Merge main again

This commit is contained in:
Christina Floristean 2023-04-11 12:28:09 -04:00
commit 736f27fdc8
11 changed files with 268 additions and 106 deletions

View File

@ -27,4 +27,5 @@ dependencies:
- typing-extensions==3.10.0.2
- pytorch_lightning==1.5.10
- wandb==0.12.21
- modelcif==0.7
- git+https://github.com/NVIDIA/dllogger.git

View File

@ -121,10 +121,11 @@
" %env PATH=/opt/conda/bin:{PATH}\n",
"\n",
" # Install the required versions of all dependencies.\n",
" %shell conda install -y -q conda==4.13.0\n",
" %shell conda install -y -q -c conda-forge -c bioconda \\\n",
" kalign2=2.04 \\\n",
" hhsuite=3.3.0 \\\n",
" python=3.7 \\\n",
" python=3.8 \\\n",
" 2>&1 1>/dev/null\n",
" %shell pip install -q \\\n",
" ml-collections==0.1.0 \\\n",
@ -180,15 +181,12 @@
" %shell cp -f /content/stereo_chemical_props.txt /content/openfold/openfold/resources\n",
" %shell /usr/bin/python3 -m pip install -q ./openfold\n",
"\n",
" if(relax_prediction):\n",
" %shell conda install -y -q -c conda-forge \\\n",
" openmm=7.5.1 \\\n",
" pdbfixer=1.7\n",
" \n",
" # Apply OpenMM patch.\n",
" %shell pushd /opt/conda/lib/python3.7/site-packages/ && \\\n",
" patch -p0 < /content/openfold/lib/openmm.patch && \\\n",
" popd\n",
" %shell conda install -y -q -c conda-forge openmm=7.5.1\n",
" # Apply OpenMM patch.\n",
" %shell pushd /opt/conda/lib/python3.8/site-packages/ && \\\n",
" patch -p0 < /content/openfold/lib/openmm.patch && \\\n",
" popd\n",
" %shell conda install -y -q -c conda-forge pdbfixer=1.7\n",
"\n",
" if(weight_set == 'AlphaFold'):\n",
" %shell mkdir --parents \"{ALPHAFOLD_PARAMS_DIR}\"\n",
@ -222,8 +220,8 @@
"import unittest.mock\n",
"import sys\n",
"\n",
"sys.path.insert(0, '/usr/local/lib/python3.7/site-packages/')\n",
"sys.path.append('/opt/conda/lib/python3.7/site-packages')\n",
"sys.path.insert(0, '/usr/local/lib/python3.8/site-packages/')\n",
"sys.path.append('/opt/conda/lib/python3.8/site-packages')\n",
"\n",
"# Allows us to skip installing these packages\n",
"unnecessary_modules = [\n",
@ -247,6 +245,14 @@
"import numpy as np\n",
"import py3Dmol\n",
"import torch\n",
"import shutil\n",
"\n",
"# Prevent shell magic being broken by openmm, prevent this cryptic error:\n",
"# \"NotImplementedError: A UTF-8 locale is required. Got ANSI_X3.4-1968\"\n",
"import locale\n",
"def getpreferredencoding(do_setlocale = True):\n",
" return \"UTF-8\"\n",
"locale.getpreferredencoding = getpreferredencoding\n",
"\n",
"# A filthy hack to avoid slow Linear layer initialization\n",
"import openfold.model.primitives\n",
@ -267,9 +273,8 @@
"from openfold.data.tools import jackhmmer\n",
"from openfold.model import model\n",
"from openfold.np import protein\n",
"if(relax_prediction):\n",
" from openfold.np.relax import relax\n",
" from openfold.np.relax import utils\n",
"from openfold.np.relax import relax\n",
"from openfold.np.relax.utils import overwrite_b_factors\n",
"from openfold.utils.import_weights import import_jax_weights_\n",
"from openfold.utils.tensor_utils import tensor_tree_map\n",
"\n",
@ -571,14 +576,13 @@
" relaxed_pdb, _, _ = amber_relaxer.process(\n",
" prot=unrelaxed_proteins[best_model_name]\n",
" )\n",
"\n",
" # Write out the prediction\n",
" pred_output_path = os.path.join(output_dir, 'selected_prediction.pdb')\n",
" with open(pred_output_path, 'w') as f:\n",
" f.write(relaxed_pdb)\n",
"\n",
" best_pdb = relaxed_pdb\n",
"\n",
" # Write out the prediction\n",
" pred_output_path = os.path.join(output_dir, 'selected_prediction.pdb')\n",
" with open(pred_output_path, 'w') as f:\n",
" f.write(best_pdb)\n",
"\n",
" pbar.update(n=1) # Finished AMBER relax.\n",
"\n",
"# Construct multiclass b-factors to indicate confidence bands\n",
@ -590,7 +594,7 @@
" banded_b_factors.append(idx)\n",
" break\n",
"banded_b_factors = np.array(banded_b_factors)[:, None] * final_atom_mask\n",
"to_visualize_pdb = utils.overwrite_b_factors(best_pdb, banded_b_factors)\n",
"to_visualize_pdb = overwrite_b_factors(best_pdb, banded_b_factors)\n",
"\n",
"# --- Visualise the prediction & confidence ---\n",
"show_sidechains = True\n",
@ -688,7 +692,7 @@
"\n",
"\n",
"# --- Download the predictions ---\n",
"!zip -q -r {output_dir}.zip {output_dir}\n",
"shutil.make_archive(base_name='prediction', format='zip', root_dir=output_dir)\n",
"files.download(f'{output_dir}.zip')"
],
"execution_count": null,

View File

@ -392,8 +392,13 @@ class TriangleMultiplicativeUpdate(nn.Module):
b = mask
b = b * self.sigmoid(self.linear_b_g(z))
b = b * self.linear_b_p(z)
if(is_fp16_enabled()):
# Prevents overflow of torch.matmul in combine projections in
# reduced-precision modes
a = a / a.std()
b = b / b.std()
if(is_fp16_enabled()):
with torch.cuda.amp.autocast(enabled=False):
x = self._combine_projections(a.float(), b.float())
else:

View File

@ -23,6 +23,13 @@ import string
from openfold.np import residue_constants
from Bio.PDB import PDBParser
import numpy as np
import modelcif
import modelcif.model
import modelcif.dumper
import modelcif.reference
import modelcif.protocol
import modelcif.alignment
import modelcif.qa_metric
FeatureDict = Mapping[str, np.ndarray]
@ -87,8 +94,8 @@ def from_pdb_string(pdb_str: str, chain_id: Optional[str] = None) -> Protein:
Args:
pdb_str: The contents of the pdb file
chain_id: If chain_id is specified (e.g. A), then only that chain is
parsed. Else, all chains are parsed.
chain_id: If None, then the whole pdb file is parsed. If chain_id is specified (e.g. A), then only that chain
is parsed.
Returns:
A new `Protein` parsed from the pdb contents.
@ -184,7 +191,7 @@ def from_proteinnet_string(proteinnet_str: str) -> Protein:
tag.strip() for tag in re.split(tag_re, proteinnet_str) if len(tag) > 0
]
groups = zip(tags[0::2], [l.split('\n') for l in tags[1::2]])
atoms = ['N', 'CA', 'C']
aatype = None
atom_positions = None
@ -267,7 +274,7 @@ def add_pdb_headers(prot: Protein, pdb_str: str) -> str:
"""
out_pdb_lines = []
lines = pdb_str.split('\n')
remark = prot.remark
if(remark is not None):
out_pdb_lines.append(f"REMARK {remark}")
@ -387,7 +394,7 @@ def to_pdb(prot: Protein) -> str:
0
] # Protein supports only C, N, O, S, this works.
charge = ""
chain_tag = "A"
if(chain_index is not None):
chain_tag = chain_tags[chain_index[i]]
@ -436,6 +443,134 @@ def to_pdb(prot: Protein) -> str:
return '\n'.join(pdb_lines) + '\n' # Add terminating newline.
def to_modelcif(prot: Protein) -> str:
"""
Converts a `Protein` instance to a ModelCIF string. Chains with identical modelled coordinates
will be treated as the same polymer entity. But note that if chains differ in modelled regions,
no attempt is made at identifying them as a single polymer entity.
Args:
prot: The protein to convert to PDB.
Returns:
ModelCIF string.
"""
restypes = residue_constants.restypes + ["X"]
atom_types = residue_constants.atom_types
atom_mask = prot.atom_mask
aatype = prot.aatype
atom_positions = prot.atom_positions
residue_index = prot.residue_index.astype(np.int32)
b_factors = prot.b_factors
chain_index = prot.chain_index
n = aatype.shape[0]
if chain_index is None:
chain_index = [0 for i in range(n)]
system = modelcif.System(title='OpenFold prediction')
# Finding chains and creating entities
seqs = {}
seq = []
last_chain_idx = None
for i in range(n):
if last_chain_idx is not None and last_chain_idx != chain_index[i]:
seqs[last_chain_idx] = seq
seq = []
seq.append(restypes[aatype[i]])
last_chain_idx = chain_index[i]
# finally add the last chain
seqs[last_chain_idx] = seq
# now reduce sequences to unique ones (note this won't work if different asyms have different unmodelled regions)
unique_seqs = {}
for chain_idx, seq_list in seqs.items():
seq = "".join(seq_list)
if seq in unique_seqs:
unique_seqs[seq].append(chain_idx)
else:
unique_seqs[seq] = [chain_idx]
# adding 1 entity per unique sequence
entities_map = {}
for key, value in unique_seqs.items():
model_e = modelcif.Entity(key, description='Model subunit')
for chain_idx in value:
entities_map[chain_idx] = model_e
chain_tags = string.ascii_uppercase
asym_unit_map = {}
for chain_idx in set(chain_index):
# Define the model assembly
chain_id = chain_tags[chain_idx]
asym = modelcif.AsymUnit(entities_map[chain_idx], details='Model subunit %s' % chain_id, id=chain_id)
asym_unit_map[chain_idx] = asym
modeled_assembly = modelcif.Assembly(asym_unit_map.values(), name='Modeled assembly')
class _LocalPLDDT(modelcif.qa_metric.Local, modelcif.qa_metric.PLDDT):
name = "pLDDT"
software = None
description = "Predicted lddt"
class _GlobalPLDDT(modelcif.qa_metric.Global, modelcif.qa_metric.PLDDT):
name = "pLDDT"
software = None
description = "Global pLDDT, mean of per-residue pLDDTs"
class _MyModel(modelcif.model.AbInitioModel):
def get_atoms(self):
# Add all atom sites.
for i in range(n):
for atom_name, pos, mask, b_factor in zip(
atom_types, atom_positions[i], atom_mask[i], b_factors[i]
):
if mask < 0.5:
continue
element = atom_name[0] # Protein supports only C, N, O, S, this works.
yield modelcif.model.Atom(
asym_unit=asym_unit_map[chain_index[i]], type_symbol=element,
seq_id=residue_index[i], atom_id=atom_name,
x=pos[0], y=pos[1], z=pos[2],
het=False, biso=b_factor, occupancy=1.00)
def add_scores(self):
# local scores
plddt_per_residue = {}
for i in range(n):
for mask, b_factor in zip(atom_mask[i], b_factors[i]):
if mask < 0.5:
continue
# add 1 per residue, not 1 per atom
if chain_index[i] not in plddt_per_residue:
# first time a chain index is seen: add the key and start the residue dict
plddt_per_residue[chain_index[i]] = {residue_index[i]: b_factor}
if residue_index[i] not in plddt_per_residue[chain_index[i]]:
plddt_per_residue[chain_index[i]][residue_index[i]] = b_factor
plddts = []
for chain_idx in plddt_per_residue:
for residue_idx in plddt_per_residue[chain_idx]:
plddt = plddt_per_residue[chain_idx][residue_idx]
plddts.append(plddt)
self.qa_metrics.append(
_LocalPLDDT(asym_unit_map[chain_idx].residue(residue_idx), plddt))
# global score
self.qa_metrics.append((_GlobalPLDDT(np.mean(plddts))))
# Add the model and modeling protocol to the file and write them out:
model = _MyModel(assembly=modeled_assembly, name='Best scoring model')
model.add_scores()
model_group = modelcif.model.ModelGroup([model], name='All models')
system.model_groups.append(model_group)
fh = io.StringIO()
modelcif.dumper.write(fh, [system])
return fh.getvalue()
def ideal_atom_mask(prot: Protein) -> np.ndarray:
"""Computes an ideal atom mask.

View File

@ -524,9 +524,6 @@ def run_pipeline(
_check_residues_are_well_defined(prot)
pdb_string = clean_protein(prot, checks=checks)
# We keep the input around to restore metadata deleted by the relaxer
input_prot = prot
exclude_residues = exclude_residues or []
exclude_residues = set(exclude_residues)
violations = np.inf

View File

@ -57,7 +57,7 @@ class AmberRelaxation(object):
self._use_gpu = use_gpu
def process(
self, *, prot: protein.Protein
self, *, prot: protein.Protein, cif_output: bool
) -> Tuple[str, Dict[str, Any], np.ndarray]:
"""Runs Amber relax on a prediction, adds hydrogens, returns PDB string."""
out = amber_minimize.run_pipeline(
@ -89,5 +89,11 @@ class AmberRelaxation(object):
]
min_pdb = protein.add_pdb_headers(prot, min_pdb)
output_str = min_pdb
if cif_output:
# TODO the model cif will be missing some metadata like headers (PARENTs and
# REMARK with some details of the run, like num of recycles)
final_prot = protein.from_pdb_string(min_pdb)
output_str = protein.to_modelcif(final_prot)
return min_pdb, debug_data, violations
return output_str, debug_data, violations

View File

@ -228,7 +228,7 @@ def prep_output(out, batch, feature_dict, feature_processor, config_preset, mult
return unrelaxed_protein
def relax_protein(config, model_device, unrelaxed_protein, output_directory, output_name):
def relax_protein(config, model_device, unrelaxed_protein, output_directory, output_name, cif_output):
amber_relaxer = relax.AmberRelaxation(
use_gpu=(model_device != "cpu"),
**config.relax,
@ -239,7 +239,8 @@ def relax_protein(config, model_device, unrelaxed_protein, output_directory, out
if "cuda" in model_device:
device_no = model_device.split(":")[-1]
os.environ["CUDA_VISIBLE_DEVICES"] = device_no
relaxed_pdb_str, _, _ = amber_relaxer.process(prot=unrelaxed_protein)
# the struct_str will contain either a PDB-format or a ModelCIF format string
struct_str, _, _ = amber_relaxer.process(prot=unrelaxed_protein, cif_output=cif_output)
os.environ["CUDA_VISIBLE_DEVICES"] = visible_devices
relaxation_time = time.perf_counter() - t
@ -247,10 +248,13 @@ def relax_protein(config, model_device, unrelaxed_protein, output_directory, out
update_timings({"relaxation": relaxation_time}, os.path.join(output_directory, "timings.json"))
# Save the relaxed PDB.
suffix = "_relaxed.pdb"
if cif_output:
suffix = "_relaxed.cif"
relaxed_output_path = os.path.join(
output_directory, f'{output_name}_relaxed.pdb'
output_directory, f'{output_name}{suffix}'
)
with open(relaxed_output_path, 'w') as fp:
fp.write(relaxed_pdb_str)
fp.write(struct_str)
logger.info(f"Relaxed output written to {relaxed_output_path}...")

View File

@ -1,6 +1,6 @@
# Copyright 2021 AlQuraishi Laboratory
# Copyright 2021 DeepMind Technologies Limited
#
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
@ -35,7 +35,7 @@ torch_versions = torch.__version__.split(".")
torch_major_version = int(torch_versions[0])
torch_minor_version = int(torch_versions[1])
if(
torch_major_version > 1 or
torch_major_version > 1 or
(torch_major_version == 1 and torch_minor_version >= 12)
):
# Gives a large speedup on Ampere-class GPUs
@ -79,7 +79,7 @@ def precompute_alignments(tags, seqs, alignment_dir, args, is_multimer):
)
if(args.use_precomputed_alignments is None and not os.path.isdir(local_alignment_dir)):
logger.info(f"Generating alignments for {tag}...")
os.makedirs(local_alignment_dir)
alignment_runner = data_pipeline.AlignmentRunner(
@ -157,8 +157,8 @@ def main(args):
config = model_config(args.config_preset, long_sequence_inference=args.long_sequence_inference)
if (args.trace_model):
if (not config.data.predict.fixed_size):
if(args.trace_model):
if(not config.data.predict.fixed_size):
raise ValueError(
"Tracing requires that fixed_size mode be enabled in the config"
)
@ -230,10 +230,10 @@ def main(args):
random_seed = args.data_random_seed
if random_seed is None:
random_seed = random.randrange(2**32)
np.random.seed(random_seed)
torch.manual_seed(random_seed + 1)
feature_processor = feature_pipeline.FeaturePipeline(config.data)
if not os.path.exists(output_dir_base):
os.makedirs(output_dir_base)
@ -249,7 +249,7 @@ def main(args):
fasta_path = os.path.join(args.fasta_dir, fasta_file)
with open(fasta_path, "r") as fp:
data = fp.read()
tags, seqs = parse_fasta(data)
if ((not is_multimer) and len(tags) != 1):
@ -280,10 +280,10 @@ def main(args):
output_name = f'{tag}_{args.config_preset}'
if args.output_postfix is not None:
output_name = f'{output_name}_{args.output_postfix}'
# Does nothing if the alignments have already been computed
precompute_alignments(tags, seqs, alignment_dir, args, is_multimer)
feature_dict = feature_dicts.get(tag, None)
if(feature_dict is None):
feature_dict = generate_feature_dict(
@ -308,64 +308,70 @@ def main(args):
)
processed_feature_dict = {
k:torch.as_tensor(v, device=args.model_device)
k:torch.as_tensor(v, device=args.model_device)
for k,v in processed_feature_dict.items()
}
if (args.trace_model):
if (rounded_seqlen > cur_tracing_interval):
logger.info(
f"Tracing model at {rounded_seqlen} residues..."
)
t = time.perf_counter()
trace_model_(model, processed_feature_dict)
tracing_time = time.perf_counter() - t
logger.info(
f"Tracing time: {tracing_time}"
)
cur_tracing_interval = rounded_seqlen
if (args.trace_model):
if (rounded_seqlen > cur_tracing_interval):
logger.info(
f"Tracing model at {rounded_seqlen} residues..."
)
t = time.perf_counter()
trace_model_(model, processed_feature_dict)
tracing_time = time.perf_counter() - t
logger.info(
f"Tracing time: {tracing_time}"
)
cur_tracing_interval = rounded_seqlen
out = run_model(model, processed_feature_dict, tag, args.output_dir)
out = run_model(model, processed_feature_dict, tag, args.output_dir)
# Toss out the recycling dimensions --- we don't need them anymore
processed_feature_dict = tensor_tree_map(
lambda x: np.array(x[..., -1].cpu()),
processed_feature_dict
)
out = tensor_tree_map(lambda x: np.array(x.cpu()), out)
unrelaxed_protein = prep_output(
out,
processed_feature_dict,
feature_dict,
feature_processor,
args.config_preset,
args.multimer_ri_gap,
args.subtract_plddt
)
unrelaxed_output_path = os.path.join(
output_directory, f'{output_name}_unrelaxed.pdb'
)
with open(unrelaxed_output_path, 'w') as fp:
fp.write(protein.to_pdb(unrelaxed_protein))
logger.info(f"Output written to {unrelaxed_output_path}...")
if not args.skip_relaxation:
# Relax the prediction.
logger.info(f"Running relaxation on {unrelaxed_output_path}...")
relax_protein(config, args.model_device, unrelaxed_protein, output_directory, output_name)
if args.save_outputs:
output_dict_path = os.path.join(
output_directory, f'{output_name}_output_dict.pkl'
# Toss out the recycling dimensions --- we don't need them anymore
processed_feature_dict = tensor_tree_map(
lambda x: np.array(x[..., -1].cpu()),
processed_feature_dict
)
with open(output_dict_path, "wb") as fp:
pickle.dump(out, fp, protocol=pickle.HIGHEST_PROTOCOL)
out = tensor_tree_map(lambda x: np.array(x.cpu()), out)
logger.info(f"Model output written to {output_dict_path}...")
unrelaxed_protein = prep_output(
out,
processed_feature_dict,
feature_dict,
feature_processor,
args.config_preset,
args.multimer_ri_gap,
args.subtract_plddt
)
unrelaxed_file_suffix = "_unrelaxed.pdb"
if args.cif_output:
unrelaxed_file_suffix = "_unrelaxed.cif"
unrelaxed_output_path = os.path.join(
output_directory, f'{output_name}{unrelaxed_file_suffix}'
)
with open(unrelaxed_output_path, 'w') as fp:
if args.cif_output:
fp.write(protein.to_modelcif(unrelaxed_protein))
else:
fp.write(protein.to_pdb(unrelaxed_protein))
logger.info(f"Output written to {unrelaxed_output_path}...")
if not args.skip_relaxation:
# Relax the prediction.
logger.info(f"Running relaxation on {unrelaxed_output_path}...")
relax_protein(config, args.model_device, unrelaxed_protein, output_directory, output_name, args.cif_output)
if args.save_outputs:
output_dict_path = os.path.join(
output_directory, f'{output_name}_output_dict.pkl'
)
with open(output_dict_path, "wb") as fp:
pickle.dump(out, fp, protocol=pickle.HIGHEST_PROTOCOL)
logger.info(f"Model output written to {output_dict_path}...")
if __name__ == "__main__":
@ -447,12 +453,16 @@ if __name__ == "__main__":
"--long_sequence_inference", action="store_true", default=False,
help="""enable options to reduce memory usage at the cost of speed, helps longer sequences fit into GPU memory, see the README for details"""
)
parser.add_argument(
"--cif_output", action="store_true", default=False,
help="Output predicted models in ModelCIF format instead of PDB format (default)"
)
add_data_args(parser)
args = parser.parse_args()
if(args.jax_param_path is None and args.openfold_checkpoint_path is None):
args.jax_param_path = os.path.join(
"openfold", "resources", "params",
"openfold", "resources", "params",
"params_" + args.config_preset + ".npz"
)

View File

@ -57,9 +57,8 @@ def main(args):
seq = mmcif_object.chain_to_seqres[chain_id]
if(args.max_seqlen > 0):
if(len(seq) > len(seq)):
continue
if(args.max_seqlen > 0 and len(seq) > args.max_seqlen):
continue
fasta_file = '\n'.join([
f">{pdb_id}_{chain_id}",

View File

@ -16,6 +16,7 @@ import os
from setuptools import setup, Extension, find_packages
import subprocess
import torch
from torch.utils.cpp_extension import BuildExtension, CppExtension, CUDAExtension, CUDA_HOME
from scripts.utils import get_nvidia_cc
@ -37,7 +38,7 @@ extra_cuda_flags = [
]
def get_cuda_bare_metal_version(cuda_dir):
if cuda_dir==None:
if cuda_dir==None or torch.version.cuda==None:
print("CUDA is not found, cpu version is installed")
return None, -1, 0
else:

View File

@ -106,7 +106,7 @@ def main(args):
logger.info(f"Output written to {unrelaxed_output_path}...")
logger.info(f"Running relaxation on {unrelaxed_output_path}...")
relax_protein(config, args.model_device, unrelaxed_protein, output_directory, output_name)
relax_protein(config, args.model_device, unrelaxed_protein, output_directory, output_name, False)
if __name__ == "__main__":
parser = argparse.ArgumentParser()