forked from OSSInnovation/mindspore
!6471 Fix AdjustAllReduceMulAdd pass
Merge pull request !6471 from thlinh/dev_Sep18_fix_AdjustAllReduceMulAdd_pass
This commit is contained in:
commit
f847414117
|
@ -107,6 +107,8 @@ AnfNodePtr AdjustAllReduceMulAdd::operator()(const OptimizerPtr &, const AnfNode
|
|||
auto adjust_lambda = [&node, &x, &y, &z, &addn_pat, &all_reduce_pat, &admktup_pat, &mul_pat, this]() -> AnfNodePtr {
|
||||
auto fg = all_reduce_pat.GetFuncGraph();
|
||||
auto z_ = z.GetNode(node);
|
||||
auto x_ = x.GetNode(node);
|
||||
|
||||
// If addn inputs cross the graph, make the inputs same as allreduce node.
|
||||
if (z_->isa<CNode>() && fg != z_->func_graph()) {
|
||||
auto cnode_z = z_->cast<CNodePtr>();
|
||||
|
@ -121,7 +123,43 @@ AnfNodePtr AdjustAllReduceMulAdd::operator()(const OptimizerPtr &, const AnfNode
|
|||
auto mul_prim = mul_cnode_->cast<CNodePtr>()->input(0);
|
||||
auto addn_maketuple = admktup_pat.GetOriginalNode();
|
||||
|
||||
AnfNodePtr tuple = NewCNode({make_tuple_op_node, z_, x.GetNode(node)}, fg);
|
||||
ShapeVector x_shape, z_shape;
|
||||
if (!x_->isa<ValueNode>()) {
|
||||
if ((x_->abstract() == nullptr) || !x_->abstract()->isa<abstract::AbstractTensor>()) {
|
||||
return nullptr;
|
||||
}
|
||||
auto x_abstract = x_->abstract()->cast<abstract::AbstractTensorPtr>();
|
||||
x_shape = x_abstract->shape()->shape();
|
||||
} else {
|
||||
ValuePtr x_value = x_->cast<ValueNodePtr>()->value();
|
||||
if (!x_value->isa<tensor::Tensor>()) {
|
||||
return nullptr;
|
||||
}
|
||||
auto x_tensor = GetValueNode<tensor::TensorPtr>(x_->cast<ValueNodePtr>());
|
||||
x_shape = x_tensor->shape();
|
||||
}
|
||||
if (!z_->isa<ValueNode>()) {
|
||||
if ((z_->abstract() == nullptr) || !z_->abstract()->isa<abstract::AbstractTensor>()) {
|
||||
return nullptr;
|
||||
}
|
||||
auto z_abstract = z_->abstract()->cast<abstract::AbstractTensorPtr>();
|
||||
z_shape = z_abstract->shape()->shape();
|
||||
} else {
|
||||
ValuePtr z_value = z_->cast<ValueNodePtr>()->value();
|
||||
if (!z_value->isa<tensor::Tensor>()) {
|
||||
return nullptr;
|
||||
}
|
||||
auto z_tensor = GetValueNode<tensor::TensorPtr>(z_->cast<ValueNodePtr>());
|
||||
z_shape = z_tensor->shape();
|
||||
}
|
||||
|
||||
if (x_shape != z_shape) {
|
||||
// AddN requires x_ and z_ have the same shape.
|
||||
// If broadcasting TensorAdd is supported then can use this
|
||||
// AnfNodePtr add = NewCNode({NewValueNode(prim::kPrimTensorAdd), z_, x_}, fg);
|
||||
return nullptr;
|
||||
}
|
||||
AnfNodePtr tuple = NewCNode({make_tuple_op_node, z_, x_}, fg);
|
||||
AnfNodePtr add = NewCNode({addn_op_node, tuple}, fg);
|
||||
AnfNodePtr all_reduce = NewCNode({all_reduce_prim, add}, fg);
|
||||
AnfNodePtr mul = NewCNode({mul_prim, all_reduce, y.GetNode(node)}, fg);
|
||||
|
|
|
@ -353,11 +353,7 @@ TEST_F(TestOptLib, test_tuple_getitem) {
|
|||
auto value_node_2 = NewValueNode(2);
|
||||
std::vector<int> vec{1, 2};
|
||||
auto value_node_tuple = NewValueNode(MakeValue(vec));
|
||||
std::vector<AnfNodePtr> node_list{
|
||||
NewValueNode(prim::kPrimTupleGetItem),
|
||||
value_node_tuple,
|
||||
value_node_1
|
||||
};
|
||||
std::vector<AnfNodePtr> node_list{NewValueNode(prim::kPrimTupleGetItem), value_node_tuple, value_node_1};
|
||||
auto get_item = make_get_const->NewCNode(node_list);
|
||||
make_get_const->set_output(get_item);
|
||||
|
||||
|
@ -598,12 +594,10 @@ TEST_F(TestOptLib, test_adjust_allreduce_mul_add) {
|
|||
FuncGraphPtr before2l = getPyFun.CallAndParseRet("test_adjust_allreduce_mul_add", "before2l");
|
||||
FuncGraphPtr after2 = getPyFun.CallAndParseRet("test_adjust_allreduce_mul_add", "after2");
|
||||
auto patterns = std::vector<SubstitutionPtr>({irpass.adjust_all_reduce_mul_add_});
|
||||
ASSERT_TRUE(CheckOpt(beforell, after1, patterns));
|
||||
ASSERT_TRUE(CheckOpt(beforell, after1, patterns, true));
|
||||
ASSERT_TRUE(CheckOpt(beforelr, after1, patterns));
|
||||
ASSERT_TRUE(CheckOpt(beforerl, after1, patterns));
|
||||
ASSERT_TRUE(CheckOpt(beforerr, after1, patterns));
|
||||
ASSERT_TRUE(CheckOpt(before2l, after2, patterns));
|
||||
ASSERT_TRUE(CheckOpt(before2r, after2, patterns));
|
||||
}
|
||||
|
||||
TEST_F(TestOptLib, test_row_tensor) {
|
||||
|
|
|
@ -1095,36 +1095,40 @@ def test_adjust_allreduce_mul_add(tag):
|
|||
AddN = Primitive('AddN')
|
||||
AllReduce = Primitive('AllReduce')
|
||||
|
||||
x = Tensor(np.ones(shape=(64, 32)).astype(np.float32))
|
||||
y = Tensor(np.ones(shape=(64, 32)).astype(np.float32))
|
||||
z = Tensor(np.ones(shape=(64, 32)).astype(np.float32))
|
||||
|
||||
@fns
|
||||
def beforell(x, y, z):
|
||||
def beforell():
|
||||
return AddN((z, Mul(y, AllReduce(x))))
|
||||
|
||||
@fns
|
||||
def beforelr(x, y, z):
|
||||
def beforelr():
|
||||
return AddN((z, Mul(AllReduce(x), y)))
|
||||
|
||||
@fns
|
||||
def beforerl(x, y, z):
|
||||
def beforerl():
|
||||
return AddN((Mul(y, AllReduce(x)), z))
|
||||
|
||||
@fns
|
||||
def beforerr(x, y, z):
|
||||
def beforerr():
|
||||
return AddN((Mul(AllReduce(x), y), z))
|
||||
|
||||
@fns
|
||||
def after1(x, y, z):
|
||||
def after1():
|
||||
return Mul(AllReduce(AddN((z, x))), y)
|
||||
|
||||
@fns
|
||||
def before2r(x, y, z):
|
||||
def before2r():
|
||||
return AddN((Mul(AllReduce(x), y), Mul(z, z)))
|
||||
|
||||
@fns
|
||||
def before2l(x, y, z):
|
||||
def before2l():
|
||||
return AddN((Mul(z, z), Mul(AllReduce(x), y)))
|
||||
|
||||
@fns
|
||||
def after2(x, y, z):
|
||||
def after2():
|
||||
return Mul(AllReduce(AddN((Mul(z, z), x))), y)
|
||||
|
||||
return fns[tag]
|
||||
|
|
Loading…
Reference in New Issue