pyFAI/sandbox/splitPixelFullLUT_b.pyx

979 lines
43 KiB
Cython

#!/usr/bin/env python
# -*- coding: utf-8 -*-
#
# Project: Fast Azimuthal Integration
# https://github.com/silx-kit/pyFAI
#
# Copyright (C) 2018 European Synchrotron Radiation Facility, Grenoble, France
#
# Principal author: Jérôme Kieffer (Jerome.Kieffer@ESRF.eu)
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <http://www.gnu.org/licenses/>.
#
""" Full pixel Splitting implemented using Sparse-matrix Dense-Vector
multiplication, sparse matrix represented using the CompressedSparseROw.
"""
__author__ = "Jerome Kieffer"
__contact__ = "Jerome.kieffer@esrf.fr"
__date__ = "02/02/2017"
__status__ = "stable"
__license__ = "GPLv3+"
import cython
import os
import sys
from cython.parallel import prange
from libc.string cimport memset
import numpy
cimport numpy
from libc.math cimport fabs, floor
from libc.stdio cimport printf
try:
from fastcrc import crc32
except:
from zlib import crc32
include "regrid_common.pxi"
cdef struct Function:
double slope
double intersect
cdef double area4(double a0, double a1, double b0, double b1, double c0, double c1, double d0, double d1) nogil:
"""
Calculate the area of the ABCD quadrilataire with corners:
A(a0,a1)
B(b0,b1)
C(c0,c1)
D(d0,d1)
:return: area, i.e. 1/2 * (AC ^ BD)
"""
return 0.5 * fabs(((c0 - a0) * (d1 - b1)) - ((c1 - a1) * (d0 - b0)))
cdef double integrate( double A0, double B0, Function AB) nogil:
"""
integrates the line defined by AB, from A0 to B0
param A0: first limit
param B0: second limit
param AB: struct with the slope and point of intersection of the line
"""
if A0==B0:
return 0.0
else:
return AB.slope*(B0*B0 - A0*A0)*0.5 + AB.intersect*(B0-A0)
class HistoLUT1dFullSplit(object):
"""
Now uses CSR (Compressed Sparse raw) with main attributes:
* nnz: number of non zero elements
* data: coefficient of the matrix in a 1D vector of float64
* indices: Column index position for the data (same size as
* indptr: row pointer indicates the start of a given row. len nrow+1
Nota: nnz = indptr[-1]
"""
@cython.boundscheck(False)
def __init__(self,
numpy.ndarray pos not None,
int bins=100,
pos0Range=None,
pos1Range=None,
mask=None,
mask_checksum=None,
allow_pos0_neg=False,
unit="undefined"):
"""
:param pos: 3D or 4D array with the coordinates of each pixel point
:param bins: number of output bins, 100 by default
:param pos0Range: minimum and maximum of the 2th range
:param pos1Range: minimum and maximum of the chi range
:param mask: array (of int8) with masked pixels with 1 (0=not masked)
:param allow_pos0_neg: enforce the q<0 is usually not possible
:param unit: can be 2th_deg or r_nm^-1 ...
"""
# self.padding = int(padding)
if pos.ndim>3: #create a view
pos = pos.reshape((-1,4,2))
assert pos.shape[1] == 4
assert pos.shape[2] == 2
assert pos.ndim == 3
self.pos = pos
self.size = pos.shape[0]
self.bins = bins
self.lut_size = 0
self.allow_pos0_neg = allow_pos0_neg
if mask is not None:
assert mask.size == self.size
self.check_mask = True
self.cmask = numpy.ascontiguousarray(mask.ravel(), dtype=numpy.int8)
if mask_checksum:
self.mask_checksum = mask_checksum
else:
self.mask_checksum = crc32(mask)
else:
self.check_mask = False
self.mask_checksum = None
self.data = self.nnz = self.indices = self.indptr = None
self.pos0Range = pos0Range
self.pos1Range = pos1Range
self.calc_lut()
self.outPos = numpy.linspace(self.pos0_min+0.5*self.delta, self.pos0_maxin-0.5*self.delta, self.bins)
self.lut_checksum = crc32(self.data)
self.unit=unit
self.lut=(self.data,self.indices,self.indptr)
self.lut_nbytes = sum([i.nbytes for i in self.lut])
@cython.cdivision(True)
@cython.boundscheck(False)
@cython.wraparound(False)
def calc_lut(self):
cdef numpy.ndarray[numpy.float64_t, ndim = 3] cpos = numpy.ascontiguousarray(self.pos,dtype=numpy.float64)
cdef numpy.int8_t[:] cmask
cdef numpy.ndarray[numpy.int32_t, ndim = 1] outMax = numpy.zeros(self.bins, dtype=numpy.int32)
cdef numpy.ndarray[numpy.int32_t, ndim = 1] indptr = numpy.zeros(self.bins+1, dtype=numpy.int32)
cdef double pos0_min=0, pos0_max=0, pos0_maxin=0, pos1_min=0, pos1_max=0, pos1_maxin=0
cdef double max0, min0
cdef double areaPixel=0, delta=0
cdef double A0=0, B0=0, C0=0, D0=0, A1=0, B1=0, C1=0, D1=0
cdef double A_lim=0, B_lim=0, C_lim=0, D_lim=0
cdef double oneOverArea=0, partialArea=0, tmp=0
cdef Function AB, BC, CD, DA
cdef int bins, i=0, idx=0, bin=0, bin0_max=0, bin0_min=0, pixel_bins=0, k=0, size=0
cdef bint check_pos1=False, check_mask=False
bins = self.bins
if self.pos0Range is not None and len(self.pos0Range) > 1:
self.pos0_min = min(self.pos0Range)
self.pos0_maxin = max(self.pos0Range)
else:
self.pos0_min = self.pos[:, :, 0].min()
self.pos0_maxin = self.pos[:, :, 0].max()
self.pos0_max = self.pos0_maxin * (1 + numpy.finfo(numpy.float64).eps)
if self.pos1Range is not None and len(self.pos1Range) > 1:
self.pos1_min = min(self.pos1Range)
self.pos1_maxin = max(self.pos1Range)
self.check_pos1 = True
else:
self.pos1_min = self.pos[:, :, 1].min()
self.pos1_maxin = self.pos[:, :, 1].max()
self.pos1_max = self.pos1_maxin * (1 + numpy.finfo(numpy.float64).eps)
self.delta = (self.pos0_max - self.pos0_min) / (< double > (bins))
pos0_min = self.pos0_min
pos0_max = self.pos0_max
pos1_min = self.pos1_min
pos1_max = self.pos1_max
delta = self.delta
size = self.size
check_mask = self.check_mask
if check_mask:
cmask = self.cmask
with nogil:
for idx in range(size):
if (check_mask) and (cmask[idx]):
continue
A0 = get_bin_number(< double > cpos[idx, 0, 0], pos0_min, delta)
A1 = < double > cpos[idx, 0, 1]
B0 = get_bin_number(< double > cpos[idx, 1, 0], pos0_min, delta)
B1 = < double > cpos[idx, 1, 1]
C0 = get_bin_number(< double > cpos[idx, 2, 0], pos0_min, delta)
C1 = < double > cpos[idx, 2, 1]
D0 = get_bin_number(< double > cpos[idx, 3, 0], pos0_min, delta)
D1 = < double > cpos[idx, 3, 1]
min0 = min(A0, B0, C0, D0)
max0 = max(A0, B0, C0, D0)
if (max0<0) or (min0 >=bins):
continue
if check_pos1:
if (max(A1, B1, C1, D1) < pos1_min) or (min(A1, B1, C1, D1) > pos1_maxin):
continue
bin0_min = < int > floor(min0)
bin0_max = < int > floor(max0)
for bin in range(bin0_min, bin0_max+1):
outMax[bin] += 1
indptr[1:] = outMax.cumsum()
self.indptr = indptr
cdef numpy.ndarray[numpy.int32_t, ndim = 1] indices = numpy.zeros(indptr[bins], dtype=numpy.int32)
cdef numpy.ndarray[numpy.float64_t, ndim = 1] data = numpy.zeros(indptr[bins], dtype=numpy.float64)
cdef numpy.ndarray[numpy.float32_t, ndim = 1] areas = numpy.zeros(indptr[bins], dtype=numpy.float32)
#just recycle the outMax array
memset(&outMax[0], 0, bins * sizeof(numpy.int32_t))
with nogil:
for idx in range(size):
if (check_mask) and (cmask[idx]):
continue
A0 = get_bin_number(< double > cpos[idx, 0, 0], pos0_min, delta)
A1 = < double > cpos[idx, 0, 1]
B0 = get_bin_number(< double > cpos[idx, 1, 0], pos0_min, delta)
B1 = < double > cpos[idx, 1, 1]
C0 = get_bin_number(< double > cpos[idx, 2, 0], pos0_min, delta)
C1 = < double > cpos[idx, 2, 1]
D0 = get_bin_number(< double > cpos[idx, 3, 0], pos0_min, delta)
D1 = < double > cpos[idx, 3, 1]
min0 = min(A0, B0, C0, D0)
max0 = max(A0, B0, C0, D0)
if (max0<0) or (min0 >=bins):
continue
if check_pos1:
if (max(A1, B1, C1, D1) < pos1_min) or (min(A1, B1, C1, D1) > pos1_maxin):
continue
bin0_min = < int > floor(min0)
bin0_max = < int > floor(max0)
if bin0_min == bin0_max:
#All pixel is within a single bin
k = outMax[bin0_min]
indices[indptr[bin0_min]+k] = idx
data[indptr[bin0_min]+k] = 1.0
areas[indptr[bin0_min]+k] = -1.0
outMax[bin0_min] += 1 #k+1
else: #else we have pixel spliting.
AB.slope=(B1-A1)/(B0-A0)
AB.intersect= A1 - AB.slope*A0
BC.slope=(C1-B1)/(C0-B0)
BC.intersect= B1 - BC.slope*B0
CD.slope=(D1-C1)/(D0-C0)
CD.intersect= C1 - CD.slope*C0
DA.slope=(A1-D1)/(A0-D0)
DA.intersect= D1 - DA.slope*D0
areaPixel = area4(A0, A1, B0, B1, C0, C1, D0, D1)
oneOverPixelArea = 1.0 / areaPixel
partialArea2 = 0.0
for bin in range(bin0_min, bin0_max+1):
A_lim = (A0<=bin)*(A0<=(bin+1))*bin + (A0>bin)*(A0<=(bin+1))*A0 + (A0>bin)*(A0>(bin+1))*(bin+1)
B_lim = (B0<=bin)*(B0<=(bin+1))*bin + (B0>bin)*(B0<=(bin+1))*B0 + (B0>bin)*(B0>(bin+1))*(bin+1)
C_lim = (C0<=bin)*(C0<=(bin+1))*bin + (C0>bin)*(C0<=(bin+1))*C0 + (C0>bin)*(C0>(bin+1))*(bin+1)
D_lim = (D0<=bin)*(D0<=(bin+1))*bin + (D0>bin)*(D0<=(bin+1))*D0 + (D0>bin)*(D0>(bin+1))*(bin+1)
partialArea = integrate(A_lim, B_lim, AB)
partialArea += integrate(B_lim, C_lim, BC)
partialArea += integrate(C_lim, D_lim, CD)
partialArea += integrate(D_lim, A_lim, DA)
tmp = fabs(partialArea) * oneOverPixelArea
k = outMax[bin]
indices[indptr[bin]+k] = idx
data[indptr[bin]+k] = tmp
areas[indptr[bin]+k] = fabs(partialArea)
outMax[bin] += 1 #k+1
self.data = data
self.indices = indices
self.outMax = outMax
self.areas = areas
@cython.cdivision(True)
@cython.boundscheck(False)
@cython.wraparound(False)
def integrate(self, weights, dummy=None, delta_dummy=None, dark=None, flat=None, solidAngle=None, polarization=None):
"""
Actually perform the integration which in this case looks more like a matrix-vector product
:param weights: input image
:type weights: ndarray
:param dummy: value for dead pixels (optional)
:type dummy: float
:param delta_dummy: precision for dead-pixel value in dynamic masking
:type delta_dummy: float
:param dark: array with the dark-current value to be subtracted (if any)
:type dark: ndarray
:param flat: array with the dark-current value to be divided by (if any)
:type flat: ndarray
:param solidAngle: array with the solid angle of each pixel to be divided by (if any)
:type solidAngle: ndarray
:param polarization: array with the polarization correction values to be divided by (if any)
:type polarization: ndarray
:return: positions, pattern, weighted_histogram and unweighted_histogram
:rtype: 4-tuple of ndarrays
"""
cdef numpy.int32_t i=0, j=0, idx=0, bins=self.bins, size=self.size
cdef double sum_data=0.0, sum_count=0.0, epsilon=1e-10
cdef double data=0, coef=0, cdummy=0, cddummy=0
cdef bint do_dummy=False, do_dark=False, do_flat=False, do_polarization=False, do_solidAngle=False
cdef numpy.ndarray[numpy.float64_t, ndim = 1] outData = numpy.zeros(self.bins, dtype=numpy.float64)
cdef numpy.ndarray[numpy.float64_t, ndim = 1] outCount = numpy.zeros(self.bins, dtype=numpy.float64)
cdef numpy.ndarray[numpy.float64_t, ndim = 1] outMerge = numpy.zeros(self.bins, dtype=numpy.float64)
cdef double[:] ccoef = self.data, cdata, tdata, cflat, cdark, csolidAngle, cpolarization
cdef numpy.int32_t[:] indices = self.indices, indptr = self.indptr
assert size == weights.size
if dummy is not None:
do_dummy = True
cdummy = <double>float(dummy)
if delta_dummy is None:
cddummy = <double>0.0
else:
cddummy = <double>float(delta_dummy)
if flat is not None:
do_flat = True
assert flat.size == size
cflat = numpy.ascontiguousarray(flat.ravel(), dtype=numpy.float64)
if dark is not None:
do_dark = True
assert dark.size == size
cdark = numpy.ascontiguousarray(dark.ravel(), dtype=numpy.float64)
if solidAngle is not None:
do_solidAngle = True
assert solidAngle.size == size
csolidAngle = numpy.ascontiguousarray(solidAngle.ravel(), dtype=numpy.float64)
if polarization is not None:
do_polarization = True
assert polarization.size == size
cpolarization = numpy.ascontiguousarray(polarization.ravel(), dtype=numpy.float64)
if (do_dark + do_flat + do_polarization + do_solidAngle):
tdata = numpy.ascontiguousarray(weights.ravel(), dtype=numpy.float64)
cdata = numpy.zeros(size,dtype=numpy.float64)
if do_dummy:
for i in prange(size, nogil=True, schedule="static"):
data = tdata[i]
if ((cddummy!=0) and (fabs(data-cdummy) > cddummy)) or ((cddummy==0) and (data!=cdummy)):
#Nota: -= and /= operatore are seen as reduction in cython parallel.
if do_dark:
data = data - cdark[i]
if do_flat:
data = data / cflat[i]
if do_polarization:
data = data / cpolarization[i]
if do_solidAngle:
data = data / csolidAngle[i]
cdata[i]+=data
else: #set all dummy_like values to cdummy. simplifies further processing
cdata[i]+=cdummy
else:
for i in prange(size, nogil=True, schedule="static"):
data = tdata[i]
if do_dark:
data = data - cdark[i]
if do_flat:
data = data / cflat[i]
if do_polarization:
data = data / cpolarization[i]
if do_solidAngle:
data = data / csolidAngle[i]
cdata[i]+=data
else:
if do_dummy:
tdata = numpy.ascontiguousarray(weights.ravel(), dtype=numpy.float64)
cdata = numpy.zeros(size,dtype=numpy.float64)
for i in prange(size, nogil=True, schedule="static"):
data = tdata[i]
if ((cddummy!=0) and (fabs(data-cdummy) > cddummy)) or ((cddummy==0) and (data!=cdummy)):
cdata[i]+=data
else:
cdata[i]+=cdummy
else:
cdata = numpy.ascontiguousarray(weights.ravel(), dtype=numpy.float64)
for i in prange(bins, nogil=True, schedule="guided"):
sum_data = 0.0
sum_count = 0.0
for j in range(indptr[i],indptr[i+1]):
idx = indices[j]
coef = ccoef[j]
if coef == 0.0:
continue
data = cdata[idx]
if do_dummy and data==cdummy:
continue
sum_data = sum_data + coef * data
sum_count = sum_count + coef
outData[i] += sum_data
outCount[i] += sum_count
if sum_count > epsilon:
outMerge[i] += sum_data / sum_count
else:
outMerge[i] += cdummy
return self.outPos, outMerge, outData, outCount
################################################################################
# Bidimensionnal regrouping
################################################################################
#class HistoBBox2d(object):
#@cython.boundscheck(False)
#def __init__(self,
#pos0,
#delta_pos0,
#pos1,
#delta_pos1,
#bins=(100,36),
#pos0Range=None,
#pos1Range=None,
#mask=None,
#mask_checksum=None,
#allow_pos0_neg=False,
#unit="undefined",
#chiDiscAtPi=True
#):
#"""
#@param pos0: 1D array with pos0: tth or q_vect
#@param delta_pos0: 1D array with delta pos0: max center-corner distance
#@param pos1: 1D array with pos1: chi
#@param delta_pos1: 1D array with max pos1: max center-corner distance, unused !
#@param bins: number of output bins (tth=100, chi=36 by default)
#@param pos0Range: minimum and maximum of the 2th range
#@param pos1Range: minimum and maximum of the chi range
#@param mask: array (of int8) with masked pixels with 1 (0=not masked)
#@param allow_pos0_neg: enforce the q<0 is usually not possible
#@param chiDiscAtPi: boolean; by default the chi_range is in the range ]-pi,pi[ set to 0 to have the range ]0,2pi[
#"""
#cdef int i, size, bin0, bin1
#self.size = pos0.size
#assert delta_pos0.size == self.size
#assert pos1.size == self.size
#assert delta_pos1.size == self.size
#self.chiDiscAtPi = 1 if chiDiscAtPi else 0
#self.allow_pos0_neg = allow_pos0_neg
#try:
#bins0, bins1 = tuple(bins)
#except:
#bins0 = bins1 = bins
#if bins0 <= 0:
#bins0 = 1
#if bins1 <= 0:
#bins1 = 1
#self.bins = (int(bins0),int(bins1))
#self.lut_size = 0
#if mask is not None:
#assert mask.size == self.size
#self.check_mask = True
#self.cmask = numpy.ascontiguousarray(mask.ravel(), dtype=numpy.int8)
#if mask_checksum:
#self.mask_checksum = mask_checksum
#else:
#self.mask_checksum = crc32(mask)
#else:
#self.check_mask = False
#self.mask_checksum = None
#self.data = self.nnz = self.indices = self.indptr = None
#self.cpos0 = numpy.ascontiguousarray(pos0.ravel(), dtype=numpy.float64)
#self.dpos0 = numpy.ascontiguousarray(delta_pos0.ravel(), dtype=numpy.float64)
#self.cpos0_sup = numpy.empty_like(self.cpos0)
#self.cpos0_inf = numpy.empty_like(self.cpos0)
#self.pos0Range = pos0Range
#self.pos1Range = pos1Range
#self.cpos1 = numpy.ascontiguousarray((pos1).ravel(), dtype=numpy.float64)
#self.dpos1 = numpy.ascontiguousarray((delta_pos1).ravel(), dtype=numpy.float64)
#self.cpos1_sup = numpy.empty_like(self.cpos1)
#self.cpos1_inf = numpy.empty_like(self.cpos1)
#self.calc_boundaries(pos0Range, pos1Range)
#self.delta0 = (self.pos0_max - self.pos0_min) / float(bins0)
#self.delta1 = (self.pos1_max - self.pos1_min) / float(bins1)
#self.lut_max_idx = self.calc_lut()
#self.outPos0 = numpy.linspace(self.pos0_min+0.5*self.delta0, self.pos0_maxin-0.5*self.delta0, bins0)
#self.outPos1 = numpy.linspace(self.pos1_min+0.5*self.delta1, self.pos1_maxin-0.5*self.delta1, bins1)
#self.unit=unit
#self.lut=(self.data,self.indices,self.indptr)
#self.lut_checksum = crc32(self.data)
#@cython.boundscheck(False)
#@cython.wraparound(False)
#def calc_boundaries(self, pos0Range, pos1Range):
#cdef int size = self.cpos0.size
#cdef bint check_mask = self.check_mask
#cdef numpy.int8_t[:] cmask
#cdef float[:] cpos0, dpos0, cpos0_sup, cpos0_inf
#cdef float[:] cpos1, dpos1, cpos1_sup, cpos1_inf,
#cdef float upper0, lower0, pos0_max, pos0_min, c0, d0
#cdef float upper1, lower1, pos1_max, pos1_min, c1, d1
#cdef bint allow_pos0_neg=self.allow_pos0_neg
#cdef bint chiDiscAtPi = self.chiDiscAtPi
#cpos0_sup = self.cpos0_sup
#cpos0_inf = self.cpos0_inf
#cpos0 = self.cpos0
#dpos0 = self.dpos0
#cpos1_sup = self.cpos1_sup
#cpos1_inf = self.cpos1_inf
#cpos1 = self.cpos1
#dpos1 = self.dpos1
#pos0_min=cpos0[0]
#pos0_max=cpos0[0]
#pos1_min=cpos1[0]
#pos1_max=cpos1[0]
#if check_mask:
#cmask = self.cmask
#with nogil:
#for idx in range(size):
#c0 = cpos0[idx]
#d0 = dpos0[idx]
#lower0 = c0 - d0
#upper0 = c0 + d0
#c1 = cpos1[idx]
#d1 = dpos1[idx]
#lower1 = c1 - d1
#upper1 = c1 + d1
#if not allow_pos0_neg and lower0<0:
#lower0=0
#if upper1 > (2-chiDiscAtPi)*pi:
#upper1 = (2-chiDiscAtPi)*pi
#if lower1 < (-chiDiscAtPi)*pi:
#lower1 = (-chiDiscAtPi)*pi
#cpos0_sup[idx] = upper0
#cpos0_inf[idx] = lower0
#cpos1_sup[idx] = upper1
#cpos1_inf[idx] = lower1
#if not (check_mask and cmask[idx]):
#if upper0>pos0_max:
#pos0_max = upper0
#if lower0<pos0_min:
#pos0_min = lower0
#if upper1>pos1_max:
#pos1_max = upper1
#if lower1<pos1_min:
#pos1_min = lower1
#if pos0Range is not None and len(pos0Range) > 1:
#self.pos0_min = min(pos0Range)
#self.pos0_maxin = max(pos0Range)
#else:
#self.pos0_min = pos0_min
#self.pos0_maxin = pos0_max
#if pos1Range is not None and len(pos1Range) > 1:
#self.pos1_min = min(pos1Range)
#self.pos1_maxin = max(pos1Range)
#else:
#self.pos1_min = pos1_min
#self.pos1_maxin = pos1_max
#if (not allow_pos0_neg) and self.pos0_min < 0:
#self.pos0_min = 0
#self.pos0_max = self.pos0_maxin * EPS32
#self.cpos0_sup = cpos0_sup
#self.cpos0_inf = cpos0_inf
#self.pos1_max = self.pos1_maxin * EPS32
#self.cpos1_sup = cpos1_sup
#self.cpos1_inf = cpos1_inf
#@cython.boundscheck(False)
#@cython.wraparound(False)
#@cython.cdivision(True)
#def calc_lut(self):
#'calculate the max number of elements in the LUT and populate it'
#cdef float delta0=self.delta0, pos0_min=self.pos0_min, min0, max0, fbin0_min, fbin0_max
#cdef float delta1=self.delta1, pos1_min=self.pos1_min, min1, max1, fbin1_min, fbin1_max
#cdef int bin0_min, bin0_max, bins0 = self.bins[0]
#cdef int bin1_min, bin1_max, bins1 = self.bins[1]
#cdef numpy.int32_t k, idx, lut_size, i, j, size=self.size
#cdef bint check_mask
#cdef float[:] cpos0_sup = self.cpos0_sup
#cdef float[:] cpos0_inf = self.cpos0_inf
#cdef float[:] cpos1_inf = self.cpos1_inf
#cdef float[:] cpos1_sup = self.cpos1_sup
#cdef numpy.ndarray[numpy.int32_t, ndim = 2] outMax = numpy.zeros((bins0,bins1), dtype=numpy.int32)
#cdef numpy.ndarray[numpy.int32_t, ndim = 1] indptr = numpy.zeros((bins0*bins1)+1, dtype=numpy.int32)
#cdef numpy.ndarray[numpy.int32_t, ndim = 1] indices
#cdef numpy.ndarray[numpy.float64_t, ndim = 1] data
#cdef numpy.int8_t[:] cmask
#if self.check_mask:
#cmask = self.cmask
#check_mask = True
#else:
#check_mask = False
##NOGIL
#with nogil:
#for idx in range(size):
#if (check_mask) and (cmask[idx]):
#continue
#min0 = cpos0_inf[idx]
#max0 = cpos0_sup[idx]
#min1 = cpos1_inf[idx]
#max1 = cpos1_sup[idx]
#bin0_min = < int > get_bin_number(min0, pos0_min, delta0)
#bin0_max = < int > get_bin_number(max0, pos0_min, delta0)
#bin1_min = < int > get_bin_number(min1, pos1_min, delta1)
#bin1_max = < int > get_bin_number(max1, pos1_min, delta1)
#if (bin0_max < 0) or (bin0_min >= bins0) or (bin1_max < 0) or (bin1_min >= bins1):
#continue
#if bin0_max >= bins0 :
#bin0_max = bins0 - 1
#if bin0_min < 0:
#bin0_min = 0
#if bin1_max >= bins1 :
#bin1_max = bins1 - 1
#if bin1_min < 0:
#bin1_min = 0
#for i in range(bin0_min, bin0_max+1):
#for j in range(bin1_min , bin1_max+1):
#outMax[i, j] += 1
#self.nnz = outMax.sum()
#indptr[1:] = outMax.cumsum()
#self.indptr = indptr
## self.lut_size = lut_size = outMax.max()
##just recycle the outMax array
##outMax = numpy.zeros((bins0,bins1), dtype=numpy.int32)
#memset(&outMax[0,0], 0, bins0*bins1*sizeof(numpy.int32_t))
#lut_nbytes = self.nnz * (sizeof(numpy.float64_t)+sizeof(numpy.int32_t)) + bins0*bins1*sizeof(numpy.int32_t)
#if (os.name == "posix") and ("SC_PAGE_SIZE" in os.sysconf_names) and ("SC_PHYS_PAGES" in os.sysconf_names):
#memsize = os.sysconf("SC_PAGE_SIZE")*os.sysconf("SC_PHYS_PAGES")
#if memsize < lut_nbytes:
#raise MemoryError("CSR Matrix is %.3fGB whereas the memory of the system is only %s"%(lut_nbytes, memsize))
##else hope we have enough memory
#data = numpy.zeros(self.nnz,dtype=numpy.float64)
#indices = numpy.zeros(self.nnz,dtype=numpy.int32)
## lut = numpy.recarray(shape=(bins0, bins1, lut_size),dtype=[("idx",numpy.int32),("coef",numpy.float64)])
## memset(&lut[0,0,0], 0, lut_nbytes)
#with nogil:
#for idx in range(size):
#if (check_mask) and cmask[idx]:
#continue
#min0 = cpos0_inf[idx]
#max0 = cpos0_sup[idx]
#min1 = cpos1_inf[idx]
#max1 = cpos1_sup[idx]
#fbin0_min = get_bin_number(min0, pos0_min, delta0)
#fbin0_max = get_bin_number(max0, pos0_min, delta0)
#fbin1_min = get_bin_number(min1, pos1_min, delta1)
#fbin1_max = get_bin_number(max1, pos1_min, delta1)
#bin0_min = <int> fbin0_min
#bin0_max = <int> fbin0_max
#bin1_min = <int> fbin1_min
#bin1_max = <int> fbin1_max
#if (bin0_max < 0) or (bin0_min >= bins0) or (bin1_max < 0) or (bin1_min >= bins1):
#continue
#if bin0_max >= bins0 :
#bin0_max = bins0 - 1
#if bin0_min < 0:
#bin0_min = 0
#if bin1_max >= bins1 :
#bin1_max = bins1 - 1
#if bin1_min < 0:
#bin1_min = 0
#if bin0_min == bin0_max:
#if bin1_min == bin1_max:
##All pixel is within a single bin
#k = outMax[bin0_min, bin1_min]
#indices[indptr[bin0_min*bins1+bin1_min]+k] = idx
#data[indptr[bin0_min*bins1+bin1_min]+k] = onef
## lut[bin0_min, bin1_min, k].idx = idx
## lut[bin0_min, bin1_min, k].coef = onef
#outMax[bin0_min, bin1_min]= k+1
#else:
##spread on more than 2 bins
#deltaD = (< float > (bin1_min + 1)) - fbin1_min
#deltaU = fbin1_max - ( bin1_max)
#deltaA = 1.0 / (fbin1_max - fbin1_min)
#k = outMax[bin0_min, bin1_min]
#indices[indptr[bin0_min*bins1+bin1_min]+k] = idx
#data[indptr[bin0_min*bins1+bin1_min]+k] = deltaA * deltaD
## lut[bin0_min, bin1_min, k].idx = idx
## lut[bin0_min, bin1_min, k].coef = deltaA * deltaD
#outMax[bin0_min, bin1_min] = k + 1
#k = outMax[bin0_min, bin1_max]
#indices[indptr[bin0_min*bins1+bin1_max]+k] = idx
#data[indptr[bin0_min*bins1+bin1_max]+k] = deltaA * deltaU
## lut[bin0_min, bin1_max, k].idx = idx
## lut[bin0_min, bin1_max, k].coef = deltaA * deltaU
#outMax[bin0_min, bin1_max] = k + 1
#for j in range(bin1_min + 1, bin1_max):
#k = outMax[bin0_min, j]
#indices[indptr[bin0_min*bins1+j]+k] = idx
#data[indptr[bin0_min*bins1+j]+k] = deltaA
## lut[bin0_min, j, k].idx = idx
## lut[bin0_min, j, k].coef = deltaA
#outMax[bin0_min, j] = k + 1
#else: #spread on more than 2 bins in dim 0
#if bin1_min == bin1_max:
##All pixel fall on 1 bins in dim 1
#deltaA = 1.0 / (fbin0_max - fbin0_min)
#deltaL = (< float > (bin0_min + 1)) - fbin0_min
#k = outMax[bin0_min, bin1_min]
#indices[indptr[bin0_min*bins1+bin1_min]+k] = idx
#data[indptr[bin0_min*bins1+bin1_min]+k] = deltaA * deltaL
## lut[bin0_min, bin1_min, k].idx = idx
## lut[bin0_min, bin1_min, k].coef = deltaA * deltaL
#outMax[bin0_min, bin1_min] = k+1
#deltaR = fbin0_max - (< float > bin0_max)
#k = outMax[bin0_max, bin1_min]
#indices[indptr[bin0_max*bins1+bin1_min]+k] = idx
#data[indptr[bin0_max*bins1+bin1_min]+k] = deltaA * deltaR
## lut[bin0_max, bin1_min, k].idx = idx
## lut[bin0_max, bin1_min, k].coef = deltaA * deltaR
#outMax[bin0_max, bin1_min] = k + 1
#for i in range(bin0_min + 1, bin0_max):
#k = outMax[i, bin1_min]
#indices[indptr[i*bins1+bin1_min]+k] = idx
#data[indptr[i*bins1+bin1_min]+k] = deltaA
## lut[i, bin1_min ,k].idx = idx
## lut[i, bin1_min, k].coef = deltaA
#outMax[i, bin1_min] = k + 1
#else:
##spread on n pix in dim0 and m pixel in dim1:
#deltaL = (< float > (bin0_min + 1)) - fbin0_min
#deltaR = fbin0_max - (< float > bin0_max)
#deltaD = (< float > (bin1_min + 1)) - fbin1_min
#deltaU = fbin1_max - (< float > bin1_max)
#deltaA = 1.0 / ((fbin0_max - fbin0_min) * (fbin1_max - fbin1_min))
#k = outMax[bin0_min, bin1_min]
#indices[indptr[bin0_min*bins1+bin1_min]+k] = idx
#data[indptr[bin0_min*bins1+bin1_min]+k] = deltaA * deltaL * deltaD
## lut[bin0_min, bin1_min ,k].idx = idx
## lut[bin0_min, bin1_min, k].coef = deltaA * deltaL * deltaD
#outMax[bin0_min, bin1_min] = k + 1
#k = outMax[bin0_min, bin1_max]
#indices[indptr[bin0_min*bins1+bin1_max]+k] = idx
#data[indptr[bin0_min*bins1+bin1_max]+k] = deltaA * deltaL * deltaU
## lut[bin0_min, bin1_max, k].idx = idx
## lut[bin0_min, bin1_max, k].coef = deltaA * deltaL * deltaU
#outMax[bin0_min, bin1_max] = k + 1
#k = outMax[bin0_max, bin1_min]
#indices[indptr[bin0_max*bins1+bin1_min]+k] = idx
#data[indptr[bin0_max*bins1+bin1_min]+k] = deltaA * deltaR * deltaD
## lut[bin0_max, bin1_min, k].idx = idx
## lut[bin0_max, bin1_min, k].coef = deltaA * deltaR * deltaD
#outMax[bin0_max, bin1_min] = k + 1
#k = outMax[bin0_max, bin1_max]
#indices[indptr[bin0_max*bins1+bin1_max]+k] = idx
#data[indptr[bin0_max*bins1+bin1_max]+k] = deltaA * deltaR * deltaU
## lut[bin0_max, bin1_max, k].idx = idx
## lut[bin0_max, bin1_max, k].coef = deltaA * deltaR * deltaU
#outMax[bin0_max, bin1_max] = k + 1
#for i in range(bin0_min + 1, bin0_max):
#k = outMax[i, bin1_min]
#indices[indptr[i*bins1+bin1_min]+k] = idx
#data[indptr[i*bins1+bin1_min]+k] = deltaA * deltaD
## lut[i, bin1_min, k].idx = idx
## lut[i, bin1_min, k].coef = deltaA * deltaD
#outMax[i, bin1_min] = k + 1
#for j in range(bin1_min + 1, bin1_max):
#k = outMax[i, j]
#indices[indptr[i*bins1+j]+k] = idx
#data[indptr[i*bins1+j]+k] = deltaA
## lut[i, j, k].idx = idx
## lut[i, j, k].coef = deltaA
#outMax[i, j] = k + 1
#k = outMax[i, bin1_max]
#indices[indptr[i*bins1+bin1_max]+k] = idx
#data[indptr[i*bins1+bin1_max]+k] = deltaA * deltaU
## lut[i, bin1_max, k].idx = idx
## lut[i, bin1_max, k].coef = deltaA * deltaU
#outMax[i, bin1_max] = k + 1
#for j in range(bin1_min + 1, bin1_max):
#k = outMax[bin0_min, j]
#indices[indptr[bin0_min*bins1+j]+k] = idx
#data[indptr[bin0_min*bins1+j]+k] = deltaA * deltaL
## lut[bin0_min, j, k].idx = idx
## lut[bin0_min, j, k].coef = deltaA * deltaL
#outMax[bin0_min, j] = k + 1
#k = outMax[bin0_max, j]
#indices[indptr[bin0_max*bins1+j]+k] = idx
#data[indptr[bin0_max*bins1+j]+k] = deltaA * deltaR
## lut[bin0_max, j, k].idx = idx
## lut[bin0_max, j, k].coef = deltaA * deltaR
#outMax[bin0_max, j] = k + 1
#self.data = data
#self.indices = indices
#return outMax
#@cython.cdivision(True)
#@cython.boundscheck(False)
#@cython.wraparound(False)
#def integrate(self, weights, dummy=None, delta_dummy=None, dark=None, flat=None, solidAngle=None, polarization=None):
#"""
#Actually perform the 2D integration which in this case looks more like a matrix-vector product
#@param weights: input image
#@type weights: ndarray
#@param dummy: value for dead pixels (optional)
#@type dummy: float
#@param delta_dummy: precision for dead-pixel value in dynamic masking
#@type delta_dummy: float
#@param dark: array with the dark-current value to be subtracted (if any)
#@type dark: ndarray
#@param flat: array with the dark-current value to be divided by (if any)
#@type flat: ndarray
#@param solidAngle: array with the solid angle of each pixel to be divided by (if any)
#@type solidAngle: ndarray
#@param polarization: array with the polarization correction values to be divided by (if any)
#@type polarization: ndarray
#@return: I(2d), edges0(1d), edges1(1d), weighted histogram(2d), unweighted histogram (2d)
#@rtype: 5-tuple of ndarrays
#"""
#cdef int i=0, j=0, idx=0, bins0=self.bins[0], bins1=self.bins[1], bins=bins0*bins1, size=self.size
#cdef double sum_data=0.0, sum_count=0.0, epsilon=1e-10
#cdef float data=0, coef=0, cdummy=0, cddummy=0
#cdef bint do_dummy=False, do_dark=False, do_flat=False, do_polarization=False, do_solidAngle=False
#cdef numpy.ndarray[numpy.float64_t, ndim = 2] outData = numpy.zeros(self.bins, dtype=numpy.float64)
#cdef numpy.ndarray[numpy.float64_t, ndim = 2] outCount = numpy.zeros(self.bins, dtype=numpy.float64)
#cdef numpy.ndarray[numpy.float64_t, ndim = 2] outMerge = numpy.zeros(self.bins, dtype=numpy.float64)
#cdef numpy.ndarray[numpy.float64_t, ndim = 1] outData_1d = outData.ravel()
#cdef numpy.ndarray[numpy.float64_t, ndim = 1] outCount_1d = outCount.ravel()
#cdef numpy.ndarray[numpy.float64_t, ndim = 1] outMerge_1d = outMerge.ravel()
#cdef float[:] ccoef = self.data, cdata, tdata, cflat, cdark, csolidAngle, cpolarization
#cdef numpy.int32_t[:] indices = self.indices, indptr = self.indptr
#assert size == weights.size
#if dummy is not None:
#do_dummy = True
#cdummy = <float>float(dummy)
#if delta_dummy is None:
#cddummy = <float>0.0
#else:
#cddummy = <float>float(delta_dummy)
#if flat is not None:
#do_flat = True
#assert flat.size == size
#cflat = numpy.ascontiguousarray(flat.ravel(), dtype=numpy.float64)
#if dark is not None:
#do_dark = True
#assert dark.size == size
#cdark = numpy.ascontiguousarray(dark.ravel(), dtype=numpy.float64)
#if solidAngle is not None:
#do_solidAngle = True
#assert solidAngle.size == size
#csolidAngle = numpy.ascontiguousarray(solidAngle.ravel(), dtype=numpy.float64)
#if polarization is not None:
#do_polarization = True
#assert polarization.size == size
#cpolarization = numpy.ascontiguousarray(polarization.ravel(), dtype=numpy.float64)
#if (do_dark + do_flat + do_polarization + do_solidAngle):
#tdata = numpy.ascontiguousarray(weights.ravel(), dtype=numpy.float64)
#cdata = numpy.zeros(size,dtype=numpy.float64)
#if do_dummy:
#for i in prange(size, nogil=True, schedule="static"):
#data = tdata[i]
#if ((cddummy!=0) and (fabs(data-cdummy) > cddummy)) or ((cddummy==0) and (data!=cdummy)):
##Nota: -= and /= operatore are seen as reduction in cython parallel.
#if do_dark:
#data = data - cdark[i]
#if do_flat:
#data = data / cflat[i]
#if do_polarization:
#data = data / cpolarization[i]
#if do_solidAngle:
#data = data / csolidAngle[i]
#cdata[i]+=data
#else: #set all dummy_like values to cdummy. simplifies further processing
#cdata[i]+=cdummy
#else:
#for i in prange(size, nogil=True, schedule="static"):
#data = tdata[i]
#if do_dark:
#data = data - cdark[i]
#if do_flat:
#data = data / cflat[i]
#if do_polarization:
#data = data / cpolarization[i]
#if do_solidAngle:
#data = data / csolidAngle[i]
#cdata[i]+=data
#else:
#if do_dummy:
#tdata = numpy.ascontiguousarray(weights.ravel(), dtype=numpy.float64)
#cdata = numpy.zeros(size,dtype=numpy.float64)
#for i in prange(size, nogil=True, schedule="static"):
#data = tdata[i]
#if ((cddummy!=0) and (fabs(data-cdummy) > cddummy)) or ((cddummy==0) and (data!=cdummy)):
#cdata[i]+=data
#else:
#cdata[i]+=cdummy
#else:
#cdata = numpy.ascontiguousarray(weights.ravel(), dtype=numpy.float64)
#for i in prange(bins, nogil=True, schedule="guided"):
#sum_data = 0.0
#sum_count = 0.0
#for j in range(indptr[i],indptr[i+1]):
#idx = indices[j]
#coef = ccoef[j]
#data = cdata[idx]
#if do_dummy and data==cdummy:
#continue
#sum_data = sum_data + coef * data
#sum_count = sum_count + coef
#outData_1d[i] += sum_data
#outCount_1d[i] += sum_count
#if sum_count > epsilon:
#outMerge_1d[i] += sum_data / sum_count
#else:
#outMerge_1d[i] += cdummy
#return outMerge.T, self.outPos0, self.outPos1, outData.T, outCount.T