!6435 Fix the problem of unnecessary recursion when printing tensor.

Merge pull request !6435 from huangbingjian/master
This commit is contained in:
mindspore-ci-bot 2020-09-18 20:29:52 +08:00 committed by Gitee
commit 8a5e8d0ba8
2 changed files with 81 additions and 94 deletions

View File

@ -20,6 +20,7 @@
#include <string>
#include <iomanip>
#include <fstream>
#include <memory>
namespace mindspore {
namespace system {
@ -99,28 +100,29 @@ bool ProcessInner(const std::string &message, const int &bias, uint32_t *digest,
w[i] = sigma3(w[i - 2]) + w[i - 7] + sigma2(w[i - 15]) + w[i - 16];
}
uint32_t *hash = new uint32_t[digest_size];
auto ret = memcpy_s(hash, digest_size * sizeof(uint32_t), digest, digest_size * sizeof(uint32_t));
if (ret != 0) {
std::shared_ptr<uint32_t> hash(new uint32_t[digest_size], std::default_delete<uint32_t[]>());
size_t mem_size = digest_size * sizeof(uint32_t);
auto ret = memcpy_s(hash.get(), mem_size, digest, mem_size);
if (ret != EOK) {
return false;
}
for (int i = 0; i < kIterationNumber; ++i) {
uint32_t t1 = w[i] + constant[i] + hash[7] + sigma1(hash[4]) + ch(hash[4], hash[5], hash[6]);
uint32_t t2 = sigma0(hash[0]) + ma(hash[0], hash[1], hash[2]);
uint32_t t1 =
w[i] + constant[i] + hash.get()[7] + sigma1(hash.get()[4]) + ch(hash.get()[4], hash.get()[5], hash.get()[6]);
uint32_t t2 = sigma0(hash.get()[0]) + ma(hash.get()[0], hash.get()[1], hash.get()[2]);
for (int j = digest_size - 1; j >= 0; --j) {
if (j == 4) {
hash[j] = hash[j - 1] + t1;
hash.get()[j] = hash.get()[j - 1] + t1;
} else if (j == 0) {
hash[j] = t1 + t2;
hash.get()[j] = t1 + t2;
} else {
hash[j] = hash[j - 1];
hash.get()[j] = hash.get()[j - 1];
}
}
}
for (int i = 0; i < digest_size; ++i) {
digest[i] += hash[i];
digest[i] += hash.get()[i];
}
delete[](hash);
return true;
}

View File

@ -28,6 +28,7 @@
#include <algorithm>
#include <type_traits>
#include <typeinfo>
#include <regex>
#include "abstract/abstract_value.h"
@ -235,48 +236,19 @@ class TensorDataImpl : public TensorData {
std::ostringstream ss;
if (data_size_ == 1 && ndim_ == 0) { // Scalar
OutputDataString(ss, 0, 0, 1, false);
OutputDataString(ss, 0, 0, 1, false, 0);
return ss.str();
}
int num_width = 0;
ssize_t cursor = 0;
num_width_ = GetMaxNumLength(shape);
SummaryStringRecursive(ss, shape, &cursor, 0, use_comma);
return ss.str();
SummaryStringRecursive(ss, shape, &cursor, 0, use_comma, &num_width);
return ProcessPlaceholder(ss, num_width);
}
private:
int GetNumLength(const T &num) const {
T value = num;
int count = 0;
if (value <= 0) { // Return 1 when value is 0, or add the length of '-' when value < 0
count++;
}
while (value != 0) {
value /= 10;
count++;
}
return count;
}
int GetMaxNumLength(const ShapeVector &shape) const {
if constexpr (std::is_same<T, bool>::value) {
constexpr int bool_max_len = sizeof("False") - 1;
return bool_max_len;
} else if constexpr (std::is_same<T, float16>::value) {
return 11; // The placeholder of float16 is set to 11.
} else if (std::is_same<T, float>::value || std::is_same<T, double>::value) {
return 15; // The placeholder of float/double is set to 15.
} else {
T max_value = 0;
T min_value = 0;
ssize_t index = 0;
GetMaxMinValueRecursive(shape, &index, 0, &max_value, &min_value);
return std::max(GetNumLength(max_value), GetNumLength(min_value));
}
}
void OutputDataString(std::ostringstream &ss, ssize_t cursor, ssize_t start, ssize_t end, bool use_comma) const {
void OutputDataString(std::ostringstream &ss, ssize_t cursor, ssize_t start, ssize_t end, bool use_comma,
int *max_width) const {
const bool isScalar = ndim_ == 0 && end - start == 1;
constexpr auto isBool = std::is_same<T, bool>::value;
constexpr auto isFloat =
@ -288,25 +260,36 @@ class TensorDataImpl : public TensorData {
if (isScalar) {
ss << value;
} else {
// The placeholder of float16 is fixed at 11, while float/double is fixed at 15.
const int width = std::is_same<T, float16>::value ? 11 : 15;
// The printing precision of float16 is fixed at 4, while float/double is fixed at 8.
const int precision = std::is_same<T, float16>::value ? 4 : 8;
ss << std::setw(num_width_) << std::setprecision(precision)
ss << std::setw(width) << std::setprecision(precision)
<< std::setiosflags(std::ios::scientific | std::ios::right) << value;
}
} else if (isBool) {
if (isScalar) {
ss << (value ? "True" : "False");
} else {
ss << std::setw(num_width_) << std::setiosflags(std::ios::right) << (value ? "True" : "False");
constexpr int bool_max_width = sizeof("False") - 1;
ss << std::setw(bool_max_width) << std::setiosflags(std::ios::right) << (value ? "True" : "False");
}
} else {
if (isScalar) {
ss << value;
} else if constexpr (std::is_same<T, uint8_t>::value) {
ss << std::setw(num_width_) << std::setiosflags(std::ios::right) << static_cast<uint16_t>(value);
} else if constexpr (std::is_same<T, int8_t>::value) {
ss << std::setw(num_width_) << std::setiosflags(std::ios::right) << static_cast<int16_t>(value);
} else {
ss << std::setw(num_width_) << std::setiosflags(std::ios::right) << value;
// Add a padding string before the number, such as "###123", for subsequent replacement.
const int width = GetNumLength(value);
*max_width = std::max(*max_width, width);
std::string pad(width, '#');
ss << pad;
if constexpr (std::is_same<T, uint8_t>::value) {
ss << static_cast<uint16_t>(value);
} else if constexpr (std::is_same<T, int8_t>::value) {
ss << static_cast<int16_t>(value);
} else {
ss << value;
}
}
}
if (!isScalar && i != end - 1) {
@ -323,7 +306,7 @@ class TensorDataImpl : public TensorData {
}
void SummaryStringRecursive(std::ostringstream &ss, const ShapeVector &shape, ssize_t *cursor, ssize_t depth,
bool use_comma) const {
bool use_comma, int *max_width) const {
if (depth >= static_cast<ssize_t>(ndim_)) {
return;
}
@ -331,11 +314,11 @@ class TensorDataImpl : public TensorData {
if (depth == static_cast<ssize_t>(ndim_) - 1) { // Bottom dimension
ssize_t num = shape[depth];
if (num > kThreshold && ndim_ > 1) {
OutputDataString(ss, *cursor, 0, kThreshold / 2, use_comma);
OutputDataString(ss, *cursor, 0, kThreshold / 2, use_comma, max_width);
ss << ' ' << kEllipsis << ' ';
OutputDataString(ss, *cursor, num - kThreshold / 2, num, use_comma);
OutputDataString(ss, *cursor, num - kThreshold / 2, num, use_comma, max_width);
} else {
OutputDataString(ss, *cursor, 0, num, use_comma);
OutputDataString(ss, *cursor, 0, num, use_comma, max_width);
}
*cursor += num;
} else { // Middle dimension
@ -349,7 +332,7 @@ class TensorDataImpl : public TensorData {
ss << '\n';
ss << std::setw(depth + 1) << ' '; // Add the indent.
}
SummaryStringRecursive(ss, shape, cursor, depth + 1, use_comma);
SummaryStringRecursive(ss, shape, cursor, depth + 1, use_comma, max_width);
}
// Handle the ignored part.
if (num > kThreshold) {
@ -366,7 +349,6 @@ class TensorDataImpl : public TensorData {
}
// Multiple with ignored layers number.
ignored *= num - kThreshold;
*cursor += ignored;
}
// Handle the second half.
@ -378,53 +360,55 @@ class TensorDataImpl : public TensorData {
}
ss << '\n';
ss << std::setw(depth + 1) << ' '; // Add the indent.
SummaryStringRecursive(ss, shape, cursor, depth + 1, use_comma);
SummaryStringRecursive(ss, shape, cursor, depth + 1, use_comma, max_width);
}
}
}
ss << ']';
}
void GetMaxMinValueRecursive(const ShapeVector &shape, ssize_t *index, ssize_t depth, T *max_value,
T *min_value) const {
if (depth >= static_cast<ssize_t>(ndim_)) {
return;
std::string ProcessPlaceholder(std::ostringstream &ss, int max_width) const {
std::string str = ss.str();
if constexpr (std::is_same<T, bool>::value || std::is_same<T, float16>::value || std::is_same<T, float>::value ||
std::is_same<T, double>::value) {
return str;
}
if (depth == static_cast<ssize_t>(ndim_) - 1) { // Bottom dimension
ssize_t num = shape[depth];
const bool is_multi_dim = num > kThreshold && ndim_ > 1;
for (ssize_t i = 0; i < num; i++) {
if (is_multi_dim && i >= kThreshold / 2 && i < num - kThreshold / 2) {
continue;
}
const auto value = data_[i];
*max_value = std::max(*max_value, value);
*min_value = std::min(*min_value, value);
}
*index += num;
} else { // Middle dimension
ssize_t num = shape[depth];
for (ssize_t i = 0; i < std::min(static_cast<ssize_t>(kThreshold / 2), num); i++) {
GetMaxMinValueRecursive(shape, index, depth + 1, max_value, min_value);
}
if (num > kThreshold) {
ssize_t ignored = shape[depth + 1];
for (ssize_t i = depth + 2; i < static_cast<ssize_t>(ndim_); i++) {
ignored *= shape[i];
}
ignored *= num - kThreshold;
*index += ignored;
}
if (num > kThreshold / 2) {
ssize_t iter_times = std::min(static_cast<ssize_t>(num - kThreshold / 2), static_cast<ssize_t>(kThreshold / 2));
for (ssize_t i = 0; i < iter_times; i++) {
GetMaxMinValueRecursive(shape, index, depth + 1, max_value, min_value);
}
// Use regular expressions to replace placeholders.
std::regex pattern("#+");
std::smatch result;
int bias = 0;
std::string::const_iterator start = str.begin();
std::string::const_iterator end = str.end();
while (std::regex_search(start, end, result, pattern)) {
const int len = result.str(0).length();
const int pos = result.position();
bias += pos;
if (bias > static_cast<int32_t>(str.length())) {
return "";
}
// Replace # with placeholder.
std::string space(max_width - len, ' ');
str = str.replace(bias, len, space);
// Update the starting position of the search.
start = str.begin() + bias;
end = str.end();
}
return str;
}
int GetNumLength(const T &num) const {
T value = num;
int count = 0;
if (value <= 0) { // Add the length of '-' when value < 0.
count++;
}
while (value != 0) {
value /= 10;
count++;
}
return count;
}
mutable int num_width_{0};
size_t ndim_{0};
size_t data_size_{0};
std::unique_ptr<T[]> data_;
@ -606,6 +590,7 @@ void Tensor::data_sync() const {
if (!device_sync_->SyncDeviceToHost(shape(), static_cast<size_t>(data().nbytes()), data_type(), data_c())) {
MS_LOG(EXCEPTION) << "SyncDeviceToHost failed.";
}
sync_status_ = kNeedSyncHostToDevice;
}
TypeId Tensor::set_data_type(const TypeId data_type) {