forked from OSSInnovation/mindspore
alexnet readme
This commit is contained in:
parent
a60800d7ba
commit
c267aaefe9
|
@ -4,16 +4,16 @@
|
|||
- [Model Architecture](#model-architecture)
|
||||
- [Dataset](#dataset)
|
||||
- [Environment Requirements](#environment-requirements)
|
||||
- [Quick Start](#quick-start)
|
||||
- [Quick Start](#quick-start)
|
||||
- [Script Description](#script-description)
|
||||
- [Script and Sample Code](#script-and-sample-code)
|
||||
- [Script Parameters](#script-parameters)
|
||||
- [Training Process](#training-process)
|
||||
- [Training](#training)
|
||||
- [Training](#training)
|
||||
- [Evaluation Process](#evaluation-process)
|
||||
- [Evaluation](#evaluation)
|
||||
- [Model Description](#model-description)
|
||||
- [Performance](#performance)
|
||||
- [Performance](#performance)
|
||||
- [Evaluation Performance](#evaluation-performance)
|
||||
- [ModelZoo Homepage](#modelzoo-homepage)
|
||||
|
||||
|
@ -26,15 +26,15 @@ AlexNet was proposed in 2012, one of the most influential neural networks. It go
|
|||
|
||||
# [Model Architecture](#contents)
|
||||
|
||||
AlexNet composition consists of 5 convolutional layers and 3 fully connected layers. Multiple convolutional kernels can extract interesting features in images and get more accurate classification.
|
||||
AlexNet composition consists of 5 convolutional layers and 3 fully connected layers. Multiple convolutional kernels can extract interesting features in images and get more accurate classification.
|
||||
|
||||
# [Dataset](#contents)
|
||||
|
||||
Dataset used: [CIFAR-10](<http://www.cs.toronto.edu/~kriz/cifar.html>)
|
||||
Dataset used: [CIFAR-10](<http://www.cs.toronto.edu/~kriz/cifar.html>)
|
||||
|
||||
- Dataset size:175M,60,000 32*32 colorful images in 10 classes
|
||||
- Train:146M,50,000 images
|
||||
- Test:29.3M,10,000 images
|
||||
- Train:146M,50,000 images
|
||||
- Test:29.3M,10,000 images
|
||||
- Data format:binary files
|
||||
- Note:Data will be processed in dataset.py
|
||||
- Download the dataset, the directory structure is as follows:
|
||||
|
@ -48,20 +48,20 @@ Dataset used: [CIFAR-10](<http://www.cs.toronto.edu/~kriz/cifar.html>)
|
|||
# [Environment Requirements](#contents)
|
||||
|
||||
- Hardware(Ascend/GPU)
|
||||
- Prepare hardware environment with Ascend or GPU processor.
|
||||
- Prepare hardware environment with Ascend or GPU processor.
|
||||
- Framework
|
||||
- [MindSpore](http://10.90.67.50/mindspore/archive/20200506/OpenSource/me_vm_x86/)
|
||||
- For more information, please check the resources below:
|
||||
- [MindSpore tutorials](https://www.mindspore.cn/tutorial/zh-CN/master/index.html)
|
||||
- [MindSpore tutorials](https://www.mindspore.cn/tutorial/zh-CN/master/index.html)
|
||||
- [MindSpore API](https://www.mindspore.cn/api/zh-CN/master/index.html)
|
||||
|
||||
# [Quick Start](#contents)
|
||||
|
||||
After installing MindSpore via the official website, you can start training and evaluation as follows:
|
||||
After installing MindSpore via the official website, you can start training and evaluation as follows:
|
||||
|
||||
```python
|
||||
# enter script dir, train AlexNet
|
||||
sh run_standalone_train_ascend.sh [DATA_PATH] [CKPT_SAVE_PATH]
|
||||
sh run_standalone_train_ascend.sh [DATA_PATH] [CKPT_SAVE_PATH]
|
||||
# enter script dir, evaluate AlexNet
|
||||
sh run_standalone_eval_ascend.sh [DATA_PATH] [CKPT_NAME]
|
||||
```
|
||||
|
@ -72,20 +72,20 @@ sh run_standalone_eval_ascend.sh [DATA_PATH] [CKPT_NAME]
|
|||
|
||||
```
|
||||
├── cv
|
||||
├── alexnet
|
||||
├── alexnet
|
||||
├── README.md // descriptions about alexnet
|
||||
├── requirements.txt // package needed
|
||||
├── scripts
|
||||
│ ├──run_standalone_train_gpu.sh // train in gpu
|
||||
│ ├──run_standalone_train_ascend.sh // train in ascend
|
||||
│ ├──run_standalone_eval_gpu.sh // evaluate in gpu
|
||||
│ ├──run_standalone_eval_ascend.sh // evaluate in ascend
|
||||
├── src
|
||||
├── scripts
|
||||
│ ├──run_standalone_train_gpu.sh // train in gpu
|
||||
│ ├──run_standalone_train_ascend.sh // train in ascend
|
||||
│ ├──run_standalone_eval_gpu.sh // evaluate in gpu
|
||||
│ ├──run_standalone_eval_ascend.sh // evaluate in ascend
|
||||
├── src
|
||||
│ ├──dataset.py // creating dataset
|
||||
│ ├──alexnet.py // alexnet architecture
|
||||
│ ├──config.py // parameter configuration
|
||||
├── train.py // training script
|
||||
├── eval.py // evaluation script
|
||||
│ ├──config.py // parameter configuration
|
||||
├── train.py // training script
|
||||
├── eval.py // evaluation script
|
||||
```
|
||||
|
||||
## [Script Parameters](#contents)
|
||||
|
@ -93,39 +93,61 @@ sh run_standalone_eval_ascend.sh [DATA_PATH] [CKPT_NAME]
|
|||
```python
|
||||
Major parameters in train.py and config.py as follows:
|
||||
|
||||
--data_path: The absolute full path to the train and evaluation datasets.
|
||||
--epoch_size: Total training epochs.
|
||||
--batch_size: Training batch size.
|
||||
--data_path: The absolute full path to the train and evaluation datasets.
|
||||
--epoch_size: Total training epochs.
|
||||
--batch_size: Training batch size.
|
||||
--image_height: Image height used as input to the model.
|
||||
--image_width: Image width used as input the model.
|
||||
--device_target: Device where the code will be implemented. Optional values are "Ascend", "GPU".
|
||||
--image_width: Image width used as input the model.
|
||||
--device_target: Device where the code will be implemented. Optional values are "Ascend", "GPU".
|
||||
--checkpoint_path: The absolute full path to the checkpoint file saved after training.
|
||||
--data_path: Path where the dataset is saved
|
||||
--data_path: Path where the dataset is saved
|
||||
```
|
||||
|
||||
## [Training Process](#contents)
|
||||
|
||||
### Training
|
||||
### Training
|
||||
|
||||
```
|
||||
python train.py --data_path cifar-10-batches-bin --ckpt_path ckpt > log.txt 2>&1 &
|
||||
# or enter script dir, and run the script
|
||||
sh run_standalone_train_ascend.sh cifar-10-batches-bin ckpt
|
||||
```
|
||||
- running on Ascend
|
||||
|
||||
After training, the loss value will be achieved as follows:
|
||||
```
|
||||
python train.py --data_path cifar-10-batches-bin --ckpt_path ckpt > log.txt 2>&1 &
|
||||
# or enter script dir, and run the script
|
||||
sh run_standalone_train_ascend.sh cifar-10-batches-bin ckpt
|
||||
```
|
||||
|
||||
```
|
||||
# grep "loss is " train.log
|
||||
epoch: 1 step: 1, loss is 2.2791853
|
||||
...
|
||||
epoch: 1 step: 1536, loss is 1.9366643
|
||||
epoch: 1 step: 1537, loss is 1.6983616
|
||||
epoch: 1 step: 1538, loss is 1.0221305
|
||||
...
|
||||
```
|
||||
After training, the loss value will be achieved as follows:
|
||||
|
||||
```
|
||||
# grep "loss is " train.log
|
||||
epoch: 1 step: 1, loss is 2.2791853
|
||||
...
|
||||
epoch: 1 step: 1536, loss is 1.9366643
|
||||
epoch: 1 step: 1537, loss is 1.6983616
|
||||
epoch: 1 step: 1538, loss is 1.0221305
|
||||
...
|
||||
```
|
||||
|
||||
The model checkpoint will be saved in the current directory.
|
||||
|
||||
- running on GPU
|
||||
|
||||
```
|
||||
python train.py --device_target "GPU" --data_path cifar-10-batches-bin --ckpt_path ckpt > log.txt 2>&1 &
|
||||
# or enter script dir, and run the script
|
||||
sh run_standalone_train_for_gpu.sh cifar-10-batches-bin ckpt
|
||||
```
|
||||
|
||||
After training, the loss value will be achieved as follows:
|
||||
|
||||
```
|
||||
# grep "loss is " train.log
|
||||
epoch: 1 step: 1, loss is 2.3125906
|
||||
...
|
||||
epoch: 30 step: 1560, loss is 0.6687547
|
||||
epoch: 30 step: 1561, loss is 0.20055409
|
||||
epoch: 30 step: 1561, loss is 0.103845775
|
||||
```
|
||||
|
||||
The model checkpoint will be saved in the current directory.
|
||||
|
||||
## [Evaluation Process](#contents)
|
||||
|
||||
|
@ -133,44 +155,61 @@ The model checkpoint will be saved in the current directory.
|
|||
|
||||
Before running the command below, please check the checkpoint path used for evaluation.
|
||||
|
||||
```
|
||||
python eval.py --data_path cifar-10-verify-bin --ckpt_path ckpt/checkpoint_alexnet-1_1562.ckpt > log.txt 2>&1 &
|
||||
or enter script dir, and run the script
|
||||
sh run_standalone_eval_ascend.sh cifar-10-verify-bin ckpt/checkpoint_alexnet-1_1562.ckpt
|
||||
```
|
||||
- running on Ascend
|
||||
|
||||
You can view the results through the file "log.txt". The accuracy of the test dataset will be as follows:
|
||||
```
|
||||
python eval.py --data_path cifar-10-verify-bin --ckpt_path ckpt/checkpoint_alexnet-1_1562.ckpt > log.txt 2>&1 &
|
||||
or enter script dir, and run the script
|
||||
sh run_standalone_eval_ascend.sh cifar-10-verify-bin ckpt/checkpoint_alexnet-1_1562.ckpt
|
||||
```
|
||||
|
||||
```
|
||||
# grep "Accuracy: " log.txt
|
||||
'Accuracy': 0.8832
|
||||
```
|
||||
You can view the results through the file "log.txt". The accuracy of the test dataset will be as follows:
|
||||
|
||||
```
|
||||
# grep "Accuracy: " log.txt
|
||||
'Accuracy': 0.8832
|
||||
```
|
||||
|
||||
- running on GPU
|
||||
|
||||
```
|
||||
python eval.py --device_target "GPU" --data_path cifar-10-verify-bin --ckpt_path ckpt/checkpoint_alexnet-30_1562.ckpt > log.txt 2>&1 &
|
||||
or enter script dir, and run the script
|
||||
sh run_standalone_eval_for_gpu.sh cifar-10-verify-bin ckpt/checkpoint_alexnet-30_1562.ckpt
|
||||
```
|
||||
|
||||
You can view the results through the file "log.txt". The accuracy of the test dataset will be as follows:
|
||||
|
||||
```
|
||||
# grep "Accuracy: " log.txt
|
||||
'Accuracy': 0.88512
|
||||
```
|
||||
|
||||
# [Model Description](#contents)
|
||||
|
||||
## [Performance](#contents)
|
||||
|
||||
### Evaluation Performance
|
||||
### Evaluation Performance
|
||||
|
||||
| Parameters | AlexNet |
|
||||
| -------------------------- | ----------------------------------------------------------- |
|
||||
| Resource | Ascend 910 ;CPU 2.60GHz,56cores;Memory,314G |
|
||||
| uploaded Date | 06/09/2020 (month/day/year) |
|
||||
| MindSpore Version | 0.5.0-beta |
|
||||
| Dataset | CIFAR-10 |
|
||||
| Training Parameters | epoch=30, steps=1562, batch_size = 32, lr=0.002 |
|
||||
| Optimizer | Momentum |
|
||||
| Loss Function | Softmax Cross Entropy |
|
||||
| outputs | probability |
|
||||
| Loss | 0.0016 |
|
||||
| Speed | 21 ms/step |
|
||||
| Total time | 17 mins |
|
||||
| Checkpoint for Fine tuning | 445M (.ckpt file) |
|
||||
| Scripts | https://gitee.com/mindspore/mindspore/tree/master/model_zoo/official/cv/alexnet |
|
||||
| Parameters | Ascend | GPU |
|
||||
| -------------------------- | ------------------------------------------------------------| -------------------------------------------------|
|
||||
| Resource | Ascend 910; CPU 2.60GHz, 56cores; Memory, 314G | NV SMX2 V100-32G |
|
||||
| uploaded Date | 06/09/2020 (month/day/year) | 17/09/2020 (month/day/year) |
|
||||
| MindSpore Version | 0.5.0-beta | 0.7.0-beta |
|
||||
| Dataset | CIFAR-10 | CIFAR-10 |
|
||||
| Training Parameters | epoch=30, steps=1562, batch_size = 32, lr=0.002 | epoch=30, steps=1562, batch_size = 32, lr=0.002 |
|
||||
| Optimizer | Momentum | Momentum |
|
||||
| Loss Function | Softmax Cross Entropy | Softmax Cross Entropy |
|
||||
| outputs | probability | probability |
|
||||
| Loss | 0.0016 | 0.01 |
|
||||
| Speed | 21 ms/step | 16.8 ms/step |
|
||||
| Total time | 17 mins | 14 mins |
|
||||
| Checkpoint for Fine tuning | 445M (.ckpt file) | 445M (.ckpt file) |
|
||||
| Scripts | https://gitee.com/mindspore/mindspore/tree/master/model_zoo/official/cv/alexnet | https://gitee.com/mindspore/mindspore/tree/master/model_zoo/official/cv/alexnet |
|
||||
|
||||
# [Description of Random Situation](#contents)
|
||||
|
||||
In dataset.py, we set the seed inside ```create_dataset``` function.
|
||||
|
||||
# [ModelZoo Homepage](#contents)
|
||||
Please check the official [homepage](https://gitee.com/mindspore/mindspore/tree/master/model_zoo).
|
||||
# [ModelZoo Homepage](#contents)
|
||||
Please check the official [homepage](https://gitee.com/mindspore/mindspore/tree/master/model_zoo).
|
||||
|
|
Loading…
Reference in New Issue