGGhj/2pyo4pVb6+ifPytzziLyC8ic7Pq7VozXqf1r9Fj7j/VI1ac0619V9Ou3L+mZD9ak6huXDh46JH83tkTpnadNqnZRk6pd3LpPd+ZXSs+/RA6k1MOeAxnRVrv7GFB+915jvO06ILm3HSAHAAAAAACAGXl7Hw6fjwBA2iV1LWhQqaNmrRqm+es+jzOhdOnmbxV1+6YaVX4hg6JMmLuuA/QRmLufyJvvh1KaB95Y1tSM2UlN/YiIjVG2VStTGeU9DrtdsSPHSHa7bP3fkcVmkyRZOzwrx4Y/ZJ8yVdaaNWTJny/Nf+vgoYMKtrleCbzx/EsZlwPeNmbE3dcB6sDDi3YwceRA4mgHU4468PDKqDpg5mciiedis5dfog6QA9wLAHBd2n5f2osULFhQ69at05NPPqmAgAAdP35c2bNn18SJE7VkyRIdPHhQklyaUHrX/Re9PXv2qFKlSs7JpHdVq1ZN+/fvd08hkCbNqnfXypEOzR1yQd2a/dvT4Tw0ilW5cyN4Ys8KFS7fJMl1L4cd0oafBilP8eqq1nqgchQsp5rthuj0379r14rxGRMw3I4cAMyNNgAAAAAAAAAAAGMrlq+C2tR+Xev3zteQae20dPMkTVjUTxMWvaOKxeurUeXnPR0iPMRM/UQrt3+vmb8O1cxfh+pKxAVFRF11vl65/XtPh2d43jZmxz53vhx/7Ze1W2dZCt/7ZRWLzSbbu+9I9ljFjv5MDofDg1F6F2/LAbOjDrift9UBcsD9vC0HzI464H4Pax0w0zMRkBDqAACYl2kmlEpSmTJltHjxYl2/fl3Xr1/X5s2b1bNnT0VEROj48eOyWq0qX758svv5+eefFRERoRo1ajjfy5s3r3bu3KmYmJg4627dulUFChRwe1kAdynwaD1dCTukI9sWKF+p2omu57DbtXJidznssWraa5qs1jvfuFS11QDlLlZNG34apCvnjmRU2HAjcgAwN9oAAAAAAAAAAACM79U2n6tnq1H659w+fbHgda3Z+aPa1nlTQ19aLKvVVENHcB8z9RMt2zJZU5d/qKnLP9SVG+d1I/KK8/WyLZM9HR4eIo4TJ2Sf9r0sZUrL+ky7eMstRYvI2vkFOfbslX3hzx6IEEhf1AGQAzA76oC5mOmZCEgIdQAAzMtNPw7t3fbt2yeHw6FSpUopKCgozrLOnTurePHiqlKlijJlyqSNGzdqxIgRCg0NVadOnZzrvf766+rQoYOefvpp9erVSzabTT/88IPWrl2rsWPHZnSRAJdZbT4qUrHZnf///81dQv5cOlpnD/2hOp2GK3uBMve2t9rUtNdUt/xkPTyDHADMjTYAAAAAAAAAAADjs1ltal+/n9rX7+fpUPAQMVM/0ehX13g6BHgJS+HC8l3yvyTXsT3XUbbnOmZQREDGog6AHIDZUQfMxUzPREBCqAMAYF58zaSkPXv2SJIqVaoUb1m5cuW0YMECde3aVS1atNCUKVPUo0cPrVmzRn5+fs712rdvr0WLFunKlSvq1q2bnnvuOR04cEAzZ85Unz59MqwsQGo8UrWtild9KtHll07v18Z5HypviVqq0jJ+ByM/We/9yAHA3GgDAAAAAAAAAAAAzIl+IgAAAABmxjMRzI46AADmxC+UKukJpYMGDdKgQYNc2k+rVq3UqlUrt8YGZISSNdsnuTx7gTJ647uoJNep3maQqrdxra48TKJjbmnion7adnC5/HwC9Ei+Snrv+Rnx1vtly2T9uPpTOex2hZZopD7tvpKPzVeSdOzsHn2x8E1dvnFOkvRi849Vr0K7DC1HWpk5BwDQBgAAAAAAAAAAAJgV/UQAAAAAzIxnIizb+p1G//SShnRboDrl28Zbfv7yCY1f8LpOhR+U1WJT68deVdu6b+rY2T0av+B1XblxXjarjx4tXENvPv2l/H0DM74QaUAdMK/o21H6eGYn/XPuL/n7Biprptzq0+5rFchZIs56kbdu6N/Tn9GhU9sVa4/Rwv9ecS4Lu3Rc3T59REXzVnC+N7jrPOXP+UhGFQNAKjGhVElPKEXSvlzYRxv/+lnnLv+jr9/aoRIFQpN8P7llSU3uO3XhkEbO7qarEeEKDsii/h2nqmjecpKkJv0tKpq3vF5pOVw1y7SMF+fCDV/o4MltGtBpqg6f3qmTF/5Ww9BOzuXvTmioo2d2qXOTj9Su3ltuP054eE1e+p4sFoumDjgoi8WiS9fC4q1z9tIxTV3+ob7u+6eyZc6jj6Y+pSWbvtFTdV5XVPRNfTT1KQ3sNF3li9VVrD1W129e8kBJ4E4Dv2mqy9fDZLFYFRSQWa8/NU4lClT2dFgZwtWHg2sRF9V/4hPO17du39TZS0c1Z/B5hQRld3mythH8vnuuNu9fohuRl5M9bgAAAAAAAAAAAACQURLr+05qDA7jc4wjsX57zj/MgjoAcgBmx70g3On33XO149BverXNZy6NMfUWYZeO65fN36pM4VoJLnc4HBoy7Wl1bPie6le6M/Hy8vU7P0Dk6xOgN9p+oeL5KyrWHqtPfnhes1cPV9emQzIqfKQDs40hb1mzp2qUbiGLxaKFG77QmDmvaPSra+KsY7P5qmPDgcocmF3vTmgQbx+B/pk18Z2dGRIvAPdhQqmkVatWeToEr1Wv4rPq0GCA3v6qrkvvJ7csqcl9Y+f1UsuaPdWsenf9vnuuRs7uri/7bnUu/+y1dcoUmDXZmI+c2ak/9i2M85AyqvdqjfixuwslhpFERkdo2ZbJ+uFfp2SxWCRJ2UPyxltv3e65eqxsG+eyVrV6a9aqYXqqzutateMHlSlcS+WL3clnm9WmrJlyZVwhkC4+7PKTsz1Zv2eBRs7uronv7PJsUBnIlYeDkOAccW7+56wZpd1H1yokKLsk1yZrG8WGvQtUv2IH2Wy+yR43eL8bkVfUY3R53bodqVxZCul27C2FXTyqJ6p2Ub/2kzwdHgAAAAAAAAAASCf0EcAbJdb3ndQYHMbnGEdi/facf9fQ7ns/6gDIgbShHfR+3AvCnTbsXaDGVbtKcm2MqTew2+0aM+cVvd52vCYu6pfgOjsO/SZfH3/nZFJJypY5jySpYK6SzvdsVpseLVhdx8L2pm/QSHdmGkPu5xsQ5wsCyhSupblrR8Vfz8dflUs0Util4xkYHYD0xoRSpEnF4o+n6P2kliU1ue/yjfM6eGqbPu2xQpJUr8Iz+mLBGzodfjjBbzS5GXVdY+a+oiNndipLcC4VzVPOuZ9pKz5SRNRV9RoTqjJFaumtZya4XmAYytnwI8oclF2zVg3Tn4d+lb9voLo0GaIqJZ+Is975KyeUJ1sR5+u82Yvq/JUTkqQT5/6Sr4+//jWllS5cOaXi+SqqV+vRTCr1cvd/4BERdVXSnTbJDB+Sufpw8KBftk7Wyy0+keT6ZG1vkNw5j4m9rX3HN6h/x6nysfk6t3P1uMH7ZArMqkahzyvQP7M6N/lQWw8s16xVwwzTBgAAAAAAAAAAgITRRwBvlFDfd1JjcIICQhifYxCJ9dtz/l1Hu+/dqAMgB9KOdtD7cS+IlEhqrGTfdl/HGSeZmjGmD6N5v49RuaJ1VKpg1UTX+ef8X8oSnEsfz+ikkxcOKG+2ourVerTy5SgeZ73I6Aj9smWSXvr/cbTwXmYeQ75g/Vg9Vu6pFG8XFR2h18dWl90Rq9rl2ur5Jz6QzWpLhwgBuBMTSvHQSGpy34UrJ5U9JJ9stjspa7FYlDtbYZ2/ciLBh5QZv/5HvjZ/Ten/t25GXdObX9RS6UI1lS1TbnVr+h/9sW+h/t19YQaXEA+bWHuMzl3+R0Vyl9UrLT/V4dM7NPCbJpr07j7nt8e4so8dh37VuDc3KUdIfk355X2Nm/+qPuo6N52jR3obPqurdh1ZLUn6+OWlksz5IZkrDwf7jv+hGzcvq1aZVpJcn6ztDZI75zsPr1bZIrXjTCaVUv9QBc/rM/4xnQ4/lOCyr9/eodxZC+nwmZ16um4fSdKhU9tVIn/ljAwRAAAAAAAAAACkA/oIYFQP9n0nNQYnOCAL43MMIrF++0yBWTn/KUC7772oAyAH3IN20PtxLwhXJTVWctuBFQmOk5S8d6zksbC9Wrdnnsa89nuS68XGxmjnkVUa98YmFc1bTos2TtB/Z3TQV323Ode5HROtj2d0VNVSTVW3wtPpHToygBnHkP/w2zCdCT+sEb1+S9F22UPyadaHp5UtU25du3lJH8/oqLlrR6tjwwHpFCkAd2FCKR4aSU3uS6kdh39T79afyWKxKDgwixqFPq8zF4+kQ9TwZrmzFZbVYlWjKi9IkkoUqKy82Yvp2Nk9cSaU5s5aOE7+hF06rtxZCzuXVXqkoXJmKSBJeqJKZw2a1CwDS4H0MvC56ZKkFdum6dulAzXs/x8IvP1DMlc6wu9y9eFg2ZbJalK1q/ODJHdM1s4oaR0Y8Me+hapTPu4HAKl9qMLDYdybG5Nd5+iZnSpR4E4eHDq1XY+Va5PeYQEAAAAAAAAAgHRGHwGM6sG+7+7N/uu2fTM+5+GVWL/90JeXuO1vmOH80+57L+oAyAH3oB30ftwLIiUSGyuZ0DhJybvHSu49uk7nLh9X9+ElJUmXrofp87k9denaWbWu/apzvdzZCqtE/soqmvfOL/A2rtpF4xe8ppjY2/Kx+Som9rY+ntFR2TPn02tPjfVIWeB+Rh1Dnpg5a0Zp/d75GtHzVwX4BaVoWz8ff/llyi1JCgnKrmbVX9LqHT8woRTwAkwoxUMjqcl9xfJX1KVrZxUbGyObzUcOh0PnL59wTupLjsViSc/Q4aWyBOdUaIkntO3ActUs01JnLx1T2KVjKpynTJz16lV4Rm99VVddmwxRtsx5tHjTBDUI7SRJql+pg37ZOlkRUdcUHBCiLX8vVfF8lTxRHKSTptW6aey83roWcVEhwTm8/kMyVzrCJdcfDiJv3dDa3T/piz5bne+5Oln7YZCWgQEOh0PbDixXjydHONdNy0MVvEP41dOSxeL8IoGjYbv1/BMfeDgqAAAAAAAAAACQ3ugjgLe72/edq0PBRMfgBAWEMD7HIBLrtz9/+R/Ov4to970bdQDkQNrRDhoL94JwRUJjJRMaJyl5/1jJ1rVfjTNxtN/XDdSu3luqU75tnPWql26hb5cMUPjV08qZpYC27F+qwrnLyMfmq9jYGH08o5MyB2XX289+Qx0wIKONIU/I3LVjtHrnLA3v+asyBWZN8faXb5xX5sBs8rH5Kjrmltbvna9HChhjoi1gdFZPBwDcdf/kPklxJvdly5RbJQpU0a9/zpAkrdszTzmzFlSBnCUS3FeVEo21fOt3cjgcioi6ptU7ZzmXBQWEKCLqavoXCF7hrWcmaM7akeoxuoKGTG2rt56ZqJxZCmj0nFf0x76fJUn5chRXt6b/1ltf1lG3T0soa3AutarVS9KdD56ea/S+3vqitnqOrqidh1ep7zMTPFkkpNGNyCsKv3rG+XrD3oUKCc6hzEHZE/yQrFjeCp4KNd04Hw56rEz24WDNrtkqnq+SCucu7Xwvqfbc2yR1zv8+uUWF85RRoH8mSSk7bvBeh0/viPOtUpkCsurnjV95MCIAAAAAAAAAAJAR6COAt0ms7ztrEmNwGJ9jHIn125crWofz7yLafe9GHQA5kHa0g96Ne0GkVGJjJR8cJykZf6zk1OUfadHGO2PBA/2C1bfdBH0w+Un1GlNJ/9swXh+88KOkO+Nn1++dr4Ontqn3Z5XVa0yoxs1/3ZOhI43MNob8wpVTmri4n25EXtG7Exqq15hQvTmupqS49UCSeo6uqL5fPKabt67puaEF9emsLpKkvcfW69XPKqvXmEp67fMqyp45L19AAXgJfqEUafL53F7a/PcSXboepkGTminIP7OmvXc40feT2ka6M7lv9JyXNWnpQFktVufkvjvLJmrk7O6atWqYggJC1L/Dd4nG9ULjDzVm7it6aWRpZQnOpfJF6yo65pYkqUqJJzR37Sj1HF1RZYvW1ltM/jO1fDmKa1Tv1fHe79d+UpzXLWv2UMuaPRLcR5OqXdSkapd0iQ8ZLyLqqv77fXvduh0pq8WqLMG59N8XF8tisST6IdmD+eLN7j4c5MteXO9OaChJ8vPx1/g+myVJo+e8osfKtlHt//9WnWVbJqtFAnUjqfbcmyR1zjfsXaDa5dpKSv64wThqlW2lWmVbOV9/2XdrEmsDAAAAAAAAAACjoI8A3iapvu+kxuAwPsc4Euu35/y7hnbf+1EHQA6kDe2gd+NeECmV2FjJLME5neMkJeOOlRz96hrn/7s3+0+cZdUebapqjzaNt80TVV7QE///S9gwBrONIc+VtaBWjnQkuOzBevBNv90JrlevQjvVq9DO7bEBSH9MKEWavPXsxBS9n9yyxCb3SVKh3I9q3JsbXYorKCCz/tV5doLLggOzaOwbf7i0HwDmkydbEX3RZ0uCy8zwIVlSDwdS/MnWibWnSbXn3iSpc77pr0Ua+f9lTO64AQAAAAAAAAAAAEBGSqrvO6kxOIzPMY7E+u05/zAL6gDIAZgZ94JIqcTGSr4yqpxznKTEWEkYm9nHkAMwF6unAwDcIVumPOr3dX1t3r80Vdu/O6Gh9hxdqwC/YDdHBgAwqknv7lO2TLk9HQYAAAAAAAAAAAAAZAjG55gb5x9mRx0AOQCzow6YE+MkAQAwJn6hFIbw0+CwNG1vhF/RAwAAAAAAAAAAAAAAANIL43PMjfMPs6MOgByA2VEHAAAAjINfKAUAAAAAAAAAAAAAAAAAAAAAAAAAADA4JpQCAAAAAAAAAAAAAAAAAAAAAAAAAAAYHBNKAQAAAAAAAAAAAAAAAAAAAAAAAAAADM7icDgcng4C3sHhkOy3PR2FZ1h9JYvF01G4xuGQomM9HYXr/GzuPbbemKfuzC9vO/8SOSC5Pwcov3v2lVHcfY0xeztADgAAAAAAADOKjZZWj/N0FKnXsI9k8/N0FADg3bz5WuCu6wB9BObuJ/LG839XSvPAm8uaEqmpHw6HQzft3lUJgqw2WVJQULOcfym1OeBdx8f91wHqgJHQDiaMHEiatx0f2kHqQFJSWwfM+kwkeWd+MH6UzwWoA+YeR8/4WcBzfDwdALyHxUJnvjewWCR/E9dss+ep2c+/RA5QfnOXX6IdIAcAAAAAAAAAADAn+gjM3U9kpvNvprKmlMViUbDN2JWA8580sx8f6gDIAZj9+FAHYOZnIon8MHv5JeoAOcAxAOA6E18uAAAAAAAAAAAAAAAAcNeuI2v07oSGiS63Wm1aPjwmAyMCAAAAAAAAAADuxIRSAAAAAAAAAAAAAAAAODUMfU41SreM977VavVANAAAAAAAAAAAwF2YUAoAAAAAAAAAAAAAAACnkgWqqHHVzumyb4fDoajoCAX6Z0qX/QMAAAAAAAAAgMQxoRQAAAAAAAAAAAAAAAAptm73PC3cMF5HzuxUTGy0cmUtpGqlmqlnq1Hy9fHTriNr9O6Ehnq3w3eKio7Qz398qbMXj6hTo0Hq2nSIp8MHAAAAAAAAAMB0mFAKAAAAAAAAAAAAAAAAp6jbN3U1Ijze+z42PwUHhEiSpvzygWatGqYiecrqmXpvK3tIPp25eETr98xTt2b/ka+Pn3O7+es+1/WbF9WiZg9lz5xXubIWyrCyAAAAAAAAAACAe5hQCgAAAAAAAAAAAAAAAKfpKwZr+orB8d6vWeZJDX1psf4+sUWzVg1T6CMN9fHLS+XnG+Bc55WWn8bb7sKVE5o84G9ly5Q7XeMGAAAAAAAAAABJY0IpAAAAAAAAAAAAAAAAnJ6s2VOPV2wf7/0smXJJkn7bMVOS9FLLT+JMJpUki8USb7vGVbsymRQAAAAAAAAAgIcAE0oBAAAAAAAAAAAAAADgVCBnSVUp1TjR5afDD8liseiRfJVc2l/BXKXcFRoAAAAAAAAAAEgDq6cDAAAAAAAAAAAAAAAAgHexyCIl8GukCfH3DUrnaAAAAAAAAAAAgCuYUAoAAAAAAAAAAAAAAACXFcxZSnaHXUfP7PJ0KAAAAAAAAAAAIAWYUAoAAAAAAAAAAAAAAACXNar8vCRpyi/v63ZMdLzlDocjo0MCAAAAAAAAAAAu8PF0AAAAAAAAAAAAAAAAAHh4HDr9p37dPiPBZXXKt1XpwjXUseFAzV49XK99XkX1K3VU9pC8OnvpmNbtnqsv+mxRpsCsGRs0AAAAAAAAAABIFhNKAQAAAAAAAAAAAAAA4LR65yyt3jkrwWVTBx5SAf8SeqXlpyqer5L+t+EL/bR2hBx2u3JlLaQapVvK3zcogyMGAAAAAAAAAACusDgcDoengwAAAAAAAAAAAACQOrHR0upxno4i9Rr2kWx+no4CALybN18LuA4AAAAAAAAAAJBxrJ4OAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOmLCaUAAAAAAAAAAAAAAAAAAAAAAAAAAAAGx4RSAAAAAAAAAAAAAAAAAAAAAAAAAAAAg/PxdADwPg6HZL/t6SgyhtVXslg8HUXKOBxSdKyno3Cdn829x9gb89OdeeZt518iByT35wDld8++Moq7rzVmbwfIAQAAAAAAAMCcvPGzwbvc9RmhNx4Ds39G7u5+MjPwxjxPrdTUD4fDoZt2L6oEkoKsNllSUFByIHHeeGzcfx2gDhiJGdrBlJ5/iRxIijceG9pB2sGkpK4dNPczkTfmB2PnzP25gMTYOeoAnw0BADyDCaVIMfttafU4T0eRMRr2kWx+no4iZaJjpYGzPR2F64Z3lPzd2BJ5Y366M8+87fxL5IDk3hyg/OYuv0Q7QA4AAAAAAAAA5uSNnw3e5a7PCL3xGJj9M3J395OZgTfmeWqlpn7ctMcq26qV6RNQOrncqImCba5XBHIgcd54bNx9HaAOGIsZ2sGUnn+JHEiKNx4b2kHawaSkJj/M/kzkjfnB2Dlzfy4gMXaOOsDYQQCAZ1g9HQAAAAAAAAAAAAAAAAAAAAAAAAAAAADSFxNKAQAAAAAAAAAAAAAAAAAAAAAAAAAADI4JpQAAAAAAAAAAAAAAAAAAAAAAAAAAAAbHhFIAAAAAAAAAAAAAAAAAAAAAAAAAAACDY0IpAAAAAAAAAAAAAAAAAAAAAAAAAACAwTGhFAAAAAAAAAAAAAAAAAAAAAAAAAAAwOCYUAqvsevIGjXpb9HyrVM9HQoAAAAAAAAAAAAAADAJxiuAHIDZUQdADsDsqAMAAAAAjMTH0wHAOHYdWaN3JzR0vrZarAoKCFHOkAIqWbCqGoY+p2qPNpPFYvFglEB8D+auJAX4BatgrlJqXKWL2tZ5UzYbzaWRkQMcA7OXH+QAAAAAAAAAAPPi81EYAeMVQA6kHtcBY6AOgBxIPdpBY6AOILVoAzgGIAfMXn4AgDlxZYPbNQx9TjVKt5RDDkXeuq6TFw7oj70LtXL7dFUp2VgfdpmjTIFZPR0mEM/9uXv5ephWbp+uCYve0Ynz+/X2s994OjxkAHKAY2D28oMcAAAAAAAAAGBefD4KI2C8AsiB1OM6YAzUAZADqUc7aAzUAaQWbQDHAOSA2csPADAXJpTC7UoWqKLGVTvHea936zH6dskAzft9jIbNfE7DXvnFQ9EhJcZ2dt+3cfWd4XDbvtLLg7nbuvZrenlEaf2yZZJebP6xsmbK5cHoPIMcMF8OmP0YmL38DzJbGyCRAwAAAAAAAADMi89H4zLjZ+RGwHgFkAOpx3XAGKgDIAdSj3bQGKgD7mO2ZyLaAI7Bg8xWByRywOzlBwCYCxNKkSFsVpt6tx6tAye3aOuBZdp7bL3KF6srSYqIvKofVg3T+j3zdOHKSQUFhKhyycZ6qfnHypejeJL7tdvtmrX6E20/sFynLhzU9chLypY5r2qWflIvNh+qkOAckqTLN87r+aEF9XjF9hr0/Mx4+xk3/3Ut3vS1pr93VHmzF3V7+b3RtfATqvfCGFVp8banQ/GYQL9glS5SS+t2z9WZi0dM9yBADpADEsfAzOWnDbjDzDkAAAAAAAAAwNzM/Pkon5EbC+MVQA6kjpmvA0ZDHQA5kDq0g8ZBHUg5noloAyRzHwPqwB1mzgGJ8gMAjI0JpchQzau/rL3H1mvz/iUqX6yuIiKvqu+XtXX+ygk1q/6SiuYpp0vXzurnjV/pzfE19WXfbcqTrUii+4uJjdacNSNVr8IzeqzcUwrwC9bBk1u1bOtk7T2+Xl/13S5fHz9ly5Rbj5Vto/V75utG5BVlCszq3Ef07Sit3vmDKpdo/NA8jD8Mju1YpOKVW3s6DI87e/GIJCkkKLuHI8l45MAdZs6Bu8x+DMxaftqAe8yaAwAAAAAAAABg1s9H+YzcmBivAHIg5cx6HTAq6gDIgZSjHTQW6oDreCa6gzbAvMeAOnCPWXPgLrOXHwBgXEwoRYYqnq+iJOnUhYOSpKkrPtLZi0c17s1NeiR/Jed6Tat3V8/RFTRt+WAN6DQ10f35+vhr9kdn5e8beO/Nx3qrbNHaGjPnFf2xb6HqV+ogSWpZs6fW7ZmnVTt+UJvarzlXX7dnnm5EXlHLmq+4saTe70rYIVVq8rqnw8hQUbdv6mpEuBwOhy5fD9OijRN0+PQOlS5UQwVzlfJ0eBmOHDBnDpj9GJi9/PczYxsgkQMAAAAAAAAAzIvPR+8x62fkRsd4BZADSeM6YHzUAZADSaMdND7qgOvM+ExEG8AxuJ8Z64BEDpi9/AAAczHthNLw8HCNGDFC8+fP16lTp5QrVy61a9dOw4YNU58+fTRlyhSNHz9eb7zxhqdDNZSggBBJ0s1b1+RwOLTqz5mqUPxx5cxSQFcjwp3rBfgFq3ThWtp+aEWS+7NYLM6H8Vh7rCJvXVesPUahJRpJkvaf2Ox8IK9aqonyZi+mZVsmx3kgX7ZlskKCcqh2ubbuLKpXi466Ib+AzJ4OI8NNXzFY01cMjvNe3fLt9ObTX3ooIs8hB+4xWw6Y/RiYvfx3mbUNkMgBAAAAAAAAwKjsdrsWrB+rJZsmKuzycWUNzqXHK3VQt2b/UaBfsKfDeyjw+egdRv2MfNaqT3To9J86dGq7wi4dU55sRTTj/eOeDitDMV7BdbFTpsr+40+yvfOWrM2bxlnmcDgU2/89Ofbvl88X42QpVtQzQaYCOZA0rgP3UAfMWQfuRw6YMwdoB++hDpizDtxl1Gei5NAGcAzuMmsdkMgBs5cfAGAuppxQunPnTrVo0UJhYWEKDg5W2bJldebMGY0bN05HjhzRpUuXJEmhoaGeDdSAbkZdkyQF+YfoSsQFXbt5UdsPrtCzQ3IluL7VYk12n2t3/aS5a0fr8Jkdiom9HWfZjcjLzv9bLBa1qPGKvlv2gQ6f3qkSBUJ19uJR7Tq6Rk/X7StfH780lMxYTuxZqcIVmia/osE8WbOnHq/YXjH22zp2do9mrxmu8Kun5Ocb4Fxnz9F1en9yi3jbxsRGy26P1fIRsRkZcrohB8ybA2Y/BmYv/11mbQMkcgAAAAAAAAAwqq8Xva2F68epTvmn9Wz9fjpxbr8Wrh+nI6d3aHjPX2W1Jt8vaXR8PnqHUT8jn/LL+8oclF0lC1RRROQVT4fjEYxXcJ21ywuyb9qs2InfylK1iiy5cjqX2ecvlGP3Hllf6u5VE0gkciA5XAfuoQ7cYbY6cD9y4A6z5QDt4D3UgTvMVgfuMuozUXJoAzgGd5m1DkjkgNnLDwAwF9NNKA0PD1fr1q0VFhamfv36afDgwcqc+c63iIwYMUIDBw6Uj4+PLBaLKlas6OFojefo2d2SpIK5H5UcDklSlZKN1bHBwFTtb92e+Ro6o6NKF6qh19qMVa6sheTnE6BYR6zen9Rcdrs9zvrNq7+k6SsGa9nWyXqjwHgt24Ki2ncAAF0YSURBVDpFDodDLWq8kraCGczZQxtUp9PwOO9tmP2+ti36RI17TFa5+i/FWeZwODTv44YKO7xRnf67XTkLlc/IcN2mQM6SqlKqsSSpRukWKl+srt7+qq7GzuutDzr/KEmqULyeFn18I8524VfP6PVx1fRUbeP8ojE5YN4cMPsxMHv57zJrGyCRAwAAAAAAAIARHQ/bp/9tGK+65dtpcLd5zvfzZi+mL//XR2t2/ahGlZ/3YIQPBz4fvcOon5FPf++I8uUoLknqMaq8IqNvJLOF8TBewXUWX1/59O+nmD5vK3bM5/L5ZKgkyXHylOxTp8tS+lFZ2z/j4ShTjhxIGteBe6gDrjFaHbgfOeAao+UA7eA91AHXGK0O3GXUZ6Lk/F979x3eVPn+cfyTpJNS9t57U8oeigIyFBkKsmQoIkNFZAiIC/yBIltAERQUFEUEBBGQvffeyN5QoOzR0pH8/uBLpHaXNCE579d1cV0lZ+R+Tu77Sc5zzpPQB3AMHjJqDUjkgNHbDwAwFsNNKO3Ro4fOnTun7t27a+TIkTGW9evXT7/++qv27NmjggULKl26dC6K0nMt3jZFklS1xItKH5BVaf0z6F74LfuHr+RaseNn+Xj5aUS3VfLzSWN//Mzlf+JcP1O6HKpWqrFW7vxFnRp+qaXbp6pEvqoqkKN0ip7fE9msVtlsNpnNlhiPV2s+SCd3/aW1v/RWvjL1FZg5j33ZrsVf6fw/a1Sj5VC3PhH6r9IFaqhuhfZatuMnvfR0D5UuUCPWOhFR9/XZT81UpsDTevW5D10QpeORA/8yag48yujHwIjtpw+IyYg5AAAAAAAAAHiaVbtnyGazqVnNnjEeb1i1s6Ys+kDLd05nQmkcjDg+6slj5A8nkxoZ9yskj6loEZlbt5T1lxmyLvxbpufrK3r4SMlmk6VvH5kslsR38oQhB5LHiO8Dj6IGEufpNUAOJM7Tc4B+kBpIjCfWgCefEyWX0fsAyZjHgBqIyYg58Cijtx8A4NnMrg7AmQ4dOqSZM2cqS5YsGjp0aJzrVKxYUZJUrlw5+2OrV6+WyWSK9S84ODjGtsuXL1e1atXk5+enbNmyqVu3brp582aqtcedRFujNemv97X/5HpVKdFQZQo+JbPZrDrl2+qfs1u1du/sOLe7fudygvs1my0ymUyy2f79JiebzaZflw+Jd5uGVTvrdth1jZ3TTaE3zz9x3+7kaiEntipH4SqxHrd4+ah+12mKun9Xyyd3sj9+/cJhbZr1kXIUrqqKjfo6M1SnaFv3E5nNFk1b8mmcy8fO6aaIyHD1bTXVuYGlInIgJiPmwH8Z/RgYrf30AbEZLQcAAAAAAAAAT3P47DaZTWYVzxdz7NPH20+FcgXryNltLorsyWe08VHGyD0T9yuknLltG6lQIUV/P1nWbybKdviIzK93kClvnsQ3foKQAylntPeB/6IGqAFygBygH6QGEuKJNcA5UUxG7wMk4x0DaiA2o+XAfxm9/QAAz2WoXyidMWOGrFar2rZtq7Rp08a5jr+/v6SYE0of+uabb1ShQgX7/wMCAux/r1mzRs8//7yaNm2qgQMH6ty5cxowYIAOHz6slStXymQyObg1T66j53dq+Y7pkqSw+7d19sphbTwwT5eun1bFYvX14au/2td94/nPdeDUBg2Z3lLPBrVUyfzV5GXx0aXrp7X1n0Uqmrui+rWeGu9z1Qx6Rev2zVHfSXVUt2IHRUdHasOBebofcS/ebSoVa6DsGfNrxc7p8vdNq9rBrR3Wdndz/p+1ylm0hsyWf7uC03sWq/wLveJcP1vBCqrUeIC2zhusfSu/U+lanbRkUgfZbDbV7zot1jfyeILcWYqodrnWWrHrF+07sU5lC9W0L5u7fpy2HFqgr3tsi/ENY+6EHEicp+dAUhj9GHhy++kDksaTcwAAAAAAAAAwgqu3LihdQBb5ePnGWpYlfW4dPL1RkVER8vbycUF0TzZPHh9ljNwzcb+CY5m8vOTVt7ei3u0p64KFMpUpLXOzl1wdVoLIAcfy5PeBpKAGqAFygBygH6QGPLkGOCdKnNH7AMmzjwE1kDSenANJYfT2AwA8l6EmlK5cuVKSVLt27XjXOXfunKS4J5SWKlVK1apVi3O7//u//1PRokU1a9Ysmc0Pfvg1c+bMat68uRYuXKhGjRo9bvhuY9XuGVq1e4bMJrP8fNMqa/o8Cir0rGoHt1HlEs/HWDfAP72+emeDZq8ZpTV7f9fGA3/KYvFSlvR5VKbA03qhasLfvlQ7uLXC7t/WnLVj9N2C9xXon1HVSjVWp4ZfqvnAzHFuYzab9XzlTpq29FM9G9RS/r5xTy72dEc2z9TyyW+qce/5ylvq35q4H3ZTvmnSx7tdlZc+0Ymd87X+1/d15fRuXTq+VTVfHaWMuYo7I2yXaPPcR1q1e4amLf1UI7utkiTtPrZKkxf21xdv/q0cmQq4NsAUIgeSzlNzIDmMfgw8sf30AcnjiTkAAAAAAAAAGMX9iHvyjmMyqST5ePk9WCfyHhNK4+GJ46OMkXsu7ldIBQEBkre3FBUlU+VKMv3vnpgnFTngeJ74PpAs1EC8jFID5ED8jJID9IPUQHzcuQY4J0o6w/cB8sxjQA0kjyfmQHIYvf0AAM9kstlsNlcH4Sx58+bVuXPntGvXLgUHB8daHhUVpZw5cyo0NFTHjx9XoUKFJEmrV69W7dq1tWrVKtWqVSvOfadNm1YdO3bU+PHj7Y/duXNHgYGB6tSpkyZPnpzseCtVqqSQkJBkb5fafLz89V33o64O47HMXDVckxf119h3NqpUgerxrtfl66KKiApzYmSPz+Ltr5eHJO312frn5wq7Hapn242RJN0KPaPj2/9Q+ed7JrjdldN79NunlWWNjlSuYk/rlY/XpHigaO7HRRUd6bhj7Iz8DLl2St3HVVa7egP10lPdH3t/jsyz5Lz+EjmQUk9yDjirj3bkMaD9jn2vcbf3Acmx/QA5AAAAAAAAjMjdr90wPgJHSKgOOo8qqxt3LmvWwEuxlg3+uaXW7p2lRUPvu2xCqaNqgPFR9xsjd9X4eOeRZRQWcUfTPzzlkOd+XMnJA3d/z5NS934Fm4+Prkz65nFD/Hd/Npui+w2Q7eBBKWdO6dJleU2aIFOunA57jqxd35EpIiLJ65MD8eN9gBpwF/SD/0ru6y+RAwmhH3S/GpDoBx3dDxr5nEji3kH6QferAYl756gBxsYBACmXI0cObd++PUXbGuoXSu/evStJCguL+0135syZCg0NVWBgoAoWLBhreatWrRQaGqrMmTOrSZMm+vLLL5UlSxZJksVikY9PzAuM3t7eMplMOnDgQIriDQkJ0fnz51O0bWry83bvn2SPjo7Sws2TVDBH2QRPxiXp4oULCo+856TIHMPLN+mvT+FKL+uvUU3sJ0Mnd/2lguUbJ7qdb5r0snj7yhodqQLBDR/rROjCxQuKuu+4Y5za+RkecU8Dp76k6qWaOGQwQHJsniXn9ZfIgZR40nPAGX20o48B7Xfse427vQ9Iju0HyAEAAAAAAGBE7n7thvEROEJCdZA5XS6duXRQEVH35fOfXyoNvXle6QOyuPTXSR1VA4yPut8YubuNj6eW5OSBO7dTcsL9Cn6+8n6M+P7LOm++bHv2ytzxNZmrV1PUO+8qetQYWUYOk8lkcshzXLh4QQq/n+T1yYH48T4gasAN0A/GlNzXXyIHEkI/KLerAYl+MCEpyQ8jnxNJ3DtIP+h+NSC539jAk5wDRm8/AADJYagJpTly5ND169e1c+dOVa8e80Ts4sWL6tu3ryQpKCgoxslu+vTp1bdvXz3zzDNKmzatNm3apKFDh2rz5s3avn27/Pz8VKxYMW3ZsiXGPrdt2yabzaZr166lON4nkY+Xv6tDSJGL107q0OlN2njgT128dkIftp2R6DY5c+Vyu2/9sHgn/fXJnLuUZDLp6rkDypyntG5cOqZy2QsnuI3NZtOy7zrKGhWhTLlKauufQ1S0aktlSGS7+OTKmcvh3zCVmtbtm6MTF/fofOgRrd4zM9byKe8fVLaM+ZK1T0fmWXJef4kcSIknPQec0Uc7+hjQfse+17jb+4Dk2H6AHAAAAAAAAEbkrtduHmJ8BI6QUB0Uz1tZO44s1eEzW1W2UE374xGR4TpxYbfKFnrGGSHGy1E1wPio+42Ru9v4eGpJTh64azuddb+CzcdHV1Ia5H/3df68rD9Mlal4MZlbviKTxSJzu7ay/jhN1nnzZXm5qUOeJ1fOXMn+VTJ35Iwc4H2AGniS0Q/GLbmvv0QOJIR+0P1qQKIfTEhK8sPI50QS9w7SD7pfDUjuNzbwJOeA0dsPADCex5l3aKgJpXXr1tWhQ4c0bNgw1atXT8WKFZP0YOJn+/btFRoaKkkKDg6OsV358uVVvnx5+/9r1aqlMmXKqEmTJpoxY4Y6duyoHj16qEOHDhoyZIi6deumc+fO6e2335bFYpE5hd88ktKfnU1t0RHSqnGujiL59h5fo5G/d1T6gCxqV/dT1Q5uneg2R48clcV1X0acIvejpP6xP5/Gq1D5xjqxc74Cs+SXj19gouvvWTpe5w6tVvUWn6twxaaa8XEFLf/+DTX/aHWKvnXsyNGj8nVgT5Ta+VmvYnvVq9jeoft0ZJ4l9/WXyIHketJzwBl9tKOPAe137HuNu70PSI7tB8gBAAAAAABgRO567eYhxkfgCAnVQa1yrTRj5Rf6Y91XMSaULtryvcIj76lO+bZOijJujqoBxkfdb4zc3cbHU0ty8sBd2+ms+xXuRkcp48plKYzyXzarVdEjRktWqyx9e8tksUiSzC1fkW3DRll/mCpz1Soy5cr52M915OgRBViSXgjkQPx4H6AGnmT0g3FL7usvkQMJoR90vxqQ6AcTkpL8MPI5kcS9g/SD7lcDkvuNDTzJOWD09gMAkByP9xvrbqZfv37KnDmzzp49q9KlS6ts2bIqWrSoqlSpokKFCqlOnTqSpHLlyiW6r0aNGikgIMA+6bNdu3bq37+/Bg8erKxZs6pSpUqqXbu2goODlTPn45804/E1qPy6lo2wafagK3qtwWeuDueJUbDCg5OhM/uWKl+Zegmuez3kqDb8PkDZC1VWpcb9lTlPaVVtNkjn/1mrPUvHOydgOBw5ABgbfQAAAAAAAAAAT1cwZ1k1qfGO1u//Q4OmNdOiLZM18a8+mvhXbwUVelZ1yr/q6hDhIkYaI1+242f9snyIflk+RDfuXtHd8Jv2/y/b8bOrw/N47na/gnX2H7IdPCTza+1kyvfvL6uYLBZZ3u8tWaMVPWqMbDabC6N0L+6WA0ZHDTieu9UAOeB47pYDRkcNON6TWgNGOicC4kINAAAAozLUhNI8efJo3bp1evHFF+Xn56dTp04pU6ZMmjRpkhYuXKgjR45IStqE0ocefpuIyWTSl19+qdDQUO3Zs0eXLl3SqFGjdPToUdWoUSNV2gM4Qu7iNXUj5KiOb5+rnMXiz1Wb1aplk16XzRqt+l2nyWx+8K1jFRv1U7aClbTh9wG6cem4s8KGA5EDgLHRBwAAAAAAAAAwgreafKUujUbq9KUD+nruO1q9+ze99NS7GvLGApnNhrpsjkcYaYx88dYpmrrkE01d8olu3LmsO2E37P9fvHWKq8PDE8R25oys036WqWQJmZs3i7XcVCC/zO3ayrZvv6zz5rsgQiB1UQMgB2B01ICxGOmcCIgLNQAAAIzKQT+Q7j5KliypBQsWxHr8zp07OnXqlMxms8qUKZPofubPn6+7d++qSpUqMR4PDAxUUFCQJOn7779XWFiYOnbs6JjggVRgtngpf1CDB3//7wQnLjsXjdLFoxv1VOthypS75L/bmy2q33WqZnxcQcu/f0PNP1ptn2gN90AOAMZGHwAAAAAAAADACCxmi1o820ctnu3j6lDwBDHSGPmot1a7OgS4CVO+fPJe+GeC61jatJKlTSsnRQQ4FzUAcgBGRw0Yi5HOiYC4UAMAAMCo+KrV/zlw4IBsNpuKFi2qNGnSxFjWrl07ffrpp5o3b56WL1+uwYMHq127dgoODlbr1q0lSdu3b9fQoUO1ZMkSLVy4UL169VK3bt00bNgwFS5c2BVNApKscMWXVKhi03iXXzt/SJvmfKIcRaqpQsPYF9kz5ymtqs0G6fw/a7Vn6fhUjBSphRwAjI0+AAAAAAAAAABgVIyRAwAAADAyzolgdNQAAAAwIsP9Qml89u3bJ0kqV65crGWlS5fWr7/+qq+++kphYWHKkyePOnfurIEDB8rHx0eS5Ovrq7/++ktDhw5VVFSUypYtq5kzZ+qVV15xajuAlChatUWCyzPlLqnuP4YnuE7lJgNUuckAR4YFJyIHAGOjDwAAAAAAAAAAGBVj5AAAAACMjHMiGB01AAAAjIgJpf+T0ITSAQMGaMCAhD/klS1bVhs3bkyV2AC4TkRkuD7/pbVOXzooX29/ZUibTT2afavcWYq4OjTgsSU1vy9eO6nBP72iaGu0rNYo5c1eUr2af6fANBkTXGYUa/fO1pZDC3Un7Dp9BQAAAAAAAAAAAAAAAAB4mLV7Z2vX0RV6q8kYj7mnNDn3x16+fkbj576jc6FHZDZZ1Lj6W3rp6Xe17fASTV7Y377ejbuXlSkwh77tudOZTQFSJDk18PvqEVq2fZqsNqvyZi2u91v9qLT+GSRJy3b8rNlrRspqjVaGwOzq2/JHZcuYz8mtAQAgeZhQ+j8JTShF0m37Z7F+XPKxoqIi5OuTRj2bT1LhXOX07riqioi6L0myWqN06tIBTeq1R4VyBWnK3x9qw74/5O3lK4vFWx2f/1yVizf437pWTZj/nrYeWiSTyaSXa/bUS091lyQN/+117Ty6TNVKNVbP5hNjxRJ2/46afByoZSNskqSflg5S69ofyMfbT5I0Z+0Yzd/4jfx80mpS791OODpwVw2rdlGVEi/IZDJp3oavNXrWmxr11mpXh4VU1P+7+rp+O0Qmk1lp/AL1TtNxKpK7vKvDShVJye/M6XJpzDvr5evtL0n65s/39NOyQXqn6dgElxnFhv1z9WxQS1ks3vQVAAAAAAAAAAAAT5jF237UqN/f0KDX5uqpMi/pnzNb9c2fPRQZdV8RUeFqUKmjWtXuJ0kKj7inUbM66cjZbTKZzHrjhS/0TNArkqQ+39bS5eunVb9yR7Wv92ms5zkZsl+f/NBI0z88pTthN7Rg00S1rvOBffl3C/pq9Z6ZKpq7gj57fZ5T2m508d3DYrPZ9POyz7Ry16/y9vJV+oAsGtltlSTp+p3LGj6jgy5cOy4fi6/ebTZBQYWekSS1+6KAvL181eLZvmpY9c1Yz7f54ALNWjNSo95arZBrp7Tt8GI1rt7Nvnzor2216+gK1QpurbebfuWUYwBjowZADgAP8HkQjrBh/1zVrdhBkmfdU5qUtthsNg2a9rJa1f5Az5Z78Gue129fkiRVLt7Afs+3JH38QyOVK1zbafHD8Yx0/6yUtBrYcWSZlmz7UePf3aI0foH6ZfkQ/fD3R+rR7BudufyPvl/QV9/22qXM6XJq+Y7pGvvHW/q800LXNAgAgCRiQun/rFy50tUhuL3b965r6Iy2Gv3WWhXIUVr7TqzTl7+21ffv79f4Hlvs663dO1s/L/tMhXIFSZLKFqypdnU/ka+3v45f2KPe3z6j3z65IH+fAK3YOV2nLx3Uj/2P6G74Tb01pryCC9dWgRylJUkta/VVs5o9kxTfz8s+U7OaPe0TSps/00tFcpfXhD+Ttj2MycfbT1VLNrT/v2S+apq9ZqQLI4IzfNL+d/s3B63fN1cjZr6uSb33uDaoVJDU/Pbx8rX/HW2NVnjEXfn7pE10mSe4E3ZDnUeV0f3IMGVNn1eR0fcVcvWEnqvYXn1aTFZUdKQOnNqgvq2mysvibd+OvsJzJZYTAAAAAAAAAOCpGB+FOwq5dkp/b/leJfNVsz82ZnYXvdbg/1SjdBPdundNnYaXULVSjZQ/eynNWjNS3hZfTfvgmC5eO6ke46oquHBtpQvILEnq1mSMnirzUqLPeyfshn5b9WWMCQRdGo1Q/uyltfHAPEc3E3FI6B6WuevH6cTFvfq+z355e/no2q0Q+3ZTFn2gkvmraWjnxTp8dpsGTXtZPw84ab8W+FHbmSqSOzjR5790/ZQWbJoYYyLVgFd/0U9LB+lO2A1HNzdV0O+7N2oA5MDjox/0DHweRFIlVPPvNfs2xj1innJPaVLvH9x1dIW8vXztk0klKWNg9ljrhd68oF1HV6hPyx9SJ2A4hVHun5WSXgMnLuxRmYJPK41foCSpSomGen9iLfVo9o1OhexXwZxBypwu54NlJRtq+MwOunX3qv29AwCAJxETSuEwF64eV7o0me2TPcsWqqnLN87o6LmdKpqngn29xVun6IUqnez/r1LiBfvfBXOUlWw23bxzRf6ZArR6z0w1rNpZFrNF6dJkUq1yrbRq9wx1fH5InDEs2DRJs9aOlL9PWj1dppn98a/mPBiY6jWhpswmi77sslQZ02ZzaPthDHPXj1X10k1dHQZS2cOTYUm6G35TkkmS5w8UJ5TfkVER6j6uii7fOK2COYM0+PX5SVrm7tL6Z1Cd4Ffl7xuodvU+0bbDSzRj5Rf213v3sVUqlb9GjMmkEn2FJ0ssJwAAAAAAAADAUzE+CndjtVo1etabeuel8Zr0Vx/74yaTSXf/N5ElPOKuvLx8FOifSZK0Zs9M9W4xRZKUM1NBBRWupfX758b5K2yS9NPSQVqx6xcF+KZT5UfufRg7p5vC7t9W19HBsli8NOG97anUSsQnoXtYZq0ZoRFdV8rby0eSlCldDvt2a/b8rmn9j0mSiuetrMzpcmnv8TWqUKxurOeIio7UhD/f046jyxTon1FlCta0Lxs7p5suXT+trqODlS1jPg3u6H7XUOn33Rs1AHLg8dEPuj8+DyI5Eqr57YeXxnmPmORZ94nF15bTlw8qfUBWfT69tc5eOawcGQuoa+NRypm5UIz1lm6fqiolGnJ/tpsz6v2zUvw1UDRPRc3fNEHXboUoY2B2rdj1i+7dv61b966pUM5yOnZ+p85dOaI8WYtpxc7pstlsunT9NBNKAQBPNCaUwmHyZCmqW/eu6sCpjSpdoIY2Hpive/dvK+T6KfuE0ss3zmrviTXq3+bnOPexZPuPypGpkLJnzP+/9c8oe4b89uXZMxXQodOb49z2ZMh+/bR0oP0n46f8/aF9Wc/mE7Vw8ySNeXtdjA+6QHL8uuILXQg9puFdV7g6FDjBsBkdtOf4KknS550WSfLsgeLE8tvby0eTeu9WZFSEvpn3rhZsnqRWtfsluuxJ12N8dZ0PPRrnsm977VK2DHl17MJuvfx0D0nS0XM7VCRXefs6Gw/M01NlXo6xHX2Fe3vcnAAAAAAAAAAAd8X4KDzNnLWjVbrAUyqWp2KMx99v+aMGTm2qH5d8rJt3rqhn80n2iTSXb5yx368gSTkyFtDlG2fi3P+WQwu1du8sTXhvh9L4BmrYjPb2Ze81n6huY4I1qfduxzcMSRLfPSynQvbr+u1L2njgT63bO1uS1PyZ3qoV3Eq37l5VdHRkjIlV2RPIgYWbv9PZK4c1uc8BSdKAyQ3sy95rPlET/uzp9jlAv+++qAGQA45BP+je+DyI5Iqv5uO6R0zyrPvEEmpLdHSUdh9fqXHdN6tAjtL6a9NEDZ7eMsZEaZvNpiXbftDbTcc5M2ykEqPdPyslXAPBRWqrxbPv6+MfG8listj7A4vZS3myFtV7zSdq2G8dFG2NUtUSLyqtfwZZzEzTAQA82XingsME+KfXp+1na8rfAxR+/45K5q+u/NlLxfhAtHTbVFUt2UjpA7LE2n7n0RX6edlnGtZ5mUwmU7Kff/exlapc4gX7T8Y3rv6Wfls5NOUNAh4xa/VIrd//h4Z3WS4/nzSuDgdO0L/NT5Kkpdun6ftF/fXF/06KPXGgODn57e3lo/qVO2rM7M6xJo0mtOxJNe7dTYmuc+LCbhXJ/eB1Pnpuh6qXbiLpwSDY9sNL1PnF4fZ16Svc3+PkBAAAAAAAAAC4M8ZH4UlOhuzXun1zNPrttbGWzVz1pTo1HKo65V/Vxasn1OfbZ1UsbyXlz14qWc+x6+gKPRvUUgF+6SRJL1brqv2n1jskfjy++O5hkaRoa5TuR4ZpfI8tCrl2Su99U0N5s5VQ1vR5kvUcu46tUL2KHey/8Neg8htavHWKw9viSvT77osaADngGPSD7ovPg0iJuGo+rnvEJM+6TyyxtmTLmE9FcpW3/+p13YrtNX7u24qKjrT/auveE2sUERWuSsUbxNoe7sdI989KSavnJjXeVpMab0uSDp7erKzp89j7/2eCXtEzQa9Ikq7dCtHM1cOUK0sR5wQPAEAKmV0dADxLcJHaGv3WGk3ouUNdG4/S1VsX7CfZNptNS7b/qOerdIq13Z7jazTy944a3PEv5c1W3P54tgz5dOnGafv/L107pWwZ8yUpFpOSPykViMvsNaO1avcMDeu8jF+4NaD6lV7TnmOrdOvuVUmxB40e/u2ukpLfl66fVnjEPUmS1WrV2r2zVChnUKLLPEHozfOSyaQs6XNLkk6E7FXBHGUlSf+c3ap82UvK3zetJPoKo0goJwAAAAAAAADAkzE+Cney/8Q6Xbp+Sq8PK6p2XxTQoTOb9dXsLpq+bLA27J+rOuVflSTlzFxIJfJX04FTGyT97x6F6//eoxBy/ZSyZUjiPQop+OJspK647mEpVaCG/H3Tqm6FdpKkHJkKqHSBp3T47DalC8gsi9lL126F2PdxKTk54GH3qdDvuz9qAOTA46EfdG98HkRyxVfz/71HTPKs+8SS0pbKJV7QlZvnHhwjSVsPLVK+bCXtk0kl6e+tU1S/0uuymC3OCBtO4un3z0pJr+erty5KksIj7mnakk/Vsla/WMuirdGavKi/mtR4x+0nmgMAPB8TSuFQDz8QSdIvywcruHAd5f7fN2zsOrZS0dYoVSxaL8Y2e0+s1bDf2uv/Xv9ThXOVi7HsmaAWWrTle0Vbo3Xr3jWt3jNTtcq1ivO5g4vU0fbDi+0DWgs2T4yxPI1voO6G33zsNsJYrtw4p0kL+uhO2A29P7G2uo4O1rvjqro6LKSiO2E3FHrzgv3/G/bPU7qAzApMk8njBooTyu+pSz7VX5se9KMnLu5Vj/HV1GVUkLqODtLNO1f0TtNxiS7zBMfO74rxLVpp/TJo/qYJkqQN++eqRumXJNFXGElCOQEAAAAAAAAAnozxUbiTxjXe0sxPL2r6h6c0/cNTKpmvmnq+8p3aPPeh/HwCtOvYSknSzbuh+ufMFhXIXkbSg3sUFvzvGtnFaye19/hqPVXmpTifo3zRulq7d5buhd+WzWbTws3f2Zel8UuniMgwRUZFpG5DkaD47mGpHdxG2w4vliTdundNh89stX9pbs2gFvb7TQ6f3abQm+cVVPjZOPdfoWhdrdg5XVHRkYqMitCS7T/al6XxTad7bn6PCv2++6MGQA48HvpB98bnQSRXfDX/6D1ikmfdJ5bU+wf9fQL0XrOJ+mjKi+o6upz+3DBeH7X9zb6fu2E3tWHfH3q+8hsuaQccx0j3z0pJrwFJ+uD7+npzZGl1HVNOZQo+raZPdbcvG/X7G+o0opQ6DiumAL/0euOFL5zeFgAAksvL1QHAs0xb8qn2n1ynaGuUSuavrj4tp9iXLd46RQ0qdZTZHHMe86hZnRQZdV8jZna0P/ZBm59VMGdZ1a3YXofPbtPrw4rKJJOaP9NbBXPG/eGzYI4yal9vkHp9W1P+Pmn1dJlmMZa/8kwf9f+unny90+jLLkuVMW02B7YcniprhjxaNsLm6jDgRHfDb2rwzy10PzJMZpNZ6QOyanDHBTKZTPEOGvVpMdmFEadcQvn9eoP/s/9dvVRjVS/VOM71ElrmCaqVaqRqpRrZ///Ne9vsf28++JdGdFslib7CSBLKCQAAAAAAAADwZIyPwhNYzBZ93O53fb+gr6KtUYqKjlSzp3uqVIHqkqQWtfpq1O9vqMPQwjKbLer+8tdKH5Alzn1VLdlQh89u1VtjKyjAN50ql3hBOvlgWbo0mVS3Ygd1HR0kP9+0mvDedmc1EY+I7x6WTi8M1YjfO+qvjQ8mBbWq3V8l8lWRJHV+cZi+nNFerw0rKm+Ljz5oMz3GLy89qmHVzjoVsl+dRpZSoH9GlSlYU0fP7ZAkFcoZpPw5SqvzyDLKkbmQBnec74QWOxb9vvujBkAOPB76Qc/E50HEJ76af3Nkafs9YpJn3SeW1PsHJalS8fqqVLx+nOsG+KfXX1/cdXh8cD4j3T8rJa8Gvu+zL979fPHm3w6NCwAAZ2BCKRyqd4vv4132Ydtf43x8Wv+j8W5jMVvUo9k3SX7+RtW7qlH1rvb/t6v3if3v9vUHqn39gUneFwBjyp4xv77usTXOZQwU41GT3z/g6hAAAAAAAAAAAACQBKPeWm3/u0KxuppQbEec6/n7BOjjdjOTvN8O9QepQ/1B9v93fH6I/e+E7p+Ac8T3GqQLyBzvxKaMgdk1rMvSJO3fy+KtHs3i/qU6i8VLQ95YkLRAgVRCDYAcAP7F50GkFPeIwUi4fxYAAOMwJ74K8GQK8E+v+Rsn6Ks53VK0/Zy1YzTuj7fj/fYoAAAAAAAAAAAAAAAASQpMk0lT/h6gn5f9X+Irx+G7BX3126qhSuuf0cGRwVnSB2TVsBnttGhLyn6BZ+ivbbVi53Sl8Uvn4MgA56AGQA7A6Pg8CAAAAMBT8AulcFvvNB0rNR2b4u2bP9NLzZ/p5cCIAAAAAAAAAAAAAACAJxr02h+PtX2XRiPUpdEIB0UDV3jcX+AZ8OovDooEcA1qAOQAjI7PgwAAAAA8Bb9QCgAAAAAAAAAAAAAAAAAAAAAAAAAA4OGYUAoAAAAAAAAAAAAAAAAAAAAAAAAAAODhTDabzebqIOBebDbJGunqKJzD7C2ZTK6OInlsNiki2tVRJJ2PxbHH2B3z05F55m6vv0QOSI7PAdrvmH05i6Pfa4zeD5ADAAAAAADAiKIjpFXjXB1FytXuIVl8XB0F3J0714GjaoDxUfcbIzf6+PhDyckDd25ncqWkPmw2m+5Z3agIJKUxW2RKRkPJgfi547Fx/PsANeBJjNAPJvf1l8iBhLjjsaEfpB9MSMr6QeOeE0numR/cO2fscQGJsQFqgHsHAQCu4eXqAOB+TCYu6j/JTCbJ18CVbfT8NPrrL5EDtN/Y7ZfoB8gBAAAAAAAAAEbF+Kixx8iN8vobpZ0pZTKZFGDx7CIgB+LHsaEGQA4YHceGGoCxz4kk8sPo7ZeoAaPngNHbDwBAcphdHQAAAAAAAAAAAAAAAAAAAAAAAAAAAABSl4G/gwMAAAAAAAAAAAAAgH/tOb5a70+sHe9ys9miJcOinBgRAAAAAAAAAAAA4DhMKAUAAAAAAAAAAAAA4BG1g9uoSomGsR43m80uiAYAAAAAAAAAAABwDCaUAgAAAAAAAAAAAADwiKK5K6huxXapsm+bzabwiLvy902bKvsHAAAAAAAAAAAA4sOEUgAAAAAAAAAAAAAAUmDd3jmat2G8jl/YrajoCGXNkFeVijVQl0Yj5e3loz3HV+v9ibX1fssfFR5xV/M3fqOLV4+rdZ0B6lB/kKvDBwAAAAAAAAAAgMEwoRQAAAAAAAAAAAAAgEeER97TzbuhsR73svgowC+dJOmHvz/SjJVfKH/2Umpes5cypcupC1ePa/2+OXqtwf/J28vHvt0f677S7XtX9ULVzsoUmENZM+R1WlsAAAAAAAAAAACAh5hQCgAAAAAAAAAAAADAI35aOlA/LR0Y6/GqJV/UkDcW6J8zWzVj5RcKLlxbn3daJB9vP/s6bzb8MtZ2V26c0ZR+/yhj2mypGjcAAAAAAAAAAACQECaUAgAAAAAAAAAAAADwiBerdtEzQS1iPZ4+bVZJ0opdv0iS3mg4NMZkUkkymUyxtqtbsQOTSQEAAAAAAAAAAOByTCgFAAAAAAAAAAAAAOARubMUVYVideNdfj70qEwmkwrnLJek/eXJWsxRoQEAAAAAAAAAAAApZnZ1AAAAAAAAAAAAAAAAuBuTTFIcv0YaF1/vNKkcDQAAAAAAAAAAAJA4JpQCAAAAAAAAAAAAAJAMebIUk9Vm1YkLe1wdCgAAAAAAAAAAAJBkTCgFAAAAAAAAAAAAACAZ6pR/VZL0w98fKjIqItZym83m7JAAAAAAAAAAAACARHm5OgAAAAAAAAAAAAAAAJ4kR8/v1PId0+Nc9lSZl1QiXxW1qt1fM1cN09tfVdCz5VopU7ocunjtpNbtna2ve2xVWv8Mzg0aAAAAAAAAAAAASAQTSgEAAAAAAAAAAAAAeMSq3TO0aveMOJdN7X9UuX2L6M2GX6pQznL6c8PX+n3NcNmsVmXNkFdVSjSUr3caJ0cMAAAAAAAAAAAAJM5ks9lsrg4CAAAAAAAAAAAAQMpER0irxrk6ipSr3UOy+Lg6Crg7d64DagAAAAAAAAAAAADOYnZ1AAAAAAAAAAAAAAAAAAAAAAAAAAAAAEhdTCgFAAAAAAAAAAAAAAAAAAAAAAAAAADwcF6uDgDux2aTrJGujsI5zN6SyeTqKJLHZpMiol0dRdL5WBx7jN0xPx2ZZ+72+kvkgOT4HKD9jtmXszj6vcbo/QA5AAAAAAAAYFyMjTE2ZgTu+DqnVEryw2az6Z7VfTqCNGaLTMlsJDkQP3c8No6/TuReNSAlvw7c8XVOqeTXgOe//hI5kBB3PDZG7wepgYSlpAaMfE4ouWd+cN+Qse8bogaoAcaGAAAAXIMJpUg2a6S0apyro3CO2j0ki4+ro0ieiGip/0xXR5F0w1pJvg7sidwxPx2ZZ+72+kvkgOTYHKD9xm6/RD9ADgAAAAAAABgXY2OMjRmBO77OKZWS/LhnjVbGlctSJ6BUcL1OPQVYktcJkAPxc8dj4+h+0N1qQEp+Hbjj65xSyc0PI7z+EjmQEHc8NkbvB6mBhCU3P4x+Tii5Z35w35Cx7xuiBqgBxoYAAABcw+zqAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJC6mFAKAAAAAAAAAAAAAAAAAAAAAAAAAADg4ZhQCgAAAAAAAAAAAAAAAAAAAAAAAAAA4OGYUAoAAAAAAAAAAAAAAAAAAAAAAAAAAODhmFAKAAAAAAAAAAAAAAAAAAAAAAAAAADg4ZhQCgAAAAAAAAAAAAAAAAAAAAAAAAAA4OGYUAq3sef4atXra9KSbVNdHQoAAAAAAAAAAAAAGAbXakEOwOioAZADMDpqAAAAAAAAz+Hl6gDgOfYcX633J9a2/99sMiuNXzplSZdbRfNUVO3gNqpUvIFMJpMLowRi+2/uSpKfT4DyZC2muhXa66Wn3pXFQnfpycgBjoHR2w9yAAAAAAAAAMbF2Jhn4FotyIGUox/0DNQAyIGUox/0DNQAUoo+gGNgdLz+HAMAAAAj4tMdHK52cBtVKdFQNtkUdv+2zl45rI3752nZjp9UoWhdfdJ+ltL6Z3B1mEAsj+bu9dshWrbjJ038q7fOXD6kXq985+rw4ATkAMfA6O0HOQAAAAAAAADjYmzMM3CtFuRAytEPegZqAORAytEPegZqAClFH8AxMDpef44BAACAkTChFA5XNHcF1a3YLsZj3RqP1vcL+2nO2tH64pc2+uLNv10UHRC//+Zu4xpvq9PwEvp762R1fP5zZUib1YXRwRnIAY6B0dsPcgAAAAAAAADGxdiYZ+BaLciBlKMf9AzUAMiBlKMf9AzUAFKKPoBjYHS8/hwDAAAAI2FCKZzCYraoW+NROnx2q7YdXqz9J9erTMGnJUl3w27q15VfaP2+Obpy46zS+KVT+aJ19cbznytn5kIJ7tdqtWrGqqHacXiJzl05otth15QxMIeqlnhRHZ8fonQBmSVJ1+9c1qtD8uiZoBYa8OovsfYz7o93tGDzt/rpgxPKkamAw9vvrsa2MzlsX+9NtzlsX87i7xOgEvmrad3e2bpw9bghT4bJAXLA6MfA6O03eh8gkQMAAAAAAABGxdgYY2OehGu1IAdShn7Qc1ADIAdShn7Qc1ADKWP080L6AI4BNWDs11/iGAAAAHgyJpTCqZ6v3En7T67XlkMLVabg07obdlPvfVNDl2+cUYPKb6hA9tK6duui5m+aoHfHV9U3721X9oz5491fVHSEZq0eoZplm6t66aby8wnQkbPbtHjbFO0/tV4T3tshby8fZUybTdVLNdH6fX/oTtgNpfXPYN9HRGS4Vu3+VeWL1H2iBqRc7VboGdVsO1oVXujl6lBc6uLV45KkdGkyuTgS5yMHHjByDjxk9GNg1PbTB/zLqDkAAAAAAABgVIyN/YuxMc/CtVqQA8lHP+hZqAGQA8lHP+hZqIGk47zwAfoA4x4DauABo77+j+IYAAAAeCYmlMKpCuUMkiSdu3JEkjR16ae6ePWExr27WYVzlbOvV7/y6+oyqqymLRmofq2nxrs/by9fzfz0ony9/f99sHo3lSpQQ6NnvamNB+bp2XItJUkNq3bRun1ztHLXr2pS42376uv2zdGdsBtqWPVNB7bU/Z3c9ZcKlW/s6jCcKjzynm7eDZXNZtP12yH6a9NEHTu/SyXyVlGerMVcHZ7TkQPGzAGjHwOjt/9RRuwDJHIAAAAAAAAAjI0xNua5uFYLciBh9IOejxoAOZAw+kHPRw0knRHPC+kDOAaPogaM+fpzDAAAAIzDkBNKQ0NDNXz4cP3xxx86d+6csmbNqmbNmumLL75Qjx499MMPP2j8+PHq3r27q0P1OGn80kmS7t2/JZvNppU7f1HZQs8oS/rcunk31L6en0+ASuSrph1Hlya4P5PJZB+QirZGK+z+bUVboxRcpI4k6dCZLfZBqYrF6ilHpoJavHVKjEGpxVunKF2azKpR+iVHNtXt3Qg5qnL13nF1GE7109KB+mnpwBiPPV2mmd59+RsXReRa5MADRssBox8Do7f/UUbsAyRyAAAAAAAAAIyNPYqxMc/CtVqQAwmjH/R81ADIgYTRD3o+aiDpjHheSB/AMXgUNfCA0V5/jgEAAIBxGG5C6e7du/XCCy8oJCREAQEBKlWqlC5cuKBx48bp+PHjunbtmiQpODjYtYF6qHvhtyRJaXzT6cbdK7p176p2HFmqVwZljXN9s8mc6D7X7Plds9eM0rELuxQVHRlj2Z2w6/a/TSaTXqjypn5c/JGOnd+tIrmDdfHqCe05sVovP/2evL18HqNlniUi/I58/AJdHYbTvVi1i54JaqEoa6ROXtynmauHKfTmOfl4+9nX2XdinT6c8kKsbaOiI2S1RmvJ8GhnhpxqyAHj5oDRj4HR2/+QUfsAiRwAAAAAAACea8bKoTp6fqeOntuhkGsnlT1jfk3/8JSrw3riMDbmuWNj1ADXapMj+oepsv72uyy9e8r8fP0Yy2w2m6L7fiDboUPy+nqcTAULuCbIFCAHEubp/WByUAMPGK0GHkUOPGC0HKAf/Bc18IDRauAho54X0gdwDB6iBoz7+nMMAAAAjMNQE0pDQ0PVuHFjhYSEqE+fPho4cKACAx+c9AwfPlz9+/eXl5eXTCaTgoKCXBytZzpxca8kKU+24pLNJkmqULSuWtXqn6L9rdv3h4ZMb6USeavo7SZjlTVDXvl4+SnaFq0PJz8vq9UaY/3nK7+hn5YO1OJtU9Q993gt3vaDbDabXqjy5uM1zMOc2bdM+crWT3xFD5M7S1FVKFZXklSlxAsqU/Bp9ZrwtMbO6aaP2v0mSSpbqKb++vxOjO1Cb17QO+MqqWkNz/lVY3LAuDlg9GNg9PY/ZNQ+QCIHAAAAAACA5/rh7w8VmCaTiuauoLthN1wdzhOLsTHPHRujBrhWmxzm9m1l3bxF0ZO+l6liBZmyZrEvs/4xT7a9+2R+43W3mkAikQOJ8fR+MDmogaTxtBp4FDmQNJ6WA/SD/6IGksbTauAho54X0gdwDB6iBoz7+nMMAAAAjCPxr5DyID169NC5c+fUvXt3jRw50j6ZVJL69euncuXKKSoqSgUKFFC6dOlcGKnnWrxtiiSpaokXlT4gq9L6Z9C98FuqUKxuvP8SsmLHz/Lx8tOIbqvUuMZbqlaqkSoUq6vsGfPHuX6mdDlUrVRjrdz5i8Ii7mrp9qkqka+qCuQo7fC2urOLRzcoZ7EaMR7bMPNDjW1n0oE1P8Ra32azafaQWvr6dV+Fnt3vrDBTXekCNVS3Qnut3jNTB05tjHOdiKj7+uynZipT4Gm9+tyHTo4w9ZADDxg5Bx4y+jEwavvpA/5l1BwAAAAAAACe56cPjuuPz65qWJdlypwul6vDeWIxNvYvTxsbowa4VpscJm9vefXtI4WHK3r0V/bHbWfPyTr1J5lKFJe5RXPXBZhC5EDyeFo/mBzUADVADpADEv0gNWDcGuC88AEj9wEPGfUYUAMPGPX1fxTHAAAAwHMZZkLpoUOHNHPmTGXJkkVDhw6Nc52KFStKksqVKxdr2dy5c1WjRg0FBAQoffr0euqpp3TgwIEY65w8eVJNmjRRYGCgMmbMqA4dOujq1auOb4wbirZGa9Jf72v/yfWqUqKhyhR8SmazWXXKt9U/Z7dq7d7ZcW53/c7lBPdrNltkMplks/37bWY2m02/Lh8S7zYNq3bW7bDrGjunm0Jvnn/ivuHM1WxWq2w2m8xmS4zHqzUfpMx5ymjtL711++q5GMt2Lf5K5/9Zo6rNPlOWvGWcGW6qa1v3E5nNFk1b8mmcy8fO6aaIyHD1bTXVuYGlInIgJiPmwH8Z/RgYrf30AbEZLQcAAAAAAIBnypm5kKtDeOIxNhabJ42NGbkGuFabMqaiRWRu3VK2HTtlXfi3bNHRih4+UrLZZOnbRyaLJfGdPCHIgZTzpH4wuagBaoAcIAck+kFqwHg1wHlhTEbuAx4y2jGgBmIy2usfF44BAACAZ/JydQDOMmPGDFmtVrVt21Zp06aNcx1/f39JsSeUjhs3Tn369FGvXr00ePBg3b9/X1u2bFFYWJh9ndu3b6t27drKlCmTZsyYobCwMPXr10+NGjXShg0bZDYbZu6ujp7fqeU7pkuSwu7f1tkrh7XxwDxdun5aFYvV14ev/mpf943nP9eBUxs0ZHpLPRvUUiXzV5OXxUeXrp/W1n8WqWjuiurXemq8z1Uz6BWt2zdHfSfVUd2KHRQdHakNB+bpfsS9eLepVKyBsmfMrxU7p8vfN61qB7d2WNs9QciJrcpRuEqsxy1ePqrfdZpmDqqq5ZM76eX+SyRJ1y8c1qZZHylH4aqq2Kivs8NNdbmzFFHtcq21Ytcv2ndincoWqmlfNnf9OG05tEBf99gmP580LozSsciBmIyYA/9l9GNgtPbTB8RmtBwAAAAAAAAwKsbGYmNszP1wrdaxzG3byLppi6K/nyzz8ROyHT4ic5c3Zcqbx9WhxYsccCyj94PUADVADpAD9IPUgNFqgPPCmIzeB0jGOwbUQExGe/3jwjEAAADwTIaZ5bhy5UpJUu3ateNd59y5B9+a8+iE0uPHj6tv374aM2aMhg8frueee04NGzbUZ599pkqVKtnX++6773T+/HnNmzdPjRo1UosWLfTrr79q8+bNmj9/fiq16sm0avcMDfutvUbMfE2T//5AO48uU1ChZ/VFp7/1ZeclCvBPb183wD+9vnpngzrU+0ynLh3QlEUDNHlRf206OF8l81VT4xpvJfhctYNbq9cr3yns/h19t+B9/b56uPJmLa6hnZfEu43ZbNbzlTtJkp4Nail/37gnGBvB+X/WyhodFeOx03sWK3/Q83Gun61gBVVqPEBn9i3VvpXfyWqN1pJJHWSz2VS/67RY30rlKdo895HMJrOmLf33G5Z2H1ulyQv765P2s5QjUwHXBfeYyIGk8eQcSCqjHwNPbT99QNJ5ag4AAAAAAAAYFWNjScfYmHvhWq1jmby85NW3txQRKeuChTKVKS1zs5dcHVaCyAHHM3I/SA1QA+QAOSDRD1ID8XP3GuC8MGmM3Ac85KnHgBpIGk99/ZODYwAAAOB5TDabzebqIJwhb968OnfunHbt2qXg4OBYy6OiopQzZ06Fhobq+PHjKlSokCTpo48+0tixY3X16lX5+vrGu/+HE1VXrVoV4/HChQurVq1amjJlSrJjrlSpkkJCQpK9XWrz8fLXd92PujqMxzJz1XBNXtRfY9/ZqFIFqse7XpeviyoiKize5U8ii7e/Xh6S+OtzZPNMLZ/8phr3nq+8pf6daL1mei89225MvNtFR0Xqt08r69blEyr+VDvtW/Gtar46ShUa9k5RvHM/LqroSMcdY2fkZ8i1U+o+rrLa1Ruol57q/tj7c2SeJfX1l8iBx/Ek54Cz+mhHHgPa79j3Gnd7H5Ac2w+QAwAAAAAAwIiSOybSeWQZhUXc0fQPT6VeUMngqPERxsaMPTaWnPa7cw1wrTZhNh8fXZn0zeOGGHOfIZcU1fVtKSxM5o6vydKmlcP2nbXrOzJFRCRrG3IgfkbvByX3qwEp+XVADcQvNV5/iX4wNdAP/svo/SA14Nga4L4p7puiH3S/sRFqgBrgvikAAICUy5Ejh7Zv356ibb0cHMsT6+7du5KksLC4P3TOnDlToaGhCgwMVMGCBe2Pb9y4UcWLF9f06dM1ZMgQnT17VkWLFtWnn36qNm3a2Nc7ePCgWrRoEWu/pUuX1sGDB1MUc0hIiM6fP5+ibVOTn3caV4fwWKKjo7Rw8yQVzFE2wQEpSbp44YLCI+85KTLH8PJN2utTrFor3bh0TCd2/jsgcCv0jNJlyZ/gdhYvb9XvOk2/fVpZ+1Z8q1zFnlb553umON4LFy8o6r7jjnFq52d4xD0NnPqSqpdq4pDBAMmxeZbU118iB1LqSc8BZ/TRjj4GtN+x7zXu9j4gObYfIAcAAAAAAIARufu1G0eNjzA2ZuyxMXeug+QcB3dup+SEa7V+vvJ+jPj+y2azKXrUGCkqUsqXV9Zff5P52WdkypXTIfu/cPGCFH4/WduQA/Ezej8oye1qQEp+HVADCXDw6y/RD6YG+sGYjN4PUgOOrQHum+K+KfpB9xsboQaoAe6bAgAAcA3DTCjNkSOHrl+/rp07d6p69ZgDERcvXlTfvn0lSUFBQTKZTDGWnT9/XgMGDNCwYcOUN29eTZkyRa+++qqyZs2qunXrSpKuX7+uDBkyxHreTJky6fDhwymO+Unk4+Xv6hBS5OK1kzp0epM2HvhTF6+d0IdtZyS6Tc5cudzum28s3kl/fQpXell/jWpi/0apk7v+UsHyjRPdzjdNelm8fWWNjlSB4IYymc0pjjdXzlwO/4ap1LRu3xyduLhH50OPaPWembGWT3n/oLJlzJesfToyz5Lz+kvkQEo86TngjD7a0ceA9jv2vcbd3gckx/YD5AAAAAAAADAid71285CjxkcYGzP22Jg710FyjoO7ttNZ12ptPj66ktIg42CdN1+2PXtl7viazNWrKeqddxU9aowsI4fFuK8gpXLlzJWiXyVzR87IAaP3g5L71YCU/DqgBuLn6Ndfoh90JPrBuBm9H6QGEpbc/OC+Ke6boh90v7ERaoAa4L4pAACAlHuceYeGmVBat25dHTp0SMOGDVO9evVUrFgxSdK2bdvUvn17hYaGSpKCg4NjbGe1WnXnzh39/PPPeumllyRJzz33nA4ePKjBgwfbJ5SmhpT+7Gxqi46QVo1zdRTJt/f4Go38vaPSB2RRu7qfqnZw60S3OXrkqCw+TgjOge5HSf1jn6PFKXPuUpLJpKvnDihzntK6cemYymUvnOA2NptNy77rKGtUhDLlKqmtfw5R0aotlSGR7eJz5OhR+TqwJ0rt/KxXsb3qVWzv0H06Ms+S8/pL5EBKPOk54Iw+2tHHgPY79r3G3d4HJMf2A+QAAAAAAAAwIne9dvOQo8ZHGBsz9tiYO9dBco6Du7bTWddq70ZHKePKZSmMMibb+fOy/jBVpuLFZG75ikwWi8zt2sr64zRZ582X5eWmj/0cR44eUYAleZ0AORA/o/eDkvvVgJT8OqAG4ufI11+iH3Q0+sG4Gb0fpAYSltz84L4p7puiH3S/sRFqgBrgvikAAADXeLyvzHUj/fr1U+bMmXX27FmVLl1aZcuWVdGiRVWlShUVKlRIderUkSSVK1cuxnaZMmWSpBgTR00mk+rWrav9+/fbH8uYMaNu3LgR63mvXbtm3wdcq0Hl17VshE2zB13Raw0+c3U4T4xC5RvrxM75igi/Ix+/wETX37N0vM4dWq0qLw9Uwx6zZIuO0vLv35DNZnNCtEgN5ABgbPQBAAAAAAAAMCrGxgDncbdrtTarVdEjRktWqyx9e8tksUjSg8kkxYrK+sNU2S5cdHGU7sXdcsDoqAHHc7caIAccz91ywOioAcd7UmuA80IYHTUAAAAAGJNhJpTmyZNH69at04svvig/Pz+dOnVKmTJl0qRJk7Rw4UIdOXJEUuwJpaVLl453n+Hh4fa/S5YsqYMHD8Za5+DBgypZsqSDWgE4XsEKDwYEzuxbqnxl6iW47vWQo9rw+wBlL1RZlRr3V+Y8pVW12SCd/2et9iwd75yA4XDkAGBs9AEAAAAAAADGsGzHz/pl+RD9snyIbty9orvhN+3/X7bjZ1eH5xKMjRkLNYDksM7+Q7aDh2R+rZ1M+fLZHzdZLLK831uyRit61BhumobHogZADsDoqAHj4LwQRkcNAAAAAMZkmAml0oNJnwsWLNDt27d1+/ZtbdmyRV26dNHdu3d16tQpmc1mlSlTJsY2TZs2lSQtXbrU/pjVatWyZctUuXJl+2ONGjXS+vXrde7cOftjW7Zs0fHjx9W4ceNUbhmQcrmL19SNkKM6vn2ucharEe96NqtVyya9Lps1WvW7TpPZ/OCb9yo26qdsBStpw+8DdOPScWeFDQciBwBjow8AAAAAAAAwhsVbp2jqkk80dcknunHnsu6E3bD/f/HWKa4OzyUYGzMWagBJZTtzRtZpP8tUsoTMzZvFWm4qkF/mdm1l27df1nnzXRAhkLqoAZADMDpqwFg4L4TRUQMAAACAMXm5OoAnwYEDB2Sz2VSsWDGlSZMmxrLGjRurZs2a6tKli65evap8+fJp8uTJOnDggJYtW2Zfr0uXLho/fryaNm2qzz77TOHh4erXr5+qVKlin5QKPInMFi/lD2rw4O//neTHZeeiUbp4dKOeaj1MmXL/+6u7ZrNF9btO1YyPK2j592+o+UerZTKZUj1uOA45ABgbfQAAAAAAAIAxjHprtatDeOIwNmYs1ACSypQvn7wX/pngOpY2rWRp08pJEQHORQ2AHIDRUQPGwnkhjI4aAAAAAIzJUL9QGp99+/ZJksqVKxdrmclk0vz589W8eXN9+OGHatKkiU6fPq1FixapTp069vXSpUunlStXKmfOnGrdurXefPNN1ahRQwsWLJDZzGHGk61wxZdUqGL8E5+vnT+kTXM+UY4i1VShYZ9YyzPnKa2qzQbp/D9rtWfp+FSMFKmFHACMjT4AAAAAAAAARsXYGAAAAAAYG+eFMDpqAAAAADAefqFUCU8olaQMGTJo0qRJmjRpUoL7KVy4sBYsWODw+IDUVrRqiwSXZ8pdUt1/DE9wncpNBqhykwGODMspvpnXQ5sOztel66f1bc9dKpI7ONY6e46v1oeTX1CerMXtj417d5N8vf2169hKTVn0gcLu35HJZFLVEi+qU8Mv3W4iuZFzAAB9AAAAAAAAAIyLsTEAAAAAMDbOC42r3RcF5O3lKx8vf0lSmzoDVCs45q8PHzy1SWP/eEuSFG2NVJkCT+vtl8bJx8tXVqtV3y/sp+2HFyvaGqXSBZ5Sj2bfytvLx+lteRzUgHFFRIbr819a6/Slg/L19leGtNnUo9m3yp2lSIz1Ll47qcE/vaJoa7Ss1ijlzV5SvZp/p8A0GXXy4j6Nn/uObty5LIvZS8XzVdG7L38jX29/F7UKAAAAScGEUiU+oRRJt+XQIk1d8rGsVqus1ii1qNVX9Su9phEzO+rAqQ3y9faXn09avd30KxXPW1mSdO7KUX01p4tu37uuyKhwVSn5orq8OEJms1lWq1UT5r+nrYcWyWQy6eWaPfXSU90lScN/e107jy5TtVKN1bP5xFixhN2/oyYfB2rZCJsk6aelg9S69gfy8faTJM1ZO0bzN34jP5+0mtR7t3MOEJ44NYNeUcta/dRrwtMJrpcna/E48yTQP6M+avubcmYupIjIcPX7rq6W7fhJDSq/njoBwyn6f1df12+HyGQyK41foN5pOk5Fcpd3dVipLqkDRNKDvnvEzNd0826oAvzSq2+rqSqQo/S/+4q6r0l/9dH2I0vk4+WnwjnL6YNXpzuzOQAAAAAAAACAVLZ272xtObRQd8KuJ2lsGc4V31h9QmP4CY3/1+trUoEcZfRmw2GqWrJhrOebt+FrHTm7Xf1aT9Wx87t19so/qh3c2r78/Ym1deLCHrWr96ma1ezplGNgNPF9mW58174SuzZ0/c5lDZ/RQReuHZePxVfvNpugoELPSPr35vsWz/ZVw6pvxopl88EFmrVmpEa9tVoh105p2+HFaly9m3350F/batfRFaoV3FpvN/0q1Y8NjIEaADkAxMTnQTjS2r2ztevoCr3VZEyS7y9yBx+1nRnnj1A8VChXOX3z3jZ5WbxltVr1fz81118bJ6j5M720eNsUHTu/UxN67pSXxVtjZnfR3PVj1bJWX+c1AA5ntHsHG1btoiolXpDJZNK8DV9r9Kw3Neqt1THWyZwul8a8s94+SfSbP9/TT8sG6Z2mY+Xt5afuL32tQrmCFG2N1tBfX9XMVcPUof4g5zcGAAAAScaEUkkrV650dQgewWazadiMdhrZbbUK5QpSyLVTemNECT1dppmeKvOyer/yvSwWL20+uECDf26h6R+ekiR9v7Cvnirzsl5+uociIsP1zrjK2lbkOVUt2VArdk7X6UsH9WP/I7obflNvjSmv4MK17YNULWv1TfLg0s/LPlOzmj3tE0qbP9NLRXKX14Q/k7Y9PNPDgf6UenSgwMfbT4VzBevS9VOPGRVc7ZP2vyutfwZJ0vp9czVi5uua1HuPa4NykqQMEEnS2Dld1bBqFzWo/LrW7p2tETNf1zfvbbMvn7LoA5lMJk3td0Qmk0nXboU4sRWp507YDXUeVUb3I8OUNX1eRUbfV8jVE3quYnv1aTHZ1eHBCcgBAAAAAAAA4F8b9s/Vs0EtZbF4J2lsGc4V31h9QmP4iY3/j3l7nf0aSkKOX9itjQfmxZhAMLLbKg3/7XWHtQ+xxfdlugld+0ro2tCURR+oZP5qGtp5sQ6f3aZB017WzwNOysviLSnxm+8funT9lBZsmhhjItWAV3/RT0sH6U7Yjcdud2rhmoD7oQZADjgW/aD74/MgHGnD/rmqW7GDpKTfX+QJ/HzS2P+Oio7Q/cgwmUwmSdLxC3tUvmhd+y+SVi7xgn5eOogJpW7OSPcO+nj7xfiCgJL5qmn2mpGx1/Pytf8dbY1WeMRd+fuklSTlyVrUvsxitqh4nso6GbI/FaMGAACAIzChFI5lMulO+A1J0r3wW0qXJrO8vXxVo3QT+yol81dT6M3zio6OksXiJZNMuht2U5J0PzJM0dGRypwupyRp9Z6Zali1syxmi9KlyaRa5Vpp1e4Z6vj8kDiffsGmSZq1dqT8fdLq6TLN7I9/NefBgGyvCTVlNln0ZZelypg2W2ocAXioi9eO662vKshssqhB5Y5qUuPtWOtcuxWidXtna/AbC1wQIRzp0YHvu+E3JT0YBPT0iyVJHSC6fueyjpzbri87L5Uk1SzbXF/P7a7zoceUO0sRhUXc1eKtU/Trx+fsA6iZ0uVwTiNSWVr/DKoT/Kr8fQPVrt4n2nZ4iWas/MIjXn8kDTkAAAAAAAAAo0hsTDwqOlIHTm1Q31ZT7ZMqpPjHluFc8Y3VJzSGn9j4/3/dC7+t0bPf1PELu5U+IKsKZC9t38+0pZ/qbvhNdR0drJL5q6ln84nOaLbhxfdluvFd+0rs2tCaPb9rWv9jkqTieSsrc7pc2nt8jSoUqxvrOaKiIzXhz/e04+gyBfpnVJmCNe3Lxs7ppkvXT6vr6GBly5hPgzvOf5xmOg3XBNwPNQBywLHoB90bnweRXAmdA77X7NsY539Jub/IXQz/rYNssqlE3irq1PBLZUibNdY6IddOaeDUprpw9biqlnxRjas/uHewaJ6KWrh5kpo+1V2+3v5au+d3fozCAxj13kFJmrt+rKqXbhrnssioCHUfV0WXb5xWwZxBGvx67M8zYRF39ffWyXrjhaGpHSoAAAAeExNK4TAmk0kft52pz6Y1k59PgO6EXdfADn/Yv33pobnrxqpKiYayWB6k31tNv9InPzTWX5u/1Z1719W27if2X328fOOMsmfIb982e6YCOnR6c5zPfzJkv35aOlDf9tqlzOlyasrfH9qX9Ww+UQs3T0ryN6QBjyqSu4JmfHROAf7pdeXGOX00paHSB2TRs+Va2te5G35Ln/zYWC1r9VPxvJVcGC0cZdiMDtpzfJUk6fNOiyQZ72JJfANEV26cVaZ0Oe39uMlkUraM+XT5xhnlzlJEF0OPKzBNJs1Y+YV2Hl0uX29/ta83SBWKPufsJiRbj/HVdT70aJzLvu21S9ky5NWxC7v18tM9JElHz+1QkVzl41wf7okcAAAAAAAAAB5IbEx897FVKpW/RozJpFLCNx/CeeIbq88QkDXeMfzExv//a/ry/5O3xVc/9P1H98Jv6d2vq6lE3qrKmDabXqv/f9p4YJ4+e32ek1uO+MR17eu/Hq3fW3evKjo6MsaXhmbPWECXb5yJc9uFm7/T2SuHNbnPAUnSgMkN7Mveaz5RE/7sqUm9dzuiKU7FNQHPQQ2AHEgZ+kH3xedBJFdC54DbDy+N8/xPcu9zwNFvrVW2jPkUFR2pHxd/rOEzX9MXcbxH5MhUQJN671HY/Tv6ckY7rd//h2oHt1aDSq/r8vXT6vPts/L19lf5onVlObLUBS2Boxnx3sFfV3yhC6HHNLzrijiXe3v5aFLv3YqMitA3897Vgs2T1Kp2P/vyyKgIfT69lSoWq6+ny77srLABAACQQkwohcNER0fplxVDNPC1PxRU6BkdPrtNn/7YRN/12af0AVkkSct3TNeavb9r9Ftr7dvN3zhBtcu3UZs6A3T9zmX1nVhbxfNWVsVi9ZL1/LuPrVTlEi/Yf920cfW39NtKvuUGjy/AL53976wZ8qh2+Tbad3KdfULpvfDb+nDy86pRuqleeba3q8KEg/Vv85Mkaen2afp+UX/7YKE7XyxJykS5hxIbIEpItDVKl66fVv5spfRmwy917Pwu9f+unia/f0AZA7OnOH5nGPfupkTXOXFht/2LD46e26Hqj/wKN9wfOQAAAAAAAACjeNwvV9t4YJ6eKhPzBsHHGVuGY8U3Vj+k08J4x/CTa9exFerWeIxMJpMC/NOrTvCrunD1eCq0Bo4Q37Wvhx63fncdW6F6FTvYv3C6QeU3tHjrlMcL+gnANQHPQQ2AHEgZ+kH3xedBpER854Bxnf9J7n8OmC1jPkmSl8VbzWr2VMfhxRJc3983rWoFt9bKnb+odnBrmUwmdag/SB3qD5Ikrdr9m/LnKJ3aYcMJPPHewYTMWj1S6/f/oeFdlsvPJ02C63p7+ah+5Y4aM7uzfUJpVHSkPp/eSpkCc+rtpmOdETIAAAAek9nVAcBzHLuwW1dvXVBQoWckScXzVlaW9Hl07PwuSdLq3TP18/LPNKzzshgTiuZv/Eb1Kr4mScqYNpuqlGioPcdXS5KyZcinSzdO29e9dO2U/SQ+MSaZHNEsQFdvXZTVapX0YPLo5oML7AMBYffvaMDk51Wp+PNqW/djV4aJVFK/0mvac2yVbt29Kin2xZKHf7uDce9u0pzPQuP89+hk0ocDRF+8+XecA0RZM+TVtVsXFR0dJUmy2Wy6fP2MsmV40D9ny5hPZpNZdSq0lSQVyV1eOTIV1MmL+5zQytQVevO8ZDIpS/rckqQTIXtVMEdZF0cFZyIHAAAAAAAA4CmSMmYc35i4zWbT9sNLVKXEC/b9JTa2DOeKb6z+yo2z8Y7hJzb+nxiTieuz7uC/176kuOs3XUBmWcxeunYrxL7epeunkp4PHnC9nmsCnokaADmQdPSD7o3Pg0iJuM4B4zr/k9z/HDAs4q7uhN2w/3/VrhlxTg48H3pMUdGRkh78AuOG/XNVMGeQJCkiMly3712XJN28G6rfVn6plrX6xdoH3Jcn3TsYn9lrRmvV7hka1nmZ0vpniHOdS9dPKzziniTJarVq7d5ZKvS/OoiOjtLn01srME0m9XrlO94LAAAA3AQTSuEw2TLk1bXbF3X60iFJD06kL149rrxZi2vNnt/145KPNbzL8lgTQnNmKqTthxdLenCSvvv4KhXIUUaS9ExQCy3a8r2irdG6de+aVu+ZqVrlWsX5/MFF6mj74cX2gdwFmyfGWJ7GN1B3w286tM1wf1/N7qo2Q/Loys1zGjC5gV77sogkadSsN7XxwHxJ0rp9c9RldFl1HV1OPb6uporF6qlB5Y6SpD/Wj9Xhs1u1ft8f6jo6WF1HB+uXFZ+7rD14fHfCbij05gX7/zfsn6d0AZkVmCaTIS6WJGWAKGPabCqSu4KW75wu6UGNZMmQR7mzPKif9AFZFFzkOW0/vESSdPHaSYVcO6l82Us6pQ2p6dj5XTEGj9P6ZdD8TRNcGBGcjRwAAAAAAACAUSQ0Jv7P2a3Kl72k/H3TSkra2DKcK76x+lL5q8c7hp/Y+P9/VShSV0u2/Sibzaa74be0avcM+7I0fum4NvuESOjal5Rw/dYMamG/7n747DaF3jyvoMLPxvk8FYrW1Yqd0xUVHanIqAgt2f6jfVka33S654b5wDUBz0ANgBxIOfpB98bnQSRXfOeA/z3/kzzjHPDG7Ut6f2JtdRkVpM6jymrviTXq1/rBr1I+eu/g7mMr9daY8uo6upze+qq8MqbNrnZ1P5Ek3Q2/qfe+qaE3R5ZWrwk11ah6N1Uv1dhlbcLjM9q9g1dunNOkBX10J+yG3p9YW11HB+vdcVUlSVOXfKq/Nj34HHTi4l71GF9NXUYFqevoIN28c0XvNB0nSVq9Z6bW7/9DR85tV7cx5dV1dLDG/fGOy9oEAACApPFydQDwHBkDs6tn8+80ZHpLmU1mWW1WdX/5a2XLmE8dviysTIE59OmPTe3rj+i6QukCMqtf62kaP7e75q4fq8joCFUv1US1g1tLkupWbK/DZ7fp9WFFZZJJzZ/prYI54z4BK5ijjNrXG6Re39aUv09aPV2mWYzlrzzTR/2/qydf7zT6sstSZUybLfUOBtxGz1cmxfl4nxaT7X+/9FR3vfRU9zjXa/vcR2r73EepEhtc4274TQ3+uYXuR4bJbDIrfUBWDe64QCaTKd6LJY/mizt7OECUM1MhvT+xtiTJx8tX43tskfRgsLR6qSaqUbqJejafpBEzX9eMlV8ojV869W35Y4x99Ww+UaNmddLkRf1lNpnVs/kk+2CaO6tWqpGqlWpk//83721zYTRwBXIAAAAAAAAARpHQmPiG/XNVo/RLkhIfW4brxDdWn9AYfmLj/49qW/cTjZ79pt4YUULpA7KqTIGnFRF1X5JUochzmr1mpLqMClKpAjXUs/nEePcDx/lqdldt+Wehrt0O0YDJDZTGN1DDu66I99pXYvXb+cVh+nJGe702rKi8LT76oM10eVm843zuhlU761TIfnUaWUqB/hlVpmBNHT23Q5JUKGeQ8ucorc4jyyhH5kIa3HG+cw7IY+KagPuhBkAOOBb9oPvj8yCSI75zwPQBWeznf5LnnAPmzFxIE3vtinPZo/eCvViti16s1iXO9TIGZtcPfQ+lSnxwDaPdO5g1Qx4tG2GLc9nrDf7P/nf1Uo3jnSz9XIW2eu5/v3oNAAAA98GEUjhUnfJtVKd8m1iPLx4WGe82RXKX19juG+JcZjFb1KPZN0l+/kbVu6pR9a72/7er94n97/b1B6p9/YFJ3hcAY8qeMb++7rE1zmWefrEkoQEiKeZgad5sxTXu3U3xrpszcyGN7LbKofEBAAAAAAAAAJwnoTHxzQf/0oj/jQEnNrYM14lvrD6hMfzExv8flcYvUB+3mxnnsgD/9BrbfWPSg4VDxPdluvFd+0qsfjMGZtewLkuT9NxeFm/1aBb3r9ZZLF4a8saCJO0HeBzUAMgBICY+DyI54jsHfHNkafv5n8Q5IDybke8dBAAAgLGYXR0AkFIB/uk1f+MEfTWnW4q2n7N2jMb98bbSB2RxcGQAAAAAAAAAAACA55r8/gFlTJvN1WHAyTKmza4+3z6rLYcWpWj79yfW1r4Ta+TnE+DgyOAK6QOyatiMdlq0JWW/xjP017ZasXO60vilc3BkgHNQAyAHYER8HjQmzv8AAAAAwPPwC6VwW+80HSs1HZvi7Zs/00vNn+nlwIgAAAAAAAAAAAAAwDP9PjDksbaP71ew4J4e99d4Brz6i4MiAVyDGgA5ACPi8yAAAAAAAJ6BXygFAAAAAAAAAAAAAAAAAAAAAAAAAADwcEwoBQAAAAAAAAAAAAAAAAAAAAAAAAAA8HAmm81mc3UQcC82m2SNdHUUzmH2lkwmV0eRPDabFBHt6iiSzsfi2GPsjvnpyDxzt9dfIgckx+cA7XfMvpzF0e81Ru8HyAEAAAAAAGBE7jgm8ihHjY8wNuZ+eWD08eGHknMc3LmdyZWS/LDZbLpndZ+OII3ZIlMyG0kOxM8dj43jrxO5Vw1Iya8Dd3ydUyr5NeD5r79EDiTEHY+N0ftBaiBhKakBI58TSu6ZH0Y/LzT6fUPUADXAfVMAAACuwYRSAAAAAAAAAAAAAAAAAAAAAAAAAAAAD2d2dQAAAAAAAAAAAAAAAAAAAAAAAAAAAABIXUwoBQAAAAAAAAAAAAAAAAAAAAAAAAAA8HBMKAUAAAAAAAAAAAAAAAAAAAAAAAAAAPBwTCgFAAAAAAAAAAAAAAAAAAAAAAAAAADwcEwoBQAAAAAAAAAAAAAAAAAAAAAAAAAA8HBMKAUAAAAAAAAAAAAAAAAAAAAAAAAAAPBwTCgFAAAAAAAAAAAAAAAAAAAAAAAAAADwcEwoBQAAAAAAAAAAAAAAAAAAAAAAAAAA8HBMKAUAAAAAAAAAAAAAAAAAAAAAAAAAAPBwTCgFAAAAAAAAAAAAAAAAAAAAAAAAAADwcEwoBQAAAAAAAAAAAAAAAAAAAAAAAAAA8HBMKAUAAAAAAAAAAAAAAAAAAAAAAAAAAPBwTCgFAAAAAAAAAAAAAAAAAAAAAAAAAADwcEwoBQAAAAAAAAAAAAAAAAAAAAAAAAAA8HBMKAUAAAAAAAAAAAAAAAAAAAAAAAAAAPBwTCgFAAAAAAAAAAAAAAAAAAAAAAAAAADwcEwoBQAAAAAAAAAAAAAAAAAAAAAAAAAA8HBMKAUAAAAAAAAAAAAAAAAAAAAAAAAAAPBwTCgFAAAAAAAAAAAAAAAAAAAAAAAAAADwcEwoBQAAAAAAAAAAAAAAAAAAAAAAAAAA8HBMKAUAAAAAAAAAAAAAAAAAAAAAAAAAAPBwTCgFAAAAAAAAAAAAAAAAAAAAAAAAAADwcEwoBQAAAAAAAAAAAAAAAAAAAAAAAAAA8HBMKAUAAAAAAAAAAAAAAAAAAAAAAAAAAPBwTCgFAAAAAAAAAAAAAAAAAAAAAAAAAADwcP8PrKNuHAn7Tt8AAAAASUVORK5CYII=", - "text/plain": [ - "
" - ] - }, - "execution_count": 8, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "from qiskit.circuit.equivalence_library import SessionEquivalenceLibrary as sel\n", - "from qiskit.transpiler.passes import BasisTranslator\n", - "\n", - "qc_dd = BasisTranslator(sel, basis_gates)(qc_dd)\n", - "qc_dd.draw(\"mpl\", style=\"iqp\", fold=-1, idle_wires=False)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Now, `YGate`s are absent from our circuit, and there is explicit timing information in the form of `Delay` gates. This transpiled circuit with dynamical decoupling is not ready to be sent to the backend. When doing so, remember to set the `skip_transpilation=True` option (See [Advanced runtime compilation options](/run/configure-runtime-compilation#advanced-runtime-compilation-options).)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Next steps\n", - "\n", - "\n", - " - To learn how to use the `transpile` function, start with the [Transpilation default settings and configuration options](defaults-and-configuration-options) topic.\n", - " - Try the [Submit transpiled circuits](https://learning.quantum.ibm.com/tutorial/submit-transpiled-circuits) tutorial.\n", - " - See the [Transpile API documentation.](https://docs.quantum-computing.ibm.com/api/qiskit/transpiler)\n", - "" - ] - } - ], - "metadata": { - "description": "How to create a pass manager for dynamical decoupling in Qiskit.", - "kernelspec": { - "display_name": "documentation--fuetTj0", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.10.12" - }, - "title": "Create a pass manager for dynamical decoupling" - }, - "nbformat": 4, - "nbformat_minor": 4 -} \ No newline at end of file diff --git a/translations/ja/transpile/index.mdx b/translations/ja/transpile/index.mdx deleted file mode 100644 index e08499c966..0000000000 --- a/translations/ja/transpile/index.mdx +++ /dev/null @@ -1,52 +0,0 @@ ---- -title: Introduction -description: Introduction to the transpiler ---- - -# Introduction - -Transpilation is the process of rewriting a given input circuit to match the topology of a specific quantum device, and optimize the circuit instructions for execution on noisy quantum systems. This documentation covers the tooling and workflows for local transpilation available to all Qiskit users, as well as for the cloud-based [Qiskit transpiler service](qiskit-transpiler-service) available to Premium Plan users. If you're using primitives and are only interested in the default transpilation options provided by the Qiskit Runtime service, read the [Configure runtime compilation for Qiskit Runtime](../run/configure-runtime-compilation) topic. - -A central component of Qiskit, the transpiler is designed for modularity and extensibility. Its central goal is to write new circuit transformations (known as transpiler **passes**), and combine them with other existing passes, greatly reducing the depth and complexity of quantum circuits. Which passes are chained together and in which order has a major effect on the final outcome. This pipeline is determined by the [`PassManager`](/api/qiskit/qiskit.transpiler.PassManager) and [`StagedPassManager`](/api/qiskit/qiskit.transpiler.StagedPassManager) objects. The `StagedPassManager` orchestrates the execution of one or more `PassManagers` and determines the order in which they are executed, while the `PassManager` object is merely a collection of one or more passes. Think of the `StagedPassManager` as the conductor in an orchestra, the `PassManagers` as the different instrument sections, and the `Pass`es as the individual musicians. In this way, you can compose hardware-efficient quantum circuits that let you execute utility-scale work while keeping noise manageable. - -Find more information about the pass manager stages in the [Transpiler stages](transpiler-stages) topic. - - - If you perform transpilation locally and submit the transpiled circuits to the Qiskit Runtime service, set the `skip_transpilation` option to `True` so that the service does not try to apply further transformations to your circuit. See [Advanced runtime compilation options](/run/configure-runtime-compilation#advanced-runtime-compilation-options). - - -## Transpiler stages - -Qiskit's prebuilt transpiler pipeline consists of six fundamental stages: - -1. `init` - This pass runs any initial passes that are required before we start embedding the circuit to the system. This typically involves unrolling custom instructions and converting the circuit to all single- and two-qubit gates. (By default this will just validate the circuit instructions and translate multi-qubit gates into single- and two-qubit gates.) -2. `layout` - This pass applies a _layout_, mapping/assigning the virtual qubits in your circuit to the physical qubits of a system. -3. `routing` - This pass runs after a layout has been applied and will inject gates (i.e., SWAPs) in the original circuit in order to make it compatible with the system's connectivity/coupling map. -4. `translation` - This pass translates the gates in the circuit to the system's basis set of instructions. -5. `optimization` - This pass runs an optimization loop to find more efficient decompositions of your quantum circuit until a condition is met (such as a fixed depth). -6. `scheduling` - This stage is for any hardware-aware scheduling passes. If the user specifies a scheduling method, this stage accounts for all idle time in the circuit. - - If you decide to customize your own transpilation workflow, we suggest using these stages as a guideline during development. - -## Transpile with pass managers - -The recommended way to transpile a circuit is to create a staged pass manager and then execute its `run` method with your circuit as input. You can use the [`generate_preset_pass_manager`](/api/qiskit/transpiler_preset#qiskit.transpiler.preset_passmanagers.generate_preset_pass_manager) function to generate a staged pass manager with reasonable defaults. - -More advanced users can customize a set of `PassManager` and `StagedPassManager` objects and determine the order in which each stage is run. This can dramatically change the final output circuit. In fact, a custom approach to transpiling a quantum algorithm often produces more efficient error suppression than the default approach. This involves rewriting quantum circuits to match hardware constraints and suppress the effects of noise. The flow of logic for this tool chain is quite customizable and need not be linear. The transpilation process can even prepare iterative loops, conditional branches, and other complex behaviors. A good starting place when developing a set of custom passes is to examine the default sequence of transformations. - -For an overview of transpiling using pass managers, see [Transpile with pass managers](transpile-with-pass-managers). - -## Default transpilation - -For a simpler , but less customizable, "out-of-the-box" way to use the transpiler, use the [`qiskit.compiler.transpile`](/api/qiskit/compiler#qiskit.compiler.transpile) function. This generates and runs one of the preset `StagedPassManager`s based on, among other options, an `optimization_level` flag that can be set to 0, 1, 2, or 3. Higher levels generate more optimized circuits, at the expense of longer transpilation times. - -## Next steps - - - - To learn how to use the `transpile` function, start with the [Transpilation default settings and configuration options](defaults-and-configuration-options) topic. - - Continue learning about transpilation with the [Transpiler stages](transpiler-stages) topic. - - Try the [Submit transpiled circuits](https://learning.quantum.ibm.com/tutorial/submit-transpiled-circuits) tutorial. - - Learn [how to transpile circuits](https://learning.quantum.ibm.com/tutorial/submit-transpiled-circuits) as part of Qiskit Patterns workflows using Qiskit Runtime. - - Try an end-to-end example that uses transpiled circuits in the [Variational quantum eigensolver (VQE)](https://learning.quantum.ibm.com/tutorial/variational-quantum-eigensolver) tutorial. - - See the [Transpile API documentation.](https://docs.quantum-computing.ibm.com/api/qiskit/transpiler) - diff --git a/translations/ja/transpile/qiskit-transpiler-service.mdx b/translations/ja/transpile/qiskit-transpiler-service.mdx deleted file mode 100644 index da9ada26b8..0000000000 --- a/translations/ja/transpile/qiskit-transpiler-service.mdx +++ /dev/null @@ -1,78 +0,0 @@ ---- -title: Transpile circuits remotely with the Qiskit transpiler service -description: What is the Qiskit transpiler service and how to use it ---- - -# Transpile circuits remotely with the Qiskit transpiler service - -The Qiskit transpiler service provides transpilation capabilities on the cloud. In addition to the local Qiskit transpiler capabilities, your transpilation tasks can benefit from both IBM Quantum Cloud resources and AI-powered transpiler passes. - -The Qiskit transpiler service offers a Python library to seamlessly integrate this service and its capabilities into your current Qiskit patterns and workflows. - - - This experimental service is only available for IBM Quantum Premium Plan users. - The service is an alpha release, subject to change. - - - -## Install the qiskit-transpiler-service package - -To use the Qiskit transpiler service, install the `qiskit-transpiler-service` package: - -```sh -pip install qiskit-transpiler-service -``` - -By default, the package tries to authenticate to IBM Quantum services with the defined Qiskit API token, and uses your token from the `QISKIT_IBM_TOKEN` environment variable or from the file `~/.qiskit/qiskit-ibm.json` (under the section `default-ibm-quantum`). - -## qiskit-transpiler-service transpile options - -- `target` (optional, str) - A system name as it would be expected by QiskitRuntimeService (for example, `ibm_sherbrooke`). If this is set, the transpile method uses the layout from the specified system for the transpilation operation. If any other option is set that impacts these settings, such as `coupling_map`, the `target` settings are overridden. -- `coupling_map` (optional, List\[List[int]]) - A valid coupling map list (for example, \[[0,1],[1,2]]). If this is set, the transpile method uses this coupling map for the transpilation operation. If defined, it overrides any value specified for `target`. -- `optimization_level` (int) - The potential optimization level to apply during the transpilation process. Valid values are [1,2,3], where 1 is the least optimization (and fastest), and 3 the most optimization (and most time-intensive). -- `ai` (bool) - Whether to use AI capabilities during transpilation. The AI capabilities available can be for `AIRouting` transpiling passes or other AI synthesis methods. If this value is `True`, the service applies different AI-powered transpiling passes depending on the `optimization_level` requested. -- `qiskit_transpile_options` (dict) - A Python dictionary object that can include any other option that is valid in the [Qiskit `transpile()` method](defaults-and-configuration-options). If the `qiskit_transpile_options` input includes `optimization_level`, it is discarded in favor of the `optimization_level` specified as parameter input. If the `qiskit_transpile_options` includes any option not recognized by the Qiskit `transpile()` method, the library raises an error. - -## Examples - -The following examples demonstrate how to transpile circuits using the Qiskit transpiler service with different parameters. - -1. Create a random circuit and call the Qiskit transpiler service to transpile the circuit with `ibm_cairo` as the `target`, 1 as the `optimization_level`, and not using AI during the transpilation. - - ```python - from qiskit.circuit.random import random_circuit - from qiskit_transpiler_service.transpiler_service import TranspilerService - - random_circ = random_circuit(5, depth=3, seed=42).decompose(reps=3) - - cloud_transpiler_service = TranspilerService( - target="ibm_cairo", - ai=False, - optimization_level=1, - ) - transpiled_circuit = cloud_transpiler_service.run(random_circ) - ``` - -2. Produce a similar random circuit and transpile it, requesting AI transpiling capabilities by setting the flag `ai` to `True`: - - ```python - from qiskit.circuit.random import random_circuit - from qiskit_transpiler_service.transpiler_service import TranspilerService - - random_circ = random_circuit(5, depth=3, seed=42).decompose(reps=3) - - cloud_transpiler_service = TranspilerService( - target="ibm_cairo", - ai=True, - optimization_level=1, - ) - transpiled_circuit = cloud_transpiler_service.run(random_circ) - ``` - -## Next steps - - - - Learn how to create [AI transpiler passes.](ai-transpiler-passes) - - Learn [how to transpile circuits](https://learning.quantum.ibm.com/tutorial/submit-transpiled-circuits) as part of Qiskit Patterns workflows using Qiskit Runtime. - - Review the [Qiskit transpiler service API documentation.](https://cloud-transpiler-experimental.quantum-computing.ibm.com/docs) - diff --git a/translations/ja/transpile/representing_quantum_computers.mdx b/translations/ja/transpile/representing_quantum_computers.mdx deleted file mode 100644 index e7e1ba3a25..0000000000 --- a/translations/ja/transpile/representing_quantum_computers.mdx +++ /dev/null @@ -1,177 +0,0 @@ ---- -title: Representing quantum computers -description: Learn about coupling maps, basis gates and system errors for transpiling ---- - -# Represent quantum computers - -To construct an equivalent circuit that can run on a specific system, the transpiler needs certain details about the system. Typically, this information is found in the `backend` or `target = backend.target` class, so you don't need to pass anything further to the transpiler. However, if more infomation is provided, the transpiler can use it to try to produce the best circuit to run on that hardware. - - -Because many of the underlying transpilation algorithms are stochastic, there is no guarantee that a better circuit will be found. - - - -## Default configuration - -The simplest use of the transpiler is to provide all the system information by providing the `backend` or `target`. To better understand how the transpiler works, construct a circuit and transpile it with different information: - -Import the necessary libraries and instantiate the system or simulator: - -```python -from qiskit import transpile -from qiskit.circuit.library import EfficientSU2 -from qiskit.providers.fake_provider import FakeSherbrooke - -backend = FakeSherbrooke() -target = backend.target -``` - -The `EfficientSU2` circuit consists of layers of single qubit operations spanned by `SU(2)` and `CX` entanglements. This is a heuristic pattern that can be used to prepare trial wave functions for variational quantum algorithms or classification circuits for machine learning. - -```python -qc = EfficientSU2(12, entanglement='circular', reps=1) -qc.decompose(reps=1).draw('mpl', style='iqp') -``` - -![The 12-qubit test circuit](/images/transpile/representing_quantum_computers/qc-circular.png "Test circuit") - -### Transpile the circuit to `backend` target - -This example uses the default `optimization_level=1` to transpile to the `backend` `target`, which providers all the information to the transpiler that is necessary to convert circuit to one that will run on the system. - -```python -qc_t_target = transpile(qc, target=target, seed_transpiler=12345) -qc_t_target.draw('mpl', style='iqp', idle_wires=False) -``` - -![The transpiled 12-qubit ansatz using Target information](/images/transpile/representing_quantum_computers/qc_t_target.png "Circuit transpiled with optimization level 1") - -This example is used in later sections of this topic to illustrate that the coupling map and basis gates are the essential pieces of information to pass to the transpiler for optimal circuit construction. The system can usually select default settings for other information that is not passed in, such as timing and scheduling. - -Providing the `backend` properties, including the gates' error rates, allows the transpiler to select the best set of qubits on the system. - -## Coupling map - -The coupling map is a graph that shows which qubits are connected and hence have 2-qubit gates between them. Sometimes this graph is directional, meaning that the 2-qubit gates can only go in one direction. However, the transpiler can always flip a gate's direction by adding additional 1-qubit gates. An abstract quantum circuit can always be represented on this graph, even if its connectivity is limited, by introducting SWAP gates to move the quantum information around. - -The qubits from our abstract circuits are called _virtual qubits_ and those on the coupling map are _physical qubits_. The transpiler provides a mapping between virtual and physical qubits. One of the first steps in transpilation, the _routing_ stage, performs this mapping. - - -Although the routing stage is intertwined with the _layout_ stage, which selects the actual qubits, we will consider them as separate stages for simplicity. The combination of routing and layout is called _qubit mapping_. Learn more about these stages in the [Transpiler stages](transpiler-stages) topic. - - -Pass the `coupling_map` keyword argument to see its effect on the transpiler: - -```python -coupling_map = target.build_coupling_map() - -qc_t_cm_lv0 = transpile(qc, coupling_map=coupling_map, optimization_level=0, seed_transpiler=11) -qc_t_cm_lv0.draw('mpl', style='iqp', idle_wires=False) -``` - -![Ansatz transpiled to coupling map with optimization level 0](/images/transpile/representing_quantum_computers/qc_t_cm_lv0.png "Circuit transpiled with a coupling map") - -As shown above, several SWAP gates were inserted (each consisting of three CX gates), which will cause a lot of errors on current devices. To see which qubits are selected on the actual qubit topology, use `plot_circuit_layout` from Qiskit Visualizations: - -```python -from qiskit.visualization import plot_circuit_layout - -plot_circuit_layout(qc_t_cm_lv0, backend, view='physical') -``` - -![Circuit Layout for optimization level 0](/images/transpile/representing_quantum_computers/circ_layout_lv0.png "Circuit layout for optimization level 0") - -This shows that our virtual qubits 0-11 were trivially mapped to the line of physical qubits 0-11. Let's return to the default (`optimization_level=1`), which uses `VF2Layout` if any routing is required. - -```python -qc_t_cm_lv1 = transpile(qc, coupling_map=coupling_map, seed_transpiler=11) -qc_t_cm_lv1.draw('mpl', style='iqp', idle_wires=False) -``` - -![Ansatz transpiled to coupling map with optimization level 1](/images/transpile/representing_quantum_computers/qc_t_cm_lv1.png "Ansatz transpiled to coupling map with optimization level 1") - -Now there are no SWAP gates inserted and the physical qubits selected are the same when using the `target` class. - -```python -from qiskit.visualization import plot_circuit_layout - -plot_circuit_layout(qc_t_cm_lv1, backend, view='physical') -``` - -![Circuit Layout for default optimization level](/images/transpile/representing_quantum_computers/circ_layout_lv1.png "Circuit Layout for default optimization level") - -Now the layout is in a ring. Because this layout respects the circuit's connectivity, there are no SWAP gates, providing a much better circuit for execution. - -## Basis gates - -Every quantum system supports a limited instruction set, called its _basis gates_. Every gate in the circuit must be translated to the elements of this set. This set should consist of single- and two-qubit gates that provide a universal gates set, meaning that any quantum operation can be decomposed into those gates. This is done by the [BasisTranslator](../api/qiskit/qiskit.transpiler.passes.BasisTranslator), and the basis gates can be specified as a keyword argument to the transpiler to provide this information. - -```python -basis_gates = list(target.operation_names) -print(basis_gates) -``` - -```python -['rz', 'sx', 'x', 'ecr', 'measure', 'delay'] -``` - -The default single-qubit gates on _ibm_sherbrooke_ are `rz`, `x`, and `sx`, and the default two-qubit gate is `ecr` which stands for echoed cross resonance. CX gates are constructed from `ecr` gates, so on some systems `ecr` is specified as the two-qubit basis gate while on others `cx` is default. The `ecr` gates is the _entangling_ part of the `cx` gate. If one desires to use a gate that is not in the basis gate set, instructions for custom gates can be provided using [pulse gates](https://docs.quantum.ibm.com/api/qiskit/qiskit.transpiler.passes.PulseGates#pulsegates). In addition to the control gates, there are also `delay` and `measurement` instructions. - - - Systems have default basis gates, but you can choose whatever gates you want, as long as you provide the instruction or add pulse gates (See [Create transpiler passes.](custom-transpiler-pass)) The default basis gates are those that calibrations have been done for on the system, so no further instruction/pulse gate needs to be provided. For example, on some systems `cx` is the default two-qubit gates and `ecr` on others. - - -```python -qc_t_cm_bg = transpile(qc, coupling_map=coupling_map, basis_gates=basis_gates, seed_transpiler=11) -qc_t_cm_bg.draw('mpl', style='iqp', fold=-1, idle_wires=False) -``` - -![Ansatz transpiled to coupling map and basis gates](/images/transpile/representing_quantum_computers/qc_t_cm_bg_lv1.png "Ansatz transpiled to coupling map and basis gates") - -Note that the `CXGate`s have been decomposed to `ecr` gates and single-qubit basis gates. - -## Including system errors - -Constructing a `target` object lets you consider the qubits' error rates in addition to the `coupling_map` and `basis_gates`. The `target` object contains everything needed to target a system, but here we build one that contains a limited amount of information. - -We retrieved the `target` from `backend.target` previously. This contains a lot of system information, including error rates. For example, the instruction properties of the echoed cross resonance gate between qubit 0 and 1 (not that `ecr` is directional) is retrieved by running the following command: - -```python -target['ecr'][(1, 0)] -``` - -``` -InstructionProperties(duration=5.333333333333332e-07, error=0.006969730734746021, calibration=PulseQobj) -``` - -The above result shows that the gate is 533μs with an error of 0.7%. To reveal error information to the transpiler, we will build our own target model with the `basis_gates` and `coupling_map` from above and populate it with error values from the backend `FakeSherbrooke`. - -```python -from qiskit.transpiler import Target - -err_targ = Target.from_configuration(basis_gates=basis_gates, coupling_map=coupling_map, num_qubits=target.num_qubits) - -for idx in range(len(target.instructions)): - err_targ[target.instructions[idx][0].name][target.instructions[idx][1]] = target.instruction_properties(idx) -``` - -Transpile with our new target `err_targ` as the target: - -```python -qc_t_cm_bg_et = transpile(qc, target=err_targ, seed_transpiler=11) -qc_t_cm_bg_et.draw('mpl', style='iqp', fold=-1, idle_wires=False) -``` - -![Ansatz transpiled to our target model](/images/transpile/representing_quantum_computers/qc_t_cm_bg_et_lv1.png "Ansatz transpiled to our target model") - -Note that by including the error information, the `VF2PostLayout` pass tries to find the optimal qubits to use, resulting in the same circuit that we found originally with the same physical qubits. - -## Next steps - - - - Understand [Transpilation default settings and configuration options.](defaults-and-configuration-options) - - Review the [Commonly used parameters for transpilation](common-parameters) topic. - - Try the [Submit transpiled circuits](https://learning.quantum.ibm.com/tutorial/submit-transpiled-circuits) tutorial. - - See the [Transpile API documentation.](/api/qiskit/transpiler) - diff --git a/translations/ja/transpile/set-optimization.mdx b/translations/ja/transpile/set-optimization.mdx deleted file mode 100644 index 8c6bbfa930..0000000000 --- a/translations/ja/transpile/set-optimization.mdx +++ /dev/null @@ -1,169 +0,0 @@ ---- -title: Set transpiler optimization level -description: Learn how to set the optimization level ---- - -# Set the optimization level - -Decomposing quantum circuits into the basis gate set of the target device and the addition of SWAP gates needed to match hardware topology causes an increase in the depth and gate count of quantum circuits. To mitigate this increased complexity, you can set the `optimization_level`. Setting this value calls an optimization routine that optimizes the transpilation process by combining or eliminating gates and by optionally using algorithms to find an optimal layout (depending on the level chosen). - -In some cases these methods are so effective the output circuits have lower depth than the inputs. In other cases, not much can be done, and the computation may be difficult to perform on noisy devices. Choosing the best optimization level might take trial and error, as it depends heavily on the circuit being transpiled and the system being targeted. - -Higher optimization levels generate more optimized circuits at the expense of longer compile times. By default, `optimization_level=1` is used. - -- `optimization_level=0`: Trivial optimization, which maps the circuit to the system with no explicit optimization. -- `optimization_level=1-3`: Increasingly complex optimization, with heuristic algorithms that are used to find a layout and insert SWAP gates, with the goal of improving the overall performance of the circuit. The number of iterations that these algorithms run increases with higher optimization levels. - -Because finding the best layout is an NP-hard problem, it is the most time-consuming part of the transpilation process. However, Qiskit uses stochastic algorithms that have been refactored into Rust, resulting in significant speedup. Therefore, optimization levels 1-3 all use the same layout algorithms. There are some slight differences in how the circuits are translated into basis gates, as described in the following table: - - - - - - - - - - - - - - - - - - - - - - - - - - -
Optimization LevelDescription
0 - No optimization: typically used for hardware characterization - - Basic translation - - Layout/Routing: `TrivialLayout`, where it selects the same physical qubit numbers as virtual and inserts SWAPs to make it work (using `StochasticSwap`) -
1 - Light optimization (default): - - Layout/Routing: Layout is first attempted with `TrivialLayout`. If additional SWAPs are required, a layout with a minimum number of SWAPs is found by using `SabreSWAP`, then it uses `VF2LayoutPostLayout` to try to select the best qubits in the graph. - - InverseCancellelation - - 1Q gate optimization -
2 - Medium optimization: - - Layout/Routing: Optimization level 1 (without trivial) + heuristic optimized with greater - search depth and trials of optimization function. Because `TrivialLayout` is not used, there is no attempt to use the same physical and virtual qubit numbers. - - Commutative cancelation -
3 - High Optimization: - - Optimization level 2 + heuristic optimized on layout/routing further with greater effort/trials - - Resynthesis of two-qubit blocks using [Cartan's KAK Decomposition](https://arxiv.org/abs/quant-ph/0507171). - - Unitarity-breaking passes: - * `OptimizeSwapBeforeMeasure`: Moves the measurements around to avoid SWAPs - * `RemoveDiagonalGatesBeforeMeasure`: Removes gates before measurements that would not effect the measurements -
- -## Optimization level in action - -Since CX is the noisiest gate, we can quantify the transpilation's "hardware efficiency" by counting the CX gates in the resulting circuit. We will compare the default transpilation levels given the same circuit. - -First, import the necessary libraries: - -```python -from qiskit import transpile, QuantumCircuit -from qiskit.circuit.library import UnitaryGate -from qiskit.providers.fake_provider import FakeTokyo -from qiskit.quantum_info import Operator, random_unitary -from qiskit.quantum_info.synthesis.two_qubit_decompose import trace_to_fid - -import numpy as np -``` - -Next we build a quantum circuit consisting of a random unitary followed by a SWAP gate. The `random_unitary` method is seeded to ensure reproducible results. - -```python -UU = random_unitary(4, seed=12345) -rand_U = UnitaryGate(UU) - -qc = QuantumCircuit(2) -qc.append(rand_U, range(2)) -qc.swap(0, 1) -qc.draw('mpl') -``` - -![Original abstract circuit](/images/transpile/defaults-and-configuration-options/abstract-circ.png "Original abstract circuit") - -We use `FakeTokyo` as the system and transpile using `optimization_level=1` (the default). To avoid considering the effect of idle qubits, We override the system's coupling map so that the transpiled circuit returns to a two-qubit circuit. - -```python -backend = FakeTokyo() -qc_t1_exact = transpile(qc, backend, optimization_level=1, coupling_map=[[0, 1], [1, 0]], seed_transpiler=12345) -qc_t1_exact.draw('mpl', style='iqp') -``` - -![Circuit transpiled with optimization level 1](/images/transpile/defaults-and-configuration-options/circ-opt-level-1.png "Circuit transpiled with optimization level 1") - -The transpiled circuit has six CX gates and several `U3` gates, which have much lower error than CX's, so we don't need to count them. - -Repeat for optimization level 2: - -```python -qc_t2_exact = transpile(qc, backend, optimization_level=2, coupling_map=[[0, 1], [1, 0]], seed_transpiler=12345) -qc_t2_exact.draw('mpl', style='iqp') -``` - -![Circuit transpiled with optimization level 2](/images/transpile/defaults-and-configuration-options/circ-opt-level-2.png "Circuit transpiled with optimization level 2") - -This yields the same results as optimization level 1. Note that increasing the level of optimization does not always make a difference. - -Repeat again, with optimization level 3: - -```python -qc_t3_exact = transpile(qc, backend, optimization_level=3, coupling_map=[[0, 1], [1, 0]], seed_transpiler=12345) -qc_t3_exact.draw('mpl', style='iqp') -``` - -![Circuit transpiled with optimization level 3](/images/transpile/defaults-and-configuration-options/circ-opt-level-3.png "Circuit transpiled with optimization level 3") - -Now there are only three CX gates. This is because with optimization level 3, Qiskit tries to re-synthesize two-qubit blocks of gates. Since any two-qubit gate requires at most three CX gates, we get the above result. We can get even fewer CX gates if we sacrifice the fidelity of this synthese by setting `approximation_degree` to a value less than 1: - -```python -qc_t3_approx = transpile(qc, backend, optimization_level=3, approximation_degree=0.99, coupling_map=[[0, 1], [1, 0]], seed_transpiler=12345) -qc_t3_approx.draw('mpl', style='iqp') -``` - -This circuit has only two CX gates. However, this is an approximate circuit, so we need to understand the difference in fidelity to the desired circuit with the incurred error from running on noisy qubits. We can calculate the fidelity of the approximate circuit: - -```python -exact_fid = trace_to_fid(np.trace(np.dot(Operator(qc_t3_exact).adjoint().data, UU))) -approx_fid = trace_to_fid(np.trace(np.dot(Operator(qc_t3_approx).adjoint().data, UU))) -print(f'Synthesis fidelity\nExact: {exact_fid:.3f}\nApproximate: {approx_fid:.3f}') -``` - -```text -Synthesis fidelity -Exact: 1.000 -Approximate: 0.992 -``` - -Adjusting the optimization level can change other aspects of the circuit too, not just the number of CX gates. For examples of how setting optimization level changes the layout, see [Representing quantum computers](representing_quantum_computers). - -## Next steps - - - - [Default options and configuration settings](defaults-and-configuration-options) - - [Commonly used parameters](common-parameters) - - Try the [Submit transpiled circuits](https://learning.quantum.ibm.com/tutorial/submit-transpiled-circuits) tutorial. - - - -## Next steps - - - - To learn how to use the `transpile` function, start with the [Transpilation default settings and configuration options](defaults-and-configuration-options) topic. - - Continue learning about transpilation with the [Transpiler stages](transpiler-stages) topic. - - Try the [Submit transpiled circuits](https://learning.quantum.ibm.com/tutorial/submit-transpiled-circuits) tutorial. - - Try the [Build repetition codes](https://learning.quantum.ibm.com/tutorial/build-repetition-codes) tutorial. - - See the [Transpile API documentation.](/api/qiskit/transpiler) - diff --git a/translations/ja/transpile/transpile-with-pass-managers.ipynb b/translations/ja/transpile/transpile-with-pass-managers.ipynb deleted file mode 100644 index fb6533f668..0000000000 --- a/translations/ja/transpile/transpile-with-pass-managers.ipynb +++ /dev/null @@ -1,278 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Transpile with pass managers\n", - "\n", - "The recommended way to transpile a circuit is to create a staged pass manager and then execute its `run` method with the circuit as input. This page explains how to transpile quantum circuits this way." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## What is a (staged) pass manager?\n", - "\n", - "In the context of Qiskit, transpilation refers to the process of transforming an input circuit into a form that is suitable for execution on a quantum device. Transpilation typically occurs in a sequence of steps called transpiler passes. The circuit is processed by each transpiler pass in sequence, with the output of one pass becoming the input to the next. For example, one pass could go through the circuit and merge all consecutive sequences of single-qubit gates, and then the next pass could synthesize these gates into the basis set of the target device. The transpiler passes included with Qiskit are located in the [qiskit.transpiler.passes](/api/qiskit/transpiler_passes) module.\n", - "\n", - "A pass manager is an object that stores a list of transpiler passes and can execute them on a circuit. Create a pass manager by initializing a [`PassManager`](/api/qiskit/qiskit.transpiler.PassManager) with a list of transpiler passes. To run the transpilation on a circuit, call the [run](/api/qiskit/qiskit.transpiler.PassManager#run) method with a circuit as input.\n", - "\n", - "A staged pass manager is a special kind of pass manager that represents a level of abstraction above that of a normal pass manager. While a normal pass manager is composed of several transpiler passes, a staged pass manager is composed of several *pass managers*. This is a useful abstraction because transpilation typically happens in discrete stages, as described in [Transpiler stages](transpiler-stages), with each stage being represented by a pass manager. Staged pass managers are represented by the [`StagedPassManager`](/api/qiskit/qiskit.transpiler.StagedPassManager) class. The rest of this page describes how to create and customize (staged) pass managers." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Generate a preset staged pass manager\n", - "\n", - "To create a preset staged pass manager with reasonable defaults, use the [`generate_preset_pass_manager`](/api/qiskit/transpiler_preset#qiskit.transpiler.preset_passmanagers.generate_preset_pass_manager) function:" - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": {}, - "outputs": [], - "source": [ - "from qiskit.transpiler.preset_passmanagers import generate_preset_pass_manager\n", - "from qiskit_ibm_runtime import QiskitRuntimeService\n", - "\n", - "service = QiskitRuntimeService()\n", - "backend = service.backend(\"ibm_brisbane\")\n", - "pass_manager = generate_preset_pass_manager(optimization_level=3, backend=backend)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "See [Transpilation defaults and configuration options](defaults-and-configuration-options) for a description of the possible arguments to the `generate_preset_pass_manager` function. The arguments to `generate_preset_pass_manager` match the arguments to the [`transpile`](/api/qiskit/compiler#qiskit.compiler.transpile) function.\n", - "\n", - "If the preset pass managers don't fulfill your needs, customize transpilation by creating (staged) pass managers or even transpilation passes. The rest of this page describes how to create pass managers. For instructions on how to create transpilation passes, see [Write your own transpiler pass](custom-transpiler-pass)." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Create your own pass manager\n", - "\n", - "The [qiskit.transpiler.passes](/api/qiskit/transpiler_passes) module includes many transpiler passes that can be used to create pass managers. To create a pass manager, initialize a `PassManager` with a list of passes. For example, the following code creates a transpiler pass that merges adjacent two-qubit gates and then synthesizes them into a basis of [$R_y$](/api/qiskit/qiskit.circuit.library.RYGate), [$R_z$](/api/qiskit/qiskit.circuit.library.RZGate), and [$R_{xx}$](/api/qiskit/qiskit.circuit.library.RXXGate), gates." - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [], - "source": [ - "from qiskit.transpiler import PassManager\n", - "from qiskit.transpiler.passes import (\n", - " Collect2qBlocks,\n", - " ConsolidateBlocks,\n", - " UnitarySynthesis,\n", - ")\n", - "\n", - "basis_gates = [\"rx\", \"ry\", \"rxx\"]\n", - "translate = PassManager(\n", - " [\n", - " Collect2qBlocks(),\n", - " ConsolidateBlocks(basis_gates=basis_gates),\n", - " UnitarySynthesis(basis_gates),\n", - " ]\n", - ")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "To demonstrate this pass manager in action, test it on a two-qubit circuit consisting of a Hadamard followed by two adjacent CX gates:" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": {}, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/kjs/.local/share/virtualenvs/scratch-h4kO_6N_/lib/python3.10/site-packages/qiskit/visualization/circuit/matplotlib.py:266: FutureWarning: The default matplotlib drawer scheme will be changed to \"iqp\" in a following release. To silence this warning, specify the current default explicitly as style=\"clifford\", or the new default as style=\"iqp\".\n", - " self._style, def_font_ratio = load_style(self._style)\n" - ] - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAATEAAACuCAYAAABeIjpKAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/SrBM8AAAACXBIWXMAAA9hAAAPYQGoP6dpAAASEElEQVR4nO3df3DUdX7H8eduEBLIBkjCuWjC7wT5kR8KokGkFwoqhXhQ65w9i7biONcbB26Oc/tHpyfMdEoz9Zw5hmvFzvSc3nQwrdQeJp7HXaMFI6bhciCa8CtHIL9WXRLIDxJgs9s/vo2AbEi+yf76bF6PmcxKvj8+bzB57ef7+X6+n3UEg8EgIiKGcsa6ABGR0VCIiYjRFGIiYjSFmIgYTSEmIkZTiImI0RRiImI0hZiIGE0hJiJGU4iJiNEUYiJiNIWYiBhNISYiRlOIiYjRFGIiYjSFmIgYTSEmIkZTiImI0RRiImI0hZiIGE0hJiJGU4iJiNEUYiJiNIWYiBhNISYiRlOIiYjRFGIiYjSFmIgYTSEmIkZTiImI0RRiImI0hZiIGE0hJiJGU4iJiNEUYiJiNIWYiBhNISYiRhsX6wLkVsEgXO2PdRX2jE8ChyPWVchYpBCLQ1f74a/KYl2FPaXfhgn6aZIY0OWkiBhNISYiRlOIiYjRFGIiYjQNxYqMEcEg+APW67gkcCbI3WSFmEiC6rsGx85Dow+a26H1IvQHrG0OYFoazEiH7AwonAGTJ8ay2pFTiIkkmM8vwaGTUHMWrvhD7xMEvui0vo40wi9qIS8bVubC3DujWe3oKcREEkR/AH79GRw4DoGgvWMDQavXduw8LJ0Nf7wEJk6ITJ3hphATSQC+LnjjEDR3jP5cR87CKS9sWg457tGfL9J0d1LEcG0XYdeB8ATYgM5eeO19+LQ5fOeMFIWYiMEudMM/VUJnX/jP3R+Anx2Ck23hP3c4KcREDBUIwL9WWb2mSOkPwM+roDsCIRkuGhMTMdQHJ+Ccz94xP3gM0lKs4Hv1veEd030F3qqBP3/Yfo3RkPA9MZ/Ph8fjYd68eSQnJ5Odnc3WrVvp6elh8+bNOBwOdu/eHesyJcL8/dDwBXzSBPWt0NET64pGp6MH3j1m/7i0FJgy0Xq14+h5qGux3140JHRP7OjRo6xduxav18ukSZNYuHAhra2t7Nq1i4aGBtrb2wEoLCyMbaER0lz3Afv+rpgVf/oPLFn3w5D7/OTPHMwqXMe3flge5eqi41IvVJ2Cw2eg64ZLIgew8G54eD7cMz1m5Y3Y4TPW7PtoOnjS+jeLNwnbE/P5fJSUlOD1etm2bRttbW3U1tbi9XopLS2loqKCmpoaHA4H+fn5sS5XIqC5HX78Lhz49OYAA2uy52ct8Fol7K+1HsUxhb/fCrFoO9EGX3ZGv92hJGyIbdmyhebmZl588UVeeeUVXC7XV9s8Hg8FBQX4/X5mzZpFWlpaDCuVSPiya/h37Srr4b3jka8pXE56bw3laDnSGJt2bychQ6y+vp6ysjIyMzPZuXNnyH2WLFkCQEFBwU3fP3v2LI8//jgul4upU6fyzDPPcOHChYjXLOFVfhR6rgx//wPHrekKJjgfwx/HWLY9mIQcE9u7dy+BQICnn36a1NTUkPukpFgjmzeGWFdXF8XFxaSnp7N37156e3vxeDysX7+eqqoqnE4zM99/9TK9XTZvYxns0mU43mTvmCDw0WkouTciJYVVUwyDpOmCdekdT5+nkJAhVllZCUBxcfGg+zQ3W1ORbwyx119/nZaWFg4ePMiMGTMAyMrKYvny5ezfv58NGzZErugI+njfy3y87+VYlxE1v220/+wgQM3vzQgx76XYtd19xerhpibHroavS8gQO3fuHAAzZ84Mud3v91NVVQXcHGLl5eWsWLHiqwADKCoqYs6cObzzzjsjDrGlS5fi9XqHvX/SHSls/NvTI2orlMXFL5DzwJMht73992vC0kZuTg791yI469KGgpId5KzYbPu4zj7InjGLYGCQpR/iRMnfHGNCakbIbQPzwAaTlnz9dfvGwfe73Tyy++4v4nKHza7uENxuN0eOHBnRsQkZYj091iSg3t7Qv1RlZWX4fD5cLhezZ8/+6vt1dXU8+eStv+yLFi2irq5uxPV4vV5aWoY/yWbchPAu7DTFncOMxavDes6va21rxX/lckTbGK653V0jPralpZlgIL4/L6+/f/D6BuaBDcXpHN5+oXjbWum6ED+TxhIyxNxuNx0dHdTW1lJUVHTTtra2Nl566SUA8vPzcdxwcd/R0cGUKVNuOV96ejonT54cVT12JN1hcyZiHLhr+l1x0xNz+kc2D6C308td0+N/2YaAf/B/56EeQUpLtgIsELj9ndvbnSczYzJpyeGdMGb3d+RGCRliq1evpr6+ntLSUtasWUNubi4ANTU1bNq0CZ/PGuSO1iRXu93kK37zPnfy1OnTcfO5k5d6Ycfb9sfFHi9ys6c5/pdt+OcPrDluoQz1KNH2jVYPrLMPtr9tv+3UZGg48UlcDeybebttCB6Ph4yMDJqamli0aBF5eXnk5OSwbNky5syZw6pVq4Bbp1dMnTqVixcv3nK+9vZ20tPTo1G6hMHkFMjPtneMwwFF8yJTT7hlxfBHMTs9vu5MQoKGWFZWFocOHWLdunUkJyfT2NhIeno6e/bsoaKiglOnTgG3htiCBQtCjn3V1dWxYMGCqNQu4VFyr707aI/lQXro2ThxZ2boMf2omBHDtgeTkCEGViCVl5fT1dVFV1cX1dXVvPDCC/T09NDY2IjT6WTx4sU3HbN+/Xo+/PDDr6ZfAFRXV9PQ0EBJSUm0/woyChmp8L1VVq9sKGsWwSOLh94vXuS6r99ljLb7Zw+9T7Q5gkGTnhobverqah588EHmz5/PiRMnbtrW2dlJXl4emZmZ7Nixg76+PjweD9OmTePw4cNRm+xq4phY6beJmzGxG3X1WZNYPzptjZXdKD8bHs41Ywnmr3v3mPVMqF0DY2IXL9sfE7tnOnx3lf02Iy1he2KDOX7cekju65eSAGlpaVRWVjJ9+nSeeuopnn/+eZYvX055ebmxs/XHOlcyPJoHP9oAWx+BieOvf/+5lWYGGMDyHLgjKbpt/sE90W1vuOLwvTOybhdiAHPnzqW8PDGXpRnLkpwwe9r1X3zTPzh2ykRYVwD/VRud9u6bCQvuik5bdo257sVQISZiipXzrWC2o7PXupS0s6S1KxmeuN9eO9E05npiA89VipjO6bQ+Vu0nB24d7xvMcJekHjDOCc+sgElx/BmUY64nJpJI0lPhe384vLuwdo1zwl+shJw4/0RwhZiI4e6cDFsesSaihsuUifCXq2BRHC5H/XVj7nJSJBFlpML3H4XKOmuV2v5RrL//wFzYcB+kjA9ffZGkEBNJEElOWLMYCmfCh6egugH6rg3/2IJs64NT7N4siDWFmEiCmeaCjUvgjwqsFW7P+aCpHVovwtUblkq7a4r1HOaMDCvAXOYtngIoxEQS1oRxsHS29TXgR/usFSwmp4BnXexqCycN7IuMIfG2AkU4KMRExGgKMRExmkJMRIymEBMRo+nuZBwan2Stz2WS8VFeFkZkgEIsDjkc8bnAoEg80uWkiBhNISYiRlOIiYjRFGIiYjSFmIgYTSEmIkZTiImI0RRiImI0hZiIGE0hJiJGU4iJiNEUYiJiNIWYiBhNISYiRlOIiYjRFGIiYjSFmIgYTSEmIkZTiImI0RRiImI0hZiIGE0hJiJGU4iJiNEUYiJiNH1EqyS0zl5oare+LnTD5avW93uvwscNkJ0O7smQpLdzYynEJOFc64dj5+HDU9DoC73P1X5482PrvyeOhwfmwkM5kOmKXp0SHgoxSRjBIBw5C7+ohe4rwz/u8lV4v976uncmPLEUUpMjV6eEl0JMEsKlXvj3avisZXTn+d05OO2FP1kGhTPCU5tElkYCxHjeS/DqL0cfYAO6r8Abh+CXn1i9O4lv6omJ0b7ohN2/ge6+8J/7V8et17X54T+3hI96YmKsK9fg9fcjE2ADfnXcGmeT+KWemBjrnaPg67Z3zA8eg7QUa+rFq+8N75j/PAI5bpicYrtEiYIx0RPz+Xx4PB7mzZtHcnIy2dnZbN26lZ6eHjZv3ozD4WD37t2xLlNsOPO5NYXCrrQUmDLReh2uy1fhP/7XflsSHQnfEzt69Chr167F6/UyadIkFi5cSGtrK7t27aKhoYH29nYACgsLY1uo2DIwXhUtnzZDcztkpUe33XC46ofaRjjcYPVAAbr64NefwoPzwGX4dJKE7on5fD5KSkrwer1s27aNtrY2amtr8Xq9lJaWUlFRQU1NDQ6Hg/x8jd6a4vNLcPrz6LdbdTr6bY7WJ03w8tvwZjWc88HAzdZAECqOwfa3rTcEk+/CJnSIbdmyhebmZl588UVeeeUVXK7r07E9Hg8FBQX4/X5mzZpFWlpaDCsVOz46E5t2f3sW+q7Fpu2RqG2Enx20HrEaTH/Amkqy/3dRKyvsEjbE6uvrKSsrIzMzk507d4bcZ8mSJQAUFBR89b2B0Fu2bBkTJkzA4XBEpV4ZvjMx6IWB9ajS+QuxadsuXxf82+HrPa+hvF9v9dpMlLAhtnfvXgKBAE8//TSpqakh90lJsUZ3bwyxM2fOsG/fPtxuN/fff39UapXhu9YPbRdj135ze+zatqPqtNXLsuN/TkSmlkhL2BCrrKwEoLi4eNB9mpubgZtDbOXKlbS1tbF//35Wr14d2SLFtraL1nhOrDQZEGLX+qG6wf5xDV/E9g1ipBL27uS5c+cAmDlzZsjtfr+fqqoq4OYQczrDn+tLly7F6/WG/bxjkXt+MSue+3nIbQNzwG4nLfn66/aNg+832Dyy935zkL9+6jvDrDY2XN+Yx6PbPhjRsU88s5XztfvCWs9wuN1ujhw5MqJjEzbEenp6AOjt7Q25vaysDJ/Ph8vlYvbs2RGtxev10tISpgf7xrjxd14adNvAHLDhcDqHv++NrvmDcf//8ht33DniY7svX437v9/XJWyIud1uOjo6qK2tpaio6KZtbW1tvPTSSwDk5+dHfPDe7XZH9PxjydTJgy/41Rn6/eomaclWgAUC0Hmbx5UGO9e4pCB333330A3F0KT/744Gg0HbP9uTJjhj8vcbze9IwobY6tWrqa+vp7S0lDVr1pCbmwtATU0NmzZtwuezVsuLxiTXkXaT5VafX4Kd5aG3Decxou0brR5YZ581R8quDWu/yZs7mu0fGEWBIOx8B77sshdgSU44sO+nuJJ/GqHKIiNhB/Y9Hg8ZGRk0NTWxaNEi8vLyyMnJYdmyZcyZM4dVq1YBN4+HSfyblgYTYvjWm23AjH2nAx7KtX9c4QwzZ+8nbIhlZWVx6NAh1q1bR3JyMo2NjaSnp7Nnzx4qKio4dcp68E4hZhanA+6eGrv2szNi17Ydy+bYG/Mb54TiBZGrJ5IS9nISYMGCBZSX33rt0d3dTWNjI06nk8WLF8egMhmNxVnw+y+j3+7klNgGqB0Tx8ML34R//O+hl+pOcsKmh8x8LhQSPMQG89lnnxEMBsnNzWXixFvfrt566y0A6urqbvrzrFmzWLp0afQKlZCWzYF3j4Hf5mTO0SrKMetTke6aCt9/FN6qgRNtoffJmgrfus9aashUYzLEjh+3lkAY7FLyySefDPnnZ599ljfeeCOitcnQUpOhcGZ0Fyt0OqBobvTaC5dMF3x3lfUYUnWDtf5aMAiuFFgyC2ZmgOlP1inEQgia/Ej/GLE233rW76o/Ou2tWgiTRzCvLF5kumBdYayriAyDOsfhM1SISfzLSIXH741OW+7J8FhedNoS+8ZkT2zguUox2/IcqGuButbhHzMwiXU4E2MB7kiC7xTBuCT79Ul0OIK6dhKDXfHDa5VwNgJ3K5OcsHklLIzvCfpjnkJMjHflGvzLITg5yB24kZgwDp5bCfOnh++cEhkKMUkIgQAcPAUVR62laEYj1w1PPQDpoZehkzijEJOE8mWntdTypy32143PSIXVi+DBueZPOxhLFGKSkDp64PAZaxrG552DB9qkCTBnmnWTYP50az6YmEUhJgnvih9a2q2Jnv5+a8A+Zbw1W33qJPW6TKcQExGjjcnJriKSOBRiImI0hZiIGE0hJiJGU4iJiNEUYiJiNIWYiBhNISYiRlOIiYjRFGIiYjSFmIgYTSEmIkZTiImI0RRiImI0hZiIGE0hJiJGU4iJiNEUYiJiNIWYiBhNISYiRlOIiYjRFGIiYjSFmIgYTSEmIkZTiImI0RRiImI0hZiIGE0hJiJGU4iJiNEUYiJiNIWYiBjt/wBNfwKCVVwChAAAAABJRU5ErkJggg==", - "text/plain": [ - "
" - ] - }, - "execution_count": 3, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "from qiskit import QuantumRegister, QuantumCircuit\n", - "\n", - "qubits = QuantumRegister(2, name=\"q\")\n", - "circuit = QuantumCircuit(qubits)\n", - "\n", - "a, b = qubits\n", - "circuit.h(a)\n", - "circuit.cx(a, b)\n", - "circuit.cx(b, a)\n", - "\n", - "circuit.draw(\"mpl\")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "To run the pass manager on the circuit, call the `run` method." - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAzQAAAC7CAYAAACzfNvnAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/SrBM8AAAACXBIWXMAAA9hAAAPYQGoP6dpAAAth0lEQVR4nO3deXQUddb/8XdngxAIW0BW2ZEQIMimEEbIADoo+zNRUFEYIMpiUALxGZfR0REGRAYBZZFxkJkRGNmEOMq+ibKHVeQhiflhIFHDpuyB1O8PpKVJgO7YnU5VfV7neI6pVFffe+tbt3PpSsdhGIaBiIiIiIiICQX4OwAREREREZHC0kAjIiIiIiKmpYFGRERERERMSwONiIiIiIiYlgYaERERERExLQ00IiIiIiJiWhpoRERERETEtDTQiIiIiIiIaWmgERERERER09JAIyIiIiIipqWBRkRERERETMtnA03Hjh159tlnff6Y4noMERERERHxvUINNNnZ2YwcOZL69etTsmRJ7rjjDmJiYpg+fTrnzp3zdoxeNWDAABwOBw6Hg5CQEOrXr89rr73G5cuX/R2azwwcOJCXXnqJcePG0bp1a8qUKUPlypXp1asXhw4d8nd4IiIiIiKF5vFAk56ezt13383KlSsZO3YsKSkpfPnllyQlJZGcnMzq1at9EadX/e53vyMrK4vDhw+TmJjIq6++yptvvunvsHziypUrJCcn06NHDzZs2MDw4cPZsmULq1atIjc3l/vvv5+zZ8/6O0wRERERkULxeKAZNmwYQUFB7Nixg4cffpjIyEjq1q1Lz549+eSTT+jevXuBj7t48SIJCQlUrlyZkiVL0r59e7Zv355vv8uXLzNixAjKli1LREQEL7/8MoZhAPDZZ5/Rvn17ypUrR8WKFenWrRtpaWmepkCJEiWoUqUKtWrVYujQoXTu3Jlly5a57JOXl0dSUhIVKlSgSpUqvPrqq87vuRPHwoULadq0KaGhoVSsWJHOnTs7B4e8vDzGjRtHnTp1CA0NJTo6moULF3qcR2RkpPPdphv/mzZtGgBffPEFwcHBtG7dms8++4wBAwYQFRVFdHQ0c+bM4ciRI+zcudPj5xYRERERKQ48GmiOHz/OypUrGT58OGFhYQXu43A4CtyelJTEokWL+OCDD9i1axf169fngQce4MSJEy77ffDBBwQFBbFt2zbefvttJk2axOzZswE4e/Yso0aNYseOHaxZs4aAgAB69+5NXl6eJ2nkExoayqVLl/LFERYWxtatW5kwYQKvvfYaq1atciuOrKws+vXrxx/+8AcOHjzI+vXr6dOnj3MwGzduHHPnzmXGjBkcOHCA5557jscff5wNGzY4n3/OnDk3reU1ixYtAmDNmjVkZWWRkZFBQEAAH330EUOGDAFg2bJldO/evcBjnT59GoAKFSoUpmwiIiIiIv5neGDLli0GYCxevNhle8WKFY2wsDAjLCzMSEpKMgzDMDp06GCMHDnSMAzDOHPmjBEcHGz8+9//dj7m0qVLRrVq1YwJEyY4t3Xo0MGIjIw08vLynNuef/55IzIyssB4fvjhBwMw9u3b53KMa89bkCeffNLo2bOnYRiGkZeXZ6xatcooUaKEMXr0aJdjtG/f3uVxrVu3Np5//nm34ti5c6cBGBkZGfn2vXDhglGqVCnjiy++cNk+aNAgo1+/fs6vFy9ebNx11103zcMwDGPt2rVGUFCQceHCBcMwDGPHjh0GYGRnZzv3adCggZGcnJzvsVeuXDEeeughIyYm5pbPISIiIiJSnHnlU862bdvG7t27iYqK4uLFi/m+n5aWRm5uLjExMc5twcHBtGnThoMHD7rse++997q8m9C2bVsOHz7MlStXOHz4MP369aNu3bqEh4dTu3ZtAI4cOeJRvMnJyZQuXZqSJUvStWtXHnnkEZdbygCaNWvm8nXVqlX5/vvvAW4bR3R0NJ06daJp06bExcXx3nvvcfLkSQBSU1M5d+4cXbp0oXTp0s7/5s6d63LbWu/evfn6669vmce+ffto2LAhJUqUAGDPnj1UrlyZO+64A4CDBw9y7NgxOnXqlO+xw4cPZ//+/cyfP9/NqomIiIiIFD9Bnuxcv359HA5Hvk/Gqlu3LnD11i1f6t69O7Vq1eK9996jWrVq5OXl0aRJk3y3i91ObGws06dPJyQkhGrVqhEUlL8MwcHBLl87HA7nLWW3iyMwMJBVq1bxxRdfsHLlSqZOncqLL77I1q1bOXPmDACffPIJ1atXd3mOa4OJu/bu3UvTpk2dX+/Zs8fl62XLltGlSxdKlizp8rgRI0aQnJzMxo0bqVGjhkfPKSIiIiJSnHj0Dk3FihXp0qUL06ZN8+iTserVq0dISAibN292bsvNzWX79u00btzYZd+tW7e6fL1lyxYaNGjAqVOnOHToEC+99BKdOnUiMjLS+a6Hp8LCwqhfvz533nlngcPMrRw/ftytOBwOBzExMfz5z38mJSWFkJAQlixZQuPGjSlRogRHjhyhfv36Lv/VrFnTo1j27t3r8k7Snj17XL7++OOP6dmzp/NrwzAYMWIES5YsYe3atdSpU8ej5xMRERERKW48+2keePfdd4mJiaFVq1a8+uqrNGvWjICAALZv387XX39Ny5Yt8z0mLCyMoUOHMmbMGCpUqMCdd97JhAkTOHfuHIMGDXLZ98iRI4waNYqnnnqKXbt2MXXqVN566y3Kly9PxYoVmTVrFlWrVuXIkSP87//+b+EzLyR34ti6dStr1qzh/vvvp3LlymzdupUffviByMhIypQpw+jRo3nuuefIy8ujffv2nD59ms2bNxMeHs6TTz4JwJIlS/jjH/9409vO8vLyOHDgAH/605+c29LS0ujTpw8A33//PTt27HD59Lbhw4fz4Ycf8vHHH1OmTBmys7MBKFu2rM/fXRMRERER8QWPB5p69eqRkpLC2LFj+eMf/0hmZiYlSpSgcePGjB49mmHDhhX4uL/+9a/k5eXRv39/fvrpJ1q1asWKFSsoX768y35PPPEE58+fp02bNgQGBjJy5Eji4+NxOBzMnz+fhIQEmjRpwl133cWUKVPo2LFjoRIvrICAgNvGER4ezsaNG5k8eTI//vgjtWrV4q233qJr164AvP7661SqVIlx48aRnp5OuXLlaNGiBS+88ILzGKdPn77lH71MS0vj3LlzLu/ING3alFdeeYWWLVvy9ddf06ZNGyIiIpzfnz59OkC+mv3jH/9gwIABv6IqIiIiIiL+4TCMnz9LWCylR48etG/fnqSkJH+HIiIiIiLiM175lDMpftq3b0+/fv38HYaIiIiIiE/pHRoRERERETEtvUMjIiIiIiKmpYFGRERERERMSwONiIiIiIiYlgYaERERERExLQ00IiIiIiJiWhpoRERERETEtDTQiIiIiIiIaWmgERERERER09JAIyIiIiIipqWBRkRERERETEsDjYiIiIiImJYGGhERERERMS0NNCIiIiIiYloaaERERERExLQ00IiIiIiIiGlpoBEREREREdPSQCMiIiIiIqalgUZERERERExLA42IiIiIiJiWBhoRERERETEtDTQiIiIiImJaGmhERERERMS0NNCIiIiIiIhpaaARERERERHT0kAjIiIiIiKmFeTvACQ/w4C8XH9H4ZmAYHA4vHc8u9fATvmbMVdP2KkuugbUBwtTAzPm6Sm71EXXgPqgt9eAuzTQFEN5ubBuir+j8ExsAgSGeO94dq+BnfI3Y66esFNddA2oDxamBmbM01N2qYuuAfVBb68Bd+mWMxERERERMS0NNCIiIiIiYloaaERERERExLQ00IiIiIiIiGlpoBEREREREdPSQCMiIiIiIqalgUZERERERExLf4fGQvakrWf0jFiXbSVDwqhRqSGdW/SnV8wzBAZa+5TbvQZ2z9/udP5VA7vnL1oDoBrYMX9rZSMAxDbvR5tGD2JgcPKnbFbtnMuM5aM48v1Bnvv9LH+HVyTsXgO75293Ov+qgd3zF60BUA3slL8GGgtqUL0FnVs+7vy6e7thDJrQiE+3zWbg796gXOlKfoyuaNi9BnbP3+50/lUDu+cvWgOgGtgpf/0OjQ2EhoTRqNa9GIbBseNp/g7HL+xeA7vnb3c6/6qB3fMXrQFQDaycvwYam8j6eeGGl6rg50j8x+41sHv+dqfzrxrYPX/RGgDVwKr565YzC7qQe47TZ3MwjKv3TC7/cgapR1NoVLMNNSo19Hd4RcLuNbB7/nan868a2D1/0RoA1cBO+Vt+oMnJyWHChAksXryYzMxMKlWqRJ8+fRg7diwJCQm8//77TJ06lREjRvg7VK+Zu/IV5q58xWVb+yZ9eKb3O36KqOjZvQZWyj8vL48ln7/NJ1tmkn0yg3Jhlbgv+mGefOA1QkPC/B1esWSl819Ydq+B1fJXH/Cc1dZAYdi9BnbK39IDze7du+natSvZ2dmEhYXRuHFjjh07xpQpU0hLS+PEiRMANG/e3L+BetlD98RzX7M4Lufl8k3WPhasH0/O6UxCgks697l0+SLDJrcg9u5HeazTi87tE+YP4NSZ7xg7+FN/hO417tTgjX/1Jc/I4+X+/3Fu+/HcCYZMjCK+20Q6tXjMH6F7hZXWwPTlz7H08ynENOnN7zskcuS7gyz9fAppR1MYH7+agADdOXsjK53/wlIPsNYaUB/wnNXWQGGoD9hnDVi2A+Tk5NC9e3eys7NJTEwkKyuLXbt2kZ2dzfjx4/nkk0/Yvn07DoeDZs2a+Ttcr6oe0YAWDTvTplFXHolN4vWByzmUuZ23Fz3t3CckqARJfecyf81Y0o7tAWDz/qVsObicUXF/91foXuNODZ7p8y4HMjazNmWec9vUJcOJqtPe1A0MrLMGMrIP8PHmqbRv0odXn1zMg/cM4ekek3i6+yR2p61j/Z75/g6xWLLK+f811AOsswbUBwrHSmugsNQH7LMGLDvQJCQkkJmZyYgRI5g4cSJlypRxfi8pKYno6GguX75M7dq1CQ8P92OkvhdVux2dW/Rn/Z4FHMj4wrm9YY2W/L7DaCbMf4IfTmUyeWE8z/R+h4iy1fwYrW8UVIPwUhVIjPs705aOIOf0MTbuXcjetPU822eGn6P1PrOugXW752EYBn1+86zL9gfvGULJ4FKs3vUv/wRmMmY9/96kHmDeNaA+4B1mXgPeoj5g3TVgyYHm4MGDLFiwgIiICMaNG1fgPi1btgQgOjraZfs333xDjx49KFOmDOXLl+eJJ57g+PHjPo/Z1x7r/DIBAYF8sOJPN2x/icCAIIZOvpvo+rHENu/rpwh9r6AatG70Ozo0e5jx8x5n6uJhjIqbTXhYRT9G6TtmXAOHvt1OgCOAu+5s47I9JLgkdas15/++3e6nyMzHjOff29QDzLkG1Ae8x6xrwJvUB6y5Biw50MybN4+8vDwee+wxSpcuXeA+oaGhgOtA89NPPxEbG0tmZibz5s1j1qxZbNq0iW7dupGXl1cksftK9Yj6xEb3JSV1DfvSNzm3BwUG07h2O06fzeGBVgP9GKHv3awG8d0ncvR4Kq0bdeWeyIf8GKFvmXENHP/xGOFhEYQElcj3vYiy1Tl9Nofcy5f8EJn5mPH8e5t6gDnXgPqA95h1DXiT+oA114AlB5q1a9cCEBsbe9N9MjMzAdeBZtasWRw9epSlS5fSrVs34uLi+PDDD9myZQvLli3zbdBFoF+nFwlwBPDByl+m8n3pm1i5Yw49Y0bw7rKRXMw978cIfa+gGoSGhFG1Ql3qVGnqx8iKhtnWwMVL5wgu4IcYgJCgq7/UeDH3XFGGZGpmO/++oB5gvjWgPuBdZlwD3qY+YL014DAMw/B3EN5Ws2ZNMjMzSUlJKfATzC5fvkzVqlXJyckhLS2NunXrAr8MQOvWrXPZv169enTs2JG//71wvxzVqlUrsrOz3d4/JCiUWSMOF+q5PHH+4hmemhTN/9w3iu5th5I4owMNa7RiaI+/eXys+GkNuHTZe4u/qGpwTeL0jtwb2Y24jqMLfQxv1sBOa+BWuQ55qymnznzPR698l+97r//zYTbu/Yj/jrtIcFCIx89bVHxRF2/x5vkHc14D1xS3HgD2WQO3y9OufcBOrwM3Y/c+YLc1UKVKFXbs2FGox1ryY5vPnj0LwPnzBRd0wYIF5OTkUKZMGerUqePc/tVXXxEXF5dv/6ioKL766qtCx5Odnc3Ro0fd3r9kcKlCP5cnZi5PpEqFOvRoNwyHw8GYh+fw9OTmxDTpTbO693l0rKxjx7jgxX8hK6oaeJM3a2CnNXCrXCuGV+PId19x6fLFfLeb5Jw+StmwiGL9Qwz4pi7e4s3zD+a8BrzJjH2wOKyB2+Vp1z5gp9eBm7F7H9AacJ8lB5oqVapw8uRJdu3aRdu2bV2+l5WVxZgxYwBo1qwZDofD+b2TJ09Srly5fMerUKEChw4d+lXxeCIkKLTQz+WubV9/yvo9C5g1aq+zBtUi6jGo61+ZuGAgMxP3evTHyqpWq+b1f5UxG2/WwE5r4Fa53lWzNTv/byWHjmyjad3fOLdfyr1A+rHdNC3ED1xFzRd18QZvn38w3zXgbWbrg8VlDdwuT7v2ATu9DtyM3fuA3daApz8vX8+St5wlJCQwdepUatasyerVq2nYsCEA27dvp3///qSnp5Obm8vw4cOZNm2a83EhISEkJSXxl7/8xeV4AwYM4Msvv/xVQ40nrlyCdVOK5Km8JjYBAr34D2R2r4Gd8r9Vrt9k7eOpv0UTE9WbV55c5Ny+9POpvPNxAs/3/SedWz5eyIiLhi/qUlzpGlAfLEwNbpenXfuAXc7/rdi9BnbP3xOWfIcmKSmJDz/8kG+//ZaoqCgaNWrEhQsXSE1NpWvXrtSuXZsVK1bk+8jm8uXLc+rUqXzHO3HiBBUqVCii6EXkmjpVm9Kj3XA+3jyNVz/oQ5tGD3Lk+6t/IbxZ3Q789u5H/R2iiPiY+oCI3I4lB5oaNWqwadMmxowZw4YNG8jIyKBx48bMnDmTIUOGUK9ePSD/36CJjIws8HdlvvrqK+67r/i/pS1iRUN7TOaO8rX579ZZbDv4CeFhEfSKeYYnH3iNgABLflCjiNxAfUBEbsWSAw1cHU6Sk5PzbT9z5gwZGRkEBATQpEkTl+9169aNF154gczMTGrUqAHA1q1bSUtL48033yySuEXEVWBAIHEdEonrkOjvUETET9QHRORWbPfPGgcOHMAwDBo0aECpUq6fHhEfH0/VqlXp2bMnycnJLFy4kH79+tGmTRt69uzpp4hFRERERORmbDfQ7Nu3D8h/uxlAeHg4a9eupWrVqvTt25fBgwfTrl07kpOT9Za2iIiIiEgxZLuf0m810MDVP6KZnJzMmTNnOHXqFP/617+oVKlSUYboUxv3LuTtRUO5lHuBV+b0YsD4hjw1KZrnZ3XhaE6qv8PzuWv5X++z7f+gyxgHm/cv9U9QPvD8rPuJf6sZT01qznPv/obUoyluP/bGGlmxPlZU2HNul2vienbpg+oD9qIe4D475nwjq/VBy/4Ozc3cbqCxus37l9C55RMAPHhPPG0adcXhcLB08zQmfTSYt4au92+APnZ9/gDZJzL4dOt7RN55rx+j8r6X+/+H0qHlAPh83xLeXDCAmaP2uPXY62tk1fpYUWHPuV2uievZpQ+qD9iLeoD77JjzjazWB2030Kxdu9bfIfjUmfOnGPJWEy7mnqdS2ZrkXrlI9vF0OrXsz8g+0zmQsZkxj8whKDCYeyIfdD4u8s57Wbhhoh8j9w538wfIy8tj0keDGd5rKjOXW+sXTa+9qAGcvXAauPrHsm5Vn8S42Vy+kuuskZXrY0WFOedWvSbs3gevUR+wF/WAX9gx5xvZrQ/abqCxutKh5fht80cJLVGGx7u8zPZDK5i3diyJcbPZcWgljWu1IygwON/jlnz+Nm2jzP/BB57kv2jjJKJqx9CwRks/R+0b4+c9wZ60dQC8Mei/wK3rA7A7dZ2zRh+tn2jp+liRp+fcqteE3fvg9dQH7EU94Co75nwju/VBDTQWlHpsN73bJwBwOHMn9avdDcAXB5YS06R3vv0/XDOWYzmpTHhqTZHG6Svu5P9N9n427VvEpGEb/RZnYSVMbcvRnMMFfm/6cylULlcTgOf7zQVg5Y4PeO+/zzP25xe3m9UHfqmRmetjZ56ec6tcEwWxeh9UH5CCqAf8wo4538jqffB6GmgsKP3YbupXv7poD2fupG1UDwzDYMehFQx5aILLvh+tn8jn+xczIX41JUNKFXQ403En//3pm/juZAYDxjcA4MRP2UxeGM+JH7Po3m7oTY9dHEx55kuP9r+/1ZO8vehpfjx7nPCwigXWB3Cp0eqd/zRtfcS9c26la6IgVu+D6gNyK+oB1v9ZwB1W74PX00BjMTmnj4LDQUTZ6gCkZ+/l0U4v8vW327jzjkhCS5R27rtwwyTW7Z7H+PjVLvfempm7+XdvN9SlWSVO70if3zxLTJNe/gjbq86cP8WFS+eIKFsNgM37lxIeVpEypSrctD6AS42sUJ89aesZPSPWZVvJkDBqVGpI5xb96RXzDIGB1miBhTnnVr4m7N4HQX0A1APUA+yV843s1getcSWLU+rRFJdbB0qXLMeyL9+lbFgE7aJ6Obf/cCqTmcmJVK1Q19nwQ4JKMDVha1GH7FXu5m9lZy+c5vV/xnEx9zwBjgDKhlXi9YHJOByOm9YnMW42m/cvsWSNYpv3o02jBzEwOPlTNqt2zmXG8lEc+f4gz/1+lr/D84rCnHMrXxN274OgPnA99QD1ADvkfCO79UGHYRiGv4MQV1cuwbop3j3m4IlRvPn0OsqXruzdA/8sNgECQ7x3PG/XwNf5g3dr4Is1cDu/tkaFzd9XuV7719n4h94kruNo5/bzl84yaEIjcn48yn/+9B3lSvv270wVt7pc44trorhfA3bvg+7wRx+weg+A4lWXa4p7DwD9LKA+6D7b/WFNu5o9+oBPL+Dizu75u8MuNQoNCaNRrXsxDINjx9P8HY7f2OV8X8+OOXvKDjVSD7jKDuf6RnbM+UZWrYEGGhGxnayff4gJL1XBz5GIiD+oB4hYi36HRkQs7ULuOU6fzcEwrt4/v/zLGaQeTaFRzTbUqNTQ3+GJiI+pB4hYnwYaEbG0uStfYe7KV1y2tW/Sh2d6v+OniESkKKkHiFifbjkTEUt76J54xg9ZxRuD/svgB8f//DGmmYQEl3Tuc+nyRQZPjOLfa95weeyE+QN4YXZXt/cRkeJHPUDE+vQOTTEUEHz1UyLMJCDY+8ezcw3snr83VY9oQIuGnQFo06grTeq057l32/P2oqd58fH5wNWPqEzqO5fEd+/j3shu1KsWzeb9S9lycDmzRu1zex9vsvsasHv+145n9xp4g3pA0dE1oD7orx6ggaYYcjj885F3xYnda2D3/H0pqnY7Orfoz6qdc+nVPoGo2u0AaFijJb/vMJoJ85/gL3/4hMkL43mm9zvOP1Tn7j7eYvc1YPf8QTXwFfUA87B7Deyevyd0y5mI2M5jnV8mICCQD1b86YbtLxEYEMTQyXcTXT+W2OZ9C3js7fcRkeJNPUDEWjTQiIjtVI+oT2x0X1JS17AvfZNze1BgMI1rt+P02RweaDWwwMe6s4+IFG/qASLWooFGRGypX6cXCXAE8MHKX/6Fdl/6JlbumEPPmBG8u2wkF3PP53ucO/uISPGnHiBiHQ7DMAx/ByEi9nXlEqyb4u8o4PzFMzw1KZr/uW8U3dsOJXFGBxrWaMXQHn/zaJ8bxSboHmiRW7F6DwD1ARFf0zs0IiLAzOWJVKlQhx7thhEQEMCYh+fw6bbZ7E3f6NE+ImJO6gEi5qWBRkRsb9vXn7J+zwJGP/w+DocDgGoR9RjU9a9MXDCQ85fOurWPiJiTeoCIuemWMxHxq+Jyu4mv6FYTkVuzeg8A9QERX9M7NCIiIiIiYloaaERERERExLQ00IiIiIiIiGlpoBEREREREdPSQCMiIiIiIqalgUZERERERExLA42IiIiIiJiWBhoRERERETGtIH8HICJSnGzcu5CUw2sY2uNvvPHvvvy/776iRHAo5UpXJqHPdKpH1Pd3iCLiQ+oBIuajd2hERK6zef8S2jXpBcCD98Tzj6RDzBy1h7ZRPZn00WD/BiciPqceIGI+eoemGDIMyMv1dxSeCQgGh8N7x7N7Deyevy+dOX+KIW814WLueSqVrUnulYtkH0+nU8v+jOwznQMZmxnzyByCAoO5J/JB5+Mi77yXhRsmFlmcdl8Dds8fVANfUQ/wHV0D6oP+6gEaaIqhvFxYN8XfUXgmNgECQ7x3PLvXwO75+1Lp0HL8tvmjhJYow+NdXmb7oRXMWzuWxLjZ7Di0ksa12hEUGJzvcUs+f5u2UT2LLE67rwG75w+qga+oB/iOrgH1QX/1AN1yJiK2k3psN/Wr3w3A4cyd1K929f+/OLCUmCa98+3/4ZqxHMtJZVDXcUUap4j4hnqAiLVooBER20m/8YeZ6ndjGAY7Dq2gTaOuLvt+tH4in+9fzNjBn1IypJQ/whURL1MPELEWDTQiYis5p4+Cw0FE2eoApGfvpU6Vpnz97TbuvCOS0BKlnfsu3DCJdbvnMX7IKkqHlvNTxCLiTeoBItaj36EREVtJPZrivL0EoHTJciz78l3KhkXQLqqXc/sPpzKZmZxI1Qp1GT0jFoCQoBJMTdha1CGLiBepB4hYjwYaEbGVext3497G3ZxfvzNyOwCDJ0bx5tPrnNsrlavBqjeNIo9PRHxLPUDEejTQiIgAs0cf8HcIIuJH6gEi5qXfoREREREREdPSOzQWsidtvfM+32tKhoRRo1JDOrfoT6+YZwgMtPYpt3sN7J6/3en8qwZ2z1+0BkA1sGP+1spGAIht3o82jR7EwODkT9ms2jmXGctHceT7gzz3+1n+Dq9I2L0Gds/f7nT+VQO75y9aA6Aa2Cl/DTQW1KB6Czq3fNz5dfd2wxg0oRGfbpvNwN+9QbnSlfwYXdGwew3snr/d6fyrBnbPX7QGQDWwU/76HRobCA0Jo1GtezEMg2PH0/wdjl/YvQZ2z9/udP5VA7vnL1oDoBpYOX8NNDaR9fPCDS9Vwc+R+I/da2D3/O1O5181sHv+ojUAqoFV89ctZxZ0Ifccp8/mYBhX75lc/uUMUo+m0KhmG2pUaujv8IqE3Wtg9/ztTudfNbB7/qI1AKqBnfK3xUCTk5PDhAkTWLx4MZmZmVSqVIk+ffowduxYEhISeP/995k6dSojRozwd6heMXflK8xd+YrLtvZN+vBM73f8FFHRs3sNrJT/vLXjOHx0F4czd5J94hvuKF+Lf72Q4e+wijUrnf/CsnsNrJa/+oDnrLYGCsPuNbBT/pYfaHbv3k3Xrl3Jzs4mLCyMxo0bc+zYMaZMmUJaWhonTpwAoHnz5v4N1Iseuiee+5rFcTkvl2+y9rFg/XhyTmcSElzSuc+lyxcZNrkFsXc/ymOdXnRunzB/AKfOfMfYwZ/6I3SvcacGb/yrL3lGHi/3/49z24/nTjBkYhTx3SbSqcVj/gjdK6y0Bt7/9AXKlKpAg+otOHv+lL/DMQUrnf/CUg+w1hpQH/Cc1dZAYagP2GcNWPp3aHJycujevTvZ2dkkJiaSlZXFrl27yM7OZvz48XzyySds374dh8NBs2bN/B2u11SPaECLhp1p06grj8Qm8frA5RzK3M7bi5527hMSVIKkvnOZv2Ysacf2ALB5/1K2HFzOqLi/+yt0r3GnBs/0eZcDGZtZmzLPuW3qkuFE1Wlv6gYG1loDc/83jcV/Ps74+FVUDK/m73BMwUrnv7DUA6y1BtQHPGe1NVAY6gP2WQOWHmgSEhLIzMxkxIgRTJw4kTJlyji/l5SURHR0NJcvX6Z27dqEh4f7MVLfiqrdjs4t+rN+zwIOZHzh3N6wRkt+32E0E+Y/wQ+nMpm8MJ5ner9DRFnrvVgUVIPwUhVIjPs705aOIOf0MTbuXcjetPU822eGn6P1PjOvgaoV6/o7BNMz8/n3FvUAc68B9YFfz+xrwBvUB6y7Biw70Bw8eJAFCxYQERHBuHHjCtynZcuWAERHRzu3XRuA2rRpQ4kSJXA4HEUSr6891vllAgIC+WDFn27Y/hKBAUEMnXw30fVjiW3e108R+l5BNWjd6Hd0aPYw4+c9ztTFwxgVN5vwsIp+jNJ3tAbsTedfPUBrQLQG1AesugYsO9DMmzePvLw8HnvsMUqXLl3gPqGhoYDrQJOamsqiRYuoUqUKrVu3LpJYi0L1iPrERvclJXUN+9I3ObcHBQbTuHY7Tp/N4YFWA/0Yoe/drAbx3Sdy9HgqrRt15Z7Ih/wYoW9pDdibzr96gNaAaA2oD1h1DVh2oFm7di0AsbGxN90nMzMTcB1o7rvvPrKysli2bBmdO3f2bZBFrF+nFwlwBPDByl+m8n3pm1i5Yw49Y0bw7rKRXMw978cIfa+gGoSGhFG1Ql3qVGnqx8iKhtaAven8qwdoDYjWgPqAFdeAwzAMw99B+ELNmjXJzMwkJSWlwE8wu3z5MlWrViUnJ4e0tDTq1s1/f+6rr77Kn//8Z35tiVq1akV2drbb+4cEhTJrxOFf9ZzuOH/xDE9NiuZ/7htF97ZDSZzRgYY1WjG0x988Plb8tAZcuuy9xV9UNbgmcXpH7o3sRlzH0YU+hjdrYKc14EmuQyY24fylM6b6uNaiqEthefP8gzmvgWuKWw8A+6wBT/O0Sx+w0+vAzdi9D9htDVSpUoUdO3YU6rGW/djms2fPAnD+fMFFXbBgATk5OZQpU4Y6der4NJbs7GyOHj3q9v4lg0v5MJpfzFyeSJUKdejRbhgOh4MxD8/h6cnNiWnSm2Z17/PoWFnHjnEh95zXYiuqGniTN2tgpzVgxnPtieJcF2+efzDnNeBNZuyDxWENmPFce6o416U4vA7cjBnXhhn7YHFeA+6y7EBTpUoVTp48ya5du2jbtq3L97KyshgzZgwAzZo18/kv/lepUsWj/UOCQn0UyS+2ff0p6/csYNaovc78q0XUY1DXvzJxwUBmJu4lNCTM7eNVrVbN6/8qYzberIGd1oAZz7UnimtdvH3+wXzXgLeZrQ8WlzVgxnPtqeJal+LyOnAzZlwbZuuDxWkNePrz8vUse8tZQkICU6dOpWbNmqxevZqGDRsCsH37dvr37096ejq5ubkMHz6cadOmFXgMb91y5qkrl2DdlCJ9yl8tNgECQ7x3PLvXwE75e5KrGW81KYq6FBe6BtQHC1MDT/O0Sx+wy/m/FbvXwO75e8Ky79AkJSXx4Ycf8u233xIVFUWjRo24cOECqampdO3aldq1a7NixQqXDwQQkeJn1c5/8v3J/wfAqbM/cPnKJf69+i8AVC5fiy4t+/szPBEpAuoDInIrlh1oatSowaZNmxgzZgwbNmwgIyODxo0bM3PmTIYMGUK9evUANNCIFHOfbfs7e9M3uGybs+JlAJrV7aAfZERsQH1ARG7FsgMNQGRkJMnJyfm2nzlzhoyMDAICAmjSpIkfIhMRd701dL2/QxARP1MfEJFbsfRAczMHDhzAMAwaNmxIqVL5P0Fi4cKFAHz11VcuX9euXZtWrVoVXaAiIiIiInJLthxo9u3bB9z8drO4uLgCv37yySeZM2eOT2MTERERERH3Bfg7AH+43UBjGEaB/1l5mNm4dyFvLhjIK3N6MWB8Q56aFM3zs7pwNCfV36G55flZ9xP/VjOemtSc5979DalHU9x63Ma9C3l70VCXbZ9t/wddxjjYvH+pDyL1PzvmLLd347qw8pq4luul3Aum7XnuKGxfBHutBzvS64A9+oCdeoDeoREANu9fQodmDxMYGEybRl1xOBws3TyNSR8NNsW9yy/3/w+lQ8sB8Pm+Jby5YAAzR+257eM2719C55ZPOL/OPpHBp1vfI/LOe30Vqt/ZMWe5vevXhdXXxPW5PnhPvCl7njsK2xfBXuvBjvQ6YI8+YKceYMuBZu3atf4OoUidOX+KIW814WLueSqVrUnulYtkH0+nU8v+JMbN5vKVXA5kbGbMI3MICgx2Pi7yzntZuGGiHyN337ULFuDshdPA1T8OdavcR/aZ7swbIC8vj0kfDWZ4r6nMXJ5Y9El4iR1zllvzpAdYYU24ew0EBQZzT+SDzseZqee5ozB90YrrwY70OqA+APbqAbYcaOymdGg5ftv8UUJLlOHxLi+z/dAK5q0dS2LcbAB2p66jca12LsMMwJLP36ZtVE9/hFwo4+c9wZ60dQC8Mei/wK1z33FopUveizZOIqp2DA1rtPRbDt5gx5zl1jzpAR+tn2j6NeHJNXA9s/U8d3jaF8F668GO9DqgPnCNXXqABhoLSJjalqM5hwv83vTnUqhcriapx3bTu30CAIczd1K/2t3Ofb44sJSYJr1dHvfhmrEcy0llwlNrfBe4lz3fby4AK3d8wHv/fZ6xP1+4N8v9+ry/yd7Ppn2LmDRsox8i9z475mxn3uoBVloT7lwD1zNbz3PnnIPnfRGsuR7sSK8D1u4D6gGuNNBYwJRnvrztPunHdlO/+tXFejhzJ22jegBXPwBhx6EVDHlognPfj9ZP5PP9i5kQv5qSIfk/1rq4u7/Vk7y96Gl+PHuc8LCKBeZ+Y9770zfx3ckMBoxvAMCJn7KZvDCeEz9m0b3d0Js+V3Flx5ztzFs9YPXOf1pmTbhzDVxjxp7nzjm/njt9Eay7HuxIrwPW7gPqAa400NhAzumj4HAQUbY6AOnZe3m004sAfP3tNu68I5LQEqUBWLhhEut2z2N8/GqXey+LszPnT3Hh0jkiylYDYPP+pYSHVaRMqQo3zf3GvLu3G+pycSZO70if3zxLTJNeRZ7Pr2XHnOXW3O0BVlkT7l4DYM6e547C9EWw5nqwI70OqA/YrQdooLGB1KMpLm8lli5ZjmVfvkti3Gw2719Cu6heAPxwKpOZyYlUrVCX0TNiAQgJKsHUhK3+CNttZy+c5vV/xnEx9zwBjgDKhlXi9YHJOByOm+ZeNizCmbfV2DFnuTV3e4BVuHsNmLXnuaMwfdGq68GO9DqgPmC3HuAwDMPwdxDi6solWDelaJ5r8MQo3nx6HeVLV/5Vx4lNgMAQLwWF72vgrbyv580a+CJ/X+R8vcLmX5Tr3R+Ke128uS50DZirDxbk19aoMDWweg+A4lMXXQPmqoFdeoA36B0am5s9+oC/Q/ALO+Ztx5zl9uy0LuyUa2GpRtam86sa3I5Z6xPg7wBEREREREQKSwONiIiIiIiYlgYaERERERExLQ00IiIiIiJiWvqUs2LIMCAv199ReCYgGBwO7x3P7jWwU/5mzNUTdqqLrgH1wcLUwIx5esouddE1oD7o7TXgLg00IiIiIiJiWrrlTERERERETEsDjYiIiIiImJYGGhERERERMS0NNCIiIiIiYloaaERERERExLQ00IiIiIiIiGlpoBEREREREdPSQCMiIiIiIqalgUZERERERExLA42IiIiIiJiWBhoRERERETEtDTQiIiIiImJaGmhERERERMS0NNCIiIiIiIhpaaARERERERHT0kAjIiIiIiKmpYFGRERERERMSwONiIiIiIiYlgYaERERERExLQ00IiIiIiJiWhpoRERERETEtDTQiIiIiIiIaWmgERERERER09JAIyIiIiIipqWBRkRERERETOv/A9UZZ3ltXK1GAAAAAElFTkSuQmCC", - "text/plain": [ - "
" - ] - }, - "execution_count": 4, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "translated = translate.run(circuit)\n", - "translated.draw(\"mpl\")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "For a more advanced example that shows how to create a pass manager to implement the error suppression technique known as dynamical decoupling, see [Create a pass manager for dynamical decoupling](dynamical-decoupling-pass-manager)." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Create a staged pass manager\n", - "\n", - "A `StagedPassManager` is a pass manager that is composed of individual stages, where each stage is defined by a `PassManager` instance. You can create a `StagedPassManager` by specifying the desired stages. For example, the following code creates a staged pass manager with two stages, `init` and `translation`. The `translation` stage is defined by the pass manager that was created previously." - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": {}, - "outputs": [], - "source": [ - "from qiskit.transpiler import PassManager, StagedPassManager\n", - "from qiskit.transpiler.passes import UnitarySynthesis, Unroll3qOrMore\n", - "\n", - "basis_gates = [\"rx\", \"ry\", \"rxx\"]\n", - "init = PassManager([UnitarySynthesis(basis_gates, min_qubits=3), Unroll3qOrMore()])\n", - "staged_pm = StagedPassManager(\n", - " stages=[\"init\", \"translation\"], init=init, translation=translate\n", - ")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "There is no limit on the number of stages you can put in a staged pass manager.\n", - "\n", - "Another useful way to create a staged pass manager is to begin with a preset staged pass manager and then swap out some of the stages. For example, the following code generates a preset pass manager with optimization level 3, and then specifies a custom `pre_layout` stage." - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": {}, - "outputs": [], - "source": [ - "import numpy as np\n", - "from qiskit.circuit.library import HGate, PhaseGate, RXGate, TdgGate, TGate\n", - "from qiskit.transpiler.passes import CXCancellation, InverseCancellation\n", - "\n", - "pass_manager = generate_preset_pass_manager(3, backend)\n", - "inverse_gate_list = [\n", - " HGate(),\n", - " (RXGate(np.pi / 4), RXGate(-np.pi / 4)),\n", - " (PhaseGate(np.pi / 4), PhaseGate(-np.pi / 4)),\n", - " (TGate(), TdgGate()),\n", - "]\n", - "logical_opt = PassManager(\n", - " [\n", - " CXCancellation(),\n", - " InverseCancellation(inverse_gate_list),\n", - " ]\n", - ")\n", - "\n", - "# Add pre-layout stage to run extra logical optimization\n", - "pass_manager.pre_layout = logical_opt" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "The [stage generator functions](/api/qiskit/transpiler_preset#stage-generator-functions) might be useful for constructing custom pass managers.\n", - "They generate stages that provide common functionality used in many pass managers.\n", - "For example, [`generate_embed_passmanager`](/api/qiskit/transpiler_preset#qiskit.transpiler.preset_passmanagers.common.generate_embed_passmanager) can be used to generate a stage\n", - "to \"embed\" a selected initial `Layout` from a layout pass to the specified target device.\n", - "\n", - "## Next steps\n", - "\n", - "\n", - " - [Write a custom transpiler pass](custom-transpiler-pass).\n", - " - [Create a pass manager for dynamical decoupling](dynamical-decoupling-pass-manager).\n", - " - To learn how to use the `transpile` function, start with the [Transpilation default settings and configuration options](defaults-and-configuration-options) topic.\n", - " - Try the [Submit transpiled circuits](https://learning.quantum.ibm.com/tutorial/submit-transpiled-circuits) tutorial.\n", - " - See the [Transpile API documentation.](https://docs.quantum-computing.ibm.com/api/qiskit/transpiler)\n", - "\n" - ] - } - ], - "metadata": { - "celltoolbar": "Raw Cell Format", - "description": "How to transpile quantum circuits using pass managers in Qiskit.", - "kernelspec": { - "display_name": "Python 3 (ipykernel)", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.10.12" - }, - "title": "Transpile with pass managers" - }, - "nbformat": 4, - "nbformat_minor": 4 -} \ No newline at end of file diff --git a/translations/ja/transpile/transpiler-stages.ipynb b/translations/ja/transpile/transpiler-stages.ipynb deleted file mode 100644 index 499092d0b4..0000000000 --- a/translations/ja/transpile/transpiler-stages.ipynb +++ /dev/null @@ -1,460 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Transpiler stages\n", - "\n", - "This page describes the stages of Qiskit's prebuilt transpilation pipeline. There are six stages:\n", - "\n", - "1. `init` \n", - "2. `layout`\n", - "3. `routing` \n", - "4. `translation`\n", - "5. `optimization`\n", - "6. `scheduling`\n", - "\n", - "The [`generate_preset_pass_manager`](/api/qiskit/transpiler_preset#qiskit.transpiler.preset_passmanagers.generate_preset_pass_manager) function creates a preset [staged pass manager](/api/qiskit/qiskit.transpiler.StagedPassManager) composed of these stages. The specific passes that make up each stage depends on the arguments passed to `generate_preset_pass_manager`. There is one positional argument that must be specified, the `optimization_level`, which is an integer that can be 0, 1, 2, or 3. Higher values indicate heavier but more costly optimization (see [Transpilation defaults and configuration options](defaults-and-configuration-options)).\n", - "\n", - "The recommended way to transpile a circuit is to create a preset staged pass manager and then run that pass manager on the circuit, as described in [Transpile with pass managers](transpile-with-pass-managers). However, a simpler but less customizable alternative is to use the [`transpile`](/api/qiskit/compiler#qiskit.compiler.transpile) function. This function accepts the circuit directly as an argument. As with `generate_preset_pass_manager`, the specific transpiler passes used depend on the arguments, such as `optimization_level`, passed to `transpile`. In fact, internally the `transpile` function calls `generate_preset_pass_manager` to create a preset staged pass manager and runs it on the circuit." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Init stage\n", - "\n", - "This first stage does very little by default and is primarily useful if you want to include your own initial optimizations. Because most layout and routing algorithms are only designed to work with single- and two-qubit gates, this stage is also used to translate any gates that operate on more than two qubits, into gates that only operate on one or two qubits.\n", - "\n", - "For more information about implementing your own initial optimizations for this stage, see the section on plugins and customizing pass managers." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Layout stage\n", - "The next stage involves the layout or connectivity of the backend a circuit will be sent to. In general, quantum circuits are abstract entities whose qubits are \"virtual\" or \"logical\" representations of actual qubits used in computations. To execute a sequence of gates, a one-to-one mapping from the \"virtual\" qubits to the \"physical\" qubits in an actual quantum device is necesary. This mapping is stored as a `Layout` object.\n", - "\n", - "\n", - "![This image illustrates qubits being mapped from the wire representation to a diagram that represents how the qubits are connected on the system.](/images/transpile/transpiler-stages/layout-mapping.png \"Qubit mapping\")\n", - "\n", - "The choice of mapping is extremely important for minimizing the number of SWAP operations needed to map the input circuit onto the device topology and ensure the most well-calibrated qubits are used. Due to the importance of this stage, the preset pass managers try a few different methods to find the best layout. Typically this involves two steps: first, try to find a \"perfect\" layout (a layout that does not require any SWAP operations), and then, a heuristic pass that tries to find the best layout to use if a perfect layout cannot be found. There are two `Passes` typically used for this first step:\n", - "\n", - "- `TrivialLayout`: Naively maps each virtual qubit to the same numbered physical qubit on the device (i.e., [`0`,`1`,`1`,`3`] -> [`0`,`1`,`1`,`3`]). This is historical behavior only used in `optimzation_level=1` to try to find a perfect layout. If it fails, `VF2Layout` is tried next.\n", - "- `VF2Layout`: This is an `AnalysisPass` that selects an ideal layout by treating this stage as a subgraph isomorphism problem, solved by the VF2++ algorithm. If more than one layout is found, a scoring heuristic is run to select the mapping with the lowest average error.\n", - "\n", - "Then for the heuristic stage, two passes are used by default:\n", - "\n", - "- `DenseLayout`: Finds the sub-graph of the device with the greatest connectivity and that has the same number of qubits as the circuit (used for optimization level 1 if there are control flow operations (such as IfElseOp) present in the circuit).\n", - "- `SabreLayout`: This pass selects a layout by starting from an initial random layout and repeatedly running the `SabreSwap` algorithm. This pass is only used in optimization levels 1, 2, and 3 if a perfect layout isn't found via the `VF2Layout` pass. For more details on this algorithm, refer to the paper [arXiv:1809.02573.](https://arxiv.org/abs/1809.02573)\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Routing stage\n", - "\n", - "In order to implement a two-qubit gate between qubits that are not directly connected on a quantum device, one or more SWAP gates must be inserted into the circuit to move the qubit states around until they are adjacent on the device gate map. Each SWAP gate represents an expensive and noisy operation to perform. Thus, finding the minimum number of SWAP gates needed to map a circuit onto a given device is an important step in the transpilation process. For efficiency, this stage is typically computed alongside the Layout stage by default, but they are logically distinct from one another. The *Layout* stage selects the hardware qubits to be used, while the *Routing* stage inserts the appropriate amount of SWAP gates in order to execute the circuits using the selected layout.\n", - "\n", - "However, finding the optimal SWAP mapping is hard. In fact, it is an NP-hard problem, and is thus prohibitively expensive to compute for all but the smallest quantum devices and input circuits. To work around this, Qiskit uses a stochastic heuristic algorithm called `SabreSwap` to compute a good, but not necessarily optimal, SWAP mapping. The use of a stochastic method means that the circuits generated are not guaranteed to be the same over repeated runs. Indeed, running the same circuit repeatedly results in a distribution of circuit depths and gate counts at the output. It is for this reason that many users choose to run the routing function (or the entire `StagedPassManager`) many times and select the lowest-depth circuits from the distribution of outputs.\n", - "\n", - "For example, let's take a 15-qubit GHZ circuit executed 100 times, using a “bad” (disconnected) `initial_layout`." - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": { - "tags": [] - }, - "outputs": [ - { - "data": { - "text/plain": [ - "Text(0, 0.5, 'Counts')" - ] - }, - "execution_count": 1, - "metadata": {}, - "output_type": "execute_result" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAArwAAAISCAYAAAAurBzdAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAwhUlEQVR4nO3de1iUdf7/8dcgOCg6nFSQPOGh0I6eUlYrNRK99uuhUDtYmbnbVYttRgdjWzIto8PXrL5rma3Ctt8tN79blltphWJqoGZquW2kLiWpYFkMSQEan98fXc6vSQwYDjN8eD6ua65rue+be959RHxe994z4zDGGAEAAACWCvL3AAAAAEBTIngBAABgNYIXAAAAViN4AQAAYDWCFwAAAFYjeAEAAGA1ghcAAABWI3gBAABgtWB/D+AP1dXVOnTokDp27CiHw+HvcQAAAPAzxhh9++23iouLU1BQw67RtsrgPXTokLp37+7vMQAAAFCLoqIidevWrUHnaJXB27FjR0k/LqDL5fLzNAAAAPi5srIyde/e3dNtDRGQwXvw4EHNnTtXb775pr777jv17dtXWVlZGjJkiKQfL3HPmzdPzz33nEpLSzVixAg988wz6tevX53Of/I2BpfLRfACAAAEsMa4/TTgXrT2zTffaMSIEQoJCdGbb76pjz/+WIsWLVJkZKTnmEcffVRPPfWUli5dqq1btyosLEzJycmqqKjw4+QAAAAIRA5jjPH3ED91zz33aMuWLdq0aVON+40xiouL0x133KE777xTkuR2uxUTE6Ps7GxdddVVtT5HWVmZwsPD5Xa7ucILAAAQgBqz1wLuCu9rr72mIUOGaOrUqerSpYsGDhyo5557zrO/sLBQxcXFSkpK8mwLDw/XsGHDlJeX54+RAQAAEMACLnj/85//eO7HXbdunW655Rb9/ve/11/+8hdJUnFxsSQpJibG6/tiYmI8+36usrJSZWVlXg8AAAC0DgH3orXq6moNGTJEDz30kCRp4MCB2rNnj5YuXaoZM2b4dM7MzEzNnz+/MccEAABACxFwV3i7du2qAQMGeG3r37+/Dhw4IEmKjY2VJJWUlHgdU1JS4tn3c+np6XK73Z5HUVFRE0wOAACAQBRwwTtixAgVFBR4bfv000/Vs2dPSVJ8fLxiY2OVk5Pj2V9WVqatW7cqMTGxxnM6nU7PW5DxVmQAAACtS8Dd0nD77bfrV7/6lR566CFNmzZN27Zt07Jly7Rs2TJJP74X25w5c/Tggw+qX79+io+PV0ZGhuLi4jR58mT/Dg8AAICAE3DBO3ToUL3yyitKT0/XggULFB8fryeeeELTp0/3HHP33XervLxcN910k0pLSzVy5EitXbtWoaGhfpwcAAAAgSjg3oe3OfA+vAAAAIHN6vfhBQAAABoTwQsAAACrEbwAAACwGsELAAAAqxG8AAAAsBrBCwAAAKsRvAAAALAawQsAAACrEbwAAACwWsB9tLCt/jEtw98jNKmUlx7w9wgAAAA14govAAAArEbwAgAAwGoELwAAAKxG8AIAAMBqBC8AAACsRvACAADAagQvAAAArEbwAgAAwGoELwAAAKxG8AIAAMBqBC8AAACsRvACAADAagQvAAAArEbwAgAAwGoELwAAAKxG8AIAAMBqBC8AAACsRvACAADAagQvAAAArEbwAgAAwGoELwAAAKxG8AIAAMBqBC8AAACsRvACAADAagQvAAAArEbwAgAAwGoELwAAAKxG8AIAAMBqBC8AAACsRvACAADAagQvAAAArEbwAgAAwGoELwAAAKxG8AIAAMBqBC8AAACsRvACAADAagQvAAAArEbwAgAAwGoELwAAAKxG8AIAAMBqBC8AAACsRvACAADAagQvAAAArEbwAgAAwGoELwAAAKxG8AIAAMBqBC8AAACsRvACAADAagQvAAAArEbwAgAAwGoELwAAAKxG8AIAAMBqBC8AAACsRvACAADAagQvAAAArBZwwXv//ffL4XB4PRISEjz7KyoqlJqaqujoaHXo0EEpKSkqKSnx48QAAAAIZAEXvJJ09tln6/Dhw57H5s2bPftuv/12rVmzRqtWrdLGjRt16NAhXXHFFX6cFgAAAIEs2N8D1CQ4OFixsbGnbHe73Vq+fLleeOEFjRkzRpKUlZWl/v37Kz8/X8OHD2/uUQEAABDgAvIK7969exUXF6fevXtr+vTpOnDggCRpx44dOn78uJKSkjzHJiQkqEePHsrLyzvt+SorK1VWVub1AAAAQOsQcME7bNgwZWdna+3atXrmmWdUWFioiy66SN9++62Ki4vVtm1bRUREeH1PTEyMiouLT3vOzMxMhYeHex7du3dv4v8KAAAABIqAu6Vh/Pjxnv993nnnadiwYerZs6deeukltWvXzqdzpqenKy0tzfN1WVkZ0QsAANBKBNwV3p+LiIjQmWeeqX379ik2NlZVVVUqLS31OqakpKTGe35PcjqdcrlcXg8AAAC0DgEfvMeOHdP+/fvVtWtXDR48WCEhIcrJyfHsLygo0IEDB5SYmOjHKQEAABCoAu6WhjvvvFMTJkxQz549dejQIc2bN09t2rTR1VdfrfDwcM2aNUtpaWmKioqSy+XSrbfeqsTERN6hAQAAADUKuOD94osvdPXVV+vo0aPq3LmzRo4cqfz8fHXu3FmStHjxYgUFBSklJUWVlZVKTk7W008/7eepAQAAEKgCLnhXrlz5i/tDQ0O1ZMkSLVmypJkmAgAAQEsW8PfwAgAAAA1B8AIAAMBqBC8AAACsRvACAADAagQvAAAArEbwAgAAwGoELwAAAKxG8AIAAMBqBC8AAACsRvACAADAagQvAAAArEbwAgAAwGoELwAAAKxG8AIAAMBqBC8AAACsRvACAADAagQvAAAArEbwAgAAwGoELwAAAKxG8AIAAMBqBC8AAACsRvACAADAagQvAAAArEbwAgAAwGoELwAAAKxG8AIAAMBqBC8AAACsRvACAADAagQvAAAArEbwAgAAwGoELwAAAKxG8AIAAMBqBC8AAACsRvACAADAagQvAAAArEbwAgAAwGoELwAAAKxG8AIAAMBqBC8AAACsRvACAADAagQvAAAArEbwAgAAwGoELwAAAKxG8AIAAMBqBC8AAACsRvACAADAagQvAAAArEbwAgAAwGoELwAAAKxG8AIAAMBqBC8AAACsRvACAADAagQvAAAArEbwAgAAwGoELwAAAKxG8AIAAMBqBC8AAACsRvACAADAagQvAAAArEbwAgAAwGoELwAAAKxG8AIAAMBqBC8AAACsRvACAADAagQvAAAArBbQwfvwww/L4XBozpw5nm0VFRVKTU1VdHS0OnTooJSUFJWUlPhvSAAAAAS0gA3e7du369lnn9V5553ntf3222/XmjVrtGrVKm3cuFGHDh3SFVdc4acpAQAAEOgCMniPHTum6dOn67nnnlNkZKRnu9vt1vLly/X4449rzJgxGjx4sLKysvTee+8pPz/fjxMDAAAgUAVk8KampurXv/61kpKSvLbv2LFDx48f99qekJCgHj16KC8v77Tnq6ysVFlZmdcDAAAArUOwvwf4uZUrV+qDDz7Q9u3bT9lXXFystm3bKiIiwmt7TEyMiouLT3vOzMxMzZ8/v7FHBQAAQAsQUFd4i4qKdNttt+lvf/ubQkNDG+286enpcrvdnkdRUVGjnRsAAACBLaCCd8eOHTpy5IgGDRqk4OBgBQcHa+PGjXrqqacUHBysmJgYVVVVqbS01Ov7SkpKFBsbe9rzOp1OuVwurwcAAABah4C6peHSSy/VRx995LVt5syZSkhI0Ny5c9W9e3eFhIQoJydHKSkpkqSCggIdOHBAiYmJ/hgZAAAAAS6ggrdjx44655xzvLaFhYUpOjras33WrFlKS0tTVFSUXC6Xbr31ViUmJmr48OH+GBkAAAABLqCCty4WL16soKAgpaSkqLKyUsnJyXr66af9PRYAAAACVMAHb25urtfXoaGhWrJkiZYsWeKfgQAAANCiBNSL1gAAAIDGRvACAADAagQvAAAArEbwAgAAwGoELwAAAKxG8AIAAMBqBC8AAACsRvACAADAagQvAAAArEbwAgAAwGoELwAAAKxG8AIAAMBqBC8AAACsRvACAADAagQvAAAArEbwAgAAwGoELwAAAKxG8AIAAMBqBC8AAACsRvACAADAagQvAAAArEbwAgAAwGoELwAAAKxG8AIAAMBqBC8AAACsRvACAADAagQvAAAArEbwAgAAwGoELwAAAKxG8AIAAMBqBC8AAACsRvACAADAagQvAAAArEbwAgAAwGoELwAAAKxG8AIAAMBqPgfvRx99pBUrVqisrMyz7fvvv9ctt9yiM844Q3379tXSpUsbZUgAAADAVz4H74MPPqiMjAx17NjRs+0Pf/iDnn32WX377bcqKipSamqq3n777UYZFAAAAPCFz8G7bds2jR49Wg6HQ5J04sQJZWVl6cILL9SRI0dUWFiozp0768knn2y0YQEAAID68jl4v/zyS3Xv3t3z9fbt21VWVqabb75ZoaGhiouL06RJk7R79+5GGRQAAADwhc/BGxwcrMrKSs/Xubm5cjgcGj16tGdbdHS0vvrqq4ZNCAAAADSAz8Hbq1cvbdiwwfP1qlWrFB8fr549e3q2HTx4UNHR0Q2bEAAAAGgAn4P3uuuu0+7duzVs2DBdfPHF2r17t6655hqvYz788EP169evwUMCAAAAvvI5eGfPnq2pU6fq/fff1+bNmzV+/Hj94Q9/8Oz/17/+pd27d2vMmDGNMigAAADgi2Bfv9HpdOrvf/+7ysrK5HA4vN6eTJJiYmK0c+dO9erVq6EzAgAAAD7z+Qrvu+++qwMHDsjlcp0Su5LUqVMnRUVF8S4NAAAA8Cufg3f06NHKzs7+xWOef/55r3dtAAAAAJqbz8FrjKn1mOrqas8HUwAAAAD+4HPw1sXevXsVHh7elE8BAAAA/KJ6vWjtxhtv9Pp69erV+uyzz0457ocfflBRUZHeffddjR8/vkEDAgAAAA1Rr+D96T27DodDu3bt0q5du2o81uFwaOjQoVq8eHFD5gMAAAAapF7BW1hYKOnH+3d79+6tOXPm6LbbbjvluDZt2igyMlJhYWGNMyUAAADgo3oF708/NjgrK0sDBw702gYAAAAEGp8/eGLGjBmNOQcAAADQJHwO3pO2bdum7du3q7S0VD/88MMp+x0OhzIyMhr6NAAAAIBPfA7er7/+WpMnT9aWLVt+8T15CV4AAAD4k8/Bm5aWps2bN2vUqFGaMWOGunXrpuDgBl8wBgAAABqVz4X6z3/+UxdeeKFycnL4NDUAAAAELJ8/ae3777/XxRdfTOwCAAAgoPkcvBdccEGNn7IGAAAABBKfg3fevHl67bXXlJ+f35jzAAAAAI3K53t4i4uL9etf/1qXXHKJpk+frkGDBsnlctV47PXXX+/zgAAAAEBDOMwvvafYLwgKCpLD4fB6S7Kf389rjJHD4ajx/Xn9qaysTOHh4XK73aeN9Mb2j2l2vzVbyksP+HsEAABgkcbsNZ+v8GZlZTXoiQEAAIDmwEcLAwAAwGo+v2itqTzzzDM677zz5HK55HK5lJiYqDfffNOzv6KiQqmpqYqOjlaHDh2UkpKikpISP04MAACAQObzFd4DBw7U+dgePXrU+dhu3brp4YcfVr9+/WSM0V/+8hdNmjRJO3fu1Nlnn63bb79dr7/+ulatWqXw8HDNnj1bV1xxhbZs2eLLfwYAAAAs1+AXrdX6BA6HTpw44ctTeERFRemxxx7TlClT1LlzZ73wwguaMmWKJOmTTz5R//79lZeXp+HDh9fpfLxorfHxojUAANCYAuJFa9dff32Nwet2u7V7924VFhbqkksuUa9evXwe7ocfftCqVatUXl6uxMRE7dixQ8ePH1dSUpLnmISEBPXo0eMXg7eyslKVlZWer8vKynyeCQAAAC2Lz8GbnZ192n3GGC1atEiPPvqoli9fXu9zf/TRR0pMTFRFRYU6dOigV155RQMGDNCuXbvUtm1bRUREeB0fExOj4uLi054vMzNT8+fPr/ccAAAAaPma5EVrDodDd955p84++2zddddd9f7+s846S7t27dLWrVt1yy23aMaMGfr44499nic9PV1ut9vzKCoq8vlcAAAAaFl8vsJbF0OGDNGf//znen9f27Zt1bdvX0nS4MGDtX37dj355JO68sorVVVVpdLSUq+rvCUlJYqNjT3t+ZxOp5xOZ73nAAAAQMvXpG9Ltn///ga/YE2SqqurVVlZqcGDByskJEQ5OTmefQUFBTpw4IASExMb/DwAAACwT6Nf4a2urtbBgweVnZ2tV199VZdeemm9vj89PV3jx49Xjx499O233+qFF15Qbm6u1q1bp/DwcM2aNUtpaWmKioqSy+XSrbfeqsTExDq/QwMAAABaF5+Dt7a3JTPGKDIyUosWLarXeY8cOaLrr79ehw8fVnh4uM477zytW7dOl112mSRp8eLFCgoKUkpKiiorK5WcnKynn37a1/8MAAAAWM7n9+EdNWpUjcEbFBSkyMhIDR06VDNnzlSXLl0aPGRj4314Gx/vwwsAABpTQLwPb25uboOeGAAAAGgOTfqiNQAAAMDfGuVFa1u2bNGuXbtUVlYml8ulCy64QCNGjGiMUwMAAAAN0qDgfe+99zRz5kzt27dP0o8vVDt5X2+/fv2UlZXF24UBAADAr3wO3n/9618aO3asvvvuO1122WUaPXq0unbtquLiYm3YsEFvvfWWkpOTlZ+frwEDBjTmzAAAAECd+Ry8CxYsUFVVld544w2NGzfOa9/cuXO1du1aTZw4UQsWLNDKlSsbPCgAAADgC59ftJabm6spU6acErsnjRs3TlOmTNGGDRt8Hg4AAABoKJ+D1+12Kz4+/hePiY+Pl9vt9vUpAAAAgAbzOXjj4uKUn5//i8ds3bpVcXFxvj4FAAAA0GA+B+/EiROVm5urjIwMVVRUeO2rqKjQvHnztGHDBk2aNKnBQwIAAAC+8vmjhY8ePaphw4apsLBQ0dHRuvDCCxUTE6OSkhJt375dX375pXr37q1t27YpKiqqseduED5auPHx0cIAAKAxBcRHC0dHRys/P1933323Vq5cqTfeeMOzLzQ0VDNnztQjjzwScLELAACA1qVBHzzRqVMnrVixQs8++6w++eQTzyetJSQkKCQkpLFmBAAAAHxW7+BduHChysvLNX/+fE/UhoSE6Nxzz/UcU1VVpXvvvVcdO3bUPffc03jTAgAAAPVUrxetvfPOO7rvvvsUHR39i1dw27Ztq+joaN177728Dy8AAAD8ql7B+/zzzysyMlKzZ8+u9djU1FRFRUUpKyvL5+EAAACAhqpX8L733ntKSkqS0+ms9Vin06mkpCRt2bLF5+EAAACAhqpX8B46dEi9e/eu8/Hx8fE6fPhwvYcCAAAAGku9gjcoKEjHjx+v8/HHjx9XUJDPn20BAAAANFi9ajQuLk579uyp8/F79uzRGWecUe+hAAAAgMZSr+C96KKLtH79en322We1HvvZZ59p/fr1uvjii32dDQAAAGiwegVvamqqjh8/rilTpuirr7467XFHjx7V1KlTdeLECd1yyy0NHhIAAADwVb0+eGLQoEGaM2eOnnjiCQ0YMEA333yzRo8erW7dukmSDh48qJycHC1btkxffvml0tLSNGjQoCYZHAAAAKiLen/S2qJFixQaGqrHHntMCxcu1MKFC732G2PUpk0bpaen68EHH2y0QQEAAABf1Dt4HQ6HHnroIc2aNUtZWVl67733VFxcLEmKjY3ViBEjdMMNN6hPnz6NPiwAAABQX/UO3pP69OnDFVwAAAAEPN4kFwAAAFYjeAEAAGA1ghcAAABWI3gBAABgNYIXAAAAViN4AQAAYDWCFwAAAFYjeAEAAGA1ghcAAABWI3gBAABgNYIXAAAAViN4AQAAYDWCFwAAAFYjeAEAAGA1ghcAAABWI3gBAABgNYIXAAAAViN4AQAAYDWCFwAAAFYjeAEAAGA1ghcAAABWI3gBAABgNYIXAAAAViN4AQAAYDWCFwAAAFYjeAEAAGA1ghcAAABWI3gBAABgNYIXAAAAViN4AQAAYDWCFwAAAFYjeAEAAGA1ghcAAABWI3gBAABgNYIXAAAAVgv29wAAAOBH/5iW4e8RmlTKSw/4e4QmZfufn9Ry/wy5wgsAAACrEbwAAACwGsELAAAAqwVc8GZmZmro0KHq2LGjunTposmTJ6ugoMDrmIqKCqWmpio6OlodOnRQSkqKSkpK/DQxAAAAAlnABe/GjRuVmpqq/Px8vf322zp+/LjGjh2r8vJyzzG333671qxZo1WrVmnjxo06dOiQrrjiCj9ODQAAgEAVcO/SsHbtWq+vs7Oz1aVLF+3YsUMXX3yx3G63li9frhdeeEFjxoyRJGVlZal///7Kz8/X8OHD/TE2AAAAAlTAXeH9ObfbLUmKioqSJO3YsUPHjx9XUlKS55iEhAT16NFDeXl5NZ6jsrJSZWVlXg8AAAC0DgEdvNXV1ZozZ45GjBihc845R5JUXFystm3bKiIiwuvYmJgYFRcX13iezMxMhYeHex7du3dv6tEBAAAQIAI6eFNTU7Vnzx6tXLmyQedJT0+X2+32PIqKihppQgAAAAS6gLuH96TZs2frn//8p959911169bNsz02NlZVVVUqLS31uspbUlKi2NjYGs/ldDrldDqbemQAAAAEoIC7wmuM0ezZs/XKK69o/fr1io+P99o/ePBghYSEKCcnx7OtoKBABw4cUGJiYnOPCwAAgAAXcFd4U1NT9cILL+jVV19Vx44dPfflhoeHq127dgoPD9esWbOUlpamqKgouVwu3XrrrUpMTOQdGgAAAHCKgAveZ555RpI0atQor+1ZWVm64YYbJEmLFy9WUFCQUlJSVFlZqeTkZD399NPNPCkAAABagoALXmNMrceEhoZqyZIlWrJkSTNMBAAAgJYs4O7hBQAAABoTwQsAAACrEbwAAACwGsELAAAAqxG8AAAAsBrBCwAAAKsRvAAAALAawQsAAACrEbwAAACwGsELAAAAqxG8AAAAsBrBCwAAAKsRvAAAALAawQsAAACrEbwAAACwGsELAAAAqxG8AAAAsBrBCwAAAKsRvAAAALAawQsAAACrEbwAAACwGsELAAAAqxG8AAAAsBrBCwAAAKsRvAAAALAawQsAAACrEbwAAACwGsELAAAAqxG8AAAAsBrBCwAAAKsRvAAAALAawQsAAACrEbwAAACwGsELAAAAqxG8AAAAsBrBCwAAAKsRvAAAALAawQsAAACrEbwAAACwGsELAAAAqxG8AAAAsBrBCwAAAKsRvAAAALAawQsAAACrEbwAAACwGsELAAAAqxG8AAAAsBrBCwAAAKsRvAAAALAawQsAAACrEbwAAACwGsELAAAAqxG8AAAAsBrBCwAAAKsRvAAAALAawQsAAACrEbwAAACwGsELAAAAqxG8AAAAsBrBCwAAAKsRvAAAALAawQsAAACrEbwAAACwGsELAAAAqxG8AAAAsFrABe+7776rCRMmKC4uTg6HQ6tXr/bab4zRfffdp65du6pdu3ZKSkrS3r17/TMsAAAAAl7ABW95ebnOP/98LVmypMb9jz76qJ566iktXbpUW7duVVhYmJKTk1VRUdHMkwIAAKAlCPb3AD83fvx4jR8/vsZ9xhg98cQT+uMf/6hJkyZJkp5//nnFxMRo9erVuuqqq5pzVAAAALQAAXeF95cUFhaquLhYSUlJnm3h4eEaNmyY8vLyTvt9lZWVKisr83oAAACgdWhRwVtcXCxJiomJ8doeExPj2VeTzMxMhYeHex7du3dv0jkBAAAQOFpU8PoqPT1dbrfb8ygqKvL3SAAAAGgmLSp4Y2NjJUklJSVe20tKSjz7auJ0OuVyubweAAAAaB1aVPDGx8crNjZWOTk5nm1lZWXaunWrEhMT/TgZAAAAAlXAvUvDsWPHtG/fPs/XhYWF2rVrl6KiotSjRw/NmTNHDz74oPr166f4+HhlZGQoLi5OkydP9t/QAAAACFgBF7zvv/++Ro8e7fk6LS1NkjRjxgxlZ2fr7rvvVnl5uW666SaVlpZq5MiRWrt2rUJDQ/01MgAAAAJYwAXvqFGjZIw57X6Hw6EFCxZowYIFzTgVAAAAWqoWdQ8vAAAAUF8ELwAAAKxG8AIAAMBqBC8AAACsRvACAADAagQvAAAArEbwAgAAwGoELwAAAKxG8AIAAMBqBC8AAACsRvACAADAagQvAAAArEbwAgAAwGoELwAAAKxG8AIAAMBqBC8AAACsRvACAADAagQvAAAArEbwAgAAwGoELwAAAKxG8AIAAMBqBC8AAACsRvACAADAagQvAAAArEbwAgAAwGoELwAAAKxG8AIAAMBqBC8AAACsRvACAADAagQvAAAArEbwAgAAwGoELwAAAKxG8AIAAMBqBC8AAACsRvACAADAagQvAAAArEbwAgAAwGoELwAAAKxG8AIAAMBqBC8AAACsRvACAADAagQvAAAArEbwAgAAwGoELwAAAKxG8AIAAMBqBC8AAACsRvACAADAagQvAAAArEbwAgAAwGoELwAAAKxG8AIAAMBqBC8AAACsRvACAADAagQvAAAArEbwAgAAwGoELwAAAKxG8AIAAMBqBC8AAACsRvACAADAagQvAAAArEbwAgAAwGoELwAAAKxG8AIAAMBqBC8AAACsRvACAADAai02eJcsWaJevXopNDRUw4YN07Zt2/w9EgAAAAJQiwzev//970pLS9O8efP0wQcf6Pzzz1dycrKOHDni79EAAAAQYFpk8D7++OP67W9/q5kzZ2rAgAFaunSp2rdvrxUrVvh7NAAAAASYYH8PUF9VVVXasWOH0tPTPduCgoKUlJSkvLy8Gr+nsrJSlZWVnq/dbrckqaysrGmH/YnvjlfWflAL1pxrCQC24t+Kls32Pz+pef8MTz6XMabB52pxwfvVV1/phx9+UExMjNf2mJgYffLJJzV+T2ZmpubPn3/K9u7duzfJjK1S+GP+ngAAEOj4t6Ll88Of4dGjRxUeHt6gc7S44PVFenq60tLSPF9XV1fr66+/VnR0tBwOhx8naxplZWXq3r27ioqK5HK5/D1OQGFtasa6nB5rUzPW5fRYm5qxLjVjXU7P7XarR48eioqKavC5WlzwdurUSW3atFFJSYnX9pKSEsXGxtb4PU6nU06n02tbREREU40YMFwuF395ToO1qRnrcnqsTc1Yl9NjbWrGutSMdTm9oKCGv+Ssxb1orW3btho8eLBycnI826qrq5WTk6PExEQ/TgYAAIBA1OKu8EpSWlqaZsyYoSFDhujCCy/UE088ofLycs2cOdPfowEAACDAtMjgvfLKK/Xll1/qvvvuU3FxsS644AKtXbv2lBeytVZOp1Pz5s075TYOsDanw7qcHmtTM9bl9FibmrEuNWNdTq8x18ZhGuO9HgAAAIAA1eLu4QUAAADqg+AFAACA1QheAAAAWI3gBQAAgNUI3hbs/vvvl8Ph8HokJCR49u/fv1+XX365OnfuLJfLpWnTpp3ygR22OnjwoK699lpFR0erXbt2Ovfcc/X+++979htjdN9996lr165q166dkpKStHfvXj9O3DxqW5eXX35ZY8eO9XwK4a5du/w3bDP7pbU5fvy45s6dq3PPPVdhYWGKi4vT9ddfr0OHDvl56qZX28/M/fffr4SEBIWFhSkyMlJJSUnaunWrHyduPrWtzU/dfPPNcjgceuKJJ5p3SD+obV1uuOGGU/7tGjdunB8nbj51+Zn597//rYkTJyo8PFxhYWEaOnSoDhw44KeJm0dt6/Lzn5eTj8ceq/vHHBO8LdzZZ5+tw4cPex6bN2+WJJWXl2vs2LFyOBxav369tmzZoqqqKk2YMEHV1dV+nrppffPNNxoxYoRCQkL05ptv6uOPP9aiRYsUGRnpOebRRx/VU089paVLl2rr1q0KCwtTcnKyKioq/Dh506rLupSXl2vkyJF65JFH/Dhp86ttbb777jt98MEHysjI0AcffKCXX35ZBQUFmjhxop8nb1p1+Zk588wz9ac//UkfffSRNm/erF69emns2LH68ssv/Th506vL2pz0yiuvKD8/X3FxcX6YtHnVdV3GjRvn9W/Xiy++6KeJm09d1mb//v0aOXKkEhISlJubqw8//FAZGRkKDQ314+RNqy7r8tOflcOHD2vFihVyOBxKSUmp+xMZtFjz5s0z559/fo371q1bZ4KCgozb7fZsKy0tNQ6Hw7z99tvNNKF/zJ0714wcOfK0+6urq01sbKx57LHHPNtKS0uN0+k0L774YnOM6Be1rctPFRYWGklm586dTTtUgKjP2py0bds2I8l8/vnnTTSV//myLm6320gy77zzThNNFRjqujZffPGFOeOMM8yePXtMz549zeLFi5t+OD+qy7rMmDHDTJo0qXkGCiB1WZsrr7zSXHvttc00UWDw5ffMpEmTzJgxY+r1PVzhbeH27t2ruLg49e7dW9OnT/f83x6VlZVyOBxeb9YcGhqqoKAgz1VgW7322msaMmSIpk6dqi5dumjgwIF67rnnPPsLCwtVXFyspKQkz7bw8HANGzZMeXl5/hi5WdS2Lq2ZL2vjdrvlcDgUERHRPEP6QX3XpaqqSsuWLVN4eLjOP//8Zpy0+dVlbaqrq3Xdddfprrvu0tlnn+2nSZtXXX9mcnNz1aVLF5111lm65ZZbdPToUT9M27xqW5vq6mq9/vrrOvPMM5WcnKwuXbpo2LBhWr16tf+Gbgb1/T1TUlKi119/XbNmzarfE9UrjxFQ3njjDfPSSy+Z3bt3m7Vr15rExETTo0cPU1ZWZo4cOWJcLpe57bbbTHl5uTl27JiZPXu2kWRuuukmf4/epJxOp3E6nSY9Pd188MEH5tlnnzWhoaEmOzvbGGPMli1bjCRz6NAhr++bOnWqmTZtmj9Gbha1rctPtbYrvPVZG2OM+f77782gQYPMNddc08yTNq+6rsuaNWtMWFiYcTgcJi4uzmzbts1PEzefuqzNQw89ZC677DJTXV1tjDGt4gpvXdblxRdfNK+++qr58MMPzSuvvGL69+9vhg4dak6cOOHHyZtebWtz+PBhI8m0b9/ePP7442bnzp0mMzPTOBwOk5ub6+fpm059f/8+8sgjJjIy0nz//ff1eh6C1yLffPONcblc5s9//rMx5sfbGnr37m0cDodp06aNufbaa82gQYPMzTff7OdJm1ZISIhJTEz02nbrrbea4cOHG2Nab/DWti4/1dqCtz5rU1VVZSZMmGAGDhzodcuQjeq6LseOHTN79+41eXl55sYbbzS9evUyJSUlzTlqs6ttbd5//30TExNjDh486NnfGoK3Pn+XTtq/f3+ruA2mtrU5ePCgkWSuvvpqr2MmTJhgrrrqqmabs7nV92fmrLPOMrNnz67383BLg0UiIiJ05plnat++fZKksWPHav/+/Tpy5Ii++uor/fWvf9XBgwfVu3dvP0/atLp27aoBAwZ4bevfv7/ndo/Y2FhJOuUdK0pKSjz7bFTburRmdV2b48ePa9q0afr888/19ttvy+VyNeeYza6u6xIWFqa+fftq+PDhWr58uYKDg7V8+fLmHLXZ1bY2mzZt0pEjR9SjRw8FBwcrODhYn3/+ue644w716tXLDxM3D19+z/Tu3VudOnXy/Ntlq9rWplOnTgoODm51v6fr8zOzadMmFRQU6De/+U29n4fgtcixY8e0f/9+de3a1Wt7p06dFBERofXr1+vIkSPWv7J8xIgRKigo8Nr26aefqmfPnpKk+Ph4xcbGKicnx7O/rKxMW7duVWJiYrPO2pxqW5fWrC5rczJ29+7dq3feeUfR0dHNPWaz8/Vnprq6WpWVlU05mt/VtjbXXXedPvzwQ+3atcvziIuL01133aV169b5Y+Rm4cvPzBdffKGjR4+e8m+XbWpbm7Zt22ro0KGt7vd0fX5mli9frsGDB/v2GgGfrj8jINxxxx0mNzfXFBYWmi1btpikpCTTqVMnc+TIEWOMMStWrDB5eXlm37595q9//auJiooyaWlpfp666W3bts0EBwebhQsXmr1795q//e1vpn379uZ///d/Pcc8/PDDJiIiwnMf2aRJk0x8fHy97wlqSeqyLkePHjU7d+40r7/+upFkVq5caXbu3GkOHz7sx8mbXm1rU1VVZSZOnGi6detmdu3aZQ4fPux5VFZW+nn6plPbuhw7dsykp6ebvLw889lnn5n333/fzJw50zidTrNnzx4/T9+06vL36edawy0Nta3Lt99+a+68806Tl5dnCgsLzTvvvGMGDRpk+vXrZyoqKvw8fdOqy8/Myy+/bEJCQsyyZcvM3r17zf/8z/+YNm3amE2bNvlx8qZV179LbrfbtG/f3jzzzDM+PQ/B24JdeeWVpmvXrqZt27bmjDPOMFdeeaXZt2+fZ//cuXNNTEyMCQkJMf369TOLFi3yvHjCdmvWrDHnnHOOcTqdJiEhwSxbtsxrf3V1tcnIyDAxMTHG6XSaSy+91BQUFPhp2uZT27pkZWUZSac85s2b55+Bm9Evrc3Je5premzYsMF/QzeDX1qX77//3lx++eUmLi7OtG3b1nTt2tVMnDixVbxozZja/z79XGsIXmN+eV2+++47M3bsWNO5c2cTEhJievbsaX7729+a4uJiP07cfOryM7N8+XLTt29fExoaas4//3yzevVqP0zavOqyLs8++6xp166dKS0t9ek5HMYYU//rwgAAAEDLwD28AAAAsBrBCwAAAKsRvAAAALAawQsAAACrEbwAAACwGsELAAAAqxG8AAAAsBrBCwDwkp2dLYfDoezsbH+PAgCNguAFgCby2WefyeFweD3at2+vuLg4XXrppbrvvvu0f/9+v8zmcDg0atQovzw3ADS3YH8PAAC269Onj6699lpJUmVlpY4cOaJt27bpgQce0EMPPaS7775bCxculMPh8POkAGAnghcAmljfvn11//33n7J98+bNuu6665SZmak2bdrogQceaP7hAKAV4JYGAPCTkSNHau3atXI6nXr00UdVVFTktf/VV1/VpZdeqsjISIWGhuqcc87Rf//3f+uHH37wOu6n99y++uqruvDCC9W+fXt17txZN954o0pKSjzH5ubmeq4kb9y40et2i5ru2X3rrbf0q1/9Su3bt1d0dLRmzJiho0ePNv5iAEATIngBwI/OOussTZs2TVVVVVq9erVne3p6uiZPnqyCggJdccUV+t3vfqd27drprrvu0lVXXVXjuf7xj39o6tSp6tu3r+bMmaNzzz1XWVlZGjlypL755htJUq9evTRv3jxJUs+ePTVv3jzP44ILLvA632uvvaYJEyYoLi5Ov/vd79SnTx89//zzmjRpUpOsBQA0GQMAaBKFhYVGkklOTv7F45YvX24kmeuuu84YY8xbb73l+b5jx455jquurjY333yzkWT+7//+z7M9KyvLSDKSzNq1a73Ofc899xhJZvbs2V7bJZlLLrmkxnlOni84ONhs3rzZs/3EiRNm1KhRRpLJy8ur0xoAQCDgCi8A+FlcXJwk6auvvpIk/elPf5IkLVu2TGFhYZ7jHA6HHn74YTkcDr344ounnCcpKUnJycle2+69915FRETo+eefV3V1db3muuaaazRixAjP123atNGMGTMkSdu3b6/XuQDAn3jRGgAEmPz8fIWFhWnFihU17m/Xrp0++eSTU7ZfdNFFp2zr0KGDLrjgAuXm5uo///mP+vbtW+c5Bg8efMq2bt26SZJKS0vrfB4A8DeCFwD87NChQ5Kkzp07S5K+/vprnThxQvPnzz/t95SXl5+yLSYmpsZjT253u931msvlcp2yLTj4x382fv7COQAIZAQvAPhZbm6uJGno0KGSfgxNh8PhucWhrn76bgw1bQ8PD/d9SABowbiHFwD86NNPP9VLL70kp9Opyy+/XJI0bNgwHT16VHv37q3XuTZt2nTKtmPHjmnXrl1yuVzq3bu3Z3tQUBBXaQG0GgQvAPjJli1blJycrMrKSt1zzz0644wzJEm///3vJUk33nhjje95W1xcrH//+9+nbH/nnXe0bt06r20LFy5UaWmprr/+egUF/f9f+VFRUfriiy8a8z8HAAIWtzQAQBPbt2+f55PWqqqqPB8t/NFHH6lNmzb64x//6HlvXEkaN26cMjIy9MADD6hv374aN26cevbsqaNHj2rfvn3atGmTHnzwQfXv39/ref7rv/5LEyZM0JQpU9SrVy/l5+drw4YN6tOnjxYsWOB17JgxY/TSSy9p8uTJGjhwoNq0aaOJEyfqvPPOa/L1AIDmRvACQBPbv3+/5wVo7dq1U0REhBISEpSRkaEZM2aoT58+p3zPggULdPHFF+upp55STk6OSktLFR0drfj4eN1///2aPn36Kd+TkpKi3/zmN1q4cKFWr16t9u3b64YbblBmZqYiIyO9jn3yySclSevXr9eaNWtUXV2tbt26EbwArOQwxhh/DwEA8F12drZmzpyprKws3XDDDf4eBwACDvfwAgAAwGoELwAAAKxG8AIAAMBq3MMLAAAAq3GFFwAAAFYjeAEAAGA1ghcAAABWI3gBAABgNYIXAAAAViN4AQAAYDWCFwAAAFYjeAEAAGA1ghcAAABW+3+UL4wV5vRMkwAAAABJRU5ErkJggg==", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "import matplotlib.pyplot as plt\n", - "from qiskit import QuantumCircuit\n", - "from qiskit.providers.fake_provider import FakeAuckland\n", - "from qiskit.transpiler.preset_passmanagers import generate_preset_pass_manager\n", - "\n", - "backend = FakeAuckland()\n", - "\n", - "ghz = QuantumCircuit(15)\n", - "ghz.h(0)\n", - "ghz.cx(0, range(1, 15))\n", - "\n", - "pass_manager = generate_preset_pass_manager(\n", - " optimization_level=1,\n", - " backend=backend,\n", - " layout_method=\"trivial\", # Fixed layout mapped in circuit order\n", - ")\n", - "depths = []\n", - "for _ in range(100):\n", - " depths.append(pass_manager.run(ghz).depth())\n", - "\n", - "plt.figure(figsize=(8, 6))\n", - "plt.hist(depths, align=\"left\", color=\"#AC557C\")\n", - "plt.xlabel(\"Depth\", fontsize=14)\n", - "plt.ylabel(\"Counts\", fontsize=14)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "This wide distribution demonstrates how difficult it is for the SWAP mapper to compute the best mapping. To gain some insight, let's look at both the circuit being executed as well as the qubits that were chosen on the hardware." - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABEQAAAPzCAYAAAC+7dlgAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAACkSklEQVR4nOzdeXxU1f3/8ffMBLIHSIIMEHYIJEASDaBYNxCskUWrIlhEa6kb8oNWSlpt1VqtGEtri4jFre4x7iJxQ+OCqJgQUZawRYIJZMAhAbKSTGZ+f/CVkjBZJmRmktzX8/HwEZ17zz2fc5xMZt5z77kml8vlEgAAAAAAgIGY/V0AAAAAAACArxGIAAAAAAAAwyEQAQAAAAAAhkMgAgAAAAAADIdABAAAAAAAGA6BCAAAAAAAMBwCEQAAAAAAYDgEIgAAAAAAwHAIRAAAAAAAgOEQiAAAAAAAAMMhEAEAAAAAAIZDIAIAAAAAAAyHQAQAAAAAABgOgQgAAAAAADAcAhEAAAAAAGA4BCIAAAAAAMBwCEQAAAAAAIDhEIgAAAAAAADDIRABAAAAAACGQyACAAAAAAAMh0AEAAAAAAAYDoEIAAAAAAAwHAIRAAAAAABgOAQiAAAAAADAcAhEAAAAAACA4RCIAAAAAAAAwyEQAQAAAAAAhkMgAgAAAAAADIdABAAAAAAAGA6BCAAAAAAAMBwCEQAAAAAAYDgEIgAAAAAAwHAIRAAAAAAAgOEQiAAAAAAAAMMhEAEAAAAAAIZDIAIAAAAAAAyHQAQAAAAAABhOgL8LQNtyuVzS0aP+LqPlAgNlMpn8XQUAAAAAwGAIRDqbo0fluOo6f1fRYgEvPyMFBfm7DAAAAACAwXDJDAAAAAAAMBwCEQAAAAAAYDgEIgAAAAAAwHAIRAAAAAAAgOEQiAAAAAAAAMMhEAEAAAAAAIZDIAIAAAAAAAyHQAQAAAAAABgOgQgAAAAAADAcAhEAAAAAAGA4BCIAAAAAAMBwCEQAAAAAAIDhEIgAAAAAAADDCfB3Ae2Z3W7Xgw8+qNdff11FRUXq2bOnLr/8ct1///1asGCBnnrqKT388MOaP3++v0uFF23ffUj7fqyUxWzSwL7h6t87zN8l+dTBQ9XaXnBYVdV1iuzWVQmxkbJYjJOl1tU59e32EpUeqVFwkEUjBnVXZLdAf5flUwV7y7SnuFwul9SnZ4hiB3bzd0k+VV5Zq807S1VR5VB4aBclDo9UYFeLv8vyGZfLpS27SnWgpFpdu5g1pF+EevcM8XdZPmWzV2rXD0dUU+tUzx5BGjWsh0wmk7/L8pma2jp9u71ER8prFRocoJFDuys8tKu/y/KpnXsOa++BSplM0oDeYRrYN9zfJflU6ZGjyvv+kKqq69Q9oqsSYyMVEGCs9wKbdpbq4KGjCgq0aPjAboruEeTvsnyq0Fau3UVlqnO61LtniIYP7Gao18HKKoc27SxReaVDYSEBSoiNVHCQcT5Ku1wu5X1/SPsPVinAYtbgmHD17RXq77LahHH+L3po48aNSklJkc1mU2hoqOLj47Vv3z4tW7ZM+fn5KikpkSQlJSX5t1Av+dR+QJO//EQPxCfotiEj3O7T9e2XdclpvfXmmef6uDrvO1pTpxffydeKjDzlbLHX23bR2X01b2acpp3fX2Zz5/1D8PWmH7U8fasy3v9eNbXO448P6BOmm2eM0A1XDFdU9877ZuDHkio9/tp2rXx1m34orjj+eGBXi2ZdPFjzr47TmJE9/VihdzmdLr2ZtUcrMvL00fp99badObqn5s2M06yUwerapfMGA9t2H9Ly9K169u1dKquoPf54zx5Bmnt5rG65Kq5TB6TllbV6ZtVOrcjI09b8Q8cfN5tNmn5Bf906K04XntmnU78hzlq/T4+8lKe3PtmjujrX8cdHDOqmeTPj9KtLh3XqYKDIVqH/vJKnx1/brgMl1ccfDwsJ0JypQzX/6njFD+nhxwq9q6a2Ti+/v1srMvL05bcH6m2bMLa35s2M0y8uHNCpvyT4Js+uh9O3Kv3d71V9tO744zG9QnXTjOG68YoROi0q2I8VelfJ4aN64rXt+s8r27R7b9nxx7sEmDXjokGaf3Wcxif28mOF3uVyubT600KtyMjTe+uK6m07Iy5K82bGafaUIQoK7LwfKXf9cESPvLRVT7+1U4fKao4/HtktUL++LFbzZsZpUEznDUgrqxx6PnOXVmTk6dvtJccfN5mkS87tp3kz45RyTkyHfi9gcrlcruZ3Mxa73a7TTz9dRUVFWrRoke6++26Fhx97oj/44IP6wx/+oICAANXV1enQoUOKiIjwc8X/46quluOq6075OL4KRAJefkamoPb1ofrgoWpNX7BGX2w80OR+V6cM1n/vPa9TflOc9tS3+uO/cprcJ6ZXqN5dcZFGDYv0UVW+8+32g7rk1g+070Blo/uYTNLSReN027WjfViZb1Qfdeia2z/Vax8WNLnfeclWvfnvSeoR0fnOmHnp3Xxd9+fP6oWBDUWEddEbD03SxDP7+LAy3yi0lSvllve15YQgxJ3/98t4/Sv1rE4XDjudLv3+H+v10HNbmtwvbnB3vbviIg3o0/neDH+WU6xLF35Y7wNAQ10CzHrynnM0Z9owH1bmG4fLavSL336oj7OLm9zv0gn9lZ42oVN+U/zwi1u0MO0rNfVJoVdUsN555CKdER/tu8J8JO/7Q0qZ97727Ctvcr9755+hP92Q1KE/ELpTW+vU3LvX6rnVu5rc78zRPfX2w5PVM7LzBWNvZhXo6j98Ui8MbCg0OEAvL52oS87t58PKfMNmr9SUWz9Qbt7BJveb+4tY/efOn3XYs8Y6ZtVetmDBAhUVFWn+/PlaunTp8TBEklJTU5WYmCiHw6GBAwe2qzAEp66yyqGp8z9oNgyRpPR3v9ev71orp7NzZYr/fn5zs2GIJBXtr9CkG99TwQnfmHQG+YVHNOnG95oMQyTJ5ZIWLf1aj2bk+agy33A6XZpzR/NhiCR9tsGm6f9vjaqPOrxfmA+t+niPZt/+aZNhiCQdKa/V1PkfaP13zb9edCQlh49q8o3vNRuGSNLDL27V7/+x3vtF+dgdy3KaDUOkYx+YJt34nuyl1c3u25Fs2GrXJbd+0GQYIkm1Dqeu+/Nner0FrxcdydGaOl3WgjBEkt76+Add/YePVVfX9OtFR/PEa9u14IGmwxBJ2n+wSpNvek87Cg77pjAfKbSVa9KN7zYbhkjSnctztfTpTT6oyndcLpduuOfzZsMQSVq/6UddcusHqqisbXbfjmTNl3s1Y1FWk2GIJFVUOfSL336oT3Oaf73oSI6U1+jnN7/fbBgiSU++sUO33v+FOup5FgQiDeTl5SkjI0PR0dFasmSJ232Sk5MlSYmJifUe3717t6ZPn67w8HD16NFD1157rQ4ebP5JhPbj0Zfz9NV3P7Z4/xffydf7DU4h7Mhs9kr9/h9ft3j//QerlPpQthcr8r1FS9d79OHmd3/3bP/27u1Pf9CrawpavP/n3+zX469t915BPlZTW6cb7vm8xUFn1dE63Xzfug77JsCd+x/fqO0efLh56Lkt+ibP3vyOHcTmnSVKe+q7Fu+/64cjunflN16syPfm3feFKqpaFnS6XNJN967rVMHof9/coU9aEIb85K2Pf9AbH+3xYkW+VXrkqBakfdni/UsOH9Xv/v6VFyvyvT/+K6fZL0ZOdPuyHBXZKprfsYP4aP0+PbNqZ4v3z9ly7NKqzqKuzqkb7vlcjrqW/W2vqXV69N6hI/jHM5v13Y6S5nf8P4+9ur1FXyi3RwQiDaSnp8vpdGr27NkKC3N/bXhw8LFTwk4MRMrKyjRhwgQVFRUpPT1djz32mNauXaupU6fK6ey43xpU1tXJfvSo2386G6fTpUdf9vzb/hWd6AyBJ17f3uIX/5+88VGB9h3oHG8Cfigu19ufFnrU5mhNnZ56Y4eXKvK9R17y/A3Nioy8ThMIvP5hQb21Elpi47YSfdVJzhKprHLoqTc9fz4/+vI2L1TjH60Zy9Ordqq8k3w7mrPlR329ueVfDEiSvbRar3yw20sV+ZbL5WrV3/XO9F7g6bd2qqq66W/FG3r38yJ9X3TESxX51v6DVR4/n+vqXJ3qy4HWPJ//88q2TnOm1Dtri1p0dtCJdu45oqyv9zW/YwdQW+vUY695/rewNe8h2wMCkQaysrIkSRMmTGh0n6KiY2cEnBiIPPbYY9q7d6/efPNNTZ06VTNmzNCLL76or776SqtWrfJu0V701+1b1OeDt9z+09l8tsGm/ELPL//IXFsom73l3yK0Z0+90fJvA37iqHO16JTKjuCZVTtble635gNke1RoK9eaLz3/Y75t9+FOEwi09v9lZwnF3vp4j0qPNH2ZhDsvZObraI1nH6Dao9pap5592/PXsyPltZ3mspHWPpefetPzvx/t0Yatdm3aWepxu4+zi7W7qHNcQtqa54DLdSxI6QxeyNylWofnH+w7y3sBe2m13vr4B4/b7dlXrqyvO8dlI0Z/L/DeuiLZ7FUet3t1TYEON3OpZXvEoqoN9OvXT0VFRfrmm2/c3kHG4XCod+/estvtys/P1+DBgyX9L0D5+OOP6+0/ZMgQXXDBBXryySc9rmXMmDGy2WwetQk2m7U1abzHfTX006Kqv+k/WFf0cb9IUMpXn57yoqrxG79UVTs5g6aia6IOhV3eqrY9D69U17qOnQq7ZNK+HndJJs9z0tDqr9W9MtMLVflWach0VQYle97QVau+pfe1fUE+djSgn+wRv2lV2x7lryikZnMbV+R7+7v9Pzksni8OGFi7S9Flz3mhIt8qCzpHR0Imt6qttXSpLK6O/YGwzhQqW4/UVrUNr8xSRPWnbVyR79nDZuto11iP21nqSmQ9/G8vVORbVV3iVBI+q1Vto488pUBHx790Zl+P2+Uyeb7gffDRjYqseMMLFfnWoZAUVQSd1aq2fUrukUnt431ta9VaeulAt3mtatu94i2FHs1t44p870DETaoN8HzB9K61P6hnmeef+dqb8sBxOhw6pVVtTzu0TF2cvl8ywmq1Kien+TUQ3el8S2KfooqKY6f+V1W5T8UyMjJkt9sVHh6uQYMGHX9869atmjFjxkn7jxw5Ulu3tu70IZvNpr1793rUJsRikZJa1Z1bQ8PCdGFP791ObN++faqsayffKnYfILXyDpo//vijVOXZ/6v2xyS18u6JFRWVqtjX0ccvqW+l1JqbHrnk8e9quxQSLLVynejSklKVHu4EcxDqkFpx46ij1TWd4znQ84gU0rqmNtt+yeH5N+vtSkBEq18Hy8qOqOxAJ3gODDwqteJOwnV1dZ3jdyDCKrXypkF2+0GpohPMQTe16nWwqrKyczwHele07r2ApH1790lqJ+9rWyvIfOw50AqHSg/pUGkneA4EO1r1KbmmppO8F4g6IoW2rumBAweko559oe9vBCINWK1WlZaWKjc3V+PH1z/Tori4WIsXL5YkJSQk1Lu9Vmlpqbp3737S8SIjI7V9e+uuKbRarR63CTZ3rKug+vTp027OEKkOsMjjPNPlkkwmWaOCZHH19UZZPmVzlqnO4vlfwfDgOkX07fjjPxJcp9Z8v21xlcnaCcbvMAdqv3T8ee2J6O4BCgzr+HPwo7lKrTnZM6TrUfXoBM+Byq4mtSrScDnUp1eETK1NU9oJlyza56qVTF08bts91KTQTvAcKO1So9ZcBNrVVKmenWD8RwMCZJc8ex38v31PiwxUl+4dfw72q0yOViQCYUF16tYJngNlQU61ZjUUs7Ncvft6/t69vakzBau1H2ejulkUFNLxnwN2S5Vas1piUJejiuoEvwNVXUxq+XKqJ3A51btnqMx++EzUms/NPyEQaWDSpEnKy8tTWlqaJk+erNjYY6eNZmdna86cObLbj62k7+5ymrbWmtN+XNXVclx1nReq8Y4dO3bIFNTKGL6NORxODbw4Q3s9WFVcJpMuPLOPPny8cyym9qdlObr/iW89amMySd9+slKDYlr5lVo7sqPgsIZPf9XjdnfOv1B337LYCxX53rnXrdbn3+z3qM2gvuHa+c1aWSwdK5B1579v7tCv71rrcbu3n71DE89c7oWKfOtIeY36TkpXeaVndwy5ZtpwPXd/gXeK8rFf3/WZ/uvhehjBQRbt/vwVdY8I9FJVvrN2g03nXe/5JZAP3/tL3XjlX71QkW85nS6NuPRV7dzjwUdik0lnJfTUl8979vezvbr/8Y3608MbPG63/r2HFD+kladYtSOFtnINvPhlj9cUW/Tr8Xrwts5x58GUW97Xex7eRdEaHaw9Gz5U1y6tOL2onXn5/e81c/HHze/YsN1/fqtpF/zTCxX5VvVRh/pOekklhz2LhS67cJDe+FfHW1ew4797bWOpqamKiopSYWGhRo4cqdGjR2vYsGEaN26cBg8erIkTJ0o6+Za7PXr00KFDh046XklJiSIjI31ROk5RQIBZN80Y4XG7W67yvE17deOVwz09MUCXnNuvU4QhkhQ7sJsmj/fsmlGLxaQbrhjupYp8b97MOI/b3DRjeKcIQyRp5s8Hq3u4Z9cLDB/YTRPG9fZSRb4VEdZVc6YO9bjdLVd5/rxpr1ozltmXDOkUYYgknXNGL40a6tmH2oiwLvrlJUO8VJFvmc0m3dyq9wKd53dg7uXD1SXAs9f0C8b27hRhiCT1s4Zp+gX9PW7XmveQ7VVr3tvecMXwThGGSNJlEwfIGh3sUZv+vUN1ybkxXqrIt4ICA/TryzxfS6o17yHbg87xDrYNxcTEaO3atZoyZYqCgoJUUFCgyMhIrVy5UpmZmdqx49jqwQ0Dkbi4OLdrhWzdulVxcR3zyWFEC345UiOHdG/x/innxOjSCQO8V5CPDegTrj/dkNTi/buFdVXab8d6ryA/+Ptt4xQe2vLT5f9yy+nqc1orL7Rsh66cPEiTzmp5KJQQG9mpPgiEBAfoX6ktX0wvwGLS8jvG17uEsqP7841JiunV8uf0tdOGanziaV6syLfGjuqpub9o+RvBPqeF6K6bT/diRb5lMpn08O3jPfpA/M/fn6mwEM8vM2qvbrxyhM6Ii2rx/heM7a1ZKYO9WJFv9YoK1r3zz2jx/qHBAfrHonFerMj3liwcox4RLQ/H//DrBA3p18pFuNqhKef107TzWx4KDR/YTb+9ZpQXK/Ktrl0seviPLb9Jhdls0sN/HN9pvhySpNTrR2uwB194Xjl5oC480/OFaNuDzvN/rQ3FxcVp9erVKisrU1lZmdavX68bb7xRFRUVKigokNls1qhR9X/pp06dqs8///z4LXklaf369crPz9e0adN8PQS0Urfwrnrv0YtbFIpcdHZfvbx0ogI8/BalvfvrrWfotmub/6MW2S1Q76y4SCM9/CaxvUscHqXM5Re16CyBP/w6waMAqSPo0sWs1/55oSaMbf6Mh4TYSL274iJFhLViBcZ27LpLh+nh28c3e7ZUYFezXnpwgiad1fGvFz5Rn9NCteaxi9W/d/OhyKyLB+vxv5zTqQIhSXr0zz/TNVObP+MhpleoPvjPxepnbeWK3O3UBWN765V/TFRQYPPf9v5z8Zmae3nnOUtOksJCuuidFT9vUShyXrJVbzx0Yaf5Zvwnqdcn6M6bkprdLyKsi95+eLLOiPf87lzt2YhB3fXeoxcrukfzl3X/v1/G6/4FY3xQle9YLMf+vrXkjIcRg7rpg5UXK7Jb5zhL7idXXjRIT95zriyWpv++BVhMeua+8zS9E31BKkk9I4O15rGLNbR/80HfpRP667n7z5fZ3DHfC3DbXQ+sX79eZ511loYPH65t27bV23bkyBGNHj1a0dHRuueee1RdXa3U1FT17NlTX375pcw+Wuy0o60hEvDyM+1mDZETHS6r0cpXtunRl/NUsK+83rakEce+Eb/+0lh16dK5wpATrf70By1P36r3v6i/Wnb38K66/rJhWjh7pAb06RyXyrizu6hM/35hi55etfOke6qnnBOj/3d1vFLOdX9L6s6gprZOT72xQysy8rRpZ/1lNgfHhOuWq+J004zhCg/tXGHIib7YuF//fmGLXv+wQI66//2pDA6y6JcpQ7Rw9kiNju28l0QeOFilR17K02OvbZPNXv/Oa2cnnaZ5M+N0dcqQDvsGqDkul0sZ732vFRl5Wptbf12dXlHBuuGK4Zp/dbx6RXl2WnVHsmVXqf79wha9kJmvyur668pcMWmgFs4eqXOTO/4iko0pr6zVY69u06Mvb9OuH+qvKTJySHfNmxmnuZcPV2DXzhWGnOiDL4r08Itblbm2UCd+YogI66Lrph97L9CZzoxoqNBWrmUvbNVTb+44aT2FyeP7aP6seE27oH+nC4V/4nA49fRbO7UiI0/fbKt/64H+vUN184w43XLViE5zyaA72Zt/1L9f2KJXPtitmtr/3QgisKtFM38+SAtnj+x0geCJSg4f1YqMrVr5ynYV7a+ot23cqJ66ZeYIzZk6tEOfHUMg4oEnnnhCN9xwg6666iplZGSctD0/P18LFy7UJ598ooCAAE2dOlUPPfSQevbs6bMaCUTaVl2dU19sPKBLF65R6ZEa9ewRpP2f/LLT/uFzJ7/wiMb98i2VHK5RVLdA/fDBLIUEG2c95orKWq3N3a9f/vFjlR6pUa+oINk+nu3vsnzG5XJpw1a7fn7Teyo5UqPo7oHa/8nsTvsh2J3iHys16vLXjv8O7MycoR6d+M1fQ7W1Tq3NtenKRR+p9EiNTosM0v5PjPM7IElb80t17q9WH3sOdA/Uvo+u7nRnBDTl0JGjWrdxv+bc8alKj9TIGhWkYgO9DjqdLn313QFNm/+BSo7UqGePY6+DRnovULC3TMmz3jz+Oljw/sxOdZlUc6qqHVqba9Os1P97LxAZJJuBXgddLpc2bjuoSTe8e/y9gO3jX3boD8GeOnCwSnGXvaaSw0cV2S1Q21dd2aIziDoLh8Opz7/Zr8t/9+Gx9wI9grT/087xO2CcTzVtYNOmTZJOXj/kJ0OGDNHq1at9WRK8zGIx69xkq0KCAlR6pEZdu5gN9QZIkob0i1BwYICkGgUFWgwVhkhSaEgXXXxOzPHnQICB/vhLx9YTGDOyp4KDAqQjNQrsajFUGCJJvXuG1PsdMFIYIh27jGrimX2O/w54uthiZxA/pMf/ngNdLYYKQySpe0SgppzX//hzwEgfgqRj6wOcndTr+Otg1y4Ww70XGNg3vN7roJHCEEkKDgrQRWef8F7AYK+DJpNJp8dF13svYLTXgdOighX8f5cRBgdaDBWGSMduPnHB2N7/ey/Qic6S7zwj8YHmAhEAAAAAANAxGOur3lOUlZXl7xIAAAAAAEAb4AwRAAAAAABgOAQiAAAAAADAcAhEAAAAAACA4RCIAAAAAAAAwyEQAQAAAAAAhkMgAgAAAAAADIdABAAAAAAAGA6BCAAAAAAAMBwCEQAAAAAAYDgEIgAAAAAAwHAIRAAAAAAAgOEE+LsAtLHAQAW8/Iy/q2i5wEB/VwAAAAAAMCACkU7GZDJJQUH+LgMAAAAAgHaNS2YAAAAAAIDhEIgAAAAAAADDIRABAAAAAACGQyACAAAAAAAMh0AEAAAAAAAYDoEIAAAAAAAwHAIRAAAAAABgOAQiAAAAAADAcAhEAAAAAACA4RCIAAAAAAAAwyEQAQAAAAAAhkMgAgAAAAAADIdABAAAAAAAGA6BCAAAAAAAMBwCEQAAAAAAYDgEIgAAAAAAwHAIRAAAAAAAgOEQiAAAAAAAAMMhEAEAAAAAAIZDIAIAAAAAAAyHQAQAAAAAABgOgQgAAAAAADAcAhEAAAAAAGA4BCIAAAAAAMBwAvxdANAeHa2p0+Zdpdqw1a6t+YdUeuSoJOlweY2eXbVTyfHRGjGomywWMkUAAAAA6IgIRID/43K59OW3B7QiI0+vrinQ0Zq6k/Ypr3Touj9/JknqFt5V104bqluuilPc4O4+rhYAAAAAcCoIRABJG7baddNf12nDVnuL2xwuq9HDL27Vwy9uVco5MVrxp7M1sG+4F6sEAAAAALQVzveHoR2tqdOfH87RmbNXeRSGNPTu50UafcUb+s/LeXK5XG1YIQAAAADAGzhDBIZ1pLxG0xes0ac5tjY5XnllrW657wut3/SjHr/7HAUEkDcCAAAAQHtFIAJDqqisVcq89/XFxgNtfuyn39qpWodTz/7tfJnNpjY/PgAAAADg1PEVNgzH5XLp2j995pUw5CcvZObrL4/meu34AAAAAIBTQyACw0l/53u9/lGBR22y06ercM0sZadPb3Gb+5/4VjlbfvSwOgAAAACALxCINMFutys1NVVDhw5VUFCQ+vXrp4ULF6qiokJz586VyWTS8uXL/V0mPLD/YJX+3wNfetzOGh2imF6hskaHtLhNXZ1Lv/rzZ6qpPfn2vQAAAAAA/2INkUZs3LhRKSkpstlsCg0NVXx8vPbt26dly5YpPz9fJSUlkqSkpCT/FgqP/Pv5LSo5fNRn/W3JP6RXPtit2VOG+qxPAAAAAEDzOEPEDbvdrmnTpslms2nRokUqLi5Wbm6ubDab0tLSlJmZqezsbJlMJiUkJPi7XLTQ0Zo6PfH6dp/3uyIjz+d9AgAAAACaRiDixoIFC1RUVKT58+dr6dKlCg8PP74tNTVViYmJcjgcGjhwoCIiIvxYKTzxxkcF+rG02uf9frHxgL7bUeLzfgEAAAAAjSMQaSAvL08ZGRmKjo7WkiVL3O6TnJwsSUpMTDz+2E8Byrhx4xQYGCiTiduttjcfrd/nt76z/Ng3AAAAAOBkBCINpKeny+l0avbs2QoLC3O7T3BwsKT6gciuXbv02muvyWq1auzYsT6pFZ7ZsPWg3/rO2Wr3W98AAAAAgJMRiDSQlZUlSZowYUKj+xQVFUmqH4icd955Ki4u1qpVqzRp0iTvFgmP1dTWafOuUr/1v4FABAAAAADaFe4y08CePXskSQMGDHC73eFwaN26dZLqByJmc9tnS2PGjJHNZmvz4xpRnSlUtT1SG92enT69yVvqWqODj/8sXDOr0f1s9kqNvXrVSY/vyN+nmJgYDypuX4q73yaZu6nYVtyhx3EqjD4HjN/Y45eYA6OPX2IOGL+xxy8xB4zf2OOX2u8cWK1W5eTktKotgUgDFRUVkqSqqiq32zMyMmS32xUeHq5BgwZ5tRabzaa9e/d6tQ/D6NJD6tH4Zmt0iGJ6hTZ7mACLuUX7NeR0mTv2/8vwOsksOevqOvY4ToXR54DxG3v8EnNg9PFLzAHjN/b4JeaA8Rt7/FKnnAMCkQasVqtKS0uVm5ur8ePH19tWXFysxYsXS5ISEhK8vnCq1Wr16vGNpM4UqqbOtbHZK5tsb40OVoDFLEedUza7+7CsqeOYTU717tu3JaW2S8UWi5ySzBZLhx7HqTD6HDB+Y49fYg6MPn6JOWD8xh6/xBwwfmOPX2q/c3Aqn5sJRBqYNGmS8vLylJaWpsmTJys2NlaSlJ2drTlz5shuP7YWRFJSktdrae1pPziZw+FUxNnPqqq6zu12d5e5nKhwzSzF9AqVzV6lfpNf8rj/hPh++ublIo/btRcxk9K190Clelt7q2hzxx3HqTD6HDB+Y49fYg6MPn6JOWD8xh6/xBwwfmOPX+qcc8Ciqg2kpqYqKipKhYWFGjlypEaPHq1hw4Zp3LhxGjx4sCZOnCip/vohaP8CAsxKGh7lt/6T46L91jcAAAAA4GQEIg3ExMRo7dq1mjJlioKCglRQUKDIyEitXLlSmZmZ2rFjhyQCkY4oOd5/oYQ/+wYAAAAAnIxLZtyIi4vT6tWrT3q8vLxcBQUFMpvNGjVqlB8qw6lIOSdGy9O3+rxfk0n6+c/azzV2AAAAAAACEY9s2bJFLpdLsbGxCgk5+Ratr776qiRp69at9f574MCBGjNmjO8KhVs/P7uvBvUN1+69ZT7tN+WcGA2OifBpnwAAAACAphGIeGDTpk2SGr9cZsaMGW7/+7rrrtPTTz/t1drQPIvFrFuuGqHUh7J92u+8mXE+7Q8AAAAA0DwCEQ80F4i4XC5floNWuGVmnFZk5KlgX7lP+rtgbG+lnNPPJ30BAAAAAFqORVU90FwggvYvLKSLnvrruT7pKzQ4QE/dc67MZpNP+gMAAAAAtBxniHggKyvL3yWgDUwY10cLZ4/Uv1/Y0uI2NntlvZ8t8dDiMzUoJtzj+gAAAAAA3kcgAkP6x+/HqdheqZff392i/cdevcqj49910+m64coRrSkNAAAAAOADXDIDQ7JYzHphyQX61aXD2vzY9y8Yo3tuPaPNjwsAAAAAaDsEIjCsgACznvrruXr2b+epe3jXUz7egD5h+ujxFN3+G9aYAQAAAID2jkAEhmYymTRn2jBtffMK/fKSIQoI8HwB1NDgAP32mpHa9NovNPHMPl6oEgAAAADQ1lhDBJDUu2eIXnjgAv3j9+P0xOvb9fzqfG0vONzo/haLSUnDo3T9ZcM0Z+pQRYSd+hkmAAAAAADfIRABTmCNDtGfbzxdf77xdB0pr9E32w4q7/tDqqhyyGw2KTyki0YP66GE2EgFB/HrAwAAAAAdFZ/ogEZEhHXV+WN66/wxvf1dCgAAAACgjbGGCAAAAAAAMBwCEQAAAAAAYDgEIgAAAAAAwHAIRAAAAAAAgOEQiAAAAAAAAMMhEAEAAAAAAIZDIAIAAAAAAAyHQAQAAAAAABgOgQgAAAAAADAcAhEAAAAAAGA4BCIAAAAAAMBwCEQAAAAAAIDhEIgAAAAAAADDIRABAAAAAACGQyACAAAAAAAMh0AEAAAAAAAYDoEIAAAAAAAwHAIRAAAAAABgOAQiAAAAAADAcAhEAAAAAACA4RCIAAAAAAAAwyEQAQAAAAAAhkMgAgAAAAAADIdABAAAAAAAGA6BCAAAAAAAMBwCEQAAAAAAYDgEIgAAAAAAwHAIRAAAAAAAgOEQiAAAAAAAAMMhEAEAAAAAAIZDIAKgUU6nS98XHVFNbZ0kqabWqdIjR/1cFQAAAACcugB/FwCgffmhuFxPvr5Dn+Xa9M22gzpcVnN824+l1Yo853kNjglXcny0LpswQFdMHqjArhY/VgwAAAAAniMQASBJWv/dAS158lu9/WmhnE5Xk/t+X1Sm74vK9MoHu/W7vwfpN5cPV+r1CeoW3tVH1QIAAADAqeGSGcDgqqodWrR0vcbPeVtvffxDs2FIQwdKqnX/E99q1OWv673Pi7xUJQAAAAC0LQIRwMB2/XBEp1/1pv757Ga5PMtBTlK0v0Ip897X/1vyperqnG1TIAAAAAB4CYEIYFDbdh/SOdet1vaCw2163OXpWzXnjk8JRQAAAAC0awQigAHt3V+hyTe+p/0Hq7xy/PR3v9f8+7/0yrEBAAAAoC0QiAAG43K59Ju/fK6i/RUtbpOdPl2Fa2YpO316i9v855VtejOroBUVAgAAAID3EYgABvPfN3fqvXWeLX5qjQ5RTK9QWaNDPGp3871f6OChao/aAAAAAIAvEIg0wW63KzU1VUOHDlVQUJD69eunhQsXqqKiQnPnzpXJZNLy5cv9XSbQYuWVtVq0dL3P+tt/sEp/efQbn/UHAAAAAC0V4O8C2quNGzcqJSVFNptNoaGhio+P1759+7Rs2TLl5+erpKREkpSUlOTfQgEPvPhOvg6V1fi0z2dW7dT9C5IVHtrVp/0CAAAAQFM4Q8QNu92uadOmyWazadGiRSouLlZubq5sNpvS0tKUmZmp7OxsmUwmJSQk+LtcoEVcLpdWZOT5vN+yilq9kJnv834BAAAAoCkEIm4sWLBARUVFmj9/vpYuXarw8PDj21JTU5WYmCiHw6GBAwcqIiLCj5UCLbfrhyP6dnuJX/rOeH+3X/oFAAAAgMYQiDSQl5enjIwMRUdHa8mSJW73SU5OliQlJiYef+zVV1/VFVdcoQEDBigkJEQjRozQn/70J5WXl/ukbqA5OVvsfus7N88up9Plt/4BAAAAoCECkQbS09PldDo1e/ZshYWFud0nODhYUv1AZOnSpbJYLLr//vv17rvv6pZbbtGjjz6qiy++WE6n0ye1A03ZsNV/gciR8lrlFx7xW/8AAAAA0BCLqjaQlZUlSZowYUKj+xQVHbtl6YmByNtvv62ePXse/+/zzz9fPXv21OzZs/X555/rvPPO81LFQMvs2OPfQGLnD0c0bEA3v9YAAAAAAD8hEGlgz549kqQBAwa43e5wOLRu3TpJ9QORE8OQn4wZM0aStHfv3lbVMmbMGNlstla1BRqyh18rdRnidlt2+nRZo0MabWuNDj7+s3DNrCb7sdkrNfbqVSc9PufaXyu41veLuraV4u63SeZuKrYVKyYmxt/l+BzjN/b4JebA6OOXmAPGb+zxS8wB4zf2+KX2OwdWq1U5OTmtaksg0kBFRYUkqaqqyu32jIwM2e12hYeHa9CgQU0e6+OPP5YkxcXFtaoWm83W6jAFOMnAKqmL+03W6BDF9Apt9hABFnOL9nOnpMQuHenAz+fwOsksOevqjPl7yfiNPX6JOTD6+CXmgPEbe/wSc8D4jT1+qVPOAYFIA1arVaWlpcrNzdX48ePrbSsuLtbixYslSQkJCTKZTI0eZ+/evbrzzjt18cUXKykpqdW1AG2lpKtL7mO+Y2d1NMUaHawAi1mOOqds9saO0vSxonuEKjC8b0tKbZeKLRY5JZktFvXu23HH0VqM39jjl5gDo49fYg4Yv7HHLzEHjN/Y45fa7xycyudmApEGJk2apLy8PKWlpWny5MmKjY2VJGVnZ2vOnDmy248tTNlUyFFeXq5LL71UXbt21VNPPdXqWlp72g/gzgNPfqvb/+3+OeXuEpcTFa6ZpZheobLZq9Rv8kut6n/7tx8psltgq9q2BzGT0rX3QKV6W3uraHORv8vxOcZv7PFLzIHRxy8xB4zf2OOXmAPGb+zxS51zDrjLTAOpqamKiopSYWGhRo4cqdGjR2vYsGEaN26cBg8erIkTJ0qqv37IiaqqqjRt2jTt3r1bH3zwgXr37u3L8oFGJcdH+63vQX3DO3QYAgAAAKDzIRBpICYmRmvXrtWUKVMUFBSkgoICRUZGauXKlcrMzNSOHTskuQ9EamtrdeWVVyonJ0fvvvuu4uPjfV0+0KgxI6PVJcA/v/JnJ53ml34BAAAAoDFcMuNGXFycVq9efdLj5eXlKigokNls1qhRo+ptczqdmj17tj766CO98847GjdunK/KBVqkR0Sgrpw8UOnvfu/zvm+4YrjP+wQAAACAphCIeGDLli1yuVyKjY1VSEj9W5TeeuuteuWVV/THP/5RISEh+uqrr45vGzJkiNvb8gK+dstVcT4PROKHdNd5ySwQDAAAAKB94ZIZD2zatEmS+8tl3n33XUnSAw88oPHjx9f7JzMz06d1Ao0554xeGp/o28tXUn/V9B2ZAAAAAMAfOEPEA00FIgUFBT6uBvCcyWTSU389V0kz3tTRmjqv93fxz2J07fShXu8HAAAAADzFGSIeaCoQATqKEYO66775yR61sdkrVbS/QjZ7ZYvbRIR10WN3/4yzQwAAAAC0S5wh4oGsrCx/lwC0iduuHaVvdxzU86vzW7T/2KtXeXT8rl3MevUfF6qfNaw15QEAAACA13GGCGBAZrNJT91znn55yZA2P3ZQoEWvP3ShJo/v2+bHBgAAAIC2QiACGFSXLmY9d//5+uutZ6hLQNu8FAwbEKGPn7hEU87r3ybHAwAAAABvIRABDMxsNunOm05XzkuX6vQRUa0+jsl07DKcjS//Qmf5+C42AAAAANAarCECQAmxkcpOn6731hVpRUae3v28SC5X8+0iuwVq7i9iddOMERrSL8L7hQIAAABAGyEQASBJsljMmnJef005r7/27CvTum8OaEOeXd/kHVTJkaOqdTgV1NWiQX3DNWZktJLjo3XO6b0UHMTLCAAAAICOh08yAE4yoE+4BvQJ1y+ntP2iqwAAAADQHrCGCAAAAAAAMBwCEQAAAAAAYDgEIgAAAAAAwHAIRAAAAAAAgOEQiAAAAAAAAMMhEAEAAAAAAIZDIAIAAAAAAAyHQAQAAAAAABgOgQgAAAAAADAcAhEAAAAAAGA4BCIAAAAAAMBwCEQAAAAAAIDhEIgAAAAAAADDIRABAAAAAACGQyACAAAAAAAMh0AEAAAAAAAYDoEIAAAAAAAwHAIRAAAAAABgOAQiAAAAAADAcAhEAAAAAACA4RCIAAAAAAAAwyEQAQAAAAAAhkMgAgAAAAAADIdABAAAAAAAGA6BCAAAAAAAMBwCEQAAAAAAYDgEIgAAAAAAwHAIRAAAAAAAgOEQiAAAAAAAAMMhEAEAAAAAAIZDIAIAAAAAAAwnwN8FAEB7U1FZq8822LQhz66cLXbt3luu/QerJEk/llbrdw9+peT4aJ17Ri8N6BPu52oBAAAAtAaBCAD8n227D+k/L2/T06t26nBZjdt9amqd+tfzWyRJJpN08c9iNG9mnFLOiZHFwkl3AAAAQEdBIALA8Mora/WHh7K1IiPPo3Yul/Tu50V69/MinT4iSs/cd55Gx0Z6qUoAAAAAbYmvMwEY2toNNiVc8YbHYUhD32w7qORZb+lvj22U0+lqo+oAAAAAeAuBCADDev3DAk268V3t3lvWJserdTj15+Ub9Ks/fyaHw9kmxwQAAADgHVwyA8CQVn/6g2amZsnhaPuzOZ5bvUtms0lP/fVcmc2mNj8+AAAAgFPHGSIADGd3UZlmpX7slTDkJ8+s2qllL2zx2vEBAAAAnBoCEQCG4nS69Ou716qiyuFRu+z06SpcM0vZ6dNb3OaOh3O0c89hT0sEAAAA4AMEIk2w2+1KTU3V0KFDFRQUpH79+mnhwoWqqKjQ3LlzZTKZtHz5cn+XCcADT7y+XZ9kF3vczhodopheobJGh7S4TVV1nX7zl8/lcrHIKgAAANDesIZIIzZu3KiUlBTZbDaFhoYqPj5e+/bt07Jly5Sfn6+SkhJJUlJSkn8LBdBiTqdLf396k0/7/GyDTV9v+lFnJpzm034BAAAANI0zRNyw2+2aNm2abDabFi1apOLiYuXm5spmsyktLU2ZmZnKzs6WyWRSQkKCv8sF0EIffrVXu3444vN+T/WWvgAAAADaHoGIGwsWLFBRUZHmz5+vpUuXKjw8/Pi21NRUJSYmyuFwaODAgYqIiPBjpQA88cTrO/zSb8b7u3WkvMYvfQMAAABwj0Ckgby8PGVkZCg6OlpLlixxu09ycrIkKTEx8fhja9eu1aRJk9S7d28FBgYqJiZGM2fOVF4e3wwD7cW6jfv90u/Rmjrl5h30S98AAAAA3CMQaSA9PV1Op1OzZ89WWFiY232Cg4Ml1Q9ESktLNXr0aC1btkwffPCB0tLStGXLFo0fP15FRUU+qR1A42z2Su07UOm3/jdstfutbwAAAAAnY1HVBrKysiRJEyZMaHSfnwKOEwOR6dOna/r0+rfjHDt2rIYPH67XXntNCxcu9EK1AFrq2+0lfu1/43bOEAEAAADaEwKRBvbs2SNJGjBggNvtDodD69atk1Q/EHEnKipKkhQQ0LppHjNmjGw2W6vaAqivsutIKewqt9uy06c3eztda3Tw8Z+Fa2Y1up/NXqmxV6866fFXX8/Ux89e40HF7Utx99skczcV24oVExPj73J8zujjl5gDo49fYg4Yv7HHLzEHjN/Y45fa7xxYrVbl5OS0qi2BSAMVFRWSpKqqKrfbMzIyZLfbFR4erkGDBp20va6uTk6nU3v27NHtt98uq9Wqq65y/yGsOTabTXv37m1VWwANdOsrub8KTtboEMX0Cm3RYQIs5hbve6Lq6qMd+/c5vE4yS866uo49jtYy+vgl5sDo45eYA8Zv7PFLzAHjN/b4pU45BwQiDVitVpWWlio3N1fjx4+vt624uFiLFy+WJCUkJMhkMp3U/vzzzz9+BsnQoUOVlZWlnj17troWAG2jqku4GrtoxmZvfm0Ra3SwAixmOeqcstndB6ZNHSsoKEBRffu2pNR2qdhikVOS2WJR7w48jtYy+vgl5sDo45eYA8Zv7PFLzAHjN/b4pfY7B6fyuZlApIFJkyYpLy9PaWlpmjx5smJjYyVJ2dnZmjNnjuz2YwsjJiUluW3/5JNP6tChQ9q9e7f+/ve/66KLLtK6devUv39/j2tp7Wk/AE62ZVepRl3+uttt7i5xaahwzSzF9AqVzV6lfpNf8rj/393yS92/8J8et2svYiala++BSvW29lbRZuMtFG308UvMgdHHLzEHjN/Y45eYA8Zv7PFLnXMOuMtMA6mpqYqKilJhYaFGjhyp0aNHa9iwYRo3bpwGDx6siRMnSmp8/ZDhw4frzDPP1KxZs/TRRx+prKxMDz74oC+HAMCNEYO6KSTIfxlwcnyU3/oGAAAAcDICkQZiYmK0du1aTZkyRUFBQSooKFBkZKRWrlypzMxM7dixQ1LzC6pKUvfu3TV06FDt2rXL22UDaIbFYtbpcf4LJcaMjPZb3wAAAABOxiUzbsTFxWn16tUnPV5eXq6CggKZzWaNGjWq2eMcOHBA27dv15lnnumNMgF46KqLBmndN/t93u+4UT01oE+4z/sFAAAA0DgCEQ9s2bJFLpdLsbGxCgmpf4vOa665RkOHDlVSUpK6d++unTt36qGHHlJAQIB+97vf+aliACe6bvow3f7vHFVWO3za762z4nzaHwAAAIDmccmMBzZt2iTJ/eUyZ511lt555x1df/31SklJ0d///nede+652rhxo4YOHerrUgG40S28q66d5tvfx+geQbrq5yffohsAAACAf3GGiAeaCkTmz5+v+fPn+7okAB76661n6LUPC/RjabVP+vt36lkKCuSlFgAAAGhvOEPEA00FIgA6hp6RwVrxp7N90tdlEwfo6ksG+6QvAAAAAJ7ha0sPZGVl+bsEAG3gyosG6TeXx+qJ13e0uI3NXlnvZ3MG9gnTf+78mUwmU6tqBAAAAOBdBCIADOnRP/9MZZW1ynhvd4v2H3v1qhYfO6ZXqNY8lqJeUcGtLQ8AAACAl3HJDABDCggw64UlF7T5HWBGDe2hz5+ZoqH9I9r0uAAAAADaFoEIAMOyWMxafsfZeueRi9T3tJDmGzR5LJPu+E2icl66VAP6hLdRhQAAAAC8hUAEgOGlnNtPm1+/XHf8JlGnRQZ51DYgwKQZFw3S+hem628Lxiiwq8VLVQIAAABoS6whAgCSukcE6m8LxujuW07X6x8W6K2Pf9CGPLt27jly0r6R3QKVHB+l85N76/rLhqnPaaF+qBgAAADAqSAQAYATdO1i0ayUIZqVMkSSdOjIUe0pLlf10Tp1CTArqnug+vcO4+4xAAAAQAdHIAIATegeEajuEYH+LgMAAABAG2MNEQAAAAAAYDgEIgAAAAAAwHAIRAAAAAAAgOEQiAAAAAAAAMMhEAEAAAAAAIZDIAIAAAAAAAyHQAQAAAAAABgOgQgAAAAAADAcAhEAAAAAAGA4BCIAAAAAAMBwCEQAAAAAAIDhEIgAAAAAAADDIRABAAAAAACGQyACAAAAAAAMh0AEAAAAAAAYDoEIAAAAAAAwHAIRAAAAAABgOAQiAAAAAADAcAhEAAAAAACA4RCIAAAAAAAAwyEQAQAAAAAAhkMgAgAAAAAADIdABAAAAAAAGA6BCAAAAAAAMBwCEQAAAAAAYDgEIgAAAAAAwHAIRAAAAAAAgOEQiAAAAAAAAMMhEAEAAAAAAIZDIAIAAAAAAAwnwN8FAADap4rKWm3cXqJNO0tUVlkrSSqvrNXHX+/TGXHR6hbe1c8VAgAAAK1HIAIAOK70yFE989ZOPb1qpzbtLJXT6aq3/XB5rSb+5l1JUuyAbrpm6hD95vLh6t0zxB/lAgAAAK1GIAIA0OGyGv3p4Rw99eYOVVXXtajNjj2Hddcjufrrym808+eD9ffbxhGMAAAAoMNgDREAMLj3Pi/SqMtf1yMv5bU4DDmRw+HSC5n5GvmL1/RC5i65XK7mGwEAAAB+RiACAAblcrl09yO5Spn3vor2V5zy8UqP1Oia2z/VDX/5XHV1zjaoEAAAAPAeAhEAMCCXy6U//itbf135TZsf+8k3dujaP3120vojAAAAQHtCIAIABrQ8fase/O8mrx3/xXfy9YeHsr12fAAAAOBUEYgAgMFs331IqR6GFdnp01W4Zpay06e3uM0/nt2ktRtsnpYHAAAA+ASBCAAYSF2dU9fftVbVRz1bPNUaHaKYXqGyRrf8LjIul3T9XZ+porLW0zIBAAAAryMQaYTdbldqaqqGDh2qoKAg9evXTwsXLlRFRYXmzp0rk8mk5cuX+7tMAPDIm1l79OW3B3zWX35hmR57bbvP+gMAAABaKsDfBbRHGzduVEpKimw2m0JDQxUfH699+/Zp2bJlys/PV0lJiSQpKSnJv4UCgIdWZOT5vM9HX87TwtkjZTabfN43AAAA0BjOEGnAbrdr2rRpstlsWrRokYqLi5Wbmyubzaa0tDRlZmYqOztbJpNJCQkJ/i4XAFps2+5Dyvq62Of97txzRFlf7/N5vwAAAEBTCEQaWLBggYqKijR//nwtXbpU4eHhx7elpqYqMTFRDodDAwcOVEREhB8rBQDPvPd5kd/6ftePfQMAAADuEIicIC8vTxkZGYqOjtaSJUvc7pOcnCxJSkxMbPQ4KSkpMplM+stf/uKNMgGgVTbk2f3X91b/9Q0AAAC4QyBygvT0dDmdTs2ePVthYWFu9wkODpbUeCDy8ssva+PGjd4qEQBabcPWg37rOzfvoJxOl9/6BwAAABoiEDlBVlaWJGnChAmN7lNUdOy0b3eByJEjR/Tb3/5WS5cu9U6BAHAKivZX+K3vsopaHSmv8Vv/AAAAQEPcZeYEe/bskSQNGDDA7XaHw6F169ZJch+I/OlPf1JsbKxmz56ta6655pTrGTNmjGw22ykfBwAkqazHnZLJ/ct+dvp0WaNDGm1rjQ4+/rNwzaxG97PZKzX26lVut8WNTJDF5b9Q5lQUd79NMndTsa1YMTEx/i7HL4w+B0Yfv8QcMH5jj19iDhi/sccvtd85sFqtysnJaVVbApETVFQce6NeVVXldntGRobsdrvCw8M1aNCgettycnL0+OOPa8OGDW1Wj81m0969e9vseAAMrptDsrh/2bdGhyimV2izhwiwmFu0nzu2fUWSs7JVbf0uvE4yS866OuO+Lht9Dow+fok5YPzGHr/EHDB+Y49f6pRzQCByAqvVqtLSUuXm5mr8+PH1thUXF2vx4sWSpISEBJlMpuPb6urqdNNNN2n+/PkaOXJkm9YDAG3FpgrVKcj9NnvTQYU1OlgBFrMcdU7Z7O5D4yaP46pVn95RMqlHi+ttT4otFjklmS0W9e7b19/l+IXR58Do45eYA8Zv7PFLzAHjN/b4pfY7B6fyuZlA5ASTJk1SXl6e0tLSNHnyZMXGxkqSsrOzNWfOHNntx+6SkJSUVK/d8uXLtX///ja/q0xrT/sBAHeu+n2WXvlgt9ttjV3m8pPCNbMU0ytUNnuV+k1+yeO+z0rsoy+f/8Hjdu1FzKR07T1Qqd7W3irabMxbCBt9Dow+fok5YPzGHr/EHDB+Y49f6pxzwKKqJ0hNTVVUVJQKCws1cuRIjR49WsOGDdO4ceM0ePBgTZw4UVL99UPsdrvuvPNO3XXXXXI4HDp06JAOHTokSaqurtahQ4fkdDr9MRwAqCc5PsqPfUf7rW8AAADAHQKRE8TExGjt2rWaMmWKgoKCVFBQoMjISK1cuVKZmZnasWOHpPqBSFFRkcrKynTTTTepR48ex/+RpLS0NPXo0UM//NBxvxUF0HlceGYfQ/YNAAAAuMMlMw3ExcVp9erVJz1eXl6ugoICmc1mjRo16vjjQ4cO1ccff3zS/hMmTNB1112nX/3qV6wFAqBdGDOyp8aMjFbOFrtP++1zWoimnd/fp30CAAAAzSEQaaEtW7bI5XIpNjZWISH/uzVlWFiYLrjgArdtBg4c2Og2APCHW2fF6fo71/q0z5uuHKGAAE5IBAAAQPvCO9QW2rRpk6T6l8sAQEcz6+LBGjGom8/6Oy0ySPNmxvmsPwAAAKClOEOkhTwNRFwulzfLAYBWCQoM0NP3nqezr10tp9P7r1OP/vlniu7h/la/AAAAgD9xhkgLcYYIgM7izITTlHr9aI/a2OyVKtpfIZu9ssVtfnnJEF0+aaCH1QEAAAC+wRkiLZSVleXvEgCgzdw3P1kFe8v10nvft2j/sVev8uj4F4ztrSfvOac1pQEAAAA+wRkiAGBAFotZz91/vuZMHdrmx77o7L5a/fBkBQWSuQMAAKD9IhABAIMKCDDr6fvO04o/na3Q4FMPL7oEmPXXW8/Q6ocvUmhIlzaoEAAAAPAeAhEAMDCz2aRbZsZp8+uXK+WcmFYfZ3ziacp56VLdedPp6tKFPy0AAABo/zifGQCggX3D9c6Knyvv+0P6z8t5eubtXTpcVtNkm+Agi2ZdPFi3XBWnsaN6+qhSAAAAoG0QiAAAjosb3F3//uN4/XPxmdqx54g2bLVr865SlVXUyuVyKTS4i+IGd1dyfJTiB/fgbBAAAAB0WAQiAICTWCxmxQ3urrjB3f1dCgAAAOAVfLUHAAAAAAAMh0AEAAAAAAAYDoEIAAAAAAAwHAIRAAAAAABgOAQiAAAAAADAcAhEAAAAAACA4RCIAAAAAAAAwyEQAQAAAAAAhkMgAgAAAAAADIdABAAAAAAAGA6BCAAAAAAAMBwCEQAAAAAAYDgEIgAAAAAAwHAIRAAAAAAAgOEQiAAAAAAAAMMhEAEAAAAAAIZDIAIAAAAAAAyHQAQAAAAAABgOgQgAAAAAADAcAhEAAAAAAGA4BCIAAAAAAMBwCEQAAAAAAIDhEIgAAAAAAADDIRABAAAAAACGQyACAAAAAAAMh0AEAAAAAAAYDoEIAAAAAAAwHAIRAAAAAABgOAQiAAAAAADAcAhEAAAAAACA4RCIAADQhLo6p5xOlyTJ6XQd/3cAAAB0bAH+LgAAgPbE4XBq9Wc/6KP1xdqw1a6N2w+qqrpOklRsr1KPc57T6SOilBwfrZRzYjRxXB+ZzSY/Vw0AAABPEYgAACDp4KFqrcjI08pXtmnvgcpG9ztSXqtPc2z6NMemfz67WbEDuumWq0bohiuGKzSkiw8rBgAAwKngkhkAgOG98VGB4i97TXc9kttkGOLOjj2H9bu/r1fijDe0doPNSxUCAACgrRGIAAAMq/qoQ3Pu+ESX/+4jHSipPqVj5ReW6fxfZ+r3S9errs7ZRhUCAADAWwhEAACGVFnl0JRbP9Dzq/Pb7Jgul/SPZzdrzh2fyuEgFAEAAGjPCEQAAIbjcDh1xW0fKevrYq8cP/3d73XTvevkcnFHGgAAgPaKQAQAYDhpT32n99YVebWPp97YoRcy2+7sEwAAALQtAhEAgKFs3lmie/7zjUdtstOnq3DNLGWnT/eo3YIHvlTxj54t0goAAADfIBBpgt1uV2pqqoYOHaqgoCD169dPCxcuVEVFhebOnSuTyaTly5f7u0wAgAduue8L1Xq4voc1OkQxvUJljQ7xqF3pkRr9/h9fe9QGAAAAvhHg7wLaq40bNyolJUU2m02hoaGKj4/Xvn37tGzZMuXn56ukpESSlJSU5N9CAQAttmGrXZ9/s9+nfb78wfdaumicevf0LEwBAACAd3GGiBt2u13Tpk2TzWbTokWLVFxcrNzcXNlsNqWlpSkzM1PZ2dkymUxKSEjwd7kAgBZ6NCPP5306HC498fp2n/cLAACAphGIuLFgwQIVFRVp/vz5Wrp0qcLDw49vS01NVWJiohwOhwYOHKiIiAg/VgoAaCmHw6n0d7/3S9/Prd7ll34BAADQOAKRBvLy8pSRkaHo6GgtWbLE7T7JycmSpMTExOOPffLJJzKZTCf9wyU1ANA+bP3+kCqrHX7pe+eeIzp05Khf+gYAAIB7rCHSQHp6upxOp2bPnq2wsDC3+wQHB0uqH4j85JFHHtEZZ5xx/L9DQ0O9UygAwCMbttr92v832w5qwrg+fq0BAAAA/0Mg0kBWVpYkacKECY3uU1RUJMl9IBIfH6+zzjrLO8UBAFpta/4h//b//SECEQAAgHaEQKSBPXv2SJIGDBjgdrvD4dC6deskuQ9E2tKYMWNks9m82gcAGMWhkClS0Di327LTpzd5S11rdPDxn4VrZjXZj81eqbFXrzrp8Tv+fI+W/H6dBxW3L8Xdb5PM3VRsK1ZMTIy/y/E5o49fYg4Yv7HHLzEHjN/Y45fa7xxYrVbl5OS0qi2BSAMVFRWSpKqqKrfbMzIyZLfbFR4erkGDBp20febMmbLb7YqKitL06dP1wAMPKDo6ulW12Gw27d27t1VtAQAN9CmXgtxvskaHKKZX85c4BljMLdrPnSOHD+uIvQO/pofXSWbJWVdnzL9NRh+/xBwwfmOPX2IOGL+xxy91yjkgEGnAarWqtLRUubm5Gj9+fL1txcXFWrx4sSQpISFBJpPp+LZu3bpp8eLFOu+88xQWFqYvv/xSS5Ys0VdffaWcnBwFBTXyLryZWgAAbeNwcBeVN7LNZq9ssq01OlgBFrMcdU7Z7O4D8+aO1S0iWGGBfVtSartUbLHIKclssah33447jtYy+vgl5oDxG3v8EnPA+I09fqn9zsGpfG4mEGlg0qRJysvLU1pamiZPnqzY2FhJUnZ2tubMmSO7/diifA3vHnP66afr9NNPP/7fF1xwgUaNGqXp06crPT1d119/vce1tPa0HwDAyZ5fvUtz7vjU7TZ3l7icqHDNLMX0CpXNXqV+k19qVf+rX3lU55zRcYPumEnp2nugUr2tvVW0ucjf5fic0ccvMQeM39jjl5gDxm/s8Uudcw647W4DqampioqKUmFhoUaOHKnRo0dr2LBhGjdunAYPHqyJEydKatn6IVOnTlVoaCjBBgC0A2NGtu7yxbZgMklJI6L81j8AAABORiDSQExMjNauXaspU6YoKChIBQUFioyM1MqVK5WZmakdO3ZI8mxB1RMvrQEA+EfsgG7qHt7VL32PGtpDYSFd/NI3AAAA3OOSGTfi4uK0evXqkx4vLy9XQUGBzGazRo0a1exxVq1apYqKCo0b5/6uBgAA3zGbTbp22lAte3Grz/v+1aXDfN4nAAAAmkYg4oEtW7bI5XIpNjZWISH1b894zTXXaPDgwTrjjDOOL6r64IMPKikpSbNmNX2LRgCAb9wyM87ngUhQoEW/ujTWp30CAACgeVwy44FNmzZJcn+5zMiRI/XGG2/o2muvVUpKip566indcMMN+uSTT9S1q39O0QYA1DdiUHddcm6MT/v81fRhiuwW6NM+AQAA0DzOEPFAU4HI7bffrttvv93XJQEAPPTIHWdr1OWvq6LK4fW++pwWoiULx3i9HwAAAHiOM0Q80FQgAgDoGAb2Ddffb/NsbSebvVJF+ytks1d61O7xu89R9wjODgEAAGiPOEPEA1lZWf4uAQDQBm6aMUJffntAz63e1aL9x169yuM+/nRDoi45t5/H7QAAAOAbnCECADAcs9mkp/56rmZdPNgrx1907SjdOz/ZK8cGAABA2yAQAQAYUkCAWc8vOV9/nJsgs9nUJscM7GrRv1LP1N8XjZPJ1DbHBAAAgHcQiAAADMtiMWvJwrFa98xUjRjU7ZSOdVZCT2185TItvGYUYQgAAEAHwBoiAADDOyvxNH3z8mVKf/d7rcjIU84We4vbThjbW/NmxukXFw6QxcL3DAAAAB0FgQgAAJKCAgN0/WWxuv6yWOVs+VFZ64uVs9WuDVvt2n+wSjW1TgV2tSimV4iS46M1Jj5aP/9ZjOIGd/d36QAAAGgFAhEAABoYM7Knxozs6e8yAAAA4EWc2wsAAAAAAAyHQAQAAAAAABgOgQgAAAAAADAcAhEAAAAAAGA4BCIAAAAAAMBwCEQAAAAAAIDhEIgAAAAAAADDIRABAAAAAACGQyACAAAAAAAMh0AEAAAAAAAYDoEIAAAAAAAwHAIRAAAAAABgOAQiAAAAAADAcAhEAAAAAACA4RCIAAAAAAAAwyEQAQAAAAAAhkMgAgAAAAAADIdABAAAAAAAGA6BCAAAAAAAMBwCEQAAAAAAYDgEIgAAAAAAwHAIRAAAAAAAgOEQiAAAAAAAAMMhEAEAAAAAAIZDIAIAAAAAAAyHQAQAAAAAABgOgQgAAAAAADAcAhEAAAAAAGA4BCIAAAAAAMBwCEQAAAAAAIDhEIgAAAAAAADDCfB3AQAAoP0ptJUrZ4tdG7batWPPEdkPVUuSSo4c1T+f3aTk+GidERel8NCufq4UAACgdQhEAACAJKn6qEOvfLBbKzLy9NV3P7rdp6q6TouWfi1JCuxq0ayLB2vezDiNHRUtk8nky3IBAABOCYEIAAAG53K5lPHe91qY9pUOlFS3uN3Rmjo9s2qnnlm1U+ePserxu8/RsAHdvFgpAABA22ENEQAADOzAwSpdeVuWrv7DJx6FIQ19mmNT4ow39K/nNsvpdLVhhQAAAN5BIAIAgEHlFx7RWde8rdc/KmiT41VV1+l3f1+vX9+1Vg6Hs02OCQAA4C1cMgMAgAH9UFyuCXPfUaGtos2P/cyqnXI6XXr6vvNkNrOuCAAAaJ84QwQAAIM5WlOnqfM/8EoY8pPnVu/S/U9s9NrxAQAAThWBCAAABnPvym+0aWepR22y06ercM0sZadPb3Gbv/5no77bUeJpeQAAAD5BINIEu92u1NRUDR06VEFBQerXr58WLlyoiooKzZ07VyaTScuXL/d3mQAAtNg3eXY98NR3HrezRocopleorNEhLW5T63DqV3/+THV1rCcCAADaH9YQacTGjRuVkpIim82m0NBQxcfHa9++fVq2bJny8/NVUnLsG6+kpCT/FgoAgAceeOo71dX57i4w32w7qHfWFmnaBf191icAAEBLcIaIG3a7XdOmTZPNZtOiRYtUXFys3Nxc2Ww2paWlKTMzU9nZ2TKZTEpISPB3uQAAtEjxj5VtdkcZTzz6cp7P+wQAAGgOgYgbCxYsUFFRkebPn6+lS5cqPDz8+LbU1FQlJibK4XBo4MCBioiI8GOlAAC03H/f3CGHw3dnh/zkvXVFKthb5vN+AQAAmkIg0kBeXp4yMjIUHR2tJUuWuN0nOTlZkpSYmHjStjfeeENnn322QkND1a1bN/3sZz/Tli1bvFozAAAt8ekGm1/6dbmkz7/Z75e+AQAAGkMg0kB6erqcTqdmz56tsLAwt/sEBwdLOjkQWbZsma666iqdc845WrVqldLT0zVp0iRVVVV5vW4AAJricrm0Yavdb/37s28AAAB3WFS1gaysLEnShAkTGt2nqKhIUv1AJD8/X4sXL9ZDDz2k+fPnH3/8kksu8VKlAAC0XNH+Ch08dNRv/ROIAACA9oZApIE9e/ZIkgYMGOB2u8Ph0Lp16yTVD0SeeuopdenSRTfccEOb1TJmzBjZbP45vRkA0LnUWKxSt1vcbstOn97s7XSt0cHHfxaumdXofjZ7pcZeveqkx7/8epNiYm72oOL2pbj7bZK5m4ptxYqJifF3OX5h9Dlg/MYev8QcMH5jj19qv3NgtVqVk5PTqrYEIg1UVFRIUqOXuWRkZMhutys8PFyDBg06/vgXX3yh4cOH6/nnn9d9992nwsJCDRs2THfddZeuvvrqVtVis9m0d+/eVrUFAKCe4C5SN/ebrNEhiukV2qLDBFjMLd73RI46Z8f+mxZeJ5klZ11dxx7HqTD6HDB+Y49fYg4Yv7HHL3XKOSAQacBqtaq0tFS5ubkaP358vW3FxcVavHixJCkhIUEmk6netr179+r2229XWlqa+vXrpyeffFK//OUv1bNnT02aNKlVtQAA0BZqLZE60Mg2m72y2fbW6GAFWMxy1Dllsze+NlZjxwqwSL369m1Jqe1SscUipySzxaLeHXgcp8Loc8D4jT1+iTlg/MYev9R+5+BUPjcTiDQwadIk5eXlKS0tTZMnT1ZsbKwkKTs7W3PmzJHdfuwa6KSkpHrtnE6nysvL9dxzz+myyy6TJF144YXaunWr7r333lYFIq097QcAgIYOl9Wo+8+ec7vN3SUuDRWumaWYXqGy2avUb/JLHvd/yaRxemvZnzxu117ETErX3gOV6m3traLNRf4uxy+MPgeM39jjl5gDxm/s8Uudcw64y0wDqampioqKUmFhoUaOHKnRo0dr2LBhGjdunAYPHqyJEydKOvkOM5GRkZJUL/gwmUyaNGmSNm/e7LsBAADgRrfwrho2IMJv/SfHR/utbwAAAHcIRBqIiYnR2rVrNWXKFAUFBamgoECRkZFauXKlMjMztWPHDkknByIjR45s9JjV1dVerRkAgJZIjvNfKJEcH+W3vgEAANwhEHEjLi5Oq1evVllZmcrKyrR+/XrdeOONqqioUEFBgcxms0aNGlWvzaWXXipJ+uCDD44/5nQ6tWbNGo0dO9an9QMA4M6lE/r7pd+IsC46f0xvv/QNAADQGNYQ8cCWLVvkcrkUGxurkJD6tyecNm2azj33XN144406ePCg+vfvryeeeEJbtmzRmjVr/FQxAAD/c/mkgTotMkgHSnx75uJ104cpLKSLT/sEAABoDmeIeGDTpk2STr5cRjq2XsiqVat0xRVX6I477tD06dO1Z88evfPOO8fXHQEAwJ+6drHohiuG+7zfW66K83mfAAAAzSEQ8UBTgYgkde/eXStXrtSPP/6oo0eP6uuvv9bPf/5zX5YIAECTfn/daPU9LaT5HdvIzTNGKG5wd5/1BwAA0FIEIh5oLhABAKC96x4RqMfvPscnfQ3oE6YHb2MdLQAA0D6xhogHsrKy/F0CAACnLOXcfpo3M04rMvJa3MZmr6z3szldAsx65r7zFB7atVU1AgAAeBuBCAAABrTsj2fJfqhaL7+/u0X7j716VYuPbbGY9OIDF3BnGQAA0K5xyQwAAAZksZj1wpIL9JvLY9v0uCFBAXr9nxfqyosGtelxAQAA2hqBCAAABhUQYNbjfzlXLy+dqOgeQad8vPOSrfrutV9o+oQBbVAdAACAdxGIAABgcDMuGqStb1yum2aMUEiQ51fTDo4J16N/PlsfP3mJhvSL8EKFAAAAbY81RAAAgHpGBus/d/5MDywco2ff3qWM97/Xxm0lqqx2uN2/d88QnZ14mn5z+XBddHZfmc0mH1cMAABwaghEAADAcd0jArVg9kgtmD1SdXVObdt9WDv2HFZVdZ0sFpO6hXVV4vBI9e4Z4u9SAQAATgmBCAAAcMtiMWvk0B4aObSHv0sBAABoc6whAgAAAAAADIdABAAAAAAAGA6BCAAAAAAAMBwCEQAAAAAAYDgEIgAAAAAAwHAIRAAAAAAAgOEQiAAAAAAAAMMhEAEAAAAAAIZDIAIAAAAAAAyHQAQAAAAAABgOgQgAAAAAADAcAhEAAAAAAGA4BCIAAAAAAMBwCEQAAAAAAIDhEIgAAAAAAADDIRABAAAAAACGQyACAAAAAAAMh0AEAAAAAAAYDoEIAAAAAAAwHAIRAAAAAABgOAQiAAAAAADAcAhEAAAAAACA4RCIAAAAAAAAwyEQAQAAAAAAhkMgAgAAAAAADIdABAAAAAAAGA6BCAAAAAAAMBwCEQAAAAAAYDgEIgAAAAAAwHAIRAAAAAAAgOEQiAAAADTi0JGj+iynWFVHHZKk6qN12vXDEblcLj9XBgAATlWAvwsAAABoL1wul9ZusOmJ13do3cb9+r6orN72g4ePatjUV9QtvKuS46I046JBmj1liMJDu/qpYgAA0FoEIgAAwPBcLpdeyMxX2lPfafOu0mb3P1xWo6yvi5X1dbFSH8rWry4dprtvPl1R3YN8UC0AAGgLXDIDAAAMbe/+Ck2d/4Hm3PFpi8KQhsoqavXwi1s18hev662P93ihQgAA4A0EIgAAwLA++mqfRl7+ut5ZW3TKx9p/sEqXLfxQt9y7TnV1zjaoDgAAeBOBCAAAMKR31xbqklvf1+GymjY97n9e2aY5d3xKKAIAQDtHIAIAAAzn600/6vLbPlJNrXdCi/R3v9dvH1zvlWMDAIC2QSACAAAMparaoTl3fKrqo3UtbpOdPl2Fa2YpO316i9ssT9+q9z4/9UtxAACAdxCIAAAAQ7lz+Qbt2HPYozbW6BDF9AqVNTrEo3Y33PN5m1+SAwAA2gaBSBPsdrtSU1M1dOhQBQUFqV+/flq4cKEqKio0d+5cmUwmLV++3N9lAgCAFvq+6Ij++dxmn/VXtL9CD/73O5/1BwAAWi7A3wW0Vxs3blRKSopsNptCQ0MVHx+vffv2admyZcrPz1dJSYkkKSkpyb+FAgCAFlv5yja5XL7t8/HXtuuum09XYFeLbzsGAABN4gwRN+x2u6ZNmyabzaZFixapuLhYubm5stlsSktLU2ZmprKzs2UymZSQkODvcgEAQAtUH3XoyTd2+LzfH0ur9dqaAp/3CwAAmkYg4saCBQtUVFSk+fPna+nSpQoPDz++LTU1VYmJiXI4HBo4cKAiIiL8WCkAAGipz7/Zr4OHjvql7zeyCvzSLwAAaByBSAN5eXnKyMhQdHS0lixZ4naf5ORkSVJiYuLxxy644AKZTCa3/9x8880+qR0AADRuw1a7H/s+6Le+AQCAe6wh0kB6erqcTqdmz56tsLAwt/sEBwdLqh+IrFixQkeOHKm3X2Zmpu677z5NnTrVewUDAIAW8WcosXtvmUoOH1Vkt0C/1QAAAOojEGkgKytLkjRhwoRG9ykqKpJUPxCJj48/ab+//e1v6tmzpy6++OI2rhIAAHjq+6Iyv/ZfsLeMQAQAgHaEQKSBPXv2SJIGDBjgdrvD4dC6desk1Q9EGvrxxx/13nvvad68eQoIaN00jxkzRjabrVVtAQBAffsj5kkBvdxuy06fLmt0SKNtrdHBx38WrpnVZD82e6XGXr3qpMd/fsk0BToKPai4fSnufptk7qZiW7FiYmL8XY7PMX5jj19iDhi/sccvtd85sFqtysnJaVVbApEGKioqJElVVVVut2dkZMhutys8PFyDBg1q9Djp6elyOByaM2dOq2ux2Wzau3dvq9sDAIATBB9t9J2PNTpEMb1Cmz1EgMXcov3csR/YL1V14L/r4XWSWXLW1Rnz/QnjN/b4JeaA8Rt7/FKnnAMCkQasVqtKS0uVm5ur8ePH19tWXFysxYsXS5ISEhJkMpkaPc5zzz2nuLg4jRkz5pRqAQAAbcMe4FBj95ix2SubbGuNDlaAxSxHnVM2u/svTZo7Vq/oMAU4+7ak1Hap2GKRU5LZYlHvvh13HK3F+I09fok5YPzGHr/UfufgVD43E4g0MGnSJOXl5SktLU2TJ09WbGysJCk7O1tz5syR3X5shfqkpKRGj7Ft2zbl5OTo/vvvP6VaWnvaDwAAONnvl67XP57d7Habu0tcTlS4ZpZieoXKZq9Sv8kvedx3eGgX7dv4rczmxr9Mae9iJqVr74FK9bb2VtHmIn+X43OM39jjl5gDxm/s8Uudcw647W4DqampioqKUmFhoUaOHKnRo0dr2LBhGjdunAYPHqyJEydKanr9kOeee04mk0mzZ8/2VdkAAKAZyfHRfuv7jLioDh2GAADQGRGINBATE6O1a9dqypQpCgoKUkFBgSIjI7Vy5UplZmZqx44dkhoPRFwul1544QVdcMEF6t+/vy9LBwAATTjnjF5q4mpXrzr3DC6DBQCgveGSGTfi4uK0evXqkx4vLy9XQUGBzGazRo0a5bbtZ599pj179ujuu+/2dpkAAMAD/axhSjknRu+s9e1pviaT9JvLY33aJwAAaB5niHhgy5YtcrlcGjZsmEJC3N+a77nnnlNwcLCuvPJKH1cHAACaM29mnM/7nHpefw3oE+7zfgEAQNMIRDywadMmSY1fLlNdXa1XX31Vl112mcLDeeMDAEB7c/HPYnT6iCif9WcySX+cm+Cz/gAAQMtxyYwHmgtEgoKCdOjQIR9WBAAAPGGxmPX0fedpzKy3VOtwer2/hbNH6uykXl7vBwAAeI4zRDzQXCACAADav4TYSN11c5JHbWz2ShXtr5DNXtniNsMGROhv/2+Mh9UBAABf4QwRD2RlZfm7BAAA0Abu+E2S8r4/rBffyW/R/mOvXuXR8U+LDNLqhy9SSDBvtQAAaK84QwQAABiO2WzS0/eep2umDmnzY/c5LUQfP3mJYgd2a/NjAwCAtkMgAgAADKlLF7Oeue98Pfi7sQrsammTY/787L5a//x0xQ/p0SbHAwAA3kMgAgAADMtsNmnx9Qna+MplGp94WquP0y28q574yzl699GfK8Ya2oYVAgAAb+HCVgAAYHgjBnXXumen6vPc/VqRkafXPixo0V1oRg/roVtnxWv2lCEKC+nig0oBAEBbIRABAACQZDKZdG6yVecmW1Vy+KhytvyoDVsPauP2gzpcViNHnUvBgRYNGxChMfE9lRwfpdiB3WQymfxdOgAAaAUCEQAAgAYiuwXqorNjdNHZMf4uBQAAeAlriAAAAAAAAMMhEAEAAAAAAIZDIAIAAAAAAAyHQAQAAAAAABgOgQgAAAAAADAcAhEAAAAAAGA4BCIAAAAAAMBwCEQAAAAAAIDhEIgAAAAAAADDIRABAAAAAACGQyACAAAAAAAMh0AEAAAAAAAYDoEIAAAAAAAwHAIRAAAAAABgOAQiAAAAAADAcAhEAAAAAACA4RCIAAAAAAAAwyEQAQAAAAAAhkMgAgAAAAAADIdABAAAAAAAGA6BCAAAAAAAMBwCEQAAAAAAYDgEIgAAAAAAwHAIRAAAAAAAgOEQiAAAAAAAAMMhEAEAAAAAAIZDIAIAAAAAAAyHQAQAAAAAABgOgQgAAAAAADAcAhEAAAAAAGA4BCIAAAAAAMBwAvxdAAAAANqXgr1lev+Lvdqw1a6cLXYV7a+Q/VC1JGn/wSrNueMTJcdF68Iz+2h0bKSfqwUAoHUIRAAAACCn06X31xVpRUaeMtcWyuVyv5+jzqXnV+fr+dX5kqSzk07TvJlxmnHRIHXtYvFhxQAAnBoCEQAAAIMr2FumuXevVdbXxR63/WLjAX2x8YAeePI7PX3feUqOj/ZChQAAtD3WEAEAADCwp97YoVGXv96qMOREm3eV6szZq3TXIxvkdDZyegkAAO0IgQgAAIBB3bvyG829e60qqhxtcry6OpfuXblR1/35UzkczjY5JgAA3kIgAgAAYEAPPvWd7nok1yvHfn51vm6453O5GluIBACAdoBABAAAwGA+/nqf/vCvbK/28fRbO7XylW1e7QMAgFNBIAIAAGAg5ZW1mnv35x63y06frsI1s5SdPr3FbRb/M1sFe8s87gsAAF8gEGmC3W5Xamqqhg4dqqCgIPXr108LFy5URUWF5s6dK5PJpOXLl/u7TAAAgBb7y4pc7W5FSGGNDlFMr1BZo0Na3Ka8slbz/vaFx30BAOAL3Ha3ERs3blRKSopsNptCQ0MVHx+vffv2admyZcrPz1dJSYkkKSkpyb+FAgAAtFBZRY1Wvrrdp32++3mR8r4/pLjB3X3aLwAAzeEMETfsdrumTZsmm82mRYsWqbi4WLm5ubLZbEpLS1NmZqays7NlMpmUkJDg73IBAABa5Lm3d6m8stbn/a7IyPN5nwAANIdAxI0FCxaoqKhI8+fP19KlSxUeHn58W2pqqhITE+VwODRw4EBFRET4sVIAAICWe3rVTr/0++zbO7kNLwCg3SEQaSAvL08ZGRmKjo7WkiVL3O6TnJwsSUpMTKz3+Nq1a3XhhRcqOjpa3bt311lnnaXXX3/d6zUDAAA0p/qoQ99sO+iXvo+U12rb7kN+6RsAgMYQiDSQnp4up9Op2bNnKywszO0+wcHBkuoHIt9++60mT54si8Wip59+WhkZGerXr5+uvPJKrV692ie1AwAANGbTzlI5HC6/9b9hq3/CGAAAGsOiqg1kZWVJkiZMmNDoPkVFRZLqByIZGRkymUx68803FRJybPX1SZMmafDgwXrhhRc0depUL1YNAADQtE07S/3a/3c7S/zaPwAADRGINLBnzx5J0oABA9xudzgcWrdunaT6gUhNTY26du16/OwRSbJYLAoPD5fT2bprZseMGSObzdaqtgAAACcqDzxLCk1xuy07fXqzt9O1Rgcf/1m4Zlaj+9nslRp79aqTHv/PY08r419XeFBx+1Lc/TbJ3E3FtmLFxMT4uxyfM/r4JeaA8Rt7/FL7nQOr1aqcnJxWtSUQaaCiokKSVFVV5XZ7RkaG7Ha7wsPDNWjQoOOPz5kzR4888ogWLVqkP/zhDwoICNDKlSu1c+dOrVixolW12Gw27d27t1VtAQAA6ok6IoW632SNDlFMr0Y2NhBgMbd43xNVVlaqsiO/rwmvk8ySs67OmO/PjD5+iTlg/MYev9Qp54BApAGr1arS0lLl5uZq/Pjx9bYVFxdr8eLFkqSEhASZTKbj2xITE/XRRx/p8ssv10MPPSRJCg0N1SuvvKLzzjuv1bUAAAC0hYrAEB1qZJvNXtlse2t0sAIsZjnqnLLZ3X9x1NSxQkO6qnvfvi2otH0qtljklGS2WNS7A4+jtYw+fok5YPzGHr/UfufgVD43E4g0MGnSJOXl5SktLU2TJ09WbGysJCk7O1tz5syR3W6XJCUlJdVrt3PnTs2cOVNjx47VvHnzZLFY9MILL2jWrFlavXq1Jk6c6HEtrT3tBwAAoKHPcop1/q/fcbvN3SUuDRWumaWYXqGy2avUb/JLHve/9L7bdPNVj3vcrr2ImZSuvQcq1dvaW0Wbi/xdjs8ZffwSc8D4jT1+qXPOAYFIA6mpqXrxxRdVWFiokSNHasSIEaqurtauXbuUkpKigQMH6v333z/plrt33HGHQkJC9MYbbygg4Ni0XnTRRfrhhx+0aNEiffPNN/4YDgAAgCTp9LgomUySy083mkmOj/ZPxwAANILb7jYQExOjtWvXasqUKQoKClJBQYEiIyO1cuVKZWZmaseOHZJ0UiCyadMmJSYmHg9DfjJmzBjl5eX5rH4AAAB3wkO7asSg7n7pu2sXs0YP6+GXvgEAaAxniLgRFxen1atXn/R4eXm5CgoKZDabNWrUqHrbrFarNm7cKIfDUS8Uyc7OVt92dH0VAAAwrl9eMlh3Ls/1eb9XTh6koEDedgIA2hfOEPHAli1b5HK5NGzYMIWE1L813a233qqdO3fqF7/4hVavXq13331Xc+bM0aeffqqFCxf6qWIAAID/+c3lwxUQYGp+xzY2b2acz/sEAKA5BCIe2LRpk6STL5eRpBkzZujtt9/WoUOHdN111+nqq6/W9u3b9cILL2jBggW+LhUAAOAk1ugQzfz5YJ/2eUZclM5OOs2nfQIA0BKcu+iBpgIRSZo6daqmTp3qy5IAAAA88vfbxinzs0IdKqvxel8Wi0kr7/qZTCbfn5UCAEBzOEPEA80FIgAAAO1d754hWvbHszxuZ7NXqmh/hWz2yha3Sf1VgsaM7OlxXwAA+AJniHggKyvL3yUAAACcsmumDlXW18V6+q2dLW4z9upVHvVxXrJVd99yuqelAQDgM5whAgAAYDAmk0mP332OZl48yCvHPyuhp95+eLICu1q8cnwAANoCgQgAAIABBQSY9cKSC7Rw9sg2Pe5lEwdozWMpigjr2qbHBQCgrRGIAAAAGJTFYta//nCWPno8RQP7hJ3SsXpEdNVz95+v1x+6UGEhXdqoQgAAvIdABAAAwOAmntlHm16/XGm/HetxMBLdI0h/nJugLW9coWumDuWOMgCADoNFVQEAAKCwkC5K/XWCFl03Su+tK9K7nxdpw1a7Nm4vUfXRuuP7BQSYNGpoDyXHRWviuD66YvJA1goBAHRIBCIAAAA4zmIxa8p5/TXlvP6SJIfDqZLDR1VdU6euXczqERFIAAIA6BQIRAAAANCogACzTosK9ncZAAC0OdYQAQAAAAAAhkMgAgAAAAAADIdABAAAAAAAGA6BCAAAAAAAMBwCEQAAAAAAYDgEIgAAAAAAwHAIRAAAAAAAgOEQiAAAAAAAAMMhEAEAAAAAAIZDIAIAAAAAAAyHQAQAAAAAABgOgQgAAAAAADAcAhEAAAAAAGA4BCIAAAAAAMBwCEQAAAAAAIDhEIgAAAAAAADDIRABAAAAAACGQyACAAAAAAAMh0AEAAAAAAAYDoEIAAAAAAAwHAIRAAAAAABgOAQiAAAAAADAcAhEAAAAAACA4RCIAAAAAAAAwyEQAQAAAAAAhkMgAgAAAAAADIdABAAAAAAAGA6BCAAAAAAAMBwCEQAAAAAAYDgEIgAAAAAAwHAC/F0AAAAA0N44nS7t+uGINmy1a+v3h3SorEaSdKS8Rq98sFvJ8VEa1DdcJpPJz5UCAFqLQAQAAAD4P1t2lerRl/P0Qmb+8RDkRGWVDl31+yxJUs8eQbp22lDdfFWchvaP8HWpAIBTRCACAAAAw9tRcFjzl3yhNV/ua3GbH0ur9Y9nN+sfz27WpRP6a9kfx6t/7zAvVgkAaEusIQIAAADDqqtz6qHnNitxxhsehSENvfXxDxp1+et64rXtcrlcbVghAMBbCEQAAABgSEdr6jTj91m67e/rVX207pSPV1ZRqxvu+Vxz714rh8PZBhUCALyJS2YAAABgODW1dbrito+U+Vlhmx/7v2/uVE2tU8/+7XyZzSy6CgDtFWeIAAAAwHAWPPCVV8KQn7yQma87l2/w2vEBAKeOQAQAAACG8t7nRVr5yjaP2mSnT1fhmlnKTp/e4jYPPPWd1n93wNPyAAA+QiDSBLvdrtTUVA0dOlRBQUHq16+fFi5cqIqKCs2dO1cmk0nLly/3d5kAAABoocNlNbrhns89bmeNDlFMr1BZo0Na3MbpdOlXd36m6qMOj/sDAHgfa4g0YuPGjUpJSZHNZlNoaKji4+O1b98+LVu2TPn5+SopKZEkJSUl+bdQAAAAtNjKV7apaH+Fz/rbtvuwXnzne/36F7E+6xMA0DKcIeKG3W7XtGnTZLPZtGjRIhUXFys3N1c2m01paWnKzMxUdna2TCaTEhIS/F0uAAAAWsDpdOk/Hl4q0xZWZOT5vE8AQPMIRNxYsGCBioqKNH/+fC1dulTh4eHHt6WmpioxMVEOh0MDBw5URESEHysFAABAS33wxV7t3lvm8343bLUre/OPPu8XANA0ApEG8vLylJGRoejoaC1ZssTtPsnJyZKkxMTEeo9/+OGHOuussxQUFKTTTjtNN998sw4fPuz1mgEAANC8NV/t9VvfH361z299AwDcIxBpID09XU6nU7Nnz1ZYWJjbfYKDgyXVD0Q+/fRTXXzxxerbt6/eeOMN/e1vf9Orr76qyy67TC6Xyye1AwAAoHEbttoN2TcAwD0WVW0gKytLkjRhwoRG9ykqKpJUPxD561//qmHDhumVV16R2XwsZ4qKitIVV1yhzMxMTZ061YtVAwAAoClOp0u5eQf91n8OgQgAtDsEIg3s2bNHkjRgwAC32x0Oh9atWyepfiCyfv16XX/99cfDEEm66KKLJElvvvlmqwKRMWPGyGazedwOAAAA9TnVRWWRf250e3b69CZvqWuNDj7+s3DNrEb3s9krNfbqVSc9vmdvqWJiYjyouH0p7n6bZO6mYltxhx7HqTD6HDB+Y49far9zYLValZOT06q2BCINVFQcuw1bVVWV2+0ZGRmy2+0KDw/XoEGDjj9usVjUtWvXevt26dJFJpNJW7ZsaVUtNptNe/f671pXAACATsMcIkU2vtkaHaKYXqHNHibAYm7RfiezdOz3deF1klly1tV17HGcCqPPAeM39vilTjkHBCINWK1WlZaWKjc3V+PHj6+3rbi4WIsXL5YkJSQkyGQyHd8WGxur9evX19s/OztbLpdLJSUlra4FAAAAp86pLipuYrvNXtlke2t0sAIsZjnqnLLZ3X9x1vRx6tS3b9/mC22nii0WOSWZLRb17sDjOBVGnwPGb+zxS+13Dk7lczOBSAOTJk1SXl6e0tLSNHnyZMXGxko6Fm7MmTNHdvux6z+TkpLqtVuwYIGuvfZa3Xfffbr55ptVVFSkefPmyWKx1LuMxhOtPe0HAAAA9blcLkWe87wOldW43e7uMpcTFa6ZpZheobLZq9Rv8kse9z+kf6R2bSryuF17ETMpXXsPVKq3tbeKNnfccZwKo88B4zf2+KXOOQfcZaaB1NRURUVFqbCwUCNHjtTo0aM1bNgwjRs3ToMHD9bEiRMlnXzL3WuuuUZ/+MMfdO+996pnz54aM2aMJkyYoKSkJPXu3dsfQwEAAMD/MZlMOiMuym/9J8dH+61vAIB7BCINxMTEaO3atZoyZYqCgoJUUFCgyMhIrVy5UpmZmdqxY4ekkwMRk8mkBx54QHa7Xd9++63279+vf/zjH9q5c6fOPvtsfwwFAAAAJ/BnKJEcRyACAO0Nl8y4ERcXp9WrV5/0eHl5uQoKCmQ2mzVq1Ci3bcPDw5WQkCBJevzxx1VVVaXrr7/eq/UCAACgeRf/LEZ/f3qTX/r++c/az/X2AIBjCEQ8sGXLFrlcLsXGxiokpP5t2XJycrRmzRqdccYZcjgc+vDDD7Vs2TItXbpUQ4YM8VPFAAAA+MmEcb01fGA3bS847NN+z046TYnD/Xe5DgDAPS6Z8cCmTce+UWh4uYwkBQYG6u2339aMGTM0Y8YMffHFF8rIyNDvfvc7X5cJAAAAN0wmk265aoTP+503M87nfQIAmscZIh5oKhAZPXq0vvjiC1+XBAAAAA/85vLhejh9q/ILy3zSX9KISF110WCf9AUA8AxniHigqUAEAAAA7V9oSBc9dc+5PumrS4BZz9x3vrp04S03ALRHnCHigaysLH+XAAAAgFN03pjeWnTtKP3j2c0tbmOzV9b72RL3zDtDCbGRHtcHAPANAhEAAAAYTtrvxmrvgUq99N73Ldp/7NWrPDr+LVeN0B/nJrSmNACAj3D+HgAAAAzHYjHrufvP13XTh7X5sX83Z6SW33G2TCZTmx8bANB2CEQAAABgSAEBZv333nP11F/PVbfwrqd8vJ49gvTK0on65+KzZDYThgBAe0cgAgAAAMMymUy6/rJYbX7tcs24aFCrgowuAWZdN32Ytrxxua68aJAXqgQAeANriAAAAMDwYqyhennpRBXayvXYq9v13Opd2rOvvMk2Q/tH6FfTh2nu5bGyRof4qFIAQFshEAEAAAD+Tz9rmO6dn6x75yfrwMEq5eYd1Jb8UlVUOWQ2S6HBXTR6WA+dERetyG6B/i4XAHAKCEQAAAAAN06LCtbF58To4nNi/F0KAMALWEMEAAAAAAAYDoEIAAAAAAAwHAIRAAAAAABgOAQiAAAAAADAcAhEAAAAAACA4RCIAAAAAAAAwyEQAQAAAAAAhkMgAgAAAAAADIdABAAAAAAAGA6BCAAAAAAAMBwCEQAAAAAAYDgEIgAAAAAAwHAIRAAAAAAAgOEQiAAAAAAAAMMhEAEAAAAAAIZDIAIAAAAAAAyHQAQAAAAAABgOgQgAAAAAADAcAhEAAAAAAGA4BCIAAAAAAMBwCEQAAAAAAIDhEIgAAAAAAADDIRABAAAAAACGQyACAAAAAAAMh0AEAAAAAAAYDoEIAAAAAAAwHAIRAAAAAABgOAQiAAAAAADAcAhEAAAAAACA4RCIAAAAAAAAwyEQAQAAANCoH0uqVOtwSpJqHU5VVjn8XBEAtI0AfxcAAAAAoP04eKhaz769S5/mFCtni117D1Qe33agpFrh459V3KBuGjOyp6Zf0F/TL+ivgAC+ZwXQ8RCIAAAAANDW/FI9+N9Neum973W0pq7R/ZxOl7bkH9KW/EN6ZtVO9TktRDdeMVy/mzNKEWFdfVgxAJwaolwAAADAwBwOp+5/fKNOv+pNPbNqZ5NhiDv7DlTqL49+o9FXvK41X+71UpUA0PYIRAAAAACDKv6xUmdf+7b+9PAG1dQ6T+lYPxRX6KKb3tPCB75UXd2pHQsAfIFABAAAADCgQlu5zv3VamVvtrfpcZe9uFVz7viUUARAu0cgAgAAABhMyeGjmnzje8ovLPPK8dPf/V7z/vaFV44NAG2FQAQAAAAwmAUPfKntBYdbvH92+nQVrpml7PTpLW7z2Kvb9eoHu1tTHgD4BIEIAAAAYCBvfbxHL2Tme9TGGh2imF6hskaHeNRu3t++0I8lVR61AQBfMWQgYrfblZqaqqFDhyooKEj9+vXTwoULVVFRoblz58pkMmn58uX+LhMAAABoU7W1Tt3qw0tZfiyt1p2P5PqsPwDwRIC/C/C1jRs3KiUlRTabTaGhoYqPj9e+ffu0bNky5efnq6SkRJKUlJTk30IBAACANvZGVoH2Hqj0aZ/Pvb1LDywco+4RgT7tFwCaY6gzROx2u6ZNmyabzaZFixapuLhYubm5stlsSktLU2ZmprKzs2UymZSQkODvcgEAAIA2tSIjz+d9VlY79MyqnT7vFwCaY6hAZMGCBSoqKtL8+fO1dOlShYeHH9+WmpqqxMREORwODRw4UBEREX6sFAAAAGhbNnulPs2x+aXvl9773i/9AkBTDBOI5OXlKSMjQ9HR0VqyZInbfZKTkyVJiYmJxx/7KUAZN26cAgMDZTKZGu1j9+7dmj59usLDw9WjRw9de+21OnjwYNsOBAAAAGiFnC12v/W9cXuJHA6n3/oHAHcME4ikp6fL6XRq9uzZCgsLc7tPcHCwpPqByK5du/Taa6/JarVq7NixjR6/rKxMEyZMUFHR/2/v7qOjqu79j39mEiAPJEISykQGCJAEkkASJURRG4UGKyJYH1AocuOt96e1UqlS0lpry22tmErrLaVatFZqH2IstF5MtFc0tCKtGkhRJJEnDSZhBjqQCCThYTLz+4Mrl8iEZCaTmcB+v9ZyZc3ss/f3ewaWi/nknH0aVFpaqqeeekobNmzQddddJ4+H//kDAAAgvDbXhC8QOXqsXTUfNoetPgD4YsymqpWVlZKkKVOmdHpMQ0ODpI6BSEFBgRwOhyRpyZIl2rhxo8+5Tz31lBobG/XGG29oxIgRkiS73a7LLrtMa9eu1Ze+9KVgnAYAAAAQkO11n4S9fnZ6Qlh7AIDTGROI7NmzR5I0cuRIn+Nut/tU2HF6IGK1du8imvLycl1xxRWnwhBJmjx5skaPHq2XXnopoEAkLy9PTmd47vMEAADA+eXAwDlS/wyfY1Wls2RLiul0ri0p+tTP+nVzzlrH6WrVpLlrz3j/rq8u0H3H3/Wj477FMeh+yXqBHE6H7HZ7uNsJOc7f7POX+u5nYLPZtGnTpoDmGhOItLS0SJLa2tp8jpeVlcnlcikuLk6jRo3ye/2amhrNnj37jPezsrJUU1Pj93qS5HQ61djYGNBcAAAAoIMRLVJ/30O2pBjZh8Z2uURkhLVbx/nS1HRATc3n8L9t49olq+Rpbzfz3+icv9nnL52Xn4ExgYjNZlNTU5Oqq6s1efLkDmMOh0OLFy+WJGVnZ59149TONDU1adCgQWe8n5CQoO3btwfcMwAAABAMTVFWtXYy5nR1NnKSLSlakRFWuds9crp8/4Kxq7USBsUqOnZYd1rtkxwREfJIskZEKHnYuXsegeL8zT5/qe9+Bj353mxMIFJYWKja2lqVlJRo2rRpSk9PlyRVVVVp/vz5crlObjKVm5sbxi47CvSyHwAAAOCz/uu37+u+x972OebrFpfT1a+bI/vQWDldbRo+7fmA6ldvfFEjL4wLaG5fYC8sVeP+ViXbktXwfkO42wk5zt/s85fOz8/AmKfMFBcXKzExUfX19crKytKECROUlpam/Px8jR49WlOnTpXUcf8QfwwePFjNzc1nvH/w4EElJLB5FAAAAMIrLyspbLWTBkdpRLLvJz0CQLgYE4jY7XZt2LBBM2bMUFRUlOrq6pSQkKCVK1eqoqJCO3bskBR4IJKRkeFzr5CamhplZPjevAoAAAAIlYvGJWpA/4iw1J6c/bmAbksHgN5kTCAinQwtysvLdfjwYR0+fFhvv/227rzzTrW0tKiurk5Wq1Xjx48PaO3rrrtOb7755qlH90rS22+/rd27d2vmzJnBOgUAAAAgILEx/TTnmtFhqX3HjelhqQsAZ2NUINKZbdu2yev1Ki0tTTExZz5ubPXq1Vq9evWpK0A+fX36Hh933nmnkpOTdf3116u8vFyrV6/W3LlzlZ+fr+uvvz5k5wIAAAB05mu3hv7K5eG2WM34/PCQ1wWArhizqerZbN26VVLnt8t89nG6n74uKirSqlWrJEnx8fGqrKzUwoULNWfOHEVGRuq6667T448/LquV3AkAAADhlz9hiAom2vTGZmfIat4/f7wiI/n3MIC+h0BEXQciXq+3W+uMGTNG5eXlQesLAAAACLanv3+Fcmb/WUePtfd6rUsmDNHXv5zZ63UAIBBEteo6EAEAAADOF+kpF+iRe/P8muN0taphX4ucrtZuzxnQP0KrHi5QRARfOQD0TVwhIqmysjLcLQAAAAAhs3BelqprXfpd+e5uHT9p7lq/1rdYpOd+VKBxowYF0B0AhAZxLQAAAGAYq9WiZ39QoC9fOyboa0dEWPSbhwt0yxfD80QbAOguAhEAAADAQJGRVv32kSu15O6LFBlpCcqaF34uRhUrrtb8mWlBWQ8AehOBCAAAAGAoq9Wi7999sd75/Sxlpyf0aK2iWWl6/0836ouX24PUHQD0LvYQAQAAAAx3UUaSNpVer5f+9rGeKKvV62/v7da8mKhIffna0br7lgxdnJnUy10CQHARiAAAAABQv35W3ViYohsLU7Tr40N6Y7NTm7b9S9W1B+RqPqoTbo+i+kcqZdhATcxIUl5WkqbmJ2tQ/IBwtw4AASEQAQAAANBB6oh4pY6I11duSA93KwDQa9hDBAAAAAAAGIdABAAAAAAAGIdABAAAAAAAGIdABAAAAAAAGIdABAAAAAAAGIdABAAAAAAAGIdABAAAAAAAGIdABAAAAAAAGIdABAAAAAAAGIdABAAAAAAAGIdABAAAAAAAGIdABAAAAAAAGIdABAAAAAAAGIdABAAAAAAAGIdABAAAAAAAGIdABAAAAAAAGIdABAAAAAAAGIdABAAAAAAAGIdABAAAAAAAGIdABAAAAAAAGIdABAAAAAAAGIdABAAAAAAAGIdABAAAAAAAGIdABAAAAAAAGIdABAAAAAAAGIdABAAAAAAAGIdABAAAAAAAGIdABAAAAAAAGIdABAAAAAAAGIdABAAAAAAAGIdABAAAAAAAGCcy3A0AAAAAQF9y4oRHb2/dr801Lm2uOaDdDYe0/+BRSZKr+ai+87NNmpiZqMtyhyp5SEyYuwUQKAIRAAAAAJDUuK9FT6/ZrqfWbJfjX60+jzl23KOlz7wrSbJaLZp11Qh97dYMfeGSC2W1WkLZLoAeIhABAAAAYLTjJ9r1o6fe1SPPbJHb7e32PI/Hqxcr9+jFyj2aND5Jq35YoMwxg3uxUwDBxB4iAAAAAIz17vYDmjR3rX6w8p9+hSGfVfW+Sxfd8qIefeZdeTyBrwMgdAhEAAAAABhp/Tt7dUVRhd7bcTAo6x0/4dEDP9uk27/7htxuT1DWBNB7uGUGAAAAgHHerHZqxoJX1Xa0Pehr/7Z8lywW6dkfFrCvCNCHcYUIAAAAAKPsO9CmL33jtV4JQz713Eu79NPn3u+19QH0HIEIAAAAAGN4vV7d/fBGHWg+5te8qtJZql83R1Wls7o957srNuuDj5r97BBAqBgZiLhcLhUXFys1NVVRUVEaPny4Fi5cqJaWFt1xxx2yWCxasWJFuNsEAAAAEGRr1tXpz6/v8XueLSlG9qGxsiXFdHvOsePt+sr3NsjrZZNVoC8ybg+RLVu2aPr06XI6nYqNjVVmZqb27t2r5cuXa/fu3Tp48OSGSrm5ueFtFAAAAEBQeb1eLX3m3ZDW/Me7+7Vhs1MFeckhrQuga0ZdIeJyuTRz5kw5nU4tWrRIDodD1dXVcjqdKikpUUVFhaqqqmSxWJSdnR3udgEAAAAEUdX7LlXXHgh53SdeqA15TQBdMyoQuffee9XQ0KAFCxZo2bJliouLOzVWXFysnJwcud1upaSkKD4+PoydAgAAAAi2p9d8EJa6a16r04Hmo2GpDaBzxgQitbW1KisrU1JSkpYuXerzmIkTJ0qScnJyTr33aYCSn5+vAQMGyGLx/dis7h4HAAAAIDze/Oe+sNR1u72qet8VltoAOmdMIFJaWiqPx6N58+Zp4MCBPo+Jjo6W1DEQ2bVrl9asWSObzaZJkyZ1un53jwMAAAAQeodbjmt73Sdhq7+5hkAE6GuMCUQqKyslSVOmTOn0mIaGBkkdA5GCggI5HA6tXbtWhYWFnc7t7nEAAAAAQm/rziaF82Ev//wg9HuXADg7Y54ys2fPyUdrjRw50ue42+3Wxo0bJXUMRKzW7mVG3T3OH3l5eXI6nUFfFwAAADDN0X5pUtxtPseqSmd1+ThdW1L0qZ/16+Z0epzT1apJc9ee8X75K5Wyv1DkR8d9i2PQ/ZL1AjmcDtnt9nC3E3Kmn7/Udz8Dm82mTZs2BTTXmECkpaVFktTW1uZzvKysTC6XS3FxcRo1alQoW+uU0+lUY2NjuNsAAAAAzn1xSVKc7yFbUozsQ2O7tUxkhLXbx57u2LET5/a/7ePaJavkaW8/t88jUKafv3RefgbGBCI2m01NTU2qrq7W5MmTO4w5HA4tXrxYkpSdnd1nNkS12WzhbgEAAAA4LxyNjFdnN604Xa1dzrclRSsywip3u0dOl+9fsp5trQH9rUoaNqw7rfZJjogIeSRZIyKUfA6fR6BMP3+p734GPfnebEwgUlhYqNraWpWUlGjatGlKT0+XJFVVVWn+/PlyuU5ucpSbmxvGLjsK9LIfAAAAAB192HBIY679o88xX7e4fFb9ujmyD42V09Wm4dOe97v+/yu6Xj9/4FG/5/UV9sJSNe5vVbItWQ3vN4S7nZAz/fyl8/MzMGZT1eLiYiUmJqq+vl5ZWVmaMGGC0tLSlJ+fr9GjR2vq1KmSOu4fAgAAAOD8MGpYnAbH9w9b/YmZiWGrDcA3YwIRu92uDRs2aMaMGYqKilJdXZ0SEhK0cuVKVVRUaMeOHZIIRAAAAIDzkcVi0cTMpLDVn5gRvtoAfDPmlhlJysjIUHl5+RnvHzlyRHV1dbJarRo/fnwYOgMAAADQ226eNkqvvbU35HXHplyg8WmDQ14XwNkZFYh0Ztu2bfJ6vUpPT1dMzJmP21q9erUkqaampsPrlJQU5eXl+X0cAAAAgNCbN2OMFv/0HR1uORHSul+7NaPPPLgBwP8hEJG0detWSZ3fLjN79myfr4uKirRq1Sq/jwMAAAAQegNj+un269P08z/UhKxmbHSk/m1masjqAeg+AhF1HYh4vd5urdPd4wAAAACEx/e/epHK/vKh9h88GpJ6SxfmaVD8gJDUAuAfYzZVPZuuAhEAAAAA54fEQVH65UOXh6TWlXk23TMnMyS1APiPK0QkVVZWhrsFAAAAACFywxdSdOfNY/XU6u3dnuN0tXb42ZUhg6P07A8KZLWydwjQVxGIAAAAADDOEw9epk+OHFfZXz7q1vGT5q7t9toJFwzQ//zyixpljwu0PQAhwC0zAAAAAIwTEWHV75depa/OHhfUdUckx+pvv75WF2UkBXVdAMFHIAIAAADASBERVj350OVau3yakofE9Hi9u2aP0/t/ulHj0xKC0B2A3kYgAgAAAMBoM68aoW1/vlHfLJqghAv8fyLMtMkX6vWnp+uXD12uuNj+vdAhgN7AHiIAAAAAjDc4foAeW5SvH9xzsV74n4/0p9frtLnGpcb9Z26iGjUgQjnpCfr8xTb9x43pGjtqUOgbBtBjBCIAAAAA8L+ioyJVdH2aiq5PkyTtO9CmDxsOqe1ou/pFWjU4vr/GjRqkyEgutgfOdQQiAAAAANCJoYnRGpoYHe42APQCYk0AAAAAAGAcAhEAAAAAAGAcAhEAAAAAAGAcAhEAAAAAAGAcAhEAAAAAAGAcAhEAAAAAAGAcAhEAAAAAAGAcAhEAAAAAAGAcAhEAAAAAAGAcAhEAAAAAAGAcAhEAAAAAAGAcAhEAAAAAAGAcAhEAAAAAAGAcAhEAAAAAAGAcAhEAAAAAAGAcAhEAAAAAAGAcAhEAAAAAAGAcAhEAAAAAAGAcAhEAAAAAAGAcAhEAAAAAAGAcAhEAAAAAAGAcAhEAAAAAAGAcAhEAAAAAAGAcAhEAAAAAAGAcAhEAAAAAAGAcAhEAAAAAAGAcAhEAAAAAAGAcAhEAAAAAAGAcAhEAAAAAAGAcAhEAAAAAAGCcyHA3AAAAAADoe9xuj2o/bNZ7Ow/qSOsJSVJLm1tvvbtfOWMTFB3F10mc2/gbDAAAAACQJLUddev5v3yoZ1/coU01LrUdbe8w3nz4uCbPf0kRERaNTx2sudNH6ytfSteQhOgwdQwEjkAEAAAAAAzXdtStR371rn7xfI2aDh3v8vj2dq/e3X5Q724/qO/9olpfvnaMHv3GJA1NJBjBuYM9RAAAAADAYG+9u18X3fKiHn5qS7fCkM86fsKjVf+9U1k3rNHzr+yW1+vthS6B4CMQAQAAAABDrSit0eVF5dpe90mP1zrQfExzv/VX3fmfb6q93ROE7oDeRSACAAAAAAb6yW+26utL/yGPJ7hXdPzqTzs0/zt/IxRBn0cgAgAAAACGKX15t775k3d6b/1XPtTin/be+kAwEIgAAAAAgEEa97Xo7h/93a85VaWzVL9ujqpKZ3V7zuO/3ab17+z1tz0gZAhEAAAAAMAQXq9Xd/7gTX1y2L/NU21JMbIPjZUtKcaveV/53gYdaT3h1xwgVIwMRFwul4qLi5WamqqoqCgNHz5cCxcuVEtLi+644w5ZLBatWLEi3G0CAAAAQFCtf8ehlzc0hKxe3d4j+sXzNSGrB/gjMtwNhNqWLVs0ffp0OZ1OxcbGKjMzU3v37tXy5cu1e/duHTx4UJKUm5sb3kYBAAAAIMieKKsNec1fvvCBvlk0QRERRv4+Hn2YUX8jXS6XZs6cKafTqUWLFsnhcKi6ulpOp1MlJSWqqKhQVVWVLBaLsrOzw90uAAAAAARN474Wvbh+T8jr1u09olfeDN1VKUB3GRWI3HvvvWpoaNCCBQu0bNkyxcXFnRorLi5WTk6O3G63UlJSFB8fH8ZOAQAAACC4/ufvjWpvD+4jdrur4o36sNQFzsaYQKS2tlZlZWVKSkrS0qVLfR4zceJESVJOTs6p9z4NUPLz8zVgwABZLBafc1evXq2bbrpJI0eOVExMjMaNG6cHH3xQR44cCf7JAAAAAICfNte4wle7Nny1gc4YE4iUlpbK4/Fo3rx5GjhwoM9joqOjJXUMRHbt2qU1a9bIZrNp0qRJna6/bNkyRURE6JFHHtErr7yiu+++W08++aSuueYaeTye4J4MAAAAAPgpnIHIezuadOIE34vQtxizqWplZaUkacqUKZ0e09Bw8r620wORgoICORwOSdKSJUu0ceNGn3NfeuklDRky5NTrK6+8UkOGDNG8efP05ptvqqCgoMfnAAAAAACB+tjZErbax463619Nbbrwc7Fh6wH4LGMCkT17Tm4eNHLkSJ/jbrf7VNhxeiBitXbvIprTw5BP5eXlSZIaGxv96vX0+U6nM6C5AAAAAHA656BvSdYYn2NVpbNkS/I9Jkm2pOhTP+vXzem8hqtVk+au9Tl2cd6livQ0+dFx3+EYdL9kvUAOp0N2uz3c7YRFX/0MbDabNm3aFNBcYwKRlpaTaWhbW5vP8bKyMrlcLsXFxWnUqFFBqbl+/XpJUkZGRkDznU5nwGEKAAAAAHQQd7zTQMSWFCP70K6v3oiMsHbrOF/2ORol97kZiCiuXbJKnvZ2c7+jnYefgTGBiM1mU1NTk6qrqzV58uQOYw6HQ4sXL5YkZWdnd7pxqj8aGxv10EMP6ZprrlFubm5Aa9hsth73AQAAAACStM9yTO5Oxpyu1rPOtSVFKzLCKne7R06X718yn3Udr0fJQy+QVZ1fhdKXOSIi5JFkjYhQ8rBh4W4nLPrqZ9CT783GBCKFhYWqra1VSUmJpk2bpvT0dElSVVWV5s+fL5fr5AZDgYYXpzty5Iiuv/569e/fX7/+9a8DXifQy34AAAAA4LNu/+4b+s3anT7HOrvN5VP16+bIPjRWTlebhk973u/amakJ2vbnj/ye11fYC0vVuL9VybZkNbzfEO52wuJ8/AyMecpMcXGxEhMTVV9fr6ysLE2YMEFpaWnKz8/X6NGjNXXqVEkd9w8JRFtbm2bOnKmPPvpIr776qpKTk4PRPgAAAAD0yMTMxPDVzkgKW22gM8YEIna7XRs2bNCMGTMUFRWluro6JSQkaOXKlaqoqNCOHTsk9SwQOXHihG6++WZt2rRJr7zyijIzM4PVPgAAAAD0yJRJ4ftl7ZR8flGMvseYW2akk5ublpeXn/H+kSNHVFdXJ6vVqvHjxwe0tsfj0bx58/T666/r5ZdfVn5+fk/bBQAAAICgGZ+WoMsvGqqN/9wX0rqD4vrr1i+ODmlNoDuMCkQ6s23bNnm9XqWnpysm5sxNflavXi1Jqqmp6fA6JSXl1KN177nnHv3xj3/Ut7/9bcXExOitt946NX/MmDE+H8sLAAAAAKF0z60ZIQ9E/v1LaYqJ5qsn+h7+VkraunWrpM5vl5k9e7bP10VFRVq1apUk6ZVXXpEkPfroo3r00Uc7HP/ss8/q9ttvD2LHAAAAAOC/m6alKOvpQdq2uzkk9eJi++m++YFdhQ/0NgIRdR2IeL3eLteoq6sLZksAAAAAEHT9+0Vo1cMFuvS2l9Te3vX3nJ76yaJ8DbcN7PU6QCCM2VT1bLoKRAAAAADgfJGXNUQP3OHfdx+nq1UN+1rkdLV2e84XLxum/7hprL/tASHDFSKSKisrw90CAAAAAITMkrsv0u76Qyp95cNuHT9p7lq/1r9oXKLKHpsqi8USSHtASHCFCAAAAAAYJiLCqud+dKXmX5ca9LXzxw/Ruqeu0QVx/YO+NhBMBCIAAAAAYKDISKtWPVyg5d++VDFRPb95wGKRFs7L0vpnrlXioKggdAj0LgIRAAAAADCU1WrR17+cpffW3KAvXHJhwOtkjB6kv/16hv7rW5fyiF2cM/ibCgAAAACGGzM8Xq89PV3vbj+gJ1/4QL8r36WWNvdZ50REWDTrqhH62q0Zmpp/oaxW9gvBuYVABAAAAAAgScoZm6hfPnS5ln/7Ur2/s0mba1x6b2eTDh05Lo/Xq5ioSGWMGqS8rCTljkvUwJh+4W4ZCBiBCAAAAACgg/79InRxZpIuzkwKdytAr2EPEQAAAAAAYBwCEQAAAAAAYBwCEQAAAAAAYBwCEQAAAAAAYBwCEQAAAAAAYBwCEQAAAAAAYBwCEQAAAAAAYBwCEQAAAAAAYBwCEQAAAAAAYBwCEQAAAAAAYBwCEQAAAAAAYBwCEQAAAAAAYBwCEQAAAAAAYBwCEQAAAAAAYBwCEQAAAAAAYBwCEQAAAAAAYBwCEQAAAAAAYBwCEQAAAAAAYBwCEQAAAAAAYBwCEQAAAAAAYBwCEQAAAAAAYBwCEQAAAAAAYBwCEQAAAAAAYBwCEQAAAAAAYBwCEQAAAAAAYBwCEQAAAAAAYBwCEQAAAAAAYBwCEQAAAAAAYBwCEQAAAAAAYBwCEQAAAAAAYBwCEQAAAAAAzsLr9Xb4ifNDZLgbAAAAAACgr/B6vfrbJqfW/aNRm2tc2lx7QK6mo5Kkvf9q0+eu/L0mZiZpYmaivniZXVdcPFQWiyXMXSMQFi8RFwAAAADAcC2tJ/TrF3foyRc+UO2Hzd2eNz51sO6+ZZz+/Uvpio46f685sBeWqnF/q4Z9LkYNr80NdztBwS0zAAAAAACj/W2TQ9k3/1n3PvqWX2GIJL2/q0n3PPIP5cz+s/6+ZV/vNIheQSACAAAAADCS2+3R/Y+9pau+8rI+bDjco7V27jmkK4rK9a3H35HHw40Y5wICEQAAAACAcU6c8Gjut9br8d9uC9qaXq/042e3av53/ia32xO0ddE7CEQAAAAAAEbxeLy6/aE3tHpdXa+s/4eXd+uuH27kqTR9HIEIAAAAAMAoT63+QH94eXev1vj1n3foubW7erUGeoZABAAAAABgjLrGw1r80yq/5lSVzlL9ujmqKp3l17yFP35Ljfta/JqD0DEyEHG5XCouLlZqaqqioqI0fPhwLVy4UC0tLbrjjjtksVi0YsWKcLcJAAAAAAiyry/9h460nvBrji0pRvahsbIlxfg175PDx3XfY2/7NQehc/4+JLkTW7Zs0fTp0+V0OhUbG6vMzEzt3btXy5cv1+7du3Xw4EFJUm5ubngbBQAAAAAE1a6PD6n8jfqQ1lzzWp3qnUc03DYwpHXRNaOuEHG5XJo5c6acTqcWLVokh8Oh6upqOZ1OlZSUqKKiQlVVVbJYLMrOzg53uwAAAACAIHryhdqQ1/R4vFr5xw9CXhddMyoQuffee9XQ0KAFCxZo2bJliouLOzVWXFysnJwcud1upaSkKD4+PoydAgAAAACCyev16rcvhWeT0+fCVBdnZ0wgUltbq7KyMiUlJWnp0qU+j5k4caIkKScn59R7nwYo+fn5GjBggCwWi8+5GzZsUGFhoZKTkzVgwADZ7Xbdeuutqq0NfQIJAAAAAOhoz94j+lfT0bDUrne2yOlqDUttdM6YQKS0tFQej0fz5s3TwIG+792Kjo6W1DEQ2bVrl9asWSObzaZJkyZ1un5TU5MmTJig5cuX69VXX1VJSYm2bdumyZMnq6GhIbgnAwAAAADwy+Yal9H1cSZjNlWtrKyUJE2ZMqXTYz4NLk4PRAoKCuRwOCRJS5Ys0caNG33OnTVrlmbN6vgIpkmTJmns2LFas2aNFi5c2KP+AQAAAACB27a7Obz1dzVrRsGIsPaAjowJRPbs2SNJGjlypM9xt9t9Kuw4PRCxWgO/iCYxMVGSFBkZ2Mecl5cnp9MZcH0AAAAAwEmfRE+Toq/wOVZVOuusj9S1JUWf+lm/bs5Z6zhdrZo0d+0Z7z+89DEt/956PzruWxyD7pesF8jhdMhut4e7nVNsNps2bdoU0FxjApGWlhZJUltbm8/xsrIyuVwuxcXFadSoUQHXaW9vl8fj0Z49e/TAAw/IZrPplltuCWgtp9OpxsbGgHsBAAAAAPwv22EpupOhpBjZh8Z2uURkhLVbx/ly+NAhHd5/Dn+/i2uXrJKnvf28+Z5qTCBis9nU1NSk6upqTZ48ucOYw+HQ4sWLJUnZ2dmdbpzaHVdeeeWpK01SU1NVWVmpIUOGBNwzAAAAAKDnDkUN0OFOxrra8NSWFK3ICKvc7R45Xb5/yd7VWvFxUYrrN6w7rfZJjogIeSRZIyKUPKzvnEdPvjcbE4gUFhaqtrZWJSUlmjZtmtLT0yVJVVVVmj9/vlyukxvc5Obm9qjOM888o+bmZn300Ud67LHHdPXVV2vjxo0aMcL/e8UCvewHAAAAANDRn16r0033v+5zzNctLqerXzdH9qGxcrraNHza8wHVL312ma79/PCA5vYF9sJSNe5vVbItWQ3vnx8PDjHmKTPFxcVKTExUfX29srKyNGHCBKWlpSk/P1+jR4/W1KlTJXXcPyQQY8eO1SWXXKI5c+bo9ddf1+HDh/XjH/84GKcAAAAAAAjQxMzEMNdPCmt9nMmYQMRut2vDhg2aMWOGoqKiVFdXp4SEBK1cuVIVFRXasWOHpJ4HIqcbNGiQUlNTtWvXrqCtCQAAAADw34jkgfpcQlSYasdqaGInG5ggbIy5ZUaSMjIyVF5efsb7R44cUV1dnaxWq8aPHx+0evv379f27dt1ySWXBG1NAAAAAID/LBaL/m1mmpb9ZmvIaxfNSgt5TXTNqECkM9u2bZPX61V6erpiYs581NLq1aslSTU1NR1ep6SkKC8vT5J02223KTU1Vbm5uRo0aJB27typxx9/XJGRkbrvvvtCdCYAAAAAgM589ZZx+slzW+X1hq5mRIRFd940LnQF0W0EIpK2bj2ZEHZ2u8zs2bN9vi4qKtKqVaskSZdeeqmee+45/exnP9PRo0c1fPhwTZkyRd/5znc0cuTI3mseAAAAANAtY4bHa9ZVI/Tf6z8OWc2bp6XIbgvsUb3oXQQi6joQ8XYjPlywYIEWLFgQ1L4AAAAAAMG1/NuTVfmOQ4dbTvR6rcHx/fX44kt7vQ4CY8ymqmfTVSACAAAAADg/jEgeqJ8syvdrjtPVqoZ9LXK6Wv2at/zbk5U85MxtGdA3cIWIpMrKynC3AAAAAAAIkf+4aaze/Oc+PfdS954IOmnuWr9r3HnzWM2bMcbveQgdrhABAAAAABjFYrHomf/8vG69ZlSvrP9vM1P1xIOXyWKx9Mr6CA4CEQAAAACAcSIjrfr90qu0+PYJClZuYbVa9OD/y9GzPyxQRARft/s6/oQAAAAAAEaKiLDqx/fna8Oq65Q2Mr5Ha2WMHqS/P3edHv56nqxWrgw5F7CHCAAAAADAaJdfNFTv/vEGPffSLv3i+Rpt3dnU7bm54xJ0z62Zuu26MYoawFfscwl/WgAAAAAA40VHRequ2eN0581j9fct+7XuH43aXOPS5toDcrpa5fVKFot04ZAYTcxM0sTMJF09eZguyR7CXiHnKAIRAAAAAAD+l8Vi0eUXDdXlFw099Z7X65Xb7VVkpIXw4zxCIAIAAAAAwFlYLBb160cQcr5hU1UAAAAAAGAcAhEAAAAAAGAcAhEAAAAAAGAcAhEAAAAAAGAcAhEAAAAAAGAcAhEAAAAAAGAcAhEAAAAAAGAcAhEAAAAAAGAcAhEAAAAAAGAcAhEAAAAAAGAcAhEAAAAAAGAcAhEAAAAAAGAcAhEAAAAAAGAcAhEAAAAAAGAcAhEAAAAAAGAcAhEAAAAAAGAcAhEAAAAAAGAcAhEAAAAAAGAcAhEAAAAAAGAcAhEAAAAAAGAcAhEAAAAAAGAcAhEAAAAAAGAcAhEAAAAAAGAcAhEAAAAAAGAcAhEAAAAAAGAcAhEAAAAAAGAcAhEAAAAAAGAcAhEAAAAAAGAcAhEAAAAAAGAcAhEAAAAAAGCcyHA3AAAAAAAA+pamQ8e0ucalzTUuba/7RAc/OSZJaj58XE+W1WpiZpKy0wcrasC5GytYvF6vN9xNAAAAAACA8Gpv9+jlDQ16oqxWf9nY0OXxMVGR+vK1o3XPnEzljksMQYfBRSACAAAAAIDhXv17g+5++O/6sOFwQPO/cMmFeur7l2u0PT7InfUeAhEAAAAAAAx16MhxLVr2tn71px09XismKlIl903S127NkNVqCUJ3vYtABAAAAAAAAzldrbr6rr9o686moK5bNCtNv1pyhSIj+/ZzXAhEAAAAAAAwjKvpqAr+vUK1Hzb3yvrzZozRcz+6sk9fKdK34xoAAAAAABBUHo9XN973Wq+FIZL0+4rd+uHKf/ba+sFAIAIAAAAAgEGW/36bNlTv82tOVeks1a+bo6rSWd2e8/DTW7TlgwP+thcyxgUiLpdLxcXFSk1NVVRUlIYPH66FCxeqpaVFd9xxhywWi1asWBHuNgEAAAAACLpdHx/Sd36+ye95tqQY2YfGypYU0+05brdXtz/0hk6c8PhdLxQiw91AKG3ZskXTp0+X0+lUbGysMjMztXfvXi1fvly7d+/WwYMHJUm5ubnhbRQAAAAAgF7w2Kr31Ha0PWT13t1+UGv/ukc3TRsVsprdZcwVIi6XSzNnzpTT6dSiRYvkcDhUXV0tp9OpkpISVVRUqKqqShaLRdnZ2eFuFwAAAACAoPrk8HH9rnx3yOs+UVYb8prdYUwgcu+996qhoUELFizQsmXLFBcXd2qsuLhYOTk5crvdSklJUXx8fBg7BQAAAAAg+H5fsUutR90hr1v5jkM76j4Jed2uGBGI1NbWqqysTElJSVq6dKnPYyZOnChJysnJOfXepwFKfn6+BgwYIIule48Lmj59uiwWi5YsWdLj3gEAAAAACIb1VY6w1f7rpvDV7owRgUhpaak8Ho/mzZungQMH+jwmOjpaUsdAZNeuXVqzZo1sNpsmTZrUrVovvPCCtmzZ0uOeAQAAAAAIps014Xviy+YaV9hqd8aIQKSyslKSNGXKlE6PaWhokNQxECkoKJDD4dDatWtVWFjYZZ1Dhw7pG9/4hpYtW9bDjgEAAAAACJ6mQ8f0UePhsNWvru17j9814ikze/bskSSNHDnS57jb7dbGjRsldQxErFb/8qIHH3xQ6enpmjdvnm677bYAu/0/eXl5cjqdPV4HAAAAAGA2tzVBGrTQ51hV6awuH6drS4o+9bN+3ZxOj3O6WjVp7toz3v/neztlt9v96Lh7bDabNm3y/zHCkiGBSEtLiySpra3N53hZWZlcLpfi4uI0alRgjwLatGmTnn76aW3evDngPj/L6XSqsbExaOsBAAAAAAw1wCMN8j1kS4qRfWhst5aJjLB2+9jTtXvU577fGhGI2Gw2NTU1qbq6WpMnT+4w5nA4tHjxYklSdnZ2tzdOPV17e7vuuusuLViwQFlZWUHpWTrZNwAAAAAAPeW2Dta+TsacrtYu59uSohUZYZW73SOny/fFBmdbK8LqlW3YsO606peefG82IhApLCxUbW2tSkpKNG3aNKWnp0uSqqqqNH/+fLlcJzd3yc3NDWj9FStWaN++fUF/qkygl/0AAAAAAHC6tqNuxU1+Tu3t3jPGfN3i8ln16+bIPjRWTlebhk973u/6n780S+ufafB7Xm8yYlPV4uJiJSYmqr6+XllZWZowYYLS0tKUn5+v0aNHa+rUqZI67h/SXS6XSw899JC+973vye12q7m5Wc3NzZKko0ePqrm5WR6PJ5inAwAAAACAX6KjIpU1ZnDY6k/MSAxb7c4YEYjY7XZt2LBBM2bMUFRUlOrq6pSQkKCVK1eqoqJCO3bskBRYINLQ0KDDhw/rrrvu0uDBg0/9J0klJSUaPHiwPv7446CeDwAAAAAA/pqYGb5QYmJmUthqd8aIW2YkKSMjQ+Xl5We8f+TIEdXV1clqtWr8+PF+r5uamqr169ef8f6UKVNUVFSk22+/nb1AAAAAAABhN/PKEXr2xZ0hr9u/n1WFl14Y8rpdMSYQ6cy2bdvk9XqVnp6umJgzHzO0evVqSVJNTU2H1ykpKcrLy9PAgQN11VVX+Vw7JSWl0zEAAAAAAEJp5pUjNOxzMWrc3/UmqsF06xdHa0hCdEhrdofxgcjWrVsldX67zOzZs32+Lioq0qpVq3q1NwAAAAAAgiUy0qo7bx6n7z9RHdK6d986LqT1uotApItAxOs9cwfe7gh0HgAAAAAAveUbt2XpV3/arnpnS0jqzb56lCbnDA1JLX8Zsanq2XQViAAAAAAAcL6IH9hfv1pyRUhqJQ2O0i++MzkktQJh/BUilZWV4W4BAAAAAICQufoyu77+5Uz9/A813Z7jdLV2+NkVi0V6+vuX98m9Qz5l8XJvBwAAAAAARmlv92jeA39V2V8+6pX1n/zuZfrqLRm9snawGH/LDAAAAAAApomIsOp3j1ylr9yQHtR1IyMtevaHn+/zYYjEFSIAAAAAABjL6/Wq7C8fasHSf+hA87EerZU7LkGrflignLGJQequdxGIAAAAAABguH0H2vTAz6r0h5c/1LHj7X7NHZoYrYXzsvTNognq1+/cuRGFQAQAAAAAAEiSDjQf1bMv7lTpK7v13s6Dcrt9RwZxsf10afYQ3XHDWN3whZHq3y8ixJ32HIEIAAAAAAA4w7Hj7dq686A++OgTtR11KyLCqrjYfspJT1DqiHhZrZZwt9gjBCIAAAAAAMA4587NPQAAAAAAAEFCIAIAAAAAAIxDIAIAAAAAAIxDIAIAAAAAAIxDIAIAAAAAAIxDIAIAAAAAAIxDIAIAAAAAAIxDIAIAAAAAAIxDIAIAAAAAAIxDIAIAAAAAAIxDIAIAAAAAAIxDIAIAAAAAAIxDIAIAAAAAAIxDIAIAAAAAAIxDIAIAAAAAAIxDIAIAAAAAAIxDIAIAAAAAAIxDIAIAAAAAAIxDIAIAAAAAAIxDIAIAAAAAAIxDIAIAAAAAAIxDIAIAAAAAAIxDIAIAAAAAAIxDIAIAAAAAAIxDIAIAAAAAAIxDIAIAAAAAAIxDIAIAAAAAAIxDIAIAAAAAAIxDIAIAAAAAAIxDIAIAAAAAAIxDIAIAAAAAAIzz/wGJ85hpGQNVqQAAAABJRU5ErkJggg==", - "text/plain": [ - "
" - ] - }, - "execution_count": 3, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "ghz.draw('mpl', idle_wires=False, style=\"iqp\")" - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA40AAAGOCAYAAAAzX+a+AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAAB2fElEQVR4nO3dd3xV9f3H8de592bvRRIIe4PMgExRURT3woFYx8862l8ddbQ/W7WKo1orVat2uups3aMuFHGBsvcOI6wkZO/kjvP743BRgYu5yb03Nzfv5+NhrSHnfk8+JDff9/kuwzRNExEREREREZHDsLX3DYiIiIiIiEj4UmgUERERERERnxQaRURERERExCeFRhEREREREfFJoVFERERERER8UmgUERERERERnxQaRURERERExCeFRhEREREREfFJoVFERERERER8UmgUERERERERnxQaRURERERExCdHe9+AiEQ2j8dDVVUV1dXVNDc3Y7fbSUhIIDU1lejoaAzDaO9bFBHpEEwTnG6ob4Rml/Uxhx3iYyAmGvRuKiLBotAoIgHX1NTExo0bWbhwIWvXrqWkpISamhqcTid2u524uDgyMjLo27cvY8aMYfz48SQkJChAiogcxDShthG27IHCEiivhvomaHYDphUa46IhJRG6Z0KfXMhMBpvmkolIACk0ikjAuFwuli5dytNPP82iRYvYs2cPZWVluN3uQz7XMAySk5PJzs4mLy+Piy66iAsvvJDk5OR2uHMRkfBTUQsL18GqbVBVD9X10Ow8/Oc6bJAUD6kJMLA7TB4KWalg07M4EQkAwzRNs71vQkQ6NtM0qa+v57777uO5556joqKChoaGFl9vGAYZGRkMGTKEe+65hylTpgTxbkVEwpvbA0s3wweLoawGGpr8uz4mCpLjYfoYKzxq1FFE2kqhUUTaxDRNCgsLueCCC1i5ciVNTX72br7HMAx69OjB7bffzqWXXkpUVJSmrIpIp2Ga0NgMHy2FL1ZBTWPbXs9hg9ED4CcnQIwD9HYqIq2l0CgirebxeFi1ahUXXnghW7duxeVytfk1DcOgS5cu3HXXXVx66aXExcUpOIpIxDNNqGuEj5fBpyt8T0P1l90GA7rB/5wMKQkKjiLSOpqwICKtYpoma9as4dprrw1YYPS+bklJCffffz///e9/cToD1HMSEQlTpglNTliwLrCBEayprlv2wL/nQ1Vd4F5XRDoXhUYRaZU9e/bw4IMPsmrVqoAFRi/TNNm1axf33Xcfq1atwuPxBPT1RUTCiWnC+kL4cCkE4zmZ0w3rdsL8VdDQHPjXF5HIp9AoIn5rbGzkjTfe4JNPPvFrwxt/mKbJypUreeihh6irq0Mz6UUkEpmmtUvqfxdBTT0E652uvgkWb4JNu6w2RUT8odAoIn7bsmULb7/9Nvv27Qt6W++++y5z584NejsiIu3lqzVQGPy3U0qrYHmBdXyHiIg/FBpFxC9Op5PFixezcOHCkIz+NTQ08MADD2ikUUQiUm0DfL4qNKN/HhPW7YDdpcEb0RSRyKTQKCJ+KSsr44svvqCxsY17wfthxYoVLF++PGTtiYiEyvICqA/hOsOKWtheHNjNdkQk8ik0ikiLmaZJWVkZCxYs8Gtzmm7duvH888+zdetWVq5cyVVXXUVsbGyLrzcMgw8++KA1tywiErZME5YVgDuEw36GATuKoT50z/1EJAIoNIqIX8rLy9myZUuLP99ms/HMM8/gcrkYN24c119/PaeffjqnnXZai1+jubmZefPmteZ2RUTClssNhcWEdK6oaVrrJ7WLqoj4Q6FRRFrM5XJRWFjo1yhjRkYGo0aN4rHHHmPfvn2sWLGCDRs2kJ+fT0JCQotfZ8uWLbjd7tbctohIWCqrsYJjSJlQVWtNT9VScRFpKYVGEWkxt9vt946pjY2NlJWVMXz4cOLi4sjMzKRHjx5kZ2eTmJjY4tepr6+nrk4nU4tI5Kipb5/g5nJDo9Y0iogfHO19AyLScZimSXOzf3Oaampq+NOf/sTZZ5/NkCFDMAyD7OxsCgoK/NoR1TRNnME49VpEpJ243e2wi6nxvbZNa42jiMiPUWgUkRaz2WzExcX5fd2//vUvVq1aRUZGBjabjZSUFPbs2UNNTY1fbfuzeY6ISLiLijqQ4ULftkOBUURaTtNTRaTF7HY7ubm5fl932mmn4XQ6+fLLL0lKSqJLly58+eWXNDQ0tPg1UlJSWhVYRUTCVWpC+wS3GAfERIW+XRHpuDTSKCItZrfbycvLIzo62q9pqsuWLeMPf/gD+fn5rFu3jscff5wvvviixdcbhsHQoUOx2fScS0QiR1oixEaHfifT9GSIjtJIo4i0nEKjiPglLS2NYcOGsWzZshavSdy6dSsXXHABhmFgmqZfu68CREVFMW3atNbcrohI2DIM6N8NlmwCT4gWNxoG9OwC8TGhaU9EIoMe24tIixmGQWZmJpMmTfL7Wo/Hg9vt9jswgjXCecopp/h9nYhIODMMyO8f2hE/A+ido9AoIv5RaBQRv6SmpjJlyhTS09ND0p7NZmP69On06dMnJO2JiITS0J6QmRy69nLSoUcXayMcEZGWUmgUEb/Y7Xby8/M54YQTgr7G0DAM0tLSuOWWW4LajohIe4l2wPQx4AhBjyzKAUf1gtzQPPMTkQii0CgifsvLy+Pcc8+lZ8+eQW3HMAx++tOfkp+fH9R2RETa06i+VpgLtm4ZMLqfpqaKiP8UGkXEbw6Hg+nTp3P++eeTkpIStHZOPfVUrrrqKqKjozG0zZ+IRCDDgLhYOPVoK9QF650uOR6OOcqamqq3UxHxl0KjiLRKSkoKN910E9OmTSM2Njagr20YBmPGjOG2226jV69eCowiEtFsBnTPgjPGQ0pi4F8/JgomDYVxgyDKHvjXF5HIp9AoIq3WpUsXnnzySY4//niiogJ3UvTQoUO59957Ofroo7Hb1cMRkchnt8Hw3nDmeEhNCODrGnDscDh9nBUeRURawzBbetCaiMhhmKZJU1MTv/rVr3jmmWeor69v1bEaAHFxcYwcOZKHHnqIiRMnAmiUUUQ6DdO0zmtcthne/QZKqsDdurdT7DaIjYazJ1ihETQtVURaT6FRRALC7Xbzzjvv8Ic//IHNmzdTUVHR4vAYHx9Pbm4up556Kr/61a/Iy8sL8t2KiIS3nfvgv4tgWxFU1bU8PNptkBALPbPhjHHQK1thUUTaTqFRRALGNE1KSkp47bXX+Pjjj9mxYwd79uyhsrISp9N54PNsNhuJiYnk5OSQm5vLiBEjmDVrFmPGjAn6MR4iIh2F2w3rdsKSTVBUAdX1UF0Hza4ffp7DDomxkJIA2Wkwog8M62WNNCowikggKDSKSMCZpklFRQXr1q1j3bp1/OUvf2H9+vWYpolhGOTk5HDeeedx/PHHM3z4cPLy8hQWRUQOwwRMDxRXwp4yWLkVlm2Bpu+ewzG0Bxw9yNp9NScNYqLb625FJFI52vsGRCTyGIZBeno6kydPZvLkybz//vsHQiNAZmYmZ555Jscee2w736mISHgzAMMGuenWPy43rN3xXWg0gF45MHFIe96liEQ6hUYRCTqn00lTU9OB/25ubkaTHEREREQ6Bs0HExEREREREZ8UGkVERERERMQnhUYRERERERHxSaFRREREREREfFJoFBEREREREZ8UGkVERERERMQnhUYRERERERHxSaFRREREREREfFJoFBEREREREZ8UGkVERERERMQnhUYRERERERHxSaFRREREREREfFJoFBEREREREZ8UGkVERERERMQnhUYRERERERHxSaFRREREREREfFJoFBEREREREZ8UGkVERERERMQnhUYRERERERHxSaFRREREREREfFJoFBEREREREZ8UGkVERERERMQnhUYRERERERHxSaFRREREREREfFJoFBEREREREZ8UGkVERERERMQnhUYRERERERHxSaFRREREREREfFJoFBEREREREZ8UGkVERERERMQnhUYRERERERHxSaFRREREREREfFJoFBEREREREZ8UGkVERERERMQnhUYRERERERHxSaFRREREREREfFJoFBEREREREZ8UGkVERERERMQnhUYRERERERHxSaFRREREREREfFJoFBEREREREZ8UGkVERERERMQnhUYRERERERHxSaFRREREREREfFJoFBEREREREZ8UGkVERERERMQnhUYRERERERHxSaFRREREREREfFJoFBEREREREZ8UGkVERERERMQnhUYRERERERHxydHeNyCtY5omHo+HyspKampqcLlcOBwOkpKSSElJwW63YxhGe99mh/P9mjqdThwOBwkJCaSmpuJwOFTTVvB4PERFRZGQkIBpmgDExMQA1vexauo/j8dDTU0N1dXVNDU1YbPZiI+PJzU1lZiYGNW0FTweD3V1dVRVVdHY2IhhGMTFxZGamkpcXJxq2gqmCc0uaGiy/m0ADgfEx0B0lPXf4h/TBIcdEmLB4wEMsBkQ5QAT1bQ1TBNcbuv7tMn1XY3joiE2GvSj7z/TBLcH6pug2Qme/TWNjbbqiqHvVX+ZplXH+iZoarb+v922v6Yx1vdpsGuq0NjB1NXVsWLFChYvXsymTZsoLy+ntrb2QGhMTEwkMzOTAQMGMHbsWEaNGkVsbGx733ZYa2hoYO3atXz77bds2LCB0tJSamtrcTqd2O12EhISyMjIoH///owZM4axY8cSFxfX3rcd1pqamti0aRMLFy5k3bp1rFmzBtM0D4TG3bt38+c//5lFixYxZswYjj76aBISEtQxPwKn08m2bdtYsGABa9asoaioiOrqapqbm7HZbMTFxZGenk6vXr3Iz89n/PjxpKSkqKZH4Ha72blzJwsWLGD16tXs3r2bqqoqmpqaMAyD2NhY0tLS6NGjB6NHj2b8+PFkZmZis2mSji+mCVX1ULAHdu6Dilqrk+N0WX8eZbc6OGlJ0D0L+uRAaqIVfOTwTBNqG7+r6bZiaGi2QiKm9e/V26yPdc+EPrmQkQT6Nj2y+kYo2AuF+6C0an/A+V5ojI2G5HjolmHVtEuq1UkX3xqaYFsR7Cixalr3vdDoDThJ8dA1HXrnQG66VWvxrbHZquf2YthXCXWN0HRQTRPjICfNqmm3TOt9NhgM09uLk7BWV1fHp59+yksvvcS6devYvXs3FRUVHO6vz2azkZaWRteuXenfvz+XXHIJJ598MvHx8e1w5+GrsbGRhQsX8txzz7FixQr27NlDWVkZHo/nkM+12WykpKSQm5tL7969mTlzJmeddRaJiYntcOfhy+VysWzZMp555hkWLVrEnj17KC0txeVyHfK5hmGQnJxMbm4uPXr04IILLuD8888nOTm5He48fHk8HtauXcvTTz/N119/zZ49eygpKcHpdB7yuYZhkJiYSE5ODj169OCcc85h1qxZpKamhv7Gw5hpmhQUFPDUU08xf/589uzZQ3FxMU1NTYf9/ISEBLKzs+nRowenn346l112GRkZGQrkBymrhq/XwrpCqKqzwqPz0B99wOrUJCdAWiIM7QmThljhUSX9oYpa+Ga9FQor99e0+dAffcDqfCfHW3UcmAeTh0BmqgL5warrYNEmWFEAlbVQWW+N3ByO3QZJcVZN++bCpKHQNUPh8WC1DbBsCyzbDGU1Vk0bD/92is2wapqSCD2zYOJQ6JWt8Hiw+ibr537xRthXBRV1Vig/HMOAxFirpl3TYeIQGNDNmoEQSAqNYc40TXbu3Mk999zDe++9R3l5Oc3NPt7dDsNut5Odnc2JJ57IbbfdxqBBg4J4tx2DaZqUlZVx33338Z///Ify8nIaGxtbfL3NZqNLly6MGzeOO+64g/z8/CDebcdgmib19fX8/ve/57nnnqO8vJz6+voWX28YBllZWQwdOpS77rqLKVOmBPFuO46mpiYefvhh/va3vx2YVdBShmGQnp5Onz59mD17NtOnTw/inXYczc3N/OUvf+GRRx6hvLyc6urqFl9rGAZpaWl069aN2bNnc/bZZwfvRjsQlxsWroePlkJ1ve+OjS9x0ZCSAGeMh7EDFBzBmtq3bDN8sMTqhNe3/FcUALFRVk1PzreCjkYdrem8a3fA+4thb7k1YuOPaIdV0+NHwLHDrf/u7Dwe2FoE/11kjYTVNVojtS3lfXg0cQicMNKadt3ZmSbsKYP3FsHGXVDXYI0qtpTdZj08Gt0PTh5jPZgLFIXGMObxeFixYgWXXXYZmzZt8issHsxutzN69GjmzJnDhAkTsNlsnfIpuWmabNmyhQsuuID169f7HFloCZvNxqBBg7j//vs57bTTOu06Uu+DjQsuuICVK1f6FcAPZhgGPXv25Pbbb+cnP/kJUVFRnbame/bs4fLLL+frr7+moaGh1a/lDeQ333wzN9xwA9HR0Z22piUlJfziF7/gww8/9CuAH05KSgrXXnstv/vd74iNje2kNbU6iW8ugCUbob71v6IwsDqQE4bC+cdYHfJOWFJM05qO9vEy+HyVNYLT2k6agdWBzB8APzmhc9e02WWNgn+w2BoFb0vH12GDYX3g8mnWA4/OWlOXB1YWwOtfQXmNf8HmYA4bDOoBl54IqQmdt6YeEzbtghc/g9JKcLehpnYD+naDWVMhN836WFvrqtAYptxuNwsWLOCcc86hsrISt9vd5te02Wz07t2bp556ismTJ3e64Oh2u1m2bBlnnXUW+/btO+yUSX8ZhkH37t2ZM2cOZ5xxRqcLOR6Ph9WrV3PBBRewdevWgNW0S5cu3H333fzkJz/pdJuQeDweNm7cyP/8z/+wbNmyNj0s+r709HRuuOEGbrzxRpKSkjpdTXfs2MH111/P3Llz2/Sw6PsSExO59NJLueeee0hLS+tUNTVNq/P91kJYtNH3NFR/RdlheB+Ydby1TqcTldQK4U3w8VL4dIXvaaj+stusqWr/Mx1S4jtfTZuc8NVaeHuhNQ01EJ1emwE9usDPTrdGcjpbTV1uWLoFXvrMmoYaqJrmpsP/ngmZyZ2rpmDNLli7A576cP+a5QAU1TAgOxWuOc1am9vWmmrCQhjyeDwsXLiQCy64gIqKioAERu/rbtu2jWuuuYaVK1cG5DU7CtM0WbZsGZdccgklJSUBCTfe1921axe/+tWv+Prrrw+7HjJSmabJ2rVrueaaawIWGL2vW1JSwn333cf7779/2LV7kco0TbZu3cott9wS0MAIUFFRwZNPPsmLL77YppHLjsY7ajt79mw++eSTgAVGgNraWl555RUee+wxv6a5dnTeEcZPVwQ2MAI43bBmO7z7jf/TBzsy07RC4oK1MG9F4AIjWJ3RLXvg3/Ot6cOdhXcHz6WbrcDYGKDACNaI0M598NzH1rrTzsQ0rZ/Rlz4LfE33lsM/3rfWR3cm5v4RxkAGRu/rFlfCPz+Aksq2v55CYxjavHkzv/zlLyktLQ14CPF4PGzevJkbb7yRPXv2BPS1w9n27du5/fbb2b59e8BCuJc3jN92221s3br1sJsTRaK9e/fy4IMPsmrVqoAFRi9vGL/vvvtYvXp1pwnjZWVl/OUvf+GLL74IaGCE78L4Y489xoIFCwL+dxauamtrefHFF3nrrbcCGhi9ysvLee655/jggw+C8vrhyOWGlVvhyzWBDYxeTU5rU41vNwY2PIUz04T1O611ocH4mp1ua4Oiz1ZaHf3OYutea/q0r41u2sLtgS17rSmvnekBx8598PLn+wNjgLs7HtPazfaNr6Gm8zzbZE+ZNSU1kIHRyzRhTzn8+/O2PzRSaAwzNTU1PPLII6xduzZonTqPx8OXX37JQw891Ck6jvX19TzzzDN8++23Ae+Ie5mmybfffssDDzzQKWra2NjIG2+8wdy5c4M2amWaJitWrOCPf/wj9fX1ER/GnU4nn332Ga+99lqb19v5YpomGzZs4LHHHqO0tDTia+qdkv70009TWVkZtK93+/bt/O1vf2Pbtm0RX1Pvk+u5y4PbUa6qh4XrrA5qhJcU07RGq/67yOrUBevLrW+CJZuszTUivaZgrQd94+u2r2E8kmYXLC+AFVvbtqavo6hrtGpaWRu87yG3xxrJXLh+/1mkEa6+Cd791tohNVg1NU1YXwjzVratpgqNYeaLL74Iakf8+1566SUWLlwY9Hba27Jly3j//fepqqoKelv/+c9/mD9/ftDbaW9btmzhrbfeYt++fUFv6+2332bu3LlBb6e9FRUV8Z///IedO3cGva25c+fy4YcfBnzUPdzU1NTwwgsvsGXLlqC3tXDhQt5///02bQTVEbg91hTKPWXBb2tXKazc5v9urB3RV2uts9iCbV+VddREZ5imumCddaZlsFXX7z9qohNMqVy80RpdDfZDh8Zm6wHH3vLgthMOVm21HuQEOyC7PLB4gzWS21oKjWGkrq6O9957LySdRrCmVT3xxBMR/WS8sbGR+fPns3bt2pC0V1dXxx/+8IeIrqnT6WTJkiV88803Ifk6GxoaeOCBByK6pm63m3Xr1vHRRx+F5OtsbGzkkUceobm5OWLrapom27Zt47XXXgvJ9Oampiaeeuopn+fnRgLv5jcL1oVmpMrtsTqO5bXBGykKB7UN1k6poaipx7Q229hdFtk1rWuE+atCM1JlmtaB9pt3R3ZN65usHWiDMSX9YCZQVG5Ng4/kmjY2w+JN/h+p01qV+899bW1NFRrDyIYNG1izZk3INv5wu90sXryYTZs2haS99rBz504WL14csrVGpmmyZMkS1qxZE5L22kNZWRmff/55SDdTWb58OcuXLw9Ze6FWX1/PRx99RF1dXcjaXL16NUuWLAlZe6Hmcrl45513qKmpCVmbGzZsYPHixREbGsFaa9gQwjVxpVWwvQgieVB8eYHVIQ+VylqrppG8XnTNdiuMh0pNg3VOYag6/+1h0y7rgPlQvb01NFs1rQ7dr8WQ215sjf6Hampzs9tqs7Wj4gqNYcI0TdavX8+WLVta3OEwDIP8/Hxef/11CgoK+Oyzzzj11FOJjo5ucbv19fURO0XVe37gypUr/erEPf7449TU1FBRUUFFRQUvv/wyvXv3bvH1brebefPmteaWw55pmpSXl7Nw4UK/Rm+ys7P517/+xdatW9mwYQP33nsvOTk5Lb7eMAw+/PDD1txy2DNNk4aGBj799NMj1rRfv368++67VFVVUVNTw5AhQw78WVZWFi+//DKVlZXU1NQwbdq0H23XZrPx3//+NyBfQzhyuVy89957R5yCm5mZ+YO6nXzyyYd8jmEYnH/++WzdupUrr7zyiO+vNpuNuXPnRvS036VbQrt2yzCsEZxQjG60B9O0QmNbzmPzm2FNhY3UgGOasHq71UEOFcOwplJWRuhOqqYJG3eH9uEGWOc/BmLXz3BkmlaAqwxxKK5tgF2tnKLqCOytSGt5PB4KCwspLm75BHybzcaJJ57Iww8/zIYNGzj33HO55ZZbKCgoYOPGjS16jYqKChYsWMApp5zS2lsPa1u3bm3VdN+HH36Yu+66q1Vt1tfXM3/+fC666KJWXR/uCgsL2bx5s1/XPPjgg6SmpjJx4kSysrKYPXs2M2bMaPH06ObmZj75dB7X/fK3ETlXpaSs9kenUG/ZsoUzzjiDwYMH89RTT2GzfffMb9++fcycOZNevXrx6KOP/uDPfHG5XHzyySeUlIRgIVU7aGho+NHR6dLSUmbOnEnPnj155JFHDlu3gQMHMmnSJNxuN3a7/Yiv53K5mD9/PlW1Hvx4dtdheEzYEYI1Yge3WVBkbRQTicHRgzXqF8r3NdO0QmNptXWGY8QxoLAktJuomPuPi9hZVIXDHXlp3MSgsCgVpyu0b2yl1dZU6uw0Iu53v4m1NjzUa7ar6q3v1ZF9/b9WoTFM1NbWUlJS4teImNvt5sEHHwSsALlmzRrcbrdfI43Nzc289tprfPHFF37fc7iLjY0lOjra7/VMhmHQrVs3xo8fT11dHbt27fJr50XvSOOxxx7bmtsOaw6Hg8zMTL9rmpGRwcKFCykvL8fpdLJx40YSEhKIiopq8Y62q9du5pE3TJpdkXfib0OFs11Gp9avXx+R36cA/fv3b3NNk5KSOOmkkyguLmbRokUtuqagoIA/v+3BjQlE1vdqXIx13EZImdZUqn98YLUdaTN/Y6NDP3qDaY2IPf1RZIbG9GRrhCqkTGsE547f3cfu9e9F3DFRCYkpDJj2OInZY0PXqGkFqg+XwGcrrDXOkSTKYa0RDynTOtKoav80Y8PPX1EKjWGioaGhVYdDOxwOhg0bRn5+Pvn5+axYscKv0UrTNA9Mw4w0cXFxZGdn+33d4sWLmTBhAldffTXR0dGsWrWK5557zq+6VldXR+Rh31FRUa1ac/vUU0/x85//nNraWhITE8nOzub999/36wiUuvoGiiutLc4jjbuufXpuDQ0NLZ6V0NHExMS06Xq73c7EiRPp168fjz/+OAMHDmzRdY2NjZRUmETgsw0S49qnXZfLWvfTFIFr8BJi2+eoBrfbGsWJRB6zfQKG2w27d+9l48aNERcak1PS6T6pnsQQt+vxWAHH44m8I02iHe0zeGp6rPdSl9sKrv5QaAwTHo+nVef7GYZBSkoKeXl5REdHEx0d3ebOUiRpzYYUzz77LM8++ywxMTFMmjSJG264gdWrV/Phhx9G9AYXLWGaZqtqkJmZSU1NDTk5OURFReHxeIiLi8Nut0f0+q+W6uzfV8HQ1k5bXl4es2bN4umnn2bXrl0BuquOrV2+S73hO0J/RNq1phGqXd5OI7ym7UI/+4G3v6Yes3UhXKExTDgcDr+mlXo5nU7mz5/Pl19+Sd++fXn88ccZPnw4u3fvjrgnXf4yDKNFa7t8aWpqYt26ddTW1pKamophGJ2+c9+amsbHx3Prrbcye/ZsXnvtNaKiorjuuuuYPn06S5YsoaysZQe+GRgR+3vZ5u8cEflRP7b+8MeMGzeO6dOnk5SUhGmajBo1iqOOOgqHw8Hf//73Iz/ki9C/z3b9qiKzpJH6ZbWr9vzxi9i/z/asqUFEBsf2/LLsttZNTVdoDBPx8fGkpaX5dU10dDS//vWvee6556ioqGDw4MEkJyf7dU6YzWajX79+TJgwoTW3HdaioqLYt28f27Zt8+u6++67j6effprS0lKmTZtGVlYWe/bsaXEINwyDvLw8pk6d2prbDmt2ux2Xy+XXlMampiaampoYMWIE77//PklJSfTu3Zvy8nK/pqdmpCczbpCBMwIHJkv3tM+8u9TUVM4666x2aTvYMjIyWLlyZauvnzdvHtOnTwes9dH/93//x6pVq/j444+PODqenJzM0QPBtEVe99Fusw6hD7VYB4zqF/p2Q8Fug282hH6taLQdBveE+AicmJQQCwvXh76mUXY47thjGDckKuIe2kfHJEB2dshDjsMGfXIgMyXypqfaDCjYC0UhXh1mMyAuSqGxQ4uPj6dLly5+TddzuVzs3LmTF154gdzcXAoLC3niiSf8OmIiNjaW0047jdmzZ7fl9sPW22+/zfvvv+/XOryVK1fyj3/8gx49elBQUMA///nPFm+CAdao8XHHHcfjjz/emlsOe0uXLuWVV15pceBzu9389Kc/5c4772TRokW4XC6++OILnn/++RafoWcYBqNGDuWCKRH5wJFdOxO4MybmiOeJZmdn89vf/paZM2eSnJzM/PnzcTqdHHXUUTidTm655RZ+9rOfkZiYyDHHHENzczNjx4494u7BI0aM4M9//jNGBI6M1dfX8+STT9LY6Hsnw6SkJG699VauvfZakpKSOPbYY2lubmbcuHHs2LGD0tJSwHp/Lisro7CwkMLCwiO+vw4ePJjzjrFF5O6ppglLNkFjiJ9xZKXBWROsMBBpTNM6UzDU2+5npMCZ46FLamjbDZWNu6AuxJuYpiTAzKsupU/OxaFtOARME57+JI41O0LbbkIcTBoauQ+NXv0SiitDO6U6LgZSk1o3Iq/QGCYMw6B3797k5eWxY0fLfio9Hg/PPfcczz///IGpkx6Px68plCkpKUyYMIHExFAvbw4+0zTp2bMnffv2ZcOGDS2+7tVXX+X1119vdU1jY2M57rjjIramOTk5HHXUUSxfvrzFdVm0aBFnnXXWgZp669pSUVFRTDvxRGIitCOempLAmDFjWLBggc+aFhcXc+ONN3LTTTf94OPeaZJ33XXXIQ9/jjSF0uFwcNJJJ5GYmBiRodHhcDBp0iTmzZvns6Y1NTUtqlt9fT1XXnnlj67ptdvtTJ06lfhYO44I/O1qmjAgD1ZvC93DG5sB/bpagTE2Qn/+B+RZYTxUIymGAT27WCEnUmvaN9c6ViBUo42GAbkZ0CUjlgj81Y9pQq8c2LIXGls+QajNMpMhJz1yv0/zMiExFmoaQtducjx0y2jdtRG42XLHZBgGQ4cOpV8//x6nmKaJ2+3G5XLhdrv9XnOXkpLCxIkT/bqmozAMgx49ejBy5Ei/OsVtrWlsbCwnnHCCv7fbIRiGQWZmJpMnT/b72u/X1N+pO3a7nVNPPdXvNjsCwzCIj4/npJNO+tHvU++GWd//pyV/djg2m43TTz89IF9DOHI4HJx99tltqunBn/dj7wU2m42TTz65TWupw92YASFeM2ZYocrfXf46CsOA/P6hramBFQAicWoqWLUc3gccbVvW7Ldu6ZCaENo2Q8UwYFB3a5QqZG1ihcZIHQ03DOidYz28CaXkeMjLat21kfubrQPq168f+fn5xMfHh6S9mJgYpk2bRrdu3ULSXnvo2rUr48ePJykpKSTt2e12pk+fTs+ePUPSXntITU3lmGOOIT09PSTt2Ww2TjrpJPr06ROS9tqD90FDVlYr38n9ZBgGxx9/PAMGDIjIUUawfhZPPvlkunbtGpL2DMNgwoQJDB48OKJD41G9IC2EIyk9sqyn8ZF4nqDX0J6QEZpfUQDkpFkjjZEaxAEG5kGXlNC1l54EvXMjc0TMq08O5KSG7gFHUhz06xaZ09K98jKha0bo3t9io6zwn9zKmBHBb8MdT1RUFGeffTb9+vULekfOMAxyc3O59tprg9pOe3M4HEydOpX8/PyQ1DQ9Pf2Q6YORxm63k5+fz9SpU4PeOTYMg9TUVG699dagttPebDYb/fv359xzz23zrp8tkZKSwnXXXUdUVFTQ22ov3ve4yy+/PCRfZ2JiIldeeSUpKSHsqYaYYVijU1NHhaaTEx1ljWyGMqS2h2gHTB9rbfoRbFF2K/jnhuaZX7uJdsD0MdbXG2x2mzWFum9u8NtqT1EOmDrSCh7BZjOgWxYM6xX8ttqTw26t2WxtiPOHYUBWKhzdsiOHD0uhMczk5+dz3nnnBX200W63c8MNNzB48OCgthMOBg0axHnnnUdmZmZQ27HZbFx33XUMHz48qO2Eg+7du3PuuefSo0ePoLZjGAZXXnkl+fn5QW0nHGRkZHDeeecF/WfSZrNx4YUXMnHixIgeEQNrA5vzzjuP0aNHB7UdwzA49dRTOf7441t1dFJHYjMgvx8MCPIEFQPol2sFnOgIHhHzGtXXGnEMtm6Z1qYikTo19fuG94ERIZigkpEM4waFpuPf3ob2hNH9gn8CR2IcHDPUGsGNdP27WlPU7UEuarQDjh8BWW14rhnZPYYOKDo6mmuuuYZp06bhCOJOCpdccglXXHFFxE5N+76oqCguuugizjjjDOLi4oLWznnnncfVV1/dKWrqcDg45ZRTOP/884M6snLKKadwzTXXEBMTE/F1tdvtjB8/nssuuyyo01QnT57M1VdfTUpKSsTX1GazMWjQIH72s5/RvXv3oLUzcuRIrr76anJzcyO+poYBqYkwbXRw1xplpcCUYZCdGrHHXh5gGBAfC6eOs6aqBevLTY6HY46CntmRX1OwOslnTrCmOAfry42NssLNwLzOUdMoB5wx3lqLF6yv127A5KFW6O8sNT05H/oH+Xto0hAY28Y16QqNYSg7O5s//elPjBgxIuBT1QzDYPr06cyePZvk5OSAvnY4y8jI4O6772b8+PEBn6pmGAZTpkzhzjvvJCsrK+I7jV4pKSncdNNNnHjiicTGBnbRgWEYjBkzhttuu41evXp1mpomJCRwxRVXcM455wRl993Bgwdz8803M2zYsIgfZfSKjY3l7LPP5vLLL/f7LNyW6NGjB7/4xS+YNGlSUB/0hRO7zeoknzjKWncUaIlxMGW4NTUt1JuZtBebYYWbM8YHZ2OMmChrGtzRA0MzZTMcGIb10GHGFEgPQnfHboNxg+HY4Z1jNNwrPQkunmo92An0r2bDgDED4eQx1vdsZ5GaCJdMtdYbB6Omo/pa7y1tXXPbOXoNHVDPnj15/fXXAxocDcPgxBNP5NFHHyUvL6/TdMS9unXrxosvvsjRRx8d0DA+fvx4/vCHP0T8BhiHk52dzZNPPslxxx0X0DA+dOhQ7rnnHsaNGxeSNX7hJD09nfvvvz/gI+O9evXit7/9LaecckpEr2U8nOTkZG666SYuueSSgD4sy8zM5Oabb2bWrFnExHSC+X7fE+WACYPhhJHWlvGBErN/CtXxI6w1jZ2J3QbDe1udu0Duwmk3rFHb08dF9kYth2MY1vS/C4+1duIMVK/HACYOgfOPCe2OouGieyZcPi2wMwEMrJGwi4/vHNOnD9YlFa45DbqmWw+RAsHAmqI9a2pgNhQyTH/PE5CQMU2TkpISbrzxRt566y2ampr8Pv4BvtvS/6yzzuLee++lV69eBz7e2ZimSW1tLTfccAOvvPIKTU1Nfh//AFbt4uLiOPbYY3nggQcYNmzYgY93NqZp0tTUxC233MIzzzxDY2Njq2oK1qjQyJEjeeihh5g0aRLQuWt6991388QTT1BfX4/b3boDx2JiYujduzdz5sxh+vTpQOetaXNzMw8//DBz5syhsrKy1TWNjo4mOzubhx9+mBkzZgCdtabg9sCXa+CDxVBdB+5W9igcNivQnD/FCqPQOaamHcw0rfMal26Gd7+BfVVWjVvDbrNGa86ZaI2GQeetqWnC+p3w5tewuxRcbahptANOHQvT8q3OfaetKVBYDK99CQVFrT8T02ZY36dTR8IpY636dtaaApRUwn++gPWFVk1b85ZqGNYDuIlDrIdFiXHffbwtFBo7gOrqap599ln++c9/sm3bNurq6locHpOSkujVqxc/+clPuPLKK0N2TEK4a2xs5N///jePPfYYBQUFVFdXt7imCQkJdOvWjRkzZnDdddeRk5MT5LvtGNxuN2+//TYPPvggW7ZsobKyssXhMT4+npycHE455RR+/etfB3X9WUdimiYff/wxs2fPZvPmzZSVlbW4pnFxcWRlZTF16lTuvPNOevfuHeS77Ti++OIL7rjjDjZt2sS+fftaHB5jY2PJyMhg4sSJ3HffffTv3z/Id9pxbC2CdxZaHfKa+paHR7vNGqnslWOFm64ZnbPDeDiF++C/38K2Iv8Cuc0GCTHW2sUzxkPvTrKGsSWKyuGDJbBxF1TVtjw82vbvHJyXZQWbgXmRfQyMP8qqYe5yWL0VKmrB2cLwaBgQFw25GTBtlDXKHsnHwPijuh4+XwWLNkJ5DTQf+djlH4iNtkaAjx1ujdwGcnaBQmMH4Xa72bhxI6+88gpff/01RUVF7Nmzh5qamh90eOx2O8nJyeTm5pKTk8P48eO5+OKLGTJkSKd8En4kHo+HwsJC/v3vf/PZZ5+xe/du9uzZQ3V19Q8O+Lbb7SQlJZGdnU1OTg5jxoxh1qxZjBgxotNNR/0xpmlSXFzMa6+9xkcffURhYSF79uyhsrLyBzW12WwkJiYeqOmIESO45JJLGDt2rGp6ENM0qaqq4vXXX+e///0v27ZtY+/evVRUVNDc3Hzg8wzDICEhgS5dupCTk8OwYcO4+OKLmTx5smp6ENM0aWho4O233+bNN9+koKCAoqIiysrKaGpqOvB53hkFWVlZ5ObmMmTIEC688EKOP/54HA6H3lMP4nLDqm3WKFlJpdXxqak/tBMZZbeefKckQE66tRvjUT2t9Ysq6Q+53bCuEBZtguIKq57V9Yd2Ih12a/pZSoI1zW1kH6sTHhutmh7M7YZNu60O+Z7y79XU+cNRHYfN2qAoJcGa2jqst1XXxDjV9GBuj/Vw49sNsKsUahqgqg6amn9YU7vNms6bmgBpSTCkh/Xzn5aomh7M44Gd++DbjbCjGKobrAcdjc7vRiXBmn4eu7+mKQkwIM8Ki0FZc6rQ2LGYpsmePXtYs2YNa9eu5U9/+hO7du068OeDBg3iJz/5CWPGjGHEiBFkZ2e34912DN5pwGvWrGH9+vXs3r2bmpoanE4nDoeDhIQEcnNzGThwICNHjuwUOyS2lWmalJeXs3btWtauXcuuXbuoqqrC6XRit9sPjCwOGDCAESNG0L17dwWbH2GaJjU1Naxdu5Y1a9ZQWFhIZWUlzc3N2Gw24uPj6dKlC/369WPEiBH06tWr02zM0lre8Lh+/XpWr17Npwu3s2FbDS63BzCIibIxZmgak8f2ZcSIEfTt2zfij9RoKxOrU15UDrvLrOmVtQ1WcDSwwk1iLGSkWAdbZ6d1rk1EWsMETI8VGneVWYG8tsEKjgZgt1sji+nJVk1z0jrf2sXWME2rlrvL9gfyBis4ghVu4mOsYNMtwxoB74xrF/1lAqVV1oyDbUWwYJ31vQqAAb26wNGDrJp2ywzMOrtIZwLl1db3aVGFNeugyWlNY7fbrNHalATre7RbZnA2J/NSaOzAmpqamDRpEkuXLj3wsVNPPZW//vWvmt7XBqZp4nQ6D4TGqKgoBZo2+n5N7XY7UVFRnW6Dm2BwOp0HQmN0dLRq2kavfwWfrzIPjOIkxsLZkwwmD23f++ro3B5rFNIbGvV22nYez/6plaYVGjvr2rpAUk0Da285/PU9KK787mOTh8LM4zW1ty1Mc/9aR9N6L7XbQvd9qud7IgcxDIPo6GiNKASQahocUVFRnW4n1GCyOo3GgY1HXJ4fTgOS1rHb1EkMNJsNolXTgFJNA8/l+eFGTq3d1Em+Yxjtt/ZTPx4iIiJeCokiIiKHUGgUERHx0nQ0ERGRQyg0ioiIeGmkUURE5BAKjSIiIiIiIuKTQqOIiIiXpqeKiIgcQqFRRETES9NTRUREDqHQKCIiIiIiIj4pNIqIiIiIiIhPCo0iIiJeWtMoIiJyCIVGERERERER8UmhUURExEsb4YiIiBxCoVFERERERER8UmgUERERERERnxQaRURERERExCeFRhERES/tnioiInIIhUYRERERERHxSaFRRETES7unioiIHEKhUURExEvTU0VERA6h0CgiIuKlkUYREZFDKDSKiIiIiIiITwqNIiIiXpqeKiIicgiFRhEREREREfFJoVFERMRLaxpFREQOodAoIiIiIiIiPik0ioiIeGlNo4iIyCEUGkVERLw0PVVEROQQCo0iIiJeGmkUERE5hEKjiIiIiIiI+KTQKCIi4qXpqSIiIodQaBQREfHS9FQREZFDKDSKiIh4aaRRRETkEAqNIiIiXhppFBEROYRCo4iIiJdGGkVERA6h0CgiIuKlkUYREZFDKDSKiIh4aaRRRETkEAqNIiIiIiIi4pNCo4iIiJemp4qIiBxCoVFERMRL01NFREQOodAoIiIiIiIiPik0ioiIiIiIiE8KjSIiIl5a0ygiInIIhUYREREvrWkUERE5hEKjiIiIl0YaRUREDqHQKCIiIiIiIj4pNIqIiHhpeqqIiMghFBpFRES8ND1VRETkEAqNIiIiXhppFBEROYRCo4iIiJdGGkVERA6h0CgiIuKlkUYREZFDKDSKiIiIiIiITwqNIiIiXpqeKiIicghHe9+AtI5pmpimSUpKCpmZmZimiWEYJCUlYbPZDvy3iIj8OI/HA6abKBuY+986HTbwuME0HXo/FRFpIdMETIiyQ/T3koZt/9uoiZ7PdUSGaZpawdGB1NXVsXLlSpYsWcLGjRuZO3cuFRUVB0JiTk4OEyZMYNiwYYwdO5aRI0cSGxvb3rctIhJ23G43u3btYuHChaxevZpl68soKgePx/q16HBAr2wbIwbnMmrUKMaPH09GRgY2mybpiIgcrKEJthfDjhLYVQrrC6Gx+bs/z0yBIT2gawb0zoGcNHDY2+9+xT8KjR1EXV0d8+bN46WXXmLdunXs3r2b8vJyDvfXZ7PZSE9Pp2vXrgwYMIBZs2Zx0kknER8f3w53LiISXkzTpKCggGeeeYb58+eze/duiouLaWxsPOznJyQkkJubS48ePTjttNO49NJLycjI0OijiAhQ2wDLt8CyLVBWAxV10Nh0+M+1GZAUD6mJ0DMLJg6BntkKjx2BQmOYM02TnTt3cu+99/Lee+9RVlZGc3Pzj1+4n8PhICcnhxNOOIHbbruNgQMHBvFuRUTCW3NzM3/961959NFHKS0tpbq6usXXGoZBWloa3bt35+677+ass84K4p2KiIQ3jwe2FsH7i2BbMdQ17p+a2kJRdkhJsILj1JGQoIlxYU2hMYx5PB5WrlzJZZddxsaNG/0KiwdzOByMHj2aOXPmMH78eGw2m56Si0inYZomJSUlXH/99XzwwQfU1NS06fVSU1O59tprufPOO4mNjdX7qYh0GqYJbg+sKIDXv4LyGvC0IU04bDC4J1x6IqTEg95Ow5NCY5hyu9188803nHXWWVRWVuJ2u9v8mjabjT59+vD0008zceJEBUcR6RRM02THjh1cf/31fPzxxzQ1+Zg35afExEQuu+wy7rnnHlJTU/V+KiIRzzTB5bGmor44z1qzGIgkYTMgNx1+cSZkJCs4hiOt5g9DHo+Hb7/9lvPPP5+KioqABEbv627dupWrr76a1atXB+Q1RUTCmWma7Nmzh9mzZzN37tyABUaA2tpaXn75ZR577LE2j1yKiHQEpglrtwc2MII1Urm3HP7+vjVyKeFHoTEMbdmyhRtvvJF9+/ZZ28AHkMfjYdOmTdx4443s3bs3oK8tIhJuamtrefHFF3nzzTcDGhi9ysvLee655/jggw/atIRARKQj2FUKL88PbGD08phQuA/e+NraXEfCi0JjmKmpqeGRRx5hzZo1uFyuoLTh8Xj4/PPPeeihh4LWhohIe3O73Sxbtoynn36aysrKw+42HQjbtm3jb3/7G9u2bQtaGyIi7a2u0Qp0FbWBD4xebg+s3gYL11sb7Uj4UGgMM19++SVz586loSH4j1hefPFFvvnmm6C3IyLSHmpqanjxxRfZvHlz0NtasGABH3zwgc9jO0REOrolm2DznuAFRq/GZqutvRXBbUf8o9AYRurr63n33XcpLCwMSXsVFRU88cQTejIuIhHHNE22b9/Oa6+9FvBp/ofT1NTEP//5z6COaIqItJf6Jvh6LThDMEHNxFrfuHKr9f8lPCg0hpH169ezZs0anE5nSNpzuVwsXryYTZs2haQ9EZFQcblcvPPOO36dw9hW69evZ/HixQqNIhJxNu2C8iBOSz1YQzNsL4LqutC0Jz9OoTFMmKbJhg0b2LJlS4s7HDabjdNPP525c+eybds23nvvPSZPnozdbm9xu3V1dSxcuLC1ty0iEpbcbjfvvvvuEXefzszM5OWXX6ayspLq6mpOPvnkA39ms9mYOHEib7/9NgUFBcydO5fjjz8eh8Ph8/VsNhsff/xxwHa8FhEJB6YJG3dbo42hVF4DJZWhbVN8U2gMEx6Phx07dlBcXNzia+x2O2eddRa//vWvGTduHAsWLOBXv/oV3bt3b/FrVFRUsGTJktbcsohIWDJNk7q6OpYvX37EzystLWXmzJmMGDGCTz/9FJvtu1+J0dHRTJo0ifvuu4+jjz6a9957j9/97nfk5OT4fD2Xy8X8+fNDMh1WRCRU3B7YWxaaqanfV1YNpaGbLCI/QqExTNTW1lJSUuLXtCan08lVV13FsmXLKCkpYcGCBTgcDuLi4lr8Gs3NzezcuVOdHBGJKFu3bm3TiF9jYyMPPfQQixYtoqKiguXLl+NwOI440ghQUFCgXalFJKLUNFib04SUaY1s1jWEbkqsHNmRf/tJyDQ2NrZp7U1ycjLjx49n69atVFS0fLsp7xP5xsZG4uPjW92+iEg42bNnT5tfIyoqiuHDhzNixAgmTJjAV199RWVl5RGv8b6Xx8fHYxhGm+9BRKS9NTSBsx1m3Xs80Oi0RjodLV95JUGikcYw4Xa7W/10OikpifPPP59+/frx0ksvsW/fPr+u93g8ejIuIhGlqanti2/sdjuZmZn07t2b6OhoHA4H0dHRP3pdc3OoH8mLiASP29MOo32G9Y+nPdqWw9JIY5hoaWfkYHFxcVxyySWMHTuWZ555hsWLF/s9Jctut7eqbRGRcBWImRONjY189NFHfPrppwwaNIi///3vDB48mH379h1xKYFmbYhIJHHYwdZOEyccdrBpiCss6K8hTMTHx5OamurXNXa7nf/93//lxBNP5IknnmDhwoV+H9dhs9lISUkhJibGr+tERMJZjx492nR9QkICt956K3l5ecTHxzNkyBDi4uKoqKg4YmBMTk4mISFBU1NFJGIkxEJUOwwzOWwQG9V+gVV+SCONYSI+Pp7s7GzsdnuLRwqTk5P53e9+h8PhYNKkSQemuJ522mmsWbOmRa8RGxtL79691cERkYjSs2dPYmNjaWxs9Pk5SUlJ3HLLLVx77bUkJyczZcoUGhsbmThxInv37qWqqoqXX36ZLl26sH37dh544IEfPdd20KBBfh17JCIS7hJjIb4dxhYS4iAxHtRFDQ8KjWHCMAx69+5Nt27dKCwsbNE1FRUVpKenH/Jxf0YbU1JSOProo1v8+SIi4c4wDGJiYpg4cSKfffaZz5HBmpoa7r77bu69994ffNz7HvqPf/yDp59+GrA2DfN4PEccZbTb7UydOlWhUUQiimFAjy6waXdod1HNTIaslNC1J0em6alhwjAMhgwZQv/+/f26zul0HvKPP1JSUpg4caJf14iIhDuHw8HZZ5/9o7MoPB6Pz/dQ0zRxuVy4XC7cbvePHolkGAYnn3zyD857FBHp6AwDBnWHuBCONhpARjJ0SQ1dm3Jk+s0WRvr378/o0aP9OmexLWJiYjjxxBPp1q1bSNoTEQkVu93O9OnTyc3NDUl7hmEwceJEhgwZotAoIhGnTw5kp4ZuqmhiHPTraq2nlPCg32xhJCoqinPOOYf+/fsHfY2hYRjk5ORw7bXXBrUdEZH2YBgGubm5XH755TgcwV+JkZiYyJVXXklKiuZSiUjkiXLACSOtjWmCzWZAXhYM7x38tqTlFBrDzOjRoznvvPOCvmW73W7nhhtuYMiQIUFtR0SkvcTHxzNjxgzy8/OD2o5hGJxyyikcf/zxOr5IRCLW0J4wup81dTSYEmJh8lBITwpyQ+IXhcYwExMTw9VXX82JJ54Y1KfjF198MVdccYV2TRWRiGWz2Rg0aBDXXnsteXl5QWtnxIgRXH311eTm5uo9VUQiVpQDzhgPvXKCN03VbliBcUQf7ZoabhQaw1BOTg5z5sxh+PDhAd+Fz7tRw+zZszWNSkQiXmxsLOeccw6XX345aWlpAX/97t2784tf/IJJkyaFZBqsiEh7Sk+Ci4+3djUNdKgzDBgzEE4eAzEhmAYr/lFoDFO9e/fm9ddfD3hwPOGEE3jkkUfo0aOHnoiLSKeQnJzMTTfdxKxZs0hKCtx8p8zMTG6++WZmzZpFbKx2axCRzqFHFlw2zdrZNFBdSQMYM8AKpNr8JjwZ5o/tIS7txjRNSkpKuP7663nnnXdoamr60S3fD8cwDOLi4jjrrLO499576d2794GPi4h0BqZp0tzczB//+EfmzJlDVVUVbre7Va8VHR1NVlYWc+bM4fzzzwf0fioinYdpggkUFsOrX8LWveDytO61bAZER8EJI+CUoyHaoWmp4UqhsQOorq7m6aef5p///Cc7duygrq6uxeExMTGRHj16cOmll/LTn/6UjIyMIN+tiEh4+/zzz7n99tvZtGkTZWVlLQ6PMTExpKenM3HiRH7/+9/7fa6uiEikKauGj5fBqq1QVQfOFj6LMwyIjYbcdDhptLVTapRm+Ic1hcYOwu12s3HjRl566SW+/vprioqK2Lt3L3X1DXjc3z3esdvtJCbGk52dTXZ2NhMmTGDWrFkMHTpUT8JFRLBGHevr63nrrbd444032Lp1K8XFxZSXl9PU1PSDz42PjycjI4OcnByGDBnCzJkzmTp1Kg6HQ++pIiKA22ONNn6zAXbtg9pGK0A2O60RSS+7DeJiICUeUhNhSE8Y0x/SEjW62BEoNHYwpmmye/duVq9ezdq163l/QTnl1a4Df56bGcWxozMYOXwQI0eOJCcnpx3vVkQkfHnD47p161i1ahWfLtzOxu3VuFwmGBATZSN/SDrHHN2PkSNH0rdvX2JiYtr7tkVEwpIJlFbCrlIo2Atfr7UCpFevLjB+CORlWv9o7WLHotDYgbnc8Pt/Q2HJdx8b1gsuOUFn24iI+Ov1r+DzVSbN+5/DJcbC2ZMMJg9t3/sSEelo9pbD4+9ASeV3H5s81Oqj2rUNZ4ek2cMiIiKAxwMuj4F3xr/LY234ICIi0tkp64uIiHgpJIqIiBxCoVFERMRLmzGIiIgcQqFRREREREREfFJoFBEREREREZ8UGkVERERERMQnhUYREREvbYQjIiJyCIVGERERERER8UmhUURERERERHxSaBQRERERERGfFBpFRES8dE6jiIjIIRQaRUREvLQRjoiIyCEUGkVERLw00igiInIIhUYREREvjTSKiIgcQqFRREREREREfFJoFBEREREREZ8UGkVERERERMQnhUYRERERERHxSaFRRETES7unioiIHEKhUURExEu7p4qIiBxCoVFERERERER8UmgUERERERERnxQaRUREvLSmUURE5BAKjSIiIl5a0ygiInIIhUYREREvjTSKiIgcQqFRRETESyONIiIih1BoFBEREREREZ8UGkVERLw0PVVEROQQCo0iIiJemp4qIiJyCIVGERERL400ioiIHEKhUURExEsjjSIiIodQaBQREfHSSKOIiMghFBpFRES8NNIoIiJyCIVGERERL400ioiIHEKhUURExEsjjSIiIodQaBQRERERERGfFBpFRERERETEJ4VGERERL61pFBEROYRCo4iIiIiIiPik0CgiIiIiIiI+KTSKiIiIiIiITwqNIiIiIiIi4pNCo4iIiJfOaRQRETmEQqOIiIiIiIj4pNAoIiIiIiIiPik0ioiIeOmcRhERkUMoNIqIiIiIiIhPCo0iIiIiIiLik0KjiIiIiIiI+KTQKCIi4qUjN0RERA6h0CgiIiIiIiI+KTSKiIiIiIiIT45QNGKaJm63m6qqKmpra3G73URFRZGUlERycjKGYWAY2ufcXx6PmxibkziHVWPDMIiyAURjmqppa3g8HqqqqqipqcHlcmG320lISCAlJQWHw6GatoLH46G6upqamhqcTic2m+1ATaOiolTTVvB4PNTW1lJdXU1zczM2m424uDhSUlKIiYlRTVvB4/GA6cZhB9NjfcxhgMcNpqmf/dYwTWh2QUMzOF3WaSYOO8TFQHSUTjdpDdMEpxsamqyamuyvaTTERKumrWGa4PJYNW12HlTTKNCPvv9M0/peTIiBxFirpoZh/dxLx2WYphm0FRw1NTWsWLGCZcuWUVBQQHl5+YHQ6HA4SE5OJisriwEDBjBmzBiOOuoooqOjg3U7EaGuro7Vq1ezdOlSNm/ewsrNDdQ1mZgeE8NmkJJgMKhXAoMH9mXMmDGMGDGCmJiY9r7tsNbQ0MD69etZvHgxmzZtorS0lOrqapxOJw6Hg8TERDIyMujXrx+jR48mPz+f2NjY9r7tsNbU1MSWLVtYtGgR69evp6Sk5EDA8QbxjIwM+vTpw6hRoxg7dizx8fHqmB+B0+lk+/btfPvtt6xbt46ioiKqqqpoamrCZrMRHx9Peno6vXr1OlDTlJQU1fQI3G43u3bt4ttvv2XNmjUsW1/O3nITjzc02qF3jo0Rg3MYOXIkRx99NBkZGdhsmqTji2lCdT1sLYJdpVBRA/X7Aw5AlAPiYyAtEfIyoVcOpCSATd+mPpkm1DV+V9PyaqjbH3DA+j6Nj7Hq2C0TemdDehLo2/TI6ptgWxHs3Adl1VaNm11Wvb2hMTkBuqZb36dZKWBXTY+ooRl2FEPhPthTCht3Q2MzYFqhMSMZBuRZNe2ZDTlpVq2lYwhKaKyqquLDDz/k1VdfZfPmzezatYuKigoO15TNZiMrK4u8vDyOOuooLrnkEiZPnqxO+UHq6uqYP38+L7/8MmvXrmXXrl2UlZX5rGlGRgbdunVj4MCBXHzxxZx44onEx8e3w52Hr6amJr755hteeOEFli9fzs6dOykrK8Ptdh/yuTabjbS0NLp160afPn248MILOf3000lMTGyHOw9fLpeL5cuX8/zzz/Ptt9+ya9cuSkpKcLlch3yuYRikpqbStWtXevXqxYwZMzj33HNJTk5uhzsPXx6Ph/Xr1/Pcc8/x9ddfs3PnToqLi2lubj7kcw3DICkp6UBNzzrrLGbOnElKSko73Hn4Mk2TrVu38uyzzzJ//nx27dpFUVERjY2Nh/38xMREcnNz6dWrF6eddhqzZs0iIyNDgfwg5TWwYB2sL4SKWqiqszrhhxPtsEJOehIM7QkTBlv/rZL+UGUtfLsB1myHijrrv5uch/9ch/27mg7Ms2qamaJAfrDqeliyCVZutb5PK2r3B5vDsNsgOd6qad9cmDAEctMVHg9W2wArCmB5AZRWWzVtaDr859oMq6ZpSdCji/V92rOLwmNHENDQ6O3c3HfffXz22WeUlpYetrPoS3R0NF27duWcc87hpptuIi8vL1C31mGZpsnOnTu57777eO+99ygtLT1sZ9EXh8NBbm4uJ554Ir/+9a8ZOHBgEO+2YzBNk/Lycn7/+9/zn//8h3379vnsLB6OzWYjJyeH8ePH89vf/pbRo0cH8W47BtM0qa+v58EHH+Rf//oXpaWl1NXVtfh6wzDo0qULw4YN48477+SYY44J4t12HE1NTfzpT3/i73//O6WlpdTU1LT4WsMwyMzMpF+/ftx1112cdNJJQbzTjqO5uZm//e1vPProo5SWllJVVdXiaw3DID09ne7du3P33Xdz5plnBvFOOw63Gxauh4+XWUGx3kdn0Zf4GEhNhNOPhjEDFBwB3B5YvgU+XGJ1wuta/isKgNhoazT3pNEwcYhGHQE8HlhXCB8shj3lVtDxR0wUpCbAcSNgyjDrwUdn5/FYo7XvL4ZtxVZN/UkVUXbrZ3/CEJg6AhI0XhTWAhIavWsWv/rqK37+85+zZcsWnE4fj8JaICoqismTJ/Pkk08yYMCATrvm0ePxsGrVKi677DI2btxIU5Ofv4m/x+FwkJ+fz5w5cxg3bhw2m61T1tQ7wnDBBRewbt06v8Liwex2O4MHD+b+++/nlFNOwW63d9qa7t69mwsvvJDly5fT0ODnb+Lvsdls9OrVi9tvv51LLrmk064jNU2ToqIirrjiCr766iu/AvjBDMMgOzubm2++meuuu47o6OhOW9N9+/Zx/fXX88EHH1BdXd2m10tLS+Paa6/lzjvv7LTrSE3TCohvLYDFG60pk61lYHXCJwyF84+xOpOdsKSYpjXqNXc5fL4KaupbfwqMgVXH0QPgJ1OtqcGdtaZOlzUK/sFia8S2LT3fKDsM7wOXTYPYTrrm0TStBxsrt8LrX1nTez1tqKnDBkN6wk9OhJT4zlnTjiAgodHtdvPJJ59w8cUXU1VVddjpff6y2WwMGjSI//znPwwZMqTT/UL2eDx8++23nHnmmVRUVASspn379uXpp59mwoQJnS44ejweVq5cyRlnnEFxcbFfo+C+GIZBjx49eOSRRzj11FM73cYuHo+HdevWMWPGDLZu3dqmh0Ve3pAze/ZsLrnkEmJjYztdTbds2cLll1/O0qVL/ZpZcCTp6en88pe/5MYbbyQhIaFT1dQ0TQoLC7n++uv5+OOP2/Sw6PuSkpK47LLLuOeeezrd+lHv2sW3F8I3G75bs9hWUQ4Y0RtmTbVGHTpRSQ+E8LnL4JPlvqeh+stus6arXjkdkuI6X02bXfDVOnjra2hqDsxRrDbDWpP389M737Rqb2BctgVemGc95AjEnEWbAV0z4BdnWtOBO1NNO4o2T1jweDx89dVXzJw5k8rKyoCEG+/rbty4kZkzZ7J169aAvGZH4fF4WLRoEeeddx7l5eUBrWlBQQFXXXUVa9euDchrdhSmabJy5UouuugiioqKAhIYva+7c+dObrnlFr755htrB8ZOwjRNNmzYwFVXXUVBQUFAAqP3dYuLi7n33nv58MMPA/Z31RGYpsn27du5+eabAxoYASoqKnjiiSd46aWXAhaaOgLTNNm7dy+zZ88OaGAEa7O3l156iT//+c/U1tYG7HXDnTfczFsR2MAI1mut2Q7vfuP/NNeOzBtuFq4PbGAEq4O/eTe88hnUtH4iSIfjDTfLt1iBsTFAgRGsUbXCEnj2Y2tKdmdiAut2BDYwglXTPWXw9/9aG2hJ+GlzaNywYQPXXHMN1dXVAe8wu91u1q5dyw033MC+ffsC+trhrKCggOuvv559+/YFvKYej4dNmzZxww03UFRUFNDXDmeFhYX85je/Yfv27QEL4V4ej4etW7fyf//3f2zfvv2wmxNFoqKiIh544AFWrlwZ8GDnDeP33nsva9as6TRhvKKigr/85S/Mnz8/oIERvgvjjz76KAsXLuw0Ybyuro4XX3yRN954o01T/H0pLy/nmWee4YMPPgj431m4crmtaWlfrAlsYPRqdMLSLbBog++NdCKNacLGndb0yeYABkYvpxvWFsL8lb43fYlE24rg9f0jjIHm9sDmPdZ6vs70gGPXPnjxs8AGRi+PCTv2wRtfQ23nebbZYbQpNFZVVXHPPfewdevWgHfEvTweDx9//DFPPPFEp+jk1NbW8sgjj7BmzZqgfb0ej4f58+fzxz/+sVPUtL6+nmeeeYZvvvkmaJ060zRZuHAhDz74YKeoaVNTE2+++SYff/xxm9YwHolpmixbtow//vGP1NfXR3wYdzqdzJs3j1dffTVoo1amabJu3Toee+wxSktLI76mbrebZcuW8dRTT1FVVRW0r3fbtm387W9/Y9u2bRFfU9OEkkprNMzfjUT8UVUHC9ZbxyFEeEkxTaisg/cWWVN+g/Xl1jfBok2waXfk1xSszYPe/NracTZYX26zyxrJXFnQtjV9HYW3phW1wfsecntg1Tb4Zj10kufFHUabQuP777/PvHnzAjYtzRen08mLL77IihUrgtpOOPjiiy+C2hH/vhdeeIFvv/026O20txUrVvDf//6XysrKoLf18ssv88UXXwS9nfZWUFDAW2+9RUlJSdDbeuutt/j000+D3k57Ky4u5tVXX6WwsDDobX300Ud8/PHHET+CW1NTw4svvsjmzZuDHua+/vprPvjgg4if+uv2WFMod5UGv62d+2DVVuvst0j39VrYXhz8dvZVWUcjVNcHv632tnA9FIRgQlV1vTUyXta2vbU6hKWbYdOe4D90aHRam2sVVQS3HfFPq0NjTU0Nr7zyCuXl5YG8H592797N888/H9FPcevr63nvvfdC0mkEa1rVE088EdE1bWxs5LPPPgvZGs66ujoeeuihiK6p0+lk8eLFLFy4MCRfp/coj0iuqdvtZt26dXz00Uch+TobGxt59NFHaWpqiti6eteHvvrqqyEJx01NTTz11FNUVlZGcE2tEcCv14ZmpMrtgSWbrfMfI7OiltpGa9poKGrq8cDaHbC7LLJrWre/pqF4LuYxYdte2LInsmta3wRfBWlK+sFME4rKrWnwkVzTjqbVoXHp0qVs2bIlZFPxGhoaWLRoETt27AhJe+1h/fr1rF69Ougjt14ul4tFixaxadOmkLTXHnbt2sWiRYtC9vTfNE0WLVrEmjVrQtJeeygvL+fzzz+nvj50j6qXLFkS0TMNGhoa+Oijj/w6h7GtVq5cydKlS0PWXqi5XC7eeeedNh+t4Y9169axePHiiA2NYO2YGMr1W/sqrRG4IK2ACQsrCtp2XIm/Kmpge1Fw1k6GizXbQzuaWt1grZ+sj+CJBpt3B3da6sHqm62aVneyjYbCWatCo2maLF26lD179vh1Xe/evXnxxRcpLCxk3rx5jB8/HpsfJ86WlZWxcuVKf2+3Q/DuRLlly5YWdzgcDgdPPvkkFRUVVFVVccstt/jdbl1dHd98843f13UE3m32V61a1apO3MiRI1mxYgUPPvggycnJLb7O5XLx2Wef+d1eR2CaJmVlZSxcuNCv0Ztly5ZRUVFBRUUFlZWVVFdX89vf/paYmJgWXW8YBh9++GFrbzusmaZJfX09n3766RFr2q9fP9555x0qKyupqqpiyJAhP/jzIUOG8Nprr1FYWMhHH33EiBEjjngEhGEYvP/++wH7OsKN2+3mvffeO+J6+8zMTF566aUDNT3ppJMO/JnD4eDcc89l3rx5FBQU8MYbbzB69Ogj/s6y2WzMnTs3aGv8w8GyLaFdu2UYsGV3aEY32oNpWjV1h/I5gwE7SiJ38xbThNXboTmEP4aGYY2MVUboJsqmCRt3hfbhBlizDEoqQ9um+OZozUVut5stW7ZQVVXV4muSkpL41a9+RW1tLVOmTOH888/n/vvv56KLLmrxuqiioiKWLVvG5MmTI+5JrmmabNq0ieLili9qcLlc/PznP+f222/n9ttvJyoqyu92Kysr+XbRUs674DK/rw13pmmya3dxq6b7ZmRkcOGFF+J0Ov0+DL2+vp4vvvyK/7nqer/bDXcmsLekwu/R6dGjRx/4/0OHDuWOO+5g3bp1Ld7Nsrm5mU8++YRrrrkm4n72Afbs2fOjo9NbtmzhzDPPZPDgwTz11FM/CC+ZmZncdNNNB47ruPzyy3n00Uc588wzfY60uVwu5s6dy2/vvD+gX0t4MKmubmTZsmVH/KzS0lIuvvhievbsySOPPILdbj/wZzExMZx44on88pe/pLi4mBtuuIE777yTa665xuf7tMvlYv78z6mu89DC5yEdiklo1t19n8eELXutabHuCFyCe6CmIXxbM03YUeJhb0k17sbIS+OGzcGO4iQ8HvuPf3KAmCbsLbfWjKYkhKzZkDFNa9fUUD+8KauG0mro3y207crhtSo0VlRUUF5e7lfnLTk5mTFjxnDLLbewfft2nn32WS666CKGDx/Op59+2qLXqqur46mnnuLNN98M2RTOUImKimr1Wpi2dKKbnS4WrKrkwf+0+iXClsPmYduyRr/XM9ntdk488UTS09N58803ycrK8ut6t9vNkpXbmPO6idMdWafTGpgUbXW2eo2Yw+Fg6NCh2O12li9f7te1S5YsYdq0aSHZJCrU4uLi2jQ6lZGRwcCBA7nlllvYsWMHf/3rX5k1axbDhg3j66+/9nndxo2beeQNaIq8fiNms7NNNa2rq+PnP//5gf/+4osvGDt2LNHR0Ue8rnBPKQ+/ZmL3/xle2MtOs47bCCnT6jj++R3r8O9Ik5kCDaEe8TNhX1ktl112BbWlG0LcePD16TeYnImPY4vrGrpGTesMzNe+BLst8nZSjXZYgTik9p8HW9dohVY/nt1LkLQqNNbW1vq9JXxmZiYxMTEH1iTu27ePiooK+vfvz7x581oUfDweDyUlJZSUlERcaIyJicHhaNVfR5uYpklNnSsid6hy2KC63v9wM3z4cGbMmMHs2bOZNm1aq9quqW2gqMI6GyuSGBhU1bd+0+WUlBROPPFEli5d6vcIcG1tLRs3bgzpWspQycjIaPW1hmGQmZmJzWZj9+7dgLUTa2VlJQMHDjxiaKyvr6eowqTJFXm/jaPMNh9DfEBqaioTJkxgzZo1P/q7r6nJxd4KcERgaLQHrqR+cbkie4pae0yecLk8bN26jfI9kRcascWSMdZJTFxom3W7remULk/kHWkSE9UOD4ywNjJqbLb+bQ/dwLH40KpfAW632+8nuHa7HdM0fxAOPR6PX2saI1kkTrlrd6aJ6efjvvT0dH7961/zyiuvsHHjxiDdWMdlYrb6e9UwDPr27Uu/fv2YO3duxB/34I+2/vzbbLZD3l/dbnenfn/192ffl9TUVGbOnElubi7PP/+8X8syIk27/Joy9v8TodqtphHMpB123Pz+96m6c4Gxv6YeT+SN3HZUrRraioqK8nv9XGlpKS6Xi65du7Jjxw7S0tJIS0tj+/btfneY/Flf1lG059cUgeW0GIbfneaRI0dy0kknYRgG5557LgMHDiQ+Pp69e/fy97//vcVnPRqGEZG/lw2MVn+vOhwOzjzzTLZt29bq3WUj8Wcf2vZ1eTcnMk2TnJwcdu/eTXp6OmlpaWzduvXHGiZSe5BGAOYyJiUlcemllzJ06FCeeuopVq5c+aMPOyKzmpYI/fFrV6pp4LVnSQ3v/0RayGnHojrs0Imff4aVVoXGpKQkEhMT/bqmqqqKlStXMmPGDAoLCznjjDNoaGhgxYoVfu0WOmzYMIYPHx6yoz5CxWazsW7dOpYsWRLadg2DnHQH4waFtNmQsAEr/Ny0YcWKFZx66qmA9XBkxowZZGdn8+mnn1JX17J9nw3DICsjkaMHGjgjbTDNNClo5c9eamoqp59+OnfccUeLN8D5vqysLM4444xWXRvumpub+c9/Wr+wuLS0lG3btnHmmWeyd+9eLrzwwhbtNp2SkszRA0O7y2CoNNa0bQlDdHQ0//u//8uwYcN46KGHWL16dYtm2MTHRTFuUGROT02Ohz3tcL5fjAOG9oKo0K/gCLqkOPh8FXhC/DMYGxPF6aefhqd+WGgbDoHs3J7UJSQQ6l5ilB0G5kFifOSNjNkMWF8IlSE+/sJhg9ioyFzP3BG16i04JSXlwBqalk4xq66uZs6cOdx11118/vnn7Nq1i3vuuYeioqIWt5uUlMQFF1zAz372s9bcdlgzTZPHH3+c5cuXt3jqr81m45prruGOO+4gKSkJj8fDL37xCy644AIWLFjQojAeExPNuBE5zDq+rV9BOLITV5nEX6OiWrwGtry8/MARJNHR0YwdOxaPx8OWLVta/BoOh4OjRw3kguOIvKeNGCxOimdOdDTNzc1+XXnuuefS1NTE3Llz/W/VMDj66KOZM2eO39d2BLt27eLtt98+YiDOzs7mtttuY+bMmaSmpvLpp5/idDoZMWIEpaWlPPbYY9x555188cUX7Nixg//7v/+jouLIi5WHDzuK86cE+qsJD7W18dwaG3vEM1qTkpK4+eabufbaa0lOTuaYY46hqamJiRMn4nQ6uf3227HZbEydOhWPx4PT6eTYY4894nnB/ft2Z+ZxBj+yX06H9eVqaAzxlgJd0mDGMZAYG9p2Q2XJptB3xrtkxHPZ7bfRJSXSnmyCYdiY83Y8u0pD225KAkwdBX1zQ9tuqPzjg9B/nybEWSFcI/LhoVWh0WazMXjwYDIyMti3b1+LrjFNkzVr1nDRRRdhGAamaeJ2u/2ampqdnc3IkSP9OjOvozBNk4EDB9KtW7cWbxDi8Xj429/+xlNPPfWDjzudzhbXNSUlhXFHjyEuEreHNyGvWw59+/Zlwwb/F/s3NzfzyCOPYBiGX2t4Y2NjmTLlGOIisNNompCdlcbQoUP93v30H//4B0899VSrZglERUUxbdq0iP3Zz8rKIj8/n4ULF/r82S0uLubmm2/mV7/61Q8+7g3vS5Ys4dxzz23x+6vD4WDatGnERkfiL2QDw4xm4sSJfPbZZz7rUFNTwz333MP99//w2BFvTdPT03/wcdM0j/jwyG63c/zxxxMfa6MVJyCFPdOE/nmwZlvonofZDOiXa43IxUboe2r/PFi6KXSjU4YBPbMNstITSY7Q4yH6doWiitBt3mIYkJsOmclEbH+qZzZs3h3ah0YZyZCVErr25MhaNUvYMAzGjh1Lbq7/j1NcLhdOpxOXy+VXYDQMgy5dujBy5Ei/2+wIDMNgyJAh9O/f36/rPB4Pzc3NP/jH36NQJk6c6O/tdgiGYdCzZ88fPeT8SDwej9+bPsXExHDCCSe0qr1w592pc/LkyX7X1OPxtHpauc1mOzBtONIYhkFCQsKBtbRH4na7D/l5/z5/3l8Nw+D0009v8/2HK4fDwVlnndWmmh788R+bbWAYBieffPIPznuMNGP6h/4hw4C8yJyaClYt8/uFvqa9syE+AsMNWLUc0dtaCxdKXTMg1b+VWx2GYcCg7qENxAZWCO+SGro25chavbR0+PDhDB06tFUHyrdGYmIixx13HNnZ2SFprz3079+fUaNGERcXmn2ivYdX5+XlhaS99tC1a1fGjx/v9xrc1rLb7Zx00kn06tUrJO21h9TUVI455hhSU1ND0p7NZmPatGn07ds3JO21h9jYWE444QQyMzND0p5hGBx77LEMHDgwYjcXstvtnHLKKeTk5ISkPcMwGD9+PEOGDInoXWuH9Q7t4eXdsyAvs/2O+wiFo3pBWgjDRk4a9OgSuUEcYGB3K3CESnoi9M6JzNFwrz45kJ0augcciXHQryskROi09I6o1W/DMTExXH755SH5hWyz2ejduzezZs0KelvtKSoqinPOOYf+/fsHvSNnGAY5OTkRuT70+xwOB1OnTiU/Pz8kNU1LS+OWW24JajvtzW63k5+fz9SpU4PeOTYMg5SUFG699dagttPebDYbAwYM4Nxzzw3JKFVycjI33HBDyB76tQfDMMjNzeWKK64IyRm4iYmJ/PSnPyUlJXLnUhmGNTp1wqjQhLhoB4wZENpA1R6iHTB9rLXpR7BF2a2Q2rX1R8N2CNEOmD7G+nqDzW6zpsP26xr8ttpTlAOmjrQ2pgk2mwHdMmF47+C3JS3XpreoKVOmcM455wT9F3JsbCw/+9nP/J662RHl5+dzzjnnEB8fH9R27HY71113HUOGDAlqO+Fg8ODBnHvuuW06QL0lbDYb//u//8uIESOC2k446NGjB+eddx7du3cPajuGYXDFFVcwduzYoLYTDjIyMg4c8xJMNpuNCy64gEmTJkX0iBhAfHw85513HqNGjQpqO4ZhMH36dI4//niiI3UHnP1s+6dTBruDbGB1xIf1gujIfbZxQH4/GNwj+O10zYDR/SJ3aur3jewbmtCRngTjBlm7C0e6ob1gVN/gn8CREAuTh1q1lfDRph5DbGwst956K5MnTw5q5+PSSy/l4osvjthpVN8XExPDNddcwwknnBDUMH7RRRdx5ZVXdoqaRkVFcdFFF3HaaacRGxu8eQ5nn3021157baeoqcPhYPr06cyYMSOom9OcdNJJXHvttcTExER8Xe12O+PHj+fSSy8N6jTViRMncvXVV5OcnBzxNfVu2vazn/2Mbt26Ba2d4cOHc9VVV9G1a9eIr6lhQFoSTBsd3A0qMlPgmKGQnRaJGzX9kGFAfCycdrS1mUqwvtzkOKsj3rNL5NcUrNHGMyZYU5yD9eXGRlk1HZTXiWo63toUJ1hfr92ASUOs0N8ZatqRtDnp5eXl8cQTTzBw4MCAT6syDIMzzzyTu+++OyJ3TfQlNzeXhx9+mOHDhwelpieddBL33HNPRE+jOlhWVhZ33XUX48ePD/iUPMMwmDx5Mr/73e/o0qVLxHcavdLS0vjlL3/JCSecEPAwbhgGo0eP5rbbbqN3796dpqZJSUn8z//8D2effXZQ1uEOHDiQm266KSjvLeEqNjaWc845h8svvzwo63C7d+/OL37xC4455piQTIMNB3abtSnGCSOtdUeBlhALxxwFw/uEfjOT9mIzrI746eMIyo6mMVEwYQiMGxzZaxm/zzAgNw3OmxycESu7DY4eBMcN7xyj4V4ZyXDx8daa0UD/ajYMyB9gTdeO6UQ17SgCMjw4aNAgXnnlFQYPHhzQEcczzjiDJ598kqysrIC9ZkfRt29fXn31VYYNGxbQzt3UqVN59NFH6dGjR6fpiHv17NmT559/njFjxgS0pkcffTR/+MMfIn4DjMPp2rUrTz75JFOmTAloGB88eDD33HMPEydO7DQdca/MzEzuv/9+Tj/99ICG8Z49e/Lb3/6W0047LeKnUB4sJSWFm2++mVmzZpGUFLjeY0ZGBjfddBOXXHJJUGcxhKNoB0waaq1xCuRGFdEOOH6EtW6ys3Ua7TZrdOWMcYHdbMhmWCH89PFE5FFQR2IYMDAPLjjWCjuB6vUYWCH8/GOsUeLOpmcXuHwadEkJbHAc098KpNr8JjwZpj/nM/hgmiamaVJQUMANN9xw4NDp1ry0zWYjNjaWSy+9lLvvvvtAYOxsAQesuhYXF3P99dfzzjvv+H2chpdhGMTGxnLmmWdy33330adPnwMf72xM06SmpobrrruOf//73zidTjwe/w83NgyDmJgYpkyZwoMPPnhgHWNnrWlDQwM333wzzz77LM3Nza2qKVjTs4cPH84f//hHjjnmGKDz1rSxsZHf/e53PPHEEzQ2Nrappj179mTOnDmccsopGIbRaWva3NzMQw89xMMPP0xNTY3fx+l4RUdHk5mZyZw5czj//PM7cU3B7YEvVsMHi6G6vvVnDdpt1lS/86fAxP1L7TthSTFN8HhgyWZ4ZyGUVYO7DTWNcsA5E+G4EVbQ6aw1NU1YVwhvfg27y6zv29aw2SDaDqeOhZPGWIG809YU2FEMr34B24rA1dqaGtb36QkjrbpGR3XOmnYEAQmN31dcXMyTTz7Jyy+/zK5du2hoaGjZjRgGSUlJ9OnTh2uvvZaZM2d2qimpR1JdXc1TTz3FP/7xDwoLC6mrq2vxtYmJiXTv3p1LL72Uq666KuibwXQUjY2NvPzyyzzyyCNs376dmpqaFgfy+Ph4cnNzmTFjBjfeeGPItvQPd263mzfffJPf//73bN26lerq6hYHnbi4OLKysjj11FP5zW9+E/QNdjoK0zT58MMP+d3vfsfWrVupqKhocU1jY2NJT09n6tSp3H333QceFgl8/vnn/OY3v2Hz5s2Ul5e3ODzGxMSQlpbGhAkTeOCBBxgwYECQ77TjKNgLby2APWVQ29Dy8Gi3WZuy9MqBcydBtwx1GL0KS+Cdb6yOeU19y8OjzQbx0dC9C5w9wToKQjW17C2H9xfBpl1QVd/y8GgY1ihtt0xr7emg7pF9DIw/Sqvh46WwehtU1rY8PBpYR5TkpMNJ+dbZmp1l6nRHFfDQCNYB08uXL+eFF15gyZIl7Nu3j6KiIurq6n7Q4XE4HCQnJ5OdnU1OTg5Tpkxh1qxZ9OvXr1M+tT0St9vNhg0bePHFF/n6668pLi6mqKiI2traH3R47HY7SUlJZGdn06VLFyZMmMAll1zCUUcdpZoexOPxsGPHDl566SXmzZvH3r17KSoqorq6+gc1tdlsJCYmkp2dTVZWFmPGjOHSSy9l1KhRnW466o8xTZOioiL+/e9/8+GHH7Jz506Ki4uprqnF5fphTePjYsnKyqRLly6MGDGCyy67jHHjxqmmBzFNk8rKSl599VXeffddduzYQVFREZWVlT84bN4wDOLj48nMzCQ7O5ujjjqKn/zkJ0yZMkU1PYhpmtTX1/Pmm2/y+uuvs23bNoqLiykvL6e5ufkHnxsXF0dmpvV9OmTIEC6++OIDG5XpPfWHXG5YsRWWbIKSSis81jRYH/++KLs1pS8l3troZswA6xiIKLvCzcFcbli7A77dYNW0pgFq6j00N7v5fuctymEjIc5OcjxkpVo7XI7sY3XKVdMfcrth4y74ZoMVImsbrFFyp4sf1NT7QCM53praOqy3tfNsUpxqejC3x3pw9M162FX6XU2bnQfV1IC4/TVNTYQhPWHs/mN1VNPwF5TQ6GWaJoWFhaxcuZINGzb8IOR4A2NeXh5Dhgxh5MiRnXLtor9M02T37t2sXr2atWvXsnfv3gPTrBwOB0lJSXTt2pXBgwczatQojYK1gHcasLemu3fvprq6GqfTicPhIDExkdzcXAYNGsTo0aM7xQ6JbWWaJuXl5axevZrVq1fzwdcl7N73XWc8NdHOhOGpjBvdn1GjRtGjRw8Fmx9hmibV1dWsWbOG1atXs2PHDioqKmhubsZutxMXF0eXLl0YMGAAo0aNonfv3p1uPai/vOFx3bp1rFq16sBobmNj44GlEllZWfTr14+RI0fSr18/YmI6wVkFbWBidcr3lsOufVBSZXUgnW5rZMFhh8RYa3fU7lnWQfOdaROR1jCxpqwWV8DOffDlN+t4/8N51O6fdWQYBsdOnsDppxxD9yxrB9ZIPmQ+UEzTqumuUuvf1Q1WyIHvAmN6sjX63S2zcxxT0lYmUFoJO0uhqAKq66DJZdXaYbNGa9OS9tc0y3ovkI4jqKHxYB6Ph+bmZtxuN1FRUURFRanz3UbedToulwuHw0FUVJQ63230/Zra7Xaio6NV0zZ67C1Yvf27/+6WCTOPhYGahdomzc3NOJ1ObDYb0dHRnWZH1GByOp00NzdjGAbR0dEK3gHg9lgjZt7QqLfTtnn55Zf55S9/SXFxMWDN3PjNb37DPffc08531rF5PPunVppWaLTZNPrVVh7T+tn3hkbVtGML6W9D75NbCRzvhix6+h04qql0FNHR0Z1uJ9Rg8z7QlMCx27T+S8KfzQbR+j4NKJth7YgskUE/HiIiIiIiIuKTQqOIiIiIiIj4pNAoIiIiIiIiPik0ioiIiIiIiE8KjSIiIiIiIuKTQqOIiIiIiIj4pNAoIiIiIiIiPik0ioiIiIiIiE8KjSIiIiIiIuKTQqOIiIiIiIj4pNAoIiIiIiIiPik0ioiIiIiIiE8KjSIiIiIiIuKTQqOIiIiIiIj4pNAoIiIiIiIiPik0ioiIiIiIiE8KjSIiIiIiIuKTQqOIiIiIiIj4pNAoIiIiIiIiPik0ioiIiIiIiE8KjSIiIiIiIuKTQqOIiIiIiIj4pNAoIiIiIiIiPik0ioiIiIiIiE8KjSIiIiIiIuKTQqOIiIiIiIj4pNAoIiIiIiIiPik0ioiIiIiIiE8KjSIiIiIiIuKTQqOIiIiIiIj4pNAoIiIiIiIiPik0ioiIiIiIiE8KjSIiIiIiIuKTQqOIiIiIiIj4pNAoIiIiIiIiPik0ioiIiIiIiE8KjSIiIiIiIuKTQqOIiIiIiIj4pNAoIiIiIiIiPik0ioiIiIiIiE8KjSIiIiIiIuKTQqOIiIiIiIj4pNAoIiIiIiIiPik0ioiIiIiIiE8KjSIiIiIiIuKTQqOIiIiIiIj4pNAoIiIiIiIiPik0ioiIiIiIiE8KjSIiIiIiIuKTQqOIiIiIiIj4pNAoIiIiIiIiPjna+wZEJLJ5PB6ibE7iokw8HhPDMIixG4Ad07RjGEZ736KISIdgmhATE0dmVg7m/i6c3W4jPiEZE9C7qYgEi2GaptneNyEikaW5uZktW7awePFiNm7cyLINNVTWevCYVmhMiDHo1z2Gowb1ZOTIkeTn5xMfH68AKSJyENOEukbYVgy7S2H1+kKWLV9JQ0MjGGAzDAYPHsS4MUfRNQN6ZUN6Itg0l0xEAkihUUQCxuVysWLFCl544QW+/fZbCgsLKSkpweVyHfK5hmGQmppKXl4evXr1YsaMGZxzzjkkJSW1w52LiISfylpYtBHWbIeKWqiog6bmw3+uww6pCZCeBAPzYMJgyEgBm57FiUgAKDSKSJuZpkl9fT0PPfQQ//rXvygpKaGurq7F1xuGQU5ODsOGDeOOO+5g8uTJQbxbEZHw5vbA8i3w0VLYVw11Df5dHxcNaUkwbTRMHKxRRxFpO4VGEWkT0zTZvXs3M2fOZNmyZdTX17f6tWw2G7179+b2229n1qxZOBwOTVkVkU7DNKHJCXOXweeroLoeWttJM4AoB+QPgEumQpQd9HYqIq2l0CgirebxeFi/fj0zZsygoKAAp9PZ5tf0jjrOnj2bSy65hJiYGAVHEYl4pgn1TTB3OXyyzAqPgWC3waA8+J/pkBSn4CgiraMJCyLSKqZpsnHjRq666iq2bNkSkMDofd2ioiLuuecePvzww8OuhxQRiSSmCc0u+GZ9YAMjWFNdN+2GV+ZDrZ/TXEVEvBQaRaRViouL+f3vf8+KFSsCHuxM02Tnzp3ce++9rF27Fo/HE9DXFxEJJ6YJm3bB+4uhOYCB0cvphnU74LOV0OhjIx0RkSNRaBQRvzU1NfHmm28yd+5cGhqC8+jaNE2WLl3Kww8/TH19PZpJLyKRyDShsg7e+7Ztaxh/TF0TLN4Em3dbbYqI+EOhUUT8VlBQwFtvvUVxcXHQ23rjjTf47LPPgt6OiEh7WbDOOocx2EqqYHmBFU5FRPyh0CgifnE6nSxevJgFCxaEZPSvvr6eBx54QCONIhKRahutaaOheIvzeGDtDthdFrwRTRGJTAqNIuKX8vJyvvjiizYdreGvJUuWsHLlypC1JyISKisKoK4xdO1V1MD24uCsnRSRyKXQKCItZpomZWVlLFiwwO/NaaZOncpnn31GQUEBc+bMIS8vz6/rP/jgA78+X0Qk3JmmNV3UHcphPwMKi63jPUREWkqhUUT8Ul5ezubNm/265rjjjuOZZ57h8ccfZ9y4cXzyySf06tWrxdc3Nzczb948P+9URCS8uT2wvYiQzhU1TdhRAg0KjSLiB0d734CIdBwul4vCwkLcbrdf19122238+9//Zv369XTt2pVVq1b5vYnO5s2b8Xg82Gx61iUikaGsGlz+vZ223f7dWptdVoA0jBC3LyIdkkKjiLSY2+2mpKTEr2tiY2MZPnw4e/fu5Ve/+hXx8fFUVFTwr3/9i4ULF7Z4mmtdXR21tbUkJye35tZFRMJOTX37HH/hcum8RhHxjx7Zi0iLmaZJc7N/PQ273Y7dbicpKYlf//rX/OIXv6C8vJyzzz6blJSUoLYtIhLOXO522MXUsP5xuXVeo4i0nEKjiLSYYRjExsb6dU1DQwNFRUUsW7aM4uJiSkpK2LRpE2lpacTHx7f4dWw2G3Fxcf7esohI2IpyWBmu3drW1FQRaSGFRhFpMYfDQW5url/XeDweXnnlFU455RT69u1Lr169GD9+PLt27aKysrLFr5OcnKzQKCIRJSWhfYJbtANio0Lfroh0XFrTKCItZrfbycvLIzo62q+poo8++igpKSm89dZbmKbJJ598wgsvvEBdXV2LrjcMg6FDh2oTHBGJKGmJEBMNDSGeeZ+eBNFRGmkUkZZTaBQRv6SnpzN06FCWL1/e4mvq6ur4zW9+wx133AFYo48ul6vF10dFRXHCCSf4fa8iIuHMZoP+XWHpZvCEaH2hYUDPLhAfE5r2RCQy6LG9iLSYYRhkZGQwadIkDD8fUbvdbpqbm2lubvYrMHrbPe200/y6RkQk3BkG5PcP/Yhf7xyFRhHxj0KjiPglLS2NKVOmkJqaGpL2bDYb06ZNo2/fviFpT0QklIb2sqaphkpOGvToYm2EIyLSUgqNIuIXu91Ofn4+xx9/fNDXGBqGQXJyMrfeemtQ2xERaS8xDjh5DDhC0CNz2GFoT+iaEfy2RCSyKDSKiN969OjBueeeS15eXlDbMQyDyy+/nKOPPjqo7YiItKcx/WFQ9+C30zUDRvfT1FQR8Z9Co4j4zeFwcOqppzJjxgySk5OD1s60adP4+c9/TkxMjN9rKEVEOgLDgPhYOG0c5KYH79zGpDiYPBR6ZWvXVBHxn0KjiLRKWloaN910EyeccAKxsbEBfW3DMBg9ejS/+c1v6N27twKjiEQ0m2GFudPHQXJC4F8/JgomDoHxg7SWUURaR6FRRFqta9euPPHEE0yZMgWHI3A9kcGDBzN79mwmTJgQ0NcVEQlXdhuM7GMFx5QABkebAZOPsl43TtNSRaSVDNM0Q3QykIhEItM0aWho4KabbuLZZ5/F6XTi8Xha9VoxMTEMGzaMhx9+mGOOOQZAo4wi0mmYJng8sHgTvPsNlFWDu5W9NLsNouxwzkQ4bqQ17VVvpyLSWgqNIhIQbrebN954g/vvv59t27ZRXV1NS99eYmNjyczM5NRTT+W3v/0tPXr0CPLdioiEtx0l8M5C2FEMtQ0tD482wxpR7J4FZ0+EPjkKiyLSdgqNIhIwpmlSVFTEyy+/zIcffsiuXbsoLi6muroal8t14PNsNhvx8fFkZWWRlZXFiBEjuOKKKxg3blzQj/EQEekoXG5YuwO+WQ8llVDbCDUN4HT98PMcNmsznaQ4yEq1dkgd0QfiohUYRSQwFBpFJOBM06SsrIxVq1axatUqdu7cSVVVFU6nE7vdTnx8PDk5OQwePJj8/Hx69OihsCgichgm1pTVonLYuQ+KK6GmHppd1pRTux0SYiAzxRpd7JoBsdHtfNMiEnEUGkUk6EzTxOl00tzcjN1uJzo6Grvd3t63JSLSIbk91iikNzTaDI0oikhwKTSKiIiIiIiIT5oPJiIiIiIiIj4pNIqIiIiIiIhPCo0iIiIiIiLik0KjiIiIiIiI+KTQKCIiIiIiIj4pNIqIiIiIiIhPCo0iIiIiIiLik0KjiIiIiIiI+KTQKCIiIiIiIj4pNIqIiIiIiIhPCo0iIiIiIiLik0KjiIiIiIiI+PT/obsgEn+tHnMAAAAASUVORK5CYII=", - "text/plain": [ - "
" - ] - }, - "execution_count": 8, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "from qiskit.visualization import plot_circuit_layout\n", - "\n", - "# Plot the hardware graph and indicate which hardware qubits were chosen to run the circuit\n", - "transpiled_circ = pass_manager.run(ghz)\n", - "plot_circuit_layout(transpiled_circ, backend)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "\n", - "As you can see, this circuit has to execute a two-qubit gate between qubits 0 and 14, which are very far apart on the connectivity graph. Running this circuit thus requires inserting SWAP gates to execute all of the two-qubit gates using the `SabreSwap` pass.\n", - "\n", - "Note also that the `SabreSwap` algorithm is different from the larger `SabreLayout` method in the previous stage. By default, `SabreLayout` runs both layout and routing, and returns the transformed circuit. This is done for a few particular technical reasons specified in the pass's [API reference page](../api/qiskit/qiskit.transpiler.passes.SabreLayout). " - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Translation stage\n", - "\n", - "When writing a quantum circuit, you are free to use any quantum gate (unitary operation) that you like, along with a collection of non-gate operations such as qubit measurement or reset instructions. However, most quantum devices only natively support a handful of quantum gate and non-gate operations. This stage of the preset `PassManagers` translates (or *unrolls*) the gates specified in a circuit to the native basis gates of a specified backend. This is an important step, as it allows the circuit to be executed by the backend, but typically leads to an increase in the depth and number of gates.\n", - "\n", - "Two special cases are especially important to highlight, and help illustrate what this stage does.\n", - "\n", - "1. If a SWAP gate is not a native gate to the target backend, this requires three CNOT gates:" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": { - "tags": [] - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "native gates:['id', 'rz', 'sx', 'x', 'cx', 'reset', 'measure', 'delay']\n" - ] - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAATEAAACuCAYAAABeIjpKAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAUdklEQVR4nO3dfXBU133G8e+uAEkgCSSELUAyEiCweJFwwJiXxDEEWjOAY6chdUOJ2/F4+sZAJx6rM0mn47TpuDSeeAY7aUzrDjNpQ5SY2KaQxIkjbF5sg7DAxpYwWCDQSlpgkUBISIC02z+OZSOQ0O5yd++e5fnMMJi9bz9pr5977rnn3usJhUIhREQs5XW7ABGRW6EQExGrKcRExGoKMRGxmkJMRKymEBMRqynERMRqCjERsZpCTESsphATEaspxETEagoxEbGaQkxErKYQExGrKcRExGoKMRGxmkJMRKymEBMRqynERMRqCjERsZpCTESsphATEaspxETEagoxEbGaQkxErKYQExGrKcRExGoKMRGxmkJMRKymEBMRqynERMRqCjERsZpCTESsphATEaspxETEagoxEbGaQkxErKYQExGrKcRExGoKMRGxmkJMRKymEBMRqynERMRqQ9wuQCRegiHo7gGvB1K84PG4XZE4QSEmSev0BfigAXwt0NACLR2fTxs2BPKzIT8HJt0B08fDkBT3apXoeUKhUMjtIkScEgzB4QbYcxSOnQ5/ucw0mD8ZFk6Bkemxq0+cpxCTpHGuHX7+bmThdb20ofDIbJg7UaebtlCISVLYfxxeroIr3c6sb9o4+PMFMDzVmfVJ7CjExHo7a+G1aufXO24U/O1XICPN+XWLczTEQqy252hsAgyg6Tz8pBK6rsZm/eIMhZhYy9cCvzoQ4220wivvxXYbcms0xEKs1N0DP3vHXI2MxLcfhKx0aOuEH/42vGX21UFZAUwbH3mdEntJ3xILBAKUl5czefJk0tLSKCgoYP369XR0dPD444/j8Xh44YUX3C4z5i50Qm2TGTd17DRc7XG7olvz1hFzuheprHQYNdz8HYlf7DfBabPTF+CjRvjQB6fORX4ASFRJ3RI7dOgQy5Ytw+/3M2LECKZNm0ZTUxMbN26krq6OlpYWAGbNmuVuoTFUdxp2HTVjp67daUekwn0T4UtTIXuEe/VFoycIu4/Gd5vnL5kDwBcK47vdWxUMwsGTsOcYnDjbd9qYTFhYDPMmm6EltkrallggEGDlypX4/X6efPJJmpubqa6uxu/3s2HDBnbs2EFVVRUej4fS0lK3y42J338Iz78B75+68ajbcRkqa+Hffw3Hz7hTX7RqGk2oxNueOAfnrbraA5v3wE/fvjHAAM5ehFerYePv3Pl9OiVpQ2zdunX4fD7Wrl3Ls88+S2Zm5mfTysvLKSsro7u7m8LCQrKyslysNDbeOgI73h98vs4r8OJOaGqNfU1OOXDCne0eP2sG1NogGIL/edu0HgfTexX20pWYlxUTSRlitbW1VFRUkJubyzPPPNPvPLNnzwagrKysz+cnTpzgoYceIjMzk+zsbL71rW9x7ty5mNfspPYu2HYw/Pkvd5sjsi1Ouvh1NFiyKxxpMi3wcPkvwK4jsasnlpIyxLZs2UIwGGT16tVkZGT0O096uunZvTbELl68yKJFi/D5fGzZsoVNmzaxe/duVqxYQTAYjEvtTthXZ/qNInHUD6fbYlOPky52uXvq09Di3rYjsfdY5Mu880nk+00iSMqO/crKSgAWLVo04Dw+nw/oG2KbNm2isbGRXbt2cddddwGQn5/PggUL2LZtGw8//HDsinbQ/uPRLXfgOCyf5WgpjvOfd3n7F9zdfjgudpl+w0hd6DQHs5JxztcUS0l521FBQQE+n4+DBw/2e+Wxu7ubsWPHEggEqKurY+LEicDnobdz584+80+aNIkHHniAl156Kap65syZg9/vj2rZaHz1n48wNLX/FujNnKzeSlXF+hhU5JyxJUtY+Beb+53WOwbsZrLSwOs1V+3augaeb6BxZGfq3mbXpm+EX7ALRo6dxtK//11Uy763tZwT+3/mcEWDy8vL48CB6EYuJ2VLrKPDPDiqs7Oz3+kVFRUEAgEyMzMpKir67POamhpWrVp1w/zTp0+npqYm6nr8fj+NjVEcGqMU7anvpY6OuNYZjWFjAgNO6x0DFg6vN/x5r3W5qyvhf0eXU0ZHvWxra0vC/3zXS8oQy8vLo7W1lerqaubPn99nWnNzM0899RQApaWleK553kprayujRo26YX05OTl8/PHHt1RPPHW1NZOaHsUV16vnGT8+sYelj8wcuKnV1v8xq49IWmL9SfH0JPzvaFhaiFCwB4838qc8pno6Xfn5buX/kaQMsSVLllBbW8uGDRtYunQpU6ZMAaCqqoo1a9YQCJijebwGuUbbTI5WZU1kVyd7/fS5ddyRtc75ghzU3gX/uLX/aeHcRvT0I6YF1tYFT78S+fbXfH0pv/hXX+QLxtl/vWVG5kdiZDrsf+N/SbHscp9l5YanvLyc0aNH09DQwPTp05k5cybFxcXMnTuXiRMnsnjxYuDG4RXZ2dmcP3/+hvW1tLSQk5MTj9Idcd8kGBLhNzs1D+6wYLhcRlp0p4FOKYj+TC2uFhZHvsyCYqwLMEjSEMvPz2f37t0sX76ctLQ06uvrycnJ4cUXX2THjh0cPWqGXl8fYiUlJf32fdXU1FBSUhKX2p0wIhW++oXw508bCg/Pjl09TpuQ696277LkWDZ1LNwzIfz5x42CL98ds3JiKilPJ8EE0vbt22/4vL29nfr6erxeLzNmzOgzbcWKFXznO9/B5/ORn58PwL59+6irq+MHP/hBXOp2ypemmttOBjutHJEKTzwAY0fFoypn3FsU2UBOp0y6A3Iiv+jrCq8HVs+HUAgODfK7ys+GJxbZe/9kUg6xuJl9+/Yxb948pk6dypEjfYcot7W1MXPmTHJzc/ne975HV1cX5eXljBkzhnfeeQev176G64mzsPtjeL+h70DGjDSYP8m8GMPN07NoBIPwL69BaxSDXnv7xM5firxP7LEvRta6SQTBEHxwytwA/sl17x7IG2lOO+dOglSLmzMWlx6dw4cPAzeeSgJkZWVRWVnJ+vXrefTRRxkyZAgrVqzgueeeszLAAIrGmD8Xu+Df/g86rsCIYfD0w/a+oszrhfvvjt0TXfuTPRxKC+K3Pad4PTBrgvlztg2ee93cI5mRCv+wPDlehqIQu86kSZP6PQ21XWba56E1JMXeAOt1/1R4r9483TUe/nSenZ3e1xqTBUM//d6T6eXBln8tkRssxMQOKV74ZhTB0tZpTiXDGVPWa/5kuHtsZNuR+LntWmK991WK/cZlw9fvhYp94S8T7iOpexXkRHalV+LvtmuJSXKZP9m87DYW8rPhryy+ane7uO1aYpJ8vny3GSryy/3m2WhOmJFvhiikD3NmfRI7CjFJCnOKzDiun78LH9/CA0OGD4OvzYHZhcnT8Z3sFGKSNLJHwF8vNm/02XMUjjSHv+zIdHPbzYJicyVX7KEQk6Ti8ZhTwRn55kUYhxvM01h9LRBoNyPYexXfCfk5pgVXMs7+IRS3K4WYJK0xmbB4Wt/P/mmreYLFyHT4uyXu1CXO0rFHbivq50o+CjERsZpCTESsphATEaspxETEagoxEbGaQkxErKYQExGrKcRExGoKMRGxmkJMRKymEBMRqynERMRqCjERsZpCTESsphATEaspxETEagoxEbGaQkxErKYQExGrKcRExGoKMRGxmkJMRKymEBMRqynERMRqCjERsZpCTESsphATEaspxETEagoxEbGaQkxErDbE7QIkdoJBON0GDS3Q2AqXrpjPL12B33wABTmQnwMj08HjcbdWiY0r3dB0Hnwt0HTdPlBZY77//BwYPszVMm+JQiwJtXbA28fgnTpo77px+tUeeP3w5//Oz4YvToEvFMIw7RFJoeEc7D4KB0+a7/t6V3tg20Hz3x6gZJzZB+4eB17LDmjaZZPIpSuwrRr2HYdQKPzlfK3w833w2kFYXgYLiu3bkcU40wYV+6DuTPjLhICaJvNnTCZ8Yy4U58WsRMcpxJJETaPZeS90Rr+OzivwchW8fwoenQejM5yrT2IrGIJdR2DH+/23vMJ19iL86A+wsBgeugdShzpXY6yoYz8JvHkENr15awF2rWOn4Ye/Nackkvh6gvDTvfBq9a0F2LX2HoPn3+i/OyLRKMQs9+YRePU959fbcdkckX0tzq9bnBP8NMAOnnR+3b4Wsw9cuuz8up2kELPYR42xCbBeXVdh004TaJKYfv0BHDoVu/U3n4fNeyLrY4039YlZ6tJl0wcWiW8/CFnp0NZpThfD0dYFvzoAaxZGXqPEVn0A/lAT2TLR7ANH/eZq98IpkdcYD7dFSywQCFBeXs7kyZNJS0ujoKCA9evX09HRweOPP47H4+GFF15wu8yIvFptdsRIZKXDqOHm70i8Vw8fNES2jMRWdw9seSfyFlK0+8C2g9DSHtky8ZL0LbFDhw6xbNky/H4/I0aMYNq0aTQ1NbFx40bq6upoaTGdPrNmzXK30Aica4eq4/Hd5uuHYWa+nYNiAxdNR/Xhhs8vfnRcNsE8fTykWHgoP3TKDGSOl8vdpv/1a3Pit81wWfj1hS8QCLBy5Ur8fj9PPvkkzc3NVFdX4/f72bBhAzt27KCqqgqPx0Npaanb5Ybt7WNmbE88NbbCScuuVnb3wJZ34fvbYGctBK5pSXQH4b93wfdfg1OW/VwAe4/Gf5v7j5swSzRJHWLr1q3D5/Oxdu1ann32WTIzMz+bVl5eTllZGd3d3RQWFpKVleVipeHrCcK7de5se+8xd7YbjZ5PQ2rfIL+r1kvw/O/hZCA+dTmhqRVOuFBv11U4WB//7Q4maUOstraWiooKcnNzeeaZZ/qdZ/bs2QCUlZV99llv6M2dO5fU1FQ8CXb+1HzevauFn5x2Z7vReOMjMwI9HFd74KW3zH2GNjjm4veQiPtA0obYli1bCAaDrF69moyM/oeep6eb3s1rQ+yTTz5h69at5OXlce+998al1kg0uDhuq7XDjsGP3T2Rn261dcV2qIKT3By75+b+N5CkDbHKykoAFi1aNOA8Pp8P6Bti999/P83NzWzbto0lS5bEtsgoNLq8E/la3d1+OA77TChFao8L/UzRcPM7ONOWeP1iSXt18uRJM4R5woQJ/U7v7u5m7969QN8Q83qdz/U5c+bg9/sdWdd9q/+DgtKV/U7rHQM0kKy0z/9++pGbb2egcUR/+cRaGg69Gl6xLpm57LtMfeBvIl6u/kw3+fmFzhfksOXffY/0rDv7nebUPjDQ9x8CZpTdS+eF5vALDkNeXh4HDhyIatmkDbGOjg4AOjv7H0xVUVFBIBAgMzOToqKimNbi9/tpbGx0ZF2Xb9Jx0zsGaDBeb3jz9edCW7tjP0usFF+J7gZCb8oQ/GcC9FxN8FsUPCkDTorHPnDm7DnazibOPpC0IZaXl0drayvV1dXMnz+/z7Tm5maeeuopAEpLS2PeeZ+X59xzTVKHDtxSHGzwa1aa2XmDwcFPtwZaV1bmcMaPHz9Ile4aNiQY1XI9V7vIuyPX4WpiIDjwgcypfeBm6xmTm0PmsCuDFBmZW/l/JGlDbMmSJdTW1rJhwwaWLl3KlCnmnomqqirWrFlDIGCuUcdjkGu0zeT+bKuGytr+pw12G8nTj5ijb1sXPP1KdNvfsvnHFI35cXQLx8nxM7Dx95Evd8/ENJ7/tJ80kT33+sBDQmK9DwzxwscfHkioAcIJVIqzysvLGT16NA0NDUyfPp2ZM2dSXFzM3LlzmThxIosXLwb69ofZID/HvW17PDA+273th6toDIwbFflyC4sdLyUmClzcB8ZlJ94dDglWjnPy8/PZvXs3y5cvJy0tjfr6enJycnjxxRfZsWMHR4+aS1G2hVjBaPe2nZdlx+OrPR74oxmRLVOYa8/TTN0MMTe3PRALdsnolZSUsH379hs+b29vp76+Hq/Xy4wZEe7tLsvNgDuz4nvfXK9pid0V1sesCbCiHbYfGnzeO7Pg8S/b80ju3ufgB114PM70BNwHkjrEBvLRRx8RCoWYMmUKw4ffeInm5ZdfBqCmpqbPvwsLC5kzx907YD0e80iUXznXzRbedjHP3rfJkumm/+c3H5ib5q+X4oV77jI3NQ9PjX990RqZDqUF8R+cOzrDBGiiuS1D7PBh86qfgU4lV61a1e+/H3vsMTZv3hzT2sJxb5FpYcTzNpmScXY+c39OkXmL05EmMwj20mUYkgJjR8F9kyAzze0Ko7NwSvxDbMHkxGytKsT6EUrkx1gC6cPgwZmfv3Ir1lK8sPKe+GwrFrwecyps0+nwYCbfYU7tPorTcK3cDPji1PhsK1JJ27F/M4OFmA0euBsmxGlI04MzTctFEofHA9+4zxzQ4uHP5kFqgjZ5bssQq6ysJBQKsXz5crdLiZrXC9+cB2kRvFKrrRPOX4rsibBFY2DxtMjrk9gbmQ6rInxGQTT7wKISmNT/XU4JwRNK9HMnuanjZ+AnlRDlnTY3NS4b1n7Frk7v29FbR+CVGL0wZk4RfHN+YvaF9VKIJYETZ+E/3zRvAHdKUS488YACzBZ7j8HWKmeHXSwshj+ZY1r9iUwhliQudMIv98OHt3jXTIoX/ngmfGVa4o3Mlps7dc68PKT5wq2tJyMVVs2FsrucqSvWFGJJJBSC6np4/UPz3KdIeDBjgFbOMqeRYqfuHvMat90fQ3uED+MYmmJOH5eXQYZFQ08UYkkoFDKPEd57DD45c/OnsY7JhBn55tQhN3Pg+cQu3T3w/inzPoZT5wZ+kGGK19xnOrsQ5k60s/tAIZbkQiFzqulrMc/m7wmawZ45I8zN5JFc3RQ7BUNwtg2azsPlq+bBhkNTzO1WY0eZ/cFmCjERsZq6bkXEagoxEbGaQkxErKYQExGrKcRExGoKMRGxmkJMRKymEBMRqynERMRqCjERsZpCTESsphATEaspxETEagoxEbGaQkxErKYQExGrKcRExGoKMRGxmkJMRKymEBMRqynERMRqCjERsZpCTESsphATEaspxETEagoxEbGaQkxErKYQExGrKcRExGoKMRGxmkJMRKz2/x/CEYiM8IIdAAAAAElFTkSuQmCC", - "text/plain": [ - "
" - ] - }, - "execution_count": 2, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "print(\"native gates:\" + str(backend.operation_names))\n", - "qc = QuantumCircuit(2)\n", - "qc.swap(0, 1)\n", - "qc.decompose().draw('mpl')" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "As a product of three CNOT gates, a SWAP is an expensive operation to perform on noisy quantum devices. However, such operations are usually necessary for embedding a circuit into the limited gate connectivities of many devices. Thus, minimizing the number of SWAP gates in a circuit is a primary goal in the transpilation process.\n", - "\n", - "2. A Toffoli, or controlled-controlled-not gate (`ccx`), is a three-qubit gate. Given that our basis gate set includes only single- and two-qubit gates, this operation must be decomposed. However, it is quite costly:" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAzQAAADuCAYAAADvP0KjAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAshklEQVR4nO3deXxW9YHv8e/zZE9IgEAkQELYEmTfl4hbFFwG0aK1taVOnanX6Uy5dGaocHt99UXt3JdWrp17B7sMTMfrvXa01G2qUFuroAICQllEdiJBsgEhAZKQkOV57h+nCIEsz3nyPOc8v5PP+/XKC8PZfnJ+z3nO95zf4gsGg0EBAAAAgIH8bhcAAAAAAMJFoAEAAABgLAINAAAAAGMRaAAAAAAYi0ADAAAAwFgEGgAAAADGItAAAAAAMBaBBgAAAICxCDQAAAAAjEWgAQAAAGAsAg0AAAAAYxFoAAAAABiLQAMAAADAWAQaAAAAAMYi0AAAAAAwFoEGAAAAgLEINAAAAACMRaABAAAAYCwCDQAAAABjEWgAAAAAGItAAwAAAMBYBBoAAAAAxiLQAAAAADAWgQYAAACAsQg0AAAAAIxFoAEAAABgLAINAAAAAGMRaAAAAAAYi0ADAAAAwFgEGgAAAADGItAAAAAAMBaBBgAAAICxCDQAAAAAjEWgAQAAAGAsAg0AAAAAYxFoAAAAABiLQAMAAADAWPFuFwAAAAC4WjAoBZrdLoU9/gTJ53O7FD0PgQYAAAAxJ9AsbVjpdinsKVosxSW6XYqehyZnAAAAAIxFoAEAAABgLAINAAAAAGMRaAAAAAAYi0ADAAAAwFgEGgAAAADGItAAAAAAMBaBBgAAAICxCDQAAAAAjEWgAQAAAGAsAg0AAAAAYxFoAAAAABiLQAMAAADAWPFuF8AJVVVVWrFihV5//XWVlpYqKytL999/v5566iktXrxYzz//vJ577jktWrTI7aICiIKWVumTE9L+MqmhWUqMl3IzpRnDpV7JbpcOgBOqaqWtxdLp81JrUEpPlibnSfkDJJ/P7dJFX1OLtOu4dLhSavzzdXB4ljR9uJSc4Hbp4ITaBuszUFYjNbdKqYnSuBzrJ87wVxyeDzS7d+/W3XffrcrKSqWlpWnMmDEqLy/XypUrVVxcrOrqaknSpEmT3C0ogIgLBqUPD0nv7pNqG9su23Vc+t0eadowacFUKYkvdMCTquukV7dLB8ql4FXLthyVrsuQ7p1s3dR5USAg/eFTaeMh6UJT22W7jktrd0uzRkrzJ0nxcW6UMLrmPh56Wn3x+8eUnTk0eoVxyYWL0us7pF2fS62Btsu2H5N6p0h3jpduyHenfJHgCwaDV3++PaOqqkqTJ09WaWmplixZouXLlys9PV2StGLFCi1btkzx8fFqbW3V2bNnlZGR4XKJAURKMCi9/ifrS7wruZnS390upSRGv1wAnHPqvPTTP0rnGztfzyfpqzOtG3svCQSk/7dZ2v151+sWZEuP3Rpboaa1Sdqwsnv7ePdPv2rz+6fHNmrdttWaN/MxjRt2U5tls8cvUEpiWreOV7RYiouh75K6Rumn70qV57ped+5Yad6kqBcpKjz9hmbx4sUqLS3VokWL9Oyzz7ZZtnTpUr300kvas2ePhg0bRpgBPGbT4dDCjCSdqJZe3Cw9VhTdMgFwTlOLtGpD12FGst7c/OZjKStdGjEg6kVzzNufhBZmJKsp2qvbpYdmRbdMTpsz9Rttfm8NtGjdttUanVd4zTKvCQal5z8MLcxI0h/3SVkZVnNs0xjeYq5jBw4c0Jo1a9S/f389/fTT7a4zdepUSdLEiRPb/P2xY8d07733Kj09XX379tVf/uVf6syZM1EvM4DIaA1Yzczs2F8ulVZHpzwAnLezRDpTF/r6gaD07v6oFcdxjc3SByE+1Lnk48+ksxeiUx44r/iU9Nlpe9v88VPrs2Aazwaal19+WYFAQAsXLlSvXr3aXSclJUVS20BTW1uroqIilZaW6uWXX9bq1au1ceNG3XPPPQoEAu3uB0Bs+bRUOtdgf7vNRyJfFgDOCwatt7R2HSy3Bg/wgu2fWW+p7AgErX5F8IZwPgOna6UjlZEvS7R5tsnZ+vXrJUlFRR23ISktLZXUNtCsXr1aZWVl+vDDDzVkyBBJUk5Ojm644Qa9+eab+tKXvhS9QgOIiAPlzm4HILbUX5RKa+xvF5R0sEK6MT3iRXJcd66Dd0+IbFngjoMV4W13oFwaNTCyZYk2zwaa48ePS5Ly8vLaXd7S0qLNmzdLahto1q5dqxtvvPGLMCNJhYWFGj58uN56662wAs20adNUWWlg3AUMNXPhL5Q7Yb7t7U7X1Ckn5/oolAiAk9L6DdXdSzeFte3yHz2tQ+//LMIlct6t335N/YfNtL3dvoOfKefRm6NQIvsS41O0epFZr87zC/LV1BJGE4FI8/n05R+fCGvT//Pir7Xovu9FuEBdy87O1o4dO8La1rOBpr6+XpLU0NB+pVqzZo2qqqqUnp6uYcOGffH3+/fv14MPPnjN+mPHjtX+/eE1rq2srFRZWVlY2wKwr/ZseH3emhpq+awCHpBWH34T8TOnyj1xHairrVH/MLZrqD8bM///yQmpbhfBtorycjU2x0ZHpOaLF5SQZP/f8Gz1yZipA6HybKDJzs5WTU2Ndu7cqcLCwjbLKioq9Pjjj0uSJkyYIN8VM2rV1NSoT58+1+wvMzNThw7Z7F13RVkAOKfxTBgNhyWdK/tEgwcPjnBpADjO51d9TanS+oY+uUwwGJTP51OgtsQT14ELpw5Kusv2drWV+2Lm/z8xPsXtItg2cNCg2HhDI+ls6R5ljSjsesWrNFUfdaUOdOd+2bOBZs6cOTpw4ICeeeYZzZ07VwUFBZKk7du36+GHH1ZVVZUkZybUDPf1GYDwNDZLy1+XLtrsEPvkojs1+qnS6BQKgKP++Km0bk/o6/t8PuVkSns+eku+0OdijFk19dKPfmsNkGDHv/7oYQ1+7uHoFMqmSMxD47Qjh4/EzDw0u45L/9dmy8u0JGnjb59TfNxz0SlUlHh2lLOlS5eqX79+OnHihMaOHavx48crPz9fM2bM0PDhw3XbbbdJunbI5r59++rs2bPX7K+6ulqZmZlOFB1ANyUnSDNH2NtmQIZ5nSABdGzWCCnJ5mPbW0bJE2FGkvqmSRNz7W0zcoA0uG90ygPnjc+R+tpscTY7P7YmVw2VZwNNTk6ONm7cqHnz5ik5OVklJSXKzMzUqlWrtG7dOh0+bDVJuTrQjB49ut2+Mvv379fo0aMdKTuA7ps/WRpxXWjrpiVJ37pF8nvkRgaAlJ4iffPG0D/Xs/OlacO6Xs8kX5kpDewT2rp906SHZ0e1OHBYfJz06K3WQ75QXD9QunN8VIsUNZ4NNJIVTtauXava2lrV1tZq27Zteuyxx1RfX6+SkhL5/X6NGzeuzTb33HOPNm3a9MWQzpK0bds2FRcXa/58+6MmAXBHQpz0N0XS5PYHOvxCdm/pu3dI12U4Uy4AzhkzWPr2bVJ6csfrxPmlO8ZJD0z3ztuZS1ITpUVzrBvVzgztL/39HVJv87qsoAuD+0qL50pZnQxF7pM0Y7j06C3W58FEvmDQbutK823btk2zZs3SqFGjdPDgwTbLzp8/r/Hjx6t///568skn1djYqKVLlyorK0tbtmyR32/omQZ6sJPnpY+OSPvLrEnzgpLi/dJjRVL+AO/dxABoq6VV+uSENWnk0VNWvxK/z5pvZdYI622O15VWW5MHH66Uquus62BCnPSdOVJev9i8DprYh6ZosWKmD82VAkHpUIVVB/aVXf4M3DpaumGk1N/wuZd65N353r17JV3b3EySMjIytH79eg0cOFAPPfSQHn30Ud1www1au3YtYQYw1IAMacFU6Yl7pYw/37ikJUkF2bH5JQ4gsuLjpClDrZv3jD+/rUlPluaO6xlhRpJyMqWvzpR+cN/l62BqovV2huug9/l90uhB1luYKz8D9042P8xIHh7lrDOdBRpJGjFihNauXetkkQAAAACEoUe+cugq0AAAAAAwQ498Q7N+/Xq3iwAAAAAgAnrkGxoAAAAA3kCgAQAAAGAsAg0AAAAAYxFoAAAAABiLQAMAAADAWAQaAAAAAMYi0AAAAAAwFoEGAAAAgLEINAAAAACMRaABAAAAYCwCDQAAAABjxbtdAAAAAOBq/gSpaLHbpbDHn+B2CXomAg0AAABijs8nxSW6XQqYgCZnAAAAAIxFoAEAAABgLAINAAAAAGMRaAAAAAAYi0ADAAAAwFgEGgAAAADGItAAAAAAMBaBBgAAAICxCDQAAAAAjEWgAQAAAGAsAg0AAAAAYxFoAAAAABiLQAMAAADAWAQaAAAAAMYi0AAAAAAwFoEGAAAAgLEINAAAAACMFe92AQAAwLWCQSnQ7HYp7PEnSD6f26WAV/AZQKgINAAAxKBAs7RhpdulsKdosRSX6HYp4BV8BhAqmpwBAAAAMBaBBgAAAICxCDQAAAAAjEWgAQAAAGAsAg0AAEAP0RqwRg9DzxQMXj7/XqoHjHIGAADgQcGgVFIlHSiXSqulz6ulusbLy883SL94T8rJlEYNlPIHMOSw17QGpH1lUvEp6cQZqaxGuthiLTvfKD35hpTbT8rNlMblSAP7uFrcsBFoAAAAPKS5Vfr4M2nzYan8bMfrBSUdqrR+3tsvZaVLswukWSOk5ASnSotoqG2QNh2Rthy1gmtHai5YP5+ckNbtkUZcJ83OlyblSX6Dwi2BBgAAwCOOV0kvbZFOnre/7ela6T//JH1wUPraLKkgO/LlQ3QFg9KfSqTXd0gXmuxvX3zK+tl0WPpaoRVyTUAfGgAAAMMFgtLv9kj/+53wwsyVauqln78nvbrdarIEMzQ2S//+ofSrj8ILM1f67LS0Yp31hscEvKEBAAAwWCAo/Xqr1cwskjYdls5ekB65UYqPi+y+EVn1F6V/XS+dqI7cPptbpTXbrH5Xc8dFbr/RwBsaAAAAQwWD0mvbIx9mLvm0VHrxIys0ITZdbJZWbYhsmLnSuj3S+wejs+9IIdAAAAAYaudxafOR6B5jz+fSxkPRPUYs+MP2F7TkF7e6XQzb3twlfX4musf47U6rf1asoskZAACAgc43WG9n7PrHu6SMFGv7f/59aNus3S2NGSRlZdg/HqLncKX9QBvO+Q8GrcEmvvcXUkIMNj/sEW9oqqqqtHTpUo0cOVLJycnKzc3Vd7/7XdXX1+tb3/qWfD6ffvrTn7pdTERRIGg9Wfi01BqP/eQ5t0sEwGm1jdLBCmt40iOVl+diAEz1253hdf7OSJH6pFp/hqq51RokwIt+8sqjmv9EL/3L69/Wp8c2av4TvTT/iV5qDbS6XbROtQasPi52hXP+JWuwifX77R/PCZ5/Q7N7927dfffdqqysVFpamsaMGaPy8nKtXLlSxcXFqq62GhxOmjTJ3YIiKhqbrRE6Nh+RqmrbLhueZY23P9mwsdYB2FNSZTWX2f152xGbkhOkGcOlm0dJ/Q0ZmtSuuY+HfnF78fvHlJ05NHqFQUSda5B2HXf2mIcqpcpzUnZvZ49rRzh1fsmDv9SSB3+pP2x/Qe/seEE/+dv3o1fACNpXJp2pc/aYmw9Lt4+JvUEiPB1oqqqqNH/+fFVWVmrJkiVavny50tOtb60VK1Zo2bJlio+Pl8/n04QJE1wuLSKtpt7qJFfZwduYz05bP598Ln1jdmy+QgXQPR8ekt7YYU0geLXGZmv5tmLpr26Wrh/oePGibtlDL7b5/dNjG7Vu22rNm/mYxg27qc2y3r2ynCwaumnrUXc66m8+LD0w3fnjhqon1flNh50/5vlGaW+p9TA4lng60CxevFilpaVatGiRnn322TbLli5dqpdeekl79uzRsGHDlJFBo1AvufDn4QtDGYt/zwnJv0V6eDZvagAv2VZsTS7XlYst0i8/kBbNkYb2j365nDRn6jfa/N4aaNG6bas1Oq/wmmUwy45jLh23RFowLXa/L3tKnT/XYPWfccP2z2Iv0Hi2D82BAwe0Zs0a9e/fX08//XS760ydOlWSNHHixC/+7lIAmjFjhpKSkuTzxegnFp16/6C9icV2Hbfa1APwhovNoYWZS1paw+tcDbjhwkXpdG3X60VDQ9O1TbjhvBNRHtWsM59XW4MExBLPBpqXX35ZgUBACxcuVK9evdpdJyXF6g11ZaA5evSoXnvtNWVnZ2v69Bh+p4oOtbSGN7OtG69uAUTHjhL7nf5PVEd/6FMgEqI130jIx+dz4jo360BdozXhaizxbKBZv369JKmoqKjDdUpLSyW1DTQ333yzKioq9Oabb2rOnDnRLSSi4lCFNZqRXZ+WWTPtAjBfuJMMRmtyQiCSOuob2lOOD6nyrMvHj7E64Nk+NMePW0N/5OW138ivpaVFmzdvltQ20Pj9kc9406ZNU2Ul7ZmcMnzWw5qyoP1mhp0JBqXpN9yu8yd7wOxhPdhf/PftSu09UBWVFcrJ4S2sV106z3b95o0/6O8XfCsKJbIvMT5FqxdFecbECMsvyFdTS4PbxeiUF64B1xf9V427a1m7yy7NMdKZjOTLf/5wQcfrdTRPyc9X/bv+5q3lIZY2fE5/BuLjEpSUYHMs46s49Rm48a9/pexRt7a7rKs6EOr5lzquA498629UtnddaIUNUXZ2tnbssNFW+AqeDTT19fWSpIaG9ivVmjVrVFVVpfT0dA0bNiyqZamsrFRZWVlUj4HLMs+eDXvbkycrVc258rTW1tYv/uRz6V2tLeFNMtPQ0BAz9SI5IdXtIthWUV6uxuYYa4tyFS9cAwad7/jx+KU5RkLh94e+7pXq6mod+bdz+jNw+5SFun3Kwm7tw6nPQGNjx6Ep1DoQ7vmXpOozVTH1+fFsoMnOzlZNTY127typwsLCNssqKir0+OOPS5ImTJgQ9Y7/2dnZUd0/2kpUfVjbBVpblJHiU8rgwREuEWJJXFzcF38O5lx7VlPdSalfru3tghdrYqZeJMZ370mxGwYOGhTzb2i8cA1ITer49u18CP/8GcnWzWwgYA3Da3dfyYl+R/7t+Ax0LN7X8aSfXdWBUM9/Z/vK6JUS8TrQnftlzwaaOXPm6MCBA3rmmWc0d+5cFRQUSJK2b9+uhx9+WFVVVZKcmVAz3NdnCE9rQHryja4/pFebNDReK498Gp1CIWYsf90a7nJg9sAv+tHBe7YcDW8G7V/8018p9+d/FfkChaG1Sdqw0u1S2HPk8BHFJbpdis554RpwuFL6+XvtL2uvedDVfrjAejJ/vlH64Rv2j//UDxZr6r8vtr+hTXwGOvb2J9If9ra/rKs60N3zL0nvrf1V2G93osGzgwIsXbpU/fr104kTJzR27FiNHz9e+fn5mjFjhoYPH67bbrtNUtv+M/CGOL9UmG9/uxsLIl8WAO6YMlRKTrC3zZB+Um6/qBQHiKicvu4ePzfT3ePD3XPQK1nqHWMvzzwbaHJycrRx40bNmzdPycnJKikpUWZmplatWqV169bp8GFrjF4CjTfder00sHfo608dKuUPiFpxADgsKV56YFro6yfESV82s384eqDUJCkr3aVjJ0r9XTo2Lhvi4sOXvH5SrE3T6NkmZ5I0evRorV279pq/r6urU0lJifx+v8aNG+dCyRBtKYnSt2+TVm2Qys92vu7kPOlrs2Lvwwmge6YPl5papFe3S53NAZecIP31ze7eIAB2TR8u/W6P88edNkzy833puowUadRAa6oKp00f7vwxu+LpQNORffv2KRgMqqCgQKmp1zYAfPXVVyVJ+/fvb/P70KFDNW2ajUd+cFXvVOm7d0jbPrMmzTx1vu3y/AHS7AJpQi4XZ8CrZhdYQeXDw9KuEqklcHlZaqI0c4TV3LRf+/Mve86d0x/RndMfcbsYiIBZI6w+FK2BrteNpNlhNOl2k5fr/I35zgeajBRpfI6zxwxFjww0e/davag6am724IMPtvv7N7/5Tb3wwgtRLRsiKylBunmUdFOBVFoj/eI96UKT1CtJ+g7zpgI9Qm4/aWGh9KUp0lNvSvVNUlqitHyBlNgjvwXhBRkp0pQ8afsx5455/UBpgI3m3IiusYOt5n9Vtc4d86YCq69yrOmRl/KuAk0w2FnjBJjI57M60CVYo3XG5IcRQHSlJUnxf74GxMcRZmC+e6dI+8ul+ovRP1ZiPP3MYo3fL311pvSzd5053sDeUtFoZ45lV4+8resq0AAAAMS69GTpwTBCxvkG6eyF0OasuWT+JAYDiEX5A6y3JnaEc/79PunrhZcfCsWaHvl8av369W4XAQAAoNsm5Uk3nZY2Hgp9m1DmqrnS5DyrPxpi0/zJ0olqqaQqtPXtnn9JWjA1toe175FvaAAAALxiwVSpcGR09j0hV/rGDQyeE8sS46XHbo3eSI3zJ0k3jYrOviOFQAMAAGAwv0/6ygzprgmRDR43j5K+eSP9Tk2QmiT93e3SxNzI7TMx3prW4vaxkdtntPTIJmcAAABe4vNJd42Xxg6SXtoiVZwLf1/9elk3siOZcNooyQnSIzdJu45Lr+3o3mAR+QOkh2aZM6Q9gQYAAMAjcvtJS+6W/lRizcF2ojr0bbN7W/MyTR8uJXGHaCSfT5oyVCrIlrYclTYfsQYACFVBtlUHxuWY1cyQ6goAAOAh8XHWpLEzR0ifn5EOlFvBprRaOndBujQ5RUaylJNp/YzKloZfZ90Qw3y9kqW546TbxkgHy6Xi09b5L6225uOTrHPdr5c1rUVupjQ2RxqQ4W65w0WgAQAA8Kgh/dp2Fg8GpUDQevpOePG+OL8VVMbmXP67S3XAS32jCDQAAAA9hM8nxRFkejQv1gEPZTMAAAAAPQ2BBgAAAICxCDQAAAAAjEWgAQAAAGAsBgUAACAG+ROkosVul8Ief4LbJYCX8BlAqAg0AADEIJ9Pikt0uxSAe/gMIFQ0OQMAAABgLAINAAAAAGMRaAAAAAAYi0ADAAAAwFgEGgAAAADGItAAAAAAMBaBBgAAAICxCDQAAAAAjEWgAQAAAGAsAg0AAAAAYxFoAAAAABiLQAMAAADAWAQaAAAAAMYi0AAAAAAwFoEGAAAAgLEINAAAAACMRaABAAAAYKx4twuA9gWDUlOr26UIXWKc5PO5XQrvCAalQLPbpbDHn0AdiCTqAKgDMK0ORPr8m3YvJHE/5BYCTYxqapWWrXG7FKF75qtSErUpYgLN0oaVbpfCnqLFUlyi26XwDuoAqAMwrQ5E+vybdi8kcT/kFpqcAQAAADAWgQYAAACAsQg0AAAAAIxFoAEAAABgLAINAAAAAGMxDgM87cJFqbRGOnFGOlUrXWiy/r6hSdp0WMrJlAb1kRL5JHhSMCida7DO/4lqqaa+bR3Y/plVBwZkSH4e73hSICidPm+d/9Lqy+f/QpO0breU20/KzZT6pDLUqle1tErlZ606UF7Ttg68u886/zmZUlqSq8UE0A3cxsFzAgHpQIUVWA6WS8F21mlqlV7dbv13Qpw0dag0u8D6YoP5LrZIO0usOlBW0/46Ta3Sf2yx/js9WSocaf30TXOsmIiicw3SlqPSliPWf1+tuVX6477Lvw/sbV0Dpg2TkhOcKyeip7xG2nRE2nFMamq5dnlzq7R29+XfR2VbdWDsYCmOBxyAUQg08JRDFdIrH0tVdaFv09wqbS22fvIHSF+ZKWWlR6+MiJ5AUNp8WFq3R2q0MRldbaP0zqfWDe6sEdK9k6UU5tIw0sVm6yZ18xGrPoSq4pz1kOOtXdJdE6RbRvHWzlTVddJvPpYOVtjb7lCl9dM3TXpwujRmcHTKByDyCDTwhMZm6c2d0kdHu7efIyelFeukeyZJN42S/DRBMUZVrfTrbdLRk+HvIxi0nuofKJe+OlMaPShy5UP0HTkp/XqrdMbGA42rXWyRfrtT2vO59LVCqzkizBAMWt8Bb+60zmO4auql1e9LM4ZLX5oqpfJwA4h5PH+C8Wobpef+2P0wc0lzq/TGn6SXPpJaA5HZJ6LreJX0z7/vXpi50tkL0qoN0sZDkdkfom/rUenn73UvzFyppEr6X7+Xik9FZn+IrkDAeivzysfdCzNX+vgzaeU71vUAQGwj0MBo9Reln73bcT+J7thRIv3qI+uLErHrRLX0i/WXO/pG0ms7CDUm2FpsvZ0L2mhiForGZmnVeunY6cjuF5EVDEprPrberkZa5Tnpp+9Kte30wwIQOwg0MFYgKL2w0frCiZZdx6Xf743e/mPFH7a/oCW/uNXtYthW12i9SbHTX8au13ZYTdAQm4pPSmu2RW//Ta3Sv73fM57Sm3odeG+/tK04evuvqpV++QFv7IFYRh8aGGvzYavNvB3/eJeUkSKdb7CaKIXi3X3SuBxpSD/7ZUR0vbrdCjV2hFMH1myTls1joIBYc7FFemmrvTcz4Zz/C03Sb7ZJ/+VWhnaONRVnpbc/sbdNOHXg+BlpwwFpzljbRQTgAAINjHSmzhqNyK6MFGu+CTsCQenlLdKSu6X4OPvHjGU/eeVRvb/712oNtKi1tVnzn+glSfrPfzqnOH9s/8/u+Vza/bn97cKpA2cvWB3FH5pl/3iInnW77feZCef8S9L+cmn7MaujuNeYeh0IBKSXtth/cxJuHXj7E+vhVnZv+9sCiK4eEWiqqqq0YsUKvf766yotLVVWVpbuv/9+PfXUU1q8eLGef/55Pffcc1q0aJHbRY240v3v67WninTj1/6nps77Xrvr/Ms3fBo6aZ7u+95ah0sXvg37raYgTqk4J31yQpoy1Llj2jX38dAfHb/4/WPKzhyqJQ/+Ukse/KX+sP0FvbPjBf3kb9+PXgEjKBh0vingts+kO8ebNU9NOHXCFLWN1tDMTnpnrzVPTSyPftiTrgMHyq0+dE5pDUjr90tfL3TumJHg5etAqLx6L4TLPB9odu/erbvvvluVlZVKS0vTmDFjVF5erpUrV6q4uFjV1dbVcNKkSe4WFCFrbLaelDpt85HYDjTLHnqxze+fHtuoddtWa97MxzRu2E1tlvXuleVk0SLu2GmrqYmTgkHpoyPSvEnOHrc7vFwnth51vk9DVZ0111UsD+ft5XN+tU0OB1rJ6ld53xQpLcn5Y4erJ9UJ9FyeDjRVVVWaP3++KisrtWTJEi1fvlzp6daMiStWrNCyZcsUHx8vn8+nCRMmuFxahGpnSeSG5bSj+JQ1AEGsNjeYM/UbbX5vDbRo3bbVGp1XeM0y0zn9ZP6SrcXWpIumzCLu1Tpxab4RN3x0JLYDjVfP+dXO1EkHXRiso7nVGs65aLTzxw5XT6kT6NkM+VoOz+LFi1VaWqpFixbp2Wef/SLMSNLSpUs1ceJEtbS0aOjQocrIYPY0U9gdCCCSIjXPCbrHrfNQ2yidOu/OsXHZmTpr8kM3FJ+K/PDQsK/4lOTWaeB7AIg9ng00Bw4c0Jo1a9S/f389/fTT7a4zdepUSdLEiRO/+LtXX31VDzzwgPLy8pSamqrrr79eTzzxhOrqIjRbm0tami6oobaq3R/TlDrYZjqWjg3L+QbpnItzQjjZZh/tc/NzeKEpcpN3Inxufg75HjCXl+6F0JZnm5y9/PLLCgQCWrhwoXr16tXuOikpKZLaBppnn31WQ4YM0VNPPaWcnBzt3r1bTz75pD744AN9+OGH8vvNzIBbX1uura8td7sY3dbYLJ2ude/43My6z+2biRPV3hzpyiSlUZhI19bxq6X+6V2vh+gpc/E6cK7BerCSkeJeGRAer9wL4VqeDTTr16+XJBUVFXW4TmlpqaS2geatt95SVtblTnG33HKLsrKytHDhQm3atEk333yz7bJMmzZNlZWVtraJS0jRgv8RuY4C44oeU/7MB9td9saP53Z7/wX5+Wptjv5j89S+ufqL/7alw+WX5hfoSEby5T9/uKDj9Tqan+DIsXLl5MwIsbThS4xP0epFznUUiY9LUFJC976d8wvy1dQS/TowZMoDmvHVf2l3WVfnX+p+HfiPX/+nvvul6I+I6HQdiASn6sCUB1Zo+Iyvt7ssUtcAqeM6sHjJ9/XZ1hevXRBhXAc6dseS95Vx3ch2lzlRB2bdeLvOnzwUWmG7wbTrQKTPv2n3QpJz90NelJ2drR07doS1rWcDzfHjxyVJeXl57S5vaWnR5s2bJbUNNFeGmUumTZsmSSorKwurLJWVlba3jU8KY5D8TvTJzteQcXMius8rlVeUq+Vi9KfS7tPa+b9LqPML+P3hzUMgX1zY9cCO5ITInv+u3D5loW6fsrBb+6goL1djswN1YGTH7X3szC8Rbh242NziyToQCU7VgTGNTR0ui/o1QFJt3QVP1gGTrgOBYMdDETtRB6rOVOu0B+tAd0X6/Jt2LyQ5dz+EtjwbaOrrrR6jDQ3tp+Q1a9aoqqpK6enpGjZsWKf72rBhgyRp9OjwhjXJzs62vU1cN5+SOW3QwEHOvKHp07fT5ee7KEJGsvUlFghI5zuZYb6j/QQDzRo8eHAXpey+xHizzr8kDRw0yJEnsxnpHU8E09X5l7pfBxLj/dSBDjhVB5KTOv7qitQ1oLN99UpLpg50wKk64FfHE5E5UQf6ZfZRYgt14GqRPv+m3QtJzt0PeVE498uXeDbQZGdnq6amRjt37lRhYdtZsCoqKvT4449LkiZMmCCfr+MnPWVlZfrBD36gu+66K+y5asJ5fXaxRVq2JqzDueLwkSPq5B4jYlpapWW/6Xj+ifaaBlzphwusJ3LnG6UfvmH/+OMLcvRvf26qGE2tTdKGlVE/TEQdOXxEcYnRP07xSem5d9tf1tX5l7pfBx59+H698ZP77W9oE3WgY+98Kv1uT/vLon0NkKTVzz2j0YOeCW9jG6gDHfvX9dLBivaXRbsO+CTt2rZByQn2t7XLtDoQ6fNv2r2Q5Nz9ENoys4d7CObMsV4pPvPMMzp8+PAXf799+3YVFRWpqsoa0aKzkFJXV6f77rtPiYmJev7556NaXoQmPk4a2Me94+f2c+/YsAzOtG4o3JKT6eLBIUnKdfkcuH18uHsOsjLkSJgBEDrPBpqlS5eqX79+OnHihMaOHavx48crPz9fM2bM0PDhw3XbbbdJatt/5koNDQ2aP3++jh07pnfeeUcDBw50svjohJtfZNzIuC85wbqhcAt1wH1unoM+qVKvZPeOD4ubDxa4BgCxx7OBJicnRxs3btS8efOUnJyskpISZWZmatWqVVq3bt0Xb23aCzTNzc368pe/rB07dujtt9/WmDFjnC4+OjE2+s2W2xXnl0aRa2OCW3VgYB+pb8ddeOCQXslSnktvS92qe2grP1tKiHPn2GOoA0DM8XQrv9GjR2vt2rXX/H1dXZ1KSkrk9/s1bty4NssuzV3z3nvv6Xe/+51mzIj+EL3RlDPmVn33V53Pp9zV8lgzZpDUN1WqcXgQkYm5UrpBT2bvnP6I7pz+iNvFiIrZ+dKGA+4ct5MudzHPS3VidoF0vOMR3KPmxgLnj9kdXjrnV0pNlKYOlbYWO3vcXsnWd4HJvFonOuPFeyG05dk3NJ3Zt2+fgsGg8vPzlZradkjA73znO3rllVf0D//wD0pNTdXWrVu/+Dl9+rRLJcaV/H7phnznjzvbsBsZL+ufLl3v8NuypHhpWucDIsJBk/OktCRnjzk8y90+fGjLjXBZOMLqywkgtvTIQLN3715J7Tc3e/vttyVJP/7xj1VYWNjmZ926dY6WEx27aZSzTX8m5Fo3M4gd8ydLfgffltw9gY7AsSQhTprXfhfIqPD5pHunOHc8dC0nU5o21Lnj9U6RisKbvQFAlBForlJSUqJgMNjuzyOPPOJwSdGR5ATpa7OcOVZqovTgdLObGnnR4L7SHeOdOdawLOnmUc4cC6ErHCkVhD9tgS1Fo6Wh/Z05FkK3YJo1r4wTvjJTSnX4rSCA0BBoYKyCbOmW6+1tc75BOnshtAkYL/nKTCndvLm9eoS5Y6U8mzeZdutASqL09VlWU0fEFp9PemimvaZn4VwDBve13tAh9qQlSQ/NsvfAKZw6UDiSASGAWObpQQE6sn79ereLgAi5b7JU1yj9qSS09UOZePFKD0yTJg2xXSw4JM4vPXar9NN3pYqzoW1jpw4kxlv7d3OYaHQus5f07dukn70rNTZ3vb7da0BWuvTtIvdG1ELXxgy2gu2vt0qhdOu2Wwcm5Epfnh5W0QA4hGeOMJrfLy0stJ6eRXS/PumrM62+OohtaUnSojn239SEst+/u91qbobYlptp1YFINz3K6SstnssbWhPMHCF94wbrIUckTRsmffPGyO8XQGT1yDc08Ba/3wofo7KlV7ZL9Re7t79BfaSvFzIjvEnSkqwbzz/uk97ZKwW6OfrmhFyr3xQ3subIyZSWzpNe2yHtOt69ffl90u1jpDvHM6KVSaYOkwb1lV7aIp2o7t6+UhKl+6dagYb+k0DsI9DAMyblSSMGSOt2W03Qmlvtbd8rWbq5QLptDDcxJorzS3eNl8bnSG/tkg5W2N9Hdm/pjnHWkMDcxJinV7L1NH1ynvT7T6Tys/b3kT/AGkFviEsTd6J7BvaR/v5O6YOD0vsH7fWTkazryJQ86Z7J1qhmAMxAoIGnpCdbHUTnT5Y+/kzaWWLd1LQG2l8/Kd5qqjRzhDVZGkHGfIP7Wn0qTtdKmw9L+8qs/+5IerI0coA1t9HI6wgyXjAh1wq2x05Lm49IR09K5zq5se2fbk3YOztfGtDbuXIiOuL81oOpW66X9pZKW49KJVUd97Hy+6wgNDlPmjXCCsYAzEKggSelJVnDrBaNllparVBz6rz11sYna9jngX2tDr9OzmUC52SlS1+aav00NEmlNVJNvVUf4vxWHcnJtJ7CEmK8x+eThl9n/UhWoCmttgYRaQ1YDy/6pFp1IDXR3bIiOuL81qAuk4ZYzVDP1EplZ61gEwxaAz1kpVvN1Bj0ATAbgQaeFx9nNR+hCUnPlZJoNSVCz9U7RerNsLs9lt9njVbIiIWANzFuBwAAAABjEWgAAAAAGItAAwAAAMBYBBoAAAAAxvIFg8FuTkGHaAgGpSab86i4KTGOkaIiKRiUAh0MMRqr/AnUgUiiDoA6ANPqQKTPv2n3QhL3Q24h0AAAAAAwFk3OAAAAABiLQAMAAADAWAQaAAAAAMYi0AAAAAAwFoEGAAAAgLEINAAAAACMRaABAAAAYCwCDQAAAABjEWgAAAAAGItAAwAAAMBYBBoAAAAAxiLQAAAAADAWgQYAAACAsQg0AAAAAIxFoAEAAABgLAINAAAAAGMRaAAAAAAYi0ADAAAAwFgEGgAAAADGItAAAAAAMBaBBgAAAICxCDQAAAAAjEWgAQAAAGAsAg0AAAAAYxFoAAAAABjr/wMRuiFOgaygWwAAAABJRU5ErkJggg==", - "text/plain": [ - "
" - ] - }, - "execution_count": 3, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "qc = QuantumCircuit(3)\n", - "qc.ccx(0, 1, 2)\n", - "qc.decompose().draw('mpl')" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "For every Toffoli gate in a quantum circuit, the hardware may execute up to six CNOT gates and a handful of single-qubit gates. This example demonstrates that any algorithm making use of multiple Toffoli gates will end up as a circuit with large depth and will therefore be appreciably affected by noise." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Optimization stage\n", - "\n", - "This stage centers around decomposing quantum circuits into the basis gate set of the target device, and must fight against the increased depth from the layout and routing stages. Fortunately, there are many routines for optimizing circuits by either combining or eliminating gates. In some cases, these methods are so effective that the output circuits have lower depth than the inputs, even after layout and routing to the hardware topology. In other cases, not much can be done, and the computation may be difficult to perform on noisy devices. This stage is where the various optimization levels begin to differ.\n", - "\n", - "- For `optimization_level=1`, this stage prepares [`Optimize1qGatesDecomposition`](../api/qiskit/qiskit.transpiler.passes.Optimize1qGatesDecomposition) and [`CXCancellation`](../api/qiskit/qiskit.transpiler.passes.CXCancellation), which combine chains of single-qubit gates and cancel any back-to-back CNOT gates.\n", - "- For `optimization_level=2`, this stage uses the [`CommutativeCancellation`](../api/qiskit/qiskit.transpiler.passes.CommutativeCancellation) pass instead of `CXCancellation`, which removes redundant gates by exploiting commutation relations.\n", - "- For `optimization_level=3`, this stage prepares the following passes:\n", - " - [`Collect2qBlocks`](../api/qiskit/qiskit.transpiler.passes.Collect2qBlocks)\n", - " - [`ConsolidateBlocks`](../api/qiskit/qiskit.transpiler.passes.ConsolidateBlocks)\n", - " - [`UnitarySynthesis`](../api/qiskit/qiskit.transpiler.passes.UnitarySynthesis)\n", - " - [`Optimize1qGateDecomposition`](../api/qiskit/qiskit.transpiler.passes.Optimize1qGatesDecomposition)\n", - " - [`CommutativeCancellation`](../api/qiskit/qiskit.transpiler.passes.CommutativeCancellation)\n", - "\n", - "\n", - "Additionally, this stage also executes a few final checks to make sure that all instructions in the circuit are composed of the basis gates available on the target backend.\n", - "\n", - "The example below using a GHZ state demonstrates the effects of different optimization level settings on circuit depth and gate count.\n", - "\n", - "\n", - " The transpilation output varies due to the stochastic SWAP mapper. Therefore, the numbers below will likely change each time you run the code.\n", - "\n", - "\n", - "![/images/transpile/transpiler-11.png](/images/transpile/transpiler-11.png)\n", - "\n", - "The following code constructs a 15-qubit GHZ state and compares the `optimization_levels` of transpilation in terms of resulting circuit depth, gate counts, and multi-qubit gate counts.\n" - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": { - "tags": [] - }, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAnYAAAHVCAYAAAB8NLYkAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAAB1OUlEQVR4nO3dd1gUV/s38O+A0nsXREBEFCwolqDGiqIm9sRYA4rtCVbUCGnYIliixkg0TezGxJpo1CgqRIO9RUUUI2CUYgVBRYHz/uHL/FwBZXWXxfX7ua69HuecM2fu2R0f75w5c0YSQggQERER0WtPR9MBEBEREZFqMLEjIiIi0hJM7IiIiIi0BBM7IiIiIi3BxI6IiIhISzCxIyIiItISTOyIiIiItAQTOyIiIiItwcSOiIiISEswsSMiKqeUlBRIkoTly5dX+LGXL18OSZKQkpJS4ceuKJIkYfTo0ZoOg+i1xsSOiGTnzp3DoEGD4OTkBH19fTg6OmLgwIE4d+7cK/U7a9YsbNmyRTVBvsDff/+NqVOn4u7du0rtt3//fvTu3RsODg7Q09ODnZ0dunXrhk2bNqknUBX49ttvlUoyJUmSP1WqVIGVlRV8fX0xbtw4nD9/Xn2BPuVlfx8iKh+J74olIgDYtGkT+vfvDysrKwQHB8PNzQ0pKSn46aefcOvWLfz888/o1avXS/VtYmKC9957r0JGuubNm4fJkyfjypUrcHV1Ldc+ERERmD59Ojw8PNC/f3+4uLjg1q1b+OOPP7B//36sWbMGAwYMgBAC+fn5qFq1KnR1ddV7Is8oLCzE48ePoa+vD0mSAAD16tWDjY0N9u/fX64+JElCx44d8eGHH0IIgezsbJw+fRq//vor8vLyMHv2bISGhqrxLJ7/+0iShJCQECxevFitMRBpsyqaDoCINO/y5csYPHgwatasifj4eNja2sp148aNw9tvv43BgwfjzJkzqFmzpgYjVb0NGzZg+vTpeO+997B27VpUrVpVrps8eTJ27dqFx48fA3iSeBgYGLywz7y8PBgbG6s0Tl1dXZUkk7Vr18agQYMUyqKiotCtWzdMnDgRderUQdeuXV/5OESkIYKI3ngjR44UAER8fHyp9XFxcQKAGDlypFwWGBgoXFxcSrSNiIgQT/9fC4ASn8DAQIW2iYmJ4v333xempqbCyspKjB07Vjx48EDu48qVKwKAiImJKXE8ACIiIkKhv2c/V65cKfPc69SpI6ysrEROTk7ZX9Bz4ggMDBTGxsYiOTlZdOnSRZiYmIgePXoIIYQoLCwUCxcuFPXq1RP6+vrCxsZGBAQEiKNHjyp1XkIIERMTo3AuLi4uJc6zTZs2z40fgAgJCSm1LjU1VVSpUkW0aNFCofzhw4fiiy++EO7u7kJPT09Ur15dTJ48WTx8+LDUvlevXi1q164t9PX1RePGjUVcXJzc5kW/T3EfmzdvFt7e3kJPT094eXmJHTt2PPe8iOj/cMSOiPD777/D1dUVb7/9dqn1rVu3hqurK7Zv365036tWrcKwYcPQrFkzjBgxAgDg7u6u0KZv375wdXVFZGQkDh06hEWLFuHOnTtYuXKlUsfq3bs3Ll68iHXr1mHBggWwsbEBAIURyKddunQJFy5cwNChQ2Fqaqr0uRUrKChAQEAAWrVqhXnz5sHIyAgAEBwcjOXLl6NLly4YNmwYCgoK8Ndff+HQoUNo0qTJSx8PABYuXIgxY8bAxMQEn376KQDA3t7+pfurUaMG2rRpg3379iEnJwdmZmYoKipC9+7dceDAAYwYMQJ169bFP//8gwULFuDixYsl5k3GxcVh/fr1GDt2LPT19fHtt9+ic+fOOHLkCOrVq1eu3+fAgQPYtGkTPvroI5iammLRokXo06cP0tLSYG1t/dLnR/TG0HRmSUSadffuXQFAHmUqS/fu3QUAeWSrvCN2QghhbGwsj9KV1rZ79+4K5R999JEAIE6fPi2EUG5ka+7cuS8cpSu2detWAUAsWLDghW3LiiMwMFAAEGFhYQpt9+7dKwCIsWPHluinqKiozP6KPXtez47YCSGEt7f3C0fpnu2zrBE7IYQYN26cwve+atUqoaOjI/766y+FdkuXLhUAxMGDBxX6BiCOHTsml6WmpgoDAwPRq1cvuex5vw8AoaenJ5KTk+Wy06dPCwDim2++Kfd5Er3J+FQs0Rvu3r17APDCEavi+pycHJXHEBISorA9ZswYAMAff/yh8mM9rfhcXmW0rtj//vc/he2NGzdCkiRERESUaFv88ENlY2JiAuD/rolff/0VdevWRZ06dXDz5k350759ewDAvn37FPb38/ODr6+vvF2jRg306NEDu3btQmFhYbli8Pf3VxjRbdCgAczMzPDvv/++0rkRvSl4K5boDVec1BT/Y16W8iaAL8PDw0Nh293dHTo6Ompfs83MzAzAi8/9RapUqYLq1asrlF2+fBmOjo6wsrJ6pb4rUm5uLoD/+40vXbqExMTEMm9lZ2VlKWw/+zsCTx7WuH//Pm7cuAEHB4cXxlCjRo0SZZaWlrhz584L9yUiJnZEbzxzc3NUq1YNZ86ceW67M2fOwMnJSU6Gyhp1Ku/IzPM827e6jlWnTh0AwD///PNK/ejr60NHR/kbIOr8Dl/G2bNnoaurCzc3NwBAUVER6tevj/nz55fa3tnZWeUxlPXkr+DKXETlwluxRIR3330XV65cwYEDB0qt/+uvv5CSkoJ3331XLrO0tCx1kdnU1NQSZS+69Xjp0iWF7eTkZBQVFcnrnFlaWgJAieO9zLGeVrt2bXh6emLr1q3yaJWquLu74/r167h9+3aZbZQ5r9Ko8pZuWloa4uLi4OfnJ4/Yubu74/bt2+jQoQP8/f1LfDw9PRX6ePZ3BICLFy/CyMhIHvWrrLehibQFEzsiwuTJk2FoaIiRI0fi1q1bCnW3b9/GqFGjYGRkhMmTJ8vl7u7uyM7OVhjpS09Px+bNm0v0b2xs/Nw3DURHRytsf/PNNwCALl26AHhyy9TGxgbx8fEK7b799ttSjwWUTJbKMm3aNNy6dUt+avVZf/75J7Zt21auvp7Wp08fCCEwbdq0EnXFo0/KnFdpXvS9ltft27fRv39/FBYWyk/YAk+eVr527Rp++OGHEvs8ePAAeXl5CmUJCQk4ceKEvH316lVs3boVnTp1kkfilP19iEg5vBVLRPDw8MCKFSswcOBA1K9fv8SbJ27evIl169YpTGrv168fpkyZgl69emHs2LG4f/8+lixZgtq1ayv84w4Avr6+2LNnD+bPnw9HR0e4ubmhefPmcv2VK1fQvXt3dO7cGQkJCVi9ejUGDBiAhg0bym2GDRuGqKgoDBs2DE2aNEF8fDwuXrxY4lyKJ+9/+umn6NevH6pWrYpu3bqVuWDwBx98gH/++QdffvklTp48qfDmiZ07dyI2NhZr165V+jtt164dBg8ejEWLFuHSpUvo3LkzioqK8Ndff6Fdu3byO1HLe16l8fX1xZIlSzBz5kzUqlULdnZ28oMNZbl48SJWr14NIQRycnLkN0/k5uZi/vz56Ny5s9x28ODB+OWXXzBq1Cjs27cPLVu2RGFhIS5cuIBffvkFu3btUli2pV69eggICFBY7gSAQnKr7O9DRErS7EO5RFSZnDlzRvTv319Uq1ZNVK1aVTg4OIj+/fuLf/75p9T2f/75p6hXr57Q09MTnp6eYvXq1aUud3LhwgXRunVrYWhoWOoCxefPnxfvvfeeMDU1FZaWlmL06NEKCxQLIcT9+/dFcHCwMDc3F6ampqJv374iKyurxLIgQggxY8YM4eTkJHR0dMq99ElsbKzo0aOHsLOzE1WqVBG2traiW7duYuvWrXKb5y1QXJqCggIxd+5cUadOHaGnpydsbW1Fly5dxPHjx5U+r9KWO8nIyBDvvPOOMDU1LfcCxcUfHR0dYWFhIRo1aiTGjRsnzp07V+o+jx49ErNnzxbe3t5CX19fWFpaCl9fXzFt2jSRnZ2t0HfxAsUeHh5CX19fNGrUSOzbt69En2X9PihjORYXF5dSl8shopL4rlgi0pipU6di2rRpuHHjhrxYLb2e+J5XosqBc+yIiIiItAQTOyIiIiItwcSOiIiISEtwjh0RERGRluCIHREREZGW4Dp2ePLanOvXr8PU1JSrohMREVGlIoTAvXv34Ojo+MLXFzKxA3D9+nW1vPOQiIiISFWuXr2K6tWrP7cNEztAfi/i1atX5RecExEREVUGOTk5cHZ2lvOV52Fih/97KbWZmRkTOyIiIqqUyjNdjA9PEBEREWkJJnZEREREWoKJHREREZGWYGJHREREpCWY2BERERFpCT4VW4Fcw7ZrOgQqh5SodzQdAhER0UvhiB0RERGRlmBiR0RERKQlmNgRERERaQkmdkRERERagokdERERkZZgYkdERESkJZjYEREREWkJJnZEREREWoKJHREREZGWYGJHREREpCWY2BERERFpCSZ2RERERFqCiR0RERGRlmBiR0RERKQlmNgRERERaQkmdkRERERagokdERERkZao9IndtWvXMGjQIFhbW8PQ0BD169fHsWPH5HohBL744gtUq1YNhoaG8Pf3x6VLlzQYMREREZFmVOrE7s6dO2jZsiWqVq2KHTt24Pz58/jqq69gaWkpt5kzZw4WLVqEpUuX4vDhwzA2NkZAQAAePnyowciJiIiIKl4VTQfwPLNnz4azszNiYmLkMjc3N/nPQggsXLgQn332GXr06AEAWLlyJezt7bFlyxb069evwmMmIiIi0pRKPWL322+/oUmTJnj//fdhZ2eHRo0a4YcffpDrr1y5goyMDPj7+8tl5ubmaN68ORISEsrsNz8/Hzk5OQofIiIiotddpU7s/v33XyxZsgQeHh7YtWsX/ve//2Hs2LFYsWIFACAjIwMAYG9vr7Cfvb29XFeayMhImJubyx9nZ2f1nQQRERFRBanUiV1RUREaN26MWbNmoVGjRhgxYgSGDx+OpUuXvlK/4eHhyM7Olj9Xr15VUcREREREmlOpE7tq1arBy8tLoaxu3bpIS0sDADg4OAAAMjMzFdpkZmbKdaXR19eHmZmZwoeIiIjodVepE7uWLVsiKSlJoezixYtwcXEB8ORBCgcHB8TGxsr1OTk5OHz4MPz8/Co0ViIiIiJNq9RPxU6YMAEtWrTArFmz0LdvXxw5cgTff/89vv/+ewCAJEkYP348Zs6cCQ8PD7i5ueHzzz+Ho6MjevbsqdngiYiIiCpYpU7smjZtis2bNyM8PBzTp0+Hm5sbFi5ciIEDB8ptPv74Y+Tl5WHEiBG4e/cuWrVqhZ07d8LAwECDkRMRERFVPEkIITQdhKbl5OTA3Nwc2dnZap1v5xq2XW19k+qkRL2j6RCIiIhkyuQplXqOHRERERGVHxM7IiIiIi3BxI6IiIhISzCxIyIiItISTOyIiIiItAQTOyIiIiItwcSOiIiISEtU6gWKiYiI3mRc//T1UJnWP+WIHREREZGWYGJHREREpCWY2BERERFpCSZ2RERERFqCiR0RERGRlmBiR0RERKQlmNgRERERaQkmdkRERERagokdERERkZZgYkdERESkJZjYEREREWkJJnZEREREWoKJHREREZGWYGJHREREpCWqqLPzoqIiJCcnIysrC0VFRQp1rVu3VuehiYiIiN44akvsDh06hAEDBiA1NRVCCIU6SZJQWFiorkMTERERvZHUltiNGjUKTZo0wfbt21GtWjVIkqSuQxERERER1JjYXbp0CRs2bECtWrXUdQgiIiIieoraErvmzZsjOTmZiR1RGVzDtms6BCqnlKh3NB0CEVG5qDSxO3PmjPznMWPGYOLEicjIyED9+vVRtWpVhbYNGjRQ5aGJiIiI3ngqTex8fHwgSZLCwxJDhw6V/1xcx4cniIiIiFRPpYndlStXVNkdERERESlBpQsUu7i4yJ/U1FQ4OTkplLm4uMDJyQmpqakv1X9UVBQkScL48ePlsocPHyIkJATW1tYwMTFBnz59kJmZqaIzIiIiInp9qO3NE+3atcPt27dLlGdnZ6Ndu3ZK93f06FF89913JebmTZgwAb///jt+/fVXxMXF4fr16+jdu/dLx01ERET0ulJbYlc8l+5Zt27dgrGxsVJ95ebmYuDAgfjhhx9gaWkpl2dnZ+Onn37C/Pnz0b59e/j6+iImJgZ///03Dh069MrnQERERPQ6UflyJ8WjZZIkISgoCPr6+nJdYWEhzpw5gxYtWijVZ0hICN555x34+/tj5syZcvnx48fx+PFj+Pv7y2V16tRBjRo1kJCQgLfeeqvU/vLz85Gfny9v5+TkKBUPERERUWWk8sTO3NwcwJMRO1NTUxgaGsp1enp6eOuttzB8+PBy9/fzzz/jxIkTOHr0aIm6jIwM6OnpwcLCQqHc3t4eGRkZZfYZGRmJadOmlTsGIiIioteByhO7mJgYAICrqysmTZqk9G3Xp129ehXjxo3D7t27YWBgoKoQER4ejtDQUHk7JycHzs7OKuufiIiISBPU9uaJiIgIAEBWVhaSkpIAAJ6enrCzsyt3H8ePH0dWVhYaN24slxUWFiI+Ph6LFy/Grl278OjRI9y9e1dh1C4zMxMODg5l9quvr69wi5iIiIhIG6jt4Yl79+5h8ODBcHJyQps2bdCmTRs4OTlh0KBByM7OLlcfHTp0wD///INTp07JnyZNmmDgwIHyn6tWrYrY2Fh5n6SkJKSlpcHPz09dp0ZERERUKaltxG7YsGE4efIktm3bJidZCQkJGDduHEaOHImff/75hX2YmpqiXr16CmXGxsawtraWy4ODgxEaGgorKyuYmZlhzJgx8PPzK/PBCSIiIiJtpbbEbtu2bdi1axdatWollwUEBOCHH35A586dVXacBQsWQEdHB3369EF+fj4CAgLw7bffqqx/IiIioteF2hI7a2tr+QnZp5mbmyusRaes/fv3K2wbGBggOjoa0dHRL90nERERkTZQ2xy7zz77DKGhoQrLjmRkZGDy5Mn4/PPP1XVYIiIiojeW2kbslixZguTkZNSoUQM1atQAAKSlpUFfXx83btzAd999J7c9ceKEusIgIiIiemOoLbHr2bOnuromIiIiolKofR07IiIiIqoYaptjBwB3797Fjz/+iPDwcNy+fRvAk9uu165dU+dhiYiIiN5IahuxO3PmDPz9/WFubo6UlBQMHz4cVlZW2LRpE9LS0rBy5Up1HZqIiIjojaS2EbvQ0FAEBQXh0qVLCu957dq1K+Lj49V1WCIiIqI3ltoSu6NHj2LkyJElyp2cnBSWQCEiIiIi1VBbYqevr4+cnJwS5RcvXoStra26DktERET0xlLbHLvu3btj+vTp+OWXXwAAkiQhLS0NU6ZMQZ8+fdR1WCKi15Zr2HZNh0DlkBL1jqZDICqT2kbsvvrqK+Tm5sLW1hYPHjxAmzZtUKtWLZiamuLLL79U12GJiIiI3lhqG7EzNzfH7t27cfDgQZw+fRq5ublo3Lgx/P391XVIIiIiojeaWhK7oqIiLF++HJs2bUJKSgokSYKbmxscHBwghIAkSeo4LBEREdEbTeW3YoUQ6N69O4YNG4Zr166hfv368Pb2RmpqKoKCgtCrVy9VH5KIiIiIoIYRu+XLlyM+Ph6xsbFo166dQt3evXvRs2dPrFy5Eh9++KGqD01ERET0RlP5iN26devwySeflEjqAKB9+/YICwvDmjVrVH1YIiIiojeeyhO7M2fOoHPnzmXWd+nSBadPn1b1YYmIiIjeeCpP7G7fvg17e/sy6+3t7XHnzh1VH5aIiIjojafyxK6wsBBVqpQ9dU9XVxcFBQWqPiwRERHRG0/lD08IIRAUFAR9ff1S6/Pz81V9SCIiIiKCGhK7wMDAF7bhE7FEREREqqfyxC4mJkbVXRIRERFROajtXbFEREREVLGY2BERERFpCSZ2RERERFqCiR0RERGRlmBiR0RERKQlmNgRERERaQkmdkRERERagokdERERkZao1IldZGQkmjZtClNTU9jZ2aFnz55ISkpSaPPw4UOEhITA2toaJiYm6NOnDzIzMzUUMREREZHmVOrELi4uDiEhITh06BB2796Nx48fo1OnTsjLy5PbTJgwAb///jt+/fVXxMXF4fr16+jdu7cGoyYiIiLSDJW/UkyVdu7cqbC9fPly2NnZ4fjx42jdujWys7Px008/Ye3atWjfvj2AJ680q1u3Lg4dOoS33nqr1H7z8/ORn58vb+fk5KjvJIiIiIgqSKUesXtWdnY2AMDKygoAcPz4cTx+/Bj+/v5ymzp16qBGjRpISEgos5/IyEiYm5vLH2dnZ/UGTkRERFQBXpvErqioCOPHj0fLli1Rr149AEBGRgb09PRgYWGh0Nbe3h4ZGRll9hUeHo7s7Gz5c/XqVXWGTkRERFQhKvWt2KeFhITg7NmzOHDgwCv3pa+vD319fRVERURERFR5vBYjdqNHj8a2bduwb98+VK9eXS53cHDAo0ePcPfuXYX2mZmZcHBwqOAoiYiIiDSrUid2QgiMHj0amzdvxt69e+Hm5qZQ7+vri6pVqyI2NlYuS0pKQlpaGvz8/Co6XCIiIiKNqtS3YkNCQrB27Vps3boVpqam8rw5c3NzGBoawtzcHMHBwQgNDYWVlRXMzMwwZswY+Pn5lflELBEREZG2qtSJ3ZIlSwAAbdu2VSiPiYlBUFAQAGDBggXQ0dFBnz59kJ+fj4CAAHz77bcVHCkRERGR5lXqxE4I8cI2BgYGiI6ORnR0dAVERERERFR5Veo5dkRERERUfkzsiIiIiLQEEzsiIiIiLcHEjoiIiEhLMLEjIiIi0hJM7IiIiIi0BBM7IiIiIi3BxI6IiIhISzCxIyIiItISTOyIiIiItAQTOyIiIiItwcSOiIiISEswsSMiIiLSEkzsiIiIiLQEEzsiIiIiLcHEjoiIiEhLMLEjIiIi0hJM7IiIiIi0BBM7IiIiIi3BxI6IiIhISzCxIyIiItISTOyIiIiItAQTOyIiIiItwcSOiIiISEswsSMiIiLSEkzsiIiIiLQEEzsiIiIiLcHEjoiIiEhLMLEjIiIi0hJM7IiIiIi0hNYkdtHR0XB1dYWBgQGaN2+OI0eOaDokIiIiogqlFYnd+vXrERoaioiICJw4cQINGzZEQEAAsrKyNB0aERERUYWpoukAVGH+/PkYPnw4hgwZAgBYunQptm/fjmXLliEsLKxE+/z8fOTn58vb2dnZAICcnBy1xlmUf1+t/ZNqqPs6KMbr4fXBa4KeVlHXA8Br4nWh7muiuH8hxAvbSqI8rSqxR48ewcjICBs2bEDPnj3l8sDAQNy9exdbt24tsc/UqVMxbdq0CoySiIiI6NVcvXoV1atXf26b137E7ubNmygsLIS9vb1Cub29PS5cuFDqPuHh4QgNDZW3i4qKcPv2bVhbW0OSJLXGq01ycnLg7OyMq1evwszMTNPhUCXAa4KexuuBnsVr4uUIIXDv3j04Ojq+sO1rn9i9DH19fejr6yuUWVhYaCYYLWBmZsa/oKSA1wQ9jdcDPYvXhPLMzc3L1e61f3jCxsYGurq6yMzMVCjPzMyEg4ODhqIiIiIiqnivfWKnp6cHX19fxMbGymVFRUWIjY2Fn5+fBiMjIiIiqlhacSs2NDQUgYGBaNKkCZo1a4aFCxciLy9PfkqW1ENfXx8RERElbmvTm4vXBD2N1wM9i9eE+r32T8UWW7x4MebOnYuMjAz4+Phg0aJFaN68uabDIiIiIqowWpPYEREREb3pXvs5dkRERET0BBM7IiIiIi3BxI6IiIhISzCxIyIiItISTOzopURHR8PV1RUGBgZo3rw5jhw5oumQSIPi4+PRrVs3ODo6QpIkbNmyRdMhkQZFRkaiadOmMDU1hZ2dHXr27ImkpCRNh0UasmTJEjRo0EB+24Sfnx927Nih6bC0FhM7Utr69esRGhqKiIgInDhxAg0bNkRAQACysrI0HRppSF5eHho2bIjo6GhNh0KVQFxcHEJCQnDo0CHs3r0bjx8/RqdOnZCXl6fp0EgDqlevjqioKBw/fhzHjh1D+/bt0aNHD5w7d07ToWklLndCSmvevDmaNm2KxYsXA3jypg9nZ2eMGTMGYWFhGo6ONE2SJGzevBk9e/bUdChUSdy4cQN2dnaIi4tD69atNR0OVQJWVlaYO3cugoODNR2K1uGIHSnl0aNHOH78OPz9/eUyHR0d+Pv7IyEhQYOREVFllZ2dDeDJP+b0ZissLMTPP/+MvLw8vvZTTbTilWJUcW7evInCwkLY29srlNvb2+PChQsaioqIKquioiKMHz8eLVu2RL169TQdDmnIP//8Az8/Pzx8+BAmJibYvHkzvLy8NB2WVmJiR0REahMSEoKzZ8/iwIEDmg6FNMjT0xOnTp1CdnY2NmzYgMDAQMTFxTG5UwMmdqQUGxsb6OrqIjMzU6E8MzMTDg4OGoqKiCqj0aNHY9u2bYiPj0f16tU1HQ5pkJ6eHmrVqgUA8PX1xdGjR/H111/ju+++03Bk2odz7Egpenp68PX1RWxsrFxWVFSE2NhYzpcgIgCAEAKjR4/G5s2bsXfvXri5uWk6JKpkioqKkJ+fr+kwtBJH7EhpoaGhCAwMRJMmTdCsWTMsXLgQeXl5GDJkiKZDIw3Jzc1FcnKyvH3lyhWcOnUKVlZWqFGjhgYjI00ICQnB2rVrsXXrVpiamiIjIwMAYG5uDkNDQw1HRxUtPDwcXbp0QY0aNXDv3j2sXbsW+/fvx65duzQdmlbicif0UhYvXoy5c+ciIyMDPj4+WLRoEZo3b67psEhD9u/fj3bt2pUoDwwMxPLlyys+INIoSZJKLY+JiUFQUFDFBkMaFxwcjNjYWKSnp8Pc3BwNGjTAlClT0LFjR02HppWY2BERERFpCc6xIyIiItISTOyIiIiItAQTOyIiIiItwcSOiIiISEswsSMiIiLSEkzsiIiIiLQEEzsiIiIiLcHEjoheW1OnToWPj88r9ZGSkgJJknDq1CmVxFSWtm3bYvz48Wo9RmWgit+EiF4eEzsiUpurV69i6NChcHR0hJ6eHlxcXDBu3DjcunVL6b4kScKWLVsUyiZNmqTw3uKX4ezsjPT0dNSrV++V+im2f/9+SJKEu3fvKpRv2rQJM2bMUMkxylJRSSoRVV5M7IhILf799180adIEly5dwrp165CcnIylS5ciNjYWfn5+uH379isfw8TEBNbW1q/Uh66uLhwcHFClinpfnW1lZQVTU1O1HoOIiIkdEalFSEgI9PT08Oeff6JNmzaoUaMGunTpgj179uDatWv49NNP5baurq6YMWMG+vfvD2NjYzg5OSE6OlqhHgB69eoFSZLk7Wdv+wUFBaFnz56YNWsW7O3tYWFhgenTp6OgoACTJ0+GlZUVqlevjpiYGHmfZ0e5goKCIElSic/+/fsBAKtWrUKTJk1gamoKBwcHDBgwAFlZWXJfxe/MtbS0hCRJ8rtRn70Ve+fOHXz44YewtLSEkZERunTpgkuXLsn1y5cvh4WFBXbt2oW6devCxMQEnTt3Rnp6+kv/JkVFRYiMjISbmxsMDQ3RsGFDbNiwQa6rXr06lixZorDPyZMnoaOjg9TUVADA3bt3MWzYMNja2sLMzAzt27fH6dOnXzomIlItJnZEpHK3b9/Grl278NFHH8HQ0FChzsHBAQMHDsT69evx9Kuq586di4YNG+LkyZMICwvDuHHjsHv3bgDA0aNHATx5iXx6erq8XZq9e/fi+vXriI+Px/z58xEREYF3330XlpaWOHz4MEaNGoWRI0fiv//+K3X/r7/+Gunp6fJn3LhxsLOzQ506dQAAjx8/xowZM3D69Gls2bIFKSkpcvLm7OyMjRs3AgCSkpKQnp6Or7/+utTjBAUF4dixY/jtt9+QkJAAIQS6du2Kx48fy23u37+PefPmYdWqVYiPj0daWhomTZr0vK/+uSIjI7Fy5UosXboU586dw4QJEzBo0CDExcVBR0cH/fv3x9q1axX2WbNmDVq2bAkXFxcAwPvvv4+srCzs2LEDx48fR+PGjdGhQweVjMASkQoIIiIVO3TokAAgNm/eXGr9/PnzBQCRmZkphBDCxcVFdO7cWaHNBx98ILp06SJvl9ZfRESEaNiwobwdGBgoXFxcRGFhoVzm6ekp3n77bXm7oKBAGBsbi3Xr1gkhhLhy5YoAIE6ePFkizo0bNwoDAwNx4MCBMs/16NGjAoC4d++eEEKIffv2CQDizp07Cu3atGkjxo0bJ4QQ4uLFiwKAOHjwoFx/8+ZNYWhoKH755RchhBAxMTECgEhOTpbbREdHC3t7+zJjed65PHz4UBgZGYm///5boTw4OFj0799fCCHEyZMnhSRJIjU1VQghRGFhoXBychJLliwRQgjx119/CTMzM/Hw4UOFPtzd3cV3330nhCj5mxBRxeKIHRGpjXhqRO5F/Pz8SmwnJiYqfUxvb2/o6Pzf/7XZ29ujfv368rauri6sra3l26dlOXnyJAYPHozFixejZcuWcvnx48fRrVs31KhRA6ampmjTpg0AIC0trdwxJiYmokqVKmjevLlcZm1tDU9PT4VzNjIygru7u7xdrVq1F8ZdluTkZNy/fx8dO3aEiYmJ/Fm5ciUuX74MAPDx8UHdunXlUbu4uDhkZWXh/fffBwCcPn0aubm5sLa2VujjypUrch9EpFnqnS1MRG+kWrVqQZIkJCYmolevXiXqExMTYWlpCVtbW5Ufu2rVqgrbkiSVWlZUVFRmHxkZGejevTuGDRuG4OBguTwvLw8BAQEICAjAmjVrYGtri7S0NAQEBODRo0eqPRGUfi7KJMtPy83NBQBs374dTk5OCnX6+vrynwcOHIi1a9ciLCwMa9euRefOneUHVHJzc1GtWjV5vuHTLCwsXiouIlItJnZEpHLW1tbo2LEjvv32W0yYMEFhnl1GRgbWrFmDDz/8EJIkyeWHDh1S6OPQoUOoW7euvF21alUUFhaqPfaHDx+iR48eqFOnDubPn69Qd+HCBdy6dQtRUVFwdnYGABw7dkyhjZ6eHgA8N9a6deuioKAAhw8fRosWLQAAt27dQlJSEry8vFR5OjIvLy/o6+sjLS1NHmUszYABA/DZZ5/h+PHj2LBhA5YuXSrXNW7cGBkZGahSpYr8AAsRVS5M7IhILRYvXowWLVogICAAM2fOhJubG86dO4fJkyfDyckJX375pUL7gwcPYs6cOejZsyd2796NX3/9Fdu3b5frXV1dERsbi5YtW0JfXx+WlpZqiXvkyJG4evUqYmNjcePGDbncysoKNWrUgJ6eHr755huMGjUKZ8+eLbE2nYuLCyRJwrZt29C1a1cYGhrCxMREoY2Hhwd69OiB4cOH47vvvoOpqSnCwsLg5OSEHj16vPI5JCUllSjz9vbGpEmTMGHCBBQVFaFVq1bIzs7GwYMHYWZmhsDAQABPvucWLVogODgYhYWF6N69u9yHv78//Pz80LNnT8yZMwe1a9fG9evXsX37dvTq1QtNmjR55diJ6NVwjh0RqYWHhweOHTuGmjVrom/fvnB3d8eIESPQrl07JCQkwMrKSqH9xIkTcezYMTRq1AgzZ87E/PnzERAQINd/9dVX2L17N5ydndGoUSO1xR0XF4f09HR4eXmhWrVq8ufvv/+Gra0tli9fjl9//RVeXl6IiorCvHnzFPZ3cnLCtGnTEBYWBnt7e4wePbrU48TExMDX1xfvvvsu/Pz8IITAH3/8UeL268vo168fGjVqpPDJzMzEjBkz8PnnnyMyMhJ169ZF586dsX37dri5uSnsP3DgQJw+fRq9evVSGG2VJAl//PEHWrdujSFDhqB27dro168fUlNTYW9v/8pxE9Grk8TLTtggIlIRV1dXjB8//o145RYRkTpxxI6IiIhISzCxIyIiItISvBVLREREpCU4YkdERESkJZjYEREREWkJJnZEREREWoKJHREREZGWYGJHREREpCWY2BERERFpCSZ2RERERFqCiR0RERGRlmBiR0RERKQlmNgRERERaQkmdkRERERagokdERERkZZgYkdERESkJZjYEREREWkJJnZEb6j9+/dDkiRs2LBB06GUS2ZmJt577z1YW1tDkiQsXLhQ0yG9ViRJwtSpUyv8uMXX2f79+yv82ERvIiZ2RGq0fPlySJIEAwMDXLt2rUR927ZtUa9ePQ1E9vqZMGECdu3ahfDwcKxatQqdO3eusGP//fffmDp1Ku7evVshx5s1axa2bNlSIcfShLVr12o0MT9//jymTp2KlJQUjcVApC5M7IgqQH5+PqKiojQdxmtt79696NGjByZNmoRBgwahTp06FXbsv//+G9OmTXutE7sHDx7gs88+U2mf5dG6dWs8ePAArVu3lssqQ2I3bdo0JnaklZjYEVUAHx8f/PDDD7h+/bqmQ6lweXl5KuknKysLFhYWKunrTWRgYIAqVao8t42qfqun6ejowMDAADo6/OeGqCLwbxpRBfjkk09QWFj4wlG7lJQUSJKE5cuXl6h7do7U1KlTIUkSLl68iEGDBsHc3By2trb4/PPPIYTA1atX0aNHD5iZmcHBwQFfffVVqccsLCzEJ598AgcHBxgbG6N79+64evVqiXaHDx9G586dYW5uDiMjI7Rp0wYHDx5UaFMc0/nz5zFgwABYWlqiVatWzz3nf//9F++//z6srKxgZGSEt956C9u3b5fri29nCyEQHR0NSZIgSdJz+8zLy8PEiRPh7OwMfX19eHp6Yt68eRBCyG3K+11PnToVkydPBgC4ubnJxy8e7ZEkCaNHj8aaNWvg6ekJAwMD+Pr6Ij4+XqHPoKAguLq6ljhW8Xf29LHz8vKwYsUK+VhBQUHPPd+HDx9i6tSpqF27NgwMDFCtWjX07t0bly9fLvWcnj5uWb/V6tWr0axZMxgZGcHS0hKtW7fGn3/+WWZ/xVxdXRXifXaOXdu2bbF9+3akpqbK51fa9/K0Bw8eYOzYsbCxsYGpqSm6d++Oa9eulYghNTUVH330ETw9PWFoaAhra2u8//77CiNzy5cvx/vvvw8AaNeunRzD03MAd+zYgbfffhvGxsYwNTXFO++8g3PnzinElJGRgSFDhqB69erQ19dHtWrV0KNHD44CksY9/z/fiEgl3Nzc8OGHH+KHH35AWFgYHB0dVdb3Bx98gLp16yIqKgrbt2/HzJkzYWVlhe+++w7t27fH7NmzsWbNGkyaNAlNmzZVuCUGAF9++SUkScKUKVOQlZWFhQsXwt/fH6dOnYKhoSGAJ7dBu3TpAl9fX0REREBHRwcxMTFo3749/vrrLzRr1kyhz/fffx8eHh6YNWuWQjL1rMzMTLRo0QL379/H2LFjYW1tjRUrVqB79+7YsGEDevXqhdatW2PVqlUYPHgwOnbsiA8//PC534cQAt27d8e+ffsQHBwMHx8f7Nq1C5MnT8a1a9ewYMECpb7f3r174+LFi1i3bh0WLFgAGxsbAICtra3cJi4uDuvXr8fYsWOhr6+Pb7/9Fp07d8aRI0eUnkO5atUqDBs2DM2aNcOIESMAAO7u7mW2LywsxLvvvovY2Fj069cP48aNw71797B7926cPXv2ufsCpf9W06ZNw9SpU9GiRQtMnz4denp6OHz4MPbu3YtOnTopdT7P+vTTT5GdnY3//vtP/i1MTEyeu09QUBB++eUXDB48GG+99Rbi4uLwzjvvlGh39OhR/P333+jXrx+qV6+OlJQULFmyBG3btsX58+dhZGSE1q1bY+zYsVi0aBE++eQT1K1bFwDk/121ahUCAwMREBCA2bNn4/79+1iyZAlatWqFkydPyklonz59cO7cOYwZMwaurq7IysrC7t27kZaW9sJElUitBBGpTUxMjAAgjh49Ki5fviyqVKkixo4dK9e3adNGeHt7y9tXrlwRAERMTEyJvgCIiIgIeTsiIkIAECNGjJDLCgoKRPXq1YUkSSIqKkouv3PnjjA0NBSBgYFy2b59+wQA4eTkJHJycuTyX375RQAQX3/9tRBCiKKiIuHh4SECAgJEUVGR3O7+/fvCzc1NdOzYsURM/fv3L9f3M378eAFA/PXXX3LZvXv3hJubm3B1dRWFhYUK5x8SEvLCPrds2SIAiJkzZyqUv/fee0KSJJGcnCyEUO67njt3rgAgrly5UmpbAOLYsWNyWWpqqjAwMBC9evWSywIDA4WLi0uJ/Yu/s6cZGxsr/FbPs2zZMgFAzJ8/v0Td079XWdfPs7/VpUuXhI6OjujVq5fC9/+i/oq5uLiUep3t27dPLnvnnXdK/S5Kc/z4cQFAjB8/XqE8KCioRAz3798vsX9CQoIAIFauXCmX/frrryViEuLJtWdhYSGGDx+uUJ6RkSHMzc3l8jt37ggAYu7cueU6B6KKxFuxRBWkZs2aGDx4ML7//nukp6errN9hw4bJf9bV1UWTJk0ghEBwcLBcbmFhAU9PT/z7778l9v/www9hamoqb7/33nuoVq0a/vjjDwDAqVOncOnSJQwYMAC3bt3CzZs3cfPmTeTl5aFDhw6Ij49HUVGRQp+jRo0qV+x//PEHmjVrpnAL0MTEBCNGjEBKSgrOnz9fvi/hmT51dXUxduxYhfKJEydCCIEdO3Yo3eeL+Pn5wdfXV96uUaMGevTogV27dqGwsFDlx3vaxo0bYWNjgzFjxpSoe9Eta6Dkb7VlyxYUFRXhiy++KDEvrjz9qdrOnTsBAB999JFCeWnnWzzCDACPHz/GrVu3UKtWLVhYWODEiRMvPNbu3btx9+5d9O/fX77Ob968CV1dXTRv3hz79u2Tj6Onp4f9+/fjzp07r3J6RCrHxI6oAn322WcoKChQ6ROyNWrUUNg2NzeHgYGBfMvw6fLS/hHy8PBQ2JYkCbVq1ZLnCl26dAkAEBgYCFtbW4XPjz/+iPz8fGRnZyv04ebmVq7YU1NT4enpWaK8+LZYampqufp5tk9HR0eFZPVV+3yRZ79DAKhduzbu37+PGzduqPx4T7t8+TI8PT1f+GBEWZ79rS5fvgwdHR14eXmpIrxXlpqaCh0dnRJx1qpVq0TbBw8e4IsvvpDnVtrY2MDW1hZ3794tcY2Wpvhab9++fYlr/c8//0RWVhYAQF9fH7Nnz8aOHTtgb2+P1q1bY86cOcjIyFDBGRO9Gs6xI6pANWvWxKBBg/D9998jLCysRH1ZIyLPG/XR1dUtVxmA5853K0vxaNzcuXPh4+NTaptn50g9PXJSWb3Md/06Ha+8VP1bafJ8xowZg5iYGIwfPx5+fn4wNzeHJEno169fiVHl0hS3WbVqFRwcHErUP508jx8/Ht26dcOWLVuwa9cufP7554iMjMTevXvRqFEj1Z0UkZKY2BFVsM8++wyrV6/G7NmzS9RZWloCQIn10tQxylSseJSimBACycnJaNCgAYD/m7hvZmYGf39/lR7bxcUFSUlJJcovXLgg179Mn3v27MG9e/cURu2e7VOZ7/pFtyCf/Q4B4OLFizAyMpIfsrC0tCx1HbyXOd7T3N3dcfjwYTx+/BhVq1Yt937P66+oqAjnz58vM5EHSj+fR48elWuagTLn5+LigqKiIly5ckVhZDQ5OblE2w0bNiAwMFDhCfCHDx+WiLOs4xdf63Z2duW61t3d3TFx4kRMnDgRly5dgo+PD7766iusXr26PKdGpBa8FUtUwdzd3TFo0CB89913JW7dmJmZwcbGpsRSGd9++63a4lm5ciXu3bsnb2/YsAHp6eno0qULAMDX1xfu7u6YN28ecnNzS+z/Krcau3btiiNHjiAhIUEuy8vLw/fffw9XV9eXuh3YtWtXFBYWYvHixQrlCxYsgCRJ8nkp810bGxsDKJkEFktISFCYw3X16lVs3boVnTp1kkdP3d3dkZ2djTNnzsjt0tPTsXnz5lKPV97FkPv06YObN2+WOF/g5UZoe/bsCR0dHUyfPr3EKNfT/bm7u5f47r7//vtyjdgZGxuX69YoAAQEBAAo+bt88803Jdrq6uqWOOdvvvmmRExl/Z4BAQEwMzPDrFmz8Pjx4xL9F1/r9+/fx8OHDxXq3N3dYWpqivz8/HKcFZH6cMSOSAM+/fRTrFq1CklJSfD29laoGzZsGKKiojBs2DA0adIE8fHxuHjxotpisbKyQqtWrTBkyBBkZmZi4cKFqFWrFoYPHw7gyQKzP/74I7p06QJvb28MGTIETk5OuHbtGvbt2wczMzP8/vvvL3XssLAwrFu3Dl26dMHYsWNhZWWFFStW4MqVK9i4ceNLLWrbrVs3tGvXDp9++ilSUlLQsGFD/Pnnn9i6dSvGjx+vsPxHeb/r4gcjPv30U/Tr1w9Vq1ZFt27d5AShXr16CAgIUFjuBHiybEixfv36YcqUKejVqxfGjh0rL6NRu3btEhP7fX19sWfPHsyfPx+Ojo5wc3ND8+bNSz3fDz/8ECtXrkRoaCiOHDmCt99+G3l5edizZw8++ugj9OjRQ6nvr1atWvj0008xY8YMvP322+jduzf09fVx9OhRODo6IjIyUv7uRo0ahT59+qBjx444ffo0du3aVWJuZ2l8fX2xfv16hIaGomnTpjAxMUG3bt3KbNunTx8sXLgQt27dkpc7Kf6dnh59e/fdd7Fq1SqYm5vDy8sLCQkJ2LNnD6ytrRX69PHxga6uLmbPno3s7Gzo6+ujffv2sLOzw5IlSzB48GA0btwY/fr1g62tLdLS0rB9+3a0bNkSixcvxsWLF9GhQwf07dsXXl5eqFKlCjZv3ozMzEz069dPqe+bSOU0+EQukdZ7ermTZwUGBgoACsudCPFkyYbg4GBhbm4uTE1NRd++fUVWVlaZy1XcuHGjRL/GxsYljvfs0irFy1CsW7dOhIeHCzs7O2FoaCjeeecdkZqaWmL/kydPit69ewtra2uhr68vXFxcRN++fUVsbOwLY3qey5cvi/fee09YWFgIAwMD0axZM7Ft27YS7VDO5U6EeLJsxYQJE4Sjo6OoWrWq8PDwEHPnzlVYrkOI8n/XQggxY8YM4eTkJHR0dBSWPimOa/Xq1cLDw0Po6+uLRo0alVhKQwgh/vzzT1GvXj2hp6cnPD09xerVq0td7uTChQuidevWwtDQUAB44dIn9+/fF59++qlwc3MTVatWFQ4ODuK9994Tly9fVvj+ynP9FFu2bJlo1KiR0NfXF5aWlqJNmzZi9+7dcn1hYaGYMmWKsLGxEUZGRiIgIEAkJyeXa7mT3NxcMWDAAGFhYSEAvHDpk7y8PBESEiKsrKyEiYmJ6Nmzp0hKShIASizrM2TIEGFjYyNMTExEQECAuHDhQomYhBDihx9+EDVr1hS6urol4tu3b58ICAgQ5ubmwsDAQLi7u4ugoCB5SZubN2+KkJAQUadOHWFsbCzMzc1F8+bNxS+//PLc8yCqCJIQLzFWT0REAJ6MGIWEhJR6K5TU59SpU2jUqBFWr16NgQMHajocokqDc+yIiKhSe/DgQYmyhQsXQkdHp8SbVIjedJxjR0REldqcOXNw/PhxtGvXDlWqVMGOHTuwY8cOjBgxAs7OzpoOj6hSYWJHRESVWosWLbB7927MmDEDubm5qFGjBqZOnYpPP/1U06ERVTqcY0dERESkJTjHjoiIiEhLMLEjIiIi0hKcY4cn7we8fv06TE1NlXrVDREREZG6CSFw7949ODo6vnDhdiZ2AK5fv84nq4iIiKhSu3r1KqpXr/7cNkzsAPlF4VevXoWZmZmGoyEiIiL6Pzk5OXB2dpbzledhYof/e9egmZkZEzsiIiKqlMozXYwPTxARERFpCSZ2RERERFqCiR0RERGRluAcOyKiSqywsBCPHz/WdBhEpEZVq1aFrq6uSvpiYleBXMO2azoEKoeUqHc0HQIRhBDIyMjA3bt3NR0KEVUACwsLODg4vPJ6ukzsiIgqoeKkzs7ODkZGRlw8nUhLCSFw//59ZGVlAQCqVav2Sv0xsSMiqmQKCwvlpM7a2lrT4RCRmhkaGgIAsrKyYGdn90q3ZfnwBBFRJVM8p87IyEjDkRBRRSn++/6qc2o5YleBUgwGaDoEKpdsTQdABKB8i5ESkXZQ1d93jtgRERERaQkmdkREpDVSUlIgSRJOnTql6VBkFy5cwFtvvQUDAwP4+Pi8Ul+SJGHLli0qiass+/fvhyRJb9wT2cuXL4eFhYWmw3hlvBVLRPQaqehlk5Rd/icoKAgrVqxAZGQkwsLC5PItW7agV69eEEKoOsRKLyIiAsbGxkhKSoKJiUmZ7TIyMvDll19i+/btuHbtGuzs7ODj44Px48ejQ4cOAID09HRYWlqqNd4WLVogPT0d5ubmAJ4kPOPHjy9XovfgwQNERUVh3bp1SE1NhampKdq1a4epU6fC29tbrXErw9XVFePHj8f48ePlsg8++ABdu3bVXFAqwhE7IiJSKQMDA8yePRt37tzRdCgq8+jRo5fe9/Lly2jVqhVcXFzKfMo5JSUFvr6+2Lt3L+bOnYt//vkHO3fuRLt27RASEiK3c3BwgL6+fpnHUsVi1np6ei+1nlp+fj78/f2xbNkyzJw5ExcvXsQff/yBgoICNG/eHIcOHXrl2J5HCIGCgoKX3t/Q0BB2dnYqjEgzmNgREZFK+fv7w8HBAZGRkWW2mTp1aonbkgsXLoSrq6u8HRQUhJ49e2LWrFmwt7eHhYUFpk+fjoKCAkyePBlWVlaoXr06YmJiSvR/4cIFtGjRAgYGBqhXrx7i4uIU6s+ePYsuXbrAxMQE9vb2GDx4MG7evCnXt23bFqNHj8b48eNhY2ODgICAUs+jqKgI06dPR/Xq1aGvrw8fHx/s3LlTrpckCcePH8f06dMhSRKmTp1aaj8fffQRJEnCkSNH0KdPH9SuXRve3t4IDQ1VSIievhVbfNt5/fr1aNOmDQwMDLBmzRoAwLJly+Dt7Q19fX1Uq1YNo0ePVtjn6VvVd+/ehSRJ2L9/PwDFW7H79+/HkCFDkJ2dDUmSnnsOCxcuREJCArZt24a+ffvCxcUFzZo1w8aNG1G3bl0EBwfLI7bFv+20adNga2sLMzMzjBo1SiGBLioqQmRkJNzc3GBoaIiGDRtiw4YNcn1xnDt27ICvry/09fVx4MABXL58GT169IC9vT1MTEzQtGlT7NmzR+G3TU1NxYQJE+RzAkq/FbtkyRK4u7tDT08Pnp6eWLVqlUK9JEn48ccf0atXLxgZGcHDwwO//fabXH/nzh0MHDgQtra2MDQ0hIeHR6nXqyoxsSMiIpXS1dXFrFmz8M033+C///57pb727t2L69evIz4+HvPnz0dERATeffddWFpa4vDhwxg1ahRGjhxZ4jiTJ0/GxIkTcfLkSfj5+aFbt264desWgCeJTPv27dGoUSMcO3YMO3fuRGZmJvr27avQx4oVK6Cnp4eDBw9i6dKlpcb39ddf46uvvsK8efNw5swZBAQEoHv37rh06RKAJ7dOvb29MXHiRKSnp2PSpEkl+rh9+zZ27tyJkJAQGBsbl6h/0byvsLAwjBs3DomJiQgICMCSJUsQEhKCESNG4J9//sFvv/2GWrVqPbePsrRo0QILFy6EmZkZ0tPTyzwHAFi7di06duyIhg0bKpTr6OhgwoQJOH/+PE6fPi2Xx8bGIjExEfv378e6deuwadMmTJs2Ta6PjIzEypUrsXTpUpw7dw4TJkzAoEGDSiTpYWFhiIqKQmJiIho0aIDc3Fx07doVsbGxOHnyJDp37oxu3bohLS0NALBp0yZUr14d06dPl8+pNJs3b8a4ceMwceJEnD17FiNHjsSQIUOwb98+hXbTpk1D3759cebMGXTt2hUDBw7E7du3AQCff/45zp8/jx07diAxMRFLliyBjY1NOb/9l8M5dkREpHK9evWCj48PIiIi8NNPP710P1ZWVli0aBF0dHTg6emJOXPm4P79+/jkk08AAOHh4YiKisKBAwfQr18/eb/Ro0ejT58+AJ6MuuzcuRM//fQTPv74YyxevBiNGjXCrFmz5PbLli2Ds7MzLl68iNq1awMAPDw8MGfOnOfGN2/ePEyZMkU+9uzZs7Fv3z4sXLgQ0dHRcHBwQJUqVWBiYgIHB4dS+0hOToYQAnXq1Hmp72j8+PHo3bu3vD1z5kxMnDgR48aNk8uaNm36Un3r6enB3NwckiSVGX+xixcvol27dqXW1a1bV25TPFKrp6eHZcuWwcjICN7e3pg+fTomT56MGTNm4PHjx5g1axb27NkDPz8/AEDNmjVx4MABfPfdd2jTpo3c9/Tp09GxY0d528rKSiG5nDFjBjZv3ozffvsNo0ePhpWVFXR1dWFqavrcc5o3bx6CgoLw0UcfAYA8ejpv3jyF8wwKCkL//v0BALNmzcKiRYtw5MgRdO7cGWlpaWjUqBGaNGkCAAoj0urCETsiIlKL2bNnY8WKFUhMTHzpPry9vaGj83//VNnb26N+/frytq6uLqytreXXMRUrTgYAoEqVKmjSpIkcx+nTp7Fv3z6YmJjIn+Kk6vLly/J+vr6+z40tJycH169fR8uWLRXKW7ZsqdQ5v+oDJcVJA/DkzQXXr1+XH7aoaMqcS8OGDRUW4fbz80Nubi6uXr2K5ORk3L9/Hx07dlT4nVauXKnwGwGK5w8Aubm5mDRpEurWrQsLCwuYmJggMTFRHrErr8TExHL9tg0aNJD/bGxsDDMzM/l6/N///oeff/4ZPj4++Pjjj/H3338rFcPLUHrEbsWKFbCxscE77zx5Uurjjz/G999/Dy8vL6xbtw4uLi4qD5KIiF4/rVu3RkBAAMLDwxEUFKRQp6OjUyIJKG3if9WqVRW2JUkqtayoqKjcceXm5qJbt26YPXt2ibqn39NZ2m1RdfDw8IAkSbhw4cJL7f90nMWvpipLcZL89HevigcuAKB27dplJrTF5cWjoS+Sm5sLANi+fTucnJwU6p59eOTZ32nSpEnYvXs35s2bh1q1asHQ0BDvvffeKz0A8zzPux67dOmC1NRU/PHHH9i9ezc6dOiAkJAQzJs3Ty2xAC8xYjdr1iz5wklISEB0dDTmzJkDGxsbTJgwQeUBEhHR6ysqKgq///47EhISFMptbW2RkZGhkGCocu25px84KCgowPHjx+XbgY0bN8a5c+fg6uqKWrVqKXyUSebMzMzg6OiIgwcPKpQfPHgQXl5e5e7HysoKAQEBiI6ORl5eXol6ZdaTMzU1haurK2JjY0utt7W1BQCFeWUv+t719PRQWFj4wmP369cPe/bsUZhHBzx5CGLBggXw8vJSuEV6+vRpPHjwQN4+dOgQTExM4OzsDC8vL+jr6yMtLa3Eb+Ts7PzcOA4ePIigoCD06tUL9evXh4ODA1JSUpQ+p7p1677ybws8+c4DAwOxevVqLFy4EN9//71S+ytL6RG7q1evypMwt2zZgj59+mDEiBFo2bIl2rZtq+r4iIjoNVa/fn0MHDgQixYtUihv27Ytbty4gTlz5uC9997Dzp07sWPHDpiZmankuNHR0fDw8EDdunWxYMEC3LlzB0OHDgUAhISE4IcffkD//v3x8ccfw8rKCsnJyfj555/x448/KvUC9smTJyMiIgLu7u7w8fFBTEwMTp06JT+dqky8LVu2RLNmzTB9+nQ0aNAABQUF2L17N5YsWaLUrd2pU6di1KhRsLOzQ5cuXXDv3j0cPHgQY8aMgaGhId566y1ERUXBzc0NWVlZ+Oyzz57bn6urK3JzcxEbGyvfPi3tPcYTJkzA1q1b0a1bN3z11Vdo3rw5MjMzMWvWLCQmJmLPnj0KS6g8evQIwcHB+Oyzz5CSkoKIiAiMHj0aOjo6MDU1xaRJkzBhwgQUFRWhVatWyM7OxsGDB2FmZobAwMAy4/Xw8MCmTZvQrVs3SJKEzz//vMSIrqurK+Lj49GvXz/o6+uX+kDD5MmT0bdvXzRq1Aj+/v74/fffsWnTJoUnbF/kiy++gK+vL7y9vZGfn49t27bJ/4GhLkondiYmJrh16xZq1KiBP//8E6GhoQCerFv0dOZNRESqp+yCwZXB9OnTsX79eoWyunXr4ttvv8WsWbMwY8YM9OnTB5MmTVLZaEZUVBSioqJw6tQp1KpVC7/99pv8j3fxKNuUKVPQqVMn5Ofnw8XFBZ07d1aYz1ceY8eORXZ2NiZOnIisrCx4eXnht99+g4eHh1L91KxZEydOnMCXX34pP0Fra2sLX19fLFmyRKm+AgMD8fDhQyxYsACTJk2CjY0N3nvvPbl+2bJlCA4Ohq+vr/xASqdOncrsr0WLFhg1ahQ++OAD3Lp1CxEREaUueWJgYIC9e/di1qxZ+OSTTxQWKD506BDq1aun0L5Dhw7w8PBA69atkZ+fj/79+yv0O2PGDNja2iIyMhL//vsvLCws0LhxY/nBmbLMnz8fQ4cORYsWLWBjY4MpU6YgJydHoc306dMxcuRIuLu7Iz8/v9S5gT179sTXX3+NefPmYdy4cXBzc0NMTIxSg1h6enoIDw9HSkoKDA0N8fbbb+Pnn38u9/4vQxJKztocOHAgLly4gEaNGmHdunVIS0uDtbU1fvvtN3zyySc4e/asumJVm5ycHJibmyM7O1tl/7VYqqnm6uubVGdqtqYjoDfcw4cPceXKFbi5ucHAwEDT4RCpXFBQEO7evav216O9Tp73916ZPEXpOXbR0dHw8/PDjRs3sHHjRnkV7ePHj8uP+xIRERFRxVP6VqyFhQUWL15covzpRQWJiIiIqOK91Dp2f/31FwYNGoQWLVrg2rVrAIBVq1bhwIEDSvUTHx+Pbt26wdHRUeE1KcWEEPjiiy9QrVo1GBoawt/fX17Nu9jt27cxcOBAmJmZwcLCAsHBwfJj0kRERFT5LF++nLdh1UTpxG7jxo0ICAiAoaEhTpw4gfz8fABAdna2wire5ZGXl4eGDRsiOjq61Po5c+Zg0aJFWLp0KQ4fPgxjY2MEBATg4cOHcpuBAwfi3Llz2L17N7Zt24b4+HiMGDFC2dMiIiIieu0pndjNnDkTS5cuxQ8//KCwKF/Lli1x4sQJpfrq0qULZs6ciV69epWoE0Jg4cKF+Oyzz9CjRw80aNAAK1euxPXr1+UsPzExETt37sSPP/6I5s2bo1WrVvjmm2/w888/4/r162UeNz8/Hzk5OQofIiIioted0oldUlISWrduXaLc3NxcqUUUX+TKlSvIyMiAv7+/wjGaN28uL3SZkJAACwsLhdeJ+Pv7Q0dHB4cPHy6z78jISJibm8ufFy12SERERPQ6UDqxc3BwQHJyconyAwcOoGbNmioJCgAyMjIAPHkv4NPs7e3luoyMDNjZ2SnUV6lSBVZWVnKb0oSHhyM7O1v+XL16VWVxExEREWmK0k/FDh8+HOPGjcOyZcsgSRKuX7+OhIQETJo0CZ9//rk6YlQ5fX39Eu+aIyIiInrdKZ3YhYWFoaioCB06dMD9+/fRunVr6OvrY9KkSRgzZozKAnNwcAAAZGZmKryUOTMzEz4+PnKbrKwshf0KCgpw+/ZteX8iIiKiN4XSt2IlScKnn36K27dv4+zZszh06BBu3LiBGTNmqDQwNzc3ODg4KLzIOCcnB4cPH4afnx8AwM/PD3fv3sXx48flNnv37kVRURGaN2+u0niIiKjyS0lJgSRJL3yxfUW6cOEC3nrrLRgYGMgDE0TqovSI3dChQ/H111/D1NQUXl5ecnleXh7GjBmDZcuWlbuv3Nxchfl6V65cwalTp2BlZYUaNWpg/PjxmDlzJjw8PODm5obPP/8cjo6O6NmzJ4An7xrs3Lkzhg8fjqVLl+Lx48cYPXo0+vXrB0dHR2VPjYio8qvoVxMq+Yq9oKAgrFixApGRkQgLC5PLt2zZgl69epX6Tk5tFxERAWNjYyQlJcHExKTMdhkZGfjyyy+xfft2XLt2DXZ2dvDx8cH48ePRoUMHXL9+Hd7e3pg2bRrGjh0r73f48GG0atUK27dvf+47X18VXwP2elB6xG7FihV48OBBifIHDx5g5cqVSvV17NgxNGrUCI0aNQIAhIaGolGjRvjiiy8AAB9//DHGjBmDESNGoGnTpsjNzcXOnTsV3qG2Zs0a1KlTBx06dEDXrl3RqlUrlb1EmoiIlGdgYIDZs2fjzp07mg5FZR49evTS+16+fBmtWrWCi4uL/BrOZ6WkpMDX1xd79+7F3Llz8c8//2Dnzp1o164dQkJCAACOjo745ptvEB4eLi/W/+DBAwQGBmLYsGFqTero9VHuxC4nJwfZ2dkQQuDevXsKa8DduXMHf/zxR4knVF+kbdu2EEKU+CxfvhzAk9u+06dPR0ZGBh4+fIg9e/agdu3aCn1YWVlh7dq1uHfvHrKzs7Fs2bLn/hcRERGpl7+/PxwcHBAZGVlmm6lTp5a4Lblw4UK4urrK20FBQejZsydmzZoFe3t7WFhYYPr06SgoKMDkyZNhZWWF6tWrIyYmpkT/Fy5cQIsWLWBgYIB69eohLi5Oof7s2bPo0qULTExMYG9vj8GDB+PmzZtyfdu2bTF69GiMHz8eNjY2CAgIKPU8ioqKMH36dFSvXh36+vrw8fHBzp075XpJknD8+HFMnz4dkiRh6tSppfbz0UcfQZIkHDlyBH369EHt2rXh7e2N0NBQHDp0SG43aNAgBAQEICgoCEVFRQgPD8fjx48xd+7csr5qAMDff/8NHx8fGBgYoEmTJtiyZYvCLevCwkIEBwfDzc0NhoaG8PT0xNdffy3vP3XqVKxYsQJbt26FJEmQJAn79+8HAFy9ehV9+/aFhYUFrKys0KNHD6SkpMj77t+/H82aNYOxsTEsLCzQsmVLpKamPjdeennlTuyKfzBJklC7dm1YWlrKHxsbGwwdOlT+rwoiInpz6erqYtasWfjmm2/w33//vVJfe/fuxfXr1xEfH4/58+cjIiIC7777LiwtLXH48GGMGjUKI0eOLHGcyZMnY+LEiTh58iT8/PzQrVs33Lp1CwBw9+5dtG/fHo0aNcKxY8ewc+dOZGZmom/fvgp9rFixAnp6ejh48CCWLl1aanxff/01vvrqK8ybNw9nzpxBQEAAunfvLo+opaenw9vbGxMnTkR6ejomTZpUoo/bt29j586dCAkJgbGxcYl6CwsLhe2lS5fi0qVLGDhwIBYvXoyYmJjnDmjk5OSgW7duqF+/Pk6cOIEZM2ZgypQpCm2KiopQvXp1/Prrrzh//jy++OILfPLJJ/jll18AAJMmTULfvn3RuXNnpKenIz09HS1atMDjx48REBAAU1NT/PXXXzh48CBMTEzQuXNnPHr0CAUFBejZsyfatGmDM2fOICEhASNGjIAkSWXGS6+m3HPs9u3bByEE2rdvj40bN8LKykqu09PTg4uLC+e1ERERAKBXr17w8fFBREQEfvrpp5fux8rKCosWLYKOjg48PT0xZ84c3L9/H5988gmAJ+uSRkVF4cCBA+jXr5+83+jRo9GnTx8AwJIlS7Bz50789NNP+Pjjj7F48WI0atRI4TWYy5Ytg7OzMy5evCjfGfLw8MCcOXOeG9+8efMwZcoU+dizZ8/Gvn37sHDhQkRHR8PBwQFVqlSBiYlJmas1JCcnQwiBOnXqlOs7sbOzw4wZMzBq1Cj873//K/WlAU9bu3YtJEnCDz/8AAMDA3h5eeHatWsYPny43KZq1aqYNm2avO3m5oaEhAT88ssv6Nu3L0xMTGBoaIj8/HyF81i9ejWKiorw448/yslaTEwMLCwssH//fjRp0gTZ2dl499134e7uDuDJ/HhSn3Indm3atAHw5AEHZ2dn6OgoPT2PiIjeILNnz0b79u1LHaUqL29vb4V/b+zt7VGvXj15W1dXF9bW1iWWvipePQF4snB9kyZNkJiYCAA4ffo09u3bV+oo1+XLl+XEztfX97mx5eTk4Pr162jZsqVCecuWLXH69OlyniGUfqCksLAQy5cvh5GREQ4dOoSCggJUqVL2P+dJSUlo0KCBwvz0Zs2alWgXHR2NZcuWIS0tDQ8ePMCjR49e+BTv6dOnkZycDFNTU4Xyhw8f4vLly+jUqROCgoIQEBCAjh07wt/fH3379lVYxoxUS+nszMXFBTo6Orh//z4uXLiAM2fOKHyIiIgAoHXr1ggICEB4eHiJOh0dnRIJzePHj0u0e/qd5MCTOWullRUVFZU7rtzcXHTr1g2nTp1S+Fy6dElh9Ku026Lq4OHhAUmScOHChXK1nzdvHv79918cO3YM//33n8LI48v6+eefMWnSJAQHB+PPP//EqVOnMGTIkBc+NJKbmwtfX98S3+XFixcxYMAAAE9G8BISEtCiRQusX78etWvXVpg3SKql9HInN27cwJAhQ7Bjx45S6wsLC185KCIi0g5RUVHw8fGBp6enQrmtrS0yMjIghJBv4aly7blDhw7JSVpBQQGOHz+O0aNHAwAaN26MjRs3wtXV9bkjXS9iZmYGR0dHHDx4UL6rBQAHDx4sdUSsLFZWVggICEB0dDTGjh1bIqG8e/euPM/u3LlziIiIwNq1a1G3bl0sWbIE/fv3R8+ePdGgQYNS+/f09MTq1auRn58vv3Xp6NGjCm0OHjyIFi1a4KOPPpLLLl++rNBGT0+vxL/xjRs3xvr162FnZwczM7Myz7F4BYzw8HD4+flh7dq1eOutt57/xdBLUXrEbvz48bh79y4OHz4MQ0ND7Ny5EytWrICHhwd+++03dcRIRESvqfr162PgwIFYtGiRQnnbtm1x48YNzJkzB5cvX0Z0dHSZAwYvIzo6Gps3b8aFCxcQEhKCO3fuYOjQoQCAkJAQ3L59G/3798fRo0dx+fJl7Nq1C0OGDFF6cGLy5MmYPXs21q9fj6SkJISFheHUqVMYN26c0vEWFhaiWbNm2LhxIy5duoTExEQsWrRIvq1cUFCAwMBA9O7dG7179wYA9OnTB3369EFQUBAKCgpK7XvAgAEoKirCiBEjkJiYiF27dmHevHkAICfVHh4eOHbsGHbt2oWLFy/i888/L5H8ubq64syZM0hKSsLNmzfx+PFjDBw4EDY2NujRowf++usvXLlyBfv378fYsWPx33//4cqVKwgPD0dCQgJSU1Px559/4tKlS5xnp0ZK/6fK3r17sXXrVjRp0gQ6OjpwcXFBx44dYWZmhsjISLzzzjvqiJOIiAClFwyuDKZPn47169crlNWtWxfffvstZs2ahRkzZqBPnz6YNGmSytYhjYqKQlRUFE6dOoVatWrht99+g42NDQDIo2xTpkxBp06dkJ+fDxcXF3Tu3Fnp+eNjx45FdnY2Jk6ciKysLHh5eeG3336Dh4eHUv3UrFkTJ06cwJdffik/QWtrawtfX18sWbIEADBr1ixcu3YNf/75p8K+0dHR8Pb2xqxZs+R1YJ9mZmaG33//Hf/73//g4+OD+vXr44svvsCAAQPkeXcjR47EyZMn8cEHH0CSJPTv3x8fffSRQrI9fPhw+YGI3Nxc7Nu3D23btkV8fDymTJmC3r174969e3ByckKHDh1gZmaGBw8e4MKFC1ixYgVu3bqFatWqISQkBCNHjlTq+6Hyk4SSszbNzMxw5swZuLq6wsXFBWvXrkXLli1x5coVeHt74/79++qKVW1ycnJgbm6O7Ozs5w4lv7KKXjGeXs5r+A8naZeHDx/iypUrcHNzU5jwTqQqa9aswZAhQ5CdnQ1DQ0NNh0N4/t97ZfIUpUfsPD09kZSUBFdXVzRs2BDfffcdXF1dsXTpUj7lQkREVAmtXLkSNWvWhJOTE06fPo0pU6agb9++TOq0kNKJ3bhx45Ceng7gyfvvOnfujDVr1kBPT09+YwQRERFVHhkZGfjiiy+QkZGBatWq4f3338eXX36p6bBIDZS+Ffus4mVPatSoIc9feN3wViwp4K1Y0jDeiiV682jsVuyzjIyM0Lhx41fthoiIiIhekdKJXWhoaKnlkiTBwMAAtWrVQo8ePRReOUZERMp7xRsqRPQaUdXfd6UTu5MnT+LEiRMoLCyUF5y8ePEidHV1UadOHXz77beYOHEiDhw4AC8vL5UESUT0Jil+s8L9+/c5uZ3oDVG8qsizb1ZRltKJXfFoXExMjHyfNzs7G8OGDUOrVq0wfPhwDBgwABMmTMCuXbteKTgiojeRrq4uLCws5PefGhkZyQvJEpF2EULg/v37yMrKgoWFBXR1dV+pP6UfnnBycsLu3btLjMadO3cOnTp1wrVr13DixAl06tQJN2/efKXgKgofniAFfHiCKgEhBDIyMnD37l1Nh0JEFcDCwgIODg6l/kecWh+eyM7OllfXftqNGzeQk5MjB/eiFwcTEVHZJElCtWrVYGdnh8ePH2s6HCJSo6pVq77ySF2xl7oVO3ToUHz11Vdo2rQpgCcvE540aRJ69uwJADhy5Ahq166tkgCJiN5kurq6Kvs/fCLSfkondt999x0mTJiAfv36yS8crlKlCgIDA7FgwQIAQJ06dfDjjz+qNlIiIiIiei7l3nYMwMTEBD/88ANu3bqFkydP4uTJk7h16xa+//57GBsbAwB8fHzg4+OjkgBdXV0hSVKJT0hICACgbdu2JepGjRqlkmMTERERvU5eeoFiExMTNGjQQJWxlOro0aMoLCyUt8+ePYuOHTvi/fffl8uGDx+O6dOny9tGRkZqj4uIiIiosnnlN0+om62trcJ2VFQU3N3d0aZNG7nMyMgIDg4OFR0aERERUaWi9K1YTXr06BFWr16NoUOHKjwOvGbNGtjY2KBevXoIDw+XF/krS35+PnJychQ+RERERK+7Sj9i97QtW7bg7t27CAoKkssGDBgAFxcXODo64syZM5gyZQqSkpKwadOmMvuJjIzEtGnTKiBiIiIioopTrgWKGzdujNjYWFhaWmL69OmYNGmSRuaxBQQEQE9PD7///nuZbfbu3YsOHTogOTkZ7u7upbbJz89Hfn6+vJ2TkwNnZ2cuUExPcIFiIiKqRJRZoLhct2ITExORl5cHAJg2bRpyc3NfPUolpaamYs+ePRg2bNhz2zVv3hwAkJycXGYbfX19mJmZKXyIiIiIXnfluhXr4+ODIUOGoFWrVhBCYN68eTAxMSm17RdffKHSAIvFxMTAzs4O77zzznPbnTp1CgBQrVo1tcRBREREVFmVK7Fbvnw5IiIisG3bNkiShB07dqBKlZK7SpKklsSuqKgIMTExCAwMVDju5cuXsXbtWnTt2hXW1tY4c+YMJkyYgNatW1fIUixERERElUm5EjtPT0/8/PPPAAAdHR3ExsbCzs5OrYE9bc+ePUhLS8PQoUMVyvX09LBnzx4sXLgQeXl5cHZ2Rp8+ffDZZ59VWGxERERElYXST8UWFRWpI47n6tSpE0p7xsPZ2RlxcXEVHg8RERFRZfRSy51cvnwZCxcuRGJiIgDAy8sL48aNK/MpVCIiIlKea9h2TYdA5ZAS9fz5/xVJ6QWKd+3aBS8vLxw5cgQNGjRAgwYNcPjwYXh7e2P37t3qiJGIiIiIykHpEbuwsDBMmDABUVFRJcqnTJmCjh07qiw4IiIiIio/pUfsEhMTERwcXKJ86NChOH/+vEqCIiIiIiLlKZ3Y2draymvFPe3UqVMV+qQsERERESlS+lbs8OHDMWLECPz7779o0aIFAODgwYOYPXs2QkNDVR4gEREREZWP0ond559/DlNTU3z11VcIDw8HADg6OmLq1KkYO3asygMkIiIiovJROrGTJAkTJkzAhAkTcO/ePQCAqampygMjIiIiIuW81Dp2xZjQEREREVUeSj88QURERESVExM7IiIiIi3BxI6IiIhISyiV2D1+/BgdOnTApUuX1BUPEREREb0kpRK7qlWr4syZM+qKhYiIiIhegdK3YgcNGoSffvpJHbEQERER0StQermTgoICLFu2DHv27IGvry+MjY0V6ufPn6+y4IiIiIio/JRO7M6ePYvGjRsDAC5evKhQJ0mSaqIiIiIiIqUpndjt27dPHXEQERER0St66eVOkpOTsWvXLjx48AAAIIRQWVBEREREpDylE7tbt26hQ4cOqF27Nrp27Yr09HQAQHBwMCZOnKjS4KZOnQpJkhQ+derUkesfPnyIkJAQWFtbw8TEBH369EFmZqZKYyAiIiJ6XSid2E2YMAFVq1ZFWloajIyM5PIPPvgAO3fuVGlwAODt7Y309HT5c+DAAYVYfv/9d/z666+Ii4vD9evX0bt3b5XHQERERPQ6UHqO3Z9//oldu3ahevXqCuUeHh5ITU1VWWDFqlSpAgcHhxLl2dnZ+Omnn7B27Vq0b98eABATE4O6devi0KFDeOutt1QeCxEREVFlpvSIXV5ensJIXbHbt29DX19fJUE97dKlS3B0dETNmjUxcOBApKWlAQCOHz+Ox48fw9/fX25bp04d1KhRAwkJCc/tMz8/Hzk5OQofIiIioted0ond22+/jZUrV8rbkiShqKgIc+bMQbt27VQaXPPmzbF8+XLs3LkTS5YswZUrV/D222/j3r17yMjIgJ6eHiwsLBT2sbe3R0ZGxnP7jYyMhLm5ufxxdnZWadxEREREmqD0rdg5c+agQ4cOOHbsGB49eoSPP/4Y586dw+3bt3Hw4EGVBtelSxf5zw0aNEDz5s3h4uKCX375BYaGhi/db3h4OEJDQ+XtnJwcJndERET02lN6xK5evXq4ePEiWrVqhR49eiAvLw+9e/fGyZMn4e7uro4YZRYWFqhduzaSk5Ph4OCAR48e4e7duwptMjMzS52T9zR9fX2YmZkpfIiIiIhed0qP2AGAubk5Pv30U1XH8kK5ubm4fPkyBg8eDF9fX1StWhWxsbHo06cPACApKQlpaWnw8/Or8NiIiIiINO2lErs7d+7gp59+QmJiIgDAy8sLQ4YMgZWVlUqDmzRpErp16wYXFxdcv34dERER0NXVRf/+/WFubo7g4GCEhobCysoKZmZmGDNmDPz8/PhELBEREb2RlL4VGx8fD1dXVyxatAh37tzBnTt3sGjRIri5uSE+Pl6lwf3333/o378/PD090bdvX1hbW+PQoUOwtbUFACxYsADvvvsu+vTpg9atW8PBwQGbNm1SaQxERERErwtJKPkusPr168PPzw9LliyBrq4uAKCwsBAfffQR/v77b/zzzz9qCVSdcnJyYG5ujuzsbPXOt5tqrr6+SXWmZlfIYVzDtlfIcejVpUS9o+kQ6A3F/594Paj7/yOUyVOUHrFLTk7GxIkT5aQOAHR1dREaGork5GTloyUiIiIilVA6sWvcuLE8t+5piYmJaNiwoUqCIiIiIiLllevhiTNnzsh/Hjt2LMaNG4fk5GT5IYVDhw4hOjoaUVFR6omSiIiIiF6oXImdj48PJEnC09PxPv744xLtBgwYgA8++EB10RFpsRSDAZoOgcqtYuZdEhG9qnIldleuXFF3HERERET0isqV2Lm4uKg7DiIiIiJ6RS+1QPH169dx4MABZGVloaioSKFu7NixKgmMiIiIiJSjdGK3fPlyjBw5Enp6erC2toYkSXKdJElM7IiIiIg0ROnE7vPPP8cXX3yB8PBw6OgovVoKEREREamJ0pnZ/fv30a9fPyZ1RERERJWM0iN2wcHB+PXXXxEWFqaOeIiIiOj/47JIr4vKsySS0oldZGQk3n33XezcuRP169dH1apVFernz5+vsuCIiIiIqPxeKrHbtWsXPD09AaDEwxNEREREpBlKJ3ZfffUVli1bhqCgIDWEQ0REREQvS+knIPT19dGyZUt1xEJEREREr0DpEbtx48bhm2++waJFi9QRDxHRG8s1bLumQ6BySIl6R9MhEJVJ6cTuyJEj2Lt3L7Zt2wZvb+8SD09s2rRJZcERERERUfkpndhZWFigd+/e6oiFiIiIiF6B0oldTEyMOuIgInrjcc2y10XlWbOM6Fl8fQQRERGRllA6sXNzc0PNmjXL/KhSZGQkmjZtClNTU9jZ2aFnz55ISkpSaNO2bVtIkqTwGTVqlErjICIiInodKH0rdvz48Qrbjx8/xsmTJ7Fz505MnjxZVXEBAOLi4hASEoKmTZuioKAAn3zyCTp16oTz58/D2NhYbjd8+HBMnz5d3jYyMlJpHERERESvg5da7qQ00dHROHbs2CsH9LSdO3cqbC9fvhx2dnY4fvw4WrduLZcbGRnBwcGh3P3m5+cjPz9f3s7JyXn1YImIiIg0TGVz7Lp06YKNGzeqqrtSZWc/mbBqZWWlUL5mzRrY2NigXr16CA8Px/3795/bT2RkJMzNzeWPs7Oz2mImIiIiqihKj9iVZcOGDSUSLlUqKirC+PHj0bJlS9SrV08uHzBgAFxcXODo6IgzZ85gypQpSEpKeu56euHh4QgNDZW3c3JymNwRERHRa0/pxK5Ro0aQJEneFkIgIyMDN27cwLfffqvS4J4WEhKCs2fP4sCBAwrlI0aMkP9cv359VKtWDR06dMDly5fh7u5eal/6+vrQ19dXW6xEREREmqB0YtezZ0+FbR0dHdja2qJt27aoU6eOquJSMHr0aGzbtg3x8fGoXr36c9s2b94cAJCcnFxmYkdERESkjZRO7CIiItQRR6mEEBgzZgw2b96M/fv3w83N7YX7nDp1CgBQrVo1NUdHREREVLmobI6dOoSEhGDt2rXYunUrTE1NkZGRAQAwNzeHoaEhLl++jLVr16Jr166wtrbGmTNnMGHCBLRu3RoNGjTQcPREREREFavciZ2Ojo7C3LrSSJKEgoKCVw6q2JIlSwA8WYT4aTExMQgKCoKenh727NmDhQsXIi8vD87OzujTpw8+++wzlcVARERE9Lood2K3efPmMusSEhKwaNEiFBUVqSSoYkKI59Y7OzsjLi5OpcckIiIiel2VO7Hr0aNHibKkpCSEhYXh999/x8CBAxXe/kBEREREFeulFii+fv06hg8fjvr166OgoACnTp3CihUr4OLiour4iIiIiKiclErssrOzMWXKFNSqVQvnzp1DbGwsfv/9d4UFg4mIiIhIM8p9K3bOnDmYPXs2HBwcsG7dulJvzRIRERGR5pQ7sQsLC4OhoSFq1aqFFStWYMWKFaW2e96rvIiIiIhIfcqd2H344YcvXO6EiIiIiDSn3Ind8uXL1RgGEREREb2ql3oqloiIiIgqHyZ2RERERFqCiR0RERGRlmBiR0RERKQlmNgRERERaQkmdkRERERagokdERERkZZgYkdERESkJZjYEREREWkJJnZEREREWoKJHREREZGWYGJHREREpCW0JrGLjo6Gq6srDAwM0Lx5cxw5ckTTIRERERFVKK1I7NavX4/Q0FBERETgxIkTaNiwIQICApCVlaXp0IiIiIgqjFYkdvPnz8fw4cMxZMgQeHl5YenSpTAyMsKyZcs0HRoRERFRhami6QBe1aNHj3D8+HGEh4fLZTo6OvD390dCQkKp++Tn5yM/P1/ezs7OBgDk5OSoN9h8od7+STXUfR0U4/Xw+uA1QU+rqOsB4DXxulDzNVGcnwjx4uvhtU/sbt68icLCQtjb2yuU29vb48KFC6XuExkZiWnTppUod3Z2VkuM9JqJMtd0BFTZ8Jqgp/F6oGdV0DVx7949mJs//1ivfWL3MsLDwxEaGipvFxUV4fbt27C2toYkSRqM7PWSk5MDZ2dnXL16FWZmZpoOhyoBXhP0NF4P9CxeEy9HCIF79+7B0dHxhW1f+8TOxsYGurq6yMzMVCjPzMyEg4NDqfvo6+tDX19foczCwkJdIWo9MzMz/gUlBbwm6Gm8HuhZvCaU96KRumKv/cMTenp68PX1RWxsrFxWVFSE2NhY+Pn5aTAyIiIioor12o/YAUBoaCgCAwPRpEkTNGvWDAsXLkReXh6GDBmi6dCIiIiIKoxWJHYffPABbty4gS+++AIZGRnw8fHBzp07SzxQQaqlr6+PiIiIEre16c3Fa4KexuuBnsVrQv0kUZ5nZ4mIiIio0nvt59gRERER0RNM7IiIiIi0BBM7IiIiIi3BxI6IiIhISzCxo5cSHR0NV1dXGBgYoHnz5jhy5IimQyINio+PR7du3eDo6AhJkrBlyxZNh0QaFBkZiaZNm8LU1BR2dnbo2bMnkpKSNB0WaciSJUvQoEEDeVFiPz8/7NixQ9NhaS0mdqS09evXIzQ0FBEREThx4gQaNmyIgIAAZGVlaTo00pC8vDw0bNgQ0dHRmg6FKoG4uDiEhITg0KFD2L17Nx4/foxOnTohLy9P06GRBlSvXh1RUVE4fvw4jh07hvbt26NHjx44d+6cpkPTSlzuhJTWvHlzNG3aFIsXLwbw5E0fzs7OGDNmDMLCwjQcHWmaJEnYvHkzevbsqelQqJK4ceMG7OzsEBcXh9atW2s6HKoErKysMHfuXAQHB2s6FK3DETtSyqNHj3D8+HH4+/vLZTo6OvD390dCQoIGIyOiyio7OxvAk3/M6c1WWFiIn3/+GXl5eXztp5poxZsnqOLcvHkThYWFJd7qYW9vjwsXLmgoKiKqrIqKijB+/Hi0bNkS9erV03Q4pCH//PMP/Pz88PDhQ5iYmGDz5s3w8vLSdFhaiYkdERGpTUhICM6ePYsDBw5oOhTSIE9PT5w6dQrZ2dnYsGEDAgMDERcXx+RODZjYkVJsbGygq6uLzMxMhfLMzEw4ODhoKCoiqoxGjx6Nbdu2IT4+HtWrV9d0OKRBenp6qFWrFgDA19cXR48exddff43vvvtOw5FpH86xI6Xo6enB19cXsbGxcllRURFiY2M5X4KIAABCCIwePRqbN2/G3r174ebmpumQqJIpKipCfn6+psPQShyxI6WFhoYiMDAQTZo0QbNmzbBw4ULk5eVhyJAhmg6NNCQ3NxfJycny9pUrV3Dq1ClYWVmhRo0aGoyMNCEkJARr167F1q1bYWpqioyMDACAubk5DA0NNRwdVbTw8HB06dIFNWrUwL1797B27Vrs378fu3bt0nRoWonLndBLWbx4MebOnYuMjAz4+Phg0aJFaN68uabDIg3Zv38/2rVrV6I8MDAQy5cvr/iASKMkSSq1PCYmBkFBQRUbDGlccHAwYmNjkZ6eDnNzczRo0ABTpkxBx44dNR2aVmJiR0RERKQlOMeOiIiISEswsSMiIiLSEkzsiIiIiLQEEzsiIiIiLcHEjoiIiEhLMLEjIiIi0hJM7IiIiIi0BBM7IiIiIi3BxI6IXltTp06Fj4/PK/WRkpICSZJw6tQplcRUlrZt22L8+PFqPUZloIrfhIheHhM7IlKbq1evYujQoXB0dISenh5cXFwwbtw43Lp1S+m+JEnCli1bFMomTZqE2NjYV4rR2dkZ6enpqFev3iv1U2z//v2QJAl3795VKN+0aRNmzJihkmOUpaKSVCKqvJjYEZFa/Pvvv2jSpAkuXbqEdevWITk5GUuXLkVsbCz8/Pxw+/btVz6GiYkJrK2tX6kPXV1dODg4oEqVKq8cz/NYWVnB1NRUrccgImJiR0RqERISAj09Pfz5559o06YNatSogS5dumDPnj24du0aPv30U7mtq6srZsyYgf79+8PY2BhOTk6Ijo5WqAeAXr16QZIkefvZ235BQUHo2bMnZs2aBXt7e1hYWGD69OkoKCjA5MmTYWVlherVqyMmJkbe59lRrqCgIEiSVOKzf/9+AMCqVavQpEkTmJqawsHBAQMGDEBWVpbcV7t27QAAlpaWkCRJfun9s7di79y5gw8//BCWlpYwMjJCly5dcOnSJbl++fLlsLCwwK5du1C3bl2YmJigc+fOSE9Pf+nfpKioCJGRkXBzc4OhoSEaNmyIDRs2yHXVq1fHkiVLFPY5efIkdHR0kJqaCgC4e/cuhg0bBltbW5iZmaF9+/Y4ffr0S8dERKrFxI6IVO727dvYtWsXPvroIxgaGirUOTg4YODAgVi/fj2EEHL53Llz0bBhQ5w8eRJhYWEYN24cdu/eDQA4evQoACAmJgbp6enydmn27t2L69evIz4+HvPnz0dERATeffddWFpa4vDhwxg1ahRGjhyJ//77r9T9v/76a6Snp8ufcePGwc7ODnXq1AEAPH78GDNmzMDp06exZcsWpKSkyMmbs7MzNm7cCABISkpCeno6vv7661KPExQUhGPHjuG3335DQkIChBDo2rUrHj9+LLe5f/8+5s2bh1WrViE+Ph5paWmYNGnS877654qMjMTKlSuxdOlSnDt3DhMmTMCgQYMQFxcHHR0d9O/fH2vXrlXYZ82aNWjZsiVcXFwAAO+//z6ysrKwY8cOHD9+HI0bN0aHDh1UMgJLRCogiIhU7NChQwKA2Lx5c6n18+fPFwBEZmamEEIIFxcX0blzZ4U2H3zwgejSpYu8XVp/ERERomHDhvJ2YGCgcHFxEYWFhXKZp6enePvtt+XtgoICYWxsLNatWyeEEOLKlSsCgDh58mSJODdu3CgMDAzEgQMHyjzXo0ePCgDi3r17Qggh9u3bJwCIO3fuKLRr06aNGDdunBBCiIsXLwoA4uDBg3L9zZs3haGhofjll1+EEELExMQIACI5OVluEx0dLezt7cuM5Xnn8vDhQ2FkZCT+/vtvhfLg4GDRv39/IYQQJ0+eFJIkidTUVCGEEIWFhcLJyUksWbJECCHEX3/9JczMzMTDhw8V+nB3dxffffedEKLkb0JEFYsjdkSkNuKpEbkX8fPzK7GdmJio9DG9vb2ho/N//9dmb2+P+vXry9u6urqwtraWb5+W5eTJkxg8eDAWL16Mli1byuXHjx9Ht27dUKNGDZiamqJNmzYAgLS0tHLHmJiYiCpVqqB58+ZymbW1NTw9PRXO2cjICO7u7vJ2tWrVXhh3WZKTk3H//n107NgRJiYm8mflypW4fPkyAMDHxwd169aVR+3i4uKQlZWF999/HwBw+vRp5ObmwtraWqGPK1euyH0QkWapd7YwEb2RatWqBUmSkJiYiF69epWoT0xMhKWlJWxtbVV+7KpVqypsS5JUallRUVGZfWRkZKB79+4YNmwYgoOD5fK8vDwEBAQgICAAa9asga2tLdLS0hAQEIBHjx6p9kRQ+rkokyw/LTc3FwCwfft2ODk5KdTp6+vLfx44cCDWrl2LsLAwrF27Fp07d5YfUMnNzUW1atXk+YZPs7CweKm4iEi1mNgRkcpZW1ujY8eO+PbbbzFhwgSFeXYZGRlYs2YNPvzwQ0iSJJcfOnRIoY9Dhw6hbt268nbVqlVRWFio9tgfPnyIHj16oE6dOpg/f75C3YULF3Dr1i1ERUXB2dkZAHDs2DGFNnp6egDw3Fjr1q2LgoICHD58GC1atAAA3Lp1C0lJSfDy8lLl6ci8vLygr6+PtLQ0eZSxNAMGDMBnn32G48ePY8OGDVi6dKlc17hxY2RkZKBKlSryAyxEVLkwsSMitVi8eDFatGiBgIAAzJw5E25ubjh37hwmT54MJycnfPnllwrtDx48iDlz5qBnz57YvXs3fv31V2zfvl2ud3V1RWxsLFq2bAl9fX1YWlqqJe6RI0fi6tWriI2NxY0bN+RyKysr1KhRA3p6evjmm28watQonD17tsTadC4uLpAkCdu2bUPXrl1haGgIExMThTYeHh7o0aMHhg8fju+++w6mpqYICwuDk5MTevTo8crnkJSUVKLM29sbkyZNwoQJE1BUVIRWrVohOzsbBw8ehJmZGQIDAwE8+Z5btGiB4OBgFBYWonv37nIf/v7+8PPzQ8+ePTFnzhzUrl0b169fx/bt29GrVy80adLklWMnolfDOXZEpBYeHh44duwYatasib59+8Ld3R0jRoxAu3btkJCQACsrK4X2EydOxLFjx9CoUSPMnDkT8+fPR0BAgFz/1VdfYffu3XB2dkajRo3UFndcXBzS09Ph5eWFatWqyZ+///4btra2WL58OX799Vd4eXkhKioK8+bNU9jfyckJ06ZNQ1hYGOzt7TF69OhSjxMTEwNfX1+8++678PPzgxACf/zxR4nbry+jX79+aNSokcInMzMTM2bMwOeff47IyEjUrVsXnTt3xvbt2+Hm5qaw/8CBA3H69Gn06tVLYbRVkiT88ccfaN26NYYMGYLatWujX79+SE1Nhb29/SvHTUSvThIvO2GDiEhFXF1dMX78+DfilVtEROrEETsiIiIiLcHEjoiIiEhL8FYsERERkZbgiB0RERGRlmBiR0RERKQlmNgRERERaQkmdkRERERagokdERERkZZgYkdERESkJZjYEREREWkJJnZEREREWuL/AXxyBo7SW3nYAAAAAElFTkSuQmCC", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "ghz = QuantumCircuit(15)\n", - "ghz.h(0)\n", - "ghz.cx(0, range(1, 15))\n", - "\n", - "depths = []\n", - "gate_counts = []\n", - "multiqubit_gate_counts = []\n", - "levels = [str(x) for x in range(4)]\n", - "for level in range(4):\n", - " pass_manager = generate_preset_pass_manager(\n", - " optimization_level=level,\n", - " backend=backend,\n", - " )\n", - " circ = pass_manager.run(ghz)\n", - " depths.append(circ.depth())\n", - " gate_counts.append(sum(circ.count_ops().values()))\n", - " multiqubit_gate_counts.append(circ.count_ops()[\"cx\"])\n", - "\n", - "fig, (ax1, ax2) = plt.subplots(2, 1)\n", - "ax1.bar(levels, depths, label=\"Depth\")\n", - "ax1.set_xlabel(\"Optimization Level\")\n", - "ax1.set_ylabel(\"Depth\")\n", - "ax1.set_title(\"Output Circuit Depth\")\n", - "ax2.bar(levels, gate_counts, label=\"Number of Circuit Operations\")\n", - "ax2.bar(levels, multiqubit_gate_counts, label=\"Number of CX gates\")\n", - "ax2.set_xlabel(\"Optimization Level\")\n", - "ax2.set_ylabel(\"Number of gates\")\n", - "ax2.legend()\n", - "ax2.set_title(\"Number of output circuit gates\")\n", - "fig.tight_layout()\n", - "plt.show()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Scheduling\n", - "\n", - "This last stage is only run if it is explicitly called for (similar to the Init stage) and does not run by default (though a method can be specified by setting the `scheduling_method` argument when calling `generate_preset_pass_manager`). The scheduling stage is typically used once the circuit has been translated to the target basis, mapped to the device, and optimized. These passes focus on accounting for all the idle time in a circuit. At a high level, the scheduling pass can be thought of as explicitly inserting delay instructions to account for the idle time between gate executions and to inspect how long the circuit will be running on the backend. \n", - "\n", - "Here is an example:" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA7QAAAcECAYAAAB7Qk3IAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzde3zP5eP/8cd7Z5vmsGEsszAMYzkrmvVxXEpKIlJCNZ18SqI+Fb9yKCEd6ECljE85fPChj1bDkDDD5jTmsLFlww7MjG3v9/v3h68373awzbS9ed5vt91ue1/X9bpe1zV1u+2563pdL4PZbDYjIiIiIiIiYmPsKnoAIiIiIiIiImWhQCsiIiIiIiI2SYFWREREREREbJICrYiIiIiIiNgkBVoRERERERGxSQq0IiIiIiIiYpMUaEVERERERMQmKdCKiIiIiIiITVKgFREREREREZukQCsiIiIiIiI2SYFWREREREREbNJNC7TdunVjzJgxN/2aytqHiIiIiIiI3FxlCrQpKSm88sorNG7cGBcXF+rUqcO9997L3LlzuXDhQnmPsVw9/fTTGAwGDAYDTk5ONG7cmP/3//4f+fn5FT20m2b48OH861//KlA+bdo0DAaDwruIiIiIiNgkh9JecPToUe69916qV6/OlClTCAgIwNnZmT179vDVV1/h7e3NQw89dDPGWm569+7Nt99+y6VLl/j555954YUXcHR0ZMKECRU9tHJnNBpZvXo1a9assSqPioriyy+/pFWrVhU0MhERERERkRtT6hXa0aNH4+DgwI4dOxg4cCD+/v40bNiQfv36sWbNGh588MFCr7t06RIvv/wytWvXxsXFhS5duhAVFVWgXX5+Pi+++CLVqlXD09OTt99+G7PZDMDatWvp0qUL1atXx8PDg759+3LkyJHSTgFnZ2e8vLxo0KABoaGhdO/enVWrVlm1MZlMjBs3jpo1a+Ll5cXEiRMtdSUZx9KlSwkICKBKlSp4eHjQvXt3srOzLX1PnTqVu+66iypVqtC6dWuWLl1a6nn4+/tbVpv/+vXZZ58BsGXLFhwdHWnfvr3luvPnzzNkyBC+/vpratSoUer7ioiIiIiIVAalCrRpaWmEh4fzwgsv4ObmVmgbg8FQaPm4ceNYtmwZCxYsYOfOnTRu3JhevXqRnp5u1W7BggU4ODiwfft2Zs+ezcyZM5k3bx4A2dnZvPrqq+zYsYOIiAjs7Ozo378/JpOpNNMooEqVKuTm5hYYh5ubG9u2bePDDz/k//2//8evv/5aonGcPHmSwYMH88wzz3DgwAE2bNjAI488YgnmU6dO5fvvv+eLL75g3759/POf/2To0KFERkZa7v/dd98V+bO8YtmyZQBERERw8uRJEhISsLOzY8mSJYwaNQqAVatW8eCDD1r19cILL/DAAw/QvXv3G/q5iYiIiIiIVKRSbTk+fPgwZrOZpk2bWpV7enpy8eJF4HJY+uCDD6zqs7OzmTt3Lt999x19+vQB4Ouvv+bXX39l/vz5vP7665a29evXZ9asWRgMBpo2bcqePXuYNWsWo0aN4tFHH7Xq95tvvqFWrVrs37+fli1blmYqAJjNZiIiIvjll1946aWXrOpatWrFu+++C4Cfnx+fffYZERER9OjR47rjOHnyJPn5+TzyyCM0aNAAgICAAODySvWUKVP47bff6Ny5MwANGzZk8+bNfPnllwQFBQFQrVq1Aj/nv0pNTcXBwYF7770XZ2dnoqOjMZlMdO3aFWdnZwBWrlzJrFmzLNf8+9//ZufOnYWujouIiIiIiNiScjnlePv27ezevZsWLVpw6dKlAvVHjhwhLy+Pe++911Lm6OhIhw4dOHDggFXbTp06Wa0mdu7cmfj4eIxGI/Hx8QwePJiGDRvi7u6Or68vAMePHy/VeFevXk3VqlVxcXGhT58+PP7441ZbioECz5bWrVuXU6dOAVx3HK1bt+Yf//gHAQEBPPbYY3z99ddkZGQAl/8ocOHCBXr06EHVqlUtX99//73VtuX+/fsTFxdX7Dz27NlDkyZNLOE1JiaG2rVrU6dOHQAOHDjAn3/+yT/+8Q8ATpw4wSuvvEJYWBguLi6l+pmJiIiIiIhUNqVaoW3cuDEGg4GDBw9alTds2BC4vHX3ZnrwwQdp0KABX3/9NfXq1cNkMtGyZcsC24WvJzg4mLlz5+Lk5ES9evVwcCj4Y3B0dLT6bDAYLFuKrzcOe3t7fv31V7Zs2UJ4eDiffvopb731Ftu2beP8+fMArFmzBm9vb6t7XAmmJRUbG2tZ+YXLgfbaz6tWraJHjx6W8BodHc2pU6do06aNpY3RaGTjxo189tlnXLp0CXt7+1KNQUREREREpKKUaoXWw8ODHj168Nlnn1kOOCqJRo0a4eTkxO+//24py8vLIyoqiubNm1u13bZtm9XnrVu34ufnR2ZmJgcPHuRf//oX//jHP/D397esepaWm5sbjRs3xsfHp9AwW5y0tLQSjcNgMHDvvfcyadIkdu3ahZOTE//5z39o3rw5zs7OHD9+nMaNG1t91a9fv1RjiY2NtVpJjomJsfq8cuVK+vXrZ/n8j3/8gz179rB7927LV7t27RgyZAi7d+9WmBUREREREZtS6tf2zJkzh3vvvZd27doxceJEWrVqhZ2dHVFRUcTFxdG2bdsC17i5uREaGsrrr79OzZo18fHx4cMPP+TChQuMGDHCqu3x48d59dVXee6559i5cyeffvopM2bMoEaNGnh4ePDVV19Rt25djh8/zvjx48s+8zIqyTi2bdtGREQEPXv2pHbt2mzbto3Tp0/j7+/PHXfcwdixY/nnP/+JyWSiS5cunD17lt9//x13d3eeeuopAP7zn/8wYcKEIrcdm0wm9u3bxzvvvGMpO3LkCI888ggAp06dYseOHVanN99xxx0FnjV2c3PDw8OjTM8gi4iIiIiIVKRSB9pGjRqxa9cupkyZwoQJE0hKSsLZ2ZnmzZszduxYRo8eXeh106ZNw2Qy8eSTT5KVlUW7du345ZdfCrw2ZtiwYeTk5NChQwfs7e155ZVXePbZZzEYDPz73//m5ZdfpmXLljRt2pRPPvmEbt26lWniZWVnZ3fdcbi7u7Nx40Y+/vhjzp07R4MGDZgxY4blQKz33nuPWrVqMXXqVI4ePUr16tVp06YNb775pqWPs2fPFtjafa0jR45w4cIFqxXZgIAA3n33Xdq2bUtcXBwdOnTA09Oz/H8IIiIiIiIilYDBfOVdMnJLeeihh+jSpQvjxo2r6KGIiIiIiIjcFOVyyrFUPl26dGHw4MEVPQwREREREZGbRiu0IiIiIiIiYpO0QisiIiIiIiI2SYFWREREREREbJICrYiIiIiIiNgkBVoRERERERGxSQq0IiIiIiIiYpMUaEVERERERMQmKdCKiIiIiIiITVKgFREREREREZukQCsiIiIiIiI2SYFWREREREREbJICrYiIiIiIiNgkBVoRERERERGxSQq0IiIiIiIiYpMUaEVERERERMQmKdCKiIiIiIiITVKgFREREREREZukQCsiIiIiIiI2SYFWREREREREbJICrYiIiIiIiNgkBVoRERERERGxSQq0IiIiIiIiYpMUaEVERERERMQmKdCKiIiIiIiITVKgFREREREREZukQCsiIiIiIiI2yaGiByAifx+zGUx5FT2KimHnCAZDRY9CRERERMqTAq3IbcSUB+s/qehRVIzgl8HeqaJHISIiIiLlSVuORURERERExCYp0IqIiIiIiIhNUqAVERERERERm6RAKyIiIiIiIjZJgVZERERERERskgKtiIiIiIiI2CQFWhH528Qc2UCP1w38EvVdRQ9FRERERG4Beg+tiFjEHNnA2C+CLZ/tDHa4urjj6e6N351tCQ4cTLumvTAYDBU4ShERERGRyxRoRaSA4MDBdGgWghkzOZeyOHH6IFv2ruDX6O9p49edt59cQtUq1St6mCIiIiJym1OgFZEC/Lzb0L3tUKuy5x+cyddrxrFs40ymhA1mysj/VdDoREREREQu0zO0NshsNlOtWjUMBgOnT5+2Knd3d8dgMHDmzJkC1xRVJ1IS9nb2PP/gDFre1YWog2vZe2yzpS475yxfr3mDp6Y1JmS8MwMm1mJy2GBOph29br8mk4mwiMm8Ouc+Bk7yos94J56Y7MPsZaGcy06ztMs4f4o+452YumhIof18svwFeo6zIyU94YbnKiIiIiK2QYHWBiUmJnLu3Dm8vLyoVauWpfzIkSNkZWXh7e2Np6en1TXF1QmEh4fTu3dvPDw8cHV1JSAggKlTp5Kbm1vRQ6t0ercfAcC2A2uAy2H2lc/v4b9/zKGD/wO88PCn9LvnRXYfXsdLn3YkNSOx2P7yjbks2TAdb08/Huv2OqP7fUJbvx6sjZrPa190Iy//8r9Bjaq16dz8ITbvWc75nEyrPnLzLrJ+9yLubtwdr5q+5T5nEREREamctOXYBh0/fpymTZvSqVMnq/KYmBgAAgMDC1xTXN3tbsaMGYwdOxaABg0a4OPjw969e3nzzTdZvXo1v/32G1WqVKngUVYeDeu2AiDp9CEAvgt/h5NpR/nkpa00qtfa0q5n+6d5dkYAC355l3GDviuyP0cHZ3585yTOjtf8jDs/T3Pfe5i5ZCRb9q0gqPVAAEI6PsumPctYt2sRD90z2tJ8055lnM/JJKTjyHKcqYiIiIhUdlqhtUH33XcfcXFxfPfdd1blu3fvBqB169YFrimu7na2fft2Xn/9dQwGA9999x0JCQns2rWLuLg4GjduzJYtW5gwYUJFD7NScXVxB+DCpXOYzWbW7QwjoOF9eFbz5mz2GcuXi5MbzXw6ER0fXmx/BoPBEmaNJiPnczI5m32GwMb3A3Dg+DZL27ZNeuBV8y7Wbp9v1cfa7fNxd/XgnhYPl+NMRURERKSy0wrtLUQrtKX33nvvYTabeeaZZ3jqqacs5Y0aNWL+/PkEBQUxd+5c3nzzTWrXrl2BI608Llw8B4CrszuZ2ac5dyGN6EPhDJhYq9D2dobr/90sMuYnlkbO4PCfu8g35lnVnc/JsHxvMBjo02Ek3659i8PJu2nsHcjJtKPEHN1A/y6v4OjgdAMzExERERFboxXaQiQkJDB9+nR69+5No0aNcHNzw9XVldatWzNt2rRCn6v08vLCYDCQkJDA7t27efLJJ/H29sbNzY3AwED+/e9/F3tPk8nE0qVLefjhh6lXrx7Ozs7Uq1eP+++/n9mzZ1vd09fXF4PBQFxcnFUfZVmhLctcK5rZbC6XfrKysggPv7x6OGrUqAL19913H02aNCE3N5dVq1aVyz1vBUdPxgJwZ+2m8H//Fm38uvPBqF8L/Zo68pdi+9u0ZznvL3wcgNEPzea94f/lg1G/MmXkWuDy/xvX6t3+GeztHFgbdXmVdm3UN5jNZvp00HZjERERkduNVmgL8d577/HNN9/g5uZGvXr1aNGiBadOnSI2NpbY2FiioqJYtmyZpX1qaiqpqam4u7uzYsUKxo4di4eHBz4+Ply8eJGYmBgGDx5MzZo16dmzZ4H7nTp1ioEDBxIZGQmAj48PgYGBpKSksH79erZu3cqLL74IQGZmJomJibi6utKkSRNLHxkZGZw4cQI3NzcaN25s1X9xdaWd683QrVs3IiMjOXbsGL6+vsW2jY2NZdiwYSxdurTAXEpr165d5Obm4uzsTLt27Qpt06VLFw4dOsTWrVsZOVKBCbAEyY7NHqCaWy2qVqnOhYvnaNOke5n6i4j+AScHF6Y/vx4XJ1dL+fFTcYW2r+nuRafmD7JuZxgjQqYRvuM7mvl0xNerRZnuLyIiIiK2Syu0hejZsyfR0dFkZWVx6NAhtm/fTkJCAlFRUdSpU4fly5ezZ88eS/sr23kvXrzIpEmTCAsLIyUlhaioKJKTk+nbty8A8+fPL3Cv7OxsQkJCiIyMJCgoiJiYGBITE9m2bRuJiYns3buX8ePHY29vD1xdaQ0ICMDO7uo/X1Hl16sr7Vwr2rfffktMTAzBwcEcPXr9V8IU59Chy4caNWjQAAeHwv+206hRI6u2tzOjyciX/x3L3mOb6dAshJZ33YudnR333z2EuBPb2Ri7tNDrMs6fKrZfOzt7DAYDZvPVlViz2cyi394v8pqQjqPIyslg9rLnOXM2WauzIiIiIrcprdAW4vHHHy+0vF27dvTo0YOFCxeyb98+AgICgKuBNi8vj0WLFtGnTx/LNS4uLoSGhrJ69WoSEwu+vuS1114jOjqaLl26EB4ejpOT9TOALVq0oEWLqytPRT0LW9bnZ0s714o2Y8YM0tLS+OGHHwgODiYyMvK6q7pFyci4/GxmjRo1imxzpe5K29tFfPJOfoteCEDOpSxOnD7Iln0rSM1IpG2Tnrz5xCJL22d6T2Zfwu+8v3AgQa0G4t+gEw72TqRmJLI97mf8vNsWe8px11YD2LRnGa9/eT/d2w7DaMzj930ruJR7ochr2jXpRZ0aDYjYuZAqzlUJDhxUbnMXEREREduhQFuIS5cusWrVKss22KysLMtzfPv27QOwCp5XAuOAAQOswuwVV55DrV69ulV5XFwc8+bNw9nZmbCwsAJhtjBFPQtb1hOOSztXgGPHjvHKK6+wfv16HBwcePDBB5k1axYeHh7XHX9xkpKSStRu4sSJJCcns27dOkuo9fHxKfX9Ll68CBSc37WcnZ0ByMnJKXX/cPkPAykpKWW69mZwcqjCVy/GX7fd+t2LWb97MXYGO1ycq1Kr2p20ahhEcOBg2jfrbdXWrUo1Pn7hd5ZGziAy9ie27FuJvb0DntXupKVvF/pc51U6wYGDyLmUxbKNs/hq9VjuqFKDTs0fZETINB59t/D/puzs7OjdfgQLwt8hqNVAqjhXve6c/Jr4kZtftn9HEREREbl5vLy82LFjR5muVaD9i4iICIYPH86JEyeKbdewYUPL91cCbVGrnQcPHgSweuYVYNGiRRiNRoYNG1biQHYlnP51tbWo8uLqyjLXrKwsgoODqVmzJosXLyYnJ4dx48bRt29ffv/99wJbmkuja9eupb4mISGBoUOHsnHjxlJf6+LiAlDswVeXLl0CKPN7aFNSUkhOTi7TtTeDi6NrsfWtG3Xj1+mlP3TLxcmVoT3eZmiPt8vUf0jHUYR0LHgwV3FjcXS4/MeGkm43Pvnnn1zMK3rVV0RERERsjwLtNbZt20ZISAh5eXmMGDGCIUOG0LJlS2rUqIGDgwNxcXH4+/vj4OCAv78/cDnwXDltuFu3boX2W1Sg/O233wAICQkp0fjy8vLYv38/dnZ2tGrVyqr8wIEDBcqLqyvLXAG++uorkpOT2bhxoyWE33nnndxzzz2sWrWKhx9+uERzKUxAQECJVqkB0tLSSEhIALAaX2mUZDtxSbYlF8fLy6tM190sTg5lC+aVjdGYz5qtX3KXVwDNfTuX6Jq69epphVZERESkErqR35kVaK8xYcIEcnNzmTZtGm+88UaB+jVr1gDQvHlzy1bU/fv3k5+fj4+PT5Fbbnft2gUUDLRXVkavXQEtzoEDB8jNzcXPzw83NzdL+f79+8nNzaVJkya4ulqvwBVVV5a5AqxevZouXbpYrSh37tyZhg0b8t///veGAu2qVatK9DxsUlISQUFBwOVV8Tlz5pTpfldWzBMTE8nPzy/0YKgjR45YtS2tsm6duFmMubD+k4oeRdmdTD/GgcQ/2LJvJSfTj/LmkMUlvjb+UDz2ek2tiIiIyC1Fpxz/H6PRaNm2Onz48AL1JpOJsLAwAO6++25L+ZXtxteWXSs7O5v4+HgcHR1p2bJlgToo+fOZRa30lvZAqLLOFS4H5GsPqbqiRYsW7N+/v0TzuBHJycmWE44HDBjAwoULLSdAl9bdd9+Nk5MTly5dKjJ4bt68GYCOHTuWecxSfmKPRDJ10RB2H17H0O7v6DAoERERkducAu3/yc7Oxmg0AlcPC7rWjBkzLCutpQm0sbGxmEwm/P39C2ynrV+/PgBbtmwp0RiLCq6lPRCqrHOFy1tw/3q4FUDNmjVJT08v0TxuxKRJkzh8+DD9+/dn8eLFRb5upyTuuOMOevToAcDXX39doH7jxo0cOnQIJycn+vXrV+b7SPnp1f5pfp1uZunE0zzVa1JFD0dEREREKpgC7f9xd3fH29sbgMmTJ1sCX25uLtOnT+ftt9+2hKfSBNqigiFA//79LfcLDw+3qktOTmbKlCnEx189kbao4FraFdqyzvVmCQoK4tFHH7XaRl2U2bNnM2nSJH788ccbCrNX/Otf/8JgMPDtt9+yYMECS/mRI0cYMWIEAM899xy1a9e+4XuJiIiIiEj5MpjN5tIfaXqLmjt3LqNHjwagTp061K9fn/j4eC5cuMDnn39OaGgoJpOJzMxM3N3dAfDw8CA9PZ3jx49bVlyvNWrUKObNm8esWbMYM2aMVd358+cJCgpi586dwOWHoevXr096ejpHjx7FYDBw7tw5S9Dz9PQkLS2NpKQkSyAtrry4urLM9Urbxx57jM8++8zqPg899BCnT5/mjz/+KNXPvDL48MMPLc8RN2jQgBo1arB3717y8/Pp2LEj69atK/Bssq2y9Wdob0Twy+gZWhEREZFbjFZorxEaGspXX32Fn58f6enp/Pnnn/Tt25fo6Gg6dOiA0WikYcOGloCXlJREeno6Hh4ehYZZKPpAKICqVauyadMm3n//fVq3bs3Zs2fZu3cvJpOJhx9+mAULFljCbFJSEmlpaXh6eloF06LKr1dX2rle4e/vX+izsvv37y/zacMVbdy4caxdu5YePXpw9uxZ4uLiaNKkCZMnTyYyMvKWCbMiIiIiIrcardBKqXz00Ue8+eabHD16lDvvvBO4/AqgTp06sXz5css2aqmctEJb0aMQERERkfKkQCulcu7cOQICAvD09GTSpElcvHiRcePGUatWLf744w/s7LToX5kVFWg/X/Eyf+xfRWpGInPH7KKxd2Cx5QBDp/ji6OBsebft4Psn0C3wcXLzLjI5bBCJqftxdqxC9aq1efmRuXh7NgYg4/wpPlw8jD/Tj+Bk78xLj8yhVcP7rPp8LOh1QjqOLDDOrftXsyTyI2aEbiAlPYGog2t5sPPzlvqpi4awKz6CboGDGN3vY6trFWhFREREbj1KH1Iq7u7urFu3jrp16zJo0CBGjhzJPffcw+rVqxVmbVjXVgOYNXozdWo0KFH5FW8N+ZEvX93Nl6/uplvg45bykI7P8u24g3z5agydW/Rj5pKr4XT+z+Pxb9CJBW/EM/bxb5m66AnyjXlWfRYWZv8qNSOB1X98YVU24Ykw+l4TcEVERETk1nbjx8TKbadRo0asXr26ooch5ejKCmlJy4vj5OhCR/8Qy2d/n04sjfzI8jky5icWvHEYgKb12+PhXo/YI5G0adK9QF/5xjzmrHyF6PhfuaNKDVre1dVSN3vZ86RmJPLczEBq1/DhveGrSj1WEREREbFtCrQiUmYf/nsYZsw0q9+BESHTqF61VoE2/9k8m84tLr/H91x2GkZjHjXdvSz1dWr4cirzeKH9r9n6FSdOH2Tea/sAmDCvl6XulUe/YM7KMXz56u5ynJGIiIiI2BLtERWRMpkZupGvXotl7piduLt58uGPTxVosyhiCn+eOcyIPlPLdI9dhyPo0XYYjg5OODo40av9Mzc6bBERERG5hSjQikiZ1K7hA4CDvSOPdB3D3mObrOqXbPiIzXuXM2Xk/3BxuvzqI3c3D+ztHEg/l2Jpl5qRQO3qPiW6pwFDOY1eRERERG4FCrQiUmo5udmcz8m0fF6/azGN691t+bw0cibrdy/mg1G/UrVKdatru7Z6jNVbLx/mdPBEFGfOJtOqUVCh92nj152InQvJN+aRl5/LLzu+tdS5Ortz4eLZ8puUiIiIiNgcPUMrIny89Dm2xa0hPSuFCfN64ep8BwvGHy6yPDMrlUnfP4rJZMSMmbo1GzJu0PcAnM5M4svVr1G3ZkPGfhEMgJODM5++vA2AUQ98wLTFT/LUB3442jsxfvBCHOwdCx1XSMdRJKTsZcRHzS2HQsUnRQPQsG4rGni1YNRHLfHyaKhDoURERERuQ3oPrchtpKj30FYWQ6f4MvGpFVbvuy2t78Mncj4nU++hFREREbkNaMuxiFQa1dxq8cHiofy8bV6Zrp+6aAgROxfi6uJeziMTERERkcpIK7Qit5HKvkJ7M2mFVkREROTWoxVaERERERERsUkKtCIiIiIiImKTtOVY5DZiNoMpr6JHUTHsHMGg19iKiIiI3FIUaEVERERERMQmacuxiIiIiIiI2CQFWhEREREREbFJCrQiIiIiIiJikxRoRURERERExCYp0IqIiIiIiIhNUqAVERERERERm6RAKyIiIiIiIjZJgVZERERERERskgKtiIiIiIiI2CQFWhEREREREbFJCrQiIiIiIiJikxRoRURERERExCYp0IqIiIiIiIhNUqAVERERERERm6RAKyIiIiIiIjZJgVZERERERERskgKtiIiIiIiI2CQFWhEREREREbFJDhU9ABH5+5jNYMqr6FFUDDtHMBgqehQiIiIiUp4UaEVuI6Y8WP9JRY+iYgS/DPZOFT0KERERESlP2nIsIiIiIiIiNkmBVkRERERERGySAq2IiIiIiIjYJAVaERERERERsUkKtCIiIiIiImKTFGhFRERERETEJinQisjfJubIBnq8buCXqO8qeigiIiIicgvQe2hFxCLmyAbGfhFs+WxnsMPVxR1Pd2/87mxLcOBg2jXthcFgqMBRioiIiIhcpkArIgUEBw6mQ7MQzJjJuZTFidMH2bJ3Bb9Gf08bv+68/eQSqlapXtHDFBEREZHbnAKtiBTg592G7m2HWpU9/+BMvl4zjmUbZzIlbDBTRv6vgkYnIiIiInKZnqG1UWazmWrVqmEwGDh9+rRVubu7OwaDgTNnzhS4pqg6keuxt7Pn+Qdn0PKuLkQdXMveY5stddk5Z/l6zRs8Na0xIeOdGTCxFpPDBnMy7eh1+zWZTIRFTObVOfcxcJIXfcY78cRkH2YvC+VcdpqlXcb5U/QZ78TURUMK7eeT5S/Qc5wdKekJNzxXEREREbENCrQ2KjExkXPnzuHl5UWtWrUs5UeOHCErKwtvb288PT2trimu7naWkJDA/Pnzef7552nbti1OTk4YDAaefvrpih5apdS7/QgAth1YA1wOs698fg///WMOHfwf4IWHP6XfPS+y+/A6Xvq0I6kZicX2l2/MZcmG6Xh7+vFYt9cZ3e8T2vr1YG3UfF77oht5+bkA1Kham87NH2LznuWcz8m06iM37yLrdy/i7sbd8arpW+5zFhEREZHKSVuObdTx48dp2rQpnTp1siqPiYkBIDAwsMA1xdXdzj7++GNmz55d0cOwGQ3rtgIg6fQhAL4Lf4eTaUf55KWtNKrX2tKuZ/uneXZGAAt+eZdxg74rsj9HB2d+fOckzo5VrhZ2fp7mvvcwc8lItuxbQVDrgQCEdHyWTXuWsW7XIh66Z7Sl+aY9yzifk0lIx5HlOFMRERERqewUaG3UfffdR1xcXIHy3bt3A9C6detS1d3OPD09CQkJoX379rRr147//e9/zJkzp6KHVWm5urgDcOHSOcxmM+t2hhHQ8D48q3lzNvvqVnYXJzea+XQiOj682P4MBoMlzBpNRnIuZWE05RPY+H4ADhzfZgm0bZv0wKvmXazdPt8q0K7dPh93Vw/uafFweU5VRERERCo5BdpbjFZoS+9f//qX1eetW7dW0Ehsw4WL5wBwdXYnM/s05y6kEX0onAETaxXa3s5w/ScbImN+YmnkDA7/uYt8Y55V3fmcDMv3BoOBPh1G8u3atzicvJvG3oGcTDtKzNEN9O/yCo4OTjcwMxERERGxNQq0RUhISGDJkiVEREQQHx9PSkoKZrMZPz8/Bg8ezKuvvoqTk/Uvz15eXqSmpnLs2DEyMzOZMWMG69atIzMzEz8/P8aPH8+gQYOKvKfJZGL58uUsXLiQ7du3k5aWhoeHB82aNaNfv36EhoZa7unr60tiYiIHDhygWbNmlj7KskJblrlWNLPZrHehVpCjJ2MBuLN2UzCbAWjj153Hu71Rpv427VnO+wsfp1n9Dox+aDa1qtfHycEFo9nIm/N6YzKZrNr3bv8M34e/y9qo+bzo/Slro77BbDbTp4O2G4uIiIjcbhRoi/Dee+/xzTff4ObmRr169WjRogWnTp0iNjaW2NhYoqKiWLZsmaV9amoqqampuLu7s2LFCsaOHYuHhwc+Pj5cvHiRmJgYBg8eTM2aNenZs2eB+506dYqBAwcSGRkJgI+PD4GBgaSkpLB+/Xq2bt3Kiy++CEBmZiaJiYm4urrSpEkTSx8ZGRmcOHECNzc3GjdubNV/cXWlnevN0K1bNyIjIzl27Bi+vr7Fto2NjWXYsGEsXbq0wFzk5lsbNR+Ajs0eoJpbLapWqc6Fi+do06R7mfqLiP4BJwcXpj+/HhcnV0v58VMFt9QD1HT3olPzB1m3M4wRIdMI3/EdzXw64uvVokz3FxERERHbpVOOi9CzZ0+io6PJysri0KFDbN++nYSEBKKioqhTpw7Lly9nz549lvZXtvNevHiRSZMmERYWRkpKClFRUSQnJ9O3b18A5s+fX+Be2dnZhISEEBkZSVBQEDExMSQmJrJt2zYSExPZu3cv48ePx97eHri60hoQEICd3dV/wqLKr1dX2rlWtG+//ZaYmBiCg4M5evT6r4WR8mE0Gfnyv2PZe2wzHZqF0PKue7Gzs+P+u4cQd2I7G2OXFnpdxvlTxfZrZ2ePwWDAbL66Ems2m1n02/tFXhPScRRZORnMXvY8Z84ma3VWRERE5DalFdoiPP7444WWt2vXjh49erBw4UL27dtHQEAAcDXQ5uXlsWjRIvr06WO5xsXFhdDQUFavXk1iYsFXmLz22mtER0fTpUsXwsPDC2zvbdGiBS1aXF19KupZ2LI+P1vauVa0GTNmkJaWxg8//EBwcDCRkZHXXdWV0olP3slv0QsByLmUxYnTB9mybwWpGYm0bdKTN59YZGn7TO/J7Ev4nfcXDiSo1UD8G3TCwd6J1IxEtsf9jJ9322JPOe7aagCb9izj9S/vp3vbYRiNefy+bwWXci8UeU27Jr2oU6MBETsXUsW5KsGBRW/lFxEREZFblwJtES5dusSqVass22CzsrIsz/Lt27cPwCp4XgmMAwYMsAqzV+TmXn6XZvXq1a3K4+LimDdvHs7OzoSFhZXoWdWinoUt6wnHpZ1rUlIS06ZNY/v27cTExJCbm4v5/56lvFFJSUklajdx4kSSk5NZt26dJdT6+PiUyxgE1u9ezPrdi7Ez2OHiXJVa1e6kVcMgggMH075Zb6u2blWq8fELv7M0cgaRsT+xZd9K7O0d8Kx2Jy19u9DnOq/SCQ4cRM6lLJZtnMVXq8dyR5UadGr+ICNCpvHoux6FXmNnZ0fv9iNYEP4OQa0GUsW5arnNXURERERshwJtISIiIhg+fDgnTpwotl3Dhg0t318JtEWtdh48eBDA6plXgEWLFmE0Ghk2bFiJA9mVcPrX1daiyourK8tcDx8+zLJly2jfvj1OTk78/vvvJRp3SXTt2rXU1yQkJDB06FA2btxYbuMoL+3atSMlJaWih2Hh5FCFr16ML7K+daNu/Dq99H+ccHFyZWiPtxna4+1i2xXVf0jHUYR0HFWgvLixODo4A5R4u7FfEz9y83NK1FZERERE/j5eXl7s2LGjTNcq0P7Ftm3bCAkJIS8vjxEjRjBkyBBatmxJjRo1cHBwIC4uDn9/fxwcHPD39wcur3BeeSdst27dCu23qED522+/ARASElKi8eXl5bF//37s7Oxo1aqVVfmBAwcKlBdXV5a5wuV34J48eRK4vFJanoE2ICCgxCcqp6WlkZCQAGA1vsokJSWF5OTkih6GhYuj6/Ub2QCjMZ81W7/kLq8Amvt2LtE1J//8k4t5RW9jFhERERHbo0D7FxMmTCA3N5dp06bxxhsFX0OyZs0aAJo3b46z8+UVov3795Ofn4+Pjw8eHoVvkdy1axdQMNBeWRm9dgW0OAcOHCA3Nxc/Pz/c3Nws5fv37yc3N5cmTZrg6modWoqqK8tcgQKHSpWnVatWleh52KSkJIKCgoDLq+Jz5sy5aWO6EV5eXhU9BCtODlUqegg35GT6MQ4k/sGWfSs5mX6UN4csLvG1devV0wqtiIiISCV0I78zK9Bew2g0WratDh8+vEC9yWQiLCwMgLvvvttSfmW78bVl18rOziY+Ph5HR0datmxZoA4gJ6dkv2gXtdJb2gOhyjrXyiA5OdlywvGAAQNYuHCh5QToyqasWyduFmMurP+kokdRdrFHIvnop+FUc/NkaPd3SnUYVPyheOwr1+uURUREROQGKdBeIzs7G6PRCFx+/c5fzZgxw7LSWppAGxsbi8lkomXLlgW209avX5+MjAy2bNnCvffee90xFhVcS3sgVFnnWhlMmjSJw4cP079/fxYvXoyDg/4zvl30av80vdo/XdHDEBEREZFKQu+hvYa7uzve3t4ATJ482RL4cnNzmT59Om+//bYlPJUm0BYXDPv372+5X3h4uFVdcnIyU6ZMIT7+6iE+RQXX0q7QlnWuN0tQUBCPPvqo1TbqosyePZtJkybx448/KsyKiIiIiNzGDObyet/KLWLu3LmMHj0agDp16lC/fn3i4+O5cOECn3/+OaGhoZhMJjIzM3F3dwfAw8OD9PR0jh8/Tv369Qv0OWrUKObNm8esWbMYM2aMVd358+cJCgpi586dwOX94/Xr1yc9PZ2jR49iMBg4d+6cJeh5enqSlpZGUlKSJZAWV15cXVnm+lcTJ05k0qRJ5fbanorw+++/069fP8vnCxcukJOTg7OzM1WrXn0dzMqVK0u0il6Z2fqW4xsR/DLaciwiIiJyi9Hy1l+Ehobi4ODA9OnTSUhIwN7enr59+/LGG29gMpkwGo00atTIEvCSkpJIT0/Hw8Oj0DALRR8IBVC1alU2bdrErFmzWLJkCYcOHeLs2bN4eXnx8MMP88gjj1jCbFJSEmlpaXh6eloF06LKr1dX2rneqvLy8khLSytQfunSJS5dumTVTkREREREKg+t0MoNuRVWaG8nWqGt6FGIiIiISHnSCq2UydKlS4HLrwS69rOvry/t2rWrsHGJiIiIiMjtQyu0UiYGg6HQ8qeeeorvvvvu7x2MlFhRK7Sfr3iZP/avIjUjkbljdtHYO7DYcoChU3xxdHC2vNt28P0T6Bb4OLl5F5kcNojE1P04O1ahetXavPzIXLw9GwOQcf4UHy4exp/pR3Cyd+alR+bQquF9Vn0+FvQ6IR1HFhjn1v2rWRL5ETNCN5CSnkDUwbU82Pl5S/3URUPYFR9Bt8BBjO73sdW1WqEVERERufVohVbKRH8HubV0bTWAgd3G8c85XUpUfsVbQ360CrlXhHR8lg7N+mAwGFjx+2fMXDKSGaEbAJj/83j8G3Ri6qi1HDwRxcQF/flhwjEc7B2L7fOvUjMSWP3HF1aBdsITYXwfPpHzOZklmreIiIiI2DYFWhGxrJCWtLw4To4udPQPsXz29+nE0siPLJ8jY35iwRuHAWhavz0e7vWIPRJJmybdC/SVb8xjzspXiI7/lTuq1KDlXV0tdbOXPU9qRiLPzQykdg0f3hu+qtRjFRERERHbpkArImX24b+HYcZMs/odGBEyjepVaxVo85/Ns+nc4vJrkc5lp2E05lHT3ctSX6eGL6cyjxfa/5qtX3Hi9EHmvbYPgAnzelnqXnn0C+asHMOXr+4uxxmJiIiIiC2xq+gBiIhtmhm6ka9ei2XumJ24u3ny4Y9PFWizKGIKf545zIg+U8t0j12HI+jRdhiODk44OjjRq/0zNzpsEREREbmFKNCKSJnUruEDgIO9I490HcPeY5us6pds+IjNe5czZeT/cHFyBcDdzQN7OwfSz6VY2qVmJFC7uk+J7mmg8MPIREREROT2pEArIqWWk5ttdfDS+l2LaVzvbsvnpZEzWb97MR+M+pWqVapbXdu11WOs3voFAAdPRHHmbDKtGgUVep82ft2J2LmQfGMeefm5/LLjW0udq7M7Fy6eLb9JiYiIiIjN0TO0IsLHS59jW9wa0rNSmDCvF67Od7Bg/OEiyzOzUpn0/aOYTEbMmKlbsyHjBn0PwOnMJL5c/Rp1azZk7BfBADg5OPPpy9sAGPXAB0xb/CRPfeCHo70T4wcvtJxw/FchHUeRkLKXER81txwKFZ8UDUDDuq1o4NWCUR+1xMujoQ6FEhEREbkN6T20IreRot5DW1kMneLLxKdWlOi1PUW58toevYdWRERE5NanLcciUmlUc6vFB4uH8vO2eWW6fuqiIUTsXIiri3s5j0xEREREKiOt0IrcRir7Cu3NpBVaERERkVuPVmhFRERERETEJinQioiIiIiIiE3SlmOR24jZDKa8ih5FxbBzBINeYysiIiJyS1GgFREREREREZukLcciIiIiIiJikxRoRURERERExCYp0IqIiIiIiIhNUqAVERERERERm6RAKyIiIiIiIjZJgVZERERERERskgKtiIiIiIiI2CQFWhEREREREbFJCrQiIiIiIiJikxRoRURERERExCYp0IqIiIiIiIhNUqAVERERERERm6RAKyIiIiIiIjZJgVZERERERERskgKtiIiIiIiI2CQFWhEREREREbFJCrQiIiIiIiJikxwqegAi8vcxm8GUV9GjqBh2jmAwVPQoRERERKQ8KdCK3EZMebD+k4oeRcUIfhnsnSp6FCIiIiJSnrTlWERERERERGySAq2IiIiIiIjYJAVaERERERERsUkKtCIiIiIiImKTFGhFRERERETEJinQioiIiIiIiE1SoBWRv03MkQ30eN3AL1HfVfRQREREROQWoPfQiohFzJENjP0i2PLZzmCHq4s7nu7e+N3ZluDAwbRr2guDwVCBoxQRERERuUyBVkQKCA4cTIdmIZgxk3MpixOnD7Jl7wp+jf6eNn7defvJJVStUr2ihykiIiIitzkFWhEpwM+7Dd3bDrUqe/7BmXy9ZhzLNs5kSthgpoz8XwWNTkRERETkMgVaESkRezt7nn9wBgdPbCfq4Fr2HttMy7u6AJCdc5ZF66awec8yTmeewNXFnbv9uvNM78nU9WhYbL8mk4nF66cSffAXkk4fIisnnRp3eNGx2QMM7/0+7m4eAGScP8UT79/Jfa0eY8ITYQX6+WT5C6zeOpfvxx/Fq6Zvuc9fRERERCofHQplo8xmM9WqVcNgMHD69Gmrcnd3dwwGA2fOnClwTVF1IiXVu/0IALYdWANcDrOvfH4P//1jDh38H+CFhz+l3z0vsvvwOl76tCOpGYnF9pdvzGXJhul4e/rxWLfXGd3vE9r69WBt1Hxe+6Ibefm5ANSoWpvOzR9i857lnM/JtOojN+8i63cv4u7G3RVmRURERG4jWqG1UYmJiZw7dw4vLy9q1aplKT9y5AhZWVl4e3vj6elpdU1xdbcrs9nMli1bWLVqFZs2bSIuLo6srCxq1qxJ+/btefbZZ3nooYcqepiVSsO6rQBIOn0IgO/C3+Fk2lE+eWkrjeq1trTr2f5pnp0RwIJf3mXcoO+K7M/RwZkf3zmJs2OVq4Wdn6e57z3MXDKSLftWENR6IAAhHZ9l055lrNu1iIfuGW1pvmnPMs7nZBLScWQ5zlREREREKjut0Nqo48eP07RpU3r16mVVHhMTA0BgYGCBa4qru12tW7eOLl268OGHH7J161Y8PDxo3bo1ly5dYs2aNfTr148RI0ZgNpsreqiVhquLOwAXLp3DbDazbmcYAQ3vw7OaN2ezz1i+XJzcaObTiej48GL7MxgMljBrNBk5n5PJ2ewzBDa+H4ADx7dZ2rZt0gOvmnexdvt8qz7Wbp+Pu6sH97R4uBxnKiIiIiKVnVZobdR9991HXFxcgfLdu3cD0Lp161LV3a7MZjMNGzbkn//8J4MGDbKsXBuNRj799FNeffVVvvnmG9q2bcvo0aOv09vt4cLFcwC4OruTmX2acxfSiD4UzoCJtQptb2e4/t/NImN+YmnkDA7/uYt8Y55V3fmcDMv3BoOBPh1G8u3atzicvJvG3oGcTDtKzNEN9O/yCo4OTjcwMxERERGxNQq0txit0JZOhw4diIuLw9HR0arc3t6eMWPGEBcXx5dffslXX32lQPt/jp6MBeDO2k3h/1au2/h15/Fub5Spv017lvP+wsdpVr8Dox+aTa3q9XFycMFoNvLmvN6YTCar9r3bP8P34e+yNmo+L3p/ytqobzCbzfTpoO3GIiIiIrcbbTkuQkJCAtOnT6d37940atQINzc3XF1dad26NdOmTSM3N7fANV5eXhgMBhISEti9ezdPPvkk3t7euLm5ERgYyL///e9i72kymVi6dCkPP/ww9erVw9nZmXr16nH//fcze/Zsq3v6+vpiMBgKrNKWZYW2LHOtaOW1Bdjd3b1AmL3WlS3dBw8eLJf73QrWRl3e7tux2QNUc6tF1SrVuXDxHG2adC/yqzgR0T/g5ODC9OfX8+A9oXRq3pc2TbpTp0aDQtvXdPeiU/MHWbczjJzcbMJ3fEczn474erUo97mKiIiISOWmQFuE9957j3HjxrF582bs7e1p0aIFtWvXJjY2lgkTJjB48GCr9qmpqaSmpuLu7s6KFSto164d4eHh1KtXDxcXF2JiYhg8eDDh4YU/T3jq1Cnuv/9+HnvsMVauXImjoyOBgYE4Ojqyfv16JkyYgL29PQCZmZkkJibi6upKkyZNLH1kZGRw4sQJ3NzcaNy4sVX/xdWVdq43Q7du3Sx/DLie2NhY7r77bg4fPnzTx3Xx4kUAXF1db/q9KjujyciX/x3L3mOb6dAshJZ33YudnR333z2EuBPb2Ri7tNDrMs6fKrZfOzt7DAYDZvPVlViz2cyi394v8pqQjqPIyslg9rLnOXM2WauzIiIiIrcpbTkuQs+ePXnhhRe4++67MRgMlvIdO3bQt29fli9fzp49ewgICACubue9ePEikyZNIiwsjIEDB2IwGLh48SKPPfYYq1evZv78+fTs2dPqXtnZ2YSEhBAdHU1QUBCffPIJrVq1stTv27ePZcuWWQLtlZXWgIAA7Oyu/k2iqPLr1ZV2rhXt22+/JSYmhuDgYCIjI2nYsPj3nN6IH3/8EYCuXbvetHtURvHJO/kteiEAOZeyOHH6IFv2rSA1I5G2TXry5hOLLG2f6T2ZfQm/8/7CgQS1Goh/g0442DuRmpHI9rif8fNuW+wpx11bDWDTnmW8/uX9dG87DKMxj9/3reBS7oUir2nXpBd1ajQgYudCqjhXJThwULnNXURERERshwJtER5//PFCy9u1a0ePHj1YuHAh+/btKxBo8/LyWLRoEX369LFc4+LiQmhoKKtXryYxseA7OV977TWio6Pp0qUL4eHhODlZH2zTokULWrS4up2yqGdhy/r8bGnnWtFmzJhBWloaP/zwgyXU+vr6lvt9fv75Z1auXAnAuHHjyr3/ymz97sWs370YO4MdLs5VqVXtTlo1DCI4cDDtm/W2autWpRofv/A7SyNnEBn7E1v2rcTe3gHPanfS0rcLfa7zKp3gwEHkXMpi2cZZfLV6LHdUqUGn5g8yImQaj77rUeg1dnZ29G4/ggXh7xDUaiBVnKuW29xFRERExHYo0Bbh0qVLrFq1isjISI4dO0ZWVpblcJp9+/YBWAXPK4FxwIABVmH2iivPoVavXt2qPC4ujnnz5uHs7ExYWFiBMFuYop6FLesJx6Wd69KlS1m8eDE7duzg9OnT+Pj48OijjzJhwgSqVr2xYJGUlFSidhMnTiQ5OZl169ZZQq2Pj88N3ftaR44c4cknnwTg5Zdf5p577ilTP+3atSMlJaXcxnWjnByq8NWL8UXWt27UjV+nl/75ZBcnV4b2eJuhPd4utl1R/Yd0HEVIx1EFyosbi6ODM0CJtxv7NfEjNz+nRG1FRERE5O/j5eXFjh07ynStAm0hIiIiGD58OCdOnCi23bVbXa8E2qJWO68cKnTtM68AixYtwmg0MmzYsBIHsivh9K+rrUWVF1dXlrl+9NFH+Pj4MGXKFO688052797NpEmTiIyMZOPGjQW2NJdGWbb2JiQkMHToUDZu3Fjm+14rJSWF3r17k56eTs+ePfnoo49uqK/k5ORyGVd5cHG8NZ4FNhrzWbP1S+7yCqC5b+cSXXPyzz+5mFf0NmYRERERsT0KtH+xbds2QkJCyMvLY8SIEQwZMoSWLVtSo0YNHBwciIuLw9/fHwcHB/z9/YHLK5xXThvu1q1bof0WFSh/++03AEJCQko0vry8PPbv34+dnZ3Vc7Z5eXkcOHCgQHlxdWWZK8B///tfatW6+s7RoKAgatWqxZAhQ9i8eTP33XdfieZSmICAgBKtUgOkpaVZDpG6dnw34kqIPXz4MPfeey//+c9/ij0F+Xq8vLzKZVzlxcmhSkUP4YacTD/GgcQ/2LJvJSfTj/LmkMUlvrZuvXpaoRURERGphG7kd2YF2r+YMGECubm5TJs2jTfeKPhezTVr1gDQvHlznJ0vb3ncv38/+fn5+Pj44OFR+DN/u3btAgoG2isroyU92OjAgQPk5ubi5+eHm5ubpXz//v3k5ubSpEmTAifyFlVXlrkCVmH2inbt2gHc8GrkqlWrSvQ8bFJSEkFBQcDlVfE5c+bc0H0Bzp07R+/evdmzZw9t2rRhzZo1N3y6cVm3TtwsxlxY/0lFj6LsYo9E8tFPw6nm5snQ7u+U6jCo+EPx2JfsbyUiIiIiYiMUaK9hNBot21aHDx9eoN5kMhEWFgbA3XffbSm/st342rJrZWdnEx8fj6OjIy1btixQB5CTU7KVo6JWekt7IFRZ51qU9evXA+W3Ulqc5ORkgoODOXr0KAMGDGDhwoWWE6DL6sKFC/Tt25eoqCj8/f355ZdfqFatWjmNWMpLr/ZP06v90xU9DBERERGpJPQe2mtkZ2djNBqBq+8fvdaMGTMsK62lCbSxsbGYTCb8/f0LbKetX78+AFu2bCnRGIsKrqU9EKqscy1McnIyb7/9Nr179y40UJe3SZMmcfjwYfr378/ixYtxcLixv8vk5ubSv39/Nm3aRKNGjfjtt9/w9PQsp9GKiIiIiMjNokB7DXd3d7y9vQGYPHmyJfDl5uYyffp03n77bUt4Kk2gLS4Y9u/f33K/8PBwq7rk5GSmTJlCfPzVU2mLCq6lXaEt61z/6vz58/Tr1w8nJye++eabIttdT1BQEI8++qjVNuqizJ49m0mTJvHjjz/ecJg1Go088cQThIeHc+edd/Lbb79Rr169G+pTRERERET+Hgaz2Vz6d3TcwubOncvo0aMBqFOnDvXr1yc+Pp4LFy7w+eefExoaislkIjMzE3d3dwA8PDxIT0/n+PHjlhXXa40aNYp58+Yxa9YsxowZY1V3/vx5goKC2LlzJ3D5gej69euTnp7O0aNHMRgMnDt3zhL0PD09SUtLIykpyRJIiysvrq4sc71WTk4OISEhxMbGsmnTJpo3b17aH3eFW7x4MU888QRw+TnmunXrFtl26dKlle6Qp9Ky9Wdob0Twy+gZWhEREZFbjJ6h/YvQ0FAcHByYPn06CQkJ2Nvb07dvX9544w1MJhNGo5FGjRpZAl5SUhLp6el4eHgUGmah6AOhAKpWrcqmTZuYNWsWS5Ys4dChQ5w9exYvLy8efvhhHnnkEUuYTUpKIi0tDU9PT6tgWlT59epKO9dr5eXlMWDAAHbs2EFERIRNhlm4fEL1FUePHuXo0aNFti1sa7aIiIiIiFQcrdBKqZlMJgYNGsSqVav4+eefuf/++yt6SFJCWqGt6FGIiIiISHnSCq2U2gsvvMCSJUsYP348rq6ubN261VLXqFGjQl/rI5Xb5yte5o/9q0jNSGTumF009g4sthxg6BRfHB2cLe+2HXz/BLoFPk5u3kUmhw0iMXU/zo5VqF61Ni8/Mhdvz8YAZJw/xYeLh/Fn+hGc7J156ZE5tGp4n1WfjwW9TkjHkQXGuXX/apZEfsSM0A2kpCcQdXAtD3Z+3lI/ddEQdsVH0C1wEKP7fXxzflgiIiIiUmnoUCgptf/9738ATJs2jc6dO1t9XXl3rdiWrq0GMGv0ZurUaFCi8iveGvIjX766my9f3U23wMct5SEdn+XbcQf58tUYOrfox8wlV8Pp/J/H49+gEwveiGfs498yddET5BvzrPosLMz+VWpGAqv/+MKqbMITYfS9JuCKiIiIyK1NK7RSagkJCRU9BClnV1ZIS1peHCdHFzr6h1g++/t0YmnkR5bPkTE/seCNwwA0rd8eD/d6xB6JpE2T7gX6yjfmMWflK0TH/8odVWrQ8q6ulrrZy54nNSOR52YGUruGD+8NX1XqsYqIiIiIbVOgFZEy+/DfwzBjpln9DowImUb1qgW3m/9n82w6t+gHwLnsNIzGPGq6Xz0tuk4NX05lHi+0/zVbv+LE6YPMe20fABPm9bLUvfLoF8xZOYYvX91djjMSEREREVuiLcciUiYzQzfy1WuxzB2zE3c3Tz788akCbRZFTOHPM4cZ0Wdqme6x63AEPdoOw9HBCUcHJ3q1f+ZGhy0iIiIitxAFWhEpk9o1fABwsHfkka5j2Htsk1X9kg0fsXnvcqaM/B8uTq4AuLt5YG/nQPq5FEu71IwEalf3KdE9DRjKafQiIiIicitQoBWRUsvJzeZ8Tqbl8/pdi2lc727L56WRM1m/ezEfjPqVqlWqW13btdVjrN56+TCngyeiOHM2mVaNggq9Txu/7kTsXEi+MY+8/Fx+2fGtpc7V2Z0LF8+W36RERERExOboGVoR4eOlz7Etbg3pWSlMmNcLV+c7WDD+cJHlmVmpTPr+UUwmI2bM1K3ZkHGDvgfgdGYSX65+jbo1GzL2i2AAnByc+fTlbQCMeuADpi1+kqc+8MPR3onxgxfiYO9Y6LhCOo4iIWUvIz5qbjkUKj4pGoCGdVvRwKsFoz5qiZdHQx0KJSIiInIbMpjNZnNFD0JE/h7GXFj/SUWPomhDp/gy8akVVu+7La3vwydyPiezwHtog18Ge6cbG5+IiIiIVC7aciwilUY1t1p8sHgoP2+bV6brpy4aQsTOhbi6uJfzyERERESkMtIKrchtpLKv0N5MWqEVERERufVohVZERERERERskgKtiIiIiIiI2CRtORa5jZjNYMqr6FFUDDtHMOg1tiIiIiK3FAVaERERERERsUnaciwiIiIiIiI2SYFWREREREREbJICrYiIiIiIiNgkBVoRERERERGxSQq0IiIiIiIiYpMUaEVERERERMQmKdCKiIiIiIiITVKgFREREREREZukQCsiIiIiIiI2SYFWREREREREbJICrYiIiIiIiNgkBVoRERERERGxSQq0IiIiIiIiYpMUaEVERERERMQmKdCKiIiIiIiITVKgFREREREREZukQCsiIiIiIiI2SYFWREREREREbJJDRQ9ARP4+ZjOY8ip6FBXDzhEMhooehYiIiIiUJwVakduIKQ/Wf1LRo6gYwS+DvVNFj0JEREREypO2HIuIiIiIiIhNUqAVERERERERm6RAKyIiIiIiIjZJgVZERERERERskgKtiIiIiIiI2CQFWhEREREREbFJCrQi8reJObKBHq8b+CXqu4oeioiIiIjcAvQeWhGxiDmygbFfBFs+2xnscHVxx9PdG7872xIcOJh2TXthMBgqcJQiIiIiIpcp0IpIAcGBg+nQLAQzZnIuZXHi9EG27F3Br9Hf08avO28/uYSqVapX9DBFRERE5DanQCsiBfh5t6F726FWZc8/OJOv14xj2caZTAkbzJSR/6ug0YmIiIiIXKZnaG2U2WymWrVqGAwGTp8+bVXu7u6OwWDgzJkzBa4pqk7keuzt7Hn+wRm0vKsLUQfXsvfYZktdds5Zvl7zBk9Na0zIeGcGTKzF5LDBnEw7et1+TSYTYRGTeXXOfQyc5EWf8U48MdmH2ctCOZedZmmXcf4UfcY7MXXRkEL7+WT5C/QcZ0dKesINz1VEREREbIMCrY1KTEzk3LlzeHl5UatWLUv5kSNHyMrKwtvbG09PT6triqu7na1atYrQ0FA6dOiAt7c3zs7O3HHHHQQGBvLmm28q/P9F7/YjANh2YA1wOcy+8vk9/PePOXTwf4AXHv6Ufve8yO7D63jp046kZiQW21++MZclG6bj7enHY91eZ3S/T2jr14O1UfN57Ytu5OXnAlCjam06N3+IzXuWcz4n06qP3LyLrN+9iLsbd8erpm+5z1lEREREKidtObZRx48fp2nTpnTq1MmqPCYmBoDAwMAC1xRXdzubOXMmkZGRODk5Ua9ePVq1asWpU6eIjY0lJiaGefPmER4erp/b/2lYtxUASacPAfBd+DucTDvKJy9tpVG91pZ2Pds/zbMzAljwy7uMG/Rdkf05Ojjz4zsncXascrWw8/M0972HmUtGsmXfCoJaDwQgpOOzbNqzjHW7FvHQPaMtzTftWcb5nExCOo4sx5mKiIiISGWnFVobdd999xEXF8d3331nVb57924AWrduXeCa4upuZ8888wwRERFkZWVx7NgxoqKiSExMJCYmhpYtW3L69GmeeOKJih5mpeHq4g7AhUvnMJvNrNsZRkDD+/Cs5s3Z7DOWLxcnN5r5dCI6PrzY/gwGgyXMGk1Gzudkcjb7DIGN7wfgwPFtlrZtm/TAq+ZdrN0+36qPtdvn4+7qwT0tHi7HmYqIiIhIZacV2luMVmhLb9iwYYWWBwQEMH/+fDp27MiBAwc4cOAA/v7+f/PoKp8LF88B4OrsTmb2ac5dSCP6UDgDJtYqtL2d4fp/N4uM+YmlkTM4/Ocu8o15VnXnczIs3xsMBvp0GMm3a9/icPJuGnsHcjLtKDFHN9C/yys4OjjdwMxERERExNYo0BYhISGBJUuWEBERQXx8PCkpKZjNZvz8/Bg8eDCvvvoqTk7Wvzx7eXmRmprKsWPHyMzMZMaMGaxbt47MzEz8/PwYP348gwYNKvKeJpOJ5cuXs3DhQrZv305aWhoeHh40a9aMfv36ERoaarmnr68viYmJHDhwgGbNmln6KMsKbVnmWtHMZvPf8i7UawPshQsXbvr9bMHRk7EA3Fm7KZjNALTx687j3d4oU3+b9izn/YWP06x+B0Y/NJta1evj5OCC0WzkzXm9MZlMVu17t3+G78PfZW3UfF70/pS1Ud9gNpvp00HbjUVERERuNwq0RXjvvff45ptvcHNzo169erRo0cLyXGVsbCxRUVEsW7bM0j41NZXU1FTc3d1ZsWIFY8eOxcPDAx8fHy5evEhMTAyDBw+mZs2a9OzZs8D9Tp06xcCBA4mMjATAx8eHwMBAUlJSWL9+PVu3buXFF18EIDMzk8TERFxdXWnSpImlj4yMDE6cOIGbmxuNGze26r+4utLO9Wbo1q0bkZGRHDt2DF9f32LbxsbGMmzYMJYuXVpgLuXt999/B8DNzY2mTZve1HvZirVRl7f7dmz2ANXcalG1SnUuXDxHmybdy9RfRPQPODm4MP359bg4uVrKj5+KK7R9TXcvOjV/kHU7wxgRMo3wHd/RzKcjvl4tynR/EREREbFdeoa2CD179iQ6OpqsrCwOHTrE9u3bSUhIICoqijp16rB8+XL27NljaX9lO+/FixeZNGkSYWFhpKSkEBUVRXJyMn379gVg/vz5Be6VnZ1NSEgIkZGRBAUFERMTQ2JiItu2bSMxMZG9e/cyfvx47O3tgasrrQEBAdjZXf0nLKr8enWlnWtF+/bbb4mJiSE4OJijR6//WpjSMplMnDx5ku+//56nn34agClTplC1atVyv5ctMZqMfPnfsew9tpkOzUJoede92NnZcf/dQ4g7sZ2NsUsLvS7j/Kli+7Wzs8dgMGA2X12JNZvNLPrt/SKvCek4iqycDGYve54zZ5O1OisiIiJym9IKbREef/zxQsvbtWtHjx49WLhwIfv27SMgIAC4Gmjz8vJYtGgRffr0sVzj4uJCaGgoq1evJjGx4CtMXnvtNaKjo+nSpQvh4eEFtve2aNGCFi2urj4V9SxsWZ+fLe1cK9qMGTNIS0vjhx9+IDg4mMjIyOuu6pbEF198QWhoqFVZ27ZtmTdvnuUPEreL+OSd/Ba9EICcS1mcOH2QLftWkJqRSNsmPXnziUWWts/0nsy+hN95f+FAgloNxL9BJxzsnUjNSGR73M/4ebct9pTjrq0GsGnPMl7/8n66tx2G0ZjH7/tWcCm36C3e7Zr0ok6NBkTsXEgV56oEBxa9lV9EREREbl0KtEW4dOkSq1atsmyDzcrKsjzLt2/fPgCr4HklMA4YMMAqzF6Rm3v5XZrVq1e3Ko+Li2PevHk4OzsTFhZWomdVi3oWtqwnHJd2rps2bWLSpEns27eP9PR0atWqxb333svEiRNv+NCkpKSkErWbOHEiycnJrFu3zhJqfXx8bujedevW5d577yU/P58TJ05w8uRJYmNjWbRoEV27dqVatWo31L8tWb97Met3L8bOYIeLc1VqVbuTVg2DCA4cTPtmva3aulWpxscv/M7SyBlExv7Eln0rsbd3wLPanbT07UKf67xKJzhwEDmXsli2cRZfrR7LHVVq0Kn5g4wImcaj73oUeo2dnR29249gQfg7BLUaSBXn23v1XEREROR2pUBbiIiICIYPH86JEyeKbdewYUPL91cCbVGrnQcPHgSweuYVYNGiRRiNRoYNG1biQHYlnP51tbWo8uLqyjLXjIwMAgICeO6556hduzZJSUlMnTqVzp07s3fvXu68884SzaMwXbt2LfU1CQkJDB06lI0bN5b5vgD9+vWjX79+ls979uzhhRdeYPHixRw/fpzNmzeXus927dqRkpJyQ+MqT04OVfjqxfgi61s36sav082l7tfFyZWhPd5maI+3i21XVP8hHUcR0nFUgfLixuLo4AxQ4u3Gfk38yM3PKVFbEREREfn7eHl5sWPHjjJdq0D7F9u2bSMkJIS8vDxGjBjBkCFDaNmyJTVq1MDBwYG4uDj8/f1xcHCwrEZeunSJuLjLB9h069at0H6LCpS//fYbACEhISUaX15eHvv378fOzo5WrVpZlR84cKBAeXF1ZZkrwEMPPcRDDz1kdY/27dvTtGlTli1bxiuvvFKiuRQmICCgxCcqp6WlkZCQAHBTXqcTEBDAmjVraNiwIb///ju//fYb3buX7uCjlJQUkpOTy31sZeXi6Hr9RjbAaMxnzdYvucsrgOa+nUt0zck//+Rink6qFhEREbmVKND+xYQJE8jNzWXatGm88UbB15CsWbMGgObNm+PsfHmFaP/+/eTn5+Pj44OHR+FbJHft2gUUDLRXVkavXQEtzoEDB8jNzcXPzw83NzdL+f79+8nNzaVJkya4ulqHlqLqyjLXolyZt4PDjf0ntWrVqhI9D5uUlERQUBBweVV8zpw5N3Tfotxxxx0EBQWxbNkyYmJiSh1ovby8bsq4ysrJoUpFD+GGnEw/xoHEP9iybyUn04/y5pDFJb62br16WqEVERERqYRu5HdmBdprGI1Gy7bV4cOHF6g3mUyEhYUBcPfdd1vKr2w3vrbsWtnZ2cTHx+Po6EjLli0L1AHk5JTsF+2iVnpLeyBUWed6LaPRiMlkIjExkQkTJuDl5cXAgQNLNI8bkZycbDnheMCAASxcuNByAvTNkJ+fD1yeb2mVdevEzWLMhfWfVPQoyi72SCQf/TScam6eDO3+TqkOg4o/FI995XqdsoiIiIjcIAXaa2RnZ1tCy8WLFwvUz5gxw7LSWppAGxsbi8lkomXLlgW209avX5+MjAy2bNnCvffee90xFhVcS3sgVFnneq2goCDLe1obN27MunXrqFWr1nXncKMmTZrE4cOH6d+/P4sXL77hVeHipKenW94NXNgfC+Tv1av90/Rq/3RFD0NEREREKgm9h/Ya7u7ueHt7AzB58mRL4MvNzWX69Om8/fbblvBUmkBbXDDs37+/5X7h4eFWdcnJyUyZMoX4+KuH+BQVXEu7QlvWuV5r/vz5bN26lcWLF+Pu7k7Pnj05fvx4oW2vJygoiEcffdRqG3VRZs+ezaRJk/jxxx9vOMzu2LGDd955h8OHDxeo27VrF3369CEzM5OAgAD+8Y9/3NC9RERERESkfBnMZnPpjzS9hc2dO5fRo0cDUKdOHerXr098fDwXLlzg888/JzQ0FJPJRGZmJu7u7sDl50fT09M5fvw49evXL9DnqFGjmDdvHrNmzWLMmDFWdefPnycoKIidO3cCl/eP169fn/T0dI4ePYrBYODcuXOWoOfp6UlaWhpJSUmWQFpceXF1ZZlrUTIzM/H19WXo0KF89tlnJflRVwobNmwgODgYgNq1a1O/fn3s7e1JSkrizz//BC6fTP2///2vxM85V2a2vuX4RgS/jLYci4iIiNxitOX4L0JDQ3FwcGD69OkkJCRgb29P3759eeONNzCZTBiNRho1amQJeElJSaSnp+Ph4VFomIWiD4QCqFq1Kps2bWLWrFksWbKEQ4cOcfbsWby8vHj44Yd55JFHLGE2KSmJtLQ0PD09rYJpUeXXqyvtXItTvXp1GjduXOhKZ2XWunVrZs+ezfr169m7dy+HDh3i4sWL1KxZk+7du9O/f3+eeeYZXFxcKnqoIiIiIiLyF1qhlXJx6tQpGjVqxLBhw/j8888rejhSBK3QVvQoRERERKQ8aYVWSm3o0KE0btyYwMBAqlevTnx8PLNmzcLBwYF//vOfFT08ERERERG5TSjQSql16tSJ77//ntmzZ3Px4kXq169PcHAwb775Jg0aNKjo4UkZfL7iZf7Yv4rUjETmjtlFY+/AYssBhk7xxdHB2fJu28H3T6Bb4OPk5l1kctggElP34+xYhepVa/PyI3Px9mwMQMb5U3y4eBh/ph/Byd6Zlx6ZQ6uG91n1+VjQ64R0HFlgnFv3r2ZJ5EfMCN1ASnoCUQfX8mDn5y31UxcNYVd8BN0CBzG638c354clIiIiIpWGAq2U2osvvsiLL75Y0cOQctS11QAGdhvHP+d0KVH5FW8N+dEq5F4R0vFZOjTrg8FgYMXvnzFzyUhmhG4AYP7P4/Fv0Impo9Zy8EQUExf054cJx3Cwdyy2z79KzUhg9R9fWAXaCU+E8X34RM7nZJZo3iIiIiJi2xRoRcSyQlrS8uI4ObrQ0T/E8tnfpxNLIz+yfI6M+YkFb1w+PKxp/fZ4uNcj9kgkbZp0L9BXvjGPOStfITr+V+6oUoOWd3W11M1e9jypGYk8NzOQ2jV8eG/4qlKPVURERERsmwKtiJTZh/8ehhkzzep3YETINKpXrVWgzX82z6Zzi34AnMtOw2jMo6a7l6W+Tg1fTmUW/v7iNVu/4sTpg8x7bR8AE+b1stS98ugXzFk5hi9f3V2OMxIRERERW2JX0QMQEds0M3QjX70Wy9wxO3F38+TDH58q0GZRxBT+PHOYEX2mlukeuw5H0KPtMBwdnHB0cKJX+2dudNgiIiIicgtRoBWRMqldwwcAB3tHHuk6hr3HNlnVL9nwEZv3LmfKyP/h4uQKgLubB/Z2DqSfS7G0S81IoHZ1nxLd04ChnEYvIiIiIrcCBVoRKbWc3Gyrg5fW71pM43p3Wz4vjZzJ+t2L+WDUr1StUt3q2q6tHmP11i8AOHgiijNnk2nVKKjQ+7Tx607EzoXkG/PIy8/llx3fWupcnd25cPFs+U1KRERERGyOnqEVET5e+hzb4taQnpXChHm9cHW+gwXjDxdZnpmVyqTvH8VkMmLGTN2aDRk36HsATmcm8eXq16hbsyFjvwgGwMnBmU9f3gbAqAc+YNriJ3nqAz8c7Z0YP3ih5YTjvwrpOIqElL2M+Ki55VCo+KRoABrWbUUDrxaM+qglXh4NdSiUiIiIyG3IYDabzRU9CBH5exhzYf0nFT2Kog2d4svEp1aU6LU9Rbny2p6/voc2+GWwd7qx8YmIiIhI5aItxyJSaVRzq8UHi4fy87Z5Zbp+6qIhROxciKuLezmPTEREREQqI63QitxGKvsK7c2kFVoRERGRW49WaEVERERERMQmKdCKiIiIiIiITdKWY5HbiNkMpryKHkXFsHMEg15jKyIiInJLUaAVERERERERm6QtxyIiIiIiImKTFGhFRERERETEJinQioiIiIiIiE1SoBURERERERGbpEArIiIiIiIiNkmBVkRERERERGySAq2IiIiIiIjYJAVaERERERERsUkKtCIiIiIiImKTFGhFRERERETEJinQioiIiIiIiE1SoBURERERERGbpEArIiIiIiIiNkmBVkRERERERGySAq2IiIiIiIjYJAVaERERERERsUkKtCIiIiIiImKTHCp6ACLy9zGbwZRX0aOoGHaOYDBU9ChEREREpDwp0IrcRkx5sP6Tih5FxQh+GeydKnoUIiIiIlKetOVYREREREREbJICrYiIiIiIiNgkBVoRERERERGxSQq0IiIiIiIiYpMUaEVERERERMQmKdCKiIiIiIiITVKgFZG/TcyRDfR43cAvUd9V9FBERERE5Bag99CKiEXMkQ2M/SLY8tnOYIerizue7t743dmW4MDBtGvaC4PBUIGjFBERERG5TIFWRAoIDhxMh2YhmDGTcymLE6cPsmXvCn6N/p42ft15+8klVK1SvaKHKSIiIiK3OQVaESnAz7sN3dsOtSp7/sGZfL1mHMs2zmRK2GCmjPxfBY1OREREROQyPUNrg8xmM9WqVcNgMHD69Gmrcnd3dwwGA2fOnClwTVF1IiVhb2fP8w/OoOVdXYg6uJa9xzZb6rJzzvL1mjd4alpjQsY7M2BiLSaHDeZk2tHr9msymQiLmMyrc+5j4CQv+ox34onJPsxeFsq57DRLu4zzp+gz3ompi4YU2s8ny1+g5zg7UtITbniuIiIiImIbFGhtUGJiIufOncPLy4tatWpZyo8cOUJWVhbe3t54enpaXVNcnVj7+uuvMRgMGAwGunXrVtHDqXR6tx8BwLYDa4DLYfaVz+/hv3/MoYP/A7zw8Kf0u+dFdh9ex0ufdiQ1I7HY/vKNuSzZMB1vTz8e6/Y6o/t9Qlu/HqyNms9rX3QjLz8XgBpVa9O5+UNs3rOc8zmZVn3k5l1k/e5F3N24O141fct9ziIiIiJSOWnLsQ06fvw4TZs2pVOnTlblMTExAAQGBha4prg6uSolJYVx48ZV9DAqtYZ1WwGQdPoQAN+Fv8PJtKN88tJWGtVrbWnXs/3TPDsjgAW/vMu4Qd8V2Z+jgzM/vnMSZ8cqVws7P09z33uYuWQkW/atIKj1QABCOj7Lpj3LWLdrEQ/dM9rSfNOeZZzPySSk48hynKmIiIiIVHZaobVB9913H3FxcXz33XdW5bt37wagdevWBa4prk6ueumllzh37hx9+/at6KFUWq4u7gBcuHQOs9nMup1hBDS8D89q3pzNPmP5cnFyo5lPJ6Ljw4vtz2AwWMKs0WTkfE4mZ7PPENj4fgAOHN9madu2SQ+8at7F2u3zrfpYu30+7q4e3NPi4XKcqYiIiIhUdlqhvYVohfbGrFq1iqVLl/LSSy9Rs2ZNVq9eXdFDqpQuXDwHgKuzO5nZpzl3IY3oQ+EMmFir0PZ2huv/3Swy5ieWRs7g8J+7yDfmWdWdz8mwfG8wGOjTYSTfrn2Lw8m7aewdyMm0o8Qc3UD/Lq/g6OB0AzMTEREREVujQFuIhIQElixZQkREBPHx8aSkpGA2m/Hz82Pw4MG8+uqrODlZ/+Ls5eVFamoqx44dIzMzkxkzZrBu3ToyMzPx8/Nj/PjxDBo0qMh7mkwmli9fzsKFC9m+fTtpaWl4eHjQrFkz+vXrR2hoqOWevr6+JCYmcuDAAZo1a2bpoywrtGWZa0Uzm83l/h7UrKwsXnjhBerVq8f777/PzJkzy7X/W8nRk7EA3Fm7KZjNALTx687j3d4oU3+b9izn/YWP06x+B0Y/NJta1evj5OCC0WzkzXm9MZlMVu17t3+G78PfZW3UfF70/pS1Ud9gNpvp00HbjUVERERuNwq0hXjvvff45ptvcHNzo169erRo0YJTp04RGxtLbGwsUVFRLFu2zNI+NTWV1NRU3N3dWbFiBWPHjsXDwwMfHx8uXrxITEwMgwcPpmbNmvTs2bPA/U6dOsXAgQOJjIwEwMfHh8DAQFJSUli/fj1bt27lxRdfBCAzM5PExERcXV1p0qSJpY+MjAxOnDiBm5sbjRs3tuq/uLrSzvVm6NatG5GRkRw7dgxfX99i28bGxjJs2DCWLl1aYC43YsKECSQlJfHTTz/h7u5ebv3eitZGXd7u27HZA1Rzq0XVKtW5cPEcbZp0L1N/EdE/4OTgwvTn1+Pi5GopP34qrtD2Nd296NT8QdbtDGNEyDTCd3xHM5+O+Hq1KNP9RURERMR26RnaQvTs2ZPo6GiysrI4dOgQ27dvJyEhgaioKOrUqcPy5cvZs2ePpf2V7bwXL15k0qRJhIWFkZKSQlRUFMnJyZbnMefPn1/gXtnZ2YSEhBAZGUlQUBAxMTEkJiaybds2EhMT2bt3L+PHj8fe3h64utIaEBCAnd3Vf76iyq9XV9q5VrRvv/2WmJgYgoODOXr0+q+EKYk//viDuXPn0qdPHx577LFy6fNWZDQZ+fK/Y9l7bDMdmoXQ8q57sbOz4/67hxB3YjsbY5cWel3G+VPF9mtnZ4/BYMBsvroSazabWfTb+0VeE9JxFFk5Gcxe9jxnziZrdVZERETkNqUV2kI8/vjjhZa3a9eOHj16sHDhQvbt20dAQABwNdDm5eWxaNEi+vTpY7nGxcWF0NBQVq9eTWJiwdeXvPbaa0RHR9OlSxfCw8MLbO9t0aIFLVpcXXkq6lnYsj4/W9q5VrQZM2aQlpbGDz/8QHBwMJGRkddd1S1OXl4eo0aNwtnZmc8++6z8Bmrj4pN38lv0QgByLmVx4vRBtuxbQWpGIm2b9OTNJxZZ2j7TezL7En7n/YUDCWo1EP8GnXCwdyI1I5HtcT/j59222FOOu7YawKY9y3j9y/vp3nYYRmMev+9bwaXcC0Ve065JL+rUaEDEzoVUca5KcGDR2/lFRERE5NalQFuIS5cusWrVKss22KysLMtzfPv27QOwCp5XAuOAAQOswuwVubmX36NZvXp1q/K4uDjmzZuHs7MzYWFhJXpWtahnYct6wnFp5/pXffr0Ye3atbz77rtMnDjxuuMvTlJSUonaTZw4keTkZNatW2cJtT4+PmW657Rp09i3bx+TJ0+mYcOGZerjVrR+92LW716MncEOF+eq1Kp2J60aBhEcOJj2zXpbtXWrUo2PX/idpZEziIz9iS37VmJv74BntTtp6duFPtd5lU5w4CByLmWxbOMsvlo9ljuq1KBT8wcZETKNR9/1KPQaOzs7ercfwYLwdwhqNZAqzlXLbe4iIiIiYjsUaP8iIiKC4cOHc+LEiWLbXRt+rgTaolY7Dx48CGD1zCvAokWLMBqNDBs2rMSB7Eo4/etqa1HlxdWVZa7X+umnnyx9l4euXbuW+pqEhASGDh3Kxo0bS33twYMHmTx5Mv7+/rz++uulvr4k2rVrR0pKyk3puyycHKrw1YvxRda3btSNX6ebS92vi5MrQ3u8zdAebxfbrqj+QzqOIqTjqALlxY3F0cEZoMTbjf2a+JGbn1OitiIiIiLy9/Hy8mLHjh1lulaB9hrbtm0jJCSEvLw8RowYwZAhQ2jZsiU1atTAwcGBuLg4/P39cXBwwN/fH7i8whkXd/nwmm7duhXab1GB8rfffgMgJCSkROPLy8tj//792NnZ0apVK6vyAwcOFCgvrq4sc73WuXPnGDNmDB999BFDhw4t0fivJyAgoMQnKqelpZGQkABQ6PhKIjQ0lEuXLvHFF1/g6OhYpj6uJyUlheTk5JvSd1m4OLpev5ENMBrzWbP1S+7yCqC5b+cSXXPyzz+5mFf0NmYRERERsT0KtNeYMGECubm5TJs2jTfeKPgKkjVr1gDQvHlznJ0vrw7t37+f/Px8fHx88PAofHvkrl27gIKB9srKaEm3uh44cIDc3Fz8/Pxwc3OzlO/fv5/c3FyaNGmCq6t1YCmqrixzvdZbb71FkyZNGDJkSLkF2lWrVpXoedikpCSCgoKAy6vic+bMKdP9du7ciZ2dHQMHDixQd/78eQC2bNmCl5cXAIcOHSr1CchXrq0snByqVPQQbsjJ9GMcSPyDLftWcjL9KG8OWVzia+vWq6cVWhEREZFK6EZ+Z1ag/T9Go9GybXX48OEF6k0mE2FhYQDcfffdlvIr242vLbtWdnY28fHxODo60rJlywJ1ADk5Jfslu6iV3tIeCFXWuV6xY8cOvv76a6Kjo0s07vKUnJxsOeF4wIABLFy40HICdFmYTCZSU1OLrM/Ly7PU//V9qCVR1q0TN4sxF9Z/UtGjKLvYI5F89NNwqrl5MrT7O6U6DCr+UDz2leuVyiIiIiJyg/Tanv+TnZ2N0WgELr9+569mzJhhWWktTaCNjY3FZDLh7+9fYDtt/fr1gcurgCVRVHAt7YFQZZ0rXA7Dzz33HC+++KLV6ct/l0mTJnH48GH69+/P4sWLcXAo+99kMjMzMZvNhX69++67AAQFBVnK/nqol/z9erV/ml+nm1k68TRP9ZpU0cMRERERkQqmQPt/3N3d8fb2BmDy5MmWwJebm8v06dN5++23LeGpNIG2qGAI0L9/f8v9wsPDreqSk5OZMmUK8fFXD/ApKriWdoW2rHMF+Oyzz0hNTb3hE42vFRQUxKOPPmq1jboos2fPZtKkSfz44483FGZFRERERMT2KdBe46233gLgq6++wtvbm/bt21O7dm3eeustPv30U8xmMwaDwSocljTQFhY2x44dS5s2bTh79iy9evWibt26dOjQgcaNG1O/fn3efvtt6tWrV+BeRW05LmyFtqi6ssz1zJkzvP3227zzzjvk5+eTmZlJZmYmcHmlNzMzs0zbcidNmsTSpUupVavWddtWqVKFd95556Yd4iQiIiIiIrZDgfYaoaGhfPXVV/j5+ZGens6ff/5J3759iY6OpkOHDhiNRho2bGg5GCgpKYn09HQ8PDws24f/qrhAW7VqVTZt2sT7779P69atOXv2LHv37sVkMvHwww+zYMECy6plUlISaWlpeHp6WlZXiyu/Xl1p53qlv6ysLJ577jlq1Khh+QL44IMPqFGjBsePHy/lT11ERERERKRsDGazufQvnZTb0vnz5ws95Cg4OJinnnqKp59+mk6dOuHi4lIBo5OSsPVDoW5E8MvoUCgRERGRW4weQpQSq1q1apHv2vX19S2yTkRERERE5GZQoBURPl/xMn/sX0VqRiJzx+yisXdgseUAQ6f44ujgbHm37eD7J9At8HFy8y4yOWwQian7cXasQvWqtXn5kbl4ezYGIOP8KT5cPIw/04/gZO/MS4/MoVXD+6z6fCzodUI6jiwwzq37V7Mk8iNmhG4gJT2BqINrebDz85b6qYuGsCs+gm6Bgxjd7+Ob88MSERERkUpDgVZumHat276urQYwsNs4/jmnS4nKr3hryI9WIfeKkI7P0qFZHwwGAyt+/4yZS0YyI3QDAPN/Ho9/g05MHbWWgyeimLigPz9MOIaDvWOxff5VakYCq//4wirQTngijO/DJ3I+J7NE8xYRERER26ZAKyKWFdKSlhfHydGFjv4hls/+Pp1YGvmR5XNkzE8seOMwAE3rt8fDvR6xRyJp06R7gb7yjXnMWfkK0fG/ckeVGrS8q6ulbvay50nNSOS5mYHUruHDe8NXlXqsIiIiImLbFGhFpMw+/PcwzJhpVr8DI0KmUb1qwVcv/WfzbDq36AfAuew0jMY8arp7Werr1PDlVGbhp2Ov2foVJ04fZN5r+wCYMK+Xpe6VR79gzsoxfPnq7nKckYiIiIjYEr22R0TKZGboRr56LZa5Y3bi7ubJhz8+VaDNoogp/HnmMCP6TC3TPXYdjqBH22E4Ojjh6OBEr/bP3OiwRUREROQWokArImVSu4YPAA72jjzSdQx7j22yql+y4SM2713OlJH/w8XJFQB3Nw/s7RxIP5diaZeakUDt6j4luqcBQzmNXkRERERuBQq0IlJqObnZVgcvrd+1mMb17rZ8Xho5k/W7F/PBqF+pWqW61bVdWz3G6q1fAHDwRBRnzibTqlFQofdp49ediJ0LyTfmkZefyy87vrXUuTq7c+Hi2fKblIiIiIjYHD1DKyJ8vPQ5tsWtIT0rhQnzeuHqfAcLxh8usjwzK5VJ3z+KyWTEjJm6NRsybtD3AJzOTOLL1a9Rt2ZDxn4RDICTgzOfvrwNgFEPfMC0xU/y1Ad+ONo7MX7wQssJx38V0nEUCSl7GfFRc8uhUPFJ0QA0rNuKBl4tGPVRS7w8GupQKBEREZHbkMGsd66I3DaMubD+k4oeRdGGTvFl4lMrSvTanqJceW3PX99DG/wy2Dvd2PhEREREpHLRlmMRqTSqudXig8VD+XnbvDJdP3XRECJ2LsTVxb2cRyYiIiIilZFWaEVuI5V9hfZm0gqtiIiIyK1HK7QiIiIiIiJikxRoRURERERExCZpy7HIbcRsBlNeRY+iYtg5gkGvsRURERG5pSjQioiIiIiIiE3SlmMRERERERGxSQq0IiIiIiIiYpMUaEVERERERMQmKdCKiIiIiIiITVKgFREREREREZukQCsiIiIiIiI2SYFWREREREREbJICrYiIiIiIiNgkBVoRERERERGxSQq0IiIiIiIiYpMUaEVERERERMQmKdCKiIiIiIiITVKgFREREREREZukQCsiIiIiIiI2SYFWREREREREbJICrYiIiIiIiNgkBVoRERERERGxSQ4VPQAR+fuYzWDKq+hRVAw7RzAYKnoUIiIiIlKeFGhFbiOmPFj/SUWPomIEvwz2ThU9ChEREREpT9pyLCIiIiIiIjZJgVZERERERERskgKtiIiIiIiI2CQFWhEREREREbFJCrQiIiIiIiJikxRoRURERERExCYp0IqIiIiIiIhNUqAVkb9NzJEN9HjdwC9R31X0UERERETkFuBQ0QMQkcoj5sgGxn4RbPlsZ7DD1cUdT3dv/O5sS3DgYNo17YXBYKjAUYqIiIiIXKZAKyIFBAcOpkOzEMyYybmUxYnTB9mydwW/Rn9PG7/uvP3kEqpWqV7RwxQRERGR25wCrYgU4Ofdhu5th1qVPf/gTL5eM45lG2cyJWwwU0b+r4JGJyIiIiJymZ6htVFms5lq1aphMBg4ffq0Vbm7uzsGg4EzZ84UuKaoOpHrsbez5/kHZ9Dyri5EHVzL3mObLXXZOWf5es0bPDWtMSHjnRkwsRaTwwZzMu3odfs1mUyERUzm1Tn3MXCSF33GO/HEZB9mLwvlXHaapV3G+VP0Ge/E1EVDCu3nk+Uv0HOcHSnpCTc8VxERERGxDQq0NioxMZFz587h5eVFrVq1LOVHjhwhKysLb29vPD09ra4pru529vTTT2MwGIr9iouLq+hhVhq9248AYNuBNcDlMPvK5/fw3z/m0MH/AV54+FP63fMiuw+v46VPO5KakVhsf/nGXJZsmI63px+PdXud0f0+oa1fD9ZGzee1L7qRl58LQI2qtenc/CE271nO+ZxMqz5y8y6yfvci7m7cHa+avuU+ZxERERGpnLTl2EYdP36cpk2b0qlTJ6vymJgYAAIDAwtcU1ydgJ+fH7Vr1y60ztXV9W8eTeXVsG4rAJJOHwLgu/B3OJl2lE9e2kqjeq0t7Xq2f5pnZwSw4Jd3GTfouyL7c3Rw5sd3TuLsWOVqYefnae57DzOXjGTLvhUEtR4IQEjHZ9m0Zxnrdi3ioXtGW5pv2rOM8zmZhHQcWY4zFREREZHKToHWRt13332Frhru3r0bgNatW5eqTuDNN9/k6aefruhhVHquLu4AXLh0DrPZzLqdYQQ0vA/Pat6czb66ld3FyY1mPp2Ijg8vtj+DwWAJs0aTkZxLWRhN+QQ2vh+AA8e3WQJt2yY98Kp5F2u3z7cKtGu3z8fd1YN7WjxcnlMVERERkUpOgfYWoxVaudkuXDwHgKuzO5nZpzl3IY3oQ+EMmFir0PZ2hus/2RAZ8xNLI2dw+M9d5BvzrOrO52RYvjcYDPTpMJJv177F4eTdNPYO5GTaUWKObqB/l1dwdHC6gZmJiIiIiK1RoC1CQkICS5YsISIigvj4eFJSUjCbzfj5+TF48GBeffVVnJysf3n28vIiNTWVY8eOkZmZyYwZM1i3bh2ZmZn4+fkxfvx4Bg0aVOQ9TSYTy5cvZ+HChWzfvp20tDQ8PDxo1qwZ/fr1IzQ01HJPX19fEhMTOXDgAM2aNbP0UZYV2rLMtaKZzWa9C7WCHD0ZC8CdtZuC2QxAG7/uPN7tjTL1t2nPct5f+DjN6ndg9EOzqVW9Pk4OLhjNRt6c1xuTyWTVvnf7Z/g+/F3WRs3nRe9PWRv1DWazmT4dtN1YRERE5HajQFuE9957j2+++QY3Nzfq1atHixYtOHXqFLGxscTGxhIVFcWyZcss7VNTU0lNTcXd3Z0VK1YwduxYPDw88PHx4eLFi8TExDB48GBq1qxJz549C9zv1KlTDBw4kMjISAB8fHwIDAwkJSWF9evXs3XrVl588UUAMjMzSUxMxNXVlSZNmlj6yMjI4MSJE7i5udG4cWOr/ourK+1cb4Zu3boRGRnJsWPH8PX1LbZtbGwsw4YNY+nSpQXmciOWLl3KihUrOHfuHJ6ennTq1Iknn3zS6tAtgbVR8wHo2OwBqrnVomqV6ly4eI42TbqXqb+I6B9wcnBh+vPrcXG6+qzy8VOFH8RV092LTs0fZN3OMEaETCN8x3c08+mIr1eLMt1fRERERGyXTjkuQs+ePYmOjiYrK4tDhw6xfft2EhISiIqKok6dOixfvpw9e/ZY2l/Zznvx4kUmTZpEWFgYKSkpREVFkZycTN++fQGYP39+gXtlZ2cTEhJCZGQkQUFBxMTEkJiYyLZt20hMTGTv3r2MHz8ee3t74OpKa0BAAHZ2V/8Jiyq/Xl1p51rRvv32W2JiYggODubo0eu/Fqak1qxZw8qVK1m/fj1Llizhtdde46677mLhwoXldg9bZjQZ+fK/Y9l7bDMdmoXQ8q57sbOz4/67hxB3YjsbY5cWel3G+VPF9mtnZ4/BYMBsvroSazabWfTb+0VeE9JxFFk5Gcxe9jxnziZrdVZERETkNqUV2iI8/vjjhZa3a9eOHj16sHDhQvbt20dAQABwNdDm5eWxaNEi+vTpY7nGxcWF0NBQVq9eTWJiwVeYvPbaa0RHR9OlSxfCw8MLbO9t0aIFLVpcXX0q6lnYsj4/W9q5VrQZM2aQlpbGDz/8QHBwMJGRkddd1S1OkyZNmDVrFsHBwfj6+uLo6Eh0dDTvv/8+4eHhDBs2jBo1avDAAw+U3yQqufjknfwWfTnI51zK4sTpg2zZt4LUjETaNunJm08ssrR9pvdk9iX8zvsLBxLUaiD+DTrhYO9EakYi2+N+xs+7bbGnHHdtNYBNe5bx+pf3073tMIzGPH7ft4JLuReKvKZdk17UqdGAiJ0LqeJcleDAorfyi4iIiMitS4G2CJcuXWLVqlWWbbBZWVmWZ/n27dsHYBU8rwTGAQMGWIXZK3JzL79Ls3r16lblcXFxzJs3D2dnZ8LCwkr0rGpRz8KW9YTj0s51w4YNBAcHF+indevWlvuUVVJSUonaTZw4keTkZNatW2cJtT4+PmW655tvvlmgrGvXrqxdu5b+/fuzcuVKxowZQ0hISKmf223Xrh0pKSllGtfN4ORQha9ejL9uu/W7F7N+92LsDHa4OFelVrU7adUwiODAwbRv1tuqrVuVanz8wu8sjZxBZOxPbNm3Ent7Bzyr3UlL3y70uc6rdIIDB5FzKYtlG2fx1eqx3FGlBp2aP8iIkGk8+q5HodfY2dnRu/0IFoS/Q1CrgVRxrnrdOfk18SM3P+e67URERETk7+Xl5cWOHTvKdK0CbSEiIiIYPnw4J06cKLZdw4YNLd9fCbRFrXYePHgQwOqZV4BFixZhNBoZNmxYiQPZldD419XWosqLqyvLXK/4/PPPadOmjeWzm5tbsX2URNeuXUt9TUJCAkOHDmXjxo03fP9rGQwGPvjgA1auXMnhw4fZs2cPrVq1KlUfKSkpJCcnl+u4boSLY/Hv023dqBu/TjeXvl8nV4b2eJuhPd4uU/8hHUcR0nFUgfLixuLo4AxQ4u3GJ//8k4t5Ra/6ioiIiIjtUaD9i23bthESEkJeXh4jRoxgyJAhtGzZkho1auDg4EBcXBz+/v44ODjg7+8PXF7hvPJO2G7duhXab1GB8rfffgMgJCSkROPLy8tj//792NnZWYWrvLw8Dhw4UKC8uLqyzPVazZs3p1OnTiUad0kFBASU+ETltLQ0EhISAAodX3lo2rQpNWvWJD09nfj4+FIHWi8vr5syrrJycqhS0UMoF0ZjPmu2fsldXgE09+1comvq1qunFVoRERGRSuhGfmdWoP2LCRMmkJuby7Rp03jjjYKvIVmzZg1wOcw5O19eIdq/fz/5+fn4+Pjg4VH4Fsldu3YBBQPtlZXRwlZAC3PgwAFyc3Px8/OzWhHdv38/ubm5NGnSBFdX61W4ourKMtebbdWqVSV6HjYpKYmgoCDg8qr4nDlzbtqYHB0dAcjPzy/1tWXdOnGzGHNh/ScVPYqyO5l+jAOJf7Bl30pOph/lzSGLS3xt/KF47CvX26dERERE5AbplONrGI1Gy7bV4cOHF6g3mUyEhYUBcPfdd1vKr2w3vrbsWtnZ2cTHx+Po6EjLli0L1AHk5JRs5aiold7SHghV1rle6/HHH8fe3p7atWszcuRIzpw5U6I53Kjk5GTLCccDBgxg4cKFlhOgy9vp06c5deryKb133nnnTbmHlFzskUimLhrC7sPrGNr9HR0GJSIiInKb0wrtNbKzszEajcDl1+/81YwZMywrraUJtLGxsZhMJlq2bFlgO239+vXJyMhgy5Yt3HvvvdcdY1HBtbQHQpV1rgDVqlXj9ddf57777qNq1ar88ccfTJ06la1bt7Jjxw5cXFyuO48bMWnSJA4fPkz//v1ZvHgxDg437z/jGTNmYDabqVatGu3bt79p95GS6dX+aXq1f7qihyEiIiIilYRWaK/h7u6Ot7c3AJMnT7YEvtzcXKZPn87bb79tCU+lCbRFBUOA/v37W+4XHh5uVZecnMyUKVOIj796Km1RwbW0K7RlneuVzx9++CF9+/alW7duTJgwgbCwMPbt28fixSXfAnqtoKAgHn300RIdLDV79mwmTZrEjz/+eMNh9tdff2X8+PEcOXLEqvzChQv8v//3//jwww+By9uzS/psr4iIiIiI/D0MZrO59Eea3sLmzp3L6NGjAahTpw7169cnPj6eCxcu8PnnnxMaGorJZCIzMxN3d3cAPDw8SE9P5/jx49SvX79An6NGjWLevHnMmjWLMWPGWNWdP3+eoKAgdu7cCVx+ILp+/fqkp6dz9OhRDAYD586dswQ9T09P0tLSSEpKsgTS4sqLqyvLXItiNpu54447eOqpp/j8889L8qOuFFasWGH5o0LdunXx9vbGZDJx4MAByzbwZ599li+++KLUr+ypjGz9GdobEfwyeoZWRERE5BajLcd/ERoaioODA9OnTychIQF7e3v69u3LG2+8gclkwmg00qhRI0vAS0pKIj09HQ8Pj0LDLBR9IBRA1apV2bRpE7NmzWLJkiUcOnSIs2fP4uXlxcMPP8wjjzxiCbNJSUmkpaXh6elpFUyLKr9eXWnnWhK2Fvratm3Lv/71L/744w8OHz7M/v37MRqN1KlTh86dOzNq1Cj+8Y9/VPQwRURERESkEFqhlXKxcuVKHn74YRYsWMCwYcMqejhSBK3QVvQoRERERKQ8aYVWSm3o0KE0bNiQNm3aWA6F+vDDDwkMDGTQIJ06a4s+X/Eyf+xfRWpGInPH7KKxd2Cx5QBDp/ji6OBsebft4Psn0C3wcXLzLjI5bBCJqftxdqxC9aq1efmRuXh7NgYg4/wpPlw8jD/Tj+Bk78xLj8yhVcP7rPp8LOh1QjqOLDDOrftXsyTyI2aEbiAlPYGog2t5sPPzlvqpi4awKz6CboGDGN3v45vzwxIRERGRSkOBVkqtRYsWLFq0iI8//picnBzuvPNORo0axbvvvquDk2xU11YDGNhtHP+c06VE5Ve8NeRHq5B7RUjHZ+nQrA8Gg4EVv3/GzCUjmRG6AYD5P4/Hv0Enpo5ay8ETUUxc0J8fJhzDwd6x2D7/KjUjgdV/fGEVaCc8Ecb34RM5n5NZonmLiIiIiG1ToJVSmzBhAhMmTKjoYUg5urJCWtLy4jg5utDRP8Ty2d+nE0sjP7J8joz5iQVvHAagaf32eLjXI/ZIJG2adC/QV74xjzkrXyE6/lfuqFKDlnd1tdTNXvY8qRmJPDczkNo1fHhv+KpSj1VEREREbJsCrYiU2Yf/HoYZM83qd2BEyDSqV61VoM1/Ns+mc4t+AJzLTsNozKOmu5elvk4NX05lHi+0/zVbv+LE6YPMe20fABPm9bLUvfLoF8xZOYYvX91djjMSEREREVui99CKSJnMDN3IV6/FMnfMTtzdPPnwx6cKtFkUMYU/zxxmRJ+pZbrHrsMR9Gg7DEcHJxwdnOjV/pkbHbaIiIiI3EIUaEWkTGrX8AHAwd6RR7qOYe+xTVb1SzZ8xOa9y5ky8n+4OLkC4O7mgb2dA+nnUiztUjMSqF3dp0T3NGBbr4USERERkZtLgVZESi0nN9vq4KX1uxbTuN7dls9LI2eyfvdiPhj1K1WrVLe6tmurx1i99QsADp6I4szZZFo1Cir0Pm38uhOxcyH5xjzy8nP5Zce3ljpXZ3cuXDxbfpMSEREREZujZ2hFhI+XPse2uDWkZ6UwYV4vXJ3vYMH4w0WWZ2alMun7RzGZjJgxU7dmQ8YN+h6A05lJfLn6NerWbMjYL4IBcHJw5tOXtwEw6oEPmLb4SZ76wA9HeyfGD15oOeH4r0I6/n/27jyu6irx//jrwmU3XEAlScQFcxd3bVSknytpuWWaS5naqDXlN3NrptKpzDI1bbJsNLVEx1zGTMssNdxScQN3cQEFBZVFEUG2+/uD4SaxCIheLr6fj0ePr5zz+ZzPOejcL2/O+ZwzivDoo4z4pIF5U6iwyAMA1Hq0CTU8GjLqk0Z4uNXSplAiIiIiDyGDyWQyWboTIvJgZKTCtnmW7kX+hkz3ZuoL6wp1bE9+so/t+fM5tP6vga1OlRIREREpU7TkWERKjfIulfloxRB+3LuwWPd/uHwwWw4uw9nRtYR7JiIiIiKlkWZoRR4ipX2G9n7SDK2IiIhI2aMZWhEREREREbFKCrQiIiIiIiJilbTkWOQhYjJBZpqle2EZNnZg0DG2IiIiImWKAq2IiIiIiIhYJS05FhEREREREaukQCsiIiIiIiJWSYFWRERERERErJICrYiIiIiIiFglBVoRERERERGxSgq0IiIiIiIiYpUUaEVERERERMQqKdCKiIiIiIiIVVKgFREREREREaukQCsiIiIiIiJWSYFWRERERERErJICrYiIiIiIiFglBVoRERERERGxSgq0IiIiIiIiYpUUaEVERERERMQqKdCKiIiIiIiIVVKgFREREREREaukQCsiIiIiIiJWyWjpDojIg2MyQWaapXthGTZ2YDBYuhciIiIiUpIUaEUeIplpsG2epXthGf6vga29pXshIiIiIiVJS45FRERERETEKinQioiIiIiIiFVSoBURERERERGrpEArIiIiIiIiVkmBVkRERERERKySAq2IiIiIiIhYJQVaEXlgQs7+RpcJBn4OXmLproiIiIhIGaBzaEXELOTsb7z5pb/5axuDDc6Orri7euLzWAv8fQfR8vFuGAwGC/ZSRERERCSLAq2I5OLvO4jW9QIwYSL5diIXr55i99F1/HLgG5r7dObtoaso51TB0t0UERERkYecAq2I5OLj2ZzOLYbkKBvdazb/3jiRNdtnMz1wENNH/mSh3omIiIiIZNE7tFbIZDJRvnx5DAYDV69ezVHu6uqKwWDg2rVrue7Jr06kMGxtbBndaxaNarYn+NQmjp7faa5LSr7OvzdO4oUZdQiY7ED/qZX5IHAQl2PP3bXdzMxMArd8wBvzOzJgmgc9Jtvz/AdezF0zhhtJsebr4m9eocdkez5cPjjPduatfYWuE22Ijgu/57GKiIiIiHVQoLVCERER3LhxAw8PDypXrmwuP3v2LImJiXh6euLu7p7jnoLqJMu6devo1asXjz76KA4ODjz66KP4+/szc+ZMS3etVOneagQAe09sBLLC7OufP8EPv8+ndf2neKX3ZzzzxKscPrOVv33Whpj4iALbS89IZdVvM/F09+HZThMY+8w8Wvh0YVPwIsZ/2Ym09FQAKparQrsGT7PzyFpuJifkaCM1LYVth5fTrE5nPCp5l/iYRURERKR00pJjK3ThwgUef/xx2rZtm6M8JCQEAF9f31z3FFT3sEtNTWXw4MGsXr0agFq1alG9enViYmLYsWMHR44cYcKECRbuZelR69EmAERePQ3Aks3vcDn2HPP+tofa1Zqar+va6kVentWYpT+/y8SBS/Jtz87owMp3LuNg5/RHYbvRNPB+gtmrRrL72Dr8mg4AIKDNy+w4soath5bz9BNjzZfvOLKGm8kJBLQZWYIjFREREZHSToHWCnXs2JGTJ0/mKj98+DAATZs2LVLdw27kyJGsXr2a7t27869//YvatWub6xISEti+fbsFe1f6ODu6AnDr9g1MJhNbDwbSuFZH3Mt7cj3pj+XsjvYu1PNqy4GwzQW2ZzAYzGE2IzOD5NuJZGSm41vnSQBOXNhrDrQt6nbBo1JNNu1blCPQbtq3CFdnN55o2LskhyoiIiIipZwCbRmiGdqi27x5M99++y1t2rThhx9+wGjM+T+JChUq8PTTT1uod6XTrZQbADg7uJKQdJUbt2I5cHoz/adWzvN6G8Pd32wICvmO1UGzOHPpEOkZaTnqbibHm/9sMBjo0Xokizf9nTNRh6nj6cvl2HOEnPuNPu1fx85ofw8jExERERFro0Cbh/DwcFatWsWWLVsICwsjOjoak8mEj48PgwYN4o033sDePucPzh4eHsTExHD+/HkSEhKYNWsWW7duJSEhAR8fHyZPnszAgQPzfWZmZiZr165l2bJl7Nu3j9jYWNzc3KhXrx7PPPMMY8aMMT/T29ubiIgITpw4Qb169cxtFGeGtjhjtTSTyVRi56DOmTMHgH/84x+5wqzk7dzlUAAeq/I4mEwANPfpzHOdJhWrvR1H1vL+sueoV701Y5+eS+UK1bE3OpJhyuCthd3JzMzMcX33Vi/xzeZ32RS8iFc9P2NT8NeYTCZ6tNZyYxEREZGHjX6Cz8N7773H119/jYuLC9WqVaNhw4ZcuXKF0NBQQkNDCQ4OZs2aNebrY2JiiImJwdXVlXXr1vHmm2/i5uaGl5cXKSkphISEMGjQICpVqkTXrl1zPe/KlSsMGDCAoKAgALy8vPD19SU6Oppt27axZ88eXn31VSBrCWxERATOzs7UrVvX3EZ8fDwXL17ExcWFOnXq5Gi/oLqijvV+6NSpE0FBQZw/fx5vb+8Crw0NDWXYsGGsXr0611iKKjk5mV9//RUbGxv8/f3Zu3cvixcv5syZM5QrV462bdsycuRIbaL1J5uCFwHQpt5TlHepTDmnCtxKuUHzup2L1d6WA99ib3Rk5uhtONo7m8svXMm9rB6gkqsHbRv0YuvBQEYEzGDz/iXU82qDt0fDYj1fRERERKyXdjnOQ9euXTlw4ACJiYmcPn2affv2ER4eTnBwMFWrVmXt2rUcOXLEfH32ct6UlBSmTZtGYGAg0dHRBAcHExUVRc+ePQFYtGhRrmclJSUREBBAUFAQfn5+hISEEBERwd69e4mIiODo0aNMnjwZW1tb4I+Z1saNG2Nj88dfX37ld6sr6lgtbfHixYSEhODv78+5c3c/EqYgISEhpKen4+bmxr/+9S/atWvHggUL2LJlC99//z1TpkzBx8eHbdu2lVDvrVtGZgYLfniTo+d30rpeAI1q/gUbGxuebDaYkxf3sT10dZ73xd+8UmC7Nja2GAwGTKY/ZmJNJhPLf30/33sC2owiMTmeuWtGc+16lGZnRURERB5SmqHNw3PPPZdnecuWLenSpQvLli3j2LFjNG7cGPgj0KalpbF8+XJ69OhhvsfR0ZExY8awYcMGIiJyH18yfvx4Dhw4QPv27dm8eXOu5b0NGzakYcM/Zp7yexe2uO/PFnWsljZr1ixiY2P59ttv8ff3Jygo6K6zuvm5fPkykDWDPXnyZJ566ik+/vhj6tSpw6lTpxg3bhxbt26lb9++HDlyhMcee6wER1K6hUUd5NcDywBIvp3Ixaun2H1sHTHxEbSo25W3nl9uvval7h9wLHwX7y8bgF+TAdSv0RajrT0x8RHsO/kjPp4tCtzluEOT/uw4soYJC56kc4thZGSksevYOm6n3sr3npZ1u1G1Yg22HFyGk0M5/H3zX84vIiIiImWXAm0ebt++zfr1683LYBMTE83v8R07dgwgR/DMDoz9+/fPEWazpaZmnaNZoUKFHOUnT55k4cKFODg4EBgYWKh3VfN7F7a4OxwXdazZ/vvf/zJz5kxCQkIwGo00atSIr776Kkf4LqrIyMhCXTd16lSioqLYunWrOdR6eXkV+XlJSUkApKenU7t2bf773/9iZ2cHZM1m//DDD9SuXZvo6Gg+/fRTPvnkkyI/w1ptO7yCbYdXYGOwwdGhHJXLP0aTWn74+w6iVb3uOa51cSrPp6/sYnXQLIJCv2P3se+xtTXiXv4xGnm3p8ddjtLx9x1I8u1E1myfw1cb3uQRp4q0bdCLEQEz6PeuW5732NjY0L3VCJZufge/JgNwcihXYmMXEREREeuhQPsnW7ZsYfjw4Vy8eLHA62rVqmX+c3agzW+289SpUwA53nkFWL58ORkZGQwbNqzQgSw7nP55tjW/8oLqijNWgHnz5jF+/Hj+7//+j/fee4/bt2+zd+9ekpOTCzWG/HTo0KHI94SHhzNkyJBiHa3j6Oho/vOrr75qDrPZnJ2dGTNmDO+++y6bNm0qVqBt2bIl0dHRRb7vfrE3OvHVq2H51jet3YlfZpqK3K6jvTNDurzNkC5vF3hdfu0HtBlFQJtRucoL6oud0QGg0MuNfer6kJp+b/9GRURERKTkeXh4sH///mLdq0B7h7179xIQEEBaWhojRoxg8ODBNGrUiIoVK2I0Gjl58iT169fHaDRSv359IGuGM/tM2E6dOuXZbn6B8tdffwUgICCgUP1LS0vj+PHj2NjY0KRJkxzlJ06cyFVeUF1xxgpw9uxZJkyYwJw5c8wbVRVlDAVp3LhxoXdUjo2NJTw8HCBH/4qiYsWK5j/n10Z2+fnz54v1jOjoaKKioop17/3gaOd894usQEZGOhv3LKCmR2MaeLcr1D2XL10iJS3/ZcwiIiIiYn0UaO8wZcoUUlNTmTFjBpMm5T6CZOPGjQA0aNAAB4es2aHjx4+Tnp6Ol5cXbm55L488dOgQkDvQZs+M/nkGND8nTpwgNTUVHx8fXFxczOXHjx8nNTWVunXr4uycM7DkV1ecsQJ8/fXX2NnZMWpU7tm0e7V+/fpCvQ8bGRmJn58fkDUrPn/+/GI9784jj/IL0tmzuBkZGcV6hoeHR7Huu1/sjU6W7sI9uRx3nhMRv7P72PdcjjvHW4NXFPreR6tV0wytiIiISCl0Lz8zK9D+T0ZGhnnZ6vDhw3PVZ2ZmEhgYCECzZs3M5dnLje8su1NSUhJhYWHY2dnRqFGjXHVAoZfq5jfTW9QNoYo7VoDdu3fz+OOPs2zZMt5//30uXryIj48P77zzDoMGDSrUOO5FVFSUeYfj/v37s2zZMvMO0EXl6emJl5cXFy5c4Ny5c/j7++e65uzZswDF3hCquEsn7peMVNg2z9K9KL7Qs0F88t1wyru4M6TzO0XaDCrsdBi2petIZRERERG5Rzq253+SkpLMs3ApKSm56mfNmmWeaS1KoA0NDSUzM5P69evnmgWsXr06kBUSCyO/4FrUDaGKO1bI2hn49OnTTJkyhXfeeYdNmzbh6+vL888/b15CfT9NmzaNM2fO0KdPH1asWIHReG+/kxkwYAAAS5cuzVVnMplYsmQJAE8++eQ9PUdKRrdWL/LLTBOrp17lhW7TLN0dEREREbEwBdr/cXV1xdPTE4APPvjAHPhSU1OZOXMmb7/9tjk8FSXQ5hcMAfr06WN+3ubNm3PURUVFMX36dMLC/tjAJ7/gWtQZ2uKOFbJmb2/evMlXX33F8OHD6dy5M8uXL6dJkya89957eX4P7sbPz49+/frlWEadn7lz5zJt2jRWrlx5z2EWYMKECbi6urJjxw7ee+898/ciPT2dSZMmERISgoODA//3f/93z88SEREREZGSZTCZTEXf0rSM+uKLLxg7diwAVatWpXr16oSFhXHr1i0+//xzxowZQ2ZmJgkJCbi6ugLg5uZGXFwcFy5cMM+43mnUqFEsXLiQOXPmMG7cuBx1N2/exM/Pj4MHDwJZa8erV69OXFwc586dw2AwcOPGDXPQc3d3JzY2lsjISHMgLai8oLrijBWgbdu27N27l8TERMqV++OolPHjx7NkyRJiY2OL/H23tJ9++ok+ffpw+/ZtKleuTM2aNTl79iyxsbEYjUYWL17MkCFDLN3NEmHtS47vhf9raMmxiIiISBmjGdo7jBkzhq+++gofHx/i4uK4dOkSPXv25MCBA7Ru3ZqMjAxq1aplDniRkZHExcXh5uaWZ5iF/DeEAihXrhw7duzg/fffp2nTply/fp2jR4+SmZlJ7969Wbp0qTnMRkZGEhsbi7u7e45gml/53eqKOtZsBZ0zm9fyZWvQo0cPDh06xJAhQzAajRw6dAij0ciAAQPYu3dvmQmzIiIiIiJljWZopUjWr1/PM888w5o1a+jbty+QtQzZ19eXSpUq8dtvv1m2g1IgzdBauhciIiIiUpK0y7EUSa9evejQoQMvv/wysbGxeHl5sXDhQo4dO8Yvv/xi6e6JiIiIiMhDRIFWisRgMLB+/XomTZrEW2+9xY0bN2jatCk//vijdgK2Yp+ve43fj68nJj6CL8Ydoo6nb4HlAEOme2NndDCfbTvoySl08n2O1LQUPggcSETMcRzsnKhQrgqv9f0CT/c6AMTfvMLHK4ZxKe4s9rYO/K3vfJrU6pijzWf9JhDQZmSufu45voFVQZ8wa8xvRMeFE3xqE73ajTbXf7h8MIfCttDJdyBjn/n0/nyzRERERKTUUKCVIqtQoQILFixgwYIFlu6KlJAOTfozoNNE/m9++0KVZ/v74JU5Qm62gDYv07peDwwGA+t2/YvZq0Yya8xvACz6cTL1a7Tlw1GbOHUxmKlL+/DtlPMYbe0KbPPPYuLD2fD7lzkC7ZTnA/lm81RuJicUatwiIiIiYt0UaEXEPENa2PKC2Ns50qZ+gPnr+l5tWR30ifnroJDvWDrpDACPV2+Fm2s1Qs8G0bxu51xtpWekMf/71zkQ9guPOFWkUc0O5rq5a0YTEx/BX2f7UqWiF+8NX1/kvoqIiIiIdVOgFZFi+/g/wzBhol711owImEGFcpVzXfPfnXNp1/AZAG4kxZKRkUYlVw9zfdWK3lxJuJBn+xv3fMXFq6dYOP4YAFMWdjPXvd7vS+Z/P44FbxwuwRGJiIiIiDXRsT0iUiyzx2znq/GhfDHuIK4u7ny88oVc1yzfMp1L184woseHxXrGoTNb6NJiGHZGe+yM9nRr9dK9dltEREREyhAFWhEplioVvQAw2trRt8M4jp7fkaN+1W+fsPPoWqaP/AlHe2cAXF3csLUxEncj2nxdTHw4VSp4FeqZBgwl1HsRERERKQsUaEWkyJJTk3JsvLTt0ArqVGtm/np10Gy2HV7BR6N+oZxThRz3dmjyLBv2fAnAqYvBXLseRZPafnk+p7lPZ7YcXEZ6Rhpp6an8vH+xuc7ZwZVbKddLblAiIiIiYnX0Dq2I8Onqv7L35EbiEqOZsrAbzg6PsHTymXzLExJjmPZNPzIzMzBh4tFKtZg48BsAriZEsmDDeB6tVIs3v/QHwN7owGev7QVg1FMfMWPFUF74yAc7W3smD1pm3uH4zwLajCI8+igjPmlg3hQqLPIAALUebUINj4aM+qQRHm61tCmUiIiIyEPIYDKZTJbuhIg8GBmpsG2epXuRvyHTvZn6wrpCHduTn+xje/58Dq3/a2Brf2/9ExEREZHSRUuORaTUKO9SmY9WDOHHvQuLdf+Hywez5eAynB1dS7hnIiIiIlIaaYZW5CFS2mdo7yfN0IqIiIiUPZqhFREREREREaukQCsiIiIiIiJWSUuORR4iJhNkplm6F5ZhYwcGHWMrIiIiUqYo0IqIiIiIiIhV0pJjERERERERsUoKtCIiIiIiImKVFGhFRERERETEKinQioiIiIiIiFVSoBURERERERGrpEArIiIiIiIiVkmBVkRERERERKySAq2IiIiIiIhYJQVaERERERERsUoKtCIiIiIiImKVFGhFRERERETEKinQioiIiIiIiFVSoBURERERERGrpEArIiIiIiIiVkmBVkRERERERKySAq2IiIiIiIhYJQVaERERERERsUpGS3dARB4ckwky0yzdC8uwsQODwdK9EBEREZGSpEAr8hDJTINt8yzdC8vwfw1s7S3dCxEREREpSVpyLCIiIiIiIlZJgVZERERERESskgKtiIiIiIiIWCUFWhEREREREbFKCrQiIiIiIiJilRRoRURERERExCop0IrIAxNy9je6TDDwc/ASS3dFRERERMoAnUMrImYhZ3/jzS/9zV/bGGxwdnTF3dUTn8da4O87iJaPd8NgMFiwlyIiIiIiWRRoRSQXf99BtK4XgAkTybcTuXj1FLuPruOXA9/Q3Kczbw9dRTmnCpbupoiIiIg85BRoRSQXH8/mdG4xJEfZ6F6z+ffGiazZPpvpgYOYPvInC/VORERERCSLAq2IFIqtjS2je83i1MV9BJ/axNHzO2lUsz0AScnXWb51OjuPrOFqwkWcHV1p5tOZl7p/wKNutQpsNzMzkxXbPuTAqZ+JvHqaxOQ4Kj7iQZt6TzG8+/u4urgBEH/zCs+//xgdmzzLlOcDc7Uzb+0rbNjzBd9MPodHJe8SH7+IiIiIlD7aFMpKmUwmypcvj8Fg4OrVqznKXV1dMRgMXLt2Ldc9+dWJFFb3ViMA2HtiI5AVZl///Al++H0+res/xSu9P+OZJ17l8Jmt/O2zNsTERxTYXnpGKqt+m4mnuw/PdprA2Gfm0cKnC5uCFzH+y06kpacCULFcFdo1eJqdR9ZyMzkhRxupaSlsO7ycZnU6K8yKiIiIPEQ0Q2ulIiIiuHHjBh4eHlSuXNlcfvbsWRITE/H09MTd3T3HPQXVPazCw8OpWbNmoa6dOnUq77777n3uUelX69EmAERePQ3Aks3vcDn2HPP+tofa1Zqar+va6kVentWYpT+/y8SBS/Jtz87owMp3LuNg5/RHYbvRNPB+gtmrRrL72Dr8mg4AIKDNy+w4soath5bz9BNjzZfvOLKGm8kJBLQZWYIjFREREZHSToHWSl24cIHHH3+ctm3b5igPCQkBwNfXN9c9BdU9rBwdHfnLX/6Sb31iYiKhoaEAPPHEEw+qW6Was6MrALdu38BkMrH1YCCNa3XEvbwn15P+mPl3tHehnldbDoRtLrA9g8FgDrMZmRkk304kIzMd3zpPAnDiwl5zoG1RtwselWqyad+iHIF2075FuDq78UTD3iU5VBEREREp5RRorVTHjh05efJkrvLDhw8D0LRp0yLVPaw8PDzYuXNnvvUff/wxoaGhPPbYY/y///f/HmDPSq9bKTcAcHZwJSHpKjduxXLg9Gb6T62c5/U2hru/2RAU8h2rg2Zx5tIh0jPSctTdTI43/9lgMNCj9UgWb/o7Z6IOU8fTl8ux5wg59xt92r+OndH+HkYmIiIiItZGgbaM0Qxtyfrmm28AGDp0KDY2euUc4NzlrBnrx6o8DiYTAM19OvNcp0nFam/HkbW8v+w56lVvzdin51K5QnXsjY5kmDJ4a2F3MjMzc1zfvdVLfLP5XTYFL+JVz8/YFPw1JpOJHq213FhERETkYaOf0PMRHh7OzJkz6d69O7Vr18bFxQVnZ2eaNm3KjBkzSE1NzXWPh4cHBoOB8PBwDh8+zNChQ/H09MTFxQVfX1/+85//FPjMzMxMVq9eTe/evalWrRoODg5Uq1aNJ598krlz5+Z4pre3NwaDIdcsbXFmaIszVksz/S9I3U8HDhzg2LFjALzwwgv3/XnWYlPwIgDa1HuK8i6VKedUgVspN2het3O+/xVky4FvsTc6MnP0Nno9MYa2DXrSvG5nqlaskef1lVw9aNugF1sPBpKcmsTm/Uuo59UGb4+GJT5WERERESndFGjz8d577zFx4kR27tyJra0tDRs2pEqVKoSGhjJlyhQGDRqU4/qYmBhiYmJwdXVl3bp1tGzZks2bN1OtWjUcHR0JCQlh0KBBbN6c9/uEV65c4cknn+TZZ5/l+++/x87ODl9fX+zs7Ni2bRtTpkzB1tYWgISEBCIiInB2dqZu3brmNuLj47l48SIuLi7UqVMnR/sF1RV1rPdDp06dzL8MuJvQ0FCaNWvGmTNn7mufli5dCkCbNm14/PHH7+uzrEFGZgYLfniTo+d30rpeAI1q/gUbGxuebDaYkxf3sT10dZ73xd+8UmC7Nja2GAwGTKY/ZmJNJhPLf30/33sC2owiMTmeuWtGc+16lGZnRURERB5SWnKcj65du/LKK6/QrFkzDAaDuXz//v307NmTtWvXcuTIERo3bgz8sZw3JSWFadOmERgYyIABAzAYDKSkpPDss8+yYcMGFi1aRNeuXXM8KykpiYCAAA4cOICfnx/z5s2jSZMm5vpjx46xZs0ac6DNnmlt3LhxjmWw+ZXfra6oY7W0xYsXExISgr+/P0FBQdSqVfA5p8WRlpbGihUrAHjxxRdLvP3SLizqIL8eWAZA8u1ELl49xe5j64iJj6BF3a689fxy87Uvdf+AY+G7eH/ZAPyaDKB+jbYYbe2JiY9g38kf8fFsUeAuxx2a9GfHkTVMWPAknVsMIyMjjV3H1nE79Va+97Ss242qFWuw5eAynBzK4e87sMTGLiIiIiLWQ4E2H88991ye5S1btqRLly4sW7aMY8eO5Qq0aWlpLF++nB49epjvcXR0ZMyYMWzYsIGIiNxnco4fP54DBw7Qvn17Nm/ejL19zo1tGjZsSMOGfyynzO9d2OK+P1vUsVrarFmziI2N5dtvvzWHWm9v7xJ9xsaNG7l27RoODg75fn/Ksm2HV7Dt8ApsDDY4OpSjcvnHaFLLD3/fQbSq1z3HtS5O5fn0lV2sDppFUOh37D72Pba2RtzLP0Yj7/b0uMtROv6+A0m+ncia7XP4asObPOJUkbYNejEiYAb93nXL8x4bGxu6txrB0s3v4NdkAE4O5Ups7CIiIiJiPRRo83H79m3Wr19PUFAQ58+fJzEx0bw5TfZ7lXcGz+zA2L9//xxhNlv2e6gVKlTIUX7y5EkWLlyIg4MDgYGBucJsXvJ7F7a4OxwXdaydOnUiKCgoz7799a9/5csvv7zrGPITGRlZqOumTp1KVFQUW7duNYdaLy+vYj/3z7I3g3r66aepWLFisdtp2bIl0dHRJdWte2ZvdOKrV8PyrW9auxO/zCz6+8mO9s4M6fI2Q7q8XeB1+bUf0GYUAW1G5SovqC92RgeAQi839qnrQ2p6cqGuFREREZEHx8PDg/379xfrXgXaPGzZsoXhw4dz8eLFAq+7c6lrdqDNbzbv1KlTADneeQVYvnw5GRkZDBs2rNCBLDuc/nm2Nb/yguqKM9b58+dz48aNHPUbN27k/fffp2fPnnftf0E6dOhQ5HvCw8MZMmQI27dvv6dnZ4uNjWXjxo3AvS83jo6OJioqqgR6VTIc7Zwt3YUSkZGRzsY9C6jp0ZgG3u0Kdc/lS5dISct/GbOIiIiIWB8F2j/Zu3cvAQEBpKWlMWLECAYPHkyjRo2oWLEiRqORkydPUr9+fYxGI/Xr1weyZjizdxvu1KlTnu3mFyh//fVXAAICAgrVv7S0NI4fP46NjU2O92zT0tI4ceJErvKC6oozVoAGDRrk6tcHH3xA5cqV6d69e666omjcuHGhZqkhK3hmbyJ1Z//u1YoVK0hNTcXDw4Nu3brdU1seHh4l1KuSYW90snQX7snluPOciPid3ce+53LcOd4avKLQ9z5arZpmaEVERERKoXv5mVmB9k+mTJlCamoqM2bMYNKk3OdqZs/cNWjQAAeHrCWPx48fJz09HS8vL9zc8n7n79ChQ0DuQJs9M1rYjY1OnDhBamoqPj4+uLi4mMuPHz9OamoqdevWxdk55yxcfnXFGWterl69yqZNmxg7dixG4739k1q/fn2h3oeNjIzEz88PyJoVnz9//j09907ZuxsPHjzYvBFXcRV36cT9kpEK2+ZZuhfFF3o2iE++G055F3eGdH6nSJtBhZ0Ow7ZwvysRERERESuhQHuHjIwM87LV4cOH56rPzMwkMDAQgGbNmpnLs5cb31l2p6SkJMLCwrCzs6NRo0a56gCSkws3c5TfTG9RN4Qq7ljzsmLFCtLT0xk6dGhhhnDPoqKi8Pf359y5c/Tv359ly5bdc/DMdvz4cXMIfRh3Ny7turV6kW6tXrR0N0RERESklNA5tHdISkoiIyMDyDp+589mzZplnmktSqANDQ0lMzOT+vXr51pOW716dQB2795dqD7mF1yLuiFUcceal2+//Zb69evTsmXLQo3hXk2bNo0zZ87Qp08fVqxYcc+zwnfK3gyqefPmuX75ICIiIiIipYsC7R1cXV3x9PQEst4JzQ58qampzJw5k7ffftscnooSaAsKhn369DE/b/PmzTnqoqKimD59OmFhf+xKm19wLeoMbXHH+mcnT55k//799zw76+fnR79+/XIso87P3LlzmTZtGitXrizRMJuZmcmyZVlnr77wwgsl1q6IiIiIiNwfBpPJVPQzOsqwL774grFjxwJQtWpVqlevTlhYGLdu3eLzzz9nzJgxZGZmkpCQgKurKwBubm7ExcVx4cIF84zrnUaNGsXChQuZM2cO48aNy1F38+ZN/Pz8OHjwIJD1QnT16tWJi4vj3LlzGAwGbty4YQ567u7uxMbGEhkZaQ6kBZUXVFecsf7Z3//+dz788EPCw8NL9NgcS9i8eTPdunXDzs6OS5cu4e7ubukulThrf4f2Xvi/ht6hFRERESljNEP7J2PGjOGrr77Cx8eHuLg4Ll26RM+ePTlw4ACtW7cmIyODWrVqmQNeZGQkcXFxuLm55RlmIf8NoQDKlSvHjh07eP/992natCnXr1/n6NGjZGZm0rt3b5YuXWoOs5GRkcTGxuLu7p4jmOZXfre6oo71z0wmE4GBgXTq1Mnqwyz8sRnUU089VSbDrIiIiIhIWaMZWim2oKAgOnXqxNdff53nxlJS+miG1tK9EBEREZGSpF2Opdi+/fZbnJyc6N+/v6W7Ivfo83Wv8fvx9cTER/DFuEPU8fQtsBxgyHRv7IwO5rNtBz05hU6+z5GalsIHgQOJiDmOg50TFcpV4bW+X+DpXgeA+JtX+HjFMC7FncXe1oG/9Z1Pk1odc7T5rN8EAtqMzNXPPcc3sCroE2aN+Y3ouHCCT22iV7vR5voPlw/mUNgWOvkOZOwzn96fb5aIiIiIlBpacizFkpKSwurVq+nduzePPPKIpbsj96hDk/7MGbuTqhVrFKo8298Hr2TBG4dZ8MZhOvk+Zy4PaPMyiyeeYsEbIbRr+AyzV/0RThf9OJn6NdqydFIYbz63mA+XP096RlqONvMKs38WEx/Oht+/zFE25flAet4RcEVERESkbNMMrRSLo6MjCQkJlu6GlJDsGdLClhfE3s6RNvUDzF/X92rL6qBPzF8HhXzH0klnAHi8eivcXKsRejaI5nU752orPSON+d+/zoGwX3jEqSKNanYw181dM5qY+Aj+OtuXKhW9eG/4+iL3VURERESsmwKtiBTbx/8ZhgkT9aq3ZkTADCqUq5zrmv/unEu7hs8AcCMployMNCq5epjrq1b05krChTzb37jnKy5ePcXC8ccAmLKwm7nu9X5fMv/7cSx443AJjkhERERErImWHItIscwes52vxofyxbiDuLq48/HK3Gf3Lt8ynUvXzjCix4fFesahM1vo0mIYdkZ77Iz2dGv10r12W0RERETKEAVaESmWKhWzjmoy2trRt8M4jp7fkaN+1W+fsPPoWqaP/AlHe2cAXF3csLUxEncj2nxdTHw4VSoU7tgnA4YS6r2IiIiIlAUKtCJSZMmpSdxMTjB/ve3QCupUa2b+enXQbLYdXsFHo36hnFOFHPd2aPIsG/ZkbeZ06mIw165H0aS2X57Pae7TmS0Hl5GekUZaeio/719srnN2cOVWyvWSG5SIiIiIWB29QysifLr6r+w9uZG4xGimLOyGs8MjLJ18Jt/yhMQYpn3Tj8zMDEyYeLRSLSYO/AaAqwmRLNgwnkcr1eLNL/0BsDc68NlrewEY9dRHzFgxlBc+8sHO1p7Jg5ZhtLXLs18BbUYRHn2UEZ80MG8KFRZ5AIBajzahhkdDRn3SCA+3WtoUSkREROQhZDCZTCZLd0JEHoyMVNg2z9K9yN+Q6d5MfWFdjvNui+qbzVO5mZyQ6xxa/9fA1v7e+iciIiIipYuWHItIqVHepTIfrRjCj3sXFuv+D5cPZsvBZTg7upZwz0RERESkNNIMrchDpLTP0N5PmqEVERERKXs0QysiIiIiIiJWSYFWRERERERErJKWHIs8REwmyEyzdC8sw8YODDrGVkRERKRMUaAVERERERERq6QlxyIiIiIiImKVFGhFRERERETEKinQioiIiIiIiFVSoBURERERERGrpEArIiIiIiIiVkmBVkRERERERKySAq2IiIiIiIhYJQVaERERERERsUoKtCIiIiIiImKVFGhFRERERETEKinQioiIiIiIiFVSoBURERERERGrpEArIiIiIiIiVkmBVkRERERERKySAq2IiIiIiIhYJQVaERERERERsUoKtCIiIiIiImKVFGhFRERERETEKhkt3QEReXBMJshMs3QvLMPGDgwGS/dCREREREqSAq3IQyQzDbbNs3QvLMP/NbC1t3QvRERERKQkacmxiIiIiIiIWCUFWhEREREREbFKCrQiIiIiIiJilRRoRURERERExCop0IqIiIiIiIhVUqAVERERERERq6RAKyIPTMjZ3+gywcDPwUss3RURERERKQN0Dq2ImIWc/Y03v/Q3f21jsMHZ0RV3V098HmuBv+8gWj7eDYPBYMFeioiIiIhkUaAVkVz8fQfRul4AJkwk307k4tVT7D66jl8OfENzn868PXQV5ZwqWLqbIiIiIvKQU6AVkVx8PJvTucWQHGWje83m3xsnsmb7bKYHDmL6yJ8s1DsRERERkSx6h9YKmUwmypcvj8Fg4OrVqznKXV1dMRgMXLt2Ldc9+dWJFIatjS2je82iUc32BJ/axNHzO811ScnX+ffGSbwwow4Bkx3oP7UyHwQO4nLsubu2m5mZSeCWD3hjfkcGTPOgx2R7nv/Ai7lrxnAjKdZ8XfzNK/SYbM+Hywfn2c68ta/QdaIN0XHh9zxWEREREbEOCrRWKCIighs3buDh4UHlypXN5WfPniUxMRFPT0/c3d1z3FNQ3cPu2rVrTJo0icaNG+Pi4oKDgwM1atRg6NChHDx40NLdK3W6txoBwN4TG4GsMPv650/ww+/zaV3/KV7p/RnPPPEqh89s5W+ftSEmPqLA9tIzUln120w83X14ttMExj4zjxY+XdgUvIjxX3YiLT0VgIrlqtCuwdPsPLKWm8kJOdpITUth2+HlNKvTGY9K3iU+ZhEREREpnbTk2ApduHCBxx9/nLZt2+YoDwkJAcDX1zfXPQXVPcxOnTpFp06diI6OxsbGhpo1a1KuXDnOnj3LsmXLWLFiBUuXLmXw4LxnBR9GtR5tAkDk1dMALNn8DpdjzzHvb3uoXa2p+bqurV7k5VmNWfrzu0wcuCTf9uyMDqx85zIOdk5/FLYbTQPvJ5i9aiS7j63Dr+kAAALavMyOI2vYemg5Tz8x1nz5jiNruJmcQECbkSU4UhEREREp7TRDa4U6duzIyZMnWbJkSY7yw4cPA9C0adNc9xRU9zAbM2YM0dHRPP744xw7dowzZ85w+PBhoqOjefnll8nIyGD06NHExcVZuqulhrOjKwC3bt/AZDKx9WAgjWt1xL28J9eTrpn/c7R3oZ5XWw6EbS6wPYPBYA6zGZkZ3ExO4HrSNXzrPAnAiQt7zde2qNsFj0o12bRvUY42Nu1bhKuzG0807F2CIxURERGR0k4ztGWIZmiLJjExkd9++w2AmTNnUq9ePXOdi4sLn3/+OWvXruXatWts376d3r17W6ajpcytlBsAODu4kpB0lRu3YjlwejP9p1bO83obw91/bxYU8h2rg2Zx5tIh0jPSctTdTI43/9lgMNCj9UgWb/o7Z6IOU8fTl8ux5wg59xt92r+OndH+HkYmIiIiItZGgTYP4eHhrFq1ii1bthAWFkZ0dDQmkwkfHx8GDRrEG2+8gb19zh+cPTw8iImJ4fz58yQkJDBr1iy2bt1KQkICPj4+TJ48mYEDB+b7zMzMTNauXcuyZcvYt28fsbGxuLm5Ua9ePZ555hnGjBljfqa3tzcRERGcOHEiRwgrzgxtccZqaSaTqUTOQb19+zYmkwmAWrVq5ao3Go3UqFGDa9eukZaWlqv+YXXucigAj1V5HP73/Wvu05nnOk0qVns7jqzl/WXPUa96a8Y+PZfKFapjb3Qkw5TBWwu7k5mZmeP67q1e4pvN77IpeBGven7GpuCvMZlM9Git5cYiIiIiDxsF2jy89957fP3117i4uFCtWjUaNmzIlStXCA0NJTQ0lODgYNasWWO+PiYmhpiYGFxdXVm3bh1vvvkmbm5ueHl5kZKSQkhICIMGDaJSpUp07do11/OuXLnCgAEDCAoKAsDLywtfX1+io6PZtm0be/bs4dVXXwUgISGBiIgInJ2dqVu3rrmN+Ph4Ll68iIuLC3Xq1MnRfkF1RR3r/dCpUyeCgoI4f/483t7eBV4bGhrKsGHDWL16da6xFJW7uzuenp5ERUWxe/duGjZsmKM+Li6OkydPYmNjQ/Pmze/pWWXJpuCs5b5t6j1FeZfKlHOqwK2UGzSv27lY7W058C32Rkdmjt6Go72zufzClZN5Xl/J1YO2DXqx9WAgIwJmsHn/Eup5tcHbo2Ge14uIiIhI2aV3aPPQtWtXDhw4QGJiIqdPn2bfvn2Eh4cTHBxM1apVWbt2LUeOHDFfn72cNyUlhWnTphEYGEh0dDTBwcFERUXRs2dPABYtWpTrWUlJSQQEBBAUFISfnx8hISFERESwd+9eIiIiOHr0KJMnT8bW1hb4Y6a1cePG2Nj88deXX/nd6oo6VktbvHgxISEh+Pv7c+7c3Y+EuZvp06djMBiYMGECixcvJiYmhqSkJHbt2kXPnj1JSkrijTfeoHbt2iXQe+uWkZnBgh/e5Oj5nbSuF0Cjmn/BxsaGJ5sN5uTFfWwPXZ3nffE3rxTYro2NLQaDAZPpj5lYk8nE8l/fz/eegDajSEyOZ+6a0Vy7HqXZWREREZGHlGZo8/Dcc8/lWd6yZUu6dOnCsmXLOHbsGI0bNwb+CLRpaWksX76cHj16mO9xdHRkzJgxbNiwgYiI3MeXjB8/ngMHDtC+fXs2b96ca3lvw4YNc8wc5vcubHHfny3qWC1t1qxZxMbG8u233+Lv709QUNBdZ3ULMmzYMMqXL8/777/PSy+9lKOuRo0afPPNNwwdOvQee219wqIO8uuBZQAk307k4tVT7D62jpj4CFrU7cpbzy83X/tS9w84Fr6L95cNwK/JAOrXaIvR1p6Y+Aj2nfwRH88WBe5y3KFJf3YcWcOEBU/SucUwMjLS2HVsHbdTb+V7T8u63ahasQZbDi7DyaEc/r75L+cXERERkbJLgTYPt2/fZv369eZlsImJieb3+I4dOwaQI3hmB8b+/fvnCLPZUlOzztGsUKFCjvKTJ0+ycOFCHBwcCAwMLNS7qvm9C1vcHY6LOlaAHTt2MHXqVEJCQkhPT6devXpMnDiRvn373rX/BYmMjCzUdVOnTiUqKoqtW7eaQ62Xl1exnmkymTh79ixXr17FxsYGLy8vXF1dOXPmDBERESxYsICWLVtSv379YrVvrbYdXsG2wyuwMdjg6FCOyuUfo0ktP/x9B9GqXvcc17o4lefTV3axOmgWQaHfsfvY99jaGnEv/xiNvNvT4y5H6fj7DiT5diJrts/hqw1v8ohTRdo26MWIgBn0e9ctz3tsbGzo3moESze/g1+TATg5lCuxsYuIiIiI9VCg/ZMtW7YwfPhwLl68WOB1d24ilB1o85vtPHXqFECOd14Bli9fTkZGBsOGDSt0IMsOp3+ebc2vvKC64o61S5cudOzYkSVLlmBnZ8fChQvp378/69evNy+vLo4OHToU+Z7w8HCGDBnC9u3bi/XMMWPGsGDBAlq1asXmzZvNf0fJycm8++67zJw5k3bt2nHkyBGqV69e5PZbtmxJdHR0sfp2P9gbnfjq1bB865vW7sQvM01FbtfR3pkhXd5mSJe3C7wuv/YD2owioM2oXOUF9cXO6ABQ6OXGPnV9SE1PLtS1IiIiIvLgeHh4sH///mLdq0B7h7179xIQEEBaWhojRoxg8ODBNGrUiIoVK2I0Gjl58iT169fHaDSaZ+xu377NyZNZm9d06tQpz3bzC5S//vorAAEBAYXqX1paGsePH8fGxoYmTZrkKD9x4kSu8oLqijNWgJUrV2IwGFi3bh3Ozlkb+HTu3JlatWoRGBh4T4G2cePGhd5ROTY2lvDwcIBiz56GhITw1VdfYWdnx6pVq6hRo4a5zsnJiY8//piDBw+yZcsWpk+fzhdffFHkZ0RHRxMVFVWs/t0PjnbOd7/ICmRkpLNxzwJqejSmgXe7Qt1z+dIlUtLyX8YsIiIiItZHgfYOU6ZMITU1lRkzZjBpUu4jSDZu3AhAgwYNcHDImh06fvw46enpeHl54eaW9/LIQ4cOAbkDbfbMaF5HxuTlxIkTpKam4uPjg4uLi7n8+PHjpKamUrduXXPIvFtdccYKWcun7e3tcXJyMpfZ2tryyCOP5DpepajWr19fqPdhIyMj8fPzA7JmxefPn1+s5+3atct8RNGdYfZOXbt2ZcuWLQQHBxfrGR4eHsW6736xNzrd/aJS7HLceU5E/M7uY99zOe4cbw1eUeh7H61WTTO0IiIiIqXQvfzMrED7PxkZGeZlq8OHD89Vn5mZSWBgIADNmjUzl2cvN76z7E5JSUmEhYVhZ2dHo0aNctVB1vLWwshvpreoG0IVd6wAQ4cO5fPPP2f8+PFMmjQJo9HIggULCAsLK3awLIqoqCjzDsf9+/dn2bJl5h2giyoxMbHQ16akpBTrGcVdOnG/ZKTCtnmW7kXxhZ4N4pPvhlPexZ0hnd8p0mZQYafDsC1dRyqLiIiIyD1SoP2fpKQkMjIygLzDy6xZs8wzrUUJtKGhoWRmZtKoUaNcy2mrV69OfHw8u3fv5i9/+ctd+5hfcC3qhlDFHWt2O1u2bKFv377MmTMHABcXF1atWkXHjh3vOoZ7NW3aNM6cOUOfPn1YsWIFRmPx/wlnvy8bFhZGREREnrO0mzdvBuDxxx8v9nOk5HRr9SLdWr1o6W6IiIiISCmhc2j/x9XVFU9PTwA++OADc+BLTU1l5syZvP322+bwVJRAm18wBOjTp4/5ednBKVtUVBTTp08nLOyPDXzyC65FnaEt7lghK/w999xztGrVih9//JGff/6Zfv36MXDgQLZu3Zrn9+Bu/Pz86NevX45l1PmZO3cu06ZNY+XKlfcUZiFrOXGVKlVIS0vj2Wef5fTp0+a65ORkJk6cyJYtW4Cs431ERERERKR0MZhMpqJvaVpGffHFF4wdOxaAqlWrUr16dcLCwrh16xaff/45Y8aMITMzk4SEBFxdXQFwc3MjLi6OCxcu5LkL7qhRo1i4cCFz5sxh3LhxOepu3ryJn58fBw8eBLLWjlevXp24uDjOnTuHwWDgxo0b5qDn7u5ObGwskZGR5kBaUHlBdcUZK8Czzz5LaGgox44dyxEo/f39SUhIMAd4a/Hrr7/Su3dvkpKSsLGxoUaNGjzyyCOcOXOGW7eyNhB65ZVX+Ne//mXhnpYMa19yfC/8X0NLjkVERETKGM3Q3mHMmDF89dVX+Pj4EBcXx6VLl+jZsycHDhygdevWZGRkUKtWLXPAi4yMJC4uDjc3t3yPdMlvQyiAcuXKsWPHDt5//32aNm3K9evXOXr0KJmZmfTu3ZulS5eaw2xkZCSxsbG4u7vnCKb5ld+trqhjzXbkyBGaNm2aa3a0ZcuWnDhxohDf5dKlc+fOhIaG8uqrr1K3bl2io6M5ceIE5cuX55lnnmHDhg1lJsyKiIiIiJQ1mqGVIunUqROXLl3i+PHjOUJtp06duHjxImfPnrVg7+RuNENr6V6IiIiISEnSDK0UySuvvEJYWBh9+vRhw4YN/PTTTwwdOpSgoCBef/11S3dPREREREQeItrlWIrk2Wef5YcffuCjjz7ihRdeICMjg7p16xIYGMjzzz9v6e5JMX2+7jV+P76emPgIvhh3iDqevgWWAwyZ7o2d0cF8tu2gJ6fQyfc5UtNS+CBwIBExx3Gwc6JCuSq81vcLPN3rABB/8wofrxjGpbiz2Ns68Le+82lSq2OONp/1m0BAm5G5+rnn+AZWBX3CrDG/ER0XTvCpTfRqN9pc/+HywRwK20In34GMfebT+/PNEhEREZFSQ4FWiqxnz5707NnT0t2QEtShSX8GdJrI/81vX6jybH8fvDJHyM0W0OZlWtfrgcFgYN2ufzF71UhmjfkNgEU/TqZ+jbZ8OGoTpy4GM3VpH76dch6jrV2Bbf5ZTHw4G37/MkegnfJ8IN9snsrN5IRCjVtERERErJsCrYiYZ0gLW14QeztH2tQPMH9d36stq4M+MX8dFPIdSyedAeDx6q1wc61G6NkgmtftnKut9Iw05n//OgfCfuERp4o0qtnBXDd3zWhi4iP462xfqlT04r3h64vcVxERERGxbgq0IlJsH/9nGCZM1KvemhEBM6hQrnKua/67cy7tGj4DwI2kWDIy0qjk6mGur1rRmysJF/Jsf+Oer7h49RQLxx8DYMrCbua61/t9yfzvx7HgjcMlOCIRERERsSbaFEpEimX2mO18NT6UL8YdxNXFnY9XvpDrmuVbpnPp2hlG9PiwWM84dGYLXVoMw85oj53Rnm6tXrrXbouIiIhIGaJAKyLFUqWiFwBGWzv6dhjH0fM7ctSv+u0Tdh5dy/SRP+Fo7wyAq4sbtjZG4m5Em6+LiQ+nSgWvQj3TgKGEei8iIiIiZYECrYgUWXJqUo6Nl7YdWkGdas3MX68Oms22wyv4aNQvlHOqkOPeDk2eZcOeLwE4dTGYa9ejaFLbL8/nNPfpzJaDy0jPSCMtPZWf9y821zk7uHIr5XrJDUpERERErI7eoRURPl39V/ae3EhcYjRTFnbD2eERlk4+k295QmIM077pR2ZmBiZMPFqpFhMHfgPA1YRIFmwYz6OVavHml/4A2Bsd+Oy1vQCMeuojZqwYygsf+WBna8/kQcvMOxz/WUCbUYRHH2XEJw3Mm0KFRR4AoNajTajh0ZBRnzTCw62WNoUSEREReQgZTCaTydKdEJEHIyMVts2zdC/yN2S6N1NfWFeoY3vyk31sz5/PofV/DWzt761/IiIiIlK6aMmxiJQa5V0q89GKIfy4d2Gx7v9w+WC2HFyGs6NrCfdMREREREojzdCKPERK+wzt/aQZWhEREZGyRzO0IiIiIiIiYpU0QyvyEDGZIDPN0r2wDBs7MOjUHxEREZEyRYFWRERERERErJKWHIuIiIiIiIhVUqAVERERERERq6RAKyIiIiIiIlZJgVZERERERESskgKtiIiIiIiIWCUFWhEREREREbFKCrQiIiIiIiJilRRoRURERERExCop0IqIiIiIiIhVUqAVERERERERq6RAKyIiIiIiIlZJgVZERERERESskgKtiIiIiIiIWCUFWhEREREREbFKCrQiIiIiIiJilRRoRURERERExCop0IqIiIiIiIhVUqAVERERERERq2S0dAdE5MExmSAzzdK9sAwbOzAYLN0LERERESlJCrQiD5HMNNg2z9K9sAz/18DW3tK9EBEREZGSpCXHIiIiIiIiYpUUaEVERERERMQqKdCKiIiIiIiIVVKgFREREREREaukQCsiIiIiIiJWSYFWRERERERErJICrYg8MCFnf6PLBAM/By+xdFdEREREpAzQObQiYhZy9jfe/NLf/LWNwQZnR1fcXT3xeawF/r6DaPl4NwwGgwV7KSIiIiKSRYFWRHLx9x1E63oBmDCRfDuRi1dPsfvoOn458A3NfTrz9tBVlHOqYOluioiIiMhDToFWRHLx8WxO5xZDcpSN7jWbf2+cyJrts5keOIjpI3+yUO9ERERERLLoHVorZDKZKF++PAaDgatXr+Yod3V1xWAwcO3atVz35FcnUhi2NraM7jWLRjXbE3xqE0fP7zTXJSVf598bJ/HCjDoETHag/9TKfBA4iMux5+7abmZmJoFbPuCN+R0ZMM2DHpPtef4DL+auGcONpFjzdfE3r9Bjsj0fLh+cZzvz1r5C14k2RMeF3/NYRURERMQ6KNBaoYiICG7cuIGHhweVK1c2l589e5bExEQ8PT1xd3fPcU9BdQ+7q1evMnHiROrXr4+TkxMVK1akY8eOLF++3NJdK5W6txoBwN4TG4GsMPv650/ww+/zaV3/KV7p/RnPPPEqh89s5W+ftSEmPqLA9tIzUln120w83X14ttMExj4zjxY+XdgUvIjxX3YiLT0VgIrlqtCuwdPsPLKWm8kJOdpITUth2+HlNKvTGY9K3iU+ZhEREREpnbTk2ApduHCBxx9/nLZt2+YoDwkJAcDX1zfXPQXVPcxOnDhB586duXTpEnZ2djRq1IiUlBR27tzJjh072LJlC4sWLbJ0N0uVWo82ASDy6mkAlmx+h8ux55j3tz3UrtbUfF3XVi/y8qzGLP35XSYOXJJve3ZGB1a+cxkHO6c/CtuNpoH3E8xeNZLdx9bh13QAAAFtXmbHkTVsPbScp58Ya758x5E13ExOIKDNyBIcqYiIiIiUdpqhtUIdO3bk5MmTLFmyJEf54cOHAWjatGmuewqqe1hlZGTQr18/Ll26RPv27blw4QIHDx7k+PHjhISE4OXlxddff82///1vS3e1VHF2dAXg1u0bmEwmth4MpHGtjriX9+R60jXzf472LtTzasuBsM0FtmcwGMxhNiMzg5vJCVxPuoZvnScBOHFhr/naFnW74FGpJpv25fwlw6Z9i3B1duOJhr1LcKQiIiIiUtpphrYM0Qxt0fz444+cOHECBwcHvv32Wzw8PMx1jRs35vPPP6dXr15MnTqVl156CVtbWwv2tvS4lXIDAGcHVxKSrnLjViwHTm+m/9TKeV5vY7j7782CQr5jddAszlw6RHpGWo66m8nx5j8bDAZ6tB7J4k1/50zUYep4+nI59hwh536jT/vXsTPa38PIRERERMTaKNDmITw8nFWrVrFlyxbCwsKIjo7GZDLh4+PDoEGDeOONN7C3z/mDs4eHBzExMZw/f56EhARmzZrF1q1bSUhIwMfHh8mTJzNw4MB8n5mZmcnatWtZtmwZ+/btIzY2Fjc3N+rVq8czzzzDmDFjzM/09vYmIiKCEydOUK9ePXMbxZmhLc5YLc1kMpXIOag7d2ZtatSyZUu8vb1z1ffs2RMXFxcuXbrEjh076NSp0z0/syw4dzkUgMeqPA4mEwDNfTrzXKdJxWpvx5G1vL/sOepVb83Yp+dSuUJ17I2OZJgyeGthdzIzM3Nc373VS3yz+V02BS/iVc/P2BT8NSaTiR6ttdxYRERE5GGjQJuH9957j6+//hoXFxeqVatGw4YNuXLlCqGhoYSGhhIcHMyaNWvM18fExBATE4Orqyvr1q3jzTffxM3NDS8vL1JSUggJCWHQoEFUqlSJrl275nrelStXGDBgAEFBQQB4eXnh6+tLdHQ027ZtY8+ePbz66qsAJCQkEBERgbOzM3Xr1jW3ER8fz8WLF3FxcaFOnTo52i+orqhjvR86depEUFAQ58+fzzNY3ik0NJRhw4axevXqXGMpqri4OAA8PT3zvcbT05PTp0+ze/duBdr/2RSctdy3Tb2nKO9SmXJOFbiVcoPmdTsXq70tB77F3ujIzNHbcLR3NpdfuHIyz+sruXrQtkEvth4MZETADDbvX0I9rzZ4ezQs1vNFRERExHrpHdo8dO3alQMHDpCYmMjp06fZt28f4eHhBAcHU7VqVdauXcuRI0fM12cv501JSWHatGkEBgYSHR1NcHAwUVFR9OzZEyDPzYWSkpIICAggKCgIPz8/QkJCiIiIYO/evURERHD06FEmT55sXu6aPdPauHFjbGz++OvLr/xudUUdq6UtXryYkJAQ/P39OXfu7kfCFKRChQoAREVF5XtNdt2pU6fu6VllQUZmBgt+eJOj53fSul4AjWr+BRsbG55sNpiTF/exPXR1nvfF37xSYLs2NrYYDAZMpj9mYk0mE8t/fT/fewLajCIxOZ65a0Zz7XqUZmdFREREHlKaoc3Dc889l2d5y5Yt6dKlC8uWLePYsWM0btwY+CPQpqWlsXz5cnr06GG+x9HRkTFjxrBhwwYiInIfXzJ+/HgOHDhA+/bt2bx5c67lvQ0bNqRhwz9mnvJ7F7a4788WdayWNmvWLGJjY/n222/x9/cnKCjorrO6+WnVqhUA+/fvJyIigho1auSo//HHH0lKSgKyZrkfJmFRB/n1wDIAkm8ncvHqKXYfW0dMfAQt6nblref/ONLope4fcCx8F+8vG4BfkwHUr9EWo609MfER7Dv5Iz6eLQrc5bhDk/7sOLKGCQuepHOLYWRkpLHr2Dpup97K956WdbtRtWINthxchpNDOfx981/OLyIiIiJllwJtHm7fvs369evNy2ATExPN7/EdO3YMIEfwzA6M/fv3zxFms6WmZp2jmT0jmO3kyZMsXLgQBwcHAgMDC/Wuan7vwhZ3h+OijhXg119/5R//+AeHDx/G1dWVvn378tFHH1G+fPm79r8gkZGRhbpu6tSpREVFsXXrVnOo9fLyKvLznnnmGR577DEiIyMZOHAg3333HdWrVwcgODiY0aNHm6+9dSv/cFUWbTu8gm2HV2BjsMHRoRyVyz9Gk1p++PsOolW97jmudXEqz6ev7GJ10CyCQr9j97HvsbU14l7+MRp5t6fHXY7S8fcdSPLtRNZsn8NXG97kEaeKtG3QixEBM+j3rlue99jY2NC91QiWbn4HvyYDcHIoV2JjFxERERHroUD7J1u2bGH48OFcvHixwOtq1apl/nN2oM1vtjN7ueqd77wCLF++nIyMDIYNG1boQJYdTv8825pfeUF1xRlrUFAQ3bt355lnnuHdd98lMjKSKVOmcOrUKbZu3XpPmzV16NChyPeEh4czZMgQtm/fXuR7HRwc+O677+jRowd79uyhZs2a+Pj4kJKSQnh4OG5ubvTt25e1a9fyyCOPFLl9yJrpjo6OLta994O90YmvXg3Lt75p7U78MtNU5HYd7Z0Z0uVthnR5u8Dr8ms/oM0oAtqMylVeUF/sjA4AhV5u7FPXh9T05EJdKyIiIiIPjoeHB/v37y/WvQq0d9i7dy8BAQGkpaUxYsQIBg8eTKNGjahYsSJGo5GTJ09Sv359jEYj9evXB7JmOE+ezNq8Jr9Ng/ILlL/++isAAQEBhepfWloax48fx8bGhiZNmuQoP3HiRK7yguqKM1aAf/7zn/j4+LBq1Srz+7hubm7069ePjRs3mt8XLo7GjRsXekfl2NhYwsPDAXL0r6jatWvHoUOHmDFjBj///DPnzp2jYsWKvPjii/zzn/9k+vTpADmO9CmK6OjoAt/RfdAc7ZzvfpEVyMhIZ+OeBdT0aEwD73aFuufypUukpD1cM+0iIiIiZZ0C7R2mTJlCamoqM2bMYNKk3EeQbNy4EYAGDRrg4JA1O3T8+HHS09Px8vLCzS3v5ZGHDh0Ccgfa7JnRO2dAC3LixAlSU1Px8fHBxcXFXH78+HFSU1OpW7cuzs45A0t+dcUZK2QF4eHDh+fYXCp75+Z169bdU6Bdv359od6HjYyMxM/PD8iaFZ8/f36xnwlQs2ZNFixYkGdd9rLrli1bFqvt4gbh+8Xe6GTpLtyTy3HnORHxO7uPfc/luHO8NXhFoe99tFo1zdCKiIiIlEL38jOzAu3/ZGRkmJetDh8+PFd9ZmYmgYGBADRr1sxcnr3c+M6yOyUlJREWFoadnR2NGjXKVQeQnFy4H7Lzm+kt6oZQxR0rgK2tba5ZVDs7OwwGgzn83U9RUVHmHY779+/PsmXLzDtAl7Rr167x+++/YzQaCz2L/mfFXTpxv2SkwrZ5lu5F8YWeDeKT74ZT3sWdIZ3fKdJmUGGnw7AtXUcqi4iIiMg9UqD9n6SkJDIyMoCs43f+bNasWeaZ1qIE2tDQUDIzM2nUqFGuIFi9enXi4+PZvXs3f/nLX+7ax/yCa1E3hCruWCHrPeC9e/fmKAsODsZkMpnPdb2fpk2bxpkzZ+jTpw8rVqzAaLx//4T/8Y9/kJ6ezuDBg3n00Ufv23Ok8Lq1epFurV60dDdEREREpJTQObT/4+rqiqenJwAffPCBOfClpqYyc+ZM3n77bXN4KkqgzS8YAvTp08f8vM2bN+eoi4qKYvr06YSF/bGBT37BtagztMUdK8Brr73Grl27eP/997l27RqHDx9m7Nix2Nra5jrjtrD8/Pzo169fjmXU+Zk7dy7Tpk1j5cqVJRJmf/zxR3bt2pWjLCEhgXHjxrFgwQIqV67MrFmz7vk5IiIiIiJS8gwmk6noW5qWUV988QVjx44FoGrVqlSvXp2wsDBu3brF559/zpgxY8jMzCQhIQFXV1cga0OkuLg4Lly4YD7y5U6jRo1i4cKFzJkzh3HjxuWou3nzJn5+fhw8eBDIWjtevXp14uLiOHfuHAaDgRs3bpiDnru7O7GxsURGRpoDaUHlBdUVZ6wAJpOJKVOmMGfOHFJTU7G1teWVV15h165duLq6snXr1uJ++y1i3LhxzJ07F1dXV/P7uydPniQ1NRVPT09++umnUnMGb0mw9iXH98L/NbTkWERERKSM0ZLjO4wZMwaj0cjMmTMJDw/H1taWnj17MmnSJDIzM8nIyKB27drmgBcZGUlcXBxubm55hlnIf0MogHLlyrFjxw7mzJnDqlWrOH36NNevX8fDw4PevXvTt29fc5iNjIwkNjYWd3f3HME0v/K71RV1rNkMBgMzZszg73//O+fPn8fT05Py5cvj5ubG3/72t6J9w0uB3r17ExMTw759+wgLC8NoNNKgQQP69u3LuHHjin1cj4iIiIiI3H+aoZV79u9//5tXXnmFEydOULt2bUt3RwqgGVpL90JERERESpJmaKVI9u/fzy+//ELz5s1JT0/n119/Zd68eXzyyScKsyIiIiIi8kAp0EqRODg48MMPP/Dhhx+Snp5O48aNWblyJf3797d01+QefL7uNX4/vp6Y+Ai+GHeIOp6+BZYDDJnujZ3RwXy27aAnp9DJ9zlS01L4IHAgETHHcbBzokK5KrzW9ws83esAEH/zCh+vGMaluLPY2zrwt77zaVKrY442n/WbQECbkbn6uef4BlYFfcKsMb8RHRdO8KlN9Go32lz/4fLBHArbQiffgYx95tP7880SERERkVJDgVaKpHHjxuzevdvS3ZAS1qFJfwZ0msj/zW9fqPJsfx+8MkfIzRbQ5mVa1+uBwWBg3a5/MXvVSGaN+Q2ART9Opn6Ntnw4ahOnLgYzdWkfvp1yHqOtXYFt/llMfDgbfv8yR6Cd8nwg32yeys3khEKNW0RERESsmwKtiJhnSAtbXhB7O0fa1A8wf13fqy2rgz4xfx0U8h1LJ50B4PHqrXBzrUbo2SCa1+2cq630jDTmf/86B8J+4RGnijSq2cFcN3fNaGLiI/jrbF+qVPTiveHri9xXEREREbFuCrQiUmwf/2cYJkzUq96aEQEzqFCucq5r/rtzLu0aPgPAjaRYMjLSqOTqYa6vWtGbKwkX8mx/456vuHj1FAvHHwNgysJu5rrX+33J/O/HseCNwyU4IhERERGxJjaW7oCIWKfZY7bz1fhQvhh3EFcXdz5e+UKua5Zvmc6la2cY0ePDYj3j0JktdGkxDDujPXZGe7q1euleuy0iIiIiZYgCrYgUS5WKXgAYbe3o22EcR8/vyFG/6rdP2Hl0LdNH/oSjvTMAri5u2NoYibsRbb4uJj6cKhW8CvVMA4YS6r2IiIiIlAUKtCJSZMmpSTk2Xtp2aAV1qjUzf706aDbbDq/go1G/UM6pQo57OzR5lg17vgTg1MVgrl2Pokltvzyf09ynM1sOLiM9I4209FR+3r/YXOfs4MqtlOslNygRERERsTp6h1ZE+HT1X9l7ciNxidFMWdgNZ4dHWDr5TL7lCYkxTPumH5mZGZgw8WilWkwc+A0AVxMiWbBhPI9WqsWbX/oDYG904LPX9gIw6qmPmLFiKC985IOdrT2TBy0z73D8ZwFtRhEefZQRnzQwbwoVFnkAgFqPNqGGR0NGfdIID7da2hRKRERE5CFkMJlMJkt3QkQejIxU2DbP0r3I35Dp3kx9YV2hju3JT/axPX8+h9b/NbC1v7f+iYiIiEjpoiXHIlJqlHepzEcrhvDj3oXFuv/D5YPZcnAZzo6uJdwzERERESmNNEMr8hAp7TO095NmaEVERETKHs3QioiIiIiIiFVSoBURERERERGrpCXHIg8Rkwky0yzdC8uwsQODjrEVERERKVMUaEVERERERMQqacmxiIiIiIiIWCUFWhEREREREbFKCrQiIiIiIiJilRRoRURERERExCop0IqIiIiIiIhVUqAVERERERERq6RAKyIiIiIiIlZJgVZERERERESskgKtiIiIiIiIWCUFWhEREREREbFKCrQiIiIiIiJilRRoRURERERExCop0IqIiIiIiIhVUqAVERERERERq6RAKyIiIiIiIlZJgVZERERERESskgKtiIiIiIiIWCWjpTsgIg+OyQSZaZbuhWXY2IHBYOleiIiIiEhJUqAVeYhkpsG2eZbuhWX4vwa29pbuhYiIiIiUJC05FhEREREREaukQCsiIiIiIiJWSYFWRERERERErJICrYiIiIiIiFglBVoRERERERGxSgq0IiIiIiIiYpUUaEVERERERMQqKdCKyAMTcvY3ukww8HPwEkt3RURERETKAKOlOyAipUfI2d9480t/89c2BhucHV1xd/XE57EW+PsOouXj3TAYDBbspYiIiIhIFgVaEcnF33cQresFYMJE8u1ELl49xe6j6/jlwDc09+nM20NXUc6pgqW7KSIiIiIPOQVaEcnFx7M5nVsMyVE2utds/r1xImu2z2Z64CCmj/zJQr0TEREREcmid2jvA5PJRPny5TEYDFy9ejVHuaurKwaDgWvXruW6J786kdLA1saW0b1m0ahme4JPbeLo+Z3muqTk6/x74yRemFGHgMkO9J9amQ8CB3E59txd283MzCRwywe8Mb8jA6Z50GOyPc9/4MXcNWO4kRRrvi7+5hV6TLbnw+WD82xn3tpX6DrRhui48Hseq4iIiIhYBwXa+yAiIoIbN27g4eFB5cqVzeVnz54lMTERT09P3N3dc9xTUJ3cXXh4OIsWLWL06NG0aNECe3t7DAYDL774YqHu37x5M927d8fNzQ1nZ2caN27Mhx9+SGpq6v3tuBXq3moEAHtPbASywuzrnz/BD7/Pp3X9p3il92c888SrHD6zlb991oaY+IgC20vPSGXVbzPxdPfh2U4TGPvMPFr4dGFT8CLGf9mJtPSsv4OK5arQrsHT7DyylpvJCTnaSE1LYdvh5TSr0xmPSt4lPmYRERERKZ205Pg+uHDhAo8//jht27bNUR4SEgKAr69vrnsKqpO7+/TTT5k7d26x7p01axZvvvkmADVq1MDLy4ujR4/y1ltvsWHDBn799VecnJxKsrtWrdajTQCIvHoagCWb3+Fy7Dnm/W0Ptas1NV/XtdWLvDyrMUt/fpeJA5fk256d0YGV71zGwe6O73G70TTwfoLZq0ay+9g6/JoOACCgzcvsOLKGrYeW8/QTY82X7ziyhpvJCQS0GVmCIxURERGR0k4ztPdBx44dOXnyJEuWLMlRfvjwYQCaNm2a656C6uTu3N3dCQgI4N133+WHH35g7Nixd78J2LdvHxMmTMBgMLBkyRLCw8M5dOgQJ0+epE6dOuzevZspU6bc595bF2dHVwBu3b6ByWRi68FAGtfqiHt5T64nXTP/52jvQj2vthwI21xgewaDwRxmMzIzuJmcwPWka/jWeRKAExf2mq9tUbcLHpVqsmnfohxtbNq3CFdnN55o2LsERyoiIiIipZ1maB8gzdDeP//4xz9yfL1nz55C3ffee+9hMpl46aWXeOGFF8zltWvXZtGiRfj5+fHFF1/w1ltvUaVKlRLts7W6lXIDAGcHVxKSrnLjViwHTm+m/9TKeV5vY7j7782CQr5jddAszlw6RHpGWo66m8nx5j8bDAZ6tB7J4k1/50zUYep4+nI59hwh536jT/vXsTPa38PIRERERMTaWOUMbXh4ODNnzqR79+7Url0bFxcXnJ2dadq0KTNmzMjzvUcPDw8MBgPh4eEcPnyYoUOH4unpiYuLC76+vvznP/8p8JmZmZmsXr2a3r17U61aNRwcHKhWrRpPPvkkc+fOzfFMb29vDAYDJ0+ezNFGcWZoizNWa2EymSz6/MTERDZvzpo9HDVqVK76jh07UrduXVJTU1m/fv2D7l6pde5yKACPVXkc/vd32NynMx+N+iXP/z4c+XOB7e04spb3lz0HwNin5/Le8B/4aNQvTB+5Ccj6396durd6CVsbI5uCs2ZpNwV/jclkokdrLTcWERERedhY5Qzte++9x9dff42LiwvVqlWjYcOGXLlyhdDQUEJDQwkODmbNmjXm62NiYoiJicHV1ZV169bx5ptv4ubmhpeXFykpKYSEhDBo0CAqVapE165dcz3vypUrDBgwgKCgIAC8vLzw9fUlOjqabdu2sWfPHl599VUAEhISiIiIwNnZmbp165rbiI+P5+LFi7i4uFCnTp0c7RdUV9SxWlKnTp0ICgri/PnzeHt7F3htaGgow4YNY/Xq1bnG/KAcOnSI1NRUHBwcaNmyZZ7XtG/fntOnT7Nnzx5GjlRgAsxBsk29pyjvUplyThW4lXKD5nU7F6u9LQe+xd7oyMzR23C0dzaXX7hyMs/rK7l60LZBL7YeDGREwAw2719CPa82eHs0LNbzRURERMR6WeUMbdeuXTlw4ACJiYmcPn2affv2ER4eTnBwMFWrVmXt2rUcOXLEfH32ct6UlBSmTZtGYGAg0dHRBAcHExUVRc+ePQFYtGhRrmclJSUREBBAUFAQfn5+hISEEBERwd69e4mIiODo0aNMnjwZW1tb4I+Z1saNG2Nj88e3N7/yu9UVdazWYvHixYSEhODv78+5c3c/2uV+OH06a1OjGjVqYDTm/bud2rVr57j2YZaRmcGCH97k6PmdtK4XQKOaf8HGxoYnmw3m5MV9bA9dned98TevFNiujY0tBoMBk+mPmViTycTyX9/P956ANqNITI5n7prRXLsepdlZERERkYeUVc7QPvfcc3mWt2zZki5durBs2TKOHTtG48aNgT8CbVpaGsuXL6dHjx7mexwdHRkzZgwbNmwgIiL38SLjx4/nwIEDtG/fns2bN2Nvn/MdvYYNG9Kw4R8zQ/m9C1vc92eLOlZrMWvWLGJjY/n222/x9/cnKCjorrO6JS0+PuvdzIoVK+Z7TXZd9rUPi7Cog/x6YBkAybcTuXj1FLuPrSMmPoIWdbvy1vPLzde+1P0DjoXv4v1lA/BrMoD6NdpitLUnJj6CfSd/xMezRYG7HHdo0p8dR9YwYcGTdG4xjIyMNHYdW8ft1Fv53tOybjeqVqzBloPLcHIoh7/vwBIbu4iIiIhYD6sMtLdv32b9+vXm5a2JiYnm9+yOHTsGkCN4ZgfG/v375wiz2bLfQ61QoUKO8pMnT7Jw4UIcHBwIDAzMFWbzkt+7sMXd4bioY42MjGTGjBns27ePkJAQUlNT831X9fz587z++uts27YNo9FIr169mDNnDm5ubncdZ0EiIyMLdd3UqVOJiopi69at5lDr5eV1T88uipSUFIAC/14dHBwASE5OLtYzWrZsSXR0dLHuvR/sjU589WrYXa/bdngF2w6vwMZgg6NDOSqXf4wmtfzw9x1Eq3rdc1zr4lSeT1/ZxeqgWQSFfsfuY99ja2vEvfxjNPJuT4+7HKXj7zuQ5NuJrNk+h682vMkjThVp26AXIwJm0O/dvP8t2tjY0L3VCJZufge/JgNwcih31zH51PUhNb14f48iIiIicv94eHiwf//+Yt1rdYF2y5YtDB8+nIsXLxZ4Xa1atcx/zg60+c12njp1CiDHO68Ay5cvJyMjg2HDhhU6aGWH0z/PtuZXXlBdccZ65swZ1qxZQ6tWrbC3t2fXrl153pOYmIi/vz+VKlVixYoVJCcnM3HiRHr27MmuXbtyLX0uig4dOhT5nvDwcIYMGcL27duL/dyicnR0BChwY63bt28DFPsc2ujoaKKioop17/3gaOdcYH3T2p34ZWbRN+tytHdmSJe3GdLl7WK1H9BmFAFtcm/MVVBf7IxZv2wo7HLjy5cukZKW/6yviIiIiFgfqwq0e/fuJSAggLS0NEaMGMHgwYNp1KgRFStWxGg0cvLkSerXr4/RaKR+/fpAViDJ3m24U6dOebabX6D89ddfAQgICChU/9LS0jh+/Dg2NjY0adIkR/mJEydylRdUV5yxQtbOvJcvXwayZkDzC7RfffUVUVFRbN++3RzWH3vsMZ544gnWr19P7969CzXmvDRu3LhQs9kAsbGxhIeHA+QYx4NQmOXEhVmWXBAPD49i3Xe/2BuLF8xLm4yMdDbuWUBNj8Y08G5XqHserVZNM7QiIiIipdC9/MxsVYF2ypQppKamMmPGDCZNmpSrfuPGjQA0aNDAvFT0+PHjpKen4+Xlle9S2kOHDgG5A232zOidM6AFOXHiBKmpqfj4+ODi4mIuP378OKmpqdStWxdn55wzZPnVFWesQKFnVjds2ED79u1zzDy3a9eOWrVq8cMPP9xToF2/fn2h3oeNjIzEz88PyJo9nz9/frGfWRzZM/IRERGkp6fnuTHU2bNnc1xbVMVdOnG/ZKTCtnmW7kXxXY47z4mI39l97Hsux53jrcErCn1v2OkwbHVMrYiIiEiZYjW7HGdkZJiXow4fPjxXfWZmJoGBgQA0a9bMXJ693PjOsjslJSURFhaGnZ0djRo1ylUHhX9/Mr+Z3qJuCFXcsRbF8ePHc2xmla1hw4YcP368WG0WRVRUlHmH4/79+7Ns2TLzTtEPSrNmzbC3t+f27dv5Bs+dO3cC0KZNmwfZNclH6NkgPlw+mMNntjKk8zvaDEpERETkIWc1gTYpKYmMjAzgj8187jRr1izzTGtRAm1oaCiZmZnUr18/1zLZ6tWrA7B79+5C9TG/4FrUDaGKO9aiiI+Pz7UJFkClSpWIi4srVptFMW3aNM6cOUOfPn1YsWJFvsfm3E+PPPIIXbp0AeDf//53rvrt27dz+vRp7O3teeaZZx509yQP3Vq9yC8zTayeepUXuk2zdHdERERExMKsJtC6urri6ekJwAcffGAOfKmpqcycOZO3337bHIqKEmgLCoZ9+vQxP2/z5s056qKiopg+fTphYX/sGJtfcC3qDG1xx2ppfn5+9OvXL8dy6/zMnTuXadOmsXLlSouE2Wz/+Mc/MBgMLF68mKVLl5rLz549y4gRIwD461//SpUqVSzVRRERERERyYfBlN+ZLqXQF198wdixYwGoWrUq1atXJywsjFu3bvH5558zZswYMjMzSUhIwNXVFQA3Nzfi4uK4cOGCecb1TqNGjWLhwoXMmTOHcePG5ai7efMmfn5+HDx4EMh6Wbl69erExcVx7tw5DAYDN27cMAc4d3d3YmNjiYyMNAfSgsoLqivOWP9s6tSpTJs2Lc9je6pWrcqzzz7Lv/71rxzlTz/9NFevXuX333/Ps83SateuXTlmUW/dukVycjIODg6UK/fHkS7ff/89f/nLX3Lc+/HHH5vfU65RowYVK1bk6NGjpKen06ZNG7Zu3Zrr3WdrZe3v0N4L/9fQO7QiIiIiZYxVbQo1ZswYjEYjM2fOJDw8HFtbW3r27MmkSZPIzMwkIyOD2rVrmwNeZGQkcXFxuLm55RlmIf8NoQDKlSvHjh07mDNnDqtWreL06dNcv34dDw8PevfuTd++fc1hNjIyktjYWNzd3XME0/zK71ZX1LEWVf369fN8V/b48eN07NixWG1aUlpaGrGxsbnKb9++bT56J/u6P5s4cSJNmzZl1qxZBAcHExMTQ926dRk8eDDjx4/PsemWiIiIiIiUHlY1QytFU9AM7SeffMJbb73FuXPneOyxx4Cso4Latm3L2rVrzcutpWzRDK2leyEiIiIiJUmBtgxavXo1AN999x2rVq1i1apVAHh7e9OyZUsAbty4QePGjXF3d2fatGmkpKQwceJEKleuzO+//17o43/EuuQXaD9f9xq/H19PTHwEX4w7RB1P3wLLAYZM98bO6GA+23bQk1Po5PscqWkpfBA4kIiY4zjYOVGhXBVe6/sFnu51AIi/eYWPVwzjUtxZ7G0d+Fvf+TSp1TFHm8/6TSCgzchc/dxzfAOrgj5h1pjfiI4LJ/jUJnq1G22u/3D5YA6FbaGT70DGPvNpjnsVaEVERETKHqtaciyF8+yzz+b59QsvvMCSJUuArI2ntm7dyuuvv87AgQMxGo307NmTOXPmKMw+hDo06c+AThP5v/ntC1We7e+DV+YIudkC2rxM63o9MBgMrNv1L2avGsmsMb8BsOjHydSv0ZYPR23i1MVgpi7tw7dTzmO0tSuwzT+LiQ9nw+9f5gi0U54P5JvNU7mZnFCocYuIiIiIdVOgLYMKO+leu3ZtNmzYcJ97I9Yge4a0sOUFsbdzpE39APPX9b3asjroE/PXQSHfsXTSGQAer94KN9dqhJ4NonndzrnaSs9IY/73r3Mg7BcecapIo5odzHVz14wmJj6Cv872pUpFL94bvr7IfRURERER66ZAKyLF9vF/hmHCRL3qrRkRMIMK5Srnuua/O+fSrmHWDtQ3kmLJyEijkquHub5qRW+uJFzIs/2Ne77i4tVTLBx/DIApC7uZ617v9yXzvx/HgjcOl+CIRERERMSaaG2piBTL7DHb+Wp8KF+MO4irizsfr3wh1zXLt0zn0rUzjOjxYbGecejMFrq0GIad0R47oz3dWr10r90WERERkTJEgVZEiqVKRS8AjLZ29O0wjqPnd+SoX/XbJ+w8upbpI3/C0T7rHF9XFzdsbYzE3Yg2XxcTH06VCl6FeqYBQwn1XkRERETKAgVaESmy5NSkHBsvbTu0gjrVmpm/Xh00m22HV/DRqF8o51Qhx70dmjzLhj1fAnDqYjDXrkfRpLZfns9p7tOZLQeXkZ6RRlp6Kj/vX2yuc3Zw5VbK9ZIblIiIiIhYHb1DKyJ8uvqv7D25kbjEaKYs7IazwyMsnXwm3/KExBimfdOPzMwMTJh4tFItJg78BoCrCZEs2DCeRyvV4s0v/QGwNzrw2Wt7ARj11EfMWDGUFz7ywc7WnsmDlpl3OP6zgDajCI8+yohPGpg3hQqLPABArUebUMOjIaM+aYSHWy1tCiUiIiLyENI5tCIPkfzOoS0thkz3ZuoL6wp1bE9+so/t0Tm0IiIiImWflhyLSKlR3qUyH60Ywo97Fxbr/g+XD2bLwWU4O7qWcM9EREREpDTSDK3IQ6S0z9DeT5qhFRERESl7NEMrIiIiIiIiVkmBVkRERERERKySlhyLPERMJshMs3QvLMPGDgw6xlZERESkTFGgFREREREREaukJcciIiIiIiJilRRoRURERERExCop0IqIiIiIiIhVUqAVERERERERq6RAKyIiIiIiIlZJgVZERERERESskgKtiIiIiIiIWCUFWhEREREREbFKCrQiIiIiIiJilRRoRURERERExCop0IqIiIiIiIhVUqAVERERERERq6RAKyIiIiIiIlZJgVZERERERESskgKtiIiIiIiIWCUFWhEREREREbFKCrQiIiIiIiJilRRoRURERERExCoZLd0BEXnwTCbITLN0Lx4MGzswGCzdCxH5M30OiYhISVCgFXkIZabBtnmW7sWD4f8a2Npbuhci8mf6HBIRkZKgJcciIiIiIiJilRRoRURERERExCop0IqIiIiIiIhVUqAVERERERERq6RNoURERMqwW7chMh5upkB6JhhtoIIzeFYCB/0UICIiVk7/r0xERKSMiYyDXWEQFg3XbuZ9jcEAVV2hfjX4iw+4P/Jg+ygiIlIStORYRB6YkLO/0WWCgZ+Dl1i6KyJl0qnLMOdn+OQn+P1M/mEWss6Bjb4O207AB+vhy61ZQbis0+eQiEjZohlaETELOfsbb37pb/7axmCDs6Mr7q6e+DzWAn/fQbR8vBsGg8GCvRSRP0tJg3UHYM/Z4t1vAk5ehtPR0KURdGkIRtsS7WKh6XNIRESKQoFWRHLx9x1E63oBmDCRfDuRi1dPsfvoOn458A3NfTrz9tBVlHOqYOluiggQcyNrdjU+6d7byjTBz0fgeBS87A+PON57m8WlzyERESkMBVoRycXHszmdWwzJUTa612z+vXEia7bPZnrgIKaP/MlCvRORbNHX4V+/wM3bJdvuxTj47Bf4WxfLhVp9DomISGHoHVopM8LDw1m0aBGjR4+mRYsW2NvbYzAYePHFF+/LfQ8bWxtbRveaRaOa7Qk+tYmj53ea65KSr/PvjZN4YUYdAiY70H9qZT4IHMTl2HN3bTczM5PALR/wxvyODJjmQY/J9jz/gRdz14zhRlKs+br4m1foMdmeD5cPzrOdeWtfoetEG6Ljwu95rCLW4EYyfLGl5MNstis3YMFWSMu4P+0Xhz6HRETkzzRDK2XGp59+yty5cx/YfQ+r7q1GcPT8Tvae2Eijmu1JSr7O658/wZWEC3Rr9RLeVRsSd+My63+fz98+a8Pnr++nasUa+baXnpHKqt9m0qFxP9o1fAZHexdOXwxmU/AijobvZP7rB7Az2lOxXBXaNXianUfWcjM5IcdSw9S0FLYdXk6zOp3xqOR9/78JIhZmMsF3++B6cuHveaM7uDplBeHZmwp3T2Q8bAqFXs2K18/7RZ9DIiKSTYFWygx3d3cCAgJo1aoVLVu25KeffmL+/Pn37b6HVa1HmwAQefU0AEs2v8Pl2HPM+9sealdrar6ua6sXeXlWY5b+/C4TBy7Jtz07owMr37mMg53TH4XtRtPA+wlmrxrJ7mPr8Gs6AICANi+z48gath5aztNPjDVfvuPIGm4mJxDQZmQJjlSk9DoYDkcji3aPq1PW+bNFtfUENK4O3u5Fv/d+0eeQiIhkU6CVMuMf//hHjq/37NlzX+97WDk7ugJw6/YNTCYTWw8G0rhWR9zLe3I96Zr5Okd7F+p5teVA2OYC2zMYDOYfIjMyM0i+nUhGZjq+dZ4E4MSFveYfJFvU7YJHpZps2rcoxw+Sm/YtwtXZjSca9i7JoYqUShmZ8P2hB/c8kwm+Pwivd31wz7wbfQ6JiEg2Bdoy5tq1a3z88cesXbuWyMhIKleuTN++fZk+fTqvvfYaX3/9NZ999hmvvvqqpbsKgMlk0tELVuZWyg0AnB1cSUi6yo1bsRw4vZn+Uyvneb2N4e6v6geFfMfqoFmcuXSI9Iy0HHU3k+PNfzYYDPRoPZLFm/7OmajD1PH05XLsOULO/Uaf9q9jZ7S/h5GJWIcjkVnLhh+k81fhUjxUq/hgn5sffQ6JiEg2Bdoy5PDhw/To0YPo6GhcXFxo0KABly5dYt68eZw9e5a4uDgAfH1971sfOnXqRFBQEOfPn8fb27vAa0NDQxk2bBirV6+mTp06961PUrLOXQ4F4LEqj2dN3QDNfTrzXKdJxWpvx5G1vL/sOepVb83Yp+dSuUJ17I2OZJgyeGthdzIzM3Nc373VS3yz+V02BS/iVc/P2BT8NSaTiR6ttcxPHg67TlvmuTtPw4A2lnn2n+lzSEREsinQlhHXrl2jV69eREdHM378eN59910eeeQRAD7++GMmTZqE0WjEYDDQpEkTC/c2y+LFiwkJCcHf35+goCBq1apl6S5JIWwKXgRAm3pPUd6lMuWcKnAr5QbN63YuVntbDnyLvdGRmaO34Wj/xwt+F66czPP6Sq4etG3Qi60HAxkRMIPN+5dQz6sN3h4Ni/V8EWuSnAphMZZ59tEoGGCZR+eizyEREcmmY3vKiNdee43IyEheffVVPvnkE3OYBZg4cSJNmzYlPT0db29vXF1dLdjTP8yaNYuhQ4cSGRmJv78/4eHhlu6SFCAjM4MFP7zJ0fM7aV0vgEY1/4KNjQ1PNhvMyYv72B66Os/74m9eKbBdGxtbDAYDJtMfMyAmk4nlv76f7z0BbUaRmBzP3DWjuXY9SrMi8tCIjL/7NffLjWS4fstyzwd9DomISG6aoS0DTpw4wcqVK3F3d+fDDz/M85oWLVoQEhJC06Z/7P4YGRnJjBkz2LdvHyEhIaSmpmL639KtexUZWbjtN6dOnUpUVBRbt241z9R6eXmVSB+k+MKiDvLrgWUAJN9O5OLVU+w+to6Y+Aha1O3KW88vN1/7UvcPOBa+i/eXDcCvyQDq12iL0daemPgI9p38ER/PFgXuLtqhSX92HFnDhAVP0rnFMDIy0th1bB23U/P/ybll3W5UrViDLQeX4eRQDn/fgSU2dpHSLDLOss+/GAfli7FTcnHoc0hERApDgbYMWLFiBZmZmQwePJhy5crleY2TU9bujXcG2jNnzrBmzRpatWqFvb09u3btKrE+dejQocj3hIeHM2TIELZv315i/ZDi2XZ4BdsOr8DGYIOjQzkql3+MJrX88PcdRKt63XNc6+JUnk9f2cXqoFkEhX7H7mPfY2trxL38YzTybk+Puxxh4e87kOTbiazZPoevNrzJI04VadugFyMCZtDvXbc877GxsaF7qxEs3fwOfk0G4OSQ9797kbIm7qaFn5/04J6lzyERESkMBdoyYOvWrQD4+/vne032jOmdgbZjx45cvnwZyJopLclA27hxY+ztC7fTY2xsrHm5cf369UusD6VBy5YtiY6OtnQ3crE3OvHVq2G5ypvW7sQvM4s+S+9o78yQLm8zpMvbBV6XX/sBbUYR0GZUrvKC+mJndAC46zI/n7o+pKY/4C1hRe6T5v0+plbr5/Ose6N71lmz+XF1/OP/Tu1T8HNuJMPsTbnLp057n9PbvyxkbwumzyEREcnm4eHB/v37i3WvAm0ZEBERAUCNGjXyrE9PTzeH1TsDrY3N/XuFev369Xfd5Riygrafnx8Azz33HPPnz79vfbKE6OhooqKiLN2NXBztHtCawfskIyOdjXsWUNOjMQ282xV47eVLl0hJs/CLfyIlpO6NhHzrXJ2gQiH+p21jU7jr8hIfd63EPtP0OSQiIiVBgbYMSErKWgOWnJz3b39XrlzJtWvXeOSRR6hZs+aD7FqBoqKi8Pf359y5c/Tv359ly5Zha2tr6W6VKA8PD0t3IU/2xgKmcUqxy3HnORHxO7uPfc/luHO8NXjFXe95tFo1zYxImWHkdr51dzub1tUxK8xmZsKNlIKvza8tJ7tMPD0979LLwtHnkIiIZLuXn5kVaMsADw8P4uPjOXjwIO3a5fwt8eXLl5kwYQIATZo0wWAwWKKLeZo2bRpnzpyhT58+rFixAqOx7P1zLO7SifstIxW2zbN0L4ou9GwQn3w3nPIu7gzp/E6hNmEJOx2GbeFWv4uUeqEX4et8thnIa4nwnab2yZqZvZECU/9bvOevXTYPj/Il8+GhzyERESkJZS9BPIQ6d+7MiRMn+Oijj+jSpQt169YFIDg4mKFDh3Lt2jUAfH1973tf/Pz8cHd3x8XF5a7Xzp07l8cee4wpU6aUyTArJa9bqxfp1upFS3dDxGKqV7Lcs+2NUOWRu19X1ulzSESkdNE5tGXAxIkTcXNz4+LFizRs2JDGjRvj4+ND69atqVWrFk8++SSQ8/3Z+2XatGmsXr2aypUr3/VaJycn3nnnHezs7Erk2bt27cLd3d383+zZswH4z3/+k6P8z5tfFfc+EZEHrYIzuFloM91albOWLIuIiJQmmhYrAx577DF27NjBhAkTCAoKIjw8nAYNGrBgwQJGjRpF7dq1gQcTaC0pLS2N2NjYXOW3b9/m9u3bOa4riftERB40gwHa1YENhx/8s5/wefDPFBERuRsF2jKifv36bNiwIVf5zZs3CQ8Px8bGhkaNGlmgZw9Op06dMJmKftRDce8TEbGEtrXhp1DIyHxwz6zgDA1LZi8oERGREqVAW8YdO3YMk8lE3bp1cXbOfUTC6tWrATh+/HiOr729vWnZsuWD66iIiBRKOUf4iw9sP/Xgntm5IdhqubGIiJRCCrRl3JEjR4D8lxs/++yzeX79wgsvsGTJkvvaNxERKZ6nfOF4FFy7ef+fVaeqlhuLiEjppUBbxt0t0GqprdzN5+te4/fj64mJj+CLcYeo4+kLQGr6bRb8MJ79p3/G3uhI7UebMvn5ZQBEXg1j5soXuJ50DRfH8kx4bgneHg0B6DLBgLdHI0YGfESb+gG5nrdu1784fXE/Ewcu4UzUYS5ePZnjWIw3v/Tn3KUQhnR5h74dxt338YuURg5GGNQW/rUFCvsxnn227N3Oq83rOTYP+MS34JObWPzzP0hPT8XB3plx/RZQu1pTTl7Yx+ffv0Za+m1S01Po1nI4z/lPBODj/7zIwbBfKO+StSlhi7pdeLnnTHOb63fPZ92uz7C1MWJjsOGzv+3F3s6R8V904kp8BF1bDWdol3dy9eV89FHe/rony94K52ZyAht+/5KBT04213+1YQK/hazEx7M5015cd3+/MSIikosCbRl3t0ArcjcdmvRnQKeJ/N/89jnKF/04GYPBwJKJpzEYDMTdiDbXzV3zVwLavEy3Vi+yPXQ1M1e+yOevB5vr54zdQTmnCnd99tlLh9l9bF2OQPvJ6G18/J8X73lcItaudlUY0BpW7i3c9Xc7p/bPbG1ghN+D31U58VY8H64YzOwx2/H2aMiRczuYsXww/37zKHNWv8wL3f7JEw2f5satOEZ8XI+2DXpSo2oDAAZ0mpDnL7p2H/2eLQcD+ezVPbg4lSfh5lVsbf/YYX/003P4S6Ped+3bzeQE/rNtRo5A+3LPmdSo2pDdx9bd69BFRKQYFGjLuK1bt1q6C2LlmtTqmKssOTWJTfsWsfwfkRgMWVM3lVw9AIi/eYXTkfuZMWozAB0a9+Nf/32VqGtn8HSvk6utWymJzF49krOXDlPepTLeVRua21m6+R2SUq7z19m+1K/RlnH9vrxfwxSxSu3+9z+p7/ZCSa63sbOFlzpCXY8SbLSQLsWexdXZzbyqo3GtDlxJuEBY5EEMBgNJyQkApKQmYTTa84jT3Q/n/S5oJkO7vIuLU3kAKpQr+Gi5bzZPZcuhQFwcXGlVr4e5fO6a0STfTuSvs32xtTUy//X9xRyliIiUFAVaESmyy9fO8ohzJVZsnc7BsF9xsHNiaJepNPf5f1xNuEgl10extc36eDEYDFSp6MWVhAt5Btplv/4TO1sHvp5wklspN/jbv9pSr3obKparwgtd/8nuY+u0jE+kAO3qQCUX+M8eiL917+1VqwiD24FnxXtvqzgec/fhxq1YjoXvpqH3E+w+tp5btxOJjg/nzQGLeXfJMyz++R9cv3mVcf0WmH+ZBvDfHXPZtO9rqlT04sVu75tfkbgQc5zTkfv59pdppGXcpkuLYfRp/1qez997YiPbQ1cx//UDODs8wkcrhprrXu/3JaPn+LLgjcP381sgIiJFoEArIkWWkZlOTHwENao0YGTADM5EHWLSV11Y+OaxIrd16MwWRveag8FgwMWpPE/6Ps+l2LP3odciZdfjj8KknrD+IPx+tvDv1d7JaJO1m3HnhmC0Lfk+FpaLU3neGbqaRT9NIeX2TerXaEeNqg2wtTGyctsMRgR8yJPNnudy7DnGf+FH3eotqVG1AS/1+IBKjzyKjY0NO4/8l78v6sGSSWE4OZQjIzOd6LjzzB67nZvJ8Yz/wo9HK9WibYOeuZ5/KGwLfk0G4OLoCsBTbf/K0fCdD/rbICIihaRN+EWkyKpU9MLGYMOTzQcDUMezGR6VanL+8hEqV6hO3I3LZGSkA1kbj12Jv0CVCl6Fajt7CbOIFI2jHQxoA+88A10aZh3vUxhu5eDpZjCtL3RvYtkwm823jj+zxwQxf9wB/tprFrE3LuHmWo1dR//Lk82eB+BRt1rUq9GWY+G7AHAv74mNTdaPNe0b98HZ0ZWLV7PONqpSwQv/ZoOwtbGlvIs7resFcOLCnkL1RZ9JIiKlmwKtiBRZeRd3fOv8P/af+hmAy3HniY47j1fV+lQsV4U6ns359WDWjsc7jqzBvcJjeS43BmhepzM/By/GZDKRlHKDbYdXmOucHV1JSrl+/wckUoZUdMk61mdaH5gQAAPbQvu6WTOwkPV+bKd6MPQJmNIL/v40PNkAXBws2u0cYm9cNv858Nf38K39JHU8m+Fo78KhM1l7Q1xPusbJC3vxrtoIgKsJkeZ7jkfs4UZSLJ5uWZ87/s2eZ//JrF2xbqclE3L2N2o9mvdmic18OrM9dBW3UhIxmUxs3POVuc7Z0ZXUtGTS0lNLdsAiIlJsWnIsIgX6dPVf2XtyI3GJ0UxZ2A1nh0dYOvkM4/p9yaxVI1j44yRsDDaM67cA9/KeAIzrt4CZK19kxdbpODu6MmHA4nzbH9z5bWavHslLM+tR3qUyjbzbk5p+G4Dmdf4fq4M+4eVZTWjg/YQ2hRIpAlubrPdgPSsCteHIRbieDM720LuFpXtXsKU/v8PR8zvIyEynfo12jB+wCFsbW/4x5Dv+vWECGZnppGek0bf9OBp4twNg5soXib8Zg43BFgc7J94eusq8CVT/jm/w6Zq/MmJmAwwGA+0b98Ov6bN5PrtN/QBOXdzHmLnN/9gU6nxWnatzJTq3GMZfZzfB0aGcNoUSESkFDCYdRCry0MlIhW3zLPPsLhMM/Pef8YU6tic/H//nRep4+hbqHFr/18DWvtiPEikz3l2bFWjLO2UtL7Y0S34O3Wn8F53o22FcoY7tyc/PwUsK3MBOn0MiIvePlhyLyANVsVxVxn/hx94TPxbr/je/9OfIuSAc7V1KuGci8jB6xLkSi36awre//LNY93+1YQL/2fYh5ZwstC20iMhDTjO0Ig+h0jIz8iBoZkQki2ZoLUefQyIi949maEVERERERMQqKdCKiIiIiIiIVdIuxyIPIRu7rCVwDwMbO0v3QETyos8hEREpCQq0Ig8hg0Hvc4mIZelzSERESoKWHIuIiIiIiIhVUqAVERERERERq6RAKyIiIiIiIlZJgVZERERERESskgKtiIiIiIiIWCUFWhEREREREbFKCrQiIiIiIiJilRRoRURERERExCop0IqIiIiIiIhVUqAVERERERERq6RAKyIiIiIiIlZJgVZERERERESskgKtiIiIiIiIWCUFWvn/7N13fI13/8fx18kexApCgghRW4xYpUQp0mqLVodRHVptld5t6S7uu9Wq0dJWS6vTqBpFaVVr7y1GrSBIJMgiyM75/XF+DqlsJznnxPv5eOQh57qu73V9ruM6J9fn+i4RERERERG7pIRWRERERERE7JISWhEREREREbFLSmhFRERERETELjlZOwARKXlGI2SlWzuKkuHgDAaDtaMQERGRf7td7kd0L1K8lNCK3Iay0mHNVGtHUTJChoOji7WjEBERkX+7Xe5HdC9SvNTkWEREREREROySEloRERERERGxS0poRURERERExC4poRURERERERG7pIRWRERERERE7JJGORYRERGRUic6EQ6dhTPxEBkPiVchIwucHKCMG9SoCH4VoZ4P1KqkaVVE7JVqaEWkxIQdX0u3kQb+3PG9tUMREZFSKDML9pyCz/6C8cth6R7T6wtJkJ5pmvc0PRMSrsC+M/B7GHz6J0z8A7aEQ1qGtc9AipvuRUof1dCKiFnY8bW89lWI+bWDwQEPNy+8vXwJ9GtJSNBjtLqjOwY9xhYRERsTcxHmbIHTcYUvG5UA87bB6n/gsbYQUMXy8UnB6F5ECksJrYjcJCToMVrXD8WIkeTUJM5cOMLmA4v5a9ePtAjsyrsD51PGvby1wxQREcFohHWHYdleU5PiW3EhyVS727kB9AoCB7VltBrdi0hBKaEVkZsE+raga8sB2ZYN7TWZr5ePYuH6yYyb/RjjnvnDStGJiIiYGI2mZsVrDllwn5j2F38FBt0JjkpqrUL3IlJQSmhFpEAcHRwZ2msSR85sZ8eRFRw4uZHGtTsAcCX5InNWj2Pj/oVcSDyDh5sXzQO78lSPD6hWKSDP/WZlZTF3zYfsOvInkReOkpQcT4WyPrSpfy9P9ngfL89KACRcPs/j7/txV9OHefPx2TftZ+qiF1m29Ut+fOMEPhX9LX7+IiJie34Ps2wye6Ow0zDHAfq3Bwe1brUJuheRnOiZk5QaERERzJw5k6FDh9KyZUtcXFwwGAwMHjw41zJGo5FNmzbx+uuv0759eypWrIizszNVq1blvvvuY+nSpSV3AnaiR/DTAGw7tBww/QEZ8UV7ftsyjdYN7uXFBz/jgfbD2Bu+mpc+a8O5hFN57i8jM435ayfg6x3Iw51H8sIDU2kZ2I0VO2by6ledSc9IA6BCmSq0a3g/G/cv4nJyYrZ9pKWnsGbvHJrX7ao/ICIit4l/ouCvg8V7jF0RsOlo8R5DCk/3InIj1dBKqfHpp58yZcqUQpVZvXo1Xbt2BcBgMFCnTh0CAgIIDw9n+fLlLF++nKeeeopvvvlGgw/8v4BqmP2vqAABAABJREFUTQGIvGD6C//9yveIjjvB1Je2Uqd6M/N29wQP5tlJTfjhz9GMevT7XPfn7OTKvPeicXV2v76w3VAa+rdn8vxn2HxwMZ2a9QMgtM2zbNi/kNV75nB/+xfMm2/Yv5DLyYmEtnnGgmcqIiK26mqaaRCnwnqlB3i5w6VkmLyiYGV+2wMNqoN32cIfT4qH7kXkRqqhlVLD29ub0NBQRo8ezW+//cYLL7yQbxmj0UhAQACfffYZ58+f59ixY+zcuZO4uDg++eQTDAYD3377LV9++WUJnIF98HDzAuBq6iWMRiOrd8+mScBdeJfz5eKVWPOPm4sn9Wu2ZdexlXnuz2AwmP+AZGZlcjk5kYtXYgmq2wWAQ6ev37G0rNcNn4q1WbF9ZrZ9rNg+Ey+PSrRv9KAFz1REpPS4mAwnzsPRGDibYOp7as+W7zWdU2F5uUN5D9O/BZWWCfN3FP5YtubCJTh2DsLPQdxla0dza3QvIjdSDa2UGu+8806211u3bs23TOvWrTl8+DDOzs7Zljs6OvLyyy9z+PBhpk+fzowZMwqUIN8OrqZcAsDD1YvEKxe4dDWOXUdX8tCYyjlu72DI/7nZurBfWLBuEuFn95CRmZ5t3eXkBPPvBoOBnq2f4bsVbxMetZe6vkFEx50g7MRaencYgbOTyy2cmYhI6XM0BjYehf2R2ZPYql7QoR60DgBX59zL26KrqbD9RMke80i0aVogn3Ile9xblZEJu0+Zmk2f+td0RoFVTddAkxr210dY9yJyIyW0pUxsbCwff/wxixYtIjIyksqVK9OnTx/GjRvH8OHD+fbbb/nss88YNmyYtUMFTDWk1mzK6+Xllef67t27M336dI4cOVJCEdm+E9H7APCrcof57qhFYFce6fx6kfa3Yf8i3p/1CPVrtOaF+6dQuXwNXJzcyDRm8tY3PcjKyj4HQ4/gp/hx5WhW7JjJMN/PWLHjW4xGIz1bq4mPiMg1WUZYvAvW5/Ln69wlWLgTNh2D50KggmfJxncrtp+A9MySP+6mo9A3uOSPW1RX0+Db9aYa2ZwcO2f6aVYDBtwJzo4lG9+t0L2I3EgJbSmyd+9eevbsSUxMDJ6enjRs2JCzZ88ydepUjh8/Tnx8PABBQUHFFkPnzp1Zt24dJ0+exN/fP89t9+3bx6BBg1iwYAF169YttphuRUpKCgAeHh5WjsR2rNhhamLTpv69lPOsTBn38lxNuUSLel2LtL9Vu37CxcmNCUPX4OZy/X0+ff5wjttX9PKhbcNerN49m6dDP2Llzu+pX7MN/j6NinR8EZHS6Lc9uSezN4q5CNNWwcvdwdO1+OOyhJKunb1mx0no3dI+5qbNyISZ6+D4+fy3DTsDbIInOtpPTa3uReRGdvCRlIKIjY2lV69exMTE8OqrrxIdHc3u3buJiYlh/PjxLF++nB07dmAwGGjatKm1wwXgu+++IywsjJCQEE6csNJfp3zMmzcPgI4dO1o5EuvLzMpk+m+vceDkRlrXD6Vx7TtxcHCgS/P+HD6znfX7FuRYLuFy3n9NHRwcMRgMGI3Xn34ajUbm/P1+rmVC2wwhKTmBKQuHEnsxSk9ERURuEJVQuKlsLiTBXweKLx5LSs2A6IvWOXZKOpxPss6xC2tLeMGS2WvCzsCByOKLx1J0LyI5UQ1tKTF8+HAiIyMZNmwYEydOzLZu1KhRzJkzh7CwMGrXrp1vM9uSMmnSJOLi4vjpp58ICQlh3bp1+dbqlqTff/+dJUuWAKb38HZyLGo3f++aBUByahJnLhxh88HFnEs4Rct69/DW43PM2z7V4wMORmzi/Vn96NS0Hw1qtcXJ0YVzCafYfvh3An1b5jmyYMemD7Fh/0JGTu9C15aDyMxMZ9PBxaSmXc21TKt63alaoRards/C3bUMIUGPWuzcRUTs3cYiTDOz7QSENgMXG78zjIq37oBWZ+Jsvx+t0Vi0a2DjUWhaw/LxFJXuRaSgbPxrSwri0KFDzJs3D29vbz788MMct2nZsiVhYWE0a3Z9KPMNGzYwduxYDh48SHx8PJUrV+bOO+9kzJgxNGjQ4JZiiows2GO+MWPGEBUVxerVq81Jbc2aNW/p2JZw/PhxBg4cCJgeFrRv397KEZWsNXvnsmbvXBwMDri5lqFyOT+aBnQiJOgxguv3yLatp3s5Pn1xEwvWTWLdvl/YfHAJjo5OeJfzo7F/B3rmM3x9SNCjJKcmsXD9J8xY9hpl3SvQtmEvng79iL6jK+VYxsHBgR7BT/PDyvfo1LQf7q5lLHbuIiL2LCMTdp0sfLnkNNh/BlrWtnxMlmSt2lnz8ROte/yCOBVn6iNdWEdjIOGK7fSn1r2IFJQS2lJg7ty5ZGVl0b9/f8qUyfnD5O5uGor8xoQ2ISGBJk2a8Nxzz1GlShUiIyP58MMPadeuHQcOHMDPz6/IMRWliW5ERAQDBgxg/fr1RT6uJcTExNCjRw/i4+O55557bqrxLoxWrVoRExNjwegsw8XJnRnDjt20vFmdzvw1ofCPvt1cPBjQ7V0GdHs3z+1y239omyGEthly0/K8YnF2MnX2yq+JT2C9QNIyijC3g0gpE/rWDjzKVSM6Jho/Pzsa2UYKxa1sVe57Z1eRyo5690OOrP3CwhFZVr27nqPpvTn/rbk2x2xevNyu/zumd+7b5TZP7dff/sAL979dwGitw69pL9r2L9p0g5279yYuouTmKMrpfkT3IrcnHx8fdu7cWaSySmhLgdWrVwMQEhKS6zbXakxvTGjvv/9+7r///mzbBQcHc8cdd7Bw4UJGjBhR5JiaNGmCi0vBhi2Pi4sjIiIC4JZrhm/VtSQ2PDycO++8k19//fWmKX0KIyYmhqioKAtGaBluzvY9yFVmZgbLt06ntk8TGvq3y3Pb6LNnSUnPvcmQyO0iMzPT/K8tfi+JZXhWKHp73KSkJJu/Nqpeyr3q8docswXh4FDwbW905cpVm3+PPGsk5L9RLmJjYzlbgudnz/cjuhexHUpoS4FTp04BUKtWrRzXZ2RksGnTJiB7QpuTSpVMzSqcnG7t0li6dGmB+sNGRkbSqVMnAB555BGmTZt2S8e9FZcuXaJHjx7s37+fFi1asHz58lse3djHx8dC0VmWi1MhZpS3IdHxJzl0agubDy4hOv4Eb/Wfm2+ZatWr66moCKb5ta/96+vra+VopLg4OLmSmZ6Co7Nbocs6G6/a/LXh6Zb7Q+ZLBfiq93IzJbNZWXApJfftctuXm4vB5t8jd8e0Qpe5No1iGZesEj0/e7wf0b1I8biVe2YltKXAlStXAEhOzvmDMm/ePGJjYylbtiy1a9/cOSYzM5OsrCxOnTrFm2++iY+PD/369SvWmAGioqLMIxw/9NBDzJo1y3zDVdKuXr3Kfffdx44dO2jQoAF//vkn5crd+qgPRW06Udwy02DNVGtHUXj7jq9j4i9PUs7TmwFd3yvQAAzHjh7DUXOcizB6EVxMhmo+1Qo8zoHYp1mbYWch+9G6OMGqhZ/i5vxpscRkKcfOwRd/57wupybC/zamt6lm9lIKjPm18Md/b9RQ2k4fWviCJSjLCB8shbjLBS9jMBioXRmO7NtUfIHlwB7vR3QvYnuU0JYCPj4+JCQksHv3btq1y97kITo6mpEjRwLQtGlTDIabJxjr1KmTuQa3bt26rF69msqVKxd73GPHjiU8PJzevXszd+7cW64VLqq0tDR69+7Nhg0bqFOnDn///Tfe3t5WiUXy1j14MN2DB1s7DBERm9ahXuET2la1IY/KT5tRo6J1j1/TyscvCAcD3BkIS/cUrlyHwOKJp7TRvYjt0Ty0pUDXrqZJpMePH8/Ro9fHad+xYwchISHExsYCEBQUlGP5mTNnsnXrVubOnYuXlxf33HMPp0+fLlIsnTp1om/fvnh65j9E3pQpUxg7dizz5s2zWjKbmZnJ448/zsqVK/Hz8+Pvv/+mevXqVolFRETEEmpVgtYBBd++nDvc07j44rEkN2eoaqXZB10coaqNT9lzTftA8K1Q8O3r+UBQzj3XRGyewWi05mxeYgmRkZEEBQURFxeHk5MT9evXJyUlhfDwcHr27ElWVhZ//vknM2bMYMiQm0dvu1FiYiL+/v4MGDCAzz//vITOwDI2bdrEAw88YH599epVkpOTcXV1zTb685IlS7jzzjsB0wjRjz/+OAABAQFUq1Yt1/0vWLDAZvvEFpY9NvEpqpDhqJmPCNebHJdzh7F9rB2NFLfMLJizBXZF5L1dBQ94rovtz616o5UH4PewopW91uQ48Wrhmxy3qQOPtS3aca3hUjJMXwNR+YwRVbcqPH0XuFvhb+Xtcj+ie5HipSbHpYCfnx8bNmxg5MiRrFu3joiICBo2bMj06dMZMmQIderUAfIfEAqgfPny1K1bl/Dw8OIO2+LS09OJi4u7aXlqaiqpqanZtrtx3TUnTpzgxIkTue4/JSWP0SNERERsiKMD9G8PDavDxmNw8kL29V5u0LYudLwDyhZ+/CiralsH/txvStpLkr01yfVyh5e6wZZw2HQUYv/Vp7ZaedM5takDTtYZwkTEIpTQlhINGjRg2bJlNy2/fPkyERERODg40Lhx/u2Jzp8/z5EjR2jTpk1xhFmsOnfuTGEbHAwePJjBgwcXT0AiIiJW5GCAlrVNP9GJ8NlfcDUNPF1gdG9T0muPvNyhea3C9xO+FbW9oUalkjuepbg5Q0gD6FQfIi7AN+v+/xpwhVGhkMPQKiJ2RwltKXfw4EGMRiP16tW7aQqaAQMGULduXYKCgihfvjzHjh3jk08+wcnJif/85z9WilhEREQsrVp5cP7/WjgnR/tNZq+5vzn8E2VKzoqbowM83Lr4j1OcHAwQUOWGa8BByayUHkpoS7n9+/cDOTc3btu2LT/++CNTpkwhJSWFGjVqEBISwltvvZXrnLZye3h9xj0kJMVgMDjg4VaWFx+YSs0qDfhg9qOcOvcPrs7ulC9TheF9vsTXuy4Ah09v54slw0nPSCUtI4XurZ7kkZBRAKSkXWXS/Kc5emYHBoMDT/Ucx11NHwLg1S87cz7hFPcEP8nAbu/dFMvJmAO8++19zHorgsvJiSzb8hWPdnnDvH7GspGsDZtHoG8Lxg5eXPxvjoiIWJ2XO/QNhp8KOcvMtfllCzJn7TXdm0D1QgywJJZRlHuROavG8deuH4iKPcboQYu4s/GD5v0ZjUZ++mssq/fMwdnJlXKe3kwcugaAAeP8cXZy5eFOIwlt88xNsWz9Zxnz101k0vNriYmPYMeRFfRqd336pg/n9GfPsVV0DnqUFx74tFjfF7mZEtpSLq+EdtiwYQwbNqykQxI78O7AXyjjXh6Ajft/ZcK8wXz20jZC2zxL6/o9MRgMLN70OZPnP8Ok59cC8MmCZ3mi+39p3+h+Ll2N5+mP69O24X3UqtqQ+esm4uzoyg9vhBMdf5LhU9sQVCcEL09T+62h93+S7Y9Obi4nJ/Lzmo+yJbTP3jeBWlUbsfngYgu/CyIiYsta1ILj52BzIYb9KMhctTdqUB3ubli4MmIZRbkXaRHYlZCgR5n4y1M37e/XjVM5Eb2Pr189gLOTC/GXYrKtf7v/POr6BuUb17mECJZt+SpbQvvm47P5ceUYLicnFvV05RYooS3l8kpoRXJz7Q8IwJWUi4ABF2c32jQINS9vULMtC9ZNNL82GAxc+f8v8pS0Kzg5uVDW3TRh37qwebzy8EwAqlWsTdM6ndl44Nccn4IC/LhyDKv2zMbT1Yvg+j3Ny6csHEpyahLPTQ7C0dGJaSN2WuiMRUTE3hgM8FAwpGfCjmLoT1vPB57saP/Ns+1VUe5F6tfMvW34/HUTmPDcapydTMMNV/TKfeaKjMx0pi0Zwa5jf1HWvQKNa3c0r5uycCjnEk7x3OQgqlSoyf+eXFqEsxNLUkJbyq1evdraIYidGj93EGHHTU1xPnj695vW/7pxCu0aXZ8m6bV+3zH6+wf47s93uHj5Ai/3nW7+Y3E+8TRVK1xvxu5TwZ/ziTnPdbzt0HLW75vPtBG78HAty/i5A83rRvT9iqGfBDH9lb2WOEUREbFzDg7wWDtTE+TV/4Cl5qIMrg392lzvcyrWUdh7kdxcSblEQtI5Nh9cwoZ9CwDoe9crdA56JMftl2+dwZkLR/jm1YMAvPlNd/O6EX2/YtqSl3UvYkOU0IpIjl5/7EcAVu78ga9/f51xN/whmbNqHGdjw/n4uVXmZfPWfMTToR/SpfnjRMed4NUvO1GvRitqVS1cW609x1bRqWk/PN28ALi37XMciNhogTMSEZHSyMEAvZpDYz/T3LsXkoq+Ly83UyLb2M9y8UnRFfZeJDeZWRlkZmWQmp7MZ8O3ERMfwYgv2lOjSn3qVL+5FeOe8FV0aznIXJvbPfgpVmyfaaGzEktTIwoRydM9rZ4gLHwNl66Y5vidv3YiGw8sYtwzf+DmYho5++KVWDYd+JUuzR8HoFqlAOrXasvBCNNoHVXK1+RcwinzPmMSIqhSvmaBjm/QMIwiIlIAtSvDyFDo0wqqehWubHkPCG0Gr9+nZNYWFeReJC9eHhVxdy1D1xYDAPCp6E8j/zs5cmZHgY5vQPcitkwJrYhkczk5kdiLZ82vNx1YjJdnJcp6VGTBusms2TuX8UP+yta3pYx7BdxcPNkTbmrifvFKLIdPb8O/qmnu47uaPsyyLV8BEB1/kn3H1+Y6CFTzwK6s3zefqylJGI1Glm+dYV7n4eZFWnoy6RklME+DiIjYHRcnuOsOeOM+eLErdGlo6gvr7nLztgGVTds+0wnefQDuaWyan1Wsryj3IvkJCXqMHUdMo4JduhrPkdPbCajWNMdtWwR2ZdXuWWRkppOekcafO78zr/Nw9eJqysWinZgUCzU5FpFsrqRc5H8/PUxqejIOBgfKeVbmf08uI/ZiFNOXvUq1igG89lUIAC5Ornw2fBuODo68M+AXvl42ksysDDIy0+nT4WUa+rcD4OHOI5n0y1MM+rAODg6ODOv9OeU8vXM8fpsGoRw5s53np7S4PijU/w/24eVRka4tB/Hc5Ka4uZbRoFAiIpIjgwECq5p+AIxGSMuA95dCUoqpafHwe6wbo+SuKPciALP/fp9lW7/i4uULTI45wOeLh/Hly3soX6YyT/f8kAm/PMlvm6cB8EjI67kOIhXaZggRMQd4emJD86BQxyJ3ARBQrSm1fBoxZGJjfCoFaFAoG6CEVkSyqVqhFp8P357jur8m5D7cRot6XZlWb1eO69xdPHlnwLwCxzDonjEMumeM+fWTPd43//7Kw18XeD8iIiJgSnBdnU39ba+9FttV1HuR/l3foX/Xd3Jc5+VZqcDJp5OjM8P7TMtxnaOjE+8/taxA+5GSoSbHImJVZT0qMvOPN/npr/8WqfyMZSP5ec2HlHHXrPciIiJSeOU8KzN+7gB+3/ZNkcp/OKc/q3bPwsOtkJ23xSJUQysiVjXmiUW3VP7Z+ybw7H0TLBSNiIiI3G6+GFGwwaFy8+bjsy0UiRSFamhFRERERETELimhFREREREREbukJscityEHZwgZbu0oSoaDs7UjEBERkZzcLvcjuhcpXkpoRW5DBgM45jAnn4iIiEhJ0f2IWIKaHIuIiIiIiIhdUkIrIiIiIiIidkkJrYiIiIiIiNglJbQiIiIiIiJil5TQioiIiIiIiF1SQisiIiIiIiJ2SQmtiIiIiIiI2CUltCIiIiIiImKXlNCKiIiIiIiIXVJCKyIiIiIiInZJCa2IiIiIiIjYJSW0IiIiIiIiYpeU0IqIiIiIiIhdUkIrIiIiIiIidkkJrYiIiIiIiNglJbQiIiIiIiJil5TQioiIiIiIiF1SQisiIiIiIiJ2ycnaAYhIyTMaISvd2lGUDAdnMBisHYWIiIhIdrofswwltCK3oax0WDPV2lGUjJDh4Ohi7ShEREREstP9mGWoybGIiIiIiIjYJSW0IiIiIiIiYpeU0IqIiIiIiIhdUkIrIiIiIiIidkmDQomIiEiplJYBUQkQGQ8XkkyvHQzg7gK+FaBGRahU1rSsNMoyQmwSnImHswmQnGZanpwGG46AX0XT++Ciu8FSKyMToi+aPgMxF+HqtWsgHbYdh5qVoIoXOJbSKi6jERKvmj4DkfFwORWyssDJESqVMX0GalQEN2drRyq3Ql9hIiIiUmpkGeFoDGw8Cv9EmV7npYwbtAmA9oGmG9zSIO4ybD4G207A5ZSb16dlwsKdpt8dDNDIFzrUg0Cf0pvc306MRjgVB5uOwt7TkJ558zZpGTB3q+l3VycIrg131oNq5Us01GKTlGJK2Dcfg/gr+W8fWNV0/k38Sm9yX5opoRWREhN2fC2vfRXCa/2+o3vwYGuHIyKlzNEYmL/dVBtbUJdTYNU/sPofaF4L+rQyJbn2KCkFFu2EvacgnzzeLMsI+yNNP1W84KFgqOdTrGFKMYqMN30GTsUVvExqBmw8Zvq5wwcebg3eZYsvxuKUmg7LwkyJbGZWwcsdO2f6KecO97eAFrVK9xz2pe1+TAmtiJhd+4K7xsHggIebF95evgT6tSQk6DFa3dEdQ2n+lhcRu5OSDkv3mG5ii8oI7D4FR2Lg4WAIqmWx8ErEnlOwYAdcSS36Ps5fgmmr4M5AuL85uKoZpt3IzIK/DsDKA/m3SsjLkRj4eDnc19xUa29PNfbh50y1znGXi76Pi8nw0yYIO236Hijrbrn4CkP3Y4WjhFZEbhIS9Bit64dixEhyahJnLhxh84HF/LXrR1oEduXdgfMp417e2mGKiHApGb5cDdGJltnflVT4fiN0TYB7m9l+LY3RCMv2mmqZLWXTMTgZC8+HWO+GXgouNQO+XWdKRi0hLdNU038qFh5vZx9NcDcfM9VM30Iun82+M3A6Dp7vAlXLWWinRaD7sYJRQisiNwn0bUHXlgOyLRvaazJfLx/FwvWTGTf7McY984eVohMRMbmcAp//bapZtLS/D5oGj+nV3HaTWqPRVDO95pDl9302AT77G4Z3s98m2LeDtAyYsQaOn7f8vndFQEYWPHEnONhwUrvpKMzfYfn9Jl69/hmo4mX5/ReE7scKxoYvT5GCi4iIYObMmQwdOpSWLVvi4uKCwWBg8ODBeZZbunQpzz//PK1bt8bX1xdXV1fKli1LUFAQb731FrGxsSVzAnbA0cGRob0m0bh2B3YcWcGBkxvN664kX+Tr5a/zxEd1CX3DlYfGVOaD2Y8RHXci3/1mZWUxe9UHvDLtLvqN9aHnGy48/kFNpix8nktXrncCSrh8np5vuPDhnP457mfqohe5Z5QDMfERt3yuImL7MrPgm3XFk8xes/oQbAkvvv3fqs3HiieZveb8JZi5zpTYi22at614ktlrwk6bWgDYqsPRpqb2xeVyCny12tStwVbofuxmqqGVUuHTTz9lypQphS43efJk1q1bh4uLC9WrV6dp06acP3+effv2ERYWxjfffMPKlSsJCgqyfNB2qkfw0xw4uZFth5bTuHYHriRfZMQX7TmfeJruwU/hX7UR8ZeiWbplGi991oYvRuykaoXcO6NlZKYxf+0EOjbpS7tGD+Dm4snRMztYsWMmByI2Mm3ELpydXKhQpgrtGt7Pxv2LuJycmK2JTVp6Cmv2zqF53a74VPQv/jdBRKxuzSGIKOQzx1d6gJe7qZny5BUFK7NkN9xRzfZGQI67DEv2FK5MUc7/ZCysPQxdGhY+RileYadNtaiFUZRrYM0haFIDalcudIjFKjkNft5auGbGRTn/+Cum74FH2hQpzGKj+7HrlNBKqeDt7U1oaCjBwcG0atWKP/74g2nTpuVb7qmnnuK9996jQ4cOuLi4mJfv37+fxx9/nAMHDvD444/zzz8W7Jxk5wKqNQUg8sJRAL5f+R7RcSeY+tJW6lRvZt7unuDBPDupCT/8OZpRj36f6/6cnVyZ9140rs43dNRqN5SG/u2ZPP8ZNh9cTKdm/QAIbfMsG/YvZPWeOdzf/gXz5hv2L+RyciKhbZ6x4JmKiK2KuQh/7Ct8OS93KO9RuDKpGaab5hfutp2mx0ajKaa0jMKVK8r5A/weBo38oKqVml3Kza6kFq2ZbVGuASMwZwuMDLWtOYuX7DY1Cy6Mon4GtoRDUE3Twy1bofux69TkWEqFd955h+XLlzNmzBjuu+8+KlSoUKBygwYNokuXLtmSWYAmTZowc+ZMAA4dOsShQ8XYpsvOeLiZ7miupl7CaDSyevdsmgTchXc5Xy5eiTX/uLl4Ur9mW3YdW5nn/gwGg/nLMzMrk8vJiVy8EktQ3S4AHDq9zbxty3rd8KlYmxXbZ2bbx4rtM/HyqET7Rg9a8ExFxFb9fbBwU3LcqmPnirdZZ2GF//8UIyUlI8v0ntur85fg113w0TK49P/z8l5NgzOFmNrG1mw4mvMcw8XlQhLsjii54+Un7rJpntmStGJ/yR4vP7ofu86GnrPIrYqNjeXjjz9m0aJFREZGUrlyZfr06cO4ceMYPnw43377LZ999hnDhg2zdqgAGI1Gmx5uvEGDBubfr14t5CPAUuxqiqnDmoerF4lXLnDpahy7jq7koTE5t0VyMOT/3Gxd2C8sWDeJ8LN7yMjM3lHlcnKC+XeDwUDP1s/w3Yq3CY/aS13fIKLjThB2Yi29O4zA2cnl37sWkVLmcoppipqStvEo1K1a8sfNycZbmJ6oqPZEwIMtwNO15I9dVCnpMHcLhJ25eV16JkxaAXWqwBMdTDV39iIzC7ZY4RrYeBTa1LGNlgqbj1luROOCOnkBohLAt2B1JsVO92PXKaEtJfbu3UvPnj2JiYnB09OThg0bcvbsWaZOncrx48eJj48HKNa+oJ07d2bdunWcPHkSf3//PLfdt28fgwYNYsGCBdStW7fYYroVmzZtAsDT05M77rjDytHYjhPRpnZ+flXuMLV7A1oEduWRzq8XaX8b9i/i/VmPUL9Ga164fwqVy9fAxcmNTGMmb33Tg6x/jUbSI/gpflw5mhU7ZjLM9zNW7PgWo9FIz9ZqbixyO9h+omRrZ6/ZdwaSkq0/jc2lZNifQ4JW3DKyTO99SIP8t7UFqRmmOXVP51MLe/w8TFkJI+6xn6T2YJRpvtSSFplgej9reZf8sW+UmQVbS7h29ppNx6Bfa+sc+990P3adEtpSIDY2ll69ehETE8Orr77K6NGjKVu2LAAff/wxr7/+Ok5OThgMBpo2bWrlaE2+++47wsLCCAkJYd26dQQEBFg7JMA0wtu5c+f466+/GDVqFADjxo2jTBkbGw3EilbsMDUvaVP/Xsp5VqaMe3muplyiRb2uRdrfql0/4eLkxoSha3Bzud6x5fT5wzluX9HLh7YNe7F692yeDv2IlTu/p37NNvj7NCrS8UXEvhy10FybhZVlhOMXTP3orOn4eVMs1nAsxn4S2kU7809mr4m7DD9shJe6FW9MlnLMSp8BMDV1t3ZCezbR1IfYGqz53v+b7seuUx/aUmD48OFERkYybNgwJk6caE5mAUaNGkWzZs3IyMjA398fLy/bGNFh0qRJDBw4kMjISEJCQoiIiLBqPF999RUGgwFHR0eqV6/OE088gZ+fH7/99hvDhw+3amy2IjMrk+m/vcaBkxtpXT+UxrXvxMHBgS7N+3P4zHbW71uQY7mEy3l3PHNwcMRgMGA0Xn/yZzQamfP3+7mWCW0zhKTkBKYsHErsxSjVzorcJoxGOBNvvePbQp9La57/6XhzRZBNS0qBnScLV+b4eeu+t4Vx2pqfARt4jyKtGMOFJNPoytak+7GbqYbWzh06dIh58+bh7e3Nhx9+mOM2LVu2JCwsjGbNro94tmDBAubOncvOnTu5cOECNWvWpG/fvrz55pu3XBsZGRlZoO3GjBlDVFQUq1evNtfU1qxpnUff1apV48477yQjI4MzZ84QHR3Nvn37mDNnDh07dqRcuXJWictajkXt5u9dswBITk3izIUjbD64mHMJp2hZ7x7eenyOedunenzAwYhNvD+rH52a9qNBrbY4ObpwLuEU2w//TqBvyzxH1evY9CE27F/IyOld6NpyEJmZ6Ww6uJjUtNz7Lbeq152qFWqxavcs3F3LEBL0qMXOXURsV+JV69XMgHVvpG0hhssppqauRRkltiRtDS9as/RNR+HRtpaPx5KysuBsQv7bFRdb+AxYO6mOTIDAEupPr/uxglFCa+fmzp1LVlYW/fv3zzURdXc3dQq5MaGdOHEiNWvWZNy4cfj5+bF3717Gjh3LunXrWL9+PQ4ORa+879ixY6HLREREMGDAANavX1/k496KBx54gAceeMD8ev/+/bz44ovMnTuX06dPs3HjxjxK565Vq1bExNhQ+5T/5+LkzoxhuY8osWbvXNbsnYuDwQE31zJULudH04BOhAQ9RnD9Htm29XQvx6cvbmLBukms2/cLmw8uwdHRCe9yfjT270DPfIZuDwl6lOTUJBau/4QZy16jrHsF2jbsxdOhH9F3dKUcyzg4ONAj+Gl+WPkenZr2w90194cwgfUCScuwQmcjERsT+tYOPMpVIzomGj+/YGuHUyQVfJty9/Dfc1x3bX7JvHi5Xf93TO/ct8ttjsptuw/ywRPdCxht8ej68l+Ur5Zzu9/83oOCnj/k/h506NydxLO2PeRx+0Ezqd6o8P9Pf248zGsPFa25ZklxcivLg2Nzn3nBUtdAbv//5+Ku4Odn3XFF2g38Gt/GPXNcVxKfgYFPDiVy37ICRps33Y9d5+Pjw86dO/OMMTdKaO3c6tWrAQgJCcl1m2s1pjcmtL/99huVK18fBa1Tp05UrlyZ/v37s3HjRu66664ix9SkSZObpsHJTVxcnLm58Y2jCltbkyZNWL58OQEBAWzatIm///6brl0L/0cuJiaGqKioYojw1rg55/x4vVmdzvw1ofDtydxcPBjQ7V0GdHs3z+1y239omyGEthly0/K8YnF2Mg21mV/zluizZ0lJ1yjVIpmZmeZ/bfF7qSCyPHJvxVOY+SUdHIpWy5hpNFj9vcsy5j7EbEHfg6KeP0BsfCLnbPz6ySzi7a3Byc3q/7/5cS+bdwfW4r4GDI7OVn+P0tIzc11XEp+BxEuXLfYe6H7MMpTQ2rlTp0xzF9SqVSvH9RkZGebRem9MaG9MZq9p1aoVwC1/SJcuXZrvKMdgSrQ7deoEwCOPPMK0adNu6biWVrZsWTp16sTChQsJCwsrUkLr4+NTDJHdOhcnOxnKMReZmRks3zqd2j5NaOjfLs9tq1WvrhpaEcDR0dH8r6+vr5WjKZryFXLv/nGpAB9zLzfTjWxW1vX5SAuzLweyrP7eOZB7W9r83oOCnn9e+6pUoRxONn79OBiL1skxK/2q1f9/8+OURw0YWO4ayG0/WZlpVn+PnJ1yb0VYEp+BcmU9LfYe6H7sulu5Z1ZCa+euXLkCQHJyzhfIvHnziI2NpWzZstSuXTvPfa1ZswYomZrSqKgoQkJCOHHiBA899BCzZs0y32zZkoyMDOB6zUZhFbXpRHHLTIM1U60dReFFx5/k0KktbD64hOj4E7zVf26+ZY4dPYajpqcVYfQiU//Haj7VCjzWga1JSoF3F+a8Lqemgf82prepVuZSCoz5tfDH79C6MT9Y+b2bsQb+OZvzuvzeg1s9f4BtG1ZSxq1oZUvKxqOwYEfhy/W+uyHfj7Ttz0aWEd6ab5pjNyfFfQ34VS5j9e+PRTth/ZGc15XEZ2DeT9Pxt9BIz7ofswyNcmznrj3N2L17903roqOjGTlyJABNmzbFkMdM2FFRUbz77rv06NGjWOeqvWbs2LGEh4fTu3dv5s6di5OT7T1biY+PZ926dUDxzt8rBbfv+Do+nNOfveGrGdD1PQ0GJXKbKetm3QGJalS03rHNMeTcla1EVPDA5pNZgFa1wbUItxV3Blo+FktzMICfFa9Dm/gMWDEGBwNUL2+949sKW7sfs70sQgqla9euHDp0iPHjx9OtWzfq1asHwI4dOxg4cCCxsbFA3gnZ5cuXeeCBB3BxceHbb78tciydOnXC29sbT0/PfLedMmUKfn5+vPnmm1ZLZnfu3MnSpUsZNGgQdevWzbZuz549DB06lMTERJo0acLdd99tlRglu+7Bg+kePNjaYYiIFflVNI12bA23+828NZPpwnBzhrvugL8KMXZV81rgXTb/7WxBjYoQfs46x/azgWvAmtdh1XLgouzJ5u7HVENr50aNGkWlSpU4c+YMjRo1okmTJgQGBtK6dWsCAgLo0qULkL3/7I2Sk5Pp1asXJ0+eZOXKlVSrVq3IsYwdO5YFCxbk2D/339zd3XnvvfdwdnYu8vFutGnTJry9vc0/kydPBuDnn3/Otvxaf2IwJfL/+9//CAwMpGrVqrRq1Yo2bdrg6+tLixYt2L59O/Xq1WPx4sU22RxaROR21LC6dY7r4ggBVaxz7BsFVAFnK/1JamCl974oejaFZgWcCdDf2/an67mRNf8fGhT9NtFiqnhBxfzrToqFtb5/JG9KaO2cn58fGzZs4N5778XNzY2IiAgqVqzI9OnTWb58OUePHgVyTmjT09N56KGH2LlzJ3/88QcNGzYs6fAtJj09nbi4OPPPtT7Fqamp2Zanp1/vdNKsWTOmTJnCgw8+iJeXF0ePHmXPnj1kZmbStWtXvvjiC8LCwggICLDWaYmIyL+09DfVwJX4cWuDuw30x/dwMb0HJc3NGVpY4bhF5eAAT9wJ3Rrl3vzYyQHa1YUX7i5aE2VrCaxqSuqscdyquY/LVmIcDNDeCs3DDVjnuJI/O/r4Sm4aNGjAsmU3z4d1+fJlIiIicHBwoHHjxtnWXZu7dtWqVfz++++0bt26pMItFp07d8ZoLNzw5hUqVGD48OEMHz68mKISERFLc3WG4ADYkMugMMWlQ72SPV5eOtSDrcdL9pitA+wr6QNTUntvEHRtBDsj4Ei0aTAlVydTrWybOvbRJ/jfDAbTNbCohMedtKXPQNs6sGIfZOQ+6LfFNagOlfIeZFqsxM6+mqQwDh48iNFopF69enh4ZB9F48UXX2T+/Pm88cYbeHh4sHXrVvO6OnXqFKjZsIiIiDV0bQQ7T0Jy0WZnKbSW/uBboWSOVRB+FaFFLdh9qmSO5+Fies/tlauzacAnexj0qaDa1jE91LmQVDLHq+0NTfxK5lgFUcYNujSElQdK5ngOBtPDEbFNanJciu3fvx/IubnxH3/8AcBHH31Eu3btsv0sX768ROMU2/LF4uEMGOdPt5EGwqP2mpenZaTy2a/DeGJ8IEMmNeGjOQMKtO6aFTu+o9tIA5sOLDYvGzDOnyc/voPft32TYyxb/1nGq192BiAmPoLftnyVbf2Hc/rTb6wP05a8XOTzFRH7U84d+rQsmWN5uUGfViVzrMLoG2wa9blEjtUKvOx7usxSx8UJHmtragZb3Jwd4bF2phpvW3JP45IbcfiexiX/UKso92ORF44x4vP2DB5fjxenBBMRc7BA67qNNDBkUhO2Hfo9x1gWb/qcj38eDEB41F7W7P052/rXvgqhz3sVWbTh01s/8SJQDW0plldCGxERUcLRiL3o2PQh+nUexX+mdci2fObvb2AwGPh+1FEMBgPxl2IKtA5Myegf276mQc2bR914u/886voG5RvXuYQIlm35il7thpqXvfn4bH5cOYbLyYmFO0kRsXutasOBSAg7U/Ayl5Kz/5sfA/BIG/B0LXR4xc7T1RTbzHVQ0A43hT1/gKCa9tV39nYSUMVUS7nqn4KXKco10Ku5dfrs5sfJER5vB1NWQnpmwcoU5fxrVoJujfPfztKKcj82ZeFzhLZ5lu7Bg1m/bwET5g3mixE78l0H8MkLGyjjXj7fuI6f3cvmg4uzTdUzcegac8JrDUpoS7G8ElqR3DQNuOumZclpV1ixfSZz3ok0z2dc0csn33Vg6q89ef4zvPjgZ0z/7dU8j52Rmc60JSPYdewvyrpXoHHtjuZ1UxYO5VzCKZ6bHESVCjX535NLb/lcRcR+GQzQvz1cWVvwKUwmryjcMR5uDY1sqJnlvzX2g4eCYf6O/LeFwp9/YFXTe5zHNPZiZfcGwcVkUxP8gijsNdClIXS0ob6z/+ZXEZ7sCDPXQ2YB+tMW9vyresGzncHRCrXThb0fS7h8nqORO/loyEoAOjbpy+e/DiMqNhwPN69c1/l6173pOFdTkpi84BmOn91LOc/K+FdtZD7GDyvf40rKRZ6bHESDWm15ue9XN5UvaUpoS7HVq1dbOwQpJaJjj1PWoyJzV49j97G/cXV2Z2C3MbQIvDvPdQAL10+mkf+d1PPLv33g8q0zOHPhCN+8amoG8+Y33c3rRvT9imlLXmb6K3uL5RxFxP64OJluNr/fAP+ctdx+HQym2s82dSy3z+JyZz1wdIRftkFW4cZGzFPD6jC4o/WmCJKCcTDA421N00ptDrfsvrs3gR5NbP+BRkNf0/fAzPWQlmG5/fpVhKEhtjVwWF73XBcSz1DRqxqOjqb0zmAwUKVCTc4nnsbTrVyu63JKaGf9/V+cHV35duRhrqZc4qXP21K/RhsqlKnCE/f8l80HFzN28OKSPPU82VhreBGxRZlZGZxLOEWtKg2ZNmInLz4wlQ9mPUJC0rk8152MOcCG/Qvp3/WdAh1nT/gqurUchLOTC85OLnQPfqqYz0xE7J2LEzzTCR5saZnkq1p5+E8P+0hmr2lbB17uDtUsMKWKsyP0bgnPdDa9t2L7HBxMrQkG3WmZ5vHlPWBoF9NcvraezF5zRzUYFQp1LDBXtMEAdzeEEffYVjILed+PWdKe8FX0aP00BoMBT/dydAl63KL7tzR9VYlIvqpUqImDwYEuLfoDUNe3OT4Va3Myej91fINyXRcVe4xzCREMHm8aWjI+KYZPFzxL/KVoerV/Pt/jGkpkuAsRsXcODtC5PjSqDot3wz9RBe9Xeo2HC9x1h2k0Xyc7rJWsWQle7Ql/H4T1R+BqIUeANmCq6XqwJVQuWywhSjEyGEx9nQOrwtI9phGwC9IE90YujqYHOaHNbGPO5cLyLgsvdoXNx0yfg8Srhd9HQGXTZ6BmJcvHZwl53Y/Vrt6U+EvRZGZm4OjohNFo5HzCaaqUr4mHm1eu6wrCYONPNpTQiki+ynl6E1T3bnYe+ZM2DUKJjj9JTPxJalZtkOe6FvW6ZktcX/2yM306vsydjR/M8TgtAruyavcsujR/HKPRyJ87vzOv83D14mrKxeI+VRGxY5W9YEhniLtsuqndcwrir+S+vaOD6ca1XV3T4Ef2XiPp5Ag9mpr6Pe45ZZqr9nRc3olNpTKmc28fqDk2S4Oy7qZ+z/c3N/3/74qAcxdzf8DjYDCNFBwcYPrxsMNE9kYO/z9Hb7u6cDDK9D1w4jyk5TFolJc7NPY1latuQ9Nz5SSve64KZapQ17cFf++eRffgwWzYvxDv8n7mJsV5rfu3FnW78ueO72gacBdXU5NYs3cu9fyCAfBw8+KKjd2P2flXt4hY2qcLnmPb4eXEJ8Xw5jfd8XAtyw9vhPNy36+YNP9pvvn9dRwMDrzcdzre5XwB8lxXGKFthhARc4CnJzY0Dwp1LHIXAAHVmlLLpxFDJjbGp1KABoUSkVxVKmMambVXc7iSCpHxpvk6l+2BlAxwdzbV5PiUs8/a2Py4OJlq2trUgYxMiLkIUQmQnA5Go6lZceWypj6CtjiCs9y6su6mkXm7NYaUdNP/f8xFUx9TA6a5eauVNyWz9v4gJyeODtC0huknKwvOJ5m+BxbsML0fbs4wsD34VTJNA2aLinY/Np0J8wYzd/U4PNy8GNnvesVAXuv+rX/Xd5m84BmemlCfcp6VaezfgbSMVABa1L2bBesm8uykpjT0b28Tg0IZjEajBYcQEBF7kJkGa6ZaOwrTPLRjnlhcoGl7cnNt2p4XHvg0x/Uhw8HRzp84i1jC6EWm0VDLucPYPtaOxjr0Hojc3mztO8BW7se6jTTw638TCjRtT24+/nkwdX2D6NPx5RzXF+f9mAaFEhGrKedZmfFzB/D7tm+KVP7DOf1ZtXsWHm42OEGeiIiIiB2oUKYqr37ZiW2Hfi9S+de+CmH/iXW4uXhaOLKCKYWNDETEXtw4oXdRvPn4bAtFIiIiInJ7+mV0zC2Vnzh0jYUiKRrV0IqIiIiIiIhdUkIrIiIiIiIidklNjkVuQw7Ops75twMHZ2tHICIiInIz3Y9ZhhJakduQwaCRf0VERESsSfdjlqEmxyIiIiIiImKXlNCKiIiIiIiIXVJCKyIiIiIiInZJCa2IiIiIiIjYJSW0IiIiIiIiYpeU0IqIiIiIiIhdUkIrIiIiIiIidkkJrYiIiIiIiNglJbQiIiIiIiJil5TQioiIiIiIiF1SQisiIiIiIiJ2SQmtiIiIiIiI2CUltCIiIiIiImKXlNCKiIiIiIiIXVJCKyIiIiIiInZJCa2IiIiIiIjYJSW0IiIiIiIiYpeU0IqIiIiIiIhdcrJ2ACJiW4xGyEq3dhSF4+AMBoO1o7AcoxHSMq0dReG4OFru/0DXoNwO7PE6Lyp9PkSkOCmhFZFsstJhzVRrR1E4IcPB0cXaUVhOWia8Ps/aURTO+EfA1UJ/UXQNyu3AHq/zotLnQ0SKk5oci4iIiIiIiF1SQisiIiIiIiJ2SQmtiIiIiIiI2CUltCIiIiIiImKXlNCKiIiIiIiIXVJCKyIiIiIiInZJCa2IiIjIbSLs+Fq6jTTw547vrR2KiIhFaB5aEbGIsONree2rkGzL3Fw88atcj64tBvLgnS/h6KivHCk+ugalNPj3dexgcMDDzQtvL18C/VoSEvQYre7ojsFgsGKUIiK2Q3/ZRcSiQoIeo3X9UIwYSUiK4a9dP/LVb69w+vwh/vPQDGuHJ7cBXYNSGtx4HSenJnHmwhE2H1jMX7t+pEVgV94dOJ8y7uWtHaaIiNUpoRURiwr0bUHXlgPMr3u1f4GnP67PH9u/4ckeH1C+TGUrRnf7mTLAcrU4I2YZLbav4qRrUEqDf1/HAEN7Tebr5aNYuH4y42Y/xrhn/rBSdCIitkMJrZQKERERrFq1ih07drBjxw72799Peno6TzzxBN9//32h9vX111/z7LPPAtCpUyfWrl1r+YBvI+4untSv1ZYN+xZwNu64kokSdCn2NB37T6ZFz/9YOxSr0jUopYWjgyNDe03iyJnt7DiyggMnN9K4dgcAriRfZM7qcWzcv5ALiWfwcPOieWBXnurxAdUqBeS536ysLOau+ZBdR/4k8sJRkpLjqVDWhzb17+XJHu/j5VkJgITL53n8fT/uavowbz4++6b9TF30Isu2fsmPb5zAp6K/xc9fRCQnSmilVPj000+ZMmXKLe8nJiaGUaNGWSAiuVF03HEAvDwqWjmS28vJPb8R0LyXtcOwCboGpTTpEfw0B05uZNuh5TSu3YEryRcZ8UV7zieepnvwU/hXbUT8pWiWbpnGS5+14YsRO6laoVau+8vITGP+2gl0bNKXdo0ewM3Fk6NndrBix0wORGxk2ohdODu5UKFMFdo1vJ+N+xdxOTkxW5PntPQU1uydQ/O6XZXMikiJUkIrpYK3tzehoaEEBwfTqlUr/vjjD6ZNm1bo/bz00ktcunSJ++67j2XLlhVDpKVfSvpVLl6JxWg09V/8bctXhEftoX6N1vhVrmft8G4riTHHaNbtRWuHUeJ0DUppF1CtKQCRF44C8P3K94iOO8HUl7ZSp3oz83b3BA/m2UlN+OHP0Yx69Ptc9+fs5Mq896JxdXa/vrDdUBr6t2fy/GfYfHAxnZr1AyC0zbNs2L+Q1XvmcH/7F8ybb9i/kMvJiYS2ecaCZyoikj8ltFIqvPPOO9leb926tdD7WLp0KQsWLOCll16iYsWKSmiL6MeVo/lx5ehsyzo07sNLvb+wUkS3p7SUy7i4lbV2GFahazA7oxFOXoDUdNPr1HQ4mwDVK1g3rpJ0MRn2n4GU/38P0jMhMwsc7XTyQg83LwCupl7CaDSyevdsmgTchXc5Xy5eiTVv5+biSf2abdl1bGWe+zMYDOZkNjMrk+TUJDKzMgiq2wWAQ6e3mRPalvW64VOxNiu2z8yW0K7YPhMvj0q0b/SgJU9VxCKyjHA05obvwQy4kASVb6M/k3GX4UAkXE0DZ0eoXh7qVwMHO/0evJES2lIkNjaWjz/+mEWLFhEZGUnlypXp06cP48aNY/jw4Xz77bd89tlnDBs2zNqhAmA0Gm1m2oGkpCRefPFFqlevzvvvv8/kyZOtHZLdurfNs9zV9GEystI5Gb2feWvHE3sxEhdnN/M2+09s4K2ZPW8qm5GZRlZWJn9+nFmSIZdKp/f/Rc0m91g7DKvQNWhiNML2E7D2MEQnXl+ekgEf/w4BlaFrI2joa7UQi110Ivy5H/adMd3QXnM1DcYuhvZ14e5Gpps7e3I15RIAHq5eJF65wKWrcew6upKHxuTcP9zBkP8d67qwX1iwbhLhZ/eQkZmebd3l5ATz7waDgZ6tn+G7FW8THrWXur5BRMedIOzEWnp3GIGzk8stnJmIZWUZYcMR2HAUYpOuL09Jhw+WmhK6bo2hThXrxVjcImJh5X44dBb+PbRjpTLQoR7cdYf9PuADJbSlxt69e+nZsycxMTF4enrSsGFDzp49y9SpUzl+/Djx8fEABAUFFVsMnTt3Zt26dZw8eRJ/f/88t923bx+DBg1iwYIF1K1bt9hiKqg333yTyMhIfvnlF7y8vKwdjl3z9Q6kRb2uALSu35PGtTvwn2kdmLJwKG8P+BmAJgEd+e2Dy9nKxV48y4tTW/FAe9t44GLvoo9t4s5Hx2dbtmneW+z87UO6DplJo05PZVtnNBpZ+EEIMeFbePR/u/Cu0bgkw7UoXYOmZHbhDth4LPdtTlyAGWvhgRYQ0qDEQisxR2Ng5jpTTUxOLiXDiv1wJAae7QzudpSHnYjeB4BflTtM/9lAi8CuPNL59SLtb8P+Rbw/6xHq12jNC/dPoXL5Grg4uZFpzOStb3qQlZWVbfsewU/x48rRrNgxk2G+n7Fix7cYjUZ6tlZzY7EdmVnw4yYIO537NoejTd8Vj7WF4LzHTrNLe0/BT5tN70VO4i7Dkt0Qfg6e7AhOdvZw7xo7zsXlmtjYWHr16kVMTAyvvvoq0dHR7N69m5iYGMaPH8/y5cvZsWMHBoOBpk2bWjtcAL777jvCwsIICQnhxIkTVo1ly5YtfPnll/Ts2ZOHH37YqrGURo3829O1xUDWhs3jYMTmHLdJy0hl7I99aOzfgcfvfquEIyx9jFlZGI1GHByy/2Vq23cMlfwas372KyTFRWZbt2fFp0QdXkebPmPtOpnNye14Da7Yn3cye6Mlu2HnyeKNp6RFJ+adzN7o5AX4fkP2Glxbt2LHTADa1L+Xcp6VKeNenqspl2hRr2uuP3lZtesnXJzcmDB0Db3aP0/bhvfRol7XXAeSqujlQ9uGvVi9ezbJaVdYufN76tdsg79PI4ufq0hRLdiRdzJ7TZYR5m41JbelyfFzeSezNzoYBT8XvreezVBCWwoMHz6cyMhIhg0bxsSJEylb9nqHgFGjRtGsWTMyMjLw9/e3mdrHSZMmMXDgQCIjIwkJCSEiIsIqcaSnpzNkyBBcXV35/PPPrRLD7aB/13dxcHDkhz/fy3H9lIVDSUtPYeQj35dsYKVUzInt+NRpfdNyRycX7nnuBzJSr/D3N0+blyecPcKW+W/jU6cNLe8bWZKhlpjb6Rq8nAKrDhauzLK9kFWAmx578ef+giWz1xyJMdXS2LrMrEym//YaB05upHX9UBrXvhMHBwe6NO/P4TPbWb9vQY7lEi6fz3O/Dg6OGAwGjMbrF4HRaGTO3+/nWia0zRCSkhOYsnAosRejVDsrNuX8JdgSXvDts4ywfG+xhWMVy8MKlsxeszPCNL6CPVKTYzt36NAh5s2bh7e3Nx9++GGO27Rs2ZKwsDCaNWuWbfnJkycZMWIEa9aswcnJiV69evHJJ59QqVKlW4opMjIy/42AMWPGEBUVxerVqwkJCWHdunXUrFnzlo5dWB999BEHDx7kgw8+ICCgFLY1sRG+3nUJafYoq/bMZv+JDTQJ6Ghe9+vGqWw7tIzPh+/AzcXDilHap6jD66kW2B4Hx+tf56fCVtA8l7lnq9RuQateb7J98f/Yv3oGjTo/zZ/TB2E0GrnnuR9uqtUtLW6na3D7CcgoZHKaeBX+OQuN/YonppJ0MdnUZ7awNh419aezFceidvP3rlkAJKcmcebCETYfXMy5hFO0rHcPbz0+x7ztUz0+4GDEJt6f1Y9OTfvRoFZbnBxdOJdwiu2HfyfQt2Weoxx3bPoQG/YvZOT0LnRtOYjMzHQ2HVxMatrVXMu0qtedqhVqsWr3LNxdyxAS9KjFzl3kVm0qYAuVG52Jh9NxUPPWboNtwtkEU7eSwtp4DPrd/Dzc5imhtXNz584lKyuL/v37U6ZMmRy3cXc3jVx4Y0KblJRESEgIFStWZO7cuSQnJzNq1Cjuu+8+Nm3ahMMtDHnWsWPH/Df6l4iICAYMGMD69euLfNzCOnLkCB988AENGjRg5MjSWStlSx67+23W7J3LDyvfY+LQNQDsDV/DN8tfZ9wzf2jewiI4unUef3/zDL1eWUqNhiHm5anJF3H1KJdrudYPvsuJ3UvZOOc1Lpzay7nj2+n4+CQqVL+jJMK2mtvlGtxzqujlSkNCu/9M0ZoPH4yCtAxwsZE7ozV757Jm71wcDA64uZahcjk/mgZ0IiToMYLr98i2rad7OT59cRML1k1i3b5f2HxwCY6OTniX86Oxfwd65jOVTkjQoySnJrFw/SfMWPYaZd0r0LZhL54O/Yi+o3O+u3dwcKBH8NP8sPI9OjXth7trzvcgItaw9xa+B0tDQru3AE2tcyx3SgmtWMHq1asBCAkJyXWbazWmNya0M2bMICoqivXr15trRf38/Gjfvj1Lly7lwQcfLHJMTZo0wcWlYKNrxMXFmZsbN2hQsqOSPP/886SmpvLVV1/h7OxcLMdo1aoVMTF20I7tBi5O7swYVvhHm83qdOavCbnfRdaq2iDbyLEx8RG8P6sfQ+6bQLM6nYsSqllgvUDSMpJvaR+2xNHZnd7v5/9/UK/tIySeC+fE7usJ7aXY03h559zvzbx/J2fuee4Hfn4vmP2rvqR6vQ407/HyLcVcLzCQzHTL/B/oGrw1PV/fgmfFGoUut3zlWt58ZEAxRFSyGnT9D426vVrockYjNGzaipRLJfOdndt1nt91nBs3Fw8GdHuXAd3ezXO73PYf2mYIoW2G3LQ8r1icnVwB8m1ubEufD7k99P7gOI7/f30Wxnez5vPi/Tm3cLInzR8cR512gwpd7moa1KhZC2NWyY/07+Pjw86dO4tUVgmtnTt1yvQIqlatnG9gMzIy2LRpE5A9oV22bBkdOnTI1sS3Xbt2BAQE8Ntvv91SQrt06dJ8RzkGU6LdqVMnAB555BGmTZtW5GMWxe7du3FwcKBfv343rbt82TT66ebNm/Hx8QHg6NGjhe6DHBMTQ1RU1K0HW4LcnIu/yWVK2lVGf/8g7Rrez4N33vqIstFnz5KSnnvTOHvj5Frw/4M6rXrz26T76TTgEwBO7vmN2s175VvO1aMcjs6uZGWm4x8UiuEWJ6I7G32WjFTL/B/oGrw1aanJeBah3NXLSXb3fZWTavGx+W+Ui7ORp0hOKnr5wiiJ67w4ZWZmsHzrdGr7NKGhf7s8t7Wlz4fcHjLT04qU0F6+lFgqvgfrXCpaZ9iszAwizxSxeteKlNDauStXrgCQnJzzk8958+YRGxtL2bJlqV27tnn5P//8k+OIvo0aNeKff/4pnmBvEBUVZR7h+KGHHmLWrFk4OpZ8372srCzOnTuX6/r09HTz+n9PW1AQ15Jhe+Li5F7sx9iwfyEnosOIij3K2rB5N62f+do/VKlQ8P7U1apXL1VP/x2dC/5/UMm3IRgMxEUepJJfIxLPhdOsap08yxiNRv6a8SRZGWlUrN6A7UveJ7BNP8rnUy4v1atVt2gNbXErzddgckIEFarVK3S5jMtR+Pra/6S0htQidBwDUi/HUam8B0avknkPSuI6Lw7R8Sc5dGoLmw8uITr+BG/1n5tvGVv6fMjt4XLscSrWCCp0ucwr0aXie9B4tWgtTZJij1vt/G/lnlkJrZ3z8fEhISGB3bt3065d9iek0dHR5r6hTZs2xWAwmNclJCRQvnz5m/ZXsWJFjhw5UqwxA4wdO5bw8HB69+7N3LlzcXIq+UsxMTEx13Vjxoxh7NixdOrUibVr1xb5GEVtOmFNmWmwZmrxHqNby4F0aznQYvs7dvQYjnY0h2R+UjPg9ZtzrFwFNO/Fid1LKetdCxe3svluH7byMyIPraXdwx9Qp+UDzH2nBX9//RR9316b7XuiMI4eO4arhT7GugZvzcFI+Hpd4ct9N2EoVacPtXxAJSwzC8YuNs0zWxihrSvx5ekidrwrgpK4zovDvuPrmPjLk5Tz9GZA1/cKNBiULX0+5PawJRzmbStcGScH+O279yjjlvNo+PYkOQ1GL4K0QrYcHhx6B9+9UrDBXW2Jpu2xc127muaWGz9+PEePHjUv37FjByEhIcTGmppOBQUFFXssnTp1om/fvnh65t/YbcqUKYwdO5Z58+ZZJZkVKU1qtzAltKf3r6Rm4255bpsQc4xNv7xJ1YBgWvV6nUp+jWjTZwxRh9cTtvKzkglYilWD6lCpkOPz1POBqrYxq9stc3SA9nULV8ZggPaBxRNPadM9eDB/TTCyYMwFnug+1trhiOSohT+4F/IhSlAtKONWLOGUOHcXaFU7/+1u5OIEwXY64YcSWjs3atQoKlWqxJkzZ2jUqBFNmjQhMDCQ1q1bExAQQJcuXQBumrKnQoUKOdZQxsfHU7FixSLFMnbsWBYsWEDlypXz3dbd3Z333nvPYoMxbdq0CW9vb/PP5MmTAfj555+zLb/Wn1ikNPG9oyOJMcc4vvNXqtVrn+t2xqws/po+GGNWZrYpelreN4oqtVux6Zc3STx3vKTClmLi4AAD7wTnAvbi8HKDR9oUb0wl7e5GUDv/P0VmD7Uq/EMAEbFdrk4wsD04FLDRkXdZeLBF8cZU0u5rDj65T3iQjQEY0B487LQlhRJaO+fn58eGDRu49957cXNzIyIigooVKzJ9+nSWL19urrX9d0LboEGDHPvK/vPPPyU+2rAlpKenExcXZ/651qc4NTU12/L09HQrRypieQ6OTtRq2t30ex7zyO7+fRLRxzbTtu9/qeh7/XPu4ODIPc99jzEzg7+/fgqjsQhznohN8feG57vkf3NSqQwM61b6kjlnR3guBO7IZ15ZBwM8HAx3Fr7LsYjYuIa+8NRd4JLPwz3fCjCsa+mpnb3GwwVevDv/aYicHOGJjtC08IPj2wyDUXcupdbly5fx8vLCYDCQlJSEh8f1ERUnTpzIW2+9xYkTJ/DzM008uG3bNtq2bcuiRYvo3bu3tcIWK7PHfl0hwylV/bMK24cW4Ni2+WAwENj6oRzXx0cdYs47zalcqzkPv7cxx8R3x9IP2fzLW3QaOIWg7sMLdfzxj2BXfWgtzVavweQ02HESNh6F85euL6/lDR0CTU3sClqTa4+yjHAsxnT+B6JMU/MAlHGFtnVNTZMrWimZt8frvKhs9fMht4fLKbD1OGw6BglXri8PrAod6pnm33YsxVV8mVnwTxRsPAZHoq8vNxigZ1NoWwe87HOMOjMltKXYtQT1jjvu4PDhw9nWXbp0iSZNmuDt7c3YsWNJSUlh1KhRVK5cmS1btuBwi1N4iP2yx5us0nazVJSE1tqU0Nr2NWg0QnI6pGWAm7Pp53aTlmFK8B0dTDUX1v4zZ4/XeVHZ+udDbg9ZRtN3QHomuDuD6234PZiaAe8vgaQUU3eT//a1dkSWodF4SrH9+/cDNzc3BvDy8mL16tWMGDGCRx99FCcnJ+677z4++eQTJbNSbNbvW8CeY6t4/v5P+GD2o5w69w+uzu6UL1OF4X2+xNe7kCO5iBTS7XoNGgymJM5e+0dZgouT6UdEbk8OBvAs/NS0pYqr0/V+xUWc1MAm6au9FMsroQWoU6cOy5YtK8mQ5Da36cCvdG05CIDQNs/Sun5PDAYDizd9zuT5zzDp+bXWDVBKPV2DYi8GjPPH2cnVPF/tY13epHPQI0ReOMaEeU9w8Uosnm7lGPnI9/j7NCItPaVAD2n2hK/mjRndeK7XJPp0fBmAV7/szPmEU9wT/CQDu908ZcnJmAO8++19zHorgsvJiSzb8hWPdnnDvH7GspGsDZtHoG8Lxg5eXGzviYhITpTQlmL5JbQilnY5OZEhkxqTmp5M5XI1SM9MJSbuBHe3HMiIPl9yMGITIx/5HidHZ9o0CDWXa1CzLQvWTbRi5FJa6BqU0uTt/vOo6xuUbdmUhc8R2uZZugcPZv2+BUyYN5gvRuwA8n9IcyX5IjN/f4PW9UP5t6H3f8KdjR/MN6bLyYn8vOajbAnts/dNoFbVRmw+uLgopykickuU0JZiq1evtnYIcpsp416eLkGP4+5algHd3mXHkT+Zu3ocrz78DTuPrKRhrfY4Od7caeXXjVNo1+gBK0QspY2uQSnNEi6f52jkTj4ashKAjk368vmvw4iKDcfXu26+D2k+WzyMx+9+h437F+V7rB9XjmHVntl4unoRXL+nefmUhUNJTk3iuclBODo6MW3ETgudnYhI0aizpIhYVPjZvdT1bQ7Aschd1K1u+n3zwcXc2fjm0bPnrBrH2dhwnu75YYnGKaWXrkEpLT7+eRBDJjVh0i9Pk3j5AhcSz1DRqxqOjqb6CIPBQJUKNTmfePqmsv9+SLN+3wIcDA60b3R/vsfddmg56/fNZ9qIXXwxYifn4iPM60b0/Qp317JMf2WvklkRsQlKaEXEok78O5nwbY7RaGTnkT9pfcNTfoD5ayey8cAixj3zB24uHjntTqTQdA1KaTD5+fXMeHUfX768Gy9Pbz6e90SBy/77IU38pRhm//0+LzwwpUDl9xxbRaem/fB0M039d2/b54p0DiIiJUEJrYhYTOzFKDAY8C7nC8CJmH3U9mnC4TPbqVm1Ae6u1yd8XLBuMmv2zmX8kL8o417eShFLaaNrUEqLKhVqAuDk6Eyfji9z4OQGKpevQfylaDIzMwAwGo2cTzhNlfI1zeVyekhzLGoX8UnRDP0kiAHj/NmwfwGz/vov3/7xdoFiMZSm4VBFpNRRH1oRsZjwqD3m5p0AZdzKs3TLNMp5etO+0YPm5RcSI5m+7FWqVQzgta9CAHBxcuWz4dtKOmQpZXQNSmmQnHaFzMx084OWNXvmUrd6cyqUqUJd3xb8vXsW3YMHs2H/QrzL+5lHMjY/pHn272wPado0uJf5o8+ZX3/882Dq+gaZRzn+t+aBXflm+Sj63vUK7q5lWL51hnmdh5sXaenJpGek4ex0G88DJSI2QwmtiFhM24b30bbhfebX10befGZiIyYMXWNeXrm8H39NMJZ4fFL66RqU0iAx6Rxjf+xLVlYmRoxUqxjAqEd/BODlvtOZMG8wc1ePw8PNi5H9vgMs+5CmTYNQjpzZzvNTWlwfFOqkaZ2XR0W6thzEc5Ob4uZaRv1oRcTqlNCKSLH75rWD1g5BbnO6BsWeVKsUwFf/2ZPjuhpV7mDqS1tuWl6YhzSjHv0+320G3TOGQfeMMb9+ssf75t9fefjrAh1HRKQkqA+tiIiIyG2srEdFZv7xJj/99d8ilZ+xbCQ/r/mQMu4VLByZiEj+VEMrIiIichsb80T+89Lm5dn7JvDsfRMsFI2ISOGohlZERERERETskhJaERERERERsUsGo9GoYR5FxMxohKx0a0dROA7OUJqmSTQaIS3T2lEUjouj5f4PdA3K7cAer/Oi0udDxHaMXgQXk6GcO4ztY+1oLEN9aEUkG4MBHDW1oFUZDOB6G3876xqU24GucxERy1CTYxEREREREbFLSmhFRERERETELimhFREREREREbukhFZERERERETskhJaERERERERsUtKaEVERERERMQuKaEVERERERERu6SEVkREREREROySEloRERERERGxS0poRURERERExC4poRURERERERG7pIRWRERERERE7JISWhEREREREbFLSmhFRERERETELimhFREREREREbukhFZERERERETskhJaERERERERsUtO1g5AREqO0QhZ6daOwjocnMFgsHYUIiIiImJJSmhFbiNZ6bBmqrWjsI6Q4eDoYu0oRERERMSS1ORYRERERERE7JISWhEREREREbFLSmhFRERERETELimhFREREREREbukhFZERERERETskhJaERERERERsUtKaEWkxIQdX0u3kQb+3PG9tUMRERERkVJA89CKiFnY8bW89lWI+bWDwQEPNy+8vXwJ9GtJSNBjtLqjOwaDwYpRioiIiIiYKKEVkZuEBD1G6/qhGDGSnJrEmQtH2HxgMX/t+pEWgV15d+B8yriXt3aYIiIiInKbU0IrIjcJ9G1B15YDsi0b2msyXy8fxcL1kxk3+zHGPfOHlaITERERETFRQisiBeLo4MjQXpM4cmY7O46s4MDJjTSu3QGAK8kXmbN6HBv3L+RC4hk83LxoHtiVp3p8QLVKAXnuNysri7lrPmTXkT+JvHCUpOR4KpT1oU39e3myx/t4eVYCIOHyeR5/34+7mj7Mm4/Pvmk/Uxe9yLKtX/LjGyfwqehv8fMXEREREdujQaGKgdFopFy5chgMBi5cuJBtuZeXFwaDgdjY2JvK5LZOxJb0CH4agG2HlgOmZHbEF+35bcs0Wje4lxcf/IwH2g9jb/hqXvqsDecSTuW5v4zMNOavnYCvdyAPdx7JCw9MpWVgN1bsmMmrX3UmPSMNgAplqtCu4f1s3L+Iy8mJ2faRlp7Cmr1zaF63q5JZERERkduIEtpicOrUKS5duoSPjw+VK1c2Lz9+/DhJSUn4+vri7e2drUxe6yR/ERERzJw5k6FDh9KyZUtcXFwwGAwMHjw4z3KDBw/GYDDk+XP48OGSOQk7EVCtKQCRF44C8P3K94iOO8EnL2zkxQemcG/bZxl4z2g+H76d9IxUfvhzdJ77c3ZyZd570bzabyYPd3qVXu2G8mq/mQzv8yURMQfYfHCxedvQNs+SlpHC6j1zsu1jw/6FXE5OJLTNM5Y9WRERERGxaWpyXAxOnz7NHXfcQdu2bbMtDwsLAyAoKOimMnmtk/x9+umnTJkypcjlAwMDqVKlSo7rPDw8irzf0sjDzQuAq6mXMBqNrN49myYBd+FdzpeLV663LnBz8aR+zbbsOrYyz/0ZDAZcnd0ByMzKJDk1icysDILqdgHg0OltdGrWD4CW9brhU7E2K7bP5P72L5j3sWL7TLw8KtG+0YOWPFURERERsXFKaIvBXXfdlWOt3t69ewFo1qxZodZJ/ry9vQkNDSU4OJhWrVrxxx9/MG3atAKXf+utt/KtzRWTqymXAPBw9SLxygUuXY1j19GVPDSmco7bOxjybwiyLuwXFqybRPjZPWRkpmdbdzk5wfy7wWCgZ+tn+G7F24RH7aWubxDRcScIO7GW3h1G4OzkcgtnJiIiIiL2RgltCVINbfF55513sr3eunWrlSIp/U5E7wPAr8odYDQC0CKwK490fr1I+9uwfxHvz3qE+jVa88L9U6hcvgYuTm5kGjN565seZGVlZdu+R/BT/LhyNCt2zGSY72es2PEtRqORnq3V3FhERETkdmOXfWgjIiKYMGECPXr0oE6dOnh6euLh4UGzZs346KOPSEtLu6mMj48PBoOBiIgI9u7dy8CBA/H19cXT05OgoCB+/vnnPI+ZlZXFggULePDBB6levTqurq5Ur16dLl26MGXKlGzH9Pf3z7HvZVFqaItyrvbC+P/JkNiXFTtmAtCm/r2U86xMGffyXE25RIt6XXP9ycuqXT/h4uTGhKFr6NX+edo2vI8W9bpStUKtHLev6OVD24a9WL17NslpV1i583vq12yDv08ji5+riIiIiNg2u0xo//e//zFq1Cg2btyIo6MjjRo1okqVKuzbt48333yTxx57LNv2586d49y5c3h5ebF48WJatWrFypUrqV69Om5uboSFhfHYY4+xcmXOff3Onz9Ply5dePjhh1myZAnOzs4EBQXh7OzMmjVrePPNN3F0dAQgMTGRU6dO4eHhQb169cz7SEhI4MyZM3h6elK3bt1s+89rXWHP1Zo6d+5sfmiQn3379tG8eXPCw8OLP7ACuPawokuXLvTr14/JkydnG6FaTP1bp//2GgdObqR1/VAa174TBwcHujTvz+Ez21m/b0GO5RIun89zvw4OjhgMBozG6zWxRqOROX+/n2uZ0DZDSEpOYMrCocRejFLtrIiIiMhtyi6bHN9zzz28+OKLNG/eHIPBYF6+c+dO7rvvPhYtWsT+/ftp0qQJcL05b0pKCmPHjmX27Nn069cPg8FASkoKDz/8MMuWLWPmzJncc8892Y515coVQkND2bVrF506dWLq1Kk0bdrUvP7gwYMsXLjQnNBeq2lt0qQJDg7Xnxfktjy/dYU9V3vx3XffERYWRkhICOvWrSMgIO+5Sovb8uXLs72eP38+7733Hl999RUDBgywUlTWcyxqN3/vmgVAcmoSZy4cYfPBxZxLOEXLevfw1uPXRxl+qscHHIzYxPuz+tGpaT8a1GqLk6ML5xJOsf3w7wT6tmTUo9/neqyOTR9iw/6FjJzeha4tB5GZmc6mg4tJTbuaa5lW9bpTtUItVu2ehbtrGUKCHrXYuYuIiIiI/bDLhPaRRx7JcXmrVq3o1q0bs2bN4uDBgzcltOnp6cyZM4eePXuay7i5ufH888+zbNkyTp26eb7MV199lV27dtGhQwdWrlyJi0v2QWcaNWpEo0bXmzrm1he2qP1nC3uu9mLSpEnExcXx008/mZNaf3//Eo+jXr16fPLJJ4SEhODv74+zszO7du3i/fffZ+XKlQwaNIgKFSpw7733lnhs1rRm71zW7J2Lg8EBN9cyVC7nR9OAToQEPUZw/R7ZtvV0L8enL25iwbpJrNv3C5sPLsHR0Qnvcn409u9Az3ym0gkJepTk1CQWrv+EGcteo6x7Bdo27MXToR/Rd3SlHMs4ODjQI/hpflj5Hp2a9sPdtYzFzl1ERERE7IddJrSpqaksXbqUdevWcfLkSZKSkswDxxw8eBAgW+J5LWF86KGHsiWz11zrh1q+fPlsyw8fPsw333yDq6srs2fPvimZzUlufWGLOsJxYc81MjKSjz76iO3btxMWFkZaWlqOfVULul1RREZGFmi7MWPGEBUVxerVq81Jbc2aNS0SQ0G99dZbNy3r2LEjK1asoHfv3ixZsoSXX36Z0NDQbDXkBdWqVStiYmIsEapFuDi5M2PYsVzXN6vTmb8mFP46cHPxYEC3dxnQ7d08t8tt/6FthhDaZshNy/OKxdnJFaDAzY0D6wWSlpFcoG1FRERESqPQt3bgUa4a0THR+PkFWzscMx8fH3bu3FmksnaX0K5atYonn3ySM2fO5LndjU1YryW0udV2HjlyBCBbn1eAOXPmkJmZyaBBgwqcaF1LTv9d25rb8rzWFeVcw8PDWbhwIcHBwbi4uLBp06YcyxR0u6Lo2LFjoctEREQwYMAA1q9fb7E4boXBYGD8+PEsWbKE8PBw9u/fn62peUHFxMQQFRVVDBEWjZtz6ZhTNzMzg+Vbp1PbpwkN/dsVqEz02bOkpOfejFlERESktMvMzDT/a0v3qLfCrhLabdu2ERoaSnp6Ok8//TT9+/encePGVKhQAScnJw4fPkyDBg1wcnKiQYMGgKmG89pow507d85xv7kllH///TcAoaGhBYovPT2df/75BwcHh2zJT3p6OocOHbppeV7rinKuYJoDNzo6GjDVgOaWqBZ0u6Jo0qRJgWqzAeLi4syDSN14HrbgjjvuoGLFisTHx3Ps2LEiJbQ+Pj7FEFnRuTi5WzuEWxIdf5JDp7aw+eASouNP8Fb/uQUuW616ddXQioiIyG3t2rg/jo6O+Pr6Wjma627lntmuEto333yTtLQ0PvroI15//eY5L68N7NOwYUNcXU3NEf/55x8yMjKoWbMmlSrl3B9vz549wM0J7bWa0YIOWHTo0CHS0tIIDAzE09PTvPyff/4hLS2NevXq4eGRvYYst3VFOVfgpkGlclPQ7Ypi6dKlBeoPGxkZSadOnQBT7fm0adOKLaaicnZ2BiAjI6NI5YvadKK4ZKbBmqnWjqLo9h1fx8RfnqScpzcDur5XqMGgjh09hmPBnrOIiIiIlEqjF8HFZKjmU63A3QRtnd0ktJmZmebmqE8++eRN67Oyspg9ezYAzZs3Ny+/1tz4xmU3unLlCseOHcPZ2ZnGjRvftA4gOblgtTq51fQWdkCoop6rPYmKiiIkJIQTJ07w0EMPMWvWLPMTI1tx4cIFzp83TTnj5+dn5WgEoHvwYLoHD7Z2GCIiIiJiI+xmHtorV66Y23ynpKTctH7SpEnmmtbCJLT79u0jKyuLBg0a3NRMtkaNGgBs3ry5QDHmlrgWdkCoop6rPRk7dizh4eH07t2buXPn4uRke89WJk2ahNFopFy5cgQH206neRERERERMbGbhNbLy8vczvuDDz4wJ3xpaWlMmDCBd99915wUFSahzSsx7N27t/l4K1euzLYuKiqKcePGcezY9RFjc0tcC1tDW9RztbZOnTrRt2/fbM2tczNlyhTGjh3LvHnzrJbM/vXXX7zxxhscP3482/KrV6/y3//+l48//hgwNf8uaJ9gEREREREpOXaT0AK8/fbbAMyYMQNfX1+Cg4OpUqUKb7/9Np999hlGoxGDwZAtOSxoQptTsvnaa6/RokULLl68SPfu3alWrRqtW7embt261KhRg3fffZfq1avfdKzcmhznVEOb27qinKu1jR07lgULFlC5cuV8t3V3d+e9994z91G9VZs2bcLb29v8M3nyZAB+/vnnbMtvHPzqypUrjB8/nrp161K9enWCg4Np2bIl3t7ejB49GqPRyLPPPsuoUaMsEqOIiIiIiFiW7bXzzMPzzz+Pk5MTEyZMICIiAkdHR+677z5ef/11srKyyMzMpE6dOnh5eQGmQYfi4+OpVKmSufnwv+WV0JYpU4YNGzbwySefMH/+fI4ePcrFixfx8fHhwQcfpE+fPubayMjISOLi4vD29s42Ylhuy/NbV9hzvd2lp6cTFxd30/LU1FRSU1OzbXdNy5Yteeedd9iyZQvh4eH8888/ZGZmUrVqVdq1a8eQIUO4++67SyR+EREREREpPIPRaDRaOwgpHmPGjGHs2LHk919c0O3E/tn7KMe3ImQ4GuVYREREbmvXRjku5w5j+1g7GsuwqxpaKZgFCxYApimBbnzt7+9Pq1atCr2dlH5fLB7Oln+Wci7hFF++vIe6vkF5LgcYMM4fZydX89y2j3V5k85Bj5CWnsIHsx/l1Ll/cHV2p3yZKgzv8yW+3nUBSLh8no/nDuJs/HFcHF15qc80mgbclW2fD3caSWibZ26Kc+s/y5i/biKTnl9LTHwEO46soFe7oeb1H87pz55jq+gc9CgvPPBp8bxZIiIiImIzlNCWQg8//HCOr5944gm+//77Qm8npV/Hpg/Rr/Mo/jOtQ4GWX/N2/3nZktxrQts8S+v6PTEYDCze9DmT5z/DpOfXAjDz9zdoUKstHw5ZwZEzOxjzQ29+evMkTo7Oee7z384lRLBsy1fZEto3H5/NjyvHcDk5sUDnLSIiIiL2TQltKVTQpsNqYizXXKshLejyvLg4u9GmQaj5dYOabVmwbqL59bqwX/jh9XAA7qgRTCWv6uw7vo4W9bretK+MzHSmLRnBrmN/Uda9Ao1rdzSvm7JwKOcSTvHc5CCqVKjJ/55cWuhYRURERMS+KaEVkSL7+OdBGDFSv0Zrng79iPJlbh7h+teNU2jX6AEALl2JIzMznYpePub1VSv4cz7xdI77X751BmcuHOGbVw8C8OY33c3rRvT9imlLXmb6K3steEYiIiIiYk/satoeEbEdk59fz4xX9/Hly7vx8vTm43lP3LTNnFXjOBsbztM9PyzSMfaEr6Jby0E4O7ng7ORC9+CnbjVsERERESlFlNCKSJFUqVATACdHZ/p0fJkDJzdkWz9/7UQ2HljEuGf+wM3FAwAvz0o4OjgRfynGvN25hAiqlK9ZoGMaMFgoehEREREpDZTQikihJaddyTbw0po9c6lbvbn59YJ1k1mzdy7jh/xFGffy2cp2bPowy7Z+BcCRMzuIvRhF0zqdcjxOi8CurNo9i4zMdNIz0vhz53fmdR6uXlxNuWi5kxIRERERu6M+tCLCpwueY9vh5cQnxfDmN93xcC3LD2+E57o8MekcY3/sS1ZWJkaMVKsYwKhHfwTgQmIk05e9SrWKAbz2VQgALk6ufDZ8GwBD7h3PR3MH8sT4QJwdXXjjsVnmEY7/LbTNECJiDvD0xIbmQaGORe4CIKBaU2r5NGLIxMb4VArQoFAiIiIityGDUUPditw2MtNgzVRrR5G7AeP8GfPE4gJN25Oba9P2/Hse2pDh4Ohya/GJiIiI2LPRi+BiMpRzh7F9rB2NZajJsYjYjHKelRk/dwC/b/umSOU/nNOfVbtn4eHmZeHIRERERMQWqcmxiNiML0bsuKXybz4+20KRiIiIiIg9UA2tiIiIiIiI2CUltCIiIiIiImKX1ORY5Dbi4GwaHOl25JDzQMoiIiIiYseU0IrcRgwGjfQrIiIiIqWHmhyLiIiIiIiIXVJCKyIiIiIiInZJCa2IiIiIiIjYJSW0IiIiIiIiYpeU0IqIiIiIiIhdUkIrIiIiIiIidkkJrYiIiIiIiNglJbQiIiIiIiJil5TQioiIiIiIiF1SQisiIiIiIiJ2SQmtiIiIiIiI2CUltCIiIiIiImKXlNCKiIiIiIiIXVJCKyIiIiIiInZJCa2IiIiIiIjYJSW0IiIiIiIiYpeU0IqIiIiIiIhdUkIrIiIiIiIidsnJ2gGISMkzGiEr3dpRlAwHZzAYrB2FiIiIiBQHJbQit6GsdFgz1dpRlIyQ4eDoYu0oRERERKQ4qMmxiIiIiIiI2CUltCIiIiIiImKXlNCKiIiIiIiIXVJCKyIiIiIiInZJg0KJiIiIiIiUUhevwpl4iLsMqf8/y0VaBkQlgE85cLTzKk4ltCIiIiIiIqVIdCJsOgr7IuFS8s3rk9Nhwu/g5AC1K0O7utC0Bjg5lniot0wJrYiUmLDja3ntqxBe6/cd3YMHWzscERERkVLlTBws3g3Hzxds+4wsOHbO9FPWDbo0hE53gIMd1doqoRURs2sJ5zUOBgc83Lzw9vIl0K8lIUGP0eqO7hgMBitGKSIiIiI3ysiElQfg74OQZSzaPpJSYMlu2HsaHm8LVctZNsbiooRWRG4SEvQYreuHYsRIcmoSZy4cYfOBxfy160daBHbl3YHzKeNe3tphioiIiNz2rqTCjDVwKs4y+zsVCxP/gEF3QpMaltlncVJCKyI3CfRtQdeWA7ItG9prMl8vH8XC9ZMZN/sxxj3zh5WiExEREREwJbNf/A1nEy273/RM+G4DPNEBmtW07L4tzY5aR4vkLiIigpkzZzJ06FBatmyJi4sLBoOBwYMHF3gfixcvplevXlSrVg1XV1eqVatGSEgIEyZMKL7A7YijgyNDe02ice0O7DiyggMnN5rXXUm+yNfLX+eJj+oS+oYrD42pzAezHyM67kS++83KymL2qg94Zdpd9BvrQ883XHj8g5pMWfg8l65cf9SYcPk8Pd9w4cM5/XPcz9RFL3LPKAdi4iNu+VxFREREbF1mFsxcZ/lk9posI/y4CU5eKJ79W4pqaKVU+PTTT5kyZUqRyqalpdG/f38WLFgAQEBAADVq1ODcuXNs2LCB/fv3M3LkSEuGa9d6BD/NgZMb2XZoOY1rd+BK8kVGfNGe84mn6R78FP5VGxF/KZqlW6bx0mdt+GLETqpWqJXr/jIy05i/dgIdm/SlXaMHcHPx5OiZHazYMZMDERuZNmIXzk4uVChThXYN72fj/kVcTk7M1uQ5LT2FNXvn0LxuV3wq+hf/myAiIiJiZWsOwYlCJpuv9AAvd9PIx5NX5L99ZhbM2QIjQ8HFRjNHGw1LpHC8vb0JDQ0lODiYVq1a8ccffzBt2rQClX3mmWdYsGABPXr04PPPP6dOnTrmdYmJiaxfv764wrZLAdWaAhB54SgA3698j+i4E0x9aSt1qjczb3dP8GCendSEH/4czahHv891f85Orsx7LxpXZ/frC9sNpaF/eybPf4bNBxfTqVk/AELbPMuG/QtZvWcO97d/wbz5hv0LuZycSGibZyx4piIiIiK2KeYi/LGv8OW83KG8R+HKXEiC38PgwZaFP15JUEIrpcI777yT7fXWrVsLVG7lypX89NNPtGnTht9++w0np+wfifLly3P//fdbLM7SwMPNC4CrqZcwGo2s3j2bJgF34V3Ol4tXYs3bubl4Ur9mW3YdW5nn/gwGgzmZzczKJDk1icysDILqdgHg0Olt5oS2Zb1u+FSszYrtM7MltCu2z8TLoxLtGz1oyVMVERERsUl/hJlqT0vK+iPQuUHhk+GSoIS2FImNjeXjjz9m0aJFREZGUrlyZfr06cO4ceMYPnw43377LZ999hnDhg2zdqgAGI1Gq0//8sknnwCmhPjfyazk7GrKJQA8XL1IvHKBS1fj2HV0JQ+NqZzj9g6G/Lvqrwv7hQXrJhF+dg8ZmenZ1l1OTjD/bjAY6Nn6Gb5b8TbhUXup6xtEdNwJwk6spXeHETg7udzCmYmIiIjYvsSrsD+yZI+ZZYQt4dCzacketyB0B19K7N27l549exITE4OnpycNGzbk7NmzTJ06lePHjxMfHw9AUFBQscXQuXNn1q1bx8mTJ/H3989z23379jFo0CAWLFhA3bp1iy2mvCQnJ/P333/j4OBASEgI27Zt47vvviM8PJwyZcrQtm1bnnnmGby9va0Sn606EW1q3+JX5Q4wmiY6axHYlUc6v16k/W3Yv4j3Zz1C/RqteeH+KVQuXwMXJzcyjZm89U0PsrKyP37sEfwUP64czYodMxnm+xkrdnyL0WikZ2s1NxYREZHSb0t40eeavaXjHoN7GoOjjQ0rrIS2FIiNjaVXr17ExMTw6quvMnr0aMqWLQvAxx9/zOuvv46TkxMGg4GmTW3jscp3331HWFgYISEhrFu3joCAgBKPISwsjIyMDCpXrsznn3/Om2++idF4/dthyZIljB8/nkWLFhESElLi8dmqFTtmAtCm/r2U86xMGffyXE25RIt6XYu0v1W7fsLFyY0JQ9fg5nK9Hcvp84dz3L6ilw9tG/Zi9e7ZPB36ESt3fk/9mm3w92lUpOOLiIiI2JNDZ61z3EspEJUANStZ5/i5sbH8Wopi+PDhREZGMmzYMCZOnGhOZgFGjRpFs2bNyMjIwN/fHy8vLytGet2kSZMYOHAgkZGRhISEEBERUeIxREdHA5CQkMAbb7xBaGgoBw8eJDU1lX379tGlSxcSExPp06cPkZEl3K7DBmVmZTL9t9c4cHIjreuH0rj2nTg4ONCleX8On9nO+n0LciyXcPl8nvt1cHDEYDBgNF6viTUajcz5+/1cy4S2GUJScgJTFg4l9mKUamdFRETktpCZBWcT8t+uuJyJt96xc6MaWjt36NAh5s2bh7e3Nx9++GGO27Rs2ZKwsDCaNWuW43qAnj17smLFCkaPHs2YMWNuKaaCJn9jxowhKiqK1atXm2tqa9YsuZmbr1y5AkBGRgZ16tTh119/xdnZGYAmTZrw22+/UadOHWJiYvj000+ZOHFiicVmbceidvP3rlkAJKcmcebCETYfXMy5hFO0rHcPbz0+x7ztUz0+4GDEJt6f1Y9OTfvRoFZbnBxdOJdwiu2HfyfQt2Weoxx3bPoQG/YvZOT0LnRtOYjMzHQ2HVxMatrVXMu0qtedqhVqsWr3LNxdyxAS9KjFzl1ERETEVkUnQkYJDgb1b5FKaMXS5s6dS1ZWFv3796dMmTI5buPubhpBNreE9pdffmHv3r0Wi6ljx46FLhMREcGAAQNKdIocNzc38+/Dhg0zJ7PXeHh48PzzzzN69GhWrFhxWyW0a/bOZc3euTgYHHBzLUPlcn40DehESNBjBNfvkW1bT/dyfPriJhasm8S6fb+w+eASHB2d8C7nR2P/DvTMZyqdkKBHSU5NYuH6T5ix7DXKulegbcNePB36EX1H59ymxcHBgR7BT/PDyvfo1LQf7q45X/siIiIipcnF3J/3l4hEKx8/J0po7dzq1asB8uzjea3GNKeE9tKlS7z88stMnDiRAQMGWCSmJk2a4OJSsNFm4+LizM2NGzRoYJHjF1SFChXMv+d27GvLT548WaRjtGrVipiYmCKVLU4uTu7MGHbspuXN6nTmrwmFH2XAzcWDAd3eZUC3d/PcLrf9h7YZQmibITctzysWZydXgHybGwfWCyQtIznPbURERETsgW/jUNoNnJHjuld6mOaZzYuX2/V/x/TOfbtLyTB5xc3L163fyP8GWr5lnI+PDzt37ixSWSW0du7UqVMA1KpVK8f1GRkZbNq0Ccg5oX377bepV68e/fv3t1hCu3Tp0nxHOQZTot2pUycAHnnkEaZNm2aR4xdU/fr1zb/nloBfq8XNzMws0jFiYmKIiooqUtni5OZsg5OIFUJmZgbLt06ntk8TGvq3y3Pb6LNnSUm3wceJIiIiIoXkUiU613Ve7gWfJ9bBoWhzyl69kmRz97ZKaO3ctX6gyck510DNmzeP2NhYypYtS+3atbOt27lzJ19//TW7du0q9jj/LSoqipCQEE6cOMFDDz3ErFmzcHR0LNEYfH19qVmzJqdPn+bEiRM51nIfP34cAD8/vyIdw8fH55ZiLC4uTvk8vrNR0fEnOXRqC5sPLiE6/gRv9Z+bb5lq1aurhlZERERKBU+X3DvQXirA7Y6XmymZzcoyjVpc6H2lJ+Hr65v/gQrpVu6ZldDaOR8fHxISEti9ezft2mWvqYqOjmbkyJEANG3aFIPBYF6XmZnJc889x7Bhw2jUqOSnOxk7dizh4eH07t2buXPn4uRknUuxX79+TJw4kR9++IGnn3462zqj0cj3338PQJcuXYq0/6I2nShumWmwZqq1oyi8fcfXMfGXJynn6c2Aru8VaDCoY0eP4ViwFvAiIiIiNi09E16fl/M8tDk1Ef63Mb1NNbOXUmDMr4U//n+e60enT/oVvmAx0rQ9dq5rV9Pcn+PHj+fo0aPm5Tt27CAkJITY2FgAgoKCspX7/PPPOXfu3C2PaHyjTp060bdvXzw9PfPddsqUKYwdO5Z58+ZZLZkFGDlyJF5eXmzYsIH//e9/5qbFGRkZvP7664SFheHq6sp//vMfq8Uo13UPHsxfE4wsGHOBJ7qPtXY4IiIiIiXK2RF8ylvv+DUqWu/YuTEYjcbCjwAjNiMyMpKgoCDi4uJwcnKifv36pKSkEB4eTs+ePcnKyuLPP/9kxowZDBliGnQnNjaWgIAAJk6cSL9+15+wVKhQgddff5033ngDLy8vHBzs53nHpk2beOCBB8yvr169SnJyMq6urtlGf16yZAl33nlntrJ//PEHvXv3JjU1lcqVK1O7dm2OHz9ufk+/++47i/UvthX2WkNbFCHDUQ2tiIiIlBqLd8Haw0Ure62GNvFq4Wto3Zzhv33Axcba+NpPxiI58vPzY8OGDdx77724ubkRERFBxYoVmT59OsuXLzfX2t44IFRkZCRJSUk899xzVKhQwfwDppreChUqcPr0aaucT1Glp6cTFxdn/rnWpzg1NTXb8vT09JvK9uzZkz179jBgwACcnJzYs2cPTk5O9OvXj23btpW6ZFZERERE7Ff7QOsct00d20tmQTW0pdrly5fx8vLCYDCQlJSEh4eHeXlOfTtDQkJ44oknGDx4MG3bts02T6uULqqhFREREbFfX66CI0WYGfJWamjf6gVVvAp/zOJmgzm2WMrBgwcxGo3Uq1fPnMwClClThs6dO+dYxt/fP9d1IiIiIiJifT2awtEYKKmayVa1bTOZBTU5LtX2798P5Dz/rIiIiIiI2KfaleGu+iVzLC836N2yZI5VFKqhLcUKm9Cq9bkA7Di8gu/+fIeMjDRcXTx4ue906lRvxpEzO5i25GVS0i4DBobeP5nmdU3TGc384y027V+Es5Mrjo7OPNnjA4Lv6A5AVlYW05aOYPuh3zEYDPTu+DIP3jkMgI9/HszuY3/RtmEvXu771U2xJKde5v53yvLXBNO1+ePKMTwa8gYuzqbm8AvXf8LSzV/g5lKG6a/sLf43R0RERMRG3NsMDp2F85cKXuba/LIFmbP2mn5twNO1cLGVJCW0pZhqaKWwkq4m8OHc/kx+fj3+Po3Yf2IDH83pz4xX9zPmh96M7Pc9Lep1JfLCUUbN6Mp3o47g6uxOk9odGdD1XVyd3Tl+NoxXvryLn989i7uLJ6t2z+LUuX/47vWjXEm5yPOfNCeoTgj+Pqb5j/t1Hkmfji8XKL6f/hpLn44vmxPavnf9h7q+zZm2pGDlRUREREoLFycYGgJT/zL1iS2IgsxVe6PeLaGxX+FjK0lqclyKrV69GqPRyL333mvtUMROnI07jpdHJXOy2SSgI+cTT3PkzA4uXr5Ai3qmeY/9KtejjFt5th/+A4DW9Xvi6uwOQG2fJmA0cvHyBQDWhs0jtM0QHB0c8fKoSOdmj7Bm79xcY1i2ZTpPjA9k6CfNWbj+E/PyTxcOBeA/0zry3OQgEi6ft/wbICIiImJHKpaBYV2hUpn8ty2svq2gUwk1a74VSmhFxMzPO5BLV+M4GLEZgM0Hl3I1NYkLFyOp6FWNdWG/AHDkzA4iLxzhXHzETfv4c+d3+FQMoGqFWgCcTzxN1fK1zOurVvTnfELO00KdjDnAjytHM/n59Xz1nz2kZlxvD3OtSfInL2xg+it7qVCmikXOWURERMSeeZeFV3pAS3/L7K+CJ7xwN3S8wzL7K25qciwiZp7u5Xhv4AJm/vEmKamXaVCrHbWqNsTRwYmxg5fwzfLXmbv6Q/yrNqJR7Q44Omb/Ctl9bBU//TWW8UP+wmAwFPr4e8NXE1y/J5W8qgHQq93z/Lz6Q4ucm4iIiEhp5ekKA++EZjXh112QcKXw+3B0gHZ14b4gcHO2eIjFRgmtiGQTVDeEoLohAKRlpPLIf32oVbUhvt51+XDI9Y4XT01oQK2qjcyvw46vY+IvT/K/J3+jRpXrj/SqlK/JucRTNKQdAOfiI6hSoWaBYjFQ+KRYRERE5HbVtAY09oV/zsKmY3A4GvIb97WCJ7SvC23rQlm3konTkpTQikg2cZeizTWks//+H0F1uuDrXTfb8t+3fY2bi6d5lON9J9Yz/ueB/HfwEupUzz4I2V1NH+b3bV9zV9OHuZJykbVh83j/qWU5Hjuobhd+Xv0h8ZdiqOjlw7Kt2Uc+9nAty5WUi5RxL2/hsxYREREpHRwcTAM5NfaD1AyIiocz8RB/BdIzTDWxHq7gWwFqVITyHlCEhnU2QwmtiGTzw5/vceDkBjKzMmhQqx2v9psJwO9bZ7Bqz2yMGKlZpQFjnvjV3Kx40vynSc9IZcK8J837eeOxn6hdrQldWw7kyJkdDB4fiAEDfe96hdrVmuR47No+jRnYbQz/+bIj7i5l6NC4T7b1D931Kq/P6IarswcfPbtS/WhFRERE8uDqBAFVTD+llcGoyUdFbjuZabBmqrWjMM1DW9c3qMDT9uQk7Phapi15Odd5aEOGg6NLkXcvIiIiIjZMoxyLiNV4updj6eZp5il5Cmvh+k+YuugFynl6WzgyEREREbEHqqEVuQ3ZSg1tSVANrYiIiEjppRpaERERERERsUuqoRW5DRmNkJVu7ShKhoOzfY/cJyIiIiK5U0IrIiIiIiIidklNjkVERERERMQuKaEVERERERERu6SEVkREREREROySEloRERERERGxS0poRURERERExC4poRURERERERG7pIRWRERERERE7JISWhEREREREbFLSmhFRERERETELimhFREREREREbukhFZERERERETskhJaERERERERsUtKaEVERERERMQuKaEVERERERERu6SEVkREREREROySEloRERERERGxS0poRURERERExC4poRURERERERG75GTtAESk5BiNkJVu7Sisw8EZDAZrRyEiIiIilqSEVuQ2kpUOa6ZaOwrrCBkOji7WjkJERERELElNjkVERERERMQuKaEVERERERERu6SEVkREREREROySEloRERERERGxS0poRURERERExC4poRURERERERG7pIRWREpM2PG1dBtp4M8d31s7FBEREREpBTQPrYiYhR1fy2tfhZhfOxgc8HDzwtvLl0C/loQEPUarO7pjMBisGKWIiIiIiIkSWhG5SUjQY7SuH4oRI8mpSZy5cITNBxbz164faRHYlXcHzqeMe3lrhykiIiIitzkltCJyk0DfFnRtOSDbsqG9JvP18lEsXD+ZcbMfY9wzf1gpOhERERERE/WhLQZGo5Fy5cphMBi4cOFCtuVeXl4YDAZiY2NvKpPbOhFb4OjgyNBek2hcuwM7jqzgwMmN5nVXki/y9fLXeeKjuoS+4cpDYyrzwezHiI47ke9+s7KymL3qA16Zdhf9xvrQ8w0XHv+gJlMWPs+lK3Hm7RIun6fnGy58OKd/jvuZuuhF7hnlQEx8xC2fq4iIiIjYByW0xeDUqVNcunQJHx8fKleubF5+/PhxkpKS8PX1xdvbO1uZvNZJ/iIiIpg5cyZDhw6lZcuWuLi4YDAYGDx4cJ5lDAZDgX7Gjh1bcidj43oEPw3AtkPLAVMyO+KL9vy2ZRqtG9zLiw9+xgPth7E3fDUvfdaGcwmn8txfRmYa89dOwNc7kIc7j+SFB6bSMrAbK3bM5NWvOpOekQZAhTJVaNfwfjbuX8Tl5MRs+0hLT2HN3jk0r9sVn4r+Fj9nEREREbFNanJcDE6fPs0dd9xB27Ztsy0PCwsDICgo6KYyea2T/H366adMmTKlUGXc3Ny48847c12flJTEvn37AGjfvv0txVeaBFRrCkDkhaMAfL/yPaLjTjD1pa3Uqd7MvN09wYN5dlITfvhzNKMe/T7X/Tk7uTLvvWhcnd2vL2w3lIb+7Zk8/xk2H1xMp2b9AAht8ywb9i9k9Z453N/+BfPmG/Yv5HJyIqFtnrHgmYqIiIiIrVNCWwzuuusuDh8+fNPyvXv3AtCsWbNCrZP8eXt7ExoaSnBwMK1ateKPP/5g2rRpeZbx8fFh48aNua7/+OOP2bdvH35+ftx9992WDtluebh5AXA19RJGo5HVu2fTJOAuvMv5cvHK9ebybi6e1K/Zll3HVua5P4PBYE5mM7MySU5NIjMrg6C6XQA4dHqbOaFtWa8bPhVrs2L7zGwJ7YrtM/HyqET7Rg9a8lRFRERExMYpoS1BqqEtPu+8806211u3br3lff74448ADBw4EAcHtc6/5mrKJQA8XL1IvHKBS1fj2HV0JQ+NqZzj9g6G/N+7dWG/sGDdJMLP7iEjMz3busvJCebfDQYDPVs/w3cr3iY8ai91fYOIjjtB2Im19O4wAmcnl1s4MxERERGxN3aZ0EZERDB//nxWrVrFsWPHiImJwWg0EhgYyGOPPcYrr7yCi0v2G1sfHx/OnTvHyZMnSUxMZNKkSaxevZrExEQCAwN54403ePTRR3M9ZlZWFosWLWLWrFls376duLg4KlWqRP369XnggQd4/vnnzcf09/fn1KlTHDp0iPr165v3UZQa2qKcq70wGo02O5/prl27OHjwIABPPPGElaOxLSeiTc2w/arcAUYjAC0Cu/JI59eLtL8N+xfx/qxHqF+jNS/cP4XK5Wvg4uRGpjGTt77pQVbW/7F351FVV/v/x5+HWTAcQCUJJBXnAWczDWk5kqWWmaZpZpZat7xZDt1b6a8yS82sm6ZXy0rklsNV066RE06pOIETCiooJKgMigiCh/P7gy9HTwwConD09ViLtTh7+uxNthZv3vuzd45F+17tXuKHkA9YH7aI1z2/Yn3Yt5hMJnq313ZjERERkfuNVQa0H374Id9++y0uLi7Url2bpk2bcv78eSIiIoiIiCAsLIwVK1aY2ycmJpKYmIirqyurVq3i7bffxs3NDW9vbzIzMwkPD2fw4MFUr16dHj165Hve+fPnGThwIKGhoQB4e3vj5+dHQkICmzdvZteuXbz++usApKamEhsbi7OzMw0aNDCPkZKSwtmzZ3FxcaF+/foW4xdVV9K1lqeuXbsSGhrK6dOn8fHxKbJtREQEw4YNY/ny5fnWXBF8//33AHTo0IGGDRuW82wqlvVhiwDo0OgJqrjUoHKlqlzNvEzrBt1KNd7GfT/iYOfEjNGbcXJwNpefOZ9/2z5AdVcPOjZ5kk37gxgZOJ2QvYtp5N0BH4+mpXq+iIiIiFgvq9xH2aNHD/bt20daWhonTpxgz549xMTEEBYWRq1atVi5ciWHDh0yt8/bzpuZmcnUqVMJCgoiISGBsLAw4uPj6dOnDwCLFi3K96z09HQCAwMJDQ3F39+f8PBwYmNj2b17N7GxsRw+fJhJkyZha2sL3Mi0Nm/e3GKbamHlt6or6VqtxXfffUd4eDgBAQGcOnXrq13upuzsbIKDgwGKPCX5fmPMMTL/l7c5fHo77RsF0uzhR7GxseHxVkOIPLuHrRHLC+yXcuV8kePa2NhiMBgwmW5kYk0mE0s3fFRon8AOo0jLSGHOitFcvBSv7KyIiIjIfcoqM7TPPfdcgeVt27ale/fuLFmyhCNHjtC8eXPgRkCbnZ3N0qVL6d27t7mPk5MTY8aMYe3atcTG5r9eZPz48ezbt4/OnTsTEhKSb3tv06ZNadr0RmaosHdhS/v+bEnXai1mzZpFUlISP/74IwEBAYSGht4yq3u3rFu3josXL+Lo6Fjoz/9eFxW/nw37lgCQcS2NsxeOs/PIKhJTYmnToAfvPr/U3PalXh9zJGYHHy0ZiH+LgTSu0xE7WwcSU2LZE/krvp5tijzluEuLAWw7tIJ35j9OtzbDMBqz2XFkFdeyrhbap22DntSqVoeN+5dQybEyAX6Fvy4gIiIiIvcuqwxor127xpo1a8zbW9PS0szv2eW993hz4JkXMA4YMMAimM2TlZV7z2XVqlUtyiMjI1m4cCGOjo4EBQUV613Vwt6FLe0JxyVda1xcHNOnT2fPnj2Eh4eTlZWF6f/ec7zZ8uXLCQ4OZu/evVy4cAFvb2+eeeYZJk+eTOXKlW+5zqLExcUVq92UKVOIj49n06ZN5qDW29v7tp5dFvIOg3rqqaeoVq1aOc+mfGw+GMzmg8HYGGxwcqxMjSoP0aKuPwF+g2nXqJdFW5dKVfjitR0sD51FaMTP7DyyGltbO9yrPEQzn870vsVVOgF+g8i4lsaKrbNZsPZtHqhUjY5NnmRk4HSe+cCtwD42Njb0ajeS70Pex7/FQCo53t6/WRERERGxTlYX0G7cuJERI0Zw9uzZItvVrVvX/H1eQFtYtu348eMAFu+8AixduhSj0ciwYcOKHWjlBad/zbYWVl5UXWnWGh0dzYoVK2jXrh0ODg7s2LGjwD4zZ87E29ubadOm8dBDD3Hw4EGmTp1KaGgoW7duva1Tfbt06VLiPjExMQwdOpStW7eW+rllISkpiXXr1gFls924bdu2JCQk3PY4ZcXBrhILXo8qtL5lva78PiP/H0BuxcnBmaHd32No9/eKbFfY+IEdRhHYYVS+8qLmYm/nCFDs7ca+DXzJup5RrLYiIiIicvd4eHiwd+/eUvW1qoB29+7dBAYGkp2dzciRIxkyZAjNmjWjWrVq2NnZERkZSePGjbGzs6Nx48ZAboYz707Yrl27FjhuYQHlhg0bAAgMDCzW/LKzszl69Cg2Nja0aNHCovzYsWP5youqK81aIfcO3HPnzgG5GdDCAtpffvmFGjVuXLPi7+9PjRo1GDJkCNu3b+exxx4r1poL0rx582KfvJyUlERMTAyAxTrKS3BwMFlZWXh4eNCzZ8/bHi8hIYH4+PgymFnZcLJ3vnUjK2A0Xmfdrvk87NGcJj6PFKvPuT//JDO78G3MIiIiImJ9rCqgnTx5MllZWUyfPp2JE/NfEZKXWWvSpAmOjrnZm6NHj3L9+nW8vb1xcyt4++KBAweA/AFtXmb05gxoUY4dO0ZWVha+vr64uLiYy48ePUpWVhYNGjTA2dkyoCisrjRrBYqdWb05mM3Ttm1bgNsOwNasWVOs92Hj4uLw9/cHcrPnc+fOva3nloW8042HDBliPujrdnh4eNz2GGXJwa5SeU/htpxLPs2x2D/YeWQ155JP8e6Q4GL3fbB2bWVoRURERCqg2/md2WoCWqPRaN6OOmLEiHz1OTk5BAUFAdCqVStzed5245vLbpaenk5UVBT29vY0a9YsXx1ARkbxfgkuLNNb0gOhSrvW27V582bg7mRK4+PjzSccDxgwgCVLlpRJAHk7jh49at7qUFanG5d268SdYsyCzV+W9yxKL+JkKDN/HkEVF3eGdnu/RIdBRZ2IwtY6r2wWERERkUJYTUCbnp6O0WgEcq/f+atZs2aZM60lCWgjIiLIycmhWbNm+bbJenl5kZKSws6dO3n00UdvOcfCAteSHghV2rXejvj4eN577z169epVYOBd1qZOnUp0dDT9+/cnODgYO7vy/6eYdxhU69at8/1xQyqGnu1epGe7F8t7GiIiIiJSQVjNPbSurq54enoC8PHHH5sDvqysLGbMmMF7771nDopKEtAWFRj279/f/LyQkBCLuvj4eKZNm0ZU1I0DdgoLXEuaoS3tWkvrypUr9O3bFwcHB7799ttSj+Pv788zzzxjsd26MHPmzGHq1Kn89NNPFSKYzcnJYcmS3Gtqhg8fXs6zERERERGR4jCYCrrTpYKaN28eY8eOBaBWrVp4eXkRFRXF1atX+frrrxkzZgw5OTmkpqbi6uoKgJubG8nJyZw5cwYvL698Y44aNYqFCxcye/Zsxo0bZ1F35coV/P392b9/P5C7t9vLy4vk5GROnTqFwWDg8uXL5gDO3d2dpKQk4uLizAFpUeVF1ZVmrX81ZcoUpk6dWuC1PXkyMjIIDAwkIiKCbdu20aRJk0LbVmQ7duygb9++5s9Xr14lIyMDR0dHi2uIVq9eXWC2PSQkhJ49e2Jvb8+ff/6Ju7v7XZn33WbtW45vR8AbaMuxiIiIyD2m/FNjJTBmzBjs7OyYMWMGMTEx2Nra0qdPHyZOnEhOTg5Go5F69eqZA7y4uDiSk5Nxc3MrMJiFwg+EAqhcuTLbtm1j9uzZLFu2jBMnTnDp0iU8PDzo168fTz/9tDmYjYuLIykpCXd3d4vAtLDyW9WVdK2lkZ2dzYABA9i7dy8bN2602mAWcteSlJSUr/zatWtcu3bNol1B8g6DeuKJJ+7ZYFZERERE5F5jVRlaKZmiMrQ5OTkMGjSINWvW8Ouvv/L444+XwwzlblOGtrxnISIiIiJlyaoytFI8y5cvB3JP7b35s4+Pj/lqntdee41ly5YxadIknJ2d2bVrl7l/vXr1CrzWR0REREREpCJRhvYeZDAYCiwfPnw4ixcvBnKD29jY2ALbfffdd2V2bY1ULIVlaL9e9QZ/HF1DYkos88YdoL6nX5HlAEOn+WBv52i+23bw45Pp6vccWdmZfBw0iNjEozjaV6Jq5Zq88fQ8PN3rA5By5TyfBQ/jz+STONg68ren59Ki7mMWYz7r/w6BHV7ON89dR9eyLHQms8ZsISE5hrDj63nykdHm+k+WDuFA1Ea6+g1ibN8vLPoqQysiIiJy71GG9h5UnL9RxMTE3PmJiNXo0mIAA7tO4O9zOxerPM8/hvxkEeTmCezwCu0b9cZgMLBqx7/4fNnLzBqzBYBFv06icZ2OfDJqPcfPhjHl+/78OPk0drb2RY75V4kpMaz94xuLgHby80H8EDKFKxmpxVq3iIiIiFg3BbQiYs6QFre8KA72TnRoHGj+3Ni7I8tDZ5o/h4b/zPcTowFo6NUON9faRJwMpXWDbvnGum7MZu7qN9kX9TsPVKpGs4e7mOvmrBhNYkosr37uR81q3nw4Yk2J5yoiIiIi1k0BrYiU2mf/GYYJE4282jMycDpVK+d/9/q/2+fwSNPcK5UupydhNGZT3dXDXF+rmg/nU88UOP66XQs4e+E4C8cfAWDywp7mujef+Ya5q8cx/62DZbgiEREREbEmNuU9ARGxTp+P2cqC8RHMG7cfVxd3PvtpeL42SzdO48+L0Yzs/UmpnnEgeiPd2wzD3s4BezsHerZ76XanLSIiIiL3EAW0IlIqNat5A2Bna8/TXcZx+PQ2i/plW2ay/fBKpr38P5wcnAFwdXHD1saO5MsJ5naJKTHUrOpdrGcaKPjAMxERERG5PymgFZESy8hKtzh4afOBYOrXbmX+vDz0czYfDObTUb9TuVJVi75dWjzL2l3fAHD8bBgXL8XTop5/gc9p7duNjfuXcN2YTfb1LH7b+525ztnRlauZl8puUSIiIiJidfQOrYjwxfJX2R25juS0BCYv7Imz4wN8Pym60PLUtESm/vAMOTlGTJh4sHpdJgz6AYALqXHMXzueB6vX5e1vAgBwsHPkqzd2AzDqiU+ZHvwCwz/1xd7WgUmDl5hPOP6rwA6jiEk4zMiZTcyHQkXF7QOg7oMtqOPRlFEzm+HhVleHQomIiIjch3QPrch9pLB7aCuKodN8mDJ8VbGu7SlM3rU9uodWRERE5N6nLcciUmFUcanBp8FD+XX3wlL1/2TpEDbuX4Kzk2sZz0xEREREKiJlaEXuIxU9Q3snKUMrIiIicu9RhlZERERERESskgJaERERERERsUracixyHzGZICe7vGdRPmzswaBrbEVERETuKQpoRURERERExCppy7GIiIiIiIhYJQW0IiIiIiIiYpUU0IqIiIiIiIhVUkArIiIiIiIiVkkBrYiIiIiIiFglBbQiIiIiIiJilRTQioiIiIiIiFVSQCsiIiIiIiJWSQGtiIiIiIiIWCUFtCIiIiIiImKVFNCKiIiIiIiIVVJAKyIiIiIiIlZJAa2IiIiIiIhYJQW0IiIiIiIiYpUU0IqIiIiIiIhVUkArIiIiIiIiVkkBrYiIiIiIiFglu/KegIjcPSYT5GSX9yzKh409GAzlPQsRERERKUsKaEXuIznZsPnL8p5F+Qh4A2wdynsWIiIiIlKWtOVYRERERERErJICWhEREREREbFKCmhFRERERETEKimgFREREREREaukgFZERERERESskgJaERERERERsUoKaEVERERERMQqKaAVkbsm/OQWur9j4LewxeU9FRERERG5B9iV9wREpOIIP7mFt78JMH+2Mdjg7OSKu6snvg+1IcBvMG0b9sRgMJTjLEVEREREcimgFZF8AvwG075RICZMZFxL4+yF4+w8vIrf9/1Aa99uvPfCMipXqlre0xQRERGR+5wCWhHJx9ezNd3aDLUoG/3k5/x73QRWbP2caUGDmfby/8ppdiIiIiIiufQO7R1gMpmoUqUKBoOBCxcuWJS7urpiMBi4ePFivj6F1YlUBLY2tox+chbNHu5M2PH1HD693VyXnnGJf6+byPDp9Qmc5MiAKTX4OGgw55JO3XLcnJwcgjZ+zFtzH2PgVA96T3Lg+Y+9mbNiDJfTk8ztUq6cp/ckBz5ZOqTAcb5c+Ro9JtiQkBxz22sVEREREeuggPYOiI2N5fLly3h4eFCjRg1z+cmTJ0lLS8PT0xN3d3eLPkXVya3FxMSwaNEiRo8eTZs2bXBwcMBgMPDiiy/esu/FixeZOHEizZs3x8XFBUdHR+rUqcMLL7zA/v377/zkrUyvdiMB2H1sHZAbzL75dSd++WMu7Rs/wWv9vqJvp9c5GL2Jv33VgcSU2CLHu27MYtmWGXi6+/Js13cY2/dL2vh2Z33YIsZ/05Xs61kAVKtck0eaPMX2Qyu5kpFqMUZWdiabDy6lVf1ueFT3KfM1i4iIiEjFpC3Hd8CZM2do2LAhHTt2tCgPDw8HwM/PL1+fourk1r744gvmzJlT4n7Hjx+na9euJCQkYGNjw8MPP0zlypU5efIkS5YsITg4mO+//54hQwrOCt6P6j7YAoC4CycAWBzyPueSTvHl33ZRr3ZLc7se7V7klVnN+f63D5gwaHGh49nbOfLT++dwtK90o/CR0TTx6cTny15m55FV+LccCEBgh1fYdmgFmw4s5alOY83Ntx1awZWMVAI7vFyGKxURERGRik4Z2jvgscceIzIyksWLF1uUHzx4EICWLVvm61NUndyau7s7gYGBfPDBB/zyyy+MHTv21p2AMWPGkJCQQMOGDTly5AjR0dEcPHiQhIQEXnnlFYxGI6NHjyY5OfkOr8B6ODu5AnD12mVMJhOb9gfRvO5juFfx5FL6RfOXk4MLjbw7si8qpMjxDAaDOZg15hi5kpHKpfSL+NV/HIBjZ3ab27Zp0B2P6g+zfs8iizHW71mEq7MbnZr2K8OVioiIiEhFpwztXaQM7Z3zz3/+0+Lzrl27btknLS2NLVu2ADBjxgwaNWpkrnNxceHrr79m5cqVXLx4ka1bt9KvX7+ynLLVupp5GQBnR1dS0y9w+WoS+06EMGBKjQLb2xhu/Xez0PCfWR46i+g/D3DdmG1RdyUjxfy9wWCgd/uX+W79P4iOP0h9Tz/OJZ0i/NQW+nd+E3s7h9tYmYiIiIhYG6sMaGNiYli2bBkbN24kKiqKhIQETCYTvr6+DB48mLfeegsHB8tfbD08PEhMTOT06dOkpqYya9YsNm3aRGpqKr6+vkyaNIlBgwYV+sycnBxWrlzJkiVL2LNnD0lJSbi5udGoUSP69u3LmDFjzM/08fEhNjaWY8eOWQRJpcnQlmat1sJkMpXrfabXrl3DZDIBULdu3Xz1dnZ21KlTh4sXL5KdnZ2v/n516lwEAA/VbAj/9/Nr7duN57pOLNV42w6t5KMlz9HIqz1jn5pDjapeONg5YTQZeXdhL3Jyciza92r3Ej+EfMD6sEW87vkV68O+xWQy0bu9thuLiIiI3G+sMqD98MMP+fbbb3FxcaF27do0bdqU8+fPExERQUREBGFhYaxYscLcPjExkcTERFxdXVm1ahVvv/02bm5ueHt7k5mZSXh4OIMHD6Z69er06NEj3/POnz/PwIEDCQ0NBcDb2xs/Pz8SEhLYvHkzu3bt4vXXXwcgNTWV2NhYnJ2dadCggXmMlJQUzp49i4uLC/Xr17cYv6i6kq61PHXt2pXQ0FBOnz6Nj49PkW0jIiIYNmwYy5cvz7fmu8Xd3R1PT0/i4+PZuXMnTZs2tahPTk4mMjISGxsbWrduXS5zrIjWh+Vu9+3Q6AmquNSgcqWqXM28TOsG3Uo13sZ9P+Jg58SM0ZtxcnA2l585H1lg++quHnRs8iSb9gcxMnA6IXsX08i7Az4eTQtsLyIiIiL3Lqt8h7ZHjx7s27ePtLQ0Tpw4wZ49e4iJiSEsLIxatWqxcuVKDh06ZG6ft503MzOTqVOnEhQUREJCAmFhYcTHx9OnTx8AFi1alO9Z6enpBAYGEhoair+/P+Hh4cTGxrJ7925iY2M5fPgwkyZNwtbWFriRaW3evDk2Njd+vIWV36qupGu1Ft999x3h4eEEBARw6tStr3a5U6ZNm4bBYOCdd97hu+++IzExkfT0dHbs2EGfPn1IT0/nrbfeol69euU2x4rCmGNk/i9vc/j0dto3CqTZw49iY2PD462GEHl2D1sjlhfYL+XK+SLHtbGxxWAwYDLdyMSaTCaWbvio0D6BHUaRlpHCnBWjuXgpXtlZERERkfuUVWZon3vuuQLL27ZtS/fu3VmyZAlHjhyhefPmwI2ANjs7m6VLl9K7d29zHycnJ8aMGcPatWuJjc1/vcj48ePZt28fnTt3JiQkJN/23qZNm1pk9gp7F7a078+WdK3WYtasWSQlJfHjjz8SEBBAaGjoLbO6d8KwYcOoUqUKH330ES+99JJFXZ06dfjhhx944YUX7vq8yltU/H427FsCQMa1NM5eOM7OI6tITImlTYMevPv8UnPbl3p9zJGYHXy0ZCD+LQbSuE5H7GwdSEyJZU/kr/h6tinylOMuLQaw7dAK3pn/ON3aDMNozGbHkVVcy7paaJ+2DXpSq1odNu5fQiXHygT4Ff66gIiIiIjcu6wyoL127Rpr1qwxb29NS0szv2d35MgRAIvAMy9gHDBggEUwmycrK/eey6pVq1qUR0ZGsnDhQhwdHQkKCirWu6qFvQtb2hOOS7rWuLg4pk+fzp49ewgPDycrK8v8nujNtm3bxtSpUzly5AjJycnUqFGDRx99lClTptC4ceNbrrMocXFxxWo3ZcoU4uPj2bRpkzmo9fb2vq1nl5TJZOLkyZNcuHABGxsbvL29cXV1JTo6mtjYWObPn0/btm1L/TNp27YtCQkJZTzr0nOwq8SC16Nu2W7zwWA2HwzGxmCDk2NlalR5iBZ1/QnwG0y7Rr0s2rpUqsIXr+1geegsQiN+ZueR1dja2uFe5SGa+XSm9y2u0gnwG0TGtTRWbJ3NgrVv80ClanRs8iQjA6fzzAduBfaxsbGhV7uRfB/yPv4tBlLJsfIt1+TbwJes6xm3bCciIiIid5eHhwd79+4tVV+rC2g3btzIiBEjOHv2bJHtbj7kJy+gLSzbefz4cQCLd14Bli5ditFoZNiwYcUOtPKC079mWwsrL6quNGuNjo5mxYoVtGvXDgcHB3bs2FFgn5SUFJo3b86rr75KzZo1iYuL45NPPuGRRx7h8OHDPPTQQ0U+syhdunQpcZ+YmBiGDh3K1q1bS/3c0hgzZgzz58+nXbt2hISEmP8NZGRk8MEHHzBjxgweeeQRDh06hJeXV4nHT0hIID4+vqynXWpO9s5F1res15XfZ+T/A8gtx3VwZmj39xja/b1SjR/YYRSBHUblKy9qLvZ2jgDF3m587s8/ycwuPOsrIiIiItbHqgLa3bt3ExgYSHZ2NiNHjmTIkCE0a9aMatWqYWdnR2RkJI0bN8bOzs6cUbt27RqRkbmHy3Tt2rXAcQsLKDds2ABAYGBgseaXnZ3N0aNHsbGxoUWLFhblx44dy1deVF1p1gq5d+CeO3cOyM2AFhbQPvXUUzz11FMWZe3ataNhw4asWLGCN998s1hrLkjz5s2LffJyUlISMTExALedGS6p8PBwFixYgL29PcuWLaNOnTrmukqVKvHZZ5+xf/9+Nm7cyLRp05g3b16Jn+Hh4VGWU75tDnaVynsKZcJovM66XfN52KM5TXweKVafB2vXVoZWREREpAK6nd+ZrSqgnTx5MllZWUyfPp2JE/NfEbJu3ToAmjRpgqNjbvbm6NGjXL9+HW9vb9zcCt6+eODAASB/QJuXGS3oSpeCHDt2jKysLHx9fXFxcTGXHz16lKysLBo0aICzs2WGrLC60qwVyHeoVEnk/Xzs7G7vn8WaNWuK9T5sXFwc/v7+QG72fO7cubf13JLasWOH+Qqkm4PZm/Xo0YONGzcSFhZWqmeUduvEnWLMgs1flvcsSu9c8mmOxf7BziOrOZd8ineHBBe7b9SJKGyt84YrERERESmE1QS0RqPRvB11xIgR+epzcnIICgoCoFWrVubyvO3GN5fdLD09naioKOzt7WnWrFm+OsjdflochWV6S3ogVGnXWhpGo5GcnBxiY2OZPHkyHh4eDBw48LbGLI74+HjzCccDBgxgyZIl5pOi75a0tLRit83MzLyDM5HiijgZysyfR1DFxZ2h3d7XYVAiIiIi9zmrCWjT09MxGo1AwcHFrFmzzJnWkgS0ERER5OTk0KxZs3zbZL28vEhJSWHnzp08+uijt5xjYYFrSQ+EKu1aS8Pf39+8Lbl+/fps2rSJGjVq3NaYxTF16lSio6Pp378/wcHBt50VLo2892WjoqKIjY0tMEsbEhICQMOGDe/q3KRgPdu9SM92L5b3NERERESkgrCae2hdXV3x9PQE4OOPPzYHfFlZWcyYMYP33nvPHBSVJKAtKjDs37+/+Xl5gU2e+Ph4pk2bRlTUjRNjCwtcS5qhLe1aS2PRokXs2rWL4OBgXF1d6dGjB2fOnCnVWP7+/jzzzDMW260LM2fOHKZOncpPP/1ULsEs5G4nrlmzJtnZ2Tz77LOcOHHCXJeRkcGECRPYuHEjkHu9j4iIiIiIVCwGU0F3ulRQ8+bNY+zYsQDUqlULLy8voqKiuHr1Kl9//TVjxowhJyeH1NRUXF1dgdz3QpOTkzlz5kyBp9SOGjWKhQsXMnv2bMaNG2dRd+XKFfz9/dm/fz+Q+7Kyl5cXycnJnDp1CoPBwOXLl80BnLu7O0lJScTFxZkD0qLKi6orzVr/asqUKUydOrXAa3sKkpqaio+PD0OHDuVf//pXsfpUFDt27KBv377mz1evXiUjIwNHR0cqV75xpcvq1astsu0bNmygX79+pKenY2NjQ506dXjggQeIjo7m6tXcE3Ffe+01q/t5FMba36G9HQFvoHdoRURERO4xVrPlGHKvWLGzs2PGjBnExMRga2tLnz59mDhxIjk5ORiNRurVq2cO8OLi4khOTsbNza3QK1cKOxAKoHLlymzbto3Zs2ezbNkyTpw4waVLl/Dw8KBfv348/fTT5mA2Li6OpKQk3N3dLQLTwspvVVfStZaFqlWrUr9+faKjo8tszLslOzubpKSkfOXXrl3j2rVrFu1u1q1bNyIiIpg9ezYbNmwgNjaWuLg43N3d6d69O6NGjeKJJ5644/MXEREREZGSs6oMrZRMSTO058+fp169egwbNoyvv/76Ds9OyoMytOU9CxEREREpS1aVoZXiWb58OZB7JdDNn318fGjbti0AQ4cOpX79+vj5+VG1alWioqKYPXs2dnZ2/P3vfy+fiUu5+XrVG/xxdA2JKbHMG3eA+p5+RZYDDJ3mg72do/lu28GPT6ar33NkZWfycdAgYhOP4mhfiaqVa/LG0/PwdK8PQMqV83wWPIw/k0/iYOvI356eS4u6j1mM+az/OwR2eDnfPHcdXcuy0JnMGrOFhOQYwo6v58lHRpvrP1k6hANRG+nqN4ixfb+4Mz8sEREREakwFNDeg5599tkCPw8fPpzFixcD0LFjR3744QfmzJlDZmYmXl5eBAQE8O677xZ6J6vcu7q0GMDArhP4+9zOxSrP848hP1kEuXkCO7xC+0a9MRgMrNrxLz5f9jKzxmwBYNGvk2hcpyOfjFrP8bNhTPm+Pz9OPo2drX2RY/5VYkoMa//4xiKgnfx8ED+ETOFKRmqx1i0iIiIi1k0B7T2oOFuMX3/9dV5//fW7MBuxBnkZ0uKWF8XB3okOjQPNnxt7d2R56Ezz59Dwn/l+Yu572g292uHmWpuIk6G0btAt31jXjdnMXf0m+6J+54FK1Wj2cBdz3ZwVo0lMieXVz/2oWc2bD0esKfFcRURERMS6KaAVkVL77D/DMGGikVd7RgZOp2rl/HcY/3f7HB5pmnsC9eX0JIzGbKq7epjra1Xz4XxqwVdFrdu1gLMXjrNw/BEAJi/saa5785lvmLt6HPPfOliGKxIRERERa2I199CKSMXy+ZitLBgfwbxx+3F1ceezn4bna7N04zT+vBjNyN6flOoZB6I30r3NMOztHLC3c6Bnu5dud9oiIiIicg9RQCsipVKzmjcAdrb2PN1lHIdPb7OoX7ZlJtsPr2Tay//DycEZAFcXN2xt7Ei+nGBul5gSQ82q3sV6pgFDGc1eRERERO4FCmhFpMQystItDl7afCCY+rVbmT8vD/2czQeD+XTU71SuVNWib5cWz7J21zcAHD8bxsVL8bSo51/gc1r7dmPj/iVcN2aTfT2L3/Z+Z65zdnTlaualsluUiIiIiFgdvUMrInyx/FV2R64jOS2ByQt74uz4AN9Pii60PDUtkak/PENOjhETJh6sXpcJg34A4EJqHPPXjufB6nV5+5sAABzsHPnqjd0AjHriU6YHv8DwT32xt3Vg0uAl5hOO/yqwwyhiEg4zcmYT86FQUXH7AKj7YAvqeDRl1MxmeLjV1aFQIiIiIvchg6k4R+KKyD3BmAWbvyzvWRRu6DQfpgxfVaxrewqTd23PX++hDXgDbB1ub34iIiIiUrFoy7GIVBhVXGrwafBQft29sFT9P1k6hI37l+Ds5FrGMxMRERGRikgZWpH7SEXP0N5JytCKiIiI3HuUoRURERERERGrpIBWRERERERErJK2HIvcR0wmyMku71mUDxt7MOgaWxEREZF7igJaERERERERsUraciwiIiIiIiJWSQGtiIiIiIiIWCUFtCIiIiIiImKVFNCKiIiIiIiIVVJAKyIiIiIiIlZJAa2IiIiIiIhYJQW0IiIiIiIiYpUU0IqIiIiIiIhVUkArIiIiIiIiVkkBrYiIiIiIiFglBbQiIiIiIiJilRTQioiIiIiIiFVSQCsiIiIiIiJWSQGtiIiIiIiIWCUFtCIiIiIiImKVFNCKiIiIiIiIVVJAKyIiIiIiIlZJAa2IiIiIiIhYJbvynoCI3D0mE+Rkl/csyoeNPRgM5T0LERERESlLCmhF7iM52bD5y/KeRfkIeANsHcp7FiIiIiJSlrTlWERERERERKySAloRERERERGxSgpoRURERERExCopoBURERERERGrpIBWRERERERErJICWhEREREREbFKCmhF5K4JP7mF7u8Y+C1scXlPRURERETuAbqHVkTMwk9u4e1vAsyfbQw2ODu54u7qie9DbQjwG0zbhj0xGAzlOEsRERERkVwKaEUknwC/wbRvFIgJExnX0jh74Tg7D6/i930/0Nq3G++9sIzKlaqW9zRFRERE5D6ngFZE8vH1bE23NkMtykY/+Tn/XjeBFVs/Z1rQYKa9/L9ymp2IiIiISC69Q3sHmEwmqlSpgsFg4MKFCxblrq6uGAwGLl68mK9PYXUiFYGtjS2jn5xFs4c7E3Z8PYdPbzfXpWdc4t/rJjJ8en0CJzkyYEoNPg4azLmkU7ccNycnh6CNH/PW3McYONWD3pMceP5jb+asGMPl9CRzu5Qr5+k9yYFPlg4pcJwvV75Gjwk2JCTH3PZaRURERMQ6KKC9A2JjY7l8+TIeHh7UqFHDXH7y5EnS0tLw9PTE3d3dok9RdXJrMTExLFq0iNGjR9OmTRscHBwwGAy8+OKLt+x74cIFJkyYQOPGjalUqRLVqlXjscceY+nSpXd+4laoV7uRAOw+tg7IDWbf/LoTv/wxl/aNn+C1fl/Rt9PrHIzexN++6kBiSmyR4103ZrFsyww83X15tus7jO37JW18u7M+bBHjv+lK9vUsAKpVrskjTZ5i+6GVXMlItRgjKzuTzQeX0qp+Nzyq+5T5mkVERESkYtKW4zvgzJkzNGzYkI4dO1qUh4eHA+Dn55evT1F1cmtffPEFc+bMKXG/Y8eO0a1bN/7880/s7e1p1qwZmZmZbN++nW3btrFx40YWLVp0B2Zsveo+2AKAuAsnAFgc8j7nkk7x5d92Ua92S3O7Hu1e5JVZzfn+tw+YMGhxoePZ2zny0/vncLSvdKPwkdE08enE58teZueRVfi3HAhAYIdX2HZoBZsOLOWpTmPNzbcdWsGVjFQCO7xchisVERERkYpOGdo74LHHHiMyMpLFixdblB88eBCAli1b5utTVJ3cmru7O4GBgXzwwQf88ssvjB079pZ9jEYjzzzzDH/++SedO3fmzJkz7N+/n6NHjxIeHo63tzfffvst//73v+/CCqyHs5MrAFevXcZkMrFpfxDN6z6GexVPLqVfNH85ObjQyLsj+6JCihzPYDCYg1ljjpErGalcSr+IX/3HATh2Zre5bZsG3fGo/jDr91j+kWH9nkW4OrvRqWm/MlypiIiIiFR0ytDeRcrQ3jn//Oc/LT7v2rXrln1+/fVXjh07hqOjIz/++CMeHh7muubNm/P111/z5JNPMmXKFF566SVsbW3LfN7W6GrmZQCcHV1JTb/A5atJ7DsRwoApNQpsb2O49d/NQsN/ZnnoLKL/PMB1Y7ZF3ZWMFPP3BoOB3u1f5rv1/yA6/iD1Pf04l3SK8FNb6N/5TeztHG5jZSIiIiJibawyoI2JiWHZsmVs3LiRqKgoEhISMJlM+Pr6MnjwYN566y0cHCx/sfXw8CAxMZHTp0+TmprKrFmz2LRpE6mpqfj6+jJp0iQGDRpU6DNzcnJYuXIlS5YsYc+ePSQlJeHm5kajRo3o27cvY8aMMT/Tx8eH2NhYjh07RqNGjcxjlCZDW5q1WguTyVSu95lu3557qFHbtm3x8fHJV9+nTx9cXFz4888/2bZtG127dr27E6ygTp2LAOChmg3BZAKgtW83nus6sVTjbTu0ko+WPEcjr/aMfWoONap64WDnhNFk5N2FvcjJybFo36vdS/wQ8gHrwxbxuudXrA/7FpPJRO/22m4sIiIicr+xyoD2ww8/5Ntvv8XFxYXatWvTtGlTzp8/T0REBBEREYSFhbFixQpz+8TERBITE3F1dWXVqlW8/fbbuLm54e3tTWZmJuHh4QwePJjq1avTo0ePfM87f/48AwcOJDQ0FABvb2/8/PxISEhg8+bN7Nq1i9dffx2A1NRUYmNjcXZ2pkGDBuYxUlJSOHv2LC4uLtSvX99i/KLqSrrW8tS1a1dCQ0M5ffp0gQHizSIiIhg2bBjLly/Pt+a7JTk5GQBPT89C23h6enLixAl27typgPb/rA/L3e7bodETVHGpQeVKVbmaeZnWDbqVaryN+37Ewc6JGaM34+TgbC4/cz6ywPbVXT3o2ORJNu0PYmTgdEL2LqaRdwd8PJqW6vkiIiIiYr2s8h3aHj16sG/fPtLS0jhx4gR79uwhJiaGsLAwatWqxcqVKzl06JC5fd523szMTKZOnUpQUBAJCQmEhYURHx9Pnz59AAo8/Cc9PZ3AwEBCQ0Px9/cnPDyc2NhYdu/eTWxsLIcPH2bSpEnm7ah5mdbmzZtjY3Pjx1tY+a3qSrpWa/Hdd98RHh5OQEAAp07d+mqXO6Fq1aoAxMfHF9omr+748eN3Y0oVmjHHyPxf3ubw6e20bxRIs4cfxcbGhsdbDSHy7B62RiwvsF/KlfNFjmtjY4vBYMBkupGJNZlMLN3wUaF9AjuMIi0jhTkrRnPxUryysyIiIiL3KavM0D733HMFlrdt25bu3buzZMkSjhw5QvPmzYEbAW12djZLly6ld+/e5j5OTk6MGTOGtWvXEhub/3qR8ePHs2/fPjp37kxISEi+7b1NmzaladMbmaHC3oUt7fuzJV2rtZg1axZJSUn8+OOPBAQEEBoaesusbllr164dAHv37iU2NpY6depY1P/666+kp6cDuVn0+0lU/H427FsCQMa1NM5eOM7OI6tITImlTYMevPv8jSuNXur1MUdidvDRkoH4txhI4zodsbN1IDEllj2Rv+Lr2abIU467tBjAtkMreGf+43RrMwyjMZsdR1ZxLetqoX3aNuhJrWp12Lh/CZUcKxPgV/jrAiIiIiJy77LKgPbatWusWbPGvL01LS3N/J7dkSNHACwCz7yAccCAARbBbJ6srNx7LvMydnkiIyNZuHAhjo6OBAUFFetd1cLehS3tCcclXWtcXBzTp09nz549hIeHk5WVhen/3nMsSu/evVm/fj0ffPABU6ZMuWX7osTFxRWr3ZQpU4iPj2fTpk3moNbb2/u2nl0Sffv25aGHHiIuLo5Bgwbx888/4+XlBUBYWBijR482t716tfDg6l60+WAwmw8GY2OwwcmxMjWqPESLuv4E+A2mXaNeFm1dKlXhi9d2sDx0FqERP7PzyGpsbe1wr/IQzXw60/sWV+kE+A0i41oaK7bOZsHat3mgUjU6NnmSkYHTeeYDtwL72NjY0KvdSL4PeR//FgOp5Fi5zNYuIiIiItbD6gLajRs3MmLECM6ePVtku7p165q/zwtoC8t25m0nvfmdV4ClS5diNBoZNmxYsQOtvOD0r9nWwsqLqivNWqOjo1mxYgXt2rXDwcGBHTt23HLOP//8s3kOZaFLly4l7hMTE8PQoUPZunVrmc3jVhwdHfn555/p3bs3u3bt4uGHH8bX15fMzExiYmJwc3Pj6aefZuXKlTzwwAOlekbbtm1JSEgo45mXnoNdJRa8HlVofct6Xfl9xq3/APJXTg7ODO3+HkO7v1dku8LGD+wwisAOo/KVFzUXeztHgGJvN/Zt4EvW9YxitRURERGRu8fDw4O9e/eWqq9VBbS7d+8mMDCQ7OxsRo4cyZAhQ2jWrBnVqlXDzs6OyMhIGjdujJ2dHY0bNwZyM5yRkbmHyxR2qE9hAeWGDRsACAwMLNb8srOzOXr0KDY2NrRo0cKi/NixY/nKi6orzVoh9w7cc+fOAbkZ0FsFtJcvX2bcuHHMnDmToUOHFmudt9K8efNin7yclJRETEwMgMU67pZHHnmEAwcOMH36dH777TdOnTpFtWrVePHFF/l//+//MW3aNACLK31KIiEhoch3dO82J3vnWzeyAkbjddbtms/DHs1p4vNIsfqc+/NPMrPvr0y7iIiIyL3OqgLayZMnk5WVxfTp05k4Mf8VIevWrQOgSZMmODrmZm+OHj3K9evX8fb2xs2t4O2LBw4cAPIHtHmZ0ZszoEU5duwYWVlZ+Pr64uLiYi4/evQoWVlZNGjQAGdny4CisLrSrBXId6jUrfzjH/+gQYMGDBkypMwC2jVr1hTrfdi4uDj8/f2B3Oz53Llzy+T5JfXwww8zf/78AuvytnW3bdu2VGOXNhC+UxzsKpX3FG7LueTTHIv9g51HVnMu+RTvDgkudt8Ha9dWhlZERESkArqd35mtJqA1Go3m7agjRozIV5+Tk0NQUBAArVq1MpfnbTe+uexm6enpREVFYW9vT7NmzfLVAWRkFO+X4MIyvSU9EKq0ay2pvXv38u9//5t9+/aVeozSio+PN59wPGDAAJYsWWI+KbqiuHjxIn/88Qd2dnbFztL/VWm3TtwpxizY/GV5z6L0Ik6GMvPnEVRxcWdot/dLdBhU1IkobK3zymYRERERKYTVBLTp6ekYjUYg9/qdv5o1a5Y501qSgDYiIoKcnByaNWuWb5usl5cXKSkp7Ny5k0cfffSWcywscC3pgVClXWtJGI1GXn31VV5//XWLU5rvlqlTpxIdHU3//v0JDg7Gzq7i/VP85z//yfXr1xkyZAgPPvhgeU9HgJ7tXqRnuxfLexoiIiIiUkFYzT20rq6ueHp6AvDxxx+bA76srCxmzJjBe++9Zw6KShLQFhUY9u/f3/y8kJAQi7r4+HimTZtGVNSNA3YKC1xLmqEt7VpL4l//+heJiYm3faLxzfz9/XnmmWcstlsXZs6cOUydOpWffvqpXIPZX3/9Nd97xqmpqYwbN4758+dTo0YNZs2aVU6zExERERGRohhMxbnTpYKYN28eY8eOBaBWrVp4eXkRFRXF1atX+frrrxkzZgw5OTmkpqbi6uoKgJubG8nJyZw5c8Z8JcvNRo0axcKFC5k9ezbjxo2zqLty5Qr+/v7s378fyN3b7eXlRXJyMqdOncJgMHD58mVzAOfu7k5SUhJxcXHmgLSo8qLqSrPWv5oyZQpTp07Nd23PxYsXqVu3LjNnzmTgwIHm8mrVqjFx4kQmTZqEq6trid/HLU87duygb9++5s9Xr14lIyMDR0dHKle+caXL6tWrLbLt48aNY86cObi6uprf+42MjCQrKwtPT0/+97//Wd0dv0Wx9i3HtyPgDbTlWEREROQeYz0RCzBmzBgWLFiAr68vycnJ/Pnnn/Tp04d9+/bRvn17jEYjdevWNQd4cXFxJCcn4+bmVmAwC4UfCAVQuXJltm3bxkcffUTLli25dOkShw8fJicnh379+vH999+bg9m4uDiSkpJwd3e3CEwLK79VXUnXWhJxcXGkpaXx6quvUq1aNfMXwKeffkq1atU4c+ZMicctT9nZ2SQlJZm/8t57vnbtmkV5dna2Rb9+/foxaNAg3N3diYqK4vTp0zRp0oT/9//+H8eOHbunglkRERERkXuNVWVopWQKy9BeuXKlwMOKAgICGD58OC+++CIdO3bEycnpbk1V7hJlaMt7FiIiIiJSlireSTxy25YvXw7kXgl082cfHx/atm1L5cqVC72T18fHp9A6ERERERGRikQB7T3o2WefLfDz8OHDWbx4cTnMSCq6r1e9wR9H15CYEsu8cQeo7+lXZDnA0Gk+2Ns5mu+2Hfz4ZLr6PUdWdiYfBw0iNvEojvaVqFq5Jm88PQ9P9/oApFw5z2fBw/gz+SQOto787em5tKj7mMWYz/q/Q2CHl/PNc9fRtSwLncmsMVtISI4h7Ph6nnxktLn+k6VDOBC1ka5+gxjb94s788MSERERkQpDAe09qLS7yLX7/P7VpcUABnadwN/ndi5WeZ5/DPnJIsjNE9jhFdo36o3BYGDVjn/x+bKXmTVmCwCLfp1E4zod+WTUeo6fDWPK9/35cfJp7GztixzzrxJTYlj7xzcWAe3k54P4IWQKVzJSi7VuEREREbFuCmhFxJwhLW55URzsnejQOND8ubF3R5aHzjR/Dg3/me8nRgPQ0Ksdbq61iTgZSusG3fKNdd2YzdzVb7Iv6nceqFSNZg93MdfNWTGaxJRYXv3cj5rVvPlwxJoSz1VERERErJsCWhEptc/+MwwTJhp5tWdk4HSqVq6Rr81/t8/hkaa5VypdTk/CaMymuquHub5WNR/OpxZ8qva6XQs4e+E4C8cfAWDywp7mujef+Ya5q8cx/62DZbgiEREREbEmVnVtj4hUHJ+P2cqC8RHMG7cfVxd3PvtpeL42SzdO48+L0Yzs/UmpnnEgeiPd2wzD3s4BezsHerZ76XanLSIiIiL3EAW0IlIqNat5A2Bna8/TXcZx+PQ2i/plW2ay/fBKpr38P5wcnAFwdXHD1saO5MsJ5naJKTHUrOpdrGcaMJTR7EVERETkXqCAVkRKLCMr3eLgpc0Hgqlfu5X58/LQz9l8MJhPR/1O5UpVLfp2afEsa3d9A8Dxs2FcvBRPi3r+BT6ntW83Nu5fwnVjNtnXs/ht73fmOmdHV65mXiq7RYmIiIiI1dE7tCLCF8tfZXfkOpLTEpi8sCfOjg/w/aToQstT0xKZ+sMz5OQYMWHiwep1mTDoBwAupMYxf+14Hqxel7e/CQDAwc6Rr97YDcCoJz5levALDP/UF3tbByYNXmI+4fivAjuMIibhMCNnNjEfChUVtw+Aug+2oI5HU0bNbIaHW10dCiUiIiJyHzKYdFeLyH3DmAWbvyzvWRRu6DQfpgxfVaxrewqTd23PX++hDXgDbB1ub34iIiIiUrFoy7GIVBhVXGrwafBQft29sFT9P1k6hI37l+Ds5FrGMxMRERGRikgZWpH7SEXP0N5JytCKiIiI3HuUoRURERERERGrpIBWRERERERErJK2HIvcR0wmyMku71mUDxt7MOgaWxEREZF7igJaERERERERsUraciwiIiIiIiJWSQGtiIiIiIiIWCUFtCIiIiIiImKVFNCKiIiIiIiIVVJAKyIiIiIiIlZJAa2IiIiIiIhYJQW0IiIiIiIiYpUU0IqIiIiIiIhVUkArIiIiIiIiVkkBrYiIiIiIiFglBbQiIiIiIiJilRTQioiIiIiIiFVSQCsiIiIiIiJWSQGtiIiIiIiIWCUFtCIiIiIiImKVFNCKiIiIiIiIVVJAKyIiIiIiIlbJrrwnICJ3j8kEOdnlPYvyYWMPBkN5z0JEREREypICWpH7SE42bP6yvGdRPgLeAFuH8p6FiIiIiJQlbTkWERERERERq6SAVkRERERERKySAloRERERERGxSgpoRURERERExCopoBURERERERGrpIBWRERERERErJICWhG5a8JPbqH7OwZ+C1tc3lMRERERkXuA7qEVEbPwk1t4+5sA82cbgw3OTq64u3ri+1AbAvwG07ZhTwwGQznOUkREREQklwJaEcknwG8w7RsFYsJExrU0zl44zs7Dq/h93w+09u3Gey8so3KlquU9TRERERG5zymgFZF8fD1b063NUIuy0U9+zr/XTWDF1s+ZFjSYaS//r5xmJyIiIiKSSwGtiBSLrY0to5+cxfGzewg7vp7Dp7fT7OHOAKRnXGLppmlsP7SCC6lncXZypZVvN17q9TEPutUtctycnByCN3/CvuO/EXfhBGkZyVR7wIMOjZ5gRK+PcHVxAyDlynme/+ghHmvxLJOfD8o3zpcrX2Ptrnn8MOkUHtV9ynz9IiIiIlLx6FCoO8BkMlGlShUMBgMXLlywKHd1dcVgMHDx4sV8fQqrE6lIerUbCcDuY+uA3GD2za878csfc2nf+Ale6/cVfTu9zsHoTfztqw4kpsQWOd51YxbLtszA092XZ7u+w9i+X9LGtzvrwxYx/puuZF/PAqBa5Zo80uQpth9ayZWMVIsxsrIz2XxwKa3qd1MwKyIiInIfUUB7B8TGxnL58mU8PDyoUaOGufzkyZOkpaXh6emJu7u7RZ+i6qRoJpOJHTt2MHHiRDp16kT16tWxt7enVq1a9OnThzVr1txyjJCQEHr16oWbmxvOzs40b96cTz75hKysrLuwAutS98EWAMRdOAHA4pD3OZd0itljt/Na3zk80fEVXujxAf96Yw/Z16/x/W8fFDmevZ0jP71/jvEDF/Gs/3iefGQ04wcu4o2n5xGTcJidR1aZ2wZ2eIWs65lsOrDUYoxth1ZwJSOVwA4vl+1iRURERKRCU0B7B5w5c4aGDRvSs2dPi/Lw8HAA/Pz88vUpqk6KtmnTJjp37sxnn33Grl27cHNzo2XLlly7do1169bRt29fRo4ciclkKrD/rFmz6NmzJ7/99hsPPPAADRs2JDIyknfffZeAgAAyMjLu8ooqNmcnVwCuXruMyWRi0/4gmtd9DPcqnlxKv2j+cnJwoZF3R/ZFhRQ5nsFgwNG+EgDGHCNXMlK5lH4Rv/qPA3DszG5z2zYNuuNR/WHW71lkMcb6PYtwdXajU9N+ZbhSEREREano9A7tHfDYY48RGRmZr/zgwYMAtGzZskR1UjSTyUTdunX5+9//zqBBg8wZbqPRyFdffcVbb73Ft99+S5s2bRg7dqxF3z179vDOO+9gMBj47rvvGD58OJCbMe/Vqxc7d+5k8uTJfPHFF3d7WRXW1czLADg7upKafoHLV5PYdyKEAVNqFNjexnDrv5uFhv/M8tBZRP95gOvGbIu6Kxkp5u8NBgO927/Md+v/QXT8Qep7+nEu6RThp7bQv/Ob2Ns53MbKRERERMTaKKC9i5ShvTPat29PZGQk9vb2FuW2traMGzeOyMhI5s+fz4IFC/IFtB9++CEmk4mXXnrJHMwC1KtXj0WLFuHv78+8efN49913qVmz5l1ZT0V36lwEAA/VbAj/l/Vu7duN57pOLNV42w6t5KMlz9HIqz1jn5pDjapeONg5YTQZeXdhL3Jyciza92r3Ej+EfMD6sEW87vkV68O+xWQy0bu9thuLiIiI3G+scstxTEwMM2bMoFevXtSrVw8XFxecnZ1p2bIl06dPL/C9Rw8PDwwGAzExMRw8eJAXXngBT09PXFxc8PPz4z//+U+Rz8zJyWH58uX069eP2rVr4+joSO3atXn88ceZM2eOxTN9fHwwGAz5srSlydCWZq3WorAtwCXl6uqaL5i9Wd7W7+PHj1uUp6WlERKSux121KhR+fo99thjNGjQgKysrGK9h3u/WB+Wu923Q6MnqOJSg8qVqnI18zKtG3Qr9KsoG/f9iIOdEzNGb+bJTmPo2KQPrRt0o1a1OgW2r+7qQccmT7JpfxAZWemE7F1MI+8O+Hg0LfO1ioiIiEjFZpUB7YcffsiECRPYvn07tra2NG3alJo1axIREcHkyZMZPHiwRfvExEQSExNxdXVl1apVtG3blpCQEGrXro2TkxPh4eEMHjzYHNz81fnz53n88cd59tlnWb16Nfb29vj5+WFvb8/mzZuZPHkytra2AKSmphIbG4uzszMNGjQwj5GSksLZs2dxcXGhfv36FuMXVVfStZanrl27mv9ocCsRERG0atWK6OjoOz6vzMxMAJydnS3KDxw4QFZWFo6OjrRt27bAvp07515Ls2vXrjs7SStgzDEy/5e3OXx6O+0bBdLs4UexsbHh8VZDiDy7h60Rywvsl3LlfJHj2tjYYjAYMJluZGJNJhNLN3xUaJ/ADqNIy0hhzorRXLwUr+ysiIiIyH3KKrcc9+jRg9dee41WrVphMBjM5Xv37qVPnz6sXLmSQ4cO0bx5c+DGdt7MzEymTp1KUFAQAwcOxGAwkJmZybPPPsvatWtZtGgRPXr0sHhWeno6gYGB7Nu3D39/f7788ktatGhhrj9y5AgrVqwwB7R5mdbmzZtjY3Pj7wWFld+qrqRrtRbfffcd4eHhBAQEEBoaSt26Rd9Vejt++uknALp06WJRfuJE7im9derUwc6u4P8V6tWrZ9H2fhEVv58N+5YAkHEtjbMXjrPzyCoSU2Jp06AH7z5/45Thl3p9zJGYHXy0ZCD+LQbSuE5H7GwdSEyJZU/kr/h6tmHCoMWFPqtLiwFsO7SCd+Y/Trc2wzAas9lxZBXXsq4W2qdtg57UqlaHjfuXUMmxMgF+g8ps7SIiIiJiPawyoH3uuecKLG/bti3du3dnyZIlHDlyJF9Am52dzdKlS+ndu7e5j5OTE2PGjGHt2rXExua/L3P8+PHs27ePzp07ExISgoOD5aEzTZs2pWnTG1sdC3sXtrTvz5Z0rdZi1qxZJCUl8eOPP5qDWh8fnzJ/zq+//srq1asBmDBhgkVdSkruYUPVqlUrtH9eXV7b+8Xmg8FsPhiMjcEGJ8fK1KjyEC3q+hPgN5h2jXpZtHWpVIUvXtvB8tBZhEb8zM4jq7G1tcO9ykM08+lM71tcpRPgN4iMa2ms2DqbBWvf5oFK1ejY5ElGBk7nmQ/cCuxjY2NDr3Yj+T7kffxbDKSSY+UyW7uIiIiIWA+rDGivXbvGmjVrCA0N5fTp06SlpZkPjjly5AiAReCZFzAOGDDAIpjNk/ceatWqVS3KIyMjWbhwIY6OjgQFBeULZgtS2LuwpT3huKRrjYuLY/r06ezZs4fw8HCysrIKfFd1y5YtBAQE5Ctv2bKleT6lFRcXV6x2U6ZMIT4+nk2bNpmDWm9v79t69s1OnjzJCy+8AMAbb7xBp06dLOrztiIX9d/V0dERoNRX97Rt25aEhIRS9b0THOwqseD1qELrW9bryu8zSv5us5ODM0O7v8fQ7u8V2a6w8QM7jCKwQ/73mIuai71d7n+b4m439m3gS9Z1XcEkIiIiUtF4eHiwd+/eUvW1uoB248aNjBgxgrNnzxbZ7uYtrHkBbWHZzrzDgm5+5xVg6dKlGI1Ghg0bVuxAKy8Y/Gu2tbDyoupKs9bo6GhWrFhBu3btcHBwYMeOHUX2/frrr2ndurX5s4uLS5Hti+OvW3uLIyYmhqFDh7J169bbfj5AQkICvXr1Ijk5mR49ejBz5sx8bZycnACKPFjr2rVrAFSqVKnU84iPjy9V3zvByd751o2sgNF4nXW75vOwR3Oa+DxSrD7n/vyTzOzCtzGLiIiIiPWxqoB29+7dBAYGkp2dzciRIxkyZAjNmjWjWrVq2NnZERkZSePGjbGzs6Nx48ZAbkCSd9pw165dCxy3sIByw4YNAAQGBhZrftnZ2Rw9ehQbGxuL92yzs7M5duxYvvKi6kqzVsg9mffcuXNAbgb0VgFtkyZN6NixY7HWV1zNmzcvVjYbICkpyXyI1M3ruB15QWx0dDSPPvoo//3vfws8Bbk424mLsy25KB4eHqXqd6c42JUuMK8oziWf5ljsH+w8sppzyad4d0hwsfs+WLu2MrQiIiIiFdDt/M5sVQHt5MmTycrKYvr06UycmP/Oy3Xr1gG5QVreVtGjR49y/fp1vL29cXMr+H28AwcOAPkD2rzMaHEPLDp27BhZWVn4+vpaZDqPHj1KVlYWDRo0yHfSbmF1pVkrkO9QqfKwZs2aYr0PGxcXh7+/P5CbPZ87d+5tP/vy5cv06tWLQ4cO0bp1a9atW5fvZ54nLyMfGxvL9evXCzwY6uTJkxZtS6q0WyfuFGMWbP6yvGdRehEnQ5n58wiquLgztNv7JToMKupEFLbF+zuLiIiIiFiJ8o9+isloNJq3o44YMSJffU5ODkFBQQC0atXKXJ633fjmspulp6cTFRWFvb09zZo1y1cHxX9/srBMb0kPhCrtWkvjueeew9bWlpo1a/Lyyy9z8eLF2xqvuOLj4wkICODUqVMMGDCAJUuWmE+KLq2rV6/Sp08fwsLCaNy4Mb/99htVqlQptH2rVq1wcHDg2rVrhQae27dvB6BDhw63NTcpGz3bvcjvM0wsn3KB4T2nlvd0RERERKScWU1Am56ejtFoBG4c5nOzWbNmmTOtJQloIyIiyMnJoXHjxvm2yXp5eQGwc+fOYs2xsMC1pAdClXatJVGlShXeeecdFi1axMaNG/n73//Ozz//TNeuXQt8ZlmbOnUq0dHR9O/fn+Dg4EKvzSmurKws+vfvz7Zt26hXrx4bNmzA3d29yD4PPPAA3bt3B+Df//53vvqtW7dy4sQJHBwc6Nu3723NT0REREREyp7VBLSurq54enoC8PHHH5sDvqysLGbMmMF7771nDopKEtAWFRj279/f/LyQkBCLuvj4eKZNm0ZU1I0TYwsLXEuaoS3tWkuiVatWfPbZZ/Tp04euXbsyefJkgoKCOHLkCMHBxX8v8Wb+/v4888wzxTpYas6cOUydOpWffvrptoNZo9HI888/T0hICA899BAbNmygdu3axer7z3/+E4PBwHfffcf3339vLj958iQjR44E4NVXX6VmzZq3NUcRERERESl7BlNBd7pUUPPmzWPs2LEA1KpVCy8vL6Kiorh69Spff/01Y8aMIScnh9TUVFxdXQFwc3MjOTmZM2fOmDOuNxs1ahQLFy5k9uzZjBs3zqLuypUr+Pv7s3//fiD3ZWUvLy+Sk5M5deoUBoOBy5cvmwM4d3d3kpKSiIuLMwekRZUXVVeatf7VlClTmDp1aoHX9hTEZDLxwAMPMHz4cL7++uti9akIgoODef7554Hc950ffPDBQtsuX74830vnn332mfk95Tp16lCtWjUOHz7M9evX6dChA5s2bSr0PVxrY+3v0N6OgDfQO7QiIiIi9xirOhRqzJgx2NnZMWPGDGJiYrC1taVPnz5MnDiRnJwcjEYj9erVMwd4cXFxJCcn4+bmVmAwC4UfCAVQuXJltm3bxuzZs1m2bBknTpzg0qVLeHh40K9fP55++mlzMBsXF0dSUhLu7u4WgWlh5beqK+lay5LBYCjzMe+kvKt1AE6dOsWpU6cKbVvQduoJEybQsmVLZs2aRVhYGImJiTRo0IAhQ4Ywfvx4i0O3RERERESk4rCqDK2UTEkztKtXr6Zfv358//33DBs27A7PTsqDMrTlPQsRERERKUtWlaGV4lm+fDmQeyXQzZ99fHxo27YtAEOHDqVu3bq0bt2aypUr88cff/DZZ5/h5+fHoEHFvwpF7g1fr3qDP46uITEllnnjDlDf06/IcoCh03ywt3M03207+PHJdPV7jqzsTD4OGkRs4lEc7StRtXJN3nh6Hp7u9QFIuXKez4KH8WfySRxsHfnb03NpUfcxizGf9X+HwA4v55vnrqNrWRY6k1ljtpCQHEPY8fU8+choc/0nS4dwIGojXf0GMbbvF3fmhyUiIiIiFYYC2nvQs88+W+Dn4cOHs3jxYgCaNm3K0qVL+eKLL8jIyOChhx5i1KhRfPDBB/lOe5Z7X5cWAxjYdQJ/n9u5WOV5/jHkJ4sgN09gh1do36g3BoOBVTv+xefLXmbWmC0ALPp1Eo3rdOSTUes5fjaMKd/358fJp7GztS9yzL9KTIlh7R/fWAS0k58P4oeQKVzJSC3WukVERETEuimgvQcVZ4vx5MmTmTx58l2YjViDvAxpccuL4mDvRIfGgebPjb07sjx0pvlzaPjPfD8xGoCGXu1wc61NxMlQWjfolm+s68Zs5q5+k31Rv/NApWo0e7iLuW7OitEkpsTy6ud+1KzmzYcj1pR4riIiIiJi3RTQikipffafYZgw0cirPSMDp1O1co18bf67fQ6PNM29x/dyehJGYzbVXW+cNF2rmg/nU88UOP66XQs4e+E4C8cfAWDywp7mujef+Ya5q8cx/62DZbgiEREREbEmVnMPrYhULJ+P2cqC8RHMG7cfVxd3PvtpeL42SzdO48+L0Yzs/UmpnnEgeiPd2wzD3s4BezsHerZ76XanLSIiIiL3EAW0IlIqNat5A2Bna8/TXcZx+PQ2i/plW2ay/fBKpr38P5wccu/xdXVxw9bGjuTLCeZ2iSkx1KzqXaxnGrCuK6VERERE5M5SQCsiJZaRlW5x8NLmA8HUr93K/Hl56OdsPhjMp6N+p3KlqhZ9u7R4lrW7vgHg+NkwLl6Kp0U9/wKf09q3Gxv3L+G6MZvs61n8tvc7c52zoytXMy+V3aJERERExOroHVoR4Yvlr7I7ch3JaQlMXtgTZ8cH+H5SdKHlqWmJTP3hGXJyjJgw8WD1ukwY9AMAF1LjmL92PA9Wr8vb3wQA4GDnyFdv7AZg1BOfMj34BYZ/6ou9rQOTBi8xn3D8V4EdRhGTcJiRM5uYD4WKitsHQN0HW1DHoymjZjbDw62uDoUSERERuQ8ZTMU5EldE7gnGLNj8ZXnPonBDp/kwZfiqYl3bU5i8a3v+eg9twBtgqxupRERERO4p2nIsIhVGFZcafBo8lF93LyxV/0+WDmHj/iU4O7mW8cxEREREpCJShlbkPlLRM7R3kjK0IiIiIvceZWhFRERERETEKimgFREREREREaukLcci9xGTCXKyy3sW5cPGHgy6xlZERETknqKAVkRERERERKySthyLiIiIiIiIVVJAKyIiIiIiIlZJAa2IiIiIiIhYJQW0IiIiIiIiYpUU0IqIiIiIiIhVUkArIiIiIiIiVkkBrYiIiIiIiFglBbQiIiIiIiJilRTQioiIiIiIiFVSQCsiIiIiIiJWSQGtiIiIiIiIWCUFtCIiIiIiImKVFNCKiIiIiIiIVVJAKyIiIiIiIlZJAa2IiIiIiIhYJQW0IiIiIiIiYpUU0IqIiIiIiIhVUkArIiIiIiIiVsmuvCcgInePyQQ52eU9i/JhYw8GQ3nPQkRERETKkgJakftITjZs/rK8Z1E+At4AW4fynoWIiIiIlCVtORYRERERERGrpIBWRERERERErJICWhEREREREbFKCmhFRERERETEKimgFREREREREaukgFZERERERESskgJaEblrwk9uofs7Bn4LW1zeUxERERGRe4DuoRURs/CTW3j7mwDzZxuDDc5Orri7euL7UBsC/AbTtmFPDAZDOc5SRERERCSXAloRySfAbzDtGwViwkTGtTTOXjjOzsOr+H3fD7T27cZ7LyyjcqWq5T1NEREREbnPKaAVkXx8PVvTrc1Qi7LRT37Ov9dNYMXWz5kWNJhpL/+vnGYnIiIiIpJL79DeASaTiSpVqmAwGLhw4YJFuaurKwaDgYsXL+brU1idSEVga2PL6Cdn0ezhzoQdX8/h09vNdekZl/j3uokMn16fwEmODJhSg4+DBnMu6dQtx83JySFo48e8NfcxBk71oPckB57/2Js5K8ZwOT3J3C7lynl6T3Lgk6VDChzny5Wv0WOCDQnJMbe9VhERERGxDgpo74DY2FguX76Mh4cHNWrUMJefPHmStLQ0PD09cXd3t+hTVJ0UzWQysWPHDiZOnEinTp2oXr069vb21KpViz59+rBmzZpC+8bExLBo0SJGjx5NmzZtcHBwwGAw8OKLL969BViZXu1GArD72DogN5h98+tO/PLHXNo3foLX+n1F306vczB6E3/7qgOJKbFFjnfdmMWyLTPwdPfl2a7vMLbvl7Tx7c76sEWM/6Yr2dezAKhWuSaPNHmK7YdWciUj1WKMrOxMNh9cSqv63fCo7lPmaxYRERGRiklbju+AM2fO0LBhQzp27GhRHh4eDoCfn1++PkXVSdE2bdpEt27dADAYDNSrV4+6desSHR3NunXrWLduHS+99BILFy7Md5jRF198wZw5c8pj2lar7oMtAIi7cAKAxSHvcy7pFF/+bRf1arc0t+vR7kVemdWc73/7gAmDFhc6nr2dIz+9fw5H+0o3Ch8ZTROfTny+7GV2HlmFf8uBAAR2eIVth1aw6cBSnuo01tx826EVXMlIJbDDy2W4UhERERGp6JShvQMee+wxIiMjWbx4sUX5wYMHAWjZsmW+PkXVSdFMJhN169blq6++4vz580RFRbF3716SkpKYPXs2BoOBb7/9lnnz5uXr6+7uTmBgIB988AG//PILY8eOLeAJcjNnJ1cArl67jMlkYtP+IJrXfQz3Kp5cSr9o/nJycKGRd0f2RYUUOZ7BYDAHs8YcI1cyUrmUfhG/+o8DcOzMbnPbNg2641H9YdbvWWQxxvo9i3B1dqNT035luFIRERERqeiUob2LlKG9M9q3b09kZCT29vYW5ba2towbN47IyEjmz5/PggUL8gWs//znPy0+79q1647P19pdzbwMgLOjK6npF7h8NYl9J0IYMKVGge1tDLf+u1lo+M8sD51F9J8HuG7Mtqi7kpFi/t5gMNC7/ct8t/4fRMcfpL6nH+eSThF+agv9O7+JvZ3DbaxMRERERKyNVQa0MTExLFu2jI0bNxIVFUVCQgImkwlfX18GDx7MW2+9hYOD5S+2Hh4eJCYmcvr0aVJTU5k1axabNm0iNTUVX19fJk2axKBBgwp9Zk5ODitXrmTJkiXs2bOHpKQk3NzcaNSoEX379mXMmDHmZ/r4+BAbG8uxY8do1KiReYzSZGhLs1ZrYTKZyuQ+U1dX1yLre/bsyfz58zl+/PhtP0vg1LkIAB6q2RBMJgBa+3bjua4TSzXetkMr+WjJczTyas/Yp+ZQo6oXDnZOGE1G3l3Yi5ycHIv2vdq9xA8hH7A+bBGve37F+rBvMZlM9G6v7cYiIiIi9xurDGg//PBDvv32W1xcXKhduzZNmzbl/PnzREREEBERQVhYGCtWrDC3T0xMJDExEVdXV1atWsXbb7+Nm5sb3t7eZGZmEh4ezuDBg6levTo9evTI97zz588zcOBAQkNDAfD29sbPz4+EhAQ2b97Mrl27eP311wFITU0lNjYWZ2dnGjRoYB4jJSWFs2fP4uLiQv369S3GL6qupGstT127diU0NJTTp0/j4+NTZNuIiAiGDRvG8uXL8625rGVmZgLg7Ox8R59zv1gflrvdt0OjJ6jiUoPKlapyNfMyrRt0K9V4G/f9iIOdEzNGb8bJ4cZ/ozPnIwtsX93Vg45NnmTT/iBGBk4nZO9iGnl3wMejaameLyIiIiLWyyrfoe3Rowf79u0jLS2NEydOsGfPHmJiYggLC6NWrVqsXLmSQ4cOmdvnbefNzMxk6tSpBAUFkZCQQFhYGPHx8fTp0weARYsW5XtWeno6gYGBhIaG4u/vT3h4OLGxsezevZvY2FgOHz7MpEmTsLW1BW5kWps3b46NzY0fb2Hlt6or6VqtxXfffUd4eDgBAQGcOnXrq11ux08//QRAly5d7uhz7nXGHCPzf3mbw6e3075RIM0efhQbGxsebzWEyLN72BqxvMB+KVfOFzmujY0tBoMBk+lGJtZkMrF0w0eF9gnsMIq0jBTmrBjNxUvxys6KiIiI3KesMkP73HPPFVjetm1bunfvzpIlSzhy5AjNmzcHbgS02dnZLF26lN69e5v7ODk5MWbMGNauXUtsbP7rRcaPH8++ffvo3LkzISEh+bb3Nm3alKZNb2SGCnsXtrTvz5Z0rdZi1qxZJCUl8eOPPxIQEEBoaOgts7ql8euvv7J69WoAJkyYUObj36ui4vezYd8SADKupXH2wnF2HllFYkosbRr04N3nl5rbvtTrY47E7OCjJQPxbzGQxnU6YmfrQGJKLHsif8XXs02Rpxx3aTGAbYdW8M78x+nWZhhGYzY7jqziWtbVQvu0bdCTWtXqsHH/Eio5VibAr/DXBURERETk3mWVAe21a9dYs2aNeXtrWlqa+T27I0eOAFgEnnkB44ABAyyC2TxZWbn3XFatWtWiPDIykoULF+Lo6EhQUFCx3lUt7F3Y0p5wXNK1xsXFMX36dPbs2UN4eDhZWVmY/u89x4L897//ZcaMGYSHh2NnZ0ezZs1YsGCBRZBeUnFxccVqN2XKFOLj49m0aZM5qPX29i71c//q5MmTvPDCCwC88cYbdOrUqczGLq62bduSkJBw159bGAe7Six4PeqW7TYfDGbzwWBsDDY4OVamRpWHaFHXnwC/wbRr1MuirUulKnzx2g6Wh84iNOJndh5Zja2tHe5VHqKZT2d63+IqnQC/QWRcS2PF1tksWPs2D1SqRscmTzIycDrPfOBWYB8bGxt6tRvJ9yHv499iIJUcK99yTb4NfMm6nnHLdiIiIiJyd3l4eLB3795S9bW6gHbjxo2MGDGCs2fPFtmubt265u/zAtrCsp15hwXd/M4rwNKlSzEajQwbNqzYgVZecPrXbGth5UXVlWat0dHRrFixgnbt2uHg4MCOHTsK7ffll18yfvx4/v73v/Phhx9y7do1du/eTUbG7f3SX5qtvTExMQwdOpStW7fe1rPzJCQk0KtXL5KTk+nRowczZ84sk3FLM4/4+PhyeXZBnOyLfo+4Zb2u/D6j8D+AFDqugzNDu7/H0O7vlWr8wA6jCOwwKl95UXOxt3MEKPZ243N//klmduFZXxERERGxPlYV0O7evZvAwECys7MZOXIkQ4YMoVmzZlSrVg07OzsiIyNp3LgxdnZ2NG7cGMjNcEZG5h4u07Vr1wLHLSyg3LBhAwCBgYHFml92djZHjx7FxsaGFi1aWJQfO3YsX3lRdaVZK+TegXvu3DkgNwNaWEB78uRJ3nnnHWbPnm0+0Kokay1K8+bNi33yclJSEjExMQAW67gdeUFsdHQ0jz76KP/973/zXelzt3h4eJTLcwvjYFepvKdQJozG66zbNZ+HPZrTxOeRYvV5sHZtZWhFREREKqDb+Z3ZqgLayZMnk5WVxfTp05k4Mf8VIevWrQOgSZMmODrmZm+OHj3K9evX8fb2xs2t4O2LBw4cAPIHtHmZ0ZszoEU5duwYWVlZ+Pr64uLiYi4/evQoWVlZNGjQIN9Ju4XVlWatQL5DpQrz7bffYm9vz6hR+bNit2vNmjXFeh82Li4Of39/IDd7Pnfu3Nt+9uXLl+nVqxeHDh2idevWrFu3rlxPNy7t1ok7xZgFm78s71mU3rnk0xyL/YOdR1ZzLvkU7w4JLnbfqBNR2FrnDVciIiIiUgirOeXYaDSat6OOGDEiX31OTg5BQUEAtGrVylyet9345rKbpaenExUVhb29Pc2aNctXBxR7C25hmd6SHghV2rWWxM6dO2nYsCFLlizh4YcfNmd6g4OLHyDcjvj4ePMJxwMGDGDJkiXmk6JL6+rVq/Tp04ewsDAaN27Mb7/9RpUqVcpoxlIRRJwM5ZOlQzgYvYmh3d7XYVAiIiIi9zmrydCmp6djNBqBG/eK3mzWrFnmTGtJAtqIiAhycnJo1qxZvm2yXl5epKSksHPnTh599NFbzrGwwLWkB0KVdq0lce7cOeLj45k8eTKffvopXl5eLFq0iOeff54aNWrQrVvp7hQtrqlTpxIdHU3//v0JDg7Gzu72/ilmZWXRv39/tm3bRr169diwYQPu7u5lNFupKHq2e5Ge7V4s72mIiIiISAVhNRlaV1dXPD09Afj444/NAV9WVhYzZszgvffeMwdFJQloiwoM+/fvb35eSEiIRV18fDzTpk0jKurGibGFBa4lzdCWdq0lkZOTw5UrV1iwYAEjRoygW7duLF26lBYtWvDhhx+Wakx/f3+eeeYZi+3WhZkzZw5Tp07lp59+uu1g1mg08vzzzxMSEsJDDz3Ehg0bqF279m2NKSIiIiIiFZ/BVNSdLhXMvHnzGDt2LAC1atXCy8uLqKgorl69ytdff82YMWPIyckhNTUVV1dXANzc3EhOTubMmTN4eXnlG3PUqFEsXLiQ2bNnM27cOIu6K1eu4O/vz/79+4Hcl5W9vLxITk7m1KlTGAwGLl++bA7g3N3dSUpKIi4uzhyQFlVeVF1p1vpXU6ZMYerUqQVe29OxY0d2795NWloalSvfuPJk/PjxLF68mKSkpIL/I1RAwcHBPP/880Du+84PPvhgoW2XL19u8dL5jh076Nu3r/nz1atXycjIwNHR0eLnsnr16mJl6Ss6a3+H9nYEvIHeoRURERG5x1jNlmOAMWPGYGdnx4wZM4iJicHW1pY+ffowceJEcnJyMBqN1KtXzxzgxcXFkZycjJubW4HBLBR+IBRA5cqV2bZtG7Nnz2bZsmWcOHGCS5cu4eHhQb9+/Xj66afNwWxcXBxJSUm4u7tbBKaFld+qrqRrLammTZuye/fuAusK2uZckV27ds38/alTpzh16lShbf+6tuzs7AKD92vXrlmMm52dXQYzFRERERGRsmRVGVopmaIytGvWrKFv376sWLGCp59+Gsjdhuzn50f16tXZsmXLXZ6t3A3K0Jb3LERERESkLFlVhlaKZ/ny5UDulUA3f/bx8aFt27YAPPnkk3Tp0oVXXnmFpKQkvL29WbhwIUeOHOH3338vn4lLufl61Rv8cXQNiSmxzBt3gPqefkWWAwyd5oO9naP5btvBj0+mq99zZGVn8nHQIGITj+JoX4mqlWvyxtPz8HSvD0DKlfN8FjyMP5NP4mDryN+enkuLuo9ZjPms/zsEdng53zx3HV3LstCZzBqzhYTkGMKOr+fJR0ab6z9ZOoQDURvp6jeIsX2/uDM/LBERERGpMBTQ3oOeffbZAj8PHz6cxYsXA2AwGFizZg0TJ07k3Xff5fLly7Rs2ZJff/2Vxx9//G5PWcpZlxYDGNh1An+f27lY5Xn+MeQniyA3T2CHV2jfqDcGg4FVO/7F58teZtaYLQAs+nUSjet05JNR6zl+Nowp3/fnx8mnsbO1L3LMv0pMiWHtH99YBLSTnw/ih5ApXMlILda6RURERMS6KaC9BxV3F3nVqlWZP38+8+fPv8MzkoouL0Na3PKiONg70aFxoPlzY++OLA+daf4cGv4z30+MBqChVzvcXGsTcTKU1g3yXxV13ZjN3NVvsi/qdx6oVI1mD3cx181ZMZrElFhe/dyPmtW8+XDEmhLPVURERESsmwJaESm1z/4zDBMmGnm1Z2TgdKpWrpGvzX+3z+GRprknSV9OT8JozKa6642TpmtV8+F86pkCx1+3awFnLxxn4fgjAExe2NNc9+Yz3zB39Tjmv3WwDFckIiIiItbEau6hFZGK5fMxW1kwPoJ54/bj6uLOZz8Nz9dm6cZp/HkxmpG9PynVMw5Eb6R7m2HY2zlgb+dAz3Yv3e60RUREROQeooBWREqlZjVvAOxs7Xm6yzgOn95mUb9sy0y2H17JtJf/h5ODMwCuLm7Y2tiRfDnB3C4xJYaaVb2L9UwDhjKavYiIiIjcCxTQikiJZWSlWxy8tPlAMPVrtzJ/Xh76OZsPBvPpqN+pXKmqRd8uLZ5l7a5vADh+NoyLl+JpUc+/wOe09u3Gxv1LuG7MJvt6Fr/t/c5c5+zoytXMS2W3KBERERGxOnqHVkT4Yvmr7I5cR3JaApMX9sTZ8QG+nxRdaHlqWiJTf3iGnBwjJkw8WL0uEwb9AMCF1Djmrx3Pg9Xr8vY3AQA42Dny1Ru7ARj1xKdMD36B4Z/6Ym/rwKTBS8wnHP9VYIdRxCQcZuTMJuZDoaLi9gFQ98EW1PFoyqiZzfBwq6tDoURERETuQwZTcY/EFRGrZ8yCzV+W9ywKN3SaD1OGryrWtT2Fybu256/30Aa8AbYOtzc/EREREalYtOVYRCqMKi41+DR4KL/uXliq/p8sHcLG/UtwdnIt45mJiIiISEWkDK3IfaSiZ2jvJGVoRURERO49ytCKiIiIiIiIVVJAKyIiIiIiIlZJW45F7iMmE+Rkl/csyoeNPRh0ja2IiIjIPUUBrYiIiIiIiFglbTkWERERERERq6SAVkRERERERKySAloRERERERGxSgpoRURERERExCopoBURERERERGrpIBWRERERERErJICWhEREREREbFKCmhFRERERETEKimgFREREREREaukgFZERERERESskgJaERERERERsUoKaEVERERERMQqKaAVERERERERq6SAVkRERERERKySAloRERERERGxSgpoRURERERExCopoBURERERERGrpIBWRERERERErJJdeU9ARO4ekwlysst7FuXDxh4MhvKehYiIiIiUJQW0IveRnGzY/GV5z6J8BLwBtg7lPQsRERERKUvaciwiIiIiIiJWSQGtiIiIiIiIWCUFtCIiIiIiImKVFNCKiIiIiIiIVVJAKyIiIiIiIlZJAa2IiIiIiIhYJQW0InLXhJ/cQvd3DPwWtri8pyIiIiIi9wDdQysiZuEnt/D2NwHmzzYGG5ydXHF39cT3oTYE+A2mbcOeGAyGcpyliIiIiEguBbQikk+A32DaNwrEhImMa2mcvXCcnYdX8fu+H2jt2433XlhG5UpVy3uaIiIiInKfU0ArIvn4eramW5uhFmWjn/ycf6+bwIqtnzMtaDDTXv5fOc1ORERERCSX3qG9Q0wmE1WqVMFgMHDhwgWLcldXVwwGAxcvXszXp7A6kfJma2PL6Cdn0ezhzoQdX8/h09vNdekZl/j3uokMn16fwEmODJhSg4+DBnMu6dQtx83JySFo48e8NfcxBk71oPckB57/2Js5K8ZwOT3J3C7lynl6T3Lgk6VDChzny5Wv0WOCDQnJMbe9VhERERGxDgpo75DY2FguX76Mh4cHNWrUMJefPHmStLQ0PD09cXd3t+hTVJ0UzWQysWPHDiZOnEinTp2oXr069vb21KpViz59+rBmzZoy7Xc/69VuJAC7j60DcoPZN7/uxC9/zKV94yd4rd9X9O30OgejN/G3rzqQmBJb5HjXjVks2zIDT3dfnu36DmP7fkkb3+6sD1vE+G+6kn09C4BqlWvySJOn2H5oJVcyUi3GyMrOZPPBpbSq3w2P6j5lvmYRERERqZi05fgOOXPmDA0bNqRjx44W5eHh4QD4+fnl61NUnRRt06ZNdOvWDQCDwUC9evWoW7cu0dHRrFu3jnXr1vHSSy+xcOFCiwONStvvflb3wRYAxF04AcDikPc5l3SKL/+2i3q1W5rb9Wj3Iq/Mas73v33AhEGLCx3P3s6Rn94/h6N9pRuFj4ymiU8nPl/2MjuPrMK/5UAAAju8wrZDK9h0YClPdRprbr7t0AquZKQS2OHlMlypiIiIiFR0ytDeIY899hiRkZEsXrzYovzgwYMAtGzZMl+fouqkaCaTibp16/LVV19x/vx5oqKi2Lt3L0lJScyePRuDwcC3337LvHnzyqTf/czZyRWAq9cuYzKZ2LQ/iOZ1H8O9iieX0i+av5wcXGjk3ZF9USFFjmcwGMzBrDHHyJWMVC6lX8Sv/uMAHDuz29y2TYPueFR/mPV7FlmMsX7PIlyd3ejUtF8ZrlREREREKjplaO8yZWjvjPbt2xMZGYm9vb1Fua2tLePGjSMyMpL58+ezYMECxo4de9v97mdXMy8D4OzoSmr6BS5fTWLfiRAGTKlRYHsbw63/bhYa/jPLQ2cR/ecBrhuzLequZKSYvzcYDPRu/zLfrf8H0fEHqe/px7mkU4Sf2kL/zm9ib+dwGysTEREREWtjtRnamJgYZsyYQa9evahXrx4uLi44OzvTsmVLpk+fTlZWVr4+Hh4eGAwGYmJiOHjwIC+88AKenp64uLjg5+fHf/7znyKfmZOTw/Lly+nXrx+1a9fG0dGR2rVr8/jjjzNnzhyLZ/r4+GAwGIiMjLQYozQZ2tKs1VqYTKYyGcfV1TVfUHqznj17AnD8+PEy6Xc/O3UuAoCHajaE//vv19q3G5+O+r3Ar09e/q3I8bYdWslHS54DYOxTc/hwxC98Oup3pr28Hsj9/+5mvdq9hK2NHevDcrO068O+xWQy0bu9thuLiIiI3G+sNkP74Ycf8u233+Li4kLt2rVp2rQp58+fJyIigoiICMLCwlixYoW5fWJiIomJibi6urJq1Srefvtt3Nzc8Pb2JjMzk/DwcAYPHkz16tXp0aNHvuedP3+egQMHEhoaCoC3tzd+fn4kJCSwefNmdu3axeuvvw5AamoqsbGxODs706BBA/MYKSkpnD17FhcXF+rXr28xflF1JV1reeratSuhoaGcPn0aHx+fIttGREQwbNgwli9fnm/NZS0zMxMAZ2fnu9LvXpYXSHZo9ARVXGpQuVJVrmZepnWDbqUab+O+H3Gwc2LG6M04Odz4OZ85H1lg++quHnRs8iSb9gcxMnA6IXsX08i7Az4eTUv1fBERERGxXlaboe3Rowf79u0jLS2NEydOsGfPHmJiYggLC6NWrVqsXLmSQ4cOmdvnbefNzMxk6tSpBAUFkZCQQFhYGPHx8fTp0weARYsW5XtWeno6gYGBhIaG4u/vT3h4OLGxsezevZvY2FgOHz7MpEmTsLW1BW5kWps3b46NzY0fcWHlt6or6VqtxXfffUd4eDgBAQGcOnXr611ux08//QRAly5d7kq/e5Exx8j8X97m8OnttG8USLOHH8XGxobHWw0h8uwetkYsL7BfypXzRY5rY2OLwWDAZLqRiTWZTCzd8FGhfQI7jCItI4U5K0Zz8VK8srMiIiIi9ymrzdA+99xzBZa3bduW7t27s2TJEo4cOULz5s2BGwFtdnY2S5cupXfv3uY+Tk5OjBkzhrVr1xIbm/+KkfHjx7Nv3z46d+5MSEgIDg6W7+k1bdqUpk1vZIcKexe2tO/PlnSt1mLWrFkkJSXx448/EhAQQGho6C2zuqXx66+/snr1agAmTJhwx/vdC6Li97Nh3xIAMq6lcfbCcXYeWUViSixtGvTg3eeXmtu+1OtjjsTs4KMlA/FvMZDGdTpiZ+tAYkoseyJ/xdezTZGnHHdpMYBth1bwzvzH6dZmGEZjNjuOrOJa1tVC+7Rt0JNa1eqwcf8SKjlWJsBvUJmtXURERESsh9UGtNeuXWPNmjXm7a1paWnmd+2OHDkCYBF45gWMAwYMsAhm8+S9h1q1alWL8sjISBYuXIijoyNBQUH5gtmCFPYubGlPOC7pWuPi4pg+fTp79uwhPDycrKysAt9VzdseXJBXX32Vb775puiFFiEuLq5Y7aZMmUJ8fDybNm0yB7Xe3t6lfu5fnTx5khdeeAGAN954g06dOt3RfveKzQeD2XwwGBuDDU6OlalR5SFa1PUnwG8w7Rr1smjrUqkKX7y2g+WhswiN+JmdR1Zja2uHe5WHaObTmd63uEonwG8QGdfSWLF1NgvWvs0DlarRscmTjAyczjMfuBXYx8bGhl7tRvJ9yPv4txhIJcfKZbZ2EREREbEeVhnQbty4kREjRnD27Nki29WtW9f8fV5AW1i2M+/Qn5vfeQVYunQpRqORYcOGFTvQygtO/5ptLay8qLrSrDU6OpoVK1bQrl07HBwc2LFjR4F95s6dy+XLly3K1q1bx0cffWTegl1apdmiGxMTw9ChQ9m6dettPTtPQkICvXr1Ijk5mR49ejBz5sw72q8gbdu2JSEhodT9y5qDXSUWvB5VaH3Lel35fUbJD+pycnBmaPf3GNr9vSLbFTZ+YIdRBHYYla+8qLnY2zkCFHu7sW8DX7KuZxSrrYiIiIjcPR4eHuzdu7dUfa0uoN29ezeBgYFkZ2czcuRIhgwZQrNmzahWrRp2dnZERkbSuHFj7OzsaNy4MZCb4cw7bbhr164FjltYQLlhwwYAAgMDizW/7Oxsjh49io2NDS1atLAoP3bsWL7youpKs1bIvQP33LlzQG4GtLCAtkmTJvnKPv74Y2rUqEGvXr0K6FF8zZs3L1Y2GyApKYmYmBgAi3XcjrxgNDo6mkcffZT//ve/RZ5mfLv9CpOQkEB8fHyp+5c1J/t743Aro/E663bN52GP5jTxeaRYfc79+SeZ2YVvYxYRERER62N1Ae3kyZPJyspi+vTpTJw4MV/9unXrgNxgzdExN4Nz9OhRrl+/jre3N25uBW9hPHDgAJA/oM3LjN6cAS3KsWPHyMrKwtfXFxcXF3P50aNHycrKokGDBvlOzC2srjRrBfIdKlVcFy5cYP369YwdOxY7u9v7p7FmzZpivQ8bFxeHv78/kJs9nzt37m09F+Dy5cv06tWLQ4cO0bp1a9atW1esU4pL268oHh4et9W/rDnYVSrvKdyWc8mnORb7BzuPrOZc8ineHRJc7L4P1q6tDK2IiIhIBXQ7vzNbVUBrNBrN21FHjBiRrz4nJ4egoCAAWrVqZS7P2258c9nN0tPTiYqKwt7enmbNmuWrA8jIKN4vwoVlekt6IFRp13o7goODuX79uvnd0TstPj7efMLxgAEDWLJkifmk6NK6evUqffr0ISwsjMaNG/Pbb79RpUqVO9bvVkq7deJOMWbB5i/LexalF3EylJk/j6CKiztDu71fosOgok5EYVu8TQMiIiIiYiWsKqBNT0/HaDQCN+4HvdmsWbPMmdaSBLQRERHk5OTQrFmzfNtkvby8SElJYefOnTz66KO3nGNhgWtJD4Qq7Vpvx48//kjjxo1p27ZtmYx3K1OnTiU6Opr+/fsTHBx821nhrKws+vfvz7Zt26hXrx4bNmzA3d39jvWTu69nuxfp2e7F8p6GiIiIiFQQVnUPraurK56enkDuu555AV9WVhYzZszgvffeMwdFJQloiwoM+/fvb35eSEiIRV18fDzTpk0jKurGITuFBa4lzdCWdq2lFRkZyd69e287O+vv788zzzxjsd26MHPmzGHq1Kn89NNPtx3MGo1Gnn/+eUJCQnjooYfYsGEDtWvXvmP9RERERESk/BlMBd3nUoHNmzePsWPHAlCrVi28vLyIiori6tWrfP3114wZM4acnBxSU1NxdXUFwM3NjeTkZM6cOYOXl1e+MUeNGsXChQuZPXs248aNs6i7cuUK/v7+7N+/H8jd3+3l5UVycjKnTp3CYDBw+fJlcwDn7u5OUlIScXFx5oC0qPKi6kqz1r+aMmUKU6dOLfDanpv94x//4JNPPiEmJqZMr825W4KDg3n++eeB3PedH3zwwULbLl++3LxPv7T9rJW1bzm+HQFvoC3HIiIiIvcYq9pyDDBmzBjs7OyYMWMGMTEx2Nra0qdPHyZOnEhOTg5Go5F69eqZA7y4uDiSk5Nxc3MrMJiFwg+EAqhcuTLbtm1j9uzZLFu2jBMnTnDp0iU8PDzo168fTz/9tDmYjYuLIykpCXd3d4vAtLDyW9WVdK2lZTKZCAoKomvXrlYZzELuSdZ5Tp06xalTpwpte/MW7tL2ExERERGR8md1GVopmeJkaENDQ+natSvffvttgQdQyb1DGdrynoWIiIiIlCWry9BK8SxfvhzIvRLo5s8+Pj75Dn368ccfqVSpEgMGDLi7kxQREREREbkNytDeowwGQ4Hlw4cPZ/HixebPmZmZeHh4EBgYyNKlS+/S7KS8FJah/XrVG/xxdA2JKbHMG3eA+p5+RZYDDJ3mg72do/lu28GPT6ar33NkZWfycdAgYhOP4mhfiaqVa/LG0/PwdK8PQMqV83wWPIw/k0/iYOvI356eS4u6j1mM+az/OwR2eDnfPHcdXcuy0JnMGrOFhOQYwo6v58lHRpvrP1k6hANRG+nqN4ixfb+w6KsMrYiIiMi9Rxnae1Rx/07h5OREamrqnZ2MVHhdWgxgYNcJ/H1u52KV5/nHkJ8sgtw8gR1eoX2j3hgMBlbt+BefL3uZWWO2ALDo10k0rtORT0at5/jZMKZ8358fJ5/Gzta+yDH/KjElhrV/fGMR0E5+PogfQqZwJSO1WOsWEREREeumgFZEzBnS4pYXxcHeiQ6NA82fG3t3ZHnoTPPn0PCf+X5iNAANvdrh5lqbiJOhtG7QLd9Y143ZzF39JvuifueBStVo9nAXc92cFaNJTInl1c/9qFnNmw9HrCnxXEVERETEuimgFZFS++w/wzBhopFXe0YGTqdq5Rr52vx3+xweadoXgMvpSRiN2VR3vXH9Ua1qPpxPPVPg+Ot2LeDsheMsHH8EgMkLe5rr3nzmG+auHsf8tw6W4YpERERExJrYlPcERMQ6fT5mKwvGRzBv3H5cXdz57Kfh+dos3TiNPy9GM7L3J6V6xoHojXRvMwx7Owfs7Rzo2e6l2522iIiIiNxDFNCKSKnUrJZ7Z7GdrT1PdxnH4dPbLOqXbZnJ9sMrmfby/3BycAbA1cUNWxs7ki8nmNslpsRQs2rx7j82UPBhZyIiIiJyf1JAKyIllpGVbnHw0uYDwdSv3cr8eXno52w+GMyno36ncqWqFn27tHiWtbu+AeD42TAuXoqnRT3/Ap/T2rcbG/cv4boxm+zrWfy29ztznbOjK1czL5XdokRERETE6ugdWhHhi+WvsjtyHclpCUxe2BNnxwf4flJ0oeWpaYlM/eEZcnKMmDDxYPW6TBj0AwAXUuOYv3Y8D1avy9vfBADgYOfIV2/sBmDUE58yPfgFhn/qi72tA5MGLzGfcPxXgR1GEZNwmJEzm5gPhYqK2wdA3QdbUMejKaNmNsPDra4OhRIRERG5D+keWpH7SGH30FYUQ6f5MGX4qmJd21OYvGt7dA+tiIiIyL1PW45FpMKo4lKDT4OH8uvuhaXq/8nSIWzcvwRnJ9cynpmIiIiIVETK0IrcRyp6hvZOUoZWRERE5N6jDK2IiIiIiIhYJQW0IiIiIiIiYpW05VjkPmIyQU52ec+ifNjYg0HX2IqIiIjcUxTQioiIiIiIiFXSlmMRERERERGxSgpoRURERERExCopoBURERERERGrpIBWRERERERErJICWhEREREREbFKCmhFRERERETEKimgFREREREREaukgFZERERERESskgJaERERERERsUoKaEVERERERMQqKaAVERERERERq6SAVkRERERERKySAloRERERERGxSgpoRURERERExCopoBURERERERGrpIBWRERERERErJICWhEREREREbFKduU9ARG5e0wmyMku71mUDxt7MBjKexYiIiIiUpYU0IrcR3KyYfOX5T2L8hHwBtg6lPcsRERERKQsacuxiIiIiIiIWCUFtCIiIiIiImKVFNCKiIiIiIiIVVJAKyIiIiIiIlZJAa2IiIiIiIhYJQW0IiIiIiIiYpUU0IrIXRN+cgvd3zHwW9ji8p6KiIiIiNwDdA+tiJiFn9zC298EmD/bGGxwdnLF3dUT34faEOA3mLYNe2IwGMpxliIiIiIiuRTQikg+AX6Dad8oEBMmMq6lcfbCcXYeXsXv+36gtW833nthGZUrVS3vaYqIiIjIfU4BrYjk4+vZmm5thlqUjX7yc/69bgIrtn7OtKDBTHv5f+U0OxERERGRXApoRaRYbG1sGf3kLI6f3UPY8fUcPr2dZg93BiA94xJLN01j+6EVXEg9i7OTK618u/FSr4950K1ukePm5OQQvPkT9h3/jbgLJ0jLSKbaAx50aPQEI3p9hKuLGwApV87z/EcP8ViLZ5n8fFC+cb5c+Rprd83jh0mn8KjuU+brFxEREZGKR4dC3QEmk4kqVapgMBi4cOGCRbmrqysGg4GLFy/m61NYnUhF0qvdSAB2H1sH5Aazb37diV/+mEv7xk/wWr+v6NvpdQ5Gb+JvX3UgMSW2yPGuG7NYtmUGnu6+PNv1Hcb2/ZI2vt1ZH7aI8d90Jft6FgDVKtfkkSZPsf3QSq5kpFqMkZWdyeaDS2lVv5uCWREREZH7iDK0d0BsbCyXL1/Gw8ODGjVqmMtPnjxJWloanp6euLu7W/Qpqk6KZjKZ2LlzJ2vWrGHbtm1ERkaSlpZG9erVadeuHa+88gpPPfVUgX3XrFnD//73P/bt20d8fDwXL17EwcGBevXqERgYyFtvvaX/Hn9R98EWAMRdOAHA4pD3OZd0ii//tot6tVua2/Vo9yKvzGrO9799wIRBiwsdz97OkZ/eP4ejfaUbhY+MpolPJz5f9jI7j6zCv+VAAAI7vMK2QyvYdGApT3Uaa26+7dAKrmSkEtjh5TJcqYiIiIhUdMrQ3gFnzpyhYcOG9OzZ06I8PDwcAD8/v3x9iqqTom3atInOnTvz2WefsWvXLtzc3GjZsiXXrl1j3bp19O3bl5EjR2IymfL1/fzzz/nmm28IDw/HwcGBFi1aUL16dSIiIvjkk09o0qQJBw8evPuLqsCcnVwBuHrtMiaTiU37g2he9zHcq3hyKf2i+cvJwYVG3h3ZFxVS5HgGg8EczBpzjFzJSOVS+kX86j8OwLEzu81t2zTojkf1h1m/Z5HFGOv3LMLV2Y1OTfuV4UpFREREpKJThvYOeOyxx4iMjMxXnhcYtWzZskR1UjSTyUTdunX5+9//zqBBg8wZVaPRyFdffcVbb73Ft99+S5s2bRg7dqxF35deeon333+fzp074+DgYC4/dOgQzz//PIcPH+b555/n6NGjd3VNFdnVzMsAODu6kpp+gctXk9h3IoQBU2oU2N7GcOu/m4WG/8zy0FlE/3mA68Zsi7orGSnm7w0GA73bv8x36/9BdPxB6nv6cS7pFOGnttC/85vY2zn8dWgRERERuYcpoL2LlKG9M9q3b09kZCT29vYW5ba2towbN47IyEjmz5/PggUL8gW0w4YNK3DM5s2bs2jRIjp06MCxY8c4duwYjRs3vmNrsCanzkUA8FDNhvB/We/Wvt14ruvEUo237dBKPlryHI282jP2qTnUqOqFg50TRpORdxf2Iicnx6J9r3Yv8UPIB6wPW8Trnl+xPuxbTCYTvdtru7GIiIjI/cYqtxzHxMQwY8YMevXqRb169XBxccHZ2ZmWLVsyffp0srKy8vXx8PDAYDAQExPDwYMHeeGFF/D09MTFxQU/Pz/+85//FPnMnJwcli9fTr9+/ahduzaOjo7Url2bxx9/nDlz5lg808fHB4PBkC9LW5oMbWnWai0K2gJcGq6urvmC2Zvlbf0+fvx4ica9OYC9evVq6SZ3D1oflrvdt0OjJ6jiUoPKlapyNfMyrRt0K/SrKBv3/YiDnRMzRm/myU5j6NikD60bdKNWtToFtq/u6kHHJk+yaX8QGVnphOxdTCPvDvh4NC3ztYqIiEWGZuMAAFKmSURBVIhIxWaVAe2HH37IhAkT2L59O7a2tjRt2pSaNWsSERHB5MmTGTx4sEX7xMREEhP/f3t3HlV1tfB//H0YFQwHMHEiAjFRMXLOMqTHkeyaY05Zpt4bVua9lkP3WvKUZql5rZtp12aBx0RTEzNyCM1KcQInFERISNAYnBU4nN8f/jh6goOAGB79vNZqLdl7f/d3b713LT/u/d07Czc3N1atWkX79u2JiYmhUaNG1KhRg/j4eIYNG0ZMTOnf+p08eZJHH32UwYMHs3r1ahwdHQkMDMTR0ZHNmzczbdo07O3tAcjLyyMtLQ0XFxeaN29u7iM3N5fjx4/j6upKs2bNLPovq66ic61O3bp1M/+jwfUkJCTwwAMPkJycfNPHdenSJQBcXFwq9Ny2bdsAcHV15b777qvycdkaY5GRxd+8zP5jP9KxRQit730IOzs7Hn1gBInHd7AlIarU53LPnSyzXzs7ewwGAybT1ZVYk8lExIY3rT4T0mkcZy/msmDFc/x+OkOrsyIiIiJ3KJvcctyzZ0+ef/55HnjgAQwGg7l8586d9O3bl5UrV7Jv3z4CAgKAq9t5L126RFhYGOHh4QwZMgSDwcClS5cYPHgwa9eu5eOPP6Znz54W7zp//jwhISHs2rWLoKAg3nvvPdq0aWOuP3DgACtWrDAH2uKV1oCAAOzsrv57gbXy69VVdK624tNPPyU+Pp7g4GBiY2Px8Sn7rtIbsWzZMgC6du163bZFRUVkZWXx/fffM3nyZABmzZpFrVq1btr4bkVJGbvZsGspABcvn+X4qcP8dGAVWblptGvek1eHR5jbPtt7JgdSt/Hm0iEEtRmC/z2dcbB3Iis3jR2J6/Br3K7MU467thnE1n0reGXxo3RvNwqjsYBtB1ZxOd/6qnj75r1oUPceNu5eSk3nWgQHDq2yuYuIiIiI7bDJQPvkk0+WWt6+fXt69OjB0qVLOXDgQIlAW1BQQEREBH369DE/U6NGDUJDQ1m7di1paSXvy5w0aRK7du3i4YcfJiYmxuLgIIBWrVrRqtXVrY7WvoWt7PezFZ2rrZg3bx7Z2dl8+eWX5lDr7e1d5e9Zt24dq1evBjAH1NIsWrSI0NBQi7J27dqxZMkS+vbtW+XjutVt3hvJ5r2R2BnsqOFci/q1m9DGJ4jgwGF0aNHboq1rzdr8+/ltRMXOIzbhK346sBp7ewc8ajehtffD9LnOVTrBgUO5ePksK7bM56O1L3NXzbp0bvk4Y0JmM/B191KfsbOzo3eHMXwe8xpBbYZQ0/nO+gcHEREREbnCJgPt5cuXWbNmDbGxsRw7doyzZ8+aD445cOAAgEXwLA6MgwYNsgizxYq/Q61Tp45FeWJiIkuWLMHZ2Znw8PASYbY01r6FrewJxxWda3p6OrNnz2bHjh3Ex8eTn59v9VvVrVu3MmPGDOLj4yksLKRFixZMnjyZAQMGXHeeZUlPTy9XuxkzZpCRkcGmTZvModbLy+uG3n2to0eP8tRTTwEwYcIEunTpYrVtw4YNeeihhygsLOT48eOcOHGChIQEIiIi6Nq1K7Vr167UGNq3b09mZmalnr0ZnBxq8tELSVbr7/ftxvdzKv5tcw0nF0b2mM7IHtPLbGet/5BO4wjpNK5EeVljcXRwBij3dmO/5n7kF14sV1sRERER+fN4enqyc+fOSj1rc4F248aNjB49muPHj5fZ7totrMWB1tpqZ/FhQdd+8woQERGB0Whk1KhR5Q5axeH0j6ut1srLqqvMXJOTk1mxYgUdOnTAycnJ/B3oH8XHx9OjRw8eeeQRPvvsMxwdHVmyZAmDBg1izZo1N7QqWZ6tvX+UmprKyJEj2bJlS6Xfe63MzEx69+5NTk4OPXv2ZO7cuWW279evH/369TP/vG/fPp5//nkiIyP59ddf+fHHHys9joyMjEo9ezPUcKzYd8S3KqOxkOhfFnOvZwAtvR8s1zMnfvuNSwU63EtERETkdmJTgXb79u2EhIRQUFDAmDFjGDFiBK1bt6Zu3bo4ODiQmJiIv78/Dg4O5hNqL1++bD5tuFu3bqX2ay1QbtiwAYCQkJByja+goICDBw9iZ2dn8Z1tQUEBhw4dKlFeVl1l5gpX7sA9ceIEcGUF1FqgXbZsGQaDgVWrVpkPS+revTs+Pj6Eh4ffUKANCAgo12o2QHZ2tvkQqaq6Fqc4xCYnJ/PQQw/x9ddfl3kKcmkCAgKIjo7Gx8eHbdu2sWHDBrp3L/u03tJ4enpW+JmbycmhZnUP4YacyDnGobSf+enAak7kpPDqiMhyP9uwUSOt0IqIiIjcgm7k78w2FWinTZtGfn4+s2fPZsqUkndeRkdHA9CyZUucna9sRzx48CCFhYV4eXnh7l7693h79uwBSgba4pXR8h5YdOjQIfLz8/Hz88PV1dVcfvDgQfLz82nevHmJk3at1VVmrkCJQ6Wsyc/Px8nJiZo1rwYce3t77rrrrhL3flbUmjVryvU9bHp6OkFBQcCV1fOFCxfe0HsBzpw5Q+/evdm3bx9t27YlOjq6wqcbF7vrrrsICgpixYoVxMfHVyrQVnbrxM1izIfN71X3KCov4Wgsc78aTW1XD0Z2f61Ch0ElHUnCvnz/ziIiIiIiNsJmAq3RaDRvRx09enSJ+qKiIsLDwwF44IEHzOXF242vLbvW+fPnSUpKwtHRkdatW5eoA7h4sXyrOtZWeit6IFRl51oRTz31FB988AGTJk1iypQpODg4sHjxYpKSkqokWF5PRkYGwcHBpKSkMGjQIJYuXWo+KbqyLly4QN++fYmLi8Pf35/vvvuu0t++FissLASu/JlI9evV4Rl6dXimuochIiIiIrcIm7mH9vz58+ZQUXyv6LXmzZtnXmmtSKBNSEigqKgIf3//EttkmzZtCsBPP/1UrjFaC64VPRCqsnOtiPvvv5+NGzcSERGBp6cnHh4ezJo1i+XLl/PII49Uqs+KCAsLIzk5mf79+xMZGYmDw43920p+fj79+/dn69at+Pr6smHDBjw8PG6oz5ycHGJjY4HS/zFCRERERESql80EWjc3Nxo3bgzAzJkzzYEvPz+fOXPmMH36dHMoqkigLSsY9u/f3/y+mJgYi7qMjAxmzZpFUtLVE2OtBdeKrtBWdq4VkZSUxJNPPkmHDh1Yt24d3333HQMHDmTo0KFs2rSpUn0GBQUxcOBAi+3W1ixYsICwsDCWLVt2w2HWaDQyfPhwYmJiaNKkCRs2bKBRo0bXfW7nzp289tprJCcnl6jbs2cPffr0IS8vj4CAAP7nf/7nhsYoIiIiIiJVz2CydqfLLejDDz9k/PjxADRo0ICmTZuSlJTEhQsX+OCDDwgNDaWoqIi8vDzc3NwAcHd3Jycnh19//dW84nqtcePGsWTJEubPn8/EiRMt6s6dO0dQUBC7d+8Grnys3LRpU3JyckhJScFgMHDmzBlzgPPw8CA7O5v09HRzIC2rvKy6ysz1j2bMmEFYWFip1/YMHjyYhIQEDhw4YBEog4ODycvLMwd9WxAZGcnw4cOBK987N2zY0GrbqKgo80fnP/zwA8HBwQDcfffdNG3aFHt7e9LT0/ntt9+AKydff/vtt+X+jvpWZ+vf0N6I4AnoG1oRERGR24zNfEMLEBoaioODA3PmzCE1NRV7e3v69u3LlClTKCoqwmg04uvraw546enp5OTk4O7uXmqYBesHQgHUqlWLrVu3Mn/+fJYvX86RI0c4ffo0np6ePPHEEwwYMMAcZtPT08nOzsbDw8MimForv15dRedaUfv27eP+++8vsTravn173n///Ur1WV0uX75s/nVKSgopKSlW2167hfv+++9nwYIFbN68mf3793PkyBEuXbpEvXr16N69O/379+fZZ5+lRo0aN3X8IiIiIiJSOTa1QisVU9YKbbdu3fjtt984ePCgRajt1q0bx48f5+jRo3/mUOVPohXa6h6FiIiIiFQlm1qhlfKJiooCrlwJdO3P3t7etG/fHoDnn3+eIUOG0L9/f/72t79hb29PREQEsbGxLFiwoHoGLtXmg1UT+PngGrJy0/hw4h6aNQ4ssxxg5CxvHB2czXfbDnt0Gt0CnyS/4BIzw4eSlnUQZ8ea1Kl1NxMGfEhjj2YA5J47yTuRo/gt5yhO9s68OGAhbXwesehzcNArhHQaW2Kcvxxcy/LYucwL/YHMnFTiDq/n8QefM9e/FTGCPUkb6RY4lPH9/n1zfrNERERE5JahQHsbGjx4cKk/P/3003z22Wfmsm+++Ya3336bp59+GqPRSPPmzQkPDzd/jyp3jq5tBjGk22T+vvDhcpUX++eIZRYht1hIp7/SsUUfDAYDq7b9h3eXj2Ve6A8AfLxuKv73dOatces5fDyOGZ/358tpx3Cwdyyzzz/Kyk1l7c+LLALttOHhfBEzg3MX88o1bxERERGxbQq0t6Hy7iLv27cvffv2vcmjEVtQvEJa3vKyODnWoJN/iPlnf6/ORMXONf8cG/8Vn0+5crL0fU074O7WiISjsbRt3r1EX4XGAhaufoldSd9zV826tL63q7luwYrnyMpN42/vBnJ3XS/eGL2mwmMVEREREdumQCsilfbO/43ChIkWTTsyJmQ2dWrVL9Hm6x8X8GCrfgCcOZ+N0VhAPTdPc32Dut6czPu11P6jf/mI46cOs2TSAQCmLellrntp4CIWrp7I4n/srcIZiYiIiIgtsZl7aEXk1vJu6BY+mpTAhxN34+bqwTvLni7RJmLjLH77PZkxfd6q1Dv2JG+kR7tRODo44ejgRK8Oz97osEVERETkNqJAKyKVcnddLwAc7B0Z0HUi+49ttahf/sNcfty/klljv6WGkwsAbq7u2Ns5kHMm09wuKzeVu+t4leudBgxVNHoRERERuR0o0IpIhV3MP29x8NLmPZE0a/SA+eeo2HfZvDeSt8d9T62adSye7dpmMGt/WQTA4eNx/H46gza+QaW+p61fdzbuXkqhsYCCwny+2/mpuc7F2Y0Ll05X3aRERERExOboG1oR4d9Rf2N7YjQ5ZzOZtqQXLs538fnUZKvleWezCPtiIEVFRkyYaFjPh8lDvwDgVF46i9dOomE9H15eFAyAk4Mz70/YDsC4x95mduRTPP22H472TkwdttR8wvEfhXQaR2rmfsbMbWk+FCopfRcAPg3bcI9nK8bNbY2nu48OhRIRERG5AxlM5T0SV0RsnjEfNr9X3aOwbuQsb2Y8vapc1/ZYU3xtzx/voQ2eAPZONzY+EREREbm1aMuxiNwyarvW5+3IkazbvqRSz78VMYKNu5fiUsOtikcmIiIiIrcirdCK3EFu9RXam0krtCIiIiK3H63QioiIiIiIiE1SoBURERERERGbpC3HIncQkwmKCqp7FNXDzhEMusZWRERE5LaiQCsiIiIiIiI2SVuORURERERExCYp0IqIiIiIiIhNUqAVERERERERm6RAKyIiIiIiIjZJgVZERERERERskgKtiIiIiIiI2CQFWhEREREREbFJCrQiIiIiIiJikxRoRURERERExCYp0IqIiIiIiIhNUqAVERERERERm6RAKyIiIiIiIjZJgVZERERERERskgKtiIiIiIiI2CQFWhEREREREbFJCrQiIiIiIiJikxRoRURERERExCYp0IqIiIiIiIhNcqjuAYjIn8dkgqKC6h5F9bBzBIOhukchIiIiIlVJgVbkDlJUAJvfq+5RVI/gCWDvVN2jEBEREZGqpC3HIiIiIiIiYpMUaEVERERERMQmKdCKiIiIiIiITVKgFREREREREZukQCsiIiIiIiI2SYFWREREREREbJICrYj8aeKP/kCPVwx8F/dZdQ9FRERERG4DuodWRMzij/7Ay4uCzT/bGexwqeGGh1tj/Jq0IzhwGO3v64XBYKjGUYqIiIiIXKFAKyIlBAcOo2OLEEyYuHj5LMdPHean/av4ftcXtPXrzvSnllOrZp3qHqaIiIiI3OEUaEWkBL/GbenebqRF2XOPv8t/oyezYsu7zAofxqyx31bT6ERERERErtA3tDeByWSidu3aGAwGTp06ZVHu5uaGwWDg999/L/GMtTqRW4G9nT3PPT6P1vc+TNzh9ew/9qO57vzF0/w3egpPz25GyFRnBs2oz8zwYZzITrluv0VFRYRvnMk/Fj7CkDBP+kx1YvhMLxasCOXM+Wxzu9xzJ+kz1Ym3IkaU2s97K5+n52Q7MnNSb3iuIiIiImIbFGhvgrS0NM6cOYOnpyf169c3lx89epSzZ8/SuHFjPDw8LJ4pq07KZjKZ2LZtG1OmTKFLly7Uq1cPR0dHGjRoQN++fVmzZk2F+vvvf/+LwWDAYDDQrVu3mzNoG9a7wxgAth+KBq6E2Zc+6MI3Py+ko/9jPP/E+/Tr8gJ7kzfx4vudyMpNK7O/QmM+y3+YQ2MPPwZ3e4Xx/d6jnV8P1sd9zKRF3SgozAegbq27ebDlX/hx30rOXcyz6CO/4BKb90bwQLPueNbzrvI5i4iIiMitSVuOb4Jff/2V++67j86dO1uUx8fHAxAYGFjimbLqpGybNm2ie/fuABgMBnx9ffHx8SE5OZno6Giio6N59tlnWbJkyXUPM8rMzGTy5Ml/xrBtlk/DNgCknzoCwGcxr3EiO4X3XvwF30b3m9v17PAMf50XwOffvc7koZ9Z7c/RwZllr53A2bHm1cIHn6OldxfeXT6Wnw6sIuj+IQCEdPorW/etYNOeCP7SZby5+dZ9Kzh3MY+QTmOrcKYiIiIicqvTCu1N8Mgjj5CYmMhnn31mUb53714A7r///hLPlFUnZTOZTPj4+PD+++9z8uRJkpKS2LlzJ9nZ2cyfPx+DwcAnn3zChx9+eN2+XnzxRc6cOUPfvn3/hJHbJpcabgBcuHwGk8nEpt3hBPg8gkftxpw+/7v5vxpOrrTw6syupJgy+zMYDOYwaywycu5iHqfP/05gs0cBOPTrdnPbds174FnvXtbv+Niij/U7PsbNxZ0urZ6owpmKiIiIyK1OK7R/Iq3Q3hwdO3YkMTERR0dHi3J7e3smTpxIYmIiixcv5qOPPmL8+PFWeoE1a9YQFRXFiy++SL169Vi7du3NHrpNunDpDAAuzm7knT/FmQvZ7DoSw6AZ9Uttb2e4/r+bxcZ/RVTsPJJ/20OhscCi7tzFXPOvDQYDfTqO5dP1/yQ5Yy/NGgdyIjuF+JQf6P/wSzg6ON3AzERERETE1tjkCm1qaipz5syhd+/e+Pr64urqiouLC/fffz+zZ88mPz+/xDOenp4YDAZSU1PZu3cvTz31FI0bN8bV1ZXAwED+7//+r8x3FhUVERUVxRNPPEGjRo1wdnamUaNGPProoyxYsMDind7e3hgMBhITEy36qMwKbWXmaitMJlOV9OPm5lYizF6rV69eABw+fNhqm7Nnz/L888/TqFEj3nzzzSoZ1+0q5UQCAE3uvg/+/59hW7/uvD3u+1L/e2vsd2X2t3XfSt5c+iQA4/+ygDdGf8Pb475n1tj1wJX/712rd4dnsbdzYH3clVXa9XGfYDKZ6NNR241FRERE7jQ2uUL7xhtv8Mknn+Dq6kqjRo1o1aoVJ0+eJCEhgYSEBOLi4lixYoW5fVZWFllZWbi5ubFq1Spefvll3N3d8fLy4tKlS8THxzNs2DDq1atHz549S7zv5MmTDBkyhNjYWAC8vLwIDAwkMzOTzZs388svv/DCCy8AkJeXR1paGi4uLjRv3tzcR25uLsePH8fV1ZVmzZpZ9F9WXUXnWp26detGbGwsx44dw9vbu8y2CQkJjBo1iqioqBJzrmqXLl0CwMXFxWqbadOmkZ6ezldffYWbm9tNHY+tKw6SnVo8Rm3X+tSqWYcLl87Qtnn3SvW3cdeXODnUYM5zm6nhdPXP6NeTiaW2r+fmSeeWj7NpdzhjQmYTs/MzWnh1wtuzVaXeLyIiIiK2yyZXaHv27MmuXbs4e/YsR44cYceOHaSmphIXF0eDBg1YuXIl+/btM7cv3s576dIlwsLCCA8PJzMzk7i4ODIyMszfS3788ccl3nX+/HlCQkKIjY0lKCiI+Ph40tLS2L59O2lpaezfv5+pU6dib28PXF1pDQgIwM7u6m+vtfLr1VV0rrbi008/JT4+nuDgYFJSrn+1y41YtmwZAF27di21/ueff+bDDz+kT58+DB48+KaOxZYZi4ws/uZl9h/7kY4tQmh970PY2dnx6AMjSDy+gy0JUaU+l3vuZJn92tnZYzAYMJmursSaTCYiNlhfKQ/pNI6zF3NZsOI5fj+dodVZERERkTuUTa7QPvnkk6WWt2/fnh49erB06VIOHDhAQEAAcDXQFhQUEBERQZ8+fczP1KhRg9DQUNauXUtaWsnrRSZNmsSuXbt4+OGHiYmJwcnJ8hu9Vq1a0arV1ZUha9/CVvb72YrO1VbMmzeP7OxsvvzyS4KDg4mNjb3uqm5lrFu3jtWrVwOUenpxQUEB48aNw9nZmf/85z9V/n5blZSxmw27lgJw8fJZjp86zE8HVpGVm0a75j15dXiEue2zvWdyIHUbby4dQlCbIfjf0xkHeyeyctPYkbgOv8btyjzluGubQWzdt4JXFj9K93ajMBoL2HZgFZfzL1h9pn3zXjSoew8bdy+lpnMtggOHVtncRURERMR22GSgvXz5MmvWrDFvbz179qz5O7sDBw4AWATP4sA4aNAgizBbrPg71Dp16liUJyYmsmTJEpydnQkPDy8RZktj7VvYyp5wXNG5pqenM3v2bHbs2EF8fDz5+flWv1XdsGED//rXv9i7dy9ubm4MGDCAt99+m9q1a193nmVJT08vV7sZM2aQkZHBpk2bzKHWy8vrht59raNHj/LUU08BMGHCBLp06VKizezZszlw4AAzZ87Ex8enyt5t6zbvjWTz3kjsDHbUcK5F/dpNaOMTRHDgMDq06G3R1rVmbf79/DaiYucRm/AVPx1Yjb29Ax61m9Da+2H6XOcqneDAoVy8fJYVW+bz0dqXuatmXTq3fJwxIbMZ+Lp7qc/Y2dnRu8MYPo95jaA2Q6jpXKvK5i4iIiIitsPmAu3GjRsZPXo0x48fL7PdteGkONBaW+0sPizo2m9eASIiIjAajYwaNarcQas4nP5xtdVaeVl1lZlrcnIyK1asoEOHDjg5ObFt27ZSn4mNjaV3797069eP119/nfT0dKZNm8bhw4fZtGnTde9rLYu1rb1lSU1NZeTIkWzZsqXS771WZmYmvXv3Jicnh549ezJ37twSbQ4fPszMmTPx9/fnlVdeqZL3/lH79u3JzMy8KX1XhpNDTT56Iclq/f2+3fh+TsUP66rh5MLIHtMZ2WN6me2s9R/SaRwhncaVKC9rLI4OzgDl3m7s19yP/MKL5WorIiIiIn8eT09Pdu7cWalnbSrQbt++nZCQEAoKChgzZgwjRoygdevW1K1bFwcHBxITE/H398fBwQF/f3/gygpn8WnD3bp1K7Vfa4Fyw4YNAISEhJRrfAUFBRw8eBA7OzvatGljUX7o0KES5WXVVWaucOUO3BMnTgBXVkCtBdr//d//xc/Pj+XLl5u/23V3d2fgwIFER0ff0D2sAQEB5VrNBsjOziY1NRXAYh43ojjEJicn89BDD/H111+XegpyaGgoly9fZtGiRWWeknwjMjMzycjIuCl9V0YNR+sHY9kSo7GQ6F8Wc69nAC29HyzXMyd++41LBda3MYuIiIiI7bGpQDtt2jTy8/OZPXs2U6ZMKVEfHR0NQMuWLXF2vrJ6c/DgQQoLC/Hy8sLdvfTti3v27AFKBtrildHybkU9dOgQ+fn5+Pn54erqai4/ePAg+fn5NG/evMRJu9bqKjNXoMShUtZs376d0aNHW7QvPuF51apVNxRo16xZU67vYdPT0wkKCgKurJ4vXLiw0u8sdubMGXr37s2+ffto27Yt0dHRVk833r17N3Z2dgwZMqRE3blz5wD46aef8PT0BODIkSMVPgG5+NlbhZNDzeoewg05kXOMQ2k/89OB1ZzISeHVEZHlfrZho0ZaoRURERG5Bd3I35ltJtAajUbzdtTRo0eXqC8qKiI8PByABx54wFxevN342rJrnT9/nqSkJBwdHWndunWJOoCLF8v3l2BrK70VPRCqsnOtCHt7+xKrqI6OjhgMBvO3uTdTRkaG+YTjQYMGsXTpUvNJ0ZV14cIF+vbtS1xcHP7+/nz33XfX/R64qKiIrKwsq/UFBQXm+j/eh1oeld06cbMY82Hze9U9ispLOBrL3K9GU9vVg5HdX6vQYVBJR5KwL9/GARERERGxETZzbc/58+cxGo3A1XtFrzVv3jzzSmtFAm1CQgJFRUX4+/uXCHhNmzYFrqzSlYe14FrRA6EqO9eKaN68Odu3b7coi4uLw2QykZOTU6k+KyIsLIzk5GT69+9PZGQkDg439m8r+fn59O/fn61bt+Lr68uGDRvw8PAo85m8vDxMJlOp/73++usABAUFmcv+eGiY/Pl6dXiG7+eYiJpxiqd7hVX3cERERESkmtlMoHVzc6Nx48YAzJw50xz48vPzmTNnDtOnTzeHoooE2rKCYf/+/c3vi4mJsajLyMhg1qxZJCVdPWDHWnCt6AptZedaERMmTGDbtm28+eab/P777+zdu5fx48djb29f7m3LfxQUFMTAgQMttltbs2DBAsLCwli2bNkNh1mj0cjw4cOJiYmhSZMmbNiwgUaNGt1QnyIiIiIicuuzmS3HAP/85z8ZP348H330EatXr6Zp06YkJSVx4cIFPvjgA0JDQzEYDBbhsLyBtrSw+fLLL/PNN9+we/duevXqhaenJ02bNiUnJ4eUlBQMBgMvvfRSiXdZ23Jc2gqttbrKzLUiRo4cyYEDB3jjjTeYPn069vb2PP/88zg5OVX4O9FiYWHlXzGrWbMmr732WqXe80dfffUVK1asAK5cYTRy5EirbaOiom6571pFRERERKRybCrQhoaG4uDgwJw5c0hNTcXe3p6+ffsyZcoUioqKMBqN+Pr6mgNZeno6OTk5uLu7m7cP/1FZgbZWrVps3bqV+fPns3z5co4cOcLp06fx9PTkiSeeYMCAAebVyPT0dLKzs/Hw8DCvrpZVfr26is61ogwGA7Nnz+af//wnx44do3HjxtSuXRt3d3defPHFSvVZXS5fvmz+dUpKCikpKVbblraFW0REREREbJPBZDJV/NJJsQkzZswgLCyM8v4R//e//+X555/n0KFD+Pr63uTRSXWw9UOhbkTwBHQolIiIiMhtxqZWaKV8oqKigCtXAl37s7e3N+3btweunL77/fff07ZtWwoLC9mwYQPvvfcec+fOVZgVERERERGboBXa25DBYCi1/Omnn+azzz4DYN++ffztb39j//79FBYWEhAQwCuvvMKgQYP+xJHKn83aCu0Hqybw88E1ZOWm8eHEPTRrHFhmOcDIWd44Ojib77Yd9ug0ugU+SX7BJWaGDyUt6yDOjjWpU+tuJgz4kMYezQDIPXeSdyJH8VvOUZzsnXlxwELa+Dxi0efgoFcI6TS2xDh/ObiW5bFzmRf6A5k5qcQdXs/jDz5nrn8rYgR7kjbSLXAo4/v92+JZrdCKiIiI3H60QnsbKs+/UQQEBJT7OiK5/XVtM4gh3Sbz94UPl6u82D9HLLMIucVCOv2Vji36YDAYWLXtP7y7fCzzQn8A4ON1U/G/pzNvjVvP4eNxzPi8P19OO4aDvWOZff5RVm4qa39eZBFopw0P54uYGZy7mFeueYuIiIiIbVOgFRHzCml5y8vi5FiDTv4h5p/9vToTFTvX/HNs/Fd8PiUZgPuadsDdrREJR2Np27x7ib4KjQUsXP0Su5K+566adWl9b1dz3YIVz5GVm8bf3g3k7rpevDF6TYXHKiIiIiK2TYFWRCrtnf8bhQkTLZp2ZEzIbOrUql+izdc/LuDBVv0AOHM+G6OxgHpuV69OalDXm5N5v5baf/QvH3H81GGWTDoAwLQlvcx1Lw1cxMLVE1n8j71VOCMRERERsSV21T0AEbFN74Zu4aNJCXw4cTdurh68s+zpEm0iNs7it9+TGdPnrUq9Y0/yRnq0G4WjgxOODk706vDsjQ5bRERERG4jCrQiUil31/UCwMHekQFdJ7L/2FaL+uU/zOXH/SuZNfZbaji5AODm6o69nQM5ZzLN7bJyU7m7jle53mmg9APPREREROTOpEArIhV2Mf+8xcFLm/dE0qzRA+afo2LfZfPeSN4e9z21ataxeLZrm8Gs/WURAIePx/H76Qza+AaV+p62ft3ZuHsphcYCCgrz+W7np+Y6F2c3Llw6XXWTEhERERGbo29oRYR/R/2N7YnR5JzNZNqSXrg438XnU5OtluedzSLsi4EUFRkxYaJhPR8mD/0CgFN56SxeO4mG9Xx4eVEwAE4Ozrw/YTsA4x57m9mRT/H023442jsxddhS8wnHfxTSaRypmfsZM7el+VCopPRdAPg0bMM9nq0YN7c1nu4+OhRKRERE5A6ke2hF7iDW7qG9VYyc5c2Mp1eV69oea4qv7dE9tCIiIiK3P205FpFbRm3X+rwdOZJ125dU6vm3IkawcfdSXGq4VfHIRERERORWpBVakTvIrb5CezNphVZERETk9qMVWhEREREREbFJCrQiIiIiIiJik7TlWOQOYjJBUUF1j6J62DmCQdfYioiIiNxWFGhFRERERETEJmnLsYiIiIiIiNgkBVoRERERERGxSQq0IiIiIiIiYpMUaEVERERERMQmKdCKiIiIiIiITVKgFREREREREZukQCsiIiIiIiI2SYFWREREREREbJICrYiIiIiIiNgkBVoRERERERGxSQq0IiIiIiIiYpMUaEVERERERMQmKdCKiIiIiIiITVKgFREREREREZukQCsiIiIiIiI2SYFWREREREREbJICrYiIiIiIiNgkh+oegIj8eUwmKCqo7lFUDztHMBiqexQiIiIiUpUUaEXuIEUFsPm96h5F9QieAPZO1T0KEREREalK2nIsIiIiIiIiNkmBVkRERERERGySAq2IiIiIiIjYJAVaERERERERsUkKtCIiIiIiImKTFGhFRERERETEJinQisifJv7oD/R4xcB3cZ9V91BERERE5Dage2hFxCz+6A+8vCjY/LOdwQ6XGm54uDXGr0k7ggOH0f6+XhgMhmocpYiIiIjIFQq0IlJCcOAwOrYIwYSJi5fPcvzUYX7av4rvd31BW7/uTH9qObVq1qnuYYqIiIjIHU6BVkRK8Gvclu7tRlqUPff4u/w3ejIrtrzLrPBhzBr7bTWNTkRERETkCn1DexOYTCZq166NwWDg1KlTFuVubm4YDAZ+//33Es9YqxO5Fdjb2fPc4/Nofe/DxB1ez/5jP5rrzl88zX+jp/D07GaETHVm0Iz6zAwfxonslOv2W1RURPjGmfxj4SMMCfOkz1Qnhs/0YsGKUM6czza3yz13kj5TnXgrYkSp/by38nl6TrYjMyf1hucqIiIiIrZBgfYmSEtL48yZM3h6elK/fn1z+dGjRzl79iyNGzfGw8PD4pmy6qRsJpOJbdu2MWXKFLp06UK9evVwdHSkQYMG9O3blzVr1lh99plnnsFgMJT5X2Ji4p84m1tf7w5jANh+KBq4EmZf+qAL3/y8kI7+j/H8E+/Tr8sL7E3exIvvdyIrN63M/gqN+Sz/YQ6NPfwY3O0Vxvd7j3Z+PVgf9zGTFnWjoDAfgLq17ubBln/hx30rOXcxz6KP/IJLbN4bwQPNuuNZz7vK5ywiIiIityZtOb4Jfv31V+677z46d+5sUR4fHw9AYGBgiWfKqpOybdq0ie7duwNgMBjw9fXFx8eH5ORkoqOjiY6O5tlnn2XJkiVWDzPy8/Pj7rvvLrXOxcXlpo3dFvk0bANA+qkjAHwW8xonslN478Vf8G10v7ldzw7P8Nd5AXz+3etMHvqZ1f4cHZxZ9toJnB1rXi188Dlaenfh3eVj+enAKoLuHwJASKe/snXfCjbtieAvXcabm2/dt4JzF/MI6TS2CmcqIiIiIrc6Bdqb4JFHHil1VW/v3r0A3H///RWqk7KZTCZ8fHz4+9//ztChQ80r3Eajkffff59//OMffPLJJ7Rr147x48eX2serr77KM8888yeO2na51HAD4MLlM5hMJjbtDifA5xE8ajfm9Pmr2+VrOLnSwqszu5JiyuzPYDCYw6yxyMjFy2cxFhUS2OxRAA79ut0caNs174FnvXtZv+Nji0C7fsfHuLm406XVE1U5VRERERG5xSnQ/om0QntzdOzYkcTERBwdHS3K7e3tmThxIomJiSxevJiPPvrIaqCV8rtw6QwALs5u5J0/xZkL2ew6EsOgGfVLbW9nuP6XDbHxXxEVO4/k3/ZQaCywqDt3Mdf8a4PBQJ+OY/l0/T9JzthLs8aBnMhOIT7lB/o//BKODk43MDMRERERsTU2GWhTU1NZvnw5GzduJCkpiczMTEwmE35+fgwbNox//OMfODlZ/sXW09OTrKwsjh07Rl5eHvPmzWPTpk3k5eXh5+fH1KlTGTp0qNV3FhUVsXLlSpYuXcqOHTvIzs7G3d2dFi1a0K9fP0JDQ83v9Pb2Ji0tjUOHDtGiRQtzH5VZoa3MXG2FyWSqkvtM3dzcyqzv1asXixcv5vDhwzf8LoGUEwkANLn7PjCZAGjr150nu02pVH9b963kzaVP0qJpR8b/ZQH16zTFyaEGRpORV5f0pqioyKJ97w7P8kXM66yP+5gXGr/P+rhPMJlM9Omo7cYiIiIidxqbDLRvvPEGn3zyCa6urjRq1IhWrVpx8uRJEhISSEhIIC4ujhUrVpjbZ2VlkZWVhZubG6tWreLll1/G3d0dLy8vLl26RHx8PMOGDaNevXr07NmzxPtOnjzJkCFDiI2NBcDLy4vAwEAyMzPZvHkzv/zyCy+88AIAeXl5pKWl4eLiQvPmzc195Obmcvz4cVxdXWnWrJlF/2XVVXSu1albt27ExsZy7NgxvL29y2ybkJDAqFGjiIqKKjHnqnbp0iWg7G9ho6KiWLVqFWfOnMHDw4POnTvz1FNPWRzqJVesj/sYgE4tHqO2a31q1azDhUtnaNu8e6X627jrS5wcajDnuc3UcLr6Z/TrydIP46rn5knnlo+zaXc4Y0JmE7PzM1p4dcLbs1Wl3i8iIiIitssmTznu2bMnu3bt4uzZsxw5coQdO3aQmppKXFwcDRo0YOXKlezbt8/cvng776VLlwgLCyM8PJzMzEzi4uLIyMigb9++AHz88ccl3nX+/HlCQkKIjY0lKCiI+Ph40tLS2L59O2lpaezfv5+pU6dib28PXF1pDQgIwM7u6m+vtfLr1VV0rrbi008/JT4+nuDgYFJSrn+1y41YtmwZAF27drXaJjo6mtWrV7N582aWL1/OpEmTuPfee1m6dOlNHZstMRYZWfzNy+w/9iMdW4TQ+t6HsLOz49EHRpB4fAdbEqJKfS733Mky+7Wzs8dgMGAyXV2JNZlMRGx40+ozIZ3GcfZiLgtWPMfvpzO0OisiIiJyh7LJFdonn3yy1PL27dvTo0cPli5dyoEDBwgICACuBtqCggIiIiLo06eP+ZkaNWoQGhrK2rVrSUsreb3IpEmT2LVrFw8//DAxMTEltve2atWKVq2urgxZ+xa2st/PVnSutmLevHlkZ2fz5ZdfEhwcTGxs7HVXdStj3bp1rF69GoDJkyeXqG/evDnz588nODgYb29vHB0d2bVrF2+++SYxMTGMGjWKunXr8thjj1X52G5lSRm72bDrSpi/ePksx08d5qcDq8jKTaNd8568OjzC3PbZ3jM5kLqNN5cOIajNEPzv6YyDvRNZuWnsSFyHX+N2ZZ5y3LXNILbuW8Erix+le7tRGI0FbDuwisv5F6w+0755LxrUvYeNu5dS07kWwYHWPxcQERERkduXTQbay5cvs2bNGvP21rNnz5q/sztw4ACARfAsDoyDBg2yCLPF8vOv3HNZp04di/LExESWLFmCs7Mz4eHh5fpW1dq3sJU94biic42KiiIyMpKdO3dy6tQpvLy8GDhwINOmTaNWrVoWfR87doyXXnqJzZs34+DgwOOPP878+fNxd3e/7jzLkp6eXq52M2bMICMjg02bNplDrZeX1w29+1pHjx7lqaeeAmDChAl06dKlRJtXX321RFnXrl1Zv349/fv3Z/Xq1UycOJGQkJAq+d7XVmzeG8nmvZHYGeyo4VyL+rWb0MYniODAYXRo0duirWvN2vz7+W1Exc4jNuErfjqwGnt7BzxqN6G198P0uc5VOsGBQ7l4+Swrtszno7Uvc1fNunRu+ThjQmYz8PXS/7doZ2dH7w5j+DzmNYLaDKGmc61S24mIiIjI7c3mAu3GjRsZPXo0x48fL7Odj4+P+dfFgdbaamfxYUHXfvMKEBERgdFoZNSoUeUOWsXh9I+rrdbKy6qrzFznzp2Ll5cXs2bNokmTJuzdu5ewsDBiY2PZsmWLeUvz2bNnCQ4Opl69ekRGRnLx4kUmT55M37592bZtW4mtzxVR1tZea1JTUxk5ciRbtmyp9HuvlZmZSe/evcnJyaFnz57MnTu3Qs8bDAbefvttVq9eTXJyMvv27aNNmzYVHkf79u3JzMys8HM3i5NDTT56Iclq/f2+3fh+jqnC/dZwcmFkj+mM7DG9zHbW+g/pNI6QTuNKlJc1FkcHZ4Bybzf2a+5HfuHFcrUVERERkT+Pp6cnO3furNSzNhVot2/fTkhICAUFBYwZM4YRI0bQunVr6tati4ODA4mJifj7++Pg4IC/vz9wZYWz+E7Ybt26ldqvtUC5YcMGAEJCQso1voKCAg4ePIidnZ1F+CkoKODQoUMlysuqq8xcAb755huLg4yCgoKoX78+I0aM4Mcff+SRRx4B4KOPPiIjI4MtW7aYw3qTJk3o0qULa9as4YknnijXnEsTEBBQ7pOXs7OzSU1NBbCYx40oDrHJyck89NBDfP311yWu9CmP++67j3r16pGTk0NSUlKlAm1mZiYZGRkVfu5mqeFo/WAsW2I0FhL9y2Lu9QygpfeD5XrmxG+/canA+jZmEREREbE9NhVop02bRn5+PrNnz2bKlJJXhERHRwPQsmVLnJ2vrN4cPHiQwsJCvLy8rG6l3bNnD1Ay0BavjF67AlqWQ4cOkZ+fj5+fH66urubygwcPkp+fT/PmzUuctGutrjJzBUo9lbd9+/YAFsFq7dq1PPzwwxYrzw8++CA+Pj588803NxRo16xZU67vYdPT0wkKCgKurJ4vXLiw0u8sdubMGXr37s2+ffto27Yt0dHRZZ5ufD3FQbiwsLBSz3t6elb63TeDk0PN6h7CDTmRc4xDaT/z04HVnMhJ4dURkeV+tmGjRlqhFREREbkF3cjfmW0m0BqNRvN21NGjR5eoLyoqIjw8HIAHHnjAXF683fjasmudP3+epKQkHB0dad26dYk6gIsXy/eXYGsrvRU9EKqyc7Vm8+bNgOUK6MGDBxk8eHCJtq1ateLgwYPX7fNGZWRkmE84HjRoEEuXLjWfFF1ZFy5coG/fvsTFxeHv7893331H7dq1K93fqVOnOHnyygm9TZo0qVQfld06cbMY82Hze9U9ispLOBrL3K9GU9vVg5HdX6vQYVBJR5Kwt80rm0VERETECpsJtOfPn8doNAJX7xW91rx588wrrRUJtAkJCRQVFdG6desS22SbNm1Kbm4uP/30Ew899NB1x2gtuFb0QKjKzrU0GRkZTJ8+nd69e1uMKzc3t8QhWAD16tUzf1N8M4WFhZGcnEz//v2JjIzEweHG/qeYn59P//792bp1K76+vmzYsAEPD48b6nPevHmYTCZq165Nhw4dbqgvqRq9OjxDrw7PVPcwREREROQWYTP30Lq5udG4cWMAZs6caQ58+fn5zJkzh+nTp5tDUUUCbVnBsH///ub3xcTEWNRlZGQwa9YskpKuHrBjLbhWdIW2snP9o3PnztGvXz+cnJz45JNPrLarKkFBQQwcONBiu7U1CxYsICwsjGXLlt1wmDUajQwfPpyYmBiaNGnChg0baNSo0XWf+/7775k6dSpHjx61KL9w4QL/+7//yzvvvANc2f5d3m+CRURERETkz2MwmUwVP9K0mnz44YeMHz8egAYNGtC0aVOSkpK4cOECH3zwAaGhoRQVFZGXl4ebmxsA7u7u5OTk8Ouvv9K0adMSfY4bN44lS5Ywf/58Jk6caFF37tw5goKC2L17N3Blb3fTpk3JyckhJSUFg8HAmTNnzAHOw8OD7Oxs0tPTzYG0rPKy6ioz12tdvHiRkJAQEhIS2Lp1Ky1btrSob9CgAYMHD+Y///mPRflf/vIXTp06xc8//2z9D+IWExkZyfDhw4Er3zs3bNjQatuoqCjzHv1Vq1aZ/9GiYcOGNG7cmKKiIg4dOmTeZv7Xv/6VRYsW3TZX9tj6luMbETwBbTkWERERuc3YzJZjgNDQUBwcHJgzZw6pqanY29vTt29fpkyZQlFREUajEV9fX3PAS09PJycnB3d391LDLFg/EAqgVq1abN26lfnz57N8+XKOHDnC6dOn8fT05IknnmDAgAHmMJuenk52djYeHh4WwdRa+fXqKjrXaxUUFDBo0CB27tzJxo0bS4RZuPI9bWnfyh48eNB8ErKtuHz5svnXKSkppKSkWG177Rbudu3a8a9//Yuff/6Z5ORkDh48iNFopEGDBjz44IOMGzeO//mf/7mpYxcRERERkcqzqRVaub6ioiKGDh3KmjVrWLduHY8++mip7ebOncurr75KSkqK+cCj7du307lzZ1auXGleuZTbi1Zoq3sUIiIiIlKVFGhvM6GhoSxatIipU6fSr18/izpfX1/ztT5nzpwhICAADw8PwsLCuHTpEpMnT6Z+/fr8/PPP2NnZzOfVUgEKtNU9ChERERGpSgq0txlvb2/S0tJKrfv000955plnzD8fPXqUl156iR9++AEHBwf69u3L/PnzS73LVm4P1gLtB6sm8PPBNWTlpvHhxD00axxYZjnAyFneODo4m++2HfboNLoFPkl+wSVmhg8lLesgzo41qVPrbiYM+JDGHs0AyD13knciR/FbzlGc7J15ccBC2vg8YtHn4KBXCOk0tsQ4fzm4luWxc5kX+gOZOanEHV7P4w8+Z65/K2IEe5I20i1wKOP7/dviWQVaERERkduPTX1DK9eXmppa7ra+vr6sXbv25g1GbEbXNoMY0m0yf1/4cLnKi/1zxDKLkFsspNNf6diiDwaDgVXb/sO7y8cyL/QHAD5eNxX/ezrz1rj1HD4ex4zP+/PltGM42DuW2ecfZeWmsvbnRRaBdtrwcL6ImcG5i3nlmreIiIiI2DYFWhExr5CWt7wsTo416OQfYv7Z36szUbFzzT/Hxn/F51OSAbivaQfc3RqRcDSWts27l+ir0FjAwtUvsSvpe+6qWZfW93Y11y1Y8RxZuWn87d1A7q7rxRuj11R4rCIiIiJi2xRoRaTS3vm/UZgw0aJpR8aEzKZOrZLb1b/+cQEPtrryPfeZ89kYjQXUc/M01zeo683JvF9L7T/6l484fuowSyYdAGDakl7mupcGLmLh6oks/sfeKpyRiIiIiNgSnfwjIpXybugWPpqUwIcTd+Pm6sE7y54u0SZi4yx++z2ZMX3eqtQ79iRvpEe7UTg6OOHo4ESvDs/e6LBFRERE5DaiQCsilXJ3XS8AHOwdGdB1IvuPbbWoX/7DXH7cv5JZY7+lhpMLAG6u7tjbOZBzJtPcLis3lbvreJXrnQYMVTR6EREREbkdKNCKSIVdzD9vcfDS5j2RNGv0gPnnqNh32bw3krfHfU+tmnUsnu3aZjBrf1kEwOHjcfx+OoM2vkGlvqetX3c27l5KobGAgsJ8vtv5qbnOxdmNC5dOV92kRERERMTm6BtaEeHfUX9je2I0OWczmbakFy7Od/H51GSr5Xlnswj7YiBFRUZMmGhYz4fJQ78A4FReOovXTqJhPR9eXhQMgJODM+9P2A7AuMfeZnbkUzz9th+O9k5MHbbUfMLxH4V0Gkdq5n7GzG1pPhQqKX0XAD4N23CPZyvGzW2Np7uPDoUSERERuQPpHlqRO4i1e2hvFSNneTPj6VXlurbHmuJre3QPrYiIiMjtT1uOReSWUdu1Pm9HjmTd9iWVev6tiBFs3L0UlxpuVTwyEREREbkVaYVW5A5yq6/Q3kxaoRURERG5/WiFVkRERERERGySAq2IiIiIiIjYJG05FrmDmExQVFDdo6gedo5g0DW2IiIiIrcVBVoRERERERGxSdpyLCIiIiIiIjZJgVZERERERERskgKtiIiIiIiI2CQFWhEREREREbFJCrQiIiIiIiJikxRoRURERERExCYp0IqIiIiIiIhNUqAVERERERERm6RAKyIiIiIiIjZJgVZERERERERskgKtiIiIiIiI2CQFWhEREREREbFJCrQiIiIiIiJikxRoRURERERExCYp0IqIiIiIiIhNUqAVERERERERm6RAKyIiIiIiIjbJoboHICJ/HpMJigqqexTVw84RDIbqHoWIiIiIVCUFWpE7SFEBbH6vukdRPYIngL1TdY9CRERERKqSthyLiIiIiIiITVKgFREREREREZukQCsiIiIiIiI2SYFWREREREREbJICrYiIiIiIiNgkBVoRERERERGxSQq0IiIiIiIiYpMUaEXkTxN/9Ad6vGLgu7jPqnsoIiIiInIbcKjuAYjIrSP+6A+8vCjY/LOdwQ6XGm54uDXGr0k7ggOH0f6+XhgMhmocpYiIiIjIFQq0IlJCcOAwOrYIwYSJi5fPcvzUYX7av4rvd31BW7/uTH9qObVq1qnuYYqIiIjIHU6BVkRK8Gvclu7tRlqUPff4u/w3ejIrtrzLrPBhzBr7bTWNTkRERETkCn1DexOYTCZq166NwWDg1KlTFuVubm4YDAZ+//33Es9YqxO5Fdjb2fPc4/Nofe/DxB1ez/5jP5rrzl88zX+jp/D07GaETHVm0Iz6zAwfxonslOv2W1RURPjGmfxj4SMMCfOkz1Qnhs/0YsGKUM6czza3yz13kj5TnXgrYkSp/by38nl6TrYjMyf1hucqIiIiIrZBgfYmSEtL48yZM3h6elK/fn1z+dGjRzl79iyNGzfGw8PD4pmy6qRsJpOJbdu2MWXKFLp06UK9evVwdHSkQYMG9O3blzVr1pSrn1WrVvH444/TsGFDnJ2dadiwIcHBwcyZM+cmz8C29O4wBoDth6KBK2H2pQ+68M3PC+no/xjPP/E+/bq8wN7kTbz4fieyctPK7K/QmM/yH+bQ2MOPwd1eYXy/92jn14P1cR8zaVE3CgrzAahb624ebPkXfty3knMX8yz6yC+4xOa9ETzQrDue9byrfM4iIiIicmvSluOb4Ndff+W+++6jc+fOFuXx8fEABAYGlnimrDop26ZNm+jevTsABoMBX19ffHx8SE5OJjo6mujoaJ599lmWLFlS6mFG+fn5jBgxgqioKAB8fHxo2rQpWVlZbN26lX379vHKK6/8qXO6lfk0bANA+qkjAHwW8xonslN478Vf8G10v7ldzw7P8Nd5AXz+3etMHvqZ1f4cHZxZ9toJnB1rXi188Dlaenfh3eVj+enAKoLuHwJASKe/snXfCjbtieAvXcabm2/dt4JzF/MI6TS2CmcqIiIiIrc6rdDeBI888giJiYl89tlnFuV79+4F4P777y/xTFl1UjaTyYSPjw/vv/8+J0+eJCkpiZ07d5Kdnc38+fMxGAx88sknfPjhh6U+P3bsWKKioujduzfJyckcPXqUHTt2kJaWxu+//84nn3zyJ8/o1uZSww2AC5fPYDKZ2LQ7nACfR/Co3ZjT5383/1fDyZUWXp3ZlRRTZn8Gg8EcZo1FRs5dzOP0+d8JbPYoAId+3W5u2655Dzzr3cv6HR9b9LF+x8e4ubjTpdUTVThTEREREbnVaYX2T6QV2pujY8eOJCYm4ujoaFFub2/PxIkTSUxMZPHixXz00UeMHz/eok1MTAxffvklnTp14ptvvsHBwfL/EnXq1OEvf/nLTZ+DLblw6QwALs5u5J0/xZkL2ew6EsOgGfVLbW9nuP6/m8XGf0VU7DySf9tDobHAou7cxVzzrw0GA306juXT9f8kOWMvzRoHciI7hfiUH+j/8Es4OjjdwMxERERExNbYZKBNTU1l+fLlbNy4kaSkJDIzMzGZTPj5+TFs2DD+8Y9/4ORk+RdbT09PsrKyOHbsGHl5ecybN49NmzaRl5eHn58fU6dOZejQoVbfWVRUxMqVK1m6dCk7duwgOzsbd3d3WrRoQb9+/QgNDTW/09vbm7S0NA4dOkSLFi3MfVRmhbYyc7UVJpOpSu4zdXNzK7O+V69eLF68mMOHD5eomz9/PgD/+te/SoRZKV3KiQQAmtx9H5hMALT1686T3aZUqr+t+1by5tInadG0I+P/soD6dZri5FADo8nIq0t6U1RUZNG+d4dn+SLmddbHfcwLjd9nfdwnmEwm+nTUdmMRERGRO41N/g3+jTfe4JNPPsHV1ZVGjRrRqlUrTp48SUJCAgkJCcTFxbFixQpz+6ysLLKysnBzc2PVqlW8/PLLuLu74+XlxaVLl4iPj2fYsGHUq1ePnj17lnjfyZMnGTJkCLGxsQB4eXkRGBhIZmYmmzdv5pdffuGFF14AIC8vj7S0NFxcXGjevLm5j9zcXI4fP46rqyvNmjWz6L+suorOtTp169aN2NhYjh07hre3d5ltExISGDVqFFFRUSXmXNUuXboEgIuLi0X5xYsX2bBhA3Z2dgQHB7N9+3Y+/fRTkpOTqVWrFp07d2bs2LE6pOsP1sdd2e7bqcVj1HatT62adbhw6Qxtm3evVH8bd32Jk0MN5jy3mRpOV/+Mfj2ZWGr7em6edG75OJt2hzMmZDYxOz+jhVcnvD1bVer9IiIiImK7bPIb2p49e7Jr1y7Onj3LkSNH2LFjB6mpqcTFxdGgQQNWrlzJvn37zO2Lt/NeunSJsLAwwsPDyczMJC4ujoyMDPr27QvAxx9/XOJd58+fJyQkhNjYWIKCgoiPjyctLY3t27eTlpbG/v37mTp1Kvb29sDVldaAgADs7K7+9lorv15dRedqKz799FPi4+MJDg4mJeX6V7vciGXLlgHQtWtXi/L4+HgKCwtxd3fnP//5Dw8++CCLFy9m48aNrF69mmnTpuHn58fmzZtv6vhshbHIyOJvXmb/sR/p2CKE1vc+hJ2dHY8+MILE4zvYkhBV6nO5506W2a+dnT0GgwGT6epKrMlkImLDm1afCek0jrMXc1mw4jl+P52h1VkRERGRO5RNrtA++eSTpZa3b9+eHj16sHTpUg4cOEBAQABwNdAWFBQQERFBnz59zM/UqFGD0NBQ1q5dS1payetFJk2axK5du3j44YeJiYkpsb23VatWtGp1dWXI2rewlf1+tqJztRXz5s0jOzubL7/8kuDgYGJjY6+7qlsZ69atY/Xq1QBMnjzZou7EiRPAlRXyqVOn8thjj/HOO+/QrFkzDh8+zMSJE9m0aRMDBgxg3759NGnSpMrHd6tKytjNhl1LAbh4+SzHTx3mpwOryMpNo13znrw6PMLc9tneMzmQuo03lw4hqM0Q/O/pjIO9E1m5aexIXIdf43ZlnnLctc0gtu5bwSuLH6V7u1EYjQVsO7CKy/kXrD7TvnkvGtS9h427l1LTuRbBgdY/FxARERGR25dNBtrLly+zZs0a8/bWs2fPmr+zO3DgAIBF8CwOjIMGDbIIs8Xy86/cc1mnTh2L8sTERJYsWYKzszPh4eHl+lbV2rewlT3huKJzjYqKIjIykp07d3Lq1Cm8vLwYOHAg06ZNo1atWuZ26enpzJ49mx07dhAfH09+fj6m//895I1KT08vV7sZM2aQkZHBpk2bzKHWy8urSsYAV+72feqppwCYMGECXbp0sag/f/48AIWFhfj6+vL111+bD5YKCAjgm2++wdfXl8zMTP79738zd+7cCo+hffv2ZGZm3uBMqo6TQ00+eiHpuu02741k895I7Ax21HCuRf3aTWjjE0Rw4DA6tOht0da1Zm3+/fw2omLnEZvwFT8dWI29vQMetZvQ2vth+lznKp3gwKFcvHyWFVvm89Hal7mrZl06t3ycMSGzGfi6e6nP2NnZ0bvDGD6PeY2gNkOo6Vyr1HbX8mvuR37hxeu2ExEREZE/l6enJzt37qzUszYXaDdu3Mjo0aM5fvx4me18fHzMvy4OtNZWO4sPC7r2m1eAiIgIjEYjo0aNKnfQKg6nf1xttVZeVl1l5jp37ly8vLyYNWsWTZo0Ye/evYSFhREbG8uWLVvMW5qTk5NZsWIFHTp0wMnJiW3btpVrfuXxx6295ZGamsrIkSPZsmVLlYwhMzOT3r17k5OTQ8+ePUsNozVq1DD/+oUXXihxSrKLiwuhoaG8/vrrrF+/vlKBNjMzk4yMjIpP4Cap4ehSZv39vt34fk7F/2GjhpMLI3tMZ2SP6ZXqP6TTOEI6jStRXtZYHB2cAcq93fjEb79xqcD6qq+IiIiI2B6bCrTbt28nJCSEgoICxowZw4gRI2jdujV169bFwcGBxMRE/P39cXBwwN/fH7iywpmYeOVwmW7dupXar7VAuWHDBgBCQkLKNb6CggIOHjyInZ0dbdq0sSg/dOhQifKy6iozV4BvvvmG+vWvXp8SFBRE/fr1GTFiBD/++COPPPIIcOWu3OIttzNmzKjSQBsQEFDuk5ezs7NJTU0FsJjHjSgOscnJyTz00EMWK6/Xqlu3rvnX1t5dXH7s2LFKjcXT07NSz90sTg41q3sIVcJoLCT6l8Xc6xlAS+8Hy/VMw0aNtEIrIiIicgu6kb8z21SgnTZtGvn5+cyePZspU0peERIdHQ1Ay5YtcXa+snpz8OBBCgsL8fLywt299O2Le/bsAUoG2uKV0WtXQMty6NAh8vPz8fPzw9XV1Vx+8OBB8vPzad68eYmTdq3VVWaugEWYLda+fXsAi5XCPx4+VZXWrFlTru9h09PTCQoKAq6sni9cuPCG333mzBl69+7Nvn37aNu2LdHR0SV+z4tde6WStQBevIprNBorNZ7Kbp24WYz5sPm96h5F5Z3IOcahtJ/56cBqTuSk8OqIyHI/m3QkCXvbvOFKRERERKywmVOOjUajeTvq6NGjS9QXFRURHh4OwAMPPGAuL95ufG3Ztc6fP09SUhKOjo60bt26RB1cud6lPKyt9Fb0QKjKztWa4lN6q2oFtCpkZGSYTzgeNGgQS5cuNZ8UXVkXLlygb9++xMXF4e/vz3fffUft2rWttm/cuLF5K7m1k5aPHj0KcEcdCHUrSzgay1sRI9ibvImR3V/TYVAiIiIidzibCbTnz583r5IV3yt6rXnz5plXWisSaBMSEigqKsLf37/EKl3Tpk0B+Omnn8o1RmvBtaIHQlV2rqXJyMhg+vTp9O7du9RAXV3CwsJITk6mf//+REZG4uBwY5sF8vPz6d+/P1u3bsXX15cNGzaU6/7YIUOGAPD555+XqDOZTHz22WcAPProozc0PqkavTo8w/dzTETNOMXTvcKqezgiIiIiUs1sJtC6ubnRuHFjAGbOnGkOfPn5+cyZM4fp06ebQ1FFAm1ZwbB///7m98XExFjUZWRkMGvWLJKSrp4Yay24VnSFtrJz/aNz587Rr18/nJyc+OSTT6y2qypBQUEMHDjQYru1NQsWLCAsLIxly5bdcJg1Go0MHz6cmJgYmjRpwoYNG2jUqFG5nn3llVdwc3Nj69atvPHGG+bf68LCQqZMmUJ8fDzOzs78/e9/v6ExioiIiIhI1TOYququlj/Bhx9+yPjx4wFo0KABTZs2JSkpiQsXLvDBBx8QGhpKUVEReXl5uLm5AeDu7k5OTg6//vqrecX1WuPGjWPJkiXMnz+fiRMnWtSdO3eOoKAgdu/eDVz5WLlp06bk5OSQkpKCwWDgzJkz5gDn4eFBdnY26enp5kBaVnlZdZWZ67UuXrxISEgICQkJbN26lZYtW1r9fZ0xYwZhYWFVdm3Pny0yMpLhw4cDV753btiwodW2UVFRJT46//bbb+nfvz+XL1+mfv363HvvvRw9epTs7GwcHBz49NNPGTly5E2dw5/F1r+hvRHBE9A3tCIiIiK3GZs6FCo0NBQHBwfmzJlDamoq9vb29O3blylTplBUVITRaMTX19cc8NLT08nJycHd3b3UMAvWD4QCqFWrFlu3bmX+/PksX76cI0eOcPr0aTw9PXniiScYMGCAOcymp6eTnZ2Nh4eHRTC1Vn69uorO9VoFBQUMGjSInTt3snHjxjLD7O3g8uXL5l+npKRY/R4WSt/C3adPH/bs2cOsWbPYuHEje/bsoV69egwZMoQpU6bQtm3bmzJuERERERG5MTa1QivXV1RUxNChQ1mzZg3r1q0r17eftr5CK+WnFdrqHoWIiIiIVCWbWqGV63v++edZvnw5U6dOxcXFhV9++cVc5+vra3GtT1RUFHDl6qBrf/b29jZf9SN3hg9WTeDng2vIyk3jw4l7aNY4sMxygJGzvHF0cDbfbTvs0Wl0C3yS/IJLzAwfSlrWQZwda1Kn1t1MGPAhjT2aAZB77iTvRI7it5yjONk78+KAhbTxecSiz8FBrxDSaWyJcf5ycC3LY+cyL/QHMnNSiTu8nscffM5c/1bECPYkbaRb4FDG9/v3zfnNEhEREZFbhgLtbebbb78FYPbs2cyePdui7tNPP+WZZ54x/zx48GCL+uKfn376afPpvnJn6NpmEEO6TebvCx8uV3mxf45YZhFyi4V0+isdW/TBYDCwatt/eHf5WOaF/gDAx+um4n9PZ94at57Dx+OY8Xl/vpx2DAd7xzL7/KOs3FTW/rzIItBOGx7OFzEzOHcxr1zzFhERERHbpkB7m0lNTS13W20xlmLFK6TlLS+Lk2MNOvmHmH/29+pMVOxc88+x8V/x+ZRkAO5r2gF3t0YkHI2lbfPuJfoqNBawcPVL7Er6nrtq1qX1vV3NdQtWPEdWbhp/ezeQu+t68cboNRUeq4iIiIjYNgVaEam0d/5vFCZMtGjakTEhs6lTq36JNl//uIAHW/UD4Mz5bIzGAuq5XT1pukFdb07m/Vpq/9G/fMTxU4dZMukAANOW9DLXvTRwEQtXT2TxP/ZW4YxERERExJbYzD20InJreTd0Cx9NSuDDibtxc/XgnWVPl2gTsXEWv/2ezJg+b1XqHXuSN9Kj3SgcHZxwdHCiV4dnb3TYIiIiInIbUaAVkUq5u64XAA72jgzoOpH9x7Za1C//YS4/7l/JrLHfUsPJBQA3V3fs7RzIOZNpbpeVm8rddbzK9U4DhioavYiIiIjcDhRoRaTCLuaftzh4afOeSJo1esD8c1Tsu2zeG8nb476nVs06Fs92bTOYtb8sAuDw8Th+P51BG9+gUt/T1q87G3cvpdBYQEFhPt/t/NRc5+LsxoVLp6tuUiIiIiJic/QNrYjw76i/sT0xmpyzmUxb0gsX57v4fGqy1fK8s1mEfTGQoiIjJkw0rOfD5KFfAHAqL53FayfRsJ4PLy8KBsDJwZn3J2wHYNxjbzM78imeftsPR3snpg5baj7h+I9COo0jNXM/Y+a2NB8KlZS+CwCfhm24x7MV4+a2xtPdR4dCiYiIiNyBDCYddStyxzDmw+b3qnsU1o2c5c2Mp1eV69oea4qv7fnjPbTBE8De6cbGJyIiIiK3Fm05FpFbRm3X+rwdOZJ125dU6vm3IkawcfdSXGq4VfHIRERERORWpBVakTvIrb5CezNphVZERETk9qMVWhEREREREbFJCrQiIiIiIiJik7TlWOQOYjJBUUF1j6J62DmCQdfYioiIiNxWFGhFRERERETEJmnLsYiIiIiIiNgkBVoRERERERGxSQq0IiIiIiIiYpMUaEVERERERMQmKdCKiIiIiIiITVKgFREREREREZukQCsiIiIiIiI2SYFWREREREREbJICrYiIiIiIiNgkBVoRERERERGxSQq0IiIiIiIiYpMUaEVERERERMQmKdCKiIiIiIiITVKgFREREREREZukQCsiIiIiIiI2SYFWREREREREbJICrYiIiIiIiNgkBVoRERERERGxSQq0IiIiIiIiYpMUaEVERERERMQmKdCKiIiIiIiITVKgFREREREREZukQCsiIiIiIiI2SYFWREREREREbJICrYiIiIiIiNik/wfMdpiYoB+VigAAAABJRU5ErkJggg==", - "text/plain": [ - "
" - ] - }, - "execution_count": 5, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "ghz = QuantumCircuit(5)\n", - "ghz.h(0)\n", - "ghz.cx(0, range(1, 5))\n", - "\n", - "pass_manager = generate_preset_pass_manager(\n", - " optimization_level=level,\n", - " backend=backend,\n", - " scheduling_method=\"asap\"\n", - ")\n", - "circ = pass_manager.run(ghz, backend)\n", - "circ.draw(output=\"mpl\")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "![/images/transpile/transpiler-16.png](/images/transpile/transpiler-16.png)\n", - "\n", - "The transpiler inserted `Delay` instructions to account for idle time on each qubit. To get a better idea of the timing of the circuit we can also look at it with the `timeline.draw()` function:\n", - "\n", - "![/images/transpile/transpiler-17.png](/images/transpile/transpiler-17.png)\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Scheduling a circuit involves two parts: analysis and constraint mapping, followed by a padding pass. The first part requires running a scheduling analysis pass (by default this is [`ALAPSchedulingAnalysis`](../api/qiskit/qiskit.transpiler.passes.ALAPScheduleAnalysis)), which analyzes the circuit and records the start time of each instruction in the circuit into a schedule. Once the circuit has an initial schedule, additional passes can be run to account for any timing constraints on the target backend. Finally, a padding pass such as [`PadDelay`](../api/qiskit/qiskit.transpiler.passes.PadDelay) or [`PadDynamicalDecoupling`](../api/qiskit/qiskit.transpiler.passes.PadDynamicalDecoupling) can be executed." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Next steps\n", - "\n", - "\n", - " - To learn how to use the `transpile` function, start with the [Transpilation default settings and configuration options](defaults-and-configuration-options) topic.\n", - " - Continue learning about transpilation with the [Transpiler with pass managers](transpile-with-pass-managers) topic.\n", - " - Try the [Submit transpiled circuits](https://learning.quantum.ibm.com/tutorial/submit-transpiled-circuits) tutorial.\n", - " - See the [Transpile API documentation.](https://docs.quantum-computing.ibm.com/api/qiskit/transpiler)\n", - "\n" - ] - } - ], - "metadata": { - "celltoolbar": "Raw Cell Format", - "description": "Overview of transpiler stages and the PassManager", - "kernelspec": { - "display_name": "Python 3 (ipykernel)", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.11.1" - }, - "title": "Transpiler stages", - "widgets": { - "application/vnd.jupyter.widget-state+json": { - "state": {}, - "version_major": 2, - "version_minor": 0 - } - } - }, - "nbformat": 4, - "nbformat_minor": 4 -} \ No newline at end of file diff --git a/translations/ja/verify/_toc.json b/translations/ja/verify/_toc.json deleted file mode 100644 index b96a406d80..0000000000 --- a/translations/ja/verify/_toc.json +++ /dev/null @@ -1,39 +0,0 @@ -{ - "title": "Verify", - "collapsed": true, - "children": [ - { - "title": "Introduction", - "url": "/verify" - }, - { - "title": "Exact simulation with Qiskit primitives", - "url": "/verify/simulate-with-qiskit-primitives" - }, - { - "title": "Exact and noisy simulation with Qiskit Aer primitives", - "url": "/verify/simulate-with-qiskit-aer" - }, - { - "title": "Build noise models", - "url": "/verify/building_noise_models" - }, - { - "title": "Efficient simulation of stabilizer circuits with Qiskit Aer primitives", - "url": "/verify/stabilizer-circuit-simulation" - }, - { - "title": "IBM Quantum cloud-based simulators", - "children": [ - { - "title": "Using IBM Quantum cloud-based simulators", - "url": "/verify/using-ibm-quantum-simulators" - }, - { - "title": "Available IBM Quantum simulators", - "url": "/verify/cloud-based-simulators" - } - ] - } - ] -} \ No newline at end of file diff --git a/translations/ja/verify/building_noise_models.ipynb b/translations/ja/verify/building_noise_models.ipynb deleted file mode 100644 index 8468824892..0000000000 --- a/translations/ja/verify/building_noise_models.ipynb +++ /dev/null @@ -1,912 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Build noise models\n", - "\n", - "This page shows how to use the Qiskit Aer [`noise`](https://qiskit.org/ecosystem/aer/apidocs/aer_noise.html) module to build noise models for simulating quantum circuits in the presence of errors. This is useful for emulating noisy quantum processors and for studying the effects of noise on the execution of quantum algorithms." - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": { - "ExecuteTime": { - "end_time": "2019-08-19T17:00:43.403378Z", - "start_time": "2019-08-19T17:00:41.139269Z" - } - }, - "outputs": [], - "source": [ - "import numpy as np\n", - "from qiskit import QuantumCircuit\n", - "from qiskit.quantum_info import Kraus, SuperOp\n", - "from qiskit.tools.visualization import plot_histogram\n", - "from qiskit.transpiler.preset_passmanagers import generate_preset_pass_manager\n", - "from qiskit_aer import AerSimulator\n", - "\n", - "# Import from Qiskit Aer noise module\n", - "from qiskit_aer.noise import (\n", - " NoiseModel,\n", - " QuantumError,\n", - " ReadoutError,\n", - " depolarizing_error,\n", - " pauli_error,\n", - " thermal_relaxation_error,\n", - ")" - ] - }, - { - "attachments": {}, - "cell_type": "markdown", - "metadata": { - "slideshow": { - "slide_type": "slide" - } - }, - "source": [ - "## Qiskit Aer `noise` module\n", - "\n", - "The Qiskit Aer `noise` module contains Python classes to build customized noise models for simulation. There are three key classes:\n", - "\n", - "1. The `NoiseModel` class which stores a noise model used for noisy simulation.\n", - "2. The `QuantumError` class which describes CPTP gate errors. These can be applied:\n", - " * After *gate* or *reset* instructions\n", - " * Before *measure* instructions.\n", - "\n", - "3. The `ReadoutError` class which describes classical readout errors." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Initializing a noise model from a backend\n", - "\n", - "You can initialize a noise model with parameters set from the latest calibration data for a physical backend:" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [], - "source": [ - "from qiskit_ibm_runtime import QiskitRuntimeService\n", - "\n", - "service = QiskitRuntimeService()\n", - "backend = service.backend(\"ibm_brisbane\")\n", - "noise_model = NoiseModel.from_backend(backend)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "This will yield a noise model that roughly approximates the errors one would encounter when using that backend. If you want to have more detailed control over the parameters of the noise model, then you'll need to create your own noise model, as described in the rest of this page." - ] - }, - { - "attachments": {}, - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Quantum Errors\n", - "\n", - "Rather than deal with the `QuantumError` object directly, many helper functions exist to automatically generate a specific type of parameterized quantum error. These are contained in the `noise` module and include functions for many common errors types used in quantum computing research. The function names and the type of error they return are:\n", - "\n", - "| Standard error function | Details |\n", - "| --- | --- |\n", - "| `kraus_error` | a general n-qubit CPTP error channel given as a list of Kraus matrices $[K_0, ...]$. |\n", - "| `mixed_unitary_error` | an n-qubit mixed unitary error given as a list of unitary matrices and probabilities $[(U_0, p_0),...]$. |\n", - "| `coherent_unitary_error` | an n-qubit coherent unitary error given as a single unitary matrix $U$. |\n", - "| `pauli_error` | an n-qubit Pauli error channel (mixed unitary) given as a list of Pauli's and probabilities $[(P_0, p_0),...]$ |\n", - "| `depolarizing_error` | an n-qubit depolarizing error channel parameterized by a depolarization probability $p$. |\n", - "| `reset_error` | a single-qubit reset error parameterized by a probabilities $p_0, p_1$ of resetting to the $|0\\rangle$, $|1\\rangle$ state.|\n", - "| `thermal_relaxation_error` | a single qubit thermal relaxation channel parameterized by relaxation time constants $T_1$, $T_2$, gate time $t$, and excited state thermal population $p_1$. |\n", - "| `phase_amplitude_damping_error` | A single-qubit generalized combined phase and amplitude damping error channel given by an amplitude damping parameter $\\lambda$, a phase damping parameter $\\gamma$, and an excited state thermal population $p_1$. |\n", - "| `amplitude_damping_error` | A single-qubit generalized amplitude damping error channel given by an amplitude damping parameter $\\lambda$, and an excited state thermal population $p_1$. |\n", - "| `phase_damping_error` | A single-qubit phase damping error channel given by a phase damping parameter $\\gamma$ |\n", - "\n", - "### Combining quantum errors\n", - "\n", - "`QuantumError` instances can be combined by using composition, tensor product, and tensor expansion (reversed order tensor product) to produce new `QuantumErrors` as:\n", - "\n", - " * Composition: $\\cal{E}(\\rho)=\\cal{E_2}(\\cal{E_1}(\\rho))$ as `error = error1.compose(error2)`\n", - " * Tensor product: $\\cal{E}(\\rho) =(\\cal{E_1}\\otimes\\cal{E_2})(\\rho)$ as `error error1.tensor(error2)`\n", - " * Expand product: $\\cal{E}(\\rho) =(\\cal{E_2}\\otimes\\cal{E_1})(\\rho)$ as `error error1.expand(error2)`" - ] - }, - { - "attachments": {}, - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Example\n", - "\n", - "For example to construct a 5% single-qubit Bit-flip error:" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": { - "ExecuteTime": { - "end_time": "2019-08-19T17:00:43.420358Z", - "start_time": "2019-08-19T17:00:43.416062Z" - } - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "QuantumError on 1 qubits. Noise circuits:\n", - " P(0) = 0.05, Circuit = \n", - " ┌───┐\n", - "q: ┤ X ├\n", - " └───┘\n", - " P(1) = 0.95, Circuit = \n", - " ┌───┐\n", - "q: ┤ I ├\n", - " └───┘\n", - "QuantumError on 1 qubits. Noise circuits:\n", - " P(0) = 0.05, Circuit = \n", - " ┌───┐\n", - "q: ┤ Z ├\n", - " └───┘\n", - " P(1) = 0.95, Circuit = \n", - " ┌───┐\n", - "q: ┤ I ├\n", - " └───┘\n" - ] - } - ], - "source": [ - "# Construct a 1-qubit bit-flip and phase-flip errors\n", - "p_error = 0.05\n", - "bit_flip = pauli_error([('X', p_error), ('I', 1 - p_error)])\n", - "phase_flip = pauli_error([('Z', p_error), ('I', 1 - p_error)])\n", - "print(bit_flip)\n", - "print(phase_flip)" - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": { - "ExecuteTime": { - "end_time": "2019-08-19T17:00:43.435843Z", - "start_time": "2019-08-19T17:00:43.432211Z" - } - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "QuantumError on 1 qubits. Noise circuits:\n", - " P(0) = 0.0025000000000000005, Circuit = \n", - " ┌───┐┌───┐\n", - "q: ┤ X ├┤ Z ├\n", - " └───┘└───┘\n", - " P(1) = 0.0475, Circuit = \n", - " ┌───┐┌───┐\n", - "q: ┤ X ├┤ I ├\n", - " └───┘└───┘\n", - " P(2) = 0.0475, Circuit = \n", - " ┌───┐┌───┐\n", - "q: ┤ I ├┤ Z ├\n", - " └───┘└───┘\n", - " P(3) = 0.9025, Circuit = \n", - " ┌───┐┌───┐\n", - "q: ┤ I ├┤ I ├\n", - " └───┘└───┘\n" - ] - } - ], - "source": [ - "# Compose two bit-flip and phase-flip errors\n", - "bitphase_flip = bit_flip.compose(phase_flip)\n", - "print(bitphase_flip)" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": { - "ExecuteTime": { - "end_time": "2019-08-19T17:00:43.460191Z", - "start_time": "2019-08-19T17:00:43.456782Z" - } - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "QuantumError on 2 qubits. Noise circuits:\n", - " P(0) = 0.0025000000000000005, Circuit = \n", - " ┌───┐\n", - "q_0: ┤ X ├\n", - " ├───┤\n", - "q_1: ┤ Z ├\n", - " └───┘\n", - " P(1) = 0.0475, Circuit = \n", - " ┌───┐\n", - "q_0: ┤ I ├\n", - " ├───┤\n", - "q_1: ┤ Z ├\n", - " └───┘\n", - " P(2) = 0.0475, Circuit = \n", - " ┌───┐\n", - "q_0: ┤ X ├\n", - " ├───┤\n", - "q_1: ┤ I ├\n", - " └───┘\n", - " P(3) = 0.9025, Circuit = \n", - " ┌───┐\n", - "q_0: ┤ I ├\n", - " ├───┤\n", - "q_1: ┤ I ├\n", - " └───┘\n" - ] - } - ], - "source": [ - "# Tensor product two bit-flip and phase-flip errors with\n", - "# bit-flip on qubit-0, phase-flip on qubit-1\n", - "error2 = phase_flip.tensor(bit_flip)\n", - "print(error2)" - ] - }, - { - "attachments": {}, - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Converting to and from QuantumChannel operators\n", - "\n", - "We can also convert back and forth between `QuantumError` objects in Qiskit Aer and `QuantumChannel` objects in Qiskit Terra." - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": { - "ExecuteTime": { - "end_time": "2019-08-19T17:00:43.482424Z", - "start_time": "2019-08-19T17:00:43.473779Z" - } - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Kraus([[[ 9.74679434e-01+0.j, 0.00000000e+00+0.j],\n", - " [-1.20234617e-16+0.j, 9.74679434e-01+0.j]],\n", - "\n", - " [[ 2.62045272e-16+0.j, 2.23606798e-01+0.j],\n", - " [ 2.23606798e-01+0.j, -2.84112242e-16+0.j]]],\n", - " input_dims=(2,), output_dims=(2,))\n" - ] - } - ], - "source": [ - "# Convert to Kraus operator\n", - "bit_flip_kraus = Kraus(bit_flip)\n", - "print(bit_flip_kraus)" - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": { - "ExecuteTime": { - "end_time": "2019-08-19T17:00:43.509521Z", - "start_time": "2019-08-19T17:00:43.503976Z" - } - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "SuperOp([[1. +0.j, 0. +0.j, 0. +0.j, 0. +0.j],\n", - " [0. +0.j, 0.9+0.j, 0. +0.j, 0. +0.j],\n", - " [0. +0.j, 0. +0.j, 0.9+0.j, 0. +0.j],\n", - " [0. +0.j, 0. +0.j, 0. +0.j, 1. +0.j]],\n", - " input_dims=(2,), output_dims=(2,))\n" - ] - } - ], - "source": [ - "# Convert to Superoperator\n", - "phase_flip_sop = SuperOp(phase_flip)\n", - "print(phase_flip_sop)" - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "metadata": { - "ExecuteTime": { - "end_time": "2019-08-19T17:00:43.794037Z", - "start_time": "2019-08-19T17:00:43.778223Z" - } - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "QuantumError on 1 qubits. Noise circuits:\n", - " P(0) = 1.0, Circuit = \n", - " ┌───────┐\n", - "q: ┤ kraus ├\n", - " └───────┘\n" - ] - }, - { - "data": { - "text/plain": [ - "True" - ] - }, - "execution_count": 8, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "# Convert back to a quantum error\n", - "print(QuantumError(bit_flip_kraus))\n", - "\n", - "# Check conversion is equivalent to original error\n", - "QuantumError(bit_flip_kraus) == bit_flip" - ] - }, - { - "attachments": {}, - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Readout Error\n", - "\n", - "Classical readout errors are specified by a list of assignment probabilities vectors $P(A|B)$:\n", - "\n", - " * $A$ is the *recorded* classical bit value\n", - " * $B$ is the *true* bit value returned from the measurement\n", - "\n", - "E.g. for 1 qubits: $ P(A|B) = [P(A|0), P(A|1)]$." - ] - }, - { - "cell_type": "code", - "execution_count": 9, - "metadata": { - "ExecuteTime": { - "end_time": "2019-08-19T17:00:44.659598Z", - "start_time": "2019-08-19T17:00:44.654818Z" - } - }, - "outputs": [ - { - "data": { - "text/plain": [ - "ReadoutError([[0.95 0.05]\n", - " [0.1 0.9 ]])" - ] - }, - "execution_count": 9, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "# Measurement miss-assignement probabilities\n", - "p0given1 = 0.1\n", - "p1given0 = 0.05\n", - "\n", - "ReadoutError([[1 - p1given0, p1given0], [p0given1, 1 - p0given1]])" - ] - }, - { - "attachments": {}, - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Readout errors may also be combined using `compose`, `tensor` and `expand` like with quantum errors." - ] - }, - { - "attachments": {}, - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Adding errors to a Noise Model\n", - "\n", - "When adding a quantum error to a noise model we must specify the type of *instruction* that it acts on, and what qubits to apply it to. There are two cases for Quantum Errors:\n", - "\n", - " 1. All-qubit quantum error\n", - " 2. Specific qubit quantum error\n", - "\n", - "### 1. All-qubit quantum error\n", - "\n", - "This applies the same error to any occurrence of an instruction, regardless of which qubits it acts on.\n", - "\n", - "It is added as `noise_model.add_all_qubit_quantum_error(error, instructions)`:" - ] - }, - { - "cell_type": "code", - "execution_count": 10, - "metadata": { - "ExecuteTime": { - "end_time": "2019-08-19T17:00:45.882254Z", - "start_time": "2019-08-19T17:00:45.877630Z" - } - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "NoiseModel:\n", - " Basis gates: ['cx', 'id', 'rz', 'sx', 'u1', 'u2', 'u3']\n", - " Instructions with noise: ['u1', 'u3', 'u2']\n", - " All-qubits errors: ['u1', 'u2', 'u3']\n" - ] - } - ], - "source": [ - "# Create an empty noise model\n", - "noise_model = NoiseModel()\n", - "\n", - "# Add depolarizing error to all single qubit u1, u2, u3 gates\n", - "error = depolarizing_error(0.05, 1)\n", - "noise_model.add_all_qubit_quantum_error(error, ['u1', 'u2', 'u3'])\n", - "\n", - "# Print noise model info\n", - "print(noise_model)" - ] - }, - { - "attachments": {}, - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### 2. Specific qubit quantum error\n", - "\n", - "This applies the error to any occurrence of an instruction acting on a specified list of qubits. Note that the order of the qubit matters: For a 2-qubit gate an error applied to qubits [0, 1] is different to one applied to qubits [1, 0] for example.\n", - "\n", - "It is added as `noise_model.add_quantum_error(error, instructions, qubits)`:" - ] - }, - { - "cell_type": "code", - "execution_count": 11, - "metadata": { - "ExecuteTime": { - "end_time": "2019-08-19T17:00:46.615959Z", - "start_time": "2019-08-19T17:00:46.612055Z" - } - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "NoiseModel:\n", - " Basis gates: ['cx', 'id', 'rz', 'sx', 'u1', 'u2', 'u3']\n", - " Instructions with noise: ['u1', 'u3', 'u2']\n", - " Qubits with noise: [0]\n", - " Specific qubit errors: [('u1', (0,)), ('u2', (0,)), ('u3', (0,))]\n" - ] - } - ], - "source": [ - "# Create an empty noise model\n", - "noise_model = NoiseModel()\n", - "\n", - "# Add depolarizing error to all single qubit u1, u2, u3 gates on qubit 0 only\n", - "error = depolarizing_error(0.05, 1)\n", - "noise_model.add_quantum_error(error, ['u1', 'u2', 'u3'], [0])\n", - "\n", - "# Print noise model info\n", - "print(noise_model)" - ] - }, - { - "attachments": {}, - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Note on non-local qubit quantum error\n", - "\n", - "`NoiseModel` does not support addition of non-local qubit quantum errors. They should be handled outside of `NoiseModel`. That suggests you should [write your own transpiler pass](/transpile/custom-transpiler-pass) (`TransformationPass`) and run the pass just before running the simulator if you need to insert your quantum errors into your circuit under your own conditions." - ] - }, - { - "attachments": {}, - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Executing a noisy simulation with a noise model\n", - "\n", - "The command `AerSimulator(noise_model=noise_model)` returns a simulator configured to the given noise model. In addition to setting the simulator's noise model, it also overrides the simulator's basis gates, according to the gates of the noise model." - ] - }, - { - "attachments": {}, - "cell_type": "markdown", - "metadata": { - "slideshow": { - "slide_type": "subslide" - } - }, - "source": [ - "## Noise Model Examples\n", - "\n", - "We will now give some examples of noise models. For our demonstrations we will use a simple test circuit generating a n-qubit GHZ state:" - ] - }, - { - "cell_type": "code", - "execution_count": 12, - "metadata": { - "ExecuteTime": { - "end_time": "2019-08-19T17:00:48.817405Z", - "start_time": "2019-08-19T17:00:48.806966Z" - }, - "slideshow": { - "slide_type": "fragment" - } - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - " ┌───┐ ░ ┌─┐ \n", - " q_0: ┤ H ├──■─────────────░─┤M├─────────\n", - " └───┘┌─┴─┐ ░ └╥┘┌─┐ \n", - " q_1: ─────┤ X ├──■────────░──╫─┤M├──────\n", - " └───┘┌─┴─┐ ░ ║ └╥┘┌─┐ \n", - " q_2: ──────────┤ X ├──■───░──╫──╫─┤M├───\n", - " └───┘┌─┴─┐ ░ ║ ║ └╥┘┌─┐\n", - " q_3: ───────────────┤ X ├─░──╫──╫──╫─┤M├\n", - " └───┘ ░ ║ ║ ║ └╥┘\n", - "meas: 4/════════════════════════╩══╩══╩══╩═\n", - " 0 1 2 3 \n" - ] - } - ], - "source": [ - "# System Specification\n", - "n_qubits = 4\n", - "circ = QuantumCircuit(n_qubits)\n", - "\n", - "# Test Circuit\n", - "circ.h(0)\n", - "for qubit in range(n_qubits - 1):\n", - " circ.cx(qubit, qubit + 1)\n", - "circ.measure_all()\n", - "print(circ)" - ] - }, - { - "attachments": {}, - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Ideal Simulation" - ] - }, - { - "cell_type": "code", - "execution_count": 13, - "metadata": { - "ExecuteTime": { - "end_time": "2019-08-19T17:00:50.560988Z", - "start_time": "2019-08-19T17:00:50.415545Z" - } - }, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAnkAAAHTCAYAAABbZg60AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAAA3UUlEQVR4nO3dd3hUVf7H8c8M6R0SIIGEGnovUkQFBFEEC1KkC/5E14Li6tpWxbaW1bWtjd5EsSICFqQpKL2D0lsSSkICJJlMyjDz+wMzS0woqZMc3q/n8cE598yd74XceT4599xzLS6XyyUAAAAYxerpAgAAAFDyCHkAAAAGIuQBAAAYiJAHAABgIEIeAACAgQh5AAAABiLkAQAAGIiQV0wul0vpNptYbhAAAJQnhLxismVkqHuvPrJlZHi6FAAAADdCHgAAgIEIeQAAAAYi5AEAABiIkAcAAGAgL08XABTHxCnTNGnqjDxttWvF6MtPZ+Vpc7lceujRx7Vq9Vq9/sqL6nbN1e5tb7z1rrZs2659+w+oTu1a+mTGlDKpHQCA0kTIQ4VXr24dvf/Of9yvvSpVytfn08++lEWW8+7jpj69teP3P7Rn775SqREAgLJGyEOFV6lSJUWEh593+67dezR7zmeaMWWCet/cP9/2Rx9+UJI08dQpQh4AwBiEPFR4cfEJ6n1zf/n4+qhFs2Z64G9jFBlZXZKUmZmpZ55/SY89Mu6CQRAAANMQ8lChNWvaVOP/+YRq14rRieRkTZo6Q2Pue1BzZk1TYGCA3nz3fbVs3kxdr77K06UCAFCmCHmo0Lp07uj+/wax9dW8aRPd1H+wFi9dprCwMK3fsFEfT5vkwQoBAPAMQh6MEhwcrFox0YqLT9DeffsVn3BE197QN0+fx/85Xq1btdCE997xUJUAAJQ+Qh6MkpGRoYSEI4q4oZd6XttNt9zcJ8/2ISPu1MMP3q+ru1zpoQoBACgbhDxUaG+/94Gu7nKloiKrK+lEsiZOniZrJauu79lDlSuHFXizRWT1aqpZI8r9Oi4+XhkZdiUnpygrK1u7du+RdHZpFm9v7zI7FgAAShIhDxVaYmKSnh7/ok6npqpyWKhatWyhaRM+UOXKYZe8j5defV0bN21xvx4+eowkad6Xn6pGVNT53gYAQLlmcblcLk8XUZGl22zq3quPli1aqKDAQE+XAwAAIIln1wIAABiJkAcAAGAgQh4AAICBCHkAAAAGIuQBAAAYiJAHAABgIEIeAACAgQh5AAAABiLkAQAAGIiQBwAAYCBCHgAAgIEIeQAAAAYi5AEAABiIkAcAAGAgQh4AAICBCHkAAAAGIuQBAAAYiJAHAABgIEIeAACAgbw8XQAuzZi3PV0B8D+Txnm6AgDAxTCSBwAAYCBCHgAAgIEIeQAAAAYi5AEAABiIkAcAAGAgQh4AAICBCHkAAAAGIuQBAAAYiJAHAABgIJ54AQDAZWL6rNl6/6NJGjywvx4ZN1aSdCI5We++/5HWrFuvjAy7ateK0Z0jh+va7l3d7/v7Y09p9969OnnypIKDg9WhfTuNvfceVa0a4alDwSUg5AEAcBnY8cdOzZ03Xw1i6+dpf+7FV5SWnq43X3tZoaGh+vGnxXry2ec1c8oENWrYQJLUvm0bjR45TBER4UpMOqF33vtQjz89XlMnvO+JQ8El4nItAACGy8jI0LPPv6SnHn9UwcFBebZt3b5dtw+4Tc2aNlF0zRr6v1EjFRwUpD927nL3GTp4oFo0b6aoyEi1atFcdwwfqu07fpfD4SjrQ0EhEPIAADDcv//zjrp07qSOV7TPt61l8+b6aclSnU5NldPp1KLFS5SVna12bVsXuK/Tqan6YdFitWzRTF5eXBAsz/jXAQDAYIsWL9HO3bs1Y/JHBW5/5cXxeurZF9Sz982qVKmS/Pz89PrLLyomOjpPv/9+MEGffzVXmZmZatGsqd58/ZWyKB/FwEgeAACGOnY8Uf95+z29OP5p+fr6Ftjno0lTlZaervff+Y9mTpmgYYMH6slnn9Peffvz9Bsx9HZ9PG2S3nvrDVkrWfXci6/I5XKVxWGgiBjJAwDAUDt37VLKyZMacecYd9uZM05t2rxVX3w9V19+MkuffzVXc2ZNU/16dSVJDRvEatOWrfriq7l68rFH3O8LCwtTWFiYateKUZ06tdS33yBt2/G7WjZvVubHhUtDyAMAwFBXtGunT2dNzdP2wr9eU53atTRy+BBlZmVJkqzWvBf2KlkryXmBUTqX8+y2nOzsEq4YJYmQBwCAoQIDAxRbr16eNn9/P4WGhCi2Xj05HA7FRNfUK//+jx564F6FhoRo+YqVWrNuvd7699k5d9t3/K7f/9ipVi1bKCQkWPEJR/TRpKmKrllDLRjFK9cIeQAAXKa8vLz09huv6b0PJ+rvjz2lDLtdMdE19dzTT6rLlZ0kSX5+flr28wpNnDJd9ky7IsLD1bljB9354nj5+Ph4+AhwIRYXsyaLJd1mU/defbRs0UIFBQaW2ueMebvUdg0U2qRxnq4AAHAx3F0LAABgIEIeAACAgQh5AAAABiLkAQAAGIiQBwAAYCBCHgAAgIEIeQAAAAYi5AEAABiIkAcAAGAgQh4AAICBCHkAAAAGIuQBAAAYiJAHAABgIEIeAACAgQh5AAAABiLkAQAAGIiQBwAAYCAvTxcAAEBxjXnb0xUA/zNpnKcrOIuRPAAAAAMR8gAAAAxEyAMAADAQIQ8AAMBAhDwAAAADEfIAAAAMRMgDAAAwECEPAADAQIQ8AAAAAxHyAAAADETIAwAAMBAhDwAAwECEPAAAAAMR8gAAAAzk5ekCLsWMjz/Rex9OlCRNnfC+WjRv5t42cco0TZo647zvnfflp6oRFZWvfdWatZo2c7Z27doti8Wixo0a6s5RI9ShfbuSPwAAAIAyVu5D3t79+zVxyjT5+/vJbs88b78+va9XjajIfO3BQUH52r77cZHGv/CyKoeFqe+NN0iSflqyTA+Me1SvvDhePbp3K6nyAQAAPKJchzyHw6HnX3pVDWNjFRMTre9//Om8fW+68Qa1a9vmovtMTU3TG2+9q7CwUM2aNlHVq1WTJI0cPkTDR4/Rq2+8pU4dOigwMKDEjgMAAKCsles5eVNnzNL+Awf0zFOPy2otmVIXL1uutLR0Dep/mzvgSVL1atU0qH8/nTp1Wst/WVEinwUAAOAp5Tbk7dy1W1NnfKy7Ro9Svbp1Ltp/4+atmvHxJ5o1e46W/7JCGRkZBffbtFmS1KlD+3zbOnW44s99bSly3QAAAOVBubxcm52drfEvvqyGDWI1ctjgS3rPxCnT8rwODg7SIw+NVZ/e1+dpPxwXL0mKiYnOt4/ctrg/+5yvtuycHPdrm+1smHQ6nXI6nX+2WmS1WuR0uiS53H0tFossFss5/QrTXm7zOC5DBf2sSpLL5crTbrVa5XK5itleGufTxWvnmCrWMUkWAeVFWZxPl3KFs1yGvAmTpykuPkEzp05QpUqVLti3QWysnnnqcbVr01oR4VWUnJKilb+u0oTJ0/T8v15VUFCQul7dxd3fZrNJkoICA/PtK7ct/c8+BZk+a3aBd/MeTkhUQMDZeXzBgf6qGh6m5JOnlWazu/uEhQSpSliwjp84KXtmtrs9okqoQoIClHA8WTk5Dnd7ZNUqCvD31aGEREn5byoBPOVg/PE8r+tEV5fDcUbxx0642ywWi+rGRMqema1jSSnudm9vL8VEVVWaza4TKafd7f5+PoqqFq6Tp9N1KjXd3V4a59O5X6bRkRHy8qrEMVXwY5K8BZQXZXE+RVULv2gdFtdfI6WHbd2+Q2PuHasxd47SXaNHutufe+kVLfz+x3xLqJzP2vUb9MC4R1W/Xl19OnOqu73/4OE6HBevVT8vlpdX3ozrcDjUuWtPNYitr09mTClwvwWN5PXtN1BLfph/TnAs+d9o73mXkTyUHxMeZCSPYypfx3T3O4zkofyY+BAjefmcvZv2FcXWr6dRI4YWa18d2rdTdM0a2rtvv9JtNncACzxntC4sNDTPe9IvMMqXy8fHRz4+PvnarVZrvr9wq9Wigi4hnO8fprDtgKec72fyf5fO8raVRHtpn08Ffeb52jmm8ndMQHniqfPpr8pVyLPb7e45c5279iywz5333C9Jev2VF9XtmqsvuL+w0FDFxScoMzPTHdxqxUTrj527FBcXny/kxV1gvh4AAEBFUq5CnrePj27pe2OB2zZt2arDcfG65qouqhwWqqjIC89Rs9vt2n/goPz9/fKEubatW+nHn5Zo9dr1+S77rl67zt0HAACgIitXIc/P11dPP/lYgduee+kVHY6L16gRQ93hzGbL0InkZNWuFZOnb2ZWlv712huyZWTopj6988y963ltd/33wwn6/KuvdXPf3u618o4nJurzr+YqLCz0oiOEAAAA5V25CnmFdTr1tAYOHammTRqrTu1aCg+vopSUk1q7foMSE5MUW7+eHrz/b3neExISrH/8/SGNf+FljRh9t67r0V3S2ceanT6dqpdfGM/TLgAAQIVXoUNeSEiIBvS7RTv+2KnfVq1Ralqa/Hx9VadObQ0e0F8DB/STn69vvvfdeH0vhYWGavrM2Zr/3feyyKLGjRvqzjtGqOMV+RdJBgAAqGjK3RIqFU26zabuvfpo2aKFF7wrt7jGvF1quwYKbdI4T1cA5MV3JMqT8vIdydocAAAABiLkAQAAGIiQBwAAYCBCHgAAgIEIeQAAAAYi5AEAABiIkAcAAGAgQh4AAICBCHkAAAAGIuQBAAAYiJAHAABgIEIeAACAgQh5AAAABiLkAQAAGIiQBwAAYCBCHgAAgIEIeQAAAAYi5AEAABiIkAcAAGAgQh4AAICBCHkAAAAGIuQBAAAYiJAHAABgIEIeAACAgQh5AAAABiLkAQAAGIiQBwAAYCBCHgAAgIEIeQAAAAYi5AEAABiIkAcAAGAgQh4AAICBCHkAAAAGIuQBAAAYiJAHAABgIEIeAACAgQh5AAAABiLkAQAAGIiQBwAAYCBCHgAAgIEIeQAAAAYi5AEAABiIkAcAAGAgQh4AAICBCHkAAAAGIuQBAAAYiJAHAABgIEIeAACAgQh5AAAABiLkAQAAGIiQBwAAYCBCHgAAgIEIeQAAAAYi5AEAABiIkAcAAGAgQh4AAICBCHkAAAAGIuQBAAAYiJAHAABgIEIeAACAgQh5AAAABiLkAQAAGIiQBwAAYCBCHgAAgIGKHPI2bt6iY8eOX7DPseOJ2rh5S1E/AgAAAEVU5JB379iHNf+7Hy7Y57sfftS9Yx8u6kcAAACgiIoc8lwu10X7OJ0uWSxF/QQAAAAUVanOyYuLj1dQYFBpfgQAAAAK4FWYzi+8/Fqe1z+vWKmjx47l6+c849TxxERt2rJFnTt1LF6FAAAAKLRChbwF58zBs1gs2r1nr3bv2VtgX4vFoqaNG+nvD95fvAoBAABQaIUKefO+/FTS2fl4tw4cqiGDBmjwoP75+lmtVoUEB8vf379kqgQAAEChFCrkRUVGuv//2aceV6OGDfK0AQAAoHwoVMg7V98bbyjJOgAAAFCCihzycu34/Q/t+GOn0tPTdeaMM992i8Wiu0aPLO7HAAAAoBCKHPJOp6bqH088rS3btl9wzTxCHgAAQNkrcsh76933tXnrNrVr01p9el+vatWqqlKlSiVZGwAAAIqoyCFv5W+r1KxJY33w7puy8FgLAACAcqXIT7zIyspWm9atCHgAAADlUJFDXsMGsQU+7QIAAACeV+SQN2b0Hfpl5a/atn1HSdYDAACAElDkOXnJKSnq0rmz7nlgnG7o1VONGzZQYGBggX379L6+yAUCAACg8Ioc8p7/16uyWCxyuVxa8N0PWvDdD/nm57lcLlksFkIeAABAGStyyHv2qcdLsg63rKwsfTBhsv7YuUtx8QlKTUtVUFCQomvW1C039dGN118nL6+8ZafbbJo0ZbqWLv9FySkpigivoh7du2nMnXcoICAg32c4nU598dU3mvvtfMXHJ8g/wF8d2rfTvXffpeiaNUrluAAAAMpSuXusmd1u11dz56lp0ybqcmUnVQ4LU1pamn5bvUYvvvyaflq8VO/85zVZrVZ3/3vuf0i79+xVpw5XqNd112r37r36+NPPtHHzFk18/x35+vrm+YyX//0fzZu/UPXq1tHtA/sr6cQJLV66XGvWrtfUiR+oVkx0qRwbAABAWSn2Y81KWkhIiJYtWihvb+887Q6HQw+Me1Sr167Tb6vX6KorO0uSZs6eo9179mrk8CEae+897v7//XCCZn78qT757EuNHjnM3b5+wybNm79QbVq30vtvv+H+nOuv66lxjz6u1998R/996/UyOFIAAIDSU+S7a48dO37J/xWqIKs1X8CTJC8vL3XrerUkKS4+QdLZOX/z5i9UgL+/7hqV99Fpd40aqQB/f82bvzBP+zfzF0iS/jbmzjyf06VzR7Vr01qr164rdM0AAADlTZFH8m4eMPiSFkK2WKTVvywt6se4OZ1OrVq9VpJUv15dSdLhuHglnTihTh2vkL+/f57+/v7+atmyuVavWadjxxMVWb2aJGnDxs3y9/dTqxbN831Gp45XaMOmzdq4eYtuvKFXsWsGAADwlCKHvBtv6FVgyEtPt2nP3n06cvSo2rZupaioyCLtPycnR9NmfiyXSzp9+rTWbdiog4cO66Y+vdWhfTtJUlx8vCSpVnTBc+hqRUdr9Zp1iouPV2T1arLb7TqRnKz69eoW+Jzd3P0cjos/b13Z2dnKzslxv7bZMiSdDaFOp/PPVousVoucTpckl7uvxWKRxWI5p19h2os86AqUuIJ+VqWzo+vnslqtcrlcxWwvjfPp4rVzTBXrmCSevoTyoyzOp9x7Ey6kyCHvuaefPO82l8uljz/9TLNmz9HTTz5WpP3n5ORo0tQZ7tcWi0XDh9yu+/82xt2Wnm6TJAUFFbw+X+66fbn9Lrm/zXbeuqbPmp2nrlyHExLdd/IGB/qraniYkk+eVprN7u4TFhKkKmHBOn7ipOyZ2e72iCqhCgkKUMLxZOXkONztkVWrKMDfV4cSEiUVLSwDpeFgfN4pDXWiq8vhOKP4YyfcbRaLRXVjImXPzNaxpBR3u7e3l2KiqirNZteJlNPudn8/H0VVC9fJ0+k6lZrubi+N8+ncL9PoyAh5eVXimCr4MUn5p/kAnlIW51NUtfCL1lEqN15YLBaNGDpYv/62Wu++/5H+/fILhd5HQECA1v26XE6nU0knTmjFr6v0wYRJ2rZjh95+4zUFnWfh5dI2asQwDR08yP3aZstQ334DVatmtXNqOvsbZXjlUIVXDnH3zf2Ns3pE5Tz7zG2vWT28wPbaNauV6DEAxVUnunqe1xaLRd7eXvnapbNfYgW1Bwf6KyjAL1975dAghYWce36X7vmU284xVexjAsqTsj6fzqdUz4wmjRtp3oKFF+94AVarVdWrVdOAfrcoLDRUTz7znKbN+Fhj77vHPSKXO0L3VzZb3pG7S+5/gQDp4+MjHx+fAuv869Cp1WpRQZcQzjfEWth2wFPO9zNZ0BSO3MsLxW0v7fPpfHOMOaaKcUxAeeKp8ylfv0vqVUTxCUd0xnGmxPbXqUN7SdKGTZslSTG5c+jiC55Dl9ue28/f318R4eE6cvSozpzJX1duf9bJAwAAFV2Jhzyn06ljxxM1edpM/bLyV7Vo3qzE9p10IlmS5OV19qaJWjHRqhoRoa1bt8tut+fpa7fbtXXrdtWoEeW+s1aS2rZpJbs9U1u2bc+3/9Vr1kmS2rRuWWI1AwAAeEKRL9d2uKr7BYfNXS6XQoKDNW7sfYXa7/4DB1UjKlJ+fnmvWWdmZuqt/74vSerSqZOks8Obt9zUR5OnzdDk6TPzLIY8efpMZdjtGjVyeJ799Lv5Ji1avFQfTZqaZzHkX1et0YZNm9WpwxWKiuQmBwAAULEVOeS1ad1SlgKuE1usVoUEB6lpk8a6qU9vVal8aZMDcy1eukyfzPlCrVq2UFRUpAIDA5SUdEK/rV6j06dT1aZVSw0ZPNDdf+Swwfp5xUrN/PhT7d69V40aNtCu3Xu0eu06NW3SWENuH5Bn/+3btdEtN/XRvPkLNXz0GF11ZWedSE7WT0uWKTQkRI8+/GDR/kIAAADKkSKHvAnvvVOSdbhddWVnJZ1I1tZt27Vtxw5lZNgVFBSoBvXr67qe1+rmPr3l5fW/sv39/TXx/Xc0ccp0Lf35F63fuEkR4eEaNmSQxoweJb+/PLdWkp567BHF1q+nufPma84XX8rf31/drrlK9919l6Kja5bKcQEAAJQli+uvq/KhUNJtNnXv1UfLFi0s1WVdxrxdarsGCm3SOE9XAOTFdyTKk/LyHVkiS6hs2bpNu/bslc2WocDAADVqEKtWLVuUxK4BAABQBMUKeVu2bdcL/3pN8QkJks7ebJF7M0ZMdE09+88n1LIE764FAADApSlyyNu3/4DGPvyoMjOz1PGK9mrXtrUiwsOVnJKi9Rs3ac3a9Xrw4X9o6sQPVK9unRIsGQAAABdT5JA3edpM5eQ49PYbr+rKTh3zbLtj+FD9tnqNHnn8n5o8bYZefmF8sQsFAADApSvyYsgbN21Wj+5d8wW8XFd26qge3btqw8bNRf0IAAAAFFGRQ166LV01oqIu2KdGVJTSbelF/QgAAAAUUZFDXkREhLbt+P2Cfbb//rsiIiKK+hEAAAAooiKHvGu6XKmNmzbrw4lTlJWVlWdbVlaWJkyepg0bN6vrVV2KXSQAAAAKp8g3Xvzf6JFa+dsqTZ81W3PnzVezpo1VpUoVpaSk6Pc/dunkqVOqWSNK/zd6ZEnWCwAAgEtQ5JAXFhqqaRM/0LsfTNCixUv166o17m0+Pj66qU9vjb33boWGhJRIoQAAALh0xVoMOSwsTM8+9bieeuwRHTx0WDabTYGBgapTu1ae58sCAACgbBU6iU2dMUt2e6buuWu0O8h5eXkptn49d5+cnBx9MGGyAgL8NWrEsJKrFgAAAJekUDderFm3XhMmT1NoaMgFR+q8vb0VGhqiDydO0foNm4pdJAAAAAqnUCHvux8WKTg4SIP697to34G33aqQkGDN/+77IhcHAACAoilUyNu6bbs6tG8nHx+fi/b18fFRh/bttGXr9iIXBwAAgKIpVMhLOpGsmjVqXHL/GlFROpGcXOiiAAAAUDyFCnlWq0UOh+OS+zscDlmtlkIXBQAAgOIpVMirGhGhfQcOXHL/fQcOqGpE1UIXBQAAgOIpVMhr3aql1m/YpCNHj16075GjR7V+wya1ad2yyMUBAACgaAoV8gbedqscDoee+Od4nTp16rz9Tp0+rSeefk5nzpzRgH63FLdGAAAAFFKhFkNu3KihhgwaoE8//1KDho3SbbferPZt26hatbOXZJOSkrR2/UZ98+0CnTx1SkMHD1TjRg1LpXAAAACcX6GfeDFu7H3y8fHRrE/maNrMjzVt5sd5trtcLlmtVo0aMUz33v1/JVYoAAAALl2hQ57FYtH9fxujW/reqPnffa+t23YoOSVFkhRepYpatmium268QdHRNUu8WAAAAFyaQoe8XNHRNXXv3XeVZC0AAAAoIYW68QIAAAAVAyEPAADAQIQ8AAAAAxHyAAAADETIAwAAMBAhDwAAwECEPAAAAAMR8gAAAAxEyAMAADAQIQ8AAMBAhDwAAAADEfIAAAAMRMgDAAAwECEPAADAQIQ8AAAAAxHyAAAADETIAwAAMBAhDwAAwECEPAAAAAMR8gAAAAxEyAMAADAQIQ8AAMBAhDwAAAADEfIAAAAMRMgDAAAwECEPAADAQIQ8AAAAAxHyAAAADETIAwAAMBAhDwAAwECEPAAAAAMR8gAAAAxEyAMAADAQIQ8AAMBAhDwAAAADEfIAAAAMRMgDAAAwECEPAADAQIQ8AAAAAxHyAAAADETIAwAAMBAhDwAAwECEPAAAAAMR8gAAAAxEyAMAADAQIQ8AAMBAhDwAAAADEfIAAAAMRMgDAAAwECEPAADAQIQ8AAAAAxHyAAAADETIAwAAMBAhDwAAwECEPAAAAAMR8gAAAAxEyAMAADAQIQ8AAMBAXp4uoCDf/bhIm7ds086du7R3/wHl5OTo2ace1019eufrO3HKNE2aOuO8+5r35aeqERWVr33VmrWaNnO2du3aLYvFosaNGurOUSPUoX27Ej0WAAAATyiXIe+jiVN09NhxhYWFKiK8io4eO37R9/Tpfb1qREXmaw8OCsrX9t2PizT+hZdVOSxMfW+8QZL005JlemDco3rlxfHq0b1bcQ8BAADAo8plyPvnE/9QrZhoRUVGavqs2Xr/o0kXfc9NN96gdm3bXLRfamqa3njrXYWFhWrWtImqXq2aJGnk8CEaPnqMXn3jLXXq0EGBgQHFPg4AAABPKZdz8jpe0V5RkflH5UrC4mXLlZaWrkH9b3MHPEmqXq2aBvXvp1OnTmv5LytK5bMBAADKSrkMeUWxcfNWzfj4E82aPUfLf1mhjIyMgvtt2ixJ6tShfb5tnTpc8ee+tpRanQAAAGWhXF6uLYqJU6bleR0cHKRHHhqrPr2vz9N+OC5ekhQTE51vH7ltcX/2KUh2drayc3Lcr222s2HS6XTK6XT+2WqR1WqR0+mS5HL3tVgsslgs5/QrTLsxeRwGKOhnVZJcLleedqvVKpfLVcz20jifLl47x1SxjkmyCCgvyuJ8slovngsqfMhrEBurZ556XO3atFZEeBUlp6Ro5a+rNGHyND3/r1cVFBSkrld3cfe32WySpKDAwHz7ym1L/7NPQabPml3g3byHExIVEHB2Hl9woL+qhocp+eRppdns7j5hIUGqEhas4ydOyp6Z7W6PqBKqkKAAJRxPVk6Ow90eWbWKAvx9dSghUVLpXL4GiuJgfN6boepEV5fDcUbxx0642ywWi+rGRMqema1jSSnudm9vL8VEVVWaza4TKafd7f5+PoqqFq6Tp9N1KjXd3V4a59O5X6bRkRHy8qrEMVXwY5K8BZQXZXE+RVULv2gdFtdfI2U5k3vjxfmWUDmftes36IFxj6p+vbr6dOZUd3v/wcN1OC5eq35eLC+vvBnX4XCoc9eeahBbX5/MmFLgfgsayevbb6CW/DD/nOBY8r/R3vMuI3koPyY8yEgex1S+junudxjJQ/kx8SFG8kpVh/btFF2zhvbu2690m80dwALPGa0LCw3N8570C4zy5fLx8ZGPj0++dqvVmu8v3Gq1qKBLCOf7hylsO+Ap5/uZ/N+ls7xtJdFe2udTQZ95vnaOqfwdE1CeeOp8ytfvknpVULkhLjMz091W6wLz7uIuMF8PAACgIjE25Nntdu0/cFD+/n55Ruzatm4lSVq9dn2+96xeuy5PHwAAgIqqQoc8my1Dhw7H5WvPzMrSv157Q7aMDPW8tnueuXc9r+2uoKBAff7V1zqemOhuP56YqM+/mquwsFB1u+bqMqkfAACgtJTLOXnffLtAm7dukyTt239AkjRvwUJt+HONu9YtW+jWm/vqdOppDRw6Uk2bNFad2rUUHl5FKSkntXb9BiUmJim2fj09eP/f8uw7JCRY//j7Qxr/wssaMfpuXdeju6SzjzU7fTpVL78wnqddAACACq9chrzNW7dp4fc/5mnbsnW7tmzd7n596819FRISogH9btGOP3bqt1VrlJqWJj9fX9WpU1uDB/TXwAH95Ofrm2//N17fS2GhoZo+c7bmf/e9LLKoceOGuvOOEep4Rf5FkgEAACqacr+ESnmXbrOpe68+WrZo4QXvyi2uMW+X2q6BQps0ztMVAHnxHYnypLx8R1boOXkAAAAoGCEPAADAQIQ8AAAAAxHyAAAADETIAwAAMBAhDwAAwECEPAAAAAMR8gAAAAxEyAMAADAQIQ8AAMBAhDwAAAADEfIAAAAMRMgDAAAwECEPAADAQIQ8AAAAAxHyAAAADETIAwAAMBAhDwAAwECEPAAAAAMR8gAAAAxEyAMAADAQIQ8AAMBAhDwAAAADEfIAAAAMRMgDAAAwECEPAADAQIQ8AAAAAxHyAAAADETIAwAAMBAhDwAAwECEPAAAAAMR8gAAAAxEyAMAADAQIQ8AAMBAhDwAAAADEfIAAAAMRMgDAAAwECEPAADAQIQ8AAAAAxHyAAAADETIAwAAMBAhDwAAwECEPAAAAAMR8gAAAAxEyAMAADAQIQ8AAMBAhDwAAAADEfIAAAAMRMgDAAAwECEPAADAQIQ8AAAAAxHyAAAADETIAwAAMBAhDwAAwECEPAAAAAMR8gAAAAxEyAMAADAQIQ8AAMBAhDwAAAADEfIAAAAMRMgDAAAwECEPAADAQIQ8AAAAAxHyAAAADETIAwAAMBAhDwAAwECEPAAAAAMR8gAAAAxEyAMAADAQIQ8AAMBAhDwAAAADEfIAAAAMRMgDAAAwECEPAADAQIQ8AAAAAxHyAAAADETIAwAAMBAhDwAAwECEPAAAAAMR8gAAAAxEyAMAADAQIQ8AAMBAhDwAAAADeXm6AE/a8cdOTZw8TVu3b5fDcUax9epq6OBBuq5Hd0+XBgAAUCyXbchbv2GTxv79H/L18dF1Pa9VQECAli3/WU89+7yOJyZq+JDbPV0iAABAkV2WIc/hcOhfr70uq9WiCe+/o0YNG0iSxoweqTvuulcfTJisHt27Kioy0sOVAgAAFM1lOSdv/YZNik84ouuv6+kOeJIUFBSk0SOHKScnRwu++9GDFQIAABTPZTmSt2HTZklSpw7t823r1PEKSdLGzVsKfG92drayc3Lcr9PTbZKktLR0OZ3OP1stslotcjpdklzuvhaLRRaL5Zx+l95+JueyzOMop1LT8v+sSpLL5crTbrVa5XK5itle8ufTpdTOMVWsYzqTYxFQXqSll/75ZLVaFRgQ4D4HCnJZhry4+HhJUkx0dL5tEeHhCvD3d/f5q+mzZmvS1Bn52m/uzxw+XD56fOPpCgCg/Lr2m7L5nGWLFiooMPC82y/LkJc7+hYUVPBfTGBgoLvPX40aMUxDBw9yv3Y6nUpNTVVoaOgF0zQ8z2bLUN9+A7Vg7hcKDAzwdDkAUK7wHVnxBAZc+N/psgx5xeHj4yMfH588bSHBwR6qBkURGBhwwd98AOByxnekOS7LiV65I3jnG62z2WznHeUDAACoCC7LkJc7F6+geXcnkpOVYbcXOF8PAACgorgsQ17bNq0kSavXrs+3bfWadWf7tG5VpjWh9Pl4e2vMnXfIx9vb06UAQLnDd6R5LK6/3st7GXA4HBowZKSSTiRp6oQP3Gvlpaen64677tXRY8f05aczVSMqysOVAgAAFM1lGfKk8z/W7Oix43rogXt5rBkAAKjQLtuQJ0k7fv9DE6ZM09ZtO+RwOBRbv56G3j5QvXpe6+nSAAAAiuWyDnkAAACmuixvvAAAADAdIQ8AAMBAhDwAAAADEfIAAAAMRMjDZSn3fiPuOwIAmIqQh8uSxWLJ86dE4AMAmMXL0wUAZcXhcOjQ4TitWbtefv5+8vLyUpXKYWrYIFbVqlbNE/gAAKjoCHm4LCQcOarZn36mL+fOy9Pu6+urmOiaat+2ja6+6kq1aNZUfn5+crlchD4Aly2+A83AYsi4LDzx9Hgt/2Wlbr25r5o3baJKlSop3WbTps1btGbteqWlpysiPFw39blBgwcOUOXKYZ4uGQDK1MFDh1StalUFBAS423IjwoUCH4Gw/CLkwXhHjh7VbbcP05BBA/Xg/X/L92WUlHRCv6z8Vd8u/F5/7Nyldm3b6KnH/q6Y6GgPVQwAZet4YqIefeJptW7ZQq1atlDDBrGqWSNKlSpVcvfJDXO5f2ZlZcnX19eDVeNiuFwL4638bbW8vLzVvm0bWSwW5eTkyNvb2729atUI9e93i9q3a6s5X3ylr+bO0/RZn+ipxx7J8wUHAKaaN3+hdu3eo/0HDmjegoVq1KCB2rVtoxbNm6lBbL0C5y0vWf6zvvt+kcaNvU+x9et5qHJcCCEPxvPy8lJ2drb8/HzdrwtSu1aMxj1wrxwOh+bNX6iRw4aodq2YsiwVADzij5275OfnqzGjR+lQ3Nkb1KbOmKWw0FA1b9ZUbdu0UotmTVW7di2FhYZKklas/E3rNmxUdM0aHq4e50PIg/FaNGsqX19fTZg8Tc88VVUx0dFyuVxyOp15RuocDod8fX3VqUN7zV/4nbZt30HIA2C8lJMndfLUaYWEhGjEsMFKTU1Twq1HtOOPnVq1eq22bNumlb+tUlRUpFo2b6YrO3WU0+nUho2b1anDFfLz8/P0IeA8CHkwXkxMtHpff52++XaB/vvBRP3fqBFq1LCBO+A5nU5ZLBb3CJ/dninJoqpVIzxYNQCUjYwMu3JyctSsSWNJUkhIsEJCGqlhg1h1u+YqHY6L1+YtW7Vq9Vot+3mFliz7WZUrh+nU6dMacNstHq4eF8KNF7gsOBwOvf3eh/r8y68lSZ07dlCf3r3UpXNnBQb+706y5JQUPfXs8zp48LB+XDDXU+UCQJnJycnR0uW/yM/PV106dypwSkt2draSTiQrLi5eP6/8VfPmL5S/n5+W/DDfAxXjUjGSB+M5nU55eXnpzjuGq2aNKH32xddatWatVq1ZKz8/X7Vs3lxNGjdSfMIRbdm6Tem2dP3trv/zdNkAUCa8vb11/XU9LtjHx8dHNWtEqWaNKGVmZWre/IW6tnvXMqoQRcVIHox2vvWbfl6xUgu++0Gbt25TWlqavL19lJWVpcaNGmrE0MG6uktn5pkAuCxcylp453r7vQ/0yZwvNH3Sh2r65yVelE+M5MFoFotFiUlJqla1qjKzsuRwOBQUGKiuV1+lrldfpYyMDO3cvUeSVC0iQv4B/gqvUsXDVQNA2SnMQsapqWlKTU1T/Xp1CXgVACN5MJLL5dKKX1fp2wULtXffAdntdsXWr6fY2Ppq1DBWsfXqKSa6pvz9/T1dKgBUGGfOnNGu3Xvkktw3aqD8IuTBSB9NmqqPP/1Mfn6+ql6tmhwOhxwOh44fT5RLLjWIjVWPbl3V+4brFBEe7ulyAQAocYQ8GOfI0aO6ffhotWvTWuPG3qs6tWvr1KlTOp6YpPiEBG3avFWr1qxTXHy8GsTW1333jFGXzmfXfbJarZ4uHwBKXWpqmvbs26cWzZrKx8fH0+WglBDyYJzJ02Zqzudf6uUXx6tD+3ZyOBx5lgRIt9m0/8BBLV6yTHO++EpVqlTWO2+8pkYNG3iwagAoO++896Fmz/lcjRo2ULdrrlK3a65W/Xp1C+ybewPb4bh4ZWZmql7dOud9chDKF4YtYJz4+AR5e3u7v7ByFz3O/X0mKDBQLZs3098fekAvPfeMsrKy9Nobb3msXgAoa2vXb5DFYtHRo8c0YfI0DRl5p+4d+7C+njdfiUlJefpaLBbZ7XZNnDJNr77+pocqRlEQ8mCc2Nh6Sk5J0eYtWyWd/YLKfapFrtzA16vntere9RrFJSTo4KHDHqkXAMrSkaNHdfLkKTVr0lgfvPum7rlrtFq3aqlt23fo1dff1KChd+jJZ57X8l9W6HRqqiRp/8FDWr1mnXx9fRnFq0D4l4JxmjVpIn8/P300aaqiIiPVtElj91w7l8sll8slq9XqnoMXEx2trKws2TIyPFw5AJS+I0eOKTklRdd276qGDWLVsEGshgwaoK3bdmjVmrVat2GjlixbriXLlqtqRLh6dO+mrKwspaaladiQQZ4uH4VAyINRXC6X2rRuqYcfvF+vvvGmRo25V7fe3Fc9r+2mZk2aKDAwwD2iZ7ValZmVpX3798vHx4flAABcFkJCghVds4ZiataUdHZZlICAAHXqeIU6dbxCJ5KTtXHTZv22eq02bdmqOV98JUkKDgrSVVd29mTpKCRuvICR7Ha7vvthkSZOma6Tp06pcliYWjRvqmZNm6pZ08Zq3LCh4uLj9e2C7zT/ux80aEA/jXvgPk+XDQBlwmbL0JkzZxQSEuxuK2iFgaSkE5o+a7a++Pob9e93ix5/ZFwZV4riYCQPRsm9C8zf31/9+92iG2/opW/mL9RPS5Zp5W+r9cvK3ySdnadXqVIlORwO9b3xBg29faCHKweAshMYGJCv7dxpLU6nU5UqVVLVqhEKCQmRJN3cp3eZ1ojiYyQPl4VTp07pUFy8tu/4XZu3bNWZM07VqhWturVr65ab+ni6PAAol+ITjugfTz6tjIwMzftyjqfLQSExkgdjpJw8qb379utwXLzsGXY1bdpYdWrXUlhoqMLCwhQWFqZWLZpr2OBBys7OzrMAaO4IIADgfywWi8KrVNF1Pbp7uhQUASN5MMKvq9Zo6oxZ2rZ9R572kJBgXdGuna7r0V3XXHVlnlv/ecIFgMvNmTNn3GuHlsX74FmEPFR4x44n6m8PjJM9066+N96g9m3bKOHIUe3avUd79u7T3r37lJ2To7p1amv0yOHq0b2rvL29Gb0DcNn46y+15y4ndSE5OTny9vYu7fJQSrhciwpv7rxvlZaWpn8+8Q9d2+2aPNuOJyZq67Yd+mXlr/rxpyV69oV/KTEpSSOHDSHgAbhsfD1vvjZs3Kw+vXupbetWCgj433JSTqdTkgoMfAS8io2RPFR4o8fcK19fX7360nMKCwuTw+Fw3z17rvUbNunt9z7QgYMH9fgjD+vmvjd6qGIAKFu3DBiso8eOy8fbWw1i66tjhyvUpXNHNW/WNM8vvLnP+s7MzNTX8+arYWys2rdr48HKURxMSEKFlpGRoYCAACWnpMjPz0/S2d9Gz31ebe5vqe3btdEzTz4mP18//bziV/d2ADDZvv0HdPTYcTVu1FCtW7XUjj92auqMWXpg3KN68JHHNOeLr3Tw0CFJcs9b3rlrt97+7wf6aPIUT5aOYuJyLSq0gIAANW7cUOs2bNSixUt1c98b811yyH3tdDrVqGEDtWndUgcOHtbRY8cUFRnpibIBoMzs279fknTDdT01dPBAHTocp59XrNSPPy3RmrXrtWbteoVXqaJ2bVvryk4dddWVnbXjj52SpFEjhnmydBQTIQ8V3u0DbtNvq9bopVdf1+49e9X3xhtUt05t+fr6ui9D5F6CSLfZ5O3trezsbAIegMtCuu3sc7lr16519s9aMRo5bIhGDhuiHX/s1KKflmjJ8p+1aPFSLVq8VDHR0bJl2BQYGMBjzCo4Qh4qvGpVq+qeu0brrf9+oM+/mqut23eo69Vd1LplC9WoEaUqlSvL19dXkrRi5W/asHGzune92sNVA0Dpc7lcalC/noYMGqDaMdF52i0Wi5o1aaxmTRrrvnvu0roNG7V46XL9vGKlbLYMDbztVs8VjhLBjReosP66BMrp1FRNnzlbi5cu1/HERFUOC1O9enVVNSJcfn5+ysrK0uKly1QjKkqvv/KS6vz5Wy0AmC4jI0Pe3t4F3i371+/Sf//nbX05d55mTZ2oRg0blGWZKGGEPFRouV9OxxMTVTUiQlarVXv379fKX1dpw6bNOnjwsI4nJkqSQoKD1aBBrB4dN1b169X1cOUAUH7kfpfGxyfoqWefV7rNpq8/m+3pslBMXK5FheRwOLRl23bNX/C9DsfFSRaL/Px81bRxY13Xo7tGjRimO4YP1fHjicrMylLCkaOqU7uWqlerKi8vLxZCBoBz5H4fHjh0SDt379GIoYM9XBFKAiN5qJBmfTJHU6bPUkZGhmKia8pqterQ4Tj39rp1amvAbbeqR/euqlK5sgcrBQDPu9RfbJNTUrRq9VpdfdWVCg0JKYPKUJoIeahwEo4c1ZCRo9W4YUONf/pJeXt7qUrlykpOSdGKX1dpydLl2rBpsySpXds2Gnvv3WrapLFniwaAMpSZlaVjx44rMrK6/P688exS8ZxacxDyUOF8NGmq5s6brxefe1od2reTlP+31L379uvjTz7T4qXLFBlZXS+Of1pNGjfyVMkAUKamz5qtpct/Ufeu16hFs6aqXStGVapUvmB4O3nylIKDg9wLIqPi418SFc7+Awfl7++vWtFnlwPIXQMv9+kWlSpVUmz9enrumSfVqFEDvfXu+/r8q7ka/88nPFw5AJSNL76aq6QTydq9Z6+CggLVsnlzderQXs2aNVXNGlEKCw3N099ut2vm7E91OjVV/3z8UUbyDEHIQ4XTqGGslv+yQhl2u6T/PYbn3OfV5o7sDRk0QJu3bNX6DZsUn3BE0TVreKxuACgLhw7HKT3dphbNm+n663po7br12rb9d638bZUiq1dT2zat1eGKdmrUoIGqVY1QcHCw9u0/oG/mL1C7Nq0JeAYh5KHCad+2jSZomp55/iWNG3ufWrdsUeDaT7nzSmrXqqXfVq+V/c9QCAAmOxwXp6zsbHXq0F6D+vfT1V0669ChOG3bsUPrNmzSsuW/6IdFi1Wvbh21b9tGnTt10Lr1G2WzZejWm/t6unyUIEIeKpzmzZpq6OCB+mTOF3r9zXfcd9GGV6ni7pM7qpeamqbExCT5+/mpQWx9D1YNAGUjOztbTqdTdWrXliRFRUYqKjJS7du10Q29emrPnn3atGWrNmzarC/nztM38xfI5ZKCg4J4jJlhuPECFdbX33yrWZ/MUcKRo6oaEa5u11ytKzt1VPXq1WS1WhUcFKTPvvxacz7/Uv1vu1UPj73P0yUDQKlzuVw6eOiwfHx8VLNGVIHLp9jtdh2Oi9ehw4c1f+EPWrNuvQb176dHH37QQ1WjNBDyUGG5XC7FxSfom28XaNGSpUpMTJIkVa4cJi8vLyUnJ8vpdKlXzx4ae9/dql6tmocrBgDPKijwvfHWu/r8q7k8xsxAhDwYwW63a8fvO/XLyl+VdCJZJ0+eVGBgoHpe203XdrtGvoVcJwoATOZ0OmW1WnXk6FE9+sTTSk1L04KvP/d0WShhzMmDEfz9/dW+XRu1b9fGvaQKAKBgVqtVkpSUdEIOh0MD+t3i4YpQGhjJAwDgMuVyuXQ8MUmhIcHy9/f3dDkoYYQ8AAAAA1k9XQAAAABKHiEPAADAQIQ8AAAAAxHyAAAADETIAwAAMBAhDwAAwECEPAAAAAMR8gAAAAxEyAMAADDQ/wPh7ODm6q1AkAAAAABJRU5ErkJggg==", - "text/plain": [ - "
" - ] - }, - "execution_count": 13, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "# Ideal simulator and execution\n", - "sim_ideal = AerSimulator()\n", - "result_ideal = sim_ideal.run(circ).result()\n", - "plot_histogram(result_ideal.get_counts(0))" - ] - }, - { - "attachments": {}, - "cell_type": "markdown", - "metadata": { - "slideshow": { - "slide_type": "subslide" - } - }, - "source": [ - "## Noise Example 1: Basic bit-flip error noise model\n", - "\n", - "Lets consider a simple toy noise model example common in quantum information theory research:\n", - "\n", - "* When applying a single qubit gate, flip the state of the qubit with probability `p_gate1`.\n", - "* When applying a 2-qubit gate apply single-qubit errors to each qubit.\n", - "* When resetting a qubit reset to 1 instead of 0 with probability `p_reset`.\n", - "* When measuring a qubit, flip the state of the qubit with probability `p_meas`." - ] - }, - { - "cell_type": "code", - "execution_count": 14, - "metadata": { - "ExecuteTime": { - "end_time": "2019-08-19T17:00:51.543615Z", - "start_time": "2019-08-19T17:00:51.536564Z" - } - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "NoiseModel:\n", - " Basis gates: ['cx', 'id', 'rz', 'sx', 'u1', 'u2', 'u3']\n", - " Instructions with noise: ['measure', 'u2', 'cx', 'u1', 'u3', 'reset']\n", - " All-qubits errors: ['reset', 'measure', 'u1', 'u2', 'u3', 'cx']\n" - ] - } - ], - "source": [ - "# Example error probabilities\n", - "p_reset = 0.03\n", - "p_meas = 0.1\n", - "p_gate1 = 0.05\n", - "\n", - "# QuantumError objects\n", - "error_reset = pauli_error([('X', p_reset), ('I', 1 - p_reset)])\n", - "error_meas = pauli_error([('X',p_meas), ('I', 1 - p_meas)])\n", - "error_gate1 = pauli_error([('X',p_gate1), ('I', 1 - p_gate1)])\n", - "error_gate2 = error_gate1.tensor(error_gate1)\n", - "\n", - "# Add errors to noise model\n", - "noise_bit_flip = NoiseModel()\n", - "noise_bit_flip.add_all_qubit_quantum_error(error_reset, \"reset\")\n", - "noise_bit_flip.add_all_qubit_quantum_error(error_meas, \"measure\")\n", - "noise_bit_flip.add_all_qubit_quantum_error(error_gate1, [\"u1\", \"u2\", \"u3\"])\n", - "noise_bit_flip.add_all_qubit_quantum_error(error_gate2, [\"cx\"])\n", - "\n", - "print(noise_bit_flip)" - ] - }, - { - "attachments": {}, - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Executing the noisy simulation" - ] - }, - { - "cell_type": "code", - "execution_count": 15, - "metadata": { - "ExecuteTime": { - "end_time": "2019-08-19T17:00:52.951874Z", - "start_time": "2019-08-19T17:00:52.687440Z" - }, - "slideshow": { - "slide_type": "-" - } - }, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAnkAAAHTCAYAAABbZg60AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAABxPUlEQVR4nO3dd1hT1x8G8DfsvVFQkCHDyVAZ7r3qnlU7rFtrbfXXVm1ttdPWVqu17j2r1ol77y3KcG9lKMiUPULu7w+alAgqkEAG7+d5+lTOvcn3nCSQNyf3nisSBEEAEREREWkVHVV3gIiIiIiUjyGPiIiISAsx5BERERFpIYY8IiIiIi3EkEdERESkhRjyiIiIiLQQQx4RERGRFmLIU5AgCMjIzASXGyQiIiJ1wpCnoMysLLTt1A2ZWVmq7goRERGRDEMeERERkRZiyCMiIiLSQgx5RERERFqIIY+IiIhICzHkEREREWkhPVV3gIiIiEiVVq/biBOnTuPp0ygYGhrCp2F9fDJuDFxdasntF3njJhYvXYEbt25DV0cHXp4emD/3dxgZGuLZ8+dYuWY9Qq9eQ1JSMuzs7NC1c0cMH/o+9PX1VTIuhjwiIiKq0q6Fh2NA396oV7cOCgoKsGjpCkyY9CX+2bgGxsbGAAoD3qf/m4yPPhiCLyZ9Cl1dXdx/8BA6IhEA4MnTKEgkEnz15edwcqqJh48eY+as2cjOycbETz5WybhEAlfxVUhGZibaduqGE4f3wczUVNXdISIiIgWlpKSiU/feWLrwTzTy8wUADBs1DoEBTTBu9IhS38/6jZuxbVcIQrZuqqiuvhGPySMiIiIqIiMzAwBgYWEOAEhOScGNW7dhY22N4WPGo3P3Phg9/jOER0S+9X4szc0rvL+vw5BHRERE9C+JRII//lwAX58G8HB3BwDExj4DACxftQa9e3bH/D9+Qx0vT3z82eeIio4p8X6iY2KwZdtO9Onds9L6/ioek0dERET0r9/mzMPDR4+xfPFfsjbJv0e29enVAz27dQUAeHt54srVa9i9dz8+GTda7j5eJCTg0/9NRoe2rdGnZ/fK6/wrGPKIiIiIUBjwzpy/gGUL56N6tWqydjtbWwCAm5uL3P6uLi6Ii38h15aQkIhxEybBp2EDfD3li4rv9Bvw61oiIiKq0gRBwG9z5uHk6bNYPH8uatZwlNtew9EB9nZ2ePo0Wq49Kjoajg7VZT+/SEjA2AkTUcfbC9O/ngIdHdXGLM7kERERUZU2a848HDpyFLN//RkmJsZITEoCAJiZmcHI0BAikQjvD3kXy1augZdnbXh5emDv/kN4+jQKs376HsC/Ae+TiXBwqI7PPhmHlNRU2f1LZwIrG0MeERERVWnbd4YAAMZ+MlGuffrXU9Dj32Pwhrw7AHl5efhj/kKkpaXD06M2FsybDSenmgCAS5dDER0Ti+iYWHTrPUDufq6cO1nhYygJ18lTENfJIyIiInXEY/KIiIiItBBDHhEREZEWYsgjIiIi0kIMeURERERaiCGPiIiISAsx5BERERFpIYY8IiIiIi3EkEdERESkhRjyiIiIiLQQQx4RERGRFmLIIyIiItJCDHlEREREWoghj4iIiEgLMeQRERERaSGGPCIiIiItxJBHREREpIUY8oiIiIi0EEMeERERkRbSU3UHiIiIiNTJqHmK3X75RGX0QnEMeWpq9bqNOHHqNJ4+jYKhoSF8GtbHJ+PGwNWlVrF9BUHAZ19MwYWLl/H7Lz+iTauWsm1xcfH4dfZchF4Lg4mxMbp17YzxY0dBT49PPRERkTbjO72auhYejgF9e6Ne3TooKCjAoqUrMGHSl/hn4xoYGxvL7btpyzaIICp2HwUFBZj45VTY2thg5ZIFSExKxnc/zYSenh7Gjx1VWUMhIiIiFeAxeWrqrz9+R49uXVHb3Q1enh6YMW0q4uLjcfvuPbn97t67j42bt+DbrycXu4+Ll0Px+MlT/DBjGry9PNG8aRDGjhyOrTt2IT8/v7KGQkRERCrAkKchMjIzAAAWFuaytpycHHz7/U+Y/PlE2NnaFrvN9Rs3UdvdDbY2NrK24KBAZGZm4tHjJxXeZyIiIlIdhjwNIJFI8MefC+Dr0wAe7u6y9j/mL4RPg/po3bJFibdLSk6WC3gAYGtjDQBITEquuA4TERGRyvGYPA3w25x5ePjoMZYv/kvWdurMOYRevYYNq5ersGdERESkrhjy1Nxvc+bhzPkLWLZwPqpXqyZrD716DTGxz9CuS3e5/adMmwE/34ZYuuBP2NrY4Oat23Lbk5JTAAB2tvIzfERERKRdGPLUlCAI+P2PP3Hy9FksWTAPNWs4ym0f+sEQ9OrZTa5t8AfDMenT8WjZvBkAoGGD+li9bgOSU1JgY134Ne2lK6EwNTWFm6tL5QyEiIiIVIIhT03NmjMPh44cxexff4aJiTESk5IAAGZmZjAyNISdrW2JJ1s4VK8mC4TBgU3g5uqCGT/MxISPxyApORlLlq3EgL69YWBgUKnjISIiosrFkKemtu8MAQCM/WSiXPv0r6egR7eupboPXV1dzP39F/z6+1wMHzMexsZG6Na1M8aMHKbs7hIREZGaYchTU1fOnVTKbRwdHPDnnFmKd4iIiIg0CpdQISIiItJCDHlEREREWoghj4iIiEgLMeQRERERaSGGPCIiIiItxJBHREREpIUY8oiIiIi0EEMeERERkRZiyCMiIiLSQgx5RERERFqIIY+IiIhICzHkEREREWkhPVV34FUvEhJw9PhJnL9wCU+iopCUlAwLC3P4NmyID98bhAb1673x9jGxzzBk6HBkZ+egb68e+Gry5yXud+DQEWzeuh2PHj+Bvr4efBs2wJiRw1HH26sihkVERERUqdRuJm/Lth2YO38hYp89Q3BAE7w3aCD8fBri9NmzGDH2Exw+evy1t5VIJPjh51/fWmPV2vWY/sPPSElJQd/ePdG+bRuEhUdixNjxiIi8rsTREBEREamG2s3k1a9bF0sWzENjfz+59rDwSHz82f8wa/ZctGnVAgYGBsVu+/eWrYi8cROfjh+LufMXlnj/UdExWLZyDWo5O2PtisUwMzMDAPTv0wvDx3yMn2fNxub1q6Gjo3b5l4iIiKjU1C7JtGvTqljAAwB/Px80aeSPtPR0PHj4qNj2J0+fYsmylfjog/fg7enx2vvfs+8ACgoKMHzo+7KABwDeXp7o1KE9Hj95inDO5hEREZGGU7uQ9yZ6eroAAF1dXbn2goICfPfTr3B2dsKIjz54431cDQsHAAQFNim2rWlQAADgWliEEnpLREREpDpq93Xt68TFxeNy6FXY2drCo7a73LY16zfizt17WL1sEfT19d94P9ExMTAxNoadrW2xbc5OTrJ9XicvLw95+fmynzMzswAUHg8okUj+bRVBR0cEiUQAIMj2FYlEEIlERfYrfzsACIJQqnYdHR0IgqBgO8fEMXFMHBPHxDFVlTEpNgdWGWMqzWFlGhHyxGIxpv84E3l5+Zjw8Ri5mbx79x9gxep1+GDIINSt4/3W+8rIyISNtVWJ20xNTWX7vM6a9RuxfNXaYu1RsS9gYmICADA3NYa9rRWSUl4iPTNbto+VhRlsrMwRn5iC7Jw8WbudjSUszEwQG5+E/HyxrN3B3gYmxoZ4GvsCM7c7lNAb0Wt6Wbz9zzF5iEtIlv2sr68HZ0d7pGdmIzH5pazd2MgAjtVskfIyA6lpGbL2ihhT0Re0k4Md9PR08SQmXq7frk7VIRYXICYu8b/RiURwc3ZAdg7HxDFxTBwTx8QxKX9MQEnvuaVXGWNyrFZ8supVIuHVSKlmJBIJpv8wE4eOHEXvnt0xbcoXsm35+fkYOnIsxGIxNqxeLjsZ4+q1MIydMKnEJVSatu4AG2sr7Nu1rVitqOgY9Bv0Plq1aI45s34usT8lzeR17zMAxw7ugdm/IbEiPlWMma/Yp4pln6njJyX5dkAbPv1xTBwTx8QxcUyaPiZNeM/V+Jk8iUSCH2bOwqEjR9G1c0d89eX/5LavWb8RDx89xsolC0o827YkZmamr52py8zMlO3zOgYGBiXW0tHRKfaA6+iIUNKs2uuemLK2l4X0haFoe0WPqaSar2vnmDimN/WRY+KYOCaO6U191Mb33FepbcgrXPNuFvYdPITOHdtjxrSpxQZ19959SCQSDBv9cYn3sSNkD3aE7EHrls0x+9fCmTlnJydcv3ETiUlJxY7Lkx6LJz02j4iIiEhTqWXIKxrwOrZvi++//brYGbUAEBjQBFaWlsXaE5OSce7CRbi61IJvwwbw8vKUbWvk54vrN27i0uVQdOvaWe52Fy5dKdzH31fJIyIiIiKqXGoX8qRf0e47eAgd2rXBD9OnlRjwAGBgvz4ltl+9FoZzFy6ikZ9vsWPyenTrig2btmDV2g1o3bK5bK28u/fu4/DRY3BzdYGfT0PlDoqIiIiokqldyFuxei32HTgEE2Nj1HJ2wqq164vt07plC3gXmZ0rC5dazhg94iMsXrYSQ4aOQNs2rZGVlYUj/14ubdqUL3i1CyIiItJ4ahfynj2PAwBkZWdj1doNJe7j6OBQ7pAHAMOHfgBHBwds+mcbtu8Mgb6+Hvx8fTB21HDU8fYq9/0SERERqQu1X0JF3WVkZqJtp244cXhfkSVUlG/UPMVuv3yiMnpBRESk/bTlPZffSxIRERFpIYY8IiIiIi3EkEdERESkhRjyiIiIiLQQQx4RERGRFmLIIyIiItJCDHlEREREWoghj4iIiEgLMeQRERERaSGGPCIiIiItxJBHREREpIUY8oiIiIi0EEMeERERkRZiyCMiIiLSQgx5RERERFqIIY+IiIhICzHkEREREWkhhjwiIiIiLcSQR0RERKSFGPKIiIiItBBDHhEREZEWYsgjIiIi0kIMeURERERaiCGPiIiISAsx5BERERFpIYY8IiIiIi3EkEdERESkhRjyiIiIiLQQQx4RERGRFmLIIyIiItJCDHlEREREWoghj4iIiEgLMeQRERERaSGGPCIiIiItxJBHREREpIUY8oiIiIi0EEMeERERkRZiyCMiIiLSQgx5RERERFqIIY+IiIhICzHkEREREWkhhjwiIiIiLcSQR0RERKSFGPKIiIiItBBDHhEREZEWYsgjIiIi0kIMeURERERaiCGPiIiISAsx5BERERFpIYY8IiIiIi3EkEdERESkhRjyiIiIiLQQQx4RERGRFmLIIyIiItJCDHlEREREWoghj4iIiEgLMeQRERERaSGGPCIiIiItxJBHREREpIUY8oiIiIi0EEMeERERkRZiyCMiIiLSQgx5RERERFqIIY+IiIhICzHkEREREWkhPVV3oCT7Dx1GeMR13LlzFw8ePUZ+fj6mfz0FPbp1LXH/qOgYrF63ARGR1/HiRQIsLCzg5uqCgf37onXL5iXe5sChI9i8dTsePX4CfX09+DZsgDEjh6OOt1dFDo2IiIioUqjlTN6SZSuxM2QPnsfHw87W5o373rh5C0OGjsCBQ0fgUbs23h3YD8FBAbh15w6+mDoNy1etKXabVWvXY/oPPyMlJQV9e/dE+7ZtEBYeiRFjxyMi8nrFDIqIiIioEqnlTN60qV+ilrMTHB0csGb9Rixcsvy1+y5ftRa5ubmY/etPaN2yhax91PChGPzBcKzdsAlD3x8CAwMDAIWzfstWrkEtZ2esXbEYZmZmAID+fXph+JiP8fOs2di8fjV0dNQy/xIRERGVilommaCAJnB0cCjVvrHPnkEkEqFZcJBcu6ODA2rXdkdubi6ysrNl7Xv2HUBBQQGGD31fFvAAwNvLE506tMfjJ08Rztk8IiIi0nBqGfLKora7GwRBwPmLl+Ta4+Li8fDhI3h61IaVpaWs/WpYOAAgKLBJsftqGhQAALgWFlFxHSYiIiKqBGr5dW1ZjBs9AhHXb2DKtBlo1aI5ajk7ISU1FSdOnUbNmjUw84cZcvtHx8TAxNgYdra2xe7L2clJts/r5OXlIS8/X/ZzZmYWAEAikUAikfzbKoKOjggSiQBAkO0rEokgEomK7FeWdsXyuCAIEARBrk1HR6cM7RUxJvl2aT9L0162vnNMHBPHxDFxTBxTWdrV/z23NIeVaXzIc3VxweplizD1m+9w4tRpWbulpQV6dOsKp5o15PbPyMiEjbVVifdlamoq2+d11qzfiOWr1hZrj4p9ARMTEwCAuakx7G2tkJTyEumZ/31VbGVhBhsrc8QnpiA7J0/WbmdjCQszE8TGJyE/Xyxrd7C3gYmxIZ7GvgBQuq+vXyc7Jw9xCcmyn/X19eDsaI/0zGwkJr+UtRsbGcCxmi1SXmYgNS1D1l4RYyr6gnZysIOeni6exMTL9dvVqTrE4gLExCXK2kQiEdycHTgmjolj4pg4Jo6pyr7nOlYrPln1KpHwaqRUM9ITL163hMrNW7fxxdRv4FHbHePHjoKrSy0kJiVj6/ad+HvLVnRo1wa//PidbP+mrTvAxtoK+3ZtK3ZfUdEx6DfofbRq0RxzZv1cYn9Kmsnr3mcAjh3cA7N/Q2JFfKoYM1+xTxXLPlPHT0ry7YA2fPrjmDgmjolj4pg0fUya8J6r9TN5YrEYX8/4ATo6Ivz+y48wMjICADjVrIFJn47Hs+fPcfT4SQwacB2+Pg0BAGZmpq+dqcvMzJTt8zoGBgayM3WL0tHRKfaA6+iIAIhK3LckZW0vC+kLQ9H2ih5TSTVf184xcUxv6iPHxDFxTBzTm/qoje+5xfYr1V5q6snTKDx79hz169WTBbyiGjfyBwDcvXdf1ubs5ISs7GwkJiUV2196LJ702DwiIiIiTaXRIS//369NU1NTS9yeklLYrl9k5q2Rny8A4NLl0GL7X7h0pXAff18l9pKIiIio8ml0yKvt7gZTU1NEXL+Bi/8GNKm4+BfYGbIHIpFIFuwAoEe3rtDV1cWqtRuQkfHfQY53793H4aPH4ObqAr9/v9olIiIi0lRqeUzert17ZQsSP3z0GAAQsnefbI07P5+G6N2zOwwMDPDp+LH45bc5+OyLKWjRrClcXWohKSkZJ06dRlZ2Nt4bPBAutZxl9+1SyxmjR3yExctWYsjQEWjbpjWysrJw5OhxAMC0KV/wahdERESk8dQy5IVHXse+A4fk2iIibyAi8obs5949uwMA+vbqgZqOjti8dRsib9zAuQsXYGxsDG9vL/Tp2R1dO3csdv/Dh34ARwcHbPpnG7bvDIG+vh78fH0wdtRw1PH2qtjBEREREVUCtV9CRd1lZGaibaduOHF4X5ElVJRv1DzFbr98ojJ6QUREpP205T2X30sSERERaSGGPCIiIiItxJBHREREpIUY8oiIiIi0EEMeERERkRZiyCMiIiLSQgx5RERERFqIIY+IiIhICzHkEREREWkhhjwiIiIiLcSQR0RERKSFGPKIiIiItBBDHhEREZEWKnfIuxYegbi4+DfuExf/AtfCI8pbgoiIiIjKqdwhb9yESdiz/+Ab99l/8BDGTZhU3hJEREREVE7lDnmCILx1H4lEgEhU3gpEREREVF4VekxedEwMzEzNKrIEEREREZVAryw7/zBzltzPp86cxfO4uGL7SQokiH/xAmEREWgaHKRYD4mIiIiozMoU8vYWOQZPJBLh3v0HuHf/QYn7ikQi1Kvjjf99Ol6xHhIRERFRmZUp5IVs2wSg8Hi83gOGYPDA/hg0sF+x/XR0dGBhbg5jY2Pl9JKIiIiIyqRMIc/RwUH27+lfT4G3l6dcGxERERGphzKFvKK6v9NFmf0gIiIiIiUqd8iTunnrNm7evoOMjAwUFEiKbReJRBg57ENFyxARERFRGZQ75L1MS8OXU79BxPUbb1wzjyGPiIiIqPKVO+TNnb8Q4ZHX0djfD926dka1avbQ1dVVZt+IiIiIqJzKHfLOnr+A+nXrYNH8PyDiZS2IiIiI1Eq5r3iRm5sHfz9fBjwiIiIiNVTukOfl6VHi1S6IiIiISPXKHfJGDRuK02fP4fqNm8rsDxEREREpQbmPyUtKTkbzpk0x5pOJ6NKpA+p4ecLU1LTEfbt17VzuDhIRERFR2ZU75H3/868QiUQQBAF79x/E3v0Hix2fJwgCRCIRQx4RERFRJSt3yJv+9RRl9oOIiIiIlIiXNSMiIiLSQuU+8YKIiIiI1Fe5Z/Li4uJLva+DQ/XyliEiIiKicih3yOvZf1CpFkIWiYCLp4+XtwwRERERlUO5Q947XTqVGPIyMjJx/8FDPHv+HI38fOHo6KBQB4mIiIio7Mod8r775qvXbhMEARs2bcH6jZvxzVeTy1uCiIiIiMqpQk68EIlE+GDIILi7uWL+wiUVUYKIiIiI3qBCz66tW8cbodeuVWQJIiIiIipBhYa8mNhnKBAXVGQJIiIiIipBuY/Jex2JRIIXCYnYu/8gTp89h4DGjZRdgoiIiIjeotwhL7BF2zcuoSIIAizMzTFxwsflLUFERERE5VTukOfv5wMRioc8kY4OLMzNUK9uHfTo1hU21tYKdZCIiIiIyq7cIW/pgj+V2Q8iIiIiUiJeu5aIiIhICynlxIuIyOu4e/8BMjOzYGpqAm9PD/j6NFTGXRMRERFROSgU8iKu38APP89CTGwsgMKTLaQnYzg71cT0aVPh06C+4r0kIiIiojIpd8h7+OgxJkz6Ajk5uQgKaILGjfxgZ2uLpORkhF4Lw6XLofh00pdYtWwR3N1cldhlIiIiInqbcoe8FavXIT9fjHmzf0Wz4CC5bUPfH4LzFy/h8ynTsGL1Wsz8YYbCHSUiIiKi0iv3iRfXwsLRvm3rYgFPqllwENq3bY2r18LLW4KIiIiIyqncIS8jMwM1HB3fuE8NR0dkZGaUtwQRERERlVO5Q56dnR2u37z1xn1u3LoFOzu78pYgIiIionIqd8hr1bwZroWFY/GylcjNzZXblpubi6UrVuPqtXC0btFc4U4SERERUdmU+8SLEcM+xNnzF7Bm/UbsDNmD+vXqwMbGBsnJybh1+y5SUlNRs4YjRgz7UJn9JSIiIqJSKHfIs7K0xOplizB/0VIcPnoc5y5ckm0zMDBAj25dMWHcaFhaWCilo0RERERUegothmxlZYXpX0/B15M/x5OnUcjMzISpqSlcXWpBT08pF9MgIiIionIocxJbtXY9srNzMGbkMFmQ09PTg0dtd9k++fn5WLR0BUxMjPHRB+8pr7dEREREVCplOvHi0pVQLF2xGpaWFm+cqdPX14elpQUWL1uJ0KthCneSiIiIiMqmTCFv/8HDMDc3w8B+fd6674C+vWFhYY49+w+Uu3NEREREVD5lCnmR128gsEljGBgYvHVfAwMDBDZpjIjIG+XuHBERERGVT5lCXkJiEmrWqFHq/Ws4OiIxKanMnSIiIiIixZQp5OnoiCAWi0u9v1gsho6OqMydIiIiIiLFlCnk2dvZ4eHjx6Xe/+Hjx7C3sy9zp4iIiIhIMWUKeX6+Pgi9GoZnz5+/dd9nz58j9GoY/P18yt05IiIiIiqfMq2TN6Bvb+zZdwBTp83A/D9+g5WVVYn7pb58ianffIeCggL079OrzJ3af+gwwiOu486du3jw6DHy8/Mx/esp6NGtq9x+YrEYp8+cw+mz53Hz9m3Ev3gBEURwc3NF93e6oE/P7tDV1S2xxoFDR7B563Y8evwE+vp68G3YAGNGDkcdb68y95eIiIhI3ZQp5NXx9sLggf2x6Z9tGPjeR+jbuyeaNPJHtWqFX8kmJCTgcug17Nq9FympqRgyaEC5QtOSZSvxPC4eVlaWsLO1wfO4+BL3i4mNxZRvZsDE2BgBTRqhVYvmyMjIwJlzFzBr9lycu3ARf8yaCZFI/rjAVWvXY/GylXB0qI6+vXsiKysLR44ex4ix47Hozz/g69OwzH0mIiIiUidlvuLFxAkfw8DAAOv/3ozV6zZg9boNctsFQYCOjg4++uA9jBs9olydmjb1S9RydoKjgwPWrN+IhUuWl7ifiYkJJn8+Ed27doaxsfF/fczOxphPJuLsuQs4duIUOrRrI9sWFR2DZSvXoJazM9auWAwzMzMAQP8+vTB8zMf4edZsbF6/Gjo6Zfomm4iIiEitlDnJiEQijB87Ctv+XoePPhiCRn6+cKnlDJdazmjk54thH76PbX+vw8djRhabQSutoIAmcHRweOt+1eztMaBvb7mABwDGxsZ4b9BAAMC1sHC5bXv2HUBBQQGGD31fFvAAwNvLE506tMfjJ08RHnm9XP0mIiIiUhdlnsmTcnKqiXGjRyqzL0qlp1d4LN6rx+Rd/Tf0BQU2KXabpkEB2Lv/IK6FRaCRn2+F95GIiIioopQ75Km73XsLL6cWHBgg1x4dEwMTY2PY2doWu42zk5Nsn9fJy8tDXn6+7OfMzCwAgEQigUQi+bdVBB0dESQSAYAg21ckEkEkEhXZryztin19LAgCBEGQa9PR0SlDe0WMSb5d2s/StJet7xwTx8QxcUwcE8dUlnb1f88tzWFlWhnydoTswfmLl9CkcSM0bxYsty0jIxM21lYl3s7U1FS2z+usWb8Ry1etLdYeFfsCJiYmAABzU2PY21ohKeUl0jOzZftYWZjBxsoc8YkpyM7Jk7Xb2VjCwswEsfFJyM//b7FpB3sbmBgb4mnsCwBv//r6TbJz8hCXkCz7WV9fD86O9kjPzEZi8ktZu7GRARyr2SLlZQZS0zJk7RUxpqIvaCcHO+jp6eJJjPxJNq5O1SEWFyAmLlHWJhKJ4ObswDFxTBwTx8QxcUxV9j3XsVrxyapXiYRXI6WakZ54UdISKiU5c+48Jn89HfZ2tli1dBHs7OQfhKatO8DG2gr7dm0rdtuo6Bj0G/Q+WrVojjmzfi7x/kuayeveZwCOHdwDs39DYkV8qhgzX7FPFcs+U8dPSvLtgDZ8+uOYOCaOiWPimDR9TJrwnlvlZvLOnb+Iqd/MgI2NNRbNn1ss4AGAmZnpa2fqMjMzZfu8joGBAQwMDIq16+joFHvACy/pVvzkk9c9MWVtLwvpC0PR9ooeU0k1X9fOMXFMb+ojx8QxcUwc05v6qI3vucX2K9VeGuDs+QuYPO1bWFlaYslfc+FUs0aJ+zk7OSErOxuJSUnFtkmPxZMem0dERESkqbQi5J09fwFTpk2HhbkFFv81740hTXrW7KXLocW2Xbh0pXAff9+K6SgRERFRJdH4kHfuwiVMmTYd5ubmWPzXXNRyfvMsXI9uXaGrq4tVazcgI+O/gxzv3ruPw0ePwc3VBX684gURERFpOLU8Jm/X7r2yBYkfPnoMAAjZu0+2xp2fT0P07tkdT54+xeSvv0FeXj4a+/vh8NFjxe7L0cFB7oQNl1rOGD3iIyxethJDho5A2zatZZc1A4BpU77g1S6IiIhI46llyAuPvI59Bw7JtUVE3kBE5A3Zz717dkdSUjLy8grPdD38b0h7VSN/32Jn5Q4f+gEcHRyw6Z9t2L4zBPr6evDz9cHYUcPLda1dIiIiInWj9kuoqLuMzEy07dQNJw7vK7KEivKNmqfY7ZdPVEYviIiItJ+2vOfye0kiIiIiLcSQR0RERKSFGPKIiIiItBBDHhEREZEWYsgjIiIi0kIMeURERERaiCGPiIiISAsx5BERERFpIYY8IiIiIi3EkEdERESkhRjyiIiIiLQQQx4RERGRFmLIIyIiItJCDHlEREREWoghj4iIiEgLMeQRERERaSGGPCIiIiItxJBHREREpIUY8oiIiIi0EEMeERERkRZiyCMiIiLSQgx5RERERFqIIY+IiIhICzHkEREREWkhhjwiIiIiLcSQR0RERKSFGPKIiIiItBBDHhEREZEWYsgjIiIi0kIMeURERERaiCGPiIiISAsx5BERERFpIYY8IiIiIi3EkEdERESkhRjyiIiIiLQQQx4RERGRFmLIIyIiItJCDHlEREREWoghj4iIiEgLMeQRERERaSGGPCIiIiItxJBHREREpIUY8oiIiIi0EEMeERERkRbSU3UHiIiIiF71IiEBfy1aigsXLyMnJwdOTjUx/espqFe3DgAgKysLCxYvw6kzZ/HyZRpq1HDEu/37ol+fXiruufpgyCMiIiK1kpaWjpFjP0HjRv74c84sWFlZITo6Bhbm5rJ95v61CKFXr+GH6dPg6OiAi5dD8ducubCzs0Prls1V2Hv1wZBHREREamXtxr9RvVo1zJg2VdZWs4aj3D6R12+gW9cuaNzIHwDQt1cP7AzZg1u3bzPk/YvH5BEREZFaOXP2POrW8cbUb2agU7feeO+jkdi5e6/cPj4NG+D02XN4kZAAQRAQejUMUVHRCAoMUFGv1Q9n8oiIiEitxD57hu27QjDk3YEY9uH7uHn7DubMnQ99PT10f6cLAODLSZ9i5qw56NZ7AHR1daGjo4NpU75AIz9fFfdefTDkUam97SDYon75bQ52hOzBpE/HY8i7A1TQWyIi0lQSiYC6dbwxfuwoAIC3lycePXqMHbt2y0Lelm07cP3mLcyZNROODtURFh6B3+bMg52dLYICmqiy+2qDIY9KpTQHwUqdOHUG12/egr2dnQp6SkREms7O1hburi5yba6uLjh+8jQAICc3F4uWrsDvv/yIFs2aAgA8PWrj3v0H2LBpC0PevxjyqFRKcxAsUDjbN3vun5j/x++Y9OXUYtuJiIjextenAZ5GRcu1RUVFw8GhOgBALBZDLBZDJJI/tUBHVxeCRKi0fqo7nnhBpVKag2AlEglm/DAT7w8ZhNrubirqKRERabrB7w7A9Zu3sHrtBkTHxODg4aPYuXsvBvTtDQAwMzVFI39fzF+4GFevhSH22XPs2XcA+w8cQpvWLVXbeTXCmTwqldIcBLt2wybo6upi0IB+Ku4tERFpsvp16+D3X37EwiXLsWLNWtRwdMT/PvsEXTt3lO3z8/fTsXDJcnz7/c9IS0uDg0N1jBszEv1691Rhz9ULQx6VytsOgr195y42b92GDauWQyQSqbi3RESk6Vo2b4aWzZu9drudra3cIURUHEMelcrbDoINi4hESkoqevQbKNteUCDBnwsWY/M/27B7+5ZK7S8REVFVx5BHpfK2g2Df6dIJgQGN5bZ/OmkyunbpiB7vdK20fhIREVEhhjwqlcHvDsCIMeOxeu0GdGjfBjdv3cHO3Xvx9eTPAQBWlpawsrSUu42eni5sbWzg6lJLFV0mIiKq0hjyqFRKcxAsERERqQ+GPCq1tx0E+yoeh0dERKQ6DHlERESkVkbNU+z2yycqoxeaj4shExEREWkhhjwiIiIiLcSQR0RERKSFGPKIiIiItJBWnXhx4tQZbNuxC3fv3Ud2TjbsbG3RoH49TPh4LByqV5Ptl5GZieUr1+D4ydNISk6Gna0N2rdtg1HDh8LExER1AyAiIiJSEq0IeYIg4Jff/8DOkD1wqlkDHTu0g4mJMRITk3AtLAJxcXGykJednY0x4z/DvfsPEBwYgE4d2+HevQfYsGkLroVHYNnCP2FoaKjiEakfnulERESkWbQi5G3euh07Q/agf9/e+GLiBOjq6sptF4vFsn+v27gZ9+4/wIfvD8aEcWNk7X8tXop1Gzbh7y3bMOzD9yqt70Rvs2zlaixftVauzaWWM7ZtWg8A2BGyB4eOHMXdu/eRmZWF4wf3wNzcXBVdJSIiNaLxx+Tl5OZixaq1qFmjBj7/7JNiAQ8A9PQKs6wgCAjZsw8mxsYY+dGHcvuM/OhDmBgbI2TPvkrpN1FZuLu54sDu7bL/Viz+S7YtJycHTYMC8RE/nBARUREaP5N36fIVpKWno3u3rpBIJDh+8jSioqNhbmaGwIDGcHZyku0bFR2DhMREBAcFwNjYWO5+jI2N4ePTABcvXUFc/Au5Y/iIVE1XVxd2trYlbhvy7gAAwNVrYZXZJaokb5vJzc3NxbwFi3Hk6HHk5echODAQU76YCFsbG1V0l7QIX3uaT+ND3u079wAAujo6GPzhCERFR8u26ejoYPC7/THxk48BANExMQCAWkWCX1G1nJxw8dIVRMfEvDbk5eXlIS8/X/ZzZmYWAEAikUAikfzbKoKOjggSiQBAkO0rEokgEomK7FeWdsUmXQVBgCAIcm06OjplaFesvnRsbxqrtJ+laS9b31/XXhHPk/LHBADRMbHo2rMfDAwM0LBBPXw8ZiRqODrK7S8pcjt1H5M2Pk8VNSZBEODu5oqFf86BICncV1dXFxKJBCKRCHPnL8TZ8xcx84fpMDUzw+y58zH562+xYvECtR1TedtL6jvHpJ2vPWW852j2e+7bnycdnbf3UeNDXkpKCgDg7y3/wNvLC2tWLIGbSy3cvfcAM3+bjY2b/oFTzZro36cXMjIyAQBmZqYl3pepaWG7dL+SrFm/sdgnGwCIin0hOzPX3NQY9rZWSEp5ifTMbNk+VhZmsLEyR3xiCrJz8mTtdjaWsDAzQWx8EvLz/zt+0MHeBibGhnga+wKAQykfkZJl5+QhLiFZ9rO+vh6cHe2RnpmNxOSXsnZjIwM4VrNFyssMpKZlFLkHR4XqP4mJByA/pqIvaCcHO+jp6cr2k3J1qg6xuAAxcYmyNpFIBDdnB4XHVBHPU0WMqX69epj8+SSYmVsiJTUV27dvx8hxE7B14zrk5hfIxhSXkCK7nbqPSRufp4oaU2paJkQiHdjZ2iL6ecK/Y8pHakYOzIwNEbJ3Pz795BPYVa8JABg+bDj+98UXiLxxE+aW8rO/6jImbXyetHFMqnztAfZQxJOYeI1+zy3N8+RYreRvd4rS+JAnnb3Q09PH7F9+gr29HQDA388Hv/z0Hd4bOhIbN21B/z69lFLvow/ew5BBA2U/Z2ZmoXufAahVsxrMTKXhsfATi621JWytLWT7Sj/JVLezlrtPaXvN6rYltrvUVPyrY2MjA7g6VS/Wbm5qDDMTo2Lt1pZmsLIoOQyXh7T268YkbX+1jyKRCPr6eiX2XfExVezzpKwxOTvay33Ka9+qGXoNGIyjx0+gZ/d3ZGNKSnguu426jwnQvueposZkZWGK2GfPis3kOlSvjtBrYRCLxXinUzuYm5vJxuFQvTpu3LyFwQP7q+WYirZry/OkjWNS9WtPEa5O1TX8Pbdsr73X0fiQJw1W9ep4ywKelIe7O2rWcER0TCzS09NlM3ivm6nLzHzzTB8AGBgYwMDAoFi7jo5OsalTHR0RpE/Uq/uWpKztZSGd4lW0vbyKPzYlj+l1NZXR99e1V/TzpOwxWVpaoJazE6JjYuXadYrcTtPGVJr2qjqmBvXrY8a0qXCp5YzEpCQsX7UWY8ZPxOb1q5GcnAJ9fX1YWlrI3d7GxhrJySllGiufJ47p1T6q+rWniKL1Nfk9t6yvvVdpfMhzqeUMADAzMytxu7Q9NzdPdhJG1L/H5r1K2u78mmP2iNRBVlYWYmOfwa5LJ1V3hSpB86ZBsn97etRGg3p10aPfIBw9foJrelKF4mtP82n8EipNGvkDAJ48fVpsm1gsRkxsLIyNjWBlZYlazk6wt7NDZOQNZGdny+2bnZ2NyMgbqFHDkWfWklqZt2ARroaF49nz54i4fgNffvUtdHR10LlDewBAYlIS7t67j+iYWADAg4ePcffefbxMS1Nlt6mCmJuby2ZybW1tkJ+fj/T0dLl9kpNTeIYjKR1fe5pH40Oek1NNBAcGIDomFrt275Xbtmb930hPz0CbVi2hp6cHkUiEXj26ISs7GyvWrJPbd8WadcjKzkbvHt0rs/tEb/XiRQK+mfEj+g/+EF9/+x0sLS2weukiWFtbAQB27NqN94eNws+zZgMARo//FO8PG4XTZ86psNdUUWQzuXa2qOvtBT09PVwJvSbb/uRpFOLi49GwQT0V9pK0EV97mkfjv64FgCmfT8SIsZ/g51mzcerMWbj8e3Zt6NVrcHSojk/Hj5Xt++F7g3DqzFms27AJ9+49gLeXJ+7eu4+Ll6+gXt06GPxu/zdUIqp8M3+Y8cbto0cMw+gRwyqpN1TZ5i1YhJbNm8HRoToSEpOwbMVq2UyumZkZenV/B3P/WgQLCwuYmprg97nz0bBBfTRsUF/VXScNx9ee5tOKkOfkVBNrVy7F0hWrcOHSZVy8HApbWxsM6NsbI4cPhY31f2ehGBsbY9nCP7Fs5RocP3UaodfCYGdri/cGD8SoYR/BiMcZEJEakc7kvkxLg7WVJXx9GsrN5E76dDxEOjqYMm068vLzERwYgClfTFRpn0k78LWn+URCSSuvUqllZGaibaduOHF4X5ElVJRv1DzFbr98ombXJ1IXa9ZvxMIlyzFoQD98PnECAGDmb3Nw+cpVJCYmwtjEGD4NGmDCx6Ph6uKi4t4SaSZVv+eour6yaMVMHhFRZbh5+w52huyBp0dtufY63l7o0qkDHKpXQ1paOpatXINPJn2JkK2bSryeNmmmVwP+y7Q0LFuxGhcvhyI+Ph5W1lZo07IFxo4a/toVH4gqk8afeEFEVBmysrIw/fuf8PWUL2SLv0r17dUDjfx8UcPREXW8vTBu9AjEx7/A8+dxKuotKVtJAT8hMREJiUn47JNx2Lx+NWZMm4oLly7jx19+U2FPif7DkEdEVAq/zfkTzZsGIyigyRv3y87Oxp59B1CjhiOqczkmrfC6gO/h7o7fZv6AVi2awcmpJgIaN8K40SNx5twFiMXiN9wjUeXg17VEak5bjg3RZIePHsOde/ewdsWS1+6zdccu/LVoCbKzc+BSyxkL586Gvr5+JfaSKkrRgL9q7fo37puRkQFTUxPo6fHtlVSPr0IiojeIi3+BOfMWYMG82W9c5b9rpw4ICmiCxKQkbPh7C76a/j1WLP5LoSsDMOCrXmkCvlRqaipWrlmPPj17VELPKp4irz++9tQDQx4R0RvcuXsXySkp+GD4KFlbQYEEYeGR2LpjJ86dOAJdXV2YmZnBzMwMtZyd0LB+PbTr0gMnT59F547tVdh7UkRpAz5QuNLCxC+/gpubC0aP+KhyOkj0Fgx5pBG27QzB9p0hsgPZ3d1cMWLYUNm1FROTkjB/4RJcuhKKrKxsuNRyxvAP30e7tq1V2W3SAgGNG2PT+lVybT/8PAuuLrXw4fuDSzx7VhAECIKAvLy8yuomVYDSBvzMzCx8+r/JMDExxu8zf+RXtaQ2+EokjVDN3h6fjB0NZ2cnCIKAfQcO4Yup07Bh9XLUdnfDdz/+gvSMDPwxayYsLS1x6MhRfDX9e6xbuRTeXp6q7j5pMFNTE3i4u8u1GRsbwdLCAh7u7oiJfYYjx04gOLAJrK2sEJ+QgLXr/4aRoSGaNwtWUa9JGUoT8DMyM/HppC+hb6CPP2bNVOjreSJlY8gjjdCqRTO5nz8eMxLbd4bgxs1bqO3uhsgbNzD1i/+hfr26AIARH32ITVu24faduwx5VKEMDQwQHhGJzf9sQ1p6OmxsrOHv64sVSxbIXW2HNM/bAn5GZiYmTPwCObm5+GH6NGRkZiIjMxMAYG1lxTUSSeUY8kjjFBQU4NiJk8jOyZFdI9GnQQMcOXYczZsFw9zMDEePn0BuXh4aN/JTbWdJKy1d8Kfs3/b2dvhzziwV9oZU5e7de7hx6zYAoM+778ltC9m2CTUcHVXRLSIZhjzSGA8ePsLwMR8jLy8PxsaFx764u7kCAH75cQa+nv4DOnTtCV1dXRgZGeH3mT/C2clJtZ0mIq1SNOA3buSPK+dOqq4zRG/BkEcaw6WWMzauWYGMjEwcO3EK3/38C5Yu+BPubq5YsnwV0jMysPDPObCytMSpM2fx1fTvsHzRX/Co7f72OyciItIyDHmkMfT19WUzc3XreOPWnTvYvHU7PhwyCP9s34nN61ejtrsbAMDL0wNhEZHYun0nvpr8uSq7TUREpBK8rBlpLEFSuERFTm4uAEBHR/7lrKujC4kgqKJrREREKseZPNIICxYvQ7OmQXCoXg1ZWdk4ePgoroaF468/foerSy04O9XEL7/NwWefjIOlhQVOnjmLS1dCMfe3X1TdddJwvOoEEWkqhjzSCCmpqfjux5lITEqGmakpPDzc8dcfvyMosPBi8fNmz8KCxcvwv8lfIys7G85ONfHdN19xnTIiKjcGfNJ0DHmkEb79avIbt9dydsJvM3+opN4QERGpPx6TR0RERKSFGPKIiIiItBBDHhEREZEWYsgjIiIi0kI88YI0giJnufEMNyLSRKvXbcSJU6fx9GkUDA0N4dOwPj4ZNwauLrUAAM+eP0ev/oNLvO0vP36HDu3aVGJvSR0x5BEREamha+HhGNC3N+rVrYOCggIsWroCEyZ9iX82roGxsTGqV6uGA7u3y91mZ8hebPh7M5oFB6qo16ROGPKIiIjU0F9//C7384xpU9Gpe2/cvnsPjfx8oaurCztbW7l9Tp4+gw7t28LExKQyu0pqisfkERERaYCMzAwAgIWFeYnbb9+5i3v3H6Bn93cqs1ukxhjyiIiI1JxEIsEffy6Ar08DeLi7l7hPyN79cHN1gW/DBpXcO1JXDHlERERq7rc58/Dw0WP8/P30Erfn5Obi0JGjnMUjOTwmj4iISI39Nmcezpy/gGUL56N6tWol7nP8xCnk5OSiW5fOldw7UmcMeURERGpIEAT8/sefOHn6LJYsmIeaNRxfu2/I3n1o1aIZrK2tKq+DpPb4dS0REZEamjVnHg4cPoIfv/sGJibGSExKQmJSEnJyc+X2i46JQVh4JHr16KainpK64kweUSm8bVFSANgRsgeHjhzF3bv3kZmVheMH98DcvOSz4IiI3mb7zhAAwNhPJsq1T/96Cnp06yr7effeA6hWzR7BgQGV2T3SAAx5RKXwtkVJASAnJwdNgwLRNCgQC5csV3GPiUjTXTl3slT7jR87CuPHjqrYzpBGYsgjKoW3LUoKAEPeHQAAuHotrNL7R0RE9Coek0dUDm9blJSIiEjVOJNHVEalWZRU21wLj8D6vzfjzp17SExKwu+//Ig2rVrKtmdlZWHB4mU4deYsXr5MQ40ajni3f1/069NLo2sTEWkyhjyiMpIuSrp88V+q7kqlyc7OgZdHbfTs9g4mf/1tse1z/1qE0KvX8MP0aXB0dMDFy6H4bc5c2NnZoXXL5hpbm1TvbSE/oHmbEm/36cdj8cF7gyqplxVj1DzFbr98ojJ6QZqMIY+oDEqzKKk2at40CM2bBr12e+T1G+jWtQsaN/IHAPTt1QM7Q/bg1u3bCgctVdYm1XtbyD+we7vcz+cvXsZPv/yGtm1aVVYXidQWj8kjKgVBEPDbnHk4efosFs+f+8ZFSasin4YNcPrsObxISIAgCAi9GoaoqGgEVcKSDqqsTRWvedMgjBs9Em1btyxxu52trdx/p8+cReNG/nCqWaOSe0qkfjiTR1QKs+bMw6EjRzH7159li5ICgJmZGYwMDQEAiUlJSEpKRnRMLADgwcPHMDExhoNDdVhaWKis75Xhy0mfYuasOejWewB0dXWho6ODaVO+kJ15rK21q4K3fV363U+/YN+BQ3K3CQ4KKHZGemVISk7G2fMX8d03X1V6bSJ1xJBHVAqlWZR0x67dWL5qrWzb6PGfFttHW23ZtgPXb97CnFkz4ehQHWHhEfhtzjzY2dkiKKCJ1tauCt72dSkANA0OxPSvp8h+NtA3qKzuydl34BBMTUxeO+tHVNUw5BGVQmkWJR09YhhGjxhW8Z1RMzm5uVi0dAV+/+VHtGjWFADg6VEb9+4/wIZNWyo0aKmydlXxtmMiAcBAXx92traV1KPX2713P7p06gDDf2fXiao6HpNHRAoRi8UQi8UQieT/nOjo6kKQCFpbm/5zNSwcnbr1Rr9BH+DX3/9A6suXld6HsPBIPI2K5vVbiYrgTB4RvVVWVpbsWEMAePYsDnfv3YelhQUcHKqjkb8v5i9cDCNDAzg4OOBaWDj2HziEiZ+O1+ja9HbNggPRtnUr1KzhiJjYWCxaugKffT4Fq5YuhK6ubqX1I2TvPtT19oKXp0el1SRSdwx5RG/BtaqA23fuYuyESbKf5/61EADQrWtnfPfNV/j5++lYuGQ5vv3+Z6SlpcHBoTrGjRmJfr17anRtertOHdrL/u1R2x0etWujz8AhuBoWjsAmjRW+/7eFfADIyMzEsROnMPGTcQrXI9ImDHlE9FaNG/m/8bhEO1tbzJg2VetqU9k51awBKytLxMTEKiXkvS3kA8Dho8chCAI6d2xf4n0QVVUMeUREpDTxL17g5cs02CrpRIy3hXygcAHsvr16KKUekTZhyCMiotd609elFhbmWL5qLdq1aQVbWxvExD7DX4uWwtmpJpoGcTFqIlVjyCOiN1L1MYmqrl/Vvenr0qlf/g8PHj7CvgOHkJ6RAXs7WwQFBmDsqOEwMFDNWnlE9B+GPCIieq23fV3619zKv7IFEZUOQx4REaklzuISKYaLIRMRERFpIc7kERFRiTiTRqTZOJNHREREpIUY8oiIiIi0EEMeERERkRZiyCMiIiLSQgx5RERERFqIIY+IiIhICzHkEREREWkhhjwiIiIiLcSQR0RERKSFGPKIiIiItBBDHhEREZEWYsgjIiIi0kIMeURERERaiCGPiIiISAvpqboDqnTz9h0sW7EakTduQCwugIe7G4YMGoiO7duqumtERERECqmyIS/0ahgm/O9LGBoYoGOHdjAxMcGJk6fw9fTvEf/iBd4f/K6qu0hERERUblUy5InFYvw863fo6IiwdOGf8PbyBACMGvYhho4ch0VLV6B929ZwdHBQcU+JiIiIyqdKHpMXejUMMbHP0LljB1nAAwAzMzMM+/A95OfnY+/+QyrsIREREZFiquRM3tWwcABAcGCTYtuCgwIAANfCI0q8bV5eHvLy82U/Z2RkAgDS0zMgkUj+bRVBR0cEiUQAIMj2FYlEEIlERfYrfXtBvmJ5PD1DgCAIcm06OjoQhNK1K1o/Lb1wbG8aK4BifZG2F+SLFKpd8lhL9zwpa+xF7x8oPtbXPR/KqM/XnmpeewCQkQm+9vja07jXXmH98o+frz3FXnuleZ50dHRgamIie2xLIhJerVYFTP1mBo6dOIV1K5eibh3vYttbd+gKcwtz7N3xT7Fty1auxvJVayujm0RERESvdeLwPpiZmr52e5WcyZPOvpmZlfzAmJqayvZ51UcfvIchgwbKfpZIJEhLS4OlpeUb03RFyszMQvc+A7B351aYmpqwfhWpzfpVu35VHjvrV+36VXnsrzI1eXP9KhnyFGFgYAADAwO5NgtzcxX1Rp6pqckbEz3ra2dt1q/a9avy2Fm/atevymMvrSp54oV0Bu91s3WZmZmvneUjIiIi0gRVMuQ5OzkBAKJjYoptS0xKQlZ2tmwfIiIiIk1UJUNeI39fAMDFy6HFtl28dKVwHz/fSu2TIgz09TFq+FAY6OuzfhWqzfpVu35VHjvrV+36VXnsZVUlz64Vi8XoP/hDJCQmYNXSRbK18jIyMjB05Dg8j4vDtk3rUMPRUcU9JSIiIiqfKhnygNdf1ux5XDw++2QcL2tGREREGq3KhjwAuHnrNpauXI3I6zchFovhUdsdQ94dgE4d2qm6a0REREQKqdIhj4iIiEhbVckTL4iIiIi0HUMeERERkRZiyCMiIiLSQgx5RERERFqIIU/LSM+jqYrn0xQdc1Ubf1UeO1B8/FXxMSAiehVDnpYRiURy/weqzpt+0TEX/bdEIlFFdypVVRx70de1SCRCfn6+7N/Sx6CgoEAlfatsRZ/nqvL7XlTR8Wvza/51quL4S3qdV5WxlwWXUNECYrEYT6OicelyKIyMjaCnpwcbayt4eXqgmr29qrtX4XJycxF5/QYuX7kKPT09iEQi1HB0gL+vD5ycaqq6exWqKo8dKLxKzfFTZxAZeR0FEgkEiQA3Nxc0bxYMD3d32X6CIMiFX2Wr6PsvDbFYDD09PdnP0hlNHZ2q8Vk+IzMTZqamsp85/qox/vz8fKRnZMDG2lquXSKRaP3YS4MhT8PFPnuOjZu2YNvOELl2Q0NDODvVRJNG/mjZohka1q8HIyMjtXgzUqYnT59i5Zr1OHTkGADAyMgQOTm5AAAzM1MENG6ETh3aISgwQO4PoDKIxWLo6OiU+Q+Jsp4DVY4dUP347967j6UrVuPs+QsAACtLS6S+fCnb7u3lid49uqFD+7awtLBQuN6rMjIzoaerCyMjozLdTpm/gzGxz3D+wkU8evwEevr6MDYyQm13NzRp5A87O1ul1FBXgiDg3v0HOHj4KJ49fw6xuAAmJsaoV7cO2rRqAUcHB7l9tenvHlC1xy8WixEReR3bd+1GYlIyMjIyYGJiDH9fX7Rr0wp163jL9q0KH/DehCFPw039ZgZOnj6L3j27o0G9utDV1UVGZibCwiNw6XIo0jMyYGdrix7dumDQgP6wtrZSav0Nm7bA28sTvg0bwMDAQKn3XRqfT5mGi5cv44Mhg9GwQX2YmhgjPSMDFy9dwdETJ5GSkgoA6NyxPT4YMghenh5Kq71k+So4OlSHv58vqlWzh5Gh4Vtvo8w/CKocO6D68X/6+WSER0RizMjh8PP1gZ2tDVJTX+Ls+Qs4deYc7ty9BwBo2KA+hn/4Ppo3C1ZKXanZ8/6CqYkJmjT2h2utWrC2tpKbSSuJMmcXDh89jr8WLUX8ixcQiUQwMjREdk4OAMDWxgbNmgahc8f28Pf1gb6+vtLfjHJyc2FoYFDm+1RWP3aE7MHylWuQlJwMC3NziHREePkyTba9SWN/9OvdEy2aNYVhKV6bZZWYlARLCwvol/Ei9dowflWPff3GzVj39ya8fJmGWs5OyM3NQ/yLF7Lttd3dMKBvb3Tt3BHGxsYK13vVk6dPUc3eHiYmJrI2aZR60/hUEQgZ8jTYs+fP0ffd9zB44AB8On5ssRdPQkIiTp89h937DuD2nbto3MgfX0/+H5ydnJRWv/eAIQAAVxcXdGjXGu3atIZHbfdi+0rf3BISEnHj1m24u7nCpZazQvWfx8Wh94AhGPr+EHw8ZmSJ+5w9fwFbtu7AlavXUNvdDd9M/VLuU54itXv1HwwAcKheDUGBAWjZvBnqeHvCxtpa7s1eOvbncXE4feY86nh7wtenocL1VTV2aX11GP+Ijz7A6BHDStzn+o2b2Lx1O46fPI1q9nb46svPERwUoJQ/tEXHb2FhjoYN6iM4IAD169WBk1NNWFlayvaV1ouOicGuPfvg06A+WrdsoVD9uPgX+GD4KFiYm+N/n02AsbERTE1M8DwuDidOncHxk6eRm5sLC3Nz9OnVA0PfHwwzMzOFahaVkJCIhUuXo3XLFqjr7QVbW5u3vuG/+nWyIuLi4jHkoxFwdHDA1C8mwdzcDDbWNngaFYWTp8/i1JmziIqOAQB0bN8WY0YORy1n5fzdA4AXCQn4+dfZCApsgvr16qKWkxOsrCxLfF1Jn//8/Pwyh6LXUeX4VT3253FxGPT+MHh5euCryZ/D1tYGlhYWePjoMS5dCcWFS5dxJfQaJBIJGtSri08+HoNGfr5KqQ0A8S9e4Iup38DPpyF8fRrCy9MDNWs4QldXV7aPdNzS/+fm5lbIB43SUM5vHKnE2fMXoaenjyaN/Ev8RbK3t0O/Pr3QpHEjbN66Hdt3hmDN+r/x9eTP5V6Q5XXmbOHXZN5enniRkIAVq9dhxep18PNpiE4d26NFs6ZwqF4NwH+fbo6dPIU//lyAX3/6XuGQd+HSFejr6aFe3cLgIn0TEQQBEokEurq6aNGsKRr5+WJHyB7MX7gES5avwq8/fafwp7tzFy4BABo38kd2djb2HTiEkD37UNvdDS2bN0PToEC4udaChYWFbObmzLkLmPPnX/jpu28Uqg2oduyA6sd/5WoY9PR04ebqCuC/8UskEgiCAF1dXTRsUB8NG9TH8ZOnMW3GD1iwZBm8vTyVMpt94dIVAECbVi2hq6uDa+EROHf+IqpXq4ZG/r4ICmgCLy8POFZ3gKlp4af9y1euYv3GzZgxbarC9Xft3gsdkQ4mfToezZsGydq9vTzRplVLfPvVZBw4dARbtu3Auo2bEBUdjalf/E9pM/nbdu7C/oOHcfDwETg7OaF5s2A0bxqM2u5usLSwKPENL/RqGG7fvYfuXTvD3t5Oofohe/dDX08fn4wbjYYN6svapc/5hI/H4Nz5i1j/92YcOXYCSUnJ+OaryXCqWUOhulI7du3BhUuXcTn0KqytrODv54OggCao4+2FGo4OJQbqs+cv4vzFSxj63mCFj5dV5fhVPfa9+w/CwNAAI4cPhbubq+xki9rubqjt7oYh7w5AROR1bN66HcdOnMLsufMxY9pUeHt5KuUDXsiefbh77z4ePX6MkL374O3picaN/NGwQX14erijmr19sRrHTp7C/gOHMXHCxyVOglQkhjwNpqenh7y8PBgZGcp+LolLLWdM/GQcxGIxQvbsw4fvDVY4YAHAk6goiEQiTP3yfzA1McHxk6dw+cpV3Lx9B+GR1/HngsVoFhyIju3boVlwIAwNDXH9xk0AQNOgAIXrW1lYIC8/HyJRYYiQjl8kEsm9yZiYmGDIuwOQnp6O1es24tHjJ6hfr65CtaP//ZQ8fsxIOFSvjvOXLiMsPAKR129gzfqN2Lh5CxrWr48WzZsiOCgA1lZWCAuPAAC0bN5ModqAascOqH78jg7VkZ8vRlZWFoD/xl/0q9CCggLo6OigXZtWmDBuDOYtWITbd++iWXBQifdZFrGxzwAA7w95F5613REWEYmbt+7g6rUwnDp9FoeOHIOrSy00adwIwYFN4OBQHZdDrwIA2rVppXD9yBs3YGtrA29PTwDFQ66enh56dOuKxo38sHTFahw4dAQ+DRvgvUEDFa4NAOGR12FgYIBWLZrh4aPH+HvzVmzZugP16tZBqxbNENC4EWo5O8HY2Bi6urrIy8vDtp27cPFyKIa821/h+nfu3oWlpQXc3VwBFD7Xurq6ciG/ebNgBAU2wfJVa7B63UZs3bELkyZ8rHBtALhx8xYMDQ3Rt1cPPHryBBcuXcaxEyfh7OSEJo0bIaCRPzw8asPezhbGxsYoKCjAgUNHcPb8BXw+cYLC9VU5flWP/dHjJzA1MZXNTEq/jJSGPR0dHfj+O8u2a/dezPxtDlav24Bff/peKV+V3r5zF0ZGhhg17CM8jS484XHV2vWwsrREg/r10MjfFw3r14OLSy3ZjP6Zs+dx5eo1pX3IKAuGPA3WsH49GBoaYumK1fj2a3s4OznJzeRIicViGBoaIjiwCfbs24/rN24qHPIyMjMRFxcHQRBQr443RCIRhg/9AEPeHYDIGzdx4eJlXLl6DSdOncGJU2dgZ2sLn4b1cf7iJTRvGqSU2SQvL09YmJtj4ZJlsLa2gs+/n2ilb+7SX2jpG6Cfrw90dP7GrTt3FQo6mZlZePb8eWEfPD1gYGCAnt26okvH9nj46DHCI6/jWlgErt+8iWvhEVizbiO8vDwQHnFd48cOqMf43VxdUL1aNSxevhJWVpYIDgwo9nWIrq6ubPx16nhBT08PDx89Vjjk5eTkIPXlS+jr68Hd1QXGxsZoFhyEwCaN0bVTB9x78BARkddxNSwcO3btRsiefXB1qYW79+6jebNghccvFotRs0YN3Lx5GxYW5gBKDrkAUMPREVO/mIQHDx9h34FD6NWjm8In4SQmJiE9PQO1nJ0w84cZuHf/ASKu38C1sAhE3riBhUuWw8TEBI38fNGiWTCaNwtGdHQsbty6DX8/H6V8beXu5oYLly7LXufSv3dFxy+RSKCnp4exo0Yg8sYtnDt/Ae8PGqjwLGJScjJepqWhmr0dJn06Hs+eP8f9B48Qef0GQq+FYc/e/di9dx+8PDwQ0KQxmgUH4mVaGiIir6NJY/9SHbv6NqoavzqM3cvTE8dOnMLLl2lwdHAocewFBQUQBAG9e3bHxctXcOv2HTx5GgVXl1oK1U5OSUFK6ktYWFjgg/cGIS0tHbG9n+Hm7Tu4cPEyIq5fx9nzF+Do6ACfBvXRLDgIEokEV6+FIzgwoMwnaSkDQ54Gc3Z2QtfOHbFr9178tWgZRnz0Aby9PGUveolEApFIJHsDyM7OASBS+I8cABgZGqJpUCAsLCyQnp4Bc3MzCIIAIyMjBDZpjMAmjZGckoJrYRE4f/ESwsIjcPzkaQBA/z69Fa4PADUcHfDugH5YvmoN5i9cjA/fG4JWLZrJxi+dmpeOPzk5BYAIzjUV+7rA2NgI7dq0hqmpKTIzs2BgYACJRAIDAwPUreONunW80b1rZ9y5dx/hEZGFszw3b0MsFqN/3z6KDhuA6sYOqMf47WxtMXLYh/h51mzMnb8IQ97tjw7t2xZbRkE6/ufP4yCRFKC2u5vCtQ0NDdGmVQuYm5tBLBYDgGz2zMmpJpycaqJZcCCiY2Jx++49REZex5l/zwBWxmtfT08P/n4+CNmzDzN/m4Oxo4bD0cGh2Ac86RIaxsbGaFCvLo6dPIWkpGTFQ15SEp5GRcnCspenB7w8PfBO5064d/8BwiMicTUsHBGRhW949na2sLe3R3JyCgb2U87z38jPF+v/3owffp6FT8aNhqdH7WKHoIhEItnxoF6eHrh95y7S0tMV/vuXlpaO5JQU1KtTB0BhkK7h6IjgwCZ4p0sn3L1/H2HhkbgWFoF1G//G9p0hsLW1QUpqKgb07a1QbSlVjV8dxu7v2xAikQg//vIbPh0/Fr4+DYuFx6KBz9XFBecuXEJubq7CtbOyspGfn4/6dQvHb2FhDgsLb3h5eqBNqxaIio5BeEQkLly8jBOnzuDYiVOwtrZC6suX6N+3l8L1y4MnXmg4sViMeQsW459tOwAATYMC0a1rJzRv2lR2LBBQ+Ans6+nf48mTKBzau1Np9fPz82Xrs0mVdAbhzdt3MP37n5CSmorjB/cqrT4ArP97M9Zu+BtpaenwqO2O3j26oV2b1rCzs0VOTg6MjIwQE/sM3373I+LiX+DA7u1KrV9USWN/8PARvvnuR8S/eIETh/YptZ46jR2o/PEfPnocK1avxZOnUXB2qon2bdugRfPCY0F1RDqwtCw8IPuHmbOQlp6OvTv+UWr9V5V0zE9UdAy+mfEDomNjlTb+1NRUTJvxI65cvYb2bdvgw/cGvfakmvT0dPwxfyEuXLqMg7t3KFw7JycH6//eDFsbG/Ts/o4sXBQdd1JyMm7eulO4hmPoVdy5ew/mZmY4dnCPwvWBwr87P/7yGw4ePgrfhg0weGB/NA0OLHGWNCMjA3P+XIBz5y/i8L5dCtfOzc1FyJ59MDc3R8f2bWXHwhYdf0ZGBp48jcK9Bw9x/sJFnD57XivGrw5jB4AFi5dh3cZNqOHoiAH9eqN502A4OlQvNkuckZmJ2XPn4+z5Czi6f7fCdfPz83H85GkYGRmiedPgEg+RysvLQ0JiEqKjY3Dq7DmE7NkHYyMjpY6/LDiTp8Gk0/HDh76PmjUcsWXrDly4dBkXLl2GkZEhfBo0QN063oiJfYaIyOvIyMzA2JEjlNqHks6Ykr7JC4IAsVgMfX195OTkICkpGR3atVFabekfl769eqJ6NXvs2rMPoVfDMHveX5g97y/Uq1sHtZydEBf/Arfv3IWeni4+HjNKKbWlx8C8qmjAkX5VmJKaithnz9G5Qzul1Ab+C1N9evVANfvCsV+9VjljB15/pmRljV/63Ldr0wrW1lY4ePgozp6/gDXrN2LN+o2o5ewEGxsbpKSk4GlUNKytrTBeieN/3fNf9M1OOv7nz+Pw8PFjdO3UUWn1rays8NvMHzF3/gLs3ncAx06cRCM/X/Tq0Q1NgwNhYmyMnJxcWFiY4/DR4zhx6gy6dOqglNpGRkYYNfyjErdJX5e2NjZo1aIZWrVoht37DuCnX35T6u++vr4+fpg+Dc5OTvhn+w5M/fY7eHt5omP7tgho3AiWloUnf1hZWmL7rt04fuIUunXtrJTahoaGGNi/r1yb9HmXvi7NzMzQoH49NKhfD2amJjhz7gLaa8H41WHsAPDJuNFwdamFNes34s8Fi7Fj1240DQ5CI18f2NrZwtLCAmamptj0zzYcP3kKvbp3U0pdfX19dO7Y/o37GBgYoGYNR9Ss4Yic3ByE7NmHdm1bK6V+eTDkaaiiK5nbWFtj8MD+GDywP06dOYu9+w8iPPI6Qq9dQ8T1G8jNzUUdby9M+nQ8WjZvqpT6r1vvq+inOpFIJAuBZ86dR1Z2Nvr27qmU+tL7BwBTUxN06tAenTq0x7XwCJw4eRoR128gKSkZcfHxSE19ieDAAAwe2B+NG/kppXZpzk6WhqDwiEjk5uaij5LGXvS5NzM1ReeO7dG5Y3uEXg3DydNnEHnjZoWOXfrV5KtefU1U1PiB/557PT09BDRuhIDGjXDn7j1cuhKK23fu4kVCIpKSkpGeno7u73RBvz69UE9Jy8cAZXv+Hzx6hIKCAqWOXywWw9TUBKNGfAR3NzfsPXAQ18IjcC08Arq6uqhfrw7Mzc3x9GkUYmKfwbdhA7yvpJMuBEFAQUHBG0N+0TXDYmJiAQC9eijnjRb477U2eGA/uNRywuGjxxF6NQwLFi+Djo4Oajk7QU9PDwmJiXj5Mg1NgwLx3uB3lVL7TVeSKBp4pD/fvfeg8PgwJY5f+gHi3f594exUE0ePn6iU8Rd97l+dwaussUvrdu3cEY6ODjh56gwuXr6CbTt2YtuOnbC0tIQ4X4y8/Hzk5uaiQ7s2Sn3ugTevhVdUeOR1iMVi9OnZXSn1y4Nf12qwFwkJqGZvj5zcXIjFYrljbbKysnDn3n0AQDU7OxibGMPWxqZC6ufn56OgoOC1B5UKgoCz5y/g2IlT+O6br5TaB+n9v/pHNzc3F9ExsTA0NIC5uTkMDQwqZFHM0rgWHoELFy9j/FjlzSRFRcfAxtoK6RkZMDAwkHtuc3JyEBUdA2Njowobu7R+ZlYWDA0N5daFe1VFjL+oV8Nlfn4+kpJTYG5mBj09XRiUY8FeZbp77z4iIq8XmwFRpry8PFy4dBlnzp7HvQcPkZmZhaysLOjr66FLp47o16cnqlerVmH1gZI/+CUmJmHadz8gLv4FQrZuqrDaYrEY12/cQui1a3jw8BFevkxDYlISzM3M0LF9O/Ts3lWp6wSWVkpKKmb+NhuPnzzFtk3rK6xOfn4+IiJv4GpYOB49flzp4y/pua+ssRcUFODho8eFJ1dERSExMRmxsbFwcKiOZsFB6Nq5o9LWZyyLtLT0wjP679zFpnWrKr2+FEOehhEEAWfOXcDuvfvw4OFjZGdnw6O2Ozw8asPbywMe7u5wdqpZYYHmTfXreHnC28sTTjVrwMDAoEJX9371LNKi7SKRqEKvWfi62hUtLy8PR0+cxLYdIbh37z5EOjpwdqoJZ6eaqOPlhQYN6sHb01N2xmWl1vf2hq9PA3h5elTIJdSkpDMJurq6xR5/6YlGr7Yr83X4pvqVJTklBSkpqbC0tEBGRiasrCzlQnZaWjoSEhNRvVrhdatNTU2V2tei9bOzs2FlaQlz85Jfc9LXjKGBAdq3baO0PkiV9AEvOzsbWdnZsLWxQV5enkquxCMlFotxOfQqdHV1ERTQROH7KygoQHRMDNLSMwrHLpGgZo0acidTZGZmITs7G3Z2tkodf9HaUjVrOL528kDZYy/Jq7/b+fn5shPOXndIRWUpKCjA3Xv3IQCyEzVUgSFPwyxZvgobNm2BkZEhqlerBrFYDLFYjPj4FxAgwNPDA+3btEbXLh1hZ6v8a1eWtv47XTvJ/fIr6xcuLv6FbIFlAHLrQr1K2SGzLLWLUtZK/3P/WoQtW7fBoboDnJ1rQk9PDxnpGXj4+DEyMjJRvVo1tGjeFD3e6YJ6FfBHpbT1e3brKncSgLKe+5iYWLmFVCUSiey41Mqg6vqJiUlYtGwFLl0JRUJCIkxMTFDD0QGuLrVQv15d+DSoD0+P2rIZdWW//t9Uv0H9evDzaQiP2u4VEqqkY3nTY/5qyH/1qgMVXb+iPXkahYVLluP8xYvIzxfDQF8f5ubmcHSojgb16yEoMAB+Pg1lJ9wp8xJ6b6rdsGEDNAsKhE/D+ir7tuTVsSrzudd0DHka5Nnz53j3/WFo7O+HiRPGwdXFBampqYh/kYCY2FiEhUfiwqUriI6JgadHbXw8ZhSaNw1S2i+7OtTvPWAIggKboHOH9mjRvKncDEbRWTxlX05HlbUBIPbZc7z73lC0bNEMk/83EdbWVsjMzEJ6RgaSkpJwLTwCJ0+fxa3bd1DN3g6jRwxDt66dlfZHTtX1Y2Ji0XfQ+3B1qYUe3bqia2f5DzEFBQUACo+Vk9aUzuhYWlgo/Kas6vqJSUmY/NW3uHHrNpoGBcLExBgikQhxcfG4//ARcnNz4ebqgg7t2qJ3j25KWSapvPX79OwOO7vCx+ZNx6+VRUZmJjLSM+DgUF3WVvQxr2iqrp+QkIhPP5+MR4+foGvnjrCysoSuri4ePX6C8IhIZGZmwdzMDG1at0Sfnt3RoH49ldTu26uHbB3Osh6/9jppaem4//AhGtavp5JZWVXXV5hAGmP5qrVC+y49hEtXQgVBEIT8/Hy57ekZGULE9RvCnHl/CQHN2wide/QR7ty9pzX1V63dIAQ0byP7r8M7PYUZP84Uzp67UKwveXl5giAIwvadIcK4TycJT55GaWxtQRCEVWvWC+279BAuh14VBEEQxGKx3Pb8/HwhJvaZ8PeWrULHd3oJAc3bCOcvXlK4rrrUX7vhb7nHP6B5G2HM+M+E/QcPv/HxHzpyrFJeg6quv2T5KqFNp3eEv7dslbWlpaUJcfHxwrWwCGHR0hXCgCFDhcAWbYVhoz8WwiMiBUEQBIlEonBtdaj/x/yFQkDzNsKocROEkL37hezsbLnt+fn5QkFBgVxbQmKikJScrJQ+qLr+oqUrhHaduwu7du+VteXl5Qn5+fnC87h4Yfuu3cKIseOFwBZthQFDhgpnzp0XBEE5j78qawuCIMz7a5EQ0LyN8P6wUcKK1WuFBw8fvXZfac2nUdHC3Xv3i/1uamJ9RXEmT4N89+MvuHQlFBvWLIetjc0bp6QPHz2OX36fAzcXF6xatkgr6k+a/BXCwiIw6dPxCIuIxLETp2QLXDrVrIHWLVugQ/u2csc/TP56Ok6ePoNTR/Yr9FWCKmsDwKw583DoyFFsWrcK1atVe+MM2aXLofjup19gamqCv9euVMqnT1XXnzJtOs5duIRvv5qMJ0+jcOzEKTx5+hRA4UxKuzat0LtndwQ0biS7jTIff1XXH/jeR6hZ0xHTv5oCa2urYo9/Xl4enkZFY++BQ9i0ZStcajlj6cI/iy0Oran1B384HA8fPZZra92yBXr36IbmzYJlbdJ+ZWZm4dfZfyD15UvM/e0XhWdSVV1/yNARsLOzxXfffAUba+sSf/9SU1Nx+OhxLFu5BmKxGKuXL4abq4tCdVVdGwDe+2gkHjx8BHMzM6SlpwMAGvv7oWOHdmjRLBjV7O3l9s/OzsbPs2bj2bPnWLZovsKPvarrK6rijk4npfPwcEdScjLCIyIB/LeiedFfOGlm79ShHdq2boXo2Fg8eRql8fVTUlKRkpIKU1MT9OrRDd998xWO7g/BD9OnoUljf8TEPsPGzf9g2KhxGDpyLLZs3YGjx0/i+o2baNGsqUJvsqqsLVXX2wsZGZk4ffa87I+s9NI9rwoKbILu73RBQkIiHj95qnBtVddPTU1FYlIyzMwKl4sZM3IYNq5Zjnmzf0XPbl1hZWmJI8dOYPxnn6NTt95YsHgZDhw6orTHX9X1k5KTAQjIz8uHtbUVgOJfgRkYGMDTozYmjBuNzz+bgKdR0di4WTkLP6u6fkzsMyQlJcPfzwdLF/yJvr0LzxQ+deYsJk3+Cu279MCsOfNw9959Wb9iYmNx/sIl5OXlKf5VvYrrp758KTv+VRqaS/qAZWVlhb69e2Ly5xORlZ2Nzf9sU6iuqmsDhYfJpKSkon7dOlg0/w+MGTkMfr4+uH7jJn79/Q8MHDIUX337PU6ePoOXaWkAgEdPnuLipSswNDRU+LFXdX1lUH0PqNTq160LYyMjLFm+Co4ODqhXt47culTCv8e+SI+Bc3ZyQm5uLjL/vYi7JtfPzcuDgb4+vDw9ABSeRWVoaIgunTqgS6cOSExMwsEjR7HvwCHcvnMXt+/chYG+PvLy89FPwfXJVFlbql69OrC3s8XS5avgUL0aWjaXv4SZ9HJW0sfe2soKBQUFyM3L0/j6BRIJTE1N4OHuLruMmL6+PpoFB6FZcBBSU1Nx/uJlHDtxCleuXsW6jf8t1aGMx1+V9QVBgLWVFdzdXHHxcihu3rqN+vXqlniNaqBwbb53B/TFrj17cev2XWRlZcHExOQ1967+9QEgNvYZUl++RN063vD384G/nw8yMjJw4dIVHD95ChcvX8H2nSHYvjMENWs4onfP7khLT0d6RgY+GDJIodqqri8IAqwsLeHt5YmQPftw5tx5NAsOgo6OTolrFerp6aFTh3b4Z/sO3Ll3Hy/T0mBpYaFxtaWePYtDUnIy2rVtLbt83uCB/RF5/SYuXCq8PvqxEydx7MRJ2NvZon3bNsjNzUVaejreG6z4upCqrq8MDHkaQhAE+Pv5YNKn4/Hr7D/w0ahx6N2zOzq0a4P6devC1NRE9glLR0cHObm5ePjoEQwMDJRy+raq69vZ2mD0iGEwMCy8Tqq+vr7sjUYkEsHOzhbvD34X7w9+F0+jorFl63Zs2xkCC3Nzua9TNK02UPjYe7i7Y9rUL/HzrNn4fMo0BAU2Qa/u3RDYpDEsLMzlLtKdnZ2N6zdvwcjYCD4N6mt8fVsbG3w56VPk5eVDR0dHdnKLNFBaWVnhnS6d8E6XToiLf4G9+w9i7Ya/YaCvr5THX5X1pWeLBgUG4PjJ0/hzwWJM+WISaru7yV2jWvoBSyQSISOz8EznuPh4hQOWqusDgLGJMapVs4dLrcKLy4vFYpiZmaFj+7bo2L4t4uLicfrsORw/eRrXwiOwcMlyAIC5mRlaNFN88XdV1pf+TW3TqiVC9uzDvL8WQ19PH8FBAbKQJT0BRPb4Z2TA2soKjx4/VShkqbK2lIWFOZxq1pBdc7ugoAAmJiYIDgpAcFAAEpOScC0sHOcvXkZYRCQ2by28bKOynntV11cGHpOnYbKzs7H/4GEsW7kGKampsLayQsMG9VC/Xj3Ur1cHdby8EB0Tg91792PP/oMY2L8PJn7ysdbUf9OVNqRnuOrq6uLm7TsY+8lEdO3cEV9P/lzjawOFby6nz5zDijXr8ODhIwCAR213+Pk0RJPGjeDu5oLHT6Jw5NhxHD95Cu8PHoRPxo3WmvqvIw1cQOHxcddv3MTHn32u9Mdf1fXXbvgbi5augCAIeKdLJ3Tp2AH+fj6y63VKv0a/HHoV3//0C5o1Dca0KV9ofH2xWIyo6BhYWlrIlmV63UxiVHQMVqxei4OHj6J/n16Y/PlEja8vdfDwUcz9ayFSUlLR2N8PfXv3RItmwbLDAaSP/7nzF/HzrNlo3kx5z78qa2dmZqGgoEBu/c+S/hYnJCRizfqN2LpjF/r16YUpSnrsVV1fUZzJ0xDSXyJjY2P069ML73TphF179uHIsRM4e77wItAAZEFDLBaj+ztdMOTdAVpRv+gCtCWtuyZdAFNq/4FDhZfSUsLlZFRZuyg9PT20a9sa7dq2xsnTZxCyZx8uXLqCBw8fYdvOENlJMIWXO+qHwe/216r6ryN9zUkdOHSkQh5/VdWX/u717dUDenp6WLdhE/YfPIyDh4+irrcXfHwaokkjP5iZmuHWnTv4Z/tO5OXn410lXWFD1fX19PTg7uYq11b0MS8auGo5O8HZyQkA0KNbV62oL9WuTSsAwN+b/8HVsHBcDQuHtbUVGvn5ISigMQwMDPDw0WOE7N0HA30DDBrQTytqS9f9K6roYULSx97e3g4W/84e9lTiY6/q+oriTJ6GS01NxdPoGNy4eQvhEZEoKJCgVi0nuLm4KPVakepavyQZmZn45bc5CL0WhkN7dmpN7ZJmDxKTknD1WjgiIq9DT08P9nZ2cHGphVYtmim1tjrUL43s7GzMmjMP5y9cwuF9u7Si/qtnM+bm5mLfgUPYd/Awrt+4WWx/N1cXfPTBe+jauaNW1JfOmrxpUW1pH59GReN/k79GQUEBdm39Wyvql1Tr9Nnz2LV7Dy5eDpV9ZSrVsEF9DB/6AZo3DdKq2m8TE/sMX371DbKyshCybXOVq/86DHkaIDklBQ8ePkJUdAyys7JRr14duLrUgpWlZbE/Oq9exuZNS11oev2ii8y++gc4Ly8PySmpcleo0LTaQNlWrX+1H8p47DWpflEZmZlKubyaquu/TVxcPC6HXsXDR49ha2sDaysr+Pk2lM0maXv9Vz15GoUvv/oGLZs3w6fjx2pV/aInt0llZGTgalg4YmOfw87OFiYmxqhXt47Slq5Rh9qlFfvsOX75bQ4a+fti+NAPqlz912HIU3PnLlzCqrXri31itrAwR0DjxujYvi1atWgm93WhMi9no871A5s0Rsf27dCyedMKOVVdlbVL8rrHtei1dJV1CTVNql+UWCwu9vWpJtc/f/ESHj56jHv3H8DGxgb16njDyakmqlezh5WlZYW/9tSqvrU16tWtAyenmnB0qA5LCwu5K4wUpazXoarrv272sLKu0a2q2m+qX1G3U7f6ysKQp8bi4l9g7CcTkZ2Tje7vdEGTRv6IffYcd+/dx/0HD/HgwUPk5efDzdUFwz58H+3btpad+amMS0lpSn13N1d89MF7svrKCJmqrA0Urk22buNmBAc2QYN6deUuAC/9la3IazKyvmrrp6enY836v7H+782yZYmkLCzM4duwIdq0aoFWLZvLncWorN89TanfplULuedGWW+wqq5f0rVYX51Je7VdegKYouFSlbXLUv9VyrqMpKrrKxtDnhpbvGwFtu0IwbSpX8oOfJWKf/ECkddv4vTZczh05BgA4JNxo/Hhe4NZX8NrA8DSFauxcs06ODo6wN3VBY38/dDI3w+er1wAXrp8ha6uLq5eC0NuXh6aBSt+PAzrq7b++o2bsWzVGgQHBmDQgL6ws7PD3Xv38TQqGrfu3MHNm7eR+vIlvL08MeKjD9CmVUuFa7K++tTftjMEV6+Fo1vXTmjk5yu3FI00cFbUTJoqa7O+8jHkqbFho8bB0NAQv/70HaysrF77VVDo1TDMW7AIj588wZTPJ6Fn93dYX4NrA4WX0nn85CnqeHnizr37EIvFcHSoDp+GDdCkkT98fRrA1eW/ywbl5ORg2owfcfb8BZw+ekC2rAXra2b9nv3eRW13N8z45itYWVrKbUtISMTd+/dx+ux57N67HxKJBF9P/hy9lXg2Meurtn6v/oPwPC4eBvr68PSojaDAADRvGoQG9evJzZRKvxbOycnBjpA98PLwQJPG/hpbm/WVj0uoqCnpSvEvEhJgZGQEALKFWAH5KeQmjf3x7VeT8fGn/8OpM+fQs/s7Cn9tUpXrq3rscfEvkJGRAQ93NyxbNB+379zFuQuXZDOHR44dh7ubG/x9feDv54vgoAA8jYrGzdu30bxpsMIBg/VVW//J06d4+TINnh4esoBRdAbB3t4O9vZ2CApogtYtmuP3ufOxYPEyuLu7KWXxadZXbf2Hjx7jeVw86nh7wcLcHJdDr+Lm7TvYtGUrfHwaoHnTYAQHNoGri4vs69E7d+9h3l+L4NOwPlY0XqCRtVm/YjDkqSkTExPUqeOFK1ev4fDR4+jZ/Z1iU8TSnyUSCby9POHv54PHT6LwPC4Ojg4OrK+BtQEgKSkJmZlZ8PfzhZ6eHurVrYP69epiYP8+uHP3Hk6fOYfzFy9h645d2L3vAOrW8Yaeni6Sk1PQp5fiswmsr9r6ggCYmZshJjYWQOGMwasfMoDCS6s1bxYMcYEYX371LcIjIpV0hRPWV2X9h48KFxrv0rEDhgwagKdR0Th15iwOHTmGS5dDcelyKGxtbNC4kR+aBQehRbOmuHn7DgDgow/e09jarF8xGPLU2Lv9++L8hUv46dffce/+A3R/pwvcXF1gaGgomymSThlnZGZCX18feXl5CocM1ldtbQsLczTy90NwYAAAyL4itrG2RrPgIAQ2aYyExESERUTizNkLuBJ6FWnp6TA3M0PL5oqvT8f6qq3v5uqCanZ2OH/hEs5duFTimmMikUh2gLifrw8cHR1w6983G9bX7PoZmYXX+nZxKbyMmkstZ3z43mB8+N5g3Lx9B4ePHMOxk6dw+OhxHD56HM5OTsjMyoSpqYnCl9JSZW3WryACqbUTp04LPfsPEgKatxE+GD5aWLF6rRB69Zrw7PlzIScnR7bf/oOHhY7v9BJmzprN+lpQOz09XUhJTX3jPgUFBYIgCML2nSFCQPM2wq+z57K+hteXSCSCIAjCjZu3hHd69RMCmrcR5sz7S7hx85bca04QBCE3N1cQBEGIuH5D6Nqzn/D73PmsrwX1I6/fEP74c4EQHR1TrF9SOTk5wplz54UZP84U2nR6Rwho3kb4bc48ja3N+hWHJ16oIeGVY7pepqVhzbqNOHr8JOJfvIC1lRXc3d1gb2cLIyMj5Obm4ujxE6jh6Ijff/kJrv9+CmF9zapdUn3g7etSzV+4BBs2bcG6lUtRx9uL9TW4ftGaBw4dwcIly5GUnAw3VxcEBwbAp2F9uLm6wtWlFnR0dPAiIQHzFy7B0eMnsWb5YtbXkvpZWVnQ19cvcUmOV1+jv82Zh207Q7B+1TJ4e3lqdG3WVz6GPDUlfTHFv3gBezs76Ojo4MGjRzh77gKuhoXjyZMoxL94AQCwMDeHp6cHvpg4AbXd3Vhfg2sXrZ+YlAQba2u5cFF04WGgcDmXSV9+hYTERBzZF8L6WlC/qJSUVPyzfSeOHj+BqOgYGBkawt7eDibGxrCwsMCTqCikpqSie7eumPrFJNbXsvqvI32NxsTE4uvp3yMjMxM7tmzU+tqsX3YMeWpGLBYj4voN7Nl7AFHR0YBIBCMjQ9SrUwcd27eFt5cnBEFAfPwL5OTmIvbZc7i61EL1avbQ09NT+MzOqlxf3cYu0tGBoaEBPD080K5NK/g2bFDsNqmpqdh/8Ajs7GzRqUO7ctdmfdXXL0oocp3gnNxcREfH4NbtO4i4fgM3bt7G06goWFlZonq1aujdoxu6du4IY2Nj1teS+qV15tx5fD5lGj4YMggTPh5TZWqzfukx5KmZ9X9vxso165GVlQVnp5rQ0dHB06ho2XY3Vxf079sb7du2rpBrBFbl+uo+dleXWujdozs6dWwHO1tbWXt+fj50dXUVXqCT9VVb/20kEgny8vJkJ/skJSUrbfaY9dWrfmk/MCYlJ+PCxcto2aKZ3JVHNLU26ysfQ54aiX32HIM/HIY6Xl6Y8c1X0NfXg421NZKSk3Hm3AUcO34SV8PCAQCNG/ljwrjRqFe3DutreO2y1m/S2B+ffjxWacf/sL7q6+fk5iIuLh4ODtVh9Mo6exKJBCKRSPbG8+qbkDIupcf66lv/bRS9lJoqa7N+JVDmWRykmMXLVgqduvUWLl0JlbW9embP/QcPhRk/zBSat+ko9Bv0vnDr9h3W1/DaitZ/dT/W17z6q9dtED4YPlpYtXaDcCX0mvDiRYIgFovl9pFIJHK1kpNThPz8fIVrs75m1H+VsuqrsjbrVzyuk6dGHj1+AmNjY9RycgLw3zpsQpHjQzxqu+O7b7+Ct7cn5s5fiH+278SMaVNZX4NrK1pfGReEZ33V1t+6fScSEpNw7/4DmJmZwqdBAwQHNkH9+vVQs4YjrCwt5epkZ2dj3cZNeJmWhm+mfqnwTBLrq3/9oorWnzblC4Vmk1RZm/UrHkOeGvH28sDJ02eQlZ0NALLLphS9Zqrw71cFgwf2R3hEJEKvhiEm9hmcatZgfQ2tzfpVu/7TqGhkZGSiYYP66NyxPS5fCcX1G7dw9vwFOFSvhkb+fggMaAxvT09Us7eDubk5Hj56jF179qKxv5/CAYP1Nbu+IiFDlbVZv3Iw5KmRJo38sRSr8e33P2HihI/h59OwxLV6pMcBuNSqhfMXLyP73zcm1tfM2qxftetHRUcjNy8PwYFNMLBfH7Rs3hRPn0bj+s2buHI1DCdOnsbBw0fh7uaKJo380TQ4EFdCryEzMwu9eyp+GTXWr7r1q/LY1aF+ZWDIUyMN6tfDkEED8Pfmrfj9jz9lZ3La2tjI9pHOLKSlpePFiwQYGxnB06M262twbdav2vXz8vIgkUjg6uICAHB0cICjgwOaNPZHl04dcP/+Q4RFROJqWDi27QzBrj17IQiAuZmZUi6lxPpVt35VHrs61K8MPLtWDe3YtRvr/96M2GfPYW9nizatWqJZcBCqV68GHR0dmJuZYcu2Hdj8zzb069sbkyZ8zPpaUJv1q2Z9QRDw5GkUDAwMULOGY4lLOGRnZyMqOgZPo6KwZ99BXLoSioH9+uCLSZ+yPutrZG3WrxwMeWpIEAREx8Ri1+69OHzsOF68SAAAWFtbQU9PD0lJSZBIBHTq0B4TPh6N6tWqsb4W1GZ91i+pP6++6cyeOx//bN9ZKZdSYv2qW78qj10d6isLQ56ay87Oxs1bd3D67DkkJCYhJSUFpqam6NCuDdq1aQXDMq7rw/qaUZv1Wb8o6Vpsz54/xxdTv0Faejr27viH9Vlfq2uzvuJ4TJ6aMzY2RpPG/mjS2F+2rAPra39t1mf9oqRncCYkJEIsFqN/n16sz/paX5v1FceZPCIiDSEIAuJfJMDSwlwl10pl/apbvyqPXR3qlxdDHhEREZEWqtgrahMRERGRSjDkEREREWkhhjwiIiIiLcSQR0RERKSFGPKIiIiItBBDHhEREZEWYsgjIiIi0kIMeURERERaiCGPiIiISAv9HzM6Spk6IaFXAAAAAElFTkSuQmCC", - "text/plain": [ - "
" - ] - }, - "execution_count": 15, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "# Create noisy simulator backend\n", - "sim_noise = AerSimulator(noise_model=noise_bit_flip)\n", - "\n", - "# Transpile circuit for noisy basis gates\n", - "passmanager = generate_preset_pass_manager(optimization_level=3, backend=sim_noise)\n", - "circ_tnoise = passmanager.run(circ)\n", - "\n", - "# Run and get counts\n", - "result_bit_flip = sim_noise.run(circ_tnoise).result()\n", - "counts_bit_flip = result_bit_flip.get_counts(0)\n", - "\n", - "# Plot noisy output\n", - "plot_histogram(counts_bit_flip)" - ] - }, - { - "attachments": {}, - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Example 2: T1/T2 thermal relaxation\n", - "\n", - "Now consider a more realistic error model based on thermal relaxation with the qubit environment:\n", - "* Each qubit is parameterized by a thermal relaxation time constant $T_1$ and a dephasing time constant $T_2$.\n", - "* Note that we must have $T_2 \\le 2 T_1$.\n", - "* Error rates on instructions are determined by gate times and qubit $T_1$, $T_2$ values." - ] - }, - { - "cell_type": "code", - "execution_count": 16, - "metadata": { - "ExecuteTime": { - "end_time": "2019-08-19T17:00:54.577456Z", - "start_time": "2019-08-19T17:00:54.491018Z" - } - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "NoiseModel:\n", - " Basis gates: ['cx', 'id', 'rz', 'sx', 'u2', 'u3']\n", - " Instructions with noise: ['measure', 'u2', 'cx', 'u3', 'reset']\n", - " Qubits with noise: [0, 1, 2, 3]\n", - " Specific qubit errors: [('reset', (0,)), ('reset', (1,)), ('reset', (2,)), ('reset', (3,)), ('measure', (0,)), ('measure', (1,)), ('measure', (2,)), ('measure', (3,)), ('u2', (0,)), ('u2', (1,)), ('u2', (2,)), ('u2', (3,)), ('u3', (0,)), ('u3', (1,)), ('u3', (2,)), ('u3', (3,)), ('cx', (0, 0)), ('cx', (0, 1)), ('cx', (0, 2)), ('cx', (0, 3)), ('cx', (1, 0)), ('cx', (1, 1)), ('cx', (1, 2)), ('cx', (1, 3)), ('cx', (2, 0)), ('cx', (2, 1)), ('cx', (2, 2)), ('cx', (2, 3)), ('cx', (3, 0)), ('cx', (3, 1)), ('cx', (3, 2)), ('cx', (3, 3))]\n" - ] - } - ], - "source": [ - "# T1 and T2 values for qubits 0-3\n", - "T1s = np.random.normal(50e3, 10e3, 4) # Sampled from normal distribution mean 50 microsec\n", - "T2s = np.random.normal(70e3, 10e3, 4) # Sampled from normal distribution mean 50 microsec\n", - "\n", - "# Truncate random T2s <= T1s\n", - "T2s = np.array([min(T2s[j], 2 * T1s[j]) for j in range(4)])\n", - "\n", - "# Instruction times (in nanoseconds)\n", - "time_u1 = 0 # virtual gate\n", - "time_u2 = 50 # (single X90 pulse)\n", - "time_u3 = 100 # (two X90 pulses)\n", - "time_cx = 300\n", - "time_reset = 1000 # 1 microsecond\n", - "time_measure = 1000 # 1 microsecond\n", - "\n", - "# QuantumError objects\n", - "errors_reset = [thermal_relaxation_error(t1, t2, time_reset)\n", - " for t1, t2 in zip(T1s, T2s)]\n", - "errors_measure = [thermal_relaxation_error(t1, t2, time_measure)\n", - " for t1, t2 in zip(T1s, T2s)]\n", - "errors_u1 = [thermal_relaxation_error(t1, t2, time_u1)\n", - " for t1, t2 in zip(T1s, T2s)]\n", - "errors_u2 = [thermal_relaxation_error(t1, t2, time_u2)\n", - " for t1, t2 in zip(T1s, T2s)]\n", - "errors_u3 = [thermal_relaxation_error(t1, t2, time_u3)\n", - " for t1, t2 in zip(T1s, T2s)]\n", - "errors_cx = [[thermal_relaxation_error(t1a, t2a, time_cx).expand(\n", - " thermal_relaxation_error(t1b, t2b, time_cx))\n", - " for t1a, t2a in zip(T1s, T2s)]\n", - " for t1b, t2b in zip(T1s, T2s)]\n", - "\n", - "# Add errors to noise model\n", - "noise_thermal = NoiseModel()\n", - "for j in range(4):\n", - " noise_thermal.add_quantum_error(errors_reset[j], \"reset\", [j])\n", - " noise_thermal.add_quantum_error(errors_measure[j], \"measure\", [j])\n", - " noise_thermal.add_quantum_error(errors_u1[j], \"u1\", [j])\n", - " noise_thermal.add_quantum_error(errors_u2[j], \"u2\", [j])\n", - " noise_thermal.add_quantum_error(errors_u3[j], \"u3\", [j])\n", - " for k in range(4):\n", - " noise_thermal.add_quantum_error(errors_cx[j][k], \"cx\", [j, k])\n", - "\n", - "print(noise_thermal)" - ] - }, - { - "attachments": {}, - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Executing the noisy simulation" - ] - }, - { - "cell_type": "code", - "execution_count": 17, - "metadata": { - "ExecuteTime": { - "end_time": "2019-08-19T17:00:55.689241Z", - "start_time": "2019-08-19T17:00:55.515394Z" - } - }, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAnkAAAHTCAYAAABbZg60AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAABTu0lEQVR4nO3dZ0BU19qG4WcA6U1BBEVRxF4RRGyx916jKaac9N4T00zv+dKbKSYaE2M0xpqY2HsXUWOvYAPBRhEYmO+HYSKCCggMs7mvP+ewZs/M+2Yj88zaZZksFotFAAAAMBQHWxcAAACAkkfIAwAAMCBCHgAAgAER8gAAAAyIkAcAAGBAhDwAAAADIuQBAAAYECHvGlksFqWkporbDQIAgPKEkHeNUtPS1KVnP6Wmpdm6FAAAACtCHgAAgAER8gAAAAyIkAcAAGBAhDwAAAADIuQBAAAYECHPzn0/abJat++s9z/8xDp2MilJL77yunoNGKKO3Xrrptvu1KLFS/M8b+eu3br/4cfVpVc/de8zUK+//Z7SuEIYAADDIOTZse07dmrGzNmqF1Y3z/hLr76pQ4fj9H9vv6GfJ36nLp06auyLL2vX7j2SpMTEk7r/4cdVM7iGJoz/Qh/93zvaf+CgXn79LVu0AQAASgEhz06lpaXpxZdf07NPPyEvL888j8Vu26brhw9Vk8aNFFyjuv536xh5eXpqx85dkqTlq1bLyclJTz3+iGqH1FKTRg019snHtGjJMsXFx9uiHQAAUMIIeXbqnfc/Uvu20WrTOjLfY82bNtXfCxfpzNmzysnJ0V8LFiojM1MRrVpKkrIys+RUyUkODv/tfhcXZ0lSzJatZVI/AAAoXYQ8O/TXgoXauXu37r/nzgIff/PVcTKbs9W9z0C169xDb7zzf3r3jVdVMzhYkhQZEa6kpGRNmjxFWVlZOnv2nD79Yrwk6WRScpn1AQAASg8hz84cP5Gg9z/8VK+Oe14uLi4FbvPl19/pXEqKPvvofU389ivdOGqExr74kvbu2y9JqhtaRy89P1Y/TvlFHbv1Uu+BQ1U9KEhVqlSWg4OpLNsBAAClxMnWBaBodu7apeRTp3Tz7f/N4mVn52hzTKx+/W2Gpv00SVOnz9CUSRNUN7SOJKl+vTBt3hKrX6fP0NinHpck9e7ZXb17dldScrLcXF1lMpn00y+/qkb16jbpCwAAlCxCnp1pHRGhnyd9l2fsldffVu2QWhpz02idz8iQpDzn20mSo4OjciyWfK/nV6WKJGnWnHlydnZWm9YRpVQ5AAAoS4Q8O+Ph4a6w0NA8Y25urvLx9lZYaKjMZrNqBtfQm++8r4cfuFc+3t5asnyF1q7foA/eedP6nKnTflPzZk3l5uamtes36OPPvtQD994lLy+vsm4JAACUAkKewTg5OenD997Wp1+M12NPPau09HTVDK6hl54fq/btoq3bbd+xU+O//V5p6emqHVJLzz71uPr27mnDygEAQEkyWSwFHMNDoaWkpqpLz35a/NdceXp42LocAAAASVxdCwAAYEgcrgUAABXO95Mm67Mvv9aoEcP0+CMP6uixYxo0fHSB27756kvq3rWzdu/Zqx9+/EkxsVt15vQZBQUFaujggRo9cngZV184hDwAAFChFLT2e7WAAP0xa3qe7WbMnKMff5qidtFRkqSdu3arcuXKeuXF51QtIECx27bpjbffl6ODg0YOH1qmPRQGIQ8AAFQYF6/9/t0Pk6zjjo6O8vfzy7PtkmXL1b1bF7m7u0uSBvbvm+fx4BrVtXXbP1q8dHm5DHmckwcAACqMK639frEdO3dp9569+YLdpVJSUuTtXT5vP0bIAwAAFcLV1n6/2Mw581SndohaNGt62W22bN2mvxcu1pCBA0qyzBJDyAMAAIZXmLXfc53PyND8vxdccRZv7/79euKZ53Tn7bcouk3rki63RHBOHgAAMLyrrf2+cvHfcnR0lCQtWrxU589nqF/vXgW+1v4DB3X/Q49ryMAB+t+tY8qk/uIg5AEAAMO72trvuQFPkmbOmavrOrRT5cq++V5n3/4Duu+hx9SvTy/dd/cdpV32NSHkAQAAw7va2u+54uLjtTkmVh++91a+19i7f7/ue/AxRbdprRtGjdDJpCRJkqODY4GB0NYIeQAAAP+aNecPBQRUVXRU/vPsFi1eqlOnT+uP+X/rj/l/W8eDAqtp1vRfyrLMQmHt2mvE2rUAAKA84upaAAAAAyLkAQAAGBAhDwAAwIAIeQAAAAZEyAMAADAgQh4AAIABcZ88O3Hnh2X/nl8/UvbvCQAASgYzeQAAAAZEyAMAADAgQh4AAIABEfIAAAAMiJAHAABgQIQ8AAAAAyLkAQAAGBAhDwAAwIAIeQAAAAZEyAMAADAgQh4AAIABsXYtAAAwrIq89jszeQAAAAZEyAMAADAgQh4AAIABEfIAAAAMiJAHAABgQIQ8AAAAAyLkAQAAGBAhDwAAwIAIeQAAAAZkFyte/PDjT/r0i/GSpO+++kzNmjaxPjb+2wn6+rsfLvvcmdN+VvWgoHzjq9eu04SJk7Vr126ZTCY1bFBft996s6IiI0q+AQAAgDJW7kPe3v37Nf7bCXJzc1V6+vnLbtevTy9VDwrMN+7l6ZlvbN78vzTulTdU2ddX/fv2liT9vXCxHnjkCb356jh169K5pMoHAACwiXId8sxms15+7S3VDwtTzZrB+mP+35fddkDf3opoFX7V1zx79pze++Bj+fr6aNKE8aoWECBJGnPTaN102516670PFB0VJQ8P9xLrAwAAoKyV63PyvvthkvYfOKAXnn1aDg4lU+qCxUt07lyKRg4bag14klQtIEAjhw3R6dNntGTZ8hJ5LwAAAFsptyFv567d+u6HH3XHbbcqtE7tq26/KSZWP/z4kyZNnqIly5YrLS2t4O02x0iSoqMi8z0WHdX639faUuy6AQAAyoNyebg2MzNT4159Q/XrhWnMjaMK9Zzx307I87OXl6cef/hB9evTK8/44bh4SVLNmsH5XiN3LO7fbS5XW2ZWlvXn1NQLYTInJ0c5OTn/jprk4GBSTo5FksW6rclkkslkumi7ooyXfR7PW09p9JR3XJIsFkuhxh0cHGSxWK5xnJ7oiZ7oiZ6M3pMtlMV+KswRznIZ8r76ZoLi4o9o4ndfydHR8Yrb1gsL0wvPPq2I8Jby96uipORkrVi5Wl99M0Evv/6WPD091alje+v2qampkiRPD498r5U7lvLvNgX5ftLkAq/mPXwkQe7uF87j8/JwU1U/XyWdOqNzqenWbXy9PVXF10snTp5S+vlM67h/FR95e7rryIkkZWWZreOBVavI3c1Fh44kSMp/UUlpOxh/wvr/S6Oni3+hgwP95eTkmOc9Jal2cDWZzdmKP37SOmYymVSnZqDSz2fqeGKydbxSJSfVDKqqc6npOpl8xjru5uqsoAA/nTqTotNnU+iJnuiJnuipAvVkC2Wxn4IC/K5ah8lyaaS0sdht23XnvQ/qzttv1R23jbGOv/Tam5r7x/x8t1C5nHUbNuqBR55Q3dA6+nnid9bxYaNu0uG4eK1eukBOTnkzrtlsVttO3VUvrK5++uHbAl+3oJm8/kNGaOGfsy8KjiX/Tenuj8t+Ju+rh5jJoyd6oid6oif77unOD1Xmxj/MTF4+F66mfVNhdUN16803XNNrRUVGKLhGde3dt18pqanWAOZx0Wydr49PnuekXGGWL5ezs7OcnZ3zjTs4OOT7D+7gYJKUf6r4cjumqOOlraD3Le2eLje1XtD45abiizpOT/SU+76FHacnerpSjfRUvnqyBVvtp0uVq5CXnp5uPWeubafuBW5z+933S5LeffNVdb6u4xVfz9fHR3HxR3T+/HlrcKtVM1g7du5SXFx8vpAXd4Xz9QAAAOxJuQp5lZydNah/3wIf27wlVofj4nVdh/aq7OujoMArn6OWnp6u/QcOys3NNU+Ya9Wyheb/vVBr1m3Id9h3zbr11m0AAADsWbkKea4uLnp+7FMFPvbSa2/qcFy8br35Bms4S01N08mkJIXUqpln2/MZGXr97feUmpamAf365Dn3rnvXLvrki680dfpvGti/j/VeeScSEjR1+gz5+vpcdYYQAACgvCtXIa+ozpw9oxE3jFHjRg1VO6SW/PyqKDn5lNZt2KiEhESF1Q3VQ/ffk+c53t5eevKxhzXulTd08213qUe3LpIuLGt25sxZvfHKOFa7AAAAds+uQ563t7eGDxmk7Tt2atXqtTp77pxcXVxUu3aIRg0fphHDh8jVxSXf8/r26ilfHx99P3GyZs/7QyaZ1LBhfd1+y81q0zr/TZIBAADsTbm7hYq9SUlNVZee/bT4r7lXvCr3WtniEvCvHyn79wQAoCRV5M/PcrusGQAAAIqPkAcAAGBAhDwAAAADIuQBAAAYECEPAADAgAh5AAAABkTIAwAAMCBCHgAAgAER8gAAAAyIkAcAAGBAhDwAAAADIuQBAAAYECEPAADAgAh5AAAABkTIAwAAMCBCHgAAgAER8gAAAAyIkAcAAGBAhDwAAAADIuQBAAAYECEPAADAgAh5AAAABkTIAwAAMCBCHgAAgAER8gAAAAyIkAcAAGBAhDwAAAADIuQBAAAYECEPAADAgAh5AAAABkTIAwAAMCBCHgAAgAER8gAAAAyIkAcAAGBAhDwAAAADIuQBAAAYECEPAADAgAh5AAAABkTIAwAAMCBCHgAAgAER8gAAAAyIkAcAAGBAhDwAAAADIuQBAAAYECEPAADAgAh5AAAABkTIAwAAMCBCHgAAgAER8gAAAAyIkAcAAGBAhDwAAAADIuQBAAAYECEPAADAgAh5AAAABkTIAwAAMCBCHgAAgAER8gAAAAyIkAcAAGBAhDwAAAADIuQBAAAYECEPAADAgAh5AAAABkTIAwAAMCBCHgAAgAER8gAAAAyIkAcAAGBAhDwAAAADIuQBAAAYECEPAADAgAh5AAAABkTIAwAAMCBCHgAAgAER8gAAAAyIkAcAAGBAhDwAAAADIuQBAAAYECEPAADAgAh5AAAABkTIAwAAMCBCHgAAgAER8gAAAAyIkAcAAGBAhDwAAAADIuQBAAAYECEPAADAgAh5AAAABkTIAwAAMCBCHgAAgAER8gAAAAyIkAcAAGBAhDwAAAADIuQBAAAYECEPAADAgJxsXcClMjIy9PlX32jHzl2Kiz+is+fOytPTU8E1amjQgH7q26uHnJzylp2Smqqvv/1ei5YsU1Jysvz9qqhbl8668/Zb5O7unu89cnJy9Ov03zVj1mzFxx+Rm7uboiIjdO9ddyi4RvUy6hQAAKD0lLuZvPT0dE2fMVMymdS+XbRuuH6kulzXUYmJiXr1jbf16JNjlZOTk2f7u+9/WD/98qtqh9TS6OuHK6RWLf348y+696HHlJGRke893njnfb334ceyWCy6fsQwtW0TpcVLl+vWO+7R4bj4smwXAACgVBR7Jm9TzBZVDwxUYGC1y25z/ESCjh47plYtWxT6db29vbX4r7mqVKlSnnGz2awHHnlCa9at16o1a9WhXVtJ0sTJU7R7z16NuWm0Hrz3buv2n3zxlSb++LN++mWabhtzo3V8w8bNmjl7rsJbttBnH75nfZ9ePbrrkSee1rv/95E++eDdQtcLAABQHhV7Ju/eBx/V7Hl/XnGbeX/O170PPlq0ghwc8gU8SXJyclLnTh0lSXHxRyRJFotFM2fPlbubm+64dUye7e+4dYzc3dw0c/bcPOO/z54jSbrnztvzvE/7tm0UEd5Sa9at1/HjJ4pUMwAAQHlT7JBnsViuuk1OjkUmU3Hf4dLXytHqNeskSXVD60iSDsfFK/HkSTVv3lRubm55tndzc1Pz5k115OhRHT+RYB3fuClGbm6uatGsab73iG7TWtKFWUoAAAB7VqoXXsTFx8vTw7NYz83KytKEiT/KYpHOnDmj9Rs36eChwxrQr4+iIiOsry9JtYKDC3yNWsHBWrN2veLi4xVYLUDp6ek6mZSkuqF15OjoWOD2kq54Xl5mZqYys7KsP6empkm6EEL/O1fQJAcHk3JyLJL+C8Mmk0kmkynPOYWFHy/70yfz1lMaPeUdl/J/ebjcuIODgywWyzWO0xM90RM90ZPRe7KFsthPDg5XzwVFCnmvvPF2np+XLl+hY8eP59suJztHJxIStHnLFrWNblOUt7DKysrS19/9YP3ZZDLpptHX6/577rSOpaSkSpI8PT0KfA0PD4882xV6+9TUy9b1/aTJeerKdfhIgvVKXi8PN1X181XSqTM6l5pu3cbX21NVfL104uQppZ/PtI77V/GRt6e7jpxIUlaW2ToeWLWK3N1cdOhIgqTAy9ZUWg7G/3fYujR6uvgXOjjQX05OjnneU5JqB1eT2Zyt+OMnrWMmk0l1agYq/XymjicmW8crVXJSzaCqOpearpPJZ6zjbq7OCgrw06kzKTp9NoWe6Ime6ImeKlBPtlAW+ykowO+qdZgshTnu+q+oDl3+e6LJdMVDtiaTSY0bNtAr455TzcvMtBVGTk6OEk+e1PKVq/X5V18rtE5tffje2/L08NCffy3QCy+/pttvuUn33nVHvud+/tU3mjDxR73zxqvq0qmjEhNPqu/g4WrRvKm++eLTfNuvXbdBDzz6hK4fMUxPPPJggfUUNJPXf8gILfxztjw9csNjyX9Tuvvjsp/J++ohZvLoiZ7oiZ7oyb57uvNDlbnxD9vhTN7MaT9LurCTBo+4QaNHDteokcPybefg4CBvL69858kVh4ODg6oFBGj4kEHy9fHR2Bde0oQfftSD991tnZHLnaG7VGpq3pm7Qm/vUfBMnyQ5OzvL2dm5wDov/Q/u4GCSlH+q+HI7pqjjpa2g9y3tni43tV7Q+OWm4os6Tk/0lPu+hR2nJ3q6Uo30VL56sgVb7adLFSnkBQX+d8jwxWefVoP69fKMlbboqEhJ0sbNMZJknSE8HF/wOXS547nbubm5yd/PT0ePHVN2dna+8/Jyt69Vs/gzjwAAAOVBsaeI+vftrXphdUuylqtKPJkkSXJyuhDOatUMVlV/f8XGblN6enqebdPT0xUbu03VqwcpsFqAdbxVeAulp5/Xlq3b8r3+mrXrJUnhLZuXVgsAAABl4pqvrt3+zw5t37FTKSkpys7Oyfe4yWTSHbeNKeCZBdt/4KCqBwXK1dU1z/j58+f1wSefSZLaR0dbX3vQgH76ZsIP+ub7iXluhvzN9xOVlp6uW8fclOd1hgwcoL8WLNKXX3+X52bIK1ev1cbNMYqOal2ms5MAAAClodgh78zZs3rymee1Zeu2q16AUZSQt2DRYv005Ve1aN5MQUGB8vBwV2LiSa1as1ZnzpxVeIvmGj1qhHX7MTeO0tLlKzTxx5+1e/deNahfT7t279GadevVuFFDjb5+eJ7Xj4wI16AB/TRz9lzddNud6tCurU4mJenvhYvl4+2tJx59qOj/MQAAAMqZYoe8Dz7+TDGxWxUR3lL9+vRSQEDVAu89V1Qd2rVV4skkxW7dpq3btystLV2enh6qV7euenTvqoH9+sjJ6b+y3dzcNP6zjzT+2++1aOkybdi0Wf5+frpx9EjdedutcnVxyfcezz71uMLqhmrGzNma8us0ubm5qfN1HXTfXXcoOLjGNfcAAABga0W6hcrFuvcdqJo1aui78Z9f9iqaiiAlNVVdevbT4r/mXvGq3Gtli0vAv36k7N8TAICSVJE/P4t94UVGRqbCW7ao0AEPAACgvCp2yKtfL6zA1S4AAABge8UOeXfedouWrViprdu2l2Q9AAAAKAHFvvAiKTlZ7du21d0PPKLePburYf161rVfL9WvT69iFwgAAICiK3bIe/n1t2QyXVi/ds68PzVn3p/5zs+zWCwymUyEPAAAgDJW7JD34rNPl2QdAAAAKEHFDnn9+/YuyToAAABQgop94QUAAADKr2LP5B0/fqLQ2wYGVivu2wAAAKAYih3yBg4fVagbIZtM0ppli4r7NgAAACiGYoe8vr17FhjyUlJStWfvPh09dkytWrZQUFDgNRUIAACAoit2yHvp+bGXfcxisejHn3/RpMlT9PzYp4r7FgAAACimUrnwwmQy6eYbRim0Tm19/NmXpfEWAAAAuIJSvbq2UcMG2rBpU2m+BQAAAApQqiEv/shRZZuzS/MtAAAAUIBin5N3OTk5OUpIPKk58/7UshUr1TqiVUm/BQAAAK6i2CEvqkOXK95CxWKxyNvLS488eF9x3wIAAADFVOyQF96yuUzKH/JMDg7y9vJU40YNNaBfH1WpXPmaCgQAAEDRFTvkffXpRyVZBwAAAEoQa9cCAAAYUIlceLEldqt27dmr1NQ0eXi4q0G9MLVo3qwkXhoAAADFcE0hb8vWbXrl9bcVf+SIpAsXW+RejFEzuIZefO4ZNW/a5NqrBAAAQJEUO+Tt239ADz76hM6fz1Cb1pGKaNVS/n5+SkpO1oZNm7V23QY99OiT+m785wqtU7sESwYAAMDVFDvkfTNhorKyzPrwvbfULrpNnsduuekGrVqzVo8//Zy+mfCD3nhl3DUXCgAAgMIr9oUXmzbHqFuXTvkCXq520W3UrUsnbdwUU9y3AAAAQDEVO+SlpKaoelDQFbepHhSklNSU4r4FAAAAiqnYIc/f319bt/9zxW22/fOP/P39i/sWAAAAKKZih7zr2rfTps0x+mL8t8rIyMjzWEZGhr76ZoI2bopRpw7tr7lIAAAAFE2xL7z4321jtGLVan0/abJmzJytJo0bqkqVKkpOTtY/O3bp1OnTqlE9SP+7bUxJ1gsAAIBCKHbI8/Xx0YTxn+vjz7/SXwsWaeXqtdbHnJ2dNaBfHz14713y8fYukUIBAABQeNd0M2RfX1+9+OzTevapx3Xw0GGlpqbKw8NDtUNqycmpRBbTAAAAQDEUOYl998Mkpaef19133GYNck5OTgqrG2rdJisrS59/9Y3c3d106803lly1AAAAKJQiXXixdv0GffXNBPn4eF9xpq5SpUry8fHWF+O/1YaNm6+5SAAAABRNkULevD//kpeXp0YOG3LVbUcMHSxvby/NnvdHsYsDAABA8RQp5MVu3aaoyAg5OztfdVtnZ2dFRUZoS+y2YhcHAACA4ilSyEs8maQa1asXevvqQUE6mZRU5KIAAABwbYoU8hwcTDKbzYXe3mw2y8HBVOSiAAAAcG2KFPKq+vtr34EDhd5+34EDqupftchFAQAA4NoUKeS1bNFcGzZu1tFjx6667dFjx7Rh42aFt2xe7OIAAABQPEUKeSOGDpbZbNYzz43T6dOnL7vd6TNn9MzzLyk7O1vDhwy61hoBAABQREW6GXLDBvU1euRw/Tx1mkbeeKuGDh6oyFbhCgi4cEg2MTFR6zZs0u+z5ujU6dO6YdQINWxQv1QKBwAAwOUVecWLRx68T87Ozpr00xRNmPijJkz8Mc/jFotFDg4OuvXmG3XvXf8rsUIBAABQeEUOeSaTSfffc6cG9e+r2fP+UOzW7UpKTpYk+VWpoubNmmpA394KDq5R4sUCAACgcIoc8nIFB9fQvXfdUZK1AAAAoIQU6cILAAAA2AdCHgAAgAER8gAAAAyIkAcAAGBAhDwAAAADIuQBAAAYECEPAADAgAh5AAAABkTIAwAAMCBCHgAAgAER8gAAAAyIkAcAAGBAhDwAAAADIuQBAAAYECEPAADAgAh5AAAABkTIAwAAMCBCHgAAgAER8gAAAAyIkAcAAGBAhDwAAAADIuQBAAAYECEPAADAgAh5AAAABkTIAwAAMCBCHgAAgAER8gAAAAyIkAcAAGBAhDwAAAADIuQBAAAYECEPAADAgAh5AAAABkTIAwAAMCBCHgAAgAER8gAAAAyIkAcAAGBAhDwAAAADIuQBAAAYECEPAADAgAh5AAAABkTIAwAAMCBCHgAAgAER8gAAAAyIkAcAAGBAhDwAAAADIuQBAAAYECEPAADAgAh5AAAABuRk6wIKMm/+X4rZslU7d+7S3v0HlJWVpReffVoD+vXJt+34byfo6+9+uOxrzZz2s6oHBeUbX712nSZMnKxdu3bLZDKpYYP6uv3WmxUVGVGivQAAANhCuQx5X47/VseOn5Cvr4/8/aro2PETV31Ovz69VD0oMN+4l6dnvrF58//SuFfeUGVfX/Xv21uS9PfCxXrgkSf05qvj1K1L52ttAQAAwKbKZch77pknVatmsIICA/X9pMn67Muvr/qcAX17K6JV+FW3O3v2nN774GP5+vpo0oTxqhYQIEkac9No3XTbnXrrvQ8UHRUlDw/3a+4DAADAVsrlOXltWkcqKDD/rFxJWLB4ic6dS9HIYUOtAU+SqgUEaOSwITp9+oyWLFteKu8NAABQVsplyCuOTTGx+uHHnzRp8hQtWbZcaWlpBW+3OUaSFB0Vme+x6KjW/77WllKrEwAAoCyUy8O1xTH+2wl5fvby8tTjDz+ofn165Rk/HBcvSapZMzjfa+SOxf27TUEyMzOVmZVl/Tk19UKYzMnJUU5Ozr+jJjk4mJSTY5FksW5rMplkMpku2q4o42Wfx/PWUxo95R2XJIvFUqhxBwcHWSyWaxynJ3qiJ3qiJ6P3ZAtlsZ8cHK6eC+w+5NULC9MLzz6tiPCW8veroqTkZK1YuVpffTNBL7/+ljw9PdWpY3vr9qmpqZIkTw+PfK+VO5by7zYF+X7S5AKv5j18JEHu7hfO4/PycFNVP18lnTqjc6np1m18vT1VxddLJ06eUvr5TOu4fxUfeXu668iJJGVlma3jgVWryN3NRYeOJEgqncPXV3Iw/r8LXkqjp4t/oYMD/eXk5JjnPSWpdnA1mc3Zij9+0jpmMplUp2ag0s9n6nhisnW8UiUn1QyqqnOp6TqZfMY67ubqrKAAP506k6LTZ1PoiZ7oiZ7oqQL1ZAtlsZ+CAvyuWofJcmmkLGdyL7y43C1ULmfdho164JEnVDe0jn6e+J11fNiom3Q4Ll6rly6Qk1PejGs2m9W2U3fVC6urn374tsDXLWgmr/+QEVr45+yLgmPJf1O6++Oyn8n76iFm8uiJnuiJnujJvnu680OVufEPM5NXqqIiIxRco7r27tuvlNRUawDzuGi2ztfHJ89zUq4wy5fL2dlZzs7O+cYdHBzy/Qd3cDBJyj9VfLkdU9Tx0lbQ+5Z2T5ebWi9o/HJT8UUdpyd6yn3fwo7TEz1dqUZ6Kl892YKt9lO+7Qq1lZ3KDXHnz5+3jtW6wnl3cVc4Xw8AAMCeGDbkpaena/+Bg3Jzc80zY9eqZQtJ0pp1G/I9Z8269Xm2AQAAsFd2HfJSU9N06HBcvvHzGRl6/e33lJqWpu5du+Q596571y7y9PTQ1Om/6URCgnX8REKCpk6fIV9fH3W+rmOZ1A8AAFBayuU5eb/PmqOY2K2SpH37D0iSZs6Zq43/3uOuZfNmGjywv86cPaMRN4xR40YNVTuklvz8qig5+ZTWbdiohIREhdUN1UP335Pntb29vfTkYw9r3Ctv6Obb7lKPbl0kXVjW7MyZs3rjlXGsdgEAAOxeuQx5MbFbNfeP+XnGtsRu05bYbdafBw/sL29vbw0fMkjbd+zUqtVrdfbcObm6uKh27RCNGj5MI4YPkauLS77X79urp3x9fPT9xMmaPe8PmWRSw4b1dfstN6tN6/w3SQYAALA35f4WKuVdSmqquvTsp8V/zb3iVbnXyhaXgH/9SNm/JwAAJakif37a9Tl5AAAAKBghDwAAwIAIeQAAAAZEyAMAADAgQh4AAIABEfIAAAAMiJAHAABgQIQ8AAAAAyLkAQAAGBAhDwAAwIAIeQAAAAZEyAMAADAgQh4AAIABEfIAAAAMiJAHAABgQIQ8AAAAAyLkAQAAGBAhDwAAwIAIeQAAAAZEyAMAADAgQh4AAIABEfIAAAAMiJAHAABgQIQ8AAAAAyLkAQAAGBAhDwAAwIAIeQAAAAZEyAMAADAgQh4AAIABEfIAAAAMiJAHAABgQIQ8AAAAAyLkAQAAGBAhDwAAwIAIeQAAAAZEyAMAADAgQh4AAIABEfIAAAAMiJAHAABgQIQ8AAAAAyLkAQAAGBAhDwAAwIAIeQAAAAZEyAMAADAgQh4AAIABEfIAAAAMiJAHAABgQIQ8AAAAAyLkAQAAGBAhDwAAwIAIeQAAAAZEyAMAADAgQh4AAIABEfIAAAAMiJAHAABgQIQ8AAAAAyLkAQAAGBAhDwAAwIAIeQAAAAZEyAMAADAgQh4AAIABEfIAAAAMiJAHAABgQIQ8AAAAAyLkAQAAGBAhDwAAwIAIeQAAAAZEyAMAADAgQh4AAIABEfIAAAAMiJAHAABgQIQ8AAAAAyLkAQAAGJCTrQsAAMBebIrZokk/TdHOnbt1MilJ7775qjpf19H6eOv2nQt83kP33aObbxxVRlUCFxDyAAAopPT086ofVlcD+/XVU8++kO/xP2ZNz/PzqjXr9Nqb76hL5+vKqkTAipAHAEAhtW/bRu3btrns4/5+fnl+XrZ8hSJahSu4RvXSLq1EXW3G8mJvvvO+fps5W48+dL9uuH5EGVeKK+GcPAAASkFScrJWrFqjQf372rqUIsudsXzq8UeuuN3ipcu1dfs/qurvXzaFoUiYyQMAoBTM/WO+PNzd1aVTwTNg5dnVZiwlKSExUe998JE+/r939eiTz5RRZSgKZvIAoBRtitmiR58aqz4Dh6l1+85asmx5nsctFou+/Po79R44VB269NR9Dz+mw3HxNqq2+CpKn0Uxa8489e7ZXS4uLrYupcTl5ORo3Ctv6KYbRqluaB1bl4PLIOQBdiA1NU3vf/iJBgy9Xh269NTtd9+v7Tt22rosFMLVDntNnPyzfpk2XWOffEwTvv5Cbq5uevCxJ5WRkVG2hV6jitJnYW2OidWhw3EaNKCfrUspFT/8+LMcHR01asQwW5eCK+BwLWAHXnvrXe3bf0Avv/isqvr76Y/5f+v+hx/X1MnfK6BqVVuXhyu40mEvi8Win6dO0+233KxOHTtIkl5+Yax6DRiipctXqGf3bmVZ6jWpKH0W1sw5c9WoQX3Vrxdm61JK3I6duzTl12n68buvZTKZbF0OroCZPKCcO5+RocVLl+qh++9Wq5YtVDM4WHf97zbVDK6h6TNm2ro8XIMjR48pKSlZUZER1jFPT081adxYsdv+sWFlJctIfaalpWnX7j3atXuPJOno0ePatXuPjh8/Yd0mJTVVCxcvNews3uYtsTp16rQGDBup6Ou6Kvq6rjp2/IQ++vQLDRx2va3Lw0WYyQPKuWxztrKzc+Ts7Jxn3MXFWTGxW21UFUpCUnKyJMmvSpU8435VKispKdkWJZUKI/W5Y+cu3fPgo9afP/jkM0lSvz699NLzYyVJfy1YJIvFol49jDdDKUl9e/dUVOuIPGMPPfqU+vTuoQF9+9ioKhSEkAeUcx4e7mrWtIm+/X6i6oSEqEqVypq/YKG2bvtHwTVq2Lo8oEKJaBWu9SuXXHGboYMGaOigAWVTUClJS0tTXPwR68+5M5Y+3t4KDKwmXx+fPNs7OTnKr0oV1Q6pVdal4goIebBbEyZO1uKly3To0GG5uLioebMmeuDeuw35R+aVF57VK2++o76Dh8vR0UEN6tdXz+5dtXPXbluXhmuQO7OVlJwsf///bqKblHzKUOdyVZQ+jaQwM5Yo/wh5sFubYmI0YuhgNW7UUNnZ2fr8q2/04KNPaurk7+Xm5mbr8kpUcHANjf/sI6Wnpys1NU3+/n4a+8LLqlHdvu6ifzVFucu+EdSoHiQ/vypav3GTGtSvJ+nC+Vzb//lHw4cMtHF1Jaei9GkkhZmxvNis6b+UXjEoNkIe7NYn//dunp/HPfeMevYfrB27dqtVyxY2qqp0ubm5yc3NTWfPntOadev04H332LqkEnW1dUHt0dUOe40eOVzf/TBJNYODVaN6kL78+lv5+/tbr0K1F0bq884Py/49v36k7N8TxkfIg2GkpKZIkry9vWxcSclbvXadLBaLQmrVUnz8EX302ReqXauWBvYz1knOhbnLvr252mGvMTeOVnr6eb3xzntKSUlRi+bN9PH779jdDXQrSp+APSHkwRBycnL0fx99qhbNmyosNNTW5ZS4lJRUffbl10pITJS3t5e6drpO9919h5yc+Cdc3l3tsJfJZNI9d96ue+68veyKKgUVpU8jYcbS+PiEgCG88/6H2rf/gL7+4hNbl1IqenTroh7duti6DACAHSHkwe698/6HWr5qtcZ/9rGqBQTYuhwAAMoFQh7slsVi0bv/95GWLFuhLz/9UDWqB9m6JFRQFeWwV0XpEzAKQh7s1tvvf6j5fy/Qe2+9Lnd3N51MSpJ0Ybkk13J+MjcflgCA0lahQ972HTs1/psJit22TWZztsJC6+iGUSM598lO5K7bes8Dj+QZf/HZpzXAYFedVhRXuw0HAKDwKmzI27Bxsx587Em5ODurR/eucnd31+IlS/Xsiy/rREKCbhrNIsvlXVFu1An7wF32AaDkVMiQZzab9frb78rBwaSvPvvIegf2O28bo1vuuFeff/WNunXppKDAQBtXClQsRb3LPgDg8hxsXYAtbNi4WfFHjqpXj+7WgCddOJfrtjE3KisrS3PmzbdhhQAAANemQs7kbdwcI0mKjorM91h0m9aSLqyhWZDMzExlZmVZf05JSZUknTuXopycnH9HTXJwMCknxyLJYt3WZDLJZDJdtF3hx7Ozyj6Pnz13cT0l39Ol45L08BemEu2hMD68p3R7slgs+cazs8q+z5RUlWpPBY07ODjIYrFc43jZ/O5dS0+2+vdZ1vvJln+HyvJ3z9Z/b8vq35Mt/g7l/Vwpm78R2Vkqc+dSSv/vnoODgzzc3a2/LwUxWS59twrgmefHaeHipZr47Vdq1LBBvsc7de8jL28vzfltar7Hxn87QV9/90NZlAkAAHBZi/+aK08Pj8s+XiFn8nJn3zw9C/4P4+HhYd3mUrfefKNuGDXS+nNOTo7Onj0rHx+fK6ZpW0lNTVP/ISM0Z8av8vBwt3U5pYY+jYU+jYU+jYU+yw8P9yvXVSFD3rVwdnaWs7NznjFvLy8bVVN4Hh7uV0z7RkGfxkKfxkKfxkKf5V+FvPAidwbvcrN1qampl53lAwAAsAcVMuTVDA6WJMXFx+d77GRSktLS063bAAAA2KMKGfJahbeQJK1ZtyHfY2vWrr+wTcsWZVpTaXGuVEl33n6LnCtVsnUppYo+jYU+jYU+jYU+7UeFvLrWbDZr+OgxSjyZqO+++tx6r7yUlBTdcse9Onb8uKb9PFHVg1jwHgAA2KcKGfKkyy9rduz4CT38wL0sawYAAOxahQ15krT9nx366tsJit26XWazWWF1Q3XD9SPUs3tXW5cGAABwTSp0yAMAADCqCnnhBQAAgNER8gAAAAyIkAcAAGBAhDwAAAADIuRVILnX2HCtDQAAxkfIq0BMJlOe/5UIfACAoivosyMnJ8cGleBKuIWKwZnNZh06HKe16zbI1c1VTk5OqlLZV/XrhSmgalVblwdAFz4wL/7yBdiLrKwsnUtJUZXKlfOM5+TkyMGBeSRbI+QZ2JGjxzT55180bcbMPOMuLi6qGVxDka3C1bFDOzVr0liurq580JRzZrNZDg4ORf7DaW/7taL0mZKaKidHR7m6uhbpefbWJ4zHbDZrS+xWTf99lk4mJSslJUXu7m4Kb9FCXTtfp0YNG1i3Ncrvq732QcgzsGeeH6cly1Zo8MD+atq4kRwdHZWSmqrNMVu0dt0GnUtJkb+fnwb0661RI4arcmVfW5dcLD/+/Isa1K+nFs2aytnZ2dbllJovv/5OQYHVFN6yhQICqsrVxeWqz7HHP0wVpc/3PvxEHu7uiowIV+1atVS5sq+cnJyu+Bx7nR05mZQkH29vVSriQu/2tl8rSp+TJk/RxJ9+1pkzZ1WrZrAyMjJ1IiHB+njd0DoaMXSw+vTqITc3NxtWem0OHjqkgKpV5e7ubh3LjUxX2l/laX8S8gzq6LFjGnr9jRo9coQeuv+efL9wiYkntWzFSs2a+4d27NyliFbhevapx1QzONhGFRfP0WPHNHjEDZKk2iEh6t61k7p27qSwuqH5ts39gExMPKlt/+xQaJ3aCqlVs6xLLpZjx49r0PDRkqTAagFqE9VaHdu3U8MG9VSlcuU84SC3z2PHj2vZ8lVq2KCeWjRvZqvSi6Qi9unt7aVmTZsounVrNWncUMHBNeTr42PdNvcDIy4+Xr/PnqvmTZuoU8cOtiq9yBISE/X6W++pTVSkmjRupFrBwfL19SnwQzC316ysrCIHJVurKH0eO35co266TfXrhWnsU4/Lz6+KfLy9tW//Aa1dv0Gr167T+g2blJOTo6aNG+mB++5Wq5YtbF12kZ1ISNATzzyvls2bqUXzZqpfL0w1qgfJ0dHRuk3ufsz934yMDLkU4ktpWbry10bYrRWr1sjJqZIiW4UX+MekalV/DRsySJERrTTl1+maPmOmvp/0k5596vE8v8Tl3fIVqyVJDerXU0Jior6ZMFHfTJiols2bqWePburQrq0CqwVI+u+b18IlS/V/H32qt1572W5C3srVayVJEa3ClZ6errl/zNfM2XNVN7SOOrZvp7ZtolSndi15e3tbZ3qWr1yt9z/6RK+99LwtSy+SitLn6rXrJUmdr+soR0cHbYrZopWr1qhaQIBahbdQm9aRql8/TEHVAuXhcWEWYd36jZo0eYrGPfeMLUsvst9+n63Va9dp3YaNquzrq/CWzdWmdaQaNqiv6kGB8vT0zPecFavWaNWatbrlxtEKDq5hg6qLrqL0OWfen3J2cdYdt9+i0Dq1rRdb1A2to7qhdXTD9SO0JXarpvw6XQsXL9V7H3yscc89owb165WrGa6rmTl7rnbt3qP9Bw5o5py5alCvniJahatZ0yaqFxaqgKpV8/WycMlSzfvjLz3y4H0FTjTYAiHPoJycnJSZmSlXVxfrzwUJqVVTjzxwr8xms2bOnqsxN462m+AjSQcPH5bJZNIzTz4mD3d3LVqyVOvWb9T2HTsVE7tVH336hdpFR6lHt65qFx0lFxcXbd22XZLUtk1rG1dfeHFx8ZKk++++Q4HVqmnV2nXaHLNFsVu36ftJkzV5yi9q1qSJOrRvq+g2rVXZ11ebY7ZIkjq2b2fL0oukovR55MhRSdJNN1yvenVDtXlLrLb/s1MbN23W0mUrNP/vhaodUkuREa0UHRWpwMBqWrdhoySpa+frbFl6kW3b/o9cXFw0dNAA7T94UKvXrtPCxUtUMzhYkRGt1LpVuMLC6qqqv5/c3NyUnZ2tP+b/rRWrVuvxRx60dfmFVlH63H/goDzcPVSr5oWjPrkHA3PDnoODg1r8O/v1+6w5euOd9zVh4o9667WX7SbgSdKOnbvk6uqiO2+7VYfiLly8+N0Pk+Tr46OmTRqrVXgLNWvSWCEhtawz78tXrNL6jZsUXKO6jav/DyHPoJo1aSwXFxd99c0EvfBsVdUMDpbFYlFOTk6emTqz2SwXFxdFR0Vq9tx52rptu92EvJTUVB0/flwWi0WNGzaQyWTS7bfcrBuuH6HYbdu1es06rd+4SYuXLtfipcvl7+en5s2aaNWatWrfto3dnCuSmpqmo8eOSZLq1wuTs7OzBvbro949umnf/gOKid2qTZu3aOv27doUs0XfT5ys+vXDFLNlK32WQ+fPn9fpM2dUqZKTQmuHyM3NTe2i2ygqMkJ9enbX7r37tCV2qzZujtFvv8/SzNlzVTuklnbt3qP27aLtpk9JSkpO1pmzZxVQ1V+PPnS/jh47pj179yt26zZt2LRZs+fM06w5c1U/LEytIyPULjpKZ86e1ZbYrYqMCC/U+ZjlQUXpU5Lq16unhYuX6syZswoKDLR+nlx8rmh2drYsFosGD+yvNevW658dO3Xw0GHVDqllq7KLJPnUKZ06fUbe3t66+cZROnv2nI4MPqrtO3Zq9Zp12rJ1q1asWq2goEA1b9pE7aLbKCcnRxs3xSg6qnWRL6YqTYQ8g6pZM1h9evXQ77Pm6JPPx+t/t96sBvXrWf9B5uTkyGQyWWf40tPPSzKpalV/G1ZdNK4uLmrbJkre3t46dy5FXl6eslgscnV1VVRkhKIiI5R86pQ2bd6iVWvWanPMFi1askySNHzIYNsWXwRubq7q2rmTPDw8lJqaJmdnZ+Xk5MjZ2VmNGjZQo4YN1L9PL+3cvUcxW2IvzApt3yGz2azhQ4fYuvxCqyh9uri4qPN1HeTl5Smz2SzpwmyIk5OTgoNrKDi4htpFRyku/oh27Nqt2NitWr7qwmkJ9vR7K0lnz55T8qlTatywoSSpelCQqgcFKToqUn1799SuPXu0OSZWmzZv0cTJP2n6jJny86uiU6dPa8TQwbYtvggqSp+SFN6imUwmk1598x09dP89atG8Wb6QenHgqx0SopWr1yojI6OsSy22tLR0ZWVlqUmjC/vT29tL3t4NVL9emDpf10GH4+IVsyVWq9es0+Kly7Vw8VJVruyr02fOaPjQQTauPi8uvDAws9msDz/9QlOn/SZJatsmSv369FT7tm2t5/lIF76FPvviyzp48LDmz5lhq3KLLSsrS05OTnkOBRR0FeL2HTv14suv6dTp01r055yyLrNUFNTn3n379fxLr+pEQoIWz59ro8pKVkXps6Bzlg7Hxev5ca8o7sgRu+szIyNDM2fPlZeXl3p06yInJ6d8PaakpOjgocPavXefVq1eo2UrVsnL01ML/5xtw8qLpqL0mevTL8Zr4uSfVT0oSCOGDVb7ttEKCqyW76KDlNRUvffBx1qxarUWzJtlo2qLLisrS4uWLJOrq4vat40u8HSnzMxMJZ5MUlxcvJauWKmZs+fKzdW13O1PZvIMKicnR05OTrr9lptUo3qQfvn1N61eu06r166Tq6uLmjdtqkYNGyj+yFFtid2qlNQU3XPH/2xddrEUdHVabiCwWCwym82qVKmSzp8/r6SkZHXv2rmMK7x22dnZBV4Qc3HwMZvNcnJy0qnTp3Xk6DH16t61LEssEbk9XMpofV5uf14cCnL7PHbsuPYdOKA+PXuUZYklwsXFRSOHD80zlttjbgjy9PRU0yaN1bRJY3l6uGv5ytXqZmf/RitKn7keuPcu1Q6ppe8nTdZHn36h336fpbbRbdSqRXP5+fvJx9tbnh4e+nnqNC1aslSD+vezdclFUqlSJfXq0e2K2zg7O6tG9SDVqB6k8xnnNXP2XHXt0qmMKiw8Qp4BWSwW64dilcqVNXrkcI0eOVxLl6/QnHl/KiZ2qzZs2qQtW7cpIyNDDRvU16MP3a+O7dvauPKiudw9wy7+Bm0ymawhcPnKVUpLT9fQwQPLtM6SUJgrnnPDUcyWWGVkZGiInfWZe8jyUpfuZ3vvUyra/ty7f7+ys7Ptsk+LxZLn79HFLg5BuT/v2r33wrlcA+wrFFgsFmVnZxc4g2ekPqX//r726dVDQUGBWrJ0udasW69pv83QtN9myMfHR+YsszKzspSRkaHuXTvrxtHX27rsIinMvfAuFhO7VWazWUMG9i/NsoqFkGdAJpNJCYmJCqhaVeczMmQ2m+Xp4aFOHTuoU8cOSktL087deyRJAf7+cnN3k1+VKjauuugcHBysfWZlZSk7O1uurq6XvS9VRHhLnT59Ro3/Pc/CqCJahSsz87/zSeyFyWTS4bh4Vansq9S0NLm4uMjXx+eyN/+11z6LKrJVuB576AG77NNkMl31gzL38VOnTutwXJxq1Qy2u3+jF5/ffLnTRozQp/RfH46OjooIb6mWzZtp3/4DFy6uOHxYJ08m68iRIwoMrKZ20W3Up1ePq97ku7wpylXAZ8+e09mz51Q3tE653J+ck2cgFotFy1eu1qw5c7V33wGlp6crrG6owsLqqkH9MIWFhqpmcA27ujqvIFfqs2H9empQv56Ca1SXs7OzXd2X6XKys7Pl4OBg931cTmZmphYsXqJpv83U7t17ZHJwUM3gGqoZXEMNGzRQi+ZNVb9emDw9PGxd6jXLnfFxdHQ07P4sLrPZrHUbNsrR0VFtWkfaupxCy87OVlx8vM6eS7GO1agedNkvzvbaZ0Eu/fualZVlDbyXOyXBaLKzs7Vr9x5ZpHL5RYyQZyBffv2dfvz5F7m6uqhaQIDMZrPMZrNOnEiQRRbVCwtTt86d1Kd3D/n7+dm63GIrbJ99+/TM84fW3v7oHD+RYL2Rs3RhVsBisVy1h8ud11ZeffDJ5/rl12kKrBaomjVryMnJSSnnUrTvwAGlpKSqWkCAOrRvq4H9+uRZE9Pe9md8/JE8N7zNycmxnjtrJLkf/Ebt72IHDx3WZ19+rVVr1igryyznSpXk5eWloMBqatasqdq1iVLzZk3s/ov11Vx6SsWlK0HAdgh5BnH02DFdf9NtighvqUcevFe1Q0J0+vRpnUhIVPyRI9ocE6vVa9crLj5e9cLq6r6771T7tm3sbi3MitTn4BE3qE1UpHp176YO7dvmWeoqOztbJpNJDg4Odr1E0pGjx3T9jbeoY4d2euqxR1S5sq9SU9N0LiVFSUlJ2hSzRUuWrdA/O3YqoKq/7vrfberXp5fdfXjExx/R0FE3qXZILQ3o10d9euX9opWdnS3pwiGw3N7S09OVlp4uH29vuwpKKampSjmXosDAataxi/szisTEk3ro8ae0/8BB9enVQ76+PnJ0dNT+AwcVsyVWqalp8vL0VOdOHTV00AA1adxIUtHP97K1s2fPac++fWrWpLGh1wY3ap+EPIP4ZsJETZk6TW+8Ok5RkRH5ZnNSUlO1/8BBLVi4WFN+na4qVSrro/feVoP69WxYddFVlD4nTJysL8Z/Y/3Zx8db7dtGq0fXLmoTFZmn59xw99vvs7Rg8RI9/fijdnND6wk//KjJU6bqzddeUuuIVvlm58xms04kJGrZipWa8MOPOn3mjD56/221bRNlw6qLbuLkn/XpF+PzjLVq2UKDBvSz3nIj18X7c9bcPzT2ycfs6vf3g08+18+//KqWzZupf78+6tmtS56bw5rNZjk4OOT50nUyKUkODg6q7OtrN+Hni/Hfatpvv+uh++/RoH8voMg9XHkyKVmr1qzVvD/na+u2fxRSq5Yeuv9udWjX1u6+oHz06ReaPGWqGtSvp87XdVDn6zqqbmidArfN7e1wXLzOnz+v0Dq17eYLilH7tJ+pDVxRfPwRVapUyfpLmftBmZvhPT081LxpEz328AN67aUXlJGRobff+8Bm9RZXRekzdts2ubu56bmnn1Df3j11/nyG5v35lx59aqxG3niLPvr0C23fsVPSf7eQWbNugzZs3KwAO7qhdcLJk8qx5FiXSLp0ttXJyUk1qgdp9MjhenXc8/KrUkXvf/iJMjMzbVFusW3/Z4ecnZ316rjn9b9bx6h2SIg2xWzRuFffUMduvfXcuFe0fuMmSXn35z87dlr/29iLdes3SLpwxeFrb76j67r30ZNjX9DKVWskXdinuTPQ0oWVTj769AuNe/UN64yfPVi+cpWaNGmkjh0uLKdnsVhUqVIlOTk5KbBagIYOGqD33nxNjz/8gJKTk/X8uFd14OAhuwp4krRuw0aZTCYdO3ZcX30zQaPH3K57H3xUv82crYTExDzb5s5Aj/92gt569/9sVHHxGLXP8hk9UWRhYaGaN/8vxWyJVbcuna3nxBR0nkTP7l21Zt16LV+5yq6WmpEqRp+nTp3WqVOn5eHhrkED+mnQgH4a++RjWrx0uWbNnacNGzdr8pSpmjxlqho1bKC+vXrKz6+Ktm7brg7t2trV+T+NGtTX9BkztWzFKg0fMkgmk+myF5q0iYpU/769NXXabzpw8JDdzG6dPn1aJ5OS5enpYb331u233KT1Gzdp0eKlWrl6rf5euFh/L1wsXx8fDezfV3VD69jl/ow/clRJSckKb9lc99zxP81fsFArV63R0uUrtHT5Cnl5eqpnj24aPKCfdf/FHzmiVavXKiwstNzOhlzq9Jkz1nNHq1SuLKngw6++vr4aOnigfH199fxLr2rK1Gka+9TjZV1usR09dkynTp1Wk0YN9cyTj2n5ylVau36jtm7bro2bY+Tu5qa20W3Uq0dXhbdsIR9vb+0/eEhr1q5XvbC6drM/jdxn+a0MRdKkUSO5ubrqy6+/U1BgoBo3apjnhsC596rKDUQ1g4OVkZGh1LQ0G1deNBWhz4zMTDlXqqT69cIkXTgE5OLiot49u6t3z+46eTJJf/69QHP/mK8dO3dpx85dcq5USZlZWRpmZ/dSa9y4oar6++mrr79TYLUAdWzfLs/sbO5ay7n7s7Kvr7Kzs5VhRzN52Tk58vBwV1hoqHUZs0qVKqlddBu1i26j06dPa9WadVq4eKnWb9yoiZN/tj7X3vbnkSNHdfrMGTVq2EDhLZsrvGVzpaSkaPXa9Vq0ZKnWrFuv6TNmavqMmapRPUiDB/bX2XPndC4lRTffMMrW5ReKxWKRr4+PGtSvp5mz52r5ylVqF91GDg4O1nvlXczJyUk9u3fV1Om/aefuPTpz9qx8vL1tVH3RHD16XEnJyerapZPq1wtT/XphGj1yuGK3btfqtRfWBl+4eIkWLl6iqv5+6talszIyMnT23DndOHqkrcsvNCP3yTl5BpA7c/X7rDl6673/U07OhYWhu3ftrCaNGuVZwkySzmdk6LU339GadevtaqmZitKn2WxWzJatcnZxVtPGjayHtnLXG7541vLQ4Tj98ut0TZsxU95eXlrwh/30mbs/V61Zq9fffk+JiSfVJipSg/r3U1RkhLy9vfJsn56erlfeeEfrN260q/0pSXHx8crMzFKd2iF59uelM5bHTyRozrw/9cOPP8m5UqVyt0TS1cRu265nX3xZ/7t1jIYM7J/vnNnjx09o2YqVWrRkmTbFbLGO2+PyXitXr9WjTz6jmsHBevLRhxTdprX1sdzDzrn7NyUlRS+//pb2Hzik6VMm2arkItu9Z6/GvvCSRg4bqutHDM13zuzJpCRt2hyjVWvWafOWWB07dlyS/e1PI/dJyDOQ9PR0zfvzL43/9nudOn1alX191axpYzVp3FhNGjdUw/r1FRcfr1lz5mn2vD81cvgQPfLAfbYuu8gqSp9XWtEj9+paR0dHbd+xU/c88Ij69OqhZ+3oUFAus9msZctX6pvvJ2rvvv2SpLC6oWrZvJkiI1optE6IDhw8rL8XLtKiJUt10+hReuDeu2xcdcnJDXzShXNMt27brvseftwu96fZbNbhuHj5+Hhbb1908YzsxQ7HxeubCT/oz78WaPiQQXrq8UdsUPG1+fOvBfrgk8906tRpRYS31NDBA9WhXbT1EHvuF5mVq9bo9bffU/t20Xru6SdsXHXRpKamKTs7O8+XroL+NiUmntT3kybr199+17Ahg/S0ne1Po/bJ4VoDyP1D4ubmpmFDBqlv7576ffZc/b1wsVasurAQtiRrKDCbzerft7duuH6EjSsvmorS58U3yy3oXnAX311fkub9Mf/C8l7lcEmdwnByclLXLp3UtUsnLVm2XDNnz9Xqteu1d99+TZsx03q/LScnJ10/fJhGXz/c1iWXqNzf11x/zP/bbvenk5OTQuvUzjN2cX8XB75aNYNVM/jCRSUD+vUp61JLRNfO10mSfpoyVRs3x2jj5hhVruyrVi1bqk3rCDk7O2vf/gOaOWeunCs5a9SIYTauuOguPUIi5V0bPHd/Vq3qL+9/D0MPtMP9adQ+mckzsNOnT+tQXLy2bf9HMVtilZ2do1q1glUnJMR6yb8RVJQ+C5KSmqo333lfGzZt1vzZM2xdTrEUNNNzMilJGzfFaEvsVjk5Oamqv79CQmrpun+vZDSq9PR0vf3+h1q1eq3+mvu7rcspstyZjyvdqDr3y9qhw3F67KlnlZ2drd9//amMKy1ZFotFy1as0u+zZmvNug35rhJu1rSJbr/lZrVv28ZGFZa++CNH9eTY55WWlqaZ06bYupxSY299EvLsXPKpU9q7b78Ox8UrPS1djRs3VO2QWvL18cn3RzYzMzPPTR7t6X5NFb3Pi2+Ie+kHaGZmppJPnc6zOkZ5V5SbU1/arz3tz+LehDslNdUQy7hdycFDh/Xk2OfVsX07PXT/PbYup1guvtgrV0pKijZujtGRI8fk7+8nd3c3NW7U0HoVrlEdOXpMb77zvlqFt9Dtt9xs63JKjb31ScizYytXr9V3P0zS1m3b84x7e3updUSEenTrous6tMtzaM/eVn6Q6NPb20tRkRHq0a2rOrZvW64v1y+Oy+2ri2+lYm9LtRWkML+TZrM53+Fbe7FqzVrt239Au/fsVZXKldW4UUMFB9dQUGA1+Xh751nN42L2tm8vN0t58So0RlDcZQPtbblBo/dJyLNTx08k6J4HHlH6+XT179tbka3CdeToMe3avUd79u7T3r37lJl14Wq+28bcpG5dOqlSpUp2NQsi0eelfYbWqa1bb77R2qe9hdmk5GRNnDxF0VGRatq4kby8/jvJ2d6We7qSitKnJJ07d07fT/pJk36aYr19US5vby+1aNbs3xUEOuT572AvH5K5Crof56WzeJeO514kZU8htrB9XsrellWsKH3az28e8pgxc5bOnTun55550nryb64TCQmK3bpdy1as1Py/F+rFV15XQmKixtw42u4+WOjzyn3aU8CTpGm/zdTPv/yqJcuWK7R2iFqFt1Sr8JaqVzc0zyH2nJwcWSwWOTo6auOmzcrIzFS7aPs5n6mi9ClJv8+aq6nTZ6hTxw4aNWKo/P39tWv3Hh06HKd/du7U1m3btXzlKk2dPkP/u/Vmdb6uoyT7W8f2t5mztXFTjPr16alWLVvI3d3d+ncmN9jmzjznjl96kZQ9KGyfl7Kn4CNVnD6ZybNTt915r1xcXPTWay/J19f3sod5NmzcrA8//VwHDh7U048/qoH9+9qo4uKhT2P1eeOtd+jAwUNqWL+edu7eI7PZrKDAamrerKkiW4WrRfOmqh0SYt3+/Pnzem7cq1qxarWWLfhDLi4uNqy+8CpKn5I0cNj1qhtaR+OeHytfH588jyUmntSuPXu0bMUqzZozTzk5OXr2qcc12A6vHB40fJSOHT8h50qVVC+srtpEtVb7tm3UtEnjPF8qcw8/nz9/Xr/NnK36YWGKjAi3YeVFQ5/G6tO+vmJAkpSWliZ3d3clJCZaF/6+eMHvi6edIyPC9cLYp3TfQ49p6fKVGti/r90cyqRPY/V5/ESCUlJSFBZaR+M//1g7du7SytVrrTOUfy9cpNA6dRTeornCW7ZQdJvWOnQ4Ttt37FD7ttF2E3wqSp+SdPDQIZ05c1b1wsKsAe/iWZCqVf1Vtaq/2rSOVKcO7fXuBx/r0y/GKzS0jpo3bWLL0otk3/4DOnb8hBo2qC9vLy+t27BR23fs1M+//KrmzZuqfdtoRUdFqnZIiHXmbueu3frwk8/VvFkTfRPxqY07KBz6NFafEiHPLrm7u6thw/pav3GT/lqwSAP79803rZz7c05OjhrUr6fwls114OBhHTt+XEGBgbYou8jo8z9G6DMpKUmpqWkKb9lCTk5OatyooZo0bqSRw4do567dWrZ8pVatWatff/tds+b+oUYNG8jJyVHJyac0ZJD9zPxUlD4lyWKRPL08FX/kiKQLsx6XfkGRLhziat8uWuZss54c+4JitsTaWci7cJPu3j2664ZRI3TocJyWLl+h+X8v1Np1G7R23Qb5VamiiFYt1S66jTq0a6vtO3ZKkm69+UZbll4k9GmsPiVCnt26fvhQrVq9Vq+99a5279mr/n17q07tELm4uFhndXKnmVNSU1WpUiVlZmbaTSDIRZ/G6dPb20utwlsqOurC8k+5h6KrVK6sdtFtFBUZocSTJ7V5S6yWr1it9Rs26uy5c/Ly9FTH9vZzf7yK0qck1akdogB/f61avVYrV68t8D5wJpPJepJ7yxbNFRQUqH/+/cC0FympF9a+DgmpdeF/a9XUmBtHa8yNo7V9x0799fdCLVyyVH8tWKS/FixSzeBgpaalysPDXR3atbVl6UVCn8bqUyLk2a2AqlV19x236YNPPtfU6TMUu227OnVsr5bNm6l69SBVqVzZethn+YpV2rgpRl06dbRx1UVHn8bps2ZwsF589imZL7lRbC4nJycFBQaqWkCA+vbqqd9+n6W33vtAPXt0K+NKr01F6TP3NIEnHn1ITz37gh598hmNGjFMvXp0U1jd0HxfUJydnXXocJyyMrPk7+9v4+oLz2KxqF7dUI0eOVwhNYPzjJtMJjVp1FBNGjXUfXffofUbN2nBoiVaunyFUlPTNGLoYNsVXkT0aaw+c3HhhZ259PyrM2fP6vuJk7Vg0RKdSEhQZV9fhYbWUVV/P7m6uiojI0MLFi1W9aAgvfvma6r97zeX8o4+jd2ndPX7in382Zf68edfNPHbr9SwQf2yKPOaVZQ+L5adna0/5v+tz778WknJyapTO0TRUa3VvFkT1aldW7VDasnBwUEJiYn6+LMvtWDREn3/9Rd212taWpoqVapU4NWVl+73d97/UNNmzNSk78arQf16ZVnmNaNPY/VJyLNDub+AJxISVNXfXw4ODtq7f79WrFytjZtjdPDgYZ1ISJAkeXt5qV69MD3xyIOqG1rHxpUXDX0as8+TSUmqUrlyntBz8Y2PpQu3jXn0ybFKPHlSf8+daauSi6Wi9HmpU6dOa+r0GVqwaLEOx8XL1cVFVav6y93NTd7e3jp4+LBOnzqt/v366JknHrV1uSUud7/Hxx/Rsy++rJTUVP32y2Rbl1Xi6NO+cLjWjpjNZm3Zuk2z5/yhw3FxkskkV1cXNW7YUD26ddGtN9+oW266QSdOJOh8RoaOHD2m2iG1VC2gqpycnOzmKkz6NHafJgcHubg4q15YmLp2vk4tmjXNd6sYF2dn9e/TW/7+fjaquugqSp+Xyl17uHJlX91y8w3q2vk6/bNjp7Zs3aZt23do15698vX1UbWAAN0+5ib16dXD1iWXitx/iwcOHdLO3Xt08w2jbFxR6aBP+8JMnh2Z9NMUffv9JKWlpalmcA05ODjo0OE46+N1aodo+NDB6talk12vk0ifF1SUPmuH1NLgAf3Vs0dX+fv9F3aysrLk6OhoNzd8rih9FkZOTo4yMzOtFwolJSXb3czzpQr7pSopOVmr16xTxw7t5OPtXQaVlSz6zMve+yTk2YkjR49p9Jjb1LB+fY17fqwqVXJSlcqVlZScrOUrV2vhoiXauDlGkhTRKlwP3nuXGjdqaNuii4E+K26fkRHheui+e+zuXC2p4vQpSeczMnT8+AkFBlaT6yX39MvJycmz4sOlH6T2tAzflfq8Gntaso0+r86e+rwUIc9OfPn1d5oxc7Zefel5RUVGSMr/B3Tvvv368adftGDRYgUGVtOr455Xo4YNbFVysdAnfeb2aS+Ho6WK06ckfT9pshYtWaYuna5TsyaNFVKrpqpUqZznQ/DS9XlPnTotLy9Pu1riqzB9Xoo+y6+K0uel7LfyCmb/gYNyc3NTreALl3zn3jMt93wYR0dHhdUN1UsvjFWDBvX0wcefaer0GRr33DM2rrxo6JM+c/u0p+BTUfqUpF+nz1DiySTt3rNXnp4eat60qaKjItWkSWPVqB4kXx+fPD2lp6dr4uSfdebsWT3/zJN2M5NXmD4vdnGfzz39hN3M/NCnsfq8FCHPTjSoH6Yly5YrLT1dkqzfLC5e3zR3RmD0yOGK2RKrDRs3K/7IUQXXqG6zuouKPumTPsuvQ4fjlJKSqmZNm6hXj25at36Dtm77RytWrVZgtQC1Cm+pqNYRalCvngKq+svLy0v79h/Q77PnKCK8pd0EvGvt014CAX0aq8+CEPLsRGSrcH2lCXrh5df0yIP3qWXzZgXe3yf33IGQWrW0as06pf/7oWMv6DMv+rQPFaXPw3FxysjMVHRUpEYOG6KO7dvq0KE4bd2+Xes3btbiJcv0518LFFqntiJbhattdJTWb9ik1NQ0DR5oP0u20Sd92mOfBSHk2YmmTRrrhlEj9NOUX/Xu/31kverSr0oV6za5swZnz55TQkKi3FxdVS+srg2rLjr6pE/6LL8yMzOVk5Oj2iEhkqSgwEAFBQYqMiJcvXt21549+7R5S6w2bo7RtBkz9fvsObJYJC9PT7taDoo+6dMe+ywIF17Ymd9+n6VJP03RkaPHVNXfT52v66h20W1UrVqAHBwc5OXpqV+m/aYpU6dp2NDBevTB+2xdcrHQJ33aI6P3abFYdPDQYTk7O6tG9aACLxpJT0/X4bh4HTp8WLPn/qm16zdo5LAheuLRh2xUddHR53/o0376LAghz85YLBbFxR/R77Pm6K+Fi5SQkChJqlzZV05OTkpKSlJOjkU9u3fTg/fdpWoBATauuHjokz7tUUXpsyAFfXC+98HHmjp9hl0uB3U59Emf9oSQZ8fS09O1/Z+dWrZipRJPJunUqVPy8PBQ966d1bXzddYF7e0dfdKnPaoofV4q9154R48d0xPPPK+z585pzm9TbV1WiaNPYzFqn5yTZ8fc3NwUGRGuyIhw6y0bjIg+jYU+jS33CtrExJMym80aPmSQjSsqHfRpLEbtk5k8AECJs1gsOpGQKB9vL7m5udm6nFJDn8ZitD4JeQAAAAZkH3emBAAAQJEQ8gAAAAyIkAcAAGBAhDwAAAADIuQBAAAYECEPAADAgAh5AAAABkTIAwAAMCBCHgAAgAH9P40J6qq0+XZZAAAAAElFTkSuQmCC", - "text/plain": [ - "
" - ] - }, - "execution_count": 17, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "# Run the noisy simulation\n", - "sim_thermal = AerSimulator(noise_model=noise_thermal)\n", - "\n", - "# Transpile circuit for noisy basis gates\n", - "passmanager = generate_preset_pass_manager(optimization_level=3, backend=sim_thermal)\n", - "circ_tthermal = passmanager.run(circ)\n", - "\n", - "# Run and get counts\n", - "result_thermal = sim_thermal.run(circ_tthermal).result()\n", - "counts_thermal = result_thermal.get_counts(0)\n", - "\n", - "# Plot noisy output\n", - "plot_histogram(counts_thermal)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Next steps\n", - "\n", - "\n", - " - To simulate noisy circuits, see [Exact and noisy simulation with Qiskit Aer primitives](simulate-with-qiskit-primitives).\n", - " - Review the [Qiskit Aer noise module](https://qiskit.org/ecosystem/aer/apidocs/aer_noise.html) reference.\n", - "" - ] - } - ], - "metadata": { - "description": "Build custom noise models for noisy simulation with Qiskit Aer", - "kernelspec": { - "display_name": "Python 3", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3" - }, - "title": "Building noise models" - }, - "nbformat": 4, - "nbformat_minor": 4 -} \ No newline at end of file diff --git a/translations/ja/verify/cloud-based-simulators.mdx b/translations/ja/verify/cloud-based-simulators.mdx deleted file mode 100644 index 237fe5e8eb..0000000000 --- a/translations/ja/verify/cloud-based-simulators.mdx +++ /dev/null @@ -1,176 +0,0 @@ ---- -title: Available IBM Quantum simulators -description: Overview of available IBM Quantum cloud-based simulators ---- - -# Available IBM Quantum simulators - - -This page gives details about the IBM Quantum cloud-based simulators. For information about the Qiskit built-in simulator, see the [Python-based simulators page in the API reference.](../api/qiskit/providers_basicaer) You can also use the [Qiskit reference primitives](simulate-with-qiskit-primitives) for local statevector simulation. - - -IBM Quantum features a collection of high-performance simulators for prototyping quantum circuits and algorithms. - -To view available simulators, on the upper right corner of the screen, click the Application switcher ( ![Application switcher icon](/images/migration/switcher-small2.png) ), select **Compute resources** to view the [Compute resources page,](https://quantum.ibm.com/services/resources?services=simulators) then click All simulators. - -The following simulation methods support a maximum of 300 circuits and 8192 shots per job. Find more information on each simulator below, including its type, a description, the number of qubits it simulates, whether it includes noise modeling, a list of supported gates, and how to call it using Qiskit Runtime. The `simulator_statevector` is a good default choice since it is a general-purpose solution method. - - - To prevent the simulators from processing jobs that would otherwise not finish processing in a reasonable amount of time, jobs sent to the simulators are limited to run times under 10,000 seconds (\~2.75 hours). - - -## Statevector simulator - -**Type:** Schrödinger wavefunction - -**Name:** simulator_statevector - -Simulates a quantum circuit by computing the wavefunction of the qubit’s statevector as gates and instructions are applied. Supports general noise modeling. - -**Qubits:** 32 - -**Noise modeling:** Yes - -**Supported gates / instructions** - -```python -['u1', 'u2', 'u3', 'u', 'p', 'r', 'rx', 'ry', 'rz', 'id', -'x', 'y', 'z', 'h', 's', 'sdg', 'sx', 't', 'tdg', 'swap', -'cx', 'cy', 'cz', 'csx', 'cp', 'cu1', 'cu2', 'cu3', 'rxx', -'ryy', 'rzz', 'rzx', 'ccx', 'cswap', 'mcx', 'mcy', 'mcz', -'mcsx', 'mcp', 'mcu1', 'mcu2', 'mcu3', 'mcrx', 'mcry', -'mcrz', 'mcr', 'mcswap', 'unitary', 'diagonal', -'multiplexer', 'initialize', 'kraus', 'roerror', 'delay'] -``` - -**Code example** - -```python -from qiskit_ibm_runtime import QiskitRuntimeService -service = QiskitRuntimeService() -backend = service.get_backend("simulator_statevector") -``` - -## Stabilizer simulator - -**Type:** Clifford - -**Name:** simulator_stabilizer - -An efficient simulator of Clifford circuits. Can simulate noisy evolution if the noise operators are also Clifford gates. - -**Qubits:** 5000 - -**Noise modeling:** Yes (Clifford only) - -**Supported gates / instructions** - -```python -['cx', 'cy', 'cz', 'id', 'x', 'y', 'z', 'h', -'s', 'sdg', 'sx', 'swap', 'delay', 'roerror'] -``` - -**Code example** - -```python -from qiskit_ibm_runtime import QiskitRuntimeService -service = QiskitRuntimeService() -backend = service.get_backend("simulator_stabilizer") -``` - -## Extended stabilizer simulator - -**Type:** Extended Clifford (e.g., Clifford+T) - -**Name:** simulator_extended_stabilizer - -Approximates the action of a quantum circuit using a ranked-stabilizer decomposition. The number of non-Clifford gates determines the number of stabilizer terms. - -**Qubits:** 63 - -**Noise modeling:** No - -**Supported gates / instructions** - -```python -['u0', 'u1', 'cx', 'cz', 'id', 'x', 'y', 'z', 'h', -'t', 'tdg', 's', 'sdg', 'sx', 'swap', 'p', 'ccx', 'ccz', -'delay', 'roerror'] -``` - -**Code example** - -```python -from qiskit_ibm_runtime import QiskitRuntimeService -service = QiskitRuntimeService() -backend = service.get_backend("simulator_extended_stabilizer") -``` - -## MPS simulator - -**Type:** Matrix Product State - -**Name:** simulator_mps - -A tensor-network simulator that uses a Matrix Product State (MPS) representation for states. This representation is often more efficient for states with weak entanglement. - -**Qubits:** 100 - -**Noise modeling:** No - -**Supported gates / instructions** - -```python -['unitary', 't', 'tdg', 'id', 'cp', 'u1', 'u2', 'u3', 'u', -'cx', 'cz', 'x', 'y', 'z', 'h', 's', 'sdg', 'sx', 'swap', -'p', 'ccx', 'delay', 'roerror'] -``` - -**Code example** - -```python -from qiskit_ibm_runtime import QiskitRuntimeService -service = QiskitRuntimeService() -backend = service.get_backend("simulator_mps") -``` - -## QASM simulator - -**Type:** General, context-aware - -**Name:** ibmq_qasm_simulator - -A general-purpose simulator for simulating quantum circuits both ideally and subject to noise modeling. The simulation method is automatically selected based on the input circuits and parameters. - -**Qubits:** 32 - -**Noise modeling:** Yes - -**Supported gates / instructions** - -```python -['u1', 'u2', 'u3', 'u', 'p', 'r', 'rx', 'ry', 'rz', 'id', -'x', 'y', 'z', 'h', 's', 'sdg', 'sx', 't', 'tdg', 'swap', -'cx', 'cy', 'cz', 'csx', 'cp', 'cu1', 'cu2', 'cu3', 'rxx', -'ryy', 'rzz', 'rzx', 'ccx', 'cswap', 'mcx', 'mcy', 'mcz', -'mcsx', 'mcp', 'mcu1', 'mcu2', 'mcu3', 'mcrx', 'mcry', -'mcrz', 'mcr', 'mcswap', 'unitary', 'diagonal', -'multiplexer', 'initialize', 'kraus', 'roerror', 'delay'] -``` - -**Code example** - -```python -from qiskit_ibm_runtime import QiskitRuntimeService -service = QiskitRuntimeService() -backend = service.get_backend("ibmq_qasm_simulator") -``` - - Qiskit built-in simulator, see the [Python-based simulators API](/api/qiskit/providers_basicaer) reference. - -## Next steps - - - - Learn about simulators built into Qiskit in the [Python-based simulators API](/api/qiskit/providers_basicaer) reference. - - Discover available systems in the [System information](../run/system-information) topic. - diff --git a/translations/ja/verify/index.mdx b/translations/ja/verify/index.mdx deleted file mode 100644 index 09dc85e7cb..0000000000 --- a/translations/ja/verify/index.mdx +++ /dev/null @@ -1,21 +0,0 @@ ---- -title: Introduction -description: Introduction to the Verify phase ---- - -# Introduction - -In the verify phase, you test your quantum programs by running them on simulated devices and exploring their performance under realistic device noise models. This allows you to validate them before sending them to a physical system. - -Because the cost of classically simulating quantum circuits scales exponentially with the number of qubits, circuits that are larger than 50 qubits or so generally cannot be directly verified. For such circuits, you can: - -- Test smaller versions of the circuits that can be simulated classically. -- Modify the circuits so that they become classically simulable and test these modified circuits. - -Stabilizer circuits are a useful tool for accomplishing this latter goal. These are a restricted class of quantum circuits that can be efficiently simulated classically. Specialized simulators can easily simulate stabilizer circuits with thousands of qubits. See [Efficient simulation of stabilizer circuits with Qiskit Aer primitives](stabilizer-circuit-simulation) for an overview of stabilizer circuits and how to simulate them efficiently. - -For general quantum circuits, the following tools are available for you to verify your quantum programs: - -- For exact simulation of small quantum circuits, you can use the reference primitives included with Qiskit. See [Exact simulation with Qiskit primitives](simulate-with-qiskit-primitives). -- For higher-performance simulation that can handle larger circuits, or to incorporate noise models into your simulation, use [Qiskit Aer](https://qiskit.org/ecosystem/aer/), a project that is part of the [Qiskit Ecosystem](https://qiskit.github.io/ecosystem/). See [Exact and noisy simulation with Qiskit Aer primitives](simulate-with-qiskit-aer). -- To build your own custom noise models, use the [`noise`](https://qiskit.org/ecosystem/aer/apidocs/aer_noise.html) module of Qiskit Aer. See [Building noise models](building_noise_models). diff --git a/translations/ja/verify/simulate-with-qiskit-aer.ipynb b/translations/ja/verify/simulate-with-qiskit-aer.ipynb deleted file mode 100644 index 6bd5e786f0..0000000000 --- a/translations/ja/verify/simulate-with-qiskit-aer.ipynb +++ /dev/null @@ -1,270 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Exact and noisy simulation with Qiskit Aer primitives\n", - "\n", - "[Exact simulation with Qiskit primitives](simulate-with-qiskit-primitives) demonstrates how to use the reference primitives included with Qiskit to perform exact simulation of quantum circuits. Currently existing quantum processors suffer from errors, or noise, so the results of an exact simulation do not necessarily reflect the results you would expect when running circuits on real hardware. While the reference primitives in Qiskit do not support modeling noise, [Qiskit Aer](https://qiskit.org/ecosystem/aer/) includes implementations of the primitives that do support modeling noise. Qiskit Aer is a high-performance quantum circuit simulator that you can use in place of the reference primitives for better performance and more features. It is part of the [Qiskit Ecosystem](https://qiskit.github.io/ecosystem/). In this article, we demonstrate the use of Qiskit Aer primitives for exact and noisy simulation.\n", - "\n", - "Let's create an example circuit on 8 qubits." - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABTcAAAIwCAYAAABTFl+VAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAADxtklEQVR4nOzdeXwU9f3H8dduDhICAUICgYQjQMIN4ZZDBAUVwQO8BVrUilaReoGtlqpt1QqoFdSq9dZfFRW0ilVEAUVABDlEQIFwhiRAIBwhd7K/P0YikQR2N7PH7Lyfj0cekN05Pp+B73e++9mZ7zhcLpcLEREREREREREREYtxBjoAEREREREREREREW+ouCkiIiIiIiIiIiKWpOKmiIiIiIiIiIiIWJKKmyIiIiIiIiIiImJJKm6KiIiIiIiIiIiIJam4KSIiIiIiIiIiIpak4qaIiIiIiIiIiIhYkoqbIiIiIiIiIiIiYkkqboqIiIiIiIiIiIglqbgpIiIiIiIiIiIilqTipoiIiIiIiIiIiFiSipsiIiIiIiIiIiJiSSpuioiIiIiIiIiIiCWpuCkiIiIiIiIiIiKWpOKmiIiIiIiIiIiIWJKKmyIiIiIiIiIiImJJKm6KiIiIiIiIiIiIJam4KSIiIiIiIiIiIpak4qaIiIiIiIiIiIhYkoqbIiIiIiIiIiIiYkkqboqIiIiIiIiIiIglqbgpIiIiIiIiIiIilqTipoiIiIiIiIiIiFiSipsiIiIiIiIiIiJiSSpuioiIiIiIiIiIiCWpuCkiIiIiIiIiIiKWpOKmiIiIiIiIiIiIWJKKmyIiIiIiIiIiImJJKm6KiIiIiIiIiIiIJam4KSIiIiIiIiIiIpak4qaIiIiIiIiIiIhYkoqbIiIiIiIiIiIiYkkqboqIiIiIiIiIiIglqbgpIiIiIiIiIiIilqTipoiIiIiIiIiIiFiSipsiIiIiIiIiIiJiSSpuioiIiIiIiIiIiCWFBzoAqZ7LBRWlgY7Cfc4IcDjM257V8gfzj4GIiIid2X0sYPf8RcB67UCfidQPiLns3gbsnr8nVNwMUhWlsHhWoKNw39DJEBZp3vaslj+YfwxERETszO5jAbvnLwLWawf6TKR+QMxl9zZg9/w9odvSRURERERERERExJJU3BQRERERERERERFLUnFTRERERERERERELEnFTREREREREREREbEkFTdFRERERERERETEklTcFBEREREREREREUtScVNEREREREREREQsKTzQAYh51mcs4Z7nhlZ5LSoyhuSENIb1HM9lA28nLCx0/8ntnr+IiIhoPGD3/EXs3gbsnr8IqB3YMf/QykYAGJp+LX07XIQLF3nHclj43es899Fd7N6/mTuveCHQ4fmc3fMXERERjQfsnr+I3duA3fMXAbUDO+Wv4mYISk3qybBe4yp/v3jArdw4vQOffPsi11/4MA3rJQQwOt+ze/4iIiKi8YDd8xexexuwe/4ioHZgp/w156YNREfG0KHVWbhcLrIOZgQ6HL+ze/4iIiKi8YDd8xexexuwe/4ioHYQyvmruGkT2T//x42tGxfgSALD7vmLiIiIxgN2z1/E7m3A7vmLgNpBqOav29JDUFFpAUeO5+JyGfMqfLTiObbtXUuHFn1JTkgLdHg+Z/f8RUREROMBu+cvYvc2YPf8RUDtwE7526K4mZuby/Tp05k3bx6ZmZkkJCQwZswYHnnkESZPnszLL7/M7NmzmTRpUqBDNcXrnz3A6589UOW1QV3GcPvoZwIUkX/ZPX8REZFfq3DBj1mwdR8UlUJkOLRJgC7JEBai9/HYfTxg9/zlVMcKYdUOOHQcXC5oEA09W0N8/UBH5ht2bwN2z19OVeGCrTnwY/YvY4FWjaFbCwgPC3R0vmH3dmCn/EO+uLlu3TpGjBhBTk4OMTExdOrUiaysLGbNmkVGRgaHDh0CID09PbCBmmhkv4kM7nYlZRWl7MjewJwlj5F7JJPIiKjKZR5+8xoqXBVMG/9O5WtHCw5x08zOTBw1k/N6jg1E6KZwJ/8N25dy30sjTlm3rLyEiopyFkwv92fIIiIiPuFywfJtsGgTHMyv+t6XPxrFjXM6wJCO4HQEJkZf0XhI4yEx5B2HD9fC93ugvKLqe598Dx2bw6h0aN4oIOH5jPoA9QHyi2+3w8If4MCxU9+LjYJB7WFYJ3CG2Bee6gfs0w+EdHEzNzeXiy++mJycHO6++24eeOAB6tc3vpqcPn069957L+Hh4TgcDrp16xbgaM2TFJ9Kz7RhAPTtMIIuKYO489lBPDX3Fu4f9zYAt495lomPd2XR2rc4t8e1AMx+/zY6pwyydOMF9/Lv2uZsPnq46qe83CNZ3DarN5cOCI0reEVExN5cLpj3HSz9qeZljhQaRY/MQzBuQGh9qNF4SOMhgX1H4NkvjLZeHRewKQsy9sPEodC2iV/D8yn1AeoDxDB/HXy+seb3jxbB/9bDnoMw4ezQuqND/YB9+oEQ+m97qsmTJ5OZmcmkSZOYOXNmZWETYOrUqXTv3p2ysjJat25NbGxsACP1rc6tBzCs53iWrJ/Dxp3LAWPy2LuvfImnP5hE7pEsvvr+Pb7PWMIdY54LcLTmqy7/XyspK+ah18fQpfUgrjvvPj9HKCIiYr7Fm09f2DzZml3w0TqfhhNwGg9pPGQ3BSXw/OKaC5snKy6DF5dAbjVXdYUK9QHqA+xo2ZbTFzZPtiET5q32bTyBpn4gdPuBkC1ubt68mTlz5hAfH8+jjz5a7TK9evUCoHv37lVe37FjB5dccgn169enUaNG/OY3v+HgwYM+j9mXxg6bhtMZxmsL/lL5Wp8OF3JOt6t47K1xzJ53K3dd+SKxMY0DGKXvVJf/yZ6aewslpUVMufpV/wYmIiLiAyVl7n+YOeGrnyC/yDfxBAuNhzQespNvM4z5Nd1VWGpMVxHK1AeoD7CT8gpYsMGzdZZvg8MFvoknWKgfCM1+IGSLm2+99RYVFRWMHTuWevXqVbtMdHQ0ULW4eezYMYYOHUpmZiZvvfUWL7zwAkuXLmXUqFFUVFRUux0rSIpvx9Du17B22xds2L608vWJF89k78Ft9Okwgn4dRwYwQt+qKX+A97+excrN83lowgdERdYNUIQiIiLmWbvLuGrLE+UV8E2Gb+IJFhoPaTxkFxUuWLbV8/W+3Q7FpebHEyzUB6gPsJMNe4xbzj3hcsFyL/oOK1E/EJr9QMgWNxctWgTA0KFDa1wmMzMTqFrcfOGFF9i7dy8ffPABo0aN4sorr+Q///kP33zzDR9++KFvg/axa8+7H6fDyWuf/VKhj46MoVlcG1ISuwYwMv+oLv912xbz4sf3Mm38uyTGtQ5ccCIiIibakOnf9axE4yGNh+xg35HqHxxyJsVlsHWf+fEEE/UB6gPswuuxwB5z4whG6gdCrx9wuFwuV6CD8IUWLVqQmZnJ2rVrq30SellZGc2aNSM3N5eMjAzatGkD/FIMXbx4cZXl27Zty5AhQ3jppZc8jqV3797k5OR4tE5keDQvTPLPVyZ3/2sIZ3UcxZVD7vF6GxOfTqWkzI0Jfdzkj/xzDu1k0qw+jBv+AJcNrP1EuWYfAxEREW8NuWUu8Sn9PF7v2IEMFsw8xwcRec6fYyEIvvGQv/I3czyksVDwiG/dlyG/n+fVuqvm3MGuNe+ZHJF39JlIn4nEe4NueIPE9jVf7FWTwiM5fPxIbx9E5DmNBew1FkhMTGT1au8mfg3Zp6UfP25MMFNYWP1BnTNnDrm5udSvX5+UlJTK1zdt2sSVV155yvKdO3dm06ZNXsWSk5PD3r17PVonKsJalwBnZ2VRVGre5By+zr+opIAHXr2M/p0uMeUkDuYfAxEREW8dzz9CvBfrFRUc83jM4itWGwuBuWMBf+Rv9nhIY6HgUVbH+0uvDuzPUj/gJX0mUj8QTPKPHfZqveKifPUBtaCxQGD6gJAtbiYmJpKXl8eaNWvo379/lfeys7OZMmUKAN26dcPhcFS+l5eXR8OGDU/ZXlxcHD/95OYjR6uJxVOR4dFe7StQmjVvbvq3lL60dMNctmevZ2/uFpasn3PK+y/ds4kmjVp6tE2zj4GIiIi3ig5t92q9gtxtJCUlmRyNd6w2FgJzxwL+yN/s8ZDGQsEjwnGcspJCwiPd/3/kcrlwOByEFe9TP+AlfSZSPxBMSvJ2eLVe/v4t6gNqQWMB7/P3pnZ2Qsjelj558mRmz55NixYt+Pzzz0lLSwNg1apVjB8/nu3bt1NaWsptt93G008/XbleZGQkU6dO5e9//3uV7U2YMIEVK1Z4XeD0VHkJLJ7ll12ZYuhkCIs0b3tWyx/MPwYiIiLeOnAUHv7I8/X+cD6kJJgfjzfsPhawe/5Se299Ays9fEhYu6YwaZhv4vGG1dqBPhOpHwgmhwvgrx8YDxjzxO/PhfbNfBKSx+zeBuyevydC9oFCU6dOpXHjxuzZs4fOnTvTtWtXUlNT6du3L23atOHcc88Fqj5MCKBRo0YcPnz4lO0dOnSIuLg4f4QuIiIiUisJsdCxuWfrtIiD1t7cyy4iQWlQmufrnO3FOiISnBrWhW4tPFunSSyken/xnEjAhGxxMzk5maVLlzJy5EiioqLYuXMncXFxPP/883z88cds2bIFOLW42bFjx2rn1ty0aRMdO3b0S+wiIiIitXXNWdAoxr1lY+rAbwbBSTP1iIjFtYiDS3u6v/ygNM8LISIS3K7oAwn13Vs2OgKuPxucGguIBYVscROMQuX8+fM5duwYx44dY+XKlUycOJHjx4+zc+dOnE4nXbp0qbLOqFGj+Prrr8nMzKx8beXKlWRkZHDxxRf7OwURERERrzSINm4zT2p0+uXi68Pk893/8CMi1jG0I1zeG8JO86nPAZzXCcb01hccIqGmXhTcPhxaNj79co1ijOWaNfRLWCKmC9kHCp3Oxo0bcblcpKWlUbdu1adPTZw4kdmzZ3PppZfy0EMPUVRUxNSpU+nbty+XXnppgCIWERER8VzDunD3CPgpG77eAltzoKTceC/MCb8dBJ2TTl/4EBFrO7s9dG8J32QYc3AezDdedwBDO8GAdsaXHCISmmKj4Y4LjDHAsq3wY1bVscC4AdA1GcLDAhunSG3Ycii7YcMG4NRb0gFiY2NZtGgRzZo145prruF3v/sdAwYMYP78+TidtjxcIiIiYmFOhzH/5k1DYPo1EBtlvF6vjnELqgqbIqEvNhrO7wLTLv2lD4iNhkt6qLApYgdOh/GQoBsGnzoW6NFKhU2xPlteuXm64iZA27ZtmT9/vj9DEhEREfEL3XYqYm/qA0RE/YCEGhU3Q0hG1nqefO8mCoqP0bRhK+699g127dvIfS+OIDmhPf+Y+BmN6jWhqKSAx9+9kS17VuFwOLlhxCMM7nYFAC/Mn8KS9XNITerJQxM+CGxCHnI3/8wDW/nn3IkcK8ijtKyIvh1HMnHkDJxOJ3O/epIPlz9DVGQ9nr9rXaBTEhERkTNw9/z/6bcvM3fpk+zev5mbR81kzNl3VNnOh8uf5YNlswlzhuN0OJl9+0oiI6KCfmzkbv4vfXIfyzbMIyK8DmFhEVx/4cP0aX9BlW3l5e9n4uNd6dSqf2WuS9bN4Y2FD3HwaBYf/O2w/xMUOQN328DLn9zPik0f4nQYl6hdc+4fGZp+DcBp24cVPh+4ewxO2LVvM7c91YuL+k3k1kv/CUBFRQXPfvgHvt38PxwOB6PPvoPLBk4CrHEMxN7MaAOH8w/w+Ds3sC9vF2UVpXRo0Zc/XP4cdSKig/5c6G7+09+ewJqtC2kQkwBAr7ThTBw1o3I7Vh0LgU2Lm4sWLQp0CD4xY84E7rnqFdolpfPpty/zwvx7uKDP9SQntK9yEnr3y5lEhNXhtT9uI/vQDibP6kd626HExjRm4qgZtGrameUbPwhYHt5yN/9/fzyFgV1GM3rQZEpKi7htVh9WtTuPfh0v4vLBd9IuqQfP/veOgOUhIiIi7nP3/J+a3Is/j3uHtxc9eso2lv/wX75Y83/MnvQNMdENOJx/gLCwCICgHxu5m3/XlLMZN2wadSKiychaz13/Gszb07KIjoypXOap927mrI6jOFpwsPK1IelX06FlP255Mt2PWYm4z902cNWQKdww4mEAco/s5cYZHemZOowGMfGnbR9W+Hzg7jEAKCsv5Z9zJzKwy+gqr3+x5k127dvEK/du4XjREX7/ZA/S2w6ldWJnSxwDsTcz2sB/vniYpPhU/nbDR5RXlPPnl0ayYNUrXDLg1qA/F3qS/1VDppzyBS9YeywENp1zMxRt27uW6Dr1aJeUDsDw3r9lxaYPKS0rOWXZL9fPYVT/WwBoFpdCt7ZD+PqH9/0Zruk8yd+Bg+OFRwAoLi2kvLyUxrHN/BmuiIiImMCT83/b5t1p1bQjDsepw993vpzB+OEPEBPdAICG9RIIcwb/BGSe5N+3wwjqREQDkJLYFVwujuQfqHz/k29fIjEuhS4pZ/sldhEzeNIG6kU3rPx7YXE+LlxUuCqAM7ePYObJMQB4c+FfGdztSpLiU6u8vmT9HC7qdxNhzjBi68YxpPvVLF73lq/DF6k1s9qAw+GgoPgYFRUVlJWXUFxaQHyDZF+HX2ue5l8Tq46FTrDllZuhKPvQDnZkb+DmJ9IrXysuKSD36N5Tlt1/eDdNG7Wq/D2xUWv2H97tjzB9xpP8f3/pP5n28sV89M2/yC/IY+ywabRL6uHHaEVERMQMnpz/T2f3vk1syVzNGwsforS8mOG9fsPoQZNNjtZ83ua/YPUrJMa1qRwPZh/awfwVz/HErV+xZN0cX4YsYipP28D7X8/iw+XPkHs4kzuvfLHKbaon/Lp9BDtPjsHm3SvZtGsFj01cyBsLH6ry3v7Du2na8Jecm8a1ZvOub3wWt4hZzGoDY4dN46+vX87Vf02kuKyQc9OvY0DnS3wdfq153A8ufYpPv32ZJo1aMuGCv1cWRa06FjpBxc0Q0qFlP/5x04LK3694MCGA0fifu/l/uPxZhva4lmvP/RN5+fuZ8txQ2rfoQ6+04f4KVURERExixvinvKKMnEM7eOLWr8gvzOPuf51Ds7g2nNVplJmh+oSn+a/Z+gVvLHyIx25aiMPhwOVy8fg7NzBp9NOVV66JWIknbWD0oMmMHjSZjKz1/OOtcfROO5/YmMaV7/+6fViFO8egqKSA2fNuZdpv3rNUbiLuMKMNLFn3Ni2bdOKxiZ9TXFLAX169hP+tfJGL+v3Op7Gbwd1+8IYRDxNXvxlOp5OvN7zP/S+N4NV7txJdp56lx0Kg29JDRrO4NlWuvjxedJSikuPExyadsmyThi3Zl7er8vecvJ00adjSL3H6iif5f7j8GYb3+i0Ajeo1oW+Hi1ifscRfoYqIiIhJPDn/n06Thi0Z2uNawpxhNIiJp2+Hi9i8O/ivWPI0//UZXzLznev52/Uf0aJJewAKio6yPft7Hn7zasY90poX5t/Dd1s+Y8rz5/klB5Ha8LYPaNu8O/GxSVU+A1TXPqzA3WOQfTCD/Yd3M+W5oYx7pDXzlv6TBateZvrbxueiJg1bsu/wL58R9x3aSZNG1v6MKPZgVhv4aPmznNdzLGHOMOpG1efsrlewPmOxX3Pxhif9YHyDJJxOoww4qOto6kbFsufAT4B1x0InqLgZItolpRPujOC7LQsBo2Ge0/1qIsIjT1l2cLcrmb/iOcC4hPn7jCUM7HKZP8M1nSf5N4trw+qfPgWgsOQ46zIW0zqxi1/jFRERkdrz5Px/OkN7XMfqH42xQXFpIeszltCmWXfT4zWbJ/l/v/0rHnt7PH+d8F/aNv8lt5joBsx76CBv3reTN+/bycRRM+mVdj4zbv7Cb3mIeMuTNrBr36bKv2flZrAtay0tm3YCam4fVuDuMUhp1pX3HjxQ2dbHnH0HF/S5ganXvAYYnxH/t/LflFeUc7TgEEvWz2FI96v9no+Ip8xqA4mN27Dq5zpBWXkpq7cssESdwJN+8MDhzMq/b9r1DUePHySpcTvAumOhE3Rbegj503X/x4x3rmfWvN/TvHE7/njdm+zM+eGU5a4cMoXH37mB3zzaFqczjEmjn6ZBTHwAIjaXu/lPveY1Zr8/ife/forS8hL6d7qEoenXBCBiERERqS13z/8LVr3Kqwv+TH5BHss3fsC7X87kb9d/RLukHlwx+C7+OfdmbpzRCYfDwaCul3NO9ysDkI3n3M3/8XdvpLSsmBlzrq987Y/XvkFKs67+DFfEdO62gX9/PJWcQzsIc0YQFhbOpMueplXTjoD124e7x+B0hvUaz097VjHhsVQcOLh88F2WyV/EjDZw66VP8dTcW7jp8a5UVJTTqVV/Lj/7Th9FbC53858xZwJ5+ftwOsKoExHNtPHvVj5AyMpjIVBxM6SkNOvKs39YfcbloiNj+PO40Jss3t382yX14KlJy/wQkYiIiPiau+f/C/pM4II+E6p9LzIiqvLKDatxN//X7t3q1vZOd5xEgpG7beDvN8yv8T1320ewcvcYnOw35z9Y5fcwZxiTxzxjYlQi/mNGG2gWl1Jl3korcTf/6Td/XuN7Vh4LgW5LD3nhYZEcKzjIzU+kk5e//4zLvzB/Cm8vfpR60Y38EJ3veZr/3K+eZNa8W0PiSlYRERG78vT8fzpWHBuZmf+SdXOY9srFNKrf1KToRHzPzDZg1c8HOgZid3Y/F9ptLORwuVyuQAchpyovgcWzAh2F+4ZOhjDPprc6LavlD+YfAxEREV94YB4cKYQG0fDQmEBHUzO7jwXsnr/4jlX6ALBeO9BnIvUDVmGVfsDubcDu+XtCV26KiIiIiIiIiIiIJam4KSIiIiIiIiIiIpakBwoFKWeEcTmvVTgjzN+elfIH84+BiIiIndl9LGD3/EXAeu1An4nUD4i57N4G7J6/J1TcDFIOh73nKrF7/iIiInZn97GA3fMXAbUDu+cvYvc2YPf8PaHb0kVERERERERERMSSVNwUERERERERERERS1JxU0RERERERERERCxJxU0RERERERERERGxJBU3RURERERERERExJJU3BQRERERERERERFLUnFTRERERERERERELEnFTREREREREREREbEkFTdFRERERERERETEklTcFBEREREREREREUtScVNEREREREREREQsScVNERERERERERERsSQVN0VERERERERERMSSVNwUERERERERERERS1JxU0RERERERERERCxJxU0RERERERERERGxJBU3RURERERERERExJLCAx2AVM/lgorSQEfhPmcEOBzmbc9q+YP5x0BERMTO7D4WsHv+ImC9dqDPROoHxFx2bwN2z98TKm4GqYpSWDwr0FG4b+hkCIs0b3tWyx/MPwYiIiJ2ZvexgN3zFwHrtQN9JlI/IOayexuwe/6e0G3pIiIiIiIiIiIiYkkqboqIiIiIiIiIiIglqbgpIiIiIiIiIiIilqTipoiIiIiIiIiIiFiSipsiIiIiIiIiIiJiSXpauoiIiEiIyj0GP2ZD5iHYfQiOFMDxYuO9Y0Xwf8shOQ7aN4PEBoGNVUTMV14BP2XDzlyjH8g6DEcKjfeOFsKzX0CLOGjZGDo2h0h9OhQJOYfyYfPPY4E9h+Dwccg/aSzw5jJIbgxpTaF5o8DGKuItnb5EREREQkiFCzbtha+3GIXN0y23aofxA9C2CQxMhe4tIUz39ohY2pECWL4NVmwzipjVcQFbcowfgOhI6NsGBqVCQqzfQhURH3C5YHMWLNtqjAlcNSxX4YLVO40fgJR4GJgG6S0hPMxPwYqYQMVNERERkRBx4Bi8tQK2H/B83Yz9xk/SJriuPyTp6g0Ry6lwwbIt8NE6KCnzbN3CEvjyR1j6EwzrDOd3UXFDxIoO5sPb38DWfZ6vuyPX+Pl8ozEWaNnY/PhEfEHFzRCyPmMJ9zw3tMprUZExJCekMazneC4beDthYaH7T273/EVExN6+3gL/XQOl5bXbzt48ePwTuLAbDO8MDoc58fmL3ccDds/fzg4XwJvLYZsXBY2TVbjgsx9gQyb8ZiA0a2hKeH5j9zZg9/zt7psMeH81FHv45cav5RyBfy4wvui4sBs4NRawFDvmH1rZCABD06+lb4eLcOEi71gOC797nec+uovd+zdz5xUvBDo8n7N7/iIiYi8uF8xfB19sMm+bFS7433pjnq6r+lnvQw1oPGD3/O0m95gxf+ah4+ZtM/swzF4INw+FVvHmbddf7N4G7J6/HX22Af73vXnbO/FFx8F84ypOK05ZY/d2YKf8VdwMQalJPRnWa1zl7xcPuJUbp3fgk29f5PoLH6ZhvYQARud7ds9fRETsZcEGcwubJ/smw/gwc0Uf613BaffxgN3zt5PDBfDMF5BnYmHzhIISeG4x3D7Meg8asXsbsHv+drNok7mFzZN9t9P4kvPa/tb7stPu7cBO+Vuw9i6eio6MoUOrs3C5XGQdzAh0OH5n9/xFRCR0bdoLn27w7T6Wbf3loUNWZvfxgN3zD1UVLnhjmW8KmycUlsDLSz2fwzPY2L0N2D3/ULZtH3y41rf7WLUDlm/17T78we7tIJTz15WbNpH983/c2LpxAY4kMOyev4iIhJ6CEpiz0vP17roQYqONJyg/8al767z/HbRPhAZ1Pd9fMLH7eMDu+Yeir7cYDwLzhDd9QO4x+Hg9jO7leYzBxO5twO75h6LiMnjrG8/X86Yf+HAtdGwOjet5vr9gYvd2EKr52+LKzdzcXKZOnUq7du2IioqiRYsW/OEPf+D48ePceOONOBwOnn766UCHaZqi0gKOHM/lcP4BdmRvYNa829i2dy0dWvQlOSEt0OH5nN3zFxGR6h0vhsxDsCvXmD/K6j5eB0cKPV8vNhoa1jX+dFdhCcxd7fm+Asnu4wG7518dlwv2H4WduZCVB8WlgY6odg4XwHwvrtbypg8A+OpH2H3Q8/0Fit3bgN3zr0lBiTEW2JlrFO1drkBHVDsLvvduTONNP1BSBu9+6/m+Asnu7cBO+Yf8lZvr1q1jxIgR5OTkEBMTQ6dOncjKymLWrFlkZGRw6NAhANLT0wMbqIle/+wBXv/sgSqvDeoyhttHPxOgiPzL7vmLiEhV2/cbt1av2w3lFb+83qoxDEyDHq0gIixw8XnjeDF8u92/+9ywx/ggGF/fv/v1lt3HA3bP/2SFJUZ7WbbVKG6eUCcc+qQY/YDVnggOxi2iJeX+258L+PJHGD/Qf/usDbu3Abvn/2u7co0rndfugrKTxgLJcTAoFXq2hkiLVUeKS41+zZ9+zDYeNmaVPtPu7cBO+Vus+XomNzeXiy++mJycHO6++24eeOAB6tc3RuTTp0/n3nvvJTw8HIfDQbdu3QIcrXlG9pvI4G5XUlZRyo7sDcxZ8hi5RzKJjIiqXObhN6+hwlXBtPHvVL52tOAQN83szMRRMzmv59hAhG4Kd/LfsH0p97004pR1y8pLqKgoZ8F0P44URUTEJypcxlVNizZX//6ug7BrhfFh56YhUD+q+uWC0bfbodTPpyoXsHwbXNLDv/v1lsZDGg8B7DsCzy+u/inixWXw9VZYtg0u7w2DLHQRS1k5rNjm//2u2w2X9bJGf6k+QH0AGFdmfrrBePhedTIPwdsr4aufYOJQ42pGq1i9w+jH/G3ZFriir//36w31A/bpB0K6uDl58mQyMzOZNGkSM2fOrPLe1KlT+c9//sP69etJSUkhNjY2QFGaLyk+lZ5pwwDo22EEXVIGceezg3hq7i3cP+5tAG4f8ywTH+/KorVvcW6PawGY/f5tdE4ZZOnGC+7l37XN2Xz0cNXr93OPZHHbrN5cOmCS32MWERHzfbyu5sLmyXYfhOcWwe3DISrC52GZYmWA5oD/NgMuTrfGk9M1HtJ4KO+48RTxo2eYvsHlgvdWQXgYnNXWP7HV1o/ZcKzI//strzCenDykg//37Sn1AeoDAD77oebC5smyDsO/voA/nA916/g8LFOs9PMdHCes2gGje0OYBSY5VD9gn37AAv8dvbN582bmzJlDfHw8jz76aLXL9OplzIjdvXv3ytdOFEP79u1LnTp1cFhh9H4GnVsPYFjP8SxZP4eNO5cDxuSxd1/5Ek9/MIncI1l89f17fJ+xhDvGPBfgaM1XXf6/VlJWzEOvj6FL60Fcd959fo5QRETMlnkIvtjk/vJ782CRB8sHUlEp5BwJzL7zi607X6nGQ/YbD32w5syFzZO9t8qY8sEKduYGbt+7Arjv2lAfYL8+YP9R+OR795ffdxQW/OC7eMxUVm6MXQKhuMy4Kt6K1A+Ebj8QssXNt956i4qKCsaOHUu9etU/zis62pg99+Ti5rZt25g7dy6JiYn06dPHL7H6w9hh03A6w3htwV8qX+vT4ULO6XYVj701jtnzbuWuK18kNqZxAKP0neryP9lTc2+hpLSIKVe/6t/ARETEJ7yZg2rFNuPDQrDLPGTv/deGxkP2GQ8dKTDmifVEWbn/57L11p4AtsNA7ru21AfYpw8A78YC3243HpwT7LIOV51H3N/UD1hXqPYDIVvcXLRoEQBDhw6tcZnMzEyganFz8ODBZGdn8+GHHzJs2DDfBulHSfHtGNr9GtZu+4IN25dWvj7x4pnsPbiNPh1G0K/jyABG6Fs15Q/w/tezWLl5Pg9N+ICoSAtNsiIiItUqKYPvdni+3rEi2JRlfjxmyz4c2P1nBXj/taHxkH3GQ6t2GPPueioQ81h6I5D9QO4xaxR/qqM+wD59QEWFd19WFJbA9x5+MRIIGgt4T/1AaPYDITvn5q5duwBo1apVte+XlZWxbNkyoGpx0+k0v97bu3dvcnJyPFonMjyaFyaZ++iza8+7n8Xr3uK1z/7CzFsWAxAdGUOzuDakJHat1bZT01IpKfPgvp8z8Ff+67Yt5sWP7+WR331CYlzrWm3f7GMgIiLeqdswiYv+tNKrdf8w9SG2Lv23yRGZq8PQSXS58I/VvnfXhRAbffr1Y6N++fPB0TUvd7QQnvj01Nefee5FJn70oHvB1oIvxgJgnfGQP/M3azwUTGOhnmP+QZt+4zxeL/tgEcnJ7XwQkbku++tPhNeJqfa9M/UDte0DADp07kbJcd9fuqXPRPpM5K3Iug255AHv7jH/04Mz2PzFUyZHZK52A24g/dK/VvueP8YCr7z+H26/dKqb0XpPYwF7jQUSExNZvXq1V+uGbHHz+HHjkYiFhdUf1Dlz5pCbm0v9+vVJSUnxaSw5OTns3bvXo3WiIjyvkndvO4SFM2r+irpV044+e9JVdlYWRaUFpm3PH/nnHNrJ39+8iptGzaB72yHehFmF2cdARES8E1sS6fW6R4/le3zO9rfmR4/V+F5stPtPenU6vXsq7PHjBX45Rt6MBSB0xkP+yt/M8VAwjYU6FHr5tB1HWND3AWA8BKkm7vYD3vYBAPty9lFwdL93K3tAn4n0mchbdWNLvV43P98/57naSDha86SX/hgLFBYUaixQA40FAtMHhGxxMzExkby8PNasWUP//v2rvJednc2UKVMA6Natm88fGpSYmOjxOpHhZ/iqJcg0a97c9G8pfamopIAHXr2M/p0u4bKB5jwBzOxjICIi3gmPjKCivAxnmOfDnDqOYpKSknwQlXliomt+pLs7D0+JjTI+zFRUwNHT1H9q2lZUpNMvx8hqYyEwdyzgj/zNHg8F01gorNy7J18V5+8P+j4AoKKsCKj+ys0z9QO17QMAEho3pKx+zX2RWazWD+gzUfD0Aw5nOOWlRYRFRHm8bjgFQd8P1DvNI939MRaIjHBoLFADjQW8z9+b2tkJIVvcHDZsGJs3b+axxx5j+PDhpKWlAbBq1SrGjx9Pbq7xmL/09HSfx+LNZbXlJbB4lg+C8ZGtW7YS5v2FMqfwdf5LN8xle/Z69uZuYcn6Oae8/9I9m2jSqKVH2zT7GIiIiPde/srzObPqhMOiebOIigjuE/DmLHh+cfXv1XQL6ckeHG1cpXG0CB583/P9//W+SfR90ZwPwadjtbEQmDsW8Ef+Zo+HgmkstO8IPDrf8/UuGZjECz/Pyx/MZn0G2w9U/96Z+oHa9gENomHn9p88X9ELVusH9JkouPqB/1tuzL/riXAnfPJ/j1Ev6jHfBGWSjP0we2H17/ljLPCnO25g0LM3eL6ih6zWB4DGAoHqA0K2uDl16lT+85//sGfPHjp37kyHDh0oKipi27ZtjBgxgtatW7NgwYIq823a1eO/XxLoEPxueK/xDO81PtBhiIiIjwxK87y42TsFonx/IVKttYiz9/59ReOh0NK0AaQ2ha373F/H4YABwT/dJgAtGtdc3PTHvkOR+oDQMzDN8+Jmj1ZQz/OLPf0uuRE4AC+em2YKjQVCR6j0AyH7tPTk5GSWLl3KyJEjiYqKYufOncTFxfH888/z8ccfs2XLFgAVN0VEREJQalPo1sL95RtEw/AuvovHTPWioFH1d6P6XJ1waBobmH2LeOqSHhAR5v7y53aEuHq+i8dMLQNYWAjkvkU80aox9G7t/vIxdeCC2j1Lxm/qRBhf4gRCmBOaNwrMvkVqErLFTYCOHTsyf/58jh07xrFjx1i5ciUTJ07k+PHj7Ny5E6fTSZcuFvkkIyIiIm5zOGDcAOjsxnRQDaLhlnO9f7BGIHjyYc1MPVoZc3SJWEGLxvC7c4yi/JkMSoWR6T4PyTSdk93Lyxd6tg7MfkU85XDANWdBdze+7KwXBbcMhfj6vo/LLL1aB2a/3Vp49sWRiD+E7G3pp7Nx40ZcLhdpaWnUrXvqJ5n33nsPgE2bNlX5vXXr1vTu3dt/gYqIiIjXIsPhhsHwzTb4eitkH676ft1IOKstnNMBGliosAnQvx18vtH/t6MNTPPzDkVqqX0zuOtCWPIjfLcDSn71cNw2CTC4PXRvaRRCrCIqwphKY9lW/+63QzNrFX9EwsPgt2fDt9vh658gM6/q+1ER0K8tDOkQuLsivHVWW/h0A5RX+He/gzQWkCBky+Lmhg0bgJpvSb/yyiur/f23v/0tr776qk9jExEREfOEOY2C3IBU2HUQnl8EhaVGYfPB0UYB1Iri6kHXFp7PK1obKfGhO8eWhLamDeDqfnBxD9iaA29/Y/QD9erA5PMDHZ33BqXB8m3g8uO3HIPb+29fImZxOoxCYL82sOcQ/OuLX8YCD4wO3FXQtVU/2rijYrWH84rWRlIj40shkWBjyxuLzlTcdLlc1f6osCkiImJNDge0jv+lmBkRZt3C5gmX9fTfB7IwJ1zZ1z/7EvGVupHGFZon2n6YxT8JNWtoXG3mL91bQMfm/tufiNkcDmjZuOpYwKqFzRMu6WH0bf7gcMBVfa11lbvYh8WbsnfOVNy0qoys9Tz53k0UFB+jacNW3HvtG+zat5H7XhxBckJ7/jHxMxrVa8Kn377M3KVPsnv/Zm4eNZMxZ99RuY0X5k9hyfo5pCb15KEJHwQsF2+4m3/mga3Mfv9WDufvp7yijHHD/sKQ9KsBmPvVk3y4/BmiIuvx/F3rApuQiIjIacTVg0t7wjvferbe0cKqf7rjgi7B+/AAM8Y/D746muxDv1z6siPnex787QcM6HxJ0I8N3M3/pU/uY9mGeUSE1yEsLILrL3yYPu0vAOD1zx7kw+XP0DjWmKS2dWJn/nTd/wEaGwW7Ed1g417Yf9T9dbzpA2LqwBV9grOo4W4bePmT+1mx6UOcDmOywGvO/SND068BOO17Vvh85O4xOGHXvs3c9lQvLuo3kVsv/ScAKzd/zGsL/sLOnB8Y1f/3la+D+oFgFhsNY3rDm8s9W8+bfuDcjtAq3rP9+IsZbSDv2D6emvd7snK3UVZRyqizbq4cKyxZN4c3Fj7EwaNZfPC3w/5P8AzczX/62xNYs3UhDWKMy297pQ1n4qgZgLXHQmDT4uaiRYsCHYJPzJgzgXuueoV2Sel8+u3LvDD/Hi7ocz3JCe2r/AdMTe7Fn8e9w9uLHj1lGxNHzaBV084s3/iB/wI3ibv5z5gzgQv6XM9F/X7H4fwD3PZUb7qkDCK+QRKXD76Tdkk9ePa/dwQsDxEREXf1bwdb98HaXe6v88Snnu2jfSKc19mzdfzJjPHPgxPer/z7T3tWc9+LF9Kn/YUAQT82cDf/rilnM27YNOpERJORtZ67/jWYt6dlER1pTDJ3bo+xVYoZJwR7/nYXGQ6/GQizF0JxmXvreNoHOB0wtr9xC2wwcrcNXDVkCjeMeBiA3CN7uXFGR3qmDqNBTPxp37PC5yN3jwFAWXkp/5w7kYFdRld5PSk+lbuvepmvvn+XwuL8Ku+pHwhuvVobY4GVGe6v42k/0CYBLuzm2Tr+ZEYbeO6ju2jVtBMP/nYehSXHuePpgXRuPZD2LfowJP1qOrTsxy1PpvsvKQ94kv9VQ6ZU+YL3BCuPhcCmt6WHom171xJdpx7tktIBGN77t6zY9CGlZSWnLNu2eXdaNe2IwxE6//ye5L89ez19O1wEQMN6CbRp3p0l6+b4M1wRERFTOH4uOnRN9s322zaBG84J3tt3fTH++fTblziv5zgiwv10n18teJJ/3w4jqBNhVKdSEruCy8WR/AP+DFd8JDkOJg71ze21TgeMHwidkszfthk8aQP1ohtW/r2wOB8XLipcFWd8L9h5cgwA3lz4VwZ3u5Kk+NQqrycnpNG2eXfCnLa8/snSTtwu3rOVb7bfqjHcNCR4n5BuVhvYnvVLnSA6MoZubQbz+Xdv+DR2M3iavzusNBY6QT1XiMg+tIMd2Ru4+Yn0yteKSwrIPbo3cEH5kSf5pyb34os1b3L10KlkH9zOpp3LSWzU2n/BioiImCg8DCacDXNXw3ITn5yc3hKu6x/cc5OaPf4pLi1k8bq3ePLWpSZF6Fve5r9g9SskxrWhaaNfPgl/9f27rM9YTGzdxowdNo30dkN9Fbb4QNsmcNsweOUryCswZ5t1I2HsAOgcpIVN8LwNvP/1LD5c/gy5hzO588oXq9ymerr3gpknx2Dz7pVs2rWCxyYu5I2FD/kxSvG1MCeMG2BcYf3lj+Ztt0syjB8AdSLM26bZzGoDqcm9WLT2P3RseRZHCw6yessCkhOC/ylqHveDS5/i029fpkmjlky44O+VRdHKdS02FjohiIer4qkOLfvxj5sWVP5+xYP2eoyZu/lPvfo1nv/obm5+Ip2mjVrRI/U8fUMpIiKWFuY0rtromgxzVsLhWhQ3YurAlX0g3UdXgJjNzPHPV9+/R3JCGinNupoRml94mv+arV/wxsKHeOymhTh+nkBx1Fm3cN159xMeFsEPO5bx0GujefoPq6oUPyX4tWwM946CD9cYT1Gvja7JxkPEYoP0VvSTedIGRg+azOhBk8nIWs8/3hpH77TziY1pfMb3gp07x6CopIDZ825l2m/eq2z7ElqcThjdC7okwVvfwKHj3m8rOhLG9ILeKcE51+6vmdEGbr74cZ7/6B5+/88eNKzXhO5thnD4uDXucHC3H7xhxMPE1W+G0+nk6w3vc/9LI3j13q1E16lXuYwVx0Kg4mbIaBbXhv2Hd1f+frzoKEUlx4mPDeKvWk3kSf6Jca154LdzK3//078vpFfa+X6JU0RExJc6Nod7R8LXW2DZVs+KnPWjjDk8z25v/N0KzB7/fPrtS1zY50azwvM5T/Nfn/ElM9+5nr9d/xEtmvxyNUpcbGLl37ukDKRtUg+27Fmt4qYFRUXAVf2MgsSSH+GHTKhwub9++0SjD+icZI2Chrd9QNvm3YmPTWJ9xhLO7na52+8FI3ePQfbBDPYf3s2U54yrsvMLD+NyVZBfmMfUa17za8ziW6mJv4wFlm+Dg/lnXueEmDpwVlsY3AEaWODLDTCvDTSIiWfqNa9WLv/PubfQumkQTzr+M0/6wfgGv7w2qOtoXvrkj+w58BNpyb0qX7faWOgEFTdDRLukdMKdEXy3ZSG90obz0fJnOaf71ZaaI6E2PMk/79g+GsQk4HQ6WfXTAnbt38S5Pa4LQNQiIiLmi46E4V3g3E6wOcv42XMIsvKg7KQp5MKc0KwhJDeCtETo1sK4xd1KzBz/7M3dxpbM1fz1+g99EKlveJL/99u/4rG3x/PXCf+lbfPuVd47cDiThIbGxK2ZB7aSkbXOcldsSFVtmhg/hwtg9Q7YfRD2HDz1lvX6UdAiDlo0hp6toWlsQML1midtYNe+TbRq2gmArNwMtmWtpeXPv5/uvWDn7jFIadaV9x785Sq01z97kPzCw9U+SEysr06E8TDAoZ3gxyzYdNJYoLT8l+WcDkhsaPQDqU2he8vgnVuzJma1gaPHD1I3KpbwsAi27V3L8h8+4F93rvVnKl7xpB88+Xy/adc3HD1+kKTG7Srft+JY6AQVN0PIn677P2a8cz2z5v2e5o3b8cfr3mRnzg+nLLdg1au8uuDP5BfksXzjB7z75Uz+dv1HtEvqEYCozeNu/is2fcScxf/A6QyjcWxzHr7xf5UT7IuIiISKMKcxV1aXnx82VF4BBcVGgTPMacynZ7ViZnXMGv98uuplzu56OTFR1qruuJv/4+/eSGlZMTPmXF/52h+vfYOUZl155dP72Zr5HU5nOGHOMG4f/QzJCWn+TEN8pGFdGHbShUeFJb88VT0yzPgyxApXaJ6Ou23g3x9PJefQDsKcEYSFhTPpsqdp1bTjGd+zAnePwems2foFM+b8loKio7hwsXTDe9w++lkGdL7ER1GLPzgdxgPBTjwUrLwCCkqgrNyeY4HT+XHPtzzz38mEOcOpW6c+fx7/Do1jm/koYnO5m/+MORPIy9+H0xFGnYhopo1/l5joBpXvW3UsBCpuhpSUZl159g+rz7jcBX0mcEGfCb4PyM/czf+ifr/jon6/80NEIiIiwSPMaTxoINSYNf65ccQjJkblP+7m/9q9NT9tSrek2kd0pPETStxtA3+/Yb5X71mBu8fgZL85/8Eqv/dMPY+3/pxpYlQSjMKc1pl6xhNmtIG+HUbQt4OJT2b0I3fzn37z56d936pjIQBnoAMQ3woPi+RYwUFufiKdvPz9Z1z+hflTeHvxo9SLbuSH6HzP0/znfvUks+bdSoOYeD9EJyIiIr7g6fn/dKw4NrB7/iJmtgGrfj5SPyB2Z2YbWLJuDtNeuZhG9ZuaFJ3v2a0PcLhcLg+mmBZ/KS+BxbMCHYX7hk6GMBO/BbZa/mD+MRAREfM9MA+OFBqT5D80JtDRyOnYfSxg9/x9Sf2AdVitHegzkTX6AfUB1mH3NmD3/D2hKzdFRERERERERETEklTcFBEREREREREREUvSA4WClDPCuJzXKpwR5m/PSvmD+cdARETEzuw+FrB7/iJgvXagz0TqB8Rcdm8Dds/fEypuBimHI/jnKvElu+cvIiJid3YfC9g9fxFQO7B7/iJ2bwN2z98Tui1dRERERERERERELEnFTREREREREREREbEkFTdFRERERERERETEklTcFBEREREREREREUtScVNEREREREREREQsScVNERERERERERERsSQVN0VERERERERERMSSVNwUERERERERERERS1JxU0RERERERERERCxJxU0RERERERERERGxJBU3RURERERERERExJJU3BQRERERERERERFLUnFTRERERERERERELEnFTREREREREREREbEkFTdFRERERERERETEklTcFBEREREREREREUtScVNEREREREREREQsScVNERERERERERERsaTwQAcg1XO5oKI00FG4zxkBDod527Na/mD+MRAREXuz2rlQYwGNBcRcagPWOwbqA8RsVmsDYG47sHv+4j4VN4NURSksnhXoKNw3dDKERZq3PavlD+YfAxERsTernQs1FtBYQMylNmC9Y6A+QMxmtTYA5rYDu+cv7tNt6SIiIiIiIiIiImJJKm6KiIiIiIiIiIiIJam4KSIiIiIiIiIiIpak4qaIiIiIiIiIiIhYkh4oJCIiIiHL5YIjhbDnIOw9DIU/P3GzqBRWZkDLxtAkFsL0da9IyCorh6zDsOcQHMqHwhLj9aJS2JwFLeKgXlRAQxQRHztSYPQBWXlVxwLfZBh9QGIDjQVErEzFTREREQk5RwphxTZYuQ3yCk59v7gM3vrG+HtkGHRvCQPToFVjcDj8G6uImK/CBT9lw7KtRgGzvOLUZYrL4PnFxt8TG0D/dtCnDdTVU25FQsKxQqN4+U0GHMw/9f3iMnj757FARBh0TYZBaZCSoLGAiNWouCkiIiIh43gx/HcNrN5hFDfcUVIOq3YYPy3i4Mq+xhWdImJNG/fC+99B7jH318k5Yqzz8To4uz1c2M0odoiI9RSWwEdrYeX26r/YqE5pOazZZfw0bwRX9IY2TXwbp4iYR8XNELI+Ywn3PDe0ymtRkTEkJ6QxrOd4Lht4O2FhoftPbvf8RUTsbsMeeOdbOFbk/Tb2HIJ/LoBzO8GFXSHcYsUNnQt1DOysoNgoUK7a4f02Ssrhi02wIROu6w+t482Lz1/s3gbsnr/dbc6COSvhcDV3bbgrKw9mL4TBHWBkd4i02H8XtQEdAzvSv2YIGpp+LX07XIQLF3nHclj43es899Fd7N6/mTuveCHQ4fmc3fMXEbEblws++R4++8Gc7VW44PONkLEPbhpqzVtUdS7UMbCbg/nwry8gt5pbT72x/yg89Rlcexb0bWPONv3N7m3A7vnb0ecbYf46c7blAr78Ebbvh5uHWnNeXrUBHQM70ZS5ISg1qSfDeo1jeK/xXDVkCrNu/4aEBsl88u2LHM4/EOjwfM7u+YuI2M3H680rbJ5sR65RLCkqNX/bvqZzoY6BnRzKN66yMquweYLLBf9ZYTx8zIrs3gbsnr/dLPzBvMLmyfYcgmc+N6a9sRq1AR0DO1Fx0waiI2Po0OosXC4XWQctOjqrBbvnLyISylZsM67U8JU9h+DVpUaRw8p0LtQxCFUlPz8UqDa3oJ7J2ythS47vtu8vdm8Dds8/lK3eYXzR6SvZR+ClL6HCzfk7g5XagI5BKNNt6TaR/XPDja0bF+BIAsPu+YuIhKKD+cb8ep6460KIjYajhfDEp+6t82O2UUQdkOp5jMFE50Idg1D0v/Ww76hn63jaD7hc8NY3cO9IiIrwLs5gYfc2YPf8Q9GRApi72rN1vBkLbD8AX/4EQzt6HmMwURvQMQhVKm6GoKLSAo4cz8XlMuaV+GjFc2zbu5YOLfqSnJAW6PB8zu75i4jYgcsFb39jXLXlidhoaFjX8/39dw10aAZx9TxfNxB0LtQxsIMdB4w58TzlTT+Qdxw+XAtX9fV8f4Fi9zZg9/ztwOUyHiRYWOLZet6OBf63HjolQdNYz9cNBLUBHQM7sUVxMzc3l+nTpzNv3jwyMzNJSEhgzJgxPPLII0yePJmXX36Z2bNnM2nSpECHaorXP3uA1z97oMprg7qM4fbRzwQoIv+ye/4iIr9WWGLcsrVutzFnVJjTGJgPTIU2TcDhCHSEntu6z/jxl+IyWLQJrrBIYUPnQh2DX9t9EL7eAlmHobTMeFBWl2To19aaD8oA40Fi/pwxYsU2GNbJOl9y2L0N2D3/XysuNcYCa3dDfhE4ndCkvnFXQmpTa44Fdh2EjXv9t7/Scvj8Bxg7wH/7rA21AR0DOwn54ua6desYMWIEOTk5xMTE0KlTJ7Kyspg1axYZGRkcOnQIgPT09MAGaqKR/SYyuNuVlFWUsiN7A3OWPEbukUwiI34ZuT785jVUuCqYNv6dyteOFhzippmdmThqJuf1HBuI0E3hTv4bti/lvpdGnLJuWXkJFRXlLJhe7s+QRUR8wvXzU78Xbjz1Cse9ebBmFzRrCL8ZaPxpJcu2+H+fq3bAqB7WuC3V7mMB0HjghIP58Poy2JV76ns7co0C4eD2MCrdKHZYxb4j/p8H0+UyCpwj0/27X2/ZvR9QH2BwuYwrnD/53vii7mRZecYXn01iYfwAaNE4MDF6KxBjgbW74LJeEFPH//v2lN37AFA/YCchXdzMzc3l4osvJicnh7vvvpsHHniA+vXrAzB9+nTuvfdewsPDcTgcdOvWLcDRmicpPpWeacMA6NthBF1SBnHns4N4au4t3D/ubQBuH/MsEx/vyqK1b3Fuj2sBmP3+bXROGWT5Dsyd/Lu2OZuPHq76SM3cI1ncNqs3lw4IjSt4RcTeXC5jPsqvfjr9ctmH4anP4LZh0MIiUw8dKYANmf7fb3GZcdXLIAvcxWT3sQBoPABw4BjM+gyOFdW8TFkFLNpsPJBn3EBwWuTqreXbArPfFdvggq4QHhaY/XvC7v2A+gDD/9YbX3Kezv6jMPtz+P25kJLgn7hq63ixUWj0t7IKWJkB53by/749Zfc+ANQP2ImFvp/13OTJk8nMzGTSpEnMnDmzsrAJMHXqVLp3705ZWRmtW7cmNtYiE2d4oXPrAQzrOZ4l6+ewcedywJg89+4rX+LpDyaReySLr75/j+8zlnDHmOcCHK35qsv/10rKinno9TF0aT2I6867z88RioiYb9WOMxc2TygqhX8vOfWKjmC1bR9UBOjp5VZ9YrLdxwJgv/FARYXRrk9X2DzZml2weJNPQzLVT9mB2W9+sfGlkBXZvR+wWx8AxlWZZypsnlBSBi9+CQUezl8ZKDsOGIXGQNBYwLrs2A/YRcgWNzdv3sycOXOIj4/n0UcfrXaZXr16AdC9e/fK19577z0uv/xyWrVqRd26denQoQP3338/+fn51W7DKsYOm4bTGcZrC/5S+VqfDhdyTrereOytccyedyt3XfkisTEWuxfBTdXlf7Kn5t5CSWkRU65+1b+BiYj4gMvleZHiaCGs3emTcEy355A9911bdh8LgL3GA5uyjKuxPPHVT1AeoGKBJ4rLPH9CupnUD1iXnfoAgMWbPVv+eDGs2u6bWMwW6LGAK0BfstaW3fsAsF8/YBchW9x86623qKioYOzYsdSrV/2s39HR0UDV4ubMmTMJCwvjkUce4ZNPPuH3v/89//rXv7jwwgupqLDAaK8GSfHtGNr9GtZu+4IN25dWvj7x4pnsPbiNPh1G0K/jyABG6Fs15Q/w/tezWLl5Pg9N+ICoSC8emyciEmS2H4DsI56v9/UWawzWM/MCt++848aDGKzI7mMBsNd44Gsv5qI7UhiYKR88lZUX2L7KysVNu/cDduoD9hyqfq7dM1m21RpjgT0HA7fv48XGeMCK7N4HgL36ATsJ2Tk3Fy1aBMDQoUNrXCYz0xi9nVzc/Oijj0hI+GWikXPOOYeEhATGjh3L119/zeDBgz2OpXfv3uTkeHbtemR4NC9M2urxvk7n2vPuZ/G6t3jts78w85bFAERHxtAsrg0piV1rte3UtFRKygrNCBPwX/7rti3mxY/v5ZHffUJiXOtabd/sYyAi4q0OQyfR5cI/erxeZh60bpNKeWlw92Xn372Y2Cap1b5314UQG13zurFRv/z54OjT7+doITzx6amv9x14Lkf3+f4pBhoLmJ8/+HY8EExjgcv+toVwLz6Y3f/oi6z/6EHzAzJR884jGPCbf1f73pn6AHC/H6ipD3jvv59y9+W/czNa7/mzDdipH7BLH9Bu4I2kX/KQx+vtPwrtOnSn+HgAq4duOPf2j4lL7l7te/4YC5wzbBR5mevcC7YWrDYWAHPbgcYC9pKYmMjq1au9Wjdki5u7dhmzC7dq1ara98vKyli2bBlQtbh5cmHzhN69ewOwd+9er2LJycnxeN2oCM8Ho93bDmHhjJq/ZmvVtKPPnvSVnZVFUWmBadvzR/45h3by9zev4qZRM+jedog3YVZh9jEQEfFWqxLv7zTIPXSUgqP7TYzGfBWumm88iY2Ghm6cQpxO95arTu7BPA54OSbwhMYC3v0DBXI8EDRjAYfDq8ImQEmZw+sxr7/EtDhW43vu9gHgfT9QWubyyzHyVxswUzD0A+oDDM2LvJ9IOzfvGEcPBHc/UFFR89PP/DEWOHT4CFlB2g8Esg8Ac9uBxgLirpAtbh4/blwnXlhYfcV8zpw55ObmUr9+fVJSUk67rcWLjUp+x44dvYolMTHR43Uiw8/wlXOQada8uenf0vpSUUkBD7x6Gf07XcJlA815AprZx0BExFtREd4/7jg+rj7l9SNMjMZ8TkfNxdujZ+iGY6OMDzMVFXD0DLeX17StxnENiSxLOkOUtaexgO/zN3s8EExjgdLifCLqVD810+lEhlWQlOT7/9+10SC2fo3vnakPAPf7gZq2FRHu8MsxslofANbrB0K5D4iu4/0MdI0b1aN+ZHD3A05nzYUrf4wF4ho2wKF+oFpmtgONBezFm9rZCSFb3ExMTCQvL481a9bQv3//Ku9lZ2czZcoUALp164bDUfOHwL179zJt2jQuvPBC0tPTvYrFm8tqy0tg8SyvdhcQW7dsJSzSvO35Ov+lG+ayPXs9e3O3sGT9nFPef+meTTRp1NKjbZp9DEREvLUrF55c4Pl6reJh145t5gdksme/qPlJpdXdOnayB0cbV2kcLYIH3/du/9+tWEzdOt6t6wmNBXyfv9njgWAaC7z4JfzgxfyZ0/98E52fu8n8gEy0Mxf+WUMfd6Y+AGrfD1x12YW8+4jvJye1Wh8A1usHQrkPyD4Mj33s+XrNGkLGj99zmo/IQeF0fZw/xgJLF833+qpPT9i9H9BYQNwVssXNYcOGsXnzZh577DGGDx9OWloaAKtWrWL8+PHk5hqzK5+uYJmfn8+ll15KZGQkL7/8sj/CDojHf78k0CH43fBe4xnea3ygwxAR8YmWjaFFnOcPvRhU/TSWQSe5Uc3FTV9rXA+/FDb9zY5jAQjt8cDAVM+Lm41ioGNz38RjpuYNwemAigA99KRFXGD262t27AdCuQ9o1hDaNoEMD2eaGZRK0Bc2AZLjvPsCxwz1o6CB9S6oPCM79gEQ2v2AnYTs09KnTp1K48aN2bNnD507d6Zr166kpqbSt29f2rRpw7nnngtUnW/zZIWFhVx88cXs2LGDzz77jGbNmvkzfBEREa85HHBuJ8/WiYuB9OqnqQ46yQEsLIRqUUNCT/tmxhcBnji3o3GrZrCLDIfEBoHbfyD7IBFPeDoWaBANvU4/Y1vQCOT5uEWcNQrAInZigeGLd5KTk1m6dCkjR44kKiqKnTt3EhcXx/PPP8/HH3/Mli3GU06rK26WlpZyxRVXsHr1aj755BM6dfLwrCAiIhJgPVrB+V3cW7ZeHZg4FCLCfBuTWVITISxAI5gOFriqTQSMKxt/N8S4GtMdA9rBoDSfhmSqQLXFBtHGFXEiVtA5CS5Od2/Z6Ei4aQhEBfe025XaJEBkgMYt7XXdk0jQCdnb0sF4AND8+fNPeT0/P5+dO3fidDrp0qXqJ7+KigrGjh3LF198wf/+9z/69u3rr3BFRERMdVF344mhn3wPx4urX6ZNAlzXH+Jrfj5H0KkfBekt4bud/t1vdCT0tMjVrSJgzCl35wXwnxXwY3b1y0RFwHmdYFhna12JNKAdLN4E/r4zvX9q4L5cEfHGeZ2hXhTMXwfHanh4TqvGxligaQCviPZUdKRxlekKP08VHhkGfdr4d58icmYhXdysycaNG3G5XKSlpVG3btVZgG+77Tbeffdd/vjHP1K3bl2++eabyvfatm1LQkKCv8MVERHx2qA0OKstrNtt/GzOgvIKY3B+xwXQ3MPbVoPFwFT/Fzf7tjFuhxWxkthouOVc2H8Ulm+FpVuMPiDcCZf3gZ6toY4F/1/H1zfmB92U5b99Oh3Qv63/9idiln5toVdr+H4PrN1ltJsTY4Hbh0OLxoGO0DsDU/1f3OyVAnX1sBiRoGPL7x03bNgAVH9L+ieffALAP/7xD/r371/l5+OPvXjcnIiISICFh0HvFPjdOcYt6GBc8WDVwiZASoJxu52/1I30fO4ykWDSJBYu6/VLHxBTB/q3s2Zh84QR3Y2Co78Mbg8N/PB0ZBFfCA8zvsy48VdjAasWNsGY/7aHH++oqBNuXOUuIsFHxc1f2blzJy6Xq9qfCRMm+DlSERERqY7DAVf1NT6Y+cOY3qH5ZFQRK2sR579CQ0J9Y6oPEQkul/f+pVjra5f0hMb1/LMvEfGMhb+r9d7piptWlpG1niffu4mC4mM0bdiKe699g137NnLfiyNITmjPPyZ+RqN6TXjpk/tYtmEeEeF1CAuL4PoLH6ZP+wsAmPvVk3y4/BmiIuvx/F3rApuQG9zN+dNvX2bu0ifZvX8zN4+ayZiz76jcRlFJAY+/eyNb9qzC4XByw4hHGNztCgBemD+FJevnkJrUk4cmfBCYJEVEpFoN6sIVveGN5e6vc7Sw6p/u6NbCuJ0vGJlxHsw8sJV/zp3IsYI8SsuK6NtxJBNHzsDpdFpiXGDG+Adg6fdzeX3hg+AyZnH82w3zSYxrbYljYGfndzFusc085P46nvYDYU5jPsJgnZbC3Tbw8if3s2LThzgdxlNYrjn3jwxNv6bKtnbt28xtT/Xion4TufXSfwLB//nA3fxPqC7H97+exf++eQEcDhw4uGrIVIb1GgfAknVzeGPhQxw8msUHfzscgAzldOpFwVX94OWv3F/Hm7FAh2bGXL/ByN02MP3tCazZupAGMcZUe73ShjNx1AzA+p+JzTgGVh8P2V2QnqJ9a9GiRYEOwSdmzJnAPVe9QrukdD799mVemH8PF/S5nuSE9lUaYNeUsxk3bBp1IqLJyFrPXf8azNvTsoiOjOHywXfSLqkHz/73joDl4Ql3c05N7sWfx73D24sePWUb7345k4iwOrz2x21kH9rB5Fn9SG87lNiYxkwcNYNWTTuzfOMH/ktKRETc1isF8gqMByW444lPPdt+2yYwbkDwPmjFjPPgvz+ewsAuoxk9aDIlpUXcNqsPq9qdR7+OF1liXGDG+Gfb3rW88un9TL95EfENmlNQdAyn0ygAWeEY2Fl4GNw8BGYthAPH3FvHk37A4YDxA42pMIKVu23gqiFTuGHEwwDkHtnLjTM60jN1GA1i4gEoKy/ln3MnMrDL6CrbD/Y24G7+UHOOrZp25p+3LSMmugH7D+/h90/2oFOr/jSPb8uQ9Kvp0LIftzyZ7r+kxCPdWhhXcM5d7d7yno4FWjaGCWdbfywARj9w8hecJ1j9M7EZx8Dq4yG7s+Vt6aFo2961RNepR7ukdACG9/4tKzZ9SGlZySnL9u0wgjoRxr11KYldweXiSP4Bf4ZrCk9ybtu8O62adsThOPW//Jfr5zCq/y0ANItLoVvbIXz9w/s+jV1ERMwzrDNc1tP87bZvBhOHBu/VWmadBx04OF54BIDi0kLKy0tpHNvMp7Gbxazxz3tfPs7lg+8ivkFzAOpG1ScqUpMrWkX9aJg0HJo1NHe7YU64/mxIb2nuds3kSRuoF92w8u+Fxfm4cFHhqqh87c2Ff2VwtytJik/1ddim8SR/qDnHnqnnERNtPCq8ScMWxNVP5MCRPT6NXcx1dnu4si+YXX9s2wRuPQ+iIkzesEk8bQM1sfJnYrOOgZXHQ2LTKzdDUfahHezI3sDNT6RXvlZcUkDu0b2nXW/B6ldIjGtD00Z+nInZJN7m/Gv7D++ukn9io9bsP7zbrDBFRMQPhnSEpDh4+xs4mF+7bYU7jbn1hnQAZxB/DWzWefD3l/6TaS9fzEff/Iv8gjzGDptGu6QeJkfrG2aNf3bt30TTuNbc9a9zKCg6ylkdRzH+/AcJ+/nqTQl+DaLhzguMq7iX/gSuWm6vRZxxK7rZBVOzedoG3v96Fh8uf4bcw5nceeWLlbdrb969kk27VvDYxIW8sfAhf4RuCk/ydzfHNVs+51hhHmkt+vgiZPGhganQvCH8Z4X7V3LXJMxpTHsxrLPx92DlcR+w9Ck+/fZlmjRqyYQL/l5ZELTyZ2KzjoGVx0Oi4mZI6dCyH/+4aUHl71c8ePr7Z9Zs/YI3Fj7EYzctxBGs19ifgac5i4hI6EptClMvgv99Dyu2Qkm559tonwije0NiA/Pj8wUzzoMfLn+WoT2u5dpz/0Re/n6mPDeU9i360CttuJmh+owZ45/y8jK27V3Lo7/7lApXBX955RI+WvEvLhs4yaexi7kiw42Hf3VvCR98B3s8mIfzhJg6MLSj8RPMBY2TedIGRg+azOhBk8nIWs8/3hpH77TziYyIZva8W5n2m/cs+ZnAnfyLSgrcynFH9gZmvnM9fx43h+jIGJ/EK76VkgBTLoIFG+DrLVBc5vk22jYxbnNv3sj8+HzB3T7ghhEPE1e/GU6nk683vM/9L43g1Xu3El3H+k9JMuMYWH08ZHcqboaIZnFtqnyzcrzoKEUlx4mPTap2+fUZXzLznev52/Uf0aJJe3+FaSpPc65Jk4Yt2Ze3q/KS85y8nfRKO9/UWEVExD/qRMDoXnBhV1i1A77ZBtmHT38VV/0o6NHKuOKjqUWKmmDeefDD5c/wytQtADSq14S+HS5ifcYSSwzmzRr/NGnUkkFdxlTetj6oyxg271oBKm5aUtsmcNeFsPsgfL0VNuyBotKal3c6oFVjGJAK6a0gwkIX7HrbD7Rt3p342CTWZywhOSGN/Yd3M+W5oQDkFx7G5aogvzCPqde85tP4a8vd/LMPZpwxx137NvHnl0dx91Uv0yVlkP+SENNFhsPFPWB4F1j981hgb97pxwIxdaBHSxiYFvxXbJ/Mkz4gvsEvrw3qOpqXPvkjew78RFpyL0t/JjbrGFh5PCQqboaMdknphDsj+G7LQnqlDeej5c9yTveriQiPPGXZ77d/xWNvj+evE/5L2+bWfWK8JzmfzuBuVzJ/xXN0anUW2Yd28H3GEiaPedZHUYuIiD9ER8Lg9sZPUSnsPQR7Dxt/r3BBZBgk1IcWjY3bWS14sZJp58FmcW1Y/dOnXNj3BgpLjrMuYzFXDL7bR1Gby6zxz7k9rmPFxg85v/cEXK4KvtvymYobFudwQKt448d1ljFdxZ5Dxp9l5cZVmXUjITnOuDrLSgXNk3nSBnbt20Srpp0AyMrNYFvWWlo27USrph1578Ff5t9//bMHyS88XPkk8WDmbv4pzbqeNsdd+zZz/0sXcccVL6iQEUKiImBQmvFTXGoUOPfmQWEpVFQY7T4h1piGomHd0B8LHDicSULDZAA27fqGo8cPktTYeAS8lT8Tm3UMrDweEhU3Q8qfrvs/ZrxzPbPm/Z7mjdvxx+veZGfOD6cs9/i7N1JaVsyMOddXvvbHa98gpVlXf4ZrCndzXrDqVV5d8GfyC/JYvvED3v1yJn+7/iPaJfXgyiFTePydG/jNo21xOsOYNPrpyqdGioiI9UVFQNumxk+oMeM8OPWa15j9/iTe//opSstL6N/pEoamXxOAbLxjxvhnSPdr2Jq5ht893pkwRxhdUs5m9KA/+DMN8SGHA+LrGz+hyN028O+Pp5JzaAdhzgjCwsKZdNnTtGraMQARm8vd/E/n2f9O5njREV78+F5e/PheAH438jH6tL/AFyFLANSJgDZNjJ9Q424bmDFnAnn5+3A6wqgTEc208e9WPkjL6p+JzTgGVh8P2Z2KmyEkpVlXnv3D6jMu99q9W/0QjX+4m/MFfSZwQZ8J1b4XHRnDn8fNMTkyERER3zPjPNguqQdPTVpmcmT+Y8b4x+l0cvPFM7n54plmhibiF+62gb/fMN+t7f3m/AdrGZF/uZv/yX6d42MTF5oYkYh/udsGpt/8eY3vWf0zsRnHwOrjIbuzyDTZ4q3wsEiOFRzk5ifSycvff8bl5371JLPm3Wqpb2l+zdOcT+eF+VN4e/Gj1Iu2yGzSIiJie2aeB606LtAxELuzexswM/8l6+Yw7ZWLaVQ/BC//l5Clz8TqB+3G4XK5TjevrgRIeQksnhXoKNw3dDKEeTbF12lZLX8w/xiIiPjCA/PgSKExz+RDYwIdjZyO1c6FGgtYYyygPsA61Aasdwys0AeA+gErsVobAHPbgd3zF/fpyk0RERERERERERGxJM25GaScEUbF3yqcEeZvz0r5g/nHQERE7M1q50KNBTQWEHOpDVjvGKgPELNZrQ2Aue3A7vmL+1TcDFIOh70vZbZ7/iIiInY/F9o9fxG1AR0DEbu3AbvnL+7TbekiIiIiIiIiIiJiSSpuioiIiIiIiIiIiCWpuCkiIiIiIiIiIiKWpOKmiIiIiIiIiIiIWJKKmyIiIiIiIiIiImJJKm6KiIiIiIiIiIiIJam4KSIiIiIiIiIiIpak4qaIiIiIiIiIiIhYkoqbIiIiIiIiIiIiYkkqboqIiIiIiIiIiIglqbgpIiIiIiIiIiIilqTipoiIiIiIiIiIiFiSipsiIiIiIiIiIiJiSSpuioiIiIiIiIiIiCWpuCkiIiIiIiIiIiKWpOKmiIiIiIiIiIiIWJKKmyIiIiIiIiIiImJJKm6KiIiIiIiIiIiIJYUHOgCpnssFFaWBjsJ9zghwOMzbntXyB/OPgYiInek8YL1joPOgmM1qbQDMbQd2z19EbUDHQMRdKm4GqYpSWDwr0FG4b+hkCIs0b3tWyx/MPwYiInam84D1joHOg2I2q7UBMLcd2D1/EbUBHQMRd+m2dBEREREREREREbEkFTdFRERERERERETEklTcFBEREREREREREUtScVNEREREREREREQsScVNERERGygrhwNHobzC+L3CZTyBU0Ts41jhL31AeQWUlAU2HhHxr7JyOHBMYwERCT16WrqIiEgIqnDB1hxYtxv2HILsw798mAE4VgTT5kJyHLRJgL5toWHdgIUrIj6QXwTfboeM/UY/cLTwpPeK4Y/vQNMG0CIOurWATs3BqUsfREKGywXb9sHa3bDnIGQdPnUs8OefxwIp8dC3DcTVC1i4IiJeU3FTREQkhJSVw9dbYdkW4+qM08kvhh+zjZ9PN0CXZDi3E7SO90+sIuIbWXnwxSbjy42TCxm/VuEyvvjIPmwUQRvWhQGpcE4HqKNPCSKWVV4By7fC11tg39HTL3u8GH7KNn4W/GB8yXFuR2jb1D+xioiYQcOWELI+Ywn3PDe0ymtRkTEkJ6QxrOd4Lht4O2FhoftPbvf8RUT2HIT/rIDsI56vW+GC7/fAhj0wuAOM7A6RFuwy7X4usHv+dldWDgs3wsIfjDbtqcMF8L/1sDIDrj0L2lmwuKE2oGNgd1l58J9vIPOQ5+u6XLBxr/EzIBUu6QFREebH6Gt2bwN2z1/sSf+jQ9DQ9Gvp2+EiXLjIO5bDwu9e57mP7mL3/s3cecULgQ7P5+yev4jYj8tlXKX1v/XeFTSqbAv48kfjg83vzoHEBqaE6Hd2PxfYPX87yjsOL34Je/Nqv62D+fD058aV3KPSwemo/Tb9TW1Ax8COvvoJ/rvm9Fdsu2v5VticZYwFkhrVfnuBYPc2YPf8xV40q04ISk3qybBe4xjeazxXDZnCrNu/IaFBMp98+yKH8w8EOjyfs3v+ImIvLhfMX2f81LawebLcYzB7oTmFkkCw+7nA7vnbTe4xeOoz89vrok0wZ6W5fYu/qA3oGNjNgg0wb7U5hc0T8o4bX3TsyjVvm/5k9zZg9/zFXlTctIHoyBg6tDoLl8tF1sGMQIfjd3bPX0RC2+cbjas2feF4MfxrkVE4sTq7nwvsnn8oO1ZktNPDBb7Z/soM40owq1Mb0DEIZV/+CJ9875ttF5bA84thnxdT3gQbu7cBu+cvoU23pdtE9s+dV2zduABHEhh2z19EQtPOXPifhx9m7roQYqONpyY/8emZl88vMubxnDTcmremnszu5wK75x+KXC54Z6VxG7m7PO0DwCicpCVC5yTv4gwWagM6BqFob57nX0B42g8UlMCby+GOCyDM4pdH2b0N2D1/CV0qboagotICjhzPxeUy5tb4aMVzbNu7lg4t+pKckBbo8HzO7vmLiD2UlhtFR5eHt4vGRhtPRPbE9gOw9CfjCcpWYfdzgd3zt4s1u2BDpmfreNMHgFFEvXck1K3j+bqBoDagY2AH5RXw1grPp47wph/Yc8iYqmJ4F8/WCyS7twG75y/2YoviZm5uLtOnT2fevHlkZmaSkJDAmDFjeOSRR5g8eTIvv/wys2fPZtKkSYEO1RSvf/YAr3/2QJXXBnUZw+2jnwlQRP5l9/xFpHp7DsKug1BSZjz5s30zaFwv0FF5b8lm2H/Uf/ubvw56tYZ6Uf7bZ23Y/Vxg9/yrU1wGGzPhSCE4HBBfDzo2t+5VSCVlxvx6/nKkEBb8AKN7+W+ftaE2oGNQnaw84wu7kjKoEwFpTSEhNtBReW/ZVsj049zYn26APm28+4IkEOzeBuyev9hLyBc3161bx4gRI8jJySEmJoZOnTqRlZXFrFmzyMjI4NChQwCkp6cHNlATjew3kcHdrqSsopQd2RuYs+Qxco9kEhnxyyfSh9+8hgpXBdPGv1P52tGCQ9w0szMTR83kvJ5jAxG6KdzJf8P2pdz30ohT1i0rL6GiopwF08v9GbKI+IjLBWt3wZIfYffBqu85MAob53WCtk0DEp7XyiuMDzT+VFpuzL13Xmf/7tdbOhfqXHjCkQL4fBOs2g5FpVXfi42Cs9oZTwWPighMfN5au8uYF9efVmbARd2hjgU+Qdi9DwD1Aydbv9sYC+yo5hkq7ZsZY4G0RP/HVRsVLuOuCn8qr4AV22BEN//u11t27wfUB4idWGBo4r3c3FwuvvhicnJyuPvuu3nggQeoX78+ANOnT+fee+8lPDwch8NBt24W6aHdkBSfSs+0YQD07TCCLimDuPPZQTw19xbuH/c2ALePeZaJj3dl0dq3OLfHtQDMfv82OqcMsnQHDu7l37XN2Xz0cNUJqnKPZHHbrN5cOiA0ruAVsTuXC97/Dr6qYeDvAjZlwY/ZcFVfo8BhFZv2+u7hIaezfBsM7QhOC1zppnOhzoUAOUfgudM8bOdoEXz2A2zcC7ecC/UtcmUy+P8LDjCKw2t2Qn8L9Jd27wNA/QAYY4GP1xsP36vJT9mwJRtG94bB7f0XW21tzYEDAXjg34qtcH4Xa1z1bvd+QH2A2IkFuiTvTZ48mczMTCZNmsTMmTMrC5sAU6dOpXv37pSVldG6dWtiYy18P8IZdG49gGE9x7Nk/Rw27lwOGBMI333lSzz9wSRyj2Tx1ffv8X3GEu4Y81yAozVfdfn/WklZMQ+9PoYurQdx3Xn3+TlCEfGFz36oubB5sgoXzFkJG/b4PiazrNkVmP0ezIfdhwKz79rSudB+58JjhfC8m08R35sH/15iXKFsBQfzT70a3V/W7AzMfmvL7n0A2LMfWPLj6QubJ7gwpnmw0v/vtQEaCxwtgoz9gdl3bdm9H7BjHyD2EbLFzc2bNzNnzhzi4+N59NFHq12mVy9j0qDu3btXvrZ06VKGDRtGs2bNqFOnDsnJyVx99dVs3rzZL3H7ythh03A6w3htwV8qX+vT4ULO6XYVj701jtnzbuWuK18kNqZxAKP0neryP9lTc2+hpLSIKVe/6t/ARMQn8n++GstdLuDDtZ5PyB8oewJYYNwToIKKGXQutNe58MufIM+DK5x3HwxcscBTgWyHew55/iCzYGH3PgDs1Q8UlcIn33u2zodrjVuvrSCQXzYG6ssVM9i9H7BTHyD2ErLFzbfeeouKigrGjh1LvXrVPzEiOjoaqFrczMvLo2vXrsyaNYvPPvuMxx57jI0bN9K/f38yMz18HGUQSYpvx9Du17B22xds2L608vWJF89k78Ft9Okwgn4dRwYwQt+qKX+A97+excrN83lowgdERVpkdmwROa2VGZ5/ODlwzLjFK9gVlkBuAG5DOyGQhdXa0rnQPufCsnL4Zpvn6329xfxYfCGQ7bCoFHLzz7xcMLJ7HwD26gdWbTceHOSJwwXG1C/BrrQccg4Hbv+ZGgtYlp36ALGXkC1uLlq0CIChQ4fWuMyJYuXJxc1LLrmEJ598kiuvvJJzzjmHsWPHMm/ePI4cOcLcuXN9G7SPXXve/TgdTl777JdvaaIjY2gW14aUxK4BjMw/qst/3bbFvPjxvUwb/y6Jca0DF5yImMrb27YDdbu3JwIxv1aV/fvxCe2+oHOhPc6FW3Ig34uH7ew+GNgvD9y1P8DtMND7rw279wFgn37A2yuxrTAWOJgf2LtNrNwHgPoBu/QBYi8Ol8uqN5acXosWLcjMzGTt2rXVPgm9rKyMZs2akZubS0ZGBm3atKlxWwcPHiQ+Pp6nn36a2267zeNYevfuTU6OZ5cDRYZH88Ik/8wUf/e/hnBWx1FcOeQer7cx8elUSsoKTYvJH/nnHNrJpFl9GDf8AS4bWPvJks0+BiLivZH3rSa6geePPc3atJDlr13vg4jME5/SjyG3VP9l210XQmz06dePjTIeCFRRYcybVZOjhfDEp6e+nrf3B76YdaEHEXvHn+dB0LnQjHNhMJ0HW/W8gj5X/9OrdRc9cwmHdq8xNyCTDbrhTRLbD6n2vTP1A+72AVBzP7DizZvZu+Fj9wP2ktXGw2BuO/BX/qHaD1xwz1fUT6j5M15N9mcs56sXrvJBROZpmNSVYZM/qfY9f4wFjh3YzoKZgz2I2DsaC1hvLADB1Q+ItSQmJrJ69Wqv1g3Zp6UfP34cgMLC6hvVnDlzyM3NpX79+qSkpJzyfnl5ORUVFezatYs//elPJCYmctVV3p3kcnJy2LvXs/sboiKsdRl4dlYWRaXmPbrX1/kXlRTwwKuX0b/TJaZ04GD+MRAR75WWFnOGcX21Co4f87i/9jdXzL4a34uNhoZudp9Op/vLnqykuMgvx8hq50HQuTCYzoP1Wh3wet19OVnsD/J+oKiw5uPsbj/gbR8AcDD3gPqBGpjZDvyRfyj3AyXF3hVXCgvyg34sUBwWX+N7/hgLlJYUqw+ogd3HAhBc/YDYR8gWNxMTE8nLy2PNmjX079+/ynvZ2dlMmTIFgG7duuFwOE5Z/5xzzmHZsmUAtGvXjkWLFpGQkOB1LJ6KDPfmY3ngNGve3PRvqHxp6Ya5bM9ez97cLSxZP+eU91+6ZxNNGrX0aJtmHwMR8V5h3m5i41t5vF758RySkpJ8EJF5YutH1fjeUTe6IE+u1qiOo6LYL8fIaudB0LkwmM6DEeVHAHC5XNWO82pSUV5KTLh//o/XhpOSGt87Uz/g6ZWb1W4jJlL9QA3MbAf+yD+U+4GiI3sgubPH65Ueywr6PiCmQc0FL3+MBdBYoEZ2HwtAcPUDYi3e1M5OCNnb0idPnszs2bNp0aIFn3/+OWlpaQCsWrWK8ePHs337dkpLS7ntttt4+umnT1n/p59+4vDhw+zYsYMZM2awf/9+li1bRsuWnjVsb5WXwOJZftmVKYZOhrBI87ZntfzB/GMgIt5buwte+9rz9e6/GBJizY/HTGXlcO873j/N9cHRxlUahwvgwfc9X/+cDjC6l3f79oTOA9Y7BsF0HnS5YMYnkJXn2XrpLWHC2b6JyUwLf4CP13u3bm37AIC/Xw71av6exTRWawNgbjuwe/61tXEv/HuJ5+vdMwKS40wPx1QVLvjTO1Ds4QOTTqhtP3BWW7jmLO/27Qm1AR0DEXeF7AOFpk6dSuPGjdmzZw+dO3ema9eupKam0rdvX9q0acO5554LVH2Y0Mnat29Pv379uOaaa/jiiy84duwY06dP92cKIiLipa7JxlUJnmifGPyFTYDwMGjeMHD7bxHkH/hEABwOGJTq+XqD0syPxRdaNA7cvhvV9U9hU6S2OjaDxvU8WyclPvgLmwBOR2DjDGQfJCJSnZAtbiYnJ7N06VJGjhxJVFQUO3fuJC4ujueff56PP/6YLVu2ADUXN0/WsGFD2rVrx7Zt23wdtoiImCA8DMYNNAb/7qgXBVf29W1MZmrt3SwppmhV8zRfIkGlX1vo1Nz95Qe3h3ZNfRePmVrEud+/mS2Q/Y+IJ5xOGDcAwt38xBsd6Z+rEc3SOoDn4xSNBUQkyIRscROgY8eOzJ8/n2PHjnHs2DFWrlzJxIkTOX78ODt37sTpdNKlS5czbmf//v389NNPtG3b1g9Ri4iIGdIS4XfnQOQZZpduVBcmDYP4+v6Jywz9PH/4qynaNoEECx0nsbcwp3GLebcWZ152SAe4zA/TLZglpo57efnCWRoOi4WkJMDNQyEq4vTLxUbDbedB0wb+icsM/QLUFlvEQfNGgdm3iEhNQvaBQqezceNGXC4XaWlp1K1bdTLmcePG0a5dO9LT02nYsCFbt27lySefJDw8nDvvvDNAEYuIiDc6JcGfL4FvMmD5VmNuqROaN4SBadC7NdQ5w4eeYJMcZ1w1sSPXv/u1yi27IidEhhsFzq05sGwrbMg05uM8oW8b4/91SwveYjkwDdbt9u8+E+pDqvdz/YsERGqiMRZYmWH0A4eO//JeYgMYmAp92py5ABpsmsQaU+r8lOPf/WosICLByJbFzQ0bNgDV35J+1lln8frrr/PUU09RVFREixYtGDp0KPfddx+tWnn+5F0REQms2Gg4vwsM6wQPvA/HiqB+FEy5yJiXz6qGdoIdX/lvf/H1AnelmEhtOB3QvpnxU1gCD38I+cXGvLzX9Q90dN5r18Qoyu4+6L99DukYuNvhRWqjXhSc1xmGdqw6Frh3pLXHAud28m9xs2Fd6KGPxCIShFTc/JVJkyYxadIkf4ckIiI+5nT+8qHc6bD2hxkwCo3dW8J6P125de1Zxm2+IlYWHfnL/2Or9wEOB1zTDx7/FMorfL+/dk2hfzvf70fEl0JtLNC+mXHV6art/tnf1f3OPN2PiEgg2LJrOl1x08oystbz5Hs3UVB8jKYNW3HvtW+wa99G7ntxBMkJ7fnHxM9oVK8JL39yPys2fYjTEQbANef+kaHp1wDwwvwpLFk/h9Sknjw04YMAZuMed3P+9NuXmbv0SXbv38zNo2Yy5uw7KrdxuvesdjxExF6u6APb9sHxYvfXOVpY9U93DG4PbYP0QStmnAcyD2xl9vu3cjh/P+UVZYwb9heGpF8NwNyvnuTD5c8QFVmP5+9aF5gkT8Pd/F/65D6WbZhHRHgdwsIiuP7Ch+nT/gIAZs27jY07l1Vuc8+BH7lp5HRGD5rMknVzeGPhQxw8msUHfzscoCylJs0bwQVd4X/r3V/Hmz4gMswopAbjVZtmjH+nvz2BNVsX0iDGeFpSr7ThTBw1A7DGWNDdY3DCrn2bue2pXlzUbyK3XvpPAP677Bnmf/McTkcYFRVlXHTWREYPmgwEfz9od6N7wZZsOOJBm/amHzirLXT04CFt/uRuGzhdW7fyZ0Iz8rfyWEgEbFrcXLRoUaBD8IkZcyZwz1Wv0C4pnU+/fZkX5t/DBX2uJzmhfZVO6KohU7hhxMMA5B7Zy40zOtIzdRgNYuKZOGoGrZp2ZvnGDwKThIfczTk1uRd/HvcOby969JRtnO49qx0PEbGX+lFww2B4bhGUlru3zhOferaP1KZwcQ/PY/MXM84DM+ZM4II+13NRv99xOP8Atz3Vmy4pg4hvkMTlg++kXVIPnv3vHf5LygPu5t815WzGDZtGnYhoMrLWc9e/BvP2tCyiI2OYPOaZyuUOHc1h/KMpnNPtKgCGpF9Nh5b9uOXJdD9nJu4a1gn25rl/FbenfYDTAb8ZFLwPXTNj/Hvi/ZOLGSdYYSzo7jEAKCsv5Z9zJzKwy+gqrw/rOY5LB94GwPGio9z0eBe6ppxNu6QeQd8P2l3dSGMs8OwXUFzm3jqe9gMp8TC6t+ex+YsnbaCmtm7lz4Rm5G/lsZAIhPjT0u1k2961RNepR7ukdACG9/4tKzZ9SGlZySnL1otuWPn3wuJ8XLiocPnhfiaTeZJz2+bdadW0Iw7Hqf/lT/eeiEiwa9vk56fCh5m/7dSmxrYjfLBtM5h1HtievZ6+HS4CoGG9BNo0786SdXN8GrsZPMm/b4cR1ImIBiAlsSu4XBzJP3DKcp999xq9219AXKyeGmMVTieMH+CbOXHDnPCbgdAl2fxtm8GO499f8+QYALy58K8M7nYlSfGpVV6Pif7lMeFFJccpLy/1Wcxivlbx7j0V3hsp8XDTUKgTpJdFedoGamLVz4Rm5W/VsZDICUHaRYmnsg/tYEf2Bm5+Ir3yteKSAnKP7q12+fe/nsWHy58h93Amd175YpVbVazC05xFREJV+2YwaTi8uRz2HzVnmwNT4bJewVvYBPPOA6nJvfhizZtcPXQq2Qe3s2nnchIbtTY3WB/wNv8Fq18hMa4NTRud+lSIBateZuKomWaHKj4WHga/HQSffA9fbKr6RHhvNawLY/sH99PRzRz/vr/0KT799mWaNGrJhAv+XlkoCHaeHIPNu1eyadcKHpu4kDcWPnTK+199/x6vf/YAWbnbuH7EI7RLCuLL9uUUbZrA5OHwxnLIPmzONvu1hTG9g7ewCV70AxZt6zUxK3+rjoVETgjibko81aFlP/5x04LK3694MKHGZUcPmszoQZPJyFrPP94aR++084mNaeyPME3lSc4iIqGsZWO4Z4RR3FiyGbytbTSKMR4elBbEBY2TmXEemHr1azz/0d3c/EQ6TRu1okfqeYQ5rTFE8jT/NVu/4I2FD/HYTQtx/OpJGhu2L6Wg+FjllRtiLWFOGJUOXZPhPytgXy2+6OjfDi7t6ZurwMxmxvj3hhEPE1e/GU6nk683vM/9L43g1Xu3El2nnj9SqDV3jkFRSQGz593KtN+8d0rbP2FwtysY3O0Kcg7t5MHXRnNWx1G0aNLeZ3GL+Zo3grsvhAUbjC86KrwcDDSINh4e1CnJ3Ph8xd1+wOptvSZm5G/lsZAIqLgZMprFtWH/4V8mWzpedJSikuPEx57+jNS2eXfiY5NYn7GEs7td7uswTeVtziIioSoy3ChIDGgHy7bCyu1Q6OZdSS0bw6A0SG9pnSehmnUeSIxrzQO/nVv5+5/+fSG90s43LU5f8TT/9RlfMvOd6/nb9R9VW7D45NuXOL/XbwlzBvHlunJGreJhykWwIRO+3gIZ+91br0449EqBQalGgcQKzBr/xjf4ZflBXUfz0id/ZM+Bn0hL7uWz2M3i7jHIPpjB/sO7mfLcUADyCw/jclWQX5jH1Gteq7JsYlxrOrTsxzeb56u4aUHhYTAy3bjqcvk2WJnh/oMHkxvBwDTo2Tq4r9Y8mSf9gJXbek3Myt+qYyGREyzSZcmZtEtKJ9wZwXdbFtIrbTgfLX+Wc7pfTUR45CnL7tq3iVZNOwGQlZvBtqy1tPz5dyvxJGcRETtJiDVuKb+oO2zNgT2HjJ8Dx6C0zJijr24kJDWC5Dhok2CdYsbJzDoP5B3bR4OYBJxOJ6t+WsCu/Zs4t8d1PoraPJ7k//32r3js7fH8dcJ/adu8+ynvHy86ytIN7/GvO9b6I3TxsfAw6NHK+Nl3FLbvhz0HITMPCoqhvMJYpnE9aBEHLRobV2tb4UrNk5k1/j1wOJOEhsbEopt2fcPR4wdJatzOf4nUgrvHIKVZV9578Jd5dl//7EHyCw9XPi395ONzOP8A67Yt4uyu1rrwQaqKrw+X9IAR3aqOBfYfNR5C6HRAdIRx/m8RBykJxrighgt7g5Yn/YCV23pNzMrfqmMhkRNU3Awhf7ru/5jxzvXMmvd7mjduxx+ve5OdOT+csty/P55KzqEdhDkjCAsLZ9JlT9OqaccARFx77ua8YNWrvLrgz+QX5LF84we8++VM/nb9R7RL6nHa90RErCwyHDonGz+hyozzwIpNHzFn8T9wOsNoHNuch2/8X+XDd4Kdu/k//u6NlJYVM2PO9ZWv/fHaN0hp1hWAJeveJjW5F8kJqaesK9bWNNb46W/tz+81MmP8O2POBPLy9+F0hFEnIppp49+t8oCdYOfuMTid95c+xYYdSwkPiwRcjDn7DnqlDfdNwOJXEWHG7eVWucXcG+62gdO1dSt/JjQjfyuPhURAxc2QktKsK8/+YfUZl/v7DfP9EI1/uJvzBX0mcEGfCR6/JyIiwc2M88BF/X7HRf1+Z3Jk/uFu/q/du/W07488ayIjz5poVlgifmPG+Hf6zZ+bGZLfuXsMTvab8x+s8vsdVzxvYkQi/uVuGzhdW7fyZ0Iz8rfyWEgEwBnoAMS3wsMiOVZwkJufSCcv/8yTLr0wfwpvL36UetEWvD/xZ57mfDqhcDxEROzGzPPA3K+eZNa8W2kQE29SdL5nZv5L1s1h2isX06h+U5OiE/E9jQXVD4rYvR9QHyB243C5XN4+UFV8qLwEFs8KdBTuGzoZwkyc6tJq+YP5x0BEzPfAPDhSaDwF9KExgY5GTkfnAesdA6ucB9UPWIfV2gCY2w7snr+vqA+wDrUBHQMRd+nKTREREREREREREbEkFTdFRERERERERETEkvRAoSDljDAu57YKZ4T527NS/mD+MRARsTOdB6x3DHQeFLNZrQ2Aue3A7vmLqA3oGIi4S8XNIOVw2HueCrvnLyJidzoP6BiI2L0N2D1/EbUBHQMRd+m2dBEREREREREREbEkFTdFRERERERERETEklTcFBEREREREREREUtScVNEREREREREREQsScVNERERERERERERsSQVN0VERERERERERMSSVNwUERERERERERERS1JxU0RERERERERERCxJxU0RERERERERERGxJBU3RURERERERERExJJU3BQRERERERERERFLUnFTRERERERERERELEnFTREREREREREREbEkFTdFRERERERERETEklTcFBEREREREREREUtScVNEREREREREREQsScVNERERERERERERsaTwQAcg1XO5oKI00FG4zxkBDod527Na/mD+MRARe7N7P2j3/EXUBnQMROzeBuyev4i4T8XNIFVRCotnBToK9w2dDGGR5m3PavmD+cdAROzN7v2g3fMXURvQMRCxexuwe/4i4j7dli4iIiIiIiIiIiKWpOKmiIiIiIiIiIiIWJKKmyIiIiIiIiIiImJJKm6KiIiIiIiIiIiIJam4KSIiIiIiIiIiIpakp6WLiEjIOl4MOw/A7kOQeQjyi4zX84vh1aXQIg5aNIbW8RCpM6JIyHG5YG8e7DkEew7CvqNV+4F5q41+oHU8JMQGNlYR8Y2CEmMssOeQ8XNyH/DKibFAHLROgDoaC4iIWJK6bxERCSkuF+w6CF9vgXW7oKzi1GXKK2DdbuMHoG4k9G0DA1NV4BAJBUWlsGo7LNsKOUeqX6a8Ar766ZffUxJgUCp0bwnhYf6JU0R8Z89B+HorrNkJpeWnvl9eAet3Gz8AURHQ5+exQGIDv4YqIiK1pOKmiIiEjLzjMGcl/Jjt2XoFJbDkR+NnQCpc0sP4kCMi1uJywaod8P53UFji2bo7Dhg/89fB1WdBh2Y+CVFEfOxIIbz7LfyQ6dl6RaWw9Cfjp28buKyX8eWniIgEPxU3Q8j6jCXc89zQKq9FRcaQnJDGsJ7juWzg7YSFhe4/ud3zF7G7lRlGQaOotHbbWb4VNmfBdWdBaqI5sfmT3ftCu+dvZ0cL4e1vYFNW7baTVwDPLYL+7eCynlDHYl902L0N2D1/u/tuJ8xdZXxpWRvfboefsuGas6Bjc1NC8yu7twO75y9iR2rRIWho+rX07XARLlzkHcth4Xev89xHd7F7/2buvOKFQIfnc3bPX8RuXC7433pYuNG8beYdh38tgrEDoFdr87brT3bvC+2ev93kHjPa7MF887a5Yhtk5cHEoRBTx7zt+ovd24Dd87ejhT/Ax+vN296RQnhhCVzdD85qa952/cnu7cDu+YvYiYqbISg1qSfDeo2r/P3iAbdy4/QOfPLti1x/4cM0rJcQwOh8z+75i9jNJ9+bW9g8ocIFby6HMCektzR/+75m977Q7vnbSd5xeOZz44pLs+06CM8vhlvPs95UFXZvA3bP324+32huYfMEl8u4ItzpMG5Vtxq7twO75y9iJ85AByC+Fx0ZQ4dWZ+Fyucg6mBHocPzO7vmLhLJ1u+CzH3y3fZcL3lhW8wNJrMTufaHd8w9V5RXw8le+KWyesPugMZev1dm9Ddg9/1C2aa8xV64vvf2N8YAiq7N7O7B7/iKhTFdu2kT2z513bN24AEcSGHbPXyQU5RfBu6s8W+euCyE22pib74lP3VunvAL+swL+cL5xFaeV2b0vtHv+oWjRJthzyLN1vOkH1u4yruDubsGruE9m9zZg9/xDUUGJ518+eNMHVLiMscDdIyA8zPM4g4nd24Hd8xcJVSpuhqCi0gKOHM/F5TLmFvloxXNs27uWDi36kpyQFujwfM7u+YvUpMIFxaXgwri90ukIdES1M281HC/2bJ3YaGhY1/N97T4IX/4I53byfN1AsXtfaPf8a1JWDsVlEBkOERb/gL7vKHy6wfP1vO0H3v0WUptCXYvMv2n3NmD3/Gvichl9QIUrNMYCH64x5sb0hLd9QPYRYxqcEd08XzdQ7N4O7J6/iJ2EfHEzNzeX6dOnM2/ePDIzM0lISGDMmDE88sgjTJ48mZdffpnZs2czadKkQIdqmtc/e4DXP3ugymuDuozh9tHPBCgi/7J7/iK/tu8oLNtiPPnzxJPE64RDnxQYmAbNGgY0PK8czDeupPKnJZthcHvrXLFh977Q7vmfrKwcvt8DX2+B7Qd+eb1FnNEH9GxlFDut5svNxpXV/pJfbPSjQzr6b5+1Yfc2YPf8fy33GCzbCiszfnmSeGQY9EqBQWmQ1Ciw8XnjSKHRJv1p6U9wXifr9Jl2bwd2z1/ETizSLXtn3bp1jBgxgpycHGJiYujUqRNZWVnMmjWLjIwMDh0y7mNKT08PbKAmG9lvIoO7XUlZRSk7sjcwZ8lj5B7JJDIiqnKZh9+8hgpXBdPGv1P52tGCQ9w0szMTR83kvJ5jAxG6KdzJf8P2pdz30ohT1i0rL6GiopwF08v9GbKIT5zuKeLFZfD1VuPnnA5waU9rXb2xfKtxBao/HS2CDZnQo5Wfd+wlnQt0LgA4cBSeX2IUNn5tzyFjHrlP1sNNQyDZQnfoFZbA6p3+3++yrTC4gzX6S/UB6gPAGAss3Gi081+fN0vKYcU242dAO7i8j7WmX/lmm3EFqj8VlBhfrvazyNPT1Q+oHxCxi5Atbubm5nLxxReTk5PD3XffzQMPPED9+vUBmD59Ovfeey/h4eE4HA66dbPQvQVuSIpPpWfaMAD6dhhBl5RB3PnsIJ6aewv3j3sbgNvHPMvEx7uyaO1bnNvjWgBmv38bnVMGWfoEBu7l37XN2Xz0cH6V9XKPZHHbrN5cOiB0ruIVe/twLSzefOblvvwRSsvhyj7gsMAH9ooK+CZAc8Cv2Gad4qbOBToXHMyH2QuNwvzpHCmEpz+HycOhuUWu3lqzC0rK/L/fA8cgYx+kJvp/355SH6A+AIypGxa4MX3D8m1GsXNsf2uMBVwuo7gZCMu3Wae4qX5A/YCIXVjouznPTJ48mczMTCZNmsTMmTMrC5sAU6dOpXv37pSVldG6dWtiY2MDGKnvdW49gGE9x7Nk/Rw27lwOGBMo333lSzz9wSRyj2Tx1ffv8X3GEu4Y81yAozVfdfn/WklZMQ+9PoYurQdx3Xn3+TlCEfP9lO1eYfOE5Vvhh0zfxWOm/cc8n2vTLDtzjeKqFelcYL9zwdvfnLmweUJRKby+zCgYWMGO/QHc94EzLxOM1AfYrw/YccC9wuYJq3fAdzt9Fo6pDhdAXkFg9r3noPGlsBWpH7BfPyBiFyFZ3Ny8eTNz5swhPj6eRx99tNplevXqBUD37t1r3M6IESNwOBw8+OCDvgjTr8YOm4bTGcZrC/5S+VqfDhdyTrereOytccyedyt3XfkisTGNAxil71SX/8memnsLJaVFTLn6Vf8GJuIjX2/xzzqBkOnhk5HNVFJmFFetSucC+5wLco7A1n2er5MRwKKhJzx9Qnqo7Lu21AfYpw8A787ryywyFghkO6xwQfbhwO2/ttQP2KsfELGLkCxuvvXWW1RUVDB27Fjq1atX7TLR0dFAzcXNd955h3Xr1vkqRL9Lim/H0O7XsHbbF2zYvrTy9YkXz2TvwW306TCCfh1HBjBC36opf4D3v57Fys3zeWjCB0RFevHoRJEgc6QAftjr+Xo/5VQ/L1+w2ZsX4P1buLChc4F9zgXLt3q33jIv1/OnkjLYfzRw+w90H1Qb6gPs0wccL4Z1uz1fb0cuZFng/3ig22Gg918b6gfs0w+I2ElIzrm5aNEiAIYOHVrjMpmZxv2X1RU3jx49yh133MHMmTMZN25crePp3bs3OTk5Hq0TGR7NC5PM/YRx7Xn3s3jdW7z22V+YectiAKIjY2gW14aUxK612nZqWiolZYVmhAn4L/912xbz4sf38sjvPiExrnWttm/2MRDxVkKbAZxz8ztnXrAaI0b/luwfvzA5InP1unwGKX2vrfa9uy6E2Oia142N+uXPB0effj9HC+GJT6vZx9T7yVjxmpvRes8X/SBY51zgz/zNOhcE03ng7N/9h6apgz1eb/GKTdx/zfk+iMg8derFc/G0dTW+b1Y/UFMfkJN7hOTkzu4FWwt27wNA48HaaJScznm3z/dq3TFjf0/m9x+ZHJG5ul/8EKmDbqz2PX+MBe5/4GG2fPkvN6P1nt37AY0FROwlMTGR1atXe7VuSBY3d+3aBUCrVtU/9aGsrIxly5YB1Rc377//ftLS0hg7dqwpxc2cnBz27vXsMqqoCM+/KeredggLZ9Q8WVarph199rS37KwsikrNm/jGH/nnHNrJ39+8iptGzaB72yHehFmF2cdAxFvhjb2/pOnw0XyP+yt/61RU84SbsdHQ0I3uw+l0b7nqHD3mn2PkTT8IoXMu8Ff+Zp4Lguk8UOblP7HLERb0fUBMw9NPfOvzfsBPx8jufQBoPFgbrnopXq975NjxoO8HUgtrnlDYH2OB/Hz/HCO79wMaC4iIu0KyuHn8+HEACgur/8Zkzpw55ObmUr9+fVJSqp74V69ezb///W++++470+JJTPT8kZqR4af5ujEINWve3PRv6n2pqKSAB169jP6dLuGygeY8Bc/sYyDirfpR3s84ElPHQVJSkonRmK9ORM35HT1DE4yNMj7MVFSc+UErNW2rXt0ovxwjq50HwNx+0B/5m30uCKrzQNlxr1YrLzoS9H1ARHTD075vVj9Q03ZcZcXqA2qg8WDw9AP164YB4HK5cHj4+POYSIK+H4iuE1bje/4YC8RER6ofqIHGAsHRB4hYkTe1sxNCsriZmJhIXl4ea9asoX///lXey87OZsqUKQB069atysm+vLycm2++mUmTJtG5s3m3G3lzWW15CSyeZVoIPrd1y1bCIs3bnq/zX7phLtuz17M3dwtL1s855f2X7tlEk0YtPdqm2cdAxFsVFfDwR3Aw37P1YqPguy/fIyzIZ2NetAk+XFv9e9XdOnayB0cbV2kcLYIH3/du/y8/+xipiY95t7IHrHYeAHP7QX/kb/a5IJjOA9/tgDeqfxDsaf3uir68+edM8wMykcsF978HBSXVv+/rfiCtdePK6Y18ye59AGg8WBsuFzz2MeQc8aywWTcSli94ncgg/5S4bAu8u6r69/wxFpg980G6JD/o3coesHs/oLGAiLgryE9b3hk2bBibN2/mscceY/jw4aSlpQGwatUqxo8fT25uLgDp6elV1nv66afZt29fSDwd3ROP/35JoEPwu+G9xjO81/hAhyHiE04nDGgHH63zbL3+qQR9YROgRVxg958c4P37is4FoaV7S3j/O8iveRaHU0SEQV/v72T1G4fDaIdbPJvO3DSB7oN8RX1AaHE4YFAavFdDAbAm/doS9IVNgBYBfpC3+oHQEcr9gIidWOBjrOemTp1K48aN2bNnD507d6Zr166kpqbSt29f2rRpw7nnngtUnW8zNzeXadOm8Ze//IWysjIOHz7M4cOHASgqKuLw4cNUVJx+jicRkWDRvx00ruf+8g3rGh+CrCCQxcX4+hCtb+PFAsLDYEQ3z9Y5rxPUreObeMwWyMJCqBY1JPT0SYGmse4vXy8Kzungu3jM1Lxh4L6QjY2CBnqQtohIUAnJ4mZycjJLly5l5MiRREVFsXPnTuLi4nj++ef5+OOP2bJlC1C1uJmZmcmxY8e4+eabadSoUeUPwGOPPUajRo3YvXt3QPIREfFU3Tpw81D3JsqPjTKWrR/l+7jMEB0J7ZsFZt/pnt2dKBJQA9Pg/C7uLTsgFS6o3QNy/SpQbTHcCZ2DeypCkUp1ImDiUIh348vOmDpw8xDvH7Djb+FhgWuL3at/Zq2IiASQBW468E7Hjh2ZP3/+Ka/n5+ezc+dOnE4nXbr8MuJv164dixcvPmX5oUOH8tvf/pYJEybUanJTERF/axILd14An3wP3+2E0l89FDPcCT1bG1d3NYoJRITeG5QKP2X7d58OjNv9Razkou6Q2MCYqzYz79T3m8TC0I5wVlvjNlaraNEYWjaG3Qf9u9/0VsbVbSJW0bge3HEB/O97Yy7e4rKq74c5jS8LRnQz7k6wkkFp8P0e/+93YKr/9ykiIqcXssXNmmzcuBGXy0VaWhp16/7y1WS9evUYMmRIteu0bt26xvdERIJZg7pwzVlwSU9Ytwv+u8b4YBMVAdMuNa7UsKJOSUZBNs+7B0J7vc84D271FwkWPVtDj1aw66AxT+XnG6GkzHgi8p9GWauoebJBafCfFf7fp4jV1IuCq/rCJT2MscD73/0yFrj/EuvcufFrqU2NL2j2H/XvPhMb+G9/IiLinpC8Lf10NmzYAFS9JV1EJNTVjTRuO42KMH6vE27dwiYYV5pc3tt/+4sIg8t6+m9/ImZzOKB1vHGbevTP/UB4mHULmwC9W0NKvP/216eNcQxFrCoqAs5qV3UsYNXCJhj91xV9/Le/MCeM7uW//YmIiPtsd+Wmp8VNl8vly3BMlZG1niffu4mC4mM0bdiKe699g137NnLfiyNITmjPPyZ+RqN6TSqX37VvM7c91YuL+k3k1kv/CcDcr57kw+XPEBVZj+fvWheYRDzgbs6ffvsyc5c+ye79m7l51EzGnH1H5TZe+uQ+lm2YR0R4HcLCIrj+wofp0/4CwHrHQ8ROuiQbxY3VO32/r5HpkODBQxn8yd1+8HR9XUVFBc9++Ae+3fw/HA4Ho8++g8sGTgKCvx80I//D+Qd4/J0b2Je3i7KKUjq06MsfLn+OOhHRLFk3hzcWPsTBo1l88LfDgU1WqnA64dr+MON/p067YbYG0TA6SL/gcLcNvPzJ/azY9CFORxgA15z7R4amX1O5nQ+XP8sHy2YT5gzH6XAy+/aVREZE8cL8KSxZP4fUpJ48NOGDAGVZMzPGvyfk5e9n4uNd6dSqf2Wu6gOCW1qi8eXt8q2+39cFXaB5I9/vxxvutoPpb09gzdaFNIhJAKBX2nAmjpoBWPszkSf9QE19XVFJAY+/eyNb9qzC4XByw4hHGNztCoCg7wdFRMXNkDJjzgTuueoV2iWl8+m3L/PC/Hu4oM/1JCe0P+UkVFZeyj/nTmRgl9FVXr988J20S+rBs/+9w3+B14K7Oacm9+LP497h7UWPnrKNrilnM27YNOpERJORtZ67/jWYt6dlER0ZY7njIWI3o3sbt9oeOObe8kcLq/7pjg7NYHB7z2PzF3f7wdP1dV+seZNd+zbxyr1bOF50hN8/2YP0tkNpndg56PtBM/L/zxcPkxSfyt9u+IjyinL+/NJIFqx6hUsG3MqQ9Kvp0LIftzyZHrAcpWZNYo0rqd751v11PO0HnA64rn/wPkne3TZw1ZAp3DDiYQByj+zlxhkd6Zk6jAYx8Sz/4b98seb/mD3pG2KiG3A4/wBhYcblfRNHzaBV084s3/hBALI7MzPGvyc89d7NnNVxFEcLfpnMVX1A8LukB+zYD9lH3Fvem7FA2yZwXmfPY/MXT9rBVUOmVLnQ4wQrfyZyN//T9XXvfjmTiLA6vPbHbWQf2sHkWf1IbzuU2JjGQd8PiogNb0tftGgRLpeLkSNHBjoUU23bu5boOvVol5QOwPDev2XFpg8pLSupdvk3F/6Vwd2uJCneujNie5Jz2+bdadW0Iw7Hqf/l+3YYQZ2IaABSEruCy8WR/AM+jV1EzBFTB35/rvsPRHriU3jwfeNPd7RJgOsHG8WNYORJP3i6vm7J+jlc1O8mwpxhxNaNY0j3q1m87i2/5eEts/J3OBwUFB+joqKCsvISiksLiG+Q7Lc8pHYGpMJID76z9qQfcDpg/EBo38z7+HzJkzZQL7ph5d8Li/Nx4aLCVQHAO1/OYPzwB4iJNiYTbFgvgTBnmM/jry0zx7+ffPsSiXEpdEk525chiw9ERcAt50GCmw9E8nQs0LIx3DTEuC09GHnaDmpi1c9EnuR/ur7uy/VzGNX/FgCaxaXQre0Qvv7hff8kISK1ZrsrN0NV9qEd7MjewM1PpFe+VlxSQO7Rvacsu3n3SjbtWsFjExfyxsKH/BiluTzJ2V0LVr9CYlwbmjZqZUKEIuIPcfXgD+fDC0sgq5qnQXurSzL8ZiBEBvGZ0tt+8Nd93f7Du2na8Jd+r2lcazbv+sYnMZvJrPzHDpvGX1+/nKv/mkhxWSHnpl/HgM6X+DJ0MdnwLkaB4/3v+P/27jQ8iir9+/i3u5OQEEgghDXskLDvq7IICCqKjuC+4ICOuCGPowPO6DjiOOoIuIH7X3HBEVEBBRxBFFAUUJFFBBSIbCEECCRAyJ7086KGCJKE7k71Ul2/z3Xl0nTXcu4i5+5Td1fVodSkJwpVizAKmx1DuM7tbR+Y//V0Fqx6gczsNP581Wtlt2nuObCFbWlrmbX0EYpKChjW4yZG9p8QiBCqxKzx7/4jO1m0+mWevvMrVmyY4+9mix/Ex8CEYfB/X8Kew2df3lNtG8KYAb89pzQUeZ0HVj7H4u9mUq92U8Zc+K+youCprHRO5E38leW6g9l7Tou3Qe3mHMze4/f2i4g5QviUTbzVtmkf/n3rkrLfr5xc94xl8gtzmTHvTh666UMcVp5F4H88idlT67Z/waylj/DkrUvD4tiI2Emt6nDvhfDZT8ZM0FUpbkRHGre59m5pjclWvM2D4ZbrzIh/xYb3aFqvPU+O+5yCwlz+8eZl/Pfb17i4z5/82nYx14A20KIuvLum6l90tGkA1/b1/KrwYPKmD4zsP4GR/SeQmr6Rf8++kZ4pFxAXW4eS0mIyjuzk6Tu/Iicvi/teOo+GCS3p235EIEKokqqOf91uN0+9fzPjRz5fdtWaWFPNGOPLzi+2wJJNUFLq+7aiIozb3c9NDt27N07laR64efhjJNRsiNPp5OtN83nw9eG8ef92YqrVKFvGiuMET+O3cq4TkcqpuBkmGia0PO2bpRP5x8gvPEFiXNJpy+0/nMrB7D1MfHkwADl52bjdpeTkZTHp2rcC2uaq8jRmT2xM/ZJp74/l0bELaVIvhB+uJyIVinDBxV2gUxNY+hP8lOZdkTMqAno0hws7GcVSK/A2D1aU6+rVasqB7N205xwADhzZRb3aTf3beBOYFf/CVS9yz5Wv4nK6qB5dkwGdrmRj6nIVNy2ocYLxRcfKbfD1Njic4936jWrD4LbQs4U1vtzwdSzUqlEXEuOS2Ji6ggGdr6BeraYM7nYdLqeL+NhEere9mK171oT8Cb8Z49+7/jCdX/f/yGPvXAMYt+wXFOUy8ZXzmXrbF4ELRkzhcsIFHaFTY+MLz417vBsLRLqge3NjG3VqnHXxkOBNHkiM/+21/p1G8vqnf2XvoV9IaWxMA2/FcyJv4q8s19Wr1ZQDWbupE2c8hyQjaxc9Ui4IWBwiUjUqboaJ1kldiXBG8sO2pfRIGcbCVS9yXpdriIyIOm25Fg078eHk356d8vZnk8nJyz5jtkgr8DTms/nx16948r3R/HPMx7RqFH4TTYnYTZMEuHkgZOfC6h2w4wCkHYGC4jOXrVHNKIa0T4JeLSDGu/QRdN7kwcpy3cDOV/Hfb/+PgZ2v4kT+UVZsnMO/bl4UqDB8Zlb8Deq05PtfFtOh+bkUlxSxdtsS2jc7J1BhiMkiXDC4HZzXBn7eDz/sMm5TLW/iMacD6sdDszrQpxU0T7RGUfMkb/rA7gNbaFa/PQDpmansSF9P0//9Prjb9az9eTHdWg+hoCiPjakruHrQpIDG4guzxr/zHvntPuYl37/Jqs0faUZki2tYC/7YH47mwbc7YNv/xgL5RWcuWz3KGDu0bWTctREbopOHVcSbPHAoO426tYxnbWzZvYZjJw6TVKc1YN1zIm/iryzXDex8FYtWv0z7Zn3Zf2QnP6auYMKoFwMdjoj4SMXNMPK36//D1PfHMn3eHTSq05q/Xv8OuzJ+Cnaz/MrTmJd8/yZvLvk7OblZrNr8ER98OY1Hxy6kdVI3nvrgFoqKC5g6Z2zZ8n+9bhYtGnYKZCgiYrJa1WF4Z+P/S92QeRxy8qG41Lgyo1Z148dKhYzyeJoHK8t1Q3uM5pe93zPmyWQcOLhi4L2WyYFmxH/nH57jubm3c+tTnSgtLaF9s3O4YsCfAxmG+IHTaXxx0f5/F+/kFcLBY1BYAg6gWiTUjwvt5+p6wtM+8H+fTCLjyE5czkhcrgjGX/48zeq3A+DKgffy7NzbuGVqexwOB/07XcF5Xa4KdCg+seP4VzwXHwMXdDJ+St1w+Dgc/99YIMJpjANqx9pnLDB1zhiycg7gdLioFhnDQ6M/KJtcx8rnRJ7GX1muu2rQRJ56/2ZueqIVTqeL8SOfJz42MdChiIiPLD6ck1O1aNiJF//fWq/WuemCyf5pTIB4GvOFvcZwYa8x5b731v3bTW6ViIQapwPqxRk/4cbTPFhZrnM5XUwY9YKZzQoYM+JvmNDitGd1SXiKiYJmYXie6mkfqOxq7KjIaMs9nugks8e/lY0ZxdqcDqgbZ/yEG0/7wZTbPq/wPSufE3kaf2W5LiYqlr/fqAnFRKzKGewGiH9FuKI4nnuY257uSlbOwbMuP/erZ5g+705Lf0vlbcyVCYfjISL2Y/c8aGb8KzbM4aE3LqV2zfomtU7E/8zsA68umsh7y5+gRkxtk1rnf8oBIhoL2D0PitiNw+12V2FOWfGXkkJYPj3YrfDc4AngMvFZdVaLH8w/BiL+8PA84/lT8THwyKhgt0YqY/c8aPf4/Ul5wBrUB3QM/EU5wDrs3gfsHr+IeE5XboqIiIiIiIiIiIglqbgpIiIiIiIiIiIilqQJhUKUM9K4pN0qnJHmb89K8YP5x0BE7M3uedDu8YuoD+gYiNi9D9g9fhHxnIqbIcrhsPezOuwev4iI3fOg3eMXUR/QMRCxex+we/wi4jndli4iIiIiIiIiIiKWpOKmiIiIiIiIiIiIWJKKmyIiIiIiIiIiImJJKm6KiIiIiIiIiIiIJam4KSIiIiIiIiIiIpak4qaIiIiIiIiIiIhYkoqbIiIiIiIiIiIiYkkqboqIiIiIiIiIiIglqbgpIiIiIiIiIiIilqTipoiIiIiIiIiIiFiSipsiIiIiIiIiIiJiSSpuioiIiIiIiIiIiCWpuCkiIiIiIiIiIiKWpOKmiIiIiIiIiIiIWJKKmyIiIiIiIiIiImJJKm6KiIiIiIiIiIiIJam4KSIiIiIiIiIiIpak4qaIiIiIiIiIiIhYUkSwGyDlc7uhtCjYrfCcMxIcDvO2Z7X4wfxjIGJnygE6BiJ27wN2j18ErNcPNBZQHhCR4FBxM0SVFsHy6cFuhecGTwBXlHnbs1r8YP4xELEz5QAdAxG79wG7xy8C1usHGgsoD4hIcOi2dBEREREREREREbEkFTdFRERERERERETEklTcFBEREREREREREUtScVNEREREREREREQsSRMKiYiEueIS2H8UMrKhoNh4rbAY9hyGRrUgwhXM1olIIBzPg71H4Gjeb3mgqASycyE+RjPbioS7klLIOAr7s08fC+zOhEa1IVJjARERsTAVN0VEwlB+EazdCd//CmlZxknNqfKK4OnF4HIaBc6eLaBXS6iu2S1FwsbeI/DNNtiabhQ1fy+3ECbPh5rRkNIA+iVDi7oqdIqEi4JiWLcLvks18kFxOWOBZ5aA02GMBXq0gN4tIbZaMForIiLiOxU3RUTCSH4RfPojrNnx25UZlSkpNU549h6BTzZA71ZwcRcVOUWsbPsBWLQedh/2bPnj+fDDLuOnUS0jB3Rs7McGiohfFRTDZ5vgm+3GuOBsSt3GF6FpWfDfjcYXnpd0gRrR/m+riIiIGVTcDCMbU1fwl5cHn/ZadFQsjeumMLT7aC7vdzcuV/j+k9s9fpFf9sN7ayAr17f1C0vg622waS9c0wfaJ5nbvkCwex6we/x2V1AEC9fD19t930Z6Nrz2JfRsDiN7WvMKLrv3A7vHb3epB2H2asjM8W39ohJYvQM2pcFVvaBLU3PbFwh27wN2j19E7ElZLQwN7nodvdtejBs3WcczWPrD27y88F72HNzKn698NdjN8zu7xy/243bDkk2weJM52zuaB6+ugCHt4dKu1rxF1e55wO7x29GRHHhpGRw6bs721u4yrgC9fQg0rGXONgPN7v3A7vHb0bItxhccbhO2lZMPb6yEASnGFx1OjQUsx+7xi4i9qLgZhpKTujO0x41lv1967p3cMqUtn373GmMveoxaNeoGsXX+Z/f4xX4WbYAvtpi/3WVboKgYRvW0XoHT7nnA7vHbzeEcmLHUmBzITEfzjO3ePcyaBU679wO7x283SzYZj6Ux28ptxp0d1/SxXoHT7n3A7vGLiL04g90A8b+YqFjaNuuL2+0m/XBqsJsTcHaPX8LbV7/4p7B50spt8Plm/20/UOyeB+wefzjLL4KXl5lf2Dwpt9C4IvRYORMSWY3d+4Hd4w9na3b4p7B50rep8OlG/20/UOzeB+wev4iEN125aRP7//cBFlc9IcgtCQ67xy/h6cBRWLDOu3XuvQjiYoxCxdOLPVvn0x+hXSNobPHuY/c8YPf4w9XH67y/Fd3bPHAsD97/Dm4ZaL2ruH/P7v3A7vGHo8M5MO8H79bxZSzw+Rbo0BiaJ3rfxlBi9z5g9/hFJHypuBmG8otyOXoiE7fbeL7KwtUvs2Pfeto26U3juinBbp7f2T1+sYfSUnh3DRSXerdeXAzUqu7lvtzGvu69ECJc3q0bLHbPA3aP3y5+3m9M/OEtX/LAT2mwbhf0aOH9/oLF7v3A7vHbQanbmEiwsNi79XzJAW43vLsa/jIcoixyBmn3PmD3+EXEXizy0VQ1mZmZTJkyhXnz5pGWlkbdunUZNWoUjz/+OBMmTGDmzJnMmDGD8ePHB7uppnj7s4d5+7OHT3utf8dR3D3yhSC1KLDsHr+cqbgEftwLW/ZBXpExKG+SAL1bQo3oYLfONxv2wO7MwO0vPcuYYKRvq8DtsyrsngfsHn95Mo/DmlQ4dAxK3FAzGro1g+T61rwa0e32/srtqlqwHro2A5dFHmpk935g9/h/r6TUKNL/lGY8biHSBUm1jc+1mjHBbp1vtu4zJv4KlIPHjDw6sE3g9lkVdu8Ddo9fROwl7IubGzZsYPjw4WRkZBAbG0v79u1JT09n+vTppKamcuTIEQC6du0a3Iaa6JI+4xjY+SqKS4vYuX8Tc1Y8SebRNKIif6viPPbOtZS6S3lo9Ptlrx3LPcKt0zowbsQ0zu9+QzCabgpP4t/060oeeH34GesWlxRSWlrCkiklgWyy+InbbTyT8vPNcDz/9PfW74b/boSeLWBkD6gWGZw2+uqb7YHf59fboE9LaxSClAeVB086kgMffg9b08+cQXj1DqgXB5d1g46Ng9I8n+08BOnZgd3n0TzYvA86Nwnsfn2lPKA8cNI32+GzTcbf8Kk27IHFm4wvOkb1hOpRwWmfr74O0lhgQIrGAlagHCAidhLWxc3MzEwuvfRSMjIyuO+++3j44YepWbMmAFOmTOH+++8nIiICh8NB586dg9xa8yQlJtM9ZSgAvdsOp2OL/vz5xf48N/d2HrzxPQDuHvUi457qxLL1sxnS7ToAZsy/iw4t+lv6Qxw8i79TywEsfCzntPUyj6Zz1/Se/OHc8LiC1+7cbuMZVCt/qXiZ4lLjCoR9WXDn+RBjkZOa/dmQejDw+007ArsPW+N5W8qDyoNgXGX0/FI4ll/5Mq9/acwE3Ld14NpWVcH4ggOMwoZVipvKA8oDAAvXVz7xXkkprN0J+47A+GEQWy1wbauKzOPwc3rg93vwmHG1aEqDwO/bW8oBygEiYh8WubHINxMmTCAtLY3x48czbdq0ssImwKRJk+jSpQvFxcU0b96cuLi4ILbUvzo0P5eh3UezYuMcNu9aBRgPkb7vqtd5/qPxZB5N56sfP+TH1BXcM+rlILfWfOXF/3uFxQU88vYoOjbvz/XnPxDgFoo/fL2t8sLmqfYegVnf+Lc9Ztq8L3j73hLEfVeF8qD98mBhMbyyvPLC5klujAlzUgN4e2dVuN3BywPbD0CBl8/3CxXKA/bLA2tSKy9snmr/UZj5ldG/rKC8q9EDRWMBa7JjDhAR+wjb4ubWrVuZM2cOiYmJPPHEE+Uu06NHDwC6dOlS9tqKFStwOBxn/Fj9tvUbhj6E0+nirSX/KHutV9uLOK/z1Tw5+0ZmzLuTe696jbjYOkFspf+UF/+pnpt7O4VF+Uy85s3ANkz8oqTUuBXdG1vSjSsTrSCY7bTKMSqP8qC98uC6XcYswp4qdRuzAVtBZg7kFwVn32638Qxeq1IesE8eKHXD5z95t07qQeORD1awN4ifx8Hcd1UpB9gnB4iIvYRtcXP27NmUlpZyww03UKNGjXKXiYkxnh5+anHzpBdeeIHVq1eX/cyaNcuv7fW3pMTWDO5yLet3fMGmX1eWvT7u0mnsO7yDXm2H06fdJUFsoX9VFD/A/K+n8+3WRTwy5iOio7ycOlJC0k9pZz5XyxPBus3TW8E+obHKVS2/pzxonzzodhtXb3vr53TjVs9Qt/dwkPdv4cKG8oB98sAv+40vArzlS+4IhmB/0VmqsYAl2SkHiIi9hG1xc9myZQAMHjy4wmXS0tKA8oub7du3p2/fvmU/nTp18k9DA+i68x/E6XDy1me/fVMXExVLw4SWtGhg/fjOprz4N+xYzmuf3M9Doz+gQULz4DVOTLXVx2dQ+bpeoGWdCN6+j+db94QGlAftkgdPFECaD1cXuoGf95veHNNl5wZ3/8HMQWZQHrBHHvC1L2+1QA4AyApiHigohvzC4O2/qpQD7JEDRMReHG63Va/BqVyTJk1IS0tj/fr15d5SXlxcTMOGDcnMzCQ1NZWWLVsCxm3pgwcPZvny5QwaNMiUtvTs2ZOMjAyv1omKiOHV8YG5jOy+lwbRt90Irhr0F5+3Me75ZAqLfbhUrgKBiD/jyC7GT+/FjcMe5vJ+VX9gttnHQHzX54aXaNL5Uq/XKyrI4eN/tPVDi0zkcHDlv/dW+Pa9F0FcTMWrx0WD0wmlpZU/i/BYHjy9uPz3PnqoDcWF/q1uBDIHgvJguOXB2DrNGT7pa5/W3fTpE/yy4gWTW2SutkMm0PHCSeW+d7YcAFXPAzu+eYMNCx7yosW+sXseCFT8ZuaBUMkBAD2unEaLXtd6vZ67tJS5f2vqhxaZ6/JHtxMRVX5nD8RYYOGj3SjI8f89/Don0lhAROyjQYMGrF271qd1w3a29BMnjBPvvLzyE+ucOXPIzMykZs2atGjR4oz3r7nmGjIzM6lTpw6XXXYZ//73v0lM9G2K4IyMDPbt8+7J29GR1roVYH96OvlF5n2F7O/48wtzefjNyzmn/WWmfIiD+cdAfHc827d7NgvzjnvdV4OhtKQYp6v89B0XA7U86D5Op2fLlSdt7y5Kiv17yYbVciAoD0Lo5MHYE6U+r3v4YHrI54EGWRXnOE9zAPieB44dPRKQY2T3PBCI+M3OA6GSAwCSszJ9Wq+o4ETI5wCAkuLCCoubgRgL7EvbTcEJ/z+A12p5QGOB0MoDImIfYVvcbNCgAVlZWaxbt45zzjnntPf279/PxIkTAejcuTMOh6Psvfj4eCZOnMjAgQOpUaMGq1ev5oknnmDNmjWsXbuW6Ohon9riraiIs1x2EWIaNmpk+reU/rRy01x+3b+RfZnbWLFxzhnvv/6XLdSr7d239mYfA/Fd/mHfHph1dN+PJCUlmdwa8xXmHiG6Zr1y3zt2lj9Bb67WKE9R/nEa1K/rYUt9Z7UcCMqDEEJ50OHkRFYasbUbe7yK2+3G4XBQenxXyOeBaFfF05WfLQdA1fNApKMwIMfI7nkgEPGbnQdCJgcABVm+Xe2WvW9jyOcAgKLcLKpVjy/3PX+PBUqKC6ibEIfb18qoF6yWBzQWCK08ICLW4kvt7KSwvS19woQJzJgxgyZNmvD555+TkpICwPfff8/o0aP59ddfKSoq4q677uL555+vdFsLFy7ksssuY+bMmYwdOzYQzaekEJZPD8iuTDF4AriizNue1eIH84+B+C6/CB6eZzwTyhu3DYZ2jfzTJjO9utyY3d0Xk0caV2lk58Lk+d6v36oe3D3Mt317QzlAx6Cqlv4En2z0bp3GCXDfRXDKd54haV8WTP2v7+tXNQ/cMQTaNPR9/56yex+we/xVVVRijAVyvbzRYOwA6BL6d6Xz5krYsMe3dauaA5okwH3Dfdu3t6zWDzQWCK08ICL2EbYTCk2aNIk6deqwd+9eOnToQKdOnUhOTqZ37960bNmSIUOGAOVPJvR7I0aMIDY21ud7/0UksKIjoU8r79apHxeYk3UzNE4I3r6bBHHfIt7o2wqqeXl/ynltQr+wCdAgHiKCOIILZg4S8VSkC/ole7dOQix09PyC76DSWEBEROQ3YVvcbNy4MStXruSSSy4hOjqaXbt2kZCQwCuvvMInn3zCtm3GbaueFDdPcljhjEdEALi0m3GVoSdiq8Et54HTIl08ub499y3ijZox8Mf+nvfrfsnQ88xHcIcklxNaepjfzNaolpEzRazgos7Q1sMvLqMj4U/nGf3LCoL5edxaYwEREQkxYfvMTYB27dqxaNGiM17Pyclh165dOJ1OOnbseNbtLFiwgBMnTtC7d29/NFNE/CDSZdxmPnsNrN9d8XIN4uHmgVAvLnBtq6rW9Y32HjwW2P3Wrm6N2/ZFTmqfBLcPgVnfwPEKnivncsL57Y0iiJW+w+yXDNsyAr/fc728Ek4kmFxOo2A55ztY+ytU9CyuujWNsUDDWoFsXdU0rQONa0Oa/+f0OU2NaOjcJLD7FBEROZuwLm5WZPPmzbjdblJSUqhe/fQHYd944420bNmS7t27l00oNGXKFLp27cq1114bpBaLiC+iIowrty7qDKu2w5Z9kHncOLmJcMK4wcaVD1YqaIDR3n7JMP+HwO733GRjAgIRK0lpAA9fDj/uhdU7YMdBcLuNKzqHdzZuX69prfkqAOPW2fgYOBrAORuqRVjn6laRkyJccMM5cGFHYyzw0z44dOy3scAt5xmPpbHK3RsnORzQPwXe+zaw+z2nlXFMRUREQoktT1M3bdoElH9LeocOHZg/fz433XQTw4cPZ+bMmdx6662sWLGCqCg9GVnEiurHwcge8OBlEPe/IkZsNaPoYbXC5kl9WhmTAQRKzWhdsSXWFeGC7s3hrqHGLMFg/E0P62jNwiYYV6QNO/vNJ6Ya1M64dVfEihJrwmXd4YFLTx8LtGtkvcLmSd2bG3EFSvUoGNAmcPsTERHxlIqbv/O3v/2NTZs2cezYMYqKiti5cydPP/008fHxgW6miEiFoiPh2r6B299VvfWcPZFQc25y4J5916g2DOsQmH2JiGeiIuD6vhCo2uyonr8VhkVEREKJLW9Lr6y4aWWp6Rt55sNbyS04Tv1azbj/ulnsPrCZB14bTuO6bfj3uM+oXaMeU94bw7rtS4mPrQtAj5RhjBsxFYBXF01kxcY5JCd155ExHwUxGs94GvPi72Yyd+Uz7Dm4ldtGTGPUgHvKtjHz0wdZvWUBTodxj821Q/7K4K7GIwisdjzEXto2hHNbw6odnq9zLO/0/3qiR/PQfb6Wpzng9U8f4JtN84iMqIbLFcnYix6jV5sLAfh26ye8teQf7Mr4iRHn3MGdf3i2bPtzv3qGBateIDqqBq/cuyE4QVbCjPizjh/guXl3kJ65g+LSIkb0va0sR67YMIdZSx/h8LF0Pno0O3iBSrmcDriuL0z5BAqKPV/P2zzgchoFlFC9FdXTflDZ5/3kN0ey/8jOsm3uzPiRyX/8iHM7XBY2eeCk3Qe2ctdzPbi4z7iyfPf2Z5NZsOoF6sQlAdC8QQf+dv1/gNDPg3bXsh6c1xZW/Oz5Or6MBTo1NsYDociMcyCrnw94kwcWrHqRj76ZgcsZgdPhZMbd3xIVGV3p+ZIVjoGI2Jsti5vLli0LdhP8YuqcMfzl6jdondSVxd/N5NVFf+HCXmNpXLfNGYPRqwdNPO0D66RxI6bSrH4HVm3+KCBtripPY05u3IO/3/g+7y174oxtXD1oIjcPfwyAzKP7uGVqO7onDyU+NtFyx0PsZ1RPOHICft7v2fJPL/Zu+63qwTV9vG9XoHiaAzq1GMCNQx+iWmQMqekbufelgbz3UDoxUbEkJSZz39Uz+erHD8gryDlt+1cM/DOtk7rx4sf3BDYwD5kR/8sL76VZ/fZM/uM88gpPcM/z/ejQvB9tmvRiUNdraNu0D7c/0zVoMUrl6tSAPw2CV5ZBcaln63iTBxwO49nFjRN8al5AeNoPKvu8nzxmftlyv+xdywOvXUSvNhcB4ZMHAIpLinh27jj6dRx5xnaGdLvhtC93Tgr1+AUu7WaMBX7c69ny3o4FmtWBG88N3Uf5mHEOZPXzAU+PwaqfPuaLdf9hxvg1xMbEk51zCJfLeN5IZedLVjgGImJvtrwtPRzt2LeemGo1aJ3UFYBhPf/I6i0LKCouDG7D/MibmFs16kKz+u1wOM78k68RU6vs//MKcnDjptTt4RmiSJBFuIwZXjskmb/tNg1g3CDjtrdQ5E0O6N12ONUijXvpWjToBG43R3MOAdC4bgqtGnXB5QzRQCtgVvy/pm+kd9uLAYiJiqVzy4F8/sOswAQhpkiub0yQZnZfdTlhTP/QvXIbvOsHnn7eL/7udc7vfiOREaH/rHVvx3/vLP0nAztfRVKiHqIcTlxOuKkfdG1q/rZb1oXbh0C1EH3erlnnQFY+H/DmGLz/5VRGD3uY2BjjkWu1atTF5TSuVq3sfElEJNRZ60xOKrT/yE527t/EbU93LXutoDCXzGP7yl1+/srnWPzdTOrVbsqYC/9V9mFoJd7GXJn5X09nwaoXyMxO489XvXba7VsioS4qwihwfrEFlmyCkiqOxZ0OGNoBLugYurehgu85YMnaN2iQ0JL6tZv5uYX+ZVb8yY17sGz9u7Rr2pdjuYdZu20JjetqxgirSWkA914E766GPYervr0G8XD9OdC0TtW35U9ej3/O8nlfUJTH8g2zeebOlf5stmm8iX/rnm/Zsns1T45byqylj5zx/lc/fsDG1OXEVa/DDUMfomvrwf5supgswmUUOJslwn83QlFJ1bbncMDgtjC8C0SG0VigsnMgq54PeHMM9hzYwra0tcxa+ghFJQUM63ETI/tPCGBrRUT8Q8XNMNK2aR/+feuSst+vnFy33OVuHv4YCTUb4nQ6+XrTfB58fThv3r+dmGo1AtVU03ga89mM7D+Bkf0nkJq+kX/PvpGeKRcQFxviZ3Qip3A5jWJkxySY8x3szvRtO40TjNvQm4TwLain8jYHrNv+BbOWPsKTty7FEar313nBjPhvu/QpXln4F+54thu1atSjS8tBZJ845Nd2i380iIf/dwEs3wpLf/LuOZwnRbqM5/dd1Cm0v9w4lTf94Gyf91/9+CGN66bQomEnv7bZTJ7En1+Yy4x5d/LQTR+Wm/tG9L2d689/kAhXJD/t/IZH3hrJ8//ve8t/CWQ3TicMbgftk+D9byH1oG/baVjLGAs0TzS1eX5j1jmQlc8HPD0GJaXFZBzZydN3fkVOXhb3vXQeDRNa0rf9iEA1VUTEL1TcDBMNE1pyMHtP2e8n8o+RX3iCxLgz71VNjP/ttf6dRvL6p39l76FfSGncIyBtNYs3MXuqVaMuJMYlsTF1BQM6X2FGM0UCqlFtuOcC2H0YvtkG63ef/Tl8LqdxK1u/ZGhRN3SfqfV73uaAjalfMu39sTw6diFN6ln/ykSz4o+PTWTStW+W/f7s3NtpXl/TYluVy2lced0/BdbuNPLA/qNnXy+xBvRLgd4tIbaa/9tpFl/HAhV93i/+7nUu6nWL39prNk/j3384lYPZe5j4snE1Zk5eNm53KTl5WUy69i0S4hqULduxRT9aJXVj2961Km5aVP04uHsY7D0M32yHH3ad/UpOp8N4BEW/FGhdLzzHAp6eA1ntfMCbY1CvVlMGd7sOl9NFfGwivdtezNY9a1TcFBHLU3EzTLRO6kqEM5Ifti2lR8owFq56kfO6XFPu86IOZadRt1ZjALbsXsOxE4dJqtM60E2uMm9irszuA1toVr89AOmZqexIX0/T//0uYkUOh3G1RfNEuLoPpGfB3iOQkW1cyeXGuJW9YTw0qQONaoXuczUr400O+PHXr3jyvdH8c8zHtGrUJQitNZ9Z8R87cZjq0XFEuCLZsW89q376iJf+vD5QYYifREcaBc5+yXA0zyhy7D1i/H9xiVEEjYsxrtJunAAJsdYpZpzKm35wts/7fZk72Ja2ln+OXRCw9leVp/G3aNiJDyf/dkX2259NJicvu2wCoVPHhmmHtpOavsFSV69K+ZrUgWvrwJW9ID3byAH7s6Gg6LexQP044/ETjWpDtTAfC1R2DmTl8wFvjsHgbtez9ufFdGs9hIKiPDamruDqQZOC0GoREXNZ8CNMKvK36//D1PfHMn3eHTSq05q/Xv8OuzJ+OmO5qXPGkJVzAKfDRbXIGB4a/UHZQ6WtxtOYl3z/Jm8u+Ts5uVms2vwRH3w5jUfHLqR1Ujf+75NJZBzZicsZicsVwfjLn6dZ/XZBiEbEfJEu4/lbzSxya5m3PM0BT31wC0XFBUydM7bstb9eN4sWDTuxbvsXTJ3zR3Lzj+HGzcpNH3L3yBc5t8NlgQzFJ2bE//Pe73jh4wm4nBFUr1aTv49+nzpxDQMZhviRwwG1qhs/nUJ4YqCq8LQfnO3zfvH3MxnQ6Qpio+MC2fwq8zT+yryx+EG2p/2A0xmBy+ni7pEv0Lhuip9aLIEW4TIKmKH+DF1fmXEOZPXzAU+PwZUD7+XZubdxy9T2OBwO+ne6gvO6XAVUfr4kIhLqVNwMIy0aduLF/7f2rMtNue3zALQmMDyN+cJeY7iw15hy3/vXzYtMbpWIBIqnOeCt+7dX+F735POZ/fc0M5sVMGbE37vtcHq3rfh9kVDnaT842+f9LcMfN6tJAeVp/Ke66YLJp/0+6dq3TGyRSGCZcQ5k9fMBT49BVGR0hf29svMlEZFQ5wx2A8S/IlxRHM89zG1PdyUr5+xPFX910UTeW/4ENWJqB6B1/uFtzJUJh+MhYjdm5oC5Xz3D9Hl3Eh9rnUtfzYx/xYY5PPTGpdSuWd+k1okEhvKAveMX0fmAjoGI2IvD7Xa7g90IOVNJISyfHuxWeG7wBHB596jLSlktfjD/GIh/PDzPeOZcfAw8MirYrZGKKAfoGPiLcoB12L0P2D1+f1IesA6r9QONBayTB0QkvOjKTREREREREREREbEkFTdFRERERERERETEkjShUIhyRhqX9FuFM9L87VkpfjD/GIjYmXKAjoGI3fuA3eMXAev1A40FlAdEJDhU3AxRDoe9n1Vi9/hF7E45QMdAxO59wO7xi4D6gd3jFxHxlG5LFxEREREREREREUtScVNEREREREREREQsScVNERERERERERERsSQVN0VERERERERERMSSVNwUERERERERERERS1JxU0RERERERERERCxJxU0RERERERERERGxJBU3RURERERERERExJJU3BQRERERERERERFLUnFTRERERERERERELEnFTREREREREREREbEkFTdFRERERERERETEklTcFBEREREREREREUtScVNEREREREREREQsScVNERERERERERERsSQVN0VERERERERERMSSVNwUERERERERERERS4oIdgOkfG43lBYFuxWec0aCw2He9qwWP5h/DMTe7N4H7B6/CFivH2gsoDwg5lIfsN4xUA4QEQkOFTdDVGkRLJ8e7FZ4bvAEcEWZtz2rxQ/mHwOxN7v3AbvHLwLW6wcaCygPiLnUB6x3DJQDRESCQ7eli4iIiIiIiIiIiCWpuCkiIiIiIiIiIiKWpOKmiIiIiIiIiIiIWJKKmyIiIiIiIiIiImJJKm6KiG2UlhqzbsJv/xUR+3C7lQNE7E5jARERkfCj2dJFJGylHYHN+2DvEdh7GI7m/fbesXx4/nNokgCt60G7RuDU1z0iYaWwGH7cCzsPGXlgfzYUlRjvHcuHxxYYOaBJHejaFGrHBrW5IuIH+7NhU5oxJth7GLJyf3vvWD7MWAqN/zcWaJ8ELo0FRERELEfFTREJKyWlsH43fL0NdmVWvuyOA8bP8q1Quzqcm2z8xFYLTFtFxD8yj8PKbfDdr5BXWPFyh44bP+t2w4L10L4RDGgDbRqAwxG49oqIuUpLYcMe+GY7pB6sfNnUg8bPlz9DfAyc0xr6pUDN6MC0VURERKpOxU0RCRsZR+Hd1bDnsPfrZuXCJxuNk5urekOXpua3T0T8q7QUVvwM/90IxaXeret2G1d6b94HXZrAlb1V3BCxokPH4N01xhXb3jqaB4s3wVe/wBU9oXtzfdEhIiJiBSpuhpGNqSv4y8uDT3stOiqWxnVTGNp9NJf3uxuXK3z/ye0ev919+bNx5VWJlwWN38spgDdWQvdmcG1fiLLYn4zd+4Hd47ez7Fx4c+XZr9j2xMa9sOMg3HCOcZuqlagP6BjY2artMP+H3x4/4avcQpi1ysgF158D0ZHmtC9Q7N4H7B6/iIgdKauHocFdr6N324tx4ybreAZLf3iblxfey56DW/nzla8Gu3l+Z/f47cbthkUb4Ist5m533W6jWDJusPVOakD9wO7x203mcXjhC8g6Yd42TxTAa18aBc4eLczbbqCoD+gY2M1nm+C/P5q7zR/3GnnljiFQ3YKPrLF7H7B7/CIidqJHZoeh5KTuDO1xI8N6jObqQROZfvca6sY35tPvXiM7x4d7dCzG7vHbzZKfzC9snvTrIaO4UdUrQILB7v3A7vHbydFceNHkwuZJpW54Z7VR4LAa9QEdAztZvtX8wuZJe4/AKyugoNg/2/cnu/cBu8cvImInKm7aQExULG2b9cXtdpN+ODXYzQk4u8cfzrZlwGI/ncyctOOA//cRCHbvB3aPP1y53cZzdo/4obD5+334o3gaSOoDOgbhalem8Vgaf9qdCYv8vI9AsHsfsHv8IiLhTLel28T+/32Ax1VPCHJLgsPu8YejgiJ4b4336917EcTFwLE8eHqxZ+ss2wqdmkDzRO/3F0rs3g/sHn84WpMKv2R4t44vOSC/COZ8C7cNtvbkIuoDOgbhpqjE+PLB7fZuPV/ywMpt0LkpJNf3vp2hxO59wO7xi4iEq7AvbmZmZjJlyhTmzZtHWloadevWZdSoUTz++ONMmDCBmTNnMmPGDMaPHx/sppomvyiXoycycbuN58ssXP0yO/atp22T3jSumxLs5vmd3eOvSNYJYzbxohKIrWYU6lwWvnZ78SbfrtaKi4Fa1b1bx+02ChuTLrZOYcPu/cDu8ZenpNS4+uhEgdH368dDnRrBbpXvThTARz94v54vOQDg5/2wfrcxe7IVqA/oGJQnOxf2ZxtjgepRxlggwhXsVvnui81w8Jj36/maB+Z8Cw+MAKdFxk927wN2j19ExE7Curi5YcMGhg8fTkZGBrGxsbRv35709HSmT59OamoqR44cAaBr167BbajJ3v7sYd7+7OHTXuvfcRR3j3whSC0KLLvH/3tb02HlL8Z/T72wIS4GzmkN/ZOhZkzQmueTgmJYvSOw+9yfDdsPQEqDwO7XV3bvB3aP/1Q5+fDNdqPPZOee/l6bhjAgBTokWadwf9K3qYF/Bt6Xv1inuKk+oGNwqm0Zxljgp32nX+VYoxr0bQ39U3wr9gVTcQl8vT2w+8w8DlvSoWPjwO7XV3bvA3aPX0TETsK2uJmZmcmll15KRkYG9913Hw8//DA1a9YEYMqUKdx///1ERETgcDjo3LlzkFtrrkv6jGNg56soLi1i5/5NzFnxJJlH04iKjC5b5rF3rqXUXcpDo98ve+1Y7hFundaBcSOmcX73G4LRdFN4Ev+mX1fywOvDz1i3uKSQ0tISlkyx4Awyv+N2w0fr4Mufy3//WB4s2QRrdhgzgifVDmz7qmLdLuM20UD7Zpt1ipvKA8oDYFyt/coyyMot//1f9hs/5ybDlT2tczVSqdso2Aba7kxjcpEmFrib0e45AJQHwBgLfPojfPZT+e/nFMDnm42xwK2DoJmFHr+yca/x5U2gfb3NOsVNu+cB5QAREfsI2+LmhAkTSEtLY/z48UybNu209yZNmsS7777Lxo0badGiBXFxcUFqpX8kJSbTPWUoAL3bDqdji/78+cX+PDf3dh688T0A7h71IuOe6sSy9bMZ0u06AGbMv4sOLfpbehADnsXfqeUAFj6Wc9p6mUfTuWt6T/5wbng8ouC/GysubJ7qaB68tAz+fKF1blH9/tfg7HdTmlFUjY4Mzv69oTygPJCdCy99YfTxs1m1HSKcMKqn/9tlhl2H4HDO2Zfzh+9/tUZx0+45AJQHwChcVlTYPFVOAby8HO65wHhkhRWs3Rmc/f68H47nWeOuF7vnAeUAERH7sMg1Gt7ZunUrc+bMITExkSeeeKLcZXr06AFAly5dznhv/vz5nHvuucTGxhIfH0+/fv3YvHmzX9vsTx2an8vQ7qNZsXEOm3etAoyHaN931es8/9F4Mo+m89WPH/Jj6gruGfVykFtrvvLi/73C4gIeeXsUHZv35/rzHwhwC82XeRyWevEnm5MPn2zwW3NMVVoKaUeCtG938PZdVcoD9ssDi3/0rLB50le/QHqW/9pjpt2Hg7fvvUHcd1XYPQeA/fJAdq5x1aan8gr9P+u4Wdxu2BPEvrhHYwFLslsOEBGxk7Asbs6ePZvS0lJuuOEGatQo/1K0mBjj69bfFzenT5/O1VdfTf/+/VmwYAGzZ89m6NCh5OV5cYYYgm4Y+hBOp4u3lvyj7LVebS/ivM5X8+TsG5kx707uveo14mLrBLGV/lNe/Kd6bu7tFBblM/GaNwPbMD/x5XbNjXuNKxFC3YFjUBjEO4T2WvSEBpQH7JQHcgvgh13erxeMW719EcwvGdKyjMmZrMjuOQDslQdW7zC+lPPGln1wJEhXRXvjyAljUrFg0VjAuuyUA0RE7CQsi5vLli0DYPDgwRUuk5aWBpxe3ExNTWXixIk888wzTJkyhfPPP5+LL76YRx55hJ49LXKvXgWSElszuMu1rN/xBZt+XVn2+rhLp7Hv8A56tR1On3aXBLGF/lVR/ADzv57Ot1sX8ciYj4iOstjT9CvwnQ+3bZeUwg+7zW+L2TKOBnf/+7ODu/+qUB6wTx7YuNeYDdlba3caV0eHuv1BzANFJUZhxYrsngPAXnnAl7GAG1i7y+yWmC/YY4GM7ODuvyrsngfslANEROwkLJ+5uXu3UaFp1qxZue8XFxfzzTffAKcXN2fOnElkZCS33nqrqe3p2bMnGRkZXq0TFRHDq+PNvYTmuvMfZPmG2bz12T+YdvtyAGKiYmmY0JIWDTpVadvJKckUFpt32V+g4t+wYzmvfXI/j//pUxokNK/S9s0+Br5yRlRj1GOpPq075ZlXuPGTR01ukbma97yGnlc9Ve57915kzAJfmbjo3/47eWTFyx3Lg6cXn/n63I8WMumqOzxsre/80QfAOnkgkPGblQdCJQcAtB/2F9oPvcfr9QqKoXXbjhTmZpveJjNdNPFraiQ2L/e9s+UBT3MAVJwHBg25gKP7t3jW2CrQWEB5oCpGPb4Lp8v7of7zr77DzfP+6ocWmadx50vpe8NL5b4XiLHAp0u+4O/X/dHD1vrO7mMBsN45QSjlABERq2nQoAFr1671ad2wLG6eOGFcUlHRreRz5swhMzOTmjVr0qJFi7LXV61aRZs2bXjnnXf417/+xd69e0lOTuYf//gH1113nc/tycjIYN++fV6tEx3p/beFXVoNYunUiu8/ala/nd9m/Nufnk5+UQXT8fogEPFnHNnFv965mltHTKVLq0G+NPM0Zh8DX7kionxe9/jx417/rQZafKuK7wWLi4FaHv7pOJ2eL3uqvNzcgBwjX/oAhE8eCFT8ZuaBUMkBAE2OH/N53fT0dApOhPbDN4uLiyp8z9M84GsOADh4IIPMEM0D4ZIDQHkgWE7k5IT8WKB644ofuBmIsUB+fp7GAhUIhTygHCAiYj9hWdxs0KABWVlZrFu3jnPOOee09/bv38/EiRMB6Ny5Mw6H47T39u3bx9/+9jeefPJJmjRpwuuvv871119P3bp1GTp0qM/t8VZUhAWmYDxFw0aNTP+W1p/yC3N5+M3LOaf9ZVzez5yZEM0+BlWRn5NJdI1Er9dzlRwnKSnJDy0yT43qFRdvj3lw+OOijZOZ0lI4ll/xchVtK9LlDsgxsloOAHP7QCDiNzsPhFIOcJUc92m9ovzjJNau4XvVL0DcJRU/bO9secDTHFDZthJqx1GtVHng96w2FoDwzgN5R9OJTWjq9XqOoqMhPxaIi42u8L1AjAUinKUaC1TAankgnHOAiIjV+FI7Oyksi5tDhw5l69atPPnkkwwbNoyUlBQAvv/+e0aPHk1mZiYAXbt2PW290tJScnJymDVrFpdffjkA559/Plu2bOHRRx/1ubjpy2W1JYWwfLpPuwuK7du24/L9gsEz+Dv+lZvm8uv+jezL3MaKjXPOeP/1v2yhXm3vTgjMPgZVsWA9LPPyjkmXExa+9Qg1ox/xT6NMknEU/r2o/PfKu3Xs9yaPNOo2x/Jh8nzv93/Pbdcy+NlrvV/RS1bLAWBuHwhE/GbngVDKAbmFMHme95NvDe5ckxf27vFPo0w065uKJ0w6Wx6oag6IcsHW9V/jDMBTy62WB6w2FoDwzgOLN8FiL2ZLB3A44IOX76d27P3+aZRJjuTAPz8u/71AjAXGjb6MuVMu835FL1ktB4D18kA45wARETsJy+LmpEmTePfdd9m7dy8dOnSgbdu25Ofns2PHDoYPH07z5s1ZsmTJGTOlJyQkAJxWxHQ4HAwdOpQ333wzkCEE1FN3rAh2EwJuWI/RDOsxOtjN8JtzW8PyLcbEAJ7q2hRqVnwhRMioVxOiIqCwODj7b5IQnP36m/JAeKkeBT1aGLMle6Nfsn/aY7YmCb7NBm+GpNoEpLAZaHbMARDeeeCcVvDZJu9mTO+QBLVj/dcms9SOhdhqwZsxXWOB8BHOOUBExE7CcHgOjRs3ZuXKlVxyySVER0eza9cuEhISeOWVV/jkk0/Ytm0bwBnFzQ4dOlS4zfz8s9y7JhJCEmvCBV48Dz4uGi7pcvblQoHTGbyTCqcDGofpCY2En4s6eXd3+eB20LCW35pjqqZ1grhv75/4IRIU8dVhRFfPl4+tBpd181tzTOVwQLMg5QEH0CSIOUhERETOFJbFTYB27dqxaNEijh8/zvHjx/n2228ZN24cJ06cYNeuXTidTjp27HjaOn/4wx8A+Oyzz8peKy0tZenSpfTq1Sug7Repqos6wfntz75crepwx/mQUMP/bTJLrxZnX8YfOjeB6Mjg7FvEW/HV4c7zoY4HfXtAG7jUIkUNgOZ1ITFIOStY+UfEF4PbwUWdz75czWi4fTDUi/N/m8zSM0h9sW0ja9zpIiIiYidheVt6ZTZv3ozb7SYlJYXq1U+/pOXSSy9lwIABjBs3jsOHD9O0aVNee+01Nm/ezNKlS4PUYhHfOBxGsaJNQ1j5C/y0D9yn3JpWq7px+/q5yVDDYoP07s3h4/WQVxjY/fZLCez+RKqqXhzce5Fxe/o32yHrxOnvd0iC/inQtqGRM6zC6TD648frArvf5om6elusxeEwvuxMrgcrt8GPe0+/TT0uBs5pbTySIs5ic9d0bmIUGY8H+Oaq/hZ5fIeIiIid2K64uWnTJuDMW9LBeL7mggULuP/++3nggQc4duwYXbp04b///S9DhgwJdFNFTJHSwPjJzoWpn8CJQuPWs4f+YEwiZEVREUZh9gsvJ02qika1oXW9wO1PxCyx1WBoBxjSDvYegVeWGxMO1awGtw4Kdut817slLNkE+UWB2+d5bQO3LxEztapv/BzNgymL/jcWiIKHL7fuWCDCBQNS4L9eTppUFXVrQrtGgdufiIiIeMaiwxnfVVbcBKhVqxavvPIKhw4doqCggO+++44LL7wwkE0U8Yta1Y0TAYAIp3VPZk66oJNnt9uawemA6/pY68o2kd9zOqFZIkS6fvvdymKrweU9Are/9o2MiddErCw+5pSxgMv6Y4Eh7aFBfGD25QCu7Wv93CkiIhKOdOVmGElN38gzH95KbsFx6tdqxv3XzWL3gc088NpwGtdtw7/HfUbtGsalZwtWvchH38zA5YzA6XAy4+5viYqM5tVFE1mxcQ7JSd15ZMxHwQ3IA57GvPi7mcxd+Qx7Dm7lthHTGDXgnjO2tfvAVu56rgcX9xnHnX94FoC5Xz3DglUvEB1Vg1fu3RDQ2KRy1SLgur7w/OferXcs7/T/euL89qE7eYCnfeD1Tx/gm03ziIyohssVydiLHqNXG+OLm/lfT+e/a14FhwMHDq4eNImhPW4EYMWGOcxa+giHj6Xz0aPZQYy0fJ7GP/PTB1m9ZQFOh3FWf+2QvzK467UA5Bfm8tQHt7Bt7/c4HE5uHv44AztfCWC5nGg3fVrCxj2wNd3zdXzJAdGRcHWIfsFhRh9IO7SdZ+eO43huFkXF+fRudwnjLpmK0+m0xOegN+MfKP/zHmDlj3N5e+nksme4PHrzIhokNLfEMbCrCBdcfw48u8S7WeF9yQMD2kCrEL2Dw9M+MOW9MazbvpT42LoA9EgZxrgRU0/blhXHw2acA1U2Tgr1+EVExIbFzWXLlgW7CX4zdc4Y/nL1G7RO6sri72by6qK/cGGvsTSu2+a0D+JVP33MF+v+w4zxa4iNiSc75xAulzFLyrgRU2lWvwOrNn8UnCC85GnMyY178Pcb3+e9ZU+Uu53ikiKenTuOfh1Hnvb6FQP/TOukbrz48T1+jEJ81bq+Mcv7Jxs9X+fpxd7tI6UBXOjFzPOB5mkf6NRiADcOfYhqkTGkpm/k3pcG8t5D6cRExdKsfgeevesbYmPiOZi9lzue6Ub7ZufQKLEVg7peQ9umfbj9ma5Bi7EynsZ/9aCJ3Dz8MQAyj+7jlqnt6J48lPjYRD74chqRrmq89dcd7D+ykwnT+9C11WDiYutYLifajcNhfMkx/TPIzPFsHW9zgNMBo8/1bub5QDKjD/zfJxPp13EkI/tPoLAon7um9+L71ufTp93Flvgc9PQYQMWf9zv2reeNxQ8y5bZlJMY3Ijf/OE6nUQi2wjGws6Z14A/dYf4Pnq/jbR5oUde7mecDzZs+cPWgieV+yQ/WHQ+bcQ5U2Tgp1OMXEREb3pYernbsW09MtRq0TuoKwLCef2T1lgUUFZ8548r7X05l9LCHiY0x7uOpVaMurv8N4K3Em5hbNepCs/rtcDjK/5N/Z+k/Gdj5KpIS9ZR4qxnaAS7o6J9tt6oHtwz87Ra+UONNH+jddjjVIo3ZIlo06ARuN0dzDgHQPfn8snxQr1YTEmo24NDRvYEJogq8ib9GTK2y/88ryMGNm1J3KQBfbpzDiHNuB6BhQgs6txrE1z/N93v7xRxxMXCHh7PCe8vpgNH9oENj87dtBrP6gAMHJ/KOAlBQlEdJSRF14hr6vf1m8OYYQMWf9x9++RRXDLyXxHjjgYrVo2sSHRWiFW05w3lt/Vd8bJZoPJ84KkQvCfG2D1TGiuNhs86BKhsniYhI6AvRj2nx1v4jO9m5fxO3Pd217LWCwlwyj+07Y9k9B7awLW0ts5Y+QlFJAcN63MTI/hMC2FpzeBNzZbbu+ZYtu1fz5LilzFr6iMmtFH9zOODiLsaMqQvWQ1GJOdvt2QKu7h26JzPgex9YsvYNGiS0pH7tZme8t27b5xzPyyKlSS+zm2s6b+Of//V0Fqx6gczsNP581Wtlt6gdzN5z2rFoULs5B7P3+LXtYq46NWDCMHjra/jVpHPRGtFwwzmhPXmIWX3gjj88y0MzL2XhmpfIyc3ihqEP0TqpWyBCqDJvjkFln/e7D26hfkJz7n3pPHLzj9G33QhGXzDZkl/+2tXQDka/nfc9FJo0Fuja1Lg6vFqkOdvzB6/zwMrnWPzdTOrVbsqYC/9VVhS06njYH+dAlY2TREQkNIXwabt4q23TPvz71iVlv185uW65y5WUFpNxZCdP3/kVOXlZ3PfSeTRMaEnf9iMC1VTTeBpzRfILc5kx704euulDHKH4MDXx2IA2kNIQZq+GXZm+bycu2ni2XscQvVLr97ztA+u2f8GspY/w5K1Lz/ib37l/E9PeH8vfb5xDTFSsX9prNm/iH9l/AiP7TyA1fSP/nn0jPVMuIC42RB+mKl6Lrw7jh8HKX2DRhqp90dG9GVzRy5i0KNSZ0QcWrHqRwd2u47ohfyMr5yATXx5Mmya96JEyLBAhVJknx+Bsn/clJcXs2LeeJ/60mFJ3Kf944zIWrn6Jy/uN92vbxVx9W0HrejB7DaQe9H07sdXgql7Q1SK1LU/zwM3DHyOhZkOcTidfb5rPg68P5837t+NwOC09HjbzHKiycZKIiIQuFTfDRMOElqddaXQi/xj5hSdIjEs6Y9l6tZoyuNt1uJwu4mMT6d32YrbuWWO54qY3MVdk/+FUDmbvYeLLgwHIycvG7S4lJy+LSde+ZXqbxb/qxxlXb23YA99s9+7Epk4N6JdsnBhVt0BBA7zvAxtTv2Ta+2N5dOxCmtRrc9p7uw9s4e8zR3Df1TPp2KK/X9ttFl9zQKtGXUiMS2Jj6goGdL6CerWaciBrd9ltuBlZu+iRcoFf2y7+4XQYt6d2agxfb4dvU+FEgefrdmoM/dtAcn3/ttMsZvWBBate4I1J2wCoXaMevdtezMbUFZYobnp6DM72eV+vdlP6dxxVdltq/46j2Lp7Nai4aTmJNeGuobBprzEW2Jbh+bq1q8O5ycaPFb7cAO/yQGL8b6/17zSS1z/9K3sP/UKkK8qy42Ezz4EqGyeJiEhoU3EzTLRO6kqEM5Ifti2lR8owFq56kfO6XENkRNQZyw7udj1rf15Mt9ZDKCjKY2PqCq4eNCkIra4ab2KuSIuGnfhw8m/3ML792WRy8rJPmz1VrMXphO7NjZ/92bB5H+w9AmlH4MiJsklwia0GjROgcW1jYqI2DY3ihpV40wd+/PUrnnxvNP8c8zGtGnU57b3dB7by4OsXc8+Vr1qimHGSN/HvPrCFZvXbA5CemcqO9PU0/d/vAztfxaLVL9O+WV/2H9nJj6krmDDqxYDGIuZKqAGXdYPhnY0Cx65MIwfsy4KCYmMZlxPq1oQmCUYu6NI0dCcNqohZfaBhQkvW/rKYi3rfTF7hCTakLufKgfcFNBZfeXoMzvZ5P6Tb9azevIALeo7B7S7lh22fWeaLHjmT02H06S5N4cBR+Cntt7HA4VPGAtWj/jcWSDCes92uoTGOsBJv8sCh7DTq1jJuTdmyew3HThwmqU5rYmPiLTseNuscqLJxkoiIhD4VN8PI367/D1PfH8v0eXfQqE5r/nr9O+zK+OmM5a4ceC/Pzr2NW6a2x+Fw0L/TFZzX5aogtLjqPI15yfdv8uaSv5OTm8WqzR/xwZfTeHTsQss8U0x807CW8XOS2w2lbuOkJ1zuNPK0Dzz1wS0UFRcwdc7Ystf+et0sWjTsxIsfT+BE/lFe++R+XvvkfgD+dMmT9GpzYcDi8JWn8f/fJ5PIOLITlzMSlyuC8Zc/T7P67QC4atBEnnr/Zm56ohVOp4vxI58nPjYx0KGIH0S6fvuy46RSt5ELXBYrYFTEjD4w6dq3mDF/PPO/fo6ikkLOaX8Zg7teG+hQfObpMajMoC7Xsj1tHX96qgMuh4uOLQYwsv//81OLJZDqxxs/J9l5LDB1zhiycg7gdLioFhnDQ6M/KJtcx8rMOAeqbJwkIiKhT8XNMNKiYSde/H9rz7pcVGR0yN9i4ilPY76w1xgu7DXmrMvddMHkqjdKQpbDAa4wOZE5ydM+8Nb92yt878lxS81sUkB5Gv+/bl5U4XsxUbH8/cY5ZjZLQpjTAYRRHjCjD7RO6sZz478xs1kB5ekxONXvP++dTie3XTqN2y6dZmLLJBTZeSww5bbPPdqe1cbDZpwDVTZOEhGR0Bcm1y1IRSJcURzPPcxtT3clK+fsDyB8ddFE3lv+BDViagegdf7hbcyVmfvVM0yfd6eu4hJLMbMPrNgwh4feuJTaNS3yEELMjT8ccqLYjz4HdQxE7N4H7B6/iIjdONzuk0+dkVBSUgjLpwe7FZ4bPAFcnj/q8qysFj+Yfwz84eF5cDQP4mPgkVHBbo1Uxu59wO7x+5PygHVYrR9oLGCNPKAcYB3qA9Y7BlbIASIi4UhXboqIiIiIiIiIiIglqbgpIiIiIiIiIiIilqQJhUKUM9K4rcEqnJHmb89K8YP5x0Dsze59wO7xi4D1+oHGAsoDYi71AesdA+UAEZHgUHEzRDkc9n5ei93jF7F7H7B7/CKgfmD3+EXUB3QMRETEM7otXURERERERERERCxJxU0RERERERERERGxJBU3RURERERERERExJJU3BQRERERERERERFLUnFTRERERERERERELEnFTREREREREREREbEkFTdFRERERERERETEklTcFBEREREREREREUtScVNEREREREREREQsScVNERERERERERERsSQVN0VERERERERERMSSVNwUERERERERERERS1JxU0RERERERERERCxJxU0RERERERERERGxJBU3RURERERERERExJJU3BQRERERERERERFLUnFTRERERERERERELCki2A2Q8rndUFoU7FZ4zhkJDod527Na/GD+MbA7u/8N2D1+EfUB6x0D5QAxm9X6AGgsoDwgIiLBoOJmiCotguXTg90Kzw2eAK4o87ZntfjB/GNgd3b/G7B7/CLqA9Y7BsoBYjar9QHQWEB5QEREgkG3pYuIiIiIiIiIiIglqbgpIiIiIiIiIiIilqTipoiIiIiIiIiIiFiSipsiIiIiIiIiIiJiSSpuioiIiIiIiIiIiCVptnSRMFZSChlHYe8R2HcEcguN13MLYckmaJJg/NSMCW47RcR/cvKNHLD3CGQe/y0P5BXC6h3QOAEaxkOEK7jtFBH/KCmFAyfHAlmnjwUW/2iMAxrXgXiNBURERMSiVNwUCUOHjsE32+G7X387iTlVUQl8+uNvv7eoC/2ToUtTFThEwkFxCWxKg6+3QerB8pcpLIE53xr/Hx0JvVpCv2RoEB+4doqI/xzOgVXbYU0qnCg48/2iEli86bffm9aB/inQtSlE6QxBRERELERDF5EwcjwP5q6FDXu8W2/nIeNn/jq4vDv0aA4Oh1+aKCJ+tnEPzFsLR/M8Xye/CFb+Yvx0bAxX9YL46v5ro4j4z4kCmP8D/LAT3F6st+cwvLsaPl4Hl3aDPi01FhARERFrUHEzjGxMXcFfXh582mvRUbE0rpvC0O6jubzf3bhc4ftPbvf41+0yCpvlXZ3hqZx8eGeVURy9ujfEWewWNbv/DYCOgZ3l5MOH33v/5cbv/ZRmXO05sgf0amG94obd+4Dd47e7TXvh/e/geL7v2zhRAO+tgQ274dq+UMtiX3SoD+gYiIiI/ehTLQwN7nodvdtejBs3WcczWPrD27y88F72HNzKn698NdjN8zu7xe92w383wtLN5m3zpzRIOwJ3nA/148zbbqDY7W+gPDoG9nI4B178wvivGfIKjSu49mUZV3NbrcAJ6gN2j99u3G74fDN8stG8bf68H576FO4YAo1qm7fdQFEf0DEQERH70GzpYSg5qTtDe9zIsB6juXrQRKbfvYa68Y359LvXyM45FOzm+Z3d4je7sHlSdi68sBQOHTd/2/5mt7+B8ugY2EfWCZix1LzC5qm+/Nm4vdXtzb2tIcLufcDu8duN2YXNk47nwwtfGJMTWo36gI6BiIjYh4qbNhATFUvbZn1xu92kH04NdnMCLpzj/+5X/xQ2TzqWD68uh8Ji/+0jEML5b8BTOgbhqbgEXl1hfBnhL1/9YkxQZnV27wN2jz+cbdjjn8LmSScK4JVlxhXdVqY+oGMgIiLhS7el28T+/w1g4qonBLklwRGO8WfnGpOGeOPei4znaB7Lg6cXe7bOoeOwaAOM6ul1E0NKOP4NeEvHIPws2QT7s71bx5c8sGAdtG0IiTW9bmJIsXsfsHv84eh4PnzwnXfr+JIDsnKNiYau7et9G0OJ+oCOgYiIhCcVN8NQflEuR09k4nYbz9dZuPplduxbT9smvWlcNyXYzfM7u8T//rfGDMfeiIvxbWKAlb9A16bQsp736waDXf4GKqNjEP72HoYvtni/ni95oLAE3vsW7jrfOs/ftHsfsHv8djH3e+8nEvR1LLAmFbo2M77osAL1AR0DERGxD1sUNzMzM5kyZQrz5s0jLS2NunXrMmrUKB5//HEmTJjAzJkzmTFjBuPHjw92U03x9mcP8/ZnD5/2Wv+Oo7h75AtBalFg2SH+PYdhS3rg9ucGPvsJbh8SuH1WhR3+Bs5GxyD8Ld0MpQF8FuaOA/DrQWhVP3D7rAq79wG7x28HGUeNW9IDackm6xQ31Qd0DERExD7Cvri5YcMGhg8fTkZGBrGxsbRv35709HSmT59OamoqR44cAaBr167BbaiJLukzjoGdr6K4tIid+zcxZ8WTZB5NIyoyumyZx965llJ3KQ+Nfr/stWO5R7h1WgfGjZjG+d1vCEbTTeFJ/Jt+XckDrw8/Y93ikkJKS0tYMqUkkE32WjCef/fzfuMW9boWuC3V7n0A7NEP7Cw7FzalBX6/X2+3TnHT7nlAOSD8BWMssPMQpGdZY/Z0u+cAUB4QERH7COviZmZmJpdeeikZGRncd999PPzww9SsaVRmpkyZwv33309ERAQOh4POnTsHubXmSUpMpnvKUAB6tx1Oxxb9+fOL/Xlu7u08eON7ANw96kXGPdWJZetnM6TbdQDMmH8XHVr0t/xAzpP4O7UcwMLHTp9aOPNoOndN78kfzg3tK3jzCmHdruDse9V2+EP34OzbG3bvAxD+/cDu1uwIzgzmG/cYz/irGX32ZYPN7nlAOSC8FRbD978GZ9/fbIeregdn396wew4A5QEREbGPsJ4tfcKECaSlpTF+/HimTZtWVtgEmDRpEl26dKG4uJjmzZsTFxcXxJb6V4fm5zK0+2hWbJzD5l2rAOMh4vdd9TrPfzSezKPpfPXjh/yYuoJ7Rr0c5Naar7z4f6+wuIBH3h5Fx+b9uf78BwLcQu/sPgxFQfoSfceB4Oy3quzeByD8+oHdbQ9SXyx1G1duWZHd84ByQHhJO+L9c7fNorGAdSkPiIhIuArb4ubWrVuZM2cOiYmJPPHEE+Uu06NHDwC6dOlS9tqgQYNwOBzl/tx+++0Babs/3DD0IZxOF28t+UfZa73aXsR5na/mydk3MmPendx71WvExdYJYiv9p7z4T/Xc3NspLMpn4jVvBrZhPth7OHj7Ts+GYovenWT3PgDh1Q/srNRtFDaCJZg5qKrsngeUA8LH3iDmgIPHoCBIhdWqsnsOAOUBEREJT2Fb3Jw9ezalpaXccMMN1KhRo9xlYmJigNOLmy+++CKrV68+7efvf/87ACNGjPB/w/0kKbE1g7tcy/odX7Dp15Vlr4+7dBr7Du+gV9vh9Gl3SRBb6F8VxQ8w/+vpfLt1EY+M+YjoKB+mDw2wtKzg7buk1JjAwIrs3gcgvPqBnR0+DgXFwdt/MHNQVdk9DygHhI99QeyH7iDvvyrsngNAeUBERMJT2D5zc9myZQAMHjy4wmXS0ozZGE4tbrZv3/6M5R577DHq1q3LRRdd5FNbevbsSUZGhlfrREXE8Op4c58Uf935D7J8w2ze+uwfTLt9OQAxUbE0TGhJiwadqrTt5JRkCovzzGgmELj4N+xYzmuf3M/jf/qUBgnNq7R9s49BRc4b9wF1W51T7nv3XgRxMRWvGxf9238nj6x8P8fy4OnFZ75+2RXXcXD7yjPfMJnV+gCY+zfgj/jBv/0gUH3A7uo068HgOz8u972z5QDwPA9UlAO++XYDj472/5d9gewD+ixUDrCafmPepGG7oeW+F4ixwLU33kL6liUettZ3GgtoLCAiIvbRoEED1q5d69O6YVvc3L17NwDNmjUr9/3i4mK++eYb4PTi5u8dOnSIxYsXc+eddxIR4dvhysjIYN++fV6tEx3p/belXVoNYunUimeYaFa/nd9mPNyfnk5+Ua5p2wtE/BlHdvGvd67m1hFT6dJqkC/NPI3Zx6AiRSWlFb4XFwO1PDh0Tqdny5UnK+uo13/PvrBaHwBz/wZ8iR+C2w8C1Qdsr2arCt/yNAeA73mgpJSQzQGgz0LlAHsorOTh24EYC2QfOx6yeUBjAeUBERGxn7Atbp44cQKAvLzyvzmcM2cOmZmZ1KxZkxYtWlS4ndmzZ1NcXMzo0aN9bkuDBg28Xicq4iyX3oSYho0amX61ij/lF+by8JuXc077y7i8nzkzQZp9DCoS4ax4sHrsLLuPizZOZkpL4Vh+5ctWtK3a8TUpSko6Syurzmp9AMz9GwhE/Gb3g0D1AbtLqB1f4XtnywHgeR6oaFtORylJygHlsvtnoXJA4ERGOCp8LxBjgfiascoDFdBYQHlARER840vt7KSwLW42aNCArKws1q1bxznnnH4L7/79+5k4cSIAnTt3xuGoeIA4a9Ys2rVrR8+ePX1uiy+X1ZYUwvLpPu8y4LZv244ryrzt+Tv+lZvm8uv+jezL3MaKjXPOeP/1v2yhXu2mXm3T7GNQkXdXw3e/lv9eebeOnWrySOMqjWP5MHm+b/tfsmgOdWv6tq43rNYHwNy/gUDEb3Y/CFQfsLujufBwBf33bDkAqp4Hzu/fnVl/S/N+RS/ZPQeA9T4LlQMC58Pv4ett5b8XiLHAR++/QVJt39b1ht3zgMYCIiIingnb4ubQoUPZunUrTz75JMOGDSMlJQWA77//ntGjR5OZmQlA165dK9zGzz//zNq1a3n88ccD0eSgeeqOFcFuQsAN6zGaYT18vxo3mJokVFzc9LfoSEgsf34uS7NjHwBr9wM7i69u3HbqyVWa/tA4ITj79Tc75gHlAOtqEsR+GOGEBhVfQG5ZdswBoDwgIiLhIWxnS580aRJ16tRh7969dOjQgU6dOpGcnEzv3r1p2bIlQ4YMASp/3uasWbNwOBzccMMNgWq2yFkFs7DQJAEqudBZRAIkmIWNYO5bRAzB7IeNaoMrbM8gRERExIrCdmjSuHFjVq5cySWXXEJ0dDS7du0iISGBV155hU8++YRt24x7eSoqbrrdbv7zn/8waNAgmjb17vZkEX9qWue3mU4Drb3/H68lIh7oEKS+WD0KWtQNzr5F5DcN4iEhNjj7Dlb+EREREalI2N6WDtCuXTsWLVp0xus5OTns2rULp9NJx44dy133q6++Yvfu3Tz88MP+bqaIV1xO6NsaPvspsPuNdEGfloHdp4iUr0dz+HgdFBQHdr+9W0JUWI8cRKzB6YRzk2HRhgDv1wHntA7sPkVERETOJmyv3KzM5s2bcbvdJCcnU7169XKXmTVrFjExMVx55ZUBbp3I2Z2bbJxgBFK3ZlC9WmD3KSLlqxZpFBoDrV9y4PcpIuXr2yrwt4d3bmI881dEREQklNiyuLlp0yag4lvS8/Pz+fDDD7n88supWTMA00KLeKlWdRjUNnD7qxYBwzsHbn8icnbDOhq3iQdK/2SoGxe4/YlI5WpEw7AOgdtfpAsuqfhR9SIiIiJBo+JmOaKjo8nOzubdd98NZLNEvDK8C9QLUKHh8h5QO0jP9hKR8sXFwBU9A7OvhFi4tFtg9iUinhvWEZJqB2Zfl3TVFxwiIiISmmz55KyzFTetKjV9I898eCu5BcepX6sZ9183i90HNvPAa8NpXLcN/x73GbVr1GPymyPZf2Rn2Xo7M35k8h8/4twOlzH3q2dYsOoFoqNq8Mq9G4IXjIc8jXnxdzOZu/IZ9hzcym0jpjFqwD1l25jy3hjWbV9KfKwxS0aPlGGMGzEVgFcXTWTFxjkkJ3XnkTEfBSHCikW64IZzYMZSKC71bJ1jeaf/1xMdkoxb30KRp//+r3/6AN9smkdkRDVcrkjGXvQYvdpcCMDH37zAojUv43S4KC0t5uK+4xjZfwKAJfqDp8dg5qcPsnrLApwOFwDXDvkrg7teC1Bp/wjlPiDQvTn8tA/W7/Z8HW/zgMsJ159j3AofiszoA2mHtjNj/p1k5xykpLSYG4f+g0FdrwFCPw94Gv9Juw9s5a7nenBxn3Hc+YdnAZg+7y427/qmbJm9h37m1kumMLL/BFZsmMOspY9w+Fg6Hz2aHeDo5GxcTmMs8OxnUOjhM3h9GQukNICBbbxvXyB42gcqG+9ZdSx4kjd5YMGqF/nomxm4nBE4HU5m3P0tUZHRleZIKxwDERGxN1sWN5ctWxbsJvjF1Dlj+MvVb9A6qSuLv5vJq4v+woW9xtK4bpvTTsgmj5lf9v+/7F3LA69dRK82FwFwxcA/0zqpGy9+fE+AW+8bT2NObtyDv9/4Pu8te6Lc7Vw9aOJpBZ2Txo2YSrP6HVi1+SP/BFBFzRJh7ACYuRJKPChwPr3Yu+23rAt/7A+OAD/f01Oe/vt3ajGAG4c+RLXIGFLTN3LvSwN576F0YqJiGdr9Rv7Q7y4ATuQf49anOtKpxQBaJ3WzRH/w9BhcPWgiNw9/DIDMo/u4ZWo7uicPJT42sdL+Eep9wO4cDqOwkVsIv+z3bB1v8oDTAaPPhdb1fWtfIJjRB6bOGcOFvcZycZ8/kZ1ziLue60nHFv1JjE8K+TzgafwAxSVFPDt3HP06jjzt9QmjXij7/yPHMhj9RAvO63w1AIO6XkPbpn24/Zmu/g5FfNSoNtwyEF77EopKzr68t2OBpnXg5oGBf9a3p7zpAxWN9yp7zwqfg54eg1U/fcwX6/7DjPFriI2JJzvnEC6X8c1VZTnSCsdARETszZa3pYejHfvWE1OtBq2TugIwrOcfWb1lAUXFhZWut/i71zm/+41ERgTwwW0m8SbmVo260Kx+OxyO8PuT79AY/nSe+TMYt2sEtw8J3ZmRvfn37912ONUijRkQWjToBG43R3MOARAbE1+2XH7hCUpKivzfeJN4cwxqxNQq+/+8ghzcuCl1GxXxcO4fdhDhMnJA5ybmbjfSZXx50rWZuds1k1l94Nf9G+nd9mIAatWoS8tGXVixYY7f219V3n72v7P0nwzsfBVJiRXPDPXZD2/Rs82FJMQ18EeTxU/aNITbBkO0yVdYJ9eHO883f7tm8XX8G068OQbvfzmV0cMeLhv71KpRF5fTuFKzshwpIiIS6kK0bCHe2n9kJzv3b+K2p7uWvVZQmEvmsX0VrlNQlMfyDbN55s6VAWih+XyJuSLzVz7H4u9mUq92U8Zc+K+yAaJVtGsE918Cs9fAjgNV21aUC0Z0g/4poXuVBvj+779k7Rs0SGhJ/dq/VWy++vFD3v7sYdIzdzB2+OO0TrLGwwW9PQbzv57OglUvkJmdxp+veu20W1XF2k4WIlfvgI/XQYGHt6dWpEVduL5v6D9fz6w+kNy4B1+se4drBk9i/+Ff2bJrFQ1qNw9ABFXjTfxb93zLlt2reXLcUmYtfaTCbS75fibjRkzzR3PFz1rXN8YCc76Fnz28krsiEU64uIsxeaEzhL/38joHVDLes+pY0JtjsOfAFralrWXW0kcoKilgWI+byh7FAxoniIiIdam4GUbaNu3Dv29dUvb7lZPrVrr8Vz9+SOO6KbRo2MnfTfMbb2Muz83DHyOhZkOcTidfb5rPg68P5837txNTrYaZTfW7OjWMqytW74AvNsORE96t73RAx8ZwWTdIrOmfNprN23//ddu/YNbSR3jy1qU4TrnXfmDnKxnY+Uoyjuxi8lsj6dtuBE3qhejDxX7Hm2Mwsv8ERvafQGr6Rv49+0Z6plxAXGydQDRTAsDhgHOToW1DWLgBNu6BUrd326hVHYa0N2ZGD+WCxqnM6AOTrnmLVxbex21Pd6V+7WZ0Sz4fl9MaQyRP4s8vzGXGvDt56KYPT8t9v7fp15XkFhwvu4pVrKd2rHEF53e/wtLNkHncu/UdQPskYyxQP/6si4cET3NAZeM9q48FPT0GJaXFZBzZydN3fkVOXhb3vXQeDRNa0rf9CEDjBBERsS5rjNzlrBomtORg9p6y30/kHyO/8ASJcUkVrrP4u9e5qNctgWieX/gSc3kS439bvn+nkbz+6V/Ze+gXUhr3MK2tgeJ0QL9kOKeVcdXGqh3w60HjeXzlcTigfhx0aQrntDYKG1bh7b//xtQvmfb+WB4du7DCwmWDhOa0bdqHNVsXWaK46WsfaNWoC4lxSWxMXcGAzlf4u5kSYAk1jGflHs2DNTtgwx44cLTiQmdMFLRINHJA+yRjghKrMKsPNEhozsN/nFv2/t/+7yJ6pFzgt3abxdP49x9O5WD2Hia+PBiAnLxs3O5ScvKymHTtW2XLffrd61zQ449lt6mKNTkc0KcV9GoJ2zNg1XZIPQg5BRUsj3GVducmRh6oY416HuBdDqhsvGflsaA3x6BeraYM7nYdLqeL+NhEere9mK171pQVN0/SOEFERKxGxc0w0TqpKxHOSH7YtpQeKcNYuOpFzutyTYXP0tyXuYNtaWv559gFAW6pebyNuSKHstOoW6sxAFt2r+HYicMk1WntjyYHjNNpFCnaJ4HbbVzFuS8L8gqNiYciXJBYA5ISoJpFs4A3//4//voVT743mn+O+ZhWjbqc9t7uA1toVr89ANk5h9iwYxkDOlljIO/NMTg1zvTMVHakr6fp/36X8BQfAxd2Mn4Ki40ckHncmHDE6YSYSEiqbRQyQnXSsLMxqw9kHT9AfGxdnE4n3/+yhN0HtzCk2/UBjcUXnsbfomEnPpx8qOz3tz+bTE5edtls6WAURFZu+pCX7lkfqOaLnzkdxrM42zQ0xgLZuZB2xPjC8+RYoE4NIw+E6jM1z8abHFDZeM/KY0FvjsHgbtez9ufFdGs9hIKiPDamruDqQZMAjRNERMTaLFrWkPL87fr/MPX9sUyfdweN6rTmr9e/w66Mn8pddvH3MxnQ6Qpio0P8gWpn4WnMS75/kzeX/J2c3CxWbf6ID76cxqNjF9I6qRtT54whK+cAToeLapExPDT6g9MmmbE6h8M4ebHSlRie8vTf/6kPbqGouICpc8aWvfbX62bRomEn5q98jk07VxLhigLcjBpwDz1ShgUwiqrx9Bj83yeTyDiyE5czEpcrgvGXP0+z+u2AyvuHhIeoCOM5mi28f3JHyDOjD6zespA5y/+N0+miTlwjHrvlv2WTkIU6bz77K7Niw3skN+5B47oVTzYk1uVwGLes144NdkvM52kfqGy8Z/WxoKfH4MqB9/Ls3Nu4ZWp7HA4H/TtdwXldrgIqz5EiIiKhTsXNMNKiYSde/H9rPVr2luGP+7k1geFpzBf2GsOFvcaU+96U2z43uVUSKJ7++791//YK37vnylfMbFLAeXoM/nXzogrfq6x/iIQ6M/rAxX3+xMV9/mRmswLGm8/+k266YPIZr13SdxyX9B1nUqtEAsfTPlDZeM/qY0FPj0FUZPRpj6I4VWU5UkREJNRZ6Mla4osIVxTHcw9z29Ndyco5eNbl5371DNPn3Ul8bGIAWucf3sZcmVcXTeS95U9QI6a2Sa0TfzPz39+q/UF9QOzO7nnAzPhXbJjDQ29cSu2a9U1qnYj/6XNQx0BEROzF4Xa7vZxLVQKhpBCWTw92Kzw3eAK4vHvUZaWsFj+Yfwzszu5/A3aPX0R9wHrHQDlAzGa1PgAaCygPiIhIMOjKTREREREREREREbEkXbkZotxuKC0Kdis854w0d7Zdq8UP5h8Du7P734Dd4xdRH7DeMVAOELNZrQ+AxgLKAyIiEgwqboqIiIiIiIiIiIgl6bZ0ERERERERERERsSQVN0VERERERERERMSSVNwUERERERERERERS1JxU0RERERERERERCxJxU0RERERERERERGxJBU3RURERERERERExJJU3BQRERERERERERFLUnFTRERERERERERELEnFTREREREREREREbEkFTdFRERERERERETEklTcFBEREREREREREUtScVNEREREREREREQsScVNERERERERERERsSQVN0VERERERERERMSSVNwUERERERERERERS1JxU0RERERERERERCxJxU0RERERERERERGxJBU3RURERERERERExJJU3BQRERERERERERFLUnFTRERERERERERELEnFTREREREREREREbEkFTdFRERERERERETEklTcFBEREREREREREUtScVNEREREREREREQsScVNERERERERERERsaT/D+SlyMcfSQY3AAAAAElFTkSuQmCC", - "text/plain": [ - "
" - ] - }, - "execution_count": 1, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "from qiskit.circuit.library import EfficientSU2\n", - "\n", - "n_qubits = 8\n", - "circuit = EfficientSU2(n_qubits)\n", - "circuit.decompose().draw(\"mpl\")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "This circuit contains parameters to represent the rotation angles for $R_y$ and $R_z$ gates. When simulating this circuit, we need to specify explicit values for these parameters. In the next cell, we specify some values for these parameters and use the [Estimator](https://qiskit.org/ecosystem/aer/stubs/qiskit_aer.primitives.Estimator.html) primitive from Qiskit Aer to compute the exact expectation value of the observable $ZZ \\cdots Z$.\n", - "\n", - "\n", - "Setting `approximation=True` when initializing the Estimator tells Qiskit Aer to approximate the effect of sampling error rather than actually perform sampling. This makes the simulation much more efficient, and also allows us to calculate the exact expectation value, free of sampling error. After Qiskit Aer 0.14, this will be the default behavior, so we won't need to specify this argument.\n", - "" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_64852/3684797947.py:8: DeprecationWarning: ``qiskit_aer.primitives.estimator.Estimator.__init__()``'s argument ``approximation`` is deprecated as of qiskit-aer 0.13. It will be removed no earlier than 3 months after the release date. approximation=True will be default in the future.\n", - " exact_estimator = Estimator(approximation=True)\n" - ] - }, - { - "data": { - "text/plain": [ - "0.8870140234256602" - ] - }, - "execution_count": 2, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "from qiskit.quantum_info import SparsePauliOp\n", - "from qiskit_aer.primitives import Estimator\n", - "\n", - "observable = SparsePauliOp(\"Z\" * n_qubits)\n", - "params = [0.1] * circuit.num_parameters\n", - "\n", - "exact_estimator = Estimator(approximation=True)\n", - "job = exact_estimator.run(circuit, observable, params)\n", - "exact_value = job.result().values[0]\n", - "exact_value" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Now, let's initialize a noise model that includes depolarizing error of 2% on every CX gate. In practice, the error arising from the two-qubit gates, which are CX gates here, are the dominant source of error when running a circuit. See [Building noise models](./building_noise_models) for an overview of constructing noise models in Qiskit Aer.\n", - "\n", - "In the next cell, we construct an Estimator that incorporates this noise model and use it to compute the expectation value of the observable." - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": {}, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_64852/2637453528.py:9: DeprecationWarning: ``qiskit_aer.primitives.estimator.Estimator.__init__()``'s argument ``approximation`` is deprecated as of qiskit-aer 0.13. It will be removed no earlier than 3 months after the release date. approximation=True will be default in the future.\n", - " noisy_estimator = Estimator(\n" - ] - }, - { - "data": { - "text/plain": [ - "0.7247404214143529" - ] - }, - "execution_count": 3, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "from qiskit_aer.noise import NoiseModel, depolarizing_error\n", - "\n", - "noise_model = NoiseModel()\n", - "cx_depolarizing_prob = 0.02\n", - "noise_model.add_all_qubit_quantum_error(\n", - " depolarizing_error(cx_depolarizing_prob, 2), [\"cx\"]\n", - ")\n", - "\n", - "noisy_estimator = Estimator(\n", - " backend_options={\"noise_model\": noise_model}, approximation=True\n", - ")\n", - "job = noisy_estimator.run(circuit, observable, params)\n", - "noisy_value = job.result().values[0]\n", - "noisy_value" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "As you can see, the expectation value in the presence of the noise is quite far from the correct value. In practice, you can employ a variety of error mitigation techniques to counter the effects of the noise, but a discussion of these techniques is outside the scope of this article.\n", - "\n", - "To get a very rough sense of how the noise affects the final result, consider our noise model, which adds a depolarizing error of 2% to each CX gate. Depolarizing error with probability $p$ is defined as a quantum channel $E$ that has the following action on a density matrix $\\rho$:\n", - "\n", - "$$\n", - "E(\\rho) = (1 - p) \\rho + p\\frac{I}{2^n}\n", - "$$\n", - "\n", - "where $n$ is the number of qubits, in this case, 2. That is, with probability $p$, the state is replaced with the completely mixed state, and the state is preserved with probability $1 - p$. After $m$ applications of the depolarizing channel, the probability of the state being preserved would be $(1 - p)^m$. Therefore, we expect the probability of retaining the correct state at the end of the simulation to go down exponentially with the number of CX gates in our circuit.\n", - "\n", - "Let's count the number of CX gates in our circuit and compute $(1 - p)^m$. Because our circuit uses the EfficientSU2 class, we'll need to call `decompose` once to decompose it into CX gates. We call `count_ops` to get a dictionary that maps gate names to counts, and retrieve the entry for the CX gate." - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "0.6542558123199923" - ] - }, - "execution_count": 4, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "cx_count = circuit.decompose().count_ops()[\"cx\"]\n", - "(1 - cx_depolarizing_prob) ** cx_count" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "This value, 65%, gives a rough estimate of the probability that our final state is correct. It is a conservative estimate because it does not take into account the initial state of the simulation. To get a more concrete estimate of how much our final state deviates from the correct state, let's use the [Sampler](https://qiskit.org/ecosystem/aer/stubs/qiskit_aer.primitives.Sampler.html) primitive to estimate the final measurement probability distributions with and without noise, and then compute the fidelity between these distributions. When running the Sampler, we pass `shots=None` to request a final distribution that does not include random sampling error." - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "0.8917750028756636" - ] - }, - "execution_count": 5, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "import math\n", - "from qiskit.result import ProbDistribution\n", - "from qiskit_aer.primitives import Sampler\n", - "\n", - "\n", - "measured_circuit = circuit.copy()\n", - "measured_circuit.measure_all()\n", - "\n", - "# Get exact probability distribution\n", - "exact_sampler = Sampler()\n", - "job = exact_sampler.run(measured_circuit, params, shots=None)\n", - "exact_quasis = job.result().quasi_dists[0]\n", - "exact_probs = exact_quasis.nearest_probability_distribution()\n", - "\n", - "# Get noisy probability distribution\n", - "noisy_sampler = Sampler(backend_options={\"noise_model\": noise_model})\n", - "job = noisy_sampler.run(measured_circuit, params, shots=None)\n", - "noisy_quasis = job.result().quasi_dists[0]\n", - "noisy_probs = noisy_quasis.nearest_probability_distribution()\n", - "\n", - "\n", - "# Compute fidelity\n", - "def fidelity(dist1: ProbDistribution, dist2: ProbDistribution) -> float:\n", - " result = 0\n", - " for bitstring in dist1 | dist2:\n", - " prob1 = dist1.get(bitstring, 0)\n", - " prob2 = dist2.get(bitstring, 0)\n", - " result += math.sqrt(prob1 * prob2)\n", - " return result**2\n", - "\n", - "\n", - "fidelity(exact_probs, noisy_probs)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Next steps\n", - "\n", - "\n", - " - To simulate small, simple circuits, see [Exact simulation with Qiskit primitives](simulate-with-qiskit-primitives).\n", - " - Review the [Qiskit Aer](https://qiskit.org/ecosystem/aer/) documentation.\n", - " - Learn how to run on a physical system in the [Run](../run) section.\n", - "" - ] - } - ], - "metadata": { - "description": "Learn how to do exact and noisy simulation of quantum programs with Qiskit Aer primitives", - "kernelspec": { - "display_name": "documentation--fuetTj0", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.10.12" - }, - "title": "Exact and noisy simulation with Qiskit Aer primitives" - }, - "nbformat": 4, - "nbformat_minor": 2 -} \ No newline at end of file diff --git a/translations/ja/verify/simulate-with-qiskit-primitives.mdx b/translations/ja/verify/simulate-with-qiskit-primitives.mdx deleted file mode 100644 index 6685eb931d..0000000000 --- a/translations/ja/verify/simulate-with-qiskit-primitives.mdx +++ /dev/null @@ -1,466 +0,0 @@ ---- -title: Exact simulation with Qiskit primitives -description: Simulate with Qiskit reference primitives. How to compute an expectation value with the Estimator primitive, and how to compute circuit output probabilities with the Sampler primitive ---- - -# Exact simulation with Qiskit primitives - -The reference primitives in Qiskit can perform local statevector simulations, which is useful for quickly prototyping algorithms. - -The `Estimator` primitive can compute an expectation value, and the `Sampler` primitive can compute circuit output probabilities. - -## Compute an expectation value with the `Estimator` primitive - -Follow these instructions to get the expected value of an observable for a given quantum circuit with the [`qiskit.primitives.Estimator`](../api/qiskit/qiskit.primitives.Estimator) primitive. - - - While this guide uses Qiskit’s reference implementation, the `Estimator` primitive can be run with any provider using [`qiskit.primitives.BackendEstimator`](../api/qiskit/qiskit.primitives.BackendEstimator). - -```python -from qiskit.primitives import BackendEstimator -from import QiskitProvider - -provider = QiskitProvider() -backend = provider.get_backend('backend_name') -estimator = BackendEstimator(backend) -``` - - There are some providers that implement primitives natively (see [the Qiskit Ecosystem page](https://qiskit.github.io/ecosystem/#primitives) for more details). - - - -### Initialize observables - -The first step is to define the observables whose expected value you want to compute. Each observable can be any `BaseOperator`, like the operators from [`qiskit.quantum_info`](../api/qiskit/quantum_info). -Among them it is preferable to use [`qiskit.quantum_info.SparsePauliOp`](../api/qiskit/qiskit.quantum_info.SparsePauliOp). - -```python -from qiskit.quantum_info import SparsePauliOp - -observable = SparsePauliOp(["II", "XX", "YY", "ZZ"], coeffs=[1, 1, -1, 1]) -``` - -### Initialize QuantumCircuit - -Next, create the [`qiskit.circuit.QuantumCircuit`](../api/qiskit/qiskit.circuit.QuantumCircuit) for which you want to obtain the expected value. - -```python -from qiskit import QuantumCircuit - -qc = QuantumCircuit(2) -qc.h(0) -qc.cx(0,1) -qc.draw("mpl") -``` - -![Initial QuantumCircuit](/images/verify/simulate-with-qiskit-primitives/estimator-initialize.png "Initial QuantumCircuit") - - - The [`qiskit.circuit.QuantumCircuit`](../api/qiskit/qiskit.circuit.QuantumCircuit) you pass to [`qiskit.primitives.Estimator`](../api/qiskit/qiskit.primitives.Estimator) must not include any measurements. - - -### Initialize `Estimator` - -Next, instantiate an [`qiskit.primitives.Estimator`](../api/qiskit/qiskit.primitives.Estimator). - -```python -from qiskit.primitives import Estimator - -estimator = Estimator() -``` - -### Run and get results - -Now that you have defined your `estimator`, you can run your estimation by calling the [`qiskit.primitives.Estimator.run`](../api/qiskit/qiskit.primitives.Estimator#run) method, -which returns an instance of [`qiskit.providers.JobV1`](../api/qiskit/qiskit.providers.JobV1). You can get the results from the job (as a [`qiskit.primitives.EstimatorResult`](../api/qiskit/qiskit.primitives.EstimatorResult) object) -with the [`qiskit.providers.JobV1.result`](../api/qiskit/qiskit.providers.JobV1#result) method. - -```python -job = estimator.run(qc, observable) -result = job.result() -print(result) -``` - -```python -EstimatorResult(values=array([4.]), metadata=[{}]) -``` - -This example only uses one [`qiskit.circuit.QuantumCircuit`](../api/qiskit/qiskit.circuit.QuantumCircuit) and one observable. If you want to get expectation values for multiple circuits and observables, you can pass a `list` of [`qiskit.circuit.QuantumCircuit`](../api/qiskit/qiskit.circuit.QuantumCircuit)s and a list of `BaseOperator`s to the [`qiskit.primitives.Estimator.run`](../api/qiskit/qiskit.primitives.Estimator#run) method. Both `list`s must have the same length. - -#### Get the expected value - -From these results you can extract the expected values with the attribute [`qiskit.primitives.EstimatorResult.values`](../api/qiskit/qiskit.primitives.EstimatorResult#values). - -[`qiskit.primitives.EstimatorResult.values`](../api/qiskit/qiskit.primitives.EstimatorResult#values) returns a `numpy.ndarray` -whose `i`th element is the expectation value corresponding to the `i`th circuit and `i`th observable. - -```python -exp_value = result.values[0] -print(exp_value) -``` - -```python -3.999999999999999 -``` - -### Parameterized circuit with `Estimator` - -The [`qiskit.primitives.Estimator`](../api/qiskit/qiskit.primitives.Estimator) primitive can be run with unbound parameterized circuits like the one below. -You can also manually bind values to the parameters of the circuit and follow the steps of the previous example. - -```python -from qiskit.circuit import Parameter - -theta = Parameter('θ') -param_qc = QuantumCircuit(2) -param_qc.ry(theta, 0) -param_qc.cx(0,1) -print(param_qc.draw()) -``` - -``` - ┌───────┐ -q_0: ┤ Ry(θ) ├──■── - └───────┘┌─┴─┐ -q_1: ─────────┤ X ├ - └───┘ -``` - -The main difference with the previous case is that now you need to specify the sets of parameter values for which you want to evaluate the expectation value as a `list` of `list`s of `float`s. -The `i`th element of the outer `list` is the set of parameter values that corresponds to the `i`th circuit and observable. - -```python -import numpy as np - -parameter_values = [[0], [np.pi/6], [np.pi/2]] - -job = estimator.run([param_qc]*3, [observable]*3, parameter_values=parameter_values) -values = job.result().values - -for i in range(3): - print(f"Parameter: {parameter_values[i][0]:.5f}\t Expectation value: {values[i]}") -``` - -``` -Parameter: 0.00000 Expectation value: 2.0 -Parameter: 0.52360 Expectation value: 3.0 -Parameter: 1.57080 Expectation value: 4.0 -``` - -### Change run options - -Your workflow might require tuning primitive run options, such as the number of shots. - -By default, the reference [`qiskit.primitives.Estimator`](../api/qiskit/qiskit.primitives.Estimator) class performs an exact statevector calculation based on the [`qiskit.quantum_info.Statevector`](../api/qiskit/qiskit.quantum_info.Statevector) class. However, this can be modified to include shot noise if the number of `shots` is set. For reproducibility purposes, a `seed` will also be set in the following examples. - -There are two main ways of setting options in the [`qiskit.primitives.Estimator`](../api/qiskit/qiskit.primitives.Estimator): - -- Set keyword arguments in the [`qiskit.primitives.Estimator.run`](../api/qiskit/qiskit.primitives.Estimator#run) method. -- Modify [`qiskit.primitives.Estimator`](../api/qiskit/qiskit.primitives.Estimator) options. - -#### Set keyword arguments for [`qiskit.primitives.Estimator.run`](../api/qiskit/qiskit.primitives.Estimator#run) - -If you only want to change the settings for a specific run, it can be more convenient to set the options inside the [`qiskit.primitives.Estimator.run`](../api/qiskit/qiskit.primitives.Estimator#run) method. You can do this by passing them as keyword arguments. - -```python -job = estimator.run(qc, observable, shots=2048, seed=123) -result = job.result() -print(result) -``` - -```python -EstimatorResult(values=array([4.]), metadata=[{'variance': 3.552713678800501e-15, 'shots': 2048}]) -``` - -```python -print(result.values[0]) -``` - -```python -3.999999998697238 -``` - -#### Modify [`qiskit.primitives.Estimator`](../api/qiskit/qiskit.primitives.Estimator) options - -If you want to keep some configuration values for several runs, it can be better to change the [`qiskit.primitives.Estimator`](../api/qiskit/qiskit.primitives.Estimator) options. That way you can use the same [`qiskit.primitives.Estimator`](../api/qiskit/qiskit.primitives.Estimator) object as many times as you wish without having to -rewrite the configuration values every time you use [`qiskit.primitives.Estimator.run`](../api/qiskit/qiskit.primitives.Estimator#run). - -#### Modify existing [`qiskit.primitives.Estimator`](../api/qiskit/qiskit.primitives.Estimator) - -If you prefer to change the options of an already-defined [`qiskit.primitives.Estimator`](../api/qiskit/qiskit.primitives.Estimator), you can use the method [`qiskit.primitives.Estimator.set_options`](../api/qiskit/qiskit.primitives.Estimator#set_options) and introduce the new options as keyword arguments. - -```python -estimator.set_options(shots=2048, seed=123) - -job = estimator.run(qc, observable) -result = job.result() -print(result) -``` - -```python -EstimatorResult(values=array([4.]), metadata=[{'variance': 3.552713678800501e-15, 'shots': 2048}]) -``` - -```python -print(result.values[0]) -``` - -```python -3.999999998697238 -``` - -#### Define a new [`qiskit.primitives.Estimator`](../api/qiskit/qiskit.primitives.Estimator) with the options - -If you prefer to define a new [`qiskit.primitives.Estimator`](../api/qiskit/qiskit.primitives.Estimator) with new options, define a `dict` like this one: - -```python -options = {"shots": 2048, "seed": 123} -``` - -You can then introduce it into your new [`qiskit.primitives.Estimator`](../api/qiskit/qiskit.primitives.Estimator) with the `options` argument. - -```python -estimator = Estimator(options=options) - -job = estimator.run(qc, observable) -result = job.result() -print(result) -``` - -```python -EstimatorResult(values=array([4.]), metadata=[{'variance': 3.552713678800501e-15, 'shots': 2048}]) -``` - -```python -print(result.values[0]) -``` - -```python -3.999999998697238 -``` - -## Compute circuit output probabilities with `Sampler` primitive - -Follow these instructions to get the probability distribution of a quantum circuit with the [`qiskit.primitives.Sampler`](../api/qiskit/qiskit.primitives.Sampler) primitive. - - - While this guide uses Qiskit’s reference implementation, the `Sampler` primitive can be run with any provider using [`qiskit.primitives.BackendSampler`](../api/qiskit/qiskit.primitives.BackendSampler). - -```python -from qiskit.primitives import BackendSampler -from import QiskitProvider - -provider = QiskitProvider() -backend = provider.get_backend('backend_name') -sampler = BackendSampler(backend) -``` - - There are some providers that implement primitives natively (see [the Qiskit Ecosystem page](https://qiskit.github.io/ecosystem#providers) for more details). - - - -### Initialize QuantumCircuit - -The first step is to create the [`qiskit.circuit.QuantumCircuit`](../api/qiskit/qiskit.circuit.QuantumCircuit)s from which you want to obtain the probability distribution. - -```python -from qiskit import QuantumCircuit - -qc = QuantumCircuit(2) -qc.h(0) -qc.cx(0,1) -qc.measure_all() -qc.draw("mpl") -``` - -![Initial QuantumCircuit](/images/verify/simulate-with-qiskit-primitives/sampler-initialize.png "Initial QuantumCircuit") - - -The [`qiskit.circuit.QuantumCircuit`](../api/qiskit/qiskit.circuit.QuantumCircuit) you pass to [`qiskit.primitives.Sampler`](../api/qiskit/qiskit.primitives.Sampler) must include measurements. - - -### Initialize `Sampler` - -Next, create a [`qiskit.primitives.Sampler`](../api/qiskit/qiskit.primitives.Sampler) instance. - -```python -from qiskit.primitives import Sampler - -sampler = Sampler() -``` - -### Run and get results - -Now that you have defined your `sampler`, run it by calling the [`qiskit.primitives.Sampler.run`](../api/qiskit/qiskit.primitives.Sampler#run) method, which returns an instance of [`qiskit.providers.JobV1`](../api/qiskit/qiskit.providers.JobV1). You can get the results from the job (as a [`qiskit.primitives.SamplerResult`](../api/qiskit/qiskit.primitives.SamplerResult) object) with the [`qiskit.providers.JobV1.result`](../api/qiskit/qiskit.providers.JobV1#result) method. - -```python -job = sampler.run(qc) -result = job.result() -print(result) -``` - -```python -SamplerResult(quasi_dists=[{0: 0.4999999999999999, 3: 0.4999999999999999}], metadata=[{}]) -``` - -While this example only uses one [`qiskit.circuit.QuantumCircuit`](../api/qiskit/qiskit.circuit.QuantumCircuit), you can sample multiple circuits by passing a `list` of [`qiskit.circuit.QuantumCircuit`](../api/qiskit/qiskit.circuit.QuantumCircuit) instances to the [`qiskit.primitives.Sampler.run`](../api/qiskit/qiskit.primitives.Sampler#run) method. - -### Get the probability distribution - -From these results you can extract the quasi-probability distributions with the attribute [`qiskit.primitives.SamplerResult.quasi_dists`](../api/qiskit/qiskit.primitives.SamplerResult#quasi_dists). - -Even though there is only one circuit in this example, [`qiskit.primitives.SamplerResult.quasi_dists`](../api/qiskit/qiskit.primitives.SamplerResult#quasi_dists) returns a list of [`qiskit.result.QuasiDistribution`](../api/qiskit/qiskit.result.QuasiDistribution)s. -`result.quasi_dists[i]` is the quasi-probability distribution of the `i`th circuit. - - -A quasi-probability distribution differs from a probability distribution in that negative values are also allowed. -However, the quasi-probabilities must sum up to 1 like probabilities. -Negative quasi-probabilities may appear when using error mitigation techniques. - - -```python -quasi_dist = result.quasi_dists[0] -print(quasi_dist) -``` - -```python -{0: 0.4999999999999999, 3: 0.4999999999999999} -``` - -#### Probability distribution with binary outputs - -If you prefer to see the output keys as binary strings instead of decimal numbers, you can use the [`qiskit.result.QuasiDistribution.binary_probabilities`](../api/qiskit/qiskit.result.QuasiDistribution#binary_probabilities) method. - -```python -print(quasi_dist.binary_probabilities()) -``` - -```python -{'00': 0.4999999999999999, '11': 0.4999999999999999} -``` - -### Parameterized circuit with `Sampler` - -The [`qiskit.primitives.Sampler`](../api/qiskit/qiskit.primitives.Sampler) primitive can be run with unbound parameterized circuits like the one below. -You can also manually bind values to the parameters of the circuit and follow the steps of the previous example. - -```python -from qiskit.circuit import Parameter - -theta = Parameter('θ') -param_qc = QuantumCircuit(2) -param_qc.ry(theta, 0) -param_qc.cx(0,1) -param_qc.measure_all() -print(param_qc.draw()) -``` - -``` - ┌───────┐ ░ ┌─┐ - q_0: ┤ Ry(θ) ├──■───░─┤M├─── - └───────┘┌─┴─┐ ░ └╥┘┌─┐ - q_1: ─────────┤ X ├─░──╫─┤M├ - └───┘ ░ ║ └╥┘ - meas: 2/══════════════════╩══╩═ - 0 1 -``` - -The main difference from the previous case is that now you need to specify the sets of parameter values for which you want to evaluate the expectation value as a `list` of `list`s of `float`s. The `i`th element of the outer `list` is the set of parameter values that corresponds to the `i`th circuit. - -```python -import numpy as np - -parameter_values = [[0], [np.pi/6], [np.pi/2]] - -job = sampler.run([param_qc]*3, parameter_values=parameter_values) -dists = job.result().quasi_dists - -for i in range(3): - print(f"Parameter: {parameter_values[i][0]:.5f}\t Probabilities: {dists[i]}") -``` - -``` -Parameter: 0.00000 Probabilities: {0: 1.0} -Parameter: 0.52360 Probabilities: {0: 0.9330127018922194, 3: 0.0669872981077807} -Parameter: 1.57080 Probabilities: {0: 0.5000000000000001, 3: 0.4999999999999999} -``` - -### Change run options - -Your workflow might require tuning primitive run options, such as the number of shots. - -By default, the reference [`qiskit.primitives.Sampler`](../api/qiskit/qiskit.primitives.Sampler) class performs an exact statevector -calculation based on the [`qiskit.quantum_info.Statevector`](../api/qiskit/qiskit.quantum_info.Statevector) class. However, this can be -modified to include shot noise if the number of `shots` is set. -For reproducibility purposes, a `seed` will also be set in the following examples. - -There are two main ways of setting options in the [`qiskit.primitives.Sampler`](../api/qiskit/qiskit.primitives.Sampler): - -- Set keyword arguments in the [`qiskit.primitives.Sampler.run`](../api/qiskit/qiskit.primitives.Sampler#run) method. -- Modify [`qiskit.primitives.Sampler`](../api/qiskit/qiskit.primitives.Sampler) options. - -#### Set keyword arguments for [`qiskit.primitives.Sampler.run`](../api/qiskit/qiskit.primitives.Sampler#run) - -If you only want to change the settings for a specific run, it can be more convenient to set the options inside the [`qiskit.primitives.Sampler.run`](../api/qiskit/qiskit.primitives.Sampler#run) method. You can do this by passing them as keyword arguments. - -```python -job = sampler.run(qc, shots=2048, seed=123) -result = job.result() -print(result) -``` - -```python -SamplerResult(quasi_dists=[{0: 0.5205078125, 3: 0.4794921875}], metadata=[{'shots': 2048}]) -``` - -#### Modify [`qiskit.primitives.Sampler`](../api/qiskit/qiskit.primitives.Sampler) options - -If you want to keep some configuration values for several runs, it can be better to change the [`qiskit.primitives.Sampler`](../api/qiskit/qiskit.primitives.Sampler) options. That way you can use the same [`qiskit.primitives.Sampler`](../api/qiskit/qiskit.primitives.Sampler) object as many times as you wish without having to rewrite the configuration values every time you use [`qiskit.primitives.Sampler.run`](../api/qiskit/qiskit.primitives.Sampler#run). - -#### Modify existing [`qiskit.primitives.Sampler`](../api/qiskit/qiskit.primitives.Sampler) - -If you prefer to change the options of an already-defined [`qiskit.primitives.Sampler`](../api/qiskit/qiskit.primitives.Sampler), you can use [`qiskit.primitives.Sampler.set_options`](../api/qiskit/qiskit.primitives.Sampler#set_options) and introduce the new options as keyword arguments. - -```python -sampler.set_options(shots=2048, seed=123) - -job = sampler.run(qc) -result = job.result() -print(result) -``` - -```python -SamplerResult(quasi_dists=[{0: 0.5205078125, 3: 0.4794921875}], metadata=[{'shots': 2048}]) -``` - -#### Define a new [`qiskit.primitives.Sampler`](../api/qiskit/qiskit.primitives.Sampler) with the options - -If you prefer to define a new [`qiskit.primitives.Sampler`](../api/qiskit/qiskit.primitives.Sampler) with new options, define a `dict` like this one: - -```python -options = {"shots": 2048, "seed": 123} -``` - -You can then introduce it into your new [`qiskit.primitives.Sampler`](../api/qiskit/qiskit.primitives.Sampler) with the `options` argument. - -```python -sampler = Sampler(options=options) - -job = sampler.run(qc) -result = job.result() -print(result) -``` - -```python -SamplerResult(quasi_dists=[{0: 0.5205078125, 3: 0.4794921875}], metadata=[{'shots': 2048}]) -``` - -## Next steps - - - - For higher-performance simulation that can handle larger circuits, or to incorporate noise models into your simulation, see [Exact and noisy simulation with Qiskit Aer primitives](simulate-with-qiskit-aer). - - To learn how to use Quantum Composer for simulation, try the [Explore gates and circuits with the Quantum Composer](https://learning.quantum.ibm.com/tutorial/explore-gates-and-circuits-with-the-quantum-composer) tutorial. - - Read the [Qiskit Estimator API](/api/qiskit/qiskit.primitives.Estimator) reference. - - Read the [Qiskit Sampler API](/api/qiskit/qiskit.primitives.Sampler) reference. - - Learn how to run on a physical system in the [Run](../run) section. - diff --git a/translations/ja/verify/stabilizer-circuit-simulation.ipynb b/translations/ja/verify/stabilizer-circuit-simulation.ipynb deleted file mode 100644 index 34b0a10c43..0000000000 --- a/translations/ja/verify/stabilizer-circuit-simulation.ipynb +++ /dev/null @@ -1,223 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Efficient simulation of stabilizer circuits with Qiskit Aer primitives\n", - "\n", - "This page shows how to use Qiskit Aer primitives to efficiently simulate stabilizer circuits, including those subject to Pauli noise.\n", - "\n", - "Stabilizer circuits, also known as Clifford circuits, are an important restricted class of quantum circuits that can be efficiently simulated classically. There are several equivalent ways to define stabilizer circuits. One definition is that a stabilizer circuit is a quantum circuit that consists solely of the following gates:\n", - "\n", - "- [CX](../api/qiskit/qiskit.circuit.library.CXGate)\n", - "- [Hadamard](../api/qiskit/qiskit.circuit.library.HGate)\n", - "- [S](../api/qiskit/qiskit.circuit.library.SGate)\n", - "- [Measurement](../api/qiskit/qiskit.circuit.library.Measure)\n", - "\n", - "Note that using Hadamard and S, we can construct any Pauli rotation gate ([$R_x$](/api/qiskit/qiskit.circuit.library.RXGate), [$R_y$](/api/qiskit/qiskit.circuit.library.RYGate), and [$R_z$](/api/qiskit/qiskit.circuit.library.RZGate)) that has an angle contained in the set $\\{0, \\frac{\\pi}{2}, \\pi, \\frac{3\\pi}{2}\\}$ (up to global phase), so we can include these gates in the definition as well.\n", - "\n", - "Stabilizer circuits are important to the study of quantum error correction. Their classical simulability also makes them useful for verifying the output of quantum computers. For example, suppose you want to execute a quantum circuit that uses 100 qubits on a quantum computer. How do you know that the quantum computer is behaving correctly? A quantum circuit on 100 qubits is beyond the reach of brute-force classical simulation. By modifying your circuit so that it becomes a stabilizer circuit, you can run circuits on the quantum computer that have a similar structure to your desired circuit, but which you can simulate on a classical computer. By checking the output of the quantum computer on the stabilizer circuits, you can gain confidence that it is behaving correctly on the non-stabilizer circuits as well. See [*Evidence for the utility of quantum computing before fault tolerance*](https://www.nature.com/articles/s41586-023-06096-3) for an example of this idea in practice.\n", - "\n", - "\n", - "[Exact and noisy simulation with Qiskit Aer primitives](simulate-with-qiskit-aer) shows how to use [Qiskit Aer](https://qiskit.org/ecosystem/aer/) to perform exact and noisy simulations of generic quantum circuits. Consider the example circuit used in that article, an 8-qubit circuit built using [EfficientSU2](../api/qiskit/qiskit.circuit.library.EfficientSU2):" - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABTcAAAIwCAYAAABTFl+VAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAADxtklEQVR4nOzdeXwU9f3H8dduDhICAUICgYQjQMIN4ZZDBAUVwQO8BVrUilaReoGtlqpt1QqoFdSq9dZfFRW0ilVEAUVABDlEQIFwhiRAIBwhd7K/P0YikQR2N7PH7Lyfj0cekN05Pp+B73e++9mZ7zhcLpcLEREREREREREREYtxBjoAEREREREREREREW+ouCkiIiIiIiIiIiKWpOKmiIiIiIiIiIiIWJKKmyIiIiIiIiIiImJJKm6KiIiIiIiIiIiIJam4KSIiIiIiIiIiIpak4qaIiIiIiIiIiIhYkoqbIiIiIiIiIiIiYkkqboqIiIiIiIiIiIglqbgpIiIiIiIiIiIilqTipoiIiIiIiIiIiFiSipsiIiIiIiIiIiJiSSpuioiIiIiIiIiIiCWpuCkiIiIiIiIiIiKWpOKmiIiIiIiIiIiIWJKKmyIiIiIiIiIiImJJKm6KiIiIiIiIiIiIJam4KSIiIiIiIiIiIpak4qaIiIiIiIiIiIhYkoqbIiIiIiIiIiIiYkkqboqIiIiIiIiIiIglqbgpIiIiIiIiIiIilqTipoiIiIiIiIiIiFiSipsiIiIiIiIiIiJiSSpuioiIiIiIiIiIiCWpuCkiIiIiIiIiIiKWpOKmiIiIiIiIiIiIWJKKmyIiIiIiIiIiImJJKm6KiIiIiIiIiIiIJam4KSIiIiIiIiIiIpak4qaIiIiIiIiIiIhYkoqbIiIiIiIiIiIiYkkqboqIiIiIiIiIiIglqbgpIiIiIiIiIiIilqTipoiIiIiIiIiIiFiSipsiIiIiIiIiIiJiSSpuioiIiIiIiIiIiCWFBzoAqZ7LBRWlgY7Cfc4IcDjM257V8gfzj4GIiIid2X0sYPf8RcB67UCfidQPiLns3gbsnr8nVNwMUhWlsHhWoKNw39DJEBZp3vaslj+YfwxERETszO5jAbvnLwLWawf6TKR+QMxl9zZg9/w9odvSRURERERERERExJJU3BQRERERERERERFLUnFTRERERERERERELEnFTREREREREREREbEkFTdFRERERERERETEklTcFBEREREREREREUtScVNEREREREREREQsKTzQAYh51mcs4Z7nhlZ5LSoyhuSENIb1HM9lA28nLCx0/8ntnr+IiIhoPGD3/EXs3gbsnr8IqB3YMf/QykYAGJp+LX07XIQLF3nHclj43es899Fd7N6/mTuveCHQ4fmc3fMXERERjQfsnr+I3duA3fMXAbUDO+Wv4mYISk3qybBe4yp/v3jArdw4vQOffPsi11/4MA3rJQQwOt+ze/4iIiKi8YDd8xexexuwe/4ioHZgp/w156YNREfG0KHVWbhcLrIOZgQ6HL+ze/4iIiKi8YDd8xexexuwe/4ioHYQyvmruGkT2T//x42tGxfgSALD7vmLiIiIxgN2z1/E7m3A7vmLgNpBqOav29JDUFFpAUeO5+JyGfMqfLTiObbtXUuHFn1JTkgLdHg+Z/f8RUREROMBu+cvYvc2YPf8RUDtwE7526K4mZuby/Tp05k3bx6ZmZkkJCQwZswYHnnkESZPnszLL7/M7NmzmTRpUqBDNcXrnz3A6589UOW1QV3GcPvoZwIUkX/ZPX8REZFfq3DBj1mwdR8UlUJkOLRJgC7JEBai9/HYfTxg9/zlVMcKYdUOOHQcXC5oEA09W0N8/UBH5ht2bwN2z19OVeGCrTnwY/YvY4FWjaFbCwgPC3R0vmH3dmCn/EO+uLlu3TpGjBhBTk4OMTExdOrUiaysLGbNmkVGRgaHDh0CID09PbCBmmhkv4kM7nYlZRWl7MjewJwlj5F7JJPIiKjKZR5+8xoqXBVMG/9O5WtHCw5x08zOTBw1k/N6jg1E6KZwJ/8N25dy30sjTlm3rLyEiopyFkwv92fIIiIiPuFywfJtsGgTHMyv+t6XPxrFjXM6wJCO4HQEJkZf0XhI4yEx5B2HD9fC93ugvKLqe598Dx2bw6h0aN4oIOH5jPoA9QHyi2+3w8If4MCxU9+LjYJB7WFYJ3CG2Bee6gfs0w+EdHEzNzeXiy++mJycHO6++24eeOAB6tc3vpqcPn069957L+Hh4TgcDrp16xbgaM2TFJ9Kz7RhAPTtMIIuKYO489lBPDX3Fu4f9zYAt495lomPd2XR2rc4t8e1AMx+/zY6pwyydOMF9/Lv2uZsPnq46qe83CNZ3DarN5cOCI0reEVExN5cLpj3HSz9qeZljhQaRY/MQzBuQGh9qNF4SOMhgX1H4NkvjLZeHRewKQsy9sPEodC2iV/D8yn1AeoDxDB/HXy+seb3jxbB/9bDnoMw4ezQuqND/YB9+oEQ+m97qsmTJ5OZmcmkSZOYOXNmZWETYOrUqXTv3p2ysjJat25NbGxsACP1rc6tBzCs53iWrJ/Dxp3LAWPy2LuvfImnP5hE7pEsvvr+Pb7PWMIdY54LcLTmqy7/XyspK+ah18fQpfUgrjvvPj9HKCIiYr7Fm09f2DzZml3w0TqfhhNwGg9pPGQ3BSXw/OKaC5snKy6DF5dAbjVXdYUK9QHqA+xo2ZbTFzZPtiET5q32bTyBpn4gdPuBkC1ubt68mTlz5hAfH8+jjz5a7TK9evUCoHv37lVe37FjB5dccgn169enUaNG/OY3v+HgwYM+j9mXxg6bhtMZxmsL/lL5Wp8OF3JOt6t47K1xzJ53K3dd+SKxMY0DGKXvVJf/yZ6aewslpUVMufpV/wYmIiLiAyVl7n+YOeGrnyC/yDfxBAuNhzQespNvM4z5Nd1VWGpMVxHK1AeoD7CT8gpYsMGzdZZvg8MFvoknWKgfCM1+IGSLm2+99RYVFRWMHTuWevXqVbtMdHQ0ULW4eezYMYYOHUpmZiZvvfUWL7zwAkuXLmXUqFFUVFRUux0rSIpvx9Du17B22xds2L608vWJF89k78Ft9Okwgn4dRwYwQt+qKX+A97+excrN83lowgdERdYNUIQiIiLmWbvLuGrLE+UV8E2Gb+IJFhoPaTxkFxUuWLbV8/W+3Q7FpebHEyzUB6gPsJMNe4xbzj3hcsFyL/oOK1E/EJr9QMgWNxctWgTA0KFDa1wmMzMTqFrcfOGFF9i7dy8ffPABo0aN4sorr+Q///kP33zzDR9++KFvg/axa8+7H6fDyWuf/VKhj46MoVlcG1ISuwYwMv+oLv912xbz4sf3Mm38uyTGtQ5ccCIiIibakOnf9axE4yGNh+xg35HqHxxyJsVlsHWf+fEEE/UB6gPswuuxwB5z4whG6gdCrx9wuFwuV6CD8IUWLVqQmZnJ2rVrq30SellZGc2aNSM3N5eMjAzatGkD/FIMXbx4cZXl27Zty5AhQ3jppZc8jqV3797k5OR4tE5keDQvTPLPVyZ3/2sIZ3UcxZVD7vF6GxOfTqWkzI0Jfdzkj/xzDu1k0qw+jBv+AJcNrP1EuWYfAxEREW8NuWUu8Sn9PF7v2IEMFsw8xwcRec6fYyEIvvGQv/I3czyksVDwiG/dlyG/n+fVuqvm3MGuNe+ZHJF39JlIn4nEe4NueIPE9jVf7FWTwiM5fPxIbx9E5DmNBew1FkhMTGT1au8mfg3Zp6UfP25MMFNYWP1BnTNnDrm5udSvX5+UlJTK1zdt2sSVV155yvKdO3dm06ZNXsWSk5PD3r17PVonKsJalwBnZ2VRVGre5By+zr+opIAHXr2M/p0uMeUkDuYfAxEREW8dzz9CvBfrFRUc83jM4itWGwuBuWMBf+Rv9nhIY6HgUVbH+0uvDuzPUj/gJX0mUj8QTPKPHfZqveKifPUBtaCxQGD6gJAtbiYmJpKXl8eaNWvo379/lfeys7OZMmUKAN26dcPhcFS+l5eXR8OGDU/ZXlxcHD/95OYjR6uJxVOR4dFe7StQmjVvbvq3lL60dMNctmevZ2/uFpasn3PK+y/ds4kmjVp6tE2zj4GIiIi3ig5t92q9gtxtJCUlmRyNd6w2FgJzxwL+yN/s8ZDGQsEjwnGcspJCwiPd/3/kcrlwOByEFe9TP+AlfSZSPxBMSvJ2eLVe/v4t6gNqQWMB7/P3pnZ2Qsjelj558mRmz55NixYt+Pzzz0lLSwNg1apVjB8/nu3bt1NaWsptt93G008/XbleZGQkU6dO5e9//3uV7U2YMIEVK1Z4XeD0VHkJLJ7ll12ZYuhkCIs0b3tWyx/MPwYiIiLeOnAUHv7I8/X+cD6kJJgfjzfsPhawe/5Se299Ays9fEhYu6YwaZhv4vGG1dqBPhOpHwgmhwvgrx8YDxjzxO/PhfbNfBKSx+zeBuyevydC9oFCU6dOpXHjxuzZs4fOnTvTtWtXUlNT6du3L23atOHcc88Fqj5MCKBRo0YcPnz4lO0dOnSIuLg4f4QuIiIiUisJsdCxuWfrtIiD1t7cyy4iQWlQmufrnO3FOiISnBrWhW4tPFunSSyken/xnEjAhGxxMzk5maVLlzJy5EiioqLYuXMncXFxPP/883z88cds2bIFOLW42bFjx2rn1ty0aRMdO3b0S+wiIiIitXXNWdAoxr1lY+rAbwbBSTP1iIjFtYiDS3u6v/ygNM8LISIS3K7oAwn13Vs2OgKuPxucGguIBYVscROMQuX8+fM5duwYx44dY+XKlUycOJHjx4+zc+dOnE4nXbp0qbLOqFGj+Prrr8nMzKx8beXKlWRkZHDxxRf7OwURERERrzSINm4zT2p0+uXi68Pk893/8CMi1jG0I1zeG8JO86nPAZzXCcb01hccIqGmXhTcPhxaNj79co1ijOWaNfRLWCKmC9kHCp3Oxo0bcblcpKWlUbdu1adPTZw4kdmzZ3PppZfy0EMPUVRUxNSpU+nbty+XXnppgCIWERER8VzDunD3CPgpG77eAltzoKTceC/MCb8dBJ2TTl/4EBFrO7s9dG8J32QYc3AezDdedwBDO8GAdsaXHCISmmKj4Y4LjDHAsq3wY1bVscC4AdA1GcLDAhunSG3Ycii7YcMG4NRb0gFiY2NZtGgRzZo145prruF3v/sdAwYMYP78+TidtjxcIiIiYmFOhzH/5k1DYPo1EBtlvF6vjnELqgqbIqEvNhrO7wLTLv2lD4iNhkt6qLApYgdOh/GQoBsGnzoW6NFKhU2xPlteuXm64iZA27ZtmT9/vj9DEhEREfEL3XYqYm/qA0RE/YCEGhU3Q0hG1nqefO8mCoqP0bRhK+699g127dvIfS+OIDmhPf+Y+BmN6jWhqKSAx9+9kS17VuFwOLlhxCMM7nYFAC/Mn8KS9XNITerJQxM+CGxCHnI3/8wDW/nn3IkcK8ijtKyIvh1HMnHkDJxOJ3O/epIPlz9DVGQ9nr9rXaBTEhERkTNw9/z/6bcvM3fpk+zev5mbR81kzNl3VNnOh8uf5YNlswlzhuN0OJl9+0oiI6KCfmzkbv4vfXIfyzbMIyK8DmFhEVx/4cP0aX9BlW3l5e9n4uNd6dSqf2WuS9bN4Y2FD3HwaBYf/O2w/xMUOQN328DLn9zPik0f4nQYl6hdc+4fGZp+DcBp24cVPh+4ewxO2LVvM7c91YuL+k3k1kv/CUBFRQXPfvgHvt38PxwOB6PPvoPLBk4CrHEMxN7MaAOH8w/w+Ds3sC9vF2UVpXRo0Zc/XP4cdSKig/5c6G7+09+ewJqtC2kQkwBAr7ThTBw1o3I7Vh0LgU2Lm4sWLQp0CD4xY84E7rnqFdolpfPpty/zwvx7uKDP9SQntK9yEnr3y5lEhNXhtT9uI/vQDibP6kd626HExjRm4qgZtGrameUbPwhYHt5yN/9/fzyFgV1GM3rQZEpKi7htVh9WtTuPfh0v4vLBd9IuqQfP/veOgOUhIiIi7nP3/J+a3Is/j3uHtxc9eso2lv/wX75Y83/MnvQNMdENOJx/gLCwCICgHxu5m3/XlLMZN2wadSKiychaz13/Gszb07KIjoypXOap927mrI6jOFpwsPK1IelX06FlP255Mt2PWYm4z902cNWQKdww4mEAco/s5cYZHemZOowGMfGnbR9W+Hzg7jEAKCsv5Z9zJzKwy+gqr3+x5k127dvEK/du4XjREX7/ZA/S2w6ldWJnSxwDsTcz2sB/vniYpPhU/nbDR5RXlPPnl0ayYNUrXDLg1qA/F3qS/1VDppzyBS9YeywENp1zMxRt27uW6Dr1aJeUDsDw3r9lxaYPKS0rOWXZL9fPYVT/WwBoFpdCt7ZD+PqH9/0Zruk8yd+Bg+OFRwAoLi2kvLyUxrHN/BmuiIiImMCT83/b5t1p1bQjDsepw993vpzB+OEPEBPdAICG9RIIcwb/BGSe5N+3wwjqREQDkJLYFVwujuQfqHz/k29fIjEuhS4pZ/sldhEzeNIG6kU3rPx7YXE+LlxUuCqAM7ePYObJMQB4c+FfGdztSpLiU6u8vmT9HC7qdxNhzjBi68YxpPvVLF73lq/DF6k1s9qAw+GgoPgYFRUVlJWXUFxaQHyDZF+HX2ue5l8Tq46FTrDllZuhKPvQDnZkb+DmJ9IrXysuKSD36N5Tlt1/eDdNG7Wq/D2xUWv2H97tjzB9xpP8f3/pP5n28sV89M2/yC/IY+ywabRL6uHHaEVERMQMnpz/T2f3vk1syVzNGwsforS8mOG9fsPoQZNNjtZ83ua/YPUrJMa1qRwPZh/awfwVz/HErV+xZN0cX4YsYipP28D7X8/iw+XPkHs4kzuvfLHKbaon/Lp9BDtPjsHm3SvZtGsFj01cyBsLH6ry3v7Du2na8Jecm8a1ZvOub3wWt4hZzGoDY4dN46+vX87Vf02kuKyQc9OvY0DnS3wdfq153A8ufYpPv32ZJo1aMuGCv1cWRa06FjpBxc0Q0qFlP/5x04LK3694MCGA0fifu/l/uPxZhva4lmvP/RN5+fuZ8txQ2rfoQ6+04f4KVURERExixvinvKKMnEM7eOLWr8gvzOPuf51Ds7g2nNVplJmh+oSn+a/Z+gVvLHyIx25aiMPhwOVy8fg7NzBp9NOVV66JWIknbWD0oMmMHjSZjKz1/OOtcfROO5/YmMaV7/+6fViFO8egqKSA2fNuZdpv3rNUbiLuMKMNLFn3Ni2bdOKxiZ9TXFLAX169hP+tfJGL+v3Op7Gbwd1+8IYRDxNXvxlOp5OvN7zP/S+N4NV7txJdp56lx0Kg29JDRrO4NlWuvjxedJSikuPExyadsmyThi3Zl7er8vecvJ00adjSL3H6iif5f7j8GYb3+i0Ajeo1oW+Hi1ifscRfoYqIiIhJPDn/n06Thi0Z2uNawpxhNIiJp2+Hi9i8O/ivWPI0//UZXzLznev52/Uf0aJJewAKio6yPft7Hn7zasY90poX5t/Dd1s+Y8rz5/klB5Ha8LYPaNu8O/GxSVU+A1TXPqzA3WOQfTCD/Yd3M+W5oYx7pDXzlv6TBateZvrbxueiJg1bsu/wL58R9x3aSZNG1v6MKPZgVhv4aPmznNdzLGHOMOpG1efsrlewPmOxX3Pxhif9YHyDJJxOoww4qOto6kbFsufAT4B1x0InqLgZItolpRPujOC7LQsBo2Ge0/1qIsIjT1l2cLcrmb/iOcC4hPn7jCUM7HKZP8M1nSf5N4trw+qfPgWgsOQ46zIW0zqxi1/jFRERkdrz5Px/OkN7XMfqH42xQXFpIeszltCmWXfT4zWbJ/l/v/0rHnt7PH+d8F/aNv8lt5joBsx76CBv3reTN+/bycRRM+mVdj4zbv7Cb3mIeMuTNrBr36bKv2flZrAtay0tm3YCam4fVuDuMUhp1pX3HjxQ2dbHnH0HF/S5ganXvAYYnxH/t/LflFeUc7TgEEvWz2FI96v9no+Ip8xqA4mN27Dq5zpBWXkpq7cssESdwJN+8MDhzMq/b9r1DUePHySpcTvAumOhE3Rbegj503X/x4x3rmfWvN/TvHE7/njdm+zM+eGU5a4cMoXH37mB3zzaFqczjEmjn6ZBTHwAIjaXu/lPveY1Zr8/ife/forS8hL6d7qEoenXBCBiERERqS13z/8LVr3Kqwv+TH5BHss3fsC7X87kb9d/RLukHlwx+C7+OfdmbpzRCYfDwaCul3NO9ysDkI3n3M3/8XdvpLSsmBlzrq987Y/XvkFKs67+DFfEdO62gX9/PJWcQzsIc0YQFhbOpMueplXTjoD124e7x+B0hvUaz097VjHhsVQcOLh88F2WyV/EjDZw66VP8dTcW7jp8a5UVJTTqVV/Lj/7Th9FbC53858xZwJ5+ftwOsKoExHNtPHvVj5AyMpjIVBxM6SkNOvKs39YfcbloiNj+PO40Jss3t382yX14KlJy/wQkYiIiPiau+f/C/pM4II+E6p9LzIiqvLKDatxN//X7t3q1vZOd5xEgpG7beDvN8yv8T1320ewcvcYnOw35z9Y5fcwZxiTxzxjYlQi/mNGG2gWl1Jl3korcTf/6Td/XuN7Vh4LgW5LD3nhYZEcKzjIzU+kk5e//4zLvzB/Cm8vfpR60Y38EJ3veZr/3K+eZNa8W0PiSlYRERG78vT8fzpWHBuZmf+SdXOY9srFNKrf1KToRHzPzDZg1c8HOgZid3Y/F9ptLORwuVyuQAchpyovgcWzAh2F+4ZOhjDPprc6LavlD+YfAxEREV94YB4cKYQG0fDQmEBHUzO7jwXsnr/4jlX6ALBeO9BnIvUDVmGVfsDubcDu+XtCV26KiIiIiIiIiIiIJam4KSIiIiIiIiIiIpakBwoFKWeEcTmvVTgjzN+elfIH84+BiIiIndl9LGD3/EXAeu1An4nUD4i57N4G7J6/J1TcDFIOh73nKrF7/iIiInZn97GA3fMXAbUDu+cvYvc2YPf8PaHb0kVERERERERERMSSVNwUERERERERERERS1JxU0RERERERERERCxJxU0RERERERERERGxJBU3RURERERERERExJJU3BQRERERERERERFLUnFTRERERERERERELEnFTREREREREREREbEkFTdFRERERERERETEklTcFBEREREREREREUtScVNEREREREREREQsScVNERERERERERERsSQVN0VERERERERERMSSVNwUERERERERERERS1JxU0RERERERERERCxJxU0RERERERERERGxJBU3RURERERERERExJLCAx2AVM/lgorSQEfhPmcEOBzmbc9q+YP5x0BERMTO7D4WsHv+ImC9dqDPROoHxFx2bwN2z98TKm4GqYpSWDwr0FG4b+hkCIs0b3tWyx/MPwYiIiJ2ZvexgN3zFwHrtQN9JlI/IOayexuwe/6e0G3pIiIiIiIiIiIiYkkqboqIiIiIiIiIiIglqbgpIiIiIiIiIiIilqTipoiIiIiIiIiIiFiSipsiIiIiIiIiIiJiSXpauoiIiEiIyj0GP2ZD5iHYfQiOFMDxYuO9Y0Xwf8shOQ7aN4PEBoGNVUTMV14BP2XDzlyjH8g6DEcKjfeOFsKzX0CLOGjZGDo2h0h9OhQJOYfyYfPPY4E9h+Dwccg/aSzw5jJIbgxpTaF5o8DGKuItnb5EREREQkiFCzbtha+3GIXN0y23aofxA9C2CQxMhe4tIUz39ohY2pECWL4NVmwzipjVcQFbcowfgOhI6NsGBqVCQqzfQhURH3C5YHMWLNtqjAlcNSxX4YLVO40fgJR4GJgG6S0hPMxPwYqYQMVNERERkRBx4Bi8tQK2H/B83Yz9xk/SJriuPyTp6g0Ry6lwwbIt8NE6KCnzbN3CEvjyR1j6EwzrDOd3UXFDxIoO5sPb38DWfZ6vuyPX+Pl8ozEWaNnY/PhEfEHFzRCyPmMJ9zw3tMprUZExJCekMazneC4beDthYaH7T273/EVExN6+3gL/XQOl5bXbzt48ePwTuLAbDO8MDoc58fmL3ccDds/fzg4XwJvLYZsXBY2TVbjgsx9gQyb8ZiA0a2hKeH5j9zZg9/zt7psMeH81FHv45cav5RyBfy4wvui4sBs4NRawFDvmH1rZCABD06+lb4eLcOEi71gOC797nec+uovd+zdz5xUvBDo8n7N7/iIiYi8uF8xfB19sMm+bFS7433pjnq6r+lnvQw1oPGD3/O0m95gxf+ah4+ZtM/swzF4INw+FVvHmbddf7N4G7J6/HX22Af73vXnbO/FFx8F84ypOK05ZY/d2YKf8VdwMQalJPRnWa1zl7xcPuJUbp3fgk29f5PoLH6ZhvYQARud7ds9fRETsZcEGcwubJ/smw/gwc0Uf613BaffxgN3zt5PDBfDMF5BnYmHzhIISeG4x3D7Meg8asXsbsHv+drNok7mFzZN9t9P4kvPa/tb7stPu7cBO+Vuw9i6eio6MoUOrs3C5XGQdzAh0OH5n9/xFRCR0bdoLn27w7T6Wbf3loUNWZvfxgN3zD1UVLnhjmW8KmycUlsDLSz2fwzPY2L0N2D3/ULZtH3y41rf7WLUDlm/17T78we7tIJTz15WbNpH983/c2LpxAY4kMOyev4iIhJ6CEpiz0vP17roQYqONJyg/8al767z/HbRPhAZ1Pd9fMLH7eMDu+Yeir7cYDwLzhDd9QO4x+Hg9jO7leYzBxO5twO75h6LiMnjrG8/X86Yf+HAtdGwOjet5vr9gYvd2EKr52+LKzdzcXKZOnUq7du2IioqiRYsW/OEPf+D48ePceOONOBwOnn766UCHaZqi0gKOHM/lcP4BdmRvYNa829i2dy0dWvQlOSEt0OH5nN3zFxGR6h0vhsxDsCvXmD/K6j5eB0cKPV8vNhoa1jX+dFdhCcxd7fm+Asnu4wG7518dlwv2H4WduZCVB8WlgY6odg4XwHwvrtbypg8A+OpH2H3Q8/0Fit3bgN3zr0lBiTEW2JlrFO1drkBHVDsLvvduTONNP1BSBu9+6/m+Asnu7cBO+Yf8lZvr1q1jxIgR5OTkEBMTQ6dOncjKymLWrFlkZGRw6NAhANLT0wMbqIle/+wBXv/sgSqvDeoyhttHPxOgiPzL7vmLiEhV2/cbt1av2w3lFb+83qoxDEyDHq0gIixw8XnjeDF8u92/+9ywx/ggGF/fv/v1lt3HA3bP/2SFJUZ7WbbVKG6eUCcc+qQY/YDVnggOxi2iJeX+258L+PJHGD/Qf/usDbu3Abvn/2u7co0rndfugrKTxgLJcTAoFXq2hkiLVUeKS41+zZ9+zDYeNmaVPtPu7cBO+Vus+XomNzeXiy++mJycHO6++24eeOAB6tc3RuTTp0/n3nvvJTw8HIfDQbdu3QIcrXlG9pvI4G5XUlZRyo7sDcxZ8hi5RzKJjIiqXObhN6+hwlXBtPHvVL52tOAQN83szMRRMzmv59hAhG4Kd/LfsH0p97004pR1y8pLqKgoZ8F0P44URUTEJypcxlVNizZX//6ug7BrhfFh56YhUD+q+uWC0bfbodTPpyoXsHwbXNLDv/v1lsZDGg8B7DsCzy+u/inixWXw9VZYtg0u7w2DLHQRS1k5rNjm//2u2w2X9bJGf6k+QH0AGFdmfrrBePhedTIPwdsr4aufYOJQ42pGq1i9w+jH/G3ZFriir//36w31A/bpB0K6uDl58mQyMzOZNGkSM2fOrPLe1KlT+c9//sP69etJSUkhNjY2QFGaLyk+lZ5pwwDo22EEXVIGceezg3hq7i3cP+5tAG4f8ywTH+/KorVvcW6PawGY/f5tdE4ZZOnGC+7l37XN2Xz0cNXr93OPZHHbrN5cOmCS32MWERHzfbyu5sLmyXYfhOcWwe3DISrC52GZYmWA5oD/NgMuTrfGk9M1HtJ4KO+48RTxo2eYvsHlgvdWQXgYnNXWP7HV1o/ZcKzI//strzCenDykg//37Sn1AeoDAD77oebC5smyDsO/voA/nA916/g8LFOs9PMdHCes2gGje0OYBSY5VD9gn37AAv8dvbN582bmzJlDfHw8jz76aLXL9OplzIjdvXv3ytdOFEP79u1LnTp1cFhh9H4GnVsPYFjP8SxZP4eNO5cDxuSxd1/5Ek9/MIncI1l89f17fJ+xhDvGPBfgaM1XXf6/VlJWzEOvj6FL60Fcd959fo5QRETMlnkIvtjk/vJ782CRB8sHUlEp5BwJzL7zi607X6nGQ/YbD32w5syFzZO9t8qY8sEKduYGbt+7Arjv2lAfYL8+YP9R+OR795ffdxQW/OC7eMxUVm6MXQKhuMy4Kt6K1A+Ebj8QssXNt956i4qKCsaOHUu9etU/zis62pg99+Ti5rZt25g7dy6JiYn06dPHL7H6w9hh03A6w3htwV8qX+vT4ULO6XYVj701jtnzbuWuK18kNqZxAKP0neryP9lTc2+hpLSIKVe/6t/ARETEJ7yZg2rFNuPDQrDLPGTv/deGxkP2GQ8dKTDmifVEWbn/57L11p4AtsNA7ru21AfYpw8A78YC3243HpwT7LIOV51H3N/UD1hXqPYDIVvcXLRoEQBDhw6tcZnMzEyganFz8ODBZGdn8+GHHzJs2DDfBulHSfHtGNr9GtZu+4IN25dWvj7x4pnsPbiNPh1G0K/jyABG6Fs15Q/w/tezWLl5Pg9N+ICoSAtNsiIiItUqKYPvdni+3rEi2JRlfjxmyz4c2P1nBXj/taHxkH3GQ6t2GPPueioQ81h6I5D9QO4xaxR/qqM+wD59QEWFd19WFJbA9x5+MRIIGgt4T/1AaPYDITvn5q5duwBo1apVte+XlZWxbNkyoGpx0+k0v97bu3dvcnJyPFonMjyaFyaZ++iza8+7n8Xr3uK1z/7CzFsWAxAdGUOzuDakJHat1bZT01IpKfPgvp8z8Ff+67Yt5sWP7+WR331CYlzrWm3f7GMgIiLeqdswiYv+tNKrdf8w9SG2Lv23yRGZq8PQSXS58I/VvnfXhRAbffr1Y6N++fPB0TUvd7QQnvj01Nefee5FJn70oHvB1oIvxgJgnfGQP/M3azwUTGOhnmP+QZt+4zxeL/tgEcnJ7XwQkbku++tPhNeJqfa9M/UDte0DADp07kbJcd9fuqXPRPpM5K3Iug255AHv7jH/04Mz2PzFUyZHZK52A24g/dK/VvueP8YCr7z+H26/dKqb0XpPYwF7jQUSExNZvXq1V+uGbHHz+HHjkYiFhdUf1Dlz5pCbm0v9+vVJSUnxaSw5OTns3bvXo3WiIjyvkndvO4SFM2r+irpV044+e9JVdlYWRaUFpm3PH/nnHNrJ39+8iptGzaB72yHehFmF2cdARES8E1sS6fW6R4/le3zO9rfmR4/V+F5stPtPenU6vXsq7PHjBX45Rt6MBSB0xkP+yt/M8VAwjYU6FHr5tB1HWND3AWA8BKkm7vYD3vYBAPty9lFwdL93K3tAn4n0mchbdWNLvV43P98/57naSDha86SX/hgLFBYUaixQA40FAtMHhGxxMzExkby8PNasWUP//v2rvJednc2UKVMA6Natm88fGpSYmOjxOpHhZ/iqJcg0a97c9G8pfamopIAHXr2M/p0u4bKB5jwBzOxjICIi3gmPjKCivAxnmOfDnDqOYpKSknwQlXliomt+pLs7D0+JjTI+zFRUwNHT1H9q2lZUpNMvx8hqYyEwdyzgj/zNHg8F01gorNy7J18V5+8P+j4AoKKsCKj+ys0z9QO17QMAEho3pKx+zX2RWazWD+gzUfD0Aw5nOOWlRYRFRHm8bjgFQd8P1DvNI939MRaIjHBoLFADjQW8z9+b2tkJIVvcHDZsGJs3b+axxx5j+PDhpKWlAbBq1SrGjx9Pbq7xmL/09HSfx+LNZbXlJbB4lg+C8ZGtW7YS5v2FMqfwdf5LN8xle/Z69uZuYcn6Oae8/9I9m2jSqKVH2zT7GIiIiPde/srzObPqhMOiebOIigjuE/DmLHh+cfXv1XQL6ckeHG1cpXG0CB583/P9//W+SfR90ZwPwadjtbEQmDsW8Ef+Zo+HgmkstO8IPDrf8/UuGZjECz/Pyx/MZn0G2w9U/96Z+oHa9gENomHn9p88X9ELVusH9JkouPqB/1tuzL/riXAnfPJ/j1Ev6jHfBGWSjP0we2H17/ljLPCnO25g0LM3eL6ih6zWB4DGAoHqA0K2uDl16lT+85//sGfPHjp37kyHDh0oKipi27ZtjBgxgtatW7NgwYIq823a1eO/XxLoEPxueK/xDO81PtBhiIiIjwxK87y42TsFonx/IVKttYiz9/59ReOh0NK0AaQ2ha373F/H4YABwT/dJgAtGtdc3PTHvkOR+oDQMzDN8+Jmj1ZQz/OLPf0uuRE4AC+em2YKjQVCR6j0AyH7tPTk5GSWLl3KyJEjiYqKYufOncTFxfH888/z8ccfs2XLFgAVN0VEREJQalPo1sL95RtEw/AuvovHTPWioFH1d6P6XJ1waBobmH2LeOqSHhAR5v7y53aEuHq+i8dMLQNYWAjkvkU80aox9G7t/vIxdeCC2j1Lxm/qRBhf4gRCmBOaNwrMvkVqErLFTYCOHTsyf/58jh07xrFjx1i5ciUTJ07k+PHj7Ny5E6fTSZcuFvkkIyIiIm5zOGDcAOjsxnRQDaLhlnO9f7BGIHjyYc1MPVoZc3SJWEGLxvC7c4yi/JkMSoWR6T4PyTSdk93Lyxd6tg7MfkU85XDANWdBdze+7KwXBbcMhfj6vo/LLL1aB2a/3Vp49sWRiD+E7G3pp7Nx40ZcLhdpaWnUrXvqJ5n33nsPgE2bNlX5vXXr1vTu3dt/gYqIiIjXIsPhhsHwzTb4eitkH676ft1IOKstnNMBGliosAnQvx18vtH/t6MNTPPzDkVqqX0zuOtCWPIjfLcDSn71cNw2CTC4PXRvaRRCrCIqwphKY9lW/+63QzNrFX9EwsPgt2fDt9vh658gM6/q+1ER0K8tDOkQuLsivHVWW/h0A5RX+He/gzQWkCBky+Lmhg0bgJpvSb/yyiur/f23v/0tr776qk9jExEREfOEOY2C3IBU2HUQnl8EhaVGYfPB0UYB1Iri6kHXFp7PK1obKfGhO8eWhLamDeDqfnBxD9iaA29/Y/QD9erA5PMDHZ33BqXB8m3g8uO3HIPb+29fImZxOoxCYL82sOcQ/OuLX8YCD4wO3FXQtVU/2rijYrWH84rWRlIj40shkWBjyxuLzlTcdLlc1f6osCkiImJNDge0jv+lmBkRZt3C5gmX9fTfB7IwJ1zZ1z/7EvGVupHGFZon2n6YxT8JNWtoXG3mL91bQMfm/tufiNkcDmjZuOpYwKqFzRMu6WH0bf7gcMBVfa11lbvYh8WbsnfOVNy0qoys9Tz53k0UFB+jacNW3HvtG+zat5H7XhxBckJ7/jHxMxrVa8Kn377M3KVPsnv/Zm4eNZMxZ99RuY0X5k9hyfo5pCb15KEJHwQsF2+4m3/mga3Mfv9WDufvp7yijHHD/sKQ9KsBmPvVk3y4/BmiIuvx/F3rApuQiIjIacTVg0t7wjvferbe0cKqf7rjgi7B+/AAM8Y/D746muxDv1z6siPnex787QcM6HxJ0I8N3M3/pU/uY9mGeUSE1yEsLILrL3yYPu0vAOD1zx7kw+XP0DjWmKS2dWJn/nTd/wEaGwW7Ed1g417Yf9T9dbzpA2LqwBV9grOo4W4bePmT+1mx6UOcDmOywGvO/SND068BOO17Vvh85O4xOGHXvs3c9lQvLuo3kVsv/ScAKzd/zGsL/sLOnB8Y1f/3la+D+oFgFhsNY3rDm8s9W8+bfuDcjtAq3rP9+IsZbSDv2D6emvd7snK3UVZRyqizbq4cKyxZN4c3Fj7EwaNZfPC3w/5P8AzczX/62xNYs3UhDWKMy297pQ1n4qgZgLXHQmDT4uaiRYsCHYJPzJgzgXuueoV2Sel8+u3LvDD/Hi7ocz3JCe2r/AdMTe7Fn8e9w9uLHj1lGxNHzaBV084s3/iB/wI3ibv5z5gzgQv6XM9F/X7H4fwD3PZUb7qkDCK+QRKXD76Tdkk9ePa/dwQsDxEREXf1bwdb98HaXe6v88Snnu2jfSKc19mzdfzJjPHPgxPer/z7T3tWc9+LF9Kn/YUAQT82cDf/rilnM27YNOpERJORtZ67/jWYt6dlER1pTDJ3bo+xVYoZJwR7/nYXGQ6/GQizF0JxmXvreNoHOB0wtr9xC2wwcrcNXDVkCjeMeBiA3CN7uXFGR3qmDqNBTPxp37PC5yN3jwFAWXkp/5w7kYFdRld5PSk+lbuvepmvvn+XwuL8Ku+pHwhuvVobY4GVGe6v42k/0CYBLuzm2Tr+ZEYbeO6ju2jVtBMP/nYehSXHuePpgXRuPZD2LfowJP1qOrTsxy1PpvsvKQ94kv9VQ6ZU+YL3BCuPhcCmt6WHom171xJdpx7tktIBGN77t6zY9CGlZSWnLNu2eXdaNe2IwxE6//ye5L89ez19O1wEQMN6CbRp3p0l6+b4M1wRERFTOH4uOnRN9s322zaBG84J3tt3fTH++fTblziv5zgiwv10n18teJJ/3w4jqBNhVKdSEruCy8WR/AP+DFd8JDkOJg71ze21TgeMHwidkszfthk8aQP1ohtW/r2wOB8XLipcFWd8L9h5cgwA3lz4VwZ3u5Kk+NQqrycnpNG2eXfCnLa8/snSTtwu3rOVb7bfqjHcNCR4n5BuVhvYnvVLnSA6MoZubQbz+Xdv+DR2M3iavzusNBY6QT1XiMg+tIMd2Ru4+Yn0yteKSwrIPbo3cEH5kSf5pyb34os1b3L10KlkH9zOpp3LSWzU2n/BioiImCg8DCacDXNXw3ITn5yc3hKu6x/cc5OaPf4pLi1k8bq3ePLWpSZF6Fve5r9g9SskxrWhaaNfPgl/9f27rM9YTGzdxowdNo30dkN9Fbb4QNsmcNsweOUryCswZ5t1I2HsAOgcpIVN8LwNvP/1LD5c/gy5hzO588oXq9ymerr3gpknx2Dz7pVs2rWCxyYu5I2FD/kxSvG1MCeMG2BcYf3lj+Ztt0syjB8AdSLM26bZzGoDqcm9WLT2P3RseRZHCw6yessCkhOC/ylqHveDS5/i029fpkmjlky44O+VRdHKdS02FjohiIer4qkOLfvxj5sWVP5+xYP2eoyZu/lPvfo1nv/obm5+Ip2mjVrRI/U8fUMpIiKWFuY0rtromgxzVsLhWhQ3YurAlX0g3UdXgJjNzPHPV9+/R3JCGinNupoRml94mv+arV/wxsKHeOymhTh+nkBx1Fm3cN159xMeFsEPO5bx0GujefoPq6oUPyX4tWwM946CD9cYT1Gvja7JxkPEYoP0VvSTedIGRg+azOhBk8nIWs8/3hpH77TziY1pfMb3gp07x6CopIDZ825l2m/eq2z7ElqcThjdC7okwVvfwKHj3m8rOhLG9ILeKcE51+6vmdEGbr74cZ7/6B5+/88eNKzXhO5thnD4uDXucHC3H7xhxMPE1W+G0+nk6w3vc/9LI3j13q1E16lXuYwVx0Kg4mbIaBbXhv2Hd1f+frzoKEUlx4mPDeKvWk3kSf6Jca154LdzK3//078vpFfa+X6JU0RExJc6Nod7R8LXW2DZVs+KnPWjjDk8z25v/N0KzB7/fPrtS1zY50azwvM5T/Nfn/ElM9+5nr9d/xEtmvxyNUpcbGLl37ukDKRtUg+27Fmt4qYFRUXAVf2MgsSSH+GHTKhwub9++0SjD+icZI2Chrd9QNvm3YmPTWJ9xhLO7na52+8FI3ePQfbBDPYf3s2U54yrsvMLD+NyVZBfmMfUa17za8ziW6mJv4wFlm+Dg/lnXueEmDpwVlsY3AEaWODLDTCvDTSIiWfqNa9WLv/PubfQumkQTzr+M0/6wfgGv7w2qOtoXvrkj+w58BNpyb0qX7faWOgEFTdDRLukdMKdEXy3ZSG90obz0fJnOaf71ZaaI6E2PMk/79g+GsQk4HQ6WfXTAnbt38S5Pa4LQNQiIiLmi46E4V3g3E6wOcv42XMIsvKg7KQp5MKc0KwhJDeCtETo1sK4xd1KzBz/7M3dxpbM1fz1+g99EKlveJL/99u/4rG3x/PXCf+lbfPuVd47cDiThIbGxK2ZB7aSkbXOcldsSFVtmhg/hwtg9Q7YfRD2HDz1lvX6UdAiDlo0hp6toWlsQML1midtYNe+TbRq2gmArNwMtmWtpeXPv5/uvWDn7jFIadaV9x785Sq01z97kPzCw9U+SEysr06E8TDAoZ3gxyzYdNJYoLT8l+WcDkhsaPQDqU2he8vgnVuzJma1gaPHD1I3KpbwsAi27V3L8h8+4F93rvVnKl7xpB88+Xy/adc3HD1+kKTG7Srft+JY6AQVN0PIn677P2a8cz2z5v2e5o3b8cfr3mRnzg+nLLdg1au8uuDP5BfksXzjB7z75Uz+dv1HtEvqEYCozeNu/is2fcScxf/A6QyjcWxzHr7xf5UT7IuIiISKMKcxV1aXnx82VF4BBcVGgTPMacynZ7ViZnXMGv98uuplzu56OTFR1qruuJv/4+/eSGlZMTPmXF/52h+vfYOUZl155dP72Zr5HU5nOGHOMG4f/QzJCWn+TEN8pGFdGHbShUeFJb88VT0yzPgyxApXaJ6Ou23g3x9PJefQDsKcEYSFhTPpsqdp1bTjGd+zAnePwems2foFM+b8loKio7hwsXTDe9w++lkGdL7ER1GLPzgdxgPBTjwUrLwCCkqgrNyeY4HT+XHPtzzz38mEOcOpW6c+fx7/Do1jm/koYnO5m/+MORPIy9+H0xFGnYhopo1/l5joBpXvW3UsBCpuhpSUZl159g+rz7jcBX0mcEGfCb4PyM/czf+ifr/jon6/80NEIiIiwSPMaTxoINSYNf65ccQjJkblP+7m/9q9NT9tSrek2kd0pPETStxtA3+/Yb5X71mBu8fgZL85/8Eqv/dMPY+3/pxpYlQSjMKc1pl6xhNmtIG+HUbQt4OJT2b0I3fzn37z56d936pjIQBnoAMQ3woPi+RYwUFufiKdvPz9Z1z+hflTeHvxo9SLbuSH6HzP0/znfvUks+bdSoOYeD9EJyIiIr7g6fn/dKw4NrB7/iJmtgGrfj5SPyB2Z2YbWLJuDtNeuZhG9ZuaFJ3v2a0PcLhcLg+mmBZ/KS+BxbMCHYX7hk6GMBO/BbZa/mD+MRAREfM9MA+OFBqT5D80JtDRyOnYfSxg9/x9Sf2AdVitHegzkTX6AfUB1mH3NmD3/D2hKzdFRERERERERETEklTcFBEREREREREREUvSA4WClDPCuJzXKpwR5m/PSvmD+cdARETEzuw+FrB7/iJgvXagz0TqB8Rcdm8Dds/fEypuBimHI/jnKvElu+cvIiJid3YfC9g9fxFQO7B7/iJ2bwN2z98Tui1dRERERERERERELEnFTREREREREREREbEkFTdFRERERERERETEklTcFBEREREREREREUtScVNEREREREREREQsScVNERERERERERERsSQVN0VERERERERERMSSVNwUERERERERERERS1JxU0RERERERERERCxJxU0RERERERERERGxJBU3RURERERERERExJJU3BQRERERERERERFLUnFTRERERERERERELEnFTREREREREREREbEkFTdFRERERERERETEklTcFBEREREREREREUtScVNEREREREREREQsScVNERERERERERERsaTwQAcg1XO5oKI00FG4zxkBDod527Na/mD+MRAREXuz2rlQYwGNBcRcagPWOwbqA8RsVmsDYG47sHv+4j4VN4NURSksnhXoKNw3dDKERZq3PavlD+YfAxERsTernQs1FtBYQMylNmC9Y6A+QMxmtTYA5rYDu+cv7tNt6SIiIiIiIiIiImJJKm6KiIiIiIiIiIiIJam4KSIiIiIiIiIiIpak4qaIiIiIiIiIiIhYkh4oJCIiIiHL5YIjhbDnIOw9DIU/P3GzqBRWZkDLxtAkFsL0da9IyCorh6zDsOcQHMqHwhLj9aJS2JwFLeKgXlRAQxQRHztSYPQBWXlVxwLfZBh9QGIDjQVErEzFTREREQk5RwphxTZYuQ3yCk59v7gM3vrG+HtkGHRvCQPToFVjcDj8G6uImK/CBT9lw7KtRgGzvOLUZYrL4PnFxt8TG0D/dtCnDdTVU25FQsKxQqN4+U0GHMw/9f3iMnj757FARBh0TYZBaZCSoLGAiNWouCkiIiIh43gx/HcNrN5hFDfcUVIOq3YYPy3i4Mq+xhWdImJNG/fC+99B7jH318k5Yqzz8To4uz1c2M0odoiI9RSWwEdrYeX26r/YqE5pOazZZfw0bwRX9IY2TXwbp4iYR8XNELI+Ywn3PDe0ymtRkTEkJ6QxrOd4Lht4O2FhoftPbvf8RUTsbsMeeOdbOFbk/Tb2HIJ/LoBzO8GFXSHcYsUNnQt1DOysoNgoUK7a4f02Ssrhi02wIROu6w+t482Lz1/s3gbsnr/dbc6COSvhcDV3bbgrKw9mL4TBHWBkd4i02H8XtQEdAzvSv2YIGpp+LX07XIQLF3nHclj43es899Fd7N6/mTuveCHQ4fmc3fMXEbEblws++R4++8Gc7VW44PONkLEPbhpqzVtUdS7UMbCbg/nwry8gt5pbT72x/yg89Rlcexb0bWPONv3N7m3A7vnb0ecbYf46c7blAr78Ebbvh5uHWnNeXrUBHQM70ZS5ISg1qSfDeo1jeK/xXDVkCrNu/4aEBsl88u2LHM4/EOjwfM7u+YuI2M3H680rbJ5sR65RLCkqNX/bvqZzoY6BnRzKN66yMquweYLLBf9ZYTx8zIrs3gbsnr/dLPzBvMLmyfYcgmc+N6a9sRq1AR0DO1Fx0waiI2Po0OosXC4XWQctOjqrBbvnLyISylZsM67U8JU9h+DVpUaRw8p0LtQxCFUlPz8UqDa3oJ7J2ythS47vtu8vdm8Dds8/lK3eYXzR6SvZR+ClL6HCzfk7g5XagI5BKNNt6TaR/XPDja0bF+BIAsPu+YuIhKKD+cb8ep6460KIjYajhfDEp+6t82O2UUQdkOp5jMFE50Idg1D0v/Ww76hn63jaD7hc8NY3cO9IiIrwLs5gYfc2YPf8Q9GRApi72rN1vBkLbD8AX/4EQzt6HmMwURvQMQhVKm6GoKLSAo4cz8XlMuaV+GjFc2zbu5YOLfqSnJAW6PB8zu75i4jYgcsFb39jXLXlidhoaFjX8/39dw10aAZx9TxfNxB0LtQxsIMdB4w58TzlTT+Qdxw+XAtX9fV8f4Fi9zZg9/ztwOUyHiRYWOLZet6OBf63HjolQdNYz9cNBLUBHQM7sUVxMzc3l+nTpzNv3jwyMzNJSEhgzJgxPPLII0yePJmXX36Z2bNnM2nSpECHaorXP3uA1z97oMprg7qM4fbRzwQoIv+ye/4iIr9WWGLcsrVutzFnVJjTGJgPTIU2TcDhCHSEntu6z/jxl+IyWLQJrrBIYUPnQh2DX9t9EL7eAlmHobTMeFBWl2To19aaD8oA40Fi/pwxYsU2GNbJOl9y2L0N2D3/XysuNcYCa3dDfhE4ndCkvnFXQmpTa44Fdh2EjXv9t7/Scvj8Bxg7wH/7rA21AR0DOwn54ua6desYMWIEOTk5xMTE0KlTJ7Kyspg1axYZGRkcOnQIgPT09MAGaqKR/SYyuNuVlFWUsiN7A3OWPEbukUwiI34ZuT785jVUuCqYNv6dyteOFhzippmdmThqJuf1HBuI0E3hTv4bti/lvpdGnLJuWXkJFRXlLJhe7s+QRUR8wvXzU78Xbjz1Cse9ebBmFzRrCL8ZaPxpJcu2+H+fq3bAqB7WuC3V7mMB0HjghIP58Poy2JV76ns7co0C4eD2MCrdKHZYxb4j/p8H0+UyCpwj0/27X2/ZvR9QH2BwuYwrnD/53vii7mRZecYXn01iYfwAaNE4MDF6KxBjgbW74LJeEFPH//v2lN37AFA/YCchXdzMzc3l4osvJicnh7vvvpsHHniA+vXrAzB9+nTuvfdewsPDcTgcdOvWLcDRmicpPpWeacMA6NthBF1SBnHns4N4au4t3D/ubQBuH/MsEx/vyqK1b3Fuj2sBmP3+bXROGWT5Dsyd/Lu2OZuPHq76SM3cI1ncNqs3lw4IjSt4RcTeXC5jPsqvfjr9ctmH4anP4LZh0MIiUw8dKYANmf7fb3GZcdXLIAvcxWT3sQBoPABw4BjM+gyOFdW8TFkFLNpsPJBn3EBwWuTqreXbArPfFdvggq4QHhaY/XvC7v2A+gDD/9YbX3Kezv6jMPtz+P25kJLgn7hq63ixUWj0t7IKWJkB53by/749Zfc+ANQP2ImFvp/13OTJk8nMzGTSpEnMnDmzsrAJMHXqVLp3705ZWRmtW7cmNtYiE2d4oXPrAQzrOZ4l6+ewcedywJg89+4rX+LpDyaReySLr75/j+8zlnDHmOcCHK35qsv/10rKinno9TF0aT2I6867z88RioiYb9WOMxc2TygqhX8vOfWKjmC1bR9UBOjp5VZ9YrLdxwJgv/FARYXRrk9X2DzZml2weJNPQzLVT9mB2W9+sfGlkBXZvR+wWx8AxlWZZypsnlBSBi9+CQUezl8ZKDsOGIXGQNBYwLrs2A/YRcgWNzdv3sycOXOIj4/n0UcfrXaZXr16AdC9e/fK19577z0uv/xyWrVqRd26denQoQP3338/+fn51W7DKsYOm4bTGcZrC/5S+VqfDhdyTrereOytccyedyt3XfkisTEWuxfBTdXlf7Kn5t5CSWkRU65+1b+BiYj4gMvleZHiaCGs3emTcEy355A9911bdh8LgL3GA5uyjKuxPPHVT1AeoGKBJ4rLPH9CupnUD1iXnfoAgMWbPVv+eDGs2u6bWMwW6LGAK0BfstaW3fsAsF8/YBchW9x86623qKioYOzYsdSrV/2s39HR0UDV4ubMmTMJCwvjkUce4ZNPPuH3v/89//rXv7jwwgupqLDAaK8GSfHtGNr9GtZu+4IN25dWvj7x4pnsPbiNPh1G0K/jyABG6Fs15Q/w/tezWLl5Pg9N+ICoSC8emyciEmS2H4DsI56v9/UWawzWM/MCt++848aDGKzI7mMBsNd44Gsv5qI7UhiYKR88lZUX2L7KysVNu/cDduoD9hyqfq7dM1m21RpjgT0HA7fv48XGeMCK7N4HgL36ATsJ2Tk3Fy1aBMDQoUNrXCYz0xi9nVzc/Oijj0hI+GWikXPOOYeEhATGjh3L119/zeDBgz2OpXfv3uTkeHbtemR4NC9M2urxvk7n2vPuZ/G6t3jts78w85bFAERHxtAsrg0piV1rte3UtFRKygrNCBPwX/7rti3mxY/v5ZHffUJiXOtabd/sYyAi4q0OQyfR5cI/erxeZh60bpNKeWlw92Xn372Y2Cap1b5314UQG13zurFRv/z54OjT7+doITzx6amv9x14Lkf3+f4pBhoLmJ8/+HY8EExjgcv+toVwLz6Y3f/oi6z/6EHzAzJR884jGPCbf1f73pn6AHC/H6ipD3jvv59y9+W/czNa7/mzDdipH7BLH9Bu4I2kX/KQx+vtPwrtOnSn+HgAq4duOPf2j4lL7l7te/4YC5wzbBR5mevcC7YWrDYWAHPbgcYC9pKYmMjq1au9Wjdki5u7dhmzC7dq1ara98vKyli2bBlQtbh5cmHzhN69ewOwd+9er2LJycnxeN2oCM8Ho93bDmHhjJq/ZmvVtKPPnvSVnZVFUWmBadvzR/45h3by9zev4qZRM+jedog3YVZh9jEQEfFWqxLv7zTIPXSUgqP7TYzGfBWumm88iY2Ghm6cQpxO95arTu7BPA54OSbwhMYC3v0DBXI8EDRjAYfDq8ImQEmZw+sxr7/EtDhW43vu9gHgfT9QWubyyzHyVxswUzD0A+oDDM2LvJ9IOzfvGEcPBHc/UFFR89PP/DEWOHT4CFlB2g8Esg8Ac9uBxgLirpAtbh4/blwnXlhYfcV8zpw55ObmUr9+fVJSUk67rcWLjUp+x44dvYolMTHR43Uiw8/wlXOQada8uenf0vpSUUkBD7x6Gf07XcJlA815AprZx0BExFtREd4/7jg+rj7l9SNMjMZ8TkfNxdujZ+iGY6OMDzMVFXD0DLeX17StxnENiSxLOkOUtaexgO/zN3s8EExjgdLifCLqVD810+lEhlWQlOT7/9+10SC2fo3vnakPAPf7gZq2FRHu8MsxslofANbrB0K5D4iu4/0MdI0b1aN+ZHD3A05nzYUrf4wF4ho2wKF+oFpmtgONBezFm9rZCSFb3ExMTCQvL481a9bQv3//Ku9lZ2czZcoUALp164bDUfOHwL179zJt2jQuvPBC0tPTvYrFm8tqy0tg8SyvdhcQW7dsJSzSvO35Ov+lG+ayPXs9e3O3sGT9nFPef+meTTRp1NKjbZp9DEREvLUrF55c4Pl6reJh145t5gdksme/qPlJpdXdOnayB0cbV2kcLYIH3/du/9+tWEzdOt6t6wmNBXyfv9njgWAaC7z4JfzgxfyZ0/98E52fu8n8gEy0Mxf+WUMfd6Y+AGrfD1x12YW8+4jvJye1Wh8A1usHQrkPyD4Mj33s+XrNGkLGj99zmo/IQeF0fZw/xgJLF833+qpPT9i9H9BYQNwVssXNYcOGsXnzZh577DGGDx9OWloaAKtWrWL8+PHk5hqzK5+uYJmfn8+ll15KZGQkL7/8sj/CDojHf78k0CH43fBe4xnea3ygwxAR8YmWjaFFnOcPvRhU/TSWQSe5Uc3FTV9rXA+/FDb9zY5jAQjt8cDAVM+Lm41ioGNz38RjpuYNwemAigA99KRFXGD262t27AdCuQ9o1hDaNoEMD2eaGZRK0Bc2AZLjvPsCxwz1o6CB9S6oPCM79gEQ2v2AnYTs09KnTp1K48aN2bNnD507d6Zr166kpqbSt29f2rRpw7nnngtUnW/zZIWFhVx88cXs2LGDzz77jGbNmvkzfBEREa85HHBuJ8/WiYuB9OqnqQ46yQEsLIRqUUNCT/tmxhcBnji3o3GrZrCLDIfEBoHbfyD7IBFPeDoWaBANvU4/Y1vQCOT5uEWcNQrAInZigeGLd5KTk1m6dCkjR44kKiqKnTt3EhcXx/PPP8/HH3/Mli3GU06rK26WlpZyxRVXsHr1aj755BM6dfLwrCAiIhJgPVrB+V3cW7ZeHZg4FCLCfBuTWVITISxAI5gOFriqTQSMKxt/N8S4GtMdA9rBoDSfhmSqQLXFBtHGFXEiVtA5CS5Od2/Z6Ei4aQhEBfe025XaJEBkgMYt7XXdk0jQCdnb0sF4AND8+fNPeT0/P5+dO3fidDrp0qXqJ7+KigrGjh3LF198wf/+9z/69u3rr3BFRERMdVF344mhn3wPx4urX6ZNAlzXH+Jrfj5H0KkfBekt4bud/t1vdCT0tMjVrSJgzCl35wXwnxXwY3b1y0RFwHmdYFhna12JNKAdLN4E/r4zvX9q4L5cEfHGeZ2hXhTMXwfHanh4TqvGxligaQCviPZUdKRxlekKP08VHhkGfdr4d58icmYhXdysycaNG3G5XKSlpVG3btVZgG+77Tbeffdd/vjHP1K3bl2++eabyvfatm1LQkKCv8MVERHx2qA0OKstrNtt/GzOgvIKY3B+xwXQ3MPbVoPFwFT/Fzf7tjFuhxWxkthouOVc2H8Ulm+FpVuMPiDcCZf3gZ6toY4F/1/H1zfmB92U5b99Oh3Qv63/9idiln5toVdr+H4PrN1ltJsTY4Hbh0OLxoGO0DsDU/1f3OyVAnX1sBiRoGPL7x03bNgAVH9L+ieffALAP/7xD/r371/l5+OPvXjcnIiISICFh0HvFPjdOcYt6GBc8WDVwiZASoJxu52/1I30fO4ykWDSJBYu6/VLHxBTB/q3s2Zh84QR3Y2Co78Mbg8N/PB0ZBFfCA8zvsy48VdjAasWNsGY/7aHH++oqBNuXOUuIsFHxc1f2blzJy6Xq9qfCRMm+DlSERERqY7DAVf1NT6Y+cOY3qH5ZFQRK2sR579CQ0J9Y6oPEQkul/f+pVjra5f0hMb1/LMvEfGMhb+r9d7piptWlpG1niffu4mC4mM0bdiKe699g137NnLfiyNITmjPPyZ+RqN6TXjpk/tYtmEeEeF1CAuL4PoLH6ZP+wsAmPvVk3y4/BmiIuvx/F3rApuQG9zN+dNvX2bu0ifZvX8zN4+ayZiz76jcRlFJAY+/eyNb9qzC4XByw4hHGNztCgBemD+FJevnkJrUk4cmfBCYJEVEpFoN6sIVveGN5e6vc7Sw6p/u6NbCuJ0vGJlxHsw8sJV/zp3IsYI8SsuK6NtxJBNHzsDpdFpiXGDG+Adg6fdzeX3hg+AyZnH82w3zSYxrbYljYGfndzFusc085P46nvYDYU5jPsJgnZbC3Tbw8if3s2LThzgdxlNYrjn3jwxNv6bKtnbt28xtT/Xion4TufXSfwLB//nA3fxPqC7H97+exf++eQEcDhw4uGrIVIb1GgfAknVzeGPhQxw8msUHfzscgAzldOpFwVX94OWv3F/Hm7FAh2bGXL/ByN02MP3tCazZupAGMcZUe73ShjNx1AzA+p+JzTgGVh8P2V2QnqJ9a9GiRYEOwSdmzJnAPVe9QrukdD799mVemH8PF/S5nuSE9lUaYNeUsxk3bBp1IqLJyFrPXf8azNvTsoiOjOHywXfSLqkHz/73joDl4Ql3c05N7sWfx73D24sePWUb7345k4iwOrz2x21kH9rB5Fn9SG87lNiYxkwcNYNWTTuzfOMH/ktKRETc1isF8gqMByW444lPPdt+2yYwbkDwPmjFjPPgvz+ewsAuoxk9aDIlpUXcNqsPq9qdR7+OF1liXGDG+Gfb3rW88un9TL95EfENmlNQdAyn0ygAWeEY2Fl4GNw8BGYthAPH3FvHk37A4YDxA42pMIKVu23gqiFTuGHEwwDkHtnLjTM60jN1GA1i4gEoKy/ln3MnMrDL6CrbD/Y24G7+UHOOrZp25p+3LSMmugH7D+/h90/2oFOr/jSPb8uQ9Kvp0LIftzyZ7r+kxCPdWhhXcM5d7d7yno4FWjaGCWdbfywARj9w8hecJ1j9M7EZx8Dq4yG7s+Vt6aFo2961RNepR7ukdACG9/4tKzZ9SGlZySnL9u0wgjoRxr11KYldweXiSP4Bf4ZrCk9ybtu8O62adsThOPW//Jfr5zCq/y0ANItLoVvbIXz9w/s+jV1ERMwzrDNc1tP87bZvBhOHBu/VWmadBx04OF54BIDi0kLKy0tpHNvMp7Gbxazxz3tfPs7lg+8ivkFzAOpG1ScqUpMrWkX9aJg0HJo1NHe7YU64/mxIb2nuds3kSRuoF92w8u+Fxfm4cFHhqqh87c2Ff2VwtytJik/1ddim8SR/qDnHnqnnERNtPCq8ScMWxNVP5MCRPT6NXcx1dnu4si+YXX9s2wRuPQ+iIkzesEk8bQM1sfJnYrOOgZXHQ2LTKzdDUfahHezI3sDNT6RXvlZcUkDu0b2nXW/B6ldIjGtD00Z+nInZJN7m/Gv7D++ukn9io9bsP7zbrDBFRMQPhnSEpDh4+xs4mF+7bYU7jbn1hnQAZxB/DWzWefD3l/6TaS9fzEff/Iv8gjzGDptGu6QeJkfrG2aNf3bt30TTuNbc9a9zKCg6ylkdRzH+/AcJ+/nqTQl+DaLhzguMq7iX/gSuWm6vRZxxK7rZBVOzedoG3v96Fh8uf4bcw5nceeWLlbdrb969kk27VvDYxIW8sfAhf4RuCk/ydzfHNVs+51hhHmkt+vgiZPGhganQvCH8Z4X7V3LXJMxpTHsxrLPx92DlcR+w9Ck+/fZlmjRqyYQL/l5ZELTyZ2KzjoGVx0Oi4mZI6dCyH/+4aUHl71c8ePr7Z9Zs/YI3Fj7EYzctxBGs19ifgac5i4hI6EptClMvgv99Dyu2Qkm559tonwije0NiA/Pj8wUzzoMfLn+WoT2u5dpz/0Re/n6mPDeU9i360CttuJmh+owZ45/y8jK27V3Lo7/7lApXBX955RI+WvEvLhs4yaexi7kiw42Hf3VvCR98B3s8mIfzhJg6MLSj8RPMBY2TedIGRg+azOhBk8nIWs8/3hpH77TziYyIZva8W5n2m/cs+ZnAnfyLSgrcynFH9gZmvnM9fx43h+jIGJ/EK76VkgBTLoIFG+DrLVBc5vk22jYxbnNv3sj8+HzB3T7ghhEPE1e/GU6nk683vM/9L43g1Xu3El3H+k9JMuMYWH08ZHcqboaIZnFtqnyzcrzoKEUlx4mPTap2+fUZXzLznev52/Uf0aJJe3+FaSpPc65Jk4Yt2Ze3q/KS85y8nfRKO9/UWEVExD/qRMDoXnBhV1i1A77ZBtmHT38VV/0o6NHKuOKjqUWKmmDeefDD5c/wytQtADSq14S+HS5ifcYSSwzmzRr/NGnUkkFdxlTetj6oyxg271oBKm5aUtsmcNeFsPsgfL0VNuyBotKal3c6oFVjGJAK6a0gwkIX7HrbD7Rt3p342CTWZywhOSGN/Yd3M+W5oQDkFx7G5aogvzCPqde85tP4a8vd/LMPZpwxx137NvHnl0dx91Uv0yVlkP+SENNFhsPFPWB4F1j981hgb97pxwIxdaBHSxiYFvxXbJ/Mkz4gvsEvrw3qOpqXPvkjew78RFpyL0t/JjbrGFh5PCQqboaMdknphDsj+G7LQnqlDeej5c9yTveriQiPPGXZ77d/xWNvj+evE/5L2+bWfWK8JzmfzuBuVzJ/xXN0anUW2Yd28H3GEiaPedZHUYuIiD9ER8Lg9sZPUSnsPQR7Dxt/r3BBZBgk1IcWjY3bWS14sZJp58FmcW1Y/dOnXNj3BgpLjrMuYzFXDL7bR1Gby6zxz7k9rmPFxg85v/cEXK4KvtvymYobFudwQKt448d1ljFdxZ5Dxp9l5cZVmXUjITnOuDrLSgXNk3nSBnbt20Srpp0AyMrNYFvWWlo27USrph1578Ff5t9//bMHyS88XPkk8WDmbv4pzbqeNsdd+zZz/0sXcccVL6iQEUKiImBQmvFTXGoUOPfmQWEpVFQY7T4h1piGomHd0B8LHDicSULDZAA27fqGo8cPktTYeAS8lT8Tm3UMrDweEhU3Q8qfrvs/ZrxzPbPm/Z7mjdvxx+veZGfOD6cs9/i7N1JaVsyMOddXvvbHa98gpVlXf4ZrCndzXrDqVV5d8GfyC/JYvvED3v1yJn+7/iPaJfXgyiFTePydG/jNo21xOsOYNPrpyqdGioiI9UVFQNumxk+oMeM8OPWa15j9/iTe//opSstL6N/pEoamXxOAbLxjxvhnSPdr2Jq5ht893pkwRxhdUs5m9KA/+DMN8SGHA+LrGz+hyN028O+Pp5JzaAdhzgjCwsKZdNnTtGraMQARm8vd/E/n2f9O5njREV78+F5e/PheAH438jH6tL/AFyFLANSJgDZNjJ9Q424bmDFnAnn5+3A6wqgTEc208e9WPkjL6p+JzTgGVh8P2Z2KmyEkpVlXnv3D6jMu99q9W/0QjX+4m/MFfSZwQZ8J1b4XHRnDn8fNMTkyERER3zPjPNguqQdPTVpmcmT+Y8b4x+l0cvPFM7n54plmhibiF+62gb/fMN+t7f3m/AdrGZF/uZv/yX6d42MTF5oYkYh/udsGpt/8eY3vWf0zsRnHwOrjIbuzyDTZ4q3wsEiOFRzk5ifSycvff8bl5371JLPm3Wqpb2l+zdOcT+eF+VN4e/Gj1Iu2yGzSIiJie2aeB606LtAxELuzexswM/8l6+Yw7ZWLaVQ/BC//l5Clz8TqB+3G4XK5TjevrgRIeQksnhXoKNw3dDKEeTbF12lZLX8w/xiIiPjCA/PgSKExz+RDYwIdjZyO1c6FGgtYYyygPsA61Aasdwys0AeA+gErsVobAHPbgd3zF/fpyk0RERERERERERGxJM25GaScEUbF3yqcEeZvz0r5g/nHQERE7M1q50KNBTQWEHOpDVjvGKgPELNZrQ2Aue3A7vmL+1TcDFIOh70vZbZ7/iIiInY/F9o9fxG1AR0DEbu3AbvnL+7TbekiIiIiIiIiIiJiSSpuioiIiIiIiIiIiCWpuCkiIiIiIiIiIiKWpOKmiIiIiIiIiIiIWJKKmyIiIiIiIiIiImJJKm6KiIiIiIiIiIiIJam4KSIiIiIiIiIiIpak4qaIiIiIiIiIiIhYkoqbIiIiIiIiIiIiYkkqboqIiIiIiIiIiIglqbgpIiIiIiIiIiIilqTipoiIiIiIiIiIiFiSipsiIiIiIiIiIiJiSSpuioiIiIiIiIiIiCWpuCkiIiIiIiIiIiKWpOKmiIiIiIiIiIiIWJKKmyIiIiIiIiIiImJJKm6KiIiIiIiIiIiIJYUHOgCpnssFFaWBjsJ9zghwOMzbntXyB/OPgYiInek8YL1joPOgmM1qbQDMbQd2z19EbUDHQMRdKm4GqYpSWDwr0FG4b+hkCIs0b3tWyx/MPwYiInam84D1joHOg2I2q7UBMLcd2D1/EbUBHQMRd+m2dBEREREREREREbEkFTdFRERERERERETEklTcFBEREREREREREUtScVNEREREREREREQsScVNERERGygrhwNHobzC+L3CZTyBU0Ts41jhL31AeQWUlAU2HhHxr7JyOHBMYwERCT16WrqIiEgIqnDB1hxYtxv2HILsw798mAE4VgTT5kJyHLRJgL5toWHdgIUrIj6QXwTfboeM/UY/cLTwpPeK4Y/vQNMG0CIOurWATs3BqUsfREKGywXb9sHa3bDnIGQdPnUs8OefxwIp8dC3DcTVC1i4IiJeU3FTREQkhJSVw9dbYdkW4+qM08kvhh+zjZ9PN0CXZDi3E7SO90+sIuIbWXnwxSbjy42TCxm/VuEyvvjIPmwUQRvWhQGpcE4HqKNPCSKWVV4By7fC11tg39HTL3u8GH7KNn4W/GB8yXFuR2jb1D+xioiYQcOWELI+Ywn3PDe0ymtRkTEkJ6QxrOd4Lht4O2FhoftPbvf8RUT2HIT/rIDsI56vW+GC7/fAhj0wuAOM7A6RFuwy7X4usHv+dldWDgs3wsIfjDbtqcMF8L/1sDIDrj0L2lmwuKE2oGNgd1l58J9vIPOQ5+u6XLBxr/EzIBUu6QFREebH6Gt2bwN2z1/sSf+jQ9DQ9Gvp2+EiXLjIO5bDwu9e57mP7mL3/s3cecULgQ7P5+yev4jYj8tlXKX1v/XeFTSqbAv48kfjg83vzoHEBqaE6Hd2PxfYPX87yjsOL34Je/Nqv62D+fD058aV3KPSwemo/Tb9TW1Ax8COvvoJ/rvm9Fdsu2v5VticZYwFkhrVfnuBYPc2YPf8xV40q04ISk3qybBe4xjeazxXDZnCrNu/IaFBMp98+yKH8w8EOjyfs3v+ImIvLhfMX2f81LawebLcYzB7oTmFkkCw+7nA7vnbTe4xeOoz89vrok0wZ6W5fYu/qA3oGNjNgg0wb7U5hc0T8o4bX3TsyjVvm/5k9zZg9/zFXlTctIHoyBg6tDoLl8tF1sGMQIfjd3bPX0RC2+cbjas2feF4MfxrkVE4sTq7nwvsnn8oO1ZktNPDBb7Z/soM40owq1Mb0DEIZV/+CJ9875ttF5bA84thnxdT3gQbu7cBu+cvoU23pdtE9s+dV2zduABHEhh2z19EQtPOXPifhx9m7roQYqONpyY/8emZl88vMubxnDTcmremnszu5wK75x+KXC54Z6VxG7m7PO0DwCicpCVC5yTv4gwWagM6BqFob57nX0B42g8UlMCby+GOCyDM4pdH2b0N2D1/CV0qboagotICjhzPxeUy5tb4aMVzbNu7lg4t+pKckBbo8HzO7vmLiD2UlhtFR5eHt4vGRhtPRPbE9gOw9CfjCcpWYfdzgd3zt4s1u2BDpmfreNMHgFFEvXck1K3j+bqBoDagY2AH5RXw1grPp47wph/Yc8iYqmJ4F8/WCyS7twG75y/2YoviZm5uLtOnT2fevHlkZmaSkJDAmDFjeOSRR5g8eTIvv/wys2fPZtKkSYEO1RSvf/YAr3/2QJXXBnUZw+2jnwlQRP5l9/xFpHp7DsKug1BSZjz5s30zaFwv0FF5b8lm2H/Uf/ubvw56tYZ6Uf7bZ23Y/Vxg9/yrU1wGGzPhSCE4HBBfDzo2t+5VSCVlxvx6/nKkEBb8AKN7+W+ftaE2oGNQnaw84wu7kjKoEwFpTSEhNtBReW/ZVsj049zYn26APm28+4IkEOzeBuyev9hLyBc3161bx4gRI8jJySEmJoZOnTqRlZXFrFmzyMjI4NChQwCkp6cHNlATjew3kcHdrqSsopQd2RuYs+Qxco9kEhnxyyfSh9+8hgpXBdPGv1P52tGCQ9w0szMTR83kvJ5jAxG6KdzJf8P2pdz30ohT1i0rL6GiopwF08v9GbKI+IjLBWt3wZIfYffBqu85MAob53WCtk0DEp7XyiuMDzT+VFpuzL13Xmf/7tdbOhfqXHjCkQL4fBOs2g5FpVXfi42Cs9oZTwWPighMfN5au8uYF9efVmbARd2hjgU+Qdi9DwD1Aydbv9sYC+yo5hkq7ZsZY4G0RP/HVRsVLuOuCn8qr4AV22BEN//u11t27wfUB4idWGBo4r3c3FwuvvhicnJyuPvuu3nggQeoX78+ANOnT+fee+8lPDwch8NBt24W6aHdkBSfSs+0YQD07TCCLimDuPPZQTw19xbuH/c2ALePeZaJj3dl0dq3OLfHtQDMfv82OqcMsnQHDu7l37XN2Xz0cNUJqnKPZHHbrN5cOiA0ruAVsTuXC97/Dr6qYeDvAjZlwY/ZcFVfo8BhFZv2+u7hIaezfBsM7QhOC1zppnOhzoUAOUfgudM8bOdoEXz2A2zcC7ecC/UtcmUy+P8LDjCKw2t2Qn8L9Jd27wNA/QAYY4GP1xsP36vJT9mwJRtG94bB7f0XW21tzYEDAXjg34qtcH4Xa1z1bvd+QH2A2IkFuiTvTZ48mczMTCZNmsTMmTMrC5sAU6dOpXv37pSVldG6dWtiYy18P8IZdG49gGE9x7Nk/Rw27lwOGBMI333lSzz9wSRyj2Tx1ffv8X3GEu4Y81yAozVfdfn/WklZMQ+9PoYurQdx3Xn3+TlCEfGFz36oubB5sgoXzFkJG/b4PiazrNkVmP0ezIfdhwKz79rSudB+58JjhfC8m08R35sH/15iXKFsBQfzT70a3V/W7AzMfmvL7n0A2LMfWPLj6QubJ7gwpnmw0v/vtQEaCxwtgoz9gdl3bdm9H7BjHyD2EbLFzc2bNzNnzhzi4+N59NFHq12mVy9j0qDu3btXvrZ06VKGDRtGs2bNqFOnDsnJyVx99dVs3rzZL3H7ythh03A6w3htwV8qX+vT4ULO6XYVj701jtnzbuWuK18kNqZxAKP0neryP9lTc2+hpLSIKVe/6t/ARMQn8n++GstdLuDDtZ5PyB8oewJYYNwToIKKGXQutNe58MufIM+DK5x3HwxcscBTgWyHew55/iCzYGH3PgDs1Q8UlcIn33u2zodrjVuvrSCQXzYG6ssVM9i9H7BTHyD2ErLFzbfeeouKigrGjh1LvXrVPzEiOjoaqFrczMvLo2vXrsyaNYvPPvuMxx57jI0bN9K/f38yMz18HGUQSYpvx9Du17B22xds2L608vWJF89k78Ft9Okwgn4dRwYwQt+qKX+A97+excrN83lowgdERVpkdmwROa2VGZ5/ODlwzLjFK9gVlkBuAG5DOyGQhdXa0rnQPufCsnL4Zpvn6329xfxYfCGQ7bCoFHLzz7xcMLJ7HwD26gdWbTceHOSJwwXG1C/BrrQccg4Hbv+ZGgtYlp36ALGXkC1uLlq0CIChQ4fWuMyJYuXJxc1LLrmEJ598kiuvvJJzzjmHsWPHMm/ePI4cOcLcuXN9G7SPXXve/TgdTl777JdvaaIjY2gW14aUxK4BjMw/qst/3bbFvPjxvUwb/y6Jca0DF5yImMrb27YDdbu3JwIxv1aV/fvxCe2+oHOhPc6FW3Ig34uH7ew+GNgvD9y1P8DtMND7rw279wFgn37A2yuxrTAWOJgf2LtNrNwHgPoBu/QBYi8Ol8uqN5acXosWLcjMzGTt2rXVPgm9rKyMZs2akZubS0ZGBm3atKlxWwcPHiQ+Pp6nn36a2267zeNYevfuTU6OZ5cDRYZH88Ik/8wUf/e/hnBWx1FcOeQer7cx8elUSsoKTYvJH/nnHNrJpFl9GDf8AS4bWPvJks0+BiLivZH3rSa6geePPc3atJDlr13vg4jME5/SjyG3VP9l210XQmz06dePjTIeCFRRYcybVZOjhfDEp6e+nrf3B76YdaEHEXvHn+dB0LnQjHNhMJ0HW/W8gj5X/9OrdRc9cwmHdq8xNyCTDbrhTRLbD6n2vTP1A+72AVBzP7DizZvZu+Fj9wP2ktXGw2BuO/BX/qHaD1xwz1fUT6j5M15N9mcs56sXrvJBROZpmNSVYZM/qfY9f4wFjh3YzoKZgz2I2DsaC1hvLADB1Q+ItSQmJrJ69Wqv1g3Zp6UfP34cgMLC6hvVnDlzyM3NpX79+qSkpJzyfnl5ORUVFezatYs//elPJCYmctVV3p3kcnJy2LvXs/sboiKsdRl4dlYWRaXmPbrX1/kXlRTwwKuX0b/TJaZ04GD+MRAR75WWFnOGcX21Co4f87i/9jdXzL4a34uNhoZudp9Op/vLnqykuMgvx8hq50HQuTCYzoP1Wh3wet19OVnsD/J+oKiw5uPsbj/gbR8AcDD3gPqBGpjZDvyRfyj3AyXF3hVXCgvyg34sUBwWX+N7/hgLlJYUqw+ogd3HAhBc/YDYR8gWNxMTE8nLy2PNmjX079+/ynvZ2dlMmTIFgG7duuFwOE5Z/5xzzmHZsmUAtGvXjkWLFpGQkOB1LJ6KDPfmY3ngNGve3PRvqHxp6Ya5bM9ez97cLSxZP+eU91+6ZxNNGrX0aJtmHwMR8V5h3m5i41t5vF758RySkpJ8EJF5YutH1fjeUTe6IE+u1qiOo6LYL8fIaudB0LkwmM6DEeVHAHC5XNWO82pSUV5KTLh//o/XhpOSGt87Uz/g6ZWb1W4jJlL9QA3MbAf+yD+U+4GiI3sgubPH65Ueywr6PiCmQc0FL3+MBdBYoEZ2HwtAcPUDYi3e1M5OCNnb0idPnszs2bNp0aIFn3/+OWlpaQCsWrWK8ePHs337dkpLS7ntttt4+umnT1n/p59+4vDhw+zYsYMZM2awf/9+li1bRsuWnjVsb5WXwOJZftmVKYZOhrBI87ZntfzB/GMgIt5buwte+9rz9e6/GBJizY/HTGXlcO873j/N9cHRxlUahwvgwfc9X/+cDjC6l3f79oTOA9Y7BsF0HnS5YMYnkJXn2XrpLWHC2b6JyUwLf4CP13u3bm37AIC/Xw71av6exTRWawNgbjuwe/61tXEv/HuJ5+vdMwKS40wPx1QVLvjTO1Ds4QOTTqhtP3BWW7jmLO/27Qm1AR0DEXeF7AOFpk6dSuPGjdmzZw+dO3ema9eupKam0rdvX9q0acO5554LVH2Y0Mnat29Pv379uOaaa/jiiy84duwY06dP92cKIiLipa7JxlUJnmifGPyFTYDwMGjeMHD7bxHkH/hEABwOGJTq+XqD0syPxRdaNA7cvhvV9U9hU6S2OjaDxvU8WyclPvgLmwBOR2DjDGQfJCJSnZAtbiYnJ7N06VJGjhxJVFQUO3fuJC4ujueff56PP/6YLVu2ADUXN0/WsGFD2rVrx7Zt23wdtoiImCA8DMYNNAb/7qgXBVf29W1MZmrt3SwppmhV8zRfIkGlX1vo1Nz95Qe3h3ZNfRePmVrEud+/mS2Q/Y+IJ5xOGDcAwt38xBsd6Z+rEc3SOoDn4xSNBUQkyIRscROgY8eOzJ8/n2PHjnHs2DFWrlzJxIkTOX78ODt37sTpdNKlS5czbmf//v389NNPtG3b1g9Ri4iIGdIS4XfnQOQZZpduVBcmDYP4+v6Jywz9PH/4qynaNoEECx0nsbcwp3GLebcWZ152SAe4zA/TLZglpo57efnCWRoOi4WkJMDNQyEq4vTLxUbDbedB0wb+icsM/QLUFlvEQfNGgdm3iEhNQvaBQqezceNGXC4XaWlp1K1bdTLmcePG0a5dO9LT02nYsCFbt27lySefJDw8nDvvvDNAEYuIiDc6JcGfL4FvMmD5VmNuqROaN4SBadC7NdQ5w4eeYJMcZ1w1sSPXv/u1yi27IidEhhsFzq05sGwrbMg05uM8oW8b4/91SwveYjkwDdbt9u8+E+pDqvdz/YsERGqiMRZYmWH0A4eO//JeYgMYmAp92py5ABpsmsQaU+r8lOPf/WosICLByJbFzQ0bNgDV35J+1lln8frrr/PUU09RVFREixYtGDp0KPfddx+tWnn+5F0REQms2Gg4vwsM6wQPvA/HiqB+FEy5yJiXz6qGdoIdX/lvf/H1AnelmEhtOB3QvpnxU1gCD38I+cXGvLzX9Q90dN5r18Qoyu4+6L99DukYuNvhRWqjXhSc1xmGdqw6Frh3pLXHAud28m9xs2Fd6KGPxCIShFTc/JVJkyYxadIkf4ckIiI+5nT+8qHc6bD2hxkwCo3dW8J6P125de1Zxm2+IlYWHfnL/2Or9wEOB1zTDx7/FMorfL+/dk2hfzvf70fEl0JtLNC+mXHV6art/tnf1f3OPN2PiEgg2LJrOl1x08oystbz5Hs3UVB8jKYNW3HvtW+wa99G7ntxBMkJ7fnHxM9oVK8JL39yPys2fYjTEQbANef+kaHp1wDwwvwpLFk/h9Sknjw04YMAZuMed3P+9NuXmbv0SXbv38zNo2Yy5uw7KrdxuvesdjxExF6u6APb9sHxYvfXOVpY9U93DG4PbYP0QStmnAcyD2xl9vu3cjh/P+UVZYwb9heGpF8NwNyvnuTD5c8QFVmP5+9aF5gkT8Pd/F/65D6WbZhHRHgdwsIiuP7Ch+nT/gIAZs27jY07l1Vuc8+BH7lp5HRGD5rMknVzeGPhQxw8msUHfzscoCylJs0bwQVd4X/r3V/Hmz4gMswopAbjVZtmjH+nvz2BNVsX0iDGeFpSr7ThTBw1A7DGWNDdY3DCrn2bue2pXlzUbyK3XvpPAP677Bnmf/McTkcYFRVlXHTWREYPmgwEfz9od6N7wZZsOOJBm/amHzirLXT04CFt/uRuGzhdW7fyZ0Iz8rfyWEgEbFrcXLRoUaBD8IkZcyZwz1Wv0C4pnU+/fZkX5t/DBX2uJzmhfZVO6KohU7hhxMMA5B7Zy40zOtIzdRgNYuKZOGoGrZp2ZvnGDwKThIfczTk1uRd/HvcOby969JRtnO49qx0PEbGX+lFww2B4bhGUlru3zhOferaP1KZwcQ/PY/MXM84DM+ZM4II+13NRv99xOP8Atz3Vmy4pg4hvkMTlg++kXVIPnv3vHf5LygPu5t815WzGDZtGnYhoMrLWc9e/BvP2tCyiI2OYPOaZyuUOHc1h/KMpnNPtKgCGpF9Nh5b9uOXJdD9nJu4a1gn25rl/FbenfYDTAb8ZFLwPXTNj/Hvi/ZOLGSdYYSzo7jEAKCsv5Z9zJzKwy+gqrw/rOY5LB94GwPGio9z0eBe6ppxNu6QeQd8P2l3dSGMs8OwXUFzm3jqe9gMp8TC6t+ex+YsnbaCmtm7lz4Rm5G/lsZAIhPjT0u1k2961RNepR7ukdACG9/4tKzZ9SGlZySnL1otuWPn3wuJ8XLiocPnhfiaTeZJz2+bdadW0Iw7Hqf/lT/eeiEiwa9vk56fCh5m/7dSmxrYjfLBtM5h1HtievZ6+HS4CoGG9BNo0786SdXN8GrsZPMm/b4cR1ImIBiAlsSu4XBzJP3DKcp999xq9219AXKyeGmMVTieMH+CbOXHDnPCbgdAl2fxtm8GO499f8+QYALy58K8M7nYlSfGpVV6Pif7lMeFFJccpLy/1Wcxivlbx7j0V3hsp8XDTUKgTpJdFedoGamLVz4Rm5W/VsZDICUHaRYmnsg/tYEf2Bm5+Ir3yteKSAnKP7q12+fe/nsWHy58h93Amd175YpVbVazC05xFREJV+2YwaTi8uRz2HzVnmwNT4bJewVvYBPPOA6nJvfhizZtcPXQq2Qe3s2nnchIbtTY3WB/wNv8Fq18hMa4NTRud+lSIBateZuKomWaHKj4WHga/HQSffA9fbKr6RHhvNawLY/sH99PRzRz/vr/0KT799mWaNGrJhAv+XlkoCHaeHIPNu1eyadcKHpu4kDcWPnTK+199/x6vf/YAWbnbuH7EI7RLCuLL9uUUbZrA5OHwxnLIPmzONvu1hTG9g7ewCV70AxZt6zUxK3+rjoVETgjibko81aFlP/5x04LK3694MKHGZUcPmszoQZPJyFrPP94aR++084mNaeyPME3lSc4iIqGsZWO4Z4RR3FiyGbytbTSKMR4elBbEBY2TmXEemHr1azz/0d3c/EQ6TRu1okfqeYQ5rTFE8jT/NVu/4I2FD/HYTQtx/OpJGhu2L6Wg+FjllRtiLWFOGJUOXZPhPytgXy2+6OjfDi7t6ZurwMxmxvj3hhEPE1e/GU6nk683vM/9L43g1Xu3El2nnj9SqDV3jkFRSQGz593KtN+8d0rbP2FwtysY3O0Kcg7t5MHXRnNWx1G0aNLeZ3GL+Zo3grsvhAUbjC86KrwcDDSINh4e1CnJ3Ph8xd1+wOptvSZm5G/lsZAIqLgZMprFtWH/4V8mWzpedJSikuPEx57+jNS2eXfiY5NYn7GEs7td7uswTeVtziIioSoy3ChIDGgHy7bCyu1Q6OZdSS0bw6A0SG9pnSehmnUeSIxrzQO/nVv5+5/+fSG90s43LU5f8TT/9RlfMvOd6/nb9R9VW7D45NuXOL/XbwlzBvHlunJGreJhykWwIRO+3gIZ+91br0449EqBQalGgcQKzBr/xjf4ZflBXUfz0id/ZM+Bn0hL7uWz2M3i7jHIPpjB/sO7mfLcUADyCw/jclWQX5jH1Gteq7JsYlxrOrTsxzeb56u4aUHhYTAy3bjqcvk2WJnh/oMHkxvBwDTo2Tq4r9Y8mSf9gJXbek3Myt+qYyGREyzSZcmZtEtKJ9wZwXdbFtIrbTgfLX+Wc7pfTUR45CnL7tq3iVZNOwGQlZvBtqy1tPz5dyvxJGcRETtJiDVuKb+oO2zNgT2HjJ8Dx6C0zJijr24kJDWC5Dhok2CdYsbJzDoP5B3bR4OYBJxOJ6t+WsCu/Zs4t8d1PoraPJ7k//32r3js7fH8dcJ/adu8+ynvHy86ytIN7/GvO9b6I3TxsfAw6NHK+Nl3FLbvhz0HITMPCoqhvMJYpnE9aBEHLRobV2tb4UrNk5k1/j1wOJOEhsbEopt2fcPR4wdJatzOf4nUgrvHIKVZV9578Jd5dl//7EHyCw9XPi395ONzOP8A67Yt4uyu1rrwQaqKrw+X9IAR3aqOBfYfNR5C6HRAdIRx/m8RBykJxrighgt7g5Yn/YCV23pNzMrfqmMhkRNU3Awhf7ru/5jxzvXMmvd7mjduxx+ve5OdOT+csty/P55KzqEdhDkjCAsLZ9JlT9OqaccARFx77ua8YNWrvLrgz+QX5LF84we8++VM/nb9R7RL6nHa90RErCwyHDonGz+hyozzwIpNHzFn8T9wOsNoHNuch2/8X+XDd4Kdu/k//u6NlJYVM2PO9ZWv/fHaN0hp1hWAJeveJjW5F8kJqaesK9bWNNb46W/tz+81MmP8O2POBPLy9+F0hFEnIppp49+t8oCdYOfuMTid95c+xYYdSwkPiwRcjDn7DnqlDfdNwOJXEWHG7eVWucXcG+62gdO1dSt/JjQjfyuPhURAxc2QktKsK8/+YfUZl/v7DfP9EI1/uJvzBX0mcEGfCR6/JyIiwc2M88BF/X7HRf1+Z3Jk/uFu/q/du/W07488ayIjz5poVlgifmPG+Hf6zZ+bGZLfuXsMTvab8x+s8vsdVzxvYkQi/uVuGzhdW7fyZ0Iz8rfyWEgEwBnoAMS3wsMiOVZwkJufSCcv/8yTLr0wfwpvL36UetEWvD/xZ57mfDqhcDxEROzGzPPA3K+eZNa8W2kQE29SdL5nZv5L1s1h2isX06h+U5OiE/E9jQXVD4rYvR9QHyB243C5XN4+UFV8qLwEFs8KdBTuGzoZwkyc6tJq+YP5x0BEzPfAPDhSaDwF9KExgY5GTkfnAesdA6ucB9UPWIfV2gCY2w7snr+vqA+wDrUBHQMRd+nKTREREREREREREbEkFTdFRERERERERETEkvRAoSDljDAu57YKZ4T527NS/mD+MRARsTOdB6x3DHQeFLNZrQ2Aue3A7vmLqA3oGIi4S8XNIOVw2HueCrvnLyJidzoP6BiI2L0N2D1/EbUBHQMRd+m2dBEREREREREREbEkFTdFRERERERERETEklTcFBEREREREREREUtScVNEREREREREREQsScVNERERERERERERsSQVN0VERERERERERMSSVNwUERERERERERERS1JxU0RERERERERERCxJxU0RERERERERERGxJBU3RURERERERERExJJU3BQRERERERERERFLUnFTRERERERERERELEnFTREREREREREREbEkFTdFRERERERERETEklTcFBEREREREREREUtScVNEREREREREREQsScVNERERERERERERsaTwQAcg1XO5oKI00FG4zxkBDod527Na/mD+MRARe7N7P2j3/EXUBnQMROzeBuyev4i4T8XNIFVRCotnBToK9w2dDGGR5m3PavmD+cdAROzN7v2g3fMXURvQMRCxexuwe/4i4j7dli4iIiIiIiIiIiKWpOKmiIiIiIiIiIiIWJKKmyIiIiIiIiIiImJJKm6KiIiIiIiIiIiIJam4KSIiIiIiIiIiIpakp6WLiEjIOl4MOw/A7kOQeQjyi4zX84vh1aXQIg5aNIbW8RCpM6JIyHG5YG8e7DkEew7CvqNV+4F5q41+oHU8JMQGNlYR8Y2CEmMssOeQ8XNyH/DKibFAHLROgDoaC4iIWJK6bxERCSkuF+w6CF9vgXW7oKzi1GXKK2DdbuMHoG4k9G0DA1NV4BAJBUWlsGo7LNsKOUeqX6a8Ar766ZffUxJgUCp0bwnhYf6JU0R8Z89B+HorrNkJpeWnvl9eAet3Gz8AURHQ5+exQGIDv4YqIiK1pOKmiIiEjLzjMGcl/Jjt2XoFJbDkR+NnQCpc0sP4kCMi1uJywaod8P53UFji2bo7Dhg/89fB1WdBh2Y+CVFEfOxIIbz7LfyQ6dl6RaWw9Cfjp28buKyX8eWniIgEPxU3Q8j6jCXc89zQKq9FRcaQnJDGsJ7juWzg7YSFhe4/ud3zF7G7lRlGQaOotHbbWb4VNmfBdWdBaqI5sfmT3ftCu+dvZ0cL4e1vYFNW7baTVwDPLYL+7eCynlDHYl902L0N2D1/u/tuJ8xdZXxpWRvfboefsuGas6Bjc1NC8yu7twO75y9iR2rRIWho+rX07XARLlzkHcth4Xev89xHd7F7/2buvOKFQIfnc3bPX8RuXC7433pYuNG8beYdh38tgrEDoFdr87brT3bvC+2ev93kHjPa7MF887a5Yhtk5cHEoRBTx7zt+ovd24Dd87ejhT/Ax+vN296RQnhhCVzdD85qa952/cnu7cDu+YvYiYqbISg1qSfDeo2r/P3iAbdy4/QOfPLti1x/4cM0rJcQwOh8z+75i9jNJ9+bW9g8ocIFby6HMCektzR/+75m977Q7vnbSd5xeOZz44pLs+06CM8vhlvPs95UFXZvA3bP324+32huYfMEl8u4ItzpMG5Vtxq7twO75y9iJ85AByC+Fx0ZQ4dWZ+Fyucg6mBHocPzO7vmLhLJ1u+CzH3y3fZcL3lhW8wNJrMTufaHd8w9V5RXw8le+KWyesPugMZev1dm9Ddg9/1C2aa8xV64vvf2N8YAiq7N7O7B7/iKhTFdu2kT2z513bN24AEcSGHbPXyQU5RfBu6s8W+euCyE22pib74lP3VunvAL+swL+cL5xFaeV2b0vtHv+oWjRJthzyLN1vOkH1u4yruDubsGruE9m9zZg9/xDUUGJ518+eNMHVLiMscDdIyA8zPM4g4nd24Hd8xcJVSpuhqCi0gKOHM/F5TLmFvloxXNs27uWDi36kpyQFujwfM7u+YvUpMIFxaXgwri90ukIdES1M281HC/2bJ3YaGhY1/N97T4IX/4I53byfN1AsXtfaPf8a1JWDsVlEBkOERb/gL7vKHy6wfP1vO0H3v0WUptCXYvMv2n3NmD3/Gvichl9QIUrNMYCH64x5sb0hLd9QPYRYxqcEd08XzdQ7N4O7J6/iJ2EfHEzNzeX6dOnM2/ePDIzM0lISGDMmDE88sgjTJ48mZdffpnZs2czadKkQIdqmtc/e4DXP3ugymuDuozh9tHPBCgi/7J7/iK/tu8oLNtiPPnzxJPE64RDnxQYmAbNGgY0PK8czDeupPKnJZthcHvrXLFh977Q7vmfrKwcvt8DX2+B7Qd+eb1FnNEH9GxlFDut5svNxpXV/pJfbPSjQzr6b5+1Yfc2YPf8fy33GCzbCiszfnmSeGQY9EqBQWmQ1Ciw8XnjSKHRJv1p6U9wXifr9Jl2bwd2z1/ETizSLXtn3bp1jBgxgpycHGJiYujUqRNZWVnMmjWLjIwMDh0y7mNKT08PbKAmG9lvIoO7XUlZRSk7sjcwZ8lj5B7JJDIiqnKZh9+8hgpXBdPGv1P52tGCQ9w0szMTR83kvJ5jAxG6KdzJf8P2pdz30ohT1i0rL6GiopwF08v9GbKIT5zuKeLFZfD1VuPnnA5waU9rXb2xfKtxBao/HS2CDZnQo5Wfd+wlnQt0LgA4cBSeX2IUNn5tzyFjHrlP1sNNQyDZQnfoFZbA6p3+3++yrTC4gzX6S/UB6gPAGAss3Gi081+fN0vKYcU242dAO7i8j7WmX/lmm3EFqj8VlBhfrvazyNPT1Q+oHxCxi5Atbubm5nLxxReTk5PD3XffzQMPPED9+vUBmD59Ovfeey/h4eE4HA66dbPQvQVuSIpPpWfaMAD6dhhBl5RB3PnsIJ6aewv3j3sbgNvHPMvEx7uyaO1bnNvjWgBmv38bnVMGWfoEBu7l37XN2Xz0cH6V9XKPZHHbrN5cOiB0ruIVe/twLSzefOblvvwRSsvhyj7gsMAH9ooK+CZAc8Cv2Gad4qbOBToXHMyH2QuNwvzpHCmEpz+HycOhuUWu3lqzC0rK/L/fA8cgYx+kJvp/355SH6A+AIypGxa4MX3D8m1GsXNsf2uMBVwuo7gZCMu3Wae4qX5A/YCIXVjouznPTJ48mczMTCZNmsTMmTMrC5sAU6dOpXv37pSVldG6dWtiY2MDGKnvdW49gGE9x7Nk/Rw27lwOGBMo333lSzz9wSRyj2Tx1ffv8X3GEu4Y81yAozVfdfn/WklZMQ+9PoYurQdx3Xn3+TlCEfP9lO1eYfOE5Vvhh0zfxWOm/cc8n2vTLDtzjeKqFelcYL9zwdvfnLmweUJRKby+zCgYWMGO/QHc94EzLxOM1AfYrw/YccC9wuYJq3fAdzt9Fo6pDhdAXkFg9r3noPGlsBWpH7BfPyBiFyFZ3Ny8eTNz5swhPj6eRx99tNplevXqBUD37t1r3M6IESNwOBw8+OCDvgjTr8YOm4bTGcZrC/5S+VqfDhdyTrereOytccyedyt3XfkisTGNAxil71SX/8memnsLJaVFTLn6Vf8GJuIjX2/xzzqBkOnhk5HNVFJmFFetSucC+5wLco7A1n2er5MRwKKhJzx9Qnqo7Lu21AfYpw8A787ryywyFghkO6xwQfbhwO2/ttQP2KsfELGLkCxuvvXWW1RUVDB27Fjq1atX7TLR0dFAzcXNd955h3Xr1vkqRL9Lim/H0O7XsHbbF2zYvrTy9YkXz2TvwW306TCCfh1HBjBC36opf4D3v57Fys3zeWjCB0RFevHoRJEgc6QAftjr+Xo/5VQ/L1+w2ZsX4P1buLChc4F9zgXLt3q33jIv1/OnkjLYfzRw+w90H1Qb6gPs0wccL4Z1uz1fb0cuZFng/3ig22Gg918b6gfs0w+I2ElIzrm5aNEiAIYOHVrjMpmZxv2X1RU3jx49yh133MHMmTMZN25crePp3bs3OTk5Hq0TGR7NC5PM/YRx7Xn3s3jdW7z22V+YectiAKIjY2gW14aUxK612nZqWiolZYVmhAn4L/912xbz4sf38sjvPiExrnWttm/2MRDxVkKbAZxz8ztnXrAaI0b/luwfvzA5InP1unwGKX2vrfa9uy6E2Oia142N+uXPB0effj9HC+GJT6vZx9T7yVjxmpvRes8X/SBY51zgz/zNOhcE03ng7N/9h6apgz1eb/GKTdx/zfk+iMg8derFc/G0dTW+b1Y/UFMfkJN7hOTkzu4FWwt27wNA48HaaJScznm3z/dq3TFjf0/m9x+ZHJG5ul/8EKmDbqz2PX+MBe5/4GG2fPkvN6P1nt37AY0FROwlMTGR1atXe7VuSBY3d+3aBUCrVtU/9aGsrIxly5YB1Rc377//ftLS0hg7dqwpxc2cnBz27vXsMqqoCM+/KeredggLZ9Q8WVarph199rS37KwsikrNm/jGH/nnHNrJ39+8iptGzaB72yHehFmF2cdAxFvhjb2/pOnw0XyP+yt/61RU84SbsdHQ0I3uw+l0b7nqHD3mn2PkTT8IoXMu8Ff+Zp4Lguk8UOblP7HLERb0fUBMw9NPfOvzfsBPx8jufQBoPFgbrnopXq975NjxoO8HUgtrnlDYH2OB/Hz/HCO79wMaC4iIu0KyuHn8+HEACgur/8Zkzpw55ObmUr9+fVJSqp74V69ezb///W++++470+JJTPT8kZqR4af5ujEINWve3PRv6n2pqKSAB169jP6dLuGygeY8Bc/sYyDirfpR3s84ElPHQVJSkonRmK9ORM35HT1DE4yNMj7MVFSc+UErNW2rXt0ovxwjq50HwNx+0B/5m30uCKrzQNlxr1YrLzoS9H1ARHTD075vVj9Q03ZcZcXqA2qg8WDw9AP164YB4HK5cHj4+POYSIK+H4iuE1bje/4YC8RER6ofqIHGAsHRB4hYkTe1sxNCsriZmJhIXl4ea9asoX///lXey87OZsqUKQB069atysm+vLycm2++mUmTJtG5s3m3G3lzWW15CSyeZVoIPrd1y1bCIs3bnq/zX7phLtuz17M3dwtL1s855f2X7tlEk0YtPdqm2cdAxFsVFfDwR3Aw37P1YqPguy/fIyzIZ2NetAk+XFv9e9XdOnayB0cbV2kcLYIH3/du/y8/+xipiY95t7IHrHYeAHP7QX/kb/a5IJjOA9/tgDeqfxDsaf3uir68+edM8wMykcsF978HBSXVv+/rfiCtdePK6Y18ye59AGg8WBsuFzz2MeQc8aywWTcSli94ncgg/5S4bAu8u6r69/wxFpg980G6JD/o3coesHs/oLGAiLgryE9b3hk2bBibN2/mscceY/jw4aSlpQGwatUqxo8fT25uLgDp6elV1nv66afZt29fSDwd3ROP/35JoEPwu+G9xjO81/hAhyHiE04nDGgHH63zbL3+qQR9YROgRVxg958c4P37is4FoaV7S3j/O8iveRaHU0SEQV/v72T1G4fDaIdbPJvO3DSB7oN8RX1AaHE4YFAavFdDAbAm/doS9IVNgBYBfpC3+oHQEcr9gIidWOBjrOemTp1K48aN2bNnD507d6Zr166kpqbSt29f2rRpw7nnngtUnW8zNzeXadOm8Ze//IWysjIOHz7M4cOHASgqKuLw4cNUVJx+jicRkWDRvx00ruf+8g3rGh+CrCCQxcX4+hCtb+PFAsLDYEQ3z9Y5rxPUreObeMwWyMJCqBY1JPT0SYGmse4vXy8Kzungu3jM1Lxh4L6QjY2CBnqQtohIUAnJ4mZycjJLly5l5MiRREVFsXPnTuLi4nj++ef5+OOP2bJlC1C1uJmZmcmxY8e4+eabadSoUeUPwGOPPUajRo3YvXt3QPIREfFU3Tpw81D3JsqPjTKWrR/l+7jMEB0J7ZsFZt/pnt2dKBJQA9Pg/C7uLTsgFS6o3QNy/SpQbTHcCZ2DeypCkUp1ImDiUIh348vOmDpw8xDvH7Djb+FhgWuL3at/Zq2IiASQBW468E7Hjh2ZP3/+Ka/n5+ezc+dOnE4nXbr8MuJv164dixcvPmX5oUOH8tvf/pYJEybUanJTERF/axILd14An3wP3+2E0l89FDPcCT1bG1d3NYoJRITeG5QKP2X7d58OjNv9Razkou6Q2MCYqzYz79T3m8TC0I5wVlvjNlaraNEYWjaG3Qf9u9/0VsbVbSJW0bge3HEB/O97Yy7e4rKq74c5jS8LRnQz7k6wkkFp8P0e/+93YKr/9ykiIqcXssXNmmzcuBGXy0VaWhp16/7y1WS9evUYMmRIteu0bt26xvdERIJZg7pwzVlwSU9Ytwv+u8b4YBMVAdMuNa7UsKJOSUZBNs+7B0J7vc84D271FwkWPVtDj1aw66AxT+XnG6GkzHgi8p9GWauoebJBafCfFf7fp4jV1IuCq/rCJT2MscD73/0yFrj/EuvcufFrqU2NL2j2H/XvPhMb+G9/IiLinpC8Lf10NmzYAFS9JV1EJNTVjTRuO42KMH6vE27dwiYYV5pc3tt/+4sIg8t6+m9/ImZzOKB1vHGbevTP/UB4mHULmwC9W0NKvP/216eNcQxFrCoqAs5qV3UsYNXCJhj91xV9/Le/MCeM7uW//YmIiPtsd+Wmp8VNl8vly3BMlZG1niffu4mC4mM0bdiKe699g137NnLfiyNITmjPPyZ+RqN6TSqX37VvM7c91YuL+k3k1kv/CcDcr57kw+XPEBVZj+fvWheYRDzgbs6ffvsyc5c+ye79m7l51EzGnH1H5TZe+uQ+lm2YR0R4HcLCIrj+wofp0/4CwHrHQ8ROuiQbxY3VO32/r5HpkODBQxn8yd1+8HR9XUVFBc9++Ae+3fw/HA4Ho8++g8sGTgKCvx80I//D+Qd4/J0b2Je3i7KKUjq06MsfLn+OOhHRLFk3hzcWPsTBo1l88LfDgU1WqnA64dr+MON/p067YbYG0TA6SL/gcLcNvPzJ/azY9CFORxgA15z7R4amX1O5nQ+XP8sHy2YT5gzH6XAy+/aVREZE8cL8KSxZP4fUpJ48NOGDAGVZMzPGvyfk5e9n4uNd6dSqf2Wu6gOCW1qi8eXt8q2+39cFXaB5I9/vxxvutoPpb09gzdaFNIhJAKBX2nAmjpoBWPszkSf9QE19XVFJAY+/eyNb9qzC4XByw4hHGNztCoCg7wdFRMXNkDJjzgTuueoV2iWl8+m3L/PC/Hu4oM/1JCe0P+UkVFZeyj/nTmRgl9FVXr988J20S+rBs/+9w3+B14K7Oacm9+LP497h7UWPnrKNrilnM27YNOpERJORtZ67/jWYt6dlER0ZY7njIWI3o3sbt9oeOObe8kcLq/7pjg7NYHB7z2PzF3f7wdP1dV+seZNd+zbxyr1bOF50hN8/2YP0tkNpndg56PtBM/L/zxcPkxSfyt9u+IjyinL+/NJIFqx6hUsG3MqQ9Kvp0LIftzyZHrAcpWZNYo0rqd751v11PO0HnA64rn/wPkne3TZw1ZAp3DDiYQByj+zlxhkd6Zk6jAYx8Sz/4b98seb/mD3pG2KiG3A4/wBhYcblfRNHzaBV084s3/hBALI7MzPGvyc89d7NnNVxFEcLfpnMVX1A8LukB+zYD9lH3Fvem7FA2yZwXmfPY/MXT9rBVUOmVLnQ4wQrfyZyN//T9XXvfjmTiLA6vPbHbWQf2sHkWf1IbzuU2JjGQd8PiogNb0tftGgRLpeLkSNHBjoUU23bu5boOvVol5QOwPDev2XFpg8pLSupdvk3F/6Vwd2uJCneujNie5Jz2+bdadW0Iw7Hqf/l+3YYQZ2IaABSEruCy8WR/AM+jV1EzBFTB35/rvsPRHriU3jwfeNPd7RJgOsHG8WNYORJP3i6vm7J+jlc1O8mwpxhxNaNY0j3q1m87i2/5eEts/J3OBwUFB+joqKCsvISiksLiG+Q7Lc8pHYGpMJID76z9qQfcDpg/EBo38z7+HzJkzZQL7ph5d8Li/Nx4aLCVQHAO1/OYPzwB4iJNiYTbFgvgTBnmM/jry0zx7+ffPsSiXEpdEk525chiw9ERcAt50GCmw9E8nQs0LIx3DTEuC09GHnaDmpi1c9EnuR/ur7uy/VzGNX/FgCaxaXQre0Qvv7hff8kISK1ZrsrN0NV9qEd7MjewM1PpFe+VlxSQO7Rvacsu3n3SjbtWsFjExfyxsKH/BiluTzJ2V0LVr9CYlwbmjZqZUKEIuIPcfXgD+fDC0sgq5qnQXurSzL8ZiBEBvGZ0tt+8Nd93f7Du2na8Jd+r2lcazbv+sYnMZvJrPzHDpvGX1+/nKv/mkhxWSHnpl/HgM6X+DJ0MdnwLkaB4/3v+P/27jQ8iir9+/i3u5OQEEgghDXskLDvq7IICCqKjuC+4ICOuCGPowPO6DjiOOoIuIH7X3HBEVEBBRxBFFAUUJFFBBSIbCEECCRAyJ7086KGCJKE7k71Ul2/z3Xl0nTXcu4i5+5Td1fVodSkJwpVizAKmx1DuM7tbR+Y//V0Fqx6gczsNP581Wtlt2nuObCFbWlrmbX0EYpKChjW4yZG9p8QiBCqxKzx7/4jO1m0+mWevvMrVmyY4+9mix/Ex8CEYfB/X8Kew2df3lNtG8KYAb89pzQUeZ0HVj7H4u9mUq92U8Zc+K+youCprHRO5E38leW6g9l7Tou3Qe3mHMze4/f2i4g5QviUTbzVtmkf/n3rkrLfr5xc94xl8gtzmTHvTh666UMcVp5F4H88idlT67Z/waylj/DkrUvD4tiI2Emt6nDvhfDZT8ZM0FUpbkRHGre59m5pjclWvM2D4ZbrzIh/xYb3aFqvPU+O+5yCwlz+8eZl/Pfb17i4z5/82nYx14A20KIuvLum6l90tGkA1/b1/KrwYPKmD4zsP4GR/SeQmr6Rf8++kZ4pFxAXW4eS0mIyjuzk6Tu/Iicvi/teOo+GCS3p235EIEKokqqOf91uN0+9fzPjRz5fdtWaWFPNGOPLzi+2wJJNUFLq+7aiIozb3c9NDt27N07laR64efhjJNRsiNPp5OtN83nw9eG8ef92YqrVKFvGiuMET+O3cq4TkcqpuBkmGia0PO2bpRP5x8gvPEFiXNJpy+0/nMrB7D1MfHkwADl52bjdpeTkZTHp2rcC2uaq8jRmT2xM/ZJp74/l0bELaVIvhB+uJyIVinDBxV2gUxNY+hP8lOZdkTMqAno0hws7GcVSK/A2D1aU6+rVasqB7N205xwADhzZRb3aTf3beBOYFf/CVS9yz5Wv4nK6qB5dkwGdrmRj6nIVNy2ocYLxRcfKbfD1Njic4936jWrD4LbQs4U1vtzwdSzUqlEXEuOS2Ji6ggGdr6BeraYM7nYdLqeL+NhEere9mK171oT8Cb8Z49+7/jCdX/f/yGPvXAMYt+wXFOUy8ZXzmXrbF4ELRkzhcsIFHaFTY+MLz417vBsLRLqge3NjG3VqnHXxkOBNHkiM/+21/p1G8vqnf2XvoV9IaWxMA2/FcyJv4q8s19Wr1ZQDWbupE2c8hyQjaxc9Ui4IWBwiUjUqboaJ1kldiXBG8sO2pfRIGcbCVS9yXpdriIyIOm25Fg078eHk356d8vZnk8nJyz5jtkgr8DTms/nx16948r3R/HPMx7RqFH4TTYnYTZMEuHkgZOfC6h2w4wCkHYGC4jOXrVHNKIa0T4JeLSDGu/QRdN7kwcpy3cDOV/Hfb/+PgZ2v4kT+UVZsnMO/bl4UqDB8Zlb8Deq05PtfFtOh+bkUlxSxdtsS2jc7J1BhiMkiXDC4HZzXBn7eDz/sMm5TLW/iMacD6sdDszrQpxU0T7RGUfMkb/rA7gNbaFa/PQDpmansSF9P0//9Prjb9az9eTHdWg+hoCiPjakruHrQpIDG4guzxr/zHvntPuYl37/Jqs0faUZki2tYC/7YH47mwbc7YNv/xgL5RWcuWz3KGDu0bWTctREbopOHVcSbPHAoO426tYxnbWzZvYZjJw6TVKc1YN1zIm/iryzXDex8FYtWv0z7Zn3Zf2QnP6auYMKoFwMdjoj4SMXNMPK36//D1PfHMn3eHTSq05q/Xv8OuzJ+Cnaz/MrTmJd8/yZvLvk7OblZrNr8ER98OY1Hxy6kdVI3nvrgFoqKC5g6Z2zZ8n+9bhYtGnYKZCgiYrJa1WF4Z+P/S92QeRxy8qG41Lgyo1Z148dKhYzyeJoHK8t1Q3uM5pe93zPmyWQcOLhi4L2WyYFmxH/nH57jubm3c+tTnSgtLaF9s3O4YsCfAxmG+IHTaXxx0f5/F+/kFcLBY1BYAg6gWiTUjwvt5+p6wtM+8H+fTCLjyE5czkhcrgjGX/48zeq3A+DKgffy7NzbuGVqexwOB/07XcF5Xa4KdCg+seP4VzwXHwMXdDJ+St1w+Dgc/99YIMJpjANqx9pnLDB1zhiycg7gdLioFhnDQ6M/KJtcx8rnRJ7GX1muu2rQRJ56/2ZueqIVTqeL8SOfJz42MdChiIiPLD6ck1O1aNiJF//fWq/WuemCyf5pTIB4GvOFvcZwYa8x5b731v3bTW6ViIQapwPqxRk/4cbTPFhZrnM5XUwY9YKZzQoYM+JvmNDitGd1SXiKiYJmYXie6mkfqOxq7KjIaMs9nugks8e/lY0ZxdqcDqgbZ/yEG0/7wZTbPq/wPSufE3kaf2W5LiYqlr/fqAnFRKzKGewGiH9FuKI4nnuY257uSlbOwbMuP/erZ5g+705Lf0vlbcyVCYfjISL2Y/c8aGb8KzbM4aE3LqV2zfomtU7E/8zsA68umsh7y5+gRkxtk1rnf8oBIhoL2D0PitiNw+12V2FOWfGXkkJYPj3YrfDc4AngMvFZdVaLH8w/BiL+8PA84/lT8THwyKhgt0YqY/c8aPf4/Ul5wBrUB3QM/EU5wDrs3gfsHr+IeE5XboqIiIiIiIiIiIglqbgpIiIiIiIiIiIilqQJhUKUM9K4pN0qnJHmb89K8YP5x0BE7M3uedDu8YuoD+gYiNi9D9g9fhHxnIqbIcrhsPezOuwev4iI3fOg3eMXUR/QMRCxex+we/wi4jndli4iIiIiIiIiIiKWpOKmiIiIiIiIiIiIWJKKmyIiIiIiIiIiImJJKm6KiIiIiIiIiIiIJam4KSIiIiIiIiIiIpak4qaIiIiIiIiIiIhYkoqbIiIiIiIiIiIiYkkqboqIiIiIiIiIiIglqbgpIiIiIiIiIiIilqTipoiIiIiIiIiIiFiSipsiIiIiIiIiIiJiSSpuioiIiIiIiIiIiCWpuCkiIiIiIiIiIiKWpOKmiIiIiIiIiIiIWJKKmyIiIiIiIiIiImJJKm6KiIiIiIiIiIiIJam4KSIiIiIiIiIiIpak4qaIiIiIiIiIiIhYUkSwGyDlc7uhtCjYrfCcMxIcDvO2Z7X4wfxjIGJnygE6BiJ27wN2j18ErNcPNBZQHhCR4FBxM0SVFsHy6cFuhecGTwBXlHnbs1r8YP4xELEz5QAdAxG79wG7xy8C1usHGgsoD4hIcOi2dBEREREREREREbEkFTdFRERERERERETEklTcFBEREREREREREUtScVNEREREREREREQsSRMKiYiEueIS2H8UMrKhoNh4rbAY9hyGRrUgwhXM1olIIBzPg71H4Gjeb3mgqASycyE+RjPbioS7klLIOAr7s08fC+zOhEa1IVJjARERsTAVN0VEwlB+EazdCd//CmlZxknNqfKK4OnF4HIaBc6eLaBXS6iu2S1FwsbeI/DNNtiabhQ1fy+3ECbPh5rRkNIA+iVDi7oqdIqEi4JiWLcLvks18kFxOWOBZ5aA02GMBXq0gN4tIbZaMForIiLiOxU3RUTCSH4RfPojrNnx25UZlSkpNU549h6BTzZA71ZwcRcVOUWsbPsBWLQedh/2bPnj+fDDLuOnUS0jB3Rs7McGiohfFRTDZ5vgm+3GuOBsSt3GF6FpWfDfjcYXnpd0gRrR/m+riIiIGVTcDCMbU1fwl5cHn/ZadFQsjeumMLT7aC7vdzcuV/j+k9s9fpFf9sN7ayAr17f1C0vg622waS9c0wfaJ5nbvkCwex6we/x2V1AEC9fD19t930Z6Nrz2JfRsDiN7WvMKLrv3A7vHb3epB2H2asjM8W39ohJYvQM2pcFVvaBLU3PbFwh27wN2j19E7ElZLQwN7nodvdtejBs3WcczWPrD27y88F72HNzKn698NdjN8zu7xy/243bDkk2weJM52zuaB6+ugCHt4dKu1rxF1e55wO7x29GRHHhpGRw6bs721u4yrgC9fQg0rGXONgPN7v3A7vHb0bItxhccbhO2lZMPb6yEASnGFx1OjQUsx+7xi4i9qLgZhpKTujO0x41lv1967p3cMqUtn373GmMveoxaNeoGsXX+Z/f4xX4WbYAvtpi/3WVboKgYRvW0XoHT7nnA7vHbzeEcmLHUmBzITEfzjO3ePcyaBU679wO7x283SzYZj6Ux28ptxp0d1/SxXoHT7n3A7vGLiL04g90A8b+YqFjaNuuL2+0m/XBqsJsTcHaPX8LbV7/4p7B50spt8Plm/20/UOyeB+wefzjLL4KXl5lf2Dwpt9C4IvRYORMSWY3d+4Hd4w9na3b4p7B50rep8OlG/20/UOzeB+wev4iEN125aRP7//cBFlc9IcgtCQ67xy/h6cBRWLDOu3XuvQjiYoxCxdOLPVvn0x+hXSNobPHuY/c8YPf4w9XH67y/Fd3bPHAsD97/Dm4ZaL2ruH/P7v3A7vGHo8M5MO8H79bxZSzw+Rbo0BiaJ3rfxlBi9z5g9/hFJHypuBmG8otyOXoiE7fbeL7KwtUvs2Pfeto26U3juinBbp7f2T1+sYfSUnh3DRSXerdeXAzUqu7lvtzGvu69ECJc3q0bLHbPA3aP3y5+3m9M/OEtX/LAT2mwbhf0aOH9/oLF7v3A7vHbQanbmEiwsNi79XzJAW43vLsa/jIcoixyBmn3PmD3+EXEXizy0VQ1mZmZTJkyhXnz5pGWlkbdunUZNWoUjz/+OBMmTGDmzJnMmDGD8ePHB7uppnj7s4d5+7OHT3utf8dR3D3yhSC1KLDsHr+cqbgEftwLW/ZBXpExKG+SAL1bQo3oYLfONxv2wO7MwO0vPcuYYKRvq8DtsyrsngfsHn95Mo/DmlQ4dAxK3FAzGro1g+T61rwa0e32/srtqlqwHro2A5dFHmpk935g9/h/r6TUKNL/lGY8biHSBUm1jc+1mjHBbp1vtu4zJv4KlIPHjDw6sE3g9lkVdu8Ddo9fROwl7IubGzZsYPjw4WRkZBAbG0v79u1JT09n+vTppKamcuTIEQC6du0a3Iaa6JI+4xjY+SqKS4vYuX8Tc1Y8SebRNKIif6viPPbOtZS6S3lo9Ptlrx3LPcKt0zowbsQ0zu9+QzCabgpP4t/060oeeH34GesWlxRSWlrCkiklgWyy+InbbTyT8vPNcDz/9PfW74b/boSeLWBkD6gWGZw2+uqb7YHf59fboE9LaxSClAeVB086kgMffg9b08+cQXj1DqgXB5d1g46Ng9I8n+08BOnZgd3n0TzYvA86Nwnsfn2lPKA8cNI32+GzTcbf8Kk27IHFm4wvOkb1hOpRwWmfr74O0lhgQIrGAlagHCAidhLWxc3MzEwuvfRSMjIyuO+++3j44YepWbMmAFOmTOH+++8nIiICh8NB586dg9xa8yQlJtM9ZSgAvdsOp2OL/vz5xf48N/d2HrzxPQDuHvUi457qxLL1sxnS7ToAZsy/iw4t+lv6Qxw8i79TywEsfCzntPUyj6Zz1/Se/OHc8LiC1+7cbuMZVCt/qXiZ4lLjCoR9WXDn+RBjkZOa/dmQejDw+007ArsPW+N5W8qDyoNgXGX0/FI4ll/5Mq9/acwE3Ld14NpWVcH4ggOMwoZVipvKA8oDAAvXVz7xXkkprN0J+47A+GEQWy1wbauKzOPwc3rg93vwmHG1aEqDwO/bW8oBygEiYh8WubHINxMmTCAtLY3x48czbdq0ssImwKRJk+jSpQvFxcU0b96cuLi4ILbUvzo0P5eh3UezYuMcNu9aBRgPkb7vqtd5/qPxZB5N56sfP+TH1BXcM+rlILfWfOXF/3uFxQU88vYoOjbvz/XnPxDgFoo/fL2t8sLmqfYegVnf+Lc9Ztq8L3j73hLEfVeF8qD98mBhMbyyvPLC5klujAlzUgN4e2dVuN3BywPbD0CBl8/3CxXKA/bLA2tSKy9snmr/UZj5ldG/rKC8q9EDRWMBa7JjDhAR+wjb4ubWrVuZM2cOiYmJPPHEE+Uu06NHDwC6dOlS9tqKFStwOBxn/Fj9tvUbhj6E0+nirSX/KHutV9uLOK/z1Tw5+0ZmzLuTe696jbjYOkFspf+UF/+pnpt7O4VF+Uy85s3ANkz8oqTUuBXdG1vSjSsTrSCY7bTKMSqP8qC98uC6XcYswp4qdRuzAVtBZg7kFwVn32638Qxeq1IesE8eKHXD5z95t07qQeORD1awN4ifx8Hcd1UpB9gnB4iIvYRtcXP27NmUlpZyww03UKNGjXKXiYkxnh5+anHzpBdeeIHVq1eX/cyaNcuv7fW3pMTWDO5yLet3fMGmX1eWvT7u0mnsO7yDXm2H06fdJUFsoX9VFD/A/K+n8+3WRTwy5iOio7ycOlJC0k9pZz5XyxPBus3TW8E+obHKVS2/pzxonzzodhtXb3vr53TjVs9Qt/dwkPdv4cKG8oB98sAv+40vArzlS+4IhmB/0VmqsYAl2SkHiIi9hG1xc9myZQAMHjy4wmXS0tKA8oub7du3p2/fvmU/nTp18k9DA+i68x/E6XDy1me/fVMXExVLw4SWtGhg/fjOprz4N+xYzmuf3M9Doz+gQULz4DVOTLXVx2dQ+bpeoGWdCN6+j+db94QGlAftkgdPFECaD1cXuoGf95veHNNl5wZ3/8HMQWZQHrBHHvC1L2+1QA4AyApiHigohvzC4O2/qpQD7JEDRMReHG63Va/BqVyTJk1IS0tj/fr15d5SXlxcTMOGDcnMzCQ1NZWWLVsCxm3pgwcPZvny5QwaNMiUtvTs2ZOMjAyv1omKiOHV8YG5jOy+lwbRt90Irhr0F5+3Me75ZAqLfbhUrgKBiD/jyC7GT+/FjcMe5vJ+VX9gttnHQHzX54aXaNL5Uq/XKyrI4eN/tPVDi0zkcHDlv/dW+Pa9F0FcTMWrx0WD0wmlpZU/i/BYHjy9uPz3PnqoDcWF/q1uBDIHgvJguOXB2DrNGT7pa5/W3fTpE/yy4gWTW2SutkMm0PHCSeW+d7YcAFXPAzu+eYMNCx7yosW+sXseCFT8ZuaBUMkBAD2unEaLXtd6vZ67tJS5f2vqhxaZ6/JHtxMRVX5nD8RYYOGj3SjI8f89/Don0lhAROyjQYMGrF271qd1w3a29BMnjBPvvLzyE+ucOXPIzMykZs2atGjR4oz3r7nmGjIzM6lTpw6XXXYZ//73v0lM9G2K4IyMDPbt8+7J29GR1roVYH96OvlF5n2F7O/48wtzefjNyzmn/WWmfIiD+cdAfHc827d7NgvzjnvdV4OhtKQYp6v89B0XA7U86D5Op2fLlSdt7y5Kiv17yYbVciAoD0Lo5MHYE6U+r3v4YHrI54EGWRXnOE9zAPieB44dPRKQY2T3PBCI+M3OA6GSAwCSszJ9Wq+o4ETI5wCAkuLCCoubgRgL7EvbTcEJ/z+A12p5QGOB0MoDImIfYVvcbNCgAVlZWaxbt45zzjnntPf279/PxIkTAejcuTMOh6Psvfj4eCZOnMjAgQOpUaMGq1ev5oknnmDNmjWsXbuW6Ohon9riraiIs1x2EWIaNmpk+reU/rRy01x+3b+RfZnbWLFxzhnvv/6XLdSr7d239mYfA/Fd/mHfHph1dN+PJCUlmdwa8xXmHiG6Zr1y3zt2lj9Bb67WKE9R/nEa1K/rYUt9Z7UcCMqDEEJ50OHkRFYasbUbe7yK2+3G4XBQenxXyOeBaFfF05WfLQdA1fNApKMwIMfI7nkgEPGbnQdCJgcABVm+Xe2WvW9jyOcAgKLcLKpVjy/3PX+PBUqKC6ibEIfb18qoF6yWBzQWCK08ICLW4kvt7KSwvS19woQJzJgxgyZNmvD555+TkpICwPfff8/o0aP59ddfKSoq4q677uL555+vdFsLFy7ksssuY+bMmYwdOzYQzaekEJZPD8iuTDF4AriizNue1eIH84+B+C6/CB6eZzwTyhu3DYZ2jfzTJjO9utyY3d0Xk0caV2lk58Lk+d6v36oe3D3Mt317QzlAx6Cqlv4En2z0bp3GCXDfRXDKd54haV8WTP2v7+tXNQ/cMQTaNPR9/56yex+we/xVVVRijAVyvbzRYOwA6BL6d6Xz5krYsMe3dauaA5okwH3Dfdu3t6zWDzQWCK08ICL2EbYTCk2aNIk6deqwd+9eOnToQKdOnUhOTqZ37960bNmSIUOGAOVPJvR7I0aMIDY21ud7/0UksKIjoU8r79apHxeYk3UzNE4I3r6bBHHfIt7o2wqqeXl/ynltQr+wCdAgHiKCOIILZg4S8VSkC/ole7dOQix09PyC76DSWEBEROQ3YVvcbNy4MStXruSSSy4hOjqaXbt2kZCQwCuvvMInn3zCtm3GbaueFDdPcljhjEdEALi0m3GVoSdiq8Et54HTIl08ub499y3ijZox8Mf+nvfrfsnQ88xHcIcklxNaepjfzNaolpEzRazgos7Q1sMvLqMj4U/nGf3LCoL5edxaYwEREQkxYfvMTYB27dqxaNGiM17Pyclh165dOJ1OOnbseNbtLFiwgBMnTtC7d29/NFNE/CDSZdxmPnsNrN9d8XIN4uHmgVAvLnBtq6rW9Y32HjwW2P3Wrm6N2/ZFTmqfBLcPgVnfwPEKnivncsL57Y0iiJW+w+yXDNsyAr/fc728Ek4kmFxOo2A55ztY+ytU9CyuujWNsUDDWoFsXdU0rQONa0Oa/+f0OU2NaOjcJLD7FBEROZuwLm5WZPPmzbjdblJSUqhe/fQHYd944420bNmS7t27l00oNGXKFLp27cq1114bpBaLiC+iIowrty7qDKu2w5Z9kHncOLmJcMK4wcaVD1YqaIDR3n7JMP+HwO733GRjAgIRK0lpAA9fDj/uhdU7YMdBcLuNKzqHdzZuX69prfkqAOPW2fgYOBrAORuqRVjn6laRkyJccMM5cGFHYyzw0z44dOy3scAt5xmPpbHK3RsnORzQPwXe+zaw+z2nlXFMRUREQoktT1M3bdoElH9LeocOHZg/fz433XQTw4cPZ+bMmdx6662sWLGCqCg9GVnEiurHwcge8OBlEPe/IkZsNaPoYbXC5kl9WhmTAQRKzWhdsSXWFeGC7s3hrqHGLMFg/E0P62jNwiYYV6QNO/vNJ6Ya1M64dVfEihJrwmXd4YFLTx8LtGtkvcLmSd2bG3EFSvUoGNAmcPsTERHxlIqbv/O3v/2NTZs2cezYMYqKiti5cydPP/008fHxgW6miEiFoiPh2r6B299VvfWcPZFQc25y4J5916g2DOsQmH2JiGeiIuD6vhCo2uyonr8VhkVEREKJLW9Lr6y4aWWp6Rt55sNbyS04Tv1azbj/ulnsPrCZB14bTuO6bfj3uM+oXaMeU94bw7rtS4mPrQtAj5RhjBsxFYBXF01kxcY5JCd155ExHwUxGs94GvPi72Yyd+Uz7Dm4ldtGTGPUgHvKtjHz0wdZvWUBTodxj821Q/7K4K7GIwisdjzEXto2hHNbw6odnq9zLO/0/3qiR/PQfb6Wpzng9U8f4JtN84iMqIbLFcnYix6jV5sLAfh26ye8teQf7Mr4iRHn3MGdf3i2bPtzv3qGBateIDqqBq/cuyE4QVbCjPizjh/guXl3kJ65g+LSIkb0va0sR67YMIdZSx/h8LF0Pno0O3iBSrmcDriuL0z5BAqKPV/P2zzgchoFlFC9FdXTflDZ5/3kN0ey/8jOsm3uzPiRyX/8iHM7XBY2eeCk3Qe2ctdzPbi4z7iyfPf2Z5NZsOoF6sQlAdC8QQf+dv1/gNDPg3bXsh6c1xZW/Oz5Or6MBTo1NsYDociMcyCrnw94kwcWrHqRj76ZgcsZgdPhZMbd3xIVGV3p+ZIVjoGI2Jsti5vLli0LdhP8YuqcMfzl6jdondSVxd/N5NVFf+HCXmNpXLfNGYPRqwdNPO0D66RxI6bSrH4HVm3+KCBtripPY05u3IO/3/g+7y174oxtXD1oIjcPfwyAzKP7uGVqO7onDyU+NtFyx0PsZ1RPOHICft7v2fJPL/Zu+63qwTV9vG9XoHiaAzq1GMCNQx+iWmQMqekbufelgbz3UDoxUbEkJSZz39Uz+erHD8gryDlt+1cM/DOtk7rx4sf3BDYwD5kR/8sL76VZ/fZM/uM88gpPcM/z/ejQvB9tmvRiUNdraNu0D7c/0zVoMUrl6tSAPw2CV5ZBcaln63iTBxwO49nFjRN8al5AeNoPKvu8nzxmftlyv+xdywOvXUSvNhcB4ZMHAIpLinh27jj6dRx5xnaGdLvhtC93Tgr1+AUu7WaMBX7c69ny3o4FmtWBG88N3Uf5mHEOZPXzAU+PwaqfPuaLdf9hxvg1xMbEk51zCJfLeN5IZedLVjgGImJvtrwtPRzt2LeemGo1aJ3UFYBhPf/I6i0LKCouDG7D/MibmFs16kKz+u1wOM78k68RU6vs//MKcnDjptTt4RmiSJBFuIwZXjskmb/tNg1g3CDjtrdQ5E0O6N12ONUijXvpWjToBG43R3MOAdC4bgqtGnXB5QzRQCtgVvy/pm+kd9uLAYiJiqVzy4F8/sOswAQhpkiub0yQZnZfdTlhTP/QvXIbvOsHnn7eL/7udc7vfiOREaH/rHVvx3/vLP0nAztfRVKiHqIcTlxOuKkfdG1q/rZb1oXbh0C1EH3erlnnQFY+H/DmGLz/5VRGD3uY2BjjkWu1atTF5TSuVq3sfElEJNRZ60xOKrT/yE527t/EbU93LXutoDCXzGP7yl1+/srnWPzdTOrVbsqYC/9V9mFoJd7GXJn5X09nwaoXyMxO489XvXba7VsioS4qwihwfrEFlmyCkiqOxZ0OGNoBLugYurehgu85YMnaN2iQ0JL6tZv5uYX+ZVb8yY17sGz9u7Rr2pdjuYdZu20JjetqxgirSWkA914E766GPYervr0G8XD9OdC0TtW35U9ej3/O8nlfUJTH8g2zeebOlf5stmm8iX/rnm/Zsns1T45byqylj5zx/lc/fsDG1OXEVa/DDUMfomvrwf5supgswmUUOJslwn83QlFJ1bbncMDgtjC8C0SG0VigsnMgq54PeHMM9hzYwra0tcxa+ghFJQUM63ETI/tPCGBrRUT8Q8XNMNK2aR/+feuSst+vnFy33OVuHv4YCTUb4nQ6+XrTfB58fThv3r+dmGo1AtVU03ga89mM7D+Bkf0nkJq+kX/PvpGeKRcQFxviZ3Qip3A5jWJkxySY8x3szvRtO40TjNvQm4TwLain8jYHrNv+BbOWPsKTty7FEar313nBjPhvu/QpXln4F+54thu1atSjS8tBZJ845Nd2i380iIf/dwEs3wpLf/LuOZwnRbqM5/dd1Cm0v9w4lTf94Gyf91/9+CGN66bQomEnv7bZTJ7En1+Yy4x5d/LQTR+Wm/tG9L2d689/kAhXJD/t/IZH3hrJ8//ve8t/CWQ3TicMbgftk+D9byH1oG/baVjLGAs0TzS1eX5j1jmQlc8HPD0GJaXFZBzZydN3fkVOXhb3vXQeDRNa0rf9iEA1VUTEL1TcDBMNE1pyMHtP2e8n8o+RX3iCxLgz71VNjP/ttf6dRvL6p39l76FfSGncIyBtNYs3MXuqVaMuJMYlsTF1BQM6X2FGM0UCqlFtuOcC2H0YvtkG63ef/Tl8LqdxK1u/ZGhRN3SfqfV73uaAjalfMu39sTw6diFN6ln/ykSz4o+PTWTStW+W/f7s3NtpXl/TYluVy2lced0/BdbuNPLA/qNnXy+xBvRLgd4tIbaa/9tpFl/HAhV93i/+7nUu6nWL39prNk/j3384lYPZe5j4snE1Zk5eNm53KTl5WUy69i0S4hqULduxRT9aJXVj2961Km5aVP04uHsY7D0M32yHH3ad/UpOp8N4BEW/FGhdLzzHAp6eA1ntfMCbY1CvVlMGd7sOl9NFfGwivdtezNY9a1TcFBHLU3EzTLRO6kqEM5Ifti2lR8owFq56kfO6XFPu86IOZadRt1ZjALbsXsOxE4dJqtM60E2uMm9irszuA1toVr89AOmZqexIX0/T//0uYkUOh3G1RfNEuLoPpGfB3iOQkW1cyeXGuJW9YTw0qQONaoXuczUr400O+PHXr3jyvdH8c8zHtGrUJQitNZ9Z8R87cZjq0XFEuCLZsW89q376iJf+vD5QYYifREcaBc5+yXA0zyhy7D1i/H9xiVEEjYsxrtJunAAJsdYpZpzKm35wts/7fZk72Ja2ln+OXRCw9leVp/G3aNiJDyf/dkX2259NJicvu2wCoVPHhmmHtpOavsFSV69K+ZrUgWvrwJW9ID3byAH7s6Gg6LexQP044/ETjWpDtTAfC1R2DmTl8wFvjsHgbtez9ufFdGs9hIKiPDamruDqQZOC0GoREXNZ8CNMKvK36//D1PfHMn3eHTSq05q/Xv8OuzJ+OmO5qXPGkJVzAKfDRbXIGB4a/UHZQ6WtxtOYl3z/Jm8u+Ts5uVms2vwRH3w5jUfHLqR1Ujf+75NJZBzZicsZicsVwfjLn6dZ/XZBiEbEfJEu4/lbzSxya5m3PM0BT31wC0XFBUydM7bstb9eN4sWDTuxbvsXTJ3zR3Lzj+HGzcpNH3L3yBc5t8NlgQzFJ2bE//Pe73jh4wm4nBFUr1aTv49+nzpxDQMZhviRwwG1qhs/nUJ4YqCq8LQfnO3zfvH3MxnQ6Qpio+MC2fwq8zT+yryx+EG2p/2A0xmBy+ni7pEv0Lhuip9aLIEW4TIKmKH+DF1fmXEOZPXzAU+PwZUD7+XZubdxy9T2OBwO+ne6gvO6XAVUfr4kIhLqVNwMIy0aduLF/7f2rMtNue3zALQmMDyN+cJeY7iw15hy3/vXzYtMbpWIBIqnOeCt+7dX+F735POZ/fc0M5sVMGbE37vtcHq3rfh9kVDnaT842+f9LcMfN6tJAeVp/Ke66YLJp/0+6dq3TGyRSGCZcQ5k9fMBT49BVGR0hf29svMlEZFQ5wx2A8S/IlxRHM89zG1PdyUr5+xPFX910UTeW/4ENWJqB6B1/uFtzJUJh+MhYjdm5oC5Xz3D9Hl3Eh9rnUtfzYx/xYY5PPTGpdSuWd+k1okEhvKAveMX0fmAjoGI2IvD7Xa7g90IOVNJISyfHuxWeG7wBHB596jLSlktfjD/GIh/PDzPeOZcfAw8MirYrZGKKAfoGPiLcoB12L0P2D1+f1IesA6r9QONBayTB0QkvOjKTREREREREREREbEkFTdFRERERERERETEkjShUIhyRhqX9FuFM9L87VkpfjD/GIjYmXKAjoGI3fuA3eMXAev1A40FlAdEJDhU3AxRDoe9n1Vi9/hF7E45QMdAxO59wO7xi4D6gd3jFxHxlG5LFxEREREREREREUtScVNEREREREREREQsScVNERERERERERERsSQVN0VERERERERERMSSVNwUERERERERERERS1JxU0RERERERERERCxJxU0RERERERERERGxJBU3RURERERERERExJJU3BQRERERERERERFLUnFTRERERERERERELEnFTREREREREREREbEkFTdFRERERERERETEklTcFBEREREREREREUtScVNEREREREREREQsScVNERERERERERERsSQVN0VERERERERERMSSVNwUERERERERERERS4oIdgOkfG43lBYFuxWec0aCw2He9qwWP5h/DMTe7N4H7B6/CFivH2gsoDwg5lIfsN4xUA4QEQkOFTdDVGkRLJ8e7FZ4bvAEcEWZtz2rxQ/mHwOxN7v3AbvHLwLW6wcaCygPiLnUB6x3DJQDRESCQ7eli4iIiIiIiIiIiCWpuCkiIiIiIiIiIiKWpOKmiIiIiIiIiIiIWJKKmyIiIiIiIiIiImJJKm6KiG2UlhqzbsJv/xUR+3C7lQNE7E5jARERkfCj2dJFJGylHYHN+2DvEdh7GI7m/fbesXx4/nNokgCt60G7RuDU1z0iYaWwGH7cCzsPGXlgfzYUlRjvHcuHxxYYOaBJHejaFGrHBrW5IuIH+7NhU5oxJth7GLJyf3vvWD7MWAqN/zcWaJ8ELo0FRERELEfFTREJKyWlsH43fL0NdmVWvuyOA8bP8q1Quzqcm2z8xFYLTFtFxD8yj8PKbfDdr5BXWPFyh44bP+t2w4L10L4RDGgDbRqAwxG49oqIuUpLYcMe+GY7pB6sfNnUg8bPlz9DfAyc0xr6pUDN6MC0VURERKpOxU0RCRsZR+Hd1bDnsPfrZuXCJxuNk5urekOXpua3T0T8q7QUVvwM/90IxaXeret2G1d6b94HXZrAlb1V3BCxokPH4N01xhXb3jqaB4s3wVe/wBU9oXtzfdEhIiJiBSpuhpGNqSv4y8uDT3stOiqWxnVTGNp9NJf3uxuXK3z/ye0ev919+bNx5VWJlwWN38spgDdWQvdmcG1fiLLYn4zd+4Hd47ez7Fx4c+XZr9j2xMa9sOMg3HCOcZuqlagP6BjY2artMP+H3x4/4avcQpi1ysgF158D0ZHmtC9Q7N4H7B6/iIgdKauHocFdr6N324tx4ybreAZLf3iblxfey56DW/nzla8Gu3l+Z/f47cbthkUb4Ist5m533W6jWDJusPVOakD9wO7x203mcXjhC8g6Yd42TxTAa18aBc4eLczbbqCoD+gY2M1nm+C/P5q7zR/3GnnljiFQ3YKPrLF7H7B7/CIidqJHZoeh5KTuDO1xI8N6jObqQROZfvca6sY35tPvXiM7x4d7dCzG7vHbzZKfzC9snvTrIaO4UdUrQILB7v3A7vHbydFceNHkwuZJpW54Z7VR4LAa9QEdAztZvtX8wuZJe4/AKyugoNg/2/cnu/cBu8cvImInKm7aQExULG2b9cXtdpN+ODXYzQk4u8cfzrZlwGI/ncyctOOA//cRCHbvB3aPP1y53cZzdo/4obD5+334o3gaSOoDOgbhalem8Vgaf9qdCYv8vI9AsHsfsHv8IiLhTLel28T+/32Ax1VPCHJLgsPu8YejgiJ4b4336917EcTFwLE8eHqxZ+ss2wqdmkDzRO/3F0rs3g/sHn84WpMKv2R4t44vOSC/COZ8C7cNtvbkIuoDOgbhpqjE+PLB7fZuPV/ywMpt0LkpJNf3vp2hxO59wO7xi4iEq7AvbmZmZjJlyhTmzZtHWloadevWZdSoUTz++ONMmDCBmTNnMmPGDMaPHx/sppomvyiXoycycbuN58ssXP0yO/atp22T3jSumxLs5vmd3eOvSNYJYzbxohKIrWYU6lwWvnZ78SbfrtaKi4Fa1b1bx+02ChuTLrZOYcPu/cDu8ZenpNS4+uhEgdH368dDnRrBbpXvThTARz94v54vOQDg5/2wfrcxe7IVqA/oGJQnOxf2ZxtjgepRxlggwhXsVvnui81w8Jj36/maB+Z8Cw+MAKdFxk927wN2j19ExE7Curi5YcMGhg8fTkZGBrGxsbRv35709HSmT59OamoqR44cAaBr167BbajJ3v7sYd7+7OHTXuvfcRR3j3whSC0KLLvH/3tb02HlL8Z/T72wIS4GzmkN/ZOhZkzQmueTgmJYvSOw+9yfDdsPQEqDwO7XV3bvB3aP/1Q5+fDNdqPPZOee/l6bhjAgBTokWadwf9K3qYF/Bt6Xv1inuKk+oGNwqm0Zxljgp32nX+VYoxr0bQ39U3wr9gVTcQl8vT2w+8w8DlvSoWPjwO7XV3bvA3aPX0TETsK2uJmZmcmll15KRkYG9913Hw8//DA1a9YEYMqUKdx///1ERETgcDjo3LlzkFtrrkv6jGNg56soLi1i5/5NzFnxJJlH04iKjC5b5rF3rqXUXcpDo98ve+1Y7hFundaBcSOmcX73G4LRdFN4Ev+mX1fywOvDz1i3uKSQ0tISlkyx4Awyv+N2w0fr4Mufy3//WB4s2QRrdhgzgifVDmz7qmLdLuM20UD7Zpt1ipvKA8oDYFyt/coyyMot//1f9hs/5ybDlT2tczVSqdso2Aba7kxjcpEmFrib0e45AJQHwBgLfPojfPZT+e/nFMDnm42xwK2DoJmFHr+yca/x5U2gfb3NOsVNu+cB5QAREfsI2+LmhAkTSEtLY/z48UybNu209yZNmsS7777Lxo0badGiBXFxcUFqpX8kJSbTPWUoAL3bDqdji/78+cX+PDf3dh688T0A7h71IuOe6sSy9bMZ0u06AGbMv4sOLfpbehADnsXfqeUAFj6Wc9p6mUfTuWt6T/5wbng8ouC/GysubJ7qaB68tAz+fKF1blH9/tfg7HdTmlFUjY4Mzv69oTygPJCdCy99YfTxs1m1HSKcMKqn/9tlhl2H4HDO2Zfzh+9/tUZx0+45AJQHwChcVlTYPFVOAby8HO65wHhkhRWs3Rmc/f68H47nWeOuF7vnAeUAERH7sMg1Gt7ZunUrc+bMITExkSeeeKLcZXr06AFAly5dznhv/vz5nHvuucTGxhIfH0+/fv3YvHmzX9vsTx2an8vQ7qNZsXEOm3etAoyHaN931es8/9F4Mo+m89WPH/Jj6gruGfVykFtrvvLi/73C4gIeeXsUHZv35/rzHwhwC82XeRyWevEnm5MPn2zwW3NMVVoKaUeCtG938PZdVcoD9ssDi3/0rLB50le/QHqW/9pjpt2Hg7fvvUHcd1XYPQeA/fJAdq5x1aan8gr9P+u4Wdxu2BPEvrhHYwFLslsOEBGxk7Asbs6ePZvS0lJuuOEGatQo/1K0mBjj69bfFzenT5/O1VdfTf/+/VmwYAGzZ89m6NCh5OV5cYYYgm4Y+hBOp4u3lvyj7LVebS/ivM5X8+TsG5kx707uveo14mLrBLGV/lNe/Kd6bu7tFBblM/GaNwPbMD/x5XbNjXuNKxFC3YFjUBjEO4T2WvSEBpQH7JQHcgvgh13erxeMW719EcwvGdKyjMmZrMjuOQDslQdW7zC+lPPGln1wJEhXRXvjyAljUrFg0VjAuuyUA0RE7CQsi5vLli0DYPDgwRUuk5aWBpxe3ExNTWXixIk888wzTJkyhfPPP5+LL76YRx55hJ49LXKvXgWSElszuMu1rN/xBZt+XVn2+rhLp7Hv8A56tR1On3aXBLGF/lVR/ADzv57Ot1sX8ciYj4iOstjT9CvwnQ+3bZeUwg+7zW+L2TKOBnf/+7ODu/+qUB6wTx7YuNeYDdlba3caV0eHuv1BzANFJUZhxYrsngPAXnnAl7GAG1i7y+yWmC/YY4GM7ODuvyrsngfslANEROwkLJ+5uXu3UaFp1qxZue8XFxfzzTffAKcXN2fOnElkZCS33nqrqe3p2bMnGRkZXq0TFRHDq+PNvYTmuvMfZPmG2bz12T+YdvtyAGKiYmmY0JIWDTpVadvJKckUFpt32V+g4t+wYzmvfXI/j//pUxokNK/S9s0+Br5yRlRj1GOpPq075ZlXuPGTR01ukbma97yGnlc9Ve57915kzAJfmbjo3/47eWTFyx3Lg6cXn/n63I8WMumqOzxsre/80QfAOnkgkPGblQdCJQcAtB/2F9oPvcfr9QqKoXXbjhTmZpveJjNdNPFraiQ2L/e9s+UBT3MAVJwHBg25gKP7t3jW2CrQWEB5oCpGPb4Lp8v7of7zr77DzfP+6ocWmadx50vpe8NL5b4XiLHAp0u+4O/X/dHD1vrO7mMBsN45QSjlABERq2nQoAFr1671ad2wLG6eOGFcUlHRreRz5swhMzOTmjVr0qJFi7LXV61aRZs2bXjnnXf417/+xd69e0lOTuYf//gH1113nc/tycjIYN++fV6tEx3p/beFXVoNYunUiu8/ala/nd9m/Nufnk5+UQXT8fogEPFnHNnFv965mltHTKVLq0G+NPM0Zh8DX7kionxe9/jx417/rQZafKuK7wWLi4FaHv7pOJ2eL3uqvNzcgBwjX/oAhE8eCFT8ZuaBUMkBAE2OH/N53fT0dApOhPbDN4uLiyp8z9M84GsOADh4IIPMEM0D4ZIDQHkgWE7k5IT8WKB644ofuBmIsUB+fp7GAhUIhTygHCAiYj9hWdxs0KABWVlZrFu3jnPOOee09/bv38/EiRMB6Ny5Mw6H47T39u3bx9/+9jeefPJJmjRpwuuvv871119P3bp1GTp0qM/t8VZUhAWmYDxFw0aNTP+W1p/yC3N5+M3LOaf9ZVzez5yZEM0+BlWRn5NJdI1Er9dzlRwnKSnJDy0yT43qFRdvj3lw+OOijZOZ0lI4ll/xchVtK9LlDsgxsloOAHP7QCDiNzsPhFIOcJUc92m9ovzjJNau4XvVL0DcJRU/bO9secDTHFDZthJqx1GtVHng96w2FoDwzgN5R9OJTWjq9XqOoqMhPxaIi42u8L1AjAUinKUaC1TAankgnHOAiIjV+FI7Oyksi5tDhw5l69atPPnkkwwbNoyUlBQAvv/+e0aPHk1mZiYAXbt2PW290tJScnJymDVrFpdffjkA559/Plu2bOHRRx/1ubjpy2W1JYWwfLpPuwuK7du24/L9gsEz+Dv+lZvm8uv+jezL3MaKjXPOeP/1v2yhXm3vTgjMPgZVsWA9LPPyjkmXExa+9Qg1ox/xT6NMknEU/r2o/PfKu3Xs9yaPNOo2x/Jh8nzv93/Pbdcy+NlrvV/RS1bLAWBuHwhE/GbngVDKAbmFMHme95NvDe5ckxf27vFPo0w065uKJ0w6Wx6oag6IcsHW9V/jDMBTy62WB6w2FoDwzgOLN8FiL2ZLB3A44IOX76d27P3+aZRJjuTAPz8u/71AjAXGjb6MuVMu835FL1ktB4D18kA45wARETsJy+LmpEmTePfdd9m7dy8dOnSgbdu25Ofns2PHDoYPH07z5s1ZsmTJGTOlJyQkAJxWxHQ4HAwdOpQ333wzkCEE1FN3rAh2EwJuWI/RDOsxOtjN8JtzW8PyLcbEAJ7q2hRqVnwhRMioVxOiIqCwODj7b5IQnP36m/JAeKkeBT1aGLMle6Nfsn/aY7YmCb7NBm+GpNoEpLAZaHbMARDeeeCcVvDZJu9mTO+QBLVj/dcms9SOhdhqwZsxXWOB8BHOOUBExE7CcHgOjRs3ZuXKlVxyySVER0eza9cuEhISeOWVV/jkk0/Ytm0bwBnFzQ4dOlS4zfz8s9y7JhJCEmvCBV48Dz4uGi7pcvblQoHTGbyTCqcDGofpCY2En4s6eXd3+eB20LCW35pjqqZ1grhv75/4IRIU8dVhRFfPl4+tBpd181tzTOVwQLMg5QEH0CSIOUhERETOFJbFTYB27dqxaNEijh8/zvHjx/n2228ZN24cJ06cYNeuXTidTjp27HjaOn/4wx8A+Oyzz8peKy0tZenSpfTq1Sug7Repqos6wfntz75crepwx/mQUMP/bTJLrxZnX8YfOjeB6Mjg7FvEW/HV4c7zoY4HfXtAG7jUIkUNgOZ1ITFIOStY+UfEF4PbwUWdz75czWi4fTDUi/N/m8zSM0h9sW0ja9zpIiIiYidheVt6ZTZv3ozb7SYlJYXq1U+/pOXSSy9lwIABjBs3jsOHD9O0aVNee+01Nm/ezNKlS4PUYhHfOBxGsaJNQ1j5C/y0D9yn3JpWq7px+/q5yVDDYoP07s3h4/WQVxjY/fZLCez+RKqqXhzce5Fxe/o32yHrxOnvd0iC/inQtqGRM6zC6TD648frArvf5om6elusxeEwvuxMrgcrt8GPe0+/TT0uBs5pbTySIs5ic9d0bmIUGY8H+Oaq/hZ5fIeIiIid2K64uWnTJuDMW9LBeL7mggULuP/++3nggQc4duwYXbp04b///S9DhgwJdFNFTJHSwPjJzoWpn8CJQuPWs4f+YEwiZEVREUZh9gsvJ02qika1oXW9wO1PxCyx1WBoBxjSDvYegVeWGxMO1awGtw4Kdut817slLNkE+UWB2+d5bQO3LxEztapv/BzNgymL/jcWiIKHL7fuWCDCBQNS4L9eTppUFXVrQrtGgdufiIiIeMaiwxnfVVbcBKhVqxavvPIKhw4doqCggO+++44LL7wwkE0U8Yta1Y0TAYAIp3VPZk66oJNnt9uawemA6/pY68o2kd9zOqFZIkS6fvvdymKrweU9Are/9o2MiddErCw+5pSxgMv6Y4Eh7aFBfGD25QCu7Wv93CkiIhKOdOVmGElN38gzH95KbsFx6tdqxv3XzWL3gc088NpwGtdtw7/HfUbtGsalZwtWvchH38zA5YzA6XAy4+5viYqM5tVFE1mxcQ7JSd15ZMxHwQ3IA57GvPi7mcxd+Qx7Dm7lthHTGDXgnjO2tfvAVu56rgcX9xnHnX94FoC5Xz3DglUvEB1Vg1fu3RDQ2KRy1SLgur7w/OferXcs7/T/euL89qE7eYCnfeD1Tx/gm03ziIyohssVydiLHqNXG+OLm/lfT+e/a14FhwMHDq4eNImhPW4EYMWGOcxa+giHj6Xz0aPZQYy0fJ7GP/PTB1m9ZQFOh3FWf+2QvzK467UA5Bfm8tQHt7Bt7/c4HE5uHv44AztfCWC5nGg3fVrCxj2wNd3zdXzJAdGRcHWIfsFhRh9IO7SdZ+eO43huFkXF+fRudwnjLpmK0+m0xOegN+MfKP/zHmDlj3N5e+nksme4PHrzIhokNLfEMbCrCBdcfw48u8S7WeF9yQMD2kCrEL2Dw9M+MOW9MazbvpT42LoA9EgZxrgRU0/blhXHw2acA1U2Tgr1+EVExIbFzWXLlgW7CX4zdc4Y/nL1G7RO6sri72by6qK/cGGvsTSu2+a0D+JVP33MF+v+w4zxa4iNiSc75xAulzFLyrgRU2lWvwOrNn8UnCC85GnMyY178Pcb3+e9ZU+Uu53ikiKenTuOfh1Hnvb6FQP/TOukbrz48T1+jEJ81bq+Mcv7Jxs9X+fpxd7tI6UBXOjFzPOB5mkf6NRiADcOfYhqkTGkpm/k3pcG8t5D6cRExdKsfgeevesbYmPiOZi9lzue6Ub7ZufQKLEVg7peQ9umfbj9ma5Bi7EynsZ/9aCJ3Dz8MQAyj+7jlqnt6J48lPjYRD74chqRrmq89dcd7D+ykwnT+9C11WDiYutYLifajcNhfMkx/TPIzPFsHW9zgNMBo8/1bub5QDKjD/zfJxPp13EkI/tPoLAon7um9+L71ufTp93Flvgc9PQYQMWf9zv2reeNxQ8y5bZlJMY3Ijf/OE6nUQi2wjGws6Z14A/dYf4Pnq/jbR5oUde7mecDzZs+cPWgieV+yQ/WHQ+bcQ5U2Tgp1OMXEREb3pYernbsW09MtRq0TuoKwLCef2T1lgUUFZ8548r7X05l9LCHiY0x7uOpVaMurv8N4K3Em5hbNepCs/rtcDjK/5N/Z+k/Gdj5KpIS9ZR4qxnaAS7o6J9tt6oHtwz87Ra+UONNH+jddjjVIo3ZIlo06ARuN0dzDgHQPfn8snxQr1YTEmo24NDRvYEJogq8ib9GTK2y/88ryMGNm1J3KQBfbpzDiHNuB6BhQgs6txrE1z/N93v7xRxxMXCHh7PCe8vpgNH9oENj87dtBrP6gAMHJ/KOAlBQlEdJSRF14hr6vf1m8OYYQMWf9x9++RRXDLyXxHjjgYrVo2sSHRWiFW05w3lt/Vd8bJZoPJ84KkQvCfG2D1TGiuNhs86BKhsniYhI6AvRj2nx1v4jO9m5fxO3Pd217LWCwlwyj+07Y9k9B7awLW0ts5Y+QlFJAcN63MTI/hMC2FpzeBNzZbbu+ZYtu1fz5LilzFr6iMmtFH9zOODiLsaMqQvWQ1GJOdvt2QKu7h26JzPgex9YsvYNGiS0pH7tZme8t27b5xzPyyKlSS+zm2s6b+Of//V0Fqx6gczsNP581Wtlt6gdzN5z2rFoULs5B7P3+LXtYq46NWDCMHjra/jVpHPRGtFwwzmhPXmIWX3gjj88y0MzL2XhmpfIyc3ihqEP0TqpWyBCqDJvjkFln/e7D26hfkJz7n3pPHLzj9G33QhGXzDZkl/+2tXQDka/nfc9FJo0Fuja1Lg6vFqkOdvzB6/zwMrnWPzdTOrVbsqYC/9VVhS06njYH+dAlY2TREQkNIXwabt4q23TPvz71iVlv185uW65y5WUFpNxZCdP3/kVOXlZ3PfSeTRMaEnf9iMC1VTTeBpzRfILc5kx704euulDHKH4MDXx2IA2kNIQZq+GXZm+bycu2ni2XscQvVLr97ztA+u2f8GspY/w5K1Lz/ib37l/E9PeH8vfb5xDTFSsX9prNm/iH9l/AiP7TyA1fSP/nn0jPVMuIC42RB+mKl6Lrw7jh8HKX2DRhqp90dG9GVzRy5i0KNSZ0QcWrHqRwd2u47ohfyMr5yATXx5Mmya96JEyLBAhVJknx+Bsn/clJcXs2LeeJ/60mFJ3Kf944zIWrn6Jy/uN92vbxVx9W0HrejB7DaQe9H07sdXgql7Q1SK1LU/zwM3DHyOhZkOcTidfb5rPg68P5837t+NwOC09HjbzHKiycZKIiIQuFTfDRMOElqddaXQi/xj5hSdIjEs6Y9l6tZoyuNt1uJwu4mMT6d32YrbuWWO54qY3MVdk/+FUDmbvYeLLgwHIycvG7S4lJy+LSde+ZXqbxb/qxxlXb23YA99s9+7Epk4N6JdsnBhVt0BBA7zvAxtTv2Ta+2N5dOxCmtRrc9p7uw9s4e8zR3Df1TPp2KK/X9ttFl9zQKtGXUiMS2Jj6goGdL6CerWaciBrd9ltuBlZu+iRcoFf2y7+4XQYt6d2agxfb4dvU+FEgefrdmoM/dtAcn3/ttMsZvWBBate4I1J2wCoXaMevdtezMbUFZYobnp6DM72eV+vdlP6dxxVdltq/46j2Lp7Nai4aTmJNeGuobBprzEW2Jbh+bq1q8O5ycaPFb7cAO/yQGL8b6/17zSS1z/9K3sP/UKkK8qy42Ezz4EqGyeJiEhoU3EzTLRO6kqEM5Ifti2lR8owFq56kfO6XENkRNQZyw7udj1rf15Mt9ZDKCjKY2PqCq4eNCkIra4ab2KuSIuGnfhw8m/3ML792WRy8rJPmz1VrMXphO7NjZ/92bB5H+w9AmlH4MiJsklwia0GjROgcW1jYqI2DY3ihpV40wd+/PUrnnxvNP8c8zGtGnU57b3dB7by4OsXc8+Vr1qimHGSN/HvPrCFZvXbA5CemcqO9PU0/d/vAztfxaLVL9O+WV/2H9nJj6krmDDqxYDGIuZKqAGXdYPhnY0Cx65MIwfsy4KCYmMZlxPq1oQmCUYu6NI0dCcNqohZfaBhQkvW/rKYi3rfTF7hCTakLufKgfcFNBZfeXoMzvZ5P6Tb9azevIALeo7B7S7lh22fWeaLHjmT02H06S5N4cBR+Cntt7HA4VPGAtWj/jcWSDCes92uoTGOsBJv8sCh7DTq1jJuTdmyew3HThwmqU5rYmPiLTseNuscqLJxkoiIhD4VN8PI367/D1PfH8v0eXfQqE5r/nr9O+zK+OmM5a4ceC/Pzr2NW6a2x+Fw0L/TFZzX5aogtLjqPI15yfdv8uaSv5OTm8WqzR/xwZfTeHTsQss8U0x807CW8XOS2w2lbuOkJ1zuNPK0Dzz1wS0UFRcwdc7Ystf+et0sWjTsxIsfT+BE/lFe++R+XvvkfgD+dMmT9GpzYcDi8JWn8f/fJ5PIOLITlzMSlyuC8Zc/T7P67QC4atBEnnr/Zm56ohVOp4vxI58nPjYx0KGIH0S6fvuy46RSt5ELXBYrYFTEjD4w6dq3mDF/PPO/fo6ikkLOaX8Zg7teG+hQfObpMajMoC7Xsj1tHX96qgMuh4uOLQYwsv//81OLJZDqxxs/J9l5LDB1zhiycg7gdLioFhnDQ6M/KJtcx8rMOAeqbJwkIiKhT8XNMNKiYSde/H9rz7pcVGR0yN9i4ilPY76w1xgu7DXmrMvddMHkqjdKQpbDAa4wOZE5ydM+8Nb92yt878lxS81sUkB5Gv+/bl5U4XsxUbH8/cY5ZjZLQpjTAYRRHjCjD7RO6sZz478xs1kB5ekxONXvP++dTie3XTqN2y6dZmLLJBTZeSww5bbPPdqe1cbDZpwDVTZOEhGR0Bcm1y1IRSJcURzPPcxtT3clK+fsDyB8ddFE3lv+BDViagegdf7hbcyVmfvVM0yfd6eu4hJLMbMPrNgwh4feuJTaNS3yEELMjT8ccqLYjz4HdQxE7N4H7B6/iIjdONzuk0+dkVBSUgjLpwe7FZ4bPAFcnj/q8qysFj+Yfwz84eF5cDQP4mPgkVHBbo1Uxu59wO7x+5PygHVYrR9oLGCNPKAcYB3qA9Y7BlbIASIi4UhXboqIiIiIiIiIiIglqbgpIiIiIiIiIiIilqQJhUKUM9K4rcEqnJHmb89K8YP5x0Dsze59wO7xi4D1+oHGAsoDYi71AesdA+UAEZHgUHEzRDkc9n5ei93jF7F7H7B7/CKgfmD3+EXUB3QMRETEM7otXURERERERERERCxJxU0RERERERERERGxJBU3RURERERERERExJJU3BQRERERERERERFLUnFTRERERERERERELEnFTREREREREREREbEkFTdFRERERERERETEklTcFBEREREREREREUtScVNEREREREREREQsScVNERERERERERERsSQVN0VERERERERERMSSVNwUERERERERERERS1JxU0RERERERERERCxJxU0RERERERERERGxJBU3RURERERERERExJJU3BQRERERERERERFLUnFTRERERERERERELCki2A2Q8rndUFoU7FZ4zhkJDod527Na/GD+MbA7u/8N2D1+EfUB6x0D5QAxm9X6AGgsoDwgIiLBoOJmiCotguXTg90Kzw2eAK4o87ZntfjB/GNgd3b/G7B7/CLqA9Y7BsoBYjar9QHQWEB5QEREgkG3pYuIiIiIiIiIiIglqbgpIiIiIiIiIiIilqTipoiIiIiIiIiIiFiSipsiIiIiIiIiIiJiSSpuioiIiIiIiIiIiCVptnSRMFZSChlHYe8R2HcEcguN13MLYckmaJJg/NSMCW47RcR/cvKNHLD3CGQe/y0P5BXC6h3QOAEaxkOEK7jtFBH/KCmFAyfHAlmnjwUW/2iMAxrXgXiNBURERMSiVNwUCUOHjsE32+G7X387iTlVUQl8+uNvv7eoC/2ToUtTFThEwkFxCWxKg6+3QerB8pcpLIE53xr/Hx0JvVpCv2RoEB+4doqI/xzOgVXbYU0qnCg48/2iEli86bffm9aB/inQtSlE6QxBRERELERDF5EwcjwP5q6FDXu8W2/nIeNn/jq4vDv0aA4Oh1+aKCJ+tnEPzFsLR/M8Xye/CFb+Yvx0bAxX9YL46v5ro4j4z4kCmP8D/LAT3F6st+cwvLsaPl4Hl3aDPi01FhARERFrUHEzjGxMXcFfXh582mvRUbE0rpvC0O6jubzf3bhc4ftPbvf41+0yCpvlXZ3hqZx8eGeVURy9ujfEWewWNbv/DYCOgZ3l5MOH33v/5cbv/ZRmXO05sgf0amG94obd+4Dd47e7TXvh/e/geL7v2zhRAO+tgQ274dq+UMtiX3SoD+gYiIiI/ehTLQwN7nodvdtejBs3WcczWPrD27y88F72HNzKn698NdjN8zu7xe92w383wtLN5m3zpzRIOwJ3nA/148zbbqDY7W+gPDoG9nI4B178wvivGfIKjSu49mUZV3NbrcAJ6gN2j99u3G74fDN8stG8bf68H576FO4YAo1qm7fdQFEf0DEQERH70GzpYSg5qTtDe9zIsB6juXrQRKbfvYa68Y359LvXyM45FOzm+Z3d4je7sHlSdi68sBQOHTd/2/5mt7+B8ugY2EfWCZix1LzC5qm+/Nm4vdXtzb2tIcLufcDu8duN2YXNk47nwwtfGJMTWo36gI6BiIjYh4qbNhATFUvbZn1xu92kH04NdnMCLpzj/+5X/xQ2TzqWD68uh8Ji/+0jEML5b8BTOgbhqbgEXl1hfBnhL1/9YkxQZnV27wN2jz+cbdjjn8LmSScK4JVlxhXdVqY+oGMgIiLhS7el28T+/w1g4qonBLklwRGO8WfnGpOGeOPei4znaB7Lg6cXe7bOoeOwaAOM6ul1E0NKOP4NeEvHIPws2QT7s71bx5c8sGAdtG0IiTW9bmJIsXsfsHv84eh4PnzwnXfr+JIDsnKNiYau7et9G0OJ+oCOgYiIhCcVN8NQflEuR09k4nYbz9dZuPplduxbT9smvWlcNyXYzfM7u8T//rfGDMfeiIvxbWKAlb9A16bQsp736waDXf4GKqNjEP72HoYvtni/ni95oLAE3vsW7jrfOs/ftHsfsHv8djH3e+8nEvR1LLAmFbo2M77osAL1AR0DERGxD1sUNzMzM5kyZQrz5s0jLS2NunXrMmrUKB5//HEmTJjAzJkzmTFjBuPHjw92U03x9mcP8/ZnD5/2Wv+Oo7h75AtBalFg2SH+PYdhS3rg9ucGPvsJbh8SuH1WhR3+Bs5GxyD8Ld0MpQF8FuaOA/DrQWhVP3D7rAq79wG7x28HGUeNW9IDackm6xQ31Qd0DERExD7Cvri5YcMGhg8fTkZGBrGxsbRv35709HSmT59OamoqR44cAaBr167BbaiJLukzjoGdr6K4tIid+zcxZ8WTZB5NIyoyumyZx965llJ3KQ+Nfr/stWO5R7h1WgfGjZjG+d1vCEbTTeFJ/Jt+XckDrw8/Y93ikkJKS0tYMqUkkE32WjCef/fzfuMW9boWuC3V7n0A7NEP7Cw7FzalBX6/X2+3TnHT7nlAOSD8BWMssPMQpGdZY/Z0u+cAUB4QERH7COviZmZmJpdeeikZGRncd999PPzww9SsaVRmpkyZwv33309ERAQOh4POnTsHubXmSUpMpnvKUAB6tx1Oxxb9+fOL/Xlu7u08eON7ANw96kXGPdWJZetnM6TbdQDMmH8XHVr0t/xAzpP4O7UcwMLHTp9aOPNoOndN78kfzg3tK3jzCmHdruDse9V2+EP34OzbG3bvAxD+/cDu1uwIzgzmG/cYz/irGX32ZYPN7nlAOSC8FRbD978GZ9/fbIeregdn396wew4A5QEREbGPsJ4tfcKECaSlpTF+/HimTZtWVtgEmDRpEl26dKG4uJjmzZsTFxcXxJb6V4fm5zK0+2hWbJzD5l2rAOMh4vdd9TrPfzSezKPpfPXjh/yYuoJ7Rr0c5Naar7z4f6+wuIBH3h5Fx+b9uf78BwLcQu/sPgxFQfoSfceB4Oy3quzeByD8+oHdbQ9SXyx1G1duWZHd84ByQHhJO+L9c7fNorGAdSkPiIhIuArb4ubWrVuZM2cOiYmJPPHEE+Uu06NHDwC6dOlS9tqgQYNwOBzl/tx+++0Babs/3DD0IZxOF28t+UfZa73aXsR5na/mydk3MmPendx71WvExdYJYiv9p7z4T/Xc3NspLMpn4jVvBrZhPth7OHj7Ts+GYovenWT3PgDh1Q/srNRtFDaCJZg5qKrsngeUA8LH3iDmgIPHoCBIhdWqsnsOAOUBEREJT2Fb3Jw9ezalpaXccMMN1KhRo9xlYmJigNOLmy+++CKrV68+7efvf/87ACNGjPB/w/0kKbE1g7tcy/odX7Dp15Vlr4+7dBr7Du+gV9vh9Gl3SRBb6F8VxQ8w/+vpfLt1EY+M+YjoKB+mDw2wtKzg7buk1JjAwIrs3gcgvPqBnR0+DgXFwdt/MHNQVdk9DygHhI99QeyH7iDvvyrsngNAeUBERMJT2D5zc9myZQAMHjy4wmXS0ozZGE4tbrZv3/6M5R577DHq1q3LRRdd5FNbevbsSUZGhlfrREXE8Op4c58Uf935D7J8w2ze+uwfTLt9OQAxUbE0TGhJiwadqrTt5JRkCovzzGgmELj4N+xYzmuf3M/jf/qUBgnNq7R9s49BRc4b9wF1W51T7nv3XgRxMRWvGxf9238nj6x8P8fy4OnFZ75+2RXXcXD7yjPfMJnV+gCY+zfgj/jBv/0gUH3A7uo068HgOz8u972z5QDwPA9UlAO++XYDj472/5d9gewD+ixUDrCafmPepGG7oeW+F4ixwLU33kL6liUettZ3GgtoLCAiIvbRoEED1q5d69O6YVvc3L17NwDNmjUr9/3i4mK++eYb4PTi5u8dOnSIxYsXc+eddxIR4dvhysjIYN++fV6tEx3p/belXVoNYunUimeYaFa/nd9mPNyfnk5+Ua5p2wtE/BlHdvGvd67m1hFT6dJqkC/NPI3Zx6AiRSWlFb4XFwO1PDh0Tqdny5UnK+uo13/PvrBaHwBz/wZ8iR+C2w8C1Qdsr2arCt/yNAeA73mgpJSQzQGgz0LlAHsorOTh24EYC2QfOx6yeUBjAeUBERGxn7Atbp44cQKAvLzyvzmcM2cOmZmZ1KxZkxYtWlS4ndmzZ1NcXMzo0aN9bkuDBg28Xicq4iyX3oSYho0amX61ij/lF+by8JuXc077y7i8nzkzQZp9DCoS4ax4sHrsLLuPizZOZkpL4Vh+5ctWtK3a8TUpSko6Syurzmp9AMz9GwhE/Gb3g0D1AbtLqB1f4XtnywHgeR6oaFtORylJygHlsvtnoXJA4ERGOCp8LxBjgfiascoDFdBYQHlARER840vt7KSwLW42aNCArKws1q1bxznnnH4L7/79+5k4cSIAnTt3xuGoeIA4a9Ys2rVrR8+ePX1uiy+X1ZYUwvLpPu8y4LZv244ryrzt+Tv+lZvm8uv+jezL3MaKjXPOeP/1v2yhXu2mXm3T7GNQkXdXw3e/lv9eebeOnWrySOMqjWP5MHm+b/tfsmgOdWv6tq43rNYHwNy/gUDEb3Y/CFQfsLujufBwBf33bDkAqp4Hzu/fnVl/S/N+RS/ZPQeA9T4LlQMC58Pv4ett5b8XiLHAR++/QVJt39b1ht3zgMYCIiIingnb4ubQoUPZunUrTz75JMOGDSMlJQWA77//ntGjR5OZmQlA165dK9zGzz//zNq1a3n88ccD0eSgeeqOFcFuQsAN6zGaYT18vxo3mJokVFzc9LfoSEgsf34uS7NjHwBr9wM7i69u3HbqyVWa/tA4ITj79Tc75gHlAOtqEsR+GOGEBhVfQG5ZdswBoDwgIiLhIWxnS580aRJ16tRh7969dOjQgU6dOpGcnEzv3r1p2bIlQ4YMASp/3uasWbNwOBzccMMNgWq2yFkFs7DQJAEqudBZRAIkmIWNYO5bRAzB7IeNaoMrbM8gRERExIrCdmjSuHFjVq5cySWXXEJ0dDS7du0iISGBV155hU8++YRt24x7eSoqbrrdbv7zn/8waNAgmjb17vZkEX9qWue3mU4Drb3/H68lIh7oEKS+WD0KWtQNzr5F5DcN4iEhNjj7Dlb+EREREalI2N6WDtCuXTsWLVp0xus5OTns2rULp9NJx44dy133q6++Yvfu3Tz88MP+bqaIV1xO6NsaPvspsPuNdEGfloHdp4iUr0dz+HgdFBQHdr+9W0JUWI8cRKzB6YRzk2HRhgDv1wHntA7sPkVERETOJmyv3KzM5s2bcbvdJCcnU7169XKXmTVrFjExMVx55ZUBbp3I2Z2bbJxgBFK3ZlC9WmD3KSLlqxZpFBoDrV9y4PcpIuXr2yrwt4d3bmI881dEREQklNiyuLlp0yag4lvS8/Pz+fDDD7n88supWTMA00KLeKlWdRjUNnD7qxYBwzsHbn8icnbDOhq3iQdK/2SoGxe4/YlI5WpEw7AOgdtfpAsuqfhR9SIiIiJBo+JmOaKjo8nOzubdd98NZLNEvDK8C9QLUKHh8h5QO0jP9hKR8sXFwBU9A7OvhFi4tFtg9iUinhvWEZJqB2Zfl3TVFxwiIiISmmz55KyzFTetKjV9I898eCu5BcepX6sZ9183i90HNvPAa8NpXLcN/x73GbVr1GPymyPZf2Rn2Xo7M35k8h8/4twOlzH3q2dYsOoFoqNq8Mq9G4IXjIc8jXnxdzOZu/IZ9hzcym0jpjFqwD1l25jy3hjWbV9KfKwxS0aPlGGMGzEVgFcXTWTFxjkkJ3XnkTEfBSHCikW64IZzYMZSKC71bJ1jeaf/1xMdkoxb30KRp//+r3/6AN9smkdkRDVcrkjGXvQYvdpcCMDH37zAojUv43S4KC0t5uK+4xjZfwKAJfqDp8dg5qcPsnrLApwOFwDXDvkrg7teC1Bp/wjlPiDQvTn8tA/W7/Z8HW/zgMsJ159j3AofiszoA2mHtjNj/p1k5xykpLSYG4f+g0FdrwFCPw94Gv9Juw9s5a7nenBxn3Hc+YdnAZg+7y427/qmbJm9h37m1kumMLL/BFZsmMOspY9w+Fg6Hz2aHeDo5GxcTmMs8OxnUOjhM3h9GQukNICBbbxvXyB42gcqG+9ZdSx4kjd5YMGqF/nomxm4nBE4HU5m3P0tUZHRleZIKxwDERGxN1sWN5ctWxbsJvjF1Dlj+MvVb9A6qSuLv5vJq4v+woW9xtK4bpvTTsgmj5lf9v+/7F3LA69dRK82FwFwxcA/0zqpGy9+fE+AW+8bT2NObtyDv9/4Pu8te6Lc7Vw9aOJpBZ2Txo2YSrP6HVi1+SP/BFBFzRJh7ACYuRJKPChwPr3Yu+23rAt/7A+OAD/f01Oe/vt3ajGAG4c+RLXIGFLTN3LvSwN576F0YqJiGdr9Rv7Q7y4ATuQf49anOtKpxQBaJ3WzRH/w9BhcPWgiNw9/DIDMo/u4ZWo7uicPJT42sdL+Eep9wO4cDqOwkVsIv+z3bB1v8oDTAaPPhdb1fWtfIJjRB6bOGcOFvcZycZ8/kZ1ziLue60nHFv1JjE8K+TzgafwAxSVFPDt3HP06jjzt9QmjXij7/yPHMhj9RAvO63w1AIO6XkPbpn24/Zmu/g5FfNSoNtwyEF77EopKzr68t2OBpnXg5oGBf9a3p7zpAxWN9yp7zwqfg54eg1U/fcwX6/7DjPFriI2JJzvnEC6X8c1VZTnSCsdARETszZa3pYejHfvWE1OtBq2TugIwrOcfWb1lAUXFhZWut/i71zm/+41ERgTwwW0m8SbmVo260Kx+OxyO8PuT79AY/nSe+TMYt2sEtw8J3ZmRvfn37912ONUijRkQWjToBG43R3MOARAbE1+2XH7hCUpKivzfeJN4cwxqxNQq+/+8ghzcuCl1GxXxcO4fdhDhMnJA5ybmbjfSZXx50rWZuds1k1l94Nf9G+nd9mIAatWoS8tGXVixYY7f219V3n72v7P0nwzsfBVJiRXPDPXZD2/Rs82FJMQ18EeTxU/aNITbBkO0yVdYJ9eHO883f7tm8XX8G068OQbvfzmV0cMeLhv71KpRF5fTuFKzshwpIiIS6kK0bCHe2n9kJzv3b+K2p7uWvVZQmEvmsX0VrlNQlMfyDbN55s6VAWih+XyJuSLzVz7H4u9mUq92U8Zc+K+yAaJVtGsE918Cs9fAjgNV21aUC0Z0g/4poXuVBvj+779k7Rs0SGhJ/dq/VWy++vFD3v7sYdIzdzB2+OO0TrLGwwW9PQbzv57OglUvkJmdxp+veu20W1XF2k4WIlfvgI/XQYGHt6dWpEVduL5v6D9fz6w+kNy4B1+se4drBk9i/+Ff2bJrFQ1qNw9ABFXjTfxb93zLlt2reXLcUmYtfaTCbS75fibjRkzzR3PFz1rXN8YCc76Fnz28krsiEU64uIsxeaEzhL/38joHVDLes+pY0JtjsOfAFralrWXW0kcoKilgWI+byh7FAxoniIiIdam4GUbaNu3Dv29dUvb7lZPrVrr8Vz9+SOO6KbRo2MnfTfMbb2Muz83DHyOhZkOcTidfb5rPg68P5837txNTrYaZTfW7OjWMqytW74AvNsORE96t73RAx8ZwWTdIrOmfNprN23//ddu/YNbSR3jy1qU4TrnXfmDnKxnY+Uoyjuxi8lsj6dtuBE3qhejDxX7Hm2Mwsv8ERvafQGr6Rv49+0Z6plxAXGydQDRTAsDhgHOToW1DWLgBNu6BUrd326hVHYa0N2ZGD+WCxqnM6AOTrnmLVxbex21Pd6V+7WZ0Sz4fl9MaQyRP4s8vzGXGvDt56KYPT8t9v7fp15XkFhwvu4pVrKd2rHEF53e/wtLNkHncu/UdQPskYyxQP/6si4cET3NAZeM9q48FPT0GJaXFZBzZydN3fkVOXhb3vXQeDRNa0rf9CEDjBBERsS5rjNzlrBomtORg9p6y30/kHyO/8ASJcUkVrrP4u9e5qNctgWieX/gSc3kS439bvn+nkbz+6V/Ze+gXUhr3MK2tgeJ0QL9kOKeVcdXGqh3w60HjeXzlcTigfhx0aQrntDYKG1bh7b//xtQvmfb+WB4du7DCwmWDhOa0bdqHNVsXWaK46WsfaNWoC4lxSWxMXcGAzlf4u5kSYAk1jGflHs2DNTtgwx44cLTiQmdMFLRINHJA+yRjghKrMKsPNEhozsN/nFv2/t/+7yJ6pFzgt3abxdP49x9O5WD2Hia+PBiAnLxs3O5ScvKymHTtW2XLffrd61zQ449lt6mKNTkc0KcV9GoJ2zNg1XZIPQg5BRUsj3GVducmRh6oY416HuBdDqhsvGflsaA3x6BeraYM7nYdLqeL+NhEere9mK171pQVN0/SOEFERKxGxc0w0TqpKxHOSH7YtpQeKcNYuOpFzutyTYXP0tyXuYNtaWv559gFAW6pebyNuSKHstOoW6sxAFt2r+HYicMk1WntjyYHjNNpFCnaJ4HbbVzFuS8L8gqNiYciXJBYA5ISoJpFs4A3//4//voVT743mn+O+ZhWjbqc9t7uA1toVr89ANk5h9iwYxkDOlljIO/NMTg1zvTMVHakr6fp/36X8BQfAxd2Mn4Ki40ckHncmHDE6YSYSEiqbRQyQnXSsLMxqw9kHT9AfGxdnE4n3/+yhN0HtzCk2/UBjcUXnsbfomEnPpx8qOz3tz+bTE5edtls6WAURFZu+pCX7lkfqOaLnzkdxrM42zQ0xgLZuZB2xPjC8+RYoE4NIw+E6jM1z8abHFDZeM/KY0FvjsHgbtez9ufFdGs9hIKiPDamruDqQZMAjRNERMTaLFrWkPL87fr/MPX9sUyfdweN6rTmr9e/w66Mn8pddvH3MxnQ6Qpio0P8gWpn4WnMS75/kzeX/J2c3CxWbf6ID76cxqNjF9I6qRtT54whK+cAToeLapExPDT6g9MmmbE6h8M4ebHSlRie8vTf/6kPbqGouICpc8aWvfbX62bRomEn5q98jk07VxLhigLcjBpwDz1ShgUwiqrx9Bj83yeTyDiyE5czEpcrgvGXP0+z+u2AyvuHhIeoCOM5mi28f3JHyDOjD6zespA5y/+N0+miTlwjHrvlv2WTkIU6bz77K7Niw3skN+5B47oVTzYk1uVwGLes144NdkvM52kfqGy8Z/WxoKfH4MqB9/Ls3Nu4ZWp7HA4H/TtdwXldrgIqz5EiIiKhTsXNMNKiYSde/H9rPVr2luGP+7k1geFpzBf2GsOFvcaU+96U2z43uVUSKJ7++791//YK37vnylfMbFLAeXoM/nXzogrfq6x/iIQ6M/rAxX3+xMV9/mRmswLGm8/+k266YPIZr13SdxyX9B1nUqtEAsfTPlDZeM/qY0FPj0FUZPRpj6I4VWU5UkREJNRZ6Mla4osIVxTHcw9z29Ndyco5eNbl5371DNPn3Ul8bGIAWucf3sZcmVcXTeS95U9QI6a2Sa0TfzPz39+q/UF9QOzO7nnAzPhXbJjDQ29cSu2a9U1qnYj/6XNQx0BEROzF4Xa7vZxLVQKhpBCWTw92Kzw3eAK4vHvUZaWsFj+Yfwzszu5/A3aPX0R9wHrHQDlAzGa1PgAaCygPiIhIMOjKTREREREREREREbEkXbkZotxuKC0Kdis854w0d7Zdq8UP5h8Du7P734Dd4xdRH7DeMVAOELNZrQ+AxgLKAyIiEgwqboqIiIiIiIiIiIgl6bZ0ERERERERERERsSQVN0VERERERERERMSSVNwUERERERERERERS1JxU0RERERERERERCxJxU0RERERERERERGxJBU3RURERERERERExJJU3BQRERERERERERFLUnFTRERERERERERELEnFTREREREREREREbEkFTdFRERERERERETEklTcFBEREREREREREUtScVNEREREREREREQsScVNERERERERERERsSQVN0VERERERERERMSSVNwUERERERERERERS1JxU0RERERERERERCxJxU0RERERERERERGxJBU3RURERERERERExJJU3BQRERERERERERFLUnFTRERERERERERELEnFTREREREREREREbEkFTdFRERERERERETEklTcFBEREREREREREUtScVNEREREREREREQsScVNERERERERERERsaT/D+SlyMcfSQY3AAAAAElFTkSuQmCC", - "text/plain": [ - "
" - ] - }, - "execution_count": 1, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "from qiskit.circuit.library import EfficientSU2\n", - "\n", - "n_qubits = 8\n", - "circuit = EfficientSU2(n_qubits)\n", - "circuit.decompose().draw(\"mpl\")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Using Qiskit Aer, we were able to simulate this circuit easily. However, suppose we set the number of qubits to 500:" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [], - "source": [ - "n_qubits = 500\n", - "circuit = EfficientSU2(n_qubits)\n", - "# don't try to draw the circuit because it's too large" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Because the cost of simulating quantum circuits scales exponentially with the number of qubits, such a large circuit would generally exceed the capabilities of even a high-performance simulator like Qiskit Aer. Classical simulation of generic quantum circuits becomes infeasible when the number of qubits exceeds roughly 50 to 100 qubits. However, note that the EfficientSU2 circuit is parameterized by angles on $R_y$ and $R_z$ gates. If all of these angles are contained in the set $\\{0, \\frac{\\pi}{2}, \\pi, \\frac{3\\pi}{2}\\}$, then the circuit is a stabilizer circuit, and it can be efficiently simulated!\n", - "\n", - "In the following cell, we run the circuit with the Sampler primitive backed by the stabilizer circuit simulator, using parameters chosen randomly such that the circuit is guaranteed to be a stabilizer circuit." - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": {}, - "outputs": [], - "source": [ - "import numpy as np\n", - "from qiskit_aer.primitives import Sampler\n", - "\n", - "measured_circuit = circuit.copy()\n", - "measured_circuit.measure_all()\n", - "\n", - "rng = np.random.default_rng(1234)\n", - "params = rng.choice(\n", - " [0, np.pi / 2, np.pi, 3 * np.pi / 2],\n", - " size=circuit.num_parameters,\n", - ")\n", - "\n", - "# Initialize a Sampler backed by the stabilizer circuit simulator\n", - "exact_sampler = Sampler(backend_options=dict(method=\"stabilizer\"))\n", - "job = exact_sampler.run(measured_circuit, params)\n", - "exact_quasis = job.result().quasi_dists[0]" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "The stabilizer circuit simulator also supports noisy simulation, but only for a restricted class of noise models. Specifically, any quantum noise must be characterized by a [Pauli error](https://qiskit.org/ecosystem/aer/stubs/qiskit_aer.noise.pauli_error.html#qiskit_aer.noise.pauli_error) channel. [Depolarizing error](https://qiskit.org/ecosystem/aer/stubs/qiskit_aer.noise.depolarizing_error.html) falls into this category, so it can be simulated too. Classical noise channels like [readout error](https://qiskit.org/ecosystem/aer/stubs/qiskit_aer.noise.ReadoutError.html) can also be simulated.\n", - "\n", - "The following code cell runs the same simulation as before, but this time specifying a noise model that adds depolarizing error of 2% to each CX gate, as well as readout error that flips each measured bit with 5% probability." - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": {}, - "outputs": [], - "source": [ - "from qiskit_aer.noise import NoiseModel, depolarizing_error, ReadoutError\n", - "\n", - "noise_model = NoiseModel()\n", - "cx_depolarizing_prob = 0.02\n", - "bit_flip_prob = 0.05\n", - "noise_model.add_all_qubit_quantum_error(\n", - " depolarizing_error(cx_depolarizing_prob, 2), [\"cx\"]\n", - ")\n", - "noise_model.add_all_qubit_readout_error(\n", - " ReadoutError(\n", - " [\n", - " [1 - bit_flip_prob, bit_flip_prob],\n", - " [bit_flip_prob, 1 - bit_flip_prob],\n", - " ]\n", - " )\n", - ")\n", - "\n", - "noisy_sampler = Sampler(\n", - " backend_options=dict(method=\"stabilizer\", noise_model=noise_model)\n", - ")\n", - "job = noisy_sampler.run(measured_circuit, params)\n", - "noisy_quasis = job.result().quasi_dists[0]" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Now, let's use the Estimator primitive backed by the stabilizer simulator to compute the expectation value of the observable $ZZ \\cdots Z$. Due to the special structure of stabilizer circuits, the result is very likely to be 0." - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": {}, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_21071/287309019.py:6: DeprecationWarning: ``qiskit_aer.primitives.estimator.Estimator.__init__()``'s argument ``approximation`` is deprecated as of qiskit-aer 0.13. It will be removed no earlier than 3 months after the release date. approximation=True will be default in the future.\n", - " exact_estimator = Estimator(\n" - ] - }, - { - "data": { - "text/plain": [ - "0.0" - ] - }, - "execution_count": 5, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "from qiskit.quantum_info import SparsePauliOp\n", - "from qiskit_aer.primitives import Estimator\n", - "\n", - "observable = SparsePauliOp(\"Z\" * n_qubits)\n", - "\n", - "exact_estimator = Estimator(\n", - " backend_options=dict(method=\"stabilizer\"),\n", - " approximation=True,\n", - ")\n", - "job = exact_estimator.run(circuit, observable, params)\n", - "exact_value = job.result().values[0]\n", - "exact_value" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Next steps\n", - "\n", - "\n", - " - To simulate circuits with Qiskit Aer, see [Exact and noisy simulation with Qiskit Aer primitives](simulate-with-qiskit-primitives).\n", - " - Review the [Qiskit Aer](https://qiskit.org/ecosystem/aer/) documentation.\n", - "" - ] - } - ], - "metadata": { - "description": "Efficient simulation of stabilizer circuits with Qiskit Aer primitives", - "kernelspec": { - "display_name": "documentation--fuetTj0", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.10.12" - }, - "title": "Efficient simulation of stabilizer circuits with Qiskit Aer primitives" - }, - "nbformat": 4, - "nbformat_minor": 2 -} \ No newline at end of file diff --git a/translations/ja/verify/using-ibm-quantum-simulators.mdx b/translations/ja/verify/using-ibm-quantum-simulators.mdx deleted file mode 100644 index d783e6a7e9..0000000000 --- a/translations/ja/verify/using-ibm-quantum-simulators.mdx +++ /dev/null @@ -1,318 +0,0 @@ ---- -title: Using IBM Quantum cloud-based simulators -description: Set up ibmq_qasm_simulator and map a basic noise model for an IBM Quantum hardware device in Qiskit Runtime. ---- - -# Using IBM Quantum cloud-based simulators - -Set up `ibmq_qasm_simulator` and map a basic noise model for an IBM Quantum hardware device in Qiskit Runtime, then use this noise model to perform noisy simulations of `QuantumCircuits` by using `Sampler` and `Estimator` to study the effects of errors that occur on real devices. - -## Set up your local development environment - -If you haven’t already set up a Qiskit Runtime service instance, follow the steps in [Install and set up](../start/install) to do so. - -```python -# load necessary Runtime libraries -from qiskit_ibm_runtime import QiskitRuntimeService, Sampler, Estimator, Session, Options - -service = QiskitRuntimeService() -``` - -## Prepare the environment - -First, we run an example routine. One of the major benefits of using primitives is simplification of binding multiple parameters in parameterized circuits. To illustrate this, we start with is an example circuit with a controlled [P-gate](/api/qiskit/qiskit.circuit.library.PhaseGate) as implemented in the following code. Here, we parameterize the `P-gate` with a rotation parameter `theta`. - -```python -from qiskit.circuit import Parameter -from qiskit import QuantumCircuit - -theta = Parameter('theta') - -qc = QuantumCircuit(2,1) -qc.x(1) -qc.h(0) -qc.cp(theta,0,1) -qc.h(0) -qc.measure(0,0) - -qc.draw('mpl') -``` - -![](/images/qiskit-ibm-runtime/noisy-sim-circuit.png) - -The circuit shown previously is parameterized and the eigenvalue is put back into qubit 0 to be measured. The eigenvalue's rotation is determined by the parameter theta. Next, we define the circuit's parameters as a list. The parameters in this example range from $0$ to $2\\pi$, divided over 50 evenly spaced points. - -```python -import numpy as np - -phases = np.linspace(0, 2*np.pi, 50) - -# phases need to be expressed as a list of lists -individual_phases = [[phase] for phase in phases] -``` - -## Running on the ideal simulator - -### Set the backend and options to use - -Our first run assumes an ideal case, without any `noise_model`, `optimization_level` or `resilience_level` for both Sampler and Estimator. We will define the options in the following code: - -```python -backend = "ibmq_qasm_simulator" # use the simulator -``` - -```python -options = Options() -options.simulator.seed_simulator = 42 -options.execution.shots = 1000 -options.optimization_level = 0 # no optimization -options.resilience_level = 0 # no error mitigation -``` - -### Run the circuits on Sampler - -Next, we use the Sampler primitive to sample the circuit and get the resultant quasi-probability distribution. Visit the [Get started with Sampler](../run/primitives-get-started#get-started-with-sampler) section for more information about the Sampler primitive. - -```python -sampler = Sampler(options=options, backend=backend) -job = sampler.run( - circuits=[qc]*len(phases), - parameter_values=individual_phases -) -result = job.result() -``` - -```python -import matplotlib.pyplot as plt - -# the probablity of being in the 1 state for each of these values -prob_values = [dist.get(1, 0) for dist in result.quasi_dists] - -plt.plot(phases, prob_values, 'o', label='Simulator') -plt.plot(phases, np.sin(phases/2,)**2, label='Theory') -plt.xlabel('Phase') -plt.ylabel('Probability') -plt.legend() -``` - -``` - -``` - -![This image shows that the value found by the simulator is very close to the theoretical value.](/images/qiskit-ibm-runtime/noisy-sim-sampler-ideal.png "Simulated versus theoretical value") - -### Run the circuits on Estimator - -Visit the [Get started with Estimator](../run/primitives-get-started#get-started-with-estimator) section for more information on the Estimator primitive. - -The Estimator binds single-qubit rotations to get Hamiltonians before it returns expectation values of quantum operators. Therefore, the circuit doesn’t require any measurements. Currently the circuit `qc` has measurements, so we will remove these with `remove_final_measurements`. - -```python -qc_no_meas = qc.remove_final_measurements(inplace=False) -qc_no_meas.draw('mpl') -``` - -![](/images/qiskit-ibm-runtime/noisy-sim-estimator-circuit.png) - -```python - -from qiskit.quantum_info import SparsePauliOp - -ZZ = SparsePauliOp.from_list([("ZZ", 1)]) -print(f" > Observable: {ZZ.paulis}") -``` - -``` -> Observable: ['ZZ'] -``` - -With this observable, the expectation value is calculated by the -following equation. - -$$ \\langle ZZ\\rangle =\\langle \\psi | ZZ | \\psi\\rangle=\\langle \\psi|(|0\\rangle\\langle 0| -|1\\rangle\\langle 1|)\\otimes(|0\\rangle\\langle 0| - |1\\rangle\\langle 1|) |\\psi\\rangle =|\\langle 00|\\psi\\rangle|^2 - |\\langle 01 | \\psi\\rangle|^2 - |\\langle 10 | \\psi\\rangle|^2 + |\\langle 11|\\psi\\rangle|^2$$ - -The following code implements the expectation value equation. - -```python -with Session(service=service, backend=backend): - estimator = Estimator(options=options) - job = estimator.run( - circuits=[qc_no_meas]*len(phases), - parameter_values=individual_phases, - observables=[ZZ]*len(phases) - ) - result = job.result() -``` - -```python -exp_values = result.values - -plt.plot(phases, exp_values, 'o', label='Simulator') -plt.plot(phases, 2*np.sin(phases/2)**2-1, label='Theory') -plt.xlabel('Phase') -plt.ylabel('Expectation') -plt.legend() -``` - -``` - -``` - -![This image shows that the value found by the simulator is very close to the theoretical value.](/images/qiskit-ibm-runtime/noisy-sim-estimator-ideal.png "Simulated versus theoretical values") - -## Running a noisy simulation - -Now we’ll set up our simulator to run a noisy simulation rather than the ideal one. We can pass a custom `noise_model` to the Qiskit Runtime simulator by specifying it in the `Options` parameter. Here we will try to mimic a real backend by using the `noise_model` from a `FakeBackend` class. The noise model can be extracted from the `FakeBackend` and passed as a `simulator` parameter in options. For more details, visit the [Fake Provider](/api/qiskit/providers_fake_provider) documentation in the Qiskit Terra API reference. - -Since we are trying to mimic a real backend, we can also pass in the backend topology's `coupling_map` and its supported `basis_gates` to have a more realistic noisy simulation. - -```python -from qiskit.providers.fake_provider import FakeManila -from qiskit_aer.noise import NoiseModel - -# Make a noise model -fake_backend = FakeManila() -noise_model = NoiseModel.from_backend(fake_backend) - -# Set options to include the noise model -options = Options() -options.simulator = { - "noise_model": noise_model, - "basis_gates": fake_backend.configuration().basis_gates, - "coupling_map": fake_backend.configuration().coupling_map, - "seed_simulator": 42 -} - -# Set number of shots, optimization_level and resilience_level -options.execution.shots = 1000 -options.optimization_level = 0 -options.resilience_level = 0 -``` - -The `ibmq_qasm_simulator` allows for the activation of the `resilience_levels` offered by the Qiskit Runtime service, and use of these levels on simulators is best demonstrated using the noisy simulation as we have described previously. - -To illustrate the comparison, we will define two set of `Options`. Here, `options` is set to `resilience level = 0` to represent a normal run without error mitigation, and `options with em` is set to `resilience level = 1` to represent a run with error mitigation enabled. - -```python -# Set options to include the noise model with error mitigation -options_with_em = Options() -options_with_em.simulator = { - "noise_model": noise_model, - "basis_gates": fake_backend.configuration().basis_gates, - "coupling_map": fake_backend.configuration().coupling_map, - "seed_simulator": 42 -} - -# Set number of shots, optimization_level and resilience_level -options_with_em.execution.shots = 1000 -options_with_em.optimization_level = 0 # no optimization -options_with_em.resilience_level = 1 # M3 for Sampler and T-REx for Estimator -``` - -When you set the `resilience_level` to 1, M3 is activated in Sampler. -All available resilience level configurations are described on the [Configure error mitigation](../run/configure-error-mitigation) page. - -```python -with Session(service=service, backend=backend): - # include the noise model without M3 - sampler = Sampler(options=options) - job = sampler.run( - circuits=[qc]*len(phases), - parameter_values=individual_phases - ) - result = job.result() - prob_values = [1-dist[0] for dist in result.quasi_dists] - - # include the noise model with M3 - sampler = Sampler(options=options_with_em) - job = sampler.run( - circuits=[qc]*len(phases), - parameter_values=individual_phases - ) - result = job.result() - prob_values_with_em = [1-dist[0] for dist in result.quasi_dists] -``` - -```python -plt.plot(phases, prob_values, 'o', label='Noisy') -plt.plot(phases, prob_values_with_em, 'o', label='Mitigated') -plt.plot(phases, np.sin(phases/2,)**2, label='Theory') -plt.xlabel('Phase') -plt.ylabel('Probability') -plt.legend() -``` - -``` - -``` - -![This image shows that the value found by a "noisy" simulator is not very close to the theoretical value, but the approximation is better when mitigated by using M3.](/images/qiskit-ibm-runtime/noisy-sim-sampler-noisy.png "Noisy and mitigated (M3) values versus theoretical values") - -`T-REx` is triggered in Estimator when the resilience level is set to - -1. - -```python -with Session(service=service, backend=backend): - # include the noise model without T-REx - estimator = Estimator(options=options) - job = estimator.run( - circuits=[qc_no_meas]*len(phases), - parameter_values=individual_phases, - observables=[ZZ]*len(phases) - ) - result = job.result() - exp_values = result.values - - # include the noise model with T-REx - estimator = Estimator(options=options_with_em) - job = estimator.run( - circuits=[qc_no_meas]*len(phases), - parameter_values=individual_phases, - observables=[ZZ]*len(phases)) - result = job.result() - exp_values_with_em = result.values -``` - -```python -plt.plot(phases, exp_values, 'o', label='Noisy') -plt.plot(phases, exp_values_with_em, 'o', label='Mitigated') -plt.plot(phases, 2*np.sin(phases/2)**2-1, label='Theory') -plt.xlabel('Phase') -plt.ylabel('Expectation') -plt.legend() -``` - -``` - -``` - -![This image shows that the value found by a "noisy" simulator is not very close to the theoretical value, but the approximation is better when mitigated by using T-REX.](/images/qiskit-ibm-runtime/noisy-sim-estimator-noisy.png "Noisy and mitigated (T-REX) values versus theoretical values") - -Resilience levels are currently in beta so sampling overhead and -solution quality will vary from circuit to circuit. New features, -advanced options, and management tools will be released on a rolling -basis. You can also test out higher levels of resilience and -explore the additional options they offer. For more information -about activating features like `Digital-ZNE` and `PEC`, in addition to `M3` and `T-REx` as shown in the previous examples, see the [Error suppression and error mitigation with Qiskit Runtime](https://learning.quantum.ibm.com/tutorial/error-suppression-and-error-mitigation-with-qiskit-runtime) tutorial. - -```python -import qiskit_ibm_runtime -qiskit_ibm_runtime.version.get_version_info() -``` - -``` -'0.8.0' -``` - -```python -from qiskit.tools.jupyter import * -%qiskit_version_table -``` - -## Next steps - - - - Learn about Qiskit Runtime error mitigation in [Exact and noisy simulation with Qiskit Aer primitives](../run/configure-error-mitigation). - - Explore error mitigation options in the [Cost Functions](https://learning.quantum.ibm.com/course/variational-algorithm-design/cost-functions) course. -