mirror of https://github.com/silx-kit/pyFAI.git
1436 lines
215 KiB
Plaintext
1436 lines
215 KiB
Plaintext
{
|
|
"cells": [
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 1,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"%matplotlib nbagg"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 2,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"import os\n",
|
|
"os.environ[\"PYOPENCL_COMPILER_OUTPUT\"]=\"1\"\n",
|
|
"import numpy\n",
|
|
"import fabio\n",
|
|
"import pyopencl\n",
|
|
"from pyopencl import array as cla\n",
|
|
"from matplotlib.pyplot import subplots"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 3,
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"name": "stdout",
|
|
"output_type": "stream",
|
|
"text": [
|
|
"Choose platform:\n",
|
|
"[0] <pyopencl.Platform 'Portable Computing Language' at 0x7fd9084e5020>\n",
|
|
"[1] <pyopencl.Platform 'NVIDIA CUDA' at 0x2f41c40>\n",
|
|
"[2] <pyopencl.Platform 'Intel(R) OpenCL' at 0x2e338d0>\n",
|
|
"Choice [0]:1\n",
|
|
"Choose device(s):\n",
|
|
"[0] <pyopencl.Device 'GeForce GTX TITAN' on 'NVIDIA CUDA' at 0x2f4d510>\n",
|
|
"[1] <pyopencl.Device 'Quadro M2000' on 'NVIDIA CUDA' at 0x2f41bb0>\n",
|
|
"Choice, comma-separated [0]:0\n",
|
|
"Set the environment variable PYOPENCL_CTX='1:0' to avoid being asked again.\n"
|
|
]
|
|
},
|
|
{
|
|
"data": {
|
|
"text/plain": [
|
|
"<pyopencl.Context at 0x2f0b0e0 on <pyopencl.Device 'GeForce GTX TITAN' on 'NVIDIA CUDA' at 0x2f4d510>>"
|
|
]
|
|
},
|
|
"execution_count": 3,
|
|
"metadata": {},
|
|
"output_type": "execute_result"
|
|
}
|
|
],
|
|
"source": [
|
|
"ctx = pyopencl.create_some_context(interactive=True)\n",
|
|
"queue = pyopencl.CommandQueue(ctx, properties=pyopencl.command_queue_properties.PROFILING_ENABLE)\n",
|
|
"ctx"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 4,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"image = fabio.open(\"/users/kieffer/workspace-400/tmp/pyFAI/test/testimages/Pilatus6M.cbf\").data\n",
|
|
"mask = (image<0).astype(\"int8\")"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 5,
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"data": {
|
|
"application/javascript": [
|
|
"/* Put everything inside the global mpl namespace */\n",
|
|
"window.mpl = {};\n",
|
|
"\n",
|
|
"\n",
|
|
"mpl.get_websocket_type = function() {\n",
|
|
" if (typeof(WebSocket) !== 'undefined') {\n",
|
|
" return WebSocket;\n",
|
|
" } else if (typeof(MozWebSocket) !== 'undefined') {\n",
|
|
" return MozWebSocket;\n",
|
|
" } else {\n",
|
|
" alert('Your browser does not have WebSocket support.' +\n",
|
|
" 'Please try Chrome, Safari or Firefox ≥ 6. ' +\n",
|
|
" 'Firefox 4 and 5 are also supported but you ' +\n",
|
|
" 'have to enable WebSockets in about:config.');\n",
|
|
" };\n",
|
|
"}\n",
|
|
"\n",
|
|
"mpl.figure = function(figure_id, websocket, ondownload, parent_element) {\n",
|
|
" this.id = figure_id;\n",
|
|
"\n",
|
|
" this.ws = websocket;\n",
|
|
"\n",
|
|
" this.supports_binary = (this.ws.binaryType != undefined);\n",
|
|
"\n",
|
|
" if (!this.supports_binary) {\n",
|
|
" var warnings = document.getElementById(\"mpl-warnings\");\n",
|
|
" if (warnings) {\n",
|
|
" warnings.style.display = 'block';\n",
|
|
" warnings.textContent = (\n",
|
|
" \"This browser does not support binary websocket messages. \" +\n",
|
|
" \"Performance may be slow.\");\n",
|
|
" }\n",
|
|
" }\n",
|
|
"\n",
|
|
" this.imageObj = new Image();\n",
|
|
"\n",
|
|
" this.context = undefined;\n",
|
|
" this.message = undefined;\n",
|
|
" this.canvas = undefined;\n",
|
|
" this.rubberband_canvas = undefined;\n",
|
|
" this.rubberband_context = undefined;\n",
|
|
" this.format_dropdown = undefined;\n",
|
|
"\n",
|
|
" this.image_mode = 'full';\n",
|
|
"\n",
|
|
" this.root = $('<div/>');\n",
|
|
" this._root_extra_style(this.root)\n",
|
|
" this.root.attr('style', 'display: inline-block');\n",
|
|
"\n",
|
|
" $(parent_element).append(this.root);\n",
|
|
"\n",
|
|
" this._init_header(this);\n",
|
|
" this._init_canvas(this);\n",
|
|
" this._init_toolbar(this);\n",
|
|
"\n",
|
|
" var fig = this;\n",
|
|
"\n",
|
|
" this.waiting = false;\n",
|
|
"\n",
|
|
" this.ws.onopen = function () {\n",
|
|
" fig.send_message(\"supports_binary\", {value: fig.supports_binary});\n",
|
|
" fig.send_message(\"send_image_mode\", {});\n",
|
|
" if (mpl.ratio != 1) {\n",
|
|
" fig.send_message(\"set_dpi_ratio\", {'dpi_ratio': mpl.ratio});\n",
|
|
" }\n",
|
|
" fig.send_message(\"refresh\", {});\n",
|
|
" }\n",
|
|
"\n",
|
|
" this.imageObj.onload = function() {\n",
|
|
" if (fig.image_mode == 'full') {\n",
|
|
" // Full images could contain transparency (where diff images\n",
|
|
" // almost always do), so we need to clear the canvas so that\n",
|
|
" // there is no ghosting.\n",
|
|
" fig.context.clearRect(0, 0, fig.canvas.width, fig.canvas.height);\n",
|
|
" }\n",
|
|
" fig.context.drawImage(fig.imageObj, 0, 0);\n",
|
|
" };\n",
|
|
"\n",
|
|
" this.imageObj.onunload = function() {\n",
|
|
" fig.ws.close();\n",
|
|
" }\n",
|
|
"\n",
|
|
" this.ws.onmessage = this._make_on_message_function(this);\n",
|
|
"\n",
|
|
" this.ondownload = ondownload;\n",
|
|
"}\n",
|
|
"\n",
|
|
"mpl.figure.prototype._init_header = function() {\n",
|
|
" var titlebar = $(\n",
|
|
" '<div class=\"ui-dialog-titlebar ui-widget-header ui-corner-all ' +\n",
|
|
" 'ui-helper-clearfix\"/>');\n",
|
|
" var titletext = $(\n",
|
|
" '<div class=\"ui-dialog-title\" style=\"width: 100%; ' +\n",
|
|
" 'text-align: center; padding: 3px;\"/>');\n",
|
|
" titlebar.append(titletext)\n",
|
|
" this.root.append(titlebar);\n",
|
|
" this.header = titletext[0];\n",
|
|
"}\n",
|
|
"\n",
|
|
"\n",
|
|
"\n",
|
|
"mpl.figure.prototype._canvas_extra_style = function(canvas_div) {\n",
|
|
"\n",
|
|
"}\n",
|
|
"\n",
|
|
"\n",
|
|
"mpl.figure.prototype._root_extra_style = function(canvas_div) {\n",
|
|
"\n",
|
|
"}\n",
|
|
"\n",
|
|
"mpl.figure.prototype._init_canvas = function() {\n",
|
|
" var fig = this;\n",
|
|
"\n",
|
|
" var canvas_div = $('<div/>');\n",
|
|
"\n",
|
|
" canvas_div.attr('style', 'position: relative; clear: both; outline: 0');\n",
|
|
"\n",
|
|
" function canvas_keyboard_event(event) {\n",
|
|
" return fig.key_event(event, event['data']);\n",
|
|
" }\n",
|
|
"\n",
|
|
" canvas_div.keydown('key_press', canvas_keyboard_event);\n",
|
|
" canvas_div.keyup('key_release', canvas_keyboard_event);\n",
|
|
" this.canvas_div = canvas_div\n",
|
|
" this._canvas_extra_style(canvas_div)\n",
|
|
" this.root.append(canvas_div);\n",
|
|
"\n",
|
|
" var canvas = $('<canvas/>');\n",
|
|
" canvas.addClass('mpl-canvas');\n",
|
|
" canvas.attr('style', \"left: 0; top: 0; z-index: 0; outline: 0\")\n",
|
|
"\n",
|
|
" this.canvas = canvas[0];\n",
|
|
" this.context = canvas[0].getContext(\"2d\");\n",
|
|
"\n",
|
|
" var backingStore = this.context.backingStorePixelRatio ||\n",
|
|
"\tthis.context.webkitBackingStorePixelRatio ||\n",
|
|
"\tthis.context.mozBackingStorePixelRatio ||\n",
|
|
"\tthis.context.msBackingStorePixelRatio ||\n",
|
|
"\tthis.context.oBackingStorePixelRatio ||\n",
|
|
"\tthis.context.backingStorePixelRatio || 1;\n",
|
|
"\n",
|
|
" mpl.ratio = (window.devicePixelRatio || 1) / backingStore;\n",
|
|
"\n",
|
|
" var rubberband = $('<canvas/>');\n",
|
|
" rubberband.attr('style', \"position: absolute; left: 0; top: 0; z-index: 1;\")\n",
|
|
"\n",
|
|
" var pass_mouse_events = true;\n",
|
|
"\n",
|
|
" canvas_div.resizable({\n",
|
|
" start: function(event, ui) {\n",
|
|
" pass_mouse_events = false;\n",
|
|
" },\n",
|
|
" resize: function(event, ui) {\n",
|
|
" fig.request_resize(ui.size.width, ui.size.height);\n",
|
|
" },\n",
|
|
" stop: function(event, ui) {\n",
|
|
" pass_mouse_events = true;\n",
|
|
" fig.request_resize(ui.size.width, ui.size.height);\n",
|
|
" },\n",
|
|
" });\n",
|
|
"\n",
|
|
" function mouse_event_fn(event) {\n",
|
|
" if (pass_mouse_events)\n",
|
|
" return fig.mouse_event(event, event['data']);\n",
|
|
" }\n",
|
|
"\n",
|
|
" rubberband.mousedown('button_press', mouse_event_fn);\n",
|
|
" rubberband.mouseup('button_release', mouse_event_fn);\n",
|
|
" // Throttle sequential mouse events to 1 every 20ms.\n",
|
|
" rubberband.mousemove('motion_notify', mouse_event_fn);\n",
|
|
"\n",
|
|
" rubberband.mouseenter('figure_enter', mouse_event_fn);\n",
|
|
" rubberband.mouseleave('figure_leave', mouse_event_fn);\n",
|
|
"\n",
|
|
" canvas_div.on(\"wheel\", function (event) {\n",
|
|
" event = event.originalEvent;\n",
|
|
" event['data'] = 'scroll'\n",
|
|
" if (event.deltaY < 0) {\n",
|
|
" event.step = 1;\n",
|
|
" } else {\n",
|
|
" event.step = -1;\n",
|
|
" }\n",
|
|
" mouse_event_fn(event);\n",
|
|
" });\n",
|
|
"\n",
|
|
" canvas_div.append(canvas);\n",
|
|
" canvas_div.append(rubberband);\n",
|
|
"\n",
|
|
" this.rubberband = rubberband;\n",
|
|
" this.rubberband_canvas = rubberband[0];\n",
|
|
" this.rubberband_context = rubberband[0].getContext(\"2d\");\n",
|
|
" this.rubberband_context.strokeStyle = \"#000000\";\n",
|
|
"\n",
|
|
" this._resize_canvas = function(width, height) {\n",
|
|
" // Keep the size of the canvas, canvas container, and rubber band\n",
|
|
" // canvas in synch.\n",
|
|
" canvas_div.css('width', width)\n",
|
|
" canvas_div.css('height', height)\n",
|
|
"\n",
|
|
" canvas.attr('width', width * mpl.ratio);\n",
|
|
" canvas.attr('height', height * mpl.ratio);\n",
|
|
" canvas.attr('style', 'width: ' + width + 'px; height: ' + height + 'px;');\n",
|
|
"\n",
|
|
" rubberband.attr('width', width);\n",
|
|
" rubberband.attr('height', height);\n",
|
|
" }\n",
|
|
"\n",
|
|
" // Set the figure to an initial 600x600px, this will subsequently be updated\n",
|
|
" // upon first draw.\n",
|
|
" this._resize_canvas(600, 600);\n",
|
|
"\n",
|
|
" // Disable right mouse context menu.\n",
|
|
" $(this.rubberband_canvas).bind(\"contextmenu\",function(e){\n",
|
|
" return false;\n",
|
|
" });\n",
|
|
"\n",
|
|
" function set_focus () {\n",
|
|
" canvas.focus();\n",
|
|
" canvas_div.focus();\n",
|
|
" }\n",
|
|
"\n",
|
|
" window.setTimeout(set_focus, 100);\n",
|
|
"}\n",
|
|
"\n",
|
|
"mpl.figure.prototype._init_toolbar = function() {\n",
|
|
" var fig = this;\n",
|
|
"\n",
|
|
" var nav_element = $('<div/>')\n",
|
|
" nav_element.attr('style', 'width: 100%');\n",
|
|
" this.root.append(nav_element);\n",
|
|
"\n",
|
|
" // Define a callback function for later on.\n",
|
|
" function toolbar_event(event) {\n",
|
|
" return fig.toolbar_button_onclick(event['data']);\n",
|
|
" }\n",
|
|
" function toolbar_mouse_event(event) {\n",
|
|
" return fig.toolbar_button_onmouseover(event['data']);\n",
|
|
" }\n",
|
|
"\n",
|
|
" for(var toolbar_ind in mpl.toolbar_items) {\n",
|
|
" var name = mpl.toolbar_items[toolbar_ind][0];\n",
|
|
" var tooltip = mpl.toolbar_items[toolbar_ind][1];\n",
|
|
" var image = mpl.toolbar_items[toolbar_ind][2];\n",
|
|
" var method_name = mpl.toolbar_items[toolbar_ind][3];\n",
|
|
"\n",
|
|
" if (!name) {\n",
|
|
" // put a spacer in here.\n",
|
|
" continue;\n",
|
|
" }\n",
|
|
" var button = $('<button/>');\n",
|
|
" button.addClass('ui-button ui-widget ui-state-default ui-corner-all ' +\n",
|
|
" 'ui-button-icon-only');\n",
|
|
" button.attr('role', 'button');\n",
|
|
" button.attr('aria-disabled', 'false');\n",
|
|
" button.click(method_name, toolbar_event);\n",
|
|
" button.mouseover(tooltip, toolbar_mouse_event);\n",
|
|
"\n",
|
|
" var icon_img = $('<span/>');\n",
|
|
" icon_img.addClass('ui-button-icon-primary ui-icon');\n",
|
|
" icon_img.addClass(image);\n",
|
|
" icon_img.addClass('ui-corner-all');\n",
|
|
"\n",
|
|
" var tooltip_span = $('<span/>');\n",
|
|
" tooltip_span.addClass('ui-button-text');\n",
|
|
" tooltip_span.html(tooltip);\n",
|
|
"\n",
|
|
" button.append(icon_img);\n",
|
|
" button.append(tooltip_span);\n",
|
|
"\n",
|
|
" nav_element.append(button);\n",
|
|
" }\n",
|
|
"\n",
|
|
" var fmt_picker_span = $('<span/>');\n",
|
|
"\n",
|
|
" var fmt_picker = $('<select/>');\n",
|
|
" fmt_picker.addClass('mpl-toolbar-option ui-widget ui-widget-content');\n",
|
|
" fmt_picker_span.append(fmt_picker);\n",
|
|
" nav_element.append(fmt_picker_span);\n",
|
|
" this.format_dropdown = fmt_picker[0];\n",
|
|
"\n",
|
|
" for (var ind in mpl.extensions) {\n",
|
|
" var fmt = mpl.extensions[ind];\n",
|
|
" var option = $(\n",
|
|
" '<option/>', {selected: fmt === mpl.default_extension}).html(fmt);\n",
|
|
" fmt_picker.append(option)\n",
|
|
" }\n",
|
|
"\n",
|
|
" // Add hover states to the ui-buttons\n",
|
|
" $( \".ui-button\" ).hover(\n",
|
|
" function() { $(this).addClass(\"ui-state-hover\");},\n",
|
|
" function() { $(this).removeClass(\"ui-state-hover\");}\n",
|
|
" );\n",
|
|
"\n",
|
|
" var status_bar = $('<span class=\"mpl-message\"/>');\n",
|
|
" nav_element.append(status_bar);\n",
|
|
" this.message = status_bar[0];\n",
|
|
"}\n",
|
|
"\n",
|
|
"mpl.figure.prototype.request_resize = function(x_pixels, y_pixels) {\n",
|
|
" // Request matplotlib to resize the figure. Matplotlib will then trigger a resize in the client,\n",
|
|
" // which will in turn request a refresh of the image.\n",
|
|
" this.send_message('resize', {'width': x_pixels, 'height': y_pixels});\n",
|
|
"}\n",
|
|
"\n",
|
|
"mpl.figure.prototype.send_message = function(type, properties) {\n",
|
|
" properties['type'] = type;\n",
|
|
" properties['figure_id'] = this.id;\n",
|
|
" this.ws.send(JSON.stringify(properties));\n",
|
|
"}\n",
|
|
"\n",
|
|
"mpl.figure.prototype.send_draw_message = function() {\n",
|
|
" if (!this.waiting) {\n",
|
|
" this.waiting = true;\n",
|
|
" this.ws.send(JSON.stringify({type: \"draw\", figure_id: this.id}));\n",
|
|
" }\n",
|
|
"}\n",
|
|
"\n",
|
|
"\n",
|
|
"mpl.figure.prototype.handle_save = function(fig, msg) {\n",
|
|
" var format_dropdown = fig.format_dropdown;\n",
|
|
" var format = format_dropdown.options[format_dropdown.selectedIndex].value;\n",
|
|
" fig.ondownload(fig, format);\n",
|
|
"}\n",
|
|
"\n",
|
|
"\n",
|
|
"mpl.figure.prototype.handle_resize = function(fig, msg) {\n",
|
|
" var size = msg['size'];\n",
|
|
" if (size[0] != fig.canvas.width || size[1] != fig.canvas.height) {\n",
|
|
" fig._resize_canvas(size[0], size[1]);\n",
|
|
" fig.send_message(\"refresh\", {});\n",
|
|
" };\n",
|
|
"}\n",
|
|
"\n",
|
|
"mpl.figure.prototype.handle_rubberband = function(fig, msg) {\n",
|
|
" var x0 = msg['x0'] / mpl.ratio;\n",
|
|
" var y0 = (fig.canvas.height - msg['y0']) / mpl.ratio;\n",
|
|
" var x1 = msg['x1'] / mpl.ratio;\n",
|
|
" var y1 = (fig.canvas.height - msg['y1']) / mpl.ratio;\n",
|
|
" x0 = Math.floor(x0) + 0.5;\n",
|
|
" y0 = Math.floor(y0) + 0.5;\n",
|
|
" x1 = Math.floor(x1) + 0.5;\n",
|
|
" y1 = Math.floor(y1) + 0.5;\n",
|
|
" var min_x = Math.min(x0, x1);\n",
|
|
" var min_y = Math.min(y0, y1);\n",
|
|
" var width = Math.abs(x1 - x0);\n",
|
|
" var height = Math.abs(y1 - y0);\n",
|
|
"\n",
|
|
" fig.rubberband_context.clearRect(\n",
|
|
" 0, 0, fig.canvas.width, fig.canvas.height);\n",
|
|
"\n",
|
|
" fig.rubberband_context.strokeRect(min_x, min_y, width, height);\n",
|
|
"}\n",
|
|
"\n",
|
|
"mpl.figure.prototype.handle_figure_label = function(fig, msg) {\n",
|
|
" // Updates the figure title.\n",
|
|
" fig.header.textContent = msg['label'];\n",
|
|
"}\n",
|
|
"\n",
|
|
"mpl.figure.prototype.handle_cursor = function(fig, msg) {\n",
|
|
" var cursor = msg['cursor'];\n",
|
|
" switch(cursor)\n",
|
|
" {\n",
|
|
" case 0:\n",
|
|
" cursor = 'pointer';\n",
|
|
" break;\n",
|
|
" case 1:\n",
|
|
" cursor = 'default';\n",
|
|
" break;\n",
|
|
" case 2:\n",
|
|
" cursor = 'crosshair';\n",
|
|
" break;\n",
|
|
" case 3:\n",
|
|
" cursor = 'move';\n",
|
|
" break;\n",
|
|
" }\n",
|
|
" fig.rubberband_canvas.style.cursor = cursor;\n",
|
|
"}\n",
|
|
"\n",
|
|
"mpl.figure.prototype.handle_message = function(fig, msg) {\n",
|
|
" fig.message.textContent = msg['message'];\n",
|
|
"}\n",
|
|
"\n",
|
|
"mpl.figure.prototype.handle_draw = function(fig, msg) {\n",
|
|
" // Request the server to send over a new figure.\n",
|
|
" fig.send_draw_message();\n",
|
|
"}\n",
|
|
"\n",
|
|
"mpl.figure.prototype.handle_image_mode = function(fig, msg) {\n",
|
|
" fig.image_mode = msg['mode'];\n",
|
|
"}\n",
|
|
"\n",
|
|
"mpl.figure.prototype.updated_canvas_event = function() {\n",
|
|
" // Called whenever the canvas gets updated.\n",
|
|
" this.send_message(\"ack\", {});\n",
|
|
"}\n",
|
|
"\n",
|
|
"// A function to construct a web socket function for onmessage handling.\n",
|
|
"// Called in the figure constructor.\n",
|
|
"mpl.figure.prototype._make_on_message_function = function(fig) {\n",
|
|
" return function socket_on_message(evt) {\n",
|
|
" if (evt.data instanceof Blob) {\n",
|
|
" /* FIXME: We get \"Resource interpreted as Image but\n",
|
|
" * transferred with MIME type text/plain:\" errors on\n",
|
|
" * Chrome. But how to set the MIME type? It doesn't seem\n",
|
|
" * to be part of the websocket stream */\n",
|
|
" evt.data.type = \"image/png\";\n",
|
|
"\n",
|
|
" /* Free the memory for the previous frames */\n",
|
|
" if (fig.imageObj.src) {\n",
|
|
" (window.URL || window.webkitURL).revokeObjectURL(\n",
|
|
" fig.imageObj.src);\n",
|
|
" }\n",
|
|
"\n",
|
|
" fig.imageObj.src = (window.URL || window.webkitURL).createObjectURL(\n",
|
|
" evt.data);\n",
|
|
" fig.updated_canvas_event();\n",
|
|
" fig.waiting = false;\n",
|
|
" return;\n",
|
|
" }\n",
|
|
" else if (typeof evt.data === 'string' && evt.data.slice(0, 21) == \"data:image/png;base64\") {\n",
|
|
" fig.imageObj.src = evt.data;\n",
|
|
" fig.updated_canvas_event();\n",
|
|
" fig.waiting = false;\n",
|
|
" return;\n",
|
|
" }\n",
|
|
"\n",
|
|
" var msg = JSON.parse(evt.data);\n",
|
|
" var msg_type = msg['type'];\n",
|
|
"\n",
|
|
" // Call the \"handle_{type}\" callback, which takes\n",
|
|
" // the figure and JSON message as its only arguments.\n",
|
|
" try {\n",
|
|
" var callback = fig[\"handle_\" + msg_type];\n",
|
|
" } catch (e) {\n",
|
|
" console.log(\"No handler for the '\" + msg_type + \"' message type: \", msg);\n",
|
|
" return;\n",
|
|
" }\n",
|
|
"\n",
|
|
" if (callback) {\n",
|
|
" try {\n",
|
|
" // console.log(\"Handling '\" + msg_type + \"' message: \", msg);\n",
|
|
" callback(fig, msg);\n",
|
|
" } catch (e) {\n",
|
|
" console.log(\"Exception inside the 'handler_\" + msg_type + \"' callback:\", e, e.stack, msg);\n",
|
|
" }\n",
|
|
" }\n",
|
|
" };\n",
|
|
"}\n",
|
|
"\n",
|
|
"// from http://stackoverflow.com/questions/1114465/getting-mouse-location-in-canvas\n",
|
|
"mpl.findpos = function(e) {\n",
|
|
" //this section is from http://www.quirksmode.org/js/events_properties.html\n",
|
|
" var targ;\n",
|
|
" if (!e)\n",
|
|
" e = window.event;\n",
|
|
" if (e.target)\n",
|
|
" targ = e.target;\n",
|
|
" else if (e.srcElement)\n",
|
|
" targ = e.srcElement;\n",
|
|
" if (targ.nodeType == 3) // defeat Safari bug\n",
|
|
" targ = targ.parentNode;\n",
|
|
"\n",
|
|
" // jQuery normalizes the pageX and pageY\n",
|
|
" // pageX,Y are the mouse positions relative to the document\n",
|
|
" // offset() returns the position of the element relative to the document\n",
|
|
" var x = e.pageX - $(targ).offset().left;\n",
|
|
" var y = e.pageY - $(targ).offset().top;\n",
|
|
"\n",
|
|
" return {\"x\": x, \"y\": y};\n",
|
|
"};\n",
|
|
"\n",
|
|
"/*\n",
|
|
" * return a copy of an object with only non-object keys\n",
|
|
" * we need this to avoid circular references\n",
|
|
" * http://stackoverflow.com/a/24161582/3208463\n",
|
|
" */\n",
|
|
"function simpleKeys (original) {\n",
|
|
" return Object.keys(original).reduce(function (obj, key) {\n",
|
|
" if (typeof original[key] !== 'object')\n",
|
|
" obj[key] = original[key]\n",
|
|
" return obj;\n",
|
|
" }, {});\n",
|
|
"}\n",
|
|
"\n",
|
|
"mpl.figure.prototype.mouse_event = function(event, name) {\n",
|
|
" var canvas_pos = mpl.findpos(event)\n",
|
|
"\n",
|
|
" if (name === 'button_press')\n",
|
|
" {\n",
|
|
" this.canvas.focus();\n",
|
|
" this.canvas_div.focus();\n",
|
|
" }\n",
|
|
"\n",
|
|
" var x = canvas_pos.x * mpl.ratio;\n",
|
|
" var y = canvas_pos.y * mpl.ratio;\n",
|
|
"\n",
|
|
" this.send_message(name, {x: x, y: y, button: event.button,\n",
|
|
" step: event.step,\n",
|
|
" guiEvent: simpleKeys(event)});\n",
|
|
"\n",
|
|
" /* This prevents the web browser from automatically changing to\n",
|
|
" * the text insertion cursor when the button is pressed. We want\n",
|
|
" * to control all of the cursor setting manually through the\n",
|
|
" * 'cursor' event from matplotlib */\n",
|
|
" event.preventDefault();\n",
|
|
" return false;\n",
|
|
"}\n",
|
|
"\n",
|
|
"mpl.figure.prototype._key_event_extra = function(event, name) {\n",
|
|
" // Handle any extra behaviour associated with a key event\n",
|
|
"}\n",
|
|
"\n",
|
|
"mpl.figure.prototype.key_event = function(event, name) {\n",
|
|
"\n",
|
|
" // Prevent repeat events\n",
|
|
" if (name == 'key_press')\n",
|
|
" {\n",
|
|
" if (event.which === this._key)\n",
|
|
" return;\n",
|
|
" else\n",
|
|
" this._key = event.which;\n",
|
|
" }\n",
|
|
" if (name == 'key_release')\n",
|
|
" this._key = null;\n",
|
|
"\n",
|
|
" var value = '';\n",
|
|
" if (event.ctrlKey && event.which != 17)\n",
|
|
" value += \"ctrl+\";\n",
|
|
" if (event.altKey && event.which != 18)\n",
|
|
" value += \"alt+\";\n",
|
|
" if (event.shiftKey && event.which != 16)\n",
|
|
" value += \"shift+\";\n",
|
|
"\n",
|
|
" value += 'k';\n",
|
|
" value += event.which.toString();\n",
|
|
"\n",
|
|
" this._key_event_extra(event, name);\n",
|
|
"\n",
|
|
" this.send_message(name, {key: value,\n",
|
|
" guiEvent: simpleKeys(event)});\n",
|
|
" return false;\n",
|
|
"}\n",
|
|
"\n",
|
|
"mpl.figure.prototype.toolbar_button_onclick = function(name) {\n",
|
|
" if (name == 'download') {\n",
|
|
" this.handle_save(this, null);\n",
|
|
" } else {\n",
|
|
" this.send_message(\"toolbar_button\", {name: name});\n",
|
|
" }\n",
|
|
"};\n",
|
|
"\n",
|
|
"mpl.figure.prototype.toolbar_button_onmouseover = function(tooltip) {\n",
|
|
" this.message.textContent = tooltip;\n",
|
|
"};\n",
|
|
"mpl.toolbar_items = [[\"Home\", \"Reset original view\", \"fa fa-home icon-home\", \"home\"], [\"Back\", \"Back to previous view\", \"fa fa-arrow-left icon-arrow-left\", \"back\"], [\"Forward\", \"Forward to next view\", \"fa fa-arrow-right icon-arrow-right\", \"forward\"], [\"\", \"\", \"\", \"\"], [\"Pan\", \"Pan axes with left mouse, zoom with right\", \"fa fa-arrows icon-move\", \"pan\"], [\"Zoom\", \"Zoom to rectangle\", \"fa fa-square-o icon-check-empty\", \"zoom\"], [\"\", \"\", \"\", \"\"], [\"Download\", \"Download plot\", \"fa fa-floppy-o icon-save\", \"download\"]];\n",
|
|
"\n",
|
|
"mpl.extensions = [\"eps\", \"jpeg\", \"pdf\", \"png\", \"ps\", \"raw\", \"svg\", \"tif\"];\n",
|
|
"\n",
|
|
"mpl.default_extension = \"png\";var comm_websocket_adapter = function(comm) {\n",
|
|
" // Create a \"websocket\"-like object which calls the given IPython comm\n",
|
|
" // object with the appropriate methods. Currently this is a non binary\n",
|
|
" // socket, so there is still some room for performance tuning.\n",
|
|
" var ws = {};\n",
|
|
"\n",
|
|
" ws.close = function() {\n",
|
|
" comm.close()\n",
|
|
" };\n",
|
|
" ws.send = function(m) {\n",
|
|
" //console.log('sending', m);\n",
|
|
" comm.send(m);\n",
|
|
" };\n",
|
|
" // Register the callback with on_msg.\n",
|
|
" comm.on_msg(function(msg) {\n",
|
|
" //console.log('receiving', msg['content']['data'], msg);\n",
|
|
" // Pass the mpl event to the overridden (by mpl) onmessage function.\n",
|
|
" ws.onmessage(msg['content']['data'])\n",
|
|
" });\n",
|
|
" return ws;\n",
|
|
"}\n",
|
|
"\n",
|
|
"mpl.mpl_figure_comm = function(comm, msg) {\n",
|
|
" // This is the function which gets called when the mpl process\n",
|
|
" // starts-up an IPython Comm through the \"matplotlib\" channel.\n",
|
|
"\n",
|
|
" var id = msg.content.data.id;\n",
|
|
" // Get hold of the div created by the display call when the Comm\n",
|
|
" // socket was opened in Python.\n",
|
|
" var element = $(\"#\" + id);\n",
|
|
" var ws_proxy = comm_websocket_adapter(comm)\n",
|
|
"\n",
|
|
" function ondownload(figure, format) {\n",
|
|
" window.open(figure.imageObj.src);\n",
|
|
" }\n",
|
|
"\n",
|
|
" var fig = new mpl.figure(id, ws_proxy,\n",
|
|
" ondownload,\n",
|
|
" element.get(0));\n",
|
|
"\n",
|
|
" // Call onopen now - mpl needs it, as it is assuming we've passed it a real\n",
|
|
" // web socket which is closed, not our websocket->open comm proxy.\n",
|
|
" ws_proxy.onopen();\n",
|
|
"\n",
|
|
" fig.parent_element = element.get(0);\n",
|
|
" fig.cell_info = mpl.find_output_cell(\"<div id='\" + id + \"'></div>\");\n",
|
|
" if (!fig.cell_info) {\n",
|
|
" console.error(\"Failed to find cell for figure\", id, fig);\n",
|
|
" return;\n",
|
|
" }\n",
|
|
"\n",
|
|
" var output_index = fig.cell_info[2]\n",
|
|
" var cell = fig.cell_info[0];\n",
|
|
"\n",
|
|
"};\n",
|
|
"\n",
|
|
"mpl.figure.prototype.handle_close = function(fig, msg) {\n",
|
|
" var width = fig.canvas.width/mpl.ratio\n",
|
|
" fig.root.unbind('remove')\n",
|
|
"\n",
|
|
" // Update the output cell to use the data from the current canvas.\n",
|
|
" fig.push_to_output();\n",
|
|
" var dataURL = fig.canvas.toDataURL();\n",
|
|
" // Re-enable the keyboard manager in IPython - without this line, in FF,\n",
|
|
" // the notebook keyboard shortcuts fail.\n",
|
|
" IPython.keyboard_manager.enable()\n",
|
|
" $(fig.parent_element).html('<img src=\"' + dataURL + '\" width=\"' + width + '\">');\n",
|
|
" fig.close_ws(fig, msg);\n",
|
|
"}\n",
|
|
"\n",
|
|
"mpl.figure.prototype.close_ws = function(fig, msg){\n",
|
|
" fig.send_message('closing', msg);\n",
|
|
" // fig.ws.close()\n",
|
|
"}\n",
|
|
"\n",
|
|
"mpl.figure.prototype.push_to_output = function(remove_interactive) {\n",
|
|
" // Turn the data on the canvas into data in the output cell.\n",
|
|
" var width = this.canvas.width/mpl.ratio\n",
|
|
" var dataURL = this.canvas.toDataURL();\n",
|
|
" this.cell_info[1]['text/html'] = '<img src=\"' + dataURL + '\" width=\"' + width + '\">';\n",
|
|
"}\n",
|
|
"\n",
|
|
"mpl.figure.prototype.updated_canvas_event = function() {\n",
|
|
" // Tell IPython that the notebook contents must change.\n",
|
|
" IPython.notebook.set_dirty(true);\n",
|
|
" this.send_message(\"ack\", {});\n",
|
|
" var fig = this;\n",
|
|
" // Wait a second, then push the new image to the DOM so\n",
|
|
" // that it is saved nicely (might be nice to debounce this).\n",
|
|
" setTimeout(function () { fig.push_to_output() }, 1000);\n",
|
|
"}\n",
|
|
"\n",
|
|
"mpl.figure.prototype._init_toolbar = function() {\n",
|
|
" var fig = this;\n",
|
|
"\n",
|
|
" var nav_element = $('<div/>')\n",
|
|
" nav_element.attr('style', 'width: 100%');\n",
|
|
" this.root.append(nav_element);\n",
|
|
"\n",
|
|
" // Define a callback function for later on.\n",
|
|
" function toolbar_event(event) {\n",
|
|
" return fig.toolbar_button_onclick(event['data']);\n",
|
|
" }\n",
|
|
" function toolbar_mouse_event(event) {\n",
|
|
" return fig.toolbar_button_onmouseover(event['data']);\n",
|
|
" }\n",
|
|
"\n",
|
|
" for(var toolbar_ind in mpl.toolbar_items){\n",
|
|
" var name = mpl.toolbar_items[toolbar_ind][0];\n",
|
|
" var tooltip = mpl.toolbar_items[toolbar_ind][1];\n",
|
|
" var image = mpl.toolbar_items[toolbar_ind][2];\n",
|
|
" var method_name = mpl.toolbar_items[toolbar_ind][3];\n",
|
|
"\n",
|
|
" if (!name) { continue; };\n",
|
|
"\n",
|
|
" var button = $('<button class=\"btn btn-default\" href=\"#\" title=\"' + name + '\"><i class=\"fa ' + image + ' fa-lg\"></i></button>');\n",
|
|
" button.click(method_name, toolbar_event);\n",
|
|
" button.mouseover(tooltip, toolbar_mouse_event);\n",
|
|
" nav_element.append(button);\n",
|
|
" }\n",
|
|
"\n",
|
|
" // Add the status bar.\n",
|
|
" var status_bar = $('<span class=\"mpl-message\" style=\"text-align:right; float: right;\"/>');\n",
|
|
" nav_element.append(status_bar);\n",
|
|
" this.message = status_bar[0];\n",
|
|
"\n",
|
|
" // Add the close button to the window.\n",
|
|
" var buttongrp = $('<div class=\"btn-group inline pull-right\"></div>');\n",
|
|
" var button = $('<button class=\"btn btn-mini btn-primary\" href=\"#\" title=\"Stop Interaction\"><i class=\"fa fa-power-off icon-remove icon-large\"></i></button>');\n",
|
|
" button.click(function (evt) { fig.handle_close(fig, {}); } );\n",
|
|
" button.mouseover('Stop Interaction', toolbar_mouse_event);\n",
|
|
" buttongrp.append(button);\n",
|
|
" var titlebar = this.root.find($('.ui-dialog-titlebar'));\n",
|
|
" titlebar.prepend(buttongrp);\n",
|
|
"}\n",
|
|
"\n",
|
|
"mpl.figure.prototype._root_extra_style = function(el){\n",
|
|
" var fig = this\n",
|
|
" el.on(\"remove\", function(){\n",
|
|
"\tfig.close_ws(fig, {});\n",
|
|
" });\n",
|
|
"}\n",
|
|
"\n",
|
|
"mpl.figure.prototype._canvas_extra_style = function(el){\n",
|
|
" // this is important to make the div 'focusable\n",
|
|
" el.attr('tabindex', 0)\n",
|
|
" // reach out to IPython and tell the keyboard manager to turn it's self\n",
|
|
" // off when our div gets focus\n",
|
|
"\n",
|
|
" // location in version 3\n",
|
|
" if (IPython.notebook.keyboard_manager) {\n",
|
|
" IPython.notebook.keyboard_manager.register_events(el);\n",
|
|
" }\n",
|
|
" else {\n",
|
|
" // location in version 2\n",
|
|
" IPython.keyboard_manager.register_events(el);\n",
|
|
" }\n",
|
|
"\n",
|
|
"}\n",
|
|
"\n",
|
|
"mpl.figure.prototype._key_event_extra = function(event, name) {\n",
|
|
" var manager = IPython.notebook.keyboard_manager;\n",
|
|
" if (!manager)\n",
|
|
" manager = IPython.keyboard_manager;\n",
|
|
"\n",
|
|
" // Check for shift+enter\n",
|
|
" if (event.shiftKey && event.which == 13) {\n",
|
|
" this.canvas_div.blur();\n",
|
|
" event.shiftKey = false;\n",
|
|
" // Send a \"J\" for go to next cell\n",
|
|
" event.which = 74;\n",
|
|
" event.keyCode = 74;\n",
|
|
" manager.command_mode();\n",
|
|
" manager.handle_keydown(event);\n",
|
|
" }\n",
|
|
"}\n",
|
|
"\n",
|
|
"mpl.figure.prototype.handle_save = function(fig, msg) {\n",
|
|
" fig.ondownload(fig, null);\n",
|
|
"}\n",
|
|
"\n",
|
|
"\n",
|
|
"mpl.find_output_cell = function(html_output) {\n",
|
|
" // Return the cell and output element which can be found *uniquely* in the notebook.\n",
|
|
" // Note - this is a bit hacky, but it is done because the \"notebook_saving.Notebook\"\n",
|
|
" // IPython event is triggered only after the cells have been serialised, which for\n",
|
|
" // our purposes (turning an active figure into a static one), is too late.\n",
|
|
" var cells = IPython.notebook.get_cells();\n",
|
|
" var ncells = cells.length;\n",
|
|
" for (var i=0; i<ncells; i++) {\n",
|
|
" var cell = cells[i];\n",
|
|
" if (cell.cell_type === 'code'){\n",
|
|
" for (var j=0; j<cell.output_area.outputs.length; j++) {\n",
|
|
" var data = cell.output_area.outputs[j];\n",
|
|
" if (data.data) {\n",
|
|
" // IPython >= 3 moved mimebundle to data attribute of output\n",
|
|
" data = data.data;\n",
|
|
" }\n",
|
|
" if (data['text/html'] == html_output) {\n",
|
|
" return [cell, data, j];\n",
|
|
" }\n",
|
|
" }\n",
|
|
" }\n",
|
|
" }\n",
|
|
"}\n",
|
|
"\n",
|
|
"// Register the function which deals with the matplotlib target/channel.\n",
|
|
"// The kernel may be null if the page has been refreshed.\n",
|
|
"if (IPython.notebook.kernel != null) {\n",
|
|
" IPython.notebook.kernel.comm_manager.register_target('matplotlib', mpl.mpl_figure_comm);\n",
|
|
"}\n"
|
|
],
|
|
"text/plain": [
|
|
"<IPython.core.display.Javascript object>"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"text/html": [
|
|
"<img src=\"\" width=\"640\">"
|
|
],
|
|
"text/plain": [
|
|
"<IPython.core.display.HTML object>"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"text/plain": [
|
|
"<matplotlib.image.AxesImage at 0x7fd92b855630>"
|
|
]
|
|
},
|
|
"execution_count": 5,
|
|
"metadata": {},
|
|
"output_type": "execute_result"
|
|
}
|
|
],
|
|
"source": [
|
|
"fig, ax = subplots()\n",
|
|
"ax.imshow(image.clip(0,100))"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 6,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"%load_ext pyopencl.ipython_ext"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 10,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"%%cl_kernel\n",
|
|
"\n",
|
|
"//read withou caching\n",
|
|
"float inline read_simple(global int *img, \n",
|
|
" int height,\n",
|
|
" int width,\n",
|
|
" int row,\n",
|
|
" int col){\n",
|
|
" //This kernel reads the value and returns it without active caching\n",
|
|
" float value = NAN;\n",
|
|
" \n",
|
|
" // Read\n",
|
|
" if ((col>=0) && (col<width) && (row>=0) && (row<height)){\n",
|
|
" int read_pos = col + row*width;\n",
|
|
" value = (float)img[read_pos];\n",
|
|
" if (value<0){\n",
|
|
" value = NAN;\n",
|
|
" }\n",
|
|
" }\n",
|
|
" return value;\n",
|
|
"}\n",
|
|
"\n",
|
|
"\n",
|
|
"void inline read_and_store(global int *img, \n",
|
|
" int height,\n",
|
|
" int width,\n",
|
|
" int row,\n",
|
|
" int col,\n",
|
|
" int half_wind_height,\n",
|
|
" int half_wind_width,\n",
|
|
" local float* storage){\n",
|
|
" //This kernel reads the value and stores in the local storage\n",
|
|
" int line_size, write_pos, idx_line;\n",
|
|
" float value = NAN;\n",
|
|
" \n",
|
|
" // Read\n",
|
|
" if ((col>=0) && (col<width) && (row>0) && (row<height)){\n",
|
|
" int read_pos = col + row*width;\n",
|
|
" value = (float)img[read_pos];\n",
|
|
" if (value<0){\n",
|
|
" value = NAN;\n",
|
|
" }\n",
|
|
" }\n",
|
|
" // Save locally\n",
|
|
" if ((col>=-half_wind_width) && (col<=width+half_wind_width) && (row>-half_wind_height) && (row<=height+half_wind_height)){\n",
|
|
" line_size = get_local_size(0) + 2 * half_wind_width;\n",
|
|
" idx_line = (half_wind_height+row)%(2*half_wind_height+1);\n",
|
|
" write_pos = line_size*idx_line + half_wind_width + col - get_group_id(0)*get_local_size(0);\n",
|
|
" storage[write_pos] = value;\n",
|
|
" }\n",
|
|
" //return value\n",
|
|
"}\n",
|
|
"\n",
|
|
"//Store a complete line\n",
|
|
"void inline store_line(global int *img, \n",
|
|
" int height,\n",
|
|
" int width,\n",
|
|
" int row,\n",
|
|
" int half_wind_height,\n",
|
|
" int half_wind_width,\n",
|
|
" local float* storage){\n",
|
|
" read_and_store(img, height, width, \n",
|
|
" row, get_global_id(0), \n",
|
|
" half_wind_height, half_wind_width, storage);\n",
|
|
" if (get_local_id(0)<half_wind_width){\n",
|
|
" // read_and_store_left\n",
|
|
" read_and_store(img, height, width, \n",
|
|
" row, get_group_id(0)*get_local_size(0)-half_wind_width+get_local_id(0), \n",
|
|
" half_wind_height, half_wind_width, storage);\n",
|
|
" //read_and_store_right\n",
|
|
" read_and_store(img, height, width, \n",
|
|
" row, (get_group_id(0)+1)*get_local_size(0)+get_local_id(0), \n",
|
|
" half_wind_height, half_wind_width, storage); \n",
|
|
" }\n",
|
|
"}\n",
|
|
"\n",
|
|
"float read_back( int height,\n",
|
|
" int width,\n",
|
|
" int row,\n",
|
|
" int col,\n",
|
|
" int half_wind_height,\n",
|
|
" int half_wind_width,\n",
|
|
" local float* storage){\n",
|
|
" float value=NAN;\n",
|
|
" int write_pos, line_size, idx_line;\n",
|
|
" if ((col>=-half_wind_width) && (col<=width+half_wind_width) && (row>-half_wind_height) && (row<=height+half_wind_height)){\n",
|
|
" line_size = get_local_size(0) + 2 * half_wind_width;\n",
|
|
" idx_line = (half_wind_height+row)%(2*half_wind_height+1);\n",
|
|
" write_pos = line_size*idx_line + half_wind_width + col - get_group_id(0)*get_local_size(0);\n",
|
|
" value = storage[write_pos]; \n",
|
|
" }\n",
|
|
" return value;\n",
|
|
"}\n",
|
|
"\n",
|
|
"// workgroup size of kernel: 32 to 128, cache_read needs to be (wg+2*half_wind_width)*(2*half_wind_height+1)*sizeof(float)\n",
|
|
"kernel void spot_finder(global int *img, \n",
|
|
" int height,\n",
|
|
" int width,\n",
|
|
" int half_wind_height,\n",
|
|
" int half_wind_width,\n",
|
|
" float threshold,\n",
|
|
" float radius,\n",
|
|
" global int *cnt_high, //output\n",
|
|
" global int *high, //output\n",
|
|
" int high_size,\n",
|
|
" local float *cache_read,\n",
|
|
" local int *local_high,\n",
|
|
" int local_size){\n",
|
|
" //decaration of variables\n",
|
|
" int col, row, cnt, i, j, where;\n",
|
|
" float value, sum, std, centroid_r, centroid_c, dist, mean;\n",
|
|
" col = get_global_id(0);\n",
|
|
" \n",
|
|
" local int local_cnt_high[1];\n",
|
|
" local_cnt_high[0] = 0;\n",
|
|
" for (i=0; i<local_size; i+=get_local_size(0)){\n",
|
|
" local_high[i+get_local_id(0)] = 0;\n",
|
|
" }\n",
|
|
" \n",
|
|
" row=0;\n",
|
|
" \n",
|
|
" //pre-load data for the first line\n",
|
|
" for (i=-half_wind_height; i<half_wind_height; i++){\n",
|
|
" store_line(img, height, width, row+i, half_wind_height, half_wind_width, cache_read);\n",
|
|
" }\n",
|
|
" barrier(CLK_LOCAL_MEM_FENCE);\n",
|
|
" //loop within a column\n",
|
|
" for (row=0;row<height; row++){\n",
|
|
" //read data\n",
|
|
" store_line(img, height, width, row+half_wind_height, half_wind_height, half_wind_width, cache_read);\n",
|
|
" barrier(CLK_LOCAL_MEM_FENCE);\n",
|
|
" //calculate mean\n",
|
|
" sum = 0.0f;\n",
|
|
" centroid_r = 0.0f;\n",
|
|
" centroid_c = 0.0f;\n",
|
|
" cnt = 0;\n",
|
|
" for (i=-half_wind_height; i<=half_wind_height; i++){\n",
|
|
" for (j=-half_wind_width; j<=half_wind_width; j++){\n",
|
|
" value = read_back(height, width, row+i, col+j, half_wind_height, half_wind_width, cache_read);\n",
|
|
" if (isfinite(value)){\n",
|
|
" sum += value;\n",
|
|
" centroid_r += value*i; \n",
|
|
" centroid_c += value*j;\n",
|
|
" cnt += 1;\n",
|
|
" }\n",
|
|
" }\n",
|
|
" }\n",
|
|
" if (cnt){\n",
|
|
" mean = sum/cnt;\n",
|
|
" dist = sum*radius;\n",
|
|
" if ((fabs(centroid_r)<dist) && (fabs(centroid_c)<dist)){\n",
|
|
" // calculate std\n",
|
|
" sum = 0.0;\n",
|
|
" for (i=-half_wind_height; i<=half_wind_height; i++){\n",
|
|
" for (j=-half_wind_width; j<=half_wind_width; j++){\n",
|
|
" value = read_back(height, width, row+i, col+j, half_wind_height, half_wind_width, cache_read);\n",
|
|
" if (isfinite(value)){\n",
|
|
" sum += pown(mean-value,2);\n",
|
|
" }\n",
|
|
" }\n",
|
|
" }\n",
|
|
" std = sqrt(sum/cnt);\n",
|
|
" value = read_back(height, width, row, col, half_wind_height, half_wind_width, cache_read);\n",
|
|
" if ((value-mean)>threshold*std){\n",
|
|
" where = atomic_inc(local_cnt_high);\n",
|
|
" if (where<local_size){\n",
|
|
" local_high[where] = col+width*row;\n",
|
|
" }\n",
|
|
" } // if intense signal\n",
|
|
" } // if properly centered\n",
|
|
" } // if patch not empty \n",
|
|
" barrier(CLK_LOCAL_MEM_FENCE);\n",
|
|
" } //for row \n",
|
|
" \n",
|
|
" //Store the results in global memory\n",
|
|
" barrier(CLK_LOCAL_MEM_FENCE);\n",
|
|
" if (get_local_id(0) == 0) {\n",
|
|
" cnt = local_cnt_high[0];\n",
|
|
" if ((cnt>0) && (cnt<local_size)) {\n",
|
|
" where = atomic_add(cnt_high, cnt);\n",
|
|
" if (where+cnt>high_size){\n",
|
|
" cnt = high_size-where; //store what we can\n",
|
|
" }\n",
|
|
" for (i=0; i<cnt; i++){\n",
|
|
" high[where+i] = local_high[i];\n",
|
|
" }\n",
|
|
" }\n",
|
|
" }//store results\n",
|
|
"} //kernel\n",
|
|
"\n",
|
|
"// workgroup size of kernel: without cacheing read\n",
|
|
"kernel void simple_spot_finder(global int *img, \n",
|
|
" int height,\n",
|
|
" int width,\n",
|
|
" int half_wind_height,\n",
|
|
" int half_wind_width,\n",
|
|
" float threshold,\n",
|
|
" float radius,\n",
|
|
" global int *cnt_high, //output\n",
|
|
" global int *high, //output\n",
|
|
" int high_size,\n",
|
|
" local int *local_high,\n",
|
|
" int local_size){\n",
|
|
" //decaration of variables\n",
|
|
" int col, row, cnt, i, j, where, tid, blocksize;\n",
|
|
" float value, sum, std, centroid_r, centroid_c, dist, mean, M2, delta, delta2, target_value;\n",
|
|
" col = get_global_id(0);\n",
|
|
" row = get_global_id(1);\n",
|
|
" \n",
|
|
" //Initialization of output array in shared\n",
|
|
" local int local_cnt_high[2];\n",
|
|
" blocksize = get_local_size(0) * get_local_size(1);\n",
|
|
" tid = get_local_id(0) + get_local_id(1) * get_local_size(0);\n",
|
|
" if (tid < 2){\n",
|
|
" local_cnt_high[tid] = 0;\n",
|
|
" }\n",
|
|
" \n",
|
|
" for (i=0; i<local_size; i+=blocksize){\n",
|
|
" if ((i+tid)<local_size)\n",
|
|
" local_high[i+tid] = 0;\n",
|
|
" }\n",
|
|
" barrier(CLK_LOCAL_MEM_FENCE); \n",
|
|
" \n",
|
|
" \n",
|
|
" //Calculate mean + std + centroids\n",
|
|
" mean = 0.0f;\n",
|
|
" M2 = 0.0f;\n",
|
|
" centroid_r = 0.0f;\n",
|
|
" centroid_c = 0.0f;\n",
|
|
" cnt = 0;\n",
|
|
" \n",
|
|
" for (i=-half_wind_height; i<=half_wind_height; i++){\n",
|
|
" for (j=-half_wind_width; j<=half_wind_width; j++){\n",
|
|
" value = read_simple(img, height, width, row+i, col+j);\n",
|
|
" if (isfinite(value)){\n",
|
|
" centroid_r += value*i; \n",
|
|
" centroid_c += value*j;\n",
|
|
" cnt += 1;\n",
|
|
" delta = value - mean;\n",
|
|
" mean += delta / cnt;\n",
|
|
" delta2 = value - mean;\n",
|
|
" M2 += delta * delta2;\n",
|
|
" } \n",
|
|
" }\n",
|
|
" }\n",
|
|
" if (cnt){\n",
|
|
" dist = mean*radius*cnt;\n",
|
|
" std = sqrt(M2 / cnt);\n",
|
|
" target_value = read_simple(img, height, width, row, col);\n",
|
|
" if (((target_value-mean)>threshold*std) && (fabs(centroid_r)<dist) && (fabs(centroid_c)<dist)){\n",
|
|
" where = atomic_inc(local_cnt_high);\n",
|
|
" if (where<local_size){\n",
|
|
" local_high[where] = col+width*row;\n",
|
|
" }\n",
|
|
" } // if intense signal properly centered\n",
|
|
" } // if patch not empty \n",
|
|
" \n",
|
|
" //Store the results in global memory\n",
|
|
" barrier(CLK_LOCAL_MEM_FENCE);\n",
|
|
" if (tid==0) {\n",
|
|
" cnt = local_cnt_high[0];\n",
|
|
" if ((cnt>0) && (cnt<local_size)) {\n",
|
|
" where = atomic_add(cnt_high, cnt);\n",
|
|
" if (where+cnt>high_size){\n",
|
|
" cnt = high_size-where; //store what we can\n",
|
|
" }\n",
|
|
" local_cnt_high[0] = cnt;\n",
|
|
" local_cnt_high[1] = where;\n",
|
|
" }\n",
|
|
" }\n",
|
|
" barrier(CLK_LOCAL_MEM_FENCE);\n",
|
|
" //copy the data from local to global memory\n",
|
|
" for (i=0; i<local_cnt_high[0]; i+=blocksize){\n",
|
|
" high[local_cnt_high[1]+i+tid] = local_high[i+tid];\n",
|
|
" }//store results\n",
|
|
"} //kernel"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 11,
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"name": "stdout",
|
|
"output_type": "stream",
|
|
"text": [
|
|
"found 234 peaks in 275.350ms\n",
|
|
"CPU times: user 233 ms, sys: 51.7 ms, total: 285 ms\n",
|
|
"Wall time: 282 ms\n"
|
|
]
|
|
},
|
|
{
|
|
"data": {
|
|
"text/plain": [
|
|
"[<matplotlib.lines.Line2D at 0x7fd92b8662b0>]"
|
|
]
|
|
},
|
|
"execution_count": 11,
|
|
"metadata": {},
|
|
"output_type": "execute_result"
|
|
}
|
|
],
|
|
"source": [
|
|
"def peak_count(img,\n",
|
|
" window=3,\n",
|
|
" threshold=3.0,\n",
|
|
" radius=1.0,\n",
|
|
" workgroup=32,\n",
|
|
" array_size=10000):\n",
|
|
" img_d = cla.to_device(queue, image)\n",
|
|
" high_d = cla.zeros(queue, (array_size,), dtype=numpy.int32)\n",
|
|
" high_cnt_d = cla.zeros(queue, (1,), dtype=numpy.int32)\n",
|
|
" read_cache = pyopencl.LocalMemory(4*(workgroup+2*window)*(2*window+1))\n",
|
|
" write_cache = pyopencl.LocalMemory(4096)\n",
|
|
" height, width = img.shape\n",
|
|
" size = (width+workgroup-1)&~(workgroup-1)\n",
|
|
" ev = spot_finder(queue, (size,), (workgroup,),\n",
|
|
" img_d.data, \n",
|
|
" numpy.int32(height),\n",
|
|
" numpy.int32(width),\n",
|
|
" numpy.int32(window),\n",
|
|
" numpy.int32(window),\n",
|
|
" numpy.float32( threshold),\n",
|
|
" numpy.float32( radius),\n",
|
|
" high_cnt_d.data,\n",
|
|
" high_d.data,\n",
|
|
" numpy.int32(array_size),\n",
|
|
" read_cache,\n",
|
|
" write_cache,\n",
|
|
" numpy.int32(1024))\n",
|
|
" size = high_cnt_d.get()[0] \n",
|
|
" print(\"found %i peaks in %.3fms\"%(size, (ev.profile.end-ev.profile.start)*1e-6))\n",
|
|
" return high_d.get()[:size]\n",
|
|
"%time raw = peak_count(image, window=5, threshold=6)\n",
|
|
"x=raw%image.shape[-1]\n",
|
|
"y=raw//image.shape[-1]\n",
|
|
"ax.plot(x,y,\".w\")"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 12,
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"name": "stdout",
|
|
"output_type": "stream",
|
|
"text": [
|
|
"found 235 peaks in 21.018ms\n",
|
|
"CPU times: user 25.3 ms, sys: 4.65 ms, total: 29.9 ms\n",
|
|
"Wall time: 27.9 ms\n"
|
|
]
|
|
},
|
|
{
|
|
"data": {
|
|
"text/plain": [
|
|
"[<matplotlib.lines.Line2D at 0x7fd928ccddd8>]"
|
|
]
|
|
},
|
|
"execution_count": 12,
|
|
"metadata": {},
|
|
"output_type": "execute_result"
|
|
}
|
|
],
|
|
"source": [
|
|
"def simple_peak_count(img,\n",
|
|
" window=3,\n",
|
|
" threshold=3.0,\n",
|
|
" radius=1.0,\n",
|
|
" workgroup=32,\n",
|
|
" array_size=10000):\n",
|
|
" img_d = cla.to_device(queue, image)\n",
|
|
" high_d = cla.zeros(queue, (array_size,), dtype=numpy.int32)\n",
|
|
" high_cnt_d = cla.zeros(queue, (1,), dtype=numpy.int32)\n",
|
|
" #read_cache = pyopencl.LocalMemory(4*(workgroup+2*window)*(2*window+1))\n",
|
|
" write_cache = pyopencl.LocalMemory(4096)\n",
|
|
" height, width = img.shape\n",
|
|
" size_w = (width+workgroup-1)&~(workgroup-1)\n",
|
|
" size_h = (height+workgroup-1)&~(workgroup-1)\n",
|
|
" ev = simple_spot_finder(queue, (size_w,size_h), (workgroup, workgroup),\n",
|
|
" img_d.data, \n",
|
|
" numpy.int32(height),\n",
|
|
" numpy.int32(width),\n",
|
|
" numpy.int32(window),\n",
|
|
" numpy.int32(window),\n",
|
|
" numpy.float32( threshold),\n",
|
|
" numpy.float32( radius),\n",
|
|
" high_cnt_d.data,\n",
|
|
" high_d.data,\n",
|
|
" numpy.int32(array_size),\n",
|
|
" #read_cache,\n",
|
|
" write_cache,\n",
|
|
" numpy.int32(1024))\n",
|
|
" size = high_cnt_d.get()[0] \n",
|
|
" print(\"found %i peaks in %.3fms\"%(size, (ev.profile.end-ev.profile.start)*1e-6))\n",
|
|
" return high_d.get()[:size]\n",
|
|
"%time raw = simple_peak_count(image, window=5, threshold=6)\n",
|
|
"x=raw%image.shape[-1]\n",
|
|
"y=raw//image.shape[-1]\n",
|
|
"ax.plot(x,y,\".y\")"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 43,
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"data": {
|
|
"text/plain": [
|
|
"array([1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.,\n",
|
|
" 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.])"
|
|
]
|
|
},
|
|
"execution_count": 43,
|
|
"metadata": {},
|
|
"output_type": "execute_result"
|
|
}
|
|
],
|
|
"source": [
|
|
"# Work on scan\n",
|
|
"from math import log2\n",
|
|
"n = 32\n",
|
|
"ary = numpy.ones(n)\n",
|
|
"ary"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 44,
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"name": "stdout",
|
|
"output_type": "stream",
|
|
"text": [
|
|
"0 1\n",
|
|
"1 2\n",
|
|
"2 4\n",
|
|
"3 8\n",
|
|
"4 16\n",
|
|
"[ 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18.\n",
|
|
" 19. 20. 21. 22. 23. 24. 25. 26. 27. 28. 29. 30. 31. 32.]\n"
|
|
]
|
|
}
|
|
],
|
|
"source": [
|
|
"ary1 = numpy.copy(ary)\n",
|
|
"ary2 = numpy.empty_like(ary)\n",
|
|
"\n",
|
|
"for i in range(int(log2(n))):\n",
|
|
" start = 1<<i\n",
|
|
" print(i,start)\n",
|
|
" for j in range(start):\n",
|
|
" ary2[j] = ary1[j]\n",
|
|
" for j in range(start, n):\n",
|
|
" ary2[j] = ary1[j] + ary1[j-start]\n",
|
|
" ary1, ary2 = ary2, ary1\n",
|
|
"print(ary1)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 34,
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"data": {
|
|
"text/plain": [
|
|
"array([ 0., 0., 1., 2., 5., 8., 13., 18., 27., 36., 49.,\n",
|
|
" 62., 81., 100., 125., 150.])"
|
|
]
|
|
},
|
|
"execution_count": 34,
|
|
"metadata": {},
|
|
"output_type": "execute_result"
|
|
}
|
|
],
|
|
"source": [
|
|
"ary-numpy.ones(n).cumsum()"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 39,
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"data": {
|
|
"text/plain": [
|
|
"8512"
|
|
]
|
|
},
|
|
"execution_count": 39,
|
|
"metadata": {},
|
|
"output_type": "execute_result"
|
|
}
|
|
],
|
|
"source": [
|
|
"(32+6)*7*4*2*4"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": []
|
|
}
|
|
],
|
|
"metadata": {
|
|
"kernelspec": {
|
|
"display_name": "Python 3",
|
|
"language": "python",
|
|
"name": "python3"
|
|
},
|
|
"language_info": {
|
|
"codemirror_mode": {
|
|
"name": "ipython",
|
|
"version": 3
|
|
},
|
|
"file_extension": ".py",
|
|
"mimetype": "text/x-python",
|
|
"name": "python",
|
|
"nbconvert_exporter": "python",
|
|
"pygments_lexer": "ipython3",
|
|
"version": "3.7.3"
|
|
}
|
|
},
|
|
"nbformat": 4,
|
|
"nbformat_minor": 2
|
|
}
|