mirror of https://github.com/silx-kit/pyFAI.git
186 lines
5.2 KiB
Python
186 lines
5.2 KiB
Python
# -*- coding: utf-8 -*-
|
|
"""
|
|
Created on Fri Mar 07 09:52:51 2014
|
|
|
|
@author: ashiotis
|
|
"""
|
|
from __future__ import absolute_import
|
|
from __future__ import print_function
|
|
|
|
import sys, numpy, time
|
|
from . import utilstest
|
|
import fabio
|
|
import pyopencl as cl
|
|
from pylab import *
|
|
from pyFAI.third_party import six
|
|
print("#"*50)
|
|
pyFAI = sys.modules["pyFAI"]
|
|
from pyFAI import splitPixelFullLUT
|
|
from pyFAI import ocl_hist_pixelsplit
|
|
# from pyFAI import splitBBoxLUT
|
|
# from pyFAI import splitBBoxCSR
|
|
# logger = utilstest.getLogger("profile")
|
|
|
|
|
|
ai = pyFAI.load("testimages/halfccd.poni")
|
|
data = fabio.open("testimages/halfccd.edf").data
|
|
|
|
workgroup_size = 256
|
|
bins = 1000
|
|
|
|
pos_in = ai.array_from_unit(data.shape, "corner", unit="2th_deg", scale=False)
|
|
|
|
pos = pos_in.reshape(pos_in.size / 8, 4, 2)
|
|
|
|
|
|
|
|
|
|
ref = splitPixelFullLUT.HistoLUT1dFullSplit(pos, bins, unit="2th_deg")
|
|
|
|
|
|
|
|
|
|
pos_size = pos.size
|
|
# size = data.size
|
|
size = pos_size / 8
|
|
|
|
ctx = cl.create_some_context()
|
|
queue = cl.CommandQueue(ctx)
|
|
mf = cl.mem_flags
|
|
|
|
d_pos = cl.array.to_device(queue, pos)
|
|
d_preresult = cl.array.empty(queue, (4 * workgroup_size,), dtype=numpy.float32)
|
|
d_minmax = cl.array.empty(queue, (4,), dtype=numpy.float32)
|
|
|
|
with open("../openCL/ocl_lut_pixelsplit.cl", "r") as kernelFile:
|
|
kernel_src = kernelFile.read()
|
|
|
|
compile_options = "-D BINS=%i -D NIMAGE=%i -D WORKGROUP_SIZE=%i -D EPS=%e" % \
|
|
(bins, size, workgroup_size, numpy.finfo(numpy.float32).eps)
|
|
|
|
print(compile_options)
|
|
|
|
program = cl.Program(ctx, kernel_src).build(options=compile_options)
|
|
|
|
program.reduce1(queue, (workgroup_size * workgroup_size,), (workgroup_size,), d_pos.data, numpy.uint32(pos_size), d_preresult.data)
|
|
|
|
program.reduce2(queue, (workgroup_size,), (workgroup_size,), d_preresult.data, d_minmax.data)
|
|
|
|
|
|
min0 = pos[:, :, 0].min()
|
|
max0 = pos[:, :, 0].max()
|
|
min1 = pos[:, :, 1].min()
|
|
max1 = pos[:, :, 1].max()
|
|
minmax = (min0, max0, min1, max1)
|
|
|
|
print(minmax)
|
|
print(d_minmax)
|
|
|
|
|
|
memset_size = (bins + workgroup_size - 1) & ~(workgroup_size - 1),
|
|
|
|
# d_outMax = cl.array.empty(queue, (bins,), dtype=numpy.int32)
|
|
|
|
# program.memset_out_int(queue, memset_size, (workgroup_size,), d_outMax.data)
|
|
|
|
global_size = (size + workgroup_size - 1) & ~(workgroup_size - 1),
|
|
|
|
# program.lut1(queue, global_size, (workgroup_size,), d_pos.data, d_minmax.data, numpy.uint32(size), d_outMax.data)
|
|
|
|
|
|
# outMax_1 = numpy.copy(d_outMax)
|
|
|
|
|
|
|
|
outMax = ref.outMax
|
|
|
|
idx_ptr = numpy.ndarray(bins + 1, dtype=numpy.int32)
|
|
idx_ptr[0] = 0
|
|
idx_ptr[1:] = outMax.cumsum()
|
|
|
|
|
|
|
|
d_idx_ptr = cl.array.to_device(queue, idx_ptr)
|
|
|
|
# d_lutsize = cl.array.empty(queue, (1,), dtype=numpy.int32)
|
|
|
|
# program.lut2(queue, (1,), (1,), d_outMax.data, d_idx_ptr.data, d_lutsize.data)
|
|
|
|
# lutsize = numpy.ndarray(1, dtype=numpy.int32)
|
|
|
|
# cl.enqueue_copy(queue, lutsize, d_lutsize.data)
|
|
|
|
lut_size = int(idx_ptr[-1])
|
|
|
|
d_indices = cl.array.empty(queue, (lut_size,), dtype=numpy.int32)
|
|
d_data = cl.array.empty(queue, (lut_size,), dtype=numpy.float32)
|
|
|
|
# d_check_atomics = cl.Buffer(ctx, mf.READ_WRITE, 4*lut_size)
|
|
|
|
|
|
d_outMax = cl.array.empty(queue, (bins,), dtype=numpy.int32)
|
|
|
|
program.memset_out_int(queue, memset_size, (workgroup_size,), d_outMax.data)
|
|
|
|
d_outData = cl.array.empty(queue, (bins,), dtype=numpy.float32)
|
|
d_outCount = cl.array.empty(queue, (bins,), dtype=numpy.float32)
|
|
d_outMerge = cl.array.empty(queue, (bins,), dtype=numpy.float32)
|
|
|
|
program.lut3(queue, global_size, (workgroup_size,), d_pos.data, d_minmax.data, numpy.uint32(size), d_outMax.data, d_idx_ptr.data, d_indices.data, d_data.data)
|
|
|
|
|
|
outMax_2 = numpy.copy(d_outMax)
|
|
|
|
# check_atomics = numpy.ndarray(lut_size, dtype=numpy.int32)
|
|
|
|
# cl.enqueue_copy(queue, check_atomics, d_check_atomics)
|
|
|
|
|
|
program.memset_out(queue, memset_size, (workgroup_size,), d_outData.data, d_outCount.data, d_outMerge.data)
|
|
|
|
|
|
|
|
|
|
d_image = cl.array.to_device(queue, data)
|
|
d_image_float = cl.array.empty(queue, (size,), dtype=numpy.float32)
|
|
|
|
# program.s32_to_float(queue, global_size, (workgroup_size,), d_image.data, d_image_float) # Pilatus1M
|
|
program.u16_to_float(queue, global_size, (workgroup_size,), d_image.data, d_image_float.data) # halfccd
|
|
|
|
program.csr_integrate(queue, (bins * workgroup_size,), (workgroup_size,), d_image_float.data, d_data.data, d_indices.data, d_idx_ptr.data, d_outData.data, d_outCount.data, d_outMerge.data)
|
|
|
|
|
|
# outData = numpy.ndarray(bins, dtype=numpy.float32)
|
|
# outCount = numpy.ndarray(bins, dtype=numpy.float32)
|
|
outMerge = numpy.ndarray(bins, dtype=numpy.float32)
|
|
|
|
|
|
# cl.enqueue_copy(queue,outData, d_outData)
|
|
# cl.enqueue_copy(queue,outCount, d_outCount)
|
|
cl.enqueue_copy(queue, outMerge, d_outMerge.data)
|
|
|
|
# program.integrate2(queue, (1024,), (workgroup_size,), d_outData, d_outCount, d_outMerge)
|
|
|
|
# cl.enqueue_copy(queue,outData, d_outData)
|
|
# cl.enqueue_copy(queue,outCount, d_outCount)
|
|
# cl.enqueue_copy(queue,outMerge, d_outMerge)
|
|
|
|
|
|
|
|
ref = ai.integrate1d(data, bins, unit="2th_deg", correctSolidAngle=False, method="splitpixelfull")
|
|
|
|
|
|
|
|
# assert(numpy.allclose(ref,outMerge))
|
|
|
|
plot(ref[0], outMerge, label="ocl_lut_merge")
|
|
# #plot(ref[0],outData, label="ocl_lut_data")
|
|
# #plot(ref[0],outCount, label="ocl_lut_count")
|
|
plot(*ref, label="ref_merge")
|
|
# #plot(ref[0], ref[2], label="ref_data")
|
|
# #plot(ref[0], ref[3], label="ref_count")
|
|
# ##plot(abs(ref-outMerge)/outMerge, label="ocl_csr_fullsplit")
|
|
legend()
|
|
show()
|
|
six.moves.input()
|