forked from OSSInnovation/mindspore
add hub config
This commit is contained in:
parent
29747f10d7
commit
080f5226db
|
@ -0,0 +1,25 @@
|
|||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
"""hub config."""
|
||||
from src.bgcf import BGCF
|
||||
|
||||
def bgcf(*args, **kwargs):
|
||||
return BGCF(*args, **kwargs)
|
||||
|
||||
|
||||
def create_network(name, *args, **kwargs):
|
||||
if name == "bgcf":
|
||||
return bgcf(*args, **kwargs)
|
||||
raise NotImplementedError(f"{name} is not implemented in the repo")
|
|
@ -0,0 +1,25 @@
|
|||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
"""hub config."""
|
||||
from src.gat import GAT
|
||||
|
||||
def gat(*args, **kwargs):
|
||||
return GAT(*args, **kwargs)
|
||||
|
||||
|
||||
def create_network(name, *args, **kwargs):
|
||||
if name == "gat":
|
||||
return gat(*args, **kwargs)
|
||||
raise NotImplementedError(f"{name} is not implemented in the repo")
|
|
@ -0,0 +1,25 @@
|
|||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
"""hub config."""
|
||||
from src.gcn import GCN
|
||||
|
||||
def gcn(*args, **kwargs):
|
||||
return GCN(*args, **kwargs)
|
||||
|
||||
|
||||
def create_network(name, *args, **kwargs):
|
||||
if name == "gcn":
|
||||
return gcn(*args, **kwargs)
|
||||
raise NotImplementedError(f"{name} is not implemented in the repo")
|
|
@ -25,7 +25,7 @@ from mindspore.ops import functional as F
|
|||
class Loss(nn.Cell):
|
||||
"""Softmax cross-entropy loss with masking."""
|
||||
def __init__(self, label, mask, weight_decay, param):
|
||||
super(Loss, self).__init__()
|
||||
super(Loss, self).__init__(auto_prefix=False)
|
||||
self.label = Tensor(label)
|
||||
self.mask = Tensor(mask)
|
||||
self.loss = P.SoftmaxCrossEntropyWithLogits()
|
||||
|
@ -55,7 +55,7 @@ class Loss(nn.Cell):
|
|||
class Accuracy(nn.Cell):
|
||||
"""Accuracy with masking."""
|
||||
def __init__(self, label, mask):
|
||||
super(Accuracy, self).__init__()
|
||||
super(Accuracy, self).__init__(auto_prefix=False)
|
||||
self.label = Tensor(label)
|
||||
self.mask = Tensor(mask)
|
||||
self.equal = P.Equal()
|
||||
|
@ -86,7 +86,7 @@ class LossAccuracyWrapper(nn.Cell):
|
|||
"""
|
||||
|
||||
def __init__(self, network, label, mask, weight_decay):
|
||||
super(LossAccuracyWrapper, self).__init__()
|
||||
super(LossAccuracyWrapper, self).__init__(auto_prefix=False)
|
||||
self.network = network
|
||||
self.loss = Loss(label, mask, weight_decay, network.trainable_params()[0])
|
||||
self.accuracy = Accuracy(label, mask)
|
||||
|
@ -110,7 +110,7 @@ class LossWrapper(nn.Cell):
|
|||
"""
|
||||
|
||||
def __init__(self, network, label, mask, weight_decay):
|
||||
super(LossWrapper, self).__init__()
|
||||
super(LossWrapper, self).__init__(auto_prefix=False)
|
||||
self.network = network
|
||||
self.loss = Loss(label, mask, weight_decay, network.trainable_params()[0])
|
||||
|
||||
|
@ -174,7 +174,7 @@ class TrainNetWrapper(nn.Cell):
|
|||
"""
|
||||
|
||||
def __init__(self, network, label, mask, config):
|
||||
super(TrainNetWrapper, self).__init__(auto_prefix=True)
|
||||
super(TrainNetWrapper, self).__init__(auto_prefix=False)
|
||||
self.network = network
|
||||
loss_net = LossWrapper(network, label, mask, config.weight_decay)
|
||||
optimizer = nn.Adam(loss_net.trainable_params(),
|
||||
|
|
|
@ -16,7 +16,7 @@
|
|||
"""
|
||||
GCN training script.
|
||||
"""
|
||||
|
||||
import os
|
||||
import time
|
||||
import argparse
|
||||
import ast
|
||||
|
@ -27,6 +27,7 @@ from matplotlib import animation
|
|||
from sklearn import manifold
|
||||
from mindspore import context
|
||||
from mindspore.common import set_seed
|
||||
from mindspore.train.serialization import save_checkpoint, load_checkpoint
|
||||
|
||||
from src.gcn import GCN
|
||||
from src.metrics import LossAccuracyWrapper, TrainNetWrapper
|
||||
|
@ -55,6 +56,8 @@ def train():
|
|||
parser.add_argument('--test_nodes_num', type=int, default=1000, help='Nodes numbers for test')
|
||||
parser.add_argument('--save_TSNE', type=ast.literal_eval, default=False, help='Whether to save t-SNE graph')
|
||||
args_opt = parser.parse_args()
|
||||
if not os.path.exists("ckpts"):
|
||||
os.mkdir("ckpts")
|
||||
|
||||
set_seed(args_opt.seed)
|
||||
context.set_context(mode=context.GRAPH_MODE,
|
||||
|
@ -72,7 +75,6 @@ def train():
|
|||
gcn_net.add_flags_recursive(fp16=True)
|
||||
|
||||
eval_net = LossAccuracyWrapper(gcn_net, label_onehot, eval_mask, config.weight_decay)
|
||||
test_net = LossAccuracyWrapper(gcn_net, label_onehot, test_mask, config.weight_decay)
|
||||
train_net = TrainNetWrapper(gcn_net, label_onehot, train_mask, config)
|
||||
|
||||
loss_list = []
|
||||
|
@ -112,7 +114,12 @@ def train():
|
|||
if epoch > config.early_stopping and loss_list[-1] > np.mean(loss_list[-(config.early_stopping+1):-1]):
|
||||
print("Early stopping...")
|
||||
break
|
||||
save_checkpoint(gcn_net, "ckpts/gcn.ckpt")
|
||||
gcn_net_test = GCN(config, adj, feature, class_num)
|
||||
load_checkpoint("ckpts/gcn.ckpt", net=gcn_net_test)
|
||||
gcn_net_test.add_flags_recursive(fp16=True)
|
||||
|
||||
test_net = LossAccuracyWrapper(gcn_net_test, label_onehot, test_mask, config.weight_decay)
|
||||
t_test = time.time()
|
||||
test_net.set_train(False)
|
||||
test_result = test_net()
|
||||
|
|
Loading…
Reference in New Issue