From b6c61d44dd4b986e39e4315e1c12f69bbb065b19 Mon Sep 17 00:00:00 2001 From: Valentin Valls Date: Fri, 17 May 2019 00:21:28 +0200 Subject: [PATCH] Update geometry.py --- pyFAI/geometry.py | 6 +++--- 1 file changed, 3 insertions(+), 3 deletions(-) diff --git a/pyFAI/geometry.py b/pyFAI/geometry.py index 29348df1..5a307ac7 100644 --- a/pyFAI/geometry.py +++ b/pyFAI/geometry.py @@ -202,7 +202,7 @@ class Geometry(object): return os.linesep.join(lstTxt) def check_chi_disc(self, range): - """Check the position of the \chi discontinuity + """Check the position of the :math:`\\chi` discontinuity :param range: range of chi for the integration :return: True if there is a problem @@ -998,7 +998,7 @@ class Geometry(object): """ Calculate the incidence angle (alpha) for current pixels (P). The poni being the point of normal incidence, - it's incidence angle is $\{alpha} = 0$ hence $cos(\{alpha}) = 1$ + it's incidence angle is :math:`\\{alpha} = 0` hence :math:`cos(\\{alpha}) = 1`. :param d1: 1d or 2d set of points in pixel coord :param d2: 1d or 2d set of points in pixel coord @@ -1051,7 +1051,7 @@ class Geometry(object): .. math:: dOmega = \\frac{Omega(P)}{Omega(C)} - = \\frac{A \cdot cos(a)}{SP^2} \cdot \\frac{SC^2}{A \cdot cos(0)} + = \\frac{A \\cdot cos(a)}{SP^2} \\cdot \\frac{SC^2}{A \\cdot cos(0)} = \\frac{3}{cos(a)} = \\frac{SC^3}{SP^3}