pyFAI/sandbox/profile_ocl_hist_pixelsplit.py

127 lines
3.7 KiB
Python

# -*- coding: utf-8 -*-
"""
Created on Fri Mar 07 09:52:51 2014
@author: ashiotis
"""
from __future__ import absolute_import
from __future__ import print_function
import sys, numpy, time, os
import fabio
import pyopencl as cl
from pylab import *
from pyFAI.third_party import six
print("#"*50)
if __name__ == '__main__':
import pkgutil
__path__ = pkgutil.extend_path([os.path.dirname(__file__)], "pyFAI.test")
from pyFAI.test.utilstest import UtilsTest
pyFAI = sys.modules["pyFAI"]
from pyFAI import splitPixelFullLUT
from pyFAI import splitPixelFull
from pyFAI import ocl_hist_pixelsplit
# from pyFAI import splitBBoxLUT
# from pyFAI import splitBBoxCSR
os.chdir("testimages")
ai = pyFAI.load("halfccd.poni")
data = fabio.open("halfccd.edf").data
workgroup_size = 256
bins = 1000
pos_in = ai.array_from_unit(data.shape, "corner", unit="2th_deg", scale=False)
pos = pos_in.reshape(pos_in.size / 8, 4, 2)
pos_size = pos.size
size = data.size
ctx = cl.create_some_context()
queue = cl.CommandQueue(ctx)
mf = cl.mem_flags
d_pos = cl.array.to_device(queue, pos)
d_preresult = cl.Buffer(ctx, mf.READ_WRITE, 4 * 4 * workgroup_size)
d_minmax = cl.Buffer(ctx, mf.READ_WRITE, 4 * 4)
with open("../../openCL/ocl_hist_pixelsplit.cl", "r") as kernelFile:
kernel_src = kernelFile.read()
compile_options = "-D BINS=%i -D NIMAGE=%i -D WORKGROUP_SIZE=%i -D EPS=%f" % \
(bins, size, workgroup_size, numpy.finfo(numpy.float32).eps)
program = cl.Program(ctx, kernel_src).build(options=compile_options)
program.reduce1(queue, (workgroup_size * workgroup_size,), (workgroup_size,), d_pos.data, numpy.uint32(pos_size), d_preresult)
program.reduce2(queue, (workgroup_size,), (workgroup_size,), d_preresult, d_minmax)
result = numpy.ndarray(4, dtype=numpy.float32)
cl.enqueue_copy(queue, result, d_minmax)
min0 = pos[:, :, 0].min()
max0 = pos[:, :, 0].max()
min1 = pos[:, :, 1].min()
max1 = pos[:, :, 1].max()
minmax = (min0, max0, min1, max1)
print(minmax)
print(result)
d_outData = cl.Buffer(ctx, mf.READ_WRITE, 4 * bins)
d_outCount = cl.Buffer(ctx, mf.READ_WRITE, 4 * bins)
d_outMerge = cl.Buffer(ctx, mf.READ_WRITE, 4 * bins)
program.memset_out(queue, (1024,), (workgroup_size,), d_outData, d_outCount, d_outMerge)
outData = numpy.ndarray(bins, dtype=numpy.float32)
outCount = numpy.ndarray(bins, dtype=numpy.float32)
outMerge = numpy.ndarray(bins, dtype=numpy.float32)
cl.enqueue_copy(queue, outData, d_outData)
cl.enqueue_copy(queue, outCount, d_outCount)
cl.enqueue_copy(queue, outMerge, d_outMerge)
global_size = (data.size + workgroup_size - 1) & ~(workgroup_size - 1),
d_image = cl.array.to_device(queue, data)
d_image_float = cl.Buffer(ctx, mf.READ_WRITE, 4 * size)
# program.s32_to_float(queue, global_size, (workgroup_size,), d_image.data, d_image_float) # Pilatus1M
program.u16_to_float(queue, global_size, (workgroup_size,), d_image.data, d_image_float) # halfccd
program.integrate1(queue, global_size, (workgroup_size,), d_pos.data, d_image_float, d_minmax, numpy.int32(data.size), d_outData, d_outCount)
cl.enqueue_copy(queue, outData, d_outData)
cl.enqueue_copy(queue, outCount, d_outCount)
cl.enqueue_copy(queue, outMerge, d_outMerge)
program.integrate2(queue, (1024,), (workgroup_size,), d_outData, d_outCount, d_outMerge)
cl.enqueue_copy(queue, outData, d_outData)
cl.enqueue_copy(queue, outCount, d_outCount)
cl.enqueue_copy(queue, outMerge, d_outMerge)
ref = ai.xrpd_LUT(data, bins, correctSolidAngle=False)
test = splitPixelFull.fullSplit1D(pos, data, bins)
# assert(numpy.allclose(ref,outMerge))
# plot(outMerge, label="ocl_hist")
plot(ref[0], test[1], label="splitPixelFull")
plot(ref[0], ref[1], label="ref")
# plot(abs(ref-outMerge)/outMerge, label="ocl_csr_fullsplit")
legend()
show()
six.moves.input()