phono3py/example/Si-TURBOMOLE
Atsushi Togo 1cc5e03c27 Refactoring using pre-commit setting 2021-10-15 16:49:41 +09:00
..
FORCES_FC2 Refactoring using pre-commit setting 2021-10-15 16:49:41 +09:00
FORCES_FC3 Refactoring using pre-commit setting 2021-10-15 16:49:41 +09:00
README Refactoring using pre-commit setting 2021-10-15 16:49:41 +09:00
control Refactoring using pre-commit setting 2021-10-15 16:49:41 +09:00
coord Refactoring using pre-commit setting 2021-10-15 16:49:41 +09:00
outputs.tar.gz Example and documentation for the TURBOMOLE interface 2019-04-01 20:00:56 +03:00

README

Si lattice thermal conductivity

The default file name for the TURBOMOLE interface is "control",
so the -c control parameter is not needed

1) Create displaced supercells
   2x2x2 conventional cell for 3rd order FC
   3x3x3 conventional cell for 2nd order FC

   phono3py  --turbomole --dim="2 2 2" --dim-fc2="3 3 3" -d

   Complete TURBOMOLE inputs can be prepared manually

2) Run the supercell inputs with TURBOMOLE
   Here the supercells have been pre-calculated (outputs.tar.gz).

3) Collect forces:

   phono3py --turbomole --cf3 supercell-*
   phono3py --turbomole --cf2 supercell_fc2-*

   Here the pre-calculated forces are available as FORCES_FC2 and FORCES_FC3

4) Create 2nd and 3rd order force constant files fc2.hdf5 and fc3.hdf5

   phono3py --turbomole --dim="2 2 2" --dim-fc2="3 3 3" --sym-fc

5) Thermal conductivity calculation
   --primitive-axis is used to get the results for the primitive 2-atom cell

   phono3py --turbomole --primitive-axis="0 1/2 1/2  1/2 0 1/2  1/2 1/2 0" --fc3 --fc2 --dim="2 2 2" --dim-fc2="3 3 3" --mesh="20 20 20" --br

   --br ->  Relaxation time approximation
   With 20x20x20 mesh, the lattice thermal conductivity at 300 K is 142 W m^-1 K^-1.