!6434 MSLITE fix equal/gather infershape and onnx deconv parser

Merge pull request !6434 from 徐安越/master
This commit is contained in:
mindspore-ci-bot 2020-09-18 19:45:50 +08:00 committed by Gitee
commit b523c9ad53
26 changed files with 66 additions and 193 deletions

View File

@ -103,9 +103,10 @@ enum EltwiseMode : byte {
enum PadMode : byte {
NOTSET = 0,
SAME = 1,
SAME_UPPER = 1,
VALID = 2,
CAFFE = 4
CAFFE = 4,
SAME_LOWER = 5
}
enum RoundMode : byte {

View File

@ -351,7 +351,7 @@ int LiteSession::Init(Context *context) {
}
}
#endif
executor = new Executor();
executor = new(std::nothrow) Executor();
if (nullptr == executor) {
MS_LOG(ERROR) << "New Executor failed";
is_running_.store(false);

View File

@ -156,7 +156,7 @@ void Conv2D::PopulaterConv2DMultiGroup(const Primitive &prim, schema::PrimitiveT
if (pad_mode == "valid") {
attr->padMode = schema::PadMode_VALID;
} else if (pad_mode == "same") {
attr->padMode = schema::PadMode_SAME;
attr->padMode = schema::PadMode_SAME_UPPER;
} else {
attr->padMode = schema::PadMode_NOTSET;
}
@ -221,7 +221,7 @@ void Conv2D::PopulaterConv2DSingleGroup(const Primitive &prim, schema::Primitive
if (pad_mode == "valid") {
attr->padMode = schema::PadMode_VALID;
} else if (pad_mode == "same") {
attr->padMode = schema::PadMode_SAME;
attr->padMode = schema::PadMode_SAME_UPPER;
} else {
attr->padMode = schema::PadMode_NOTSET;
}
@ -233,8 +233,6 @@ void Conv2D::PopulaterConv2DSingleGroup(const Primitive &prim, schema::Primitive
attr->activationType = schema::ActivationType_NO_ACTIVATION;
}
// attr->padMode = schema::PadMode_SAME;
// attr->activationType = schema::ActivationType_RELU;
primitive->value.type = schema::PrimitiveType_Conv2D;
primitive->value.value = attr.release();
}
@ -319,7 +317,7 @@ void Conv2D::ConvInferShape(int input_h, int input_w, int *output_h, int *output
pad_d_ = GetPadDown();
pad_r_ = GetPadRight();
if (GetPadMode() == schema::PadMode_SAME) {
if (GetPadMode() == schema::PadMode_SAME_UPPER) {
*output_w = std::ceil(static_cast<float>(input_w) / static_cast<float>(stride_w));
*output_h = std::ceil(static_cast<float>(input_h) / static_cast<float>(stride_h));
auto pad_h_all = ((*output_h - 1) * stride_h + (kernel_h - 1) * dilate_h + 1 - input_h);

View File

@ -119,7 +119,7 @@ int Conv2DGradFilter::UnPackAttr(const Primitive &prim, const std::vector<AnfNod
if (pad_mode == "valid") {
attr->padMode = schema::PadMode_VALID;
} else if (pad_mode == "same") {
attr->padMode = schema::PadMode_SAME;
attr->padMode = schema::PadMode_SAME_UPPER;
} else {
attr->padMode = schema::PadMode_NOTSET;
}

View File

@ -118,7 +118,7 @@ int Conv2DGradInput::UnPackAttr(const Primitive &prim, const std::vector<AnfNode
if (pad_mode == "valid") {
attr->padMode = schema::PadMode_VALID;
} else if (pad_mode == "same") {
attr->padMode = schema::PadMode_SAME;
attr->padMode = schema::PadMode_SAME_UPPER;
} else {
attr->padMode = schema::PadMode_NOTSET;
}

View File

@ -93,7 +93,7 @@ void DeConv2D::PopulaterDeConv2DSingleGroup(const Primitive &prim, schema::Primi
if (pad_mode == "valid" || pad_mode == "VALID") {
attr->padMode = schema::PadMode_VALID;
} else if (pad_mode == "same" || pad_mode == "SAME") {
attr->padMode = schema::PadMode_SAME;
attr->padMode = schema::PadMode_SAME_UPPER;
} else {
attr->padMode = schema::PadMode_NOTSET;
}
@ -105,8 +105,6 @@ void DeConv2D::PopulaterDeConv2DSingleGroup(const Primitive &prim, schema::Primi
attr->activationType = schema::ActivationType_NO_ACTIVATION;
}
// attr->padMode = schema::PadMode_SAME;
// attr->activationType = schema::ActivationType_RELU;
primitive->value.type = schema::PrimitiveType_DeConv2D;
primitive->value.value = attr.release();
}
@ -206,10 +204,10 @@ int DeConv2D::InferShape(std::vector<lite::Tensor *> inputs_, std::vector<lite::
pad_d_ = GetPadDown();
pad_r_ = GetPadRight();
auto pad_mode = (schema::PadMode)GetPadMode();
if (pad_mode == schema::PadMode_CAFFE) {
if (pad_mode == schema::PadMode_CAFFE || pad_mode == schema::PadMode_NOTSET) {
output_h = (input_h - 1) * stride_h + ((kernel_h - 1) * dilate_h + 1) - pad_u_ - pad_d_;
output_w = (input_w - 1) * stride_w + ((kernel_w - 1) * dilate_w + 1) - pad_l_ - pad_r_;
} else if (pad_mode == schema::PadMode_SAME) {
} else if (pad_mode == schema::PadMode_SAME_UPPER) {
output_h = input_h * stride_h;
output_w = input_w * stride_w;
} else if (pad_mode == schema::PadMode_VALID) {
@ -222,13 +220,13 @@ int DeConv2D::InferShape(std::vector<lite::Tensor *> inputs_, std::vector<lite::
std::vector<int> out_shape = {output_n, output_h, output_w, output_c};
output->set_shape(out_shape);
if (pad_mode == schema::PadMode_SAME) {
if (pad_mode == schema::PadMode_SAME_UPPER) {
pad_u_ = ((input_h - 1) * stride_h + (kernel_h - 1) * dilate_h + 1 - output_h) / 2;
pad_l_ = ((input_w - 1) * stride_w + (kernel_w - 1) * dilate_w + 1 - output_w) / 2;
} else if (pad_mode == schema::PadMode_VALID) {
pad_u_ = 0;
pad_l_ = 0;
} else if (pad_mode == schema::PadMode_CAFFE) {
} else if (pad_mode == schema::PadMode_CAFFE || pad_mode == schema::PadMode_NOTSET) {
} else {
MS_LOG(ERROR) << "unsupported pad mode for deconv";
return RET_ERROR;

View File

@ -104,7 +104,7 @@ int DepthwiseConv2D::UnPackAttr(const Primitive &prim, const std::vector<AnfNode
if (pad_mode == "valid") {
attr->padMode = schema::PadMode_VALID;
} else if (pad_mode == "same") {
attr->padMode = schema::PadMode_SAME;
attr->padMode = schema::PadMode_SAME_UPPER;
} else {
attr->padMode = schema::PadMode_NOTSET;
}
@ -114,8 +114,6 @@ int DepthwiseConv2D::UnPackAttr(const Primitive &prim, const std::vector<AnfNode
} else {
attr->activationType = schema::ActivationType_NO_ACTIVATION;
}
// attr->padMode = schema::PadMode_SAME;
// attr->activationType = schema::ActivationType_RELU;
auto channel_multiplier = GetValue<int>(prim.GetAttr("channel_multiplier"));
attr->channelMultiplier = channel_multiplier;
@ -220,7 +218,7 @@ int DepthwiseConv2D::InferShape(std::vector<lite::Tensor *> inputs_, std::vector
pad_u_ = GetPadUp();
pad_d_ = GetPadDown();
pad_r_ = GetPadRight();
if (GetPadMode() == schema::PadMode_SAME) {
if (GetPadMode() == schema::PadMode_SAME_UPPER) {
output_h = std::ceil(static_cast<float>(input_h) / static_cast<float>(GetStrideH()));
output_w = std::ceil(static_cast<float>(input_w) / static_cast<float>(GetStrideW()));
auto pad_h_all = ((output_h - 1) * GetStrideH() + (GetKernelH() - 1) * GetDilateH() + 1 - input_h);

View File

@ -29,5 +29,15 @@ int Equal::UnPackToFlatBuilder(const schema::Primitive *primitive, flatbuffers::
}
#endif
int Equal::InferShape(std::vector<Tensor *> inputs_, std::vector<Tensor *> outputs_) {
auto input = inputs_.front();
MS_ASSERT(input != nullptr);
auto output = outputs_.front();
MS_ASSERT(output != nullptr);
output->set_shape(input->shape());
output->set_data_type(TypeId::kNumberTypeUInt8);
output->SetFormat(input->GetFormat());
return RET_OK;
}
} // namespace lite
} // namespace mindspore

View File

@ -36,6 +36,7 @@ class Equal : public Arithmetic {
int UnPackToFlatBuilder(const schema::Primitive *primitive, flatbuffers::FlatBufferBuilder *fbb) override;
#endif
int InferShape(std::vector<lite::Tensor *> inputs_, std::vector<lite::Tensor *> outputs_) override;
};
} // namespace lite
} // namespace mindspore

View File

@ -91,7 +91,7 @@ int Gather::InferShape(std::vector<Tensor *> inputs_, std::vector<Tensor *> outp
std::vector<int> out_shape{in_shape};
out_shape.erase(out_shape.begin() + axis);
for (int i = indices_rank - 1; i >= 0; --i) {
out_shape.insert(out_shape.begin() + axis + i, indices_shape[i]);
out_shape.insert(out_shape.begin() + axis, indices_shape[i]);
}
output->set_shape(out_shape);
return RET_OK;

View File

@ -101,7 +101,7 @@ int Pooling::UnPackAttr(const Primitive &prim, const std::vector<AnfNodePtr> &in
if (pad_mode == "VALID") {
attr->padMode = schema::PadMode_VALID;
} else if (pad_mode == "SAME") {
attr->padMode = schema::PadMode_SAME;
attr->padMode = schema::PadMode_SAME_UPPER;
} else {
attr->padMode = schema::PadMode_NOTSET;
}
@ -192,7 +192,7 @@ int Pooling::InferShape(std::vector<Tensor *> inputs_, std::vector<Tensor *> out
pad_u_ = GetPadUp();
pad_d_ = GetPadDown();
pad_r_ = GetPadRight();
if (GetPadMode() == schema::PadMode_SAME) {
if (GetPadMode() == schema::PadMode_SAME_UPPER) {
output_w = std::ceil(static_cast<float>(input_w) / static_cast<float>(GetStrideW()));
output_h = std::ceil(static_cast<float>(input_h) / static_cast<float>(GetStrideH()));
auto pad_h_all = ((output_h - 1) * GetStrideH() + (window_h - 1) + 1 - input_h);

View File

@ -90,7 +90,7 @@ int PoolingGrad::UnPackAttr(const Primitive &prim, const std::vector<AnfNodePtr>
if (pad_mode == "VALID") {
attr->padMode = schema::PadMode_VALID;
} else if (pad_mode == "SAME") {
attr->padMode = schema::PadMode_SAME;
attr->padMode = schema::PadMode_SAME_UPPER;
} else {
attr->padMode = schema::PadMode_NOTSET;
}
@ -162,7 +162,7 @@ int PoolingGrad::InferShape(std::vector<Tensor *> inputs_, std::vector<Tensor *>
pad_u_ = GetPadUp();
pad_d_ = GetPadDown();
pad_r_ = GetPadRight();
if (GetPadMode() == schema::PadMode_SAME) {
if (GetPadMode() == schema::PadMode_SAME_UPPER) {
int output_w = std::ceil(static_cast<float>(input_w) / static_cast<float>(GetStrideW()));
int output_h = std::ceil(static_cast<float>(input_h) / static_cast<float>(GetStrideH()));
auto pad_h_all = ((output_h - 1) * GetStrideH() + (window_h - 1) + 1 - input_h);

View File

@ -42,7 +42,7 @@ TEST_F(InferTest, TestConvNode) {
node->primitive = std::make_unique<schema::PrimitiveT>();
node->primitive->value.type = schema::PrimitiveType_Conv2D;
auto primitive = new schema::Conv2DT;
primitive->padMode = schema::PadMode_SAME;
primitive->padMode = schema::PadMode_SAME_UPPER;
primitive->channelIn = 3;
primitive->channelOut = 32;
primitive->format = schema::Format_NHWC;
@ -231,18 +231,6 @@ TEST_F(InferTest, TestAddNode) {
ASSERT_EQ(TypeId::kNumberTypeFloat32, outTensor->data_type());
auto *outData = reinterpret_cast<float *>(outTensor->MutableData());
ASSERT_NE(nullptr, outData);
// //===================================================
// size_t output_size;
// std::string output_path = "./convfp32_out_1_28_28_32.bin";
// ReadFile(output_path.c_str(), &output_size, buf);
// ASSERT_NE(nullptr, buf[0]);
// auto output_data = reinterpret_cast<float *>(buf[0]);
// ASSERT_NE(nullptr, output_data);
// //===================================================
// ASSERT_EQ(output_size, outTensor->Size());
// for (size_t i = 0; i < outTensor->ElementsNum(); i++) {
// ASSERT_EQ(output_data[i], outData[i]);
// }
MS_LOG(INFO) << "Passed";
}
@ -366,141 +354,4 @@ TEST_F(InferTest, TestModel) {
auto outputs = session->GetOutputs();
MS_LOG(INFO) << "Passed";
}
// TEST_F(TrainTest, TestMultiNode) {
// auto msGraph = std::make_shared<schema::GraphDefT>();
// msGraph->name = "graph";
// auto msSubgraph = std::make_unique<schema::SubGraphDefT>();
// msSubgraph->name = "subGraph";
//
// auto conv = std::make_unique<schema::OpDefT>();
// conv->inputIndex = {0, 1};
// conv->outputIndex = {2};
// conv->attr.type = schema::OpT_Conv2D;
// auto conv_attr = new schema::Conv2DT;
// conv_attr->padMode = schema::PadMode_SAME;
// conv_attr->format = schema::Format_NHWC;
// conv_attr->strideH = 1;
// conv_attr->strideW = 1;
// conv_attr->kernelH = 3;
// conv_attr->kernelW = 3;
// conv_attr->dilateH = 1;
// conv_attr->dilateW = 1;
//
// conv->attr.value = conv_attr;
// conv->name = "Conv2D";
// conv->fmkType = schema::FmkType_CAFFE;
// msSubgraph->nodes.emplace_back(std::move(conv));
//
// auto matMul1 = std::make_unique<schema::OpDefT>();
// matMul1->inputIndex = {2, 3};
// matMul1->outputIndex = {4};
// matMul1->attr.type = schema::OpT_MatMul;
// auto matMul_attr1 = new schema::MatMulT;
// matMul_attr1->transposeA = false;
// matMul_attr1->transposeB = true;
// matMul1->attr.value = matMul_attr1;
// matMul1->name = "matmul1";
// matMul1->fmkType = schema::FmkType_CAFFE;
// msSubgraph->nodes.emplace_back(std::move(matMul1));
//
// auto matMul2 = std::make_unique<schema::OpDefT>();
// matMul2->inputIndex = {4, 5};
// matMul2->outputIndex = {6};
// matMul2->attr.type = schema::OpT_MatMul;
// auto matMul_attr2 = new schema::MatMulT;
// matMul_attr2->transposeA = false;
// matMul_attr2->transposeB = true;
// matMul2->attr.value = matMul_attr2;
// matMul2->name = "matmul2";
// matMul2->fmkType = schema::FmkType_CAFFE;
// msSubgraph->nodes.emplace_back(std::move(matMul2));
//
// msSubgraph->inputIndex = {0};
// msSubgraph->outputIndex = {6};
//
// auto input0 = std::make_unique<schema::TensorDefT>();
// input0->refCount = schema::MSCONST_WEIGHT_REFCOUNT;
// input0->format = schema::Format_NHWC;
// input0->dataType = TypeId::kNumberTypeFloat32;
// input0->dims = {1, 5, 5, 3};
// input0->offset = -1;
// msSubgraph->allTensors.emplace_back(std::move(input0));
//
// auto conv_weight = std::make_unique<schema::TensorDefT>();
// conv_weight->refCount = schema::MSCONST_WEIGHT_REFCOUNT;
// conv_weight->format = schema::Format_KHWC;
// conv_weight->dataType = TypeId::kNumberTypeFloat32;
// conv_weight->dims = {8, 3, 3, 3};
// conv_weight->data.resize(8*3*3*3*sizeof(float));
// msSubgraph->allTensors.emplace_back(std::move(conv_weight));
//
// auto conv_output = std::make_unique<schema::TensorDefT>();
// conv_output->refCount = 0;
// conv_output->format = schema::Format_NHWC;
// conv_output->dataType = TypeId::kNumberTypeFloat32;
// conv_output->dims = {1, 5, 5, 8};
// msSubgraph->allTensors.emplace_back(std::move(conv_output));
//
// auto add_weight = std::make_unique<schema::TensorDefT>();
// add_weight->refCount = schema::MSCONST_WEIGHT_REFCOUNT;
// add_weight->format = schema::Format_NHWC;
// add_weight->dataType = TypeId::kNumberTypeFloat32;
// add_weight->dims = {1, 5, 5, 8};
// add_weight->data.resize(5*5*8*sizeof(float));
// msSubgraph->allTensors.emplace_back(std::move(add_weight));
//
// auto add_output = std::make_unique<schema::TensorDefT>();
// add_output->refCount = 0;
// add_output->format = schema::Format_NHWC;
// add_output->dataType = TypeId::kNumberTypeFloat32;
// add_output->dims = {1, 5, 5, 8};
// msSubgraph->allTensors.emplace_back(std::move(add_output));
//
// auto mul_weight = std::make_unique<schema::TensorDefT>();
// mul_weight->refCount = schema::MSCONST_WEIGHT_REFCOUNT;
// mul_weight->format = schema::Format_NHWC;
// mul_weight->dataType = TypeId::kNumberTypeFloat32;
// mul_weight->dims = {1, 5, 5, 8};
// mul_weight->data.resize(5*5*8*sizeof(float));
// msSubgraph->allTensors.emplace_back(std::move(mul_weight));
//
// auto mul_output = std::make_unique<schema::TensorDefT>();
// mul_output->refCount = 0;
// mul_output->format = schema::Format_NHWC;
// mul_output->dataType = TypeId::kNumberTypeFloat32;
// mul_output->dims = {1, 5, 5, 8};
// msSubgraph->allTensors.emplace_back(std::move(mul_output));
// msGraph->subgraphs.emplace_back(std::move(msSubgraph));
//
// flatbuffers::FlatBufferBuilder builder(1024);
// auto offset = schema::GraphDef::Pack(builder, msGraph.get());
// builder.Finish(offset);
// size_t size = builder.GetSize();
// const char *content = (char *)builder.GetBufferPointer();
// const std::string strstub = "";
//
// auto func_graph = inference::LoadModel(content, size, strstub);
// ASSERT_NE(nullptr, func_graph);
// auto session = inference::MSSession::CreateSession(kCPUDevice, 0);
// ASSERT_NE(nullptr, session);
// auto graphId = session->CompileGraph(func_graph);
//
// auto inTensor =
// std::shared_ptr<inference::MSTensor>(inference::MSTensor::CreateTensor(TypeId::kNumberTypeFloat32, {1, 5, 5, 3}));
// ASSERT_NE(nullptr, inTensor);
// ASSERT_EQ(sizeof(float) * (5 * 5 * 3), inTensor->Size());
// (void)inTensor->MutableData();
//
// std::vector<std::shared_ptr<inference::MSTensor>> inputs;
// inputs.emplace_back(inTensor);
// auto outputs = session->RunGraph(graphId, inputs);
// ASSERT_EQ(1, outputs.size());
// ASSERT_EQ(1, outputs.front().size());
// auto runOutput = outputs.front().front();
// ASSERT_NE(nullptr, runOutput);
// ASSERT_EQ(5 * 5 * 8, runOutput->ElementsNum());
// ASSERT_EQ(TypeId::kNumberTypeFloat32, runOutput->data_type());
// MS_LOG(INFO) << "Passed";
//}
} // namespace mindspore

View File

@ -46,7 +46,7 @@ TEST_F(TestTfliteParserConv, AttrValue) {
ASSERT_EQ(val->strideW, 1);
ASSERT_EQ(val->dilateH, 1);
ASSERT_EQ(val->dilateW, 1);
ASSERT_EQ(val->padMode, schema::PadMode_SAME);
ASSERT_EQ(val->padMode, schema::PadMode_SAME_UPPER);
ASSERT_EQ(val->padUp, 1);
ASSERT_EQ(val->padDown, 1);
ASSERT_EQ(val->padLeft, 1);

View File

@ -47,7 +47,7 @@ TEST_F(TestTfliteParserDeConv, AttrValue) {
ASSERT_EQ(val->strideW, 1);
ASSERT_EQ(val->dilateH, 1);
ASSERT_EQ(val->dilateW, 1);
ASSERT_EQ(val->padMode, schema::PadMode_SAME);
ASSERT_EQ(val->padMode, schema::PadMode_SAME_UPPER);
ASSERT_EQ(val->padUp, 1);
ASSERT_EQ(val->padDown, 1);
ASSERT_EQ(val->padLeft, 1);

View File

@ -46,7 +46,7 @@ TEST_F(TestTfliteParserDepthwiseConv1, AttrValue) {
ASSERT_EQ(val->strideW, 1);
ASSERT_EQ(val->dilateH, 1);
ASSERT_EQ(val->dilateW, 1);
ASSERT_EQ(val->padMode, schema::PadMode_SAME);
ASSERT_EQ(val->padMode, schema::PadMode_SAME_UPPER);
ASSERT_EQ(val->padUp, 1);
ASSERT_EQ(val->padDown, 1);
ASSERT_EQ(val->padLeft, 1);
@ -80,7 +80,7 @@ TEST_F(TestTfliteParserDepthwiseConv2, AttrValue) {
ASSERT_EQ(val->strideW, 1);
ASSERT_EQ(val->dilateH, 1);
ASSERT_EQ(val->dilateW, 1);
ASSERT_EQ(val->padMode, schema::PadMode_SAME);
ASSERT_EQ(val->padMode, schema::PadMode_SAME_UPPER);
ASSERT_EQ(val->padUp, 1);
ASSERT_EQ(val->padDown, 1);
ASSERT_EQ(val->padLeft, 1);

View File

@ -73,7 +73,7 @@ TEST_F(TestTfliteParserAvgPooling, AttrValue) {
ASSERT_EQ(val->windowH, 2);
ASSERT_EQ(val->strideW, 1);
ASSERT_EQ(val->strideH, 1);
ASSERT_EQ(val->padMode, schema::PadMode_SAME);
ASSERT_EQ(val->padMode, schema::PadMode_SAME_UPPER);
ASSERT_EQ(val->padUp, 0);
ASSERT_EQ(val->padDown, 1);
ASSERT_EQ(val->padLeft, 0);

View File

@ -42,7 +42,7 @@ CNodeTptr BuildConv2D() {
convNode->primitive = std::make_unique<schema::PrimitiveT>();
convNode->primitive->value.type = schema::PrimitiveType_Conv2D;
auto prim1 = new schema::Conv2DT;
prim1->padMode = schema::PadMode_SAME;
prim1->padMode = schema::PadMode_SAME_UPPER;
prim1->format = schema::Format_NHWC;
prim1->strideH = 1;
prim1->strideW = 1;
@ -62,7 +62,7 @@ CNodeTptr BuildDepthwiseConv2D() {
convNode->primitive = std::make_unique<schema::PrimitiveT>();
convNode->primitive->value.type = schema::PrimitiveType_DepthwiseConv2D;
auto prim1 = new schema::DepthwiseConv2DT;
prim1->padMode = schema::PadMode_SAME;
prim1->padMode = schema::PadMode_SAME_UPPER;
prim1->format = schema::Format_NHWC;
prim1->strideH = 1;
prim1->strideW = 1;

View File

@ -42,7 +42,7 @@ CNodeTptr BuildConv2D() {
convNode->primitive = std::make_unique<schema::PrimitiveT>();
convNode->primitive->value.type = schema::PrimitiveType_Conv2D;
auto prim1 = new schema::Conv2DT;
prim1->padMode = schema::PadMode_SAME;
prim1->padMode = schema::PadMode_SAME_UPPER;
prim1->format = schema::Format_NHWC;
prim1->strideH = 1;
prim1->strideW = 1;
@ -62,7 +62,7 @@ CNodeTptr BuildDepthwiseConv2D() {
convNode->primitive = std::make_unique<schema::PrimitiveT>();
convNode->primitive->value.type = schema::PrimitiveType_DepthwiseConv2D;
auto prim1 = new schema::DepthwiseConv2DT;
prim1->padMode = schema::PadMode_SAME;
prim1->padMode = schema::PadMode_SAME_UPPER;
prim1->format = schema::Format_NHWC;
prim1->strideH = 1;
prim1->strideW = 1;

View File

@ -42,7 +42,7 @@ CNodeTptr BuildConv2D() {
convNode->primitive = std::make_unique<schema::PrimitiveT>();
convNode->primitive->value.type = schema::PrimitiveType_Conv2D;
auto prim1 = new schema::Conv2DT;
prim1->padMode = schema::PadMode_SAME;
prim1->padMode = schema::PadMode_SAME_UPPER;
prim1->format = schema::Format_NHWC;
prim1->strideH = 1;
prim1->strideW = 1;
@ -62,7 +62,7 @@ CNodeTptr BuildDepthwiseConv2D() {
convNode->primitive = std::make_unique<schema::PrimitiveT>();
convNode->primitive->value.type = schema::PrimitiveType_DepthwiseConv2D;
auto prim1 = new schema::DepthwiseConv2DT;
prim1->padMode = schema::PadMode_SAME;
prim1->padMode = schema::PadMode_SAME_UPPER;
prim1->format = schema::Format_NHWC;
prim1->strideH = 1;
prim1->strideW = 1;

View File

@ -48,7 +48,7 @@ CNodeTptr BuildConv2D(int with_bias_flag) {
convNode->primitive = std::make_unique<schema::PrimitiveT>();
convNode->primitive->value.type = schema::PrimitiveType_Conv2D;
auto prim1 = new schema::Conv2DT;
prim1->padMode = schema::PadMode_SAME;
prim1->padMode = schema::PadMode_SAME_UPPER;
prim1->format = schema::Format_NHWC;
prim1->strideH = 1;
prim1->strideW = 1;
@ -74,7 +74,7 @@ CNodeTptr BuildDepthwiseConv2D(int with_bias_flag) {
convNode->primitive = std::make_unique<schema::PrimitiveT>();
convNode->primitive->value.type = schema::PrimitiveType_DepthwiseConv2D;
auto prim1 = new schema::DepthwiseConv2DT;
prim1->padMode = schema::PadMode_SAME;
prim1->padMode = schema::PadMode_SAME_UPPER;
prim1->format = schema::Format_NHWC;
prim1->strideH = 1;
prim1->strideW = 1;

View File

@ -71,6 +71,13 @@ STATUS OnnxDeConvParser::Parse(const onnx::GraphProto &onnx_graph, const onnx::N
return RET_NULL_PTR;
}
// set default params
attr->padMode = schema::PadMode_NOTSET;
attr->group = 1;
attr->strideW = 1;
attr->strideH = 1;
attr->dilateW = 1;
attr->dilateH = 1;
// set opdef each attr params
for (const auto &onnx_node_attr : onnx_node.attribute()) {
if (onnx_node_attr.name() == "group") {
@ -121,6 +128,9 @@ STATUS OnnxDeConvParser::Parse(const onnx::GraphProto &onnx_graph, const onnx::N
MS_LOG(ERROR) << "Unsupported format: " << onnx_node_attr.s().c_str();
return RET_ERROR;
}
} else if (onnx_node_attr.name() == "output_padding") {
MS_LOG(ERROR) << "output_padding param hasn't been supported";
return RET_NOT_SUPPORT;
}
}

View File

@ -22,8 +22,10 @@ namespace lite {
schema::PadMode OnnxNodeParser::GetOnnxPadMode(const onnx::AttributeProto &onnx_node_attr) {
if (onnx_node_attr.s() == "NOTSET") {
return schema::PadMode_NOTSET;
} else if (onnx_node_attr.s() == "SAME_UPPER" || onnx_node_attr.s() == "SAME_LOWER") {
return schema::PadMode_SAME;
} else if (onnx_node_attr.s() == "SAME_UPPER") {
return schema::PadMode_SAME_UPPER;
} else if (onnx_node_attr.s() == "SAME_LOWER") {
return schema::PadMode_SAME_LOWER;
} else if (onnx_node_attr.s() == "VALID") {
return schema::PadMode_VALID;
} else {

View File

@ -49,6 +49,9 @@ STATUS TfliteCastParser::Parse(const std::unique_ptr<tflite::OperatorT> &tflite_
return RET_NULL_PTR;
}
attr->srcT = GetTfliteDataType(in_tensor->type);
if (attr->srcT == TypeId::kNumberTypeBool) {
attr->srcT = TypeId::kNumberTypeUInt8;
}
const auto &out_tensor = tflite_tensors[tflite_op->outputs[0]];
if (out_tensor == nullptr) {
MS_LOG(ERROR) << "tensor is null";

View File

@ -18,6 +18,7 @@
#include <vector>
#include <memory>
#include <map>
#include <string>
namespace mindspore {
namespace lite {

View File

@ -157,7 +157,7 @@ TypeId GetTfliteDataType(const tflite::TensorType &tflite_data_type) {
schema::PadMode GetPadMode(tflite::Padding tflite_padmode) {
if (tflite_padmode == tflite::Padding_SAME) {
return schema::PadMode_SAME;
return schema::PadMode_SAME_UPPER;
} else if (tflite_padmode == tflite::Padding_VALID) {
return schema::PadMode_VALID;
} else {
@ -198,7 +198,7 @@ STATUS getPaddingParam(const std::unique_ptr<tflite::TensorT> &tensor, schema::P
int padDown = 0;
int padLeft = 0;
int padRight = 0;
if (pad_mode == schema::PadMode_SAME) {
if (pad_mode == schema::PadMode_SAME_UPPER) {
auto shape = tensor->shape;
int H_input = shape.at(1);
int W_input = shape.at(2);