modify api

This commit is contained in:
Jiaqi 2020-09-17 11:11:04 +08:00
parent 1663af7591
commit 4b431f6ace
4 changed files with 53 additions and 31 deletions

View File

@ -149,13 +149,17 @@ class SequentialCell(Cell):
"""Appends a given cell to the end of the list.
Examples:
>>> conv = nn.Conv2d(3, 2, 3, pad_mode='valid')
>>> bn = nn.BatchNorm2d(2)
>>> relu = nn.ReLU()
>>> seq = nn.SequentialCell([conv, bn])
>>> seq.append(relu)
>>> x = Tensor(np.random.random((1, 3, 4, 4)), dtype=mindspore.float32)
>>> seq(x)
>>> conv = nn.Conv2d(3, 2, 3, pad_mode='valid')
>>> bn = nn.BatchNorm2d(2)
>>> relu = nn.ReLU()
>>> seq = nn.SequentialCell([conv, bn])
>>> seq.append(relu)
>>> x = Tensor(np.ones([1, 3, 4, 4]), dtype=mindspore.float32)
>>> seq(x)
[[[[0.12445523 0.12445523]
[0.12445523 0.12445523]]
[[0. 0. ]
[0. 0. ]]]]
"""
if _valid_cell(cell):
self._cells[str(len(self))] = cell

View File

@ -61,8 +61,13 @@ class ExponentialDecayLR(LearningRateSchedule):
.. math::
decayed\_learning\_rate[i] = learning\_rate * decay\_rate^{p}
Where :math:`p = \frac{current\_step}{decay\_steps}`, if `is_stair` is True, the formula
is :math:`p = floor(\frac{current\_step}{decay\_steps})`.
Where :
.. math::
p = \frac{current\_step}{decay\_steps}
If `is_stair` is True, the formula is :
.. math::
p = floor(\frac{current\_step}{decay\_steps})
Args:
learning_rate (float): The initial value of learning rate.
@ -110,8 +115,13 @@ class NaturalExpDecayLR(LearningRateSchedule):
.. math::
decayed\_learning\_rate[i] = learning\_rate * e^{-decay\_rate * p}
Where :math:`p = \frac{current\_step}{decay\_steps}`, if `is_stair` is True, the formula
is :math:`p = floor(\frac{current\_step}{decay\_steps})`.
Where :
.. math::
p = \frac{current\_step}{decay\_steps}
If `is_stair` is True, the formula is :
.. math::
p = floor(\frac{current\_step}{decay\_steps})
Args:
learning_rate (float): The initial value of learning rate.
@ -160,8 +170,13 @@ class InverseDecayLR(LearningRateSchedule):
.. math::
decayed\_learning\_rate[i] = learning\_rate / (1 + decay\_rate * p)
Where :math:`p = \frac{current\_step}{decay\_steps}`, if `is_stair` is True, The formula
is :math:`p = floor(\frac{current\_step}{decay\_steps})`.
Where :
.. math::
p = \frac{current\_step}{decay\_steps}
If `is_stair` is True, The formula is :
.. math::
p = floor(\frac{current\_step}{decay\_steps})
Args:
learning_rate (float): The initial value of learning rate.
@ -264,12 +279,14 @@ class PolynomialDecayLR(LearningRateSchedule):
(1 - tmp\_step / tmp\_decay\_steps)^{power} + end\_learning\_rate
Where :
.. math::
`tmp\_step=min(current\_step, decay\_steps).
If `update_decay_steps` is true, update the value of `tmp_decay_step` every `decay_steps`. The formula is
.. math::
`tmp\_decay\_steps = decay\_steps * ceil(current\_step / decay\_steps)`
tmp\_step=min(current\_step, decay\_steps)
If `update_decay_steps` is true, update the value of `tmp_decay_step` every `decay_steps`. The formula is :
.. math::
tmp\_decay\_steps = decay\_steps * ceil(current\_step / decay\_steps)
Args:
learning_rate (float): The initial value of learning rate.
@ -338,7 +355,10 @@ class WarmUpLR(LearningRateSchedule):
.. math::
warmup\_learning\_rate[i] = learning\_rate * tmp\_step / warmup\_steps
Where :math:`tmp\_step=min(current\_step, warmup\_steps)`.
Where :
.. math:
tmp\_step=min(current\_step, warmup\_steps)
Args:
learning_rate (float): The initial value of learning rate.

View File

@ -41,8 +41,7 @@ class PowerTransform(Bijector):
name (str): The name of the bijector. Default: 'PowerTransform'.
param (dict): The parameters used to initialize the bijector. These parameters are only used when other
Bijectors inherit from powertransform to pass in parameters. In this case the derived Bijector may overwrite
the argument `param`.
Default: None.
the argument `param`. Default: None.
Examples:
>>> # To initialize a PowerTransform bijector of power 0.5.

View File

@ -127,8 +127,8 @@ class TensorAdd(_MathBinaryOp):
Inputs:
- **input_x** (Union[Tensor, Number, bool]) - The first input is a number, or a bool,
or a tensor whose data type is number or bool.
- **input_y** (Union[Tensor, Number, bool]) - The second input is a number,
or a bool when the first input is a tensor, or a tensor whose data type is number or bool.
- **input_y** (Union[Tensor, Number, bool]) - The second input is a number, or a bool when the first input
is a tensor, or a tensor whose data type is number or bool.
Outputs:
Tensor, the shape is the same as the one after broadcasting,
@ -1081,8 +1081,8 @@ class Sub(_MathBinaryOp):
Inputs:
- **input_x** (Union[Tensor, Number, bool]) - The first input is a number, or a bool,
or a tensor whose data type is number or bool.
- **input_y** (Union[Tensor, Number, bool]) - The second input is a number,
or a bool when the first input is a tensor, or a tensor whose data type is number or bool.
- **input_y** (Union[Tensor, Number, bool]) - The second input is a number, or a bool when the first input
is a tensor, or a tensor whose data type is number or bool.
Outputs:
Tensor, the shape is the same as the one after broadcasting,
@ -1159,9 +1159,8 @@ class SquaredDifference(_MathBinaryOp):
Inputs:
- **input_x** (Union[Tensor, Number, bool]) - The first input is a number, or a bool,
or a tensor whose data type is float16, float32, int32 or bool.
- **input_y** (Union[Tensor, Number, bool]) - The second input is a number,
or a bool when the first input is a tensor or a tensor whose data type is
float16, float32, int32 or bool.
- **input_y** (Union[Tensor, Number, bool]) - The second input is a number, or a bool when the first input
is a tensor or a tensor whose data type isfloat16, float32, int32 or bool.
Outputs:
Tensor, the shape is the same as the one after broadcasting,
@ -1865,8 +1864,8 @@ class TruncateDiv(_MathBinaryOp):
Inputs:
- **input_x** (Union[Tensor, Number, bool]) - The first input is a number, or a bool,
or a tensor whose data type is number or bool.
- **input_y** (Union[Tensor, Number, bool]) - The second input is a number,
or a bool when the first input is a tensor, or a tensor whose data type is number or bool.
- **input_y** (Union[Tensor, Number, bool]) - The second input is a number, or a bool when the first input
is a tensor, or a tensor whose data type is number or bool.
Outputs:
Tensor, the shape is the same as the one after broadcasting,
@ -1895,8 +1894,8 @@ class TruncateMod(_MathBinaryOp):
Inputs:
- **input_x** (Union[Tensor, Number, bool]) - The first input is a number, or a bool,
or a tensor whose data type is number or bool.
- **input_y** (Union[Tensor, Number, bool]) - The second input is a number,
or a bool when the first input is a tensor, or a tensor whose data type is number or bool.
- **input_y** (Union[Tensor, Number, bool]) - The second input is a number, or a bool when the first input
is a tensor, or a tensor whose data type is number or bool.
Outputs:
Tensor, the shape is the same as the one after broadcasting,