add test case of Bprop and tester

add test case for grad concat

fix usage in test framework

fix testcase

format code
This commit is contained in:
huangdongrun 2020-04-14 21:28:42 +08:00
parent 268d358a1d
commit efedcfb530
2 changed files with 136 additions and 30 deletions

View File

@ -65,32 +65,11 @@ class IthOutputCell(nn.Cell):
self.output_index = output_index
def construct(self, *inputs):
raise NotImplementedError
def construct1(self, x1):
predict = self.network(x1)[self.output_index]
return predict
def construct2(self, x1, x2):
predict = self.network(x1, x2)[self.output_index]
return predict
def construct3(self, x1, x2, x3):
predict = self.network(x1, x2, x3)[self.output_index]
return predict
def construct4(self, x1, x2, x3, x4):
predict = self.network(x1, x2, x3, x4)[self.output_index]
return predict
def construct5(self, x1, x2, x3, x4, x5):
predict = self.network(x1, x2, x3, x4, x5)[self.output_index]
predict = self.network(*inputs)[self.output_index]
return predict
def get_output_cell(network, num_input, output_index, training=True):
net = IthOutputCell(network, output_index)
f = getattr(net, 'construct%d' % num_input)
setattr(net, "construct", f)
set_block_training(net, training)
return net

View File

@ -24,11 +24,14 @@ from mindspore.common import dtype as mstype
context.set_context(mode=context.GRAPH_MODE)
def test_net_vargs_expand():
class AddNet(Cell):
def __init__(self):
super(AddNet, self).__init__()
self.w = Parameter(Tensor(np.ones((3, 4, 5), np.float32)), "w2", requires_grad=True)
self.w = Parameter(
Tensor(np.ones((3, 4, 5), np.float32)), "w2", requires_grad=True)
def construct(self, x, y):
return x + y
x = Tensor(np.random.normal(0, 1, [3, 4, 5]).astype(np.float32))
@ -37,22 +40,59 @@ def test_net_vargs_expand():
net = AddNet()
out = C.grad_all_with_sens(net, net.trainable_params())(x, y, sens)
class VarNet(Cell):
def __init__(self, net):
super(VarNet, self).__init__()
self.b = Parameter(Tensor(np.ones([3, 4, 5]), dtype=mstype.float32), "b", requires_grad=True)
self.w = Parameter(Tensor(np.ones([3, 4, 5]), dtype=mstype.float32), "w", requires_grad=True)
self.b = Parameter(
Tensor(np.ones([3, 4, 5]), dtype=mstype.float32), "b", requires_grad=True)
self.w = Parameter(
Tensor(np.ones([3, 4, 5]), dtype=mstype.float32), "w", requires_grad=True)
self.net = net
def construct(self, *args):
return self.net(*args)*self.w + self.b
class SecondNet(Cell):
def __init__(self):
super(SecondNet, self).__init__()
self.b2 = Parameter(Tensor(np.ones([3, 4, 5]), dtype=mstype.float32), "b2", requires_grad=True)
self.b2 = Parameter(
Tensor(np.ones([3, 4, 5]), dtype=mstype.float32), "b2", requires_grad=True)
def construct(self, *args):
res = args[0] + args[1]
return res + self.b2
class Bprop(Cell):
def __init__(self, func, wrt_params, params, grad_op, sens=None):
super(Bprop, self).__init__(auto_prefix=False)
self.func = func
self.wrt_params = wrt_params
self.params = None
if self.wrt_params and params:
self.params = ParameterTuple(params)
self.grad = grad_op
self.with_sens = False
self.sens = sens
if sens:
self.sens = Tensor(sens, dtype=mstype.float32)
self.with_sens = True
def construct(self, *inputs):
# pylint: disable=no-else-return
if self.wrt_params:
if self.with_sens:
return self.grad(self.func, self.params)(*inputs, self.sens)
else:
return self.grad(self.func, self.params)(*inputs)
elif self.with_sens:
return self.grad(self.func)(*inputs, self.sens)
else:
return self.grad(self.func)(*inputs)
def test_all_var_args_grad_with_sens():
""""test grad_by_list_with_sens with all var args input"""
class GradNet(Cell):
@ -60,6 +100,7 @@ def test_all_var_args_grad_with_sens():
super(GradNet, self).__init__()
self.weights = ParameterTuple(net.trainable_params())
self.net = net
def construct(self, *inputs):
return C.grad_by_list_with_sens(self.net, self.weights)(*inputs)
x = Tensor(np.ones([3, 4, 5]), dtype=mstype.float32)
@ -69,12 +110,14 @@ def test_all_var_args_grad_with_sens():
grad_net = GradNet(net)
out = grad_net(x, y, sens)
def test_grad_list_var_args():
class GradNet(Cell):
def __init__(self, net):
super(GradNet, self).__init__()
self.weights = ParameterTuple(net.trainable_params())
self.net = net
def construct(self, *inputs):
return C.grad_by_list(self.net, self.weights)(*inputs)
x = Tensor(np.ones([3, 4, 5]), dtype=mstype.float32)
@ -83,12 +126,14 @@ def test_grad_list_var_args():
grad_net = GradNet(net)
out = grad_net(x, y)
def test_grad_all_var_args():
class GradNet(Cell):
def __init__(self, net):
super(GradNet, self).__init__()
self.weights = ParameterTuple(net.trainable_params())
self.net = net
def construct(self, *inputs):
return C.grad_all(self.net)(*inputs)
x = Tensor(np.ones([3, 4, 5]), dtype=mstype.float32)
@ -97,12 +142,14 @@ def test_grad_all_var_args():
grad_net = GradNet(net)
out = grad_net(x, y)
def test_grad_all_var_args_with_sens():
class GradNet(Cell):
def __init__(self, net):
super(GradNet, self).__init__()
self.weights = ParameterTuple(net.trainable_params())
self.net = net
def construct(self, *inputs):
return C.grad_all_with_sens(self.net)(*inputs)
x = Tensor(np.ones([3, 4, 5]), dtype=mstype.float32)
@ -112,12 +159,14 @@ def test_grad_all_var_args_with_sens():
grad_net = GradNet(net)
out = grad_net(x, y, sens)
def test_grad_var_args_with_sens():
class GradNet(Cell):
def __init__(self, net):
super(GradNet, self).__init__()
self.weights = ParameterTuple(net.trainable_params())
self.net = net
def construct(self, *inputs):
return C.grad_with_sens(self.net)(*inputs)
x = Tensor(np.ones([3, 4, 5]), dtype=mstype.float32)
@ -127,27 +176,34 @@ def test_grad_var_args_with_sens():
grad_net = GradNet(net)
out = grad_net(x, y, sens)
def test_var_args_grad():
class VarNet(Cell):
def __init__(self, net):
super(VarNet, self).__init__()
self.b = Parameter(Tensor(np.ones([3, 4, 5]), dtype=mstype.float32), "b", requires_grad=True)
self.b = Parameter(
Tensor(np.ones([3, 4, 5]), dtype=mstype.float32), "b", requires_grad=True)
self.net = net
def construct(self, *args):
return self.net(*args) + self.b
class SecondNet(Cell):
def __init__(self):
super(SecondNet, self).__init__()
self.b2 = Parameter(Tensor(np.ones([3, 4, 5]), dtype=mstype.float32), "b2", requires_grad=True)
self.b2 = Parameter(
Tensor(np.ones([3, 4, 5]), dtype=mstype.float32), "b2", requires_grad=True)
def construct(self, *args):
res = args[0] + args[1]
return res + self.b2
class GradNet(Cell):
def __init__(self, net):
super(GradNet, self).__init__()
self.net = net
self.weights = ParameterTuple(net.trainable_params())
def construct(self, x, y, sens):
return C.grad_by_list_with_sens(self.net, self.weights)(x, y, sens)
x = Tensor(np.ones([3, 4, 5]), dtype=mstype.float32)
@ -164,12 +220,14 @@ def test_var_args_positional():
def __init__(self, net):
super(VarNet, self).__init__()
self.net = net
def construct(self, x, y):
return self.net(x, y)*x
class SecondNet(Cell):
def __init__(self):
super(SecondNet, self).__init__()
def construct(self, *args):
return args[0] + args[1]
@ -178,6 +236,7 @@ def test_var_args_positional():
super(GradNet, self).__init__()
self.net = net
self.weights = ParameterTuple(net.trainable_params())
def construct(self, x, y):
return C.grad_all(self.net)(x, y)
x = Tensor(np.ones([3, 4, 5]), dtype=mstype.float32)
@ -185,3 +244,71 @@ def test_var_args_positional():
net = VarNet(SecondNet())
grad_net = GradNet(net)
out = grad_net(x, y)
def test_grad_within_if_else():
class GradNet(Cell):
def __init__(self, net):
super(GradNet, self).__init__()
self.weights = ParameterTuple(net.trainable_params())
self.net = net
grad_op = C.GradOperation(
name='grad', get_all=False, get_by_list=True, sens_param=True)
self.grad = Bprop(self.net, True, self.weights, grad_op, 1.0)
def construct(self, *inputs):
return self.grad(*inputs)
x = Tensor(np.ones([3, 4, 5]), dtype=mstype.float32)
y = Tensor(np.ones([3, 4, 5]), dtype=mstype.float32)
sens = Tensor(1.0, dtype=mstype.float32)
net = VarNet(SecondNet())
grad_net = GradNet(net)
out = grad_net(x, y)
print("test_grad_var_args_with_sens out=", out)
def test_grad_for_concat():
class GradNet(Cell):
def __init__(self, net):
super(GradNet, self).__init__()
self.weights = ParameterTuple(net.trainable_params())
self.net = net
grad_op = C.GradOperation(
name='grad', get_all=True, get_by_list=False, sens_param=True)
self.grad = Bprop(self.net, False, self.weights, grad_op)
def construct(self, *inputs):
return self.grad(*inputs)
class Concat(Cell):
def __init__(self, axis):
super().__init__()
self.concat = P.Concat(axis=axis)
def construct(self, *input1):
return self.concat(input1)
class ConcatFactory:
def __init__(self, input_shape, axis, dtype=np.float32):
super(ConcatFactory, self).__init__()
self.inputs_np = []
for s in input_shape:
self.inputs_np.append(np.random.randn(*s).astype(dtype))
self.axis = axis
self.out_numpy = np.concatenate(self.inputs_np, axis=self.axis)
self.out_grad_np = self.out_numpy
def grad_mindspore_impl(self):
inputs = []
for i in self.inputs_np:
inputs.append(Tensor(i))
net = Concat(axis=self.axis)
grad_net = GradNet(net)
grad_net.set_train()
input_grad = grad_net(*inputs, Tensor(self.out_grad_np))
def grad_cmp(self):
input_grad_mindspore = self.grad_mindspore_impl()
fact = ConcatFactory(input_shape=(
(2, 184320, 1), (2, 46080, 1), (2, 11520, 1), (2, 2880, 1), (2, 720, 1)), axis=1)
fact.grad_cmp()