mirror of https://github.com/phonopy/phono3py.git
1cc5e03c27 | ||
---|---|---|
.. | ||
FORCES_FC2 | ||
FORCES_FC3 | ||
README | ||
control | ||
coord | ||
outputs.tar.gz |
README
Si lattice thermal conductivity The default file name for the TURBOMOLE interface is "control", so the -c control parameter is not needed 1) Create displaced supercells 2x2x2 conventional cell for 3rd order FC 3x3x3 conventional cell for 2nd order FC phono3py --turbomole --dim="2 2 2" --dim-fc2="3 3 3" -d Complete TURBOMOLE inputs can be prepared manually 2) Run the supercell inputs with TURBOMOLE Here the supercells have been pre-calculated (outputs.tar.gz). 3) Collect forces: phono3py --turbomole --cf3 supercell-* phono3py --turbomole --cf2 supercell_fc2-* Here the pre-calculated forces are available as FORCES_FC2 and FORCES_FC3 4) Create 2nd and 3rd order force constant files fc2.hdf5 and fc3.hdf5 phono3py --turbomole --dim="2 2 2" --dim-fc2="3 3 3" --sym-fc 5) Thermal conductivity calculation --primitive-axis is used to get the results for the primitive 2-atom cell phono3py --turbomole --primitive-axis="0 1/2 1/2 1/2 0 1/2 1/2 1/2 0" --fc3 --fc2 --dim="2 2 2" --dim-fc2="3 3 3" --mesh="20 20 20" --br --br -> Relaxation time approximation With 20x20x20 mesh, the lattice thermal conductivity at 300 K is 142 W m^-1 K^-1.